1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static void accept_page(struct page *page, unsigned int order); 290 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 291 static inline bool has_unaccepted_memory(void); 292 static bool __free_unaccepted(struct page *page); 293 294 int page_group_by_mobility_disabled __read_mostly; 295 296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 297 /* 298 * During boot we initialize deferred pages on-demand, as needed, but once 299 * page_alloc_init_late() has finished, the deferred pages are all initialized, 300 * and we can permanently disable that path. 301 */ 302 DEFINE_STATIC_KEY_TRUE(deferred_pages); 303 304 static inline bool deferred_pages_enabled(void) 305 { 306 return static_branch_unlikely(&deferred_pages); 307 } 308 309 /* 310 * deferred_grow_zone() is __init, but it is called from 311 * get_page_from_freelist() during early boot until deferred_pages permanently 312 * disables this call. This is why we have refdata wrapper to avoid warning, 313 * and to ensure that the function body gets unloaded. 314 */ 315 static bool __ref 316 _deferred_grow_zone(struct zone *zone, unsigned int order) 317 { 318 return deferred_grow_zone(zone, order); 319 } 320 #else 321 static inline bool deferred_pages_enabled(void) 322 { 323 return false; 324 } 325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 326 327 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 328 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 329 unsigned long pfn) 330 { 331 #ifdef CONFIG_SPARSEMEM 332 return section_to_usemap(__pfn_to_section(pfn)); 333 #else 334 return page_zone(page)->pageblock_flags; 335 #endif /* CONFIG_SPARSEMEM */ 336 } 337 338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 339 { 340 #ifdef CONFIG_SPARSEMEM 341 pfn &= (PAGES_PER_SECTION-1); 342 #else 343 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 344 #endif /* CONFIG_SPARSEMEM */ 345 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 346 } 347 348 /** 349 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 350 * @page: The page within the block of interest 351 * @pfn: The target page frame number 352 * @mask: mask of bits that the caller is interested in 353 * 354 * Return: pageblock_bits flags 355 */ 356 unsigned long get_pfnblock_flags_mask(const struct page *page, 357 unsigned long pfn, unsigned long mask) 358 { 359 unsigned long *bitmap; 360 unsigned long bitidx, word_bitidx; 361 unsigned long word; 362 363 bitmap = get_pageblock_bitmap(page, pfn); 364 bitidx = pfn_to_bitidx(page, pfn); 365 word_bitidx = bitidx / BITS_PER_LONG; 366 bitidx &= (BITS_PER_LONG-1); 367 /* 368 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 369 * a consistent read of the memory array, so that results, even though 370 * racy, are not corrupted. 371 */ 372 word = READ_ONCE(bitmap[word_bitidx]); 373 return (word >> bitidx) & mask; 374 } 375 376 static __always_inline int get_pfnblock_migratetype(const struct page *page, 377 unsigned long pfn) 378 { 379 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 380 } 381 382 /** 383 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 384 * @page: The page within the block of interest 385 * @flags: The flags to set 386 * @pfn: The target page frame number 387 * @mask: mask of bits that the caller is interested in 388 */ 389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 390 unsigned long pfn, 391 unsigned long mask) 392 { 393 unsigned long *bitmap; 394 unsigned long bitidx, word_bitidx; 395 unsigned long word; 396 397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 398 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 399 400 bitmap = get_pageblock_bitmap(page, pfn); 401 bitidx = pfn_to_bitidx(page, pfn); 402 word_bitidx = bitidx / BITS_PER_LONG; 403 bitidx &= (BITS_PER_LONG-1); 404 405 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 406 407 mask <<= bitidx; 408 flags <<= bitidx; 409 410 word = READ_ONCE(bitmap[word_bitidx]); 411 do { 412 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 413 } 414 415 void set_pageblock_migratetype(struct page *page, int migratetype) 416 { 417 if (unlikely(page_group_by_mobility_disabled && 418 migratetype < MIGRATE_PCPTYPES)) 419 migratetype = MIGRATE_UNMOVABLE; 420 421 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 422 page_to_pfn(page), MIGRATETYPE_MASK); 423 } 424 425 #ifdef CONFIG_DEBUG_VM 426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 427 { 428 int ret; 429 unsigned seq; 430 unsigned long pfn = page_to_pfn(page); 431 unsigned long sp, start_pfn; 432 433 do { 434 seq = zone_span_seqbegin(zone); 435 start_pfn = zone->zone_start_pfn; 436 sp = zone->spanned_pages; 437 ret = !zone_spans_pfn(zone, pfn); 438 } while (zone_span_seqretry(zone, seq)); 439 440 if (ret) 441 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 442 pfn, zone_to_nid(zone), zone->name, 443 start_pfn, start_pfn + sp); 444 445 return ret; 446 } 447 448 /* 449 * Temporary debugging check for pages not lying within a given zone. 450 */ 451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 452 { 453 if (page_outside_zone_boundaries(zone, page)) 454 return true; 455 if (zone != page_zone(page)) 456 return true; 457 458 return false; 459 } 460 #else 461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 462 { 463 return false; 464 } 465 #endif 466 467 static void bad_page(struct page *page, const char *reason) 468 { 469 static unsigned long resume; 470 static unsigned long nr_shown; 471 static unsigned long nr_unshown; 472 473 /* 474 * Allow a burst of 60 reports, then keep quiet for that minute; 475 * or allow a steady drip of one report per second. 476 */ 477 if (nr_shown == 60) { 478 if (time_before(jiffies, resume)) { 479 nr_unshown++; 480 goto out; 481 } 482 if (nr_unshown) { 483 pr_alert( 484 "BUG: Bad page state: %lu messages suppressed\n", 485 nr_unshown); 486 nr_unshown = 0; 487 } 488 nr_shown = 0; 489 } 490 if (nr_shown++ == 0) 491 resume = jiffies + 60 * HZ; 492 493 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 494 current->comm, page_to_pfn(page)); 495 dump_page(page, reason); 496 497 print_modules(); 498 dump_stack(); 499 out: 500 /* Leave bad fields for debug, except PageBuddy could make trouble */ 501 page_mapcount_reset(page); /* remove PageBuddy */ 502 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 503 } 504 505 static inline unsigned int order_to_pindex(int migratetype, int order) 506 { 507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 508 if (order > PAGE_ALLOC_COSTLY_ORDER) { 509 VM_BUG_ON(order != HPAGE_PMD_ORDER); 510 return NR_LOWORDER_PCP_LISTS; 511 } 512 #else 513 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 514 #endif 515 516 return (MIGRATE_PCPTYPES * order) + migratetype; 517 } 518 519 static inline int pindex_to_order(unsigned int pindex) 520 { 521 int order = pindex / MIGRATE_PCPTYPES; 522 523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 524 if (pindex == NR_LOWORDER_PCP_LISTS) 525 order = HPAGE_PMD_ORDER; 526 #else 527 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 528 #endif 529 530 return order; 531 } 532 533 static inline bool pcp_allowed_order(unsigned int order) 534 { 535 if (order <= PAGE_ALLOC_COSTLY_ORDER) 536 return true; 537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 538 if (order == HPAGE_PMD_ORDER) 539 return true; 540 #endif 541 return false; 542 } 543 544 /* 545 * Higher-order pages are called "compound pages". They are structured thusly: 546 * 547 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 548 * 549 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 550 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 551 * 552 * The first tail page's ->compound_order holds the order of allocation. 553 * This usage means that zero-order pages may not be compound. 554 */ 555 556 void prep_compound_page(struct page *page, unsigned int order) 557 { 558 int i; 559 int nr_pages = 1 << order; 560 561 __SetPageHead(page); 562 for (i = 1; i < nr_pages; i++) 563 prep_compound_tail(page, i); 564 565 prep_compound_head(page, order); 566 } 567 568 static inline void set_buddy_order(struct page *page, unsigned int order) 569 { 570 set_page_private(page, order); 571 __SetPageBuddy(page); 572 } 573 574 #ifdef CONFIG_COMPACTION 575 static inline struct capture_control *task_capc(struct zone *zone) 576 { 577 struct capture_control *capc = current->capture_control; 578 579 return unlikely(capc) && 580 !(current->flags & PF_KTHREAD) && 581 !capc->page && 582 capc->cc->zone == zone ? capc : NULL; 583 } 584 585 static inline bool 586 compaction_capture(struct capture_control *capc, struct page *page, 587 int order, int migratetype) 588 { 589 if (!capc || order != capc->cc->order) 590 return false; 591 592 /* Do not accidentally pollute CMA or isolated regions*/ 593 if (is_migrate_cma(migratetype) || 594 is_migrate_isolate(migratetype)) 595 return false; 596 597 /* 598 * Do not let lower order allocations pollute a movable pageblock 599 * unless compaction is also requesting movable pages. 600 * This might let an unmovable request use a reclaimable pageblock 601 * and vice-versa but no more than normal fallback logic which can 602 * have trouble finding a high-order free page. 603 */ 604 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 605 capc->cc->migratetype != MIGRATE_MOVABLE) 606 return false; 607 608 capc->page = page; 609 return true; 610 } 611 612 #else 613 static inline struct capture_control *task_capc(struct zone *zone) 614 { 615 return NULL; 616 } 617 618 static inline bool 619 compaction_capture(struct capture_control *capc, struct page *page, 620 int order, int migratetype) 621 { 622 return false; 623 } 624 #endif /* CONFIG_COMPACTION */ 625 626 static inline void account_freepages(struct zone *zone, int nr_pages, 627 int migratetype) 628 { 629 if (is_migrate_isolate(migratetype)) 630 return; 631 632 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 633 634 if (is_migrate_cma(migratetype)) 635 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 636 } 637 638 /* Used for pages not on another list */ 639 static inline void __add_to_free_list(struct page *page, struct zone *zone, 640 unsigned int order, int migratetype, 641 bool tail) 642 { 643 struct free_area *area = &zone->free_area[order]; 644 645 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 646 "page type is %lu, passed migratetype is %d (nr=%d)\n", 647 get_pageblock_migratetype(page), migratetype, 1 << order); 648 649 if (tail) 650 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 651 else 652 list_add(&page->buddy_list, &area->free_list[migratetype]); 653 area->nr_free++; 654 } 655 656 /* 657 * Used for pages which are on another list. Move the pages to the tail 658 * of the list - so the moved pages won't immediately be considered for 659 * allocation again (e.g., optimization for memory onlining). 660 */ 661 static inline void move_to_free_list(struct page *page, struct zone *zone, 662 unsigned int order, int old_mt, int new_mt) 663 { 664 struct free_area *area = &zone->free_area[order]; 665 666 /* Free page moving can fail, so it happens before the type update */ 667 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 668 "page type is %lu, passed migratetype is %d (nr=%d)\n", 669 get_pageblock_migratetype(page), old_mt, 1 << order); 670 671 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 672 673 account_freepages(zone, -(1 << order), old_mt); 674 account_freepages(zone, 1 << order, new_mt); 675 } 676 677 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 678 unsigned int order, int migratetype) 679 { 680 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 681 "page type is %lu, passed migratetype is %d (nr=%d)\n", 682 get_pageblock_migratetype(page), migratetype, 1 << order); 683 684 /* clear reported state and update reported page count */ 685 if (page_reported(page)) 686 __ClearPageReported(page); 687 688 list_del(&page->buddy_list); 689 __ClearPageBuddy(page); 690 set_page_private(page, 0); 691 zone->free_area[order].nr_free--; 692 } 693 694 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 695 unsigned int order, int migratetype) 696 { 697 __del_page_from_free_list(page, zone, order, migratetype); 698 account_freepages(zone, -(1 << order), migratetype); 699 } 700 701 static inline struct page *get_page_from_free_area(struct free_area *area, 702 int migratetype) 703 { 704 return list_first_entry_or_null(&area->free_list[migratetype], 705 struct page, buddy_list); 706 } 707 708 /* 709 * If this is not the largest possible page, check if the buddy 710 * of the next-highest order is free. If it is, it's possible 711 * that pages are being freed that will coalesce soon. In case, 712 * that is happening, add the free page to the tail of the list 713 * so it's less likely to be used soon and more likely to be merged 714 * as a higher order page 715 */ 716 static inline bool 717 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 718 struct page *page, unsigned int order) 719 { 720 unsigned long higher_page_pfn; 721 struct page *higher_page; 722 723 if (order >= MAX_PAGE_ORDER - 1) 724 return false; 725 726 higher_page_pfn = buddy_pfn & pfn; 727 higher_page = page + (higher_page_pfn - pfn); 728 729 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 730 NULL) != NULL; 731 } 732 733 /* 734 * Freeing function for a buddy system allocator. 735 * 736 * The concept of a buddy system is to maintain direct-mapped table 737 * (containing bit values) for memory blocks of various "orders". 738 * The bottom level table contains the map for the smallest allocatable 739 * units of memory (here, pages), and each level above it describes 740 * pairs of units from the levels below, hence, "buddies". 741 * At a high level, all that happens here is marking the table entry 742 * at the bottom level available, and propagating the changes upward 743 * as necessary, plus some accounting needed to play nicely with other 744 * parts of the VM system. 745 * At each level, we keep a list of pages, which are heads of continuous 746 * free pages of length of (1 << order) and marked with PageBuddy. 747 * Page's order is recorded in page_private(page) field. 748 * So when we are allocating or freeing one, we can derive the state of the 749 * other. That is, if we allocate a small block, and both were 750 * free, the remainder of the region must be split into blocks. 751 * If a block is freed, and its buddy is also free, then this 752 * triggers coalescing into a block of larger size. 753 * 754 * -- nyc 755 */ 756 757 static inline void __free_one_page(struct page *page, 758 unsigned long pfn, 759 struct zone *zone, unsigned int order, 760 int migratetype, fpi_t fpi_flags) 761 { 762 struct capture_control *capc = task_capc(zone); 763 unsigned long buddy_pfn = 0; 764 unsigned long combined_pfn; 765 struct page *buddy; 766 bool to_tail; 767 768 VM_BUG_ON(!zone_is_initialized(zone)); 769 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 770 771 VM_BUG_ON(migratetype == -1); 772 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 773 VM_BUG_ON_PAGE(bad_range(zone, page), page); 774 775 account_freepages(zone, 1 << order, migratetype); 776 777 while (order < MAX_PAGE_ORDER) { 778 int buddy_mt = migratetype; 779 780 if (compaction_capture(capc, page, order, migratetype)) { 781 account_freepages(zone, -(1 << order), migratetype); 782 return; 783 } 784 785 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 786 if (!buddy) 787 goto done_merging; 788 789 if (unlikely(order >= pageblock_order)) { 790 /* 791 * We want to prevent merge between freepages on pageblock 792 * without fallbacks and normal pageblock. Without this, 793 * pageblock isolation could cause incorrect freepage or CMA 794 * accounting or HIGHATOMIC accounting. 795 */ 796 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 797 798 if (migratetype != buddy_mt && 799 (!migratetype_is_mergeable(migratetype) || 800 !migratetype_is_mergeable(buddy_mt))) 801 goto done_merging; 802 } 803 804 /* 805 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 806 * merge with it and move up one order. 807 */ 808 if (page_is_guard(buddy)) 809 clear_page_guard(zone, buddy, order); 810 else 811 __del_page_from_free_list(buddy, zone, order, buddy_mt); 812 813 if (unlikely(buddy_mt != migratetype)) { 814 /* 815 * Match buddy type. This ensures that an 816 * expand() down the line puts the sub-blocks 817 * on the right freelists. 818 */ 819 set_pageblock_migratetype(buddy, migratetype); 820 } 821 822 combined_pfn = buddy_pfn & pfn; 823 page = page + (combined_pfn - pfn); 824 pfn = combined_pfn; 825 order++; 826 } 827 828 done_merging: 829 set_buddy_order(page, order); 830 831 if (fpi_flags & FPI_TO_TAIL) 832 to_tail = true; 833 else if (is_shuffle_order(order)) 834 to_tail = shuffle_pick_tail(); 835 else 836 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 837 838 __add_to_free_list(page, zone, order, migratetype, to_tail); 839 840 /* Notify page reporting subsystem of freed page */ 841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 842 page_reporting_notify_free(order); 843 } 844 845 /* 846 * A bad page could be due to a number of fields. Instead of multiple branches, 847 * try and check multiple fields with one check. The caller must do a detailed 848 * check if necessary. 849 */ 850 static inline bool page_expected_state(struct page *page, 851 unsigned long check_flags) 852 { 853 if (unlikely(atomic_read(&page->_mapcount) != -1)) 854 return false; 855 856 if (unlikely((unsigned long)page->mapping | 857 page_ref_count(page) | 858 #ifdef CONFIG_MEMCG 859 page->memcg_data | 860 #endif 861 #ifdef CONFIG_PAGE_POOL 862 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 863 #endif 864 (page->flags & check_flags))) 865 return false; 866 867 return true; 868 } 869 870 static const char *page_bad_reason(struct page *page, unsigned long flags) 871 { 872 const char *bad_reason = NULL; 873 874 if (unlikely(atomic_read(&page->_mapcount) != -1)) 875 bad_reason = "nonzero mapcount"; 876 if (unlikely(page->mapping != NULL)) 877 bad_reason = "non-NULL mapping"; 878 if (unlikely(page_ref_count(page) != 0)) 879 bad_reason = "nonzero _refcount"; 880 if (unlikely(page->flags & flags)) { 881 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 882 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 883 else 884 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 885 } 886 #ifdef CONFIG_MEMCG 887 if (unlikely(page->memcg_data)) 888 bad_reason = "page still charged to cgroup"; 889 #endif 890 #ifdef CONFIG_PAGE_POOL 891 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 892 bad_reason = "page_pool leak"; 893 #endif 894 return bad_reason; 895 } 896 897 static void free_page_is_bad_report(struct page *page) 898 { 899 bad_page(page, 900 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 901 } 902 903 static inline bool free_page_is_bad(struct page *page) 904 { 905 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 906 return false; 907 908 /* Something has gone sideways, find it */ 909 free_page_is_bad_report(page); 910 return true; 911 } 912 913 static inline bool is_check_pages_enabled(void) 914 { 915 return static_branch_unlikely(&check_pages_enabled); 916 } 917 918 static int free_tail_page_prepare(struct page *head_page, struct page *page) 919 { 920 struct folio *folio = (struct folio *)head_page; 921 int ret = 1; 922 923 /* 924 * We rely page->lru.next never has bit 0 set, unless the page 925 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 926 */ 927 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 928 929 if (!is_check_pages_enabled()) { 930 ret = 0; 931 goto out; 932 } 933 switch (page - head_page) { 934 case 1: 935 /* the first tail page: these may be in place of ->mapping */ 936 if (unlikely(folio_entire_mapcount(folio))) { 937 bad_page(page, "nonzero entire_mapcount"); 938 goto out; 939 } 940 if (unlikely(folio_large_mapcount(folio))) { 941 bad_page(page, "nonzero large_mapcount"); 942 goto out; 943 } 944 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 945 bad_page(page, "nonzero nr_pages_mapped"); 946 goto out; 947 } 948 if (unlikely(atomic_read(&folio->_pincount))) { 949 bad_page(page, "nonzero pincount"); 950 goto out; 951 } 952 break; 953 case 2: 954 /* the second tail page: deferred_list overlaps ->mapping */ 955 if (unlikely(!list_empty(&folio->_deferred_list))) { 956 bad_page(page, "on deferred list"); 957 goto out; 958 } 959 break; 960 default: 961 if (page->mapping != TAIL_MAPPING) { 962 bad_page(page, "corrupted mapping in tail page"); 963 goto out; 964 } 965 break; 966 } 967 if (unlikely(!PageTail(page))) { 968 bad_page(page, "PageTail not set"); 969 goto out; 970 } 971 if (unlikely(compound_head(page) != head_page)) { 972 bad_page(page, "compound_head not consistent"); 973 goto out; 974 } 975 ret = 0; 976 out: 977 page->mapping = NULL; 978 clear_compound_head(page); 979 return ret; 980 } 981 982 /* 983 * Skip KASAN memory poisoning when either: 984 * 985 * 1. For generic KASAN: deferred memory initialization has not yet completed. 986 * Tag-based KASAN modes skip pages freed via deferred memory initialization 987 * using page tags instead (see below). 988 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 989 * that error detection is disabled for accesses via the page address. 990 * 991 * Pages will have match-all tags in the following circumstances: 992 * 993 * 1. Pages are being initialized for the first time, including during deferred 994 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 995 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 996 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 997 * 3. The allocation was excluded from being checked due to sampling, 998 * see the call to kasan_unpoison_pages. 999 * 1000 * Poisoning pages during deferred memory init will greatly lengthen the 1001 * process and cause problem in large memory systems as the deferred pages 1002 * initialization is done with interrupt disabled. 1003 * 1004 * Assuming that there will be no reference to those newly initialized 1005 * pages before they are ever allocated, this should have no effect on 1006 * KASAN memory tracking as the poison will be properly inserted at page 1007 * allocation time. The only corner case is when pages are allocated by 1008 * on-demand allocation and then freed again before the deferred pages 1009 * initialization is done, but this is not likely to happen. 1010 */ 1011 static inline bool should_skip_kasan_poison(struct page *page) 1012 { 1013 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1014 return deferred_pages_enabled(); 1015 1016 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1017 } 1018 1019 void kernel_init_pages(struct page *page, int numpages) 1020 { 1021 int i; 1022 1023 /* s390's use of memset() could override KASAN redzones. */ 1024 kasan_disable_current(); 1025 for (i = 0; i < numpages; i++) 1026 clear_highpage_kasan_tagged(page + i); 1027 kasan_enable_current(); 1028 } 1029 1030 __always_inline bool free_pages_prepare(struct page *page, 1031 unsigned int order) 1032 { 1033 int bad = 0; 1034 bool skip_kasan_poison = should_skip_kasan_poison(page); 1035 bool init = want_init_on_free(); 1036 bool compound = PageCompound(page); 1037 1038 VM_BUG_ON_PAGE(PageTail(page), page); 1039 1040 trace_mm_page_free(page, order); 1041 kmsan_free_page(page, order); 1042 1043 if (memcg_kmem_online() && PageMemcgKmem(page)) 1044 __memcg_kmem_uncharge_page(page, order); 1045 1046 if (unlikely(PageHWPoison(page)) && !order) { 1047 /* Do not let hwpoison pages hit pcplists/buddy */ 1048 reset_page_owner(page, order); 1049 page_table_check_free(page, order); 1050 pgalloc_tag_sub(page, 1 << order); 1051 return false; 1052 } 1053 1054 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1055 1056 /* 1057 * Check tail pages before head page information is cleared to 1058 * avoid checking PageCompound for order-0 pages. 1059 */ 1060 if (unlikely(order)) { 1061 int i; 1062 1063 if (compound) 1064 page[1].flags &= ~PAGE_FLAGS_SECOND; 1065 for (i = 1; i < (1 << order); i++) { 1066 if (compound) 1067 bad += free_tail_page_prepare(page, page + i); 1068 if (is_check_pages_enabled()) { 1069 if (free_page_is_bad(page + i)) { 1070 bad++; 1071 continue; 1072 } 1073 } 1074 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1075 } 1076 } 1077 if (PageMappingFlags(page)) 1078 page->mapping = NULL; 1079 if (is_check_pages_enabled()) { 1080 if (free_page_is_bad(page)) 1081 bad++; 1082 if (bad) 1083 return false; 1084 } 1085 1086 page_cpupid_reset_last(page); 1087 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1088 reset_page_owner(page, order); 1089 page_table_check_free(page, order); 1090 pgalloc_tag_sub(page, 1 << order); 1091 1092 if (!PageHighMem(page)) { 1093 debug_check_no_locks_freed(page_address(page), 1094 PAGE_SIZE << order); 1095 debug_check_no_obj_freed(page_address(page), 1096 PAGE_SIZE << order); 1097 } 1098 1099 kernel_poison_pages(page, 1 << order); 1100 1101 /* 1102 * As memory initialization might be integrated into KASAN, 1103 * KASAN poisoning and memory initialization code must be 1104 * kept together to avoid discrepancies in behavior. 1105 * 1106 * With hardware tag-based KASAN, memory tags must be set before the 1107 * page becomes unavailable via debug_pagealloc or arch_free_page. 1108 */ 1109 if (!skip_kasan_poison) { 1110 kasan_poison_pages(page, order, init); 1111 1112 /* Memory is already initialized if KASAN did it internally. */ 1113 if (kasan_has_integrated_init()) 1114 init = false; 1115 } 1116 if (init) 1117 kernel_init_pages(page, 1 << order); 1118 1119 /* 1120 * arch_free_page() can make the page's contents inaccessible. s390 1121 * does this. So nothing which can access the page's contents should 1122 * happen after this. 1123 */ 1124 arch_free_page(page, order); 1125 1126 debug_pagealloc_unmap_pages(page, 1 << order); 1127 1128 return true; 1129 } 1130 1131 /* 1132 * Frees a number of pages from the PCP lists 1133 * Assumes all pages on list are in same zone. 1134 * count is the number of pages to free. 1135 */ 1136 static void free_pcppages_bulk(struct zone *zone, int count, 1137 struct per_cpu_pages *pcp, 1138 int pindex) 1139 { 1140 unsigned long flags; 1141 unsigned int order; 1142 struct page *page; 1143 1144 /* 1145 * Ensure proper count is passed which otherwise would stuck in the 1146 * below while (list_empty(list)) loop. 1147 */ 1148 count = min(pcp->count, count); 1149 1150 /* Ensure requested pindex is drained first. */ 1151 pindex = pindex - 1; 1152 1153 spin_lock_irqsave(&zone->lock, flags); 1154 1155 while (count > 0) { 1156 struct list_head *list; 1157 int nr_pages; 1158 1159 /* Remove pages from lists in a round-robin fashion. */ 1160 do { 1161 if (++pindex > NR_PCP_LISTS - 1) 1162 pindex = 0; 1163 list = &pcp->lists[pindex]; 1164 } while (list_empty(list)); 1165 1166 order = pindex_to_order(pindex); 1167 nr_pages = 1 << order; 1168 do { 1169 unsigned long pfn; 1170 int mt; 1171 1172 page = list_last_entry(list, struct page, pcp_list); 1173 pfn = page_to_pfn(page); 1174 mt = get_pfnblock_migratetype(page, pfn); 1175 1176 /* must delete to avoid corrupting pcp list */ 1177 list_del(&page->pcp_list); 1178 count -= nr_pages; 1179 pcp->count -= nr_pages; 1180 1181 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1182 trace_mm_page_pcpu_drain(page, order, mt); 1183 } while (count > 0 && !list_empty(list)); 1184 } 1185 1186 spin_unlock_irqrestore(&zone->lock, flags); 1187 } 1188 1189 static void free_one_page(struct zone *zone, struct page *page, 1190 unsigned long pfn, unsigned int order, 1191 fpi_t fpi_flags) 1192 { 1193 unsigned long flags; 1194 int migratetype; 1195 1196 spin_lock_irqsave(&zone->lock, flags); 1197 migratetype = get_pfnblock_migratetype(page, pfn); 1198 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1199 spin_unlock_irqrestore(&zone->lock, flags); 1200 } 1201 1202 static void __free_pages_ok(struct page *page, unsigned int order, 1203 fpi_t fpi_flags) 1204 { 1205 unsigned long pfn = page_to_pfn(page); 1206 struct zone *zone = page_zone(page); 1207 1208 if (!free_pages_prepare(page, order)) 1209 return; 1210 1211 free_one_page(zone, page, pfn, order, fpi_flags); 1212 1213 __count_vm_events(PGFREE, 1 << order); 1214 } 1215 1216 void __free_pages_core(struct page *page, unsigned int order) 1217 { 1218 unsigned int nr_pages = 1 << order; 1219 struct page *p = page; 1220 unsigned int loop; 1221 1222 /* 1223 * When initializing the memmap, __init_single_page() sets the refcount 1224 * of all pages to 1 ("allocated"/"not free"). We have to set the 1225 * refcount of all involved pages to 0. 1226 */ 1227 prefetchw(p); 1228 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1229 prefetchw(p + 1); 1230 __ClearPageReserved(p); 1231 set_page_count(p, 0); 1232 } 1233 __ClearPageReserved(p); 1234 set_page_count(p, 0); 1235 1236 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1237 1238 if (page_contains_unaccepted(page, order)) { 1239 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1240 return; 1241 1242 accept_page(page, order); 1243 } 1244 1245 /* 1246 * Bypass PCP and place fresh pages right to the tail, primarily 1247 * relevant for memory onlining. 1248 */ 1249 __free_pages_ok(page, order, FPI_TO_TAIL); 1250 } 1251 1252 /* 1253 * Check that the whole (or subset of) a pageblock given by the interval of 1254 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1255 * with the migration of free compaction scanner. 1256 * 1257 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1258 * 1259 * It's possible on some configurations to have a setup like node0 node1 node0 1260 * i.e. it's possible that all pages within a zones range of pages do not 1261 * belong to a single zone. We assume that a border between node0 and node1 1262 * can occur within a single pageblock, but not a node0 node1 node0 1263 * interleaving within a single pageblock. It is therefore sufficient to check 1264 * the first and last page of a pageblock and avoid checking each individual 1265 * page in a pageblock. 1266 * 1267 * Note: the function may return non-NULL struct page even for a page block 1268 * which contains a memory hole (i.e. there is no physical memory for a subset 1269 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1270 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1271 * even though the start pfn is online and valid. This should be safe most of 1272 * the time because struct pages are still initialized via init_unavailable_range() 1273 * and pfn walkers shouldn't touch any physical memory range for which they do 1274 * not recognize any specific metadata in struct pages. 1275 */ 1276 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1277 unsigned long end_pfn, struct zone *zone) 1278 { 1279 struct page *start_page; 1280 struct page *end_page; 1281 1282 /* end_pfn is one past the range we are checking */ 1283 end_pfn--; 1284 1285 if (!pfn_valid(end_pfn)) 1286 return NULL; 1287 1288 start_page = pfn_to_online_page(start_pfn); 1289 if (!start_page) 1290 return NULL; 1291 1292 if (page_zone(start_page) != zone) 1293 return NULL; 1294 1295 end_page = pfn_to_page(end_pfn); 1296 1297 /* This gives a shorter code than deriving page_zone(end_page) */ 1298 if (page_zone_id(start_page) != page_zone_id(end_page)) 1299 return NULL; 1300 1301 return start_page; 1302 } 1303 1304 /* 1305 * The order of subdivision here is critical for the IO subsystem. 1306 * Please do not alter this order without good reasons and regression 1307 * testing. Specifically, as large blocks of memory are subdivided, 1308 * the order in which smaller blocks are delivered depends on the order 1309 * they're subdivided in this function. This is the primary factor 1310 * influencing the order in which pages are delivered to the IO 1311 * subsystem according to empirical testing, and this is also justified 1312 * by considering the behavior of a buddy system containing a single 1313 * large block of memory acted on by a series of small allocations. 1314 * This behavior is a critical factor in sglist merging's success. 1315 * 1316 * -- nyc 1317 */ 1318 static inline void expand(struct zone *zone, struct page *page, 1319 int low, int high, int migratetype) 1320 { 1321 unsigned long size = 1 << high; 1322 unsigned long nr_added = 0; 1323 1324 while (high > low) { 1325 high--; 1326 size >>= 1; 1327 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1328 1329 /* 1330 * Mark as guard pages (or page), that will allow to 1331 * merge back to allocator when buddy will be freed. 1332 * Corresponding page table entries will not be touched, 1333 * pages will stay not present in virtual address space 1334 */ 1335 if (set_page_guard(zone, &page[size], high)) 1336 continue; 1337 1338 __add_to_free_list(&page[size], zone, high, migratetype, false); 1339 set_buddy_order(&page[size], high); 1340 nr_added += size; 1341 } 1342 account_freepages(zone, nr_added, migratetype); 1343 } 1344 1345 static void check_new_page_bad(struct page *page) 1346 { 1347 if (unlikely(page->flags & __PG_HWPOISON)) { 1348 /* Don't complain about hwpoisoned pages */ 1349 page_mapcount_reset(page); /* remove PageBuddy */ 1350 return; 1351 } 1352 1353 bad_page(page, 1354 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1355 } 1356 1357 /* 1358 * This page is about to be returned from the page allocator 1359 */ 1360 static bool check_new_page(struct page *page) 1361 { 1362 if (likely(page_expected_state(page, 1363 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1364 return false; 1365 1366 check_new_page_bad(page); 1367 return true; 1368 } 1369 1370 static inline bool check_new_pages(struct page *page, unsigned int order) 1371 { 1372 if (is_check_pages_enabled()) { 1373 for (int i = 0; i < (1 << order); i++) { 1374 struct page *p = page + i; 1375 1376 if (check_new_page(p)) 1377 return true; 1378 } 1379 } 1380 1381 return false; 1382 } 1383 1384 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1385 { 1386 /* Don't skip if a software KASAN mode is enabled. */ 1387 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1388 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1389 return false; 1390 1391 /* Skip, if hardware tag-based KASAN is not enabled. */ 1392 if (!kasan_hw_tags_enabled()) 1393 return true; 1394 1395 /* 1396 * With hardware tag-based KASAN enabled, skip if this has been 1397 * requested via __GFP_SKIP_KASAN. 1398 */ 1399 return flags & __GFP_SKIP_KASAN; 1400 } 1401 1402 static inline bool should_skip_init(gfp_t flags) 1403 { 1404 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1405 if (!kasan_hw_tags_enabled()) 1406 return false; 1407 1408 /* For hardware tag-based KASAN, skip if requested. */ 1409 return (flags & __GFP_SKIP_ZERO); 1410 } 1411 1412 inline void post_alloc_hook(struct page *page, unsigned int order, 1413 gfp_t gfp_flags) 1414 { 1415 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1416 !should_skip_init(gfp_flags); 1417 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1418 int i; 1419 1420 set_page_private(page, 0); 1421 set_page_refcounted(page); 1422 1423 arch_alloc_page(page, order); 1424 debug_pagealloc_map_pages(page, 1 << order); 1425 1426 /* 1427 * Page unpoisoning must happen before memory initialization. 1428 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1429 * allocations and the page unpoisoning code will complain. 1430 */ 1431 kernel_unpoison_pages(page, 1 << order); 1432 1433 /* 1434 * As memory initialization might be integrated into KASAN, 1435 * KASAN unpoisoning and memory initializion code must be 1436 * kept together to avoid discrepancies in behavior. 1437 */ 1438 1439 /* 1440 * If memory tags should be zeroed 1441 * (which happens only when memory should be initialized as well). 1442 */ 1443 if (zero_tags) { 1444 /* Initialize both memory and memory tags. */ 1445 for (i = 0; i != 1 << order; ++i) 1446 tag_clear_highpage(page + i); 1447 1448 /* Take note that memory was initialized by the loop above. */ 1449 init = false; 1450 } 1451 if (!should_skip_kasan_unpoison(gfp_flags) && 1452 kasan_unpoison_pages(page, order, init)) { 1453 /* Take note that memory was initialized by KASAN. */ 1454 if (kasan_has_integrated_init()) 1455 init = false; 1456 } else { 1457 /* 1458 * If memory tags have not been set by KASAN, reset the page 1459 * tags to ensure page_address() dereferencing does not fault. 1460 */ 1461 for (i = 0; i != 1 << order; ++i) 1462 page_kasan_tag_reset(page + i); 1463 } 1464 /* If memory is still not initialized, initialize it now. */ 1465 if (init) 1466 kernel_init_pages(page, 1 << order); 1467 1468 set_page_owner(page, order, gfp_flags); 1469 page_table_check_alloc(page, order); 1470 pgalloc_tag_add(page, current, 1 << order); 1471 } 1472 1473 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1474 unsigned int alloc_flags) 1475 { 1476 post_alloc_hook(page, order, gfp_flags); 1477 1478 if (order && (gfp_flags & __GFP_COMP)) 1479 prep_compound_page(page, order); 1480 1481 /* 1482 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1483 * allocate the page. The expectation is that the caller is taking 1484 * steps that will free more memory. The caller should avoid the page 1485 * being used for !PFMEMALLOC purposes. 1486 */ 1487 if (alloc_flags & ALLOC_NO_WATERMARKS) 1488 set_page_pfmemalloc(page); 1489 else 1490 clear_page_pfmemalloc(page); 1491 } 1492 1493 /* 1494 * Go through the free lists for the given migratetype and remove 1495 * the smallest available page from the freelists 1496 */ 1497 static __always_inline 1498 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1499 int migratetype) 1500 { 1501 unsigned int current_order; 1502 struct free_area *area; 1503 struct page *page; 1504 1505 /* Find a page of the appropriate size in the preferred list */ 1506 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1507 area = &(zone->free_area[current_order]); 1508 page = get_page_from_free_area(area, migratetype); 1509 if (!page) 1510 continue; 1511 del_page_from_free_list(page, zone, current_order, migratetype); 1512 expand(zone, page, order, current_order, migratetype); 1513 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1514 pcp_allowed_order(order) && 1515 migratetype < MIGRATE_PCPTYPES); 1516 return page; 1517 } 1518 1519 return NULL; 1520 } 1521 1522 1523 /* 1524 * This array describes the order lists are fallen back to when 1525 * the free lists for the desirable migrate type are depleted 1526 * 1527 * The other migratetypes do not have fallbacks. 1528 */ 1529 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1530 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1531 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1532 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1533 }; 1534 1535 #ifdef CONFIG_CMA 1536 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1537 unsigned int order) 1538 { 1539 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1540 } 1541 #else 1542 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1543 unsigned int order) { return NULL; } 1544 #endif 1545 1546 /* 1547 * Change the type of a block and move all its free pages to that 1548 * type's freelist. 1549 */ 1550 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1551 int old_mt, int new_mt) 1552 { 1553 struct page *page; 1554 unsigned long pfn, end_pfn; 1555 unsigned int order; 1556 int pages_moved = 0; 1557 1558 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1559 end_pfn = pageblock_end_pfn(start_pfn); 1560 1561 for (pfn = start_pfn; pfn < end_pfn;) { 1562 page = pfn_to_page(pfn); 1563 if (!PageBuddy(page)) { 1564 pfn++; 1565 continue; 1566 } 1567 1568 /* Make sure we are not inadvertently changing nodes */ 1569 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1570 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1571 1572 order = buddy_order(page); 1573 1574 move_to_free_list(page, zone, order, old_mt, new_mt); 1575 1576 pfn += 1 << order; 1577 pages_moved += 1 << order; 1578 } 1579 1580 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1581 1582 return pages_moved; 1583 } 1584 1585 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1586 unsigned long *start_pfn, 1587 int *num_free, int *num_movable) 1588 { 1589 unsigned long pfn, start, end; 1590 1591 pfn = page_to_pfn(page); 1592 start = pageblock_start_pfn(pfn); 1593 end = pageblock_end_pfn(pfn); 1594 1595 /* 1596 * The caller only has the lock for @zone, don't touch ranges 1597 * that straddle into other zones. While we could move part of 1598 * the range that's inside the zone, this call is usually 1599 * accompanied by other operations such as migratetype updates 1600 * which also should be locked. 1601 */ 1602 if (!zone_spans_pfn(zone, start)) 1603 return false; 1604 if (!zone_spans_pfn(zone, end - 1)) 1605 return false; 1606 1607 *start_pfn = start; 1608 1609 if (num_free) { 1610 *num_free = 0; 1611 *num_movable = 0; 1612 for (pfn = start; pfn < end;) { 1613 page = pfn_to_page(pfn); 1614 if (PageBuddy(page)) { 1615 int nr = 1 << buddy_order(page); 1616 1617 *num_free += nr; 1618 pfn += nr; 1619 continue; 1620 } 1621 /* 1622 * We assume that pages that could be isolated for 1623 * migration are movable. But we don't actually try 1624 * isolating, as that would be expensive. 1625 */ 1626 if (PageLRU(page) || __PageMovable(page)) 1627 (*num_movable)++; 1628 pfn++; 1629 } 1630 } 1631 1632 return true; 1633 } 1634 1635 static int move_freepages_block(struct zone *zone, struct page *page, 1636 int old_mt, int new_mt) 1637 { 1638 unsigned long start_pfn; 1639 1640 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1641 return -1; 1642 1643 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1644 } 1645 1646 #ifdef CONFIG_MEMORY_ISOLATION 1647 /* Look for a buddy that straddles start_pfn */ 1648 static unsigned long find_large_buddy(unsigned long start_pfn) 1649 { 1650 int order = 0; 1651 struct page *page; 1652 unsigned long pfn = start_pfn; 1653 1654 while (!PageBuddy(page = pfn_to_page(pfn))) { 1655 /* Nothing found */ 1656 if (++order > MAX_PAGE_ORDER) 1657 return start_pfn; 1658 pfn &= ~0UL << order; 1659 } 1660 1661 /* 1662 * Found a preceding buddy, but does it straddle? 1663 */ 1664 if (pfn + (1 << buddy_order(page)) > start_pfn) 1665 return pfn; 1666 1667 /* Nothing found */ 1668 return start_pfn; 1669 } 1670 1671 /* Split a multi-block free page into its individual pageblocks */ 1672 static void split_large_buddy(struct zone *zone, struct page *page, 1673 unsigned long pfn, int order) 1674 { 1675 unsigned long end_pfn = pfn + (1 << order); 1676 1677 VM_WARN_ON_ONCE(order <= pageblock_order); 1678 VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1)); 1679 1680 /* Caller removed page from freelist, buddy info cleared! */ 1681 VM_WARN_ON_ONCE(PageBuddy(page)); 1682 1683 while (pfn != end_pfn) { 1684 int mt = get_pfnblock_migratetype(page, pfn); 1685 1686 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE); 1687 pfn += pageblock_nr_pages; 1688 page = pfn_to_page(pfn); 1689 } 1690 } 1691 1692 /** 1693 * move_freepages_block_isolate - move free pages in block for page isolation 1694 * @zone: the zone 1695 * @page: the pageblock page 1696 * @migratetype: migratetype to set on the pageblock 1697 * 1698 * This is similar to move_freepages_block(), but handles the special 1699 * case encountered in page isolation, where the block of interest 1700 * might be part of a larger buddy spanning multiple pageblocks. 1701 * 1702 * Unlike the regular page allocator path, which moves pages while 1703 * stealing buddies off the freelist, page isolation is interested in 1704 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1705 * 1706 * This function handles that. Straddling buddies are split into 1707 * individual pageblocks. Only the block of interest is moved. 1708 * 1709 * Returns %true if pages could be moved, %false otherwise. 1710 */ 1711 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1712 int migratetype) 1713 { 1714 unsigned long start_pfn, pfn; 1715 1716 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1717 return false; 1718 1719 /* No splits needed if buddies can't span multiple blocks */ 1720 if (pageblock_order == MAX_PAGE_ORDER) 1721 goto move; 1722 1723 /* We're a tail block in a larger buddy */ 1724 pfn = find_large_buddy(start_pfn); 1725 if (pfn != start_pfn) { 1726 struct page *buddy = pfn_to_page(pfn); 1727 int order = buddy_order(buddy); 1728 1729 del_page_from_free_list(buddy, zone, order, 1730 get_pfnblock_migratetype(buddy, pfn)); 1731 set_pageblock_migratetype(page, migratetype); 1732 split_large_buddy(zone, buddy, pfn, order); 1733 return true; 1734 } 1735 1736 /* We're the starting block of a larger buddy */ 1737 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1738 int order = buddy_order(page); 1739 1740 del_page_from_free_list(page, zone, order, 1741 get_pfnblock_migratetype(page, pfn)); 1742 set_pageblock_migratetype(page, migratetype); 1743 split_large_buddy(zone, page, pfn, order); 1744 return true; 1745 } 1746 move: 1747 __move_freepages_block(zone, start_pfn, 1748 get_pfnblock_migratetype(page, start_pfn), 1749 migratetype); 1750 return true; 1751 } 1752 #endif /* CONFIG_MEMORY_ISOLATION */ 1753 1754 static void change_pageblock_range(struct page *pageblock_page, 1755 int start_order, int migratetype) 1756 { 1757 int nr_pageblocks = 1 << (start_order - pageblock_order); 1758 1759 while (nr_pageblocks--) { 1760 set_pageblock_migratetype(pageblock_page, migratetype); 1761 pageblock_page += pageblock_nr_pages; 1762 } 1763 } 1764 1765 /* 1766 * When we are falling back to another migratetype during allocation, try to 1767 * steal extra free pages from the same pageblocks to satisfy further 1768 * allocations, instead of polluting multiple pageblocks. 1769 * 1770 * If we are stealing a relatively large buddy page, it is likely there will 1771 * be more free pages in the pageblock, so try to steal them all. For 1772 * reclaimable and unmovable allocations, we steal regardless of page size, 1773 * as fragmentation caused by those allocations polluting movable pageblocks 1774 * is worse than movable allocations stealing from unmovable and reclaimable 1775 * pageblocks. 1776 */ 1777 static bool can_steal_fallback(unsigned int order, int start_mt) 1778 { 1779 /* 1780 * Leaving this order check is intended, although there is 1781 * relaxed order check in next check. The reason is that 1782 * we can actually steal whole pageblock if this condition met, 1783 * but, below check doesn't guarantee it and that is just heuristic 1784 * so could be changed anytime. 1785 */ 1786 if (order >= pageblock_order) 1787 return true; 1788 1789 if (order >= pageblock_order / 2 || 1790 start_mt == MIGRATE_RECLAIMABLE || 1791 start_mt == MIGRATE_UNMOVABLE || 1792 page_group_by_mobility_disabled) 1793 return true; 1794 1795 return false; 1796 } 1797 1798 static inline bool boost_watermark(struct zone *zone) 1799 { 1800 unsigned long max_boost; 1801 1802 if (!watermark_boost_factor) 1803 return false; 1804 /* 1805 * Don't bother in zones that are unlikely to produce results. 1806 * On small machines, including kdump capture kernels running 1807 * in a small area, boosting the watermark can cause an out of 1808 * memory situation immediately. 1809 */ 1810 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1811 return false; 1812 1813 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1814 watermark_boost_factor, 10000); 1815 1816 /* 1817 * high watermark may be uninitialised if fragmentation occurs 1818 * very early in boot so do not boost. We do not fall 1819 * through and boost by pageblock_nr_pages as failing 1820 * allocations that early means that reclaim is not going 1821 * to help and it may even be impossible to reclaim the 1822 * boosted watermark resulting in a hang. 1823 */ 1824 if (!max_boost) 1825 return false; 1826 1827 max_boost = max(pageblock_nr_pages, max_boost); 1828 1829 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1830 max_boost); 1831 1832 return true; 1833 } 1834 1835 /* 1836 * This function implements actual steal behaviour. If order is large enough, we 1837 * can claim the whole pageblock for the requested migratetype. If not, we check 1838 * the pageblock for constituent pages; if at least half of the pages are free 1839 * or compatible, we can still claim the whole block, so pages freed in the 1840 * future will be put on the correct free list. Otherwise, we isolate exactly 1841 * the order we need from the fallback block and leave its migratetype alone. 1842 */ 1843 static struct page * 1844 steal_suitable_fallback(struct zone *zone, struct page *page, 1845 int current_order, int order, int start_type, 1846 unsigned int alloc_flags, bool whole_block) 1847 { 1848 int free_pages, movable_pages, alike_pages; 1849 unsigned long start_pfn; 1850 int block_type; 1851 1852 block_type = get_pageblock_migratetype(page); 1853 1854 /* 1855 * This can happen due to races and we want to prevent broken 1856 * highatomic accounting. 1857 */ 1858 if (is_migrate_highatomic(block_type)) 1859 goto single_page; 1860 1861 /* Take ownership for orders >= pageblock_order */ 1862 if (current_order >= pageblock_order) { 1863 del_page_from_free_list(page, zone, current_order, block_type); 1864 change_pageblock_range(page, current_order, start_type); 1865 expand(zone, page, order, current_order, start_type); 1866 return page; 1867 } 1868 1869 /* 1870 * Boost watermarks to increase reclaim pressure to reduce the 1871 * likelihood of future fallbacks. Wake kswapd now as the node 1872 * may be balanced overall and kswapd will not wake naturally. 1873 */ 1874 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1875 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1876 1877 /* We are not allowed to try stealing from the whole block */ 1878 if (!whole_block) 1879 goto single_page; 1880 1881 /* moving whole block can fail due to zone boundary conditions */ 1882 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1883 &movable_pages)) 1884 goto single_page; 1885 1886 /* 1887 * Determine how many pages are compatible with our allocation. 1888 * For movable allocation, it's the number of movable pages which 1889 * we just obtained. For other types it's a bit more tricky. 1890 */ 1891 if (start_type == MIGRATE_MOVABLE) { 1892 alike_pages = movable_pages; 1893 } else { 1894 /* 1895 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1896 * to MOVABLE pageblock, consider all non-movable pages as 1897 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1898 * vice versa, be conservative since we can't distinguish the 1899 * exact migratetype of non-movable pages. 1900 */ 1901 if (block_type == MIGRATE_MOVABLE) 1902 alike_pages = pageblock_nr_pages 1903 - (free_pages + movable_pages); 1904 else 1905 alike_pages = 0; 1906 } 1907 /* 1908 * If a sufficient number of pages in the block are either free or of 1909 * compatible migratability as our allocation, claim the whole block. 1910 */ 1911 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1912 page_group_by_mobility_disabled) { 1913 __move_freepages_block(zone, start_pfn, block_type, start_type); 1914 return __rmqueue_smallest(zone, order, start_type); 1915 } 1916 1917 single_page: 1918 del_page_from_free_list(page, zone, current_order, block_type); 1919 expand(zone, page, order, current_order, block_type); 1920 return page; 1921 } 1922 1923 /* 1924 * Check whether there is a suitable fallback freepage with requested order. 1925 * If only_stealable is true, this function returns fallback_mt only if 1926 * we can steal other freepages all together. This would help to reduce 1927 * fragmentation due to mixed migratetype pages in one pageblock. 1928 */ 1929 int find_suitable_fallback(struct free_area *area, unsigned int order, 1930 int migratetype, bool only_stealable, bool *can_steal) 1931 { 1932 int i; 1933 int fallback_mt; 1934 1935 if (area->nr_free == 0) 1936 return -1; 1937 1938 *can_steal = false; 1939 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1940 fallback_mt = fallbacks[migratetype][i]; 1941 if (free_area_empty(area, fallback_mt)) 1942 continue; 1943 1944 if (can_steal_fallback(order, migratetype)) 1945 *can_steal = true; 1946 1947 if (!only_stealable) 1948 return fallback_mt; 1949 1950 if (*can_steal) 1951 return fallback_mt; 1952 } 1953 1954 return -1; 1955 } 1956 1957 /* 1958 * Reserve the pageblock(s) surrounding an allocation request for 1959 * exclusive use of high-order atomic allocations if there are no 1960 * empty page blocks that contain a page with a suitable order 1961 */ 1962 static void reserve_highatomic_pageblock(struct page *page, int order, 1963 struct zone *zone) 1964 { 1965 int mt; 1966 unsigned long max_managed, flags; 1967 1968 /* 1969 * The number reserved as: minimum is 1 pageblock, maximum is 1970 * roughly 1% of a zone. But if 1% of a zone falls below a 1971 * pageblock size, then don't reserve any pageblocks. 1972 * Check is race-prone but harmless. 1973 */ 1974 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 1975 return; 1976 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 1977 if (zone->nr_reserved_highatomic >= max_managed) 1978 return; 1979 1980 spin_lock_irqsave(&zone->lock, flags); 1981 1982 /* Recheck the nr_reserved_highatomic limit under the lock */ 1983 if (zone->nr_reserved_highatomic >= max_managed) 1984 goto out_unlock; 1985 1986 /* Yoink! */ 1987 mt = get_pageblock_migratetype(page); 1988 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1989 if (!migratetype_is_mergeable(mt)) 1990 goto out_unlock; 1991 1992 if (order < pageblock_order) { 1993 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 1994 goto out_unlock; 1995 zone->nr_reserved_highatomic += pageblock_nr_pages; 1996 } else { 1997 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 1998 zone->nr_reserved_highatomic += 1 << order; 1999 } 2000 2001 out_unlock: 2002 spin_unlock_irqrestore(&zone->lock, flags); 2003 } 2004 2005 /* 2006 * Used when an allocation is about to fail under memory pressure. This 2007 * potentially hurts the reliability of high-order allocations when under 2008 * intense memory pressure but failed atomic allocations should be easier 2009 * to recover from than an OOM. 2010 * 2011 * If @force is true, try to unreserve pageblocks even though highatomic 2012 * pageblock is exhausted. 2013 */ 2014 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2015 bool force) 2016 { 2017 struct zonelist *zonelist = ac->zonelist; 2018 unsigned long flags; 2019 struct zoneref *z; 2020 struct zone *zone; 2021 struct page *page; 2022 int order; 2023 int ret; 2024 2025 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2026 ac->nodemask) { 2027 /* 2028 * Preserve at least one pageblock unless memory pressure 2029 * is really high. 2030 */ 2031 if (!force && zone->nr_reserved_highatomic <= 2032 pageblock_nr_pages) 2033 continue; 2034 2035 spin_lock_irqsave(&zone->lock, flags); 2036 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2037 struct free_area *area = &(zone->free_area[order]); 2038 int mt; 2039 2040 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2041 if (!page) 2042 continue; 2043 2044 mt = get_pageblock_migratetype(page); 2045 /* 2046 * In page freeing path, migratetype change is racy so 2047 * we can counter several free pages in a pageblock 2048 * in this loop although we changed the pageblock type 2049 * from highatomic to ac->migratetype. So we should 2050 * adjust the count once. 2051 */ 2052 if (is_migrate_highatomic(mt)) { 2053 unsigned long size; 2054 /* 2055 * It should never happen but changes to 2056 * locking could inadvertently allow a per-cpu 2057 * drain to add pages to MIGRATE_HIGHATOMIC 2058 * while unreserving so be safe and watch for 2059 * underflows. 2060 */ 2061 size = max(pageblock_nr_pages, 1UL << order); 2062 size = min(size, zone->nr_reserved_highatomic); 2063 zone->nr_reserved_highatomic -= size; 2064 } 2065 2066 /* 2067 * Convert to ac->migratetype and avoid the normal 2068 * pageblock stealing heuristics. Minimally, the caller 2069 * is doing the work and needs the pages. More 2070 * importantly, if the block was always converted to 2071 * MIGRATE_UNMOVABLE or another type then the number 2072 * of pageblocks that cannot be completely freed 2073 * may increase. 2074 */ 2075 if (order < pageblock_order) 2076 ret = move_freepages_block(zone, page, mt, 2077 ac->migratetype); 2078 else { 2079 move_to_free_list(page, zone, order, mt, 2080 ac->migratetype); 2081 change_pageblock_range(page, order, 2082 ac->migratetype); 2083 ret = 1; 2084 } 2085 /* 2086 * Reserving the block(s) already succeeded, 2087 * so this should not fail on zone boundaries. 2088 */ 2089 WARN_ON_ONCE(ret == -1); 2090 if (ret > 0) { 2091 spin_unlock_irqrestore(&zone->lock, flags); 2092 return ret; 2093 } 2094 } 2095 spin_unlock_irqrestore(&zone->lock, flags); 2096 } 2097 2098 return false; 2099 } 2100 2101 /* 2102 * Try finding a free buddy page on the fallback list and put it on the free 2103 * list of requested migratetype, possibly along with other pages from the same 2104 * block, depending on fragmentation avoidance heuristics. Returns true if 2105 * fallback was found so that __rmqueue_smallest() can grab it. 2106 * 2107 * The use of signed ints for order and current_order is a deliberate 2108 * deviation from the rest of this file, to make the for loop 2109 * condition simpler. 2110 */ 2111 static __always_inline struct page * 2112 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2113 unsigned int alloc_flags) 2114 { 2115 struct free_area *area; 2116 int current_order; 2117 int min_order = order; 2118 struct page *page; 2119 int fallback_mt; 2120 bool can_steal; 2121 2122 /* 2123 * Do not steal pages from freelists belonging to other pageblocks 2124 * i.e. orders < pageblock_order. If there are no local zones free, 2125 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2126 */ 2127 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2128 min_order = pageblock_order; 2129 2130 /* 2131 * Find the largest available free page in the other list. This roughly 2132 * approximates finding the pageblock with the most free pages, which 2133 * would be too costly to do exactly. 2134 */ 2135 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2136 --current_order) { 2137 area = &(zone->free_area[current_order]); 2138 fallback_mt = find_suitable_fallback(area, current_order, 2139 start_migratetype, false, &can_steal); 2140 if (fallback_mt == -1) 2141 continue; 2142 2143 /* 2144 * We cannot steal all free pages from the pageblock and the 2145 * requested migratetype is movable. In that case it's better to 2146 * steal and split the smallest available page instead of the 2147 * largest available page, because even if the next movable 2148 * allocation falls back into a different pageblock than this 2149 * one, it won't cause permanent fragmentation. 2150 */ 2151 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2152 && current_order > order) 2153 goto find_smallest; 2154 2155 goto do_steal; 2156 } 2157 2158 return NULL; 2159 2160 find_smallest: 2161 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2162 area = &(zone->free_area[current_order]); 2163 fallback_mt = find_suitable_fallback(area, current_order, 2164 start_migratetype, false, &can_steal); 2165 if (fallback_mt != -1) 2166 break; 2167 } 2168 2169 /* 2170 * This should not happen - we already found a suitable fallback 2171 * when looking for the largest page. 2172 */ 2173 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2174 2175 do_steal: 2176 page = get_page_from_free_area(area, fallback_mt); 2177 2178 /* take off list, maybe claim block, expand remainder */ 2179 page = steal_suitable_fallback(zone, page, current_order, order, 2180 start_migratetype, alloc_flags, can_steal); 2181 2182 trace_mm_page_alloc_extfrag(page, order, current_order, 2183 start_migratetype, fallback_mt); 2184 2185 return page; 2186 } 2187 2188 /* 2189 * Do the hard work of removing an element from the buddy allocator. 2190 * Call me with the zone->lock already held. 2191 */ 2192 static __always_inline struct page * 2193 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2194 unsigned int alloc_flags) 2195 { 2196 struct page *page; 2197 2198 if (IS_ENABLED(CONFIG_CMA)) { 2199 /* 2200 * Balance movable allocations between regular and CMA areas by 2201 * allocating from CMA when over half of the zone's free memory 2202 * is in the CMA area. 2203 */ 2204 if (alloc_flags & ALLOC_CMA && 2205 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2206 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2207 page = __rmqueue_cma_fallback(zone, order); 2208 if (page) 2209 return page; 2210 } 2211 } 2212 2213 page = __rmqueue_smallest(zone, order, migratetype); 2214 if (unlikely(!page)) { 2215 if (alloc_flags & ALLOC_CMA) 2216 page = __rmqueue_cma_fallback(zone, order); 2217 2218 if (!page) 2219 page = __rmqueue_fallback(zone, order, migratetype, 2220 alloc_flags); 2221 } 2222 return page; 2223 } 2224 2225 /* 2226 * Obtain a specified number of elements from the buddy allocator, all under 2227 * a single hold of the lock, for efficiency. Add them to the supplied list. 2228 * Returns the number of new pages which were placed at *list. 2229 */ 2230 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2231 unsigned long count, struct list_head *list, 2232 int migratetype, unsigned int alloc_flags) 2233 { 2234 unsigned long flags; 2235 int i; 2236 2237 spin_lock_irqsave(&zone->lock, flags); 2238 for (i = 0; i < count; ++i) { 2239 struct page *page = __rmqueue(zone, order, migratetype, 2240 alloc_flags); 2241 if (unlikely(page == NULL)) 2242 break; 2243 2244 /* 2245 * Split buddy pages returned by expand() are received here in 2246 * physical page order. The page is added to the tail of 2247 * caller's list. From the callers perspective, the linked list 2248 * is ordered by page number under some conditions. This is 2249 * useful for IO devices that can forward direction from the 2250 * head, thus also in the physical page order. This is useful 2251 * for IO devices that can merge IO requests if the physical 2252 * pages are ordered properly. 2253 */ 2254 list_add_tail(&page->pcp_list, list); 2255 } 2256 spin_unlock_irqrestore(&zone->lock, flags); 2257 2258 return i; 2259 } 2260 2261 /* 2262 * Called from the vmstat counter updater to decay the PCP high. 2263 * Return whether there are addition works to do. 2264 */ 2265 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2266 { 2267 int high_min, to_drain, batch; 2268 int todo = 0; 2269 2270 high_min = READ_ONCE(pcp->high_min); 2271 batch = READ_ONCE(pcp->batch); 2272 /* 2273 * Decrease pcp->high periodically to try to free possible 2274 * idle PCP pages. And, avoid to free too many pages to 2275 * control latency. This caps pcp->high decrement too. 2276 */ 2277 if (pcp->high > high_min) { 2278 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2279 pcp->high - (pcp->high >> 3), high_min); 2280 if (pcp->high > high_min) 2281 todo++; 2282 } 2283 2284 to_drain = pcp->count - pcp->high; 2285 if (to_drain > 0) { 2286 spin_lock(&pcp->lock); 2287 free_pcppages_bulk(zone, to_drain, pcp, 0); 2288 spin_unlock(&pcp->lock); 2289 todo++; 2290 } 2291 2292 return todo; 2293 } 2294 2295 #ifdef CONFIG_NUMA 2296 /* 2297 * Called from the vmstat counter updater to drain pagesets of this 2298 * currently executing processor on remote nodes after they have 2299 * expired. 2300 */ 2301 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2302 { 2303 int to_drain, batch; 2304 2305 batch = READ_ONCE(pcp->batch); 2306 to_drain = min(pcp->count, batch); 2307 if (to_drain > 0) { 2308 spin_lock(&pcp->lock); 2309 free_pcppages_bulk(zone, to_drain, pcp, 0); 2310 spin_unlock(&pcp->lock); 2311 } 2312 } 2313 #endif 2314 2315 /* 2316 * Drain pcplists of the indicated processor and zone. 2317 */ 2318 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2319 { 2320 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2321 int count = READ_ONCE(pcp->count); 2322 2323 while (count) { 2324 int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2325 count -= to_drain; 2326 2327 spin_lock(&pcp->lock); 2328 free_pcppages_bulk(zone, to_drain, pcp, 0); 2329 spin_unlock(&pcp->lock); 2330 } 2331 } 2332 2333 /* 2334 * Drain pcplists of all zones on the indicated processor. 2335 */ 2336 static void drain_pages(unsigned int cpu) 2337 { 2338 struct zone *zone; 2339 2340 for_each_populated_zone(zone) { 2341 drain_pages_zone(cpu, zone); 2342 } 2343 } 2344 2345 /* 2346 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2347 */ 2348 void drain_local_pages(struct zone *zone) 2349 { 2350 int cpu = smp_processor_id(); 2351 2352 if (zone) 2353 drain_pages_zone(cpu, zone); 2354 else 2355 drain_pages(cpu); 2356 } 2357 2358 /* 2359 * The implementation of drain_all_pages(), exposing an extra parameter to 2360 * drain on all cpus. 2361 * 2362 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2363 * not empty. The check for non-emptiness can however race with a free to 2364 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2365 * that need the guarantee that every CPU has drained can disable the 2366 * optimizing racy check. 2367 */ 2368 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2369 { 2370 int cpu; 2371 2372 /* 2373 * Allocate in the BSS so we won't require allocation in 2374 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2375 */ 2376 static cpumask_t cpus_with_pcps; 2377 2378 /* 2379 * Do not drain if one is already in progress unless it's specific to 2380 * a zone. Such callers are primarily CMA and memory hotplug and need 2381 * the drain to be complete when the call returns. 2382 */ 2383 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2384 if (!zone) 2385 return; 2386 mutex_lock(&pcpu_drain_mutex); 2387 } 2388 2389 /* 2390 * We don't care about racing with CPU hotplug event 2391 * as offline notification will cause the notified 2392 * cpu to drain that CPU pcps and on_each_cpu_mask 2393 * disables preemption as part of its processing 2394 */ 2395 for_each_online_cpu(cpu) { 2396 struct per_cpu_pages *pcp; 2397 struct zone *z; 2398 bool has_pcps = false; 2399 2400 if (force_all_cpus) { 2401 /* 2402 * The pcp.count check is racy, some callers need a 2403 * guarantee that no cpu is missed. 2404 */ 2405 has_pcps = true; 2406 } else if (zone) { 2407 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2408 if (pcp->count) 2409 has_pcps = true; 2410 } else { 2411 for_each_populated_zone(z) { 2412 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2413 if (pcp->count) { 2414 has_pcps = true; 2415 break; 2416 } 2417 } 2418 } 2419 2420 if (has_pcps) 2421 cpumask_set_cpu(cpu, &cpus_with_pcps); 2422 else 2423 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2424 } 2425 2426 for_each_cpu(cpu, &cpus_with_pcps) { 2427 if (zone) 2428 drain_pages_zone(cpu, zone); 2429 else 2430 drain_pages(cpu); 2431 } 2432 2433 mutex_unlock(&pcpu_drain_mutex); 2434 } 2435 2436 /* 2437 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2438 * 2439 * When zone parameter is non-NULL, spill just the single zone's pages. 2440 */ 2441 void drain_all_pages(struct zone *zone) 2442 { 2443 __drain_all_pages(zone, false); 2444 } 2445 2446 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2447 { 2448 int min_nr_free, max_nr_free; 2449 2450 /* Free as much as possible if batch freeing high-order pages. */ 2451 if (unlikely(free_high)) 2452 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2453 2454 /* Check for PCP disabled or boot pageset */ 2455 if (unlikely(high < batch)) 2456 return 1; 2457 2458 /* Leave at least pcp->batch pages on the list */ 2459 min_nr_free = batch; 2460 max_nr_free = high - batch; 2461 2462 /* 2463 * Increase the batch number to the number of the consecutive 2464 * freed pages to reduce zone lock contention. 2465 */ 2466 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2467 2468 return batch; 2469 } 2470 2471 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2472 int batch, bool free_high) 2473 { 2474 int high, high_min, high_max; 2475 2476 high_min = READ_ONCE(pcp->high_min); 2477 high_max = READ_ONCE(pcp->high_max); 2478 high = pcp->high = clamp(pcp->high, high_min, high_max); 2479 2480 if (unlikely(!high)) 2481 return 0; 2482 2483 if (unlikely(free_high)) { 2484 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2485 high_min); 2486 return 0; 2487 } 2488 2489 /* 2490 * If reclaim is active, limit the number of pages that can be 2491 * stored on pcp lists 2492 */ 2493 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2494 int free_count = max_t(int, pcp->free_count, batch); 2495 2496 pcp->high = max(high - free_count, high_min); 2497 return min(batch << 2, pcp->high); 2498 } 2499 2500 if (high_min == high_max) 2501 return high; 2502 2503 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2504 int free_count = max_t(int, pcp->free_count, batch); 2505 2506 pcp->high = max(high - free_count, high_min); 2507 high = max(pcp->count, high_min); 2508 } else if (pcp->count >= high) { 2509 int need_high = pcp->free_count + batch; 2510 2511 /* pcp->high should be large enough to hold batch freed pages */ 2512 if (pcp->high < need_high) 2513 pcp->high = clamp(need_high, high_min, high_max); 2514 } 2515 2516 return high; 2517 } 2518 2519 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2520 struct page *page, int migratetype, 2521 unsigned int order) 2522 { 2523 int high, batch; 2524 int pindex; 2525 bool free_high = false; 2526 2527 /* 2528 * On freeing, reduce the number of pages that are batch allocated. 2529 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2530 * allocations. 2531 */ 2532 pcp->alloc_factor >>= 1; 2533 __count_vm_events(PGFREE, 1 << order); 2534 pindex = order_to_pindex(migratetype, order); 2535 list_add(&page->pcp_list, &pcp->lists[pindex]); 2536 pcp->count += 1 << order; 2537 2538 batch = READ_ONCE(pcp->batch); 2539 /* 2540 * As high-order pages other than THP's stored on PCP can contribute 2541 * to fragmentation, limit the number stored when PCP is heavily 2542 * freeing without allocation. The remainder after bulk freeing 2543 * stops will be drained from vmstat refresh context. 2544 */ 2545 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2546 free_high = (pcp->free_count >= batch && 2547 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2548 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2549 pcp->count >= READ_ONCE(batch))); 2550 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2551 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2552 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2553 } 2554 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2555 pcp->free_count += (1 << order); 2556 high = nr_pcp_high(pcp, zone, batch, free_high); 2557 if (pcp->count >= high) { 2558 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2559 pcp, pindex); 2560 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2561 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2562 ZONE_MOVABLE, 0)) 2563 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2564 } 2565 } 2566 2567 /* 2568 * Free a pcp page 2569 */ 2570 void free_unref_page(struct page *page, unsigned int order) 2571 { 2572 unsigned long __maybe_unused UP_flags; 2573 struct per_cpu_pages *pcp; 2574 struct zone *zone; 2575 unsigned long pfn = page_to_pfn(page); 2576 int migratetype; 2577 2578 if (!pcp_allowed_order(order)) { 2579 __free_pages_ok(page, order, FPI_NONE); 2580 return; 2581 } 2582 2583 if (!free_pages_prepare(page, order)) 2584 return; 2585 2586 /* 2587 * We only track unmovable, reclaimable and movable on pcp lists. 2588 * Place ISOLATE pages on the isolated list because they are being 2589 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2590 * get those areas back if necessary. Otherwise, we may have to free 2591 * excessively into the page allocator 2592 */ 2593 migratetype = get_pfnblock_migratetype(page, pfn); 2594 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2595 if (unlikely(is_migrate_isolate(migratetype))) { 2596 free_one_page(page_zone(page), page, pfn, order, FPI_NONE); 2597 return; 2598 } 2599 migratetype = MIGRATE_MOVABLE; 2600 } 2601 2602 zone = page_zone(page); 2603 pcp_trylock_prepare(UP_flags); 2604 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2605 if (pcp) { 2606 free_unref_page_commit(zone, pcp, page, migratetype, order); 2607 pcp_spin_unlock(pcp); 2608 } else { 2609 free_one_page(zone, page, pfn, order, FPI_NONE); 2610 } 2611 pcp_trylock_finish(UP_flags); 2612 } 2613 2614 /* 2615 * Free a batch of folios 2616 */ 2617 void free_unref_folios(struct folio_batch *folios) 2618 { 2619 unsigned long __maybe_unused UP_flags; 2620 struct per_cpu_pages *pcp = NULL; 2621 struct zone *locked_zone = NULL; 2622 int i, j; 2623 2624 /* Prepare folios for freeing */ 2625 for (i = 0, j = 0; i < folios->nr; i++) { 2626 struct folio *folio = folios->folios[i]; 2627 unsigned long pfn = folio_pfn(folio); 2628 unsigned int order = folio_order(folio); 2629 2630 if (order > 0 && folio_test_large_rmappable(folio)) 2631 folio_undo_large_rmappable(folio); 2632 if (!free_pages_prepare(&folio->page, order)) 2633 continue; 2634 /* 2635 * Free orders not handled on the PCP directly to the 2636 * allocator. 2637 */ 2638 if (!pcp_allowed_order(order)) { 2639 free_one_page(folio_zone(folio), &folio->page, 2640 pfn, order, FPI_NONE); 2641 continue; 2642 } 2643 folio->private = (void *)(unsigned long)order; 2644 if (j != i) 2645 folios->folios[j] = folio; 2646 j++; 2647 } 2648 folios->nr = j; 2649 2650 for (i = 0; i < folios->nr; i++) { 2651 struct folio *folio = folios->folios[i]; 2652 struct zone *zone = folio_zone(folio); 2653 unsigned long pfn = folio_pfn(folio); 2654 unsigned int order = (unsigned long)folio->private; 2655 int migratetype; 2656 2657 folio->private = NULL; 2658 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2659 2660 /* Different zone requires a different pcp lock */ 2661 if (zone != locked_zone || 2662 is_migrate_isolate(migratetype)) { 2663 if (pcp) { 2664 pcp_spin_unlock(pcp); 2665 pcp_trylock_finish(UP_flags); 2666 locked_zone = NULL; 2667 pcp = NULL; 2668 } 2669 2670 /* 2671 * Free isolated pages directly to the 2672 * allocator, see comment in free_unref_page. 2673 */ 2674 if (is_migrate_isolate(migratetype)) { 2675 free_one_page(zone, &folio->page, pfn, 2676 order, FPI_NONE); 2677 continue; 2678 } 2679 2680 /* 2681 * trylock is necessary as folios may be getting freed 2682 * from IRQ or SoftIRQ context after an IO completion. 2683 */ 2684 pcp_trylock_prepare(UP_flags); 2685 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2686 if (unlikely(!pcp)) { 2687 pcp_trylock_finish(UP_flags); 2688 free_one_page(zone, &folio->page, pfn, 2689 order, FPI_NONE); 2690 continue; 2691 } 2692 locked_zone = zone; 2693 } 2694 2695 /* 2696 * Non-isolated types over MIGRATE_PCPTYPES get added 2697 * to the MIGRATE_MOVABLE pcp list. 2698 */ 2699 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2700 migratetype = MIGRATE_MOVABLE; 2701 2702 trace_mm_page_free_batched(&folio->page); 2703 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2704 order); 2705 } 2706 2707 if (pcp) { 2708 pcp_spin_unlock(pcp); 2709 pcp_trylock_finish(UP_flags); 2710 } 2711 folio_batch_reinit(folios); 2712 } 2713 2714 /* 2715 * split_page takes a non-compound higher-order page, and splits it into 2716 * n (1<<order) sub-pages: page[0..n] 2717 * Each sub-page must be freed individually. 2718 * 2719 * Note: this is probably too low level an operation for use in drivers. 2720 * Please consult with lkml before using this in your driver. 2721 */ 2722 void split_page(struct page *page, unsigned int order) 2723 { 2724 int i; 2725 2726 VM_BUG_ON_PAGE(PageCompound(page), page); 2727 VM_BUG_ON_PAGE(!page_count(page), page); 2728 2729 for (i = 1; i < (1 << order); i++) 2730 set_page_refcounted(page + i); 2731 split_page_owner(page, order, 0); 2732 pgalloc_tag_split(page, 1 << order); 2733 split_page_memcg(page, order, 0); 2734 } 2735 EXPORT_SYMBOL_GPL(split_page); 2736 2737 int __isolate_free_page(struct page *page, unsigned int order) 2738 { 2739 struct zone *zone = page_zone(page); 2740 int mt = get_pageblock_migratetype(page); 2741 2742 if (!is_migrate_isolate(mt)) { 2743 unsigned long watermark; 2744 /* 2745 * Obey watermarks as if the page was being allocated. We can 2746 * emulate a high-order watermark check with a raised order-0 2747 * watermark, because we already know our high-order page 2748 * exists. 2749 */ 2750 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2751 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2752 return 0; 2753 } 2754 2755 del_page_from_free_list(page, zone, order, mt); 2756 2757 /* 2758 * Set the pageblock if the isolated page is at least half of a 2759 * pageblock 2760 */ 2761 if (order >= pageblock_order - 1) { 2762 struct page *endpage = page + (1 << order) - 1; 2763 for (; page < endpage; page += pageblock_nr_pages) { 2764 int mt = get_pageblock_migratetype(page); 2765 /* 2766 * Only change normal pageblocks (i.e., they can merge 2767 * with others) 2768 */ 2769 if (migratetype_is_mergeable(mt)) 2770 move_freepages_block(zone, page, mt, 2771 MIGRATE_MOVABLE); 2772 } 2773 } 2774 2775 return 1UL << order; 2776 } 2777 2778 /** 2779 * __putback_isolated_page - Return a now-isolated page back where we got it 2780 * @page: Page that was isolated 2781 * @order: Order of the isolated page 2782 * @mt: The page's pageblock's migratetype 2783 * 2784 * This function is meant to return a page pulled from the free lists via 2785 * __isolate_free_page back to the free lists they were pulled from. 2786 */ 2787 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2788 { 2789 struct zone *zone = page_zone(page); 2790 2791 /* zone lock should be held when this function is called */ 2792 lockdep_assert_held(&zone->lock); 2793 2794 /* Return isolated page to tail of freelist. */ 2795 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2796 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2797 } 2798 2799 /* 2800 * Update NUMA hit/miss statistics 2801 */ 2802 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2803 long nr_account) 2804 { 2805 #ifdef CONFIG_NUMA 2806 enum numa_stat_item local_stat = NUMA_LOCAL; 2807 2808 /* skip numa counters update if numa stats is disabled */ 2809 if (!static_branch_likely(&vm_numa_stat_key)) 2810 return; 2811 2812 if (zone_to_nid(z) != numa_node_id()) 2813 local_stat = NUMA_OTHER; 2814 2815 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2816 __count_numa_events(z, NUMA_HIT, nr_account); 2817 else { 2818 __count_numa_events(z, NUMA_MISS, nr_account); 2819 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2820 } 2821 __count_numa_events(z, local_stat, nr_account); 2822 #endif 2823 } 2824 2825 static __always_inline 2826 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2827 unsigned int order, unsigned int alloc_flags, 2828 int migratetype) 2829 { 2830 struct page *page; 2831 unsigned long flags; 2832 2833 do { 2834 page = NULL; 2835 spin_lock_irqsave(&zone->lock, flags); 2836 if (alloc_flags & ALLOC_HIGHATOMIC) 2837 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2838 if (!page) { 2839 page = __rmqueue(zone, order, migratetype, alloc_flags); 2840 2841 /* 2842 * If the allocation fails, allow OOM handling access 2843 * to HIGHATOMIC reserves as failing now is worse than 2844 * failing a high-order atomic allocation in the 2845 * future. 2846 */ 2847 if (!page && (alloc_flags & ALLOC_OOM)) 2848 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2849 2850 if (!page) { 2851 spin_unlock_irqrestore(&zone->lock, flags); 2852 return NULL; 2853 } 2854 } 2855 spin_unlock_irqrestore(&zone->lock, flags); 2856 } while (check_new_pages(page, order)); 2857 2858 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2859 zone_statistics(preferred_zone, zone, 1); 2860 2861 return page; 2862 } 2863 2864 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2865 { 2866 int high, base_batch, batch, max_nr_alloc; 2867 int high_max, high_min; 2868 2869 base_batch = READ_ONCE(pcp->batch); 2870 high_min = READ_ONCE(pcp->high_min); 2871 high_max = READ_ONCE(pcp->high_max); 2872 high = pcp->high = clamp(pcp->high, high_min, high_max); 2873 2874 /* Check for PCP disabled or boot pageset */ 2875 if (unlikely(high < base_batch)) 2876 return 1; 2877 2878 if (order) 2879 batch = base_batch; 2880 else 2881 batch = (base_batch << pcp->alloc_factor); 2882 2883 /* 2884 * If we had larger pcp->high, we could avoid to allocate from 2885 * zone. 2886 */ 2887 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2888 high = pcp->high = min(high + batch, high_max); 2889 2890 if (!order) { 2891 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2892 /* 2893 * Double the number of pages allocated each time there is 2894 * subsequent allocation of order-0 pages without any freeing. 2895 */ 2896 if (batch <= max_nr_alloc && 2897 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2898 pcp->alloc_factor++; 2899 batch = min(batch, max_nr_alloc); 2900 } 2901 2902 /* 2903 * Scale batch relative to order if batch implies free pages 2904 * can be stored on the PCP. Batch can be 1 for small zones or 2905 * for boot pagesets which should never store free pages as 2906 * the pages may belong to arbitrary zones. 2907 */ 2908 if (batch > 1) 2909 batch = max(batch >> order, 2); 2910 2911 return batch; 2912 } 2913 2914 /* Remove page from the per-cpu list, caller must protect the list */ 2915 static inline 2916 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2917 int migratetype, 2918 unsigned int alloc_flags, 2919 struct per_cpu_pages *pcp, 2920 struct list_head *list) 2921 { 2922 struct page *page; 2923 2924 do { 2925 if (list_empty(list)) { 2926 int batch = nr_pcp_alloc(pcp, zone, order); 2927 int alloced; 2928 2929 alloced = rmqueue_bulk(zone, order, 2930 batch, list, 2931 migratetype, alloc_flags); 2932 2933 pcp->count += alloced << order; 2934 if (unlikely(list_empty(list))) 2935 return NULL; 2936 } 2937 2938 page = list_first_entry(list, struct page, pcp_list); 2939 list_del(&page->pcp_list); 2940 pcp->count -= 1 << order; 2941 } while (check_new_pages(page, order)); 2942 2943 return page; 2944 } 2945 2946 /* Lock and remove page from the per-cpu list */ 2947 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2948 struct zone *zone, unsigned int order, 2949 int migratetype, unsigned int alloc_flags) 2950 { 2951 struct per_cpu_pages *pcp; 2952 struct list_head *list; 2953 struct page *page; 2954 unsigned long __maybe_unused UP_flags; 2955 2956 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2957 pcp_trylock_prepare(UP_flags); 2958 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2959 if (!pcp) { 2960 pcp_trylock_finish(UP_flags); 2961 return NULL; 2962 } 2963 2964 /* 2965 * On allocation, reduce the number of pages that are batch freed. 2966 * See nr_pcp_free() where free_factor is increased for subsequent 2967 * frees. 2968 */ 2969 pcp->free_count >>= 1; 2970 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2971 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2972 pcp_spin_unlock(pcp); 2973 pcp_trylock_finish(UP_flags); 2974 if (page) { 2975 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2976 zone_statistics(preferred_zone, zone, 1); 2977 } 2978 return page; 2979 } 2980 2981 /* 2982 * Allocate a page from the given zone. 2983 * Use pcplists for THP or "cheap" high-order allocations. 2984 */ 2985 2986 /* 2987 * Do not instrument rmqueue() with KMSAN. This function may call 2988 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2989 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2990 * may call rmqueue() again, which will result in a deadlock. 2991 */ 2992 __no_sanitize_memory 2993 static inline 2994 struct page *rmqueue(struct zone *preferred_zone, 2995 struct zone *zone, unsigned int order, 2996 gfp_t gfp_flags, unsigned int alloc_flags, 2997 int migratetype) 2998 { 2999 struct page *page; 3000 3001 /* 3002 * We most definitely don't want callers attempting to 3003 * allocate greater than order-1 page units with __GFP_NOFAIL. 3004 */ 3005 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3006 3007 if (likely(pcp_allowed_order(order))) { 3008 page = rmqueue_pcplist(preferred_zone, zone, order, 3009 migratetype, alloc_flags); 3010 if (likely(page)) 3011 goto out; 3012 } 3013 3014 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3015 migratetype); 3016 3017 out: 3018 /* Separate test+clear to avoid unnecessary atomics */ 3019 if ((alloc_flags & ALLOC_KSWAPD) && 3020 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3021 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3022 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3023 } 3024 3025 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3026 return page; 3027 } 3028 3029 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3030 { 3031 return __should_fail_alloc_page(gfp_mask, order); 3032 } 3033 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3034 3035 static inline long __zone_watermark_unusable_free(struct zone *z, 3036 unsigned int order, unsigned int alloc_flags) 3037 { 3038 long unusable_free = (1 << order) - 1; 3039 3040 /* 3041 * If the caller does not have rights to reserves below the min 3042 * watermark then subtract the high-atomic reserves. This will 3043 * over-estimate the size of the atomic reserve but it avoids a search. 3044 */ 3045 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3046 unusable_free += z->nr_reserved_highatomic; 3047 3048 #ifdef CONFIG_CMA 3049 /* If allocation can't use CMA areas don't use free CMA pages */ 3050 if (!(alloc_flags & ALLOC_CMA)) 3051 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3052 #endif 3053 #ifdef CONFIG_UNACCEPTED_MEMORY 3054 unusable_free += zone_page_state(z, NR_UNACCEPTED); 3055 #endif 3056 3057 return unusable_free; 3058 } 3059 3060 /* 3061 * Return true if free base pages are above 'mark'. For high-order checks it 3062 * will return true of the order-0 watermark is reached and there is at least 3063 * one free page of a suitable size. Checking now avoids taking the zone lock 3064 * to check in the allocation paths if no pages are free. 3065 */ 3066 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3067 int highest_zoneidx, unsigned int alloc_flags, 3068 long free_pages) 3069 { 3070 long min = mark; 3071 int o; 3072 3073 /* free_pages may go negative - that's OK */ 3074 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3075 3076 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3077 /* 3078 * __GFP_HIGH allows access to 50% of the min reserve as well 3079 * as OOM. 3080 */ 3081 if (alloc_flags & ALLOC_MIN_RESERVE) { 3082 min -= min / 2; 3083 3084 /* 3085 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3086 * access more reserves than just __GFP_HIGH. Other 3087 * non-blocking allocations requests such as GFP_NOWAIT 3088 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3089 * access to the min reserve. 3090 */ 3091 if (alloc_flags & ALLOC_NON_BLOCK) 3092 min -= min / 4; 3093 } 3094 3095 /* 3096 * OOM victims can try even harder than the normal reserve 3097 * users on the grounds that it's definitely going to be in 3098 * the exit path shortly and free memory. Any allocation it 3099 * makes during the free path will be small and short-lived. 3100 */ 3101 if (alloc_flags & ALLOC_OOM) 3102 min -= min / 2; 3103 } 3104 3105 /* 3106 * Check watermarks for an order-0 allocation request. If these 3107 * are not met, then a high-order request also cannot go ahead 3108 * even if a suitable page happened to be free. 3109 */ 3110 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3111 return false; 3112 3113 /* If this is an order-0 request then the watermark is fine */ 3114 if (!order) 3115 return true; 3116 3117 /* For a high-order request, check at least one suitable page is free */ 3118 for (o = order; o < NR_PAGE_ORDERS; o++) { 3119 struct free_area *area = &z->free_area[o]; 3120 int mt; 3121 3122 if (!area->nr_free) 3123 continue; 3124 3125 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3126 if (!free_area_empty(area, mt)) 3127 return true; 3128 } 3129 3130 #ifdef CONFIG_CMA 3131 if ((alloc_flags & ALLOC_CMA) && 3132 !free_area_empty(area, MIGRATE_CMA)) { 3133 return true; 3134 } 3135 #endif 3136 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3137 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3138 return true; 3139 } 3140 } 3141 return false; 3142 } 3143 3144 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3145 int highest_zoneidx, unsigned int alloc_flags) 3146 { 3147 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3148 zone_page_state(z, NR_FREE_PAGES)); 3149 } 3150 3151 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3152 unsigned long mark, int highest_zoneidx, 3153 unsigned int alloc_flags, gfp_t gfp_mask) 3154 { 3155 long free_pages; 3156 3157 free_pages = zone_page_state(z, NR_FREE_PAGES); 3158 3159 /* 3160 * Fast check for order-0 only. If this fails then the reserves 3161 * need to be calculated. 3162 */ 3163 if (!order) { 3164 long usable_free; 3165 long reserved; 3166 3167 usable_free = free_pages; 3168 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3169 3170 /* reserved may over estimate high-atomic reserves. */ 3171 usable_free -= min(usable_free, reserved); 3172 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3173 return true; 3174 } 3175 3176 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3177 free_pages)) 3178 return true; 3179 3180 /* 3181 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3182 * when checking the min watermark. The min watermark is the 3183 * point where boosting is ignored so that kswapd is woken up 3184 * when below the low watermark. 3185 */ 3186 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3187 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3188 mark = z->_watermark[WMARK_MIN]; 3189 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3190 alloc_flags, free_pages); 3191 } 3192 3193 return false; 3194 } 3195 3196 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3197 unsigned long mark, int highest_zoneidx) 3198 { 3199 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3200 3201 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3202 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3203 3204 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3205 free_pages); 3206 } 3207 3208 #ifdef CONFIG_NUMA 3209 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3210 3211 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3212 { 3213 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3214 node_reclaim_distance; 3215 } 3216 #else /* CONFIG_NUMA */ 3217 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3218 { 3219 return true; 3220 } 3221 #endif /* CONFIG_NUMA */ 3222 3223 /* 3224 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3225 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3226 * premature use of a lower zone may cause lowmem pressure problems that 3227 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3228 * probably too small. It only makes sense to spread allocations to avoid 3229 * fragmentation between the Normal and DMA32 zones. 3230 */ 3231 static inline unsigned int 3232 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3233 { 3234 unsigned int alloc_flags; 3235 3236 /* 3237 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3238 * to save a branch. 3239 */ 3240 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3241 3242 #ifdef CONFIG_ZONE_DMA32 3243 if (!zone) 3244 return alloc_flags; 3245 3246 if (zone_idx(zone) != ZONE_NORMAL) 3247 return alloc_flags; 3248 3249 /* 3250 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3251 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3252 * on UMA that if Normal is populated then so is DMA32. 3253 */ 3254 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3255 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3256 return alloc_flags; 3257 3258 alloc_flags |= ALLOC_NOFRAGMENT; 3259 #endif /* CONFIG_ZONE_DMA32 */ 3260 return alloc_flags; 3261 } 3262 3263 /* Must be called after current_gfp_context() which can change gfp_mask */ 3264 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3265 unsigned int alloc_flags) 3266 { 3267 #ifdef CONFIG_CMA 3268 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3269 alloc_flags |= ALLOC_CMA; 3270 #endif 3271 return alloc_flags; 3272 } 3273 3274 /* 3275 * get_page_from_freelist goes through the zonelist trying to allocate 3276 * a page. 3277 */ 3278 static struct page * 3279 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3280 const struct alloc_context *ac) 3281 { 3282 struct zoneref *z; 3283 struct zone *zone; 3284 struct pglist_data *last_pgdat = NULL; 3285 bool last_pgdat_dirty_ok = false; 3286 bool no_fallback; 3287 3288 retry: 3289 /* 3290 * Scan zonelist, looking for a zone with enough free. 3291 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3292 */ 3293 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3294 z = ac->preferred_zoneref; 3295 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3296 ac->nodemask) { 3297 struct page *page; 3298 unsigned long mark; 3299 3300 if (cpusets_enabled() && 3301 (alloc_flags & ALLOC_CPUSET) && 3302 !__cpuset_zone_allowed(zone, gfp_mask)) 3303 continue; 3304 /* 3305 * When allocating a page cache page for writing, we 3306 * want to get it from a node that is within its dirty 3307 * limit, such that no single node holds more than its 3308 * proportional share of globally allowed dirty pages. 3309 * The dirty limits take into account the node's 3310 * lowmem reserves and high watermark so that kswapd 3311 * should be able to balance it without having to 3312 * write pages from its LRU list. 3313 * 3314 * XXX: For now, allow allocations to potentially 3315 * exceed the per-node dirty limit in the slowpath 3316 * (spread_dirty_pages unset) before going into reclaim, 3317 * which is important when on a NUMA setup the allowed 3318 * nodes are together not big enough to reach the 3319 * global limit. The proper fix for these situations 3320 * will require awareness of nodes in the 3321 * dirty-throttling and the flusher threads. 3322 */ 3323 if (ac->spread_dirty_pages) { 3324 if (last_pgdat != zone->zone_pgdat) { 3325 last_pgdat = zone->zone_pgdat; 3326 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3327 } 3328 3329 if (!last_pgdat_dirty_ok) 3330 continue; 3331 } 3332 3333 if (no_fallback && nr_online_nodes > 1 && 3334 zone != ac->preferred_zoneref->zone) { 3335 int local_nid; 3336 3337 /* 3338 * If moving to a remote node, retry but allow 3339 * fragmenting fallbacks. Locality is more important 3340 * than fragmentation avoidance. 3341 */ 3342 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3343 if (zone_to_nid(zone) != local_nid) { 3344 alloc_flags &= ~ALLOC_NOFRAGMENT; 3345 goto retry; 3346 } 3347 } 3348 3349 /* 3350 * Detect whether the number of free pages is below high 3351 * watermark. If so, we will decrease pcp->high and free 3352 * PCP pages in free path to reduce the possibility of 3353 * premature page reclaiming. Detection is done here to 3354 * avoid to do that in hotter free path. 3355 */ 3356 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3357 goto check_alloc_wmark; 3358 3359 mark = high_wmark_pages(zone); 3360 if (zone_watermark_fast(zone, order, mark, 3361 ac->highest_zoneidx, alloc_flags, 3362 gfp_mask)) 3363 goto try_this_zone; 3364 else 3365 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3366 3367 check_alloc_wmark: 3368 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3369 if (!zone_watermark_fast(zone, order, mark, 3370 ac->highest_zoneidx, alloc_flags, 3371 gfp_mask)) { 3372 int ret; 3373 3374 if (has_unaccepted_memory()) { 3375 if (try_to_accept_memory(zone, order)) 3376 goto try_this_zone; 3377 } 3378 3379 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3380 /* 3381 * Watermark failed for this zone, but see if we can 3382 * grow this zone if it contains deferred pages. 3383 */ 3384 if (deferred_pages_enabled()) { 3385 if (_deferred_grow_zone(zone, order)) 3386 goto try_this_zone; 3387 } 3388 #endif 3389 /* Checked here to keep the fast path fast */ 3390 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3391 if (alloc_flags & ALLOC_NO_WATERMARKS) 3392 goto try_this_zone; 3393 3394 if (!node_reclaim_enabled() || 3395 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3396 continue; 3397 3398 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3399 switch (ret) { 3400 case NODE_RECLAIM_NOSCAN: 3401 /* did not scan */ 3402 continue; 3403 case NODE_RECLAIM_FULL: 3404 /* scanned but unreclaimable */ 3405 continue; 3406 default: 3407 /* did we reclaim enough */ 3408 if (zone_watermark_ok(zone, order, mark, 3409 ac->highest_zoneidx, alloc_flags)) 3410 goto try_this_zone; 3411 3412 continue; 3413 } 3414 } 3415 3416 try_this_zone: 3417 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3418 gfp_mask, alloc_flags, ac->migratetype); 3419 if (page) { 3420 prep_new_page(page, order, gfp_mask, alloc_flags); 3421 3422 /* 3423 * If this is a high-order atomic allocation then check 3424 * if the pageblock should be reserved for the future 3425 */ 3426 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3427 reserve_highatomic_pageblock(page, order, zone); 3428 3429 return page; 3430 } else { 3431 if (has_unaccepted_memory()) { 3432 if (try_to_accept_memory(zone, order)) 3433 goto try_this_zone; 3434 } 3435 3436 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3437 /* Try again if zone has deferred pages */ 3438 if (deferred_pages_enabled()) { 3439 if (_deferred_grow_zone(zone, order)) 3440 goto try_this_zone; 3441 } 3442 #endif 3443 } 3444 } 3445 3446 /* 3447 * It's possible on a UMA machine to get through all zones that are 3448 * fragmented. If avoiding fragmentation, reset and try again. 3449 */ 3450 if (no_fallback) { 3451 alloc_flags &= ~ALLOC_NOFRAGMENT; 3452 goto retry; 3453 } 3454 3455 return NULL; 3456 } 3457 3458 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3459 { 3460 unsigned int filter = SHOW_MEM_FILTER_NODES; 3461 3462 /* 3463 * This documents exceptions given to allocations in certain 3464 * contexts that are allowed to allocate outside current's set 3465 * of allowed nodes. 3466 */ 3467 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3468 if (tsk_is_oom_victim(current) || 3469 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3470 filter &= ~SHOW_MEM_FILTER_NODES; 3471 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3472 filter &= ~SHOW_MEM_FILTER_NODES; 3473 3474 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3475 } 3476 3477 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3478 { 3479 struct va_format vaf; 3480 va_list args; 3481 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3482 3483 if ((gfp_mask & __GFP_NOWARN) || 3484 !__ratelimit(&nopage_rs) || 3485 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3486 return; 3487 3488 va_start(args, fmt); 3489 vaf.fmt = fmt; 3490 vaf.va = &args; 3491 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3492 current->comm, &vaf, gfp_mask, &gfp_mask, 3493 nodemask_pr_args(nodemask)); 3494 va_end(args); 3495 3496 cpuset_print_current_mems_allowed(); 3497 pr_cont("\n"); 3498 dump_stack(); 3499 warn_alloc_show_mem(gfp_mask, nodemask); 3500 } 3501 3502 static inline struct page * 3503 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3504 unsigned int alloc_flags, 3505 const struct alloc_context *ac) 3506 { 3507 struct page *page; 3508 3509 page = get_page_from_freelist(gfp_mask, order, 3510 alloc_flags|ALLOC_CPUSET, ac); 3511 /* 3512 * fallback to ignore cpuset restriction if our nodes 3513 * are depleted 3514 */ 3515 if (!page) 3516 page = get_page_from_freelist(gfp_mask, order, 3517 alloc_flags, ac); 3518 3519 return page; 3520 } 3521 3522 static inline struct page * 3523 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3524 const struct alloc_context *ac, unsigned long *did_some_progress) 3525 { 3526 struct oom_control oc = { 3527 .zonelist = ac->zonelist, 3528 .nodemask = ac->nodemask, 3529 .memcg = NULL, 3530 .gfp_mask = gfp_mask, 3531 .order = order, 3532 }; 3533 struct page *page; 3534 3535 *did_some_progress = 0; 3536 3537 /* 3538 * Acquire the oom lock. If that fails, somebody else is 3539 * making progress for us. 3540 */ 3541 if (!mutex_trylock(&oom_lock)) { 3542 *did_some_progress = 1; 3543 schedule_timeout_uninterruptible(1); 3544 return NULL; 3545 } 3546 3547 /* 3548 * Go through the zonelist yet one more time, keep very high watermark 3549 * here, this is only to catch a parallel oom killing, we must fail if 3550 * we're still under heavy pressure. But make sure that this reclaim 3551 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3552 * allocation which will never fail due to oom_lock already held. 3553 */ 3554 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3555 ~__GFP_DIRECT_RECLAIM, order, 3556 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3557 if (page) 3558 goto out; 3559 3560 /* Coredumps can quickly deplete all memory reserves */ 3561 if (current->flags & PF_DUMPCORE) 3562 goto out; 3563 /* The OOM killer will not help higher order allocs */ 3564 if (order > PAGE_ALLOC_COSTLY_ORDER) 3565 goto out; 3566 /* 3567 * We have already exhausted all our reclaim opportunities without any 3568 * success so it is time to admit defeat. We will skip the OOM killer 3569 * because it is very likely that the caller has a more reasonable 3570 * fallback than shooting a random task. 3571 * 3572 * The OOM killer may not free memory on a specific node. 3573 */ 3574 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3575 goto out; 3576 /* The OOM killer does not needlessly kill tasks for lowmem */ 3577 if (ac->highest_zoneidx < ZONE_NORMAL) 3578 goto out; 3579 if (pm_suspended_storage()) 3580 goto out; 3581 /* 3582 * XXX: GFP_NOFS allocations should rather fail than rely on 3583 * other request to make a forward progress. 3584 * We are in an unfortunate situation where out_of_memory cannot 3585 * do much for this context but let's try it to at least get 3586 * access to memory reserved if the current task is killed (see 3587 * out_of_memory). Once filesystems are ready to handle allocation 3588 * failures more gracefully we should just bail out here. 3589 */ 3590 3591 /* Exhausted what can be done so it's blame time */ 3592 if (out_of_memory(&oc) || 3593 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3594 *did_some_progress = 1; 3595 3596 /* 3597 * Help non-failing allocations by giving them access to memory 3598 * reserves 3599 */ 3600 if (gfp_mask & __GFP_NOFAIL) 3601 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3602 ALLOC_NO_WATERMARKS, ac); 3603 } 3604 out: 3605 mutex_unlock(&oom_lock); 3606 return page; 3607 } 3608 3609 /* 3610 * Maximum number of compaction retries with a progress before OOM 3611 * killer is consider as the only way to move forward. 3612 */ 3613 #define MAX_COMPACT_RETRIES 16 3614 3615 #ifdef CONFIG_COMPACTION 3616 /* Try memory compaction for high-order allocations before reclaim */ 3617 static struct page * 3618 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3619 unsigned int alloc_flags, const struct alloc_context *ac, 3620 enum compact_priority prio, enum compact_result *compact_result) 3621 { 3622 struct page *page = NULL; 3623 unsigned long pflags; 3624 unsigned int noreclaim_flag; 3625 3626 if (!order) 3627 return NULL; 3628 3629 psi_memstall_enter(&pflags); 3630 delayacct_compact_start(); 3631 noreclaim_flag = memalloc_noreclaim_save(); 3632 3633 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3634 prio, &page); 3635 3636 memalloc_noreclaim_restore(noreclaim_flag); 3637 psi_memstall_leave(&pflags); 3638 delayacct_compact_end(); 3639 3640 if (*compact_result == COMPACT_SKIPPED) 3641 return NULL; 3642 /* 3643 * At least in one zone compaction wasn't deferred or skipped, so let's 3644 * count a compaction stall 3645 */ 3646 count_vm_event(COMPACTSTALL); 3647 3648 /* Prep a captured page if available */ 3649 if (page) 3650 prep_new_page(page, order, gfp_mask, alloc_flags); 3651 3652 /* Try get a page from the freelist if available */ 3653 if (!page) 3654 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3655 3656 if (page) { 3657 struct zone *zone = page_zone(page); 3658 3659 zone->compact_blockskip_flush = false; 3660 compaction_defer_reset(zone, order, true); 3661 count_vm_event(COMPACTSUCCESS); 3662 return page; 3663 } 3664 3665 /* 3666 * It's bad if compaction run occurs and fails. The most likely reason 3667 * is that pages exist, but not enough to satisfy watermarks. 3668 */ 3669 count_vm_event(COMPACTFAIL); 3670 3671 cond_resched(); 3672 3673 return NULL; 3674 } 3675 3676 static inline bool 3677 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3678 enum compact_result compact_result, 3679 enum compact_priority *compact_priority, 3680 int *compaction_retries) 3681 { 3682 int max_retries = MAX_COMPACT_RETRIES; 3683 int min_priority; 3684 bool ret = false; 3685 int retries = *compaction_retries; 3686 enum compact_priority priority = *compact_priority; 3687 3688 if (!order) 3689 return false; 3690 3691 if (fatal_signal_pending(current)) 3692 return false; 3693 3694 /* 3695 * Compaction was skipped due to a lack of free order-0 3696 * migration targets. Continue if reclaim can help. 3697 */ 3698 if (compact_result == COMPACT_SKIPPED) { 3699 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3700 goto out; 3701 } 3702 3703 /* 3704 * Compaction managed to coalesce some page blocks, but the 3705 * allocation failed presumably due to a race. Retry some. 3706 */ 3707 if (compact_result == COMPACT_SUCCESS) { 3708 /* 3709 * !costly requests are much more important than 3710 * __GFP_RETRY_MAYFAIL costly ones because they are de 3711 * facto nofail and invoke OOM killer to move on while 3712 * costly can fail and users are ready to cope with 3713 * that. 1/4 retries is rather arbitrary but we would 3714 * need much more detailed feedback from compaction to 3715 * make a better decision. 3716 */ 3717 if (order > PAGE_ALLOC_COSTLY_ORDER) 3718 max_retries /= 4; 3719 3720 if (++(*compaction_retries) <= max_retries) { 3721 ret = true; 3722 goto out; 3723 } 3724 } 3725 3726 /* 3727 * Compaction failed. Retry with increasing priority. 3728 */ 3729 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3730 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3731 3732 if (*compact_priority > min_priority) { 3733 (*compact_priority)--; 3734 *compaction_retries = 0; 3735 ret = true; 3736 } 3737 out: 3738 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3739 return ret; 3740 } 3741 #else 3742 static inline struct page * 3743 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3744 unsigned int alloc_flags, const struct alloc_context *ac, 3745 enum compact_priority prio, enum compact_result *compact_result) 3746 { 3747 *compact_result = COMPACT_SKIPPED; 3748 return NULL; 3749 } 3750 3751 static inline bool 3752 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3753 enum compact_result compact_result, 3754 enum compact_priority *compact_priority, 3755 int *compaction_retries) 3756 { 3757 struct zone *zone; 3758 struct zoneref *z; 3759 3760 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3761 return false; 3762 3763 /* 3764 * There are setups with compaction disabled which would prefer to loop 3765 * inside the allocator rather than hit the oom killer prematurely. 3766 * Let's give them a good hope and keep retrying while the order-0 3767 * watermarks are OK. 3768 */ 3769 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3770 ac->highest_zoneidx, ac->nodemask) { 3771 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3772 ac->highest_zoneidx, alloc_flags)) 3773 return true; 3774 } 3775 return false; 3776 } 3777 #endif /* CONFIG_COMPACTION */ 3778 3779 #ifdef CONFIG_LOCKDEP 3780 static struct lockdep_map __fs_reclaim_map = 3781 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3782 3783 static bool __need_reclaim(gfp_t gfp_mask) 3784 { 3785 /* no reclaim without waiting on it */ 3786 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3787 return false; 3788 3789 /* this guy won't enter reclaim */ 3790 if (current->flags & PF_MEMALLOC) 3791 return false; 3792 3793 if (gfp_mask & __GFP_NOLOCKDEP) 3794 return false; 3795 3796 return true; 3797 } 3798 3799 void __fs_reclaim_acquire(unsigned long ip) 3800 { 3801 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3802 } 3803 3804 void __fs_reclaim_release(unsigned long ip) 3805 { 3806 lock_release(&__fs_reclaim_map, ip); 3807 } 3808 3809 void fs_reclaim_acquire(gfp_t gfp_mask) 3810 { 3811 gfp_mask = current_gfp_context(gfp_mask); 3812 3813 if (__need_reclaim(gfp_mask)) { 3814 if (gfp_mask & __GFP_FS) 3815 __fs_reclaim_acquire(_RET_IP_); 3816 3817 #ifdef CONFIG_MMU_NOTIFIER 3818 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3819 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3820 #endif 3821 3822 } 3823 } 3824 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3825 3826 void fs_reclaim_release(gfp_t gfp_mask) 3827 { 3828 gfp_mask = current_gfp_context(gfp_mask); 3829 3830 if (__need_reclaim(gfp_mask)) { 3831 if (gfp_mask & __GFP_FS) 3832 __fs_reclaim_release(_RET_IP_); 3833 } 3834 } 3835 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3836 #endif 3837 3838 /* 3839 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3840 * have been rebuilt so allocation retries. Reader side does not lock and 3841 * retries the allocation if zonelist changes. Writer side is protected by the 3842 * embedded spin_lock. 3843 */ 3844 static DEFINE_SEQLOCK(zonelist_update_seq); 3845 3846 static unsigned int zonelist_iter_begin(void) 3847 { 3848 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3849 return read_seqbegin(&zonelist_update_seq); 3850 3851 return 0; 3852 } 3853 3854 static unsigned int check_retry_zonelist(unsigned int seq) 3855 { 3856 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3857 return read_seqretry(&zonelist_update_seq, seq); 3858 3859 return seq; 3860 } 3861 3862 /* Perform direct synchronous page reclaim */ 3863 static unsigned long 3864 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3865 const struct alloc_context *ac) 3866 { 3867 unsigned int noreclaim_flag; 3868 unsigned long progress; 3869 3870 cond_resched(); 3871 3872 /* We now go into synchronous reclaim */ 3873 cpuset_memory_pressure_bump(); 3874 fs_reclaim_acquire(gfp_mask); 3875 noreclaim_flag = memalloc_noreclaim_save(); 3876 3877 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3878 ac->nodemask); 3879 3880 memalloc_noreclaim_restore(noreclaim_flag); 3881 fs_reclaim_release(gfp_mask); 3882 3883 cond_resched(); 3884 3885 return progress; 3886 } 3887 3888 /* The really slow allocator path where we enter direct reclaim */ 3889 static inline struct page * 3890 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3891 unsigned int alloc_flags, const struct alloc_context *ac, 3892 unsigned long *did_some_progress) 3893 { 3894 struct page *page = NULL; 3895 unsigned long pflags; 3896 bool drained = false; 3897 3898 psi_memstall_enter(&pflags); 3899 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3900 if (unlikely(!(*did_some_progress))) 3901 goto out; 3902 3903 retry: 3904 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3905 3906 /* 3907 * If an allocation failed after direct reclaim, it could be because 3908 * pages are pinned on the per-cpu lists or in high alloc reserves. 3909 * Shrink them and try again 3910 */ 3911 if (!page && !drained) { 3912 unreserve_highatomic_pageblock(ac, false); 3913 drain_all_pages(NULL); 3914 drained = true; 3915 goto retry; 3916 } 3917 out: 3918 psi_memstall_leave(&pflags); 3919 3920 return page; 3921 } 3922 3923 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3924 const struct alloc_context *ac) 3925 { 3926 struct zoneref *z; 3927 struct zone *zone; 3928 pg_data_t *last_pgdat = NULL; 3929 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3930 3931 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3932 ac->nodemask) { 3933 if (!managed_zone(zone)) 3934 continue; 3935 if (last_pgdat != zone->zone_pgdat) { 3936 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3937 last_pgdat = zone->zone_pgdat; 3938 } 3939 } 3940 } 3941 3942 static inline unsigned int 3943 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3944 { 3945 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3946 3947 /* 3948 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3949 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3950 * to save two branches. 3951 */ 3952 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3953 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3954 3955 /* 3956 * The caller may dip into page reserves a bit more if the caller 3957 * cannot run direct reclaim, or if the caller has realtime scheduling 3958 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3959 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3960 */ 3961 alloc_flags |= (__force int) 3962 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3963 3964 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3965 /* 3966 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3967 * if it can't schedule. 3968 */ 3969 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3970 alloc_flags |= ALLOC_NON_BLOCK; 3971 3972 if (order > 0) 3973 alloc_flags |= ALLOC_HIGHATOMIC; 3974 } 3975 3976 /* 3977 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3978 * GFP_ATOMIC) rather than fail, see the comment for 3979 * cpuset_node_allowed(). 3980 */ 3981 if (alloc_flags & ALLOC_MIN_RESERVE) 3982 alloc_flags &= ~ALLOC_CPUSET; 3983 } else if (unlikely(rt_task(current)) && in_task()) 3984 alloc_flags |= ALLOC_MIN_RESERVE; 3985 3986 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3987 3988 return alloc_flags; 3989 } 3990 3991 static bool oom_reserves_allowed(struct task_struct *tsk) 3992 { 3993 if (!tsk_is_oom_victim(tsk)) 3994 return false; 3995 3996 /* 3997 * !MMU doesn't have oom reaper so give access to memory reserves 3998 * only to the thread with TIF_MEMDIE set 3999 */ 4000 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4001 return false; 4002 4003 return true; 4004 } 4005 4006 /* 4007 * Distinguish requests which really need access to full memory 4008 * reserves from oom victims which can live with a portion of it 4009 */ 4010 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4011 { 4012 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4013 return 0; 4014 if (gfp_mask & __GFP_MEMALLOC) 4015 return ALLOC_NO_WATERMARKS; 4016 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4017 return ALLOC_NO_WATERMARKS; 4018 if (!in_interrupt()) { 4019 if (current->flags & PF_MEMALLOC) 4020 return ALLOC_NO_WATERMARKS; 4021 else if (oom_reserves_allowed(current)) 4022 return ALLOC_OOM; 4023 } 4024 4025 return 0; 4026 } 4027 4028 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4029 { 4030 return !!__gfp_pfmemalloc_flags(gfp_mask); 4031 } 4032 4033 /* 4034 * Checks whether it makes sense to retry the reclaim to make a forward progress 4035 * for the given allocation request. 4036 * 4037 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4038 * without success, or when we couldn't even meet the watermark if we 4039 * reclaimed all remaining pages on the LRU lists. 4040 * 4041 * Returns true if a retry is viable or false to enter the oom path. 4042 */ 4043 static inline bool 4044 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4045 struct alloc_context *ac, int alloc_flags, 4046 bool did_some_progress, int *no_progress_loops) 4047 { 4048 struct zone *zone; 4049 struct zoneref *z; 4050 bool ret = false; 4051 4052 /* 4053 * Costly allocations might have made a progress but this doesn't mean 4054 * their order will become available due to high fragmentation so 4055 * always increment the no progress counter for them 4056 */ 4057 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4058 *no_progress_loops = 0; 4059 else 4060 (*no_progress_loops)++; 4061 4062 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4063 goto out; 4064 4065 4066 /* 4067 * Keep reclaiming pages while there is a chance this will lead 4068 * somewhere. If none of the target zones can satisfy our allocation 4069 * request even if all reclaimable pages are considered then we are 4070 * screwed and have to go OOM. 4071 */ 4072 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4073 ac->highest_zoneidx, ac->nodemask) { 4074 unsigned long available; 4075 unsigned long reclaimable; 4076 unsigned long min_wmark = min_wmark_pages(zone); 4077 bool wmark; 4078 4079 available = reclaimable = zone_reclaimable_pages(zone); 4080 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4081 4082 /* 4083 * Would the allocation succeed if we reclaimed all 4084 * reclaimable pages? 4085 */ 4086 wmark = __zone_watermark_ok(zone, order, min_wmark, 4087 ac->highest_zoneidx, alloc_flags, available); 4088 trace_reclaim_retry_zone(z, order, reclaimable, 4089 available, min_wmark, *no_progress_loops, wmark); 4090 if (wmark) { 4091 ret = true; 4092 break; 4093 } 4094 } 4095 4096 /* 4097 * Memory allocation/reclaim might be called from a WQ context and the 4098 * current implementation of the WQ concurrency control doesn't 4099 * recognize that a particular WQ is congested if the worker thread is 4100 * looping without ever sleeping. Therefore we have to do a short sleep 4101 * here rather than calling cond_resched(). 4102 */ 4103 if (current->flags & PF_WQ_WORKER) 4104 schedule_timeout_uninterruptible(1); 4105 else 4106 cond_resched(); 4107 out: 4108 /* Before OOM, exhaust highatomic_reserve */ 4109 if (!ret) 4110 return unreserve_highatomic_pageblock(ac, true); 4111 4112 return ret; 4113 } 4114 4115 static inline bool 4116 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4117 { 4118 /* 4119 * It's possible that cpuset's mems_allowed and the nodemask from 4120 * mempolicy don't intersect. This should be normally dealt with by 4121 * policy_nodemask(), but it's possible to race with cpuset update in 4122 * such a way the check therein was true, and then it became false 4123 * before we got our cpuset_mems_cookie here. 4124 * This assumes that for all allocations, ac->nodemask can come only 4125 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4126 * when it does not intersect with the cpuset restrictions) or the 4127 * caller can deal with a violated nodemask. 4128 */ 4129 if (cpusets_enabled() && ac->nodemask && 4130 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4131 ac->nodemask = NULL; 4132 return true; 4133 } 4134 4135 /* 4136 * When updating a task's mems_allowed or mempolicy nodemask, it is 4137 * possible to race with parallel threads in such a way that our 4138 * allocation can fail while the mask is being updated. If we are about 4139 * to fail, check if the cpuset changed during allocation and if so, 4140 * retry. 4141 */ 4142 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4143 return true; 4144 4145 return false; 4146 } 4147 4148 static inline struct page * 4149 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4150 struct alloc_context *ac) 4151 { 4152 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4153 bool can_compact = gfp_compaction_allowed(gfp_mask); 4154 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4155 struct page *page = NULL; 4156 unsigned int alloc_flags; 4157 unsigned long did_some_progress; 4158 enum compact_priority compact_priority; 4159 enum compact_result compact_result; 4160 int compaction_retries; 4161 int no_progress_loops; 4162 unsigned int cpuset_mems_cookie; 4163 unsigned int zonelist_iter_cookie; 4164 int reserve_flags; 4165 4166 restart: 4167 compaction_retries = 0; 4168 no_progress_loops = 0; 4169 compact_priority = DEF_COMPACT_PRIORITY; 4170 cpuset_mems_cookie = read_mems_allowed_begin(); 4171 zonelist_iter_cookie = zonelist_iter_begin(); 4172 4173 /* 4174 * The fast path uses conservative alloc_flags to succeed only until 4175 * kswapd needs to be woken up, and to avoid the cost of setting up 4176 * alloc_flags precisely. So we do that now. 4177 */ 4178 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4179 4180 /* 4181 * We need to recalculate the starting point for the zonelist iterator 4182 * because we might have used different nodemask in the fast path, or 4183 * there was a cpuset modification and we are retrying - otherwise we 4184 * could end up iterating over non-eligible zones endlessly. 4185 */ 4186 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4187 ac->highest_zoneidx, ac->nodemask); 4188 if (!ac->preferred_zoneref->zone) 4189 goto nopage; 4190 4191 /* 4192 * Check for insane configurations where the cpuset doesn't contain 4193 * any suitable zone to satisfy the request - e.g. non-movable 4194 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4195 */ 4196 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4197 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4198 ac->highest_zoneidx, 4199 &cpuset_current_mems_allowed); 4200 if (!z->zone) 4201 goto nopage; 4202 } 4203 4204 if (alloc_flags & ALLOC_KSWAPD) 4205 wake_all_kswapds(order, gfp_mask, ac); 4206 4207 /* 4208 * The adjusted alloc_flags might result in immediate success, so try 4209 * that first 4210 */ 4211 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4212 if (page) 4213 goto got_pg; 4214 4215 /* 4216 * For costly allocations, try direct compaction first, as it's likely 4217 * that we have enough base pages and don't need to reclaim. For non- 4218 * movable high-order allocations, do that as well, as compaction will 4219 * try prevent permanent fragmentation by migrating from blocks of the 4220 * same migratetype. 4221 * Don't try this for allocations that are allowed to ignore 4222 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4223 */ 4224 if (can_direct_reclaim && can_compact && 4225 (costly_order || 4226 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4227 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4228 page = __alloc_pages_direct_compact(gfp_mask, order, 4229 alloc_flags, ac, 4230 INIT_COMPACT_PRIORITY, 4231 &compact_result); 4232 if (page) 4233 goto got_pg; 4234 4235 /* 4236 * Checks for costly allocations with __GFP_NORETRY, which 4237 * includes some THP page fault allocations 4238 */ 4239 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4240 /* 4241 * If allocating entire pageblock(s) and compaction 4242 * failed because all zones are below low watermarks 4243 * or is prohibited because it recently failed at this 4244 * order, fail immediately unless the allocator has 4245 * requested compaction and reclaim retry. 4246 * 4247 * Reclaim is 4248 * - potentially very expensive because zones are far 4249 * below their low watermarks or this is part of very 4250 * bursty high order allocations, 4251 * - not guaranteed to help because isolate_freepages() 4252 * may not iterate over freed pages as part of its 4253 * linear scan, and 4254 * - unlikely to make entire pageblocks free on its 4255 * own. 4256 */ 4257 if (compact_result == COMPACT_SKIPPED || 4258 compact_result == COMPACT_DEFERRED) 4259 goto nopage; 4260 4261 /* 4262 * Looks like reclaim/compaction is worth trying, but 4263 * sync compaction could be very expensive, so keep 4264 * using async compaction. 4265 */ 4266 compact_priority = INIT_COMPACT_PRIORITY; 4267 } 4268 } 4269 4270 retry: 4271 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4272 if (alloc_flags & ALLOC_KSWAPD) 4273 wake_all_kswapds(order, gfp_mask, ac); 4274 4275 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4276 if (reserve_flags) 4277 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4278 (alloc_flags & ALLOC_KSWAPD); 4279 4280 /* 4281 * Reset the nodemask and zonelist iterators if memory policies can be 4282 * ignored. These allocations are high priority and system rather than 4283 * user oriented. 4284 */ 4285 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4286 ac->nodemask = NULL; 4287 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4288 ac->highest_zoneidx, ac->nodemask); 4289 } 4290 4291 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4292 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4293 if (page) 4294 goto got_pg; 4295 4296 /* Caller is not willing to reclaim, we can't balance anything */ 4297 if (!can_direct_reclaim) 4298 goto nopage; 4299 4300 /* Avoid recursion of direct reclaim */ 4301 if (current->flags & PF_MEMALLOC) 4302 goto nopage; 4303 4304 /* Try direct reclaim and then allocating */ 4305 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4306 &did_some_progress); 4307 if (page) 4308 goto got_pg; 4309 4310 /* Try direct compaction and then allocating */ 4311 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4312 compact_priority, &compact_result); 4313 if (page) 4314 goto got_pg; 4315 4316 /* Do not loop if specifically requested */ 4317 if (gfp_mask & __GFP_NORETRY) 4318 goto nopage; 4319 4320 /* 4321 * Do not retry costly high order allocations unless they are 4322 * __GFP_RETRY_MAYFAIL and we can compact 4323 */ 4324 if (costly_order && (!can_compact || 4325 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4326 goto nopage; 4327 4328 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4329 did_some_progress > 0, &no_progress_loops)) 4330 goto retry; 4331 4332 /* 4333 * It doesn't make any sense to retry for the compaction if the order-0 4334 * reclaim is not able to make any progress because the current 4335 * implementation of the compaction depends on the sufficient amount 4336 * of free memory (see __compaction_suitable) 4337 */ 4338 if (did_some_progress > 0 && can_compact && 4339 should_compact_retry(ac, order, alloc_flags, 4340 compact_result, &compact_priority, 4341 &compaction_retries)) 4342 goto retry; 4343 4344 4345 /* 4346 * Deal with possible cpuset update races or zonelist updates to avoid 4347 * a unnecessary OOM kill. 4348 */ 4349 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4350 check_retry_zonelist(zonelist_iter_cookie)) 4351 goto restart; 4352 4353 /* Reclaim has failed us, start killing things */ 4354 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4355 if (page) 4356 goto got_pg; 4357 4358 /* Avoid allocations with no watermarks from looping endlessly */ 4359 if (tsk_is_oom_victim(current) && 4360 (alloc_flags & ALLOC_OOM || 4361 (gfp_mask & __GFP_NOMEMALLOC))) 4362 goto nopage; 4363 4364 /* Retry as long as the OOM killer is making progress */ 4365 if (did_some_progress) { 4366 no_progress_loops = 0; 4367 goto retry; 4368 } 4369 4370 nopage: 4371 /* 4372 * Deal with possible cpuset update races or zonelist updates to avoid 4373 * a unnecessary OOM kill. 4374 */ 4375 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4376 check_retry_zonelist(zonelist_iter_cookie)) 4377 goto restart; 4378 4379 /* 4380 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4381 * we always retry 4382 */ 4383 if (gfp_mask & __GFP_NOFAIL) { 4384 /* 4385 * All existing users of the __GFP_NOFAIL are blockable, so warn 4386 * of any new users that actually require GFP_NOWAIT 4387 */ 4388 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4389 goto fail; 4390 4391 /* 4392 * PF_MEMALLOC request from this context is rather bizarre 4393 * because we cannot reclaim anything and only can loop waiting 4394 * for somebody to do a work for us 4395 */ 4396 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4397 4398 /* 4399 * non failing costly orders are a hard requirement which we 4400 * are not prepared for much so let's warn about these users 4401 * so that we can identify them and convert them to something 4402 * else. 4403 */ 4404 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4405 4406 /* 4407 * Help non-failing allocations by giving some access to memory 4408 * reserves normally used for high priority non-blocking 4409 * allocations but do not use ALLOC_NO_WATERMARKS because this 4410 * could deplete whole memory reserves which would just make 4411 * the situation worse. 4412 */ 4413 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4414 if (page) 4415 goto got_pg; 4416 4417 cond_resched(); 4418 goto retry; 4419 } 4420 fail: 4421 warn_alloc(gfp_mask, ac->nodemask, 4422 "page allocation failure: order:%u", order); 4423 got_pg: 4424 return page; 4425 } 4426 4427 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4428 int preferred_nid, nodemask_t *nodemask, 4429 struct alloc_context *ac, gfp_t *alloc_gfp, 4430 unsigned int *alloc_flags) 4431 { 4432 ac->highest_zoneidx = gfp_zone(gfp_mask); 4433 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4434 ac->nodemask = nodemask; 4435 ac->migratetype = gfp_migratetype(gfp_mask); 4436 4437 if (cpusets_enabled()) { 4438 *alloc_gfp |= __GFP_HARDWALL; 4439 /* 4440 * When we are in the interrupt context, it is irrelevant 4441 * to the current task context. It means that any node ok. 4442 */ 4443 if (in_task() && !ac->nodemask) 4444 ac->nodemask = &cpuset_current_mems_allowed; 4445 else 4446 *alloc_flags |= ALLOC_CPUSET; 4447 } 4448 4449 might_alloc(gfp_mask); 4450 4451 if (should_fail_alloc_page(gfp_mask, order)) 4452 return false; 4453 4454 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4455 4456 /* Dirty zone balancing only done in the fast path */ 4457 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4458 4459 /* 4460 * The preferred zone is used for statistics but crucially it is 4461 * also used as the starting point for the zonelist iterator. It 4462 * may get reset for allocations that ignore memory policies. 4463 */ 4464 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4465 ac->highest_zoneidx, ac->nodemask); 4466 4467 return true; 4468 } 4469 4470 /* 4471 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4472 * @gfp: GFP flags for the allocation 4473 * @preferred_nid: The preferred NUMA node ID to allocate from 4474 * @nodemask: Set of nodes to allocate from, may be NULL 4475 * @nr_pages: The number of pages desired on the list or array 4476 * @page_list: Optional list to store the allocated pages 4477 * @page_array: Optional array to store the pages 4478 * 4479 * This is a batched version of the page allocator that attempts to 4480 * allocate nr_pages quickly. Pages are added to page_list if page_list 4481 * is not NULL, otherwise it is assumed that the page_array is valid. 4482 * 4483 * For lists, nr_pages is the number of pages that should be allocated. 4484 * 4485 * For arrays, only NULL elements are populated with pages and nr_pages 4486 * is the maximum number of pages that will be stored in the array. 4487 * 4488 * Returns the number of pages on the list or array. 4489 */ 4490 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4491 nodemask_t *nodemask, int nr_pages, 4492 struct list_head *page_list, 4493 struct page **page_array) 4494 { 4495 struct page *page; 4496 unsigned long __maybe_unused UP_flags; 4497 struct zone *zone; 4498 struct zoneref *z; 4499 struct per_cpu_pages *pcp; 4500 struct list_head *pcp_list; 4501 struct alloc_context ac; 4502 gfp_t alloc_gfp; 4503 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4504 int nr_populated = 0, nr_account = 0; 4505 4506 /* 4507 * Skip populated array elements to determine if any pages need 4508 * to be allocated before disabling IRQs. 4509 */ 4510 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4511 nr_populated++; 4512 4513 /* No pages requested? */ 4514 if (unlikely(nr_pages <= 0)) 4515 goto out; 4516 4517 /* Already populated array? */ 4518 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4519 goto out; 4520 4521 /* Bulk allocator does not support memcg accounting. */ 4522 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4523 goto failed; 4524 4525 /* Use the single page allocator for one page. */ 4526 if (nr_pages - nr_populated == 1) 4527 goto failed; 4528 4529 #ifdef CONFIG_PAGE_OWNER 4530 /* 4531 * PAGE_OWNER may recurse into the allocator to allocate space to 4532 * save the stack with pagesets.lock held. Releasing/reacquiring 4533 * removes much of the performance benefit of bulk allocation so 4534 * force the caller to allocate one page at a time as it'll have 4535 * similar performance to added complexity to the bulk allocator. 4536 */ 4537 if (static_branch_unlikely(&page_owner_inited)) 4538 goto failed; 4539 #endif 4540 4541 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4542 gfp &= gfp_allowed_mask; 4543 alloc_gfp = gfp; 4544 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4545 goto out; 4546 gfp = alloc_gfp; 4547 4548 /* Find an allowed local zone that meets the low watermark. */ 4549 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4550 unsigned long mark; 4551 4552 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4553 !__cpuset_zone_allowed(zone, gfp)) { 4554 continue; 4555 } 4556 4557 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4558 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4559 goto failed; 4560 } 4561 4562 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4563 if (zone_watermark_fast(zone, 0, mark, 4564 zonelist_zone_idx(ac.preferred_zoneref), 4565 alloc_flags, gfp)) { 4566 break; 4567 } 4568 } 4569 4570 /* 4571 * If there are no allowed local zones that meets the watermarks then 4572 * try to allocate a single page and reclaim if necessary. 4573 */ 4574 if (unlikely(!zone)) 4575 goto failed; 4576 4577 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4578 pcp_trylock_prepare(UP_flags); 4579 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4580 if (!pcp) 4581 goto failed_irq; 4582 4583 /* Attempt the batch allocation */ 4584 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4585 while (nr_populated < nr_pages) { 4586 4587 /* Skip existing pages */ 4588 if (page_array && page_array[nr_populated]) { 4589 nr_populated++; 4590 continue; 4591 } 4592 4593 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4594 pcp, pcp_list); 4595 if (unlikely(!page)) { 4596 /* Try and allocate at least one page */ 4597 if (!nr_account) { 4598 pcp_spin_unlock(pcp); 4599 goto failed_irq; 4600 } 4601 break; 4602 } 4603 nr_account++; 4604 4605 prep_new_page(page, 0, gfp, 0); 4606 if (page_list) 4607 list_add(&page->lru, page_list); 4608 else 4609 page_array[nr_populated] = page; 4610 nr_populated++; 4611 } 4612 4613 pcp_spin_unlock(pcp); 4614 pcp_trylock_finish(UP_flags); 4615 4616 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4617 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4618 4619 out: 4620 return nr_populated; 4621 4622 failed_irq: 4623 pcp_trylock_finish(UP_flags); 4624 4625 failed: 4626 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4627 if (page) { 4628 if (page_list) 4629 list_add(&page->lru, page_list); 4630 else 4631 page_array[nr_populated] = page; 4632 nr_populated++; 4633 } 4634 4635 goto out; 4636 } 4637 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4638 4639 /* 4640 * This is the 'heart' of the zoned buddy allocator. 4641 */ 4642 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4643 int preferred_nid, nodemask_t *nodemask) 4644 { 4645 struct page *page; 4646 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4647 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4648 struct alloc_context ac = { }; 4649 4650 /* 4651 * There are several places where we assume that the order value is sane 4652 * so bail out early if the request is out of bound. 4653 */ 4654 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4655 return NULL; 4656 4657 gfp &= gfp_allowed_mask; 4658 /* 4659 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4660 * resp. GFP_NOIO which has to be inherited for all allocation requests 4661 * from a particular context which has been marked by 4662 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4663 * movable zones are not used during allocation. 4664 */ 4665 gfp = current_gfp_context(gfp); 4666 alloc_gfp = gfp; 4667 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4668 &alloc_gfp, &alloc_flags)) 4669 return NULL; 4670 4671 /* 4672 * Forbid the first pass from falling back to types that fragment 4673 * memory until all local zones are considered. 4674 */ 4675 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4676 4677 /* First allocation attempt */ 4678 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4679 if (likely(page)) 4680 goto out; 4681 4682 alloc_gfp = gfp; 4683 ac.spread_dirty_pages = false; 4684 4685 /* 4686 * Restore the original nodemask if it was potentially replaced with 4687 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4688 */ 4689 ac.nodemask = nodemask; 4690 4691 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4692 4693 out: 4694 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4695 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4696 __free_pages(page, order); 4697 page = NULL; 4698 } 4699 4700 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4701 kmsan_alloc_page(page, order, alloc_gfp); 4702 4703 return page; 4704 } 4705 EXPORT_SYMBOL(__alloc_pages_noprof); 4706 4707 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4708 nodemask_t *nodemask) 4709 { 4710 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4711 preferred_nid, nodemask); 4712 return page_rmappable_folio(page); 4713 } 4714 EXPORT_SYMBOL(__folio_alloc_noprof); 4715 4716 /* 4717 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4718 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4719 * you need to access high mem. 4720 */ 4721 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4722 { 4723 struct page *page; 4724 4725 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4726 if (!page) 4727 return 0; 4728 return (unsigned long) page_address(page); 4729 } 4730 EXPORT_SYMBOL(get_free_pages_noprof); 4731 4732 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4733 { 4734 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4735 } 4736 EXPORT_SYMBOL(get_zeroed_page_noprof); 4737 4738 /** 4739 * __free_pages - Free pages allocated with alloc_pages(). 4740 * @page: The page pointer returned from alloc_pages(). 4741 * @order: The order of the allocation. 4742 * 4743 * This function can free multi-page allocations that are not compound 4744 * pages. It does not check that the @order passed in matches that of 4745 * the allocation, so it is easy to leak memory. Freeing more memory 4746 * than was allocated will probably emit a warning. 4747 * 4748 * If the last reference to this page is speculative, it will be released 4749 * by put_page() which only frees the first page of a non-compound 4750 * allocation. To prevent the remaining pages from being leaked, we free 4751 * the subsequent pages here. If you want to use the page's reference 4752 * count to decide when to free the allocation, you should allocate a 4753 * compound page, and use put_page() instead of __free_pages(). 4754 * 4755 * Context: May be called in interrupt context or while holding a normal 4756 * spinlock, but not in NMI context or while holding a raw spinlock. 4757 */ 4758 void __free_pages(struct page *page, unsigned int order) 4759 { 4760 /* get PageHead before we drop reference */ 4761 int head = PageHead(page); 4762 struct alloc_tag *tag = pgalloc_tag_get(page); 4763 4764 if (put_page_testzero(page)) 4765 free_unref_page(page, order); 4766 else if (!head) { 4767 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4768 while (order-- > 0) 4769 free_unref_page(page + (1 << order), order); 4770 } 4771 } 4772 EXPORT_SYMBOL(__free_pages); 4773 4774 void free_pages(unsigned long addr, unsigned int order) 4775 { 4776 if (addr != 0) { 4777 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4778 __free_pages(virt_to_page((void *)addr), order); 4779 } 4780 } 4781 4782 EXPORT_SYMBOL(free_pages); 4783 4784 /* 4785 * Page Fragment: 4786 * An arbitrary-length arbitrary-offset area of memory which resides 4787 * within a 0 or higher order page. Multiple fragments within that page 4788 * are individually refcounted, in the page's reference counter. 4789 * 4790 * The page_frag functions below provide a simple allocation framework for 4791 * page fragments. This is used by the network stack and network device 4792 * drivers to provide a backing region of memory for use as either an 4793 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4794 */ 4795 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4796 gfp_t gfp_mask) 4797 { 4798 struct page *page = NULL; 4799 gfp_t gfp = gfp_mask; 4800 4801 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4802 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | 4803 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; 4804 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4805 PAGE_FRAG_CACHE_MAX_ORDER); 4806 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4807 #endif 4808 if (unlikely(!page)) 4809 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4810 4811 nc->va = page ? page_address(page) : NULL; 4812 4813 return page; 4814 } 4815 4816 void page_frag_cache_drain(struct page_frag_cache *nc) 4817 { 4818 if (!nc->va) 4819 return; 4820 4821 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); 4822 nc->va = NULL; 4823 } 4824 EXPORT_SYMBOL(page_frag_cache_drain); 4825 4826 void __page_frag_cache_drain(struct page *page, unsigned int count) 4827 { 4828 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4829 4830 if (page_ref_sub_and_test(page, count)) 4831 free_unref_page(page, compound_order(page)); 4832 } 4833 EXPORT_SYMBOL(__page_frag_cache_drain); 4834 4835 void *__page_frag_alloc_align(struct page_frag_cache *nc, 4836 unsigned int fragsz, gfp_t gfp_mask, 4837 unsigned int align_mask) 4838 { 4839 unsigned int size = PAGE_SIZE; 4840 struct page *page; 4841 int offset; 4842 4843 if (unlikely(!nc->va)) { 4844 refill: 4845 page = __page_frag_cache_refill(nc, gfp_mask); 4846 if (!page) 4847 return NULL; 4848 4849 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4850 /* if size can vary use size else just use PAGE_SIZE */ 4851 size = nc->size; 4852 #endif 4853 /* Even if we own the page, we do not use atomic_set(). 4854 * This would break get_page_unless_zero() users. 4855 */ 4856 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4857 4858 /* reset page count bias and offset to start of new frag */ 4859 nc->pfmemalloc = page_is_pfmemalloc(page); 4860 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4861 nc->offset = size; 4862 } 4863 4864 offset = nc->offset - fragsz; 4865 if (unlikely(offset < 0)) { 4866 page = virt_to_page(nc->va); 4867 4868 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4869 goto refill; 4870 4871 if (unlikely(nc->pfmemalloc)) { 4872 free_unref_page(page, compound_order(page)); 4873 goto refill; 4874 } 4875 4876 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4877 /* if size can vary use size else just use PAGE_SIZE */ 4878 size = nc->size; 4879 #endif 4880 /* OK, page count is 0, we can safely set it */ 4881 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4882 4883 /* reset page count bias and offset to start of new frag */ 4884 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4885 offset = size - fragsz; 4886 if (unlikely(offset < 0)) { 4887 /* 4888 * The caller is trying to allocate a fragment 4889 * with fragsz > PAGE_SIZE but the cache isn't big 4890 * enough to satisfy the request, this may 4891 * happen in low memory conditions. 4892 * We don't release the cache page because 4893 * it could make memory pressure worse 4894 * so we simply return NULL here. 4895 */ 4896 return NULL; 4897 } 4898 } 4899 4900 nc->pagecnt_bias--; 4901 offset &= align_mask; 4902 nc->offset = offset; 4903 4904 return nc->va + offset; 4905 } 4906 EXPORT_SYMBOL(__page_frag_alloc_align); 4907 4908 /* 4909 * Frees a page fragment allocated out of either a compound or order 0 page. 4910 */ 4911 void page_frag_free(void *addr) 4912 { 4913 struct page *page = virt_to_head_page(addr); 4914 4915 if (unlikely(put_page_testzero(page))) 4916 free_unref_page(page, compound_order(page)); 4917 } 4918 EXPORT_SYMBOL(page_frag_free); 4919 4920 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4921 size_t size) 4922 { 4923 if (addr) { 4924 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4925 struct page *page = virt_to_page((void *)addr); 4926 struct page *last = page + nr; 4927 4928 split_page_owner(page, order, 0); 4929 pgalloc_tag_split(page, 1 << order); 4930 split_page_memcg(page, order, 0); 4931 while (page < --last) 4932 set_page_refcounted(last); 4933 4934 last = page + (1UL << order); 4935 for (page += nr; page < last; page++) 4936 __free_pages_ok(page, 0, FPI_TO_TAIL); 4937 } 4938 return (void *)addr; 4939 } 4940 4941 /** 4942 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4943 * @size: the number of bytes to allocate 4944 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4945 * 4946 * This function is similar to alloc_pages(), except that it allocates the 4947 * minimum number of pages to satisfy the request. alloc_pages() can only 4948 * allocate memory in power-of-two pages. 4949 * 4950 * This function is also limited by MAX_PAGE_ORDER. 4951 * 4952 * Memory allocated by this function must be released by free_pages_exact(). 4953 * 4954 * Return: pointer to the allocated area or %NULL in case of error. 4955 */ 4956 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 4957 { 4958 unsigned int order = get_order(size); 4959 unsigned long addr; 4960 4961 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4962 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4963 4964 addr = get_free_pages_noprof(gfp_mask, order); 4965 return make_alloc_exact(addr, order, size); 4966 } 4967 EXPORT_SYMBOL(alloc_pages_exact_noprof); 4968 4969 /** 4970 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4971 * pages on a node. 4972 * @nid: the preferred node ID where memory should be allocated 4973 * @size: the number of bytes to allocate 4974 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4975 * 4976 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4977 * back. 4978 * 4979 * Return: pointer to the allocated area or %NULL in case of error. 4980 */ 4981 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 4982 { 4983 unsigned int order = get_order(size); 4984 struct page *p; 4985 4986 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4987 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4988 4989 p = alloc_pages_node_noprof(nid, gfp_mask, order); 4990 if (!p) 4991 return NULL; 4992 return make_alloc_exact((unsigned long)page_address(p), order, size); 4993 } 4994 4995 /** 4996 * free_pages_exact - release memory allocated via alloc_pages_exact() 4997 * @virt: the value returned by alloc_pages_exact. 4998 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4999 * 5000 * Release the memory allocated by a previous call to alloc_pages_exact. 5001 */ 5002 void free_pages_exact(void *virt, size_t size) 5003 { 5004 unsigned long addr = (unsigned long)virt; 5005 unsigned long end = addr + PAGE_ALIGN(size); 5006 5007 while (addr < end) { 5008 free_page(addr); 5009 addr += PAGE_SIZE; 5010 } 5011 } 5012 EXPORT_SYMBOL(free_pages_exact); 5013 5014 /** 5015 * nr_free_zone_pages - count number of pages beyond high watermark 5016 * @offset: The zone index of the highest zone 5017 * 5018 * nr_free_zone_pages() counts the number of pages which are beyond the 5019 * high watermark within all zones at or below a given zone index. For each 5020 * zone, the number of pages is calculated as: 5021 * 5022 * nr_free_zone_pages = managed_pages - high_pages 5023 * 5024 * Return: number of pages beyond high watermark. 5025 */ 5026 static unsigned long nr_free_zone_pages(int offset) 5027 { 5028 struct zoneref *z; 5029 struct zone *zone; 5030 5031 /* Just pick one node, since fallback list is circular */ 5032 unsigned long sum = 0; 5033 5034 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5035 5036 for_each_zone_zonelist(zone, z, zonelist, offset) { 5037 unsigned long size = zone_managed_pages(zone); 5038 unsigned long high = high_wmark_pages(zone); 5039 if (size > high) 5040 sum += size - high; 5041 } 5042 5043 return sum; 5044 } 5045 5046 /** 5047 * nr_free_buffer_pages - count number of pages beyond high watermark 5048 * 5049 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5050 * watermark within ZONE_DMA and ZONE_NORMAL. 5051 * 5052 * Return: number of pages beyond high watermark within ZONE_DMA and 5053 * ZONE_NORMAL. 5054 */ 5055 unsigned long nr_free_buffer_pages(void) 5056 { 5057 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5058 } 5059 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5060 5061 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5062 { 5063 zoneref->zone = zone; 5064 zoneref->zone_idx = zone_idx(zone); 5065 } 5066 5067 /* 5068 * Builds allocation fallback zone lists. 5069 * 5070 * Add all populated zones of a node to the zonelist. 5071 */ 5072 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5073 { 5074 struct zone *zone; 5075 enum zone_type zone_type = MAX_NR_ZONES; 5076 int nr_zones = 0; 5077 5078 do { 5079 zone_type--; 5080 zone = pgdat->node_zones + zone_type; 5081 if (populated_zone(zone)) { 5082 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5083 check_highest_zone(zone_type); 5084 } 5085 } while (zone_type); 5086 5087 return nr_zones; 5088 } 5089 5090 #ifdef CONFIG_NUMA 5091 5092 static int __parse_numa_zonelist_order(char *s) 5093 { 5094 /* 5095 * We used to support different zonelists modes but they turned 5096 * out to be just not useful. Let's keep the warning in place 5097 * if somebody still use the cmd line parameter so that we do 5098 * not fail it silently 5099 */ 5100 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5101 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5102 return -EINVAL; 5103 } 5104 return 0; 5105 } 5106 5107 static char numa_zonelist_order[] = "Node"; 5108 #define NUMA_ZONELIST_ORDER_LEN 16 5109 /* 5110 * sysctl handler for numa_zonelist_order 5111 */ 5112 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 5113 void *buffer, size_t *length, loff_t *ppos) 5114 { 5115 if (write) 5116 return __parse_numa_zonelist_order(buffer); 5117 return proc_dostring(table, write, buffer, length, ppos); 5118 } 5119 5120 static int node_load[MAX_NUMNODES]; 5121 5122 /** 5123 * find_next_best_node - find the next node that should appear in a given node's fallback list 5124 * @node: node whose fallback list we're appending 5125 * @used_node_mask: nodemask_t of already used nodes 5126 * 5127 * We use a number of factors to determine which is the next node that should 5128 * appear on a given node's fallback list. The node should not have appeared 5129 * already in @node's fallback list, and it should be the next closest node 5130 * according to the distance array (which contains arbitrary distance values 5131 * from each node to each node in the system), and should also prefer nodes 5132 * with no CPUs, since presumably they'll have very little allocation pressure 5133 * on them otherwise. 5134 * 5135 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5136 */ 5137 int find_next_best_node(int node, nodemask_t *used_node_mask) 5138 { 5139 int n, val; 5140 int min_val = INT_MAX; 5141 int best_node = NUMA_NO_NODE; 5142 5143 /* 5144 * Use the local node if we haven't already, but for memoryless local 5145 * node, we should skip it and fall back to other nodes. 5146 */ 5147 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5148 node_set(node, *used_node_mask); 5149 return node; 5150 } 5151 5152 for_each_node_state(n, N_MEMORY) { 5153 5154 /* Don't want a node to appear more than once */ 5155 if (node_isset(n, *used_node_mask)) 5156 continue; 5157 5158 /* Use the distance array to find the distance */ 5159 val = node_distance(node, n); 5160 5161 /* Penalize nodes under us ("prefer the next node") */ 5162 val += (n < node); 5163 5164 /* Give preference to headless and unused nodes */ 5165 if (!cpumask_empty(cpumask_of_node(n))) 5166 val += PENALTY_FOR_NODE_WITH_CPUS; 5167 5168 /* Slight preference for less loaded node */ 5169 val *= MAX_NUMNODES; 5170 val += node_load[n]; 5171 5172 if (val < min_val) { 5173 min_val = val; 5174 best_node = n; 5175 } 5176 } 5177 5178 if (best_node >= 0) 5179 node_set(best_node, *used_node_mask); 5180 5181 return best_node; 5182 } 5183 5184 5185 /* 5186 * Build zonelists ordered by node and zones within node. 5187 * This results in maximum locality--normal zone overflows into local 5188 * DMA zone, if any--but risks exhausting DMA zone. 5189 */ 5190 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5191 unsigned nr_nodes) 5192 { 5193 struct zoneref *zonerefs; 5194 int i; 5195 5196 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5197 5198 for (i = 0; i < nr_nodes; i++) { 5199 int nr_zones; 5200 5201 pg_data_t *node = NODE_DATA(node_order[i]); 5202 5203 nr_zones = build_zonerefs_node(node, zonerefs); 5204 zonerefs += nr_zones; 5205 } 5206 zonerefs->zone = NULL; 5207 zonerefs->zone_idx = 0; 5208 } 5209 5210 /* 5211 * Build gfp_thisnode zonelists 5212 */ 5213 static void build_thisnode_zonelists(pg_data_t *pgdat) 5214 { 5215 struct zoneref *zonerefs; 5216 int nr_zones; 5217 5218 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5219 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5220 zonerefs += nr_zones; 5221 zonerefs->zone = NULL; 5222 zonerefs->zone_idx = 0; 5223 } 5224 5225 /* 5226 * Build zonelists ordered by zone and nodes within zones. 5227 * This results in conserving DMA zone[s] until all Normal memory is 5228 * exhausted, but results in overflowing to remote node while memory 5229 * may still exist in local DMA zone. 5230 */ 5231 5232 static void build_zonelists(pg_data_t *pgdat) 5233 { 5234 static int node_order[MAX_NUMNODES]; 5235 int node, nr_nodes = 0; 5236 nodemask_t used_mask = NODE_MASK_NONE; 5237 int local_node, prev_node; 5238 5239 /* NUMA-aware ordering of nodes */ 5240 local_node = pgdat->node_id; 5241 prev_node = local_node; 5242 5243 memset(node_order, 0, sizeof(node_order)); 5244 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5245 /* 5246 * We don't want to pressure a particular node. 5247 * So adding penalty to the first node in same 5248 * distance group to make it round-robin. 5249 */ 5250 if (node_distance(local_node, node) != 5251 node_distance(local_node, prev_node)) 5252 node_load[node] += 1; 5253 5254 node_order[nr_nodes++] = node; 5255 prev_node = node; 5256 } 5257 5258 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5259 build_thisnode_zonelists(pgdat); 5260 pr_info("Fallback order for Node %d: ", local_node); 5261 for (node = 0; node < nr_nodes; node++) 5262 pr_cont("%d ", node_order[node]); 5263 pr_cont("\n"); 5264 } 5265 5266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5267 /* 5268 * Return node id of node used for "local" allocations. 5269 * I.e., first node id of first zone in arg node's generic zonelist. 5270 * Used for initializing percpu 'numa_mem', which is used primarily 5271 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5272 */ 5273 int local_memory_node(int node) 5274 { 5275 struct zoneref *z; 5276 5277 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5278 gfp_zone(GFP_KERNEL), 5279 NULL); 5280 return zone_to_nid(z->zone); 5281 } 5282 #endif 5283 5284 static void setup_min_unmapped_ratio(void); 5285 static void setup_min_slab_ratio(void); 5286 #else /* CONFIG_NUMA */ 5287 5288 static void build_zonelists(pg_data_t *pgdat) 5289 { 5290 struct zoneref *zonerefs; 5291 int nr_zones; 5292 5293 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5294 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5295 zonerefs += nr_zones; 5296 5297 zonerefs->zone = NULL; 5298 zonerefs->zone_idx = 0; 5299 } 5300 5301 #endif /* CONFIG_NUMA */ 5302 5303 /* 5304 * Boot pageset table. One per cpu which is going to be used for all 5305 * zones and all nodes. The parameters will be set in such a way 5306 * that an item put on a list will immediately be handed over to 5307 * the buddy list. This is safe since pageset manipulation is done 5308 * with interrupts disabled. 5309 * 5310 * The boot_pagesets must be kept even after bootup is complete for 5311 * unused processors and/or zones. They do play a role for bootstrapping 5312 * hotplugged processors. 5313 * 5314 * zoneinfo_show() and maybe other functions do 5315 * not check if the processor is online before following the pageset pointer. 5316 * Other parts of the kernel may not check if the zone is available. 5317 */ 5318 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5319 /* These effectively disable the pcplists in the boot pageset completely */ 5320 #define BOOT_PAGESET_HIGH 0 5321 #define BOOT_PAGESET_BATCH 1 5322 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5323 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5324 5325 static void __build_all_zonelists(void *data) 5326 { 5327 int nid; 5328 int __maybe_unused cpu; 5329 pg_data_t *self = data; 5330 unsigned long flags; 5331 5332 /* 5333 * The zonelist_update_seq must be acquired with irqsave because the 5334 * reader can be invoked from IRQ with GFP_ATOMIC. 5335 */ 5336 write_seqlock_irqsave(&zonelist_update_seq, flags); 5337 /* 5338 * Also disable synchronous printk() to prevent any printk() from 5339 * trying to hold port->lock, for 5340 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5341 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5342 */ 5343 printk_deferred_enter(); 5344 5345 #ifdef CONFIG_NUMA 5346 memset(node_load, 0, sizeof(node_load)); 5347 #endif 5348 5349 /* 5350 * This node is hotadded and no memory is yet present. So just 5351 * building zonelists is fine - no need to touch other nodes. 5352 */ 5353 if (self && !node_online(self->node_id)) { 5354 build_zonelists(self); 5355 } else { 5356 /* 5357 * All possible nodes have pgdat preallocated 5358 * in free_area_init 5359 */ 5360 for_each_node(nid) { 5361 pg_data_t *pgdat = NODE_DATA(nid); 5362 5363 build_zonelists(pgdat); 5364 } 5365 5366 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5367 /* 5368 * We now know the "local memory node" for each node-- 5369 * i.e., the node of the first zone in the generic zonelist. 5370 * Set up numa_mem percpu variable for on-line cpus. During 5371 * boot, only the boot cpu should be on-line; we'll init the 5372 * secondary cpus' numa_mem as they come on-line. During 5373 * node/memory hotplug, we'll fixup all on-line cpus. 5374 */ 5375 for_each_online_cpu(cpu) 5376 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5377 #endif 5378 } 5379 5380 printk_deferred_exit(); 5381 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5382 } 5383 5384 static noinline void __init 5385 build_all_zonelists_init(void) 5386 { 5387 int cpu; 5388 5389 __build_all_zonelists(NULL); 5390 5391 /* 5392 * Initialize the boot_pagesets that are going to be used 5393 * for bootstrapping processors. The real pagesets for 5394 * each zone will be allocated later when the per cpu 5395 * allocator is available. 5396 * 5397 * boot_pagesets are used also for bootstrapping offline 5398 * cpus if the system is already booted because the pagesets 5399 * are needed to initialize allocators on a specific cpu too. 5400 * F.e. the percpu allocator needs the page allocator which 5401 * needs the percpu allocator in order to allocate its pagesets 5402 * (a chicken-egg dilemma). 5403 */ 5404 for_each_possible_cpu(cpu) 5405 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5406 5407 mminit_verify_zonelist(); 5408 cpuset_init_current_mems_allowed(); 5409 } 5410 5411 /* 5412 * unless system_state == SYSTEM_BOOTING. 5413 * 5414 * __ref due to call of __init annotated helper build_all_zonelists_init 5415 * [protected by SYSTEM_BOOTING]. 5416 */ 5417 void __ref build_all_zonelists(pg_data_t *pgdat) 5418 { 5419 unsigned long vm_total_pages; 5420 5421 if (system_state == SYSTEM_BOOTING) { 5422 build_all_zonelists_init(); 5423 } else { 5424 __build_all_zonelists(pgdat); 5425 /* cpuset refresh routine should be here */ 5426 } 5427 /* Get the number of free pages beyond high watermark in all zones. */ 5428 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5429 /* 5430 * Disable grouping by mobility if the number of pages in the 5431 * system is too low to allow the mechanism to work. It would be 5432 * more accurate, but expensive to check per-zone. This check is 5433 * made on memory-hotadd so a system can start with mobility 5434 * disabled and enable it later 5435 */ 5436 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5437 page_group_by_mobility_disabled = 1; 5438 else 5439 page_group_by_mobility_disabled = 0; 5440 5441 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5442 nr_online_nodes, 5443 page_group_by_mobility_disabled ? "off" : "on", 5444 vm_total_pages); 5445 #ifdef CONFIG_NUMA 5446 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5447 #endif 5448 } 5449 5450 static int zone_batchsize(struct zone *zone) 5451 { 5452 #ifdef CONFIG_MMU 5453 int batch; 5454 5455 /* 5456 * The number of pages to batch allocate is either ~0.1% 5457 * of the zone or 1MB, whichever is smaller. The batch 5458 * size is striking a balance between allocation latency 5459 * and zone lock contention. 5460 */ 5461 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5462 batch /= 4; /* We effectively *= 4 below */ 5463 if (batch < 1) 5464 batch = 1; 5465 5466 /* 5467 * Clamp the batch to a 2^n - 1 value. Having a power 5468 * of 2 value was found to be more likely to have 5469 * suboptimal cache aliasing properties in some cases. 5470 * 5471 * For example if 2 tasks are alternately allocating 5472 * batches of pages, one task can end up with a lot 5473 * of pages of one half of the possible page colors 5474 * and the other with pages of the other colors. 5475 */ 5476 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5477 5478 return batch; 5479 5480 #else 5481 /* The deferral and batching of frees should be suppressed under NOMMU 5482 * conditions. 5483 * 5484 * The problem is that NOMMU needs to be able to allocate large chunks 5485 * of contiguous memory as there's no hardware page translation to 5486 * assemble apparent contiguous memory from discontiguous pages. 5487 * 5488 * Queueing large contiguous runs of pages for batching, however, 5489 * causes the pages to actually be freed in smaller chunks. As there 5490 * can be a significant delay between the individual batches being 5491 * recycled, this leads to the once large chunks of space being 5492 * fragmented and becoming unavailable for high-order allocations. 5493 */ 5494 return 0; 5495 #endif 5496 } 5497 5498 static int percpu_pagelist_high_fraction; 5499 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5500 int high_fraction) 5501 { 5502 #ifdef CONFIG_MMU 5503 int high; 5504 int nr_split_cpus; 5505 unsigned long total_pages; 5506 5507 if (!high_fraction) { 5508 /* 5509 * By default, the high value of the pcp is based on the zone 5510 * low watermark so that if they are full then background 5511 * reclaim will not be started prematurely. 5512 */ 5513 total_pages = low_wmark_pages(zone); 5514 } else { 5515 /* 5516 * If percpu_pagelist_high_fraction is configured, the high 5517 * value is based on a fraction of the managed pages in the 5518 * zone. 5519 */ 5520 total_pages = zone_managed_pages(zone) / high_fraction; 5521 } 5522 5523 /* 5524 * Split the high value across all online CPUs local to the zone. Note 5525 * that early in boot that CPUs may not be online yet and that during 5526 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5527 * onlined. For memory nodes that have no CPUs, split the high value 5528 * across all online CPUs to mitigate the risk that reclaim is triggered 5529 * prematurely due to pages stored on pcp lists. 5530 */ 5531 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5532 if (!nr_split_cpus) 5533 nr_split_cpus = num_online_cpus(); 5534 high = total_pages / nr_split_cpus; 5535 5536 /* 5537 * Ensure high is at least batch*4. The multiple is based on the 5538 * historical relationship between high and batch. 5539 */ 5540 high = max(high, batch << 2); 5541 5542 return high; 5543 #else 5544 return 0; 5545 #endif 5546 } 5547 5548 /* 5549 * pcp->high and pcp->batch values are related and generally batch is lower 5550 * than high. They are also related to pcp->count such that count is lower 5551 * than high, and as soon as it reaches high, the pcplist is flushed. 5552 * 5553 * However, guaranteeing these relations at all times would require e.g. write 5554 * barriers here but also careful usage of read barriers at the read side, and 5555 * thus be prone to error and bad for performance. Thus the update only prevents 5556 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5557 * should ensure they can cope with those fields changing asynchronously, and 5558 * fully trust only the pcp->count field on the local CPU with interrupts 5559 * disabled. 5560 * 5561 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5562 * outside of boot time (or some other assurance that no concurrent updaters 5563 * exist). 5564 */ 5565 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5566 unsigned long high_max, unsigned long batch) 5567 { 5568 WRITE_ONCE(pcp->batch, batch); 5569 WRITE_ONCE(pcp->high_min, high_min); 5570 WRITE_ONCE(pcp->high_max, high_max); 5571 } 5572 5573 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5574 { 5575 int pindex; 5576 5577 memset(pcp, 0, sizeof(*pcp)); 5578 memset(pzstats, 0, sizeof(*pzstats)); 5579 5580 spin_lock_init(&pcp->lock); 5581 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5582 INIT_LIST_HEAD(&pcp->lists[pindex]); 5583 5584 /* 5585 * Set batch and high values safe for a boot pageset. A true percpu 5586 * pageset's initialization will update them subsequently. Here we don't 5587 * need to be as careful as pageset_update() as nobody can access the 5588 * pageset yet. 5589 */ 5590 pcp->high_min = BOOT_PAGESET_HIGH; 5591 pcp->high_max = BOOT_PAGESET_HIGH; 5592 pcp->batch = BOOT_PAGESET_BATCH; 5593 pcp->free_count = 0; 5594 } 5595 5596 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5597 unsigned long high_max, unsigned long batch) 5598 { 5599 struct per_cpu_pages *pcp; 5600 int cpu; 5601 5602 for_each_possible_cpu(cpu) { 5603 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5604 pageset_update(pcp, high_min, high_max, batch); 5605 } 5606 } 5607 5608 /* 5609 * Calculate and set new high and batch values for all per-cpu pagesets of a 5610 * zone based on the zone's size. 5611 */ 5612 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5613 { 5614 int new_high_min, new_high_max, new_batch; 5615 5616 new_batch = max(1, zone_batchsize(zone)); 5617 if (percpu_pagelist_high_fraction) { 5618 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5619 percpu_pagelist_high_fraction); 5620 /* 5621 * PCP high is tuned manually, disable auto-tuning via 5622 * setting high_min and high_max to the manual value. 5623 */ 5624 new_high_max = new_high_min; 5625 } else { 5626 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5627 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5628 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5629 } 5630 5631 if (zone->pageset_high_min == new_high_min && 5632 zone->pageset_high_max == new_high_max && 5633 zone->pageset_batch == new_batch) 5634 return; 5635 5636 zone->pageset_high_min = new_high_min; 5637 zone->pageset_high_max = new_high_max; 5638 zone->pageset_batch = new_batch; 5639 5640 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5641 new_batch); 5642 } 5643 5644 void __meminit setup_zone_pageset(struct zone *zone) 5645 { 5646 int cpu; 5647 5648 /* Size may be 0 on !SMP && !NUMA */ 5649 if (sizeof(struct per_cpu_zonestat) > 0) 5650 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5651 5652 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5653 for_each_possible_cpu(cpu) { 5654 struct per_cpu_pages *pcp; 5655 struct per_cpu_zonestat *pzstats; 5656 5657 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5658 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5659 per_cpu_pages_init(pcp, pzstats); 5660 } 5661 5662 zone_set_pageset_high_and_batch(zone, 0); 5663 } 5664 5665 /* 5666 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5667 * page high values need to be recalculated. 5668 */ 5669 static void zone_pcp_update(struct zone *zone, int cpu_online) 5670 { 5671 mutex_lock(&pcp_batch_high_lock); 5672 zone_set_pageset_high_and_batch(zone, cpu_online); 5673 mutex_unlock(&pcp_batch_high_lock); 5674 } 5675 5676 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5677 { 5678 struct per_cpu_pages *pcp; 5679 struct cpu_cacheinfo *cci; 5680 5681 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5682 cci = get_cpu_cacheinfo(cpu); 5683 /* 5684 * If data cache slice of CPU is large enough, "pcp->batch" 5685 * pages can be preserved in PCP before draining PCP for 5686 * consecutive high-order pages freeing without allocation. 5687 * This can reduce zone lock contention without hurting 5688 * cache-hot pages sharing. 5689 */ 5690 spin_lock(&pcp->lock); 5691 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5692 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5693 else 5694 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5695 spin_unlock(&pcp->lock); 5696 } 5697 5698 void setup_pcp_cacheinfo(unsigned int cpu) 5699 { 5700 struct zone *zone; 5701 5702 for_each_populated_zone(zone) 5703 zone_pcp_update_cacheinfo(zone, cpu); 5704 } 5705 5706 /* 5707 * Allocate per cpu pagesets and initialize them. 5708 * Before this call only boot pagesets were available. 5709 */ 5710 void __init setup_per_cpu_pageset(void) 5711 { 5712 struct pglist_data *pgdat; 5713 struct zone *zone; 5714 int __maybe_unused cpu; 5715 5716 for_each_populated_zone(zone) 5717 setup_zone_pageset(zone); 5718 5719 #ifdef CONFIG_NUMA 5720 /* 5721 * Unpopulated zones continue using the boot pagesets. 5722 * The numa stats for these pagesets need to be reset. 5723 * Otherwise, they will end up skewing the stats of 5724 * the nodes these zones are associated with. 5725 */ 5726 for_each_possible_cpu(cpu) { 5727 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5728 memset(pzstats->vm_numa_event, 0, 5729 sizeof(pzstats->vm_numa_event)); 5730 } 5731 #endif 5732 5733 for_each_online_pgdat(pgdat) 5734 pgdat->per_cpu_nodestats = 5735 alloc_percpu(struct per_cpu_nodestat); 5736 } 5737 5738 __meminit void zone_pcp_init(struct zone *zone) 5739 { 5740 /* 5741 * per cpu subsystem is not up at this point. The following code 5742 * relies on the ability of the linker to provide the 5743 * offset of a (static) per cpu variable into the per cpu area. 5744 */ 5745 zone->per_cpu_pageset = &boot_pageset; 5746 zone->per_cpu_zonestats = &boot_zonestats; 5747 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5748 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5749 zone->pageset_batch = BOOT_PAGESET_BATCH; 5750 5751 if (populated_zone(zone)) 5752 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5753 zone->present_pages, zone_batchsize(zone)); 5754 } 5755 5756 void adjust_managed_page_count(struct page *page, long count) 5757 { 5758 atomic_long_add(count, &page_zone(page)->managed_pages); 5759 totalram_pages_add(count); 5760 #ifdef CONFIG_HIGHMEM 5761 if (PageHighMem(page)) 5762 totalhigh_pages_add(count); 5763 #endif 5764 } 5765 EXPORT_SYMBOL(adjust_managed_page_count); 5766 5767 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5768 { 5769 void *pos; 5770 unsigned long pages = 0; 5771 5772 start = (void *)PAGE_ALIGN((unsigned long)start); 5773 end = (void *)((unsigned long)end & PAGE_MASK); 5774 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5775 struct page *page = virt_to_page(pos); 5776 void *direct_map_addr; 5777 5778 /* 5779 * 'direct_map_addr' might be different from 'pos' 5780 * because some architectures' virt_to_page() 5781 * work with aliases. Getting the direct map 5782 * address ensures that we get a _writeable_ 5783 * alias for the memset(). 5784 */ 5785 direct_map_addr = page_address(page); 5786 /* 5787 * Perform a kasan-unchecked memset() since this memory 5788 * has not been initialized. 5789 */ 5790 direct_map_addr = kasan_reset_tag(direct_map_addr); 5791 if ((unsigned int)poison <= 0xFF) 5792 memset(direct_map_addr, poison, PAGE_SIZE); 5793 5794 free_reserved_page(page); 5795 } 5796 5797 if (pages && s) 5798 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5799 5800 return pages; 5801 } 5802 5803 static int page_alloc_cpu_dead(unsigned int cpu) 5804 { 5805 struct zone *zone; 5806 5807 lru_add_drain_cpu(cpu); 5808 mlock_drain_remote(cpu); 5809 drain_pages(cpu); 5810 5811 /* 5812 * Spill the event counters of the dead processor 5813 * into the current processors event counters. 5814 * This artificially elevates the count of the current 5815 * processor. 5816 */ 5817 vm_events_fold_cpu(cpu); 5818 5819 /* 5820 * Zero the differential counters of the dead processor 5821 * so that the vm statistics are consistent. 5822 * 5823 * This is only okay since the processor is dead and cannot 5824 * race with what we are doing. 5825 */ 5826 cpu_vm_stats_fold(cpu); 5827 5828 for_each_populated_zone(zone) 5829 zone_pcp_update(zone, 0); 5830 5831 return 0; 5832 } 5833 5834 static int page_alloc_cpu_online(unsigned int cpu) 5835 { 5836 struct zone *zone; 5837 5838 for_each_populated_zone(zone) 5839 zone_pcp_update(zone, 1); 5840 return 0; 5841 } 5842 5843 void __init page_alloc_init_cpuhp(void) 5844 { 5845 int ret; 5846 5847 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5848 "mm/page_alloc:pcp", 5849 page_alloc_cpu_online, 5850 page_alloc_cpu_dead); 5851 WARN_ON(ret < 0); 5852 } 5853 5854 /* 5855 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5856 * or min_free_kbytes changes. 5857 */ 5858 static void calculate_totalreserve_pages(void) 5859 { 5860 struct pglist_data *pgdat; 5861 unsigned long reserve_pages = 0; 5862 enum zone_type i, j; 5863 5864 for_each_online_pgdat(pgdat) { 5865 5866 pgdat->totalreserve_pages = 0; 5867 5868 for (i = 0; i < MAX_NR_ZONES; i++) { 5869 struct zone *zone = pgdat->node_zones + i; 5870 long max = 0; 5871 unsigned long managed_pages = zone_managed_pages(zone); 5872 5873 /* Find valid and maximum lowmem_reserve in the zone */ 5874 for (j = i; j < MAX_NR_ZONES; j++) { 5875 if (zone->lowmem_reserve[j] > max) 5876 max = zone->lowmem_reserve[j]; 5877 } 5878 5879 /* we treat the high watermark as reserved pages. */ 5880 max += high_wmark_pages(zone); 5881 5882 if (max > managed_pages) 5883 max = managed_pages; 5884 5885 pgdat->totalreserve_pages += max; 5886 5887 reserve_pages += max; 5888 } 5889 } 5890 totalreserve_pages = reserve_pages; 5891 } 5892 5893 /* 5894 * setup_per_zone_lowmem_reserve - called whenever 5895 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5896 * has a correct pages reserved value, so an adequate number of 5897 * pages are left in the zone after a successful __alloc_pages(). 5898 */ 5899 static void setup_per_zone_lowmem_reserve(void) 5900 { 5901 struct pglist_data *pgdat; 5902 enum zone_type i, j; 5903 5904 for_each_online_pgdat(pgdat) { 5905 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5906 struct zone *zone = &pgdat->node_zones[i]; 5907 int ratio = sysctl_lowmem_reserve_ratio[i]; 5908 bool clear = !ratio || !zone_managed_pages(zone); 5909 unsigned long managed_pages = 0; 5910 5911 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5912 struct zone *upper_zone = &pgdat->node_zones[j]; 5913 bool empty = !zone_managed_pages(upper_zone); 5914 5915 managed_pages += zone_managed_pages(upper_zone); 5916 5917 if (clear || empty) 5918 zone->lowmem_reserve[j] = 0; 5919 else 5920 zone->lowmem_reserve[j] = managed_pages / ratio; 5921 } 5922 } 5923 } 5924 5925 /* update totalreserve_pages */ 5926 calculate_totalreserve_pages(); 5927 } 5928 5929 static void __setup_per_zone_wmarks(void) 5930 { 5931 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5932 unsigned long lowmem_pages = 0; 5933 struct zone *zone; 5934 unsigned long flags; 5935 5936 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5937 for_each_zone(zone) { 5938 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5939 lowmem_pages += zone_managed_pages(zone); 5940 } 5941 5942 for_each_zone(zone) { 5943 u64 tmp; 5944 5945 spin_lock_irqsave(&zone->lock, flags); 5946 tmp = (u64)pages_min * zone_managed_pages(zone); 5947 tmp = div64_ul(tmp, lowmem_pages); 5948 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5949 /* 5950 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5951 * need highmem and movable zones pages, so cap pages_min 5952 * to a small value here. 5953 * 5954 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5955 * deltas control async page reclaim, and so should 5956 * not be capped for highmem and movable zones. 5957 */ 5958 unsigned long min_pages; 5959 5960 min_pages = zone_managed_pages(zone) / 1024; 5961 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5962 zone->_watermark[WMARK_MIN] = min_pages; 5963 } else { 5964 /* 5965 * If it's a lowmem zone, reserve a number of pages 5966 * proportionate to the zone's size. 5967 */ 5968 zone->_watermark[WMARK_MIN] = tmp; 5969 } 5970 5971 /* 5972 * Set the kswapd watermarks distance according to the 5973 * scale factor in proportion to available memory, but 5974 * ensure a minimum size on small systems. 5975 */ 5976 tmp = max_t(u64, tmp >> 2, 5977 mult_frac(zone_managed_pages(zone), 5978 watermark_scale_factor, 10000)); 5979 5980 zone->watermark_boost = 0; 5981 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5982 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5983 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5984 5985 spin_unlock_irqrestore(&zone->lock, flags); 5986 } 5987 5988 /* update totalreserve_pages */ 5989 calculate_totalreserve_pages(); 5990 } 5991 5992 /** 5993 * setup_per_zone_wmarks - called when min_free_kbytes changes 5994 * or when memory is hot-{added|removed} 5995 * 5996 * Ensures that the watermark[min,low,high] values for each zone are set 5997 * correctly with respect to min_free_kbytes. 5998 */ 5999 void setup_per_zone_wmarks(void) 6000 { 6001 struct zone *zone; 6002 static DEFINE_SPINLOCK(lock); 6003 6004 spin_lock(&lock); 6005 __setup_per_zone_wmarks(); 6006 spin_unlock(&lock); 6007 6008 /* 6009 * The watermark size have changed so update the pcpu batch 6010 * and high limits or the limits may be inappropriate. 6011 */ 6012 for_each_zone(zone) 6013 zone_pcp_update(zone, 0); 6014 } 6015 6016 /* 6017 * Initialise min_free_kbytes. 6018 * 6019 * For small machines we want it small (128k min). For large machines 6020 * we want it large (256MB max). But it is not linear, because network 6021 * bandwidth does not increase linearly with machine size. We use 6022 * 6023 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6024 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6025 * 6026 * which yields 6027 * 6028 * 16MB: 512k 6029 * 32MB: 724k 6030 * 64MB: 1024k 6031 * 128MB: 1448k 6032 * 256MB: 2048k 6033 * 512MB: 2896k 6034 * 1024MB: 4096k 6035 * 2048MB: 5792k 6036 * 4096MB: 8192k 6037 * 8192MB: 11584k 6038 * 16384MB: 16384k 6039 */ 6040 void calculate_min_free_kbytes(void) 6041 { 6042 unsigned long lowmem_kbytes; 6043 int new_min_free_kbytes; 6044 6045 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6046 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6047 6048 if (new_min_free_kbytes > user_min_free_kbytes) 6049 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6050 else 6051 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6052 new_min_free_kbytes, user_min_free_kbytes); 6053 6054 } 6055 6056 int __meminit init_per_zone_wmark_min(void) 6057 { 6058 calculate_min_free_kbytes(); 6059 setup_per_zone_wmarks(); 6060 refresh_zone_stat_thresholds(); 6061 setup_per_zone_lowmem_reserve(); 6062 6063 #ifdef CONFIG_NUMA 6064 setup_min_unmapped_ratio(); 6065 setup_min_slab_ratio(); 6066 #endif 6067 6068 khugepaged_min_free_kbytes_update(); 6069 6070 return 0; 6071 } 6072 postcore_initcall(init_per_zone_wmark_min) 6073 6074 /* 6075 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6076 * that we can call two helper functions whenever min_free_kbytes 6077 * changes. 6078 */ 6079 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6080 void *buffer, size_t *length, loff_t *ppos) 6081 { 6082 int rc; 6083 6084 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6085 if (rc) 6086 return rc; 6087 6088 if (write) { 6089 user_min_free_kbytes = min_free_kbytes; 6090 setup_per_zone_wmarks(); 6091 } 6092 return 0; 6093 } 6094 6095 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6096 void *buffer, size_t *length, loff_t *ppos) 6097 { 6098 int rc; 6099 6100 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6101 if (rc) 6102 return rc; 6103 6104 if (write) 6105 setup_per_zone_wmarks(); 6106 6107 return 0; 6108 } 6109 6110 #ifdef CONFIG_NUMA 6111 static void setup_min_unmapped_ratio(void) 6112 { 6113 pg_data_t *pgdat; 6114 struct zone *zone; 6115 6116 for_each_online_pgdat(pgdat) 6117 pgdat->min_unmapped_pages = 0; 6118 6119 for_each_zone(zone) 6120 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6121 sysctl_min_unmapped_ratio) / 100; 6122 } 6123 6124 6125 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6126 void *buffer, size_t *length, loff_t *ppos) 6127 { 6128 int rc; 6129 6130 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6131 if (rc) 6132 return rc; 6133 6134 setup_min_unmapped_ratio(); 6135 6136 return 0; 6137 } 6138 6139 static void setup_min_slab_ratio(void) 6140 { 6141 pg_data_t *pgdat; 6142 struct zone *zone; 6143 6144 for_each_online_pgdat(pgdat) 6145 pgdat->min_slab_pages = 0; 6146 6147 for_each_zone(zone) 6148 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6149 sysctl_min_slab_ratio) / 100; 6150 } 6151 6152 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6153 void *buffer, size_t *length, loff_t *ppos) 6154 { 6155 int rc; 6156 6157 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6158 if (rc) 6159 return rc; 6160 6161 setup_min_slab_ratio(); 6162 6163 return 0; 6164 } 6165 #endif 6166 6167 /* 6168 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6169 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6170 * whenever sysctl_lowmem_reserve_ratio changes. 6171 * 6172 * The reserve ratio obviously has absolutely no relation with the 6173 * minimum watermarks. The lowmem reserve ratio can only make sense 6174 * if in function of the boot time zone sizes. 6175 */ 6176 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 6177 int write, void *buffer, size_t *length, loff_t *ppos) 6178 { 6179 int i; 6180 6181 proc_dointvec_minmax(table, write, buffer, length, ppos); 6182 6183 for (i = 0; i < MAX_NR_ZONES; i++) { 6184 if (sysctl_lowmem_reserve_ratio[i] < 1) 6185 sysctl_lowmem_reserve_ratio[i] = 0; 6186 } 6187 6188 setup_per_zone_lowmem_reserve(); 6189 return 0; 6190 } 6191 6192 /* 6193 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6194 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6195 * pagelist can have before it gets flushed back to buddy allocator. 6196 */ 6197 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6198 int write, void *buffer, size_t *length, loff_t *ppos) 6199 { 6200 struct zone *zone; 6201 int old_percpu_pagelist_high_fraction; 6202 int ret; 6203 6204 mutex_lock(&pcp_batch_high_lock); 6205 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6206 6207 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6208 if (!write || ret < 0) 6209 goto out; 6210 6211 /* Sanity checking to avoid pcp imbalance */ 6212 if (percpu_pagelist_high_fraction && 6213 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6214 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6215 ret = -EINVAL; 6216 goto out; 6217 } 6218 6219 /* No change? */ 6220 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6221 goto out; 6222 6223 for_each_populated_zone(zone) 6224 zone_set_pageset_high_and_batch(zone, 0); 6225 out: 6226 mutex_unlock(&pcp_batch_high_lock); 6227 return ret; 6228 } 6229 6230 static struct ctl_table page_alloc_sysctl_table[] = { 6231 { 6232 .procname = "min_free_kbytes", 6233 .data = &min_free_kbytes, 6234 .maxlen = sizeof(min_free_kbytes), 6235 .mode = 0644, 6236 .proc_handler = min_free_kbytes_sysctl_handler, 6237 .extra1 = SYSCTL_ZERO, 6238 }, 6239 { 6240 .procname = "watermark_boost_factor", 6241 .data = &watermark_boost_factor, 6242 .maxlen = sizeof(watermark_boost_factor), 6243 .mode = 0644, 6244 .proc_handler = proc_dointvec_minmax, 6245 .extra1 = SYSCTL_ZERO, 6246 }, 6247 { 6248 .procname = "watermark_scale_factor", 6249 .data = &watermark_scale_factor, 6250 .maxlen = sizeof(watermark_scale_factor), 6251 .mode = 0644, 6252 .proc_handler = watermark_scale_factor_sysctl_handler, 6253 .extra1 = SYSCTL_ONE, 6254 .extra2 = SYSCTL_THREE_THOUSAND, 6255 }, 6256 { 6257 .procname = "percpu_pagelist_high_fraction", 6258 .data = &percpu_pagelist_high_fraction, 6259 .maxlen = sizeof(percpu_pagelist_high_fraction), 6260 .mode = 0644, 6261 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6262 .extra1 = SYSCTL_ZERO, 6263 }, 6264 { 6265 .procname = "lowmem_reserve_ratio", 6266 .data = &sysctl_lowmem_reserve_ratio, 6267 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6268 .mode = 0644, 6269 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6270 }, 6271 #ifdef CONFIG_NUMA 6272 { 6273 .procname = "numa_zonelist_order", 6274 .data = &numa_zonelist_order, 6275 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6276 .mode = 0644, 6277 .proc_handler = numa_zonelist_order_handler, 6278 }, 6279 { 6280 .procname = "min_unmapped_ratio", 6281 .data = &sysctl_min_unmapped_ratio, 6282 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6283 .mode = 0644, 6284 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6285 .extra1 = SYSCTL_ZERO, 6286 .extra2 = SYSCTL_ONE_HUNDRED, 6287 }, 6288 { 6289 .procname = "min_slab_ratio", 6290 .data = &sysctl_min_slab_ratio, 6291 .maxlen = sizeof(sysctl_min_slab_ratio), 6292 .mode = 0644, 6293 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6294 .extra1 = SYSCTL_ZERO, 6295 .extra2 = SYSCTL_ONE_HUNDRED, 6296 }, 6297 #endif 6298 }; 6299 6300 void __init page_alloc_sysctl_init(void) 6301 { 6302 register_sysctl_init("vm", page_alloc_sysctl_table); 6303 } 6304 6305 #ifdef CONFIG_CONTIG_ALLOC 6306 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6307 static void alloc_contig_dump_pages(struct list_head *page_list) 6308 { 6309 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6310 6311 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6312 struct page *page; 6313 6314 dump_stack(); 6315 list_for_each_entry(page, page_list, lru) 6316 dump_page(page, "migration failure"); 6317 } 6318 } 6319 6320 /* 6321 * [start, end) must belong to a single zone. 6322 * @migratetype: using migratetype to filter the type of migration in 6323 * trace_mm_alloc_contig_migrate_range_info. 6324 */ 6325 int __alloc_contig_migrate_range(struct compact_control *cc, 6326 unsigned long start, unsigned long end, 6327 int migratetype) 6328 { 6329 /* This function is based on compact_zone() from compaction.c. */ 6330 unsigned int nr_reclaimed; 6331 unsigned long pfn = start; 6332 unsigned int tries = 0; 6333 int ret = 0; 6334 struct migration_target_control mtc = { 6335 .nid = zone_to_nid(cc->zone), 6336 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6337 .reason = MR_CONTIG_RANGE, 6338 }; 6339 struct page *page; 6340 unsigned long total_mapped = 0; 6341 unsigned long total_migrated = 0; 6342 unsigned long total_reclaimed = 0; 6343 6344 lru_cache_disable(); 6345 6346 while (pfn < end || !list_empty(&cc->migratepages)) { 6347 if (fatal_signal_pending(current)) { 6348 ret = -EINTR; 6349 break; 6350 } 6351 6352 if (list_empty(&cc->migratepages)) { 6353 cc->nr_migratepages = 0; 6354 ret = isolate_migratepages_range(cc, pfn, end); 6355 if (ret && ret != -EAGAIN) 6356 break; 6357 pfn = cc->migrate_pfn; 6358 tries = 0; 6359 } else if (++tries == 5) { 6360 ret = -EBUSY; 6361 break; 6362 } 6363 6364 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6365 &cc->migratepages); 6366 cc->nr_migratepages -= nr_reclaimed; 6367 6368 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6369 total_reclaimed += nr_reclaimed; 6370 list_for_each_entry(page, &cc->migratepages, lru) { 6371 struct folio *folio = page_folio(page); 6372 6373 total_mapped += folio_mapped(folio) * 6374 folio_nr_pages(folio); 6375 } 6376 } 6377 6378 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6379 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6380 6381 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6382 total_migrated += cc->nr_migratepages; 6383 6384 /* 6385 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6386 * to retry again over this error, so do the same here. 6387 */ 6388 if (ret == -ENOMEM) 6389 break; 6390 } 6391 6392 lru_cache_enable(); 6393 if (ret < 0) { 6394 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6395 alloc_contig_dump_pages(&cc->migratepages); 6396 putback_movable_pages(&cc->migratepages); 6397 } 6398 6399 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6400 total_migrated, 6401 total_reclaimed, 6402 total_mapped); 6403 return (ret < 0) ? ret : 0; 6404 } 6405 6406 /** 6407 * alloc_contig_range() -- tries to allocate given range of pages 6408 * @start: start PFN to allocate 6409 * @end: one-past-the-last PFN to allocate 6410 * @migratetype: migratetype of the underlying pageblocks (either 6411 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6412 * in range must have the same migratetype and it must 6413 * be either of the two. 6414 * @gfp_mask: GFP mask to use during compaction 6415 * 6416 * The PFN range does not have to be pageblock aligned. The PFN range must 6417 * belong to a single zone. 6418 * 6419 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6420 * pageblocks in the range. Once isolated, the pageblocks should not 6421 * be modified by others. 6422 * 6423 * Return: zero on success or negative error code. On success all 6424 * pages which PFN is in [start, end) are allocated for the caller and 6425 * need to be freed with free_contig_range(). 6426 */ 6427 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6428 unsigned migratetype, gfp_t gfp_mask) 6429 { 6430 unsigned long outer_start, outer_end; 6431 int ret = 0; 6432 6433 struct compact_control cc = { 6434 .nr_migratepages = 0, 6435 .order = -1, 6436 .zone = page_zone(pfn_to_page(start)), 6437 .mode = MIGRATE_SYNC, 6438 .ignore_skip_hint = true, 6439 .no_set_skip_hint = true, 6440 .gfp_mask = current_gfp_context(gfp_mask), 6441 .alloc_contig = true, 6442 }; 6443 INIT_LIST_HEAD(&cc.migratepages); 6444 6445 /* 6446 * What we do here is we mark all pageblocks in range as 6447 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6448 * have different sizes, and due to the way page allocator 6449 * work, start_isolate_page_range() has special handlings for this. 6450 * 6451 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6452 * migrate the pages from an unaligned range (ie. pages that 6453 * we are interested in). This will put all the pages in 6454 * range back to page allocator as MIGRATE_ISOLATE. 6455 * 6456 * When this is done, we take the pages in range from page 6457 * allocator removing them from the buddy system. This way 6458 * page allocator will never consider using them. 6459 * 6460 * This lets us mark the pageblocks back as 6461 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6462 * aligned range but not in the unaligned, original range are 6463 * put back to page allocator so that buddy can use them. 6464 */ 6465 6466 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6467 if (ret) 6468 goto done; 6469 6470 drain_all_pages(cc.zone); 6471 6472 /* 6473 * In case of -EBUSY, we'd like to know which page causes problem. 6474 * So, just fall through. test_pages_isolated() has a tracepoint 6475 * which will report the busy page. 6476 * 6477 * It is possible that busy pages could become available before 6478 * the call to test_pages_isolated, and the range will actually be 6479 * allocated. So, if we fall through be sure to clear ret so that 6480 * -EBUSY is not accidentally used or returned to caller. 6481 */ 6482 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6483 if (ret && ret != -EBUSY) 6484 goto done; 6485 ret = 0; 6486 6487 /* 6488 * Pages from [start, end) are within a pageblock_nr_pages 6489 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6490 * more, all pages in [start, end) are free in page allocator. 6491 * What we are going to do is to allocate all pages from 6492 * [start, end) (that is remove them from page allocator). 6493 * 6494 * The only problem is that pages at the beginning and at the 6495 * end of interesting range may be not aligned with pages that 6496 * page allocator holds, ie. they can be part of higher order 6497 * pages. Because of this, we reserve the bigger range and 6498 * once this is done free the pages we are not interested in. 6499 * 6500 * We don't have to hold zone->lock here because the pages are 6501 * isolated thus they won't get removed from buddy. 6502 */ 6503 outer_start = find_large_buddy(start); 6504 6505 /* Make sure the range is really isolated. */ 6506 if (test_pages_isolated(outer_start, end, 0)) { 6507 ret = -EBUSY; 6508 goto done; 6509 } 6510 6511 /* Grab isolated pages from freelists. */ 6512 outer_end = isolate_freepages_range(&cc, outer_start, end); 6513 if (!outer_end) { 6514 ret = -EBUSY; 6515 goto done; 6516 } 6517 6518 /* Free head and tail (if any) */ 6519 if (start != outer_start) 6520 free_contig_range(outer_start, start - outer_start); 6521 if (end != outer_end) 6522 free_contig_range(end, outer_end - end); 6523 6524 done: 6525 undo_isolate_page_range(start, end, migratetype); 6526 return ret; 6527 } 6528 EXPORT_SYMBOL(alloc_contig_range_noprof); 6529 6530 static int __alloc_contig_pages(unsigned long start_pfn, 6531 unsigned long nr_pages, gfp_t gfp_mask) 6532 { 6533 unsigned long end_pfn = start_pfn + nr_pages; 6534 6535 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6536 gfp_mask); 6537 } 6538 6539 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6540 unsigned long nr_pages) 6541 { 6542 unsigned long i, end_pfn = start_pfn + nr_pages; 6543 struct page *page; 6544 6545 for (i = start_pfn; i < end_pfn; i++) { 6546 page = pfn_to_online_page(i); 6547 if (!page) 6548 return false; 6549 6550 if (page_zone(page) != z) 6551 return false; 6552 6553 if (PageReserved(page)) 6554 return false; 6555 6556 if (PageHuge(page)) 6557 return false; 6558 } 6559 return true; 6560 } 6561 6562 static bool zone_spans_last_pfn(const struct zone *zone, 6563 unsigned long start_pfn, unsigned long nr_pages) 6564 { 6565 unsigned long last_pfn = start_pfn + nr_pages - 1; 6566 6567 return zone_spans_pfn(zone, last_pfn); 6568 } 6569 6570 /** 6571 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6572 * @nr_pages: Number of contiguous pages to allocate 6573 * @gfp_mask: GFP mask to limit search and used during compaction 6574 * @nid: Target node 6575 * @nodemask: Mask for other possible nodes 6576 * 6577 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6578 * on an applicable zonelist to find a contiguous pfn range which can then be 6579 * tried for allocation with alloc_contig_range(). This routine is intended 6580 * for allocation requests which can not be fulfilled with the buddy allocator. 6581 * 6582 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6583 * power of two, then allocated range is also guaranteed to be aligned to same 6584 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6585 * 6586 * Allocated pages can be freed with free_contig_range() or by manually calling 6587 * __free_page() on each allocated page. 6588 * 6589 * Return: pointer to contiguous pages on success, or NULL if not successful. 6590 */ 6591 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6592 int nid, nodemask_t *nodemask) 6593 { 6594 unsigned long ret, pfn, flags; 6595 struct zonelist *zonelist; 6596 struct zone *zone; 6597 struct zoneref *z; 6598 6599 zonelist = node_zonelist(nid, gfp_mask); 6600 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6601 gfp_zone(gfp_mask), nodemask) { 6602 spin_lock_irqsave(&zone->lock, flags); 6603 6604 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6605 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6606 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6607 /* 6608 * We release the zone lock here because 6609 * alloc_contig_range() will also lock the zone 6610 * at some point. If there's an allocation 6611 * spinning on this lock, it may win the race 6612 * and cause alloc_contig_range() to fail... 6613 */ 6614 spin_unlock_irqrestore(&zone->lock, flags); 6615 ret = __alloc_contig_pages(pfn, nr_pages, 6616 gfp_mask); 6617 if (!ret) 6618 return pfn_to_page(pfn); 6619 spin_lock_irqsave(&zone->lock, flags); 6620 } 6621 pfn += nr_pages; 6622 } 6623 spin_unlock_irqrestore(&zone->lock, flags); 6624 } 6625 return NULL; 6626 } 6627 #endif /* CONFIG_CONTIG_ALLOC */ 6628 6629 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6630 { 6631 unsigned long count = 0; 6632 6633 for (; nr_pages--; pfn++) { 6634 struct page *page = pfn_to_page(pfn); 6635 6636 count += page_count(page) != 1; 6637 __free_page(page); 6638 } 6639 WARN(count != 0, "%lu pages are still in use!\n", count); 6640 } 6641 EXPORT_SYMBOL(free_contig_range); 6642 6643 /* 6644 * Effectively disable pcplists for the zone by setting the high limit to 0 6645 * and draining all cpus. A concurrent page freeing on another CPU that's about 6646 * to put the page on pcplist will either finish before the drain and the page 6647 * will be drained, or observe the new high limit and skip the pcplist. 6648 * 6649 * Must be paired with a call to zone_pcp_enable(). 6650 */ 6651 void zone_pcp_disable(struct zone *zone) 6652 { 6653 mutex_lock(&pcp_batch_high_lock); 6654 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6655 __drain_all_pages(zone, true); 6656 } 6657 6658 void zone_pcp_enable(struct zone *zone) 6659 { 6660 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6661 zone->pageset_high_max, zone->pageset_batch); 6662 mutex_unlock(&pcp_batch_high_lock); 6663 } 6664 6665 void zone_pcp_reset(struct zone *zone) 6666 { 6667 int cpu; 6668 struct per_cpu_zonestat *pzstats; 6669 6670 if (zone->per_cpu_pageset != &boot_pageset) { 6671 for_each_online_cpu(cpu) { 6672 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6673 drain_zonestat(zone, pzstats); 6674 } 6675 free_percpu(zone->per_cpu_pageset); 6676 zone->per_cpu_pageset = &boot_pageset; 6677 if (zone->per_cpu_zonestats != &boot_zonestats) { 6678 free_percpu(zone->per_cpu_zonestats); 6679 zone->per_cpu_zonestats = &boot_zonestats; 6680 } 6681 } 6682 } 6683 6684 #ifdef CONFIG_MEMORY_HOTREMOVE 6685 /* 6686 * All pages in the range must be in a single zone, must not contain holes, 6687 * must span full sections, and must be isolated before calling this function. 6688 */ 6689 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6690 { 6691 unsigned long pfn = start_pfn; 6692 struct page *page; 6693 struct zone *zone; 6694 unsigned int order; 6695 unsigned long flags; 6696 6697 offline_mem_sections(pfn, end_pfn); 6698 zone = page_zone(pfn_to_page(pfn)); 6699 spin_lock_irqsave(&zone->lock, flags); 6700 while (pfn < end_pfn) { 6701 page = pfn_to_page(pfn); 6702 /* 6703 * The HWPoisoned page may be not in buddy system, and 6704 * page_count() is not 0. 6705 */ 6706 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6707 pfn++; 6708 continue; 6709 } 6710 /* 6711 * At this point all remaining PageOffline() pages have a 6712 * reference count of 0 and can simply be skipped. 6713 */ 6714 if (PageOffline(page)) { 6715 BUG_ON(page_count(page)); 6716 BUG_ON(PageBuddy(page)); 6717 pfn++; 6718 continue; 6719 } 6720 6721 BUG_ON(page_count(page)); 6722 BUG_ON(!PageBuddy(page)); 6723 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6724 order = buddy_order(page); 6725 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6726 pfn += (1 << order); 6727 } 6728 spin_unlock_irqrestore(&zone->lock, flags); 6729 } 6730 #endif 6731 6732 /* 6733 * This function returns a stable result only if called under zone lock. 6734 */ 6735 bool is_free_buddy_page(const struct page *page) 6736 { 6737 unsigned long pfn = page_to_pfn(page); 6738 unsigned int order; 6739 6740 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6741 const struct page *head = page - (pfn & ((1 << order) - 1)); 6742 6743 if (PageBuddy(head) && 6744 buddy_order_unsafe(head) >= order) 6745 break; 6746 } 6747 6748 return order <= MAX_PAGE_ORDER; 6749 } 6750 EXPORT_SYMBOL(is_free_buddy_page); 6751 6752 #ifdef CONFIG_MEMORY_FAILURE 6753 static inline void add_to_free_list(struct page *page, struct zone *zone, 6754 unsigned int order, int migratetype, 6755 bool tail) 6756 { 6757 __add_to_free_list(page, zone, order, migratetype, tail); 6758 account_freepages(zone, 1 << order, migratetype); 6759 } 6760 6761 /* 6762 * Break down a higher-order page in sub-pages, and keep our target out of 6763 * buddy allocator. 6764 */ 6765 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6766 struct page *target, int low, int high, 6767 int migratetype) 6768 { 6769 unsigned long size = 1 << high; 6770 struct page *current_buddy; 6771 6772 while (high > low) { 6773 high--; 6774 size >>= 1; 6775 6776 if (target >= &page[size]) { 6777 current_buddy = page; 6778 page = page + size; 6779 } else { 6780 current_buddy = page + size; 6781 } 6782 6783 if (set_page_guard(zone, current_buddy, high)) 6784 continue; 6785 6786 add_to_free_list(current_buddy, zone, high, migratetype, false); 6787 set_buddy_order(current_buddy, high); 6788 } 6789 } 6790 6791 /* 6792 * Take a page that will be marked as poisoned off the buddy allocator. 6793 */ 6794 bool take_page_off_buddy(struct page *page) 6795 { 6796 struct zone *zone = page_zone(page); 6797 unsigned long pfn = page_to_pfn(page); 6798 unsigned long flags; 6799 unsigned int order; 6800 bool ret = false; 6801 6802 spin_lock_irqsave(&zone->lock, flags); 6803 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6804 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6805 int page_order = buddy_order(page_head); 6806 6807 if (PageBuddy(page_head) && page_order >= order) { 6808 unsigned long pfn_head = page_to_pfn(page_head); 6809 int migratetype = get_pfnblock_migratetype(page_head, 6810 pfn_head); 6811 6812 del_page_from_free_list(page_head, zone, page_order, 6813 migratetype); 6814 break_down_buddy_pages(zone, page_head, page, 0, 6815 page_order, migratetype); 6816 SetPageHWPoisonTakenOff(page); 6817 ret = true; 6818 break; 6819 } 6820 if (page_count(page_head) > 0) 6821 break; 6822 } 6823 spin_unlock_irqrestore(&zone->lock, flags); 6824 return ret; 6825 } 6826 6827 /* 6828 * Cancel takeoff done by take_page_off_buddy(). 6829 */ 6830 bool put_page_back_buddy(struct page *page) 6831 { 6832 struct zone *zone = page_zone(page); 6833 unsigned long flags; 6834 bool ret = false; 6835 6836 spin_lock_irqsave(&zone->lock, flags); 6837 if (put_page_testzero(page)) { 6838 unsigned long pfn = page_to_pfn(page); 6839 int migratetype = get_pfnblock_migratetype(page, pfn); 6840 6841 ClearPageHWPoisonTakenOff(page); 6842 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6843 if (TestClearPageHWPoison(page)) { 6844 ret = true; 6845 } 6846 } 6847 spin_unlock_irqrestore(&zone->lock, flags); 6848 6849 return ret; 6850 } 6851 #endif 6852 6853 #ifdef CONFIG_ZONE_DMA 6854 bool has_managed_dma(void) 6855 { 6856 struct pglist_data *pgdat; 6857 6858 for_each_online_pgdat(pgdat) { 6859 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6860 6861 if (managed_zone(zone)) 6862 return true; 6863 } 6864 return false; 6865 } 6866 #endif /* CONFIG_ZONE_DMA */ 6867 6868 #ifdef CONFIG_UNACCEPTED_MEMORY 6869 6870 /* Counts number of zones with unaccepted pages. */ 6871 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6872 6873 static bool lazy_accept = true; 6874 6875 static int __init accept_memory_parse(char *p) 6876 { 6877 if (!strcmp(p, "lazy")) { 6878 lazy_accept = true; 6879 return 0; 6880 } else if (!strcmp(p, "eager")) { 6881 lazy_accept = false; 6882 return 0; 6883 } else { 6884 return -EINVAL; 6885 } 6886 } 6887 early_param("accept_memory", accept_memory_parse); 6888 6889 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6890 { 6891 phys_addr_t start = page_to_phys(page); 6892 phys_addr_t end = start + (PAGE_SIZE << order); 6893 6894 return range_contains_unaccepted_memory(start, end); 6895 } 6896 6897 static void accept_page(struct page *page, unsigned int order) 6898 { 6899 phys_addr_t start = page_to_phys(page); 6900 6901 accept_memory(start, start + (PAGE_SIZE << order)); 6902 } 6903 6904 static bool try_to_accept_memory_one(struct zone *zone) 6905 { 6906 unsigned long flags; 6907 struct page *page; 6908 bool last; 6909 6910 if (list_empty(&zone->unaccepted_pages)) 6911 return false; 6912 6913 spin_lock_irqsave(&zone->lock, flags); 6914 page = list_first_entry_or_null(&zone->unaccepted_pages, 6915 struct page, lru); 6916 if (!page) { 6917 spin_unlock_irqrestore(&zone->lock, flags); 6918 return false; 6919 } 6920 6921 list_del(&page->lru); 6922 last = list_empty(&zone->unaccepted_pages); 6923 6924 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6925 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6926 spin_unlock_irqrestore(&zone->lock, flags); 6927 6928 accept_page(page, MAX_PAGE_ORDER); 6929 6930 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6931 6932 if (last) 6933 static_branch_dec(&zones_with_unaccepted_pages); 6934 6935 return true; 6936 } 6937 6938 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6939 { 6940 long to_accept; 6941 int ret = false; 6942 6943 /* How much to accept to get to high watermark? */ 6944 to_accept = high_wmark_pages(zone) - 6945 (zone_page_state(zone, NR_FREE_PAGES) - 6946 __zone_watermark_unusable_free(zone, order, 0)); 6947 6948 /* Accept at least one page */ 6949 do { 6950 if (!try_to_accept_memory_one(zone)) 6951 break; 6952 ret = true; 6953 to_accept -= MAX_ORDER_NR_PAGES; 6954 } while (to_accept > 0); 6955 6956 return ret; 6957 } 6958 6959 static inline bool has_unaccepted_memory(void) 6960 { 6961 return static_branch_unlikely(&zones_with_unaccepted_pages); 6962 } 6963 6964 static bool __free_unaccepted(struct page *page) 6965 { 6966 struct zone *zone = page_zone(page); 6967 unsigned long flags; 6968 bool first = false; 6969 6970 if (!lazy_accept) 6971 return false; 6972 6973 spin_lock_irqsave(&zone->lock, flags); 6974 first = list_empty(&zone->unaccepted_pages); 6975 list_add_tail(&page->lru, &zone->unaccepted_pages); 6976 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6977 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6978 spin_unlock_irqrestore(&zone->lock, flags); 6979 6980 if (first) 6981 static_branch_inc(&zones_with_unaccepted_pages); 6982 6983 return true; 6984 } 6985 6986 #else 6987 6988 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6989 { 6990 return false; 6991 } 6992 6993 static void accept_page(struct page *page, unsigned int order) 6994 { 6995 } 6996 6997 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6998 { 6999 return false; 7000 } 7001 7002 static inline bool has_unaccepted_memory(void) 7003 { 7004 return false; 7005 } 7006 7007 static bool __free_unaccepted(struct page *page) 7008 { 7009 BUILD_BUG(); 7010 return false; 7011 } 7012 7013 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7014