xref: /linux/mm/page_alloc.c (revision a58f3dcf20ea9e7e968ee8369fd782bbb53dff73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296  * During boot we initialize deferred pages on-demand, as needed, but once
297  * page_alloc_init_late() has finished, the deferred pages are all initialized,
298  * and we can permanently disable that path.
299  */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301 
302 static inline bool deferred_pages_enabled(void)
303 {
304 	return static_branch_unlikely(&deferred_pages);
305 }
306 
307 /*
308  * deferred_grow_zone() is __init, but it is called from
309  * get_page_from_freelist() during early boot until deferred_pages permanently
310  * disables this call. This is why we have refdata wrapper to avoid warning,
311  * and to ensure that the function body gets unloaded.
312  */
313 static bool __ref
314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 	return deferred_grow_zone(zone, order);
317 }
318 #else
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return false;
322 }
323 
324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 	return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329 
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 							unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 	return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 	return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340 
341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 	pfn &= (PAGES_PER_SECTION-1);
345 #else
346 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350 
351 /**
352  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353  * @page: The page within the block of interest
354  * @pfn: The target page frame number
355  * @mask: mask of bits that the caller is interested in
356  *
357  * Return: pageblock_bits flags
358  */
359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 					unsigned long pfn, unsigned long mask)
361 {
362 	unsigned long *bitmap;
363 	unsigned long bitidx, word_bitidx;
364 	unsigned long word;
365 
366 	bitmap = get_pageblock_bitmap(page, pfn);
367 	bitidx = pfn_to_bitidx(page, pfn);
368 	word_bitidx = bitidx / BITS_PER_LONG;
369 	bitidx &= (BITS_PER_LONG-1);
370 	/*
371 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 	 * a consistent read of the memory array, so that results, even though
373 	 * racy, are not corrupted.
374 	 */
375 	word = READ_ONCE(bitmap[word_bitidx]);
376 	return (word >> bitidx) & mask;
377 }
378 
379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 					unsigned long pfn)
381 {
382 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384 
385 /**
386  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @flags: The flags to set
389  * @pfn: The target page frame number
390  * @mask: mask of bits that the caller is interested in
391  */
392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 					unsigned long pfn,
394 					unsigned long mask)
395 {
396 	unsigned long *bitmap;
397 	unsigned long bitidx, word_bitidx;
398 	unsigned long word;
399 
400 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402 
403 	bitmap = get_pageblock_bitmap(page, pfn);
404 	bitidx = pfn_to_bitidx(page, pfn);
405 	word_bitidx = bitidx / BITS_PER_LONG;
406 	bitidx &= (BITS_PER_LONG-1);
407 
408 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409 
410 	mask <<= bitidx;
411 	flags <<= bitidx;
412 
413 	word = READ_ONCE(bitmap[word_bitidx]);
414 	do {
415 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417 
418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 	if (unlikely(page_group_by_mobility_disabled &&
421 		     migratetype < MIGRATE_PCPTYPES))
422 		migratetype = MIGRATE_UNMOVABLE;
423 
424 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 				page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427 
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 	int ret;
432 	unsigned seq;
433 	unsigned long pfn = page_to_pfn(page);
434 	unsigned long sp, start_pfn;
435 
436 	do {
437 		seq = zone_span_seqbegin(zone);
438 		start_pfn = zone->zone_start_pfn;
439 		sp = zone->spanned_pages;
440 		ret = !zone_spans_pfn(zone, pfn);
441 	} while (zone_span_seqretry(zone, seq));
442 
443 	if (ret)
444 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 			pfn, zone_to_nid(zone), zone->name,
446 			start_pfn, start_pfn + sp);
447 
448 	return ret;
449 }
450 
451 /*
452  * Temporary debugging check for pages not lying within a given zone.
453  */
454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 	if (page_outside_zone_boundaries(zone, page))
457 		return true;
458 	if (zone != page_zone(page))
459 		return true;
460 
461 	return false;
462 }
463 #else
464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 	return false;
467 }
468 #endif
469 
470 static void bad_page(struct page *page, const char *reason)
471 {
472 	static unsigned long resume;
473 	static unsigned long nr_shown;
474 	static unsigned long nr_unshown;
475 
476 	/*
477 	 * Allow a burst of 60 reports, then keep quiet for that minute;
478 	 * or allow a steady drip of one report per second.
479 	 */
480 	if (nr_shown == 60) {
481 		if (time_before(jiffies, resume)) {
482 			nr_unshown++;
483 			goto out;
484 		}
485 		if (nr_unshown) {
486 			pr_alert(
487 			      "BUG: Bad page state: %lu messages suppressed\n",
488 				nr_unshown);
489 			nr_unshown = 0;
490 		}
491 		nr_shown = 0;
492 	}
493 	if (nr_shown++ == 0)
494 		resume = jiffies + 60 * HZ;
495 
496 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
497 		current->comm, page_to_pfn(page));
498 	dump_page(page, reason);
499 
500 	print_modules();
501 	dump_stack();
502 out:
503 	/* Leave bad fields for debug, except PageBuddy could make trouble */
504 	if (PageBuddy(page))
505 		__ClearPageBuddy(page);
506 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508 
509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 	bool __maybe_unused movable;
512 
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
516 
517 		movable = migratetype == MIGRATE_MOVABLE;
518 
519 		return NR_LOWORDER_PCP_LISTS + movable;
520 	}
521 #else
522 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524 
525 	return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527 
528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 	int order = pindex / MIGRATE_PCPTYPES;
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 	if (pindex >= NR_LOWORDER_PCP_LISTS)
534 		order = HPAGE_PMD_ORDER;
535 #else
536 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538 
539 	return order;
540 }
541 
542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 		return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 	if (order == HPAGE_PMD_ORDER)
548 		return true;
549 #endif
550 	return false;
551 }
552 
553 /*
554  * Higher-order pages are called "compound pages".  They are structured thusly:
555  *
556  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557  *
558  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560  *
561  * The first tail page's ->compound_order holds the order of allocation.
562  * This usage means that zero-order pages may not be compound.
563  */
564 
565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 	int i;
568 	int nr_pages = 1 << order;
569 
570 	__SetPageHead(page);
571 	for (i = 1; i < nr_pages; i++)
572 		prep_compound_tail(page, i);
573 
574 	prep_compound_head(page, order);
575 }
576 
577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 	set_page_private(page, order);
580 	__SetPageBuddy(page);
581 }
582 
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 	struct capture_control *capc = current->capture_control;
587 
588 	return unlikely(capc) &&
589 		!(current->flags & PF_KTHREAD) &&
590 		!capc->page &&
591 		capc->cc->zone == zone ? capc : NULL;
592 }
593 
594 static inline bool
595 compaction_capture(struct capture_control *capc, struct page *page,
596 		   int order, int migratetype)
597 {
598 	if (!capc || order != capc->cc->order)
599 		return false;
600 
601 	/* Do not accidentally pollute CMA or isolated regions*/
602 	if (is_migrate_cma(migratetype) ||
603 	    is_migrate_isolate(migratetype))
604 		return false;
605 
606 	/*
607 	 * Do not let lower order allocations pollute a movable pageblock
608 	 * unless compaction is also requesting movable pages.
609 	 * This might let an unmovable request use a reclaimable pageblock
610 	 * and vice-versa but no more than normal fallback logic which can
611 	 * have trouble finding a high-order free page.
612 	 */
613 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 	    capc->cc->migratetype != MIGRATE_MOVABLE)
615 		return false;
616 
617 	capc->page = page;
618 	return true;
619 }
620 
621 #else
622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 	return NULL;
625 }
626 
627 static inline bool
628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634 
635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 				     int migratetype)
637 {
638 	lockdep_assert_held(&zone->lock);
639 
640 	if (is_migrate_isolate(migratetype))
641 		return;
642 
643 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
644 
645 	if (is_migrate_cma(migratetype))
646 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
647 	else if (is_migrate_highatomic(migratetype))
648 		WRITE_ONCE(zone->nr_free_highatomic,
649 			   zone->nr_free_highatomic + nr_pages);
650 }
651 
652 /* Used for pages not on another list */
653 static inline void __add_to_free_list(struct page *page, struct zone *zone,
654 				      unsigned int order, int migratetype,
655 				      bool tail)
656 {
657 	struct free_area *area = &zone->free_area[order];
658 
659 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
660 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 		     get_pageblock_migratetype(page), migratetype, 1 << order);
662 
663 	if (tail)
664 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
665 	else
666 		list_add(&page->buddy_list, &area->free_list[migratetype]);
667 	area->nr_free++;
668 }
669 
670 /*
671  * Used for pages which are on another list. Move the pages to the tail
672  * of the list - so the moved pages won't immediately be considered for
673  * allocation again (e.g., optimization for memory onlining).
674  */
675 static inline void move_to_free_list(struct page *page, struct zone *zone,
676 				     unsigned int order, int old_mt, int new_mt)
677 {
678 	struct free_area *area = &zone->free_area[order];
679 
680 	/* Free page moving can fail, so it happens before the type update */
681 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
682 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 		     get_pageblock_migratetype(page), old_mt, 1 << order);
684 
685 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
686 
687 	account_freepages(zone, -(1 << order), old_mt);
688 	account_freepages(zone, 1 << order, new_mt);
689 }
690 
691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
692 					     unsigned int order, int migratetype)
693 {
694         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
695 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 		     get_pageblock_migratetype(page), migratetype, 1 << order);
697 
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709 					   unsigned int order, int migratetype)
710 {
711 	__del_page_from_free_list(page, zone, order, migratetype);
712 	account_freepages(zone, -(1 << order), migratetype);
713 }
714 
715 static inline struct page *get_page_from_free_area(struct free_area *area,
716 					    int migratetype)
717 {
718 	return list_first_entry_or_null(&area->free_list[migratetype],
719 					struct page, buddy_list);
720 }
721 
722 /*
723  * If this is less than the 2nd largest possible page, check if the buddy
724  * of the next-higher order is free. If it is, it's possible
725  * that pages are being freed that will coalesce soon. In case,
726  * that is happening, add the free page to the tail of the list
727  * so it's less likely to be used soon and more likely to be merged
728  * as a 2-level higher order page
729  */
730 static inline bool
731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
732 		   struct page *page, unsigned int order)
733 {
734 	unsigned long higher_page_pfn;
735 	struct page *higher_page;
736 
737 	if (order >= MAX_PAGE_ORDER - 1)
738 		return false;
739 
740 	higher_page_pfn = buddy_pfn & pfn;
741 	higher_page = page + (higher_page_pfn - pfn);
742 
743 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
744 			NULL) != NULL;
745 }
746 
747 /*
748  * Freeing function for a buddy system allocator.
749  *
750  * The concept of a buddy system is to maintain direct-mapped table
751  * (containing bit values) for memory blocks of various "orders".
752  * The bottom level table contains the map for the smallest allocatable
753  * units of memory (here, pages), and each level above it describes
754  * pairs of units from the levels below, hence, "buddies".
755  * At a high level, all that happens here is marking the table entry
756  * at the bottom level available, and propagating the changes upward
757  * as necessary, plus some accounting needed to play nicely with other
758  * parts of the VM system.
759  * At each level, we keep a list of pages, which are heads of continuous
760  * free pages of length of (1 << order) and marked with PageBuddy.
761  * Page's order is recorded in page_private(page) field.
762  * So when we are allocating or freeing one, we can derive the state of the
763  * other.  That is, if we allocate a small block, and both were
764  * free, the remainder of the region must be split into blocks.
765  * If a block is freed, and its buddy is also free, then this
766  * triggers coalescing into a block of larger size.
767  *
768  * -- nyc
769  */
770 
771 static inline void __free_one_page(struct page *page,
772 		unsigned long pfn,
773 		struct zone *zone, unsigned int order,
774 		int migratetype, fpi_t fpi_flags)
775 {
776 	struct capture_control *capc = task_capc(zone);
777 	unsigned long buddy_pfn = 0;
778 	unsigned long combined_pfn;
779 	struct page *buddy;
780 	bool to_tail;
781 
782 	VM_BUG_ON(!zone_is_initialized(zone));
783 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784 
785 	VM_BUG_ON(migratetype == -1);
786 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
788 
789 	account_freepages(zone, 1 << order, migratetype);
790 
791 	while (order < MAX_PAGE_ORDER) {
792 		int buddy_mt = migratetype;
793 
794 		if (compaction_capture(capc, page, order, migratetype)) {
795 			account_freepages(zone, -(1 << order), migratetype);
796 			return;
797 		}
798 
799 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
800 		if (!buddy)
801 			goto done_merging;
802 
803 		if (unlikely(order >= pageblock_order)) {
804 			/*
805 			 * We want to prevent merge between freepages on pageblock
806 			 * without fallbacks and normal pageblock. Without this,
807 			 * pageblock isolation could cause incorrect freepage or CMA
808 			 * accounting or HIGHATOMIC accounting.
809 			 */
810 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
811 
812 			if (migratetype != buddy_mt &&
813 			    (!migratetype_is_mergeable(migratetype) ||
814 			     !migratetype_is_mergeable(buddy_mt)))
815 				goto done_merging;
816 		}
817 
818 		/*
819 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 		 * merge with it and move up one order.
821 		 */
822 		if (page_is_guard(buddy))
823 			clear_page_guard(zone, buddy, order);
824 		else
825 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
826 
827 		if (unlikely(buddy_mt != migratetype)) {
828 			/*
829 			 * Match buddy type. This ensures that an
830 			 * expand() down the line puts the sub-blocks
831 			 * on the right freelists.
832 			 */
833 			set_pageblock_migratetype(buddy, migratetype);
834 		}
835 
836 		combined_pfn = buddy_pfn & pfn;
837 		page = page + (combined_pfn - pfn);
838 		pfn = combined_pfn;
839 		order++;
840 	}
841 
842 done_merging:
843 	set_buddy_order(page, order);
844 
845 	if (fpi_flags & FPI_TO_TAIL)
846 		to_tail = true;
847 	else if (is_shuffle_order(order))
848 		to_tail = shuffle_pick_tail();
849 	else
850 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
851 
852 	__add_to_free_list(page, zone, order, migratetype, to_tail);
853 
854 	/* Notify page reporting subsystem of freed page */
855 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
856 		page_reporting_notify_free(order);
857 }
858 
859 /*
860  * A bad page could be due to a number of fields. Instead of multiple branches,
861  * try and check multiple fields with one check. The caller must do a detailed
862  * check if necessary.
863  */
864 static inline bool page_expected_state(struct page *page,
865 					unsigned long check_flags)
866 {
867 	if (unlikely(atomic_read(&page->_mapcount) != -1))
868 		return false;
869 
870 	if (unlikely((unsigned long)page->mapping |
871 			page_ref_count(page) |
872 #ifdef CONFIG_MEMCG
873 			page->memcg_data |
874 #endif
875 #ifdef CONFIG_PAGE_POOL
876 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
877 #endif
878 			(page->flags & check_flags)))
879 		return false;
880 
881 	return true;
882 }
883 
884 static const char *page_bad_reason(struct page *page, unsigned long flags)
885 {
886 	const char *bad_reason = NULL;
887 
888 	if (unlikely(atomic_read(&page->_mapcount) != -1))
889 		bad_reason = "nonzero mapcount";
890 	if (unlikely(page->mapping != NULL))
891 		bad_reason = "non-NULL mapping";
892 	if (unlikely(page_ref_count(page) != 0))
893 		bad_reason = "nonzero _refcount";
894 	if (unlikely(page->flags & flags)) {
895 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
896 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
897 		else
898 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
899 	}
900 #ifdef CONFIG_MEMCG
901 	if (unlikely(page->memcg_data))
902 		bad_reason = "page still charged to cgroup";
903 #endif
904 #ifdef CONFIG_PAGE_POOL
905 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
906 		bad_reason = "page_pool leak";
907 #endif
908 	return bad_reason;
909 }
910 
911 static void free_page_is_bad_report(struct page *page)
912 {
913 	bad_page(page,
914 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
915 }
916 
917 static inline bool free_page_is_bad(struct page *page)
918 {
919 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 		return false;
921 
922 	/* Something has gone sideways, find it */
923 	free_page_is_bad_report(page);
924 	return true;
925 }
926 
927 static inline bool is_check_pages_enabled(void)
928 {
929 	return static_branch_unlikely(&check_pages_enabled);
930 }
931 
932 static int free_tail_page_prepare(struct page *head_page, struct page *page)
933 {
934 	struct folio *folio = (struct folio *)head_page;
935 	int ret = 1;
936 
937 	/*
938 	 * We rely page->lru.next never has bit 0 set, unless the page
939 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 	 */
941 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942 
943 	if (!is_check_pages_enabled()) {
944 		ret = 0;
945 		goto out;
946 	}
947 	switch (page - head_page) {
948 	case 1:
949 		/* the first tail page: these may be in place of ->mapping */
950 		if (unlikely(folio_entire_mapcount(folio))) {
951 			bad_page(page, "nonzero entire_mapcount");
952 			goto out;
953 		}
954 		if (unlikely(folio_large_mapcount(folio))) {
955 			bad_page(page, "nonzero large_mapcount");
956 			goto out;
957 		}
958 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
959 			bad_page(page, "nonzero nr_pages_mapped");
960 			goto out;
961 		}
962 		if (unlikely(atomic_read(&folio->_pincount))) {
963 			bad_page(page, "nonzero pincount");
964 			goto out;
965 		}
966 		break;
967 	case 2:
968 		/* the second tail page: deferred_list overlaps ->mapping */
969 		if (unlikely(!list_empty(&folio->_deferred_list))) {
970 			bad_page(page, "on deferred list");
971 			goto out;
972 		}
973 		break;
974 	default:
975 		if (page->mapping != TAIL_MAPPING) {
976 			bad_page(page, "corrupted mapping in tail page");
977 			goto out;
978 		}
979 		break;
980 	}
981 	if (unlikely(!PageTail(page))) {
982 		bad_page(page, "PageTail not set");
983 		goto out;
984 	}
985 	if (unlikely(compound_head(page) != head_page)) {
986 		bad_page(page, "compound_head not consistent");
987 		goto out;
988 	}
989 	ret = 0;
990 out:
991 	page->mapping = NULL;
992 	clear_compound_head(page);
993 	return ret;
994 }
995 
996 /*
997  * Skip KASAN memory poisoning when either:
998  *
999  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1001  *    using page tags instead (see below).
1002  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003  *    that error detection is disabled for accesses via the page address.
1004  *
1005  * Pages will have match-all tags in the following circumstances:
1006  *
1007  * 1. Pages are being initialized for the first time, including during deferred
1008  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011  * 3. The allocation was excluded from being checked due to sampling,
1012  *    see the call to kasan_unpoison_pages.
1013  *
1014  * Poisoning pages during deferred memory init will greatly lengthen the
1015  * process and cause problem in large memory systems as the deferred pages
1016  * initialization is done with interrupt disabled.
1017  *
1018  * Assuming that there will be no reference to those newly initialized
1019  * pages before they are ever allocated, this should have no effect on
1020  * KASAN memory tracking as the poison will be properly inserted at page
1021  * allocation time. The only corner case is when pages are allocated by
1022  * on-demand allocation and then freed again before the deferred pages
1023  * initialization is done, but this is not likely to happen.
1024  */
1025 static inline bool should_skip_kasan_poison(struct page *page)
1026 {
1027 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028 		return deferred_pages_enabled();
1029 
1030 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1031 }
1032 
1033 static void kernel_init_pages(struct page *page, int numpages)
1034 {
1035 	int i;
1036 
1037 	/* s390's use of memset() could override KASAN redzones. */
1038 	kasan_disable_current();
1039 	for (i = 0; i < numpages; i++)
1040 		clear_highpage_kasan_tagged(page + i);
1041 	kasan_enable_current();
1042 }
1043 
1044 #ifdef CONFIG_MEM_ALLOC_PROFILING
1045 
1046 /* Should be called only if mem_alloc_profiling_enabled() */
1047 void __clear_page_tag_ref(struct page *page)
1048 {
1049 	union pgtag_ref_handle handle;
1050 	union codetag_ref ref;
1051 
1052 	if (get_page_tag_ref(page, &ref, &handle)) {
1053 		set_codetag_empty(&ref);
1054 		update_page_tag_ref(handle, &ref);
1055 		put_page_tag_ref(handle);
1056 	}
1057 }
1058 
1059 /* Should be called only if mem_alloc_profiling_enabled() */
1060 static noinline
1061 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1062 		       unsigned int nr)
1063 {
1064 	union pgtag_ref_handle handle;
1065 	union codetag_ref ref;
1066 
1067 	if (get_page_tag_ref(page, &ref, &handle)) {
1068 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1069 		update_page_tag_ref(handle, &ref);
1070 		put_page_tag_ref(handle);
1071 	}
1072 }
1073 
1074 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1075 				   unsigned int nr)
1076 {
1077 	if (mem_alloc_profiling_enabled())
1078 		__pgalloc_tag_add(page, task, nr);
1079 }
1080 
1081 /* Should be called only if mem_alloc_profiling_enabled() */
1082 static noinline
1083 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1084 {
1085 	union pgtag_ref_handle handle;
1086 	union codetag_ref ref;
1087 
1088 	if (get_page_tag_ref(page, &ref, &handle)) {
1089 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1090 		update_page_tag_ref(handle, &ref);
1091 		put_page_tag_ref(handle);
1092 	}
1093 }
1094 
1095 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1096 {
1097 	if (mem_alloc_profiling_enabled())
1098 		__pgalloc_tag_sub(page, nr);
1099 }
1100 
1101 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr)
1102 {
1103 	struct alloc_tag *tag;
1104 
1105 	if (!mem_alloc_profiling_enabled())
1106 		return;
1107 
1108 	tag = __pgalloc_tag_get(page);
1109 	if (tag)
1110 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1111 }
1112 
1113 #else /* CONFIG_MEM_ALLOC_PROFILING */
1114 
1115 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1116 				   unsigned int nr) {}
1117 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
1118 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {}
1119 
1120 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1121 
1122 __always_inline bool free_pages_prepare(struct page *page,
1123 			unsigned int order)
1124 {
1125 	int bad = 0;
1126 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1127 	bool init = want_init_on_free();
1128 	bool compound = PageCompound(page);
1129 	struct folio *folio = page_folio(page);
1130 
1131 	VM_BUG_ON_PAGE(PageTail(page), page);
1132 
1133 	trace_mm_page_free(page, order);
1134 	kmsan_free_page(page, order);
1135 
1136 	if (memcg_kmem_online() && PageMemcgKmem(page))
1137 		__memcg_kmem_uncharge_page(page, order);
1138 
1139 	/*
1140 	 * In rare cases, when truncation or holepunching raced with
1141 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1142 	 * found set here.  This does not indicate a problem, unless
1143 	 * "unevictable_pgs_cleared" appears worryingly large.
1144 	 */
1145 	if (unlikely(folio_test_mlocked(folio))) {
1146 		long nr_pages = folio_nr_pages(folio);
1147 
1148 		__folio_clear_mlocked(folio);
1149 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1150 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1151 	}
1152 
1153 	if (unlikely(PageHWPoison(page)) && !order) {
1154 		/* Do not let hwpoison pages hit pcplists/buddy */
1155 		reset_page_owner(page, order);
1156 		page_table_check_free(page, order);
1157 		pgalloc_tag_sub(page, 1 << order);
1158 
1159 		/*
1160 		 * The page is isolated and accounted for.
1161 		 * Mark the codetag as empty to avoid accounting error
1162 		 * when the page is freed by unpoison_memory().
1163 		 */
1164 		clear_page_tag_ref(page);
1165 		return false;
1166 	}
1167 
1168 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1169 
1170 	/*
1171 	 * Check tail pages before head page information is cleared to
1172 	 * avoid checking PageCompound for order-0 pages.
1173 	 */
1174 	if (unlikely(order)) {
1175 		int i;
1176 
1177 		if (compound)
1178 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1179 		for (i = 1; i < (1 << order); i++) {
1180 			if (compound)
1181 				bad += free_tail_page_prepare(page, page + i);
1182 			if (is_check_pages_enabled()) {
1183 				if (free_page_is_bad(page + i)) {
1184 					bad++;
1185 					continue;
1186 				}
1187 			}
1188 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1189 		}
1190 	}
1191 	if (PageMappingFlags(page)) {
1192 		if (PageAnon(page))
1193 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1194 		page->mapping = NULL;
1195 	}
1196 	if (is_check_pages_enabled()) {
1197 		if (free_page_is_bad(page))
1198 			bad++;
1199 		if (bad)
1200 			return false;
1201 	}
1202 
1203 	page_cpupid_reset_last(page);
1204 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1205 	reset_page_owner(page, order);
1206 	page_table_check_free(page, order);
1207 	pgalloc_tag_sub(page, 1 << order);
1208 
1209 	if (!PageHighMem(page)) {
1210 		debug_check_no_locks_freed(page_address(page),
1211 					   PAGE_SIZE << order);
1212 		debug_check_no_obj_freed(page_address(page),
1213 					   PAGE_SIZE << order);
1214 	}
1215 
1216 	kernel_poison_pages(page, 1 << order);
1217 
1218 	/*
1219 	 * As memory initialization might be integrated into KASAN,
1220 	 * KASAN poisoning and memory initialization code must be
1221 	 * kept together to avoid discrepancies in behavior.
1222 	 *
1223 	 * With hardware tag-based KASAN, memory tags must be set before the
1224 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1225 	 */
1226 	if (!skip_kasan_poison) {
1227 		kasan_poison_pages(page, order, init);
1228 
1229 		/* Memory is already initialized if KASAN did it internally. */
1230 		if (kasan_has_integrated_init())
1231 			init = false;
1232 	}
1233 	if (init)
1234 		kernel_init_pages(page, 1 << order);
1235 
1236 	/*
1237 	 * arch_free_page() can make the page's contents inaccessible.  s390
1238 	 * does this.  So nothing which can access the page's contents should
1239 	 * happen after this.
1240 	 */
1241 	arch_free_page(page, order);
1242 
1243 	debug_pagealloc_unmap_pages(page, 1 << order);
1244 
1245 	return true;
1246 }
1247 
1248 /*
1249  * Frees a number of pages from the PCP lists
1250  * Assumes all pages on list are in same zone.
1251  * count is the number of pages to free.
1252  */
1253 static void free_pcppages_bulk(struct zone *zone, int count,
1254 					struct per_cpu_pages *pcp,
1255 					int pindex)
1256 {
1257 	unsigned long flags;
1258 	unsigned int order;
1259 	struct page *page;
1260 
1261 	/*
1262 	 * Ensure proper count is passed which otherwise would stuck in the
1263 	 * below while (list_empty(list)) loop.
1264 	 */
1265 	count = min(pcp->count, count);
1266 
1267 	/* Ensure requested pindex is drained first. */
1268 	pindex = pindex - 1;
1269 
1270 	spin_lock_irqsave(&zone->lock, flags);
1271 
1272 	while (count > 0) {
1273 		struct list_head *list;
1274 		int nr_pages;
1275 
1276 		/* Remove pages from lists in a round-robin fashion. */
1277 		do {
1278 			if (++pindex > NR_PCP_LISTS - 1)
1279 				pindex = 0;
1280 			list = &pcp->lists[pindex];
1281 		} while (list_empty(list));
1282 
1283 		order = pindex_to_order(pindex);
1284 		nr_pages = 1 << order;
1285 		do {
1286 			unsigned long pfn;
1287 			int mt;
1288 
1289 			page = list_last_entry(list, struct page, pcp_list);
1290 			pfn = page_to_pfn(page);
1291 			mt = get_pfnblock_migratetype(page, pfn);
1292 
1293 			/* must delete to avoid corrupting pcp list */
1294 			list_del(&page->pcp_list);
1295 			count -= nr_pages;
1296 			pcp->count -= nr_pages;
1297 
1298 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1299 			trace_mm_page_pcpu_drain(page, order, mt);
1300 		} while (count > 0 && !list_empty(list));
1301 	}
1302 
1303 	spin_unlock_irqrestore(&zone->lock, flags);
1304 }
1305 
1306 /* Split a multi-block free page into its individual pageblocks. */
1307 static void split_large_buddy(struct zone *zone, struct page *page,
1308 			      unsigned long pfn, int order, fpi_t fpi)
1309 {
1310 	unsigned long end = pfn + (1 << order);
1311 
1312 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1313 	/* Caller removed page from freelist, buddy info cleared! */
1314 	VM_WARN_ON_ONCE(PageBuddy(page));
1315 
1316 	if (order > pageblock_order)
1317 		order = pageblock_order;
1318 
1319 	do {
1320 		int mt = get_pfnblock_migratetype(page, pfn);
1321 
1322 		__free_one_page(page, pfn, zone, order, mt, fpi);
1323 		pfn += 1 << order;
1324 		if (pfn == end)
1325 			break;
1326 		page = pfn_to_page(pfn);
1327 	} while (1);
1328 }
1329 
1330 static void free_one_page(struct zone *zone, struct page *page,
1331 			  unsigned long pfn, unsigned int order,
1332 			  fpi_t fpi_flags)
1333 {
1334 	unsigned long flags;
1335 
1336 	spin_lock_irqsave(&zone->lock, flags);
1337 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1338 	spin_unlock_irqrestore(&zone->lock, flags);
1339 
1340 	__count_vm_events(PGFREE, 1 << order);
1341 }
1342 
1343 static void __free_pages_ok(struct page *page, unsigned int order,
1344 			    fpi_t fpi_flags)
1345 {
1346 	unsigned long pfn = page_to_pfn(page);
1347 	struct zone *zone = page_zone(page);
1348 
1349 	if (free_pages_prepare(page, order))
1350 		free_one_page(zone, page, pfn, order, fpi_flags);
1351 }
1352 
1353 void __meminit __free_pages_core(struct page *page, unsigned int order,
1354 		enum meminit_context context)
1355 {
1356 	unsigned int nr_pages = 1 << order;
1357 	struct page *p = page;
1358 	unsigned int loop;
1359 
1360 	/*
1361 	 * When initializing the memmap, __init_single_page() sets the refcount
1362 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1363 	 * refcount of all involved pages to 0.
1364 	 *
1365 	 * Note that hotplugged memory pages are initialized to PageOffline().
1366 	 * Pages freed from memblock might be marked as reserved.
1367 	 */
1368 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1369 	    unlikely(context == MEMINIT_HOTPLUG)) {
1370 		for (loop = 0; loop < nr_pages; loop++, p++) {
1371 			VM_WARN_ON_ONCE(PageReserved(p));
1372 			__ClearPageOffline(p);
1373 			set_page_count(p, 0);
1374 		}
1375 
1376 		adjust_managed_page_count(page, nr_pages);
1377 	} else {
1378 		for (loop = 0; loop < nr_pages; loop++, p++) {
1379 			__ClearPageReserved(p);
1380 			set_page_count(p, 0);
1381 		}
1382 
1383 		/* memblock adjusts totalram_pages() manually. */
1384 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1385 	}
1386 
1387 	if (page_contains_unaccepted(page, order)) {
1388 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1389 			return;
1390 
1391 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1392 	}
1393 
1394 	/*
1395 	 * Bypass PCP and place fresh pages right to the tail, primarily
1396 	 * relevant for memory onlining.
1397 	 */
1398 	__free_pages_ok(page, order, FPI_TO_TAIL);
1399 }
1400 
1401 /*
1402  * Check that the whole (or subset of) a pageblock given by the interval of
1403  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1404  * with the migration of free compaction scanner.
1405  *
1406  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1407  *
1408  * It's possible on some configurations to have a setup like node0 node1 node0
1409  * i.e. it's possible that all pages within a zones range of pages do not
1410  * belong to a single zone. We assume that a border between node0 and node1
1411  * can occur within a single pageblock, but not a node0 node1 node0
1412  * interleaving within a single pageblock. It is therefore sufficient to check
1413  * the first and last page of a pageblock and avoid checking each individual
1414  * page in a pageblock.
1415  *
1416  * Note: the function may return non-NULL struct page even for a page block
1417  * which contains a memory hole (i.e. there is no physical memory for a subset
1418  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1419  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1420  * even though the start pfn is online and valid. This should be safe most of
1421  * the time because struct pages are still initialized via init_unavailable_range()
1422  * and pfn walkers shouldn't touch any physical memory range for which they do
1423  * not recognize any specific metadata in struct pages.
1424  */
1425 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1426 				     unsigned long end_pfn, struct zone *zone)
1427 {
1428 	struct page *start_page;
1429 	struct page *end_page;
1430 
1431 	/* end_pfn is one past the range we are checking */
1432 	end_pfn--;
1433 
1434 	if (!pfn_valid(end_pfn))
1435 		return NULL;
1436 
1437 	start_page = pfn_to_online_page(start_pfn);
1438 	if (!start_page)
1439 		return NULL;
1440 
1441 	if (page_zone(start_page) != zone)
1442 		return NULL;
1443 
1444 	end_page = pfn_to_page(end_pfn);
1445 
1446 	/* This gives a shorter code than deriving page_zone(end_page) */
1447 	if (page_zone_id(start_page) != page_zone_id(end_page))
1448 		return NULL;
1449 
1450 	return start_page;
1451 }
1452 
1453 /*
1454  * The order of subdivision here is critical for the IO subsystem.
1455  * Please do not alter this order without good reasons and regression
1456  * testing. Specifically, as large blocks of memory are subdivided,
1457  * the order in which smaller blocks are delivered depends on the order
1458  * they're subdivided in this function. This is the primary factor
1459  * influencing the order in which pages are delivered to the IO
1460  * subsystem according to empirical testing, and this is also justified
1461  * by considering the behavior of a buddy system containing a single
1462  * large block of memory acted on by a series of small allocations.
1463  * This behavior is a critical factor in sglist merging's success.
1464  *
1465  * -- nyc
1466  */
1467 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1468 				  int high, int migratetype)
1469 {
1470 	unsigned int size = 1 << high;
1471 	unsigned int nr_added = 0;
1472 
1473 	while (high > low) {
1474 		high--;
1475 		size >>= 1;
1476 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1477 
1478 		/*
1479 		 * Mark as guard pages (or page), that will allow to
1480 		 * merge back to allocator when buddy will be freed.
1481 		 * Corresponding page table entries will not be touched,
1482 		 * pages will stay not present in virtual address space
1483 		 */
1484 		if (set_page_guard(zone, &page[size], high))
1485 			continue;
1486 
1487 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1488 		set_buddy_order(&page[size], high);
1489 		nr_added += size;
1490 	}
1491 
1492 	return nr_added;
1493 }
1494 
1495 static __always_inline void page_del_and_expand(struct zone *zone,
1496 						struct page *page, int low,
1497 						int high, int migratetype)
1498 {
1499 	int nr_pages = 1 << high;
1500 
1501 	__del_page_from_free_list(page, zone, high, migratetype);
1502 	nr_pages -= expand(zone, page, low, high, migratetype);
1503 	account_freepages(zone, -nr_pages, migratetype);
1504 }
1505 
1506 static void check_new_page_bad(struct page *page)
1507 {
1508 	if (unlikely(page->flags & __PG_HWPOISON)) {
1509 		/* Don't complain about hwpoisoned pages */
1510 		if (PageBuddy(page))
1511 			__ClearPageBuddy(page);
1512 		return;
1513 	}
1514 
1515 	bad_page(page,
1516 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1517 }
1518 
1519 /*
1520  * This page is about to be returned from the page allocator
1521  */
1522 static bool check_new_page(struct page *page)
1523 {
1524 	if (likely(page_expected_state(page,
1525 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1526 		return false;
1527 
1528 	check_new_page_bad(page);
1529 	return true;
1530 }
1531 
1532 static inline bool check_new_pages(struct page *page, unsigned int order)
1533 {
1534 	if (is_check_pages_enabled()) {
1535 		for (int i = 0; i < (1 << order); i++) {
1536 			struct page *p = page + i;
1537 
1538 			if (check_new_page(p))
1539 				return true;
1540 		}
1541 	}
1542 
1543 	return false;
1544 }
1545 
1546 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1547 {
1548 	/* Don't skip if a software KASAN mode is enabled. */
1549 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1550 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1551 		return false;
1552 
1553 	/* Skip, if hardware tag-based KASAN is not enabled. */
1554 	if (!kasan_hw_tags_enabled())
1555 		return true;
1556 
1557 	/*
1558 	 * With hardware tag-based KASAN enabled, skip if this has been
1559 	 * requested via __GFP_SKIP_KASAN.
1560 	 */
1561 	return flags & __GFP_SKIP_KASAN;
1562 }
1563 
1564 static inline bool should_skip_init(gfp_t flags)
1565 {
1566 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1567 	if (!kasan_hw_tags_enabled())
1568 		return false;
1569 
1570 	/* For hardware tag-based KASAN, skip if requested. */
1571 	return (flags & __GFP_SKIP_ZERO);
1572 }
1573 
1574 inline void post_alloc_hook(struct page *page, unsigned int order,
1575 				gfp_t gfp_flags)
1576 {
1577 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1578 			!should_skip_init(gfp_flags);
1579 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1580 	int i;
1581 
1582 	set_page_private(page, 0);
1583 
1584 	arch_alloc_page(page, order);
1585 	debug_pagealloc_map_pages(page, 1 << order);
1586 
1587 	/*
1588 	 * Page unpoisoning must happen before memory initialization.
1589 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1590 	 * allocations and the page unpoisoning code will complain.
1591 	 */
1592 	kernel_unpoison_pages(page, 1 << order);
1593 
1594 	/*
1595 	 * As memory initialization might be integrated into KASAN,
1596 	 * KASAN unpoisoning and memory initializion code must be
1597 	 * kept together to avoid discrepancies in behavior.
1598 	 */
1599 
1600 	/*
1601 	 * If memory tags should be zeroed
1602 	 * (which happens only when memory should be initialized as well).
1603 	 */
1604 	if (zero_tags) {
1605 		/* Initialize both memory and memory tags. */
1606 		for (i = 0; i != 1 << order; ++i)
1607 			tag_clear_highpage(page + i);
1608 
1609 		/* Take note that memory was initialized by the loop above. */
1610 		init = false;
1611 	}
1612 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1613 	    kasan_unpoison_pages(page, order, init)) {
1614 		/* Take note that memory was initialized by KASAN. */
1615 		if (kasan_has_integrated_init())
1616 			init = false;
1617 	} else {
1618 		/*
1619 		 * If memory tags have not been set by KASAN, reset the page
1620 		 * tags to ensure page_address() dereferencing does not fault.
1621 		 */
1622 		for (i = 0; i != 1 << order; ++i)
1623 			page_kasan_tag_reset(page + i);
1624 	}
1625 	/* If memory is still not initialized, initialize it now. */
1626 	if (init)
1627 		kernel_init_pages(page, 1 << order);
1628 
1629 	set_page_owner(page, order, gfp_flags);
1630 	page_table_check_alloc(page, order);
1631 	pgalloc_tag_add(page, current, 1 << order);
1632 }
1633 
1634 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1635 							unsigned int alloc_flags)
1636 {
1637 	post_alloc_hook(page, order, gfp_flags);
1638 
1639 	if (order && (gfp_flags & __GFP_COMP))
1640 		prep_compound_page(page, order);
1641 
1642 	/*
1643 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1644 	 * allocate the page. The expectation is that the caller is taking
1645 	 * steps that will free more memory. The caller should avoid the page
1646 	 * being used for !PFMEMALLOC purposes.
1647 	 */
1648 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1649 		set_page_pfmemalloc(page);
1650 	else
1651 		clear_page_pfmemalloc(page);
1652 }
1653 
1654 /*
1655  * Go through the free lists for the given migratetype and remove
1656  * the smallest available page from the freelists
1657  */
1658 static __always_inline
1659 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1660 						int migratetype)
1661 {
1662 	unsigned int current_order;
1663 	struct free_area *area;
1664 	struct page *page;
1665 
1666 	/* Find a page of the appropriate size in the preferred list */
1667 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1668 		area = &(zone->free_area[current_order]);
1669 		page = get_page_from_free_area(area, migratetype);
1670 		if (!page)
1671 			continue;
1672 
1673 		page_del_and_expand(zone, page, order, current_order,
1674 				    migratetype);
1675 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1676 				pcp_allowed_order(order) &&
1677 				migratetype < MIGRATE_PCPTYPES);
1678 		return page;
1679 	}
1680 
1681 	return NULL;
1682 }
1683 
1684 
1685 /*
1686  * This array describes the order lists are fallen back to when
1687  * the free lists for the desirable migrate type are depleted
1688  *
1689  * The other migratetypes do not have fallbacks.
1690  */
1691 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1692 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1693 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1694 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1695 };
1696 
1697 #ifdef CONFIG_CMA
1698 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1699 					unsigned int order)
1700 {
1701 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1702 }
1703 #else
1704 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1705 					unsigned int order) { return NULL; }
1706 #endif
1707 
1708 /*
1709  * Change the type of a block and move all its free pages to that
1710  * type's freelist.
1711  */
1712 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1713 				  int old_mt, int new_mt)
1714 {
1715 	struct page *page;
1716 	unsigned long pfn, end_pfn;
1717 	unsigned int order;
1718 	int pages_moved = 0;
1719 
1720 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1721 	end_pfn = pageblock_end_pfn(start_pfn);
1722 
1723 	for (pfn = start_pfn; pfn < end_pfn;) {
1724 		page = pfn_to_page(pfn);
1725 		if (!PageBuddy(page)) {
1726 			pfn++;
1727 			continue;
1728 		}
1729 
1730 		/* Make sure we are not inadvertently changing nodes */
1731 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1732 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1733 
1734 		order = buddy_order(page);
1735 
1736 		move_to_free_list(page, zone, order, old_mt, new_mt);
1737 
1738 		pfn += 1 << order;
1739 		pages_moved += 1 << order;
1740 	}
1741 
1742 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1743 
1744 	return pages_moved;
1745 }
1746 
1747 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1748 				      unsigned long *start_pfn,
1749 				      int *num_free, int *num_movable)
1750 {
1751 	unsigned long pfn, start, end;
1752 
1753 	pfn = page_to_pfn(page);
1754 	start = pageblock_start_pfn(pfn);
1755 	end = pageblock_end_pfn(pfn);
1756 
1757 	/*
1758 	 * The caller only has the lock for @zone, don't touch ranges
1759 	 * that straddle into other zones. While we could move part of
1760 	 * the range that's inside the zone, this call is usually
1761 	 * accompanied by other operations such as migratetype updates
1762 	 * which also should be locked.
1763 	 */
1764 	if (!zone_spans_pfn(zone, start))
1765 		return false;
1766 	if (!zone_spans_pfn(zone, end - 1))
1767 		return false;
1768 
1769 	*start_pfn = start;
1770 
1771 	if (num_free) {
1772 		*num_free = 0;
1773 		*num_movable = 0;
1774 		for (pfn = start; pfn < end;) {
1775 			page = pfn_to_page(pfn);
1776 			if (PageBuddy(page)) {
1777 				int nr = 1 << buddy_order(page);
1778 
1779 				*num_free += nr;
1780 				pfn += nr;
1781 				continue;
1782 			}
1783 			/*
1784 			 * We assume that pages that could be isolated for
1785 			 * migration are movable. But we don't actually try
1786 			 * isolating, as that would be expensive.
1787 			 */
1788 			if (PageLRU(page) || __PageMovable(page))
1789 				(*num_movable)++;
1790 			pfn++;
1791 		}
1792 	}
1793 
1794 	return true;
1795 }
1796 
1797 static int move_freepages_block(struct zone *zone, struct page *page,
1798 				int old_mt, int new_mt)
1799 {
1800 	unsigned long start_pfn;
1801 
1802 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1803 		return -1;
1804 
1805 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1806 }
1807 
1808 #ifdef CONFIG_MEMORY_ISOLATION
1809 /* Look for a buddy that straddles start_pfn */
1810 static unsigned long find_large_buddy(unsigned long start_pfn)
1811 {
1812 	int order = 0;
1813 	struct page *page;
1814 	unsigned long pfn = start_pfn;
1815 
1816 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1817 		/* Nothing found */
1818 		if (++order > MAX_PAGE_ORDER)
1819 			return start_pfn;
1820 		pfn &= ~0UL << order;
1821 	}
1822 
1823 	/*
1824 	 * Found a preceding buddy, but does it straddle?
1825 	 */
1826 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1827 		return pfn;
1828 
1829 	/* Nothing found */
1830 	return start_pfn;
1831 }
1832 
1833 /**
1834  * move_freepages_block_isolate - move free pages in block for page isolation
1835  * @zone: the zone
1836  * @page: the pageblock page
1837  * @migratetype: migratetype to set on the pageblock
1838  *
1839  * This is similar to move_freepages_block(), but handles the special
1840  * case encountered in page isolation, where the block of interest
1841  * might be part of a larger buddy spanning multiple pageblocks.
1842  *
1843  * Unlike the regular page allocator path, which moves pages while
1844  * stealing buddies off the freelist, page isolation is interested in
1845  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1846  *
1847  * This function handles that. Straddling buddies are split into
1848  * individual pageblocks. Only the block of interest is moved.
1849  *
1850  * Returns %true if pages could be moved, %false otherwise.
1851  */
1852 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1853 				  int migratetype)
1854 {
1855 	unsigned long start_pfn, pfn;
1856 
1857 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1858 		return false;
1859 
1860 	/* No splits needed if buddies can't span multiple blocks */
1861 	if (pageblock_order == MAX_PAGE_ORDER)
1862 		goto move;
1863 
1864 	/* We're a tail block in a larger buddy */
1865 	pfn = find_large_buddy(start_pfn);
1866 	if (pfn != start_pfn) {
1867 		struct page *buddy = pfn_to_page(pfn);
1868 		int order = buddy_order(buddy);
1869 
1870 		del_page_from_free_list(buddy, zone, order,
1871 					get_pfnblock_migratetype(buddy, pfn));
1872 		set_pageblock_migratetype(page, migratetype);
1873 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1874 		return true;
1875 	}
1876 
1877 	/* We're the starting block of a larger buddy */
1878 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1879 		int order = buddy_order(page);
1880 
1881 		del_page_from_free_list(page, zone, order,
1882 					get_pfnblock_migratetype(page, pfn));
1883 		set_pageblock_migratetype(page, migratetype);
1884 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1885 		return true;
1886 	}
1887 move:
1888 	__move_freepages_block(zone, start_pfn,
1889 			       get_pfnblock_migratetype(page, start_pfn),
1890 			       migratetype);
1891 	return true;
1892 }
1893 #endif /* CONFIG_MEMORY_ISOLATION */
1894 
1895 static void change_pageblock_range(struct page *pageblock_page,
1896 					int start_order, int migratetype)
1897 {
1898 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1899 
1900 	while (nr_pageblocks--) {
1901 		set_pageblock_migratetype(pageblock_page, migratetype);
1902 		pageblock_page += pageblock_nr_pages;
1903 	}
1904 }
1905 
1906 static inline bool boost_watermark(struct zone *zone)
1907 {
1908 	unsigned long max_boost;
1909 
1910 	if (!watermark_boost_factor)
1911 		return false;
1912 	/*
1913 	 * Don't bother in zones that are unlikely to produce results.
1914 	 * On small machines, including kdump capture kernels running
1915 	 * in a small area, boosting the watermark can cause an out of
1916 	 * memory situation immediately.
1917 	 */
1918 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1919 		return false;
1920 
1921 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1922 			watermark_boost_factor, 10000);
1923 
1924 	/*
1925 	 * high watermark may be uninitialised if fragmentation occurs
1926 	 * very early in boot so do not boost. We do not fall
1927 	 * through and boost by pageblock_nr_pages as failing
1928 	 * allocations that early means that reclaim is not going
1929 	 * to help and it may even be impossible to reclaim the
1930 	 * boosted watermark resulting in a hang.
1931 	 */
1932 	if (!max_boost)
1933 		return false;
1934 
1935 	max_boost = max(pageblock_nr_pages, max_boost);
1936 
1937 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1938 		max_boost);
1939 
1940 	return true;
1941 }
1942 
1943 /*
1944  * When we are falling back to another migratetype during allocation, try to
1945  * steal extra free pages from the same pageblocks to satisfy further
1946  * allocations, instead of polluting multiple pageblocks.
1947  *
1948  * If we are stealing a relatively large buddy page, it is likely there will
1949  * be more free pages in the pageblock, so try to steal them all. For
1950  * reclaimable and unmovable allocations, we steal regardless of page size,
1951  * as fragmentation caused by those allocations polluting movable pageblocks
1952  * is worse than movable allocations stealing from unmovable and reclaimable
1953  * pageblocks.
1954  */
1955 static bool can_steal_fallback(unsigned int order, int start_mt)
1956 {
1957 	/*
1958 	 * Leaving this order check is intended, although there is
1959 	 * relaxed order check in next check. The reason is that
1960 	 * we can actually steal whole pageblock if this condition met,
1961 	 * but, below check doesn't guarantee it and that is just heuristic
1962 	 * so could be changed anytime.
1963 	 */
1964 	if (order >= pageblock_order)
1965 		return true;
1966 
1967 	/*
1968 	 * Movable pages won't cause permanent fragmentation, so when you alloc
1969 	 * small pages, you just need to temporarily steal unmovable or
1970 	 * reclaimable pages that are closest to the request size.  After a
1971 	 * while, memory compaction may occur to form large contiguous pages,
1972 	 * and the next movable allocation may not need to steal.  Unmovable and
1973 	 * reclaimable allocations need to actually steal pages.
1974 	 */
1975 	if (order >= pageblock_order / 2 ||
1976 		start_mt == MIGRATE_RECLAIMABLE ||
1977 		start_mt == MIGRATE_UNMOVABLE ||
1978 		page_group_by_mobility_disabled)
1979 		return true;
1980 
1981 	return false;
1982 }
1983 
1984 /*
1985  * Check whether there is a suitable fallback freepage with requested order.
1986  * If only_stealable is true, this function returns fallback_mt only if
1987  * we can steal other freepages all together. This would help to reduce
1988  * fragmentation due to mixed migratetype pages in one pageblock.
1989  */
1990 int find_suitable_fallback(struct free_area *area, unsigned int order,
1991 			int migratetype, bool only_stealable, bool *can_steal)
1992 {
1993 	int i;
1994 	int fallback_mt;
1995 
1996 	if (area->nr_free == 0)
1997 		return -1;
1998 
1999 	*can_steal = false;
2000 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2001 		fallback_mt = fallbacks[migratetype][i];
2002 		if (free_area_empty(area, fallback_mt))
2003 			continue;
2004 
2005 		if (can_steal_fallback(order, migratetype))
2006 			*can_steal = true;
2007 
2008 		if (!only_stealable)
2009 			return fallback_mt;
2010 
2011 		if (*can_steal)
2012 			return fallback_mt;
2013 	}
2014 
2015 	return -1;
2016 }
2017 
2018 /*
2019  * This function implements actual steal behaviour. If order is large enough, we
2020  * can claim the whole pageblock for the requested migratetype. If not, we check
2021  * the pageblock for constituent pages; if at least half of the pages are free
2022  * or compatible, we can still claim the whole block, so pages freed in the
2023  * future will be put on the correct free list.
2024  */
2025 static struct page *
2026 try_to_steal_block(struct zone *zone, struct page *page,
2027 		   int current_order, int order, int start_type,
2028 		   int block_type, unsigned int alloc_flags)
2029 {
2030 	int free_pages, movable_pages, alike_pages;
2031 	unsigned long start_pfn;
2032 
2033 	/* Take ownership for orders >= pageblock_order */
2034 	if (current_order >= pageblock_order) {
2035 		unsigned int nr_added;
2036 
2037 		del_page_from_free_list(page, zone, current_order, block_type);
2038 		change_pageblock_range(page, current_order, start_type);
2039 		nr_added = expand(zone, page, order, current_order, start_type);
2040 		account_freepages(zone, nr_added, start_type);
2041 		return page;
2042 	}
2043 
2044 	/*
2045 	 * Boost watermarks to increase reclaim pressure to reduce the
2046 	 * likelihood of future fallbacks. Wake kswapd now as the node
2047 	 * may be balanced overall and kswapd will not wake naturally.
2048 	 */
2049 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2050 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2051 
2052 	/* moving whole block can fail due to zone boundary conditions */
2053 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2054 				       &movable_pages))
2055 		return NULL;
2056 
2057 	/*
2058 	 * Determine how many pages are compatible with our allocation.
2059 	 * For movable allocation, it's the number of movable pages which
2060 	 * we just obtained. For other types it's a bit more tricky.
2061 	 */
2062 	if (start_type == MIGRATE_MOVABLE) {
2063 		alike_pages = movable_pages;
2064 	} else {
2065 		/*
2066 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2067 		 * to MOVABLE pageblock, consider all non-movable pages as
2068 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2069 		 * vice versa, be conservative since we can't distinguish the
2070 		 * exact migratetype of non-movable pages.
2071 		 */
2072 		if (block_type == MIGRATE_MOVABLE)
2073 			alike_pages = pageblock_nr_pages
2074 						- (free_pages + movable_pages);
2075 		else
2076 			alike_pages = 0;
2077 	}
2078 	/*
2079 	 * If a sufficient number of pages in the block are either free or of
2080 	 * compatible migratability as our allocation, claim the whole block.
2081 	 */
2082 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2083 			page_group_by_mobility_disabled) {
2084 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2085 		return __rmqueue_smallest(zone, order, start_type);
2086 	}
2087 
2088 	return NULL;
2089 }
2090 
2091 /*
2092  * Try finding a free buddy page on the fallback list.
2093  *
2094  * This will attempt to steal a whole pageblock for the requested type
2095  * to ensure grouping of such requests in the future.
2096  *
2097  * If a whole block cannot be stolen, regress to __rmqueue_smallest()
2098  * logic to at least break up as little contiguity as possible.
2099  *
2100  * The use of signed ints for order and current_order is a deliberate
2101  * deviation from the rest of this file, to make the for loop
2102  * condition simpler.
2103  *
2104  * Return the stolen page, or NULL if none can be found.
2105  */
2106 static __always_inline struct page *
2107 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2108 						unsigned int alloc_flags)
2109 {
2110 	struct free_area *area;
2111 	int current_order;
2112 	int min_order = order;
2113 	struct page *page;
2114 	int fallback_mt;
2115 	bool can_steal;
2116 
2117 	/*
2118 	 * Do not steal pages from freelists belonging to other pageblocks
2119 	 * i.e. orders < pageblock_order. If there are no local zones free,
2120 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2121 	 */
2122 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2123 		min_order = pageblock_order;
2124 
2125 	/*
2126 	 * Find the largest available free page in the other list. This roughly
2127 	 * approximates finding the pageblock with the most free pages, which
2128 	 * would be too costly to do exactly.
2129 	 */
2130 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2131 				--current_order) {
2132 		area = &(zone->free_area[current_order]);
2133 		fallback_mt = find_suitable_fallback(area, current_order,
2134 				start_migratetype, false, &can_steal);
2135 		if (fallback_mt == -1)
2136 			continue;
2137 
2138 		if (!can_steal)
2139 			break;
2140 
2141 		page = get_page_from_free_area(area, fallback_mt);
2142 		page = try_to_steal_block(zone, page, current_order, order,
2143 					  start_migratetype, fallback_mt,
2144 					  alloc_flags);
2145 		if (page)
2146 			goto got_one;
2147 	}
2148 
2149 	if (alloc_flags & ALLOC_NOFRAGMENT)
2150 		return NULL;
2151 
2152 	/* No luck stealing blocks. Find the smallest fallback page */
2153 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2154 		area = &(zone->free_area[current_order]);
2155 		fallback_mt = find_suitable_fallback(area, current_order,
2156 				start_migratetype, false, &can_steal);
2157 		if (fallback_mt == -1)
2158 			continue;
2159 
2160 		page = get_page_from_free_area(area, fallback_mt);
2161 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2162 		goto got_one;
2163 	}
2164 
2165 	return NULL;
2166 
2167 got_one:
2168 	trace_mm_page_alloc_extfrag(page, order, current_order,
2169 		start_migratetype, fallback_mt);
2170 
2171 	return page;
2172 }
2173 
2174 /*
2175  * Do the hard work of removing an element from the buddy allocator.
2176  * Call me with the zone->lock already held.
2177  */
2178 static __always_inline struct page *
2179 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2180 						unsigned int alloc_flags)
2181 {
2182 	struct page *page;
2183 
2184 	if (IS_ENABLED(CONFIG_CMA)) {
2185 		/*
2186 		 * Balance movable allocations between regular and CMA areas by
2187 		 * allocating from CMA when over half of the zone's free memory
2188 		 * is in the CMA area.
2189 		 */
2190 		if (alloc_flags & ALLOC_CMA &&
2191 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2192 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2193 			page = __rmqueue_cma_fallback(zone, order);
2194 			if (page)
2195 				return page;
2196 		}
2197 	}
2198 
2199 	page = __rmqueue_smallest(zone, order, migratetype);
2200 	if (unlikely(!page)) {
2201 		if (alloc_flags & ALLOC_CMA)
2202 			page = __rmqueue_cma_fallback(zone, order);
2203 
2204 		if (!page)
2205 			page = __rmqueue_fallback(zone, order, migratetype,
2206 						  alloc_flags);
2207 	}
2208 	return page;
2209 }
2210 
2211 /*
2212  * Obtain a specified number of elements from the buddy allocator, all under
2213  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2214  * Returns the number of new pages which were placed at *list.
2215  */
2216 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2217 			unsigned long count, struct list_head *list,
2218 			int migratetype, unsigned int alloc_flags)
2219 {
2220 	unsigned long flags;
2221 	int i;
2222 
2223 	spin_lock_irqsave(&zone->lock, flags);
2224 	for (i = 0; i < count; ++i) {
2225 		struct page *page = __rmqueue(zone, order, migratetype,
2226 								alloc_flags);
2227 		if (unlikely(page == NULL))
2228 			break;
2229 
2230 		/*
2231 		 * Split buddy pages returned by expand() are received here in
2232 		 * physical page order. The page is added to the tail of
2233 		 * caller's list. From the callers perspective, the linked list
2234 		 * is ordered by page number under some conditions. This is
2235 		 * useful for IO devices that can forward direction from the
2236 		 * head, thus also in the physical page order. This is useful
2237 		 * for IO devices that can merge IO requests if the physical
2238 		 * pages are ordered properly.
2239 		 */
2240 		list_add_tail(&page->pcp_list, list);
2241 	}
2242 	spin_unlock_irqrestore(&zone->lock, flags);
2243 
2244 	return i;
2245 }
2246 
2247 /*
2248  * Called from the vmstat counter updater to decay the PCP high.
2249  * Return whether there are addition works to do.
2250  */
2251 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2252 {
2253 	int high_min, to_drain, batch;
2254 	int todo = 0;
2255 
2256 	high_min = READ_ONCE(pcp->high_min);
2257 	batch = READ_ONCE(pcp->batch);
2258 	/*
2259 	 * Decrease pcp->high periodically to try to free possible
2260 	 * idle PCP pages.  And, avoid to free too many pages to
2261 	 * control latency.  This caps pcp->high decrement too.
2262 	 */
2263 	if (pcp->high > high_min) {
2264 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2265 				 pcp->high - (pcp->high >> 3), high_min);
2266 		if (pcp->high > high_min)
2267 			todo++;
2268 	}
2269 
2270 	to_drain = pcp->count - pcp->high;
2271 	if (to_drain > 0) {
2272 		spin_lock(&pcp->lock);
2273 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2274 		spin_unlock(&pcp->lock);
2275 		todo++;
2276 	}
2277 
2278 	return todo;
2279 }
2280 
2281 #ifdef CONFIG_NUMA
2282 /*
2283  * Called from the vmstat counter updater to drain pagesets of this
2284  * currently executing processor on remote nodes after they have
2285  * expired.
2286  */
2287 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2288 {
2289 	int to_drain, batch;
2290 
2291 	batch = READ_ONCE(pcp->batch);
2292 	to_drain = min(pcp->count, batch);
2293 	if (to_drain > 0) {
2294 		spin_lock(&pcp->lock);
2295 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2296 		spin_unlock(&pcp->lock);
2297 	}
2298 }
2299 #endif
2300 
2301 /*
2302  * Drain pcplists of the indicated processor and zone.
2303  */
2304 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2305 {
2306 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2307 	int count;
2308 
2309 	do {
2310 		spin_lock(&pcp->lock);
2311 		count = pcp->count;
2312 		if (count) {
2313 			int to_drain = min(count,
2314 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2315 
2316 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2317 			count -= to_drain;
2318 		}
2319 		spin_unlock(&pcp->lock);
2320 	} while (count);
2321 }
2322 
2323 /*
2324  * Drain pcplists of all zones on the indicated processor.
2325  */
2326 static void drain_pages(unsigned int cpu)
2327 {
2328 	struct zone *zone;
2329 
2330 	for_each_populated_zone(zone) {
2331 		drain_pages_zone(cpu, zone);
2332 	}
2333 }
2334 
2335 /*
2336  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2337  */
2338 void drain_local_pages(struct zone *zone)
2339 {
2340 	int cpu = smp_processor_id();
2341 
2342 	if (zone)
2343 		drain_pages_zone(cpu, zone);
2344 	else
2345 		drain_pages(cpu);
2346 }
2347 
2348 /*
2349  * The implementation of drain_all_pages(), exposing an extra parameter to
2350  * drain on all cpus.
2351  *
2352  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2353  * not empty. The check for non-emptiness can however race with a free to
2354  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2355  * that need the guarantee that every CPU has drained can disable the
2356  * optimizing racy check.
2357  */
2358 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2359 {
2360 	int cpu;
2361 
2362 	/*
2363 	 * Allocate in the BSS so we won't require allocation in
2364 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2365 	 */
2366 	static cpumask_t cpus_with_pcps;
2367 
2368 	/*
2369 	 * Do not drain if one is already in progress unless it's specific to
2370 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2371 	 * the drain to be complete when the call returns.
2372 	 */
2373 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2374 		if (!zone)
2375 			return;
2376 		mutex_lock(&pcpu_drain_mutex);
2377 	}
2378 
2379 	/*
2380 	 * We don't care about racing with CPU hotplug event
2381 	 * as offline notification will cause the notified
2382 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2383 	 * disables preemption as part of its processing
2384 	 */
2385 	for_each_online_cpu(cpu) {
2386 		struct per_cpu_pages *pcp;
2387 		struct zone *z;
2388 		bool has_pcps = false;
2389 
2390 		if (force_all_cpus) {
2391 			/*
2392 			 * The pcp.count check is racy, some callers need a
2393 			 * guarantee that no cpu is missed.
2394 			 */
2395 			has_pcps = true;
2396 		} else if (zone) {
2397 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2398 			if (pcp->count)
2399 				has_pcps = true;
2400 		} else {
2401 			for_each_populated_zone(z) {
2402 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2403 				if (pcp->count) {
2404 					has_pcps = true;
2405 					break;
2406 				}
2407 			}
2408 		}
2409 
2410 		if (has_pcps)
2411 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2412 		else
2413 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2414 	}
2415 
2416 	for_each_cpu(cpu, &cpus_with_pcps) {
2417 		if (zone)
2418 			drain_pages_zone(cpu, zone);
2419 		else
2420 			drain_pages(cpu);
2421 	}
2422 
2423 	mutex_unlock(&pcpu_drain_mutex);
2424 }
2425 
2426 /*
2427  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2428  *
2429  * When zone parameter is non-NULL, spill just the single zone's pages.
2430  */
2431 void drain_all_pages(struct zone *zone)
2432 {
2433 	__drain_all_pages(zone, false);
2434 }
2435 
2436 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2437 {
2438 	int min_nr_free, max_nr_free;
2439 
2440 	/* Free as much as possible if batch freeing high-order pages. */
2441 	if (unlikely(free_high))
2442 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2443 
2444 	/* Check for PCP disabled or boot pageset */
2445 	if (unlikely(high < batch))
2446 		return 1;
2447 
2448 	/* Leave at least pcp->batch pages on the list */
2449 	min_nr_free = batch;
2450 	max_nr_free = high - batch;
2451 
2452 	/*
2453 	 * Increase the batch number to the number of the consecutive
2454 	 * freed pages to reduce zone lock contention.
2455 	 */
2456 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2457 
2458 	return batch;
2459 }
2460 
2461 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2462 		       int batch, bool free_high)
2463 {
2464 	int high, high_min, high_max;
2465 
2466 	high_min = READ_ONCE(pcp->high_min);
2467 	high_max = READ_ONCE(pcp->high_max);
2468 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2469 
2470 	if (unlikely(!high))
2471 		return 0;
2472 
2473 	if (unlikely(free_high)) {
2474 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2475 				high_min);
2476 		return 0;
2477 	}
2478 
2479 	/*
2480 	 * If reclaim is active, limit the number of pages that can be
2481 	 * stored on pcp lists
2482 	 */
2483 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2484 		int free_count = max_t(int, pcp->free_count, batch);
2485 
2486 		pcp->high = max(high - free_count, high_min);
2487 		return min(batch << 2, pcp->high);
2488 	}
2489 
2490 	if (high_min == high_max)
2491 		return high;
2492 
2493 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2494 		int free_count = max_t(int, pcp->free_count, batch);
2495 
2496 		pcp->high = max(high - free_count, high_min);
2497 		high = max(pcp->count, high_min);
2498 	} else if (pcp->count >= high) {
2499 		int need_high = pcp->free_count + batch;
2500 
2501 		/* pcp->high should be large enough to hold batch freed pages */
2502 		if (pcp->high < need_high)
2503 			pcp->high = clamp(need_high, high_min, high_max);
2504 	}
2505 
2506 	return high;
2507 }
2508 
2509 static void free_frozen_page_commit(struct zone *zone,
2510 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2511 		unsigned int order)
2512 {
2513 	int high, batch;
2514 	int pindex;
2515 	bool free_high = false;
2516 
2517 	/*
2518 	 * On freeing, reduce the number of pages that are batch allocated.
2519 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2520 	 * allocations.
2521 	 */
2522 	pcp->alloc_factor >>= 1;
2523 	__count_vm_events(PGFREE, 1 << order);
2524 	pindex = order_to_pindex(migratetype, order);
2525 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2526 	pcp->count += 1 << order;
2527 
2528 	batch = READ_ONCE(pcp->batch);
2529 	/*
2530 	 * As high-order pages other than THP's stored on PCP can contribute
2531 	 * to fragmentation, limit the number stored when PCP is heavily
2532 	 * freeing without allocation. The remainder after bulk freeing
2533 	 * stops will be drained from vmstat refresh context.
2534 	 */
2535 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2536 		free_high = (pcp->free_count >= batch &&
2537 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2538 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2539 			      pcp->count >= READ_ONCE(batch)));
2540 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2541 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2542 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2543 	}
2544 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2545 		pcp->free_count += (1 << order);
2546 	high = nr_pcp_high(pcp, zone, batch, free_high);
2547 	if (pcp->count >= high) {
2548 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2549 				   pcp, pindex);
2550 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2551 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2552 				      ZONE_MOVABLE, 0))
2553 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2554 	}
2555 }
2556 
2557 /*
2558  * Free a pcp page
2559  */
2560 void free_frozen_pages(struct page *page, unsigned int order)
2561 {
2562 	unsigned long __maybe_unused UP_flags;
2563 	struct per_cpu_pages *pcp;
2564 	struct zone *zone;
2565 	unsigned long pfn = page_to_pfn(page);
2566 	int migratetype;
2567 
2568 	if (!pcp_allowed_order(order)) {
2569 		__free_pages_ok(page, order, FPI_NONE);
2570 		return;
2571 	}
2572 
2573 	if (!free_pages_prepare(page, order))
2574 		return;
2575 
2576 	/*
2577 	 * We only track unmovable, reclaimable and movable on pcp lists.
2578 	 * Place ISOLATE pages on the isolated list because they are being
2579 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2580 	 * get those areas back if necessary. Otherwise, we may have to free
2581 	 * excessively into the page allocator
2582 	 */
2583 	zone = page_zone(page);
2584 	migratetype = get_pfnblock_migratetype(page, pfn);
2585 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2586 		if (unlikely(is_migrate_isolate(migratetype))) {
2587 			free_one_page(zone, page, pfn, order, FPI_NONE);
2588 			return;
2589 		}
2590 		migratetype = MIGRATE_MOVABLE;
2591 	}
2592 
2593 	pcp_trylock_prepare(UP_flags);
2594 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2595 	if (pcp) {
2596 		free_frozen_page_commit(zone, pcp, page, migratetype, order);
2597 		pcp_spin_unlock(pcp);
2598 	} else {
2599 		free_one_page(zone, page, pfn, order, FPI_NONE);
2600 	}
2601 	pcp_trylock_finish(UP_flags);
2602 }
2603 
2604 /*
2605  * Free a batch of folios
2606  */
2607 void free_unref_folios(struct folio_batch *folios)
2608 {
2609 	unsigned long __maybe_unused UP_flags;
2610 	struct per_cpu_pages *pcp = NULL;
2611 	struct zone *locked_zone = NULL;
2612 	int i, j;
2613 
2614 	/* Prepare folios for freeing */
2615 	for (i = 0, j = 0; i < folios->nr; i++) {
2616 		struct folio *folio = folios->folios[i];
2617 		unsigned long pfn = folio_pfn(folio);
2618 		unsigned int order = folio_order(folio);
2619 
2620 		if (!free_pages_prepare(&folio->page, order))
2621 			continue;
2622 		/*
2623 		 * Free orders not handled on the PCP directly to the
2624 		 * allocator.
2625 		 */
2626 		if (!pcp_allowed_order(order)) {
2627 			free_one_page(folio_zone(folio), &folio->page,
2628 				      pfn, order, FPI_NONE);
2629 			continue;
2630 		}
2631 		folio->private = (void *)(unsigned long)order;
2632 		if (j != i)
2633 			folios->folios[j] = folio;
2634 		j++;
2635 	}
2636 	folios->nr = j;
2637 
2638 	for (i = 0; i < folios->nr; i++) {
2639 		struct folio *folio = folios->folios[i];
2640 		struct zone *zone = folio_zone(folio);
2641 		unsigned long pfn = folio_pfn(folio);
2642 		unsigned int order = (unsigned long)folio->private;
2643 		int migratetype;
2644 
2645 		folio->private = NULL;
2646 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2647 
2648 		/* Different zone requires a different pcp lock */
2649 		if (zone != locked_zone ||
2650 		    is_migrate_isolate(migratetype)) {
2651 			if (pcp) {
2652 				pcp_spin_unlock(pcp);
2653 				pcp_trylock_finish(UP_flags);
2654 				locked_zone = NULL;
2655 				pcp = NULL;
2656 			}
2657 
2658 			/*
2659 			 * Free isolated pages directly to the
2660 			 * allocator, see comment in free_frozen_pages.
2661 			 */
2662 			if (is_migrate_isolate(migratetype)) {
2663 				free_one_page(zone, &folio->page, pfn,
2664 					      order, FPI_NONE);
2665 				continue;
2666 			}
2667 
2668 			/*
2669 			 * trylock is necessary as folios may be getting freed
2670 			 * from IRQ or SoftIRQ context after an IO completion.
2671 			 */
2672 			pcp_trylock_prepare(UP_flags);
2673 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2674 			if (unlikely(!pcp)) {
2675 				pcp_trylock_finish(UP_flags);
2676 				free_one_page(zone, &folio->page, pfn,
2677 					      order, FPI_NONE);
2678 				continue;
2679 			}
2680 			locked_zone = zone;
2681 		}
2682 
2683 		/*
2684 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2685 		 * to the MIGRATE_MOVABLE pcp list.
2686 		 */
2687 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2688 			migratetype = MIGRATE_MOVABLE;
2689 
2690 		trace_mm_page_free_batched(&folio->page);
2691 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2692 				order);
2693 	}
2694 
2695 	if (pcp) {
2696 		pcp_spin_unlock(pcp);
2697 		pcp_trylock_finish(UP_flags);
2698 	}
2699 	folio_batch_reinit(folios);
2700 }
2701 
2702 /*
2703  * split_page takes a non-compound higher-order page, and splits it into
2704  * n (1<<order) sub-pages: page[0..n]
2705  * Each sub-page must be freed individually.
2706  *
2707  * Note: this is probably too low level an operation for use in drivers.
2708  * Please consult with lkml before using this in your driver.
2709  */
2710 void split_page(struct page *page, unsigned int order)
2711 {
2712 	int i;
2713 
2714 	VM_BUG_ON_PAGE(PageCompound(page), page);
2715 	VM_BUG_ON_PAGE(!page_count(page), page);
2716 
2717 	for (i = 1; i < (1 << order); i++)
2718 		set_page_refcounted(page + i);
2719 	split_page_owner(page, order, 0);
2720 	pgalloc_tag_split(page_folio(page), order, 0);
2721 	split_page_memcg(page, order, 0);
2722 }
2723 EXPORT_SYMBOL_GPL(split_page);
2724 
2725 int __isolate_free_page(struct page *page, unsigned int order)
2726 {
2727 	struct zone *zone = page_zone(page);
2728 	int mt = get_pageblock_migratetype(page);
2729 
2730 	if (!is_migrate_isolate(mt)) {
2731 		unsigned long watermark;
2732 		/*
2733 		 * Obey watermarks as if the page was being allocated. We can
2734 		 * emulate a high-order watermark check with a raised order-0
2735 		 * watermark, because we already know our high-order page
2736 		 * exists.
2737 		 */
2738 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2739 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2740 			return 0;
2741 	}
2742 
2743 	del_page_from_free_list(page, zone, order, mt);
2744 
2745 	/*
2746 	 * Set the pageblock if the isolated page is at least half of a
2747 	 * pageblock
2748 	 */
2749 	if (order >= pageblock_order - 1) {
2750 		struct page *endpage = page + (1 << order) - 1;
2751 		for (; page < endpage; page += pageblock_nr_pages) {
2752 			int mt = get_pageblock_migratetype(page);
2753 			/*
2754 			 * Only change normal pageblocks (i.e., they can merge
2755 			 * with others)
2756 			 */
2757 			if (migratetype_is_mergeable(mt))
2758 				move_freepages_block(zone, page, mt,
2759 						     MIGRATE_MOVABLE);
2760 		}
2761 	}
2762 
2763 	return 1UL << order;
2764 }
2765 
2766 /**
2767  * __putback_isolated_page - Return a now-isolated page back where we got it
2768  * @page: Page that was isolated
2769  * @order: Order of the isolated page
2770  * @mt: The page's pageblock's migratetype
2771  *
2772  * This function is meant to return a page pulled from the free lists via
2773  * __isolate_free_page back to the free lists they were pulled from.
2774  */
2775 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2776 {
2777 	struct zone *zone = page_zone(page);
2778 
2779 	/* zone lock should be held when this function is called */
2780 	lockdep_assert_held(&zone->lock);
2781 
2782 	/* Return isolated page to tail of freelist. */
2783 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2784 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2785 }
2786 
2787 /*
2788  * Update NUMA hit/miss statistics
2789  */
2790 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2791 				   long nr_account)
2792 {
2793 #ifdef CONFIG_NUMA
2794 	enum numa_stat_item local_stat = NUMA_LOCAL;
2795 
2796 	/* skip numa counters update if numa stats is disabled */
2797 	if (!static_branch_likely(&vm_numa_stat_key))
2798 		return;
2799 
2800 	if (zone_to_nid(z) != numa_node_id())
2801 		local_stat = NUMA_OTHER;
2802 
2803 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2804 		__count_numa_events(z, NUMA_HIT, nr_account);
2805 	else {
2806 		__count_numa_events(z, NUMA_MISS, nr_account);
2807 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2808 	}
2809 	__count_numa_events(z, local_stat, nr_account);
2810 #endif
2811 }
2812 
2813 static __always_inline
2814 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2815 			   unsigned int order, unsigned int alloc_flags,
2816 			   int migratetype)
2817 {
2818 	struct page *page;
2819 	unsigned long flags;
2820 
2821 	do {
2822 		page = NULL;
2823 		spin_lock_irqsave(&zone->lock, flags);
2824 		if (alloc_flags & ALLOC_HIGHATOMIC)
2825 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2826 		if (!page) {
2827 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2828 
2829 			/*
2830 			 * If the allocation fails, allow OOM handling and
2831 			 * order-0 (atomic) allocs access to HIGHATOMIC
2832 			 * reserves as failing now is worse than failing a
2833 			 * high-order atomic allocation in the future.
2834 			 */
2835 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2836 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2837 
2838 			if (!page) {
2839 				spin_unlock_irqrestore(&zone->lock, flags);
2840 				return NULL;
2841 			}
2842 		}
2843 		spin_unlock_irqrestore(&zone->lock, flags);
2844 	} while (check_new_pages(page, order));
2845 
2846 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2847 	zone_statistics(preferred_zone, zone, 1);
2848 
2849 	return page;
2850 }
2851 
2852 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2853 {
2854 	int high, base_batch, batch, max_nr_alloc;
2855 	int high_max, high_min;
2856 
2857 	base_batch = READ_ONCE(pcp->batch);
2858 	high_min = READ_ONCE(pcp->high_min);
2859 	high_max = READ_ONCE(pcp->high_max);
2860 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2861 
2862 	/* Check for PCP disabled or boot pageset */
2863 	if (unlikely(high < base_batch))
2864 		return 1;
2865 
2866 	if (order)
2867 		batch = base_batch;
2868 	else
2869 		batch = (base_batch << pcp->alloc_factor);
2870 
2871 	/*
2872 	 * If we had larger pcp->high, we could avoid to allocate from
2873 	 * zone.
2874 	 */
2875 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2876 		high = pcp->high = min(high + batch, high_max);
2877 
2878 	if (!order) {
2879 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2880 		/*
2881 		 * Double the number of pages allocated each time there is
2882 		 * subsequent allocation of order-0 pages without any freeing.
2883 		 */
2884 		if (batch <= max_nr_alloc &&
2885 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2886 			pcp->alloc_factor++;
2887 		batch = min(batch, max_nr_alloc);
2888 	}
2889 
2890 	/*
2891 	 * Scale batch relative to order if batch implies free pages
2892 	 * can be stored on the PCP. Batch can be 1 for small zones or
2893 	 * for boot pagesets which should never store free pages as
2894 	 * the pages may belong to arbitrary zones.
2895 	 */
2896 	if (batch > 1)
2897 		batch = max(batch >> order, 2);
2898 
2899 	return batch;
2900 }
2901 
2902 /* Remove page from the per-cpu list, caller must protect the list */
2903 static inline
2904 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2905 			int migratetype,
2906 			unsigned int alloc_flags,
2907 			struct per_cpu_pages *pcp,
2908 			struct list_head *list)
2909 {
2910 	struct page *page;
2911 
2912 	do {
2913 		if (list_empty(list)) {
2914 			int batch = nr_pcp_alloc(pcp, zone, order);
2915 			int alloced;
2916 
2917 			alloced = rmqueue_bulk(zone, order,
2918 					batch, list,
2919 					migratetype, alloc_flags);
2920 
2921 			pcp->count += alloced << order;
2922 			if (unlikely(list_empty(list)))
2923 				return NULL;
2924 		}
2925 
2926 		page = list_first_entry(list, struct page, pcp_list);
2927 		list_del(&page->pcp_list);
2928 		pcp->count -= 1 << order;
2929 	} while (check_new_pages(page, order));
2930 
2931 	return page;
2932 }
2933 
2934 /* Lock and remove page from the per-cpu list */
2935 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2936 			struct zone *zone, unsigned int order,
2937 			int migratetype, unsigned int alloc_flags)
2938 {
2939 	struct per_cpu_pages *pcp;
2940 	struct list_head *list;
2941 	struct page *page;
2942 	unsigned long __maybe_unused UP_flags;
2943 
2944 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2945 	pcp_trylock_prepare(UP_flags);
2946 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2947 	if (!pcp) {
2948 		pcp_trylock_finish(UP_flags);
2949 		return NULL;
2950 	}
2951 
2952 	/*
2953 	 * On allocation, reduce the number of pages that are batch freed.
2954 	 * See nr_pcp_free() where free_factor is increased for subsequent
2955 	 * frees.
2956 	 */
2957 	pcp->free_count >>= 1;
2958 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2959 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2960 	pcp_spin_unlock(pcp);
2961 	pcp_trylock_finish(UP_flags);
2962 	if (page) {
2963 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2964 		zone_statistics(preferred_zone, zone, 1);
2965 	}
2966 	return page;
2967 }
2968 
2969 /*
2970  * Allocate a page from the given zone.
2971  * Use pcplists for THP or "cheap" high-order allocations.
2972  */
2973 
2974 /*
2975  * Do not instrument rmqueue() with KMSAN. This function may call
2976  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2977  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2978  * may call rmqueue() again, which will result in a deadlock.
2979  */
2980 __no_sanitize_memory
2981 static inline
2982 struct page *rmqueue(struct zone *preferred_zone,
2983 			struct zone *zone, unsigned int order,
2984 			gfp_t gfp_flags, unsigned int alloc_flags,
2985 			int migratetype)
2986 {
2987 	struct page *page;
2988 
2989 	if (likely(pcp_allowed_order(order))) {
2990 		page = rmqueue_pcplist(preferred_zone, zone, order,
2991 				       migratetype, alloc_flags);
2992 		if (likely(page))
2993 			goto out;
2994 	}
2995 
2996 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2997 							migratetype);
2998 
2999 out:
3000 	/* Separate test+clear to avoid unnecessary atomics */
3001 	if ((alloc_flags & ALLOC_KSWAPD) &&
3002 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3003 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3004 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3005 	}
3006 
3007 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3008 	return page;
3009 }
3010 
3011 /*
3012  * Reserve the pageblock(s) surrounding an allocation request for
3013  * exclusive use of high-order atomic allocations if there are no
3014  * empty page blocks that contain a page with a suitable order
3015  */
3016 static void reserve_highatomic_pageblock(struct page *page, int order,
3017 					 struct zone *zone)
3018 {
3019 	int mt;
3020 	unsigned long max_managed, flags;
3021 
3022 	/*
3023 	 * The number reserved as: minimum is 1 pageblock, maximum is
3024 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3025 	 * pageblock size, then don't reserve any pageblocks.
3026 	 * Check is race-prone but harmless.
3027 	 */
3028 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3029 		return;
3030 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3031 	if (zone->nr_reserved_highatomic >= max_managed)
3032 		return;
3033 
3034 	spin_lock_irqsave(&zone->lock, flags);
3035 
3036 	/* Recheck the nr_reserved_highatomic limit under the lock */
3037 	if (zone->nr_reserved_highatomic >= max_managed)
3038 		goto out_unlock;
3039 
3040 	/* Yoink! */
3041 	mt = get_pageblock_migratetype(page);
3042 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3043 	if (!migratetype_is_mergeable(mt))
3044 		goto out_unlock;
3045 
3046 	if (order < pageblock_order) {
3047 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3048 			goto out_unlock;
3049 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3050 	} else {
3051 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3052 		zone->nr_reserved_highatomic += 1 << order;
3053 	}
3054 
3055 out_unlock:
3056 	spin_unlock_irqrestore(&zone->lock, flags);
3057 }
3058 
3059 /*
3060  * Used when an allocation is about to fail under memory pressure. This
3061  * potentially hurts the reliability of high-order allocations when under
3062  * intense memory pressure but failed atomic allocations should be easier
3063  * to recover from than an OOM.
3064  *
3065  * If @force is true, try to unreserve pageblocks even though highatomic
3066  * pageblock is exhausted.
3067  */
3068 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3069 						bool force)
3070 {
3071 	struct zonelist *zonelist = ac->zonelist;
3072 	unsigned long flags;
3073 	struct zoneref *z;
3074 	struct zone *zone;
3075 	struct page *page;
3076 	int order;
3077 	int ret;
3078 
3079 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3080 								ac->nodemask) {
3081 		/*
3082 		 * Preserve at least one pageblock unless memory pressure
3083 		 * is really high.
3084 		 */
3085 		if (!force && zone->nr_reserved_highatomic <=
3086 					pageblock_nr_pages)
3087 			continue;
3088 
3089 		spin_lock_irqsave(&zone->lock, flags);
3090 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3091 			struct free_area *area = &(zone->free_area[order]);
3092 			unsigned long size;
3093 
3094 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3095 			if (!page)
3096 				continue;
3097 
3098 			size = max(pageblock_nr_pages, 1UL << order);
3099 			/*
3100 			 * It should never happen but changes to
3101 			 * locking could inadvertently allow a per-cpu
3102 			 * drain to add pages to MIGRATE_HIGHATOMIC
3103 			 * while unreserving so be safe and watch for
3104 			 * underflows.
3105 			 */
3106 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3107 				size = zone->nr_reserved_highatomic;
3108 			zone->nr_reserved_highatomic -= size;
3109 
3110 			/*
3111 			 * Convert to ac->migratetype and avoid the normal
3112 			 * pageblock stealing heuristics. Minimally, the caller
3113 			 * is doing the work and needs the pages. More
3114 			 * importantly, if the block was always converted to
3115 			 * MIGRATE_UNMOVABLE or another type then the number
3116 			 * of pageblocks that cannot be completely freed
3117 			 * may increase.
3118 			 */
3119 			if (order < pageblock_order)
3120 				ret = move_freepages_block(zone, page,
3121 							   MIGRATE_HIGHATOMIC,
3122 							   ac->migratetype);
3123 			else {
3124 				move_to_free_list(page, zone, order,
3125 						  MIGRATE_HIGHATOMIC,
3126 						  ac->migratetype);
3127 				change_pageblock_range(page, order,
3128 						       ac->migratetype);
3129 				ret = 1;
3130 			}
3131 			/*
3132 			 * Reserving the block(s) already succeeded,
3133 			 * so this should not fail on zone boundaries.
3134 			 */
3135 			WARN_ON_ONCE(ret == -1);
3136 			if (ret > 0) {
3137 				spin_unlock_irqrestore(&zone->lock, flags);
3138 				return ret;
3139 			}
3140 		}
3141 		spin_unlock_irqrestore(&zone->lock, flags);
3142 	}
3143 
3144 	return false;
3145 }
3146 
3147 static inline long __zone_watermark_unusable_free(struct zone *z,
3148 				unsigned int order, unsigned int alloc_flags)
3149 {
3150 	long unusable_free = (1 << order) - 1;
3151 
3152 	/*
3153 	 * If the caller does not have rights to reserves below the min
3154 	 * watermark then subtract the free pages reserved for highatomic.
3155 	 */
3156 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3157 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3158 
3159 #ifdef CONFIG_CMA
3160 	/* If allocation can't use CMA areas don't use free CMA pages */
3161 	if (!(alloc_flags & ALLOC_CMA))
3162 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3163 #endif
3164 
3165 	return unusable_free;
3166 }
3167 
3168 /*
3169  * Return true if free base pages are above 'mark'. For high-order checks it
3170  * will return true of the order-0 watermark is reached and there is at least
3171  * one free page of a suitable size. Checking now avoids taking the zone lock
3172  * to check in the allocation paths if no pages are free.
3173  */
3174 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3175 			 int highest_zoneidx, unsigned int alloc_flags,
3176 			 long free_pages)
3177 {
3178 	long min = mark;
3179 	int o;
3180 
3181 	/* free_pages may go negative - that's OK */
3182 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3183 
3184 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3185 		/*
3186 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3187 		 * as OOM.
3188 		 */
3189 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3190 			min -= min / 2;
3191 
3192 			/*
3193 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3194 			 * access more reserves than just __GFP_HIGH. Other
3195 			 * non-blocking allocations requests such as GFP_NOWAIT
3196 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3197 			 * access to the min reserve.
3198 			 */
3199 			if (alloc_flags & ALLOC_NON_BLOCK)
3200 				min -= min / 4;
3201 		}
3202 
3203 		/*
3204 		 * OOM victims can try even harder than the normal reserve
3205 		 * users on the grounds that it's definitely going to be in
3206 		 * the exit path shortly and free memory. Any allocation it
3207 		 * makes during the free path will be small and short-lived.
3208 		 */
3209 		if (alloc_flags & ALLOC_OOM)
3210 			min -= min / 2;
3211 	}
3212 
3213 	/*
3214 	 * Check watermarks for an order-0 allocation request. If these
3215 	 * are not met, then a high-order request also cannot go ahead
3216 	 * even if a suitable page happened to be free.
3217 	 */
3218 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3219 		return false;
3220 
3221 	/* If this is an order-0 request then the watermark is fine */
3222 	if (!order)
3223 		return true;
3224 
3225 	/* For a high-order request, check at least one suitable page is free */
3226 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3227 		struct free_area *area = &z->free_area[o];
3228 		int mt;
3229 
3230 		if (!area->nr_free)
3231 			continue;
3232 
3233 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3234 			if (!free_area_empty(area, mt))
3235 				return true;
3236 		}
3237 
3238 #ifdef CONFIG_CMA
3239 		if ((alloc_flags & ALLOC_CMA) &&
3240 		    !free_area_empty(area, MIGRATE_CMA)) {
3241 			return true;
3242 		}
3243 #endif
3244 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3245 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3246 			return true;
3247 		}
3248 	}
3249 	return false;
3250 }
3251 
3252 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3253 		      int highest_zoneidx, unsigned int alloc_flags)
3254 {
3255 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3256 					zone_page_state(z, NR_FREE_PAGES));
3257 }
3258 
3259 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3260 				unsigned long mark, int highest_zoneidx,
3261 				unsigned int alloc_flags, gfp_t gfp_mask)
3262 {
3263 	long free_pages;
3264 
3265 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3266 
3267 	/*
3268 	 * Fast check for order-0 only. If this fails then the reserves
3269 	 * need to be calculated.
3270 	 */
3271 	if (!order) {
3272 		long usable_free;
3273 		long reserved;
3274 
3275 		usable_free = free_pages;
3276 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3277 
3278 		/* reserved may over estimate high-atomic reserves. */
3279 		usable_free -= min(usable_free, reserved);
3280 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3281 			return true;
3282 	}
3283 
3284 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3285 					free_pages))
3286 		return true;
3287 
3288 	/*
3289 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3290 	 * when checking the min watermark. The min watermark is the
3291 	 * point where boosting is ignored so that kswapd is woken up
3292 	 * when below the low watermark.
3293 	 */
3294 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3295 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3296 		mark = z->_watermark[WMARK_MIN];
3297 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3298 					alloc_flags, free_pages);
3299 	}
3300 
3301 	return false;
3302 }
3303 
3304 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3305 			unsigned long mark, int highest_zoneidx)
3306 {
3307 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3308 
3309 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3310 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3311 
3312 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3313 								free_pages);
3314 }
3315 
3316 #ifdef CONFIG_NUMA
3317 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3318 
3319 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3320 {
3321 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3322 				node_reclaim_distance;
3323 }
3324 #else	/* CONFIG_NUMA */
3325 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3326 {
3327 	return true;
3328 }
3329 #endif	/* CONFIG_NUMA */
3330 
3331 /*
3332  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3333  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3334  * premature use of a lower zone may cause lowmem pressure problems that
3335  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3336  * probably too small. It only makes sense to spread allocations to avoid
3337  * fragmentation between the Normal and DMA32 zones.
3338  */
3339 static inline unsigned int
3340 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3341 {
3342 	unsigned int alloc_flags;
3343 
3344 	/*
3345 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3346 	 * to save a branch.
3347 	 */
3348 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3349 
3350 #ifdef CONFIG_ZONE_DMA32
3351 	if (!zone)
3352 		return alloc_flags;
3353 
3354 	if (zone_idx(zone) != ZONE_NORMAL)
3355 		return alloc_flags;
3356 
3357 	/*
3358 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3359 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3360 	 * on UMA that if Normal is populated then so is DMA32.
3361 	 */
3362 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3363 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3364 		return alloc_flags;
3365 
3366 	alloc_flags |= ALLOC_NOFRAGMENT;
3367 #endif /* CONFIG_ZONE_DMA32 */
3368 	return alloc_flags;
3369 }
3370 
3371 /* Must be called after current_gfp_context() which can change gfp_mask */
3372 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3373 						  unsigned int alloc_flags)
3374 {
3375 #ifdef CONFIG_CMA
3376 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3377 		alloc_flags |= ALLOC_CMA;
3378 #endif
3379 	return alloc_flags;
3380 }
3381 
3382 /*
3383  * get_page_from_freelist goes through the zonelist trying to allocate
3384  * a page.
3385  */
3386 static struct page *
3387 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3388 						const struct alloc_context *ac)
3389 {
3390 	struct zoneref *z;
3391 	struct zone *zone;
3392 	struct pglist_data *last_pgdat = NULL;
3393 	bool last_pgdat_dirty_ok = false;
3394 	bool no_fallback;
3395 
3396 retry:
3397 	/*
3398 	 * Scan zonelist, looking for a zone with enough free.
3399 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3400 	 */
3401 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3402 	z = ac->preferred_zoneref;
3403 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3404 					ac->nodemask) {
3405 		struct page *page;
3406 		unsigned long mark;
3407 
3408 		if (cpusets_enabled() &&
3409 			(alloc_flags & ALLOC_CPUSET) &&
3410 			!__cpuset_zone_allowed(zone, gfp_mask))
3411 				continue;
3412 		/*
3413 		 * When allocating a page cache page for writing, we
3414 		 * want to get it from a node that is within its dirty
3415 		 * limit, such that no single node holds more than its
3416 		 * proportional share of globally allowed dirty pages.
3417 		 * The dirty limits take into account the node's
3418 		 * lowmem reserves and high watermark so that kswapd
3419 		 * should be able to balance it without having to
3420 		 * write pages from its LRU list.
3421 		 *
3422 		 * XXX: For now, allow allocations to potentially
3423 		 * exceed the per-node dirty limit in the slowpath
3424 		 * (spread_dirty_pages unset) before going into reclaim,
3425 		 * which is important when on a NUMA setup the allowed
3426 		 * nodes are together not big enough to reach the
3427 		 * global limit.  The proper fix for these situations
3428 		 * will require awareness of nodes in the
3429 		 * dirty-throttling and the flusher threads.
3430 		 */
3431 		if (ac->spread_dirty_pages) {
3432 			if (last_pgdat != zone->zone_pgdat) {
3433 				last_pgdat = zone->zone_pgdat;
3434 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3435 			}
3436 
3437 			if (!last_pgdat_dirty_ok)
3438 				continue;
3439 		}
3440 
3441 		if (no_fallback && nr_online_nodes > 1 &&
3442 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3443 			int local_nid;
3444 
3445 			/*
3446 			 * If moving to a remote node, retry but allow
3447 			 * fragmenting fallbacks. Locality is more important
3448 			 * than fragmentation avoidance.
3449 			 */
3450 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3451 			if (zone_to_nid(zone) != local_nid) {
3452 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3453 				goto retry;
3454 			}
3455 		}
3456 
3457 		cond_accept_memory(zone, order);
3458 
3459 		/*
3460 		 * Detect whether the number of free pages is below high
3461 		 * watermark.  If so, we will decrease pcp->high and free
3462 		 * PCP pages in free path to reduce the possibility of
3463 		 * premature page reclaiming.  Detection is done here to
3464 		 * avoid to do that in hotter free path.
3465 		 */
3466 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3467 			goto check_alloc_wmark;
3468 
3469 		mark = high_wmark_pages(zone);
3470 		if (zone_watermark_fast(zone, order, mark,
3471 					ac->highest_zoneidx, alloc_flags,
3472 					gfp_mask))
3473 			goto try_this_zone;
3474 		else
3475 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3476 
3477 check_alloc_wmark:
3478 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3479 		if (!zone_watermark_fast(zone, order, mark,
3480 				       ac->highest_zoneidx, alloc_flags,
3481 				       gfp_mask)) {
3482 			int ret;
3483 
3484 			if (cond_accept_memory(zone, order))
3485 				goto try_this_zone;
3486 
3487 			/*
3488 			 * Watermark failed for this zone, but see if we can
3489 			 * grow this zone if it contains deferred pages.
3490 			 */
3491 			if (deferred_pages_enabled()) {
3492 				if (_deferred_grow_zone(zone, order))
3493 					goto try_this_zone;
3494 			}
3495 			/* Checked here to keep the fast path fast */
3496 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3497 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3498 				goto try_this_zone;
3499 
3500 			if (!node_reclaim_enabled() ||
3501 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3502 				continue;
3503 
3504 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3505 			switch (ret) {
3506 			case NODE_RECLAIM_NOSCAN:
3507 				/* did not scan */
3508 				continue;
3509 			case NODE_RECLAIM_FULL:
3510 				/* scanned but unreclaimable */
3511 				continue;
3512 			default:
3513 				/* did we reclaim enough */
3514 				if (zone_watermark_ok(zone, order, mark,
3515 					ac->highest_zoneidx, alloc_flags))
3516 					goto try_this_zone;
3517 
3518 				continue;
3519 			}
3520 		}
3521 
3522 try_this_zone:
3523 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3524 				gfp_mask, alloc_flags, ac->migratetype);
3525 		if (page) {
3526 			prep_new_page(page, order, gfp_mask, alloc_flags);
3527 
3528 			/*
3529 			 * If this is a high-order atomic allocation then check
3530 			 * if the pageblock should be reserved for the future
3531 			 */
3532 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3533 				reserve_highatomic_pageblock(page, order, zone);
3534 
3535 			return page;
3536 		} else {
3537 			if (cond_accept_memory(zone, order))
3538 				goto try_this_zone;
3539 
3540 			/* Try again if zone has deferred pages */
3541 			if (deferred_pages_enabled()) {
3542 				if (_deferred_grow_zone(zone, order))
3543 					goto try_this_zone;
3544 			}
3545 		}
3546 	}
3547 
3548 	/*
3549 	 * It's possible on a UMA machine to get through all zones that are
3550 	 * fragmented. If avoiding fragmentation, reset and try again.
3551 	 */
3552 	if (no_fallback) {
3553 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3554 		goto retry;
3555 	}
3556 
3557 	return NULL;
3558 }
3559 
3560 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3561 {
3562 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3563 
3564 	/*
3565 	 * This documents exceptions given to allocations in certain
3566 	 * contexts that are allowed to allocate outside current's set
3567 	 * of allowed nodes.
3568 	 */
3569 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3570 		if (tsk_is_oom_victim(current) ||
3571 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3572 			filter &= ~SHOW_MEM_FILTER_NODES;
3573 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3574 		filter &= ~SHOW_MEM_FILTER_NODES;
3575 
3576 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3577 }
3578 
3579 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3580 {
3581 	struct va_format vaf;
3582 	va_list args;
3583 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3584 
3585 	if ((gfp_mask & __GFP_NOWARN) ||
3586 	     !__ratelimit(&nopage_rs) ||
3587 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3588 		return;
3589 
3590 	va_start(args, fmt);
3591 	vaf.fmt = fmt;
3592 	vaf.va = &args;
3593 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3594 			current->comm, &vaf, gfp_mask, &gfp_mask,
3595 			nodemask_pr_args(nodemask));
3596 	va_end(args);
3597 
3598 	cpuset_print_current_mems_allowed();
3599 	pr_cont("\n");
3600 	dump_stack();
3601 	warn_alloc_show_mem(gfp_mask, nodemask);
3602 }
3603 
3604 static inline struct page *
3605 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3606 			      unsigned int alloc_flags,
3607 			      const struct alloc_context *ac)
3608 {
3609 	struct page *page;
3610 
3611 	page = get_page_from_freelist(gfp_mask, order,
3612 			alloc_flags|ALLOC_CPUSET, ac);
3613 	/*
3614 	 * fallback to ignore cpuset restriction if our nodes
3615 	 * are depleted
3616 	 */
3617 	if (!page)
3618 		page = get_page_from_freelist(gfp_mask, order,
3619 				alloc_flags, ac);
3620 	return page;
3621 }
3622 
3623 static inline struct page *
3624 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3625 	const struct alloc_context *ac, unsigned long *did_some_progress)
3626 {
3627 	struct oom_control oc = {
3628 		.zonelist = ac->zonelist,
3629 		.nodemask = ac->nodemask,
3630 		.memcg = NULL,
3631 		.gfp_mask = gfp_mask,
3632 		.order = order,
3633 	};
3634 	struct page *page;
3635 
3636 	*did_some_progress = 0;
3637 
3638 	/*
3639 	 * Acquire the oom lock.  If that fails, somebody else is
3640 	 * making progress for us.
3641 	 */
3642 	if (!mutex_trylock(&oom_lock)) {
3643 		*did_some_progress = 1;
3644 		schedule_timeout_uninterruptible(1);
3645 		return NULL;
3646 	}
3647 
3648 	/*
3649 	 * Go through the zonelist yet one more time, keep very high watermark
3650 	 * here, this is only to catch a parallel oom killing, we must fail if
3651 	 * we're still under heavy pressure. But make sure that this reclaim
3652 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3653 	 * allocation which will never fail due to oom_lock already held.
3654 	 */
3655 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3656 				      ~__GFP_DIRECT_RECLAIM, order,
3657 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3658 	if (page)
3659 		goto out;
3660 
3661 	/* Coredumps can quickly deplete all memory reserves */
3662 	if (current->flags & PF_DUMPCORE)
3663 		goto out;
3664 	/* The OOM killer will not help higher order allocs */
3665 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3666 		goto out;
3667 	/*
3668 	 * We have already exhausted all our reclaim opportunities without any
3669 	 * success so it is time to admit defeat. We will skip the OOM killer
3670 	 * because it is very likely that the caller has a more reasonable
3671 	 * fallback than shooting a random task.
3672 	 *
3673 	 * The OOM killer may not free memory on a specific node.
3674 	 */
3675 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3676 		goto out;
3677 	/* The OOM killer does not needlessly kill tasks for lowmem */
3678 	if (ac->highest_zoneidx < ZONE_NORMAL)
3679 		goto out;
3680 	if (pm_suspended_storage())
3681 		goto out;
3682 	/*
3683 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3684 	 * other request to make a forward progress.
3685 	 * We are in an unfortunate situation where out_of_memory cannot
3686 	 * do much for this context but let's try it to at least get
3687 	 * access to memory reserved if the current task is killed (see
3688 	 * out_of_memory). Once filesystems are ready to handle allocation
3689 	 * failures more gracefully we should just bail out here.
3690 	 */
3691 
3692 	/* Exhausted what can be done so it's blame time */
3693 	if (out_of_memory(&oc) ||
3694 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3695 		*did_some_progress = 1;
3696 
3697 		/*
3698 		 * Help non-failing allocations by giving them access to memory
3699 		 * reserves
3700 		 */
3701 		if (gfp_mask & __GFP_NOFAIL)
3702 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3703 					ALLOC_NO_WATERMARKS, ac);
3704 	}
3705 out:
3706 	mutex_unlock(&oom_lock);
3707 	return page;
3708 }
3709 
3710 /*
3711  * Maximum number of compaction retries with a progress before OOM
3712  * killer is consider as the only way to move forward.
3713  */
3714 #define MAX_COMPACT_RETRIES 16
3715 
3716 #ifdef CONFIG_COMPACTION
3717 /* Try memory compaction for high-order allocations before reclaim */
3718 static struct page *
3719 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3720 		unsigned int alloc_flags, const struct alloc_context *ac,
3721 		enum compact_priority prio, enum compact_result *compact_result)
3722 {
3723 	struct page *page = NULL;
3724 	unsigned long pflags;
3725 	unsigned int noreclaim_flag;
3726 
3727 	if (!order)
3728 		return NULL;
3729 
3730 	psi_memstall_enter(&pflags);
3731 	delayacct_compact_start();
3732 	noreclaim_flag = memalloc_noreclaim_save();
3733 
3734 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3735 								prio, &page);
3736 
3737 	memalloc_noreclaim_restore(noreclaim_flag);
3738 	psi_memstall_leave(&pflags);
3739 	delayacct_compact_end();
3740 
3741 	if (*compact_result == COMPACT_SKIPPED)
3742 		return NULL;
3743 	/*
3744 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3745 	 * count a compaction stall
3746 	 */
3747 	count_vm_event(COMPACTSTALL);
3748 
3749 	/* Prep a captured page if available */
3750 	if (page)
3751 		prep_new_page(page, order, gfp_mask, alloc_flags);
3752 
3753 	/* Try get a page from the freelist if available */
3754 	if (!page)
3755 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3756 
3757 	if (page) {
3758 		struct zone *zone = page_zone(page);
3759 
3760 		zone->compact_blockskip_flush = false;
3761 		compaction_defer_reset(zone, order, true);
3762 		count_vm_event(COMPACTSUCCESS);
3763 		return page;
3764 	}
3765 
3766 	/*
3767 	 * It's bad if compaction run occurs and fails. The most likely reason
3768 	 * is that pages exist, but not enough to satisfy watermarks.
3769 	 */
3770 	count_vm_event(COMPACTFAIL);
3771 
3772 	cond_resched();
3773 
3774 	return NULL;
3775 }
3776 
3777 static inline bool
3778 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3779 		     enum compact_result compact_result,
3780 		     enum compact_priority *compact_priority,
3781 		     int *compaction_retries)
3782 {
3783 	int max_retries = MAX_COMPACT_RETRIES;
3784 	int min_priority;
3785 	bool ret = false;
3786 	int retries = *compaction_retries;
3787 	enum compact_priority priority = *compact_priority;
3788 
3789 	if (!order)
3790 		return false;
3791 
3792 	if (fatal_signal_pending(current))
3793 		return false;
3794 
3795 	/*
3796 	 * Compaction was skipped due to a lack of free order-0
3797 	 * migration targets. Continue if reclaim can help.
3798 	 */
3799 	if (compact_result == COMPACT_SKIPPED) {
3800 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3801 		goto out;
3802 	}
3803 
3804 	/*
3805 	 * Compaction managed to coalesce some page blocks, but the
3806 	 * allocation failed presumably due to a race. Retry some.
3807 	 */
3808 	if (compact_result == COMPACT_SUCCESS) {
3809 		/*
3810 		 * !costly requests are much more important than
3811 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3812 		 * facto nofail and invoke OOM killer to move on while
3813 		 * costly can fail and users are ready to cope with
3814 		 * that. 1/4 retries is rather arbitrary but we would
3815 		 * need much more detailed feedback from compaction to
3816 		 * make a better decision.
3817 		 */
3818 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3819 			max_retries /= 4;
3820 
3821 		if (++(*compaction_retries) <= max_retries) {
3822 			ret = true;
3823 			goto out;
3824 		}
3825 	}
3826 
3827 	/*
3828 	 * Compaction failed. Retry with increasing priority.
3829 	 */
3830 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3831 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3832 
3833 	if (*compact_priority > min_priority) {
3834 		(*compact_priority)--;
3835 		*compaction_retries = 0;
3836 		ret = true;
3837 	}
3838 out:
3839 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3840 	return ret;
3841 }
3842 #else
3843 static inline struct page *
3844 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3845 		unsigned int alloc_flags, const struct alloc_context *ac,
3846 		enum compact_priority prio, enum compact_result *compact_result)
3847 {
3848 	*compact_result = COMPACT_SKIPPED;
3849 	return NULL;
3850 }
3851 
3852 static inline bool
3853 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3854 		     enum compact_result compact_result,
3855 		     enum compact_priority *compact_priority,
3856 		     int *compaction_retries)
3857 {
3858 	struct zone *zone;
3859 	struct zoneref *z;
3860 
3861 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3862 		return false;
3863 
3864 	/*
3865 	 * There are setups with compaction disabled which would prefer to loop
3866 	 * inside the allocator rather than hit the oom killer prematurely.
3867 	 * Let's give them a good hope and keep retrying while the order-0
3868 	 * watermarks are OK.
3869 	 */
3870 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3871 				ac->highest_zoneidx, ac->nodemask) {
3872 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3873 					ac->highest_zoneidx, alloc_flags))
3874 			return true;
3875 	}
3876 	return false;
3877 }
3878 #endif /* CONFIG_COMPACTION */
3879 
3880 #ifdef CONFIG_LOCKDEP
3881 static struct lockdep_map __fs_reclaim_map =
3882 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3883 
3884 static bool __need_reclaim(gfp_t gfp_mask)
3885 {
3886 	/* no reclaim without waiting on it */
3887 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3888 		return false;
3889 
3890 	/* this guy won't enter reclaim */
3891 	if (current->flags & PF_MEMALLOC)
3892 		return false;
3893 
3894 	if (gfp_mask & __GFP_NOLOCKDEP)
3895 		return false;
3896 
3897 	return true;
3898 }
3899 
3900 void __fs_reclaim_acquire(unsigned long ip)
3901 {
3902 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3903 }
3904 
3905 void __fs_reclaim_release(unsigned long ip)
3906 {
3907 	lock_release(&__fs_reclaim_map, ip);
3908 }
3909 
3910 void fs_reclaim_acquire(gfp_t gfp_mask)
3911 {
3912 	gfp_mask = current_gfp_context(gfp_mask);
3913 
3914 	if (__need_reclaim(gfp_mask)) {
3915 		if (gfp_mask & __GFP_FS)
3916 			__fs_reclaim_acquire(_RET_IP_);
3917 
3918 #ifdef CONFIG_MMU_NOTIFIER
3919 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3920 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3921 #endif
3922 
3923 	}
3924 }
3925 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3926 
3927 void fs_reclaim_release(gfp_t gfp_mask)
3928 {
3929 	gfp_mask = current_gfp_context(gfp_mask);
3930 
3931 	if (__need_reclaim(gfp_mask)) {
3932 		if (gfp_mask & __GFP_FS)
3933 			__fs_reclaim_release(_RET_IP_);
3934 	}
3935 }
3936 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3937 #endif
3938 
3939 /*
3940  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3941  * have been rebuilt so allocation retries. Reader side does not lock and
3942  * retries the allocation if zonelist changes. Writer side is protected by the
3943  * embedded spin_lock.
3944  */
3945 static DEFINE_SEQLOCK(zonelist_update_seq);
3946 
3947 static unsigned int zonelist_iter_begin(void)
3948 {
3949 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3950 		return read_seqbegin(&zonelist_update_seq);
3951 
3952 	return 0;
3953 }
3954 
3955 static unsigned int check_retry_zonelist(unsigned int seq)
3956 {
3957 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3958 		return read_seqretry(&zonelist_update_seq, seq);
3959 
3960 	return seq;
3961 }
3962 
3963 /* Perform direct synchronous page reclaim */
3964 static unsigned long
3965 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3966 					const struct alloc_context *ac)
3967 {
3968 	unsigned int noreclaim_flag;
3969 	unsigned long progress;
3970 
3971 	cond_resched();
3972 
3973 	/* We now go into synchronous reclaim */
3974 	cpuset_memory_pressure_bump();
3975 	fs_reclaim_acquire(gfp_mask);
3976 	noreclaim_flag = memalloc_noreclaim_save();
3977 
3978 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3979 								ac->nodemask);
3980 
3981 	memalloc_noreclaim_restore(noreclaim_flag);
3982 	fs_reclaim_release(gfp_mask);
3983 
3984 	cond_resched();
3985 
3986 	return progress;
3987 }
3988 
3989 /* The really slow allocator path where we enter direct reclaim */
3990 static inline struct page *
3991 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3992 		unsigned int alloc_flags, const struct alloc_context *ac,
3993 		unsigned long *did_some_progress)
3994 {
3995 	struct page *page = NULL;
3996 	unsigned long pflags;
3997 	bool drained = false;
3998 
3999 	psi_memstall_enter(&pflags);
4000 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4001 	if (unlikely(!(*did_some_progress)))
4002 		goto out;
4003 
4004 retry:
4005 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4006 
4007 	/*
4008 	 * If an allocation failed after direct reclaim, it could be because
4009 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4010 	 * Shrink them and try again
4011 	 */
4012 	if (!page && !drained) {
4013 		unreserve_highatomic_pageblock(ac, false);
4014 		drain_all_pages(NULL);
4015 		drained = true;
4016 		goto retry;
4017 	}
4018 out:
4019 	psi_memstall_leave(&pflags);
4020 
4021 	return page;
4022 }
4023 
4024 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4025 			     const struct alloc_context *ac)
4026 {
4027 	struct zoneref *z;
4028 	struct zone *zone;
4029 	pg_data_t *last_pgdat = NULL;
4030 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4031 
4032 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4033 					ac->nodemask) {
4034 		if (!managed_zone(zone))
4035 			continue;
4036 		if (last_pgdat != zone->zone_pgdat) {
4037 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4038 			last_pgdat = zone->zone_pgdat;
4039 		}
4040 	}
4041 }
4042 
4043 static inline unsigned int
4044 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4045 {
4046 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4047 
4048 	/*
4049 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4050 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4051 	 * to save two branches.
4052 	 */
4053 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4054 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4055 
4056 	/*
4057 	 * The caller may dip into page reserves a bit more if the caller
4058 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4059 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4060 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4061 	 */
4062 	alloc_flags |= (__force int)
4063 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4064 
4065 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4066 		/*
4067 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4068 		 * if it can't schedule.
4069 		 */
4070 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4071 			alloc_flags |= ALLOC_NON_BLOCK;
4072 
4073 			if (order > 0)
4074 				alloc_flags |= ALLOC_HIGHATOMIC;
4075 		}
4076 
4077 		/*
4078 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4079 		 * GFP_ATOMIC) rather than fail, see the comment for
4080 		 * cpuset_node_allowed().
4081 		 */
4082 		if (alloc_flags & ALLOC_MIN_RESERVE)
4083 			alloc_flags &= ~ALLOC_CPUSET;
4084 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4085 		alloc_flags |= ALLOC_MIN_RESERVE;
4086 
4087 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4088 
4089 	return alloc_flags;
4090 }
4091 
4092 static bool oom_reserves_allowed(struct task_struct *tsk)
4093 {
4094 	if (!tsk_is_oom_victim(tsk))
4095 		return false;
4096 
4097 	/*
4098 	 * !MMU doesn't have oom reaper so give access to memory reserves
4099 	 * only to the thread with TIF_MEMDIE set
4100 	 */
4101 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4102 		return false;
4103 
4104 	return true;
4105 }
4106 
4107 /*
4108  * Distinguish requests which really need access to full memory
4109  * reserves from oom victims which can live with a portion of it
4110  */
4111 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4112 {
4113 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4114 		return 0;
4115 	if (gfp_mask & __GFP_MEMALLOC)
4116 		return ALLOC_NO_WATERMARKS;
4117 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4118 		return ALLOC_NO_WATERMARKS;
4119 	if (!in_interrupt()) {
4120 		if (current->flags & PF_MEMALLOC)
4121 			return ALLOC_NO_WATERMARKS;
4122 		else if (oom_reserves_allowed(current))
4123 			return ALLOC_OOM;
4124 	}
4125 
4126 	return 0;
4127 }
4128 
4129 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4130 {
4131 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4132 }
4133 
4134 /*
4135  * Checks whether it makes sense to retry the reclaim to make a forward progress
4136  * for the given allocation request.
4137  *
4138  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4139  * without success, or when we couldn't even meet the watermark if we
4140  * reclaimed all remaining pages on the LRU lists.
4141  *
4142  * Returns true if a retry is viable or false to enter the oom path.
4143  */
4144 static inline bool
4145 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4146 		     struct alloc_context *ac, int alloc_flags,
4147 		     bool did_some_progress, int *no_progress_loops)
4148 {
4149 	struct zone *zone;
4150 	struct zoneref *z;
4151 	bool ret = false;
4152 
4153 	/*
4154 	 * Costly allocations might have made a progress but this doesn't mean
4155 	 * their order will become available due to high fragmentation so
4156 	 * always increment the no progress counter for them
4157 	 */
4158 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4159 		*no_progress_loops = 0;
4160 	else
4161 		(*no_progress_loops)++;
4162 
4163 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4164 		goto out;
4165 
4166 
4167 	/*
4168 	 * Keep reclaiming pages while there is a chance this will lead
4169 	 * somewhere.  If none of the target zones can satisfy our allocation
4170 	 * request even if all reclaimable pages are considered then we are
4171 	 * screwed and have to go OOM.
4172 	 */
4173 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4174 				ac->highest_zoneidx, ac->nodemask) {
4175 		unsigned long available;
4176 		unsigned long reclaimable;
4177 		unsigned long min_wmark = min_wmark_pages(zone);
4178 		bool wmark;
4179 
4180 		if (cpusets_enabled() &&
4181 			(alloc_flags & ALLOC_CPUSET) &&
4182 			!__cpuset_zone_allowed(zone, gfp_mask))
4183 				continue;
4184 
4185 		available = reclaimable = zone_reclaimable_pages(zone);
4186 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4187 
4188 		/*
4189 		 * Would the allocation succeed if we reclaimed all
4190 		 * reclaimable pages?
4191 		 */
4192 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4193 				ac->highest_zoneidx, alloc_flags, available);
4194 		trace_reclaim_retry_zone(z, order, reclaimable,
4195 				available, min_wmark, *no_progress_loops, wmark);
4196 		if (wmark) {
4197 			ret = true;
4198 			break;
4199 		}
4200 	}
4201 
4202 	/*
4203 	 * Memory allocation/reclaim might be called from a WQ context and the
4204 	 * current implementation of the WQ concurrency control doesn't
4205 	 * recognize that a particular WQ is congested if the worker thread is
4206 	 * looping without ever sleeping. Therefore we have to do a short sleep
4207 	 * here rather than calling cond_resched().
4208 	 */
4209 	if (current->flags & PF_WQ_WORKER)
4210 		schedule_timeout_uninterruptible(1);
4211 	else
4212 		cond_resched();
4213 out:
4214 	/* Before OOM, exhaust highatomic_reserve */
4215 	if (!ret)
4216 		return unreserve_highatomic_pageblock(ac, true);
4217 
4218 	return ret;
4219 }
4220 
4221 static inline bool
4222 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4223 {
4224 	/*
4225 	 * It's possible that cpuset's mems_allowed and the nodemask from
4226 	 * mempolicy don't intersect. This should be normally dealt with by
4227 	 * policy_nodemask(), but it's possible to race with cpuset update in
4228 	 * such a way the check therein was true, and then it became false
4229 	 * before we got our cpuset_mems_cookie here.
4230 	 * This assumes that for all allocations, ac->nodemask can come only
4231 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4232 	 * when it does not intersect with the cpuset restrictions) or the
4233 	 * caller can deal with a violated nodemask.
4234 	 */
4235 	if (cpusets_enabled() && ac->nodemask &&
4236 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4237 		ac->nodemask = NULL;
4238 		return true;
4239 	}
4240 
4241 	/*
4242 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4243 	 * possible to race with parallel threads in such a way that our
4244 	 * allocation can fail while the mask is being updated. If we are about
4245 	 * to fail, check if the cpuset changed during allocation and if so,
4246 	 * retry.
4247 	 */
4248 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4249 		return true;
4250 
4251 	return false;
4252 }
4253 
4254 static inline struct page *
4255 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4256 						struct alloc_context *ac)
4257 {
4258 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4259 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4260 	bool nofail = gfp_mask & __GFP_NOFAIL;
4261 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4262 	struct page *page = NULL;
4263 	unsigned int alloc_flags;
4264 	unsigned long did_some_progress;
4265 	enum compact_priority compact_priority;
4266 	enum compact_result compact_result;
4267 	int compaction_retries;
4268 	int no_progress_loops;
4269 	unsigned int cpuset_mems_cookie;
4270 	unsigned int zonelist_iter_cookie;
4271 	int reserve_flags;
4272 
4273 	if (unlikely(nofail)) {
4274 		/*
4275 		 * We most definitely don't want callers attempting to
4276 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4277 		 */
4278 		WARN_ON_ONCE(order > 1);
4279 		/*
4280 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4281 		 * otherwise, we may result in lockup.
4282 		 */
4283 		WARN_ON_ONCE(!can_direct_reclaim);
4284 		/*
4285 		 * PF_MEMALLOC request from this context is rather bizarre
4286 		 * because we cannot reclaim anything and only can loop waiting
4287 		 * for somebody to do a work for us.
4288 		 */
4289 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4290 	}
4291 
4292 restart:
4293 	compaction_retries = 0;
4294 	no_progress_loops = 0;
4295 	compact_result = COMPACT_SKIPPED;
4296 	compact_priority = DEF_COMPACT_PRIORITY;
4297 	cpuset_mems_cookie = read_mems_allowed_begin();
4298 	zonelist_iter_cookie = zonelist_iter_begin();
4299 
4300 	/*
4301 	 * The fast path uses conservative alloc_flags to succeed only until
4302 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4303 	 * alloc_flags precisely. So we do that now.
4304 	 */
4305 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4306 
4307 	/*
4308 	 * We need to recalculate the starting point for the zonelist iterator
4309 	 * because we might have used different nodemask in the fast path, or
4310 	 * there was a cpuset modification and we are retrying - otherwise we
4311 	 * could end up iterating over non-eligible zones endlessly.
4312 	 */
4313 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4314 					ac->highest_zoneidx, ac->nodemask);
4315 	if (!zonelist_zone(ac->preferred_zoneref))
4316 		goto nopage;
4317 
4318 	/*
4319 	 * Check for insane configurations where the cpuset doesn't contain
4320 	 * any suitable zone to satisfy the request - e.g. non-movable
4321 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4322 	 */
4323 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4324 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4325 					ac->highest_zoneidx,
4326 					&cpuset_current_mems_allowed);
4327 		if (!zonelist_zone(z))
4328 			goto nopage;
4329 	}
4330 
4331 	if (alloc_flags & ALLOC_KSWAPD)
4332 		wake_all_kswapds(order, gfp_mask, ac);
4333 
4334 	/*
4335 	 * The adjusted alloc_flags might result in immediate success, so try
4336 	 * that first
4337 	 */
4338 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4339 	if (page)
4340 		goto got_pg;
4341 
4342 	/*
4343 	 * For costly allocations, try direct compaction first, as it's likely
4344 	 * that we have enough base pages and don't need to reclaim. For non-
4345 	 * movable high-order allocations, do that as well, as compaction will
4346 	 * try prevent permanent fragmentation by migrating from blocks of the
4347 	 * same migratetype.
4348 	 * Don't try this for allocations that are allowed to ignore
4349 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4350 	 */
4351 	if (can_direct_reclaim && can_compact &&
4352 			(costly_order ||
4353 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4354 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4355 		page = __alloc_pages_direct_compact(gfp_mask, order,
4356 						alloc_flags, ac,
4357 						INIT_COMPACT_PRIORITY,
4358 						&compact_result);
4359 		if (page)
4360 			goto got_pg;
4361 
4362 		/*
4363 		 * Checks for costly allocations with __GFP_NORETRY, which
4364 		 * includes some THP page fault allocations
4365 		 */
4366 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4367 			/*
4368 			 * If allocating entire pageblock(s) and compaction
4369 			 * failed because all zones are below low watermarks
4370 			 * or is prohibited because it recently failed at this
4371 			 * order, fail immediately unless the allocator has
4372 			 * requested compaction and reclaim retry.
4373 			 *
4374 			 * Reclaim is
4375 			 *  - potentially very expensive because zones are far
4376 			 *    below their low watermarks or this is part of very
4377 			 *    bursty high order allocations,
4378 			 *  - not guaranteed to help because isolate_freepages()
4379 			 *    may not iterate over freed pages as part of its
4380 			 *    linear scan, and
4381 			 *  - unlikely to make entire pageblocks free on its
4382 			 *    own.
4383 			 */
4384 			if (compact_result == COMPACT_SKIPPED ||
4385 			    compact_result == COMPACT_DEFERRED)
4386 				goto nopage;
4387 
4388 			/*
4389 			 * Looks like reclaim/compaction is worth trying, but
4390 			 * sync compaction could be very expensive, so keep
4391 			 * using async compaction.
4392 			 */
4393 			compact_priority = INIT_COMPACT_PRIORITY;
4394 		}
4395 	}
4396 
4397 retry:
4398 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4399 	if (alloc_flags & ALLOC_KSWAPD)
4400 		wake_all_kswapds(order, gfp_mask, ac);
4401 
4402 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4403 	if (reserve_flags)
4404 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4405 					  (alloc_flags & ALLOC_KSWAPD);
4406 
4407 	/*
4408 	 * Reset the nodemask and zonelist iterators if memory policies can be
4409 	 * ignored. These allocations are high priority and system rather than
4410 	 * user oriented.
4411 	 */
4412 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4413 		ac->nodemask = NULL;
4414 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4415 					ac->highest_zoneidx, ac->nodemask);
4416 	}
4417 
4418 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4419 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4420 	if (page)
4421 		goto got_pg;
4422 
4423 	/* Caller is not willing to reclaim, we can't balance anything */
4424 	if (!can_direct_reclaim)
4425 		goto nopage;
4426 
4427 	/* Avoid recursion of direct reclaim */
4428 	if (current->flags & PF_MEMALLOC)
4429 		goto nopage;
4430 
4431 	/* Try direct reclaim and then allocating */
4432 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4433 							&did_some_progress);
4434 	if (page)
4435 		goto got_pg;
4436 
4437 	/* Try direct compaction and then allocating */
4438 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4439 					compact_priority, &compact_result);
4440 	if (page)
4441 		goto got_pg;
4442 
4443 	/* Do not loop if specifically requested */
4444 	if (gfp_mask & __GFP_NORETRY)
4445 		goto nopage;
4446 
4447 	/*
4448 	 * Do not retry costly high order allocations unless they are
4449 	 * __GFP_RETRY_MAYFAIL and we can compact
4450 	 */
4451 	if (costly_order && (!can_compact ||
4452 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4453 		goto nopage;
4454 
4455 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4456 				 did_some_progress > 0, &no_progress_loops))
4457 		goto retry;
4458 
4459 	/*
4460 	 * It doesn't make any sense to retry for the compaction if the order-0
4461 	 * reclaim is not able to make any progress because the current
4462 	 * implementation of the compaction depends on the sufficient amount
4463 	 * of free memory (see __compaction_suitable)
4464 	 */
4465 	if (did_some_progress > 0 && can_compact &&
4466 			should_compact_retry(ac, order, alloc_flags,
4467 				compact_result, &compact_priority,
4468 				&compaction_retries))
4469 		goto retry;
4470 
4471 
4472 	/*
4473 	 * Deal with possible cpuset update races or zonelist updates to avoid
4474 	 * a unnecessary OOM kill.
4475 	 */
4476 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4477 	    check_retry_zonelist(zonelist_iter_cookie))
4478 		goto restart;
4479 
4480 	/* Reclaim has failed us, start killing things */
4481 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4482 	if (page)
4483 		goto got_pg;
4484 
4485 	/* Avoid allocations with no watermarks from looping endlessly */
4486 	if (tsk_is_oom_victim(current) &&
4487 	    (alloc_flags & ALLOC_OOM ||
4488 	     (gfp_mask & __GFP_NOMEMALLOC)))
4489 		goto nopage;
4490 
4491 	/* Retry as long as the OOM killer is making progress */
4492 	if (did_some_progress) {
4493 		no_progress_loops = 0;
4494 		goto retry;
4495 	}
4496 
4497 nopage:
4498 	/*
4499 	 * Deal with possible cpuset update races or zonelist updates to avoid
4500 	 * a unnecessary OOM kill.
4501 	 */
4502 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4503 	    check_retry_zonelist(zonelist_iter_cookie))
4504 		goto restart;
4505 
4506 	/*
4507 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4508 	 * we always retry
4509 	 */
4510 	if (unlikely(nofail)) {
4511 		/*
4512 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4513 		 * we disregard these unreasonable nofail requests and still
4514 		 * return NULL
4515 		 */
4516 		if (!can_direct_reclaim)
4517 			goto fail;
4518 
4519 		/*
4520 		 * Help non-failing allocations by giving some access to memory
4521 		 * reserves normally used for high priority non-blocking
4522 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4523 		 * could deplete whole memory reserves which would just make
4524 		 * the situation worse.
4525 		 */
4526 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4527 		if (page)
4528 			goto got_pg;
4529 
4530 		cond_resched();
4531 		goto retry;
4532 	}
4533 fail:
4534 	warn_alloc(gfp_mask, ac->nodemask,
4535 			"page allocation failure: order:%u", order);
4536 got_pg:
4537 	return page;
4538 }
4539 
4540 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4541 		int preferred_nid, nodemask_t *nodemask,
4542 		struct alloc_context *ac, gfp_t *alloc_gfp,
4543 		unsigned int *alloc_flags)
4544 {
4545 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4546 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4547 	ac->nodemask = nodemask;
4548 	ac->migratetype = gfp_migratetype(gfp_mask);
4549 
4550 	if (cpusets_enabled()) {
4551 		*alloc_gfp |= __GFP_HARDWALL;
4552 		/*
4553 		 * When we are in the interrupt context, it is irrelevant
4554 		 * to the current task context. It means that any node ok.
4555 		 */
4556 		if (in_task() && !ac->nodemask)
4557 			ac->nodemask = &cpuset_current_mems_allowed;
4558 		else
4559 			*alloc_flags |= ALLOC_CPUSET;
4560 	}
4561 
4562 	might_alloc(gfp_mask);
4563 
4564 	if (should_fail_alloc_page(gfp_mask, order))
4565 		return false;
4566 
4567 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4568 
4569 	/* Dirty zone balancing only done in the fast path */
4570 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4571 
4572 	/*
4573 	 * The preferred zone is used for statistics but crucially it is
4574 	 * also used as the starting point for the zonelist iterator. It
4575 	 * may get reset for allocations that ignore memory policies.
4576 	 */
4577 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4578 					ac->highest_zoneidx, ac->nodemask);
4579 
4580 	return true;
4581 }
4582 
4583 /*
4584  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4585  * @gfp: GFP flags for the allocation
4586  * @preferred_nid: The preferred NUMA node ID to allocate from
4587  * @nodemask: Set of nodes to allocate from, may be NULL
4588  * @nr_pages: The number of pages desired in the array
4589  * @page_array: Array to store the pages
4590  *
4591  * This is a batched version of the page allocator that attempts to
4592  * allocate nr_pages quickly. Pages are added to the page_array.
4593  *
4594  * Note that only NULL elements are populated with pages and nr_pages
4595  * is the maximum number of pages that will be stored in the array.
4596  *
4597  * Returns the number of pages in the array.
4598  */
4599 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4600 			nodemask_t *nodemask, int nr_pages,
4601 			struct page **page_array)
4602 {
4603 	struct page *page;
4604 	unsigned long __maybe_unused UP_flags;
4605 	struct zone *zone;
4606 	struct zoneref *z;
4607 	struct per_cpu_pages *pcp;
4608 	struct list_head *pcp_list;
4609 	struct alloc_context ac;
4610 	gfp_t alloc_gfp;
4611 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4612 	int nr_populated = 0, nr_account = 0;
4613 
4614 	/*
4615 	 * Skip populated array elements to determine if any pages need
4616 	 * to be allocated before disabling IRQs.
4617 	 */
4618 	while (nr_populated < nr_pages && page_array[nr_populated])
4619 		nr_populated++;
4620 
4621 	/* No pages requested? */
4622 	if (unlikely(nr_pages <= 0))
4623 		goto out;
4624 
4625 	/* Already populated array? */
4626 	if (unlikely(nr_pages - nr_populated == 0))
4627 		goto out;
4628 
4629 	/* Bulk allocator does not support memcg accounting. */
4630 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4631 		goto failed;
4632 
4633 	/* Use the single page allocator for one page. */
4634 	if (nr_pages - nr_populated == 1)
4635 		goto failed;
4636 
4637 #ifdef CONFIG_PAGE_OWNER
4638 	/*
4639 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4640 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4641 	 * removes much of the performance benefit of bulk allocation so
4642 	 * force the caller to allocate one page at a time as it'll have
4643 	 * similar performance to added complexity to the bulk allocator.
4644 	 */
4645 	if (static_branch_unlikely(&page_owner_inited))
4646 		goto failed;
4647 #endif
4648 
4649 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4650 	gfp &= gfp_allowed_mask;
4651 	alloc_gfp = gfp;
4652 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4653 		goto out;
4654 	gfp = alloc_gfp;
4655 
4656 	/* Find an allowed local zone that meets the low watermark. */
4657 	z = ac.preferred_zoneref;
4658 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4659 		unsigned long mark;
4660 
4661 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4662 		    !__cpuset_zone_allowed(zone, gfp)) {
4663 			continue;
4664 		}
4665 
4666 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4667 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4668 			goto failed;
4669 		}
4670 
4671 		cond_accept_memory(zone, 0);
4672 retry_this_zone:
4673 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4674 		if (zone_watermark_fast(zone, 0,  mark,
4675 				zonelist_zone_idx(ac.preferred_zoneref),
4676 				alloc_flags, gfp)) {
4677 			break;
4678 		}
4679 
4680 		if (cond_accept_memory(zone, 0))
4681 			goto retry_this_zone;
4682 
4683 		/* Try again if zone has deferred pages */
4684 		if (deferred_pages_enabled()) {
4685 			if (_deferred_grow_zone(zone, 0))
4686 				goto retry_this_zone;
4687 		}
4688 	}
4689 
4690 	/*
4691 	 * If there are no allowed local zones that meets the watermarks then
4692 	 * try to allocate a single page and reclaim if necessary.
4693 	 */
4694 	if (unlikely(!zone))
4695 		goto failed;
4696 
4697 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4698 	pcp_trylock_prepare(UP_flags);
4699 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4700 	if (!pcp)
4701 		goto failed_irq;
4702 
4703 	/* Attempt the batch allocation */
4704 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4705 	while (nr_populated < nr_pages) {
4706 
4707 		/* Skip existing pages */
4708 		if (page_array[nr_populated]) {
4709 			nr_populated++;
4710 			continue;
4711 		}
4712 
4713 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4714 								pcp, pcp_list);
4715 		if (unlikely(!page)) {
4716 			/* Try and allocate at least one page */
4717 			if (!nr_account) {
4718 				pcp_spin_unlock(pcp);
4719 				goto failed_irq;
4720 			}
4721 			break;
4722 		}
4723 		nr_account++;
4724 
4725 		prep_new_page(page, 0, gfp, 0);
4726 		set_page_refcounted(page);
4727 		page_array[nr_populated++] = page;
4728 	}
4729 
4730 	pcp_spin_unlock(pcp);
4731 	pcp_trylock_finish(UP_flags);
4732 
4733 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4734 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4735 
4736 out:
4737 	return nr_populated;
4738 
4739 failed_irq:
4740 	pcp_trylock_finish(UP_flags);
4741 
4742 failed:
4743 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4744 	if (page)
4745 		page_array[nr_populated++] = page;
4746 	goto out;
4747 }
4748 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4749 
4750 /*
4751  * This is the 'heart' of the zoned buddy allocator.
4752  */
4753 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4754 		int preferred_nid, nodemask_t *nodemask)
4755 {
4756 	struct page *page;
4757 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4758 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4759 	struct alloc_context ac = { };
4760 
4761 	/*
4762 	 * There are several places where we assume that the order value is sane
4763 	 * so bail out early if the request is out of bound.
4764 	 */
4765 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4766 		return NULL;
4767 
4768 	gfp &= gfp_allowed_mask;
4769 	/*
4770 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4771 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4772 	 * from a particular context which has been marked by
4773 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4774 	 * movable zones are not used during allocation.
4775 	 */
4776 	gfp = current_gfp_context(gfp);
4777 	alloc_gfp = gfp;
4778 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4779 			&alloc_gfp, &alloc_flags))
4780 		return NULL;
4781 
4782 	/*
4783 	 * Forbid the first pass from falling back to types that fragment
4784 	 * memory until all local zones are considered.
4785 	 */
4786 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4787 
4788 	/* First allocation attempt */
4789 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4790 	if (likely(page))
4791 		goto out;
4792 
4793 	alloc_gfp = gfp;
4794 	ac.spread_dirty_pages = false;
4795 
4796 	/*
4797 	 * Restore the original nodemask if it was potentially replaced with
4798 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4799 	 */
4800 	ac.nodemask = nodemask;
4801 
4802 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4803 
4804 out:
4805 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4806 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4807 		free_frozen_pages(page, order);
4808 		page = NULL;
4809 	}
4810 
4811 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4812 	kmsan_alloc_page(page, order, alloc_gfp);
4813 
4814 	return page;
4815 }
4816 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4817 
4818 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4819 		int preferred_nid, nodemask_t *nodemask)
4820 {
4821 	struct page *page;
4822 
4823 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
4824 	if (page)
4825 		set_page_refcounted(page);
4826 	return page;
4827 }
4828 EXPORT_SYMBOL(__alloc_pages_noprof);
4829 
4830 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4831 		nodemask_t *nodemask)
4832 {
4833 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4834 					preferred_nid, nodemask);
4835 	return page_rmappable_folio(page);
4836 }
4837 EXPORT_SYMBOL(__folio_alloc_noprof);
4838 
4839 /*
4840  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4841  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4842  * you need to access high mem.
4843  */
4844 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4845 {
4846 	struct page *page;
4847 
4848 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4849 	if (!page)
4850 		return 0;
4851 	return (unsigned long) page_address(page);
4852 }
4853 EXPORT_SYMBOL(get_free_pages_noprof);
4854 
4855 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4856 {
4857 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4858 }
4859 EXPORT_SYMBOL(get_zeroed_page_noprof);
4860 
4861 /**
4862  * __free_pages - Free pages allocated with alloc_pages().
4863  * @page: The page pointer returned from alloc_pages().
4864  * @order: The order of the allocation.
4865  *
4866  * This function can free multi-page allocations that are not compound
4867  * pages.  It does not check that the @order passed in matches that of
4868  * the allocation, so it is easy to leak memory.  Freeing more memory
4869  * than was allocated will probably emit a warning.
4870  *
4871  * If the last reference to this page is speculative, it will be released
4872  * by put_page() which only frees the first page of a non-compound
4873  * allocation.  To prevent the remaining pages from being leaked, we free
4874  * the subsequent pages here.  If you want to use the page's reference
4875  * count to decide when to free the allocation, you should allocate a
4876  * compound page, and use put_page() instead of __free_pages().
4877  *
4878  * Context: May be called in interrupt context or while holding a normal
4879  * spinlock, but not in NMI context or while holding a raw spinlock.
4880  */
4881 void __free_pages(struct page *page, unsigned int order)
4882 {
4883 	/* get PageHead before we drop reference */
4884 	int head = PageHead(page);
4885 
4886 	if (put_page_testzero(page))
4887 		free_frozen_pages(page, order);
4888 	else if (!head) {
4889 		pgalloc_tag_sub_pages(page, (1 << order) - 1);
4890 		while (order-- > 0)
4891 			free_frozen_pages(page + (1 << order), order);
4892 	}
4893 }
4894 EXPORT_SYMBOL(__free_pages);
4895 
4896 void free_pages(unsigned long addr, unsigned int order)
4897 {
4898 	if (addr != 0) {
4899 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4900 		__free_pages(virt_to_page((void *)addr), order);
4901 	}
4902 }
4903 
4904 EXPORT_SYMBOL(free_pages);
4905 
4906 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4907 		size_t size)
4908 {
4909 	if (addr) {
4910 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4911 		struct page *page = virt_to_page((void *)addr);
4912 		struct page *last = page + nr;
4913 
4914 		split_page_owner(page, order, 0);
4915 		pgalloc_tag_split(page_folio(page), order, 0);
4916 		split_page_memcg(page, order, 0);
4917 		while (page < --last)
4918 			set_page_refcounted(last);
4919 
4920 		last = page + (1UL << order);
4921 		for (page += nr; page < last; page++)
4922 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4923 	}
4924 	return (void *)addr;
4925 }
4926 
4927 /**
4928  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4929  * @size: the number of bytes to allocate
4930  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4931  *
4932  * This function is similar to alloc_pages(), except that it allocates the
4933  * minimum number of pages to satisfy the request.  alloc_pages() can only
4934  * allocate memory in power-of-two pages.
4935  *
4936  * This function is also limited by MAX_PAGE_ORDER.
4937  *
4938  * Memory allocated by this function must be released by free_pages_exact().
4939  *
4940  * Return: pointer to the allocated area or %NULL in case of error.
4941  */
4942 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4943 {
4944 	unsigned int order = get_order(size);
4945 	unsigned long addr;
4946 
4947 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4948 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4949 
4950 	addr = get_free_pages_noprof(gfp_mask, order);
4951 	return make_alloc_exact(addr, order, size);
4952 }
4953 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4954 
4955 /**
4956  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4957  *			   pages on a node.
4958  * @nid: the preferred node ID where memory should be allocated
4959  * @size: the number of bytes to allocate
4960  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4961  *
4962  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4963  * back.
4964  *
4965  * Return: pointer to the allocated area or %NULL in case of error.
4966  */
4967 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4968 {
4969 	unsigned int order = get_order(size);
4970 	struct page *p;
4971 
4972 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4973 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4974 
4975 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4976 	if (!p)
4977 		return NULL;
4978 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4979 }
4980 
4981 /**
4982  * free_pages_exact - release memory allocated via alloc_pages_exact()
4983  * @virt: the value returned by alloc_pages_exact.
4984  * @size: size of allocation, same value as passed to alloc_pages_exact().
4985  *
4986  * Release the memory allocated by a previous call to alloc_pages_exact.
4987  */
4988 void free_pages_exact(void *virt, size_t size)
4989 {
4990 	unsigned long addr = (unsigned long)virt;
4991 	unsigned long end = addr + PAGE_ALIGN(size);
4992 
4993 	while (addr < end) {
4994 		free_page(addr);
4995 		addr += PAGE_SIZE;
4996 	}
4997 }
4998 EXPORT_SYMBOL(free_pages_exact);
4999 
5000 /**
5001  * nr_free_zone_pages - count number of pages beyond high watermark
5002  * @offset: The zone index of the highest zone
5003  *
5004  * nr_free_zone_pages() counts the number of pages which are beyond the
5005  * high watermark within all zones at or below a given zone index.  For each
5006  * zone, the number of pages is calculated as:
5007  *
5008  *     nr_free_zone_pages = managed_pages - high_pages
5009  *
5010  * Return: number of pages beyond high watermark.
5011  */
5012 static unsigned long nr_free_zone_pages(int offset)
5013 {
5014 	struct zoneref *z;
5015 	struct zone *zone;
5016 
5017 	/* Just pick one node, since fallback list is circular */
5018 	unsigned long sum = 0;
5019 
5020 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5021 
5022 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5023 		unsigned long size = zone_managed_pages(zone);
5024 		unsigned long high = high_wmark_pages(zone);
5025 		if (size > high)
5026 			sum += size - high;
5027 	}
5028 
5029 	return sum;
5030 }
5031 
5032 /**
5033  * nr_free_buffer_pages - count number of pages beyond high watermark
5034  *
5035  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5036  * watermark within ZONE_DMA and ZONE_NORMAL.
5037  *
5038  * Return: number of pages beyond high watermark within ZONE_DMA and
5039  * ZONE_NORMAL.
5040  */
5041 unsigned long nr_free_buffer_pages(void)
5042 {
5043 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5044 }
5045 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5046 
5047 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5048 {
5049 	zoneref->zone = zone;
5050 	zoneref->zone_idx = zone_idx(zone);
5051 }
5052 
5053 /*
5054  * Builds allocation fallback zone lists.
5055  *
5056  * Add all populated zones of a node to the zonelist.
5057  */
5058 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5059 {
5060 	struct zone *zone;
5061 	enum zone_type zone_type = MAX_NR_ZONES;
5062 	int nr_zones = 0;
5063 
5064 	do {
5065 		zone_type--;
5066 		zone = pgdat->node_zones + zone_type;
5067 		if (populated_zone(zone)) {
5068 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5069 			check_highest_zone(zone_type);
5070 		}
5071 	} while (zone_type);
5072 
5073 	return nr_zones;
5074 }
5075 
5076 #ifdef CONFIG_NUMA
5077 
5078 static int __parse_numa_zonelist_order(char *s)
5079 {
5080 	/*
5081 	 * We used to support different zonelists modes but they turned
5082 	 * out to be just not useful. Let's keep the warning in place
5083 	 * if somebody still use the cmd line parameter so that we do
5084 	 * not fail it silently
5085 	 */
5086 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5087 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5088 		return -EINVAL;
5089 	}
5090 	return 0;
5091 }
5092 
5093 static char numa_zonelist_order[] = "Node";
5094 #define NUMA_ZONELIST_ORDER_LEN	16
5095 /*
5096  * sysctl handler for numa_zonelist_order
5097  */
5098 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5099 		void *buffer, size_t *length, loff_t *ppos)
5100 {
5101 	if (write)
5102 		return __parse_numa_zonelist_order(buffer);
5103 	return proc_dostring(table, write, buffer, length, ppos);
5104 }
5105 
5106 static int node_load[MAX_NUMNODES];
5107 
5108 /**
5109  * find_next_best_node - find the next node that should appear in a given node's fallback list
5110  * @node: node whose fallback list we're appending
5111  * @used_node_mask: nodemask_t of already used nodes
5112  *
5113  * We use a number of factors to determine which is the next node that should
5114  * appear on a given node's fallback list.  The node should not have appeared
5115  * already in @node's fallback list, and it should be the next closest node
5116  * according to the distance array (which contains arbitrary distance values
5117  * from each node to each node in the system), and should also prefer nodes
5118  * with no CPUs, since presumably they'll have very little allocation pressure
5119  * on them otherwise.
5120  *
5121  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5122  */
5123 int find_next_best_node(int node, nodemask_t *used_node_mask)
5124 {
5125 	int n, val;
5126 	int min_val = INT_MAX;
5127 	int best_node = NUMA_NO_NODE;
5128 
5129 	/*
5130 	 * Use the local node if we haven't already, but for memoryless local
5131 	 * node, we should skip it and fall back to other nodes.
5132 	 */
5133 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5134 		node_set(node, *used_node_mask);
5135 		return node;
5136 	}
5137 
5138 	for_each_node_state(n, N_MEMORY) {
5139 
5140 		/* Don't want a node to appear more than once */
5141 		if (node_isset(n, *used_node_mask))
5142 			continue;
5143 
5144 		/* Use the distance array to find the distance */
5145 		val = node_distance(node, n);
5146 
5147 		/* Penalize nodes under us ("prefer the next node") */
5148 		val += (n < node);
5149 
5150 		/* Give preference to headless and unused nodes */
5151 		if (!cpumask_empty(cpumask_of_node(n)))
5152 			val += PENALTY_FOR_NODE_WITH_CPUS;
5153 
5154 		/* Slight preference for less loaded node */
5155 		val *= MAX_NUMNODES;
5156 		val += node_load[n];
5157 
5158 		if (val < min_val) {
5159 			min_val = val;
5160 			best_node = n;
5161 		}
5162 	}
5163 
5164 	if (best_node >= 0)
5165 		node_set(best_node, *used_node_mask);
5166 
5167 	return best_node;
5168 }
5169 
5170 
5171 /*
5172  * Build zonelists ordered by node and zones within node.
5173  * This results in maximum locality--normal zone overflows into local
5174  * DMA zone, if any--but risks exhausting DMA zone.
5175  */
5176 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5177 		unsigned nr_nodes)
5178 {
5179 	struct zoneref *zonerefs;
5180 	int i;
5181 
5182 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5183 
5184 	for (i = 0; i < nr_nodes; i++) {
5185 		int nr_zones;
5186 
5187 		pg_data_t *node = NODE_DATA(node_order[i]);
5188 
5189 		nr_zones = build_zonerefs_node(node, zonerefs);
5190 		zonerefs += nr_zones;
5191 	}
5192 	zonerefs->zone = NULL;
5193 	zonerefs->zone_idx = 0;
5194 }
5195 
5196 /*
5197  * Build __GFP_THISNODE zonelists
5198  */
5199 static void build_thisnode_zonelists(pg_data_t *pgdat)
5200 {
5201 	struct zoneref *zonerefs;
5202 	int nr_zones;
5203 
5204 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5205 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5206 	zonerefs += nr_zones;
5207 	zonerefs->zone = NULL;
5208 	zonerefs->zone_idx = 0;
5209 }
5210 
5211 static void build_zonelists(pg_data_t *pgdat)
5212 {
5213 	static int node_order[MAX_NUMNODES];
5214 	int node, nr_nodes = 0;
5215 	nodemask_t used_mask = NODE_MASK_NONE;
5216 	int local_node, prev_node;
5217 
5218 	/* NUMA-aware ordering of nodes */
5219 	local_node = pgdat->node_id;
5220 	prev_node = local_node;
5221 
5222 	memset(node_order, 0, sizeof(node_order));
5223 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5224 		/*
5225 		 * We don't want to pressure a particular node.
5226 		 * So adding penalty to the first node in same
5227 		 * distance group to make it round-robin.
5228 		 */
5229 		if (node_distance(local_node, node) !=
5230 		    node_distance(local_node, prev_node))
5231 			node_load[node] += 1;
5232 
5233 		node_order[nr_nodes++] = node;
5234 		prev_node = node;
5235 	}
5236 
5237 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5238 	build_thisnode_zonelists(pgdat);
5239 	pr_info("Fallback order for Node %d: ", local_node);
5240 	for (node = 0; node < nr_nodes; node++)
5241 		pr_cont("%d ", node_order[node]);
5242 	pr_cont("\n");
5243 }
5244 
5245 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5246 /*
5247  * Return node id of node used for "local" allocations.
5248  * I.e., first node id of first zone in arg node's generic zonelist.
5249  * Used for initializing percpu 'numa_mem', which is used primarily
5250  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5251  */
5252 int local_memory_node(int node)
5253 {
5254 	struct zoneref *z;
5255 
5256 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5257 				   gfp_zone(GFP_KERNEL),
5258 				   NULL);
5259 	return zonelist_node_idx(z);
5260 }
5261 #endif
5262 
5263 static void setup_min_unmapped_ratio(void);
5264 static void setup_min_slab_ratio(void);
5265 #else	/* CONFIG_NUMA */
5266 
5267 static void build_zonelists(pg_data_t *pgdat)
5268 {
5269 	struct zoneref *zonerefs;
5270 	int nr_zones;
5271 
5272 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5273 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5274 	zonerefs += nr_zones;
5275 
5276 	zonerefs->zone = NULL;
5277 	zonerefs->zone_idx = 0;
5278 }
5279 
5280 #endif	/* CONFIG_NUMA */
5281 
5282 /*
5283  * Boot pageset table. One per cpu which is going to be used for all
5284  * zones and all nodes. The parameters will be set in such a way
5285  * that an item put on a list will immediately be handed over to
5286  * the buddy list. This is safe since pageset manipulation is done
5287  * with interrupts disabled.
5288  *
5289  * The boot_pagesets must be kept even after bootup is complete for
5290  * unused processors and/or zones. They do play a role for bootstrapping
5291  * hotplugged processors.
5292  *
5293  * zoneinfo_show() and maybe other functions do
5294  * not check if the processor is online before following the pageset pointer.
5295  * Other parts of the kernel may not check if the zone is available.
5296  */
5297 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5298 /* These effectively disable the pcplists in the boot pageset completely */
5299 #define BOOT_PAGESET_HIGH	0
5300 #define BOOT_PAGESET_BATCH	1
5301 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5302 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5303 
5304 static void __build_all_zonelists(void *data)
5305 {
5306 	int nid;
5307 	int __maybe_unused cpu;
5308 	pg_data_t *self = data;
5309 	unsigned long flags;
5310 
5311 	/*
5312 	 * The zonelist_update_seq must be acquired with irqsave because the
5313 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5314 	 */
5315 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5316 	/*
5317 	 * Also disable synchronous printk() to prevent any printk() from
5318 	 * trying to hold port->lock, for
5319 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5320 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5321 	 */
5322 	printk_deferred_enter();
5323 
5324 #ifdef CONFIG_NUMA
5325 	memset(node_load, 0, sizeof(node_load));
5326 #endif
5327 
5328 	/*
5329 	 * This node is hotadded and no memory is yet present.   So just
5330 	 * building zonelists is fine - no need to touch other nodes.
5331 	 */
5332 	if (self && !node_online(self->node_id)) {
5333 		build_zonelists(self);
5334 	} else {
5335 		/*
5336 		 * All possible nodes have pgdat preallocated
5337 		 * in free_area_init
5338 		 */
5339 		for_each_node(nid) {
5340 			pg_data_t *pgdat = NODE_DATA(nid);
5341 
5342 			build_zonelists(pgdat);
5343 		}
5344 
5345 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5346 		/*
5347 		 * We now know the "local memory node" for each node--
5348 		 * i.e., the node of the first zone in the generic zonelist.
5349 		 * Set up numa_mem percpu variable for on-line cpus.  During
5350 		 * boot, only the boot cpu should be on-line;  we'll init the
5351 		 * secondary cpus' numa_mem as they come on-line.  During
5352 		 * node/memory hotplug, we'll fixup all on-line cpus.
5353 		 */
5354 		for_each_online_cpu(cpu)
5355 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5356 #endif
5357 	}
5358 
5359 	printk_deferred_exit();
5360 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5361 }
5362 
5363 static noinline void __init
5364 build_all_zonelists_init(void)
5365 {
5366 	int cpu;
5367 
5368 	__build_all_zonelists(NULL);
5369 
5370 	/*
5371 	 * Initialize the boot_pagesets that are going to be used
5372 	 * for bootstrapping processors. The real pagesets for
5373 	 * each zone will be allocated later when the per cpu
5374 	 * allocator is available.
5375 	 *
5376 	 * boot_pagesets are used also for bootstrapping offline
5377 	 * cpus if the system is already booted because the pagesets
5378 	 * are needed to initialize allocators on a specific cpu too.
5379 	 * F.e. the percpu allocator needs the page allocator which
5380 	 * needs the percpu allocator in order to allocate its pagesets
5381 	 * (a chicken-egg dilemma).
5382 	 */
5383 	for_each_possible_cpu(cpu)
5384 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5385 
5386 	mminit_verify_zonelist();
5387 	cpuset_init_current_mems_allowed();
5388 }
5389 
5390 /*
5391  * unless system_state == SYSTEM_BOOTING.
5392  *
5393  * __ref due to call of __init annotated helper build_all_zonelists_init
5394  * [protected by SYSTEM_BOOTING].
5395  */
5396 void __ref build_all_zonelists(pg_data_t *pgdat)
5397 {
5398 	unsigned long vm_total_pages;
5399 
5400 	if (system_state == SYSTEM_BOOTING) {
5401 		build_all_zonelists_init();
5402 	} else {
5403 		__build_all_zonelists(pgdat);
5404 		/* cpuset refresh routine should be here */
5405 	}
5406 	/* Get the number of free pages beyond high watermark in all zones. */
5407 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5408 	/*
5409 	 * Disable grouping by mobility if the number of pages in the
5410 	 * system is too low to allow the mechanism to work. It would be
5411 	 * more accurate, but expensive to check per-zone. This check is
5412 	 * made on memory-hotadd so a system can start with mobility
5413 	 * disabled and enable it later
5414 	 */
5415 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5416 		page_group_by_mobility_disabled = 1;
5417 	else
5418 		page_group_by_mobility_disabled = 0;
5419 
5420 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5421 		nr_online_nodes,
5422 		str_off_on(page_group_by_mobility_disabled),
5423 		vm_total_pages);
5424 #ifdef CONFIG_NUMA
5425 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5426 #endif
5427 }
5428 
5429 static int zone_batchsize(struct zone *zone)
5430 {
5431 #ifdef CONFIG_MMU
5432 	int batch;
5433 
5434 	/*
5435 	 * The number of pages to batch allocate is either ~0.1%
5436 	 * of the zone or 1MB, whichever is smaller. The batch
5437 	 * size is striking a balance between allocation latency
5438 	 * and zone lock contention.
5439 	 */
5440 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5441 	batch /= 4;		/* We effectively *= 4 below */
5442 	if (batch < 1)
5443 		batch = 1;
5444 
5445 	/*
5446 	 * Clamp the batch to a 2^n - 1 value. Having a power
5447 	 * of 2 value was found to be more likely to have
5448 	 * suboptimal cache aliasing properties in some cases.
5449 	 *
5450 	 * For example if 2 tasks are alternately allocating
5451 	 * batches of pages, one task can end up with a lot
5452 	 * of pages of one half of the possible page colors
5453 	 * and the other with pages of the other colors.
5454 	 */
5455 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5456 
5457 	return batch;
5458 
5459 #else
5460 	/* The deferral and batching of frees should be suppressed under NOMMU
5461 	 * conditions.
5462 	 *
5463 	 * The problem is that NOMMU needs to be able to allocate large chunks
5464 	 * of contiguous memory as there's no hardware page translation to
5465 	 * assemble apparent contiguous memory from discontiguous pages.
5466 	 *
5467 	 * Queueing large contiguous runs of pages for batching, however,
5468 	 * causes the pages to actually be freed in smaller chunks.  As there
5469 	 * can be a significant delay between the individual batches being
5470 	 * recycled, this leads to the once large chunks of space being
5471 	 * fragmented and becoming unavailable for high-order allocations.
5472 	 */
5473 	return 0;
5474 #endif
5475 }
5476 
5477 static int percpu_pagelist_high_fraction;
5478 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5479 			 int high_fraction)
5480 {
5481 #ifdef CONFIG_MMU
5482 	int high;
5483 	int nr_split_cpus;
5484 	unsigned long total_pages;
5485 
5486 	if (!high_fraction) {
5487 		/*
5488 		 * By default, the high value of the pcp is based on the zone
5489 		 * low watermark so that if they are full then background
5490 		 * reclaim will not be started prematurely.
5491 		 */
5492 		total_pages = low_wmark_pages(zone);
5493 	} else {
5494 		/*
5495 		 * If percpu_pagelist_high_fraction is configured, the high
5496 		 * value is based on a fraction of the managed pages in the
5497 		 * zone.
5498 		 */
5499 		total_pages = zone_managed_pages(zone) / high_fraction;
5500 	}
5501 
5502 	/*
5503 	 * Split the high value across all online CPUs local to the zone. Note
5504 	 * that early in boot that CPUs may not be online yet and that during
5505 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5506 	 * onlined. For memory nodes that have no CPUs, split the high value
5507 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5508 	 * prematurely due to pages stored on pcp lists.
5509 	 */
5510 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5511 	if (!nr_split_cpus)
5512 		nr_split_cpus = num_online_cpus();
5513 	high = total_pages / nr_split_cpus;
5514 
5515 	/*
5516 	 * Ensure high is at least batch*4. The multiple is based on the
5517 	 * historical relationship between high and batch.
5518 	 */
5519 	high = max(high, batch << 2);
5520 
5521 	return high;
5522 #else
5523 	return 0;
5524 #endif
5525 }
5526 
5527 /*
5528  * pcp->high and pcp->batch values are related and generally batch is lower
5529  * than high. They are also related to pcp->count such that count is lower
5530  * than high, and as soon as it reaches high, the pcplist is flushed.
5531  *
5532  * However, guaranteeing these relations at all times would require e.g. write
5533  * barriers here but also careful usage of read barriers at the read side, and
5534  * thus be prone to error and bad for performance. Thus the update only prevents
5535  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5536  * should ensure they can cope with those fields changing asynchronously, and
5537  * fully trust only the pcp->count field on the local CPU with interrupts
5538  * disabled.
5539  *
5540  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5541  * outside of boot time (or some other assurance that no concurrent updaters
5542  * exist).
5543  */
5544 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5545 			   unsigned long high_max, unsigned long batch)
5546 {
5547 	WRITE_ONCE(pcp->batch, batch);
5548 	WRITE_ONCE(pcp->high_min, high_min);
5549 	WRITE_ONCE(pcp->high_max, high_max);
5550 }
5551 
5552 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5553 {
5554 	int pindex;
5555 
5556 	memset(pcp, 0, sizeof(*pcp));
5557 	memset(pzstats, 0, sizeof(*pzstats));
5558 
5559 	spin_lock_init(&pcp->lock);
5560 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5561 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5562 
5563 	/*
5564 	 * Set batch and high values safe for a boot pageset. A true percpu
5565 	 * pageset's initialization will update them subsequently. Here we don't
5566 	 * need to be as careful as pageset_update() as nobody can access the
5567 	 * pageset yet.
5568 	 */
5569 	pcp->high_min = BOOT_PAGESET_HIGH;
5570 	pcp->high_max = BOOT_PAGESET_HIGH;
5571 	pcp->batch = BOOT_PAGESET_BATCH;
5572 	pcp->free_count = 0;
5573 }
5574 
5575 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5576 					      unsigned long high_max, unsigned long batch)
5577 {
5578 	struct per_cpu_pages *pcp;
5579 	int cpu;
5580 
5581 	for_each_possible_cpu(cpu) {
5582 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5583 		pageset_update(pcp, high_min, high_max, batch);
5584 	}
5585 }
5586 
5587 /*
5588  * Calculate and set new high and batch values for all per-cpu pagesets of a
5589  * zone based on the zone's size.
5590  */
5591 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5592 {
5593 	int new_high_min, new_high_max, new_batch;
5594 
5595 	new_batch = max(1, zone_batchsize(zone));
5596 	if (percpu_pagelist_high_fraction) {
5597 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5598 					     percpu_pagelist_high_fraction);
5599 		/*
5600 		 * PCP high is tuned manually, disable auto-tuning via
5601 		 * setting high_min and high_max to the manual value.
5602 		 */
5603 		new_high_max = new_high_min;
5604 	} else {
5605 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5606 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5607 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5608 	}
5609 
5610 	if (zone->pageset_high_min == new_high_min &&
5611 	    zone->pageset_high_max == new_high_max &&
5612 	    zone->pageset_batch == new_batch)
5613 		return;
5614 
5615 	zone->pageset_high_min = new_high_min;
5616 	zone->pageset_high_max = new_high_max;
5617 	zone->pageset_batch = new_batch;
5618 
5619 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5620 					  new_batch);
5621 }
5622 
5623 void __meminit setup_zone_pageset(struct zone *zone)
5624 {
5625 	int cpu;
5626 
5627 	/* Size may be 0 on !SMP && !NUMA */
5628 	if (sizeof(struct per_cpu_zonestat) > 0)
5629 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5630 
5631 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5632 	for_each_possible_cpu(cpu) {
5633 		struct per_cpu_pages *pcp;
5634 		struct per_cpu_zonestat *pzstats;
5635 
5636 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5637 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5638 		per_cpu_pages_init(pcp, pzstats);
5639 	}
5640 
5641 	zone_set_pageset_high_and_batch(zone, 0);
5642 }
5643 
5644 /*
5645  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5646  * page high values need to be recalculated.
5647  */
5648 static void zone_pcp_update(struct zone *zone, int cpu_online)
5649 {
5650 	mutex_lock(&pcp_batch_high_lock);
5651 	zone_set_pageset_high_and_batch(zone, cpu_online);
5652 	mutex_unlock(&pcp_batch_high_lock);
5653 }
5654 
5655 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5656 {
5657 	struct per_cpu_pages *pcp;
5658 	struct cpu_cacheinfo *cci;
5659 
5660 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5661 	cci = get_cpu_cacheinfo(cpu);
5662 	/*
5663 	 * If data cache slice of CPU is large enough, "pcp->batch"
5664 	 * pages can be preserved in PCP before draining PCP for
5665 	 * consecutive high-order pages freeing without allocation.
5666 	 * This can reduce zone lock contention without hurting
5667 	 * cache-hot pages sharing.
5668 	 */
5669 	spin_lock(&pcp->lock);
5670 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5671 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5672 	else
5673 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5674 	spin_unlock(&pcp->lock);
5675 }
5676 
5677 void setup_pcp_cacheinfo(unsigned int cpu)
5678 {
5679 	struct zone *zone;
5680 
5681 	for_each_populated_zone(zone)
5682 		zone_pcp_update_cacheinfo(zone, cpu);
5683 }
5684 
5685 /*
5686  * Allocate per cpu pagesets and initialize them.
5687  * Before this call only boot pagesets were available.
5688  */
5689 void __init setup_per_cpu_pageset(void)
5690 {
5691 	struct pglist_data *pgdat;
5692 	struct zone *zone;
5693 	int __maybe_unused cpu;
5694 
5695 	for_each_populated_zone(zone)
5696 		setup_zone_pageset(zone);
5697 
5698 #ifdef CONFIG_NUMA
5699 	/*
5700 	 * Unpopulated zones continue using the boot pagesets.
5701 	 * The numa stats for these pagesets need to be reset.
5702 	 * Otherwise, they will end up skewing the stats of
5703 	 * the nodes these zones are associated with.
5704 	 */
5705 	for_each_possible_cpu(cpu) {
5706 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5707 		memset(pzstats->vm_numa_event, 0,
5708 		       sizeof(pzstats->vm_numa_event));
5709 	}
5710 #endif
5711 
5712 	for_each_online_pgdat(pgdat)
5713 		pgdat->per_cpu_nodestats =
5714 			alloc_percpu(struct per_cpu_nodestat);
5715 }
5716 
5717 __meminit void zone_pcp_init(struct zone *zone)
5718 {
5719 	/*
5720 	 * per cpu subsystem is not up at this point. The following code
5721 	 * relies on the ability of the linker to provide the
5722 	 * offset of a (static) per cpu variable into the per cpu area.
5723 	 */
5724 	zone->per_cpu_pageset = &boot_pageset;
5725 	zone->per_cpu_zonestats = &boot_zonestats;
5726 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5727 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5728 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5729 
5730 	if (populated_zone(zone))
5731 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5732 			 zone->present_pages, zone_batchsize(zone));
5733 }
5734 
5735 static void setup_per_zone_lowmem_reserve(void);
5736 
5737 void adjust_managed_page_count(struct page *page, long count)
5738 {
5739 	atomic_long_add(count, &page_zone(page)->managed_pages);
5740 	totalram_pages_add(count);
5741 	setup_per_zone_lowmem_reserve();
5742 }
5743 EXPORT_SYMBOL(adjust_managed_page_count);
5744 
5745 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5746 {
5747 	void *pos;
5748 	unsigned long pages = 0;
5749 
5750 	start = (void *)PAGE_ALIGN((unsigned long)start);
5751 	end = (void *)((unsigned long)end & PAGE_MASK);
5752 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5753 		struct page *page = virt_to_page(pos);
5754 		void *direct_map_addr;
5755 
5756 		/*
5757 		 * 'direct_map_addr' might be different from 'pos'
5758 		 * because some architectures' virt_to_page()
5759 		 * work with aliases.  Getting the direct map
5760 		 * address ensures that we get a _writeable_
5761 		 * alias for the memset().
5762 		 */
5763 		direct_map_addr = page_address(page);
5764 		/*
5765 		 * Perform a kasan-unchecked memset() since this memory
5766 		 * has not been initialized.
5767 		 */
5768 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5769 		if ((unsigned int)poison <= 0xFF)
5770 			memset(direct_map_addr, poison, PAGE_SIZE);
5771 
5772 		free_reserved_page(page);
5773 	}
5774 
5775 	if (pages && s)
5776 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5777 
5778 	return pages;
5779 }
5780 
5781 void free_reserved_page(struct page *page)
5782 {
5783 	clear_page_tag_ref(page);
5784 	ClearPageReserved(page);
5785 	init_page_count(page);
5786 	__free_page(page);
5787 	adjust_managed_page_count(page, 1);
5788 }
5789 EXPORT_SYMBOL(free_reserved_page);
5790 
5791 static int page_alloc_cpu_dead(unsigned int cpu)
5792 {
5793 	struct zone *zone;
5794 
5795 	lru_add_drain_cpu(cpu);
5796 	mlock_drain_remote(cpu);
5797 	drain_pages(cpu);
5798 
5799 	/*
5800 	 * Spill the event counters of the dead processor
5801 	 * into the current processors event counters.
5802 	 * This artificially elevates the count of the current
5803 	 * processor.
5804 	 */
5805 	vm_events_fold_cpu(cpu);
5806 
5807 	/*
5808 	 * Zero the differential counters of the dead processor
5809 	 * so that the vm statistics are consistent.
5810 	 *
5811 	 * This is only okay since the processor is dead and cannot
5812 	 * race with what we are doing.
5813 	 */
5814 	cpu_vm_stats_fold(cpu);
5815 
5816 	for_each_populated_zone(zone)
5817 		zone_pcp_update(zone, 0);
5818 
5819 	return 0;
5820 }
5821 
5822 static int page_alloc_cpu_online(unsigned int cpu)
5823 {
5824 	struct zone *zone;
5825 
5826 	for_each_populated_zone(zone)
5827 		zone_pcp_update(zone, 1);
5828 	return 0;
5829 }
5830 
5831 void __init page_alloc_init_cpuhp(void)
5832 {
5833 	int ret;
5834 
5835 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5836 					"mm/page_alloc:pcp",
5837 					page_alloc_cpu_online,
5838 					page_alloc_cpu_dead);
5839 	WARN_ON(ret < 0);
5840 }
5841 
5842 /*
5843  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5844  *	or min_free_kbytes changes.
5845  */
5846 static void calculate_totalreserve_pages(void)
5847 {
5848 	struct pglist_data *pgdat;
5849 	unsigned long reserve_pages = 0;
5850 	enum zone_type i, j;
5851 
5852 	for_each_online_pgdat(pgdat) {
5853 
5854 		pgdat->totalreserve_pages = 0;
5855 
5856 		for (i = 0; i < MAX_NR_ZONES; i++) {
5857 			struct zone *zone = pgdat->node_zones + i;
5858 			long max = 0;
5859 			unsigned long managed_pages = zone_managed_pages(zone);
5860 
5861 			/* Find valid and maximum lowmem_reserve in the zone */
5862 			for (j = i; j < MAX_NR_ZONES; j++) {
5863 				if (zone->lowmem_reserve[j] > max)
5864 					max = zone->lowmem_reserve[j];
5865 			}
5866 
5867 			/* we treat the high watermark as reserved pages. */
5868 			max += high_wmark_pages(zone);
5869 
5870 			if (max > managed_pages)
5871 				max = managed_pages;
5872 
5873 			pgdat->totalreserve_pages += max;
5874 
5875 			reserve_pages += max;
5876 		}
5877 	}
5878 	totalreserve_pages = reserve_pages;
5879 }
5880 
5881 /*
5882  * setup_per_zone_lowmem_reserve - called whenever
5883  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5884  *	has a correct pages reserved value, so an adequate number of
5885  *	pages are left in the zone after a successful __alloc_pages().
5886  */
5887 static void setup_per_zone_lowmem_reserve(void)
5888 {
5889 	struct pglist_data *pgdat;
5890 	enum zone_type i, j;
5891 
5892 	for_each_online_pgdat(pgdat) {
5893 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5894 			struct zone *zone = &pgdat->node_zones[i];
5895 			int ratio = sysctl_lowmem_reserve_ratio[i];
5896 			bool clear = !ratio || !zone_managed_pages(zone);
5897 			unsigned long managed_pages = 0;
5898 
5899 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5900 				struct zone *upper_zone = &pgdat->node_zones[j];
5901 
5902 				managed_pages += zone_managed_pages(upper_zone);
5903 
5904 				if (clear)
5905 					zone->lowmem_reserve[j] = 0;
5906 				else
5907 					zone->lowmem_reserve[j] = managed_pages / ratio;
5908 			}
5909 		}
5910 	}
5911 
5912 	/* update totalreserve_pages */
5913 	calculate_totalreserve_pages();
5914 }
5915 
5916 static void __setup_per_zone_wmarks(void)
5917 {
5918 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5919 	unsigned long lowmem_pages = 0;
5920 	struct zone *zone;
5921 	unsigned long flags;
5922 
5923 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5924 	for_each_zone(zone) {
5925 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5926 			lowmem_pages += zone_managed_pages(zone);
5927 	}
5928 
5929 	for_each_zone(zone) {
5930 		u64 tmp;
5931 
5932 		spin_lock_irqsave(&zone->lock, flags);
5933 		tmp = (u64)pages_min * zone_managed_pages(zone);
5934 		tmp = div64_ul(tmp, lowmem_pages);
5935 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5936 			/*
5937 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5938 			 * need highmem and movable zones pages, so cap pages_min
5939 			 * to a small  value here.
5940 			 *
5941 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5942 			 * deltas control async page reclaim, and so should
5943 			 * not be capped for highmem and movable zones.
5944 			 */
5945 			unsigned long min_pages;
5946 
5947 			min_pages = zone_managed_pages(zone) / 1024;
5948 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5949 			zone->_watermark[WMARK_MIN] = min_pages;
5950 		} else {
5951 			/*
5952 			 * If it's a lowmem zone, reserve a number of pages
5953 			 * proportionate to the zone's size.
5954 			 */
5955 			zone->_watermark[WMARK_MIN] = tmp;
5956 		}
5957 
5958 		/*
5959 		 * Set the kswapd watermarks distance according to the
5960 		 * scale factor in proportion to available memory, but
5961 		 * ensure a minimum size on small systems.
5962 		 */
5963 		tmp = max_t(u64, tmp >> 2,
5964 			    mult_frac(zone_managed_pages(zone),
5965 				      watermark_scale_factor, 10000));
5966 
5967 		zone->watermark_boost = 0;
5968 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5969 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5970 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5971 
5972 		spin_unlock_irqrestore(&zone->lock, flags);
5973 	}
5974 
5975 	/* update totalreserve_pages */
5976 	calculate_totalreserve_pages();
5977 }
5978 
5979 /**
5980  * setup_per_zone_wmarks - called when min_free_kbytes changes
5981  * or when memory is hot-{added|removed}
5982  *
5983  * Ensures that the watermark[min,low,high] values for each zone are set
5984  * correctly with respect to min_free_kbytes.
5985  */
5986 void setup_per_zone_wmarks(void)
5987 {
5988 	struct zone *zone;
5989 	static DEFINE_SPINLOCK(lock);
5990 
5991 	spin_lock(&lock);
5992 	__setup_per_zone_wmarks();
5993 	spin_unlock(&lock);
5994 
5995 	/*
5996 	 * The watermark size have changed so update the pcpu batch
5997 	 * and high limits or the limits may be inappropriate.
5998 	 */
5999 	for_each_zone(zone)
6000 		zone_pcp_update(zone, 0);
6001 }
6002 
6003 /*
6004  * Initialise min_free_kbytes.
6005  *
6006  * For small machines we want it small (128k min).  For large machines
6007  * we want it large (256MB max).  But it is not linear, because network
6008  * bandwidth does not increase linearly with machine size.  We use
6009  *
6010  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6011  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6012  *
6013  * which yields
6014  *
6015  * 16MB:	512k
6016  * 32MB:	724k
6017  * 64MB:	1024k
6018  * 128MB:	1448k
6019  * 256MB:	2048k
6020  * 512MB:	2896k
6021  * 1024MB:	4096k
6022  * 2048MB:	5792k
6023  * 4096MB:	8192k
6024  * 8192MB:	11584k
6025  * 16384MB:	16384k
6026  */
6027 void calculate_min_free_kbytes(void)
6028 {
6029 	unsigned long lowmem_kbytes;
6030 	int new_min_free_kbytes;
6031 
6032 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6033 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6034 
6035 	if (new_min_free_kbytes > user_min_free_kbytes)
6036 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6037 	else
6038 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6039 				new_min_free_kbytes, user_min_free_kbytes);
6040 
6041 }
6042 
6043 int __meminit init_per_zone_wmark_min(void)
6044 {
6045 	calculate_min_free_kbytes();
6046 	setup_per_zone_wmarks();
6047 	refresh_zone_stat_thresholds();
6048 	setup_per_zone_lowmem_reserve();
6049 
6050 #ifdef CONFIG_NUMA
6051 	setup_min_unmapped_ratio();
6052 	setup_min_slab_ratio();
6053 #endif
6054 
6055 	khugepaged_min_free_kbytes_update();
6056 
6057 	return 0;
6058 }
6059 postcore_initcall(init_per_zone_wmark_min)
6060 
6061 /*
6062  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6063  *	that we can call two helper functions whenever min_free_kbytes
6064  *	changes.
6065  */
6066 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6067 		void *buffer, size_t *length, loff_t *ppos)
6068 {
6069 	int rc;
6070 
6071 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6072 	if (rc)
6073 		return rc;
6074 
6075 	if (write) {
6076 		user_min_free_kbytes = min_free_kbytes;
6077 		setup_per_zone_wmarks();
6078 	}
6079 	return 0;
6080 }
6081 
6082 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6083 		void *buffer, size_t *length, loff_t *ppos)
6084 {
6085 	int rc;
6086 
6087 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6088 	if (rc)
6089 		return rc;
6090 
6091 	if (write)
6092 		setup_per_zone_wmarks();
6093 
6094 	return 0;
6095 }
6096 
6097 #ifdef CONFIG_NUMA
6098 static void setup_min_unmapped_ratio(void)
6099 {
6100 	pg_data_t *pgdat;
6101 	struct zone *zone;
6102 
6103 	for_each_online_pgdat(pgdat)
6104 		pgdat->min_unmapped_pages = 0;
6105 
6106 	for_each_zone(zone)
6107 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6108 						         sysctl_min_unmapped_ratio) / 100;
6109 }
6110 
6111 
6112 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6113 		void *buffer, size_t *length, loff_t *ppos)
6114 {
6115 	int rc;
6116 
6117 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6118 	if (rc)
6119 		return rc;
6120 
6121 	setup_min_unmapped_ratio();
6122 
6123 	return 0;
6124 }
6125 
6126 static void setup_min_slab_ratio(void)
6127 {
6128 	pg_data_t *pgdat;
6129 	struct zone *zone;
6130 
6131 	for_each_online_pgdat(pgdat)
6132 		pgdat->min_slab_pages = 0;
6133 
6134 	for_each_zone(zone)
6135 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6136 						     sysctl_min_slab_ratio) / 100;
6137 }
6138 
6139 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6140 		void *buffer, size_t *length, loff_t *ppos)
6141 {
6142 	int rc;
6143 
6144 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6145 	if (rc)
6146 		return rc;
6147 
6148 	setup_min_slab_ratio();
6149 
6150 	return 0;
6151 }
6152 #endif
6153 
6154 /*
6155  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6156  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6157  *	whenever sysctl_lowmem_reserve_ratio changes.
6158  *
6159  * The reserve ratio obviously has absolutely no relation with the
6160  * minimum watermarks. The lowmem reserve ratio can only make sense
6161  * if in function of the boot time zone sizes.
6162  */
6163 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6164 		int write, void *buffer, size_t *length, loff_t *ppos)
6165 {
6166 	int i;
6167 
6168 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6169 
6170 	for (i = 0; i < MAX_NR_ZONES; i++) {
6171 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6172 			sysctl_lowmem_reserve_ratio[i] = 0;
6173 	}
6174 
6175 	setup_per_zone_lowmem_reserve();
6176 	return 0;
6177 }
6178 
6179 /*
6180  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6181  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6182  * pagelist can have before it gets flushed back to buddy allocator.
6183  */
6184 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6185 		int write, void *buffer, size_t *length, loff_t *ppos)
6186 {
6187 	struct zone *zone;
6188 	int old_percpu_pagelist_high_fraction;
6189 	int ret;
6190 
6191 	mutex_lock(&pcp_batch_high_lock);
6192 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6193 
6194 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6195 	if (!write || ret < 0)
6196 		goto out;
6197 
6198 	/* Sanity checking to avoid pcp imbalance */
6199 	if (percpu_pagelist_high_fraction &&
6200 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6201 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6202 		ret = -EINVAL;
6203 		goto out;
6204 	}
6205 
6206 	/* No change? */
6207 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6208 		goto out;
6209 
6210 	for_each_populated_zone(zone)
6211 		zone_set_pageset_high_and_batch(zone, 0);
6212 out:
6213 	mutex_unlock(&pcp_batch_high_lock);
6214 	return ret;
6215 }
6216 
6217 static const struct ctl_table page_alloc_sysctl_table[] = {
6218 	{
6219 		.procname	= "min_free_kbytes",
6220 		.data		= &min_free_kbytes,
6221 		.maxlen		= sizeof(min_free_kbytes),
6222 		.mode		= 0644,
6223 		.proc_handler	= min_free_kbytes_sysctl_handler,
6224 		.extra1		= SYSCTL_ZERO,
6225 	},
6226 	{
6227 		.procname	= "watermark_boost_factor",
6228 		.data		= &watermark_boost_factor,
6229 		.maxlen		= sizeof(watermark_boost_factor),
6230 		.mode		= 0644,
6231 		.proc_handler	= proc_dointvec_minmax,
6232 		.extra1		= SYSCTL_ZERO,
6233 	},
6234 	{
6235 		.procname	= "watermark_scale_factor",
6236 		.data		= &watermark_scale_factor,
6237 		.maxlen		= sizeof(watermark_scale_factor),
6238 		.mode		= 0644,
6239 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6240 		.extra1		= SYSCTL_ONE,
6241 		.extra2		= SYSCTL_THREE_THOUSAND,
6242 	},
6243 	{
6244 		.procname	= "percpu_pagelist_high_fraction",
6245 		.data		= &percpu_pagelist_high_fraction,
6246 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6247 		.mode		= 0644,
6248 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6249 		.extra1		= SYSCTL_ZERO,
6250 	},
6251 	{
6252 		.procname	= "lowmem_reserve_ratio",
6253 		.data		= &sysctl_lowmem_reserve_ratio,
6254 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6255 		.mode		= 0644,
6256 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6257 	},
6258 #ifdef CONFIG_NUMA
6259 	{
6260 		.procname	= "numa_zonelist_order",
6261 		.data		= &numa_zonelist_order,
6262 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6263 		.mode		= 0644,
6264 		.proc_handler	= numa_zonelist_order_handler,
6265 	},
6266 	{
6267 		.procname	= "min_unmapped_ratio",
6268 		.data		= &sysctl_min_unmapped_ratio,
6269 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6270 		.mode		= 0644,
6271 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6272 		.extra1		= SYSCTL_ZERO,
6273 		.extra2		= SYSCTL_ONE_HUNDRED,
6274 	},
6275 	{
6276 		.procname	= "min_slab_ratio",
6277 		.data		= &sysctl_min_slab_ratio,
6278 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6279 		.mode		= 0644,
6280 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6281 		.extra1		= SYSCTL_ZERO,
6282 		.extra2		= SYSCTL_ONE_HUNDRED,
6283 	},
6284 #endif
6285 };
6286 
6287 void __init page_alloc_sysctl_init(void)
6288 {
6289 	register_sysctl_init("vm", page_alloc_sysctl_table);
6290 }
6291 
6292 #ifdef CONFIG_CONTIG_ALLOC
6293 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6294 static void alloc_contig_dump_pages(struct list_head *page_list)
6295 {
6296 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6297 
6298 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6299 		struct page *page;
6300 
6301 		dump_stack();
6302 		list_for_each_entry(page, page_list, lru)
6303 			dump_page(page, "migration failure");
6304 	}
6305 }
6306 
6307 /*
6308  * [start, end) must belong to a single zone.
6309  * @migratetype: using migratetype to filter the type of migration in
6310  *		trace_mm_alloc_contig_migrate_range_info.
6311  */
6312 static int __alloc_contig_migrate_range(struct compact_control *cc,
6313 		unsigned long start, unsigned long end, int migratetype)
6314 {
6315 	/* This function is based on compact_zone() from compaction.c. */
6316 	unsigned int nr_reclaimed;
6317 	unsigned long pfn = start;
6318 	unsigned int tries = 0;
6319 	int ret = 0;
6320 	struct migration_target_control mtc = {
6321 		.nid = zone_to_nid(cc->zone),
6322 		.gfp_mask = cc->gfp_mask,
6323 		.reason = MR_CONTIG_RANGE,
6324 	};
6325 	struct page *page;
6326 	unsigned long total_mapped = 0;
6327 	unsigned long total_migrated = 0;
6328 	unsigned long total_reclaimed = 0;
6329 
6330 	lru_cache_disable();
6331 
6332 	while (pfn < end || !list_empty(&cc->migratepages)) {
6333 		if (fatal_signal_pending(current)) {
6334 			ret = -EINTR;
6335 			break;
6336 		}
6337 
6338 		if (list_empty(&cc->migratepages)) {
6339 			cc->nr_migratepages = 0;
6340 			ret = isolate_migratepages_range(cc, pfn, end);
6341 			if (ret && ret != -EAGAIN)
6342 				break;
6343 			pfn = cc->migrate_pfn;
6344 			tries = 0;
6345 		} else if (++tries == 5) {
6346 			ret = -EBUSY;
6347 			break;
6348 		}
6349 
6350 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6351 							&cc->migratepages);
6352 		cc->nr_migratepages -= nr_reclaimed;
6353 
6354 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6355 			total_reclaimed += nr_reclaimed;
6356 			list_for_each_entry(page, &cc->migratepages, lru) {
6357 				struct folio *folio = page_folio(page);
6358 
6359 				total_mapped += folio_mapped(folio) *
6360 						folio_nr_pages(folio);
6361 			}
6362 		}
6363 
6364 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6365 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6366 
6367 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6368 			total_migrated += cc->nr_migratepages;
6369 
6370 		/*
6371 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6372 		 * to retry again over this error, so do the same here.
6373 		 */
6374 		if (ret == -ENOMEM)
6375 			break;
6376 	}
6377 
6378 	lru_cache_enable();
6379 	if (ret < 0) {
6380 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6381 			alloc_contig_dump_pages(&cc->migratepages);
6382 		putback_movable_pages(&cc->migratepages);
6383 	}
6384 
6385 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6386 						 total_migrated,
6387 						 total_reclaimed,
6388 						 total_mapped);
6389 	return (ret < 0) ? ret : 0;
6390 }
6391 
6392 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6393 {
6394 	int order;
6395 
6396 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6397 		struct page *page, *next;
6398 		int nr_pages = 1 << order;
6399 
6400 		list_for_each_entry_safe(page, next, &list[order], lru) {
6401 			int i;
6402 
6403 			post_alloc_hook(page, order, gfp_mask);
6404 			set_page_refcounted(page);
6405 			if (!order)
6406 				continue;
6407 
6408 			split_page(page, order);
6409 
6410 			/* Add all subpages to the order-0 head, in sequence. */
6411 			list_del(&page->lru);
6412 			for (i = 0; i < nr_pages; i++)
6413 				list_add_tail(&page[i].lru, &list[0]);
6414 		}
6415 	}
6416 }
6417 
6418 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6419 {
6420 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6421 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6422 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6423 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6424 
6425 	/*
6426 	 * We are given the range to allocate; node, mobility and placement
6427 	 * hints are irrelevant at this point. We'll simply ignore them.
6428 	 */
6429 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6430 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6431 
6432 	/*
6433 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6434 	 * selected action flags.
6435 	 */
6436 	if (gfp_mask & ~(reclaim_mask | action_mask))
6437 		return -EINVAL;
6438 
6439 	/*
6440 	 * Flags to control page compaction/migration/reclaim, to free up our
6441 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6442 	 * for them.
6443 	 *
6444 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6445 	 * to not degrade callers.
6446 	 */
6447 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6448 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6449 	return 0;
6450 }
6451 
6452 /**
6453  * alloc_contig_range() -- tries to allocate given range of pages
6454  * @start:	start PFN to allocate
6455  * @end:	one-past-the-last PFN to allocate
6456  * @migratetype:	migratetype of the underlying pageblocks (either
6457  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6458  *			in range must have the same migratetype and it must
6459  *			be either of the two.
6460  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6461  *		action and reclaim modifiers are supported. Reclaim modifiers
6462  *		control allocation behavior during compaction/migration/reclaim.
6463  *
6464  * The PFN range does not have to be pageblock aligned. The PFN range must
6465  * belong to a single zone.
6466  *
6467  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6468  * pageblocks in the range.  Once isolated, the pageblocks should not
6469  * be modified by others.
6470  *
6471  * Return: zero on success or negative error code.  On success all
6472  * pages which PFN is in [start, end) are allocated for the caller and
6473  * need to be freed with free_contig_range().
6474  */
6475 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6476 		       unsigned migratetype, gfp_t gfp_mask)
6477 {
6478 	unsigned long outer_start, outer_end;
6479 	int ret = 0;
6480 
6481 	struct compact_control cc = {
6482 		.nr_migratepages = 0,
6483 		.order = -1,
6484 		.zone = page_zone(pfn_to_page(start)),
6485 		.mode = MIGRATE_SYNC,
6486 		.ignore_skip_hint = true,
6487 		.no_set_skip_hint = true,
6488 		.alloc_contig = true,
6489 	};
6490 	INIT_LIST_HEAD(&cc.migratepages);
6491 
6492 	gfp_mask = current_gfp_context(gfp_mask);
6493 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6494 		return -EINVAL;
6495 
6496 	/*
6497 	 * What we do here is we mark all pageblocks in range as
6498 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6499 	 * have different sizes, and due to the way page allocator
6500 	 * work, start_isolate_page_range() has special handlings for this.
6501 	 *
6502 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6503 	 * migrate the pages from an unaligned range (ie. pages that
6504 	 * we are interested in). This will put all the pages in
6505 	 * range back to page allocator as MIGRATE_ISOLATE.
6506 	 *
6507 	 * When this is done, we take the pages in range from page
6508 	 * allocator removing them from the buddy system.  This way
6509 	 * page allocator will never consider using them.
6510 	 *
6511 	 * This lets us mark the pageblocks back as
6512 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6513 	 * aligned range but not in the unaligned, original range are
6514 	 * put back to page allocator so that buddy can use them.
6515 	 */
6516 
6517 	ret = start_isolate_page_range(start, end, migratetype, 0);
6518 	if (ret)
6519 		goto done;
6520 
6521 	drain_all_pages(cc.zone);
6522 
6523 	/*
6524 	 * In case of -EBUSY, we'd like to know which page causes problem.
6525 	 * So, just fall through. test_pages_isolated() has a tracepoint
6526 	 * which will report the busy page.
6527 	 *
6528 	 * It is possible that busy pages could become available before
6529 	 * the call to test_pages_isolated, and the range will actually be
6530 	 * allocated.  So, if we fall through be sure to clear ret so that
6531 	 * -EBUSY is not accidentally used or returned to caller.
6532 	 */
6533 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6534 	if (ret && ret != -EBUSY)
6535 		goto done;
6536 
6537 	/*
6538 	 * When in-use hugetlb pages are migrated, they may simply be released
6539 	 * back into the free hugepage pool instead of being returned to the
6540 	 * buddy system.  After the migration of in-use huge pages is completed,
6541 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6542 	 * hugepages are properly released to the buddy system.
6543 	 */
6544 	ret = replace_free_hugepage_folios(start, end);
6545 	if (ret)
6546 		goto done;
6547 
6548 	/*
6549 	 * Pages from [start, end) are within a pageblock_nr_pages
6550 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6551 	 * more, all pages in [start, end) are free in page allocator.
6552 	 * What we are going to do is to allocate all pages from
6553 	 * [start, end) (that is remove them from page allocator).
6554 	 *
6555 	 * The only problem is that pages at the beginning and at the
6556 	 * end of interesting range may be not aligned with pages that
6557 	 * page allocator holds, ie. they can be part of higher order
6558 	 * pages.  Because of this, we reserve the bigger range and
6559 	 * once this is done free the pages we are not interested in.
6560 	 *
6561 	 * We don't have to hold zone->lock here because the pages are
6562 	 * isolated thus they won't get removed from buddy.
6563 	 */
6564 	outer_start = find_large_buddy(start);
6565 
6566 	/* Make sure the range is really isolated. */
6567 	if (test_pages_isolated(outer_start, end, 0)) {
6568 		ret = -EBUSY;
6569 		goto done;
6570 	}
6571 
6572 	/* Grab isolated pages from freelists. */
6573 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6574 	if (!outer_end) {
6575 		ret = -EBUSY;
6576 		goto done;
6577 	}
6578 
6579 	if (!(gfp_mask & __GFP_COMP)) {
6580 		split_free_pages(cc.freepages, gfp_mask);
6581 
6582 		/* Free head and tail (if any) */
6583 		if (start != outer_start)
6584 			free_contig_range(outer_start, start - outer_start);
6585 		if (end != outer_end)
6586 			free_contig_range(end, outer_end - end);
6587 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6588 		struct page *head = pfn_to_page(start);
6589 		int order = ilog2(end - start);
6590 
6591 		check_new_pages(head, order);
6592 		prep_new_page(head, order, gfp_mask, 0);
6593 		set_page_refcounted(head);
6594 	} else {
6595 		ret = -EINVAL;
6596 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6597 		     start, end, outer_start, outer_end);
6598 	}
6599 done:
6600 	undo_isolate_page_range(start, end, migratetype);
6601 	return ret;
6602 }
6603 EXPORT_SYMBOL(alloc_contig_range_noprof);
6604 
6605 static int __alloc_contig_pages(unsigned long start_pfn,
6606 				unsigned long nr_pages, gfp_t gfp_mask)
6607 {
6608 	unsigned long end_pfn = start_pfn + nr_pages;
6609 
6610 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6611 				   gfp_mask);
6612 }
6613 
6614 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6615 				   unsigned long nr_pages)
6616 {
6617 	unsigned long i, end_pfn = start_pfn + nr_pages;
6618 	struct page *page;
6619 
6620 	for (i = start_pfn; i < end_pfn; i++) {
6621 		page = pfn_to_online_page(i);
6622 		if (!page)
6623 			return false;
6624 
6625 		if (page_zone(page) != z)
6626 			return false;
6627 
6628 		if (PageReserved(page))
6629 			return false;
6630 
6631 		if (PageHuge(page))
6632 			return false;
6633 	}
6634 	return true;
6635 }
6636 
6637 static bool zone_spans_last_pfn(const struct zone *zone,
6638 				unsigned long start_pfn, unsigned long nr_pages)
6639 {
6640 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6641 
6642 	return zone_spans_pfn(zone, last_pfn);
6643 }
6644 
6645 /**
6646  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6647  * @nr_pages:	Number of contiguous pages to allocate
6648  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6649  *		action and reclaim modifiers are supported. Reclaim modifiers
6650  *		control allocation behavior during compaction/migration/reclaim.
6651  * @nid:	Target node
6652  * @nodemask:	Mask for other possible nodes
6653  *
6654  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6655  * on an applicable zonelist to find a contiguous pfn range which can then be
6656  * tried for allocation with alloc_contig_range(). This routine is intended
6657  * for allocation requests which can not be fulfilled with the buddy allocator.
6658  *
6659  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6660  * power of two, then allocated range is also guaranteed to be aligned to same
6661  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6662  *
6663  * Allocated pages can be freed with free_contig_range() or by manually calling
6664  * __free_page() on each allocated page.
6665  *
6666  * Return: pointer to contiguous pages on success, or NULL if not successful.
6667  */
6668 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6669 				 int nid, nodemask_t *nodemask)
6670 {
6671 	unsigned long ret, pfn, flags;
6672 	struct zonelist *zonelist;
6673 	struct zone *zone;
6674 	struct zoneref *z;
6675 
6676 	zonelist = node_zonelist(nid, gfp_mask);
6677 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6678 					gfp_zone(gfp_mask), nodemask) {
6679 		spin_lock_irqsave(&zone->lock, flags);
6680 
6681 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6682 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6683 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6684 				/*
6685 				 * We release the zone lock here because
6686 				 * alloc_contig_range() will also lock the zone
6687 				 * at some point. If there's an allocation
6688 				 * spinning on this lock, it may win the race
6689 				 * and cause alloc_contig_range() to fail...
6690 				 */
6691 				spin_unlock_irqrestore(&zone->lock, flags);
6692 				ret = __alloc_contig_pages(pfn, nr_pages,
6693 							gfp_mask);
6694 				if (!ret)
6695 					return pfn_to_page(pfn);
6696 				spin_lock_irqsave(&zone->lock, flags);
6697 			}
6698 			pfn += nr_pages;
6699 		}
6700 		spin_unlock_irqrestore(&zone->lock, flags);
6701 	}
6702 	return NULL;
6703 }
6704 #endif /* CONFIG_CONTIG_ALLOC */
6705 
6706 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6707 {
6708 	unsigned long count = 0;
6709 	struct folio *folio = pfn_folio(pfn);
6710 
6711 	if (folio_test_large(folio)) {
6712 		int expected = folio_nr_pages(folio);
6713 
6714 		if (nr_pages == expected)
6715 			folio_put(folio);
6716 		else
6717 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6718 			     pfn, nr_pages, expected);
6719 		return;
6720 	}
6721 
6722 	for (; nr_pages--; pfn++) {
6723 		struct page *page = pfn_to_page(pfn);
6724 
6725 		count += page_count(page) != 1;
6726 		__free_page(page);
6727 	}
6728 	WARN(count != 0, "%lu pages are still in use!\n", count);
6729 }
6730 EXPORT_SYMBOL(free_contig_range);
6731 
6732 /*
6733  * Effectively disable pcplists for the zone by setting the high limit to 0
6734  * and draining all cpus. A concurrent page freeing on another CPU that's about
6735  * to put the page on pcplist will either finish before the drain and the page
6736  * will be drained, or observe the new high limit and skip the pcplist.
6737  *
6738  * Must be paired with a call to zone_pcp_enable().
6739  */
6740 void zone_pcp_disable(struct zone *zone)
6741 {
6742 	mutex_lock(&pcp_batch_high_lock);
6743 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6744 	__drain_all_pages(zone, true);
6745 }
6746 
6747 void zone_pcp_enable(struct zone *zone)
6748 {
6749 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6750 		zone->pageset_high_max, zone->pageset_batch);
6751 	mutex_unlock(&pcp_batch_high_lock);
6752 }
6753 
6754 void zone_pcp_reset(struct zone *zone)
6755 {
6756 	int cpu;
6757 	struct per_cpu_zonestat *pzstats;
6758 
6759 	if (zone->per_cpu_pageset != &boot_pageset) {
6760 		for_each_online_cpu(cpu) {
6761 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6762 			drain_zonestat(zone, pzstats);
6763 		}
6764 		free_percpu(zone->per_cpu_pageset);
6765 		zone->per_cpu_pageset = &boot_pageset;
6766 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6767 			free_percpu(zone->per_cpu_zonestats);
6768 			zone->per_cpu_zonestats = &boot_zonestats;
6769 		}
6770 	}
6771 }
6772 
6773 #ifdef CONFIG_MEMORY_HOTREMOVE
6774 /*
6775  * All pages in the range must be in a single zone, must not contain holes,
6776  * must span full sections, and must be isolated before calling this function.
6777  *
6778  * Returns the number of managed (non-PageOffline()) pages in the range: the
6779  * number of pages for which memory offlining code must adjust managed page
6780  * counters using adjust_managed_page_count().
6781  */
6782 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6783 		unsigned long end_pfn)
6784 {
6785 	unsigned long already_offline = 0, flags;
6786 	unsigned long pfn = start_pfn;
6787 	struct page *page;
6788 	struct zone *zone;
6789 	unsigned int order;
6790 
6791 	offline_mem_sections(pfn, end_pfn);
6792 	zone = page_zone(pfn_to_page(pfn));
6793 	spin_lock_irqsave(&zone->lock, flags);
6794 	while (pfn < end_pfn) {
6795 		page = pfn_to_page(pfn);
6796 		/*
6797 		 * The HWPoisoned page may be not in buddy system, and
6798 		 * page_count() is not 0.
6799 		 */
6800 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6801 			pfn++;
6802 			continue;
6803 		}
6804 		/*
6805 		 * At this point all remaining PageOffline() pages have a
6806 		 * reference count of 0 and can simply be skipped.
6807 		 */
6808 		if (PageOffline(page)) {
6809 			BUG_ON(page_count(page));
6810 			BUG_ON(PageBuddy(page));
6811 			already_offline++;
6812 			pfn++;
6813 			continue;
6814 		}
6815 
6816 		BUG_ON(page_count(page));
6817 		BUG_ON(!PageBuddy(page));
6818 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6819 		order = buddy_order(page);
6820 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6821 		pfn += (1 << order);
6822 	}
6823 	spin_unlock_irqrestore(&zone->lock, flags);
6824 
6825 	return end_pfn - start_pfn - already_offline;
6826 }
6827 #endif
6828 
6829 /*
6830  * This function returns a stable result only if called under zone lock.
6831  */
6832 bool is_free_buddy_page(const struct page *page)
6833 {
6834 	unsigned long pfn = page_to_pfn(page);
6835 	unsigned int order;
6836 
6837 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6838 		const struct page *head = page - (pfn & ((1 << order) - 1));
6839 
6840 		if (PageBuddy(head) &&
6841 		    buddy_order_unsafe(head) >= order)
6842 			break;
6843 	}
6844 
6845 	return order <= MAX_PAGE_ORDER;
6846 }
6847 EXPORT_SYMBOL(is_free_buddy_page);
6848 
6849 #ifdef CONFIG_MEMORY_FAILURE
6850 static inline void add_to_free_list(struct page *page, struct zone *zone,
6851 				    unsigned int order, int migratetype,
6852 				    bool tail)
6853 {
6854 	__add_to_free_list(page, zone, order, migratetype, tail);
6855 	account_freepages(zone, 1 << order, migratetype);
6856 }
6857 
6858 /*
6859  * Break down a higher-order page in sub-pages, and keep our target out of
6860  * buddy allocator.
6861  */
6862 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6863 				   struct page *target, int low, int high,
6864 				   int migratetype)
6865 {
6866 	unsigned long size = 1 << high;
6867 	struct page *current_buddy;
6868 
6869 	while (high > low) {
6870 		high--;
6871 		size >>= 1;
6872 
6873 		if (target >= &page[size]) {
6874 			current_buddy = page;
6875 			page = page + size;
6876 		} else {
6877 			current_buddy = page + size;
6878 		}
6879 
6880 		if (set_page_guard(zone, current_buddy, high))
6881 			continue;
6882 
6883 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6884 		set_buddy_order(current_buddy, high);
6885 	}
6886 }
6887 
6888 /*
6889  * Take a page that will be marked as poisoned off the buddy allocator.
6890  */
6891 bool take_page_off_buddy(struct page *page)
6892 {
6893 	struct zone *zone = page_zone(page);
6894 	unsigned long pfn = page_to_pfn(page);
6895 	unsigned long flags;
6896 	unsigned int order;
6897 	bool ret = false;
6898 
6899 	spin_lock_irqsave(&zone->lock, flags);
6900 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6901 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6902 		int page_order = buddy_order(page_head);
6903 
6904 		if (PageBuddy(page_head) && page_order >= order) {
6905 			unsigned long pfn_head = page_to_pfn(page_head);
6906 			int migratetype = get_pfnblock_migratetype(page_head,
6907 								   pfn_head);
6908 
6909 			del_page_from_free_list(page_head, zone, page_order,
6910 						migratetype);
6911 			break_down_buddy_pages(zone, page_head, page, 0,
6912 						page_order, migratetype);
6913 			SetPageHWPoisonTakenOff(page);
6914 			ret = true;
6915 			break;
6916 		}
6917 		if (page_count(page_head) > 0)
6918 			break;
6919 	}
6920 	spin_unlock_irqrestore(&zone->lock, flags);
6921 	return ret;
6922 }
6923 
6924 /*
6925  * Cancel takeoff done by take_page_off_buddy().
6926  */
6927 bool put_page_back_buddy(struct page *page)
6928 {
6929 	struct zone *zone = page_zone(page);
6930 	unsigned long flags;
6931 	bool ret = false;
6932 
6933 	spin_lock_irqsave(&zone->lock, flags);
6934 	if (put_page_testzero(page)) {
6935 		unsigned long pfn = page_to_pfn(page);
6936 		int migratetype = get_pfnblock_migratetype(page, pfn);
6937 
6938 		ClearPageHWPoisonTakenOff(page);
6939 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6940 		if (TestClearPageHWPoison(page)) {
6941 			ret = true;
6942 		}
6943 	}
6944 	spin_unlock_irqrestore(&zone->lock, flags);
6945 
6946 	return ret;
6947 }
6948 #endif
6949 
6950 #ifdef CONFIG_ZONE_DMA
6951 bool has_managed_dma(void)
6952 {
6953 	struct pglist_data *pgdat;
6954 
6955 	for_each_online_pgdat(pgdat) {
6956 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6957 
6958 		if (managed_zone(zone))
6959 			return true;
6960 	}
6961 	return false;
6962 }
6963 #endif /* CONFIG_ZONE_DMA */
6964 
6965 #ifdef CONFIG_UNACCEPTED_MEMORY
6966 
6967 /* Counts number of zones with unaccepted pages. */
6968 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6969 
6970 static bool lazy_accept = true;
6971 
6972 static int __init accept_memory_parse(char *p)
6973 {
6974 	if (!strcmp(p, "lazy")) {
6975 		lazy_accept = true;
6976 		return 0;
6977 	} else if (!strcmp(p, "eager")) {
6978 		lazy_accept = false;
6979 		return 0;
6980 	} else {
6981 		return -EINVAL;
6982 	}
6983 }
6984 early_param("accept_memory", accept_memory_parse);
6985 
6986 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6987 {
6988 	phys_addr_t start = page_to_phys(page);
6989 
6990 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
6991 }
6992 
6993 static void __accept_page(struct zone *zone, unsigned long *flags,
6994 			  struct page *page)
6995 {
6996 	bool last;
6997 
6998 	list_del(&page->lru);
6999 	last = list_empty(&zone->unaccepted_pages);
7000 
7001 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7002 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7003 	__ClearPageUnaccepted(page);
7004 	spin_unlock_irqrestore(&zone->lock, *flags);
7005 
7006 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7007 
7008 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7009 
7010 	if (last)
7011 		static_branch_dec(&zones_with_unaccepted_pages);
7012 }
7013 
7014 void accept_page(struct page *page)
7015 {
7016 	struct zone *zone = page_zone(page);
7017 	unsigned long flags;
7018 
7019 	spin_lock_irqsave(&zone->lock, flags);
7020 	if (!PageUnaccepted(page)) {
7021 		spin_unlock_irqrestore(&zone->lock, flags);
7022 		return;
7023 	}
7024 
7025 	/* Unlocks zone->lock */
7026 	__accept_page(zone, &flags, page);
7027 }
7028 
7029 static bool try_to_accept_memory_one(struct zone *zone)
7030 {
7031 	unsigned long flags;
7032 	struct page *page;
7033 
7034 	spin_lock_irqsave(&zone->lock, flags);
7035 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7036 					struct page, lru);
7037 	if (!page) {
7038 		spin_unlock_irqrestore(&zone->lock, flags);
7039 		return false;
7040 	}
7041 
7042 	/* Unlocks zone->lock */
7043 	__accept_page(zone, &flags, page);
7044 
7045 	return true;
7046 }
7047 
7048 static inline bool has_unaccepted_memory(void)
7049 {
7050 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7051 }
7052 
7053 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7054 {
7055 	long to_accept, wmark;
7056 	bool ret = false;
7057 
7058 	if (!has_unaccepted_memory())
7059 		return false;
7060 
7061 	if (list_empty(&zone->unaccepted_pages))
7062 		return false;
7063 
7064 	wmark = promo_wmark_pages(zone);
7065 
7066 	/*
7067 	 * Watermarks have not been initialized yet.
7068 	 *
7069 	 * Accepting one MAX_ORDER page to ensure progress.
7070 	 */
7071 	if (!wmark)
7072 		return try_to_accept_memory_one(zone);
7073 
7074 	/* How much to accept to get to promo watermark? */
7075 	to_accept = wmark -
7076 		    (zone_page_state(zone, NR_FREE_PAGES) -
7077 		    __zone_watermark_unusable_free(zone, order, 0) -
7078 		    zone_page_state(zone, NR_UNACCEPTED));
7079 
7080 	while (to_accept > 0) {
7081 		if (!try_to_accept_memory_one(zone))
7082 			break;
7083 		ret = true;
7084 		to_accept -= MAX_ORDER_NR_PAGES;
7085 	}
7086 
7087 	return ret;
7088 }
7089 
7090 static bool __free_unaccepted(struct page *page)
7091 {
7092 	struct zone *zone = page_zone(page);
7093 	unsigned long flags;
7094 	bool first = false;
7095 
7096 	if (!lazy_accept)
7097 		return false;
7098 
7099 	spin_lock_irqsave(&zone->lock, flags);
7100 	first = list_empty(&zone->unaccepted_pages);
7101 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7102 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7103 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7104 	__SetPageUnaccepted(page);
7105 	spin_unlock_irqrestore(&zone->lock, flags);
7106 
7107 	if (first)
7108 		static_branch_inc(&zones_with_unaccepted_pages);
7109 
7110 	return true;
7111 }
7112 
7113 #else
7114 
7115 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7116 {
7117 	return false;
7118 }
7119 
7120 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7121 {
7122 	return false;
7123 }
7124 
7125 static bool __free_unaccepted(struct page *page)
7126 {
7127 	BUILD_BUG();
7128 	return false;
7129 }
7130 
7131 #endif /* CONFIG_UNACCEPTED_MEMORY */
7132