1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 #ifdef CONFIG_MOVABLE_NODE 94 [N_MEMORY] = { { [0] = 1UL } }, 95 #endif 96 [N_CPU] = { { [0] = 1UL } }, 97 #endif /* NUMA */ 98 }; 99 EXPORT_SYMBOL(node_states); 100 101 unsigned long totalram_pages __read_mostly; 102 unsigned long totalreserve_pages __read_mostly; 103 /* 104 * When calculating the number of globally allowed dirty pages, there 105 * is a certain number of per-zone reserves that should not be 106 * considered dirtyable memory. This is the sum of those reserves 107 * over all existing zones that contribute dirtyable memory. 108 */ 109 unsigned long dirty_balance_reserve __read_mostly; 110 111 int percpu_pagelist_fraction; 112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 113 114 #ifdef CONFIG_PM_SLEEP 115 /* 116 * The following functions are used by the suspend/hibernate code to temporarily 117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 118 * while devices are suspended. To avoid races with the suspend/hibernate code, 119 * they should always be called with pm_mutex held (gfp_allowed_mask also should 120 * only be modified with pm_mutex held, unless the suspend/hibernate code is 121 * guaranteed not to run in parallel with that modification). 122 */ 123 124 static gfp_t saved_gfp_mask; 125 126 void pm_restore_gfp_mask(void) 127 { 128 WARN_ON(!mutex_is_locked(&pm_mutex)); 129 if (saved_gfp_mask) { 130 gfp_allowed_mask = saved_gfp_mask; 131 saved_gfp_mask = 0; 132 } 133 } 134 135 void pm_restrict_gfp_mask(void) 136 { 137 WARN_ON(!mutex_is_locked(&pm_mutex)); 138 WARN_ON(saved_gfp_mask); 139 saved_gfp_mask = gfp_allowed_mask; 140 gfp_allowed_mask &= ~GFP_IOFS; 141 } 142 143 bool pm_suspended_storage(void) 144 { 145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 146 return false; 147 return true; 148 } 149 #endif /* CONFIG_PM_SLEEP */ 150 151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 152 int pageblock_order __read_mostly; 153 #endif 154 155 static void __free_pages_ok(struct page *page, unsigned int order); 156 157 /* 158 * results with 256, 32 in the lowmem_reserve sysctl: 159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 160 * 1G machine -> (16M dma, 784M normal, 224M high) 161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 164 * 165 * TBD: should special case ZONE_DMA32 machines here - in those we normally 166 * don't need any ZONE_NORMAL reservation 167 */ 168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 169 #ifdef CONFIG_ZONE_DMA 170 256, 171 #endif 172 #ifdef CONFIG_ZONE_DMA32 173 256, 174 #endif 175 #ifdef CONFIG_HIGHMEM 176 32, 177 #endif 178 32, 179 }; 180 181 EXPORT_SYMBOL(totalram_pages); 182 183 static char * const zone_names[MAX_NR_ZONES] = { 184 #ifdef CONFIG_ZONE_DMA 185 "DMA", 186 #endif 187 #ifdef CONFIG_ZONE_DMA32 188 "DMA32", 189 #endif 190 "Normal", 191 #ifdef CONFIG_HIGHMEM 192 "HighMem", 193 #endif 194 "Movable", 195 }; 196 197 int min_free_kbytes = 1024; 198 199 static unsigned long __meminitdata nr_kernel_pages; 200 static unsigned long __meminitdata nr_all_pages; 201 static unsigned long __meminitdata dma_reserve; 202 203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 206 static unsigned long __initdata required_kernelcore; 207 static unsigned long __initdata required_movablecore; 208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 209 210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 211 int movable_zone; 212 EXPORT_SYMBOL(movable_zone); 213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 214 215 #if MAX_NUMNODES > 1 216 int nr_node_ids __read_mostly = MAX_NUMNODES; 217 int nr_online_nodes __read_mostly = 1; 218 EXPORT_SYMBOL(nr_node_ids); 219 EXPORT_SYMBOL(nr_online_nodes); 220 #endif 221 222 int page_group_by_mobility_disabled __read_mostly; 223 224 /* 225 * NOTE: 226 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly. 227 * Instead, use {un}set_pageblock_isolate. 228 */ 229 void set_pageblock_migratetype(struct page *page, int migratetype) 230 { 231 232 if (unlikely(page_group_by_mobility_disabled)) 233 migratetype = MIGRATE_UNMOVABLE; 234 235 set_pageblock_flags_group(page, (unsigned long)migratetype, 236 PB_migrate, PB_migrate_end); 237 } 238 239 bool oom_killer_disabled __read_mostly; 240 241 #ifdef CONFIG_DEBUG_VM 242 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 243 { 244 int ret = 0; 245 unsigned seq; 246 unsigned long pfn = page_to_pfn(page); 247 248 do { 249 seq = zone_span_seqbegin(zone); 250 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 251 ret = 1; 252 else if (pfn < zone->zone_start_pfn) 253 ret = 1; 254 } while (zone_span_seqretry(zone, seq)); 255 256 return ret; 257 } 258 259 static int page_is_consistent(struct zone *zone, struct page *page) 260 { 261 if (!pfn_valid_within(page_to_pfn(page))) 262 return 0; 263 if (zone != page_zone(page)) 264 return 0; 265 266 return 1; 267 } 268 /* 269 * Temporary debugging check for pages not lying within a given zone. 270 */ 271 static int bad_range(struct zone *zone, struct page *page) 272 { 273 if (page_outside_zone_boundaries(zone, page)) 274 return 1; 275 if (!page_is_consistent(zone, page)) 276 return 1; 277 278 return 0; 279 } 280 #else 281 static inline int bad_range(struct zone *zone, struct page *page) 282 { 283 return 0; 284 } 285 #endif 286 287 static void bad_page(struct page *page) 288 { 289 static unsigned long resume; 290 static unsigned long nr_shown; 291 static unsigned long nr_unshown; 292 293 /* Don't complain about poisoned pages */ 294 if (PageHWPoison(page)) { 295 reset_page_mapcount(page); /* remove PageBuddy */ 296 return; 297 } 298 299 /* 300 * Allow a burst of 60 reports, then keep quiet for that minute; 301 * or allow a steady drip of one report per second. 302 */ 303 if (nr_shown == 60) { 304 if (time_before(jiffies, resume)) { 305 nr_unshown++; 306 goto out; 307 } 308 if (nr_unshown) { 309 printk(KERN_ALERT 310 "BUG: Bad page state: %lu messages suppressed\n", 311 nr_unshown); 312 nr_unshown = 0; 313 } 314 nr_shown = 0; 315 } 316 if (nr_shown++ == 0) 317 resume = jiffies + 60 * HZ; 318 319 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 320 current->comm, page_to_pfn(page)); 321 dump_page(page); 322 323 print_modules(); 324 dump_stack(); 325 out: 326 /* Leave bad fields for debug, except PageBuddy could make trouble */ 327 reset_page_mapcount(page); /* remove PageBuddy */ 328 add_taint(TAINT_BAD_PAGE); 329 } 330 331 /* 332 * Higher-order pages are called "compound pages". They are structured thusly: 333 * 334 * The first PAGE_SIZE page is called the "head page". 335 * 336 * The remaining PAGE_SIZE pages are called "tail pages". 337 * 338 * All pages have PG_compound set. All tail pages have their ->first_page 339 * pointing at the head page. 340 * 341 * The first tail page's ->lru.next holds the address of the compound page's 342 * put_page() function. Its ->lru.prev holds the order of allocation. 343 * This usage means that zero-order pages may not be compound. 344 */ 345 346 static void free_compound_page(struct page *page) 347 { 348 __free_pages_ok(page, compound_order(page)); 349 } 350 351 void prep_compound_page(struct page *page, unsigned long order) 352 { 353 int i; 354 int nr_pages = 1 << order; 355 356 set_compound_page_dtor(page, free_compound_page); 357 set_compound_order(page, order); 358 __SetPageHead(page); 359 for (i = 1; i < nr_pages; i++) { 360 struct page *p = page + i; 361 __SetPageTail(p); 362 set_page_count(p, 0); 363 p->first_page = page; 364 } 365 } 366 367 /* update __split_huge_page_refcount if you change this function */ 368 static int destroy_compound_page(struct page *page, unsigned long order) 369 { 370 int i; 371 int nr_pages = 1 << order; 372 int bad = 0; 373 374 if (unlikely(compound_order(page) != order) || 375 unlikely(!PageHead(page))) { 376 bad_page(page); 377 bad++; 378 } 379 380 __ClearPageHead(page); 381 382 for (i = 1; i < nr_pages; i++) { 383 struct page *p = page + i; 384 385 if (unlikely(!PageTail(p) || (p->first_page != page))) { 386 bad_page(page); 387 bad++; 388 } 389 __ClearPageTail(p); 390 } 391 392 return bad; 393 } 394 395 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 396 { 397 int i; 398 399 /* 400 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 401 * and __GFP_HIGHMEM from hard or soft interrupt context. 402 */ 403 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 404 for (i = 0; i < (1 << order); i++) 405 clear_highpage(page + i); 406 } 407 408 #ifdef CONFIG_DEBUG_PAGEALLOC 409 unsigned int _debug_guardpage_minorder; 410 411 static int __init debug_guardpage_minorder_setup(char *buf) 412 { 413 unsigned long res; 414 415 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 416 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 417 return 0; 418 } 419 _debug_guardpage_minorder = res; 420 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 421 return 0; 422 } 423 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 424 425 static inline void set_page_guard_flag(struct page *page) 426 { 427 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 428 } 429 430 static inline void clear_page_guard_flag(struct page *page) 431 { 432 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 433 } 434 #else 435 static inline void set_page_guard_flag(struct page *page) { } 436 static inline void clear_page_guard_flag(struct page *page) { } 437 #endif 438 439 static inline void set_page_order(struct page *page, int order) 440 { 441 set_page_private(page, order); 442 __SetPageBuddy(page); 443 } 444 445 static inline void rmv_page_order(struct page *page) 446 { 447 __ClearPageBuddy(page); 448 set_page_private(page, 0); 449 } 450 451 /* 452 * Locate the struct page for both the matching buddy in our 453 * pair (buddy1) and the combined O(n+1) page they form (page). 454 * 455 * 1) Any buddy B1 will have an order O twin B2 which satisfies 456 * the following equation: 457 * B2 = B1 ^ (1 << O) 458 * For example, if the starting buddy (buddy2) is #8 its order 459 * 1 buddy is #10: 460 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 461 * 462 * 2) Any buddy B will have an order O+1 parent P which 463 * satisfies the following equation: 464 * P = B & ~(1 << O) 465 * 466 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 467 */ 468 static inline unsigned long 469 __find_buddy_index(unsigned long page_idx, unsigned int order) 470 { 471 return page_idx ^ (1 << order); 472 } 473 474 /* 475 * This function checks whether a page is free && is the buddy 476 * we can do coalesce a page and its buddy if 477 * (a) the buddy is not in a hole && 478 * (b) the buddy is in the buddy system && 479 * (c) a page and its buddy have the same order && 480 * (d) a page and its buddy are in the same zone. 481 * 482 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 483 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 484 * 485 * For recording page's order, we use page_private(page). 486 */ 487 static inline int page_is_buddy(struct page *page, struct page *buddy, 488 int order) 489 { 490 if (!pfn_valid_within(page_to_pfn(buddy))) 491 return 0; 492 493 if (page_zone_id(page) != page_zone_id(buddy)) 494 return 0; 495 496 if (page_is_guard(buddy) && page_order(buddy) == order) { 497 VM_BUG_ON(page_count(buddy) != 0); 498 return 1; 499 } 500 501 if (PageBuddy(buddy) && page_order(buddy) == order) { 502 VM_BUG_ON(page_count(buddy) != 0); 503 return 1; 504 } 505 return 0; 506 } 507 508 /* 509 * Freeing function for a buddy system allocator. 510 * 511 * The concept of a buddy system is to maintain direct-mapped table 512 * (containing bit values) for memory blocks of various "orders". 513 * The bottom level table contains the map for the smallest allocatable 514 * units of memory (here, pages), and each level above it describes 515 * pairs of units from the levels below, hence, "buddies". 516 * At a high level, all that happens here is marking the table entry 517 * at the bottom level available, and propagating the changes upward 518 * as necessary, plus some accounting needed to play nicely with other 519 * parts of the VM system. 520 * At each level, we keep a list of pages, which are heads of continuous 521 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 522 * order is recorded in page_private(page) field. 523 * So when we are allocating or freeing one, we can derive the state of the 524 * other. That is, if we allocate a small block, and both were 525 * free, the remainder of the region must be split into blocks. 526 * If a block is freed, and its buddy is also free, then this 527 * triggers coalescing into a block of larger size. 528 * 529 * -- nyc 530 */ 531 532 static inline void __free_one_page(struct page *page, 533 struct zone *zone, unsigned int order, 534 int migratetype) 535 { 536 unsigned long page_idx; 537 unsigned long combined_idx; 538 unsigned long uninitialized_var(buddy_idx); 539 struct page *buddy; 540 541 if (unlikely(PageCompound(page))) 542 if (unlikely(destroy_compound_page(page, order))) 543 return; 544 545 VM_BUG_ON(migratetype == -1); 546 547 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 548 549 VM_BUG_ON(page_idx & ((1 << order) - 1)); 550 VM_BUG_ON(bad_range(zone, page)); 551 552 while (order < MAX_ORDER-1) { 553 buddy_idx = __find_buddy_index(page_idx, order); 554 buddy = page + (buddy_idx - page_idx); 555 if (!page_is_buddy(page, buddy, order)) 556 break; 557 /* 558 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 559 * merge with it and move up one order. 560 */ 561 if (page_is_guard(buddy)) { 562 clear_page_guard_flag(buddy); 563 set_page_private(page, 0); 564 __mod_zone_freepage_state(zone, 1 << order, 565 migratetype); 566 } else { 567 list_del(&buddy->lru); 568 zone->free_area[order].nr_free--; 569 rmv_page_order(buddy); 570 } 571 combined_idx = buddy_idx & page_idx; 572 page = page + (combined_idx - page_idx); 573 page_idx = combined_idx; 574 order++; 575 } 576 set_page_order(page, order); 577 578 /* 579 * If this is not the largest possible page, check if the buddy 580 * of the next-highest order is free. If it is, it's possible 581 * that pages are being freed that will coalesce soon. In case, 582 * that is happening, add the free page to the tail of the list 583 * so it's less likely to be used soon and more likely to be merged 584 * as a higher order page 585 */ 586 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 587 struct page *higher_page, *higher_buddy; 588 combined_idx = buddy_idx & page_idx; 589 higher_page = page + (combined_idx - page_idx); 590 buddy_idx = __find_buddy_index(combined_idx, order + 1); 591 higher_buddy = higher_page + (buddy_idx - combined_idx); 592 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 593 list_add_tail(&page->lru, 594 &zone->free_area[order].free_list[migratetype]); 595 goto out; 596 } 597 } 598 599 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 600 out: 601 zone->free_area[order].nr_free++; 602 } 603 604 static inline int free_pages_check(struct page *page) 605 { 606 if (unlikely(page_mapcount(page) | 607 (page->mapping != NULL) | 608 (atomic_read(&page->_count) != 0) | 609 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 610 (mem_cgroup_bad_page_check(page)))) { 611 bad_page(page); 612 return 1; 613 } 614 reset_page_last_nid(page); 615 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 616 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 617 return 0; 618 } 619 620 /* 621 * Frees a number of pages from the PCP lists 622 * Assumes all pages on list are in same zone, and of same order. 623 * count is the number of pages to free. 624 * 625 * If the zone was previously in an "all pages pinned" state then look to 626 * see if this freeing clears that state. 627 * 628 * And clear the zone's pages_scanned counter, to hold off the "all pages are 629 * pinned" detection logic. 630 */ 631 static void free_pcppages_bulk(struct zone *zone, int count, 632 struct per_cpu_pages *pcp) 633 { 634 int migratetype = 0; 635 int batch_free = 0; 636 int to_free = count; 637 638 spin_lock(&zone->lock); 639 zone->all_unreclaimable = 0; 640 zone->pages_scanned = 0; 641 642 while (to_free) { 643 struct page *page; 644 struct list_head *list; 645 646 /* 647 * Remove pages from lists in a round-robin fashion. A 648 * batch_free count is maintained that is incremented when an 649 * empty list is encountered. This is so more pages are freed 650 * off fuller lists instead of spinning excessively around empty 651 * lists 652 */ 653 do { 654 batch_free++; 655 if (++migratetype == MIGRATE_PCPTYPES) 656 migratetype = 0; 657 list = &pcp->lists[migratetype]; 658 } while (list_empty(list)); 659 660 /* This is the only non-empty list. Free them all. */ 661 if (batch_free == MIGRATE_PCPTYPES) 662 batch_free = to_free; 663 664 do { 665 int mt; /* migratetype of the to-be-freed page */ 666 667 page = list_entry(list->prev, struct page, lru); 668 /* must delete as __free_one_page list manipulates */ 669 list_del(&page->lru); 670 mt = get_freepage_migratetype(page); 671 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 672 __free_one_page(page, zone, 0, mt); 673 trace_mm_page_pcpu_drain(page, 0, mt); 674 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) { 675 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 676 if (is_migrate_cma(mt)) 677 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 678 } 679 } while (--to_free && --batch_free && !list_empty(list)); 680 } 681 spin_unlock(&zone->lock); 682 } 683 684 static void free_one_page(struct zone *zone, struct page *page, int order, 685 int migratetype) 686 { 687 spin_lock(&zone->lock); 688 zone->all_unreclaimable = 0; 689 zone->pages_scanned = 0; 690 691 __free_one_page(page, zone, order, migratetype); 692 if (unlikely(migratetype != MIGRATE_ISOLATE)) 693 __mod_zone_freepage_state(zone, 1 << order, migratetype); 694 spin_unlock(&zone->lock); 695 } 696 697 static bool free_pages_prepare(struct page *page, unsigned int order) 698 { 699 int i; 700 int bad = 0; 701 702 trace_mm_page_free(page, order); 703 kmemcheck_free_shadow(page, order); 704 705 if (PageAnon(page)) 706 page->mapping = NULL; 707 for (i = 0; i < (1 << order); i++) 708 bad += free_pages_check(page + i); 709 if (bad) 710 return false; 711 712 if (!PageHighMem(page)) { 713 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 714 debug_check_no_obj_freed(page_address(page), 715 PAGE_SIZE << order); 716 } 717 arch_free_page(page, order); 718 kernel_map_pages(page, 1 << order, 0); 719 720 return true; 721 } 722 723 static void __free_pages_ok(struct page *page, unsigned int order) 724 { 725 unsigned long flags; 726 int migratetype; 727 728 if (!free_pages_prepare(page, order)) 729 return; 730 731 local_irq_save(flags); 732 __count_vm_events(PGFREE, 1 << order); 733 migratetype = get_pageblock_migratetype(page); 734 set_freepage_migratetype(page, migratetype); 735 free_one_page(page_zone(page), page, order, migratetype); 736 local_irq_restore(flags); 737 } 738 739 /* 740 * Read access to zone->managed_pages is safe because it's unsigned long, 741 * but we still need to serialize writers. Currently all callers of 742 * __free_pages_bootmem() except put_page_bootmem() should only be used 743 * at boot time. So for shorter boot time, we shift the burden to 744 * put_page_bootmem() to serialize writers. 745 */ 746 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 747 { 748 unsigned int nr_pages = 1 << order; 749 unsigned int loop; 750 751 prefetchw(page); 752 for (loop = 0; loop < nr_pages; loop++) { 753 struct page *p = &page[loop]; 754 755 if (loop + 1 < nr_pages) 756 prefetchw(p + 1); 757 __ClearPageReserved(p); 758 set_page_count(p, 0); 759 } 760 761 page_zone(page)->managed_pages += 1 << order; 762 set_page_refcounted(page); 763 __free_pages(page, order); 764 } 765 766 #ifdef CONFIG_CMA 767 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 768 void __init init_cma_reserved_pageblock(struct page *page) 769 { 770 unsigned i = pageblock_nr_pages; 771 struct page *p = page; 772 773 do { 774 __ClearPageReserved(p); 775 set_page_count(p, 0); 776 } while (++p, --i); 777 778 set_page_refcounted(page); 779 set_pageblock_migratetype(page, MIGRATE_CMA); 780 __free_pages(page, pageblock_order); 781 totalram_pages += pageblock_nr_pages; 782 } 783 #endif 784 785 /* 786 * The order of subdivision here is critical for the IO subsystem. 787 * Please do not alter this order without good reasons and regression 788 * testing. Specifically, as large blocks of memory are subdivided, 789 * the order in which smaller blocks are delivered depends on the order 790 * they're subdivided in this function. This is the primary factor 791 * influencing the order in which pages are delivered to the IO 792 * subsystem according to empirical testing, and this is also justified 793 * by considering the behavior of a buddy system containing a single 794 * large block of memory acted on by a series of small allocations. 795 * This behavior is a critical factor in sglist merging's success. 796 * 797 * -- nyc 798 */ 799 static inline void expand(struct zone *zone, struct page *page, 800 int low, int high, struct free_area *area, 801 int migratetype) 802 { 803 unsigned long size = 1 << high; 804 805 while (high > low) { 806 area--; 807 high--; 808 size >>= 1; 809 VM_BUG_ON(bad_range(zone, &page[size])); 810 811 #ifdef CONFIG_DEBUG_PAGEALLOC 812 if (high < debug_guardpage_minorder()) { 813 /* 814 * Mark as guard pages (or page), that will allow to 815 * merge back to allocator when buddy will be freed. 816 * Corresponding page table entries will not be touched, 817 * pages will stay not present in virtual address space 818 */ 819 INIT_LIST_HEAD(&page[size].lru); 820 set_page_guard_flag(&page[size]); 821 set_page_private(&page[size], high); 822 /* Guard pages are not available for any usage */ 823 __mod_zone_freepage_state(zone, -(1 << high), 824 migratetype); 825 continue; 826 } 827 #endif 828 list_add(&page[size].lru, &area->free_list[migratetype]); 829 area->nr_free++; 830 set_page_order(&page[size], high); 831 } 832 } 833 834 /* 835 * This page is about to be returned from the page allocator 836 */ 837 static inline int check_new_page(struct page *page) 838 { 839 if (unlikely(page_mapcount(page) | 840 (page->mapping != NULL) | 841 (atomic_read(&page->_count) != 0) | 842 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 843 (mem_cgroup_bad_page_check(page)))) { 844 bad_page(page); 845 return 1; 846 } 847 return 0; 848 } 849 850 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 851 { 852 int i; 853 854 for (i = 0; i < (1 << order); i++) { 855 struct page *p = page + i; 856 if (unlikely(check_new_page(p))) 857 return 1; 858 } 859 860 set_page_private(page, 0); 861 set_page_refcounted(page); 862 863 arch_alloc_page(page, order); 864 kernel_map_pages(page, 1 << order, 1); 865 866 if (gfp_flags & __GFP_ZERO) 867 prep_zero_page(page, order, gfp_flags); 868 869 if (order && (gfp_flags & __GFP_COMP)) 870 prep_compound_page(page, order); 871 872 return 0; 873 } 874 875 /* 876 * Go through the free lists for the given migratetype and remove 877 * the smallest available page from the freelists 878 */ 879 static inline 880 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 881 int migratetype) 882 { 883 unsigned int current_order; 884 struct free_area * area; 885 struct page *page; 886 887 /* Find a page of the appropriate size in the preferred list */ 888 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 889 area = &(zone->free_area[current_order]); 890 if (list_empty(&area->free_list[migratetype])) 891 continue; 892 893 page = list_entry(area->free_list[migratetype].next, 894 struct page, lru); 895 list_del(&page->lru); 896 rmv_page_order(page); 897 area->nr_free--; 898 expand(zone, page, order, current_order, area, migratetype); 899 return page; 900 } 901 902 return NULL; 903 } 904 905 906 /* 907 * This array describes the order lists are fallen back to when 908 * the free lists for the desirable migrate type are depleted 909 */ 910 static int fallbacks[MIGRATE_TYPES][4] = { 911 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 912 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 913 #ifdef CONFIG_CMA 914 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 915 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 916 #else 917 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 918 #endif 919 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 920 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 921 }; 922 923 /* 924 * Move the free pages in a range to the free lists of the requested type. 925 * Note that start_page and end_pages are not aligned on a pageblock 926 * boundary. If alignment is required, use move_freepages_block() 927 */ 928 int move_freepages(struct zone *zone, 929 struct page *start_page, struct page *end_page, 930 int migratetype) 931 { 932 struct page *page; 933 unsigned long order; 934 int pages_moved = 0; 935 936 #ifndef CONFIG_HOLES_IN_ZONE 937 /* 938 * page_zone is not safe to call in this context when 939 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 940 * anyway as we check zone boundaries in move_freepages_block(). 941 * Remove at a later date when no bug reports exist related to 942 * grouping pages by mobility 943 */ 944 BUG_ON(page_zone(start_page) != page_zone(end_page)); 945 #endif 946 947 for (page = start_page; page <= end_page;) { 948 /* Make sure we are not inadvertently changing nodes */ 949 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 950 951 if (!pfn_valid_within(page_to_pfn(page))) { 952 page++; 953 continue; 954 } 955 956 if (!PageBuddy(page)) { 957 page++; 958 continue; 959 } 960 961 order = page_order(page); 962 list_move(&page->lru, 963 &zone->free_area[order].free_list[migratetype]); 964 set_freepage_migratetype(page, migratetype); 965 page += 1 << order; 966 pages_moved += 1 << order; 967 } 968 969 return pages_moved; 970 } 971 972 int move_freepages_block(struct zone *zone, struct page *page, 973 int migratetype) 974 { 975 unsigned long start_pfn, end_pfn; 976 struct page *start_page, *end_page; 977 978 start_pfn = page_to_pfn(page); 979 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 980 start_page = pfn_to_page(start_pfn); 981 end_page = start_page + pageblock_nr_pages - 1; 982 end_pfn = start_pfn + pageblock_nr_pages - 1; 983 984 /* Do not cross zone boundaries */ 985 if (start_pfn < zone->zone_start_pfn) 986 start_page = page; 987 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 988 return 0; 989 990 return move_freepages(zone, start_page, end_page, migratetype); 991 } 992 993 static void change_pageblock_range(struct page *pageblock_page, 994 int start_order, int migratetype) 995 { 996 int nr_pageblocks = 1 << (start_order - pageblock_order); 997 998 while (nr_pageblocks--) { 999 set_pageblock_migratetype(pageblock_page, migratetype); 1000 pageblock_page += pageblock_nr_pages; 1001 } 1002 } 1003 1004 /* Remove an element from the buddy allocator from the fallback list */ 1005 static inline struct page * 1006 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1007 { 1008 struct free_area * area; 1009 int current_order; 1010 struct page *page; 1011 int migratetype, i; 1012 1013 /* Find the largest possible block of pages in the other list */ 1014 for (current_order = MAX_ORDER-1; current_order >= order; 1015 --current_order) { 1016 for (i = 0;; i++) { 1017 migratetype = fallbacks[start_migratetype][i]; 1018 1019 /* MIGRATE_RESERVE handled later if necessary */ 1020 if (migratetype == MIGRATE_RESERVE) 1021 break; 1022 1023 area = &(zone->free_area[current_order]); 1024 if (list_empty(&area->free_list[migratetype])) 1025 continue; 1026 1027 page = list_entry(area->free_list[migratetype].next, 1028 struct page, lru); 1029 area->nr_free--; 1030 1031 /* 1032 * If breaking a large block of pages, move all free 1033 * pages to the preferred allocation list. If falling 1034 * back for a reclaimable kernel allocation, be more 1035 * aggressive about taking ownership of free pages 1036 * 1037 * On the other hand, never change migration 1038 * type of MIGRATE_CMA pageblocks nor move CMA 1039 * pages on different free lists. We don't 1040 * want unmovable pages to be allocated from 1041 * MIGRATE_CMA areas. 1042 */ 1043 if (!is_migrate_cma(migratetype) && 1044 (unlikely(current_order >= pageblock_order / 2) || 1045 start_migratetype == MIGRATE_RECLAIMABLE || 1046 page_group_by_mobility_disabled)) { 1047 int pages; 1048 pages = move_freepages_block(zone, page, 1049 start_migratetype); 1050 1051 /* Claim the whole block if over half of it is free */ 1052 if (pages >= (1 << (pageblock_order-1)) || 1053 page_group_by_mobility_disabled) 1054 set_pageblock_migratetype(page, 1055 start_migratetype); 1056 1057 migratetype = start_migratetype; 1058 } 1059 1060 /* Remove the page from the freelists */ 1061 list_del(&page->lru); 1062 rmv_page_order(page); 1063 1064 /* Take ownership for orders >= pageblock_order */ 1065 if (current_order >= pageblock_order && 1066 !is_migrate_cma(migratetype)) 1067 change_pageblock_range(page, current_order, 1068 start_migratetype); 1069 1070 expand(zone, page, order, current_order, area, 1071 is_migrate_cma(migratetype) 1072 ? migratetype : start_migratetype); 1073 1074 trace_mm_page_alloc_extfrag(page, order, current_order, 1075 start_migratetype, migratetype); 1076 1077 return page; 1078 } 1079 } 1080 1081 return NULL; 1082 } 1083 1084 /* 1085 * Do the hard work of removing an element from the buddy allocator. 1086 * Call me with the zone->lock already held. 1087 */ 1088 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1089 int migratetype) 1090 { 1091 struct page *page; 1092 1093 retry_reserve: 1094 page = __rmqueue_smallest(zone, order, migratetype); 1095 1096 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1097 page = __rmqueue_fallback(zone, order, migratetype); 1098 1099 /* 1100 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1101 * is used because __rmqueue_smallest is an inline function 1102 * and we want just one call site 1103 */ 1104 if (!page) { 1105 migratetype = MIGRATE_RESERVE; 1106 goto retry_reserve; 1107 } 1108 } 1109 1110 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1111 return page; 1112 } 1113 1114 /* 1115 * Obtain a specified number of elements from the buddy allocator, all under 1116 * a single hold of the lock, for efficiency. Add them to the supplied list. 1117 * Returns the number of new pages which were placed at *list. 1118 */ 1119 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1120 unsigned long count, struct list_head *list, 1121 int migratetype, int cold) 1122 { 1123 int mt = migratetype, i; 1124 1125 spin_lock(&zone->lock); 1126 for (i = 0; i < count; ++i) { 1127 struct page *page = __rmqueue(zone, order, migratetype); 1128 if (unlikely(page == NULL)) 1129 break; 1130 1131 /* 1132 * Split buddy pages returned by expand() are received here 1133 * in physical page order. The page is added to the callers and 1134 * list and the list head then moves forward. From the callers 1135 * perspective, the linked list is ordered by page number in 1136 * some conditions. This is useful for IO devices that can 1137 * merge IO requests if the physical pages are ordered 1138 * properly. 1139 */ 1140 if (likely(cold == 0)) 1141 list_add(&page->lru, list); 1142 else 1143 list_add_tail(&page->lru, list); 1144 if (IS_ENABLED(CONFIG_CMA)) { 1145 mt = get_pageblock_migratetype(page); 1146 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1147 mt = migratetype; 1148 } 1149 set_freepage_migratetype(page, mt); 1150 list = &page->lru; 1151 if (is_migrate_cma(mt)) 1152 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1153 -(1 << order)); 1154 } 1155 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1156 spin_unlock(&zone->lock); 1157 return i; 1158 } 1159 1160 #ifdef CONFIG_NUMA 1161 /* 1162 * Called from the vmstat counter updater to drain pagesets of this 1163 * currently executing processor on remote nodes after they have 1164 * expired. 1165 * 1166 * Note that this function must be called with the thread pinned to 1167 * a single processor. 1168 */ 1169 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1170 { 1171 unsigned long flags; 1172 int to_drain; 1173 1174 local_irq_save(flags); 1175 if (pcp->count >= pcp->batch) 1176 to_drain = pcp->batch; 1177 else 1178 to_drain = pcp->count; 1179 if (to_drain > 0) { 1180 free_pcppages_bulk(zone, to_drain, pcp); 1181 pcp->count -= to_drain; 1182 } 1183 local_irq_restore(flags); 1184 } 1185 #endif 1186 1187 /* 1188 * Drain pages of the indicated processor. 1189 * 1190 * The processor must either be the current processor and the 1191 * thread pinned to the current processor or a processor that 1192 * is not online. 1193 */ 1194 static void drain_pages(unsigned int cpu) 1195 { 1196 unsigned long flags; 1197 struct zone *zone; 1198 1199 for_each_populated_zone(zone) { 1200 struct per_cpu_pageset *pset; 1201 struct per_cpu_pages *pcp; 1202 1203 local_irq_save(flags); 1204 pset = per_cpu_ptr(zone->pageset, cpu); 1205 1206 pcp = &pset->pcp; 1207 if (pcp->count) { 1208 free_pcppages_bulk(zone, pcp->count, pcp); 1209 pcp->count = 0; 1210 } 1211 local_irq_restore(flags); 1212 } 1213 } 1214 1215 /* 1216 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1217 */ 1218 void drain_local_pages(void *arg) 1219 { 1220 drain_pages(smp_processor_id()); 1221 } 1222 1223 /* 1224 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1225 * 1226 * Note that this code is protected against sending an IPI to an offline 1227 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1228 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1229 * nothing keeps CPUs from showing up after we populated the cpumask and 1230 * before the call to on_each_cpu_mask(). 1231 */ 1232 void drain_all_pages(void) 1233 { 1234 int cpu; 1235 struct per_cpu_pageset *pcp; 1236 struct zone *zone; 1237 1238 /* 1239 * Allocate in the BSS so we wont require allocation in 1240 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1241 */ 1242 static cpumask_t cpus_with_pcps; 1243 1244 /* 1245 * We don't care about racing with CPU hotplug event 1246 * as offline notification will cause the notified 1247 * cpu to drain that CPU pcps and on_each_cpu_mask 1248 * disables preemption as part of its processing 1249 */ 1250 for_each_online_cpu(cpu) { 1251 bool has_pcps = false; 1252 for_each_populated_zone(zone) { 1253 pcp = per_cpu_ptr(zone->pageset, cpu); 1254 if (pcp->pcp.count) { 1255 has_pcps = true; 1256 break; 1257 } 1258 } 1259 if (has_pcps) 1260 cpumask_set_cpu(cpu, &cpus_with_pcps); 1261 else 1262 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1263 } 1264 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1265 } 1266 1267 #ifdef CONFIG_HIBERNATION 1268 1269 void mark_free_pages(struct zone *zone) 1270 { 1271 unsigned long pfn, max_zone_pfn; 1272 unsigned long flags; 1273 int order, t; 1274 struct list_head *curr; 1275 1276 if (!zone->spanned_pages) 1277 return; 1278 1279 spin_lock_irqsave(&zone->lock, flags); 1280 1281 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1282 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1283 if (pfn_valid(pfn)) { 1284 struct page *page = pfn_to_page(pfn); 1285 1286 if (!swsusp_page_is_forbidden(page)) 1287 swsusp_unset_page_free(page); 1288 } 1289 1290 for_each_migratetype_order(order, t) { 1291 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1292 unsigned long i; 1293 1294 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1295 for (i = 0; i < (1UL << order); i++) 1296 swsusp_set_page_free(pfn_to_page(pfn + i)); 1297 } 1298 } 1299 spin_unlock_irqrestore(&zone->lock, flags); 1300 } 1301 #endif /* CONFIG_PM */ 1302 1303 /* 1304 * Free a 0-order page 1305 * cold == 1 ? free a cold page : free a hot page 1306 */ 1307 void free_hot_cold_page(struct page *page, int cold) 1308 { 1309 struct zone *zone = page_zone(page); 1310 struct per_cpu_pages *pcp; 1311 unsigned long flags; 1312 int migratetype; 1313 1314 if (!free_pages_prepare(page, 0)) 1315 return; 1316 1317 migratetype = get_pageblock_migratetype(page); 1318 set_freepage_migratetype(page, migratetype); 1319 local_irq_save(flags); 1320 __count_vm_event(PGFREE); 1321 1322 /* 1323 * We only track unmovable, reclaimable and movable on pcp lists. 1324 * Free ISOLATE pages back to the allocator because they are being 1325 * offlined but treat RESERVE as movable pages so we can get those 1326 * areas back if necessary. Otherwise, we may have to free 1327 * excessively into the page allocator 1328 */ 1329 if (migratetype >= MIGRATE_PCPTYPES) { 1330 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1331 free_one_page(zone, page, 0, migratetype); 1332 goto out; 1333 } 1334 migratetype = MIGRATE_MOVABLE; 1335 } 1336 1337 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1338 if (cold) 1339 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1340 else 1341 list_add(&page->lru, &pcp->lists[migratetype]); 1342 pcp->count++; 1343 if (pcp->count >= pcp->high) { 1344 free_pcppages_bulk(zone, pcp->batch, pcp); 1345 pcp->count -= pcp->batch; 1346 } 1347 1348 out: 1349 local_irq_restore(flags); 1350 } 1351 1352 /* 1353 * Free a list of 0-order pages 1354 */ 1355 void free_hot_cold_page_list(struct list_head *list, int cold) 1356 { 1357 struct page *page, *next; 1358 1359 list_for_each_entry_safe(page, next, list, lru) { 1360 trace_mm_page_free_batched(page, cold); 1361 free_hot_cold_page(page, cold); 1362 } 1363 } 1364 1365 /* 1366 * split_page takes a non-compound higher-order page, and splits it into 1367 * n (1<<order) sub-pages: page[0..n] 1368 * Each sub-page must be freed individually. 1369 * 1370 * Note: this is probably too low level an operation for use in drivers. 1371 * Please consult with lkml before using this in your driver. 1372 */ 1373 void split_page(struct page *page, unsigned int order) 1374 { 1375 int i; 1376 1377 VM_BUG_ON(PageCompound(page)); 1378 VM_BUG_ON(!page_count(page)); 1379 1380 #ifdef CONFIG_KMEMCHECK 1381 /* 1382 * Split shadow pages too, because free(page[0]) would 1383 * otherwise free the whole shadow. 1384 */ 1385 if (kmemcheck_page_is_tracked(page)) 1386 split_page(virt_to_page(page[0].shadow), order); 1387 #endif 1388 1389 for (i = 1; i < (1 << order); i++) 1390 set_page_refcounted(page + i); 1391 } 1392 1393 /* 1394 * Similar to the split_page family of functions except that the page 1395 * required at the given order and being isolated now to prevent races 1396 * with parallel allocators 1397 */ 1398 int capture_free_page(struct page *page, int alloc_order, int migratetype) 1399 { 1400 unsigned int order; 1401 unsigned long watermark; 1402 struct zone *zone; 1403 int mt; 1404 1405 BUG_ON(!PageBuddy(page)); 1406 1407 zone = page_zone(page); 1408 order = page_order(page); 1409 mt = get_pageblock_migratetype(page); 1410 1411 if (mt != MIGRATE_ISOLATE) { 1412 /* Obey watermarks as if the page was being allocated */ 1413 watermark = low_wmark_pages(zone) + (1 << order); 1414 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1415 return 0; 1416 1417 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt); 1418 } 1419 1420 /* Remove page from free list */ 1421 list_del(&page->lru); 1422 zone->free_area[order].nr_free--; 1423 rmv_page_order(page); 1424 1425 if (alloc_order != order) 1426 expand(zone, page, alloc_order, order, 1427 &zone->free_area[order], migratetype); 1428 1429 /* Set the pageblock if the captured page is at least a pageblock */ 1430 if (order >= pageblock_order - 1) { 1431 struct page *endpage = page + (1 << order) - 1; 1432 for (; page < endpage; page += pageblock_nr_pages) { 1433 int mt = get_pageblock_migratetype(page); 1434 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1435 set_pageblock_migratetype(page, 1436 MIGRATE_MOVABLE); 1437 } 1438 } 1439 1440 return 1UL << alloc_order; 1441 } 1442 1443 /* 1444 * Similar to split_page except the page is already free. As this is only 1445 * being used for migration, the migratetype of the block also changes. 1446 * As this is called with interrupts disabled, the caller is responsible 1447 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1448 * are enabled. 1449 * 1450 * Note: this is probably too low level an operation for use in drivers. 1451 * Please consult with lkml before using this in your driver. 1452 */ 1453 int split_free_page(struct page *page) 1454 { 1455 unsigned int order; 1456 int nr_pages; 1457 1458 BUG_ON(!PageBuddy(page)); 1459 order = page_order(page); 1460 1461 nr_pages = capture_free_page(page, order, 0); 1462 if (!nr_pages) 1463 return 0; 1464 1465 /* Split into individual pages */ 1466 set_page_refcounted(page); 1467 split_page(page, order); 1468 return nr_pages; 1469 } 1470 1471 /* 1472 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1473 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1474 * or two. 1475 */ 1476 static inline 1477 struct page *buffered_rmqueue(struct zone *preferred_zone, 1478 struct zone *zone, int order, gfp_t gfp_flags, 1479 int migratetype) 1480 { 1481 unsigned long flags; 1482 struct page *page; 1483 int cold = !!(gfp_flags & __GFP_COLD); 1484 1485 again: 1486 if (likely(order == 0)) { 1487 struct per_cpu_pages *pcp; 1488 struct list_head *list; 1489 1490 local_irq_save(flags); 1491 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1492 list = &pcp->lists[migratetype]; 1493 if (list_empty(list)) { 1494 pcp->count += rmqueue_bulk(zone, 0, 1495 pcp->batch, list, 1496 migratetype, cold); 1497 if (unlikely(list_empty(list))) 1498 goto failed; 1499 } 1500 1501 if (cold) 1502 page = list_entry(list->prev, struct page, lru); 1503 else 1504 page = list_entry(list->next, struct page, lru); 1505 1506 list_del(&page->lru); 1507 pcp->count--; 1508 } else { 1509 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1510 /* 1511 * __GFP_NOFAIL is not to be used in new code. 1512 * 1513 * All __GFP_NOFAIL callers should be fixed so that they 1514 * properly detect and handle allocation failures. 1515 * 1516 * We most definitely don't want callers attempting to 1517 * allocate greater than order-1 page units with 1518 * __GFP_NOFAIL. 1519 */ 1520 WARN_ON_ONCE(order > 1); 1521 } 1522 spin_lock_irqsave(&zone->lock, flags); 1523 page = __rmqueue(zone, order, migratetype); 1524 spin_unlock(&zone->lock); 1525 if (!page) 1526 goto failed; 1527 __mod_zone_freepage_state(zone, -(1 << order), 1528 get_pageblock_migratetype(page)); 1529 } 1530 1531 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1532 zone_statistics(preferred_zone, zone, gfp_flags); 1533 local_irq_restore(flags); 1534 1535 VM_BUG_ON(bad_range(zone, page)); 1536 if (prep_new_page(page, order, gfp_flags)) 1537 goto again; 1538 return page; 1539 1540 failed: 1541 local_irq_restore(flags); 1542 return NULL; 1543 } 1544 1545 #ifdef CONFIG_FAIL_PAGE_ALLOC 1546 1547 static struct { 1548 struct fault_attr attr; 1549 1550 u32 ignore_gfp_highmem; 1551 u32 ignore_gfp_wait; 1552 u32 min_order; 1553 } fail_page_alloc = { 1554 .attr = FAULT_ATTR_INITIALIZER, 1555 .ignore_gfp_wait = 1, 1556 .ignore_gfp_highmem = 1, 1557 .min_order = 1, 1558 }; 1559 1560 static int __init setup_fail_page_alloc(char *str) 1561 { 1562 return setup_fault_attr(&fail_page_alloc.attr, str); 1563 } 1564 __setup("fail_page_alloc=", setup_fail_page_alloc); 1565 1566 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1567 { 1568 if (order < fail_page_alloc.min_order) 1569 return false; 1570 if (gfp_mask & __GFP_NOFAIL) 1571 return false; 1572 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1573 return false; 1574 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1575 return false; 1576 1577 return should_fail(&fail_page_alloc.attr, 1 << order); 1578 } 1579 1580 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1581 1582 static int __init fail_page_alloc_debugfs(void) 1583 { 1584 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1585 struct dentry *dir; 1586 1587 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1588 &fail_page_alloc.attr); 1589 if (IS_ERR(dir)) 1590 return PTR_ERR(dir); 1591 1592 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1593 &fail_page_alloc.ignore_gfp_wait)) 1594 goto fail; 1595 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1596 &fail_page_alloc.ignore_gfp_highmem)) 1597 goto fail; 1598 if (!debugfs_create_u32("min-order", mode, dir, 1599 &fail_page_alloc.min_order)) 1600 goto fail; 1601 1602 return 0; 1603 fail: 1604 debugfs_remove_recursive(dir); 1605 1606 return -ENOMEM; 1607 } 1608 1609 late_initcall(fail_page_alloc_debugfs); 1610 1611 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1612 1613 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1614 1615 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1616 { 1617 return false; 1618 } 1619 1620 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1621 1622 /* 1623 * Return true if free pages are above 'mark'. This takes into account the order 1624 * of the allocation. 1625 */ 1626 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1627 int classzone_idx, int alloc_flags, long free_pages) 1628 { 1629 /* free_pages my go negative - that's OK */ 1630 long min = mark; 1631 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1632 int o; 1633 1634 free_pages -= (1 << order) - 1; 1635 if (alloc_flags & ALLOC_HIGH) 1636 min -= min / 2; 1637 if (alloc_flags & ALLOC_HARDER) 1638 min -= min / 4; 1639 #ifdef CONFIG_CMA 1640 /* If allocation can't use CMA areas don't use free CMA pages */ 1641 if (!(alloc_flags & ALLOC_CMA)) 1642 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 1643 #endif 1644 if (free_pages <= min + lowmem_reserve) 1645 return false; 1646 for (o = 0; o < order; o++) { 1647 /* At the next order, this order's pages become unavailable */ 1648 free_pages -= z->free_area[o].nr_free << o; 1649 1650 /* Require fewer higher order pages to be free */ 1651 min >>= 1; 1652 1653 if (free_pages <= min) 1654 return false; 1655 } 1656 return true; 1657 } 1658 1659 #ifdef CONFIG_MEMORY_ISOLATION 1660 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1661 { 1662 if (unlikely(zone->nr_pageblock_isolate)) 1663 return zone->nr_pageblock_isolate * pageblock_nr_pages; 1664 return 0; 1665 } 1666 #else 1667 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1668 { 1669 return 0; 1670 } 1671 #endif 1672 1673 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1674 int classzone_idx, int alloc_flags) 1675 { 1676 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1677 zone_page_state(z, NR_FREE_PAGES)); 1678 } 1679 1680 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1681 int classzone_idx, int alloc_flags) 1682 { 1683 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1684 1685 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1686 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1687 1688 /* 1689 * If the zone has MIGRATE_ISOLATE type free pages, we should consider 1690 * it. nr_zone_isolate_freepages is never accurate so kswapd might not 1691 * sleep although it could do so. But this is more desirable for memory 1692 * hotplug than sleeping which can cause a livelock in the direct 1693 * reclaim path. 1694 */ 1695 free_pages -= nr_zone_isolate_freepages(z); 1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1697 free_pages); 1698 } 1699 1700 #ifdef CONFIG_NUMA 1701 /* 1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1703 * skip over zones that are not allowed by the cpuset, or that have 1704 * been recently (in last second) found to be nearly full. See further 1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1706 * that have to skip over a lot of full or unallowed zones. 1707 * 1708 * If the zonelist cache is present in the passed in zonelist, then 1709 * returns a pointer to the allowed node mask (either the current 1710 * tasks mems_allowed, or node_states[N_MEMORY].) 1711 * 1712 * If the zonelist cache is not available for this zonelist, does 1713 * nothing and returns NULL. 1714 * 1715 * If the fullzones BITMAP in the zonelist cache is stale (more than 1716 * a second since last zap'd) then we zap it out (clear its bits.) 1717 * 1718 * We hold off even calling zlc_setup, until after we've checked the 1719 * first zone in the zonelist, on the theory that most allocations will 1720 * be satisfied from that first zone, so best to examine that zone as 1721 * quickly as we can. 1722 */ 1723 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1724 { 1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1726 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1727 1728 zlc = zonelist->zlcache_ptr; 1729 if (!zlc) 1730 return NULL; 1731 1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1734 zlc->last_full_zap = jiffies; 1735 } 1736 1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1738 &cpuset_current_mems_allowed : 1739 &node_states[N_MEMORY]; 1740 return allowednodes; 1741 } 1742 1743 /* 1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1745 * if it is worth looking at further for free memory: 1746 * 1) Check that the zone isn't thought to be full (doesn't have its 1747 * bit set in the zonelist_cache fullzones BITMAP). 1748 * 2) Check that the zones node (obtained from the zonelist_cache 1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1750 * Return true (non-zero) if zone is worth looking at further, or 1751 * else return false (zero) if it is not. 1752 * 1753 * This check -ignores- the distinction between various watermarks, 1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1755 * found to be full for any variation of these watermarks, it will 1756 * be considered full for up to one second by all requests, unless 1757 * we are so low on memory on all allowed nodes that we are forced 1758 * into the second scan of the zonelist. 1759 * 1760 * In the second scan we ignore this zonelist cache and exactly 1761 * apply the watermarks to all zones, even it is slower to do so. 1762 * We are low on memory in the second scan, and should leave no stone 1763 * unturned looking for a free page. 1764 */ 1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1766 nodemask_t *allowednodes) 1767 { 1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1769 int i; /* index of *z in zonelist zones */ 1770 int n; /* node that zone *z is on */ 1771 1772 zlc = zonelist->zlcache_ptr; 1773 if (!zlc) 1774 return 1; 1775 1776 i = z - zonelist->_zonerefs; 1777 n = zlc->z_to_n[i]; 1778 1779 /* This zone is worth trying if it is allowed but not full */ 1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1781 } 1782 1783 /* 1784 * Given 'z' scanning a zonelist, set the corresponding bit in 1785 * zlc->fullzones, so that subsequent attempts to allocate a page 1786 * from that zone don't waste time re-examining it. 1787 */ 1788 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1789 { 1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1791 int i; /* index of *z in zonelist zones */ 1792 1793 zlc = zonelist->zlcache_ptr; 1794 if (!zlc) 1795 return; 1796 1797 i = z - zonelist->_zonerefs; 1798 1799 set_bit(i, zlc->fullzones); 1800 } 1801 1802 /* 1803 * clear all zones full, called after direct reclaim makes progress so that 1804 * a zone that was recently full is not skipped over for up to a second 1805 */ 1806 static void zlc_clear_zones_full(struct zonelist *zonelist) 1807 { 1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1809 1810 zlc = zonelist->zlcache_ptr; 1811 if (!zlc) 1812 return; 1813 1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1815 } 1816 1817 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1818 { 1819 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1820 } 1821 1822 static void __paginginit init_zone_allows_reclaim(int nid) 1823 { 1824 int i; 1825 1826 for_each_online_node(i) 1827 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1828 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1829 else 1830 zone_reclaim_mode = 1; 1831 } 1832 1833 #else /* CONFIG_NUMA */ 1834 1835 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1836 { 1837 return NULL; 1838 } 1839 1840 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1841 nodemask_t *allowednodes) 1842 { 1843 return 1; 1844 } 1845 1846 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1847 { 1848 } 1849 1850 static void zlc_clear_zones_full(struct zonelist *zonelist) 1851 { 1852 } 1853 1854 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1855 { 1856 return true; 1857 } 1858 1859 static inline void init_zone_allows_reclaim(int nid) 1860 { 1861 } 1862 #endif /* CONFIG_NUMA */ 1863 1864 /* 1865 * get_page_from_freelist goes through the zonelist trying to allocate 1866 * a page. 1867 */ 1868 static struct page * 1869 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1870 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1871 struct zone *preferred_zone, int migratetype) 1872 { 1873 struct zoneref *z; 1874 struct page *page = NULL; 1875 int classzone_idx; 1876 struct zone *zone; 1877 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1878 int zlc_active = 0; /* set if using zonelist_cache */ 1879 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1880 1881 classzone_idx = zone_idx(preferred_zone); 1882 zonelist_scan: 1883 /* 1884 * Scan zonelist, looking for a zone with enough free. 1885 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1886 */ 1887 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1888 high_zoneidx, nodemask) { 1889 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1890 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1891 continue; 1892 if ((alloc_flags & ALLOC_CPUSET) && 1893 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1894 continue; 1895 /* 1896 * When allocating a page cache page for writing, we 1897 * want to get it from a zone that is within its dirty 1898 * limit, such that no single zone holds more than its 1899 * proportional share of globally allowed dirty pages. 1900 * The dirty limits take into account the zone's 1901 * lowmem reserves and high watermark so that kswapd 1902 * should be able to balance it without having to 1903 * write pages from its LRU list. 1904 * 1905 * This may look like it could increase pressure on 1906 * lower zones by failing allocations in higher zones 1907 * before they are full. But the pages that do spill 1908 * over are limited as the lower zones are protected 1909 * by this very same mechanism. It should not become 1910 * a practical burden to them. 1911 * 1912 * XXX: For now, allow allocations to potentially 1913 * exceed the per-zone dirty limit in the slowpath 1914 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1915 * which is important when on a NUMA setup the allowed 1916 * zones are together not big enough to reach the 1917 * global limit. The proper fix for these situations 1918 * will require awareness of zones in the 1919 * dirty-throttling and the flusher threads. 1920 */ 1921 if ((alloc_flags & ALLOC_WMARK_LOW) && 1922 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1923 goto this_zone_full; 1924 1925 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1926 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1927 unsigned long mark; 1928 int ret; 1929 1930 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1931 if (zone_watermark_ok(zone, order, mark, 1932 classzone_idx, alloc_flags)) 1933 goto try_this_zone; 1934 1935 if (IS_ENABLED(CONFIG_NUMA) && 1936 !did_zlc_setup && nr_online_nodes > 1) { 1937 /* 1938 * we do zlc_setup if there are multiple nodes 1939 * and before considering the first zone allowed 1940 * by the cpuset. 1941 */ 1942 allowednodes = zlc_setup(zonelist, alloc_flags); 1943 zlc_active = 1; 1944 did_zlc_setup = 1; 1945 } 1946 1947 if (zone_reclaim_mode == 0 || 1948 !zone_allows_reclaim(preferred_zone, zone)) 1949 goto this_zone_full; 1950 1951 /* 1952 * As we may have just activated ZLC, check if the first 1953 * eligible zone has failed zone_reclaim recently. 1954 */ 1955 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1956 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1957 continue; 1958 1959 ret = zone_reclaim(zone, gfp_mask, order); 1960 switch (ret) { 1961 case ZONE_RECLAIM_NOSCAN: 1962 /* did not scan */ 1963 continue; 1964 case ZONE_RECLAIM_FULL: 1965 /* scanned but unreclaimable */ 1966 continue; 1967 default: 1968 /* did we reclaim enough */ 1969 if (!zone_watermark_ok(zone, order, mark, 1970 classzone_idx, alloc_flags)) 1971 goto this_zone_full; 1972 } 1973 } 1974 1975 try_this_zone: 1976 page = buffered_rmqueue(preferred_zone, zone, order, 1977 gfp_mask, migratetype); 1978 if (page) 1979 break; 1980 this_zone_full: 1981 if (IS_ENABLED(CONFIG_NUMA)) 1982 zlc_mark_zone_full(zonelist, z); 1983 } 1984 1985 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1986 /* Disable zlc cache for second zonelist scan */ 1987 zlc_active = 0; 1988 goto zonelist_scan; 1989 } 1990 1991 if (page) 1992 /* 1993 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1994 * necessary to allocate the page. The expectation is 1995 * that the caller is taking steps that will free more 1996 * memory. The caller should avoid the page being used 1997 * for !PFMEMALLOC purposes. 1998 */ 1999 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2000 2001 return page; 2002 } 2003 2004 /* 2005 * Large machines with many possible nodes should not always dump per-node 2006 * meminfo in irq context. 2007 */ 2008 static inline bool should_suppress_show_mem(void) 2009 { 2010 bool ret = false; 2011 2012 #if NODES_SHIFT > 8 2013 ret = in_interrupt(); 2014 #endif 2015 return ret; 2016 } 2017 2018 static DEFINE_RATELIMIT_STATE(nopage_rs, 2019 DEFAULT_RATELIMIT_INTERVAL, 2020 DEFAULT_RATELIMIT_BURST); 2021 2022 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2023 { 2024 unsigned int filter = SHOW_MEM_FILTER_NODES; 2025 2026 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2027 debug_guardpage_minorder() > 0) 2028 return; 2029 2030 /* 2031 * This documents exceptions given to allocations in certain 2032 * contexts that are allowed to allocate outside current's set 2033 * of allowed nodes. 2034 */ 2035 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2036 if (test_thread_flag(TIF_MEMDIE) || 2037 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2038 filter &= ~SHOW_MEM_FILTER_NODES; 2039 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2040 filter &= ~SHOW_MEM_FILTER_NODES; 2041 2042 if (fmt) { 2043 struct va_format vaf; 2044 va_list args; 2045 2046 va_start(args, fmt); 2047 2048 vaf.fmt = fmt; 2049 vaf.va = &args; 2050 2051 pr_warn("%pV", &vaf); 2052 2053 va_end(args); 2054 } 2055 2056 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2057 current->comm, order, gfp_mask); 2058 2059 dump_stack(); 2060 if (!should_suppress_show_mem()) 2061 show_mem(filter); 2062 } 2063 2064 static inline int 2065 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2066 unsigned long did_some_progress, 2067 unsigned long pages_reclaimed) 2068 { 2069 /* Do not loop if specifically requested */ 2070 if (gfp_mask & __GFP_NORETRY) 2071 return 0; 2072 2073 /* Always retry if specifically requested */ 2074 if (gfp_mask & __GFP_NOFAIL) 2075 return 1; 2076 2077 /* 2078 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2079 * making forward progress without invoking OOM. Suspend also disables 2080 * storage devices so kswapd will not help. Bail if we are suspending. 2081 */ 2082 if (!did_some_progress && pm_suspended_storage()) 2083 return 0; 2084 2085 /* 2086 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2087 * means __GFP_NOFAIL, but that may not be true in other 2088 * implementations. 2089 */ 2090 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2091 return 1; 2092 2093 /* 2094 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2095 * specified, then we retry until we no longer reclaim any pages 2096 * (above), or we've reclaimed an order of pages at least as 2097 * large as the allocation's order. In both cases, if the 2098 * allocation still fails, we stop retrying. 2099 */ 2100 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2101 return 1; 2102 2103 return 0; 2104 } 2105 2106 static inline struct page * 2107 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2108 struct zonelist *zonelist, enum zone_type high_zoneidx, 2109 nodemask_t *nodemask, struct zone *preferred_zone, 2110 int migratetype) 2111 { 2112 struct page *page; 2113 2114 /* Acquire the OOM killer lock for the zones in zonelist */ 2115 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2116 schedule_timeout_uninterruptible(1); 2117 return NULL; 2118 } 2119 2120 /* 2121 * Go through the zonelist yet one more time, keep very high watermark 2122 * here, this is only to catch a parallel oom killing, we must fail if 2123 * we're still under heavy pressure. 2124 */ 2125 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2126 order, zonelist, high_zoneidx, 2127 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2128 preferred_zone, migratetype); 2129 if (page) 2130 goto out; 2131 2132 if (!(gfp_mask & __GFP_NOFAIL)) { 2133 /* The OOM killer will not help higher order allocs */ 2134 if (order > PAGE_ALLOC_COSTLY_ORDER) 2135 goto out; 2136 /* The OOM killer does not needlessly kill tasks for lowmem */ 2137 if (high_zoneidx < ZONE_NORMAL) 2138 goto out; 2139 /* 2140 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2141 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2142 * The caller should handle page allocation failure by itself if 2143 * it specifies __GFP_THISNODE. 2144 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2145 */ 2146 if (gfp_mask & __GFP_THISNODE) 2147 goto out; 2148 } 2149 /* Exhausted what can be done so it's blamo time */ 2150 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2151 2152 out: 2153 clear_zonelist_oom(zonelist, gfp_mask); 2154 return page; 2155 } 2156 2157 #ifdef CONFIG_COMPACTION 2158 /* Try memory compaction for high-order allocations before reclaim */ 2159 static struct page * 2160 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2161 struct zonelist *zonelist, enum zone_type high_zoneidx, 2162 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2163 int migratetype, bool sync_migration, 2164 bool *contended_compaction, bool *deferred_compaction, 2165 unsigned long *did_some_progress) 2166 { 2167 struct page *page = NULL; 2168 2169 if (!order) 2170 return NULL; 2171 2172 if (compaction_deferred(preferred_zone, order)) { 2173 *deferred_compaction = true; 2174 return NULL; 2175 } 2176 2177 current->flags |= PF_MEMALLOC; 2178 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2179 nodemask, sync_migration, 2180 contended_compaction, &page); 2181 current->flags &= ~PF_MEMALLOC; 2182 2183 /* If compaction captured a page, prep and use it */ 2184 if (page) { 2185 prep_new_page(page, order, gfp_mask); 2186 goto got_page; 2187 } 2188 2189 if (*did_some_progress != COMPACT_SKIPPED) { 2190 /* Page migration frees to the PCP lists but we want merging */ 2191 drain_pages(get_cpu()); 2192 put_cpu(); 2193 2194 page = get_page_from_freelist(gfp_mask, nodemask, 2195 order, zonelist, high_zoneidx, 2196 alloc_flags & ~ALLOC_NO_WATERMARKS, 2197 preferred_zone, migratetype); 2198 if (page) { 2199 got_page: 2200 preferred_zone->compact_blockskip_flush = false; 2201 preferred_zone->compact_considered = 0; 2202 preferred_zone->compact_defer_shift = 0; 2203 if (order >= preferred_zone->compact_order_failed) 2204 preferred_zone->compact_order_failed = order + 1; 2205 count_vm_event(COMPACTSUCCESS); 2206 return page; 2207 } 2208 2209 /* 2210 * It's bad if compaction run occurs and fails. 2211 * The most likely reason is that pages exist, 2212 * but not enough to satisfy watermarks. 2213 */ 2214 count_vm_event(COMPACTFAIL); 2215 2216 /* 2217 * As async compaction considers a subset of pageblocks, only 2218 * defer if the failure was a sync compaction failure. 2219 */ 2220 if (sync_migration) 2221 defer_compaction(preferred_zone, order); 2222 2223 cond_resched(); 2224 } 2225 2226 return NULL; 2227 } 2228 #else 2229 static inline struct page * 2230 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2231 struct zonelist *zonelist, enum zone_type high_zoneidx, 2232 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2233 int migratetype, bool sync_migration, 2234 bool *contended_compaction, bool *deferred_compaction, 2235 unsigned long *did_some_progress) 2236 { 2237 return NULL; 2238 } 2239 #endif /* CONFIG_COMPACTION */ 2240 2241 /* Perform direct synchronous page reclaim */ 2242 static int 2243 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2244 nodemask_t *nodemask) 2245 { 2246 struct reclaim_state reclaim_state; 2247 int progress; 2248 2249 cond_resched(); 2250 2251 /* We now go into synchronous reclaim */ 2252 cpuset_memory_pressure_bump(); 2253 current->flags |= PF_MEMALLOC; 2254 lockdep_set_current_reclaim_state(gfp_mask); 2255 reclaim_state.reclaimed_slab = 0; 2256 current->reclaim_state = &reclaim_state; 2257 2258 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2259 2260 current->reclaim_state = NULL; 2261 lockdep_clear_current_reclaim_state(); 2262 current->flags &= ~PF_MEMALLOC; 2263 2264 cond_resched(); 2265 2266 return progress; 2267 } 2268 2269 /* The really slow allocator path where we enter direct reclaim */ 2270 static inline struct page * 2271 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2272 struct zonelist *zonelist, enum zone_type high_zoneidx, 2273 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2274 int migratetype, unsigned long *did_some_progress) 2275 { 2276 struct page *page = NULL; 2277 bool drained = false; 2278 2279 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2280 nodemask); 2281 if (unlikely(!(*did_some_progress))) 2282 return NULL; 2283 2284 /* After successful reclaim, reconsider all zones for allocation */ 2285 if (IS_ENABLED(CONFIG_NUMA)) 2286 zlc_clear_zones_full(zonelist); 2287 2288 retry: 2289 page = get_page_from_freelist(gfp_mask, nodemask, order, 2290 zonelist, high_zoneidx, 2291 alloc_flags & ~ALLOC_NO_WATERMARKS, 2292 preferred_zone, migratetype); 2293 2294 /* 2295 * If an allocation failed after direct reclaim, it could be because 2296 * pages are pinned on the per-cpu lists. Drain them and try again 2297 */ 2298 if (!page && !drained) { 2299 drain_all_pages(); 2300 drained = true; 2301 goto retry; 2302 } 2303 2304 return page; 2305 } 2306 2307 /* 2308 * This is called in the allocator slow-path if the allocation request is of 2309 * sufficient urgency to ignore watermarks and take other desperate measures 2310 */ 2311 static inline struct page * 2312 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2313 struct zonelist *zonelist, enum zone_type high_zoneidx, 2314 nodemask_t *nodemask, struct zone *preferred_zone, 2315 int migratetype) 2316 { 2317 struct page *page; 2318 2319 do { 2320 page = get_page_from_freelist(gfp_mask, nodemask, order, 2321 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2322 preferred_zone, migratetype); 2323 2324 if (!page && gfp_mask & __GFP_NOFAIL) 2325 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2326 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2327 2328 return page; 2329 } 2330 2331 static inline 2332 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2333 enum zone_type high_zoneidx, 2334 enum zone_type classzone_idx) 2335 { 2336 struct zoneref *z; 2337 struct zone *zone; 2338 2339 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2340 wakeup_kswapd(zone, order, classzone_idx); 2341 } 2342 2343 static inline int 2344 gfp_to_alloc_flags(gfp_t gfp_mask) 2345 { 2346 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2347 const gfp_t wait = gfp_mask & __GFP_WAIT; 2348 2349 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2350 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2351 2352 /* 2353 * The caller may dip into page reserves a bit more if the caller 2354 * cannot run direct reclaim, or if the caller has realtime scheduling 2355 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2356 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2357 */ 2358 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2359 2360 if (!wait) { 2361 /* 2362 * Not worth trying to allocate harder for 2363 * __GFP_NOMEMALLOC even if it can't schedule. 2364 */ 2365 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2366 alloc_flags |= ALLOC_HARDER; 2367 /* 2368 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2369 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2370 */ 2371 alloc_flags &= ~ALLOC_CPUSET; 2372 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2373 alloc_flags |= ALLOC_HARDER; 2374 2375 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2376 if (gfp_mask & __GFP_MEMALLOC) 2377 alloc_flags |= ALLOC_NO_WATERMARKS; 2378 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2379 alloc_flags |= ALLOC_NO_WATERMARKS; 2380 else if (!in_interrupt() && 2381 ((current->flags & PF_MEMALLOC) || 2382 unlikely(test_thread_flag(TIF_MEMDIE)))) 2383 alloc_flags |= ALLOC_NO_WATERMARKS; 2384 } 2385 #ifdef CONFIG_CMA 2386 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2387 alloc_flags |= ALLOC_CMA; 2388 #endif 2389 return alloc_flags; 2390 } 2391 2392 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2393 { 2394 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2395 } 2396 2397 static inline struct page * 2398 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2399 struct zonelist *zonelist, enum zone_type high_zoneidx, 2400 nodemask_t *nodemask, struct zone *preferred_zone, 2401 int migratetype) 2402 { 2403 const gfp_t wait = gfp_mask & __GFP_WAIT; 2404 struct page *page = NULL; 2405 int alloc_flags; 2406 unsigned long pages_reclaimed = 0; 2407 unsigned long did_some_progress; 2408 bool sync_migration = false; 2409 bool deferred_compaction = false; 2410 bool contended_compaction = false; 2411 2412 /* 2413 * In the slowpath, we sanity check order to avoid ever trying to 2414 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2415 * be using allocators in order of preference for an area that is 2416 * too large. 2417 */ 2418 if (order >= MAX_ORDER) { 2419 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2420 return NULL; 2421 } 2422 2423 /* 2424 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2425 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2426 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2427 * using a larger set of nodes after it has established that the 2428 * allowed per node queues are empty and that nodes are 2429 * over allocated. 2430 */ 2431 if (IS_ENABLED(CONFIG_NUMA) && 2432 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2433 goto nopage; 2434 2435 restart: 2436 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2437 wake_all_kswapd(order, zonelist, high_zoneidx, 2438 zone_idx(preferred_zone)); 2439 2440 /* 2441 * OK, we're below the kswapd watermark and have kicked background 2442 * reclaim. Now things get more complex, so set up alloc_flags according 2443 * to how we want to proceed. 2444 */ 2445 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2446 2447 /* 2448 * Find the true preferred zone if the allocation is unconstrained by 2449 * cpusets. 2450 */ 2451 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2452 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2453 &preferred_zone); 2454 2455 rebalance: 2456 /* This is the last chance, in general, before the goto nopage. */ 2457 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2458 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2459 preferred_zone, migratetype); 2460 if (page) 2461 goto got_pg; 2462 2463 /* Allocate without watermarks if the context allows */ 2464 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2465 /* 2466 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2467 * the allocation is high priority and these type of 2468 * allocations are system rather than user orientated 2469 */ 2470 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2471 2472 page = __alloc_pages_high_priority(gfp_mask, order, 2473 zonelist, high_zoneidx, nodemask, 2474 preferred_zone, migratetype); 2475 if (page) { 2476 goto got_pg; 2477 } 2478 } 2479 2480 /* Atomic allocations - we can't balance anything */ 2481 if (!wait) 2482 goto nopage; 2483 2484 /* Avoid recursion of direct reclaim */ 2485 if (current->flags & PF_MEMALLOC) 2486 goto nopage; 2487 2488 /* Avoid allocations with no watermarks from looping endlessly */ 2489 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2490 goto nopage; 2491 2492 /* 2493 * Try direct compaction. The first pass is asynchronous. Subsequent 2494 * attempts after direct reclaim are synchronous 2495 */ 2496 page = __alloc_pages_direct_compact(gfp_mask, order, 2497 zonelist, high_zoneidx, 2498 nodemask, 2499 alloc_flags, preferred_zone, 2500 migratetype, sync_migration, 2501 &contended_compaction, 2502 &deferred_compaction, 2503 &did_some_progress); 2504 if (page) 2505 goto got_pg; 2506 sync_migration = true; 2507 2508 /* 2509 * If compaction is deferred for high-order allocations, it is because 2510 * sync compaction recently failed. In this is the case and the caller 2511 * requested a movable allocation that does not heavily disrupt the 2512 * system then fail the allocation instead of entering direct reclaim. 2513 */ 2514 if ((deferred_compaction || contended_compaction) && 2515 (gfp_mask & __GFP_NO_KSWAPD)) 2516 goto nopage; 2517 2518 /* Try direct reclaim and then allocating */ 2519 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2520 zonelist, high_zoneidx, 2521 nodemask, 2522 alloc_flags, preferred_zone, 2523 migratetype, &did_some_progress); 2524 if (page) 2525 goto got_pg; 2526 2527 /* 2528 * If we failed to make any progress reclaiming, then we are 2529 * running out of options and have to consider going OOM 2530 */ 2531 if (!did_some_progress) { 2532 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2533 if (oom_killer_disabled) 2534 goto nopage; 2535 /* Coredumps can quickly deplete all memory reserves */ 2536 if ((current->flags & PF_DUMPCORE) && 2537 !(gfp_mask & __GFP_NOFAIL)) 2538 goto nopage; 2539 page = __alloc_pages_may_oom(gfp_mask, order, 2540 zonelist, high_zoneidx, 2541 nodemask, preferred_zone, 2542 migratetype); 2543 if (page) 2544 goto got_pg; 2545 2546 if (!(gfp_mask & __GFP_NOFAIL)) { 2547 /* 2548 * The oom killer is not called for high-order 2549 * allocations that may fail, so if no progress 2550 * is being made, there are no other options and 2551 * retrying is unlikely to help. 2552 */ 2553 if (order > PAGE_ALLOC_COSTLY_ORDER) 2554 goto nopage; 2555 /* 2556 * The oom killer is not called for lowmem 2557 * allocations to prevent needlessly killing 2558 * innocent tasks. 2559 */ 2560 if (high_zoneidx < ZONE_NORMAL) 2561 goto nopage; 2562 } 2563 2564 goto restart; 2565 } 2566 } 2567 2568 /* Check if we should retry the allocation */ 2569 pages_reclaimed += did_some_progress; 2570 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2571 pages_reclaimed)) { 2572 /* Wait for some write requests to complete then retry */ 2573 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2574 goto rebalance; 2575 } else { 2576 /* 2577 * High-order allocations do not necessarily loop after 2578 * direct reclaim and reclaim/compaction depends on compaction 2579 * being called after reclaim so call directly if necessary 2580 */ 2581 page = __alloc_pages_direct_compact(gfp_mask, order, 2582 zonelist, high_zoneidx, 2583 nodemask, 2584 alloc_flags, preferred_zone, 2585 migratetype, sync_migration, 2586 &contended_compaction, 2587 &deferred_compaction, 2588 &did_some_progress); 2589 if (page) 2590 goto got_pg; 2591 } 2592 2593 nopage: 2594 warn_alloc_failed(gfp_mask, order, NULL); 2595 return page; 2596 got_pg: 2597 if (kmemcheck_enabled) 2598 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2599 2600 return page; 2601 } 2602 2603 /* 2604 * This is the 'heart' of the zoned buddy allocator. 2605 */ 2606 struct page * 2607 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2608 struct zonelist *zonelist, nodemask_t *nodemask) 2609 { 2610 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2611 struct zone *preferred_zone; 2612 struct page *page = NULL; 2613 int migratetype = allocflags_to_migratetype(gfp_mask); 2614 unsigned int cpuset_mems_cookie; 2615 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2616 2617 gfp_mask &= gfp_allowed_mask; 2618 2619 lockdep_trace_alloc(gfp_mask); 2620 2621 might_sleep_if(gfp_mask & __GFP_WAIT); 2622 2623 if (should_fail_alloc_page(gfp_mask, order)) 2624 return NULL; 2625 2626 /* 2627 * Check the zones suitable for the gfp_mask contain at least one 2628 * valid zone. It's possible to have an empty zonelist as a result 2629 * of GFP_THISNODE and a memoryless node 2630 */ 2631 if (unlikely(!zonelist->_zonerefs->zone)) 2632 return NULL; 2633 2634 retry_cpuset: 2635 cpuset_mems_cookie = get_mems_allowed(); 2636 2637 /* The preferred zone is used for statistics later */ 2638 first_zones_zonelist(zonelist, high_zoneidx, 2639 nodemask ? : &cpuset_current_mems_allowed, 2640 &preferred_zone); 2641 if (!preferred_zone) 2642 goto out; 2643 2644 #ifdef CONFIG_CMA 2645 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2646 alloc_flags |= ALLOC_CMA; 2647 #endif 2648 /* First allocation attempt */ 2649 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2650 zonelist, high_zoneidx, alloc_flags, 2651 preferred_zone, migratetype); 2652 if (unlikely(!page)) 2653 page = __alloc_pages_slowpath(gfp_mask, order, 2654 zonelist, high_zoneidx, nodemask, 2655 preferred_zone, migratetype); 2656 2657 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2658 2659 out: 2660 /* 2661 * When updating a task's mems_allowed, it is possible to race with 2662 * parallel threads in such a way that an allocation can fail while 2663 * the mask is being updated. If a page allocation is about to fail, 2664 * check if the cpuset changed during allocation and if so, retry. 2665 */ 2666 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2667 goto retry_cpuset; 2668 2669 return page; 2670 } 2671 EXPORT_SYMBOL(__alloc_pages_nodemask); 2672 2673 /* 2674 * Common helper functions. 2675 */ 2676 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2677 { 2678 struct page *page; 2679 2680 /* 2681 * __get_free_pages() returns a 32-bit address, which cannot represent 2682 * a highmem page 2683 */ 2684 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2685 2686 page = alloc_pages(gfp_mask, order); 2687 if (!page) 2688 return 0; 2689 return (unsigned long) page_address(page); 2690 } 2691 EXPORT_SYMBOL(__get_free_pages); 2692 2693 unsigned long get_zeroed_page(gfp_t gfp_mask) 2694 { 2695 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2696 } 2697 EXPORT_SYMBOL(get_zeroed_page); 2698 2699 void __free_pages(struct page *page, unsigned int order) 2700 { 2701 if (put_page_testzero(page)) { 2702 if (order == 0) 2703 free_hot_cold_page(page, 0); 2704 else 2705 __free_pages_ok(page, order); 2706 } 2707 } 2708 2709 EXPORT_SYMBOL(__free_pages); 2710 2711 void free_pages(unsigned long addr, unsigned int order) 2712 { 2713 if (addr != 0) { 2714 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2715 __free_pages(virt_to_page((void *)addr), order); 2716 } 2717 } 2718 2719 EXPORT_SYMBOL(free_pages); 2720 2721 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2722 { 2723 if (addr) { 2724 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2725 unsigned long used = addr + PAGE_ALIGN(size); 2726 2727 split_page(virt_to_page((void *)addr), order); 2728 while (used < alloc_end) { 2729 free_page(used); 2730 used += PAGE_SIZE; 2731 } 2732 } 2733 return (void *)addr; 2734 } 2735 2736 /** 2737 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2738 * @size: the number of bytes to allocate 2739 * @gfp_mask: GFP flags for the allocation 2740 * 2741 * This function is similar to alloc_pages(), except that it allocates the 2742 * minimum number of pages to satisfy the request. alloc_pages() can only 2743 * allocate memory in power-of-two pages. 2744 * 2745 * This function is also limited by MAX_ORDER. 2746 * 2747 * Memory allocated by this function must be released by free_pages_exact(). 2748 */ 2749 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2750 { 2751 unsigned int order = get_order(size); 2752 unsigned long addr; 2753 2754 addr = __get_free_pages(gfp_mask, order); 2755 return make_alloc_exact(addr, order, size); 2756 } 2757 EXPORT_SYMBOL(alloc_pages_exact); 2758 2759 /** 2760 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2761 * pages on a node. 2762 * @nid: the preferred node ID where memory should be allocated 2763 * @size: the number of bytes to allocate 2764 * @gfp_mask: GFP flags for the allocation 2765 * 2766 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2767 * back. 2768 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2769 * but is not exact. 2770 */ 2771 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2772 { 2773 unsigned order = get_order(size); 2774 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2775 if (!p) 2776 return NULL; 2777 return make_alloc_exact((unsigned long)page_address(p), order, size); 2778 } 2779 EXPORT_SYMBOL(alloc_pages_exact_nid); 2780 2781 /** 2782 * free_pages_exact - release memory allocated via alloc_pages_exact() 2783 * @virt: the value returned by alloc_pages_exact. 2784 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2785 * 2786 * Release the memory allocated by a previous call to alloc_pages_exact. 2787 */ 2788 void free_pages_exact(void *virt, size_t size) 2789 { 2790 unsigned long addr = (unsigned long)virt; 2791 unsigned long end = addr + PAGE_ALIGN(size); 2792 2793 while (addr < end) { 2794 free_page(addr); 2795 addr += PAGE_SIZE; 2796 } 2797 } 2798 EXPORT_SYMBOL(free_pages_exact); 2799 2800 static unsigned int nr_free_zone_pages(int offset) 2801 { 2802 struct zoneref *z; 2803 struct zone *zone; 2804 2805 /* Just pick one node, since fallback list is circular */ 2806 unsigned int sum = 0; 2807 2808 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2809 2810 for_each_zone_zonelist(zone, z, zonelist, offset) { 2811 unsigned long size = zone->present_pages; 2812 unsigned long high = high_wmark_pages(zone); 2813 if (size > high) 2814 sum += size - high; 2815 } 2816 2817 return sum; 2818 } 2819 2820 /* 2821 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2822 */ 2823 unsigned int nr_free_buffer_pages(void) 2824 { 2825 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2826 } 2827 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2828 2829 /* 2830 * Amount of free RAM allocatable within all zones 2831 */ 2832 unsigned int nr_free_pagecache_pages(void) 2833 { 2834 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2835 } 2836 2837 static inline void show_node(struct zone *zone) 2838 { 2839 if (IS_ENABLED(CONFIG_NUMA)) 2840 printk("Node %d ", zone_to_nid(zone)); 2841 } 2842 2843 void si_meminfo(struct sysinfo *val) 2844 { 2845 val->totalram = totalram_pages; 2846 val->sharedram = 0; 2847 val->freeram = global_page_state(NR_FREE_PAGES); 2848 val->bufferram = nr_blockdev_pages(); 2849 val->totalhigh = totalhigh_pages; 2850 val->freehigh = nr_free_highpages(); 2851 val->mem_unit = PAGE_SIZE; 2852 } 2853 2854 EXPORT_SYMBOL(si_meminfo); 2855 2856 #ifdef CONFIG_NUMA 2857 void si_meminfo_node(struct sysinfo *val, int nid) 2858 { 2859 pg_data_t *pgdat = NODE_DATA(nid); 2860 2861 val->totalram = pgdat->node_present_pages; 2862 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2863 #ifdef CONFIG_HIGHMEM 2864 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2865 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2866 NR_FREE_PAGES); 2867 #else 2868 val->totalhigh = 0; 2869 val->freehigh = 0; 2870 #endif 2871 val->mem_unit = PAGE_SIZE; 2872 } 2873 #endif 2874 2875 /* 2876 * Determine whether the node should be displayed or not, depending on whether 2877 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2878 */ 2879 bool skip_free_areas_node(unsigned int flags, int nid) 2880 { 2881 bool ret = false; 2882 unsigned int cpuset_mems_cookie; 2883 2884 if (!(flags & SHOW_MEM_FILTER_NODES)) 2885 goto out; 2886 2887 do { 2888 cpuset_mems_cookie = get_mems_allowed(); 2889 ret = !node_isset(nid, cpuset_current_mems_allowed); 2890 } while (!put_mems_allowed(cpuset_mems_cookie)); 2891 out: 2892 return ret; 2893 } 2894 2895 #define K(x) ((x) << (PAGE_SHIFT-10)) 2896 2897 static void show_migration_types(unsigned char type) 2898 { 2899 static const char types[MIGRATE_TYPES] = { 2900 [MIGRATE_UNMOVABLE] = 'U', 2901 [MIGRATE_RECLAIMABLE] = 'E', 2902 [MIGRATE_MOVABLE] = 'M', 2903 [MIGRATE_RESERVE] = 'R', 2904 #ifdef CONFIG_CMA 2905 [MIGRATE_CMA] = 'C', 2906 #endif 2907 [MIGRATE_ISOLATE] = 'I', 2908 }; 2909 char tmp[MIGRATE_TYPES + 1]; 2910 char *p = tmp; 2911 int i; 2912 2913 for (i = 0; i < MIGRATE_TYPES; i++) { 2914 if (type & (1 << i)) 2915 *p++ = types[i]; 2916 } 2917 2918 *p = '\0'; 2919 printk("(%s) ", tmp); 2920 } 2921 2922 /* 2923 * Show free area list (used inside shift_scroll-lock stuff) 2924 * We also calculate the percentage fragmentation. We do this by counting the 2925 * memory on each free list with the exception of the first item on the list. 2926 * Suppresses nodes that are not allowed by current's cpuset if 2927 * SHOW_MEM_FILTER_NODES is passed. 2928 */ 2929 void show_free_areas(unsigned int filter) 2930 { 2931 int cpu; 2932 struct zone *zone; 2933 2934 for_each_populated_zone(zone) { 2935 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2936 continue; 2937 show_node(zone); 2938 printk("%s per-cpu:\n", zone->name); 2939 2940 for_each_online_cpu(cpu) { 2941 struct per_cpu_pageset *pageset; 2942 2943 pageset = per_cpu_ptr(zone->pageset, cpu); 2944 2945 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2946 cpu, pageset->pcp.high, 2947 pageset->pcp.batch, pageset->pcp.count); 2948 } 2949 } 2950 2951 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2952 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2953 " unevictable:%lu" 2954 " dirty:%lu writeback:%lu unstable:%lu\n" 2955 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2956 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 2957 " free_cma:%lu\n", 2958 global_page_state(NR_ACTIVE_ANON), 2959 global_page_state(NR_INACTIVE_ANON), 2960 global_page_state(NR_ISOLATED_ANON), 2961 global_page_state(NR_ACTIVE_FILE), 2962 global_page_state(NR_INACTIVE_FILE), 2963 global_page_state(NR_ISOLATED_FILE), 2964 global_page_state(NR_UNEVICTABLE), 2965 global_page_state(NR_FILE_DIRTY), 2966 global_page_state(NR_WRITEBACK), 2967 global_page_state(NR_UNSTABLE_NFS), 2968 global_page_state(NR_FREE_PAGES), 2969 global_page_state(NR_SLAB_RECLAIMABLE), 2970 global_page_state(NR_SLAB_UNRECLAIMABLE), 2971 global_page_state(NR_FILE_MAPPED), 2972 global_page_state(NR_SHMEM), 2973 global_page_state(NR_PAGETABLE), 2974 global_page_state(NR_BOUNCE), 2975 global_page_state(NR_FREE_CMA_PAGES)); 2976 2977 for_each_populated_zone(zone) { 2978 int i; 2979 2980 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2981 continue; 2982 show_node(zone); 2983 printk("%s" 2984 " free:%lukB" 2985 " min:%lukB" 2986 " low:%lukB" 2987 " high:%lukB" 2988 " active_anon:%lukB" 2989 " inactive_anon:%lukB" 2990 " active_file:%lukB" 2991 " inactive_file:%lukB" 2992 " unevictable:%lukB" 2993 " isolated(anon):%lukB" 2994 " isolated(file):%lukB" 2995 " present:%lukB" 2996 " managed:%lukB" 2997 " mlocked:%lukB" 2998 " dirty:%lukB" 2999 " writeback:%lukB" 3000 " mapped:%lukB" 3001 " shmem:%lukB" 3002 " slab_reclaimable:%lukB" 3003 " slab_unreclaimable:%lukB" 3004 " kernel_stack:%lukB" 3005 " pagetables:%lukB" 3006 " unstable:%lukB" 3007 " bounce:%lukB" 3008 " free_cma:%lukB" 3009 " writeback_tmp:%lukB" 3010 " pages_scanned:%lu" 3011 " all_unreclaimable? %s" 3012 "\n", 3013 zone->name, 3014 K(zone_page_state(zone, NR_FREE_PAGES)), 3015 K(min_wmark_pages(zone)), 3016 K(low_wmark_pages(zone)), 3017 K(high_wmark_pages(zone)), 3018 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3019 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3020 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3021 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3022 K(zone_page_state(zone, NR_UNEVICTABLE)), 3023 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3024 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3025 K(zone->present_pages), 3026 K(zone->managed_pages), 3027 K(zone_page_state(zone, NR_MLOCK)), 3028 K(zone_page_state(zone, NR_FILE_DIRTY)), 3029 K(zone_page_state(zone, NR_WRITEBACK)), 3030 K(zone_page_state(zone, NR_FILE_MAPPED)), 3031 K(zone_page_state(zone, NR_SHMEM)), 3032 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3033 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3034 zone_page_state(zone, NR_KERNEL_STACK) * 3035 THREAD_SIZE / 1024, 3036 K(zone_page_state(zone, NR_PAGETABLE)), 3037 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3038 K(zone_page_state(zone, NR_BOUNCE)), 3039 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3040 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3041 zone->pages_scanned, 3042 (zone->all_unreclaimable ? "yes" : "no") 3043 ); 3044 printk("lowmem_reserve[]:"); 3045 for (i = 0; i < MAX_NR_ZONES; i++) 3046 printk(" %lu", zone->lowmem_reserve[i]); 3047 printk("\n"); 3048 } 3049 3050 for_each_populated_zone(zone) { 3051 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3052 unsigned char types[MAX_ORDER]; 3053 3054 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3055 continue; 3056 show_node(zone); 3057 printk("%s: ", zone->name); 3058 3059 spin_lock_irqsave(&zone->lock, flags); 3060 for (order = 0; order < MAX_ORDER; order++) { 3061 struct free_area *area = &zone->free_area[order]; 3062 int type; 3063 3064 nr[order] = area->nr_free; 3065 total += nr[order] << order; 3066 3067 types[order] = 0; 3068 for (type = 0; type < MIGRATE_TYPES; type++) { 3069 if (!list_empty(&area->free_list[type])) 3070 types[order] |= 1 << type; 3071 } 3072 } 3073 spin_unlock_irqrestore(&zone->lock, flags); 3074 for (order = 0; order < MAX_ORDER; order++) { 3075 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3076 if (nr[order]) 3077 show_migration_types(types[order]); 3078 } 3079 printk("= %lukB\n", K(total)); 3080 } 3081 3082 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3083 3084 show_swap_cache_info(); 3085 } 3086 3087 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3088 { 3089 zoneref->zone = zone; 3090 zoneref->zone_idx = zone_idx(zone); 3091 } 3092 3093 /* 3094 * Builds allocation fallback zone lists. 3095 * 3096 * Add all populated zones of a node to the zonelist. 3097 */ 3098 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3099 int nr_zones, enum zone_type zone_type) 3100 { 3101 struct zone *zone; 3102 3103 BUG_ON(zone_type >= MAX_NR_ZONES); 3104 zone_type++; 3105 3106 do { 3107 zone_type--; 3108 zone = pgdat->node_zones + zone_type; 3109 if (populated_zone(zone)) { 3110 zoneref_set_zone(zone, 3111 &zonelist->_zonerefs[nr_zones++]); 3112 check_highest_zone(zone_type); 3113 } 3114 3115 } while (zone_type); 3116 return nr_zones; 3117 } 3118 3119 3120 /* 3121 * zonelist_order: 3122 * 0 = automatic detection of better ordering. 3123 * 1 = order by ([node] distance, -zonetype) 3124 * 2 = order by (-zonetype, [node] distance) 3125 * 3126 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3127 * the same zonelist. So only NUMA can configure this param. 3128 */ 3129 #define ZONELIST_ORDER_DEFAULT 0 3130 #define ZONELIST_ORDER_NODE 1 3131 #define ZONELIST_ORDER_ZONE 2 3132 3133 /* zonelist order in the kernel. 3134 * set_zonelist_order() will set this to NODE or ZONE. 3135 */ 3136 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3137 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3138 3139 3140 #ifdef CONFIG_NUMA 3141 /* The value user specified ....changed by config */ 3142 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3143 /* string for sysctl */ 3144 #define NUMA_ZONELIST_ORDER_LEN 16 3145 char numa_zonelist_order[16] = "default"; 3146 3147 /* 3148 * interface for configure zonelist ordering. 3149 * command line option "numa_zonelist_order" 3150 * = "[dD]efault - default, automatic configuration. 3151 * = "[nN]ode - order by node locality, then by zone within node 3152 * = "[zZ]one - order by zone, then by locality within zone 3153 */ 3154 3155 static int __parse_numa_zonelist_order(char *s) 3156 { 3157 if (*s == 'd' || *s == 'D') { 3158 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3159 } else if (*s == 'n' || *s == 'N') { 3160 user_zonelist_order = ZONELIST_ORDER_NODE; 3161 } else if (*s == 'z' || *s == 'Z') { 3162 user_zonelist_order = ZONELIST_ORDER_ZONE; 3163 } else { 3164 printk(KERN_WARNING 3165 "Ignoring invalid numa_zonelist_order value: " 3166 "%s\n", s); 3167 return -EINVAL; 3168 } 3169 return 0; 3170 } 3171 3172 static __init int setup_numa_zonelist_order(char *s) 3173 { 3174 int ret; 3175 3176 if (!s) 3177 return 0; 3178 3179 ret = __parse_numa_zonelist_order(s); 3180 if (ret == 0) 3181 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3182 3183 return ret; 3184 } 3185 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3186 3187 /* 3188 * sysctl handler for numa_zonelist_order 3189 */ 3190 int numa_zonelist_order_handler(ctl_table *table, int write, 3191 void __user *buffer, size_t *length, 3192 loff_t *ppos) 3193 { 3194 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3195 int ret; 3196 static DEFINE_MUTEX(zl_order_mutex); 3197 3198 mutex_lock(&zl_order_mutex); 3199 if (write) 3200 strcpy(saved_string, (char*)table->data); 3201 ret = proc_dostring(table, write, buffer, length, ppos); 3202 if (ret) 3203 goto out; 3204 if (write) { 3205 int oldval = user_zonelist_order; 3206 if (__parse_numa_zonelist_order((char*)table->data)) { 3207 /* 3208 * bogus value. restore saved string 3209 */ 3210 strncpy((char*)table->data, saved_string, 3211 NUMA_ZONELIST_ORDER_LEN); 3212 user_zonelist_order = oldval; 3213 } else if (oldval != user_zonelist_order) { 3214 mutex_lock(&zonelists_mutex); 3215 build_all_zonelists(NULL, NULL); 3216 mutex_unlock(&zonelists_mutex); 3217 } 3218 } 3219 out: 3220 mutex_unlock(&zl_order_mutex); 3221 return ret; 3222 } 3223 3224 3225 #define MAX_NODE_LOAD (nr_online_nodes) 3226 static int node_load[MAX_NUMNODES]; 3227 3228 /** 3229 * find_next_best_node - find the next node that should appear in a given node's fallback list 3230 * @node: node whose fallback list we're appending 3231 * @used_node_mask: nodemask_t of already used nodes 3232 * 3233 * We use a number of factors to determine which is the next node that should 3234 * appear on a given node's fallback list. The node should not have appeared 3235 * already in @node's fallback list, and it should be the next closest node 3236 * according to the distance array (which contains arbitrary distance values 3237 * from each node to each node in the system), and should also prefer nodes 3238 * with no CPUs, since presumably they'll have very little allocation pressure 3239 * on them otherwise. 3240 * It returns -1 if no node is found. 3241 */ 3242 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3243 { 3244 int n, val; 3245 int min_val = INT_MAX; 3246 int best_node = -1; 3247 const struct cpumask *tmp = cpumask_of_node(0); 3248 3249 /* Use the local node if we haven't already */ 3250 if (!node_isset(node, *used_node_mask)) { 3251 node_set(node, *used_node_mask); 3252 return node; 3253 } 3254 3255 for_each_node_state(n, N_MEMORY) { 3256 3257 /* Don't want a node to appear more than once */ 3258 if (node_isset(n, *used_node_mask)) 3259 continue; 3260 3261 /* Use the distance array to find the distance */ 3262 val = node_distance(node, n); 3263 3264 /* Penalize nodes under us ("prefer the next node") */ 3265 val += (n < node); 3266 3267 /* Give preference to headless and unused nodes */ 3268 tmp = cpumask_of_node(n); 3269 if (!cpumask_empty(tmp)) 3270 val += PENALTY_FOR_NODE_WITH_CPUS; 3271 3272 /* Slight preference for less loaded node */ 3273 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3274 val += node_load[n]; 3275 3276 if (val < min_val) { 3277 min_val = val; 3278 best_node = n; 3279 } 3280 } 3281 3282 if (best_node >= 0) 3283 node_set(best_node, *used_node_mask); 3284 3285 return best_node; 3286 } 3287 3288 3289 /* 3290 * Build zonelists ordered by node and zones within node. 3291 * This results in maximum locality--normal zone overflows into local 3292 * DMA zone, if any--but risks exhausting DMA zone. 3293 */ 3294 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3295 { 3296 int j; 3297 struct zonelist *zonelist; 3298 3299 zonelist = &pgdat->node_zonelists[0]; 3300 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3301 ; 3302 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3303 MAX_NR_ZONES - 1); 3304 zonelist->_zonerefs[j].zone = NULL; 3305 zonelist->_zonerefs[j].zone_idx = 0; 3306 } 3307 3308 /* 3309 * Build gfp_thisnode zonelists 3310 */ 3311 static void build_thisnode_zonelists(pg_data_t *pgdat) 3312 { 3313 int j; 3314 struct zonelist *zonelist; 3315 3316 zonelist = &pgdat->node_zonelists[1]; 3317 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3318 zonelist->_zonerefs[j].zone = NULL; 3319 zonelist->_zonerefs[j].zone_idx = 0; 3320 } 3321 3322 /* 3323 * Build zonelists ordered by zone and nodes within zones. 3324 * This results in conserving DMA zone[s] until all Normal memory is 3325 * exhausted, but results in overflowing to remote node while memory 3326 * may still exist in local DMA zone. 3327 */ 3328 static int node_order[MAX_NUMNODES]; 3329 3330 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3331 { 3332 int pos, j, node; 3333 int zone_type; /* needs to be signed */ 3334 struct zone *z; 3335 struct zonelist *zonelist; 3336 3337 zonelist = &pgdat->node_zonelists[0]; 3338 pos = 0; 3339 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3340 for (j = 0; j < nr_nodes; j++) { 3341 node = node_order[j]; 3342 z = &NODE_DATA(node)->node_zones[zone_type]; 3343 if (populated_zone(z)) { 3344 zoneref_set_zone(z, 3345 &zonelist->_zonerefs[pos++]); 3346 check_highest_zone(zone_type); 3347 } 3348 } 3349 } 3350 zonelist->_zonerefs[pos].zone = NULL; 3351 zonelist->_zonerefs[pos].zone_idx = 0; 3352 } 3353 3354 static int default_zonelist_order(void) 3355 { 3356 int nid, zone_type; 3357 unsigned long low_kmem_size,total_size; 3358 struct zone *z; 3359 int average_size; 3360 /* 3361 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3362 * If they are really small and used heavily, the system can fall 3363 * into OOM very easily. 3364 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3365 */ 3366 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3367 low_kmem_size = 0; 3368 total_size = 0; 3369 for_each_online_node(nid) { 3370 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3371 z = &NODE_DATA(nid)->node_zones[zone_type]; 3372 if (populated_zone(z)) { 3373 if (zone_type < ZONE_NORMAL) 3374 low_kmem_size += z->present_pages; 3375 total_size += z->present_pages; 3376 } else if (zone_type == ZONE_NORMAL) { 3377 /* 3378 * If any node has only lowmem, then node order 3379 * is preferred to allow kernel allocations 3380 * locally; otherwise, they can easily infringe 3381 * on other nodes when there is an abundance of 3382 * lowmem available to allocate from. 3383 */ 3384 return ZONELIST_ORDER_NODE; 3385 } 3386 } 3387 } 3388 if (!low_kmem_size || /* there are no DMA area. */ 3389 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3390 return ZONELIST_ORDER_NODE; 3391 /* 3392 * look into each node's config. 3393 * If there is a node whose DMA/DMA32 memory is very big area on 3394 * local memory, NODE_ORDER may be suitable. 3395 */ 3396 average_size = total_size / 3397 (nodes_weight(node_states[N_MEMORY]) + 1); 3398 for_each_online_node(nid) { 3399 low_kmem_size = 0; 3400 total_size = 0; 3401 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3402 z = &NODE_DATA(nid)->node_zones[zone_type]; 3403 if (populated_zone(z)) { 3404 if (zone_type < ZONE_NORMAL) 3405 low_kmem_size += z->present_pages; 3406 total_size += z->present_pages; 3407 } 3408 } 3409 if (low_kmem_size && 3410 total_size > average_size && /* ignore small node */ 3411 low_kmem_size > total_size * 70/100) 3412 return ZONELIST_ORDER_NODE; 3413 } 3414 return ZONELIST_ORDER_ZONE; 3415 } 3416 3417 static void set_zonelist_order(void) 3418 { 3419 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3420 current_zonelist_order = default_zonelist_order(); 3421 else 3422 current_zonelist_order = user_zonelist_order; 3423 } 3424 3425 static void build_zonelists(pg_data_t *pgdat) 3426 { 3427 int j, node, load; 3428 enum zone_type i; 3429 nodemask_t used_mask; 3430 int local_node, prev_node; 3431 struct zonelist *zonelist; 3432 int order = current_zonelist_order; 3433 3434 /* initialize zonelists */ 3435 for (i = 0; i < MAX_ZONELISTS; i++) { 3436 zonelist = pgdat->node_zonelists + i; 3437 zonelist->_zonerefs[0].zone = NULL; 3438 zonelist->_zonerefs[0].zone_idx = 0; 3439 } 3440 3441 /* NUMA-aware ordering of nodes */ 3442 local_node = pgdat->node_id; 3443 load = nr_online_nodes; 3444 prev_node = local_node; 3445 nodes_clear(used_mask); 3446 3447 memset(node_order, 0, sizeof(node_order)); 3448 j = 0; 3449 3450 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3451 /* 3452 * We don't want to pressure a particular node. 3453 * So adding penalty to the first node in same 3454 * distance group to make it round-robin. 3455 */ 3456 if (node_distance(local_node, node) != 3457 node_distance(local_node, prev_node)) 3458 node_load[node] = load; 3459 3460 prev_node = node; 3461 load--; 3462 if (order == ZONELIST_ORDER_NODE) 3463 build_zonelists_in_node_order(pgdat, node); 3464 else 3465 node_order[j++] = node; /* remember order */ 3466 } 3467 3468 if (order == ZONELIST_ORDER_ZONE) { 3469 /* calculate node order -- i.e., DMA last! */ 3470 build_zonelists_in_zone_order(pgdat, j); 3471 } 3472 3473 build_thisnode_zonelists(pgdat); 3474 } 3475 3476 /* Construct the zonelist performance cache - see further mmzone.h */ 3477 static void build_zonelist_cache(pg_data_t *pgdat) 3478 { 3479 struct zonelist *zonelist; 3480 struct zonelist_cache *zlc; 3481 struct zoneref *z; 3482 3483 zonelist = &pgdat->node_zonelists[0]; 3484 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3485 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3486 for (z = zonelist->_zonerefs; z->zone; z++) 3487 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3488 } 3489 3490 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3491 /* 3492 * Return node id of node used for "local" allocations. 3493 * I.e., first node id of first zone in arg node's generic zonelist. 3494 * Used for initializing percpu 'numa_mem', which is used primarily 3495 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3496 */ 3497 int local_memory_node(int node) 3498 { 3499 struct zone *zone; 3500 3501 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3502 gfp_zone(GFP_KERNEL), 3503 NULL, 3504 &zone); 3505 return zone->node; 3506 } 3507 #endif 3508 3509 #else /* CONFIG_NUMA */ 3510 3511 static void set_zonelist_order(void) 3512 { 3513 current_zonelist_order = ZONELIST_ORDER_ZONE; 3514 } 3515 3516 static void build_zonelists(pg_data_t *pgdat) 3517 { 3518 int node, local_node; 3519 enum zone_type j; 3520 struct zonelist *zonelist; 3521 3522 local_node = pgdat->node_id; 3523 3524 zonelist = &pgdat->node_zonelists[0]; 3525 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3526 3527 /* 3528 * Now we build the zonelist so that it contains the zones 3529 * of all the other nodes. 3530 * We don't want to pressure a particular node, so when 3531 * building the zones for node N, we make sure that the 3532 * zones coming right after the local ones are those from 3533 * node N+1 (modulo N) 3534 */ 3535 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3536 if (!node_online(node)) 3537 continue; 3538 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3539 MAX_NR_ZONES - 1); 3540 } 3541 for (node = 0; node < local_node; node++) { 3542 if (!node_online(node)) 3543 continue; 3544 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3545 MAX_NR_ZONES - 1); 3546 } 3547 3548 zonelist->_zonerefs[j].zone = NULL; 3549 zonelist->_zonerefs[j].zone_idx = 0; 3550 } 3551 3552 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3553 static void build_zonelist_cache(pg_data_t *pgdat) 3554 { 3555 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3556 } 3557 3558 #endif /* CONFIG_NUMA */ 3559 3560 /* 3561 * Boot pageset table. One per cpu which is going to be used for all 3562 * zones and all nodes. The parameters will be set in such a way 3563 * that an item put on a list will immediately be handed over to 3564 * the buddy list. This is safe since pageset manipulation is done 3565 * with interrupts disabled. 3566 * 3567 * The boot_pagesets must be kept even after bootup is complete for 3568 * unused processors and/or zones. They do play a role for bootstrapping 3569 * hotplugged processors. 3570 * 3571 * zoneinfo_show() and maybe other functions do 3572 * not check if the processor is online before following the pageset pointer. 3573 * Other parts of the kernel may not check if the zone is available. 3574 */ 3575 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3576 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3577 static void setup_zone_pageset(struct zone *zone); 3578 3579 /* 3580 * Global mutex to protect against size modification of zonelists 3581 * as well as to serialize pageset setup for the new populated zone. 3582 */ 3583 DEFINE_MUTEX(zonelists_mutex); 3584 3585 /* return values int ....just for stop_machine() */ 3586 static int __build_all_zonelists(void *data) 3587 { 3588 int nid; 3589 int cpu; 3590 pg_data_t *self = data; 3591 3592 #ifdef CONFIG_NUMA 3593 memset(node_load, 0, sizeof(node_load)); 3594 #endif 3595 3596 if (self && !node_online(self->node_id)) { 3597 build_zonelists(self); 3598 build_zonelist_cache(self); 3599 } 3600 3601 for_each_online_node(nid) { 3602 pg_data_t *pgdat = NODE_DATA(nid); 3603 3604 build_zonelists(pgdat); 3605 build_zonelist_cache(pgdat); 3606 } 3607 3608 /* 3609 * Initialize the boot_pagesets that are going to be used 3610 * for bootstrapping processors. The real pagesets for 3611 * each zone will be allocated later when the per cpu 3612 * allocator is available. 3613 * 3614 * boot_pagesets are used also for bootstrapping offline 3615 * cpus if the system is already booted because the pagesets 3616 * are needed to initialize allocators on a specific cpu too. 3617 * F.e. the percpu allocator needs the page allocator which 3618 * needs the percpu allocator in order to allocate its pagesets 3619 * (a chicken-egg dilemma). 3620 */ 3621 for_each_possible_cpu(cpu) { 3622 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3623 3624 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3625 /* 3626 * We now know the "local memory node" for each node-- 3627 * i.e., the node of the first zone in the generic zonelist. 3628 * Set up numa_mem percpu variable for on-line cpus. During 3629 * boot, only the boot cpu should be on-line; we'll init the 3630 * secondary cpus' numa_mem as they come on-line. During 3631 * node/memory hotplug, we'll fixup all on-line cpus. 3632 */ 3633 if (cpu_online(cpu)) 3634 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3635 #endif 3636 } 3637 3638 return 0; 3639 } 3640 3641 /* 3642 * Called with zonelists_mutex held always 3643 * unless system_state == SYSTEM_BOOTING. 3644 */ 3645 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3646 { 3647 set_zonelist_order(); 3648 3649 if (system_state == SYSTEM_BOOTING) { 3650 __build_all_zonelists(NULL); 3651 mminit_verify_zonelist(); 3652 cpuset_init_current_mems_allowed(); 3653 } else { 3654 /* we have to stop all cpus to guarantee there is no user 3655 of zonelist */ 3656 #ifdef CONFIG_MEMORY_HOTPLUG 3657 if (zone) 3658 setup_zone_pageset(zone); 3659 #endif 3660 stop_machine(__build_all_zonelists, pgdat, NULL); 3661 /* cpuset refresh routine should be here */ 3662 } 3663 vm_total_pages = nr_free_pagecache_pages(); 3664 /* 3665 * Disable grouping by mobility if the number of pages in the 3666 * system is too low to allow the mechanism to work. It would be 3667 * more accurate, but expensive to check per-zone. This check is 3668 * made on memory-hotadd so a system can start with mobility 3669 * disabled and enable it later 3670 */ 3671 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3672 page_group_by_mobility_disabled = 1; 3673 else 3674 page_group_by_mobility_disabled = 0; 3675 3676 printk("Built %i zonelists in %s order, mobility grouping %s. " 3677 "Total pages: %ld\n", 3678 nr_online_nodes, 3679 zonelist_order_name[current_zonelist_order], 3680 page_group_by_mobility_disabled ? "off" : "on", 3681 vm_total_pages); 3682 #ifdef CONFIG_NUMA 3683 printk("Policy zone: %s\n", zone_names[policy_zone]); 3684 #endif 3685 } 3686 3687 /* 3688 * Helper functions to size the waitqueue hash table. 3689 * Essentially these want to choose hash table sizes sufficiently 3690 * large so that collisions trying to wait on pages are rare. 3691 * But in fact, the number of active page waitqueues on typical 3692 * systems is ridiculously low, less than 200. So this is even 3693 * conservative, even though it seems large. 3694 * 3695 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3696 * waitqueues, i.e. the size of the waitq table given the number of pages. 3697 */ 3698 #define PAGES_PER_WAITQUEUE 256 3699 3700 #ifndef CONFIG_MEMORY_HOTPLUG 3701 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3702 { 3703 unsigned long size = 1; 3704 3705 pages /= PAGES_PER_WAITQUEUE; 3706 3707 while (size < pages) 3708 size <<= 1; 3709 3710 /* 3711 * Once we have dozens or even hundreds of threads sleeping 3712 * on IO we've got bigger problems than wait queue collision. 3713 * Limit the size of the wait table to a reasonable size. 3714 */ 3715 size = min(size, 4096UL); 3716 3717 return max(size, 4UL); 3718 } 3719 #else 3720 /* 3721 * A zone's size might be changed by hot-add, so it is not possible to determine 3722 * a suitable size for its wait_table. So we use the maximum size now. 3723 * 3724 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3725 * 3726 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3727 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3728 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3729 * 3730 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3731 * or more by the traditional way. (See above). It equals: 3732 * 3733 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3734 * ia64(16K page size) : = ( 8G + 4M)byte. 3735 * powerpc (64K page size) : = (32G +16M)byte. 3736 */ 3737 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3738 { 3739 return 4096UL; 3740 } 3741 #endif 3742 3743 /* 3744 * This is an integer logarithm so that shifts can be used later 3745 * to extract the more random high bits from the multiplicative 3746 * hash function before the remainder is taken. 3747 */ 3748 static inline unsigned long wait_table_bits(unsigned long size) 3749 { 3750 return ffz(~size); 3751 } 3752 3753 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3754 3755 /* 3756 * Check if a pageblock contains reserved pages 3757 */ 3758 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3759 { 3760 unsigned long pfn; 3761 3762 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3763 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3764 return 1; 3765 } 3766 return 0; 3767 } 3768 3769 /* 3770 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3771 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3772 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3773 * higher will lead to a bigger reserve which will get freed as contiguous 3774 * blocks as reclaim kicks in 3775 */ 3776 static void setup_zone_migrate_reserve(struct zone *zone) 3777 { 3778 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3779 struct page *page; 3780 unsigned long block_migratetype; 3781 int reserve; 3782 3783 /* 3784 * Get the start pfn, end pfn and the number of blocks to reserve 3785 * We have to be careful to be aligned to pageblock_nr_pages to 3786 * make sure that we always check pfn_valid for the first page in 3787 * the block. 3788 */ 3789 start_pfn = zone->zone_start_pfn; 3790 end_pfn = start_pfn + zone->spanned_pages; 3791 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3792 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3793 pageblock_order; 3794 3795 /* 3796 * Reserve blocks are generally in place to help high-order atomic 3797 * allocations that are short-lived. A min_free_kbytes value that 3798 * would result in more than 2 reserve blocks for atomic allocations 3799 * is assumed to be in place to help anti-fragmentation for the 3800 * future allocation of hugepages at runtime. 3801 */ 3802 reserve = min(2, reserve); 3803 3804 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3805 if (!pfn_valid(pfn)) 3806 continue; 3807 page = pfn_to_page(pfn); 3808 3809 /* Watch out for overlapping nodes */ 3810 if (page_to_nid(page) != zone_to_nid(zone)) 3811 continue; 3812 3813 block_migratetype = get_pageblock_migratetype(page); 3814 3815 /* Only test what is necessary when the reserves are not met */ 3816 if (reserve > 0) { 3817 /* 3818 * Blocks with reserved pages will never free, skip 3819 * them. 3820 */ 3821 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3822 if (pageblock_is_reserved(pfn, block_end_pfn)) 3823 continue; 3824 3825 /* If this block is reserved, account for it */ 3826 if (block_migratetype == MIGRATE_RESERVE) { 3827 reserve--; 3828 continue; 3829 } 3830 3831 /* Suitable for reserving if this block is movable */ 3832 if (block_migratetype == MIGRATE_MOVABLE) { 3833 set_pageblock_migratetype(page, 3834 MIGRATE_RESERVE); 3835 move_freepages_block(zone, page, 3836 MIGRATE_RESERVE); 3837 reserve--; 3838 continue; 3839 } 3840 } 3841 3842 /* 3843 * If the reserve is met and this is a previous reserved block, 3844 * take it back 3845 */ 3846 if (block_migratetype == MIGRATE_RESERVE) { 3847 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3848 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3849 } 3850 } 3851 } 3852 3853 /* 3854 * Initially all pages are reserved - free ones are freed 3855 * up by free_all_bootmem() once the early boot process is 3856 * done. Non-atomic initialization, single-pass. 3857 */ 3858 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3859 unsigned long start_pfn, enum memmap_context context) 3860 { 3861 struct page *page; 3862 unsigned long end_pfn = start_pfn + size; 3863 unsigned long pfn; 3864 struct zone *z; 3865 3866 if (highest_memmap_pfn < end_pfn - 1) 3867 highest_memmap_pfn = end_pfn - 1; 3868 3869 z = &NODE_DATA(nid)->node_zones[zone]; 3870 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3871 /* 3872 * There can be holes in boot-time mem_map[]s 3873 * handed to this function. They do not 3874 * exist on hotplugged memory. 3875 */ 3876 if (context == MEMMAP_EARLY) { 3877 if (!early_pfn_valid(pfn)) 3878 continue; 3879 if (!early_pfn_in_nid(pfn, nid)) 3880 continue; 3881 } 3882 page = pfn_to_page(pfn); 3883 set_page_links(page, zone, nid, pfn); 3884 mminit_verify_page_links(page, zone, nid, pfn); 3885 init_page_count(page); 3886 reset_page_mapcount(page); 3887 reset_page_last_nid(page); 3888 SetPageReserved(page); 3889 /* 3890 * Mark the block movable so that blocks are reserved for 3891 * movable at startup. This will force kernel allocations 3892 * to reserve their blocks rather than leaking throughout 3893 * the address space during boot when many long-lived 3894 * kernel allocations are made. Later some blocks near 3895 * the start are marked MIGRATE_RESERVE by 3896 * setup_zone_migrate_reserve() 3897 * 3898 * bitmap is created for zone's valid pfn range. but memmap 3899 * can be created for invalid pages (for alignment) 3900 * check here not to call set_pageblock_migratetype() against 3901 * pfn out of zone. 3902 */ 3903 if ((z->zone_start_pfn <= pfn) 3904 && (pfn < z->zone_start_pfn + z->spanned_pages) 3905 && !(pfn & (pageblock_nr_pages - 1))) 3906 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3907 3908 INIT_LIST_HEAD(&page->lru); 3909 #ifdef WANT_PAGE_VIRTUAL 3910 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3911 if (!is_highmem_idx(zone)) 3912 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3913 #endif 3914 } 3915 } 3916 3917 static void __meminit zone_init_free_lists(struct zone *zone) 3918 { 3919 int order, t; 3920 for_each_migratetype_order(order, t) { 3921 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3922 zone->free_area[order].nr_free = 0; 3923 } 3924 } 3925 3926 #ifndef __HAVE_ARCH_MEMMAP_INIT 3927 #define memmap_init(size, nid, zone, start_pfn) \ 3928 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3929 #endif 3930 3931 static int __meminit zone_batchsize(struct zone *zone) 3932 { 3933 #ifdef CONFIG_MMU 3934 int batch; 3935 3936 /* 3937 * The per-cpu-pages pools are set to around 1000th of the 3938 * size of the zone. But no more than 1/2 of a meg. 3939 * 3940 * OK, so we don't know how big the cache is. So guess. 3941 */ 3942 batch = zone->present_pages / 1024; 3943 if (batch * PAGE_SIZE > 512 * 1024) 3944 batch = (512 * 1024) / PAGE_SIZE; 3945 batch /= 4; /* We effectively *= 4 below */ 3946 if (batch < 1) 3947 batch = 1; 3948 3949 /* 3950 * Clamp the batch to a 2^n - 1 value. Having a power 3951 * of 2 value was found to be more likely to have 3952 * suboptimal cache aliasing properties in some cases. 3953 * 3954 * For example if 2 tasks are alternately allocating 3955 * batches of pages, one task can end up with a lot 3956 * of pages of one half of the possible page colors 3957 * and the other with pages of the other colors. 3958 */ 3959 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3960 3961 return batch; 3962 3963 #else 3964 /* The deferral and batching of frees should be suppressed under NOMMU 3965 * conditions. 3966 * 3967 * The problem is that NOMMU needs to be able to allocate large chunks 3968 * of contiguous memory as there's no hardware page translation to 3969 * assemble apparent contiguous memory from discontiguous pages. 3970 * 3971 * Queueing large contiguous runs of pages for batching, however, 3972 * causes the pages to actually be freed in smaller chunks. As there 3973 * can be a significant delay between the individual batches being 3974 * recycled, this leads to the once large chunks of space being 3975 * fragmented and becoming unavailable for high-order allocations. 3976 */ 3977 return 0; 3978 #endif 3979 } 3980 3981 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3982 { 3983 struct per_cpu_pages *pcp; 3984 int migratetype; 3985 3986 memset(p, 0, sizeof(*p)); 3987 3988 pcp = &p->pcp; 3989 pcp->count = 0; 3990 pcp->high = 6 * batch; 3991 pcp->batch = max(1UL, 1 * batch); 3992 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3993 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3994 } 3995 3996 /* 3997 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3998 * to the value high for the pageset p. 3999 */ 4000 4001 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 4002 unsigned long high) 4003 { 4004 struct per_cpu_pages *pcp; 4005 4006 pcp = &p->pcp; 4007 pcp->high = high; 4008 pcp->batch = max(1UL, high/4); 4009 if ((high/4) > (PAGE_SHIFT * 8)) 4010 pcp->batch = PAGE_SHIFT * 8; 4011 } 4012 4013 static void __meminit setup_zone_pageset(struct zone *zone) 4014 { 4015 int cpu; 4016 4017 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4018 4019 for_each_possible_cpu(cpu) { 4020 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4021 4022 setup_pageset(pcp, zone_batchsize(zone)); 4023 4024 if (percpu_pagelist_fraction) 4025 setup_pagelist_highmark(pcp, 4026 (zone->present_pages / 4027 percpu_pagelist_fraction)); 4028 } 4029 } 4030 4031 /* 4032 * Allocate per cpu pagesets and initialize them. 4033 * Before this call only boot pagesets were available. 4034 */ 4035 void __init setup_per_cpu_pageset(void) 4036 { 4037 struct zone *zone; 4038 4039 for_each_populated_zone(zone) 4040 setup_zone_pageset(zone); 4041 } 4042 4043 static noinline __init_refok 4044 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4045 { 4046 int i; 4047 struct pglist_data *pgdat = zone->zone_pgdat; 4048 size_t alloc_size; 4049 4050 /* 4051 * The per-page waitqueue mechanism uses hashed waitqueues 4052 * per zone. 4053 */ 4054 zone->wait_table_hash_nr_entries = 4055 wait_table_hash_nr_entries(zone_size_pages); 4056 zone->wait_table_bits = 4057 wait_table_bits(zone->wait_table_hash_nr_entries); 4058 alloc_size = zone->wait_table_hash_nr_entries 4059 * sizeof(wait_queue_head_t); 4060 4061 if (!slab_is_available()) { 4062 zone->wait_table = (wait_queue_head_t *) 4063 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4064 } else { 4065 /* 4066 * This case means that a zone whose size was 0 gets new memory 4067 * via memory hot-add. 4068 * But it may be the case that a new node was hot-added. In 4069 * this case vmalloc() will not be able to use this new node's 4070 * memory - this wait_table must be initialized to use this new 4071 * node itself as well. 4072 * To use this new node's memory, further consideration will be 4073 * necessary. 4074 */ 4075 zone->wait_table = vmalloc(alloc_size); 4076 } 4077 if (!zone->wait_table) 4078 return -ENOMEM; 4079 4080 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4081 init_waitqueue_head(zone->wait_table + i); 4082 4083 return 0; 4084 } 4085 4086 static __meminit void zone_pcp_init(struct zone *zone) 4087 { 4088 /* 4089 * per cpu subsystem is not up at this point. The following code 4090 * relies on the ability of the linker to provide the 4091 * offset of a (static) per cpu variable into the per cpu area. 4092 */ 4093 zone->pageset = &boot_pageset; 4094 4095 if (zone->present_pages) 4096 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4097 zone->name, zone->present_pages, 4098 zone_batchsize(zone)); 4099 } 4100 4101 int __meminit init_currently_empty_zone(struct zone *zone, 4102 unsigned long zone_start_pfn, 4103 unsigned long size, 4104 enum memmap_context context) 4105 { 4106 struct pglist_data *pgdat = zone->zone_pgdat; 4107 int ret; 4108 ret = zone_wait_table_init(zone, size); 4109 if (ret) 4110 return ret; 4111 pgdat->nr_zones = zone_idx(zone) + 1; 4112 4113 zone->zone_start_pfn = zone_start_pfn; 4114 4115 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4116 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4117 pgdat->node_id, 4118 (unsigned long)zone_idx(zone), 4119 zone_start_pfn, (zone_start_pfn + size)); 4120 4121 zone_init_free_lists(zone); 4122 4123 return 0; 4124 } 4125 4126 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4127 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4128 /* 4129 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4130 * Architectures may implement their own version but if add_active_range() 4131 * was used and there are no special requirements, this is a convenient 4132 * alternative 4133 */ 4134 int __meminit __early_pfn_to_nid(unsigned long pfn) 4135 { 4136 unsigned long start_pfn, end_pfn; 4137 int i, nid; 4138 4139 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4140 if (start_pfn <= pfn && pfn < end_pfn) 4141 return nid; 4142 /* This is a memory hole */ 4143 return -1; 4144 } 4145 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4146 4147 int __meminit early_pfn_to_nid(unsigned long pfn) 4148 { 4149 int nid; 4150 4151 nid = __early_pfn_to_nid(pfn); 4152 if (nid >= 0) 4153 return nid; 4154 /* just returns 0 */ 4155 return 0; 4156 } 4157 4158 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4159 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4160 { 4161 int nid; 4162 4163 nid = __early_pfn_to_nid(pfn); 4164 if (nid >= 0 && nid != node) 4165 return false; 4166 return true; 4167 } 4168 #endif 4169 4170 /** 4171 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4172 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4173 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4174 * 4175 * If an architecture guarantees that all ranges registered with 4176 * add_active_ranges() contain no holes and may be freed, this 4177 * this function may be used instead of calling free_bootmem() manually. 4178 */ 4179 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4180 { 4181 unsigned long start_pfn, end_pfn; 4182 int i, this_nid; 4183 4184 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4185 start_pfn = min(start_pfn, max_low_pfn); 4186 end_pfn = min(end_pfn, max_low_pfn); 4187 4188 if (start_pfn < end_pfn) 4189 free_bootmem_node(NODE_DATA(this_nid), 4190 PFN_PHYS(start_pfn), 4191 (end_pfn - start_pfn) << PAGE_SHIFT); 4192 } 4193 } 4194 4195 /** 4196 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4197 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4198 * 4199 * If an architecture guarantees that all ranges registered with 4200 * add_active_ranges() contain no holes and may be freed, this 4201 * function may be used instead of calling memory_present() manually. 4202 */ 4203 void __init sparse_memory_present_with_active_regions(int nid) 4204 { 4205 unsigned long start_pfn, end_pfn; 4206 int i, this_nid; 4207 4208 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4209 memory_present(this_nid, start_pfn, end_pfn); 4210 } 4211 4212 /** 4213 * get_pfn_range_for_nid - Return the start and end page frames for a node 4214 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4215 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4216 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4217 * 4218 * It returns the start and end page frame of a node based on information 4219 * provided by an arch calling add_active_range(). If called for a node 4220 * with no available memory, a warning is printed and the start and end 4221 * PFNs will be 0. 4222 */ 4223 void __meminit get_pfn_range_for_nid(unsigned int nid, 4224 unsigned long *start_pfn, unsigned long *end_pfn) 4225 { 4226 unsigned long this_start_pfn, this_end_pfn; 4227 int i; 4228 4229 *start_pfn = -1UL; 4230 *end_pfn = 0; 4231 4232 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4233 *start_pfn = min(*start_pfn, this_start_pfn); 4234 *end_pfn = max(*end_pfn, this_end_pfn); 4235 } 4236 4237 if (*start_pfn == -1UL) 4238 *start_pfn = 0; 4239 } 4240 4241 /* 4242 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4243 * assumption is made that zones within a node are ordered in monotonic 4244 * increasing memory addresses so that the "highest" populated zone is used 4245 */ 4246 static void __init find_usable_zone_for_movable(void) 4247 { 4248 int zone_index; 4249 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4250 if (zone_index == ZONE_MOVABLE) 4251 continue; 4252 4253 if (arch_zone_highest_possible_pfn[zone_index] > 4254 arch_zone_lowest_possible_pfn[zone_index]) 4255 break; 4256 } 4257 4258 VM_BUG_ON(zone_index == -1); 4259 movable_zone = zone_index; 4260 } 4261 4262 /* 4263 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4264 * because it is sized independent of architecture. Unlike the other zones, 4265 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4266 * in each node depending on the size of each node and how evenly kernelcore 4267 * is distributed. This helper function adjusts the zone ranges 4268 * provided by the architecture for a given node by using the end of the 4269 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4270 * zones within a node are in order of monotonic increases memory addresses 4271 */ 4272 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4273 unsigned long zone_type, 4274 unsigned long node_start_pfn, 4275 unsigned long node_end_pfn, 4276 unsigned long *zone_start_pfn, 4277 unsigned long *zone_end_pfn) 4278 { 4279 /* Only adjust if ZONE_MOVABLE is on this node */ 4280 if (zone_movable_pfn[nid]) { 4281 /* Size ZONE_MOVABLE */ 4282 if (zone_type == ZONE_MOVABLE) { 4283 *zone_start_pfn = zone_movable_pfn[nid]; 4284 *zone_end_pfn = min(node_end_pfn, 4285 arch_zone_highest_possible_pfn[movable_zone]); 4286 4287 /* Adjust for ZONE_MOVABLE starting within this range */ 4288 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4289 *zone_end_pfn > zone_movable_pfn[nid]) { 4290 *zone_end_pfn = zone_movable_pfn[nid]; 4291 4292 /* Check if this whole range is within ZONE_MOVABLE */ 4293 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4294 *zone_start_pfn = *zone_end_pfn; 4295 } 4296 } 4297 4298 /* 4299 * Return the number of pages a zone spans in a node, including holes 4300 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4301 */ 4302 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4303 unsigned long zone_type, 4304 unsigned long *ignored) 4305 { 4306 unsigned long node_start_pfn, node_end_pfn; 4307 unsigned long zone_start_pfn, zone_end_pfn; 4308 4309 /* Get the start and end of the node and zone */ 4310 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4311 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4312 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4313 adjust_zone_range_for_zone_movable(nid, zone_type, 4314 node_start_pfn, node_end_pfn, 4315 &zone_start_pfn, &zone_end_pfn); 4316 4317 /* Check that this node has pages within the zone's required range */ 4318 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4319 return 0; 4320 4321 /* Move the zone boundaries inside the node if necessary */ 4322 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4323 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4324 4325 /* Return the spanned pages */ 4326 return zone_end_pfn - zone_start_pfn; 4327 } 4328 4329 /* 4330 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4331 * then all holes in the requested range will be accounted for. 4332 */ 4333 unsigned long __meminit __absent_pages_in_range(int nid, 4334 unsigned long range_start_pfn, 4335 unsigned long range_end_pfn) 4336 { 4337 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4338 unsigned long start_pfn, end_pfn; 4339 int i; 4340 4341 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4342 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4343 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4344 nr_absent -= end_pfn - start_pfn; 4345 } 4346 return nr_absent; 4347 } 4348 4349 /** 4350 * absent_pages_in_range - Return number of page frames in holes within a range 4351 * @start_pfn: The start PFN to start searching for holes 4352 * @end_pfn: The end PFN to stop searching for holes 4353 * 4354 * It returns the number of pages frames in memory holes within a range. 4355 */ 4356 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4357 unsigned long end_pfn) 4358 { 4359 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4360 } 4361 4362 /* Return the number of page frames in holes in a zone on a node */ 4363 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4364 unsigned long zone_type, 4365 unsigned long *ignored) 4366 { 4367 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4368 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4369 unsigned long node_start_pfn, node_end_pfn; 4370 unsigned long zone_start_pfn, zone_end_pfn; 4371 4372 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4373 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4374 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4375 4376 adjust_zone_range_for_zone_movable(nid, zone_type, 4377 node_start_pfn, node_end_pfn, 4378 &zone_start_pfn, &zone_end_pfn); 4379 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4380 } 4381 4382 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4383 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4384 unsigned long zone_type, 4385 unsigned long *zones_size) 4386 { 4387 return zones_size[zone_type]; 4388 } 4389 4390 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4391 unsigned long zone_type, 4392 unsigned long *zholes_size) 4393 { 4394 if (!zholes_size) 4395 return 0; 4396 4397 return zholes_size[zone_type]; 4398 } 4399 4400 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4401 4402 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4403 unsigned long *zones_size, unsigned long *zholes_size) 4404 { 4405 unsigned long realtotalpages, totalpages = 0; 4406 enum zone_type i; 4407 4408 for (i = 0; i < MAX_NR_ZONES; i++) 4409 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4410 zones_size); 4411 pgdat->node_spanned_pages = totalpages; 4412 4413 realtotalpages = totalpages; 4414 for (i = 0; i < MAX_NR_ZONES; i++) 4415 realtotalpages -= 4416 zone_absent_pages_in_node(pgdat->node_id, i, 4417 zholes_size); 4418 pgdat->node_present_pages = realtotalpages; 4419 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4420 realtotalpages); 4421 } 4422 4423 #ifndef CONFIG_SPARSEMEM 4424 /* 4425 * Calculate the size of the zone->blockflags rounded to an unsigned long 4426 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4427 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4428 * round what is now in bits to nearest long in bits, then return it in 4429 * bytes. 4430 */ 4431 static unsigned long __init usemap_size(unsigned long zonesize) 4432 { 4433 unsigned long usemapsize; 4434 4435 usemapsize = roundup(zonesize, pageblock_nr_pages); 4436 usemapsize = usemapsize >> pageblock_order; 4437 usemapsize *= NR_PAGEBLOCK_BITS; 4438 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4439 4440 return usemapsize / 8; 4441 } 4442 4443 static void __init setup_usemap(struct pglist_data *pgdat, 4444 struct zone *zone, unsigned long zonesize) 4445 { 4446 unsigned long usemapsize = usemap_size(zonesize); 4447 zone->pageblock_flags = NULL; 4448 if (usemapsize) 4449 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4450 usemapsize); 4451 } 4452 #else 4453 static inline void setup_usemap(struct pglist_data *pgdat, 4454 struct zone *zone, unsigned long zonesize) {} 4455 #endif /* CONFIG_SPARSEMEM */ 4456 4457 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4458 4459 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4460 void __init set_pageblock_order(void) 4461 { 4462 unsigned int order; 4463 4464 /* Check that pageblock_nr_pages has not already been setup */ 4465 if (pageblock_order) 4466 return; 4467 4468 if (HPAGE_SHIFT > PAGE_SHIFT) 4469 order = HUGETLB_PAGE_ORDER; 4470 else 4471 order = MAX_ORDER - 1; 4472 4473 /* 4474 * Assume the largest contiguous order of interest is a huge page. 4475 * This value may be variable depending on boot parameters on IA64 and 4476 * powerpc. 4477 */ 4478 pageblock_order = order; 4479 } 4480 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4481 4482 /* 4483 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4484 * is unused as pageblock_order is set at compile-time. See 4485 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4486 * the kernel config 4487 */ 4488 void __init set_pageblock_order(void) 4489 { 4490 } 4491 4492 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4493 4494 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4495 unsigned long present_pages) 4496 { 4497 unsigned long pages = spanned_pages; 4498 4499 /* 4500 * Provide a more accurate estimation if there are holes within 4501 * the zone and SPARSEMEM is in use. If there are holes within the 4502 * zone, each populated memory region may cost us one or two extra 4503 * memmap pages due to alignment because memmap pages for each 4504 * populated regions may not naturally algined on page boundary. 4505 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4506 */ 4507 if (spanned_pages > present_pages + (present_pages >> 4) && 4508 IS_ENABLED(CONFIG_SPARSEMEM)) 4509 pages = present_pages; 4510 4511 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4512 } 4513 4514 /* 4515 * Set up the zone data structures: 4516 * - mark all pages reserved 4517 * - mark all memory queues empty 4518 * - clear the memory bitmaps 4519 * 4520 * NOTE: pgdat should get zeroed by caller. 4521 */ 4522 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4523 unsigned long *zones_size, unsigned long *zholes_size) 4524 { 4525 enum zone_type j; 4526 int nid = pgdat->node_id; 4527 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4528 int ret; 4529 4530 pgdat_resize_init(pgdat); 4531 #ifdef CONFIG_NUMA_BALANCING 4532 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4533 pgdat->numabalancing_migrate_nr_pages = 0; 4534 pgdat->numabalancing_migrate_next_window = jiffies; 4535 #endif 4536 init_waitqueue_head(&pgdat->kswapd_wait); 4537 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4538 pgdat_page_cgroup_init(pgdat); 4539 4540 for (j = 0; j < MAX_NR_ZONES; j++) { 4541 struct zone *zone = pgdat->node_zones + j; 4542 unsigned long size, realsize, freesize, memmap_pages; 4543 4544 size = zone_spanned_pages_in_node(nid, j, zones_size); 4545 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4546 zholes_size); 4547 4548 /* 4549 * Adjust freesize so that it accounts for how much memory 4550 * is used by this zone for memmap. This affects the watermark 4551 * and per-cpu initialisations 4552 */ 4553 memmap_pages = calc_memmap_size(size, realsize); 4554 if (freesize >= memmap_pages) { 4555 freesize -= memmap_pages; 4556 if (memmap_pages) 4557 printk(KERN_DEBUG 4558 " %s zone: %lu pages used for memmap\n", 4559 zone_names[j], memmap_pages); 4560 } else 4561 printk(KERN_WARNING 4562 " %s zone: %lu pages exceeds freesize %lu\n", 4563 zone_names[j], memmap_pages, freesize); 4564 4565 /* Account for reserved pages */ 4566 if (j == 0 && freesize > dma_reserve) { 4567 freesize -= dma_reserve; 4568 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4569 zone_names[0], dma_reserve); 4570 } 4571 4572 if (!is_highmem_idx(j)) 4573 nr_kernel_pages += freesize; 4574 /* Charge for highmem memmap if there are enough kernel pages */ 4575 else if (nr_kernel_pages > memmap_pages * 2) 4576 nr_kernel_pages -= memmap_pages; 4577 nr_all_pages += freesize; 4578 4579 zone->spanned_pages = size; 4580 zone->present_pages = freesize; 4581 /* 4582 * Set an approximate value for lowmem here, it will be adjusted 4583 * when the bootmem allocator frees pages into the buddy system. 4584 * And all highmem pages will be managed by the buddy system. 4585 */ 4586 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4587 #ifdef CONFIG_NUMA 4588 zone->node = nid; 4589 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4590 / 100; 4591 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4592 #endif 4593 zone->name = zone_names[j]; 4594 spin_lock_init(&zone->lock); 4595 spin_lock_init(&zone->lru_lock); 4596 zone_seqlock_init(zone); 4597 zone->zone_pgdat = pgdat; 4598 4599 zone_pcp_init(zone); 4600 lruvec_init(&zone->lruvec); 4601 if (!size) 4602 continue; 4603 4604 set_pageblock_order(); 4605 setup_usemap(pgdat, zone, size); 4606 ret = init_currently_empty_zone(zone, zone_start_pfn, 4607 size, MEMMAP_EARLY); 4608 BUG_ON(ret); 4609 memmap_init(size, nid, j, zone_start_pfn); 4610 zone_start_pfn += size; 4611 } 4612 } 4613 4614 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4615 { 4616 /* Skip empty nodes */ 4617 if (!pgdat->node_spanned_pages) 4618 return; 4619 4620 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4621 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4622 if (!pgdat->node_mem_map) { 4623 unsigned long size, start, end; 4624 struct page *map; 4625 4626 /* 4627 * The zone's endpoints aren't required to be MAX_ORDER 4628 * aligned but the node_mem_map endpoints must be in order 4629 * for the buddy allocator to function correctly. 4630 */ 4631 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4632 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4633 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4634 size = (end - start) * sizeof(struct page); 4635 map = alloc_remap(pgdat->node_id, size); 4636 if (!map) 4637 map = alloc_bootmem_node_nopanic(pgdat, size); 4638 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4639 } 4640 #ifndef CONFIG_NEED_MULTIPLE_NODES 4641 /* 4642 * With no DISCONTIG, the global mem_map is just set as node 0's 4643 */ 4644 if (pgdat == NODE_DATA(0)) { 4645 mem_map = NODE_DATA(0)->node_mem_map; 4646 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4647 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4648 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4649 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4650 } 4651 #endif 4652 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4653 } 4654 4655 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4656 unsigned long node_start_pfn, unsigned long *zholes_size) 4657 { 4658 pg_data_t *pgdat = NODE_DATA(nid); 4659 4660 /* pg_data_t should be reset to zero when it's allocated */ 4661 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4662 4663 pgdat->node_id = nid; 4664 pgdat->node_start_pfn = node_start_pfn; 4665 init_zone_allows_reclaim(nid); 4666 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4667 4668 alloc_node_mem_map(pgdat); 4669 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4670 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4671 nid, (unsigned long)pgdat, 4672 (unsigned long)pgdat->node_mem_map); 4673 #endif 4674 4675 free_area_init_core(pgdat, zones_size, zholes_size); 4676 } 4677 4678 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4679 4680 #if MAX_NUMNODES > 1 4681 /* 4682 * Figure out the number of possible node ids. 4683 */ 4684 static void __init setup_nr_node_ids(void) 4685 { 4686 unsigned int node; 4687 unsigned int highest = 0; 4688 4689 for_each_node_mask(node, node_possible_map) 4690 highest = node; 4691 nr_node_ids = highest + 1; 4692 } 4693 #else 4694 static inline void setup_nr_node_ids(void) 4695 { 4696 } 4697 #endif 4698 4699 /** 4700 * node_map_pfn_alignment - determine the maximum internode alignment 4701 * 4702 * This function should be called after node map is populated and sorted. 4703 * It calculates the maximum power of two alignment which can distinguish 4704 * all the nodes. 4705 * 4706 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4707 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4708 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4709 * shifted, 1GiB is enough and this function will indicate so. 4710 * 4711 * This is used to test whether pfn -> nid mapping of the chosen memory 4712 * model has fine enough granularity to avoid incorrect mapping for the 4713 * populated node map. 4714 * 4715 * Returns the determined alignment in pfn's. 0 if there is no alignment 4716 * requirement (single node). 4717 */ 4718 unsigned long __init node_map_pfn_alignment(void) 4719 { 4720 unsigned long accl_mask = 0, last_end = 0; 4721 unsigned long start, end, mask; 4722 int last_nid = -1; 4723 int i, nid; 4724 4725 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4726 if (!start || last_nid < 0 || last_nid == nid) { 4727 last_nid = nid; 4728 last_end = end; 4729 continue; 4730 } 4731 4732 /* 4733 * Start with a mask granular enough to pin-point to the 4734 * start pfn and tick off bits one-by-one until it becomes 4735 * too coarse to separate the current node from the last. 4736 */ 4737 mask = ~((1 << __ffs(start)) - 1); 4738 while (mask && last_end <= (start & (mask << 1))) 4739 mask <<= 1; 4740 4741 /* accumulate all internode masks */ 4742 accl_mask |= mask; 4743 } 4744 4745 /* convert mask to number of pages */ 4746 return ~accl_mask + 1; 4747 } 4748 4749 /* Find the lowest pfn for a node */ 4750 static unsigned long __init find_min_pfn_for_node(int nid) 4751 { 4752 unsigned long min_pfn = ULONG_MAX; 4753 unsigned long start_pfn; 4754 int i; 4755 4756 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4757 min_pfn = min(min_pfn, start_pfn); 4758 4759 if (min_pfn == ULONG_MAX) { 4760 printk(KERN_WARNING 4761 "Could not find start_pfn for node %d\n", nid); 4762 return 0; 4763 } 4764 4765 return min_pfn; 4766 } 4767 4768 /** 4769 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4770 * 4771 * It returns the minimum PFN based on information provided via 4772 * add_active_range(). 4773 */ 4774 unsigned long __init find_min_pfn_with_active_regions(void) 4775 { 4776 return find_min_pfn_for_node(MAX_NUMNODES); 4777 } 4778 4779 /* 4780 * early_calculate_totalpages() 4781 * Sum pages in active regions for movable zone. 4782 * Populate N_MEMORY for calculating usable_nodes. 4783 */ 4784 static unsigned long __init early_calculate_totalpages(void) 4785 { 4786 unsigned long totalpages = 0; 4787 unsigned long start_pfn, end_pfn; 4788 int i, nid; 4789 4790 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4791 unsigned long pages = end_pfn - start_pfn; 4792 4793 totalpages += pages; 4794 if (pages) 4795 node_set_state(nid, N_MEMORY); 4796 } 4797 return totalpages; 4798 } 4799 4800 /* 4801 * Find the PFN the Movable zone begins in each node. Kernel memory 4802 * is spread evenly between nodes as long as the nodes have enough 4803 * memory. When they don't, some nodes will have more kernelcore than 4804 * others 4805 */ 4806 static void __init find_zone_movable_pfns_for_nodes(void) 4807 { 4808 int i, nid; 4809 unsigned long usable_startpfn; 4810 unsigned long kernelcore_node, kernelcore_remaining; 4811 /* save the state before borrow the nodemask */ 4812 nodemask_t saved_node_state = node_states[N_MEMORY]; 4813 unsigned long totalpages = early_calculate_totalpages(); 4814 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4815 4816 /* 4817 * If movablecore was specified, calculate what size of 4818 * kernelcore that corresponds so that memory usable for 4819 * any allocation type is evenly spread. If both kernelcore 4820 * and movablecore are specified, then the value of kernelcore 4821 * will be used for required_kernelcore if it's greater than 4822 * what movablecore would have allowed. 4823 */ 4824 if (required_movablecore) { 4825 unsigned long corepages; 4826 4827 /* 4828 * Round-up so that ZONE_MOVABLE is at least as large as what 4829 * was requested by the user 4830 */ 4831 required_movablecore = 4832 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4833 corepages = totalpages - required_movablecore; 4834 4835 required_kernelcore = max(required_kernelcore, corepages); 4836 } 4837 4838 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4839 if (!required_kernelcore) 4840 goto out; 4841 4842 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4843 find_usable_zone_for_movable(); 4844 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4845 4846 restart: 4847 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4848 kernelcore_node = required_kernelcore / usable_nodes; 4849 for_each_node_state(nid, N_MEMORY) { 4850 unsigned long start_pfn, end_pfn; 4851 4852 /* 4853 * Recalculate kernelcore_node if the division per node 4854 * now exceeds what is necessary to satisfy the requested 4855 * amount of memory for the kernel 4856 */ 4857 if (required_kernelcore < kernelcore_node) 4858 kernelcore_node = required_kernelcore / usable_nodes; 4859 4860 /* 4861 * As the map is walked, we track how much memory is usable 4862 * by the kernel using kernelcore_remaining. When it is 4863 * 0, the rest of the node is usable by ZONE_MOVABLE 4864 */ 4865 kernelcore_remaining = kernelcore_node; 4866 4867 /* Go through each range of PFNs within this node */ 4868 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4869 unsigned long size_pages; 4870 4871 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4872 if (start_pfn >= end_pfn) 4873 continue; 4874 4875 /* Account for what is only usable for kernelcore */ 4876 if (start_pfn < usable_startpfn) { 4877 unsigned long kernel_pages; 4878 kernel_pages = min(end_pfn, usable_startpfn) 4879 - start_pfn; 4880 4881 kernelcore_remaining -= min(kernel_pages, 4882 kernelcore_remaining); 4883 required_kernelcore -= min(kernel_pages, 4884 required_kernelcore); 4885 4886 /* Continue if range is now fully accounted */ 4887 if (end_pfn <= usable_startpfn) { 4888 4889 /* 4890 * Push zone_movable_pfn to the end so 4891 * that if we have to rebalance 4892 * kernelcore across nodes, we will 4893 * not double account here 4894 */ 4895 zone_movable_pfn[nid] = end_pfn; 4896 continue; 4897 } 4898 start_pfn = usable_startpfn; 4899 } 4900 4901 /* 4902 * The usable PFN range for ZONE_MOVABLE is from 4903 * start_pfn->end_pfn. Calculate size_pages as the 4904 * number of pages used as kernelcore 4905 */ 4906 size_pages = end_pfn - start_pfn; 4907 if (size_pages > kernelcore_remaining) 4908 size_pages = kernelcore_remaining; 4909 zone_movable_pfn[nid] = start_pfn + size_pages; 4910 4911 /* 4912 * Some kernelcore has been met, update counts and 4913 * break if the kernelcore for this node has been 4914 * satisified 4915 */ 4916 required_kernelcore -= min(required_kernelcore, 4917 size_pages); 4918 kernelcore_remaining -= size_pages; 4919 if (!kernelcore_remaining) 4920 break; 4921 } 4922 } 4923 4924 /* 4925 * If there is still required_kernelcore, we do another pass with one 4926 * less node in the count. This will push zone_movable_pfn[nid] further 4927 * along on the nodes that still have memory until kernelcore is 4928 * satisified 4929 */ 4930 usable_nodes--; 4931 if (usable_nodes && required_kernelcore > usable_nodes) 4932 goto restart; 4933 4934 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4935 for (nid = 0; nid < MAX_NUMNODES; nid++) 4936 zone_movable_pfn[nid] = 4937 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4938 4939 out: 4940 /* restore the node_state */ 4941 node_states[N_MEMORY] = saved_node_state; 4942 } 4943 4944 /* Any regular or high memory on that node ? */ 4945 static void check_for_memory(pg_data_t *pgdat, int nid) 4946 { 4947 enum zone_type zone_type; 4948 4949 if (N_MEMORY == N_NORMAL_MEMORY) 4950 return; 4951 4952 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 4953 struct zone *zone = &pgdat->node_zones[zone_type]; 4954 if (zone->present_pages) { 4955 node_set_state(nid, N_HIGH_MEMORY); 4956 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 4957 zone_type <= ZONE_NORMAL) 4958 node_set_state(nid, N_NORMAL_MEMORY); 4959 break; 4960 } 4961 } 4962 } 4963 4964 /** 4965 * free_area_init_nodes - Initialise all pg_data_t and zone data 4966 * @max_zone_pfn: an array of max PFNs for each zone 4967 * 4968 * This will call free_area_init_node() for each active node in the system. 4969 * Using the page ranges provided by add_active_range(), the size of each 4970 * zone in each node and their holes is calculated. If the maximum PFN 4971 * between two adjacent zones match, it is assumed that the zone is empty. 4972 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4973 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4974 * starts where the previous one ended. For example, ZONE_DMA32 starts 4975 * at arch_max_dma_pfn. 4976 */ 4977 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4978 { 4979 unsigned long start_pfn, end_pfn; 4980 int i, nid; 4981 4982 /* Record where the zone boundaries are */ 4983 memset(arch_zone_lowest_possible_pfn, 0, 4984 sizeof(arch_zone_lowest_possible_pfn)); 4985 memset(arch_zone_highest_possible_pfn, 0, 4986 sizeof(arch_zone_highest_possible_pfn)); 4987 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4988 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4989 for (i = 1; i < MAX_NR_ZONES; i++) { 4990 if (i == ZONE_MOVABLE) 4991 continue; 4992 arch_zone_lowest_possible_pfn[i] = 4993 arch_zone_highest_possible_pfn[i-1]; 4994 arch_zone_highest_possible_pfn[i] = 4995 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4996 } 4997 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4998 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4999 5000 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5001 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5002 find_zone_movable_pfns_for_nodes(); 5003 5004 /* Print out the zone ranges */ 5005 printk("Zone ranges:\n"); 5006 for (i = 0; i < MAX_NR_ZONES; i++) { 5007 if (i == ZONE_MOVABLE) 5008 continue; 5009 printk(KERN_CONT " %-8s ", zone_names[i]); 5010 if (arch_zone_lowest_possible_pfn[i] == 5011 arch_zone_highest_possible_pfn[i]) 5012 printk(KERN_CONT "empty\n"); 5013 else 5014 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5015 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5016 (arch_zone_highest_possible_pfn[i] 5017 << PAGE_SHIFT) - 1); 5018 } 5019 5020 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5021 printk("Movable zone start for each node\n"); 5022 for (i = 0; i < MAX_NUMNODES; i++) { 5023 if (zone_movable_pfn[i]) 5024 printk(" Node %d: %#010lx\n", i, 5025 zone_movable_pfn[i] << PAGE_SHIFT); 5026 } 5027 5028 /* Print out the early node map */ 5029 printk("Early memory node ranges\n"); 5030 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5031 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5032 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5033 5034 /* Initialise every node */ 5035 mminit_verify_pageflags_layout(); 5036 setup_nr_node_ids(); 5037 for_each_online_node(nid) { 5038 pg_data_t *pgdat = NODE_DATA(nid); 5039 free_area_init_node(nid, NULL, 5040 find_min_pfn_for_node(nid), NULL); 5041 5042 /* Any memory on that node */ 5043 if (pgdat->node_present_pages) 5044 node_set_state(nid, N_MEMORY); 5045 check_for_memory(pgdat, nid); 5046 } 5047 } 5048 5049 static int __init cmdline_parse_core(char *p, unsigned long *core) 5050 { 5051 unsigned long long coremem; 5052 if (!p) 5053 return -EINVAL; 5054 5055 coremem = memparse(p, &p); 5056 *core = coremem >> PAGE_SHIFT; 5057 5058 /* Paranoid check that UL is enough for the coremem value */ 5059 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5060 5061 return 0; 5062 } 5063 5064 /* 5065 * kernelcore=size sets the amount of memory for use for allocations that 5066 * cannot be reclaimed or migrated. 5067 */ 5068 static int __init cmdline_parse_kernelcore(char *p) 5069 { 5070 return cmdline_parse_core(p, &required_kernelcore); 5071 } 5072 5073 /* 5074 * movablecore=size sets the amount of memory for use for allocations that 5075 * can be reclaimed or migrated. 5076 */ 5077 static int __init cmdline_parse_movablecore(char *p) 5078 { 5079 return cmdline_parse_core(p, &required_movablecore); 5080 } 5081 5082 early_param("kernelcore", cmdline_parse_kernelcore); 5083 early_param("movablecore", cmdline_parse_movablecore); 5084 5085 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5086 5087 /** 5088 * set_dma_reserve - set the specified number of pages reserved in the first zone 5089 * @new_dma_reserve: The number of pages to mark reserved 5090 * 5091 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5092 * In the DMA zone, a significant percentage may be consumed by kernel image 5093 * and other unfreeable allocations which can skew the watermarks badly. This 5094 * function may optionally be used to account for unfreeable pages in the 5095 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5096 * smaller per-cpu batchsize. 5097 */ 5098 void __init set_dma_reserve(unsigned long new_dma_reserve) 5099 { 5100 dma_reserve = new_dma_reserve; 5101 } 5102 5103 void __init free_area_init(unsigned long *zones_size) 5104 { 5105 free_area_init_node(0, zones_size, 5106 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5107 } 5108 5109 static int page_alloc_cpu_notify(struct notifier_block *self, 5110 unsigned long action, void *hcpu) 5111 { 5112 int cpu = (unsigned long)hcpu; 5113 5114 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5115 lru_add_drain_cpu(cpu); 5116 drain_pages(cpu); 5117 5118 /* 5119 * Spill the event counters of the dead processor 5120 * into the current processors event counters. 5121 * This artificially elevates the count of the current 5122 * processor. 5123 */ 5124 vm_events_fold_cpu(cpu); 5125 5126 /* 5127 * Zero the differential counters of the dead processor 5128 * so that the vm statistics are consistent. 5129 * 5130 * This is only okay since the processor is dead and cannot 5131 * race with what we are doing. 5132 */ 5133 refresh_cpu_vm_stats(cpu); 5134 } 5135 return NOTIFY_OK; 5136 } 5137 5138 void __init page_alloc_init(void) 5139 { 5140 hotcpu_notifier(page_alloc_cpu_notify, 0); 5141 } 5142 5143 /* 5144 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5145 * or min_free_kbytes changes. 5146 */ 5147 static void calculate_totalreserve_pages(void) 5148 { 5149 struct pglist_data *pgdat; 5150 unsigned long reserve_pages = 0; 5151 enum zone_type i, j; 5152 5153 for_each_online_pgdat(pgdat) { 5154 for (i = 0; i < MAX_NR_ZONES; i++) { 5155 struct zone *zone = pgdat->node_zones + i; 5156 unsigned long max = 0; 5157 5158 /* Find valid and maximum lowmem_reserve in the zone */ 5159 for (j = i; j < MAX_NR_ZONES; j++) { 5160 if (zone->lowmem_reserve[j] > max) 5161 max = zone->lowmem_reserve[j]; 5162 } 5163 5164 /* we treat the high watermark as reserved pages. */ 5165 max += high_wmark_pages(zone); 5166 5167 if (max > zone->present_pages) 5168 max = zone->present_pages; 5169 reserve_pages += max; 5170 /* 5171 * Lowmem reserves are not available to 5172 * GFP_HIGHUSER page cache allocations and 5173 * kswapd tries to balance zones to their high 5174 * watermark. As a result, neither should be 5175 * regarded as dirtyable memory, to prevent a 5176 * situation where reclaim has to clean pages 5177 * in order to balance the zones. 5178 */ 5179 zone->dirty_balance_reserve = max; 5180 } 5181 } 5182 dirty_balance_reserve = reserve_pages; 5183 totalreserve_pages = reserve_pages; 5184 } 5185 5186 /* 5187 * setup_per_zone_lowmem_reserve - called whenever 5188 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5189 * has a correct pages reserved value, so an adequate number of 5190 * pages are left in the zone after a successful __alloc_pages(). 5191 */ 5192 static void setup_per_zone_lowmem_reserve(void) 5193 { 5194 struct pglist_data *pgdat; 5195 enum zone_type j, idx; 5196 5197 for_each_online_pgdat(pgdat) { 5198 for (j = 0; j < MAX_NR_ZONES; j++) { 5199 struct zone *zone = pgdat->node_zones + j; 5200 unsigned long present_pages = zone->present_pages; 5201 5202 zone->lowmem_reserve[j] = 0; 5203 5204 idx = j; 5205 while (idx) { 5206 struct zone *lower_zone; 5207 5208 idx--; 5209 5210 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5211 sysctl_lowmem_reserve_ratio[idx] = 1; 5212 5213 lower_zone = pgdat->node_zones + idx; 5214 lower_zone->lowmem_reserve[j] = present_pages / 5215 sysctl_lowmem_reserve_ratio[idx]; 5216 present_pages += lower_zone->present_pages; 5217 } 5218 } 5219 } 5220 5221 /* update totalreserve_pages */ 5222 calculate_totalreserve_pages(); 5223 } 5224 5225 static void __setup_per_zone_wmarks(void) 5226 { 5227 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5228 unsigned long lowmem_pages = 0; 5229 struct zone *zone; 5230 unsigned long flags; 5231 5232 /* Calculate total number of !ZONE_HIGHMEM pages */ 5233 for_each_zone(zone) { 5234 if (!is_highmem(zone)) 5235 lowmem_pages += zone->present_pages; 5236 } 5237 5238 for_each_zone(zone) { 5239 u64 tmp; 5240 5241 spin_lock_irqsave(&zone->lock, flags); 5242 tmp = (u64)pages_min * zone->present_pages; 5243 do_div(tmp, lowmem_pages); 5244 if (is_highmem(zone)) { 5245 /* 5246 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5247 * need highmem pages, so cap pages_min to a small 5248 * value here. 5249 * 5250 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5251 * deltas controls asynch page reclaim, and so should 5252 * not be capped for highmem. 5253 */ 5254 int min_pages; 5255 5256 min_pages = zone->present_pages / 1024; 5257 if (min_pages < SWAP_CLUSTER_MAX) 5258 min_pages = SWAP_CLUSTER_MAX; 5259 if (min_pages > 128) 5260 min_pages = 128; 5261 zone->watermark[WMARK_MIN] = min_pages; 5262 } else { 5263 /* 5264 * If it's a lowmem zone, reserve a number of pages 5265 * proportionate to the zone's size. 5266 */ 5267 zone->watermark[WMARK_MIN] = tmp; 5268 } 5269 5270 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5271 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5272 5273 setup_zone_migrate_reserve(zone); 5274 spin_unlock_irqrestore(&zone->lock, flags); 5275 } 5276 5277 /* update totalreserve_pages */ 5278 calculate_totalreserve_pages(); 5279 } 5280 5281 /** 5282 * setup_per_zone_wmarks - called when min_free_kbytes changes 5283 * or when memory is hot-{added|removed} 5284 * 5285 * Ensures that the watermark[min,low,high] values for each zone are set 5286 * correctly with respect to min_free_kbytes. 5287 */ 5288 void setup_per_zone_wmarks(void) 5289 { 5290 mutex_lock(&zonelists_mutex); 5291 __setup_per_zone_wmarks(); 5292 mutex_unlock(&zonelists_mutex); 5293 } 5294 5295 /* 5296 * The inactive anon list should be small enough that the VM never has to 5297 * do too much work, but large enough that each inactive page has a chance 5298 * to be referenced again before it is swapped out. 5299 * 5300 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5301 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5302 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5303 * the anonymous pages are kept on the inactive list. 5304 * 5305 * total target max 5306 * memory ratio inactive anon 5307 * ------------------------------------- 5308 * 10MB 1 5MB 5309 * 100MB 1 50MB 5310 * 1GB 3 250MB 5311 * 10GB 10 0.9GB 5312 * 100GB 31 3GB 5313 * 1TB 101 10GB 5314 * 10TB 320 32GB 5315 */ 5316 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5317 { 5318 unsigned int gb, ratio; 5319 5320 /* Zone size in gigabytes */ 5321 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5322 if (gb) 5323 ratio = int_sqrt(10 * gb); 5324 else 5325 ratio = 1; 5326 5327 zone->inactive_ratio = ratio; 5328 } 5329 5330 static void __meminit setup_per_zone_inactive_ratio(void) 5331 { 5332 struct zone *zone; 5333 5334 for_each_zone(zone) 5335 calculate_zone_inactive_ratio(zone); 5336 } 5337 5338 /* 5339 * Initialise min_free_kbytes. 5340 * 5341 * For small machines we want it small (128k min). For large machines 5342 * we want it large (64MB max). But it is not linear, because network 5343 * bandwidth does not increase linearly with machine size. We use 5344 * 5345 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5346 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5347 * 5348 * which yields 5349 * 5350 * 16MB: 512k 5351 * 32MB: 724k 5352 * 64MB: 1024k 5353 * 128MB: 1448k 5354 * 256MB: 2048k 5355 * 512MB: 2896k 5356 * 1024MB: 4096k 5357 * 2048MB: 5792k 5358 * 4096MB: 8192k 5359 * 8192MB: 11584k 5360 * 16384MB: 16384k 5361 */ 5362 int __meminit init_per_zone_wmark_min(void) 5363 { 5364 unsigned long lowmem_kbytes; 5365 5366 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5367 5368 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5369 if (min_free_kbytes < 128) 5370 min_free_kbytes = 128; 5371 if (min_free_kbytes > 65536) 5372 min_free_kbytes = 65536; 5373 setup_per_zone_wmarks(); 5374 refresh_zone_stat_thresholds(); 5375 setup_per_zone_lowmem_reserve(); 5376 setup_per_zone_inactive_ratio(); 5377 return 0; 5378 } 5379 module_init(init_per_zone_wmark_min) 5380 5381 /* 5382 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5383 * that we can call two helper functions whenever min_free_kbytes 5384 * changes. 5385 */ 5386 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5387 void __user *buffer, size_t *length, loff_t *ppos) 5388 { 5389 proc_dointvec(table, write, buffer, length, ppos); 5390 if (write) 5391 setup_per_zone_wmarks(); 5392 return 0; 5393 } 5394 5395 #ifdef CONFIG_NUMA 5396 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5397 void __user *buffer, size_t *length, loff_t *ppos) 5398 { 5399 struct zone *zone; 5400 int rc; 5401 5402 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5403 if (rc) 5404 return rc; 5405 5406 for_each_zone(zone) 5407 zone->min_unmapped_pages = (zone->present_pages * 5408 sysctl_min_unmapped_ratio) / 100; 5409 return 0; 5410 } 5411 5412 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5413 void __user *buffer, size_t *length, loff_t *ppos) 5414 { 5415 struct zone *zone; 5416 int rc; 5417 5418 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5419 if (rc) 5420 return rc; 5421 5422 for_each_zone(zone) 5423 zone->min_slab_pages = (zone->present_pages * 5424 sysctl_min_slab_ratio) / 100; 5425 return 0; 5426 } 5427 #endif 5428 5429 /* 5430 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5431 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5432 * whenever sysctl_lowmem_reserve_ratio changes. 5433 * 5434 * The reserve ratio obviously has absolutely no relation with the 5435 * minimum watermarks. The lowmem reserve ratio can only make sense 5436 * if in function of the boot time zone sizes. 5437 */ 5438 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5439 void __user *buffer, size_t *length, loff_t *ppos) 5440 { 5441 proc_dointvec_minmax(table, write, buffer, length, ppos); 5442 setup_per_zone_lowmem_reserve(); 5443 return 0; 5444 } 5445 5446 /* 5447 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5448 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5449 * can have before it gets flushed back to buddy allocator. 5450 */ 5451 5452 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5453 void __user *buffer, size_t *length, loff_t *ppos) 5454 { 5455 struct zone *zone; 5456 unsigned int cpu; 5457 int ret; 5458 5459 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5460 if (!write || (ret < 0)) 5461 return ret; 5462 for_each_populated_zone(zone) { 5463 for_each_possible_cpu(cpu) { 5464 unsigned long high; 5465 high = zone->present_pages / percpu_pagelist_fraction; 5466 setup_pagelist_highmark( 5467 per_cpu_ptr(zone->pageset, cpu), high); 5468 } 5469 } 5470 return 0; 5471 } 5472 5473 int hashdist = HASHDIST_DEFAULT; 5474 5475 #ifdef CONFIG_NUMA 5476 static int __init set_hashdist(char *str) 5477 { 5478 if (!str) 5479 return 0; 5480 hashdist = simple_strtoul(str, &str, 0); 5481 return 1; 5482 } 5483 __setup("hashdist=", set_hashdist); 5484 #endif 5485 5486 /* 5487 * allocate a large system hash table from bootmem 5488 * - it is assumed that the hash table must contain an exact power-of-2 5489 * quantity of entries 5490 * - limit is the number of hash buckets, not the total allocation size 5491 */ 5492 void *__init alloc_large_system_hash(const char *tablename, 5493 unsigned long bucketsize, 5494 unsigned long numentries, 5495 int scale, 5496 int flags, 5497 unsigned int *_hash_shift, 5498 unsigned int *_hash_mask, 5499 unsigned long low_limit, 5500 unsigned long high_limit) 5501 { 5502 unsigned long long max = high_limit; 5503 unsigned long log2qty, size; 5504 void *table = NULL; 5505 5506 /* allow the kernel cmdline to have a say */ 5507 if (!numentries) { 5508 /* round applicable memory size up to nearest megabyte */ 5509 numentries = nr_kernel_pages; 5510 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5511 numentries >>= 20 - PAGE_SHIFT; 5512 numentries <<= 20 - PAGE_SHIFT; 5513 5514 /* limit to 1 bucket per 2^scale bytes of low memory */ 5515 if (scale > PAGE_SHIFT) 5516 numentries >>= (scale - PAGE_SHIFT); 5517 else 5518 numentries <<= (PAGE_SHIFT - scale); 5519 5520 /* Make sure we've got at least a 0-order allocation.. */ 5521 if (unlikely(flags & HASH_SMALL)) { 5522 /* Makes no sense without HASH_EARLY */ 5523 WARN_ON(!(flags & HASH_EARLY)); 5524 if (!(numentries >> *_hash_shift)) { 5525 numentries = 1UL << *_hash_shift; 5526 BUG_ON(!numentries); 5527 } 5528 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5529 numentries = PAGE_SIZE / bucketsize; 5530 } 5531 numentries = roundup_pow_of_two(numentries); 5532 5533 /* limit allocation size to 1/16 total memory by default */ 5534 if (max == 0) { 5535 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5536 do_div(max, bucketsize); 5537 } 5538 max = min(max, 0x80000000ULL); 5539 5540 if (numentries < low_limit) 5541 numentries = low_limit; 5542 if (numentries > max) 5543 numentries = max; 5544 5545 log2qty = ilog2(numentries); 5546 5547 do { 5548 size = bucketsize << log2qty; 5549 if (flags & HASH_EARLY) 5550 table = alloc_bootmem_nopanic(size); 5551 else if (hashdist) 5552 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5553 else { 5554 /* 5555 * If bucketsize is not a power-of-two, we may free 5556 * some pages at the end of hash table which 5557 * alloc_pages_exact() automatically does 5558 */ 5559 if (get_order(size) < MAX_ORDER) { 5560 table = alloc_pages_exact(size, GFP_ATOMIC); 5561 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5562 } 5563 } 5564 } while (!table && size > PAGE_SIZE && --log2qty); 5565 5566 if (!table) 5567 panic("Failed to allocate %s hash table\n", tablename); 5568 5569 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5570 tablename, 5571 (1UL << log2qty), 5572 ilog2(size) - PAGE_SHIFT, 5573 size); 5574 5575 if (_hash_shift) 5576 *_hash_shift = log2qty; 5577 if (_hash_mask) 5578 *_hash_mask = (1 << log2qty) - 1; 5579 5580 return table; 5581 } 5582 5583 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5584 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5585 unsigned long pfn) 5586 { 5587 #ifdef CONFIG_SPARSEMEM 5588 return __pfn_to_section(pfn)->pageblock_flags; 5589 #else 5590 return zone->pageblock_flags; 5591 #endif /* CONFIG_SPARSEMEM */ 5592 } 5593 5594 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5595 { 5596 #ifdef CONFIG_SPARSEMEM 5597 pfn &= (PAGES_PER_SECTION-1); 5598 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5599 #else 5600 pfn = pfn - zone->zone_start_pfn; 5601 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5602 #endif /* CONFIG_SPARSEMEM */ 5603 } 5604 5605 /** 5606 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5607 * @page: The page within the block of interest 5608 * @start_bitidx: The first bit of interest to retrieve 5609 * @end_bitidx: The last bit of interest 5610 * returns pageblock_bits flags 5611 */ 5612 unsigned long get_pageblock_flags_group(struct page *page, 5613 int start_bitidx, int end_bitidx) 5614 { 5615 struct zone *zone; 5616 unsigned long *bitmap; 5617 unsigned long pfn, bitidx; 5618 unsigned long flags = 0; 5619 unsigned long value = 1; 5620 5621 zone = page_zone(page); 5622 pfn = page_to_pfn(page); 5623 bitmap = get_pageblock_bitmap(zone, pfn); 5624 bitidx = pfn_to_bitidx(zone, pfn); 5625 5626 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5627 if (test_bit(bitidx + start_bitidx, bitmap)) 5628 flags |= value; 5629 5630 return flags; 5631 } 5632 5633 /** 5634 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5635 * @page: The page within the block of interest 5636 * @start_bitidx: The first bit of interest 5637 * @end_bitidx: The last bit of interest 5638 * @flags: The flags to set 5639 */ 5640 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5641 int start_bitidx, int end_bitidx) 5642 { 5643 struct zone *zone; 5644 unsigned long *bitmap; 5645 unsigned long pfn, bitidx; 5646 unsigned long value = 1; 5647 5648 zone = page_zone(page); 5649 pfn = page_to_pfn(page); 5650 bitmap = get_pageblock_bitmap(zone, pfn); 5651 bitidx = pfn_to_bitidx(zone, pfn); 5652 VM_BUG_ON(pfn < zone->zone_start_pfn); 5653 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5654 5655 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5656 if (flags & value) 5657 __set_bit(bitidx + start_bitidx, bitmap); 5658 else 5659 __clear_bit(bitidx + start_bitidx, bitmap); 5660 } 5661 5662 /* 5663 * This function checks whether pageblock includes unmovable pages or not. 5664 * If @count is not zero, it is okay to include less @count unmovable pages 5665 * 5666 * PageLRU check wihtout isolation or lru_lock could race so that 5667 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5668 * expect this function should be exact. 5669 */ 5670 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5671 bool skip_hwpoisoned_pages) 5672 { 5673 unsigned long pfn, iter, found; 5674 int mt; 5675 5676 /* 5677 * For avoiding noise data, lru_add_drain_all() should be called 5678 * If ZONE_MOVABLE, the zone never contains unmovable pages 5679 */ 5680 if (zone_idx(zone) == ZONE_MOVABLE) 5681 return false; 5682 mt = get_pageblock_migratetype(page); 5683 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5684 return false; 5685 5686 pfn = page_to_pfn(page); 5687 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5688 unsigned long check = pfn + iter; 5689 5690 if (!pfn_valid_within(check)) 5691 continue; 5692 5693 page = pfn_to_page(check); 5694 /* 5695 * We can't use page_count without pin a page 5696 * because another CPU can free compound page. 5697 * This check already skips compound tails of THP 5698 * because their page->_count is zero at all time. 5699 */ 5700 if (!atomic_read(&page->_count)) { 5701 if (PageBuddy(page)) 5702 iter += (1 << page_order(page)) - 1; 5703 continue; 5704 } 5705 5706 /* 5707 * The HWPoisoned page may be not in buddy system, and 5708 * page_count() is not 0. 5709 */ 5710 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5711 continue; 5712 5713 if (!PageLRU(page)) 5714 found++; 5715 /* 5716 * If there are RECLAIMABLE pages, we need to check it. 5717 * But now, memory offline itself doesn't call shrink_slab() 5718 * and it still to be fixed. 5719 */ 5720 /* 5721 * If the page is not RAM, page_count()should be 0. 5722 * we don't need more check. This is an _used_ not-movable page. 5723 * 5724 * The problematic thing here is PG_reserved pages. PG_reserved 5725 * is set to both of a memory hole page and a _used_ kernel 5726 * page at boot. 5727 */ 5728 if (found > count) 5729 return true; 5730 } 5731 return false; 5732 } 5733 5734 bool is_pageblock_removable_nolock(struct page *page) 5735 { 5736 struct zone *zone; 5737 unsigned long pfn; 5738 5739 /* 5740 * We have to be careful here because we are iterating over memory 5741 * sections which are not zone aware so we might end up outside of 5742 * the zone but still within the section. 5743 * We have to take care about the node as well. If the node is offline 5744 * its NODE_DATA will be NULL - see page_zone. 5745 */ 5746 if (!node_online(page_to_nid(page))) 5747 return false; 5748 5749 zone = page_zone(page); 5750 pfn = page_to_pfn(page); 5751 if (zone->zone_start_pfn > pfn || 5752 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5753 return false; 5754 5755 return !has_unmovable_pages(zone, page, 0, true); 5756 } 5757 5758 #ifdef CONFIG_CMA 5759 5760 static unsigned long pfn_max_align_down(unsigned long pfn) 5761 { 5762 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5763 pageblock_nr_pages) - 1); 5764 } 5765 5766 static unsigned long pfn_max_align_up(unsigned long pfn) 5767 { 5768 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5769 pageblock_nr_pages)); 5770 } 5771 5772 /* [start, end) must belong to a single zone. */ 5773 static int __alloc_contig_migrate_range(struct compact_control *cc, 5774 unsigned long start, unsigned long end) 5775 { 5776 /* This function is based on compact_zone() from compaction.c. */ 5777 unsigned long nr_reclaimed; 5778 unsigned long pfn = start; 5779 unsigned int tries = 0; 5780 int ret = 0; 5781 5782 migrate_prep(); 5783 5784 while (pfn < end || !list_empty(&cc->migratepages)) { 5785 if (fatal_signal_pending(current)) { 5786 ret = -EINTR; 5787 break; 5788 } 5789 5790 if (list_empty(&cc->migratepages)) { 5791 cc->nr_migratepages = 0; 5792 pfn = isolate_migratepages_range(cc->zone, cc, 5793 pfn, end, true); 5794 if (!pfn) { 5795 ret = -EINTR; 5796 break; 5797 } 5798 tries = 0; 5799 } else if (++tries == 5) { 5800 ret = ret < 0 ? ret : -EBUSY; 5801 break; 5802 } 5803 5804 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5805 &cc->migratepages); 5806 cc->nr_migratepages -= nr_reclaimed; 5807 5808 ret = migrate_pages(&cc->migratepages, 5809 alloc_migrate_target, 5810 0, false, MIGRATE_SYNC, 5811 MR_CMA); 5812 } 5813 5814 putback_movable_pages(&cc->migratepages); 5815 return ret > 0 ? 0 : ret; 5816 } 5817 5818 /** 5819 * alloc_contig_range() -- tries to allocate given range of pages 5820 * @start: start PFN to allocate 5821 * @end: one-past-the-last PFN to allocate 5822 * @migratetype: migratetype of the underlaying pageblocks (either 5823 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5824 * in range must have the same migratetype and it must 5825 * be either of the two. 5826 * 5827 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5828 * aligned, however it's the caller's responsibility to guarantee that 5829 * we are the only thread that changes migrate type of pageblocks the 5830 * pages fall in. 5831 * 5832 * The PFN range must belong to a single zone. 5833 * 5834 * Returns zero on success or negative error code. On success all 5835 * pages which PFN is in [start, end) are allocated for the caller and 5836 * need to be freed with free_contig_range(). 5837 */ 5838 int alloc_contig_range(unsigned long start, unsigned long end, 5839 unsigned migratetype) 5840 { 5841 unsigned long outer_start, outer_end; 5842 int ret = 0, order; 5843 5844 struct compact_control cc = { 5845 .nr_migratepages = 0, 5846 .order = -1, 5847 .zone = page_zone(pfn_to_page(start)), 5848 .sync = true, 5849 .ignore_skip_hint = true, 5850 }; 5851 INIT_LIST_HEAD(&cc.migratepages); 5852 5853 /* 5854 * What we do here is we mark all pageblocks in range as 5855 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5856 * have different sizes, and due to the way page allocator 5857 * work, we align the range to biggest of the two pages so 5858 * that page allocator won't try to merge buddies from 5859 * different pageblocks and change MIGRATE_ISOLATE to some 5860 * other migration type. 5861 * 5862 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5863 * migrate the pages from an unaligned range (ie. pages that 5864 * we are interested in). This will put all the pages in 5865 * range back to page allocator as MIGRATE_ISOLATE. 5866 * 5867 * When this is done, we take the pages in range from page 5868 * allocator removing them from the buddy system. This way 5869 * page allocator will never consider using them. 5870 * 5871 * This lets us mark the pageblocks back as 5872 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5873 * aligned range but not in the unaligned, original range are 5874 * put back to page allocator so that buddy can use them. 5875 */ 5876 5877 ret = start_isolate_page_range(pfn_max_align_down(start), 5878 pfn_max_align_up(end), migratetype, 5879 false); 5880 if (ret) 5881 return ret; 5882 5883 ret = __alloc_contig_migrate_range(&cc, start, end); 5884 if (ret) 5885 goto done; 5886 5887 /* 5888 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5889 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5890 * more, all pages in [start, end) are free in page allocator. 5891 * What we are going to do is to allocate all pages from 5892 * [start, end) (that is remove them from page allocator). 5893 * 5894 * The only problem is that pages at the beginning and at the 5895 * end of interesting range may be not aligned with pages that 5896 * page allocator holds, ie. they can be part of higher order 5897 * pages. Because of this, we reserve the bigger range and 5898 * once this is done free the pages we are not interested in. 5899 * 5900 * We don't have to hold zone->lock here because the pages are 5901 * isolated thus they won't get removed from buddy. 5902 */ 5903 5904 lru_add_drain_all(); 5905 drain_all_pages(); 5906 5907 order = 0; 5908 outer_start = start; 5909 while (!PageBuddy(pfn_to_page(outer_start))) { 5910 if (++order >= MAX_ORDER) { 5911 ret = -EBUSY; 5912 goto done; 5913 } 5914 outer_start &= ~0UL << order; 5915 } 5916 5917 /* Make sure the range is really isolated. */ 5918 if (test_pages_isolated(outer_start, end, false)) { 5919 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5920 outer_start, end); 5921 ret = -EBUSY; 5922 goto done; 5923 } 5924 5925 5926 /* Grab isolated pages from freelists. */ 5927 outer_end = isolate_freepages_range(&cc, outer_start, end); 5928 if (!outer_end) { 5929 ret = -EBUSY; 5930 goto done; 5931 } 5932 5933 /* Free head and tail (if any) */ 5934 if (start != outer_start) 5935 free_contig_range(outer_start, start - outer_start); 5936 if (end != outer_end) 5937 free_contig_range(end, outer_end - end); 5938 5939 done: 5940 undo_isolate_page_range(pfn_max_align_down(start), 5941 pfn_max_align_up(end), migratetype); 5942 return ret; 5943 } 5944 5945 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5946 { 5947 for (; nr_pages--; ++pfn) 5948 __free_page(pfn_to_page(pfn)); 5949 } 5950 #endif 5951 5952 #ifdef CONFIG_MEMORY_HOTPLUG 5953 static int __meminit __zone_pcp_update(void *data) 5954 { 5955 struct zone *zone = data; 5956 int cpu; 5957 unsigned long batch = zone_batchsize(zone), flags; 5958 5959 for_each_possible_cpu(cpu) { 5960 struct per_cpu_pageset *pset; 5961 struct per_cpu_pages *pcp; 5962 5963 pset = per_cpu_ptr(zone->pageset, cpu); 5964 pcp = &pset->pcp; 5965 5966 local_irq_save(flags); 5967 if (pcp->count > 0) 5968 free_pcppages_bulk(zone, pcp->count, pcp); 5969 drain_zonestat(zone, pset); 5970 setup_pageset(pset, batch); 5971 local_irq_restore(flags); 5972 } 5973 return 0; 5974 } 5975 5976 void __meminit zone_pcp_update(struct zone *zone) 5977 { 5978 stop_machine(__zone_pcp_update, zone, NULL); 5979 } 5980 #endif 5981 5982 void zone_pcp_reset(struct zone *zone) 5983 { 5984 unsigned long flags; 5985 int cpu; 5986 struct per_cpu_pageset *pset; 5987 5988 /* avoid races with drain_pages() */ 5989 local_irq_save(flags); 5990 if (zone->pageset != &boot_pageset) { 5991 for_each_online_cpu(cpu) { 5992 pset = per_cpu_ptr(zone->pageset, cpu); 5993 drain_zonestat(zone, pset); 5994 } 5995 free_percpu(zone->pageset); 5996 zone->pageset = &boot_pageset; 5997 } 5998 local_irq_restore(flags); 5999 } 6000 6001 #ifdef CONFIG_MEMORY_HOTREMOVE 6002 /* 6003 * All pages in the range must be isolated before calling this. 6004 */ 6005 void 6006 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6007 { 6008 struct page *page; 6009 struct zone *zone; 6010 int order, i; 6011 unsigned long pfn; 6012 unsigned long flags; 6013 /* find the first valid pfn */ 6014 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6015 if (pfn_valid(pfn)) 6016 break; 6017 if (pfn == end_pfn) 6018 return; 6019 zone = page_zone(pfn_to_page(pfn)); 6020 spin_lock_irqsave(&zone->lock, flags); 6021 pfn = start_pfn; 6022 while (pfn < end_pfn) { 6023 if (!pfn_valid(pfn)) { 6024 pfn++; 6025 continue; 6026 } 6027 page = pfn_to_page(pfn); 6028 /* 6029 * The HWPoisoned page may be not in buddy system, and 6030 * page_count() is not 0. 6031 */ 6032 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6033 pfn++; 6034 SetPageReserved(page); 6035 continue; 6036 } 6037 6038 BUG_ON(page_count(page)); 6039 BUG_ON(!PageBuddy(page)); 6040 order = page_order(page); 6041 #ifdef CONFIG_DEBUG_VM 6042 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6043 pfn, 1 << order, end_pfn); 6044 #endif 6045 list_del(&page->lru); 6046 rmv_page_order(page); 6047 zone->free_area[order].nr_free--; 6048 for (i = 0; i < (1 << order); i++) 6049 SetPageReserved((page+i)); 6050 pfn += (1 << order); 6051 } 6052 spin_unlock_irqrestore(&zone->lock, flags); 6053 } 6054 #endif 6055 6056 #ifdef CONFIG_MEMORY_FAILURE 6057 bool is_free_buddy_page(struct page *page) 6058 { 6059 struct zone *zone = page_zone(page); 6060 unsigned long pfn = page_to_pfn(page); 6061 unsigned long flags; 6062 int order; 6063 6064 spin_lock_irqsave(&zone->lock, flags); 6065 for (order = 0; order < MAX_ORDER; order++) { 6066 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6067 6068 if (PageBuddy(page_head) && page_order(page_head) >= order) 6069 break; 6070 } 6071 spin_unlock_irqrestore(&zone->lock, flags); 6072 6073 return order < MAX_ORDER; 6074 } 6075 #endif 6076 6077 static const struct trace_print_flags pageflag_names[] = { 6078 {1UL << PG_locked, "locked" }, 6079 {1UL << PG_error, "error" }, 6080 {1UL << PG_referenced, "referenced" }, 6081 {1UL << PG_uptodate, "uptodate" }, 6082 {1UL << PG_dirty, "dirty" }, 6083 {1UL << PG_lru, "lru" }, 6084 {1UL << PG_active, "active" }, 6085 {1UL << PG_slab, "slab" }, 6086 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6087 {1UL << PG_arch_1, "arch_1" }, 6088 {1UL << PG_reserved, "reserved" }, 6089 {1UL << PG_private, "private" }, 6090 {1UL << PG_private_2, "private_2" }, 6091 {1UL << PG_writeback, "writeback" }, 6092 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6093 {1UL << PG_head, "head" }, 6094 {1UL << PG_tail, "tail" }, 6095 #else 6096 {1UL << PG_compound, "compound" }, 6097 #endif 6098 {1UL << PG_swapcache, "swapcache" }, 6099 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6100 {1UL << PG_reclaim, "reclaim" }, 6101 {1UL << PG_swapbacked, "swapbacked" }, 6102 {1UL << PG_unevictable, "unevictable" }, 6103 #ifdef CONFIG_MMU 6104 {1UL << PG_mlocked, "mlocked" }, 6105 #endif 6106 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6107 {1UL << PG_uncached, "uncached" }, 6108 #endif 6109 #ifdef CONFIG_MEMORY_FAILURE 6110 {1UL << PG_hwpoison, "hwpoison" }, 6111 #endif 6112 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6113 {1UL << PG_compound_lock, "compound_lock" }, 6114 #endif 6115 }; 6116 6117 static void dump_page_flags(unsigned long flags) 6118 { 6119 const char *delim = ""; 6120 unsigned long mask; 6121 int i; 6122 6123 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6124 6125 printk(KERN_ALERT "page flags: %#lx(", flags); 6126 6127 /* remove zone id */ 6128 flags &= (1UL << NR_PAGEFLAGS) - 1; 6129 6130 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6131 6132 mask = pageflag_names[i].mask; 6133 if ((flags & mask) != mask) 6134 continue; 6135 6136 flags &= ~mask; 6137 printk("%s%s", delim, pageflag_names[i].name); 6138 delim = "|"; 6139 } 6140 6141 /* check for left over flags */ 6142 if (flags) 6143 printk("%s%#lx", delim, flags); 6144 6145 printk(")\n"); 6146 } 6147 6148 void dump_page(struct page *page) 6149 { 6150 printk(KERN_ALERT 6151 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6152 page, atomic_read(&page->_count), page_mapcount(page), 6153 page->mapping, page->index); 6154 dump_page_flags(page->flags); 6155 mem_cgroup_print_bad_page(page); 6156 } 6157