1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/memory.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/memcontrol.h> 59 #include <linux/prefetch.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 [N_CPU] = { { [0] = 1UL } }, 94 #endif /* NUMA */ 95 }; 96 EXPORT_SYMBOL(node_states); 97 98 unsigned long totalram_pages __read_mostly; 99 unsigned long totalreserve_pages __read_mostly; 100 /* 101 * When calculating the number of globally allowed dirty pages, there 102 * is a certain number of per-zone reserves that should not be 103 * considered dirtyable memory. This is the sum of those reserves 104 * over all existing zones that contribute dirtyable memory. 105 */ 106 unsigned long dirty_balance_reserve __read_mostly; 107 108 int percpu_pagelist_fraction; 109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 110 111 #ifdef CONFIG_PM_SLEEP 112 /* 113 * The following functions are used by the suspend/hibernate code to temporarily 114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 115 * while devices are suspended. To avoid races with the suspend/hibernate code, 116 * they should always be called with pm_mutex held (gfp_allowed_mask also should 117 * only be modified with pm_mutex held, unless the suspend/hibernate code is 118 * guaranteed not to run in parallel with that modification). 119 */ 120 121 static gfp_t saved_gfp_mask; 122 123 void pm_restore_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 if (saved_gfp_mask) { 127 gfp_allowed_mask = saved_gfp_mask; 128 saved_gfp_mask = 0; 129 } 130 } 131 132 void pm_restrict_gfp_mask(void) 133 { 134 WARN_ON(!mutex_is_locked(&pm_mutex)); 135 WARN_ON(saved_gfp_mask); 136 saved_gfp_mask = gfp_allowed_mask; 137 gfp_allowed_mask &= ~GFP_IOFS; 138 } 139 140 bool pm_suspended_storage(void) 141 { 142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 143 return false; 144 return true; 145 } 146 #endif /* CONFIG_PM_SLEEP */ 147 148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 149 int pageblock_order __read_mostly; 150 #endif 151 152 static void __free_pages_ok(struct page *page, unsigned int order); 153 154 /* 155 * results with 256, 32 in the lowmem_reserve sysctl: 156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 157 * 1G machine -> (16M dma, 784M normal, 224M high) 158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 161 * 162 * TBD: should special case ZONE_DMA32 machines here - in those we normally 163 * don't need any ZONE_NORMAL reservation 164 */ 165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 166 #ifdef CONFIG_ZONE_DMA 167 256, 168 #endif 169 #ifdef CONFIG_ZONE_DMA32 170 256, 171 #endif 172 #ifdef CONFIG_HIGHMEM 173 32, 174 #endif 175 32, 176 }; 177 178 EXPORT_SYMBOL(totalram_pages); 179 180 static char * const zone_names[MAX_NR_ZONES] = { 181 #ifdef CONFIG_ZONE_DMA 182 "DMA", 183 #endif 184 #ifdef CONFIG_ZONE_DMA32 185 "DMA32", 186 #endif 187 "Normal", 188 #ifdef CONFIG_HIGHMEM 189 "HighMem", 190 #endif 191 "Movable", 192 }; 193 194 int min_free_kbytes = 1024; 195 196 static unsigned long __meminitdata nr_kernel_pages; 197 static unsigned long __meminitdata nr_all_pages; 198 static unsigned long __meminitdata dma_reserve; 199 200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 203 static unsigned long __initdata required_kernelcore; 204 static unsigned long __initdata required_movablecore; 205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 206 207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 208 int movable_zone; 209 EXPORT_SYMBOL(movable_zone); 210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 211 212 #if MAX_NUMNODES > 1 213 int nr_node_ids __read_mostly = MAX_NUMNODES; 214 int nr_online_nodes __read_mostly = 1; 215 EXPORT_SYMBOL(nr_node_ids); 216 EXPORT_SYMBOL(nr_online_nodes); 217 #endif 218 219 int page_group_by_mobility_disabled __read_mostly; 220 221 static void set_pageblock_migratetype(struct page *page, int migratetype) 222 { 223 224 if (unlikely(page_group_by_mobility_disabled)) 225 migratetype = MIGRATE_UNMOVABLE; 226 227 set_pageblock_flags_group(page, (unsigned long)migratetype, 228 PB_migrate, PB_migrate_end); 229 } 230 231 bool oom_killer_disabled __read_mostly; 232 233 #ifdef CONFIG_DEBUG_VM 234 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 235 { 236 int ret = 0; 237 unsigned seq; 238 unsigned long pfn = page_to_pfn(page); 239 240 do { 241 seq = zone_span_seqbegin(zone); 242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 243 ret = 1; 244 else if (pfn < zone->zone_start_pfn) 245 ret = 1; 246 } while (zone_span_seqretry(zone, seq)); 247 248 return ret; 249 } 250 251 static int page_is_consistent(struct zone *zone, struct page *page) 252 { 253 if (!pfn_valid_within(page_to_pfn(page))) 254 return 0; 255 if (zone != page_zone(page)) 256 return 0; 257 258 return 1; 259 } 260 /* 261 * Temporary debugging check for pages not lying within a given zone. 262 */ 263 static int bad_range(struct zone *zone, struct page *page) 264 { 265 if (page_outside_zone_boundaries(zone, page)) 266 return 1; 267 if (!page_is_consistent(zone, page)) 268 return 1; 269 270 return 0; 271 } 272 #else 273 static inline int bad_range(struct zone *zone, struct page *page) 274 { 275 return 0; 276 } 277 #endif 278 279 static void bad_page(struct page *page) 280 { 281 static unsigned long resume; 282 static unsigned long nr_shown; 283 static unsigned long nr_unshown; 284 285 /* Don't complain about poisoned pages */ 286 if (PageHWPoison(page)) { 287 reset_page_mapcount(page); /* remove PageBuddy */ 288 return; 289 } 290 291 /* 292 * Allow a burst of 60 reports, then keep quiet for that minute; 293 * or allow a steady drip of one report per second. 294 */ 295 if (nr_shown == 60) { 296 if (time_before(jiffies, resume)) { 297 nr_unshown++; 298 goto out; 299 } 300 if (nr_unshown) { 301 printk(KERN_ALERT 302 "BUG: Bad page state: %lu messages suppressed\n", 303 nr_unshown); 304 nr_unshown = 0; 305 } 306 nr_shown = 0; 307 } 308 if (nr_shown++ == 0) 309 resume = jiffies + 60 * HZ; 310 311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 312 current->comm, page_to_pfn(page)); 313 dump_page(page); 314 315 print_modules(); 316 dump_stack(); 317 out: 318 /* Leave bad fields for debug, except PageBuddy could make trouble */ 319 reset_page_mapcount(page); /* remove PageBuddy */ 320 add_taint(TAINT_BAD_PAGE); 321 } 322 323 /* 324 * Higher-order pages are called "compound pages". They are structured thusly: 325 * 326 * The first PAGE_SIZE page is called the "head page". 327 * 328 * The remaining PAGE_SIZE pages are called "tail pages". 329 * 330 * All pages have PG_compound set. All tail pages have their ->first_page 331 * pointing at the head page. 332 * 333 * The first tail page's ->lru.next holds the address of the compound page's 334 * put_page() function. Its ->lru.prev holds the order of allocation. 335 * This usage means that zero-order pages may not be compound. 336 */ 337 338 static void free_compound_page(struct page *page) 339 { 340 __free_pages_ok(page, compound_order(page)); 341 } 342 343 void prep_compound_page(struct page *page, unsigned long order) 344 { 345 int i; 346 int nr_pages = 1 << order; 347 348 set_compound_page_dtor(page, free_compound_page); 349 set_compound_order(page, order); 350 __SetPageHead(page); 351 for (i = 1; i < nr_pages; i++) { 352 struct page *p = page + i; 353 __SetPageTail(p); 354 set_page_count(p, 0); 355 p->first_page = page; 356 } 357 } 358 359 /* update __split_huge_page_refcount if you change this function */ 360 static int destroy_compound_page(struct page *page, unsigned long order) 361 { 362 int i; 363 int nr_pages = 1 << order; 364 int bad = 0; 365 366 if (unlikely(compound_order(page) != order) || 367 unlikely(!PageHead(page))) { 368 bad_page(page); 369 bad++; 370 } 371 372 __ClearPageHead(page); 373 374 for (i = 1; i < nr_pages; i++) { 375 struct page *p = page + i; 376 377 if (unlikely(!PageTail(p) || (p->first_page != page))) { 378 bad_page(page); 379 bad++; 380 } 381 __ClearPageTail(p); 382 } 383 384 return bad; 385 } 386 387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 388 { 389 int i; 390 391 /* 392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 393 * and __GFP_HIGHMEM from hard or soft interrupt context. 394 */ 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 396 for (i = 0; i < (1 << order); i++) 397 clear_highpage(page + i); 398 } 399 400 #ifdef CONFIG_DEBUG_PAGEALLOC 401 unsigned int _debug_guardpage_minorder; 402 403 static int __init debug_guardpage_minorder_setup(char *buf) 404 { 405 unsigned long res; 406 407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 409 return 0; 410 } 411 _debug_guardpage_minorder = res; 412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 413 return 0; 414 } 415 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 416 417 static inline void set_page_guard_flag(struct page *page) 418 { 419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 420 } 421 422 static inline void clear_page_guard_flag(struct page *page) 423 { 424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 425 } 426 #else 427 static inline void set_page_guard_flag(struct page *page) { } 428 static inline void clear_page_guard_flag(struct page *page) { } 429 #endif 430 431 static inline void set_page_order(struct page *page, int order) 432 { 433 set_page_private(page, order); 434 __SetPageBuddy(page); 435 } 436 437 static inline void rmv_page_order(struct page *page) 438 { 439 __ClearPageBuddy(page); 440 set_page_private(page, 0); 441 } 442 443 /* 444 * Locate the struct page for both the matching buddy in our 445 * pair (buddy1) and the combined O(n+1) page they form (page). 446 * 447 * 1) Any buddy B1 will have an order O twin B2 which satisfies 448 * the following equation: 449 * B2 = B1 ^ (1 << O) 450 * For example, if the starting buddy (buddy2) is #8 its order 451 * 1 buddy is #10: 452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 453 * 454 * 2) Any buddy B will have an order O+1 parent P which 455 * satisfies the following equation: 456 * P = B & ~(1 << O) 457 * 458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 459 */ 460 static inline unsigned long 461 __find_buddy_index(unsigned long page_idx, unsigned int order) 462 { 463 return page_idx ^ (1 << order); 464 } 465 466 /* 467 * This function checks whether a page is free && is the buddy 468 * we can do coalesce a page and its buddy if 469 * (a) the buddy is not in a hole && 470 * (b) the buddy is in the buddy system && 471 * (c) a page and its buddy have the same order && 472 * (d) a page and its buddy are in the same zone. 473 * 474 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 476 * 477 * For recording page's order, we use page_private(page). 478 */ 479 static inline int page_is_buddy(struct page *page, struct page *buddy, 480 int order) 481 { 482 if (!pfn_valid_within(page_to_pfn(buddy))) 483 return 0; 484 485 if (page_zone_id(page) != page_zone_id(buddy)) 486 return 0; 487 488 if (page_is_guard(buddy) && page_order(buddy) == order) { 489 VM_BUG_ON(page_count(buddy) != 0); 490 return 1; 491 } 492 493 if (PageBuddy(buddy) && page_order(buddy) == order) { 494 VM_BUG_ON(page_count(buddy) != 0); 495 return 1; 496 } 497 return 0; 498 } 499 500 /* 501 * Freeing function for a buddy system allocator. 502 * 503 * The concept of a buddy system is to maintain direct-mapped table 504 * (containing bit values) for memory blocks of various "orders". 505 * The bottom level table contains the map for the smallest allocatable 506 * units of memory (here, pages), and each level above it describes 507 * pairs of units from the levels below, hence, "buddies". 508 * At a high level, all that happens here is marking the table entry 509 * at the bottom level available, and propagating the changes upward 510 * as necessary, plus some accounting needed to play nicely with other 511 * parts of the VM system. 512 * At each level, we keep a list of pages, which are heads of continuous 513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 514 * order is recorded in page_private(page) field. 515 * So when we are allocating or freeing one, we can derive the state of the 516 * other. That is, if we allocate a small block, and both were 517 * free, the remainder of the region must be split into blocks. 518 * If a block is freed, and its buddy is also free, then this 519 * triggers coalescing into a block of larger size. 520 * 521 * -- wli 522 */ 523 524 static inline void __free_one_page(struct page *page, 525 struct zone *zone, unsigned int order, 526 int migratetype) 527 { 528 unsigned long page_idx; 529 unsigned long combined_idx; 530 unsigned long uninitialized_var(buddy_idx); 531 struct page *buddy; 532 533 if (unlikely(PageCompound(page))) 534 if (unlikely(destroy_compound_page(page, order))) 535 return; 536 537 VM_BUG_ON(migratetype == -1); 538 539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 540 541 VM_BUG_ON(page_idx & ((1 << order) - 1)); 542 VM_BUG_ON(bad_range(zone, page)); 543 544 while (order < MAX_ORDER-1) { 545 buddy_idx = __find_buddy_index(page_idx, order); 546 buddy = page + (buddy_idx - page_idx); 547 if (!page_is_buddy(page, buddy, order)) 548 break; 549 /* 550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 551 * merge with it and move up one order. 552 */ 553 if (page_is_guard(buddy)) { 554 clear_page_guard_flag(buddy); 555 set_page_private(page, 0); 556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 557 } else { 558 list_del(&buddy->lru); 559 zone->free_area[order].nr_free--; 560 rmv_page_order(buddy); 561 } 562 combined_idx = buddy_idx & page_idx; 563 page = page + (combined_idx - page_idx); 564 page_idx = combined_idx; 565 order++; 566 } 567 set_page_order(page, order); 568 569 /* 570 * If this is not the largest possible page, check if the buddy 571 * of the next-highest order is free. If it is, it's possible 572 * that pages are being freed that will coalesce soon. In case, 573 * that is happening, add the free page to the tail of the list 574 * so it's less likely to be used soon and more likely to be merged 575 * as a higher order page 576 */ 577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 578 struct page *higher_page, *higher_buddy; 579 combined_idx = buddy_idx & page_idx; 580 higher_page = page + (combined_idx - page_idx); 581 buddy_idx = __find_buddy_index(combined_idx, order + 1); 582 higher_buddy = page + (buddy_idx - combined_idx); 583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 584 list_add_tail(&page->lru, 585 &zone->free_area[order].free_list[migratetype]); 586 goto out; 587 } 588 } 589 590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 591 out: 592 zone->free_area[order].nr_free++; 593 } 594 595 /* 596 * free_page_mlock() -- clean up attempts to free and mlocked() page. 597 * Page should not be on lru, so no need to fix that up. 598 * free_pages_check() will verify... 599 */ 600 static inline void free_page_mlock(struct page *page) 601 { 602 __dec_zone_page_state(page, NR_MLOCK); 603 __count_vm_event(UNEVICTABLE_MLOCKFREED); 604 } 605 606 static inline int free_pages_check(struct page *page) 607 { 608 if (unlikely(page_mapcount(page) | 609 (page->mapping != NULL) | 610 (atomic_read(&page->_count) != 0) | 611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 612 (mem_cgroup_bad_page_check(page)))) { 613 bad_page(page); 614 return 1; 615 } 616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 618 return 0; 619 } 620 621 /* 622 * Frees a number of pages from the PCP lists 623 * Assumes all pages on list are in same zone, and of same order. 624 * count is the number of pages to free. 625 * 626 * If the zone was previously in an "all pages pinned" state then look to 627 * see if this freeing clears that state. 628 * 629 * And clear the zone's pages_scanned counter, to hold off the "all pages are 630 * pinned" detection logic. 631 */ 632 static void free_pcppages_bulk(struct zone *zone, int count, 633 struct per_cpu_pages *pcp) 634 { 635 int migratetype = 0; 636 int batch_free = 0; 637 int to_free = count; 638 639 spin_lock(&zone->lock); 640 zone->all_unreclaimable = 0; 641 zone->pages_scanned = 0; 642 643 while (to_free) { 644 struct page *page; 645 struct list_head *list; 646 647 /* 648 * Remove pages from lists in a round-robin fashion. A 649 * batch_free count is maintained that is incremented when an 650 * empty list is encountered. This is so more pages are freed 651 * off fuller lists instead of spinning excessively around empty 652 * lists 653 */ 654 do { 655 batch_free++; 656 if (++migratetype == MIGRATE_PCPTYPES) 657 migratetype = 0; 658 list = &pcp->lists[migratetype]; 659 } while (list_empty(list)); 660 661 /* This is the only non-empty list. Free them all. */ 662 if (batch_free == MIGRATE_PCPTYPES) 663 batch_free = to_free; 664 665 do { 666 page = list_entry(list->prev, struct page, lru); 667 /* must delete as __free_one_page list manipulates */ 668 list_del(&page->lru); 669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 670 __free_one_page(page, zone, 0, page_private(page)); 671 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 672 } while (--to_free && --batch_free && !list_empty(list)); 673 } 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 675 spin_unlock(&zone->lock); 676 } 677 678 static void free_one_page(struct zone *zone, struct page *page, int order, 679 int migratetype) 680 { 681 spin_lock(&zone->lock); 682 zone->all_unreclaimable = 0; 683 zone->pages_scanned = 0; 684 685 __free_one_page(page, zone, order, migratetype); 686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 687 spin_unlock(&zone->lock); 688 } 689 690 static bool free_pages_prepare(struct page *page, unsigned int order) 691 { 692 int i; 693 int bad = 0; 694 695 trace_mm_page_free(page, order); 696 kmemcheck_free_shadow(page, order); 697 698 if (PageAnon(page)) 699 page->mapping = NULL; 700 for (i = 0; i < (1 << order); i++) 701 bad += free_pages_check(page + i); 702 if (bad) 703 return false; 704 705 if (!PageHighMem(page)) { 706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 707 debug_check_no_obj_freed(page_address(page), 708 PAGE_SIZE << order); 709 } 710 arch_free_page(page, order); 711 kernel_map_pages(page, 1 << order, 0); 712 713 return true; 714 } 715 716 static void __free_pages_ok(struct page *page, unsigned int order) 717 { 718 unsigned long flags; 719 int wasMlocked = __TestClearPageMlocked(page); 720 721 if (!free_pages_prepare(page, order)) 722 return; 723 724 local_irq_save(flags); 725 if (unlikely(wasMlocked)) 726 free_page_mlock(page); 727 __count_vm_events(PGFREE, 1 << order); 728 free_one_page(page_zone(page), page, order, 729 get_pageblock_migratetype(page)); 730 local_irq_restore(flags); 731 } 732 733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 734 { 735 unsigned int nr_pages = 1 << order; 736 unsigned int loop; 737 738 prefetchw(page); 739 for (loop = 0; loop < nr_pages; loop++) { 740 struct page *p = &page[loop]; 741 742 if (loop + 1 < nr_pages) 743 prefetchw(p + 1); 744 __ClearPageReserved(p); 745 set_page_count(p, 0); 746 } 747 748 set_page_refcounted(page); 749 __free_pages(page, order); 750 } 751 752 753 /* 754 * The order of subdivision here is critical for the IO subsystem. 755 * Please do not alter this order without good reasons and regression 756 * testing. Specifically, as large blocks of memory are subdivided, 757 * the order in which smaller blocks are delivered depends on the order 758 * they're subdivided in this function. This is the primary factor 759 * influencing the order in which pages are delivered to the IO 760 * subsystem according to empirical testing, and this is also justified 761 * by considering the behavior of a buddy system containing a single 762 * large block of memory acted on by a series of small allocations. 763 * This behavior is a critical factor in sglist merging's success. 764 * 765 * -- wli 766 */ 767 static inline void expand(struct zone *zone, struct page *page, 768 int low, int high, struct free_area *area, 769 int migratetype) 770 { 771 unsigned long size = 1 << high; 772 773 while (high > low) { 774 area--; 775 high--; 776 size >>= 1; 777 VM_BUG_ON(bad_range(zone, &page[size])); 778 779 #ifdef CONFIG_DEBUG_PAGEALLOC 780 if (high < debug_guardpage_minorder()) { 781 /* 782 * Mark as guard pages (or page), that will allow to 783 * merge back to allocator when buddy will be freed. 784 * Corresponding page table entries will not be touched, 785 * pages will stay not present in virtual address space 786 */ 787 INIT_LIST_HEAD(&page[size].lru); 788 set_page_guard_flag(&page[size]); 789 set_page_private(&page[size], high); 790 /* Guard pages are not available for any usage */ 791 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); 792 continue; 793 } 794 #endif 795 list_add(&page[size].lru, &area->free_list[migratetype]); 796 area->nr_free++; 797 set_page_order(&page[size], high); 798 } 799 } 800 801 /* 802 * This page is about to be returned from the page allocator 803 */ 804 static inline int check_new_page(struct page *page) 805 { 806 if (unlikely(page_mapcount(page) | 807 (page->mapping != NULL) | 808 (atomic_read(&page->_count) != 0) | 809 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 810 (mem_cgroup_bad_page_check(page)))) { 811 bad_page(page); 812 return 1; 813 } 814 return 0; 815 } 816 817 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 818 { 819 int i; 820 821 for (i = 0; i < (1 << order); i++) { 822 struct page *p = page + i; 823 if (unlikely(check_new_page(p))) 824 return 1; 825 } 826 827 set_page_private(page, 0); 828 set_page_refcounted(page); 829 830 arch_alloc_page(page, order); 831 kernel_map_pages(page, 1 << order, 1); 832 833 if (gfp_flags & __GFP_ZERO) 834 prep_zero_page(page, order, gfp_flags); 835 836 if (order && (gfp_flags & __GFP_COMP)) 837 prep_compound_page(page, order); 838 839 return 0; 840 } 841 842 /* 843 * Go through the free lists for the given migratetype and remove 844 * the smallest available page from the freelists 845 */ 846 static inline 847 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 848 int migratetype) 849 { 850 unsigned int current_order; 851 struct free_area * area; 852 struct page *page; 853 854 /* Find a page of the appropriate size in the preferred list */ 855 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 856 area = &(zone->free_area[current_order]); 857 if (list_empty(&area->free_list[migratetype])) 858 continue; 859 860 page = list_entry(area->free_list[migratetype].next, 861 struct page, lru); 862 list_del(&page->lru); 863 rmv_page_order(page); 864 area->nr_free--; 865 expand(zone, page, order, current_order, area, migratetype); 866 return page; 867 } 868 869 return NULL; 870 } 871 872 873 /* 874 * This array describes the order lists are fallen back to when 875 * the free lists for the desirable migrate type are depleted 876 */ 877 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 878 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 879 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 880 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 881 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 882 }; 883 884 /* 885 * Move the free pages in a range to the free lists of the requested type. 886 * Note that start_page and end_pages are not aligned on a pageblock 887 * boundary. If alignment is required, use move_freepages_block() 888 */ 889 static int move_freepages(struct zone *zone, 890 struct page *start_page, struct page *end_page, 891 int migratetype) 892 { 893 struct page *page; 894 unsigned long order; 895 int pages_moved = 0; 896 897 #ifndef CONFIG_HOLES_IN_ZONE 898 /* 899 * page_zone is not safe to call in this context when 900 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 901 * anyway as we check zone boundaries in move_freepages_block(). 902 * Remove at a later date when no bug reports exist related to 903 * grouping pages by mobility 904 */ 905 BUG_ON(page_zone(start_page) != page_zone(end_page)); 906 #endif 907 908 for (page = start_page; page <= end_page;) { 909 /* Make sure we are not inadvertently changing nodes */ 910 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 911 912 if (!pfn_valid_within(page_to_pfn(page))) { 913 page++; 914 continue; 915 } 916 917 if (!PageBuddy(page)) { 918 page++; 919 continue; 920 } 921 922 order = page_order(page); 923 list_move(&page->lru, 924 &zone->free_area[order].free_list[migratetype]); 925 page += 1 << order; 926 pages_moved += 1 << order; 927 } 928 929 return pages_moved; 930 } 931 932 static int move_freepages_block(struct zone *zone, struct page *page, 933 int migratetype) 934 { 935 unsigned long start_pfn, end_pfn; 936 struct page *start_page, *end_page; 937 938 start_pfn = page_to_pfn(page); 939 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 940 start_page = pfn_to_page(start_pfn); 941 end_page = start_page + pageblock_nr_pages - 1; 942 end_pfn = start_pfn + pageblock_nr_pages - 1; 943 944 /* Do not cross zone boundaries */ 945 if (start_pfn < zone->zone_start_pfn) 946 start_page = page; 947 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 948 return 0; 949 950 return move_freepages(zone, start_page, end_page, migratetype); 951 } 952 953 static void change_pageblock_range(struct page *pageblock_page, 954 int start_order, int migratetype) 955 { 956 int nr_pageblocks = 1 << (start_order - pageblock_order); 957 958 while (nr_pageblocks--) { 959 set_pageblock_migratetype(pageblock_page, migratetype); 960 pageblock_page += pageblock_nr_pages; 961 } 962 } 963 964 /* Remove an element from the buddy allocator from the fallback list */ 965 static inline struct page * 966 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 967 { 968 struct free_area * area; 969 int current_order; 970 struct page *page; 971 int migratetype, i; 972 973 /* Find the largest possible block of pages in the other list */ 974 for (current_order = MAX_ORDER-1; current_order >= order; 975 --current_order) { 976 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 977 migratetype = fallbacks[start_migratetype][i]; 978 979 /* MIGRATE_RESERVE handled later if necessary */ 980 if (migratetype == MIGRATE_RESERVE) 981 continue; 982 983 area = &(zone->free_area[current_order]); 984 if (list_empty(&area->free_list[migratetype])) 985 continue; 986 987 page = list_entry(area->free_list[migratetype].next, 988 struct page, lru); 989 area->nr_free--; 990 991 /* 992 * If breaking a large block of pages, move all free 993 * pages to the preferred allocation list. If falling 994 * back for a reclaimable kernel allocation, be more 995 * aggressive about taking ownership of free pages 996 */ 997 if (unlikely(current_order >= (pageblock_order >> 1)) || 998 start_migratetype == MIGRATE_RECLAIMABLE || 999 page_group_by_mobility_disabled) { 1000 unsigned long pages; 1001 pages = move_freepages_block(zone, page, 1002 start_migratetype); 1003 1004 /* Claim the whole block if over half of it is free */ 1005 if (pages >= (1 << (pageblock_order-1)) || 1006 page_group_by_mobility_disabled) 1007 set_pageblock_migratetype(page, 1008 start_migratetype); 1009 1010 migratetype = start_migratetype; 1011 } 1012 1013 /* Remove the page from the freelists */ 1014 list_del(&page->lru); 1015 rmv_page_order(page); 1016 1017 /* Take ownership for orders >= pageblock_order */ 1018 if (current_order >= pageblock_order) 1019 change_pageblock_range(page, current_order, 1020 start_migratetype); 1021 1022 expand(zone, page, order, current_order, area, migratetype); 1023 1024 trace_mm_page_alloc_extfrag(page, order, current_order, 1025 start_migratetype, migratetype); 1026 1027 return page; 1028 } 1029 } 1030 1031 return NULL; 1032 } 1033 1034 /* 1035 * Do the hard work of removing an element from the buddy allocator. 1036 * Call me with the zone->lock already held. 1037 */ 1038 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1039 int migratetype) 1040 { 1041 struct page *page; 1042 1043 retry_reserve: 1044 page = __rmqueue_smallest(zone, order, migratetype); 1045 1046 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1047 page = __rmqueue_fallback(zone, order, migratetype); 1048 1049 /* 1050 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1051 * is used because __rmqueue_smallest is an inline function 1052 * and we want just one call site 1053 */ 1054 if (!page) { 1055 migratetype = MIGRATE_RESERVE; 1056 goto retry_reserve; 1057 } 1058 } 1059 1060 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1061 return page; 1062 } 1063 1064 /* 1065 * Obtain a specified number of elements from the buddy allocator, all under 1066 * a single hold of the lock, for efficiency. Add them to the supplied list. 1067 * Returns the number of new pages which were placed at *list. 1068 */ 1069 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1070 unsigned long count, struct list_head *list, 1071 int migratetype, int cold) 1072 { 1073 int i; 1074 1075 spin_lock(&zone->lock); 1076 for (i = 0; i < count; ++i) { 1077 struct page *page = __rmqueue(zone, order, migratetype); 1078 if (unlikely(page == NULL)) 1079 break; 1080 1081 /* 1082 * Split buddy pages returned by expand() are received here 1083 * in physical page order. The page is added to the callers and 1084 * list and the list head then moves forward. From the callers 1085 * perspective, the linked list is ordered by page number in 1086 * some conditions. This is useful for IO devices that can 1087 * merge IO requests if the physical pages are ordered 1088 * properly. 1089 */ 1090 if (likely(cold == 0)) 1091 list_add(&page->lru, list); 1092 else 1093 list_add_tail(&page->lru, list); 1094 set_page_private(page, migratetype); 1095 list = &page->lru; 1096 } 1097 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1098 spin_unlock(&zone->lock); 1099 return i; 1100 } 1101 1102 #ifdef CONFIG_NUMA 1103 /* 1104 * Called from the vmstat counter updater to drain pagesets of this 1105 * currently executing processor on remote nodes after they have 1106 * expired. 1107 * 1108 * Note that this function must be called with the thread pinned to 1109 * a single processor. 1110 */ 1111 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1112 { 1113 unsigned long flags; 1114 int to_drain; 1115 1116 local_irq_save(flags); 1117 if (pcp->count >= pcp->batch) 1118 to_drain = pcp->batch; 1119 else 1120 to_drain = pcp->count; 1121 free_pcppages_bulk(zone, to_drain, pcp); 1122 pcp->count -= to_drain; 1123 local_irq_restore(flags); 1124 } 1125 #endif 1126 1127 /* 1128 * Drain pages of the indicated processor. 1129 * 1130 * The processor must either be the current processor and the 1131 * thread pinned to the current processor or a processor that 1132 * is not online. 1133 */ 1134 static void drain_pages(unsigned int cpu) 1135 { 1136 unsigned long flags; 1137 struct zone *zone; 1138 1139 for_each_populated_zone(zone) { 1140 struct per_cpu_pageset *pset; 1141 struct per_cpu_pages *pcp; 1142 1143 local_irq_save(flags); 1144 pset = per_cpu_ptr(zone->pageset, cpu); 1145 1146 pcp = &pset->pcp; 1147 if (pcp->count) { 1148 free_pcppages_bulk(zone, pcp->count, pcp); 1149 pcp->count = 0; 1150 } 1151 local_irq_restore(flags); 1152 } 1153 } 1154 1155 /* 1156 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1157 */ 1158 void drain_local_pages(void *arg) 1159 { 1160 drain_pages(smp_processor_id()); 1161 } 1162 1163 /* 1164 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1165 */ 1166 void drain_all_pages(void) 1167 { 1168 on_each_cpu(drain_local_pages, NULL, 1); 1169 } 1170 1171 #ifdef CONFIG_HIBERNATION 1172 1173 void mark_free_pages(struct zone *zone) 1174 { 1175 unsigned long pfn, max_zone_pfn; 1176 unsigned long flags; 1177 int order, t; 1178 struct list_head *curr; 1179 1180 if (!zone->spanned_pages) 1181 return; 1182 1183 spin_lock_irqsave(&zone->lock, flags); 1184 1185 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1186 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1187 if (pfn_valid(pfn)) { 1188 struct page *page = pfn_to_page(pfn); 1189 1190 if (!swsusp_page_is_forbidden(page)) 1191 swsusp_unset_page_free(page); 1192 } 1193 1194 for_each_migratetype_order(order, t) { 1195 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1196 unsigned long i; 1197 1198 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1199 for (i = 0; i < (1UL << order); i++) 1200 swsusp_set_page_free(pfn_to_page(pfn + i)); 1201 } 1202 } 1203 spin_unlock_irqrestore(&zone->lock, flags); 1204 } 1205 #endif /* CONFIG_PM */ 1206 1207 /* 1208 * Free a 0-order page 1209 * cold == 1 ? free a cold page : free a hot page 1210 */ 1211 void free_hot_cold_page(struct page *page, int cold) 1212 { 1213 struct zone *zone = page_zone(page); 1214 struct per_cpu_pages *pcp; 1215 unsigned long flags; 1216 int migratetype; 1217 int wasMlocked = __TestClearPageMlocked(page); 1218 1219 if (!free_pages_prepare(page, 0)) 1220 return; 1221 1222 migratetype = get_pageblock_migratetype(page); 1223 set_page_private(page, migratetype); 1224 local_irq_save(flags); 1225 if (unlikely(wasMlocked)) 1226 free_page_mlock(page); 1227 __count_vm_event(PGFREE); 1228 1229 /* 1230 * We only track unmovable, reclaimable and movable on pcp lists. 1231 * Free ISOLATE pages back to the allocator because they are being 1232 * offlined but treat RESERVE as movable pages so we can get those 1233 * areas back if necessary. Otherwise, we may have to free 1234 * excessively into the page allocator 1235 */ 1236 if (migratetype >= MIGRATE_PCPTYPES) { 1237 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1238 free_one_page(zone, page, 0, migratetype); 1239 goto out; 1240 } 1241 migratetype = MIGRATE_MOVABLE; 1242 } 1243 1244 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1245 if (cold) 1246 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1247 else 1248 list_add(&page->lru, &pcp->lists[migratetype]); 1249 pcp->count++; 1250 if (pcp->count >= pcp->high) { 1251 free_pcppages_bulk(zone, pcp->batch, pcp); 1252 pcp->count -= pcp->batch; 1253 } 1254 1255 out: 1256 local_irq_restore(flags); 1257 } 1258 1259 /* 1260 * Free a list of 0-order pages 1261 */ 1262 void free_hot_cold_page_list(struct list_head *list, int cold) 1263 { 1264 struct page *page, *next; 1265 1266 list_for_each_entry_safe(page, next, list, lru) { 1267 trace_mm_page_free_batched(page, cold); 1268 free_hot_cold_page(page, cold); 1269 } 1270 } 1271 1272 /* 1273 * split_page takes a non-compound higher-order page, and splits it into 1274 * n (1<<order) sub-pages: page[0..n] 1275 * Each sub-page must be freed individually. 1276 * 1277 * Note: this is probably too low level an operation for use in drivers. 1278 * Please consult with lkml before using this in your driver. 1279 */ 1280 void split_page(struct page *page, unsigned int order) 1281 { 1282 int i; 1283 1284 VM_BUG_ON(PageCompound(page)); 1285 VM_BUG_ON(!page_count(page)); 1286 1287 #ifdef CONFIG_KMEMCHECK 1288 /* 1289 * Split shadow pages too, because free(page[0]) would 1290 * otherwise free the whole shadow. 1291 */ 1292 if (kmemcheck_page_is_tracked(page)) 1293 split_page(virt_to_page(page[0].shadow), order); 1294 #endif 1295 1296 for (i = 1; i < (1 << order); i++) 1297 set_page_refcounted(page + i); 1298 } 1299 1300 /* 1301 * Similar to split_page except the page is already free. As this is only 1302 * being used for migration, the migratetype of the block also changes. 1303 * As this is called with interrupts disabled, the caller is responsible 1304 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1305 * are enabled. 1306 * 1307 * Note: this is probably too low level an operation for use in drivers. 1308 * Please consult with lkml before using this in your driver. 1309 */ 1310 int split_free_page(struct page *page) 1311 { 1312 unsigned int order; 1313 unsigned long watermark; 1314 struct zone *zone; 1315 1316 BUG_ON(!PageBuddy(page)); 1317 1318 zone = page_zone(page); 1319 order = page_order(page); 1320 1321 /* Obey watermarks as if the page was being allocated */ 1322 watermark = low_wmark_pages(zone) + (1 << order); 1323 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1324 return 0; 1325 1326 /* Remove page from free list */ 1327 list_del(&page->lru); 1328 zone->free_area[order].nr_free--; 1329 rmv_page_order(page); 1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1331 1332 /* Split into individual pages */ 1333 set_page_refcounted(page); 1334 split_page(page, order); 1335 1336 if (order >= pageblock_order - 1) { 1337 struct page *endpage = page + (1 << order) - 1; 1338 for (; page < endpage; page += pageblock_nr_pages) 1339 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1340 } 1341 1342 return 1 << order; 1343 } 1344 1345 /* 1346 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1347 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1348 * or two. 1349 */ 1350 static inline 1351 struct page *buffered_rmqueue(struct zone *preferred_zone, 1352 struct zone *zone, int order, gfp_t gfp_flags, 1353 int migratetype) 1354 { 1355 unsigned long flags; 1356 struct page *page; 1357 int cold = !!(gfp_flags & __GFP_COLD); 1358 1359 again: 1360 if (likely(order == 0)) { 1361 struct per_cpu_pages *pcp; 1362 struct list_head *list; 1363 1364 local_irq_save(flags); 1365 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1366 list = &pcp->lists[migratetype]; 1367 if (list_empty(list)) { 1368 pcp->count += rmqueue_bulk(zone, 0, 1369 pcp->batch, list, 1370 migratetype, cold); 1371 if (unlikely(list_empty(list))) 1372 goto failed; 1373 } 1374 1375 if (cold) 1376 page = list_entry(list->prev, struct page, lru); 1377 else 1378 page = list_entry(list->next, struct page, lru); 1379 1380 list_del(&page->lru); 1381 pcp->count--; 1382 } else { 1383 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1384 /* 1385 * __GFP_NOFAIL is not to be used in new code. 1386 * 1387 * All __GFP_NOFAIL callers should be fixed so that they 1388 * properly detect and handle allocation failures. 1389 * 1390 * We most definitely don't want callers attempting to 1391 * allocate greater than order-1 page units with 1392 * __GFP_NOFAIL. 1393 */ 1394 WARN_ON_ONCE(order > 1); 1395 } 1396 spin_lock_irqsave(&zone->lock, flags); 1397 page = __rmqueue(zone, order, migratetype); 1398 spin_unlock(&zone->lock); 1399 if (!page) 1400 goto failed; 1401 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1402 } 1403 1404 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1405 zone_statistics(preferred_zone, zone, gfp_flags); 1406 local_irq_restore(flags); 1407 1408 VM_BUG_ON(bad_range(zone, page)); 1409 if (prep_new_page(page, order, gfp_flags)) 1410 goto again; 1411 return page; 1412 1413 failed: 1414 local_irq_restore(flags); 1415 return NULL; 1416 } 1417 1418 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1419 #define ALLOC_WMARK_MIN WMARK_MIN 1420 #define ALLOC_WMARK_LOW WMARK_LOW 1421 #define ALLOC_WMARK_HIGH WMARK_HIGH 1422 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1423 1424 /* Mask to get the watermark bits */ 1425 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1426 1427 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1428 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1429 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1430 1431 #ifdef CONFIG_FAIL_PAGE_ALLOC 1432 1433 static struct { 1434 struct fault_attr attr; 1435 1436 u32 ignore_gfp_highmem; 1437 u32 ignore_gfp_wait; 1438 u32 min_order; 1439 } fail_page_alloc = { 1440 .attr = FAULT_ATTR_INITIALIZER, 1441 .ignore_gfp_wait = 1, 1442 .ignore_gfp_highmem = 1, 1443 .min_order = 1, 1444 }; 1445 1446 static int __init setup_fail_page_alloc(char *str) 1447 { 1448 return setup_fault_attr(&fail_page_alloc.attr, str); 1449 } 1450 __setup("fail_page_alloc=", setup_fail_page_alloc); 1451 1452 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1453 { 1454 if (order < fail_page_alloc.min_order) 1455 return 0; 1456 if (gfp_mask & __GFP_NOFAIL) 1457 return 0; 1458 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1459 return 0; 1460 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1461 return 0; 1462 1463 return should_fail(&fail_page_alloc.attr, 1 << order); 1464 } 1465 1466 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1467 1468 static int __init fail_page_alloc_debugfs(void) 1469 { 1470 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1471 struct dentry *dir; 1472 1473 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1474 &fail_page_alloc.attr); 1475 if (IS_ERR(dir)) 1476 return PTR_ERR(dir); 1477 1478 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1479 &fail_page_alloc.ignore_gfp_wait)) 1480 goto fail; 1481 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1482 &fail_page_alloc.ignore_gfp_highmem)) 1483 goto fail; 1484 if (!debugfs_create_u32("min-order", mode, dir, 1485 &fail_page_alloc.min_order)) 1486 goto fail; 1487 1488 return 0; 1489 fail: 1490 debugfs_remove_recursive(dir); 1491 1492 return -ENOMEM; 1493 } 1494 1495 late_initcall(fail_page_alloc_debugfs); 1496 1497 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1498 1499 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1500 1501 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1502 { 1503 return 0; 1504 } 1505 1506 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1507 1508 /* 1509 * Return true if free pages are above 'mark'. This takes into account the order 1510 * of the allocation. 1511 */ 1512 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1513 int classzone_idx, int alloc_flags, long free_pages) 1514 { 1515 /* free_pages my go negative - that's OK */ 1516 long min = mark; 1517 int o; 1518 1519 free_pages -= (1 << order) - 1; 1520 if (alloc_flags & ALLOC_HIGH) 1521 min -= min / 2; 1522 if (alloc_flags & ALLOC_HARDER) 1523 min -= min / 4; 1524 1525 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1526 return false; 1527 for (o = 0; o < order; o++) { 1528 /* At the next order, this order's pages become unavailable */ 1529 free_pages -= z->free_area[o].nr_free << o; 1530 1531 /* Require fewer higher order pages to be free */ 1532 min >>= 1; 1533 1534 if (free_pages <= min) 1535 return false; 1536 } 1537 return true; 1538 } 1539 1540 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1541 int classzone_idx, int alloc_flags) 1542 { 1543 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1544 zone_page_state(z, NR_FREE_PAGES)); 1545 } 1546 1547 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1548 int classzone_idx, int alloc_flags) 1549 { 1550 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1551 1552 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1553 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1554 1555 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1556 free_pages); 1557 } 1558 1559 #ifdef CONFIG_NUMA 1560 /* 1561 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1562 * skip over zones that are not allowed by the cpuset, or that have 1563 * been recently (in last second) found to be nearly full. See further 1564 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1565 * that have to skip over a lot of full or unallowed zones. 1566 * 1567 * If the zonelist cache is present in the passed in zonelist, then 1568 * returns a pointer to the allowed node mask (either the current 1569 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1570 * 1571 * If the zonelist cache is not available for this zonelist, does 1572 * nothing and returns NULL. 1573 * 1574 * If the fullzones BITMAP in the zonelist cache is stale (more than 1575 * a second since last zap'd) then we zap it out (clear its bits.) 1576 * 1577 * We hold off even calling zlc_setup, until after we've checked the 1578 * first zone in the zonelist, on the theory that most allocations will 1579 * be satisfied from that first zone, so best to examine that zone as 1580 * quickly as we can. 1581 */ 1582 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1583 { 1584 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1585 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1586 1587 zlc = zonelist->zlcache_ptr; 1588 if (!zlc) 1589 return NULL; 1590 1591 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1592 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1593 zlc->last_full_zap = jiffies; 1594 } 1595 1596 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1597 &cpuset_current_mems_allowed : 1598 &node_states[N_HIGH_MEMORY]; 1599 return allowednodes; 1600 } 1601 1602 /* 1603 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1604 * if it is worth looking at further for free memory: 1605 * 1) Check that the zone isn't thought to be full (doesn't have its 1606 * bit set in the zonelist_cache fullzones BITMAP). 1607 * 2) Check that the zones node (obtained from the zonelist_cache 1608 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1609 * Return true (non-zero) if zone is worth looking at further, or 1610 * else return false (zero) if it is not. 1611 * 1612 * This check -ignores- the distinction between various watermarks, 1613 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1614 * found to be full for any variation of these watermarks, it will 1615 * be considered full for up to one second by all requests, unless 1616 * we are so low on memory on all allowed nodes that we are forced 1617 * into the second scan of the zonelist. 1618 * 1619 * In the second scan we ignore this zonelist cache and exactly 1620 * apply the watermarks to all zones, even it is slower to do so. 1621 * We are low on memory in the second scan, and should leave no stone 1622 * unturned looking for a free page. 1623 */ 1624 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1625 nodemask_t *allowednodes) 1626 { 1627 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1628 int i; /* index of *z in zonelist zones */ 1629 int n; /* node that zone *z is on */ 1630 1631 zlc = zonelist->zlcache_ptr; 1632 if (!zlc) 1633 return 1; 1634 1635 i = z - zonelist->_zonerefs; 1636 n = zlc->z_to_n[i]; 1637 1638 /* This zone is worth trying if it is allowed but not full */ 1639 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1640 } 1641 1642 /* 1643 * Given 'z' scanning a zonelist, set the corresponding bit in 1644 * zlc->fullzones, so that subsequent attempts to allocate a page 1645 * from that zone don't waste time re-examining it. 1646 */ 1647 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1648 { 1649 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1650 int i; /* index of *z in zonelist zones */ 1651 1652 zlc = zonelist->zlcache_ptr; 1653 if (!zlc) 1654 return; 1655 1656 i = z - zonelist->_zonerefs; 1657 1658 set_bit(i, zlc->fullzones); 1659 } 1660 1661 /* 1662 * clear all zones full, called after direct reclaim makes progress so that 1663 * a zone that was recently full is not skipped over for up to a second 1664 */ 1665 static void zlc_clear_zones_full(struct zonelist *zonelist) 1666 { 1667 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1668 1669 zlc = zonelist->zlcache_ptr; 1670 if (!zlc) 1671 return; 1672 1673 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1674 } 1675 1676 #else /* CONFIG_NUMA */ 1677 1678 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1679 { 1680 return NULL; 1681 } 1682 1683 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1684 nodemask_t *allowednodes) 1685 { 1686 return 1; 1687 } 1688 1689 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1690 { 1691 } 1692 1693 static void zlc_clear_zones_full(struct zonelist *zonelist) 1694 { 1695 } 1696 #endif /* CONFIG_NUMA */ 1697 1698 /* 1699 * get_page_from_freelist goes through the zonelist trying to allocate 1700 * a page. 1701 */ 1702 static struct page * 1703 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1704 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1705 struct zone *preferred_zone, int migratetype) 1706 { 1707 struct zoneref *z; 1708 struct page *page = NULL; 1709 int classzone_idx; 1710 struct zone *zone; 1711 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1712 int zlc_active = 0; /* set if using zonelist_cache */ 1713 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1714 1715 classzone_idx = zone_idx(preferred_zone); 1716 zonelist_scan: 1717 /* 1718 * Scan zonelist, looking for a zone with enough free. 1719 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1720 */ 1721 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1722 high_zoneidx, nodemask) { 1723 if (NUMA_BUILD && zlc_active && 1724 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1725 continue; 1726 if ((alloc_flags & ALLOC_CPUSET) && 1727 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1728 continue; 1729 /* 1730 * When allocating a page cache page for writing, we 1731 * want to get it from a zone that is within its dirty 1732 * limit, such that no single zone holds more than its 1733 * proportional share of globally allowed dirty pages. 1734 * The dirty limits take into account the zone's 1735 * lowmem reserves and high watermark so that kswapd 1736 * should be able to balance it without having to 1737 * write pages from its LRU list. 1738 * 1739 * This may look like it could increase pressure on 1740 * lower zones by failing allocations in higher zones 1741 * before they are full. But the pages that do spill 1742 * over are limited as the lower zones are protected 1743 * by this very same mechanism. It should not become 1744 * a practical burden to them. 1745 * 1746 * XXX: For now, allow allocations to potentially 1747 * exceed the per-zone dirty limit in the slowpath 1748 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1749 * which is important when on a NUMA setup the allowed 1750 * zones are together not big enough to reach the 1751 * global limit. The proper fix for these situations 1752 * will require awareness of zones in the 1753 * dirty-throttling and the flusher threads. 1754 */ 1755 if ((alloc_flags & ALLOC_WMARK_LOW) && 1756 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1757 goto this_zone_full; 1758 1759 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1760 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1761 unsigned long mark; 1762 int ret; 1763 1764 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1765 if (zone_watermark_ok(zone, order, mark, 1766 classzone_idx, alloc_flags)) 1767 goto try_this_zone; 1768 1769 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1770 /* 1771 * we do zlc_setup if there are multiple nodes 1772 * and before considering the first zone allowed 1773 * by the cpuset. 1774 */ 1775 allowednodes = zlc_setup(zonelist, alloc_flags); 1776 zlc_active = 1; 1777 did_zlc_setup = 1; 1778 } 1779 1780 if (zone_reclaim_mode == 0) 1781 goto this_zone_full; 1782 1783 /* 1784 * As we may have just activated ZLC, check if the first 1785 * eligible zone has failed zone_reclaim recently. 1786 */ 1787 if (NUMA_BUILD && zlc_active && 1788 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1789 continue; 1790 1791 ret = zone_reclaim(zone, gfp_mask, order); 1792 switch (ret) { 1793 case ZONE_RECLAIM_NOSCAN: 1794 /* did not scan */ 1795 continue; 1796 case ZONE_RECLAIM_FULL: 1797 /* scanned but unreclaimable */ 1798 continue; 1799 default: 1800 /* did we reclaim enough */ 1801 if (!zone_watermark_ok(zone, order, mark, 1802 classzone_idx, alloc_flags)) 1803 goto this_zone_full; 1804 } 1805 } 1806 1807 try_this_zone: 1808 page = buffered_rmqueue(preferred_zone, zone, order, 1809 gfp_mask, migratetype); 1810 if (page) 1811 break; 1812 this_zone_full: 1813 if (NUMA_BUILD) 1814 zlc_mark_zone_full(zonelist, z); 1815 } 1816 1817 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1818 /* Disable zlc cache for second zonelist scan */ 1819 zlc_active = 0; 1820 goto zonelist_scan; 1821 } 1822 return page; 1823 } 1824 1825 /* 1826 * Large machines with many possible nodes should not always dump per-node 1827 * meminfo in irq context. 1828 */ 1829 static inline bool should_suppress_show_mem(void) 1830 { 1831 bool ret = false; 1832 1833 #if NODES_SHIFT > 8 1834 ret = in_interrupt(); 1835 #endif 1836 return ret; 1837 } 1838 1839 static DEFINE_RATELIMIT_STATE(nopage_rs, 1840 DEFAULT_RATELIMIT_INTERVAL, 1841 DEFAULT_RATELIMIT_BURST); 1842 1843 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1844 { 1845 unsigned int filter = SHOW_MEM_FILTER_NODES; 1846 1847 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 1848 debug_guardpage_minorder() > 0) 1849 return; 1850 1851 /* 1852 * This documents exceptions given to allocations in certain 1853 * contexts that are allowed to allocate outside current's set 1854 * of allowed nodes. 1855 */ 1856 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1857 if (test_thread_flag(TIF_MEMDIE) || 1858 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1859 filter &= ~SHOW_MEM_FILTER_NODES; 1860 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1861 filter &= ~SHOW_MEM_FILTER_NODES; 1862 1863 if (fmt) { 1864 struct va_format vaf; 1865 va_list args; 1866 1867 va_start(args, fmt); 1868 1869 vaf.fmt = fmt; 1870 vaf.va = &args; 1871 1872 pr_warn("%pV", &vaf); 1873 1874 va_end(args); 1875 } 1876 1877 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 1878 current->comm, order, gfp_mask); 1879 1880 dump_stack(); 1881 if (!should_suppress_show_mem()) 1882 show_mem(filter); 1883 } 1884 1885 static inline int 1886 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1887 unsigned long did_some_progress, 1888 unsigned long pages_reclaimed) 1889 { 1890 /* Do not loop if specifically requested */ 1891 if (gfp_mask & __GFP_NORETRY) 1892 return 0; 1893 1894 /* Always retry if specifically requested */ 1895 if (gfp_mask & __GFP_NOFAIL) 1896 return 1; 1897 1898 /* 1899 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 1900 * making forward progress without invoking OOM. Suspend also disables 1901 * storage devices so kswapd will not help. Bail if we are suspending. 1902 */ 1903 if (!did_some_progress && pm_suspended_storage()) 1904 return 0; 1905 1906 /* 1907 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1908 * means __GFP_NOFAIL, but that may not be true in other 1909 * implementations. 1910 */ 1911 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1912 return 1; 1913 1914 /* 1915 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1916 * specified, then we retry until we no longer reclaim any pages 1917 * (above), or we've reclaimed an order of pages at least as 1918 * large as the allocation's order. In both cases, if the 1919 * allocation still fails, we stop retrying. 1920 */ 1921 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1922 return 1; 1923 1924 return 0; 1925 } 1926 1927 static inline struct page * 1928 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1929 struct zonelist *zonelist, enum zone_type high_zoneidx, 1930 nodemask_t *nodemask, struct zone *preferred_zone, 1931 int migratetype) 1932 { 1933 struct page *page; 1934 1935 /* Acquire the OOM killer lock for the zones in zonelist */ 1936 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1937 schedule_timeout_uninterruptible(1); 1938 return NULL; 1939 } 1940 1941 /* 1942 * Go through the zonelist yet one more time, keep very high watermark 1943 * here, this is only to catch a parallel oom killing, we must fail if 1944 * we're still under heavy pressure. 1945 */ 1946 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1947 order, zonelist, high_zoneidx, 1948 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1949 preferred_zone, migratetype); 1950 if (page) 1951 goto out; 1952 1953 if (!(gfp_mask & __GFP_NOFAIL)) { 1954 /* The OOM killer will not help higher order allocs */ 1955 if (order > PAGE_ALLOC_COSTLY_ORDER) 1956 goto out; 1957 /* The OOM killer does not needlessly kill tasks for lowmem */ 1958 if (high_zoneidx < ZONE_NORMAL) 1959 goto out; 1960 /* 1961 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1962 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1963 * The caller should handle page allocation failure by itself if 1964 * it specifies __GFP_THISNODE. 1965 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1966 */ 1967 if (gfp_mask & __GFP_THISNODE) 1968 goto out; 1969 } 1970 /* Exhausted what can be done so it's blamo time */ 1971 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 1972 1973 out: 1974 clear_zonelist_oom(zonelist, gfp_mask); 1975 return page; 1976 } 1977 1978 #ifdef CONFIG_COMPACTION 1979 /* Try memory compaction for high-order allocations before reclaim */ 1980 static struct page * 1981 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1982 struct zonelist *zonelist, enum zone_type high_zoneidx, 1983 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1984 int migratetype, bool sync_migration, 1985 bool *deferred_compaction, 1986 unsigned long *did_some_progress) 1987 { 1988 struct page *page; 1989 1990 if (!order) 1991 return NULL; 1992 1993 if (compaction_deferred(preferred_zone, order)) { 1994 *deferred_compaction = true; 1995 return NULL; 1996 } 1997 1998 current->flags |= PF_MEMALLOC; 1999 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2000 nodemask, sync_migration); 2001 current->flags &= ~PF_MEMALLOC; 2002 if (*did_some_progress != COMPACT_SKIPPED) { 2003 2004 /* Page migration frees to the PCP lists but we want merging */ 2005 drain_pages(get_cpu()); 2006 put_cpu(); 2007 2008 page = get_page_from_freelist(gfp_mask, nodemask, 2009 order, zonelist, high_zoneidx, 2010 alloc_flags, preferred_zone, 2011 migratetype); 2012 if (page) { 2013 preferred_zone->compact_considered = 0; 2014 preferred_zone->compact_defer_shift = 0; 2015 if (order >= preferred_zone->compact_order_failed) 2016 preferred_zone->compact_order_failed = order + 1; 2017 count_vm_event(COMPACTSUCCESS); 2018 return page; 2019 } 2020 2021 /* 2022 * It's bad if compaction run occurs and fails. 2023 * The most likely reason is that pages exist, 2024 * but not enough to satisfy watermarks. 2025 */ 2026 count_vm_event(COMPACTFAIL); 2027 2028 /* 2029 * As async compaction considers a subset of pageblocks, only 2030 * defer if the failure was a sync compaction failure. 2031 */ 2032 if (sync_migration) 2033 defer_compaction(preferred_zone, order); 2034 2035 cond_resched(); 2036 } 2037 2038 return NULL; 2039 } 2040 #else 2041 static inline struct page * 2042 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2043 struct zonelist *zonelist, enum zone_type high_zoneidx, 2044 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2045 int migratetype, bool sync_migration, 2046 bool *deferred_compaction, 2047 unsigned long *did_some_progress) 2048 { 2049 return NULL; 2050 } 2051 #endif /* CONFIG_COMPACTION */ 2052 2053 /* The really slow allocator path where we enter direct reclaim */ 2054 static inline struct page * 2055 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2056 struct zonelist *zonelist, enum zone_type high_zoneidx, 2057 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2058 int migratetype, unsigned long *did_some_progress) 2059 { 2060 struct page *page = NULL; 2061 struct reclaim_state reclaim_state; 2062 bool drained = false; 2063 2064 cond_resched(); 2065 2066 /* We now go into synchronous reclaim */ 2067 cpuset_memory_pressure_bump(); 2068 current->flags |= PF_MEMALLOC; 2069 lockdep_set_current_reclaim_state(gfp_mask); 2070 reclaim_state.reclaimed_slab = 0; 2071 current->reclaim_state = &reclaim_state; 2072 2073 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2074 2075 current->reclaim_state = NULL; 2076 lockdep_clear_current_reclaim_state(); 2077 current->flags &= ~PF_MEMALLOC; 2078 2079 cond_resched(); 2080 2081 if (unlikely(!(*did_some_progress))) 2082 return NULL; 2083 2084 /* After successful reclaim, reconsider all zones for allocation */ 2085 if (NUMA_BUILD) 2086 zlc_clear_zones_full(zonelist); 2087 2088 retry: 2089 page = get_page_from_freelist(gfp_mask, nodemask, order, 2090 zonelist, high_zoneidx, 2091 alloc_flags, preferred_zone, 2092 migratetype); 2093 2094 /* 2095 * If an allocation failed after direct reclaim, it could be because 2096 * pages are pinned on the per-cpu lists. Drain them and try again 2097 */ 2098 if (!page && !drained) { 2099 drain_all_pages(); 2100 drained = true; 2101 goto retry; 2102 } 2103 2104 return page; 2105 } 2106 2107 /* 2108 * This is called in the allocator slow-path if the allocation request is of 2109 * sufficient urgency to ignore watermarks and take other desperate measures 2110 */ 2111 static inline struct page * 2112 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2113 struct zonelist *zonelist, enum zone_type high_zoneidx, 2114 nodemask_t *nodemask, struct zone *preferred_zone, 2115 int migratetype) 2116 { 2117 struct page *page; 2118 2119 do { 2120 page = get_page_from_freelist(gfp_mask, nodemask, order, 2121 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2122 preferred_zone, migratetype); 2123 2124 if (!page && gfp_mask & __GFP_NOFAIL) 2125 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2126 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2127 2128 return page; 2129 } 2130 2131 static inline 2132 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2133 enum zone_type high_zoneidx, 2134 enum zone_type classzone_idx) 2135 { 2136 struct zoneref *z; 2137 struct zone *zone; 2138 2139 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2140 wakeup_kswapd(zone, order, classzone_idx); 2141 } 2142 2143 static inline int 2144 gfp_to_alloc_flags(gfp_t gfp_mask) 2145 { 2146 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2147 const gfp_t wait = gfp_mask & __GFP_WAIT; 2148 2149 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2150 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2151 2152 /* 2153 * The caller may dip into page reserves a bit more if the caller 2154 * cannot run direct reclaim, or if the caller has realtime scheduling 2155 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2156 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2157 */ 2158 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2159 2160 if (!wait) { 2161 /* 2162 * Not worth trying to allocate harder for 2163 * __GFP_NOMEMALLOC even if it can't schedule. 2164 */ 2165 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2166 alloc_flags |= ALLOC_HARDER; 2167 /* 2168 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2169 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2170 */ 2171 alloc_flags &= ~ALLOC_CPUSET; 2172 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2173 alloc_flags |= ALLOC_HARDER; 2174 2175 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2176 if (!in_interrupt() && 2177 ((current->flags & PF_MEMALLOC) || 2178 unlikely(test_thread_flag(TIF_MEMDIE)))) 2179 alloc_flags |= ALLOC_NO_WATERMARKS; 2180 } 2181 2182 return alloc_flags; 2183 } 2184 2185 static inline struct page * 2186 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2187 struct zonelist *zonelist, enum zone_type high_zoneidx, 2188 nodemask_t *nodemask, struct zone *preferred_zone, 2189 int migratetype) 2190 { 2191 const gfp_t wait = gfp_mask & __GFP_WAIT; 2192 struct page *page = NULL; 2193 int alloc_flags; 2194 unsigned long pages_reclaimed = 0; 2195 unsigned long did_some_progress; 2196 bool sync_migration = false; 2197 bool deferred_compaction = false; 2198 2199 /* 2200 * In the slowpath, we sanity check order to avoid ever trying to 2201 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2202 * be using allocators in order of preference for an area that is 2203 * too large. 2204 */ 2205 if (order >= MAX_ORDER) { 2206 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2207 return NULL; 2208 } 2209 2210 /* 2211 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2212 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2213 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2214 * using a larger set of nodes after it has established that the 2215 * allowed per node queues are empty and that nodes are 2216 * over allocated. 2217 */ 2218 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2219 goto nopage; 2220 2221 restart: 2222 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2223 wake_all_kswapd(order, zonelist, high_zoneidx, 2224 zone_idx(preferred_zone)); 2225 2226 /* 2227 * OK, we're below the kswapd watermark and have kicked background 2228 * reclaim. Now things get more complex, so set up alloc_flags according 2229 * to how we want to proceed. 2230 */ 2231 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2232 2233 /* 2234 * Find the true preferred zone if the allocation is unconstrained by 2235 * cpusets. 2236 */ 2237 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2238 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2239 &preferred_zone); 2240 2241 rebalance: 2242 /* This is the last chance, in general, before the goto nopage. */ 2243 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2244 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2245 preferred_zone, migratetype); 2246 if (page) 2247 goto got_pg; 2248 2249 /* Allocate without watermarks if the context allows */ 2250 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2251 page = __alloc_pages_high_priority(gfp_mask, order, 2252 zonelist, high_zoneidx, nodemask, 2253 preferred_zone, migratetype); 2254 if (page) 2255 goto got_pg; 2256 } 2257 2258 /* Atomic allocations - we can't balance anything */ 2259 if (!wait) 2260 goto nopage; 2261 2262 /* Avoid recursion of direct reclaim */ 2263 if (current->flags & PF_MEMALLOC) 2264 goto nopage; 2265 2266 /* Avoid allocations with no watermarks from looping endlessly */ 2267 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2268 goto nopage; 2269 2270 /* 2271 * Try direct compaction. The first pass is asynchronous. Subsequent 2272 * attempts after direct reclaim are synchronous 2273 */ 2274 page = __alloc_pages_direct_compact(gfp_mask, order, 2275 zonelist, high_zoneidx, 2276 nodemask, 2277 alloc_flags, preferred_zone, 2278 migratetype, sync_migration, 2279 &deferred_compaction, 2280 &did_some_progress); 2281 if (page) 2282 goto got_pg; 2283 sync_migration = true; 2284 2285 /* 2286 * If compaction is deferred for high-order allocations, it is because 2287 * sync compaction recently failed. In this is the case and the caller 2288 * has requested the system not be heavily disrupted, fail the 2289 * allocation now instead of entering direct reclaim 2290 */ 2291 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) 2292 goto nopage; 2293 2294 /* Try direct reclaim and then allocating */ 2295 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2296 zonelist, high_zoneidx, 2297 nodemask, 2298 alloc_flags, preferred_zone, 2299 migratetype, &did_some_progress); 2300 if (page) 2301 goto got_pg; 2302 2303 /* 2304 * If we failed to make any progress reclaiming, then we are 2305 * running out of options and have to consider going OOM 2306 */ 2307 if (!did_some_progress) { 2308 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2309 if (oom_killer_disabled) 2310 goto nopage; 2311 page = __alloc_pages_may_oom(gfp_mask, order, 2312 zonelist, high_zoneidx, 2313 nodemask, preferred_zone, 2314 migratetype); 2315 if (page) 2316 goto got_pg; 2317 2318 if (!(gfp_mask & __GFP_NOFAIL)) { 2319 /* 2320 * The oom killer is not called for high-order 2321 * allocations that may fail, so if no progress 2322 * is being made, there are no other options and 2323 * retrying is unlikely to help. 2324 */ 2325 if (order > PAGE_ALLOC_COSTLY_ORDER) 2326 goto nopage; 2327 /* 2328 * The oom killer is not called for lowmem 2329 * allocations to prevent needlessly killing 2330 * innocent tasks. 2331 */ 2332 if (high_zoneidx < ZONE_NORMAL) 2333 goto nopage; 2334 } 2335 2336 goto restart; 2337 } 2338 } 2339 2340 /* Check if we should retry the allocation */ 2341 pages_reclaimed += did_some_progress; 2342 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2343 pages_reclaimed)) { 2344 /* Wait for some write requests to complete then retry */ 2345 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2346 goto rebalance; 2347 } else { 2348 /* 2349 * High-order allocations do not necessarily loop after 2350 * direct reclaim and reclaim/compaction depends on compaction 2351 * being called after reclaim so call directly if necessary 2352 */ 2353 page = __alloc_pages_direct_compact(gfp_mask, order, 2354 zonelist, high_zoneidx, 2355 nodemask, 2356 alloc_flags, preferred_zone, 2357 migratetype, sync_migration, 2358 &deferred_compaction, 2359 &did_some_progress); 2360 if (page) 2361 goto got_pg; 2362 } 2363 2364 nopage: 2365 warn_alloc_failed(gfp_mask, order, NULL); 2366 return page; 2367 got_pg: 2368 if (kmemcheck_enabled) 2369 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2370 return page; 2371 2372 } 2373 2374 /* 2375 * This is the 'heart' of the zoned buddy allocator. 2376 */ 2377 struct page * 2378 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2379 struct zonelist *zonelist, nodemask_t *nodemask) 2380 { 2381 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2382 struct zone *preferred_zone; 2383 struct page *page = NULL; 2384 int migratetype = allocflags_to_migratetype(gfp_mask); 2385 unsigned int cpuset_mems_cookie; 2386 2387 gfp_mask &= gfp_allowed_mask; 2388 2389 lockdep_trace_alloc(gfp_mask); 2390 2391 might_sleep_if(gfp_mask & __GFP_WAIT); 2392 2393 if (should_fail_alloc_page(gfp_mask, order)) 2394 return NULL; 2395 2396 /* 2397 * Check the zones suitable for the gfp_mask contain at least one 2398 * valid zone. It's possible to have an empty zonelist as a result 2399 * of GFP_THISNODE and a memoryless node 2400 */ 2401 if (unlikely(!zonelist->_zonerefs->zone)) 2402 return NULL; 2403 2404 retry_cpuset: 2405 cpuset_mems_cookie = get_mems_allowed(); 2406 2407 /* The preferred zone is used for statistics later */ 2408 first_zones_zonelist(zonelist, high_zoneidx, 2409 nodemask ? : &cpuset_current_mems_allowed, 2410 &preferred_zone); 2411 if (!preferred_zone) 2412 goto out; 2413 2414 /* First allocation attempt */ 2415 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2416 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2417 preferred_zone, migratetype); 2418 if (unlikely(!page)) 2419 page = __alloc_pages_slowpath(gfp_mask, order, 2420 zonelist, high_zoneidx, nodemask, 2421 preferred_zone, migratetype); 2422 2423 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2424 2425 out: 2426 /* 2427 * When updating a task's mems_allowed, it is possible to race with 2428 * parallel threads in such a way that an allocation can fail while 2429 * the mask is being updated. If a page allocation is about to fail, 2430 * check if the cpuset changed during allocation and if so, retry. 2431 */ 2432 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2433 goto retry_cpuset; 2434 2435 return page; 2436 } 2437 EXPORT_SYMBOL(__alloc_pages_nodemask); 2438 2439 /* 2440 * Common helper functions. 2441 */ 2442 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2443 { 2444 struct page *page; 2445 2446 /* 2447 * __get_free_pages() returns a 32-bit address, which cannot represent 2448 * a highmem page 2449 */ 2450 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2451 2452 page = alloc_pages(gfp_mask, order); 2453 if (!page) 2454 return 0; 2455 return (unsigned long) page_address(page); 2456 } 2457 EXPORT_SYMBOL(__get_free_pages); 2458 2459 unsigned long get_zeroed_page(gfp_t gfp_mask) 2460 { 2461 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2462 } 2463 EXPORT_SYMBOL(get_zeroed_page); 2464 2465 void __free_pages(struct page *page, unsigned int order) 2466 { 2467 if (put_page_testzero(page)) { 2468 if (order == 0) 2469 free_hot_cold_page(page, 0); 2470 else 2471 __free_pages_ok(page, order); 2472 } 2473 } 2474 2475 EXPORT_SYMBOL(__free_pages); 2476 2477 void free_pages(unsigned long addr, unsigned int order) 2478 { 2479 if (addr != 0) { 2480 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2481 __free_pages(virt_to_page((void *)addr), order); 2482 } 2483 } 2484 2485 EXPORT_SYMBOL(free_pages); 2486 2487 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2488 { 2489 if (addr) { 2490 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2491 unsigned long used = addr + PAGE_ALIGN(size); 2492 2493 split_page(virt_to_page((void *)addr), order); 2494 while (used < alloc_end) { 2495 free_page(used); 2496 used += PAGE_SIZE; 2497 } 2498 } 2499 return (void *)addr; 2500 } 2501 2502 /** 2503 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2504 * @size: the number of bytes to allocate 2505 * @gfp_mask: GFP flags for the allocation 2506 * 2507 * This function is similar to alloc_pages(), except that it allocates the 2508 * minimum number of pages to satisfy the request. alloc_pages() can only 2509 * allocate memory in power-of-two pages. 2510 * 2511 * This function is also limited by MAX_ORDER. 2512 * 2513 * Memory allocated by this function must be released by free_pages_exact(). 2514 */ 2515 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2516 { 2517 unsigned int order = get_order(size); 2518 unsigned long addr; 2519 2520 addr = __get_free_pages(gfp_mask, order); 2521 return make_alloc_exact(addr, order, size); 2522 } 2523 EXPORT_SYMBOL(alloc_pages_exact); 2524 2525 /** 2526 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2527 * pages on a node. 2528 * @nid: the preferred node ID where memory should be allocated 2529 * @size: the number of bytes to allocate 2530 * @gfp_mask: GFP flags for the allocation 2531 * 2532 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2533 * back. 2534 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2535 * but is not exact. 2536 */ 2537 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2538 { 2539 unsigned order = get_order(size); 2540 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2541 if (!p) 2542 return NULL; 2543 return make_alloc_exact((unsigned long)page_address(p), order, size); 2544 } 2545 EXPORT_SYMBOL(alloc_pages_exact_nid); 2546 2547 /** 2548 * free_pages_exact - release memory allocated via alloc_pages_exact() 2549 * @virt: the value returned by alloc_pages_exact. 2550 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2551 * 2552 * Release the memory allocated by a previous call to alloc_pages_exact. 2553 */ 2554 void free_pages_exact(void *virt, size_t size) 2555 { 2556 unsigned long addr = (unsigned long)virt; 2557 unsigned long end = addr + PAGE_ALIGN(size); 2558 2559 while (addr < end) { 2560 free_page(addr); 2561 addr += PAGE_SIZE; 2562 } 2563 } 2564 EXPORT_SYMBOL(free_pages_exact); 2565 2566 static unsigned int nr_free_zone_pages(int offset) 2567 { 2568 struct zoneref *z; 2569 struct zone *zone; 2570 2571 /* Just pick one node, since fallback list is circular */ 2572 unsigned int sum = 0; 2573 2574 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2575 2576 for_each_zone_zonelist(zone, z, zonelist, offset) { 2577 unsigned long size = zone->present_pages; 2578 unsigned long high = high_wmark_pages(zone); 2579 if (size > high) 2580 sum += size - high; 2581 } 2582 2583 return sum; 2584 } 2585 2586 /* 2587 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2588 */ 2589 unsigned int nr_free_buffer_pages(void) 2590 { 2591 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2592 } 2593 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2594 2595 /* 2596 * Amount of free RAM allocatable within all zones 2597 */ 2598 unsigned int nr_free_pagecache_pages(void) 2599 { 2600 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2601 } 2602 2603 static inline void show_node(struct zone *zone) 2604 { 2605 if (NUMA_BUILD) 2606 printk("Node %d ", zone_to_nid(zone)); 2607 } 2608 2609 void si_meminfo(struct sysinfo *val) 2610 { 2611 val->totalram = totalram_pages; 2612 val->sharedram = 0; 2613 val->freeram = global_page_state(NR_FREE_PAGES); 2614 val->bufferram = nr_blockdev_pages(); 2615 val->totalhigh = totalhigh_pages; 2616 val->freehigh = nr_free_highpages(); 2617 val->mem_unit = PAGE_SIZE; 2618 } 2619 2620 EXPORT_SYMBOL(si_meminfo); 2621 2622 #ifdef CONFIG_NUMA 2623 void si_meminfo_node(struct sysinfo *val, int nid) 2624 { 2625 pg_data_t *pgdat = NODE_DATA(nid); 2626 2627 val->totalram = pgdat->node_present_pages; 2628 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2629 #ifdef CONFIG_HIGHMEM 2630 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2631 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2632 NR_FREE_PAGES); 2633 #else 2634 val->totalhigh = 0; 2635 val->freehigh = 0; 2636 #endif 2637 val->mem_unit = PAGE_SIZE; 2638 } 2639 #endif 2640 2641 /* 2642 * Determine whether the node should be displayed or not, depending on whether 2643 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2644 */ 2645 bool skip_free_areas_node(unsigned int flags, int nid) 2646 { 2647 bool ret = false; 2648 unsigned int cpuset_mems_cookie; 2649 2650 if (!(flags & SHOW_MEM_FILTER_NODES)) 2651 goto out; 2652 2653 do { 2654 cpuset_mems_cookie = get_mems_allowed(); 2655 ret = !node_isset(nid, cpuset_current_mems_allowed); 2656 } while (!put_mems_allowed(cpuset_mems_cookie)); 2657 out: 2658 return ret; 2659 } 2660 2661 #define K(x) ((x) << (PAGE_SHIFT-10)) 2662 2663 /* 2664 * Show free area list (used inside shift_scroll-lock stuff) 2665 * We also calculate the percentage fragmentation. We do this by counting the 2666 * memory on each free list with the exception of the first item on the list. 2667 * Suppresses nodes that are not allowed by current's cpuset if 2668 * SHOW_MEM_FILTER_NODES is passed. 2669 */ 2670 void show_free_areas(unsigned int filter) 2671 { 2672 int cpu; 2673 struct zone *zone; 2674 2675 for_each_populated_zone(zone) { 2676 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2677 continue; 2678 show_node(zone); 2679 printk("%s per-cpu:\n", zone->name); 2680 2681 for_each_online_cpu(cpu) { 2682 struct per_cpu_pageset *pageset; 2683 2684 pageset = per_cpu_ptr(zone->pageset, cpu); 2685 2686 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2687 cpu, pageset->pcp.high, 2688 pageset->pcp.batch, pageset->pcp.count); 2689 } 2690 } 2691 2692 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2693 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2694 " unevictable:%lu" 2695 " dirty:%lu writeback:%lu unstable:%lu\n" 2696 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2697 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2698 global_page_state(NR_ACTIVE_ANON), 2699 global_page_state(NR_INACTIVE_ANON), 2700 global_page_state(NR_ISOLATED_ANON), 2701 global_page_state(NR_ACTIVE_FILE), 2702 global_page_state(NR_INACTIVE_FILE), 2703 global_page_state(NR_ISOLATED_FILE), 2704 global_page_state(NR_UNEVICTABLE), 2705 global_page_state(NR_FILE_DIRTY), 2706 global_page_state(NR_WRITEBACK), 2707 global_page_state(NR_UNSTABLE_NFS), 2708 global_page_state(NR_FREE_PAGES), 2709 global_page_state(NR_SLAB_RECLAIMABLE), 2710 global_page_state(NR_SLAB_UNRECLAIMABLE), 2711 global_page_state(NR_FILE_MAPPED), 2712 global_page_state(NR_SHMEM), 2713 global_page_state(NR_PAGETABLE), 2714 global_page_state(NR_BOUNCE)); 2715 2716 for_each_populated_zone(zone) { 2717 int i; 2718 2719 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2720 continue; 2721 show_node(zone); 2722 printk("%s" 2723 " free:%lukB" 2724 " min:%lukB" 2725 " low:%lukB" 2726 " high:%lukB" 2727 " active_anon:%lukB" 2728 " inactive_anon:%lukB" 2729 " active_file:%lukB" 2730 " inactive_file:%lukB" 2731 " unevictable:%lukB" 2732 " isolated(anon):%lukB" 2733 " isolated(file):%lukB" 2734 " present:%lukB" 2735 " mlocked:%lukB" 2736 " dirty:%lukB" 2737 " writeback:%lukB" 2738 " mapped:%lukB" 2739 " shmem:%lukB" 2740 " slab_reclaimable:%lukB" 2741 " slab_unreclaimable:%lukB" 2742 " kernel_stack:%lukB" 2743 " pagetables:%lukB" 2744 " unstable:%lukB" 2745 " bounce:%lukB" 2746 " writeback_tmp:%lukB" 2747 " pages_scanned:%lu" 2748 " all_unreclaimable? %s" 2749 "\n", 2750 zone->name, 2751 K(zone_page_state(zone, NR_FREE_PAGES)), 2752 K(min_wmark_pages(zone)), 2753 K(low_wmark_pages(zone)), 2754 K(high_wmark_pages(zone)), 2755 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2756 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2757 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2758 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2759 K(zone_page_state(zone, NR_UNEVICTABLE)), 2760 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2761 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2762 K(zone->present_pages), 2763 K(zone_page_state(zone, NR_MLOCK)), 2764 K(zone_page_state(zone, NR_FILE_DIRTY)), 2765 K(zone_page_state(zone, NR_WRITEBACK)), 2766 K(zone_page_state(zone, NR_FILE_MAPPED)), 2767 K(zone_page_state(zone, NR_SHMEM)), 2768 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2769 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2770 zone_page_state(zone, NR_KERNEL_STACK) * 2771 THREAD_SIZE / 1024, 2772 K(zone_page_state(zone, NR_PAGETABLE)), 2773 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2774 K(zone_page_state(zone, NR_BOUNCE)), 2775 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2776 zone->pages_scanned, 2777 (zone->all_unreclaimable ? "yes" : "no") 2778 ); 2779 printk("lowmem_reserve[]:"); 2780 for (i = 0; i < MAX_NR_ZONES; i++) 2781 printk(" %lu", zone->lowmem_reserve[i]); 2782 printk("\n"); 2783 } 2784 2785 for_each_populated_zone(zone) { 2786 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2787 2788 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2789 continue; 2790 show_node(zone); 2791 printk("%s: ", zone->name); 2792 2793 spin_lock_irqsave(&zone->lock, flags); 2794 for (order = 0; order < MAX_ORDER; order++) { 2795 nr[order] = zone->free_area[order].nr_free; 2796 total += nr[order] << order; 2797 } 2798 spin_unlock_irqrestore(&zone->lock, flags); 2799 for (order = 0; order < MAX_ORDER; order++) 2800 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2801 printk("= %lukB\n", K(total)); 2802 } 2803 2804 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2805 2806 show_swap_cache_info(); 2807 } 2808 2809 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2810 { 2811 zoneref->zone = zone; 2812 zoneref->zone_idx = zone_idx(zone); 2813 } 2814 2815 /* 2816 * Builds allocation fallback zone lists. 2817 * 2818 * Add all populated zones of a node to the zonelist. 2819 */ 2820 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2821 int nr_zones, enum zone_type zone_type) 2822 { 2823 struct zone *zone; 2824 2825 BUG_ON(zone_type >= MAX_NR_ZONES); 2826 zone_type++; 2827 2828 do { 2829 zone_type--; 2830 zone = pgdat->node_zones + zone_type; 2831 if (populated_zone(zone)) { 2832 zoneref_set_zone(zone, 2833 &zonelist->_zonerefs[nr_zones++]); 2834 check_highest_zone(zone_type); 2835 } 2836 2837 } while (zone_type); 2838 return nr_zones; 2839 } 2840 2841 2842 /* 2843 * zonelist_order: 2844 * 0 = automatic detection of better ordering. 2845 * 1 = order by ([node] distance, -zonetype) 2846 * 2 = order by (-zonetype, [node] distance) 2847 * 2848 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2849 * the same zonelist. So only NUMA can configure this param. 2850 */ 2851 #define ZONELIST_ORDER_DEFAULT 0 2852 #define ZONELIST_ORDER_NODE 1 2853 #define ZONELIST_ORDER_ZONE 2 2854 2855 /* zonelist order in the kernel. 2856 * set_zonelist_order() will set this to NODE or ZONE. 2857 */ 2858 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2859 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2860 2861 2862 #ifdef CONFIG_NUMA 2863 /* The value user specified ....changed by config */ 2864 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2865 /* string for sysctl */ 2866 #define NUMA_ZONELIST_ORDER_LEN 16 2867 char numa_zonelist_order[16] = "default"; 2868 2869 /* 2870 * interface for configure zonelist ordering. 2871 * command line option "numa_zonelist_order" 2872 * = "[dD]efault - default, automatic configuration. 2873 * = "[nN]ode - order by node locality, then by zone within node 2874 * = "[zZ]one - order by zone, then by locality within zone 2875 */ 2876 2877 static int __parse_numa_zonelist_order(char *s) 2878 { 2879 if (*s == 'd' || *s == 'D') { 2880 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2881 } else if (*s == 'n' || *s == 'N') { 2882 user_zonelist_order = ZONELIST_ORDER_NODE; 2883 } else if (*s == 'z' || *s == 'Z') { 2884 user_zonelist_order = ZONELIST_ORDER_ZONE; 2885 } else { 2886 printk(KERN_WARNING 2887 "Ignoring invalid numa_zonelist_order value: " 2888 "%s\n", s); 2889 return -EINVAL; 2890 } 2891 return 0; 2892 } 2893 2894 static __init int setup_numa_zonelist_order(char *s) 2895 { 2896 int ret; 2897 2898 if (!s) 2899 return 0; 2900 2901 ret = __parse_numa_zonelist_order(s); 2902 if (ret == 0) 2903 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2904 2905 return ret; 2906 } 2907 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2908 2909 /* 2910 * sysctl handler for numa_zonelist_order 2911 */ 2912 int numa_zonelist_order_handler(ctl_table *table, int write, 2913 void __user *buffer, size_t *length, 2914 loff_t *ppos) 2915 { 2916 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2917 int ret; 2918 static DEFINE_MUTEX(zl_order_mutex); 2919 2920 mutex_lock(&zl_order_mutex); 2921 if (write) 2922 strcpy(saved_string, (char*)table->data); 2923 ret = proc_dostring(table, write, buffer, length, ppos); 2924 if (ret) 2925 goto out; 2926 if (write) { 2927 int oldval = user_zonelist_order; 2928 if (__parse_numa_zonelist_order((char*)table->data)) { 2929 /* 2930 * bogus value. restore saved string 2931 */ 2932 strncpy((char*)table->data, saved_string, 2933 NUMA_ZONELIST_ORDER_LEN); 2934 user_zonelist_order = oldval; 2935 } else if (oldval != user_zonelist_order) { 2936 mutex_lock(&zonelists_mutex); 2937 build_all_zonelists(NULL); 2938 mutex_unlock(&zonelists_mutex); 2939 } 2940 } 2941 out: 2942 mutex_unlock(&zl_order_mutex); 2943 return ret; 2944 } 2945 2946 2947 #define MAX_NODE_LOAD (nr_online_nodes) 2948 static int node_load[MAX_NUMNODES]; 2949 2950 /** 2951 * find_next_best_node - find the next node that should appear in a given node's fallback list 2952 * @node: node whose fallback list we're appending 2953 * @used_node_mask: nodemask_t of already used nodes 2954 * 2955 * We use a number of factors to determine which is the next node that should 2956 * appear on a given node's fallback list. The node should not have appeared 2957 * already in @node's fallback list, and it should be the next closest node 2958 * according to the distance array (which contains arbitrary distance values 2959 * from each node to each node in the system), and should also prefer nodes 2960 * with no CPUs, since presumably they'll have very little allocation pressure 2961 * on them otherwise. 2962 * It returns -1 if no node is found. 2963 */ 2964 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2965 { 2966 int n, val; 2967 int min_val = INT_MAX; 2968 int best_node = -1; 2969 const struct cpumask *tmp = cpumask_of_node(0); 2970 2971 /* Use the local node if we haven't already */ 2972 if (!node_isset(node, *used_node_mask)) { 2973 node_set(node, *used_node_mask); 2974 return node; 2975 } 2976 2977 for_each_node_state(n, N_HIGH_MEMORY) { 2978 2979 /* Don't want a node to appear more than once */ 2980 if (node_isset(n, *used_node_mask)) 2981 continue; 2982 2983 /* Use the distance array to find the distance */ 2984 val = node_distance(node, n); 2985 2986 /* Penalize nodes under us ("prefer the next node") */ 2987 val += (n < node); 2988 2989 /* Give preference to headless and unused nodes */ 2990 tmp = cpumask_of_node(n); 2991 if (!cpumask_empty(tmp)) 2992 val += PENALTY_FOR_NODE_WITH_CPUS; 2993 2994 /* Slight preference for less loaded node */ 2995 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2996 val += node_load[n]; 2997 2998 if (val < min_val) { 2999 min_val = val; 3000 best_node = n; 3001 } 3002 } 3003 3004 if (best_node >= 0) 3005 node_set(best_node, *used_node_mask); 3006 3007 return best_node; 3008 } 3009 3010 3011 /* 3012 * Build zonelists ordered by node and zones within node. 3013 * This results in maximum locality--normal zone overflows into local 3014 * DMA zone, if any--but risks exhausting DMA zone. 3015 */ 3016 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3017 { 3018 int j; 3019 struct zonelist *zonelist; 3020 3021 zonelist = &pgdat->node_zonelists[0]; 3022 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3023 ; 3024 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3025 MAX_NR_ZONES - 1); 3026 zonelist->_zonerefs[j].zone = NULL; 3027 zonelist->_zonerefs[j].zone_idx = 0; 3028 } 3029 3030 /* 3031 * Build gfp_thisnode zonelists 3032 */ 3033 static void build_thisnode_zonelists(pg_data_t *pgdat) 3034 { 3035 int j; 3036 struct zonelist *zonelist; 3037 3038 zonelist = &pgdat->node_zonelists[1]; 3039 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3040 zonelist->_zonerefs[j].zone = NULL; 3041 zonelist->_zonerefs[j].zone_idx = 0; 3042 } 3043 3044 /* 3045 * Build zonelists ordered by zone and nodes within zones. 3046 * This results in conserving DMA zone[s] until all Normal memory is 3047 * exhausted, but results in overflowing to remote node while memory 3048 * may still exist in local DMA zone. 3049 */ 3050 static int node_order[MAX_NUMNODES]; 3051 3052 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3053 { 3054 int pos, j, node; 3055 int zone_type; /* needs to be signed */ 3056 struct zone *z; 3057 struct zonelist *zonelist; 3058 3059 zonelist = &pgdat->node_zonelists[0]; 3060 pos = 0; 3061 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3062 for (j = 0; j < nr_nodes; j++) { 3063 node = node_order[j]; 3064 z = &NODE_DATA(node)->node_zones[zone_type]; 3065 if (populated_zone(z)) { 3066 zoneref_set_zone(z, 3067 &zonelist->_zonerefs[pos++]); 3068 check_highest_zone(zone_type); 3069 } 3070 } 3071 } 3072 zonelist->_zonerefs[pos].zone = NULL; 3073 zonelist->_zonerefs[pos].zone_idx = 0; 3074 } 3075 3076 static int default_zonelist_order(void) 3077 { 3078 int nid, zone_type; 3079 unsigned long low_kmem_size,total_size; 3080 struct zone *z; 3081 int average_size; 3082 /* 3083 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3084 * If they are really small and used heavily, the system can fall 3085 * into OOM very easily. 3086 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3087 */ 3088 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3089 low_kmem_size = 0; 3090 total_size = 0; 3091 for_each_online_node(nid) { 3092 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3093 z = &NODE_DATA(nid)->node_zones[zone_type]; 3094 if (populated_zone(z)) { 3095 if (zone_type < ZONE_NORMAL) 3096 low_kmem_size += z->present_pages; 3097 total_size += z->present_pages; 3098 } else if (zone_type == ZONE_NORMAL) { 3099 /* 3100 * If any node has only lowmem, then node order 3101 * is preferred to allow kernel allocations 3102 * locally; otherwise, they can easily infringe 3103 * on other nodes when there is an abundance of 3104 * lowmem available to allocate from. 3105 */ 3106 return ZONELIST_ORDER_NODE; 3107 } 3108 } 3109 } 3110 if (!low_kmem_size || /* there are no DMA area. */ 3111 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3112 return ZONELIST_ORDER_NODE; 3113 /* 3114 * look into each node's config. 3115 * If there is a node whose DMA/DMA32 memory is very big area on 3116 * local memory, NODE_ORDER may be suitable. 3117 */ 3118 average_size = total_size / 3119 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 3120 for_each_online_node(nid) { 3121 low_kmem_size = 0; 3122 total_size = 0; 3123 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3124 z = &NODE_DATA(nid)->node_zones[zone_type]; 3125 if (populated_zone(z)) { 3126 if (zone_type < ZONE_NORMAL) 3127 low_kmem_size += z->present_pages; 3128 total_size += z->present_pages; 3129 } 3130 } 3131 if (low_kmem_size && 3132 total_size > average_size && /* ignore small node */ 3133 low_kmem_size > total_size * 70/100) 3134 return ZONELIST_ORDER_NODE; 3135 } 3136 return ZONELIST_ORDER_ZONE; 3137 } 3138 3139 static void set_zonelist_order(void) 3140 { 3141 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3142 current_zonelist_order = default_zonelist_order(); 3143 else 3144 current_zonelist_order = user_zonelist_order; 3145 } 3146 3147 static void build_zonelists(pg_data_t *pgdat) 3148 { 3149 int j, node, load; 3150 enum zone_type i; 3151 nodemask_t used_mask; 3152 int local_node, prev_node; 3153 struct zonelist *zonelist; 3154 int order = current_zonelist_order; 3155 3156 /* initialize zonelists */ 3157 for (i = 0; i < MAX_ZONELISTS; i++) { 3158 zonelist = pgdat->node_zonelists + i; 3159 zonelist->_zonerefs[0].zone = NULL; 3160 zonelist->_zonerefs[0].zone_idx = 0; 3161 } 3162 3163 /* NUMA-aware ordering of nodes */ 3164 local_node = pgdat->node_id; 3165 load = nr_online_nodes; 3166 prev_node = local_node; 3167 nodes_clear(used_mask); 3168 3169 memset(node_order, 0, sizeof(node_order)); 3170 j = 0; 3171 3172 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3173 int distance = node_distance(local_node, node); 3174 3175 /* 3176 * If another node is sufficiently far away then it is better 3177 * to reclaim pages in a zone before going off node. 3178 */ 3179 if (distance > RECLAIM_DISTANCE) 3180 zone_reclaim_mode = 1; 3181 3182 /* 3183 * We don't want to pressure a particular node. 3184 * So adding penalty to the first node in same 3185 * distance group to make it round-robin. 3186 */ 3187 if (distance != node_distance(local_node, prev_node)) 3188 node_load[node] = load; 3189 3190 prev_node = node; 3191 load--; 3192 if (order == ZONELIST_ORDER_NODE) 3193 build_zonelists_in_node_order(pgdat, node); 3194 else 3195 node_order[j++] = node; /* remember order */ 3196 } 3197 3198 if (order == ZONELIST_ORDER_ZONE) { 3199 /* calculate node order -- i.e., DMA last! */ 3200 build_zonelists_in_zone_order(pgdat, j); 3201 } 3202 3203 build_thisnode_zonelists(pgdat); 3204 } 3205 3206 /* Construct the zonelist performance cache - see further mmzone.h */ 3207 static void build_zonelist_cache(pg_data_t *pgdat) 3208 { 3209 struct zonelist *zonelist; 3210 struct zonelist_cache *zlc; 3211 struct zoneref *z; 3212 3213 zonelist = &pgdat->node_zonelists[0]; 3214 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3215 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3216 for (z = zonelist->_zonerefs; z->zone; z++) 3217 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3218 } 3219 3220 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3221 /* 3222 * Return node id of node used for "local" allocations. 3223 * I.e., first node id of first zone in arg node's generic zonelist. 3224 * Used for initializing percpu 'numa_mem', which is used primarily 3225 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3226 */ 3227 int local_memory_node(int node) 3228 { 3229 struct zone *zone; 3230 3231 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3232 gfp_zone(GFP_KERNEL), 3233 NULL, 3234 &zone); 3235 return zone->node; 3236 } 3237 #endif 3238 3239 #else /* CONFIG_NUMA */ 3240 3241 static void set_zonelist_order(void) 3242 { 3243 current_zonelist_order = ZONELIST_ORDER_ZONE; 3244 } 3245 3246 static void build_zonelists(pg_data_t *pgdat) 3247 { 3248 int node, local_node; 3249 enum zone_type j; 3250 struct zonelist *zonelist; 3251 3252 local_node = pgdat->node_id; 3253 3254 zonelist = &pgdat->node_zonelists[0]; 3255 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3256 3257 /* 3258 * Now we build the zonelist so that it contains the zones 3259 * of all the other nodes. 3260 * We don't want to pressure a particular node, so when 3261 * building the zones for node N, we make sure that the 3262 * zones coming right after the local ones are those from 3263 * node N+1 (modulo N) 3264 */ 3265 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3266 if (!node_online(node)) 3267 continue; 3268 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3269 MAX_NR_ZONES - 1); 3270 } 3271 for (node = 0; node < local_node; node++) { 3272 if (!node_online(node)) 3273 continue; 3274 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3275 MAX_NR_ZONES - 1); 3276 } 3277 3278 zonelist->_zonerefs[j].zone = NULL; 3279 zonelist->_zonerefs[j].zone_idx = 0; 3280 } 3281 3282 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3283 static void build_zonelist_cache(pg_data_t *pgdat) 3284 { 3285 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3286 } 3287 3288 #endif /* CONFIG_NUMA */ 3289 3290 /* 3291 * Boot pageset table. One per cpu which is going to be used for all 3292 * zones and all nodes. The parameters will be set in such a way 3293 * that an item put on a list will immediately be handed over to 3294 * the buddy list. This is safe since pageset manipulation is done 3295 * with interrupts disabled. 3296 * 3297 * The boot_pagesets must be kept even after bootup is complete for 3298 * unused processors and/or zones. They do play a role for bootstrapping 3299 * hotplugged processors. 3300 * 3301 * zoneinfo_show() and maybe other functions do 3302 * not check if the processor is online before following the pageset pointer. 3303 * Other parts of the kernel may not check if the zone is available. 3304 */ 3305 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3306 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3307 static void setup_zone_pageset(struct zone *zone); 3308 3309 /* 3310 * Global mutex to protect against size modification of zonelists 3311 * as well as to serialize pageset setup for the new populated zone. 3312 */ 3313 DEFINE_MUTEX(zonelists_mutex); 3314 3315 /* return values int ....just for stop_machine() */ 3316 static __init_refok int __build_all_zonelists(void *data) 3317 { 3318 int nid; 3319 int cpu; 3320 3321 #ifdef CONFIG_NUMA 3322 memset(node_load, 0, sizeof(node_load)); 3323 #endif 3324 for_each_online_node(nid) { 3325 pg_data_t *pgdat = NODE_DATA(nid); 3326 3327 build_zonelists(pgdat); 3328 build_zonelist_cache(pgdat); 3329 } 3330 3331 /* 3332 * Initialize the boot_pagesets that are going to be used 3333 * for bootstrapping processors. The real pagesets for 3334 * each zone will be allocated later when the per cpu 3335 * allocator is available. 3336 * 3337 * boot_pagesets are used also for bootstrapping offline 3338 * cpus if the system is already booted because the pagesets 3339 * are needed to initialize allocators on a specific cpu too. 3340 * F.e. the percpu allocator needs the page allocator which 3341 * needs the percpu allocator in order to allocate its pagesets 3342 * (a chicken-egg dilemma). 3343 */ 3344 for_each_possible_cpu(cpu) { 3345 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3346 3347 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3348 /* 3349 * We now know the "local memory node" for each node-- 3350 * i.e., the node of the first zone in the generic zonelist. 3351 * Set up numa_mem percpu variable for on-line cpus. During 3352 * boot, only the boot cpu should be on-line; we'll init the 3353 * secondary cpus' numa_mem as they come on-line. During 3354 * node/memory hotplug, we'll fixup all on-line cpus. 3355 */ 3356 if (cpu_online(cpu)) 3357 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3358 #endif 3359 } 3360 3361 return 0; 3362 } 3363 3364 /* 3365 * Called with zonelists_mutex held always 3366 * unless system_state == SYSTEM_BOOTING. 3367 */ 3368 void __ref build_all_zonelists(void *data) 3369 { 3370 set_zonelist_order(); 3371 3372 if (system_state == SYSTEM_BOOTING) { 3373 __build_all_zonelists(NULL); 3374 mminit_verify_zonelist(); 3375 cpuset_init_current_mems_allowed(); 3376 } else { 3377 /* we have to stop all cpus to guarantee there is no user 3378 of zonelist */ 3379 #ifdef CONFIG_MEMORY_HOTPLUG 3380 if (data) 3381 setup_zone_pageset((struct zone *)data); 3382 #endif 3383 stop_machine(__build_all_zonelists, NULL, NULL); 3384 /* cpuset refresh routine should be here */ 3385 } 3386 vm_total_pages = nr_free_pagecache_pages(); 3387 /* 3388 * Disable grouping by mobility if the number of pages in the 3389 * system is too low to allow the mechanism to work. It would be 3390 * more accurate, but expensive to check per-zone. This check is 3391 * made on memory-hotadd so a system can start with mobility 3392 * disabled and enable it later 3393 */ 3394 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3395 page_group_by_mobility_disabled = 1; 3396 else 3397 page_group_by_mobility_disabled = 0; 3398 3399 printk("Built %i zonelists in %s order, mobility grouping %s. " 3400 "Total pages: %ld\n", 3401 nr_online_nodes, 3402 zonelist_order_name[current_zonelist_order], 3403 page_group_by_mobility_disabled ? "off" : "on", 3404 vm_total_pages); 3405 #ifdef CONFIG_NUMA 3406 printk("Policy zone: %s\n", zone_names[policy_zone]); 3407 #endif 3408 } 3409 3410 /* 3411 * Helper functions to size the waitqueue hash table. 3412 * Essentially these want to choose hash table sizes sufficiently 3413 * large so that collisions trying to wait on pages are rare. 3414 * But in fact, the number of active page waitqueues on typical 3415 * systems is ridiculously low, less than 200. So this is even 3416 * conservative, even though it seems large. 3417 * 3418 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3419 * waitqueues, i.e. the size of the waitq table given the number of pages. 3420 */ 3421 #define PAGES_PER_WAITQUEUE 256 3422 3423 #ifndef CONFIG_MEMORY_HOTPLUG 3424 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3425 { 3426 unsigned long size = 1; 3427 3428 pages /= PAGES_PER_WAITQUEUE; 3429 3430 while (size < pages) 3431 size <<= 1; 3432 3433 /* 3434 * Once we have dozens or even hundreds of threads sleeping 3435 * on IO we've got bigger problems than wait queue collision. 3436 * Limit the size of the wait table to a reasonable size. 3437 */ 3438 size = min(size, 4096UL); 3439 3440 return max(size, 4UL); 3441 } 3442 #else 3443 /* 3444 * A zone's size might be changed by hot-add, so it is not possible to determine 3445 * a suitable size for its wait_table. So we use the maximum size now. 3446 * 3447 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3448 * 3449 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3450 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3451 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3452 * 3453 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3454 * or more by the traditional way. (See above). It equals: 3455 * 3456 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3457 * ia64(16K page size) : = ( 8G + 4M)byte. 3458 * powerpc (64K page size) : = (32G +16M)byte. 3459 */ 3460 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3461 { 3462 return 4096UL; 3463 } 3464 #endif 3465 3466 /* 3467 * This is an integer logarithm so that shifts can be used later 3468 * to extract the more random high bits from the multiplicative 3469 * hash function before the remainder is taken. 3470 */ 3471 static inline unsigned long wait_table_bits(unsigned long size) 3472 { 3473 return ffz(~size); 3474 } 3475 3476 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3477 3478 /* 3479 * Check if a pageblock contains reserved pages 3480 */ 3481 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3482 { 3483 unsigned long pfn; 3484 3485 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3486 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3487 return 1; 3488 } 3489 return 0; 3490 } 3491 3492 /* 3493 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3494 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3495 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3496 * higher will lead to a bigger reserve which will get freed as contiguous 3497 * blocks as reclaim kicks in 3498 */ 3499 static void setup_zone_migrate_reserve(struct zone *zone) 3500 { 3501 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3502 struct page *page; 3503 unsigned long block_migratetype; 3504 int reserve; 3505 3506 /* 3507 * Get the start pfn, end pfn and the number of blocks to reserve 3508 * We have to be careful to be aligned to pageblock_nr_pages to 3509 * make sure that we always check pfn_valid for the first page in 3510 * the block. 3511 */ 3512 start_pfn = zone->zone_start_pfn; 3513 end_pfn = start_pfn + zone->spanned_pages; 3514 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3515 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3516 pageblock_order; 3517 3518 /* 3519 * Reserve blocks are generally in place to help high-order atomic 3520 * allocations that are short-lived. A min_free_kbytes value that 3521 * would result in more than 2 reserve blocks for atomic allocations 3522 * is assumed to be in place to help anti-fragmentation for the 3523 * future allocation of hugepages at runtime. 3524 */ 3525 reserve = min(2, reserve); 3526 3527 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3528 if (!pfn_valid(pfn)) 3529 continue; 3530 page = pfn_to_page(pfn); 3531 3532 /* Watch out for overlapping nodes */ 3533 if (page_to_nid(page) != zone_to_nid(zone)) 3534 continue; 3535 3536 block_migratetype = get_pageblock_migratetype(page); 3537 3538 /* Only test what is necessary when the reserves are not met */ 3539 if (reserve > 0) { 3540 /* 3541 * Blocks with reserved pages will never free, skip 3542 * them. 3543 */ 3544 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3545 if (pageblock_is_reserved(pfn, block_end_pfn)) 3546 continue; 3547 3548 /* If this block is reserved, account for it */ 3549 if (block_migratetype == MIGRATE_RESERVE) { 3550 reserve--; 3551 continue; 3552 } 3553 3554 /* Suitable for reserving if this block is movable */ 3555 if (block_migratetype == MIGRATE_MOVABLE) { 3556 set_pageblock_migratetype(page, 3557 MIGRATE_RESERVE); 3558 move_freepages_block(zone, page, 3559 MIGRATE_RESERVE); 3560 reserve--; 3561 continue; 3562 } 3563 } 3564 3565 /* 3566 * If the reserve is met and this is a previous reserved block, 3567 * take it back 3568 */ 3569 if (block_migratetype == MIGRATE_RESERVE) { 3570 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3571 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3572 } 3573 } 3574 } 3575 3576 /* 3577 * Initially all pages are reserved - free ones are freed 3578 * up by free_all_bootmem() once the early boot process is 3579 * done. Non-atomic initialization, single-pass. 3580 */ 3581 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3582 unsigned long start_pfn, enum memmap_context context) 3583 { 3584 struct page *page; 3585 unsigned long end_pfn = start_pfn + size; 3586 unsigned long pfn; 3587 struct zone *z; 3588 3589 if (highest_memmap_pfn < end_pfn - 1) 3590 highest_memmap_pfn = end_pfn - 1; 3591 3592 z = &NODE_DATA(nid)->node_zones[zone]; 3593 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3594 /* 3595 * There can be holes in boot-time mem_map[]s 3596 * handed to this function. They do not 3597 * exist on hotplugged memory. 3598 */ 3599 if (context == MEMMAP_EARLY) { 3600 if (!early_pfn_valid(pfn)) 3601 continue; 3602 if (!early_pfn_in_nid(pfn, nid)) 3603 continue; 3604 } 3605 page = pfn_to_page(pfn); 3606 set_page_links(page, zone, nid, pfn); 3607 mminit_verify_page_links(page, zone, nid, pfn); 3608 init_page_count(page); 3609 reset_page_mapcount(page); 3610 SetPageReserved(page); 3611 /* 3612 * Mark the block movable so that blocks are reserved for 3613 * movable at startup. This will force kernel allocations 3614 * to reserve their blocks rather than leaking throughout 3615 * the address space during boot when many long-lived 3616 * kernel allocations are made. Later some blocks near 3617 * the start are marked MIGRATE_RESERVE by 3618 * setup_zone_migrate_reserve() 3619 * 3620 * bitmap is created for zone's valid pfn range. but memmap 3621 * can be created for invalid pages (for alignment) 3622 * check here not to call set_pageblock_migratetype() against 3623 * pfn out of zone. 3624 */ 3625 if ((z->zone_start_pfn <= pfn) 3626 && (pfn < z->zone_start_pfn + z->spanned_pages) 3627 && !(pfn & (pageblock_nr_pages - 1))) 3628 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3629 3630 INIT_LIST_HEAD(&page->lru); 3631 #ifdef WANT_PAGE_VIRTUAL 3632 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3633 if (!is_highmem_idx(zone)) 3634 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3635 #endif 3636 } 3637 } 3638 3639 static void __meminit zone_init_free_lists(struct zone *zone) 3640 { 3641 int order, t; 3642 for_each_migratetype_order(order, t) { 3643 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3644 zone->free_area[order].nr_free = 0; 3645 } 3646 } 3647 3648 #ifndef __HAVE_ARCH_MEMMAP_INIT 3649 #define memmap_init(size, nid, zone, start_pfn) \ 3650 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3651 #endif 3652 3653 static int zone_batchsize(struct zone *zone) 3654 { 3655 #ifdef CONFIG_MMU 3656 int batch; 3657 3658 /* 3659 * The per-cpu-pages pools are set to around 1000th of the 3660 * size of the zone. But no more than 1/2 of a meg. 3661 * 3662 * OK, so we don't know how big the cache is. So guess. 3663 */ 3664 batch = zone->present_pages / 1024; 3665 if (batch * PAGE_SIZE > 512 * 1024) 3666 batch = (512 * 1024) / PAGE_SIZE; 3667 batch /= 4; /* We effectively *= 4 below */ 3668 if (batch < 1) 3669 batch = 1; 3670 3671 /* 3672 * Clamp the batch to a 2^n - 1 value. Having a power 3673 * of 2 value was found to be more likely to have 3674 * suboptimal cache aliasing properties in some cases. 3675 * 3676 * For example if 2 tasks are alternately allocating 3677 * batches of pages, one task can end up with a lot 3678 * of pages of one half of the possible page colors 3679 * and the other with pages of the other colors. 3680 */ 3681 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3682 3683 return batch; 3684 3685 #else 3686 /* The deferral and batching of frees should be suppressed under NOMMU 3687 * conditions. 3688 * 3689 * The problem is that NOMMU needs to be able to allocate large chunks 3690 * of contiguous memory as there's no hardware page translation to 3691 * assemble apparent contiguous memory from discontiguous pages. 3692 * 3693 * Queueing large contiguous runs of pages for batching, however, 3694 * causes the pages to actually be freed in smaller chunks. As there 3695 * can be a significant delay between the individual batches being 3696 * recycled, this leads to the once large chunks of space being 3697 * fragmented and becoming unavailable for high-order allocations. 3698 */ 3699 return 0; 3700 #endif 3701 } 3702 3703 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3704 { 3705 struct per_cpu_pages *pcp; 3706 int migratetype; 3707 3708 memset(p, 0, sizeof(*p)); 3709 3710 pcp = &p->pcp; 3711 pcp->count = 0; 3712 pcp->high = 6 * batch; 3713 pcp->batch = max(1UL, 1 * batch); 3714 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3715 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3716 } 3717 3718 /* 3719 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3720 * to the value high for the pageset p. 3721 */ 3722 3723 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3724 unsigned long high) 3725 { 3726 struct per_cpu_pages *pcp; 3727 3728 pcp = &p->pcp; 3729 pcp->high = high; 3730 pcp->batch = max(1UL, high/4); 3731 if ((high/4) > (PAGE_SHIFT * 8)) 3732 pcp->batch = PAGE_SHIFT * 8; 3733 } 3734 3735 static void setup_zone_pageset(struct zone *zone) 3736 { 3737 int cpu; 3738 3739 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3740 3741 for_each_possible_cpu(cpu) { 3742 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3743 3744 setup_pageset(pcp, zone_batchsize(zone)); 3745 3746 if (percpu_pagelist_fraction) 3747 setup_pagelist_highmark(pcp, 3748 (zone->present_pages / 3749 percpu_pagelist_fraction)); 3750 } 3751 } 3752 3753 /* 3754 * Allocate per cpu pagesets and initialize them. 3755 * Before this call only boot pagesets were available. 3756 */ 3757 void __init setup_per_cpu_pageset(void) 3758 { 3759 struct zone *zone; 3760 3761 for_each_populated_zone(zone) 3762 setup_zone_pageset(zone); 3763 } 3764 3765 static noinline __init_refok 3766 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3767 { 3768 int i; 3769 struct pglist_data *pgdat = zone->zone_pgdat; 3770 size_t alloc_size; 3771 3772 /* 3773 * The per-page waitqueue mechanism uses hashed waitqueues 3774 * per zone. 3775 */ 3776 zone->wait_table_hash_nr_entries = 3777 wait_table_hash_nr_entries(zone_size_pages); 3778 zone->wait_table_bits = 3779 wait_table_bits(zone->wait_table_hash_nr_entries); 3780 alloc_size = zone->wait_table_hash_nr_entries 3781 * sizeof(wait_queue_head_t); 3782 3783 if (!slab_is_available()) { 3784 zone->wait_table = (wait_queue_head_t *) 3785 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3786 } else { 3787 /* 3788 * This case means that a zone whose size was 0 gets new memory 3789 * via memory hot-add. 3790 * But it may be the case that a new node was hot-added. In 3791 * this case vmalloc() will not be able to use this new node's 3792 * memory - this wait_table must be initialized to use this new 3793 * node itself as well. 3794 * To use this new node's memory, further consideration will be 3795 * necessary. 3796 */ 3797 zone->wait_table = vmalloc(alloc_size); 3798 } 3799 if (!zone->wait_table) 3800 return -ENOMEM; 3801 3802 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3803 init_waitqueue_head(zone->wait_table + i); 3804 3805 return 0; 3806 } 3807 3808 static int __zone_pcp_update(void *data) 3809 { 3810 struct zone *zone = data; 3811 int cpu; 3812 unsigned long batch = zone_batchsize(zone), flags; 3813 3814 for_each_possible_cpu(cpu) { 3815 struct per_cpu_pageset *pset; 3816 struct per_cpu_pages *pcp; 3817 3818 pset = per_cpu_ptr(zone->pageset, cpu); 3819 pcp = &pset->pcp; 3820 3821 local_irq_save(flags); 3822 free_pcppages_bulk(zone, pcp->count, pcp); 3823 setup_pageset(pset, batch); 3824 local_irq_restore(flags); 3825 } 3826 return 0; 3827 } 3828 3829 void zone_pcp_update(struct zone *zone) 3830 { 3831 stop_machine(__zone_pcp_update, zone, NULL); 3832 } 3833 3834 static __meminit void zone_pcp_init(struct zone *zone) 3835 { 3836 /* 3837 * per cpu subsystem is not up at this point. The following code 3838 * relies on the ability of the linker to provide the 3839 * offset of a (static) per cpu variable into the per cpu area. 3840 */ 3841 zone->pageset = &boot_pageset; 3842 3843 if (zone->present_pages) 3844 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3845 zone->name, zone->present_pages, 3846 zone_batchsize(zone)); 3847 } 3848 3849 __meminit int init_currently_empty_zone(struct zone *zone, 3850 unsigned long zone_start_pfn, 3851 unsigned long size, 3852 enum memmap_context context) 3853 { 3854 struct pglist_data *pgdat = zone->zone_pgdat; 3855 int ret; 3856 ret = zone_wait_table_init(zone, size); 3857 if (ret) 3858 return ret; 3859 pgdat->nr_zones = zone_idx(zone) + 1; 3860 3861 zone->zone_start_pfn = zone_start_pfn; 3862 3863 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3864 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3865 pgdat->node_id, 3866 (unsigned long)zone_idx(zone), 3867 zone_start_pfn, (zone_start_pfn + size)); 3868 3869 zone_init_free_lists(zone); 3870 3871 return 0; 3872 } 3873 3874 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 3875 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3876 /* 3877 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3878 * Architectures may implement their own version but if add_active_range() 3879 * was used and there are no special requirements, this is a convenient 3880 * alternative 3881 */ 3882 int __meminit __early_pfn_to_nid(unsigned long pfn) 3883 { 3884 unsigned long start_pfn, end_pfn; 3885 int i, nid; 3886 3887 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 3888 if (start_pfn <= pfn && pfn < end_pfn) 3889 return nid; 3890 /* This is a memory hole */ 3891 return -1; 3892 } 3893 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3894 3895 int __meminit early_pfn_to_nid(unsigned long pfn) 3896 { 3897 int nid; 3898 3899 nid = __early_pfn_to_nid(pfn); 3900 if (nid >= 0) 3901 return nid; 3902 /* just returns 0 */ 3903 return 0; 3904 } 3905 3906 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3907 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3908 { 3909 int nid; 3910 3911 nid = __early_pfn_to_nid(pfn); 3912 if (nid >= 0 && nid != node) 3913 return false; 3914 return true; 3915 } 3916 #endif 3917 3918 /** 3919 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3920 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3921 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3922 * 3923 * If an architecture guarantees that all ranges registered with 3924 * add_active_ranges() contain no holes and may be freed, this 3925 * this function may be used instead of calling free_bootmem() manually. 3926 */ 3927 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 3928 { 3929 unsigned long start_pfn, end_pfn; 3930 int i, this_nid; 3931 3932 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 3933 start_pfn = min(start_pfn, max_low_pfn); 3934 end_pfn = min(end_pfn, max_low_pfn); 3935 3936 if (start_pfn < end_pfn) 3937 free_bootmem_node(NODE_DATA(this_nid), 3938 PFN_PHYS(start_pfn), 3939 (end_pfn - start_pfn) << PAGE_SHIFT); 3940 } 3941 } 3942 3943 /** 3944 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3945 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3946 * 3947 * If an architecture guarantees that all ranges registered with 3948 * add_active_ranges() contain no holes and may be freed, this 3949 * function may be used instead of calling memory_present() manually. 3950 */ 3951 void __init sparse_memory_present_with_active_regions(int nid) 3952 { 3953 unsigned long start_pfn, end_pfn; 3954 int i, this_nid; 3955 3956 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 3957 memory_present(this_nid, start_pfn, end_pfn); 3958 } 3959 3960 /** 3961 * get_pfn_range_for_nid - Return the start and end page frames for a node 3962 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3963 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3964 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3965 * 3966 * It returns the start and end page frame of a node based on information 3967 * provided by an arch calling add_active_range(). If called for a node 3968 * with no available memory, a warning is printed and the start and end 3969 * PFNs will be 0. 3970 */ 3971 void __meminit get_pfn_range_for_nid(unsigned int nid, 3972 unsigned long *start_pfn, unsigned long *end_pfn) 3973 { 3974 unsigned long this_start_pfn, this_end_pfn; 3975 int i; 3976 3977 *start_pfn = -1UL; 3978 *end_pfn = 0; 3979 3980 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 3981 *start_pfn = min(*start_pfn, this_start_pfn); 3982 *end_pfn = max(*end_pfn, this_end_pfn); 3983 } 3984 3985 if (*start_pfn == -1UL) 3986 *start_pfn = 0; 3987 } 3988 3989 /* 3990 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3991 * assumption is made that zones within a node are ordered in monotonic 3992 * increasing memory addresses so that the "highest" populated zone is used 3993 */ 3994 static void __init find_usable_zone_for_movable(void) 3995 { 3996 int zone_index; 3997 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3998 if (zone_index == ZONE_MOVABLE) 3999 continue; 4000 4001 if (arch_zone_highest_possible_pfn[zone_index] > 4002 arch_zone_lowest_possible_pfn[zone_index]) 4003 break; 4004 } 4005 4006 VM_BUG_ON(zone_index == -1); 4007 movable_zone = zone_index; 4008 } 4009 4010 /* 4011 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4012 * because it is sized independent of architecture. Unlike the other zones, 4013 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4014 * in each node depending on the size of each node and how evenly kernelcore 4015 * is distributed. This helper function adjusts the zone ranges 4016 * provided by the architecture for a given node by using the end of the 4017 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4018 * zones within a node are in order of monotonic increases memory addresses 4019 */ 4020 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4021 unsigned long zone_type, 4022 unsigned long node_start_pfn, 4023 unsigned long node_end_pfn, 4024 unsigned long *zone_start_pfn, 4025 unsigned long *zone_end_pfn) 4026 { 4027 /* Only adjust if ZONE_MOVABLE is on this node */ 4028 if (zone_movable_pfn[nid]) { 4029 /* Size ZONE_MOVABLE */ 4030 if (zone_type == ZONE_MOVABLE) { 4031 *zone_start_pfn = zone_movable_pfn[nid]; 4032 *zone_end_pfn = min(node_end_pfn, 4033 arch_zone_highest_possible_pfn[movable_zone]); 4034 4035 /* Adjust for ZONE_MOVABLE starting within this range */ 4036 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4037 *zone_end_pfn > zone_movable_pfn[nid]) { 4038 *zone_end_pfn = zone_movable_pfn[nid]; 4039 4040 /* Check if this whole range is within ZONE_MOVABLE */ 4041 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4042 *zone_start_pfn = *zone_end_pfn; 4043 } 4044 } 4045 4046 /* 4047 * Return the number of pages a zone spans in a node, including holes 4048 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4049 */ 4050 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4051 unsigned long zone_type, 4052 unsigned long *ignored) 4053 { 4054 unsigned long node_start_pfn, node_end_pfn; 4055 unsigned long zone_start_pfn, zone_end_pfn; 4056 4057 /* Get the start and end of the node and zone */ 4058 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4059 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4060 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4061 adjust_zone_range_for_zone_movable(nid, zone_type, 4062 node_start_pfn, node_end_pfn, 4063 &zone_start_pfn, &zone_end_pfn); 4064 4065 /* Check that this node has pages within the zone's required range */ 4066 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4067 return 0; 4068 4069 /* Move the zone boundaries inside the node if necessary */ 4070 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4071 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4072 4073 /* Return the spanned pages */ 4074 return zone_end_pfn - zone_start_pfn; 4075 } 4076 4077 /* 4078 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4079 * then all holes in the requested range will be accounted for. 4080 */ 4081 unsigned long __meminit __absent_pages_in_range(int nid, 4082 unsigned long range_start_pfn, 4083 unsigned long range_end_pfn) 4084 { 4085 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4086 unsigned long start_pfn, end_pfn; 4087 int i; 4088 4089 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4090 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4091 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4092 nr_absent -= end_pfn - start_pfn; 4093 } 4094 return nr_absent; 4095 } 4096 4097 /** 4098 * absent_pages_in_range - Return number of page frames in holes within a range 4099 * @start_pfn: The start PFN to start searching for holes 4100 * @end_pfn: The end PFN to stop searching for holes 4101 * 4102 * It returns the number of pages frames in memory holes within a range. 4103 */ 4104 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4105 unsigned long end_pfn) 4106 { 4107 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4108 } 4109 4110 /* Return the number of page frames in holes in a zone on a node */ 4111 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4112 unsigned long zone_type, 4113 unsigned long *ignored) 4114 { 4115 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4116 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4117 unsigned long node_start_pfn, node_end_pfn; 4118 unsigned long zone_start_pfn, zone_end_pfn; 4119 4120 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4121 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4122 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4123 4124 adjust_zone_range_for_zone_movable(nid, zone_type, 4125 node_start_pfn, node_end_pfn, 4126 &zone_start_pfn, &zone_end_pfn); 4127 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4128 } 4129 4130 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4131 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4132 unsigned long zone_type, 4133 unsigned long *zones_size) 4134 { 4135 return zones_size[zone_type]; 4136 } 4137 4138 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4139 unsigned long zone_type, 4140 unsigned long *zholes_size) 4141 { 4142 if (!zholes_size) 4143 return 0; 4144 4145 return zholes_size[zone_type]; 4146 } 4147 4148 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4149 4150 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4151 unsigned long *zones_size, unsigned long *zholes_size) 4152 { 4153 unsigned long realtotalpages, totalpages = 0; 4154 enum zone_type i; 4155 4156 for (i = 0; i < MAX_NR_ZONES; i++) 4157 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4158 zones_size); 4159 pgdat->node_spanned_pages = totalpages; 4160 4161 realtotalpages = totalpages; 4162 for (i = 0; i < MAX_NR_ZONES; i++) 4163 realtotalpages -= 4164 zone_absent_pages_in_node(pgdat->node_id, i, 4165 zholes_size); 4166 pgdat->node_present_pages = realtotalpages; 4167 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4168 realtotalpages); 4169 } 4170 4171 #ifndef CONFIG_SPARSEMEM 4172 /* 4173 * Calculate the size of the zone->blockflags rounded to an unsigned long 4174 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4175 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4176 * round what is now in bits to nearest long in bits, then return it in 4177 * bytes. 4178 */ 4179 static unsigned long __init usemap_size(unsigned long zonesize) 4180 { 4181 unsigned long usemapsize; 4182 4183 usemapsize = roundup(zonesize, pageblock_nr_pages); 4184 usemapsize = usemapsize >> pageblock_order; 4185 usemapsize *= NR_PAGEBLOCK_BITS; 4186 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4187 4188 return usemapsize / 8; 4189 } 4190 4191 static void __init setup_usemap(struct pglist_data *pgdat, 4192 struct zone *zone, unsigned long zonesize) 4193 { 4194 unsigned long usemapsize = usemap_size(zonesize); 4195 zone->pageblock_flags = NULL; 4196 if (usemapsize) 4197 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4198 usemapsize); 4199 } 4200 #else 4201 static inline void setup_usemap(struct pglist_data *pgdat, 4202 struct zone *zone, unsigned long zonesize) {} 4203 #endif /* CONFIG_SPARSEMEM */ 4204 4205 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4206 4207 /* Return a sensible default order for the pageblock size. */ 4208 static inline int pageblock_default_order(void) 4209 { 4210 if (HPAGE_SHIFT > PAGE_SHIFT) 4211 return HUGETLB_PAGE_ORDER; 4212 4213 return MAX_ORDER-1; 4214 } 4215 4216 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4217 static inline void __init set_pageblock_order(unsigned int order) 4218 { 4219 /* Check that pageblock_nr_pages has not already been setup */ 4220 if (pageblock_order) 4221 return; 4222 4223 /* 4224 * Assume the largest contiguous order of interest is a huge page. 4225 * This value may be variable depending on boot parameters on IA64 4226 */ 4227 pageblock_order = order; 4228 } 4229 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4230 4231 /* 4232 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4233 * and pageblock_default_order() are unused as pageblock_order is set 4234 * at compile-time. See include/linux/pageblock-flags.h for the values of 4235 * pageblock_order based on the kernel config 4236 */ 4237 static inline int pageblock_default_order(unsigned int order) 4238 { 4239 return MAX_ORDER-1; 4240 } 4241 #define set_pageblock_order(x) do {} while (0) 4242 4243 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4244 4245 /* 4246 * Set up the zone data structures: 4247 * - mark all pages reserved 4248 * - mark all memory queues empty 4249 * - clear the memory bitmaps 4250 */ 4251 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4252 unsigned long *zones_size, unsigned long *zholes_size) 4253 { 4254 enum zone_type j; 4255 int nid = pgdat->node_id; 4256 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4257 int ret; 4258 4259 pgdat_resize_init(pgdat); 4260 pgdat->nr_zones = 0; 4261 init_waitqueue_head(&pgdat->kswapd_wait); 4262 pgdat->kswapd_max_order = 0; 4263 pgdat_page_cgroup_init(pgdat); 4264 4265 for (j = 0; j < MAX_NR_ZONES; j++) { 4266 struct zone *zone = pgdat->node_zones + j; 4267 unsigned long size, realsize, memmap_pages; 4268 enum lru_list lru; 4269 4270 size = zone_spanned_pages_in_node(nid, j, zones_size); 4271 realsize = size - zone_absent_pages_in_node(nid, j, 4272 zholes_size); 4273 4274 /* 4275 * Adjust realsize so that it accounts for how much memory 4276 * is used by this zone for memmap. This affects the watermark 4277 * and per-cpu initialisations 4278 */ 4279 memmap_pages = 4280 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4281 if (realsize >= memmap_pages) { 4282 realsize -= memmap_pages; 4283 if (memmap_pages) 4284 printk(KERN_DEBUG 4285 " %s zone: %lu pages used for memmap\n", 4286 zone_names[j], memmap_pages); 4287 } else 4288 printk(KERN_WARNING 4289 " %s zone: %lu pages exceeds realsize %lu\n", 4290 zone_names[j], memmap_pages, realsize); 4291 4292 /* Account for reserved pages */ 4293 if (j == 0 && realsize > dma_reserve) { 4294 realsize -= dma_reserve; 4295 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4296 zone_names[0], dma_reserve); 4297 } 4298 4299 if (!is_highmem_idx(j)) 4300 nr_kernel_pages += realsize; 4301 nr_all_pages += realsize; 4302 4303 zone->spanned_pages = size; 4304 zone->present_pages = realsize; 4305 #ifdef CONFIG_NUMA 4306 zone->node = nid; 4307 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4308 / 100; 4309 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4310 #endif 4311 zone->name = zone_names[j]; 4312 spin_lock_init(&zone->lock); 4313 spin_lock_init(&zone->lru_lock); 4314 zone_seqlock_init(zone); 4315 zone->zone_pgdat = pgdat; 4316 4317 zone_pcp_init(zone); 4318 for_each_lru(lru) 4319 INIT_LIST_HEAD(&zone->lruvec.lists[lru]); 4320 zone->reclaim_stat.recent_rotated[0] = 0; 4321 zone->reclaim_stat.recent_rotated[1] = 0; 4322 zone->reclaim_stat.recent_scanned[0] = 0; 4323 zone->reclaim_stat.recent_scanned[1] = 0; 4324 zap_zone_vm_stats(zone); 4325 zone->flags = 0; 4326 if (!size) 4327 continue; 4328 4329 set_pageblock_order(pageblock_default_order()); 4330 setup_usemap(pgdat, zone, size); 4331 ret = init_currently_empty_zone(zone, zone_start_pfn, 4332 size, MEMMAP_EARLY); 4333 BUG_ON(ret); 4334 memmap_init(size, nid, j, zone_start_pfn); 4335 zone_start_pfn += size; 4336 } 4337 } 4338 4339 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4340 { 4341 /* Skip empty nodes */ 4342 if (!pgdat->node_spanned_pages) 4343 return; 4344 4345 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4346 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4347 if (!pgdat->node_mem_map) { 4348 unsigned long size, start, end; 4349 struct page *map; 4350 4351 /* 4352 * The zone's endpoints aren't required to be MAX_ORDER 4353 * aligned but the node_mem_map endpoints must be in order 4354 * for the buddy allocator to function correctly. 4355 */ 4356 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4357 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4358 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4359 size = (end - start) * sizeof(struct page); 4360 map = alloc_remap(pgdat->node_id, size); 4361 if (!map) 4362 map = alloc_bootmem_node_nopanic(pgdat, size); 4363 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4364 } 4365 #ifndef CONFIG_NEED_MULTIPLE_NODES 4366 /* 4367 * With no DISCONTIG, the global mem_map is just set as node 0's 4368 */ 4369 if (pgdat == NODE_DATA(0)) { 4370 mem_map = NODE_DATA(0)->node_mem_map; 4371 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4372 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4373 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4374 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4375 } 4376 #endif 4377 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4378 } 4379 4380 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4381 unsigned long node_start_pfn, unsigned long *zholes_size) 4382 { 4383 pg_data_t *pgdat = NODE_DATA(nid); 4384 4385 pgdat->node_id = nid; 4386 pgdat->node_start_pfn = node_start_pfn; 4387 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4388 4389 alloc_node_mem_map(pgdat); 4390 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4391 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4392 nid, (unsigned long)pgdat, 4393 (unsigned long)pgdat->node_mem_map); 4394 #endif 4395 4396 free_area_init_core(pgdat, zones_size, zholes_size); 4397 } 4398 4399 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4400 4401 #if MAX_NUMNODES > 1 4402 /* 4403 * Figure out the number of possible node ids. 4404 */ 4405 static void __init setup_nr_node_ids(void) 4406 { 4407 unsigned int node; 4408 unsigned int highest = 0; 4409 4410 for_each_node_mask(node, node_possible_map) 4411 highest = node; 4412 nr_node_ids = highest + 1; 4413 } 4414 #else 4415 static inline void setup_nr_node_ids(void) 4416 { 4417 } 4418 #endif 4419 4420 /** 4421 * node_map_pfn_alignment - determine the maximum internode alignment 4422 * 4423 * This function should be called after node map is populated and sorted. 4424 * It calculates the maximum power of two alignment which can distinguish 4425 * all the nodes. 4426 * 4427 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4428 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4429 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4430 * shifted, 1GiB is enough and this function will indicate so. 4431 * 4432 * This is used to test whether pfn -> nid mapping of the chosen memory 4433 * model has fine enough granularity to avoid incorrect mapping for the 4434 * populated node map. 4435 * 4436 * Returns the determined alignment in pfn's. 0 if there is no alignment 4437 * requirement (single node). 4438 */ 4439 unsigned long __init node_map_pfn_alignment(void) 4440 { 4441 unsigned long accl_mask = 0, last_end = 0; 4442 unsigned long start, end, mask; 4443 int last_nid = -1; 4444 int i, nid; 4445 4446 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4447 if (!start || last_nid < 0 || last_nid == nid) { 4448 last_nid = nid; 4449 last_end = end; 4450 continue; 4451 } 4452 4453 /* 4454 * Start with a mask granular enough to pin-point to the 4455 * start pfn and tick off bits one-by-one until it becomes 4456 * too coarse to separate the current node from the last. 4457 */ 4458 mask = ~((1 << __ffs(start)) - 1); 4459 while (mask && last_end <= (start & (mask << 1))) 4460 mask <<= 1; 4461 4462 /* accumulate all internode masks */ 4463 accl_mask |= mask; 4464 } 4465 4466 /* convert mask to number of pages */ 4467 return ~accl_mask + 1; 4468 } 4469 4470 /* Find the lowest pfn for a node */ 4471 static unsigned long __init find_min_pfn_for_node(int nid) 4472 { 4473 unsigned long min_pfn = ULONG_MAX; 4474 unsigned long start_pfn; 4475 int i; 4476 4477 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4478 min_pfn = min(min_pfn, start_pfn); 4479 4480 if (min_pfn == ULONG_MAX) { 4481 printk(KERN_WARNING 4482 "Could not find start_pfn for node %d\n", nid); 4483 return 0; 4484 } 4485 4486 return min_pfn; 4487 } 4488 4489 /** 4490 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4491 * 4492 * It returns the minimum PFN based on information provided via 4493 * add_active_range(). 4494 */ 4495 unsigned long __init find_min_pfn_with_active_regions(void) 4496 { 4497 return find_min_pfn_for_node(MAX_NUMNODES); 4498 } 4499 4500 /* 4501 * early_calculate_totalpages() 4502 * Sum pages in active regions for movable zone. 4503 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4504 */ 4505 static unsigned long __init early_calculate_totalpages(void) 4506 { 4507 unsigned long totalpages = 0; 4508 unsigned long start_pfn, end_pfn; 4509 int i, nid; 4510 4511 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4512 unsigned long pages = end_pfn - start_pfn; 4513 4514 totalpages += pages; 4515 if (pages) 4516 node_set_state(nid, N_HIGH_MEMORY); 4517 } 4518 return totalpages; 4519 } 4520 4521 /* 4522 * Find the PFN the Movable zone begins in each node. Kernel memory 4523 * is spread evenly between nodes as long as the nodes have enough 4524 * memory. When they don't, some nodes will have more kernelcore than 4525 * others 4526 */ 4527 static void __init find_zone_movable_pfns_for_nodes(void) 4528 { 4529 int i, nid; 4530 unsigned long usable_startpfn; 4531 unsigned long kernelcore_node, kernelcore_remaining; 4532 /* save the state before borrow the nodemask */ 4533 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4534 unsigned long totalpages = early_calculate_totalpages(); 4535 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4536 4537 /* 4538 * If movablecore was specified, calculate what size of 4539 * kernelcore that corresponds so that memory usable for 4540 * any allocation type is evenly spread. If both kernelcore 4541 * and movablecore are specified, then the value of kernelcore 4542 * will be used for required_kernelcore if it's greater than 4543 * what movablecore would have allowed. 4544 */ 4545 if (required_movablecore) { 4546 unsigned long corepages; 4547 4548 /* 4549 * Round-up so that ZONE_MOVABLE is at least as large as what 4550 * was requested by the user 4551 */ 4552 required_movablecore = 4553 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4554 corepages = totalpages - required_movablecore; 4555 4556 required_kernelcore = max(required_kernelcore, corepages); 4557 } 4558 4559 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4560 if (!required_kernelcore) 4561 goto out; 4562 4563 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4564 find_usable_zone_for_movable(); 4565 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4566 4567 restart: 4568 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4569 kernelcore_node = required_kernelcore / usable_nodes; 4570 for_each_node_state(nid, N_HIGH_MEMORY) { 4571 unsigned long start_pfn, end_pfn; 4572 4573 /* 4574 * Recalculate kernelcore_node if the division per node 4575 * now exceeds what is necessary to satisfy the requested 4576 * amount of memory for the kernel 4577 */ 4578 if (required_kernelcore < kernelcore_node) 4579 kernelcore_node = required_kernelcore / usable_nodes; 4580 4581 /* 4582 * As the map is walked, we track how much memory is usable 4583 * by the kernel using kernelcore_remaining. When it is 4584 * 0, the rest of the node is usable by ZONE_MOVABLE 4585 */ 4586 kernelcore_remaining = kernelcore_node; 4587 4588 /* Go through each range of PFNs within this node */ 4589 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4590 unsigned long size_pages; 4591 4592 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4593 if (start_pfn >= end_pfn) 4594 continue; 4595 4596 /* Account for what is only usable for kernelcore */ 4597 if (start_pfn < usable_startpfn) { 4598 unsigned long kernel_pages; 4599 kernel_pages = min(end_pfn, usable_startpfn) 4600 - start_pfn; 4601 4602 kernelcore_remaining -= min(kernel_pages, 4603 kernelcore_remaining); 4604 required_kernelcore -= min(kernel_pages, 4605 required_kernelcore); 4606 4607 /* Continue if range is now fully accounted */ 4608 if (end_pfn <= usable_startpfn) { 4609 4610 /* 4611 * Push zone_movable_pfn to the end so 4612 * that if we have to rebalance 4613 * kernelcore across nodes, we will 4614 * not double account here 4615 */ 4616 zone_movable_pfn[nid] = end_pfn; 4617 continue; 4618 } 4619 start_pfn = usable_startpfn; 4620 } 4621 4622 /* 4623 * The usable PFN range for ZONE_MOVABLE is from 4624 * start_pfn->end_pfn. Calculate size_pages as the 4625 * number of pages used as kernelcore 4626 */ 4627 size_pages = end_pfn - start_pfn; 4628 if (size_pages > kernelcore_remaining) 4629 size_pages = kernelcore_remaining; 4630 zone_movable_pfn[nid] = start_pfn + size_pages; 4631 4632 /* 4633 * Some kernelcore has been met, update counts and 4634 * break if the kernelcore for this node has been 4635 * satisified 4636 */ 4637 required_kernelcore -= min(required_kernelcore, 4638 size_pages); 4639 kernelcore_remaining -= size_pages; 4640 if (!kernelcore_remaining) 4641 break; 4642 } 4643 } 4644 4645 /* 4646 * If there is still required_kernelcore, we do another pass with one 4647 * less node in the count. This will push zone_movable_pfn[nid] further 4648 * along on the nodes that still have memory until kernelcore is 4649 * satisified 4650 */ 4651 usable_nodes--; 4652 if (usable_nodes && required_kernelcore > usable_nodes) 4653 goto restart; 4654 4655 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4656 for (nid = 0; nid < MAX_NUMNODES; nid++) 4657 zone_movable_pfn[nid] = 4658 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4659 4660 out: 4661 /* restore the node_state */ 4662 node_states[N_HIGH_MEMORY] = saved_node_state; 4663 } 4664 4665 /* Any regular memory on that node ? */ 4666 static void check_for_regular_memory(pg_data_t *pgdat) 4667 { 4668 #ifdef CONFIG_HIGHMEM 4669 enum zone_type zone_type; 4670 4671 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4672 struct zone *zone = &pgdat->node_zones[zone_type]; 4673 if (zone->present_pages) { 4674 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4675 break; 4676 } 4677 } 4678 #endif 4679 } 4680 4681 /** 4682 * free_area_init_nodes - Initialise all pg_data_t and zone data 4683 * @max_zone_pfn: an array of max PFNs for each zone 4684 * 4685 * This will call free_area_init_node() for each active node in the system. 4686 * Using the page ranges provided by add_active_range(), the size of each 4687 * zone in each node and their holes is calculated. If the maximum PFN 4688 * between two adjacent zones match, it is assumed that the zone is empty. 4689 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4690 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4691 * starts where the previous one ended. For example, ZONE_DMA32 starts 4692 * at arch_max_dma_pfn. 4693 */ 4694 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4695 { 4696 unsigned long start_pfn, end_pfn; 4697 int i, nid; 4698 4699 /* Record where the zone boundaries are */ 4700 memset(arch_zone_lowest_possible_pfn, 0, 4701 sizeof(arch_zone_lowest_possible_pfn)); 4702 memset(arch_zone_highest_possible_pfn, 0, 4703 sizeof(arch_zone_highest_possible_pfn)); 4704 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4705 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4706 for (i = 1; i < MAX_NR_ZONES; i++) { 4707 if (i == ZONE_MOVABLE) 4708 continue; 4709 arch_zone_lowest_possible_pfn[i] = 4710 arch_zone_highest_possible_pfn[i-1]; 4711 arch_zone_highest_possible_pfn[i] = 4712 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4713 } 4714 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4715 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4716 4717 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4718 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4719 find_zone_movable_pfns_for_nodes(); 4720 4721 /* Print out the zone ranges */ 4722 printk("Zone PFN ranges:\n"); 4723 for (i = 0; i < MAX_NR_ZONES; i++) { 4724 if (i == ZONE_MOVABLE) 4725 continue; 4726 printk(" %-8s ", zone_names[i]); 4727 if (arch_zone_lowest_possible_pfn[i] == 4728 arch_zone_highest_possible_pfn[i]) 4729 printk("empty\n"); 4730 else 4731 printk("%0#10lx -> %0#10lx\n", 4732 arch_zone_lowest_possible_pfn[i], 4733 arch_zone_highest_possible_pfn[i]); 4734 } 4735 4736 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4737 printk("Movable zone start PFN for each node\n"); 4738 for (i = 0; i < MAX_NUMNODES; i++) { 4739 if (zone_movable_pfn[i]) 4740 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4741 } 4742 4743 /* Print out the early_node_map[] */ 4744 printk("Early memory PFN ranges\n"); 4745 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4746 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn); 4747 4748 /* Initialise every node */ 4749 mminit_verify_pageflags_layout(); 4750 setup_nr_node_ids(); 4751 for_each_online_node(nid) { 4752 pg_data_t *pgdat = NODE_DATA(nid); 4753 free_area_init_node(nid, NULL, 4754 find_min_pfn_for_node(nid), NULL); 4755 4756 /* Any memory on that node */ 4757 if (pgdat->node_present_pages) 4758 node_set_state(nid, N_HIGH_MEMORY); 4759 check_for_regular_memory(pgdat); 4760 } 4761 } 4762 4763 static int __init cmdline_parse_core(char *p, unsigned long *core) 4764 { 4765 unsigned long long coremem; 4766 if (!p) 4767 return -EINVAL; 4768 4769 coremem = memparse(p, &p); 4770 *core = coremem >> PAGE_SHIFT; 4771 4772 /* Paranoid check that UL is enough for the coremem value */ 4773 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4774 4775 return 0; 4776 } 4777 4778 /* 4779 * kernelcore=size sets the amount of memory for use for allocations that 4780 * cannot be reclaimed or migrated. 4781 */ 4782 static int __init cmdline_parse_kernelcore(char *p) 4783 { 4784 return cmdline_parse_core(p, &required_kernelcore); 4785 } 4786 4787 /* 4788 * movablecore=size sets the amount of memory for use for allocations that 4789 * can be reclaimed or migrated. 4790 */ 4791 static int __init cmdline_parse_movablecore(char *p) 4792 { 4793 return cmdline_parse_core(p, &required_movablecore); 4794 } 4795 4796 early_param("kernelcore", cmdline_parse_kernelcore); 4797 early_param("movablecore", cmdline_parse_movablecore); 4798 4799 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4800 4801 /** 4802 * set_dma_reserve - set the specified number of pages reserved in the first zone 4803 * @new_dma_reserve: The number of pages to mark reserved 4804 * 4805 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4806 * In the DMA zone, a significant percentage may be consumed by kernel image 4807 * and other unfreeable allocations which can skew the watermarks badly. This 4808 * function may optionally be used to account for unfreeable pages in the 4809 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4810 * smaller per-cpu batchsize. 4811 */ 4812 void __init set_dma_reserve(unsigned long new_dma_reserve) 4813 { 4814 dma_reserve = new_dma_reserve; 4815 } 4816 4817 void __init free_area_init(unsigned long *zones_size) 4818 { 4819 free_area_init_node(0, zones_size, 4820 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4821 } 4822 4823 static int page_alloc_cpu_notify(struct notifier_block *self, 4824 unsigned long action, void *hcpu) 4825 { 4826 int cpu = (unsigned long)hcpu; 4827 4828 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4829 lru_add_drain_cpu(cpu); 4830 drain_pages(cpu); 4831 4832 /* 4833 * Spill the event counters of the dead processor 4834 * into the current processors event counters. 4835 * This artificially elevates the count of the current 4836 * processor. 4837 */ 4838 vm_events_fold_cpu(cpu); 4839 4840 /* 4841 * Zero the differential counters of the dead processor 4842 * so that the vm statistics are consistent. 4843 * 4844 * This is only okay since the processor is dead and cannot 4845 * race with what we are doing. 4846 */ 4847 refresh_cpu_vm_stats(cpu); 4848 } 4849 return NOTIFY_OK; 4850 } 4851 4852 void __init page_alloc_init(void) 4853 { 4854 hotcpu_notifier(page_alloc_cpu_notify, 0); 4855 } 4856 4857 /* 4858 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4859 * or min_free_kbytes changes. 4860 */ 4861 static void calculate_totalreserve_pages(void) 4862 { 4863 struct pglist_data *pgdat; 4864 unsigned long reserve_pages = 0; 4865 enum zone_type i, j; 4866 4867 for_each_online_pgdat(pgdat) { 4868 for (i = 0; i < MAX_NR_ZONES; i++) { 4869 struct zone *zone = pgdat->node_zones + i; 4870 unsigned long max = 0; 4871 4872 /* Find valid and maximum lowmem_reserve in the zone */ 4873 for (j = i; j < MAX_NR_ZONES; j++) { 4874 if (zone->lowmem_reserve[j] > max) 4875 max = zone->lowmem_reserve[j]; 4876 } 4877 4878 /* we treat the high watermark as reserved pages. */ 4879 max += high_wmark_pages(zone); 4880 4881 if (max > zone->present_pages) 4882 max = zone->present_pages; 4883 reserve_pages += max; 4884 /* 4885 * Lowmem reserves are not available to 4886 * GFP_HIGHUSER page cache allocations and 4887 * kswapd tries to balance zones to their high 4888 * watermark. As a result, neither should be 4889 * regarded as dirtyable memory, to prevent a 4890 * situation where reclaim has to clean pages 4891 * in order to balance the zones. 4892 */ 4893 zone->dirty_balance_reserve = max; 4894 } 4895 } 4896 dirty_balance_reserve = reserve_pages; 4897 totalreserve_pages = reserve_pages; 4898 } 4899 4900 /* 4901 * setup_per_zone_lowmem_reserve - called whenever 4902 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4903 * has a correct pages reserved value, so an adequate number of 4904 * pages are left in the zone after a successful __alloc_pages(). 4905 */ 4906 static void setup_per_zone_lowmem_reserve(void) 4907 { 4908 struct pglist_data *pgdat; 4909 enum zone_type j, idx; 4910 4911 for_each_online_pgdat(pgdat) { 4912 for (j = 0; j < MAX_NR_ZONES; j++) { 4913 struct zone *zone = pgdat->node_zones + j; 4914 unsigned long present_pages = zone->present_pages; 4915 4916 zone->lowmem_reserve[j] = 0; 4917 4918 idx = j; 4919 while (idx) { 4920 struct zone *lower_zone; 4921 4922 idx--; 4923 4924 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4925 sysctl_lowmem_reserve_ratio[idx] = 1; 4926 4927 lower_zone = pgdat->node_zones + idx; 4928 lower_zone->lowmem_reserve[j] = present_pages / 4929 sysctl_lowmem_reserve_ratio[idx]; 4930 present_pages += lower_zone->present_pages; 4931 } 4932 } 4933 } 4934 4935 /* update totalreserve_pages */ 4936 calculate_totalreserve_pages(); 4937 } 4938 4939 /** 4940 * setup_per_zone_wmarks - called when min_free_kbytes changes 4941 * or when memory is hot-{added|removed} 4942 * 4943 * Ensures that the watermark[min,low,high] values for each zone are set 4944 * correctly with respect to min_free_kbytes. 4945 */ 4946 void setup_per_zone_wmarks(void) 4947 { 4948 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4949 unsigned long lowmem_pages = 0; 4950 struct zone *zone; 4951 unsigned long flags; 4952 4953 /* Calculate total number of !ZONE_HIGHMEM pages */ 4954 for_each_zone(zone) { 4955 if (!is_highmem(zone)) 4956 lowmem_pages += zone->present_pages; 4957 } 4958 4959 for_each_zone(zone) { 4960 u64 tmp; 4961 4962 spin_lock_irqsave(&zone->lock, flags); 4963 tmp = (u64)pages_min * zone->present_pages; 4964 do_div(tmp, lowmem_pages); 4965 if (is_highmem(zone)) { 4966 /* 4967 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4968 * need highmem pages, so cap pages_min to a small 4969 * value here. 4970 * 4971 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4972 * deltas controls asynch page reclaim, and so should 4973 * not be capped for highmem. 4974 */ 4975 int min_pages; 4976 4977 min_pages = zone->present_pages / 1024; 4978 if (min_pages < SWAP_CLUSTER_MAX) 4979 min_pages = SWAP_CLUSTER_MAX; 4980 if (min_pages > 128) 4981 min_pages = 128; 4982 zone->watermark[WMARK_MIN] = min_pages; 4983 } else { 4984 /* 4985 * If it's a lowmem zone, reserve a number of pages 4986 * proportionate to the zone's size. 4987 */ 4988 zone->watermark[WMARK_MIN] = tmp; 4989 } 4990 4991 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4992 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4993 setup_zone_migrate_reserve(zone); 4994 spin_unlock_irqrestore(&zone->lock, flags); 4995 } 4996 4997 /* update totalreserve_pages */ 4998 calculate_totalreserve_pages(); 4999 } 5000 5001 /* 5002 * The inactive anon list should be small enough that the VM never has to 5003 * do too much work, but large enough that each inactive page has a chance 5004 * to be referenced again before it is swapped out. 5005 * 5006 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5007 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5008 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5009 * the anonymous pages are kept on the inactive list. 5010 * 5011 * total target max 5012 * memory ratio inactive anon 5013 * ------------------------------------- 5014 * 10MB 1 5MB 5015 * 100MB 1 50MB 5016 * 1GB 3 250MB 5017 * 10GB 10 0.9GB 5018 * 100GB 31 3GB 5019 * 1TB 101 10GB 5020 * 10TB 320 32GB 5021 */ 5022 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5023 { 5024 unsigned int gb, ratio; 5025 5026 /* Zone size in gigabytes */ 5027 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5028 if (gb) 5029 ratio = int_sqrt(10 * gb); 5030 else 5031 ratio = 1; 5032 5033 zone->inactive_ratio = ratio; 5034 } 5035 5036 static void __meminit setup_per_zone_inactive_ratio(void) 5037 { 5038 struct zone *zone; 5039 5040 for_each_zone(zone) 5041 calculate_zone_inactive_ratio(zone); 5042 } 5043 5044 /* 5045 * Initialise min_free_kbytes. 5046 * 5047 * For small machines we want it small (128k min). For large machines 5048 * we want it large (64MB max). But it is not linear, because network 5049 * bandwidth does not increase linearly with machine size. We use 5050 * 5051 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5052 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5053 * 5054 * which yields 5055 * 5056 * 16MB: 512k 5057 * 32MB: 724k 5058 * 64MB: 1024k 5059 * 128MB: 1448k 5060 * 256MB: 2048k 5061 * 512MB: 2896k 5062 * 1024MB: 4096k 5063 * 2048MB: 5792k 5064 * 4096MB: 8192k 5065 * 8192MB: 11584k 5066 * 16384MB: 16384k 5067 */ 5068 int __meminit init_per_zone_wmark_min(void) 5069 { 5070 unsigned long lowmem_kbytes; 5071 5072 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5073 5074 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5075 if (min_free_kbytes < 128) 5076 min_free_kbytes = 128; 5077 if (min_free_kbytes > 65536) 5078 min_free_kbytes = 65536; 5079 setup_per_zone_wmarks(); 5080 refresh_zone_stat_thresholds(); 5081 setup_per_zone_lowmem_reserve(); 5082 setup_per_zone_inactive_ratio(); 5083 return 0; 5084 } 5085 module_init(init_per_zone_wmark_min) 5086 5087 /* 5088 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5089 * that we can call two helper functions whenever min_free_kbytes 5090 * changes. 5091 */ 5092 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5093 void __user *buffer, size_t *length, loff_t *ppos) 5094 { 5095 proc_dointvec(table, write, buffer, length, ppos); 5096 if (write) 5097 setup_per_zone_wmarks(); 5098 return 0; 5099 } 5100 5101 #ifdef CONFIG_NUMA 5102 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5103 void __user *buffer, size_t *length, loff_t *ppos) 5104 { 5105 struct zone *zone; 5106 int rc; 5107 5108 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5109 if (rc) 5110 return rc; 5111 5112 for_each_zone(zone) 5113 zone->min_unmapped_pages = (zone->present_pages * 5114 sysctl_min_unmapped_ratio) / 100; 5115 return 0; 5116 } 5117 5118 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5119 void __user *buffer, size_t *length, loff_t *ppos) 5120 { 5121 struct zone *zone; 5122 int rc; 5123 5124 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5125 if (rc) 5126 return rc; 5127 5128 for_each_zone(zone) 5129 zone->min_slab_pages = (zone->present_pages * 5130 sysctl_min_slab_ratio) / 100; 5131 return 0; 5132 } 5133 #endif 5134 5135 /* 5136 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5137 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5138 * whenever sysctl_lowmem_reserve_ratio changes. 5139 * 5140 * The reserve ratio obviously has absolutely no relation with the 5141 * minimum watermarks. The lowmem reserve ratio can only make sense 5142 * if in function of the boot time zone sizes. 5143 */ 5144 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5145 void __user *buffer, size_t *length, loff_t *ppos) 5146 { 5147 proc_dointvec_minmax(table, write, buffer, length, ppos); 5148 setup_per_zone_lowmem_reserve(); 5149 return 0; 5150 } 5151 5152 /* 5153 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5154 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5155 * can have before it gets flushed back to buddy allocator. 5156 */ 5157 5158 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5159 void __user *buffer, size_t *length, loff_t *ppos) 5160 { 5161 struct zone *zone; 5162 unsigned int cpu; 5163 int ret; 5164 5165 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5166 if (!write || (ret == -EINVAL)) 5167 return ret; 5168 for_each_populated_zone(zone) { 5169 for_each_possible_cpu(cpu) { 5170 unsigned long high; 5171 high = zone->present_pages / percpu_pagelist_fraction; 5172 setup_pagelist_highmark( 5173 per_cpu_ptr(zone->pageset, cpu), high); 5174 } 5175 } 5176 return 0; 5177 } 5178 5179 int hashdist = HASHDIST_DEFAULT; 5180 5181 #ifdef CONFIG_NUMA 5182 static int __init set_hashdist(char *str) 5183 { 5184 if (!str) 5185 return 0; 5186 hashdist = simple_strtoul(str, &str, 0); 5187 return 1; 5188 } 5189 __setup("hashdist=", set_hashdist); 5190 #endif 5191 5192 /* 5193 * allocate a large system hash table from bootmem 5194 * - it is assumed that the hash table must contain an exact power-of-2 5195 * quantity of entries 5196 * - limit is the number of hash buckets, not the total allocation size 5197 */ 5198 void *__init alloc_large_system_hash(const char *tablename, 5199 unsigned long bucketsize, 5200 unsigned long numentries, 5201 int scale, 5202 int flags, 5203 unsigned int *_hash_shift, 5204 unsigned int *_hash_mask, 5205 unsigned long limit) 5206 { 5207 unsigned long long max = limit; 5208 unsigned long log2qty, size; 5209 void *table = NULL; 5210 5211 /* allow the kernel cmdline to have a say */ 5212 if (!numentries) { 5213 /* round applicable memory size up to nearest megabyte */ 5214 numentries = nr_kernel_pages; 5215 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5216 numentries >>= 20 - PAGE_SHIFT; 5217 numentries <<= 20 - PAGE_SHIFT; 5218 5219 /* limit to 1 bucket per 2^scale bytes of low memory */ 5220 if (scale > PAGE_SHIFT) 5221 numentries >>= (scale - PAGE_SHIFT); 5222 else 5223 numentries <<= (PAGE_SHIFT - scale); 5224 5225 /* Make sure we've got at least a 0-order allocation.. */ 5226 if (unlikely(flags & HASH_SMALL)) { 5227 /* Makes no sense without HASH_EARLY */ 5228 WARN_ON(!(flags & HASH_EARLY)); 5229 if (!(numentries >> *_hash_shift)) { 5230 numentries = 1UL << *_hash_shift; 5231 BUG_ON(!numentries); 5232 } 5233 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5234 numentries = PAGE_SIZE / bucketsize; 5235 } 5236 numentries = roundup_pow_of_two(numentries); 5237 5238 /* limit allocation size to 1/16 total memory by default */ 5239 if (max == 0) { 5240 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5241 do_div(max, bucketsize); 5242 } 5243 max = min(max, 0x80000000ULL); 5244 5245 if (numentries > max) 5246 numentries = max; 5247 5248 log2qty = ilog2(numentries); 5249 5250 do { 5251 size = bucketsize << log2qty; 5252 if (flags & HASH_EARLY) 5253 table = alloc_bootmem_nopanic(size); 5254 else if (hashdist) 5255 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5256 else { 5257 /* 5258 * If bucketsize is not a power-of-two, we may free 5259 * some pages at the end of hash table which 5260 * alloc_pages_exact() automatically does 5261 */ 5262 if (get_order(size) < MAX_ORDER) { 5263 table = alloc_pages_exact(size, GFP_ATOMIC); 5264 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5265 } 5266 } 5267 } while (!table && size > PAGE_SIZE && --log2qty); 5268 5269 if (!table) 5270 panic("Failed to allocate %s hash table\n", tablename); 5271 5272 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5273 tablename, 5274 (1UL << log2qty), 5275 ilog2(size) - PAGE_SHIFT, 5276 size); 5277 5278 if (_hash_shift) 5279 *_hash_shift = log2qty; 5280 if (_hash_mask) 5281 *_hash_mask = (1 << log2qty) - 1; 5282 5283 return table; 5284 } 5285 5286 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5287 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5288 unsigned long pfn) 5289 { 5290 #ifdef CONFIG_SPARSEMEM 5291 return __pfn_to_section(pfn)->pageblock_flags; 5292 #else 5293 return zone->pageblock_flags; 5294 #endif /* CONFIG_SPARSEMEM */ 5295 } 5296 5297 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5298 { 5299 #ifdef CONFIG_SPARSEMEM 5300 pfn &= (PAGES_PER_SECTION-1); 5301 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5302 #else 5303 pfn = pfn - zone->zone_start_pfn; 5304 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5305 #endif /* CONFIG_SPARSEMEM */ 5306 } 5307 5308 /** 5309 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5310 * @page: The page within the block of interest 5311 * @start_bitidx: The first bit of interest to retrieve 5312 * @end_bitidx: The last bit of interest 5313 * returns pageblock_bits flags 5314 */ 5315 unsigned long get_pageblock_flags_group(struct page *page, 5316 int start_bitidx, int end_bitidx) 5317 { 5318 struct zone *zone; 5319 unsigned long *bitmap; 5320 unsigned long pfn, bitidx; 5321 unsigned long flags = 0; 5322 unsigned long value = 1; 5323 5324 zone = page_zone(page); 5325 pfn = page_to_pfn(page); 5326 bitmap = get_pageblock_bitmap(zone, pfn); 5327 bitidx = pfn_to_bitidx(zone, pfn); 5328 5329 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5330 if (test_bit(bitidx + start_bitidx, bitmap)) 5331 flags |= value; 5332 5333 return flags; 5334 } 5335 5336 /** 5337 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5338 * @page: The page within the block of interest 5339 * @start_bitidx: The first bit of interest 5340 * @end_bitidx: The last bit of interest 5341 * @flags: The flags to set 5342 */ 5343 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5344 int start_bitidx, int end_bitidx) 5345 { 5346 struct zone *zone; 5347 unsigned long *bitmap; 5348 unsigned long pfn, bitidx; 5349 unsigned long value = 1; 5350 5351 zone = page_zone(page); 5352 pfn = page_to_pfn(page); 5353 bitmap = get_pageblock_bitmap(zone, pfn); 5354 bitidx = pfn_to_bitidx(zone, pfn); 5355 VM_BUG_ON(pfn < zone->zone_start_pfn); 5356 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5357 5358 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5359 if (flags & value) 5360 __set_bit(bitidx + start_bitidx, bitmap); 5361 else 5362 __clear_bit(bitidx + start_bitidx, bitmap); 5363 } 5364 5365 /* 5366 * This is designed as sub function...plz see page_isolation.c also. 5367 * set/clear page block's type to be ISOLATE. 5368 * page allocater never alloc memory from ISOLATE block. 5369 */ 5370 5371 static int 5372 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5373 { 5374 unsigned long pfn, iter, found; 5375 /* 5376 * For avoiding noise data, lru_add_drain_all() should be called 5377 * If ZONE_MOVABLE, the zone never contains immobile pages 5378 */ 5379 if (zone_idx(zone) == ZONE_MOVABLE) 5380 return true; 5381 5382 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5383 return true; 5384 5385 pfn = page_to_pfn(page); 5386 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5387 unsigned long check = pfn + iter; 5388 5389 if (!pfn_valid_within(check)) 5390 continue; 5391 5392 page = pfn_to_page(check); 5393 if (!page_count(page)) { 5394 if (PageBuddy(page)) 5395 iter += (1 << page_order(page)) - 1; 5396 continue; 5397 } 5398 if (!PageLRU(page)) 5399 found++; 5400 /* 5401 * If there are RECLAIMABLE pages, we need to check it. 5402 * But now, memory offline itself doesn't call shrink_slab() 5403 * and it still to be fixed. 5404 */ 5405 /* 5406 * If the page is not RAM, page_count()should be 0. 5407 * we don't need more check. This is an _used_ not-movable page. 5408 * 5409 * The problematic thing here is PG_reserved pages. PG_reserved 5410 * is set to both of a memory hole page and a _used_ kernel 5411 * page at boot. 5412 */ 5413 if (found > count) 5414 return false; 5415 } 5416 return true; 5417 } 5418 5419 bool is_pageblock_removable_nolock(struct page *page) 5420 { 5421 struct zone *zone; 5422 unsigned long pfn; 5423 5424 /* 5425 * We have to be careful here because we are iterating over memory 5426 * sections which are not zone aware so we might end up outside of 5427 * the zone but still within the section. 5428 * We have to take care about the node as well. If the node is offline 5429 * its NODE_DATA will be NULL - see page_zone. 5430 */ 5431 if (!node_online(page_to_nid(page))) 5432 return false; 5433 5434 zone = page_zone(page); 5435 pfn = page_to_pfn(page); 5436 if (zone->zone_start_pfn > pfn || 5437 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5438 return false; 5439 5440 return __count_immobile_pages(zone, page, 0); 5441 } 5442 5443 int set_migratetype_isolate(struct page *page) 5444 { 5445 struct zone *zone; 5446 unsigned long flags, pfn; 5447 struct memory_isolate_notify arg; 5448 int notifier_ret; 5449 int ret = -EBUSY; 5450 5451 zone = page_zone(page); 5452 5453 spin_lock_irqsave(&zone->lock, flags); 5454 5455 pfn = page_to_pfn(page); 5456 arg.start_pfn = pfn; 5457 arg.nr_pages = pageblock_nr_pages; 5458 arg.pages_found = 0; 5459 5460 /* 5461 * It may be possible to isolate a pageblock even if the 5462 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5463 * notifier chain is used by balloon drivers to return the 5464 * number of pages in a range that are held by the balloon 5465 * driver to shrink memory. If all the pages are accounted for 5466 * by balloons, are free, or on the LRU, isolation can continue. 5467 * Later, for example, when memory hotplug notifier runs, these 5468 * pages reported as "can be isolated" should be isolated(freed) 5469 * by the balloon driver through the memory notifier chain. 5470 */ 5471 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5472 notifier_ret = notifier_to_errno(notifier_ret); 5473 if (notifier_ret) 5474 goto out; 5475 /* 5476 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5477 * We just check MOVABLE pages. 5478 */ 5479 if (__count_immobile_pages(zone, page, arg.pages_found)) 5480 ret = 0; 5481 5482 /* 5483 * immobile means "not-on-lru" paes. If immobile is larger than 5484 * removable-by-driver pages reported by notifier, we'll fail. 5485 */ 5486 5487 out: 5488 if (!ret) { 5489 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5490 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5491 } 5492 5493 spin_unlock_irqrestore(&zone->lock, flags); 5494 if (!ret) 5495 drain_all_pages(); 5496 return ret; 5497 } 5498 5499 void unset_migratetype_isolate(struct page *page) 5500 { 5501 struct zone *zone; 5502 unsigned long flags; 5503 zone = page_zone(page); 5504 spin_lock_irqsave(&zone->lock, flags); 5505 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5506 goto out; 5507 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5508 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5509 out: 5510 spin_unlock_irqrestore(&zone->lock, flags); 5511 } 5512 5513 #ifdef CONFIG_MEMORY_HOTREMOVE 5514 /* 5515 * All pages in the range must be isolated before calling this. 5516 */ 5517 void 5518 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5519 { 5520 struct page *page; 5521 struct zone *zone; 5522 int order, i; 5523 unsigned long pfn; 5524 unsigned long flags; 5525 /* find the first valid pfn */ 5526 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5527 if (pfn_valid(pfn)) 5528 break; 5529 if (pfn == end_pfn) 5530 return; 5531 zone = page_zone(pfn_to_page(pfn)); 5532 spin_lock_irqsave(&zone->lock, flags); 5533 pfn = start_pfn; 5534 while (pfn < end_pfn) { 5535 if (!pfn_valid(pfn)) { 5536 pfn++; 5537 continue; 5538 } 5539 page = pfn_to_page(pfn); 5540 BUG_ON(page_count(page)); 5541 BUG_ON(!PageBuddy(page)); 5542 order = page_order(page); 5543 #ifdef CONFIG_DEBUG_VM 5544 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5545 pfn, 1 << order, end_pfn); 5546 #endif 5547 list_del(&page->lru); 5548 rmv_page_order(page); 5549 zone->free_area[order].nr_free--; 5550 __mod_zone_page_state(zone, NR_FREE_PAGES, 5551 - (1UL << order)); 5552 for (i = 0; i < (1 << order); i++) 5553 SetPageReserved((page+i)); 5554 pfn += (1 << order); 5555 } 5556 spin_unlock_irqrestore(&zone->lock, flags); 5557 } 5558 #endif 5559 5560 #ifdef CONFIG_MEMORY_FAILURE 5561 bool is_free_buddy_page(struct page *page) 5562 { 5563 struct zone *zone = page_zone(page); 5564 unsigned long pfn = page_to_pfn(page); 5565 unsigned long flags; 5566 int order; 5567 5568 spin_lock_irqsave(&zone->lock, flags); 5569 for (order = 0; order < MAX_ORDER; order++) { 5570 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5571 5572 if (PageBuddy(page_head) && page_order(page_head) >= order) 5573 break; 5574 } 5575 spin_unlock_irqrestore(&zone->lock, flags); 5576 5577 return order < MAX_ORDER; 5578 } 5579 #endif 5580 5581 static struct trace_print_flags pageflag_names[] = { 5582 {1UL << PG_locked, "locked" }, 5583 {1UL << PG_error, "error" }, 5584 {1UL << PG_referenced, "referenced" }, 5585 {1UL << PG_uptodate, "uptodate" }, 5586 {1UL << PG_dirty, "dirty" }, 5587 {1UL << PG_lru, "lru" }, 5588 {1UL << PG_active, "active" }, 5589 {1UL << PG_slab, "slab" }, 5590 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5591 {1UL << PG_arch_1, "arch_1" }, 5592 {1UL << PG_reserved, "reserved" }, 5593 {1UL << PG_private, "private" }, 5594 {1UL << PG_private_2, "private_2" }, 5595 {1UL << PG_writeback, "writeback" }, 5596 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5597 {1UL << PG_head, "head" }, 5598 {1UL << PG_tail, "tail" }, 5599 #else 5600 {1UL << PG_compound, "compound" }, 5601 #endif 5602 {1UL << PG_swapcache, "swapcache" }, 5603 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5604 {1UL << PG_reclaim, "reclaim" }, 5605 {1UL << PG_swapbacked, "swapbacked" }, 5606 {1UL << PG_unevictable, "unevictable" }, 5607 #ifdef CONFIG_MMU 5608 {1UL << PG_mlocked, "mlocked" }, 5609 #endif 5610 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5611 {1UL << PG_uncached, "uncached" }, 5612 #endif 5613 #ifdef CONFIG_MEMORY_FAILURE 5614 {1UL << PG_hwpoison, "hwpoison" }, 5615 #endif 5616 {-1UL, NULL }, 5617 }; 5618 5619 static void dump_page_flags(unsigned long flags) 5620 { 5621 const char *delim = ""; 5622 unsigned long mask; 5623 int i; 5624 5625 printk(KERN_ALERT "page flags: %#lx(", flags); 5626 5627 /* remove zone id */ 5628 flags &= (1UL << NR_PAGEFLAGS) - 1; 5629 5630 for (i = 0; pageflag_names[i].name && flags; i++) { 5631 5632 mask = pageflag_names[i].mask; 5633 if ((flags & mask) != mask) 5634 continue; 5635 5636 flags &= ~mask; 5637 printk("%s%s", delim, pageflag_names[i].name); 5638 delim = "|"; 5639 } 5640 5641 /* check for left over flags */ 5642 if (flags) 5643 printk("%s%#lx", delim, flags); 5644 5645 printk(")\n"); 5646 } 5647 5648 void dump_page(struct page *page) 5649 { 5650 printk(KERN_ALERT 5651 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5652 page, atomic_read(&page->_count), page_mapcount(page), 5653 page->mapping, page->index); 5654 dump_page_flags(page->flags); 5655 mem_cgroup_print_bad_page(page); 5656 } 5657