1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/memory.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/memcontrol.h> 59 #include <linux/prefetch.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 [N_CPU] = { { [0] = 1UL } }, 94 #endif /* NUMA */ 95 }; 96 EXPORT_SYMBOL(node_states); 97 98 unsigned long totalram_pages __read_mostly; 99 unsigned long totalreserve_pages __read_mostly; 100 /* 101 * When calculating the number of globally allowed dirty pages, there 102 * is a certain number of per-zone reserves that should not be 103 * considered dirtyable memory. This is the sum of those reserves 104 * over all existing zones that contribute dirtyable memory. 105 */ 106 unsigned long dirty_balance_reserve __read_mostly; 107 108 int percpu_pagelist_fraction; 109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 110 111 #ifdef CONFIG_PM_SLEEP 112 /* 113 * The following functions are used by the suspend/hibernate code to temporarily 114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 115 * while devices are suspended. To avoid races with the suspend/hibernate code, 116 * they should always be called with pm_mutex held (gfp_allowed_mask also should 117 * only be modified with pm_mutex held, unless the suspend/hibernate code is 118 * guaranteed not to run in parallel with that modification). 119 */ 120 121 static gfp_t saved_gfp_mask; 122 123 void pm_restore_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 if (saved_gfp_mask) { 127 gfp_allowed_mask = saved_gfp_mask; 128 saved_gfp_mask = 0; 129 } 130 } 131 132 void pm_restrict_gfp_mask(void) 133 { 134 WARN_ON(!mutex_is_locked(&pm_mutex)); 135 WARN_ON(saved_gfp_mask); 136 saved_gfp_mask = gfp_allowed_mask; 137 gfp_allowed_mask &= ~GFP_IOFS; 138 } 139 140 bool pm_suspended_storage(void) 141 { 142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 143 return false; 144 return true; 145 } 146 #endif /* CONFIG_PM_SLEEP */ 147 148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 149 int pageblock_order __read_mostly; 150 #endif 151 152 static void __free_pages_ok(struct page *page, unsigned int order); 153 154 /* 155 * results with 256, 32 in the lowmem_reserve sysctl: 156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 157 * 1G machine -> (16M dma, 784M normal, 224M high) 158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 161 * 162 * TBD: should special case ZONE_DMA32 machines here - in those we normally 163 * don't need any ZONE_NORMAL reservation 164 */ 165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 166 #ifdef CONFIG_ZONE_DMA 167 256, 168 #endif 169 #ifdef CONFIG_ZONE_DMA32 170 256, 171 #endif 172 #ifdef CONFIG_HIGHMEM 173 32, 174 #endif 175 32, 176 }; 177 178 EXPORT_SYMBOL(totalram_pages); 179 180 static char * const zone_names[MAX_NR_ZONES] = { 181 #ifdef CONFIG_ZONE_DMA 182 "DMA", 183 #endif 184 #ifdef CONFIG_ZONE_DMA32 185 "DMA32", 186 #endif 187 "Normal", 188 #ifdef CONFIG_HIGHMEM 189 "HighMem", 190 #endif 191 "Movable", 192 }; 193 194 int min_free_kbytes = 1024; 195 196 static unsigned long __meminitdata nr_kernel_pages; 197 static unsigned long __meminitdata nr_all_pages; 198 static unsigned long __meminitdata dma_reserve; 199 200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 203 static unsigned long __initdata required_kernelcore; 204 static unsigned long __initdata required_movablecore; 205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 206 207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 208 int movable_zone; 209 EXPORT_SYMBOL(movable_zone); 210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 211 212 #if MAX_NUMNODES > 1 213 int nr_node_ids __read_mostly = MAX_NUMNODES; 214 int nr_online_nodes __read_mostly = 1; 215 EXPORT_SYMBOL(nr_node_ids); 216 EXPORT_SYMBOL(nr_online_nodes); 217 #endif 218 219 int page_group_by_mobility_disabled __read_mostly; 220 221 static void set_pageblock_migratetype(struct page *page, int migratetype) 222 { 223 224 if (unlikely(page_group_by_mobility_disabled)) 225 migratetype = MIGRATE_UNMOVABLE; 226 227 set_pageblock_flags_group(page, (unsigned long)migratetype, 228 PB_migrate, PB_migrate_end); 229 } 230 231 bool oom_killer_disabled __read_mostly; 232 233 #ifdef CONFIG_DEBUG_VM 234 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 235 { 236 int ret = 0; 237 unsigned seq; 238 unsigned long pfn = page_to_pfn(page); 239 240 do { 241 seq = zone_span_seqbegin(zone); 242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 243 ret = 1; 244 else if (pfn < zone->zone_start_pfn) 245 ret = 1; 246 } while (zone_span_seqretry(zone, seq)); 247 248 return ret; 249 } 250 251 static int page_is_consistent(struct zone *zone, struct page *page) 252 { 253 if (!pfn_valid_within(page_to_pfn(page))) 254 return 0; 255 if (zone != page_zone(page)) 256 return 0; 257 258 return 1; 259 } 260 /* 261 * Temporary debugging check for pages not lying within a given zone. 262 */ 263 static int bad_range(struct zone *zone, struct page *page) 264 { 265 if (page_outside_zone_boundaries(zone, page)) 266 return 1; 267 if (!page_is_consistent(zone, page)) 268 return 1; 269 270 return 0; 271 } 272 #else 273 static inline int bad_range(struct zone *zone, struct page *page) 274 { 275 return 0; 276 } 277 #endif 278 279 static void bad_page(struct page *page) 280 { 281 static unsigned long resume; 282 static unsigned long nr_shown; 283 static unsigned long nr_unshown; 284 285 /* Don't complain about poisoned pages */ 286 if (PageHWPoison(page)) { 287 reset_page_mapcount(page); /* remove PageBuddy */ 288 return; 289 } 290 291 /* 292 * Allow a burst of 60 reports, then keep quiet for that minute; 293 * or allow a steady drip of one report per second. 294 */ 295 if (nr_shown == 60) { 296 if (time_before(jiffies, resume)) { 297 nr_unshown++; 298 goto out; 299 } 300 if (nr_unshown) { 301 printk(KERN_ALERT 302 "BUG: Bad page state: %lu messages suppressed\n", 303 nr_unshown); 304 nr_unshown = 0; 305 } 306 nr_shown = 0; 307 } 308 if (nr_shown++ == 0) 309 resume = jiffies + 60 * HZ; 310 311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 312 current->comm, page_to_pfn(page)); 313 dump_page(page); 314 315 print_modules(); 316 dump_stack(); 317 out: 318 /* Leave bad fields for debug, except PageBuddy could make trouble */ 319 reset_page_mapcount(page); /* remove PageBuddy */ 320 add_taint(TAINT_BAD_PAGE); 321 } 322 323 /* 324 * Higher-order pages are called "compound pages". They are structured thusly: 325 * 326 * The first PAGE_SIZE page is called the "head page". 327 * 328 * The remaining PAGE_SIZE pages are called "tail pages". 329 * 330 * All pages have PG_compound set. All tail pages have their ->first_page 331 * pointing at the head page. 332 * 333 * The first tail page's ->lru.next holds the address of the compound page's 334 * put_page() function. Its ->lru.prev holds the order of allocation. 335 * This usage means that zero-order pages may not be compound. 336 */ 337 338 static void free_compound_page(struct page *page) 339 { 340 __free_pages_ok(page, compound_order(page)); 341 } 342 343 void prep_compound_page(struct page *page, unsigned long order) 344 { 345 int i; 346 int nr_pages = 1 << order; 347 348 set_compound_page_dtor(page, free_compound_page); 349 set_compound_order(page, order); 350 __SetPageHead(page); 351 for (i = 1; i < nr_pages; i++) { 352 struct page *p = page + i; 353 __SetPageTail(p); 354 set_page_count(p, 0); 355 p->first_page = page; 356 } 357 } 358 359 /* update __split_huge_page_refcount if you change this function */ 360 static int destroy_compound_page(struct page *page, unsigned long order) 361 { 362 int i; 363 int nr_pages = 1 << order; 364 int bad = 0; 365 366 if (unlikely(compound_order(page) != order) || 367 unlikely(!PageHead(page))) { 368 bad_page(page); 369 bad++; 370 } 371 372 __ClearPageHead(page); 373 374 for (i = 1; i < nr_pages; i++) { 375 struct page *p = page + i; 376 377 if (unlikely(!PageTail(p) || (p->first_page != page))) { 378 bad_page(page); 379 bad++; 380 } 381 __ClearPageTail(p); 382 } 383 384 return bad; 385 } 386 387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 388 { 389 int i; 390 391 /* 392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 393 * and __GFP_HIGHMEM from hard or soft interrupt context. 394 */ 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 396 for (i = 0; i < (1 << order); i++) 397 clear_highpage(page + i); 398 } 399 400 #ifdef CONFIG_DEBUG_PAGEALLOC 401 unsigned int _debug_guardpage_minorder; 402 403 static int __init debug_guardpage_minorder_setup(char *buf) 404 { 405 unsigned long res; 406 407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 409 return 0; 410 } 411 _debug_guardpage_minorder = res; 412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 413 return 0; 414 } 415 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 416 417 static inline void set_page_guard_flag(struct page *page) 418 { 419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 420 } 421 422 static inline void clear_page_guard_flag(struct page *page) 423 { 424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 425 } 426 #else 427 static inline void set_page_guard_flag(struct page *page) { } 428 static inline void clear_page_guard_flag(struct page *page) { } 429 #endif 430 431 static inline void set_page_order(struct page *page, int order) 432 { 433 set_page_private(page, order); 434 __SetPageBuddy(page); 435 } 436 437 static inline void rmv_page_order(struct page *page) 438 { 439 __ClearPageBuddy(page); 440 set_page_private(page, 0); 441 } 442 443 /* 444 * Locate the struct page for both the matching buddy in our 445 * pair (buddy1) and the combined O(n+1) page they form (page). 446 * 447 * 1) Any buddy B1 will have an order O twin B2 which satisfies 448 * the following equation: 449 * B2 = B1 ^ (1 << O) 450 * For example, if the starting buddy (buddy2) is #8 its order 451 * 1 buddy is #10: 452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 453 * 454 * 2) Any buddy B will have an order O+1 parent P which 455 * satisfies the following equation: 456 * P = B & ~(1 << O) 457 * 458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 459 */ 460 static inline unsigned long 461 __find_buddy_index(unsigned long page_idx, unsigned int order) 462 { 463 return page_idx ^ (1 << order); 464 } 465 466 /* 467 * This function checks whether a page is free && is the buddy 468 * we can do coalesce a page and its buddy if 469 * (a) the buddy is not in a hole && 470 * (b) the buddy is in the buddy system && 471 * (c) a page and its buddy have the same order && 472 * (d) a page and its buddy are in the same zone. 473 * 474 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 476 * 477 * For recording page's order, we use page_private(page). 478 */ 479 static inline int page_is_buddy(struct page *page, struct page *buddy, 480 int order) 481 { 482 if (!pfn_valid_within(page_to_pfn(buddy))) 483 return 0; 484 485 if (page_zone_id(page) != page_zone_id(buddy)) 486 return 0; 487 488 if (page_is_guard(buddy) && page_order(buddy) == order) { 489 VM_BUG_ON(page_count(buddy) != 0); 490 return 1; 491 } 492 493 if (PageBuddy(buddy) && page_order(buddy) == order) { 494 VM_BUG_ON(page_count(buddy) != 0); 495 return 1; 496 } 497 return 0; 498 } 499 500 /* 501 * Freeing function for a buddy system allocator. 502 * 503 * The concept of a buddy system is to maintain direct-mapped table 504 * (containing bit values) for memory blocks of various "orders". 505 * The bottom level table contains the map for the smallest allocatable 506 * units of memory (here, pages), and each level above it describes 507 * pairs of units from the levels below, hence, "buddies". 508 * At a high level, all that happens here is marking the table entry 509 * at the bottom level available, and propagating the changes upward 510 * as necessary, plus some accounting needed to play nicely with other 511 * parts of the VM system. 512 * At each level, we keep a list of pages, which are heads of continuous 513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 514 * order is recorded in page_private(page) field. 515 * So when we are allocating or freeing one, we can derive the state of the 516 * other. That is, if we allocate a small block, and both were 517 * free, the remainder of the region must be split into blocks. 518 * If a block is freed, and its buddy is also free, then this 519 * triggers coalescing into a block of larger size. 520 * 521 * -- wli 522 */ 523 524 static inline void __free_one_page(struct page *page, 525 struct zone *zone, unsigned int order, 526 int migratetype) 527 { 528 unsigned long page_idx; 529 unsigned long combined_idx; 530 unsigned long uninitialized_var(buddy_idx); 531 struct page *buddy; 532 533 if (unlikely(PageCompound(page))) 534 if (unlikely(destroy_compound_page(page, order))) 535 return; 536 537 VM_BUG_ON(migratetype == -1); 538 539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 540 541 VM_BUG_ON(page_idx & ((1 << order) - 1)); 542 VM_BUG_ON(bad_range(zone, page)); 543 544 while (order < MAX_ORDER-1) { 545 buddy_idx = __find_buddy_index(page_idx, order); 546 buddy = page + (buddy_idx - page_idx); 547 if (!page_is_buddy(page, buddy, order)) 548 break; 549 /* 550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 551 * merge with it and move up one order. 552 */ 553 if (page_is_guard(buddy)) { 554 clear_page_guard_flag(buddy); 555 set_page_private(page, 0); 556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 557 } else { 558 list_del(&buddy->lru); 559 zone->free_area[order].nr_free--; 560 rmv_page_order(buddy); 561 } 562 combined_idx = buddy_idx & page_idx; 563 page = page + (combined_idx - page_idx); 564 page_idx = combined_idx; 565 order++; 566 } 567 set_page_order(page, order); 568 569 /* 570 * If this is not the largest possible page, check if the buddy 571 * of the next-highest order is free. If it is, it's possible 572 * that pages are being freed that will coalesce soon. In case, 573 * that is happening, add the free page to the tail of the list 574 * so it's less likely to be used soon and more likely to be merged 575 * as a higher order page 576 */ 577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 578 struct page *higher_page, *higher_buddy; 579 combined_idx = buddy_idx & page_idx; 580 higher_page = page + (combined_idx - page_idx); 581 buddy_idx = __find_buddy_index(combined_idx, order + 1); 582 higher_buddy = page + (buddy_idx - combined_idx); 583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 584 list_add_tail(&page->lru, 585 &zone->free_area[order].free_list[migratetype]); 586 goto out; 587 } 588 } 589 590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 591 out: 592 zone->free_area[order].nr_free++; 593 } 594 595 /* 596 * free_page_mlock() -- clean up attempts to free and mlocked() page. 597 * Page should not be on lru, so no need to fix that up. 598 * free_pages_check() will verify... 599 */ 600 static inline void free_page_mlock(struct page *page) 601 { 602 __dec_zone_page_state(page, NR_MLOCK); 603 __count_vm_event(UNEVICTABLE_MLOCKFREED); 604 } 605 606 static inline int free_pages_check(struct page *page) 607 { 608 if (unlikely(page_mapcount(page) | 609 (page->mapping != NULL) | 610 (atomic_read(&page->_count) != 0) | 611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 612 (mem_cgroup_bad_page_check(page)))) { 613 bad_page(page); 614 return 1; 615 } 616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 618 return 0; 619 } 620 621 /* 622 * Frees a number of pages from the PCP lists 623 * Assumes all pages on list are in same zone, and of same order. 624 * count is the number of pages to free. 625 * 626 * If the zone was previously in an "all pages pinned" state then look to 627 * see if this freeing clears that state. 628 * 629 * And clear the zone's pages_scanned counter, to hold off the "all pages are 630 * pinned" detection logic. 631 */ 632 static void free_pcppages_bulk(struct zone *zone, int count, 633 struct per_cpu_pages *pcp) 634 { 635 int migratetype = 0; 636 int batch_free = 0; 637 int to_free = count; 638 639 spin_lock(&zone->lock); 640 zone->all_unreclaimable = 0; 641 zone->pages_scanned = 0; 642 643 while (to_free) { 644 struct page *page; 645 struct list_head *list; 646 647 /* 648 * Remove pages from lists in a round-robin fashion. A 649 * batch_free count is maintained that is incremented when an 650 * empty list is encountered. This is so more pages are freed 651 * off fuller lists instead of spinning excessively around empty 652 * lists 653 */ 654 do { 655 batch_free++; 656 if (++migratetype == MIGRATE_PCPTYPES) 657 migratetype = 0; 658 list = &pcp->lists[migratetype]; 659 } while (list_empty(list)); 660 661 /* This is the only non-empty list. Free them all. */ 662 if (batch_free == MIGRATE_PCPTYPES) 663 batch_free = to_free; 664 665 do { 666 page = list_entry(list->prev, struct page, lru); 667 /* must delete as __free_one_page list manipulates */ 668 list_del(&page->lru); 669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 670 __free_one_page(page, zone, 0, page_private(page)); 671 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 672 } while (--to_free && --batch_free && !list_empty(list)); 673 } 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 675 spin_unlock(&zone->lock); 676 } 677 678 static void free_one_page(struct zone *zone, struct page *page, int order, 679 int migratetype) 680 { 681 spin_lock(&zone->lock); 682 zone->all_unreclaimable = 0; 683 zone->pages_scanned = 0; 684 685 __free_one_page(page, zone, order, migratetype); 686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 687 spin_unlock(&zone->lock); 688 } 689 690 static bool free_pages_prepare(struct page *page, unsigned int order) 691 { 692 int i; 693 int bad = 0; 694 695 trace_mm_page_free(page, order); 696 kmemcheck_free_shadow(page, order); 697 698 if (PageAnon(page)) 699 page->mapping = NULL; 700 for (i = 0; i < (1 << order); i++) 701 bad += free_pages_check(page + i); 702 if (bad) 703 return false; 704 705 if (!PageHighMem(page)) { 706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 707 debug_check_no_obj_freed(page_address(page), 708 PAGE_SIZE << order); 709 } 710 arch_free_page(page, order); 711 kernel_map_pages(page, 1 << order, 0); 712 713 return true; 714 } 715 716 static void __free_pages_ok(struct page *page, unsigned int order) 717 { 718 unsigned long flags; 719 int wasMlocked = __TestClearPageMlocked(page); 720 721 if (!free_pages_prepare(page, order)) 722 return; 723 724 local_irq_save(flags); 725 if (unlikely(wasMlocked)) 726 free_page_mlock(page); 727 __count_vm_events(PGFREE, 1 << order); 728 free_one_page(page_zone(page), page, order, 729 get_pageblock_migratetype(page)); 730 local_irq_restore(flags); 731 } 732 733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 734 { 735 unsigned int nr_pages = 1 << order; 736 unsigned int loop; 737 738 prefetchw(page); 739 for (loop = 0; loop < nr_pages; loop++) { 740 struct page *p = &page[loop]; 741 742 if (loop + 1 < nr_pages) 743 prefetchw(p + 1); 744 __ClearPageReserved(p); 745 set_page_count(p, 0); 746 } 747 748 set_page_refcounted(page); 749 __free_pages(page, order); 750 } 751 752 753 /* 754 * The order of subdivision here is critical for the IO subsystem. 755 * Please do not alter this order without good reasons and regression 756 * testing. Specifically, as large blocks of memory are subdivided, 757 * the order in which smaller blocks are delivered depends on the order 758 * they're subdivided in this function. This is the primary factor 759 * influencing the order in which pages are delivered to the IO 760 * subsystem according to empirical testing, and this is also justified 761 * by considering the behavior of a buddy system containing a single 762 * large block of memory acted on by a series of small allocations. 763 * This behavior is a critical factor in sglist merging's success. 764 * 765 * -- wli 766 */ 767 static inline void expand(struct zone *zone, struct page *page, 768 int low, int high, struct free_area *area, 769 int migratetype) 770 { 771 unsigned long size = 1 << high; 772 773 while (high > low) { 774 area--; 775 high--; 776 size >>= 1; 777 VM_BUG_ON(bad_range(zone, &page[size])); 778 779 #ifdef CONFIG_DEBUG_PAGEALLOC 780 if (high < debug_guardpage_minorder()) { 781 /* 782 * Mark as guard pages (or page), that will allow to 783 * merge back to allocator when buddy will be freed. 784 * Corresponding page table entries will not be touched, 785 * pages will stay not present in virtual address space 786 */ 787 INIT_LIST_HEAD(&page[size].lru); 788 set_page_guard_flag(&page[size]); 789 set_page_private(&page[size], high); 790 /* Guard pages are not available for any usage */ 791 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); 792 continue; 793 } 794 #endif 795 list_add(&page[size].lru, &area->free_list[migratetype]); 796 area->nr_free++; 797 set_page_order(&page[size], high); 798 } 799 } 800 801 /* 802 * This page is about to be returned from the page allocator 803 */ 804 static inline int check_new_page(struct page *page) 805 { 806 if (unlikely(page_mapcount(page) | 807 (page->mapping != NULL) | 808 (atomic_read(&page->_count) != 0) | 809 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 810 (mem_cgroup_bad_page_check(page)))) { 811 bad_page(page); 812 return 1; 813 } 814 return 0; 815 } 816 817 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 818 { 819 int i; 820 821 for (i = 0; i < (1 << order); i++) { 822 struct page *p = page + i; 823 if (unlikely(check_new_page(p))) 824 return 1; 825 } 826 827 set_page_private(page, 0); 828 set_page_refcounted(page); 829 830 arch_alloc_page(page, order); 831 kernel_map_pages(page, 1 << order, 1); 832 833 if (gfp_flags & __GFP_ZERO) 834 prep_zero_page(page, order, gfp_flags); 835 836 if (order && (gfp_flags & __GFP_COMP)) 837 prep_compound_page(page, order); 838 839 return 0; 840 } 841 842 /* 843 * Go through the free lists for the given migratetype and remove 844 * the smallest available page from the freelists 845 */ 846 static inline 847 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 848 int migratetype) 849 { 850 unsigned int current_order; 851 struct free_area * area; 852 struct page *page; 853 854 /* Find a page of the appropriate size in the preferred list */ 855 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 856 area = &(zone->free_area[current_order]); 857 if (list_empty(&area->free_list[migratetype])) 858 continue; 859 860 page = list_entry(area->free_list[migratetype].next, 861 struct page, lru); 862 list_del(&page->lru); 863 rmv_page_order(page); 864 area->nr_free--; 865 expand(zone, page, order, current_order, area, migratetype); 866 return page; 867 } 868 869 return NULL; 870 } 871 872 873 /* 874 * This array describes the order lists are fallen back to when 875 * the free lists for the desirable migrate type are depleted 876 */ 877 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 878 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 879 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 880 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 881 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 882 }; 883 884 /* 885 * Move the free pages in a range to the free lists of the requested type. 886 * Note that start_page and end_pages are not aligned on a pageblock 887 * boundary. If alignment is required, use move_freepages_block() 888 */ 889 static int move_freepages(struct zone *zone, 890 struct page *start_page, struct page *end_page, 891 int migratetype) 892 { 893 struct page *page; 894 unsigned long order; 895 int pages_moved = 0; 896 897 #ifndef CONFIG_HOLES_IN_ZONE 898 /* 899 * page_zone is not safe to call in this context when 900 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 901 * anyway as we check zone boundaries in move_freepages_block(). 902 * Remove at a later date when no bug reports exist related to 903 * grouping pages by mobility 904 */ 905 BUG_ON(page_zone(start_page) != page_zone(end_page)); 906 #endif 907 908 for (page = start_page; page <= end_page;) { 909 /* Make sure we are not inadvertently changing nodes */ 910 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 911 912 if (!pfn_valid_within(page_to_pfn(page))) { 913 page++; 914 continue; 915 } 916 917 if (!PageBuddy(page)) { 918 page++; 919 continue; 920 } 921 922 order = page_order(page); 923 list_move(&page->lru, 924 &zone->free_area[order].free_list[migratetype]); 925 page += 1 << order; 926 pages_moved += 1 << order; 927 } 928 929 return pages_moved; 930 } 931 932 static int move_freepages_block(struct zone *zone, struct page *page, 933 int migratetype) 934 { 935 unsigned long start_pfn, end_pfn; 936 struct page *start_page, *end_page; 937 938 start_pfn = page_to_pfn(page); 939 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 940 start_page = pfn_to_page(start_pfn); 941 end_page = start_page + pageblock_nr_pages - 1; 942 end_pfn = start_pfn + pageblock_nr_pages - 1; 943 944 /* Do not cross zone boundaries */ 945 if (start_pfn < zone->zone_start_pfn) 946 start_page = page; 947 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 948 return 0; 949 950 return move_freepages(zone, start_page, end_page, migratetype); 951 } 952 953 static void change_pageblock_range(struct page *pageblock_page, 954 int start_order, int migratetype) 955 { 956 int nr_pageblocks = 1 << (start_order - pageblock_order); 957 958 while (nr_pageblocks--) { 959 set_pageblock_migratetype(pageblock_page, migratetype); 960 pageblock_page += pageblock_nr_pages; 961 } 962 } 963 964 /* Remove an element from the buddy allocator from the fallback list */ 965 static inline struct page * 966 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 967 { 968 struct free_area * area; 969 int current_order; 970 struct page *page; 971 int migratetype, i; 972 973 /* Find the largest possible block of pages in the other list */ 974 for (current_order = MAX_ORDER-1; current_order >= order; 975 --current_order) { 976 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 977 migratetype = fallbacks[start_migratetype][i]; 978 979 /* MIGRATE_RESERVE handled later if necessary */ 980 if (migratetype == MIGRATE_RESERVE) 981 continue; 982 983 area = &(zone->free_area[current_order]); 984 if (list_empty(&area->free_list[migratetype])) 985 continue; 986 987 page = list_entry(area->free_list[migratetype].next, 988 struct page, lru); 989 area->nr_free--; 990 991 /* 992 * If breaking a large block of pages, move all free 993 * pages to the preferred allocation list. If falling 994 * back for a reclaimable kernel allocation, be more 995 * aggressive about taking ownership of free pages 996 */ 997 if (unlikely(current_order >= (pageblock_order >> 1)) || 998 start_migratetype == MIGRATE_RECLAIMABLE || 999 page_group_by_mobility_disabled) { 1000 unsigned long pages; 1001 pages = move_freepages_block(zone, page, 1002 start_migratetype); 1003 1004 /* Claim the whole block if over half of it is free */ 1005 if (pages >= (1 << (pageblock_order-1)) || 1006 page_group_by_mobility_disabled) 1007 set_pageblock_migratetype(page, 1008 start_migratetype); 1009 1010 migratetype = start_migratetype; 1011 } 1012 1013 /* Remove the page from the freelists */ 1014 list_del(&page->lru); 1015 rmv_page_order(page); 1016 1017 /* Take ownership for orders >= pageblock_order */ 1018 if (current_order >= pageblock_order) 1019 change_pageblock_range(page, current_order, 1020 start_migratetype); 1021 1022 expand(zone, page, order, current_order, area, migratetype); 1023 1024 trace_mm_page_alloc_extfrag(page, order, current_order, 1025 start_migratetype, migratetype); 1026 1027 return page; 1028 } 1029 } 1030 1031 return NULL; 1032 } 1033 1034 /* 1035 * Do the hard work of removing an element from the buddy allocator. 1036 * Call me with the zone->lock already held. 1037 */ 1038 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1039 int migratetype) 1040 { 1041 struct page *page; 1042 1043 retry_reserve: 1044 page = __rmqueue_smallest(zone, order, migratetype); 1045 1046 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1047 page = __rmqueue_fallback(zone, order, migratetype); 1048 1049 /* 1050 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1051 * is used because __rmqueue_smallest is an inline function 1052 * and we want just one call site 1053 */ 1054 if (!page) { 1055 migratetype = MIGRATE_RESERVE; 1056 goto retry_reserve; 1057 } 1058 } 1059 1060 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1061 return page; 1062 } 1063 1064 /* 1065 * Obtain a specified number of elements from the buddy allocator, all under 1066 * a single hold of the lock, for efficiency. Add them to the supplied list. 1067 * Returns the number of new pages which were placed at *list. 1068 */ 1069 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1070 unsigned long count, struct list_head *list, 1071 int migratetype, int cold) 1072 { 1073 int i; 1074 1075 spin_lock(&zone->lock); 1076 for (i = 0; i < count; ++i) { 1077 struct page *page = __rmqueue(zone, order, migratetype); 1078 if (unlikely(page == NULL)) 1079 break; 1080 1081 /* 1082 * Split buddy pages returned by expand() are received here 1083 * in physical page order. The page is added to the callers and 1084 * list and the list head then moves forward. From the callers 1085 * perspective, the linked list is ordered by page number in 1086 * some conditions. This is useful for IO devices that can 1087 * merge IO requests if the physical pages are ordered 1088 * properly. 1089 */ 1090 if (likely(cold == 0)) 1091 list_add(&page->lru, list); 1092 else 1093 list_add_tail(&page->lru, list); 1094 set_page_private(page, migratetype); 1095 list = &page->lru; 1096 } 1097 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1098 spin_unlock(&zone->lock); 1099 return i; 1100 } 1101 1102 #ifdef CONFIG_NUMA 1103 /* 1104 * Called from the vmstat counter updater to drain pagesets of this 1105 * currently executing processor on remote nodes after they have 1106 * expired. 1107 * 1108 * Note that this function must be called with the thread pinned to 1109 * a single processor. 1110 */ 1111 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1112 { 1113 unsigned long flags; 1114 int to_drain; 1115 1116 local_irq_save(flags); 1117 if (pcp->count >= pcp->batch) 1118 to_drain = pcp->batch; 1119 else 1120 to_drain = pcp->count; 1121 free_pcppages_bulk(zone, to_drain, pcp); 1122 pcp->count -= to_drain; 1123 local_irq_restore(flags); 1124 } 1125 #endif 1126 1127 /* 1128 * Drain pages of the indicated processor. 1129 * 1130 * The processor must either be the current processor and the 1131 * thread pinned to the current processor or a processor that 1132 * is not online. 1133 */ 1134 static void drain_pages(unsigned int cpu) 1135 { 1136 unsigned long flags; 1137 struct zone *zone; 1138 1139 for_each_populated_zone(zone) { 1140 struct per_cpu_pageset *pset; 1141 struct per_cpu_pages *pcp; 1142 1143 local_irq_save(flags); 1144 pset = per_cpu_ptr(zone->pageset, cpu); 1145 1146 pcp = &pset->pcp; 1147 if (pcp->count) { 1148 free_pcppages_bulk(zone, pcp->count, pcp); 1149 pcp->count = 0; 1150 } 1151 local_irq_restore(flags); 1152 } 1153 } 1154 1155 /* 1156 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1157 */ 1158 void drain_local_pages(void *arg) 1159 { 1160 drain_pages(smp_processor_id()); 1161 } 1162 1163 /* 1164 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1165 */ 1166 void drain_all_pages(void) 1167 { 1168 on_each_cpu(drain_local_pages, NULL, 1); 1169 } 1170 1171 #ifdef CONFIG_HIBERNATION 1172 1173 void mark_free_pages(struct zone *zone) 1174 { 1175 unsigned long pfn, max_zone_pfn; 1176 unsigned long flags; 1177 int order, t; 1178 struct list_head *curr; 1179 1180 if (!zone->spanned_pages) 1181 return; 1182 1183 spin_lock_irqsave(&zone->lock, flags); 1184 1185 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1186 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1187 if (pfn_valid(pfn)) { 1188 struct page *page = pfn_to_page(pfn); 1189 1190 if (!swsusp_page_is_forbidden(page)) 1191 swsusp_unset_page_free(page); 1192 } 1193 1194 for_each_migratetype_order(order, t) { 1195 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1196 unsigned long i; 1197 1198 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1199 for (i = 0; i < (1UL << order); i++) 1200 swsusp_set_page_free(pfn_to_page(pfn + i)); 1201 } 1202 } 1203 spin_unlock_irqrestore(&zone->lock, flags); 1204 } 1205 #endif /* CONFIG_PM */ 1206 1207 /* 1208 * Free a 0-order page 1209 * cold == 1 ? free a cold page : free a hot page 1210 */ 1211 void free_hot_cold_page(struct page *page, int cold) 1212 { 1213 struct zone *zone = page_zone(page); 1214 struct per_cpu_pages *pcp; 1215 unsigned long flags; 1216 int migratetype; 1217 int wasMlocked = __TestClearPageMlocked(page); 1218 1219 if (!free_pages_prepare(page, 0)) 1220 return; 1221 1222 migratetype = get_pageblock_migratetype(page); 1223 set_page_private(page, migratetype); 1224 local_irq_save(flags); 1225 if (unlikely(wasMlocked)) 1226 free_page_mlock(page); 1227 __count_vm_event(PGFREE); 1228 1229 /* 1230 * We only track unmovable, reclaimable and movable on pcp lists. 1231 * Free ISOLATE pages back to the allocator because they are being 1232 * offlined but treat RESERVE as movable pages so we can get those 1233 * areas back if necessary. Otherwise, we may have to free 1234 * excessively into the page allocator 1235 */ 1236 if (migratetype >= MIGRATE_PCPTYPES) { 1237 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1238 free_one_page(zone, page, 0, migratetype); 1239 goto out; 1240 } 1241 migratetype = MIGRATE_MOVABLE; 1242 } 1243 1244 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1245 if (cold) 1246 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1247 else 1248 list_add(&page->lru, &pcp->lists[migratetype]); 1249 pcp->count++; 1250 if (pcp->count >= pcp->high) { 1251 free_pcppages_bulk(zone, pcp->batch, pcp); 1252 pcp->count -= pcp->batch; 1253 } 1254 1255 out: 1256 local_irq_restore(flags); 1257 } 1258 1259 /* 1260 * Free a list of 0-order pages 1261 */ 1262 void free_hot_cold_page_list(struct list_head *list, int cold) 1263 { 1264 struct page *page, *next; 1265 1266 list_for_each_entry_safe(page, next, list, lru) { 1267 trace_mm_page_free_batched(page, cold); 1268 free_hot_cold_page(page, cold); 1269 } 1270 } 1271 1272 /* 1273 * split_page takes a non-compound higher-order page, and splits it into 1274 * n (1<<order) sub-pages: page[0..n] 1275 * Each sub-page must be freed individually. 1276 * 1277 * Note: this is probably too low level an operation for use in drivers. 1278 * Please consult with lkml before using this in your driver. 1279 */ 1280 void split_page(struct page *page, unsigned int order) 1281 { 1282 int i; 1283 1284 VM_BUG_ON(PageCompound(page)); 1285 VM_BUG_ON(!page_count(page)); 1286 1287 #ifdef CONFIG_KMEMCHECK 1288 /* 1289 * Split shadow pages too, because free(page[0]) would 1290 * otherwise free the whole shadow. 1291 */ 1292 if (kmemcheck_page_is_tracked(page)) 1293 split_page(virt_to_page(page[0].shadow), order); 1294 #endif 1295 1296 for (i = 1; i < (1 << order); i++) 1297 set_page_refcounted(page + i); 1298 } 1299 1300 /* 1301 * Similar to split_page except the page is already free. As this is only 1302 * being used for migration, the migratetype of the block also changes. 1303 * As this is called with interrupts disabled, the caller is responsible 1304 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1305 * are enabled. 1306 * 1307 * Note: this is probably too low level an operation for use in drivers. 1308 * Please consult with lkml before using this in your driver. 1309 */ 1310 int split_free_page(struct page *page) 1311 { 1312 unsigned int order; 1313 unsigned long watermark; 1314 struct zone *zone; 1315 1316 BUG_ON(!PageBuddy(page)); 1317 1318 zone = page_zone(page); 1319 order = page_order(page); 1320 1321 /* Obey watermarks as if the page was being allocated */ 1322 watermark = low_wmark_pages(zone) + (1 << order); 1323 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1324 return 0; 1325 1326 /* Remove page from free list */ 1327 list_del(&page->lru); 1328 zone->free_area[order].nr_free--; 1329 rmv_page_order(page); 1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1331 1332 /* Split into individual pages */ 1333 set_page_refcounted(page); 1334 split_page(page, order); 1335 1336 if (order >= pageblock_order - 1) { 1337 struct page *endpage = page + (1 << order) - 1; 1338 for (; page < endpage; page += pageblock_nr_pages) 1339 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1340 } 1341 1342 return 1 << order; 1343 } 1344 1345 /* 1346 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1347 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1348 * or two. 1349 */ 1350 static inline 1351 struct page *buffered_rmqueue(struct zone *preferred_zone, 1352 struct zone *zone, int order, gfp_t gfp_flags, 1353 int migratetype) 1354 { 1355 unsigned long flags; 1356 struct page *page; 1357 int cold = !!(gfp_flags & __GFP_COLD); 1358 1359 again: 1360 if (likely(order == 0)) { 1361 struct per_cpu_pages *pcp; 1362 struct list_head *list; 1363 1364 local_irq_save(flags); 1365 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1366 list = &pcp->lists[migratetype]; 1367 if (list_empty(list)) { 1368 pcp->count += rmqueue_bulk(zone, 0, 1369 pcp->batch, list, 1370 migratetype, cold); 1371 if (unlikely(list_empty(list))) 1372 goto failed; 1373 } 1374 1375 if (cold) 1376 page = list_entry(list->prev, struct page, lru); 1377 else 1378 page = list_entry(list->next, struct page, lru); 1379 1380 list_del(&page->lru); 1381 pcp->count--; 1382 } else { 1383 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1384 /* 1385 * __GFP_NOFAIL is not to be used in new code. 1386 * 1387 * All __GFP_NOFAIL callers should be fixed so that they 1388 * properly detect and handle allocation failures. 1389 * 1390 * We most definitely don't want callers attempting to 1391 * allocate greater than order-1 page units with 1392 * __GFP_NOFAIL. 1393 */ 1394 WARN_ON_ONCE(order > 1); 1395 } 1396 spin_lock_irqsave(&zone->lock, flags); 1397 page = __rmqueue(zone, order, migratetype); 1398 spin_unlock(&zone->lock); 1399 if (!page) 1400 goto failed; 1401 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1402 } 1403 1404 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1405 zone_statistics(preferred_zone, zone, gfp_flags); 1406 local_irq_restore(flags); 1407 1408 VM_BUG_ON(bad_range(zone, page)); 1409 if (prep_new_page(page, order, gfp_flags)) 1410 goto again; 1411 return page; 1412 1413 failed: 1414 local_irq_restore(flags); 1415 return NULL; 1416 } 1417 1418 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1419 #define ALLOC_WMARK_MIN WMARK_MIN 1420 #define ALLOC_WMARK_LOW WMARK_LOW 1421 #define ALLOC_WMARK_HIGH WMARK_HIGH 1422 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1423 1424 /* Mask to get the watermark bits */ 1425 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1426 1427 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1428 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1429 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1430 1431 #ifdef CONFIG_FAIL_PAGE_ALLOC 1432 1433 static struct { 1434 struct fault_attr attr; 1435 1436 u32 ignore_gfp_highmem; 1437 u32 ignore_gfp_wait; 1438 u32 min_order; 1439 } fail_page_alloc = { 1440 .attr = FAULT_ATTR_INITIALIZER, 1441 .ignore_gfp_wait = 1, 1442 .ignore_gfp_highmem = 1, 1443 .min_order = 1, 1444 }; 1445 1446 static int __init setup_fail_page_alloc(char *str) 1447 { 1448 return setup_fault_attr(&fail_page_alloc.attr, str); 1449 } 1450 __setup("fail_page_alloc=", setup_fail_page_alloc); 1451 1452 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1453 { 1454 if (order < fail_page_alloc.min_order) 1455 return 0; 1456 if (gfp_mask & __GFP_NOFAIL) 1457 return 0; 1458 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1459 return 0; 1460 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1461 return 0; 1462 1463 return should_fail(&fail_page_alloc.attr, 1 << order); 1464 } 1465 1466 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1467 1468 static int __init fail_page_alloc_debugfs(void) 1469 { 1470 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1471 struct dentry *dir; 1472 1473 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1474 &fail_page_alloc.attr); 1475 if (IS_ERR(dir)) 1476 return PTR_ERR(dir); 1477 1478 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1479 &fail_page_alloc.ignore_gfp_wait)) 1480 goto fail; 1481 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1482 &fail_page_alloc.ignore_gfp_highmem)) 1483 goto fail; 1484 if (!debugfs_create_u32("min-order", mode, dir, 1485 &fail_page_alloc.min_order)) 1486 goto fail; 1487 1488 return 0; 1489 fail: 1490 debugfs_remove_recursive(dir); 1491 1492 return -ENOMEM; 1493 } 1494 1495 late_initcall(fail_page_alloc_debugfs); 1496 1497 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1498 1499 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1500 1501 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1502 { 1503 return 0; 1504 } 1505 1506 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1507 1508 /* 1509 * Return true if free pages are above 'mark'. This takes into account the order 1510 * of the allocation. 1511 */ 1512 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1513 int classzone_idx, int alloc_flags, long free_pages) 1514 { 1515 /* free_pages my go negative - that's OK */ 1516 long min = mark; 1517 int o; 1518 1519 free_pages -= (1 << order) - 1; 1520 if (alloc_flags & ALLOC_HIGH) 1521 min -= min / 2; 1522 if (alloc_flags & ALLOC_HARDER) 1523 min -= min / 4; 1524 1525 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1526 return false; 1527 for (o = 0; o < order; o++) { 1528 /* At the next order, this order's pages become unavailable */ 1529 free_pages -= z->free_area[o].nr_free << o; 1530 1531 /* Require fewer higher order pages to be free */ 1532 min >>= 1; 1533 1534 if (free_pages <= min) 1535 return false; 1536 } 1537 return true; 1538 } 1539 1540 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1541 int classzone_idx, int alloc_flags) 1542 { 1543 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1544 zone_page_state(z, NR_FREE_PAGES)); 1545 } 1546 1547 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1548 int classzone_idx, int alloc_flags) 1549 { 1550 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1551 1552 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1553 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1554 1555 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1556 free_pages); 1557 } 1558 1559 #ifdef CONFIG_NUMA 1560 /* 1561 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1562 * skip over zones that are not allowed by the cpuset, or that have 1563 * been recently (in last second) found to be nearly full. See further 1564 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1565 * that have to skip over a lot of full or unallowed zones. 1566 * 1567 * If the zonelist cache is present in the passed in zonelist, then 1568 * returns a pointer to the allowed node mask (either the current 1569 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1570 * 1571 * If the zonelist cache is not available for this zonelist, does 1572 * nothing and returns NULL. 1573 * 1574 * If the fullzones BITMAP in the zonelist cache is stale (more than 1575 * a second since last zap'd) then we zap it out (clear its bits.) 1576 * 1577 * We hold off even calling zlc_setup, until after we've checked the 1578 * first zone in the zonelist, on the theory that most allocations will 1579 * be satisfied from that first zone, so best to examine that zone as 1580 * quickly as we can. 1581 */ 1582 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1583 { 1584 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1585 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1586 1587 zlc = zonelist->zlcache_ptr; 1588 if (!zlc) 1589 return NULL; 1590 1591 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1592 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1593 zlc->last_full_zap = jiffies; 1594 } 1595 1596 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1597 &cpuset_current_mems_allowed : 1598 &node_states[N_HIGH_MEMORY]; 1599 return allowednodes; 1600 } 1601 1602 /* 1603 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1604 * if it is worth looking at further for free memory: 1605 * 1) Check that the zone isn't thought to be full (doesn't have its 1606 * bit set in the zonelist_cache fullzones BITMAP). 1607 * 2) Check that the zones node (obtained from the zonelist_cache 1608 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1609 * Return true (non-zero) if zone is worth looking at further, or 1610 * else return false (zero) if it is not. 1611 * 1612 * This check -ignores- the distinction between various watermarks, 1613 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1614 * found to be full for any variation of these watermarks, it will 1615 * be considered full for up to one second by all requests, unless 1616 * we are so low on memory on all allowed nodes that we are forced 1617 * into the second scan of the zonelist. 1618 * 1619 * In the second scan we ignore this zonelist cache and exactly 1620 * apply the watermarks to all zones, even it is slower to do so. 1621 * We are low on memory in the second scan, and should leave no stone 1622 * unturned looking for a free page. 1623 */ 1624 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1625 nodemask_t *allowednodes) 1626 { 1627 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1628 int i; /* index of *z in zonelist zones */ 1629 int n; /* node that zone *z is on */ 1630 1631 zlc = zonelist->zlcache_ptr; 1632 if (!zlc) 1633 return 1; 1634 1635 i = z - zonelist->_zonerefs; 1636 n = zlc->z_to_n[i]; 1637 1638 /* This zone is worth trying if it is allowed but not full */ 1639 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1640 } 1641 1642 /* 1643 * Given 'z' scanning a zonelist, set the corresponding bit in 1644 * zlc->fullzones, so that subsequent attempts to allocate a page 1645 * from that zone don't waste time re-examining it. 1646 */ 1647 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1648 { 1649 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1650 int i; /* index of *z in zonelist zones */ 1651 1652 zlc = zonelist->zlcache_ptr; 1653 if (!zlc) 1654 return; 1655 1656 i = z - zonelist->_zonerefs; 1657 1658 set_bit(i, zlc->fullzones); 1659 } 1660 1661 /* 1662 * clear all zones full, called after direct reclaim makes progress so that 1663 * a zone that was recently full is not skipped over for up to a second 1664 */ 1665 static void zlc_clear_zones_full(struct zonelist *zonelist) 1666 { 1667 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1668 1669 zlc = zonelist->zlcache_ptr; 1670 if (!zlc) 1671 return; 1672 1673 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1674 } 1675 1676 #else /* CONFIG_NUMA */ 1677 1678 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1679 { 1680 return NULL; 1681 } 1682 1683 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1684 nodemask_t *allowednodes) 1685 { 1686 return 1; 1687 } 1688 1689 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1690 { 1691 } 1692 1693 static void zlc_clear_zones_full(struct zonelist *zonelist) 1694 { 1695 } 1696 #endif /* CONFIG_NUMA */ 1697 1698 /* 1699 * get_page_from_freelist goes through the zonelist trying to allocate 1700 * a page. 1701 */ 1702 static struct page * 1703 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1704 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1705 struct zone *preferred_zone, int migratetype) 1706 { 1707 struct zoneref *z; 1708 struct page *page = NULL; 1709 int classzone_idx; 1710 struct zone *zone; 1711 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1712 int zlc_active = 0; /* set if using zonelist_cache */ 1713 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1714 1715 classzone_idx = zone_idx(preferred_zone); 1716 zonelist_scan: 1717 /* 1718 * Scan zonelist, looking for a zone with enough free. 1719 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1720 */ 1721 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1722 high_zoneidx, nodemask) { 1723 if (NUMA_BUILD && zlc_active && 1724 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1725 continue; 1726 if ((alloc_flags & ALLOC_CPUSET) && 1727 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1728 continue; 1729 /* 1730 * When allocating a page cache page for writing, we 1731 * want to get it from a zone that is within its dirty 1732 * limit, such that no single zone holds more than its 1733 * proportional share of globally allowed dirty pages. 1734 * The dirty limits take into account the zone's 1735 * lowmem reserves and high watermark so that kswapd 1736 * should be able to balance it without having to 1737 * write pages from its LRU list. 1738 * 1739 * This may look like it could increase pressure on 1740 * lower zones by failing allocations in higher zones 1741 * before they are full. But the pages that do spill 1742 * over are limited as the lower zones are protected 1743 * by this very same mechanism. It should not become 1744 * a practical burden to them. 1745 * 1746 * XXX: For now, allow allocations to potentially 1747 * exceed the per-zone dirty limit in the slowpath 1748 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1749 * which is important when on a NUMA setup the allowed 1750 * zones are together not big enough to reach the 1751 * global limit. The proper fix for these situations 1752 * will require awareness of zones in the 1753 * dirty-throttling and the flusher threads. 1754 */ 1755 if ((alloc_flags & ALLOC_WMARK_LOW) && 1756 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1757 goto this_zone_full; 1758 1759 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1760 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1761 unsigned long mark; 1762 int ret; 1763 1764 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1765 if (zone_watermark_ok(zone, order, mark, 1766 classzone_idx, alloc_flags)) 1767 goto try_this_zone; 1768 1769 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1770 /* 1771 * we do zlc_setup if there are multiple nodes 1772 * and before considering the first zone allowed 1773 * by the cpuset. 1774 */ 1775 allowednodes = zlc_setup(zonelist, alloc_flags); 1776 zlc_active = 1; 1777 did_zlc_setup = 1; 1778 } 1779 1780 if (zone_reclaim_mode == 0) 1781 goto this_zone_full; 1782 1783 /* 1784 * As we may have just activated ZLC, check if the first 1785 * eligible zone has failed zone_reclaim recently. 1786 */ 1787 if (NUMA_BUILD && zlc_active && 1788 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1789 continue; 1790 1791 ret = zone_reclaim(zone, gfp_mask, order); 1792 switch (ret) { 1793 case ZONE_RECLAIM_NOSCAN: 1794 /* did not scan */ 1795 continue; 1796 case ZONE_RECLAIM_FULL: 1797 /* scanned but unreclaimable */ 1798 continue; 1799 default: 1800 /* did we reclaim enough */ 1801 if (!zone_watermark_ok(zone, order, mark, 1802 classzone_idx, alloc_flags)) 1803 goto this_zone_full; 1804 } 1805 } 1806 1807 try_this_zone: 1808 page = buffered_rmqueue(preferred_zone, zone, order, 1809 gfp_mask, migratetype); 1810 if (page) 1811 break; 1812 this_zone_full: 1813 if (NUMA_BUILD) 1814 zlc_mark_zone_full(zonelist, z); 1815 } 1816 1817 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1818 /* Disable zlc cache for second zonelist scan */ 1819 zlc_active = 0; 1820 goto zonelist_scan; 1821 } 1822 return page; 1823 } 1824 1825 /* 1826 * Large machines with many possible nodes should not always dump per-node 1827 * meminfo in irq context. 1828 */ 1829 static inline bool should_suppress_show_mem(void) 1830 { 1831 bool ret = false; 1832 1833 #if NODES_SHIFT > 8 1834 ret = in_interrupt(); 1835 #endif 1836 return ret; 1837 } 1838 1839 static DEFINE_RATELIMIT_STATE(nopage_rs, 1840 DEFAULT_RATELIMIT_INTERVAL, 1841 DEFAULT_RATELIMIT_BURST); 1842 1843 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1844 { 1845 unsigned int filter = SHOW_MEM_FILTER_NODES; 1846 1847 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 1848 debug_guardpage_minorder() > 0) 1849 return; 1850 1851 /* 1852 * This documents exceptions given to allocations in certain 1853 * contexts that are allowed to allocate outside current's set 1854 * of allowed nodes. 1855 */ 1856 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1857 if (test_thread_flag(TIF_MEMDIE) || 1858 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1859 filter &= ~SHOW_MEM_FILTER_NODES; 1860 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1861 filter &= ~SHOW_MEM_FILTER_NODES; 1862 1863 if (fmt) { 1864 struct va_format vaf; 1865 va_list args; 1866 1867 va_start(args, fmt); 1868 1869 vaf.fmt = fmt; 1870 vaf.va = &args; 1871 1872 pr_warn("%pV", &vaf); 1873 1874 va_end(args); 1875 } 1876 1877 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 1878 current->comm, order, gfp_mask); 1879 1880 dump_stack(); 1881 if (!should_suppress_show_mem()) 1882 show_mem(filter); 1883 } 1884 1885 static inline int 1886 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1887 unsigned long did_some_progress, 1888 unsigned long pages_reclaimed) 1889 { 1890 /* Do not loop if specifically requested */ 1891 if (gfp_mask & __GFP_NORETRY) 1892 return 0; 1893 1894 /* Always retry if specifically requested */ 1895 if (gfp_mask & __GFP_NOFAIL) 1896 return 1; 1897 1898 /* 1899 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 1900 * making forward progress without invoking OOM. Suspend also disables 1901 * storage devices so kswapd will not help. Bail if we are suspending. 1902 */ 1903 if (!did_some_progress && pm_suspended_storage()) 1904 return 0; 1905 1906 /* 1907 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1908 * means __GFP_NOFAIL, but that may not be true in other 1909 * implementations. 1910 */ 1911 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1912 return 1; 1913 1914 /* 1915 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1916 * specified, then we retry until we no longer reclaim any pages 1917 * (above), or we've reclaimed an order of pages at least as 1918 * large as the allocation's order. In both cases, if the 1919 * allocation still fails, we stop retrying. 1920 */ 1921 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1922 return 1; 1923 1924 return 0; 1925 } 1926 1927 static inline struct page * 1928 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1929 struct zonelist *zonelist, enum zone_type high_zoneidx, 1930 nodemask_t *nodemask, struct zone *preferred_zone, 1931 int migratetype) 1932 { 1933 struct page *page; 1934 1935 /* Acquire the OOM killer lock for the zones in zonelist */ 1936 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1937 schedule_timeout_uninterruptible(1); 1938 return NULL; 1939 } 1940 1941 /* 1942 * Go through the zonelist yet one more time, keep very high watermark 1943 * here, this is only to catch a parallel oom killing, we must fail if 1944 * we're still under heavy pressure. 1945 */ 1946 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1947 order, zonelist, high_zoneidx, 1948 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1949 preferred_zone, migratetype); 1950 if (page) 1951 goto out; 1952 1953 if (!(gfp_mask & __GFP_NOFAIL)) { 1954 /* The OOM killer will not help higher order allocs */ 1955 if (order > PAGE_ALLOC_COSTLY_ORDER) 1956 goto out; 1957 /* The OOM killer does not needlessly kill tasks for lowmem */ 1958 if (high_zoneidx < ZONE_NORMAL) 1959 goto out; 1960 /* 1961 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1962 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1963 * The caller should handle page allocation failure by itself if 1964 * it specifies __GFP_THISNODE. 1965 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1966 */ 1967 if (gfp_mask & __GFP_THISNODE) 1968 goto out; 1969 } 1970 /* Exhausted what can be done so it's blamo time */ 1971 out_of_memory(zonelist, gfp_mask, order, nodemask); 1972 1973 out: 1974 clear_zonelist_oom(zonelist, gfp_mask); 1975 return page; 1976 } 1977 1978 #ifdef CONFIG_COMPACTION 1979 /* Try memory compaction for high-order allocations before reclaim */ 1980 static struct page * 1981 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1982 struct zonelist *zonelist, enum zone_type high_zoneidx, 1983 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1984 int migratetype, unsigned long *did_some_progress, 1985 bool sync_migration) 1986 { 1987 struct page *page; 1988 1989 if (!order || compaction_deferred(preferred_zone)) 1990 return NULL; 1991 1992 current->flags |= PF_MEMALLOC; 1993 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1994 nodemask, sync_migration); 1995 current->flags &= ~PF_MEMALLOC; 1996 if (*did_some_progress != COMPACT_SKIPPED) { 1997 1998 /* Page migration frees to the PCP lists but we want merging */ 1999 drain_pages(get_cpu()); 2000 put_cpu(); 2001 2002 page = get_page_from_freelist(gfp_mask, nodemask, 2003 order, zonelist, high_zoneidx, 2004 alloc_flags, preferred_zone, 2005 migratetype); 2006 if (page) { 2007 preferred_zone->compact_considered = 0; 2008 preferred_zone->compact_defer_shift = 0; 2009 count_vm_event(COMPACTSUCCESS); 2010 return page; 2011 } 2012 2013 /* 2014 * It's bad if compaction run occurs and fails. 2015 * The most likely reason is that pages exist, 2016 * but not enough to satisfy watermarks. 2017 */ 2018 count_vm_event(COMPACTFAIL); 2019 defer_compaction(preferred_zone); 2020 2021 cond_resched(); 2022 } 2023 2024 return NULL; 2025 } 2026 #else 2027 static inline struct page * 2028 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2029 struct zonelist *zonelist, enum zone_type high_zoneidx, 2030 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2031 int migratetype, unsigned long *did_some_progress, 2032 bool sync_migration) 2033 { 2034 return NULL; 2035 } 2036 #endif /* CONFIG_COMPACTION */ 2037 2038 /* The really slow allocator path where we enter direct reclaim */ 2039 static inline struct page * 2040 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2041 struct zonelist *zonelist, enum zone_type high_zoneidx, 2042 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2043 int migratetype, unsigned long *did_some_progress) 2044 { 2045 struct page *page = NULL; 2046 struct reclaim_state reclaim_state; 2047 bool drained = false; 2048 2049 cond_resched(); 2050 2051 /* We now go into synchronous reclaim */ 2052 cpuset_memory_pressure_bump(); 2053 current->flags |= PF_MEMALLOC; 2054 lockdep_set_current_reclaim_state(gfp_mask); 2055 reclaim_state.reclaimed_slab = 0; 2056 current->reclaim_state = &reclaim_state; 2057 2058 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2059 2060 current->reclaim_state = NULL; 2061 lockdep_clear_current_reclaim_state(); 2062 current->flags &= ~PF_MEMALLOC; 2063 2064 cond_resched(); 2065 2066 if (unlikely(!(*did_some_progress))) 2067 return NULL; 2068 2069 /* After successful reclaim, reconsider all zones for allocation */ 2070 if (NUMA_BUILD) 2071 zlc_clear_zones_full(zonelist); 2072 2073 retry: 2074 page = get_page_from_freelist(gfp_mask, nodemask, order, 2075 zonelist, high_zoneidx, 2076 alloc_flags, preferred_zone, 2077 migratetype); 2078 2079 /* 2080 * If an allocation failed after direct reclaim, it could be because 2081 * pages are pinned on the per-cpu lists. Drain them and try again 2082 */ 2083 if (!page && !drained) { 2084 drain_all_pages(); 2085 drained = true; 2086 goto retry; 2087 } 2088 2089 return page; 2090 } 2091 2092 /* 2093 * This is called in the allocator slow-path if the allocation request is of 2094 * sufficient urgency to ignore watermarks and take other desperate measures 2095 */ 2096 static inline struct page * 2097 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2098 struct zonelist *zonelist, enum zone_type high_zoneidx, 2099 nodemask_t *nodemask, struct zone *preferred_zone, 2100 int migratetype) 2101 { 2102 struct page *page; 2103 2104 do { 2105 page = get_page_from_freelist(gfp_mask, nodemask, order, 2106 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2107 preferred_zone, migratetype); 2108 2109 if (!page && gfp_mask & __GFP_NOFAIL) 2110 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2111 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2112 2113 return page; 2114 } 2115 2116 static inline 2117 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2118 enum zone_type high_zoneidx, 2119 enum zone_type classzone_idx) 2120 { 2121 struct zoneref *z; 2122 struct zone *zone; 2123 2124 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2125 wakeup_kswapd(zone, order, classzone_idx); 2126 } 2127 2128 static inline int 2129 gfp_to_alloc_flags(gfp_t gfp_mask) 2130 { 2131 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2132 const gfp_t wait = gfp_mask & __GFP_WAIT; 2133 2134 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2135 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2136 2137 /* 2138 * The caller may dip into page reserves a bit more if the caller 2139 * cannot run direct reclaim, or if the caller has realtime scheduling 2140 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2141 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2142 */ 2143 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2144 2145 if (!wait) { 2146 /* 2147 * Not worth trying to allocate harder for 2148 * __GFP_NOMEMALLOC even if it can't schedule. 2149 */ 2150 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2151 alloc_flags |= ALLOC_HARDER; 2152 /* 2153 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2154 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2155 */ 2156 alloc_flags &= ~ALLOC_CPUSET; 2157 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2158 alloc_flags |= ALLOC_HARDER; 2159 2160 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2161 if (!in_interrupt() && 2162 ((current->flags & PF_MEMALLOC) || 2163 unlikely(test_thread_flag(TIF_MEMDIE)))) 2164 alloc_flags |= ALLOC_NO_WATERMARKS; 2165 } 2166 2167 return alloc_flags; 2168 } 2169 2170 static inline struct page * 2171 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2172 struct zonelist *zonelist, enum zone_type high_zoneidx, 2173 nodemask_t *nodemask, struct zone *preferred_zone, 2174 int migratetype) 2175 { 2176 const gfp_t wait = gfp_mask & __GFP_WAIT; 2177 struct page *page = NULL; 2178 int alloc_flags; 2179 unsigned long pages_reclaimed = 0; 2180 unsigned long did_some_progress; 2181 bool sync_migration = false; 2182 2183 /* 2184 * In the slowpath, we sanity check order to avoid ever trying to 2185 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2186 * be using allocators in order of preference for an area that is 2187 * too large. 2188 */ 2189 if (order >= MAX_ORDER) { 2190 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2191 return NULL; 2192 } 2193 2194 /* 2195 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2196 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2197 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2198 * using a larger set of nodes after it has established that the 2199 * allowed per node queues are empty and that nodes are 2200 * over allocated. 2201 */ 2202 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2203 goto nopage; 2204 2205 restart: 2206 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2207 wake_all_kswapd(order, zonelist, high_zoneidx, 2208 zone_idx(preferred_zone)); 2209 2210 /* 2211 * OK, we're below the kswapd watermark and have kicked background 2212 * reclaim. Now things get more complex, so set up alloc_flags according 2213 * to how we want to proceed. 2214 */ 2215 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2216 2217 /* 2218 * Find the true preferred zone if the allocation is unconstrained by 2219 * cpusets. 2220 */ 2221 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2222 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2223 &preferred_zone); 2224 2225 rebalance: 2226 /* This is the last chance, in general, before the goto nopage. */ 2227 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2228 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2229 preferred_zone, migratetype); 2230 if (page) 2231 goto got_pg; 2232 2233 /* Allocate without watermarks if the context allows */ 2234 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2235 page = __alloc_pages_high_priority(gfp_mask, order, 2236 zonelist, high_zoneidx, nodemask, 2237 preferred_zone, migratetype); 2238 if (page) 2239 goto got_pg; 2240 } 2241 2242 /* Atomic allocations - we can't balance anything */ 2243 if (!wait) 2244 goto nopage; 2245 2246 /* Avoid recursion of direct reclaim */ 2247 if (current->flags & PF_MEMALLOC) 2248 goto nopage; 2249 2250 /* Avoid allocations with no watermarks from looping endlessly */ 2251 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2252 goto nopage; 2253 2254 /* 2255 * Try direct compaction. The first pass is asynchronous. Subsequent 2256 * attempts after direct reclaim are synchronous 2257 */ 2258 page = __alloc_pages_direct_compact(gfp_mask, order, 2259 zonelist, high_zoneidx, 2260 nodemask, 2261 alloc_flags, preferred_zone, 2262 migratetype, &did_some_progress, 2263 sync_migration); 2264 if (page) 2265 goto got_pg; 2266 sync_migration = true; 2267 2268 /* Try direct reclaim and then allocating */ 2269 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2270 zonelist, high_zoneidx, 2271 nodemask, 2272 alloc_flags, preferred_zone, 2273 migratetype, &did_some_progress); 2274 if (page) 2275 goto got_pg; 2276 2277 /* 2278 * If we failed to make any progress reclaiming, then we are 2279 * running out of options and have to consider going OOM 2280 */ 2281 if (!did_some_progress) { 2282 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2283 if (oom_killer_disabled) 2284 goto nopage; 2285 page = __alloc_pages_may_oom(gfp_mask, order, 2286 zonelist, high_zoneidx, 2287 nodemask, preferred_zone, 2288 migratetype); 2289 if (page) 2290 goto got_pg; 2291 2292 if (!(gfp_mask & __GFP_NOFAIL)) { 2293 /* 2294 * The oom killer is not called for high-order 2295 * allocations that may fail, so if no progress 2296 * is being made, there are no other options and 2297 * retrying is unlikely to help. 2298 */ 2299 if (order > PAGE_ALLOC_COSTLY_ORDER) 2300 goto nopage; 2301 /* 2302 * The oom killer is not called for lowmem 2303 * allocations to prevent needlessly killing 2304 * innocent tasks. 2305 */ 2306 if (high_zoneidx < ZONE_NORMAL) 2307 goto nopage; 2308 } 2309 2310 goto restart; 2311 } 2312 } 2313 2314 /* Check if we should retry the allocation */ 2315 pages_reclaimed += did_some_progress; 2316 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2317 pages_reclaimed)) { 2318 /* Wait for some write requests to complete then retry */ 2319 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2320 goto rebalance; 2321 } else { 2322 /* 2323 * High-order allocations do not necessarily loop after 2324 * direct reclaim and reclaim/compaction depends on compaction 2325 * being called after reclaim so call directly if necessary 2326 */ 2327 page = __alloc_pages_direct_compact(gfp_mask, order, 2328 zonelist, high_zoneidx, 2329 nodemask, 2330 alloc_flags, preferred_zone, 2331 migratetype, &did_some_progress, 2332 sync_migration); 2333 if (page) 2334 goto got_pg; 2335 } 2336 2337 nopage: 2338 warn_alloc_failed(gfp_mask, order, NULL); 2339 return page; 2340 got_pg: 2341 if (kmemcheck_enabled) 2342 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2343 return page; 2344 2345 } 2346 2347 /* 2348 * This is the 'heart' of the zoned buddy allocator. 2349 */ 2350 struct page * 2351 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2352 struct zonelist *zonelist, nodemask_t *nodemask) 2353 { 2354 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2355 struct zone *preferred_zone; 2356 struct page *page; 2357 int migratetype = allocflags_to_migratetype(gfp_mask); 2358 2359 gfp_mask &= gfp_allowed_mask; 2360 2361 lockdep_trace_alloc(gfp_mask); 2362 2363 might_sleep_if(gfp_mask & __GFP_WAIT); 2364 2365 if (should_fail_alloc_page(gfp_mask, order)) 2366 return NULL; 2367 2368 /* 2369 * Check the zones suitable for the gfp_mask contain at least one 2370 * valid zone. It's possible to have an empty zonelist as a result 2371 * of GFP_THISNODE and a memoryless node 2372 */ 2373 if (unlikely(!zonelist->_zonerefs->zone)) 2374 return NULL; 2375 2376 get_mems_allowed(); 2377 /* The preferred zone is used for statistics later */ 2378 first_zones_zonelist(zonelist, high_zoneidx, 2379 nodemask ? : &cpuset_current_mems_allowed, 2380 &preferred_zone); 2381 if (!preferred_zone) { 2382 put_mems_allowed(); 2383 return NULL; 2384 } 2385 2386 /* First allocation attempt */ 2387 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2388 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2389 preferred_zone, migratetype); 2390 if (unlikely(!page)) 2391 page = __alloc_pages_slowpath(gfp_mask, order, 2392 zonelist, high_zoneidx, nodemask, 2393 preferred_zone, migratetype); 2394 put_mems_allowed(); 2395 2396 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2397 return page; 2398 } 2399 EXPORT_SYMBOL(__alloc_pages_nodemask); 2400 2401 /* 2402 * Common helper functions. 2403 */ 2404 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2405 { 2406 struct page *page; 2407 2408 /* 2409 * __get_free_pages() returns a 32-bit address, which cannot represent 2410 * a highmem page 2411 */ 2412 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2413 2414 page = alloc_pages(gfp_mask, order); 2415 if (!page) 2416 return 0; 2417 return (unsigned long) page_address(page); 2418 } 2419 EXPORT_SYMBOL(__get_free_pages); 2420 2421 unsigned long get_zeroed_page(gfp_t gfp_mask) 2422 { 2423 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2424 } 2425 EXPORT_SYMBOL(get_zeroed_page); 2426 2427 void __free_pages(struct page *page, unsigned int order) 2428 { 2429 if (put_page_testzero(page)) { 2430 if (order == 0) 2431 free_hot_cold_page(page, 0); 2432 else 2433 __free_pages_ok(page, order); 2434 } 2435 } 2436 2437 EXPORT_SYMBOL(__free_pages); 2438 2439 void free_pages(unsigned long addr, unsigned int order) 2440 { 2441 if (addr != 0) { 2442 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2443 __free_pages(virt_to_page((void *)addr), order); 2444 } 2445 } 2446 2447 EXPORT_SYMBOL(free_pages); 2448 2449 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2450 { 2451 if (addr) { 2452 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2453 unsigned long used = addr + PAGE_ALIGN(size); 2454 2455 split_page(virt_to_page((void *)addr), order); 2456 while (used < alloc_end) { 2457 free_page(used); 2458 used += PAGE_SIZE; 2459 } 2460 } 2461 return (void *)addr; 2462 } 2463 2464 /** 2465 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2466 * @size: the number of bytes to allocate 2467 * @gfp_mask: GFP flags for the allocation 2468 * 2469 * This function is similar to alloc_pages(), except that it allocates the 2470 * minimum number of pages to satisfy the request. alloc_pages() can only 2471 * allocate memory in power-of-two pages. 2472 * 2473 * This function is also limited by MAX_ORDER. 2474 * 2475 * Memory allocated by this function must be released by free_pages_exact(). 2476 */ 2477 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2478 { 2479 unsigned int order = get_order(size); 2480 unsigned long addr; 2481 2482 addr = __get_free_pages(gfp_mask, order); 2483 return make_alloc_exact(addr, order, size); 2484 } 2485 EXPORT_SYMBOL(alloc_pages_exact); 2486 2487 /** 2488 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2489 * pages on a node. 2490 * @nid: the preferred node ID where memory should be allocated 2491 * @size: the number of bytes to allocate 2492 * @gfp_mask: GFP flags for the allocation 2493 * 2494 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2495 * back. 2496 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2497 * but is not exact. 2498 */ 2499 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2500 { 2501 unsigned order = get_order(size); 2502 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2503 if (!p) 2504 return NULL; 2505 return make_alloc_exact((unsigned long)page_address(p), order, size); 2506 } 2507 EXPORT_SYMBOL(alloc_pages_exact_nid); 2508 2509 /** 2510 * free_pages_exact - release memory allocated via alloc_pages_exact() 2511 * @virt: the value returned by alloc_pages_exact. 2512 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2513 * 2514 * Release the memory allocated by a previous call to alloc_pages_exact. 2515 */ 2516 void free_pages_exact(void *virt, size_t size) 2517 { 2518 unsigned long addr = (unsigned long)virt; 2519 unsigned long end = addr + PAGE_ALIGN(size); 2520 2521 while (addr < end) { 2522 free_page(addr); 2523 addr += PAGE_SIZE; 2524 } 2525 } 2526 EXPORT_SYMBOL(free_pages_exact); 2527 2528 static unsigned int nr_free_zone_pages(int offset) 2529 { 2530 struct zoneref *z; 2531 struct zone *zone; 2532 2533 /* Just pick one node, since fallback list is circular */ 2534 unsigned int sum = 0; 2535 2536 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2537 2538 for_each_zone_zonelist(zone, z, zonelist, offset) { 2539 unsigned long size = zone->present_pages; 2540 unsigned long high = high_wmark_pages(zone); 2541 if (size > high) 2542 sum += size - high; 2543 } 2544 2545 return sum; 2546 } 2547 2548 /* 2549 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2550 */ 2551 unsigned int nr_free_buffer_pages(void) 2552 { 2553 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2554 } 2555 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2556 2557 /* 2558 * Amount of free RAM allocatable within all zones 2559 */ 2560 unsigned int nr_free_pagecache_pages(void) 2561 { 2562 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2563 } 2564 2565 static inline void show_node(struct zone *zone) 2566 { 2567 if (NUMA_BUILD) 2568 printk("Node %d ", zone_to_nid(zone)); 2569 } 2570 2571 void si_meminfo(struct sysinfo *val) 2572 { 2573 val->totalram = totalram_pages; 2574 val->sharedram = 0; 2575 val->freeram = global_page_state(NR_FREE_PAGES); 2576 val->bufferram = nr_blockdev_pages(); 2577 val->totalhigh = totalhigh_pages; 2578 val->freehigh = nr_free_highpages(); 2579 val->mem_unit = PAGE_SIZE; 2580 } 2581 2582 EXPORT_SYMBOL(si_meminfo); 2583 2584 #ifdef CONFIG_NUMA 2585 void si_meminfo_node(struct sysinfo *val, int nid) 2586 { 2587 pg_data_t *pgdat = NODE_DATA(nid); 2588 2589 val->totalram = pgdat->node_present_pages; 2590 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2591 #ifdef CONFIG_HIGHMEM 2592 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2593 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2594 NR_FREE_PAGES); 2595 #else 2596 val->totalhigh = 0; 2597 val->freehigh = 0; 2598 #endif 2599 val->mem_unit = PAGE_SIZE; 2600 } 2601 #endif 2602 2603 /* 2604 * Determine whether the node should be displayed or not, depending on whether 2605 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2606 */ 2607 bool skip_free_areas_node(unsigned int flags, int nid) 2608 { 2609 bool ret = false; 2610 2611 if (!(flags & SHOW_MEM_FILTER_NODES)) 2612 goto out; 2613 2614 get_mems_allowed(); 2615 ret = !node_isset(nid, cpuset_current_mems_allowed); 2616 put_mems_allowed(); 2617 out: 2618 return ret; 2619 } 2620 2621 #define K(x) ((x) << (PAGE_SHIFT-10)) 2622 2623 /* 2624 * Show free area list (used inside shift_scroll-lock stuff) 2625 * We also calculate the percentage fragmentation. We do this by counting the 2626 * memory on each free list with the exception of the first item on the list. 2627 * Suppresses nodes that are not allowed by current's cpuset if 2628 * SHOW_MEM_FILTER_NODES is passed. 2629 */ 2630 void show_free_areas(unsigned int filter) 2631 { 2632 int cpu; 2633 struct zone *zone; 2634 2635 for_each_populated_zone(zone) { 2636 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2637 continue; 2638 show_node(zone); 2639 printk("%s per-cpu:\n", zone->name); 2640 2641 for_each_online_cpu(cpu) { 2642 struct per_cpu_pageset *pageset; 2643 2644 pageset = per_cpu_ptr(zone->pageset, cpu); 2645 2646 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2647 cpu, pageset->pcp.high, 2648 pageset->pcp.batch, pageset->pcp.count); 2649 } 2650 } 2651 2652 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2653 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2654 " unevictable:%lu" 2655 " dirty:%lu writeback:%lu unstable:%lu\n" 2656 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2657 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2658 global_page_state(NR_ACTIVE_ANON), 2659 global_page_state(NR_INACTIVE_ANON), 2660 global_page_state(NR_ISOLATED_ANON), 2661 global_page_state(NR_ACTIVE_FILE), 2662 global_page_state(NR_INACTIVE_FILE), 2663 global_page_state(NR_ISOLATED_FILE), 2664 global_page_state(NR_UNEVICTABLE), 2665 global_page_state(NR_FILE_DIRTY), 2666 global_page_state(NR_WRITEBACK), 2667 global_page_state(NR_UNSTABLE_NFS), 2668 global_page_state(NR_FREE_PAGES), 2669 global_page_state(NR_SLAB_RECLAIMABLE), 2670 global_page_state(NR_SLAB_UNRECLAIMABLE), 2671 global_page_state(NR_FILE_MAPPED), 2672 global_page_state(NR_SHMEM), 2673 global_page_state(NR_PAGETABLE), 2674 global_page_state(NR_BOUNCE)); 2675 2676 for_each_populated_zone(zone) { 2677 int i; 2678 2679 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2680 continue; 2681 show_node(zone); 2682 printk("%s" 2683 " free:%lukB" 2684 " min:%lukB" 2685 " low:%lukB" 2686 " high:%lukB" 2687 " active_anon:%lukB" 2688 " inactive_anon:%lukB" 2689 " active_file:%lukB" 2690 " inactive_file:%lukB" 2691 " unevictable:%lukB" 2692 " isolated(anon):%lukB" 2693 " isolated(file):%lukB" 2694 " present:%lukB" 2695 " mlocked:%lukB" 2696 " dirty:%lukB" 2697 " writeback:%lukB" 2698 " mapped:%lukB" 2699 " shmem:%lukB" 2700 " slab_reclaimable:%lukB" 2701 " slab_unreclaimable:%lukB" 2702 " kernel_stack:%lukB" 2703 " pagetables:%lukB" 2704 " unstable:%lukB" 2705 " bounce:%lukB" 2706 " writeback_tmp:%lukB" 2707 " pages_scanned:%lu" 2708 " all_unreclaimable? %s" 2709 "\n", 2710 zone->name, 2711 K(zone_page_state(zone, NR_FREE_PAGES)), 2712 K(min_wmark_pages(zone)), 2713 K(low_wmark_pages(zone)), 2714 K(high_wmark_pages(zone)), 2715 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2716 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2717 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2718 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2719 K(zone_page_state(zone, NR_UNEVICTABLE)), 2720 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2721 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2722 K(zone->present_pages), 2723 K(zone_page_state(zone, NR_MLOCK)), 2724 K(zone_page_state(zone, NR_FILE_DIRTY)), 2725 K(zone_page_state(zone, NR_WRITEBACK)), 2726 K(zone_page_state(zone, NR_FILE_MAPPED)), 2727 K(zone_page_state(zone, NR_SHMEM)), 2728 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2729 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2730 zone_page_state(zone, NR_KERNEL_STACK) * 2731 THREAD_SIZE / 1024, 2732 K(zone_page_state(zone, NR_PAGETABLE)), 2733 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2734 K(zone_page_state(zone, NR_BOUNCE)), 2735 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2736 zone->pages_scanned, 2737 (zone->all_unreclaimable ? "yes" : "no") 2738 ); 2739 printk("lowmem_reserve[]:"); 2740 for (i = 0; i < MAX_NR_ZONES; i++) 2741 printk(" %lu", zone->lowmem_reserve[i]); 2742 printk("\n"); 2743 } 2744 2745 for_each_populated_zone(zone) { 2746 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2747 2748 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2749 continue; 2750 show_node(zone); 2751 printk("%s: ", zone->name); 2752 2753 spin_lock_irqsave(&zone->lock, flags); 2754 for (order = 0; order < MAX_ORDER; order++) { 2755 nr[order] = zone->free_area[order].nr_free; 2756 total += nr[order] << order; 2757 } 2758 spin_unlock_irqrestore(&zone->lock, flags); 2759 for (order = 0; order < MAX_ORDER; order++) 2760 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2761 printk("= %lukB\n", K(total)); 2762 } 2763 2764 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2765 2766 show_swap_cache_info(); 2767 } 2768 2769 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2770 { 2771 zoneref->zone = zone; 2772 zoneref->zone_idx = zone_idx(zone); 2773 } 2774 2775 /* 2776 * Builds allocation fallback zone lists. 2777 * 2778 * Add all populated zones of a node to the zonelist. 2779 */ 2780 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2781 int nr_zones, enum zone_type zone_type) 2782 { 2783 struct zone *zone; 2784 2785 BUG_ON(zone_type >= MAX_NR_ZONES); 2786 zone_type++; 2787 2788 do { 2789 zone_type--; 2790 zone = pgdat->node_zones + zone_type; 2791 if (populated_zone(zone)) { 2792 zoneref_set_zone(zone, 2793 &zonelist->_zonerefs[nr_zones++]); 2794 check_highest_zone(zone_type); 2795 } 2796 2797 } while (zone_type); 2798 return nr_zones; 2799 } 2800 2801 2802 /* 2803 * zonelist_order: 2804 * 0 = automatic detection of better ordering. 2805 * 1 = order by ([node] distance, -zonetype) 2806 * 2 = order by (-zonetype, [node] distance) 2807 * 2808 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2809 * the same zonelist. So only NUMA can configure this param. 2810 */ 2811 #define ZONELIST_ORDER_DEFAULT 0 2812 #define ZONELIST_ORDER_NODE 1 2813 #define ZONELIST_ORDER_ZONE 2 2814 2815 /* zonelist order in the kernel. 2816 * set_zonelist_order() will set this to NODE or ZONE. 2817 */ 2818 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2819 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2820 2821 2822 #ifdef CONFIG_NUMA 2823 /* The value user specified ....changed by config */ 2824 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2825 /* string for sysctl */ 2826 #define NUMA_ZONELIST_ORDER_LEN 16 2827 char numa_zonelist_order[16] = "default"; 2828 2829 /* 2830 * interface for configure zonelist ordering. 2831 * command line option "numa_zonelist_order" 2832 * = "[dD]efault - default, automatic configuration. 2833 * = "[nN]ode - order by node locality, then by zone within node 2834 * = "[zZ]one - order by zone, then by locality within zone 2835 */ 2836 2837 static int __parse_numa_zonelist_order(char *s) 2838 { 2839 if (*s == 'd' || *s == 'D') { 2840 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2841 } else if (*s == 'n' || *s == 'N') { 2842 user_zonelist_order = ZONELIST_ORDER_NODE; 2843 } else if (*s == 'z' || *s == 'Z') { 2844 user_zonelist_order = ZONELIST_ORDER_ZONE; 2845 } else { 2846 printk(KERN_WARNING 2847 "Ignoring invalid numa_zonelist_order value: " 2848 "%s\n", s); 2849 return -EINVAL; 2850 } 2851 return 0; 2852 } 2853 2854 static __init int setup_numa_zonelist_order(char *s) 2855 { 2856 int ret; 2857 2858 if (!s) 2859 return 0; 2860 2861 ret = __parse_numa_zonelist_order(s); 2862 if (ret == 0) 2863 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2864 2865 return ret; 2866 } 2867 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2868 2869 /* 2870 * sysctl handler for numa_zonelist_order 2871 */ 2872 int numa_zonelist_order_handler(ctl_table *table, int write, 2873 void __user *buffer, size_t *length, 2874 loff_t *ppos) 2875 { 2876 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2877 int ret; 2878 static DEFINE_MUTEX(zl_order_mutex); 2879 2880 mutex_lock(&zl_order_mutex); 2881 if (write) 2882 strcpy(saved_string, (char*)table->data); 2883 ret = proc_dostring(table, write, buffer, length, ppos); 2884 if (ret) 2885 goto out; 2886 if (write) { 2887 int oldval = user_zonelist_order; 2888 if (__parse_numa_zonelist_order((char*)table->data)) { 2889 /* 2890 * bogus value. restore saved string 2891 */ 2892 strncpy((char*)table->data, saved_string, 2893 NUMA_ZONELIST_ORDER_LEN); 2894 user_zonelist_order = oldval; 2895 } else if (oldval != user_zonelist_order) { 2896 mutex_lock(&zonelists_mutex); 2897 build_all_zonelists(NULL); 2898 mutex_unlock(&zonelists_mutex); 2899 } 2900 } 2901 out: 2902 mutex_unlock(&zl_order_mutex); 2903 return ret; 2904 } 2905 2906 2907 #define MAX_NODE_LOAD (nr_online_nodes) 2908 static int node_load[MAX_NUMNODES]; 2909 2910 /** 2911 * find_next_best_node - find the next node that should appear in a given node's fallback list 2912 * @node: node whose fallback list we're appending 2913 * @used_node_mask: nodemask_t of already used nodes 2914 * 2915 * We use a number of factors to determine which is the next node that should 2916 * appear on a given node's fallback list. The node should not have appeared 2917 * already in @node's fallback list, and it should be the next closest node 2918 * according to the distance array (which contains arbitrary distance values 2919 * from each node to each node in the system), and should also prefer nodes 2920 * with no CPUs, since presumably they'll have very little allocation pressure 2921 * on them otherwise. 2922 * It returns -1 if no node is found. 2923 */ 2924 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2925 { 2926 int n, val; 2927 int min_val = INT_MAX; 2928 int best_node = -1; 2929 const struct cpumask *tmp = cpumask_of_node(0); 2930 2931 /* Use the local node if we haven't already */ 2932 if (!node_isset(node, *used_node_mask)) { 2933 node_set(node, *used_node_mask); 2934 return node; 2935 } 2936 2937 for_each_node_state(n, N_HIGH_MEMORY) { 2938 2939 /* Don't want a node to appear more than once */ 2940 if (node_isset(n, *used_node_mask)) 2941 continue; 2942 2943 /* Use the distance array to find the distance */ 2944 val = node_distance(node, n); 2945 2946 /* Penalize nodes under us ("prefer the next node") */ 2947 val += (n < node); 2948 2949 /* Give preference to headless and unused nodes */ 2950 tmp = cpumask_of_node(n); 2951 if (!cpumask_empty(tmp)) 2952 val += PENALTY_FOR_NODE_WITH_CPUS; 2953 2954 /* Slight preference for less loaded node */ 2955 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2956 val += node_load[n]; 2957 2958 if (val < min_val) { 2959 min_val = val; 2960 best_node = n; 2961 } 2962 } 2963 2964 if (best_node >= 0) 2965 node_set(best_node, *used_node_mask); 2966 2967 return best_node; 2968 } 2969 2970 2971 /* 2972 * Build zonelists ordered by node and zones within node. 2973 * This results in maximum locality--normal zone overflows into local 2974 * DMA zone, if any--but risks exhausting DMA zone. 2975 */ 2976 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2977 { 2978 int j; 2979 struct zonelist *zonelist; 2980 2981 zonelist = &pgdat->node_zonelists[0]; 2982 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2983 ; 2984 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2985 MAX_NR_ZONES - 1); 2986 zonelist->_zonerefs[j].zone = NULL; 2987 zonelist->_zonerefs[j].zone_idx = 0; 2988 } 2989 2990 /* 2991 * Build gfp_thisnode zonelists 2992 */ 2993 static void build_thisnode_zonelists(pg_data_t *pgdat) 2994 { 2995 int j; 2996 struct zonelist *zonelist; 2997 2998 zonelist = &pgdat->node_zonelists[1]; 2999 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3000 zonelist->_zonerefs[j].zone = NULL; 3001 zonelist->_zonerefs[j].zone_idx = 0; 3002 } 3003 3004 /* 3005 * Build zonelists ordered by zone and nodes within zones. 3006 * This results in conserving DMA zone[s] until all Normal memory is 3007 * exhausted, but results in overflowing to remote node while memory 3008 * may still exist in local DMA zone. 3009 */ 3010 static int node_order[MAX_NUMNODES]; 3011 3012 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3013 { 3014 int pos, j, node; 3015 int zone_type; /* needs to be signed */ 3016 struct zone *z; 3017 struct zonelist *zonelist; 3018 3019 zonelist = &pgdat->node_zonelists[0]; 3020 pos = 0; 3021 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3022 for (j = 0; j < nr_nodes; j++) { 3023 node = node_order[j]; 3024 z = &NODE_DATA(node)->node_zones[zone_type]; 3025 if (populated_zone(z)) { 3026 zoneref_set_zone(z, 3027 &zonelist->_zonerefs[pos++]); 3028 check_highest_zone(zone_type); 3029 } 3030 } 3031 } 3032 zonelist->_zonerefs[pos].zone = NULL; 3033 zonelist->_zonerefs[pos].zone_idx = 0; 3034 } 3035 3036 static int default_zonelist_order(void) 3037 { 3038 int nid, zone_type; 3039 unsigned long low_kmem_size,total_size; 3040 struct zone *z; 3041 int average_size; 3042 /* 3043 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3044 * If they are really small and used heavily, the system can fall 3045 * into OOM very easily. 3046 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3047 */ 3048 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3049 low_kmem_size = 0; 3050 total_size = 0; 3051 for_each_online_node(nid) { 3052 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3053 z = &NODE_DATA(nid)->node_zones[zone_type]; 3054 if (populated_zone(z)) { 3055 if (zone_type < ZONE_NORMAL) 3056 low_kmem_size += z->present_pages; 3057 total_size += z->present_pages; 3058 } else if (zone_type == ZONE_NORMAL) { 3059 /* 3060 * If any node has only lowmem, then node order 3061 * is preferred to allow kernel allocations 3062 * locally; otherwise, they can easily infringe 3063 * on other nodes when there is an abundance of 3064 * lowmem available to allocate from. 3065 */ 3066 return ZONELIST_ORDER_NODE; 3067 } 3068 } 3069 } 3070 if (!low_kmem_size || /* there are no DMA area. */ 3071 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3072 return ZONELIST_ORDER_NODE; 3073 /* 3074 * look into each node's config. 3075 * If there is a node whose DMA/DMA32 memory is very big area on 3076 * local memory, NODE_ORDER may be suitable. 3077 */ 3078 average_size = total_size / 3079 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 3080 for_each_online_node(nid) { 3081 low_kmem_size = 0; 3082 total_size = 0; 3083 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3084 z = &NODE_DATA(nid)->node_zones[zone_type]; 3085 if (populated_zone(z)) { 3086 if (zone_type < ZONE_NORMAL) 3087 low_kmem_size += z->present_pages; 3088 total_size += z->present_pages; 3089 } 3090 } 3091 if (low_kmem_size && 3092 total_size > average_size && /* ignore small node */ 3093 low_kmem_size > total_size * 70/100) 3094 return ZONELIST_ORDER_NODE; 3095 } 3096 return ZONELIST_ORDER_ZONE; 3097 } 3098 3099 static void set_zonelist_order(void) 3100 { 3101 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3102 current_zonelist_order = default_zonelist_order(); 3103 else 3104 current_zonelist_order = user_zonelist_order; 3105 } 3106 3107 static void build_zonelists(pg_data_t *pgdat) 3108 { 3109 int j, node, load; 3110 enum zone_type i; 3111 nodemask_t used_mask; 3112 int local_node, prev_node; 3113 struct zonelist *zonelist; 3114 int order = current_zonelist_order; 3115 3116 /* initialize zonelists */ 3117 for (i = 0; i < MAX_ZONELISTS; i++) { 3118 zonelist = pgdat->node_zonelists + i; 3119 zonelist->_zonerefs[0].zone = NULL; 3120 zonelist->_zonerefs[0].zone_idx = 0; 3121 } 3122 3123 /* NUMA-aware ordering of nodes */ 3124 local_node = pgdat->node_id; 3125 load = nr_online_nodes; 3126 prev_node = local_node; 3127 nodes_clear(used_mask); 3128 3129 memset(node_order, 0, sizeof(node_order)); 3130 j = 0; 3131 3132 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3133 int distance = node_distance(local_node, node); 3134 3135 /* 3136 * If another node is sufficiently far away then it is better 3137 * to reclaim pages in a zone before going off node. 3138 */ 3139 if (distance > RECLAIM_DISTANCE) 3140 zone_reclaim_mode = 1; 3141 3142 /* 3143 * We don't want to pressure a particular node. 3144 * So adding penalty to the first node in same 3145 * distance group to make it round-robin. 3146 */ 3147 if (distance != node_distance(local_node, prev_node)) 3148 node_load[node] = load; 3149 3150 prev_node = node; 3151 load--; 3152 if (order == ZONELIST_ORDER_NODE) 3153 build_zonelists_in_node_order(pgdat, node); 3154 else 3155 node_order[j++] = node; /* remember order */ 3156 } 3157 3158 if (order == ZONELIST_ORDER_ZONE) { 3159 /* calculate node order -- i.e., DMA last! */ 3160 build_zonelists_in_zone_order(pgdat, j); 3161 } 3162 3163 build_thisnode_zonelists(pgdat); 3164 } 3165 3166 /* Construct the zonelist performance cache - see further mmzone.h */ 3167 static void build_zonelist_cache(pg_data_t *pgdat) 3168 { 3169 struct zonelist *zonelist; 3170 struct zonelist_cache *zlc; 3171 struct zoneref *z; 3172 3173 zonelist = &pgdat->node_zonelists[0]; 3174 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3175 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3176 for (z = zonelist->_zonerefs; z->zone; z++) 3177 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3178 } 3179 3180 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3181 /* 3182 * Return node id of node used for "local" allocations. 3183 * I.e., first node id of first zone in arg node's generic zonelist. 3184 * Used for initializing percpu 'numa_mem', which is used primarily 3185 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3186 */ 3187 int local_memory_node(int node) 3188 { 3189 struct zone *zone; 3190 3191 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3192 gfp_zone(GFP_KERNEL), 3193 NULL, 3194 &zone); 3195 return zone->node; 3196 } 3197 #endif 3198 3199 #else /* CONFIG_NUMA */ 3200 3201 static void set_zonelist_order(void) 3202 { 3203 current_zonelist_order = ZONELIST_ORDER_ZONE; 3204 } 3205 3206 static void build_zonelists(pg_data_t *pgdat) 3207 { 3208 int node, local_node; 3209 enum zone_type j; 3210 struct zonelist *zonelist; 3211 3212 local_node = pgdat->node_id; 3213 3214 zonelist = &pgdat->node_zonelists[0]; 3215 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3216 3217 /* 3218 * Now we build the zonelist so that it contains the zones 3219 * of all the other nodes. 3220 * We don't want to pressure a particular node, so when 3221 * building the zones for node N, we make sure that the 3222 * zones coming right after the local ones are those from 3223 * node N+1 (modulo N) 3224 */ 3225 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3226 if (!node_online(node)) 3227 continue; 3228 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3229 MAX_NR_ZONES - 1); 3230 } 3231 for (node = 0; node < local_node; node++) { 3232 if (!node_online(node)) 3233 continue; 3234 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3235 MAX_NR_ZONES - 1); 3236 } 3237 3238 zonelist->_zonerefs[j].zone = NULL; 3239 zonelist->_zonerefs[j].zone_idx = 0; 3240 } 3241 3242 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3243 static void build_zonelist_cache(pg_data_t *pgdat) 3244 { 3245 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3246 } 3247 3248 #endif /* CONFIG_NUMA */ 3249 3250 /* 3251 * Boot pageset table. One per cpu which is going to be used for all 3252 * zones and all nodes. The parameters will be set in such a way 3253 * that an item put on a list will immediately be handed over to 3254 * the buddy list. This is safe since pageset manipulation is done 3255 * with interrupts disabled. 3256 * 3257 * The boot_pagesets must be kept even after bootup is complete for 3258 * unused processors and/or zones. They do play a role for bootstrapping 3259 * hotplugged processors. 3260 * 3261 * zoneinfo_show() and maybe other functions do 3262 * not check if the processor is online before following the pageset pointer. 3263 * Other parts of the kernel may not check if the zone is available. 3264 */ 3265 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3266 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3267 static void setup_zone_pageset(struct zone *zone); 3268 3269 /* 3270 * Global mutex to protect against size modification of zonelists 3271 * as well as to serialize pageset setup for the new populated zone. 3272 */ 3273 DEFINE_MUTEX(zonelists_mutex); 3274 3275 /* return values int ....just for stop_machine() */ 3276 static __init_refok int __build_all_zonelists(void *data) 3277 { 3278 int nid; 3279 int cpu; 3280 3281 #ifdef CONFIG_NUMA 3282 memset(node_load, 0, sizeof(node_load)); 3283 #endif 3284 for_each_online_node(nid) { 3285 pg_data_t *pgdat = NODE_DATA(nid); 3286 3287 build_zonelists(pgdat); 3288 build_zonelist_cache(pgdat); 3289 } 3290 3291 /* 3292 * Initialize the boot_pagesets that are going to be used 3293 * for bootstrapping processors. The real pagesets for 3294 * each zone will be allocated later when the per cpu 3295 * allocator is available. 3296 * 3297 * boot_pagesets are used also for bootstrapping offline 3298 * cpus if the system is already booted because the pagesets 3299 * are needed to initialize allocators on a specific cpu too. 3300 * F.e. the percpu allocator needs the page allocator which 3301 * needs the percpu allocator in order to allocate its pagesets 3302 * (a chicken-egg dilemma). 3303 */ 3304 for_each_possible_cpu(cpu) { 3305 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3306 3307 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3308 /* 3309 * We now know the "local memory node" for each node-- 3310 * i.e., the node of the first zone in the generic zonelist. 3311 * Set up numa_mem percpu variable for on-line cpus. During 3312 * boot, only the boot cpu should be on-line; we'll init the 3313 * secondary cpus' numa_mem as they come on-line. During 3314 * node/memory hotplug, we'll fixup all on-line cpus. 3315 */ 3316 if (cpu_online(cpu)) 3317 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3318 #endif 3319 } 3320 3321 return 0; 3322 } 3323 3324 /* 3325 * Called with zonelists_mutex held always 3326 * unless system_state == SYSTEM_BOOTING. 3327 */ 3328 void __ref build_all_zonelists(void *data) 3329 { 3330 set_zonelist_order(); 3331 3332 if (system_state == SYSTEM_BOOTING) { 3333 __build_all_zonelists(NULL); 3334 mminit_verify_zonelist(); 3335 cpuset_init_current_mems_allowed(); 3336 } else { 3337 /* we have to stop all cpus to guarantee there is no user 3338 of zonelist */ 3339 #ifdef CONFIG_MEMORY_HOTPLUG 3340 if (data) 3341 setup_zone_pageset((struct zone *)data); 3342 #endif 3343 stop_machine(__build_all_zonelists, NULL, NULL); 3344 /* cpuset refresh routine should be here */ 3345 } 3346 vm_total_pages = nr_free_pagecache_pages(); 3347 /* 3348 * Disable grouping by mobility if the number of pages in the 3349 * system is too low to allow the mechanism to work. It would be 3350 * more accurate, but expensive to check per-zone. This check is 3351 * made on memory-hotadd so a system can start with mobility 3352 * disabled and enable it later 3353 */ 3354 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3355 page_group_by_mobility_disabled = 1; 3356 else 3357 page_group_by_mobility_disabled = 0; 3358 3359 printk("Built %i zonelists in %s order, mobility grouping %s. " 3360 "Total pages: %ld\n", 3361 nr_online_nodes, 3362 zonelist_order_name[current_zonelist_order], 3363 page_group_by_mobility_disabled ? "off" : "on", 3364 vm_total_pages); 3365 #ifdef CONFIG_NUMA 3366 printk("Policy zone: %s\n", zone_names[policy_zone]); 3367 #endif 3368 } 3369 3370 /* 3371 * Helper functions to size the waitqueue hash table. 3372 * Essentially these want to choose hash table sizes sufficiently 3373 * large so that collisions trying to wait on pages are rare. 3374 * But in fact, the number of active page waitqueues on typical 3375 * systems is ridiculously low, less than 200. So this is even 3376 * conservative, even though it seems large. 3377 * 3378 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3379 * waitqueues, i.e. the size of the waitq table given the number of pages. 3380 */ 3381 #define PAGES_PER_WAITQUEUE 256 3382 3383 #ifndef CONFIG_MEMORY_HOTPLUG 3384 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3385 { 3386 unsigned long size = 1; 3387 3388 pages /= PAGES_PER_WAITQUEUE; 3389 3390 while (size < pages) 3391 size <<= 1; 3392 3393 /* 3394 * Once we have dozens or even hundreds of threads sleeping 3395 * on IO we've got bigger problems than wait queue collision. 3396 * Limit the size of the wait table to a reasonable size. 3397 */ 3398 size = min(size, 4096UL); 3399 3400 return max(size, 4UL); 3401 } 3402 #else 3403 /* 3404 * A zone's size might be changed by hot-add, so it is not possible to determine 3405 * a suitable size for its wait_table. So we use the maximum size now. 3406 * 3407 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3408 * 3409 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3410 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3411 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3412 * 3413 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3414 * or more by the traditional way. (See above). It equals: 3415 * 3416 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3417 * ia64(16K page size) : = ( 8G + 4M)byte. 3418 * powerpc (64K page size) : = (32G +16M)byte. 3419 */ 3420 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3421 { 3422 return 4096UL; 3423 } 3424 #endif 3425 3426 /* 3427 * This is an integer logarithm so that shifts can be used later 3428 * to extract the more random high bits from the multiplicative 3429 * hash function before the remainder is taken. 3430 */ 3431 static inline unsigned long wait_table_bits(unsigned long size) 3432 { 3433 return ffz(~size); 3434 } 3435 3436 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3437 3438 /* 3439 * Check if a pageblock contains reserved pages 3440 */ 3441 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3442 { 3443 unsigned long pfn; 3444 3445 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3446 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3447 return 1; 3448 } 3449 return 0; 3450 } 3451 3452 /* 3453 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3454 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3455 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3456 * higher will lead to a bigger reserve which will get freed as contiguous 3457 * blocks as reclaim kicks in 3458 */ 3459 static void setup_zone_migrate_reserve(struct zone *zone) 3460 { 3461 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3462 struct page *page; 3463 unsigned long block_migratetype; 3464 int reserve; 3465 3466 /* 3467 * Get the start pfn, end pfn and the number of blocks to reserve 3468 * We have to be careful to be aligned to pageblock_nr_pages to 3469 * make sure that we always check pfn_valid for the first page in 3470 * the block. 3471 */ 3472 start_pfn = zone->zone_start_pfn; 3473 end_pfn = start_pfn + zone->spanned_pages; 3474 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3475 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3476 pageblock_order; 3477 3478 /* 3479 * Reserve blocks are generally in place to help high-order atomic 3480 * allocations that are short-lived. A min_free_kbytes value that 3481 * would result in more than 2 reserve blocks for atomic allocations 3482 * is assumed to be in place to help anti-fragmentation for the 3483 * future allocation of hugepages at runtime. 3484 */ 3485 reserve = min(2, reserve); 3486 3487 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3488 if (!pfn_valid(pfn)) 3489 continue; 3490 page = pfn_to_page(pfn); 3491 3492 /* Watch out for overlapping nodes */ 3493 if (page_to_nid(page) != zone_to_nid(zone)) 3494 continue; 3495 3496 block_migratetype = get_pageblock_migratetype(page); 3497 3498 /* Only test what is necessary when the reserves are not met */ 3499 if (reserve > 0) { 3500 /* 3501 * Blocks with reserved pages will never free, skip 3502 * them. 3503 */ 3504 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3505 if (pageblock_is_reserved(pfn, block_end_pfn)) 3506 continue; 3507 3508 /* If this block is reserved, account for it */ 3509 if (block_migratetype == MIGRATE_RESERVE) { 3510 reserve--; 3511 continue; 3512 } 3513 3514 /* Suitable for reserving if this block is movable */ 3515 if (block_migratetype == MIGRATE_MOVABLE) { 3516 set_pageblock_migratetype(page, 3517 MIGRATE_RESERVE); 3518 move_freepages_block(zone, page, 3519 MIGRATE_RESERVE); 3520 reserve--; 3521 continue; 3522 } 3523 } 3524 3525 /* 3526 * If the reserve is met and this is a previous reserved block, 3527 * take it back 3528 */ 3529 if (block_migratetype == MIGRATE_RESERVE) { 3530 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3531 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3532 } 3533 } 3534 } 3535 3536 /* 3537 * Initially all pages are reserved - free ones are freed 3538 * up by free_all_bootmem() once the early boot process is 3539 * done. Non-atomic initialization, single-pass. 3540 */ 3541 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3542 unsigned long start_pfn, enum memmap_context context) 3543 { 3544 struct page *page; 3545 unsigned long end_pfn = start_pfn + size; 3546 unsigned long pfn; 3547 struct zone *z; 3548 3549 if (highest_memmap_pfn < end_pfn - 1) 3550 highest_memmap_pfn = end_pfn - 1; 3551 3552 z = &NODE_DATA(nid)->node_zones[zone]; 3553 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3554 /* 3555 * There can be holes in boot-time mem_map[]s 3556 * handed to this function. They do not 3557 * exist on hotplugged memory. 3558 */ 3559 if (context == MEMMAP_EARLY) { 3560 if (!early_pfn_valid(pfn)) 3561 continue; 3562 if (!early_pfn_in_nid(pfn, nid)) 3563 continue; 3564 } 3565 page = pfn_to_page(pfn); 3566 set_page_links(page, zone, nid, pfn); 3567 mminit_verify_page_links(page, zone, nid, pfn); 3568 init_page_count(page); 3569 reset_page_mapcount(page); 3570 SetPageReserved(page); 3571 /* 3572 * Mark the block movable so that blocks are reserved for 3573 * movable at startup. This will force kernel allocations 3574 * to reserve their blocks rather than leaking throughout 3575 * the address space during boot when many long-lived 3576 * kernel allocations are made. Later some blocks near 3577 * the start are marked MIGRATE_RESERVE by 3578 * setup_zone_migrate_reserve() 3579 * 3580 * bitmap is created for zone's valid pfn range. but memmap 3581 * can be created for invalid pages (for alignment) 3582 * check here not to call set_pageblock_migratetype() against 3583 * pfn out of zone. 3584 */ 3585 if ((z->zone_start_pfn <= pfn) 3586 && (pfn < z->zone_start_pfn + z->spanned_pages) 3587 && !(pfn & (pageblock_nr_pages - 1))) 3588 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3589 3590 INIT_LIST_HEAD(&page->lru); 3591 #ifdef WANT_PAGE_VIRTUAL 3592 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3593 if (!is_highmem_idx(zone)) 3594 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3595 #endif 3596 } 3597 } 3598 3599 static void __meminit zone_init_free_lists(struct zone *zone) 3600 { 3601 int order, t; 3602 for_each_migratetype_order(order, t) { 3603 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3604 zone->free_area[order].nr_free = 0; 3605 } 3606 } 3607 3608 #ifndef __HAVE_ARCH_MEMMAP_INIT 3609 #define memmap_init(size, nid, zone, start_pfn) \ 3610 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3611 #endif 3612 3613 static int zone_batchsize(struct zone *zone) 3614 { 3615 #ifdef CONFIG_MMU 3616 int batch; 3617 3618 /* 3619 * The per-cpu-pages pools are set to around 1000th of the 3620 * size of the zone. But no more than 1/2 of a meg. 3621 * 3622 * OK, so we don't know how big the cache is. So guess. 3623 */ 3624 batch = zone->present_pages / 1024; 3625 if (batch * PAGE_SIZE > 512 * 1024) 3626 batch = (512 * 1024) / PAGE_SIZE; 3627 batch /= 4; /* We effectively *= 4 below */ 3628 if (batch < 1) 3629 batch = 1; 3630 3631 /* 3632 * Clamp the batch to a 2^n - 1 value. Having a power 3633 * of 2 value was found to be more likely to have 3634 * suboptimal cache aliasing properties in some cases. 3635 * 3636 * For example if 2 tasks are alternately allocating 3637 * batches of pages, one task can end up with a lot 3638 * of pages of one half of the possible page colors 3639 * and the other with pages of the other colors. 3640 */ 3641 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3642 3643 return batch; 3644 3645 #else 3646 /* The deferral and batching of frees should be suppressed under NOMMU 3647 * conditions. 3648 * 3649 * The problem is that NOMMU needs to be able to allocate large chunks 3650 * of contiguous memory as there's no hardware page translation to 3651 * assemble apparent contiguous memory from discontiguous pages. 3652 * 3653 * Queueing large contiguous runs of pages for batching, however, 3654 * causes the pages to actually be freed in smaller chunks. As there 3655 * can be a significant delay between the individual batches being 3656 * recycled, this leads to the once large chunks of space being 3657 * fragmented and becoming unavailable for high-order allocations. 3658 */ 3659 return 0; 3660 #endif 3661 } 3662 3663 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3664 { 3665 struct per_cpu_pages *pcp; 3666 int migratetype; 3667 3668 memset(p, 0, sizeof(*p)); 3669 3670 pcp = &p->pcp; 3671 pcp->count = 0; 3672 pcp->high = 6 * batch; 3673 pcp->batch = max(1UL, 1 * batch); 3674 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3675 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3676 } 3677 3678 /* 3679 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3680 * to the value high for the pageset p. 3681 */ 3682 3683 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3684 unsigned long high) 3685 { 3686 struct per_cpu_pages *pcp; 3687 3688 pcp = &p->pcp; 3689 pcp->high = high; 3690 pcp->batch = max(1UL, high/4); 3691 if ((high/4) > (PAGE_SHIFT * 8)) 3692 pcp->batch = PAGE_SHIFT * 8; 3693 } 3694 3695 static void setup_zone_pageset(struct zone *zone) 3696 { 3697 int cpu; 3698 3699 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3700 3701 for_each_possible_cpu(cpu) { 3702 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3703 3704 setup_pageset(pcp, zone_batchsize(zone)); 3705 3706 if (percpu_pagelist_fraction) 3707 setup_pagelist_highmark(pcp, 3708 (zone->present_pages / 3709 percpu_pagelist_fraction)); 3710 } 3711 } 3712 3713 /* 3714 * Allocate per cpu pagesets and initialize them. 3715 * Before this call only boot pagesets were available. 3716 */ 3717 void __init setup_per_cpu_pageset(void) 3718 { 3719 struct zone *zone; 3720 3721 for_each_populated_zone(zone) 3722 setup_zone_pageset(zone); 3723 } 3724 3725 static noinline __init_refok 3726 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3727 { 3728 int i; 3729 struct pglist_data *pgdat = zone->zone_pgdat; 3730 size_t alloc_size; 3731 3732 /* 3733 * The per-page waitqueue mechanism uses hashed waitqueues 3734 * per zone. 3735 */ 3736 zone->wait_table_hash_nr_entries = 3737 wait_table_hash_nr_entries(zone_size_pages); 3738 zone->wait_table_bits = 3739 wait_table_bits(zone->wait_table_hash_nr_entries); 3740 alloc_size = zone->wait_table_hash_nr_entries 3741 * sizeof(wait_queue_head_t); 3742 3743 if (!slab_is_available()) { 3744 zone->wait_table = (wait_queue_head_t *) 3745 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3746 } else { 3747 /* 3748 * This case means that a zone whose size was 0 gets new memory 3749 * via memory hot-add. 3750 * But it may be the case that a new node was hot-added. In 3751 * this case vmalloc() will not be able to use this new node's 3752 * memory - this wait_table must be initialized to use this new 3753 * node itself as well. 3754 * To use this new node's memory, further consideration will be 3755 * necessary. 3756 */ 3757 zone->wait_table = vmalloc(alloc_size); 3758 } 3759 if (!zone->wait_table) 3760 return -ENOMEM; 3761 3762 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3763 init_waitqueue_head(zone->wait_table + i); 3764 3765 return 0; 3766 } 3767 3768 static int __zone_pcp_update(void *data) 3769 { 3770 struct zone *zone = data; 3771 int cpu; 3772 unsigned long batch = zone_batchsize(zone), flags; 3773 3774 for_each_possible_cpu(cpu) { 3775 struct per_cpu_pageset *pset; 3776 struct per_cpu_pages *pcp; 3777 3778 pset = per_cpu_ptr(zone->pageset, cpu); 3779 pcp = &pset->pcp; 3780 3781 local_irq_save(flags); 3782 free_pcppages_bulk(zone, pcp->count, pcp); 3783 setup_pageset(pset, batch); 3784 local_irq_restore(flags); 3785 } 3786 return 0; 3787 } 3788 3789 void zone_pcp_update(struct zone *zone) 3790 { 3791 stop_machine(__zone_pcp_update, zone, NULL); 3792 } 3793 3794 static __meminit void zone_pcp_init(struct zone *zone) 3795 { 3796 /* 3797 * per cpu subsystem is not up at this point. The following code 3798 * relies on the ability of the linker to provide the 3799 * offset of a (static) per cpu variable into the per cpu area. 3800 */ 3801 zone->pageset = &boot_pageset; 3802 3803 if (zone->present_pages) 3804 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3805 zone->name, zone->present_pages, 3806 zone_batchsize(zone)); 3807 } 3808 3809 __meminit int init_currently_empty_zone(struct zone *zone, 3810 unsigned long zone_start_pfn, 3811 unsigned long size, 3812 enum memmap_context context) 3813 { 3814 struct pglist_data *pgdat = zone->zone_pgdat; 3815 int ret; 3816 ret = zone_wait_table_init(zone, size); 3817 if (ret) 3818 return ret; 3819 pgdat->nr_zones = zone_idx(zone) + 1; 3820 3821 zone->zone_start_pfn = zone_start_pfn; 3822 3823 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3824 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3825 pgdat->node_id, 3826 (unsigned long)zone_idx(zone), 3827 zone_start_pfn, (zone_start_pfn + size)); 3828 3829 zone_init_free_lists(zone); 3830 3831 return 0; 3832 } 3833 3834 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 3835 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3836 /* 3837 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3838 * Architectures may implement their own version but if add_active_range() 3839 * was used and there are no special requirements, this is a convenient 3840 * alternative 3841 */ 3842 int __meminit __early_pfn_to_nid(unsigned long pfn) 3843 { 3844 unsigned long start_pfn, end_pfn; 3845 int i, nid; 3846 3847 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 3848 if (start_pfn <= pfn && pfn < end_pfn) 3849 return nid; 3850 /* This is a memory hole */ 3851 return -1; 3852 } 3853 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3854 3855 int __meminit early_pfn_to_nid(unsigned long pfn) 3856 { 3857 int nid; 3858 3859 nid = __early_pfn_to_nid(pfn); 3860 if (nid >= 0) 3861 return nid; 3862 /* just returns 0 */ 3863 return 0; 3864 } 3865 3866 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3867 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3868 { 3869 int nid; 3870 3871 nid = __early_pfn_to_nid(pfn); 3872 if (nid >= 0 && nid != node) 3873 return false; 3874 return true; 3875 } 3876 #endif 3877 3878 /** 3879 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3880 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3881 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3882 * 3883 * If an architecture guarantees that all ranges registered with 3884 * add_active_ranges() contain no holes and may be freed, this 3885 * this function may be used instead of calling free_bootmem() manually. 3886 */ 3887 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 3888 { 3889 unsigned long start_pfn, end_pfn; 3890 int i, this_nid; 3891 3892 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 3893 start_pfn = min(start_pfn, max_low_pfn); 3894 end_pfn = min(end_pfn, max_low_pfn); 3895 3896 if (start_pfn < end_pfn) 3897 free_bootmem_node(NODE_DATA(this_nid), 3898 PFN_PHYS(start_pfn), 3899 (end_pfn - start_pfn) << PAGE_SHIFT); 3900 } 3901 } 3902 3903 int __init add_from_early_node_map(struct range *range, int az, 3904 int nr_range, int nid) 3905 { 3906 unsigned long start_pfn, end_pfn; 3907 int i; 3908 3909 /* need to go over early_node_map to find out good range for node */ 3910 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) 3911 nr_range = add_range(range, az, nr_range, start_pfn, end_pfn); 3912 return nr_range; 3913 } 3914 3915 /** 3916 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3917 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3918 * 3919 * If an architecture guarantees that all ranges registered with 3920 * add_active_ranges() contain no holes and may be freed, this 3921 * function may be used instead of calling memory_present() manually. 3922 */ 3923 void __init sparse_memory_present_with_active_regions(int nid) 3924 { 3925 unsigned long start_pfn, end_pfn; 3926 int i, this_nid; 3927 3928 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 3929 memory_present(this_nid, start_pfn, end_pfn); 3930 } 3931 3932 /** 3933 * get_pfn_range_for_nid - Return the start and end page frames for a node 3934 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3935 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3936 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3937 * 3938 * It returns the start and end page frame of a node based on information 3939 * provided by an arch calling add_active_range(). If called for a node 3940 * with no available memory, a warning is printed and the start and end 3941 * PFNs will be 0. 3942 */ 3943 void __meminit get_pfn_range_for_nid(unsigned int nid, 3944 unsigned long *start_pfn, unsigned long *end_pfn) 3945 { 3946 unsigned long this_start_pfn, this_end_pfn; 3947 int i; 3948 3949 *start_pfn = -1UL; 3950 *end_pfn = 0; 3951 3952 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 3953 *start_pfn = min(*start_pfn, this_start_pfn); 3954 *end_pfn = max(*end_pfn, this_end_pfn); 3955 } 3956 3957 if (*start_pfn == -1UL) 3958 *start_pfn = 0; 3959 } 3960 3961 /* 3962 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3963 * assumption is made that zones within a node are ordered in monotonic 3964 * increasing memory addresses so that the "highest" populated zone is used 3965 */ 3966 static void __init find_usable_zone_for_movable(void) 3967 { 3968 int zone_index; 3969 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3970 if (zone_index == ZONE_MOVABLE) 3971 continue; 3972 3973 if (arch_zone_highest_possible_pfn[zone_index] > 3974 arch_zone_lowest_possible_pfn[zone_index]) 3975 break; 3976 } 3977 3978 VM_BUG_ON(zone_index == -1); 3979 movable_zone = zone_index; 3980 } 3981 3982 /* 3983 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3984 * because it is sized independent of architecture. Unlike the other zones, 3985 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3986 * in each node depending on the size of each node and how evenly kernelcore 3987 * is distributed. This helper function adjusts the zone ranges 3988 * provided by the architecture for a given node by using the end of the 3989 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3990 * zones within a node are in order of monotonic increases memory addresses 3991 */ 3992 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3993 unsigned long zone_type, 3994 unsigned long node_start_pfn, 3995 unsigned long node_end_pfn, 3996 unsigned long *zone_start_pfn, 3997 unsigned long *zone_end_pfn) 3998 { 3999 /* Only adjust if ZONE_MOVABLE is on this node */ 4000 if (zone_movable_pfn[nid]) { 4001 /* Size ZONE_MOVABLE */ 4002 if (zone_type == ZONE_MOVABLE) { 4003 *zone_start_pfn = zone_movable_pfn[nid]; 4004 *zone_end_pfn = min(node_end_pfn, 4005 arch_zone_highest_possible_pfn[movable_zone]); 4006 4007 /* Adjust for ZONE_MOVABLE starting within this range */ 4008 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4009 *zone_end_pfn > zone_movable_pfn[nid]) { 4010 *zone_end_pfn = zone_movable_pfn[nid]; 4011 4012 /* Check if this whole range is within ZONE_MOVABLE */ 4013 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4014 *zone_start_pfn = *zone_end_pfn; 4015 } 4016 } 4017 4018 /* 4019 * Return the number of pages a zone spans in a node, including holes 4020 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4021 */ 4022 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4023 unsigned long zone_type, 4024 unsigned long *ignored) 4025 { 4026 unsigned long node_start_pfn, node_end_pfn; 4027 unsigned long zone_start_pfn, zone_end_pfn; 4028 4029 /* Get the start and end of the node and zone */ 4030 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4031 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4032 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4033 adjust_zone_range_for_zone_movable(nid, zone_type, 4034 node_start_pfn, node_end_pfn, 4035 &zone_start_pfn, &zone_end_pfn); 4036 4037 /* Check that this node has pages within the zone's required range */ 4038 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4039 return 0; 4040 4041 /* Move the zone boundaries inside the node if necessary */ 4042 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4043 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4044 4045 /* Return the spanned pages */ 4046 return zone_end_pfn - zone_start_pfn; 4047 } 4048 4049 /* 4050 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4051 * then all holes in the requested range will be accounted for. 4052 */ 4053 unsigned long __meminit __absent_pages_in_range(int nid, 4054 unsigned long range_start_pfn, 4055 unsigned long range_end_pfn) 4056 { 4057 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4058 unsigned long start_pfn, end_pfn; 4059 int i; 4060 4061 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4062 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4063 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4064 nr_absent -= end_pfn - start_pfn; 4065 } 4066 return nr_absent; 4067 } 4068 4069 /** 4070 * absent_pages_in_range - Return number of page frames in holes within a range 4071 * @start_pfn: The start PFN to start searching for holes 4072 * @end_pfn: The end PFN to stop searching for holes 4073 * 4074 * It returns the number of pages frames in memory holes within a range. 4075 */ 4076 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4077 unsigned long end_pfn) 4078 { 4079 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4080 } 4081 4082 /* Return the number of page frames in holes in a zone on a node */ 4083 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4084 unsigned long zone_type, 4085 unsigned long *ignored) 4086 { 4087 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4088 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4089 unsigned long node_start_pfn, node_end_pfn; 4090 unsigned long zone_start_pfn, zone_end_pfn; 4091 4092 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4093 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4094 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4095 4096 adjust_zone_range_for_zone_movable(nid, zone_type, 4097 node_start_pfn, node_end_pfn, 4098 &zone_start_pfn, &zone_end_pfn); 4099 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4100 } 4101 4102 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4103 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4104 unsigned long zone_type, 4105 unsigned long *zones_size) 4106 { 4107 return zones_size[zone_type]; 4108 } 4109 4110 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4111 unsigned long zone_type, 4112 unsigned long *zholes_size) 4113 { 4114 if (!zholes_size) 4115 return 0; 4116 4117 return zholes_size[zone_type]; 4118 } 4119 4120 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4121 4122 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4123 unsigned long *zones_size, unsigned long *zholes_size) 4124 { 4125 unsigned long realtotalpages, totalpages = 0; 4126 enum zone_type i; 4127 4128 for (i = 0; i < MAX_NR_ZONES; i++) 4129 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4130 zones_size); 4131 pgdat->node_spanned_pages = totalpages; 4132 4133 realtotalpages = totalpages; 4134 for (i = 0; i < MAX_NR_ZONES; i++) 4135 realtotalpages -= 4136 zone_absent_pages_in_node(pgdat->node_id, i, 4137 zholes_size); 4138 pgdat->node_present_pages = realtotalpages; 4139 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4140 realtotalpages); 4141 } 4142 4143 #ifndef CONFIG_SPARSEMEM 4144 /* 4145 * Calculate the size of the zone->blockflags rounded to an unsigned long 4146 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4147 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4148 * round what is now in bits to nearest long in bits, then return it in 4149 * bytes. 4150 */ 4151 static unsigned long __init usemap_size(unsigned long zonesize) 4152 { 4153 unsigned long usemapsize; 4154 4155 usemapsize = roundup(zonesize, pageblock_nr_pages); 4156 usemapsize = usemapsize >> pageblock_order; 4157 usemapsize *= NR_PAGEBLOCK_BITS; 4158 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4159 4160 return usemapsize / 8; 4161 } 4162 4163 static void __init setup_usemap(struct pglist_data *pgdat, 4164 struct zone *zone, unsigned long zonesize) 4165 { 4166 unsigned long usemapsize = usemap_size(zonesize); 4167 zone->pageblock_flags = NULL; 4168 if (usemapsize) 4169 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4170 usemapsize); 4171 } 4172 #else 4173 static inline void setup_usemap(struct pglist_data *pgdat, 4174 struct zone *zone, unsigned long zonesize) {} 4175 #endif /* CONFIG_SPARSEMEM */ 4176 4177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4178 4179 /* Return a sensible default order for the pageblock size. */ 4180 static inline int pageblock_default_order(void) 4181 { 4182 if (HPAGE_SHIFT > PAGE_SHIFT) 4183 return HUGETLB_PAGE_ORDER; 4184 4185 return MAX_ORDER-1; 4186 } 4187 4188 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4189 static inline void __init set_pageblock_order(unsigned int order) 4190 { 4191 /* Check that pageblock_nr_pages has not already been setup */ 4192 if (pageblock_order) 4193 return; 4194 4195 /* 4196 * Assume the largest contiguous order of interest is a huge page. 4197 * This value may be variable depending on boot parameters on IA64 4198 */ 4199 pageblock_order = order; 4200 } 4201 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4202 4203 /* 4204 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4205 * and pageblock_default_order() are unused as pageblock_order is set 4206 * at compile-time. See include/linux/pageblock-flags.h for the values of 4207 * pageblock_order based on the kernel config 4208 */ 4209 static inline int pageblock_default_order(unsigned int order) 4210 { 4211 return MAX_ORDER-1; 4212 } 4213 #define set_pageblock_order(x) do {} while (0) 4214 4215 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4216 4217 /* 4218 * Set up the zone data structures: 4219 * - mark all pages reserved 4220 * - mark all memory queues empty 4221 * - clear the memory bitmaps 4222 */ 4223 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4224 unsigned long *zones_size, unsigned long *zholes_size) 4225 { 4226 enum zone_type j; 4227 int nid = pgdat->node_id; 4228 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4229 int ret; 4230 4231 pgdat_resize_init(pgdat); 4232 pgdat->nr_zones = 0; 4233 init_waitqueue_head(&pgdat->kswapd_wait); 4234 pgdat->kswapd_max_order = 0; 4235 pgdat_page_cgroup_init(pgdat); 4236 4237 for (j = 0; j < MAX_NR_ZONES; j++) { 4238 struct zone *zone = pgdat->node_zones + j; 4239 unsigned long size, realsize, memmap_pages; 4240 enum lru_list l; 4241 4242 size = zone_spanned_pages_in_node(nid, j, zones_size); 4243 realsize = size - zone_absent_pages_in_node(nid, j, 4244 zholes_size); 4245 4246 /* 4247 * Adjust realsize so that it accounts for how much memory 4248 * is used by this zone for memmap. This affects the watermark 4249 * and per-cpu initialisations 4250 */ 4251 memmap_pages = 4252 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4253 if (realsize >= memmap_pages) { 4254 realsize -= memmap_pages; 4255 if (memmap_pages) 4256 printk(KERN_DEBUG 4257 " %s zone: %lu pages used for memmap\n", 4258 zone_names[j], memmap_pages); 4259 } else 4260 printk(KERN_WARNING 4261 " %s zone: %lu pages exceeds realsize %lu\n", 4262 zone_names[j], memmap_pages, realsize); 4263 4264 /* Account for reserved pages */ 4265 if (j == 0 && realsize > dma_reserve) { 4266 realsize -= dma_reserve; 4267 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4268 zone_names[0], dma_reserve); 4269 } 4270 4271 if (!is_highmem_idx(j)) 4272 nr_kernel_pages += realsize; 4273 nr_all_pages += realsize; 4274 4275 zone->spanned_pages = size; 4276 zone->present_pages = realsize; 4277 #ifdef CONFIG_NUMA 4278 zone->node = nid; 4279 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4280 / 100; 4281 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4282 #endif 4283 zone->name = zone_names[j]; 4284 spin_lock_init(&zone->lock); 4285 spin_lock_init(&zone->lru_lock); 4286 zone_seqlock_init(zone); 4287 zone->zone_pgdat = pgdat; 4288 4289 zone_pcp_init(zone); 4290 for_each_lru(l) 4291 INIT_LIST_HEAD(&zone->lru[l].list); 4292 zone->reclaim_stat.recent_rotated[0] = 0; 4293 zone->reclaim_stat.recent_rotated[1] = 0; 4294 zone->reclaim_stat.recent_scanned[0] = 0; 4295 zone->reclaim_stat.recent_scanned[1] = 0; 4296 zap_zone_vm_stats(zone); 4297 zone->flags = 0; 4298 if (!size) 4299 continue; 4300 4301 set_pageblock_order(pageblock_default_order()); 4302 setup_usemap(pgdat, zone, size); 4303 ret = init_currently_empty_zone(zone, zone_start_pfn, 4304 size, MEMMAP_EARLY); 4305 BUG_ON(ret); 4306 memmap_init(size, nid, j, zone_start_pfn); 4307 zone_start_pfn += size; 4308 } 4309 } 4310 4311 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4312 { 4313 /* Skip empty nodes */ 4314 if (!pgdat->node_spanned_pages) 4315 return; 4316 4317 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4318 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4319 if (!pgdat->node_mem_map) { 4320 unsigned long size, start, end; 4321 struct page *map; 4322 4323 /* 4324 * The zone's endpoints aren't required to be MAX_ORDER 4325 * aligned but the node_mem_map endpoints must be in order 4326 * for the buddy allocator to function correctly. 4327 */ 4328 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4329 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4330 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4331 size = (end - start) * sizeof(struct page); 4332 map = alloc_remap(pgdat->node_id, size); 4333 if (!map) 4334 map = alloc_bootmem_node_nopanic(pgdat, size); 4335 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4336 } 4337 #ifndef CONFIG_NEED_MULTIPLE_NODES 4338 /* 4339 * With no DISCONTIG, the global mem_map is just set as node 0's 4340 */ 4341 if (pgdat == NODE_DATA(0)) { 4342 mem_map = NODE_DATA(0)->node_mem_map; 4343 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4344 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4345 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4346 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4347 } 4348 #endif 4349 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4350 } 4351 4352 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4353 unsigned long node_start_pfn, unsigned long *zholes_size) 4354 { 4355 pg_data_t *pgdat = NODE_DATA(nid); 4356 4357 pgdat->node_id = nid; 4358 pgdat->node_start_pfn = node_start_pfn; 4359 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4360 4361 alloc_node_mem_map(pgdat); 4362 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4363 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4364 nid, (unsigned long)pgdat, 4365 (unsigned long)pgdat->node_mem_map); 4366 #endif 4367 4368 free_area_init_core(pgdat, zones_size, zholes_size); 4369 } 4370 4371 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4372 4373 #if MAX_NUMNODES > 1 4374 /* 4375 * Figure out the number of possible node ids. 4376 */ 4377 static void __init setup_nr_node_ids(void) 4378 { 4379 unsigned int node; 4380 unsigned int highest = 0; 4381 4382 for_each_node_mask(node, node_possible_map) 4383 highest = node; 4384 nr_node_ids = highest + 1; 4385 } 4386 #else 4387 static inline void setup_nr_node_ids(void) 4388 { 4389 } 4390 #endif 4391 4392 /** 4393 * node_map_pfn_alignment - determine the maximum internode alignment 4394 * 4395 * This function should be called after node map is populated and sorted. 4396 * It calculates the maximum power of two alignment which can distinguish 4397 * all the nodes. 4398 * 4399 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4400 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4401 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4402 * shifted, 1GiB is enough and this function will indicate so. 4403 * 4404 * This is used to test whether pfn -> nid mapping of the chosen memory 4405 * model has fine enough granularity to avoid incorrect mapping for the 4406 * populated node map. 4407 * 4408 * Returns the determined alignment in pfn's. 0 if there is no alignment 4409 * requirement (single node). 4410 */ 4411 unsigned long __init node_map_pfn_alignment(void) 4412 { 4413 unsigned long accl_mask = 0, last_end = 0; 4414 unsigned long start, end, mask; 4415 int last_nid = -1; 4416 int i, nid; 4417 4418 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4419 if (!start || last_nid < 0 || last_nid == nid) { 4420 last_nid = nid; 4421 last_end = end; 4422 continue; 4423 } 4424 4425 /* 4426 * Start with a mask granular enough to pin-point to the 4427 * start pfn and tick off bits one-by-one until it becomes 4428 * too coarse to separate the current node from the last. 4429 */ 4430 mask = ~((1 << __ffs(start)) - 1); 4431 while (mask && last_end <= (start & (mask << 1))) 4432 mask <<= 1; 4433 4434 /* accumulate all internode masks */ 4435 accl_mask |= mask; 4436 } 4437 4438 /* convert mask to number of pages */ 4439 return ~accl_mask + 1; 4440 } 4441 4442 /* Find the lowest pfn for a node */ 4443 static unsigned long __init find_min_pfn_for_node(int nid) 4444 { 4445 unsigned long min_pfn = ULONG_MAX; 4446 unsigned long start_pfn; 4447 int i; 4448 4449 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4450 min_pfn = min(min_pfn, start_pfn); 4451 4452 if (min_pfn == ULONG_MAX) { 4453 printk(KERN_WARNING 4454 "Could not find start_pfn for node %d\n", nid); 4455 return 0; 4456 } 4457 4458 return min_pfn; 4459 } 4460 4461 /** 4462 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4463 * 4464 * It returns the minimum PFN based on information provided via 4465 * add_active_range(). 4466 */ 4467 unsigned long __init find_min_pfn_with_active_regions(void) 4468 { 4469 return find_min_pfn_for_node(MAX_NUMNODES); 4470 } 4471 4472 /* 4473 * early_calculate_totalpages() 4474 * Sum pages in active regions for movable zone. 4475 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4476 */ 4477 static unsigned long __init early_calculate_totalpages(void) 4478 { 4479 unsigned long totalpages = 0; 4480 unsigned long start_pfn, end_pfn; 4481 int i, nid; 4482 4483 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4484 unsigned long pages = end_pfn - start_pfn; 4485 4486 totalpages += pages; 4487 if (pages) 4488 node_set_state(nid, N_HIGH_MEMORY); 4489 } 4490 return totalpages; 4491 } 4492 4493 /* 4494 * Find the PFN the Movable zone begins in each node. Kernel memory 4495 * is spread evenly between nodes as long as the nodes have enough 4496 * memory. When they don't, some nodes will have more kernelcore than 4497 * others 4498 */ 4499 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4500 { 4501 int i, nid; 4502 unsigned long usable_startpfn; 4503 unsigned long kernelcore_node, kernelcore_remaining; 4504 /* save the state before borrow the nodemask */ 4505 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4506 unsigned long totalpages = early_calculate_totalpages(); 4507 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4508 4509 /* 4510 * If movablecore was specified, calculate what size of 4511 * kernelcore that corresponds so that memory usable for 4512 * any allocation type is evenly spread. If both kernelcore 4513 * and movablecore are specified, then the value of kernelcore 4514 * will be used for required_kernelcore if it's greater than 4515 * what movablecore would have allowed. 4516 */ 4517 if (required_movablecore) { 4518 unsigned long corepages; 4519 4520 /* 4521 * Round-up so that ZONE_MOVABLE is at least as large as what 4522 * was requested by the user 4523 */ 4524 required_movablecore = 4525 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4526 corepages = totalpages - required_movablecore; 4527 4528 required_kernelcore = max(required_kernelcore, corepages); 4529 } 4530 4531 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4532 if (!required_kernelcore) 4533 goto out; 4534 4535 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4536 find_usable_zone_for_movable(); 4537 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4538 4539 restart: 4540 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4541 kernelcore_node = required_kernelcore / usable_nodes; 4542 for_each_node_state(nid, N_HIGH_MEMORY) { 4543 unsigned long start_pfn, end_pfn; 4544 4545 /* 4546 * Recalculate kernelcore_node if the division per node 4547 * now exceeds what is necessary to satisfy the requested 4548 * amount of memory for the kernel 4549 */ 4550 if (required_kernelcore < kernelcore_node) 4551 kernelcore_node = required_kernelcore / usable_nodes; 4552 4553 /* 4554 * As the map is walked, we track how much memory is usable 4555 * by the kernel using kernelcore_remaining. When it is 4556 * 0, the rest of the node is usable by ZONE_MOVABLE 4557 */ 4558 kernelcore_remaining = kernelcore_node; 4559 4560 /* Go through each range of PFNs within this node */ 4561 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4562 unsigned long size_pages; 4563 4564 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4565 if (start_pfn >= end_pfn) 4566 continue; 4567 4568 /* Account for what is only usable for kernelcore */ 4569 if (start_pfn < usable_startpfn) { 4570 unsigned long kernel_pages; 4571 kernel_pages = min(end_pfn, usable_startpfn) 4572 - start_pfn; 4573 4574 kernelcore_remaining -= min(kernel_pages, 4575 kernelcore_remaining); 4576 required_kernelcore -= min(kernel_pages, 4577 required_kernelcore); 4578 4579 /* Continue if range is now fully accounted */ 4580 if (end_pfn <= usable_startpfn) { 4581 4582 /* 4583 * Push zone_movable_pfn to the end so 4584 * that if we have to rebalance 4585 * kernelcore across nodes, we will 4586 * not double account here 4587 */ 4588 zone_movable_pfn[nid] = end_pfn; 4589 continue; 4590 } 4591 start_pfn = usable_startpfn; 4592 } 4593 4594 /* 4595 * The usable PFN range for ZONE_MOVABLE is from 4596 * start_pfn->end_pfn. Calculate size_pages as the 4597 * number of pages used as kernelcore 4598 */ 4599 size_pages = end_pfn - start_pfn; 4600 if (size_pages > kernelcore_remaining) 4601 size_pages = kernelcore_remaining; 4602 zone_movable_pfn[nid] = start_pfn + size_pages; 4603 4604 /* 4605 * Some kernelcore has been met, update counts and 4606 * break if the kernelcore for this node has been 4607 * satisified 4608 */ 4609 required_kernelcore -= min(required_kernelcore, 4610 size_pages); 4611 kernelcore_remaining -= size_pages; 4612 if (!kernelcore_remaining) 4613 break; 4614 } 4615 } 4616 4617 /* 4618 * If there is still required_kernelcore, we do another pass with one 4619 * less node in the count. This will push zone_movable_pfn[nid] further 4620 * along on the nodes that still have memory until kernelcore is 4621 * satisified 4622 */ 4623 usable_nodes--; 4624 if (usable_nodes && required_kernelcore > usable_nodes) 4625 goto restart; 4626 4627 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4628 for (nid = 0; nid < MAX_NUMNODES; nid++) 4629 zone_movable_pfn[nid] = 4630 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4631 4632 out: 4633 /* restore the node_state */ 4634 node_states[N_HIGH_MEMORY] = saved_node_state; 4635 } 4636 4637 /* Any regular memory on that node ? */ 4638 static void check_for_regular_memory(pg_data_t *pgdat) 4639 { 4640 #ifdef CONFIG_HIGHMEM 4641 enum zone_type zone_type; 4642 4643 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4644 struct zone *zone = &pgdat->node_zones[zone_type]; 4645 if (zone->present_pages) 4646 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4647 } 4648 #endif 4649 } 4650 4651 /** 4652 * free_area_init_nodes - Initialise all pg_data_t and zone data 4653 * @max_zone_pfn: an array of max PFNs for each zone 4654 * 4655 * This will call free_area_init_node() for each active node in the system. 4656 * Using the page ranges provided by add_active_range(), the size of each 4657 * zone in each node and their holes is calculated. If the maximum PFN 4658 * between two adjacent zones match, it is assumed that the zone is empty. 4659 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4660 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4661 * starts where the previous one ended. For example, ZONE_DMA32 starts 4662 * at arch_max_dma_pfn. 4663 */ 4664 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4665 { 4666 unsigned long start_pfn, end_pfn; 4667 int i, nid; 4668 4669 /* Record where the zone boundaries are */ 4670 memset(arch_zone_lowest_possible_pfn, 0, 4671 sizeof(arch_zone_lowest_possible_pfn)); 4672 memset(arch_zone_highest_possible_pfn, 0, 4673 sizeof(arch_zone_highest_possible_pfn)); 4674 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4675 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4676 for (i = 1; i < MAX_NR_ZONES; i++) { 4677 if (i == ZONE_MOVABLE) 4678 continue; 4679 arch_zone_lowest_possible_pfn[i] = 4680 arch_zone_highest_possible_pfn[i-1]; 4681 arch_zone_highest_possible_pfn[i] = 4682 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4683 } 4684 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4685 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4686 4687 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4688 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4689 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4690 4691 /* Print out the zone ranges */ 4692 printk("Zone PFN ranges:\n"); 4693 for (i = 0; i < MAX_NR_ZONES; i++) { 4694 if (i == ZONE_MOVABLE) 4695 continue; 4696 printk(" %-8s ", zone_names[i]); 4697 if (arch_zone_lowest_possible_pfn[i] == 4698 arch_zone_highest_possible_pfn[i]) 4699 printk("empty\n"); 4700 else 4701 printk("%0#10lx -> %0#10lx\n", 4702 arch_zone_lowest_possible_pfn[i], 4703 arch_zone_highest_possible_pfn[i]); 4704 } 4705 4706 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4707 printk("Movable zone start PFN for each node\n"); 4708 for (i = 0; i < MAX_NUMNODES; i++) { 4709 if (zone_movable_pfn[i]) 4710 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4711 } 4712 4713 /* Print out the early_node_map[] */ 4714 printk("Early memory PFN ranges\n"); 4715 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4716 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn); 4717 4718 /* Initialise every node */ 4719 mminit_verify_pageflags_layout(); 4720 setup_nr_node_ids(); 4721 for_each_online_node(nid) { 4722 pg_data_t *pgdat = NODE_DATA(nid); 4723 free_area_init_node(nid, NULL, 4724 find_min_pfn_for_node(nid), NULL); 4725 4726 /* Any memory on that node */ 4727 if (pgdat->node_present_pages) 4728 node_set_state(nid, N_HIGH_MEMORY); 4729 check_for_regular_memory(pgdat); 4730 } 4731 } 4732 4733 static int __init cmdline_parse_core(char *p, unsigned long *core) 4734 { 4735 unsigned long long coremem; 4736 if (!p) 4737 return -EINVAL; 4738 4739 coremem = memparse(p, &p); 4740 *core = coremem >> PAGE_SHIFT; 4741 4742 /* Paranoid check that UL is enough for the coremem value */ 4743 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4744 4745 return 0; 4746 } 4747 4748 /* 4749 * kernelcore=size sets the amount of memory for use for allocations that 4750 * cannot be reclaimed or migrated. 4751 */ 4752 static int __init cmdline_parse_kernelcore(char *p) 4753 { 4754 return cmdline_parse_core(p, &required_kernelcore); 4755 } 4756 4757 /* 4758 * movablecore=size sets the amount of memory for use for allocations that 4759 * can be reclaimed or migrated. 4760 */ 4761 static int __init cmdline_parse_movablecore(char *p) 4762 { 4763 return cmdline_parse_core(p, &required_movablecore); 4764 } 4765 4766 early_param("kernelcore", cmdline_parse_kernelcore); 4767 early_param("movablecore", cmdline_parse_movablecore); 4768 4769 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4770 4771 /** 4772 * set_dma_reserve - set the specified number of pages reserved in the first zone 4773 * @new_dma_reserve: The number of pages to mark reserved 4774 * 4775 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4776 * In the DMA zone, a significant percentage may be consumed by kernel image 4777 * and other unfreeable allocations which can skew the watermarks badly. This 4778 * function may optionally be used to account for unfreeable pages in the 4779 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4780 * smaller per-cpu batchsize. 4781 */ 4782 void __init set_dma_reserve(unsigned long new_dma_reserve) 4783 { 4784 dma_reserve = new_dma_reserve; 4785 } 4786 4787 void __init free_area_init(unsigned long *zones_size) 4788 { 4789 free_area_init_node(0, zones_size, 4790 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4791 } 4792 4793 static int page_alloc_cpu_notify(struct notifier_block *self, 4794 unsigned long action, void *hcpu) 4795 { 4796 int cpu = (unsigned long)hcpu; 4797 4798 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4799 drain_pages(cpu); 4800 4801 /* 4802 * Spill the event counters of the dead processor 4803 * into the current processors event counters. 4804 * This artificially elevates the count of the current 4805 * processor. 4806 */ 4807 vm_events_fold_cpu(cpu); 4808 4809 /* 4810 * Zero the differential counters of the dead processor 4811 * so that the vm statistics are consistent. 4812 * 4813 * This is only okay since the processor is dead and cannot 4814 * race with what we are doing. 4815 */ 4816 refresh_cpu_vm_stats(cpu); 4817 } 4818 return NOTIFY_OK; 4819 } 4820 4821 void __init page_alloc_init(void) 4822 { 4823 hotcpu_notifier(page_alloc_cpu_notify, 0); 4824 } 4825 4826 /* 4827 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4828 * or min_free_kbytes changes. 4829 */ 4830 static void calculate_totalreserve_pages(void) 4831 { 4832 struct pglist_data *pgdat; 4833 unsigned long reserve_pages = 0; 4834 enum zone_type i, j; 4835 4836 for_each_online_pgdat(pgdat) { 4837 for (i = 0; i < MAX_NR_ZONES; i++) { 4838 struct zone *zone = pgdat->node_zones + i; 4839 unsigned long max = 0; 4840 4841 /* Find valid and maximum lowmem_reserve in the zone */ 4842 for (j = i; j < MAX_NR_ZONES; j++) { 4843 if (zone->lowmem_reserve[j] > max) 4844 max = zone->lowmem_reserve[j]; 4845 } 4846 4847 /* we treat the high watermark as reserved pages. */ 4848 max += high_wmark_pages(zone); 4849 4850 if (max > zone->present_pages) 4851 max = zone->present_pages; 4852 reserve_pages += max; 4853 /* 4854 * Lowmem reserves are not available to 4855 * GFP_HIGHUSER page cache allocations and 4856 * kswapd tries to balance zones to their high 4857 * watermark. As a result, neither should be 4858 * regarded as dirtyable memory, to prevent a 4859 * situation where reclaim has to clean pages 4860 * in order to balance the zones. 4861 */ 4862 zone->dirty_balance_reserve = max; 4863 } 4864 } 4865 dirty_balance_reserve = reserve_pages; 4866 totalreserve_pages = reserve_pages; 4867 } 4868 4869 /* 4870 * setup_per_zone_lowmem_reserve - called whenever 4871 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4872 * has a correct pages reserved value, so an adequate number of 4873 * pages are left in the zone after a successful __alloc_pages(). 4874 */ 4875 static void setup_per_zone_lowmem_reserve(void) 4876 { 4877 struct pglist_data *pgdat; 4878 enum zone_type j, idx; 4879 4880 for_each_online_pgdat(pgdat) { 4881 for (j = 0; j < MAX_NR_ZONES; j++) { 4882 struct zone *zone = pgdat->node_zones + j; 4883 unsigned long present_pages = zone->present_pages; 4884 4885 zone->lowmem_reserve[j] = 0; 4886 4887 idx = j; 4888 while (idx) { 4889 struct zone *lower_zone; 4890 4891 idx--; 4892 4893 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4894 sysctl_lowmem_reserve_ratio[idx] = 1; 4895 4896 lower_zone = pgdat->node_zones + idx; 4897 lower_zone->lowmem_reserve[j] = present_pages / 4898 sysctl_lowmem_reserve_ratio[idx]; 4899 present_pages += lower_zone->present_pages; 4900 } 4901 } 4902 } 4903 4904 /* update totalreserve_pages */ 4905 calculate_totalreserve_pages(); 4906 } 4907 4908 /** 4909 * setup_per_zone_wmarks - called when min_free_kbytes changes 4910 * or when memory is hot-{added|removed} 4911 * 4912 * Ensures that the watermark[min,low,high] values for each zone are set 4913 * correctly with respect to min_free_kbytes. 4914 */ 4915 void setup_per_zone_wmarks(void) 4916 { 4917 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4918 unsigned long lowmem_pages = 0; 4919 struct zone *zone; 4920 unsigned long flags; 4921 4922 /* Calculate total number of !ZONE_HIGHMEM pages */ 4923 for_each_zone(zone) { 4924 if (!is_highmem(zone)) 4925 lowmem_pages += zone->present_pages; 4926 } 4927 4928 for_each_zone(zone) { 4929 u64 tmp; 4930 4931 spin_lock_irqsave(&zone->lock, flags); 4932 tmp = (u64)pages_min * zone->present_pages; 4933 do_div(tmp, lowmem_pages); 4934 if (is_highmem(zone)) { 4935 /* 4936 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4937 * need highmem pages, so cap pages_min to a small 4938 * value here. 4939 * 4940 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4941 * deltas controls asynch page reclaim, and so should 4942 * not be capped for highmem. 4943 */ 4944 int min_pages; 4945 4946 min_pages = zone->present_pages / 1024; 4947 if (min_pages < SWAP_CLUSTER_MAX) 4948 min_pages = SWAP_CLUSTER_MAX; 4949 if (min_pages > 128) 4950 min_pages = 128; 4951 zone->watermark[WMARK_MIN] = min_pages; 4952 } else { 4953 /* 4954 * If it's a lowmem zone, reserve a number of pages 4955 * proportionate to the zone's size. 4956 */ 4957 zone->watermark[WMARK_MIN] = tmp; 4958 } 4959 4960 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4961 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4962 setup_zone_migrate_reserve(zone); 4963 spin_unlock_irqrestore(&zone->lock, flags); 4964 } 4965 4966 /* update totalreserve_pages */ 4967 calculate_totalreserve_pages(); 4968 } 4969 4970 /* 4971 * The inactive anon list should be small enough that the VM never has to 4972 * do too much work, but large enough that each inactive page has a chance 4973 * to be referenced again before it is swapped out. 4974 * 4975 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4976 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4977 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4978 * the anonymous pages are kept on the inactive list. 4979 * 4980 * total target max 4981 * memory ratio inactive anon 4982 * ------------------------------------- 4983 * 10MB 1 5MB 4984 * 100MB 1 50MB 4985 * 1GB 3 250MB 4986 * 10GB 10 0.9GB 4987 * 100GB 31 3GB 4988 * 1TB 101 10GB 4989 * 10TB 320 32GB 4990 */ 4991 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 4992 { 4993 unsigned int gb, ratio; 4994 4995 /* Zone size in gigabytes */ 4996 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4997 if (gb) 4998 ratio = int_sqrt(10 * gb); 4999 else 5000 ratio = 1; 5001 5002 zone->inactive_ratio = ratio; 5003 } 5004 5005 static void __meminit setup_per_zone_inactive_ratio(void) 5006 { 5007 struct zone *zone; 5008 5009 for_each_zone(zone) 5010 calculate_zone_inactive_ratio(zone); 5011 } 5012 5013 /* 5014 * Initialise min_free_kbytes. 5015 * 5016 * For small machines we want it small (128k min). For large machines 5017 * we want it large (64MB max). But it is not linear, because network 5018 * bandwidth does not increase linearly with machine size. We use 5019 * 5020 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5021 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5022 * 5023 * which yields 5024 * 5025 * 16MB: 512k 5026 * 32MB: 724k 5027 * 64MB: 1024k 5028 * 128MB: 1448k 5029 * 256MB: 2048k 5030 * 512MB: 2896k 5031 * 1024MB: 4096k 5032 * 2048MB: 5792k 5033 * 4096MB: 8192k 5034 * 8192MB: 11584k 5035 * 16384MB: 16384k 5036 */ 5037 int __meminit init_per_zone_wmark_min(void) 5038 { 5039 unsigned long lowmem_kbytes; 5040 5041 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5042 5043 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5044 if (min_free_kbytes < 128) 5045 min_free_kbytes = 128; 5046 if (min_free_kbytes > 65536) 5047 min_free_kbytes = 65536; 5048 setup_per_zone_wmarks(); 5049 refresh_zone_stat_thresholds(); 5050 setup_per_zone_lowmem_reserve(); 5051 setup_per_zone_inactive_ratio(); 5052 return 0; 5053 } 5054 module_init(init_per_zone_wmark_min) 5055 5056 /* 5057 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5058 * that we can call two helper functions whenever min_free_kbytes 5059 * changes. 5060 */ 5061 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5062 void __user *buffer, size_t *length, loff_t *ppos) 5063 { 5064 proc_dointvec(table, write, buffer, length, ppos); 5065 if (write) 5066 setup_per_zone_wmarks(); 5067 return 0; 5068 } 5069 5070 #ifdef CONFIG_NUMA 5071 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5072 void __user *buffer, size_t *length, loff_t *ppos) 5073 { 5074 struct zone *zone; 5075 int rc; 5076 5077 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5078 if (rc) 5079 return rc; 5080 5081 for_each_zone(zone) 5082 zone->min_unmapped_pages = (zone->present_pages * 5083 sysctl_min_unmapped_ratio) / 100; 5084 return 0; 5085 } 5086 5087 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5088 void __user *buffer, size_t *length, loff_t *ppos) 5089 { 5090 struct zone *zone; 5091 int rc; 5092 5093 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5094 if (rc) 5095 return rc; 5096 5097 for_each_zone(zone) 5098 zone->min_slab_pages = (zone->present_pages * 5099 sysctl_min_slab_ratio) / 100; 5100 return 0; 5101 } 5102 #endif 5103 5104 /* 5105 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5106 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5107 * whenever sysctl_lowmem_reserve_ratio changes. 5108 * 5109 * The reserve ratio obviously has absolutely no relation with the 5110 * minimum watermarks. The lowmem reserve ratio can only make sense 5111 * if in function of the boot time zone sizes. 5112 */ 5113 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5114 void __user *buffer, size_t *length, loff_t *ppos) 5115 { 5116 proc_dointvec_minmax(table, write, buffer, length, ppos); 5117 setup_per_zone_lowmem_reserve(); 5118 return 0; 5119 } 5120 5121 /* 5122 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5123 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5124 * can have before it gets flushed back to buddy allocator. 5125 */ 5126 5127 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5128 void __user *buffer, size_t *length, loff_t *ppos) 5129 { 5130 struct zone *zone; 5131 unsigned int cpu; 5132 int ret; 5133 5134 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5135 if (!write || (ret == -EINVAL)) 5136 return ret; 5137 for_each_populated_zone(zone) { 5138 for_each_possible_cpu(cpu) { 5139 unsigned long high; 5140 high = zone->present_pages / percpu_pagelist_fraction; 5141 setup_pagelist_highmark( 5142 per_cpu_ptr(zone->pageset, cpu), high); 5143 } 5144 } 5145 return 0; 5146 } 5147 5148 int hashdist = HASHDIST_DEFAULT; 5149 5150 #ifdef CONFIG_NUMA 5151 static int __init set_hashdist(char *str) 5152 { 5153 if (!str) 5154 return 0; 5155 hashdist = simple_strtoul(str, &str, 0); 5156 return 1; 5157 } 5158 __setup("hashdist=", set_hashdist); 5159 #endif 5160 5161 /* 5162 * allocate a large system hash table from bootmem 5163 * - it is assumed that the hash table must contain an exact power-of-2 5164 * quantity of entries 5165 * - limit is the number of hash buckets, not the total allocation size 5166 */ 5167 void *__init alloc_large_system_hash(const char *tablename, 5168 unsigned long bucketsize, 5169 unsigned long numentries, 5170 int scale, 5171 int flags, 5172 unsigned int *_hash_shift, 5173 unsigned int *_hash_mask, 5174 unsigned long limit) 5175 { 5176 unsigned long long max = limit; 5177 unsigned long log2qty, size; 5178 void *table = NULL; 5179 5180 /* allow the kernel cmdline to have a say */ 5181 if (!numentries) { 5182 /* round applicable memory size up to nearest megabyte */ 5183 numentries = nr_kernel_pages; 5184 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5185 numentries >>= 20 - PAGE_SHIFT; 5186 numentries <<= 20 - PAGE_SHIFT; 5187 5188 /* limit to 1 bucket per 2^scale bytes of low memory */ 5189 if (scale > PAGE_SHIFT) 5190 numentries >>= (scale - PAGE_SHIFT); 5191 else 5192 numentries <<= (PAGE_SHIFT - scale); 5193 5194 /* Make sure we've got at least a 0-order allocation.. */ 5195 if (unlikely(flags & HASH_SMALL)) { 5196 /* Makes no sense without HASH_EARLY */ 5197 WARN_ON(!(flags & HASH_EARLY)); 5198 if (!(numentries >> *_hash_shift)) { 5199 numentries = 1UL << *_hash_shift; 5200 BUG_ON(!numentries); 5201 } 5202 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5203 numentries = PAGE_SIZE / bucketsize; 5204 } 5205 numentries = roundup_pow_of_two(numentries); 5206 5207 /* limit allocation size to 1/16 total memory by default */ 5208 if (max == 0) { 5209 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5210 do_div(max, bucketsize); 5211 } 5212 5213 if (numentries > max) 5214 numentries = max; 5215 5216 log2qty = ilog2(numentries); 5217 5218 do { 5219 size = bucketsize << log2qty; 5220 if (flags & HASH_EARLY) 5221 table = alloc_bootmem_nopanic(size); 5222 else if (hashdist) 5223 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5224 else { 5225 /* 5226 * If bucketsize is not a power-of-two, we may free 5227 * some pages at the end of hash table which 5228 * alloc_pages_exact() automatically does 5229 */ 5230 if (get_order(size) < MAX_ORDER) { 5231 table = alloc_pages_exact(size, GFP_ATOMIC); 5232 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5233 } 5234 } 5235 } while (!table && size > PAGE_SIZE && --log2qty); 5236 5237 if (!table) 5238 panic("Failed to allocate %s hash table\n", tablename); 5239 5240 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5241 tablename, 5242 (1UL << log2qty), 5243 ilog2(size) - PAGE_SHIFT, 5244 size); 5245 5246 if (_hash_shift) 5247 *_hash_shift = log2qty; 5248 if (_hash_mask) 5249 *_hash_mask = (1 << log2qty) - 1; 5250 5251 return table; 5252 } 5253 5254 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5255 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5256 unsigned long pfn) 5257 { 5258 #ifdef CONFIG_SPARSEMEM 5259 return __pfn_to_section(pfn)->pageblock_flags; 5260 #else 5261 return zone->pageblock_flags; 5262 #endif /* CONFIG_SPARSEMEM */ 5263 } 5264 5265 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5266 { 5267 #ifdef CONFIG_SPARSEMEM 5268 pfn &= (PAGES_PER_SECTION-1); 5269 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5270 #else 5271 pfn = pfn - zone->zone_start_pfn; 5272 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5273 #endif /* CONFIG_SPARSEMEM */ 5274 } 5275 5276 /** 5277 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5278 * @page: The page within the block of interest 5279 * @start_bitidx: The first bit of interest to retrieve 5280 * @end_bitidx: The last bit of interest 5281 * returns pageblock_bits flags 5282 */ 5283 unsigned long get_pageblock_flags_group(struct page *page, 5284 int start_bitidx, int end_bitidx) 5285 { 5286 struct zone *zone; 5287 unsigned long *bitmap; 5288 unsigned long pfn, bitidx; 5289 unsigned long flags = 0; 5290 unsigned long value = 1; 5291 5292 zone = page_zone(page); 5293 pfn = page_to_pfn(page); 5294 bitmap = get_pageblock_bitmap(zone, pfn); 5295 bitidx = pfn_to_bitidx(zone, pfn); 5296 5297 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5298 if (test_bit(bitidx + start_bitidx, bitmap)) 5299 flags |= value; 5300 5301 return flags; 5302 } 5303 5304 /** 5305 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5306 * @page: The page within the block of interest 5307 * @start_bitidx: The first bit of interest 5308 * @end_bitidx: The last bit of interest 5309 * @flags: The flags to set 5310 */ 5311 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5312 int start_bitidx, int end_bitidx) 5313 { 5314 struct zone *zone; 5315 unsigned long *bitmap; 5316 unsigned long pfn, bitidx; 5317 unsigned long value = 1; 5318 5319 zone = page_zone(page); 5320 pfn = page_to_pfn(page); 5321 bitmap = get_pageblock_bitmap(zone, pfn); 5322 bitidx = pfn_to_bitidx(zone, pfn); 5323 VM_BUG_ON(pfn < zone->zone_start_pfn); 5324 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5325 5326 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5327 if (flags & value) 5328 __set_bit(bitidx + start_bitidx, bitmap); 5329 else 5330 __clear_bit(bitidx + start_bitidx, bitmap); 5331 } 5332 5333 /* 5334 * This is designed as sub function...plz see page_isolation.c also. 5335 * set/clear page block's type to be ISOLATE. 5336 * page allocater never alloc memory from ISOLATE block. 5337 */ 5338 5339 static int 5340 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5341 { 5342 unsigned long pfn, iter, found; 5343 /* 5344 * For avoiding noise data, lru_add_drain_all() should be called 5345 * If ZONE_MOVABLE, the zone never contains immobile pages 5346 */ 5347 if (zone_idx(zone) == ZONE_MOVABLE) 5348 return true; 5349 5350 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5351 return true; 5352 5353 pfn = page_to_pfn(page); 5354 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5355 unsigned long check = pfn + iter; 5356 5357 if (!pfn_valid_within(check)) 5358 continue; 5359 5360 page = pfn_to_page(check); 5361 if (!page_count(page)) { 5362 if (PageBuddy(page)) 5363 iter += (1 << page_order(page)) - 1; 5364 continue; 5365 } 5366 if (!PageLRU(page)) 5367 found++; 5368 /* 5369 * If there are RECLAIMABLE pages, we need to check it. 5370 * But now, memory offline itself doesn't call shrink_slab() 5371 * and it still to be fixed. 5372 */ 5373 /* 5374 * If the page is not RAM, page_count()should be 0. 5375 * we don't need more check. This is an _used_ not-movable page. 5376 * 5377 * The problematic thing here is PG_reserved pages. PG_reserved 5378 * is set to both of a memory hole page and a _used_ kernel 5379 * page at boot. 5380 */ 5381 if (found > count) 5382 return false; 5383 } 5384 return true; 5385 } 5386 5387 bool is_pageblock_removable_nolock(struct page *page) 5388 { 5389 struct zone *zone = page_zone(page); 5390 return __count_immobile_pages(zone, page, 0); 5391 } 5392 5393 int set_migratetype_isolate(struct page *page) 5394 { 5395 struct zone *zone; 5396 unsigned long flags, pfn; 5397 struct memory_isolate_notify arg; 5398 int notifier_ret; 5399 int ret = -EBUSY; 5400 5401 zone = page_zone(page); 5402 5403 spin_lock_irqsave(&zone->lock, flags); 5404 5405 pfn = page_to_pfn(page); 5406 arg.start_pfn = pfn; 5407 arg.nr_pages = pageblock_nr_pages; 5408 arg.pages_found = 0; 5409 5410 /* 5411 * It may be possible to isolate a pageblock even if the 5412 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5413 * notifier chain is used by balloon drivers to return the 5414 * number of pages in a range that are held by the balloon 5415 * driver to shrink memory. If all the pages are accounted for 5416 * by balloons, are free, or on the LRU, isolation can continue. 5417 * Later, for example, when memory hotplug notifier runs, these 5418 * pages reported as "can be isolated" should be isolated(freed) 5419 * by the balloon driver through the memory notifier chain. 5420 */ 5421 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5422 notifier_ret = notifier_to_errno(notifier_ret); 5423 if (notifier_ret) 5424 goto out; 5425 /* 5426 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5427 * We just check MOVABLE pages. 5428 */ 5429 if (__count_immobile_pages(zone, page, arg.pages_found)) 5430 ret = 0; 5431 5432 /* 5433 * immobile means "not-on-lru" paes. If immobile is larger than 5434 * removable-by-driver pages reported by notifier, we'll fail. 5435 */ 5436 5437 out: 5438 if (!ret) { 5439 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5440 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5441 } 5442 5443 spin_unlock_irqrestore(&zone->lock, flags); 5444 if (!ret) 5445 drain_all_pages(); 5446 return ret; 5447 } 5448 5449 void unset_migratetype_isolate(struct page *page) 5450 { 5451 struct zone *zone; 5452 unsigned long flags; 5453 zone = page_zone(page); 5454 spin_lock_irqsave(&zone->lock, flags); 5455 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5456 goto out; 5457 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5458 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5459 out: 5460 spin_unlock_irqrestore(&zone->lock, flags); 5461 } 5462 5463 #ifdef CONFIG_MEMORY_HOTREMOVE 5464 /* 5465 * All pages in the range must be isolated before calling this. 5466 */ 5467 void 5468 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5469 { 5470 struct page *page; 5471 struct zone *zone; 5472 int order, i; 5473 unsigned long pfn; 5474 unsigned long flags; 5475 /* find the first valid pfn */ 5476 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5477 if (pfn_valid(pfn)) 5478 break; 5479 if (pfn == end_pfn) 5480 return; 5481 zone = page_zone(pfn_to_page(pfn)); 5482 spin_lock_irqsave(&zone->lock, flags); 5483 pfn = start_pfn; 5484 while (pfn < end_pfn) { 5485 if (!pfn_valid(pfn)) { 5486 pfn++; 5487 continue; 5488 } 5489 page = pfn_to_page(pfn); 5490 BUG_ON(page_count(page)); 5491 BUG_ON(!PageBuddy(page)); 5492 order = page_order(page); 5493 #ifdef CONFIG_DEBUG_VM 5494 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5495 pfn, 1 << order, end_pfn); 5496 #endif 5497 list_del(&page->lru); 5498 rmv_page_order(page); 5499 zone->free_area[order].nr_free--; 5500 __mod_zone_page_state(zone, NR_FREE_PAGES, 5501 - (1UL << order)); 5502 for (i = 0; i < (1 << order); i++) 5503 SetPageReserved((page+i)); 5504 pfn += (1 << order); 5505 } 5506 spin_unlock_irqrestore(&zone->lock, flags); 5507 } 5508 #endif 5509 5510 #ifdef CONFIG_MEMORY_FAILURE 5511 bool is_free_buddy_page(struct page *page) 5512 { 5513 struct zone *zone = page_zone(page); 5514 unsigned long pfn = page_to_pfn(page); 5515 unsigned long flags; 5516 int order; 5517 5518 spin_lock_irqsave(&zone->lock, flags); 5519 for (order = 0; order < MAX_ORDER; order++) { 5520 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5521 5522 if (PageBuddy(page_head) && page_order(page_head) >= order) 5523 break; 5524 } 5525 spin_unlock_irqrestore(&zone->lock, flags); 5526 5527 return order < MAX_ORDER; 5528 } 5529 #endif 5530 5531 static struct trace_print_flags pageflag_names[] = { 5532 {1UL << PG_locked, "locked" }, 5533 {1UL << PG_error, "error" }, 5534 {1UL << PG_referenced, "referenced" }, 5535 {1UL << PG_uptodate, "uptodate" }, 5536 {1UL << PG_dirty, "dirty" }, 5537 {1UL << PG_lru, "lru" }, 5538 {1UL << PG_active, "active" }, 5539 {1UL << PG_slab, "slab" }, 5540 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5541 {1UL << PG_arch_1, "arch_1" }, 5542 {1UL << PG_reserved, "reserved" }, 5543 {1UL << PG_private, "private" }, 5544 {1UL << PG_private_2, "private_2" }, 5545 {1UL << PG_writeback, "writeback" }, 5546 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5547 {1UL << PG_head, "head" }, 5548 {1UL << PG_tail, "tail" }, 5549 #else 5550 {1UL << PG_compound, "compound" }, 5551 #endif 5552 {1UL << PG_swapcache, "swapcache" }, 5553 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5554 {1UL << PG_reclaim, "reclaim" }, 5555 {1UL << PG_swapbacked, "swapbacked" }, 5556 {1UL << PG_unevictable, "unevictable" }, 5557 #ifdef CONFIG_MMU 5558 {1UL << PG_mlocked, "mlocked" }, 5559 #endif 5560 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5561 {1UL << PG_uncached, "uncached" }, 5562 #endif 5563 #ifdef CONFIG_MEMORY_FAILURE 5564 {1UL << PG_hwpoison, "hwpoison" }, 5565 #endif 5566 {-1UL, NULL }, 5567 }; 5568 5569 static void dump_page_flags(unsigned long flags) 5570 { 5571 const char *delim = ""; 5572 unsigned long mask; 5573 int i; 5574 5575 printk(KERN_ALERT "page flags: %#lx(", flags); 5576 5577 /* remove zone id */ 5578 flags &= (1UL << NR_PAGEFLAGS) - 1; 5579 5580 for (i = 0; pageflag_names[i].name && flags; i++) { 5581 5582 mask = pageflag_names[i].mask; 5583 if ((flags & mask) != mask) 5584 continue; 5585 5586 flags &= ~mask; 5587 printk("%s%s", delim, pageflag_names[i].name); 5588 delim = "|"; 5589 } 5590 5591 /* check for left over flags */ 5592 if (flags) 5593 printk("%s%#lx", delim, flags); 5594 5595 printk(")\n"); 5596 } 5597 5598 void dump_page(struct page *page) 5599 { 5600 printk(KERN_ALERT 5601 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5602 page, atomic_read(&page->_count), page_mapcount(page), 5603 page->mapping, page->index); 5604 dump_page_flags(page->flags); 5605 mem_cgroup_print_bad_page(page); 5606 } 5607