1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order); 294 static bool __free_unaccepted(struct page *page); 295 296 int page_group_by_mobility_disabled __read_mostly; 297 298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 299 /* 300 * During boot we initialize deferred pages on-demand, as needed, but once 301 * page_alloc_init_late() has finished, the deferred pages are all initialized, 302 * and we can permanently disable that path. 303 */ 304 DEFINE_STATIC_KEY_TRUE(deferred_pages); 305 306 static inline bool deferred_pages_enabled(void) 307 { 308 return static_branch_unlikely(&deferred_pages); 309 } 310 311 /* 312 * deferred_grow_zone() is __init, but it is called from 313 * get_page_from_freelist() during early boot until deferred_pages permanently 314 * disables this call. This is why we have refdata wrapper to avoid warning, 315 * and to ensure that the function body gets unloaded. 316 */ 317 static bool __ref 318 _deferred_grow_zone(struct zone *zone, unsigned int order) 319 { 320 return deferred_grow_zone(zone, order); 321 } 322 #else 323 static inline bool deferred_pages_enabled(void) 324 { 325 return false; 326 } 327 328 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 329 { 330 return false; 331 } 332 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 333 334 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 335 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 336 unsigned long pfn) 337 { 338 #ifdef CONFIG_SPARSEMEM 339 return section_to_usemap(__pfn_to_section(pfn)); 340 #else 341 return page_zone(page)->pageblock_flags; 342 #endif /* CONFIG_SPARSEMEM */ 343 } 344 345 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 pfn &= (PAGES_PER_SECTION-1); 349 #else 350 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 351 #endif /* CONFIG_SPARSEMEM */ 352 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 353 } 354 355 /** 356 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 357 * @page: The page within the block of interest 358 * @pfn: The target page frame number 359 * @mask: mask of bits that the caller is interested in 360 * 361 * Return: pageblock_bits flags 362 */ 363 unsigned long get_pfnblock_flags_mask(const struct page *page, 364 unsigned long pfn, unsigned long mask) 365 { 366 unsigned long *bitmap; 367 unsigned long bitidx, word_bitidx; 368 unsigned long word; 369 370 bitmap = get_pageblock_bitmap(page, pfn); 371 bitidx = pfn_to_bitidx(page, pfn); 372 word_bitidx = bitidx / BITS_PER_LONG; 373 bitidx &= (BITS_PER_LONG-1); 374 /* 375 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 376 * a consistent read of the memory array, so that results, even though 377 * racy, are not corrupted. 378 */ 379 word = READ_ONCE(bitmap[word_bitidx]); 380 return (word >> bitidx) & mask; 381 } 382 383 static __always_inline int get_pfnblock_migratetype(const struct page *page, 384 unsigned long pfn) 385 { 386 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 387 } 388 389 /** 390 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 391 * @page: The page within the block of interest 392 * @flags: The flags to set 393 * @pfn: The target page frame number 394 * @mask: mask of bits that the caller is interested in 395 */ 396 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 397 unsigned long pfn, 398 unsigned long mask) 399 { 400 unsigned long *bitmap; 401 unsigned long bitidx, word_bitidx; 402 unsigned long word; 403 404 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 405 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 406 407 bitmap = get_pageblock_bitmap(page, pfn); 408 bitidx = pfn_to_bitidx(page, pfn); 409 word_bitidx = bitidx / BITS_PER_LONG; 410 bitidx &= (BITS_PER_LONG-1); 411 412 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 413 414 mask <<= bitidx; 415 flags <<= bitidx; 416 417 word = READ_ONCE(bitmap[word_bitidx]); 418 do { 419 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 420 } 421 422 void set_pageblock_migratetype(struct page *page, int migratetype) 423 { 424 if (unlikely(page_group_by_mobility_disabled && 425 migratetype < MIGRATE_PCPTYPES)) 426 migratetype = MIGRATE_UNMOVABLE; 427 428 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 429 page_to_pfn(page), MIGRATETYPE_MASK); 430 } 431 432 #ifdef CONFIG_DEBUG_VM 433 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 434 { 435 int ret; 436 unsigned seq; 437 unsigned long pfn = page_to_pfn(page); 438 unsigned long sp, start_pfn; 439 440 do { 441 seq = zone_span_seqbegin(zone); 442 start_pfn = zone->zone_start_pfn; 443 sp = zone->spanned_pages; 444 ret = !zone_spans_pfn(zone, pfn); 445 } while (zone_span_seqretry(zone, seq)); 446 447 if (ret) 448 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 449 pfn, zone_to_nid(zone), zone->name, 450 start_pfn, start_pfn + sp); 451 452 return ret; 453 } 454 455 /* 456 * Temporary debugging check for pages not lying within a given zone. 457 */ 458 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 459 { 460 if (page_outside_zone_boundaries(zone, page)) 461 return true; 462 if (zone != page_zone(page)) 463 return true; 464 465 return false; 466 } 467 #else 468 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 469 { 470 return false; 471 } 472 #endif 473 474 static void bad_page(struct page *page, const char *reason) 475 { 476 static unsigned long resume; 477 static unsigned long nr_shown; 478 static unsigned long nr_unshown; 479 480 /* 481 * Allow a burst of 60 reports, then keep quiet for that minute; 482 * or allow a steady drip of one report per second. 483 */ 484 if (nr_shown == 60) { 485 if (time_before(jiffies, resume)) { 486 nr_unshown++; 487 goto out; 488 } 489 if (nr_unshown) { 490 pr_alert( 491 "BUG: Bad page state: %lu messages suppressed\n", 492 nr_unshown); 493 nr_unshown = 0; 494 } 495 nr_shown = 0; 496 } 497 if (nr_shown++ == 0) 498 resume = jiffies + 60 * HZ; 499 500 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 501 current->comm, page_to_pfn(page)); 502 dump_page(page, reason); 503 504 print_modules(); 505 dump_stack(); 506 out: 507 /* Leave bad fields for debug, except PageBuddy could make trouble */ 508 if (PageBuddy(page)) 509 __ClearPageBuddy(page); 510 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 511 } 512 513 static inline unsigned int order_to_pindex(int migratetype, int order) 514 { 515 516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 517 bool movable; 518 if (order > PAGE_ALLOC_COSTLY_ORDER) { 519 VM_BUG_ON(order != HPAGE_PMD_ORDER); 520 521 movable = migratetype == MIGRATE_MOVABLE; 522 523 return NR_LOWORDER_PCP_LISTS + movable; 524 } 525 #else 526 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 527 #endif 528 529 return (MIGRATE_PCPTYPES * order) + migratetype; 530 } 531 532 static inline int pindex_to_order(unsigned int pindex) 533 { 534 int order = pindex / MIGRATE_PCPTYPES; 535 536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 537 if (pindex >= NR_LOWORDER_PCP_LISTS) 538 order = HPAGE_PMD_ORDER; 539 #else 540 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 541 #endif 542 543 return order; 544 } 545 546 static inline bool pcp_allowed_order(unsigned int order) 547 { 548 if (order <= PAGE_ALLOC_COSTLY_ORDER) 549 return true; 550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 if (order == HPAGE_PMD_ORDER) 552 return true; 553 #endif 554 return false; 555 } 556 557 /* 558 * Higher-order pages are called "compound pages". They are structured thusly: 559 * 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 561 * 562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 564 * 565 * The first tail page's ->compound_order holds the order of allocation. 566 * This usage means that zero-order pages may not be compound. 567 */ 568 569 void prep_compound_page(struct page *page, unsigned int order) 570 { 571 int i; 572 int nr_pages = 1 << order; 573 574 __SetPageHead(page); 575 for (i = 1; i < nr_pages; i++) 576 prep_compound_tail(page, i); 577 578 prep_compound_head(page, order); 579 } 580 581 static inline void set_buddy_order(struct page *page, unsigned int order) 582 { 583 set_page_private(page, order); 584 __SetPageBuddy(page); 585 } 586 587 #ifdef CONFIG_COMPACTION 588 static inline struct capture_control *task_capc(struct zone *zone) 589 { 590 struct capture_control *capc = current->capture_control; 591 592 return unlikely(capc) && 593 !(current->flags & PF_KTHREAD) && 594 !capc->page && 595 capc->cc->zone == zone ? capc : NULL; 596 } 597 598 static inline bool 599 compaction_capture(struct capture_control *capc, struct page *page, 600 int order, int migratetype) 601 { 602 if (!capc || order != capc->cc->order) 603 return false; 604 605 /* Do not accidentally pollute CMA or isolated regions*/ 606 if (is_migrate_cma(migratetype) || 607 is_migrate_isolate(migratetype)) 608 return false; 609 610 /* 611 * Do not let lower order allocations pollute a movable pageblock 612 * unless compaction is also requesting movable pages. 613 * This might let an unmovable request use a reclaimable pageblock 614 * and vice-versa but no more than normal fallback logic which can 615 * have trouble finding a high-order free page. 616 */ 617 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 618 capc->cc->migratetype != MIGRATE_MOVABLE) 619 return false; 620 621 if (migratetype != capc->cc->migratetype) 622 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 623 capc->cc->migratetype, migratetype); 624 625 capc->page = page; 626 return true; 627 } 628 629 #else 630 static inline struct capture_control *task_capc(struct zone *zone) 631 { 632 return NULL; 633 } 634 635 static inline bool 636 compaction_capture(struct capture_control *capc, struct page *page, 637 int order, int migratetype) 638 { 639 return false; 640 } 641 #endif /* CONFIG_COMPACTION */ 642 643 static inline void account_freepages(struct zone *zone, int nr_pages, 644 int migratetype) 645 { 646 lockdep_assert_held(&zone->lock); 647 648 if (is_migrate_isolate(migratetype)) 649 return; 650 651 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 652 653 if (is_migrate_cma(migratetype)) 654 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 655 else if (is_migrate_highatomic(migratetype)) 656 WRITE_ONCE(zone->nr_free_highatomic, 657 zone->nr_free_highatomic + nr_pages); 658 } 659 660 /* Used for pages not on another list */ 661 static inline void __add_to_free_list(struct page *page, struct zone *zone, 662 unsigned int order, int migratetype, 663 bool tail) 664 { 665 struct free_area *area = &zone->free_area[order]; 666 int nr_pages = 1 << order; 667 668 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 669 "page type is %lu, passed migratetype is %d (nr=%d)\n", 670 get_pageblock_migratetype(page), migratetype, nr_pages); 671 672 if (tail) 673 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 674 else 675 list_add(&page->buddy_list, &area->free_list[migratetype]); 676 area->nr_free++; 677 678 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 679 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 680 } 681 682 /* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687 static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int old_mt, int new_mt) 689 { 690 struct free_area *area = &zone->free_area[order]; 691 int nr_pages = 1 << order; 692 693 /* Free page moving can fail, so it happens before the type update */ 694 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 695 "page type is %lu, passed migratetype is %d (nr=%d)\n", 696 get_pageblock_migratetype(page), old_mt, nr_pages); 697 698 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 699 700 account_freepages(zone, -nr_pages, old_mt); 701 account_freepages(zone, nr_pages, new_mt); 702 703 if (order >= pageblock_order && 704 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 705 if (!is_migrate_isolate(old_mt)) 706 nr_pages = -nr_pages; 707 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 708 } 709 } 710 711 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 712 unsigned int order, int migratetype) 713 { 714 int nr_pages = 1 << order; 715 716 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 717 "page type is %lu, passed migratetype is %d (nr=%d)\n", 718 get_pageblock_migratetype(page), migratetype, nr_pages); 719 720 /* clear reported state and update reported page count */ 721 if (page_reported(page)) 722 __ClearPageReported(page); 723 724 list_del(&page->buddy_list); 725 __ClearPageBuddy(page); 726 set_page_private(page, 0); 727 zone->free_area[order].nr_free--; 728 729 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 730 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 731 } 732 733 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 734 unsigned int order, int migratetype) 735 { 736 __del_page_from_free_list(page, zone, order, migratetype); 737 account_freepages(zone, -(1 << order), migratetype); 738 } 739 740 static inline struct page *get_page_from_free_area(struct free_area *area, 741 int migratetype) 742 { 743 return list_first_entry_or_null(&area->free_list[migratetype], 744 struct page, buddy_list); 745 } 746 747 /* 748 * If this is less than the 2nd largest possible page, check if the buddy 749 * of the next-higher order is free. If it is, it's possible 750 * that pages are being freed that will coalesce soon. In case, 751 * that is happening, add the free page to the tail of the list 752 * so it's less likely to be used soon and more likely to be merged 753 * as a 2-level higher order page 754 */ 755 static inline bool 756 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 757 struct page *page, unsigned int order) 758 { 759 unsigned long higher_page_pfn; 760 struct page *higher_page; 761 762 if (order >= MAX_PAGE_ORDER - 1) 763 return false; 764 765 higher_page_pfn = buddy_pfn & pfn; 766 higher_page = page + (higher_page_pfn - pfn); 767 768 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 769 NULL) != NULL; 770 } 771 772 /* 773 * Freeing function for a buddy system allocator. 774 * 775 * The concept of a buddy system is to maintain direct-mapped table 776 * (containing bit values) for memory blocks of various "orders". 777 * The bottom level table contains the map for the smallest allocatable 778 * units of memory (here, pages), and each level above it describes 779 * pairs of units from the levels below, hence, "buddies". 780 * At a high level, all that happens here is marking the table entry 781 * at the bottom level available, and propagating the changes upward 782 * as necessary, plus some accounting needed to play nicely with other 783 * parts of the VM system. 784 * At each level, we keep a list of pages, which are heads of continuous 785 * free pages of length of (1 << order) and marked with PageBuddy. 786 * Page's order is recorded in page_private(page) field. 787 * So when we are allocating or freeing one, we can derive the state of the 788 * other. That is, if we allocate a small block, and both were 789 * free, the remainder of the region must be split into blocks. 790 * If a block is freed, and its buddy is also free, then this 791 * triggers coalescing into a block of larger size. 792 * 793 * -- nyc 794 */ 795 796 static inline void __free_one_page(struct page *page, 797 unsigned long pfn, 798 struct zone *zone, unsigned int order, 799 int migratetype, fpi_t fpi_flags) 800 { 801 struct capture_control *capc = task_capc(zone); 802 unsigned long buddy_pfn = 0; 803 unsigned long combined_pfn; 804 struct page *buddy; 805 bool to_tail; 806 807 VM_BUG_ON(!zone_is_initialized(zone)); 808 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 809 810 VM_BUG_ON(migratetype == -1); 811 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 812 VM_BUG_ON_PAGE(bad_range(zone, page), page); 813 814 account_freepages(zone, 1 << order, migratetype); 815 816 while (order < MAX_PAGE_ORDER) { 817 int buddy_mt = migratetype; 818 819 if (compaction_capture(capc, page, order, migratetype)) { 820 account_freepages(zone, -(1 << order), migratetype); 821 return; 822 } 823 824 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 825 if (!buddy) 826 goto done_merging; 827 828 if (unlikely(order >= pageblock_order)) { 829 /* 830 * We want to prevent merge between freepages on pageblock 831 * without fallbacks and normal pageblock. Without this, 832 * pageblock isolation could cause incorrect freepage or CMA 833 * accounting or HIGHATOMIC accounting. 834 */ 835 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 836 837 if (migratetype != buddy_mt && 838 (!migratetype_is_mergeable(migratetype) || 839 !migratetype_is_mergeable(buddy_mt))) 840 goto done_merging; 841 } 842 843 /* 844 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 845 * merge with it and move up one order. 846 */ 847 if (page_is_guard(buddy)) 848 clear_page_guard(zone, buddy, order); 849 else 850 __del_page_from_free_list(buddy, zone, order, buddy_mt); 851 852 if (unlikely(buddy_mt != migratetype)) { 853 /* 854 * Match buddy type. This ensures that an 855 * expand() down the line puts the sub-blocks 856 * on the right freelists. 857 */ 858 set_pageblock_migratetype(buddy, migratetype); 859 } 860 861 combined_pfn = buddy_pfn & pfn; 862 page = page + (combined_pfn - pfn); 863 pfn = combined_pfn; 864 order++; 865 } 866 867 done_merging: 868 set_buddy_order(page, order); 869 870 if (fpi_flags & FPI_TO_TAIL) 871 to_tail = true; 872 else if (is_shuffle_order(order)) 873 to_tail = shuffle_pick_tail(); 874 else 875 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 876 877 __add_to_free_list(page, zone, order, migratetype, to_tail); 878 879 /* Notify page reporting subsystem of freed page */ 880 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 881 page_reporting_notify_free(order); 882 } 883 884 /* 885 * A bad page could be due to a number of fields. Instead of multiple branches, 886 * try and check multiple fields with one check. The caller must do a detailed 887 * check if necessary. 888 */ 889 static inline bool page_expected_state(struct page *page, 890 unsigned long check_flags) 891 { 892 if (unlikely(atomic_read(&page->_mapcount) != -1)) 893 return false; 894 895 if (unlikely((unsigned long)page->mapping | 896 page_ref_count(page) | 897 #ifdef CONFIG_MEMCG 898 page->memcg_data | 899 #endif 900 page_pool_page_is_pp(page) | 901 (page->flags & check_flags))) 902 return false; 903 904 return true; 905 } 906 907 static const char *page_bad_reason(struct page *page, unsigned long flags) 908 { 909 const char *bad_reason = NULL; 910 911 if (unlikely(atomic_read(&page->_mapcount) != -1)) 912 bad_reason = "nonzero mapcount"; 913 if (unlikely(page->mapping != NULL)) 914 bad_reason = "non-NULL mapping"; 915 if (unlikely(page_ref_count(page) != 0)) 916 bad_reason = "nonzero _refcount"; 917 if (unlikely(page->flags & flags)) { 918 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 919 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 920 else 921 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 922 } 923 #ifdef CONFIG_MEMCG 924 if (unlikely(page->memcg_data)) 925 bad_reason = "page still charged to cgroup"; 926 #endif 927 if (unlikely(page_pool_page_is_pp(page))) 928 bad_reason = "page_pool leak"; 929 return bad_reason; 930 } 931 932 static void free_page_is_bad_report(struct page *page) 933 { 934 bad_page(page, 935 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 936 } 937 938 static inline bool free_page_is_bad(struct page *page) 939 { 940 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 941 return false; 942 943 /* Something has gone sideways, find it */ 944 free_page_is_bad_report(page); 945 return true; 946 } 947 948 static inline bool is_check_pages_enabled(void) 949 { 950 return static_branch_unlikely(&check_pages_enabled); 951 } 952 953 static int free_tail_page_prepare(struct page *head_page, struct page *page) 954 { 955 struct folio *folio = (struct folio *)head_page; 956 int ret = 1; 957 958 /* 959 * We rely page->lru.next never has bit 0 set, unless the page 960 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 961 */ 962 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 963 964 if (!is_check_pages_enabled()) { 965 ret = 0; 966 goto out; 967 } 968 switch (page - head_page) { 969 case 1: 970 /* the first tail page: these may be in place of ->mapping */ 971 if (unlikely(folio_large_mapcount(folio))) { 972 bad_page(page, "nonzero large_mapcount"); 973 goto out; 974 } 975 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 976 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 977 bad_page(page, "nonzero nr_pages_mapped"); 978 goto out; 979 } 980 if (IS_ENABLED(CONFIG_MM_ID)) { 981 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 982 bad_page(page, "nonzero mm mapcount 0"); 983 goto out; 984 } 985 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 986 bad_page(page, "nonzero mm mapcount 1"); 987 goto out; 988 } 989 } 990 if (IS_ENABLED(CONFIG_64BIT)) { 991 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 992 bad_page(page, "nonzero entire_mapcount"); 993 goto out; 994 } 995 if (unlikely(atomic_read(&folio->_pincount))) { 996 bad_page(page, "nonzero pincount"); 997 goto out; 998 } 999 } 1000 break; 1001 case 2: 1002 /* the second tail page: deferred_list overlaps ->mapping */ 1003 if (unlikely(!list_empty(&folio->_deferred_list))) { 1004 bad_page(page, "on deferred list"); 1005 goto out; 1006 } 1007 if (!IS_ENABLED(CONFIG_64BIT)) { 1008 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1009 bad_page(page, "nonzero entire_mapcount"); 1010 goto out; 1011 } 1012 if (unlikely(atomic_read(&folio->_pincount))) { 1013 bad_page(page, "nonzero pincount"); 1014 goto out; 1015 } 1016 } 1017 break; 1018 case 3: 1019 /* the third tail page: hugetlb specifics overlap ->mappings */ 1020 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1021 break; 1022 fallthrough; 1023 default: 1024 if (page->mapping != TAIL_MAPPING) { 1025 bad_page(page, "corrupted mapping in tail page"); 1026 goto out; 1027 } 1028 break; 1029 } 1030 if (unlikely(!PageTail(page))) { 1031 bad_page(page, "PageTail not set"); 1032 goto out; 1033 } 1034 if (unlikely(compound_head(page) != head_page)) { 1035 bad_page(page, "compound_head not consistent"); 1036 goto out; 1037 } 1038 ret = 0; 1039 out: 1040 page->mapping = NULL; 1041 clear_compound_head(page); 1042 return ret; 1043 } 1044 1045 /* 1046 * Skip KASAN memory poisoning when either: 1047 * 1048 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1049 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1050 * using page tags instead (see below). 1051 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1052 * that error detection is disabled for accesses via the page address. 1053 * 1054 * Pages will have match-all tags in the following circumstances: 1055 * 1056 * 1. Pages are being initialized for the first time, including during deferred 1057 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1058 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1059 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1060 * 3. The allocation was excluded from being checked due to sampling, 1061 * see the call to kasan_unpoison_pages. 1062 * 1063 * Poisoning pages during deferred memory init will greatly lengthen the 1064 * process and cause problem in large memory systems as the deferred pages 1065 * initialization is done with interrupt disabled. 1066 * 1067 * Assuming that there will be no reference to those newly initialized 1068 * pages before they are ever allocated, this should have no effect on 1069 * KASAN memory tracking as the poison will be properly inserted at page 1070 * allocation time. The only corner case is when pages are allocated by 1071 * on-demand allocation and then freed again before the deferred pages 1072 * initialization is done, but this is not likely to happen. 1073 */ 1074 static inline bool should_skip_kasan_poison(struct page *page) 1075 { 1076 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1077 return deferred_pages_enabled(); 1078 1079 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1080 } 1081 1082 static void kernel_init_pages(struct page *page, int numpages) 1083 { 1084 int i; 1085 1086 /* s390's use of memset() could override KASAN redzones. */ 1087 kasan_disable_current(); 1088 for (i = 0; i < numpages; i++) 1089 clear_highpage_kasan_tagged(page + i); 1090 kasan_enable_current(); 1091 } 1092 1093 #ifdef CONFIG_MEM_ALLOC_PROFILING 1094 1095 /* Should be called only if mem_alloc_profiling_enabled() */ 1096 void __clear_page_tag_ref(struct page *page) 1097 { 1098 union pgtag_ref_handle handle; 1099 union codetag_ref ref; 1100 1101 if (get_page_tag_ref(page, &ref, &handle)) { 1102 set_codetag_empty(&ref); 1103 update_page_tag_ref(handle, &ref); 1104 put_page_tag_ref(handle); 1105 } 1106 } 1107 1108 /* Should be called only if mem_alloc_profiling_enabled() */ 1109 static noinline 1110 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1111 unsigned int nr) 1112 { 1113 union pgtag_ref_handle handle; 1114 union codetag_ref ref; 1115 1116 if (get_page_tag_ref(page, &ref, &handle)) { 1117 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1118 update_page_tag_ref(handle, &ref); 1119 put_page_tag_ref(handle); 1120 } 1121 } 1122 1123 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1124 unsigned int nr) 1125 { 1126 if (mem_alloc_profiling_enabled()) 1127 __pgalloc_tag_add(page, task, nr); 1128 } 1129 1130 /* Should be called only if mem_alloc_profiling_enabled() */ 1131 static noinline 1132 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1133 { 1134 union pgtag_ref_handle handle; 1135 union codetag_ref ref; 1136 1137 if (get_page_tag_ref(page, &ref, &handle)) { 1138 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1139 update_page_tag_ref(handle, &ref); 1140 put_page_tag_ref(handle); 1141 } 1142 } 1143 1144 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1145 { 1146 if (mem_alloc_profiling_enabled()) 1147 __pgalloc_tag_sub(page, nr); 1148 } 1149 1150 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) 1151 { 1152 struct alloc_tag *tag; 1153 1154 if (!mem_alloc_profiling_enabled()) 1155 return; 1156 1157 tag = __pgalloc_tag_get(page); 1158 if (tag) 1159 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1160 } 1161 1162 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1163 1164 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1165 unsigned int nr) {} 1166 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1167 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {} 1168 1169 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1170 1171 __always_inline bool free_pages_prepare(struct page *page, 1172 unsigned int order) 1173 { 1174 int bad = 0; 1175 bool skip_kasan_poison = should_skip_kasan_poison(page); 1176 bool init = want_init_on_free(); 1177 bool compound = PageCompound(page); 1178 struct folio *folio = page_folio(page); 1179 1180 VM_BUG_ON_PAGE(PageTail(page), page); 1181 1182 trace_mm_page_free(page, order); 1183 kmsan_free_page(page, order); 1184 1185 if (memcg_kmem_online() && PageMemcgKmem(page)) 1186 __memcg_kmem_uncharge_page(page, order); 1187 1188 /* 1189 * In rare cases, when truncation or holepunching raced with 1190 * munlock after VM_LOCKED was cleared, Mlocked may still be 1191 * found set here. This does not indicate a problem, unless 1192 * "unevictable_pgs_cleared" appears worryingly large. 1193 */ 1194 if (unlikely(folio_test_mlocked(folio))) { 1195 long nr_pages = folio_nr_pages(folio); 1196 1197 __folio_clear_mlocked(folio); 1198 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1199 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1200 } 1201 1202 if (unlikely(PageHWPoison(page)) && !order) { 1203 /* Do not let hwpoison pages hit pcplists/buddy */ 1204 reset_page_owner(page, order); 1205 page_table_check_free(page, order); 1206 pgalloc_tag_sub(page, 1 << order); 1207 1208 /* 1209 * The page is isolated and accounted for. 1210 * Mark the codetag as empty to avoid accounting error 1211 * when the page is freed by unpoison_memory(). 1212 */ 1213 clear_page_tag_ref(page); 1214 return false; 1215 } 1216 1217 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1218 1219 /* 1220 * Check tail pages before head page information is cleared to 1221 * avoid checking PageCompound for order-0 pages. 1222 */ 1223 if (unlikely(order)) { 1224 int i; 1225 1226 if (compound) { 1227 page[1].flags &= ~PAGE_FLAGS_SECOND; 1228 #ifdef NR_PAGES_IN_LARGE_FOLIO 1229 folio->_nr_pages = 0; 1230 #endif 1231 } 1232 for (i = 1; i < (1 << order); i++) { 1233 if (compound) 1234 bad += free_tail_page_prepare(page, page + i); 1235 if (is_check_pages_enabled()) { 1236 if (free_page_is_bad(page + i)) { 1237 bad++; 1238 continue; 1239 } 1240 } 1241 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1242 } 1243 } 1244 if (PageMappingFlags(page)) { 1245 if (PageAnon(page)) 1246 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1247 page->mapping = NULL; 1248 } 1249 if (is_check_pages_enabled()) { 1250 if (free_page_is_bad(page)) 1251 bad++; 1252 if (bad) 1253 return false; 1254 } 1255 1256 page_cpupid_reset_last(page); 1257 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1258 reset_page_owner(page, order); 1259 page_table_check_free(page, order); 1260 pgalloc_tag_sub(page, 1 << order); 1261 1262 if (!PageHighMem(page)) { 1263 debug_check_no_locks_freed(page_address(page), 1264 PAGE_SIZE << order); 1265 debug_check_no_obj_freed(page_address(page), 1266 PAGE_SIZE << order); 1267 } 1268 1269 kernel_poison_pages(page, 1 << order); 1270 1271 /* 1272 * As memory initialization might be integrated into KASAN, 1273 * KASAN poisoning and memory initialization code must be 1274 * kept together to avoid discrepancies in behavior. 1275 * 1276 * With hardware tag-based KASAN, memory tags must be set before the 1277 * page becomes unavailable via debug_pagealloc or arch_free_page. 1278 */ 1279 if (!skip_kasan_poison) { 1280 kasan_poison_pages(page, order, init); 1281 1282 /* Memory is already initialized if KASAN did it internally. */ 1283 if (kasan_has_integrated_init()) 1284 init = false; 1285 } 1286 if (init) 1287 kernel_init_pages(page, 1 << order); 1288 1289 /* 1290 * arch_free_page() can make the page's contents inaccessible. s390 1291 * does this. So nothing which can access the page's contents should 1292 * happen after this. 1293 */ 1294 arch_free_page(page, order); 1295 1296 debug_pagealloc_unmap_pages(page, 1 << order); 1297 1298 return true; 1299 } 1300 1301 /* 1302 * Frees a number of pages from the PCP lists 1303 * Assumes all pages on list are in same zone. 1304 * count is the number of pages to free. 1305 */ 1306 static void free_pcppages_bulk(struct zone *zone, int count, 1307 struct per_cpu_pages *pcp, 1308 int pindex) 1309 { 1310 unsigned long flags; 1311 unsigned int order; 1312 struct page *page; 1313 1314 /* 1315 * Ensure proper count is passed which otherwise would stuck in the 1316 * below while (list_empty(list)) loop. 1317 */ 1318 count = min(pcp->count, count); 1319 1320 /* Ensure requested pindex is drained first. */ 1321 pindex = pindex - 1; 1322 1323 spin_lock_irqsave(&zone->lock, flags); 1324 1325 while (count > 0) { 1326 struct list_head *list; 1327 int nr_pages; 1328 1329 /* Remove pages from lists in a round-robin fashion. */ 1330 do { 1331 if (++pindex > NR_PCP_LISTS - 1) 1332 pindex = 0; 1333 list = &pcp->lists[pindex]; 1334 } while (list_empty(list)); 1335 1336 order = pindex_to_order(pindex); 1337 nr_pages = 1 << order; 1338 do { 1339 unsigned long pfn; 1340 int mt; 1341 1342 page = list_last_entry(list, struct page, pcp_list); 1343 pfn = page_to_pfn(page); 1344 mt = get_pfnblock_migratetype(page, pfn); 1345 1346 /* must delete to avoid corrupting pcp list */ 1347 list_del(&page->pcp_list); 1348 count -= nr_pages; 1349 pcp->count -= nr_pages; 1350 1351 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1352 trace_mm_page_pcpu_drain(page, order, mt); 1353 } while (count > 0 && !list_empty(list)); 1354 } 1355 1356 spin_unlock_irqrestore(&zone->lock, flags); 1357 } 1358 1359 /* Split a multi-block free page into its individual pageblocks. */ 1360 static void split_large_buddy(struct zone *zone, struct page *page, 1361 unsigned long pfn, int order, fpi_t fpi) 1362 { 1363 unsigned long end = pfn + (1 << order); 1364 1365 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1366 /* Caller removed page from freelist, buddy info cleared! */ 1367 VM_WARN_ON_ONCE(PageBuddy(page)); 1368 1369 if (order > pageblock_order) 1370 order = pageblock_order; 1371 1372 do { 1373 int mt = get_pfnblock_migratetype(page, pfn); 1374 1375 __free_one_page(page, pfn, zone, order, mt, fpi); 1376 pfn += 1 << order; 1377 if (pfn == end) 1378 break; 1379 page = pfn_to_page(pfn); 1380 } while (1); 1381 } 1382 1383 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1384 unsigned int order) 1385 { 1386 /* Remember the order */ 1387 page->order = order; 1388 /* Add the page to the free list */ 1389 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1390 } 1391 1392 static void free_one_page(struct zone *zone, struct page *page, 1393 unsigned long pfn, unsigned int order, 1394 fpi_t fpi_flags) 1395 { 1396 struct llist_head *llhead; 1397 unsigned long flags; 1398 1399 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1400 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1401 add_page_to_zone_llist(zone, page, order); 1402 return; 1403 } 1404 spin_lock_irqsave(&zone->lock, flags); 1405 } 1406 1407 /* The lock succeeded. Process deferred pages. */ 1408 llhead = &zone->trylock_free_pages; 1409 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1410 struct llist_node *llnode; 1411 struct page *p, *tmp; 1412 1413 llnode = llist_del_all(llhead); 1414 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1415 unsigned int p_order = p->order; 1416 1417 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1418 __count_vm_events(PGFREE, 1 << p_order); 1419 } 1420 } 1421 split_large_buddy(zone, page, pfn, order, fpi_flags); 1422 spin_unlock_irqrestore(&zone->lock, flags); 1423 1424 __count_vm_events(PGFREE, 1 << order); 1425 } 1426 1427 static void __free_pages_ok(struct page *page, unsigned int order, 1428 fpi_t fpi_flags) 1429 { 1430 unsigned long pfn = page_to_pfn(page); 1431 struct zone *zone = page_zone(page); 1432 1433 if (free_pages_prepare(page, order)) 1434 free_one_page(zone, page, pfn, order, fpi_flags); 1435 } 1436 1437 void __meminit __free_pages_core(struct page *page, unsigned int order, 1438 enum meminit_context context) 1439 { 1440 unsigned int nr_pages = 1 << order; 1441 struct page *p = page; 1442 unsigned int loop; 1443 1444 /* 1445 * When initializing the memmap, __init_single_page() sets the refcount 1446 * of all pages to 1 ("allocated"/"not free"). We have to set the 1447 * refcount of all involved pages to 0. 1448 * 1449 * Note that hotplugged memory pages are initialized to PageOffline(). 1450 * Pages freed from memblock might be marked as reserved. 1451 */ 1452 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1453 unlikely(context == MEMINIT_HOTPLUG)) { 1454 for (loop = 0; loop < nr_pages; loop++, p++) { 1455 VM_WARN_ON_ONCE(PageReserved(p)); 1456 __ClearPageOffline(p); 1457 set_page_count(p, 0); 1458 } 1459 1460 adjust_managed_page_count(page, nr_pages); 1461 } else { 1462 for (loop = 0; loop < nr_pages; loop++, p++) { 1463 __ClearPageReserved(p); 1464 set_page_count(p, 0); 1465 } 1466 1467 /* memblock adjusts totalram_pages() manually. */ 1468 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1469 } 1470 1471 if (page_contains_unaccepted(page, order)) { 1472 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1473 return; 1474 1475 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1476 } 1477 1478 /* 1479 * Bypass PCP and place fresh pages right to the tail, primarily 1480 * relevant for memory onlining. 1481 */ 1482 __free_pages_ok(page, order, FPI_TO_TAIL); 1483 } 1484 1485 /* 1486 * Check that the whole (or subset of) a pageblock given by the interval of 1487 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1488 * with the migration of free compaction scanner. 1489 * 1490 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1491 * 1492 * It's possible on some configurations to have a setup like node0 node1 node0 1493 * i.e. it's possible that all pages within a zones range of pages do not 1494 * belong to a single zone. We assume that a border between node0 and node1 1495 * can occur within a single pageblock, but not a node0 node1 node0 1496 * interleaving within a single pageblock. It is therefore sufficient to check 1497 * the first and last page of a pageblock and avoid checking each individual 1498 * page in a pageblock. 1499 * 1500 * Note: the function may return non-NULL struct page even for a page block 1501 * which contains a memory hole (i.e. there is no physical memory for a subset 1502 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1503 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1504 * even though the start pfn is online and valid. This should be safe most of 1505 * the time because struct pages are still initialized via init_unavailable_range() 1506 * and pfn walkers shouldn't touch any physical memory range for which they do 1507 * not recognize any specific metadata in struct pages. 1508 */ 1509 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1510 unsigned long end_pfn, struct zone *zone) 1511 { 1512 struct page *start_page; 1513 struct page *end_page; 1514 1515 /* end_pfn is one past the range we are checking */ 1516 end_pfn--; 1517 1518 if (!pfn_valid(end_pfn)) 1519 return NULL; 1520 1521 start_page = pfn_to_online_page(start_pfn); 1522 if (!start_page) 1523 return NULL; 1524 1525 if (page_zone(start_page) != zone) 1526 return NULL; 1527 1528 end_page = pfn_to_page(end_pfn); 1529 1530 /* This gives a shorter code than deriving page_zone(end_page) */ 1531 if (page_zone_id(start_page) != page_zone_id(end_page)) 1532 return NULL; 1533 1534 return start_page; 1535 } 1536 1537 /* 1538 * The order of subdivision here is critical for the IO subsystem. 1539 * Please do not alter this order without good reasons and regression 1540 * testing. Specifically, as large blocks of memory are subdivided, 1541 * the order in which smaller blocks are delivered depends on the order 1542 * they're subdivided in this function. This is the primary factor 1543 * influencing the order in which pages are delivered to the IO 1544 * subsystem according to empirical testing, and this is also justified 1545 * by considering the behavior of a buddy system containing a single 1546 * large block of memory acted on by a series of small allocations. 1547 * This behavior is a critical factor in sglist merging's success. 1548 * 1549 * -- nyc 1550 */ 1551 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1552 int high, int migratetype) 1553 { 1554 unsigned int size = 1 << high; 1555 unsigned int nr_added = 0; 1556 1557 while (high > low) { 1558 high--; 1559 size >>= 1; 1560 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1561 1562 /* 1563 * Mark as guard pages (or page), that will allow to 1564 * merge back to allocator when buddy will be freed. 1565 * Corresponding page table entries will not be touched, 1566 * pages will stay not present in virtual address space 1567 */ 1568 if (set_page_guard(zone, &page[size], high)) 1569 continue; 1570 1571 __add_to_free_list(&page[size], zone, high, migratetype, false); 1572 set_buddy_order(&page[size], high); 1573 nr_added += size; 1574 } 1575 1576 return nr_added; 1577 } 1578 1579 static __always_inline void page_del_and_expand(struct zone *zone, 1580 struct page *page, int low, 1581 int high, int migratetype) 1582 { 1583 int nr_pages = 1 << high; 1584 1585 __del_page_from_free_list(page, zone, high, migratetype); 1586 nr_pages -= expand(zone, page, low, high, migratetype); 1587 account_freepages(zone, -nr_pages, migratetype); 1588 } 1589 1590 static void check_new_page_bad(struct page *page) 1591 { 1592 if (unlikely(PageHWPoison(page))) { 1593 /* Don't complain about hwpoisoned pages */ 1594 if (PageBuddy(page)) 1595 __ClearPageBuddy(page); 1596 return; 1597 } 1598 1599 bad_page(page, 1600 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1601 } 1602 1603 /* 1604 * This page is about to be returned from the page allocator 1605 */ 1606 static bool check_new_page(struct page *page) 1607 { 1608 if (likely(page_expected_state(page, 1609 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1610 return false; 1611 1612 check_new_page_bad(page); 1613 return true; 1614 } 1615 1616 static inline bool check_new_pages(struct page *page, unsigned int order) 1617 { 1618 if (is_check_pages_enabled()) { 1619 for (int i = 0; i < (1 << order); i++) { 1620 struct page *p = page + i; 1621 1622 if (check_new_page(p)) 1623 return true; 1624 } 1625 } 1626 1627 return false; 1628 } 1629 1630 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1631 { 1632 /* Don't skip if a software KASAN mode is enabled. */ 1633 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1634 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1635 return false; 1636 1637 /* Skip, if hardware tag-based KASAN is not enabled. */ 1638 if (!kasan_hw_tags_enabled()) 1639 return true; 1640 1641 /* 1642 * With hardware tag-based KASAN enabled, skip if this has been 1643 * requested via __GFP_SKIP_KASAN. 1644 */ 1645 return flags & __GFP_SKIP_KASAN; 1646 } 1647 1648 static inline bool should_skip_init(gfp_t flags) 1649 { 1650 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1651 if (!kasan_hw_tags_enabled()) 1652 return false; 1653 1654 /* For hardware tag-based KASAN, skip if requested. */ 1655 return (flags & __GFP_SKIP_ZERO); 1656 } 1657 1658 inline void post_alloc_hook(struct page *page, unsigned int order, 1659 gfp_t gfp_flags) 1660 { 1661 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1662 !should_skip_init(gfp_flags); 1663 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1664 int i; 1665 1666 set_page_private(page, 0); 1667 1668 arch_alloc_page(page, order); 1669 debug_pagealloc_map_pages(page, 1 << order); 1670 1671 /* 1672 * Page unpoisoning must happen before memory initialization. 1673 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1674 * allocations and the page unpoisoning code will complain. 1675 */ 1676 kernel_unpoison_pages(page, 1 << order); 1677 1678 /* 1679 * As memory initialization might be integrated into KASAN, 1680 * KASAN unpoisoning and memory initializion code must be 1681 * kept together to avoid discrepancies in behavior. 1682 */ 1683 1684 /* 1685 * If memory tags should be zeroed 1686 * (which happens only when memory should be initialized as well). 1687 */ 1688 if (zero_tags) { 1689 /* Initialize both memory and memory tags. */ 1690 for (i = 0; i != 1 << order; ++i) 1691 tag_clear_highpage(page + i); 1692 1693 /* Take note that memory was initialized by the loop above. */ 1694 init = false; 1695 } 1696 if (!should_skip_kasan_unpoison(gfp_flags) && 1697 kasan_unpoison_pages(page, order, init)) { 1698 /* Take note that memory was initialized by KASAN. */ 1699 if (kasan_has_integrated_init()) 1700 init = false; 1701 } else { 1702 /* 1703 * If memory tags have not been set by KASAN, reset the page 1704 * tags to ensure page_address() dereferencing does not fault. 1705 */ 1706 for (i = 0; i != 1 << order; ++i) 1707 page_kasan_tag_reset(page + i); 1708 } 1709 /* If memory is still not initialized, initialize it now. */ 1710 if (init) 1711 kernel_init_pages(page, 1 << order); 1712 1713 set_page_owner(page, order, gfp_flags); 1714 page_table_check_alloc(page, order); 1715 pgalloc_tag_add(page, current, 1 << order); 1716 } 1717 1718 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1719 unsigned int alloc_flags) 1720 { 1721 post_alloc_hook(page, order, gfp_flags); 1722 1723 if (order && (gfp_flags & __GFP_COMP)) 1724 prep_compound_page(page, order); 1725 1726 /* 1727 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1728 * allocate the page. The expectation is that the caller is taking 1729 * steps that will free more memory. The caller should avoid the page 1730 * being used for !PFMEMALLOC purposes. 1731 */ 1732 if (alloc_flags & ALLOC_NO_WATERMARKS) 1733 set_page_pfmemalloc(page); 1734 else 1735 clear_page_pfmemalloc(page); 1736 } 1737 1738 /* 1739 * Go through the free lists for the given migratetype and remove 1740 * the smallest available page from the freelists 1741 */ 1742 static __always_inline 1743 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1744 int migratetype) 1745 { 1746 unsigned int current_order; 1747 struct free_area *area; 1748 struct page *page; 1749 1750 /* Find a page of the appropriate size in the preferred list */ 1751 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1752 area = &(zone->free_area[current_order]); 1753 page = get_page_from_free_area(area, migratetype); 1754 if (!page) 1755 continue; 1756 1757 page_del_and_expand(zone, page, order, current_order, 1758 migratetype); 1759 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1760 pcp_allowed_order(order) && 1761 migratetype < MIGRATE_PCPTYPES); 1762 return page; 1763 } 1764 1765 return NULL; 1766 } 1767 1768 1769 /* 1770 * This array describes the order lists are fallen back to when 1771 * the free lists for the desirable migrate type are depleted 1772 * 1773 * The other migratetypes do not have fallbacks. 1774 */ 1775 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1776 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1777 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1778 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1779 }; 1780 1781 #ifdef CONFIG_CMA 1782 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1783 unsigned int order) 1784 { 1785 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1786 } 1787 #else 1788 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1789 unsigned int order) { return NULL; } 1790 #endif 1791 1792 /* 1793 * Change the type of a block and move all its free pages to that 1794 * type's freelist. 1795 */ 1796 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1797 int old_mt, int new_mt) 1798 { 1799 struct page *page; 1800 unsigned long pfn, end_pfn; 1801 unsigned int order; 1802 int pages_moved = 0; 1803 1804 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1805 end_pfn = pageblock_end_pfn(start_pfn); 1806 1807 for (pfn = start_pfn; pfn < end_pfn;) { 1808 page = pfn_to_page(pfn); 1809 if (!PageBuddy(page)) { 1810 pfn++; 1811 continue; 1812 } 1813 1814 /* Make sure we are not inadvertently changing nodes */ 1815 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1816 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1817 1818 order = buddy_order(page); 1819 1820 move_to_free_list(page, zone, order, old_mt, new_mt); 1821 1822 pfn += 1 << order; 1823 pages_moved += 1 << order; 1824 } 1825 1826 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1827 1828 return pages_moved; 1829 } 1830 1831 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1832 unsigned long *start_pfn, 1833 int *num_free, int *num_movable) 1834 { 1835 unsigned long pfn, start, end; 1836 1837 pfn = page_to_pfn(page); 1838 start = pageblock_start_pfn(pfn); 1839 end = pageblock_end_pfn(pfn); 1840 1841 /* 1842 * The caller only has the lock for @zone, don't touch ranges 1843 * that straddle into other zones. While we could move part of 1844 * the range that's inside the zone, this call is usually 1845 * accompanied by other operations such as migratetype updates 1846 * which also should be locked. 1847 */ 1848 if (!zone_spans_pfn(zone, start)) 1849 return false; 1850 if (!zone_spans_pfn(zone, end - 1)) 1851 return false; 1852 1853 *start_pfn = start; 1854 1855 if (num_free) { 1856 *num_free = 0; 1857 *num_movable = 0; 1858 for (pfn = start; pfn < end;) { 1859 page = pfn_to_page(pfn); 1860 if (PageBuddy(page)) { 1861 int nr = 1 << buddy_order(page); 1862 1863 *num_free += nr; 1864 pfn += nr; 1865 continue; 1866 } 1867 /* 1868 * We assume that pages that could be isolated for 1869 * migration are movable. But we don't actually try 1870 * isolating, as that would be expensive. 1871 */ 1872 if (PageLRU(page) || __PageMovable(page)) 1873 (*num_movable)++; 1874 pfn++; 1875 } 1876 } 1877 1878 return true; 1879 } 1880 1881 static int move_freepages_block(struct zone *zone, struct page *page, 1882 int old_mt, int new_mt) 1883 { 1884 unsigned long start_pfn; 1885 1886 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1887 return -1; 1888 1889 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1890 } 1891 1892 #ifdef CONFIG_MEMORY_ISOLATION 1893 /* Look for a buddy that straddles start_pfn */ 1894 static unsigned long find_large_buddy(unsigned long start_pfn) 1895 { 1896 int order = 0; 1897 struct page *page; 1898 unsigned long pfn = start_pfn; 1899 1900 while (!PageBuddy(page = pfn_to_page(pfn))) { 1901 /* Nothing found */ 1902 if (++order > MAX_PAGE_ORDER) 1903 return start_pfn; 1904 pfn &= ~0UL << order; 1905 } 1906 1907 /* 1908 * Found a preceding buddy, but does it straddle? 1909 */ 1910 if (pfn + (1 << buddy_order(page)) > start_pfn) 1911 return pfn; 1912 1913 /* Nothing found */ 1914 return start_pfn; 1915 } 1916 1917 /** 1918 * move_freepages_block_isolate - move free pages in block for page isolation 1919 * @zone: the zone 1920 * @page: the pageblock page 1921 * @migratetype: migratetype to set on the pageblock 1922 * 1923 * This is similar to move_freepages_block(), but handles the special 1924 * case encountered in page isolation, where the block of interest 1925 * might be part of a larger buddy spanning multiple pageblocks. 1926 * 1927 * Unlike the regular page allocator path, which moves pages while 1928 * stealing buddies off the freelist, page isolation is interested in 1929 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1930 * 1931 * This function handles that. Straddling buddies are split into 1932 * individual pageblocks. Only the block of interest is moved. 1933 * 1934 * Returns %true if pages could be moved, %false otherwise. 1935 */ 1936 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1937 int migratetype) 1938 { 1939 unsigned long start_pfn, pfn; 1940 1941 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1942 return false; 1943 1944 /* No splits needed if buddies can't span multiple blocks */ 1945 if (pageblock_order == MAX_PAGE_ORDER) 1946 goto move; 1947 1948 /* We're a tail block in a larger buddy */ 1949 pfn = find_large_buddy(start_pfn); 1950 if (pfn != start_pfn) { 1951 struct page *buddy = pfn_to_page(pfn); 1952 int order = buddy_order(buddy); 1953 1954 del_page_from_free_list(buddy, zone, order, 1955 get_pfnblock_migratetype(buddy, pfn)); 1956 set_pageblock_migratetype(page, migratetype); 1957 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1958 return true; 1959 } 1960 1961 /* We're the starting block of a larger buddy */ 1962 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1963 int order = buddy_order(page); 1964 1965 del_page_from_free_list(page, zone, order, 1966 get_pfnblock_migratetype(page, pfn)); 1967 set_pageblock_migratetype(page, migratetype); 1968 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1969 return true; 1970 } 1971 move: 1972 __move_freepages_block(zone, start_pfn, 1973 get_pfnblock_migratetype(page, start_pfn), 1974 migratetype); 1975 return true; 1976 } 1977 #endif /* CONFIG_MEMORY_ISOLATION */ 1978 1979 static void change_pageblock_range(struct page *pageblock_page, 1980 int start_order, int migratetype) 1981 { 1982 int nr_pageblocks = 1 << (start_order - pageblock_order); 1983 1984 while (nr_pageblocks--) { 1985 set_pageblock_migratetype(pageblock_page, migratetype); 1986 pageblock_page += pageblock_nr_pages; 1987 } 1988 } 1989 1990 static inline bool boost_watermark(struct zone *zone) 1991 { 1992 unsigned long max_boost; 1993 1994 if (!watermark_boost_factor) 1995 return false; 1996 /* 1997 * Don't bother in zones that are unlikely to produce results. 1998 * On small machines, including kdump capture kernels running 1999 * in a small area, boosting the watermark can cause an out of 2000 * memory situation immediately. 2001 */ 2002 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2003 return false; 2004 2005 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2006 watermark_boost_factor, 10000); 2007 2008 /* 2009 * high watermark may be uninitialised if fragmentation occurs 2010 * very early in boot so do not boost. We do not fall 2011 * through and boost by pageblock_nr_pages as failing 2012 * allocations that early means that reclaim is not going 2013 * to help and it may even be impossible to reclaim the 2014 * boosted watermark resulting in a hang. 2015 */ 2016 if (!max_boost) 2017 return false; 2018 2019 max_boost = max(pageblock_nr_pages, max_boost); 2020 2021 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2022 max_boost); 2023 2024 return true; 2025 } 2026 2027 /* 2028 * When we are falling back to another migratetype during allocation, should we 2029 * try to claim an entire block to satisfy further allocations, instead of 2030 * polluting multiple pageblocks? 2031 */ 2032 static bool should_try_claim_block(unsigned int order, int start_mt) 2033 { 2034 /* 2035 * Leaving this order check is intended, although there is 2036 * relaxed order check in next check. The reason is that 2037 * we can actually claim the whole pageblock if this condition met, 2038 * but, below check doesn't guarantee it and that is just heuristic 2039 * so could be changed anytime. 2040 */ 2041 if (order >= pageblock_order) 2042 return true; 2043 2044 /* 2045 * Above a certain threshold, always try to claim, as it's likely there 2046 * will be more free pages in the pageblock. 2047 */ 2048 if (order >= pageblock_order / 2) 2049 return true; 2050 2051 /* 2052 * Unmovable/reclaimable allocations would cause permanent 2053 * fragmentations if they fell back to allocating from a movable block 2054 * (polluting it), so we try to claim the whole block regardless of the 2055 * allocation size. Later movable allocations can always steal from this 2056 * block, which is less problematic. 2057 */ 2058 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2059 return true; 2060 2061 if (page_group_by_mobility_disabled) 2062 return true; 2063 2064 /* 2065 * Movable pages won't cause permanent fragmentation, so when you alloc 2066 * small pages, we just need to temporarily steal unmovable or 2067 * reclaimable pages that are closest to the request size. After a 2068 * while, memory compaction may occur to form large contiguous pages, 2069 * and the next movable allocation may not need to steal. 2070 */ 2071 return false; 2072 } 2073 2074 /* 2075 * Check whether there is a suitable fallback freepage with requested order. 2076 * Sets *claim_block to instruct the caller whether it should convert a whole 2077 * pageblock to the returned migratetype. 2078 * If only_claim is true, this function returns fallback_mt only if 2079 * we would do this whole-block claiming. This would help to reduce 2080 * fragmentation due to mixed migratetype pages in one pageblock. 2081 */ 2082 int find_suitable_fallback(struct free_area *area, unsigned int order, 2083 int migratetype, bool only_claim, bool *claim_block) 2084 { 2085 int i; 2086 int fallback_mt; 2087 2088 if (area->nr_free == 0) 2089 return -1; 2090 2091 *claim_block = false; 2092 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2093 fallback_mt = fallbacks[migratetype][i]; 2094 if (free_area_empty(area, fallback_mt)) 2095 continue; 2096 2097 if (should_try_claim_block(order, migratetype)) 2098 *claim_block = true; 2099 2100 if (*claim_block || !only_claim) 2101 return fallback_mt; 2102 } 2103 2104 return -1; 2105 } 2106 2107 /* 2108 * This function implements actual block claiming behaviour. If order is large 2109 * enough, we can claim the whole pageblock for the requested migratetype. If 2110 * not, we check the pageblock for constituent pages; if at least half of the 2111 * pages are free or compatible, we can still claim the whole block, so pages 2112 * freed in the future will be put on the correct free list. 2113 */ 2114 static struct page * 2115 try_to_claim_block(struct zone *zone, struct page *page, 2116 int current_order, int order, int start_type, 2117 int block_type, unsigned int alloc_flags) 2118 { 2119 int free_pages, movable_pages, alike_pages; 2120 unsigned long start_pfn; 2121 2122 /* Take ownership for orders >= pageblock_order */ 2123 if (current_order >= pageblock_order) { 2124 unsigned int nr_added; 2125 2126 del_page_from_free_list(page, zone, current_order, block_type); 2127 change_pageblock_range(page, current_order, start_type); 2128 nr_added = expand(zone, page, order, current_order, start_type); 2129 account_freepages(zone, nr_added, start_type); 2130 return page; 2131 } 2132 2133 /* 2134 * Boost watermarks to increase reclaim pressure to reduce the 2135 * likelihood of future fallbacks. Wake kswapd now as the node 2136 * may be balanced overall and kswapd will not wake naturally. 2137 */ 2138 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2139 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2140 2141 /* moving whole block can fail due to zone boundary conditions */ 2142 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2143 &movable_pages)) 2144 return NULL; 2145 2146 /* 2147 * Determine how many pages are compatible with our allocation. 2148 * For movable allocation, it's the number of movable pages which 2149 * we just obtained. For other types it's a bit more tricky. 2150 */ 2151 if (start_type == MIGRATE_MOVABLE) { 2152 alike_pages = movable_pages; 2153 } else { 2154 /* 2155 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2156 * to MOVABLE pageblock, consider all non-movable pages as 2157 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2158 * vice versa, be conservative since we can't distinguish the 2159 * exact migratetype of non-movable pages. 2160 */ 2161 if (block_type == MIGRATE_MOVABLE) 2162 alike_pages = pageblock_nr_pages 2163 - (free_pages + movable_pages); 2164 else 2165 alike_pages = 0; 2166 } 2167 /* 2168 * If a sufficient number of pages in the block are either free or of 2169 * compatible migratability as our allocation, claim the whole block. 2170 */ 2171 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2172 page_group_by_mobility_disabled) { 2173 __move_freepages_block(zone, start_pfn, block_type, start_type); 2174 return __rmqueue_smallest(zone, order, start_type); 2175 } 2176 2177 return NULL; 2178 } 2179 2180 /* 2181 * Try finding a free buddy page on the fallback list. 2182 * 2183 * This will attempt to claim a whole pageblock for the requested type 2184 * to ensure grouping of such requests in the future. 2185 * 2186 * If a whole block cannot be claimed, steal an individual page, regressing to 2187 * __rmqueue_smallest() logic to at least break up as little contiguity as 2188 * possible. 2189 * 2190 * The use of signed ints for order and current_order is a deliberate 2191 * deviation from the rest of this file, to make the for loop 2192 * condition simpler. 2193 * 2194 * Return the stolen page, or NULL if none can be found. 2195 */ 2196 static __always_inline struct page * 2197 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2198 unsigned int alloc_flags) 2199 { 2200 struct free_area *area; 2201 int current_order; 2202 int min_order = order; 2203 struct page *page; 2204 int fallback_mt; 2205 bool claim_block; 2206 2207 /* 2208 * Do not steal pages from freelists belonging to other pageblocks 2209 * i.e. orders < pageblock_order. If there are no local zones free, 2210 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2211 */ 2212 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2213 min_order = pageblock_order; 2214 2215 /* 2216 * Find the largest available free page in the other list. This roughly 2217 * approximates finding the pageblock with the most free pages, which 2218 * would be too costly to do exactly. 2219 */ 2220 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2221 --current_order) { 2222 area = &(zone->free_area[current_order]); 2223 fallback_mt = find_suitable_fallback(area, current_order, 2224 start_migratetype, false, &claim_block); 2225 if (fallback_mt == -1) 2226 continue; 2227 2228 if (!claim_block) 2229 break; 2230 2231 page = get_page_from_free_area(area, fallback_mt); 2232 page = try_to_claim_block(zone, page, current_order, order, 2233 start_migratetype, fallback_mt, 2234 alloc_flags); 2235 if (page) 2236 goto got_one; 2237 } 2238 2239 if (alloc_flags & ALLOC_NOFRAGMENT) 2240 return NULL; 2241 2242 /* No luck claiming pageblock. Find the smallest fallback page */ 2243 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2244 area = &(zone->free_area[current_order]); 2245 fallback_mt = find_suitable_fallback(area, current_order, 2246 start_migratetype, false, &claim_block); 2247 if (fallback_mt == -1) 2248 continue; 2249 2250 page = get_page_from_free_area(area, fallback_mt); 2251 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2252 goto got_one; 2253 } 2254 2255 return NULL; 2256 2257 got_one: 2258 trace_mm_page_alloc_extfrag(page, order, current_order, 2259 start_migratetype, fallback_mt); 2260 2261 return page; 2262 } 2263 2264 /* 2265 * Do the hard work of removing an element from the buddy allocator. 2266 * Call me with the zone->lock already held. 2267 */ 2268 static __always_inline struct page * 2269 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2270 unsigned int alloc_flags) 2271 { 2272 struct page *page; 2273 2274 if (IS_ENABLED(CONFIG_CMA)) { 2275 /* 2276 * Balance movable allocations between regular and CMA areas by 2277 * allocating from CMA when over half of the zone's free memory 2278 * is in the CMA area. 2279 */ 2280 if (alloc_flags & ALLOC_CMA && 2281 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2282 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2283 page = __rmqueue_cma_fallback(zone, order); 2284 if (page) 2285 return page; 2286 } 2287 } 2288 2289 page = __rmqueue_smallest(zone, order, migratetype); 2290 if (unlikely(!page)) { 2291 if (alloc_flags & ALLOC_CMA) 2292 page = __rmqueue_cma_fallback(zone, order); 2293 2294 if (!page) 2295 page = __rmqueue_fallback(zone, order, migratetype, 2296 alloc_flags); 2297 } 2298 return page; 2299 } 2300 2301 /* 2302 * Obtain a specified number of elements from the buddy allocator, all under 2303 * a single hold of the lock, for efficiency. Add them to the supplied list. 2304 * Returns the number of new pages which were placed at *list. 2305 */ 2306 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2307 unsigned long count, struct list_head *list, 2308 int migratetype, unsigned int alloc_flags) 2309 { 2310 unsigned long flags; 2311 int i; 2312 2313 if (!spin_trylock_irqsave(&zone->lock, flags)) { 2314 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) 2315 return 0; 2316 spin_lock_irqsave(&zone->lock, flags); 2317 } 2318 for (i = 0; i < count; ++i) { 2319 struct page *page = __rmqueue(zone, order, migratetype, 2320 alloc_flags); 2321 if (unlikely(page == NULL)) 2322 break; 2323 2324 /* 2325 * Split buddy pages returned by expand() are received here in 2326 * physical page order. The page is added to the tail of 2327 * caller's list. From the callers perspective, the linked list 2328 * is ordered by page number under some conditions. This is 2329 * useful for IO devices that can forward direction from the 2330 * head, thus also in the physical page order. This is useful 2331 * for IO devices that can merge IO requests if the physical 2332 * pages are ordered properly. 2333 */ 2334 list_add_tail(&page->pcp_list, list); 2335 } 2336 spin_unlock_irqrestore(&zone->lock, flags); 2337 2338 return i; 2339 } 2340 2341 /* 2342 * Called from the vmstat counter updater to decay the PCP high. 2343 * Return whether there are addition works to do. 2344 */ 2345 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2346 { 2347 int high_min, to_drain, batch; 2348 int todo = 0; 2349 2350 high_min = READ_ONCE(pcp->high_min); 2351 batch = READ_ONCE(pcp->batch); 2352 /* 2353 * Decrease pcp->high periodically to try to free possible 2354 * idle PCP pages. And, avoid to free too many pages to 2355 * control latency. This caps pcp->high decrement too. 2356 */ 2357 if (pcp->high > high_min) { 2358 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2359 pcp->high - (pcp->high >> 3), high_min); 2360 if (pcp->high > high_min) 2361 todo++; 2362 } 2363 2364 to_drain = pcp->count - pcp->high; 2365 if (to_drain > 0) { 2366 spin_lock(&pcp->lock); 2367 free_pcppages_bulk(zone, to_drain, pcp, 0); 2368 spin_unlock(&pcp->lock); 2369 todo++; 2370 } 2371 2372 return todo; 2373 } 2374 2375 #ifdef CONFIG_NUMA 2376 /* 2377 * Called from the vmstat counter updater to drain pagesets of this 2378 * currently executing processor on remote nodes after they have 2379 * expired. 2380 */ 2381 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2382 { 2383 int to_drain, batch; 2384 2385 batch = READ_ONCE(pcp->batch); 2386 to_drain = min(pcp->count, batch); 2387 if (to_drain > 0) { 2388 spin_lock(&pcp->lock); 2389 free_pcppages_bulk(zone, to_drain, pcp, 0); 2390 spin_unlock(&pcp->lock); 2391 } 2392 } 2393 #endif 2394 2395 /* 2396 * Drain pcplists of the indicated processor and zone. 2397 */ 2398 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2399 { 2400 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2401 int count; 2402 2403 do { 2404 spin_lock(&pcp->lock); 2405 count = pcp->count; 2406 if (count) { 2407 int to_drain = min(count, 2408 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2409 2410 free_pcppages_bulk(zone, to_drain, pcp, 0); 2411 count -= to_drain; 2412 } 2413 spin_unlock(&pcp->lock); 2414 } while (count); 2415 } 2416 2417 /* 2418 * Drain pcplists of all zones on the indicated processor. 2419 */ 2420 static void drain_pages(unsigned int cpu) 2421 { 2422 struct zone *zone; 2423 2424 for_each_populated_zone(zone) { 2425 drain_pages_zone(cpu, zone); 2426 } 2427 } 2428 2429 /* 2430 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2431 */ 2432 void drain_local_pages(struct zone *zone) 2433 { 2434 int cpu = smp_processor_id(); 2435 2436 if (zone) 2437 drain_pages_zone(cpu, zone); 2438 else 2439 drain_pages(cpu); 2440 } 2441 2442 /* 2443 * The implementation of drain_all_pages(), exposing an extra parameter to 2444 * drain on all cpus. 2445 * 2446 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2447 * not empty. The check for non-emptiness can however race with a free to 2448 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2449 * that need the guarantee that every CPU has drained can disable the 2450 * optimizing racy check. 2451 */ 2452 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2453 { 2454 int cpu; 2455 2456 /* 2457 * Allocate in the BSS so we won't require allocation in 2458 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2459 */ 2460 static cpumask_t cpus_with_pcps; 2461 2462 /* 2463 * Do not drain if one is already in progress unless it's specific to 2464 * a zone. Such callers are primarily CMA and memory hotplug and need 2465 * the drain to be complete when the call returns. 2466 */ 2467 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2468 if (!zone) 2469 return; 2470 mutex_lock(&pcpu_drain_mutex); 2471 } 2472 2473 /* 2474 * We don't care about racing with CPU hotplug event 2475 * as offline notification will cause the notified 2476 * cpu to drain that CPU pcps and on_each_cpu_mask 2477 * disables preemption as part of its processing 2478 */ 2479 for_each_online_cpu(cpu) { 2480 struct per_cpu_pages *pcp; 2481 struct zone *z; 2482 bool has_pcps = false; 2483 2484 if (force_all_cpus) { 2485 /* 2486 * The pcp.count check is racy, some callers need a 2487 * guarantee that no cpu is missed. 2488 */ 2489 has_pcps = true; 2490 } else if (zone) { 2491 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2492 if (pcp->count) 2493 has_pcps = true; 2494 } else { 2495 for_each_populated_zone(z) { 2496 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2497 if (pcp->count) { 2498 has_pcps = true; 2499 break; 2500 } 2501 } 2502 } 2503 2504 if (has_pcps) 2505 cpumask_set_cpu(cpu, &cpus_with_pcps); 2506 else 2507 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2508 } 2509 2510 for_each_cpu(cpu, &cpus_with_pcps) { 2511 if (zone) 2512 drain_pages_zone(cpu, zone); 2513 else 2514 drain_pages(cpu); 2515 } 2516 2517 mutex_unlock(&pcpu_drain_mutex); 2518 } 2519 2520 /* 2521 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2522 * 2523 * When zone parameter is non-NULL, spill just the single zone's pages. 2524 */ 2525 void drain_all_pages(struct zone *zone) 2526 { 2527 __drain_all_pages(zone, false); 2528 } 2529 2530 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2531 { 2532 int min_nr_free, max_nr_free; 2533 2534 /* Free as much as possible if batch freeing high-order pages. */ 2535 if (unlikely(free_high)) 2536 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2537 2538 /* Check for PCP disabled or boot pageset */ 2539 if (unlikely(high < batch)) 2540 return 1; 2541 2542 /* Leave at least pcp->batch pages on the list */ 2543 min_nr_free = batch; 2544 max_nr_free = high - batch; 2545 2546 /* 2547 * Increase the batch number to the number of the consecutive 2548 * freed pages to reduce zone lock contention. 2549 */ 2550 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2551 2552 return batch; 2553 } 2554 2555 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2556 int batch, bool free_high) 2557 { 2558 int high, high_min, high_max; 2559 2560 high_min = READ_ONCE(pcp->high_min); 2561 high_max = READ_ONCE(pcp->high_max); 2562 high = pcp->high = clamp(pcp->high, high_min, high_max); 2563 2564 if (unlikely(!high)) 2565 return 0; 2566 2567 if (unlikely(free_high)) { 2568 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2569 high_min); 2570 return 0; 2571 } 2572 2573 /* 2574 * If reclaim is active, limit the number of pages that can be 2575 * stored on pcp lists 2576 */ 2577 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2578 int free_count = max_t(int, pcp->free_count, batch); 2579 2580 pcp->high = max(high - free_count, high_min); 2581 return min(batch << 2, pcp->high); 2582 } 2583 2584 if (high_min == high_max) 2585 return high; 2586 2587 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2588 int free_count = max_t(int, pcp->free_count, batch); 2589 2590 pcp->high = max(high - free_count, high_min); 2591 high = max(pcp->count, high_min); 2592 } else if (pcp->count >= high) { 2593 int need_high = pcp->free_count + batch; 2594 2595 /* pcp->high should be large enough to hold batch freed pages */ 2596 if (pcp->high < need_high) 2597 pcp->high = clamp(need_high, high_min, high_max); 2598 } 2599 2600 return high; 2601 } 2602 2603 static void free_frozen_page_commit(struct zone *zone, 2604 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2605 unsigned int order, fpi_t fpi_flags) 2606 { 2607 int high, batch; 2608 int pindex; 2609 bool free_high = false; 2610 2611 /* 2612 * On freeing, reduce the number of pages that are batch allocated. 2613 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2614 * allocations. 2615 */ 2616 pcp->alloc_factor >>= 1; 2617 __count_vm_events(PGFREE, 1 << order); 2618 pindex = order_to_pindex(migratetype, order); 2619 list_add(&page->pcp_list, &pcp->lists[pindex]); 2620 pcp->count += 1 << order; 2621 2622 batch = READ_ONCE(pcp->batch); 2623 /* 2624 * As high-order pages other than THP's stored on PCP can contribute 2625 * to fragmentation, limit the number stored when PCP is heavily 2626 * freeing without allocation. The remainder after bulk freeing 2627 * stops will be drained from vmstat refresh context. 2628 */ 2629 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2630 free_high = (pcp->free_count >= batch && 2631 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2632 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2633 pcp->count >= READ_ONCE(batch))); 2634 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2635 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2636 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2637 } 2638 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2639 pcp->free_count += (1 << order); 2640 2641 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2642 /* 2643 * Do not attempt to take a zone lock. Let pcp->count get 2644 * over high mark temporarily. 2645 */ 2646 return; 2647 } 2648 high = nr_pcp_high(pcp, zone, batch, free_high); 2649 if (pcp->count >= high) { 2650 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2651 pcp, pindex); 2652 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2653 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2654 ZONE_MOVABLE, 0)) 2655 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2656 } 2657 } 2658 2659 /* 2660 * Free a pcp page 2661 */ 2662 static void __free_frozen_pages(struct page *page, unsigned int order, 2663 fpi_t fpi_flags) 2664 { 2665 unsigned long __maybe_unused UP_flags; 2666 struct per_cpu_pages *pcp; 2667 struct zone *zone; 2668 unsigned long pfn = page_to_pfn(page); 2669 int migratetype; 2670 2671 if (!pcp_allowed_order(order)) { 2672 __free_pages_ok(page, order, fpi_flags); 2673 return; 2674 } 2675 2676 if (!free_pages_prepare(page, order)) 2677 return; 2678 2679 /* 2680 * We only track unmovable, reclaimable and movable on pcp lists. 2681 * Place ISOLATE pages on the isolated list because they are being 2682 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2683 * get those areas back if necessary. Otherwise, we may have to free 2684 * excessively into the page allocator 2685 */ 2686 zone = page_zone(page); 2687 migratetype = get_pfnblock_migratetype(page, pfn); 2688 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2689 if (unlikely(is_migrate_isolate(migratetype))) { 2690 free_one_page(zone, page, pfn, order, fpi_flags); 2691 return; 2692 } 2693 migratetype = MIGRATE_MOVABLE; 2694 } 2695 2696 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2697 && (in_nmi() || in_hardirq()))) { 2698 add_page_to_zone_llist(zone, page, order); 2699 return; 2700 } 2701 pcp_trylock_prepare(UP_flags); 2702 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2703 if (pcp) { 2704 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2705 pcp_spin_unlock(pcp); 2706 } else { 2707 free_one_page(zone, page, pfn, order, fpi_flags); 2708 } 2709 pcp_trylock_finish(UP_flags); 2710 } 2711 2712 void free_frozen_pages(struct page *page, unsigned int order) 2713 { 2714 __free_frozen_pages(page, order, FPI_NONE); 2715 } 2716 2717 /* 2718 * Free a batch of folios 2719 */ 2720 void free_unref_folios(struct folio_batch *folios) 2721 { 2722 unsigned long __maybe_unused UP_flags; 2723 struct per_cpu_pages *pcp = NULL; 2724 struct zone *locked_zone = NULL; 2725 int i, j; 2726 2727 /* Prepare folios for freeing */ 2728 for (i = 0, j = 0; i < folios->nr; i++) { 2729 struct folio *folio = folios->folios[i]; 2730 unsigned long pfn = folio_pfn(folio); 2731 unsigned int order = folio_order(folio); 2732 2733 if (!free_pages_prepare(&folio->page, order)) 2734 continue; 2735 /* 2736 * Free orders not handled on the PCP directly to the 2737 * allocator. 2738 */ 2739 if (!pcp_allowed_order(order)) { 2740 free_one_page(folio_zone(folio), &folio->page, 2741 pfn, order, FPI_NONE); 2742 continue; 2743 } 2744 folio->private = (void *)(unsigned long)order; 2745 if (j != i) 2746 folios->folios[j] = folio; 2747 j++; 2748 } 2749 folios->nr = j; 2750 2751 for (i = 0; i < folios->nr; i++) { 2752 struct folio *folio = folios->folios[i]; 2753 struct zone *zone = folio_zone(folio); 2754 unsigned long pfn = folio_pfn(folio); 2755 unsigned int order = (unsigned long)folio->private; 2756 int migratetype; 2757 2758 folio->private = NULL; 2759 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2760 2761 /* Different zone requires a different pcp lock */ 2762 if (zone != locked_zone || 2763 is_migrate_isolate(migratetype)) { 2764 if (pcp) { 2765 pcp_spin_unlock(pcp); 2766 pcp_trylock_finish(UP_flags); 2767 locked_zone = NULL; 2768 pcp = NULL; 2769 } 2770 2771 /* 2772 * Free isolated pages directly to the 2773 * allocator, see comment in free_frozen_pages. 2774 */ 2775 if (is_migrate_isolate(migratetype)) { 2776 free_one_page(zone, &folio->page, pfn, 2777 order, FPI_NONE); 2778 continue; 2779 } 2780 2781 /* 2782 * trylock is necessary as folios may be getting freed 2783 * from IRQ or SoftIRQ context after an IO completion. 2784 */ 2785 pcp_trylock_prepare(UP_flags); 2786 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2787 if (unlikely(!pcp)) { 2788 pcp_trylock_finish(UP_flags); 2789 free_one_page(zone, &folio->page, pfn, 2790 order, FPI_NONE); 2791 continue; 2792 } 2793 locked_zone = zone; 2794 } 2795 2796 /* 2797 * Non-isolated types over MIGRATE_PCPTYPES get added 2798 * to the MIGRATE_MOVABLE pcp list. 2799 */ 2800 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2801 migratetype = MIGRATE_MOVABLE; 2802 2803 trace_mm_page_free_batched(&folio->page); 2804 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 2805 order, FPI_NONE); 2806 } 2807 2808 if (pcp) { 2809 pcp_spin_unlock(pcp); 2810 pcp_trylock_finish(UP_flags); 2811 } 2812 folio_batch_reinit(folios); 2813 } 2814 2815 /* 2816 * split_page takes a non-compound higher-order page, and splits it into 2817 * n (1<<order) sub-pages: page[0..n] 2818 * Each sub-page must be freed individually. 2819 * 2820 * Note: this is probably too low level an operation for use in drivers. 2821 * Please consult with lkml before using this in your driver. 2822 */ 2823 void split_page(struct page *page, unsigned int order) 2824 { 2825 int i; 2826 2827 VM_BUG_ON_PAGE(PageCompound(page), page); 2828 VM_BUG_ON_PAGE(!page_count(page), page); 2829 2830 for (i = 1; i < (1 << order); i++) 2831 set_page_refcounted(page + i); 2832 split_page_owner(page, order, 0); 2833 pgalloc_tag_split(page_folio(page), order, 0); 2834 split_page_memcg(page, order); 2835 } 2836 EXPORT_SYMBOL_GPL(split_page); 2837 2838 int __isolate_free_page(struct page *page, unsigned int order) 2839 { 2840 struct zone *zone = page_zone(page); 2841 int mt = get_pageblock_migratetype(page); 2842 2843 if (!is_migrate_isolate(mt)) { 2844 unsigned long watermark; 2845 /* 2846 * Obey watermarks as if the page was being allocated. We can 2847 * emulate a high-order watermark check with a raised order-0 2848 * watermark, because we already know our high-order page 2849 * exists. 2850 */ 2851 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2852 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2853 return 0; 2854 } 2855 2856 del_page_from_free_list(page, zone, order, mt); 2857 2858 /* 2859 * Set the pageblock if the isolated page is at least half of a 2860 * pageblock 2861 */ 2862 if (order >= pageblock_order - 1) { 2863 struct page *endpage = page + (1 << order) - 1; 2864 for (; page < endpage; page += pageblock_nr_pages) { 2865 int mt = get_pageblock_migratetype(page); 2866 /* 2867 * Only change normal pageblocks (i.e., they can merge 2868 * with others) 2869 */ 2870 if (migratetype_is_mergeable(mt)) 2871 move_freepages_block(zone, page, mt, 2872 MIGRATE_MOVABLE); 2873 } 2874 } 2875 2876 return 1UL << order; 2877 } 2878 2879 /** 2880 * __putback_isolated_page - Return a now-isolated page back where we got it 2881 * @page: Page that was isolated 2882 * @order: Order of the isolated page 2883 * @mt: The page's pageblock's migratetype 2884 * 2885 * This function is meant to return a page pulled from the free lists via 2886 * __isolate_free_page back to the free lists they were pulled from. 2887 */ 2888 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2889 { 2890 struct zone *zone = page_zone(page); 2891 2892 /* zone lock should be held when this function is called */ 2893 lockdep_assert_held(&zone->lock); 2894 2895 /* Return isolated page to tail of freelist. */ 2896 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2897 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2898 } 2899 2900 /* 2901 * Update NUMA hit/miss statistics 2902 */ 2903 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2904 long nr_account) 2905 { 2906 #ifdef CONFIG_NUMA 2907 enum numa_stat_item local_stat = NUMA_LOCAL; 2908 2909 /* skip numa counters update if numa stats is disabled */ 2910 if (!static_branch_likely(&vm_numa_stat_key)) 2911 return; 2912 2913 if (zone_to_nid(z) != numa_node_id()) 2914 local_stat = NUMA_OTHER; 2915 2916 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2917 __count_numa_events(z, NUMA_HIT, nr_account); 2918 else { 2919 __count_numa_events(z, NUMA_MISS, nr_account); 2920 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2921 } 2922 __count_numa_events(z, local_stat, nr_account); 2923 #endif 2924 } 2925 2926 static __always_inline 2927 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2928 unsigned int order, unsigned int alloc_flags, 2929 int migratetype) 2930 { 2931 struct page *page; 2932 unsigned long flags; 2933 2934 do { 2935 page = NULL; 2936 if (!spin_trylock_irqsave(&zone->lock, flags)) { 2937 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) 2938 return NULL; 2939 spin_lock_irqsave(&zone->lock, flags); 2940 } 2941 if (alloc_flags & ALLOC_HIGHATOMIC) 2942 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2943 if (!page) { 2944 page = __rmqueue(zone, order, migratetype, alloc_flags); 2945 2946 /* 2947 * If the allocation fails, allow OOM handling and 2948 * order-0 (atomic) allocs access to HIGHATOMIC 2949 * reserves as failing now is worse than failing a 2950 * high-order atomic allocation in the future. 2951 */ 2952 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 2953 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2954 2955 if (!page) { 2956 spin_unlock_irqrestore(&zone->lock, flags); 2957 return NULL; 2958 } 2959 } 2960 spin_unlock_irqrestore(&zone->lock, flags); 2961 } while (check_new_pages(page, order)); 2962 2963 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2964 zone_statistics(preferred_zone, zone, 1); 2965 2966 return page; 2967 } 2968 2969 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2970 { 2971 int high, base_batch, batch, max_nr_alloc; 2972 int high_max, high_min; 2973 2974 base_batch = READ_ONCE(pcp->batch); 2975 high_min = READ_ONCE(pcp->high_min); 2976 high_max = READ_ONCE(pcp->high_max); 2977 high = pcp->high = clamp(pcp->high, high_min, high_max); 2978 2979 /* Check for PCP disabled or boot pageset */ 2980 if (unlikely(high < base_batch)) 2981 return 1; 2982 2983 if (order) 2984 batch = base_batch; 2985 else 2986 batch = (base_batch << pcp->alloc_factor); 2987 2988 /* 2989 * If we had larger pcp->high, we could avoid to allocate from 2990 * zone. 2991 */ 2992 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2993 high = pcp->high = min(high + batch, high_max); 2994 2995 if (!order) { 2996 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2997 /* 2998 * Double the number of pages allocated each time there is 2999 * subsequent allocation of order-0 pages without any freeing. 3000 */ 3001 if (batch <= max_nr_alloc && 3002 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3003 pcp->alloc_factor++; 3004 batch = min(batch, max_nr_alloc); 3005 } 3006 3007 /* 3008 * Scale batch relative to order if batch implies free pages 3009 * can be stored on the PCP. Batch can be 1 for small zones or 3010 * for boot pagesets which should never store free pages as 3011 * the pages may belong to arbitrary zones. 3012 */ 3013 if (batch > 1) 3014 batch = max(batch >> order, 2); 3015 3016 return batch; 3017 } 3018 3019 /* Remove page from the per-cpu list, caller must protect the list */ 3020 static inline 3021 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3022 int migratetype, 3023 unsigned int alloc_flags, 3024 struct per_cpu_pages *pcp, 3025 struct list_head *list) 3026 { 3027 struct page *page; 3028 3029 do { 3030 if (list_empty(list)) { 3031 int batch = nr_pcp_alloc(pcp, zone, order); 3032 int alloced; 3033 3034 alloced = rmqueue_bulk(zone, order, 3035 batch, list, 3036 migratetype, alloc_flags); 3037 3038 pcp->count += alloced << order; 3039 if (unlikely(list_empty(list))) 3040 return NULL; 3041 } 3042 3043 page = list_first_entry(list, struct page, pcp_list); 3044 list_del(&page->pcp_list); 3045 pcp->count -= 1 << order; 3046 } while (check_new_pages(page, order)); 3047 3048 return page; 3049 } 3050 3051 /* Lock and remove page from the per-cpu list */ 3052 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3053 struct zone *zone, unsigned int order, 3054 int migratetype, unsigned int alloc_flags) 3055 { 3056 struct per_cpu_pages *pcp; 3057 struct list_head *list; 3058 struct page *page; 3059 unsigned long __maybe_unused UP_flags; 3060 3061 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3062 pcp_trylock_prepare(UP_flags); 3063 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3064 if (!pcp) { 3065 pcp_trylock_finish(UP_flags); 3066 return NULL; 3067 } 3068 3069 /* 3070 * On allocation, reduce the number of pages that are batch freed. 3071 * See nr_pcp_free() where free_factor is increased for subsequent 3072 * frees. 3073 */ 3074 pcp->free_count >>= 1; 3075 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3076 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3077 pcp_spin_unlock(pcp); 3078 pcp_trylock_finish(UP_flags); 3079 if (page) { 3080 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3081 zone_statistics(preferred_zone, zone, 1); 3082 } 3083 return page; 3084 } 3085 3086 /* 3087 * Allocate a page from the given zone. 3088 * Use pcplists for THP or "cheap" high-order allocations. 3089 */ 3090 3091 /* 3092 * Do not instrument rmqueue() with KMSAN. This function may call 3093 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3094 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3095 * may call rmqueue() again, which will result in a deadlock. 3096 */ 3097 __no_sanitize_memory 3098 static inline 3099 struct page *rmqueue(struct zone *preferred_zone, 3100 struct zone *zone, unsigned int order, 3101 gfp_t gfp_flags, unsigned int alloc_flags, 3102 int migratetype) 3103 { 3104 struct page *page; 3105 3106 if (likely(pcp_allowed_order(order))) { 3107 page = rmqueue_pcplist(preferred_zone, zone, order, 3108 migratetype, alloc_flags); 3109 if (likely(page)) 3110 goto out; 3111 } 3112 3113 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3114 migratetype); 3115 3116 out: 3117 /* Separate test+clear to avoid unnecessary atomics */ 3118 if ((alloc_flags & ALLOC_KSWAPD) && 3119 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3120 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3121 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3122 } 3123 3124 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3125 return page; 3126 } 3127 3128 /* 3129 * Reserve the pageblock(s) surrounding an allocation request for 3130 * exclusive use of high-order atomic allocations if there are no 3131 * empty page blocks that contain a page with a suitable order 3132 */ 3133 static void reserve_highatomic_pageblock(struct page *page, int order, 3134 struct zone *zone) 3135 { 3136 int mt; 3137 unsigned long max_managed, flags; 3138 3139 /* 3140 * The number reserved as: minimum is 1 pageblock, maximum is 3141 * roughly 1% of a zone. But if 1% of a zone falls below a 3142 * pageblock size, then don't reserve any pageblocks. 3143 * Check is race-prone but harmless. 3144 */ 3145 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3146 return; 3147 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3148 if (zone->nr_reserved_highatomic >= max_managed) 3149 return; 3150 3151 spin_lock_irqsave(&zone->lock, flags); 3152 3153 /* Recheck the nr_reserved_highatomic limit under the lock */ 3154 if (zone->nr_reserved_highatomic >= max_managed) 3155 goto out_unlock; 3156 3157 /* Yoink! */ 3158 mt = get_pageblock_migratetype(page); 3159 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3160 if (!migratetype_is_mergeable(mt)) 3161 goto out_unlock; 3162 3163 if (order < pageblock_order) { 3164 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3165 goto out_unlock; 3166 zone->nr_reserved_highatomic += pageblock_nr_pages; 3167 } else { 3168 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3169 zone->nr_reserved_highatomic += 1 << order; 3170 } 3171 3172 out_unlock: 3173 spin_unlock_irqrestore(&zone->lock, flags); 3174 } 3175 3176 /* 3177 * Used when an allocation is about to fail under memory pressure. This 3178 * potentially hurts the reliability of high-order allocations when under 3179 * intense memory pressure but failed atomic allocations should be easier 3180 * to recover from than an OOM. 3181 * 3182 * If @force is true, try to unreserve pageblocks even though highatomic 3183 * pageblock is exhausted. 3184 */ 3185 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3186 bool force) 3187 { 3188 struct zonelist *zonelist = ac->zonelist; 3189 unsigned long flags; 3190 struct zoneref *z; 3191 struct zone *zone; 3192 struct page *page; 3193 int order; 3194 int ret; 3195 3196 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3197 ac->nodemask) { 3198 /* 3199 * Preserve at least one pageblock unless memory pressure 3200 * is really high. 3201 */ 3202 if (!force && zone->nr_reserved_highatomic <= 3203 pageblock_nr_pages) 3204 continue; 3205 3206 spin_lock_irqsave(&zone->lock, flags); 3207 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3208 struct free_area *area = &(zone->free_area[order]); 3209 unsigned long size; 3210 3211 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3212 if (!page) 3213 continue; 3214 3215 size = max(pageblock_nr_pages, 1UL << order); 3216 /* 3217 * It should never happen but changes to 3218 * locking could inadvertently allow a per-cpu 3219 * drain to add pages to MIGRATE_HIGHATOMIC 3220 * while unreserving so be safe and watch for 3221 * underflows. 3222 */ 3223 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3224 size = zone->nr_reserved_highatomic; 3225 zone->nr_reserved_highatomic -= size; 3226 3227 /* 3228 * Convert to ac->migratetype and avoid the normal 3229 * pageblock stealing heuristics. Minimally, the caller 3230 * is doing the work and needs the pages. More 3231 * importantly, if the block was always converted to 3232 * MIGRATE_UNMOVABLE or another type then the number 3233 * of pageblocks that cannot be completely freed 3234 * may increase. 3235 */ 3236 if (order < pageblock_order) 3237 ret = move_freepages_block(zone, page, 3238 MIGRATE_HIGHATOMIC, 3239 ac->migratetype); 3240 else { 3241 move_to_free_list(page, zone, order, 3242 MIGRATE_HIGHATOMIC, 3243 ac->migratetype); 3244 change_pageblock_range(page, order, 3245 ac->migratetype); 3246 ret = 1; 3247 } 3248 /* 3249 * Reserving the block(s) already succeeded, 3250 * so this should not fail on zone boundaries. 3251 */ 3252 WARN_ON_ONCE(ret == -1); 3253 if (ret > 0) { 3254 spin_unlock_irqrestore(&zone->lock, flags); 3255 return ret; 3256 } 3257 } 3258 spin_unlock_irqrestore(&zone->lock, flags); 3259 } 3260 3261 return false; 3262 } 3263 3264 static inline long __zone_watermark_unusable_free(struct zone *z, 3265 unsigned int order, unsigned int alloc_flags) 3266 { 3267 long unusable_free = (1 << order) - 1; 3268 3269 /* 3270 * If the caller does not have rights to reserves below the min 3271 * watermark then subtract the free pages reserved for highatomic. 3272 */ 3273 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3274 unusable_free += READ_ONCE(z->nr_free_highatomic); 3275 3276 #ifdef CONFIG_CMA 3277 /* If allocation can't use CMA areas don't use free CMA pages */ 3278 if (!(alloc_flags & ALLOC_CMA)) 3279 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3280 #endif 3281 3282 return unusable_free; 3283 } 3284 3285 /* 3286 * Return true if free base pages are above 'mark'. For high-order checks it 3287 * will return true of the order-0 watermark is reached and there is at least 3288 * one free page of a suitable size. Checking now avoids taking the zone lock 3289 * to check in the allocation paths if no pages are free. 3290 */ 3291 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3292 int highest_zoneidx, unsigned int alloc_flags, 3293 long free_pages) 3294 { 3295 long min = mark; 3296 int o; 3297 3298 /* free_pages may go negative - that's OK */ 3299 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3300 3301 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3302 /* 3303 * __GFP_HIGH allows access to 50% of the min reserve as well 3304 * as OOM. 3305 */ 3306 if (alloc_flags & ALLOC_MIN_RESERVE) { 3307 min -= min / 2; 3308 3309 /* 3310 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3311 * access more reserves than just __GFP_HIGH. Other 3312 * non-blocking allocations requests such as GFP_NOWAIT 3313 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3314 * access to the min reserve. 3315 */ 3316 if (alloc_flags & ALLOC_NON_BLOCK) 3317 min -= min / 4; 3318 } 3319 3320 /* 3321 * OOM victims can try even harder than the normal reserve 3322 * users on the grounds that it's definitely going to be in 3323 * the exit path shortly and free memory. Any allocation it 3324 * makes during the free path will be small and short-lived. 3325 */ 3326 if (alloc_flags & ALLOC_OOM) 3327 min -= min / 2; 3328 } 3329 3330 /* 3331 * Check watermarks for an order-0 allocation request. If these 3332 * are not met, then a high-order request also cannot go ahead 3333 * even if a suitable page happened to be free. 3334 */ 3335 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3336 return false; 3337 3338 /* If this is an order-0 request then the watermark is fine */ 3339 if (!order) 3340 return true; 3341 3342 /* For a high-order request, check at least one suitable page is free */ 3343 for (o = order; o < NR_PAGE_ORDERS; o++) { 3344 struct free_area *area = &z->free_area[o]; 3345 int mt; 3346 3347 if (!area->nr_free) 3348 continue; 3349 3350 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3351 if (!free_area_empty(area, mt)) 3352 return true; 3353 } 3354 3355 #ifdef CONFIG_CMA 3356 if ((alloc_flags & ALLOC_CMA) && 3357 !free_area_empty(area, MIGRATE_CMA)) { 3358 return true; 3359 } 3360 #endif 3361 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3362 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3363 return true; 3364 } 3365 } 3366 return false; 3367 } 3368 3369 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3370 int highest_zoneidx, unsigned int alloc_flags) 3371 { 3372 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3373 zone_page_state(z, NR_FREE_PAGES)); 3374 } 3375 3376 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3377 unsigned long mark, int highest_zoneidx, 3378 unsigned int alloc_flags, gfp_t gfp_mask) 3379 { 3380 long free_pages; 3381 3382 free_pages = zone_page_state(z, NR_FREE_PAGES); 3383 3384 /* 3385 * Fast check for order-0 only. If this fails then the reserves 3386 * need to be calculated. 3387 */ 3388 if (!order) { 3389 long usable_free; 3390 long reserved; 3391 3392 usable_free = free_pages; 3393 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3394 3395 /* reserved may over estimate high-atomic reserves. */ 3396 usable_free -= min(usable_free, reserved); 3397 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3398 return true; 3399 } 3400 3401 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3402 free_pages)) 3403 return true; 3404 3405 /* 3406 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3407 * when checking the min watermark. The min watermark is the 3408 * point where boosting is ignored so that kswapd is woken up 3409 * when below the low watermark. 3410 */ 3411 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3412 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3413 mark = z->_watermark[WMARK_MIN]; 3414 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3415 alloc_flags, free_pages); 3416 } 3417 3418 return false; 3419 } 3420 3421 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3422 unsigned long mark, int highest_zoneidx) 3423 { 3424 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3425 3426 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3427 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3428 3429 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3430 free_pages); 3431 } 3432 3433 #ifdef CONFIG_NUMA 3434 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3435 3436 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3437 { 3438 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3439 node_reclaim_distance; 3440 } 3441 #else /* CONFIG_NUMA */ 3442 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3443 { 3444 return true; 3445 } 3446 #endif /* CONFIG_NUMA */ 3447 3448 /* 3449 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3450 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3451 * premature use of a lower zone may cause lowmem pressure problems that 3452 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3453 * probably too small. It only makes sense to spread allocations to avoid 3454 * fragmentation between the Normal and DMA32 zones. 3455 */ 3456 static inline unsigned int 3457 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3458 { 3459 unsigned int alloc_flags; 3460 3461 /* 3462 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3463 * to save a branch. 3464 */ 3465 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3466 3467 if (defrag_mode) { 3468 alloc_flags |= ALLOC_NOFRAGMENT; 3469 return alloc_flags; 3470 } 3471 3472 #ifdef CONFIG_ZONE_DMA32 3473 if (!zone) 3474 return alloc_flags; 3475 3476 if (zone_idx(zone) != ZONE_NORMAL) 3477 return alloc_flags; 3478 3479 /* 3480 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3481 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3482 * on UMA that if Normal is populated then so is DMA32. 3483 */ 3484 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3485 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3486 return alloc_flags; 3487 3488 alloc_flags |= ALLOC_NOFRAGMENT; 3489 #endif /* CONFIG_ZONE_DMA32 */ 3490 return alloc_flags; 3491 } 3492 3493 /* Must be called after current_gfp_context() which can change gfp_mask */ 3494 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3495 unsigned int alloc_flags) 3496 { 3497 #ifdef CONFIG_CMA 3498 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3499 alloc_flags |= ALLOC_CMA; 3500 #endif 3501 return alloc_flags; 3502 } 3503 3504 /* 3505 * get_page_from_freelist goes through the zonelist trying to allocate 3506 * a page. 3507 */ 3508 static struct page * 3509 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3510 const struct alloc_context *ac) 3511 { 3512 struct zoneref *z; 3513 struct zone *zone; 3514 struct pglist_data *last_pgdat = NULL; 3515 bool last_pgdat_dirty_ok = false; 3516 bool no_fallback; 3517 3518 retry: 3519 /* 3520 * Scan zonelist, looking for a zone with enough free. 3521 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3522 */ 3523 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3524 z = ac->preferred_zoneref; 3525 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3526 ac->nodemask) { 3527 struct page *page; 3528 unsigned long mark; 3529 3530 if (cpusets_enabled() && 3531 (alloc_flags & ALLOC_CPUSET) && 3532 !__cpuset_zone_allowed(zone, gfp_mask)) 3533 continue; 3534 /* 3535 * When allocating a page cache page for writing, we 3536 * want to get it from a node that is within its dirty 3537 * limit, such that no single node holds more than its 3538 * proportional share of globally allowed dirty pages. 3539 * The dirty limits take into account the node's 3540 * lowmem reserves and high watermark so that kswapd 3541 * should be able to balance it without having to 3542 * write pages from its LRU list. 3543 * 3544 * XXX: For now, allow allocations to potentially 3545 * exceed the per-node dirty limit in the slowpath 3546 * (spread_dirty_pages unset) before going into reclaim, 3547 * which is important when on a NUMA setup the allowed 3548 * nodes are together not big enough to reach the 3549 * global limit. The proper fix for these situations 3550 * will require awareness of nodes in the 3551 * dirty-throttling and the flusher threads. 3552 */ 3553 if (ac->spread_dirty_pages) { 3554 if (last_pgdat != zone->zone_pgdat) { 3555 last_pgdat = zone->zone_pgdat; 3556 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3557 } 3558 3559 if (!last_pgdat_dirty_ok) 3560 continue; 3561 } 3562 3563 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3564 zone != zonelist_zone(ac->preferred_zoneref)) { 3565 int local_nid; 3566 3567 /* 3568 * If moving to a remote node, retry but allow 3569 * fragmenting fallbacks. Locality is more important 3570 * than fragmentation avoidance. 3571 */ 3572 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3573 if (zone_to_nid(zone) != local_nid) { 3574 alloc_flags &= ~ALLOC_NOFRAGMENT; 3575 goto retry; 3576 } 3577 } 3578 3579 cond_accept_memory(zone, order); 3580 3581 /* 3582 * Detect whether the number of free pages is below high 3583 * watermark. If so, we will decrease pcp->high and free 3584 * PCP pages in free path to reduce the possibility of 3585 * premature page reclaiming. Detection is done here to 3586 * avoid to do that in hotter free path. 3587 */ 3588 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3589 goto check_alloc_wmark; 3590 3591 mark = high_wmark_pages(zone); 3592 if (zone_watermark_fast(zone, order, mark, 3593 ac->highest_zoneidx, alloc_flags, 3594 gfp_mask)) 3595 goto try_this_zone; 3596 else 3597 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3598 3599 check_alloc_wmark: 3600 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3601 if (!zone_watermark_fast(zone, order, mark, 3602 ac->highest_zoneidx, alloc_flags, 3603 gfp_mask)) { 3604 int ret; 3605 3606 if (cond_accept_memory(zone, order)) 3607 goto try_this_zone; 3608 3609 /* 3610 * Watermark failed for this zone, but see if we can 3611 * grow this zone if it contains deferred pages. 3612 */ 3613 if (deferred_pages_enabled()) { 3614 if (_deferred_grow_zone(zone, order)) 3615 goto try_this_zone; 3616 } 3617 /* Checked here to keep the fast path fast */ 3618 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3619 if (alloc_flags & ALLOC_NO_WATERMARKS) 3620 goto try_this_zone; 3621 3622 if (!node_reclaim_enabled() || 3623 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3624 continue; 3625 3626 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3627 switch (ret) { 3628 case NODE_RECLAIM_NOSCAN: 3629 /* did not scan */ 3630 continue; 3631 case NODE_RECLAIM_FULL: 3632 /* scanned but unreclaimable */ 3633 continue; 3634 default: 3635 /* did we reclaim enough */ 3636 if (zone_watermark_ok(zone, order, mark, 3637 ac->highest_zoneidx, alloc_flags)) 3638 goto try_this_zone; 3639 3640 continue; 3641 } 3642 } 3643 3644 try_this_zone: 3645 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3646 gfp_mask, alloc_flags, ac->migratetype); 3647 if (page) { 3648 prep_new_page(page, order, gfp_mask, alloc_flags); 3649 3650 /* 3651 * If this is a high-order atomic allocation then check 3652 * if the pageblock should be reserved for the future 3653 */ 3654 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3655 reserve_highatomic_pageblock(page, order, zone); 3656 3657 return page; 3658 } else { 3659 if (cond_accept_memory(zone, order)) 3660 goto try_this_zone; 3661 3662 /* Try again if zone has deferred pages */ 3663 if (deferred_pages_enabled()) { 3664 if (_deferred_grow_zone(zone, order)) 3665 goto try_this_zone; 3666 } 3667 } 3668 } 3669 3670 /* 3671 * It's possible on a UMA machine to get through all zones that are 3672 * fragmented. If avoiding fragmentation, reset and try again. 3673 */ 3674 if (no_fallback && !defrag_mode) { 3675 alloc_flags &= ~ALLOC_NOFRAGMENT; 3676 goto retry; 3677 } 3678 3679 return NULL; 3680 } 3681 3682 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3683 { 3684 unsigned int filter = SHOW_MEM_FILTER_NODES; 3685 3686 /* 3687 * This documents exceptions given to allocations in certain 3688 * contexts that are allowed to allocate outside current's set 3689 * of allowed nodes. 3690 */ 3691 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3692 if (tsk_is_oom_victim(current) || 3693 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3694 filter &= ~SHOW_MEM_FILTER_NODES; 3695 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3696 filter &= ~SHOW_MEM_FILTER_NODES; 3697 3698 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3699 } 3700 3701 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3702 { 3703 struct va_format vaf; 3704 va_list args; 3705 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3706 3707 if ((gfp_mask & __GFP_NOWARN) || 3708 !__ratelimit(&nopage_rs) || 3709 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3710 return; 3711 3712 va_start(args, fmt); 3713 vaf.fmt = fmt; 3714 vaf.va = &args; 3715 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3716 current->comm, &vaf, gfp_mask, &gfp_mask, 3717 nodemask_pr_args(nodemask)); 3718 va_end(args); 3719 3720 cpuset_print_current_mems_allowed(); 3721 pr_cont("\n"); 3722 dump_stack(); 3723 warn_alloc_show_mem(gfp_mask, nodemask); 3724 } 3725 3726 static inline struct page * 3727 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3728 unsigned int alloc_flags, 3729 const struct alloc_context *ac) 3730 { 3731 struct page *page; 3732 3733 page = get_page_from_freelist(gfp_mask, order, 3734 alloc_flags|ALLOC_CPUSET, ac); 3735 /* 3736 * fallback to ignore cpuset restriction if our nodes 3737 * are depleted 3738 */ 3739 if (!page) 3740 page = get_page_from_freelist(gfp_mask, order, 3741 alloc_flags, ac); 3742 return page; 3743 } 3744 3745 static inline struct page * 3746 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3747 const struct alloc_context *ac, unsigned long *did_some_progress) 3748 { 3749 struct oom_control oc = { 3750 .zonelist = ac->zonelist, 3751 .nodemask = ac->nodemask, 3752 .memcg = NULL, 3753 .gfp_mask = gfp_mask, 3754 .order = order, 3755 }; 3756 struct page *page; 3757 3758 *did_some_progress = 0; 3759 3760 /* 3761 * Acquire the oom lock. If that fails, somebody else is 3762 * making progress for us. 3763 */ 3764 if (!mutex_trylock(&oom_lock)) { 3765 *did_some_progress = 1; 3766 schedule_timeout_uninterruptible(1); 3767 return NULL; 3768 } 3769 3770 /* 3771 * Go through the zonelist yet one more time, keep very high watermark 3772 * here, this is only to catch a parallel oom killing, we must fail if 3773 * we're still under heavy pressure. But make sure that this reclaim 3774 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3775 * allocation which will never fail due to oom_lock already held. 3776 */ 3777 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3778 ~__GFP_DIRECT_RECLAIM, order, 3779 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3780 if (page) 3781 goto out; 3782 3783 /* Coredumps can quickly deplete all memory reserves */ 3784 if (current->flags & PF_DUMPCORE) 3785 goto out; 3786 /* The OOM killer will not help higher order allocs */ 3787 if (order > PAGE_ALLOC_COSTLY_ORDER) 3788 goto out; 3789 /* 3790 * We have already exhausted all our reclaim opportunities without any 3791 * success so it is time to admit defeat. We will skip the OOM killer 3792 * because it is very likely that the caller has a more reasonable 3793 * fallback than shooting a random task. 3794 * 3795 * The OOM killer may not free memory on a specific node. 3796 */ 3797 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3798 goto out; 3799 /* The OOM killer does not needlessly kill tasks for lowmem */ 3800 if (ac->highest_zoneidx < ZONE_NORMAL) 3801 goto out; 3802 if (pm_suspended_storage()) 3803 goto out; 3804 /* 3805 * XXX: GFP_NOFS allocations should rather fail than rely on 3806 * other request to make a forward progress. 3807 * We are in an unfortunate situation where out_of_memory cannot 3808 * do much for this context but let's try it to at least get 3809 * access to memory reserved if the current task is killed (see 3810 * out_of_memory). Once filesystems are ready to handle allocation 3811 * failures more gracefully we should just bail out here. 3812 */ 3813 3814 /* Exhausted what can be done so it's blame time */ 3815 if (out_of_memory(&oc) || 3816 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3817 *did_some_progress = 1; 3818 3819 /* 3820 * Help non-failing allocations by giving them access to memory 3821 * reserves 3822 */ 3823 if (gfp_mask & __GFP_NOFAIL) 3824 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3825 ALLOC_NO_WATERMARKS, ac); 3826 } 3827 out: 3828 mutex_unlock(&oom_lock); 3829 return page; 3830 } 3831 3832 /* 3833 * Maximum number of compaction retries with a progress before OOM 3834 * killer is consider as the only way to move forward. 3835 */ 3836 #define MAX_COMPACT_RETRIES 16 3837 3838 #ifdef CONFIG_COMPACTION 3839 /* Try memory compaction for high-order allocations before reclaim */ 3840 static struct page * 3841 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3842 unsigned int alloc_flags, const struct alloc_context *ac, 3843 enum compact_priority prio, enum compact_result *compact_result) 3844 { 3845 struct page *page = NULL; 3846 unsigned long pflags; 3847 unsigned int noreclaim_flag; 3848 3849 if (!order) 3850 return NULL; 3851 3852 psi_memstall_enter(&pflags); 3853 delayacct_compact_start(); 3854 noreclaim_flag = memalloc_noreclaim_save(); 3855 3856 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3857 prio, &page); 3858 3859 memalloc_noreclaim_restore(noreclaim_flag); 3860 psi_memstall_leave(&pflags); 3861 delayacct_compact_end(); 3862 3863 if (*compact_result == COMPACT_SKIPPED) 3864 return NULL; 3865 /* 3866 * At least in one zone compaction wasn't deferred or skipped, so let's 3867 * count a compaction stall 3868 */ 3869 count_vm_event(COMPACTSTALL); 3870 3871 /* Prep a captured page if available */ 3872 if (page) 3873 prep_new_page(page, order, gfp_mask, alloc_flags); 3874 3875 /* Try get a page from the freelist if available */ 3876 if (!page) 3877 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3878 3879 if (page) { 3880 struct zone *zone = page_zone(page); 3881 3882 zone->compact_blockskip_flush = false; 3883 compaction_defer_reset(zone, order, true); 3884 count_vm_event(COMPACTSUCCESS); 3885 return page; 3886 } 3887 3888 /* 3889 * It's bad if compaction run occurs and fails. The most likely reason 3890 * is that pages exist, but not enough to satisfy watermarks. 3891 */ 3892 count_vm_event(COMPACTFAIL); 3893 3894 cond_resched(); 3895 3896 return NULL; 3897 } 3898 3899 static inline bool 3900 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3901 enum compact_result compact_result, 3902 enum compact_priority *compact_priority, 3903 int *compaction_retries) 3904 { 3905 int max_retries = MAX_COMPACT_RETRIES; 3906 int min_priority; 3907 bool ret = false; 3908 int retries = *compaction_retries; 3909 enum compact_priority priority = *compact_priority; 3910 3911 if (!order) 3912 return false; 3913 3914 if (fatal_signal_pending(current)) 3915 return false; 3916 3917 /* 3918 * Compaction was skipped due to a lack of free order-0 3919 * migration targets. Continue if reclaim can help. 3920 */ 3921 if (compact_result == COMPACT_SKIPPED) { 3922 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3923 goto out; 3924 } 3925 3926 /* 3927 * Compaction managed to coalesce some page blocks, but the 3928 * allocation failed presumably due to a race. Retry some. 3929 */ 3930 if (compact_result == COMPACT_SUCCESS) { 3931 /* 3932 * !costly requests are much more important than 3933 * __GFP_RETRY_MAYFAIL costly ones because they are de 3934 * facto nofail and invoke OOM killer to move on while 3935 * costly can fail and users are ready to cope with 3936 * that. 1/4 retries is rather arbitrary but we would 3937 * need much more detailed feedback from compaction to 3938 * make a better decision. 3939 */ 3940 if (order > PAGE_ALLOC_COSTLY_ORDER) 3941 max_retries /= 4; 3942 3943 if (++(*compaction_retries) <= max_retries) { 3944 ret = true; 3945 goto out; 3946 } 3947 } 3948 3949 /* 3950 * Compaction failed. Retry with increasing priority. 3951 */ 3952 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3953 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3954 3955 if (*compact_priority > min_priority) { 3956 (*compact_priority)--; 3957 *compaction_retries = 0; 3958 ret = true; 3959 } 3960 out: 3961 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3962 return ret; 3963 } 3964 #else 3965 static inline struct page * 3966 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3967 unsigned int alloc_flags, const struct alloc_context *ac, 3968 enum compact_priority prio, enum compact_result *compact_result) 3969 { 3970 *compact_result = COMPACT_SKIPPED; 3971 return NULL; 3972 } 3973 3974 static inline bool 3975 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3976 enum compact_result compact_result, 3977 enum compact_priority *compact_priority, 3978 int *compaction_retries) 3979 { 3980 struct zone *zone; 3981 struct zoneref *z; 3982 3983 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3984 return false; 3985 3986 /* 3987 * There are setups with compaction disabled which would prefer to loop 3988 * inside the allocator rather than hit the oom killer prematurely. 3989 * Let's give them a good hope and keep retrying while the order-0 3990 * watermarks are OK. 3991 */ 3992 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3993 ac->highest_zoneidx, ac->nodemask) { 3994 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3995 ac->highest_zoneidx, alloc_flags)) 3996 return true; 3997 } 3998 return false; 3999 } 4000 #endif /* CONFIG_COMPACTION */ 4001 4002 #ifdef CONFIG_LOCKDEP 4003 static struct lockdep_map __fs_reclaim_map = 4004 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4005 4006 static bool __need_reclaim(gfp_t gfp_mask) 4007 { 4008 /* no reclaim without waiting on it */ 4009 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4010 return false; 4011 4012 /* this guy won't enter reclaim */ 4013 if (current->flags & PF_MEMALLOC) 4014 return false; 4015 4016 if (gfp_mask & __GFP_NOLOCKDEP) 4017 return false; 4018 4019 return true; 4020 } 4021 4022 void __fs_reclaim_acquire(unsigned long ip) 4023 { 4024 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4025 } 4026 4027 void __fs_reclaim_release(unsigned long ip) 4028 { 4029 lock_release(&__fs_reclaim_map, ip); 4030 } 4031 4032 void fs_reclaim_acquire(gfp_t gfp_mask) 4033 { 4034 gfp_mask = current_gfp_context(gfp_mask); 4035 4036 if (__need_reclaim(gfp_mask)) { 4037 if (gfp_mask & __GFP_FS) 4038 __fs_reclaim_acquire(_RET_IP_); 4039 4040 #ifdef CONFIG_MMU_NOTIFIER 4041 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4042 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4043 #endif 4044 4045 } 4046 } 4047 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4048 4049 void fs_reclaim_release(gfp_t gfp_mask) 4050 { 4051 gfp_mask = current_gfp_context(gfp_mask); 4052 4053 if (__need_reclaim(gfp_mask)) { 4054 if (gfp_mask & __GFP_FS) 4055 __fs_reclaim_release(_RET_IP_); 4056 } 4057 } 4058 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4059 #endif 4060 4061 /* 4062 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4063 * have been rebuilt so allocation retries. Reader side does not lock and 4064 * retries the allocation if zonelist changes. Writer side is protected by the 4065 * embedded spin_lock. 4066 */ 4067 static DEFINE_SEQLOCK(zonelist_update_seq); 4068 4069 static unsigned int zonelist_iter_begin(void) 4070 { 4071 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4072 return read_seqbegin(&zonelist_update_seq); 4073 4074 return 0; 4075 } 4076 4077 static unsigned int check_retry_zonelist(unsigned int seq) 4078 { 4079 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4080 return read_seqretry(&zonelist_update_seq, seq); 4081 4082 return seq; 4083 } 4084 4085 /* Perform direct synchronous page reclaim */ 4086 static unsigned long 4087 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4088 const struct alloc_context *ac) 4089 { 4090 unsigned int noreclaim_flag; 4091 unsigned long progress; 4092 4093 cond_resched(); 4094 4095 /* We now go into synchronous reclaim */ 4096 cpuset_memory_pressure_bump(); 4097 fs_reclaim_acquire(gfp_mask); 4098 noreclaim_flag = memalloc_noreclaim_save(); 4099 4100 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4101 ac->nodemask); 4102 4103 memalloc_noreclaim_restore(noreclaim_flag); 4104 fs_reclaim_release(gfp_mask); 4105 4106 cond_resched(); 4107 4108 return progress; 4109 } 4110 4111 /* The really slow allocator path where we enter direct reclaim */ 4112 static inline struct page * 4113 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4114 unsigned int alloc_flags, const struct alloc_context *ac, 4115 unsigned long *did_some_progress) 4116 { 4117 struct page *page = NULL; 4118 unsigned long pflags; 4119 bool drained = false; 4120 4121 psi_memstall_enter(&pflags); 4122 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4123 if (unlikely(!(*did_some_progress))) 4124 goto out; 4125 4126 retry: 4127 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4128 4129 /* 4130 * If an allocation failed after direct reclaim, it could be because 4131 * pages are pinned on the per-cpu lists or in high alloc reserves. 4132 * Shrink them and try again 4133 */ 4134 if (!page && !drained) { 4135 unreserve_highatomic_pageblock(ac, false); 4136 drain_all_pages(NULL); 4137 drained = true; 4138 goto retry; 4139 } 4140 out: 4141 psi_memstall_leave(&pflags); 4142 4143 return page; 4144 } 4145 4146 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4147 const struct alloc_context *ac) 4148 { 4149 struct zoneref *z; 4150 struct zone *zone; 4151 pg_data_t *last_pgdat = NULL; 4152 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4153 unsigned int reclaim_order; 4154 4155 if (defrag_mode) 4156 reclaim_order = max(order, pageblock_order); 4157 else 4158 reclaim_order = order; 4159 4160 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4161 ac->nodemask) { 4162 if (!managed_zone(zone)) 4163 continue; 4164 if (last_pgdat == zone->zone_pgdat) 4165 continue; 4166 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4167 last_pgdat = zone->zone_pgdat; 4168 } 4169 } 4170 4171 static inline unsigned int 4172 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4173 { 4174 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4175 4176 /* 4177 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4178 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4179 * to save two branches. 4180 */ 4181 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4182 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4183 4184 /* 4185 * The caller may dip into page reserves a bit more if the caller 4186 * cannot run direct reclaim, or if the caller has realtime scheduling 4187 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4188 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4189 */ 4190 alloc_flags |= (__force int) 4191 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4192 4193 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4194 /* 4195 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4196 * if it can't schedule. 4197 */ 4198 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4199 alloc_flags |= ALLOC_NON_BLOCK; 4200 4201 if (order > 0) 4202 alloc_flags |= ALLOC_HIGHATOMIC; 4203 } 4204 4205 /* 4206 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4207 * GFP_ATOMIC) rather than fail, see the comment for 4208 * cpuset_node_allowed(). 4209 */ 4210 if (alloc_flags & ALLOC_MIN_RESERVE) 4211 alloc_flags &= ~ALLOC_CPUSET; 4212 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4213 alloc_flags |= ALLOC_MIN_RESERVE; 4214 4215 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4216 4217 if (defrag_mode) 4218 alloc_flags |= ALLOC_NOFRAGMENT; 4219 4220 return alloc_flags; 4221 } 4222 4223 static bool oom_reserves_allowed(struct task_struct *tsk) 4224 { 4225 if (!tsk_is_oom_victim(tsk)) 4226 return false; 4227 4228 /* 4229 * !MMU doesn't have oom reaper so give access to memory reserves 4230 * only to the thread with TIF_MEMDIE set 4231 */ 4232 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4233 return false; 4234 4235 return true; 4236 } 4237 4238 /* 4239 * Distinguish requests which really need access to full memory 4240 * reserves from oom victims which can live with a portion of it 4241 */ 4242 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4243 { 4244 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4245 return 0; 4246 if (gfp_mask & __GFP_MEMALLOC) 4247 return ALLOC_NO_WATERMARKS; 4248 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4249 return ALLOC_NO_WATERMARKS; 4250 if (!in_interrupt()) { 4251 if (current->flags & PF_MEMALLOC) 4252 return ALLOC_NO_WATERMARKS; 4253 else if (oom_reserves_allowed(current)) 4254 return ALLOC_OOM; 4255 } 4256 4257 return 0; 4258 } 4259 4260 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4261 { 4262 return !!__gfp_pfmemalloc_flags(gfp_mask); 4263 } 4264 4265 /* 4266 * Checks whether it makes sense to retry the reclaim to make a forward progress 4267 * for the given allocation request. 4268 * 4269 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4270 * without success, or when we couldn't even meet the watermark if we 4271 * reclaimed all remaining pages on the LRU lists. 4272 * 4273 * Returns true if a retry is viable or false to enter the oom path. 4274 */ 4275 static inline bool 4276 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4277 struct alloc_context *ac, int alloc_flags, 4278 bool did_some_progress, int *no_progress_loops) 4279 { 4280 struct zone *zone; 4281 struct zoneref *z; 4282 bool ret = false; 4283 4284 /* 4285 * Costly allocations might have made a progress but this doesn't mean 4286 * their order will become available due to high fragmentation so 4287 * always increment the no progress counter for them 4288 */ 4289 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4290 *no_progress_loops = 0; 4291 else 4292 (*no_progress_loops)++; 4293 4294 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4295 goto out; 4296 4297 4298 /* 4299 * Keep reclaiming pages while there is a chance this will lead 4300 * somewhere. If none of the target zones can satisfy our allocation 4301 * request even if all reclaimable pages are considered then we are 4302 * screwed and have to go OOM. 4303 */ 4304 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4305 ac->highest_zoneidx, ac->nodemask) { 4306 unsigned long available; 4307 unsigned long reclaimable; 4308 unsigned long min_wmark = min_wmark_pages(zone); 4309 bool wmark; 4310 4311 if (cpusets_enabled() && 4312 (alloc_flags & ALLOC_CPUSET) && 4313 !__cpuset_zone_allowed(zone, gfp_mask)) 4314 continue; 4315 4316 available = reclaimable = zone_reclaimable_pages(zone); 4317 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4318 4319 /* 4320 * Would the allocation succeed if we reclaimed all 4321 * reclaimable pages? 4322 */ 4323 wmark = __zone_watermark_ok(zone, order, min_wmark, 4324 ac->highest_zoneidx, alloc_flags, available); 4325 trace_reclaim_retry_zone(z, order, reclaimable, 4326 available, min_wmark, *no_progress_loops, wmark); 4327 if (wmark) { 4328 ret = true; 4329 break; 4330 } 4331 } 4332 4333 /* 4334 * Memory allocation/reclaim might be called from a WQ context and the 4335 * current implementation of the WQ concurrency control doesn't 4336 * recognize that a particular WQ is congested if the worker thread is 4337 * looping without ever sleeping. Therefore we have to do a short sleep 4338 * here rather than calling cond_resched(). 4339 */ 4340 if (current->flags & PF_WQ_WORKER) 4341 schedule_timeout_uninterruptible(1); 4342 else 4343 cond_resched(); 4344 out: 4345 /* Before OOM, exhaust highatomic_reserve */ 4346 if (!ret) 4347 return unreserve_highatomic_pageblock(ac, true); 4348 4349 return ret; 4350 } 4351 4352 static inline bool 4353 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4354 { 4355 /* 4356 * It's possible that cpuset's mems_allowed and the nodemask from 4357 * mempolicy don't intersect. This should be normally dealt with by 4358 * policy_nodemask(), but it's possible to race with cpuset update in 4359 * such a way the check therein was true, and then it became false 4360 * before we got our cpuset_mems_cookie here. 4361 * This assumes that for all allocations, ac->nodemask can come only 4362 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4363 * when it does not intersect with the cpuset restrictions) or the 4364 * caller can deal with a violated nodemask. 4365 */ 4366 if (cpusets_enabled() && ac->nodemask && 4367 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4368 ac->nodemask = NULL; 4369 return true; 4370 } 4371 4372 /* 4373 * When updating a task's mems_allowed or mempolicy nodemask, it is 4374 * possible to race with parallel threads in such a way that our 4375 * allocation can fail while the mask is being updated. If we are about 4376 * to fail, check if the cpuset changed during allocation and if so, 4377 * retry. 4378 */ 4379 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4380 return true; 4381 4382 return false; 4383 } 4384 4385 static inline struct page * 4386 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4387 struct alloc_context *ac) 4388 { 4389 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4390 bool can_compact = gfp_compaction_allowed(gfp_mask); 4391 bool nofail = gfp_mask & __GFP_NOFAIL; 4392 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4393 struct page *page = NULL; 4394 unsigned int alloc_flags; 4395 unsigned long did_some_progress; 4396 enum compact_priority compact_priority; 4397 enum compact_result compact_result; 4398 int compaction_retries; 4399 int no_progress_loops; 4400 unsigned int cpuset_mems_cookie; 4401 unsigned int zonelist_iter_cookie; 4402 int reserve_flags; 4403 4404 if (unlikely(nofail)) { 4405 /* 4406 * We most definitely don't want callers attempting to 4407 * allocate greater than order-1 page units with __GFP_NOFAIL. 4408 */ 4409 WARN_ON_ONCE(order > 1); 4410 /* 4411 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4412 * otherwise, we may result in lockup. 4413 */ 4414 WARN_ON_ONCE(!can_direct_reclaim); 4415 /* 4416 * PF_MEMALLOC request from this context is rather bizarre 4417 * because we cannot reclaim anything and only can loop waiting 4418 * for somebody to do a work for us. 4419 */ 4420 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4421 } 4422 4423 restart: 4424 compaction_retries = 0; 4425 no_progress_loops = 0; 4426 compact_result = COMPACT_SKIPPED; 4427 compact_priority = DEF_COMPACT_PRIORITY; 4428 cpuset_mems_cookie = read_mems_allowed_begin(); 4429 zonelist_iter_cookie = zonelist_iter_begin(); 4430 4431 /* 4432 * The fast path uses conservative alloc_flags to succeed only until 4433 * kswapd needs to be woken up, and to avoid the cost of setting up 4434 * alloc_flags precisely. So we do that now. 4435 */ 4436 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4437 4438 /* 4439 * We need to recalculate the starting point for the zonelist iterator 4440 * because we might have used different nodemask in the fast path, or 4441 * there was a cpuset modification and we are retrying - otherwise we 4442 * could end up iterating over non-eligible zones endlessly. 4443 */ 4444 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4445 ac->highest_zoneidx, ac->nodemask); 4446 if (!zonelist_zone(ac->preferred_zoneref)) 4447 goto nopage; 4448 4449 /* 4450 * Check for insane configurations where the cpuset doesn't contain 4451 * any suitable zone to satisfy the request - e.g. non-movable 4452 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4453 */ 4454 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4455 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4456 ac->highest_zoneidx, 4457 &cpuset_current_mems_allowed); 4458 if (!zonelist_zone(z)) 4459 goto nopage; 4460 } 4461 4462 if (alloc_flags & ALLOC_KSWAPD) 4463 wake_all_kswapds(order, gfp_mask, ac); 4464 4465 /* 4466 * The adjusted alloc_flags might result in immediate success, so try 4467 * that first 4468 */ 4469 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4470 if (page) 4471 goto got_pg; 4472 4473 /* 4474 * For costly allocations, try direct compaction first, as it's likely 4475 * that we have enough base pages and don't need to reclaim. For non- 4476 * movable high-order allocations, do that as well, as compaction will 4477 * try prevent permanent fragmentation by migrating from blocks of the 4478 * same migratetype. 4479 * Don't try this for allocations that are allowed to ignore 4480 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4481 */ 4482 if (can_direct_reclaim && can_compact && 4483 (costly_order || 4484 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4485 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4486 page = __alloc_pages_direct_compact(gfp_mask, order, 4487 alloc_flags, ac, 4488 INIT_COMPACT_PRIORITY, 4489 &compact_result); 4490 if (page) 4491 goto got_pg; 4492 4493 /* 4494 * Checks for costly allocations with __GFP_NORETRY, which 4495 * includes some THP page fault allocations 4496 */ 4497 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4498 /* 4499 * If allocating entire pageblock(s) and compaction 4500 * failed because all zones are below low watermarks 4501 * or is prohibited because it recently failed at this 4502 * order, fail immediately unless the allocator has 4503 * requested compaction and reclaim retry. 4504 * 4505 * Reclaim is 4506 * - potentially very expensive because zones are far 4507 * below their low watermarks or this is part of very 4508 * bursty high order allocations, 4509 * - not guaranteed to help because isolate_freepages() 4510 * may not iterate over freed pages as part of its 4511 * linear scan, and 4512 * - unlikely to make entire pageblocks free on its 4513 * own. 4514 */ 4515 if (compact_result == COMPACT_SKIPPED || 4516 compact_result == COMPACT_DEFERRED) 4517 goto nopage; 4518 4519 /* 4520 * Looks like reclaim/compaction is worth trying, but 4521 * sync compaction could be very expensive, so keep 4522 * using async compaction. 4523 */ 4524 compact_priority = INIT_COMPACT_PRIORITY; 4525 } 4526 } 4527 4528 retry: 4529 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4530 if (alloc_flags & ALLOC_KSWAPD) 4531 wake_all_kswapds(order, gfp_mask, ac); 4532 4533 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4534 if (reserve_flags) 4535 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4536 (alloc_flags & ALLOC_KSWAPD); 4537 4538 /* 4539 * Reset the nodemask and zonelist iterators if memory policies can be 4540 * ignored. These allocations are high priority and system rather than 4541 * user oriented. 4542 */ 4543 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4544 ac->nodemask = NULL; 4545 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4546 ac->highest_zoneidx, ac->nodemask); 4547 } 4548 4549 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4550 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4551 if (page) 4552 goto got_pg; 4553 4554 /* Caller is not willing to reclaim, we can't balance anything */ 4555 if (!can_direct_reclaim) 4556 goto nopage; 4557 4558 /* Avoid recursion of direct reclaim */ 4559 if (current->flags & PF_MEMALLOC) 4560 goto nopage; 4561 4562 /* Try direct reclaim and then allocating */ 4563 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4564 &did_some_progress); 4565 if (page) 4566 goto got_pg; 4567 4568 /* Try direct compaction and then allocating */ 4569 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4570 compact_priority, &compact_result); 4571 if (page) 4572 goto got_pg; 4573 4574 /* Do not loop if specifically requested */ 4575 if (gfp_mask & __GFP_NORETRY) 4576 goto nopage; 4577 4578 /* 4579 * Do not retry costly high order allocations unless they are 4580 * __GFP_RETRY_MAYFAIL and we can compact 4581 */ 4582 if (costly_order && (!can_compact || 4583 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4584 goto nopage; 4585 4586 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4587 did_some_progress > 0, &no_progress_loops)) 4588 goto retry; 4589 4590 /* 4591 * It doesn't make any sense to retry for the compaction if the order-0 4592 * reclaim is not able to make any progress because the current 4593 * implementation of the compaction depends on the sufficient amount 4594 * of free memory (see __compaction_suitable) 4595 */ 4596 if (did_some_progress > 0 && can_compact && 4597 should_compact_retry(ac, order, alloc_flags, 4598 compact_result, &compact_priority, 4599 &compaction_retries)) 4600 goto retry; 4601 4602 /* Reclaim/compaction failed to prevent the fallback */ 4603 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4604 alloc_flags &= ~ALLOC_NOFRAGMENT; 4605 goto retry; 4606 } 4607 4608 /* 4609 * Deal with possible cpuset update races or zonelist updates to avoid 4610 * a unnecessary OOM kill. 4611 */ 4612 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4613 check_retry_zonelist(zonelist_iter_cookie)) 4614 goto restart; 4615 4616 /* Reclaim has failed us, start killing things */ 4617 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4618 if (page) 4619 goto got_pg; 4620 4621 /* Avoid allocations with no watermarks from looping endlessly */ 4622 if (tsk_is_oom_victim(current) && 4623 (alloc_flags & ALLOC_OOM || 4624 (gfp_mask & __GFP_NOMEMALLOC))) 4625 goto nopage; 4626 4627 /* Retry as long as the OOM killer is making progress */ 4628 if (did_some_progress) { 4629 no_progress_loops = 0; 4630 goto retry; 4631 } 4632 4633 nopage: 4634 /* 4635 * Deal with possible cpuset update races or zonelist updates to avoid 4636 * a unnecessary OOM kill. 4637 */ 4638 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4639 check_retry_zonelist(zonelist_iter_cookie)) 4640 goto restart; 4641 4642 /* 4643 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4644 * we always retry 4645 */ 4646 if (unlikely(nofail)) { 4647 /* 4648 * Lacking direct_reclaim we can't do anything to reclaim memory, 4649 * we disregard these unreasonable nofail requests and still 4650 * return NULL 4651 */ 4652 if (!can_direct_reclaim) 4653 goto fail; 4654 4655 /* 4656 * Help non-failing allocations by giving some access to memory 4657 * reserves normally used for high priority non-blocking 4658 * allocations but do not use ALLOC_NO_WATERMARKS because this 4659 * could deplete whole memory reserves which would just make 4660 * the situation worse. 4661 */ 4662 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4663 if (page) 4664 goto got_pg; 4665 4666 cond_resched(); 4667 goto retry; 4668 } 4669 fail: 4670 warn_alloc(gfp_mask, ac->nodemask, 4671 "page allocation failure: order:%u", order); 4672 got_pg: 4673 return page; 4674 } 4675 4676 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4677 int preferred_nid, nodemask_t *nodemask, 4678 struct alloc_context *ac, gfp_t *alloc_gfp, 4679 unsigned int *alloc_flags) 4680 { 4681 ac->highest_zoneidx = gfp_zone(gfp_mask); 4682 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4683 ac->nodemask = nodemask; 4684 ac->migratetype = gfp_migratetype(gfp_mask); 4685 4686 if (cpusets_enabled()) { 4687 *alloc_gfp |= __GFP_HARDWALL; 4688 /* 4689 * When we are in the interrupt context, it is irrelevant 4690 * to the current task context. It means that any node ok. 4691 */ 4692 if (in_task() && !ac->nodemask) 4693 ac->nodemask = &cpuset_current_mems_allowed; 4694 else 4695 *alloc_flags |= ALLOC_CPUSET; 4696 } 4697 4698 might_alloc(gfp_mask); 4699 4700 /* 4701 * Don't invoke should_fail logic, since it may call 4702 * get_random_u32() and printk() which need to spin_lock. 4703 */ 4704 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4705 should_fail_alloc_page(gfp_mask, order)) 4706 return false; 4707 4708 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4709 4710 /* Dirty zone balancing only done in the fast path */ 4711 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4712 4713 /* 4714 * The preferred zone is used for statistics but crucially it is 4715 * also used as the starting point for the zonelist iterator. It 4716 * may get reset for allocations that ignore memory policies. 4717 */ 4718 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4719 ac->highest_zoneidx, ac->nodemask); 4720 4721 return true; 4722 } 4723 4724 /* 4725 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4726 * @gfp: GFP flags for the allocation 4727 * @preferred_nid: The preferred NUMA node ID to allocate from 4728 * @nodemask: Set of nodes to allocate from, may be NULL 4729 * @nr_pages: The number of pages desired in the array 4730 * @page_array: Array to store the pages 4731 * 4732 * This is a batched version of the page allocator that attempts to 4733 * allocate nr_pages quickly. Pages are added to the page_array. 4734 * 4735 * Note that only NULL elements are populated with pages and nr_pages 4736 * is the maximum number of pages that will be stored in the array. 4737 * 4738 * Returns the number of pages in the array. 4739 */ 4740 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4741 nodemask_t *nodemask, int nr_pages, 4742 struct page **page_array) 4743 { 4744 struct page *page; 4745 unsigned long __maybe_unused UP_flags; 4746 struct zone *zone; 4747 struct zoneref *z; 4748 struct per_cpu_pages *pcp; 4749 struct list_head *pcp_list; 4750 struct alloc_context ac; 4751 gfp_t alloc_gfp; 4752 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4753 int nr_populated = 0, nr_account = 0; 4754 4755 /* 4756 * Skip populated array elements to determine if any pages need 4757 * to be allocated before disabling IRQs. 4758 */ 4759 while (nr_populated < nr_pages && page_array[nr_populated]) 4760 nr_populated++; 4761 4762 /* No pages requested? */ 4763 if (unlikely(nr_pages <= 0)) 4764 goto out; 4765 4766 /* Already populated array? */ 4767 if (unlikely(nr_pages - nr_populated == 0)) 4768 goto out; 4769 4770 /* Bulk allocator does not support memcg accounting. */ 4771 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4772 goto failed; 4773 4774 /* Use the single page allocator for one page. */ 4775 if (nr_pages - nr_populated == 1) 4776 goto failed; 4777 4778 #ifdef CONFIG_PAGE_OWNER 4779 /* 4780 * PAGE_OWNER may recurse into the allocator to allocate space to 4781 * save the stack with pagesets.lock held. Releasing/reacquiring 4782 * removes much of the performance benefit of bulk allocation so 4783 * force the caller to allocate one page at a time as it'll have 4784 * similar performance to added complexity to the bulk allocator. 4785 */ 4786 if (static_branch_unlikely(&page_owner_inited)) 4787 goto failed; 4788 #endif 4789 4790 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4791 gfp &= gfp_allowed_mask; 4792 alloc_gfp = gfp; 4793 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4794 goto out; 4795 gfp = alloc_gfp; 4796 4797 /* Find an allowed local zone that meets the low watermark. */ 4798 z = ac.preferred_zoneref; 4799 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4800 unsigned long mark; 4801 4802 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4803 !__cpuset_zone_allowed(zone, gfp)) { 4804 continue; 4805 } 4806 4807 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4808 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4809 goto failed; 4810 } 4811 4812 cond_accept_memory(zone, 0); 4813 retry_this_zone: 4814 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4815 if (zone_watermark_fast(zone, 0, mark, 4816 zonelist_zone_idx(ac.preferred_zoneref), 4817 alloc_flags, gfp)) { 4818 break; 4819 } 4820 4821 if (cond_accept_memory(zone, 0)) 4822 goto retry_this_zone; 4823 4824 /* Try again if zone has deferred pages */ 4825 if (deferred_pages_enabled()) { 4826 if (_deferred_grow_zone(zone, 0)) 4827 goto retry_this_zone; 4828 } 4829 } 4830 4831 /* 4832 * If there are no allowed local zones that meets the watermarks then 4833 * try to allocate a single page and reclaim if necessary. 4834 */ 4835 if (unlikely(!zone)) 4836 goto failed; 4837 4838 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4839 pcp_trylock_prepare(UP_flags); 4840 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4841 if (!pcp) 4842 goto failed_irq; 4843 4844 /* Attempt the batch allocation */ 4845 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4846 while (nr_populated < nr_pages) { 4847 4848 /* Skip existing pages */ 4849 if (page_array[nr_populated]) { 4850 nr_populated++; 4851 continue; 4852 } 4853 4854 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4855 pcp, pcp_list); 4856 if (unlikely(!page)) { 4857 /* Try and allocate at least one page */ 4858 if (!nr_account) { 4859 pcp_spin_unlock(pcp); 4860 goto failed_irq; 4861 } 4862 break; 4863 } 4864 nr_account++; 4865 4866 prep_new_page(page, 0, gfp, 0); 4867 set_page_refcounted(page); 4868 page_array[nr_populated++] = page; 4869 } 4870 4871 pcp_spin_unlock(pcp); 4872 pcp_trylock_finish(UP_flags); 4873 4874 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4875 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4876 4877 out: 4878 return nr_populated; 4879 4880 failed_irq: 4881 pcp_trylock_finish(UP_flags); 4882 4883 failed: 4884 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4885 if (page) 4886 page_array[nr_populated++] = page; 4887 goto out; 4888 } 4889 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4890 4891 /* 4892 * This is the 'heart' of the zoned buddy allocator. 4893 */ 4894 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 4895 int preferred_nid, nodemask_t *nodemask) 4896 { 4897 struct page *page; 4898 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4899 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4900 struct alloc_context ac = { }; 4901 4902 /* 4903 * There are several places where we assume that the order value is sane 4904 * so bail out early if the request is out of bound. 4905 */ 4906 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4907 return NULL; 4908 4909 gfp &= gfp_allowed_mask; 4910 /* 4911 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4912 * resp. GFP_NOIO which has to be inherited for all allocation requests 4913 * from a particular context which has been marked by 4914 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4915 * movable zones are not used during allocation. 4916 */ 4917 gfp = current_gfp_context(gfp); 4918 alloc_gfp = gfp; 4919 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4920 &alloc_gfp, &alloc_flags)) 4921 return NULL; 4922 4923 /* 4924 * Forbid the first pass from falling back to types that fragment 4925 * memory until all local zones are considered. 4926 */ 4927 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4928 4929 /* First allocation attempt */ 4930 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4931 if (likely(page)) 4932 goto out; 4933 4934 alloc_gfp = gfp; 4935 ac.spread_dirty_pages = false; 4936 4937 /* 4938 * Restore the original nodemask if it was potentially replaced with 4939 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4940 */ 4941 ac.nodemask = nodemask; 4942 4943 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4944 4945 out: 4946 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4947 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4948 free_frozen_pages(page, order); 4949 page = NULL; 4950 } 4951 4952 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4953 kmsan_alloc_page(page, order, alloc_gfp); 4954 4955 return page; 4956 } 4957 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 4958 4959 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4960 int preferred_nid, nodemask_t *nodemask) 4961 { 4962 struct page *page; 4963 4964 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 4965 if (page) 4966 set_page_refcounted(page); 4967 return page; 4968 } 4969 EXPORT_SYMBOL(__alloc_pages_noprof); 4970 4971 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4972 nodemask_t *nodemask) 4973 { 4974 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4975 preferred_nid, nodemask); 4976 return page_rmappable_folio(page); 4977 } 4978 EXPORT_SYMBOL(__folio_alloc_noprof); 4979 4980 /* 4981 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4982 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4983 * you need to access high mem. 4984 */ 4985 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4986 { 4987 struct page *page; 4988 4989 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4990 if (!page) 4991 return 0; 4992 return (unsigned long) page_address(page); 4993 } 4994 EXPORT_SYMBOL(get_free_pages_noprof); 4995 4996 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4997 { 4998 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4999 } 5000 EXPORT_SYMBOL(get_zeroed_page_noprof); 5001 5002 /** 5003 * ___free_pages - Free pages allocated with alloc_pages(). 5004 * @page: The page pointer returned from alloc_pages(). 5005 * @order: The order of the allocation. 5006 * @fpi_flags: Free Page Internal flags. 5007 * 5008 * This function can free multi-page allocations that are not compound 5009 * pages. It does not check that the @order passed in matches that of 5010 * the allocation, so it is easy to leak memory. Freeing more memory 5011 * than was allocated will probably emit a warning. 5012 * 5013 * If the last reference to this page is speculative, it will be released 5014 * by put_page() which only frees the first page of a non-compound 5015 * allocation. To prevent the remaining pages from being leaked, we free 5016 * the subsequent pages here. If you want to use the page's reference 5017 * count to decide when to free the allocation, you should allocate a 5018 * compound page, and use put_page() instead of __free_pages(). 5019 * 5020 * Context: May be called in interrupt context or while holding a normal 5021 * spinlock, but not in NMI context or while holding a raw spinlock. 5022 */ 5023 static void ___free_pages(struct page *page, unsigned int order, 5024 fpi_t fpi_flags) 5025 { 5026 /* get PageHead before we drop reference */ 5027 int head = PageHead(page); 5028 5029 if (put_page_testzero(page)) 5030 __free_frozen_pages(page, order, fpi_flags); 5031 else if (!head) { 5032 pgalloc_tag_sub_pages(page, (1 << order) - 1); 5033 while (order-- > 0) 5034 __free_frozen_pages(page + (1 << order), order, 5035 fpi_flags); 5036 } 5037 } 5038 void __free_pages(struct page *page, unsigned int order) 5039 { 5040 ___free_pages(page, order, FPI_NONE); 5041 } 5042 EXPORT_SYMBOL(__free_pages); 5043 5044 /* 5045 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5046 * page type (not only those that came from try_alloc_pages) 5047 */ 5048 void free_pages_nolock(struct page *page, unsigned int order) 5049 { 5050 ___free_pages(page, order, FPI_TRYLOCK); 5051 } 5052 5053 void free_pages(unsigned long addr, unsigned int order) 5054 { 5055 if (addr != 0) { 5056 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5057 __free_pages(virt_to_page((void *)addr), order); 5058 } 5059 } 5060 5061 EXPORT_SYMBOL(free_pages); 5062 5063 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5064 size_t size) 5065 { 5066 if (addr) { 5067 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5068 struct page *page = virt_to_page((void *)addr); 5069 struct page *last = page + nr; 5070 5071 split_page_owner(page, order, 0); 5072 pgalloc_tag_split(page_folio(page), order, 0); 5073 split_page_memcg(page, order); 5074 while (page < --last) 5075 set_page_refcounted(last); 5076 5077 last = page + (1UL << order); 5078 for (page += nr; page < last; page++) 5079 __free_pages_ok(page, 0, FPI_TO_TAIL); 5080 } 5081 return (void *)addr; 5082 } 5083 5084 /** 5085 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5086 * @size: the number of bytes to allocate 5087 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5088 * 5089 * This function is similar to alloc_pages(), except that it allocates the 5090 * minimum number of pages to satisfy the request. alloc_pages() can only 5091 * allocate memory in power-of-two pages. 5092 * 5093 * This function is also limited by MAX_PAGE_ORDER. 5094 * 5095 * Memory allocated by this function must be released by free_pages_exact(). 5096 * 5097 * Return: pointer to the allocated area or %NULL in case of error. 5098 */ 5099 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5100 { 5101 unsigned int order = get_order(size); 5102 unsigned long addr; 5103 5104 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5105 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5106 5107 addr = get_free_pages_noprof(gfp_mask, order); 5108 return make_alloc_exact(addr, order, size); 5109 } 5110 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5111 5112 /** 5113 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5114 * pages on a node. 5115 * @nid: the preferred node ID where memory should be allocated 5116 * @size: the number of bytes to allocate 5117 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5118 * 5119 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5120 * back. 5121 * 5122 * Return: pointer to the allocated area or %NULL in case of error. 5123 */ 5124 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5125 { 5126 unsigned int order = get_order(size); 5127 struct page *p; 5128 5129 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5130 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5131 5132 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5133 if (!p) 5134 return NULL; 5135 return make_alloc_exact((unsigned long)page_address(p), order, size); 5136 } 5137 5138 /** 5139 * free_pages_exact - release memory allocated via alloc_pages_exact() 5140 * @virt: the value returned by alloc_pages_exact. 5141 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5142 * 5143 * Release the memory allocated by a previous call to alloc_pages_exact. 5144 */ 5145 void free_pages_exact(void *virt, size_t size) 5146 { 5147 unsigned long addr = (unsigned long)virt; 5148 unsigned long end = addr + PAGE_ALIGN(size); 5149 5150 while (addr < end) { 5151 free_page(addr); 5152 addr += PAGE_SIZE; 5153 } 5154 } 5155 EXPORT_SYMBOL(free_pages_exact); 5156 5157 /** 5158 * nr_free_zone_pages - count number of pages beyond high watermark 5159 * @offset: The zone index of the highest zone 5160 * 5161 * nr_free_zone_pages() counts the number of pages which are beyond the 5162 * high watermark within all zones at or below a given zone index. For each 5163 * zone, the number of pages is calculated as: 5164 * 5165 * nr_free_zone_pages = managed_pages - high_pages 5166 * 5167 * Return: number of pages beyond high watermark. 5168 */ 5169 static unsigned long nr_free_zone_pages(int offset) 5170 { 5171 struct zoneref *z; 5172 struct zone *zone; 5173 5174 /* Just pick one node, since fallback list is circular */ 5175 unsigned long sum = 0; 5176 5177 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5178 5179 for_each_zone_zonelist(zone, z, zonelist, offset) { 5180 unsigned long size = zone_managed_pages(zone); 5181 unsigned long high = high_wmark_pages(zone); 5182 if (size > high) 5183 sum += size - high; 5184 } 5185 5186 return sum; 5187 } 5188 5189 /** 5190 * nr_free_buffer_pages - count number of pages beyond high watermark 5191 * 5192 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5193 * watermark within ZONE_DMA and ZONE_NORMAL. 5194 * 5195 * Return: number of pages beyond high watermark within ZONE_DMA and 5196 * ZONE_NORMAL. 5197 */ 5198 unsigned long nr_free_buffer_pages(void) 5199 { 5200 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5201 } 5202 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5203 5204 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5205 { 5206 zoneref->zone = zone; 5207 zoneref->zone_idx = zone_idx(zone); 5208 } 5209 5210 /* 5211 * Builds allocation fallback zone lists. 5212 * 5213 * Add all populated zones of a node to the zonelist. 5214 */ 5215 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5216 { 5217 struct zone *zone; 5218 enum zone_type zone_type = MAX_NR_ZONES; 5219 int nr_zones = 0; 5220 5221 do { 5222 zone_type--; 5223 zone = pgdat->node_zones + zone_type; 5224 if (populated_zone(zone)) { 5225 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5226 check_highest_zone(zone_type); 5227 } 5228 } while (zone_type); 5229 5230 return nr_zones; 5231 } 5232 5233 #ifdef CONFIG_NUMA 5234 5235 static int __parse_numa_zonelist_order(char *s) 5236 { 5237 /* 5238 * We used to support different zonelists modes but they turned 5239 * out to be just not useful. Let's keep the warning in place 5240 * if somebody still use the cmd line parameter so that we do 5241 * not fail it silently 5242 */ 5243 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5244 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5245 return -EINVAL; 5246 } 5247 return 0; 5248 } 5249 5250 static char numa_zonelist_order[] = "Node"; 5251 #define NUMA_ZONELIST_ORDER_LEN 16 5252 /* 5253 * sysctl handler for numa_zonelist_order 5254 */ 5255 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5256 void *buffer, size_t *length, loff_t *ppos) 5257 { 5258 if (write) 5259 return __parse_numa_zonelist_order(buffer); 5260 return proc_dostring(table, write, buffer, length, ppos); 5261 } 5262 5263 static int node_load[MAX_NUMNODES]; 5264 5265 /** 5266 * find_next_best_node - find the next node that should appear in a given node's fallback list 5267 * @node: node whose fallback list we're appending 5268 * @used_node_mask: nodemask_t of already used nodes 5269 * 5270 * We use a number of factors to determine which is the next node that should 5271 * appear on a given node's fallback list. The node should not have appeared 5272 * already in @node's fallback list, and it should be the next closest node 5273 * according to the distance array (which contains arbitrary distance values 5274 * from each node to each node in the system), and should also prefer nodes 5275 * with no CPUs, since presumably they'll have very little allocation pressure 5276 * on them otherwise. 5277 * 5278 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5279 */ 5280 int find_next_best_node(int node, nodemask_t *used_node_mask) 5281 { 5282 int n, val; 5283 int min_val = INT_MAX; 5284 int best_node = NUMA_NO_NODE; 5285 5286 /* 5287 * Use the local node if we haven't already, but for memoryless local 5288 * node, we should skip it and fall back to other nodes. 5289 */ 5290 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5291 node_set(node, *used_node_mask); 5292 return node; 5293 } 5294 5295 for_each_node_state(n, N_MEMORY) { 5296 5297 /* Don't want a node to appear more than once */ 5298 if (node_isset(n, *used_node_mask)) 5299 continue; 5300 5301 /* Use the distance array to find the distance */ 5302 val = node_distance(node, n); 5303 5304 /* Penalize nodes under us ("prefer the next node") */ 5305 val += (n < node); 5306 5307 /* Give preference to headless and unused nodes */ 5308 if (!cpumask_empty(cpumask_of_node(n))) 5309 val += PENALTY_FOR_NODE_WITH_CPUS; 5310 5311 /* Slight preference for less loaded node */ 5312 val *= MAX_NUMNODES; 5313 val += node_load[n]; 5314 5315 if (val < min_val) { 5316 min_val = val; 5317 best_node = n; 5318 } 5319 } 5320 5321 if (best_node >= 0) 5322 node_set(best_node, *used_node_mask); 5323 5324 return best_node; 5325 } 5326 5327 5328 /* 5329 * Build zonelists ordered by node and zones within node. 5330 * This results in maximum locality--normal zone overflows into local 5331 * DMA zone, if any--but risks exhausting DMA zone. 5332 */ 5333 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5334 unsigned nr_nodes) 5335 { 5336 struct zoneref *zonerefs; 5337 int i; 5338 5339 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5340 5341 for (i = 0; i < nr_nodes; i++) { 5342 int nr_zones; 5343 5344 pg_data_t *node = NODE_DATA(node_order[i]); 5345 5346 nr_zones = build_zonerefs_node(node, zonerefs); 5347 zonerefs += nr_zones; 5348 } 5349 zonerefs->zone = NULL; 5350 zonerefs->zone_idx = 0; 5351 } 5352 5353 /* 5354 * Build __GFP_THISNODE zonelists 5355 */ 5356 static void build_thisnode_zonelists(pg_data_t *pgdat) 5357 { 5358 struct zoneref *zonerefs; 5359 int nr_zones; 5360 5361 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5362 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5363 zonerefs += nr_zones; 5364 zonerefs->zone = NULL; 5365 zonerefs->zone_idx = 0; 5366 } 5367 5368 static void build_zonelists(pg_data_t *pgdat) 5369 { 5370 static int node_order[MAX_NUMNODES]; 5371 int node, nr_nodes = 0; 5372 nodemask_t used_mask = NODE_MASK_NONE; 5373 int local_node, prev_node; 5374 5375 /* NUMA-aware ordering of nodes */ 5376 local_node = pgdat->node_id; 5377 prev_node = local_node; 5378 5379 memset(node_order, 0, sizeof(node_order)); 5380 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5381 /* 5382 * We don't want to pressure a particular node. 5383 * So adding penalty to the first node in same 5384 * distance group to make it round-robin. 5385 */ 5386 if (node_distance(local_node, node) != 5387 node_distance(local_node, prev_node)) 5388 node_load[node] += 1; 5389 5390 node_order[nr_nodes++] = node; 5391 prev_node = node; 5392 } 5393 5394 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5395 build_thisnode_zonelists(pgdat); 5396 pr_info("Fallback order for Node %d: ", local_node); 5397 for (node = 0; node < nr_nodes; node++) 5398 pr_cont("%d ", node_order[node]); 5399 pr_cont("\n"); 5400 } 5401 5402 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5403 /* 5404 * Return node id of node used for "local" allocations. 5405 * I.e., first node id of first zone in arg node's generic zonelist. 5406 * Used for initializing percpu 'numa_mem', which is used primarily 5407 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5408 */ 5409 int local_memory_node(int node) 5410 { 5411 struct zoneref *z; 5412 5413 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5414 gfp_zone(GFP_KERNEL), 5415 NULL); 5416 return zonelist_node_idx(z); 5417 } 5418 #endif 5419 5420 static void setup_min_unmapped_ratio(void); 5421 static void setup_min_slab_ratio(void); 5422 #else /* CONFIG_NUMA */ 5423 5424 static void build_zonelists(pg_data_t *pgdat) 5425 { 5426 struct zoneref *zonerefs; 5427 int nr_zones; 5428 5429 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5430 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5431 zonerefs += nr_zones; 5432 5433 zonerefs->zone = NULL; 5434 zonerefs->zone_idx = 0; 5435 } 5436 5437 #endif /* CONFIG_NUMA */ 5438 5439 /* 5440 * Boot pageset table. One per cpu which is going to be used for all 5441 * zones and all nodes. The parameters will be set in such a way 5442 * that an item put on a list will immediately be handed over to 5443 * the buddy list. This is safe since pageset manipulation is done 5444 * with interrupts disabled. 5445 * 5446 * The boot_pagesets must be kept even after bootup is complete for 5447 * unused processors and/or zones. They do play a role for bootstrapping 5448 * hotplugged processors. 5449 * 5450 * zoneinfo_show() and maybe other functions do 5451 * not check if the processor is online before following the pageset pointer. 5452 * Other parts of the kernel may not check if the zone is available. 5453 */ 5454 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5455 /* These effectively disable the pcplists in the boot pageset completely */ 5456 #define BOOT_PAGESET_HIGH 0 5457 #define BOOT_PAGESET_BATCH 1 5458 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5459 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5460 5461 static void __build_all_zonelists(void *data) 5462 { 5463 int nid; 5464 int __maybe_unused cpu; 5465 pg_data_t *self = data; 5466 unsigned long flags; 5467 5468 /* 5469 * The zonelist_update_seq must be acquired with irqsave because the 5470 * reader can be invoked from IRQ with GFP_ATOMIC. 5471 */ 5472 write_seqlock_irqsave(&zonelist_update_seq, flags); 5473 /* 5474 * Also disable synchronous printk() to prevent any printk() from 5475 * trying to hold port->lock, for 5476 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5477 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5478 */ 5479 printk_deferred_enter(); 5480 5481 #ifdef CONFIG_NUMA 5482 memset(node_load, 0, sizeof(node_load)); 5483 #endif 5484 5485 /* 5486 * This node is hotadded and no memory is yet present. So just 5487 * building zonelists is fine - no need to touch other nodes. 5488 */ 5489 if (self && !node_online(self->node_id)) { 5490 build_zonelists(self); 5491 } else { 5492 /* 5493 * All possible nodes have pgdat preallocated 5494 * in free_area_init 5495 */ 5496 for_each_node(nid) { 5497 pg_data_t *pgdat = NODE_DATA(nid); 5498 5499 build_zonelists(pgdat); 5500 } 5501 5502 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5503 /* 5504 * We now know the "local memory node" for each node-- 5505 * i.e., the node of the first zone in the generic zonelist. 5506 * Set up numa_mem percpu variable for on-line cpus. During 5507 * boot, only the boot cpu should be on-line; we'll init the 5508 * secondary cpus' numa_mem as they come on-line. During 5509 * node/memory hotplug, we'll fixup all on-line cpus. 5510 */ 5511 for_each_online_cpu(cpu) 5512 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5513 #endif 5514 } 5515 5516 printk_deferred_exit(); 5517 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5518 } 5519 5520 static noinline void __init 5521 build_all_zonelists_init(void) 5522 { 5523 int cpu; 5524 5525 __build_all_zonelists(NULL); 5526 5527 /* 5528 * Initialize the boot_pagesets that are going to be used 5529 * for bootstrapping processors. The real pagesets for 5530 * each zone will be allocated later when the per cpu 5531 * allocator is available. 5532 * 5533 * boot_pagesets are used also for bootstrapping offline 5534 * cpus if the system is already booted because the pagesets 5535 * are needed to initialize allocators on a specific cpu too. 5536 * F.e. the percpu allocator needs the page allocator which 5537 * needs the percpu allocator in order to allocate its pagesets 5538 * (a chicken-egg dilemma). 5539 */ 5540 for_each_possible_cpu(cpu) 5541 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5542 5543 mminit_verify_zonelist(); 5544 cpuset_init_current_mems_allowed(); 5545 } 5546 5547 /* 5548 * unless system_state == SYSTEM_BOOTING. 5549 * 5550 * __ref due to call of __init annotated helper build_all_zonelists_init 5551 * [protected by SYSTEM_BOOTING]. 5552 */ 5553 void __ref build_all_zonelists(pg_data_t *pgdat) 5554 { 5555 unsigned long vm_total_pages; 5556 5557 if (system_state == SYSTEM_BOOTING) { 5558 build_all_zonelists_init(); 5559 } else { 5560 __build_all_zonelists(pgdat); 5561 /* cpuset refresh routine should be here */ 5562 } 5563 /* Get the number of free pages beyond high watermark in all zones. */ 5564 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5565 /* 5566 * Disable grouping by mobility if the number of pages in the 5567 * system is too low to allow the mechanism to work. It would be 5568 * more accurate, but expensive to check per-zone. This check is 5569 * made on memory-hotadd so a system can start with mobility 5570 * disabled and enable it later 5571 */ 5572 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5573 page_group_by_mobility_disabled = 1; 5574 else 5575 page_group_by_mobility_disabled = 0; 5576 5577 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5578 nr_online_nodes, 5579 str_off_on(page_group_by_mobility_disabled), 5580 vm_total_pages); 5581 #ifdef CONFIG_NUMA 5582 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5583 #endif 5584 } 5585 5586 static int zone_batchsize(struct zone *zone) 5587 { 5588 #ifdef CONFIG_MMU 5589 int batch; 5590 5591 /* 5592 * The number of pages to batch allocate is either ~0.1% 5593 * of the zone or 1MB, whichever is smaller. The batch 5594 * size is striking a balance between allocation latency 5595 * and zone lock contention. 5596 */ 5597 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5598 batch /= 4; /* We effectively *= 4 below */ 5599 if (batch < 1) 5600 batch = 1; 5601 5602 /* 5603 * Clamp the batch to a 2^n - 1 value. Having a power 5604 * of 2 value was found to be more likely to have 5605 * suboptimal cache aliasing properties in some cases. 5606 * 5607 * For example if 2 tasks are alternately allocating 5608 * batches of pages, one task can end up with a lot 5609 * of pages of one half of the possible page colors 5610 * and the other with pages of the other colors. 5611 */ 5612 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5613 5614 return batch; 5615 5616 #else 5617 /* The deferral and batching of frees should be suppressed under NOMMU 5618 * conditions. 5619 * 5620 * The problem is that NOMMU needs to be able to allocate large chunks 5621 * of contiguous memory as there's no hardware page translation to 5622 * assemble apparent contiguous memory from discontiguous pages. 5623 * 5624 * Queueing large contiguous runs of pages for batching, however, 5625 * causes the pages to actually be freed in smaller chunks. As there 5626 * can be a significant delay between the individual batches being 5627 * recycled, this leads to the once large chunks of space being 5628 * fragmented and becoming unavailable for high-order allocations. 5629 */ 5630 return 0; 5631 #endif 5632 } 5633 5634 static int percpu_pagelist_high_fraction; 5635 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5636 int high_fraction) 5637 { 5638 #ifdef CONFIG_MMU 5639 int high; 5640 int nr_split_cpus; 5641 unsigned long total_pages; 5642 5643 if (!high_fraction) { 5644 /* 5645 * By default, the high value of the pcp is based on the zone 5646 * low watermark so that if they are full then background 5647 * reclaim will not be started prematurely. 5648 */ 5649 total_pages = low_wmark_pages(zone); 5650 } else { 5651 /* 5652 * If percpu_pagelist_high_fraction is configured, the high 5653 * value is based on a fraction of the managed pages in the 5654 * zone. 5655 */ 5656 total_pages = zone_managed_pages(zone) / high_fraction; 5657 } 5658 5659 /* 5660 * Split the high value across all online CPUs local to the zone. Note 5661 * that early in boot that CPUs may not be online yet and that during 5662 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5663 * onlined. For memory nodes that have no CPUs, split the high value 5664 * across all online CPUs to mitigate the risk that reclaim is triggered 5665 * prematurely due to pages stored on pcp lists. 5666 */ 5667 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5668 if (!nr_split_cpus) 5669 nr_split_cpus = num_online_cpus(); 5670 high = total_pages / nr_split_cpus; 5671 5672 /* 5673 * Ensure high is at least batch*4. The multiple is based on the 5674 * historical relationship between high and batch. 5675 */ 5676 high = max(high, batch << 2); 5677 5678 return high; 5679 #else 5680 return 0; 5681 #endif 5682 } 5683 5684 /* 5685 * pcp->high and pcp->batch values are related and generally batch is lower 5686 * than high. They are also related to pcp->count such that count is lower 5687 * than high, and as soon as it reaches high, the pcplist is flushed. 5688 * 5689 * However, guaranteeing these relations at all times would require e.g. write 5690 * barriers here but also careful usage of read barriers at the read side, and 5691 * thus be prone to error and bad for performance. Thus the update only prevents 5692 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5693 * should ensure they can cope with those fields changing asynchronously, and 5694 * fully trust only the pcp->count field on the local CPU with interrupts 5695 * disabled. 5696 * 5697 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5698 * outside of boot time (or some other assurance that no concurrent updaters 5699 * exist). 5700 */ 5701 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5702 unsigned long high_max, unsigned long batch) 5703 { 5704 WRITE_ONCE(pcp->batch, batch); 5705 WRITE_ONCE(pcp->high_min, high_min); 5706 WRITE_ONCE(pcp->high_max, high_max); 5707 } 5708 5709 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5710 { 5711 int pindex; 5712 5713 memset(pcp, 0, sizeof(*pcp)); 5714 memset(pzstats, 0, sizeof(*pzstats)); 5715 5716 spin_lock_init(&pcp->lock); 5717 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5718 INIT_LIST_HEAD(&pcp->lists[pindex]); 5719 5720 /* 5721 * Set batch and high values safe for a boot pageset. A true percpu 5722 * pageset's initialization will update them subsequently. Here we don't 5723 * need to be as careful as pageset_update() as nobody can access the 5724 * pageset yet. 5725 */ 5726 pcp->high_min = BOOT_PAGESET_HIGH; 5727 pcp->high_max = BOOT_PAGESET_HIGH; 5728 pcp->batch = BOOT_PAGESET_BATCH; 5729 pcp->free_count = 0; 5730 } 5731 5732 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5733 unsigned long high_max, unsigned long batch) 5734 { 5735 struct per_cpu_pages *pcp; 5736 int cpu; 5737 5738 for_each_possible_cpu(cpu) { 5739 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5740 pageset_update(pcp, high_min, high_max, batch); 5741 } 5742 } 5743 5744 /* 5745 * Calculate and set new high and batch values for all per-cpu pagesets of a 5746 * zone based on the zone's size. 5747 */ 5748 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5749 { 5750 int new_high_min, new_high_max, new_batch; 5751 5752 new_batch = max(1, zone_batchsize(zone)); 5753 if (percpu_pagelist_high_fraction) { 5754 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5755 percpu_pagelist_high_fraction); 5756 /* 5757 * PCP high is tuned manually, disable auto-tuning via 5758 * setting high_min and high_max to the manual value. 5759 */ 5760 new_high_max = new_high_min; 5761 } else { 5762 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5763 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5764 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5765 } 5766 5767 if (zone->pageset_high_min == new_high_min && 5768 zone->pageset_high_max == new_high_max && 5769 zone->pageset_batch == new_batch) 5770 return; 5771 5772 zone->pageset_high_min = new_high_min; 5773 zone->pageset_high_max = new_high_max; 5774 zone->pageset_batch = new_batch; 5775 5776 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5777 new_batch); 5778 } 5779 5780 void __meminit setup_zone_pageset(struct zone *zone) 5781 { 5782 int cpu; 5783 5784 /* Size may be 0 on !SMP && !NUMA */ 5785 if (sizeof(struct per_cpu_zonestat) > 0) 5786 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5787 5788 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5789 for_each_possible_cpu(cpu) { 5790 struct per_cpu_pages *pcp; 5791 struct per_cpu_zonestat *pzstats; 5792 5793 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5794 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5795 per_cpu_pages_init(pcp, pzstats); 5796 } 5797 5798 zone_set_pageset_high_and_batch(zone, 0); 5799 } 5800 5801 /* 5802 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5803 * page high values need to be recalculated. 5804 */ 5805 static void zone_pcp_update(struct zone *zone, int cpu_online) 5806 { 5807 mutex_lock(&pcp_batch_high_lock); 5808 zone_set_pageset_high_and_batch(zone, cpu_online); 5809 mutex_unlock(&pcp_batch_high_lock); 5810 } 5811 5812 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5813 { 5814 struct per_cpu_pages *pcp; 5815 struct cpu_cacheinfo *cci; 5816 5817 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5818 cci = get_cpu_cacheinfo(cpu); 5819 /* 5820 * If data cache slice of CPU is large enough, "pcp->batch" 5821 * pages can be preserved in PCP before draining PCP for 5822 * consecutive high-order pages freeing without allocation. 5823 * This can reduce zone lock contention without hurting 5824 * cache-hot pages sharing. 5825 */ 5826 spin_lock(&pcp->lock); 5827 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5828 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5829 else 5830 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5831 spin_unlock(&pcp->lock); 5832 } 5833 5834 void setup_pcp_cacheinfo(unsigned int cpu) 5835 { 5836 struct zone *zone; 5837 5838 for_each_populated_zone(zone) 5839 zone_pcp_update_cacheinfo(zone, cpu); 5840 } 5841 5842 /* 5843 * Allocate per cpu pagesets and initialize them. 5844 * Before this call only boot pagesets were available. 5845 */ 5846 void __init setup_per_cpu_pageset(void) 5847 { 5848 struct pglist_data *pgdat; 5849 struct zone *zone; 5850 int __maybe_unused cpu; 5851 5852 for_each_populated_zone(zone) 5853 setup_zone_pageset(zone); 5854 5855 #ifdef CONFIG_NUMA 5856 /* 5857 * Unpopulated zones continue using the boot pagesets. 5858 * The numa stats for these pagesets need to be reset. 5859 * Otherwise, they will end up skewing the stats of 5860 * the nodes these zones are associated with. 5861 */ 5862 for_each_possible_cpu(cpu) { 5863 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5864 memset(pzstats->vm_numa_event, 0, 5865 sizeof(pzstats->vm_numa_event)); 5866 } 5867 #endif 5868 5869 for_each_online_pgdat(pgdat) 5870 pgdat->per_cpu_nodestats = 5871 alloc_percpu(struct per_cpu_nodestat); 5872 } 5873 5874 __meminit void zone_pcp_init(struct zone *zone) 5875 { 5876 /* 5877 * per cpu subsystem is not up at this point. The following code 5878 * relies on the ability of the linker to provide the 5879 * offset of a (static) per cpu variable into the per cpu area. 5880 */ 5881 zone->per_cpu_pageset = &boot_pageset; 5882 zone->per_cpu_zonestats = &boot_zonestats; 5883 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5884 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5885 zone->pageset_batch = BOOT_PAGESET_BATCH; 5886 5887 if (populated_zone(zone)) 5888 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5889 zone->present_pages, zone_batchsize(zone)); 5890 } 5891 5892 static void setup_per_zone_lowmem_reserve(void); 5893 5894 void adjust_managed_page_count(struct page *page, long count) 5895 { 5896 atomic_long_add(count, &page_zone(page)->managed_pages); 5897 totalram_pages_add(count); 5898 setup_per_zone_lowmem_reserve(); 5899 } 5900 EXPORT_SYMBOL(adjust_managed_page_count); 5901 5902 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5903 { 5904 void *pos; 5905 unsigned long pages = 0; 5906 5907 start = (void *)PAGE_ALIGN((unsigned long)start); 5908 end = (void *)((unsigned long)end & PAGE_MASK); 5909 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5910 struct page *page = virt_to_page(pos); 5911 void *direct_map_addr; 5912 5913 /* 5914 * 'direct_map_addr' might be different from 'pos' 5915 * because some architectures' virt_to_page() 5916 * work with aliases. Getting the direct map 5917 * address ensures that we get a _writeable_ 5918 * alias for the memset(). 5919 */ 5920 direct_map_addr = page_address(page); 5921 /* 5922 * Perform a kasan-unchecked memset() since this memory 5923 * has not been initialized. 5924 */ 5925 direct_map_addr = kasan_reset_tag(direct_map_addr); 5926 if ((unsigned int)poison <= 0xFF) 5927 memset(direct_map_addr, poison, PAGE_SIZE); 5928 5929 free_reserved_page(page); 5930 } 5931 5932 if (pages && s) 5933 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5934 5935 return pages; 5936 } 5937 5938 void free_reserved_page(struct page *page) 5939 { 5940 clear_page_tag_ref(page); 5941 ClearPageReserved(page); 5942 init_page_count(page); 5943 __free_page(page); 5944 adjust_managed_page_count(page, 1); 5945 } 5946 EXPORT_SYMBOL(free_reserved_page); 5947 5948 static int page_alloc_cpu_dead(unsigned int cpu) 5949 { 5950 struct zone *zone; 5951 5952 lru_add_drain_cpu(cpu); 5953 mlock_drain_remote(cpu); 5954 drain_pages(cpu); 5955 5956 /* 5957 * Spill the event counters of the dead processor 5958 * into the current processors event counters. 5959 * This artificially elevates the count of the current 5960 * processor. 5961 */ 5962 vm_events_fold_cpu(cpu); 5963 5964 /* 5965 * Zero the differential counters of the dead processor 5966 * so that the vm statistics are consistent. 5967 * 5968 * This is only okay since the processor is dead and cannot 5969 * race with what we are doing. 5970 */ 5971 cpu_vm_stats_fold(cpu); 5972 5973 for_each_populated_zone(zone) 5974 zone_pcp_update(zone, 0); 5975 5976 return 0; 5977 } 5978 5979 static int page_alloc_cpu_online(unsigned int cpu) 5980 { 5981 struct zone *zone; 5982 5983 for_each_populated_zone(zone) 5984 zone_pcp_update(zone, 1); 5985 return 0; 5986 } 5987 5988 void __init page_alloc_init_cpuhp(void) 5989 { 5990 int ret; 5991 5992 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5993 "mm/page_alloc:pcp", 5994 page_alloc_cpu_online, 5995 page_alloc_cpu_dead); 5996 WARN_ON(ret < 0); 5997 } 5998 5999 /* 6000 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6001 * or min_free_kbytes changes. 6002 */ 6003 static void calculate_totalreserve_pages(void) 6004 { 6005 struct pglist_data *pgdat; 6006 unsigned long reserve_pages = 0; 6007 enum zone_type i, j; 6008 6009 for_each_online_pgdat(pgdat) { 6010 6011 pgdat->totalreserve_pages = 0; 6012 6013 for (i = 0; i < MAX_NR_ZONES; i++) { 6014 struct zone *zone = pgdat->node_zones + i; 6015 long max = 0; 6016 unsigned long managed_pages = zone_managed_pages(zone); 6017 6018 /* Find valid and maximum lowmem_reserve in the zone */ 6019 for (j = i; j < MAX_NR_ZONES; j++) { 6020 if (zone->lowmem_reserve[j] > max) 6021 max = zone->lowmem_reserve[j]; 6022 } 6023 6024 /* we treat the high watermark as reserved pages. */ 6025 max += high_wmark_pages(zone); 6026 6027 if (max > managed_pages) 6028 max = managed_pages; 6029 6030 pgdat->totalreserve_pages += max; 6031 6032 reserve_pages += max; 6033 } 6034 } 6035 totalreserve_pages = reserve_pages; 6036 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6037 } 6038 6039 /* 6040 * setup_per_zone_lowmem_reserve - called whenever 6041 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6042 * has a correct pages reserved value, so an adequate number of 6043 * pages are left in the zone after a successful __alloc_pages(). 6044 */ 6045 static void setup_per_zone_lowmem_reserve(void) 6046 { 6047 struct pglist_data *pgdat; 6048 enum zone_type i, j; 6049 6050 for_each_online_pgdat(pgdat) { 6051 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6052 struct zone *zone = &pgdat->node_zones[i]; 6053 int ratio = sysctl_lowmem_reserve_ratio[i]; 6054 bool clear = !ratio || !zone_managed_pages(zone); 6055 unsigned long managed_pages = 0; 6056 6057 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6058 struct zone *upper_zone = &pgdat->node_zones[j]; 6059 6060 managed_pages += zone_managed_pages(upper_zone); 6061 6062 if (clear) 6063 zone->lowmem_reserve[j] = 0; 6064 else 6065 zone->lowmem_reserve[j] = managed_pages / ratio; 6066 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6067 zone->lowmem_reserve[j]); 6068 } 6069 } 6070 } 6071 6072 /* update totalreserve_pages */ 6073 calculate_totalreserve_pages(); 6074 } 6075 6076 static void __setup_per_zone_wmarks(void) 6077 { 6078 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6079 unsigned long lowmem_pages = 0; 6080 struct zone *zone; 6081 unsigned long flags; 6082 6083 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6084 for_each_zone(zone) { 6085 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6086 lowmem_pages += zone_managed_pages(zone); 6087 } 6088 6089 for_each_zone(zone) { 6090 u64 tmp; 6091 6092 spin_lock_irqsave(&zone->lock, flags); 6093 tmp = (u64)pages_min * zone_managed_pages(zone); 6094 tmp = div64_ul(tmp, lowmem_pages); 6095 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6096 /* 6097 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6098 * need highmem and movable zones pages, so cap pages_min 6099 * to a small value here. 6100 * 6101 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6102 * deltas control async page reclaim, and so should 6103 * not be capped for highmem and movable zones. 6104 */ 6105 unsigned long min_pages; 6106 6107 min_pages = zone_managed_pages(zone) / 1024; 6108 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6109 zone->_watermark[WMARK_MIN] = min_pages; 6110 } else { 6111 /* 6112 * If it's a lowmem zone, reserve a number of pages 6113 * proportionate to the zone's size. 6114 */ 6115 zone->_watermark[WMARK_MIN] = tmp; 6116 } 6117 6118 /* 6119 * Set the kswapd watermarks distance according to the 6120 * scale factor in proportion to available memory, but 6121 * ensure a minimum size on small systems. 6122 */ 6123 tmp = max_t(u64, tmp >> 2, 6124 mult_frac(zone_managed_pages(zone), 6125 watermark_scale_factor, 10000)); 6126 6127 zone->watermark_boost = 0; 6128 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6129 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6130 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6131 trace_mm_setup_per_zone_wmarks(zone); 6132 6133 spin_unlock_irqrestore(&zone->lock, flags); 6134 } 6135 6136 /* update totalreserve_pages */ 6137 calculate_totalreserve_pages(); 6138 } 6139 6140 /** 6141 * setup_per_zone_wmarks - called when min_free_kbytes changes 6142 * or when memory is hot-{added|removed} 6143 * 6144 * Ensures that the watermark[min,low,high] values for each zone are set 6145 * correctly with respect to min_free_kbytes. 6146 */ 6147 void setup_per_zone_wmarks(void) 6148 { 6149 struct zone *zone; 6150 static DEFINE_SPINLOCK(lock); 6151 6152 spin_lock(&lock); 6153 __setup_per_zone_wmarks(); 6154 spin_unlock(&lock); 6155 6156 /* 6157 * The watermark size have changed so update the pcpu batch 6158 * and high limits or the limits may be inappropriate. 6159 */ 6160 for_each_zone(zone) 6161 zone_pcp_update(zone, 0); 6162 } 6163 6164 /* 6165 * Initialise min_free_kbytes. 6166 * 6167 * For small machines we want it small (128k min). For large machines 6168 * we want it large (256MB max). But it is not linear, because network 6169 * bandwidth does not increase linearly with machine size. We use 6170 * 6171 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6172 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6173 * 6174 * which yields 6175 * 6176 * 16MB: 512k 6177 * 32MB: 724k 6178 * 64MB: 1024k 6179 * 128MB: 1448k 6180 * 256MB: 2048k 6181 * 512MB: 2896k 6182 * 1024MB: 4096k 6183 * 2048MB: 5792k 6184 * 4096MB: 8192k 6185 * 8192MB: 11584k 6186 * 16384MB: 16384k 6187 */ 6188 void calculate_min_free_kbytes(void) 6189 { 6190 unsigned long lowmem_kbytes; 6191 int new_min_free_kbytes; 6192 6193 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6194 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6195 6196 if (new_min_free_kbytes > user_min_free_kbytes) 6197 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6198 else 6199 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6200 new_min_free_kbytes, user_min_free_kbytes); 6201 6202 } 6203 6204 int __meminit init_per_zone_wmark_min(void) 6205 { 6206 calculate_min_free_kbytes(); 6207 setup_per_zone_wmarks(); 6208 refresh_zone_stat_thresholds(); 6209 setup_per_zone_lowmem_reserve(); 6210 6211 #ifdef CONFIG_NUMA 6212 setup_min_unmapped_ratio(); 6213 setup_min_slab_ratio(); 6214 #endif 6215 6216 khugepaged_min_free_kbytes_update(); 6217 6218 return 0; 6219 } 6220 postcore_initcall(init_per_zone_wmark_min) 6221 6222 /* 6223 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6224 * that we can call two helper functions whenever min_free_kbytes 6225 * changes. 6226 */ 6227 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6228 void *buffer, size_t *length, loff_t *ppos) 6229 { 6230 int rc; 6231 6232 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6233 if (rc) 6234 return rc; 6235 6236 if (write) { 6237 user_min_free_kbytes = min_free_kbytes; 6238 setup_per_zone_wmarks(); 6239 } 6240 return 0; 6241 } 6242 6243 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6244 void *buffer, size_t *length, loff_t *ppos) 6245 { 6246 int rc; 6247 6248 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6249 if (rc) 6250 return rc; 6251 6252 if (write) 6253 setup_per_zone_wmarks(); 6254 6255 return 0; 6256 } 6257 6258 #ifdef CONFIG_NUMA 6259 static void setup_min_unmapped_ratio(void) 6260 { 6261 pg_data_t *pgdat; 6262 struct zone *zone; 6263 6264 for_each_online_pgdat(pgdat) 6265 pgdat->min_unmapped_pages = 0; 6266 6267 for_each_zone(zone) 6268 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6269 sysctl_min_unmapped_ratio) / 100; 6270 } 6271 6272 6273 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6274 void *buffer, size_t *length, loff_t *ppos) 6275 { 6276 int rc; 6277 6278 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6279 if (rc) 6280 return rc; 6281 6282 setup_min_unmapped_ratio(); 6283 6284 return 0; 6285 } 6286 6287 static void setup_min_slab_ratio(void) 6288 { 6289 pg_data_t *pgdat; 6290 struct zone *zone; 6291 6292 for_each_online_pgdat(pgdat) 6293 pgdat->min_slab_pages = 0; 6294 6295 for_each_zone(zone) 6296 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6297 sysctl_min_slab_ratio) / 100; 6298 } 6299 6300 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6301 void *buffer, size_t *length, loff_t *ppos) 6302 { 6303 int rc; 6304 6305 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6306 if (rc) 6307 return rc; 6308 6309 setup_min_slab_ratio(); 6310 6311 return 0; 6312 } 6313 #endif 6314 6315 /* 6316 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6317 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6318 * whenever sysctl_lowmem_reserve_ratio changes. 6319 * 6320 * The reserve ratio obviously has absolutely no relation with the 6321 * minimum watermarks. The lowmem reserve ratio can only make sense 6322 * if in function of the boot time zone sizes. 6323 */ 6324 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6325 int write, void *buffer, size_t *length, loff_t *ppos) 6326 { 6327 int i; 6328 6329 proc_dointvec_minmax(table, write, buffer, length, ppos); 6330 6331 for (i = 0; i < MAX_NR_ZONES; i++) { 6332 if (sysctl_lowmem_reserve_ratio[i] < 1) 6333 sysctl_lowmem_reserve_ratio[i] = 0; 6334 } 6335 6336 setup_per_zone_lowmem_reserve(); 6337 return 0; 6338 } 6339 6340 /* 6341 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6342 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6343 * pagelist can have before it gets flushed back to buddy allocator. 6344 */ 6345 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6346 int write, void *buffer, size_t *length, loff_t *ppos) 6347 { 6348 struct zone *zone; 6349 int old_percpu_pagelist_high_fraction; 6350 int ret; 6351 6352 mutex_lock(&pcp_batch_high_lock); 6353 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6354 6355 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6356 if (!write || ret < 0) 6357 goto out; 6358 6359 /* Sanity checking to avoid pcp imbalance */ 6360 if (percpu_pagelist_high_fraction && 6361 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6362 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6363 ret = -EINVAL; 6364 goto out; 6365 } 6366 6367 /* No change? */ 6368 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6369 goto out; 6370 6371 for_each_populated_zone(zone) 6372 zone_set_pageset_high_and_batch(zone, 0); 6373 out: 6374 mutex_unlock(&pcp_batch_high_lock); 6375 return ret; 6376 } 6377 6378 static const struct ctl_table page_alloc_sysctl_table[] = { 6379 { 6380 .procname = "min_free_kbytes", 6381 .data = &min_free_kbytes, 6382 .maxlen = sizeof(min_free_kbytes), 6383 .mode = 0644, 6384 .proc_handler = min_free_kbytes_sysctl_handler, 6385 .extra1 = SYSCTL_ZERO, 6386 }, 6387 { 6388 .procname = "watermark_boost_factor", 6389 .data = &watermark_boost_factor, 6390 .maxlen = sizeof(watermark_boost_factor), 6391 .mode = 0644, 6392 .proc_handler = proc_dointvec_minmax, 6393 .extra1 = SYSCTL_ZERO, 6394 }, 6395 { 6396 .procname = "watermark_scale_factor", 6397 .data = &watermark_scale_factor, 6398 .maxlen = sizeof(watermark_scale_factor), 6399 .mode = 0644, 6400 .proc_handler = watermark_scale_factor_sysctl_handler, 6401 .extra1 = SYSCTL_ONE, 6402 .extra2 = SYSCTL_THREE_THOUSAND, 6403 }, 6404 { 6405 .procname = "defrag_mode", 6406 .data = &defrag_mode, 6407 .maxlen = sizeof(defrag_mode), 6408 .mode = 0644, 6409 .proc_handler = proc_dointvec_minmax, 6410 .extra1 = SYSCTL_ZERO, 6411 .extra2 = SYSCTL_ONE, 6412 }, 6413 { 6414 .procname = "percpu_pagelist_high_fraction", 6415 .data = &percpu_pagelist_high_fraction, 6416 .maxlen = sizeof(percpu_pagelist_high_fraction), 6417 .mode = 0644, 6418 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6419 .extra1 = SYSCTL_ZERO, 6420 }, 6421 { 6422 .procname = "lowmem_reserve_ratio", 6423 .data = &sysctl_lowmem_reserve_ratio, 6424 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6425 .mode = 0644, 6426 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6427 }, 6428 #ifdef CONFIG_NUMA 6429 { 6430 .procname = "numa_zonelist_order", 6431 .data = &numa_zonelist_order, 6432 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6433 .mode = 0644, 6434 .proc_handler = numa_zonelist_order_handler, 6435 }, 6436 { 6437 .procname = "min_unmapped_ratio", 6438 .data = &sysctl_min_unmapped_ratio, 6439 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6440 .mode = 0644, 6441 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6442 .extra1 = SYSCTL_ZERO, 6443 .extra2 = SYSCTL_ONE_HUNDRED, 6444 }, 6445 { 6446 .procname = "min_slab_ratio", 6447 .data = &sysctl_min_slab_ratio, 6448 .maxlen = sizeof(sysctl_min_slab_ratio), 6449 .mode = 0644, 6450 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6451 .extra1 = SYSCTL_ZERO, 6452 .extra2 = SYSCTL_ONE_HUNDRED, 6453 }, 6454 #endif 6455 }; 6456 6457 void __init page_alloc_sysctl_init(void) 6458 { 6459 register_sysctl_init("vm", page_alloc_sysctl_table); 6460 } 6461 6462 #ifdef CONFIG_CONTIG_ALLOC 6463 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6464 static void alloc_contig_dump_pages(struct list_head *page_list) 6465 { 6466 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6467 6468 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6469 struct page *page; 6470 6471 dump_stack(); 6472 list_for_each_entry(page, page_list, lru) 6473 dump_page(page, "migration failure"); 6474 } 6475 } 6476 6477 /* 6478 * [start, end) must belong to a single zone. 6479 * @migratetype: using migratetype to filter the type of migration in 6480 * trace_mm_alloc_contig_migrate_range_info. 6481 */ 6482 static int __alloc_contig_migrate_range(struct compact_control *cc, 6483 unsigned long start, unsigned long end, int migratetype) 6484 { 6485 /* This function is based on compact_zone() from compaction.c. */ 6486 unsigned int nr_reclaimed; 6487 unsigned long pfn = start; 6488 unsigned int tries = 0; 6489 int ret = 0; 6490 struct migration_target_control mtc = { 6491 .nid = zone_to_nid(cc->zone), 6492 .gfp_mask = cc->gfp_mask, 6493 .reason = MR_CONTIG_RANGE, 6494 }; 6495 struct page *page; 6496 unsigned long total_mapped = 0; 6497 unsigned long total_migrated = 0; 6498 unsigned long total_reclaimed = 0; 6499 6500 lru_cache_disable(); 6501 6502 while (pfn < end || !list_empty(&cc->migratepages)) { 6503 if (fatal_signal_pending(current)) { 6504 ret = -EINTR; 6505 break; 6506 } 6507 6508 if (list_empty(&cc->migratepages)) { 6509 cc->nr_migratepages = 0; 6510 ret = isolate_migratepages_range(cc, pfn, end); 6511 if (ret && ret != -EAGAIN) 6512 break; 6513 pfn = cc->migrate_pfn; 6514 tries = 0; 6515 } else if (++tries == 5) { 6516 ret = -EBUSY; 6517 break; 6518 } 6519 6520 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6521 &cc->migratepages); 6522 cc->nr_migratepages -= nr_reclaimed; 6523 6524 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6525 total_reclaimed += nr_reclaimed; 6526 list_for_each_entry(page, &cc->migratepages, lru) { 6527 struct folio *folio = page_folio(page); 6528 6529 total_mapped += folio_mapped(folio) * 6530 folio_nr_pages(folio); 6531 } 6532 } 6533 6534 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6535 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6536 6537 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6538 total_migrated += cc->nr_migratepages; 6539 6540 /* 6541 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6542 * to retry again over this error, so do the same here. 6543 */ 6544 if (ret == -ENOMEM) 6545 break; 6546 } 6547 6548 lru_cache_enable(); 6549 if (ret < 0) { 6550 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6551 alloc_contig_dump_pages(&cc->migratepages); 6552 putback_movable_pages(&cc->migratepages); 6553 } 6554 6555 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6556 total_migrated, 6557 total_reclaimed, 6558 total_mapped); 6559 return (ret < 0) ? ret : 0; 6560 } 6561 6562 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6563 { 6564 int order; 6565 6566 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6567 struct page *page, *next; 6568 int nr_pages = 1 << order; 6569 6570 list_for_each_entry_safe(page, next, &list[order], lru) { 6571 int i; 6572 6573 post_alloc_hook(page, order, gfp_mask); 6574 set_page_refcounted(page); 6575 if (!order) 6576 continue; 6577 6578 split_page(page, order); 6579 6580 /* Add all subpages to the order-0 head, in sequence. */ 6581 list_del(&page->lru); 6582 for (i = 0; i < nr_pages; i++) 6583 list_add_tail(&page[i].lru, &list[0]); 6584 } 6585 } 6586 } 6587 6588 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6589 { 6590 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6591 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6592 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6593 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6594 6595 /* 6596 * We are given the range to allocate; node, mobility and placement 6597 * hints are irrelevant at this point. We'll simply ignore them. 6598 */ 6599 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6600 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6601 6602 /* 6603 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6604 * selected action flags. 6605 */ 6606 if (gfp_mask & ~(reclaim_mask | action_mask)) 6607 return -EINVAL; 6608 6609 /* 6610 * Flags to control page compaction/migration/reclaim, to free up our 6611 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6612 * for them. 6613 * 6614 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6615 * to not degrade callers. 6616 */ 6617 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6618 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6619 return 0; 6620 } 6621 6622 /** 6623 * alloc_contig_range() -- tries to allocate given range of pages 6624 * @start: start PFN to allocate 6625 * @end: one-past-the-last PFN to allocate 6626 * @migratetype: migratetype of the underlying pageblocks (either 6627 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6628 * in range must have the same migratetype and it must 6629 * be either of the two. 6630 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6631 * action and reclaim modifiers are supported. Reclaim modifiers 6632 * control allocation behavior during compaction/migration/reclaim. 6633 * 6634 * The PFN range does not have to be pageblock aligned. The PFN range must 6635 * belong to a single zone. 6636 * 6637 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6638 * pageblocks in the range. Once isolated, the pageblocks should not 6639 * be modified by others. 6640 * 6641 * Return: zero on success or negative error code. On success all 6642 * pages which PFN is in [start, end) are allocated for the caller and 6643 * need to be freed with free_contig_range(). 6644 */ 6645 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6646 unsigned migratetype, gfp_t gfp_mask) 6647 { 6648 unsigned long outer_start, outer_end; 6649 int ret = 0; 6650 6651 struct compact_control cc = { 6652 .nr_migratepages = 0, 6653 .order = -1, 6654 .zone = page_zone(pfn_to_page(start)), 6655 .mode = MIGRATE_SYNC, 6656 .ignore_skip_hint = true, 6657 .no_set_skip_hint = true, 6658 .alloc_contig = true, 6659 }; 6660 INIT_LIST_HEAD(&cc.migratepages); 6661 6662 gfp_mask = current_gfp_context(gfp_mask); 6663 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6664 return -EINVAL; 6665 6666 /* 6667 * What we do here is we mark all pageblocks in range as 6668 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6669 * have different sizes, and due to the way page allocator 6670 * work, start_isolate_page_range() has special handlings for this. 6671 * 6672 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6673 * migrate the pages from an unaligned range (ie. pages that 6674 * we are interested in). This will put all the pages in 6675 * range back to page allocator as MIGRATE_ISOLATE. 6676 * 6677 * When this is done, we take the pages in range from page 6678 * allocator removing them from the buddy system. This way 6679 * page allocator will never consider using them. 6680 * 6681 * This lets us mark the pageblocks back as 6682 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6683 * aligned range but not in the unaligned, original range are 6684 * put back to page allocator so that buddy can use them. 6685 */ 6686 6687 ret = start_isolate_page_range(start, end, migratetype, 0); 6688 if (ret) 6689 goto done; 6690 6691 drain_all_pages(cc.zone); 6692 6693 /* 6694 * In case of -EBUSY, we'd like to know which page causes problem. 6695 * So, just fall through. test_pages_isolated() has a tracepoint 6696 * which will report the busy page. 6697 * 6698 * It is possible that busy pages could become available before 6699 * the call to test_pages_isolated, and the range will actually be 6700 * allocated. So, if we fall through be sure to clear ret so that 6701 * -EBUSY is not accidentally used or returned to caller. 6702 */ 6703 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6704 if (ret && ret != -EBUSY) 6705 goto done; 6706 6707 /* 6708 * When in-use hugetlb pages are migrated, they may simply be released 6709 * back into the free hugepage pool instead of being returned to the 6710 * buddy system. After the migration of in-use huge pages is completed, 6711 * we will invoke replace_free_hugepage_folios() to ensure that these 6712 * hugepages are properly released to the buddy system. 6713 */ 6714 ret = replace_free_hugepage_folios(start, end); 6715 if (ret) 6716 goto done; 6717 6718 /* 6719 * Pages from [start, end) are within a pageblock_nr_pages 6720 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6721 * more, all pages in [start, end) are free in page allocator. 6722 * What we are going to do is to allocate all pages from 6723 * [start, end) (that is remove them from page allocator). 6724 * 6725 * The only problem is that pages at the beginning and at the 6726 * end of interesting range may be not aligned with pages that 6727 * page allocator holds, ie. they can be part of higher order 6728 * pages. Because of this, we reserve the bigger range and 6729 * once this is done free the pages we are not interested in. 6730 * 6731 * We don't have to hold zone->lock here because the pages are 6732 * isolated thus they won't get removed from buddy. 6733 */ 6734 outer_start = find_large_buddy(start); 6735 6736 /* Make sure the range is really isolated. */ 6737 if (test_pages_isolated(outer_start, end, 0)) { 6738 ret = -EBUSY; 6739 goto done; 6740 } 6741 6742 /* Grab isolated pages from freelists. */ 6743 outer_end = isolate_freepages_range(&cc, outer_start, end); 6744 if (!outer_end) { 6745 ret = -EBUSY; 6746 goto done; 6747 } 6748 6749 if (!(gfp_mask & __GFP_COMP)) { 6750 split_free_pages(cc.freepages, gfp_mask); 6751 6752 /* Free head and tail (if any) */ 6753 if (start != outer_start) 6754 free_contig_range(outer_start, start - outer_start); 6755 if (end != outer_end) 6756 free_contig_range(end, outer_end - end); 6757 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6758 struct page *head = pfn_to_page(start); 6759 int order = ilog2(end - start); 6760 6761 check_new_pages(head, order); 6762 prep_new_page(head, order, gfp_mask, 0); 6763 set_page_refcounted(head); 6764 } else { 6765 ret = -EINVAL; 6766 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6767 start, end, outer_start, outer_end); 6768 } 6769 done: 6770 undo_isolate_page_range(start, end, migratetype); 6771 return ret; 6772 } 6773 EXPORT_SYMBOL(alloc_contig_range_noprof); 6774 6775 static int __alloc_contig_pages(unsigned long start_pfn, 6776 unsigned long nr_pages, gfp_t gfp_mask) 6777 { 6778 unsigned long end_pfn = start_pfn + nr_pages; 6779 6780 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6781 gfp_mask); 6782 } 6783 6784 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6785 unsigned long nr_pages) 6786 { 6787 unsigned long i, end_pfn = start_pfn + nr_pages; 6788 struct page *page; 6789 6790 for (i = start_pfn; i < end_pfn; i++) { 6791 page = pfn_to_online_page(i); 6792 if (!page) 6793 return false; 6794 6795 if (page_zone(page) != z) 6796 return false; 6797 6798 if (PageReserved(page)) 6799 return false; 6800 6801 if (PageHuge(page)) 6802 return false; 6803 } 6804 return true; 6805 } 6806 6807 static bool zone_spans_last_pfn(const struct zone *zone, 6808 unsigned long start_pfn, unsigned long nr_pages) 6809 { 6810 unsigned long last_pfn = start_pfn + nr_pages - 1; 6811 6812 return zone_spans_pfn(zone, last_pfn); 6813 } 6814 6815 /** 6816 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6817 * @nr_pages: Number of contiguous pages to allocate 6818 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 6819 * action and reclaim modifiers are supported. Reclaim modifiers 6820 * control allocation behavior during compaction/migration/reclaim. 6821 * @nid: Target node 6822 * @nodemask: Mask for other possible nodes 6823 * 6824 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6825 * on an applicable zonelist to find a contiguous pfn range which can then be 6826 * tried for allocation with alloc_contig_range(). This routine is intended 6827 * for allocation requests which can not be fulfilled with the buddy allocator. 6828 * 6829 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6830 * power of two, then allocated range is also guaranteed to be aligned to same 6831 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6832 * 6833 * Allocated pages can be freed with free_contig_range() or by manually calling 6834 * __free_page() on each allocated page. 6835 * 6836 * Return: pointer to contiguous pages on success, or NULL if not successful. 6837 */ 6838 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6839 int nid, nodemask_t *nodemask) 6840 { 6841 unsigned long ret, pfn, flags; 6842 struct zonelist *zonelist; 6843 struct zone *zone; 6844 struct zoneref *z; 6845 6846 zonelist = node_zonelist(nid, gfp_mask); 6847 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6848 gfp_zone(gfp_mask), nodemask) { 6849 spin_lock_irqsave(&zone->lock, flags); 6850 6851 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6852 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6853 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6854 /* 6855 * We release the zone lock here because 6856 * alloc_contig_range() will also lock the zone 6857 * at some point. If there's an allocation 6858 * spinning on this lock, it may win the race 6859 * and cause alloc_contig_range() to fail... 6860 */ 6861 spin_unlock_irqrestore(&zone->lock, flags); 6862 ret = __alloc_contig_pages(pfn, nr_pages, 6863 gfp_mask); 6864 if (!ret) 6865 return pfn_to_page(pfn); 6866 spin_lock_irqsave(&zone->lock, flags); 6867 } 6868 pfn += nr_pages; 6869 } 6870 spin_unlock_irqrestore(&zone->lock, flags); 6871 } 6872 return NULL; 6873 } 6874 #endif /* CONFIG_CONTIG_ALLOC */ 6875 6876 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6877 { 6878 unsigned long count = 0; 6879 struct folio *folio = pfn_folio(pfn); 6880 6881 if (folio_test_large(folio)) { 6882 int expected = folio_nr_pages(folio); 6883 6884 if (nr_pages == expected) 6885 folio_put(folio); 6886 else 6887 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6888 pfn, nr_pages, expected); 6889 return; 6890 } 6891 6892 for (; nr_pages--; pfn++) { 6893 struct page *page = pfn_to_page(pfn); 6894 6895 count += page_count(page) != 1; 6896 __free_page(page); 6897 } 6898 WARN(count != 0, "%lu pages are still in use!\n", count); 6899 } 6900 EXPORT_SYMBOL(free_contig_range); 6901 6902 /* 6903 * Effectively disable pcplists for the zone by setting the high limit to 0 6904 * and draining all cpus. A concurrent page freeing on another CPU that's about 6905 * to put the page on pcplist will either finish before the drain and the page 6906 * will be drained, or observe the new high limit and skip the pcplist. 6907 * 6908 * Must be paired with a call to zone_pcp_enable(). 6909 */ 6910 void zone_pcp_disable(struct zone *zone) 6911 { 6912 mutex_lock(&pcp_batch_high_lock); 6913 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6914 __drain_all_pages(zone, true); 6915 } 6916 6917 void zone_pcp_enable(struct zone *zone) 6918 { 6919 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6920 zone->pageset_high_max, zone->pageset_batch); 6921 mutex_unlock(&pcp_batch_high_lock); 6922 } 6923 6924 void zone_pcp_reset(struct zone *zone) 6925 { 6926 int cpu; 6927 struct per_cpu_zonestat *pzstats; 6928 6929 if (zone->per_cpu_pageset != &boot_pageset) { 6930 for_each_online_cpu(cpu) { 6931 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6932 drain_zonestat(zone, pzstats); 6933 } 6934 free_percpu(zone->per_cpu_pageset); 6935 zone->per_cpu_pageset = &boot_pageset; 6936 if (zone->per_cpu_zonestats != &boot_zonestats) { 6937 free_percpu(zone->per_cpu_zonestats); 6938 zone->per_cpu_zonestats = &boot_zonestats; 6939 } 6940 } 6941 } 6942 6943 #ifdef CONFIG_MEMORY_HOTREMOVE 6944 /* 6945 * All pages in the range must be in a single zone, must not contain holes, 6946 * must span full sections, and must be isolated before calling this function. 6947 * 6948 * Returns the number of managed (non-PageOffline()) pages in the range: the 6949 * number of pages for which memory offlining code must adjust managed page 6950 * counters using adjust_managed_page_count(). 6951 */ 6952 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6953 unsigned long end_pfn) 6954 { 6955 unsigned long already_offline = 0, flags; 6956 unsigned long pfn = start_pfn; 6957 struct page *page; 6958 struct zone *zone; 6959 unsigned int order; 6960 6961 offline_mem_sections(pfn, end_pfn); 6962 zone = page_zone(pfn_to_page(pfn)); 6963 spin_lock_irqsave(&zone->lock, flags); 6964 while (pfn < end_pfn) { 6965 page = pfn_to_page(pfn); 6966 /* 6967 * The HWPoisoned page may be not in buddy system, and 6968 * page_count() is not 0. 6969 */ 6970 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6971 pfn++; 6972 continue; 6973 } 6974 /* 6975 * At this point all remaining PageOffline() pages have a 6976 * reference count of 0 and can simply be skipped. 6977 */ 6978 if (PageOffline(page)) { 6979 BUG_ON(page_count(page)); 6980 BUG_ON(PageBuddy(page)); 6981 already_offline++; 6982 pfn++; 6983 continue; 6984 } 6985 6986 BUG_ON(page_count(page)); 6987 BUG_ON(!PageBuddy(page)); 6988 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6989 order = buddy_order(page); 6990 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6991 pfn += (1 << order); 6992 } 6993 spin_unlock_irqrestore(&zone->lock, flags); 6994 6995 return end_pfn - start_pfn - already_offline; 6996 } 6997 #endif 6998 6999 /* 7000 * This function returns a stable result only if called under zone lock. 7001 */ 7002 bool is_free_buddy_page(const struct page *page) 7003 { 7004 unsigned long pfn = page_to_pfn(page); 7005 unsigned int order; 7006 7007 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7008 const struct page *head = page - (pfn & ((1 << order) - 1)); 7009 7010 if (PageBuddy(head) && 7011 buddy_order_unsafe(head) >= order) 7012 break; 7013 } 7014 7015 return order <= MAX_PAGE_ORDER; 7016 } 7017 EXPORT_SYMBOL(is_free_buddy_page); 7018 7019 #ifdef CONFIG_MEMORY_FAILURE 7020 static inline void add_to_free_list(struct page *page, struct zone *zone, 7021 unsigned int order, int migratetype, 7022 bool tail) 7023 { 7024 __add_to_free_list(page, zone, order, migratetype, tail); 7025 account_freepages(zone, 1 << order, migratetype); 7026 } 7027 7028 /* 7029 * Break down a higher-order page in sub-pages, and keep our target out of 7030 * buddy allocator. 7031 */ 7032 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7033 struct page *target, int low, int high, 7034 int migratetype) 7035 { 7036 unsigned long size = 1 << high; 7037 struct page *current_buddy; 7038 7039 while (high > low) { 7040 high--; 7041 size >>= 1; 7042 7043 if (target >= &page[size]) { 7044 current_buddy = page; 7045 page = page + size; 7046 } else { 7047 current_buddy = page + size; 7048 } 7049 7050 if (set_page_guard(zone, current_buddy, high)) 7051 continue; 7052 7053 add_to_free_list(current_buddy, zone, high, migratetype, false); 7054 set_buddy_order(current_buddy, high); 7055 } 7056 } 7057 7058 /* 7059 * Take a page that will be marked as poisoned off the buddy allocator. 7060 */ 7061 bool take_page_off_buddy(struct page *page) 7062 { 7063 struct zone *zone = page_zone(page); 7064 unsigned long pfn = page_to_pfn(page); 7065 unsigned long flags; 7066 unsigned int order; 7067 bool ret = false; 7068 7069 spin_lock_irqsave(&zone->lock, flags); 7070 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7071 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7072 int page_order = buddy_order(page_head); 7073 7074 if (PageBuddy(page_head) && page_order >= order) { 7075 unsigned long pfn_head = page_to_pfn(page_head); 7076 int migratetype = get_pfnblock_migratetype(page_head, 7077 pfn_head); 7078 7079 del_page_from_free_list(page_head, zone, page_order, 7080 migratetype); 7081 break_down_buddy_pages(zone, page_head, page, 0, 7082 page_order, migratetype); 7083 SetPageHWPoisonTakenOff(page); 7084 ret = true; 7085 break; 7086 } 7087 if (page_count(page_head) > 0) 7088 break; 7089 } 7090 spin_unlock_irqrestore(&zone->lock, flags); 7091 return ret; 7092 } 7093 7094 /* 7095 * Cancel takeoff done by take_page_off_buddy(). 7096 */ 7097 bool put_page_back_buddy(struct page *page) 7098 { 7099 struct zone *zone = page_zone(page); 7100 unsigned long flags; 7101 bool ret = false; 7102 7103 spin_lock_irqsave(&zone->lock, flags); 7104 if (put_page_testzero(page)) { 7105 unsigned long pfn = page_to_pfn(page); 7106 int migratetype = get_pfnblock_migratetype(page, pfn); 7107 7108 ClearPageHWPoisonTakenOff(page); 7109 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7110 if (TestClearPageHWPoison(page)) { 7111 ret = true; 7112 } 7113 } 7114 spin_unlock_irqrestore(&zone->lock, flags); 7115 7116 return ret; 7117 } 7118 #endif 7119 7120 #ifdef CONFIG_ZONE_DMA 7121 bool has_managed_dma(void) 7122 { 7123 struct pglist_data *pgdat; 7124 7125 for_each_online_pgdat(pgdat) { 7126 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7127 7128 if (managed_zone(zone)) 7129 return true; 7130 } 7131 return false; 7132 } 7133 #endif /* CONFIG_ZONE_DMA */ 7134 7135 #ifdef CONFIG_UNACCEPTED_MEMORY 7136 7137 /* Counts number of zones with unaccepted pages. */ 7138 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 7139 7140 static bool lazy_accept = true; 7141 7142 static int __init accept_memory_parse(char *p) 7143 { 7144 if (!strcmp(p, "lazy")) { 7145 lazy_accept = true; 7146 return 0; 7147 } else if (!strcmp(p, "eager")) { 7148 lazy_accept = false; 7149 return 0; 7150 } else { 7151 return -EINVAL; 7152 } 7153 } 7154 early_param("accept_memory", accept_memory_parse); 7155 7156 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7157 { 7158 phys_addr_t start = page_to_phys(page); 7159 7160 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7161 } 7162 7163 static void __accept_page(struct zone *zone, unsigned long *flags, 7164 struct page *page) 7165 { 7166 bool last; 7167 7168 list_del(&page->lru); 7169 last = list_empty(&zone->unaccepted_pages); 7170 7171 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7172 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7173 __ClearPageUnaccepted(page); 7174 spin_unlock_irqrestore(&zone->lock, *flags); 7175 7176 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7177 7178 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7179 7180 if (last) 7181 static_branch_dec(&zones_with_unaccepted_pages); 7182 } 7183 7184 void accept_page(struct page *page) 7185 { 7186 struct zone *zone = page_zone(page); 7187 unsigned long flags; 7188 7189 spin_lock_irqsave(&zone->lock, flags); 7190 if (!PageUnaccepted(page)) { 7191 spin_unlock_irqrestore(&zone->lock, flags); 7192 return; 7193 } 7194 7195 /* Unlocks zone->lock */ 7196 __accept_page(zone, &flags, page); 7197 } 7198 7199 static bool try_to_accept_memory_one(struct zone *zone) 7200 { 7201 unsigned long flags; 7202 struct page *page; 7203 7204 spin_lock_irqsave(&zone->lock, flags); 7205 page = list_first_entry_or_null(&zone->unaccepted_pages, 7206 struct page, lru); 7207 if (!page) { 7208 spin_unlock_irqrestore(&zone->lock, flags); 7209 return false; 7210 } 7211 7212 /* Unlocks zone->lock */ 7213 __accept_page(zone, &flags, page); 7214 7215 return true; 7216 } 7217 7218 static inline bool has_unaccepted_memory(void) 7219 { 7220 return static_branch_unlikely(&zones_with_unaccepted_pages); 7221 } 7222 7223 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7224 { 7225 long to_accept, wmark; 7226 bool ret = false; 7227 7228 if (!has_unaccepted_memory()) 7229 return false; 7230 7231 if (list_empty(&zone->unaccepted_pages)) 7232 return false; 7233 7234 wmark = promo_wmark_pages(zone); 7235 7236 /* 7237 * Watermarks have not been initialized yet. 7238 * 7239 * Accepting one MAX_ORDER page to ensure progress. 7240 */ 7241 if (!wmark) 7242 return try_to_accept_memory_one(zone); 7243 7244 /* How much to accept to get to promo watermark? */ 7245 to_accept = wmark - 7246 (zone_page_state(zone, NR_FREE_PAGES) - 7247 __zone_watermark_unusable_free(zone, order, 0) - 7248 zone_page_state(zone, NR_UNACCEPTED)); 7249 7250 while (to_accept > 0) { 7251 if (!try_to_accept_memory_one(zone)) 7252 break; 7253 ret = true; 7254 to_accept -= MAX_ORDER_NR_PAGES; 7255 } 7256 7257 return ret; 7258 } 7259 7260 static bool __free_unaccepted(struct page *page) 7261 { 7262 struct zone *zone = page_zone(page); 7263 unsigned long flags; 7264 bool first = false; 7265 7266 if (!lazy_accept) 7267 return false; 7268 7269 spin_lock_irqsave(&zone->lock, flags); 7270 first = list_empty(&zone->unaccepted_pages); 7271 list_add_tail(&page->lru, &zone->unaccepted_pages); 7272 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7273 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7274 __SetPageUnaccepted(page); 7275 spin_unlock_irqrestore(&zone->lock, flags); 7276 7277 if (first) 7278 static_branch_inc(&zones_with_unaccepted_pages); 7279 7280 return true; 7281 } 7282 7283 #else 7284 7285 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7286 { 7287 return false; 7288 } 7289 7290 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7291 { 7292 return false; 7293 } 7294 7295 static bool __free_unaccepted(struct page *page) 7296 { 7297 BUILD_BUG(); 7298 return false; 7299 } 7300 7301 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7302 7303 /** 7304 * try_alloc_pages - opportunistic reentrant allocation from any context 7305 * @nid: node to allocate from 7306 * @order: allocation order size 7307 * 7308 * Allocates pages of a given order from the given node. This is safe to 7309 * call from any context (from atomic, NMI, and also reentrant 7310 * allocator -> tracepoint -> try_alloc_pages_noprof). 7311 * Allocation is best effort and to be expected to fail easily so nobody should 7312 * rely on the success. Failures are not reported via warn_alloc(). 7313 * See always fail conditions below. 7314 * 7315 * Return: allocated page or NULL on failure. 7316 */ 7317 struct page *try_alloc_pages_noprof(int nid, unsigned int order) 7318 { 7319 /* 7320 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7321 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7322 * is not safe in arbitrary context. 7323 * 7324 * These two are the conditions for gfpflags_allow_spinning() being true. 7325 * 7326 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason 7327 * to warn. Also warn would trigger printk() which is unsafe from 7328 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7329 * since the running context is unknown. 7330 * 7331 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7332 * is safe in any context. Also zeroing the page is mandatory for 7333 * BPF use cases. 7334 * 7335 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7336 * specify it here to highlight that try_alloc_pages() 7337 * doesn't want to deplete reserves. 7338 */ 7339 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC 7340 | __GFP_ACCOUNT; 7341 unsigned int alloc_flags = ALLOC_TRYLOCK; 7342 struct alloc_context ac = { }; 7343 struct page *page; 7344 7345 /* 7346 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7347 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7348 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7349 * mark the task as the owner of another rt_spin_lock which will 7350 * confuse PI logic, so return immediately if called form hard IRQ or 7351 * NMI. 7352 * 7353 * Note, irqs_disabled() case is ok. This function can be called 7354 * from raw_spin_lock_irqsave region. 7355 */ 7356 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7357 return NULL; 7358 if (!pcp_allowed_order(order)) 7359 return NULL; 7360 7361 #ifdef CONFIG_UNACCEPTED_MEMORY 7362 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7363 if (has_unaccepted_memory()) 7364 return NULL; 7365 #endif 7366 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7367 if (deferred_pages_enabled()) 7368 return NULL; 7369 7370 if (nid == NUMA_NO_NODE) 7371 nid = numa_node_id(); 7372 7373 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7374 &alloc_gfp, &alloc_flags); 7375 7376 /* 7377 * Best effort allocation from percpu free list. 7378 * If it's empty attempt to spin_trylock zone->lock. 7379 */ 7380 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7381 7382 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7383 7384 if (page) 7385 set_page_refcounted(page); 7386 7387 if (memcg_kmem_online() && page && 7388 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7389 free_pages_nolock(page, order); 7390 page = NULL; 7391 } 7392 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7393 kmsan_alloc_page(page, order, alloc_gfp); 7394 return page; 7395 } 7396