xref: /linux/mm/page_alloc.c (revision a58130ddc896e5a15e4de2bf50a1d89247118c23)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 #ifdef CONFIG_MOVABLE_NODE
94 	[N_MEMORY] = { { [0] = 1UL } },
95 #endif
96 	[N_CPU] = { { [0] = 1UL } },
97 #endif	/* NUMA */
98 };
99 EXPORT_SYMBOL(node_states);
100 
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
103 /*
104  * When calculating the number of globally allowed dirty pages, there
105  * is a certain number of per-zone reserves that should not be
106  * considered dirtyable memory.  This is the sum of those reserves
107  * over all existing zones that contribute dirtyable memory.
108  */
109 unsigned long dirty_balance_reserve __read_mostly;
110 
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
113 
114 #ifdef CONFIG_PM_SLEEP
115 /*
116  * The following functions are used by the suspend/hibernate code to temporarily
117  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118  * while devices are suspended.  To avoid races with the suspend/hibernate code,
119  * they should always be called with pm_mutex held (gfp_allowed_mask also should
120  * only be modified with pm_mutex held, unless the suspend/hibernate code is
121  * guaranteed not to run in parallel with that modification).
122  */
123 
124 static gfp_t saved_gfp_mask;
125 
126 void pm_restore_gfp_mask(void)
127 {
128 	WARN_ON(!mutex_is_locked(&pm_mutex));
129 	if (saved_gfp_mask) {
130 		gfp_allowed_mask = saved_gfp_mask;
131 		saved_gfp_mask = 0;
132 	}
133 }
134 
135 void pm_restrict_gfp_mask(void)
136 {
137 	WARN_ON(!mutex_is_locked(&pm_mutex));
138 	WARN_ON(saved_gfp_mask);
139 	saved_gfp_mask = gfp_allowed_mask;
140 	gfp_allowed_mask &= ~GFP_IOFS;
141 }
142 
143 bool pm_suspended_storage(void)
144 {
145 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 		return false;
147 	return true;
148 }
149 #endif /* CONFIG_PM_SLEEP */
150 
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
153 #endif
154 
155 static void __free_pages_ok(struct page *page, unsigned int order);
156 
157 /*
158  * results with 256, 32 in the lowmem_reserve sysctl:
159  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160  *	1G machine -> (16M dma, 784M normal, 224M high)
161  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
164  *
165  * TBD: should special case ZONE_DMA32 machines here - in those we normally
166  * don't need any ZONE_NORMAL reservation
167  */
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
170 	 256,
171 #endif
172 #ifdef CONFIG_ZONE_DMA32
173 	 256,
174 #endif
175 #ifdef CONFIG_HIGHMEM
176 	 32,
177 #endif
178 	 32,
179 };
180 
181 EXPORT_SYMBOL(totalram_pages);
182 
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
185 	 "DMA",
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 	 "DMA32",
189 #endif
190 	 "Normal",
191 #ifdef CONFIG_HIGHMEM
192 	 "HighMem",
193 #endif
194 	 "Movable",
195 };
196 
197 int min_free_kbytes = 1024;
198 
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
202 
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 int movable_zone;
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
214 
215 #if MAX_NUMNODES > 1
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
220 #endif
221 
222 int page_group_by_mobility_disabled __read_mostly;
223 
224 /*
225  * NOTE:
226  * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
227  * Instead, use {un}set_pageblock_isolate.
228  */
229 void set_pageblock_migratetype(struct page *page, int migratetype)
230 {
231 
232 	if (unlikely(page_group_by_mobility_disabled))
233 		migratetype = MIGRATE_UNMOVABLE;
234 
235 	set_pageblock_flags_group(page, (unsigned long)migratetype,
236 					PB_migrate, PB_migrate_end);
237 }
238 
239 bool oom_killer_disabled __read_mostly;
240 
241 #ifdef CONFIG_DEBUG_VM
242 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
243 {
244 	int ret = 0;
245 	unsigned seq;
246 	unsigned long pfn = page_to_pfn(page);
247 
248 	do {
249 		seq = zone_span_seqbegin(zone);
250 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
251 			ret = 1;
252 		else if (pfn < zone->zone_start_pfn)
253 			ret = 1;
254 	} while (zone_span_seqretry(zone, seq));
255 
256 	return ret;
257 }
258 
259 static int page_is_consistent(struct zone *zone, struct page *page)
260 {
261 	if (!pfn_valid_within(page_to_pfn(page)))
262 		return 0;
263 	if (zone != page_zone(page))
264 		return 0;
265 
266 	return 1;
267 }
268 /*
269  * Temporary debugging check for pages not lying within a given zone.
270  */
271 static int bad_range(struct zone *zone, struct page *page)
272 {
273 	if (page_outside_zone_boundaries(zone, page))
274 		return 1;
275 	if (!page_is_consistent(zone, page))
276 		return 1;
277 
278 	return 0;
279 }
280 #else
281 static inline int bad_range(struct zone *zone, struct page *page)
282 {
283 	return 0;
284 }
285 #endif
286 
287 static void bad_page(struct page *page)
288 {
289 	static unsigned long resume;
290 	static unsigned long nr_shown;
291 	static unsigned long nr_unshown;
292 
293 	/* Don't complain about poisoned pages */
294 	if (PageHWPoison(page)) {
295 		reset_page_mapcount(page); /* remove PageBuddy */
296 		return;
297 	}
298 
299 	/*
300 	 * Allow a burst of 60 reports, then keep quiet for that minute;
301 	 * or allow a steady drip of one report per second.
302 	 */
303 	if (nr_shown == 60) {
304 		if (time_before(jiffies, resume)) {
305 			nr_unshown++;
306 			goto out;
307 		}
308 		if (nr_unshown) {
309 			printk(KERN_ALERT
310 			      "BUG: Bad page state: %lu messages suppressed\n",
311 				nr_unshown);
312 			nr_unshown = 0;
313 		}
314 		nr_shown = 0;
315 	}
316 	if (nr_shown++ == 0)
317 		resume = jiffies + 60 * HZ;
318 
319 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
320 		current->comm, page_to_pfn(page));
321 	dump_page(page);
322 
323 	print_modules();
324 	dump_stack();
325 out:
326 	/* Leave bad fields for debug, except PageBuddy could make trouble */
327 	reset_page_mapcount(page); /* remove PageBuddy */
328 	add_taint(TAINT_BAD_PAGE);
329 }
330 
331 /*
332  * Higher-order pages are called "compound pages".  They are structured thusly:
333  *
334  * The first PAGE_SIZE page is called the "head page".
335  *
336  * The remaining PAGE_SIZE pages are called "tail pages".
337  *
338  * All pages have PG_compound set.  All tail pages have their ->first_page
339  * pointing at the head page.
340  *
341  * The first tail page's ->lru.next holds the address of the compound page's
342  * put_page() function.  Its ->lru.prev holds the order of allocation.
343  * This usage means that zero-order pages may not be compound.
344  */
345 
346 static void free_compound_page(struct page *page)
347 {
348 	__free_pages_ok(page, compound_order(page));
349 }
350 
351 void prep_compound_page(struct page *page, unsigned long order)
352 {
353 	int i;
354 	int nr_pages = 1 << order;
355 
356 	set_compound_page_dtor(page, free_compound_page);
357 	set_compound_order(page, order);
358 	__SetPageHead(page);
359 	for (i = 1; i < nr_pages; i++) {
360 		struct page *p = page + i;
361 		__SetPageTail(p);
362 		set_page_count(p, 0);
363 		p->first_page = page;
364 	}
365 }
366 
367 /* update __split_huge_page_refcount if you change this function */
368 static int destroy_compound_page(struct page *page, unsigned long order)
369 {
370 	int i;
371 	int nr_pages = 1 << order;
372 	int bad = 0;
373 
374 	if (unlikely(compound_order(page) != order) ||
375 	    unlikely(!PageHead(page))) {
376 		bad_page(page);
377 		bad++;
378 	}
379 
380 	__ClearPageHead(page);
381 
382 	for (i = 1; i < nr_pages; i++) {
383 		struct page *p = page + i;
384 
385 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
386 			bad_page(page);
387 			bad++;
388 		}
389 		__ClearPageTail(p);
390 	}
391 
392 	return bad;
393 }
394 
395 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
396 {
397 	int i;
398 
399 	/*
400 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
401 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
402 	 */
403 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
404 	for (i = 0; i < (1 << order); i++)
405 		clear_highpage(page + i);
406 }
407 
408 #ifdef CONFIG_DEBUG_PAGEALLOC
409 unsigned int _debug_guardpage_minorder;
410 
411 static int __init debug_guardpage_minorder_setup(char *buf)
412 {
413 	unsigned long res;
414 
415 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
416 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
417 		return 0;
418 	}
419 	_debug_guardpage_minorder = res;
420 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
421 	return 0;
422 }
423 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
424 
425 static inline void set_page_guard_flag(struct page *page)
426 {
427 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428 }
429 
430 static inline void clear_page_guard_flag(struct page *page)
431 {
432 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
433 }
434 #else
435 static inline void set_page_guard_flag(struct page *page) { }
436 static inline void clear_page_guard_flag(struct page *page) { }
437 #endif
438 
439 static inline void set_page_order(struct page *page, int order)
440 {
441 	set_page_private(page, order);
442 	__SetPageBuddy(page);
443 }
444 
445 static inline void rmv_page_order(struct page *page)
446 {
447 	__ClearPageBuddy(page);
448 	set_page_private(page, 0);
449 }
450 
451 /*
452  * Locate the struct page for both the matching buddy in our
453  * pair (buddy1) and the combined O(n+1) page they form (page).
454  *
455  * 1) Any buddy B1 will have an order O twin B2 which satisfies
456  * the following equation:
457  *     B2 = B1 ^ (1 << O)
458  * For example, if the starting buddy (buddy2) is #8 its order
459  * 1 buddy is #10:
460  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
461  *
462  * 2) Any buddy B will have an order O+1 parent P which
463  * satisfies the following equation:
464  *     P = B & ~(1 << O)
465  *
466  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
467  */
468 static inline unsigned long
469 __find_buddy_index(unsigned long page_idx, unsigned int order)
470 {
471 	return page_idx ^ (1 << order);
472 }
473 
474 /*
475  * This function checks whether a page is free && is the buddy
476  * we can do coalesce a page and its buddy if
477  * (a) the buddy is not in a hole &&
478  * (b) the buddy is in the buddy system &&
479  * (c) a page and its buddy have the same order &&
480  * (d) a page and its buddy are in the same zone.
481  *
482  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
483  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
484  *
485  * For recording page's order, we use page_private(page).
486  */
487 static inline int page_is_buddy(struct page *page, struct page *buddy,
488 								int order)
489 {
490 	if (!pfn_valid_within(page_to_pfn(buddy)))
491 		return 0;
492 
493 	if (page_zone_id(page) != page_zone_id(buddy))
494 		return 0;
495 
496 	if (page_is_guard(buddy) && page_order(buddy) == order) {
497 		VM_BUG_ON(page_count(buddy) != 0);
498 		return 1;
499 	}
500 
501 	if (PageBuddy(buddy) && page_order(buddy) == order) {
502 		VM_BUG_ON(page_count(buddy) != 0);
503 		return 1;
504 	}
505 	return 0;
506 }
507 
508 /*
509  * Freeing function for a buddy system allocator.
510  *
511  * The concept of a buddy system is to maintain direct-mapped table
512  * (containing bit values) for memory blocks of various "orders".
513  * The bottom level table contains the map for the smallest allocatable
514  * units of memory (here, pages), and each level above it describes
515  * pairs of units from the levels below, hence, "buddies".
516  * At a high level, all that happens here is marking the table entry
517  * at the bottom level available, and propagating the changes upward
518  * as necessary, plus some accounting needed to play nicely with other
519  * parts of the VM system.
520  * At each level, we keep a list of pages, which are heads of continuous
521  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
522  * order is recorded in page_private(page) field.
523  * So when we are allocating or freeing one, we can derive the state of the
524  * other.  That is, if we allocate a small block, and both were
525  * free, the remainder of the region must be split into blocks.
526  * If a block is freed, and its buddy is also free, then this
527  * triggers coalescing into a block of larger size.
528  *
529  * -- nyc
530  */
531 
532 static inline void __free_one_page(struct page *page,
533 		struct zone *zone, unsigned int order,
534 		int migratetype)
535 {
536 	unsigned long page_idx;
537 	unsigned long combined_idx;
538 	unsigned long uninitialized_var(buddy_idx);
539 	struct page *buddy;
540 
541 	if (unlikely(PageCompound(page)))
542 		if (unlikely(destroy_compound_page(page, order)))
543 			return;
544 
545 	VM_BUG_ON(migratetype == -1);
546 
547 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
548 
549 	VM_BUG_ON(page_idx & ((1 << order) - 1));
550 	VM_BUG_ON(bad_range(zone, page));
551 
552 	while (order < MAX_ORDER-1) {
553 		buddy_idx = __find_buddy_index(page_idx, order);
554 		buddy = page + (buddy_idx - page_idx);
555 		if (!page_is_buddy(page, buddy, order))
556 			break;
557 		/*
558 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
559 		 * merge with it and move up one order.
560 		 */
561 		if (page_is_guard(buddy)) {
562 			clear_page_guard_flag(buddy);
563 			set_page_private(page, 0);
564 			__mod_zone_freepage_state(zone, 1 << order,
565 						  migratetype);
566 		} else {
567 			list_del(&buddy->lru);
568 			zone->free_area[order].nr_free--;
569 			rmv_page_order(buddy);
570 		}
571 		combined_idx = buddy_idx & page_idx;
572 		page = page + (combined_idx - page_idx);
573 		page_idx = combined_idx;
574 		order++;
575 	}
576 	set_page_order(page, order);
577 
578 	/*
579 	 * If this is not the largest possible page, check if the buddy
580 	 * of the next-highest order is free. If it is, it's possible
581 	 * that pages are being freed that will coalesce soon. In case,
582 	 * that is happening, add the free page to the tail of the list
583 	 * so it's less likely to be used soon and more likely to be merged
584 	 * as a higher order page
585 	 */
586 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
587 		struct page *higher_page, *higher_buddy;
588 		combined_idx = buddy_idx & page_idx;
589 		higher_page = page + (combined_idx - page_idx);
590 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
591 		higher_buddy = higher_page + (buddy_idx - combined_idx);
592 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
593 			list_add_tail(&page->lru,
594 				&zone->free_area[order].free_list[migratetype]);
595 			goto out;
596 		}
597 	}
598 
599 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
600 out:
601 	zone->free_area[order].nr_free++;
602 }
603 
604 static inline int free_pages_check(struct page *page)
605 {
606 	if (unlikely(page_mapcount(page) |
607 		(page->mapping != NULL)  |
608 		(atomic_read(&page->_count) != 0) |
609 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
610 		(mem_cgroup_bad_page_check(page)))) {
611 		bad_page(page);
612 		return 1;
613 	}
614 	reset_page_last_nid(page);
615 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
616 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
617 	return 0;
618 }
619 
620 /*
621  * Frees a number of pages from the PCP lists
622  * Assumes all pages on list are in same zone, and of same order.
623  * count is the number of pages to free.
624  *
625  * If the zone was previously in an "all pages pinned" state then look to
626  * see if this freeing clears that state.
627  *
628  * And clear the zone's pages_scanned counter, to hold off the "all pages are
629  * pinned" detection logic.
630  */
631 static void free_pcppages_bulk(struct zone *zone, int count,
632 					struct per_cpu_pages *pcp)
633 {
634 	int migratetype = 0;
635 	int batch_free = 0;
636 	int to_free = count;
637 
638 	spin_lock(&zone->lock);
639 	zone->all_unreclaimable = 0;
640 	zone->pages_scanned = 0;
641 
642 	while (to_free) {
643 		struct page *page;
644 		struct list_head *list;
645 
646 		/*
647 		 * Remove pages from lists in a round-robin fashion. A
648 		 * batch_free count is maintained that is incremented when an
649 		 * empty list is encountered.  This is so more pages are freed
650 		 * off fuller lists instead of spinning excessively around empty
651 		 * lists
652 		 */
653 		do {
654 			batch_free++;
655 			if (++migratetype == MIGRATE_PCPTYPES)
656 				migratetype = 0;
657 			list = &pcp->lists[migratetype];
658 		} while (list_empty(list));
659 
660 		/* This is the only non-empty list. Free them all. */
661 		if (batch_free == MIGRATE_PCPTYPES)
662 			batch_free = to_free;
663 
664 		do {
665 			int mt;	/* migratetype of the to-be-freed page */
666 
667 			page = list_entry(list->prev, struct page, lru);
668 			/* must delete as __free_one_page list manipulates */
669 			list_del(&page->lru);
670 			mt = get_freepage_migratetype(page);
671 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
672 			__free_one_page(page, zone, 0, mt);
673 			trace_mm_page_pcpu_drain(page, 0, mt);
674 			if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
675 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
676 				if (is_migrate_cma(mt))
677 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
678 			}
679 		} while (--to_free && --batch_free && !list_empty(list));
680 	}
681 	spin_unlock(&zone->lock);
682 }
683 
684 static void free_one_page(struct zone *zone, struct page *page, int order,
685 				int migratetype)
686 {
687 	spin_lock(&zone->lock);
688 	zone->all_unreclaimable = 0;
689 	zone->pages_scanned = 0;
690 
691 	__free_one_page(page, zone, order, migratetype);
692 	if (unlikely(migratetype != MIGRATE_ISOLATE))
693 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
694 	spin_unlock(&zone->lock);
695 }
696 
697 static bool free_pages_prepare(struct page *page, unsigned int order)
698 {
699 	int i;
700 	int bad = 0;
701 
702 	trace_mm_page_free(page, order);
703 	kmemcheck_free_shadow(page, order);
704 
705 	if (PageAnon(page))
706 		page->mapping = NULL;
707 	for (i = 0; i < (1 << order); i++)
708 		bad += free_pages_check(page + i);
709 	if (bad)
710 		return false;
711 
712 	if (!PageHighMem(page)) {
713 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
714 		debug_check_no_obj_freed(page_address(page),
715 					   PAGE_SIZE << order);
716 	}
717 	arch_free_page(page, order);
718 	kernel_map_pages(page, 1 << order, 0);
719 
720 	return true;
721 }
722 
723 static void __free_pages_ok(struct page *page, unsigned int order)
724 {
725 	unsigned long flags;
726 	int migratetype;
727 
728 	if (!free_pages_prepare(page, order))
729 		return;
730 
731 	local_irq_save(flags);
732 	__count_vm_events(PGFREE, 1 << order);
733 	migratetype = get_pageblock_migratetype(page);
734 	set_freepage_migratetype(page, migratetype);
735 	free_one_page(page_zone(page), page, order, migratetype);
736 	local_irq_restore(flags);
737 }
738 
739 /*
740  * Read access to zone->managed_pages is safe because it's unsigned long,
741  * but we still need to serialize writers. Currently all callers of
742  * __free_pages_bootmem() except put_page_bootmem() should only be used
743  * at boot time. So for shorter boot time, we shift the burden to
744  * put_page_bootmem() to serialize writers.
745  */
746 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
747 {
748 	unsigned int nr_pages = 1 << order;
749 	unsigned int loop;
750 
751 	prefetchw(page);
752 	for (loop = 0; loop < nr_pages; loop++) {
753 		struct page *p = &page[loop];
754 
755 		if (loop + 1 < nr_pages)
756 			prefetchw(p + 1);
757 		__ClearPageReserved(p);
758 		set_page_count(p, 0);
759 	}
760 
761 	page_zone(page)->managed_pages += 1 << order;
762 	set_page_refcounted(page);
763 	__free_pages(page, order);
764 }
765 
766 #ifdef CONFIG_CMA
767 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
768 void __init init_cma_reserved_pageblock(struct page *page)
769 {
770 	unsigned i = pageblock_nr_pages;
771 	struct page *p = page;
772 
773 	do {
774 		__ClearPageReserved(p);
775 		set_page_count(p, 0);
776 	} while (++p, --i);
777 
778 	set_page_refcounted(page);
779 	set_pageblock_migratetype(page, MIGRATE_CMA);
780 	__free_pages(page, pageblock_order);
781 	totalram_pages += pageblock_nr_pages;
782 }
783 #endif
784 
785 /*
786  * The order of subdivision here is critical for the IO subsystem.
787  * Please do not alter this order without good reasons and regression
788  * testing. Specifically, as large blocks of memory are subdivided,
789  * the order in which smaller blocks are delivered depends on the order
790  * they're subdivided in this function. This is the primary factor
791  * influencing the order in which pages are delivered to the IO
792  * subsystem according to empirical testing, and this is also justified
793  * by considering the behavior of a buddy system containing a single
794  * large block of memory acted on by a series of small allocations.
795  * This behavior is a critical factor in sglist merging's success.
796  *
797  * -- nyc
798  */
799 static inline void expand(struct zone *zone, struct page *page,
800 	int low, int high, struct free_area *area,
801 	int migratetype)
802 {
803 	unsigned long size = 1 << high;
804 
805 	while (high > low) {
806 		area--;
807 		high--;
808 		size >>= 1;
809 		VM_BUG_ON(bad_range(zone, &page[size]));
810 
811 #ifdef CONFIG_DEBUG_PAGEALLOC
812 		if (high < debug_guardpage_minorder()) {
813 			/*
814 			 * Mark as guard pages (or page), that will allow to
815 			 * merge back to allocator when buddy will be freed.
816 			 * Corresponding page table entries will not be touched,
817 			 * pages will stay not present in virtual address space
818 			 */
819 			INIT_LIST_HEAD(&page[size].lru);
820 			set_page_guard_flag(&page[size]);
821 			set_page_private(&page[size], high);
822 			/* Guard pages are not available for any usage */
823 			__mod_zone_freepage_state(zone, -(1 << high),
824 						  migratetype);
825 			continue;
826 		}
827 #endif
828 		list_add(&page[size].lru, &area->free_list[migratetype]);
829 		area->nr_free++;
830 		set_page_order(&page[size], high);
831 	}
832 }
833 
834 /*
835  * This page is about to be returned from the page allocator
836  */
837 static inline int check_new_page(struct page *page)
838 {
839 	if (unlikely(page_mapcount(page) |
840 		(page->mapping != NULL)  |
841 		(atomic_read(&page->_count) != 0)  |
842 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
843 		(mem_cgroup_bad_page_check(page)))) {
844 		bad_page(page);
845 		return 1;
846 	}
847 	return 0;
848 }
849 
850 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
851 {
852 	int i;
853 
854 	for (i = 0; i < (1 << order); i++) {
855 		struct page *p = page + i;
856 		if (unlikely(check_new_page(p)))
857 			return 1;
858 	}
859 
860 	set_page_private(page, 0);
861 	set_page_refcounted(page);
862 
863 	arch_alloc_page(page, order);
864 	kernel_map_pages(page, 1 << order, 1);
865 
866 	if (gfp_flags & __GFP_ZERO)
867 		prep_zero_page(page, order, gfp_flags);
868 
869 	if (order && (gfp_flags & __GFP_COMP))
870 		prep_compound_page(page, order);
871 
872 	return 0;
873 }
874 
875 /*
876  * Go through the free lists for the given migratetype and remove
877  * the smallest available page from the freelists
878  */
879 static inline
880 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
881 						int migratetype)
882 {
883 	unsigned int current_order;
884 	struct free_area * area;
885 	struct page *page;
886 
887 	/* Find a page of the appropriate size in the preferred list */
888 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
889 		area = &(zone->free_area[current_order]);
890 		if (list_empty(&area->free_list[migratetype]))
891 			continue;
892 
893 		page = list_entry(area->free_list[migratetype].next,
894 							struct page, lru);
895 		list_del(&page->lru);
896 		rmv_page_order(page);
897 		area->nr_free--;
898 		expand(zone, page, order, current_order, area, migratetype);
899 		return page;
900 	}
901 
902 	return NULL;
903 }
904 
905 
906 /*
907  * This array describes the order lists are fallen back to when
908  * the free lists for the desirable migrate type are depleted
909  */
910 static int fallbacks[MIGRATE_TYPES][4] = {
911 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
912 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
913 #ifdef CONFIG_CMA
914 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
915 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
916 #else
917 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
918 #endif
919 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
920 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
921 };
922 
923 /*
924  * Move the free pages in a range to the free lists of the requested type.
925  * Note that start_page and end_pages are not aligned on a pageblock
926  * boundary. If alignment is required, use move_freepages_block()
927  */
928 int move_freepages(struct zone *zone,
929 			  struct page *start_page, struct page *end_page,
930 			  int migratetype)
931 {
932 	struct page *page;
933 	unsigned long order;
934 	int pages_moved = 0;
935 
936 #ifndef CONFIG_HOLES_IN_ZONE
937 	/*
938 	 * page_zone is not safe to call in this context when
939 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
940 	 * anyway as we check zone boundaries in move_freepages_block().
941 	 * Remove at a later date when no bug reports exist related to
942 	 * grouping pages by mobility
943 	 */
944 	BUG_ON(page_zone(start_page) != page_zone(end_page));
945 #endif
946 
947 	for (page = start_page; page <= end_page;) {
948 		/* Make sure we are not inadvertently changing nodes */
949 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
950 
951 		if (!pfn_valid_within(page_to_pfn(page))) {
952 			page++;
953 			continue;
954 		}
955 
956 		if (!PageBuddy(page)) {
957 			page++;
958 			continue;
959 		}
960 
961 		order = page_order(page);
962 		list_move(&page->lru,
963 			  &zone->free_area[order].free_list[migratetype]);
964 		set_freepage_migratetype(page, migratetype);
965 		page += 1 << order;
966 		pages_moved += 1 << order;
967 	}
968 
969 	return pages_moved;
970 }
971 
972 int move_freepages_block(struct zone *zone, struct page *page,
973 				int migratetype)
974 {
975 	unsigned long start_pfn, end_pfn;
976 	struct page *start_page, *end_page;
977 
978 	start_pfn = page_to_pfn(page);
979 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
980 	start_page = pfn_to_page(start_pfn);
981 	end_page = start_page + pageblock_nr_pages - 1;
982 	end_pfn = start_pfn + pageblock_nr_pages - 1;
983 
984 	/* Do not cross zone boundaries */
985 	if (start_pfn < zone->zone_start_pfn)
986 		start_page = page;
987 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
988 		return 0;
989 
990 	return move_freepages(zone, start_page, end_page, migratetype);
991 }
992 
993 static void change_pageblock_range(struct page *pageblock_page,
994 					int start_order, int migratetype)
995 {
996 	int nr_pageblocks = 1 << (start_order - pageblock_order);
997 
998 	while (nr_pageblocks--) {
999 		set_pageblock_migratetype(pageblock_page, migratetype);
1000 		pageblock_page += pageblock_nr_pages;
1001 	}
1002 }
1003 
1004 /* Remove an element from the buddy allocator from the fallback list */
1005 static inline struct page *
1006 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1007 {
1008 	struct free_area * area;
1009 	int current_order;
1010 	struct page *page;
1011 	int migratetype, i;
1012 
1013 	/* Find the largest possible block of pages in the other list */
1014 	for (current_order = MAX_ORDER-1; current_order >= order;
1015 						--current_order) {
1016 		for (i = 0;; i++) {
1017 			migratetype = fallbacks[start_migratetype][i];
1018 
1019 			/* MIGRATE_RESERVE handled later if necessary */
1020 			if (migratetype == MIGRATE_RESERVE)
1021 				break;
1022 
1023 			area = &(zone->free_area[current_order]);
1024 			if (list_empty(&area->free_list[migratetype]))
1025 				continue;
1026 
1027 			page = list_entry(area->free_list[migratetype].next,
1028 					struct page, lru);
1029 			area->nr_free--;
1030 
1031 			/*
1032 			 * If breaking a large block of pages, move all free
1033 			 * pages to the preferred allocation list. If falling
1034 			 * back for a reclaimable kernel allocation, be more
1035 			 * aggressive about taking ownership of free pages
1036 			 *
1037 			 * On the other hand, never change migration
1038 			 * type of MIGRATE_CMA pageblocks nor move CMA
1039 			 * pages on different free lists. We don't
1040 			 * want unmovable pages to be allocated from
1041 			 * MIGRATE_CMA areas.
1042 			 */
1043 			if (!is_migrate_cma(migratetype) &&
1044 			    (unlikely(current_order >= pageblock_order / 2) ||
1045 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1046 			     page_group_by_mobility_disabled)) {
1047 				int pages;
1048 				pages = move_freepages_block(zone, page,
1049 								start_migratetype);
1050 
1051 				/* Claim the whole block if over half of it is free */
1052 				if (pages >= (1 << (pageblock_order-1)) ||
1053 						page_group_by_mobility_disabled)
1054 					set_pageblock_migratetype(page,
1055 								start_migratetype);
1056 
1057 				migratetype = start_migratetype;
1058 			}
1059 
1060 			/* Remove the page from the freelists */
1061 			list_del(&page->lru);
1062 			rmv_page_order(page);
1063 
1064 			/* Take ownership for orders >= pageblock_order */
1065 			if (current_order >= pageblock_order &&
1066 			    !is_migrate_cma(migratetype))
1067 				change_pageblock_range(page, current_order,
1068 							start_migratetype);
1069 
1070 			expand(zone, page, order, current_order, area,
1071 			       is_migrate_cma(migratetype)
1072 			     ? migratetype : start_migratetype);
1073 
1074 			trace_mm_page_alloc_extfrag(page, order, current_order,
1075 				start_migratetype, migratetype);
1076 
1077 			return page;
1078 		}
1079 	}
1080 
1081 	return NULL;
1082 }
1083 
1084 /*
1085  * Do the hard work of removing an element from the buddy allocator.
1086  * Call me with the zone->lock already held.
1087  */
1088 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1089 						int migratetype)
1090 {
1091 	struct page *page;
1092 
1093 retry_reserve:
1094 	page = __rmqueue_smallest(zone, order, migratetype);
1095 
1096 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1097 		page = __rmqueue_fallback(zone, order, migratetype);
1098 
1099 		/*
1100 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1101 		 * is used because __rmqueue_smallest is an inline function
1102 		 * and we want just one call site
1103 		 */
1104 		if (!page) {
1105 			migratetype = MIGRATE_RESERVE;
1106 			goto retry_reserve;
1107 		}
1108 	}
1109 
1110 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1111 	return page;
1112 }
1113 
1114 /*
1115  * Obtain a specified number of elements from the buddy allocator, all under
1116  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1117  * Returns the number of new pages which were placed at *list.
1118  */
1119 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1120 			unsigned long count, struct list_head *list,
1121 			int migratetype, int cold)
1122 {
1123 	int mt = migratetype, i;
1124 
1125 	spin_lock(&zone->lock);
1126 	for (i = 0; i < count; ++i) {
1127 		struct page *page = __rmqueue(zone, order, migratetype);
1128 		if (unlikely(page == NULL))
1129 			break;
1130 
1131 		/*
1132 		 * Split buddy pages returned by expand() are received here
1133 		 * in physical page order. The page is added to the callers and
1134 		 * list and the list head then moves forward. From the callers
1135 		 * perspective, the linked list is ordered by page number in
1136 		 * some conditions. This is useful for IO devices that can
1137 		 * merge IO requests if the physical pages are ordered
1138 		 * properly.
1139 		 */
1140 		if (likely(cold == 0))
1141 			list_add(&page->lru, list);
1142 		else
1143 			list_add_tail(&page->lru, list);
1144 		if (IS_ENABLED(CONFIG_CMA)) {
1145 			mt = get_pageblock_migratetype(page);
1146 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1147 				mt = migratetype;
1148 		}
1149 		set_freepage_migratetype(page, mt);
1150 		list = &page->lru;
1151 		if (is_migrate_cma(mt))
1152 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1153 					      -(1 << order));
1154 	}
1155 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1156 	spin_unlock(&zone->lock);
1157 	return i;
1158 }
1159 
1160 #ifdef CONFIG_NUMA
1161 /*
1162  * Called from the vmstat counter updater to drain pagesets of this
1163  * currently executing processor on remote nodes after they have
1164  * expired.
1165  *
1166  * Note that this function must be called with the thread pinned to
1167  * a single processor.
1168  */
1169 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1170 {
1171 	unsigned long flags;
1172 	int to_drain;
1173 
1174 	local_irq_save(flags);
1175 	if (pcp->count >= pcp->batch)
1176 		to_drain = pcp->batch;
1177 	else
1178 		to_drain = pcp->count;
1179 	if (to_drain > 0) {
1180 		free_pcppages_bulk(zone, to_drain, pcp);
1181 		pcp->count -= to_drain;
1182 	}
1183 	local_irq_restore(flags);
1184 }
1185 #endif
1186 
1187 /*
1188  * Drain pages of the indicated processor.
1189  *
1190  * The processor must either be the current processor and the
1191  * thread pinned to the current processor or a processor that
1192  * is not online.
1193  */
1194 static void drain_pages(unsigned int cpu)
1195 {
1196 	unsigned long flags;
1197 	struct zone *zone;
1198 
1199 	for_each_populated_zone(zone) {
1200 		struct per_cpu_pageset *pset;
1201 		struct per_cpu_pages *pcp;
1202 
1203 		local_irq_save(flags);
1204 		pset = per_cpu_ptr(zone->pageset, cpu);
1205 
1206 		pcp = &pset->pcp;
1207 		if (pcp->count) {
1208 			free_pcppages_bulk(zone, pcp->count, pcp);
1209 			pcp->count = 0;
1210 		}
1211 		local_irq_restore(flags);
1212 	}
1213 }
1214 
1215 /*
1216  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1217  */
1218 void drain_local_pages(void *arg)
1219 {
1220 	drain_pages(smp_processor_id());
1221 }
1222 
1223 /*
1224  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1225  *
1226  * Note that this code is protected against sending an IPI to an offline
1227  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1228  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1229  * nothing keeps CPUs from showing up after we populated the cpumask and
1230  * before the call to on_each_cpu_mask().
1231  */
1232 void drain_all_pages(void)
1233 {
1234 	int cpu;
1235 	struct per_cpu_pageset *pcp;
1236 	struct zone *zone;
1237 
1238 	/*
1239 	 * Allocate in the BSS so we wont require allocation in
1240 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1241 	 */
1242 	static cpumask_t cpus_with_pcps;
1243 
1244 	/*
1245 	 * We don't care about racing with CPU hotplug event
1246 	 * as offline notification will cause the notified
1247 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1248 	 * disables preemption as part of its processing
1249 	 */
1250 	for_each_online_cpu(cpu) {
1251 		bool has_pcps = false;
1252 		for_each_populated_zone(zone) {
1253 			pcp = per_cpu_ptr(zone->pageset, cpu);
1254 			if (pcp->pcp.count) {
1255 				has_pcps = true;
1256 				break;
1257 			}
1258 		}
1259 		if (has_pcps)
1260 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1261 		else
1262 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1263 	}
1264 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1265 }
1266 
1267 #ifdef CONFIG_HIBERNATION
1268 
1269 void mark_free_pages(struct zone *zone)
1270 {
1271 	unsigned long pfn, max_zone_pfn;
1272 	unsigned long flags;
1273 	int order, t;
1274 	struct list_head *curr;
1275 
1276 	if (!zone->spanned_pages)
1277 		return;
1278 
1279 	spin_lock_irqsave(&zone->lock, flags);
1280 
1281 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1282 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1283 		if (pfn_valid(pfn)) {
1284 			struct page *page = pfn_to_page(pfn);
1285 
1286 			if (!swsusp_page_is_forbidden(page))
1287 				swsusp_unset_page_free(page);
1288 		}
1289 
1290 	for_each_migratetype_order(order, t) {
1291 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1292 			unsigned long i;
1293 
1294 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1295 			for (i = 0; i < (1UL << order); i++)
1296 				swsusp_set_page_free(pfn_to_page(pfn + i));
1297 		}
1298 	}
1299 	spin_unlock_irqrestore(&zone->lock, flags);
1300 }
1301 #endif /* CONFIG_PM */
1302 
1303 /*
1304  * Free a 0-order page
1305  * cold == 1 ? free a cold page : free a hot page
1306  */
1307 void free_hot_cold_page(struct page *page, int cold)
1308 {
1309 	struct zone *zone = page_zone(page);
1310 	struct per_cpu_pages *pcp;
1311 	unsigned long flags;
1312 	int migratetype;
1313 
1314 	if (!free_pages_prepare(page, 0))
1315 		return;
1316 
1317 	migratetype = get_pageblock_migratetype(page);
1318 	set_freepage_migratetype(page, migratetype);
1319 	local_irq_save(flags);
1320 	__count_vm_event(PGFREE);
1321 
1322 	/*
1323 	 * We only track unmovable, reclaimable and movable on pcp lists.
1324 	 * Free ISOLATE pages back to the allocator because they are being
1325 	 * offlined but treat RESERVE as movable pages so we can get those
1326 	 * areas back if necessary. Otherwise, we may have to free
1327 	 * excessively into the page allocator
1328 	 */
1329 	if (migratetype >= MIGRATE_PCPTYPES) {
1330 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1331 			free_one_page(zone, page, 0, migratetype);
1332 			goto out;
1333 		}
1334 		migratetype = MIGRATE_MOVABLE;
1335 	}
1336 
1337 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1338 	if (cold)
1339 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1340 	else
1341 		list_add(&page->lru, &pcp->lists[migratetype]);
1342 	pcp->count++;
1343 	if (pcp->count >= pcp->high) {
1344 		free_pcppages_bulk(zone, pcp->batch, pcp);
1345 		pcp->count -= pcp->batch;
1346 	}
1347 
1348 out:
1349 	local_irq_restore(flags);
1350 }
1351 
1352 /*
1353  * Free a list of 0-order pages
1354  */
1355 void free_hot_cold_page_list(struct list_head *list, int cold)
1356 {
1357 	struct page *page, *next;
1358 
1359 	list_for_each_entry_safe(page, next, list, lru) {
1360 		trace_mm_page_free_batched(page, cold);
1361 		free_hot_cold_page(page, cold);
1362 	}
1363 }
1364 
1365 /*
1366  * split_page takes a non-compound higher-order page, and splits it into
1367  * n (1<<order) sub-pages: page[0..n]
1368  * Each sub-page must be freed individually.
1369  *
1370  * Note: this is probably too low level an operation for use in drivers.
1371  * Please consult with lkml before using this in your driver.
1372  */
1373 void split_page(struct page *page, unsigned int order)
1374 {
1375 	int i;
1376 
1377 	VM_BUG_ON(PageCompound(page));
1378 	VM_BUG_ON(!page_count(page));
1379 
1380 #ifdef CONFIG_KMEMCHECK
1381 	/*
1382 	 * Split shadow pages too, because free(page[0]) would
1383 	 * otherwise free the whole shadow.
1384 	 */
1385 	if (kmemcheck_page_is_tracked(page))
1386 		split_page(virt_to_page(page[0].shadow), order);
1387 #endif
1388 
1389 	for (i = 1; i < (1 << order); i++)
1390 		set_page_refcounted(page + i);
1391 }
1392 
1393 /*
1394  * Similar to the split_page family of functions except that the page
1395  * required at the given order and being isolated now to prevent races
1396  * with parallel allocators
1397  */
1398 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1399 {
1400 	unsigned int order;
1401 	unsigned long watermark;
1402 	struct zone *zone;
1403 	int mt;
1404 
1405 	BUG_ON(!PageBuddy(page));
1406 
1407 	zone = page_zone(page);
1408 	order = page_order(page);
1409 	mt = get_pageblock_migratetype(page);
1410 
1411 	if (mt != MIGRATE_ISOLATE) {
1412 		/* Obey watermarks as if the page was being allocated */
1413 		watermark = low_wmark_pages(zone) + (1 << order);
1414 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1415 			return 0;
1416 
1417 		__mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1418 	}
1419 
1420 	/* Remove page from free list */
1421 	list_del(&page->lru);
1422 	zone->free_area[order].nr_free--;
1423 	rmv_page_order(page);
1424 
1425 	if (alloc_order != order)
1426 		expand(zone, page, alloc_order, order,
1427 			&zone->free_area[order], migratetype);
1428 
1429 	/* Set the pageblock if the captured page is at least a pageblock */
1430 	if (order >= pageblock_order - 1) {
1431 		struct page *endpage = page + (1 << order) - 1;
1432 		for (; page < endpage; page += pageblock_nr_pages) {
1433 			int mt = get_pageblock_migratetype(page);
1434 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1435 				set_pageblock_migratetype(page,
1436 							  MIGRATE_MOVABLE);
1437 		}
1438 	}
1439 
1440 	return 1UL << alloc_order;
1441 }
1442 
1443 /*
1444  * Similar to split_page except the page is already free. As this is only
1445  * being used for migration, the migratetype of the block also changes.
1446  * As this is called with interrupts disabled, the caller is responsible
1447  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1448  * are enabled.
1449  *
1450  * Note: this is probably too low level an operation for use in drivers.
1451  * Please consult with lkml before using this in your driver.
1452  */
1453 int split_free_page(struct page *page)
1454 {
1455 	unsigned int order;
1456 	int nr_pages;
1457 
1458 	BUG_ON(!PageBuddy(page));
1459 	order = page_order(page);
1460 
1461 	nr_pages = capture_free_page(page, order, 0);
1462 	if (!nr_pages)
1463 		return 0;
1464 
1465 	/* Split into individual pages */
1466 	set_page_refcounted(page);
1467 	split_page(page, order);
1468 	return nr_pages;
1469 }
1470 
1471 /*
1472  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1473  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1474  * or two.
1475  */
1476 static inline
1477 struct page *buffered_rmqueue(struct zone *preferred_zone,
1478 			struct zone *zone, int order, gfp_t gfp_flags,
1479 			int migratetype)
1480 {
1481 	unsigned long flags;
1482 	struct page *page;
1483 	int cold = !!(gfp_flags & __GFP_COLD);
1484 
1485 again:
1486 	if (likely(order == 0)) {
1487 		struct per_cpu_pages *pcp;
1488 		struct list_head *list;
1489 
1490 		local_irq_save(flags);
1491 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1492 		list = &pcp->lists[migratetype];
1493 		if (list_empty(list)) {
1494 			pcp->count += rmqueue_bulk(zone, 0,
1495 					pcp->batch, list,
1496 					migratetype, cold);
1497 			if (unlikely(list_empty(list)))
1498 				goto failed;
1499 		}
1500 
1501 		if (cold)
1502 			page = list_entry(list->prev, struct page, lru);
1503 		else
1504 			page = list_entry(list->next, struct page, lru);
1505 
1506 		list_del(&page->lru);
1507 		pcp->count--;
1508 	} else {
1509 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1510 			/*
1511 			 * __GFP_NOFAIL is not to be used in new code.
1512 			 *
1513 			 * All __GFP_NOFAIL callers should be fixed so that they
1514 			 * properly detect and handle allocation failures.
1515 			 *
1516 			 * We most definitely don't want callers attempting to
1517 			 * allocate greater than order-1 page units with
1518 			 * __GFP_NOFAIL.
1519 			 */
1520 			WARN_ON_ONCE(order > 1);
1521 		}
1522 		spin_lock_irqsave(&zone->lock, flags);
1523 		page = __rmqueue(zone, order, migratetype);
1524 		spin_unlock(&zone->lock);
1525 		if (!page)
1526 			goto failed;
1527 		__mod_zone_freepage_state(zone, -(1 << order),
1528 					  get_pageblock_migratetype(page));
1529 	}
1530 
1531 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1532 	zone_statistics(preferred_zone, zone, gfp_flags);
1533 	local_irq_restore(flags);
1534 
1535 	VM_BUG_ON(bad_range(zone, page));
1536 	if (prep_new_page(page, order, gfp_flags))
1537 		goto again;
1538 	return page;
1539 
1540 failed:
1541 	local_irq_restore(flags);
1542 	return NULL;
1543 }
1544 
1545 #ifdef CONFIG_FAIL_PAGE_ALLOC
1546 
1547 static struct {
1548 	struct fault_attr attr;
1549 
1550 	u32 ignore_gfp_highmem;
1551 	u32 ignore_gfp_wait;
1552 	u32 min_order;
1553 } fail_page_alloc = {
1554 	.attr = FAULT_ATTR_INITIALIZER,
1555 	.ignore_gfp_wait = 1,
1556 	.ignore_gfp_highmem = 1,
1557 	.min_order = 1,
1558 };
1559 
1560 static int __init setup_fail_page_alloc(char *str)
1561 {
1562 	return setup_fault_attr(&fail_page_alloc.attr, str);
1563 }
1564 __setup("fail_page_alloc=", setup_fail_page_alloc);
1565 
1566 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1567 {
1568 	if (order < fail_page_alloc.min_order)
1569 		return false;
1570 	if (gfp_mask & __GFP_NOFAIL)
1571 		return false;
1572 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1573 		return false;
1574 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1575 		return false;
1576 
1577 	return should_fail(&fail_page_alloc.attr, 1 << order);
1578 }
1579 
1580 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1581 
1582 static int __init fail_page_alloc_debugfs(void)
1583 {
1584 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1585 	struct dentry *dir;
1586 
1587 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1588 					&fail_page_alloc.attr);
1589 	if (IS_ERR(dir))
1590 		return PTR_ERR(dir);
1591 
1592 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1593 				&fail_page_alloc.ignore_gfp_wait))
1594 		goto fail;
1595 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1596 				&fail_page_alloc.ignore_gfp_highmem))
1597 		goto fail;
1598 	if (!debugfs_create_u32("min-order", mode, dir,
1599 				&fail_page_alloc.min_order))
1600 		goto fail;
1601 
1602 	return 0;
1603 fail:
1604 	debugfs_remove_recursive(dir);
1605 
1606 	return -ENOMEM;
1607 }
1608 
1609 late_initcall(fail_page_alloc_debugfs);
1610 
1611 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1612 
1613 #else /* CONFIG_FAIL_PAGE_ALLOC */
1614 
1615 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1616 {
1617 	return false;
1618 }
1619 
1620 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1621 
1622 /*
1623  * Return true if free pages are above 'mark'. This takes into account the order
1624  * of the allocation.
1625  */
1626 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1627 		      int classzone_idx, int alloc_flags, long free_pages)
1628 {
1629 	/* free_pages my go negative - that's OK */
1630 	long min = mark;
1631 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1632 	int o;
1633 
1634 	free_pages -= (1 << order) - 1;
1635 	if (alloc_flags & ALLOC_HIGH)
1636 		min -= min / 2;
1637 	if (alloc_flags & ALLOC_HARDER)
1638 		min -= min / 4;
1639 #ifdef CONFIG_CMA
1640 	/* If allocation can't use CMA areas don't use free CMA pages */
1641 	if (!(alloc_flags & ALLOC_CMA))
1642 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1643 #endif
1644 	if (free_pages <= min + lowmem_reserve)
1645 		return false;
1646 	for (o = 0; o < order; o++) {
1647 		/* At the next order, this order's pages become unavailable */
1648 		free_pages -= z->free_area[o].nr_free << o;
1649 
1650 		/* Require fewer higher order pages to be free */
1651 		min >>= 1;
1652 
1653 		if (free_pages <= min)
1654 			return false;
1655 	}
1656 	return true;
1657 }
1658 
1659 #ifdef CONFIG_MEMORY_ISOLATION
1660 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1661 {
1662 	if (unlikely(zone->nr_pageblock_isolate))
1663 		return zone->nr_pageblock_isolate * pageblock_nr_pages;
1664 	return 0;
1665 }
1666 #else
1667 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1668 {
1669 	return 0;
1670 }
1671 #endif
1672 
1673 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1674 		      int classzone_idx, int alloc_flags)
1675 {
1676 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1677 					zone_page_state(z, NR_FREE_PAGES));
1678 }
1679 
1680 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1681 		      int classzone_idx, int alloc_flags)
1682 {
1683 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1684 
1685 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1686 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1687 
1688 	/*
1689 	 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1690 	 * it.  nr_zone_isolate_freepages is never accurate so kswapd might not
1691 	 * sleep although it could do so.  But this is more desirable for memory
1692 	 * hotplug than sleeping which can cause a livelock in the direct
1693 	 * reclaim path.
1694 	 */
1695 	free_pages -= nr_zone_isolate_freepages(z);
1696 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 								free_pages);
1698 }
1699 
1700 #ifdef CONFIG_NUMA
1701 /*
1702  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1703  * skip over zones that are not allowed by the cpuset, or that have
1704  * been recently (in last second) found to be nearly full.  See further
1705  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1706  * that have to skip over a lot of full or unallowed zones.
1707  *
1708  * If the zonelist cache is present in the passed in zonelist, then
1709  * returns a pointer to the allowed node mask (either the current
1710  * tasks mems_allowed, or node_states[N_MEMORY].)
1711  *
1712  * If the zonelist cache is not available for this zonelist, does
1713  * nothing and returns NULL.
1714  *
1715  * If the fullzones BITMAP in the zonelist cache is stale (more than
1716  * a second since last zap'd) then we zap it out (clear its bits.)
1717  *
1718  * We hold off even calling zlc_setup, until after we've checked the
1719  * first zone in the zonelist, on the theory that most allocations will
1720  * be satisfied from that first zone, so best to examine that zone as
1721  * quickly as we can.
1722  */
1723 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724 {
1725 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1726 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1727 
1728 	zlc = zonelist->zlcache_ptr;
1729 	if (!zlc)
1730 		return NULL;
1731 
1732 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1733 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 		zlc->last_full_zap = jiffies;
1735 	}
1736 
1737 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 					&cpuset_current_mems_allowed :
1739 					&node_states[N_MEMORY];
1740 	return allowednodes;
1741 }
1742 
1743 /*
1744  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745  * if it is worth looking at further for free memory:
1746  *  1) Check that the zone isn't thought to be full (doesn't have its
1747  *     bit set in the zonelist_cache fullzones BITMAP).
1748  *  2) Check that the zones node (obtained from the zonelist_cache
1749  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750  * Return true (non-zero) if zone is worth looking at further, or
1751  * else return false (zero) if it is not.
1752  *
1753  * This check -ignores- the distinction between various watermarks,
1754  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1755  * found to be full for any variation of these watermarks, it will
1756  * be considered full for up to one second by all requests, unless
1757  * we are so low on memory on all allowed nodes that we are forced
1758  * into the second scan of the zonelist.
1759  *
1760  * In the second scan we ignore this zonelist cache and exactly
1761  * apply the watermarks to all zones, even it is slower to do so.
1762  * We are low on memory in the second scan, and should leave no stone
1763  * unturned looking for a free page.
1764  */
1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1766 						nodemask_t *allowednodes)
1767 {
1768 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1769 	int i;				/* index of *z in zonelist zones */
1770 	int n;				/* node that zone *z is on */
1771 
1772 	zlc = zonelist->zlcache_ptr;
1773 	if (!zlc)
1774 		return 1;
1775 
1776 	i = z - zonelist->_zonerefs;
1777 	n = zlc->z_to_n[i];
1778 
1779 	/* This zone is worth trying if it is allowed but not full */
1780 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781 }
1782 
1783 /*
1784  * Given 'z' scanning a zonelist, set the corresponding bit in
1785  * zlc->fullzones, so that subsequent attempts to allocate a page
1786  * from that zone don't waste time re-examining it.
1787  */
1788 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1789 {
1790 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1791 	int i;				/* index of *z in zonelist zones */
1792 
1793 	zlc = zonelist->zlcache_ptr;
1794 	if (!zlc)
1795 		return;
1796 
1797 	i = z - zonelist->_zonerefs;
1798 
1799 	set_bit(i, zlc->fullzones);
1800 }
1801 
1802 /*
1803  * clear all zones full, called after direct reclaim makes progress so that
1804  * a zone that was recently full is not skipped over for up to a second
1805  */
1806 static void zlc_clear_zones_full(struct zonelist *zonelist)
1807 {
1808 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1809 
1810 	zlc = zonelist->zlcache_ptr;
1811 	if (!zlc)
1812 		return;
1813 
1814 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815 }
1816 
1817 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1818 {
1819 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1820 }
1821 
1822 static void __paginginit init_zone_allows_reclaim(int nid)
1823 {
1824 	int i;
1825 
1826 	for_each_online_node(i)
1827 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1828 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1829 		else
1830 			zone_reclaim_mode = 1;
1831 }
1832 
1833 #else	/* CONFIG_NUMA */
1834 
1835 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1836 {
1837 	return NULL;
1838 }
1839 
1840 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1841 				nodemask_t *allowednodes)
1842 {
1843 	return 1;
1844 }
1845 
1846 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1847 {
1848 }
1849 
1850 static void zlc_clear_zones_full(struct zonelist *zonelist)
1851 {
1852 }
1853 
1854 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1855 {
1856 	return true;
1857 }
1858 
1859 static inline void init_zone_allows_reclaim(int nid)
1860 {
1861 }
1862 #endif	/* CONFIG_NUMA */
1863 
1864 /*
1865  * get_page_from_freelist goes through the zonelist trying to allocate
1866  * a page.
1867  */
1868 static struct page *
1869 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1870 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1871 		struct zone *preferred_zone, int migratetype)
1872 {
1873 	struct zoneref *z;
1874 	struct page *page = NULL;
1875 	int classzone_idx;
1876 	struct zone *zone;
1877 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1878 	int zlc_active = 0;		/* set if using zonelist_cache */
1879 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1880 
1881 	classzone_idx = zone_idx(preferred_zone);
1882 zonelist_scan:
1883 	/*
1884 	 * Scan zonelist, looking for a zone with enough free.
1885 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1886 	 */
1887 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1888 						high_zoneidx, nodemask) {
1889 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1890 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1891 				continue;
1892 		if ((alloc_flags & ALLOC_CPUSET) &&
1893 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1894 				continue;
1895 		/*
1896 		 * When allocating a page cache page for writing, we
1897 		 * want to get it from a zone that is within its dirty
1898 		 * limit, such that no single zone holds more than its
1899 		 * proportional share of globally allowed dirty pages.
1900 		 * The dirty limits take into account the zone's
1901 		 * lowmem reserves and high watermark so that kswapd
1902 		 * should be able to balance it without having to
1903 		 * write pages from its LRU list.
1904 		 *
1905 		 * This may look like it could increase pressure on
1906 		 * lower zones by failing allocations in higher zones
1907 		 * before they are full.  But the pages that do spill
1908 		 * over are limited as the lower zones are protected
1909 		 * by this very same mechanism.  It should not become
1910 		 * a practical burden to them.
1911 		 *
1912 		 * XXX: For now, allow allocations to potentially
1913 		 * exceed the per-zone dirty limit in the slowpath
1914 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1915 		 * which is important when on a NUMA setup the allowed
1916 		 * zones are together not big enough to reach the
1917 		 * global limit.  The proper fix for these situations
1918 		 * will require awareness of zones in the
1919 		 * dirty-throttling and the flusher threads.
1920 		 */
1921 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1922 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1923 			goto this_zone_full;
1924 
1925 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1926 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1927 			unsigned long mark;
1928 			int ret;
1929 
1930 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1931 			if (zone_watermark_ok(zone, order, mark,
1932 				    classzone_idx, alloc_flags))
1933 				goto try_this_zone;
1934 
1935 			if (IS_ENABLED(CONFIG_NUMA) &&
1936 					!did_zlc_setup && nr_online_nodes > 1) {
1937 				/*
1938 				 * we do zlc_setup if there are multiple nodes
1939 				 * and before considering the first zone allowed
1940 				 * by the cpuset.
1941 				 */
1942 				allowednodes = zlc_setup(zonelist, alloc_flags);
1943 				zlc_active = 1;
1944 				did_zlc_setup = 1;
1945 			}
1946 
1947 			if (zone_reclaim_mode == 0 ||
1948 			    !zone_allows_reclaim(preferred_zone, zone))
1949 				goto this_zone_full;
1950 
1951 			/*
1952 			 * As we may have just activated ZLC, check if the first
1953 			 * eligible zone has failed zone_reclaim recently.
1954 			 */
1955 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1956 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1957 				continue;
1958 
1959 			ret = zone_reclaim(zone, gfp_mask, order);
1960 			switch (ret) {
1961 			case ZONE_RECLAIM_NOSCAN:
1962 				/* did not scan */
1963 				continue;
1964 			case ZONE_RECLAIM_FULL:
1965 				/* scanned but unreclaimable */
1966 				continue;
1967 			default:
1968 				/* did we reclaim enough */
1969 				if (!zone_watermark_ok(zone, order, mark,
1970 						classzone_idx, alloc_flags))
1971 					goto this_zone_full;
1972 			}
1973 		}
1974 
1975 try_this_zone:
1976 		page = buffered_rmqueue(preferred_zone, zone, order,
1977 						gfp_mask, migratetype);
1978 		if (page)
1979 			break;
1980 this_zone_full:
1981 		if (IS_ENABLED(CONFIG_NUMA))
1982 			zlc_mark_zone_full(zonelist, z);
1983 	}
1984 
1985 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1986 		/* Disable zlc cache for second zonelist scan */
1987 		zlc_active = 0;
1988 		goto zonelist_scan;
1989 	}
1990 
1991 	if (page)
1992 		/*
1993 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1994 		 * necessary to allocate the page. The expectation is
1995 		 * that the caller is taking steps that will free more
1996 		 * memory. The caller should avoid the page being used
1997 		 * for !PFMEMALLOC purposes.
1998 		 */
1999 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2000 
2001 	return page;
2002 }
2003 
2004 /*
2005  * Large machines with many possible nodes should not always dump per-node
2006  * meminfo in irq context.
2007  */
2008 static inline bool should_suppress_show_mem(void)
2009 {
2010 	bool ret = false;
2011 
2012 #if NODES_SHIFT > 8
2013 	ret = in_interrupt();
2014 #endif
2015 	return ret;
2016 }
2017 
2018 static DEFINE_RATELIMIT_STATE(nopage_rs,
2019 		DEFAULT_RATELIMIT_INTERVAL,
2020 		DEFAULT_RATELIMIT_BURST);
2021 
2022 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2023 {
2024 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2025 
2026 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2027 	    debug_guardpage_minorder() > 0)
2028 		return;
2029 
2030 	/*
2031 	 * This documents exceptions given to allocations in certain
2032 	 * contexts that are allowed to allocate outside current's set
2033 	 * of allowed nodes.
2034 	 */
2035 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2036 		if (test_thread_flag(TIF_MEMDIE) ||
2037 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2038 			filter &= ~SHOW_MEM_FILTER_NODES;
2039 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2040 		filter &= ~SHOW_MEM_FILTER_NODES;
2041 
2042 	if (fmt) {
2043 		struct va_format vaf;
2044 		va_list args;
2045 
2046 		va_start(args, fmt);
2047 
2048 		vaf.fmt = fmt;
2049 		vaf.va = &args;
2050 
2051 		pr_warn("%pV", &vaf);
2052 
2053 		va_end(args);
2054 	}
2055 
2056 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2057 		current->comm, order, gfp_mask);
2058 
2059 	dump_stack();
2060 	if (!should_suppress_show_mem())
2061 		show_mem(filter);
2062 }
2063 
2064 static inline int
2065 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2066 				unsigned long did_some_progress,
2067 				unsigned long pages_reclaimed)
2068 {
2069 	/* Do not loop if specifically requested */
2070 	if (gfp_mask & __GFP_NORETRY)
2071 		return 0;
2072 
2073 	/* Always retry if specifically requested */
2074 	if (gfp_mask & __GFP_NOFAIL)
2075 		return 1;
2076 
2077 	/*
2078 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2079 	 * making forward progress without invoking OOM. Suspend also disables
2080 	 * storage devices so kswapd will not help. Bail if we are suspending.
2081 	 */
2082 	if (!did_some_progress && pm_suspended_storage())
2083 		return 0;
2084 
2085 	/*
2086 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2087 	 * means __GFP_NOFAIL, but that may not be true in other
2088 	 * implementations.
2089 	 */
2090 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2091 		return 1;
2092 
2093 	/*
2094 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2095 	 * specified, then we retry until we no longer reclaim any pages
2096 	 * (above), or we've reclaimed an order of pages at least as
2097 	 * large as the allocation's order. In both cases, if the
2098 	 * allocation still fails, we stop retrying.
2099 	 */
2100 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2101 		return 1;
2102 
2103 	return 0;
2104 }
2105 
2106 static inline struct page *
2107 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2108 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2109 	nodemask_t *nodemask, struct zone *preferred_zone,
2110 	int migratetype)
2111 {
2112 	struct page *page;
2113 
2114 	/* Acquire the OOM killer lock for the zones in zonelist */
2115 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2116 		schedule_timeout_uninterruptible(1);
2117 		return NULL;
2118 	}
2119 
2120 	/*
2121 	 * Go through the zonelist yet one more time, keep very high watermark
2122 	 * here, this is only to catch a parallel oom killing, we must fail if
2123 	 * we're still under heavy pressure.
2124 	 */
2125 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2126 		order, zonelist, high_zoneidx,
2127 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2128 		preferred_zone, migratetype);
2129 	if (page)
2130 		goto out;
2131 
2132 	if (!(gfp_mask & __GFP_NOFAIL)) {
2133 		/* The OOM killer will not help higher order allocs */
2134 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2135 			goto out;
2136 		/* The OOM killer does not needlessly kill tasks for lowmem */
2137 		if (high_zoneidx < ZONE_NORMAL)
2138 			goto out;
2139 		/*
2140 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2141 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2142 		 * The caller should handle page allocation failure by itself if
2143 		 * it specifies __GFP_THISNODE.
2144 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2145 		 */
2146 		if (gfp_mask & __GFP_THISNODE)
2147 			goto out;
2148 	}
2149 	/* Exhausted what can be done so it's blamo time */
2150 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2151 
2152 out:
2153 	clear_zonelist_oom(zonelist, gfp_mask);
2154 	return page;
2155 }
2156 
2157 #ifdef CONFIG_COMPACTION
2158 /* Try memory compaction for high-order allocations before reclaim */
2159 static struct page *
2160 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2161 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2162 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2163 	int migratetype, bool sync_migration,
2164 	bool *contended_compaction, bool *deferred_compaction,
2165 	unsigned long *did_some_progress)
2166 {
2167 	struct page *page = NULL;
2168 
2169 	if (!order)
2170 		return NULL;
2171 
2172 	if (compaction_deferred(preferred_zone, order)) {
2173 		*deferred_compaction = true;
2174 		return NULL;
2175 	}
2176 
2177 	current->flags |= PF_MEMALLOC;
2178 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2179 						nodemask, sync_migration,
2180 						contended_compaction, &page);
2181 	current->flags &= ~PF_MEMALLOC;
2182 
2183 	/* If compaction captured a page, prep and use it */
2184 	if (page) {
2185 		prep_new_page(page, order, gfp_mask);
2186 		goto got_page;
2187 	}
2188 
2189 	if (*did_some_progress != COMPACT_SKIPPED) {
2190 		/* Page migration frees to the PCP lists but we want merging */
2191 		drain_pages(get_cpu());
2192 		put_cpu();
2193 
2194 		page = get_page_from_freelist(gfp_mask, nodemask,
2195 				order, zonelist, high_zoneidx,
2196 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2197 				preferred_zone, migratetype);
2198 		if (page) {
2199 got_page:
2200 			preferred_zone->compact_blockskip_flush = false;
2201 			preferred_zone->compact_considered = 0;
2202 			preferred_zone->compact_defer_shift = 0;
2203 			if (order >= preferred_zone->compact_order_failed)
2204 				preferred_zone->compact_order_failed = order + 1;
2205 			count_vm_event(COMPACTSUCCESS);
2206 			return page;
2207 		}
2208 
2209 		/*
2210 		 * It's bad if compaction run occurs and fails.
2211 		 * The most likely reason is that pages exist,
2212 		 * but not enough to satisfy watermarks.
2213 		 */
2214 		count_vm_event(COMPACTFAIL);
2215 
2216 		/*
2217 		 * As async compaction considers a subset of pageblocks, only
2218 		 * defer if the failure was a sync compaction failure.
2219 		 */
2220 		if (sync_migration)
2221 			defer_compaction(preferred_zone, order);
2222 
2223 		cond_resched();
2224 	}
2225 
2226 	return NULL;
2227 }
2228 #else
2229 static inline struct page *
2230 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2231 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2232 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2233 	int migratetype, bool sync_migration,
2234 	bool *contended_compaction, bool *deferred_compaction,
2235 	unsigned long *did_some_progress)
2236 {
2237 	return NULL;
2238 }
2239 #endif /* CONFIG_COMPACTION */
2240 
2241 /* Perform direct synchronous page reclaim */
2242 static int
2243 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2244 		  nodemask_t *nodemask)
2245 {
2246 	struct reclaim_state reclaim_state;
2247 	int progress;
2248 
2249 	cond_resched();
2250 
2251 	/* We now go into synchronous reclaim */
2252 	cpuset_memory_pressure_bump();
2253 	current->flags |= PF_MEMALLOC;
2254 	lockdep_set_current_reclaim_state(gfp_mask);
2255 	reclaim_state.reclaimed_slab = 0;
2256 	current->reclaim_state = &reclaim_state;
2257 
2258 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2259 
2260 	current->reclaim_state = NULL;
2261 	lockdep_clear_current_reclaim_state();
2262 	current->flags &= ~PF_MEMALLOC;
2263 
2264 	cond_resched();
2265 
2266 	return progress;
2267 }
2268 
2269 /* The really slow allocator path where we enter direct reclaim */
2270 static inline struct page *
2271 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2272 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2273 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2274 	int migratetype, unsigned long *did_some_progress)
2275 {
2276 	struct page *page = NULL;
2277 	bool drained = false;
2278 
2279 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2280 					       nodemask);
2281 	if (unlikely(!(*did_some_progress)))
2282 		return NULL;
2283 
2284 	/* After successful reclaim, reconsider all zones for allocation */
2285 	if (IS_ENABLED(CONFIG_NUMA))
2286 		zlc_clear_zones_full(zonelist);
2287 
2288 retry:
2289 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2290 					zonelist, high_zoneidx,
2291 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2292 					preferred_zone, migratetype);
2293 
2294 	/*
2295 	 * If an allocation failed after direct reclaim, it could be because
2296 	 * pages are pinned on the per-cpu lists. Drain them and try again
2297 	 */
2298 	if (!page && !drained) {
2299 		drain_all_pages();
2300 		drained = true;
2301 		goto retry;
2302 	}
2303 
2304 	return page;
2305 }
2306 
2307 /*
2308  * This is called in the allocator slow-path if the allocation request is of
2309  * sufficient urgency to ignore watermarks and take other desperate measures
2310  */
2311 static inline struct page *
2312 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2313 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2314 	nodemask_t *nodemask, struct zone *preferred_zone,
2315 	int migratetype)
2316 {
2317 	struct page *page;
2318 
2319 	do {
2320 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2321 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2322 			preferred_zone, migratetype);
2323 
2324 		if (!page && gfp_mask & __GFP_NOFAIL)
2325 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2326 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2327 
2328 	return page;
2329 }
2330 
2331 static inline
2332 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2333 						enum zone_type high_zoneidx,
2334 						enum zone_type classzone_idx)
2335 {
2336 	struct zoneref *z;
2337 	struct zone *zone;
2338 
2339 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2340 		wakeup_kswapd(zone, order, classzone_idx);
2341 }
2342 
2343 static inline int
2344 gfp_to_alloc_flags(gfp_t gfp_mask)
2345 {
2346 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2347 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2348 
2349 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2350 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2351 
2352 	/*
2353 	 * The caller may dip into page reserves a bit more if the caller
2354 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2355 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2356 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2357 	 */
2358 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2359 
2360 	if (!wait) {
2361 		/*
2362 		 * Not worth trying to allocate harder for
2363 		 * __GFP_NOMEMALLOC even if it can't schedule.
2364 		 */
2365 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2366 			alloc_flags |= ALLOC_HARDER;
2367 		/*
2368 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2369 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2370 		 */
2371 		alloc_flags &= ~ALLOC_CPUSET;
2372 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2373 		alloc_flags |= ALLOC_HARDER;
2374 
2375 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2376 		if (gfp_mask & __GFP_MEMALLOC)
2377 			alloc_flags |= ALLOC_NO_WATERMARKS;
2378 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2379 			alloc_flags |= ALLOC_NO_WATERMARKS;
2380 		else if (!in_interrupt() &&
2381 				((current->flags & PF_MEMALLOC) ||
2382 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2383 			alloc_flags |= ALLOC_NO_WATERMARKS;
2384 	}
2385 #ifdef CONFIG_CMA
2386 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2387 		alloc_flags |= ALLOC_CMA;
2388 #endif
2389 	return alloc_flags;
2390 }
2391 
2392 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2393 {
2394 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2395 }
2396 
2397 static inline struct page *
2398 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2399 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2400 	nodemask_t *nodemask, struct zone *preferred_zone,
2401 	int migratetype)
2402 {
2403 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2404 	struct page *page = NULL;
2405 	int alloc_flags;
2406 	unsigned long pages_reclaimed = 0;
2407 	unsigned long did_some_progress;
2408 	bool sync_migration = false;
2409 	bool deferred_compaction = false;
2410 	bool contended_compaction = false;
2411 
2412 	/*
2413 	 * In the slowpath, we sanity check order to avoid ever trying to
2414 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2415 	 * be using allocators in order of preference for an area that is
2416 	 * too large.
2417 	 */
2418 	if (order >= MAX_ORDER) {
2419 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2420 		return NULL;
2421 	}
2422 
2423 	/*
2424 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2425 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2426 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2427 	 * using a larger set of nodes after it has established that the
2428 	 * allowed per node queues are empty and that nodes are
2429 	 * over allocated.
2430 	 */
2431 	if (IS_ENABLED(CONFIG_NUMA) &&
2432 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2433 		goto nopage;
2434 
2435 restart:
2436 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2437 		wake_all_kswapd(order, zonelist, high_zoneidx,
2438 						zone_idx(preferred_zone));
2439 
2440 	/*
2441 	 * OK, we're below the kswapd watermark and have kicked background
2442 	 * reclaim. Now things get more complex, so set up alloc_flags according
2443 	 * to how we want to proceed.
2444 	 */
2445 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2446 
2447 	/*
2448 	 * Find the true preferred zone if the allocation is unconstrained by
2449 	 * cpusets.
2450 	 */
2451 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2452 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2453 					&preferred_zone);
2454 
2455 rebalance:
2456 	/* This is the last chance, in general, before the goto nopage. */
2457 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2458 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2459 			preferred_zone, migratetype);
2460 	if (page)
2461 		goto got_pg;
2462 
2463 	/* Allocate without watermarks if the context allows */
2464 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2465 		/*
2466 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2467 		 * the allocation is high priority and these type of
2468 		 * allocations are system rather than user orientated
2469 		 */
2470 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2471 
2472 		page = __alloc_pages_high_priority(gfp_mask, order,
2473 				zonelist, high_zoneidx, nodemask,
2474 				preferred_zone, migratetype);
2475 		if (page) {
2476 			goto got_pg;
2477 		}
2478 	}
2479 
2480 	/* Atomic allocations - we can't balance anything */
2481 	if (!wait)
2482 		goto nopage;
2483 
2484 	/* Avoid recursion of direct reclaim */
2485 	if (current->flags & PF_MEMALLOC)
2486 		goto nopage;
2487 
2488 	/* Avoid allocations with no watermarks from looping endlessly */
2489 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2490 		goto nopage;
2491 
2492 	/*
2493 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2494 	 * attempts after direct reclaim are synchronous
2495 	 */
2496 	page = __alloc_pages_direct_compact(gfp_mask, order,
2497 					zonelist, high_zoneidx,
2498 					nodemask,
2499 					alloc_flags, preferred_zone,
2500 					migratetype, sync_migration,
2501 					&contended_compaction,
2502 					&deferred_compaction,
2503 					&did_some_progress);
2504 	if (page)
2505 		goto got_pg;
2506 	sync_migration = true;
2507 
2508 	/*
2509 	 * If compaction is deferred for high-order allocations, it is because
2510 	 * sync compaction recently failed. In this is the case and the caller
2511 	 * requested a movable allocation that does not heavily disrupt the
2512 	 * system then fail the allocation instead of entering direct reclaim.
2513 	 */
2514 	if ((deferred_compaction || contended_compaction) &&
2515 						(gfp_mask & __GFP_NO_KSWAPD))
2516 		goto nopage;
2517 
2518 	/* Try direct reclaim and then allocating */
2519 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2520 					zonelist, high_zoneidx,
2521 					nodemask,
2522 					alloc_flags, preferred_zone,
2523 					migratetype, &did_some_progress);
2524 	if (page)
2525 		goto got_pg;
2526 
2527 	/*
2528 	 * If we failed to make any progress reclaiming, then we are
2529 	 * running out of options and have to consider going OOM
2530 	 */
2531 	if (!did_some_progress) {
2532 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2533 			if (oom_killer_disabled)
2534 				goto nopage;
2535 			/* Coredumps can quickly deplete all memory reserves */
2536 			if ((current->flags & PF_DUMPCORE) &&
2537 			    !(gfp_mask & __GFP_NOFAIL))
2538 				goto nopage;
2539 			page = __alloc_pages_may_oom(gfp_mask, order,
2540 					zonelist, high_zoneidx,
2541 					nodemask, preferred_zone,
2542 					migratetype);
2543 			if (page)
2544 				goto got_pg;
2545 
2546 			if (!(gfp_mask & __GFP_NOFAIL)) {
2547 				/*
2548 				 * The oom killer is not called for high-order
2549 				 * allocations that may fail, so if no progress
2550 				 * is being made, there are no other options and
2551 				 * retrying is unlikely to help.
2552 				 */
2553 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2554 					goto nopage;
2555 				/*
2556 				 * The oom killer is not called for lowmem
2557 				 * allocations to prevent needlessly killing
2558 				 * innocent tasks.
2559 				 */
2560 				if (high_zoneidx < ZONE_NORMAL)
2561 					goto nopage;
2562 			}
2563 
2564 			goto restart;
2565 		}
2566 	}
2567 
2568 	/* Check if we should retry the allocation */
2569 	pages_reclaimed += did_some_progress;
2570 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2571 						pages_reclaimed)) {
2572 		/* Wait for some write requests to complete then retry */
2573 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2574 		goto rebalance;
2575 	} else {
2576 		/*
2577 		 * High-order allocations do not necessarily loop after
2578 		 * direct reclaim and reclaim/compaction depends on compaction
2579 		 * being called after reclaim so call directly if necessary
2580 		 */
2581 		page = __alloc_pages_direct_compact(gfp_mask, order,
2582 					zonelist, high_zoneidx,
2583 					nodemask,
2584 					alloc_flags, preferred_zone,
2585 					migratetype, sync_migration,
2586 					&contended_compaction,
2587 					&deferred_compaction,
2588 					&did_some_progress);
2589 		if (page)
2590 			goto got_pg;
2591 	}
2592 
2593 nopage:
2594 	warn_alloc_failed(gfp_mask, order, NULL);
2595 	return page;
2596 got_pg:
2597 	if (kmemcheck_enabled)
2598 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2599 
2600 	return page;
2601 }
2602 
2603 /*
2604  * This is the 'heart' of the zoned buddy allocator.
2605  */
2606 struct page *
2607 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2608 			struct zonelist *zonelist, nodemask_t *nodemask)
2609 {
2610 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2611 	struct zone *preferred_zone;
2612 	struct page *page = NULL;
2613 	int migratetype = allocflags_to_migratetype(gfp_mask);
2614 	unsigned int cpuset_mems_cookie;
2615 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2616 
2617 	gfp_mask &= gfp_allowed_mask;
2618 
2619 	lockdep_trace_alloc(gfp_mask);
2620 
2621 	might_sleep_if(gfp_mask & __GFP_WAIT);
2622 
2623 	if (should_fail_alloc_page(gfp_mask, order))
2624 		return NULL;
2625 
2626 	/*
2627 	 * Check the zones suitable for the gfp_mask contain at least one
2628 	 * valid zone. It's possible to have an empty zonelist as a result
2629 	 * of GFP_THISNODE and a memoryless node
2630 	 */
2631 	if (unlikely(!zonelist->_zonerefs->zone))
2632 		return NULL;
2633 
2634 retry_cpuset:
2635 	cpuset_mems_cookie = get_mems_allowed();
2636 
2637 	/* The preferred zone is used for statistics later */
2638 	first_zones_zonelist(zonelist, high_zoneidx,
2639 				nodemask ? : &cpuset_current_mems_allowed,
2640 				&preferred_zone);
2641 	if (!preferred_zone)
2642 		goto out;
2643 
2644 #ifdef CONFIG_CMA
2645 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2646 		alloc_flags |= ALLOC_CMA;
2647 #endif
2648 	/* First allocation attempt */
2649 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2650 			zonelist, high_zoneidx, alloc_flags,
2651 			preferred_zone, migratetype);
2652 	if (unlikely(!page))
2653 		page = __alloc_pages_slowpath(gfp_mask, order,
2654 				zonelist, high_zoneidx, nodemask,
2655 				preferred_zone, migratetype);
2656 
2657 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2658 
2659 out:
2660 	/*
2661 	 * When updating a task's mems_allowed, it is possible to race with
2662 	 * parallel threads in such a way that an allocation can fail while
2663 	 * the mask is being updated. If a page allocation is about to fail,
2664 	 * check if the cpuset changed during allocation and if so, retry.
2665 	 */
2666 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2667 		goto retry_cpuset;
2668 
2669 	return page;
2670 }
2671 EXPORT_SYMBOL(__alloc_pages_nodemask);
2672 
2673 /*
2674  * Common helper functions.
2675  */
2676 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2677 {
2678 	struct page *page;
2679 
2680 	/*
2681 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2682 	 * a highmem page
2683 	 */
2684 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2685 
2686 	page = alloc_pages(gfp_mask, order);
2687 	if (!page)
2688 		return 0;
2689 	return (unsigned long) page_address(page);
2690 }
2691 EXPORT_SYMBOL(__get_free_pages);
2692 
2693 unsigned long get_zeroed_page(gfp_t gfp_mask)
2694 {
2695 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2696 }
2697 EXPORT_SYMBOL(get_zeroed_page);
2698 
2699 void __free_pages(struct page *page, unsigned int order)
2700 {
2701 	if (put_page_testzero(page)) {
2702 		if (order == 0)
2703 			free_hot_cold_page(page, 0);
2704 		else
2705 			__free_pages_ok(page, order);
2706 	}
2707 }
2708 
2709 EXPORT_SYMBOL(__free_pages);
2710 
2711 void free_pages(unsigned long addr, unsigned int order)
2712 {
2713 	if (addr != 0) {
2714 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2715 		__free_pages(virt_to_page((void *)addr), order);
2716 	}
2717 }
2718 
2719 EXPORT_SYMBOL(free_pages);
2720 
2721 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2722 {
2723 	if (addr) {
2724 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2725 		unsigned long used = addr + PAGE_ALIGN(size);
2726 
2727 		split_page(virt_to_page((void *)addr), order);
2728 		while (used < alloc_end) {
2729 			free_page(used);
2730 			used += PAGE_SIZE;
2731 		}
2732 	}
2733 	return (void *)addr;
2734 }
2735 
2736 /**
2737  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2738  * @size: the number of bytes to allocate
2739  * @gfp_mask: GFP flags for the allocation
2740  *
2741  * This function is similar to alloc_pages(), except that it allocates the
2742  * minimum number of pages to satisfy the request.  alloc_pages() can only
2743  * allocate memory in power-of-two pages.
2744  *
2745  * This function is also limited by MAX_ORDER.
2746  *
2747  * Memory allocated by this function must be released by free_pages_exact().
2748  */
2749 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2750 {
2751 	unsigned int order = get_order(size);
2752 	unsigned long addr;
2753 
2754 	addr = __get_free_pages(gfp_mask, order);
2755 	return make_alloc_exact(addr, order, size);
2756 }
2757 EXPORT_SYMBOL(alloc_pages_exact);
2758 
2759 /**
2760  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2761  *			   pages on a node.
2762  * @nid: the preferred node ID where memory should be allocated
2763  * @size: the number of bytes to allocate
2764  * @gfp_mask: GFP flags for the allocation
2765  *
2766  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2767  * back.
2768  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2769  * but is not exact.
2770  */
2771 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2772 {
2773 	unsigned order = get_order(size);
2774 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2775 	if (!p)
2776 		return NULL;
2777 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2778 }
2779 EXPORT_SYMBOL(alloc_pages_exact_nid);
2780 
2781 /**
2782  * free_pages_exact - release memory allocated via alloc_pages_exact()
2783  * @virt: the value returned by alloc_pages_exact.
2784  * @size: size of allocation, same value as passed to alloc_pages_exact().
2785  *
2786  * Release the memory allocated by a previous call to alloc_pages_exact.
2787  */
2788 void free_pages_exact(void *virt, size_t size)
2789 {
2790 	unsigned long addr = (unsigned long)virt;
2791 	unsigned long end = addr + PAGE_ALIGN(size);
2792 
2793 	while (addr < end) {
2794 		free_page(addr);
2795 		addr += PAGE_SIZE;
2796 	}
2797 }
2798 EXPORT_SYMBOL(free_pages_exact);
2799 
2800 static unsigned int nr_free_zone_pages(int offset)
2801 {
2802 	struct zoneref *z;
2803 	struct zone *zone;
2804 
2805 	/* Just pick one node, since fallback list is circular */
2806 	unsigned int sum = 0;
2807 
2808 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2809 
2810 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2811 		unsigned long size = zone->present_pages;
2812 		unsigned long high = high_wmark_pages(zone);
2813 		if (size > high)
2814 			sum += size - high;
2815 	}
2816 
2817 	return sum;
2818 }
2819 
2820 /*
2821  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2822  */
2823 unsigned int nr_free_buffer_pages(void)
2824 {
2825 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2826 }
2827 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2828 
2829 /*
2830  * Amount of free RAM allocatable within all zones
2831  */
2832 unsigned int nr_free_pagecache_pages(void)
2833 {
2834 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2835 }
2836 
2837 static inline void show_node(struct zone *zone)
2838 {
2839 	if (IS_ENABLED(CONFIG_NUMA))
2840 		printk("Node %d ", zone_to_nid(zone));
2841 }
2842 
2843 void si_meminfo(struct sysinfo *val)
2844 {
2845 	val->totalram = totalram_pages;
2846 	val->sharedram = 0;
2847 	val->freeram = global_page_state(NR_FREE_PAGES);
2848 	val->bufferram = nr_blockdev_pages();
2849 	val->totalhigh = totalhigh_pages;
2850 	val->freehigh = nr_free_highpages();
2851 	val->mem_unit = PAGE_SIZE;
2852 }
2853 
2854 EXPORT_SYMBOL(si_meminfo);
2855 
2856 #ifdef CONFIG_NUMA
2857 void si_meminfo_node(struct sysinfo *val, int nid)
2858 {
2859 	pg_data_t *pgdat = NODE_DATA(nid);
2860 
2861 	val->totalram = pgdat->node_present_pages;
2862 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2863 #ifdef CONFIG_HIGHMEM
2864 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2865 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2866 			NR_FREE_PAGES);
2867 #else
2868 	val->totalhigh = 0;
2869 	val->freehigh = 0;
2870 #endif
2871 	val->mem_unit = PAGE_SIZE;
2872 }
2873 #endif
2874 
2875 /*
2876  * Determine whether the node should be displayed or not, depending on whether
2877  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2878  */
2879 bool skip_free_areas_node(unsigned int flags, int nid)
2880 {
2881 	bool ret = false;
2882 	unsigned int cpuset_mems_cookie;
2883 
2884 	if (!(flags & SHOW_MEM_FILTER_NODES))
2885 		goto out;
2886 
2887 	do {
2888 		cpuset_mems_cookie = get_mems_allowed();
2889 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2890 	} while (!put_mems_allowed(cpuset_mems_cookie));
2891 out:
2892 	return ret;
2893 }
2894 
2895 #define K(x) ((x) << (PAGE_SHIFT-10))
2896 
2897 static void show_migration_types(unsigned char type)
2898 {
2899 	static const char types[MIGRATE_TYPES] = {
2900 		[MIGRATE_UNMOVABLE]	= 'U',
2901 		[MIGRATE_RECLAIMABLE]	= 'E',
2902 		[MIGRATE_MOVABLE]	= 'M',
2903 		[MIGRATE_RESERVE]	= 'R',
2904 #ifdef CONFIG_CMA
2905 		[MIGRATE_CMA]		= 'C',
2906 #endif
2907 		[MIGRATE_ISOLATE]	= 'I',
2908 	};
2909 	char tmp[MIGRATE_TYPES + 1];
2910 	char *p = tmp;
2911 	int i;
2912 
2913 	for (i = 0; i < MIGRATE_TYPES; i++) {
2914 		if (type & (1 << i))
2915 			*p++ = types[i];
2916 	}
2917 
2918 	*p = '\0';
2919 	printk("(%s) ", tmp);
2920 }
2921 
2922 /*
2923  * Show free area list (used inside shift_scroll-lock stuff)
2924  * We also calculate the percentage fragmentation. We do this by counting the
2925  * memory on each free list with the exception of the first item on the list.
2926  * Suppresses nodes that are not allowed by current's cpuset if
2927  * SHOW_MEM_FILTER_NODES is passed.
2928  */
2929 void show_free_areas(unsigned int filter)
2930 {
2931 	int cpu;
2932 	struct zone *zone;
2933 
2934 	for_each_populated_zone(zone) {
2935 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2936 			continue;
2937 		show_node(zone);
2938 		printk("%s per-cpu:\n", zone->name);
2939 
2940 		for_each_online_cpu(cpu) {
2941 			struct per_cpu_pageset *pageset;
2942 
2943 			pageset = per_cpu_ptr(zone->pageset, cpu);
2944 
2945 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2946 			       cpu, pageset->pcp.high,
2947 			       pageset->pcp.batch, pageset->pcp.count);
2948 		}
2949 	}
2950 
2951 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2952 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2953 		" unevictable:%lu"
2954 		" dirty:%lu writeback:%lu unstable:%lu\n"
2955 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2956 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2957 		" free_cma:%lu\n",
2958 		global_page_state(NR_ACTIVE_ANON),
2959 		global_page_state(NR_INACTIVE_ANON),
2960 		global_page_state(NR_ISOLATED_ANON),
2961 		global_page_state(NR_ACTIVE_FILE),
2962 		global_page_state(NR_INACTIVE_FILE),
2963 		global_page_state(NR_ISOLATED_FILE),
2964 		global_page_state(NR_UNEVICTABLE),
2965 		global_page_state(NR_FILE_DIRTY),
2966 		global_page_state(NR_WRITEBACK),
2967 		global_page_state(NR_UNSTABLE_NFS),
2968 		global_page_state(NR_FREE_PAGES),
2969 		global_page_state(NR_SLAB_RECLAIMABLE),
2970 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2971 		global_page_state(NR_FILE_MAPPED),
2972 		global_page_state(NR_SHMEM),
2973 		global_page_state(NR_PAGETABLE),
2974 		global_page_state(NR_BOUNCE),
2975 		global_page_state(NR_FREE_CMA_PAGES));
2976 
2977 	for_each_populated_zone(zone) {
2978 		int i;
2979 
2980 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2981 			continue;
2982 		show_node(zone);
2983 		printk("%s"
2984 			" free:%lukB"
2985 			" min:%lukB"
2986 			" low:%lukB"
2987 			" high:%lukB"
2988 			" active_anon:%lukB"
2989 			" inactive_anon:%lukB"
2990 			" active_file:%lukB"
2991 			" inactive_file:%lukB"
2992 			" unevictable:%lukB"
2993 			" isolated(anon):%lukB"
2994 			" isolated(file):%lukB"
2995 			" present:%lukB"
2996 			" managed:%lukB"
2997 			" mlocked:%lukB"
2998 			" dirty:%lukB"
2999 			" writeback:%lukB"
3000 			" mapped:%lukB"
3001 			" shmem:%lukB"
3002 			" slab_reclaimable:%lukB"
3003 			" slab_unreclaimable:%lukB"
3004 			" kernel_stack:%lukB"
3005 			" pagetables:%lukB"
3006 			" unstable:%lukB"
3007 			" bounce:%lukB"
3008 			" free_cma:%lukB"
3009 			" writeback_tmp:%lukB"
3010 			" pages_scanned:%lu"
3011 			" all_unreclaimable? %s"
3012 			"\n",
3013 			zone->name,
3014 			K(zone_page_state(zone, NR_FREE_PAGES)),
3015 			K(min_wmark_pages(zone)),
3016 			K(low_wmark_pages(zone)),
3017 			K(high_wmark_pages(zone)),
3018 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3019 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3020 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3021 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3022 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3023 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3024 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3025 			K(zone->present_pages),
3026 			K(zone->managed_pages),
3027 			K(zone_page_state(zone, NR_MLOCK)),
3028 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3029 			K(zone_page_state(zone, NR_WRITEBACK)),
3030 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3031 			K(zone_page_state(zone, NR_SHMEM)),
3032 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3033 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3034 			zone_page_state(zone, NR_KERNEL_STACK) *
3035 				THREAD_SIZE / 1024,
3036 			K(zone_page_state(zone, NR_PAGETABLE)),
3037 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3038 			K(zone_page_state(zone, NR_BOUNCE)),
3039 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3040 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3041 			zone->pages_scanned,
3042 			(zone->all_unreclaimable ? "yes" : "no")
3043 			);
3044 		printk("lowmem_reserve[]:");
3045 		for (i = 0; i < MAX_NR_ZONES; i++)
3046 			printk(" %lu", zone->lowmem_reserve[i]);
3047 		printk("\n");
3048 	}
3049 
3050 	for_each_populated_zone(zone) {
3051  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3052 		unsigned char types[MAX_ORDER];
3053 
3054 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3055 			continue;
3056 		show_node(zone);
3057 		printk("%s: ", zone->name);
3058 
3059 		spin_lock_irqsave(&zone->lock, flags);
3060 		for (order = 0; order < MAX_ORDER; order++) {
3061 			struct free_area *area = &zone->free_area[order];
3062 			int type;
3063 
3064 			nr[order] = area->nr_free;
3065 			total += nr[order] << order;
3066 
3067 			types[order] = 0;
3068 			for (type = 0; type < MIGRATE_TYPES; type++) {
3069 				if (!list_empty(&area->free_list[type]))
3070 					types[order] |= 1 << type;
3071 			}
3072 		}
3073 		spin_unlock_irqrestore(&zone->lock, flags);
3074 		for (order = 0; order < MAX_ORDER; order++) {
3075 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3076 			if (nr[order])
3077 				show_migration_types(types[order]);
3078 		}
3079 		printk("= %lukB\n", K(total));
3080 	}
3081 
3082 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3083 
3084 	show_swap_cache_info();
3085 }
3086 
3087 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3088 {
3089 	zoneref->zone = zone;
3090 	zoneref->zone_idx = zone_idx(zone);
3091 }
3092 
3093 /*
3094  * Builds allocation fallback zone lists.
3095  *
3096  * Add all populated zones of a node to the zonelist.
3097  */
3098 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3099 				int nr_zones, enum zone_type zone_type)
3100 {
3101 	struct zone *zone;
3102 
3103 	BUG_ON(zone_type >= MAX_NR_ZONES);
3104 	zone_type++;
3105 
3106 	do {
3107 		zone_type--;
3108 		zone = pgdat->node_zones + zone_type;
3109 		if (populated_zone(zone)) {
3110 			zoneref_set_zone(zone,
3111 				&zonelist->_zonerefs[nr_zones++]);
3112 			check_highest_zone(zone_type);
3113 		}
3114 
3115 	} while (zone_type);
3116 	return nr_zones;
3117 }
3118 
3119 
3120 /*
3121  *  zonelist_order:
3122  *  0 = automatic detection of better ordering.
3123  *  1 = order by ([node] distance, -zonetype)
3124  *  2 = order by (-zonetype, [node] distance)
3125  *
3126  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3127  *  the same zonelist. So only NUMA can configure this param.
3128  */
3129 #define ZONELIST_ORDER_DEFAULT  0
3130 #define ZONELIST_ORDER_NODE     1
3131 #define ZONELIST_ORDER_ZONE     2
3132 
3133 /* zonelist order in the kernel.
3134  * set_zonelist_order() will set this to NODE or ZONE.
3135  */
3136 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3137 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3138 
3139 
3140 #ifdef CONFIG_NUMA
3141 /* The value user specified ....changed by config */
3142 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3143 /* string for sysctl */
3144 #define NUMA_ZONELIST_ORDER_LEN	16
3145 char numa_zonelist_order[16] = "default";
3146 
3147 /*
3148  * interface for configure zonelist ordering.
3149  * command line option "numa_zonelist_order"
3150  *	= "[dD]efault	- default, automatic configuration.
3151  *	= "[nN]ode 	- order by node locality, then by zone within node
3152  *	= "[zZ]one      - order by zone, then by locality within zone
3153  */
3154 
3155 static int __parse_numa_zonelist_order(char *s)
3156 {
3157 	if (*s == 'd' || *s == 'D') {
3158 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3159 	} else if (*s == 'n' || *s == 'N') {
3160 		user_zonelist_order = ZONELIST_ORDER_NODE;
3161 	} else if (*s == 'z' || *s == 'Z') {
3162 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3163 	} else {
3164 		printk(KERN_WARNING
3165 			"Ignoring invalid numa_zonelist_order value:  "
3166 			"%s\n", s);
3167 		return -EINVAL;
3168 	}
3169 	return 0;
3170 }
3171 
3172 static __init int setup_numa_zonelist_order(char *s)
3173 {
3174 	int ret;
3175 
3176 	if (!s)
3177 		return 0;
3178 
3179 	ret = __parse_numa_zonelist_order(s);
3180 	if (ret == 0)
3181 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3182 
3183 	return ret;
3184 }
3185 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3186 
3187 /*
3188  * sysctl handler for numa_zonelist_order
3189  */
3190 int numa_zonelist_order_handler(ctl_table *table, int write,
3191 		void __user *buffer, size_t *length,
3192 		loff_t *ppos)
3193 {
3194 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3195 	int ret;
3196 	static DEFINE_MUTEX(zl_order_mutex);
3197 
3198 	mutex_lock(&zl_order_mutex);
3199 	if (write)
3200 		strcpy(saved_string, (char*)table->data);
3201 	ret = proc_dostring(table, write, buffer, length, ppos);
3202 	if (ret)
3203 		goto out;
3204 	if (write) {
3205 		int oldval = user_zonelist_order;
3206 		if (__parse_numa_zonelist_order((char*)table->data)) {
3207 			/*
3208 			 * bogus value.  restore saved string
3209 			 */
3210 			strncpy((char*)table->data, saved_string,
3211 				NUMA_ZONELIST_ORDER_LEN);
3212 			user_zonelist_order = oldval;
3213 		} else if (oldval != user_zonelist_order) {
3214 			mutex_lock(&zonelists_mutex);
3215 			build_all_zonelists(NULL, NULL);
3216 			mutex_unlock(&zonelists_mutex);
3217 		}
3218 	}
3219 out:
3220 	mutex_unlock(&zl_order_mutex);
3221 	return ret;
3222 }
3223 
3224 
3225 #define MAX_NODE_LOAD (nr_online_nodes)
3226 static int node_load[MAX_NUMNODES];
3227 
3228 /**
3229  * find_next_best_node - find the next node that should appear in a given node's fallback list
3230  * @node: node whose fallback list we're appending
3231  * @used_node_mask: nodemask_t of already used nodes
3232  *
3233  * We use a number of factors to determine which is the next node that should
3234  * appear on a given node's fallback list.  The node should not have appeared
3235  * already in @node's fallback list, and it should be the next closest node
3236  * according to the distance array (which contains arbitrary distance values
3237  * from each node to each node in the system), and should also prefer nodes
3238  * with no CPUs, since presumably they'll have very little allocation pressure
3239  * on them otherwise.
3240  * It returns -1 if no node is found.
3241  */
3242 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3243 {
3244 	int n, val;
3245 	int min_val = INT_MAX;
3246 	int best_node = -1;
3247 	const struct cpumask *tmp = cpumask_of_node(0);
3248 
3249 	/* Use the local node if we haven't already */
3250 	if (!node_isset(node, *used_node_mask)) {
3251 		node_set(node, *used_node_mask);
3252 		return node;
3253 	}
3254 
3255 	for_each_node_state(n, N_MEMORY) {
3256 
3257 		/* Don't want a node to appear more than once */
3258 		if (node_isset(n, *used_node_mask))
3259 			continue;
3260 
3261 		/* Use the distance array to find the distance */
3262 		val = node_distance(node, n);
3263 
3264 		/* Penalize nodes under us ("prefer the next node") */
3265 		val += (n < node);
3266 
3267 		/* Give preference to headless and unused nodes */
3268 		tmp = cpumask_of_node(n);
3269 		if (!cpumask_empty(tmp))
3270 			val += PENALTY_FOR_NODE_WITH_CPUS;
3271 
3272 		/* Slight preference for less loaded node */
3273 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3274 		val += node_load[n];
3275 
3276 		if (val < min_val) {
3277 			min_val = val;
3278 			best_node = n;
3279 		}
3280 	}
3281 
3282 	if (best_node >= 0)
3283 		node_set(best_node, *used_node_mask);
3284 
3285 	return best_node;
3286 }
3287 
3288 
3289 /*
3290  * Build zonelists ordered by node and zones within node.
3291  * This results in maximum locality--normal zone overflows into local
3292  * DMA zone, if any--but risks exhausting DMA zone.
3293  */
3294 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3295 {
3296 	int j;
3297 	struct zonelist *zonelist;
3298 
3299 	zonelist = &pgdat->node_zonelists[0];
3300 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3301 		;
3302 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3303 							MAX_NR_ZONES - 1);
3304 	zonelist->_zonerefs[j].zone = NULL;
3305 	zonelist->_zonerefs[j].zone_idx = 0;
3306 }
3307 
3308 /*
3309  * Build gfp_thisnode zonelists
3310  */
3311 static void build_thisnode_zonelists(pg_data_t *pgdat)
3312 {
3313 	int j;
3314 	struct zonelist *zonelist;
3315 
3316 	zonelist = &pgdat->node_zonelists[1];
3317 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3318 	zonelist->_zonerefs[j].zone = NULL;
3319 	zonelist->_zonerefs[j].zone_idx = 0;
3320 }
3321 
3322 /*
3323  * Build zonelists ordered by zone and nodes within zones.
3324  * This results in conserving DMA zone[s] until all Normal memory is
3325  * exhausted, but results in overflowing to remote node while memory
3326  * may still exist in local DMA zone.
3327  */
3328 static int node_order[MAX_NUMNODES];
3329 
3330 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3331 {
3332 	int pos, j, node;
3333 	int zone_type;		/* needs to be signed */
3334 	struct zone *z;
3335 	struct zonelist *zonelist;
3336 
3337 	zonelist = &pgdat->node_zonelists[0];
3338 	pos = 0;
3339 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3340 		for (j = 0; j < nr_nodes; j++) {
3341 			node = node_order[j];
3342 			z = &NODE_DATA(node)->node_zones[zone_type];
3343 			if (populated_zone(z)) {
3344 				zoneref_set_zone(z,
3345 					&zonelist->_zonerefs[pos++]);
3346 				check_highest_zone(zone_type);
3347 			}
3348 		}
3349 	}
3350 	zonelist->_zonerefs[pos].zone = NULL;
3351 	zonelist->_zonerefs[pos].zone_idx = 0;
3352 }
3353 
3354 static int default_zonelist_order(void)
3355 {
3356 	int nid, zone_type;
3357 	unsigned long low_kmem_size,total_size;
3358 	struct zone *z;
3359 	int average_size;
3360 	/*
3361          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3362 	 * If they are really small and used heavily, the system can fall
3363 	 * into OOM very easily.
3364 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3365 	 */
3366 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3367 	low_kmem_size = 0;
3368 	total_size = 0;
3369 	for_each_online_node(nid) {
3370 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3371 			z = &NODE_DATA(nid)->node_zones[zone_type];
3372 			if (populated_zone(z)) {
3373 				if (zone_type < ZONE_NORMAL)
3374 					low_kmem_size += z->present_pages;
3375 				total_size += z->present_pages;
3376 			} else if (zone_type == ZONE_NORMAL) {
3377 				/*
3378 				 * If any node has only lowmem, then node order
3379 				 * is preferred to allow kernel allocations
3380 				 * locally; otherwise, they can easily infringe
3381 				 * on other nodes when there is an abundance of
3382 				 * lowmem available to allocate from.
3383 				 */
3384 				return ZONELIST_ORDER_NODE;
3385 			}
3386 		}
3387 	}
3388 	if (!low_kmem_size ||  /* there are no DMA area. */
3389 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3390 		return ZONELIST_ORDER_NODE;
3391 	/*
3392 	 * look into each node's config.
3393   	 * If there is a node whose DMA/DMA32 memory is very big area on
3394  	 * local memory, NODE_ORDER may be suitable.
3395          */
3396 	average_size = total_size /
3397 				(nodes_weight(node_states[N_MEMORY]) + 1);
3398 	for_each_online_node(nid) {
3399 		low_kmem_size = 0;
3400 		total_size = 0;
3401 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3402 			z = &NODE_DATA(nid)->node_zones[zone_type];
3403 			if (populated_zone(z)) {
3404 				if (zone_type < ZONE_NORMAL)
3405 					low_kmem_size += z->present_pages;
3406 				total_size += z->present_pages;
3407 			}
3408 		}
3409 		if (low_kmem_size &&
3410 		    total_size > average_size && /* ignore small node */
3411 		    low_kmem_size > total_size * 70/100)
3412 			return ZONELIST_ORDER_NODE;
3413 	}
3414 	return ZONELIST_ORDER_ZONE;
3415 }
3416 
3417 static void set_zonelist_order(void)
3418 {
3419 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3420 		current_zonelist_order = default_zonelist_order();
3421 	else
3422 		current_zonelist_order = user_zonelist_order;
3423 }
3424 
3425 static void build_zonelists(pg_data_t *pgdat)
3426 {
3427 	int j, node, load;
3428 	enum zone_type i;
3429 	nodemask_t used_mask;
3430 	int local_node, prev_node;
3431 	struct zonelist *zonelist;
3432 	int order = current_zonelist_order;
3433 
3434 	/* initialize zonelists */
3435 	for (i = 0; i < MAX_ZONELISTS; i++) {
3436 		zonelist = pgdat->node_zonelists + i;
3437 		zonelist->_zonerefs[0].zone = NULL;
3438 		zonelist->_zonerefs[0].zone_idx = 0;
3439 	}
3440 
3441 	/* NUMA-aware ordering of nodes */
3442 	local_node = pgdat->node_id;
3443 	load = nr_online_nodes;
3444 	prev_node = local_node;
3445 	nodes_clear(used_mask);
3446 
3447 	memset(node_order, 0, sizeof(node_order));
3448 	j = 0;
3449 
3450 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3451 		/*
3452 		 * We don't want to pressure a particular node.
3453 		 * So adding penalty to the first node in same
3454 		 * distance group to make it round-robin.
3455 		 */
3456 		if (node_distance(local_node, node) !=
3457 		    node_distance(local_node, prev_node))
3458 			node_load[node] = load;
3459 
3460 		prev_node = node;
3461 		load--;
3462 		if (order == ZONELIST_ORDER_NODE)
3463 			build_zonelists_in_node_order(pgdat, node);
3464 		else
3465 			node_order[j++] = node;	/* remember order */
3466 	}
3467 
3468 	if (order == ZONELIST_ORDER_ZONE) {
3469 		/* calculate node order -- i.e., DMA last! */
3470 		build_zonelists_in_zone_order(pgdat, j);
3471 	}
3472 
3473 	build_thisnode_zonelists(pgdat);
3474 }
3475 
3476 /* Construct the zonelist performance cache - see further mmzone.h */
3477 static void build_zonelist_cache(pg_data_t *pgdat)
3478 {
3479 	struct zonelist *zonelist;
3480 	struct zonelist_cache *zlc;
3481 	struct zoneref *z;
3482 
3483 	zonelist = &pgdat->node_zonelists[0];
3484 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3485 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3486 	for (z = zonelist->_zonerefs; z->zone; z++)
3487 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3488 }
3489 
3490 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3491 /*
3492  * Return node id of node used for "local" allocations.
3493  * I.e., first node id of first zone in arg node's generic zonelist.
3494  * Used for initializing percpu 'numa_mem', which is used primarily
3495  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3496  */
3497 int local_memory_node(int node)
3498 {
3499 	struct zone *zone;
3500 
3501 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3502 				   gfp_zone(GFP_KERNEL),
3503 				   NULL,
3504 				   &zone);
3505 	return zone->node;
3506 }
3507 #endif
3508 
3509 #else	/* CONFIG_NUMA */
3510 
3511 static void set_zonelist_order(void)
3512 {
3513 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3514 }
3515 
3516 static void build_zonelists(pg_data_t *pgdat)
3517 {
3518 	int node, local_node;
3519 	enum zone_type j;
3520 	struct zonelist *zonelist;
3521 
3522 	local_node = pgdat->node_id;
3523 
3524 	zonelist = &pgdat->node_zonelists[0];
3525 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3526 
3527 	/*
3528 	 * Now we build the zonelist so that it contains the zones
3529 	 * of all the other nodes.
3530 	 * We don't want to pressure a particular node, so when
3531 	 * building the zones for node N, we make sure that the
3532 	 * zones coming right after the local ones are those from
3533 	 * node N+1 (modulo N)
3534 	 */
3535 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3536 		if (!node_online(node))
3537 			continue;
3538 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3539 							MAX_NR_ZONES - 1);
3540 	}
3541 	for (node = 0; node < local_node; node++) {
3542 		if (!node_online(node))
3543 			continue;
3544 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3545 							MAX_NR_ZONES - 1);
3546 	}
3547 
3548 	zonelist->_zonerefs[j].zone = NULL;
3549 	zonelist->_zonerefs[j].zone_idx = 0;
3550 }
3551 
3552 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3553 static void build_zonelist_cache(pg_data_t *pgdat)
3554 {
3555 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3556 }
3557 
3558 #endif	/* CONFIG_NUMA */
3559 
3560 /*
3561  * Boot pageset table. One per cpu which is going to be used for all
3562  * zones and all nodes. The parameters will be set in such a way
3563  * that an item put on a list will immediately be handed over to
3564  * the buddy list. This is safe since pageset manipulation is done
3565  * with interrupts disabled.
3566  *
3567  * The boot_pagesets must be kept even after bootup is complete for
3568  * unused processors and/or zones. They do play a role for bootstrapping
3569  * hotplugged processors.
3570  *
3571  * zoneinfo_show() and maybe other functions do
3572  * not check if the processor is online before following the pageset pointer.
3573  * Other parts of the kernel may not check if the zone is available.
3574  */
3575 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3576 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3577 static void setup_zone_pageset(struct zone *zone);
3578 
3579 /*
3580  * Global mutex to protect against size modification of zonelists
3581  * as well as to serialize pageset setup for the new populated zone.
3582  */
3583 DEFINE_MUTEX(zonelists_mutex);
3584 
3585 /* return values int ....just for stop_machine() */
3586 static int __build_all_zonelists(void *data)
3587 {
3588 	int nid;
3589 	int cpu;
3590 	pg_data_t *self = data;
3591 
3592 #ifdef CONFIG_NUMA
3593 	memset(node_load, 0, sizeof(node_load));
3594 #endif
3595 
3596 	if (self && !node_online(self->node_id)) {
3597 		build_zonelists(self);
3598 		build_zonelist_cache(self);
3599 	}
3600 
3601 	for_each_online_node(nid) {
3602 		pg_data_t *pgdat = NODE_DATA(nid);
3603 
3604 		build_zonelists(pgdat);
3605 		build_zonelist_cache(pgdat);
3606 	}
3607 
3608 	/*
3609 	 * Initialize the boot_pagesets that are going to be used
3610 	 * for bootstrapping processors. The real pagesets for
3611 	 * each zone will be allocated later when the per cpu
3612 	 * allocator is available.
3613 	 *
3614 	 * boot_pagesets are used also for bootstrapping offline
3615 	 * cpus if the system is already booted because the pagesets
3616 	 * are needed to initialize allocators on a specific cpu too.
3617 	 * F.e. the percpu allocator needs the page allocator which
3618 	 * needs the percpu allocator in order to allocate its pagesets
3619 	 * (a chicken-egg dilemma).
3620 	 */
3621 	for_each_possible_cpu(cpu) {
3622 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3623 
3624 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3625 		/*
3626 		 * We now know the "local memory node" for each node--
3627 		 * i.e., the node of the first zone in the generic zonelist.
3628 		 * Set up numa_mem percpu variable for on-line cpus.  During
3629 		 * boot, only the boot cpu should be on-line;  we'll init the
3630 		 * secondary cpus' numa_mem as they come on-line.  During
3631 		 * node/memory hotplug, we'll fixup all on-line cpus.
3632 		 */
3633 		if (cpu_online(cpu))
3634 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3635 #endif
3636 	}
3637 
3638 	return 0;
3639 }
3640 
3641 /*
3642  * Called with zonelists_mutex held always
3643  * unless system_state == SYSTEM_BOOTING.
3644  */
3645 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3646 {
3647 	set_zonelist_order();
3648 
3649 	if (system_state == SYSTEM_BOOTING) {
3650 		__build_all_zonelists(NULL);
3651 		mminit_verify_zonelist();
3652 		cpuset_init_current_mems_allowed();
3653 	} else {
3654 		/* we have to stop all cpus to guarantee there is no user
3655 		   of zonelist */
3656 #ifdef CONFIG_MEMORY_HOTPLUG
3657 		if (zone)
3658 			setup_zone_pageset(zone);
3659 #endif
3660 		stop_machine(__build_all_zonelists, pgdat, NULL);
3661 		/* cpuset refresh routine should be here */
3662 	}
3663 	vm_total_pages = nr_free_pagecache_pages();
3664 	/*
3665 	 * Disable grouping by mobility if the number of pages in the
3666 	 * system is too low to allow the mechanism to work. It would be
3667 	 * more accurate, but expensive to check per-zone. This check is
3668 	 * made on memory-hotadd so a system can start with mobility
3669 	 * disabled and enable it later
3670 	 */
3671 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3672 		page_group_by_mobility_disabled = 1;
3673 	else
3674 		page_group_by_mobility_disabled = 0;
3675 
3676 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3677 		"Total pages: %ld\n",
3678 			nr_online_nodes,
3679 			zonelist_order_name[current_zonelist_order],
3680 			page_group_by_mobility_disabled ? "off" : "on",
3681 			vm_total_pages);
3682 #ifdef CONFIG_NUMA
3683 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3684 #endif
3685 }
3686 
3687 /*
3688  * Helper functions to size the waitqueue hash table.
3689  * Essentially these want to choose hash table sizes sufficiently
3690  * large so that collisions trying to wait on pages are rare.
3691  * But in fact, the number of active page waitqueues on typical
3692  * systems is ridiculously low, less than 200. So this is even
3693  * conservative, even though it seems large.
3694  *
3695  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3696  * waitqueues, i.e. the size of the waitq table given the number of pages.
3697  */
3698 #define PAGES_PER_WAITQUEUE	256
3699 
3700 #ifndef CONFIG_MEMORY_HOTPLUG
3701 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3702 {
3703 	unsigned long size = 1;
3704 
3705 	pages /= PAGES_PER_WAITQUEUE;
3706 
3707 	while (size < pages)
3708 		size <<= 1;
3709 
3710 	/*
3711 	 * Once we have dozens or even hundreds of threads sleeping
3712 	 * on IO we've got bigger problems than wait queue collision.
3713 	 * Limit the size of the wait table to a reasonable size.
3714 	 */
3715 	size = min(size, 4096UL);
3716 
3717 	return max(size, 4UL);
3718 }
3719 #else
3720 /*
3721  * A zone's size might be changed by hot-add, so it is not possible to determine
3722  * a suitable size for its wait_table.  So we use the maximum size now.
3723  *
3724  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3725  *
3726  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3727  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3728  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3729  *
3730  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3731  * or more by the traditional way. (See above).  It equals:
3732  *
3733  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3734  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3735  *    powerpc (64K page size)             : =  (32G +16M)byte.
3736  */
3737 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3738 {
3739 	return 4096UL;
3740 }
3741 #endif
3742 
3743 /*
3744  * This is an integer logarithm so that shifts can be used later
3745  * to extract the more random high bits from the multiplicative
3746  * hash function before the remainder is taken.
3747  */
3748 static inline unsigned long wait_table_bits(unsigned long size)
3749 {
3750 	return ffz(~size);
3751 }
3752 
3753 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3754 
3755 /*
3756  * Check if a pageblock contains reserved pages
3757  */
3758 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3759 {
3760 	unsigned long pfn;
3761 
3762 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3763 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3764 			return 1;
3765 	}
3766 	return 0;
3767 }
3768 
3769 /*
3770  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3771  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3772  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3773  * higher will lead to a bigger reserve which will get freed as contiguous
3774  * blocks as reclaim kicks in
3775  */
3776 static void setup_zone_migrate_reserve(struct zone *zone)
3777 {
3778 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3779 	struct page *page;
3780 	unsigned long block_migratetype;
3781 	int reserve;
3782 
3783 	/*
3784 	 * Get the start pfn, end pfn and the number of blocks to reserve
3785 	 * We have to be careful to be aligned to pageblock_nr_pages to
3786 	 * make sure that we always check pfn_valid for the first page in
3787 	 * the block.
3788 	 */
3789 	start_pfn = zone->zone_start_pfn;
3790 	end_pfn = start_pfn + zone->spanned_pages;
3791 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3792 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3793 							pageblock_order;
3794 
3795 	/*
3796 	 * Reserve blocks are generally in place to help high-order atomic
3797 	 * allocations that are short-lived. A min_free_kbytes value that
3798 	 * would result in more than 2 reserve blocks for atomic allocations
3799 	 * is assumed to be in place to help anti-fragmentation for the
3800 	 * future allocation of hugepages at runtime.
3801 	 */
3802 	reserve = min(2, reserve);
3803 
3804 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3805 		if (!pfn_valid(pfn))
3806 			continue;
3807 		page = pfn_to_page(pfn);
3808 
3809 		/* Watch out for overlapping nodes */
3810 		if (page_to_nid(page) != zone_to_nid(zone))
3811 			continue;
3812 
3813 		block_migratetype = get_pageblock_migratetype(page);
3814 
3815 		/* Only test what is necessary when the reserves are not met */
3816 		if (reserve > 0) {
3817 			/*
3818 			 * Blocks with reserved pages will never free, skip
3819 			 * them.
3820 			 */
3821 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3822 			if (pageblock_is_reserved(pfn, block_end_pfn))
3823 				continue;
3824 
3825 			/* If this block is reserved, account for it */
3826 			if (block_migratetype == MIGRATE_RESERVE) {
3827 				reserve--;
3828 				continue;
3829 			}
3830 
3831 			/* Suitable for reserving if this block is movable */
3832 			if (block_migratetype == MIGRATE_MOVABLE) {
3833 				set_pageblock_migratetype(page,
3834 							MIGRATE_RESERVE);
3835 				move_freepages_block(zone, page,
3836 							MIGRATE_RESERVE);
3837 				reserve--;
3838 				continue;
3839 			}
3840 		}
3841 
3842 		/*
3843 		 * If the reserve is met and this is a previous reserved block,
3844 		 * take it back
3845 		 */
3846 		if (block_migratetype == MIGRATE_RESERVE) {
3847 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3848 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3849 		}
3850 	}
3851 }
3852 
3853 /*
3854  * Initially all pages are reserved - free ones are freed
3855  * up by free_all_bootmem() once the early boot process is
3856  * done. Non-atomic initialization, single-pass.
3857  */
3858 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3859 		unsigned long start_pfn, enum memmap_context context)
3860 {
3861 	struct page *page;
3862 	unsigned long end_pfn = start_pfn + size;
3863 	unsigned long pfn;
3864 	struct zone *z;
3865 
3866 	if (highest_memmap_pfn < end_pfn - 1)
3867 		highest_memmap_pfn = end_pfn - 1;
3868 
3869 	z = &NODE_DATA(nid)->node_zones[zone];
3870 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3871 		/*
3872 		 * There can be holes in boot-time mem_map[]s
3873 		 * handed to this function.  They do not
3874 		 * exist on hotplugged memory.
3875 		 */
3876 		if (context == MEMMAP_EARLY) {
3877 			if (!early_pfn_valid(pfn))
3878 				continue;
3879 			if (!early_pfn_in_nid(pfn, nid))
3880 				continue;
3881 		}
3882 		page = pfn_to_page(pfn);
3883 		set_page_links(page, zone, nid, pfn);
3884 		mminit_verify_page_links(page, zone, nid, pfn);
3885 		init_page_count(page);
3886 		reset_page_mapcount(page);
3887 		reset_page_last_nid(page);
3888 		SetPageReserved(page);
3889 		/*
3890 		 * Mark the block movable so that blocks are reserved for
3891 		 * movable at startup. This will force kernel allocations
3892 		 * to reserve their blocks rather than leaking throughout
3893 		 * the address space during boot when many long-lived
3894 		 * kernel allocations are made. Later some blocks near
3895 		 * the start are marked MIGRATE_RESERVE by
3896 		 * setup_zone_migrate_reserve()
3897 		 *
3898 		 * bitmap is created for zone's valid pfn range. but memmap
3899 		 * can be created for invalid pages (for alignment)
3900 		 * check here not to call set_pageblock_migratetype() against
3901 		 * pfn out of zone.
3902 		 */
3903 		if ((z->zone_start_pfn <= pfn)
3904 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3905 		    && !(pfn & (pageblock_nr_pages - 1)))
3906 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3907 
3908 		INIT_LIST_HEAD(&page->lru);
3909 #ifdef WANT_PAGE_VIRTUAL
3910 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3911 		if (!is_highmem_idx(zone))
3912 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3913 #endif
3914 	}
3915 }
3916 
3917 static void __meminit zone_init_free_lists(struct zone *zone)
3918 {
3919 	int order, t;
3920 	for_each_migratetype_order(order, t) {
3921 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3922 		zone->free_area[order].nr_free = 0;
3923 	}
3924 }
3925 
3926 #ifndef __HAVE_ARCH_MEMMAP_INIT
3927 #define memmap_init(size, nid, zone, start_pfn) \
3928 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3929 #endif
3930 
3931 static int __meminit zone_batchsize(struct zone *zone)
3932 {
3933 #ifdef CONFIG_MMU
3934 	int batch;
3935 
3936 	/*
3937 	 * The per-cpu-pages pools are set to around 1000th of the
3938 	 * size of the zone.  But no more than 1/2 of a meg.
3939 	 *
3940 	 * OK, so we don't know how big the cache is.  So guess.
3941 	 */
3942 	batch = zone->present_pages / 1024;
3943 	if (batch * PAGE_SIZE > 512 * 1024)
3944 		batch = (512 * 1024) / PAGE_SIZE;
3945 	batch /= 4;		/* We effectively *= 4 below */
3946 	if (batch < 1)
3947 		batch = 1;
3948 
3949 	/*
3950 	 * Clamp the batch to a 2^n - 1 value. Having a power
3951 	 * of 2 value was found to be more likely to have
3952 	 * suboptimal cache aliasing properties in some cases.
3953 	 *
3954 	 * For example if 2 tasks are alternately allocating
3955 	 * batches of pages, one task can end up with a lot
3956 	 * of pages of one half of the possible page colors
3957 	 * and the other with pages of the other colors.
3958 	 */
3959 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3960 
3961 	return batch;
3962 
3963 #else
3964 	/* The deferral and batching of frees should be suppressed under NOMMU
3965 	 * conditions.
3966 	 *
3967 	 * The problem is that NOMMU needs to be able to allocate large chunks
3968 	 * of contiguous memory as there's no hardware page translation to
3969 	 * assemble apparent contiguous memory from discontiguous pages.
3970 	 *
3971 	 * Queueing large contiguous runs of pages for batching, however,
3972 	 * causes the pages to actually be freed in smaller chunks.  As there
3973 	 * can be a significant delay between the individual batches being
3974 	 * recycled, this leads to the once large chunks of space being
3975 	 * fragmented and becoming unavailable for high-order allocations.
3976 	 */
3977 	return 0;
3978 #endif
3979 }
3980 
3981 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3982 {
3983 	struct per_cpu_pages *pcp;
3984 	int migratetype;
3985 
3986 	memset(p, 0, sizeof(*p));
3987 
3988 	pcp = &p->pcp;
3989 	pcp->count = 0;
3990 	pcp->high = 6 * batch;
3991 	pcp->batch = max(1UL, 1 * batch);
3992 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3993 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3994 }
3995 
3996 /*
3997  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3998  * to the value high for the pageset p.
3999  */
4000 
4001 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4002 				unsigned long high)
4003 {
4004 	struct per_cpu_pages *pcp;
4005 
4006 	pcp = &p->pcp;
4007 	pcp->high = high;
4008 	pcp->batch = max(1UL, high/4);
4009 	if ((high/4) > (PAGE_SHIFT * 8))
4010 		pcp->batch = PAGE_SHIFT * 8;
4011 }
4012 
4013 static void __meminit setup_zone_pageset(struct zone *zone)
4014 {
4015 	int cpu;
4016 
4017 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4018 
4019 	for_each_possible_cpu(cpu) {
4020 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4021 
4022 		setup_pageset(pcp, zone_batchsize(zone));
4023 
4024 		if (percpu_pagelist_fraction)
4025 			setup_pagelist_highmark(pcp,
4026 				(zone->present_pages /
4027 					percpu_pagelist_fraction));
4028 	}
4029 }
4030 
4031 /*
4032  * Allocate per cpu pagesets and initialize them.
4033  * Before this call only boot pagesets were available.
4034  */
4035 void __init setup_per_cpu_pageset(void)
4036 {
4037 	struct zone *zone;
4038 
4039 	for_each_populated_zone(zone)
4040 		setup_zone_pageset(zone);
4041 }
4042 
4043 static noinline __init_refok
4044 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4045 {
4046 	int i;
4047 	struct pglist_data *pgdat = zone->zone_pgdat;
4048 	size_t alloc_size;
4049 
4050 	/*
4051 	 * The per-page waitqueue mechanism uses hashed waitqueues
4052 	 * per zone.
4053 	 */
4054 	zone->wait_table_hash_nr_entries =
4055 		 wait_table_hash_nr_entries(zone_size_pages);
4056 	zone->wait_table_bits =
4057 		wait_table_bits(zone->wait_table_hash_nr_entries);
4058 	alloc_size = zone->wait_table_hash_nr_entries
4059 					* sizeof(wait_queue_head_t);
4060 
4061 	if (!slab_is_available()) {
4062 		zone->wait_table = (wait_queue_head_t *)
4063 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4064 	} else {
4065 		/*
4066 		 * This case means that a zone whose size was 0 gets new memory
4067 		 * via memory hot-add.
4068 		 * But it may be the case that a new node was hot-added.  In
4069 		 * this case vmalloc() will not be able to use this new node's
4070 		 * memory - this wait_table must be initialized to use this new
4071 		 * node itself as well.
4072 		 * To use this new node's memory, further consideration will be
4073 		 * necessary.
4074 		 */
4075 		zone->wait_table = vmalloc(alloc_size);
4076 	}
4077 	if (!zone->wait_table)
4078 		return -ENOMEM;
4079 
4080 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4081 		init_waitqueue_head(zone->wait_table + i);
4082 
4083 	return 0;
4084 }
4085 
4086 static __meminit void zone_pcp_init(struct zone *zone)
4087 {
4088 	/*
4089 	 * per cpu subsystem is not up at this point. The following code
4090 	 * relies on the ability of the linker to provide the
4091 	 * offset of a (static) per cpu variable into the per cpu area.
4092 	 */
4093 	zone->pageset = &boot_pageset;
4094 
4095 	if (zone->present_pages)
4096 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4097 			zone->name, zone->present_pages,
4098 					 zone_batchsize(zone));
4099 }
4100 
4101 int __meminit init_currently_empty_zone(struct zone *zone,
4102 					unsigned long zone_start_pfn,
4103 					unsigned long size,
4104 					enum memmap_context context)
4105 {
4106 	struct pglist_data *pgdat = zone->zone_pgdat;
4107 	int ret;
4108 	ret = zone_wait_table_init(zone, size);
4109 	if (ret)
4110 		return ret;
4111 	pgdat->nr_zones = zone_idx(zone) + 1;
4112 
4113 	zone->zone_start_pfn = zone_start_pfn;
4114 
4115 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4116 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4117 			pgdat->node_id,
4118 			(unsigned long)zone_idx(zone),
4119 			zone_start_pfn, (zone_start_pfn + size));
4120 
4121 	zone_init_free_lists(zone);
4122 
4123 	return 0;
4124 }
4125 
4126 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4127 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4128 /*
4129  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4130  * Architectures may implement their own version but if add_active_range()
4131  * was used and there are no special requirements, this is a convenient
4132  * alternative
4133  */
4134 int __meminit __early_pfn_to_nid(unsigned long pfn)
4135 {
4136 	unsigned long start_pfn, end_pfn;
4137 	int i, nid;
4138 
4139 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4140 		if (start_pfn <= pfn && pfn < end_pfn)
4141 			return nid;
4142 	/* This is a memory hole */
4143 	return -1;
4144 }
4145 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4146 
4147 int __meminit early_pfn_to_nid(unsigned long pfn)
4148 {
4149 	int nid;
4150 
4151 	nid = __early_pfn_to_nid(pfn);
4152 	if (nid >= 0)
4153 		return nid;
4154 	/* just returns 0 */
4155 	return 0;
4156 }
4157 
4158 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4159 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4160 {
4161 	int nid;
4162 
4163 	nid = __early_pfn_to_nid(pfn);
4164 	if (nid >= 0 && nid != node)
4165 		return false;
4166 	return true;
4167 }
4168 #endif
4169 
4170 /**
4171  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4172  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4173  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4174  *
4175  * If an architecture guarantees that all ranges registered with
4176  * add_active_ranges() contain no holes and may be freed, this
4177  * this function may be used instead of calling free_bootmem() manually.
4178  */
4179 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4180 {
4181 	unsigned long start_pfn, end_pfn;
4182 	int i, this_nid;
4183 
4184 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4185 		start_pfn = min(start_pfn, max_low_pfn);
4186 		end_pfn = min(end_pfn, max_low_pfn);
4187 
4188 		if (start_pfn < end_pfn)
4189 			free_bootmem_node(NODE_DATA(this_nid),
4190 					  PFN_PHYS(start_pfn),
4191 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4192 	}
4193 }
4194 
4195 /**
4196  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4197  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4198  *
4199  * If an architecture guarantees that all ranges registered with
4200  * add_active_ranges() contain no holes and may be freed, this
4201  * function may be used instead of calling memory_present() manually.
4202  */
4203 void __init sparse_memory_present_with_active_regions(int nid)
4204 {
4205 	unsigned long start_pfn, end_pfn;
4206 	int i, this_nid;
4207 
4208 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4209 		memory_present(this_nid, start_pfn, end_pfn);
4210 }
4211 
4212 /**
4213  * get_pfn_range_for_nid - Return the start and end page frames for a node
4214  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4215  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4216  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4217  *
4218  * It returns the start and end page frame of a node based on information
4219  * provided by an arch calling add_active_range(). If called for a node
4220  * with no available memory, a warning is printed and the start and end
4221  * PFNs will be 0.
4222  */
4223 void __meminit get_pfn_range_for_nid(unsigned int nid,
4224 			unsigned long *start_pfn, unsigned long *end_pfn)
4225 {
4226 	unsigned long this_start_pfn, this_end_pfn;
4227 	int i;
4228 
4229 	*start_pfn = -1UL;
4230 	*end_pfn = 0;
4231 
4232 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4233 		*start_pfn = min(*start_pfn, this_start_pfn);
4234 		*end_pfn = max(*end_pfn, this_end_pfn);
4235 	}
4236 
4237 	if (*start_pfn == -1UL)
4238 		*start_pfn = 0;
4239 }
4240 
4241 /*
4242  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4243  * assumption is made that zones within a node are ordered in monotonic
4244  * increasing memory addresses so that the "highest" populated zone is used
4245  */
4246 static void __init find_usable_zone_for_movable(void)
4247 {
4248 	int zone_index;
4249 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4250 		if (zone_index == ZONE_MOVABLE)
4251 			continue;
4252 
4253 		if (arch_zone_highest_possible_pfn[zone_index] >
4254 				arch_zone_lowest_possible_pfn[zone_index])
4255 			break;
4256 	}
4257 
4258 	VM_BUG_ON(zone_index == -1);
4259 	movable_zone = zone_index;
4260 }
4261 
4262 /*
4263  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4264  * because it is sized independent of architecture. Unlike the other zones,
4265  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4266  * in each node depending on the size of each node and how evenly kernelcore
4267  * is distributed. This helper function adjusts the zone ranges
4268  * provided by the architecture for a given node by using the end of the
4269  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4270  * zones within a node are in order of monotonic increases memory addresses
4271  */
4272 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4273 					unsigned long zone_type,
4274 					unsigned long node_start_pfn,
4275 					unsigned long node_end_pfn,
4276 					unsigned long *zone_start_pfn,
4277 					unsigned long *zone_end_pfn)
4278 {
4279 	/* Only adjust if ZONE_MOVABLE is on this node */
4280 	if (zone_movable_pfn[nid]) {
4281 		/* Size ZONE_MOVABLE */
4282 		if (zone_type == ZONE_MOVABLE) {
4283 			*zone_start_pfn = zone_movable_pfn[nid];
4284 			*zone_end_pfn = min(node_end_pfn,
4285 				arch_zone_highest_possible_pfn[movable_zone]);
4286 
4287 		/* Adjust for ZONE_MOVABLE starting within this range */
4288 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4289 				*zone_end_pfn > zone_movable_pfn[nid]) {
4290 			*zone_end_pfn = zone_movable_pfn[nid];
4291 
4292 		/* Check if this whole range is within ZONE_MOVABLE */
4293 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4294 			*zone_start_pfn = *zone_end_pfn;
4295 	}
4296 }
4297 
4298 /*
4299  * Return the number of pages a zone spans in a node, including holes
4300  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4301  */
4302 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4303 					unsigned long zone_type,
4304 					unsigned long *ignored)
4305 {
4306 	unsigned long node_start_pfn, node_end_pfn;
4307 	unsigned long zone_start_pfn, zone_end_pfn;
4308 
4309 	/* Get the start and end of the node and zone */
4310 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4311 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4312 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4313 	adjust_zone_range_for_zone_movable(nid, zone_type,
4314 				node_start_pfn, node_end_pfn,
4315 				&zone_start_pfn, &zone_end_pfn);
4316 
4317 	/* Check that this node has pages within the zone's required range */
4318 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4319 		return 0;
4320 
4321 	/* Move the zone boundaries inside the node if necessary */
4322 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4323 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4324 
4325 	/* Return the spanned pages */
4326 	return zone_end_pfn - zone_start_pfn;
4327 }
4328 
4329 /*
4330  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4331  * then all holes in the requested range will be accounted for.
4332  */
4333 unsigned long __meminit __absent_pages_in_range(int nid,
4334 				unsigned long range_start_pfn,
4335 				unsigned long range_end_pfn)
4336 {
4337 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4338 	unsigned long start_pfn, end_pfn;
4339 	int i;
4340 
4341 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4342 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4343 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4344 		nr_absent -= end_pfn - start_pfn;
4345 	}
4346 	return nr_absent;
4347 }
4348 
4349 /**
4350  * absent_pages_in_range - Return number of page frames in holes within a range
4351  * @start_pfn: The start PFN to start searching for holes
4352  * @end_pfn: The end PFN to stop searching for holes
4353  *
4354  * It returns the number of pages frames in memory holes within a range.
4355  */
4356 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4357 							unsigned long end_pfn)
4358 {
4359 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4360 }
4361 
4362 /* Return the number of page frames in holes in a zone on a node */
4363 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4364 					unsigned long zone_type,
4365 					unsigned long *ignored)
4366 {
4367 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4368 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4369 	unsigned long node_start_pfn, node_end_pfn;
4370 	unsigned long zone_start_pfn, zone_end_pfn;
4371 
4372 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4373 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4374 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4375 
4376 	adjust_zone_range_for_zone_movable(nid, zone_type,
4377 			node_start_pfn, node_end_pfn,
4378 			&zone_start_pfn, &zone_end_pfn);
4379 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4380 }
4381 
4382 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4383 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4384 					unsigned long zone_type,
4385 					unsigned long *zones_size)
4386 {
4387 	return zones_size[zone_type];
4388 }
4389 
4390 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4391 						unsigned long zone_type,
4392 						unsigned long *zholes_size)
4393 {
4394 	if (!zholes_size)
4395 		return 0;
4396 
4397 	return zholes_size[zone_type];
4398 }
4399 
4400 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4401 
4402 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4403 		unsigned long *zones_size, unsigned long *zholes_size)
4404 {
4405 	unsigned long realtotalpages, totalpages = 0;
4406 	enum zone_type i;
4407 
4408 	for (i = 0; i < MAX_NR_ZONES; i++)
4409 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4410 								zones_size);
4411 	pgdat->node_spanned_pages = totalpages;
4412 
4413 	realtotalpages = totalpages;
4414 	for (i = 0; i < MAX_NR_ZONES; i++)
4415 		realtotalpages -=
4416 			zone_absent_pages_in_node(pgdat->node_id, i,
4417 								zholes_size);
4418 	pgdat->node_present_pages = realtotalpages;
4419 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4420 							realtotalpages);
4421 }
4422 
4423 #ifndef CONFIG_SPARSEMEM
4424 /*
4425  * Calculate the size of the zone->blockflags rounded to an unsigned long
4426  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4427  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4428  * round what is now in bits to nearest long in bits, then return it in
4429  * bytes.
4430  */
4431 static unsigned long __init usemap_size(unsigned long zonesize)
4432 {
4433 	unsigned long usemapsize;
4434 
4435 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4436 	usemapsize = usemapsize >> pageblock_order;
4437 	usemapsize *= NR_PAGEBLOCK_BITS;
4438 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4439 
4440 	return usemapsize / 8;
4441 }
4442 
4443 static void __init setup_usemap(struct pglist_data *pgdat,
4444 				struct zone *zone, unsigned long zonesize)
4445 {
4446 	unsigned long usemapsize = usemap_size(zonesize);
4447 	zone->pageblock_flags = NULL;
4448 	if (usemapsize)
4449 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4450 								   usemapsize);
4451 }
4452 #else
4453 static inline void setup_usemap(struct pglist_data *pgdat,
4454 				struct zone *zone, unsigned long zonesize) {}
4455 #endif /* CONFIG_SPARSEMEM */
4456 
4457 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4458 
4459 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4460 void __init set_pageblock_order(void)
4461 {
4462 	unsigned int order;
4463 
4464 	/* Check that pageblock_nr_pages has not already been setup */
4465 	if (pageblock_order)
4466 		return;
4467 
4468 	if (HPAGE_SHIFT > PAGE_SHIFT)
4469 		order = HUGETLB_PAGE_ORDER;
4470 	else
4471 		order = MAX_ORDER - 1;
4472 
4473 	/*
4474 	 * Assume the largest contiguous order of interest is a huge page.
4475 	 * This value may be variable depending on boot parameters on IA64 and
4476 	 * powerpc.
4477 	 */
4478 	pageblock_order = order;
4479 }
4480 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4481 
4482 /*
4483  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4484  * is unused as pageblock_order is set at compile-time. See
4485  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4486  * the kernel config
4487  */
4488 void __init set_pageblock_order(void)
4489 {
4490 }
4491 
4492 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4493 
4494 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4495 						   unsigned long present_pages)
4496 {
4497 	unsigned long pages = spanned_pages;
4498 
4499 	/*
4500 	 * Provide a more accurate estimation if there are holes within
4501 	 * the zone and SPARSEMEM is in use. If there are holes within the
4502 	 * zone, each populated memory region may cost us one or two extra
4503 	 * memmap pages due to alignment because memmap pages for each
4504 	 * populated regions may not naturally algined on page boundary.
4505 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4506 	 */
4507 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4508 	    IS_ENABLED(CONFIG_SPARSEMEM))
4509 		pages = present_pages;
4510 
4511 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4512 }
4513 
4514 /*
4515  * Set up the zone data structures:
4516  *   - mark all pages reserved
4517  *   - mark all memory queues empty
4518  *   - clear the memory bitmaps
4519  *
4520  * NOTE: pgdat should get zeroed by caller.
4521  */
4522 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4523 		unsigned long *zones_size, unsigned long *zholes_size)
4524 {
4525 	enum zone_type j;
4526 	int nid = pgdat->node_id;
4527 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4528 	int ret;
4529 
4530 	pgdat_resize_init(pgdat);
4531 #ifdef CONFIG_NUMA_BALANCING
4532 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4533 	pgdat->numabalancing_migrate_nr_pages = 0;
4534 	pgdat->numabalancing_migrate_next_window = jiffies;
4535 #endif
4536 	init_waitqueue_head(&pgdat->kswapd_wait);
4537 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4538 	pgdat_page_cgroup_init(pgdat);
4539 
4540 	for (j = 0; j < MAX_NR_ZONES; j++) {
4541 		struct zone *zone = pgdat->node_zones + j;
4542 		unsigned long size, realsize, freesize, memmap_pages;
4543 
4544 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4545 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4546 								zholes_size);
4547 
4548 		/*
4549 		 * Adjust freesize so that it accounts for how much memory
4550 		 * is used by this zone for memmap. This affects the watermark
4551 		 * and per-cpu initialisations
4552 		 */
4553 		memmap_pages = calc_memmap_size(size, realsize);
4554 		if (freesize >= memmap_pages) {
4555 			freesize -= memmap_pages;
4556 			if (memmap_pages)
4557 				printk(KERN_DEBUG
4558 				       "  %s zone: %lu pages used for memmap\n",
4559 				       zone_names[j], memmap_pages);
4560 		} else
4561 			printk(KERN_WARNING
4562 				"  %s zone: %lu pages exceeds freesize %lu\n",
4563 				zone_names[j], memmap_pages, freesize);
4564 
4565 		/* Account for reserved pages */
4566 		if (j == 0 && freesize > dma_reserve) {
4567 			freesize -= dma_reserve;
4568 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4569 					zone_names[0], dma_reserve);
4570 		}
4571 
4572 		if (!is_highmem_idx(j))
4573 			nr_kernel_pages += freesize;
4574 		/* Charge for highmem memmap if there are enough kernel pages */
4575 		else if (nr_kernel_pages > memmap_pages * 2)
4576 			nr_kernel_pages -= memmap_pages;
4577 		nr_all_pages += freesize;
4578 
4579 		zone->spanned_pages = size;
4580 		zone->present_pages = freesize;
4581 		/*
4582 		 * Set an approximate value for lowmem here, it will be adjusted
4583 		 * when the bootmem allocator frees pages into the buddy system.
4584 		 * And all highmem pages will be managed by the buddy system.
4585 		 */
4586 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4587 #ifdef CONFIG_NUMA
4588 		zone->node = nid;
4589 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4590 						/ 100;
4591 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4592 #endif
4593 		zone->name = zone_names[j];
4594 		spin_lock_init(&zone->lock);
4595 		spin_lock_init(&zone->lru_lock);
4596 		zone_seqlock_init(zone);
4597 		zone->zone_pgdat = pgdat;
4598 
4599 		zone_pcp_init(zone);
4600 		lruvec_init(&zone->lruvec);
4601 		if (!size)
4602 			continue;
4603 
4604 		set_pageblock_order();
4605 		setup_usemap(pgdat, zone, size);
4606 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4607 						size, MEMMAP_EARLY);
4608 		BUG_ON(ret);
4609 		memmap_init(size, nid, j, zone_start_pfn);
4610 		zone_start_pfn += size;
4611 	}
4612 }
4613 
4614 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4615 {
4616 	/* Skip empty nodes */
4617 	if (!pgdat->node_spanned_pages)
4618 		return;
4619 
4620 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4621 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4622 	if (!pgdat->node_mem_map) {
4623 		unsigned long size, start, end;
4624 		struct page *map;
4625 
4626 		/*
4627 		 * The zone's endpoints aren't required to be MAX_ORDER
4628 		 * aligned but the node_mem_map endpoints must be in order
4629 		 * for the buddy allocator to function correctly.
4630 		 */
4631 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4632 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4633 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4634 		size =  (end - start) * sizeof(struct page);
4635 		map = alloc_remap(pgdat->node_id, size);
4636 		if (!map)
4637 			map = alloc_bootmem_node_nopanic(pgdat, size);
4638 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4639 	}
4640 #ifndef CONFIG_NEED_MULTIPLE_NODES
4641 	/*
4642 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4643 	 */
4644 	if (pgdat == NODE_DATA(0)) {
4645 		mem_map = NODE_DATA(0)->node_mem_map;
4646 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4647 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4648 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4649 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4650 	}
4651 #endif
4652 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4653 }
4654 
4655 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4656 		unsigned long node_start_pfn, unsigned long *zholes_size)
4657 {
4658 	pg_data_t *pgdat = NODE_DATA(nid);
4659 
4660 	/* pg_data_t should be reset to zero when it's allocated */
4661 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4662 
4663 	pgdat->node_id = nid;
4664 	pgdat->node_start_pfn = node_start_pfn;
4665 	init_zone_allows_reclaim(nid);
4666 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4667 
4668 	alloc_node_mem_map(pgdat);
4669 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4670 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4671 		nid, (unsigned long)pgdat,
4672 		(unsigned long)pgdat->node_mem_map);
4673 #endif
4674 
4675 	free_area_init_core(pgdat, zones_size, zholes_size);
4676 }
4677 
4678 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4679 
4680 #if MAX_NUMNODES > 1
4681 /*
4682  * Figure out the number of possible node ids.
4683  */
4684 static void __init setup_nr_node_ids(void)
4685 {
4686 	unsigned int node;
4687 	unsigned int highest = 0;
4688 
4689 	for_each_node_mask(node, node_possible_map)
4690 		highest = node;
4691 	nr_node_ids = highest + 1;
4692 }
4693 #else
4694 static inline void setup_nr_node_ids(void)
4695 {
4696 }
4697 #endif
4698 
4699 /**
4700  * node_map_pfn_alignment - determine the maximum internode alignment
4701  *
4702  * This function should be called after node map is populated and sorted.
4703  * It calculates the maximum power of two alignment which can distinguish
4704  * all the nodes.
4705  *
4706  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4707  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4708  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4709  * shifted, 1GiB is enough and this function will indicate so.
4710  *
4711  * This is used to test whether pfn -> nid mapping of the chosen memory
4712  * model has fine enough granularity to avoid incorrect mapping for the
4713  * populated node map.
4714  *
4715  * Returns the determined alignment in pfn's.  0 if there is no alignment
4716  * requirement (single node).
4717  */
4718 unsigned long __init node_map_pfn_alignment(void)
4719 {
4720 	unsigned long accl_mask = 0, last_end = 0;
4721 	unsigned long start, end, mask;
4722 	int last_nid = -1;
4723 	int i, nid;
4724 
4725 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4726 		if (!start || last_nid < 0 || last_nid == nid) {
4727 			last_nid = nid;
4728 			last_end = end;
4729 			continue;
4730 		}
4731 
4732 		/*
4733 		 * Start with a mask granular enough to pin-point to the
4734 		 * start pfn and tick off bits one-by-one until it becomes
4735 		 * too coarse to separate the current node from the last.
4736 		 */
4737 		mask = ~((1 << __ffs(start)) - 1);
4738 		while (mask && last_end <= (start & (mask << 1)))
4739 			mask <<= 1;
4740 
4741 		/* accumulate all internode masks */
4742 		accl_mask |= mask;
4743 	}
4744 
4745 	/* convert mask to number of pages */
4746 	return ~accl_mask + 1;
4747 }
4748 
4749 /* Find the lowest pfn for a node */
4750 static unsigned long __init find_min_pfn_for_node(int nid)
4751 {
4752 	unsigned long min_pfn = ULONG_MAX;
4753 	unsigned long start_pfn;
4754 	int i;
4755 
4756 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4757 		min_pfn = min(min_pfn, start_pfn);
4758 
4759 	if (min_pfn == ULONG_MAX) {
4760 		printk(KERN_WARNING
4761 			"Could not find start_pfn for node %d\n", nid);
4762 		return 0;
4763 	}
4764 
4765 	return min_pfn;
4766 }
4767 
4768 /**
4769  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4770  *
4771  * It returns the minimum PFN based on information provided via
4772  * add_active_range().
4773  */
4774 unsigned long __init find_min_pfn_with_active_regions(void)
4775 {
4776 	return find_min_pfn_for_node(MAX_NUMNODES);
4777 }
4778 
4779 /*
4780  * early_calculate_totalpages()
4781  * Sum pages in active regions for movable zone.
4782  * Populate N_MEMORY for calculating usable_nodes.
4783  */
4784 static unsigned long __init early_calculate_totalpages(void)
4785 {
4786 	unsigned long totalpages = 0;
4787 	unsigned long start_pfn, end_pfn;
4788 	int i, nid;
4789 
4790 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4791 		unsigned long pages = end_pfn - start_pfn;
4792 
4793 		totalpages += pages;
4794 		if (pages)
4795 			node_set_state(nid, N_MEMORY);
4796 	}
4797   	return totalpages;
4798 }
4799 
4800 /*
4801  * Find the PFN the Movable zone begins in each node. Kernel memory
4802  * is spread evenly between nodes as long as the nodes have enough
4803  * memory. When they don't, some nodes will have more kernelcore than
4804  * others
4805  */
4806 static void __init find_zone_movable_pfns_for_nodes(void)
4807 {
4808 	int i, nid;
4809 	unsigned long usable_startpfn;
4810 	unsigned long kernelcore_node, kernelcore_remaining;
4811 	/* save the state before borrow the nodemask */
4812 	nodemask_t saved_node_state = node_states[N_MEMORY];
4813 	unsigned long totalpages = early_calculate_totalpages();
4814 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4815 
4816 	/*
4817 	 * If movablecore was specified, calculate what size of
4818 	 * kernelcore that corresponds so that memory usable for
4819 	 * any allocation type is evenly spread. If both kernelcore
4820 	 * and movablecore are specified, then the value of kernelcore
4821 	 * will be used for required_kernelcore if it's greater than
4822 	 * what movablecore would have allowed.
4823 	 */
4824 	if (required_movablecore) {
4825 		unsigned long corepages;
4826 
4827 		/*
4828 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4829 		 * was requested by the user
4830 		 */
4831 		required_movablecore =
4832 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4833 		corepages = totalpages - required_movablecore;
4834 
4835 		required_kernelcore = max(required_kernelcore, corepages);
4836 	}
4837 
4838 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4839 	if (!required_kernelcore)
4840 		goto out;
4841 
4842 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4843 	find_usable_zone_for_movable();
4844 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4845 
4846 restart:
4847 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4848 	kernelcore_node = required_kernelcore / usable_nodes;
4849 	for_each_node_state(nid, N_MEMORY) {
4850 		unsigned long start_pfn, end_pfn;
4851 
4852 		/*
4853 		 * Recalculate kernelcore_node if the division per node
4854 		 * now exceeds what is necessary to satisfy the requested
4855 		 * amount of memory for the kernel
4856 		 */
4857 		if (required_kernelcore < kernelcore_node)
4858 			kernelcore_node = required_kernelcore / usable_nodes;
4859 
4860 		/*
4861 		 * As the map is walked, we track how much memory is usable
4862 		 * by the kernel using kernelcore_remaining. When it is
4863 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4864 		 */
4865 		kernelcore_remaining = kernelcore_node;
4866 
4867 		/* Go through each range of PFNs within this node */
4868 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4869 			unsigned long size_pages;
4870 
4871 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4872 			if (start_pfn >= end_pfn)
4873 				continue;
4874 
4875 			/* Account for what is only usable for kernelcore */
4876 			if (start_pfn < usable_startpfn) {
4877 				unsigned long kernel_pages;
4878 				kernel_pages = min(end_pfn, usable_startpfn)
4879 								- start_pfn;
4880 
4881 				kernelcore_remaining -= min(kernel_pages,
4882 							kernelcore_remaining);
4883 				required_kernelcore -= min(kernel_pages,
4884 							required_kernelcore);
4885 
4886 				/* Continue if range is now fully accounted */
4887 				if (end_pfn <= usable_startpfn) {
4888 
4889 					/*
4890 					 * Push zone_movable_pfn to the end so
4891 					 * that if we have to rebalance
4892 					 * kernelcore across nodes, we will
4893 					 * not double account here
4894 					 */
4895 					zone_movable_pfn[nid] = end_pfn;
4896 					continue;
4897 				}
4898 				start_pfn = usable_startpfn;
4899 			}
4900 
4901 			/*
4902 			 * The usable PFN range for ZONE_MOVABLE is from
4903 			 * start_pfn->end_pfn. Calculate size_pages as the
4904 			 * number of pages used as kernelcore
4905 			 */
4906 			size_pages = end_pfn - start_pfn;
4907 			if (size_pages > kernelcore_remaining)
4908 				size_pages = kernelcore_remaining;
4909 			zone_movable_pfn[nid] = start_pfn + size_pages;
4910 
4911 			/*
4912 			 * Some kernelcore has been met, update counts and
4913 			 * break if the kernelcore for this node has been
4914 			 * satisified
4915 			 */
4916 			required_kernelcore -= min(required_kernelcore,
4917 								size_pages);
4918 			kernelcore_remaining -= size_pages;
4919 			if (!kernelcore_remaining)
4920 				break;
4921 		}
4922 	}
4923 
4924 	/*
4925 	 * If there is still required_kernelcore, we do another pass with one
4926 	 * less node in the count. This will push zone_movable_pfn[nid] further
4927 	 * along on the nodes that still have memory until kernelcore is
4928 	 * satisified
4929 	 */
4930 	usable_nodes--;
4931 	if (usable_nodes && required_kernelcore > usable_nodes)
4932 		goto restart;
4933 
4934 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4935 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4936 		zone_movable_pfn[nid] =
4937 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4938 
4939 out:
4940 	/* restore the node_state */
4941 	node_states[N_MEMORY] = saved_node_state;
4942 }
4943 
4944 /* Any regular or high memory on that node ? */
4945 static void check_for_memory(pg_data_t *pgdat, int nid)
4946 {
4947 	enum zone_type zone_type;
4948 
4949 	if (N_MEMORY == N_NORMAL_MEMORY)
4950 		return;
4951 
4952 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4953 		struct zone *zone = &pgdat->node_zones[zone_type];
4954 		if (zone->present_pages) {
4955 			node_set_state(nid, N_HIGH_MEMORY);
4956 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4957 			    zone_type <= ZONE_NORMAL)
4958 				node_set_state(nid, N_NORMAL_MEMORY);
4959 			break;
4960 		}
4961 	}
4962 }
4963 
4964 /**
4965  * free_area_init_nodes - Initialise all pg_data_t and zone data
4966  * @max_zone_pfn: an array of max PFNs for each zone
4967  *
4968  * This will call free_area_init_node() for each active node in the system.
4969  * Using the page ranges provided by add_active_range(), the size of each
4970  * zone in each node and their holes is calculated. If the maximum PFN
4971  * between two adjacent zones match, it is assumed that the zone is empty.
4972  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4973  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4974  * starts where the previous one ended. For example, ZONE_DMA32 starts
4975  * at arch_max_dma_pfn.
4976  */
4977 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4978 {
4979 	unsigned long start_pfn, end_pfn;
4980 	int i, nid;
4981 
4982 	/* Record where the zone boundaries are */
4983 	memset(arch_zone_lowest_possible_pfn, 0,
4984 				sizeof(arch_zone_lowest_possible_pfn));
4985 	memset(arch_zone_highest_possible_pfn, 0,
4986 				sizeof(arch_zone_highest_possible_pfn));
4987 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4988 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4989 	for (i = 1; i < MAX_NR_ZONES; i++) {
4990 		if (i == ZONE_MOVABLE)
4991 			continue;
4992 		arch_zone_lowest_possible_pfn[i] =
4993 			arch_zone_highest_possible_pfn[i-1];
4994 		arch_zone_highest_possible_pfn[i] =
4995 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4996 	}
4997 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4998 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4999 
5000 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5001 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5002 	find_zone_movable_pfns_for_nodes();
5003 
5004 	/* Print out the zone ranges */
5005 	printk("Zone ranges:\n");
5006 	for (i = 0; i < MAX_NR_ZONES; i++) {
5007 		if (i == ZONE_MOVABLE)
5008 			continue;
5009 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5010 		if (arch_zone_lowest_possible_pfn[i] ==
5011 				arch_zone_highest_possible_pfn[i])
5012 			printk(KERN_CONT "empty\n");
5013 		else
5014 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5015 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5016 				(arch_zone_highest_possible_pfn[i]
5017 					<< PAGE_SHIFT) - 1);
5018 	}
5019 
5020 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5021 	printk("Movable zone start for each node\n");
5022 	for (i = 0; i < MAX_NUMNODES; i++) {
5023 		if (zone_movable_pfn[i])
5024 			printk("  Node %d: %#010lx\n", i,
5025 			       zone_movable_pfn[i] << PAGE_SHIFT);
5026 	}
5027 
5028 	/* Print out the early node map */
5029 	printk("Early memory node ranges\n");
5030 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5031 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5032 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5033 
5034 	/* Initialise every node */
5035 	mminit_verify_pageflags_layout();
5036 	setup_nr_node_ids();
5037 	for_each_online_node(nid) {
5038 		pg_data_t *pgdat = NODE_DATA(nid);
5039 		free_area_init_node(nid, NULL,
5040 				find_min_pfn_for_node(nid), NULL);
5041 
5042 		/* Any memory on that node */
5043 		if (pgdat->node_present_pages)
5044 			node_set_state(nid, N_MEMORY);
5045 		check_for_memory(pgdat, nid);
5046 	}
5047 }
5048 
5049 static int __init cmdline_parse_core(char *p, unsigned long *core)
5050 {
5051 	unsigned long long coremem;
5052 	if (!p)
5053 		return -EINVAL;
5054 
5055 	coremem = memparse(p, &p);
5056 	*core = coremem >> PAGE_SHIFT;
5057 
5058 	/* Paranoid check that UL is enough for the coremem value */
5059 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5060 
5061 	return 0;
5062 }
5063 
5064 /*
5065  * kernelcore=size sets the amount of memory for use for allocations that
5066  * cannot be reclaimed or migrated.
5067  */
5068 static int __init cmdline_parse_kernelcore(char *p)
5069 {
5070 	return cmdline_parse_core(p, &required_kernelcore);
5071 }
5072 
5073 /*
5074  * movablecore=size sets the amount of memory for use for allocations that
5075  * can be reclaimed or migrated.
5076  */
5077 static int __init cmdline_parse_movablecore(char *p)
5078 {
5079 	return cmdline_parse_core(p, &required_movablecore);
5080 }
5081 
5082 early_param("kernelcore", cmdline_parse_kernelcore);
5083 early_param("movablecore", cmdline_parse_movablecore);
5084 
5085 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5086 
5087 /**
5088  * set_dma_reserve - set the specified number of pages reserved in the first zone
5089  * @new_dma_reserve: The number of pages to mark reserved
5090  *
5091  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5092  * In the DMA zone, a significant percentage may be consumed by kernel image
5093  * and other unfreeable allocations which can skew the watermarks badly. This
5094  * function may optionally be used to account for unfreeable pages in the
5095  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5096  * smaller per-cpu batchsize.
5097  */
5098 void __init set_dma_reserve(unsigned long new_dma_reserve)
5099 {
5100 	dma_reserve = new_dma_reserve;
5101 }
5102 
5103 void __init free_area_init(unsigned long *zones_size)
5104 {
5105 	free_area_init_node(0, zones_size,
5106 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5107 }
5108 
5109 static int page_alloc_cpu_notify(struct notifier_block *self,
5110 				 unsigned long action, void *hcpu)
5111 {
5112 	int cpu = (unsigned long)hcpu;
5113 
5114 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5115 		lru_add_drain_cpu(cpu);
5116 		drain_pages(cpu);
5117 
5118 		/*
5119 		 * Spill the event counters of the dead processor
5120 		 * into the current processors event counters.
5121 		 * This artificially elevates the count of the current
5122 		 * processor.
5123 		 */
5124 		vm_events_fold_cpu(cpu);
5125 
5126 		/*
5127 		 * Zero the differential counters of the dead processor
5128 		 * so that the vm statistics are consistent.
5129 		 *
5130 		 * This is only okay since the processor is dead and cannot
5131 		 * race with what we are doing.
5132 		 */
5133 		refresh_cpu_vm_stats(cpu);
5134 	}
5135 	return NOTIFY_OK;
5136 }
5137 
5138 void __init page_alloc_init(void)
5139 {
5140 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5141 }
5142 
5143 /*
5144  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5145  *	or min_free_kbytes changes.
5146  */
5147 static void calculate_totalreserve_pages(void)
5148 {
5149 	struct pglist_data *pgdat;
5150 	unsigned long reserve_pages = 0;
5151 	enum zone_type i, j;
5152 
5153 	for_each_online_pgdat(pgdat) {
5154 		for (i = 0; i < MAX_NR_ZONES; i++) {
5155 			struct zone *zone = pgdat->node_zones + i;
5156 			unsigned long max = 0;
5157 
5158 			/* Find valid and maximum lowmem_reserve in the zone */
5159 			for (j = i; j < MAX_NR_ZONES; j++) {
5160 				if (zone->lowmem_reserve[j] > max)
5161 					max = zone->lowmem_reserve[j];
5162 			}
5163 
5164 			/* we treat the high watermark as reserved pages. */
5165 			max += high_wmark_pages(zone);
5166 
5167 			if (max > zone->present_pages)
5168 				max = zone->present_pages;
5169 			reserve_pages += max;
5170 			/*
5171 			 * Lowmem reserves are not available to
5172 			 * GFP_HIGHUSER page cache allocations and
5173 			 * kswapd tries to balance zones to their high
5174 			 * watermark.  As a result, neither should be
5175 			 * regarded as dirtyable memory, to prevent a
5176 			 * situation where reclaim has to clean pages
5177 			 * in order to balance the zones.
5178 			 */
5179 			zone->dirty_balance_reserve = max;
5180 		}
5181 	}
5182 	dirty_balance_reserve = reserve_pages;
5183 	totalreserve_pages = reserve_pages;
5184 }
5185 
5186 /*
5187  * setup_per_zone_lowmem_reserve - called whenever
5188  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5189  *	has a correct pages reserved value, so an adequate number of
5190  *	pages are left in the zone after a successful __alloc_pages().
5191  */
5192 static void setup_per_zone_lowmem_reserve(void)
5193 {
5194 	struct pglist_data *pgdat;
5195 	enum zone_type j, idx;
5196 
5197 	for_each_online_pgdat(pgdat) {
5198 		for (j = 0; j < MAX_NR_ZONES; j++) {
5199 			struct zone *zone = pgdat->node_zones + j;
5200 			unsigned long present_pages = zone->present_pages;
5201 
5202 			zone->lowmem_reserve[j] = 0;
5203 
5204 			idx = j;
5205 			while (idx) {
5206 				struct zone *lower_zone;
5207 
5208 				idx--;
5209 
5210 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5211 					sysctl_lowmem_reserve_ratio[idx] = 1;
5212 
5213 				lower_zone = pgdat->node_zones + idx;
5214 				lower_zone->lowmem_reserve[j] = present_pages /
5215 					sysctl_lowmem_reserve_ratio[idx];
5216 				present_pages += lower_zone->present_pages;
5217 			}
5218 		}
5219 	}
5220 
5221 	/* update totalreserve_pages */
5222 	calculate_totalreserve_pages();
5223 }
5224 
5225 static void __setup_per_zone_wmarks(void)
5226 {
5227 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5228 	unsigned long lowmem_pages = 0;
5229 	struct zone *zone;
5230 	unsigned long flags;
5231 
5232 	/* Calculate total number of !ZONE_HIGHMEM pages */
5233 	for_each_zone(zone) {
5234 		if (!is_highmem(zone))
5235 			lowmem_pages += zone->present_pages;
5236 	}
5237 
5238 	for_each_zone(zone) {
5239 		u64 tmp;
5240 
5241 		spin_lock_irqsave(&zone->lock, flags);
5242 		tmp = (u64)pages_min * zone->present_pages;
5243 		do_div(tmp, lowmem_pages);
5244 		if (is_highmem(zone)) {
5245 			/*
5246 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5247 			 * need highmem pages, so cap pages_min to a small
5248 			 * value here.
5249 			 *
5250 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5251 			 * deltas controls asynch page reclaim, and so should
5252 			 * not be capped for highmem.
5253 			 */
5254 			int min_pages;
5255 
5256 			min_pages = zone->present_pages / 1024;
5257 			if (min_pages < SWAP_CLUSTER_MAX)
5258 				min_pages = SWAP_CLUSTER_MAX;
5259 			if (min_pages > 128)
5260 				min_pages = 128;
5261 			zone->watermark[WMARK_MIN] = min_pages;
5262 		} else {
5263 			/*
5264 			 * If it's a lowmem zone, reserve a number of pages
5265 			 * proportionate to the zone's size.
5266 			 */
5267 			zone->watermark[WMARK_MIN] = tmp;
5268 		}
5269 
5270 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5271 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5272 
5273 		setup_zone_migrate_reserve(zone);
5274 		spin_unlock_irqrestore(&zone->lock, flags);
5275 	}
5276 
5277 	/* update totalreserve_pages */
5278 	calculate_totalreserve_pages();
5279 }
5280 
5281 /**
5282  * setup_per_zone_wmarks - called when min_free_kbytes changes
5283  * or when memory is hot-{added|removed}
5284  *
5285  * Ensures that the watermark[min,low,high] values for each zone are set
5286  * correctly with respect to min_free_kbytes.
5287  */
5288 void setup_per_zone_wmarks(void)
5289 {
5290 	mutex_lock(&zonelists_mutex);
5291 	__setup_per_zone_wmarks();
5292 	mutex_unlock(&zonelists_mutex);
5293 }
5294 
5295 /*
5296  * The inactive anon list should be small enough that the VM never has to
5297  * do too much work, but large enough that each inactive page has a chance
5298  * to be referenced again before it is swapped out.
5299  *
5300  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5301  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5302  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5303  * the anonymous pages are kept on the inactive list.
5304  *
5305  * total     target    max
5306  * memory    ratio     inactive anon
5307  * -------------------------------------
5308  *   10MB       1         5MB
5309  *  100MB       1        50MB
5310  *    1GB       3       250MB
5311  *   10GB      10       0.9GB
5312  *  100GB      31         3GB
5313  *    1TB     101        10GB
5314  *   10TB     320        32GB
5315  */
5316 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5317 {
5318 	unsigned int gb, ratio;
5319 
5320 	/* Zone size in gigabytes */
5321 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5322 	if (gb)
5323 		ratio = int_sqrt(10 * gb);
5324 	else
5325 		ratio = 1;
5326 
5327 	zone->inactive_ratio = ratio;
5328 }
5329 
5330 static void __meminit setup_per_zone_inactive_ratio(void)
5331 {
5332 	struct zone *zone;
5333 
5334 	for_each_zone(zone)
5335 		calculate_zone_inactive_ratio(zone);
5336 }
5337 
5338 /*
5339  * Initialise min_free_kbytes.
5340  *
5341  * For small machines we want it small (128k min).  For large machines
5342  * we want it large (64MB max).  But it is not linear, because network
5343  * bandwidth does not increase linearly with machine size.  We use
5344  *
5345  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5346  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5347  *
5348  * which yields
5349  *
5350  * 16MB:	512k
5351  * 32MB:	724k
5352  * 64MB:	1024k
5353  * 128MB:	1448k
5354  * 256MB:	2048k
5355  * 512MB:	2896k
5356  * 1024MB:	4096k
5357  * 2048MB:	5792k
5358  * 4096MB:	8192k
5359  * 8192MB:	11584k
5360  * 16384MB:	16384k
5361  */
5362 int __meminit init_per_zone_wmark_min(void)
5363 {
5364 	unsigned long lowmem_kbytes;
5365 
5366 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5367 
5368 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5369 	if (min_free_kbytes < 128)
5370 		min_free_kbytes = 128;
5371 	if (min_free_kbytes > 65536)
5372 		min_free_kbytes = 65536;
5373 	setup_per_zone_wmarks();
5374 	refresh_zone_stat_thresholds();
5375 	setup_per_zone_lowmem_reserve();
5376 	setup_per_zone_inactive_ratio();
5377 	return 0;
5378 }
5379 module_init(init_per_zone_wmark_min)
5380 
5381 /*
5382  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5383  *	that we can call two helper functions whenever min_free_kbytes
5384  *	changes.
5385  */
5386 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5387 	void __user *buffer, size_t *length, loff_t *ppos)
5388 {
5389 	proc_dointvec(table, write, buffer, length, ppos);
5390 	if (write)
5391 		setup_per_zone_wmarks();
5392 	return 0;
5393 }
5394 
5395 #ifdef CONFIG_NUMA
5396 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5397 	void __user *buffer, size_t *length, loff_t *ppos)
5398 {
5399 	struct zone *zone;
5400 	int rc;
5401 
5402 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5403 	if (rc)
5404 		return rc;
5405 
5406 	for_each_zone(zone)
5407 		zone->min_unmapped_pages = (zone->present_pages *
5408 				sysctl_min_unmapped_ratio) / 100;
5409 	return 0;
5410 }
5411 
5412 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5413 	void __user *buffer, size_t *length, loff_t *ppos)
5414 {
5415 	struct zone *zone;
5416 	int rc;
5417 
5418 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5419 	if (rc)
5420 		return rc;
5421 
5422 	for_each_zone(zone)
5423 		zone->min_slab_pages = (zone->present_pages *
5424 				sysctl_min_slab_ratio) / 100;
5425 	return 0;
5426 }
5427 #endif
5428 
5429 /*
5430  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5431  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5432  *	whenever sysctl_lowmem_reserve_ratio changes.
5433  *
5434  * The reserve ratio obviously has absolutely no relation with the
5435  * minimum watermarks. The lowmem reserve ratio can only make sense
5436  * if in function of the boot time zone sizes.
5437  */
5438 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5439 	void __user *buffer, size_t *length, loff_t *ppos)
5440 {
5441 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5442 	setup_per_zone_lowmem_reserve();
5443 	return 0;
5444 }
5445 
5446 /*
5447  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5448  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5449  * can have before it gets flushed back to buddy allocator.
5450  */
5451 
5452 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5453 	void __user *buffer, size_t *length, loff_t *ppos)
5454 {
5455 	struct zone *zone;
5456 	unsigned int cpu;
5457 	int ret;
5458 
5459 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5460 	if (!write || (ret < 0))
5461 		return ret;
5462 	for_each_populated_zone(zone) {
5463 		for_each_possible_cpu(cpu) {
5464 			unsigned long  high;
5465 			high = zone->present_pages / percpu_pagelist_fraction;
5466 			setup_pagelist_highmark(
5467 				per_cpu_ptr(zone->pageset, cpu), high);
5468 		}
5469 	}
5470 	return 0;
5471 }
5472 
5473 int hashdist = HASHDIST_DEFAULT;
5474 
5475 #ifdef CONFIG_NUMA
5476 static int __init set_hashdist(char *str)
5477 {
5478 	if (!str)
5479 		return 0;
5480 	hashdist = simple_strtoul(str, &str, 0);
5481 	return 1;
5482 }
5483 __setup("hashdist=", set_hashdist);
5484 #endif
5485 
5486 /*
5487  * allocate a large system hash table from bootmem
5488  * - it is assumed that the hash table must contain an exact power-of-2
5489  *   quantity of entries
5490  * - limit is the number of hash buckets, not the total allocation size
5491  */
5492 void *__init alloc_large_system_hash(const char *tablename,
5493 				     unsigned long bucketsize,
5494 				     unsigned long numentries,
5495 				     int scale,
5496 				     int flags,
5497 				     unsigned int *_hash_shift,
5498 				     unsigned int *_hash_mask,
5499 				     unsigned long low_limit,
5500 				     unsigned long high_limit)
5501 {
5502 	unsigned long long max = high_limit;
5503 	unsigned long log2qty, size;
5504 	void *table = NULL;
5505 
5506 	/* allow the kernel cmdline to have a say */
5507 	if (!numentries) {
5508 		/* round applicable memory size up to nearest megabyte */
5509 		numentries = nr_kernel_pages;
5510 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5511 		numentries >>= 20 - PAGE_SHIFT;
5512 		numentries <<= 20 - PAGE_SHIFT;
5513 
5514 		/* limit to 1 bucket per 2^scale bytes of low memory */
5515 		if (scale > PAGE_SHIFT)
5516 			numentries >>= (scale - PAGE_SHIFT);
5517 		else
5518 			numentries <<= (PAGE_SHIFT - scale);
5519 
5520 		/* Make sure we've got at least a 0-order allocation.. */
5521 		if (unlikely(flags & HASH_SMALL)) {
5522 			/* Makes no sense without HASH_EARLY */
5523 			WARN_ON(!(flags & HASH_EARLY));
5524 			if (!(numentries >> *_hash_shift)) {
5525 				numentries = 1UL << *_hash_shift;
5526 				BUG_ON(!numentries);
5527 			}
5528 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5529 			numentries = PAGE_SIZE / bucketsize;
5530 	}
5531 	numentries = roundup_pow_of_two(numentries);
5532 
5533 	/* limit allocation size to 1/16 total memory by default */
5534 	if (max == 0) {
5535 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5536 		do_div(max, bucketsize);
5537 	}
5538 	max = min(max, 0x80000000ULL);
5539 
5540 	if (numentries < low_limit)
5541 		numentries = low_limit;
5542 	if (numentries > max)
5543 		numentries = max;
5544 
5545 	log2qty = ilog2(numentries);
5546 
5547 	do {
5548 		size = bucketsize << log2qty;
5549 		if (flags & HASH_EARLY)
5550 			table = alloc_bootmem_nopanic(size);
5551 		else if (hashdist)
5552 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5553 		else {
5554 			/*
5555 			 * If bucketsize is not a power-of-two, we may free
5556 			 * some pages at the end of hash table which
5557 			 * alloc_pages_exact() automatically does
5558 			 */
5559 			if (get_order(size) < MAX_ORDER) {
5560 				table = alloc_pages_exact(size, GFP_ATOMIC);
5561 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5562 			}
5563 		}
5564 	} while (!table && size > PAGE_SIZE && --log2qty);
5565 
5566 	if (!table)
5567 		panic("Failed to allocate %s hash table\n", tablename);
5568 
5569 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5570 	       tablename,
5571 	       (1UL << log2qty),
5572 	       ilog2(size) - PAGE_SHIFT,
5573 	       size);
5574 
5575 	if (_hash_shift)
5576 		*_hash_shift = log2qty;
5577 	if (_hash_mask)
5578 		*_hash_mask = (1 << log2qty) - 1;
5579 
5580 	return table;
5581 }
5582 
5583 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5584 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5585 							unsigned long pfn)
5586 {
5587 #ifdef CONFIG_SPARSEMEM
5588 	return __pfn_to_section(pfn)->pageblock_flags;
5589 #else
5590 	return zone->pageblock_flags;
5591 #endif /* CONFIG_SPARSEMEM */
5592 }
5593 
5594 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5595 {
5596 #ifdef CONFIG_SPARSEMEM
5597 	pfn &= (PAGES_PER_SECTION-1);
5598 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5599 #else
5600 	pfn = pfn - zone->zone_start_pfn;
5601 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5602 #endif /* CONFIG_SPARSEMEM */
5603 }
5604 
5605 /**
5606  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5607  * @page: The page within the block of interest
5608  * @start_bitidx: The first bit of interest to retrieve
5609  * @end_bitidx: The last bit of interest
5610  * returns pageblock_bits flags
5611  */
5612 unsigned long get_pageblock_flags_group(struct page *page,
5613 					int start_bitidx, int end_bitidx)
5614 {
5615 	struct zone *zone;
5616 	unsigned long *bitmap;
5617 	unsigned long pfn, bitidx;
5618 	unsigned long flags = 0;
5619 	unsigned long value = 1;
5620 
5621 	zone = page_zone(page);
5622 	pfn = page_to_pfn(page);
5623 	bitmap = get_pageblock_bitmap(zone, pfn);
5624 	bitidx = pfn_to_bitidx(zone, pfn);
5625 
5626 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5627 		if (test_bit(bitidx + start_bitidx, bitmap))
5628 			flags |= value;
5629 
5630 	return flags;
5631 }
5632 
5633 /**
5634  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5635  * @page: The page within the block of interest
5636  * @start_bitidx: The first bit of interest
5637  * @end_bitidx: The last bit of interest
5638  * @flags: The flags to set
5639  */
5640 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5641 					int start_bitidx, int end_bitidx)
5642 {
5643 	struct zone *zone;
5644 	unsigned long *bitmap;
5645 	unsigned long pfn, bitidx;
5646 	unsigned long value = 1;
5647 
5648 	zone = page_zone(page);
5649 	pfn = page_to_pfn(page);
5650 	bitmap = get_pageblock_bitmap(zone, pfn);
5651 	bitidx = pfn_to_bitidx(zone, pfn);
5652 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5653 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5654 
5655 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5656 		if (flags & value)
5657 			__set_bit(bitidx + start_bitidx, bitmap);
5658 		else
5659 			__clear_bit(bitidx + start_bitidx, bitmap);
5660 }
5661 
5662 /*
5663  * This function checks whether pageblock includes unmovable pages or not.
5664  * If @count is not zero, it is okay to include less @count unmovable pages
5665  *
5666  * PageLRU check wihtout isolation or lru_lock could race so that
5667  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5668  * expect this function should be exact.
5669  */
5670 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5671 			 bool skip_hwpoisoned_pages)
5672 {
5673 	unsigned long pfn, iter, found;
5674 	int mt;
5675 
5676 	/*
5677 	 * For avoiding noise data, lru_add_drain_all() should be called
5678 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5679 	 */
5680 	if (zone_idx(zone) == ZONE_MOVABLE)
5681 		return false;
5682 	mt = get_pageblock_migratetype(page);
5683 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5684 		return false;
5685 
5686 	pfn = page_to_pfn(page);
5687 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5688 		unsigned long check = pfn + iter;
5689 
5690 		if (!pfn_valid_within(check))
5691 			continue;
5692 
5693 		page = pfn_to_page(check);
5694 		/*
5695 		 * We can't use page_count without pin a page
5696 		 * because another CPU can free compound page.
5697 		 * This check already skips compound tails of THP
5698 		 * because their page->_count is zero at all time.
5699 		 */
5700 		if (!atomic_read(&page->_count)) {
5701 			if (PageBuddy(page))
5702 				iter += (1 << page_order(page)) - 1;
5703 			continue;
5704 		}
5705 
5706 		/*
5707 		 * The HWPoisoned page may be not in buddy system, and
5708 		 * page_count() is not 0.
5709 		 */
5710 		if (skip_hwpoisoned_pages && PageHWPoison(page))
5711 			continue;
5712 
5713 		if (!PageLRU(page))
5714 			found++;
5715 		/*
5716 		 * If there are RECLAIMABLE pages, we need to check it.
5717 		 * But now, memory offline itself doesn't call shrink_slab()
5718 		 * and it still to be fixed.
5719 		 */
5720 		/*
5721 		 * If the page is not RAM, page_count()should be 0.
5722 		 * we don't need more check. This is an _used_ not-movable page.
5723 		 *
5724 		 * The problematic thing here is PG_reserved pages. PG_reserved
5725 		 * is set to both of a memory hole page and a _used_ kernel
5726 		 * page at boot.
5727 		 */
5728 		if (found > count)
5729 			return true;
5730 	}
5731 	return false;
5732 }
5733 
5734 bool is_pageblock_removable_nolock(struct page *page)
5735 {
5736 	struct zone *zone;
5737 	unsigned long pfn;
5738 
5739 	/*
5740 	 * We have to be careful here because we are iterating over memory
5741 	 * sections which are not zone aware so we might end up outside of
5742 	 * the zone but still within the section.
5743 	 * We have to take care about the node as well. If the node is offline
5744 	 * its NODE_DATA will be NULL - see page_zone.
5745 	 */
5746 	if (!node_online(page_to_nid(page)))
5747 		return false;
5748 
5749 	zone = page_zone(page);
5750 	pfn = page_to_pfn(page);
5751 	if (zone->zone_start_pfn > pfn ||
5752 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5753 		return false;
5754 
5755 	return !has_unmovable_pages(zone, page, 0, true);
5756 }
5757 
5758 #ifdef CONFIG_CMA
5759 
5760 static unsigned long pfn_max_align_down(unsigned long pfn)
5761 {
5762 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5763 			     pageblock_nr_pages) - 1);
5764 }
5765 
5766 static unsigned long pfn_max_align_up(unsigned long pfn)
5767 {
5768 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5769 				pageblock_nr_pages));
5770 }
5771 
5772 /* [start, end) must belong to a single zone. */
5773 static int __alloc_contig_migrate_range(struct compact_control *cc,
5774 					unsigned long start, unsigned long end)
5775 {
5776 	/* This function is based on compact_zone() from compaction.c. */
5777 	unsigned long nr_reclaimed;
5778 	unsigned long pfn = start;
5779 	unsigned int tries = 0;
5780 	int ret = 0;
5781 
5782 	migrate_prep();
5783 
5784 	while (pfn < end || !list_empty(&cc->migratepages)) {
5785 		if (fatal_signal_pending(current)) {
5786 			ret = -EINTR;
5787 			break;
5788 		}
5789 
5790 		if (list_empty(&cc->migratepages)) {
5791 			cc->nr_migratepages = 0;
5792 			pfn = isolate_migratepages_range(cc->zone, cc,
5793 							 pfn, end, true);
5794 			if (!pfn) {
5795 				ret = -EINTR;
5796 				break;
5797 			}
5798 			tries = 0;
5799 		} else if (++tries == 5) {
5800 			ret = ret < 0 ? ret : -EBUSY;
5801 			break;
5802 		}
5803 
5804 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5805 							&cc->migratepages);
5806 		cc->nr_migratepages -= nr_reclaimed;
5807 
5808 		ret = migrate_pages(&cc->migratepages,
5809 				    alloc_migrate_target,
5810 				    0, false, MIGRATE_SYNC,
5811 				    MR_CMA);
5812 	}
5813 
5814 	putback_movable_pages(&cc->migratepages);
5815 	return ret > 0 ? 0 : ret;
5816 }
5817 
5818 /**
5819  * alloc_contig_range() -- tries to allocate given range of pages
5820  * @start:	start PFN to allocate
5821  * @end:	one-past-the-last PFN to allocate
5822  * @migratetype:	migratetype of the underlaying pageblocks (either
5823  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5824  *			in range must have the same migratetype and it must
5825  *			be either of the two.
5826  *
5827  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5828  * aligned, however it's the caller's responsibility to guarantee that
5829  * we are the only thread that changes migrate type of pageblocks the
5830  * pages fall in.
5831  *
5832  * The PFN range must belong to a single zone.
5833  *
5834  * Returns zero on success or negative error code.  On success all
5835  * pages which PFN is in [start, end) are allocated for the caller and
5836  * need to be freed with free_contig_range().
5837  */
5838 int alloc_contig_range(unsigned long start, unsigned long end,
5839 		       unsigned migratetype)
5840 {
5841 	unsigned long outer_start, outer_end;
5842 	int ret = 0, order;
5843 
5844 	struct compact_control cc = {
5845 		.nr_migratepages = 0,
5846 		.order = -1,
5847 		.zone = page_zone(pfn_to_page(start)),
5848 		.sync = true,
5849 		.ignore_skip_hint = true,
5850 	};
5851 	INIT_LIST_HEAD(&cc.migratepages);
5852 
5853 	/*
5854 	 * What we do here is we mark all pageblocks in range as
5855 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5856 	 * have different sizes, and due to the way page allocator
5857 	 * work, we align the range to biggest of the two pages so
5858 	 * that page allocator won't try to merge buddies from
5859 	 * different pageblocks and change MIGRATE_ISOLATE to some
5860 	 * other migration type.
5861 	 *
5862 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5863 	 * migrate the pages from an unaligned range (ie. pages that
5864 	 * we are interested in).  This will put all the pages in
5865 	 * range back to page allocator as MIGRATE_ISOLATE.
5866 	 *
5867 	 * When this is done, we take the pages in range from page
5868 	 * allocator removing them from the buddy system.  This way
5869 	 * page allocator will never consider using them.
5870 	 *
5871 	 * This lets us mark the pageblocks back as
5872 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5873 	 * aligned range but not in the unaligned, original range are
5874 	 * put back to page allocator so that buddy can use them.
5875 	 */
5876 
5877 	ret = start_isolate_page_range(pfn_max_align_down(start),
5878 				       pfn_max_align_up(end), migratetype,
5879 				       false);
5880 	if (ret)
5881 		return ret;
5882 
5883 	ret = __alloc_contig_migrate_range(&cc, start, end);
5884 	if (ret)
5885 		goto done;
5886 
5887 	/*
5888 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5889 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5890 	 * more, all pages in [start, end) are free in page allocator.
5891 	 * What we are going to do is to allocate all pages from
5892 	 * [start, end) (that is remove them from page allocator).
5893 	 *
5894 	 * The only problem is that pages at the beginning and at the
5895 	 * end of interesting range may be not aligned with pages that
5896 	 * page allocator holds, ie. they can be part of higher order
5897 	 * pages.  Because of this, we reserve the bigger range and
5898 	 * once this is done free the pages we are not interested in.
5899 	 *
5900 	 * We don't have to hold zone->lock here because the pages are
5901 	 * isolated thus they won't get removed from buddy.
5902 	 */
5903 
5904 	lru_add_drain_all();
5905 	drain_all_pages();
5906 
5907 	order = 0;
5908 	outer_start = start;
5909 	while (!PageBuddy(pfn_to_page(outer_start))) {
5910 		if (++order >= MAX_ORDER) {
5911 			ret = -EBUSY;
5912 			goto done;
5913 		}
5914 		outer_start &= ~0UL << order;
5915 	}
5916 
5917 	/* Make sure the range is really isolated. */
5918 	if (test_pages_isolated(outer_start, end, false)) {
5919 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5920 		       outer_start, end);
5921 		ret = -EBUSY;
5922 		goto done;
5923 	}
5924 
5925 
5926 	/* Grab isolated pages from freelists. */
5927 	outer_end = isolate_freepages_range(&cc, outer_start, end);
5928 	if (!outer_end) {
5929 		ret = -EBUSY;
5930 		goto done;
5931 	}
5932 
5933 	/* Free head and tail (if any) */
5934 	if (start != outer_start)
5935 		free_contig_range(outer_start, start - outer_start);
5936 	if (end != outer_end)
5937 		free_contig_range(end, outer_end - end);
5938 
5939 done:
5940 	undo_isolate_page_range(pfn_max_align_down(start),
5941 				pfn_max_align_up(end), migratetype);
5942 	return ret;
5943 }
5944 
5945 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5946 {
5947 	for (; nr_pages--; ++pfn)
5948 		__free_page(pfn_to_page(pfn));
5949 }
5950 #endif
5951 
5952 #ifdef CONFIG_MEMORY_HOTPLUG
5953 static int __meminit __zone_pcp_update(void *data)
5954 {
5955 	struct zone *zone = data;
5956 	int cpu;
5957 	unsigned long batch = zone_batchsize(zone), flags;
5958 
5959 	for_each_possible_cpu(cpu) {
5960 		struct per_cpu_pageset *pset;
5961 		struct per_cpu_pages *pcp;
5962 
5963 		pset = per_cpu_ptr(zone->pageset, cpu);
5964 		pcp = &pset->pcp;
5965 
5966 		local_irq_save(flags);
5967 		if (pcp->count > 0)
5968 			free_pcppages_bulk(zone, pcp->count, pcp);
5969 		drain_zonestat(zone, pset);
5970 		setup_pageset(pset, batch);
5971 		local_irq_restore(flags);
5972 	}
5973 	return 0;
5974 }
5975 
5976 void __meminit zone_pcp_update(struct zone *zone)
5977 {
5978 	stop_machine(__zone_pcp_update, zone, NULL);
5979 }
5980 #endif
5981 
5982 void zone_pcp_reset(struct zone *zone)
5983 {
5984 	unsigned long flags;
5985 	int cpu;
5986 	struct per_cpu_pageset *pset;
5987 
5988 	/* avoid races with drain_pages()  */
5989 	local_irq_save(flags);
5990 	if (zone->pageset != &boot_pageset) {
5991 		for_each_online_cpu(cpu) {
5992 			pset = per_cpu_ptr(zone->pageset, cpu);
5993 			drain_zonestat(zone, pset);
5994 		}
5995 		free_percpu(zone->pageset);
5996 		zone->pageset = &boot_pageset;
5997 	}
5998 	local_irq_restore(flags);
5999 }
6000 
6001 #ifdef CONFIG_MEMORY_HOTREMOVE
6002 /*
6003  * All pages in the range must be isolated before calling this.
6004  */
6005 void
6006 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6007 {
6008 	struct page *page;
6009 	struct zone *zone;
6010 	int order, i;
6011 	unsigned long pfn;
6012 	unsigned long flags;
6013 	/* find the first valid pfn */
6014 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6015 		if (pfn_valid(pfn))
6016 			break;
6017 	if (pfn == end_pfn)
6018 		return;
6019 	zone = page_zone(pfn_to_page(pfn));
6020 	spin_lock_irqsave(&zone->lock, flags);
6021 	pfn = start_pfn;
6022 	while (pfn < end_pfn) {
6023 		if (!pfn_valid(pfn)) {
6024 			pfn++;
6025 			continue;
6026 		}
6027 		page = pfn_to_page(pfn);
6028 		/*
6029 		 * The HWPoisoned page may be not in buddy system, and
6030 		 * page_count() is not 0.
6031 		 */
6032 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6033 			pfn++;
6034 			SetPageReserved(page);
6035 			continue;
6036 		}
6037 
6038 		BUG_ON(page_count(page));
6039 		BUG_ON(!PageBuddy(page));
6040 		order = page_order(page);
6041 #ifdef CONFIG_DEBUG_VM
6042 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6043 		       pfn, 1 << order, end_pfn);
6044 #endif
6045 		list_del(&page->lru);
6046 		rmv_page_order(page);
6047 		zone->free_area[order].nr_free--;
6048 		for (i = 0; i < (1 << order); i++)
6049 			SetPageReserved((page+i));
6050 		pfn += (1 << order);
6051 	}
6052 	spin_unlock_irqrestore(&zone->lock, flags);
6053 }
6054 #endif
6055 
6056 #ifdef CONFIG_MEMORY_FAILURE
6057 bool is_free_buddy_page(struct page *page)
6058 {
6059 	struct zone *zone = page_zone(page);
6060 	unsigned long pfn = page_to_pfn(page);
6061 	unsigned long flags;
6062 	int order;
6063 
6064 	spin_lock_irqsave(&zone->lock, flags);
6065 	for (order = 0; order < MAX_ORDER; order++) {
6066 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6067 
6068 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6069 			break;
6070 	}
6071 	spin_unlock_irqrestore(&zone->lock, flags);
6072 
6073 	return order < MAX_ORDER;
6074 }
6075 #endif
6076 
6077 static const struct trace_print_flags pageflag_names[] = {
6078 	{1UL << PG_locked,		"locked"	},
6079 	{1UL << PG_error,		"error"		},
6080 	{1UL << PG_referenced,		"referenced"	},
6081 	{1UL << PG_uptodate,		"uptodate"	},
6082 	{1UL << PG_dirty,		"dirty"		},
6083 	{1UL << PG_lru,			"lru"		},
6084 	{1UL << PG_active,		"active"	},
6085 	{1UL << PG_slab,		"slab"		},
6086 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6087 	{1UL << PG_arch_1,		"arch_1"	},
6088 	{1UL << PG_reserved,		"reserved"	},
6089 	{1UL << PG_private,		"private"	},
6090 	{1UL << PG_private_2,		"private_2"	},
6091 	{1UL << PG_writeback,		"writeback"	},
6092 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6093 	{1UL << PG_head,		"head"		},
6094 	{1UL << PG_tail,		"tail"		},
6095 #else
6096 	{1UL << PG_compound,		"compound"	},
6097 #endif
6098 	{1UL << PG_swapcache,		"swapcache"	},
6099 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6100 	{1UL << PG_reclaim,		"reclaim"	},
6101 	{1UL << PG_swapbacked,		"swapbacked"	},
6102 	{1UL << PG_unevictable,		"unevictable"	},
6103 #ifdef CONFIG_MMU
6104 	{1UL << PG_mlocked,		"mlocked"	},
6105 #endif
6106 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6107 	{1UL << PG_uncached,		"uncached"	},
6108 #endif
6109 #ifdef CONFIG_MEMORY_FAILURE
6110 	{1UL << PG_hwpoison,		"hwpoison"	},
6111 #endif
6112 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6113 	{1UL << PG_compound_lock,	"compound_lock"	},
6114 #endif
6115 };
6116 
6117 static void dump_page_flags(unsigned long flags)
6118 {
6119 	const char *delim = "";
6120 	unsigned long mask;
6121 	int i;
6122 
6123 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6124 
6125 	printk(KERN_ALERT "page flags: %#lx(", flags);
6126 
6127 	/* remove zone id */
6128 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6129 
6130 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6131 
6132 		mask = pageflag_names[i].mask;
6133 		if ((flags & mask) != mask)
6134 			continue;
6135 
6136 		flags &= ~mask;
6137 		printk("%s%s", delim, pageflag_names[i].name);
6138 		delim = "|";
6139 	}
6140 
6141 	/* check for left over flags */
6142 	if (flags)
6143 		printk("%s%#lx", delim, flags);
6144 
6145 	printk(")\n");
6146 }
6147 
6148 void dump_page(struct page *page)
6149 {
6150 	printk(KERN_ALERT
6151 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6152 		page, atomic_read(&page->_count), page_mapcount(page),
6153 		page->mapping, page->index);
6154 	dump_page_flags(page->flags);
6155 	mem_cgroup_print_bad_page(page);
6156 }
6157