xref: /linux/mm/page_alloc.c (revision 9e6d33937b42ca4867af3b341e5d09abca4a2746)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static void accept_page(struct page *page, unsigned int order);
290 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
291 static inline bool has_unaccepted_memory(void);
292 static bool __free_unaccepted(struct page *page);
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /*
298  * During boot we initialize deferred pages on-demand, as needed, but once
299  * page_alloc_init_late() has finished, the deferred pages are all initialized,
300  * and we can permanently disable that path.
301  */
302 DEFINE_STATIC_KEY_TRUE(deferred_pages);
303 
304 static inline bool deferred_pages_enabled(void)
305 {
306 	return static_branch_unlikely(&deferred_pages);
307 }
308 
309 /*
310  * deferred_grow_zone() is __init, but it is called from
311  * get_page_from_freelist() during early boot until deferred_pages permanently
312  * disables this call. This is why we have refdata wrapper to avoid warning,
313  * and to ensure that the function body gets unloaded.
314  */
315 static bool __ref
316 _deferred_grow_zone(struct zone *zone, unsigned int order)
317 {
318 	return deferred_grow_zone(zone, order);
319 }
320 #else
321 static inline bool deferred_pages_enabled(void)
322 {
323 	return false;
324 }
325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326 
327 /* Return a pointer to the bitmap storing bits affecting a block of pages */
328 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 							unsigned long pfn)
330 {
331 #ifdef CONFIG_SPARSEMEM
332 	return section_to_usemap(__pfn_to_section(pfn));
333 #else
334 	return page_zone(page)->pageblock_flags;
335 #endif /* CONFIG_SPARSEMEM */
336 }
337 
338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339 {
340 #ifdef CONFIG_SPARSEMEM
341 	pfn &= (PAGES_PER_SECTION-1);
342 #else
343 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344 #endif /* CONFIG_SPARSEMEM */
345 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346 }
347 
348 /**
349  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350  * @page: The page within the block of interest
351  * @pfn: The target page frame number
352  * @mask: mask of bits that the caller is interested in
353  *
354  * Return: pageblock_bits flags
355  */
356 unsigned long get_pfnblock_flags_mask(const struct page *page,
357 					unsigned long pfn, unsigned long mask)
358 {
359 	unsigned long *bitmap;
360 	unsigned long bitidx, word_bitidx;
361 	unsigned long word;
362 
363 	bitmap = get_pageblock_bitmap(page, pfn);
364 	bitidx = pfn_to_bitidx(page, pfn);
365 	word_bitidx = bitidx / BITS_PER_LONG;
366 	bitidx &= (BITS_PER_LONG-1);
367 	/*
368 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 	 * a consistent read of the memory array, so that results, even though
370 	 * racy, are not corrupted.
371 	 */
372 	word = READ_ONCE(bitmap[word_bitidx]);
373 	return (word >> bitidx) & mask;
374 }
375 
376 static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 					unsigned long pfn)
378 {
379 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380 }
381 
382 /**
383  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384  * @page: The page within the block of interest
385  * @flags: The flags to set
386  * @pfn: The target page frame number
387  * @mask: mask of bits that the caller is interested in
388  */
389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 					unsigned long pfn,
391 					unsigned long mask)
392 {
393 	unsigned long *bitmap;
394 	unsigned long bitidx, word_bitidx;
395 	unsigned long word;
396 
397 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399 
400 	bitmap = get_pageblock_bitmap(page, pfn);
401 	bitidx = pfn_to_bitidx(page, pfn);
402 	word_bitidx = bitidx / BITS_PER_LONG;
403 	bitidx &= (BITS_PER_LONG-1);
404 
405 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406 
407 	mask <<= bitidx;
408 	flags <<= bitidx;
409 
410 	word = READ_ONCE(bitmap[word_bitidx]);
411 	do {
412 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413 }
414 
415 void set_pageblock_migratetype(struct page *page, int migratetype)
416 {
417 	if (unlikely(page_group_by_mobility_disabled &&
418 		     migratetype < MIGRATE_PCPTYPES))
419 		migratetype = MIGRATE_UNMOVABLE;
420 
421 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 				page_to_pfn(page), MIGRATETYPE_MASK);
423 }
424 
425 #ifdef CONFIG_DEBUG_VM
426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427 {
428 	int ret;
429 	unsigned seq;
430 	unsigned long pfn = page_to_pfn(page);
431 	unsigned long sp, start_pfn;
432 
433 	do {
434 		seq = zone_span_seqbegin(zone);
435 		start_pfn = zone->zone_start_pfn;
436 		sp = zone->spanned_pages;
437 		ret = !zone_spans_pfn(zone, pfn);
438 	} while (zone_span_seqretry(zone, seq));
439 
440 	if (ret)
441 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 			pfn, zone_to_nid(zone), zone->name,
443 			start_pfn, start_pfn + sp);
444 
445 	return ret;
446 }
447 
448 /*
449  * Temporary debugging check for pages not lying within a given zone.
450  */
451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452 {
453 	if (page_outside_zone_boundaries(zone, page))
454 		return true;
455 	if (zone != page_zone(page))
456 		return true;
457 
458 	return false;
459 }
460 #else
461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462 {
463 	return false;
464 }
465 #endif
466 
467 static void bad_page(struct page *page, const char *reason)
468 {
469 	static unsigned long resume;
470 	static unsigned long nr_shown;
471 	static unsigned long nr_unshown;
472 
473 	/*
474 	 * Allow a burst of 60 reports, then keep quiet for that minute;
475 	 * or allow a steady drip of one report per second.
476 	 */
477 	if (nr_shown == 60) {
478 		if (time_before(jiffies, resume)) {
479 			nr_unshown++;
480 			goto out;
481 		}
482 		if (nr_unshown) {
483 			pr_alert(
484 			      "BUG: Bad page state: %lu messages suppressed\n",
485 				nr_unshown);
486 			nr_unshown = 0;
487 		}
488 		nr_shown = 0;
489 	}
490 	if (nr_shown++ == 0)
491 		resume = jiffies + 60 * HZ;
492 
493 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
494 		current->comm, page_to_pfn(page));
495 	dump_page(page, reason);
496 
497 	print_modules();
498 	dump_stack();
499 out:
500 	/* Leave bad fields for debug, except PageBuddy could make trouble */
501 	page_mapcount_reset(page); /* remove PageBuddy */
502 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
503 }
504 
505 static inline unsigned int order_to_pindex(int migratetype, int order)
506 {
507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
508 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
509 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
510 		return NR_LOWORDER_PCP_LISTS;
511 	}
512 #else
513 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
514 #endif
515 
516 	return (MIGRATE_PCPTYPES * order) + migratetype;
517 }
518 
519 static inline int pindex_to_order(unsigned int pindex)
520 {
521 	int order = pindex / MIGRATE_PCPTYPES;
522 
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	if (pindex == NR_LOWORDER_PCP_LISTS)
525 		order = HPAGE_PMD_ORDER;
526 #else
527 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
528 #endif
529 
530 	return order;
531 }
532 
533 static inline bool pcp_allowed_order(unsigned int order)
534 {
535 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
536 		return true;
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 	if (order == HPAGE_PMD_ORDER)
539 		return true;
540 #endif
541 	return false;
542 }
543 
544 /*
545  * Higher-order pages are called "compound pages".  They are structured thusly:
546  *
547  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
548  *
549  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
550  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
551  *
552  * The first tail page's ->compound_order holds the order of allocation.
553  * This usage means that zero-order pages may not be compound.
554  */
555 
556 void prep_compound_page(struct page *page, unsigned int order)
557 {
558 	int i;
559 	int nr_pages = 1 << order;
560 
561 	__SetPageHead(page);
562 	for (i = 1; i < nr_pages; i++)
563 		prep_compound_tail(page, i);
564 
565 	prep_compound_head(page, order);
566 }
567 
568 static inline void set_buddy_order(struct page *page, unsigned int order)
569 {
570 	set_page_private(page, order);
571 	__SetPageBuddy(page);
572 }
573 
574 #ifdef CONFIG_COMPACTION
575 static inline struct capture_control *task_capc(struct zone *zone)
576 {
577 	struct capture_control *capc = current->capture_control;
578 
579 	return unlikely(capc) &&
580 		!(current->flags & PF_KTHREAD) &&
581 		!capc->page &&
582 		capc->cc->zone == zone ? capc : NULL;
583 }
584 
585 static inline bool
586 compaction_capture(struct capture_control *capc, struct page *page,
587 		   int order, int migratetype)
588 {
589 	if (!capc || order != capc->cc->order)
590 		return false;
591 
592 	/* Do not accidentally pollute CMA or isolated regions*/
593 	if (is_migrate_cma(migratetype) ||
594 	    is_migrate_isolate(migratetype))
595 		return false;
596 
597 	/*
598 	 * Do not let lower order allocations pollute a movable pageblock
599 	 * unless compaction is also requesting movable pages.
600 	 * This might let an unmovable request use a reclaimable pageblock
601 	 * and vice-versa but no more than normal fallback logic which can
602 	 * have trouble finding a high-order free page.
603 	 */
604 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
605 	    capc->cc->migratetype != MIGRATE_MOVABLE)
606 		return false;
607 
608 	capc->page = page;
609 	return true;
610 }
611 
612 #else
613 static inline struct capture_control *task_capc(struct zone *zone)
614 {
615 	return NULL;
616 }
617 
618 static inline bool
619 compaction_capture(struct capture_control *capc, struct page *page,
620 		   int order, int migratetype)
621 {
622 	return false;
623 }
624 #endif /* CONFIG_COMPACTION */
625 
626 static inline void account_freepages(struct zone *zone, int nr_pages,
627 				     int migratetype)
628 {
629 	if (is_migrate_isolate(migratetype))
630 		return;
631 
632 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
633 
634 	if (is_migrate_cma(migratetype))
635 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
636 }
637 
638 /* Used for pages not on another list */
639 static inline void __add_to_free_list(struct page *page, struct zone *zone,
640 				      unsigned int order, int migratetype,
641 				      bool tail)
642 {
643 	struct free_area *area = &zone->free_area[order];
644 
645 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
646 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
647 		     get_pageblock_migratetype(page), migratetype, 1 << order);
648 
649 	if (tail)
650 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
651 	else
652 		list_add(&page->buddy_list, &area->free_list[migratetype]);
653 	area->nr_free++;
654 }
655 
656 /*
657  * Used for pages which are on another list. Move the pages to the tail
658  * of the list - so the moved pages won't immediately be considered for
659  * allocation again (e.g., optimization for memory onlining).
660  */
661 static inline void move_to_free_list(struct page *page, struct zone *zone,
662 				     unsigned int order, int old_mt, int new_mt)
663 {
664 	struct free_area *area = &zone->free_area[order];
665 
666 	/* Free page moving can fail, so it happens before the type update */
667 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
668 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
669 		     get_pageblock_migratetype(page), old_mt, 1 << order);
670 
671 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
672 
673 	account_freepages(zone, -(1 << order), old_mt);
674 	account_freepages(zone, 1 << order, new_mt);
675 }
676 
677 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
678 					     unsigned int order, int migratetype)
679 {
680         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
681 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
682 		     get_pageblock_migratetype(page), migratetype, 1 << order);
683 
684 	/* clear reported state and update reported page count */
685 	if (page_reported(page))
686 		__ClearPageReported(page);
687 
688 	list_del(&page->buddy_list);
689 	__ClearPageBuddy(page);
690 	set_page_private(page, 0);
691 	zone->free_area[order].nr_free--;
692 }
693 
694 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
695 					   unsigned int order, int migratetype)
696 {
697 	__del_page_from_free_list(page, zone, order, migratetype);
698 	account_freepages(zone, -(1 << order), migratetype);
699 }
700 
701 static inline struct page *get_page_from_free_area(struct free_area *area,
702 					    int migratetype)
703 {
704 	return list_first_entry_or_null(&area->free_list[migratetype],
705 					struct page, buddy_list);
706 }
707 
708 /*
709  * If this is not the largest possible page, check if the buddy
710  * of the next-highest order is free. If it is, it's possible
711  * that pages are being freed that will coalesce soon. In case,
712  * that is happening, add the free page to the tail of the list
713  * so it's less likely to be used soon and more likely to be merged
714  * as a higher order page
715  */
716 static inline bool
717 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
718 		   struct page *page, unsigned int order)
719 {
720 	unsigned long higher_page_pfn;
721 	struct page *higher_page;
722 
723 	if (order >= MAX_PAGE_ORDER - 1)
724 		return false;
725 
726 	higher_page_pfn = buddy_pfn & pfn;
727 	higher_page = page + (higher_page_pfn - pfn);
728 
729 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
730 			NULL) != NULL;
731 }
732 
733 /*
734  * Freeing function for a buddy system allocator.
735  *
736  * The concept of a buddy system is to maintain direct-mapped table
737  * (containing bit values) for memory blocks of various "orders".
738  * The bottom level table contains the map for the smallest allocatable
739  * units of memory (here, pages), and each level above it describes
740  * pairs of units from the levels below, hence, "buddies".
741  * At a high level, all that happens here is marking the table entry
742  * at the bottom level available, and propagating the changes upward
743  * as necessary, plus some accounting needed to play nicely with other
744  * parts of the VM system.
745  * At each level, we keep a list of pages, which are heads of continuous
746  * free pages of length of (1 << order) and marked with PageBuddy.
747  * Page's order is recorded in page_private(page) field.
748  * So when we are allocating or freeing one, we can derive the state of the
749  * other.  That is, if we allocate a small block, and both were
750  * free, the remainder of the region must be split into blocks.
751  * If a block is freed, and its buddy is also free, then this
752  * triggers coalescing into a block of larger size.
753  *
754  * -- nyc
755  */
756 
757 static inline void __free_one_page(struct page *page,
758 		unsigned long pfn,
759 		struct zone *zone, unsigned int order,
760 		int migratetype, fpi_t fpi_flags)
761 {
762 	struct capture_control *capc = task_capc(zone);
763 	unsigned long buddy_pfn = 0;
764 	unsigned long combined_pfn;
765 	struct page *buddy;
766 	bool to_tail;
767 
768 	VM_BUG_ON(!zone_is_initialized(zone));
769 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
770 
771 	VM_BUG_ON(migratetype == -1);
772 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
773 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
774 
775 	account_freepages(zone, 1 << order, migratetype);
776 
777 	while (order < MAX_PAGE_ORDER) {
778 		int buddy_mt = migratetype;
779 
780 		if (compaction_capture(capc, page, order, migratetype)) {
781 			account_freepages(zone, -(1 << order), migratetype);
782 			return;
783 		}
784 
785 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
786 		if (!buddy)
787 			goto done_merging;
788 
789 		if (unlikely(order >= pageblock_order)) {
790 			/*
791 			 * We want to prevent merge between freepages on pageblock
792 			 * without fallbacks and normal pageblock. Without this,
793 			 * pageblock isolation could cause incorrect freepage or CMA
794 			 * accounting or HIGHATOMIC accounting.
795 			 */
796 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
797 
798 			if (migratetype != buddy_mt &&
799 			    (!migratetype_is_mergeable(migratetype) ||
800 			     !migratetype_is_mergeable(buddy_mt)))
801 				goto done_merging;
802 		}
803 
804 		/*
805 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
806 		 * merge with it and move up one order.
807 		 */
808 		if (page_is_guard(buddy))
809 			clear_page_guard(zone, buddy, order);
810 		else
811 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
812 
813 		if (unlikely(buddy_mt != migratetype)) {
814 			/*
815 			 * Match buddy type. This ensures that an
816 			 * expand() down the line puts the sub-blocks
817 			 * on the right freelists.
818 			 */
819 			set_pageblock_migratetype(buddy, migratetype);
820 		}
821 
822 		combined_pfn = buddy_pfn & pfn;
823 		page = page + (combined_pfn - pfn);
824 		pfn = combined_pfn;
825 		order++;
826 	}
827 
828 done_merging:
829 	set_buddy_order(page, order);
830 
831 	if (fpi_flags & FPI_TO_TAIL)
832 		to_tail = true;
833 	else if (is_shuffle_order(order))
834 		to_tail = shuffle_pick_tail();
835 	else
836 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
837 
838 	__add_to_free_list(page, zone, order, migratetype, to_tail);
839 
840 	/* Notify page reporting subsystem of freed page */
841 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 		page_reporting_notify_free(order);
843 }
844 
845 /*
846  * A bad page could be due to a number of fields. Instead of multiple branches,
847  * try and check multiple fields with one check. The caller must do a detailed
848  * check if necessary.
849  */
850 static inline bool page_expected_state(struct page *page,
851 					unsigned long check_flags)
852 {
853 	if (unlikely(atomic_read(&page->_mapcount) != -1))
854 		return false;
855 
856 	if (unlikely((unsigned long)page->mapping |
857 			page_ref_count(page) |
858 #ifdef CONFIG_MEMCG
859 			page->memcg_data |
860 #endif
861 #ifdef CONFIG_PAGE_POOL
862 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
863 #endif
864 			(page->flags & check_flags)))
865 		return false;
866 
867 	return true;
868 }
869 
870 static const char *page_bad_reason(struct page *page, unsigned long flags)
871 {
872 	const char *bad_reason = NULL;
873 
874 	if (unlikely(atomic_read(&page->_mapcount) != -1))
875 		bad_reason = "nonzero mapcount";
876 	if (unlikely(page->mapping != NULL))
877 		bad_reason = "non-NULL mapping";
878 	if (unlikely(page_ref_count(page) != 0))
879 		bad_reason = "nonzero _refcount";
880 	if (unlikely(page->flags & flags)) {
881 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
882 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
883 		else
884 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
885 	}
886 #ifdef CONFIG_MEMCG
887 	if (unlikely(page->memcg_data))
888 		bad_reason = "page still charged to cgroup";
889 #endif
890 #ifdef CONFIG_PAGE_POOL
891 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
892 		bad_reason = "page_pool leak";
893 #endif
894 	return bad_reason;
895 }
896 
897 static void free_page_is_bad_report(struct page *page)
898 {
899 	bad_page(page,
900 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
901 }
902 
903 static inline bool free_page_is_bad(struct page *page)
904 {
905 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
906 		return false;
907 
908 	/* Something has gone sideways, find it */
909 	free_page_is_bad_report(page);
910 	return true;
911 }
912 
913 static inline bool is_check_pages_enabled(void)
914 {
915 	return static_branch_unlikely(&check_pages_enabled);
916 }
917 
918 static int free_tail_page_prepare(struct page *head_page, struct page *page)
919 {
920 	struct folio *folio = (struct folio *)head_page;
921 	int ret = 1;
922 
923 	/*
924 	 * We rely page->lru.next never has bit 0 set, unless the page
925 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
926 	 */
927 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
928 
929 	if (!is_check_pages_enabled()) {
930 		ret = 0;
931 		goto out;
932 	}
933 	switch (page - head_page) {
934 	case 1:
935 		/* the first tail page: these may be in place of ->mapping */
936 		if (unlikely(folio_entire_mapcount(folio))) {
937 			bad_page(page, "nonzero entire_mapcount");
938 			goto out;
939 		}
940 		if (unlikely(folio_large_mapcount(folio))) {
941 			bad_page(page, "nonzero large_mapcount");
942 			goto out;
943 		}
944 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
945 			bad_page(page, "nonzero nr_pages_mapped");
946 			goto out;
947 		}
948 		if (unlikely(atomic_read(&folio->_pincount))) {
949 			bad_page(page, "nonzero pincount");
950 			goto out;
951 		}
952 		break;
953 	case 2:
954 		/* the second tail page: deferred_list overlaps ->mapping */
955 		if (unlikely(!list_empty(&folio->_deferred_list))) {
956 			bad_page(page, "on deferred list");
957 			goto out;
958 		}
959 		break;
960 	default:
961 		if (page->mapping != TAIL_MAPPING) {
962 			bad_page(page, "corrupted mapping in tail page");
963 			goto out;
964 		}
965 		break;
966 	}
967 	if (unlikely(!PageTail(page))) {
968 		bad_page(page, "PageTail not set");
969 		goto out;
970 	}
971 	if (unlikely(compound_head(page) != head_page)) {
972 		bad_page(page, "compound_head not consistent");
973 		goto out;
974 	}
975 	ret = 0;
976 out:
977 	page->mapping = NULL;
978 	clear_compound_head(page);
979 	return ret;
980 }
981 
982 /*
983  * Skip KASAN memory poisoning when either:
984  *
985  * 1. For generic KASAN: deferred memory initialization has not yet completed.
986  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
987  *    using page tags instead (see below).
988  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
989  *    that error detection is disabled for accesses via the page address.
990  *
991  * Pages will have match-all tags in the following circumstances:
992  *
993  * 1. Pages are being initialized for the first time, including during deferred
994  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
995  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
996  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
997  * 3. The allocation was excluded from being checked due to sampling,
998  *    see the call to kasan_unpoison_pages.
999  *
1000  * Poisoning pages during deferred memory init will greatly lengthen the
1001  * process and cause problem in large memory systems as the deferred pages
1002  * initialization is done with interrupt disabled.
1003  *
1004  * Assuming that there will be no reference to those newly initialized
1005  * pages before they are ever allocated, this should have no effect on
1006  * KASAN memory tracking as the poison will be properly inserted at page
1007  * allocation time. The only corner case is when pages are allocated by
1008  * on-demand allocation and then freed again before the deferred pages
1009  * initialization is done, but this is not likely to happen.
1010  */
1011 static inline bool should_skip_kasan_poison(struct page *page)
1012 {
1013 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1014 		return deferred_pages_enabled();
1015 
1016 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1017 }
1018 
1019 static void kernel_init_pages(struct page *page, int numpages)
1020 {
1021 	int i;
1022 
1023 	/* s390's use of memset() could override KASAN redzones. */
1024 	kasan_disable_current();
1025 	for (i = 0; i < numpages; i++)
1026 		clear_highpage_kasan_tagged(page + i);
1027 	kasan_enable_current();
1028 }
1029 
1030 __always_inline bool free_pages_prepare(struct page *page,
1031 			unsigned int order)
1032 {
1033 	int bad = 0;
1034 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1035 	bool init = want_init_on_free();
1036 	bool compound = PageCompound(page);
1037 
1038 	VM_BUG_ON_PAGE(PageTail(page), page);
1039 
1040 	trace_mm_page_free(page, order);
1041 	kmsan_free_page(page, order);
1042 
1043 	if (memcg_kmem_online() && PageMemcgKmem(page))
1044 		__memcg_kmem_uncharge_page(page, order);
1045 
1046 	if (unlikely(PageHWPoison(page)) && !order) {
1047 		/* Do not let hwpoison pages hit pcplists/buddy */
1048 		reset_page_owner(page, order);
1049 		page_table_check_free(page, order);
1050 		pgalloc_tag_sub(page, 1 << order);
1051 		return false;
1052 	}
1053 
1054 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1055 
1056 	/*
1057 	 * Check tail pages before head page information is cleared to
1058 	 * avoid checking PageCompound for order-0 pages.
1059 	 */
1060 	if (unlikely(order)) {
1061 		int i;
1062 
1063 		if (compound)
1064 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1065 		for (i = 1; i < (1 << order); i++) {
1066 			if (compound)
1067 				bad += free_tail_page_prepare(page, page + i);
1068 			if (is_check_pages_enabled()) {
1069 				if (free_page_is_bad(page + i)) {
1070 					bad++;
1071 					continue;
1072 				}
1073 			}
1074 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1075 		}
1076 	}
1077 	if (PageMappingFlags(page))
1078 		page->mapping = NULL;
1079 	if (is_check_pages_enabled()) {
1080 		if (free_page_is_bad(page))
1081 			bad++;
1082 		if (bad)
1083 			return false;
1084 	}
1085 
1086 	page_cpupid_reset_last(page);
1087 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1088 	reset_page_owner(page, order);
1089 	page_table_check_free(page, order);
1090 	pgalloc_tag_sub(page, 1 << order);
1091 
1092 	if (!PageHighMem(page)) {
1093 		debug_check_no_locks_freed(page_address(page),
1094 					   PAGE_SIZE << order);
1095 		debug_check_no_obj_freed(page_address(page),
1096 					   PAGE_SIZE << order);
1097 	}
1098 
1099 	kernel_poison_pages(page, 1 << order);
1100 
1101 	/*
1102 	 * As memory initialization might be integrated into KASAN,
1103 	 * KASAN poisoning and memory initialization code must be
1104 	 * kept together to avoid discrepancies in behavior.
1105 	 *
1106 	 * With hardware tag-based KASAN, memory tags must be set before the
1107 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1108 	 */
1109 	if (!skip_kasan_poison) {
1110 		kasan_poison_pages(page, order, init);
1111 
1112 		/* Memory is already initialized if KASAN did it internally. */
1113 		if (kasan_has_integrated_init())
1114 			init = false;
1115 	}
1116 	if (init)
1117 		kernel_init_pages(page, 1 << order);
1118 
1119 	/*
1120 	 * arch_free_page() can make the page's contents inaccessible.  s390
1121 	 * does this.  So nothing which can access the page's contents should
1122 	 * happen after this.
1123 	 */
1124 	arch_free_page(page, order);
1125 
1126 	debug_pagealloc_unmap_pages(page, 1 << order);
1127 
1128 	return true;
1129 }
1130 
1131 /*
1132  * Frees a number of pages from the PCP lists
1133  * Assumes all pages on list are in same zone.
1134  * count is the number of pages to free.
1135  */
1136 static void free_pcppages_bulk(struct zone *zone, int count,
1137 					struct per_cpu_pages *pcp,
1138 					int pindex)
1139 {
1140 	unsigned long flags;
1141 	unsigned int order;
1142 	struct page *page;
1143 
1144 	/*
1145 	 * Ensure proper count is passed which otherwise would stuck in the
1146 	 * below while (list_empty(list)) loop.
1147 	 */
1148 	count = min(pcp->count, count);
1149 
1150 	/* Ensure requested pindex is drained first. */
1151 	pindex = pindex - 1;
1152 
1153 	spin_lock_irqsave(&zone->lock, flags);
1154 
1155 	while (count > 0) {
1156 		struct list_head *list;
1157 		int nr_pages;
1158 
1159 		/* Remove pages from lists in a round-robin fashion. */
1160 		do {
1161 			if (++pindex > NR_PCP_LISTS - 1)
1162 				pindex = 0;
1163 			list = &pcp->lists[pindex];
1164 		} while (list_empty(list));
1165 
1166 		order = pindex_to_order(pindex);
1167 		nr_pages = 1 << order;
1168 		do {
1169 			unsigned long pfn;
1170 			int mt;
1171 
1172 			page = list_last_entry(list, struct page, pcp_list);
1173 			pfn = page_to_pfn(page);
1174 			mt = get_pfnblock_migratetype(page, pfn);
1175 
1176 			/* must delete to avoid corrupting pcp list */
1177 			list_del(&page->pcp_list);
1178 			count -= nr_pages;
1179 			pcp->count -= nr_pages;
1180 
1181 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1182 			trace_mm_page_pcpu_drain(page, order, mt);
1183 		} while (count > 0 && !list_empty(list));
1184 	}
1185 
1186 	spin_unlock_irqrestore(&zone->lock, flags);
1187 }
1188 
1189 static void free_one_page(struct zone *zone, struct page *page,
1190 			  unsigned long pfn, unsigned int order,
1191 			  fpi_t fpi_flags)
1192 {
1193 	unsigned long flags;
1194 	int migratetype;
1195 
1196 	spin_lock_irqsave(&zone->lock, flags);
1197 	migratetype = get_pfnblock_migratetype(page, pfn);
1198 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1199 	spin_unlock_irqrestore(&zone->lock, flags);
1200 }
1201 
1202 static void __free_pages_ok(struct page *page, unsigned int order,
1203 			    fpi_t fpi_flags)
1204 {
1205 	unsigned long pfn = page_to_pfn(page);
1206 	struct zone *zone = page_zone(page);
1207 
1208 	if (!free_pages_prepare(page, order))
1209 		return;
1210 
1211 	free_one_page(zone, page, pfn, order, fpi_flags);
1212 
1213 	__count_vm_events(PGFREE, 1 << order);
1214 }
1215 
1216 void __free_pages_core(struct page *page, unsigned int order)
1217 {
1218 	unsigned int nr_pages = 1 << order;
1219 	struct page *p = page;
1220 	unsigned int loop;
1221 
1222 	/*
1223 	 * When initializing the memmap, __init_single_page() sets the refcount
1224 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1225 	 * refcount of all involved pages to 0.
1226 	 */
1227 	prefetchw(p);
1228 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1229 		prefetchw(p + 1);
1230 		__ClearPageReserved(p);
1231 		set_page_count(p, 0);
1232 	}
1233 	__ClearPageReserved(p);
1234 	set_page_count(p, 0);
1235 
1236 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1237 
1238 	if (page_contains_unaccepted(page, order)) {
1239 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1240 			return;
1241 
1242 		accept_page(page, order);
1243 	}
1244 
1245 	/*
1246 	 * Bypass PCP and place fresh pages right to the tail, primarily
1247 	 * relevant for memory onlining.
1248 	 */
1249 	__free_pages_ok(page, order, FPI_TO_TAIL);
1250 }
1251 
1252 /*
1253  * Check that the whole (or subset of) a pageblock given by the interval of
1254  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1255  * with the migration of free compaction scanner.
1256  *
1257  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1258  *
1259  * It's possible on some configurations to have a setup like node0 node1 node0
1260  * i.e. it's possible that all pages within a zones range of pages do not
1261  * belong to a single zone. We assume that a border between node0 and node1
1262  * can occur within a single pageblock, but not a node0 node1 node0
1263  * interleaving within a single pageblock. It is therefore sufficient to check
1264  * the first and last page of a pageblock and avoid checking each individual
1265  * page in a pageblock.
1266  *
1267  * Note: the function may return non-NULL struct page even for a page block
1268  * which contains a memory hole (i.e. there is no physical memory for a subset
1269  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1270  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1271  * even though the start pfn is online and valid. This should be safe most of
1272  * the time because struct pages are still initialized via init_unavailable_range()
1273  * and pfn walkers shouldn't touch any physical memory range for which they do
1274  * not recognize any specific metadata in struct pages.
1275  */
1276 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1277 				     unsigned long end_pfn, struct zone *zone)
1278 {
1279 	struct page *start_page;
1280 	struct page *end_page;
1281 
1282 	/* end_pfn is one past the range we are checking */
1283 	end_pfn--;
1284 
1285 	if (!pfn_valid(end_pfn))
1286 		return NULL;
1287 
1288 	start_page = pfn_to_online_page(start_pfn);
1289 	if (!start_page)
1290 		return NULL;
1291 
1292 	if (page_zone(start_page) != zone)
1293 		return NULL;
1294 
1295 	end_page = pfn_to_page(end_pfn);
1296 
1297 	/* This gives a shorter code than deriving page_zone(end_page) */
1298 	if (page_zone_id(start_page) != page_zone_id(end_page))
1299 		return NULL;
1300 
1301 	return start_page;
1302 }
1303 
1304 /*
1305  * The order of subdivision here is critical for the IO subsystem.
1306  * Please do not alter this order without good reasons and regression
1307  * testing. Specifically, as large blocks of memory are subdivided,
1308  * the order in which smaller blocks are delivered depends on the order
1309  * they're subdivided in this function. This is the primary factor
1310  * influencing the order in which pages are delivered to the IO
1311  * subsystem according to empirical testing, and this is also justified
1312  * by considering the behavior of a buddy system containing a single
1313  * large block of memory acted on by a series of small allocations.
1314  * This behavior is a critical factor in sglist merging's success.
1315  *
1316  * -- nyc
1317  */
1318 static inline void expand(struct zone *zone, struct page *page,
1319 	int low, int high, int migratetype)
1320 {
1321 	unsigned long size = 1 << high;
1322 	unsigned long nr_added = 0;
1323 
1324 	while (high > low) {
1325 		high--;
1326 		size >>= 1;
1327 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1328 
1329 		/*
1330 		 * Mark as guard pages (or page), that will allow to
1331 		 * merge back to allocator when buddy will be freed.
1332 		 * Corresponding page table entries will not be touched,
1333 		 * pages will stay not present in virtual address space
1334 		 */
1335 		if (set_page_guard(zone, &page[size], high))
1336 			continue;
1337 
1338 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1339 		set_buddy_order(&page[size], high);
1340 		nr_added += size;
1341 	}
1342 	account_freepages(zone, nr_added, migratetype);
1343 }
1344 
1345 static void check_new_page_bad(struct page *page)
1346 {
1347 	if (unlikely(page->flags & __PG_HWPOISON)) {
1348 		/* Don't complain about hwpoisoned pages */
1349 		page_mapcount_reset(page); /* remove PageBuddy */
1350 		return;
1351 	}
1352 
1353 	bad_page(page,
1354 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1355 }
1356 
1357 /*
1358  * This page is about to be returned from the page allocator
1359  */
1360 static bool check_new_page(struct page *page)
1361 {
1362 	if (likely(page_expected_state(page,
1363 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1364 		return false;
1365 
1366 	check_new_page_bad(page);
1367 	return true;
1368 }
1369 
1370 static inline bool check_new_pages(struct page *page, unsigned int order)
1371 {
1372 	if (is_check_pages_enabled()) {
1373 		for (int i = 0; i < (1 << order); i++) {
1374 			struct page *p = page + i;
1375 
1376 			if (check_new_page(p))
1377 				return true;
1378 		}
1379 	}
1380 
1381 	return false;
1382 }
1383 
1384 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1385 {
1386 	/* Don't skip if a software KASAN mode is enabled. */
1387 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1388 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1389 		return false;
1390 
1391 	/* Skip, if hardware tag-based KASAN is not enabled. */
1392 	if (!kasan_hw_tags_enabled())
1393 		return true;
1394 
1395 	/*
1396 	 * With hardware tag-based KASAN enabled, skip if this has been
1397 	 * requested via __GFP_SKIP_KASAN.
1398 	 */
1399 	return flags & __GFP_SKIP_KASAN;
1400 }
1401 
1402 static inline bool should_skip_init(gfp_t flags)
1403 {
1404 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1405 	if (!kasan_hw_tags_enabled())
1406 		return false;
1407 
1408 	/* For hardware tag-based KASAN, skip if requested. */
1409 	return (flags & __GFP_SKIP_ZERO);
1410 }
1411 
1412 inline void post_alloc_hook(struct page *page, unsigned int order,
1413 				gfp_t gfp_flags)
1414 {
1415 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1416 			!should_skip_init(gfp_flags);
1417 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1418 	int i;
1419 
1420 	set_page_private(page, 0);
1421 	set_page_refcounted(page);
1422 
1423 	arch_alloc_page(page, order);
1424 	debug_pagealloc_map_pages(page, 1 << order);
1425 
1426 	/*
1427 	 * Page unpoisoning must happen before memory initialization.
1428 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1429 	 * allocations and the page unpoisoning code will complain.
1430 	 */
1431 	kernel_unpoison_pages(page, 1 << order);
1432 
1433 	/*
1434 	 * As memory initialization might be integrated into KASAN,
1435 	 * KASAN unpoisoning and memory initializion code must be
1436 	 * kept together to avoid discrepancies in behavior.
1437 	 */
1438 
1439 	/*
1440 	 * If memory tags should be zeroed
1441 	 * (which happens only when memory should be initialized as well).
1442 	 */
1443 	if (zero_tags) {
1444 		/* Initialize both memory and memory tags. */
1445 		for (i = 0; i != 1 << order; ++i)
1446 			tag_clear_highpage(page + i);
1447 
1448 		/* Take note that memory was initialized by the loop above. */
1449 		init = false;
1450 	}
1451 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1452 	    kasan_unpoison_pages(page, order, init)) {
1453 		/* Take note that memory was initialized by KASAN. */
1454 		if (kasan_has_integrated_init())
1455 			init = false;
1456 	} else {
1457 		/*
1458 		 * If memory tags have not been set by KASAN, reset the page
1459 		 * tags to ensure page_address() dereferencing does not fault.
1460 		 */
1461 		for (i = 0; i != 1 << order; ++i)
1462 			page_kasan_tag_reset(page + i);
1463 	}
1464 	/* If memory is still not initialized, initialize it now. */
1465 	if (init)
1466 		kernel_init_pages(page, 1 << order);
1467 
1468 	set_page_owner(page, order, gfp_flags);
1469 	page_table_check_alloc(page, order);
1470 	pgalloc_tag_add(page, current, 1 << order);
1471 }
1472 
1473 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1474 							unsigned int alloc_flags)
1475 {
1476 	post_alloc_hook(page, order, gfp_flags);
1477 
1478 	if (order && (gfp_flags & __GFP_COMP))
1479 		prep_compound_page(page, order);
1480 
1481 	/*
1482 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1483 	 * allocate the page. The expectation is that the caller is taking
1484 	 * steps that will free more memory. The caller should avoid the page
1485 	 * being used for !PFMEMALLOC purposes.
1486 	 */
1487 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1488 		set_page_pfmemalloc(page);
1489 	else
1490 		clear_page_pfmemalloc(page);
1491 }
1492 
1493 /*
1494  * Go through the free lists for the given migratetype and remove
1495  * the smallest available page from the freelists
1496  */
1497 static __always_inline
1498 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1499 						int migratetype)
1500 {
1501 	unsigned int current_order;
1502 	struct free_area *area;
1503 	struct page *page;
1504 
1505 	/* Find a page of the appropriate size in the preferred list */
1506 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1507 		area = &(zone->free_area[current_order]);
1508 		page = get_page_from_free_area(area, migratetype);
1509 		if (!page)
1510 			continue;
1511 		del_page_from_free_list(page, zone, current_order, migratetype);
1512 		expand(zone, page, order, current_order, migratetype);
1513 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1514 				pcp_allowed_order(order) &&
1515 				migratetype < MIGRATE_PCPTYPES);
1516 		return page;
1517 	}
1518 
1519 	return NULL;
1520 }
1521 
1522 
1523 /*
1524  * This array describes the order lists are fallen back to when
1525  * the free lists for the desirable migrate type are depleted
1526  *
1527  * The other migratetypes do not have fallbacks.
1528  */
1529 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1530 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1531 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1532 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1533 };
1534 
1535 #ifdef CONFIG_CMA
1536 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1537 					unsigned int order)
1538 {
1539 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1540 }
1541 #else
1542 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1543 					unsigned int order) { return NULL; }
1544 #endif
1545 
1546 /*
1547  * Change the type of a block and move all its free pages to that
1548  * type's freelist.
1549  */
1550 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1551 				  int old_mt, int new_mt)
1552 {
1553 	struct page *page;
1554 	unsigned long pfn, end_pfn;
1555 	unsigned int order;
1556 	int pages_moved = 0;
1557 
1558 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1559 	end_pfn = pageblock_end_pfn(start_pfn);
1560 
1561 	for (pfn = start_pfn; pfn < end_pfn;) {
1562 		page = pfn_to_page(pfn);
1563 		if (!PageBuddy(page)) {
1564 			pfn++;
1565 			continue;
1566 		}
1567 
1568 		/* Make sure we are not inadvertently changing nodes */
1569 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1570 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1571 
1572 		order = buddy_order(page);
1573 
1574 		move_to_free_list(page, zone, order, old_mt, new_mt);
1575 
1576 		pfn += 1 << order;
1577 		pages_moved += 1 << order;
1578 	}
1579 
1580 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1581 
1582 	return pages_moved;
1583 }
1584 
1585 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1586 				      unsigned long *start_pfn,
1587 				      int *num_free, int *num_movable)
1588 {
1589 	unsigned long pfn, start, end;
1590 
1591 	pfn = page_to_pfn(page);
1592 	start = pageblock_start_pfn(pfn);
1593 	end = pageblock_end_pfn(pfn);
1594 
1595 	/*
1596 	 * The caller only has the lock for @zone, don't touch ranges
1597 	 * that straddle into other zones. While we could move part of
1598 	 * the range that's inside the zone, this call is usually
1599 	 * accompanied by other operations such as migratetype updates
1600 	 * which also should be locked.
1601 	 */
1602 	if (!zone_spans_pfn(zone, start))
1603 		return false;
1604 	if (!zone_spans_pfn(zone, end - 1))
1605 		return false;
1606 
1607 	*start_pfn = start;
1608 
1609 	if (num_free) {
1610 		*num_free = 0;
1611 		*num_movable = 0;
1612 		for (pfn = start; pfn < end;) {
1613 			page = pfn_to_page(pfn);
1614 			if (PageBuddy(page)) {
1615 				int nr = 1 << buddy_order(page);
1616 
1617 				*num_free += nr;
1618 				pfn += nr;
1619 				continue;
1620 			}
1621 			/*
1622 			 * We assume that pages that could be isolated for
1623 			 * migration are movable. But we don't actually try
1624 			 * isolating, as that would be expensive.
1625 			 */
1626 			if (PageLRU(page) || __PageMovable(page))
1627 				(*num_movable)++;
1628 			pfn++;
1629 		}
1630 	}
1631 
1632 	return true;
1633 }
1634 
1635 static int move_freepages_block(struct zone *zone, struct page *page,
1636 				int old_mt, int new_mt)
1637 {
1638 	unsigned long start_pfn;
1639 
1640 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1641 		return -1;
1642 
1643 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1644 }
1645 
1646 #ifdef CONFIG_MEMORY_ISOLATION
1647 /* Look for a buddy that straddles start_pfn */
1648 static unsigned long find_large_buddy(unsigned long start_pfn)
1649 {
1650 	int order = 0;
1651 	struct page *page;
1652 	unsigned long pfn = start_pfn;
1653 
1654 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1655 		/* Nothing found */
1656 		if (++order > MAX_PAGE_ORDER)
1657 			return start_pfn;
1658 		pfn &= ~0UL << order;
1659 	}
1660 
1661 	/*
1662 	 * Found a preceding buddy, but does it straddle?
1663 	 */
1664 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1665 		return pfn;
1666 
1667 	/* Nothing found */
1668 	return start_pfn;
1669 }
1670 
1671 /* Split a multi-block free page into its individual pageblocks */
1672 static void split_large_buddy(struct zone *zone, struct page *page,
1673 			      unsigned long pfn, int order)
1674 {
1675 	unsigned long end_pfn = pfn + (1 << order);
1676 
1677 	VM_WARN_ON_ONCE(order <= pageblock_order);
1678 	VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1679 
1680 	/* Caller removed page from freelist, buddy info cleared! */
1681 	VM_WARN_ON_ONCE(PageBuddy(page));
1682 
1683 	while (pfn != end_pfn) {
1684 		int mt = get_pfnblock_migratetype(page, pfn);
1685 
1686 		__free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1687 		pfn += pageblock_nr_pages;
1688 		page = pfn_to_page(pfn);
1689 	}
1690 }
1691 
1692 /**
1693  * move_freepages_block_isolate - move free pages in block for page isolation
1694  * @zone: the zone
1695  * @page: the pageblock page
1696  * @migratetype: migratetype to set on the pageblock
1697  *
1698  * This is similar to move_freepages_block(), but handles the special
1699  * case encountered in page isolation, where the block of interest
1700  * might be part of a larger buddy spanning multiple pageblocks.
1701  *
1702  * Unlike the regular page allocator path, which moves pages while
1703  * stealing buddies off the freelist, page isolation is interested in
1704  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1705  *
1706  * This function handles that. Straddling buddies are split into
1707  * individual pageblocks. Only the block of interest is moved.
1708  *
1709  * Returns %true if pages could be moved, %false otherwise.
1710  */
1711 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1712 				  int migratetype)
1713 {
1714 	unsigned long start_pfn, pfn;
1715 
1716 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1717 		return false;
1718 
1719 	/* No splits needed if buddies can't span multiple blocks */
1720 	if (pageblock_order == MAX_PAGE_ORDER)
1721 		goto move;
1722 
1723 	/* We're a tail block in a larger buddy */
1724 	pfn = find_large_buddy(start_pfn);
1725 	if (pfn != start_pfn) {
1726 		struct page *buddy = pfn_to_page(pfn);
1727 		int order = buddy_order(buddy);
1728 
1729 		del_page_from_free_list(buddy, zone, order,
1730 					get_pfnblock_migratetype(buddy, pfn));
1731 		set_pageblock_migratetype(page, migratetype);
1732 		split_large_buddy(zone, buddy, pfn, order);
1733 		return true;
1734 	}
1735 
1736 	/* We're the starting block of a larger buddy */
1737 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1738 		int order = buddy_order(page);
1739 
1740 		del_page_from_free_list(page, zone, order,
1741 					get_pfnblock_migratetype(page, pfn));
1742 		set_pageblock_migratetype(page, migratetype);
1743 		split_large_buddy(zone, page, pfn, order);
1744 		return true;
1745 	}
1746 move:
1747 	__move_freepages_block(zone, start_pfn,
1748 			       get_pfnblock_migratetype(page, start_pfn),
1749 			       migratetype);
1750 	return true;
1751 }
1752 #endif /* CONFIG_MEMORY_ISOLATION */
1753 
1754 static void change_pageblock_range(struct page *pageblock_page,
1755 					int start_order, int migratetype)
1756 {
1757 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1758 
1759 	while (nr_pageblocks--) {
1760 		set_pageblock_migratetype(pageblock_page, migratetype);
1761 		pageblock_page += pageblock_nr_pages;
1762 	}
1763 }
1764 
1765 /*
1766  * When we are falling back to another migratetype during allocation, try to
1767  * steal extra free pages from the same pageblocks to satisfy further
1768  * allocations, instead of polluting multiple pageblocks.
1769  *
1770  * If we are stealing a relatively large buddy page, it is likely there will
1771  * be more free pages in the pageblock, so try to steal them all. For
1772  * reclaimable and unmovable allocations, we steal regardless of page size,
1773  * as fragmentation caused by those allocations polluting movable pageblocks
1774  * is worse than movable allocations stealing from unmovable and reclaimable
1775  * pageblocks.
1776  */
1777 static bool can_steal_fallback(unsigned int order, int start_mt)
1778 {
1779 	/*
1780 	 * Leaving this order check is intended, although there is
1781 	 * relaxed order check in next check. The reason is that
1782 	 * we can actually steal whole pageblock if this condition met,
1783 	 * but, below check doesn't guarantee it and that is just heuristic
1784 	 * so could be changed anytime.
1785 	 */
1786 	if (order >= pageblock_order)
1787 		return true;
1788 
1789 	if (order >= pageblock_order / 2 ||
1790 		start_mt == MIGRATE_RECLAIMABLE ||
1791 		start_mt == MIGRATE_UNMOVABLE ||
1792 		page_group_by_mobility_disabled)
1793 		return true;
1794 
1795 	return false;
1796 }
1797 
1798 static inline bool boost_watermark(struct zone *zone)
1799 {
1800 	unsigned long max_boost;
1801 
1802 	if (!watermark_boost_factor)
1803 		return false;
1804 	/*
1805 	 * Don't bother in zones that are unlikely to produce results.
1806 	 * On small machines, including kdump capture kernels running
1807 	 * in a small area, boosting the watermark can cause an out of
1808 	 * memory situation immediately.
1809 	 */
1810 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1811 		return false;
1812 
1813 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1814 			watermark_boost_factor, 10000);
1815 
1816 	/*
1817 	 * high watermark may be uninitialised if fragmentation occurs
1818 	 * very early in boot so do not boost. We do not fall
1819 	 * through and boost by pageblock_nr_pages as failing
1820 	 * allocations that early means that reclaim is not going
1821 	 * to help and it may even be impossible to reclaim the
1822 	 * boosted watermark resulting in a hang.
1823 	 */
1824 	if (!max_boost)
1825 		return false;
1826 
1827 	max_boost = max(pageblock_nr_pages, max_boost);
1828 
1829 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1830 		max_boost);
1831 
1832 	return true;
1833 }
1834 
1835 /*
1836  * This function implements actual steal behaviour. If order is large enough, we
1837  * can claim the whole pageblock for the requested migratetype. If not, we check
1838  * the pageblock for constituent pages; if at least half of the pages are free
1839  * or compatible, we can still claim the whole block, so pages freed in the
1840  * future will be put on the correct free list. Otherwise, we isolate exactly
1841  * the order we need from the fallback block and leave its migratetype alone.
1842  */
1843 static struct page *
1844 steal_suitable_fallback(struct zone *zone, struct page *page,
1845 			int current_order, int order, int start_type,
1846 			unsigned int alloc_flags, bool whole_block)
1847 {
1848 	int free_pages, movable_pages, alike_pages;
1849 	unsigned long start_pfn;
1850 	int block_type;
1851 
1852 	block_type = get_pageblock_migratetype(page);
1853 
1854 	/*
1855 	 * This can happen due to races and we want to prevent broken
1856 	 * highatomic accounting.
1857 	 */
1858 	if (is_migrate_highatomic(block_type))
1859 		goto single_page;
1860 
1861 	/* Take ownership for orders >= pageblock_order */
1862 	if (current_order >= pageblock_order) {
1863 		del_page_from_free_list(page, zone, current_order, block_type);
1864 		change_pageblock_range(page, current_order, start_type);
1865 		expand(zone, page, order, current_order, start_type);
1866 		return page;
1867 	}
1868 
1869 	/*
1870 	 * Boost watermarks to increase reclaim pressure to reduce the
1871 	 * likelihood of future fallbacks. Wake kswapd now as the node
1872 	 * may be balanced overall and kswapd will not wake naturally.
1873 	 */
1874 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1875 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1876 
1877 	/* We are not allowed to try stealing from the whole block */
1878 	if (!whole_block)
1879 		goto single_page;
1880 
1881 	/* moving whole block can fail due to zone boundary conditions */
1882 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1883 				       &movable_pages))
1884 		goto single_page;
1885 
1886 	/*
1887 	 * Determine how many pages are compatible with our allocation.
1888 	 * For movable allocation, it's the number of movable pages which
1889 	 * we just obtained. For other types it's a bit more tricky.
1890 	 */
1891 	if (start_type == MIGRATE_MOVABLE) {
1892 		alike_pages = movable_pages;
1893 	} else {
1894 		/*
1895 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1896 		 * to MOVABLE pageblock, consider all non-movable pages as
1897 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1898 		 * vice versa, be conservative since we can't distinguish the
1899 		 * exact migratetype of non-movable pages.
1900 		 */
1901 		if (block_type == MIGRATE_MOVABLE)
1902 			alike_pages = pageblock_nr_pages
1903 						- (free_pages + movable_pages);
1904 		else
1905 			alike_pages = 0;
1906 	}
1907 	/*
1908 	 * If a sufficient number of pages in the block are either free or of
1909 	 * compatible migratability as our allocation, claim the whole block.
1910 	 */
1911 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1912 			page_group_by_mobility_disabled) {
1913 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1914 		return __rmqueue_smallest(zone, order, start_type);
1915 	}
1916 
1917 single_page:
1918 	del_page_from_free_list(page, zone, current_order, block_type);
1919 	expand(zone, page, order, current_order, block_type);
1920 	return page;
1921 }
1922 
1923 /*
1924  * Check whether there is a suitable fallback freepage with requested order.
1925  * If only_stealable is true, this function returns fallback_mt only if
1926  * we can steal other freepages all together. This would help to reduce
1927  * fragmentation due to mixed migratetype pages in one pageblock.
1928  */
1929 int find_suitable_fallback(struct free_area *area, unsigned int order,
1930 			int migratetype, bool only_stealable, bool *can_steal)
1931 {
1932 	int i;
1933 	int fallback_mt;
1934 
1935 	if (area->nr_free == 0)
1936 		return -1;
1937 
1938 	*can_steal = false;
1939 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1940 		fallback_mt = fallbacks[migratetype][i];
1941 		if (free_area_empty(area, fallback_mt))
1942 			continue;
1943 
1944 		if (can_steal_fallback(order, migratetype))
1945 			*can_steal = true;
1946 
1947 		if (!only_stealable)
1948 			return fallback_mt;
1949 
1950 		if (*can_steal)
1951 			return fallback_mt;
1952 	}
1953 
1954 	return -1;
1955 }
1956 
1957 /*
1958  * Reserve the pageblock(s) surrounding an allocation request for
1959  * exclusive use of high-order atomic allocations if there are no
1960  * empty page blocks that contain a page with a suitable order
1961  */
1962 static void reserve_highatomic_pageblock(struct page *page, int order,
1963 					 struct zone *zone)
1964 {
1965 	int mt;
1966 	unsigned long max_managed, flags;
1967 
1968 	/*
1969 	 * The number reserved as: minimum is 1 pageblock, maximum is
1970 	 * roughly 1% of a zone. But if 1% of a zone falls below a
1971 	 * pageblock size, then don't reserve any pageblocks.
1972 	 * Check is race-prone but harmless.
1973 	 */
1974 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1975 		return;
1976 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1977 	if (zone->nr_reserved_highatomic >= max_managed)
1978 		return;
1979 
1980 	spin_lock_irqsave(&zone->lock, flags);
1981 
1982 	/* Recheck the nr_reserved_highatomic limit under the lock */
1983 	if (zone->nr_reserved_highatomic >= max_managed)
1984 		goto out_unlock;
1985 
1986 	/* Yoink! */
1987 	mt = get_pageblock_migratetype(page);
1988 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1989 	if (!migratetype_is_mergeable(mt))
1990 		goto out_unlock;
1991 
1992 	if (order < pageblock_order) {
1993 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
1994 			goto out_unlock;
1995 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1996 	} else {
1997 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
1998 		zone->nr_reserved_highatomic += 1 << order;
1999 	}
2000 
2001 out_unlock:
2002 	spin_unlock_irqrestore(&zone->lock, flags);
2003 }
2004 
2005 /*
2006  * Used when an allocation is about to fail under memory pressure. This
2007  * potentially hurts the reliability of high-order allocations when under
2008  * intense memory pressure but failed atomic allocations should be easier
2009  * to recover from than an OOM.
2010  *
2011  * If @force is true, try to unreserve pageblocks even though highatomic
2012  * pageblock is exhausted.
2013  */
2014 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2015 						bool force)
2016 {
2017 	struct zonelist *zonelist = ac->zonelist;
2018 	unsigned long flags;
2019 	struct zoneref *z;
2020 	struct zone *zone;
2021 	struct page *page;
2022 	int order;
2023 	int ret;
2024 
2025 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2026 								ac->nodemask) {
2027 		/*
2028 		 * Preserve at least one pageblock unless memory pressure
2029 		 * is really high.
2030 		 */
2031 		if (!force && zone->nr_reserved_highatomic <=
2032 					pageblock_nr_pages)
2033 			continue;
2034 
2035 		spin_lock_irqsave(&zone->lock, flags);
2036 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2037 			struct free_area *area = &(zone->free_area[order]);
2038 			int mt;
2039 
2040 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2041 			if (!page)
2042 				continue;
2043 
2044 			mt = get_pageblock_migratetype(page);
2045 			/*
2046 			 * In page freeing path, migratetype change is racy so
2047 			 * we can counter several free pages in a pageblock
2048 			 * in this loop although we changed the pageblock type
2049 			 * from highatomic to ac->migratetype. So we should
2050 			 * adjust the count once.
2051 			 */
2052 			if (is_migrate_highatomic(mt)) {
2053 				unsigned long size;
2054 				/*
2055 				 * It should never happen but changes to
2056 				 * locking could inadvertently allow a per-cpu
2057 				 * drain to add pages to MIGRATE_HIGHATOMIC
2058 				 * while unreserving so be safe and watch for
2059 				 * underflows.
2060 				 */
2061 				size = max(pageblock_nr_pages, 1UL << order);
2062 				size = min(size, zone->nr_reserved_highatomic);
2063 				zone->nr_reserved_highatomic -= size;
2064 			}
2065 
2066 			/*
2067 			 * Convert to ac->migratetype and avoid the normal
2068 			 * pageblock stealing heuristics. Minimally, the caller
2069 			 * is doing the work and needs the pages. More
2070 			 * importantly, if the block was always converted to
2071 			 * MIGRATE_UNMOVABLE or another type then the number
2072 			 * of pageblocks that cannot be completely freed
2073 			 * may increase.
2074 			 */
2075 			if (order < pageblock_order)
2076 				ret = move_freepages_block(zone, page, mt,
2077 							   ac->migratetype);
2078 			else {
2079 				move_to_free_list(page, zone, order, mt,
2080 						  ac->migratetype);
2081 				change_pageblock_range(page, order,
2082 						       ac->migratetype);
2083 				ret = 1;
2084 			}
2085 			/*
2086 			 * Reserving the block(s) already succeeded,
2087 			 * so this should not fail on zone boundaries.
2088 			 */
2089 			WARN_ON_ONCE(ret == -1);
2090 			if (ret > 0) {
2091 				spin_unlock_irqrestore(&zone->lock, flags);
2092 				return ret;
2093 			}
2094 		}
2095 		spin_unlock_irqrestore(&zone->lock, flags);
2096 	}
2097 
2098 	return false;
2099 }
2100 
2101 /*
2102  * Try finding a free buddy page on the fallback list and put it on the free
2103  * list of requested migratetype, possibly along with other pages from the same
2104  * block, depending on fragmentation avoidance heuristics. Returns true if
2105  * fallback was found so that __rmqueue_smallest() can grab it.
2106  *
2107  * The use of signed ints for order and current_order is a deliberate
2108  * deviation from the rest of this file, to make the for loop
2109  * condition simpler.
2110  */
2111 static __always_inline struct page *
2112 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2113 						unsigned int alloc_flags)
2114 {
2115 	struct free_area *area;
2116 	int current_order;
2117 	int min_order = order;
2118 	struct page *page;
2119 	int fallback_mt;
2120 	bool can_steal;
2121 
2122 	/*
2123 	 * Do not steal pages from freelists belonging to other pageblocks
2124 	 * i.e. orders < pageblock_order. If there are no local zones free,
2125 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2126 	 */
2127 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2128 		min_order = pageblock_order;
2129 
2130 	/*
2131 	 * Find the largest available free page in the other list. This roughly
2132 	 * approximates finding the pageblock with the most free pages, which
2133 	 * would be too costly to do exactly.
2134 	 */
2135 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2136 				--current_order) {
2137 		area = &(zone->free_area[current_order]);
2138 		fallback_mt = find_suitable_fallback(area, current_order,
2139 				start_migratetype, false, &can_steal);
2140 		if (fallback_mt == -1)
2141 			continue;
2142 
2143 		/*
2144 		 * We cannot steal all free pages from the pageblock and the
2145 		 * requested migratetype is movable. In that case it's better to
2146 		 * steal and split the smallest available page instead of the
2147 		 * largest available page, because even if the next movable
2148 		 * allocation falls back into a different pageblock than this
2149 		 * one, it won't cause permanent fragmentation.
2150 		 */
2151 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2152 					&& current_order > order)
2153 			goto find_smallest;
2154 
2155 		goto do_steal;
2156 	}
2157 
2158 	return NULL;
2159 
2160 find_smallest:
2161 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2162 		area = &(zone->free_area[current_order]);
2163 		fallback_mt = find_suitable_fallback(area, current_order,
2164 				start_migratetype, false, &can_steal);
2165 		if (fallback_mt != -1)
2166 			break;
2167 	}
2168 
2169 	/*
2170 	 * This should not happen - we already found a suitable fallback
2171 	 * when looking for the largest page.
2172 	 */
2173 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2174 
2175 do_steal:
2176 	page = get_page_from_free_area(area, fallback_mt);
2177 
2178 	/* take off list, maybe claim block, expand remainder */
2179 	page = steal_suitable_fallback(zone, page, current_order, order,
2180 				       start_migratetype, alloc_flags, can_steal);
2181 
2182 	trace_mm_page_alloc_extfrag(page, order, current_order,
2183 		start_migratetype, fallback_mt);
2184 
2185 	return page;
2186 }
2187 
2188 /*
2189  * Do the hard work of removing an element from the buddy allocator.
2190  * Call me with the zone->lock already held.
2191  */
2192 static __always_inline struct page *
2193 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2194 						unsigned int alloc_flags)
2195 {
2196 	struct page *page;
2197 
2198 	if (IS_ENABLED(CONFIG_CMA)) {
2199 		/*
2200 		 * Balance movable allocations between regular and CMA areas by
2201 		 * allocating from CMA when over half of the zone's free memory
2202 		 * is in the CMA area.
2203 		 */
2204 		if (alloc_flags & ALLOC_CMA &&
2205 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2206 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2207 			page = __rmqueue_cma_fallback(zone, order);
2208 			if (page)
2209 				return page;
2210 		}
2211 	}
2212 
2213 	page = __rmqueue_smallest(zone, order, migratetype);
2214 	if (unlikely(!page)) {
2215 		if (alloc_flags & ALLOC_CMA)
2216 			page = __rmqueue_cma_fallback(zone, order);
2217 
2218 		if (!page)
2219 			page = __rmqueue_fallback(zone, order, migratetype,
2220 						  alloc_flags);
2221 	}
2222 	return page;
2223 }
2224 
2225 /*
2226  * Obtain a specified number of elements from the buddy allocator, all under
2227  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2228  * Returns the number of new pages which were placed at *list.
2229  */
2230 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2231 			unsigned long count, struct list_head *list,
2232 			int migratetype, unsigned int alloc_flags)
2233 {
2234 	unsigned long flags;
2235 	int i;
2236 
2237 	spin_lock_irqsave(&zone->lock, flags);
2238 	for (i = 0; i < count; ++i) {
2239 		struct page *page = __rmqueue(zone, order, migratetype,
2240 								alloc_flags);
2241 		if (unlikely(page == NULL))
2242 			break;
2243 
2244 		/*
2245 		 * Split buddy pages returned by expand() are received here in
2246 		 * physical page order. The page is added to the tail of
2247 		 * caller's list. From the callers perspective, the linked list
2248 		 * is ordered by page number under some conditions. This is
2249 		 * useful for IO devices that can forward direction from the
2250 		 * head, thus also in the physical page order. This is useful
2251 		 * for IO devices that can merge IO requests if the physical
2252 		 * pages are ordered properly.
2253 		 */
2254 		list_add_tail(&page->pcp_list, list);
2255 	}
2256 	spin_unlock_irqrestore(&zone->lock, flags);
2257 
2258 	return i;
2259 }
2260 
2261 /*
2262  * Called from the vmstat counter updater to decay the PCP high.
2263  * Return whether there are addition works to do.
2264  */
2265 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2266 {
2267 	int high_min, to_drain, batch;
2268 	int todo = 0;
2269 
2270 	high_min = READ_ONCE(pcp->high_min);
2271 	batch = READ_ONCE(pcp->batch);
2272 	/*
2273 	 * Decrease pcp->high periodically to try to free possible
2274 	 * idle PCP pages.  And, avoid to free too many pages to
2275 	 * control latency.  This caps pcp->high decrement too.
2276 	 */
2277 	if (pcp->high > high_min) {
2278 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2279 				 pcp->high - (pcp->high >> 3), high_min);
2280 		if (pcp->high > high_min)
2281 			todo++;
2282 	}
2283 
2284 	to_drain = pcp->count - pcp->high;
2285 	if (to_drain > 0) {
2286 		spin_lock(&pcp->lock);
2287 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2288 		spin_unlock(&pcp->lock);
2289 		todo++;
2290 	}
2291 
2292 	return todo;
2293 }
2294 
2295 #ifdef CONFIG_NUMA
2296 /*
2297  * Called from the vmstat counter updater to drain pagesets of this
2298  * currently executing processor on remote nodes after they have
2299  * expired.
2300  */
2301 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2302 {
2303 	int to_drain, batch;
2304 
2305 	batch = READ_ONCE(pcp->batch);
2306 	to_drain = min(pcp->count, batch);
2307 	if (to_drain > 0) {
2308 		spin_lock(&pcp->lock);
2309 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2310 		spin_unlock(&pcp->lock);
2311 	}
2312 }
2313 #endif
2314 
2315 /*
2316  * Drain pcplists of the indicated processor and zone.
2317  */
2318 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2319 {
2320 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2321 	int count = READ_ONCE(pcp->count);
2322 
2323 	while (count) {
2324 		int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2325 		count -= to_drain;
2326 
2327 		spin_lock(&pcp->lock);
2328 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2329 		spin_unlock(&pcp->lock);
2330 	}
2331 }
2332 
2333 /*
2334  * Drain pcplists of all zones on the indicated processor.
2335  */
2336 static void drain_pages(unsigned int cpu)
2337 {
2338 	struct zone *zone;
2339 
2340 	for_each_populated_zone(zone) {
2341 		drain_pages_zone(cpu, zone);
2342 	}
2343 }
2344 
2345 /*
2346  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2347  */
2348 void drain_local_pages(struct zone *zone)
2349 {
2350 	int cpu = smp_processor_id();
2351 
2352 	if (zone)
2353 		drain_pages_zone(cpu, zone);
2354 	else
2355 		drain_pages(cpu);
2356 }
2357 
2358 /*
2359  * The implementation of drain_all_pages(), exposing an extra parameter to
2360  * drain on all cpus.
2361  *
2362  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2363  * not empty. The check for non-emptiness can however race with a free to
2364  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2365  * that need the guarantee that every CPU has drained can disable the
2366  * optimizing racy check.
2367  */
2368 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2369 {
2370 	int cpu;
2371 
2372 	/*
2373 	 * Allocate in the BSS so we won't require allocation in
2374 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2375 	 */
2376 	static cpumask_t cpus_with_pcps;
2377 
2378 	/*
2379 	 * Do not drain if one is already in progress unless it's specific to
2380 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2381 	 * the drain to be complete when the call returns.
2382 	 */
2383 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2384 		if (!zone)
2385 			return;
2386 		mutex_lock(&pcpu_drain_mutex);
2387 	}
2388 
2389 	/*
2390 	 * We don't care about racing with CPU hotplug event
2391 	 * as offline notification will cause the notified
2392 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2393 	 * disables preemption as part of its processing
2394 	 */
2395 	for_each_online_cpu(cpu) {
2396 		struct per_cpu_pages *pcp;
2397 		struct zone *z;
2398 		bool has_pcps = false;
2399 
2400 		if (force_all_cpus) {
2401 			/*
2402 			 * The pcp.count check is racy, some callers need a
2403 			 * guarantee that no cpu is missed.
2404 			 */
2405 			has_pcps = true;
2406 		} else if (zone) {
2407 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2408 			if (pcp->count)
2409 				has_pcps = true;
2410 		} else {
2411 			for_each_populated_zone(z) {
2412 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2413 				if (pcp->count) {
2414 					has_pcps = true;
2415 					break;
2416 				}
2417 			}
2418 		}
2419 
2420 		if (has_pcps)
2421 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2422 		else
2423 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2424 	}
2425 
2426 	for_each_cpu(cpu, &cpus_with_pcps) {
2427 		if (zone)
2428 			drain_pages_zone(cpu, zone);
2429 		else
2430 			drain_pages(cpu);
2431 	}
2432 
2433 	mutex_unlock(&pcpu_drain_mutex);
2434 }
2435 
2436 /*
2437  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2438  *
2439  * When zone parameter is non-NULL, spill just the single zone's pages.
2440  */
2441 void drain_all_pages(struct zone *zone)
2442 {
2443 	__drain_all_pages(zone, false);
2444 }
2445 
2446 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2447 {
2448 	int min_nr_free, max_nr_free;
2449 
2450 	/* Free as much as possible if batch freeing high-order pages. */
2451 	if (unlikely(free_high))
2452 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2453 
2454 	/* Check for PCP disabled or boot pageset */
2455 	if (unlikely(high < batch))
2456 		return 1;
2457 
2458 	/* Leave at least pcp->batch pages on the list */
2459 	min_nr_free = batch;
2460 	max_nr_free = high - batch;
2461 
2462 	/*
2463 	 * Increase the batch number to the number of the consecutive
2464 	 * freed pages to reduce zone lock contention.
2465 	 */
2466 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2467 
2468 	return batch;
2469 }
2470 
2471 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2472 		       int batch, bool free_high)
2473 {
2474 	int high, high_min, high_max;
2475 
2476 	high_min = READ_ONCE(pcp->high_min);
2477 	high_max = READ_ONCE(pcp->high_max);
2478 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2479 
2480 	if (unlikely(!high))
2481 		return 0;
2482 
2483 	if (unlikely(free_high)) {
2484 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2485 				high_min);
2486 		return 0;
2487 	}
2488 
2489 	/*
2490 	 * If reclaim is active, limit the number of pages that can be
2491 	 * stored on pcp lists
2492 	 */
2493 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2494 		int free_count = max_t(int, pcp->free_count, batch);
2495 
2496 		pcp->high = max(high - free_count, high_min);
2497 		return min(batch << 2, pcp->high);
2498 	}
2499 
2500 	if (high_min == high_max)
2501 		return high;
2502 
2503 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2504 		int free_count = max_t(int, pcp->free_count, batch);
2505 
2506 		pcp->high = max(high - free_count, high_min);
2507 		high = max(pcp->count, high_min);
2508 	} else if (pcp->count >= high) {
2509 		int need_high = pcp->free_count + batch;
2510 
2511 		/* pcp->high should be large enough to hold batch freed pages */
2512 		if (pcp->high < need_high)
2513 			pcp->high = clamp(need_high, high_min, high_max);
2514 	}
2515 
2516 	return high;
2517 }
2518 
2519 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2520 				   struct page *page, int migratetype,
2521 				   unsigned int order)
2522 {
2523 	int high, batch;
2524 	int pindex;
2525 	bool free_high = false;
2526 
2527 	/*
2528 	 * On freeing, reduce the number of pages that are batch allocated.
2529 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2530 	 * allocations.
2531 	 */
2532 	pcp->alloc_factor >>= 1;
2533 	__count_vm_events(PGFREE, 1 << order);
2534 	pindex = order_to_pindex(migratetype, order);
2535 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2536 	pcp->count += 1 << order;
2537 
2538 	batch = READ_ONCE(pcp->batch);
2539 	/*
2540 	 * As high-order pages other than THP's stored on PCP can contribute
2541 	 * to fragmentation, limit the number stored when PCP is heavily
2542 	 * freeing without allocation. The remainder after bulk freeing
2543 	 * stops will be drained from vmstat refresh context.
2544 	 */
2545 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2546 		free_high = (pcp->free_count >= batch &&
2547 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2548 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2549 			      pcp->count >= READ_ONCE(batch)));
2550 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2551 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2552 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2553 	}
2554 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2555 		pcp->free_count += (1 << order);
2556 	high = nr_pcp_high(pcp, zone, batch, free_high);
2557 	if (pcp->count >= high) {
2558 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2559 				   pcp, pindex);
2560 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2561 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2562 				      ZONE_MOVABLE, 0))
2563 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2564 	}
2565 }
2566 
2567 /*
2568  * Free a pcp page
2569  */
2570 void free_unref_page(struct page *page, unsigned int order)
2571 {
2572 	unsigned long __maybe_unused UP_flags;
2573 	struct per_cpu_pages *pcp;
2574 	struct zone *zone;
2575 	unsigned long pfn = page_to_pfn(page);
2576 	int migratetype;
2577 
2578 	if (!pcp_allowed_order(order)) {
2579 		__free_pages_ok(page, order, FPI_NONE);
2580 		return;
2581 	}
2582 
2583 	if (!free_pages_prepare(page, order))
2584 		return;
2585 
2586 	/*
2587 	 * We only track unmovable, reclaimable and movable on pcp lists.
2588 	 * Place ISOLATE pages on the isolated list because they are being
2589 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2590 	 * get those areas back if necessary. Otherwise, we may have to free
2591 	 * excessively into the page allocator
2592 	 */
2593 	migratetype = get_pfnblock_migratetype(page, pfn);
2594 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2595 		if (unlikely(is_migrate_isolate(migratetype))) {
2596 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2597 			return;
2598 		}
2599 		migratetype = MIGRATE_MOVABLE;
2600 	}
2601 
2602 	zone = page_zone(page);
2603 	pcp_trylock_prepare(UP_flags);
2604 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2605 	if (pcp) {
2606 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2607 		pcp_spin_unlock(pcp);
2608 	} else {
2609 		free_one_page(zone, page, pfn, order, FPI_NONE);
2610 	}
2611 	pcp_trylock_finish(UP_flags);
2612 }
2613 
2614 /*
2615  * Free a batch of folios
2616  */
2617 void free_unref_folios(struct folio_batch *folios)
2618 {
2619 	unsigned long __maybe_unused UP_flags;
2620 	struct per_cpu_pages *pcp = NULL;
2621 	struct zone *locked_zone = NULL;
2622 	int i, j;
2623 
2624 	/* Prepare folios for freeing */
2625 	for (i = 0, j = 0; i < folios->nr; i++) {
2626 		struct folio *folio = folios->folios[i];
2627 		unsigned long pfn = folio_pfn(folio);
2628 		unsigned int order = folio_order(folio);
2629 
2630 		if (order > 0 && folio_test_large_rmappable(folio))
2631 			folio_undo_large_rmappable(folio);
2632 		if (!free_pages_prepare(&folio->page, order))
2633 			continue;
2634 		/*
2635 		 * Free orders not handled on the PCP directly to the
2636 		 * allocator.
2637 		 */
2638 		if (!pcp_allowed_order(order)) {
2639 			free_one_page(folio_zone(folio), &folio->page,
2640 				      pfn, order, FPI_NONE);
2641 			continue;
2642 		}
2643 		folio->private = (void *)(unsigned long)order;
2644 		if (j != i)
2645 			folios->folios[j] = folio;
2646 		j++;
2647 	}
2648 	folios->nr = j;
2649 
2650 	for (i = 0; i < folios->nr; i++) {
2651 		struct folio *folio = folios->folios[i];
2652 		struct zone *zone = folio_zone(folio);
2653 		unsigned long pfn = folio_pfn(folio);
2654 		unsigned int order = (unsigned long)folio->private;
2655 		int migratetype;
2656 
2657 		folio->private = NULL;
2658 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2659 
2660 		/* Different zone requires a different pcp lock */
2661 		if (zone != locked_zone ||
2662 		    is_migrate_isolate(migratetype)) {
2663 			if (pcp) {
2664 				pcp_spin_unlock(pcp);
2665 				pcp_trylock_finish(UP_flags);
2666 				locked_zone = NULL;
2667 				pcp = NULL;
2668 			}
2669 
2670 			/*
2671 			 * Free isolated pages directly to the
2672 			 * allocator, see comment in free_unref_page.
2673 			 */
2674 			if (is_migrate_isolate(migratetype)) {
2675 				free_one_page(zone, &folio->page, pfn,
2676 					      order, FPI_NONE);
2677 				continue;
2678 			}
2679 
2680 			/*
2681 			 * trylock is necessary as folios may be getting freed
2682 			 * from IRQ or SoftIRQ context after an IO completion.
2683 			 */
2684 			pcp_trylock_prepare(UP_flags);
2685 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2686 			if (unlikely(!pcp)) {
2687 				pcp_trylock_finish(UP_flags);
2688 				free_one_page(zone, &folio->page, pfn,
2689 					      order, FPI_NONE);
2690 				continue;
2691 			}
2692 			locked_zone = zone;
2693 		}
2694 
2695 		/*
2696 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2697 		 * to the MIGRATE_MOVABLE pcp list.
2698 		 */
2699 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2700 			migratetype = MIGRATE_MOVABLE;
2701 
2702 		trace_mm_page_free_batched(&folio->page);
2703 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2704 				order);
2705 	}
2706 
2707 	if (pcp) {
2708 		pcp_spin_unlock(pcp);
2709 		pcp_trylock_finish(UP_flags);
2710 	}
2711 	folio_batch_reinit(folios);
2712 }
2713 
2714 /*
2715  * split_page takes a non-compound higher-order page, and splits it into
2716  * n (1<<order) sub-pages: page[0..n]
2717  * Each sub-page must be freed individually.
2718  *
2719  * Note: this is probably too low level an operation for use in drivers.
2720  * Please consult with lkml before using this in your driver.
2721  */
2722 void split_page(struct page *page, unsigned int order)
2723 {
2724 	int i;
2725 
2726 	VM_BUG_ON_PAGE(PageCompound(page), page);
2727 	VM_BUG_ON_PAGE(!page_count(page), page);
2728 
2729 	for (i = 1; i < (1 << order); i++)
2730 		set_page_refcounted(page + i);
2731 	split_page_owner(page, order, 0);
2732 	pgalloc_tag_split(page, 1 << order);
2733 	split_page_memcg(page, order, 0);
2734 }
2735 EXPORT_SYMBOL_GPL(split_page);
2736 
2737 int __isolate_free_page(struct page *page, unsigned int order)
2738 {
2739 	struct zone *zone = page_zone(page);
2740 	int mt = get_pageblock_migratetype(page);
2741 
2742 	if (!is_migrate_isolate(mt)) {
2743 		unsigned long watermark;
2744 		/*
2745 		 * Obey watermarks as if the page was being allocated. We can
2746 		 * emulate a high-order watermark check with a raised order-0
2747 		 * watermark, because we already know our high-order page
2748 		 * exists.
2749 		 */
2750 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2751 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2752 			return 0;
2753 	}
2754 
2755 	del_page_from_free_list(page, zone, order, mt);
2756 
2757 	/*
2758 	 * Set the pageblock if the isolated page is at least half of a
2759 	 * pageblock
2760 	 */
2761 	if (order >= pageblock_order - 1) {
2762 		struct page *endpage = page + (1 << order) - 1;
2763 		for (; page < endpage; page += pageblock_nr_pages) {
2764 			int mt = get_pageblock_migratetype(page);
2765 			/*
2766 			 * Only change normal pageblocks (i.e., they can merge
2767 			 * with others)
2768 			 */
2769 			if (migratetype_is_mergeable(mt))
2770 				move_freepages_block(zone, page, mt,
2771 						     MIGRATE_MOVABLE);
2772 		}
2773 	}
2774 
2775 	return 1UL << order;
2776 }
2777 
2778 /**
2779  * __putback_isolated_page - Return a now-isolated page back where we got it
2780  * @page: Page that was isolated
2781  * @order: Order of the isolated page
2782  * @mt: The page's pageblock's migratetype
2783  *
2784  * This function is meant to return a page pulled from the free lists via
2785  * __isolate_free_page back to the free lists they were pulled from.
2786  */
2787 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2788 {
2789 	struct zone *zone = page_zone(page);
2790 
2791 	/* zone lock should be held when this function is called */
2792 	lockdep_assert_held(&zone->lock);
2793 
2794 	/* Return isolated page to tail of freelist. */
2795 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2796 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2797 }
2798 
2799 /*
2800  * Update NUMA hit/miss statistics
2801  */
2802 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2803 				   long nr_account)
2804 {
2805 #ifdef CONFIG_NUMA
2806 	enum numa_stat_item local_stat = NUMA_LOCAL;
2807 
2808 	/* skip numa counters update if numa stats is disabled */
2809 	if (!static_branch_likely(&vm_numa_stat_key))
2810 		return;
2811 
2812 	if (zone_to_nid(z) != numa_node_id())
2813 		local_stat = NUMA_OTHER;
2814 
2815 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2816 		__count_numa_events(z, NUMA_HIT, nr_account);
2817 	else {
2818 		__count_numa_events(z, NUMA_MISS, nr_account);
2819 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2820 	}
2821 	__count_numa_events(z, local_stat, nr_account);
2822 #endif
2823 }
2824 
2825 static __always_inline
2826 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2827 			   unsigned int order, unsigned int alloc_flags,
2828 			   int migratetype)
2829 {
2830 	struct page *page;
2831 	unsigned long flags;
2832 
2833 	do {
2834 		page = NULL;
2835 		spin_lock_irqsave(&zone->lock, flags);
2836 		if (alloc_flags & ALLOC_HIGHATOMIC)
2837 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2838 		if (!page) {
2839 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2840 
2841 			/*
2842 			 * If the allocation fails, allow OOM handling access
2843 			 * to HIGHATOMIC reserves as failing now is worse than
2844 			 * failing a high-order atomic allocation in the
2845 			 * future.
2846 			 */
2847 			if (!page && (alloc_flags & ALLOC_OOM))
2848 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2849 
2850 			if (!page) {
2851 				spin_unlock_irqrestore(&zone->lock, flags);
2852 				return NULL;
2853 			}
2854 		}
2855 		spin_unlock_irqrestore(&zone->lock, flags);
2856 	} while (check_new_pages(page, order));
2857 
2858 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2859 	zone_statistics(preferred_zone, zone, 1);
2860 
2861 	return page;
2862 }
2863 
2864 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2865 {
2866 	int high, base_batch, batch, max_nr_alloc;
2867 	int high_max, high_min;
2868 
2869 	base_batch = READ_ONCE(pcp->batch);
2870 	high_min = READ_ONCE(pcp->high_min);
2871 	high_max = READ_ONCE(pcp->high_max);
2872 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2873 
2874 	/* Check for PCP disabled or boot pageset */
2875 	if (unlikely(high < base_batch))
2876 		return 1;
2877 
2878 	if (order)
2879 		batch = base_batch;
2880 	else
2881 		batch = (base_batch << pcp->alloc_factor);
2882 
2883 	/*
2884 	 * If we had larger pcp->high, we could avoid to allocate from
2885 	 * zone.
2886 	 */
2887 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2888 		high = pcp->high = min(high + batch, high_max);
2889 
2890 	if (!order) {
2891 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2892 		/*
2893 		 * Double the number of pages allocated each time there is
2894 		 * subsequent allocation of order-0 pages without any freeing.
2895 		 */
2896 		if (batch <= max_nr_alloc &&
2897 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2898 			pcp->alloc_factor++;
2899 		batch = min(batch, max_nr_alloc);
2900 	}
2901 
2902 	/*
2903 	 * Scale batch relative to order if batch implies free pages
2904 	 * can be stored on the PCP. Batch can be 1 for small zones or
2905 	 * for boot pagesets which should never store free pages as
2906 	 * the pages may belong to arbitrary zones.
2907 	 */
2908 	if (batch > 1)
2909 		batch = max(batch >> order, 2);
2910 
2911 	return batch;
2912 }
2913 
2914 /* Remove page from the per-cpu list, caller must protect the list */
2915 static inline
2916 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2917 			int migratetype,
2918 			unsigned int alloc_flags,
2919 			struct per_cpu_pages *pcp,
2920 			struct list_head *list)
2921 {
2922 	struct page *page;
2923 
2924 	do {
2925 		if (list_empty(list)) {
2926 			int batch = nr_pcp_alloc(pcp, zone, order);
2927 			int alloced;
2928 
2929 			alloced = rmqueue_bulk(zone, order,
2930 					batch, list,
2931 					migratetype, alloc_flags);
2932 
2933 			pcp->count += alloced << order;
2934 			if (unlikely(list_empty(list)))
2935 				return NULL;
2936 		}
2937 
2938 		page = list_first_entry(list, struct page, pcp_list);
2939 		list_del(&page->pcp_list);
2940 		pcp->count -= 1 << order;
2941 	} while (check_new_pages(page, order));
2942 
2943 	return page;
2944 }
2945 
2946 /* Lock and remove page from the per-cpu list */
2947 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2948 			struct zone *zone, unsigned int order,
2949 			int migratetype, unsigned int alloc_flags)
2950 {
2951 	struct per_cpu_pages *pcp;
2952 	struct list_head *list;
2953 	struct page *page;
2954 	unsigned long __maybe_unused UP_flags;
2955 
2956 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2957 	pcp_trylock_prepare(UP_flags);
2958 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2959 	if (!pcp) {
2960 		pcp_trylock_finish(UP_flags);
2961 		return NULL;
2962 	}
2963 
2964 	/*
2965 	 * On allocation, reduce the number of pages that are batch freed.
2966 	 * See nr_pcp_free() where free_factor is increased for subsequent
2967 	 * frees.
2968 	 */
2969 	pcp->free_count >>= 1;
2970 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2971 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2972 	pcp_spin_unlock(pcp);
2973 	pcp_trylock_finish(UP_flags);
2974 	if (page) {
2975 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2976 		zone_statistics(preferred_zone, zone, 1);
2977 	}
2978 	return page;
2979 }
2980 
2981 /*
2982  * Allocate a page from the given zone.
2983  * Use pcplists for THP or "cheap" high-order allocations.
2984  */
2985 
2986 /*
2987  * Do not instrument rmqueue() with KMSAN. This function may call
2988  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2989  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2990  * may call rmqueue() again, which will result in a deadlock.
2991  */
2992 __no_sanitize_memory
2993 static inline
2994 struct page *rmqueue(struct zone *preferred_zone,
2995 			struct zone *zone, unsigned int order,
2996 			gfp_t gfp_flags, unsigned int alloc_flags,
2997 			int migratetype)
2998 {
2999 	struct page *page;
3000 
3001 	/*
3002 	 * We most definitely don't want callers attempting to
3003 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3004 	 */
3005 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3006 
3007 	if (likely(pcp_allowed_order(order))) {
3008 		page = rmqueue_pcplist(preferred_zone, zone, order,
3009 				       migratetype, alloc_flags);
3010 		if (likely(page))
3011 			goto out;
3012 	}
3013 
3014 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3015 							migratetype);
3016 
3017 out:
3018 	/* Separate test+clear to avoid unnecessary atomics */
3019 	if ((alloc_flags & ALLOC_KSWAPD) &&
3020 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3021 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3022 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3023 	}
3024 
3025 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3026 	return page;
3027 }
3028 
3029 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3030 {
3031 	return __should_fail_alloc_page(gfp_mask, order);
3032 }
3033 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3034 
3035 static inline long __zone_watermark_unusable_free(struct zone *z,
3036 				unsigned int order, unsigned int alloc_flags)
3037 {
3038 	long unusable_free = (1 << order) - 1;
3039 
3040 	/*
3041 	 * If the caller does not have rights to reserves below the min
3042 	 * watermark then subtract the high-atomic reserves. This will
3043 	 * over-estimate the size of the atomic reserve but it avoids a search.
3044 	 */
3045 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3046 		unusable_free += z->nr_reserved_highatomic;
3047 
3048 #ifdef CONFIG_CMA
3049 	/* If allocation can't use CMA areas don't use free CMA pages */
3050 	if (!(alloc_flags & ALLOC_CMA))
3051 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3052 #endif
3053 #ifdef CONFIG_UNACCEPTED_MEMORY
3054 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
3055 #endif
3056 
3057 	return unusable_free;
3058 }
3059 
3060 /*
3061  * Return true if free base pages are above 'mark'. For high-order checks it
3062  * will return true of the order-0 watermark is reached and there is at least
3063  * one free page of a suitable size. Checking now avoids taking the zone lock
3064  * to check in the allocation paths if no pages are free.
3065  */
3066 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3067 			 int highest_zoneidx, unsigned int alloc_flags,
3068 			 long free_pages)
3069 {
3070 	long min = mark;
3071 	int o;
3072 
3073 	/* free_pages may go negative - that's OK */
3074 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3075 
3076 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3077 		/*
3078 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3079 		 * as OOM.
3080 		 */
3081 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3082 			min -= min / 2;
3083 
3084 			/*
3085 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3086 			 * access more reserves than just __GFP_HIGH. Other
3087 			 * non-blocking allocations requests such as GFP_NOWAIT
3088 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3089 			 * access to the min reserve.
3090 			 */
3091 			if (alloc_flags & ALLOC_NON_BLOCK)
3092 				min -= min / 4;
3093 		}
3094 
3095 		/*
3096 		 * OOM victims can try even harder than the normal reserve
3097 		 * users on the grounds that it's definitely going to be in
3098 		 * the exit path shortly and free memory. Any allocation it
3099 		 * makes during the free path will be small and short-lived.
3100 		 */
3101 		if (alloc_flags & ALLOC_OOM)
3102 			min -= min / 2;
3103 	}
3104 
3105 	/*
3106 	 * Check watermarks for an order-0 allocation request. If these
3107 	 * are not met, then a high-order request also cannot go ahead
3108 	 * even if a suitable page happened to be free.
3109 	 */
3110 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3111 		return false;
3112 
3113 	/* If this is an order-0 request then the watermark is fine */
3114 	if (!order)
3115 		return true;
3116 
3117 	/* For a high-order request, check at least one suitable page is free */
3118 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3119 		struct free_area *area = &z->free_area[o];
3120 		int mt;
3121 
3122 		if (!area->nr_free)
3123 			continue;
3124 
3125 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3126 			if (!free_area_empty(area, mt))
3127 				return true;
3128 		}
3129 
3130 #ifdef CONFIG_CMA
3131 		if ((alloc_flags & ALLOC_CMA) &&
3132 		    !free_area_empty(area, MIGRATE_CMA)) {
3133 			return true;
3134 		}
3135 #endif
3136 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3137 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3138 			return true;
3139 		}
3140 	}
3141 	return false;
3142 }
3143 
3144 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3145 		      int highest_zoneidx, unsigned int alloc_flags)
3146 {
3147 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3148 					zone_page_state(z, NR_FREE_PAGES));
3149 }
3150 
3151 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3152 				unsigned long mark, int highest_zoneidx,
3153 				unsigned int alloc_flags, gfp_t gfp_mask)
3154 {
3155 	long free_pages;
3156 
3157 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3158 
3159 	/*
3160 	 * Fast check for order-0 only. If this fails then the reserves
3161 	 * need to be calculated.
3162 	 */
3163 	if (!order) {
3164 		long usable_free;
3165 		long reserved;
3166 
3167 		usable_free = free_pages;
3168 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3169 
3170 		/* reserved may over estimate high-atomic reserves. */
3171 		usable_free -= min(usable_free, reserved);
3172 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3173 			return true;
3174 	}
3175 
3176 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3177 					free_pages))
3178 		return true;
3179 
3180 	/*
3181 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3182 	 * when checking the min watermark. The min watermark is the
3183 	 * point where boosting is ignored so that kswapd is woken up
3184 	 * when below the low watermark.
3185 	 */
3186 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3187 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3188 		mark = z->_watermark[WMARK_MIN];
3189 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3190 					alloc_flags, free_pages);
3191 	}
3192 
3193 	return false;
3194 }
3195 
3196 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3197 			unsigned long mark, int highest_zoneidx)
3198 {
3199 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3200 
3201 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3202 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3203 
3204 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3205 								free_pages);
3206 }
3207 
3208 #ifdef CONFIG_NUMA
3209 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3210 
3211 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3212 {
3213 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3214 				node_reclaim_distance;
3215 }
3216 #else	/* CONFIG_NUMA */
3217 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3218 {
3219 	return true;
3220 }
3221 #endif	/* CONFIG_NUMA */
3222 
3223 /*
3224  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3225  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3226  * premature use of a lower zone may cause lowmem pressure problems that
3227  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3228  * probably too small. It only makes sense to spread allocations to avoid
3229  * fragmentation between the Normal and DMA32 zones.
3230  */
3231 static inline unsigned int
3232 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3233 {
3234 	unsigned int alloc_flags;
3235 
3236 	/*
3237 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3238 	 * to save a branch.
3239 	 */
3240 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3241 
3242 #ifdef CONFIG_ZONE_DMA32
3243 	if (!zone)
3244 		return alloc_flags;
3245 
3246 	if (zone_idx(zone) != ZONE_NORMAL)
3247 		return alloc_flags;
3248 
3249 	/*
3250 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3251 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3252 	 * on UMA that if Normal is populated then so is DMA32.
3253 	 */
3254 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3255 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3256 		return alloc_flags;
3257 
3258 	alloc_flags |= ALLOC_NOFRAGMENT;
3259 #endif /* CONFIG_ZONE_DMA32 */
3260 	return alloc_flags;
3261 }
3262 
3263 /* Must be called after current_gfp_context() which can change gfp_mask */
3264 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3265 						  unsigned int alloc_flags)
3266 {
3267 #ifdef CONFIG_CMA
3268 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3269 		alloc_flags |= ALLOC_CMA;
3270 #endif
3271 	return alloc_flags;
3272 }
3273 
3274 /*
3275  * get_page_from_freelist goes through the zonelist trying to allocate
3276  * a page.
3277  */
3278 static struct page *
3279 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3280 						const struct alloc_context *ac)
3281 {
3282 	struct zoneref *z;
3283 	struct zone *zone;
3284 	struct pglist_data *last_pgdat = NULL;
3285 	bool last_pgdat_dirty_ok = false;
3286 	bool no_fallback;
3287 
3288 retry:
3289 	/*
3290 	 * Scan zonelist, looking for a zone with enough free.
3291 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3292 	 */
3293 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3294 	z = ac->preferred_zoneref;
3295 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3296 					ac->nodemask) {
3297 		struct page *page;
3298 		unsigned long mark;
3299 
3300 		if (cpusets_enabled() &&
3301 			(alloc_flags & ALLOC_CPUSET) &&
3302 			!__cpuset_zone_allowed(zone, gfp_mask))
3303 				continue;
3304 		/*
3305 		 * When allocating a page cache page for writing, we
3306 		 * want to get it from a node that is within its dirty
3307 		 * limit, such that no single node holds more than its
3308 		 * proportional share of globally allowed dirty pages.
3309 		 * The dirty limits take into account the node's
3310 		 * lowmem reserves and high watermark so that kswapd
3311 		 * should be able to balance it without having to
3312 		 * write pages from its LRU list.
3313 		 *
3314 		 * XXX: For now, allow allocations to potentially
3315 		 * exceed the per-node dirty limit in the slowpath
3316 		 * (spread_dirty_pages unset) before going into reclaim,
3317 		 * which is important when on a NUMA setup the allowed
3318 		 * nodes are together not big enough to reach the
3319 		 * global limit.  The proper fix for these situations
3320 		 * will require awareness of nodes in the
3321 		 * dirty-throttling and the flusher threads.
3322 		 */
3323 		if (ac->spread_dirty_pages) {
3324 			if (last_pgdat != zone->zone_pgdat) {
3325 				last_pgdat = zone->zone_pgdat;
3326 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3327 			}
3328 
3329 			if (!last_pgdat_dirty_ok)
3330 				continue;
3331 		}
3332 
3333 		if (no_fallback && nr_online_nodes > 1 &&
3334 		    zone != ac->preferred_zoneref->zone) {
3335 			int local_nid;
3336 
3337 			/*
3338 			 * If moving to a remote node, retry but allow
3339 			 * fragmenting fallbacks. Locality is more important
3340 			 * than fragmentation avoidance.
3341 			 */
3342 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3343 			if (zone_to_nid(zone) != local_nid) {
3344 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3345 				goto retry;
3346 			}
3347 		}
3348 
3349 		/*
3350 		 * Detect whether the number of free pages is below high
3351 		 * watermark.  If so, we will decrease pcp->high and free
3352 		 * PCP pages in free path to reduce the possibility of
3353 		 * premature page reclaiming.  Detection is done here to
3354 		 * avoid to do that in hotter free path.
3355 		 */
3356 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3357 			goto check_alloc_wmark;
3358 
3359 		mark = high_wmark_pages(zone);
3360 		if (zone_watermark_fast(zone, order, mark,
3361 					ac->highest_zoneidx, alloc_flags,
3362 					gfp_mask))
3363 			goto try_this_zone;
3364 		else
3365 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3366 
3367 check_alloc_wmark:
3368 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3369 		if (!zone_watermark_fast(zone, order, mark,
3370 				       ac->highest_zoneidx, alloc_flags,
3371 				       gfp_mask)) {
3372 			int ret;
3373 
3374 			if (has_unaccepted_memory()) {
3375 				if (try_to_accept_memory(zone, order))
3376 					goto try_this_zone;
3377 			}
3378 
3379 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3380 			/*
3381 			 * Watermark failed for this zone, but see if we can
3382 			 * grow this zone if it contains deferred pages.
3383 			 */
3384 			if (deferred_pages_enabled()) {
3385 				if (_deferred_grow_zone(zone, order))
3386 					goto try_this_zone;
3387 			}
3388 #endif
3389 			/* Checked here to keep the fast path fast */
3390 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3391 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3392 				goto try_this_zone;
3393 
3394 			if (!node_reclaim_enabled() ||
3395 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3396 				continue;
3397 
3398 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3399 			switch (ret) {
3400 			case NODE_RECLAIM_NOSCAN:
3401 				/* did not scan */
3402 				continue;
3403 			case NODE_RECLAIM_FULL:
3404 				/* scanned but unreclaimable */
3405 				continue;
3406 			default:
3407 				/* did we reclaim enough */
3408 				if (zone_watermark_ok(zone, order, mark,
3409 					ac->highest_zoneidx, alloc_flags))
3410 					goto try_this_zone;
3411 
3412 				continue;
3413 			}
3414 		}
3415 
3416 try_this_zone:
3417 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3418 				gfp_mask, alloc_flags, ac->migratetype);
3419 		if (page) {
3420 			prep_new_page(page, order, gfp_mask, alloc_flags);
3421 
3422 			/*
3423 			 * If this is a high-order atomic allocation then check
3424 			 * if the pageblock should be reserved for the future
3425 			 */
3426 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3427 				reserve_highatomic_pageblock(page, order, zone);
3428 
3429 			return page;
3430 		} else {
3431 			if (has_unaccepted_memory()) {
3432 				if (try_to_accept_memory(zone, order))
3433 					goto try_this_zone;
3434 			}
3435 
3436 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3437 			/* Try again if zone has deferred pages */
3438 			if (deferred_pages_enabled()) {
3439 				if (_deferred_grow_zone(zone, order))
3440 					goto try_this_zone;
3441 			}
3442 #endif
3443 		}
3444 	}
3445 
3446 	/*
3447 	 * It's possible on a UMA machine to get through all zones that are
3448 	 * fragmented. If avoiding fragmentation, reset and try again.
3449 	 */
3450 	if (no_fallback) {
3451 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3452 		goto retry;
3453 	}
3454 
3455 	return NULL;
3456 }
3457 
3458 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3459 {
3460 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3461 
3462 	/*
3463 	 * This documents exceptions given to allocations in certain
3464 	 * contexts that are allowed to allocate outside current's set
3465 	 * of allowed nodes.
3466 	 */
3467 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3468 		if (tsk_is_oom_victim(current) ||
3469 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3470 			filter &= ~SHOW_MEM_FILTER_NODES;
3471 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3472 		filter &= ~SHOW_MEM_FILTER_NODES;
3473 
3474 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3475 }
3476 
3477 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3478 {
3479 	struct va_format vaf;
3480 	va_list args;
3481 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3482 
3483 	if ((gfp_mask & __GFP_NOWARN) ||
3484 	     !__ratelimit(&nopage_rs) ||
3485 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3486 		return;
3487 
3488 	va_start(args, fmt);
3489 	vaf.fmt = fmt;
3490 	vaf.va = &args;
3491 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3492 			current->comm, &vaf, gfp_mask, &gfp_mask,
3493 			nodemask_pr_args(nodemask));
3494 	va_end(args);
3495 
3496 	cpuset_print_current_mems_allowed();
3497 	pr_cont("\n");
3498 	dump_stack();
3499 	warn_alloc_show_mem(gfp_mask, nodemask);
3500 }
3501 
3502 static inline struct page *
3503 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3504 			      unsigned int alloc_flags,
3505 			      const struct alloc_context *ac)
3506 {
3507 	struct page *page;
3508 
3509 	page = get_page_from_freelist(gfp_mask, order,
3510 			alloc_flags|ALLOC_CPUSET, ac);
3511 	/*
3512 	 * fallback to ignore cpuset restriction if our nodes
3513 	 * are depleted
3514 	 */
3515 	if (!page)
3516 		page = get_page_from_freelist(gfp_mask, order,
3517 				alloc_flags, ac);
3518 
3519 	return page;
3520 }
3521 
3522 static inline struct page *
3523 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3524 	const struct alloc_context *ac, unsigned long *did_some_progress)
3525 {
3526 	struct oom_control oc = {
3527 		.zonelist = ac->zonelist,
3528 		.nodemask = ac->nodemask,
3529 		.memcg = NULL,
3530 		.gfp_mask = gfp_mask,
3531 		.order = order,
3532 	};
3533 	struct page *page;
3534 
3535 	*did_some_progress = 0;
3536 
3537 	/*
3538 	 * Acquire the oom lock.  If that fails, somebody else is
3539 	 * making progress for us.
3540 	 */
3541 	if (!mutex_trylock(&oom_lock)) {
3542 		*did_some_progress = 1;
3543 		schedule_timeout_uninterruptible(1);
3544 		return NULL;
3545 	}
3546 
3547 	/*
3548 	 * Go through the zonelist yet one more time, keep very high watermark
3549 	 * here, this is only to catch a parallel oom killing, we must fail if
3550 	 * we're still under heavy pressure. But make sure that this reclaim
3551 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3552 	 * allocation which will never fail due to oom_lock already held.
3553 	 */
3554 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3555 				      ~__GFP_DIRECT_RECLAIM, order,
3556 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3557 	if (page)
3558 		goto out;
3559 
3560 	/* Coredumps can quickly deplete all memory reserves */
3561 	if (current->flags & PF_DUMPCORE)
3562 		goto out;
3563 	/* The OOM killer will not help higher order allocs */
3564 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3565 		goto out;
3566 	/*
3567 	 * We have already exhausted all our reclaim opportunities without any
3568 	 * success so it is time to admit defeat. We will skip the OOM killer
3569 	 * because it is very likely that the caller has a more reasonable
3570 	 * fallback than shooting a random task.
3571 	 *
3572 	 * The OOM killer may not free memory on a specific node.
3573 	 */
3574 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3575 		goto out;
3576 	/* The OOM killer does not needlessly kill tasks for lowmem */
3577 	if (ac->highest_zoneidx < ZONE_NORMAL)
3578 		goto out;
3579 	if (pm_suspended_storage())
3580 		goto out;
3581 	/*
3582 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3583 	 * other request to make a forward progress.
3584 	 * We are in an unfortunate situation where out_of_memory cannot
3585 	 * do much for this context but let's try it to at least get
3586 	 * access to memory reserved if the current task is killed (see
3587 	 * out_of_memory). Once filesystems are ready to handle allocation
3588 	 * failures more gracefully we should just bail out here.
3589 	 */
3590 
3591 	/* Exhausted what can be done so it's blame time */
3592 	if (out_of_memory(&oc) ||
3593 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3594 		*did_some_progress = 1;
3595 
3596 		/*
3597 		 * Help non-failing allocations by giving them access to memory
3598 		 * reserves
3599 		 */
3600 		if (gfp_mask & __GFP_NOFAIL)
3601 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3602 					ALLOC_NO_WATERMARKS, ac);
3603 	}
3604 out:
3605 	mutex_unlock(&oom_lock);
3606 	return page;
3607 }
3608 
3609 /*
3610  * Maximum number of compaction retries with a progress before OOM
3611  * killer is consider as the only way to move forward.
3612  */
3613 #define MAX_COMPACT_RETRIES 16
3614 
3615 #ifdef CONFIG_COMPACTION
3616 /* Try memory compaction for high-order allocations before reclaim */
3617 static struct page *
3618 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3619 		unsigned int alloc_flags, const struct alloc_context *ac,
3620 		enum compact_priority prio, enum compact_result *compact_result)
3621 {
3622 	struct page *page = NULL;
3623 	unsigned long pflags;
3624 	unsigned int noreclaim_flag;
3625 
3626 	if (!order)
3627 		return NULL;
3628 
3629 	psi_memstall_enter(&pflags);
3630 	delayacct_compact_start();
3631 	noreclaim_flag = memalloc_noreclaim_save();
3632 
3633 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3634 								prio, &page);
3635 
3636 	memalloc_noreclaim_restore(noreclaim_flag);
3637 	psi_memstall_leave(&pflags);
3638 	delayacct_compact_end();
3639 
3640 	if (*compact_result == COMPACT_SKIPPED)
3641 		return NULL;
3642 	/*
3643 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3644 	 * count a compaction stall
3645 	 */
3646 	count_vm_event(COMPACTSTALL);
3647 
3648 	/* Prep a captured page if available */
3649 	if (page)
3650 		prep_new_page(page, order, gfp_mask, alloc_flags);
3651 
3652 	/* Try get a page from the freelist if available */
3653 	if (!page)
3654 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3655 
3656 	if (page) {
3657 		struct zone *zone = page_zone(page);
3658 
3659 		zone->compact_blockskip_flush = false;
3660 		compaction_defer_reset(zone, order, true);
3661 		count_vm_event(COMPACTSUCCESS);
3662 		return page;
3663 	}
3664 
3665 	/*
3666 	 * It's bad if compaction run occurs and fails. The most likely reason
3667 	 * is that pages exist, but not enough to satisfy watermarks.
3668 	 */
3669 	count_vm_event(COMPACTFAIL);
3670 
3671 	cond_resched();
3672 
3673 	return NULL;
3674 }
3675 
3676 static inline bool
3677 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3678 		     enum compact_result compact_result,
3679 		     enum compact_priority *compact_priority,
3680 		     int *compaction_retries)
3681 {
3682 	int max_retries = MAX_COMPACT_RETRIES;
3683 	int min_priority;
3684 	bool ret = false;
3685 	int retries = *compaction_retries;
3686 	enum compact_priority priority = *compact_priority;
3687 
3688 	if (!order)
3689 		return false;
3690 
3691 	if (fatal_signal_pending(current))
3692 		return false;
3693 
3694 	/*
3695 	 * Compaction was skipped due to a lack of free order-0
3696 	 * migration targets. Continue if reclaim can help.
3697 	 */
3698 	if (compact_result == COMPACT_SKIPPED) {
3699 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3700 		goto out;
3701 	}
3702 
3703 	/*
3704 	 * Compaction managed to coalesce some page blocks, but the
3705 	 * allocation failed presumably due to a race. Retry some.
3706 	 */
3707 	if (compact_result == COMPACT_SUCCESS) {
3708 		/*
3709 		 * !costly requests are much more important than
3710 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3711 		 * facto nofail and invoke OOM killer to move on while
3712 		 * costly can fail and users are ready to cope with
3713 		 * that. 1/4 retries is rather arbitrary but we would
3714 		 * need much more detailed feedback from compaction to
3715 		 * make a better decision.
3716 		 */
3717 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3718 			max_retries /= 4;
3719 
3720 		if (++(*compaction_retries) <= max_retries) {
3721 			ret = true;
3722 			goto out;
3723 		}
3724 	}
3725 
3726 	/*
3727 	 * Compaction failed. Retry with increasing priority.
3728 	 */
3729 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3730 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3731 
3732 	if (*compact_priority > min_priority) {
3733 		(*compact_priority)--;
3734 		*compaction_retries = 0;
3735 		ret = true;
3736 	}
3737 out:
3738 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3739 	return ret;
3740 }
3741 #else
3742 static inline struct page *
3743 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3744 		unsigned int alloc_flags, const struct alloc_context *ac,
3745 		enum compact_priority prio, enum compact_result *compact_result)
3746 {
3747 	*compact_result = COMPACT_SKIPPED;
3748 	return NULL;
3749 }
3750 
3751 static inline bool
3752 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3753 		     enum compact_result compact_result,
3754 		     enum compact_priority *compact_priority,
3755 		     int *compaction_retries)
3756 {
3757 	struct zone *zone;
3758 	struct zoneref *z;
3759 
3760 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3761 		return false;
3762 
3763 	/*
3764 	 * There are setups with compaction disabled which would prefer to loop
3765 	 * inside the allocator rather than hit the oom killer prematurely.
3766 	 * Let's give them a good hope and keep retrying while the order-0
3767 	 * watermarks are OK.
3768 	 */
3769 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3770 				ac->highest_zoneidx, ac->nodemask) {
3771 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3772 					ac->highest_zoneidx, alloc_flags))
3773 			return true;
3774 	}
3775 	return false;
3776 }
3777 #endif /* CONFIG_COMPACTION */
3778 
3779 #ifdef CONFIG_LOCKDEP
3780 static struct lockdep_map __fs_reclaim_map =
3781 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3782 
3783 static bool __need_reclaim(gfp_t gfp_mask)
3784 {
3785 	/* no reclaim without waiting on it */
3786 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3787 		return false;
3788 
3789 	/* this guy won't enter reclaim */
3790 	if (current->flags & PF_MEMALLOC)
3791 		return false;
3792 
3793 	if (gfp_mask & __GFP_NOLOCKDEP)
3794 		return false;
3795 
3796 	return true;
3797 }
3798 
3799 void __fs_reclaim_acquire(unsigned long ip)
3800 {
3801 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3802 }
3803 
3804 void __fs_reclaim_release(unsigned long ip)
3805 {
3806 	lock_release(&__fs_reclaim_map, ip);
3807 }
3808 
3809 void fs_reclaim_acquire(gfp_t gfp_mask)
3810 {
3811 	gfp_mask = current_gfp_context(gfp_mask);
3812 
3813 	if (__need_reclaim(gfp_mask)) {
3814 		if (gfp_mask & __GFP_FS)
3815 			__fs_reclaim_acquire(_RET_IP_);
3816 
3817 #ifdef CONFIG_MMU_NOTIFIER
3818 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3819 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3820 #endif
3821 
3822 	}
3823 }
3824 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3825 
3826 void fs_reclaim_release(gfp_t gfp_mask)
3827 {
3828 	gfp_mask = current_gfp_context(gfp_mask);
3829 
3830 	if (__need_reclaim(gfp_mask)) {
3831 		if (gfp_mask & __GFP_FS)
3832 			__fs_reclaim_release(_RET_IP_);
3833 	}
3834 }
3835 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3836 #endif
3837 
3838 /*
3839  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3840  * have been rebuilt so allocation retries. Reader side does not lock and
3841  * retries the allocation if zonelist changes. Writer side is protected by the
3842  * embedded spin_lock.
3843  */
3844 static DEFINE_SEQLOCK(zonelist_update_seq);
3845 
3846 static unsigned int zonelist_iter_begin(void)
3847 {
3848 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3849 		return read_seqbegin(&zonelist_update_seq);
3850 
3851 	return 0;
3852 }
3853 
3854 static unsigned int check_retry_zonelist(unsigned int seq)
3855 {
3856 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3857 		return read_seqretry(&zonelist_update_seq, seq);
3858 
3859 	return seq;
3860 }
3861 
3862 /* Perform direct synchronous page reclaim */
3863 static unsigned long
3864 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3865 					const struct alloc_context *ac)
3866 {
3867 	unsigned int noreclaim_flag;
3868 	unsigned long progress;
3869 
3870 	cond_resched();
3871 
3872 	/* We now go into synchronous reclaim */
3873 	cpuset_memory_pressure_bump();
3874 	fs_reclaim_acquire(gfp_mask);
3875 	noreclaim_flag = memalloc_noreclaim_save();
3876 
3877 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3878 								ac->nodemask);
3879 
3880 	memalloc_noreclaim_restore(noreclaim_flag);
3881 	fs_reclaim_release(gfp_mask);
3882 
3883 	cond_resched();
3884 
3885 	return progress;
3886 }
3887 
3888 /* The really slow allocator path where we enter direct reclaim */
3889 static inline struct page *
3890 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3891 		unsigned int alloc_flags, const struct alloc_context *ac,
3892 		unsigned long *did_some_progress)
3893 {
3894 	struct page *page = NULL;
3895 	unsigned long pflags;
3896 	bool drained = false;
3897 
3898 	psi_memstall_enter(&pflags);
3899 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3900 	if (unlikely(!(*did_some_progress)))
3901 		goto out;
3902 
3903 retry:
3904 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3905 
3906 	/*
3907 	 * If an allocation failed after direct reclaim, it could be because
3908 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3909 	 * Shrink them and try again
3910 	 */
3911 	if (!page && !drained) {
3912 		unreserve_highatomic_pageblock(ac, false);
3913 		drain_all_pages(NULL);
3914 		drained = true;
3915 		goto retry;
3916 	}
3917 out:
3918 	psi_memstall_leave(&pflags);
3919 
3920 	return page;
3921 }
3922 
3923 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3924 			     const struct alloc_context *ac)
3925 {
3926 	struct zoneref *z;
3927 	struct zone *zone;
3928 	pg_data_t *last_pgdat = NULL;
3929 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3930 
3931 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3932 					ac->nodemask) {
3933 		if (!managed_zone(zone))
3934 			continue;
3935 		if (last_pgdat != zone->zone_pgdat) {
3936 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3937 			last_pgdat = zone->zone_pgdat;
3938 		}
3939 	}
3940 }
3941 
3942 static inline unsigned int
3943 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3944 {
3945 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3946 
3947 	/*
3948 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3949 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3950 	 * to save two branches.
3951 	 */
3952 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3953 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3954 
3955 	/*
3956 	 * The caller may dip into page reserves a bit more if the caller
3957 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3958 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3959 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3960 	 */
3961 	alloc_flags |= (__force int)
3962 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3963 
3964 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3965 		/*
3966 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3967 		 * if it can't schedule.
3968 		 */
3969 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3970 			alloc_flags |= ALLOC_NON_BLOCK;
3971 
3972 			if (order > 0)
3973 				alloc_flags |= ALLOC_HIGHATOMIC;
3974 		}
3975 
3976 		/*
3977 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3978 		 * GFP_ATOMIC) rather than fail, see the comment for
3979 		 * cpuset_node_allowed().
3980 		 */
3981 		if (alloc_flags & ALLOC_MIN_RESERVE)
3982 			alloc_flags &= ~ALLOC_CPUSET;
3983 	} else if (unlikely(rt_task(current)) && in_task())
3984 		alloc_flags |= ALLOC_MIN_RESERVE;
3985 
3986 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3987 
3988 	return alloc_flags;
3989 }
3990 
3991 static bool oom_reserves_allowed(struct task_struct *tsk)
3992 {
3993 	if (!tsk_is_oom_victim(tsk))
3994 		return false;
3995 
3996 	/*
3997 	 * !MMU doesn't have oom reaper so give access to memory reserves
3998 	 * only to the thread with TIF_MEMDIE set
3999 	 */
4000 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4001 		return false;
4002 
4003 	return true;
4004 }
4005 
4006 /*
4007  * Distinguish requests which really need access to full memory
4008  * reserves from oom victims which can live with a portion of it
4009  */
4010 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4011 {
4012 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4013 		return 0;
4014 	if (gfp_mask & __GFP_MEMALLOC)
4015 		return ALLOC_NO_WATERMARKS;
4016 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4017 		return ALLOC_NO_WATERMARKS;
4018 	if (!in_interrupt()) {
4019 		if (current->flags & PF_MEMALLOC)
4020 			return ALLOC_NO_WATERMARKS;
4021 		else if (oom_reserves_allowed(current))
4022 			return ALLOC_OOM;
4023 	}
4024 
4025 	return 0;
4026 }
4027 
4028 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4029 {
4030 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4031 }
4032 
4033 /*
4034  * Checks whether it makes sense to retry the reclaim to make a forward progress
4035  * for the given allocation request.
4036  *
4037  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4038  * without success, or when we couldn't even meet the watermark if we
4039  * reclaimed all remaining pages on the LRU lists.
4040  *
4041  * Returns true if a retry is viable or false to enter the oom path.
4042  */
4043 static inline bool
4044 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4045 		     struct alloc_context *ac, int alloc_flags,
4046 		     bool did_some_progress, int *no_progress_loops)
4047 {
4048 	struct zone *zone;
4049 	struct zoneref *z;
4050 	bool ret = false;
4051 
4052 	/*
4053 	 * Costly allocations might have made a progress but this doesn't mean
4054 	 * their order will become available due to high fragmentation so
4055 	 * always increment the no progress counter for them
4056 	 */
4057 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4058 		*no_progress_loops = 0;
4059 	else
4060 		(*no_progress_loops)++;
4061 
4062 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4063 		goto out;
4064 
4065 
4066 	/*
4067 	 * Keep reclaiming pages while there is a chance this will lead
4068 	 * somewhere.  If none of the target zones can satisfy our allocation
4069 	 * request even if all reclaimable pages are considered then we are
4070 	 * screwed and have to go OOM.
4071 	 */
4072 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4073 				ac->highest_zoneidx, ac->nodemask) {
4074 		unsigned long available;
4075 		unsigned long reclaimable;
4076 		unsigned long min_wmark = min_wmark_pages(zone);
4077 		bool wmark;
4078 
4079 		available = reclaimable = zone_reclaimable_pages(zone);
4080 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4081 
4082 		/*
4083 		 * Would the allocation succeed if we reclaimed all
4084 		 * reclaimable pages?
4085 		 */
4086 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4087 				ac->highest_zoneidx, alloc_flags, available);
4088 		trace_reclaim_retry_zone(z, order, reclaimable,
4089 				available, min_wmark, *no_progress_loops, wmark);
4090 		if (wmark) {
4091 			ret = true;
4092 			break;
4093 		}
4094 	}
4095 
4096 	/*
4097 	 * Memory allocation/reclaim might be called from a WQ context and the
4098 	 * current implementation of the WQ concurrency control doesn't
4099 	 * recognize that a particular WQ is congested if the worker thread is
4100 	 * looping without ever sleeping. Therefore we have to do a short sleep
4101 	 * here rather than calling cond_resched().
4102 	 */
4103 	if (current->flags & PF_WQ_WORKER)
4104 		schedule_timeout_uninterruptible(1);
4105 	else
4106 		cond_resched();
4107 out:
4108 	/* Before OOM, exhaust highatomic_reserve */
4109 	if (!ret)
4110 		return unreserve_highatomic_pageblock(ac, true);
4111 
4112 	return ret;
4113 }
4114 
4115 static inline bool
4116 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4117 {
4118 	/*
4119 	 * It's possible that cpuset's mems_allowed and the nodemask from
4120 	 * mempolicy don't intersect. This should be normally dealt with by
4121 	 * policy_nodemask(), but it's possible to race with cpuset update in
4122 	 * such a way the check therein was true, and then it became false
4123 	 * before we got our cpuset_mems_cookie here.
4124 	 * This assumes that for all allocations, ac->nodemask can come only
4125 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4126 	 * when it does not intersect with the cpuset restrictions) or the
4127 	 * caller can deal with a violated nodemask.
4128 	 */
4129 	if (cpusets_enabled() && ac->nodemask &&
4130 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4131 		ac->nodemask = NULL;
4132 		return true;
4133 	}
4134 
4135 	/*
4136 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4137 	 * possible to race with parallel threads in such a way that our
4138 	 * allocation can fail while the mask is being updated. If we are about
4139 	 * to fail, check if the cpuset changed during allocation and if so,
4140 	 * retry.
4141 	 */
4142 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4143 		return true;
4144 
4145 	return false;
4146 }
4147 
4148 static inline struct page *
4149 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4150 						struct alloc_context *ac)
4151 {
4152 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4153 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4154 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4155 	struct page *page = NULL;
4156 	unsigned int alloc_flags;
4157 	unsigned long did_some_progress;
4158 	enum compact_priority compact_priority;
4159 	enum compact_result compact_result;
4160 	int compaction_retries;
4161 	int no_progress_loops;
4162 	unsigned int cpuset_mems_cookie;
4163 	unsigned int zonelist_iter_cookie;
4164 	int reserve_flags;
4165 
4166 restart:
4167 	compaction_retries = 0;
4168 	no_progress_loops = 0;
4169 	compact_priority = DEF_COMPACT_PRIORITY;
4170 	cpuset_mems_cookie = read_mems_allowed_begin();
4171 	zonelist_iter_cookie = zonelist_iter_begin();
4172 
4173 	/*
4174 	 * The fast path uses conservative alloc_flags to succeed only until
4175 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4176 	 * alloc_flags precisely. So we do that now.
4177 	 */
4178 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4179 
4180 	/*
4181 	 * We need to recalculate the starting point for the zonelist iterator
4182 	 * because we might have used different nodemask in the fast path, or
4183 	 * there was a cpuset modification and we are retrying - otherwise we
4184 	 * could end up iterating over non-eligible zones endlessly.
4185 	 */
4186 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4187 					ac->highest_zoneidx, ac->nodemask);
4188 	if (!ac->preferred_zoneref->zone)
4189 		goto nopage;
4190 
4191 	/*
4192 	 * Check for insane configurations where the cpuset doesn't contain
4193 	 * any suitable zone to satisfy the request - e.g. non-movable
4194 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4195 	 */
4196 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4197 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4198 					ac->highest_zoneidx,
4199 					&cpuset_current_mems_allowed);
4200 		if (!z->zone)
4201 			goto nopage;
4202 	}
4203 
4204 	if (alloc_flags & ALLOC_KSWAPD)
4205 		wake_all_kswapds(order, gfp_mask, ac);
4206 
4207 	/*
4208 	 * The adjusted alloc_flags might result in immediate success, so try
4209 	 * that first
4210 	 */
4211 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4212 	if (page)
4213 		goto got_pg;
4214 
4215 	/*
4216 	 * For costly allocations, try direct compaction first, as it's likely
4217 	 * that we have enough base pages and don't need to reclaim. For non-
4218 	 * movable high-order allocations, do that as well, as compaction will
4219 	 * try prevent permanent fragmentation by migrating from blocks of the
4220 	 * same migratetype.
4221 	 * Don't try this for allocations that are allowed to ignore
4222 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4223 	 */
4224 	if (can_direct_reclaim && can_compact &&
4225 			(costly_order ||
4226 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4227 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4228 		page = __alloc_pages_direct_compact(gfp_mask, order,
4229 						alloc_flags, ac,
4230 						INIT_COMPACT_PRIORITY,
4231 						&compact_result);
4232 		if (page)
4233 			goto got_pg;
4234 
4235 		/*
4236 		 * Checks for costly allocations with __GFP_NORETRY, which
4237 		 * includes some THP page fault allocations
4238 		 */
4239 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4240 			/*
4241 			 * If allocating entire pageblock(s) and compaction
4242 			 * failed because all zones are below low watermarks
4243 			 * or is prohibited because it recently failed at this
4244 			 * order, fail immediately unless the allocator has
4245 			 * requested compaction and reclaim retry.
4246 			 *
4247 			 * Reclaim is
4248 			 *  - potentially very expensive because zones are far
4249 			 *    below their low watermarks or this is part of very
4250 			 *    bursty high order allocations,
4251 			 *  - not guaranteed to help because isolate_freepages()
4252 			 *    may not iterate over freed pages as part of its
4253 			 *    linear scan, and
4254 			 *  - unlikely to make entire pageblocks free on its
4255 			 *    own.
4256 			 */
4257 			if (compact_result == COMPACT_SKIPPED ||
4258 			    compact_result == COMPACT_DEFERRED)
4259 				goto nopage;
4260 
4261 			/*
4262 			 * Looks like reclaim/compaction is worth trying, but
4263 			 * sync compaction could be very expensive, so keep
4264 			 * using async compaction.
4265 			 */
4266 			compact_priority = INIT_COMPACT_PRIORITY;
4267 		}
4268 	}
4269 
4270 retry:
4271 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4272 	if (alloc_flags & ALLOC_KSWAPD)
4273 		wake_all_kswapds(order, gfp_mask, ac);
4274 
4275 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4276 	if (reserve_flags)
4277 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4278 					  (alloc_flags & ALLOC_KSWAPD);
4279 
4280 	/*
4281 	 * Reset the nodemask and zonelist iterators if memory policies can be
4282 	 * ignored. These allocations are high priority and system rather than
4283 	 * user oriented.
4284 	 */
4285 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4286 		ac->nodemask = NULL;
4287 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4288 					ac->highest_zoneidx, ac->nodemask);
4289 	}
4290 
4291 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4292 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4293 	if (page)
4294 		goto got_pg;
4295 
4296 	/* Caller is not willing to reclaim, we can't balance anything */
4297 	if (!can_direct_reclaim)
4298 		goto nopage;
4299 
4300 	/* Avoid recursion of direct reclaim */
4301 	if (current->flags & PF_MEMALLOC)
4302 		goto nopage;
4303 
4304 	/* Try direct reclaim and then allocating */
4305 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4306 							&did_some_progress);
4307 	if (page)
4308 		goto got_pg;
4309 
4310 	/* Try direct compaction and then allocating */
4311 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4312 					compact_priority, &compact_result);
4313 	if (page)
4314 		goto got_pg;
4315 
4316 	/* Do not loop if specifically requested */
4317 	if (gfp_mask & __GFP_NORETRY)
4318 		goto nopage;
4319 
4320 	/*
4321 	 * Do not retry costly high order allocations unless they are
4322 	 * __GFP_RETRY_MAYFAIL and we can compact
4323 	 */
4324 	if (costly_order && (!can_compact ||
4325 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4326 		goto nopage;
4327 
4328 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4329 				 did_some_progress > 0, &no_progress_loops))
4330 		goto retry;
4331 
4332 	/*
4333 	 * It doesn't make any sense to retry for the compaction if the order-0
4334 	 * reclaim is not able to make any progress because the current
4335 	 * implementation of the compaction depends on the sufficient amount
4336 	 * of free memory (see __compaction_suitable)
4337 	 */
4338 	if (did_some_progress > 0 && can_compact &&
4339 			should_compact_retry(ac, order, alloc_flags,
4340 				compact_result, &compact_priority,
4341 				&compaction_retries))
4342 		goto retry;
4343 
4344 
4345 	/*
4346 	 * Deal with possible cpuset update races or zonelist updates to avoid
4347 	 * a unnecessary OOM kill.
4348 	 */
4349 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4350 	    check_retry_zonelist(zonelist_iter_cookie))
4351 		goto restart;
4352 
4353 	/* Reclaim has failed us, start killing things */
4354 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4355 	if (page)
4356 		goto got_pg;
4357 
4358 	/* Avoid allocations with no watermarks from looping endlessly */
4359 	if (tsk_is_oom_victim(current) &&
4360 	    (alloc_flags & ALLOC_OOM ||
4361 	     (gfp_mask & __GFP_NOMEMALLOC)))
4362 		goto nopage;
4363 
4364 	/* Retry as long as the OOM killer is making progress */
4365 	if (did_some_progress) {
4366 		no_progress_loops = 0;
4367 		goto retry;
4368 	}
4369 
4370 nopage:
4371 	/*
4372 	 * Deal with possible cpuset update races or zonelist updates to avoid
4373 	 * a unnecessary OOM kill.
4374 	 */
4375 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4376 	    check_retry_zonelist(zonelist_iter_cookie))
4377 		goto restart;
4378 
4379 	/*
4380 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4381 	 * we always retry
4382 	 */
4383 	if (gfp_mask & __GFP_NOFAIL) {
4384 		/*
4385 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4386 		 * of any new users that actually require GFP_NOWAIT
4387 		 */
4388 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4389 			goto fail;
4390 
4391 		/*
4392 		 * PF_MEMALLOC request from this context is rather bizarre
4393 		 * because we cannot reclaim anything and only can loop waiting
4394 		 * for somebody to do a work for us
4395 		 */
4396 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4397 
4398 		/*
4399 		 * non failing costly orders are a hard requirement which we
4400 		 * are not prepared for much so let's warn about these users
4401 		 * so that we can identify them and convert them to something
4402 		 * else.
4403 		 */
4404 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4405 
4406 		/*
4407 		 * Help non-failing allocations by giving some access to memory
4408 		 * reserves normally used for high priority non-blocking
4409 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4410 		 * could deplete whole memory reserves which would just make
4411 		 * the situation worse.
4412 		 */
4413 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4414 		if (page)
4415 			goto got_pg;
4416 
4417 		cond_resched();
4418 		goto retry;
4419 	}
4420 fail:
4421 	warn_alloc(gfp_mask, ac->nodemask,
4422 			"page allocation failure: order:%u", order);
4423 got_pg:
4424 	return page;
4425 }
4426 
4427 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4428 		int preferred_nid, nodemask_t *nodemask,
4429 		struct alloc_context *ac, gfp_t *alloc_gfp,
4430 		unsigned int *alloc_flags)
4431 {
4432 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4433 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4434 	ac->nodemask = nodemask;
4435 	ac->migratetype = gfp_migratetype(gfp_mask);
4436 
4437 	if (cpusets_enabled()) {
4438 		*alloc_gfp |= __GFP_HARDWALL;
4439 		/*
4440 		 * When we are in the interrupt context, it is irrelevant
4441 		 * to the current task context. It means that any node ok.
4442 		 */
4443 		if (in_task() && !ac->nodemask)
4444 			ac->nodemask = &cpuset_current_mems_allowed;
4445 		else
4446 			*alloc_flags |= ALLOC_CPUSET;
4447 	}
4448 
4449 	might_alloc(gfp_mask);
4450 
4451 	if (should_fail_alloc_page(gfp_mask, order))
4452 		return false;
4453 
4454 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4455 
4456 	/* Dirty zone balancing only done in the fast path */
4457 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4458 
4459 	/*
4460 	 * The preferred zone is used for statistics but crucially it is
4461 	 * also used as the starting point for the zonelist iterator. It
4462 	 * may get reset for allocations that ignore memory policies.
4463 	 */
4464 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4465 					ac->highest_zoneidx, ac->nodemask);
4466 
4467 	return true;
4468 }
4469 
4470 /*
4471  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4472  * @gfp: GFP flags for the allocation
4473  * @preferred_nid: The preferred NUMA node ID to allocate from
4474  * @nodemask: Set of nodes to allocate from, may be NULL
4475  * @nr_pages: The number of pages desired on the list or array
4476  * @page_list: Optional list to store the allocated pages
4477  * @page_array: Optional array to store the pages
4478  *
4479  * This is a batched version of the page allocator that attempts to
4480  * allocate nr_pages quickly. Pages are added to page_list if page_list
4481  * is not NULL, otherwise it is assumed that the page_array is valid.
4482  *
4483  * For lists, nr_pages is the number of pages that should be allocated.
4484  *
4485  * For arrays, only NULL elements are populated with pages and nr_pages
4486  * is the maximum number of pages that will be stored in the array.
4487  *
4488  * Returns the number of pages on the list or array.
4489  */
4490 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4491 			nodemask_t *nodemask, int nr_pages,
4492 			struct list_head *page_list,
4493 			struct page **page_array)
4494 {
4495 	struct page *page;
4496 	unsigned long __maybe_unused UP_flags;
4497 	struct zone *zone;
4498 	struct zoneref *z;
4499 	struct per_cpu_pages *pcp;
4500 	struct list_head *pcp_list;
4501 	struct alloc_context ac;
4502 	gfp_t alloc_gfp;
4503 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4504 	int nr_populated = 0, nr_account = 0;
4505 
4506 	/*
4507 	 * Skip populated array elements to determine if any pages need
4508 	 * to be allocated before disabling IRQs.
4509 	 */
4510 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4511 		nr_populated++;
4512 
4513 	/* No pages requested? */
4514 	if (unlikely(nr_pages <= 0))
4515 		goto out;
4516 
4517 	/* Already populated array? */
4518 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4519 		goto out;
4520 
4521 	/* Bulk allocator does not support memcg accounting. */
4522 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4523 		goto failed;
4524 
4525 	/* Use the single page allocator for one page. */
4526 	if (nr_pages - nr_populated == 1)
4527 		goto failed;
4528 
4529 #ifdef CONFIG_PAGE_OWNER
4530 	/*
4531 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4532 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4533 	 * removes much of the performance benefit of bulk allocation so
4534 	 * force the caller to allocate one page at a time as it'll have
4535 	 * similar performance to added complexity to the bulk allocator.
4536 	 */
4537 	if (static_branch_unlikely(&page_owner_inited))
4538 		goto failed;
4539 #endif
4540 
4541 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4542 	gfp &= gfp_allowed_mask;
4543 	alloc_gfp = gfp;
4544 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4545 		goto out;
4546 	gfp = alloc_gfp;
4547 
4548 	/* Find an allowed local zone that meets the low watermark. */
4549 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4550 		unsigned long mark;
4551 
4552 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4553 		    !__cpuset_zone_allowed(zone, gfp)) {
4554 			continue;
4555 		}
4556 
4557 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4558 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4559 			goto failed;
4560 		}
4561 
4562 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4563 		if (zone_watermark_fast(zone, 0,  mark,
4564 				zonelist_zone_idx(ac.preferred_zoneref),
4565 				alloc_flags, gfp)) {
4566 			break;
4567 		}
4568 	}
4569 
4570 	/*
4571 	 * If there are no allowed local zones that meets the watermarks then
4572 	 * try to allocate a single page and reclaim if necessary.
4573 	 */
4574 	if (unlikely(!zone))
4575 		goto failed;
4576 
4577 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4578 	pcp_trylock_prepare(UP_flags);
4579 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4580 	if (!pcp)
4581 		goto failed_irq;
4582 
4583 	/* Attempt the batch allocation */
4584 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4585 	while (nr_populated < nr_pages) {
4586 
4587 		/* Skip existing pages */
4588 		if (page_array && page_array[nr_populated]) {
4589 			nr_populated++;
4590 			continue;
4591 		}
4592 
4593 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4594 								pcp, pcp_list);
4595 		if (unlikely(!page)) {
4596 			/* Try and allocate at least one page */
4597 			if (!nr_account) {
4598 				pcp_spin_unlock(pcp);
4599 				goto failed_irq;
4600 			}
4601 			break;
4602 		}
4603 		nr_account++;
4604 
4605 		prep_new_page(page, 0, gfp, 0);
4606 		if (page_list)
4607 			list_add(&page->lru, page_list);
4608 		else
4609 			page_array[nr_populated] = page;
4610 		nr_populated++;
4611 	}
4612 
4613 	pcp_spin_unlock(pcp);
4614 	pcp_trylock_finish(UP_flags);
4615 
4616 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4617 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4618 
4619 out:
4620 	return nr_populated;
4621 
4622 failed_irq:
4623 	pcp_trylock_finish(UP_flags);
4624 
4625 failed:
4626 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4627 	if (page) {
4628 		if (page_list)
4629 			list_add(&page->lru, page_list);
4630 		else
4631 			page_array[nr_populated] = page;
4632 		nr_populated++;
4633 	}
4634 
4635 	goto out;
4636 }
4637 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4638 
4639 /*
4640  * This is the 'heart' of the zoned buddy allocator.
4641  */
4642 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4643 				      int preferred_nid, nodemask_t *nodemask)
4644 {
4645 	struct page *page;
4646 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4647 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4648 	struct alloc_context ac = { };
4649 
4650 	/*
4651 	 * There are several places where we assume that the order value is sane
4652 	 * so bail out early if the request is out of bound.
4653 	 */
4654 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4655 		return NULL;
4656 
4657 	gfp &= gfp_allowed_mask;
4658 	/*
4659 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4660 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4661 	 * from a particular context which has been marked by
4662 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4663 	 * movable zones are not used during allocation.
4664 	 */
4665 	gfp = current_gfp_context(gfp);
4666 	alloc_gfp = gfp;
4667 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4668 			&alloc_gfp, &alloc_flags))
4669 		return NULL;
4670 
4671 	/*
4672 	 * Forbid the first pass from falling back to types that fragment
4673 	 * memory until all local zones are considered.
4674 	 */
4675 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4676 
4677 	/* First allocation attempt */
4678 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4679 	if (likely(page))
4680 		goto out;
4681 
4682 	alloc_gfp = gfp;
4683 	ac.spread_dirty_pages = false;
4684 
4685 	/*
4686 	 * Restore the original nodemask if it was potentially replaced with
4687 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4688 	 */
4689 	ac.nodemask = nodemask;
4690 
4691 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4692 
4693 out:
4694 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4695 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4696 		__free_pages(page, order);
4697 		page = NULL;
4698 	}
4699 
4700 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4701 	kmsan_alloc_page(page, order, alloc_gfp);
4702 
4703 	return page;
4704 }
4705 EXPORT_SYMBOL(__alloc_pages_noprof);
4706 
4707 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4708 		nodemask_t *nodemask)
4709 {
4710 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4711 					preferred_nid, nodemask);
4712 	return page_rmappable_folio(page);
4713 }
4714 EXPORT_SYMBOL(__folio_alloc_noprof);
4715 
4716 /*
4717  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4718  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4719  * you need to access high mem.
4720  */
4721 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4722 {
4723 	struct page *page;
4724 
4725 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4726 	if (!page)
4727 		return 0;
4728 	return (unsigned long) page_address(page);
4729 }
4730 EXPORT_SYMBOL(get_free_pages_noprof);
4731 
4732 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4733 {
4734 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4735 }
4736 EXPORT_SYMBOL(get_zeroed_page_noprof);
4737 
4738 /**
4739  * __free_pages - Free pages allocated with alloc_pages().
4740  * @page: The page pointer returned from alloc_pages().
4741  * @order: The order of the allocation.
4742  *
4743  * This function can free multi-page allocations that are not compound
4744  * pages.  It does not check that the @order passed in matches that of
4745  * the allocation, so it is easy to leak memory.  Freeing more memory
4746  * than was allocated will probably emit a warning.
4747  *
4748  * If the last reference to this page is speculative, it will be released
4749  * by put_page() which only frees the first page of a non-compound
4750  * allocation.  To prevent the remaining pages from being leaked, we free
4751  * the subsequent pages here.  If you want to use the page's reference
4752  * count to decide when to free the allocation, you should allocate a
4753  * compound page, and use put_page() instead of __free_pages().
4754  *
4755  * Context: May be called in interrupt context or while holding a normal
4756  * spinlock, but not in NMI context or while holding a raw spinlock.
4757  */
4758 void __free_pages(struct page *page, unsigned int order)
4759 {
4760 	/* get PageHead before we drop reference */
4761 	int head = PageHead(page);
4762 	struct alloc_tag *tag = pgalloc_tag_get(page);
4763 
4764 	if (put_page_testzero(page))
4765 		free_unref_page(page, order);
4766 	else if (!head) {
4767 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4768 		while (order-- > 0)
4769 			free_unref_page(page + (1 << order), order);
4770 	}
4771 }
4772 EXPORT_SYMBOL(__free_pages);
4773 
4774 void free_pages(unsigned long addr, unsigned int order)
4775 {
4776 	if (addr != 0) {
4777 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4778 		__free_pages(virt_to_page((void *)addr), order);
4779 	}
4780 }
4781 
4782 EXPORT_SYMBOL(free_pages);
4783 
4784 /*
4785  * Page Fragment:
4786  *  An arbitrary-length arbitrary-offset area of memory which resides
4787  *  within a 0 or higher order page.  Multiple fragments within that page
4788  *  are individually refcounted, in the page's reference counter.
4789  *
4790  * The page_frag functions below provide a simple allocation framework for
4791  * page fragments.  This is used by the network stack and network device
4792  * drivers to provide a backing region of memory for use as either an
4793  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4794  */
4795 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4796 					     gfp_t gfp_mask)
4797 {
4798 	struct page *page = NULL;
4799 	gfp_t gfp = gfp_mask;
4800 
4801 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4802 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4803 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4804 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4805 				PAGE_FRAG_CACHE_MAX_ORDER);
4806 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4807 #endif
4808 	if (unlikely(!page))
4809 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4810 
4811 	nc->va = page ? page_address(page) : NULL;
4812 
4813 	return page;
4814 }
4815 
4816 void page_frag_cache_drain(struct page_frag_cache *nc)
4817 {
4818 	if (!nc->va)
4819 		return;
4820 
4821 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4822 	nc->va = NULL;
4823 }
4824 EXPORT_SYMBOL(page_frag_cache_drain);
4825 
4826 void __page_frag_cache_drain(struct page *page, unsigned int count)
4827 {
4828 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4829 
4830 	if (page_ref_sub_and_test(page, count))
4831 		free_unref_page(page, compound_order(page));
4832 }
4833 EXPORT_SYMBOL(__page_frag_cache_drain);
4834 
4835 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4836 			      unsigned int fragsz, gfp_t gfp_mask,
4837 			      unsigned int align_mask)
4838 {
4839 	unsigned int size = PAGE_SIZE;
4840 	struct page *page;
4841 	int offset;
4842 
4843 	if (unlikely(!nc->va)) {
4844 refill:
4845 		page = __page_frag_cache_refill(nc, gfp_mask);
4846 		if (!page)
4847 			return NULL;
4848 
4849 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4850 		/* if size can vary use size else just use PAGE_SIZE */
4851 		size = nc->size;
4852 #endif
4853 		/* Even if we own the page, we do not use atomic_set().
4854 		 * This would break get_page_unless_zero() users.
4855 		 */
4856 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4857 
4858 		/* reset page count bias and offset to start of new frag */
4859 		nc->pfmemalloc = page_is_pfmemalloc(page);
4860 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4861 		nc->offset = size;
4862 	}
4863 
4864 	offset = nc->offset - fragsz;
4865 	if (unlikely(offset < 0)) {
4866 		page = virt_to_page(nc->va);
4867 
4868 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4869 			goto refill;
4870 
4871 		if (unlikely(nc->pfmemalloc)) {
4872 			free_unref_page(page, compound_order(page));
4873 			goto refill;
4874 		}
4875 
4876 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4877 		/* if size can vary use size else just use PAGE_SIZE */
4878 		size = nc->size;
4879 #endif
4880 		/* OK, page count is 0, we can safely set it */
4881 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4882 
4883 		/* reset page count bias and offset to start of new frag */
4884 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4885 		offset = size - fragsz;
4886 		if (unlikely(offset < 0)) {
4887 			/*
4888 			 * The caller is trying to allocate a fragment
4889 			 * with fragsz > PAGE_SIZE but the cache isn't big
4890 			 * enough to satisfy the request, this may
4891 			 * happen in low memory conditions.
4892 			 * We don't release the cache page because
4893 			 * it could make memory pressure worse
4894 			 * so we simply return NULL here.
4895 			 */
4896 			return NULL;
4897 		}
4898 	}
4899 
4900 	nc->pagecnt_bias--;
4901 	offset &= align_mask;
4902 	nc->offset = offset;
4903 
4904 	return nc->va + offset;
4905 }
4906 EXPORT_SYMBOL(__page_frag_alloc_align);
4907 
4908 /*
4909  * Frees a page fragment allocated out of either a compound or order 0 page.
4910  */
4911 void page_frag_free(void *addr)
4912 {
4913 	struct page *page = virt_to_head_page(addr);
4914 
4915 	if (unlikely(put_page_testzero(page)))
4916 		free_unref_page(page, compound_order(page));
4917 }
4918 EXPORT_SYMBOL(page_frag_free);
4919 
4920 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4921 		size_t size)
4922 {
4923 	if (addr) {
4924 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4925 		struct page *page = virt_to_page((void *)addr);
4926 		struct page *last = page + nr;
4927 
4928 		split_page_owner(page, order, 0);
4929 		pgalloc_tag_split(page, 1 << order);
4930 		split_page_memcg(page, order, 0);
4931 		while (page < --last)
4932 			set_page_refcounted(last);
4933 
4934 		last = page + (1UL << order);
4935 		for (page += nr; page < last; page++)
4936 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4937 	}
4938 	return (void *)addr;
4939 }
4940 
4941 /**
4942  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4943  * @size: the number of bytes to allocate
4944  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4945  *
4946  * This function is similar to alloc_pages(), except that it allocates the
4947  * minimum number of pages to satisfy the request.  alloc_pages() can only
4948  * allocate memory in power-of-two pages.
4949  *
4950  * This function is also limited by MAX_PAGE_ORDER.
4951  *
4952  * Memory allocated by this function must be released by free_pages_exact().
4953  *
4954  * Return: pointer to the allocated area or %NULL in case of error.
4955  */
4956 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4957 {
4958 	unsigned int order = get_order(size);
4959 	unsigned long addr;
4960 
4961 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4962 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4963 
4964 	addr = get_free_pages_noprof(gfp_mask, order);
4965 	return make_alloc_exact(addr, order, size);
4966 }
4967 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4968 
4969 /**
4970  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4971  *			   pages on a node.
4972  * @nid: the preferred node ID where memory should be allocated
4973  * @size: the number of bytes to allocate
4974  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4975  *
4976  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4977  * back.
4978  *
4979  * Return: pointer to the allocated area or %NULL in case of error.
4980  */
4981 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4982 {
4983 	unsigned int order = get_order(size);
4984 	struct page *p;
4985 
4986 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4987 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4988 
4989 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4990 	if (!p)
4991 		return NULL;
4992 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4993 }
4994 
4995 /**
4996  * free_pages_exact - release memory allocated via alloc_pages_exact()
4997  * @virt: the value returned by alloc_pages_exact.
4998  * @size: size of allocation, same value as passed to alloc_pages_exact().
4999  *
5000  * Release the memory allocated by a previous call to alloc_pages_exact.
5001  */
5002 void free_pages_exact(void *virt, size_t size)
5003 {
5004 	unsigned long addr = (unsigned long)virt;
5005 	unsigned long end = addr + PAGE_ALIGN(size);
5006 
5007 	while (addr < end) {
5008 		free_page(addr);
5009 		addr += PAGE_SIZE;
5010 	}
5011 }
5012 EXPORT_SYMBOL(free_pages_exact);
5013 
5014 /**
5015  * nr_free_zone_pages - count number of pages beyond high watermark
5016  * @offset: The zone index of the highest zone
5017  *
5018  * nr_free_zone_pages() counts the number of pages which are beyond the
5019  * high watermark within all zones at or below a given zone index.  For each
5020  * zone, the number of pages is calculated as:
5021  *
5022  *     nr_free_zone_pages = managed_pages - high_pages
5023  *
5024  * Return: number of pages beyond high watermark.
5025  */
5026 static unsigned long nr_free_zone_pages(int offset)
5027 {
5028 	struct zoneref *z;
5029 	struct zone *zone;
5030 
5031 	/* Just pick one node, since fallback list is circular */
5032 	unsigned long sum = 0;
5033 
5034 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5035 
5036 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5037 		unsigned long size = zone_managed_pages(zone);
5038 		unsigned long high = high_wmark_pages(zone);
5039 		if (size > high)
5040 			sum += size - high;
5041 	}
5042 
5043 	return sum;
5044 }
5045 
5046 /**
5047  * nr_free_buffer_pages - count number of pages beyond high watermark
5048  *
5049  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5050  * watermark within ZONE_DMA and ZONE_NORMAL.
5051  *
5052  * Return: number of pages beyond high watermark within ZONE_DMA and
5053  * ZONE_NORMAL.
5054  */
5055 unsigned long nr_free_buffer_pages(void)
5056 {
5057 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5058 }
5059 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5060 
5061 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5062 {
5063 	zoneref->zone = zone;
5064 	zoneref->zone_idx = zone_idx(zone);
5065 }
5066 
5067 /*
5068  * Builds allocation fallback zone lists.
5069  *
5070  * Add all populated zones of a node to the zonelist.
5071  */
5072 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5073 {
5074 	struct zone *zone;
5075 	enum zone_type zone_type = MAX_NR_ZONES;
5076 	int nr_zones = 0;
5077 
5078 	do {
5079 		zone_type--;
5080 		zone = pgdat->node_zones + zone_type;
5081 		if (populated_zone(zone)) {
5082 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5083 			check_highest_zone(zone_type);
5084 		}
5085 	} while (zone_type);
5086 
5087 	return nr_zones;
5088 }
5089 
5090 #ifdef CONFIG_NUMA
5091 
5092 static int __parse_numa_zonelist_order(char *s)
5093 {
5094 	/*
5095 	 * We used to support different zonelists modes but they turned
5096 	 * out to be just not useful. Let's keep the warning in place
5097 	 * if somebody still use the cmd line parameter so that we do
5098 	 * not fail it silently
5099 	 */
5100 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5101 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5102 		return -EINVAL;
5103 	}
5104 	return 0;
5105 }
5106 
5107 static char numa_zonelist_order[] = "Node";
5108 #define NUMA_ZONELIST_ORDER_LEN	16
5109 /*
5110  * sysctl handler for numa_zonelist_order
5111  */
5112 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5113 		void *buffer, size_t *length, loff_t *ppos)
5114 {
5115 	if (write)
5116 		return __parse_numa_zonelist_order(buffer);
5117 	return proc_dostring(table, write, buffer, length, ppos);
5118 }
5119 
5120 static int node_load[MAX_NUMNODES];
5121 
5122 /**
5123  * find_next_best_node - find the next node that should appear in a given node's fallback list
5124  * @node: node whose fallback list we're appending
5125  * @used_node_mask: nodemask_t of already used nodes
5126  *
5127  * We use a number of factors to determine which is the next node that should
5128  * appear on a given node's fallback list.  The node should not have appeared
5129  * already in @node's fallback list, and it should be the next closest node
5130  * according to the distance array (which contains arbitrary distance values
5131  * from each node to each node in the system), and should also prefer nodes
5132  * with no CPUs, since presumably they'll have very little allocation pressure
5133  * on them otherwise.
5134  *
5135  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5136  */
5137 int find_next_best_node(int node, nodemask_t *used_node_mask)
5138 {
5139 	int n, val;
5140 	int min_val = INT_MAX;
5141 	int best_node = NUMA_NO_NODE;
5142 
5143 	/*
5144 	 * Use the local node if we haven't already, but for memoryless local
5145 	 * node, we should skip it and fall back to other nodes.
5146 	 */
5147 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5148 		node_set(node, *used_node_mask);
5149 		return node;
5150 	}
5151 
5152 	for_each_node_state(n, N_MEMORY) {
5153 
5154 		/* Don't want a node to appear more than once */
5155 		if (node_isset(n, *used_node_mask))
5156 			continue;
5157 
5158 		/* Use the distance array to find the distance */
5159 		val = node_distance(node, n);
5160 
5161 		/* Penalize nodes under us ("prefer the next node") */
5162 		val += (n < node);
5163 
5164 		/* Give preference to headless and unused nodes */
5165 		if (!cpumask_empty(cpumask_of_node(n)))
5166 			val += PENALTY_FOR_NODE_WITH_CPUS;
5167 
5168 		/* Slight preference for less loaded node */
5169 		val *= MAX_NUMNODES;
5170 		val += node_load[n];
5171 
5172 		if (val < min_val) {
5173 			min_val = val;
5174 			best_node = n;
5175 		}
5176 	}
5177 
5178 	if (best_node >= 0)
5179 		node_set(best_node, *used_node_mask);
5180 
5181 	return best_node;
5182 }
5183 
5184 
5185 /*
5186  * Build zonelists ordered by node and zones within node.
5187  * This results in maximum locality--normal zone overflows into local
5188  * DMA zone, if any--but risks exhausting DMA zone.
5189  */
5190 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5191 		unsigned nr_nodes)
5192 {
5193 	struct zoneref *zonerefs;
5194 	int i;
5195 
5196 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5197 
5198 	for (i = 0; i < nr_nodes; i++) {
5199 		int nr_zones;
5200 
5201 		pg_data_t *node = NODE_DATA(node_order[i]);
5202 
5203 		nr_zones = build_zonerefs_node(node, zonerefs);
5204 		zonerefs += nr_zones;
5205 	}
5206 	zonerefs->zone = NULL;
5207 	zonerefs->zone_idx = 0;
5208 }
5209 
5210 /*
5211  * Build gfp_thisnode zonelists
5212  */
5213 static void build_thisnode_zonelists(pg_data_t *pgdat)
5214 {
5215 	struct zoneref *zonerefs;
5216 	int nr_zones;
5217 
5218 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5219 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5220 	zonerefs += nr_zones;
5221 	zonerefs->zone = NULL;
5222 	zonerefs->zone_idx = 0;
5223 }
5224 
5225 /*
5226  * Build zonelists ordered by zone and nodes within zones.
5227  * This results in conserving DMA zone[s] until all Normal memory is
5228  * exhausted, but results in overflowing to remote node while memory
5229  * may still exist in local DMA zone.
5230  */
5231 
5232 static void build_zonelists(pg_data_t *pgdat)
5233 {
5234 	static int node_order[MAX_NUMNODES];
5235 	int node, nr_nodes = 0;
5236 	nodemask_t used_mask = NODE_MASK_NONE;
5237 	int local_node, prev_node;
5238 
5239 	/* NUMA-aware ordering of nodes */
5240 	local_node = pgdat->node_id;
5241 	prev_node = local_node;
5242 
5243 	memset(node_order, 0, sizeof(node_order));
5244 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5245 		/*
5246 		 * We don't want to pressure a particular node.
5247 		 * So adding penalty to the first node in same
5248 		 * distance group to make it round-robin.
5249 		 */
5250 		if (node_distance(local_node, node) !=
5251 		    node_distance(local_node, prev_node))
5252 			node_load[node] += 1;
5253 
5254 		node_order[nr_nodes++] = node;
5255 		prev_node = node;
5256 	}
5257 
5258 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5259 	build_thisnode_zonelists(pgdat);
5260 	pr_info("Fallback order for Node %d: ", local_node);
5261 	for (node = 0; node < nr_nodes; node++)
5262 		pr_cont("%d ", node_order[node]);
5263 	pr_cont("\n");
5264 }
5265 
5266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5267 /*
5268  * Return node id of node used for "local" allocations.
5269  * I.e., first node id of first zone in arg node's generic zonelist.
5270  * Used for initializing percpu 'numa_mem', which is used primarily
5271  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5272  */
5273 int local_memory_node(int node)
5274 {
5275 	struct zoneref *z;
5276 
5277 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5278 				   gfp_zone(GFP_KERNEL),
5279 				   NULL);
5280 	return zone_to_nid(z->zone);
5281 }
5282 #endif
5283 
5284 static void setup_min_unmapped_ratio(void);
5285 static void setup_min_slab_ratio(void);
5286 #else	/* CONFIG_NUMA */
5287 
5288 static void build_zonelists(pg_data_t *pgdat)
5289 {
5290 	struct zoneref *zonerefs;
5291 	int nr_zones;
5292 
5293 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5294 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5295 	zonerefs += nr_zones;
5296 
5297 	zonerefs->zone = NULL;
5298 	zonerefs->zone_idx = 0;
5299 }
5300 
5301 #endif	/* CONFIG_NUMA */
5302 
5303 /*
5304  * Boot pageset table. One per cpu which is going to be used for all
5305  * zones and all nodes. The parameters will be set in such a way
5306  * that an item put on a list will immediately be handed over to
5307  * the buddy list. This is safe since pageset manipulation is done
5308  * with interrupts disabled.
5309  *
5310  * The boot_pagesets must be kept even after bootup is complete for
5311  * unused processors and/or zones. They do play a role for bootstrapping
5312  * hotplugged processors.
5313  *
5314  * zoneinfo_show() and maybe other functions do
5315  * not check if the processor is online before following the pageset pointer.
5316  * Other parts of the kernel may not check if the zone is available.
5317  */
5318 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5319 /* These effectively disable the pcplists in the boot pageset completely */
5320 #define BOOT_PAGESET_HIGH	0
5321 #define BOOT_PAGESET_BATCH	1
5322 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5323 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5324 
5325 static void __build_all_zonelists(void *data)
5326 {
5327 	int nid;
5328 	int __maybe_unused cpu;
5329 	pg_data_t *self = data;
5330 	unsigned long flags;
5331 
5332 	/*
5333 	 * The zonelist_update_seq must be acquired with irqsave because the
5334 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5335 	 */
5336 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5337 	/*
5338 	 * Also disable synchronous printk() to prevent any printk() from
5339 	 * trying to hold port->lock, for
5340 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5341 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5342 	 */
5343 	printk_deferred_enter();
5344 
5345 #ifdef CONFIG_NUMA
5346 	memset(node_load, 0, sizeof(node_load));
5347 #endif
5348 
5349 	/*
5350 	 * This node is hotadded and no memory is yet present.   So just
5351 	 * building zonelists is fine - no need to touch other nodes.
5352 	 */
5353 	if (self && !node_online(self->node_id)) {
5354 		build_zonelists(self);
5355 	} else {
5356 		/*
5357 		 * All possible nodes have pgdat preallocated
5358 		 * in free_area_init
5359 		 */
5360 		for_each_node(nid) {
5361 			pg_data_t *pgdat = NODE_DATA(nid);
5362 
5363 			build_zonelists(pgdat);
5364 		}
5365 
5366 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5367 		/*
5368 		 * We now know the "local memory node" for each node--
5369 		 * i.e., the node of the first zone in the generic zonelist.
5370 		 * Set up numa_mem percpu variable for on-line cpus.  During
5371 		 * boot, only the boot cpu should be on-line;  we'll init the
5372 		 * secondary cpus' numa_mem as they come on-line.  During
5373 		 * node/memory hotplug, we'll fixup all on-line cpus.
5374 		 */
5375 		for_each_online_cpu(cpu)
5376 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5377 #endif
5378 	}
5379 
5380 	printk_deferred_exit();
5381 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5382 }
5383 
5384 static noinline void __init
5385 build_all_zonelists_init(void)
5386 {
5387 	int cpu;
5388 
5389 	__build_all_zonelists(NULL);
5390 
5391 	/*
5392 	 * Initialize the boot_pagesets that are going to be used
5393 	 * for bootstrapping processors. The real pagesets for
5394 	 * each zone will be allocated later when the per cpu
5395 	 * allocator is available.
5396 	 *
5397 	 * boot_pagesets are used also for bootstrapping offline
5398 	 * cpus if the system is already booted because the pagesets
5399 	 * are needed to initialize allocators on a specific cpu too.
5400 	 * F.e. the percpu allocator needs the page allocator which
5401 	 * needs the percpu allocator in order to allocate its pagesets
5402 	 * (a chicken-egg dilemma).
5403 	 */
5404 	for_each_possible_cpu(cpu)
5405 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5406 
5407 	mminit_verify_zonelist();
5408 	cpuset_init_current_mems_allowed();
5409 }
5410 
5411 /*
5412  * unless system_state == SYSTEM_BOOTING.
5413  *
5414  * __ref due to call of __init annotated helper build_all_zonelists_init
5415  * [protected by SYSTEM_BOOTING].
5416  */
5417 void __ref build_all_zonelists(pg_data_t *pgdat)
5418 {
5419 	unsigned long vm_total_pages;
5420 
5421 	if (system_state == SYSTEM_BOOTING) {
5422 		build_all_zonelists_init();
5423 	} else {
5424 		__build_all_zonelists(pgdat);
5425 		/* cpuset refresh routine should be here */
5426 	}
5427 	/* Get the number of free pages beyond high watermark in all zones. */
5428 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5429 	/*
5430 	 * Disable grouping by mobility if the number of pages in the
5431 	 * system is too low to allow the mechanism to work. It would be
5432 	 * more accurate, but expensive to check per-zone. This check is
5433 	 * made on memory-hotadd so a system can start with mobility
5434 	 * disabled and enable it later
5435 	 */
5436 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437 		page_group_by_mobility_disabled = 1;
5438 	else
5439 		page_group_by_mobility_disabled = 0;
5440 
5441 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5442 		nr_online_nodes,
5443 		page_group_by_mobility_disabled ? "off" : "on",
5444 		vm_total_pages);
5445 #ifdef CONFIG_NUMA
5446 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447 #endif
5448 }
5449 
5450 static int zone_batchsize(struct zone *zone)
5451 {
5452 #ifdef CONFIG_MMU
5453 	int batch;
5454 
5455 	/*
5456 	 * The number of pages to batch allocate is either ~0.1%
5457 	 * of the zone or 1MB, whichever is smaller. The batch
5458 	 * size is striking a balance between allocation latency
5459 	 * and zone lock contention.
5460 	 */
5461 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5462 	batch /= 4;		/* We effectively *= 4 below */
5463 	if (batch < 1)
5464 		batch = 1;
5465 
5466 	/*
5467 	 * Clamp the batch to a 2^n - 1 value. Having a power
5468 	 * of 2 value was found to be more likely to have
5469 	 * suboptimal cache aliasing properties in some cases.
5470 	 *
5471 	 * For example if 2 tasks are alternately allocating
5472 	 * batches of pages, one task can end up with a lot
5473 	 * of pages of one half of the possible page colors
5474 	 * and the other with pages of the other colors.
5475 	 */
5476 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5477 
5478 	return batch;
5479 
5480 #else
5481 	/* The deferral and batching of frees should be suppressed under NOMMU
5482 	 * conditions.
5483 	 *
5484 	 * The problem is that NOMMU needs to be able to allocate large chunks
5485 	 * of contiguous memory as there's no hardware page translation to
5486 	 * assemble apparent contiguous memory from discontiguous pages.
5487 	 *
5488 	 * Queueing large contiguous runs of pages for batching, however,
5489 	 * causes the pages to actually be freed in smaller chunks.  As there
5490 	 * can be a significant delay between the individual batches being
5491 	 * recycled, this leads to the once large chunks of space being
5492 	 * fragmented and becoming unavailable for high-order allocations.
5493 	 */
5494 	return 0;
5495 #endif
5496 }
5497 
5498 static int percpu_pagelist_high_fraction;
5499 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5500 			 int high_fraction)
5501 {
5502 #ifdef CONFIG_MMU
5503 	int high;
5504 	int nr_split_cpus;
5505 	unsigned long total_pages;
5506 
5507 	if (!high_fraction) {
5508 		/*
5509 		 * By default, the high value of the pcp is based on the zone
5510 		 * low watermark so that if they are full then background
5511 		 * reclaim will not be started prematurely.
5512 		 */
5513 		total_pages = low_wmark_pages(zone);
5514 	} else {
5515 		/*
5516 		 * If percpu_pagelist_high_fraction is configured, the high
5517 		 * value is based on a fraction of the managed pages in the
5518 		 * zone.
5519 		 */
5520 		total_pages = zone_managed_pages(zone) / high_fraction;
5521 	}
5522 
5523 	/*
5524 	 * Split the high value across all online CPUs local to the zone. Note
5525 	 * that early in boot that CPUs may not be online yet and that during
5526 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5527 	 * onlined. For memory nodes that have no CPUs, split the high value
5528 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5529 	 * prematurely due to pages stored on pcp lists.
5530 	 */
5531 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5532 	if (!nr_split_cpus)
5533 		nr_split_cpus = num_online_cpus();
5534 	high = total_pages / nr_split_cpus;
5535 
5536 	/*
5537 	 * Ensure high is at least batch*4. The multiple is based on the
5538 	 * historical relationship between high and batch.
5539 	 */
5540 	high = max(high, batch << 2);
5541 
5542 	return high;
5543 #else
5544 	return 0;
5545 #endif
5546 }
5547 
5548 /*
5549  * pcp->high and pcp->batch values are related and generally batch is lower
5550  * than high. They are also related to pcp->count such that count is lower
5551  * than high, and as soon as it reaches high, the pcplist is flushed.
5552  *
5553  * However, guaranteeing these relations at all times would require e.g. write
5554  * barriers here but also careful usage of read barriers at the read side, and
5555  * thus be prone to error and bad for performance. Thus the update only prevents
5556  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5557  * should ensure they can cope with those fields changing asynchronously, and
5558  * fully trust only the pcp->count field on the local CPU with interrupts
5559  * disabled.
5560  *
5561  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5562  * outside of boot time (or some other assurance that no concurrent updaters
5563  * exist).
5564  */
5565 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5566 			   unsigned long high_max, unsigned long batch)
5567 {
5568 	WRITE_ONCE(pcp->batch, batch);
5569 	WRITE_ONCE(pcp->high_min, high_min);
5570 	WRITE_ONCE(pcp->high_max, high_max);
5571 }
5572 
5573 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5574 {
5575 	int pindex;
5576 
5577 	memset(pcp, 0, sizeof(*pcp));
5578 	memset(pzstats, 0, sizeof(*pzstats));
5579 
5580 	spin_lock_init(&pcp->lock);
5581 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5582 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5583 
5584 	/*
5585 	 * Set batch and high values safe for a boot pageset. A true percpu
5586 	 * pageset's initialization will update them subsequently. Here we don't
5587 	 * need to be as careful as pageset_update() as nobody can access the
5588 	 * pageset yet.
5589 	 */
5590 	pcp->high_min = BOOT_PAGESET_HIGH;
5591 	pcp->high_max = BOOT_PAGESET_HIGH;
5592 	pcp->batch = BOOT_PAGESET_BATCH;
5593 	pcp->free_count = 0;
5594 }
5595 
5596 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5597 					      unsigned long high_max, unsigned long batch)
5598 {
5599 	struct per_cpu_pages *pcp;
5600 	int cpu;
5601 
5602 	for_each_possible_cpu(cpu) {
5603 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5604 		pageset_update(pcp, high_min, high_max, batch);
5605 	}
5606 }
5607 
5608 /*
5609  * Calculate and set new high and batch values for all per-cpu pagesets of a
5610  * zone based on the zone's size.
5611  */
5612 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5613 {
5614 	int new_high_min, new_high_max, new_batch;
5615 
5616 	new_batch = max(1, zone_batchsize(zone));
5617 	if (percpu_pagelist_high_fraction) {
5618 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5619 					     percpu_pagelist_high_fraction);
5620 		/*
5621 		 * PCP high is tuned manually, disable auto-tuning via
5622 		 * setting high_min and high_max to the manual value.
5623 		 */
5624 		new_high_max = new_high_min;
5625 	} else {
5626 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5627 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5628 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5629 	}
5630 
5631 	if (zone->pageset_high_min == new_high_min &&
5632 	    zone->pageset_high_max == new_high_max &&
5633 	    zone->pageset_batch == new_batch)
5634 		return;
5635 
5636 	zone->pageset_high_min = new_high_min;
5637 	zone->pageset_high_max = new_high_max;
5638 	zone->pageset_batch = new_batch;
5639 
5640 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5641 					  new_batch);
5642 }
5643 
5644 void __meminit setup_zone_pageset(struct zone *zone)
5645 {
5646 	int cpu;
5647 
5648 	/* Size may be 0 on !SMP && !NUMA */
5649 	if (sizeof(struct per_cpu_zonestat) > 0)
5650 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5651 
5652 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5653 	for_each_possible_cpu(cpu) {
5654 		struct per_cpu_pages *pcp;
5655 		struct per_cpu_zonestat *pzstats;
5656 
5657 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5658 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5659 		per_cpu_pages_init(pcp, pzstats);
5660 	}
5661 
5662 	zone_set_pageset_high_and_batch(zone, 0);
5663 }
5664 
5665 /*
5666  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5667  * page high values need to be recalculated.
5668  */
5669 static void zone_pcp_update(struct zone *zone, int cpu_online)
5670 {
5671 	mutex_lock(&pcp_batch_high_lock);
5672 	zone_set_pageset_high_and_batch(zone, cpu_online);
5673 	mutex_unlock(&pcp_batch_high_lock);
5674 }
5675 
5676 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5677 {
5678 	struct per_cpu_pages *pcp;
5679 	struct cpu_cacheinfo *cci;
5680 
5681 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5682 	cci = get_cpu_cacheinfo(cpu);
5683 	/*
5684 	 * If data cache slice of CPU is large enough, "pcp->batch"
5685 	 * pages can be preserved in PCP before draining PCP for
5686 	 * consecutive high-order pages freeing without allocation.
5687 	 * This can reduce zone lock contention without hurting
5688 	 * cache-hot pages sharing.
5689 	 */
5690 	spin_lock(&pcp->lock);
5691 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5692 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5693 	else
5694 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5695 	spin_unlock(&pcp->lock);
5696 }
5697 
5698 void setup_pcp_cacheinfo(unsigned int cpu)
5699 {
5700 	struct zone *zone;
5701 
5702 	for_each_populated_zone(zone)
5703 		zone_pcp_update_cacheinfo(zone, cpu);
5704 }
5705 
5706 /*
5707  * Allocate per cpu pagesets and initialize them.
5708  * Before this call only boot pagesets were available.
5709  */
5710 void __init setup_per_cpu_pageset(void)
5711 {
5712 	struct pglist_data *pgdat;
5713 	struct zone *zone;
5714 	int __maybe_unused cpu;
5715 
5716 	for_each_populated_zone(zone)
5717 		setup_zone_pageset(zone);
5718 
5719 #ifdef CONFIG_NUMA
5720 	/*
5721 	 * Unpopulated zones continue using the boot pagesets.
5722 	 * The numa stats for these pagesets need to be reset.
5723 	 * Otherwise, they will end up skewing the stats of
5724 	 * the nodes these zones are associated with.
5725 	 */
5726 	for_each_possible_cpu(cpu) {
5727 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5728 		memset(pzstats->vm_numa_event, 0,
5729 		       sizeof(pzstats->vm_numa_event));
5730 	}
5731 #endif
5732 
5733 	for_each_online_pgdat(pgdat)
5734 		pgdat->per_cpu_nodestats =
5735 			alloc_percpu(struct per_cpu_nodestat);
5736 }
5737 
5738 __meminit void zone_pcp_init(struct zone *zone)
5739 {
5740 	/*
5741 	 * per cpu subsystem is not up at this point. The following code
5742 	 * relies on the ability of the linker to provide the
5743 	 * offset of a (static) per cpu variable into the per cpu area.
5744 	 */
5745 	zone->per_cpu_pageset = &boot_pageset;
5746 	zone->per_cpu_zonestats = &boot_zonestats;
5747 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5748 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5749 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5750 
5751 	if (populated_zone(zone))
5752 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5753 			 zone->present_pages, zone_batchsize(zone));
5754 }
5755 
5756 void adjust_managed_page_count(struct page *page, long count)
5757 {
5758 	atomic_long_add(count, &page_zone(page)->managed_pages);
5759 	totalram_pages_add(count);
5760 #ifdef CONFIG_HIGHMEM
5761 	if (PageHighMem(page))
5762 		totalhigh_pages_add(count);
5763 #endif
5764 }
5765 EXPORT_SYMBOL(adjust_managed_page_count);
5766 
5767 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5768 {
5769 	void *pos;
5770 	unsigned long pages = 0;
5771 
5772 	start = (void *)PAGE_ALIGN((unsigned long)start);
5773 	end = (void *)((unsigned long)end & PAGE_MASK);
5774 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5775 		struct page *page = virt_to_page(pos);
5776 		void *direct_map_addr;
5777 
5778 		/*
5779 		 * 'direct_map_addr' might be different from 'pos'
5780 		 * because some architectures' virt_to_page()
5781 		 * work with aliases.  Getting the direct map
5782 		 * address ensures that we get a _writeable_
5783 		 * alias for the memset().
5784 		 */
5785 		direct_map_addr = page_address(page);
5786 		/*
5787 		 * Perform a kasan-unchecked memset() since this memory
5788 		 * has not been initialized.
5789 		 */
5790 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5791 		if ((unsigned int)poison <= 0xFF)
5792 			memset(direct_map_addr, poison, PAGE_SIZE);
5793 
5794 		free_reserved_page(page);
5795 	}
5796 
5797 	if (pages && s)
5798 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5799 
5800 	return pages;
5801 }
5802 
5803 static int page_alloc_cpu_dead(unsigned int cpu)
5804 {
5805 	struct zone *zone;
5806 
5807 	lru_add_drain_cpu(cpu);
5808 	mlock_drain_remote(cpu);
5809 	drain_pages(cpu);
5810 
5811 	/*
5812 	 * Spill the event counters of the dead processor
5813 	 * into the current processors event counters.
5814 	 * This artificially elevates the count of the current
5815 	 * processor.
5816 	 */
5817 	vm_events_fold_cpu(cpu);
5818 
5819 	/*
5820 	 * Zero the differential counters of the dead processor
5821 	 * so that the vm statistics are consistent.
5822 	 *
5823 	 * This is only okay since the processor is dead and cannot
5824 	 * race with what we are doing.
5825 	 */
5826 	cpu_vm_stats_fold(cpu);
5827 
5828 	for_each_populated_zone(zone)
5829 		zone_pcp_update(zone, 0);
5830 
5831 	return 0;
5832 }
5833 
5834 static int page_alloc_cpu_online(unsigned int cpu)
5835 {
5836 	struct zone *zone;
5837 
5838 	for_each_populated_zone(zone)
5839 		zone_pcp_update(zone, 1);
5840 	return 0;
5841 }
5842 
5843 void __init page_alloc_init_cpuhp(void)
5844 {
5845 	int ret;
5846 
5847 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5848 					"mm/page_alloc:pcp",
5849 					page_alloc_cpu_online,
5850 					page_alloc_cpu_dead);
5851 	WARN_ON(ret < 0);
5852 }
5853 
5854 /*
5855  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5856  *	or min_free_kbytes changes.
5857  */
5858 static void calculate_totalreserve_pages(void)
5859 {
5860 	struct pglist_data *pgdat;
5861 	unsigned long reserve_pages = 0;
5862 	enum zone_type i, j;
5863 
5864 	for_each_online_pgdat(pgdat) {
5865 
5866 		pgdat->totalreserve_pages = 0;
5867 
5868 		for (i = 0; i < MAX_NR_ZONES; i++) {
5869 			struct zone *zone = pgdat->node_zones + i;
5870 			long max = 0;
5871 			unsigned long managed_pages = zone_managed_pages(zone);
5872 
5873 			/* Find valid and maximum lowmem_reserve in the zone */
5874 			for (j = i; j < MAX_NR_ZONES; j++) {
5875 				if (zone->lowmem_reserve[j] > max)
5876 					max = zone->lowmem_reserve[j];
5877 			}
5878 
5879 			/* we treat the high watermark as reserved pages. */
5880 			max += high_wmark_pages(zone);
5881 
5882 			if (max > managed_pages)
5883 				max = managed_pages;
5884 
5885 			pgdat->totalreserve_pages += max;
5886 
5887 			reserve_pages += max;
5888 		}
5889 	}
5890 	totalreserve_pages = reserve_pages;
5891 }
5892 
5893 /*
5894  * setup_per_zone_lowmem_reserve - called whenever
5895  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5896  *	has a correct pages reserved value, so an adequate number of
5897  *	pages are left in the zone after a successful __alloc_pages().
5898  */
5899 static void setup_per_zone_lowmem_reserve(void)
5900 {
5901 	struct pglist_data *pgdat;
5902 	enum zone_type i, j;
5903 
5904 	for_each_online_pgdat(pgdat) {
5905 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5906 			struct zone *zone = &pgdat->node_zones[i];
5907 			int ratio = sysctl_lowmem_reserve_ratio[i];
5908 			bool clear = !ratio || !zone_managed_pages(zone);
5909 			unsigned long managed_pages = 0;
5910 
5911 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5912 				struct zone *upper_zone = &pgdat->node_zones[j];
5913 				bool empty = !zone_managed_pages(upper_zone);
5914 
5915 				managed_pages += zone_managed_pages(upper_zone);
5916 
5917 				if (clear || empty)
5918 					zone->lowmem_reserve[j] = 0;
5919 				else
5920 					zone->lowmem_reserve[j] = managed_pages / ratio;
5921 			}
5922 		}
5923 	}
5924 
5925 	/* update totalreserve_pages */
5926 	calculate_totalreserve_pages();
5927 }
5928 
5929 static void __setup_per_zone_wmarks(void)
5930 {
5931 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5932 	unsigned long lowmem_pages = 0;
5933 	struct zone *zone;
5934 	unsigned long flags;
5935 
5936 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5937 	for_each_zone(zone) {
5938 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5939 			lowmem_pages += zone_managed_pages(zone);
5940 	}
5941 
5942 	for_each_zone(zone) {
5943 		u64 tmp;
5944 
5945 		spin_lock_irqsave(&zone->lock, flags);
5946 		tmp = (u64)pages_min * zone_managed_pages(zone);
5947 		tmp = div64_ul(tmp, lowmem_pages);
5948 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5949 			/*
5950 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5951 			 * need highmem and movable zones pages, so cap pages_min
5952 			 * to a small  value here.
5953 			 *
5954 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5955 			 * deltas control async page reclaim, and so should
5956 			 * not be capped for highmem and movable zones.
5957 			 */
5958 			unsigned long min_pages;
5959 
5960 			min_pages = zone_managed_pages(zone) / 1024;
5961 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5962 			zone->_watermark[WMARK_MIN] = min_pages;
5963 		} else {
5964 			/*
5965 			 * If it's a lowmem zone, reserve a number of pages
5966 			 * proportionate to the zone's size.
5967 			 */
5968 			zone->_watermark[WMARK_MIN] = tmp;
5969 		}
5970 
5971 		/*
5972 		 * Set the kswapd watermarks distance according to the
5973 		 * scale factor in proportion to available memory, but
5974 		 * ensure a minimum size on small systems.
5975 		 */
5976 		tmp = max_t(u64, tmp >> 2,
5977 			    mult_frac(zone_managed_pages(zone),
5978 				      watermark_scale_factor, 10000));
5979 
5980 		zone->watermark_boost = 0;
5981 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5982 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5983 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5984 
5985 		spin_unlock_irqrestore(&zone->lock, flags);
5986 	}
5987 
5988 	/* update totalreserve_pages */
5989 	calculate_totalreserve_pages();
5990 }
5991 
5992 /**
5993  * setup_per_zone_wmarks - called when min_free_kbytes changes
5994  * or when memory is hot-{added|removed}
5995  *
5996  * Ensures that the watermark[min,low,high] values for each zone are set
5997  * correctly with respect to min_free_kbytes.
5998  */
5999 void setup_per_zone_wmarks(void)
6000 {
6001 	struct zone *zone;
6002 	static DEFINE_SPINLOCK(lock);
6003 
6004 	spin_lock(&lock);
6005 	__setup_per_zone_wmarks();
6006 	spin_unlock(&lock);
6007 
6008 	/*
6009 	 * The watermark size have changed so update the pcpu batch
6010 	 * and high limits or the limits may be inappropriate.
6011 	 */
6012 	for_each_zone(zone)
6013 		zone_pcp_update(zone, 0);
6014 }
6015 
6016 /*
6017  * Initialise min_free_kbytes.
6018  *
6019  * For small machines we want it small (128k min).  For large machines
6020  * we want it large (256MB max).  But it is not linear, because network
6021  * bandwidth does not increase linearly with machine size.  We use
6022  *
6023  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6024  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6025  *
6026  * which yields
6027  *
6028  * 16MB:	512k
6029  * 32MB:	724k
6030  * 64MB:	1024k
6031  * 128MB:	1448k
6032  * 256MB:	2048k
6033  * 512MB:	2896k
6034  * 1024MB:	4096k
6035  * 2048MB:	5792k
6036  * 4096MB:	8192k
6037  * 8192MB:	11584k
6038  * 16384MB:	16384k
6039  */
6040 void calculate_min_free_kbytes(void)
6041 {
6042 	unsigned long lowmem_kbytes;
6043 	int new_min_free_kbytes;
6044 
6045 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6046 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6047 
6048 	if (new_min_free_kbytes > user_min_free_kbytes)
6049 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6050 	else
6051 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6052 				new_min_free_kbytes, user_min_free_kbytes);
6053 
6054 }
6055 
6056 int __meminit init_per_zone_wmark_min(void)
6057 {
6058 	calculate_min_free_kbytes();
6059 	setup_per_zone_wmarks();
6060 	refresh_zone_stat_thresholds();
6061 	setup_per_zone_lowmem_reserve();
6062 
6063 #ifdef CONFIG_NUMA
6064 	setup_min_unmapped_ratio();
6065 	setup_min_slab_ratio();
6066 #endif
6067 
6068 	khugepaged_min_free_kbytes_update();
6069 
6070 	return 0;
6071 }
6072 postcore_initcall(init_per_zone_wmark_min)
6073 
6074 /*
6075  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6076  *	that we can call two helper functions whenever min_free_kbytes
6077  *	changes.
6078  */
6079 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6080 		void *buffer, size_t *length, loff_t *ppos)
6081 {
6082 	int rc;
6083 
6084 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6085 	if (rc)
6086 		return rc;
6087 
6088 	if (write) {
6089 		user_min_free_kbytes = min_free_kbytes;
6090 		setup_per_zone_wmarks();
6091 	}
6092 	return 0;
6093 }
6094 
6095 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6096 		void *buffer, size_t *length, loff_t *ppos)
6097 {
6098 	int rc;
6099 
6100 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6101 	if (rc)
6102 		return rc;
6103 
6104 	if (write)
6105 		setup_per_zone_wmarks();
6106 
6107 	return 0;
6108 }
6109 
6110 #ifdef CONFIG_NUMA
6111 static void setup_min_unmapped_ratio(void)
6112 {
6113 	pg_data_t *pgdat;
6114 	struct zone *zone;
6115 
6116 	for_each_online_pgdat(pgdat)
6117 		pgdat->min_unmapped_pages = 0;
6118 
6119 	for_each_zone(zone)
6120 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6121 						         sysctl_min_unmapped_ratio) / 100;
6122 }
6123 
6124 
6125 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6126 		void *buffer, size_t *length, loff_t *ppos)
6127 {
6128 	int rc;
6129 
6130 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6131 	if (rc)
6132 		return rc;
6133 
6134 	setup_min_unmapped_ratio();
6135 
6136 	return 0;
6137 }
6138 
6139 static void setup_min_slab_ratio(void)
6140 {
6141 	pg_data_t *pgdat;
6142 	struct zone *zone;
6143 
6144 	for_each_online_pgdat(pgdat)
6145 		pgdat->min_slab_pages = 0;
6146 
6147 	for_each_zone(zone)
6148 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6149 						     sysctl_min_slab_ratio) / 100;
6150 }
6151 
6152 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6153 		void *buffer, size_t *length, loff_t *ppos)
6154 {
6155 	int rc;
6156 
6157 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6158 	if (rc)
6159 		return rc;
6160 
6161 	setup_min_slab_ratio();
6162 
6163 	return 0;
6164 }
6165 #endif
6166 
6167 /*
6168  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6169  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6170  *	whenever sysctl_lowmem_reserve_ratio changes.
6171  *
6172  * The reserve ratio obviously has absolutely no relation with the
6173  * minimum watermarks. The lowmem reserve ratio can only make sense
6174  * if in function of the boot time zone sizes.
6175  */
6176 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6177 		int write, void *buffer, size_t *length, loff_t *ppos)
6178 {
6179 	int i;
6180 
6181 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6182 
6183 	for (i = 0; i < MAX_NR_ZONES; i++) {
6184 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6185 			sysctl_lowmem_reserve_ratio[i] = 0;
6186 	}
6187 
6188 	setup_per_zone_lowmem_reserve();
6189 	return 0;
6190 }
6191 
6192 /*
6193  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6194  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6195  * pagelist can have before it gets flushed back to buddy allocator.
6196  */
6197 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6198 		int write, void *buffer, size_t *length, loff_t *ppos)
6199 {
6200 	struct zone *zone;
6201 	int old_percpu_pagelist_high_fraction;
6202 	int ret;
6203 
6204 	mutex_lock(&pcp_batch_high_lock);
6205 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6206 
6207 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6208 	if (!write || ret < 0)
6209 		goto out;
6210 
6211 	/* Sanity checking to avoid pcp imbalance */
6212 	if (percpu_pagelist_high_fraction &&
6213 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6214 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6215 		ret = -EINVAL;
6216 		goto out;
6217 	}
6218 
6219 	/* No change? */
6220 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6221 		goto out;
6222 
6223 	for_each_populated_zone(zone)
6224 		zone_set_pageset_high_and_batch(zone, 0);
6225 out:
6226 	mutex_unlock(&pcp_batch_high_lock);
6227 	return ret;
6228 }
6229 
6230 static struct ctl_table page_alloc_sysctl_table[] = {
6231 	{
6232 		.procname	= "min_free_kbytes",
6233 		.data		= &min_free_kbytes,
6234 		.maxlen		= sizeof(min_free_kbytes),
6235 		.mode		= 0644,
6236 		.proc_handler	= min_free_kbytes_sysctl_handler,
6237 		.extra1		= SYSCTL_ZERO,
6238 	},
6239 	{
6240 		.procname	= "watermark_boost_factor",
6241 		.data		= &watermark_boost_factor,
6242 		.maxlen		= sizeof(watermark_boost_factor),
6243 		.mode		= 0644,
6244 		.proc_handler	= proc_dointvec_minmax,
6245 		.extra1		= SYSCTL_ZERO,
6246 	},
6247 	{
6248 		.procname	= "watermark_scale_factor",
6249 		.data		= &watermark_scale_factor,
6250 		.maxlen		= sizeof(watermark_scale_factor),
6251 		.mode		= 0644,
6252 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6253 		.extra1		= SYSCTL_ONE,
6254 		.extra2		= SYSCTL_THREE_THOUSAND,
6255 	},
6256 	{
6257 		.procname	= "percpu_pagelist_high_fraction",
6258 		.data		= &percpu_pagelist_high_fraction,
6259 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6260 		.mode		= 0644,
6261 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6262 		.extra1		= SYSCTL_ZERO,
6263 	},
6264 	{
6265 		.procname	= "lowmem_reserve_ratio",
6266 		.data		= &sysctl_lowmem_reserve_ratio,
6267 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6268 		.mode		= 0644,
6269 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6270 	},
6271 #ifdef CONFIG_NUMA
6272 	{
6273 		.procname	= "numa_zonelist_order",
6274 		.data		= &numa_zonelist_order,
6275 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6276 		.mode		= 0644,
6277 		.proc_handler	= numa_zonelist_order_handler,
6278 	},
6279 	{
6280 		.procname	= "min_unmapped_ratio",
6281 		.data		= &sysctl_min_unmapped_ratio,
6282 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6283 		.mode		= 0644,
6284 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6285 		.extra1		= SYSCTL_ZERO,
6286 		.extra2		= SYSCTL_ONE_HUNDRED,
6287 	},
6288 	{
6289 		.procname	= "min_slab_ratio",
6290 		.data		= &sysctl_min_slab_ratio,
6291 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6292 		.mode		= 0644,
6293 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6294 		.extra1		= SYSCTL_ZERO,
6295 		.extra2		= SYSCTL_ONE_HUNDRED,
6296 	},
6297 #endif
6298 };
6299 
6300 void __init page_alloc_sysctl_init(void)
6301 {
6302 	register_sysctl_init("vm", page_alloc_sysctl_table);
6303 }
6304 
6305 #ifdef CONFIG_CONTIG_ALLOC
6306 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6307 static void alloc_contig_dump_pages(struct list_head *page_list)
6308 {
6309 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6310 
6311 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6312 		struct page *page;
6313 
6314 		dump_stack();
6315 		list_for_each_entry(page, page_list, lru)
6316 			dump_page(page, "migration failure");
6317 	}
6318 }
6319 
6320 /*
6321  * [start, end) must belong to a single zone.
6322  * @migratetype: using migratetype to filter the type of migration in
6323  *		trace_mm_alloc_contig_migrate_range_info.
6324  */
6325 int __alloc_contig_migrate_range(struct compact_control *cc,
6326 					unsigned long start, unsigned long end,
6327 					int migratetype)
6328 {
6329 	/* This function is based on compact_zone() from compaction.c. */
6330 	unsigned int nr_reclaimed;
6331 	unsigned long pfn = start;
6332 	unsigned int tries = 0;
6333 	int ret = 0;
6334 	struct migration_target_control mtc = {
6335 		.nid = zone_to_nid(cc->zone),
6336 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6337 		.reason = MR_CONTIG_RANGE,
6338 	};
6339 	struct page *page;
6340 	unsigned long total_mapped = 0;
6341 	unsigned long total_migrated = 0;
6342 	unsigned long total_reclaimed = 0;
6343 
6344 	lru_cache_disable();
6345 
6346 	while (pfn < end || !list_empty(&cc->migratepages)) {
6347 		if (fatal_signal_pending(current)) {
6348 			ret = -EINTR;
6349 			break;
6350 		}
6351 
6352 		if (list_empty(&cc->migratepages)) {
6353 			cc->nr_migratepages = 0;
6354 			ret = isolate_migratepages_range(cc, pfn, end);
6355 			if (ret && ret != -EAGAIN)
6356 				break;
6357 			pfn = cc->migrate_pfn;
6358 			tries = 0;
6359 		} else if (++tries == 5) {
6360 			ret = -EBUSY;
6361 			break;
6362 		}
6363 
6364 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6365 							&cc->migratepages);
6366 		cc->nr_migratepages -= nr_reclaimed;
6367 
6368 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6369 			total_reclaimed += nr_reclaimed;
6370 			list_for_each_entry(page, &cc->migratepages, lru) {
6371 				struct folio *folio = page_folio(page);
6372 
6373 				total_mapped += folio_mapped(folio) *
6374 						folio_nr_pages(folio);
6375 			}
6376 		}
6377 
6378 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6379 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6380 
6381 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6382 			total_migrated += cc->nr_migratepages;
6383 
6384 		/*
6385 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6386 		 * to retry again over this error, so do the same here.
6387 		 */
6388 		if (ret == -ENOMEM)
6389 			break;
6390 	}
6391 
6392 	lru_cache_enable();
6393 	if (ret < 0) {
6394 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6395 			alloc_contig_dump_pages(&cc->migratepages);
6396 		putback_movable_pages(&cc->migratepages);
6397 	}
6398 
6399 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6400 						 total_migrated,
6401 						 total_reclaimed,
6402 						 total_mapped);
6403 	return (ret < 0) ? ret : 0;
6404 }
6405 
6406 /**
6407  * alloc_contig_range() -- tries to allocate given range of pages
6408  * @start:	start PFN to allocate
6409  * @end:	one-past-the-last PFN to allocate
6410  * @migratetype:	migratetype of the underlying pageblocks (either
6411  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6412  *			in range must have the same migratetype and it must
6413  *			be either of the two.
6414  * @gfp_mask:	GFP mask to use during compaction
6415  *
6416  * The PFN range does not have to be pageblock aligned. The PFN range must
6417  * belong to a single zone.
6418  *
6419  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6420  * pageblocks in the range.  Once isolated, the pageblocks should not
6421  * be modified by others.
6422  *
6423  * Return: zero on success or negative error code.  On success all
6424  * pages which PFN is in [start, end) are allocated for the caller and
6425  * need to be freed with free_contig_range().
6426  */
6427 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6428 		       unsigned migratetype, gfp_t gfp_mask)
6429 {
6430 	unsigned long outer_start, outer_end;
6431 	int ret = 0;
6432 
6433 	struct compact_control cc = {
6434 		.nr_migratepages = 0,
6435 		.order = -1,
6436 		.zone = page_zone(pfn_to_page(start)),
6437 		.mode = MIGRATE_SYNC,
6438 		.ignore_skip_hint = true,
6439 		.no_set_skip_hint = true,
6440 		.gfp_mask = current_gfp_context(gfp_mask),
6441 		.alloc_contig = true,
6442 	};
6443 	INIT_LIST_HEAD(&cc.migratepages);
6444 
6445 	/*
6446 	 * What we do here is we mark all pageblocks in range as
6447 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6448 	 * have different sizes, and due to the way page allocator
6449 	 * work, start_isolate_page_range() has special handlings for this.
6450 	 *
6451 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6452 	 * migrate the pages from an unaligned range (ie. pages that
6453 	 * we are interested in). This will put all the pages in
6454 	 * range back to page allocator as MIGRATE_ISOLATE.
6455 	 *
6456 	 * When this is done, we take the pages in range from page
6457 	 * allocator removing them from the buddy system.  This way
6458 	 * page allocator will never consider using them.
6459 	 *
6460 	 * This lets us mark the pageblocks back as
6461 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6462 	 * aligned range but not in the unaligned, original range are
6463 	 * put back to page allocator so that buddy can use them.
6464 	 */
6465 
6466 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6467 	if (ret)
6468 		goto done;
6469 
6470 	drain_all_pages(cc.zone);
6471 
6472 	/*
6473 	 * In case of -EBUSY, we'd like to know which page causes problem.
6474 	 * So, just fall through. test_pages_isolated() has a tracepoint
6475 	 * which will report the busy page.
6476 	 *
6477 	 * It is possible that busy pages could become available before
6478 	 * the call to test_pages_isolated, and the range will actually be
6479 	 * allocated.  So, if we fall through be sure to clear ret so that
6480 	 * -EBUSY is not accidentally used or returned to caller.
6481 	 */
6482 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6483 	if (ret && ret != -EBUSY)
6484 		goto done;
6485 	ret = 0;
6486 
6487 	/*
6488 	 * Pages from [start, end) are within a pageblock_nr_pages
6489 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6490 	 * more, all pages in [start, end) are free in page allocator.
6491 	 * What we are going to do is to allocate all pages from
6492 	 * [start, end) (that is remove them from page allocator).
6493 	 *
6494 	 * The only problem is that pages at the beginning and at the
6495 	 * end of interesting range may be not aligned with pages that
6496 	 * page allocator holds, ie. they can be part of higher order
6497 	 * pages.  Because of this, we reserve the bigger range and
6498 	 * once this is done free the pages we are not interested in.
6499 	 *
6500 	 * We don't have to hold zone->lock here because the pages are
6501 	 * isolated thus they won't get removed from buddy.
6502 	 */
6503 	outer_start = find_large_buddy(start);
6504 
6505 	/* Make sure the range is really isolated. */
6506 	if (test_pages_isolated(outer_start, end, 0)) {
6507 		ret = -EBUSY;
6508 		goto done;
6509 	}
6510 
6511 	/* Grab isolated pages from freelists. */
6512 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6513 	if (!outer_end) {
6514 		ret = -EBUSY;
6515 		goto done;
6516 	}
6517 
6518 	/* Free head and tail (if any) */
6519 	if (start != outer_start)
6520 		free_contig_range(outer_start, start - outer_start);
6521 	if (end != outer_end)
6522 		free_contig_range(end, outer_end - end);
6523 
6524 done:
6525 	undo_isolate_page_range(start, end, migratetype);
6526 	return ret;
6527 }
6528 EXPORT_SYMBOL(alloc_contig_range_noprof);
6529 
6530 static int __alloc_contig_pages(unsigned long start_pfn,
6531 				unsigned long nr_pages, gfp_t gfp_mask)
6532 {
6533 	unsigned long end_pfn = start_pfn + nr_pages;
6534 
6535 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6536 				   gfp_mask);
6537 }
6538 
6539 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6540 				   unsigned long nr_pages)
6541 {
6542 	unsigned long i, end_pfn = start_pfn + nr_pages;
6543 	struct page *page;
6544 
6545 	for (i = start_pfn; i < end_pfn; i++) {
6546 		page = pfn_to_online_page(i);
6547 		if (!page)
6548 			return false;
6549 
6550 		if (page_zone(page) != z)
6551 			return false;
6552 
6553 		if (PageReserved(page))
6554 			return false;
6555 
6556 		if (PageHuge(page))
6557 			return false;
6558 	}
6559 	return true;
6560 }
6561 
6562 static bool zone_spans_last_pfn(const struct zone *zone,
6563 				unsigned long start_pfn, unsigned long nr_pages)
6564 {
6565 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6566 
6567 	return zone_spans_pfn(zone, last_pfn);
6568 }
6569 
6570 /**
6571  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6572  * @nr_pages:	Number of contiguous pages to allocate
6573  * @gfp_mask:	GFP mask to limit search and used during compaction
6574  * @nid:	Target node
6575  * @nodemask:	Mask for other possible nodes
6576  *
6577  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6578  * on an applicable zonelist to find a contiguous pfn range which can then be
6579  * tried for allocation with alloc_contig_range(). This routine is intended
6580  * for allocation requests which can not be fulfilled with the buddy allocator.
6581  *
6582  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6583  * power of two, then allocated range is also guaranteed to be aligned to same
6584  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6585  *
6586  * Allocated pages can be freed with free_contig_range() or by manually calling
6587  * __free_page() on each allocated page.
6588  *
6589  * Return: pointer to contiguous pages on success, or NULL if not successful.
6590  */
6591 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6592 				 int nid, nodemask_t *nodemask)
6593 {
6594 	unsigned long ret, pfn, flags;
6595 	struct zonelist *zonelist;
6596 	struct zone *zone;
6597 	struct zoneref *z;
6598 
6599 	zonelist = node_zonelist(nid, gfp_mask);
6600 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6601 					gfp_zone(gfp_mask), nodemask) {
6602 		spin_lock_irqsave(&zone->lock, flags);
6603 
6604 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6605 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6606 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6607 				/*
6608 				 * We release the zone lock here because
6609 				 * alloc_contig_range() will also lock the zone
6610 				 * at some point. If there's an allocation
6611 				 * spinning on this lock, it may win the race
6612 				 * and cause alloc_contig_range() to fail...
6613 				 */
6614 				spin_unlock_irqrestore(&zone->lock, flags);
6615 				ret = __alloc_contig_pages(pfn, nr_pages,
6616 							gfp_mask);
6617 				if (!ret)
6618 					return pfn_to_page(pfn);
6619 				spin_lock_irqsave(&zone->lock, flags);
6620 			}
6621 			pfn += nr_pages;
6622 		}
6623 		spin_unlock_irqrestore(&zone->lock, flags);
6624 	}
6625 	return NULL;
6626 }
6627 #endif /* CONFIG_CONTIG_ALLOC */
6628 
6629 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6630 {
6631 	unsigned long count = 0;
6632 
6633 	for (; nr_pages--; pfn++) {
6634 		struct page *page = pfn_to_page(pfn);
6635 
6636 		count += page_count(page) != 1;
6637 		__free_page(page);
6638 	}
6639 	WARN(count != 0, "%lu pages are still in use!\n", count);
6640 }
6641 EXPORT_SYMBOL(free_contig_range);
6642 
6643 /*
6644  * Effectively disable pcplists for the zone by setting the high limit to 0
6645  * and draining all cpus. A concurrent page freeing on another CPU that's about
6646  * to put the page on pcplist will either finish before the drain and the page
6647  * will be drained, or observe the new high limit and skip the pcplist.
6648  *
6649  * Must be paired with a call to zone_pcp_enable().
6650  */
6651 void zone_pcp_disable(struct zone *zone)
6652 {
6653 	mutex_lock(&pcp_batch_high_lock);
6654 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6655 	__drain_all_pages(zone, true);
6656 }
6657 
6658 void zone_pcp_enable(struct zone *zone)
6659 {
6660 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6661 		zone->pageset_high_max, zone->pageset_batch);
6662 	mutex_unlock(&pcp_batch_high_lock);
6663 }
6664 
6665 void zone_pcp_reset(struct zone *zone)
6666 {
6667 	int cpu;
6668 	struct per_cpu_zonestat *pzstats;
6669 
6670 	if (zone->per_cpu_pageset != &boot_pageset) {
6671 		for_each_online_cpu(cpu) {
6672 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6673 			drain_zonestat(zone, pzstats);
6674 		}
6675 		free_percpu(zone->per_cpu_pageset);
6676 		zone->per_cpu_pageset = &boot_pageset;
6677 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6678 			free_percpu(zone->per_cpu_zonestats);
6679 			zone->per_cpu_zonestats = &boot_zonestats;
6680 		}
6681 	}
6682 }
6683 
6684 #ifdef CONFIG_MEMORY_HOTREMOVE
6685 /*
6686  * All pages in the range must be in a single zone, must not contain holes,
6687  * must span full sections, and must be isolated before calling this function.
6688  */
6689 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6690 {
6691 	unsigned long pfn = start_pfn;
6692 	struct page *page;
6693 	struct zone *zone;
6694 	unsigned int order;
6695 	unsigned long flags;
6696 
6697 	offline_mem_sections(pfn, end_pfn);
6698 	zone = page_zone(pfn_to_page(pfn));
6699 	spin_lock_irqsave(&zone->lock, flags);
6700 	while (pfn < end_pfn) {
6701 		page = pfn_to_page(pfn);
6702 		/*
6703 		 * The HWPoisoned page may be not in buddy system, and
6704 		 * page_count() is not 0.
6705 		 */
6706 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6707 			pfn++;
6708 			continue;
6709 		}
6710 		/*
6711 		 * At this point all remaining PageOffline() pages have a
6712 		 * reference count of 0 and can simply be skipped.
6713 		 */
6714 		if (PageOffline(page)) {
6715 			BUG_ON(page_count(page));
6716 			BUG_ON(PageBuddy(page));
6717 			pfn++;
6718 			continue;
6719 		}
6720 
6721 		BUG_ON(page_count(page));
6722 		BUG_ON(!PageBuddy(page));
6723 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6724 		order = buddy_order(page);
6725 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6726 		pfn += (1 << order);
6727 	}
6728 	spin_unlock_irqrestore(&zone->lock, flags);
6729 }
6730 #endif
6731 
6732 /*
6733  * This function returns a stable result only if called under zone lock.
6734  */
6735 bool is_free_buddy_page(const struct page *page)
6736 {
6737 	unsigned long pfn = page_to_pfn(page);
6738 	unsigned int order;
6739 
6740 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6741 		const struct page *head = page - (pfn & ((1 << order) - 1));
6742 
6743 		if (PageBuddy(head) &&
6744 		    buddy_order_unsafe(head) >= order)
6745 			break;
6746 	}
6747 
6748 	return order <= MAX_PAGE_ORDER;
6749 }
6750 EXPORT_SYMBOL(is_free_buddy_page);
6751 
6752 #ifdef CONFIG_MEMORY_FAILURE
6753 static inline void add_to_free_list(struct page *page, struct zone *zone,
6754 				    unsigned int order, int migratetype,
6755 				    bool tail)
6756 {
6757 	__add_to_free_list(page, zone, order, migratetype, tail);
6758 	account_freepages(zone, 1 << order, migratetype);
6759 }
6760 
6761 /*
6762  * Break down a higher-order page in sub-pages, and keep our target out of
6763  * buddy allocator.
6764  */
6765 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6766 				   struct page *target, int low, int high,
6767 				   int migratetype)
6768 {
6769 	unsigned long size = 1 << high;
6770 	struct page *current_buddy;
6771 
6772 	while (high > low) {
6773 		high--;
6774 		size >>= 1;
6775 
6776 		if (target >= &page[size]) {
6777 			current_buddy = page;
6778 			page = page + size;
6779 		} else {
6780 			current_buddy = page + size;
6781 		}
6782 
6783 		if (set_page_guard(zone, current_buddy, high))
6784 			continue;
6785 
6786 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6787 		set_buddy_order(current_buddy, high);
6788 	}
6789 }
6790 
6791 /*
6792  * Take a page that will be marked as poisoned off the buddy allocator.
6793  */
6794 bool take_page_off_buddy(struct page *page)
6795 {
6796 	struct zone *zone = page_zone(page);
6797 	unsigned long pfn = page_to_pfn(page);
6798 	unsigned long flags;
6799 	unsigned int order;
6800 	bool ret = false;
6801 
6802 	spin_lock_irqsave(&zone->lock, flags);
6803 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6804 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6805 		int page_order = buddy_order(page_head);
6806 
6807 		if (PageBuddy(page_head) && page_order >= order) {
6808 			unsigned long pfn_head = page_to_pfn(page_head);
6809 			int migratetype = get_pfnblock_migratetype(page_head,
6810 								   pfn_head);
6811 
6812 			del_page_from_free_list(page_head, zone, page_order,
6813 						migratetype);
6814 			break_down_buddy_pages(zone, page_head, page, 0,
6815 						page_order, migratetype);
6816 			SetPageHWPoisonTakenOff(page);
6817 			ret = true;
6818 			break;
6819 		}
6820 		if (page_count(page_head) > 0)
6821 			break;
6822 	}
6823 	spin_unlock_irqrestore(&zone->lock, flags);
6824 	return ret;
6825 }
6826 
6827 /*
6828  * Cancel takeoff done by take_page_off_buddy().
6829  */
6830 bool put_page_back_buddy(struct page *page)
6831 {
6832 	struct zone *zone = page_zone(page);
6833 	unsigned long flags;
6834 	bool ret = false;
6835 
6836 	spin_lock_irqsave(&zone->lock, flags);
6837 	if (put_page_testzero(page)) {
6838 		unsigned long pfn = page_to_pfn(page);
6839 		int migratetype = get_pfnblock_migratetype(page, pfn);
6840 
6841 		ClearPageHWPoisonTakenOff(page);
6842 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6843 		if (TestClearPageHWPoison(page)) {
6844 			ret = true;
6845 		}
6846 	}
6847 	spin_unlock_irqrestore(&zone->lock, flags);
6848 
6849 	return ret;
6850 }
6851 #endif
6852 
6853 #ifdef CONFIG_ZONE_DMA
6854 bool has_managed_dma(void)
6855 {
6856 	struct pglist_data *pgdat;
6857 
6858 	for_each_online_pgdat(pgdat) {
6859 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6860 
6861 		if (managed_zone(zone))
6862 			return true;
6863 	}
6864 	return false;
6865 }
6866 #endif /* CONFIG_ZONE_DMA */
6867 
6868 #ifdef CONFIG_UNACCEPTED_MEMORY
6869 
6870 /* Counts number of zones with unaccepted pages. */
6871 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6872 
6873 static bool lazy_accept = true;
6874 
6875 static int __init accept_memory_parse(char *p)
6876 {
6877 	if (!strcmp(p, "lazy")) {
6878 		lazy_accept = true;
6879 		return 0;
6880 	} else if (!strcmp(p, "eager")) {
6881 		lazy_accept = false;
6882 		return 0;
6883 	} else {
6884 		return -EINVAL;
6885 	}
6886 }
6887 early_param("accept_memory", accept_memory_parse);
6888 
6889 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6890 {
6891 	phys_addr_t start = page_to_phys(page);
6892 	phys_addr_t end = start + (PAGE_SIZE << order);
6893 
6894 	return range_contains_unaccepted_memory(start, end);
6895 }
6896 
6897 static void accept_page(struct page *page, unsigned int order)
6898 {
6899 	phys_addr_t start = page_to_phys(page);
6900 
6901 	accept_memory(start, start + (PAGE_SIZE << order));
6902 }
6903 
6904 static bool try_to_accept_memory_one(struct zone *zone)
6905 {
6906 	unsigned long flags;
6907 	struct page *page;
6908 	bool last;
6909 
6910 	if (list_empty(&zone->unaccepted_pages))
6911 		return false;
6912 
6913 	spin_lock_irqsave(&zone->lock, flags);
6914 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6915 					struct page, lru);
6916 	if (!page) {
6917 		spin_unlock_irqrestore(&zone->lock, flags);
6918 		return false;
6919 	}
6920 
6921 	list_del(&page->lru);
6922 	last = list_empty(&zone->unaccepted_pages);
6923 
6924 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6925 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6926 	spin_unlock_irqrestore(&zone->lock, flags);
6927 
6928 	accept_page(page, MAX_PAGE_ORDER);
6929 
6930 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6931 
6932 	if (last)
6933 		static_branch_dec(&zones_with_unaccepted_pages);
6934 
6935 	return true;
6936 }
6937 
6938 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6939 {
6940 	long to_accept;
6941 	int ret = false;
6942 
6943 	/* How much to accept to get to high watermark? */
6944 	to_accept = high_wmark_pages(zone) -
6945 		    (zone_page_state(zone, NR_FREE_PAGES) -
6946 		    __zone_watermark_unusable_free(zone, order, 0));
6947 
6948 	/* Accept at least one page */
6949 	do {
6950 		if (!try_to_accept_memory_one(zone))
6951 			break;
6952 		ret = true;
6953 		to_accept -= MAX_ORDER_NR_PAGES;
6954 	} while (to_accept > 0);
6955 
6956 	return ret;
6957 }
6958 
6959 static inline bool has_unaccepted_memory(void)
6960 {
6961 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6962 }
6963 
6964 static bool __free_unaccepted(struct page *page)
6965 {
6966 	struct zone *zone = page_zone(page);
6967 	unsigned long flags;
6968 	bool first = false;
6969 
6970 	if (!lazy_accept)
6971 		return false;
6972 
6973 	spin_lock_irqsave(&zone->lock, flags);
6974 	first = list_empty(&zone->unaccepted_pages);
6975 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6976 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6977 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6978 	spin_unlock_irqrestore(&zone->lock, flags);
6979 
6980 	if (first)
6981 		static_branch_inc(&zones_with_unaccepted_pages);
6982 
6983 	return true;
6984 }
6985 
6986 #else
6987 
6988 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6989 {
6990 	return false;
6991 }
6992 
6993 static void accept_page(struct page *page, unsigned int order)
6994 {
6995 }
6996 
6997 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6998 {
6999 	return false;
7000 }
7001 
7002 static inline bool has_unaccepted_memory(void)
7003 {
7004 	return false;
7005 }
7006 
7007 static bool __free_unaccepted(struct page *page)
7008 {
7009 	BUILD_BUG();
7010 	return false;
7011 }
7012 
7013 #endif /* CONFIG_UNACCEPTED_MEMORY */
7014