xref: /linux/mm/page_alloc.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 
58 /*
59  * Array of node states.
60  */
61 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
62 	[N_POSSIBLE] = NODE_MASK_ALL,
63 	[N_ONLINE] = { { [0] = 1UL } },
64 #ifndef CONFIG_NUMA
65 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
66 #ifdef CONFIG_HIGHMEM
67 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
68 #endif
69 	[N_CPU] = { { [0] = 1UL } },
70 #endif	/* NUMA */
71 };
72 EXPORT_SYMBOL(node_states);
73 
74 unsigned long totalram_pages __read_mostly;
75 unsigned long totalreserve_pages __read_mostly;
76 int percpu_pagelist_fraction;
77 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78 
79 #ifdef CONFIG_PM_SLEEP
80 /*
81  * The following functions are used by the suspend/hibernate code to temporarily
82  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
83  * while devices are suspended.  To avoid races with the suspend/hibernate code,
84  * they should always be called with pm_mutex held (gfp_allowed_mask also should
85  * only be modified with pm_mutex held, unless the suspend/hibernate code is
86  * guaranteed not to run in parallel with that modification).
87  */
88 void set_gfp_allowed_mask(gfp_t mask)
89 {
90 	WARN_ON(!mutex_is_locked(&pm_mutex));
91 	gfp_allowed_mask = mask;
92 }
93 
94 gfp_t clear_gfp_allowed_mask(gfp_t mask)
95 {
96 	gfp_t ret = gfp_allowed_mask;
97 
98 	WARN_ON(!mutex_is_locked(&pm_mutex));
99 	gfp_allowed_mask &= ~mask;
100 	return ret;
101 }
102 #endif /* CONFIG_PM_SLEEP */
103 
104 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
105 int pageblock_order __read_mostly;
106 #endif
107 
108 static void __free_pages_ok(struct page *page, unsigned int order);
109 
110 /*
111  * results with 256, 32 in the lowmem_reserve sysctl:
112  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
113  *	1G machine -> (16M dma, 784M normal, 224M high)
114  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
115  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
116  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
117  *
118  * TBD: should special case ZONE_DMA32 machines here - in those we normally
119  * don't need any ZONE_NORMAL reservation
120  */
121 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
122 #ifdef CONFIG_ZONE_DMA
123 	 256,
124 #endif
125 #ifdef CONFIG_ZONE_DMA32
126 	 256,
127 #endif
128 #ifdef CONFIG_HIGHMEM
129 	 32,
130 #endif
131 	 32,
132 };
133 
134 EXPORT_SYMBOL(totalram_pages);
135 
136 static char * const zone_names[MAX_NR_ZONES] = {
137 #ifdef CONFIG_ZONE_DMA
138 	 "DMA",
139 #endif
140 #ifdef CONFIG_ZONE_DMA32
141 	 "DMA32",
142 #endif
143 	 "Normal",
144 #ifdef CONFIG_HIGHMEM
145 	 "HighMem",
146 #endif
147 	 "Movable",
148 };
149 
150 int min_free_kbytes = 1024;
151 
152 static unsigned long __meminitdata nr_kernel_pages;
153 static unsigned long __meminitdata nr_all_pages;
154 static unsigned long __meminitdata dma_reserve;
155 
156 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
157   /*
158    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
159    * ranges of memory (RAM) that may be registered with add_active_range().
160    * Ranges passed to add_active_range() will be merged if possible
161    * so the number of times add_active_range() can be called is
162    * related to the number of nodes and the number of holes
163    */
164   #ifdef CONFIG_MAX_ACTIVE_REGIONS
165     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
166     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
167   #else
168     #if MAX_NUMNODES >= 32
169       /* If there can be many nodes, allow up to 50 holes per node */
170       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
171     #else
172       /* By default, allow up to 256 distinct regions */
173       #define MAX_ACTIVE_REGIONS 256
174     #endif
175   #endif
176 
177   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
178   static int __meminitdata nr_nodemap_entries;
179   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
180   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
181   static unsigned long __initdata required_kernelcore;
182   static unsigned long __initdata required_movablecore;
183   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
184 
185   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
186   int movable_zone;
187   EXPORT_SYMBOL(movable_zone);
188 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
189 
190 #if MAX_NUMNODES > 1
191 int nr_node_ids __read_mostly = MAX_NUMNODES;
192 int nr_online_nodes __read_mostly = 1;
193 EXPORT_SYMBOL(nr_node_ids);
194 EXPORT_SYMBOL(nr_online_nodes);
195 #endif
196 
197 int page_group_by_mobility_disabled __read_mostly;
198 
199 static void set_pageblock_migratetype(struct page *page, int migratetype)
200 {
201 
202 	if (unlikely(page_group_by_mobility_disabled))
203 		migratetype = MIGRATE_UNMOVABLE;
204 
205 	set_pageblock_flags_group(page, (unsigned long)migratetype,
206 					PB_migrate, PB_migrate_end);
207 }
208 
209 bool oom_killer_disabled __read_mostly;
210 
211 #ifdef CONFIG_DEBUG_VM
212 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
213 {
214 	int ret = 0;
215 	unsigned seq;
216 	unsigned long pfn = page_to_pfn(page);
217 
218 	do {
219 		seq = zone_span_seqbegin(zone);
220 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
221 			ret = 1;
222 		else if (pfn < zone->zone_start_pfn)
223 			ret = 1;
224 	} while (zone_span_seqretry(zone, seq));
225 
226 	return ret;
227 }
228 
229 static int page_is_consistent(struct zone *zone, struct page *page)
230 {
231 	if (!pfn_valid_within(page_to_pfn(page)))
232 		return 0;
233 	if (zone != page_zone(page))
234 		return 0;
235 
236 	return 1;
237 }
238 /*
239  * Temporary debugging check for pages not lying within a given zone.
240  */
241 static int bad_range(struct zone *zone, struct page *page)
242 {
243 	if (page_outside_zone_boundaries(zone, page))
244 		return 1;
245 	if (!page_is_consistent(zone, page))
246 		return 1;
247 
248 	return 0;
249 }
250 #else
251 static inline int bad_range(struct zone *zone, struct page *page)
252 {
253 	return 0;
254 }
255 #endif
256 
257 static void bad_page(struct page *page)
258 {
259 	static unsigned long resume;
260 	static unsigned long nr_shown;
261 	static unsigned long nr_unshown;
262 
263 	/* Don't complain about poisoned pages */
264 	if (PageHWPoison(page)) {
265 		__ClearPageBuddy(page);
266 		return;
267 	}
268 
269 	/*
270 	 * Allow a burst of 60 reports, then keep quiet for that minute;
271 	 * or allow a steady drip of one report per second.
272 	 */
273 	if (nr_shown == 60) {
274 		if (time_before(jiffies, resume)) {
275 			nr_unshown++;
276 			goto out;
277 		}
278 		if (nr_unshown) {
279 			printk(KERN_ALERT
280 			      "BUG: Bad page state: %lu messages suppressed\n",
281 				nr_unshown);
282 			nr_unshown = 0;
283 		}
284 		nr_shown = 0;
285 	}
286 	if (nr_shown++ == 0)
287 		resume = jiffies + 60 * HZ;
288 
289 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
290 		current->comm, page_to_pfn(page));
291 	printk(KERN_ALERT
292 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
293 		page, (void *)page->flags, page_count(page),
294 		page_mapcount(page), page->mapping, page->index);
295 
296 	dump_stack();
297 out:
298 	/* Leave bad fields for debug, except PageBuddy could make trouble */
299 	__ClearPageBuddy(page);
300 	add_taint(TAINT_BAD_PAGE);
301 }
302 
303 /*
304  * Higher-order pages are called "compound pages".  They are structured thusly:
305  *
306  * The first PAGE_SIZE page is called the "head page".
307  *
308  * The remaining PAGE_SIZE pages are called "tail pages".
309  *
310  * All pages have PG_compound set.  All pages have their ->private pointing at
311  * the head page (even the head page has this).
312  *
313  * The first tail page's ->lru.next holds the address of the compound page's
314  * put_page() function.  Its ->lru.prev holds the order of allocation.
315  * This usage means that zero-order pages may not be compound.
316  */
317 
318 static void free_compound_page(struct page *page)
319 {
320 	__free_pages_ok(page, compound_order(page));
321 }
322 
323 void prep_compound_page(struct page *page, unsigned long order)
324 {
325 	int i;
326 	int nr_pages = 1 << order;
327 
328 	set_compound_page_dtor(page, free_compound_page);
329 	set_compound_order(page, order);
330 	__SetPageHead(page);
331 	for (i = 1; i < nr_pages; i++) {
332 		struct page *p = page + i;
333 
334 		__SetPageTail(p);
335 		p->first_page = page;
336 	}
337 }
338 
339 static int destroy_compound_page(struct page *page, unsigned long order)
340 {
341 	int i;
342 	int nr_pages = 1 << order;
343 	int bad = 0;
344 
345 	if (unlikely(compound_order(page) != order) ||
346 	    unlikely(!PageHead(page))) {
347 		bad_page(page);
348 		bad++;
349 	}
350 
351 	__ClearPageHead(page);
352 
353 	for (i = 1; i < nr_pages; i++) {
354 		struct page *p = page + i;
355 
356 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
357 			bad_page(page);
358 			bad++;
359 		}
360 		__ClearPageTail(p);
361 	}
362 
363 	return bad;
364 }
365 
366 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
367 {
368 	int i;
369 
370 	/*
371 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
372 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
373 	 */
374 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
375 	for (i = 0; i < (1 << order); i++)
376 		clear_highpage(page + i);
377 }
378 
379 static inline void set_page_order(struct page *page, int order)
380 {
381 	set_page_private(page, order);
382 	__SetPageBuddy(page);
383 }
384 
385 static inline void rmv_page_order(struct page *page)
386 {
387 	__ClearPageBuddy(page);
388 	set_page_private(page, 0);
389 }
390 
391 /*
392  * Locate the struct page for both the matching buddy in our
393  * pair (buddy1) and the combined O(n+1) page they form (page).
394  *
395  * 1) Any buddy B1 will have an order O twin B2 which satisfies
396  * the following equation:
397  *     B2 = B1 ^ (1 << O)
398  * For example, if the starting buddy (buddy2) is #8 its order
399  * 1 buddy is #10:
400  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
401  *
402  * 2) Any buddy B will have an order O+1 parent P which
403  * satisfies the following equation:
404  *     P = B & ~(1 << O)
405  *
406  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
407  */
408 static inline struct page *
409 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
410 {
411 	unsigned long buddy_idx = page_idx ^ (1 << order);
412 
413 	return page + (buddy_idx - page_idx);
414 }
415 
416 static inline unsigned long
417 __find_combined_index(unsigned long page_idx, unsigned int order)
418 {
419 	return (page_idx & ~(1 << order));
420 }
421 
422 /*
423  * This function checks whether a page is free && is the buddy
424  * we can do coalesce a page and its buddy if
425  * (a) the buddy is not in a hole &&
426  * (b) the buddy is in the buddy system &&
427  * (c) a page and its buddy have the same order &&
428  * (d) a page and its buddy are in the same zone.
429  *
430  * For recording whether a page is in the buddy system, we use PG_buddy.
431  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
432  *
433  * For recording page's order, we use page_private(page).
434  */
435 static inline int page_is_buddy(struct page *page, struct page *buddy,
436 								int order)
437 {
438 	if (!pfn_valid_within(page_to_pfn(buddy)))
439 		return 0;
440 
441 	if (page_zone_id(page) != page_zone_id(buddy))
442 		return 0;
443 
444 	if (PageBuddy(buddy) && page_order(buddy) == order) {
445 		VM_BUG_ON(page_count(buddy) != 0);
446 		return 1;
447 	}
448 	return 0;
449 }
450 
451 /*
452  * Freeing function for a buddy system allocator.
453  *
454  * The concept of a buddy system is to maintain direct-mapped table
455  * (containing bit values) for memory blocks of various "orders".
456  * The bottom level table contains the map for the smallest allocatable
457  * units of memory (here, pages), and each level above it describes
458  * pairs of units from the levels below, hence, "buddies".
459  * At a high level, all that happens here is marking the table entry
460  * at the bottom level available, and propagating the changes upward
461  * as necessary, plus some accounting needed to play nicely with other
462  * parts of the VM system.
463  * At each level, we keep a list of pages, which are heads of continuous
464  * free pages of length of (1 << order) and marked with PG_buddy. Page's
465  * order is recorded in page_private(page) field.
466  * So when we are allocating or freeing one, we can derive the state of the
467  * other.  That is, if we allocate a small block, and both were
468  * free, the remainder of the region must be split into blocks.
469  * If a block is freed, and its buddy is also free, then this
470  * triggers coalescing into a block of larger size.
471  *
472  * -- wli
473  */
474 
475 static inline void __free_one_page(struct page *page,
476 		struct zone *zone, unsigned int order,
477 		int migratetype)
478 {
479 	unsigned long page_idx;
480 
481 	if (unlikely(PageCompound(page)))
482 		if (unlikely(destroy_compound_page(page, order)))
483 			return;
484 
485 	VM_BUG_ON(migratetype == -1);
486 
487 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
488 
489 	VM_BUG_ON(page_idx & ((1 << order) - 1));
490 	VM_BUG_ON(bad_range(zone, page));
491 
492 	while (order < MAX_ORDER-1) {
493 		unsigned long combined_idx;
494 		struct page *buddy;
495 
496 		buddy = __page_find_buddy(page, page_idx, order);
497 		if (!page_is_buddy(page, buddy, order))
498 			break;
499 
500 		/* Our buddy is free, merge with it and move up one order. */
501 		list_del(&buddy->lru);
502 		zone->free_area[order].nr_free--;
503 		rmv_page_order(buddy);
504 		combined_idx = __find_combined_index(page_idx, order);
505 		page = page + (combined_idx - page_idx);
506 		page_idx = combined_idx;
507 		order++;
508 	}
509 	set_page_order(page, order);
510 	list_add(&page->lru,
511 		&zone->free_area[order].free_list[migratetype]);
512 	zone->free_area[order].nr_free++;
513 }
514 
515 /*
516  * free_page_mlock() -- clean up attempts to free and mlocked() page.
517  * Page should not be on lru, so no need to fix that up.
518  * free_pages_check() will verify...
519  */
520 static inline void free_page_mlock(struct page *page)
521 {
522 	__dec_zone_page_state(page, NR_MLOCK);
523 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
524 }
525 
526 static inline int free_pages_check(struct page *page)
527 {
528 	if (unlikely(page_mapcount(page) |
529 		(page->mapping != NULL)  |
530 		(atomic_read(&page->_count) != 0) |
531 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
532 		bad_page(page);
533 		return 1;
534 	}
535 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
536 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
537 	return 0;
538 }
539 
540 /*
541  * Frees a number of pages from the PCP lists
542  * Assumes all pages on list are in same zone, and of same order.
543  * count is the number of pages to free.
544  *
545  * If the zone was previously in an "all pages pinned" state then look to
546  * see if this freeing clears that state.
547  *
548  * And clear the zone's pages_scanned counter, to hold off the "all pages are
549  * pinned" detection logic.
550  */
551 static void free_pcppages_bulk(struct zone *zone, int count,
552 					struct per_cpu_pages *pcp)
553 {
554 	int migratetype = 0;
555 	int batch_free = 0;
556 
557 	spin_lock(&zone->lock);
558 	zone->all_unreclaimable = 0;
559 	zone->pages_scanned = 0;
560 
561 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
562 	while (count) {
563 		struct page *page;
564 		struct list_head *list;
565 
566 		/*
567 		 * Remove pages from lists in a round-robin fashion. A
568 		 * batch_free count is maintained that is incremented when an
569 		 * empty list is encountered.  This is so more pages are freed
570 		 * off fuller lists instead of spinning excessively around empty
571 		 * lists
572 		 */
573 		do {
574 			batch_free++;
575 			if (++migratetype == MIGRATE_PCPTYPES)
576 				migratetype = 0;
577 			list = &pcp->lists[migratetype];
578 		} while (list_empty(list));
579 
580 		do {
581 			page = list_entry(list->prev, struct page, lru);
582 			/* must delete as __free_one_page list manipulates */
583 			list_del(&page->lru);
584 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
585 			__free_one_page(page, zone, 0, page_private(page));
586 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
587 		} while (--count && --batch_free && !list_empty(list));
588 	}
589 	spin_unlock(&zone->lock);
590 }
591 
592 static void free_one_page(struct zone *zone, struct page *page, int order,
593 				int migratetype)
594 {
595 	spin_lock(&zone->lock);
596 	zone->all_unreclaimable = 0;
597 	zone->pages_scanned = 0;
598 
599 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
600 	__free_one_page(page, zone, order, migratetype);
601 	spin_unlock(&zone->lock);
602 }
603 
604 static void __free_pages_ok(struct page *page, unsigned int order)
605 {
606 	unsigned long flags;
607 	int i;
608 	int bad = 0;
609 	int wasMlocked = __TestClearPageMlocked(page);
610 
611 	trace_mm_page_free_direct(page, order);
612 	kmemcheck_free_shadow(page, order);
613 
614 	for (i = 0 ; i < (1 << order) ; ++i)
615 		bad += free_pages_check(page + i);
616 	if (bad)
617 		return;
618 
619 	if (!PageHighMem(page)) {
620 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
621 		debug_check_no_obj_freed(page_address(page),
622 					   PAGE_SIZE << order);
623 	}
624 	arch_free_page(page, order);
625 	kernel_map_pages(page, 1 << order, 0);
626 
627 	local_irq_save(flags);
628 	if (unlikely(wasMlocked))
629 		free_page_mlock(page);
630 	__count_vm_events(PGFREE, 1 << order);
631 	free_one_page(page_zone(page), page, order,
632 					get_pageblock_migratetype(page));
633 	local_irq_restore(flags);
634 }
635 
636 /*
637  * permit the bootmem allocator to evade page validation on high-order frees
638  */
639 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
640 {
641 	if (order == 0) {
642 		__ClearPageReserved(page);
643 		set_page_count(page, 0);
644 		set_page_refcounted(page);
645 		__free_page(page);
646 	} else {
647 		int loop;
648 
649 		prefetchw(page);
650 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
651 			struct page *p = &page[loop];
652 
653 			if (loop + 1 < BITS_PER_LONG)
654 				prefetchw(p + 1);
655 			__ClearPageReserved(p);
656 			set_page_count(p, 0);
657 		}
658 
659 		set_page_refcounted(page);
660 		__free_pages(page, order);
661 	}
662 }
663 
664 
665 /*
666  * The order of subdivision here is critical for the IO subsystem.
667  * Please do not alter this order without good reasons and regression
668  * testing. Specifically, as large blocks of memory are subdivided,
669  * the order in which smaller blocks are delivered depends on the order
670  * they're subdivided in this function. This is the primary factor
671  * influencing the order in which pages are delivered to the IO
672  * subsystem according to empirical testing, and this is also justified
673  * by considering the behavior of a buddy system containing a single
674  * large block of memory acted on by a series of small allocations.
675  * This behavior is a critical factor in sglist merging's success.
676  *
677  * -- wli
678  */
679 static inline void expand(struct zone *zone, struct page *page,
680 	int low, int high, struct free_area *area,
681 	int migratetype)
682 {
683 	unsigned long size = 1 << high;
684 
685 	while (high > low) {
686 		area--;
687 		high--;
688 		size >>= 1;
689 		VM_BUG_ON(bad_range(zone, &page[size]));
690 		list_add(&page[size].lru, &area->free_list[migratetype]);
691 		area->nr_free++;
692 		set_page_order(&page[size], high);
693 	}
694 }
695 
696 /*
697  * This page is about to be returned from the page allocator
698  */
699 static inline int check_new_page(struct page *page)
700 {
701 	if (unlikely(page_mapcount(page) |
702 		(page->mapping != NULL)  |
703 		(atomic_read(&page->_count) != 0)  |
704 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
705 		bad_page(page);
706 		return 1;
707 	}
708 	return 0;
709 }
710 
711 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
712 {
713 	int i;
714 
715 	for (i = 0; i < (1 << order); i++) {
716 		struct page *p = page + i;
717 		if (unlikely(check_new_page(p)))
718 			return 1;
719 	}
720 
721 	set_page_private(page, 0);
722 	set_page_refcounted(page);
723 
724 	arch_alloc_page(page, order);
725 	kernel_map_pages(page, 1 << order, 1);
726 
727 	if (gfp_flags & __GFP_ZERO)
728 		prep_zero_page(page, order, gfp_flags);
729 
730 	if (order && (gfp_flags & __GFP_COMP))
731 		prep_compound_page(page, order);
732 
733 	return 0;
734 }
735 
736 /*
737  * Go through the free lists for the given migratetype and remove
738  * the smallest available page from the freelists
739  */
740 static inline
741 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
742 						int migratetype)
743 {
744 	unsigned int current_order;
745 	struct free_area * area;
746 	struct page *page;
747 
748 	/* Find a page of the appropriate size in the preferred list */
749 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
750 		area = &(zone->free_area[current_order]);
751 		if (list_empty(&area->free_list[migratetype]))
752 			continue;
753 
754 		page = list_entry(area->free_list[migratetype].next,
755 							struct page, lru);
756 		list_del(&page->lru);
757 		rmv_page_order(page);
758 		area->nr_free--;
759 		expand(zone, page, order, current_order, area, migratetype);
760 		return page;
761 	}
762 
763 	return NULL;
764 }
765 
766 
767 /*
768  * This array describes the order lists are fallen back to when
769  * the free lists for the desirable migrate type are depleted
770  */
771 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
772 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
773 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
774 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
775 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
776 };
777 
778 /*
779  * Move the free pages in a range to the free lists of the requested type.
780  * Note that start_page and end_pages are not aligned on a pageblock
781  * boundary. If alignment is required, use move_freepages_block()
782  */
783 static int move_freepages(struct zone *zone,
784 			  struct page *start_page, struct page *end_page,
785 			  int migratetype)
786 {
787 	struct page *page;
788 	unsigned long order;
789 	int pages_moved = 0;
790 
791 #ifndef CONFIG_HOLES_IN_ZONE
792 	/*
793 	 * page_zone is not safe to call in this context when
794 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
795 	 * anyway as we check zone boundaries in move_freepages_block().
796 	 * Remove at a later date when no bug reports exist related to
797 	 * grouping pages by mobility
798 	 */
799 	BUG_ON(page_zone(start_page) != page_zone(end_page));
800 #endif
801 
802 	for (page = start_page; page <= end_page;) {
803 		/* Make sure we are not inadvertently changing nodes */
804 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
805 
806 		if (!pfn_valid_within(page_to_pfn(page))) {
807 			page++;
808 			continue;
809 		}
810 
811 		if (!PageBuddy(page)) {
812 			page++;
813 			continue;
814 		}
815 
816 		order = page_order(page);
817 		list_del(&page->lru);
818 		list_add(&page->lru,
819 			&zone->free_area[order].free_list[migratetype]);
820 		page += 1 << order;
821 		pages_moved += 1 << order;
822 	}
823 
824 	return pages_moved;
825 }
826 
827 static int move_freepages_block(struct zone *zone, struct page *page,
828 				int migratetype)
829 {
830 	unsigned long start_pfn, end_pfn;
831 	struct page *start_page, *end_page;
832 
833 	start_pfn = page_to_pfn(page);
834 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
835 	start_page = pfn_to_page(start_pfn);
836 	end_page = start_page + pageblock_nr_pages - 1;
837 	end_pfn = start_pfn + pageblock_nr_pages - 1;
838 
839 	/* Do not cross zone boundaries */
840 	if (start_pfn < zone->zone_start_pfn)
841 		start_page = page;
842 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
843 		return 0;
844 
845 	return move_freepages(zone, start_page, end_page, migratetype);
846 }
847 
848 static void change_pageblock_range(struct page *pageblock_page,
849 					int start_order, int migratetype)
850 {
851 	int nr_pageblocks = 1 << (start_order - pageblock_order);
852 
853 	while (nr_pageblocks--) {
854 		set_pageblock_migratetype(pageblock_page, migratetype);
855 		pageblock_page += pageblock_nr_pages;
856 	}
857 }
858 
859 /* Remove an element from the buddy allocator from the fallback list */
860 static inline struct page *
861 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
862 {
863 	struct free_area * area;
864 	int current_order;
865 	struct page *page;
866 	int migratetype, i;
867 
868 	/* Find the largest possible block of pages in the other list */
869 	for (current_order = MAX_ORDER-1; current_order >= order;
870 						--current_order) {
871 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
872 			migratetype = fallbacks[start_migratetype][i];
873 
874 			/* MIGRATE_RESERVE handled later if necessary */
875 			if (migratetype == MIGRATE_RESERVE)
876 				continue;
877 
878 			area = &(zone->free_area[current_order]);
879 			if (list_empty(&area->free_list[migratetype]))
880 				continue;
881 
882 			page = list_entry(area->free_list[migratetype].next,
883 					struct page, lru);
884 			area->nr_free--;
885 
886 			/*
887 			 * If breaking a large block of pages, move all free
888 			 * pages to the preferred allocation list. If falling
889 			 * back for a reclaimable kernel allocation, be more
890 			 * agressive about taking ownership of free pages
891 			 */
892 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
893 					start_migratetype == MIGRATE_RECLAIMABLE ||
894 					page_group_by_mobility_disabled) {
895 				unsigned long pages;
896 				pages = move_freepages_block(zone, page,
897 								start_migratetype);
898 
899 				/* Claim the whole block if over half of it is free */
900 				if (pages >= (1 << (pageblock_order-1)) ||
901 						page_group_by_mobility_disabled)
902 					set_pageblock_migratetype(page,
903 								start_migratetype);
904 
905 				migratetype = start_migratetype;
906 			}
907 
908 			/* Remove the page from the freelists */
909 			list_del(&page->lru);
910 			rmv_page_order(page);
911 
912 			/* Take ownership for orders >= pageblock_order */
913 			if (current_order >= pageblock_order)
914 				change_pageblock_range(page, current_order,
915 							start_migratetype);
916 
917 			expand(zone, page, order, current_order, area, migratetype);
918 
919 			trace_mm_page_alloc_extfrag(page, order, current_order,
920 				start_migratetype, migratetype);
921 
922 			return page;
923 		}
924 	}
925 
926 	return NULL;
927 }
928 
929 /*
930  * Do the hard work of removing an element from the buddy allocator.
931  * Call me with the zone->lock already held.
932  */
933 static struct page *__rmqueue(struct zone *zone, unsigned int order,
934 						int migratetype)
935 {
936 	struct page *page;
937 
938 retry_reserve:
939 	page = __rmqueue_smallest(zone, order, migratetype);
940 
941 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
942 		page = __rmqueue_fallback(zone, order, migratetype);
943 
944 		/*
945 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
946 		 * is used because __rmqueue_smallest is an inline function
947 		 * and we want just one call site
948 		 */
949 		if (!page) {
950 			migratetype = MIGRATE_RESERVE;
951 			goto retry_reserve;
952 		}
953 	}
954 
955 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
956 	return page;
957 }
958 
959 /*
960  * Obtain a specified number of elements from the buddy allocator, all under
961  * a single hold of the lock, for efficiency.  Add them to the supplied list.
962  * Returns the number of new pages which were placed at *list.
963  */
964 static int rmqueue_bulk(struct zone *zone, unsigned int order,
965 			unsigned long count, struct list_head *list,
966 			int migratetype, int cold)
967 {
968 	int i;
969 
970 	spin_lock(&zone->lock);
971 	for (i = 0; i < count; ++i) {
972 		struct page *page = __rmqueue(zone, order, migratetype);
973 		if (unlikely(page == NULL))
974 			break;
975 
976 		/*
977 		 * Split buddy pages returned by expand() are received here
978 		 * in physical page order. The page is added to the callers and
979 		 * list and the list head then moves forward. From the callers
980 		 * perspective, the linked list is ordered by page number in
981 		 * some conditions. This is useful for IO devices that can
982 		 * merge IO requests if the physical pages are ordered
983 		 * properly.
984 		 */
985 		if (likely(cold == 0))
986 			list_add(&page->lru, list);
987 		else
988 			list_add_tail(&page->lru, list);
989 		set_page_private(page, migratetype);
990 		list = &page->lru;
991 	}
992 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
993 	spin_unlock(&zone->lock);
994 	return i;
995 }
996 
997 #ifdef CONFIG_NUMA
998 /*
999  * Called from the vmstat counter updater to drain pagesets of this
1000  * currently executing processor on remote nodes after they have
1001  * expired.
1002  *
1003  * Note that this function must be called with the thread pinned to
1004  * a single processor.
1005  */
1006 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1007 {
1008 	unsigned long flags;
1009 	int to_drain;
1010 
1011 	local_irq_save(flags);
1012 	if (pcp->count >= pcp->batch)
1013 		to_drain = pcp->batch;
1014 	else
1015 		to_drain = pcp->count;
1016 	free_pcppages_bulk(zone, to_drain, pcp);
1017 	pcp->count -= to_drain;
1018 	local_irq_restore(flags);
1019 }
1020 #endif
1021 
1022 /*
1023  * Drain pages of the indicated processor.
1024  *
1025  * The processor must either be the current processor and the
1026  * thread pinned to the current processor or a processor that
1027  * is not online.
1028  */
1029 static void drain_pages(unsigned int cpu)
1030 {
1031 	unsigned long flags;
1032 	struct zone *zone;
1033 
1034 	for_each_populated_zone(zone) {
1035 		struct per_cpu_pageset *pset;
1036 		struct per_cpu_pages *pcp;
1037 
1038 		local_irq_save(flags);
1039 		pset = per_cpu_ptr(zone->pageset, cpu);
1040 
1041 		pcp = &pset->pcp;
1042 		free_pcppages_bulk(zone, pcp->count, pcp);
1043 		pcp->count = 0;
1044 		local_irq_restore(flags);
1045 	}
1046 }
1047 
1048 /*
1049  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1050  */
1051 void drain_local_pages(void *arg)
1052 {
1053 	drain_pages(smp_processor_id());
1054 }
1055 
1056 /*
1057  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1058  */
1059 void drain_all_pages(void)
1060 {
1061 	on_each_cpu(drain_local_pages, NULL, 1);
1062 }
1063 
1064 #ifdef CONFIG_HIBERNATION
1065 
1066 void mark_free_pages(struct zone *zone)
1067 {
1068 	unsigned long pfn, max_zone_pfn;
1069 	unsigned long flags;
1070 	int order, t;
1071 	struct list_head *curr;
1072 
1073 	if (!zone->spanned_pages)
1074 		return;
1075 
1076 	spin_lock_irqsave(&zone->lock, flags);
1077 
1078 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1079 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1080 		if (pfn_valid(pfn)) {
1081 			struct page *page = pfn_to_page(pfn);
1082 
1083 			if (!swsusp_page_is_forbidden(page))
1084 				swsusp_unset_page_free(page);
1085 		}
1086 
1087 	for_each_migratetype_order(order, t) {
1088 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1089 			unsigned long i;
1090 
1091 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1092 			for (i = 0; i < (1UL << order); i++)
1093 				swsusp_set_page_free(pfn_to_page(pfn + i));
1094 		}
1095 	}
1096 	spin_unlock_irqrestore(&zone->lock, flags);
1097 }
1098 #endif /* CONFIG_PM */
1099 
1100 /*
1101  * Free a 0-order page
1102  * cold == 1 ? free a cold page : free a hot page
1103  */
1104 void free_hot_cold_page(struct page *page, int cold)
1105 {
1106 	struct zone *zone = page_zone(page);
1107 	struct per_cpu_pages *pcp;
1108 	unsigned long flags;
1109 	int migratetype;
1110 	int wasMlocked = __TestClearPageMlocked(page);
1111 
1112 	trace_mm_page_free_direct(page, 0);
1113 	kmemcheck_free_shadow(page, 0);
1114 
1115 	if (PageAnon(page))
1116 		page->mapping = NULL;
1117 	if (free_pages_check(page))
1118 		return;
1119 
1120 	if (!PageHighMem(page)) {
1121 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1122 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1123 	}
1124 	arch_free_page(page, 0);
1125 	kernel_map_pages(page, 1, 0);
1126 
1127 	migratetype = get_pageblock_migratetype(page);
1128 	set_page_private(page, migratetype);
1129 	local_irq_save(flags);
1130 	if (unlikely(wasMlocked))
1131 		free_page_mlock(page);
1132 	__count_vm_event(PGFREE);
1133 
1134 	/*
1135 	 * We only track unmovable, reclaimable and movable on pcp lists.
1136 	 * Free ISOLATE pages back to the allocator because they are being
1137 	 * offlined but treat RESERVE as movable pages so we can get those
1138 	 * areas back if necessary. Otherwise, we may have to free
1139 	 * excessively into the page allocator
1140 	 */
1141 	if (migratetype >= MIGRATE_PCPTYPES) {
1142 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1143 			free_one_page(zone, page, 0, migratetype);
1144 			goto out;
1145 		}
1146 		migratetype = MIGRATE_MOVABLE;
1147 	}
1148 
1149 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1150 	if (cold)
1151 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1152 	else
1153 		list_add(&page->lru, &pcp->lists[migratetype]);
1154 	pcp->count++;
1155 	if (pcp->count >= pcp->high) {
1156 		free_pcppages_bulk(zone, pcp->batch, pcp);
1157 		pcp->count -= pcp->batch;
1158 	}
1159 
1160 out:
1161 	local_irq_restore(flags);
1162 }
1163 
1164 /*
1165  * split_page takes a non-compound higher-order page, and splits it into
1166  * n (1<<order) sub-pages: page[0..n]
1167  * Each sub-page must be freed individually.
1168  *
1169  * Note: this is probably too low level an operation for use in drivers.
1170  * Please consult with lkml before using this in your driver.
1171  */
1172 void split_page(struct page *page, unsigned int order)
1173 {
1174 	int i;
1175 
1176 	VM_BUG_ON(PageCompound(page));
1177 	VM_BUG_ON(!page_count(page));
1178 
1179 #ifdef CONFIG_KMEMCHECK
1180 	/*
1181 	 * Split shadow pages too, because free(page[0]) would
1182 	 * otherwise free the whole shadow.
1183 	 */
1184 	if (kmemcheck_page_is_tracked(page))
1185 		split_page(virt_to_page(page[0].shadow), order);
1186 #endif
1187 
1188 	for (i = 1; i < (1 << order); i++)
1189 		set_page_refcounted(page + i);
1190 }
1191 
1192 /*
1193  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1194  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1195  * or two.
1196  */
1197 static inline
1198 struct page *buffered_rmqueue(struct zone *preferred_zone,
1199 			struct zone *zone, int order, gfp_t gfp_flags,
1200 			int migratetype)
1201 {
1202 	unsigned long flags;
1203 	struct page *page;
1204 	int cold = !!(gfp_flags & __GFP_COLD);
1205 
1206 again:
1207 	if (likely(order == 0)) {
1208 		struct per_cpu_pages *pcp;
1209 		struct list_head *list;
1210 
1211 		local_irq_save(flags);
1212 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1213 		list = &pcp->lists[migratetype];
1214 		if (list_empty(list)) {
1215 			pcp->count += rmqueue_bulk(zone, 0,
1216 					pcp->batch, list,
1217 					migratetype, cold);
1218 			if (unlikely(list_empty(list)))
1219 				goto failed;
1220 		}
1221 
1222 		if (cold)
1223 			page = list_entry(list->prev, struct page, lru);
1224 		else
1225 			page = list_entry(list->next, struct page, lru);
1226 
1227 		list_del(&page->lru);
1228 		pcp->count--;
1229 	} else {
1230 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1231 			/*
1232 			 * __GFP_NOFAIL is not to be used in new code.
1233 			 *
1234 			 * All __GFP_NOFAIL callers should be fixed so that they
1235 			 * properly detect and handle allocation failures.
1236 			 *
1237 			 * We most definitely don't want callers attempting to
1238 			 * allocate greater than order-1 page units with
1239 			 * __GFP_NOFAIL.
1240 			 */
1241 			WARN_ON_ONCE(order > 1);
1242 		}
1243 		spin_lock_irqsave(&zone->lock, flags);
1244 		page = __rmqueue(zone, order, migratetype);
1245 		spin_unlock(&zone->lock);
1246 		if (!page)
1247 			goto failed;
1248 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1249 	}
1250 
1251 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1252 	zone_statistics(preferred_zone, zone);
1253 	local_irq_restore(flags);
1254 
1255 	VM_BUG_ON(bad_range(zone, page));
1256 	if (prep_new_page(page, order, gfp_flags))
1257 		goto again;
1258 	return page;
1259 
1260 failed:
1261 	local_irq_restore(flags);
1262 	return NULL;
1263 }
1264 
1265 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1266 #define ALLOC_WMARK_MIN		WMARK_MIN
1267 #define ALLOC_WMARK_LOW		WMARK_LOW
1268 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1269 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1270 
1271 /* Mask to get the watermark bits */
1272 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1273 
1274 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1275 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1276 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1277 
1278 #ifdef CONFIG_FAIL_PAGE_ALLOC
1279 
1280 static struct fail_page_alloc_attr {
1281 	struct fault_attr attr;
1282 
1283 	u32 ignore_gfp_highmem;
1284 	u32 ignore_gfp_wait;
1285 	u32 min_order;
1286 
1287 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1288 
1289 	struct dentry *ignore_gfp_highmem_file;
1290 	struct dentry *ignore_gfp_wait_file;
1291 	struct dentry *min_order_file;
1292 
1293 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1294 
1295 } fail_page_alloc = {
1296 	.attr = FAULT_ATTR_INITIALIZER,
1297 	.ignore_gfp_wait = 1,
1298 	.ignore_gfp_highmem = 1,
1299 	.min_order = 1,
1300 };
1301 
1302 static int __init setup_fail_page_alloc(char *str)
1303 {
1304 	return setup_fault_attr(&fail_page_alloc.attr, str);
1305 }
1306 __setup("fail_page_alloc=", setup_fail_page_alloc);
1307 
1308 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1309 {
1310 	if (order < fail_page_alloc.min_order)
1311 		return 0;
1312 	if (gfp_mask & __GFP_NOFAIL)
1313 		return 0;
1314 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1315 		return 0;
1316 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1317 		return 0;
1318 
1319 	return should_fail(&fail_page_alloc.attr, 1 << order);
1320 }
1321 
1322 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1323 
1324 static int __init fail_page_alloc_debugfs(void)
1325 {
1326 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1327 	struct dentry *dir;
1328 	int err;
1329 
1330 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1331 				       "fail_page_alloc");
1332 	if (err)
1333 		return err;
1334 	dir = fail_page_alloc.attr.dentries.dir;
1335 
1336 	fail_page_alloc.ignore_gfp_wait_file =
1337 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1338 				      &fail_page_alloc.ignore_gfp_wait);
1339 
1340 	fail_page_alloc.ignore_gfp_highmem_file =
1341 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1342 				      &fail_page_alloc.ignore_gfp_highmem);
1343 	fail_page_alloc.min_order_file =
1344 		debugfs_create_u32("min-order", mode, dir,
1345 				   &fail_page_alloc.min_order);
1346 
1347 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1348             !fail_page_alloc.ignore_gfp_highmem_file ||
1349             !fail_page_alloc.min_order_file) {
1350 		err = -ENOMEM;
1351 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1352 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1353 		debugfs_remove(fail_page_alloc.min_order_file);
1354 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1355 	}
1356 
1357 	return err;
1358 }
1359 
1360 late_initcall(fail_page_alloc_debugfs);
1361 
1362 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1363 
1364 #else /* CONFIG_FAIL_PAGE_ALLOC */
1365 
1366 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1367 {
1368 	return 0;
1369 }
1370 
1371 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1372 
1373 /*
1374  * Return 1 if free pages are above 'mark'. This takes into account the order
1375  * of the allocation.
1376  */
1377 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1378 		      int classzone_idx, int alloc_flags)
1379 {
1380 	/* free_pages my go negative - that's OK */
1381 	long min = mark;
1382 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1383 	int o;
1384 
1385 	if (alloc_flags & ALLOC_HIGH)
1386 		min -= min / 2;
1387 	if (alloc_flags & ALLOC_HARDER)
1388 		min -= min / 4;
1389 
1390 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1391 		return 0;
1392 	for (o = 0; o < order; o++) {
1393 		/* At the next order, this order's pages become unavailable */
1394 		free_pages -= z->free_area[o].nr_free << o;
1395 
1396 		/* Require fewer higher order pages to be free */
1397 		min >>= 1;
1398 
1399 		if (free_pages <= min)
1400 			return 0;
1401 	}
1402 	return 1;
1403 }
1404 
1405 #ifdef CONFIG_NUMA
1406 /*
1407  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1408  * skip over zones that are not allowed by the cpuset, or that have
1409  * been recently (in last second) found to be nearly full.  See further
1410  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1411  * that have to skip over a lot of full or unallowed zones.
1412  *
1413  * If the zonelist cache is present in the passed in zonelist, then
1414  * returns a pointer to the allowed node mask (either the current
1415  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1416  *
1417  * If the zonelist cache is not available for this zonelist, does
1418  * nothing and returns NULL.
1419  *
1420  * If the fullzones BITMAP in the zonelist cache is stale (more than
1421  * a second since last zap'd) then we zap it out (clear its bits.)
1422  *
1423  * We hold off even calling zlc_setup, until after we've checked the
1424  * first zone in the zonelist, on the theory that most allocations will
1425  * be satisfied from that first zone, so best to examine that zone as
1426  * quickly as we can.
1427  */
1428 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1429 {
1430 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1431 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1432 
1433 	zlc = zonelist->zlcache_ptr;
1434 	if (!zlc)
1435 		return NULL;
1436 
1437 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1438 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1439 		zlc->last_full_zap = jiffies;
1440 	}
1441 
1442 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1443 					&cpuset_current_mems_allowed :
1444 					&node_states[N_HIGH_MEMORY];
1445 	return allowednodes;
1446 }
1447 
1448 /*
1449  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1450  * if it is worth looking at further for free memory:
1451  *  1) Check that the zone isn't thought to be full (doesn't have its
1452  *     bit set in the zonelist_cache fullzones BITMAP).
1453  *  2) Check that the zones node (obtained from the zonelist_cache
1454  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1455  * Return true (non-zero) if zone is worth looking at further, or
1456  * else return false (zero) if it is not.
1457  *
1458  * This check -ignores- the distinction between various watermarks,
1459  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1460  * found to be full for any variation of these watermarks, it will
1461  * be considered full for up to one second by all requests, unless
1462  * we are so low on memory on all allowed nodes that we are forced
1463  * into the second scan of the zonelist.
1464  *
1465  * In the second scan we ignore this zonelist cache and exactly
1466  * apply the watermarks to all zones, even it is slower to do so.
1467  * We are low on memory in the second scan, and should leave no stone
1468  * unturned looking for a free page.
1469  */
1470 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1471 						nodemask_t *allowednodes)
1472 {
1473 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1474 	int i;				/* index of *z in zonelist zones */
1475 	int n;				/* node that zone *z is on */
1476 
1477 	zlc = zonelist->zlcache_ptr;
1478 	if (!zlc)
1479 		return 1;
1480 
1481 	i = z - zonelist->_zonerefs;
1482 	n = zlc->z_to_n[i];
1483 
1484 	/* This zone is worth trying if it is allowed but not full */
1485 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1486 }
1487 
1488 /*
1489  * Given 'z' scanning a zonelist, set the corresponding bit in
1490  * zlc->fullzones, so that subsequent attempts to allocate a page
1491  * from that zone don't waste time re-examining it.
1492  */
1493 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1494 {
1495 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1496 	int i;				/* index of *z in zonelist zones */
1497 
1498 	zlc = zonelist->zlcache_ptr;
1499 	if (!zlc)
1500 		return;
1501 
1502 	i = z - zonelist->_zonerefs;
1503 
1504 	set_bit(i, zlc->fullzones);
1505 }
1506 
1507 #else	/* CONFIG_NUMA */
1508 
1509 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1510 {
1511 	return NULL;
1512 }
1513 
1514 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1515 				nodemask_t *allowednodes)
1516 {
1517 	return 1;
1518 }
1519 
1520 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1521 {
1522 }
1523 #endif	/* CONFIG_NUMA */
1524 
1525 /*
1526  * get_page_from_freelist goes through the zonelist trying to allocate
1527  * a page.
1528  */
1529 static struct page *
1530 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1531 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1532 		struct zone *preferred_zone, int migratetype)
1533 {
1534 	struct zoneref *z;
1535 	struct page *page = NULL;
1536 	int classzone_idx;
1537 	struct zone *zone;
1538 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1539 	int zlc_active = 0;		/* set if using zonelist_cache */
1540 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1541 
1542 	classzone_idx = zone_idx(preferred_zone);
1543 zonelist_scan:
1544 	/*
1545 	 * Scan zonelist, looking for a zone with enough free.
1546 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1547 	 */
1548 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1549 						high_zoneidx, nodemask) {
1550 		if (NUMA_BUILD && zlc_active &&
1551 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1552 				continue;
1553 		if ((alloc_flags & ALLOC_CPUSET) &&
1554 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1555 				goto try_next_zone;
1556 
1557 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1558 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1559 			unsigned long mark;
1560 			int ret;
1561 
1562 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1563 			if (zone_watermark_ok(zone, order, mark,
1564 				    classzone_idx, alloc_flags))
1565 				goto try_this_zone;
1566 
1567 			if (zone_reclaim_mode == 0)
1568 				goto this_zone_full;
1569 
1570 			ret = zone_reclaim(zone, gfp_mask, order);
1571 			switch (ret) {
1572 			case ZONE_RECLAIM_NOSCAN:
1573 				/* did not scan */
1574 				goto try_next_zone;
1575 			case ZONE_RECLAIM_FULL:
1576 				/* scanned but unreclaimable */
1577 				goto this_zone_full;
1578 			default:
1579 				/* did we reclaim enough */
1580 				if (!zone_watermark_ok(zone, order, mark,
1581 						classzone_idx, alloc_flags))
1582 					goto this_zone_full;
1583 			}
1584 		}
1585 
1586 try_this_zone:
1587 		page = buffered_rmqueue(preferred_zone, zone, order,
1588 						gfp_mask, migratetype);
1589 		if (page)
1590 			break;
1591 this_zone_full:
1592 		if (NUMA_BUILD)
1593 			zlc_mark_zone_full(zonelist, z);
1594 try_next_zone:
1595 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1596 			/*
1597 			 * we do zlc_setup after the first zone is tried but only
1598 			 * if there are multiple nodes make it worthwhile
1599 			 */
1600 			allowednodes = zlc_setup(zonelist, alloc_flags);
1601 			zlc_active = 1;
1602 			did_zlc_setup = 1;
1603 		}
1604 	}
1605 
1606 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1607 		/* Disable zlc cache for second zonelist scan */
1608 		zlc_active = 0;
1609 		goto zonelist_scan;
1610 	}
1611 	return page;
1612 }
1613 
1614 static inline int
1615 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1616 				unsigned long pages_reclaimed)
1617 {
1618 	/* Do not loop if specifically requested */
1619 	if (gfp_mask & __GFP_NORETRY)
1620 		return 0;
1621 
1622 	/*
1623 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1624 	 * means __GFP_NOFAIL, but that may not be true in other
1625 	 * implementations.
1626 	 */
1627 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1628 		return 1;
1629 
1630 	/*
1631 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1632 	 * specified, then we retry until we no longer reclaim any pages
1633 	 * (above), or we've reclaimed an order of pages at least as
1634 	 * large as the allocation's order. In both cases, if the
1635 	 * allocation still fails, we stop retrying.
1636 	 */
1637 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1638 		return 1;
1639 
1640 	/*
1641 	 * Don't let big-order allocations loop unless the caller
1642 	 * explicitly requests that.
1643 	 */
1644 	if (gfp_mask & __GFP_NOFAIL)
1645 		return 1;
1646 
1647 	return 0;
1648 }
1649 
1650 static inline struct page *
1651 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1652 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1653 	nodemask_t *nodemask, struct zone *preferred_zone,
1654 	int migratetype)
1655 {
1656 	struct page *page;
1657 
1658 	/* Acquire the OOM killer lock for the zones in zonelist */
1659 	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1660 		schedule_timeout_uninterruptible(1);
1661 		return NULL;
1662 	}
1663 
1664 	/*
1665 	 * Go through the zonelist yet one more time, keep very high watermark
1666 	 * here, this is only to catch a parallel oom killing, we must fail if
1667 	 * we're still under heavy pressure.
1668 	 */
1669 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1670 		order, zonelist, high_zoneidx,
1671 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1672 		preferred_zone, migratetype);
1673 	if (page)
1674 		goto out;
1675 
1676 	if (!(gfp_mask & __GFP_NOFAIL)) {
1677 		/* The OOM killer will not help higher order allocs */
1678 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1679 			goto out;
1680 		/*
1681 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1682 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1683 		 * The caller should handle page allocation failure by itself if
1684 		 * it specifies __GFP_THISNODE.
1685 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1686 		 */
1687 		if (gfp_mask & __GFP_THISNODE)
1688 			goto out;
1689 	}
1690 	/* Exhausted what can be done so it's blamo time */
1691 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1692 
1693 out:
1694 	clear_zonelist_oom(zonelist, gfp_mask);
1695 	return page;
1696 }
1697 
1698 /* The really slow allocator path where we enter direct reclaim */
1699 static inline struct page *
1700 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1701 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1702 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1703 	int migratetype, unsigned long *did_some_progress)
1704 {
1705 	struct page *page = NULL;
1706 	struct reclaim_state reclaim_state;
1707 	struct task_struct *p = current;
1708 
1709 	cond_resched();
1710 
1711 	/* We now go into synchronous reclaim */
1712 	cpuset_memory_pressure_bump();
1713 	p->flags |= PF_MEMALLOC;
1714 	lockdep_set_current_reclaim_state(gfp_mask);
1715 	reclaim_state.reclaimed_slab = 0;
1716 	p->reclaim_state = &reclaim_state;
1717 
1718 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1719 
1720 	p->reclaim_state = NULL;
1721 	lockdep_clear_current_reclaim_state();
1722 	p->flags &= ~PF_MEMALLOC;
1723 
1724 	cond_resched();
1725 
1726 	if (order != 0)
1727 		drain_all_pages();
1728 
1729 	if (likely(*did_some_progress))
1730 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1731 					zonelist, high_zoneidx,
1732 					alloc_flags, preferred_zone,
1733 					migratetype);
1734 	return page;
1735 }
1736 
1737 /*
1738  * This is called in the allocator slow-path if the allocation request is of
1739  * sufficient urgency to ignore watermarks and take other desperate measures
1740  */
1741 static inline struct page *
1742 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1743 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1744 	nodemask_t *nodemask, struct zone *preferred_zone,
1745 	int migratetype)
1746 {
1747 	struct page *page;
1748 
1749 	do {
1750 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1751 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1752 			preferred_zone, migratetype);
1753 
1754 		if (!page && gfp_mask & __GFP_NOFAIL)
1755 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1756 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1757 
1758 	return page;
1759 }
1760 
1761 static inline
1762 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1763 						enum zone_type high_zoneidx)
1764 {
1765 	struct zoneref *z;
1766 	struct zone *zone;
1767 
1768 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1769 		wakeup_kswapd(zone, order);
1770 }
1771 
1772 static inline int
1773 gfp_to_alloc_flags(gfp_t gfp_mask)
1774 {
1775 	struct task_struct *p = current;
1776 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1777 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1778 
1779 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1780 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1781 
1782 	/*
1783 	 * The caller may dip into page reserves a bit more if the caller
1784 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1785 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1786 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1787 	 */
1788 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1789 
1790 	if (!wait) {
1791 		alloc_flags |= ALLOC_HARDER;
1792 		/*
1793 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1794 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1795 		 */
1796 		alloc_flags &= ~ALLOC_CPUSET;
1797 	} else if (unlikely(rt_task(p)) && !in_interrupt())
1798 		alloc_flags |= ALLOC_HARDER;
1799 
1800 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1801 		if (!in_interrupt() &&
1802 		    ((p->flags & PF_MEMALLOC) ||
1803 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1804 			alloc_flags |= ALLOC_NO_WATERMARKS;
1805 	}
1806 
1807 	return alloc_flags;
1808 }
1809 
1810 static inline struct page *
1811 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1812 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1813 	nodemask_t *nodemask, struct zone *preferred_zone,
1814 	int migratetype)
1815 {
1816 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1817 	struct page *page = NULL;
1818 	int alloc_flags;
1819 	unsigned long pages_reclaimed = 0;
1820 	unsigned long did_some_progress;
1821 	struct task_struct *p = current;
1822 
1823 	/*
1824 	 * In the slowpath, we sanity check order to avoid ever trying to
1825 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1826 	 * be using allocators in order of preference for an area that is
1827 	 * too large.
1828 	 */
1829 	if (order >= MAX_ORDER) {
1830 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1831 		return NULL;
1832 	}
1833 
1834 	/*
1835 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1836 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1837 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1838 	 * using a larger set of nodes after it has established that the
1839 	 * allowed per node queues are empty and that nodes are
1840 	 * over allocated.
1841 	 */
1842 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1843 		goto nopage;
1844 
1845 restart:
1846 	wake_all_kswapd(order, zonelist, high_zoneidx);
1847 
1848 	/*
1849 	 * OK, we're below the kswapd watermark and have kicked background
1850 	 * reclaim. Now things get more complex, so set up alloc_flags according
1851 	 * to how we want to proceed.
1852 	 */
1853 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1854 
1855 	/* This is the last chance, in general, before the goto nopage. */
1856 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1857 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1858 			preferred_zone, migratetype);
1859 	if (page)
1860 		goto got_pg;
1861 
1862 rebalance:
1863 	/* Allocate without watermarks if the context allows */
1864 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1865 		page = __alloc_pages_high_priority(gfp_mask, order,
1866 				zonelist, high_zoneidx, nodemask,
1867 				preferred_zone, migratetype);
1868 		if (page)
1869 			goto got_pg;
1870 	}
1871 
1872 	/* Atomic allocations - we can't balance anything */
1873 	if (!wait)
1874 		goto nopage;
1875 
1876 	/* Avoid recursion of direct reclaim */
1877 	if (p->flags & PF_MEMALLOC)
1878 		goto nopage;
1879 
1880 	/* Avoid allocations with no watermarks from looping endlessly */
1881 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1882 		goto nopage;
1883 
1884 	/* Try direct reclaim and then allocating */
1885 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1886 					zonelist, high_zoneidx,
1887 					nodemask,
1888 					alloc_flags, preferred_zone,
1889 					migratetype, &did_some_progress);
1890 	if (page)
1891 		goto got_pg;
1892 
1893 	/*
1894 	 * If we failed to make any progress reclaiming, then we are
1895 	 * running out of options and have to consider going OOM
1896 	 */
1897 	if (!did_some_progress) {
1898 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1899 			if (oom_killer_disabled)
1900 				goto nopage;
1901 			page = __alloc_pages_may_oom(gfp_mask, order,
1902 					zonelist, high_zoneidx,
1903 					nodemask, preferred_zone,
1904 					migratetype);
1905 			if (page)
1906 				goto got_pg;
1907 
1908 			/*
1909 			 * The OOM killer does not trigger for high-order
1910 			 * ~__GFP_NOFAIL allocations so if no progress is being
1911 			 * made, there are no other options and retrying is
1912 			 * unlikely to help.
1913 			 */
1914 			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1915 						!(gfp_mask & __GFP_NOFAIL))
1916 				goto nopage;
1917 
1918 			goto restart;
1919 		}
1920 	}
1921 
1922 	/* Check if we should retry the allocation */
1923 	pages_reclaimed += did_some_progress;
1924 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1925 		/* Wait for some write requests to complete then retry */
1926 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1927 		goto rebalance;
1928 	}
1929 
1930 nopage:
1931 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1932 		printk(KERN_WARNING "%s: page allocation failure."
1933 			" order:%d, mode:0x%x\n",
1934 			p->comm, order, gfp_mask);
1935 		dump_stack();
1936 		show_mem();
1937 	}
1938 	return page;
1939 got_pg:
1940 	if (kmemcheck_enabled)
1941 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1942 	return page;
1943 
1944 }
1945 
1946 /*
1947  * This is the 'heart' of the zoned buddy allocator.
1948  */
1949 struct page *
1950 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1951 			struct zonelist *zonelist, nodemask_t *nodemask)
1952 {
1953 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1954 	struct zone *preferred_zone;
1955 	struct page *page;
1956 	int migratetype = allocflags_to_migratetype(gfp_mask);
1957 
1958 	gfp_mask &= gfp_allowed_mask;
1959 
1960 	lockdep_trace_alloc(gfp_mask);
1961 
1962 	might_sleep_if(gfp_mask & __GFP_WAIT);
1963 
1964 	if (should_fail_alloc_page(gfp_mask, order))
1965 		return NULL;
1966 
1967 	/*
1968 	 * Check the zones suitable for the gfp_mask contain at least one
1969 	 * valid zone. It's possible to have an empty zonelist as a result
1970 	 * of GFP_THISNODE and a memoryless node
1971 	 */
1972 	if (unlikely(!zonelist->_zonerefs->zone))
1973 		return NULL;
1974 
1975 	/* The preferred zone is used for statistics later */
1976 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1977 	if (!preferred_zone)
1978 		return NULL;
1979 
1980 	/* First allocation attempt */
1981 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1982 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1983 			preferred_zone, migratetype);
1984 	if (unlikely(!page))
1985 		page = __alloc_pages_slowpath(gfp_mask, order,
1986 				zonelist, high_zoneidx, nodemask,
1987 				preferred_zone, migratetype);
1988 
1989 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1990 	return page;
1991 }
1992 EXPORT_SYMBOL(__alloc_pages_nodemask);
1993 
1994 /*
1995  * Common helper functions.
1996  */
1997 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1998 {
1999 	struct page *page;
2000 
2001 	/*
2002 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2003 	 * a highmem page
2004 	 */
2005 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2006 
2007 	page = alloc_pages(gfp_mask, order);
2008 	if (!page)
2009 		return 0;
2010 	return (unsigned long) page_address(page);
2011 }
2012 EXPORT_SYMBOL(__get_free_pages);
2013 
2014 unsigned long get_zeroed_page(gfp_t gfp_mask)
2015 {
2016 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2017 }
2018 EXPORT_SYMBOL(get_zeroed_page);
2019 
2020 void __pagevec_free(struct pagevec *pvec)
2021 {
2022 	int i = pagevec_count(pvec);
2023 
2024 	while (--i >= 0) {
2025 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2026 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2027 	}
2028 }
2029 
2030 void __free_pages(struct page *page, unsigned int order)
2031 {
2032 	if (put_page_testzero(page)) {
2033 		if (order == 0)
2034 			free_hot_cold_page(page, 0);
2035 		else
2036 			__free_pages_ok(page, order);
2037 	}
2038 }
2039 
2040 EXPORT_SYMBOL(__free_pages);
2041 
2042 void free_pages(unsigned long addr, unsigned int order)
2043 {
2044 	if (addr != 0) {
2045 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2046 		__free_pages(virt_to_page((void *)addr), order);
2047 	}
2048 }
2049 
2050 EXPORT_SYMBOL(free_pages);
2051 
2052 /**
2053  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2054  * @size: the number of bytes to allocate
2055  * @gfp_mask: GFP flags for the allocation
2056  *
2057  * This function is similar to alloc_pages(), except that it allocates the
2058  * minimum number of pages to satisfy the request.  alloc_pages() can only
2059  * allocate memory in power-of-two pages.
2060  *
2061  * This function is also limited by MAX_ORDER.
2062  *
2063  * Memory allocated by this function must be released by free_pages_exact().
2064  */
2065 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2066 {
2067 	unsigned int order = get_order(size);
2068 	unsigned long addr;
2069 
2070 	addr = __get_free_pages(gfp_mask, order);
2071 	if (addr) {
2072 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2073 		unsigned long used = addr + PAGE_ALIGN(size);
2074 
2075 		split_page(virt_to_page((void *)addr), order);
2076 		while (used < alloc_end) {
2077 			free_page(used);
2078 			used += PAGE_SIZE;
2079 		}
2080 	}
2081 
2082 	return (void *)addr;
2083 }
2084 EXPORT_SYMBOL(alloc_pages_exact);
2085 
2086 /**
2087  * free_pages_exact - release memory allocated via alloc_pages_exact()
2088  * @virt: the value returned by alloc_pages_exact.
2089  * @size: size of allocation, same value as passed to alloc_pages_exact().
2090  *
2091  * Release the memory allocated by a previous call to alloc_pages_exact.
2092  */
2093 void free_pages_exact(void *virt, size_t size)
2094 {
2095 	unsigned long addr = (unsigned long)virt;
2096 	unsigned long end = addr + PAGE_ALIGN(size);
2097 
2098 	while (addr < end) {
2099 		free_page(addr);
2100 		addr += PAGE_SIZE;
2101 	}
2102 }
2103 EXPORT_SYMBOL(free_pages_exact);
2104 
2105 static unsigned int nr_free_zone_pages(int offset)
2106 {
2107 	struct zoneref *z;
2108 	struct zone *zone;
2109 
2110 	/* Just pick one node, since fallback list is circular */
2111 	unsigned int sum = 0;
2112 
2113 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2114 
2115 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2116 		unsigned long size = zone->present_pages;
2117 		unsigned long high = high_wmark_pages(zone);
2118 		if (size > high)
2119 			sum += size - high;
2120 	}
2121 
2122 	return sum;
2123 }
2124 
2125 /*
2126  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2127  */
2128 unsigned int nr_free_buffer_pages(void)
2129 {
2130 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2131 }
2132 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2133 
2134 /*
2135  * Amount of free RAM allocatable within all zones
2136  */
2137 unsigned int nr_free_pagecache_pages(void)
2138 {
2139 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2140 }
2141 
2142 static inline void show_node(struct zone *zone)
2143 {
2144 	if (NUMA_BUILD)
2145 		printk("Node %d ", zone_to_nid(zone));
2146 }
2147 
2148 void si_meminfo(struct sysinfo *val)
2149 {
2150 	val->totalram = totalram_pages;
2151 	val->sharedram = 0;
2152 	val->freeram = global_page_state(NR_FREE_PAGES);
2153 	val->bufferram = nr_blockdev_pages();
2154 	val->totalhigh = totalhigh_pages;
2155 	val->freehigh = nr_free_highpages();
2156 	val->mem_unit = PAGE_SIZE;
2157 }
2158 
2159 EXPORT_SYMBOL(si_meminfo);
2160 
2161 #ifdef CONFIG_NUMA
2162 void si_meminfo_node(struct sysinfo *val, int nid)
2163 {
2164 	pg_data_t *pgdat = NODE_DATA(nid);
2165 
2166 	val->totalram = pgdat->node_present_pages;
2167 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2168 #ifdef CONFIG_HIGHMEM
2169 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2170 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2171 			NR_FREE_PAGES);
2172 #else
2173 	val->totalhigh = 0;
2174 	val->freehigh = 0;
2175 #endif
2176 	val->mem_unit = PAGE_SIZE;
2177 }
2178 #endif
2179 
2180 #define K(x) ((x) << (PAGE_SHIFT-10))
2181 
2182 /*
2183  * Show free area list (used inside shift_scroll-lock stuff)
2184  * We also calculate the percentage fragmentation. We do this by counting the
2185  * memory on each free list with the exception of the first item on the list.
2186  */
2187 void show_free_areas(void)
2188 {
2189 	int cpu;
2190 	struct zone *zone;
2191 
2192 	for_each_populated_zone(zone) {
2193 		show_node(zone);
2194 		printk("%s per-cpu:\n", zone->name);
2195 
2196 		for_each_online_cpu(cpu) {
2197 			struct per_cpu_pageset *pageset;
2198 
2199 			pageset = per_cpu_ptr(zone->pageset, cpu);
2200 
2201 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2202 			       cpu, pageset->pcp.high,
2203 			       pageset->pcp.batch, pageset->pcp.count);
2204 		}
2205 	}
2206 
2207 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2208 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2209 		" unevictable:%lu"
2210 		" dirty:%lu writeback:%lu unstable:%lu\n"
2211 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2212 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2213 		global_page_state(NR_ACTIVE_ANON),
2214 		global_page_state(NR_INACTIVE_ANON),
2215 		global_page_state(NR_ISOLATED_ANON),
2216 		global_page_state(NR_ACTIVE_FILE),
2217 		global_page_state(NR_INACTIVE_FILE),
2218 		global_page_state(NR_ISOLATED_FILE),
2219 		global_page_state(NR_UNEVICTABLE),
2220 		global_page_state(NR_FILE_DIRTY),
2221 		global_page_state(NR_WRITEBACK),
2222 		global_page_state(NR_UNSTABLE_NFS),
2223 		global_page_state(NR_FREE_PAGES),
2224 		global_page_state(NR_SLAB_RECLAIMABLE),
2225 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2226 		global_page_state(NR_FILE_MAPPED),
2227 		global_page_state(NR_SHMEM),
2228 		global_page_state(NR_PAGETABLE),
2229 		global_page_state(NR_BOUNCE));
2230 
2231 	for_each_populated_zone(zone) {
2232 		int i;
2233 
2234 		show_node(zone);
2235 		printk("%s"
2236 			" free:%lukB"
2237 			" min:%lukB"
2238 			" low:%lukB"
2239 			" high:%lukB"
2240 			" active_anon:%lukB"
2241 			" inactive_anon:%lukB"
2242 			" active_file:%lukB"
2243 			" inactive_file:%lukB"
2244 			" unevictable:%lukB"
2245 			" isolated(anon):%lukB"
2246 			" isolated(file):%lukB"
2247 			" present:%lukB"
2248 			" mlocked:%lukB"
2249 			" dirty:%lukB"
2250 			" writeback:%lukB"
2251 			" mapped:%lukB"
2252 			" shmem:%lukB"
2253 			" slab_reclaimable:%lukB"
2254 			" slab_unreclaimable:%lukB"
2255 			" kernel_stack:%lukB"
2256 			" pagetables:%lukB"
2257 			" unstable:%lukB"
2258 			" bounce:%lukB"
2259 			" writeback_tmp:%lukB"
2260 			" pages_scanned:%lu"
2261 			" all_unreclaimable? %s"
2262 			"\n",
2263 			zone->name,
2264 			K(zone_page_state(zone, NR_FREE_PAGES)),
2265 			K(min_wmark_pages(zone)),
2266 			K(low_wmark_pages(zone)),
2267 			K(high_wmark_pages(zone)),
2268 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2269 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2270 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2271 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2272 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2273 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2274 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2275 			K(zone->present_pages),
2276 			K(zone_page_state(zone, NR_MLOCK)),
2277 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2278 			K(zone_page_state(zone, NR_WRITEBACK)),
2279 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2280 			K(zone_page_state(zone, NR_SHMEM)),
2281 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2282 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2283 			zone_page_state(zone, NR_KERNEL_STACK) *
2284 				THREAD_SIZE / 1024,
2285 			K(zone_page_state(zone, NR_PAGETABLE)),
2286 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2287 			K(zone_page_state(zone, NR_BOUNCE)),
2288 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2289 			zone->pages_scanned,
2290 			(zone->all_unreclaimable ? "yes" : "no")
2291 			);
2292 		printk("lowmem_reserve[]:");
2293 		for (i = 0; i < MAX_NR_ZONES; i++)
2294 			printk(" %lu", zone->lowmem_reserve[i]);
2295 		printk("\n");
2296 	}
2297 
2298 	for_each_populated_zone(zone) {
2299  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2300 
2301 		show_node(zone);
2302 		printk("%s: ", zone->name);
2303 
2304 		spin_lock_irqsave(&zone->lock, flags);
2305 		for (order = 0; order < MAX_ORDER; order++) {
2306 			nr[order] = zone->free_area[order].nr_free;
2307 			total += nr[order] << order;
2308 		}
2309 		spin_unlock_irqrestore(&zone->lock, flags);
2310 		for (order = 0; order < MAX_ORDER; order++)
2311 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2312 		printk("= %lukB\n", K(total));
2313 	}
2314 
2315 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2316 
2317 	show_swap_cache_info();
2318 }
2319 
2320 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2321 {
2322 	zoneref->zone = zone;
2323 	zoneref->zone_idx = zone_idx(zone);
2324 }
2325 
2326 /*
2327  * Builds allocation fallback zone lists.
2328  *
2329  * Add all populated zones of a node to the zonelist.
2330  */
2331 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2332 				int nr_zones, enum zone_type zone_type)
2333 {
2334 	struct zone *zone;
2335 
2336 	BUG_ON(zone_type >= MAX_NR_ZONES);
2337 	zone_type++;
2338 
2339 	do {
2340 		zone_type--;
2341 		zone = pgdat->node_zones + zone_type;
2342 		if (populated_zone(zone)) {
2343 			zoneref_set_zone(zone,
2344 				&zonelist->_zonerefs[nr_zones++]);
2345 			check_highest_zone(zone_type);
2346 		}
2347 
2348 	} while (zone_type);
2349 	return nr_zones;
2350 }
2351 
2352 
2353 /*
2354  *  zonelist_order:
2355  *  0 = automatic detection of better ordering.
2356  *  1 = order by ([node] distance, -zonetype)
2357  *  2 = order by (-zonetype, [node] distance)
2358  *
2359  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2360  *  the same zonelist. So only NUMA can configure this param.
2361  */
2362 #define ZONELIST_ORDER_DEFAULT  0
2363 #define ZONELIST_ORDER_NODE     1
2364 #define ZONELIST_ORDER_ZONE     2
2365 
2366 /* zonelist order in the kernel.
2367  * set_zonelist_order() will set this to NODE or ZONE.
2368  */
2369 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2370 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2371 
2372 
2373 #ifdef CONFIG_NUMA
2374 /* The value user specified ....changed by config */
2375 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2376 /* string for sysctl */
2377 #define NUMA_ZONELIST_ORDER_LEN	16
2378 char numa_zonelist_order[16] = "default";
2379 
2380 /*
2381  * interface for configure zonelist ordering.
2382  * command line option "numa_zonelist_order"
2383  *	= "[dD]efault	- default, automatic configuration.
2384  *	= "[nN]ode 	- order by node locality, then by zone within node
2385  *	= "[zZ]one      - order by zone, then by locality within zone
2386  */
2387 
2388 static int __parse_numa_zonelist_order(char *s)
2389 {
2390 	if (*s == 'd' || *s == 'D') {
2391 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2392 	} else if (*s == 'n' || *s == 'N') {
2393 		user_zonelist_order = ZONELIST_ORDER_NODE;
2394 	} else if (*s == 'z' || *s == 'Z') {
2395 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2396 	} else {
2397 		printk(KERN_WARNING
2398 			"Ignoring invalid numa_zonelist_order value:  "
2399 			"%s\n", s);
2400 		return -EINVAL;
2401 	}
2402 	return 0;
2403 }
2404 
2405 static __init int setup_numa_zonelist_order(char *s)
2406 {
2407 	if (s)
2408 		return __parse_numa_zonelist_order(s);
2409 	return 0;
2410 }
2411 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2412 
2413 /*
2414  * sysctl handler for numa_zonelist_order
2415  */
2416 int numa_zonelist_order_handler(ctl_table *table, int write,
2417 		void __user *buffer, size_t *length,
2418 		loff_t *ppos)
2419 {
2420 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2421 	int ret;
2422 	static DEFINE_MUTEX(zl_order_mutex);
2423 
2424 	mutex_lock(&zl_order_mutex);
2425 	if (write)
2426 		strcpy(saved_string, (char*)table->data);
2427 	ret = proc_dostring(table, write, buffer, length, ppos);
2428 	if (ret)
2429 		goto out;
2430 	if (write) {
2431 		int oldval = user_zonelist_order;
2432 		if (__parse_numa_zonelist_order((char*)table->data)) {
2433 			/*
2434 			 * bogus value.  restore saved string
2435 			 */
2436 			strncpy((char*)table->data, saved_string,
2437 				NUMA_ZONELIST_ORDER_LEN);
2438 			user_zonelist_order = oldval;
2439 		} else if (oldval != user_zonelist_order)
2440 			build_all_zonelists();
2441 	}
2442 out:
2443 	mutex_unlock(&zl_order_mutex);
2444 	return ret;
2445 }
2446 
2447 
2448 #define MAX_NODE_LOAD (nr_online_nodes)
2449 static int node_load[MAX_NUMNODES];
2450 
2451 /**
2452  * find_next_best_node - find the next node that should appear in a given node's fallback list
2453  * @node: node whose fallback list we're appending
2454  * @used_node_mask: nodemask_t of already used nodes
2455  *
2456  * We use a number of factors to determine which is the next node that should
2457  * appear on a given node's fallback list.  The node should not have appeared
2458  * already in @node's fallback list, and it should be the next closest node
2459  * according to the distance array (which contains arbitrary distance values
2460  * from each node to each node in the system), and should also prefer nodes
2461  * with no CPUs, since presumably they'll have very little allocation pressure
2462  * on them otherwise.
2463  * It returns -1 if no node is found.
2464  */
2465 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2466 {
2467 	int n, val;
2468 	int min_val = INT_MAX;
2469 	int best_node = -1;
2470 	const struct cpumask *tmp = cpumask_of_node(0);
2471 
2472 	/* Use the local node if we haven't already */
2473 	if (!node_isset(node, *used_node_mask)) {
2474 		node_set(node, *used_node_mask);
2475 		return node;
2476 	}
2477 
2478 	for_each_node_state(n, N_HIGH_MEMORY) {
2479 
2480 		/* Don't want a node to appear more than once */
2481 		if (node_isset(n, *used_node_mask))
2482 			continue;
2483 
2484 		/* Use the distance array to find the distance */
2485 		val = node_distance(node, n);
2486 
2487 		/* Penalize nodes under us ("prefer the next node") */
2488 		val += (n < node);
2489 
2490 		/* Give preference to headless and unused nodes */
2491 		tmp = cpumask_of_node(n);
2492 		if (!cpumask_empty(tmp))
2493 			val += PENALTY_FOR_NODE_WITH_CPUS;
2494 
2495 		/* Slight preference for less loaded node */
2496 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2497 		val += node_load[n];
2498 
2499 		if (val < min_val) {
2500 			min_val = val;
2501 			best_node = n;
2502 		}
2503 	}
2504 
2505 	if (best_node >= 0)
2506 		node_set(best_node, *used_node_mask);
2507 
2508 	return best_node;
2509 }
2510 
2511 
2512 /*
2513  * Build zonelists ordered by node and zones within node.
2514  * This results in maximum locality--normal zone overflows into local
2515  * DMA zone, if any--but risks exhausting DMA zone.
2516  */
2517 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2518 {
2519 	int j;
2520 	struct zonelist *zonelist;
2521 
2522 	zonelist = &pgdat->node_zonelists[0];
2523 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2524 		;
2525 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2526 							MAX_NR_ZONES - 1);
2527 	zonelist->_zonerefs[j].zone = NULL;
2528 	zonelist->_zonerefs[j].zone_idx = 0;
2529 }
2530 
2531 /*
2532  * Build gfp_thisnode zonelists
2533  */
2534 static void build_thisnode_zonelists(pg_data_t *pgdat)
2535 {
2536 	int j;
2537 	struct zonelist *zonelist;
2538 
2539 	zonelist = &pgdat->node_zonelists[1];
2540 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2541 	zonelist->_zonerefs[j].zone = NULL;
2542 	zonelist->_zonerefs[j].zone_idx = 0;
2543 }
2544 
2545 /*
2546  * Build zonelists ordered by zone and nodes within zones.
2547  * This results in conserving DMA zone[s] until all Normal memory is
2548  * exhausted, but results in overflowing to remote node while memory
2549  * may still exist in local DMA zone.
2550  */
2551 static int node_order[MAX_NUMNODES];
2552 
2553 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2554 {
2555 	int pos, j, node;
2556 	int zone_type;		/* needs to be signed */
2557 	struct zone *z;
2558 	struct zonelist *zonelist;
2559 
2560 	zonelist = &pgdat->node_zonelists[0];
2561 	pos = 0;
2562 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2563 		for (j = 0; j < nr_nodes; j++) {
2564 			node = node_order[j];
2565 			z = &NODE_DATA(node)->node_zones[zone_type];
2566 			if (populated_zone(z)) {
2567 				zoneref_set_zone(z,
2568 					&zonelist->_zonerefs[pos++]);
2569 				check_highest_zone(zone_type);
2570 			}
2571 		}
2572 	}
2573 	zonelist->_zonerefs[pos].zone = NULL;
2574 	zonelist->_zonerefs[pos].zone_idx = 0;
2575 }
2576 
2577 static int default_zonelist_order(void)
2578 {
2579 	int nid, zone_type;
2580 	unsigned long low_kmem_size,total_size;
2581 	struct zone *z;
2582 	int average_size;
2583 	/*
2584          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2585 	 * If they are really small and used heavily, the system can fall
2586 	 * into OOM very easily.
2587 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2588 	 */
2589 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2590 	low_kmem_size = 0;
2591 	total_size = 0;
2592 	for_each_online_node(nid) {
2593 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2594 			z = &NODE_DATA(nid)->node_zones[zone_type];
2595 			if (populated_zone(z)) {
2596 				if (zone_type < ZONE_NORMAL)
2597 					low_kmem_size += z->present_pages;
2598 				total_size += z->present_pages;
2599 			}
2600 		}
2601 	}
2602 	if (!low_kmem_size ||  /* there are no DMA area. */
2603 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2604 		return ZONELIST_ORDER_NODE;
2605 	/*
2606 	 * look into each node's config.
2607   	 * If there is a node whose DMA/DMA32 memory is very big area on
2608  	 * local memory, NODE_ORDER may be suitable.
2609          */
2610 	average_size = total_size /
2611 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2612 	for_each_online_node(nid) {
2613 		low_kmem_size = 0;
2614 		total_size = 0;
2615 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2616 			z = &NODE_DATA(nid)->node_zones[zone_type];
2617 			if (populated_zone(z)) {
2618 				if (zone_type < ZONE_NORMAL)
2619 					low_kmem_size += z->present_pages;
2620 				total_size += z->present_pages;
2621 			}
2622 		}
2623 		if (low_kmem_size &&
2624 		    total_size > average_size && /* ignore small node */
2625 		    low_kmem_size > total_size * 70/100)
2626 			return ZONELIST_ORDER_NODE;
2627 	}
2628 	return ZONELIST_ORDER_ZONE;
2629 }
2630 
2631 static void set_zonelist_order(void)
2632 {
2633 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2634 		current_zonelist_order = default_zonelist_order();
2635 	else
2636 		current_zonelist_order = user_zonelist_order;
2637 }
2638 
2639 static void build_zonelists(pg_data_t *pgdat)
2640 {
2641 	int j, node, load;
2642 	enum zone_type i;
2643 	nodemask_t used_mask;
2644 	int local_node, prev_node;
2645 	struct zonelist *zonelist;
2646 	int order = current_zonelist_order;
2647 
2648 	/* initialize zonelists */
2649 	for (i = 0; i < MAX_ZONELISTS; i++) {
2650 		zonelist = pgdat->node_zonelists + i;
2651 		zonelist->_zonerefs[0].zone = NULL;
2652 		zonelist->_zonerefs[0].zone_idx = 0;
2653 	}
2654 
2655 	/* NUMA-aware ordering of nodes */
2656 	local_node = pgdat->node_id;
2657 	load = nr_online_nodes;
2658 	prev_node = local_node;
2659 	nodes_clear(used_mask);
2660 
2661 	memset(node_order, 0, sizeof(node_order));
2662 	j = 0;
2663 
2664 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2665 		int distance = node_distance(local_node, node);
2666 
2667 		/*
2668 		 * If another node is sufficiently far away then it is better
2669 		 * to reclaim pages in a zone before going off node.
2670 		 */
2671 		if (distance > RECLAIM_DISTANCE)
2672 			zone_reclaim_mode = 1;
2673 
2674 		/*
2675 		 * We don't want to pressure a particular node.
2676 		 * So adding penalty to the first node in same
2677 		 * distance group to make it round-robin.
2678 		 */
2679 		if (distance != node_distance(local_node, prev_node))
2680 			node_load[node] = load;
2681 
2682 		prev_node = node;
2683 		load--;
2684 		if (order == ZONELIST_ORDER_NODE)
2685 			build_zonelists_in_node_order(pgdat, node);
2686 		else
2687 			node_order[j++] = node;	/* remember order */
2688 	}
2689 
2690 	if (order == ZONELIST_ORDER_ZONE) {
2691 		/* calculate node order -- i.e., DMA last! */
2692 		build_zonelists_in_zone_order(pgdat, j);
2693 	}
2694 
2695 	build_thisnode_zonelists(pgdat);
2696 }
2697 
2698 /* Construct the zonelist performance cache - see further mmzone.h */
2699 static void build_zonelist_cache(pg_data_t *pgdat)
2700 {
2701 	struct zonelist *zonelist;
2702 	struct zonelist_cache *zlc;
2703 	struct zoneref *z;
2704 
2705 	zonelist = &pgdat->node_zonelists[0];
2706 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2707 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2708 	for (z = zonelist->_zonerefs; z->zone; z++)
2709 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2710 }
2711 
2712 
2713 #else	/* CONFIG_NUMA */
2714 
2715 static void set_zonelist_order(void)
2716 {
2717 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2718 }
2719 
2720 static void build_zonelists(pg_data_t *pgdat)
2721 {
2722 	int node, local_node;
2723 	enum zone_type j;
2724 	struct zonelist *zonelist;
2725 
2726 	local_node = pgdat->node_id;
2727 
2728 	zonelist = &pgdat->node_zonelists[0];
2729 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2730 
2731 	/*
2732 	 * Now we build the zonelist so that it contains the zones
2733 	 * of all the other nodes.
2734 	 * We don't want to pressure a particular node, so when
2735 	 * building the zones for node N, we make sure that the
2736 	 * zones coming right after the local ones are those from
2737 	 * node N+1 (modulo N)
2738 	 */
2739 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2740 		if (!node_online(node))
2741 			continue;
2742 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2743 							MAX_NR_ZONES - 1);
2744 	}
2745 	for (node = 0; node < local_node; node++) {
2746 		if (!node_online(node))
2747 			continue;
2748 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2749 							MAX_NR_ZONES - 1);
2750 	}
2751 
2752 	zonelist->_zonerefs[j].zone = NULL;
2753 	zonelist->_zonerefs[j].zone_idx = 0;
2754 }
2755 
2756 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2757 static void build_zonelist_cache(pg_data_t *pgdat)
2758 {
2759 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2760 }
2761 
2762 #endif	/* CONFIG_NUMA */
2763 
2764 /*
2765  * Boot pageset table. One per cpu which is going to be used for all
2766  * zones and all nodes. The parameters will be set in such a way
2767  * that an item put on a list will immediately be handed over to
2768  * the buddy list. This is safe since pageset manipulation is done
2769  * with interrupts disabled.
2770  *
2771  * The boot_pagesets must be kept even after bootup is complete for
2772  * unused processors and/or zones. They do play a role for bootstrapping
2773  * hotplugged processors.
2774  *
2775  * zoneinfo_show() and maybe other functions do
2776  * not check if the processor is online before following the pageset pointer.
2777  * Other parts of the kernel may not check if the zone is available.
2778  */
2779 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2780 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2781 
2782 /* return values int ....just for stop_machine() */
2783 static int __build_all_zonelists(void *dummy)
2784 {
2785 	int nid;
2786 	int cpu;
2787 
2788 #ifdef CONFIG_NUMA
2789 	memset(node_load, 0, sizeof(node_load));
2790 #endif
2791 	for_each_online_node(nid) {
2792 		pg_data_t *pgdat = NODE_DATA(nid);
2793 
2794 		build_zonelists(pgdat);
2795 		build_zonelist_cache(pgdat);
2796 	}
2797 
2798 	/*
2799 	 * Initialize the boot_pagesets that are going to be used
2800 	 * for bootstrapping processors. The real pagesets for
2801 	 * each zone will be allocated later when the per cpu
2802 	 * allocator is available.
2803 	 *
2804 	 * boot_pagesets are used also for bootstrapping offline
2805 	 * cpus if the system is already booted because the pagesets
2806 	 * are needed to initialize allocators on a specific cpu too.
2807 	 * F.e. the percpu allocator needs the page allocator which
2808 	 * needs the percpu allocator in order to allocate its pagesets
2809 	 * (a chicken-egg dilemma).
2810 	 */
2811 	for_each_possible_cpu(cpu)
2812 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2813 
2814 	return 0;
2815 }
2816 
2817 void build_all_zonelists(void)
2818 {
2819 	set_zonelist_order();
2820 
2821 	if (system_state == SYSTEM_BOOTING) {
2822 		__build_all_zonelists(NULL);
2823 		mminit_verify_zonelist();
2824 		cpuset_init_current_mems_allowed();
2825 	} else {
2826 		/* we have to stop all cpus to guarantee there is no user
2827 		   of zonelist */
2828 		stop_machine(__build_all_zonelists, NULL, NULL);
2829 		/* cpuset refresh routine should be here */
2830 	}
2831 	vm_total_pages = nr_free_pagecache_pages();
2832 	/*
2833 	 * Disable grouping by mobility if the number of pages in the
2834 	 * system is too low to allow the mechanism to work. It would be
2835 	 * more accurate, but expensive to check per-zone. This check is
2836 	 * made on memory-hotadd so a system can start with mobility
2837 	 * disabled and enable it later
2838 	 */
2839 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2840 		page_group_by_mobility_disabled = 1;
2841 	else
2842 		page_group_by_mobility_disabled = 0;
2843 
2844 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2845 		"Total pages: %ld\n",
2846 			nr_online_nodes,
2847 			zonelist_order_name[current_zonelist_order],
2848 			page_group_by_mobility_disabled ? "off" : "on",
2849 			vm_total_pages);
2850 #ifdef CONFIG_NUMA
2851 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2852 #endif
2853 }
2854 
2855 /*
2856  * Helper functions to size the waitqueue hash table.
2857  * Essentially these want to choose hash table sizes sufficiently
2858  * large so that collisions trying to wait on pages are rare.
2859  * But in fact, the number of active page waitqueues on typical
2860  * systems is ridiculously low, less than 200. So this is even
2861  * conservative, even though it seems large.
2862  *
2863  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2864  * waitqueues, i.e. the size of the waitq table given the number of pages.
2865  */
2866 #define PAGES_PER_WAITQUEUE	256
2867 
2868 #ifndef CONFIG_MEMORY_HOTPLUG
2869 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2870 {
2871 	unsigned long size = 1;
2872 
2873 	pages /= PAGES_PER_WAITQUEUE;
2874 
2875 	while (size < pages)
2876 		size <<= 1;
2877 
2878 	/*
2879 	 * Once we have dozens or even hundreds of threads sleeping
2880 	 * on IO we've got bigger problems than wait queue collision.
2881 	 * Limit the size of the wait table to a reasonable size.
2882 	 */
2883 	size = min(size, 4096UL);
2884 
2885 	return max(size, 4UL);
2886 }
2887 #else
2888 /*
2889  * A zone's size might be changed by hot-add, so it is not possible to determine
2890  * a suitable size for its wait_table.  So we use the maximum size now.
2891  *
2892  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2893  *
2894  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2895  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2896  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2897  *
2898  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2899  * or more by the traditional way. (See above).  It equals:
2900  *
2901  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2902  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2903  *    powerpc (64K page size)             : =  (32G +16M)byte.
2904  */
2905 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2906 {
2907 	return 4096UL;
2908 }
2909 #endif
2910 
2911 /*
2912  * This is an integer logarithm so that shifts can be used later
2913  * to extract the more random high bits from the multiplicative
2914  * hash function before the remainder is taken.
2915  */
2916 static inline unsigned long wait_table_bits(unsigned long size)
2917 {
2918 	return ffz(~size);
2919 }
2920 
2921 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2922 
2923 /*
2924  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2925  * of blocks reserved is based on min_wmark_pages(zone). The memory within
2926  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2927  * higher will lead to a bigger reserve which will get freed as contiguous
2928  * blocks as reclaim kicks in
2929  */
2930 static void setup_zone_migrate_reserve(struct zone *zone)
2931 {
2932 	unsigned long start_pfn, pfn, end_pfn;
2933 	struct page *page;
2934 	unsigned long block_migratetype;
2935 	int reserve;
2936 
2937 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2938 	start_pfn = zone->zone_start_pfn;
2939 	end_pfn = start_pfn + zone->spanned_pages;
2940 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2941 							pageblock_order;
2942 
2943 	/*
2944 	 * Reserve blocks are generally in place to help high-order atomic
2945 	 * allocations that are short-lived. A min_free_kbytes value that
2946 	 * would result in more than 2 reserve blocks for atomic allocations
2947 	 * is assumed to be in place to help anti-fragmentation for the
2948 	 * future allocation of hugepages at runtime.
2949 	 */
2950 	reserve = min(2, reserve);
2951 
2952 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2953 		if (!pfn_valid(pfn))
2954 			continue;
2955 		page = pfn_to_page(pfn);
2956 
2957 		/* Watch out for overlapping nodes */
2958 		if (page_to_nid(page) != zone_to_nid(zone))
2959 			continue;
2960 
2961 		/* Blocks with reserved pages will never free, skip them. */
2962 		if (PageReserved(page))
2963 			continue;
2964 
2965 		block_migratetype = get_pageblock_migratetype(page);
2966 
2967 		/* If this block is reserved, account for it */
2968 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2969 			reserve--;
2970 			continue;
2971 		}
2972 
2973 		/* Suitable for reserving if this block is movable */
2974 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2975 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2976 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2977 			reserve--;
2978 			continue;
2979 		}
2980 
2981 		/*
2982 		 * If the reserve is met and this is a previous reserved block,
2983 		 * take it back
2984 		 */
2985 		if (block_migratetype == MIGRATE_RESERVE) {
2986 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2987 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2988 		}
2989 	}
2990 }
2991 
2992 /*
2993  * Initially all pages are reserved - free ones are freed
2994  * up by free_all_bootmem() once the early boot process is
2995  * done. Non-atomic initialization, single-pass.
2996  */
2997 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2998 		unsigned long start_pfn, enum memmap_context context)
2999 {
3000 	struct page *page;
3001 	unsigned long end_pfn = start_pfn + size;
3002 	unsigned long pfn;
3003 	struct zone *z;
3004 
3005 	if (highest_memmap_pfn < end_pfn - 1)
3006 		highest_memmap_pfn = end_pfn - 1;
3007 
3008 	z = &NODE_DATA(nid)->node_zones[zone];
3009 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3010 		/*
3011 		 * There can be holes in boot-time mem_map[]s
3012 		 * handed to this function.  They do not
3013 		 * exist on hotplugged memory.
3014 		 */
3015 		if (context == MEMMAP_EARLY) {
3016 			if (!early_pfn_valid(pfn))
3017 				continue;
3018 			if (!early_pfn_in_nid(pfn, nid))
3019 				continue;
3020 		}
3021 		page = pfn_to_page(pfn);
3022 		set_page_links(page, zone, nid, pfn);
3023 		mminit_verify_page_links(page, zone, nid, pfn);
3024 		init_page_count(page);
3025 		reset_page_mapcount(page);
3026 		SetPageReserved(page);
3027 		/*
3028 		 * Mark the block movable so that blocks are reserved for
3029 		 * movable at startup. This will force kernel allocations
3030 		 * to reserve their blocks rather than leaking throughout
3031 		 * the address space during boot when many long-lived
3032 		 * kernel allocations are made. Later some blocks near
3033 		 * the start are marked MIGRATE_RESERVE by
3034 		 * setup_zone_migrate_reserve()
3035 		 *
3036 		 * bitmap is created for zone's valid pfn range. but memmap
3037 		 * can be created for invalid pages (for alignment)
3038 		 * check here not to call set_pageblock_migratetype() against
3039 		 * pfn out of zone.
3040 		 */
3041 		if ((z->zone_start_pfn <= pfn)
3042 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3043 		    && !(pfn & (pageblock_nr_pages - 1)))
3044 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3045 
3046 		INIT_LIST_HEAD(&page->lru);
3047 #ifdef WANT_PAGE_VIRTUAL
3048 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3049 		if (!is_highmem_idx(zone))
3050 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3051 #endif
3052 	}
3053 }
3054 
3055 static void __meminit zone_init_free_lists(struct zone *zone)
3056 {
3057 	int order, t;
3058 	for_each_migratetype_order(order, t) {
3059 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3060 		zone->free_area[order].nr_free = 0;
3061 	}
3062 }
3063 
3064 #ifndef __HAVE_ARCH_MEMMAP_INIT
3065 #define memmap_init(size, nid, zone, start_pfn) \
3066 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3067 #endif
3068 
3069 static int zone_batchsize(struct zone *zone)
3070 {
3071 #ifdef CONFIG_MMU
3072 	int batch;
3073 
3074 	/*
3075 	 * The per-cpu-pages pools are set to around 1000th of the
3076 	 * size of the zone.  But no more than 1/2 of a meg.
3077 	 *
3078 	 * OK, so we don't know how big the cache is.  So guess.
3079 	 */
3080 	batch = zone->present_pages / 1024;
3081 	if (batch * PAGE_SIZE > 512 * 1024)
3082 		batch = (512 * 1024) / PAGE_SIZE;
3083 	batch /= 4;		/* We effectively *= 4 below */
3084 	if (batch < 1)
3085 		batch = 1;
3086 
3087 	/*
3088 	 * Clamp the batch to a 2^n - 1 value. Having a power
3089 	 * of 2 value was found to be more likely to have
3090 	 * suboptimal cache aliasing properties in some cases.
3091 	 *
3092 	 * For example if 2 tasks are alternately allocating
3093 	 * batches of pages, one task can end up with a lot
3094 	 * of pages of one half of the possible page colors
3095 	 * and the other with pages of the other colors.
3096 	 */
3097 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3098 
3099 	return batch;
3100 
3101 #else
3102 	/* The deferral and batching of frees should be suppressed under NOMMU
3103 	 * conditions.
3104 	 *
3105 	 * The problem is that NOMMU needs to be able to allocate large chunks
3106 	 * of contiguous memory as there's no hardware page translation to
3107 	 * assemble apparent contiguous memory from discontiguous pages.
3108 	 *
3109 	 * Queueing large contiguous runs of pages for batching, however,
3110 	 * causes the pages to actually be freed in smaller chunks.  As there
3111 	 * can be a significant delay between the individual batches being
3112 	 * recycled, this leads to the once large chunks of space being
3113 	 * fragmented and becoming unavailable for high-order allocations.
3114 	 */
3115 	return 0;
3116 #endif
3117 }
3118 
3119 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3120 {
3121 	struct per_cpu_pages *pcp;
3122 	int migratetype;
3123 
3124 	memset(p, 0, sizeof(*p));
3125 
3126 	pcp = &p->pcp;
3127 	pcp->count = 0;
3128 	pcp->high = 6 * batch;
3129 	pcp->batch = max(1UL, 1 * batch);
3130 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3131 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3132 }
3133 
3134 /*
3135  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3136  * to the value high for the pageset p.
3137  */
3138 
3139 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3140 				unsigned long high)
3141 {
3142 	struct per_cpu_pages *pcp;
3143 
3144 	pcp = &p->pcp;
3145 	pcp->high = high;
3146 	pcp->batch = max(1UL, high/4);
3147 	if ((high/4) > (PAGE_SHIFT * 8))
3148 		pcp->batch = PAGE_SHIFT * 8;
3149 }
3150 
3151 /*
3152  * Allocate per cpu pagesets and initialize them.
3153  * Before this call only boot pagesets were available.
3154  * Boot pagesets will no longer be used by this processorr
3155  * after setup_per_cpu_pageset().
3156  */
3157 void __init setup_per_cpu_pageset(void)
3158 {
3159 	struct zone *zone;
3160 	int cpu;
3161 
3162 	for_each_populated_zone(zone) {
3163 		zone->pageset = alloc_percpu(struct per_cpu_pageset);
3164 
3165 		for_each_possible_cpu(cpu) {
3166 			struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3167 
3168 			setup_pageset(pcp, zone_batchsize(zone));
3169 
3170 			if (percpu_pagelist_fraction)
3171 				setup_pagelist_highmark(pcp,
3172 					(zone->present_pages /
3173 						percpu_pagelist_fraction));
3174 		}
3175 	}
3176 }
3177 
3178 static noinline __init_refok
3179 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3180 {
3181 	int i;
3182 	struct pglist_data *pgdat = zone->zone_pgdat;
3183 	size_t alloc_size;
3184 
3185 	/*
3186 	 * The per-page waitqueue mechanism uses hashed waitqueues
3187 	 * per zone.
3188 	 */
3189 	zone->wait_table_hash_nr_entries =
3190 		 wait_table_hash_nr_entries(zone_size_pages);
3191 	zone->wait_table_bits =
3192 		wait_table_bits(zone->wait_table_hash_nr_entries);
3193 	alloc_size = zone->wait_table_hash_nr_entries
3194 					* sizeof(wait_queue_head_t);
3195 
3196 	if (!slab_is_available()) {
3197 		zone->wait_table = (wait_queue_head_t *)
3198 			alloc_bootmem_node(pgdat, alloc_size);
3199 	} else {
3200 		/*
3201 		 * This case means that a zone whose size was 0 gets new memory
3202 		 * via memory hot-add.
3203 		 * But it may be the case that a new node was hot-added.  In
3204 		 * this case vmalloc() will not be able to use this new node's
3205 		 * memory - this wait_table must be initialized to use this new
3206 		 * node itself as well.
3207 		 * To use this new node's memory, further consideration will be
3208 		 * necessary.
3209 		 */
3210 		zone->wait_table = vmalloc(alloc_size);
3211 	}
3212 	if (!zone->wait_table)
3213 		return -ENOMEM;
3214 
3215 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3216 		init_waitqueue_head(zone->wait_table + i);
3217 
3218 	return 0;
3219 }
3220 
3221 static int __zone_pcp_update(void *data)
3222 {
3223 	struct zone *zone = data;
3224 	int cpu;
3225 	unsigned long batch = zone_batchsize(zone), flags;
3226 
3227 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3228 		struct per_cpu_pageset *pset;
3229 		struct per_cpu_pages *pcp;
3230 
3231 		pset = per_cpu_ptr(zone->pageset, cpu);
3232 		pcp = &pset->pcp;
3233 
3234 		local_irq_save(flags);
3235 		free_pcppages_bulk(zone, pcp->count, pcp);
3236 		setup_pageset(pset, batch);
3237 		local_irq_restore(flags);
3238 	}
3239 	return 0;
3240 }
3241 
3242 void zone_pcp_update(struct zone *zone)
3243 {
3244 	stop_machine(__zone_pcp_update, zone, NULL);
3245 }
3246 
3247 static __meminit void zone_pcp_init(struct zone *zone)
3248 {
3249 	/*
3250 	 * per cpu subsystem is not up at this point. The following code
3251 	 * relies on the ability of the linker to provide the
3252 	 * offset of a (static) per cpu variable into the per cpu area.
3253 	 */
3254 	zone->pageset = &boot_pageset;
3255 
3256 	if (zone->present_pages)
3257 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3258 			zone->name, zone->present_pages,
3259 					 zone_batchsize(zone));
3260 }
3261 
3262 __meminit int init_currently_empty_zone(struct zone *zone,
3263 					unsigned long zone_start_pfn,
3264 					unsigned long size,
3265 					enum memmap_context context)
3266 {
3267 	struct pglist_data *pgdat = zone->zone_pgdat;
3268 	int ret;
3269 	ret = zone_wait_table_init(zone, size);
3270 	if (ret)
3271 		return ret;
3272 	pgdat->nr_zones = zone_idx(zone) + 1;
3273 
3274 	zone->zone_start_pfn = zone_start_pfn;
3275 
3276 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3277 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3278 			pgdat->node_id,
3279 			(unsigned long)zone_idx(zone),
3280 			zone_start_pfn, (zone_start_pfn + size));
3281 
3282 	zone_init_free_lists(zone);
3283 
3284 	return 0;
3285 }
3286 
3287 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3288 /*
3289  * Basic iterator support. Return the first range of PFNs for a node
3290  * Note: nid == MAX_NUMNODES returns first region regardless of node
3291  */
3292 static int __meminit first_active_region_index_in_nid(int nid)
3293 {
3294 	int i;
3295 
3296 	for (i = 0; i < nr_nodemap_entries; i++)
3297 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3298 			return i;
3299 
3300 	return -1;
3301 }
3302 
3303 /*
3304  * Basic iterator support. Return the next active range of PFNs for a node
3305  * Note: nid == MAX_NUMNODES returns next region regardless of node
3306  */
3307 static int __meminit next_active_region_index_in_nid(int index, int nid)
3308 {
3309 	for (index = index + 1; index < nr_nodemap_entries; index++)
3310 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3311 			return index;
3312 
3313 	return -1;
3314 }
3315 
3316 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3317 /*
3318  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3319  * Architectures may implement their own version but if add_active_range()
3320  * was used and there are no special requirements, this is a convenient
3321  * alternative
3322  */
3323 int __meminit __early_pfn_to_nid(unsigned long pfn)
3324 {
3325 	int i;
3326 
3327 	for (i = 0; i < nr_nodemap_entries; i++) {
3328 		unsigned long start_pfn = early_node_map[i].start_pfn;
3329 		unsigned long end_pfn = early_node_map[i].end_pfn;
3330 
3331 		if (start_pfn <= pfn && pfn < end_pfn)
3332 			return early_node_map[i].nid;
3333 	}
3334 	/* This is a memory hole */
3335 	return -1;
3336 }
3337 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3338 
3339 int __meminit early_pfn_to_nid(unsigned long pfn)
3340 {
3341 	int nid;
3342 
3343 	nid = __early_pfn_to_nid(pfn);
3344 	if (nid >= 0)
3345 		return nid;
3346 	/* just returns 0 */
3347 	return 0;
3348 }
3349 
3350 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3351 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3352 {
3353 	int nid;
3354 
3355 	nid = __early_pfn_to_nid(pfn);
3356 	if (nid >= 0 && nid != node)
3357 		return false;
3358 	return true;
3359 }
3360 #endif
3361 
3362 /* Basic iterator support to walk early_node_map[] */
3363 #define for_each_active_range_index_in_nid(i, nid) \
3364 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3365 				i = next_active_region_index_in_nid(i, nid))
3366 
3367 /**
3368  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3369  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3370  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3371  *
3372  * If an architecture guarantees that all ranges registered with
3373  * add_active_ranges() contain no holes and may be freed, this
3374  * this function may be used instead of calling free_bootmem() manually.
3375  */
3376 void __init free_bootmem_with_active_regions(int nid,
3377 						unsigned long max_low_pfn)
3378 {
3379 	int i;
3380 
3381 	for_each_active_range_index_in_nid(i, nid) {
3382 		unsigned long size_pages = 0;
3383 		unsigned long end_pfn = early_node_map[i].end_pfn;
3384 
3385 		if (early_node_map[i].start_pfn >= max_low_pfn)
3386 			continue;
3387 
3388 		if (end_pfn > max_low_pfn)
3389 			end_pfn = max_low_pfn;
3390 
3391 		size_pages = end_pfn - early_node_map[i].start_pfn;
3392 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3393 				PFN_PHYS(early_node_map[i].start_pfn),
3394 				size_pages << PAGE_SHIFT);
3395 	}
3396 }
3397 
3398 int __init add_from_early_node_map(struct range *range, int az,
3399 				   int nr_range, int nid)
3400 {
3401 	int i;
3402 	u64 start, end;
3403 
3404 	/* need to go over early_node_map to find out good range for node */
3405 	for_each_active_range_index_in_nid(i, nid) {
3406 		start = early_node_map[i].start_pfn;
3407 		end = early_node_map[i].end_pfn;
3408 		nr_range = add_range(range, az, nr_range, start, end);
3409 	}
3410 	return nr_range;
3411 }
3412 
3413 #ifdef CONFIG_NO_BOOTMEM
3414 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3415 					u64 goal, u64 limit)
3416 {
3417 	int i;
3418 	void *ptr;
3419 
3420 	/* need to go over early_node_map to find out good range for node */
3421 	for_each_active_range_index_in_nid(i, nid) {
3422 		u64 addr;
3423 		u64 ei_start, ei_last;
3424 
3425 		ei_last = early_node_map[i].end_pfn;
3426 		ei_last <<= PAGE_SHIFT;
3427 		ei_start = early_node_map[i].start_pfn;
3428 		ei_start <<= PAGE_SHIFT;
3429 		addr = find_early_area(ei_start, ei_last,
3430 					 goal, limit, size, align);
3431 
3432 		if (addr == -1ULL)
3433 			continue;
3434 
3435 #if 0
3436 		printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3437 				nid,
3438 				ei_start, ei_last, goal, limit, size,
3439 				align, addr);
3440 #endif
3441 
3442 		ptr = phys_to_virt(addr);
3443 		memset(ptr, 0, size);
3444 		reserve_early_without_check(addr, addr + size, "BOOTMEM");
3445 		return ptr;
3446 	}
3447 
3448 	return NULL;
3449 }
3450 #endif
3451 
3452 
3453 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3454 {
3455 	int i;
3456 	int ret;
3457 
3458 	for_each_active_range_index_in_nid(i, nid) {
3459 		ret = work_fn(early_node_map[i].start_pfn,
3460 			      early_node_map[i].end_pfn, data);
3461 		if (ret)
3462 			break;
3463 	}
3464 }
3465 /**
3466  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3467  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3468  *
3469  * If an architecture guarantees that all ranges registered with
3470  * add_active_ranges() contain no holes and may be freed, this
3471  * function may be used instead of calling memory_present() manually.
3472  */
3473 void __init sparse_memory_present_with_active_regions(int nid)
3474 {
3475 	int i;
3476 
3477 	for_each_active_range_index_in_nid(i, nid)
3478 		memory_present(early_node_map[i].nid,
3479 				early_node_map[i].start_pfn,
3480 				early_node_map[i].end_pfn);
3481 }
3482 
3483 /**
3484  * get_pfn_range_for_nid - Return the start and end page frames for a node
3485  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3486  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3487  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3488  *
3489  * It returns the start and end page frame of a node based on information
3490  * provided by an arch calling add_active_range(). If called for a node
3491  * with no available memory, a warning is printed and the start and end
3492  * PFNs will be 0.
3493  */
3494 void __meminit get_pfn_range_for_nid(unsigned int nid,
3495 			unsigned long *start_pfn, unsigned long *end_pfn)
3496 {
3497 	int i;
3498 	*start_pfn = -1UL;
3499 	*end_pfn = 0;
3500 
3501 	for_each_active_range_index_in_nid(i, nid) {
3502 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3503 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3504 	}
3505 
3506 	if (*start_pfn == -1UL)
3507 		*start_pfn = 0;
3508 }
3509 
3510 /*
3511  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3512  * assumption is made that zones within a node are ordered in monotonic
3513  * increasing memory addresses so that the "highest" populated zone is used
3514  */
3515 static void __init find_usable_zone_for_movable(void)
3516 {
3517 	int zone_index;
3518 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3519 		if (zone_index == ZONE_MOVABLE)
3520 			continue;
3521 
3522 		if (arch_zone_highest_possible_pfn[zone_index] >
3523 				arch_zone_lowest_possible_pfn[zone_index])
3524 			break;
3525 	}
3526 
3527 	VM_BUG_ON(zone_index == -1);
3528 	movable_zone = zone_index;
3529 }
3530 
3531 /*
3532  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3533  * because it is sized independant of architecture. Unlike the other zones,
3534  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3535  * in each node depending on the size of each node and how evenly kernelcore
3536  * is distributed. This helper function adjusts the zone ranges
3537  * provided by the architecture for a given node by using the end of the
3538  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3539  * zones within a node are in order of monotonic increases memory addresses
3540  */
3541 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3542 					unsigned long zone_type,
3543 					unsigned long node_start_pfn,
3544 					unsigned long node_end_pfn,
3545 					unsigned long *zone_start_pfn,
3546 					unsigned long *zone_end_pfn)
3547 {
3548 	/* Only adjust if ZONE_MOVABLE is on this node */
3549 	if (zone_movable_pfn[nid]) {
3550 		/* Size ZONE_MOVABLE */
3551 		if (zone_type == ZONE_MOVABLE) {
3552 			*zone_start_pfn = zone_movable_pfn[nid];
3553 			*zone_end_pfn = min(node_end_pfn,
3554 				arch_zone_highest_possible_pfn[movable_zone]);
3555 
3556 		/* Adjust for ZONE_MOVABLE starting within this range */
3557 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3558 				*zone_end_pfn > zone_movable_pfn[nid]) {
3559 			*zone_end_pfn = zone_movable_pfn[nid];
3560 
3561 		/* Check if this whole range is within ZONE_MOVABLE */
3562 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3563 			*zone_start_pfn = *zone_end_pfn;
3564 	}
3565 }
3566 
3567 /*
3568  * Return the number of pages a zone spans in a node, including holes
3569  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3570  */
3571 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3572 					unsigned long zone_type,
3573 					unsigned long *ignored)
3574 {
3575 	unsigned long node_start_pfn, node_end_pfn;
3576 	unsigned long zone_start_pfn, zone_end_pfn;
3577 
3578 	/* Get the start and end of the node and zone */
3579 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3580 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3581 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3582 	adjust_zone_range_for_zone_movable(nid, zone_type,
3583 				node_start_pfn, node_end_pfn,
3584 				&zone_start_pfn, &zone_end_pfn);
3585 
3586 	/* Check that this node has pages within the zone's required range */
3587 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3588 		return 0;
3589 
3590 	/* Move the zone boundaries inside the node if necessary */
3591 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3592 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3593 
3594 	/* Return the spanned pages */
3595 	return zone_end_pfn - zone_start_pfn;
3596 }
3597 
3598 /*
3599  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3600  * then all holes in the requested range will be accounted for.
3601  */
3602 unsigned long __meminit __absent_pages_in_range(int nid,
3603 				unsigned long range_start_pfn,
3604 				unsigned long range_end_pfn)
3605 {
3606 	int i = 0;
3607 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3608 	unsigned long start_pfn;
3609 
3610 	/* Find the end_pfn of the first active range of pfns in the node */
3611 	i = first_active_region_index_in_nid(nid);
3612 	if (i == -1)
3613 		return 0;
3614 
3615 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3616 
3617 	/* Account for ranges before physical memory on this node */
3618 	if (early_node_map[i].start_pfn > range_start_pfn)
3619 		hole_pages = prev_end_pfn - range_start_pfn;
3620 
3621 	/* Find all holes for the zone within the node */
3622 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3623 
3624 		/* No need to continue if prev_end_pfn is outside the zone */
3625 		if (prev_end_pfn >= range_end_pfn)
3626 			break;
3627 
3628 		/* Make sure the end of the zone is not within the hole */
3629 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3630 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3631 
3632 		/* Update the hole size cound and move on */
3633 		if (start_pfn > range_start_pfn) {
3634 			BUG_ON(prev_end_pfn > start_pfn);
3635 			hole_pages += start_pfn - prev_end_pfn;
3636 		}
3637 		prev_end_pfn = early_node_map[i].end_pfn;
3638 	}
3639 
3640 	/* Account for ranges past physical memory on this node */
3641 	if (range_end_pfn > prev_end_pfn)
3642 		hole_pages += range_end_pfn -
3643 				max(range_start_pfn, prev_end_pfn);
3644 
3645 	return hole_pages;
3646 }
3647 
3648 /**
3649  * absent_pages_in_range - Return number of page frames in holes within a range
3650  * @start_pfn: The start PFN to start searching for holes
3651  * @end_pfn: The end PFN to stop searching for holes
3652  *
3653  * It returns the number of pages frames in memory holes within a range.
3654  */
3655 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3656 							unsigned long end_pfn)
3657 {
3658 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3659 }
3660 
3661 /* Return the number of page frames in holes in a zone on a node */
3662 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3663 					unsigned long zone_type,
3664 					unsigned long *ignored)
3665 {
3666 	unsigned long node_start_pfn, node_end_pfn;
3667 	unsigned long zone_start_pfn, zone_end_pfn;
3668 
3669 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3670 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3671 							node_start_pfn);
3672 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3673 							node_end_pfn);
3674 
3675 	adjust_zone_range_for_zone_movable(nid, zone_type,
3676 			node_start_pfn, node_end_pfn,
3677 			&zone_start_pfn, &zone_end_pfn);
3678 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3679 }
3680 
3681 #else
3682 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3683 					unsigned long zone_type,
3684 					unsigned long *zones_size)
3685 {
3686 	return zones_size[zone_type];
3687 }
3688 
3689 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3690 						unsigned long zone_type,
3691 						unsigned long *zholes_size)
3692 {
3693 	if (!zholes_size)
3694 		return 0;
3695 
3696 	return zholes_size[zone_type];
3697 }
3698 
3699 #endif
3700 
3701 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3702 		unsigned long *zones_size, unsigned long *zholes_size)
3703 {
3704 	unsigned long realtotalpages, totalpages = 0;
3705 	enum zone_type i;
3706 
3707 	for (i = 0; i < MAX_NR_ZONES; i++)
3708 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3709 								zones_size);
3710 	pgdat->node_spanned_pages = totalpages;
3711 
3712 	realtotalpages = totalpages;
3713 	for (i = 0; i < MAX_NR_ZONES; i++)
3714 		realtotalpages -=
3715 			zone_absent_pages_in_node(pgdat->node_id, i,
3716 								zholes_size);
3717 	pgdat->node_present_pages = realtotalpages;
3718 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3719 							realtotalpages);
3720 }
3721 
3722 #ifndef CONFIG_SPARSEMEM
3723 /*
3724  * Calculate the size of the zone->blockflags rounded to an unsigned long
3725  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3726  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3727  * round what is now in bits to nearest long in bits, then return it in
3728  * bytes.
3729  */
3730 static unsigned long __init usemap_size(unsigned long zonesize)
3731 {
3732 	unsigned long usemapsize;
3733 
3734 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3735 	usemapsize = usemapsize >> pageblock_order;
3736 	usemapsize *= NR_PAGEBLOCK_BITS;
3737 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3738 
3739 	return usemapsize / 8;
3740 }
3741 
3742 static void __init setup_usemap(struct pglist_data *pgdat,
3743 				struct zone *zone, unsigned long zonesize)
3744 {
3745 	unsigned long usemapsize = usemap_size(zonesize);
3746 	zone->pageblock_flags = NULL;
3747 	if (usemapsize)
3748 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3749 }
3750 #else
3751 static void inline setup_usemap(struct pglist_data *pgdat,
3752 				struct zone *zone, unsigned long zonesize) {}
3753 #endif /* CONFIG_SPARSEMEM */
3754 
3755 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3756 
3757 /* Return a sensible default order for the pageblock size. */
3758 static inline int pageblock_default_order(void)
3759 {
3760 	if (HPAGE_SHIFT > PAGE_SHIFT)
3761 		return HUGETLB_PAGE_ORDER;
3762 
3763 	return MAX_ORDER-1;
3764 }
3765 
3766 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3767 static inline void __init set_pageblock_order(unsigned int order)
3768 {
3769 	/* Check that pageblock_nr_pages has not already been setup */
3770 	if (pageblock_order)
3771 		return;
3772 
3773 	/*
3774 	 * Assume the largest contiguous order of interest is a huge page.
3775 	 * This value may be variable depending on boot parameters on IA64
3776 	 */
3777 	pageblock_order = order;
3778 }
3779 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3780 
3781 /*
3782  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3783  * and pageblock_default_order() are unused as pageblock_order is set
3784  * at compile-time. See include/linux/pageblock-flags.h for the values of
3785  * pageblock_order based on the kernel config
3786  */
3787 static inline int pageblock_default_order(unsigned int order)
3788 {
3789 	return MAX_ORDER-1;
3790 }
3791 #define set_pageblock_order(x)	do {} while (0)
3792 
3793 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3794 
3795 /*
3796  * Set up the zone data structures:
3797  *   - mark all pages reserved
3798  *   - mark all memory queues empty
3799  *   - clear the memory bitmaps
3800  */
3801 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3802 		unsigned long *zones_size, unsigned long *zholes_size)
3803 {
3804 	enum zone_type j;
3805 	int nid = pgdat->node_id;
3806 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3807 	int ret;
3808 
3809 	pgdat_resize_init(pgdat);
3810 	pgdat->nr_zones = 0;
3811 	init_waitqueue_head(&pgdat->kswapd_wait);
3812 	pgdat->kswapd_max_order = 0;
3813 	pgdat_page_cgroup_init(pgdat);
3814 
3815 	for (j = 0; j < MAX_NR_ZONES; j++) {
3816 		struct zone *zone = pgdat->node_zones + j;
3817 		unsigned long size, realsize, memmap_pages;
3818 		enum lru_list l;
3819 
3820 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3821 		realsize = size - zone_absent_pages_in_node(nid, j,
3822 								zholes_size);
3823 
3824 		/*
3825 		 * Adjust realsize so that it accounts for how much memory
3826 		 * is used by this zone for memmap. This affects the watermark
3827 		 * and per-cpu initialisations
3828 		 */
3829 		memmap_pages =
3830 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3831 		if (realsize >= memmap_pages) {
3832 			realsize -= memmap_pages;
3833 			if (memmap_pages)
3834 				printk(KERN_DEBUG
3835 				       "  %s zone: %lu pages used for memmap\n",
3836 				       zone_names[j], memmap_pages);
3837 		} else
3838 			printk(KERN_WARNING
3839 				"  %s zone: %lu pages exceeds realsize %lu\n",
3840 				zone_names[j], memmap_pages, realsize);
3841 
3842 		/* Account for reserved pages */
3843 		if (j == 0 && realsize > dma_reserve) {
3844 			realsize -= dma_reserve;
3845 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3846 					zone_names[0], dma_reserve);
3847 		}
3848 
3849 		if (!is_highmem_idx(j))
3850 			nr_kernel_pages += realsize;
3851 		nr_all_pages += realsize;
3852 
3853 		zone->spanned_pages = size;
3854 		zone->present_pages = realsize;
3855 #ifdef CONFIG_NUMA
3856 		zone->node = nid;
3857 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3858 						/ 100;
3859 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3860 #endif
3861 		zone->name = zone_names[j];
3862 		spin_lock_init(&zone->lock);
3863 		spin_lock_init(&zone->lru_lock);
3864 		zone_seqlock_init(zone);
3865 		zone->zone_pgdat = pgdat;
3866 
3867 		zone->prev_priority = DEF_PRIORITY;
3868 
3869 		zone_pcp_init(zone);
3870 		for_each_lru(l) {
3871 			INIT_LIST_HEAD(&zone->lru[l].list);
3872 			zone->reclaim_stat.nr_saved_scan[l] = 0;
3873 		}
3874 		zone->reclaim_stat.recent_rotated[0] = 0;
3875 		zone->reclaim_stat.recent_rotated[1] = 0;
3876 		zone->reclaim_stat.recent_scanned[0] = 0;
3877 		zone->reclaim_stat.recent_scanned[1] = 0;
3878 		zap_zone_vm_stats(zone);
3879 		zone->flags = 0;
3880 		if (!size)
3881 			continue;
3882 
3883 		set_pageblock_order(pageblock_default_order());
3884 		setup_usemap(pgdat, zone, size);
3885 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3886 						size, MEMMAP_EARLY);
3887 		BUG_ON(ret);
3888 		memmap_init(size, nid, j, zone_start_pfn);
3889 		zone_start_pfn += size;
3890 	}
3891 }
3892 
3893 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3894 {
3895 	/* Skip empty nodes */
3896 	if (!pgdat->node_spanned_pages)
3897 		return;
3898 
3899 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3900 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3901 	if (!pgdat->node_mem_map) {
3902 		unsigned long size, start, end;
3903 		struct page *map;
3904 
3905 		/*
3906 		 * The zone's endpoints aren't required to be MAX_ORDER
3907 		 * aligned but the node_mem_map endpoints must be in order
3908 		 * for the buddy allocator to function correctly.
3909 		 */
3910 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3911 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3912 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3913 		size =  (end - start) * sizeof(struct page);
3914 		map = alloc_remap(pgdat->node_id, size);
3915 		if (!map)
3916 			map = alloc_bootmem_node(pgdat, size);
3917 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3918 	}
3919 #ifndef CONFIG_NEED_MULTIPLE_NODES
3920 	/*
3921 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3922 	 */
3923 	if (pgdat == NODE_DATA(0)) {
3924 		mem_map = NODE_DATA(0)->node_mem_map;
3925 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3926 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3927 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3928 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3929 	}
3930 #endif
3931 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3932 }
3933 
3934 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3935 		unsigned long node_start_pfn, unsigned long *zholes_size)
3936 {
3937 	pg_data_t *pgdat = NODE_DATA(nid);
3938 
3939 	pgdat->node_id = nid;
3940 	pgdat->node_start_pfn = node_start_pfn;
3941 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3942 
3943 	alloc_node_mem_map(pgdat);
3944 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3945 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3946 		nid, (unsigned long)pgdat,
3947 		(unsigned long)pgdat->node_mem_map);
3948 #endif
3949 
3950 	free_area_init_core(pgdat, zones_size, zholes_size);
3951 }
3952 
3953 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3954 
3955 #if MAX_NUMNODES > 1
3956 /*
3957  * Figure out the number of possible node ids.
3958  */
3959 static void __init setup_nr_node_ids(void)
3960 {
3961 	unsigned int node;
3962 	unsigned int highest = 0;
3963 
3964 	for_each_node_mask(node, node_possible_map)
3965 		highest = node;
3966 	nr_node_ids = highest + 1;
3967 }
3968 #else
3969 static inline void setup_nr_node_ids(void)
3970 {
3971 }
3972 #endif
3973 
3974 /**
3975  * add_active_range - Register a range of PFNs backed by physical memory
3976  * @nid: The node ID the range resides on
3977  * @start_pfn: The start PFN of the available physical memory
3978  * @end_pfn: The end PFN of the available physical memory
3979  *
3980  * These ranges are stored in an early_node_map[] and later used by
3981  * free_area_init_nodes() to calculate zone sizes and holes. If the
3982  * range spans a memory hole, it is up to the architecture to ensure
3983  * the memory is not freed by the bootmem allocator. If possible
3984  * the range being registered will be merged with existing ranges.
3985  */
3986 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3987 						unsigned long end_pfn)
3988 {
3989 	int i;
3990 
3991 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3992 			"Entering add_active_range(%d, %#lx, %#lx) "
3993 			"%d entries of %d used\n",
3994 			nid, start_pfn, end_pfn,
3995 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3996 
3997 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3998 
3999 	/* Merge with existing active regions if possible */
4000 	for (i = 0; i < nr_nodemap_entries; i++) {
4001 		if (early_node_map[i].nid != nid)
4002 			continue;
4003 
4004 		/* Skip if an existing region covers this new one */
4005 		if (start_pfn >= early_node_map[i].start_pfn &&
4006 				end_pfn <= early_node_map[i].end_pfn)
4007 			return;
4008 
4009 		/* Merge forward if suitable */
4010 		if (start_pfn <= early_node_map[i].end_pfn &&
4011 				end_pfn > early_node_map[i].end_pfn) {
4012 			early_node_map[i].end_pfn = end_pfn;
4013 			return;
4014 		}
4015 
4016 		/* Merge backward if suitable */
4017 		if (start_pfn < early_node_map[i].start_pfn &&
4018 				end_pfn >= early_node_map[i].start_pfn) {
4019 			early_node_map[i].start_pfn = start_pfn;
4020 			return;
4021 		}
4022 	}
4023 
4024 	/* Check that early_node_map is large enough */
4025 	if (i >= MAX_ACTIVE_REGIONS) {
4026 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4027 							MAX_ACTIVE_REGIONS);
4028 		return;
4029 	}
4030 
4031 	early_node_map[i].nid = nid;
4032 	early_node_map[i].start_pfn = start_pfn;
4033 	early_node_map[i].end_pfn = end_pfn;
4034 	nr_nodemap_entries = i + 1;
4035 }
4036 
4037 /**
4038  * remove_active_range - Shrink an existing registered range of PFNs
4039  * @nid: The node id the range is on that should be shrunk
4040  * @start_pfn: The new PFN of the range
4041  * @end_pfn: The new PFN of the range
4042  *
4043  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4044  * The map is kept near the end physical page range that has already been
4045  * registered. This function allows an arch to shrink an existing registered
4046  * range.
4047  */
4048 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4049 				unsigned long end_pfn)
4050 {
4051 	int i, j;
4052 	int removed = 0;
4053 
4054 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4055 			  nid, start_pfn, end_pfn);
4056 
4057 	/* Find the old active region end and shrink */
4058 	for_each_active_range_index_in_nid(i, nid) {
4059 		if (early_node_map[i].start_pfn >= start_pfn &&
4060 		    early_node_map[i].end_pfn <= end_pfn) {
4061 			/* clear it */
4062 			early_node_map[i].start_pfn = 0;
4063 			early_node_map[i].end_pfn = 0;
4064 			removed = 1;
4065 			continue;
4066 		}
4067 		if (early_node_map[i].start_pfn < start_pfn &&
4068 		    early_node_map[i].end_pfn > start_pfn) {
4069 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4070 			early_node_map[i].end_pfn = start_pfn;
4071 			if (temp_end_pfn > end_pfn)
4072 				add_active_range(nid, end_pfn, temp_end_pfn);
4073 			continue;
4074 		}
4075 		if (early_node_map[i].start_pfn >= start_pfn &&
4076 		    early_node_map[i].end_pfn > end_pfn &&
4077 		    early_node_map[i].start_pfn < end_pfn) {
4078 			early_node_map[i].start_pfn = end_pfn;
4079 			continue;
4080 		}
4081 	}
4082 
4083 	if (!removed)
4084 		return;
4085 
4086 	/* remove the blank ones */
4087 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4088 		if (early_node_map[i].nid != nid)
4089 			continue;
4090 		if (early_node_map[i].end_pfn)
4091 			continue;
4092 		/* we found it, get rid of it */
4093 		for (j = i; j < nr_nodemap_entries - 1; j++)
4094 			memcpy(&early_node_map[j], &early_node_map[j+1],
4095 				sizeof(early_node_map[j]));
4096 		j = nr_nodemap_entries - 1;
4097 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4098 		nr_nodemap_entries--;
4099 	}
4100 }
4101 
4102 /**
4103  * remove_all_active_ranges - Remove all currently registered regions
4104  *
4105  * During discovery, it may be found that a table like SRAT is invalid
4106  * and an alternative discovery method must be used. This function removes
4107  * all currently registered regions.
4108  */
4109 void __init remove_all_active_ranges(void)
4110 {
4111 	memset(early_node_map, 0, sizeof(early_node_map));
4112 	nr_nodemap_entries = 0;
4113 }
4114 
4115 /* Compare two active node_active_regions */
4116 static int __init cmp_node_active_region(const void *a, const void *b)
4117 {
4118 	struct node_active_region *arange = (struct node_active_region *)a;
4119 	struct node_active_region *brange = (struct node_active_region *)b;
4120 
4121 	/* Done this way to avoid overflows */
4122 	if (arange->start_pfn > brange->start_pfn)
4123 		return 1;
4124 	if (arange->start_pfn < brange->start_pfn)
4125 		return -1;
4126 
4127 	return 0;
4128 }
4129 
4130 /* sort the node_map by start_pfn */
4131 void __init sort_node_map(void)
4132 {
4133 	sort(early_node_map, (size_t)nr_nodemap_entries,
4134 			sizeof(struct node_active_region),
4135 			cmp_node_active_region, NULL);
4136 }
4137 
4138 /* Find the lowest pfn for a node */
4139 static unsigned long __init find_min_pfn_for_node(int nid)
4140 {
4141 	int i;
4142 	unsigned long min_pfn = ULONG_MAX;
4143 
4144 	/* Assuming a sorted map, the first range found has the starting pfn */
4145 	for_each_active_range_index_in_nid(i, nid)
4146 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4147 
4148 	if (min_pfn == ULONG_MAX) {
4149 		printk(KERN_WARNING
4150 			"Could not find start_pfn for node %d\n", nid);
4151 		return 0;
4152 	}
4153 
4154 	return min_pfn;
4155 }
4156 
4157 /**
4158  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4159  *
4160  * It returns the minimum PFN based on information provided via
4161  * add_active_range().
4162  */
4163 unsigned long __init find_min_pfn_with_active_regions(void)
4164 {
4165 	return find_min_pfn_for_node(MAX_NUMNODES);
4166 }
4167 
4168 /*
4169  * early_calculate_totalpages()
4170  * Sum pages in active regions for movable zone.
4171  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4172  */
4173 static unsigned long __init early_calculate_totalpages(void)
4174 {
4175 	int i;
4176 	unsigned long totalpages = 0;
4177 
4178 	for (i = 0; i < nr_nodemap_entries; i++) {
4179 		unsigned long pages = early_node_map[i].end_pfn -
4180 						early_node_map[i].start_pfn;
4181 		totalpages += pages;
4182 		if (pages)
4183 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4184 	}
4185   	return totalpages;
4186 }
4187 
4188 /*
4189  * Find the PFN the Movable zone begins in each node. Kernel memory
4190  * is spread evenly between nodes as long as the nodes have enough
4191  * memory. When they don't, some nodes will have more kernelcore than
4192  * others
4193  */
4194 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4195 {
4196 	int i, nid;
4197 	unsigned long usable_startpfn;
4198 	unsigned long kernelcore_node, kernelcore_remaining;
4199 	/* save the state before borrow the nodemask */
4200 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4201 	unsigned long totalpages = early_calculate_totalpages();
4202 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4203 
4204 	/*
4205 	 * If movablecore was specified, calculate what size of
4206 	 * kernelcore that corresponds so that memory usable for
4207 	 * any allocation type is evenly spread. If both kernelcore
4208 	 * and movablecore are specified, then the value of kernelcore
4209 	 * will be used for required_kernelcore if it's greater than
4210 	 * what movablecore would have allowed.
4211 	 */
4212 	if (required_movablecore) {
4213 		unsigned long corepages;
4214 
4215 		/*
4216 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4217 		 * was requested by the user
4218 		 */
4219 		required_movablecore =
4220 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4221 		corepages = totalpages - required_movablecore;
4222 
4223 		required_kernelcore = max(required_kernelcore, corepages);
4224 	}
4225 
4226 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4227 	if (!required_kernelcore)
4228 		goto out;
4229 
4230 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4231 	find_usable_zone_for_movable();
4232 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4233 
4234 restart:
4235 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4236 	kernelcore_node = required_kernelcore / usable_nodes;
4237 	for_each_node_state(nid, N_HIGH_MEMORY) {
4238 		/*
4239 		 * Recalculate kernelcore_node if the division per node
4240 		 * now exceeds what is necessary to satisfy the requested
4241 		 * amount of memory for the kernel
4242 		 */
4243 		if (required_kernelcore < kernelcore_node)
4244 			kernelcore_node = required_kernelcore / usable_nodes;
4245 
4246 		/*
4247 		 * As the map is walked, we track how much memory is usable
4248 		 * by the kernel using kernelcore_remaining. When it is
4249 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4250 		 */
4251 		kernelcore_remaining = kernelcore_node;
4252 
4253 		/* Go through each range of PFNs within this node */
4254 		for_each_active_range_index_in_nid(i, nid) {
4255 			unsigned long start_pfn, end_pfn;
4256 			unsigned long size_pages;
4257 
4258 			start_pfn = max(early_node_map[i].start_pfn,
4259 						zone_movable_pfn[nid]);
4260 			end_pfn = early_node_map[i].end_pfn;
4261 			if (start_pfn >= end_pfn)
4262 				continue;
4263 
4264 			/* Account for what is only usable for kernelcore */
4265 			if (start_pfn < usable_startpfn) {
4266 				unsigned long kernel_pages;
4267 				kernel_pages = min(end_pfn, usable_startpfn)
4268 								- start_pfn;
4269 
4270 				kernelcore_remaining -= min(kernel_pages,
4271 							kernelcore_remaining);
4272 				required_kernelcore -= min(kernel_pages,
4273 							required_kernelcore);
4274 
4275 				/* Continue if range is now fully accounted */
4276 				if (end_pfn <= usable_startpfn) {
4277 
4278 					/*
4279 					 * Push zone_movable_pfn to the end so
4280 					 * that if we have to rebalance
4281 					 * kernelcore across nodes, we will
4282 					 * not double account here
4283 					 */
4284 					zone_movable_pfn[nid] = end_pfn;
4285 					continue;
4286 				}
4287 				start_pfn = usable_startpfn;
4288 			}
4289 
4290 			/*
4291 			 * The usable PFN range for ZONE_MOVABLE is from
4292 			 * start_pfn->end_pfn. Calculate size_pages as the
4293 			 * number of pages used as kernelcore
4294 			 */
4295 			size_pages = end_pfn - start_pfn;
4296 			if (size_pages > kernelcore_remaining)
4297 				size_pages = kernelcore_remaining;
4298 			zone_movable_pfn[nid] = start_pfn + size_pages;
4299 
4300 			/*
4301 			 * Some kernelcore has been met, update counts and
4302 			 * break if the kernelcore for this node has been
4303 			 * satisified
4304 			 */
4305 			required_kernelcore -= min(required_kernelcore,
4306 								size_pages);
4307 			kernelcore_remaining -= size_pages;
4308 			if (!kernelcore_remaining)
4309 				break;
4310 		}
4311 	}
4312 
4313 	/*
4314 	 * If there is still required_kernelcore, we do another pass with one
4315 	 * less node in the count. This will push zone_movable_pfn[nid] further
4316 	 * along on the nodes that still have memory until kernelcore is
4317 	 * satisified
4318 	 */
4319 	usable_nodes--;
4320 	if (usable_nodes && required_kernelcore > usable_nodes)
4321 		goto restart;
4322 
4323 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4324 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4325 		zone_movable_pfn[nid] =
4326 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4327 
4328 out:
4329 	/* restore the node_state */
4330 	node_states[N_HIGH_MEMORY] = saved_node_state;
4331 }
4332 
4333 /* Any regular memory on that node ? */
4334 static void check_for_regular_memory(pg_data_t *pgdat)
4335 {
4336 #ifdef CONFIG_HIGHMEM
4337 	enum zone_type zone_type;
4338 
4339 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4340 		struct zone *zone = &pgdat->node_zones[zone_type];
4341 		if (zone->present_pages)
4342 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4343 	}
4344 #endif
4345 }
4346 
4347 /**
4348  * free_area_init_nodes - Initialise all pg_data_t and zone data
4349  * @max_zone_pfn: an array of max PFNs for each zone
4350  *
4351  * This will call free_area_init_node() for each active node in the system.
4352  * Using the page ranges provided by add_active_range(), the size of each
4353  * zone in each node and their holes is calculated. If the maximum PFN
4354  * between two adjacent zones match, it is assumed that the zone is empty.
4355  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4356  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4357  * starts where the previous one ended. For example, ZONE_DMA32 starts
4358  * at arch_max_dma_pfn.
4359  */
4360 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4361 {
4362 	unsigned long nid;
4363 	int i;
4364 
4365 	/* Sort early_node_map as initialisation assumes it is sorted */
4366 	sort_node_map();
4367 
4368 	/* Record where the zone boundaries are */
4369 	memset(arch_zone_lowest_possible_pfn, 0,
4370 				sizeof(arch_zone_lowest_possible_pfn));
4371 	memset(arch_zone_highest_possible_pfn, 0,
4372 				sizeof(arch_zone_highest_possible_pfn));
4373 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4374 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4375 	for (i = 1; i < MAX_NR_ZONES; i++) {
4376 		if (i == ZONE_MOVABLE)
4377 			continue;
4378 		arch_zone_lowest_possible_pfn[i] =
4379 			arch_zone_highest_possible_pfn[i-1];
4380 		arch_zone_highest_possible_pfn[i] =
4381 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4382 	}
4383 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4384 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4385 
4386 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4387 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4388 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4389 
4390 	/* Print out the zone ranges */
4391 	printk("Zone PFN ranges:\n");
4392 	for (i = 0; i < MAX_NR_ZONES; i++) {
4393 		if (i == ZONE_MOVABLE)
4394 			continue;
4395 		printk("  %-8s ", zone_names[i]);
4396 		if (arch_zone_lowest_possible_pfn[i] ==
4397 				arch_zone_highest_possible_pfn[i])
4398 			printk("empty\n");
4399 		else
4400 			printk("%0#10lx -> %0#10lx\n",
4401 				arch_zone_lowest_possible_pfn[i],
4402 				arch_zone_highest_possible_pfn[i]);
4403 	}
4404 
4405 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4406 	printk("Movable zone start PFN for each node\n");
4407 	for (i = 0; i < MAX_NUMNODES; i++) {
4408 		if (zone_movable_pfn[i])
4409 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4410 	}
4411 
4412 	/* Print out the early_node_map[] */
4413 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4414 	for (i = 0; i < nr_nodemap_entries; i++)
4415 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4416 						early_node_map[i].start_pfn,
4417 						early_node_map[i].end_pfn);
4418 
4419 	/* Initialise every node */
4420 	mminit_verify_pageflags_layout();
4421 	setup_nr_node_ids();
4422 	for_each_online_node(nid) {
4423 		pg_data_t *pgdat = NODE_DATA(nid);
4424 		free_area_init_node(nid, NULL,
4425 				find_min_pfn_for_node(nid), NULL);
4426 
4427 		/* Any memory on that node */
4428 		if (pgdat->node_present_pages)
4429 			node_set_state(nid, N_HIGH_MEMORY);
4430 		check_for_regular_memory(pgdat);
4431 	}
4432 }
4433 
4434 static int __init cmdline_parse_core(char *p, unsigned long *core)
4435 {
4436 	unsigned long long coremem;
4437 	if (!p)
4438 		return -EINVAL;
4439 
4440 	coremem = memparse(p, &p);
4441 	*core = coremem >> PAGE_SHIFT;
4442 
4443 	/* Paranoid check that UL is enough for the coremem value */
4444 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4445 
4446 	return 0;
4447 }
4448 
4449 /*
4450  * kernelcore=size sets the amount of memory for use for allocations that
4451  * cannot be reclaimed or migrated.
4452  */
4453 static int __init cmdline_parse_kernelcore(char *p)
4454 {
4455 	return cmdline_parse_core(p, &required_kernelcore);
4456 }
4457 
4458 /*
4459  * movablecore=size sets the amount of memory for use for allocations that
4460  * can be reclaimed or migrated.
4461  */
4462 static int __init cmdline_parse_movablecore(char *p)
4463 {
4464 	return cmdline_parse_core(p, &required_movablecore);
4465 }
4466 
4467 early_param("kernelcore", cmdline_parse_kernelcore);
4468 early_param("movablecore", cmdline_parse_movablecore);
4469 
4470 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4471 
4472 /**
4473  * set_dma_reserve - set the specified number of pages reserved in the first zone
4474  * @new_dma_reserve: The number of pages to mark reserved
4475  *
4476  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4477  * In the DMA zone, a significant percentage may be consumed by kernel image
4478  * and other unfreeable allocations which can skew the watermarks badly. This
4479  * function may optionally be used to account for unfreeable pages in the
4480  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4481  * smaller per-cpu batchsize.
4482  */
4483 void __init set_dma_reserve(unsigned long new_dma_reserve)
4484 {
4485 	dma_reserve = new_dma_reserve;
4486 }
4487 
4488 #ifndef CONFIG_NEED_MULTIPLE_NODES
4489 struct pglist_data __refdata contig_page_data = {
4490 #ifndef CONFIG_NO_BOOTMEM
4491  .bdata = &bootmem_node_data[0]
4492 #endif
4493  };
4494 EXPORT_SYMBOL(contig_page_data);
4495 #endif
4496 
4497 void __init free_area_init(unsigned long *zones_size)
4498 {
4499 	free_area_init_node(0, zones_size,
4500 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4501 }
4502 
4503 static int page_alloc_cpu_notify(struct notifier_block *self,
4504 				 unsigned long action, void *hcpu)
4505 {
4506 	int cpu = (unsigned long)hcpu;
4507 
4508 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4509 		drain_pages(cpu);
4510 
4511 		/*
4512 		 * Spill the event counters of the dead processor
4513 		 * into the current processors event counters.
4514 		 * This artificially elevates the count of the current
4515 		 * processor.
4516 		 */
4517 		vm_events_fold_cpu(cpu);
4518 
4519 		/*
4520 		 * Zero the differential counters of the dead processor
4521 		 * so that the vm statistics are consistent.
4522 		 *
4523 		 * This is only okay since the processor is dead and cannot
4524 		 * race with what we are doing.
4525 		 */
4526 		refresh_cpu_vm_stats(cpu);
4527 	}
4528 	return NOTIFY_OK;
4529 }
4530 
4531 void __init page_alloc_init(void)
4532 {
4533 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4534 }
4535 
4536 /*
4537  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4538  *	or min_free_kbytes changes.
4539  */
4540 static void calculate_totalreserve_pages(void)
4541 {
4542 	struct pglist_data *pgdat;
4543 	unsigned long reserve_pages = 0;
4544 	enum zone_type i, j;
4545 
4546 	for_each_online_pgdat(pgdat) {
4547 		for (i = 0; i < MAX_NR_ZONES; i++) {
4548 			struct zone *zone = pgdat->node_zones + i;
4549 			unsigned long max = 0;
4550 
4551 			/* Find valid and maximum lowmem_reserve in the zone */
4552 			for (j = i; j < MAX_NR_ZONES; j++) {
4553 				if (zone->lowmem_reserve[j] > max)
4554 					max = zone->lowmem_reserve[j];
4555 			}
4556 
4557 			/* we treat the high watermark as reserved pages. */
4558 			max += high_wmark_pages(zone);
4559 
4560 			if (max > zone->present_pages)
4561 				max = zone->present_pages;
4562 			reserve_pages += max;
4563 		}
4564 	}
4565 	totalreserve_pages = reserve_pages;
4566 }
4567 
4568 /*
4569  * setup_per_zone_lowmem_reserve - called whenever
4570  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4571  *	has a correct pages reserved value, so an adequate number of
4572  *	pages are left in the zone after a successful __alloc_pages().
4573  */
4574 static void setup_per_zone_lowmem_reserve(void)
4575 {
4576 	struct pglist_data *pgdat;
4577 	enum zone_type j, idx;
4578 
4579 	for_each_online_pgdat(pgdat) {
4580 		for (j = 0; j < MAX_NR_ZONES; j++) {
4581 			struct zone *zone = pgdat->node_zones + j;
4582 			unsigned long present_pages = zone->present_pages;
4583 
4584 			zone->lowmem_reserve[j] = 0;
4585 
4586 			idx = j;
4587 			while (idx) {
4588 				struct zone *lower_zone;
4589 
4590 				idx--;
4591 
4592 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4593 					sysctl_lowmem_reserve_ratio[idx] = 1;
4594 
4595 				lower_zone = pgdat->node_zones + idx;
4596 				lower_zone->lowmem_reserve[j] = present_pages /
4597 					sysctl_lowmem_reserve_ratio[idx];
4598 				present_pages += lower_zone->present_pages;
4599 			}
4600 		}
4601 	}
4602 
4603 	/* update totalreserve_pages */
4604 	calculate_totalreserve_pages();
4605 }
4606 
4607 /**
4608  * setup_per_zone_wmarks - called when min_free_kbytes changes
4609  * or when memory is hot-{added|removed}
4610  *
4611  * Ensures that the watermark[min,low,high] values for each zone are set
4612  * correctly with respect to min_free_kbytes.
4613  */
4614 void setup_per_zone_wmarks(void)
4615 {
4616 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4617 	unsigned long lowmem_pages = 0;
4618 	struct zone *zone;
4619 	unsigned long flags;
4620 
4621 	/* Calculate total number of !ZONE_HIGHMEM pages */
4622 	for_each_zone(zone) {
4623 		if (!is_highmem(zone))
4624 			lowmem_pages += zone->present_pages;
4625 	}
4626 
4627 	for_each_zone(zone) {
4628 		u64 tmp;
4629 
4630 		spin_lock_irqsave(&zone->lock, flags);
4631 		tmp = (u64)pages_min * zone->present_pages;
4632 		do_div(tmp, lowmem_pages);
4633 		if (is_highmem(zone)) {
4634 			/*
4635 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4636 			 * need highmem pages, so cap pages_min to a small
4637 			 * value here.
4638 			 *
4639 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4640 			 * deltas controls asynch page reclaim, and so should
4641 			 * not be capped for highmem.
4642 			 */
4643 			int min_pages;
4644 
4645 			min_pages = zone->present_pages / 1024;
4646 			if (min_pages < SWAP_CLUSTER_MAX)
4647 				min_pages = SWAP_CLUSTER_MAX;
4648 			if (min_pages > 128)
4649 				min_pages = 128;
4650 			zone->watermark[WMARK_MIN] = min_pages;
4651 		} else {
4652 			/*
4653 			 * If it's a lowmem zone, reserve a number of pages
4654 			 * proportionate to the zone's size.
4655 			 */
4656 			zone->watermark[WMARK_MIN] = tmp;
4657 		}
4658 
4659 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4660 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4661 		setup_zone_migrate_reserve(zone);
4662 		spin_unlock_irqrestore(&zone->lock, flags);
4663 	}
4664 
4665 	/* update totalreserve_pages */
4666 	calculate_totalreserve_pages();
4667 }
4668 
4669 /*
4670  * The inactive anon list should be small enough that the VM never has to
4671  * do too much work, but large enough that each inactive page has a chance
4672  * to be referenced again before it is swapped out.
4673  *
4674  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4675  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4676  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4677  * the anonymous pages are kept on the inactive list.
4678  *
4679  * total     target    max
4680  * memory    ratio     inactive anon
4681  * -------------------------------------
4682  *   10MB       1         5MB
4683  *  100MB       1        50MB
4684  *    1GB       3       250MB
4685  *   10GB      10       0.9GB
4686  *  100GB      31         3GB
4687  *    1TB     101        10GB
4688  *   10TB     320        32GB
4689  */
4690 void calculate_zone_inactive_ratio(struct zone *zone)
4691 {
4692 	unsigned int gb, ratio;
4693 
4694 	/* Zone size in gigabytes */
4695 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4696 	if (gb)
4697 		ratio = int_sqrt(10 * gb);
4698 	else
4699 		ratio = 1;
4700 
4701 	zone->inactive_ratio = ratio;
4702 }
4703 
4704 static void __init setup_per_zone_inactive_ratio(void)
4705 {
4706 	struct zone *zone;
4707 
4708 	for_each_zone(zone)
4709 		calculate_zone_inactive_ratio(zone);
4710 }
4711 
4712 /*
4713  * Initialise min_free_kbytes.
4714  *
4715  * For small machines we want it small (128k min).  For large machines
4716  * we want it large (64MB max).  But it is not linear, because network
4717  * bandwidth does not increase linearly with machine size.  We use
4718  *
4719  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4720  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4721  *
4722  * which yields
4723  *
4724  * 16MB:	512k
4725  * 32MB:	724k
4726  * 64MB:	1024k
4727  * 128MB:	1448k
4728  * 256MB:	2048k
4729  * 512MB:	2896k
4730  * 1024MB:	4096k
4731  * 2048MB:	5792k
4732  * 4096MB:	8192k
4733  * 8192MB:	11584k
4734  * 16384MB:	16384k
4735  */
4736 static int __init init_per_zone_wmark_min(void)
4737 {
4738 	unsigned long lowmem_kbytes;
4739 
4740 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4741 
4742 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4743 	if (min_free_kbytes < 128)
4744 		min_free_kbytes = 128;
4745 	if (min_free_kbytes > 65536)
4746 		min_free_kbytes = 65536;
4747 	setup_per_zone_wmarks();
4748 	setup_per_zone_lowmem_reserve();
4749 	setup_per_zone_inactive_ratio();
4750 	return 0;
4751 }
4752 module_init(init_per_zone_wmark_min)
4753 
4754 /*
4755  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4756  *	that we can call two helper functions whenever min_free_kbytes
4757  *	changes.
4758  */
4759 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4760 	void __user *buffer, size_t *length, loff_t *ppos)
4761 {
4762 	proc_dointvec(table, write, buffer, length, ppos);
4763 	if (write)
4764 		setup_per_zone_wmarks();
4765 	return 0;
4766 }
4767 
4768 #ifdef CONFIG_NUMA
4769 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4770 	void __user *buffer, size_t *length, loff_t *ppos)
4771 {
4772 	struct zone *zone;
4773 	int rc;
4774 
4775 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4776 	if (rc)
4777 		return rc;
4778 
4779 	for_each_zone(zone)
4780 		zone->min_unmapped_pages = (zone->present_pages *
4781 				sysctl_min_unmapped_ratio) / 100;
4782 	return 0;
4783 }
4784 
4785 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4786 	void __user *buffer, size_t *length, loff_t *ppos)
4787 {
4788 	struct zone *zone;
4789 	int rc;
4790 
4791 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4792 	if (rc)
4793 		return rc;
4794 
4795 	for_each_zone(zone)
4796 		zone->min_slab_pages = (zone->present_pages *
4797 				sysctl_min_slab_ratio) / 100;
4798 	return 0;
4799 }
4800 #endif
4801 
4802 /*
4803  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4804  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4805  *	whenever sysctl_lowmem_reserve_ratio changes.
4806  *
4807  * The reserve ratio obviously has absolutely no relation with the
4808  * minimum watermarks. The lowmem reserve ratio can only make sense
4809  * if in function of the boot time zone sizes.
4810  */
4811 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4812 	void __user *buffer, size_t *length, loff_t *ppos)
4813 {
4814 	proc_dointvec_minmax(table, write, buffer, length, ppos);
4815 	setup_per_zone_lowmem_reserve();
4816 	return 0;
4817 }
4818 
4819 /*
4820  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4821  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4822  * can have before it gets flushed back to buddy allocator.
4823  */
4824 
4825 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4826 	void __user *buffer, size_t *length, loff_t *ppos)
4827 {
4828 	struct zone *zone;
4829 	unsigned int cpu;
4830 	int ret;
4831 
4832 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4833 	if (!write || (ret == -EINVAL))
4834 		return ret;
4835 	for_each_populated_zone(zone) {
4836 		for_each_possible_cpu(cpu) {
4837 			unsigned long  high;
4838 			high = zone->present_pages / percpu_pagelist_fraction;
4839 			setup_pagelist_highmark(
4840 				per_cpu_ptr(zone->pageset, cpu), high);
4841 		}
4842 	}
4843 	return 0;
4844 }
4845 
4846 int hashdist = HASHDIST_DEFAULT;
4847 
4848 #ifdef CONFIG_NUMA
4849 static int __init set_hashdist(char *str)
4850 {
4851 	if (!str)
4852 		return 0;
4853 	hashdist = simple_strtoul(str, &str, 0);
4854 	return 1;
4855 }
4856 __setup("hashdist=", set_hashdist);
4857 #endif
4858 
4859 /*
4860  * allocate a large system hash table from bootmem
4861  * - it is assumed that the hash table must contain an exact power-of-2
4862  *   quantity of entries
4863  * - limit is the number of hash buckets, not the total allocation size
4864  */
4865 void *__init alloc_large_system_hash(const char *tablename,
4866 				     unsigned long bucketsize,
4867 				     unsigned long numentries,
4868 				     int scale,
4869 				     int flags,
4870 				     unsigned int *_hash_shift,
4871 				     unsigned int *_hash_mask,
4872 				     unsigned long limit)
4873 {
4874 	unsigned long long max = limit;
4875 	unsigned long log2qty, size;
4876 	void *table = NULL;
4877 
4878 	/* allow the kernel cmdline to have a say */
4879 	if (!numentries) {
4880 		/* round applicable memory size up to nearest megabyte */
4881 		numentries = nr_kernel_pages;
4882 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4883 		numentries >>= 20 - PAGE_SHIFT;
4884 		numentries <<= 20 - PAGE_SHIFT;
4885 
4886 		/* limit to 1 bucket per 2^scale bytes of low memory */
4887 		if (scale > PAGE_SHIFT)
4888 			numentries >>= (scale - PAGE_SHIFT);
4889 		else
4890 			numentries <<= (PAGE_SHIFT - scale);
4891 
4892 		/* Make sure we've got at least a 0-order allocation.. */
4893 		if (unlikely(flags & HASH_SMALL)) {
4894 			/* Makes no sense without HASH_EARLY */
4895 			WARN_ON(!(flags & HASH_EARLY));
4896 			if (!(numentries >> *_hash_shift)) {
4897 				numentries = 1UL << *_hash_shift;
4898 				BUG_ON(!numentries);
4899 			}
4900 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4901 			numentries = PAGE_SIZE / bucketsize;
4902 	}
4903 	numentries = roundup_pow_of_two(numentries);
4904 
4905 	/* limit allocation size to 1/16 total memory by default */
4906 	if (max == 0) {
4907 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4908 		do_div(max, bucketsize);
4909 	}
4910 
4911 	if (numentries > max)
4912 		numentries = max;
4913 
4914 	log2qty = ilog2(numentries);
4915 
4916 	do {
4917 		size = bucketsize << log2qty;
4918 		if (flags & HASH_EARLY)
4919 			table = alloc_bootmem_nopanic(size);
4920 		else if (hashdist)
4921 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4922 		else {
4923 			/*
4924 			 * If bucketsize is not a power-of-two, we may free
4925 			 * some pages at the end of hash table which
4926 			 * alloc_pages_exact() automatically does
4927 			 */
4928 			if (get_order(size) < MAX_ORDER) {
4929 				table = alloc_pages_exact(size, GFP_ATOMIC);
4930 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4931 			}
4932 		}
4933 	} while (!table && size > PAGE_SIZE && --log2qty);
4934 
4935 	if (!table)
4936 		panic("Failed to allocate %s hash table\n", tablename);
4937 
4938 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4939 	       tablename,
4940 	       (1U << log2qty),
4941 	       ilog2(size) - PAGE_SHIFT,
4942 	       size);
4943 
4944 	if (_hash_shift)
4945 		*_hash_shift = log2qty;
4946 	if (_hash_mask)
4947 		*_hash_mask = (1 << log2qty) - 1;
4948 
4949 	return table;
4950 }
4951 
4952 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4953 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4954 							unsigned long pfn)
4955 {
4956 #ifdef CONFIG_SPARSEMEM
4957 	return __pfn_to_section(pfn)->pageblock_flags;
4958 #else
4959 	return zone->pageblock_flags;
4960 #endif /* CONFIG_SPARSEMEM */
4961 }
4962 
4963 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4964 {
4965 #ifdef CONFIG_SPARSEMEM
4966 	pfn &= (PAGES_PER_SECTION-1);
4967 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4968 #else
4969 	pfn = pfn - zone->zone_start_pfn;
4970 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4971 #endif /* CONFIG_SPARSEMEM */
4972 }
4973 
4974 /**
4975  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4976  * @page: The page within the block of interest
4977  * @start_bitidx: The first bit of interest to retrieve
4978  * @end_bitidx: The last bit of interest
4979  * returns pageblock_bits flags
4980  */
4981 unsigned long get_pageblock_flags_group(struct page *page,
4982 					int start_bitidx, int end_bitidx)
4983 {
4984 	struct zone *zone;
4985 	unsigned long *bitmap;
4986 	unsigned long pfn, bitidx;
4987 	unsigned long flags = 0;
4988 	unsigned long value = 1;
4989 
4990 	zone = page_zone(page);
4991 	pfn = page_to_pfn(page);
4992 	bitmap = get_pageblock_bitmap(zone, pfn);
4993 	bitidx = pfn_to_bitidx(zone, pfn);
4994 
4995 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4996 		if (test_bit(bitidx + start_bitidx, bitmap))
4997 			flags |= value;
4998 
4999 	return flags;
5000 }
5001 
5002 /**
5003  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5004  * @page: The page within the block of interest
5005  * @start_bitidx: The first bit of interest
5006  * @end_bitidx: The last bit of interest
5007  * @flags: The flags to set
5008  */
5009 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5010 					int start_bitidx, int end_bitidx)
5011 {
5012 	struct zone *zone;
5013 	unsigned long *bitmap;
5014 	unsigned long pfn, bitidx;
5015 	unsigned long value = 1;
5016 
5017 	zone = page_zone(page);
5018 	pfn = page_to_pfn(page);
5019 	bitmap = get_pageblock_bitmap(zone, pfn);
5020 	bitidx = pfn_to_bitidx(zone, pfn);
5021 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5022 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5023 
5024 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5025 		if (flags & value)
5026 			__set_bit(bitidx + start_bitidx, bitmap);
5027 		else
5028 			__clear_bit(bitidx + start_bitidx, bitmap);
5029 }
5030 
5031 /*
5032  * This is designed as sub function...plz see page_isolation.c also.
5033  * set/clear page block's type to be ISOLATE.
5034  * page allocater never alloc memory from ISOLATE block.
5035  */
5036 
5037 int set_migratetype_isolate(struct page *page)
5038 {
5039 	struct zone *zone;
5040 	struct page *curr_page;
5041 	unsigned long flags, pfn, iter;
5042 	unsigned long immobile = 0;
5043 	struct memory_isolate_notify arg;
5044 	int notifier_ret;
5045 	int ret = -EBUSY;
5046 	int zone_idx;
5047 
5048 	zone = page_zone(page);
5049 	zone_idx = zone_idx(zone);
5050 
5051 	spin_lock_irqsave(&zone->lock, flags);
5052 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5053 	    zone_idx == ZONE_MOVABLE) {
5054 		ret = 0;
5055 		goto out;
5056 	}
5057 
5058 	pfn = page_to_pfn(page);
5059 	arg.start_pfn = pfn;
5060 	arg.nr_pages = pageblock_nr_pages;
5061 	arg.pages_found = 0;
5062 
5063 	/*
5064 	 * It may be possible to isolate a pageblock even if the
5065 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5066 	 * notifier chain is used by balloon drivers to return the
5067 	 * number of pages in a range that are held by the balloon
5068 	 * driver to shrink memory. If all the pages are accounted for
5069 	 * by balloons, are free, or on the LRU, isolation can continue.
5070 	 * Later, for example, when memory hotplug notifier runs, these
5071 	 * pages reported as "can be isolated" should be isolated(freed)
5072 	 * by the balloon driver through the memory notifier chain.
5073 	 */
5074 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5075 	notifier_ret = notifier_to_errno(notifier_ret);
5076 	if (notifier_ret || !arg.pages_found)
5077 		goto out;
5078 
5079 	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5080 		if (!pfn_valid_within(pfn))
5081 			continue;
5082 
5083 		curr_page = pfn_to_page(iter);
5084 		if (!page_count(curr_page) || PageLRU(curr_page))
5085 			continue;
5086 
5087 		immobile++;
5088 	}
5089 
5090 	if (arg.pages_found == immobile)
5091 		ret = 0;
5092 
5093 out:
5094 	if (!ret) {
5095 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5096 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5097 	}
5098 
5099 	spin_unlock_irqrestore(&zone->lock, flags);
5100 	if (!ret)
5101 		drain_all_pages();
5102 	return ret;
5103 }
5104 
5105 void unset_migratetype_isolate(struct page *page)
5106 {
5107 	struct zone *zone;
5108 	unsigned long flags;
5109 	zone = page_zone(page);
5110 	spin_lock_irqsave(&zone->lock, flags);
5111 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5112 		goto out;
5113 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5114 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5115 out:
5116 	spin_unlock_irqrestore(&zone->lock, flags);
5117 }
5118 
5119 #ifdef CONFIG_MEMORY_HOTREMOVE
5120 /*
5121  * All pages in the range must be isolated before calling this.
5122  */
5123 void
5124 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5125 {
5126 	struct page *page;
5127 	struct zone *zone;
5128 	int order, i;
5129 	unsigned long pfn;
5130 	unsigned long flags;
5131 	/* find the first valid pfn */
5132 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5133 		if (pfn_valid(pfn))
5134 			break;
5135 	if (pfn == end_pfn)
5136 		return;
5137 	zone = page_zone(pfn_to_page(pfn));
5138 	spin_lock_irqsave(&zone->lock, flags);
5139 	pfn = start_pfn;
5140 	while (pfn < end_pfn) {
5141 		if (!pfn_valid(pfn)) {
5142 			pfn++;
5143 			continue;
5144 		}
5145 		page = pfn_to_page(pfn);
5146 		BUG_ON(page_count(page));
5147 		BUG_ON(!PageBuddy(page));
5148 		order = page_order(page);
5149 #ifdef CONFIG_DEBUG_VM
5150 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5151 		       pfn, 1 << order, end_pfn);
5152 #endif
5153 		list_del(&page->lru);
5154 		rmv_page_order(page);
5155 		zone->free_area[order].nr_free--;
5156 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5157 				      - (1UL << order));
5158 		for (i = 0; i < (1 << order); i++)
5159 			SetPageReserved((page+i));
5160 		pfn += (1 << order);
5161 	}
5162 	spin_unlock_irqrestore(&zone->lock, flags);
5163 }
5164 #endif
5165 
5166 #ifdef CONFIG_MEMORY_FAILURE
5167 bool is_free_buddy_page(struct page *page)
5168 {
5169 	struct zone *zone = page_zone(page);
5170 	unsigned long pfn = page_to_pfn(page);
5171 	unsigned long flags;
5172 	int order;
5173 
5174 	spin_lock_irqsave(&zone->lock, flags);
5175 	for (order = 0; order < MAX_ORDER; order++) {
5176 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5177 
5178 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5179 			break;
5180 	}
5181 	spin_unlock_irqrestore(&zone->lock, flags);
5182 
5183 	return order < MAX_ORDER;
5184 }
5185 #endif
5186