1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static bool cond_accept_memory(struct zone *zone, unsigned int order); 290 static bool __free_unaccepted(struct page *page); 291 292 int page_group_by_mobility_disabled __read_mostly; 293 294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 295 /* 296 * During boot we initialize deferred pages on-demand, as needed, but once 297 * page_alloc_init_late() has finished, the deferred pages are all initialized, 298 * and we can permanently disable that path. 299 */ 300 DEFINE_STATIC_KEY_TRUE(deferred_pages); 301 302 static inline bool deferred_pages_enabled(void) 303 { 304 return static_branch_unlikely(&deferred_pages); 305 } 306 307 /* 308 * deferred_grow_zone() is __init, but it is called from 309 * get_page_from_freelist() during early boot until deferred_pages permanently 310 * disables this call. This is why we have refdata wrapper to avoid warning, 311 * and to ensure that the function body gets unloaded. 312 */ 313 static bool __ref 314 _deferred_grow_zone(struct zone *zone, unsigned int order) 315 { 316 return deferred_grow_zone(zone, order); 317 } 318 #else 319 static inline bool deferred_pages_enabled(void) 320 { 321 return false; 322 } 323 324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 325 { 326 return false; 327 } 328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 329 330 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 331 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 332 unsigned long pfn) 333 { 334 #ifdef CONFIG_SPARSEMEM 335 return section_to_usemap(__pfn_to_section(pfn)); 336 #else 337 return page_zone(page)->pageblock_flags; 338 #endif /* CONFIG_SPARSEMEM */ 339 } 340 341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 342 { 343 #ifdef CONFIG_SPARSEMEM 344 pfn &= (PAGES_PER_SECTION-1); 345 #else 346 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 347 #endif /* CONFIG_SPARSEMEM */ 348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 349 } 350 351 /** 352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 353 * @page: The page within the block of interest 354 * @pfn: The target page frame number 355 * @mask: mask of bits that the caller is interested in 356 * 357 * Return: pageblock_bits flags 358 */ 359 unsigned long get_pfnblock_flags_mask(const struct page *page, 360 unsigned long pfn, unsigned long mask) 361 { 362 unsigned long *bitmap; 363 unsigned long bitidx, word_bitidx; 364 unsigned long word; 365 366 bitmap = get_pageblock_bitmap(page, pfn); 367 bitidx = pfn_to_bitidx(page, pfn); 368 word_bitidx = bitidx / BITS_PER_LONG; 369 bitidx &= (BITS_PER_LONG-1); 370 /* 371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 372 * a consistent read of the memory array, so that results, even though 373 * racy, are not corrupted. 374 */ 375 word = READ_ONCE(bitmap[word_bitidx]); 376 return (word >> bitidx) & mask; 377 } 378 379 static __always_inline int get_pfnblock_migratetype(const struct page *page, 380 unsigned long pfn) 381 { 382 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 383 } 384 385 /** 386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @flags: The flags to set 389 * @pfn: The target page frame number 390 * @mask: mask of bits that the caller is interested in 391 */ 392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 393 unsigned long pfn, 394 unsigned long mask) 395 { 396 unsigned long *bitmap; 397 unsigned long bitidx, word_bitidx; 398 unsigned long word; 399 400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 401 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 402 403 bitmap = get_pageblock_bitmap(page, pfn); 404 bitidx = pfn_to_bitidx(page, pfn); 405 word_bitidx = bitidx / BITS_PER_LONG; 406 bitidx &= (BITS_PER_LONG-1); 407 408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 409 410 mask <<= bitidx; 411 flags <<= bitidx; 412 413 word = READ_ONCE(bitmap[word_bitidx]); 414 do { 415 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 416 } 417 418 void set_pageblock_migratetype(struct page *page, int migratetype) 419 { 420 if (unlikely(page_group_by_mobility_disabled && 421 migratetype < MIGRATE_PCPTYPES)) 422 migratetype = MIGRATE_UNMOVABLE; 423 424 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 425 page_to_pfn(page), MIGRATETYPE_MASK); 426 } 427 428 #ifdef CONFIG_DEBUG_VM 429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 430 { 431 int ret; 432 unsigned seq; 433 unsigned long pfn = page_to_pfn(page); 434 unsigned long sp, start_pfn; 435 436 do { 437 seq = zone_span_seqbegin(zone); 438 start_pfn = zone->zone_start_pfn; 439 sp = zone->spanned_pages; 440 ret = !zone_spans_pfn(zone, pfn); 441 } while (zone_span_seqretry(zone, seq)); 442 443 if (ret) 444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 445 pfn, zone_to_nid(zone), zone->name, 446 start_pfn, start_pfn + sp); 447 448 return ret; 449 } 450 451 /* 452 * Temporary debugging check for pages not lying within a given zone. 453 */ 454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 455 { 456 if (page_outside_zone_boundaries(zone, page)) 457 return true; 458 if (zone != page_zone(page)) 459 return true; 460 461 return false; 462 } 463 #else 464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 465 { 466 return false; 467 } 468 #endif 469 470 static void bad_page(struct page *page, const char *reason) 471 { 472 static unsigned long resume; 473 static unsigned long nr_shown; 474 static unsigned long nr_unshown; 475 476 /* 477 * Allow a burst of 60 reports, then keep quiet for that minute; 478 * or allow a steady drip of one report per second. 479 */ 480 if (nr_shown == 60) { 481 if (time_before(jiffies, resume)) { 482 nr_unshown++; 483 goto out; 484 } 485 if (nr_unshown) { 486 pr_alert( 487 "BUG: Bad page state: %lu messages suppressed\n", 488 nr_unshown); 489 nr_unshown = 0; 490 } 491 nr_shown = 0; 492 } 493 if (nr_shown++ == 0) 494 resume = jiffies + 60 * HZ; 495 496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 497 current->comm, page_to_pfn(page)); 498 dump_page(page, reason); 499 500 print_modules(); 501 dump_stack(); 502 out: 503 /* Leave bad fields for debug, except PageBuddy could make trouble */ 504 if (PageBuddy(page)) 505 __ClearPageBuddy(page); 506 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 507 } 508 509 static inline unsigned int order_to_pindex(int migratetype, int order) 510 { 511 bool __maybe_unused movable; 512 513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 514 if (order > PAGE_ALLOC_COSTLY_ORDER) { 515 VM_BUG_ON(order != HPAGE_PMD_ORDER); 516 517 movable = migratetype == MIGRATE_MOVABLE; 518 519 return NR_LOWORDER_PCP_LISTS + movable; 520 } 521 #else 522 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 523 #endif 524 525 return (MIGRATE_PCPTYPES * order) + migratetype; 526 } 527 528 static inline int pindex_to_order(unsigned int pindex) 529 { 530 int order = pindex / MIGRATE_PCPTYPES; 531 532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 533 if (pindex >= NR_LOWORDER_PCP_LISTS) 534 order = HPAGE_PMD_ORDER; 535 #else 536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 537 #endif 538 539 return order; 540 } 541 542 static inline bool pcp_allowed_order(unsigned int order) 543 { 544 if (order <= PAGE_ALLOC_COSTLY_ORDER) 545 return true; 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 if (order == HPAGE_PMD_ORDER) 548 return true; 549 #endif 550 return false; 551 } 552 553 /* 554 * Higher-order pages are called "compound pages". They are structured thusly: 555 * 556 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 557 * 558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 560 * 561 * The first tail page's ->compound_order holds the order of allocation. 562 * This usage means that zero-order pages may not be compound. 563 */ 564 565 void prep_compound_page(struct page *page, unsigned int order) 566 { 567 int i; 568 int nr_pages = 1 << order; 569 570 __SetPageHead(page); 571 for (i = 1; i < nr_pages; i++) 572 prep_compound_tail(page, i); 573 574 prep_compound_head(page, order); 575 } 576 577 static inline void set_buddy_order(struct page *page, unsigned int order) 578 { 579 set_page_private(page, order); 580 __SetPageBuddy(page); 581 } 582 583 #ifdef CONFIG_COMPACTION 584 static inline struct capture_control *task_capc(struct zone *zone) 585 { 586 struct capture_control *capc = current->capture_control; 587 588 return unlikely(capc) && 589 !(current->flags & PF_KTHREAD) && 590 !capc->page && 591 capc->cc->zone == zone ? capc : NULL; 592 } 593 594 static inline bool 595 compaction_capture(struct capture_control *capc, struct page *page, 596 int order, int migratetype) 597 { 598 if (!capc || order != capc->cc->order) 599 return false; 600 601 /* Do not accidentally pollute CMA or isolated regions*/ 602 if (is_migrate_cma(migratetype) || 603 is_migrate_isolate(migratetype)) 604 return false; 605 606 /* 607 * Do not let lower order allocations pollute a movable pageblock 608 * unless compaction is also requesting movable pages. 609 * This might let an unmovable request use a reclaimable pageblock 610 * and vice-versa but no more than normal fallback logic which can 611 * have trouble finding a high-order free page. 612 */ 613 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 614 capc->cc->migratetype != MIGRATE_MOVABLE) 615 return false; 616 617 capc->page = page; 618 return true; 619 } 620 621 #else 622 static inline struct capture_control *task_capc(struct zone *zone) 623 { 624 return NULL; 625 } 626 627 static inline bool 628 compaction_capture(struct capture_control *capc, struct page *page, 629 int order, int migratetype) 630 { 631 return false; 632 } 633 #endif /* CONFIG_COMPACTION */ 634 635 static inline void account_freepages(struct zone *zone, int nr_pages, 636 int migratetype) 637 { 638 lockdep_assert_held(&zone->lock); 639 640 if (is_migrate_isolate(migratetype)) 641 return; 642 643 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 644 645 if (is_migrate_cma(migratetype)) 646 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 647 else if (is_migrate_highatomic(migratetype)) 648 WRITE_ONCE(zone->nr_free_highatomic, 649 zone->nr_free_highatomic + nr_pages); 650 } 651 652 /* Used for pages not on another list */ 653 static inline void __add_to_free_list(struct page *page, struct zone *zone, 654 unsigned int order, int migratetype, 655 bool tail) 656 { 657 struct free_area *area = &zone->free_area[order]; 658 659 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 660 "page type is %lu, passed migratetype is %d (nr=%d)\n", 661 get_pageblock_migratetype(page), migratetype, 1 << order); 662 663 if (tail) 664 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 665 else 666 list_add(&page->buddy_list, &area->free_list[migratetype]); 667 area->nr_free++; 668 } 669 670 /* 671 * Used for pages which are on another list. Move the pages to the tail 672 * of the list - so the moved pages won't immediately be considered for 673 * allocation again (e.g., optimization for memory onlining). 674 */ 675 static inline void move_to_free_list(struct page *page, struct zone *zone, 676 unsigned int order, int old_mt, int new_mt) 677 { 678 struct free_area *area = &zone->free_area[order]; 679 680 /* Free page moving can fail, so it happens before the type update */ 681 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 682 "page type is %lu, passed migratetype is %d (nr=%d)\n", 683 get_pageblock_migratetype(page), old_mt, 1 << order); 684 685 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 686 687 account_freepages(zone, -(1 << order), old_mt); 688 account_freepages(zone, 1 << order, new_mt); 689 } 690 691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 692 unsigned int order, int migratetype) 693 { 694 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 695 "page type is %lu, passed migratetype is %d (nr=%d)\n", 696 get_pageblock_migratetype(page), migratetype, 1 << order); 697 698 /* clear reported state and update reported page count */ 699 if (page_reported(page)) 700 __ClearPageReported(page); 701 702 list_del(&page->buddy_list); 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 zone->free_area[order].nr_free--; 706 } 707 708 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 709 unsigned int order, int migratetype) 710 { 711 __del_page_from_free_list(page, zone, order, migratetype); 712 account_freepages(zone, -(1 << order), migratetype); 713 } 714 715 static inline struct page *get_page_from_free_area(struct free_area *area, 716 int migratetype) 717 { 718 return list_first_entry_or_null(&area->free_list[migratetype], 719 struct page, buddy_list); 720 } 721 722 /* 723 * If this is less than the 2nd largest possible page, check if the buddy 724 * of the next-higher order is free. If it is, it's possible 725 * that pages are being freed that will coalesce soon. In case, 726 * that is happening, add the free page to the tail of the list 727 * so it's less likely to be used soon and more likely to be merged 728 * as a 2-level higher order page 729 */ 730 static inline bool 731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 732 struct page *page, unsigned int order) 733 { 734 unsigned long higher_page_pfn; 735 struct page *higher_page; 736 737 if (order >= MAX_PAGE_ORDER - 1) 738 return false; 739 740 higher_page_pfn = buddy_pfn & pfn; 741 higher_page = page + (higher_page_pfn - pfn); 742 743 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 744 NULL) != NULL; 745 } 746 747 /* 748 * Freeing function for a buddy system allocator. 749 * 750 * The concept of a buddy system is to maintain direct-mapped table 751 * (containing bit values) for memory blocks of various "orders". 752 * The bottom level table contains the map for the smallest allocatable 753 * units of memory (here, pages), and each level above it describes 754 * pairs of units from the levels below, hence, "buddies". 755 * At a high level, all that happens here is marking the table entry 756 * at the bottom level available, and propagating the changes upward 757 * as necessary, plus some accounting needed to play nicely with other 758 * parts of the VM system. 759 * At each level, we keep a list of pages, which are heads of continuous 760 * free pages of length of (1 << order) and marked with PageBuddy. 761 * Page's order is recorded in page_private(page) field. 762 * So when we are allocating or freeing one, we can derive the state of the 763 * other. That is, if we allocate a small block, and both were 764 * free, the remainder of the region must be split into blocks. 765 * If a block is freed, and its buddy is also free, then this 766 * triggers coalescing into a block of larger size. 767 * 768 * -- nyc 769 */ 770 771 static inline void __free_one_page(struct page *page, 772 unsigned long pfn, 773 struct zone *zone, unsigned int order, 774 int migratetype, fpi_t fpi_flags) 775 { 776 struct capture_control *capc = task_capc(zone); 777 unsigned long buddy_pfn = 0; 778 unsigned long combined_pfn; 779 struct page *buddy; 780 bool to_tail; 781 782 VM_BUG_ON(!zone_is_initialized(zone)); 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 784 785 VM_BUG_ON(migratetype == -1); 786 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 787 VM_BUG_ON_PAGE(bad_range(zone, page), page); 788 789 account_freepages(zone, 1 << order, migratetype); 790 791 while (order < MAX_PAGE_ORDER) { 792 int buddy_mt = migratetype; 793 794 if (compaction_capture(capc, page, order, migratetype)) { 795 account_freepages(zone, -(1 << order), migratetype); 796 return; 797 } 798 799 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 800 if (!buddy) 801 goto done_merging; 802 803 if (unlikely(order >= pageblock_order)) { 804 /* 805 * We want to prevent merge between freepages on pageblock 806 * without fallbacks and normal pageblock. Without this, 807 * pageblock isolation could cause incorrect freepage or CMA 808 * accounting or HIGHATOMIC accounting. 809 */ 810 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 811 812 if (migratetype != buddy_mt && 813 (!migratetype_is_mergeable(migratetype) || 814 !migratetype_is_mergeable(buddy_mt))) 815 goto done_merging; 816 } 817 818 /* 819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 820 * merge with it and move up one order. 821 */ 822 if (page_is_guard(buddy)) 823 clear_page_guard(zone, buddy, order); 824 else 825 __del_page_from_free_list(buddy, zone, order, buddy_mt); 826 827 if (unlikely(buddy_mt != migratetype)) { 828 /* 829 * Match buddy type. This ensures that an 830 * expand() down the line puts the sub-blocks 831 * on the right freelists. 832 */ 833 set_pageblock_migratetype(buddy, migratetype); 834 } 835 836 combined_pfn = buddy_pfn & pfn; 837 page = page + (combined_pfn - pfn); 838 pfn = combined_pfn; 839 order++; 840 } 841 842 done_merging: 843 set_buddy_order(page, order); 844 845 if (fpi_flags & FPI_TO_TAIL) 846 to_tail = true; 847 else if (is_shuffle_order(order)) 848 to_tail = shuffle_pick_tail(); 849 else 850 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 851 852 __add_to_free_list(page, zone, order, migratetype, to_tail); 853 854 /* Notify page reporting subsystem of freed page */ 855 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 856 page_reporting_notify_free(order); 857 } 858 859 /* 860 * A bad page could be due to a number of fields. Instead of multiple branches, 861 * try and check multiple fields with one check. The caller must do a detailed 862 * check if necessary. 863 */ 864 static inline bool page_expected_state(struct page *page, 865 unsigned long check_flags) 866 { 867 if (unlikely(atomic_read(&page->_mapcount) != -1)) 868 return false; 869 870 if (unlikely((unsigned long)page->mapping | 871 page_ref_count(page) | 872 #ifdef CONFIG_MEMCG 873 page->memcg_data | 874 #endif 875 #ifdef CONFIG_PAGE_POOL 876 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 877 #endif 878 (page->flags & check_flags))) 879 return false; 880 881 return true; 882 } 883 884 static const char *page_bad_reason(struct page *page, unsigned long flags) 885 { 886 const char *bad_reason = NULL; 887 888 if (unlikely(atomic_read(&page->_mapcount) != -1)) 889 bad_reason = "nonzero mapcount"; 890 if (unlikely(page->mapping != NULL)) 891 bad_reason = "non-NULL mapping"; 892 if (unlikely(page_ref_count(page) != 0)) 893 bad_reason = "nonzero _refcount"; 894 if (unlikely(page->flags & flags)) { 895 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 896 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 897 else 898 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 899 } 900 #ifdef CONFIG_MEMCG 901 if (unlikely(page->memcg_data)) 902 bad_reason = "page still charged to cgroup"; 903 #endif 904 #ifdef CONFIG_PAGE_POOL 905 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 906 bad_reason = "page_pool leak"; 907 #endif 908 return bad_reason; 909 } 910 911 static void free_page_is_bad_report(struct page *page) 912 { 913 bad_page(page, 914 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 915 } 916 917 static inline bool free_page_is_bad(struct page *page) 918 { 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 920 return false; 921 922 /* Something has gone sideways, find it */ 923 free_page_is_bad_report(page); 924 return true; 925 } 926 927 static inline bool is_check_pages_enabled(void) 928 { 929 return static_branch_unlikely(&check_pages_enabled); 930 } 931 932 static int free_tail_page_prepare(struct page *head_page, struct page *page) 933 { 934 struct folio *folio = (struct folio *)head_page; 935 int ret = 1; 936 937 /* 938 * We rely page->lru.next never has bit 0 set, unless the page 939 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 940 */ 941 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 942 943 if (!is_check_pages_enabled()) { 944 ret = 0; 945 goto out; 946 } 947 switch (page - head_page) { 948 case 1: 949 /* the first tail page: these may be in place of ->mapping */ 950 if (unlikely(folio_entire_mapcount(folio))) { 951 bad_page(page, "nonzero entire_mapcount"); 952 goto out; 953 } 954 if (unlikely(folio_large_mapcount(folio))) { 955 bad_page(page, "nonzero large_mapcount"); 956 goto out; 957 } 958 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 959 bad_page(page, "nonzero nr_pages_mapped"); 960 goto out; 961 } 962 if (unlikely(atomic_read(&folio->_pincount))) { 963 bad_page(page, "nonzero pincount"); 964 goto out; 965 } 966 break; 967 case 2: 968 /* the second tail page: deferred_list overlaps ->mapping */ 969 if (unlikely(!list_empty(&folio->_deferred_list))) { 970 bad_page(page, "on deferred list"); 971 goto out; 972 } 973 break; 974 default: 975 if (page->mapping != TAIL_MAPPING) { 976 bad_page(page, "corrupted mapping in tail page"); 977 goto out; 978 } 979 break; 980 } 981 if (unlikely(!PageTail(page))) { 982 bad_page(page, "PageTail not set"); 983 goto out; 984 } 985 if (unlikely(compound_head(page) != head_page)) { 986 bad_page(page, "compound_head not consistent"); 987 goto out; 988 } 989 ret = 0; 990 out: 991 page->mapping = NULL; 992 clear_compound_head(page); 993 return ret; 994 } 995 996 /* 997 * Skip KASAN memory poisoning when either: 998 * 999 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1000 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1001 * using page tags instead (see below). 1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1003 * that error detection is disabled for accesses via the page address. 1004 * 1005 * Pages will have match-all tags in the following circumstances: 1006 * 1007 * 1. Pages are being initialized for the first time, including during deferred 1008 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1010 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1011 * 3. The allocation was excluded from being checked due to sampling, 1012 * see the call to kasan_unpoison_pages. 1013 * 1014 * Poisoning pages during deferred memory init will greatly lengthen the 1015 * process and cause problem in large memory systems as the deferred pages 1016 * initialization is done with interrupt disabled. 1017 * 1018 * Assuming that there will be no reference to those newly initialized 1019 * pages before they are ever allocated, this should have no effect on 1020 * KASAN memory tracking as the poison will be properly inserted at page 1021 * allocation time. The only corner case is when pages are allocated by 1022 * on-demand allocation and then freed again before the deferred pages 1023 * initialization is done, but this is not likely to happen. 1024 */ 1025 static inline bool should_skip_kasan_poison(struct page *page) 1026 { 1027 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1028 return deferred_pages_enabled(); 1029 1030 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1031 } 1032 1033 static void kernel_init_pages(struct page *page, int numpages) 1034 { 1035 int i; 1036 1037 /* s390's use of memset() could override KASAN redzones. */ 1038 kasan_disable_current(); 1039 for (i = 0; i < numpages; i++) 1040 clear_highpage_kasan_tagged(page + i); 1041 kasan_enable_current(); 1042 } 1043 1044 #ifdef CONFIG_MEM_ALLOC_PROFILING 1045 1046 /* Should be called only if mem_alloc_profiling_enabled() */ 1047 void __clear_page_tag_ref(struct page *page) 1048 { 1049 union pgtag_ref_handle handle; 1050 union codetag_ref ref; 1051 1052 if (get_page_tag_ref(page, &ref, &handle)) { 1053 set_codetag_empty(&ref); 1054 update_page_tag_ref(handle, &ref); 1055 put_page_tag_ref(handle); 1056 } 1057 } 1058 1059 /* Should be called only if mem_alloc_profiling_enabled() */ 1060 static noinline 1061 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1062 unsigned int nr) 1063 { 1064 union pgtag_ref_handle handle; 1065 union codetag_ref ref; 1066 1067 if (get_page_tag_ref(page, &ref, &handle)) { 1068 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1069 update_page_tag_ref(handle, &ref); 1070 put_page_tag_ref(handle); 1071 } 1072 } 1073 1074 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1075 unsigned int nr) 1076 { 1077 if (mem_alloc_profiling_enabled()) 1078 __pgalloc_tag_add(page, task, nr); 1079 } 1080 1081 /* Should be called only if mem_alloc_profiling_enabled() */ 1082 static noinline 1083 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1084 { 1085 union pgtag_ref_handle handle; 1086 union codetag_ref ref; 1087 1088 if (get_page_tag_ref(page, &ref, &handle)) { 1089 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1090 update_page_tag_ref(handle, &ref); 1091 put_page_tag_ref(handle); 1092 } 1093 } 1094 1095 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1096 { 1097 if (mem_alloc_profiling_enabled()) 1098 __pgalloc_tag_sub(page, nr); 1099 } 1100 1101 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) 1102 { 1103 struct alloc_tag *tag; 1104 1105 if (!mem_alloc_profiling_enabled()) 1106 return; 1107 1108 tag = __pgalloc_tag_get(page); 1109 if (tag) 1110 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1111 } 1112 1113 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1114 1115 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1116 unsigned int nr) {} 1117 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1118 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {} 1119 1120 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1121 1122 __always_inline bool free_pages_prepare(struct page *page, 1123 unsigned int order) 1124 { 1125 int bad = 0; 1126 bool skip_kasan_poison = should_skip_kasan_poison(page); 1127 bool init = want_init_on_free(); 1128 bool compound = PageCompound(page); 1129 struct folio *folio = page_folio(page); 1130 1131 VM_BUG_ON_PAGE(PageTail(page), page); 1132 1133 trace_mm_page_free(page, order); 1134 kmsan_free_page(page, order); 1135 1136 if (memcg_kmem_online() && PageMemcgKmem(page)) 1137 __memcg_kmem_uncharge_page(page, order); 1138 1139 /* 1140 * In rare cases, when truncation or holepunching raced with 1141 * munlock after VM_LOCKED was cleared, Mlocked may still be 1142 * found set here. This does not indicate a problem, unless 1143 * "unevictable_pgs_cleared" appears worryingly large. 1144 */ 1145 if (unlikely(folio_test_mlocked(folio))) { 1146 long nr_pages = folio_nr_pages(folio); 1147 1148 __folio_clear_mlocked(folio); 1149 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1150 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1151 } 1152 1153 if (unlikely(PageHWPoison(page)) && !order) { 1154 /* Do not let hwpoison pages hit pcplists/buddy */ 1155 reset_page_owner(page, order); 1156 page_table_check_free(page, order); 1157 pgalloc_tag_sub(page, 1 << order); 1158 1159 /* 1160 * The page is isolated and accounted for. 1161 * Mark the codetag as empty to avoid accounting error 1162 * when the page is freed by unpoison_memory(). 1163 */ 1164 clear_page_tag_ref(page); 1165 return false; 1166 } 1167 1168 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1169 1170 /* 1171 * Check tail pages before head page information is cleared to 1172 * avoid checking PageCompound for order-0 pages. 1173 */ 1174 if (unlikely(order)) { 1175 int i; 1176 1177 if (compound) 1178 page[1].flags &= ~PAGE_FLAGS_SECOND; 1179 for (i = 1; i < (1 << order); i++) { 1180 if (compound) 1181 bad += free_tail_page_prepare(page, page + i); 1182 if (is_check_pages_enabled()) { 1183 if (free_page_is_bad(page + i)) { 1184 bad++; 1185 continue; 1186 } 1187 } 1188 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1189 } 1190 } 1191 if (PageMappingFlags(page)) { 1192 if (PageAnon(page)) 1193 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1194 page->mapping = NULL; 1195 } 1196 if (is_check_pages_enabled()) { 1197 if (free_page_is_bad(page)) 1198 bad++; 1199 if (bad) 1200 return false; 1201 } 1202 1203 page_cpupid_reset_last(page); 1204 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1205 reset_page_owner(page, order); 1206 page_table_check_free(page, order); 1207 pgalloc_tag_sub(page, 1 << order); 1208 1209 if (!PageHighMem(page)) { 1210 debug_check_no_locks_freed(page_address(page), 1211 PAGE_SIZE << order); 1212 debug_check_no_obj_freed(page_address(page), 1213 PAGE_SIZE << order); 1214 } 1215 1216 kernel_poison_pages(page, 1 << order); 1217 1218 /* 1219 * As memory initialization might be integrated into KASAN, 1220 * KASAN poisoning and memory initialization code must be 1221 * kept together to avoid discrepancies in behavior. 1222 * 1223 * With hardware tag-based KASAN, memory tags must be set before the 1224 * page becomes unavailable via debug_pagealloc or arch_free_page. 1225 */ 1226 if (!skip_kasan_poison) { 1227 kasan_poison_pages(page, order, init); 1228 1229 /* Memory is already initialized if KASAN did it internally. */ 1230 if (kasan_has_integrated_init()) 1231 init = false; 1232 } 1233 if (init) 1234 kernel_init_pages(page, 1 << order); 1235 1236 /* 1237 * arch_free_page() can make the page's contents inaccessible. s390 1238 * does this. So nothing which can access the page's contents should 1239 * happen after this. 1240 */ 1241 arch_free_page(page, order); 1242 1243 debug_pagealloc_unmap_pages(page, 1 << order); 1244 1245 return true; 1246 } 1247 1248 /* 1249 * Frees a number of pages from the PCP lists 1250 * Assumes all pages on list are in same zone. 1251 * count is the number of pages to free. 1252 */ 1253 static void free_pcppages_bulk(struct zone *zone, int count, 1254 struct per_cpu_pages *pcp, 1255 int pindex) 1256 { 1257 unsigned long flags; 1258 unsigned int order; 1259 struct page *page; 1260 1261 /* 1262 * Ensure proper count is passed which otherwise would stuck in the 1263 * below while (list_empty(list)) loop. 1264 */ 1265 count = min(pcp->count, count); 1266 1267 /* Ensure requested pindex is drained first. */ 1268 pindex = pindex - 1; 1269 1270 spin_lock_irqsave(&zone->lock, flags); 1271 1272 while (count > 0) { 1273 struct list_head *list; 1274 int nr_pages; 1275 1276 /* Remove pages from lists in a round-robin fashion. */ 1277 do { 1278 if (++pindex > NR_PCP_LISTS - 1) 1279 pindex = 0; 1280 list = &pcp->lists[pindex]; 1281 } while (list_empty(list)); 1282 1283 order = pindex_to_order(pindex); 1284 nr_pages = 1 << order; 1285 do { 1286 unsigned long pfn; 1287 int mt; 1288 1289 page = list_last_entry(list, struct page, pcp_list); 1290 pfn = page_to_pfn(page); 1291 mt = get_pfnblock_migratetype(page, pfn); 1292 1293 /* must delete to avoid corrupting pcp list */ 1294 list_del(&page->pcp_list); 1295 count -= nr_pages; 1296 pcp->count -= nr_pages; 1297 1298 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1299 trace_mm_page_pcpu_drain(page, order, mt); 1300 } while (count > 0 && !list_empty(list)); 1301 } 1302 1303 spin_unlock_irqrestore(&zone->lock, flags); 1304 } 1305 1306 /* Split a multi-block free page into its individual pageblocks. */ 1307 static void split_large_buddy(struct zone *zone, struct page *page, 1308 unsigned long pfn, int order, fpi_t fpi) 1309 { 1310 unsigned long end = pfn + (1 << order); 1311 1312 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1313 /* Caller removed page from freelist, buddy info cleared! */ 1314 VM_WARN_ON_ONCE(PageBuddy(page)); 1315 1316 if (order > pageblock_order) 1317 order = pageblock_order; 1318 1319 do { 1320 int mt = get_pfnblock_migratetype(page, pfn); 1321 1322 __free_one_page(page, pfn, zone, order, mt, fpi); 1323 pfn += 1 << order; 1324 if (pfn == end) 1325 break; 1326 page = pfn_to_page(pfn); 1327 } while (1); 1328 } 1329 1330 static void free_one_page(struct zone *zone, struct page *page, 1331 unsigned long pfn, unsigned int order, 1332 fpi_t fpi_flags) 1333 { 1334 unsigned long flags; 1335 1336 spin_lock_irqsave(&zone->lock, flags); 1337 split_large_buddy(zone, page, pfn, order, fpi_flags); 1338 spin_unlock_irqrestore(&zone->lock, flags); 1339 1340 __count_vm_events(PGFREE, 1 << order); 1341 } 1342 1343 static void __free_pages_ok(struct page *page, unsigned int order, 1344 fpi_t fpi_flags) 1345 { 1346 unsigned long pfn = page_to_pfn(page); 1347 struct zone *zone = page_zone(page); 1348 1349 if (free_pages_prepare(page, order)) 1350 free_one_page(zone, page, pfn, order, fpi_flags); 1351 } 1352 1353 void __meminit __free_pages_core(struct page *page, unsigned int order, 1354 enum meminit_context context) 1355 { 1356 unsigned int nr_pages = 1 << order; 1357 struct page *p = page; 1358 unsigned int loop; 1359 1360 /* 1361 * When initializing the memmap, __init_single_page() sets the refcount 1362 * of all pages to 1 ("allocated"/"not free"). We have to set the 1363 * refcount of all involved pages to 0. 1364 * 1365 * Note that hotplugged memory pages are initialized to PageOffline(). 1366 * Pages freed from memblock might be marked as reserved. 1367 */ 1368 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1369 unlikely(context == MEMINIT_HOTPLUG)) { 1370 for (loop = 0; loop < nr_pages; loop++, p++) { 1371 VM_WARN_ON_ONCE(PageReserved(p)); 1372 __ClearPageOffline(p); 1373 set_page_count(p, 0); 1374 } 1375 1376 adjust_managed_page_count(page, nr_pages); 1377 } else { 1378 for (loop = 0; loop < nr_pages; loop++, p++) { 1379 __ClearPageReserved(p); 1380 set_page_count(p, 0); 1381 } 1382 1383 /* memblock adjusts totalram_pages() manually. */ 1384 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1385 } 1386 1387 if (page_contains_unaccepted(page, order)) { 1388 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1389 return; 1390 1391 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1392 } 1393 1394 /* 1395 * Bypass PCP and place fresh pages right to the tail, primarily 1396 * relevant for memory onlining. 1397 */ 1398 __free_pages_ok(page, order, FPI_TO_TAIL); 1399 } 1400 1401 /* 1402 * Check that the whole (or subset of) a pageblock given by the interval of 1403 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1404 * with the migration of free compaction scanner. 1405 * 1406 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1407 * 1408 * It's possible on some configurations to have a setup like node0 node1 node0 1409 * i.e. it's possible that all pages within a zones range of pages do not 1410 * belong to a single zone. We assume that a border between node0 and node1 1411 * can occur within a single pageblock, but not a node0 node1 node0 1412 * interleaving within a single pageblock. It is therefore sufficient to check 1413 * the first and last page of a pageblock and avoid checking each individual 1414 * page in a pageblock. 1415 * 1416 * Note: the function may return non-NULL struct page even for a page block 1417 * which contains a memory hole (i.e. there is no physical memory for a subset 1418 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1419 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1420 * even though the start pfn is online and valid. This should be safe most of 1421 * the time because struct pages are still initialized via init_unavailable_range() 1422 * and pfn walkers shouldn't touch any physical memory range for which they do 1423 * not recognize any specific metadata in struct pages. 1424 */ 1425 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1426 unsigned long end_pfn, struct zone *zone) 1427 { 1428 struct page *start_page; 1429 struct page *end_page; 1430 1431 /* end_pfn is one past the range we are checking */ 1432 end_pfn--; 1433 1434 if (!pfn_valid(end_pfn)) 1435 return NULL; 1436 1437 start_page = pfn_to_online_page(start_pfn); 1438 if (!start_page) 1439 return NULL; 1440 1441 if (page_zone(start_page) != zone) 1442 return NULL; 1443 1444 end_page = pfn_to_page(end_pfn); 1445 1446 /* This gives a shorter code than deriving page_zone(end_page) */ 1447 if (page_zone_id(start_page) != page_zone_id(end_page)) 1448 return NULL; 1449 1450 return start_page; 1451 } 1452 1453 /* 1454 * The order of subdivision here is critical for the IO subsystem. 1455 * Please do not alter this order without good reasons and regression 1456 * testing. Specifically, as large blocks of memory are subdivided, 1457 * the order in which smaller blocks are delivered depends on the order 1458 * they're subdivided in this function. This is the primary factor 1459 * influencing the order in which pages are delivered to the IO 1460 * subsystem according to empirical testing, and this is also justified 1461 * by considering the behavior of a buddy system containing a single 1462 * large block of memory acted on by a series of small allocations. 1463 * This behavior is a critical factor in sglist merging's success. 1464 * 1465 * -- nyc 1466 */ 1467 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1468 int high, int migratetype) 1469 { 1470 unsigned int size = 1 << high; 1471 unsigned int nr_added = 0; 1472 1473 while (high > low) { 1474 high--; 1475 size >>= 1; 1476 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1477 1478 /* 1479 * Mark as guard pages (or page), that will allow to 1480 * merge back to allocator when buddy will be freed. 1481 * Corresponding page table entries will not be touched, 1482 * pages will stay not present in virtual address space 1483 */ 1484 if (set_page_guard(zone, &page[size], high)) 1485 continue; 1486 1487 __add_to_free_list(&page[size], zone, high, migratetype, false); 1488 set_buddy_order(&page[size], high); 1489 nr_added += size; 1490 } 1491 1492 return nr_added; 1493 } 1494 1495 static __always_inline void page_del_and_expand(struct zone *zone, 1496 struct page *page, int low, 1497 int high, int migratetype) 1498 { 1499 int nr_pages = 1 << high; 1500 1501 __del_page_from_free_list(page, zone, high, migratetype); 1502 nr_pages -= expand(zone, page, low, high, migratetype); 1503 account_freepages(zone, -nr_pages, migratetype); 1504 } 1505 1506 static void check_new_page_bad(struct page *page) 1507 { 1508 if (unlikely(page->flags & __PG_HWPOISON)) { 1509 /* Don't complain about hwpoisoned pages */ 1510 if (PageBuddy(page)) 1511 __ClearPageBuddy(page); 1512 return; 1513 } 1514 1515 bad_page(page, 1516 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1517 } 1518 1519 /* 1520 * This page is about to be returned from the page allocator 1521 */ 1522 static bool check_new_page(struct page *page) 1523 { 1524 if (likely(page_expected_state(page, 1525 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1526 return false; 1527 1528 check_new_page_bad(page); 1529 return true; 1530 } 1531 1532 static inline bool check_new_pages(struct page *page, unsigned int order) 1533 { 1534 if (is_check_pages_enabled()) { 1535 for (int i = 0; i < (1 << order); i++) { 1536 struct page *p = page + i; 1537 1538 if (check_new_page(p)) 1539 return true; 1540 } 1541 } 1542 1543 return false; 1544 } 1545 1546 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1547 { 1548 /* Don't skip if a software KASAN mode is enabled. */ 1549 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1550 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1551 return false; 1552 1553 /* Skip, if hardware tag-based KASAN is not enabled. */ 1554 if (!kasan_hw_tags_enabled()) 1555 return true; 1556 1557 /* 1558 * With hardware tag-based KASAN enabled, skip if this has been 1559 * requested via __GFP_SKIP_KASAN. 1560 */ 1561 return flags & __GFP_SKIP_KASAN; 1562 } 1563 1564 static inline bool should_skip_init(gfp_t flags) 1565 { 1566 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1567 if (!kasan_hw_tags_enabled()) 1568 return false; 1569 1570 /* For hardware tag-based KASAN, skip if requested. */ 1571 return (flags & __GFP_SKIP_ZERO); 1572 } 1573 1574 inline void post_alloc_hook(struct page *page, unsigned int order, 1575 gfp_t gfp_flags) 1576 { 1577 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1578 !should_skip_init(gfp_flags); 1579 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1580 int i; 1581 1582 set_page_private(page, 0); 1583 1584 arch_alloc_page(page, order); 1585 debug_pagealloc_map_pages(page, 1 << order); 1586 1587 /* 1588 * Page unpoisoning must happen before memory initialization. 1589 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1590 * allocations and the page unpoisoning code will complain. 1591 */ 1592 kernel_unpoison_pages(page, 1 << order); 1593 1594 /* 1595 * As memory initialization might be integrated into KASAN, 1596 * KASAN unpoisoning and memory initializion code must be 1597 * kept together to avoid discrepancies in behavior. 1598 */ 1599 1600 /* 1601 * If memory tags should be zeroed 1602 * (which happens only when memory should be initialized as well). 1603 */ 1604 if (zero_tags) { 1605 /* Initialize both memory and memory tags. */ 1606 for (i = 0; i != 1 << order; ++i) 1607 tag_clear_highpage(page + i); 1608 1609 /* Take note that memory was initialized by the loop above. */ 1610 init = false; 1611 } 1612 if (!should_skip_kasan_unpoison(gfp_flags) && 1613 kasan_unpoison_pages(page, order, init)) { 1614 /* Take note that memory was initialized by KASAN. */ 1615 if (kasan_has_integrated_init()) 1616 init = false; 1617 } else { 1618 /* 1619 * If memory tags have not been set by KASAN, reset the page 1620 * tags to ensure page_address() dereferencing does not fault. 1621 */ 1622 for (i = 0; i != 1 << order; ++i) 1623 page_kasan_tag_reset(page + i); 1624 } 1625 /* If memory is still not initialized, initialize it now. */ 1626 if (init) 1627 kernel_init_pages(page, 1 << order); 1628 1629 set_page_owner(page, order, gfp_flags); 1630 page_table_check_alloc(page, order); 1631 pgalloc_tag_add(page, current, 1 << order); 1632 } 1633 1634 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1635 unsigned int alloc_flags) 1636 { 1637 post_alloc_hook(page, order, gfp_flags); 1638 1639 if (order && (gfp_flags & __GFP_COMP)) 1640 prep_compound_page(page, order); 1641 1642 /* 1643 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1644 * allocate the page. The expectation is that the caller is taking 1645 * steps that will free more memory. The caller should avoid the page 1646 * being used for !PFMEMALLOC purposes. 1647 */ 1648 if (alloc_flags & ALLOC_NO_WATERMARKS) 1649 set_page_pfmemalloc(page); 1650 else 1651 clear_page_pfmemalloc(page); 1652 } 1653 1654 /* 1655 * Go through the free lists for the given migratetype and remove 1656 * the smallest available page from the freelists 1657 */ 1658 static __always_inline 1659 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1660 int migratetype) 1661 { 1662 unsigned int current_order; 1663 struct free_area *area; 1664 struct page *page; 1665 1666 /* Find a page of the appropriate size in the preferred list */ 1667 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1668 area = &(zone->free_area[current_order]); 1669 page = get_page_from_free_area(area, migratetype); 1670 if (!page) 1671 continue; 1672 1673 page_del_and_expand(zone, page, order, current_order, 1674 migratetype); 1675 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1676 pcp_allowed_order(order) && 1677 migratetype < MIGRATE_PCPTYPES); 1678 return page; 1679 } 1680 1681 return NULL; 1682 } 1683 1684 1685 /* 1686 * This array describes the order lists are fallen back to when 1687 * the free lists for the desirable migrate type are depleted 1688 * 1689 * The other migratetypes do not have fallbacks. 1690 */ 1691 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1692 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1693 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1694 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1695 }; 1696 1697 #ifdef CONFIG_CMA 1698 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1699 unsigned int order) 1700 { 1701 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1702 } 1703 #else 1704 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1705 unsigned int order) { return NULL; } 1706 #endif 1707 1708 /* 1709 * Change the type of a block and move all its free pages to that 1710 * type's freelist. 1711 */ 1712 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1713 int old_mt, int new_mt) 1714 { 1715 struct page *page; 1716 unsigned long pfn, end_pfn; 1717 unsigned int order; 1718 int pages_moved = 0; 1719 1720 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1721 end_pfn = pageblock_end_pfn(start_pfn); 1722 1723 for (pfn = start_pfn; pfn < end_pfn;) { 1724 page = pfn_to_page(pfn); 1725 if (!PageBuddy(page)) { 1726 pfn++; 1727 continue; 1728 } 1729 1730 /* Make sure we are not inadvertently changing nodes */ 1731 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1732 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1733 1734 order = buddy_order(page); 1735 1736 move_to_free_list(page, zone, order, old_mt, new_mt); 1737 1738 pfn += 1 << order; 1739 pages_moved += 1 << order; 1740 } 1741 1742 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1743 1744 return pages_moved; 1745 } 1746 1747 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1748 unsigned long *start_pfn, 1749 int *num_free, int *num_movable) 1750 { 1751 unsigned long pfn, start, end; 1752 1753 pfn = page_to_pfn(page); 1754 start = pageblock_start_pfn(pfn); 1755 end = pageblock_end_pfn(pfn); 1756 1757 /* 1758 * The caller only has the lock for @zone, don't touch ranges 1759 * that straddle into other zones. While we could move part of 1760 * the range that's inside the zone, this call is usually 1761 * accompanied by other operations such as migratetype updates 1762 * which also should be locked. 1763 */ 1764 if (!zone_spans_pfn(zone, start)) 1765 return false; 1766 if (!zone_spans_pfn(zone, end - 1)) 1767 return false; 1768 1769 *start_pfn = start; 1770 1771 if (num_free) { 1772 *num_free = 0; 1773 *num_movable = 0; 1774 for (pfn = start; pfn < end;) { 1775 page = pfn_to_page(pfn); 1776 if (PageBuddy(page)) { 1777 int nr = 1 << buddy_order(page); 1778 1779 *num_free += nr; 1780 pfn += nr; 1781 continue; 1782 } 1783 /* 1784 * We assume that pages that could be isolated for 1785 * migration are movable. But we don't actually try 1786 * isolating, as that would be expensive. 1787 */ 1788 if (PageLRU(page) || __PageMovable(page)) 1789 (*num_movable)++; 1790 pfn++; 1791 } 1792 } 1793 1794 return true; 1795 } 1796 1797 static int move_freepages_block(struct zone *zone, struct page *page, 1798 int old_mt, int new_mt) 1799 { 1800 unsigned long start_pfn; 1801 1802 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1803 return -1; 1804 1805 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1806 } 1807 1808 #ifdef CONFIG_MEMORY_ISOLATION 1809 /* Look for a buddy that straddles start_pfn */ 1810 static unsigned long find_large_buddy(unsigned long start_pfn) 1811 { 1812 int order = 0; 1813 struct page *page; 1814 unsigned long pfn = start_pfn; 1815 1816 while (!PageBuddy(page = pfn_to_page(pfn))) { 1817 /* Nothing found */ 1818 if (++order > MAX_PAGE_ORDER) 1819 return start_pfn; 1820 pfn &= ~0UL << order; 1821 } 1822 1823 /* 1824 * Found a preceding buddy, but does it straddle? 1825 */ 1826 if (pfn + (1 << buddy_order(page)) > start_pfn) 1827 return pfn; 1828 1829 /* Nothing found */ 1830 return start_pfn; 1831 } 1832 1833 /** 1834 * move_freepages_block_isolate - move free pages in block for page isolation 1835 * @zone: the zone 1836 * @page: the pageblock page 1837 * @migratetype: migratetype to set on the pageblock 1838 * 1839 * This is similar to move_freepages_block(), but handles the special 1840 * case encountered in page isolation, where the block of interest 1841 * might be part of a larger buddy spanning multiple pageblocks. 1842 * 1843 * Unlike the regular page allocator path, which moves pages while 1844 * stealing buddies off the freelist, page isolation is interested in 1845 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1846 * 1847 * This function handles that. Straddling buddies are split into 1848 * individual pageblocks. Only the block of interest is moved. 1849 * 1850 * Returns %true if pages could be moved, %false otherwise. 1851 */ 1852 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1853 int migratetype) 1854 { 1855 unsigned long start_pfn, pfn; 1856 1857 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1858 return false; 1859 1860 /* No splits needed if buddies can't span multiple blocks */ 1861 if (pageblock_order == MAX_PAGE_ORDER) 1862 goto move; 1863 1864 /* We're a tail block in a larger buddy */ 1865 pfn = find_large_buddy(start_pfn); 1866 if (pfn != start_pfn) { 1867 struct page *buddy = pfn_to_page(pfn); 1868 int order = buddy_order(buddy); 1869 1870 del_page_from_free_list(buddy, zone, order, 1871 get_pfnblock_migratetype(buddy, pfn)); 1872 set_pageblock_migratetype(page, migratetype); 1873 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1874 return true; 1875 } 1876 1877 /* We're the starting block of a larger buddy */ 1878 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1879 int order = buddy_order(page); 1880 1881 del_page_from_free_list(page, zone, order, 1882 get_pfnblock_migratetype(page, pfn)); 1883 set_pageblock_migratetype(page, migratetype); 1884 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1885 return true; 1886 } 1887 move: 1888 __move_freepages_block(zone, start_pfn, 1889 get_pfnblock_migratetype(page, start_pfn), 1890 migratetype); 1891 return true; 1892 } 1893 #endif /* CONFIG_MEMORY_ISOLATION */ 1894 1895 static void change_pageblock_range(struct page *pageblock_page, 1896 int start_order, int migratetype) 1897 { 1898 int nr_pageblocks = 1 << (start_order - pageblock_order); 1899 1900 while (nr_pageblocks--) { 1901 set_pageblock_migratetype(pageblock_page, migratetype); 1902 pageblock_page += pageblock_nr_pages; 1903 } 1904 } 1905 1906 static inline bool boost_watermark(struct zone *zone) 1907 { 1908 unsigned long max_boost; 1909 1910 if (!watermark_boost_factor) 1911 return false; 1912 /* 1913 * Don't bother in zones that are unlikely to produce results. 1914 * On small machines, including kdump capture kernels running 1915 * in a small area, boosting the watermark can cause an out of 1916 * memory situation immediately. 1917 */ 1918 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1919 return false; 1920 1921 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1922 watermark_boost_factor, 10000); 1923 1924 /* 1925 * high watermark may be uninitialised if fragmentation occurs 1926 * very early in boot so do not boost. We do not fall 1927 * through and boost by pageblock_nr_pages as failing 1928 * allocations that early means that reclaim is not going 1929 * to help and it may even be impossible to reclaim the 1930 * boosted watermark resulting in a hang. 1931 */ 1932 if (!max_boost) 1933 return false; 1934 1935 max_boost = max(pageblock_nr_pages, max_boost); 1936 1937 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1938 max_boost); 1939 1940 return true; 1941 } 1942 1943 /* 1944 * When we are falling back to another migratetype during allocation, try to 1945 * steal extra free pages from the same pageblocks to satisfy further 1946 * allocations, instead of polluting multiple pageblocks. 1947 * 1948 * If we are stealing a relatively large buddy page, it is likely there will 1949 * be more free pages in the pageblock, so try to steal them all. For 1950 * reclaimable and unmovable allocations, we steal regardless of page size, 1951 * as fragmentation caused by those allocations polluting movable pageblocks 1952 * is worse than movable allocations stealing from unmovable and reclaimable 1953 * pageblocks. 1954 */ 1955 static bool can_steal_fallback(unsigned int order, int start_mt) 1956 { 1957 /* 1958 * Leaving this order check is intended, although there is 1959 * relaxed order check in next check. The reason is that 1960 * we can actually steal whole pageblock if this condition met, 1961 * but, below check doesn't guarantee it and that is just heuristic 1962 * so could be changed anytime. 1963 */ 1964 if (order >= pageblock_order) 1965 return true; 1966 1967 /* 1968 * Movable pages won't cause permanent fragmentation, so when you alloc 1969 * small pages, you just need to temporarily steal unmovable or 1970 * reclaimable pages that are closest to the request size. After a 1971 * while, memory compaction may occur to form large contiguous pages, 1972 * and the next movable allocation may not need to steal. Unmovable and 1973 * reclaimable allocations need to actually steal pages. 1974 */ 1975 if (order >= pageblock_order / 2 || 1976 start_mt == MIGRATE_RECLAIMABLE || 1977 start_mt == MIGRATE_UNMOVABLE || 1978 page_group_by_mobility_disabled) 1979 return true; 1980 1981 return false; 1982 } 1983 1984 /* 1985 * Check whether there is a suitable fallback freepage with requested order. 1986 * If only_stealable is true, this function returns fallback_mt only if 1987 * we can steal other freepages all together. This would help to reduce 1988 * fragmentation due to mixed migratetype pages in one pageblock. 1989 */ 1990 int find_suitable_fallback(struct free_area *area, unsigned int order, 1991 int migratetype, bool only_stealable, bool *can_steal) 1992 { 1993 int i; 1994 int fallback_mt; 1995 1996 if (area->nr_free == 0) 1997 return -1; 1998 1999 *can_steal = false; 2000 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2001 fallback_mt = fallbacks[migratetype][i]; 2002 if (free_area_empty(area, fallback_mt)) 2003 continue; 2004 2005 if (can_steal_fallback(order, migratetype)) 2006 *can_steal = true; 2007 2008 if (!only_stealable) 2009 return fallback_mt; 2010 2011 if (*can_steal) 2012 return fallback_mt; 2013 } 2014 2015 return -1; 2016 } 2017 2018 /* 2019 * This function implements actual steal behaviour. If order is large enough, we 2020 * can claim the whole pageblock for the requested migratetype. If not, we check 2021 * the pageblock for constituent pages; if at least half of the pages are free 2022 * or compatible, we can still claim the whole block, so pages freed in the 2023 * future will be put on the correct free list. 2024 */ 2025 static struct page * 2026 try_to_steal_block(struct zone *zone, struct page *page, 2027 int current_order, int order, int start_type, 2028 int block_type, unsigned int alloc_flags) 2029 { 2030 int free_pages, movable_pages, alike_pages; 2031 unsigned long start_pfn; 2032 2033 /* Take ownership for orders >= pageblock_order */ 2034 if (current_order >= pageblock_order) { 2035 unsigned int nr_added; 2036 2037 del_page_from_free_list(page, zone, current_order, block_type); 2038 change_pageblock_range(page, current_order, start_type); 2039 nr_added = expand(zone, page, order, current_order, start_type); 2040 account_freepages(zone, nr_added, start_type); 2041 return page; 2042 } 2043 2044 /* 2045 * Boost watermarks to increase reclaim pressure to reduce the 2046 * likelihood of future fallbacks. Wake kswapd now as the node 2047 * may be balanced overall and kswapd will not wake naturally. 2048 */ 2049 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2050 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2051 2052 /* moving whole block can fail due to zone boundary conditions */ 2053 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2054 &movable_pages)) 2055 return NULL; 2056 2057 /* 2058 * Determine how many pages are compatible with our allocation. 2059 * For movable allocation, it's the number of movable pages which 2060 * we just obtained. For other types it's a bit more tricky. 2061 */ 2062 if (start_type == MIGRATE_MOVABLE) { 2063 alike_pages = movable_pages; 2064 } else { 2065 /* 2066 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2067 * to MOVABLE pageblock, consider all non-movable pages as 2068 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2069 * vice versa, be conservative since we can't distinguish the 2070 * exact migratetype of non-movable pages. 2071 */ 2072 if (block_type == MIGRATE_MOVABLE) 2073 alike_pages = pageblock_nr_pages 2074 - (free_pages + movable_pages); 2075 else 2076 alike_pages = 0; 2077 } 2078 /* 2079 * If a sufficient number of pages in the block are either free or of 2080 * compatible migratability as our allocation, claim the whole block. 2081 */ 2082 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2083 page_group_by_mobility_disabled) { 2084 __move_freepages_block(zone, start_pfn, block_type, start_type); 2085 return __rmqueue_smallest(zone, order, start_type); 2086 } 2087 2088 return NULL; 2089 } 2090 2091 /* 2092 * Try finding a free buddy page on the fallback list. 2093 * 2094 * This will attempt to steal a whole pageblock for the requested type 2095 * to ensure grouping of such requests in the future. 2096 * 2097 * If a whole block cannot be stolen, regress to __rmqueue_smallest() 2098 * logic to at least break up as little contiguity as possible. 2099 * 2100 * The use of signed ints for order and current_order is a deliberate 2101 * deviation from the rest of this file, to make the for loop 2102 * condition simpler. 2103 * 2104 * Return the stolen page, or NULL if none can be found. 2105 */ 2106 static __always_inline struct page * 2107 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2108 unsigned int alloc_flags) 2109 { 2110 struct free_area *area; 2111 int current_order; 2112 int min_order = order; 2113 struct page *page; 2114 int fallback_mt; 2115 bool can_steal; 2116 2117 /* 2118 * Do not steal pages from freelists belonging to other pageblocks 2119 * i.e. orders < pageblock_order. If there are no local zones free, 2120 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2121 */ 2122 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2123 min_order = pageblock_order; 2124 2125 /* 2126 * Find the largest available free page in the other list. This roughly 2127 * approximates finding the pageblock with the most free pages, which 2128 * would be too costly to do exactly. 2129 */ 2130 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2131 --current_order) { 2132 area = &(zone->free_area[current_order]); 2133 fallback_mt = find_suitable_fallback(area, current_order, 2134 start_migratetype, false, &can_steal); 2135 if (fallback_mt == -1) 2136 continue; 2137 2138 if (!can_steal) 2139 break; 2140 2141 page = get_page_from_free_area(area, fallback_mt); 2142 page = try_to_steal_block(zone, page, current_order, order, 2143 start_migratetype, fallback_mt, 2144 alloc_flags); 2145 if (page) 2146 goto got_one; 2147 } 2148 2149 if (alloc_flags & ALLOC_NOFRAGMENT) 2150 return NULL; 2151 2152 /* No luck stealing blocks. Find the smallest fallback page */ 2153 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2154 area = &(zone->free_area[current_order]); 2155 fallback_mt = find_suitable_fallback(area, current_order, 2156 start_migratetype, false, &can_steal); 2157 if (fallback_mt == -1) 2158 continue; 2159 2160 page = get_page_from_free_area(area, fallback_mt); 2161 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2162 goto got_one; 2163 } 2164 2165 return NULL; 2166 2167 got_one: 2168 trace_mm_page_alloc_extfrag(page, order, current_order, 2169 start_migratetype, fallback_mt); 2170 2171 return page; 2172 } 2173 2174 /* 2175 * Do the hard work of removing an element from the buddy allocator. 2176 * Call me with the zone->lock already held. 2177 */ 2178 static __always_inline struct page * 2179 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2180 unsigned int alloc_flags) 2181 { 2182 struct page *page; 2183 2184 if (IS_ENABLED(CONFIG_CMA)) { 2185 /* 2186 * Balance movable allocations between regular and CMA areas by 2187 * allocating from CMA when over half of the zone's free memory 2188 * is in the CMA area. 2189 */ 2190 if (alloc_flags & ALLOC_CMA && 2191 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2192 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2193 page = __rmqueue_cma_fallback(zone, order); 2194 if (page) 2195 return page; 2196 } 2197 } 2198 2199 page = __rmqueue_smallest(zone, order, migratetype); 2200 if (unlikely(!page)) { 2201 if (alloc_flags & ALLOC_CMA) 2202 page = __rmqueue_cma_fallback(zone, order); 2203 2204 if (!page) 2205 page = __rmqueue_fallback(zone, order, migratetype, 2206 alloc_flags); 2207 } 2208 return page; 2209 } 2210 2211 /* 2212 * Obtain a specified number of elements from the buddy allocator, all under 2213 * a single hold of the lock, for efficiency. Add them to the supplied list. 2214 * Returns the number of new pages which were placed at *list. 2215 */ 2216 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2217 unsigned long count, struct list_head *list, 2218 int migratetype, unsigned int alloc_flags) 2219 { 2220 unsigned long flags; 2221 int i; 2222 2223 spin_lock_irqsave(&zone->lock, flags); 2224 for (i = 0; i < count; ++i) { 2225 struct page *page = __rmqueue(zone, order, migratetype, 2226 alloc_flags); 2227 if (unlikely(page == NULL)) 2228 break; 2229 2230 /* 2231 * Split buddy pages returned by expand() are received here in 2232 * physical page order. The page is added to the tail of 2233 * caller's list. From the callers perspective, the linked list 2234 * is ordered by page number under some conditions. This is 2235 * useful for IO devices that can forward direction from the 2236 * head, thus also in the physical page order. This is useful 2237 * for IO devices that can merge IO requests if the physical 2238 * pages are ordered properly. 2239 */ 2240 list_add_tail(&page->pcp_list, list); 2241 } 2242 spin_unlock_irqrestore(&zone->lock, flags); 2243 2244 return i; 2245 } 2246 2247 /* 2248 * Called from the vmstat counter updater to decay the PCP high. 2249 * Return whether there are addition works to do. 2250 */ 2251 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2252 { 2253 int high_min, to_drain, batch; 2254 int todo = 0; 2255 2256 high_min = READ_ONCE(pcp->high_min); 2257 batch = READ_ONCE(pcp->batch); 2258 /* 2259 * Decrease pcp->high periodically to try to free possible 2260 * idle PCP pages. And, avoid to free too many pages to 2261 * control latency. This caps pcp->high decrement too. 2262 */ 2263 if (pcp->high > high_min) { 2264 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2265 pcp->high - (pcp->high >> 3), high_min); 2266 if (pcp->high > high_min) 2267 todo++; 2268 } 2269 2270 to_drain = pcp->count - pcp->high; 2271 if (to_drain > 0) { 2272 spin_lock(&pcp->lock); 2273 free_pcppages_bulk(zone, to_drain, pcp, 0); 2274 spin_unlock(&pcp->lock); 2275 todo++; 2276 } 2277 2278 return todo; 2279 } 2280 2281 #ifdef CONFIG_NUMA 2282 /* 2283 * Called from the vmstat counter updater to drain pagesets of this 2284 * currently executing processor on remote nodes after they have 2285 * expired. 2286 */ 2287 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2288 { 2289 int to_drain, batch; 2290 2291 batch = READ_ONCE(pcp->batch); 2292 to_drain = min(pcp->count, batch); 2293 if (to_drain > 0) { 2294 spin_lock(&pcp->lock); 2295 free_pcppages_bulk(zone, to_drain, pcp, 0); 2296 spin_unlock(&pcp->lock); 2297 } 2298 } 2299 #endif 2300 2301 /* 2302 * Drain pcplists of the indicated processor and zone. 2303 */ 2304 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2305 { 2306 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2307 int count; 2308 2309 do { 2310 spin_lock(&pcp->lock); 2311 count = pcp->count; 2312 if (count) { 2313 int to_drain = min(count, 2314 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2315 2316 free_pcppages_bulk(zone, to_drain, pcp, 0); 2317 count -= to_drain; 2318 } 2319 spin_unlock(&pcp->lock); 2320 } while (count); 2321 } 2322 2323 /* 2324 * Drain pcplists of all zones on the indicated processor. 2325 */ 2326 static void drain_pages(unsigned int cpu) 2327 { 2328 struct zone *zone; 2329 2330 for_each_populated_zone(zone) { 2331 drain_pages_zone(cpu, zone); 2332 } 2333 } 2334 2335 /* 2336 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2337 */ 2338 void drain_local_pages(struct zone *zone) 2339 { 2340 int cpu = smp_processor_id(); 2341 2342 if (zone) 2343 drain_pages_zone(cpu, zone); 2344 else 2345 drain_pages(cpu); 2346 } 2347 2348 /* 2349 * The implementation of drain_all_pages(), exposing an extra parameter to 2350 * drain on all cpus. 2351 * 2352 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2353 * not empty. The check for non-emptiness can however race with a free to 2354 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2355 * that need the guarantee that every CPU has drained can disable the 2356 * optimizing racy check. 2357 */ 2358 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2359 { 2360 int cpu; 2361 2362 /* 2363 * Allocate in the BSS so we won't require allocation in 2364 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2365 */ 2366 static cpumask_t cpus_with_pcps; 2367 2368 /* 2369 * Do not drain if one is already in progress unless it's specific to 2370 * a zone. Such callers are primarily CMA and memory hotplug and need 2371 * the drain to be complete when the call returns. 2372 */ 2373 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2374 if (!zone) 2375 return; 2376 mutex_lock(&pcpu_drain_mutex); 2377 } 2378 2379 /* 2380 * We don't care about racing with CPU hotplug event 2381 * as offline notification will cause the notified 2382 * cpu to drain that CPU pcps and on_each_cpu_mask 2383 * disables preemption as part of its processing 2384 */ 2385 for_each_online_cpu(cpu) { 2386 struct per_cpu_pages *pcp; 2387 struct zone *z; 2388 bool has_pcps = false; 2389 2390 if (force_all_cpus) { 2391 /* 2392 * The pcp.count check is racy, some callers need a 2393 * guarantee that no cpu is missed. 2394 */ 2395 has_pcps = true; 2396 } else if (zone) { 2397 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2398 if (pcp->count) 2399 has_pcps = true; 2400 } else { 2401 for_each_populated_zone(z) { 2402 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2403 if (pcp->count) { 2404 has_pcps = true; 2405 break; 2406 } 2407 } 2408 } 2409 2410 if (has_pcps) 2411 cpumask_set_cpu(cpu, &cpus_with_pcps); 2412 else 2413 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2414 } 2415 2416 for_each_cpu(cpu, &cpus_with_pcps) { 2417 if (zone) 2418 drain_pages_zone(cpu, zone); 2419 else 2420 drain_pages(cpu); 2421 } 2422 2423 mutex_unlock(&pcpu_drain_mutex); 2424 } 2425 2426 /* 2427 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2428 * 2429 * When zone parameter is non-NULL, spill just the single zone's pages. 2430 */ 2431 void drain_all_pages(struct zone *zone) 2432 { 2433 __drain_all_pages(zone, false); 2434 } 2435 2436 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2437 { 2438 int min_nr_free, max_nr_free; 2439 2440 /* Free as much as possible if batch freeing high-order pages. */ 2441 if (unlikely(free_high)) 2442 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2443 2444 /* Check for PCP disabled or boot pageset */ 2445 if (unlikely(high < batch)) 2446 return 1; 2447 2448 /* Leave at least pcp->batch pages on the list */ 2449 min_nr_free = batch; 2450 max_nr_free = high - batch; 2451 2452 /* 2453 * Increase the batch number to the number of the consecutive 2454 * freed pages to reduce zone lock contention. 2455 */ 2456 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2457 2458 return batch; 2459 } 2460 2461 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2462 int batch, bool free_high) 2463 { 2464 int high, high_min, high_max; 2465 2466 high_min = READ_ONCE(pcp->high_min); 2467 high_max = READ_ONCE(pcp->high_max); 2468 high = pcp->high = clamp(pcp->high, high_min, high_max); 2469 2470 if (unlikely(!high)) 2471 return 0; 2472 2473 if (unlikely(free_high)) { 2474 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2475 high_min); 2476 return 0; 2477 } 2478 2479 /* 2480 * If reclaim is active, limit the number of pages that can be 2481 * stored on pcp lists 2482 */ 2483 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2484 int free_count = max_t(int, pcp->free_count, batch); 2485 2486 pcp->high = max(high - free_count, high_min); 2487 return min(batch << 2, pcp->high); 2488 } 2489 2490 if (high_min == high_max) 2491 return high; 2492 2493 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2494 int free_count = max_t(int, pcp->free_count, batch); 2495 2496 pcp->high = max(high - free_count, high_min); 2497 high = max(pcp->count, high_min); 2498 } else if (pcp->count >= high) { 2499 int need_high = pcp->free_count + batch; 2500 2501 /* pcp->high should be large enough to hold batch freed pages */ 2502 if (pcp->high < need_high) 2503 pcp->high = clamp(need_high, high_min, high_max); 2504 } 2505 2506 return high; 2507 } 2508 2509 static void free_frozen_page_commit(struct zone *zone, 2510 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2511 unsigned int order) 2512 { 2513 int high, batch; 2514 int pindex; 2515 bool free_high = false; 2516 2517 /* 2518 * On freeing, reduce the number of pages that are batch allocated. 2519 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2520 * allocations. 2521 */ 2522 pcp->alloc_factor >>= 1; 2523 __count_vm_events(PGFREE, 1 << order); 2524 pindex = order_to_pindex(migratetype, order); 2525 list_add(&page->pcp_list, &pcp->lists[pindex]); 2526 pcp->count += 1 << order; 2527 2528 batch = READ_ONCE(pcp->batch); 2529 /* 2530 * As high-order pages other than THP's stored on PCP can contribute 2531 * to fragmentation, limit the number stored when PCP is heavily 2532 * freeing without allocation. The remainder after bulk freeing 2533 * stops will be drained from vmstat refresh context. 2534 */ 2535 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2536 free_high = (pcp->free_count >= batch && 2537 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2538 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2539 pcp->count >= READ_ONCE(batch))); 2540 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2541 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2542 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2543 } 2544 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2545 pcp->free_count += (1 << order); 2546 high = nr_pcp_high(pcp, zone, batch, free_high); 2547 if (pcp->count >= high) { 2548 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2549 pcp, pindex); 2550 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2551 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2552 ZONE_MOVABLE, 0)) 2553 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2554 } 2555 } 2556 2557 /* 2558 * Free a pcp page 2559 */ 2560 void free_frozen_pages(struct page *page, unsigned int order) 2561 { 2562 unsigned long __maybe_unused UP_flags; 2563 struct per_cpu_pages *pcp; 2564 struct zone *zone; 2565 unsigned long pfn = page_to_pfn(page); 2566 int migratetype; 2567 2568 if (!pcp_allowed_order(order)) { 2569 __free_pages_ok(page, order, FPI_NONE); 2570 return; 2571 } 2572 2573 if (!free_pages_prepare(page, order)) 2574 return; 2575 2576 /* 2577 * We only track unmovable, reclaimable and movable on pcp lists. 2578 * Place ISOLATE pages on the isolated list because they are being 2579 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2580 * get those areas back if necessary. Otherwise, we may have to free 2581 * excessively into the page allocator 2582 */ 2583 zone = page_zone(page); 2584 migratetype = get_pfnblock_migratetype(page, pfn); 2585 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2586 if (unlikely(is_migrate_isolate(migratetype))) { 2587 free_one_page(zone, page, pfn, order, FPI_NONE); 2588 return; 2589 } 2590 migratetype = MIGRATE_MOVABLE; 2591 } 2592 2593 pcp_trylock_prepare(UP_flags); 2594 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2595 if (pcp) { 2596 free_frozen_page_commit(zone, pcp, page, migratetype, order); 2597 pcp_spin_unlock(pcp); 2598 } else { 2599 free_one_page(zone, page, pfn, order, FPI_NONE); 2600 } 2601 pcp_trylock_finish(UP_flags); 2602 } 2603 2604 /* 2605 * Free a batch of folios 2606 */ 2607 void free_unref_folios(struct folio_batch *folios) 2608 { 2609 unsigned long __maybe_unused UP_flags; 2610 struct per_cpu_pages *pcp = NULL; 2611 struct zone *locked_zone = NULL; 2612 int i, j; 2613 2614 /* Prepare folios for freeing */ 2615 for (i = 0, j = 0; i < folios->nr; i++) { 2616 struct folio *folio = folios->folios[i]; 2617 unsigned long pfn = folio_pfn(folio); 2618 unsigned int order = folio_order(folio); 2619 2620 if (!free_pages_prepare(&folio->page, order)) 2621 continue; 2622 /* 2623 * Free orders not handled on the PCP directly to the 2624 * allocator. 2625 */ 2626 if (!pcp_allowed_order(order)) { 2627 free_one_page(folio_zone(folio), &folio->page, 2628 pfn, order, FPI_NONE); 2629 continue; 2630 } 2631 folio->private = (void *)(unsigned long)order; 2632 if (j != i) 2633 folios->folios[j] = folio; 2634 j++; 2635 } 2636 folios->nr = j; 2637 2638 for (i = 0; i < folios->nr; i++) { 2639 struct folio *folio = folios->folios[i]; 2640 struct zone *zone = folio_zone(folio); 2641 unsigned long pfn = folio_pfn(folio); 2642 unsigned int order = (unsigned long)folio->private; 2643 int migratetype; 2644 2645 folio->private = NULL; 2646 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2647 2648 /* Different zone requires a different pcp lock */ 2649 if (zone != locked_zone || 2650 is_migrate_isolate(migratetype)) { 2651 if (pcp) { 2652 pcp_spin_unlock(pcp); 2653 pcp_trylock_finish(UP_flags); 2654 locked_zone = NULL; 2655 pcp = NULL; 2656 } 2657 2658 /* 2659 * Free isolated pages directly to the 2660 * allocator, see comment in free_frozen_pages. 2661 */ 2662 if (is_migrate_isolate(migratetype)) { 2663 free_one_page(zone, &folio->page, pfn, 2664 order, FPI_NONE); 2665 continue; 2666 } 2667 2668 /* 2669 * trylock is necessary as folios may be getting freed 2670 * from IRQ or SoftIRQ context after an IO completion. 2671 */ 2672 pcp_trylock_prepare(UP_flags); 2673 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2674 if (unlikely(!pcp)) { 2675 pcp_trylock_finish(UP_flags); 2676 free_one_page(zone, &folio->page, pfn, 2677 order, FPI_NONE); 2678 continue; 2679 } 2680 locked_zone = zone; 2681 } 2682 2683 /* 2684 * Non-isolated types over MIGRATE_PCPTYPES get added 2685 * to the MIGRATE_MOVABLE pcp list. 2686 */ 2687 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2688 migratetype = MIGRATE_MOVABLE; 2689 2690 trace_mm_page_free_batched(&folio->page); 2691 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 2692 order); 2693 } 2694 2695 if (pcp) { 2696 pcp_spin_unlock(pcp); 2697 pcp_trylock_finish(UP_flags); 2698 } 2699 folio_batch_reinit(folios); 2700 } 2701 2702 /* 2703 * split_page takes a non-compound higher-order page, and splits it into 2704 * n (1<<order) sub-pages: page[0..n] 2705 * Each sub-page must be freed individually. 2706 * 2707 * Note: this is probably too low level an operation for use in drivers. 2708 * Please consult with lkml before using this in your driver. 2709 */ 2710 void split_page(struct page *page, unsigned int order) 2711 { 2712 int i; 2713 2714 VM_BUG_ON_PAGE(PageCompound(page), page); 2715 VM_BUG_ON_PAGE(!page_count(page), page); 2716 2717 for (i = 1; i < (1 << order); i++) 2718 set_page_refcounted(page + i); 2719 split_page_owner(page, order, 0); 2720 pgalloc_tag_split(page_folio(page), order, 0); 2721 split_page_memcg(page, order, 0); 2722 } 2723 EXPORT_SYMBOL_GPL(split_page); 2724 2725 int __isolate_free_page(struct page *page, unsigned int order) 2726 { 2727 struct zone *zone = page_zone(page); 2728 int mt = get_pageblock_migratetype(page); 2729 2730 if (!is_migrate_isolate(mt)) { 2731 unsigned long watermark; 2732 /* 2733 * Obey watermarks as if the page was being allocated. We can 2734 * emulate a high-order watermark check with a raised order-0 2735 * watermark, because we already know our high-order page 2736 * exists. 2737 */ 2738 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2739 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2740 return 0; 2741 } 2742 2743 del_page_from_free_list(page, zone, order, mt); 2744 2745 /* 2746 * Set the pageblock if the isolated page is at least half of a 2747 * pageblock 2748 */ 2749 if (order >= pageblock_order - 1) { 2750 struct page *endpage = page + (1 << order) - 1; 2751 for (; page < endpage; page += pageblock_nr_pages) { 2752 int mt = get_pageblock_migratetype(page); 2753 /* 2754 * Only change normal pageblocks (i.e., they can merge 2755 * with others) 2756 */ 2757 if (migratetype_is_mergeable(mt)) 2758 move_freepages_block(zone, page, mt, 2759 MIGRATE_MOVABLE); 2760 } 2761 } 2762 2763 return 1UL << order; 2764 } 2765 2766 /** 2767 * __putback_isolated_page - Return a now-isolated page back where we got it 2768 * @page: Page that was isolated 2769 * @order: Order of the isolated page 2770 * @mt: The page's pageblock's migratetype 2771 * 2772 * This function is meant to return a page pulled from the free lists via 2773 * __isolate_free_page back to the free lists they were pulled from. 2774 */ 2775 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2776 { 2777 struct zone *zone = page_zone(page); 2778 2779 /* zone lock should be held when this function is called */ 2780 lockdep_assert_held(&zone->lock); 2781 2782 /* Return isolated page to tail of freelist. */ 2783 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2784 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2785 } 2786 2787 /* 2788 * Update NUMA hit/miss statistics 2789 */ 2790 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2791 long nr_account) 2792 { 2793 #ifdef CONFIG_NUMA 2794 enum numa_stat_item local_stat = NUMA_LOCAL; 2795 2796 /* skip numa counters update if numa stats is disabled */ 2797 if (!static_branch_likely(&vm_numa_stat_key)) 2798 return; 2799 2800 if (zone_to_nid(z) != numa_node_id()) 2801 local_stat = NUMA_OTHER; 2802 2803 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2804 __count_numa_events(z, NUMA_HIT, nr_account); 2805 else { 2806 __count_numa_events(z, NUMA_MISS, nr_account); 2807 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2808 } 2809 __count_numa_events(z, local_stat, nr_account); 2810 #endif 2811 } 2812 2813 static __always_inline 2814 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2815 unsigned int order, unsigned int alloc_flags, 2816 int migratetype) 2817 { 2818 struct page *page; 2819 unsigned long flags; 2820 2821 do { 2822 page = NULL; 2823 spin_lock_irqsave(&zone->lock, flags); 2824 if (alloc_flags & ALLOC_HIGHATOMIC) 2825 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2826 if (!page) { 2827 page = __rmqueue(zone, order, migratetype, alloc_flags); 2828 2829 /* 2830 * If the allocation fails, allow OOM handling and 2831 * order-0 (atomic) allocs access to HIGHATOMIC 2832 * reserves as failing now is worse than failing a 2833 * high-order atomic allocation in the future. 2834 */ 2835 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 2836 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2837 2838 if (!page) { 2839 spin_unlock_irqrestore(&zone->lock, flags); 2840 return NULL; 2841 } 2842 } 2843 spin_unlock_irqrestore(&zone->lock, flags); 2844 } while (check_new_pages(page, order)); 2845 2846 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2847 zone_statistics(preferred_zone, zone, 1); 2848 2849 return page; 2850 } 2851 2852 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2853 { 2854 int high, base_batch, batch, max_nr_alloc; 2855 int high_max, high_min; 2856 2857 base_batch = READ_ONCE(pcp->batch); 2858 high_min = READ_ONCE(pcp->high_min); 2859 high_max = READ_ONCE(pcp->high_max); 2860 high = pcp->high = clamp(pcp->high, high_min, high_max); 2861 2862 /* Check for PCP disabled or boot pageset */ 2863 if (unlikely(high < base_batch)) 2864 return 1; 2865 2866 if (order) 2867 batch = base_batch; 2868 else 2869 batch = (base_batch << pcp->alloc_factor); 2870 2871 /* 2872 * If we had larger pcp->high, we could avoid to allocate from 2873 * zone. 2874 */ 2875 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2876 high = pcp->high = min(high + batch, high_max); 2877 2878 if (!order) { 2879 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2880 /* 2881 * Double the number of pages allocated each time there is 2882 * subsequent allocation of order-0 pages without any freeing. 2883 */ 2884 if (batch <= max_nr_alloc && 2885 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2886 pcp->alloc_factor++; 2887 batch = min(batch, max_nr_alloc); 2888 } 2889 2890 /* 2891 * Scale batch relative to order if batch implies free pages 2892 * can be stored on the PCP. Batch can be 1 for small zones or 2893 * for boot pagesets which should never store free pages as 2894 * the pages may belong to arbitrary zones. 2895 */ 2896 if (batch > 1) 2897 batch = max(batch >> order, 2); 2898 2899 return batch; 2900 } 2901 2902 /* Remove page from the per-cpu list, caller must protect the list */ 2903 static inline 2904 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2905 int migratetype, 2906 unsigned int alloc_flags, 2907 struct per_cpu_pages *pcp, 2908 struct list_head *list) 2909 { 2910 struct page *page; 2911 2912 do { 2913 if (list_empty(list)) { 2914 int batch = nr_pcp_alloc(pcp, zone, order); 2915 int alloced; 2916 2917 alloced = rmqueue_bulk(zone, order, 2918 batch, list, 2919 migratetype, alloc_flags); 2920 2921 pcp->count += alloced << order; 2922 if (unlikely(list_empty(list))) 2923 return NULL; 2924 } 2925 2926 page = list_first_entry(list, struct page, pcp_list); 2927 list_del(&page->pcp_list); 2928 pcp->count -= 1 << order; 2929 } while (check_new_pages(page, order)); 2930 2931 return page; 2932 } 2933 2934 /* Lock and remove page from the per-cpu list */ 2935 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2936 struct zone *zone, unsigned int order, 2937 int migratetype, unsigned int alloc_flags) 2938 { 2939 struct per_cpu_pages *pcp; 2940 struct list_head *list; 2941 struct page *page; 2942 unsigned long __maybe_unused UP_flags; 2943 2944 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2945 pcp_trylock_prepare(UP_flags); 2946 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2947 if (!pcp) { 2948 pcp_trylock_finish(UP_flags); 2949 return NULL; 2950 } 2951 2952 /* 2953 * On allocation, reduce the number of pages that are batch freed. 2954 * See nr_pcp_free() where free_factor is increased for subsequent 2955 * frees. 2956 */ 2957 pcp->free_count >>= 1; 2958 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2959 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2960 pcp_spin_unlock(pcp); 2961 pcp_trylock_finish(UP_flags); 2962 if (page) { 2963 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2964 zone_statistics(preferred_zone, zone, 1); 2965 } 2966 return page; 2967 } 2968 2969 /* 2970 * Allocate a page from the given zone. 2971 * Use pcplists for THP or "cheap" high-order allocations. 2972 */ 2973 2974 /* 2975 * Do not instrument rmqueue() with KMSAN. This function may call 2976 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2977 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2978 * may call rmqueue() again, which will result in a deadlock. 2979 */ 2980 __no_sanitize_memory 2981 static inline 2982 struct page *rmqueue(struct zone *preferred_zone, 2983 struct zone *zone, unsigned int order, 2984 gfp_t gfp_flags, unsigned int alloc_flags, 2985 int migratetype) 2986 { 2987 struct page *page; 2988 2989 if (likely(pcp_allowed_order(order))) { 2990 page = rmqueue_pcplist(preferred_zone, zone, order, 2991 migratetype, alloc_flags); 2992 if (likely(page)) 2993 goto out; 2994 } 2995 2996 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2997 migratetype); 2998 2999 out: 3000 /* Separate test+clear to avoid unnecessary atomics */ 3001 if ((alloc_flags & ALLOC_KSWAPD) && 3002 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3003 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3004 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3005 } 3006 3007 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3008 return page; 3009 } 3010 3011 /* 3012 * Reserve the pageblock(s) surrounding an allocation request for 3013 * exclusive use of high-order atomic allocations if there are no 3014 * empty page blocks that contain a page with a suitable order 3015 */ 3016 static void reserve_highatomic_pageblock(struct page *page, int order, 3017 struct zone *zone) 3018 { 3019 int mt; 3020 unsigned long max_managed, flags; 3021 3022 /* 3023 * The number reserved as: minimum is 1 pageblock, maximum is 3024 * roughly 1% of a zone. But if 1% of a zone falls below a 3025 * pageblock size, then don't reserve any pageblocks. 3026 * Check is race-prone but harmless. 3027 */ 3028 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3029 return; 3030 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3031 if (zone->nr_reserved_highatomic >= max_managed) 3032 return; 3033 3034 spin_lock_irqsave(&zone->lock, flags); 3035 3036 /* Recheck the nr_reserved_highatomic limit under the lock */ 3037 if (zone->nr_reserved_highatomic >= max_managed) 3038 goto out_unlock; 3039 3040 /* Yoink! */ 3041 mt = get_pageblock_migratetype(page); 3042 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3043 if (!migratetype_is_mergeable(mt)) 3044 goto out_unlock; 3045 3046 if (order < pageblock_order) { 3047 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3048 goto out_unlock; 3049 zone->nr_reserved_highatomic += pageblock_nr_pages; 3050 } else { 3051 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3052 zone->nr_reserved_highatomic += 1 << order; 3053 } 3054 3055 out_unlock: 3056 spin_unlock_irqrestore(&zone->lock, flags); 3057 } 3058 3059 /* 3060 * Used when an allocation is about to fail under memory pressure. This 3061 * potentially hurts the reliability of high-order allocations when under 3062 * intense memory pressure but failed atomic allocations should be easier 3063 * to recover from than an OOM. 3064 * 3065 * If @force is true, try to unreserve pageblocks even though highatomic 3066 * pageblock is exhausted. 3067 */ 3068 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3069 bool force) 3070 { 3071 struct zonelist *zonelist = ac->zonelist; 3072 unsigned long flags; 3073 struct zoneref *z; 3074 struct zone *zone; 3075 struct page *page; 3076 int order; 3077 int ret; 3078 3079 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3080 ac->nodemask) { 3081 /* 3082 * Preserve at least one pageblock unless memory pressure 3083 * is really high. 3084 */ 3085 if (!force && zone->nr_reserved_highatomic <= 3086 pageblock_nr_pages) 3087 continue; 3088 3089 spin_lock_irqsave(&zone->lock, flags); 3090 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3091 struct free_area *area = &(zone->free_area[order]); 3092 unsigned long size; 3093 3094 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3095 if (!page) 3096 continue; 3097 3098 size = max(pageblock_nr_pages, 1UL << order); 3099 /* 3100 * It should never happen but changes to 3101 * locking could inadvertently allow a per-cpu 3102 * drain to add pages to MIGRATE_HIGHATOMIC 3103 * while unreserving so be safe and watch for 3104 * underflows. 3105 */ 3106 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3107 size = zone->nr_reserved_highatomic; 3108 zone->nr_reserved_highatomic -= size; 3109 3110 /* 3111 * Convert to ac->migratetype and avoid the normal 3112 * pageblock stealing heuristics. Minimally, the caller 3113 * is doing the work and needs the pages. More 3114 * importantly, if the block was always converted to 3115 * MIGRATE_UNMOVABLE or another type then the number 3116 * of pageblocks that cannot be completely freed 3117 * may increase. 3118 */ 3119 if (order < pageblock_order) 3120 ret = move_freepages_block(zone, page, 3121 MIGRATE_HIGHATOMIC, 3122 ac->migratetype); 3123 else { 3124 move_to_free_list(page, zone, order, 3125 MIGRATE_HIGHATOMIC, 3126 ac->migratetype); 3127 change_pageblock_range(page, order, 3128 ac->migratetype); 3129 ret = 1; 3130 } 3131 /* 3132 * Reserving the block(s) already succeeded, 3133 * so this should not fail on zone boundaries. 3134 */ 3135 WARN_ON_ONCE(ret == -1); 3136 if (ret > 0) { 3137 spin_unlock_irqrestore(&zone->lock, flags); 3138 return ret; 3139 } 3140 } 3141 spin_unlock_irqrestore(&zone->lock, flags); 3142 } 3143 3144 return false; 3145 } 3146 3147 static inline long __zone_watermark_unusable_free(struct zone *z, 3148 unsigned int order, unsigned int alloc_flags) 3149 { 3150 long unusable_free = (1 << order) - 1; 3151 3152 /* 3153 * If the caller does not have rights to reserves below the min 3154 * watermark then subtract the free pages reserved for highatomic. 3155 */ 3156 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3157 unusable_free += READ_ONCE(z->nr_free_highatomic); 3158 3159 #ifdef CONFIG_CMA 3160 /* If allocation can't use CMA areas don't use free CMA pages */ 3161 if (!(alloc_flags & ALLOC_CMA)) 3162 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3163 #endif 3164 3165 return unusable_free; 3166 } 3167 3168 /* 3169 * Return true if free base pages are above 'mark'. For high-order checks it 3170 * will return true of the order-0 watermark is reached and there is at least 3171 * one free page of a suitable size. Checking now avoids taking the zone lock 3172 * to check in the allocation paths if no pages are free. 3173 */ 3174 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3175 int highest_zoneidx, unsigned int alloc_flags, 3176 long free_pages) 3177 { 3178 long min = mark; 3179 int o; 3180 3181 /* free_pages may go negative - that's OK */ 3182 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3183 3184 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3185 /* 3186 * __GFP_HIGH allows access to 50% of the min reserve as well 3187 * as OOM. 3188 */ 3189 if (alloc_flags & ALLOC_MIN_RESERVE) { 3190 min -= min / 2; 3191 3192 /* 3193 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3194 * access more reserves than just __GFP_HIGH. Other 3195 * non-blocking allocations requests such as GFP_NOWAIT 3196 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3197 * access to the min reserve. 3198 */ 3199 if (alloc_flags & ALLOC_NON_BLOCK) 3200 min -= min / 4; 3201 } 3202 3203 /* 3204 * OOM victims can try even harder than the normal reserve 3205 * users on the grounds that it's definitely going to be in 3206 * the exit path shortly and free memory. Any allocation it 3207 * makes during the free path will be small and short-lived. 3208 */ 3209 if (alloc_flags & ALLOC_OOM) 3210 min -= min / 2; 3211 } 3212 3213 /* 3214 * Check watermarks for an order-0 allocation request. If these 3215 * are not met, then a high-order request also cannot go ahead 3216 * even if a suitable page happened to be free. 3217 */ 3218 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3219 return false; 3220 3221 /* If this is an order-0 request then the watermark is fine */ 3222 if (!order) 3223 return true; 3224 3225 /* For a high-order request, check at least one suitable page is free */ 3226 for (o = order; o < NR_PAGE_ORDERS; o++) { 3227 struct free_area *area = &z->free_area[o]; 3228 int mt; 3229 3230 if (!area->nr_free) 3231 continue; 3232 3233 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3234 if (!free_area_empty(area, mt)) 3235 return true; 3236 } 3237 3238 #ifdef CONFIG_CMA 3239 if ((alloc_flags & ALLOC_CMA) && 3240 !free_area_empty(area, MIGRATE_CMA)) { 3241 return true; 3242 } 3243 #endif 3244 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3245 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3246 return true; 3247 } 3248 } 3249 return false; 3250 } 3251 3252 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3253 int highest_zoneidx, unsigned int alloc_flags) 3254 { 3255 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3256 zone_page_state(z, NR_FREE_PAGES)); 3257 } 3258 3259 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3260 unsigned long mark, int highest_zoneidx, 3261 unsigned int alloc_flags, gfp_t gfp_mask) 3262 { 3263 long free_pages; 3264 3265 free_pages = zone_page_state(z, NR_FREE_PAGES); 3266 3267 /* 3268 * Fast check for order-0 only. If this fails then the reserves 3269 * need to be calculated. 3270 */ 3271 if (!order) { 3272 long usable_free; 3273 long reserved; 3274 3275 usable_free = free_pages; 3276 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3277 3278 /* reserved may over estimate high-atomic reserves. */ 3279 usable_free -= min(usable_free, reserved); 3280 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3281 return true; 3282 } 3283 3284 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3285 free_pages)) 3286 return true; 3287 3288 /* 3289 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3290 * when checking the min watermark. The min watermark is the 3291 * point where boosting is ignored so that kswapd is woken up 3292 * when below the low watermark. 3293 */ 3294 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3295 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3296 mark = z->_watermark[WMARK_MIN]; 3297 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3298 alloc_flags, free_pages); 3299 } 3300 3301 return false; 3302 } 3303 3304 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3305 unsigned long mark, int highest_zoneidx) 3306 { 3307 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3308 3309 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3310 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3311 3312 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3313 free_pages); 3314 } 3315 3316 #ifdef CONFIG_NUMA 3317 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3318 3319 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3320 { 3321 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3322 node_reclaim_distance; 3323 } 3324 #else /* CONFIG_NUMA */ 3325 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3326 { 3327 return true; 3328 } 3329 #endif /* CONFIG_NUMA */ 3330 3331 /* 3332 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3333 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3334 * premature use of a lower zone may cause lowmem pressure problems that 3335 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3336 * probably too small. It only makes sense to spread allocations to avoid 3337 * fragmentation between the Normal and DMA32 zones. 3338 */ 3339 static inline unsigned int 3340 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3341 { 3342 unsigned int alloc_flags; 3343 3344 /* 3345 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3346 * to save a branch. 3347 */ 3348 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3349 3350 #ifdef CONFIG_ZONE_DMA32 3351 if (!zone) 3352 return alloc_flags; 3353 3354 if (zone_idx(zone) != ZONE_NORMAL) 3355 return alloc_flags; 3356 3357 /* 3358 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3359 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3360 * on UMA that if Normal is populated then so is DMA32. 3361 */ 3362 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3363 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3364 return alloc_flags; 3365 3366 alloc_flags |= ALLOC_NOFRAGMENT; 3367 #endif /* CONFIG_ZONE_DMA32 */ 3368 return alloc_flags; 3369 } 3370 3371 /* Must be called after current_gfp_context() which can change gfp_mask */ 3372 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3373 unsigned int alloc_flags) 3374 { 3375 #ifdef CONFIG_CMA 3376 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3377 alloc_flags |= ALLOC_CMA; 3378 #endif 3379 return alloc_flags; 3380 } 3381 3382 /* 3383 * get_page_from_freelist goes through the zonelist trying to allocate 3384 * a page. 3385 */ 3386 static struct page * 3387 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3388 const struct alloc_context *ac) 3389 { 3390 struct zoneref *z; 3391 struct zone *zone; 3392 struct pglist_data *last_pgdat = NULL; 3393 bool last_pgdat_dirty_ok = false; 3394 bool no_fallback; 3395 3396 retry: 3397 /* 3398 * Scan zonelist, looking for a zone with enough free. 3399 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3400 */ 3401 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3402 z = ac->preferred_zoneref; 3403 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3404 ac->nodemask) { 3405 struct page *page; 3406 unsigned long mark; 3407 3408 if (cpusets_enabled() && 3409 (alloc_flags & ALLOC_CPUSET) && 3410 !__cpuset_zone_allowed(zone, gfp_mask)) 3411 continue; 3412 /* 3413 * When allocating a page cache page for writing, we 3414 * want to get it from a node that is within its dirty 3415 * limit, such that no single node holds more than its 3416 * proportional share of globally allowed dirty pages. 3417 * The dirty limits take into account the node's 3418 * lowmem reserves and high watermark so that kswapd 3419 * should be able to balance it without having to 3420 * write pages from its LRU list. 3421 * 3422 * XXX: For now, allow allocations to potentially 3423 * exceed the per-node dirty limit in the slowpath 3424 * (spread_dirty_pages unset) before going into reclaim, 3425 * which is important when on a NUMA setup the allowed 3426 * nodes are together not big enough to reach the 3427 * global limit. The proper fix for these situations 3428 * will require awareness of nodes in the 3429 * dirty-throttling and the flusher threads. 3430 */ 3431 if (ac->spread_dirty_pages) { 3432 if (last_pgdat != zone->zone_pgdat) { 3433 last_pgdat = zone->zone_pgdat; 3434 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3435 } 3436 3437 if (!last_pgdat_dirty_ok) 3438 continue; 3439 } 3440 3441 if (no_fallback && nr_online_nodes > 1 && 3442 zone != zonelist_zone(ac->preferred_zoneref)) { 3443 int local_nid; 3444 3445 /* 3446 * If moving to a remote node, retry but allow 3447 * fragmenting fallbacks. Locality is more important 3448 * than fragmentation avoidance. 3449 */ 3450 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3451 if (zone_to_nid(zone) != local_nid) { 3452 alloc_flags &= ~ALLOC_NOFRAGMENT; 3453 goto retry; 3454 } 3455 } 3456 3457 cond_accept_memory(zone, order); 3458 3459 /* 3460 * Detect whether the number of free pages is below high 3461 * watermark. If so, we will decrease pcp->high and free 3462 * PCP pages in free path to reduce the possibility of 3463 * premature page reclaiming. Detection is done here to 3464 * avoid to do that in hotter free path. 3465 */ 3466 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3467 goto check_alloc_wmark; 3468 3469 mark = high_wmark_pages(zone); 3470 if (zone_watermark_fast(zone, order, mark, 3471 ac->highest_zoneidx, alloc_flags, 3472 gfp_mask)) 3473 goto try_this_zone; 3474 else 3475 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3476 3477 check_alloc_wmark: 3478 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3479 if (!zone_watermark_fast(zone, order, mark, 3480 ac->highest_zoneidx, alloc_flags, 3481 gfp_mask)) { 3482 int ret; 3483 3484 if (cond_accept_memory(zone, order)) 3485 goto try_this_zone; 3486 3487 /* 3488 * Watermark failed for this zone, but see if we can 3489 * grow this zone if it contains deferred pages. 3490 */ 3491 if (deferred_pages_enabled()) { 3492 if (_deferred_grow_zone(zone, order)) 3493 goto try_this_zone; 3494 } 3495 /* Checked here to keep the fast path fast */ 3496 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3497 if (alloc_flags & ALLOC_NO_WATERMARKS) 3498 goto try_this_zone; 3499 3500 if (!node_reclaim_enabled() || 3501 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3502 continue; 3503 3504 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3505 switch (ret) { 3506 case NODE_RECLAIM_NOSCAN: 3507 /* did not scan */ 3508 continue; 3509 case NODE_RECLAIM_FULL: 3510 /* scanned but unreclaimable */ 3511 continue; 3512 default: 3513 /* did we reclaim enough */ 3514 if (zone_watermark_ok(zone, order, mark, 3515 ac->highest_zoneidx, alloc_flags)) 3516 goto try_this_zone; 3517 3518 continue; 3519 } 3520 } 3521 3522 try_this_zone: 3523 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3524 gfp_mask, alloc_flags, ac->migratetype); 3525 if (page) { 3526 prep_new_page(page, order, gfp_mask, alloc_flags); 3527 3528 /* 3529 * If this is a high-order atomic allocation then check 3530 * if the pageblock should be reserved for the future 3531 */ 3532 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3533 reserve_highatomic_pageblock(page, order, zone); 3534 3535 return page; 3536 } else { 3537 if (cond_accept_memory(zone, order)) 3538 goto try_this_zone; 3539 3540 /* Try again if zone has deferred pages */ 3541 if (deferred_pages_enabled()) { 3542 if (_deferred_grow_zone(zone, order)) 3543 goto try_this_zone; 3544 } 3545 } 3546 } 3547 3548 /* 3549 * It's possible on a UMA machine to get through all zones that are 3550 * fragmented. If avoiding fragmentation, reset and try again. 3551 */ 3552 if (no_fallback) { 3553 alloc_flags &= ~ALLOC_NOFRAGMENT; 3554 goto retry; 3555 } 3556 3557 return NULL; 3558 } 3559 3560 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3561 { 3562 unsigned int filter = SHOW_MEM_FILTER_NODES; 3563 3564 /* 3565 * This documents exceptions given to allocations in certain 3566 * contexts that are allowed to allocate outside current's set 3567 * of allowed nodes. 3568 */ 3569 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3570 if (tsk_is_oom_victim(current) || 3571 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3572 filter &= ~SHOW_MEM_FILTER_NODES; 3573 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3574 filter &= ~SHOW_MEM_FILTER_NODES; 3575 3576 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3577 } 3578 3579 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3580 { 3581 struct va_format vaf; 3582 va_list args; 3583 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3584 3585 if ((gfp_mask & __GFP_NOWARN) || 3586 !__ratelimit(&nopage_rs) || 3587 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3588 return; 3589 3590 va_start(args, fmt); 3591 vaf.fmt = fmt; 3592 vaf.va = &args; 3593 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3594 current->comm, &vaf, gfp_mask, &gfp_mask, 3595 nodemask_pr_args(nodemask)); 3596 va_end(args); 3597 3598 cpuset_print_current_mems_allowed(); 3599 pr_cont("\n"); 3600 dump_stack(); 3601 warn_alloc_show_mem(gfp_mask, nodemask); 3602 } 3603 3604 static inline struct page * 3605 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3606 unsigned int alloc_flags, 3607 const struct alloc_context *ac) 3608 { 3609 struct page *page; 3610 3611 page = get_page_from_freelist(gfp_mask, order, 3612 alloc_flags|ALLOC_CPUSET, ac); 3613 /* 3614 * fallback to ignore cpuset restriction if our nodes 3615 * are depleted 3616 */ 3617 if (!page) 3618 page = get_page_from_freelist(gfp_mask, order, 3619 alloc_flags, ac); 3620 return page; 3621 } 3622 3623 static inline struct page * 3624 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3625 const struct alloc_context *ac, unsigned long *did_some_progress) 3626 { 3627 struct oom_control oc = { 3628 .zonelist = ac->zonelist, 3629 .nodemask = ac->nodemask, 3630 .memcg = NULL, 3631 .gfp_mask = gfp_mask, 3632 .order = order, 3633 }; 3634 struct page *page; 3635 3636 *did_some_progress = 0; 3637 3638 /* 3639 * Acquire the oom lock. If that fails, somebody else is 3640 * making progress for us. 3641 */ 3642 if (!mutex_trylock(&oom_lock)) { 3643 *did_some_progress = 1; 3644 schedule_timeout_uninterruptible(1); 3645 return NULL; 3646 } 3647 3648 /* 3649 * Go through the zonelist yet one more time, keep very high watermark 3650 * here, this is only to catch a parallel oom killing, we must fail if 3651 * we're still under heavy pressure. But make sure that this reclaim 3652 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3653 * allocation which will never fail due to oom_lock already held. 3654 */ 3655 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3656 ~__GFP_DIRECT_RECLAIM, order, 3657 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3658 if (page) 3659 goto out; 3660 3661 /* Coredumps can quickly deplete all memory reserves */ 3662 if (current->flags & PF_DUMPCORE) 3663 goto out; 3664 /* The OOM killer will not help higher order allocs */ 3665 if (order > PAGE_ALLOC_COSTLY_ORDER) 3666 goto out; 3667 /* 3668 * We have already exhausted all our reclaim opportunities without any 3669 * success so it is time to admit defeat. We will skip the OOM killer 3670 * because it is very likely that the caller has a more reasonable 3671 * fallback than shooting a random task. 3672 * 3673 * The OOM killer may not free memory on a specific node. 3674 */ 3675 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3676 goto out; 3677 /* The OOM killer does not needlessly kill tasks for lowmem */ 3678 if (ac->highest_zoneidx < ZONE_NORMAL) 3679 goto out; 3680 if (pm_suspended_storage()) 3681 goto out; 3682 /* 3683 * XXX: GFP_NOFS allocations should rather fail than rely on 3684 * other request to make a forward progress. 3685 * We are in an unfortunate situation where out_of_memory cannot 3686 * do much for this context but let's try it to at least get 3687 * access to memory reserved if the current task is killed (see 3688 * out_of_memory). Once filesystems are ready to handle allocation 3689 * failures more gracefully we should just bail out here. 3690 */ 3691 3692 /* Exhausted what can be done so it's blame time */ 3693 if (out_of_memory(&oc) || 3694 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3695 *did_some_progress = 1; 3696 3697 /* 3698 * Help non-failing allocations by giving them access to memory 3699 * reserves 3700 */ 3701 if (gfp_mask & __GFP_NOFAIL) 3702 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3703 ALLOC_NO_WATERMARKS, ac); 3704 } 3705 out: 3706 mutex_unlock(&oom_lock); 3707 return page; 3708 } 3709 3710 /* 3711 * Maximum number of compaction retries with a progress before OOM 3712 * killer is consider as the only way to move forward. 3713 */ 3714 #define MAX_COMPACT_RETRIES 16 3715 3716 #ifdef CONFIG_COMPACTION 3717 /* Try memory compaction for high-order allocations before reclaim */ 3718 static struct page * 3719 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3720 unsigned int alloc_flags, const struct alloc_context *ac, 3721 enum compact_priority prio, enum compact_result *compact_result) 3722 { 3723 struct page *page = NULL; 3724 unsigned long pflags; 3725 unsigned int noreclaim_flag; 3726 3727 if (!order) 3728 return NULL; 3729 3730 psi_memstall_enter(&pflags); 3731 delayacct_compact_start(); 3732 noreclaim_flag = memalloc_noreclaim_save(); 3733 3734 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3735 prio, &page); 3736 3737 memalloc_noreclaim_restore(noreclaim_flag); 3738 psi_memstall_leave(&pflags); 3739 delayacct_compact_end(); 3740 3741 if (*compact_result == COMPACT_SKIPPED) 3742 return NULL; 3743 /* 3744 * At least in one zone compaction wasn't deferred or skipped, so let's 3745 * count a compaction stall 3746 */ 3747 count_vm_event(COMPACTSTALL); 3748 3749 /* Prep a captured page if available */ 3750 if (page) 3751 prep_new_page(page, order, gfp_mask, alloc_flags); 3752 3753 /* Try get a page from the freelist if available */ 3754 if (!page) 3755 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3756 3757 if (page) { 3758 struct zone *zone = page_zone(page); 3759 3760 zone->compact_blockskip_flush = false; 3761 compaction_defer_reset(zone, order, true); 3762 count_vm_event(COMPACTSUCCESS); 3763 return page; 3764 } 3765 3766 /* 3767 * It's bad if compaction run occurs and fails. The most likely reason 3768 * is that pages exist, but not enough to satisfy watermarks. 3769 */ 3770 count_vm_event(COMPACTFAIL); 3771 3772 cond_resched(); 3773 3774 return NULL; 3775 } 3776 3777 static inline bool 3778 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3779 enum compact_result compact_result, 3780 enum compact_priority *compact_priority, 3781 int *compaction_retries) 3782 { 3783 int max_retries = MAX_COMPACT_RETRIES; 3784 int min_priority; 3785 bool ret = false; 3786 int retries = *compaction_retries; 3787 enum compact_priority priority = *compact_priority; 3788 3789 if (!order) 3790 return false; 3791 3792 if (fatal_signal_pending(current)) 3793 return false; 3794 3795 /* 3796 * Compaction was skipped due to a lack of free order-0 3797 * migration targets. Continue if reclaim can help. 3798 */ 3799 if (compact_result == COMPACT_SKIPPED) { 3800 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3801 goto out; 3802 } 3803 3804 /* 3805 * Compaction managed to coalesce some page blocks, but the 3806 * allocation failed presumably due to a race. Retry some. 3807 */ 3808 if (compact_result == COMPACT_SUCCESS) { 3809 /* 3810 * !costly requests are much more important than 3811 * __GFP_RETRY_MAYFAIL costly ones because they are de 3812 * facto nofail and invoke OOM killer to move on while 3813 * costly can fail and users are ready to cope with 3814 * that. 1/4 retries is rather arbitrary but we would 3815 * need much more detailed feedback from compaction to 3816 * make a better decision. 3817 */ 3818 if (order > PAGE_ALLOC_COSTLY_ORDER) 3819 max_retries /= 4; 3820 3821 if (++(*compaction_retries) <= max_retries) { 3822 ret = true; 3823 goto out; 3824 } 3825 } 3826 3827 /* 3828 * Compaction failed. Retry with increasing priority. 3829 */ 3830 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3831 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3832 3833 if (*compact_priority > min_priority) { 3834 (*compact_priority)--; 3835 *compaction_retries = 0; 3836 ret = true; 3837 } 3838 out: 3839 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3840 return ret; 3841 } 3842 #else 3843 static inline struct page * 3844 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3845 unsigned int alloc_flags, const struct alloc_context *ac, 3846 enum compact_priority prio, enum compact_result *compact_result) 3847 { 3848 *compact_result = COMPACT_SKIPPED; 3849 return NULL; 3850 } 3851 3852 static inline bool 3853 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3854 enum compact_result compact_result, 3855 enum compact_priority *compact_priority, 3856 int *compaction_retries) 3857 { 3858 struct zone *zone; 3859 struct zoneref *z; 3860 3861 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3862 return false; 3863 3864 /* 3865 * There are setups with compaction disabled which would prefer to loop 3866 * inside the allocator rather than hit the oom killer prematurely. 3867 * Let's give them a good hope and keep retrying while the order-0 3868 * watermarks are OK. 3869 */ 3870 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3871 ac->highest_zoneidx, ac->nodemask) { 3872 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3873 ac->highest_zoneidx, alloc_flags)) 3874 return true; 3875 } 3876 return false; 3877 } 3878 #endif /* CONFIG_COMPACTION */ 3879 3880 #ifdef CONFIG_LOCKDEP 3881 static struct lockdep_map __fs_reclaim_map = 3882 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3883 3884 static bool __need_reclaim(gfp_t gfp_mask) 3885 { 3886 /* no reclaim without waiting on it */ 3887 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3888 return false; 3889 3890 /* this guy won't enter reclaim */ 3891 if (current->flags & PF_MEMALLOC) 3892 return false; 3893 3894 if (gfp_mask & __GFP_NOLOCKDEP) 3895 return false; 3896 3897 return true; 3898 } 3899 3900 void __fs_reclaim_acquire(unsigned long ip) 3901 { 3902 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3903 } 3904 3905 void __fs_reclaim_release(unsigned long ip) 3906 { 3907 lock_release(&__fs_reclaim_map, ip); 3908 } 3909 3910 void fs_reclaim_acquire(gfp_t gfp_mask) 3911 { 3912 gfp_mask = current_gfp_context(gfp_mask); 3913 3914 if (__need_reclaim(gfp_mask)) { 3915 if (gfp_mask & __GFP_FS) 3916 __fs_reclaim_acquire(_RET_IP_); 3917 3918 #ifdef CONFIG_MMU_NOTIFIER 3919 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3920 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3921 #endif 3922 3923 } 3924 } 3925 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3926 3927 void fs_reclaim_release(gfp_t gfp_mask) 3928 { 3929 gfp_mask = current_gfp_context(gfp_mask); 3930 3931 if (__need_reclaim(gfp_mask)) { 3932 if (gfp_mask & __GFP_FS) 3933 __fs_reclaim_release(_RET_IP_); 3934 } 3935 } 3936 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3937 #endif 3938 3939 /* 3940 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3941 * have been rebuilt so allocation retries. Reader side does not lock and 3942 * retries the allocation if zonelist changes. Writer side is protected by the 3943 * embedded spin_lock. 3944 */ 3945 static DEFINE_SEQLOCK(zonelist_update_seq); 3946 3947 static unsigned int zonelist_iter_begin(void) 3948 { 3949 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3950 return read_seqbegin(&zonelist_update_seq); 3951 3952 return 0; 3953 } 3954 3955 static unsigned int check_retry_zonelist(unsigned int seq) 3956 { 3957 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3958 return read_seqretry(&zonelist_update_seq, seq); 3959 3960 return seq; 3961 } 3962 3963 /* Perform direct synchronous page reclaim */ 3964 static unsigned long 3965 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3966 const struct alloc_context *ac) 3967 { 3968 unsigned int noreclaim_flag; 3969 unsigned long progress; 3970 3971 cond_resched(); 3972 3973 /* We now go into synchronous reclaim */ 3974 cpuset_memory_pressure_bump(); 3975 fs_reclaim_acquire(gfp_mask); 3976 noreclaim_flag = memalloc_noreclaim_save(); 3977 3978 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3979 ac->nodemask); 3980 3981 memalloc_noreclaim_restore(noreclaim_flag); 3982 fs_reclaim_release(gfp_mask); 3983 3984 cond_resched(); 3985 3986 return progress; 3987 } 3988 3989 /* The really slow allocator path where we enter direct reclaim */ 3990 static inline struct page * 3991 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3992 unsigned int alloc_flags, const struct alloc_context *ac, 3993 unsigned long *did_some_progress) 3994 { 3995 struct page *page = NULL; 3996 unsigned long pflags; 3997 bool drained = false; 3998 3999 psi_memstall_enter(&pflags); 4000 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4001 if (unlikely(!(*did_some_progress))) 4002 goto out; 4003 4004 retry: 4005 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4006 4007 /* 4008 * If an allocation failed after direct reclaim, it could be because 4009 * pages are pinned on the per-cpu lists or in high alloc reserves. 4010 * Shrink them and try again 4011 */ 4012 if (!page && !drained) { 4013 unreserve_highatomic_pageblock(ac, false); 4014 drain_all_pages(NULL); 4015 drained = true; 4016 goto retry; 4017 } 4018 out: 4019 psi_memstall_leave(&pflags); 4020 4021 return page; 4022 } 4023 4024 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4025 const struct alloc_context *ac) 4026 { 4027 struct zoneref *z; 4028 struct zone *zone; 4029 pg_data_t *last_pgdat = NULL; 4030 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4031 4032 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4033 ac->nodemask) { 4034 if (!managed_zone(zone)) 4035 continue; 4036 if (last_pgdat != zone->zone_pgdat) { 4037 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4038 last_pgdat = zone->zone_pgdat; 4039 } 4040 } 4041 } 4042 4043 static inline unsigned int 4044 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4045 { 4046 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4047 4048 /* 4049 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4050 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4051 * to save two branches. 4052 */ 4053 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4054 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4055 4056 /* 4057 * The caller may dip into page reserves a bit more if the caller 4058 * cannot run direct reclaim, or if the caller has realtime scheduling 4059 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4060 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4061 */ 4062 alloc_flags |= (__force int) 4063 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4064 4065 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4066 /* 4067 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4068 * if it can't schedule. 4069 */ 4070 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4071 alloc_flags |= ALLOC_NON_BLOCK; 4072 4073 if (order > 0) 4074 alloc_flags |= ALLOC_HIGHATOMIC; 4075 } 4076 4077 /* 4078 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4079 * GFP_ATOMIC) rather than fail, see the comment for 4080 * cpuset_node_allowed(). 4081 */ 4082 if (alloc_flags & ALLOC_MIN_RESERVE) 4083 alloc_flags &= ~ALLOC_CPUSET; 4084 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4085 alloc_flags |= ALLOC_MIN_RESERVE; 4086 4087 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4088 4089 return alloc_flags; 4090 } 4091 4092 static bool oom_reserves_allowed(struct task_struct *tsk) 4093 { 4094 if (!tsk_is_oom_victim(tsk)) 4095 return false; 4096 4097 /* 4098 * !MMU doesn't have oom reaper so give access to memory reserves 4099 * only to the thread with TIF_MEMDIE set 4100 */ 4101 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4102 return false; 4103 4104 return true; 4105 } 4106 4107 /* 4108 * Distinguish requests which really need access to full memory 4109 * reserves from oom victims which can live with a portion of it 4110 */ 4111 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4112 { 4113 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4114 return 0; 4115 if (gfp_mask & __GFP_MEMALLOC) 4116 return ALLOC_NO_WATERMARKS; 4117 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4118 return ALLOC_NO_WATERMARKS; 4119 if (!in_interrupt()) { 4120 if (current->flags & PF_MEMALLOC) 4121 return ALLOC_NO_WATERMARKS; 4122 else if (oom_reserves_allowed(current)) 4123 return ALLOC_OOM; 4124 } 4125 4126 return 0; 4127 } 4128 4129 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4130 { 4131 return !!__gfp_pfmemalloc_flags(gfp_mask); 4132 } 4133 4134 /* 4135 * Checks whether it makes sense to retry the reclaim to make a forward progress 4136 * for the given allocation request. 4137 * 4138 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4139 * without success, or when we couldn't even meet the watermark if we 4140 * reclaimed all remaining pages on the LRU lists. 4141 * 4142 * Returns true if a retry is viable or false to enter the oom path. 4143 */ 4144 static inline bool 4145 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4146 struct alloc_context *ac, int alloc_flags, 4147 bool did_some_progress, int *no_progress_loops) 4148 { 4149 struct zone *zone; 4150 struct zoneref *z; 4151 bool ret = false; 4152 4153 /* 4154 * Costly allocations might have made a progress but this doesn't mean 4155 * their order will become available due to high fragmentation so 4156 * always increment the no progress counter for them 4157 */ 4158 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4159 *no_progress_loops = 0; 4160 else 4161 (*no_progress_loops)++; 4162 4163 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4164 goto out; 4165 4166 4167 /* 4168 * Keep reclaiming pages while there is a chance this will lead 4169 * somewhere. If none of the target zones can satisfy our allocation 4170 * request even if all reclaimable pages are considered then we are 4171 * screwed and have to go OOM. 4172 */ 4173 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4174 ac->highest_zoneidx, ac->nodemask) { 4175 unsigned long available; 4176 unsigned long reclaimable; 4177 unsigned long min_wmark = min_wmark_pages(zone); 4178 bool wmark; 4179 4180 if (cpusets_enabled() && 4181 (alloc_flags & ALLOC_CPUSET) && 4182 !__cpuset_zone_allowed(zone, gfp_mask)) 4183 continue; 4184 4185 available = reclaimable = zone_reclaimable_pages(zone); 4186 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4187 4188 /* 4189 * Would the allocation succeed if we reclaimed all 4190 * reclaimable pages? 4191 */ 4192 wmark = __zone_watermark_ok(zone, order, min_wmark, 4193 ac->highest_zoneidx, alloc_flags, available); 4194 trace_reclaim_retry_zone(z, order, reclaimable, 4195 available, min_wmark, *no_progress_loops, wmark); 4196 if (wmark) { 4197 ret = true; 4198 break; 4199 } 4200 } 4201 4202 /* 4203 * Memory allocation/reclaim might be called from a WQ context and the 4204 * current implementation of the WQ concurrency control doesn't 4205 * recognize that a particular WQ is congested if the worker thread is 4206 * looping without ever sleeping. Therefore we have to do a short sleep 4207 * here rather than calling cond_resched(). 4208 */ 4209 if (current->flags & PF_WQ_WORKER) 4210 schedule_timeout_uninterruptible(1); 4211 else 4212 cond_resched(); 4213 out: 4214 /* Before OOM, exhaust highatomic_reserve */ 4215 if (!ret) 4216 return unreserve_highatomic_pageblock(ac, true); 4217 4218 return ret; 4219 } 4220 4221 static inline bool 4222 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4223 { 4224 /* 4225 * It's possible that cpuset's mems_allowed and the nodemask from 4226 * mempolicy don't intersect. This should be normally dealt with by 4227 * policy_nodemask(), but it's possible to race with cpuset update in 4228 * such a way the check therein was true, and then it became false 4229 * before we got our cpuset_mems_cookie here. 4230 * This assumes that for all allocations, ac->nodemask can come only 4231 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4232 * when it does not intersect with the cpuset restrictions) or the 4233 * caller can deal with a violated nodemask. 4234 */ 4235 if (cpusets_enabled() && ac->nodemask && 4236 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4237 ac->nodemask = NULL; 4238 return true; 4239 } 4240 4241 /* 4242 * When updating a task's mems_allowed or mempolicy nodemask, it is 4243 * possible to race with parallel threads in such a way that our 4244 * allocation can fail while the mask is being updated. If we are about 4245 * to fail, check if the cpuset changed during allocation and if so, 4246 * retry. 4247 */ 4248 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4249 return true; 4250 4251 return false; 4252 } 4253 4254 static inline struct page * 4255 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4256 struct alloc_context *ac) 4257 { 4258 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4259 bool can_compact = gfp_compaction_allowed(gfp_mask); 4260 bool nofail = gfp_mask & __GFP_NOFAIL; 4261 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4262 struct page *page = NULL; 4263 unsigned int alloc_flags; 4264 unsigned long did_some_progress; 4265 enum compact_priority compact_priority; 4266 enum compact_result compact_result; 4267 int compaction_retries; 4268 int no_progress_loops; 4269 unsigned int cpuset_mems_cookie; 4270 unsigned int zonelist_iter_cookie; 4271 int reserve_flags; 4272 4273 if (unlikely(nofail)) { 4274 /* 4275 * We most definitely don't want callers attempting to 4276 * allocate greater than order-1 page units with __GFP_NOFAIL. 4277 */ 4278 WARN_ON_ONCE(order > 1); 4279 /* 4280 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4281 * otherwise, we may result in lockup. 4282 */ 4283 WARN_ON_ONCE(!can_direct_reclaim); 4284 /* 4285 * PF_MEMALLOC request from this context is rather bizarre 4286 * because we cannot reclaim anything and only can loop waiting 4287 * for somebody to do a work for us. 4288 */ 4289 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4290 } 4291 4292 restart: 4293 compaction_retries = 0; 4294 no_progress_loops = 0; 4295 compact_result = COMPACT_SKIPPED; 4296 compact_priority = DEF_COMPACT_PRIORITY; 4297 cpuset_mems_cookie = read_mems_allowed_begin(); 4298 zonelist_iter_cookie = zonelist_iter_begin(); 4299 4300 /* 4301 * The fast path uses conservative alloc_flags to succeed only until 4302 * kswapd needs to be woken up, and to avoid the cost of setting up 4303 * alloc_flags precisely. So we do that now. 4304 */ 4305 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4306 4307 /* 4308 * We need to recalculate the starting point for the zonelist iterator 4309 * because we might have used different nodemask in the fast path, or 4310 * there was a cpuset modification and we are retrying - otherwise we 4311 * could end up iterating over non-eligible zones endlessly. 4312 */ 4313 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4314 ac->highest_zoneidx, ac->nodemask); 4315 if (!zonelist_zone(ac->preferred_zoneref)) 4316 goto nopage; 4317 4318 /* 4319 * Check for insane configurations where the cpuset doesn't contain 4320 * any suitable zone to satisfy the request - e.g. non-movable 4321 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4322 */ 4323 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4324 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4325 ac->highest_zoneidx, 4326 &cpuset_current_mems_allowed); 4327 if (!zonelist_zone(z)) 4328 goto nopage; 4329 } 4330 4331 if (alloc_flags & ALLOC_KSWAPD) 4332 wake_all_kswapds(order, gfp_mask, ac); 4333 4334 /* 4335 * The adjusted alloc_flags might result in immediate success, so try 4336 * that first 4337 */ 4338 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4339 if (page) 4340 goto got_pg; 4341 4342 /* 4343 * For costly allocations, try direct compaction first, as it's likely 4344 * that we have enough base pages and don't need to reclaim. For non- 4345 * movable high-order allocations, do that as well, as compaction will 4346 * try prevent permanent fragmentation by migrating from blocks of the 4347 * same migratetype. 4348 * Don't try this for allocations that are allowed to ignore 4349 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4350 */ 4351 if (can_direct_reclaim && can_compact && 4352 (costly_order || 4353 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4354 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4355 page = __alloc_pages_direct_compact(gfp_mask, order, 4356 alloc_flags, ac, 4357 INIT_COMPACT_PRIORITY, 4358 &compact_result); 4359 if (page) 4360 goto got_pg; 4361 4362 /* 4363 * Checks for costly allocations with __GFP_NORETRY, which 4364 * includes some THP page fault allocations 4365 */ 4366 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4367 /* 4368 * If allocating entire pageblock(s) and compaction 4369 * failed because all zones are below low watermarks 4370 * or is prohibited because it recently failed at this 4371 * order, fail immediately unless the allocator has 4372 * requested compaction and reclaim retry. 4373 * 4374 * Reclaim is 4375 * - potentially very expensive because zones are far 4376 * below their low watermarks or this is part of very 4377 * bursty high order allocations, 4378 * - not guaranteed to help because isolate_freepages() 4379 * may not iterate over freed pages as part of its 4380 * linear scan, and 4381 * - unlikely to make entire pageblocks free on its 4382 * own. 4383 */ 4384 if (compact_result == COMPACT_SKIPPED || 4385 compact_result == COMPACT_DEFERRED) 4386 goto nopage; 4387 4388 /* 4389 * Looks like reclaim/compaction is worth trying, but 4390 * sync compaction could be very expensive, so keep 4391 * using async compaction. 4392 */ 4393 compact_priority = INIT_COMPACT_PRIORITY; 4394 } 4395 } 4396 4397 retry: 4398 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4399 if (alloc_flags & ALLOC_KSWAPD) 4400 wake_all_kswapds(order, gfp_mask, ac); 4401 4402 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4403 if (reserve_flags) 4404 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4405 (alloc_flags & ALLOC_KSWAPD); 4406 4407 /* 4408 * Reset the nodemask and zonelist iterators if memory policies can be 4409 * ignored. These allocations are high priority and system rather than 4410 * user oriented. 4411 */ 4412 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4413 ac->nodemask = NULL; 4414 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4415 ac->highest_zoneidx, ac->nodemask); 4416 } 4417 4418 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4419 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4420 if (page) 4421 goto got_pg; 4422 4423 /* Caller is not willing to reclaim, we can't balance anything */ 4424 if (!can_direct_reclaim) 4425 goto nopage; 4426 4427 /* Avoid recursion of direct reclaim */ 4428 if (current->flags & PF_MEMALLOC) 4429 goto nopage; 4430 4431 /* Try direct reclaim and then allocating */ 4432 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4433 &did_some_progress); 4434 if (page) 4435 goto got_pg; 4436 4437 /* Try direct compaction and then allocating */ 4438 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4439 compact_priority, &compact_result); 4440 if (page) 4441 goto got_pg; 4442 4443 /* Do not loop if specifically requested */ 4444 if (gfp_mask & __GFP_NORETRY) 4445 goto nopage; 4446 4447 /* 4448 * Do not retry costly high order allocations unless they are 4449 * __GFP_RETRY_MAYFAIL and we can compact 4450 */ 4451 if (costly_order && (!can_compact || 4452 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4453 goto nopage; 4454 4455 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4456 did_some_progress > 0, &no_progress_loops)) 4457 goto retry; 4458 4459 /* 4460 * It doesn't make any sense to retry for the compaction if the order-0 4461 * reclaim is not able to make any progress because the current 4462 * implementation of the compaction depends on the sufficient amount 4463 * of free memory (see __compaction_suitable) 4464 */ 4465 if (did_some_progress > 0 && can_compact && 4466 should_compact_retry(ac, order, alloc_flags, 4467 compact_result, &compact_priority, 4468 &compaction_retries)) 4469 goto retry; 4470 4471 4472 /* 4473 * Deal with possible cpuset update races or zonelist updates to avoid 4474 * a unnecessary OOM kill. 4475 */ 4476 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4477 check_retry_zonelist(zonelist_iter_cookie)) 4478 goto restart; 4479 4480 /* Reclaim has failed us, start killing things */ 4481 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4482 if (page) 4483 goto got_pg; 4484 4485 /* Avoid allocations with no watermarks from looping endlessly */ 4486 if (tsk_is_oom_victim(current) && 4487 (alloc_flags & ALLOC_OOM || 4488 (gfp_mask & __GFP_NOMEMALLOC))) 4489 goto nopage; 4490 4491 /* Retry as long as the OOM killer is making progress */ 4492 if (did_some_progress) { 4493 no_progress_loops = 0; 4494 goto retry; 4495 } 4496 4497 nopage: 4498 /* 4499 * Deal with possible cpuset update races or zonelist updates to avoid 4500 * a unnecessary OOM kill. 4501 */ 4502 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4503 check_retry_zonelist(zonelist_iter_cookie)) 4504 goto restart; 4505 4506 /* 4507 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4508 * we always retry 4509 */ 4510 if (unlikely(nofail)) { 4511 /* 4512 * Lacking direct_reclaim we can't do anything to reclaim memory, 4513 * we disregard these unreasonable nofail requests and still 4514 * return NULL 4515 */ 4516 if (!can_direct_reclaim) 4517 goto fail; 4518 4519 /* 4520 * Help non-failing allocations by giving some access to memory 4521 * reserves normally used for high priority non-blocking 4522 * allocations but do not use ALLOC_NO_WATERMARKS because this 4523 * could deplete whole memory reserves which would just make 4524 * the situation worse. 4525 */ 4526 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4527 if (page) 4528 goto got_pg; 4529 4530 cond_resched(); 4531 goto retry; 4532 } 4533 fail: 4534 warn_alloc(gfp_mask, ac->nodemask, 4535 "page allocation failure: order:%u", order); 4536 got_pg: 4537 return page; 4538 } 4539 4540 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4541 int preferred_nid, nodemask_t *nodemask, 4542 struct alloc_context *ac, gfp_t *alloc_gfp, 4543 unsigned int *alloc_flags) 4544 { 4545 ac->highest_zoneidx = gfp_zone(gfp_mask); 4546 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4547 ac->nodemask = nodemask; 4548 ac->migratetype = gfp_migratetype(gfp_mask); 4549 4550 if (cpusets_enabled()) { 4551 *alloc_gfp |= __GFP_HARDWALL; 4552 /* 4553 * When we are in the interrupt context, it is irrelevant 4554 * to the current task context. It means that any node ok. 4555 */ 4556 if (in_task() && !ac->nodemask) 4557 ac->nodemask = &cpuset_current_mems_allowed; 4558 else 4559 *alloc_flags |= ALLOC_CPUSET; 4560 } 4561 4562 might_alloc(gfp_mask); 4563 4564 if (should_fail_alloc_page(gfp_mask, order)) 4565 return false; 4566 4567 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4568 4569 /* Dirty zone balancing only done in the fast path */ 4570 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4571 4572 /* 4573 * The preferred zone is used for statistics but crucially it is 4574 * also used as the starting point for the zonelist iterator. It 4575 * may get reset for allocations that ignore memory policies. 4576 */ 4577 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4578 ac->highest_zoneidx, ac->nodemask); 4579 4580 return true; 4581 } 4582 4583 /* 4584 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4585 * @gfp: GFP flags for the allocation 4586 * @preferred_nid: The preferred NUMA node ID to allocate from 4587 * @nodemask: Set of nodes to allocate from, may be NULL 4588 * @nr_pages: The number of pages desired in the array 4589 * @page_array: Array to store the pages 4590 * 4591 * This is a batched version of the page allocator that attempts to 4592 * allocate nr_pages quickly. Pages are added to the page_array. 4593 * 4594 * Note that only NULL elements are populated with pages and nr_pages 4595 * is the maximum number of pages that will be stored in the array. 4596 * 4597 * Returns the number of pages in the array. 4598 */ 4599 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4600 nodemask_t *nodemask, int nr_pages, 4601 struct page **page_array) 4602 { 4603 struct page *page; 4604 unsigned long __maybe_unused UP_flags; 4605 struct zone *zone; 4606 struct zoneref *z; 4607 struct per_cpu_pages *pcp; 4608 struct list_head *pcp_list; 4609 struct alloc_context ac; 4610 gfp_t alloc_gfp; 4611 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4612 int nr_populated = 0, nr_account = 0; 4613 4614 /* 4615 * Skip populated array elements to determine if any pages need 4616 * to be allocated before disabling IRQs. 4617 */ 4618 while (nr_populated < nr_pages && page_array[nr_populated]) 4619 nr_populated++; 4620 4621 /* No pages requested? */ 4622 if (unlikely(nr_pages <= 0)) 4623 goto out; 4624 4625 /* Already populated array? */ 4626 if (unlikely(nr_pages - nr_populated == 0)) 4627 goto out; 4628 4629 /* Bulk allocator does not support memcg accounting. */ 4630 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4631 goto failed; 4632 4633 /* Use the single page allocator for one page. */ 4634 if (nr_pages - nr_populated == 1) 4635 goto failed; 4636 4637 #ifdef CONFIG_PAGE_OWNER 4638 /* 4639 * PAGE_OWNER may recurse into the allocator to allocate space to 4640 * save the stack with pagesets.lock held. Releasing/reacquiring 4641 * removes much of the performance benefit of bulk allocation so 4642 * force the caller to allocate one page at a time as it'll have 4643 * similar performance to added complexity to the bulk allocator. 4644 */ 4645 if (static_branch_unlikely(&page_owner_inited)) 4646 goto failed; 4647 #endif 4648 4649 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4650 gfp &= gfp_allowed_mask; 4651 alloc_gfp = gfp; 4652 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4653 goto out; 4654 gfp = alloc_gfp; 4655 4656 /* Find an allowed local zone that meets the low watermark. */ 4657 z = ac.preferred_zoneref; 4658 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4659 unsigned long mark; 4660 4661 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4662 !__cpuset_zone_allowed(zone, gfp)) { 4663 continue; 4664 } 4665 4666 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4667 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4668 goto failed; 4669 } 4670 4671 cond_accept_memory(zone, 0); 4672 retry_this_zone: 4673 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4674 if (zone_watermark_fast(zone, 0, mark, 4675 zonelist_zone_idx(ac.preferred_zoneref), 4676 alloc_flags, gfp)) { 4677 break; 4678 } 4679 4680 if (cond_accept_memory(zone, 0)) 4681 goto retry_this_zone; 4682 4683 /* Try again if zone has deferred pages */ 4684 if (deferred_pages_enabled()) { 4685 if (_deferred_grow_zone(zone, 0)) 4686 goto retry_this_zone; 4687 } 4688 } 4689 4690 /* 4691 * If there are no allowed local zones that meets the watermarks then 4692 * try to allocate a single page and reclaim if necessary. 4693 */ 4694 if (unlikely(!zone)) 4695 goto failed; 4696 4697 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4698 pcp_trylock_prepare(UP_flags); 4699 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4700 if (!pcp) 4701 goto failed_irq; 4702 4703 /* Attempt the batch allocation */ 4704 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4705 while (nr_populated < nr_pages) { 4706 4707 /* Skip existing pages */ 4708 if (page_array[nr_populated]) { 4709 nr_populated++; 4710 continue; 4711 } 4712 4713 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4714 pcp, pcp_list); 4715 if (unlikely(!page)) { 4716 /* Try and allocate at least one page */ 4717 if (!nr_account) { 4718 pcp_spin_unlock(pcp); 4719 goto failed_irq; 4720 } 4721 break; 4722 } 4723 nr_account++; 4724 4725 prep_new_page(page, 0, gfp, 0); 4726 set_page_refcounted(page); 4727 page_array[nr_populated++] = page; 4728 } 4729 4730 pcp_spin_unlock(pcp); 4731 pcp_trylock_finish(UP_flags); 4732 4733 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4734 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4735 4736 out: 4737 return nr_populated; 4738 4739 failed_irq: 4740 pcp_trylock_finish(UP_flags); 4741 4742 failed: 4743 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4744 if (page) 4745 page_array[nr_populated++] = page; 4746 goto out; 4747 } 4748 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4749 4750 /* 4751 * This is the 'heart' of the zoned buddy allocator. 4752 */ 4753 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 4754 int preferred_nid, nodemask_t *nodemask) 4755 { 4756 struct page *page; 4757 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4758 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4759 struct alloc_context ac = { }; 4760 4761 /* 4762 * There are several places where we assume that the order value is sane 4763 * so bail out early if the request is out of bound. 4764 */ 4765 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4766 return NULL; 4767 4768 gfp &= gfp_allowed_mask; 4769 /* 4770 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4771 * resp. GFP_NOIO which has to be inherited for all allocation requests 4772 * from a particular context which has been marked by 4773 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4774 * movable zones are not used during allocation. 4775 */ 4776 gfp = current_gfp_context(gfp); 4777 alloc_gfp = gfp; 4778 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4779 &alloc_gfp, &alloc_flags)) 4780 return NULL; 4781 4782 /* 4783 * Forbid the first pass from falling back to types that fragment 4784 * memory until all local zones are considered. 4785 */ 4786 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4787 4788 /* First allocation attempt */ 4789 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4790 if (likely(page)) 4791 goto out; 4792 4793 alloc_gfp = gfp; 4794 ac.spread_dirty_pages = false; 4795 4796 /* 4797 * Restore the original nodemask if it was potentially replaced with 4798 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4799 */ 4800 ac.nodemask = nodemask; 4801 4802 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4803 4804 out: 4805 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4806 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4807 free_frozen_pages(page, order); 4808 page = NULL; 4809 } 4810 4811 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4812 kmsan_alloc_page(page, order, alloc_gfp); 4813 4814 return page; 4815 } 4816 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 4817 4818 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4819 int preferred_nid, nodemask_t *nodemask) 4820 { 4821 struct page *page; 4822 4823 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 4824 if (page) 4825 set_page_refcounted(page); 4826 return page; 4827 } 4828 EXPORT_SYMBOL(__alloc_pages_noprof); 4829 4830 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4831 nodemask_t *nodemask) 4832 { 4833 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4834 preferred_nid, nodemask); 4835 return page_rmappable_folio(page); 4836 } 4837 EXPORT_SYMBOL(__folio_alloc_noprof); 4838 4839 /* 4840 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4841 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4842 * you need to access high mem. 4843 */ 4844 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4845 { 4846 struct page *page; 4847 4848 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4849 if (!page) 4850 return 0; 4851 return (unsigned long) page_address(page); 4852 } 4853 EXPORT_SYMBOL(get_free_pages_noprof); 4854 4855 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4856 { 4857 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4858 } 4859 EXPORT_SYMBOL(get_zeroed_page_noprof); 4860 4861 /** 4862 * __free_pages - Free pages allocated with alloc_pages(). 4863 * @page: The page pointer returned from alloc_pages(). 4864 * @order: The order of the allocation. 4865 * 4866 * This function can free multi-page allocations that are not compound 4867 * pages. It does not check that the @order passed in matches that of 4868 * the allocation, so it is easy to leak memory. Freeing more memory 4869 * than was allocated will probably emit a warning. 4870 * 4871 * If the last reference to this page is speculative, it will be released 4872 * by put_page() which only frees the first page of a non-compound 4873 * allocation. To prevent the remaining pages from being leaked, we free 4874 * the subsequent pages here. If you want to use the page's reference 4875 * count to decide when to free the allocation, you should allocate a 4876 * compound page, and use put_page() instead of __free_pages(). 4877 * 4878 * Context: May be called in interrupt context or while holding a normal 4879 * spinlock, but not in NMI context or while holding a raw spinlock. 4880 */ 4881 void __free_pages(struct page *page, unsigned int order) 4882 { 4883 /* get PageHead before we drop reference */ 4884 int head = PageHead(page); 4885 4886 if (put_page_testzero(page)) 4887 free_frozen_pages(page, order); 4888 else if (!head) { 4889 pgalloc_tag_sub_pages(page, (1 << order) - 1); 4890 while (order-- > 0) 4891 free_frozen_pages(page + (1 << order), order); 4892 } 4893 } 4894 EXPORT_SYMBOL(__free_pages); 4895 4896 void free_pages(unsigned long addr, unsigned int order) 4897 { 4898 if (addr != 0) { 4899 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4900 __free_pages(virt_to_page((void *)addr), order); 4901 } 4902 } 4903 4904 EXPORT_SYMBOL(free_pages); 4905 4906 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4907 size_t size) 4908 { 4909 if (addr) { 4910 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4911 struct page *page = virt_to_page((void *)addr); 4912 struct page *last = page + nr; 4913 4914 split_page_owner(page, order, 0); 4915 pgalloc_tag_split(page_folio(page), order, 0); 4916 split_page_memcg(page, order, 0); 4917 while (page < --last) 4918 set_page_refcounted(last); 4919 4920 last = page + (1UL << order); 4921 for (page += nr; page < last; page++) 4922 __free_pages_ok(page, 0, FPI_TO_TAIL); 4923 } 4924 return (void *)addr; 4925 } 4926 4927 /** 4928 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4929 * @size: the number of bytes to allocate 4930 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4931 * 4932 * This function is similar to alloc_pages(), except that it allocates the 4933 * minimum number of pages to satisfy the request. alloc_pages() can only 4934 * allocate memory in power-of-two pages. 4935 * 4936 * This function is also limited by MAX_PAGE_ORDER. 4937 * 4938 * Memory allocated by this function must be released by free_pages_exact(). 4939 * 4940 * Return: pointer to the allocated area or %NULL in case of error. 4941 */ 4942 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 4943 { 4944 unsigned int order = get_order(size); 4945 unsigned long addr; 4946 4947 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4948 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4949 4950 addr = get_free_pages_noprof(gfp_mask, order); 4951 return make_alloc_exact(addr, order, size); 4952 } 4953 EXPORT_SYMBOL(alloc_pages_exact_noprof); 4954 4955 /** 4956 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4957 * pages on a node. 4958 * @nid: the preferred node ID where memory should be allocated 4959 * @size: the number of bytes to allocate 4960 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4961 * 4962 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4963 * back. 4964 * 4965 * Return: pointer to the allocated area or %NULL in case of error. 4966 */ 4967 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 4968 { 4969 unsigned int order = get_order(size); 4970 struct page *p; 4971 4972 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4973 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4974 4975 p = alloc_pages_node_noprof(nid, gfp_mask, order); 4976 if (!p) 4977 return NULL; 4978 return make_alloc_exact((unsigned long)page_address(p), order, size); 4979 } 4980 4981 /** 4982 * free_pages_exact - release memory allocated via alloc_pages_exact() 4983 * @virt: the value returned by alloc_pages_exact. 4984 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4985 * 4986 * Release the memory allocated by a previous call to alloc_pages_exact. 4987 */ 4988 void free_pages_exact(void *virt, size_t size) 4989 { 4990 unsigned long addr = (unsigned long)virt; 4991 unsigned long end = addr + PAGE_ALIGN(size); 4992 4993 while (addr < end) { 4994 free_page(addr); 4995 addr += PAGE_SIZE; 4996 } 4997 } 4998 EXPORT_SYMBOL(free_pages_exact); 4999 5000 /** 5001 * nr_free_zone_pages - count number of pages beyond high watermark 5002 * @offset: The zone index of the highest zone 5003 * 5004 * nr_free_zone_pages() counts the number of pages which are beyond the 5005 * high watermark within all zones at or below a given zone index. For each 5006 * zone, the number of pages is calculated as: 5007 * 5008 * nr_free_zone_pages = managed_pages - high_pages 5009 * 5010 * Return: number of pages beyond high watermark. 5011 */ 5012 static unsigned long nr_free_zone_pages(int offset) 5013 { 5014 struct zoneref *z; 5015 struct zone *zone; 5016 5017 /* Just pick one node, since fallback list is circular */ 5018 unsigned long sum = 0; 5019 5020 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5021 5022 for_each_zone_zonelist(zone, z, zonelist, offset) { 5023 unsigned long size = zone_managed_pages(zone); 5024 unsigned long high = high_wmark_pages(zone); 5025 if (size > high) 5026 sum += size - high; 5027 } 5028 5029 return sum; 5030 } 5031 5032 /** 5033 * nr_free_buffer_pages - count number of pages beyond high watermark 5034 * 5035 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5036 * watermark within ZONE_DMA and ZONE_NORMAL. 5037 * 5038 * Return: number of pages beyond high watermark within ZONE_DMA and 5039 * ZONE_NORMAL. 5040 */ 5041 unsigned long nr_free_buffer_pages(void) 5042 { 5043 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5044 } 5045 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5046 5047 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5048 { 5049 zoneref->zone = zone; 5050 zoneref->zone_idx = zone_idx(zone); 5051 } 5052 5053 /* 5054 * Builds allocation fallback zone lists. 5055 * 5056 * Add all populated zones of a node to the zonelist. 5057 */ 5058 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5059 { 5060 struct zone *zone; 5061 enum zone_type zone_type = MAX_NR_ZONES; 5062 int nr_zones = 0; 5063 5064 do { 5065 zone_type--; 5066 zone = pgdat->node_zones + zone_type; 5067 if (populated_zone(zone)) { 5068 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5069 check_highest_zone(zone_type); 5070 } 5071 } while (zone_type); 5072 5073 return nr_zones; 5074 } 5075 5076 #ifdef CONFIG_NUMA 5077 5078 static int __parse_numa_zonelist_order(char *s) 5079 { 5080 /* 5081 * We used to support different zonelists modes but they turned 5082 * out to be just not useful. Let's keep the warning in place 5083 * if somebody still use the cmd line parameter so that we do 5084 * not fail it silently 5085 */ 5086 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5087 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5088 return -EINVAL; 5089 } 5090 return 0; 5091 } 5092 5093 static char numa_zonelist_order[] = "Node"; 5094 #define NUMA_ZONELIST_ORDER_LEN 16 5095 /* 5096 * sysctl handler for numa_zonelist_order 5097 */ 5098 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5099 void *buffer, size_t *length, loff_t *ppos) 5100 { 5101 if (write) 5102 return __parse_numa_zonelist_order(buffer); 5103 return proc_dostring(table, write, buffer, length, ppos); 5104 } 5105 5106 static int node_load[MAX_NUMNODES]; 5107 5108 /** 5109 * find_next_best_node - find the next node that should appear in a given node's fallback list 5110 * @node: node whose fallback list we're appending 5111 * @used_node_mask: nodemask_t of already used nodes 5112 * 5113 * We use a number of factors to determine which is the next node that should 5114 * appear on a given node's fallback list. The node should not have appeared 5115 * already in @node's fallback list, and it should be the next closest node 5116 * according to the distance array (which contains arbitrary distance values 5117 * from each node to each node in the system), and should also prefer nodes 5118 * with no CPUs, since presumably they'll have very little allocation pressure 5119 * on them otherwise. 5120 * 5121 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5122 */ 5123 int find_next_best_node(int node, nodemask_t *used_node_mask) 5124 { 5125 int n, val; 5126 int min_val = INT_MAX; 5127 int best_node = NUMA_NO_NODE; 5128 5129 /* 5130 * Use the local node if we haven't already, but for memoryless local 5131 * node, we should skip it and fall back to other nodes. 5132 */ 5133 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5134 node_set(node, *used_node_mask); 5135 return node; 5136 } 5137 5138 for_each_node_state(n, N_MEMORY) { 5139 5140 /* Don't want a node to appear more than once */ 5141 if (node_isset(n, *used_node_mask)) 5142 continue; 5143 5144 /* Use the distance array to find the distance */ 5145 val = node_distance(node, n); 5146 5147 /* Penalize nodes under us ("prefer the next node") */ 5148 val += (n < node); 5149 5150 /* Give preference to headless and unused nodes */ 5151 if (!cpumask_empty(cpumask_of_node(n))) 5152 val += PENALTY_FOR_NODE_WITH_CPUS; 5153 5154 /* Slight preference for less loaded node */ 5155 val *= MAX_NUMNODES; 5156 val += node_load[n]; 5157 5158 if (val < min_val) { 5159 min_val = val; 5160 best_node = n; 5161 } 5162 } 5163 5164 if (best_node >= 0) 5165 node_set(best_node, *used_node_mask); 5166 5167 return best_node; 5168 } 5169 5170 5171 /* 5172 * Build zonelists ordered by node and zones within node. 5173 * This results in maximum locality--normal zone overflows into local 5174 * DMA zone, if any--but risks exhausting DMA zone. 5175 */ 5176 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5177 unsigned nr_nodes) 5178 { 5179 struct zoneref *zonerefs; 5180 int i; 5181 5182 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5183 5184 for (i = 0; i < nr_nodes; i++) { 5185 int nr_zones; 5186 5187 pg_data_t *node = NODE_DATA(node_order[i]); 5188 5189 nr_zones = build_zonerefs_node(node, zonerefs); 5190 zonerefs += nr_zones; 5191 } 5192 zonerefs->zone = NULL; 5193 zonerefs->zone_idx = 0; 5194 } 5195 5196 /* 5197 * Build __GFP_THISNODE zonelists 5198 */ 5199 static void build_thisnode_zonelists(pg_data_t *pgdat) 5200 { 5201 struct zoneref *zonerefs; 5202 int nr_zones; 5203 5204 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5205 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5206 zonerefs += nr_zones; 5207 zonerefs->zone = NULL; 5208 zonerefs->zone_idx = 0; 5209 } 5210 5211 static void build_zonelists(pg_data_t *pgdat) 5212 { 5213 static int node_order[MAX_NUMNODES]; 5214 int node, nr_nodes = 0; 5215 nodemask_t used_mask = NODE_MASK_NONE; 5216 int local_node, prev_node; 5217 5218 /* NUMA-aware ordering of nodes */ 5219 local_node = pgdat->node_id; 5220 prev_node = local_node; 5221 5222 memset(node_order, 0, sizeof(node_order)); 5223 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5224 /* 5225 * We don't want to pressure a particular node. 5226 * So adding penalty to the first node in same 5227 * distance group to make it round-robin. 5228 */ 5229 if (node_distance(local_node, node) != 5230 node_distance(local_node, prev_node)) 5231 node_load[node] += 1; 5232 5233 node_order[nr_nodes++] = node; 5234 prev_node = node; 5235 } 5236 5237 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5238 build_thisnode_zonelists(pgdat); 5239 pr_info("Fallback order for Node %d: ", local_node); 5240 for (node = 0; node < nr_nodes; node++) 5241 pr_cont("%d ", node_order[node]); 5242 pr_cont("\n"); 5243 } 5244 5245 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5246 /* 5247 * Return node id of node used for "local" allocations. 5248 * I.e., first node id of first zone in arg node's generic zonelist. 5249 * Used for initializing percpu 'numa_mem', which is used primarily 5250 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5251 */ 5252 int local_memory_node(int node) 5253 { 5254 struct zoneref *z; 5255 5256 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5257 gfp_zone(GFP_KERNEL), 5258 NULL); 5259 return zonelist_node_idx(z); 5260 } 5261 #endif 5262 5263 static void setup_min_unmapped_ratio(void); 5264 static void setup_min_slab_ratio(void); 5265 #else /* CONFIG_NUMA */ 5266 5267 static void build_zonelists(pg_data_t *pgdat) 5268 { 5269 struct zoneref *zonerefs; 5270 int nr_zones; 5271 5272 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5273 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5274 zonerefs += nr_zones; 5275 5276 zonerefs->zone = NULL; 5277 zonerefs->zone_idx = 0; 5278 } 5279 5280 #endif /* CONFIG_NUMA */ 5281 5282 /* 5283 * Boot pageset table. One per cpu which is going to be used for all 5284 * zones and all nodes. The parameters will be set in such a way 5285 * that an item put on a list will immediately be handed over to 5286 * the buddy list. This is safe since pageset manipulation is done 5287 * with interrupts disabled. 5288 * 5289 * The boot_pagesets must be kept even after bootup is complete for 5290 * unused processors and/or zones. They do play a role for bootstrapping 5291 * hotplugged processors. 5292 * 5293 * zoneinfo_show() and maybe other functions do 5294 * not check if the processor is online before following the pageset pointer. 5295 * Other parts of the kernel may not check if the zone is available. 5296 */ 5297 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5298 /* These effectively disable the pcplists in the boot pageset completely */ 5299 #define BOOT_PAGESET_HIGH 0 5300 #define BOOT_PAGESET_BATCH 1 5301 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5302 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5303 5304 static void __build_all_zonelists(void *data) 5305 { 5306 int nid; 5307 int __maybe_unused cpu; 5308 pg_data_t *self = data; 5309 unsigned long flags; 5310 5311 /* 5312 * The zonelist_update_seq must be acquired with irqsave because the 5313 * reader can be invoked from IRQ with GFP_ATOMIC. 5314 */ 5315 write_seqlock_irqsave(&zonelist_update_seq, flags); 5316 /* 5317 * Also disable synchronous printk() to prevent any printk() from 5318 * trying to hold port->lock, for 5319 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5320 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5321 */ 5322 printk_deferred_enter(); 5323 5324 #ifdef CONFIG_NUMA 5325 memset(node_load, 0, sizeof(node_load)); 5326 #endif 5327 5328 /* 5329 * This node is hotadded and no memory is yet present. So just 5330 * building zonelists is fine - no need to touch other nodes. 5331 */ 5332 if (self && !node_online(self->node_id)) { 5333 build_zonelists(self); 5334 } else { 5335 /* 5336 * All possible nodes have pgdat preallocated 5337 * in free_area_init 5338 */ 5339 for_each_node(nid) { 5340 pg_data_t *pgdat = NODE_DATA(nid); 5341 5342 build_zonelists(pgdat); 5343 } 5344 5345 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5346 /* 5347 * We now know the "local memory node" for each node-- 5348 * i.e., the node of the first zone in the generic zonelist. 5349 * Set up numa_mem percpu variable for on-line cpus. During 5350 * boot, only the boot cpu should be on-line; we'll init the 5351 * secondary cpus' numa_mem as they come on-line. During 5352 * node/memory hotplug, we'll fixup all on-line cpus. 5353 */ 5354 for_each_online_cpu(cpu) 5355 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5356 #endif 5357 } 5358 5359 printk_deferred_exit(); 5360 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5361 } 5362 5363 static noinline void __init 5364 build_all_zonelists_init(void) 5365 { 5366 int cpu; 5367 5368 __build_all_zonelists(NULL); 5369 5370 /* 5371 * Initialize the boot_pagesets that are going to be used 5372 * for bootstrapping processors. The real pagesets for 5373 * each zone will be allocated later when the per cpu 5374 * allocator is available. 5375 * 5376 * boot_pagesets are used also for bootstrapping offline 5377 * cpus if the system is already booted because the pagesets 5378 * are needed to initialize allocators on a specific cpu too. 5379 * F.e. the percpu allocator needs the page allocator which 5380 * needs the percpu allocator in order to allocate its pagesets 5381 * (a chicken-egg dilemma). 5382 */ 5383 for_each_possible_cpu(cpu) 5384 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5385 5386 mminit_verify_zonelist(); 5387 cpuset_init_current_mems_allowed(); 5388 } 5389 5390 /* 5391 * unless system_state == SYSTEM_BOOTING. 5392 * 5393 * __ref due to call of __init annotated helper build_all_zonelists_init 5394 * [protected by SYSTEM_BOOTING]. 5395 */ 5396 void __ref build_all_zonelists(pg_data_t *pgdat) 5397 { 5398 unsigned long vm_total_pages; 5399 5400 if (system_state == SYSTEM_BOOTING) { 5401 build_all_zonelists_init(); 5402 } else { 5403 __build_all_zonelists(pgdat); 5404 /* cpuset refresh routine should be here */ 5405 } 5406 /* Get the number of free pages beyond high watermark in all zones. */ 5407 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5408 /* 5409 * Disable grouping by mobility if the number of pages in the 5410 * system is too low to allow the mechanism to work. It would be 5411 * more accurate, but expensive to check per-zone. This check is 5412 * made on memory-hotadd so a system can start with mobility 5413 * disabled and enable it later 5414 */ 5415 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5416 page_group_by_mobility_disabled = 1; 5417 else 5418 page_group_by_mobility_disabled = 0; 5419 5420 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5421 nr_online_nodes, 5422 str_off_on(page_group_by_mobility_disabled), 5423 vm_total_pages); 5424 #ifdef CONFIG_NUMA 5425 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5426 #endif 5427 } 5428 5429 static int zone_batchsize(struct zone *zone) 5430 { 5431 #ifdef CONFIG_MMU 5432 int batch; 5433 5434 /* 5435 * The number of pages to batch allocate is either ~0.1% 5436 * of the zone or 1MB, whichever is smaller. The batch 5437 * size is striking a balance between allocation latency 5438 * and zone lock contention. 5439 */ 5440 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5441 batch /= 4; /* We effectively *= 4 below */ 5442 if (batch < 1) 5443 batch = 1; 5444 5445 /* 5446 * Clamp the batch to a 2^n - 1 value. Having a power 5447 * of 2 value was found to be more likely to have 5448 * suboptimal cache aliasing properties in some cases. 5449 * 5450 * For example if 2 tasks are alternately allocating 5451 * batches of pages, one task can end up with a lot 5452 * of pages of one half of the possible page colors 5453 * and the other with pages of the other colors. 5454 */ 5455 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5456 5457 return batch; 5458 5459 #else 5460 /* The deferral and batching of frees should be suppressed under NOMMU 5461 * conditions. 5462 * 5463 * The problem is that NOMMU needs to be able to allocate large chunks 5464 * of contiguous memory as there's no hardware page translation to 5465 * assemble apparent contiguous memory from discontiguous pages. 5466 * 5467 * Queueing large contiguous runs of pages for batching, however, 5468 * causes the pages to actually be freed in smaller chunks. As there 5469 * can be a significant delay between the individual batches being 5470 * recycled, this leads to the once large chunks of space being 5471 * fragmented and becoming unavailable for high-order allocations. 5472 */ 5473 return 0; 5474 #endif 5475 } 5476 5477 static int percpu_pagelist_high_fraction; 5478 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5479 int high_fraction) 5480 { 5481 #ifdef CONFIG_MMU 5482 int high; 5483 int nr_split_cpus; 5484 unsigned long total_pages; 5485 5486 if (!high_fraction) { 5487 /* 5488 * By default, the high value of the pcp is based on the zone 5489 * low watermark so that if they are full then background 5490 * reclaim will not be started prematurely. 5491 */ 5492 total_pages = low_wmark_pages(zone); 5493 } else { 5494 /* 5495 * If percpu_pagelist_high_fraction is configured, the high 5496 * value is based on a fraction of the managed pages in the 5497 * zone. 5498 */ 5499 total_pages = zone_managed_pages(zone) / high_fraction; 5500 } 5501 5502 /* 5503 * Split the high value across all online CPUs local to the zone. Note 5504 * that early in boot that CPUs may not be online yet and that during 5505 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5506 * onlined. For memory nodes that have no CPUs, split the high value 5507 * across all online CPUs to mitigate the risk that reclaim is triggered 5508 * prematurely due to pages stored on pcp lists. 5509 */ 5510 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5511 if (!nr_split_cpus) 5512 nr_split_cpus = num_online_cpus(); 5513 high = total_pages / nr_split_cpus; 5514 5515 /* 5516 * Ensure high is at least batch*4. The multiple is based on the 5517 * historical relationship between high and batch. 5518 */ 5519 high = max(high, batch << 2); 5520 5521 return high; 5522 #else 5523 return 0; 5524 #endif 5525 } 5526 5527 /* 5528 * pcp->high and pcp->batch values are related and generally batch is lower 5529 * than high. They are also related to pcp->count such that count is lower 5530 * than high, and as soon as it reaches high, the pcplist is flushed. 5531 * 5532 * However, guaranteeing these relations at all times would require e.g. write 5533 * barriers here but also careful usage of read barriers at the read side, and 5534 * thus be prone to error and bad for performance. Thus the update only prevents 5535 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5536 * should ensure they can cope with those fields changing asynchronously, and 5537 * fully trust only the pcp->count field on the local CPU with interrupts 5538 * disabled. 5539 * 5540 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5541 * outside of boot time (or some other assurance that no concurrent updaters 5542 * exist). 5543 */ 5544 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5545 unsigned long high_max, unsigned long batch) 5546 { 5547 WRITE_ONCE(pcp->batch, batch); 5548 WRITE_ONCE(pcp->high_min, high_min); 5549 WRITE_ONCE(pcp->high_max, high_max); 5550 } 5551 5552 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5553 { 5554 int pindex; 5555 5556 memset(pcp, 0, sizeof(*pcp)); 5557 memset(pzstats, 0, sizeof(*pzstats)); 5558 5559 spin_lock_init(&pcp->lock); 5560 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5561 INIT_LIST_HEAD(&pcp->lists[pindex]); 5562 5563 /* 5564 * Set batch and high values safe for a boot pageset. A true percpu 5565 * pageset's initialization will update them subsequently. Here we don't 5566 * need to be as careful as pageset_update() as nobody can access the 5567 * pageset yet. 5568 */ 5569 pcp->high_min = BOOT_PAGESET_HIGH; 5570 pcp->high_max = BOOT_PAGESET_HIGH; 5571 pcp->batch = BOOT_PAGESET_BATCH; 5572 pcp->free_count = 0; 5573 } 5574 5575 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5576 unsigned long high_max, unsigned long batch) 5577 { 5578 struct per_cpu_pages *pcp; 5579 int cpu; 5580 5581 for_each_possible_cpu(cpu) { 5582 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5583 pageset_update(pcp, high_min, high_max, batch); 5584 } 5585 } 5586 5587 /* 5588 * Calculate and set new high and batch values for all per-cpu pagesets of a 5589 * zone based on the zone's size. 5590 */ 5591 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5592 { 5593 int new_high_min, new_high_max, new_batch; 5594 5595 new_batch = max(1, zone_batchsize(zone)); 5596 if (percpu_pagelist_high_fraction) { 5597 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5598 percpu_pagelist_high_fraction); 5599 /* 5600 * PCP high is tuned manually, disable auto-tuning via 5601 * setting high_min and high_max to the manual value. 5602 */ 5603 new_high_max = new_high_min; 5604 } else { 5605 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5606 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5607 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5608 } 5609 5610 if (zone->pageset_high_min == new_high_min && 5611 zone->pageset_high_max == new_high_max && 5612 zone->pageset_batch == new_batch) 5613 return; 5614 5615 zone->pageset_high_min = new_high_min; 5616 zone->pageset_high_max = new_high_max; 5617 zone->pageset_batch = new_batch; 5618 5619 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5620 new_batch); 5621 } 5622 5623 void __meminit setup_zone_pageset(struct zone *zone) 5624 { 5625 int cpu; 5626 5627 /* Size may be 0 on !SMP && !NUMA */ 5628 if (sizeof(struct per_cpu_zonestat) > 0) 5629 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5630 5631 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5632 for_each_possible_cpu(cpu) { 5633 struct per_cpu_pages *pcp; 5634 struct per_cpu_zonestat *pzstats; 5635 5636 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5637 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5638 per_cpu_pages_init(pcp, pzstats); 5639 } 5640 5641 zone_set_pageset_high_and_batch(zone, 0); 5642 } 5643 5644 /* 5645 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5646 * page high values need to be recalculated. 5647 */ 5648 static void zone_pcp_update(struct zone *zone, int cpu_online) 5649 { 5650 mutex_lock(&pcp_batch_high_lock); 5651 zone_set_pageset_high_and_batch(zone, cpu_online); 5652 mutex_unlock(&pcp_batch_high_lock); 5653 } 5654 5655 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5656 { 5657 struct per_cpu_pages *pcp; 5658 struct cpu_cacheinfo *cci; 5659 5660 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5661 cci = get_cpu_cacheinfo(cpu); 5662 /* 5663 * If data cache slice of CPU is large enough, "pcp->batch" 5664 * pages can be preserved in PCP before draining PCP for 5665 * consecutive high-order pages freeing without allocation. 5666 * This can reduce zone lock contention without hurting 5667 * cache-hot pages sharing. 5668 */ 5669 spin_lock(&pcp->lock); 5670 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5671 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5672 else 5673 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5674 spin_unlock(&pcp->lock); 5675 } 5676 5677 void setup_pcp_cacheinfo(unsigned int cpu) 5678 { 5679 struct zone *zone; 5680 5681 for_each_populated_zone(zone) 5682 zone_pcp_update_cacheinfo(zone, cpu); 5683 } 5684 5685 /* 5686 * Allocate per cpu pagesets and initialize them. 5687 * Before this call only boot pagesets were available. 5688 */ 5689 void __init setup_per_cpu_pageset(void) 5690 { 5691 struct pglist_data *pgdat; 5692 struct zone *zone; 5693 int __maybe_unused cpu; 5694 5695 for_each_populated_zone(zone) 5696 setup_zone_pageset(zone); 5697 5698 #ifdef CONFIG_NUMA 5699 /* 5700 * Unpopulated zones continue using the boot pagesets. 5701 * The numa stats for these pagesets need to be reset. 5702 * Otherwise, they will end up skewing the stats of 5703 * the nodes these zones are associated with. 5704 */ 5705 for_each_possible_cpu(cpu) { 5706 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5707 memset(pzstats->vm_numa_event, 0, 5708 sizeof(pzstats->vm_numa_event)); 5709 } 5710 #endif 5711 5712 for_each_online_pgdat(pgdat) 5713 pgdat->per_cpu_nodestats = 5714 alloc_percpu(struct per_cpu_nodestat); 5715 } 5716 5717 __meminit void zone_pcp_init(struct zone *zone) 5718 { 5719 /* 5720 * per cpu subsystem is not up at this point. The following code 5721 * relies on the ability of the linker to provide the 5722 * offset of a (static) per cpu variable into the per cpu area. 5723 */ 5724 zone->per_cpu_pageset = &boot_pageset; 5725 zone->per_cpu_zonestats = &boot_zonestats; 5726 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5727 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5728 zone->pageset_batch = BOOT_PAGESET_BATCH; 5729 5730 if (populated_zone(zone)) 5731 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5732 zone->present_pages, zone_batchsize(zone)); 5733 } 5734 5735 static void setup_per_zone_lowmem_reserve(void); 5736 5737 void adjust_managed_page_count(struct page *page, long count) 5738 { 5739 atomic_long_add(count, &page_zone(page)->managed_pages); 5740 totalram_pages_add(count); 5741 setup_per_zone_lowmem_reserve(); 5742 } 5743 EXPORT_SYMBOL(adjust_managed_page_count); 5744 5745 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5746 { 5747 void *pos; 5748 unsigned long pages = 0; 5749 5750 start = (void *)PAGE_ALIGN((unsigned long)start); 5751 end = (void *)((unsigned long)end & PAGE_MASK); 5752 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5753 struct page *page = virt_to_page(pos); 5754 void *direct_map_addr; 5755 5756 /* 5757 * 'direct_map_addr' might be different from 'pos' 5758 * because some architectures' virt_to_page() 5759 * work with aliases. Getting the direct map 5760 * address ensures that we get a _writeable_ 5761 * alias for the memset(). 5762 */ 5763 direct_map_addr = page_address(page); 5764 /* 5765 * Perform a kasan-unchecked memset() since this memory 5766 * has not been initialized. 5767 */ 5768 direct_map_addr = kasan_reset_tag(direct_map_addr); 5769 if ((unsigned int)poison <= 0xFF) 5770 memset(direct_map_addr, poison, PAGE_SIZE); 5771 5772 free_reserved_page(page); 5773 } 5774 5775 if (pages && s) 5776 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5777 5778 return pages; 5779 } 5780 5781 void free_reserved_page(struct page *page) 5782 { 5783 clear_page_tag_ref(page); 5784 ClearPageReserved(page); 5785 init_page_count(page); 5786 __free_page(page); 5787 adjust_managed_page_count(page, 1); 5788 } 5789 EXPORT_SYMBOL(free_reserved_page); 5790 5791 static int page_alloc_cpu_dead(unsigned int cpu) 5792 { 5793 struct zone *zone; 5794 5795 lru_add_drain_cpu(cpu); 5796 mlock_drain_remote(cpu); 5797 drain_pages(cpu); 5798 5799 /* 5800 * Spill the event counters of the dead processor 5801 * into the current processors event counters. 5802 * This artificially elevates the count of the current 5803 * processor. 5804 */ 5805 vm_events_fold_cpu(cpu); 5806 5807 /* 5808 * Zero the differential counters of the dead processor 5809 * so that the vm statistics are consistent. 5810 * 5811 * This is only okay since the processor is dead and cannot 5812 * race with what we are doing. 5813 */ 5814 cpu_vm_stats_fold(cpu); 5815 5816 for_each_populated_zone(zone) 5817 zone_pcp_update(zone, 0); 5818 5819 return 0; 5820 } 5821 5822 static int page_alloc_cpu_online(unsigned int cpu) 5823 { 5824 struct zone *zone; 5825 5826 for_each_populated_zone(zone) 5827 zone_pcp_update(zone, 1); 5828 return 0; 5829 } 5830 5831 void __init page_alloc_init_cpuhp(void) 5832 { 5833 int ret; 5834 5835 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5836 "mm/page_alloc:pcp", 5837 page_alloc_cpu_online, 5838 page_alloc_cpu_dead); 5839 WARN_ON(ret < 0); 5840 } 5841 5842 /* 5843 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5844 * or min_free_kbytes changes. 5845 */ 5846 static void calculate_totalreserve_pages(void) 5847 { 5848 struct pglist_data *pgdat; 5849 unsigned long reserve_pages = 0; 5850 enum zone_type i, j; 5851 5852 for_each_online_pgdat(pgdat) { 5853 5854 pgdat->totalreserve_pages = 0; 5855 5856 for (i = 0; i < MAX_NR_ZONES; i++) { 5857 struct zone *zone = pgdat->node_zones + i; 5858 long max = 0; 5859 unsigned long managed_pages = zone_managed_pages(zone); 5860 5861 /* Find valid and maximum lowmem_reserve in the zone */ 5862 for (j = i; j < MAX_NR_ZONES; j++) { 5863 if (zone->lowmem_reserve[j] > max) 5864 max = zone->lowmem_reserve[j]; 5865 } 5866 5867 /* we treat the high watermark as reserved pages. */ 5868 max += high_wmark_pages(zone); 5869 5870 if (max > managed_pages) 5871 max = managed_pages; 5872 5873 pgdat->totalreserve_pages += max; 5874 5875 reserve_pages += max; 5876 } 5877 } 5878 totalreserve_pages = reserve_pages; 5879 } 5880 5881 /* 5882 * setup_per_zone_lowmem_reserve - called whenever 5883 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5884 * has a correct pages reserved value, so an adequate number of 5885 * pages are left in the zone after a successful __alloc_pages(). 5886 */ 5887 static void setup_per_zone_lowmem_reserve(void) 5888 { 5889 struct pglist_data *pgdat; 5890 enum zone_type i, j; 5891 5892 for_each_online_pgdat(pgdat) { 5893 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5894 struct zone *zone = &pgdat->node_zones[i]; 5895 int ratio = sysctl_lowmem_reserve_ratio[i]; 5896 bool clear = !ratio || !zone_managed_pages(zone); 5897 unsigned long managed_pages = 0; 5898 5899 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5900 struct zone *upper_zone = &pgdat->node_zones[j]; 5901 5902 managed_pages += zone_managed_pages(upper_zone); 5903 5904 if (clear) 5905 zone->lowmem_reserve[j] = 0; 5906 else 5907 zone->lowmem_reserve[j] = managed_pages / ratio; 5908 } 5909 } 5910 } 5911 5912 /* update totalreserve_pages */ 5913 calculate_totalreserve_pages(); 5914 } 5915 5916 static void __setup_per_zone_wmarks(void) 5917 { 5918 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5919 unsigned long lowmem_pages = 0; 5920 struct zone *zone; 5921 unsigned long flags; 5922 5923 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5924 for_each_zone(zone) { 5925 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5926 lowmem_pages += zone_managed_pages(zone); 5927 } 5928 5929 for_each_zone(zone) { 5930 u64 tmp; 5931 5932 spin_lock_irqsave(&zone->lock, flags); 5933 tmp = (u64)pages_min * zone_managed_pages(zone); 5934 tmp = div64_ul(tmp, lowmem_pages); 5935 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5936 /* 5937 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5938 * need highmem and movable zones pages, so cap pages_min 5939 * to a small value here. 5940 * 5941 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5942 * deltas control async page reclaim, and so should 5943 * not be capped for highmem and movable zones. 5944 */ 5945 unsigned long min_pages; 5946 5947 min_pages = zone_managed_pages(zone) / 1024; 5948 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5949 zone->_watermark[WMARK_MIN] = min_pages; 5950 } else { 5951 /* 5952 * If it's a lowmem zone, reserve a number of pages 5953 * proportionate to the zone's size. 5954 */ 5955 zone->_watermark[WMARK_MIN] = tmp; 5956 } 5957 5958 /* 5959 * Set the kswapd watermarks distance according to the 5960 * scale factor in proportion to available memory, but 5961 * ensure a minimum size on small systems. 5962 */ 5963 tmp = max_t(u64, tmp >> 2, 5964 mult_frac(zone_managed_pages(zone), 5965 watermark_scale_factor, 10000)); 5966 5967 zone->watermark_boost = 0; 5968 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5969 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5970 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5971 5972 spin_unlock_irqrestore(&zone->lock, flags); 5973 } 5974 5975 /* update totalreserve_pages */ 5976 calculate_totalreserve_pages(); 5977 } 5978 5979 /** 5980 * setup_per_zone_wmarks - called when min_free_kbytes changes 5981 * or when memory is hot-{added|removed} 5982 * 5983 * Ensures that the watermark[min,low,high] values for each zone are set 5984 * correctly with respect to min_free_kbytes. 5985 */ 5986 void setup_per_zone_wmarks(void) 5987 { 5988 struct zone *zone; 5989 static DEFINE_SPINLOCK(lock); 5990 5991 spin_lock(&lock); 5992 __setup_per_zone_wmarks(); 5993 spin_unlock(&lock); 5994 5995 /* 5996 * The watermark size have changed so update the pcpu batch 5997 * and high limits or the limits may be inappropriate. 5998 */ 5999 for_each_zone(zone) 6000 zone_pcp_update(zone, 0); 6001 } 6002 6003 /* 6004 * Initialise min_free_kbytes. 6005 * 6006 * For small machines we want it small (128k min). For large machines 6007 * we want it large (256MB max). But it is not linear, because network 6008 * bandwidth does not increase linearly with machine size. We use 6009 * 6010 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6011 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6012 * 6013 * which yields 6014 * 6015 * 16MB: 512k 6016 * 32MB: 724k 6017 * 64MB: 1024k 6018 * 128MB: 1448k 6019 * 256MB: 2048k 6020 * 512MB: 2896k 6021 * 1024MB: 4096k 6022 * 2048MB: 5792k 6023 * 4096MB: 8192k 6024 * 8192MB: 11584k 6025 * 16384MB: 16384k 6026 */ 6027 void calculate_min_free_kbytes(void) 6028 { 6029 unsigned long lowmem_kbytes; 6030 int new_min_free_kbytes; 6031 6032 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6033 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6034 6035 if (new_min_free_kbytes > user_min_free_kbytes) 6036 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6037 else 6038 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6039 new_min_free_kbytes, user_min_free_kbytes); 6040 6041 } 6042 6043 int __meminit init_per_zone_wmark_min(void) 6044 { 6045 calculate_min_free_kbytes(); 6046 setup_per_zone_wmarks(); 6047 refresh_zone_stat_thresholds(); 6048 setup_per_zone_lowmem_reserve(); 6049 6050 #ifdef CONFIG_NUMA 6051 setup_min_unmapped_ratio(); 6052 setup_min_slab_ratio(); 6053 #endif 6054 6055 khugepaged_min_free_kbytes_update(); 6056 6057 return 0; 6058 } 6059 postcore_initcall(init_per_zone_wmark_min) 6060 6061 /* 6062 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6063 * that we can call two helper functions whenever min_free_kbytes 6064 * changes. 6065 */ 6066 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6067 void *buffer, size_t *length, loff_t *ppos) 6068 { 6069 int rc; 6070 6071 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6072 if (rc) 6073 return rc; 6074 6075 if (write) { 6076 user_min_free_kbytes = min_free_kbytes; 6077 setup_per_zone_wmarks(); 6078 } 6079 return 0; 6080 } 6081 6082 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6083 void *buffer, size_t *length, loff_t *ppos) 6084 { 6085 int rc; 6086 6087 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6088 if (rc) 6089 return rc; 6090 6091 if (write) 6092 setup_per_zone_wmarks(); 6093 6094 return 0; 6095 } 6096 6097 #ifdef CONFIG_NUMA 6098 static void setup_min_unmapped_ratio(void) 6099 { 6100 pg_data_t *pgdat; 6101 struct zone *zone; 6102 6103 for_each_online_pgdat(pgdat) 6104 pgdat->min_unmapped_pages = 0; 6105 6106 for_each_zone(zone) 6107 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6108 sysctl_min_unmapped_ratio) / 100; 6109 } 6110 6111 6112 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6113 void *buffer, size_t *length, loff_t *ppos) 6114 { 6115 int rc; 6116 6117 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6118 if (rc) 6119 return rc; 6120 6121 setup_min_unmapped_ratio(); 6122 6123 return 0; 6124 } 6125 6126 static void setup_min_slab_ratio(void) 6127 { 6128 pg_data_t *pgdat; 6129 struct zone *zone; 6130 6131 for_each_online_pgdat(pgdat) 6132 pgdat->min_slab_pages = 0; 6133 6134 for_each_zone(zone) 6135 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6136 sysctl_min_slab_ratio) / 100; 6137 } 6138 6139 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6140 void *buffer, size_t *length, loff_t *ppos) 6141 { 6142 int rc; 6143 6144 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6145 if (rc) 6146 return rc; 6147 6148 setup_min_slab_ratio(); 6149 6150 return 0; 6151 } 6152 #endif 6153 6154 /* 6155 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6156 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6157 * whenever sysctl_lowmem_reserve_ratio changes. 6158 * 6159 * The reserve ratio obviously has absolutely no relation with the 6160 * minimum watermarks. The lowmem reserve ratio can only make sense 6161 * if in function of the boot time zone sizes. 6162 */ 6163 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6164 int write, void *buffer, size_t *length, loff_t *ppos) 6165 { 6166 int i; 6167 6168 proc_dointvec_minmax(table, write, buffer, length, ppos); 6169 6170 for (i = 0; i < MAX_NR_ZONES; i++) { 6171 if (sysctl_lowmem_reserve_ratio[i] < 1) 6172 sysctl_lowmem_reserve_ratio[i] = 0; 6173 } 6174 6175 setup_per_zone_lowmem_reserve(); 6176 return 0; 6177 } 6178 6179 /* 6180 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6181 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6182 * pagelist can have before it gets flushed back to buddy allocator. 6183 */ 6184 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6185 int write, void *buffer, size_t *length, loff_t *ppos) 6186 { 6187 struct zone *zone; 6188 int old_percpu_pagelist_high_fraction; 6189 int ret; 6190 6191 mutex_lock(&pcp_batch_high_lock); 6192 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6193 6194 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6195 if (!write || ret < 0) 6196 goto out; 6197 6198 /* Sanity checking to avoid pcp imbalance */ 6199 if (percpu_pagelist_high_fraction && 6200 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6201 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6202 ret = -EINVAL; 6203 goto out; 6204 } 6205 6206 /* No change? */ 6207 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6208 goto out; 6209 6210 for_each_populated_zone(zone) 6211 zone_set_pageset_high_and_batch(zone, 0); 6212 out: 6213 mutex_unlock(&pcp_batch_high_lock); 6214 return ret; 6215 } 6216 6217 static const struct ctl_table page_alloc_sysctl_table[] = { 6218 { 6219 .procname = "min_free_kbytes", 6220 .data = &min_free_kbytes, 6221 .maxlen = sizeof(min_free_kbytes), 6222 .mode = 0644, 6223 .proc_handler = min_free_kbytes_sysctl_handler, 6224 .extra1 = SYSCTL_ZERO, 6225 }, 6226 { 6227 .procname = "watermark_boost_factor", 6228 .data = &watermark_boost_factor, 6229 .maxlen = sizeof(watermark_boost_factor), 6230 .mode = 0644, 6231 .proc_handler = proc_dointvec_minmax, 6232 .extra1 = SYSCTL_ZERO, 6233 }, 6234 { 6235 .procname = "watermark_scale_factor", 6236 .data = &watermark_scale_factor, 6237 .maxlen = sizeof(watermark_scale_factor), 6238 .mode = 0644, 6239 .proc_handler = watermark_scale_factor_sysctl_handler, 6240 .extra1 = SYSCTL_ONE, 6241 .extra2 = SYSCTL_THREE_THOUSAND, 6242 }, 6243 { 6244 .procname = "percpu_pagelist_high_fraction", 6245 .data = &percpu_pagelist_high_fraction, 6246 .maxlen = sizeof(percpu_pagelist_high_fraction), 6247 .mode = 0644, 6248 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6249 .extra1 = SYSCTL_ZERO, 6250 }, 6251 { 6252 .procname = "lowmem_reserve_ratio", 6253 .data = &sysctl_lowmem_reserve_ratio, 6254 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6255 .mode = 0644, 6256 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6257 }, 6258 #ifdef CONFIG_NUMA 6259 { 6260 .procname = "numa_zonelist_order", 6261 .data = &numa_zonelist_order, 6262 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6263 .mode = 0644, 6264 .proc_handler = numa_zonelist_order_handler, 6265 }, 6266 { 6267 .procname = "min_unmapped_ratio", 6268 .data = &sysctl_min_unmapped_ratio, 6269 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6270 .mode = 0644, 6271 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6272 .extra1 = SYSCTL_ZERO, 6273 .extra2 = SYSCTL_ONE_HUNDRED, 6274 }, 6275 { 6276 .procname = "min_slab_ratio", 6277 .data = &sysctl_min_slab_ratio, 6278 .maxlen = sizeof(sysctl_min_slab_ratio), 6279 .mode = 0644, 6280 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6281 .extra1 = SYSCTL_ZERO, 6282 .extra2 = SYSCTL_ONE_HUNDRED, 6283 }, 6284 #endif 6285 }; 6286 6287 void __init page_alloc_sysctl_init(void) 6288 { 6289 register_sysctl_init("vm", page_alloc_sysctl_table); 6290 } 6291 6292 #ifdef CONFIG_CONTIG_ALLOC 6293 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6294 static void alloc_contig_dump_pages(struct list_head *page_list) 6295 { 6296 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6297 6298 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6299 struct page *page; 6300 6301 dump_stack(); 6302 list_for_each_entry(page, page_list, lru) 6303 dump_page(page, "migration failure"); 6304 } 6305 } 6306 6307 /* 6308 * [start, end) must belong to a single zone. 6309 * @migratetype: using migratetype to filter the type of migration in 6310 * trace_mm_alloc_contig_migrate_range_info. 6311 */ 6312 static int __alloc_contig_migrate_range(struct compact_control *cc, 6313 unsigned long start, unsigned long end, int migratetype) 6314 { 6315 /* This function is based on compact_zone() from compaction.c. */ 6316 unsigned int nr_reclaimed; 6317 unsigned long pfn = start; 6318 unsigned int tries = 0; 6319 int ret = 0; 6320 struct migration_target_control mtc = { 6321 .nid = zone_to_nid(cc->zone), 6322 .gfp_mask = cc->gfp_mask, 6323 .reason = MR_CONTIG_RANGE, 6324 }; 6325 struct page *page; 6326 unsigned long total_mapped = 0; 6327 unsigned long total_migrated = 0; 6328 unsigned long total_reclaimed = 0; 6329 6330 lru_cache_disable(); 6331 6332 while (pfn < end || !list_empty(&cc->migratepages)) { 6333 if (fatal_signal_pending(current)) { 6334 ret = -EINTR; 6335 break; 6336 } 6337 6338 if (list_empty(&cc->migratepages)) { 6339 cc->nr_migratepages = 0; 6340 ret = isolate_migratepages_range(cc, pfn, end); 6341 if (ret && ret != -EAGAIN) 6342 break; 6343 pfn = cc->migrate_pfn; 6344 tries = 0; 6345 } else if (++tries == 5) { 6346 ret = -EBUSY; 6347 break; 6348 } 6349 6350 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6351 &cc->migratepages); 6352 cc->nr_migratepages -= nr_reclaimed; 6353 6354 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6355 total_reclaimed += nr_reclaimed; 6356 list_for_each_entry(page, &cc->migratepages, lru) { 6357 struct folio *folio = page_folio(page); 6358 6359 total_mapped += folio_mapped(folio) * 6360 folio_nr_pages(folio); 6361 } 6362 } 6363 6364 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6365 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6366 6367 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6368 total_migrated += cc->nr_migratepages; 6369 6370 /* 6371 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6372 * to retry again over this error, so do the same here. 6373 */ 6374 if (ret == -ENOMEM) 6375 break; 6376 } 6377 6378 lru_cache_enable(); 6379 if (ret < 0) { 6380 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6381 alloc_contig_dump_pages(&cc->migratepages); 6382 putback_movable_pages(&cc->migratepages); 6383 } 6384 6385 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6386 total_migrated, 6387 total_reclaimed, 6388 total_mapped); 6389 return (ret < 0) ? ret : 0; 6390 } 6391 6392 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6393 { 6394 int order; 6395 6396 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6397 struct page *page, *next; 6398 int nr_pages = 1 << order; 6399 6400 list_for_each_entry_safe(page, next, &list[order], lru) { 6401 int i; 6402 6403 post_alloc_hook(page, order, gfp_mask); 6404 set_page_refcounted(page); 6405 if (!order) 6406 continue; 6407 6408 split_page(page, order); 6409 6410 /* Add all subpages to the order-0 head, in sequence. */ 6411 list_del(&page->lru); 6412 for (i = 0; i < nr_pages; i++) 6413 list_add_tail(&page[i].lru, &list[0]); 6414 } 6415 } 6416 } 6417 6418 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6419 { 6420 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6421 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6422 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6423 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6424 6425 /* 6426 * We are given the range to allocate; node, mobility and placement 6427 * hints are irrelevant at this point. We'll simply ignore them. 6428 */ 6429 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6430 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6431 6432 /* 6433 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6434 * selected action flags. 6435 */ 6436 if (gfp_mask & ~(reclaim_mask | action_mask)) 6437 return -EINVAL; 6438 6439 /* 6440 * Flags to control page compaction/migration/reclaim, to free up our 6441 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6442 * for them. 6443 * 6444 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6445 * to not degrade callers. 6446 */ 6447 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6448 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6449 return 0; 6450 } 6451 6452 /** 6453 * alloc_contig_range() -- tries to allocate given range of pages 6454 * @start: start PFN to allocate 6455 * @end: one-past-the-last PFN to allocate 6456 * @migratetype: migratetype of the underlying pageblocks (either 6457 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6458 * in range must have the same migratetype and it must 6459 * be either of the two. 6460 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6461 * action and reclaim modifiers are supported. Reclaim modifiers 6462 * control allocation behavior during compaction/migration/reclaim. 6463 * 6464 * The PFN range does not have to be pageblock aligned. The PFN range must 6465 * belong to a single zone. 6466 * 6467 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6468 * pageblocks in the range. Once isolated, the pageblocks should not 6469 * be modified by others. 6470 * 6471 * Return: zero on success or negative error code. On success all 6472 * pages which PFN is in [start, end) are allocated for the caller and 6473 * need to be freed with free_contig_range(). 6474 */ 6475 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6476 unsigned migratetype, gfp_t gfp_mask) 6477 { 6478 unsigned long outer_start, outer_end; 6479 int ret = 0; 6480 6481 struct compact_control cc = { 6482 .nr_migratepages = 0, 6483 .order = -1, 6484 .zone = page_zone(pfn_to_page(start)), 6485 .mode = MIGRATE_SYNC, 6486 .ignore_skip_hint = true, 6487 .no_set_skip_hint = true, 6488 .alloc_contig = true, 6489 }; 6490 INIT_LIST_HEAD(&cc.migratepages); 6491 6492 gfp_mask = current_gfp_context(gfp_mask); 6493 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6494 return -EINVAL; 6495 6496 /* 6497 * What we do here is we mark all pageblocks in range as 6498 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6499 * have different sizes, and due to the way page allocator 6500 * work, start_isolate_page_range() has special handlings for this. 6501 * 6502 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6503 * migrate the pages from an unaligned range (ie. pages that 6504 * we are interested in). This will put all the pages in 6505 * range back to page allocator as MIGRATE_ISOLATE. 6506 * 6507 * When this is done, we take the pages in range from page 6508 * allocator removing them from the buddy system. This way 6509 * page allocator will never consider using them. 6510 * 6511 * This lets us mark the pageblocks back as 6512 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6513 * aligned range but not in the unaligned, original range are 6514 * put back to page allocator so that buddy can use them. 6515 */ 6516 6517 ret = start_isolate_page_range(start, end, migratetype, 0); 6518 if (ret) 6519 goto done; 6520 6521 drain_all_pages(cc.zone); 6522 6523 /* 6524 * In case of -EBUSY, we'd like to know which page causes problem. 6525 * So, just fall through. test_pages_isolated() has a tracepoint 6526 * which will report the busy page. 6527 * 6528 * It is possible that busy pages could become available before 6529 * the call to test_pages_isolated, and the range will actually be 6530 * allocated. So, if we fall through be sure to clear ret so that 6531 * -EBUSY is not accidentally used or returned to caller. 6532 */ 6533 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6534 if (ret && ret != -EBUSY) 6535 goto done; 6536 6537 /* 6538 * When in-use hugetlb pages are migrated, they may simply be released 6539 * back into the free hugepage pool instead of being returned to the 6540 * buddy system. After the migration of in-use huge pages is completed, 6541 * we will invoke replace_free_hugepage_folios() to ensure that these 6542 * hugepages are properly released to the buddy system. 6543 */ 6544 ret = replace_free_hugepage_folios(start, end); 6545 if (ret) 6546 goto done; 6547 6548 /* 6549 * Pages from [start, end) are within a pageblock_nr_pages 6550 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6551 * more, all pages in [start, end) are free in page allocator. 6552 * What we are going to do is to allocate all pages from 6553 * [start, end) (that is remove them from page allocator). 6554 * 6555 * The only problem is that pages at the beginning and at the 6556 * end of interesting range may be not aligned with pages that 6557 * page allocator holds, ie. they can be part of higher order 6558 * pages. Because of this, we reserve the bigger range and 6559 * once this is done free the pages we are not interested in. 6560 * 6561 * We don't have to hold zone->lock here because the pages are 6562 * isolated thus they won't get removed from buddy. 6563 */ 6564 outer_start = find_large_buddy(start); 6565 6566 /* Make sure the range is really isolated. */ 6567 if (test_pages_isolated(outer_start, end, 0)) { 6568 ret = -EBUSY; 6569 goto done; 6570 } 6571 6572 /* Grab isolated pages from freelists. */ 6573 outer_end = isolate_freepages_range(&cc, outer_start, end); 6574 if (!outer_end) { 6575 ret = -EBUSY; 6576 goto done; 6577 } 6578 6579 if (!(gfp_mask & __GFP_COMP)) { 6580 split_free_pages(cc.freepages, gfp_mask); 6581 6582 /* Free head and tail (if any) */ 6583 if (start != outer_start) 6584 free_contig_range(outer_start, start - outer_start); 6585 if (end != outer_end) 6586 free_contig_range(end, outer_end - end); 6587 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6588 struct page *head = pfn_to_page(start); 6589 int order = ilog2(end - start); 6590 6591 check_new_pages(head, order); 6592 prep_new_page(head, order, gfp_mask, 0); 6593 set_page_refcounted(head); 6594 } else { 6595 ret = -EINVAL; 6596 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6597 start, end, outer_start, outer_end); 6598 } 6599 done: 6600 undo_isolate_page_range(start, end, migratetype); 6601 return ret; 6602 } 6603 EXPORT_SYMBOL(alloc_contig_range_noprof); 6604 6605 static int __alloc_contig_pages(unsigned long start_pfn, 6606 unsigned long nr_pages, gfp_t gfp_mask) 6607 { 6608 unsigned long end_pfn = start_pfn + nr_pages; 6609 6610 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6611 gfp_mask); 6612 } 6613 6614 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6615 unsigned long nr_pages) 6616 { 6617 unsigned long i, end_pfn = start_pfn + nr_pages; 6618 struct page *page; 6619 6620 for (i = start_pfn; i < end_pfn; i++) { 6621 page = pfn_to_online_page(i); 6622 if (!page) 6623 return false; 6624 6625 if (page_zone(page) != z) 6626 return false; 6627 6628 if (PageReserved(page)) 6629 return false; 6630 6631 if (PageHuge(page)) 6632 return false; 6633 } 6634 return true; 6635 } 6636 6637 static bool zone_spans_last_pfn(const struct zone *zone, 6638 unsigned long start_pfn, unsigned long nr_pages) 6639 { 6640 unsigned long last_pfn = start_pfn + nr_pages - 1; 6641 6642 return zone_spans_pfn(zone, last_pfn); 6643 } 6644 6645 /** 6646 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6647 * @nr_pages: Number of contiguous pages to allocate 6648 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 6649 * action and reclaim modifiers are supported. Reclaim modifiers 6650 * control allocation behavior during compaction/migration/reclaim. 6651 * @nid: Target node 6652 * @nodemask: Mask for other possible nodes 6653 * 6654 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6655 * on an applicable zonelist to find a contiguous pfn range which can then be 6656 * tried for allocation with alloc_contig_range(). This routine is intended 6657 * for allocation requests which can not be fulfilled with the buddy allocator. 6658 * 6659 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6660 * power of two, then allocated range is also guaranteed to be aligned to same 6661 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6662 * 6663 * Allocated pages can be freed with free_contig_range() or by manually calling 6664 * __free_page() on each allocated page. 6665 * 6666 * Return: pointer to contiguous pages on success, or NULL if not successful. 6667 */ 6668 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6669 int nid, nodemask_t *nodemask) 6670 { 6671 unsigned long ret, pfn, flags; 6672 struct zonelist *zonelist; 6673 struct zone *zone; 6674 struct zoneref *z; 6675 6676 zonelist = node_zonelist(nid, gfp_mask); 6677 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6678 gfp_zone(gfp_mask), nodemask) { 6679 spin_lock_irqsave(&zone->lock, flags); 6680 6681 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6682 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6683 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6684 /* 6685 * We release the zone lock here because 6686 * alloc_contig_range() will also lock the zone 6687 * at some point. If there's an allocation 6688 * spinning on this lock, it may win the race 6689 * and cause alloc_contig_range() to fail... 6690 */ 6691 spin_unlock_irqrestore(&zone->lock, flags); 6692 ret = __alloc_contig_pages(pfn, nr_pages, 6693 gfp_mask); 6694 if (!ret) 6695 return pfn_to_page(pfn); 6696 spin_lock_irqsave(&zone->lock, flags); 6697 } 6698 pfn += nr_pages; 6699 } 6700 spin_unlock_irqrestore(&zone->lock, flags); 6701 } 6702 return NULL; 6703 } 6704 #endif /* CONFIG_CONTIG_ALLOC */ 6705 6706 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6707 { 6708 unsigned long count = 0; 6709 struct folio *folio = pfn_folio(pfn); 6710 6711 if (folio_test_large(folio)) { 6712 int expected = folio_nr_pages(folio); 6713 6714 if (nr_pages == expected) 6715 folio_put(folio); 6716 else 6717 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6718 pfn, nr_pages, expected); 6719 return; 6720 } 6721 6722 for (; nr_pages--; pfn++) { 6723 struct page *page = pfn_to_page(pfn); 6724 6725 count += page_count(page) != 1; 6726 __free_page(page); 6727 } 6728 WARN(count != 0, "%lu pages are still in use!\n", count); 6729 } 6730 EXPORT_SYMBOL(free_contig_range); 6731 6732 /* 6733 * Effectively disable pcplists for the zone by setting the high limit to 0 6734 * and draining all cpus. A concurrent page freeing on another CPU that's about 6735 * to put the page on pcplist will either finish before the drain and the page 6736 * will be drained, or observe the new high limit and skip the pcplist. 6737 * 6738 * Must be paired with a call to zone_pcp_enable(). 6739 */ 6740 void zone_pcp_disable(struct zone *zone) 6741 { 6742 mutex_lock(&pcp_batch_high_lock); 6743 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6744 __drain_all_pages(zone, true); 6745 } 6746 6747 void zone_pcp_enable(struct zone *zone) 6748 { 6749 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6750 zone->pageset_high_max, zone->pageset_batch); 6751 mutex_unlock(&pcp_batch_high_lock); 6752 } 6753 6754 void zone_pcp_reset(struct zone *zone) 6755 { 6756 int cpu; 6757 struct per_cpu_zonestat *pzstats; 6758 6759 if (zone->per_cpu_pageset != &boot_pageset) { 6760 for_each_online_cpu(cpu) { 6761 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6762 drain_zonestat(zone, pzstats); 6763 } 6764 free_percpu(zone->per_cpu_pageset); 6765 zone->per_cpu_pageset = &boot_pageset; 6766 if (zone->per_cpu_zonestats != &boot_zonestats) { 6767 free_percpu(zone->per_cpu_zonestats); 6768 zone->per_cpu_zonestats = &boot_zonestats; 6769 } 6770 } 6771 } 6772 6773 #ifdef CONFIG_MEMORY_HOTREMOVE 6774 /* 6775 * All pages in the range must be in a single zone, must not contain holes, 6776 * must span full sections, and must be isolated before calling this function. 6777 * 6778 * Returns the number of managed (non-PageOffline()) pages in the range: the 6779 * number of pages for which memory offlining code must adjust managed page 6780 * counters using adjust_managed_page_count(). 6781 */ 6782 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6783 unsigned long end_pfn) 6784 { 6785 unsigned long already_offline = 0, flags; 6786 unsigned long pfn = start_pfn; 6787 struct page *page; 6788 struct zone *zone; 6789 unsigned int order; 6790 6791 offline_mem_sections(pfn, end_pfn); 6792 zone = page_zone(pfn_to_page(pfn)); 6793 spin_lock_irqsave(&zone->lock, flags); 6794 while (pfn < end_pfn) { 6795 page = pfn_to_page(pfn); 6796 /* 6797 * The HWPoisoned page may be not in buddy system, and 6798 * page_count() is not 0. 6799 */ 6800 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6801 pfn++; 6802 continue; 6803 } 6804 /* 6805 * At this point all remaining PageOffline() pages have a 6806 * reference count of 0 and can simply be skipped. 6807 */ 6808 if (PageOffline(page)) { 6809 BUG_ON(page_count(page)); 6810 BUG_ON(PageBuddy(page)); 6811 already_offline++; 6812 pfn++; 6813 continue; 6814 } 6815 6816 BUG_ON(page_count(page)); 6817 BUG_ON(!PageBuddy(page)); 6818 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6819 order = buddy_order(page); 6820 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6821 pfn += (1 << order); 6822 } 6823 spin_unlock_irqrestore(&zone->lock, flags); 6824 6825 return end_pfn - start_pfn - already_offline; 6826 } 6827 #endif 6828 6829 /* 6830 * This function returns a stable result only if called under zone lock. 6831 */ 6832 bool is_free_buddy_page(const struct page *page) 6833 { 6834 unsigned long pfn = page_to_pfn(page); 6835 unsigned int order; 6836 6837 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6838 const struct page *head = page - (pfn & ((1 << order) - 1)); 6839 6840 if (PageBuddy(head) && 6841 buddy_order_unsafe(head) >= order) 6842 break; 6843 } 6844 6845 return order <= MAX_PAGE_ORDER; 6846 } 6847 EXPORT_SYMBOL(is_free_buddy_page); 6848 6849 #ifdef CONFIG_MEMORY_FAILURE 6850 static inline void add_to_free_list(struct page *page, struct zone *zone, 6851 unsigned int order, int migratetype, 6852 bool tail) 6853 { 6854 __add_to_free_list(page, zone, order, migratetype, tail); 6855 account_freepages(zone, 1 << order, migratetype); 6856 } 6857 6858 /* 6859 * Break down a higher-order page in sub-pages, and keep our target out of 6860 * buddy allocator. 6861 */ 6862 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6863 struct page *target, int low, int high, 6864 int migratetype) 6865 { 6866 unsigned long size = 1 << high; 6867 struct page *current_buddy; 6868 6869 while (high > low) { 6870 high--; 6871 size >>= 1; 6872 6873 if (target >= &page[size]) { 6874 current_buddy = page; 6875 page = page + size; 6876 } else { 6877 current_buddy = page + size; 6878 } 6879 6880 if (set_page_guard(zone, current_buddy, high)) 6881 continue; 6882 6883 add_to_free_list(current_buddy, zone, high, migratetype, false); 6884 set_buddy_order(current_buddy, high); 6885 } 6886 } 6887 6888 /* 6889 * Take a page that will be marked as poisoned off the buddy allocator. 6890 */ 6891 bool take_page_off_buddy(struct page *page) 6892 { 6893 struct zone *zone = page_zone(page); 6894 unsigned long pfn = page_to_pfn(page); 6895 unsigned long flags; 6896 unsigned int order; 6897 bool ret = false; 6898 6899 spin_lock_irqsave(&zone->lock, flags); 6900 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6901 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6902 int page_order = buddy_order(page_head); 6903 6904 if (PageBuddy(page_head) && page_order >= order) { 6905 unsigned long pfn_head = page_to_pfn(page_head); 6906 int migratetype = get_pfnblock_migratetype(page_head, 6907 pfn_head); 6908 6909 del_page_from_free_list(page_head, zone, page_order, 6910 migratetype); 6911 break_down_buddy_pages(zone, page_head, page, 0, 6912 page_order, migratetype); 6913 SetPageHWPoisonTakenOff(page); 6914 ret = true; 6915 break; 6916 } 6917 if (page_count(page_head) > 0) 6918 break; 6919 } 6920 spin_unlock_irqrestore(&zone->lock, flags); 6921 return ret; 6922 } 6923 6924 /* 6925 * Cancel takeoff done by take_page_off_buddy(). 6926 */ 6927 bool put_page_back_buddy(struct page *page) 6928 { 6929 struct zone *zone = page_zone(page); 6930 unsigned long flags; 6931 bool ret = false; 6932 6933 spin_lock_irqsave(&zone->lock, flags); 6934 if (put_page_testzero(page)) { 6935 unsigned long pfn = page_to_pfn(page); 6936 int migratetype = get_pfnblock_migratetype(page, pfn); 6937 6938 ClearPageHWPoisonTakenOff(page); 6939 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6940 if (TestClearPageHWPoison(page)) { 6941 ret = true; 6942 } 6943 } 6944 spin_unlock_irqrestore(&zone->lock, flags); 6945 6946 return ret; 6947 } 6948 #endif 6949 6950 #ifdef CONFIG_ZONE_DMA 6951 bool has_managed_dma(void) 6952 { 6953 struct pglist_data *pgdat; 6954 6955 for_each_online_pgdat(pgdat) { 6956 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6957 6958 if (managed_zone(zone)) 6959 return true; 6960 } 6961 return false; 6962 } 6963 #endif /* CONFIG_ZONE_DMA */ 6964 6965 #ifdef CONFIG_UNACCEPTED_MEMORY 6966 6967 /* Counts number of zones with unaccepted pages. */ 6968 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6969 6970 static bool lazy_accept = true; 6971 6972 static int __init accept_memory_parse(char *p) 6973 { 6974 if (!strcmp(p, "lazy")) { 6975 lazy_accept = true; 6976 return 0; 6977 } else if (!strcmp(p, "eager")) { 6978 lazy_accept = false; 6979 return 0; 6980 } else { 6981 return -EINVAL; 6982 } 6983 } 6984 early_param("accept_memory", accept_memory_parse); 6985 6986 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6987 { 6988 phys_addr_t start = page_to_phys(page); 6989 6990 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 6991 } 6992 6993 static void __accept_page(struct zone *zone, unsigned long *flags, 6994 struct page *page) 6995 { 6996 bool last; 6997 6998 list_del(&page->lru); 6999 last = list_empty(&zone->unaccepted_pages); 7000 7001 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7002 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7003 __ClearPageUnaccepted(page); 7004 spin_unlock_irqrestore(&zone->lock, *flags); 7005 7006 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7007 7008 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7009 7010 if (last) 7011 static_branch_dec(&zones_with_unaccepted_pages); 7012 } 7013 7014 void accept_page(struct page *page) 7015 { 7016 struct zone *zone = page_zone(page); 7017 unsigned long flags; 7018 7019 spin_lock_irqsave(&zone->lock, flags); 7020 if (!PageUnaccepted(page)) { 7021 spin_unlock_irqrestore(&zone->lock, flags); 7022 return; 7023 } 7024 7025 /* Unlocks zone->lock */ 7026 __accept_page(zone, &flags, page); 7027 } 7028 7029 static bool try_to_accept_memory_one(struct zone *zone) 7030 { 7031 unsigned long flags; 7032 struct page *page; 7033 7034 spin_lock_irqsave(&zone->lock, flags); 7035 page = list_first_entry_or_null(&zone->unaccepted_pages, 7036 struct page, lru); 7037 if (!page) { 7038 spin_unlock_irqrestore(&zone->lock, flags); 7039 return false; 7040 } 7041 7042 /* Unlocks zone->lock */ 7043 __accept_page(zone, &flags, page); 7044 7045 return true; 7046 } 7047 7048 static inline bool has_unaccepted_memory(void) 7049 { 7050 return static_branch_unlikely(&zones_with_unaccepted_pages); 7051 } 7052 7053 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7054 { 7055 long to_accept, wmark; 7056 bool ret = false; 7057 7058 if (!has_unaccepted_memory()) 7059 return false; 7060 7061 if (list_empty(&zone->unaccepted_pages)) 7062 return false; 7063 7064 wmark = promo_wmark_pages(zone); 7065 7066 /* 7067 * Watermarks have not been initialized yet. 7068 * 7069 * Accepting one MAX_ORDER page to ensure progress. 7070 */ 7071 if (!wmark) 7072 return try_to_accept_memory_one(zone); 7073 7074 /* How much to accept to get to promo watermark? */ 7075 to_accept = wmark - 7076 (zone_page_state(zone, NR_FREE_PAGES) - 7077 __zone_watermark_unusable_free(zone, order, 0) - 7078 zone_page_state(zone, NR_UNACCEPTED)); 7079 7080 while (to_accept > 0) { 7081 if (!try_to_accept_memory_one(zone)) 7082 break; 7083 ret = true; 7084 to_accept -= MAX_ORDER_NR_PAGES; 7085 } 7086 7087 return ret; 7088 } 7089 7090 static bool __free_unaccepted(struct page *page) 7091 { 7092 struct zone *zone = page_zone(page); 7093 unsigned long flags; 7094 bool first = false; 7095 7096 if (!lazy_accept) 7097 return false; 7098 7099 spin_lock_irqsave(&zone->lock, flags); 7100 first = list_empty(&zone->unaccepted_pages); 7101 list_add_tail(&page->lru, &zone->unaccepted_pages); 7102 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7103 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7104 __SetPageUnaccepted(page); 7105 spin_unlock_irqrestore(&zone->lock, flags); 7106 7107 if (first) 7108 static_branch_inc(&zones_with_unaccepted_pages); 7109 7110 return true; 7111 } 7112 7113 #else 7114 7115 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7116 { 7117 return false; 7118 } 7119 7120 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7121 { 7122 return false; 7123 } 7124 7125 static bool __free_unaccepted(struct page *page) 7126 { 7127 BUILD_BUG(); 7128 return false; 7129 } 7130 7131 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7132