xref: /linux/mm/page_alloc.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 #include "internal.h"
64 
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
68 #endif
69 
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
71 /*
72  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75  * defined in <linux/topology.h>.
76  */
77 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79 #endif
80 
81 /*
82  * Array of node states.
83  */
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 	[N_POSSIBLE] = NODE_MASK_ALL,
86 	[N_ONLINE] = { { [0] = 1UL } },
87 #ifndef CONFIG_NUMA
88 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
89 #ifdef CONFIG_HIGHMEM
90 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
91 #endif
92 	[N_CPU] = { { [0] = 1UL } },
93 #endif	/* NUMA */
94 };
95 EXPORT_SYMBOL(node_states);
96 
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
101 
102 #ifdef CONFIG_PM_SLEEP
103 /*
104  * The following functions are used by the suspend/hibernate code to temporarily
105  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106  * while devices are suspended.  To avoid races with the suspend/hibernate code,
107  * they should always be called with pm_mutex held (gfp_allowed_mask also should
108  * only be modified with pm_mutex held, unless the suspend/hibernate code is
109  * guaranteed not to run in parallel with that modification).
110  */
111 
112 static gfp_t saved_gfp_mask;
113 
114 void pm_restore_gfp_mask(void)
115 {
116 	WARN_ON(!mutex_is_locked(&pm_mutex));
117 	if (saved_gfp_mask) {
118 		gfp_allowed_mask = saved_gfp_mask;
119 		saved_gfp_mask = 0;
120 	}
121 }
122 
123 void pm_restrict_gfp_mask(void)
124 {
125 	WARN_ON(!mutex_is_locked(&pm_mutex));
126 	WARN_ON(saved_gfp_mask);
127 	saved_gfp_mask = gfp_allowed_mask;
128 	gfp_allowed_mask &= ~GFP_IOFS;
129 }
130 #endif /* CONFIG_PM_SLEEP */
131 
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly;
134 #endif
135 
136 static void __free_pages_ok(struct page *page, unsigned int order);
137 
138 /*
139  * results with 256, 32 in the lowmem_reserve sysctl:
140  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141  *	1G machine -> (16M dma, 784M normal, 224M high)
142  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
145  *
146  * TBD: should special case ZONE_DMA32 machines here - in those we normally
147  * don't need any ZONE_NORMAL reservation
148  */
149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150 #ifdef CONFIG_ZONE_DMA
151 	 256,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 	 256,
155 #endif
156 #ifdef CONFIG_HIGHMEM
157 	 32,
158 #endif
159 	 32,
160 };
161 
162 EXPORT_SYMBOL(totalram_pages);
163 
164 static char * const zone_names[MAX_NR_ZONES] = {
165 #ifdef CONFIG_ZONE_DMA
166 	 "DMA",
167 #endif
168 #ifdef CONFIG_ZONE_DMA32
169 	 "DMA32",
170 #endif
171 	 "Normal",
172 #ifdef CONFIG_HIGHMEM
173 	 "HighMem",
174 #endif
175 	 "Movable",
176 };
177 
178 int min_free_kbytes = 1024;
179 
180 static unsigned long __meminitdata nr_kernel_pages;
181 static unsigned long __meminitdata nr_all_pages;
182 static unsigned long __meminitdata dma_reserve;
183 
184 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
185 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
186 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
187 static unsigned long __initdata required_kernelcore;
188 static unsigned long __initdata required_movablecore;
189 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
190 
191 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
192 int movable_zone;
193 EXPORT_SYMBOL(movable_zone);
194 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
195 
196 #if MAX_NUMNODES > 1
197 int nr_node_ids __read_mostly = MAX_NUMNODES;
198 int nr_online_nodes __read_mostly = 1;
199 EXPORT_SYMBOL(nr_node_ids);
200 EXPORT_SYMBOL(nr_online_nodes);
201 #endif
202 
203 int page_group_by_mobility_disabled __read_mostly;
204 
205 static void set_pageblock_migratetype(struct page *page, int migratetype)
206 {
207 
208 	if (unlikely(page_group_by_mobility_disabled))
209 		migratetype = MIGRATE_UNMOVABLE;
210 
211 	set_pageblock_flags_group(page, (unsigned long)migratetype,
212 					PB_migrate, PB_migrate_end);
213 }
214 
215 bool oom_killer_disabled __read_mostly;
216 
217 #ifdef CONFIG_DEBUG_VM
218 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
219 {
220 	int ret = 0;
221 	unsigned seq;
222 	unsigned long pfn = page_to_pfn(page);
223 
224 	do {
225 		seq = zone_span_seqbegin(zone);
226 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
227 			ret = 1;
228 		else if (pfn < zone->zone_start_pfn)
229 			ret = 1;
230 	} while (zone_span_seqretry(zone, seq));
231 
232 	return ret;
233 }
234 
235 static int page_is_consistent(struct zone *zone, struct page *page)
236 {
237 	if (!pfn_valid_within(page_to_pfn(page)))
238 		return 0;
239 	if (zone != page_zone(page))
240 		return 0;
241 
242 	return 1;
243 }
244 /*
245  * Temporary debugging check for pages not lying within a given zone.
246  */
247 static int bad_range(struct zone *zone, struct page *page)
248 {
249 	if (page_outside_zone_boundaries(zone, page))
250 		return 1;
251 	if (!page_is_consistent(zone, page))
252 		return 1;
253 
254 	return 0;
255 }
256 #else
257 static inline int bad_range(struct zone *zone, struct page *page)
258 {
259 	return 0;
260 }
261 #endif
262 
263 static void bad_page(struct page *page)
264 {
265 	static unsigned long resume;
266 	static unsigned long nr_shown;
267 	static unsigned long nr_unshown;
268 
269 	/* Don't complain about poisoned pages */
270 	if (PageHWPoison(page)) {
271 		reset_page_mapcount(page); /* remove PageBuddy */
272 		return;
273 	}
274 
275 	/*
276 	 * Allow a burst of 60 reports, then keep quiet for that minute;
277 	 * or allow a steady drip of one report per second.
278 	 */
279 	if (nr_shown == 60) {
280 		if (time_before(jiffies, resume)) {
281 			nr_unshown++;
282 			goto out;
283 		}
284 		if (nr_unshown) {
285 			printk(KERN_ALERT
286 			      "BUG: Bad page state: %lu messages suppressed\n",
287 				nr_unshown);
288 			nr_unshown = 0;
289 		}
290 		nr_shown = 0;
291 	}
292 	if (nr_shown++ == 0)
293 		resume = jiffies + 60 * HZ;
294 
295 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
296 		current->comm, page_to_pfn(page));
297 	dump_page(page);
298 
299 	print_modules();
300 	dump_stack();
301 out:
302 	/* Leave bad fields for debug, except PageBuddy could make trouble */
303 	reset_page_mapcount(page); /* remove PageBuddy */
304 	add_taint(TAINT_BAD_PAGE);
305 }
306 
307 /*
308  * Higher-order pages are called "compound pages".  They are structured thusly:
309  *
310  * The first PAGE_SIZE page is called the "head page".
311  *
312  * The remaining PAGE_SIZE pages are called "tail pages".
313  *
314  * All pages have PG_compound set.  All tail pages have their ->first_page
315  * pointing at the head page.
316  *
317  * The first tail page's ->lru.next holds the address of the compound page's
318  * put_page() function.  Its ->lru.prev holds the order of allocation.
319  * This usage means that zero-order pages may not be compound.
320  */
321 
322 static void free_compound_page(struct page *page)
323 {
324 	__free_pages_ok(page, compound_order(page));
325 }
326 
327 void prep_compound_page(struct page *page, unsigned long order)
328 {
329 	int i;
330 	int nr_pages = 1 << order;
331 
332 	set_compound_page_dtor(page, free_compound_page);
333 	set_compound_order(page, order);
334 	__SetPageHead(page);
335 	for (i = 1; i < nr_pages; i++) {
336 		struct page *p = page + i;
337 		__SetPageTail(p);
338 		set_page_count(p, 0);
339 		p->first_page = page;
340 	}
341 }
342 
343 /* update __split_huge_page_refcount if you change this function */
344 static int destroy_compound_page(struct page *page, unsigned long order)
345 {
346 	int i;
347 	int nr_pages = 1 << order;
348 	int bad = 0;
349 
350 	if (unlikely(compound_order(page) != order) ||
351 	    unlikely(!PageHead(page))) {
352 		bad_page(page);
353 		bad++;
354 	}
355 
356 	__ClearPageHead(page);
357 
358 	for (i = 1; i < nr_pages; i++) {
359 		struct page *p = page + i;
360 
361 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
362 			bad_page(page);
363 			bad++;
364 		}
365 		__ClearPageTail(p);
366 	}
367 
368 	return bad;
369 }
370 
371 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
372 {
373 	int i;
374 
375 	/*
376 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
377 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
378 	 */
379 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
380 	for (i = 0; i < (1 << order); i++)
381 		clear_highpage(page + i);
382 }
383 
384 static inline void set_page_order(struct page *page, int order)
385 {
386 	set_page_private(page, order);
387 	__SetPageBuddy(page);
388 }
389 
390 static inline void rmv_page_order(struct page *page)
391 {
392 	__ClearPageBuddy(page);
393 	set_page_private(page, 0);
394 }
395 
396 /*
397  * Locate the struct page for both the matching buddy in our
398  * pair (buddy1) and the combined O(n+1) page they form (page).
399  *
400  * 1) Any buddy B1 will have an order O twin B2 which satisfies
401  * the following equation:
402  *     B2 = B1 ^ (1 << O)
403  * For example, if the starting buddy (buddy2) is #8 its order
404  * 1 buddy is #10:
405  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
406  *
407  * 2) Any buddy B will have an order O+1 parent P which
408  * satisfies the following equation:
409  *     P = B & ~(1 << O)
410  *
411  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
412  */
413 static inline unsigned long
414 __find_buddy_index(unsigned long page_idx, unsigned int order)
415 {
416 	return page_idx ^ (1 << order);
417 }
418 
419 /*
420  * This function checks whether a page is free && is the buddy
421  * we can do coalesce a page and its buddy if
422  * (a) the buddy is not in a hole &&
423  * (b) the buddy is in the buddy system &&
424  * (c) a page and its buddy have the same order &&
425  * (d) a page and its buddy are in the same zone.
426  *
427  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
428  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
429  *
430  * For recording page's order, we use page_private(page).
431  */
432 static inline int page_is_buddy(struct page *page, struct page *buddy,
433 								int order)
434 {
435 	if (!pfn_valid_within(page_to_pfn(buddy)))
436 		return 0;
437 
438 	if (page_zone_id(page) != page_zone_id(buddy))
439 		return 0;
440 
441 	if (PageBuddy(buddy) && page_order(buddy) == order) {
442 		VM_BUG_ON(page_count(buddy) != 0);
443 		return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Freeing function for a buddy system allocator.
450  *
451  * The concept of a buddy system is to maintain direct-mapped table
452  * (containing bit values) for memory blocks of various "orders".
453  * The bottom level table contains the map for the smallest allocatable
454  * units of memory (here, pages), and each level above it describes
455  * pairs of units from the levels below, hence, "buddies".
456  * At a high level, all that happens here is marking the table entry
457  * at the bottom level available, and propagating the changes upward
458  * as necessary, plus some accounting needed to play nicely with other
459  * parts of the VM system.
460  * At each level, we keep a list of pages, which are heads of continuous
461  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
462  * order is recorded in page_private(page) field.
463  * So when we are allocating or freeing one, we can derive the state of the
464  * other.  That is, if we allocate a small block, and both were
465  * free, the remainder of the region must be split into blocks.
466  * If a block is freed, and its buddy is also free, then this
467  * triggers coalescing into a block of larger size.
468  *
469  * -- wli
470  */
471 
472 static inline void __free_one_page(struct page *page,
473 		struct zone *zone, unsigned int order,
474 		int migratetype)
475 {
476 	unsigned long page_idx;
477 	unsigned long combined_idx;
478 	unsigned long uninitialized_var(buddy_idx);
479 	struct page *buddy;
480 
481 	if (unlikely(PageCompound(page)))
482 		if (unlikely(destroy_compound_page(page, order)))
483 			return;
484 
485 	VM_BUG_ON(migratetype == -1);
486 
487 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
488 
489 	VM_BUG_ON(page_idx & ((1 << order) - 1));
490 	VM_BUG_ON(bad_range(zone, page));
491 
492 	while (order < MAX_ORDER-1) {
493 		buddy_idx = __find_buddy_index(page_idx, order);
494 		buddy = page + (buddy_idx - page_idx);
495 		if (!page_is_buddy(page, buddy, order))
496 			break;
497 
498 		/* Our buddy is free, merge with it and move up one order. */
499 		list_del(&buddy->lru);
500 		zone->free_area[order].nr_free--;
501 		rmv_page_order(buddy);
502 		combined_idx = buddy_idx & page_idx;
503 		page = page + (combined_idx - page_idx);
504 		page_idx = combined_idx;
505 		order++;
506 	}
507 	set_page_order(page, order);
508 
509 	/*
510 	 * If this is not the largest possible page, check if the buddy
511 	 * of the next-highest order is free. If it is, it's possible
512 	 * that pages are being freed that will coalesce soon. In case,
513 	 * that is happening, add the free page to the tail of the list
514 	 * so it's less likely to be used soon and more likely to be merged
515 	 * as a higher order page
516 	 */
517 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
518 		struct page *higher_page, *higher_buddy;
519 		combined_idx = buddy_idx & page_idx;
520 		higher_page = page + (combined_idx - page_idx);
521 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
522 		higher_buddy = page + (buddy_idx - combined_idx);
523 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
524 			list_add_tail(&page->lru,
525 				&zone->free_area[order].free_list[migratetype]);
526 			goto out;
527 		}
528 	}
529 
530 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
531 out:
532 	zone->free_area[order].nr_free++;
533 }
534 
535 /*
536  * free_page_mlock() -- clean up attempts to free and mlocked() page.
537  * Page should not be on lru, so no need to fix that up.
538  * free_pages_check() will verify...
539  */
540 static inline void free_page_mlock(struct page *page)
541 {
542 	__dec_zone_page_state(page, NR_MLOCK);
543 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
544 }
545 
546 static inline int free_pages_check(struct page *page)
547 {
548 	if (unlikely(page_mapcount(page) |
549 		(page->mapping != NULL)  |
550 		(atomic_read(&page->_count) != 0) |
551 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
552 		(mem_cgroup_bad_page_check(page)))) {
553 		bad_page(page);
554 		return 1;
555 	}
556 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
557 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
558 	return 0;
559 }
560 
561 /*
562  * Frees a number of pages from the PCP lists
563  * Assumes all pages on list are in same zone, and of same order.
564  * count is the number of pages to free.
565  *
566  * If the zone was previously in an "all pages pinned" state then look to
567  * see if this freeing clears that state.
568  *
569  * And clear the zone's pages_scanned counter, to hold off the "all pages are
570  * pinned" detection logic.
571  */
572 static void free_pcppages_bulk(struct zone *zone, int count,
573 					struct per_cpu_pages *pcp)
574 {
575 	int migratetype = 0;
576 	int batch_free = 0;
577 	int to_free = count;
578 
579 	spin_lock(&zone->lock);
580 	zone->all_unreclaimable = 0;
581 	zone->pages_scanned = 0;
582 
583 	while (to_free) {
584 		struct page *page;
585 		struct list_head *list;
586 
587 		/*
588 		 * Remove pages from lists in a round-robin fashion. A
589 		 * batch_free count is maintained that is incremented when an
590 		 * empty list is encountered.  This is so more pages are freed
591 		 * off fuller lists instead of spinning excessively around empty
592 		 * lists
593 		 */
594 		do {
595 			batch_free++;
596 			if (++migratetype == MIGRATE_PCPTYPES)
597 				migratetype = 0;
598 			list = &pcp->lists[migratetype];
599 		} while (list_empty(list));
600 
601 		/* This is the only non-empty list. Free them all. */
602 		if (batch_free == MIGRATE_PCPTYPES)
603 			batch_free = to_free;
604 
605 		do {
606 			page = list_entry(list->prev, struct page, lru);
607 			/* must delete as __free_one_page list manipulates */
608 			list_del(&page->lru);
609 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
610 			__free_one_page(page, zone, 0, page_private(page));
611 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
612 		} while (--to_free && --batch_free && !list_empty(list));
613 	}
614 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
615 	spin_unlock(&zone->lock);
616 }
617 
618 static void free_one_page(struct zone *zone, struct page *page, int order,
619 				int migratetype)
620 {
621 	spin_lock(&zone->lock);
622 	zone->all_unreclaimable = 0;
623 	zone->pages_scanned = 0;
624 
625 	__free_one_page(page, zone, order, migratetype);
626 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
627 	spin_unlock(&zone->lock);
628 }
629 
630 static bool free_pages_prepare(struct page *page, unsigned int order)
631 {
632 	int i;
633 	int bad = 0;
634 
635 	trace_mm_page_free_direct(page, order);
636 	kmemcheck_free_shadow(page, order);
637 
638 	if (PageAnon(page))
639 		page->mapping = NULL;
640 	for (i = 0; i < (1 << order); i++)
641 		bad += free_pages_check(page + i);
642 	if (bad)
643 		return false;
644 
645 	if (!PageHighMem(page)) {
646 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
647 		debug_check_no_obj_freed(page_address(page),
648 					   PAGE_SIZE << order);
649 	}
650 	arch_free_page(page, order);
651 	kernel_map_pages(page, 1 << order, 0);
652 
653 	return true;
654 }
655 
656 static void __free_pages_ok(struct page *page, unsigned int order)
657 {
658 	unsigned long flags;
659 	int wasMlocked = __TestClearPageMlocked(page);
660 
661 	if (!free_pages_prepare(page, order))
662 		return;
663 
664 	local_irq_save(flags);
665 	if (unlikely(wasMlocked))
666 		free_page_mlock(page);
667 	__count_vm_events(PGFREE, 1 << order);
668 	free_one_page(page_zone(page), page, order,
669 					get_pageblock_migratetype(page));
670 	local_irq_restore(flags);
671 }
672 
673 /*
674  * permit the bootmem allocator to evade page validation on high-order frees
675  */
676 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
677 {
678 	if (order == 0) {
679 		__ClearPageReserved(page);
680 		set_page_count(page, 0);
681 		set_page_refcounted(page);
682 		__free_page(page);
683 	} else {
684 		int loop;
685 
686 		prefetchw(page);
687 		for (loop = 0; loop < (1 << order); loop++) {
688 			struct page *p = &page[loop];
689 
690 			if (loop + 1 < (1 << order))
691 				prefetchw(p + 1);
692 			__ClearPageReserved(p);
693 			set_page_count(p, 0);
694 		}
695 
696 		set_page_refcounted(page);
697 		__free_pages(page, order);
698 	}
699 }
700 
701 
702 /*
703  * The order of subdivision here is critical for the IO subsystem.
704  * Please do not alter this order without good reasons and regression
705  * testing. Specifically, as large blocks of memory are subdivided,
706  * the order in which smaller blocks are delivered depends on the order
707  * they're subdivided in this function. This is the primary factor
708  * influencing the order in which pages are delivered to the IO
709  * subsystem according to empirical testing, and this is also justified
710  * by considering the behavior of a buddy system containing a single
711  * large block of memory acted on by a series of small allocations.
712  * This behavior is a critical factor in sglist merging's success.
713  *
714  * -- wli
715  */
716 static inline void expand(struct zone *zone, struct page *page,
717 	int low, int high, struct free_area *area,
718 	int migratetype)
719 {
720 	unsigned long size = 1 << high;
721 
722 	while (high > low) {
723 		area--;
724 		high--;
725 		size >>= 1;
726 		VM_BUG_ON(bad_range(zone, &page[size]));
727 		list_add(&page[size].lru, &area->free_list[migratetype]);
728 		area->nr_free++;
729 		set_page_order(&page[size], high);
730 	}
731 }
732 
733 /*
734  * This page is about to be returned from the page allocator
735  */
736 static inline int check_new_page(struct page *page)
737 {
738 	if (unlikely(page_mapcount(page) |
739 		(page->mapping != NULL)  |
740 		(atomic_read(&page->_count) != 0)  |
741 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
742 		(mem_cgroup_bad_page_check(page)))) {
743 		bad_page(page);
744 		return 1;
745 	}
746 	return 0;
747 }
748 
749 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
750 {
751 	int i;
752 
753 	for (i = 0; i < (1 << order); i++) {
754 		struct page *p = page + i;
755 		if (unlikely(check_new_page(p)))
756 			return 1;
757 	}
758 
759 	set_page_private(page, 0);
760 	set_page_refcounted(page);
761 
762 	arch_alloc_page(page, order);
763 	kernel_map_pages(page, 1 << order, 1);
764 
765 	if (gfp_flags & __GFP_ZERO)
766 		prep_zero_page(page, order, gfp_flags);
767 
768 	if (order && (gfp_flags & __GFP_COMP))
769 		prep_compound_page(page, order);
770 
771 	return 0;
772 }
773 
774 /*
775  * Go through the free lists for the given migratetype and remove
776  * the smallest available page from the freelists
777  */
778 static inline
779 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
780 						int migratetype)
781 {
782 	unsigned int current_order;
783 	struct free_area * area;
784 	struct page *page;
785 
786 	/* Find a page of the appropriate size in the preferred list */
787 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
788 		area = &(zone->free_area[current_order]);
789 		if (list_empty(&area->free_list[migratetype]))
790 			continue;
791 
792 		page = list_entry(area->free_list[migratetype].next,
793 							struct page, lru);
794 		list_del(&page->lru);
795 		rmv_page_order(page);
796 		area->nr_free--;
797 		expand(zone, page, order, current_order, area, migratetype);
798 		return page;
799 	}
800 
801 	return NULL;
802 }
803 
804 
805 /*
806  * This array describes the order lists are fallen back to when
807  * the free lists for the desirable migrate type are depleted
808  */
809 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
810 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
811 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
812 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
813 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
814 };
815 
816 /*
817  * Move the free pages in a range to the free lists of the requested type.
818  * Note that start_page and end_pages are not aligned on a pageblock
819  * boundary. If alignment is required, use move_freepages_block()
820  */
821 static int move_freepages(struct zone *zone,
822 			  struct page *start_page, struct page *end_page,
823 			  int migratetype)
824 {
825 	struct page *page;
826 	unsigned long order;
827 	int pages_moved = 0;
828 
829 #ifndef CONFIG_HOLES_IN_ZONE
830 	/*
831 	 * page_zone is not safe to call in this context when
832 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
833 	 * anyway as we check zone boundaries in move_freepages_block().
834 	 * Remove at a later date when no bug reports exist related to
835 	 * grouping pages by mobility
836 	 */
837 	BUG_ON(page_zone(start_page) != page_zone(end_page));
838 #endif
839 
840 	for (page = start_page; page <= end_page;) {
841 		/* Make sure we are not inadvertently changing nodes */
842 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
843 
844 		if (!pfn_valid_within(page_to_pfn(page))) {
845 			page++;
846 			continue;
847 		}
848 
849 		if (!PageBuddy(page)) {
850 			page++;
851 			continue;
852 		}
853 
854 		order = page_order(page);
855 		list_move(&page->lru,
856 			  &zone->free_area[order].free_list[migratetype]);
857 		page += 1 << order;
858 		pages_moved += 1 << order;
859 	}
860 
861 	return pages_moved;
862 }
863 
864 static int move_freepages_block(struct zone *zone, struct page *page,
865 				int migratetype)
866 {
867 	unsigned long start_pfn, end_pfn;
868 	struct page *start_page, *end_page;
869 
870 	start_pfn = page_to_pfn(page);
871 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
872 	start_page = pfn_to_page(start_pfn);
873 	end_page = start_page + pageblock_nr_pages - 1;
874 	end_pfn = start_pfn + pageblock_nr_pages - 1;
875 
876 	/* Do not cross zone boundaries */
877 	if (start_pfn < zone->zone_start_pfn)
878 		start_page = page;
879 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
880 		return 0;
881 
882 	return move_freepages(zone, start_page, end_page, migratetype);
883 }
884 
885 static void change_pageblock_range(struct page *pageblock_page,
886 					int start_order, int migratetype)
887 {
888 	int nr_pageblocks = 1 << (start_order - pageblock_order);
889 
890 	while (nr_pageblocks--) {
891 		set_pageblock_migratetype(pageblock_page, migratetype);
892 		pageblock_page += pageblock_nr_pages;
893 	}
894 }
895 
896 /* Remove an element from the buddy allocator from the fallback list */
897 static inline struct page *
898 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
899 {
900 	struct free_area * area;
901 	int current_order;
902 	struct page *page;
903 	int migratetype, i;
904 
905 	/* Find the largest possible block of pages in the other list */
906 	for (current_order = MAX_ORDER-1; current_order >= order;
907 						--current_order) {
908 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
909 			migratetype = fallbacks[start_migratetype][i];
910 
911 			/* MIGRATE_RESERVE handled later if necessary */
912 			if (migratetype == MIGRATE_RESERVE)
913 				continue;
914 
915 			area = &(zone->free_area[current_order]);
916 			if (list_empty(&area->free_list[migratetype]))
917 				continue;
918 
919 			page = list_entry(area->free_list[migratetype].next,
920 					struct page, lru);
921 			area->nr_free--;
922 
923 			/*
924 			 * If breaking a large block of pages, move all free
925 			 * pages to the preferred allocation list. If falling
926 			 * back for a reclaimable kernel allocation, be more
927 			 * aggressive about taking ownership of free pages
928 			 */
929 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
930 					start_migratetype == MIGRATE_RECLAIMABLE ||
931 					page_group_by_mobility_disabled) {
932 				unsigned long pages;
933 				pages = move_freepages_block(zone, page,
934 								start_migratetype);
935 
936 				/* Claim the whole block if over half of it is free */
937 				if (pages >= (1 << (pageblock_order-1)) ||
938 						page_group_by_mobility_disabled)
939 					set_pageblock_migratetype(page,
940 								start_migratetype);
941 
942 				migratetype = start_migratetype;
943 			}
944 
945 			/* Remove the page from the freelists */
946 			list_del(&page->lru);
947 			rmv_page_order(page);
948 
949 			/* Take ownership for orders >= pageblock_order */
950 			if (current_order >= pageblock_order)
951 				change_pageblock_range(page, current_order,
952 							start_migratetype);
953 
954 			expand(zone, page, order, current_order, area, migratetype);
955 
956 			trace_mm_page_alloc_extfrag(page, order, current_order,
957 				start_migratetype, migratetype);
958 
959 			return page;
960 		}
961 	}
962 
963 	return NULL;
964 }
965 
966 /*
967  * Do the hard work of removing an element from the buddy allocator.
968  * Call me with the zone->lock already held.
969  */
970 static struct page *__rmqueue(struct zone *zone, unsigned int order,
971 						int migratetype)
972 {
973 	struct page *page;
974 
975 retry_reserve:
976 	page = __rmqueue_smallest(zone, order, migratetype);
977 
978 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
979 		page = __rmqueue_fallback(zone, order, migratetype);
980 
981 		/*
982 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
983 		 * is used because __rmqueue_smallest is an inline function
984 		 * and we want just one call site
985 		 */
986 		if (!page) {
987 			migratetype = MIGRATE_RESERVE;
988 			goto retry_reserve;
989 		}
990 	}
991 
992 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
993 	return page;
994 }
995 
996 /*
997  * Obtain a specified number of elements from the buddy allocator, all under
998  * a single hold of the lock, for efficiency.  Add them to the supplied list.
999  * Returns the number of new pages which were placed at *list.
1000  */
1001 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1002 			unsigned long count, struct list_head *list,
1003 			int migratetype, int cold)
1004 {
1005 	int i;
1006 
1007 	spin_lock(&zone->lock);
1008 	for (i = 0; i < count; ++i) {
1009 		struct page *page = __rmqueue(zone, order, migratetype);
1010 		if (unlikely(page == NULL))
1011 			break;
1012 
1013 		/*
1014 		 * Split buddy pages returned by expand() are received here
1015 		 * in physical page order. The page is added to the callers and
1016 		 * list and the list head then moves forward. From the callers
1017 		 * perspective, the linked list is ordered by page number in
1018 		 * some conditions. This is useful for IO devices that can
1019 		 * merge IO requests if the physical pages are ordered
1020 		 * properly.
1021 		 */
1022 		if (likely(cold == 0))
1023 			list_add(&page->lru, list);
1024 		else
1025 			list_add_tail(&page->lru, list);
1026 		set_page_private(page, migratetype);
1027 		list = &page->lru;
1028 	}
1029 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1030 	spin_unlock(&zone->lock);
1031 	return i;
1032 }
1033 
1034 #ifdef CONFIG_NUMA
1035 /*
1036  * Called from the vmstat counter updater to drain pagesets of this
1037  * currently executing processor on remote nodes after they have
1038  * expired.
1039  *
1040  * Note that this function must be called with the thread pinned to
1041  * a single processor.
1042  */
1043 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1044 {
1045 	unsigned long flags;
1046 	int to_drain;
1047 
1048 	local_irq_save(flags);
1049 	if (pcp->count >= pcp->batch)
1050 		to_drain = pcp->batch;
1051 	else
1052 		to_drain = pcp->count;
1053 	free_pcppages_bulk(zone, to_drain, pcp);
1054 	pcp->count -= to_drain;
1055 	local_irq_restore(flags);
1056 }
1057 #endif
1058 
1059 /*
1060  * Drain pages of the indicated processor.
1061  *
1062  * The processor must either be the current processor and the
1063  * thread pinned to the current processor or a processor that
1064  * is not online.
1065  */
1066 static void drain_pages(unsigned int cpu)
1067 {
1068 	unsigned long flags;
1069 	struct zone *zone;
1070 
1071 	for_each_populated_zone(zone) {
1072 		struct per_cpu_pageset *pset;
1073 		struct per_cpu_pages *pcp;
1074 
1075 		local_irq_save(flags);
1076 		pset = per_cpu_ptr(zone->pageset, cpu);
1077 
1078 		pcp = &pset->pcp;
1079 		if (pcp->count) {
1080 			free_pcppages_bulk(zone, pcp->count, pcp);
1081 			pcp->count = 0;
1082 		}
1083 		local_irq_restore(flags);
1084 	}
1085 }
1086 
1087 /*
1088  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1089  */
1090 void drain_local_pages(void *arg)
1091 {
1092 	drain_pages(smp_processor_id());
1093 }
1094 
1095 /*
1096  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1097  */
1098 void drain_all_pages(void)
1099 {
1100 	on_each_cpu(drain_local_pages, NULL, 1);
1101 }
1102 
1103 #ifdef CONFIG_HIBERNATION
1104 
1105 void mark_free_pages(struct zone *zone)
1106 {
1107 	unsigned long pfn, max_zone_pfn;
1108 	unsigned long flags;
1109 	int order, t;
1110 	struct list_head *curr;
1111 
1112 	if (!zone->spanned_pages)
1113 		return;
1114 
1115 	spin_lock_irqsave(&zone->lock, flags);
1116 
1117 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1118 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1119 		if (pfn_valid(pfn)) {
1120 			struct page *page = pfn_to_page(pfn);
1121 
1122 			if (!swsusp_page_is_forbidden(page))
1123 				swsusp_unset_page_free(page);
1124 		}
1125 
1126 	for_each_migratetype_order(order, t) {
1127 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1128 			unsigned long i;
1129 
1130 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1131 			for (i = 0; i < (1UL << order); i++)
1132 				swsusp_set_page_free(pfn_to_page(pfn + i));
1133 		}
1134 	}
1135 	spin_unlock_irqrestore(&zone->lock, flags);
1136 }
1137 #endif /* CONFIG_PM */
1138 
1139 /*
1140  * Free a 0-order page
1141  * cold == 1 ? free a cold page : free a hot page
1142  */
1143 void free_hot_cold_page(struct page *page, int cold)
1144 {
1145 	struct zone *zone = page_zone(page);
1146 	struct per_cpu_pages *pcp;
1147 	unsigned long flags;
1148 	int migratetype;
1149 	int wasMlocked = __TestClearPageMlocked(page);
1150 
1151 	if (!free_pages_prepare(page, 0))
1152 		return;
1153 
1154 	migratetype = get_pageblock_migratetype(page);
1155 	set_page_private(page, migratetype);
1156 	local_irq_save(flags);
1157 	if (unlikely(wasMlocked))
1158 		free_page_mlock(page);
1159 	__count_vm_event(PGFREE);
1160 
1161 	/*
1162 	 * We only track unmovable, reclaimable and movable on pcp lists.
1163 	 * Free ISOLATE pages back to the allocator because they are being
1164 	 * offlined but treat RESERVE as movable pages so we can get those
1165 	 * areas back if necessary. Otherwise, we may have to free
1166 	 * excessively into the page allocator
1167 	 */
1168 	if (migratetype >= MIGRATE_PCPTYPES) {
1169 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1170 			free_one_page(zone, page, 0, migratetype);
1171 			goto out;
1172 		}
1173 		migratetype = MIGRATE_MOVABLE;
1174 	}
1175 
1176 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1177 	if (cold)
1178 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1179 	else
1180 		list_add(&page->lru, &pcp->lists[migratetype]);
1181 	pcp->count++;
1182 	if (pcp->count >= pcp->high) {
1183 		free_pcppages_bulk(zone, pcp->batch, pcp);
1184 		pcp->count -= pcp->batch;
1185 	}
1186 
1187 out:
1188 	local_irq_restore(flags);
1189 }
1190 
1191 /*
1192  * split_page takes a non-compound higher-order page, and splits it into
1193  * n (1<<order) sub-pages: page[0..n]
1194  * Each sub-page must be freed individually.
1195  *
1196  * Note: this is probably too low level an operation for use in drivers.
1197  * Please consult with lkml before using this in your driver.
1198  */
1199 void split_page(struct page *page, unsigned int order)
1200 {
1201 	int i;
1202 
1203 	VM_BUG_ON(PageCompound(page));
1204 	VM_BUG_ON(!page_count(page));
1205 
1206 #ifdef CONFIG_KMEMCHECK
1207 	/*
1208 	 * Split shadow pages too, because free(page[0]) would
1209 	 * otherwise free the whole shadow.
1210 	 */
1211 	if (kmemcheck_page_is_tracked(page))
1212 		split_page(virt_to_page(page[0].shadow), order);
1213 #endif
1214 
1215 	for (i = 1; i < (1 << order); i++)
1216 		set_page_refcounted(page + i);
1217 }
1218 
1219 /*
1220  * Similar to split_page except the page is already free. As this is only
1221  * being used for migration, the migratetype of the block also changes.
1222  * As this is called with interrupts disabled, the caller is responsible
1223  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1224  * are enabled.
1225  *
1226  * Note: this is probably too low level an operation for use in drivers.
1227  * Please consult with lkml before using this in your driver.
1228  */
1229 int split_free_page(struct page *page)
1230 {
1231 	unsigned int order;
1232 	unsigned long watermark;
1233 	struct zone *zone;
1234 
1235 	BUG_ON(!PageBuddy(page));
1236 
1237 	zone = page_zone(page);
1238 	order = page_order(page);
1239 
1240 	/* Obey watermarks as if the page was being allocated */
1241 	watermark = low_wmark_pages(zone) + (1 << order);
1242 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1243 		return 0;
1244 
1245 	/* Remove page from free list */
1246 	list_del(&page->lru);
1247 	zone->free_area[order].nr_free--;
1248 	rmv_page_order(page);
1249 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1250 
1251 	/* Split into individual pages */
1252 	set_page_refcounted(page);
1253 	split_page(page, order);
1254 
1255 	if (order >= pageblock_order - 1) {
1256 		struct page *endpage = page + (1 << order) - 1;
1257 		for (; page < endpage; page += pageblock_nr_pages)
1258 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1259 	}
1260 
1261 	return 1 << order;
1262 }
1263 
1264 /*
1265  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1266  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1267  * or two.
1268  */
1269 static inline
1270 struct page *buffered_rmqueue(struct zone *preferred_zone,
1271 			struct zone *zone, int order, gfp_t gfp_flags,
1272 			int migratetype)
1273 {
1274 	unsigned long flags;
1275 	struct page *page;
1276 	int cold = !!(gfp_flags & __GFP_COLD);
1277 
1278 again:
1279 	if (likely(order == 0)) {
1280 		struct per_cpu_pages *pcp;
1281 		struct list_head *list;
1282 
1283 		local_irq_save(flags);
1284 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1285 		list = &pcp->lists[migratetype];
1286 		if (list_empty(list)) {
1287 			pcp->count += rmqueue_bulk(zone, 0,
1288 					pcp->batch, list,
1289 					migratetype, cold);
1290 			if (unlikely(list_empty(list)))
1291 				goto failed;
1292 		}
1293 
1294 		if (cold)
1295 			page = list_entry(list->prev, struct page, lru);
1296 		else
1297 			page = list_entry(list->next, struct page, lru);
1298 
1299 		list_del(&page->lru);
1300 		pcp->count--;
1301 	} else {
1302 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1303 			/*
1304 			 * __GFP_NOFAIL is not to be used in new code.
1305 			 *
1306 			 * All __GFP_NOFAIL callers should be fixed so that they
1307 			 * properly detect and handle allocation failures.
1308 			 *
1309 			 * We most definitely don't want callers attempting to
1310 			 * allocate greater than order-1 page units with
1311 			 * __GFP_NOFAIL.
1312 			 */
1313 			WARN_ON_ONCE(order > 1);
1314 		}
1315 		spin_lock_irqsave(&zone->lock, flags);
1316 		page = __rmqueue(zone, order, migratetype);
1317 		spin_unlock(&zone->lock);
1318 		if (!page)
1319 			goto failed;
1320 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1321 	}
1322 
1323 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1324 	zone_statistics(preferred_zone, zone, gfp_flags);
1325 	local_irq_restore(flags);
1326 
1327 	VM_BUG_ON(bad_range(zone, page));
1328 	if (prep_new_page(page, order, gfp_flags))
1329 		goto again;
1330 	return page;
1331 
1332 failed:
1333 	local_irq_restore(flags);
1334 	return NULL;
1335 }
1336 
1337 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1338 #define ALLOC_WMARK_MIN		WMARK_MIN
1339 #define ALLOC_WMARK_LOW		WMARK_LOW
1340 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1341 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1342 
1343 /* Mask to get the watermark bits */
1344 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1345 
1346 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1347 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1348 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1349 
1350 #ifdef CONFIG_FAIL_PAGE_ALLOC
1351 
1352 static struct {
1353 	struct fault_attr attr;
1354 
1355 	u32 ignore_gfp_highmem;
1356 	u32 ignore_gfp_wait;
1357 	u32 min_order;
1358 } fail_page_alloc = {
1359 	.attr = FAULT_ATTR_INITIALIZER,
1360 	.ignore_gfp_wait = 1,
1361 	.ignore_gfp_highmem = 1,
1362 	.min_order = 1,
1363 };
1364 
1365 static int __init setup_fail_page_alloc(char *str)
1366 {
1367 	return setup_fault_attr(&fail_page_alloc.attr, str);
1368 }
1369 __setup("fail_page_alloc=", setup_fail_page_alloc);
1370 
1371 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1372 {
1373 	if (order < fail_page_alloc.min_order)
1374 		return 0;
1375 	if (gfp_mask & __GFP_NOFAIL)
1376 		return 0;
1377 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1378 		return 0;
1379 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1380 		return 0;
1381 
1382 	return should_fail(&fail_page_alloc.attr, 1 << order);
1383 }
1384 
1385 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1386 
1387 static int __init fail_page_alloc_debugfs(void)
1388 {
1389 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1390 	struct dentry *dir;
1391 
1392 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1393 					&fail_page_alloc.attr);
1394 	if (IS_ERR(dir))
1395 		return PTR_ERR(dir);
1396 
1397 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1398 				&fail_page_alloc.ignore_gfp_wait))
1399 		goto fail;
1400 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1401 				&fail_page_alloc.ignore_gfp_highmem))
1402 		goto fail;
1403 	if (!debugfs_create_u32("min-order", mode, dir,
1404 				&fail_page_alloc.min_order))
1405 		goto fail;
1406 
1407 	return 0;
1408 fail:
1409 	debugfs_remove_recursive(dir);
1410 
1411 	return -ENOMEM;
1412 }
1413 
1414 late_initcall(fail_page_alloc_debugfs);
1415 
1416 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1417 
1418 #else /* CONFIG_FAIL_PAGE_ALLOC */
1419 
1420 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1421 {
1422 	return 0;
1423 }
1424 
1425 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1426 
1427 /*
1428  * Return true if free pages are above 'mark'. This takes into account the order
1429  * of the allocation.
1430  */
1431 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1432 		      int classzone_idx, int alloc_flags, long free_pages)
1433 {
1434 	/* free_pages my go negative - that's OK */
1435 	long min = mark;
1436 	int o;
1437 
1438 	free_pages -= (1 << order) + 1;
1439 	if (alloc_flags & ALLOC_HIGH)
1440 		min -= min / 2;
1441 	if (alloc_flags & ALLOC_HARDER)
1442 		min -= min / 4;
1443 
1444 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1445 		return false;
1446 	for (o = 0; o < order; o++) {
1447 		/* At the next order, this order's pages become unavailable */
1448 		free_pages -= z->free_area[o].nr_free << o;
1449 
1450 		/* Require fewer higher order pages to be free */
1451 		min >>= 1;
1452 
1453 		if (free_pages <= min)
1454 			return false;
1455 	}
1456 	return true;
1457 }
1458 
1459 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460 		      int classzone_idx, int alloc_flags)
1461 {
1462 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1463 					zone_page_state(z, NR_FREE_PAGES));
1464 }
1465 
1466 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1467 		      int classzone_idx, int alloc_flags)
1468 {
1469 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1470 
1471 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1472 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1473 
1474 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1475 								free_pages);
1476 }
1477 
1478 #ifdef CONFIG_NUMA
1479 /*
1480  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1481  * skip over zones that are not allowed by the cpuset, or that have
1482  * been recently (in last second) found to be nearly full.  See further
1483  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1484  * that have to skip over a lot of full or unallowed zones.
1485  *
1486  * If the zonelist cache is present in the passed in zonelist, then
1487  * returns a pointer to the allowed node mask (either the current
1488  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1489  *
1490  * If the zonelist cache is not available for this zonelist, does
1491  * nothing and returns NULL.
1492  *
1493  * If the fullzones BITMAP in the zonelist cache is stale (more than
1494  * a second since last zap'd) then we zap it out (clear its bits.)
1495  *
1496  * We hold off even calling zlc_setup, until after we've checked the
1497  * first zone in the zonelist, on the theory that most allocations will
1498  * be satisfied from that first zone, so best to examine that zone as
1499  * quickly as we can.
1500  */
1501 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1502 {
1503 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1504 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1505 
1506 	zlc = zonelist->zlcache_ptr;
1507 	if (!zlc)
1508 		return NULL;
1509 
1510 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1511 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1512 		zlc->last_full_zap = jiffies;
1513 	}
1514 
1515 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1516 					&cpuset_current_mems_allowed :
1517 					&node_states[N_HIGH_MEMORY];
1518 	return allowednodes;
1519 }
1520 
1521 /*
1522  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1523  * if it is worth looking at further for free memory:
1524  *  1) Check that the zone isn't thought to be full (doesn't have its
1525  *     bit set in the zonelist_cache fullzones BITMAP).
1526  *  2) Check that the zones node (obtained from the zonelist_cache
1527  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1528  * Return true (non-zero) if zone is worth looking at further, or
1529  * else return false (zero) if it is not.
1530  *
1531  * This check -ignores- the distinction between various watermarks,
1532  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1533  * found to be full for any variation of these watermarks, it will
1534  * be considered full for up to one second by all requests, unless
1535  * we are so low on memory on all allowed nodes that we are forced
1536  * into the second scan of the zonelist.
1537  *
1538  * In the second scan we ignore this zonelist cache and exactly
1539  * apply the watermarks to all zones, even it is slower to do so.
1540  * We are low on memory in the second scan, and should leave no stone
1541  * unturned looking for a free page.
1542  */
1543 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1544 						nodemask_t *allowednodes)
1545 {
1546 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1547 	int i;				/* index of *z in zonelist zones */
1548 	int n;				/* node that zone *z is on */
1549 
1550 	zlc = zonelist->zlcache_ptr;
1551 	if (!zlc)
1552 		return 1;
1553 
1554 	i = z - zonelist->_zonerefs;
1555 	n = zlc->z_to_n[i];
1556 
1557 	/* This zone is worth trying if it is allowed but not full */
1558 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1559 }
1560 
1561 /*
1562  * Given 'z' scanning a zonelist, set the corresponding bit in
1563  * zlc->fullzones, so that subsequent attempts to allocate a page
1564  * from that zone don't waste time re-examining it.
1565  */
1566 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1567 {
1568 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1569 	int i;				/* index of *z in zonelist zones */
1570 
1571 	zlc = zonelist->zlcache_ptr;
1572 	if (!zlc)
1573 		return;
1574 
1575 	i = z - zonelist->_zonerefs;
1576 
1577 	set_bit(i, zlc->fullzones);
1578 }
1579 
1580 /*
1581  * clear all zones full, called after direct reclaim makes progress so that
1582  * a zone that was recently full is not skipped over for up to a second
1583  */
1584 static void zlc_clear_zones_full(struct zonelist *zonelist)
1585 {
1586 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1587 
1588 	zlc = zonelist->zlcache_ptr;
1589 	if (!zlc)
1590 		return;
1591 
1592 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1593 }
1594 
1595 #else	/* CONFIG_NUMA */
1596 
1597 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1598 {
1599 	return NULL;
1600 }
1601 
1602 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1603 				nodemask_t *allowednodes)
1604 {
1605 	return 1;
1606 }
1607 
1608 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1609 {
1610 }
1611 
1612 static void zlc_clear_zones_full(struct zonelist *zonelist)
1613 {
1614 }
1615 #endif	/* CONFIG_NUMA */
1616 
1617 /*
1618  * get_page_from_freelist goes through the zonelist trying to allocate
1619  * a page.
1620  */
1621 static struct page *
1622 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1623 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1624 		struct zone *preferred_zone, int migratetype)
1625 {
1626 	struct zoneref *z;
1627 	struct page *page = NULL;
1628 	int classzone_idx;
1629 	struct zone *zone;
1630 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1631 	int zlc_active = 0;		/* set if using zonelist_cache */
1632 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1633 
1634 	classzone_idx = zone_idx(preferred_zone);
1635 zonelist_scan:
1636 	/*
1637 	 * Scan zonelist, looking for a zone with enough free.
1638 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1639 	 */
1640 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1641 						high_zoneidx, nodemask) {
1642 		if (NUMA_BUILD && zlc_active &&
1643 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1644 				continue;
1645 		if ((alloc_flags & ALLOC_CPUSET) &&
1646 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1647 				continue;
1648 
1649 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1650 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1651 			unsigned long mark;
1652 			int ret;
1653 
1654 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1655 			if (zone_watermark_ok(zone, order, mark,
1656 				    classzone_idx, alloc_flags))
1657 				goto try_this_zone;
1658 
1659 			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1660 				/*
1661 				 * we do zlc_setup if there are multiple nodes
1662 				 * and before considering the first zone allowed
1663 				 * by the cpuset.
1664 				 */
1665 				allowednodes = zlc_setup(zonelist, alloc_flags);
1666 				zlc_active = 1;
1667 				did_zlc_setup = 1;
1668 			}
1669 
1670 			if (zone_reclaim_mode == 0)
1671 				goto this_zone_full;
1672 
1673 			/*
1674 			 * As we may have just activated ZLC, check if the first
1675 			 * eligible zone has failed zone_reclaim recently.
1676 			 */
1677 			if (NUMA_BUILD && zlc_active &&
1678 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1679 				continue;
1680 
1681 			ret = zone_reclaim(zone, gfp_mask, order);
1682 			switch (ret) {
1683 			case ZONE_RECLAIM_NOSCAN:
1684 				/* did not scan */
1685 				continue;
1686 			case ZONE_RECLAIM_FULL:
1687 				/* scanned but unreclaimable */
1688 				continue;
1689 			default:
1690 				/* did we reclaim enough */
1691 				if (!zone_watermark_ok(zone, order, mark,
1692 						classzone_idx, alloc_flags))
1693 					goto this_zone_full;
1694 			}
1695 		}
1696 
1697 try_this_zone:
1698 		page = buffered_rmqueue(preferred_zone, zone, order,
1699 						gfp_mask, migratetype);
1700 		if (page)
1701 			break;
1702 this_zone_full:
1703 		if (NUMA_BUILD)
1704 			zlc_mark_zone_full(zonelist, z);
1705 	}
1706 
1707 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1708 		/* Disable zlc cache for second zonelist scan */
1709 		zlc_active = 0;
1710 		goto zonelist_scan;
1711 	}
1712 	return page;
1713 }
1714 
1715 /*
1716  * Large machines with many possible nodes should not always dump per-node
1717  * meminfo in irq context.
1718  */
1719 static inline bool should_suppress_show_mem(void)
1720 {
1721 	bool ret = false;
1722 
1723 #if NODES_SHIFT > 8
1724 	ret = in_interrupt();
1725 #endif
1726 	return ret;
1727 }
1728 
1729 static DEFINE_RATELIMIT_STATE(nopage_rs,
1730 		DEFAULT_RATELIMIT_INTERVAL,
1731 		DEFAULT_RATELIMIT_BURST);
1732 
1733 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1734 {
1735 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1736 
1737 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1738 		return;
1739 
1740 	/*
1741 	 * This documents exceptions given to allocations in certain
1742 	 * contexts that are allowed to allocate outside current's set
1743 	 * of allowed nodes.
1744 	 */
1745 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1746 		if (test_thread_flag(TIF_MEMDIE) ||
1747 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1748 			filter &= ~SHOW_MEM_FILTER_NODES;
1749 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1750 		filter &= ~SHOW_MEM_FILTER_NODES;
1751 
1752 	if (fmt) {
1753 		struct va_format vaf;
1754 		va_list args;
1755 
1756 		va_start(args, fmt);
1757 
1758 		vaf.fmt = fmt;
1759 		vaf.va = &args;
1760 
1761 		pr_warn("%pV", &vaf);
1762 
1763 		va_end(args);
1764 	}
1765 
1766 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1767 		current->comm, order, gfp_mask);
1768 
1769 	dump_stack();
1770 	if (!should_suppress_show_mem())
1771 		show_mem(filter);
1772 }
1773 
1774 static inline int
1775 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1776 				unsigned long pages_reclaimed)
1777 {
1778 	/* Do not loop if specifically requested */
1779 	if (gfp_mask & __GFP_NORETRY)
1780 		return 0;
1781 
1782 	/*
1783 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1784 	 * means __GFP_NOFAIL, but that may not be true in other
1785 	 * implementations.
1786 	 */
1787 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1788 		return 1;
1789 
1790 	/*
1791 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1792 	 * specified, then we retry until we no longer reclaim any pages
1793 	 * (above), or we've reclaimed an order of pages at least as
1794 	 * large as the allocation's order. In both cases, if the
1795 	 * allocation still fails, we stop retrying.
1796 	 */
1797 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1798 		return 1;
1799 
1800 	/*
1801 	 * Don't let big-order allocations loop unless the caller
1802 	 * explicitly requests that.
1803 	 */
1804 	if (gfp_mask & __GFP_NOFAIL)
1805 		return 1;
1806 
1807 	return 0;
1808 }
1809 
1810 static inline struct page *
1811 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1812 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1813 	nodemask_t *nodemask, struct zone *preferred_zone,
1814 	int migratetype)
1815 {
1816 	struct page *page;
1817 
1818 	/* Acquire the OOM killer lock for the zones in zonelist */
1819 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1820 		schedule_timeout_uninterruptible(1);
1821 		return NULL;
1822 	}
1823 
1824 	/*
1825 	 * Go through the zonelist yet one more time, keep very high watermark
1826 	 * here, this is only to catch a parallel oom killing, we must fail if
1827 	 * we're still under heavy pressure.
1828 	 */
1829 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1830 		order, zonelist, high_zoneidx,
1831 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1832 		preferred_zone, migratetype);
1833 	if (page)
1834 		goto out;
1835 
1836 	if (!(gfp_mask & __GFP_NOFAIL)) {
1837 		/* The OOM killer will not help higher order allocs */
1838 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1839 			goto out;
1840 		/* The OOM killer does not needlessly kill tasks for lowmem */
1841 		if (high_zoneidx < ZONE_NORMAL)
1842 			goto out;
1843 		/*
1844 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1845 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1846 		 * The caller should handle page allocation failure by itself if
1847 		 * it specifies __GFP_THISNODE.
1848 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1849 		 */
1850 		if (gfp_mask & __GFP_THISNODE)
1851 			goto out;
1852 	}
1853 	/* Exhausted what can be done so it's blamo time */
1854 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1855 
1856 out:
1857 	clear_zonelist_oom(zonelist, gfp_mask);
1858 	return page;
1859 }
1860 
1861 #ifdef CONFIG_COMPACTION
1862 /* Try memory compaction for high-order allocations before reclaim */
1863 static struct page *
1864 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1865 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1866 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1867 	int migratetype, unsigned long *did_some_progress,
1868 	bool sync_migration)
1869 {
1870 	struct page *page;
1871 
1872 	if (!order || compaction_deferred(preferred_zone))
1873 		return NULL;
1874 
1875 	current->flags |= PF_MEMALLOC;
1876 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1877 						nodemask, sync_migration);
1878 	current->flags &= ~PF_MEMALLOC;
1879 	if (*did_some_progress != COMPACT_SKIPPED) {
1880 
1881 		/* Page migration frees to the PCP lists but we want merging */
1882 		drain_pages(get_cpu());
1883 		put_cpu();
1884 
1885 		page = get_page_from_freelist(gfp_mask, nodemask,
1886 				order, zonelist, high_zoneidx,
1887 				alloc_flags, preferred_zone,
1888 				migratetype);
1889 		if (page) {
1890 			preferred_zone->compact_considered = 0;
1891 			preferred_zone->compact_defer_shift = 0;
1892 			count_vm_event(COMPACTSUCCESS);
1893 			return page;
1894 		}
1895 
1896 		/*
1897 		 * It's bad if compaction run occurs and fails.
1898 		 * The most likely reason is that pages exist,
1899 		 * but not enough to satisfy watermarks.
1900 		 */
1901 		count_vm_event(COMPACTFAIL);
1902 		defer_compaction(preferred_zone);
1903 
1904 		cond_resched();
1905 	}
1906 
1907 	return NULL;
1908 }
1909 #else
1910 static inline struct page *
1911 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1912 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1913 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1914 	int migratetype, unsigned long *did_some_progress,
1915 	bool sync_migration)
1916 {
1917 	return NULL;
1918 }
1919 #endif /* CONFIG_COMPACTION */
1920 
1921 /* The really slow allocator path where we enter direct reclaim */
1922 static inline struct page *
1923 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1924 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1925 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1926 	int migratetype, unsigned long *did_some_progress)
1927 {
1928 	struct page *page = NULL;
1929 	struct reclaim_state reclaim_state;
1930 	bool drained = false;
1931 
1932 	cond_resched();
1933 
1934 	/* We now go into synchronous reclaim */
1935 	cpuset_memory_pressure_bump();
1936 	current->flags |= PF_MEMALLOC;
1937 	lockdep_set_current_reclaim_state(gfp_mask);
1938 	reclaim_state.reclaimed_slab = 0;
1939 	current->reclaim_state = &reclaim_state;
1940 
1941 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1942 
1943 	current->reclaim_state = NULL;
1944 	lockdep_clear_current_reclaim_state();
1945 	current->flags &= ~PF_MEMALLOC;
1946 
1947 	cond_resched();
1948 
1949 	if (unlikely(!(*did_some_progress)))
1950 		return NULL;
1951 
1952 	/* After successful reclaim, reconsider all zones for allocation */
1953 	if (NUMA_BUILD)
1954 		zlc_clear_zones_full(zonelist);
1955 
1956 retry:
1957 	page = get_page_from_freelist(gfp_mask, nodemask, order,
1958 					zonelist, high_zoneidx,
1959 					alloc_flags, preferred_zone,
1960 					migratetype);
1961 
1962 	/*
1963 	 * If an allocation failed after direct reclaim, it could be because
1964 	 * pages are pinned on the per-cpu lists. Drain them and try again
1965 	 */
1966 	if (!page && !drained) {
1967 		drain_all_pages();
1968 		drained = true;
1969 		goto retry;
1970 	}
1971 
1972 	return page;
1973 }
1974 
1975 /*
1976  * This is called in the allocator slow-path if the allocation request is of
1977  * sufficient urgency to ignore watermarks and take other desperate measures
1978  */
1979 static inline struct page *
1980 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1981 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1982 	nodemask_t *nodemask, struct zone *preferred_zone,
1983 	int migratetype)
1984 {
1985 	struct page *page;
1986 
1987 	do {
1988 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1989 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1990 			preferred_zone, migratetype);
1991 
1992 		if (!page && gfp_mask & __GFP_NOFAIL)
1993 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1994 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1995 
1996 	return page;
1997 }
1998 
1999 static inline
2000 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2001 						enum zone_type high_zoneidx,
2002 						enum zone_type classzone_idx)
2003 {
2004 	struct zoneref *z;
2005 	struct zone *zone;
2006 
2007 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2008 		wakeup_kswapd(zone, order, classzone_idx);
2009 }
2010 
2011 static inline int
2012 gfp_to_alloc_flags(gfp_t gfp_mask)
2013 {
2014 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2015 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2016 
2017 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2018 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2019 
2020 	/*
2021 	 * The caller may dip into page reserves a bit more if the caller
2022 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2023 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2024 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2025 	 */
2026 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2027 
2028 	if (!wait) {
2029 		/*
2030 		 * Not worth trying to allocate harder for
2031 		 * __GFP_NOMEMALLOC even if it can't schedule.
2032 		 */
2033 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2034 			alloc_flags |= ALLOC_HARDER;
2035 		/*
2036 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2037 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2038 		 */
2039 		alloc_flags &= ~ALLOC_CPUSET;
2040 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2041 		alloc_flags |= ALLOC_HARDER;
2042 
2043 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2044 		if (!in_interrupt() &&
2045 		    ((current->flags & PF_MEMALLOC) ||
2046 		     unlikely(test_thread_flag(TIF_MEMDIE))))
2047 			alloc_flags |= ALLOC_NO_WATERMARKS;
2048 	}
2049 
2050 	return alloc_flags;
2051 }
2052 
2053 static inline struct page *
2054 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2055 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2056 	nodemask_t *nodemask, struct zone *preferred_zone,
2057 	int migratetype)
2058 {
2059 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2060 	struct page *page = NULL;
2061 	int alloc_flags;
2062 	unsigned long pages_reclaimed = 0;
2063 	unsigned long did_some_progress;
2064 	bool sync_migration = false;
2065 
2066 	/*
2067 	 * In the slowpath, we sanity check order to avoid ever trying to
2068 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2069 	 * be using allocators in order of preference for an area that is
2070 	 * too large.
2071 	 */
2072 	if (order >= MAX_ORDER) {
2073 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2074 		return NULL;
2075 	}
2076 
2077 	/*
2078 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2079 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2080 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2081 	 * using a larger set of nodes after it has established that the
2082 	 * allowed per node queues are empty and that nodes are
2083 	 * over allocated.
2084 	 */
2085 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2086 		goto nopage;
2087 
2088 restart:
2089 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2090 		wake_all_kswapd(order, zonelist, high_zoneidx,
2091 						zone_idx(preferred_zone));
2092 
2093 	/*
2094 	 * OK, we're below the kswapd watermark and have kicked background
2095 	 * reclaim. Now things get more complex, so set up alloc_flags according
2096 	 * to how we want to proceed.
2097 	 */
2098 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2099 
2100 	/*
2101 	 * Find the true preferred zone if the allocation is unconstrained by
2102 	 * cpusets.
2103 	 */
2104 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2105 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2106 					&preferred_zone);
2107 
2108 rebalance:
2109 	/* This is the last chance, in general, before the goto nopage. */
2110 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2111 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2112 			preferred_zone, migratetype);
2113 	if (page)
2114 		goto got_pg;
2115 
2116 	/* Allocate without watermarks if the context allows */
2117 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2118 		page = __alloc_pages_high_priority(gfp_mask, order,
2119 				zonelist, high_zoneidx, nodemask,
2120 				preferred_zone, migratetype);
2121 		if (page)
2122 			goto got_pg;
2123 	}
2124 
2125 	/* Atomic allocations - we can't balance anything */
2126 	if (!wait)
2127 		goto nopage;
2128 
2129 	/* Avoid recursion of direct reclaim */
2130 	if (current->flags & PF_MEMALLOC)
2131 		goto nopage;
2132 
2133 	/* Avoid allocations with no watermarks from looping endlessly */
2134 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2135 		goto nopage;
2136 
2137 	/*
2138 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2139 	 * attempts after direct reclaim are synchronous
2140 	 */
2141 	page = __alloc_pages_direct_compact(gfp_mask, order,
2142 					zonelist, high_zoneidx,
2143 					nodemask,
2144 					alloc_flags, preferred_zone,
2145 					migratetype, &did_some_progress,
2146 					sync_migration);
2147 	if (page)
2148 		goto got_pg;
2149 	sync_migration = true;
2150 
2151 	/* Try direct reclaim and then allocating */
2152 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2153 					zonelist, high_zoneidx,
2154 					nodemask,
2155 					alloc_flags, preferred_zone,
2156 					migratetype, &did_some_progress);
2157 	if (page)
2158 		goto got_pg;
2159 
2160 	/*
2161 	 * If we failed to make any progress reclaiming, then we are
2162 	 * running out of options and have to consider going OOM
2163 	 */
2164 	if (!did_some_progress) {
2165 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2166 			if (oom_killer_disabled)
2167 				goto nopage;
2168 			page = __alloc_pages_may_oom(gfp_mask, order,
2169 					zonelist, high_zoneidx,
2170 					nodemask, preferred_zone,
2171 					migratetype);
2172 			if (page)
2173 				goto got_pg;
2174 
2175 			if (!(gfp_mask & __GFP_NOFAIL)) {
2176 				/*
2177 				 * The oom killer is not called for high-order
2178 				 * allocations that may fail, so if no progress
2179 				 * is being made, there are no other options and
2180 				 * retrying is unlikely to help.
2181 				 */
2182 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2183 					goto nopage;
2184 				/*
2185 				 * The oom killer is not called for lowmem
2186 				 * allocations to prevent needlessly killing
2187 				 * innocent tasks.
2188 				 */
2189 				if (high_zoneidx < ZONE_NORMAL)
2190 					goto nopage;
2191 			}
2192 
2193 			goto restart;
2194 		}
2195 	}
2196 
2197 	/* Check if we should retry the allocation */
2198 	pages_reclaimed += did_some_progress;
2199 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2200 		/* Wait for some write requests to complete then retry */
2201 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2202 		goto rebalance;
2203 	} else {
2204 		/*
2205 		 * High-order allocations do not necessarily loop after
2206 		 * direct reclaim and reclaim/compaction depends on compaction
2207 		 * being called after reclaim so call directly if necessary
2208 		 */
2209 		page = __alloc_pages_direct_compact(gfp_mask, order,
2210 					zonelist, high_zoneidx,
2211 					nodemask,
2212 					alloc_flags, preferred_zone,
2213 					migratetype, &did_some_progress,
2214 					sync_migration);
2215 		if (page)
2216 			goto got_pg;
2217 	}
2218 
2219 nopage:
2220 	warn_alloc_failed(gfp_mask, order, NULL);
2221 	return page;
2222 got_pg:
2223 	if (kmemcheck_enabled)
2224 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2225 	return page;
2226 
2227 }
2228 
2229 /*
2230  * This is the 'heart' of the zoned buddy allocator.
2231  */
2232 struct page *
2233 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2234 			struct zonelist *zonelist, nodemask_t *nodemask)
2235 {
2236 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2237 	struct zone *preferred_zone;
2238 	struct page *page;
2239 	int migratetype = allocflags_to_migratetype(gfp_mask);
2240 
2241 	gfp_mask &= gfp_allowed_mask;
2242 
2243 	lockdep_trace_alloc(gfp_mask);
2244 
2245 	might_sleep_if(gfp_mask & __GFP_WAIT);
2246 
2247 	if (should_fail_alloc_page(gfp_mask, order))
2248 		return NULL;
2249 
2250 	/*
2251 	 * Check the zones suitable for the gfp_mask contain at least one
2252 	 * valid zone. It's possible to have an empty zonelist as a result
2253 	 * of GFP_THISNODE and a memoryless node
2254 	 */
2255 	if (unlikely(!zonelist->_zonerefs->zone))
2256 		return NULL;
2257 
2258 	get_mems_allowed();
2259 	/* The preferred zone is used for statistics later */
2260 	first_zones_zonelist(zonelist, high_zoneidx,
2261 				nodemask ? : &cpuset_current_mems_allowed,
2262 				&preferred_zone);
2263 	if (!preferred_zone) {
2264 		put_mems_allowed();
2265 		return NULL;
2266 	}
2267 
2268 	/* First allocation attempt */
2269 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2270 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2271 			preferred_zone, migratetype);
2272 	if (unlikely(!page))
2273 		page = __alloc_pages_slowpath(gfp_mask, order,
2274 				zonelist, high_zoneidx, nodemask,
2275 				preferred_zone, migratetype);
2276 	put_mems_allowed();
2277 
2278 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2279 	return page;
2280 }
2281 EXPORT_SYMBOL(__alloc_pages_nodemask);
2282 
2283 /*
2284  * Common helper functions.
2285  */
2286 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2287 {
2288 	struct page *page;
2289 
2290 	/*
2291 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2292 	 * a highmem page
2293 	 */
2294 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2295 
2296 	page = alloc_pages(gfp_mask, order);
2297 	if (!page)
2298 		return 0;
2299 	return (unsigned long) page_address(page);
2300 }
2301 EXPORT_SYMBOL(__get_free_pages);
2302 
2303 unsigned long get_zeroed_page(gfp_t gfp_mask)
2304 {
2305 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2306 }
2307 EXPORT_SYMBOL(get_zeroed_page);
2308 
2309 void __pagevec_free(struct pagevec *pvec)
2310 {
2311 	int i = pagevec_count(pvec);
2312 
2313 	while (--i >= 0) {
2314 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2315 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2316 	}
2317 }
2318 
2319 void __free_pages(struct page *page, unsigned int order)
2320 {
2321 	if (put_page_testzero(page)) {
2322 		if (order == 0)
2323 			free_hot_cold_page(page, 0);
2324 		else
2325 			__free_pages_ok(page, order);
2326 	}
2327 }
2328 
2329 EXPORT_SYMBOL(__free_pages);
2330 
2331 void free_pages(unsigned long addr, unsigned int order)
2332 {
2333 	if (addr != 0) {
2334 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2335 		__free_pages(virt_to_page((void *)addr), order);
2336 	}
2337 }
2338 
2339 EXPORT_SYMBOL(free_pages);
2340 
2341 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2342 {
2343 	if (addr) {
2344 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2345 		unsigned long used = addr + PAGE_ALIGN(size);
2346 
2347 		split_page(virt_to_page((void *)addr), order);
2348 		while (used < alloc_end) {
2349 			free_page(used);
2350 			used += PAGE_SIZE;
2351 		}
2352 	}
2353 	return (void *)addr;
2354 }
2355 
2356 /**
2357  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2358  * @size: the number of bytes to allocate
2359  * @gfp_mask: GFP flags for the allocation
2360  *
2361  * This function is similar to alloc_pages(), except that it allocates the
2362  * minimum number of pages to satisfy the request.  alloc_pages() can only
2363  * allocate memory in power-of-two pages.
2364  *
2365  * This function is also limited by MAX_ORDER.
2366  *
2367  * Memory allocated by this function must be released by free_pages_exact().
2368  */
2369 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2370 {
2371 	unsigned int order = get_order(size);
2372 	unsigned long addr;
2373 
2374 	addr = __get_free_pages(gfp_mask, order);
2375 	return make_alloc_exact(addr, order, size);
2376 }
2377 EXPORT_SYMBOL(alloc_pages_exact);
2378 
2379 /**
2380  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2381  *			   pages on a node.
2382  * @nid: the preferred node ID where memory should be allocated
2383  * @size: the number of bytes to allocate
2384  * @gfp_mask: GFP flags for the allocation
2385  *
2386  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2387  * back.
2388  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2389  * but is not exact.
2390  */
2391 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2392 {
2393 	unsigned order = get_order(size);
2394 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2395 	if (!p)
2396 		return NULL;
2397 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2398 }
2399 EXPORT_SYMBOL(alloc_pages_exact_nid);
2400 
2401 /**
2402  * free_pages_exact - release memory allocated via alloc_pages_exact()
2403  * @virt: the value returned by alloc_pages_exact.
2404  * @size: size of allocation, same value as passed to alloc_pages_exact().
2405  *
2406  * Release the memory allocated by a previous call to alloc_pages_exact.
2407  */
2408 void free_pages_exact(void *virt, size_t size)
2409 {
2410 	unsigned long addr = (unsigned long)virt;
2411 	unsigned long end = addr + PAGE_ALIGN(size);
2412 
2413 	while (addr < end) {
2414 		free_page(addr);
2415 		addr += PAGE_SIZE;
2416 	}
2417 }
2418 EXPORT_SYMBOL(free_pages_exact);
2419 
2420 static unsigned int nr_free_zone_pages(int offset)
2421 {
2422 	struct zoneref *z;
2423 	struct zone *zone;
2424 
2425 	/* Just pick one node, since fallback list is circular */
2426 	unsigned int sum = 0;
2427 
2428 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2429 
2430 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2431 		unsigned long size = zone->present_pages;
2432 		unsigned long high = high_wmark_pages(zone);
2433 		if (size > high)
2434 			sum += size - high;
2435 	}
2436 
2437 	return sum;
2438 }
2439 
2440 /*
2441  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2442  */
2443 unsigned int nr_free_buffer_pages(void)
2444 {
2445 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2446 }
2447 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2448 
2449 /*
2450  * Amount of free RAM allocatable within all zones
2451  */
2452 unsigned int nr_free_pagecache_pages(void)
2453 {
2454 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2455 }
2456 
2457 static inline void show_node(struct zone *zone)
2458 {
2459 	if (NUMA_BUILD)
2460 		printk("Node %d ", zone_to_nid(zone));
2461 }
2462 
2463 void si_meminfo(struct sysinfo *val)
2464 {
2465 	val->totalram = totalram_pages;
2466 	val->sharedram = 0;
2467 	val->freeram = global_page_state(NR_FREE_PAGES);
2468 	val->bufferram = nr_blockdev_pages();
2469 	val->totalhigh = totalhigh_pages;
2470 	val->freehigh = nr_free_highpages();
2471 	val->mem_unit = PAGE_SIZE;
2472 }
2473 
2474 EXPORT_SYMBOL(si_meminfo);
2475 
2476 #ifdef CONFIG_NUMA
2477 void si_meminfo_node(struct sysinfo *val, int nid)
2478 {
2479 	pg_data_t *pgdat = NODE_DATA(nid);
2480 
2481 	val->totalram = pgdat->node_present_pages;
2482 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2483 #ifdef CONFIG_HIGHMEM
2484 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2485 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2486 			NR_FREE_PAGES);
2487 #else
2488 	val->totalhigh = 0;
2489 	val->freehigh = 0;
2490 #endif
2491 	val->mem_unit = PAGE_SIZE;
2492 }
2493 #endif
2494 
2495 /*
2496  * Determine whether the node should be displayed or not, depending on whether
2497  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2498  */
2499 bool skip_free_areas_node(unsigned int flags, int nid)
2500 {
2501 	bool ret = false;
2502 
2503 	if (!(flags & SHOW_MEM_FILTER_NODES))
2504 		goto out;
2505 
2506 	get_mems_allowed();
2507 	ret = !node_isset(nid, cpuset_current_mems_allowed);
2508 	put_mems_allowed();
2509 out:
2510 	return ret;
2511 }
2512 
2513 #define K(x) ((x) << (PAGE_SHIFT-10))
2514 
2515 /*
2516  * Show free area list (used inside shift_scroll-lock stuff)
2517  * We also calculate the percentage fragmentation. We do this by counting the
2518  * memory on each free list with the exception of the first item on the list.
2519  * Suppresses nodes that are not allowed by current's cpuset if
2520  * SHOW_MEM_FILTER_NODES is passed.
2521  */
2522 void show_free_areas(unsigned int filter)
2523 {
2524 	int cpu;
2525 	struct zone *zone;
2526 
2527 	for_each_populated_zone(zone) {
2528 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2529 			continue;
2530 		show_node(zone);
2531 		printk("%s per-cpu:\n", zone->name);
2532 
2533 		for_each_online_cpu(cpu) {
2534 			struct per_cpu_pageset *pageset;
2535 
2536 			pageset = per_cpu_ptr(zone->pageset, cpu);
2537 
2538 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2539 			       cpu, pageset->pcp.high,
2540 			       pageset->pcp.batch, pageset->pcp.count);
2541 		}
2542 	}
2543 
2544 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2545 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2546 		" unevictable:%lu"
2547 		" dirty:%lu writeback:%lu unstable:%lu\n"
2548 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2549 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2550 		global_page_state(NR_ACTIVE_ANON),
2551 		global_page_state(NR_INACTIVE_ANON),
2552 		global_page_state(NR_ISOLATED_ANON),
2553 		global_page_state(NR_ACTIVE_FILE),
2554 		global_page_state(NR_INACTIVE_FILE),
2555 		global_page_state(NR_ISOLATED_FILE),
2556 		global_page_state(NR_UNEVICTABLE),
2557 		global_page_state(NR_FILE_DIRTY),
2558 		global_page_state(NR_WRITEBACK),
2559 		global_page_state(NR_UNSTABLE_NFS),
2560 		global_page_state(NR_FREE_PAGES),
2561 		global_page_state(NR_SLAB_RECLAIMABLE),
2562 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2563 		global_page_state(NR_FILE_MAPPED),
2564 		global_page_state(NR_SHMEM),
2565 		global_page_state(NR_PAGETABLE),
2566 		global_page_state(NR_BOUNCE));
2567 
2568 	for_each_populated_zone(zone) {
2569 		int i;
2570 
2571 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2572 			continue;
2573 		show_node(zone);
2574 		printk("%s"
2575 			" free:%lukB"
2576 			" min:%lukB"
2577 			" low:%lukB"
2578 			" high:%lukB"
2579 			" active_anon:%lukB"
2580 			" inactive_anon:%lukB"
2581 			" active_file:%lukB"
2582 			" inactive_file:%lukB"
2583 			" unevictable:%lukB"
2584 			" isolated(anon):%lukB"
2585 			" isolated(file):%lukB"
2586 			" present:%lukB"
2587 			" mlocked:%lukB"
2588 			" dirty:%lukB"
2589 			" writeback:%lukB"
2590 			" mapped:%lukB"
2591 			" shmem:%lukB"
2592 			" slab_reclaimable:%lukB"
2593 			" slab_unreclaimable:%lukB"
2594 			" kernel_stack:%lukB"
2595 			" pagetables:%lukB"
2596 			" unstable:%lukB"
2597 			" bounce:%lukB"
2598 			" writeback_tmp:%lukB"
2599 			" pages_scanned:%lu"
2600 			" all_unreclaimable? %s"
2601 			"\n",
2602 			zone->name,
2603 			K(zone_page_state(zone, NR_FREE_PAGES)),
2604 			K(min_wmark_pages(zone)),
2605 			K(low_wmark_pages(zone)),
2606 			K(high_wmark_pages(zone)),
2607 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2608 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2609 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2610 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2611 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2612 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2613 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2614 			K(zone->present_pages),
2615 			K(zone_page_state(zone, NR_MLOCK)),
2616 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2617 			K(zone_page_state(zone, NR_WRITEBACK)),
2618 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2619 			K(zone_page_state(zone, NR_SHMEM)),
2620 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2621 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2622 			zone_page_state(zone, NR_KERNEL_STACK) *
2623 				THREAD_SIZE / 1024,
2624 			K(zone_page_state(zone, NR_PAGETABLE)),
2625 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2626 			K(zone_page_state(zone, NR_BOUNCE)),
2627 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2628 			zone->pages_scanned,
2629 			(zone->all_unreclaimable ? "yes" : "no")
2630 			);
2631 		printk("lowmem_reserve[]:");
2632 		for (i = 0; i < MAX_NR_ZONES; i++)
2633 			printk(" %lu", zone->lowmem_reserve[i]);
2634 		printk("\n");
2635 	}
2636 
2637 	for_each_populated_zone(zone) {
2638  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2639 
2640 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2641 			continue;
2642 		show_node(zone);
2643 		printk("%s: ", zone->name);
2644 
2645 		spin_lock_irqsave(&zone->lock, flags);
2646 		for (order = 0; order < MAX_ORDER; order++) {
2647 			nr[order] = zone->free_area[order].nr_free;
2648 			total += nr[order] << order;
2649 		}
2650 		spin_unlock_irqrestore(&zone->lock, flags);
2651 		for (order = 0; order < MAX_ORDER; order++)
2652 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2653 		printk("= %lukB\n", K(total));
2654 	}
2655 
2656 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2657 
2658 	show_swap_cache_info();
2659 }
2660 
2661 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2662 {
2663 	zoneref->zone = zone;
2664 	zoneref->zone_idx = zone_idx(zone);
2665 }
2666 
2667 /*
2668  * Builds allocation fallback zone lists.
2669  *
2670  * Add all populated zones of a node to the zonelist.
2671  */
2672 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2673 				int nr_zones, enum zone_type zone_type)
2674 {
2675 	struct zone *zone;
2676 
2677 	BUG_ON(zone_type >= MAX_NR_ZONES);
2678 	zone_type++;
2679 
2680 	do {
2681 		zone_type--;
2682 		zone = pgdat->node_zones + zone_type;
2683 		if (populated_zone(zone)) {
2684 			zoneref_set_zone(zone,
2685 				&zonelist->_zonerefs[nr_zones++]);
2686 			check_highest_zone(zone_type);
2687 		}
2688 
2689 	} while (zone_type);
2690 	return nr_zones;
2691 }
2692 
2693 
2694 /*
2695  *  zonelist_order:
2696  *  0 = automatic detection of better ordering.
2697  *  1 = order by ([node] distance, -zonetype)
2698  *  2 = order by (-zonetype, [node] distance)
2699  *
2700  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2701  *  the same zonelist. So only NUMA can configure this param.
2702  */
2703 #define ZONELIST_ORDER_DEFAULT  0
2704 #define ZONELIST_ORDER_NODE     1
2705 #define ZONELIST_ORDER_ZONE     2
2706 
2707 /* zonelist order in the kernel.
2708  * set_zonelist_order() will set this to NODE or ZONE.
2709  */
2710 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2711 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2712 
2713 
2714 #ifdef CONFIG_NUMA
2715 /* The value user specified ....changed by config */
2716 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2717 /* string for sysctl */
2718 #define NUMA_ZONELIST_ORDER_LEN	16
2719 char numa_zonelist_order[16] = "default";
2720 
2721 /*
2722  * interface for configure zonelist ordering.
2723  * command line option "numa_zonelist_order"
2724  *	= "[dD]efault	- default, automatic configuration.
2725  *	= "[nN]ode 	- order by node locality, then by zone within node
2726  *	= "[zZ]one      - order by zone, then by locality within zone
2727  */
2728 
2729 static int __parse_numa_zonelist_order(char *s)
2730 {
2731 	if (*s == 'd' || *s == 'D') {
2732 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2733 	} else if (*s == 'n' || *s == 'N') {
2734 		user_zonelist_order = ZONELIST_ORDER_NODE;
2735 	} else if (*s == 'z' || *s == 'Z') {
2736 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2737 	} else {
2738 		printk(KERN_WARNING
2739 			"Ignoring invalid numa_zonelist_order value:  "
2740 			"%s\n", s);
2741 		return -EINVAL;
2742 	}
2743 	return 0;
2744 }
2745 
2746 static __init int setup_numa_zonelist_order(char *s)
2747 {
2748 	int ret;
2749 
2750 	if (!s)
2751 		return 0;
2752 
2753 	ret = __parse_numa_zonelist_order(s);
2754 	if (ret == 0)
2755 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2756 
2757 	return ret;
2758 }
2759 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2760 
2761 /*
2762  * sysctl handler for numa_zonelist_order
2763  */
2764 int numa_zonelist_order_handler(ctl_table *table, int write,
2765 		void __user *buffer, size_t *length,
2766 		loff_t *ppos)
2767 {
2768 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2769 	int ret;
2770 	static DEFINE_MUTEX(zl_order_mutex);
2771 
2772 	mutex_lock(&zl_order_mutex);
2773 	if (write)
2774 		strcpy(saved_string, (char*)table->data);
2775 	ret = proc_dostring(table, write, buffer, length, ppos);
2776 	if (ret)
2777 		goto out;
2778 	if (write) {
2779 		int oldval = user_zonelist_order;
2780 		if (__parse_numa_zonelist_order((char*)table->data)) {
2781 			/*
2782 			 * bogus value.  restore saved string
2783 			 */
2784 			strncpy((char*)table->data, saved_string,
2785 				NUMA_ZONELIST_ORDER_LEN);
2786 			user_zonelist_order = oldval;
2787 		} else if (oldval != user_zonelist_order) {
2788 			mutex_lock(&zonelists_mutex);
2789 			build_all_zonelists(NULL);
2790 			mutex_unlock(&zonelists_mutex);
2791 		}
2792 	}
2793 out:
2794 	mutex_unlock(&zl_order_mutex);
2795 	return ret;
2796 }
2797 
2798 
2799 #define MAX_NODE_LOAD (nr_online_nodes)
2800 static int node_load[MAX_NUMNODES];
2801 
2802 /**
2803  * find_next_best_node - find the next node that should appear in a given node's fallback list
2804  * @node: node whose fallback list we're appending
2805  * @used_node_mask: nodemask_t of already used nodes
2806  *
2807  * We use a number of factors to determine which is the next node that should
2808  * appear on a given node's fallback list.  The node should not have appeared
2809  * already in @node's fallback list, and it should be the next closest node
2810  * according to the distance array (which contains arbitrary distance values
2811  * from each node to each node in the system), and should also prefer nodes
2812  * with no CPUs, since presumably they'll have very little allocation pressure
2813  * on them otherwise.
2814  * It returns -1 if no node is found.
2815  */
2816 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2817 {
2818 	int n, val;
2819 	int min_val = INT_MAX;
2820 	int best_node = -1;
2821 	const struct cpumask *tmp = cpumask_of_node(0);
2822 
2823 	/* Use the local node if we haven't already */
2824 	if (!node_isset(node, *used_node_mask)) {
2825 		node_set(node, *used_node_mask);
2826 		return node;
2827 	}
2828 
2829 	for_each_node_state(n, N_HIGH_MEMORY) {
2830 
2831 		/* Don't want a node to appear more than once */
2832 		if (node_isset(n, *used_node_mask))
2833 			continue;
2834 
2835 		/* Use the distance array to find the distance */
2836 		val = node_distance(node, n);
2837 
2838 		/* Penalize nodes under us ("prefer the next node") */
2839 		val += (n < node);
2840 
2841 		/* Give preference to headless and unused nodes */
2842 		tmp = cpumask_of_node(n);
2843 		if (!cpumask_empty(tmp))
2844 			val += PENALTY_FOR_NODE_WITH_CPUS;
2845 
2846 		/* Slight preference for less loaded node */
2847 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2848 		val += node_load[n];
2849 
2850 		if (val < min_val) {
2851 			min_val = val;
2852 			best_node = n;
2853 		}
2854 	}
2855 
2856 	if (best_node >= 0)
2857 		node_set(best_node, *used_node_mask);
2858 
2859 	return best_node;
2860 }
2861 
2862 
2863 /*
2864  * Build zonelists ordered by node and zones within node.
2865  * This results in maximum locality--normal zone overflows into local
2866  * DMA zone, if any--but risks exhausting DMA zone.
2867  */
2868 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2869 {
2870 	int j;
2871 	struct zonelist *zonelist;
2872 
2873 	zonelist = &pgdat->node_zonelists[0];
2874 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2875 		;
2876 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2877 							MAX_NR_ZONES - 1);
2878 	zonelist->_zonerefs[j].zone = NULL;
2879 	zonelist->_zonerefs[j].zone_idx = 0;
2880 }
2881 
2882 /*
2883  * Build gfp_thisnode zonelists
2884  */
2885 static void build_thisnode_zonelists(pg_data_t *pgdat)
2886 {
2887 	int j;
2888 	struct zonelist *zonelist;
2889 
2890 	zonelist = &pgdat->node_zonelists[1];
2891 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2892 	zonelist->_zonerefs[j].zone = NULL;
2893 	zonelist->_zonerefs[j].zone_idx = 0;
2894 }
2895 
2896 /*
2897  * Build zonelists ordered by zone and nodes within zones.
2898  * This results in conserving DMA zone[s] until all Normal memory is
2899  * exhausted, but results in overflowing to remote node while memory
2900  * may still exist in local DMA zone.
2901  */
2902 static int node_order[MAX_NUMNODES];
2903 
2904 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2905 {
2906 	int pos, j, node;
2907 	int zone_type;		/* needs to be signed */
2908 	struct zone *z;
2909 	struct zonelist *zonelist;
2910 
2911 	zonelist = &pgdat->node_zonelists[0];
2912 	pos = 0;
2913 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2914 		for (j = 0; j < nr_nodes; j++) {
2915 			node = node_order[j];
2916 			z = &NODE_DATA(node)->node_zones[zone_type];
2917 			if (populated_zone(z)) {
2918 				zoneref_set_zone(z,
2919 					&zonelist->_zonerefs[pos++]);
2920 				check_highest_zone(zone_type);
2921 			}
2922 		}
2923 	}
2924 	zonelist->_zonerefs[pos].zone = NULL;
2925 	zonelist->_zonerefs[pos].zone_idx = 0;
2926 }
2927 
2928 static int default_zonelist_order(void)
2929 {
2930 	int nid, zone_type;
2931 	unsigned long low_kmem_size,total_size;
2932 	struct zone *z;
2933 	int average_size;
2934 	/*
2935          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2936 	 * If they are really small and used heavily, the system can fall
2937 	 * into OOM very easily.
2938 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2939 	 */
2940 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2941 	low_kmem_size = 0;
2942 	total_size = 0;
2943 	for_each_online_node(nid) {
2944 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2945 			z = &NODE_DATA(nid)->node_zones[zone_type];
2946 			if (populated_zone(z)) {
2947 				if (zone_type < ZONE_NORMAL)
2948 					low_kmem_size += z->present_pages;
2949 				total_size += z->present_pages;
2950 			} else if (zone_type == ZONE_NORMAL) {
2951 				/*
2952 				 * If any node has only lowmem, then node order
2953 				 * is preferred to allow kernel allocations
2954 				 * locally; otherwise, they can easily infringe
2955 				 * on other nodes when there is an abundance of
2956 				 * lowmem available to allocate from.
2957 				 */
2958 				return ZONELIST_ORDER_NODE;
2959 			}
2960 		}
2961 	}
2962 	if (!low_kmem_size ||  /* there are no DMA area. */
2963 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2964 		return ZONELIST_ORDER_NODE;
2965 	/*
2966 	 * look into each node's config.
2967   	 * If there is a node whose DMA/DMA32 memory is very big area on
2968  	 * local memory, NODE_ORDER may be suitable.
2969          */
2970 	average_size = total_size /
2971 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2972 	for_each_online_node(nid) {
2973 		low_kmem_size = 0;
2974 		total_size = 0;
2975 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2976 			z = &NODE_DATA(nid)->node_zones[zone_type];
2977 			if (populated_zone(z)) {
2978 				if (zone_type < ZONE_NORMAL)
2979 					low_kmem_size += z->present_pages;
2980 				total_size += z->present_pages;
2981 			}
2982 		}
2983 		if (low_kmem_size &&
2984 		    total_size > average_size && /* ignore small node */
2985 		    low_kmem_size > total_size * 70/100)
2986 			return ZONELIST_ORDER_NODE;
2987 	}
2988 	return ZONELIST_ORDER_ZONE;
2989 }
2990 
2991 static void set_zonelist_order(void)
2992 {
2993 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2994 		current_zonelist_order = default_zonelist_order();
2995 	else
2996 		current_zonelist_order = user_zonelist_order;
2997 }
2998 
2999 static void build_zonelists(pg_data_t *pgdat)
3000 {
3001 	int j, node, load;
3002 	enum zone_type i;
3003 	nodemask_t used_mask;
3004 	int local_node, prev_node;
3005 	struct zonelist *zonelist;
3006 	int order = current_zonelist_order;
3007 
3008 	/* initialize zonelists */
3009 	for (i = 0; i < MAX_ZONELISTS; i++) {
3010 		zonelist = pgdat->node_zonelists + i;
3011 		zonelist->_zonerefs[0].zone = NULL;
3012 		zonelist->_zonerefs[0].zone_idx = 0;
3013 	}
3014 
3015 	/* NUMA-aware ordering of nodes */
3016 	local_node = pgdat->node_id;
3017 	load = nr_online_nodes;
3018 	prev_node = local_node;
3019 	nodes_clear(used_mask);
3020 
3021 	memset(node_order, 0, sizeof(node_order));
3022 	j = 0;
3023 
3024 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3025 		int distance = node_distance(local_node, node);
3026 
3027 		/*
3028 		 * If another node is sufficiently far away then it is better
3029 		 * to reclaim pages in a zone before going off node.
3030 		 */
3031 		if (distance > RECLAIM_DISTANCE)
3032 			zone_reclaim_mode = 1;
3033 
3034 		/*
3035 		 * We don't want to pressure a particular node.
3036 		 * So adding penalty to the first node in same
3037 		 * distance group to make it round-robin.
3038 		 */
3039 		if (distance != node_distance(local_node, prev_node))
3040 			node_load[node] = load;
3041 
3042 		prev_node = node;
3043 		load--;
3044 		if (order == ZONELIST_ORDER_NODE)
3045 			build_zonelists_in_node_order(pgdat, node);
3046 		else
3047 			node_order[j++] = node;	/* remember order */
3048 	}
3049 
3050 	if (order == ZONELIST_ORDER_ZONE) {
3051 		/* calculate node order -- i.e., DMA last! */
3052 		build_zonelists_in_zone_order(pgdat, j);
3053 	}
3054 
3055 	build_thisnode_zonelists(pgdat);
3056 }
3057 
3058 /* Construct the zonelist performance cache - see further mmzone.h */
3059 static void build_zonelist_cache(pg_data_t *pgdat)
3060 {
3061 	struct zonelist *zonelist;
3062 	struct zonelist_cache *zlc;
3063 	struct zoneref *z;
3064 
3065 	zonelist = &pgdat->node_zonelists[0];
3066 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3067 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3068 	for (z = zonelist->_zonerefs; z->zone; z++)
3069 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3070 }
3071 
3072 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3073 /*
3074  * Return node id of node used for "local" allocations.
3075  * I.e., first node id of first zone in arg node's generic zonelist.
3076  * Used for initializing percpu 'numa_mem', which is used primarily
3077  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3078  */
3079 int local_memory_node(int node)
3080 {
3081 	struct zone *zone;
3082 
3083 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3084 				   gfp_zone(GFP_KERNEL),
3085 				   NULL,
3086 				   &zone);
3087 	return zone->node;
3088 }
3089 #endif
3090 
3091 #else	/* CONFIG_NUMA */
3092 
3093 static void set_zonelist_order(void)
3094 {
3095 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3096 }
3097 
3098 static void build_zonelists(pg_data_t *pgdat)
3099 {
3100 	int node, local_node;
3101 	enum zone_type j;
3102 	struct zonelist *zonelist;
3103 
3104 	local_node = pgdat->node_id;
3105 
3106 	zonelist = &pgdat->node_zonelists[0];
3107 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3108 
3109 	/*
3110 	 * Now we build the zonelist so that it contains the zones
3111 	 * of all the other nodes.
3112 	 * We don't want to pressure a particular node, so when
3113 	 * building the zones for node N, we make sure that the
3114 	 * zones coming right after the local ones are those from
3115 	 * node N+1 (modulo N)
3116 	 */
3117 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3118 		if (!node_online(node))
3119 			continue;
3120 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3121 							MAX_NR_ZONES - 1);
3122 	}
3123 	for (node = 0; node < local_node; node++) {
3124 		if (!node_online(node))
3125 			continue;
3126 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3127 							MAX_NR_ZONES - 1);
3128 	}
3129 
3130 	zonelist->_zonerefs[j].zone = NULL;
3131 	zonelist->_zonerefs[j].zone_idx = 0;
3132 }
3133 
3134 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3135 static void build_zonelist_cache(pg_data_t *pgdat)
3136 {
3137 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3138 }
3139 
3140 #endif	/* CONFIG_NUMA */
3141 
3142 /*
3143  * Boot pageset table. One per cpu which is going to be used for all
3144  * zones and all nodes. The parameters will be set in such a way
3145  * that an item put on a list will immediately be handed over to
3146  * the buddy list. This is safe since pageset manipulation is done
3147  * with interrupts disabled.
3148  *
3149  * The boot_pagesets must be kept even after bootup is complete for
3150  * unused processors and/or zones. They do play a role for bootstrapping
3151  * hotplugged processors.
3152  *
3153  * zoneinfo_show() and maybe other functions do
3154  * not check if the processor is online before following the pageset pointer.
3155  * Other parts of the kernel may not check if the zone is available.
3156  */
3157 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3158 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3159 static void setup_zone_pageset(struct zone *zone);
3160 
3161 /*
3162  * Global mutex to protect against size modification of zonelists
3163  * as well as to serialize pageset setup for the new populated zone.
3164  */
3165 DEFINE_MUTEX(zonelists_mutex);
3166 
3167 /* return values int ....just for stop_machine() */
3168 static __init_refok int __build_all_zonelists(void *data)
3169 {
3170 	int nid;
3171 	int cpu;
3172 
3173 #ifdef CONFIG_NUMA
3174 	memset(node_load, 0, sizeof(node_load));
3175 #endif
3176 	for_each_online_node(nid) {
3177 		pg_data_t *pgdat = NODE_DATA(nid);
3178 
3179 		build_zonelists(pgdat);
3180 		build_zonelist_cache(pgdat);
3181 	}
3182 
3183 	/*
3184 	 * Initialize the boot_pagesets that are going to be used
3185 	 * for bootstrapping processors. The real pagesets for
3186 	 * each zone will be allocated later when the per cpu
3187 	 * allocator is available.
3188 	 *
3189 	 * boot_pagesets are used also for bootstrapping offline
3190 	 * cpus if the system is already booted because the pagesets
3191 	 * are needed to initialize allocators on a specific cpu too.
3192 	 * F.e. the percpu allocator needs the page allocator which
3193 	 * needs the percpu allocator in order to allocate its pagesets
3194 	 * (a chicken-egg dilemma).
3195 	 */
3196 	for_each_possible_cpu(cpu) {
3197 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3198 
3199 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3200 		/*
3201 		 * We now know the "local memory node" for each node--
3202 		 * i.e., the node of the first zone in the generic zonelist.
3203 		 * Set up numa_mem percpu variable for on-line cpus.  During
3204 		 * boot, only the boot cpu should be on-line;  we'll init the
3205 		 * secondary cpus' numa_mem as they come on-line.  During
3206 		 * node/memory hotplug, we'll fixup all on-line cpus.
3207 		 */
3208 		if (cpu_online(cpu))
3209 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3210 #endif
3211 	}
3212 
3213 	return 0;
3214 }
3215 
3216 /*
3217  * Called with zonelists_mutex held always
3218  * unless system_state == SYSTEM_BOOTING.
3219  */
3220 void __ref build_all_zonelists(void *data)
3221 {
3222 	set_zonelist_order();
3223 
3224 	if (system_state == SYSTEM_BOOTING) {
3225 		__build_all_zonelists(NULL);
3226 		mminit_verify_zonelist();
3227 		cpuset_init_current_mems_allowed();
3228 	} else {
3229 		/* we have to stop all cpus to guarantee there is no user
3230 		   of zonelist */
3231 #ifdef CONFIG_MEMORY_HOTPLUG
3232 		if (data)
3233 			setup_zone_pageset((struct zone *)data);
3234 #endif
3235 		stop_machine(__build_all_zonelists, NULL, NULL);
3236 		/* cpuset refresh routine should be here */
3237 	}
3238 	vm_total_pages = nr_free_pagecache_pages();
3239 	/*
3240 	 * Disable grouping by mobility if the number of pages in the
3241 	 * system is too low to allow the mechanism to work. It would be
3242 	 * more accurate, but expensive to check per-zone. This check is
3243 	 * made on memory-hotadd so a system can start with mobility
3244 	 * disabled and enable it later
3245 	 */
3246 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3247 		page_group_by_mobility_disabled = 1;
3248 	else
3249 		page_group_by_mobility_disabled = 0;
3250 
3251 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3252 		"Total pages: %ld\n",
3253 			nr_online_nodes,
3254 			zonelist_order_name[current_zonelist_order],
3255 			page_group_by_mobility_disabled ? "off" : "on",
3256 			vm_total_pages);
3257 #ifdef CONFIG_NUMA
3258 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3259 #endif
3260 }
3261 
3262 /*
3263  * Helper functions to size the waitqueue hash table.
3264  * Essentially these want to choose hash table sizes sufficiently
3265  * large so that collisions trying to wait on pages are rare.
3266  * But in fact, the number of active page waitqueues on typical
3267  * systems is ridiculously low, less than 200. So this is even
3268  * conservative, even though it seems large.
3269  *
3270  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3271  * waitqueues, i.e. the size of the waitq table given the number of pages.
3272  */
3273 #define PAGES_PER_WAITQUEUE	256
3274 
3275 #ifndef CONFIG_MEMORY_HOTPLUG
3276 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3277 {
3278 	unsigned long size = 1;
3279 
3280 	pages /= PAGES_PER_WAITQUEUE;
3281 
3282 	while (size < pages)
3283 		size <<= 1;
3284 
3285 	/*
3286 	 * Once we have dozens or even hundreds of threads sleeping
3287 	 * on IO we've got bigger problems than wait queue collision.
3288 	 * Limit the size of the wait table to a reasonable size.
3289 	 */
3290 	size = min(size, 4096UL);
3291 
3292 	return max(size, 4UL);
3293 }
3294 #else
3295 /*
3296  * A zone's size might be changed by hot-add, so it is not possible to determine
3297  * a suitable size for its wait_table.  So we use the maximum size now.
3298  *
3299  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3300  *
3301  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3302  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3303  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3304  *
3305  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3306  * or more by the traditional way. (See above).  It equals:
3307  *
3308  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3309  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3310  *    powerpc (64K page size)             : =  (32G +16M)byte.
3311  */
3312 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3313 {
3314 	return 4096UL;
3315 }
3316 #endif
3317 
3318 /*
3319  * This is an integer logarithm so that shifts can be used later
3320  * to extract the more random high bits from the multiplicative
3321  * hash function before the remainder is taken.
3322  */
3323 static inline unsigned long wait_table_bits(unsigned long size)
3324 {
3325 	return ffz(~size);
3326 }
3327 
3328 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3329 
3330 /*
3331  * Check if a pageblock contains reserved pages
3332  */
3333 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3334 {
3335 	unsigned long pfn;
3336 
3337 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3338 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3339 			return 1;
3340 	}
3341 	return 0;
3342 }
3343 
3344 /*
3345  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3346  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3347  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3348  * higher will lead to a bigger reserve which will get freed as contiguous
3349  * blocks as reclaim kicks in
3350  */
3351 static void setup_zone_migrate_reserve(struct zone *zone)
3352 {
3353 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3354 	struct page *page;
3355 	unsigned long block_migratetype;
3356 	int reserve;
3357 
3358 	/*
3359 	 * Get the start pfn, end pfn and the number of blocks to reserve
3360 	 * We have to be careful to be aligned to pageblock_nr_pages to
3361 	 * make sure that we always check pfn_valid for the first page in
3362 	 * the block.
3363 	 */
3364 	start_pfn = zone->zone_start_pfn;
3365 	end_pfn = start_pfn + zone->spanned_pages;
3366 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3367 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3368 							pageblock_order;
3369 
3370 	/*
3371 	 * Reserve blocks are generally in place to help high-order atomic
3372 	 * allocations that are short-lived. A min_free_kbytes value that
3373 	 * would result in more than 2 reserve blocks for atomic allocations
3374 	 * is assumed to be in place to help anti-fragmentation for the
3375 	 * future allocation of hugepages at runtime.
3376 	 */
3377 	reserve = min(2, reserve);
3378 
3379 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3380 		if (!pfn_valid(pfn))
3381 			continue;
3382 		page = pfn_to_page(pfn);
3383 
3384 		/* Watch out for overlapping nodes */
3385 		if (page_to_nid(page) != zone_to_nid(zone))
3386 			continue;
3387 
3388 		/* Blocks with reserved pages will never free, skip them. */
3389 		block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3390 		if (pageblock_is_reserved(pfn, block_end_pfn))
3391 			continue;
3392 
3393 		block_migratetype = get_pageblock_migratetype(page);
3394 
3395 		/* If this block is reserved, account for it */
3396 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3397 			reserve--;
3398 			continue;
3399 		}
3400 
3401 		/* Suitable for reserving if this block is movable */
3402 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3403 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3404 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3405 			reserve--;
3406 			continue;
3407 		}
3408 
3409 		/*
3410 		 * If the reserve is met and this is a previous reserved block,
3411 		 * take it back
3412 		 */
3413 		if (block_migratetype == MIGRATE_RESERVE) {
3414 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3415 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3416 		}
3417 	}
3418 }
3419 
3420 /*
3421  * Initially all pages are reserved - free ones are freed
3422  * up by free_all_bootmem() once the early boot process is
3423  * done. Non-atomic initialization, single-pass.
3424  */
3425 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3426 		unsigned long start_pfn, enum memmap_context context)
3427 {
3428 	struct page *page;
3429 	unsigned long end_pfn = start_pfn + size;
3430 	unsigned long pfn;
3431 	struct zone *z;
3432 
3433 	if (highest_memmap_pfn < end_pfn - 1)
3434 		highest_memmap_pfn = end_pfn - 1;
3435 
3436 	z = &NODE_DATA(nid)->node_zones[zone];
3437 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3438 		/*
3439 		 * There can be holes in boot-time mem_map[]s
3440 		 * handed to this function.  They do not
3441 		 * exist on hotplugged memory.
3442 		 */
3443 		if (context == MEMMAP_EARLY) {
3444 			if (!early_pfn_valid(pfn))
3445 				continue;
3446 			if (!early_pfn_in_nid(pfn, nid))
3447 				continue;
3448 		}
3449 		page = pfn_to_page(pfn);
3450 		set_page_links(page, zone, nid, pfn);
3451 		mminit_verify_page_links(page, zone, nid, pfn);
3452 		init_page_count(page);
3453 		reset_page_mapcount(page);
3454 		SetPageReserved(page);
3455 		/*
3456 		 * Mark the block movable so that blocks are reserved for
3457 		 * movable at startup. This will force kernel allocations
3458 		 * to reserve their blocks rather than leaking throughout
3459 		 * the address space during boot when many long-lived
3460 		 * kernel allocations are made. Later some blocks near
3461 		 * the start are marked MIGRATE_RESERVE by
3462 		 * setup_zone_migrate_reserve()
3463 		 *
3464 		 * bitmap is created for zone's valid pfn range. but memmap
3465 		 * can be created for invalid pages (for alignment)
3466 		 * check here not to call set_pageblock_migratetype() against
3467 		 * pfn out of zone.
3468 		 */
3469 		if ((z->zone_start_pfn <= pfn)
3470 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3471 		    && !(pfn & (pageblock_nr_pages - 1)))
3472 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3473 
3474 		INIT_LIST_HEAD(&page->lru);
3475 #ifdef WANT_PAGE_VIRTUAL
3476 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3477 		if (!is_highmem_idx(zone))
3478 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3479 #endif
3480 	}
3481 }
3482 
3483 static void __meminit zone_init_free_lists(struct zone *zone)
3484 {
3485 	int order, t;
3486 	for_each_migratetype_order(order, t) {
3487 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3488 		zone->free_area[order].nr_free = 0;
3489 	}
3490 }
3491 
3492 #ifndef __HAVE_ARCH_MEMMAP_INIT
3493 #define memmap_init(size, nid, zone, start_pfn) \
3494 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3495 #endif
3496 
3497 static int zone_batchsize(struct zone *zone)
3498 {
3499 #ifdef CONFIG_MMU
3500 	int batch;
3501 
3502 	/*
3503 	 * The per-cpu-pages pools are set to around 1000th of the
3504 	 * size of the zone.  But no more than 1/2 of a meg.
3505 	 *
3506 	 * OK, so we don't know how big the cache is.  So guess.
3507 	 */
3508 	batch = zone->present_pages / 1024;
3509 	if (batch * PAGE_SIZE > 512 * 1024)
3510 		batch = (512 * 1024) / PAGE_SIZE;
3511 	batch /= 4;		/* We effectively *= 4 below */
3512 	if (batch < 1)
3513 		batch = 1;
3514 
3515 	/*
3516 	 * Clamp the batch to a 2^n - 1 value. Having a power
3517 	 * of 2 value was found to be more likely to have
3518 	 * suboptimal cache aliasing properties in some cases.
3519 	 *
3520 	 * For example if 2 tasks are alternately allocating
3521 	 * batches of pages, one task can end up with a lot
3522 	 * of pages of one half of the possible page colors
3523 	 * and the other with pages of the other colors.
3524 	 */
3525 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3526 
3527 	return batch;
3528 
3529 #else
3530 	/* The deferral and batching of frees should be suppressed under NOMMU
3531 	 * conditions.
3532 	 *
3533 	 * The problem is that NOMMU needs to be able to allocate large chunks
3534 	 * of contiguous memory as there's no hardware page translation to
3535 	 * assemble apparent contiguous memory from discontiguous pages.
3536 	 *
3537 	 * Queueing large contiguous runs of pages for batching, however,
3538 	 * causes the pages to actually be freed in smaller chunks.  As there
3539 	 * can be a significant delay between the individual batches being
3540 	 * recycled, this leads to the once large chunks of space being
3541 	 * fragmented and becoming unavailable for high-order allocations.
3542 	 */
3543 	return 0;
3544 #endif
3545 }
3546 
3547 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3548 {
3549 	struct per_cpu_pages *pcp;
3550 	int migratetype;
3551 
3552 	memset(p, 0, sizeof(*p));
3553 
3554 	pcp = &p->pcp;
3555 	pcp->count = 0;
3556 	pcp->high = 6 * batch;
3557 	pcp->batch = max(1UL, 1 * batch);
3558 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3559 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3560 }
3561 
3562 /*
3563  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3564  * to the value high for the pageset p.
3565  */
3566 
3567 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3568 				unsigned long high)
3569 {
3570 	struct per_cpu_pages *pcp;
3571 
3572 	pcp = &p->pcp;
3573 	pcp->high = high;
3574 	pcp->batch = max(1UL, high/4);
3575 	if ((high/4) > (PAGE_SHIFT * 8))
3576 		pcp->batch = PAGE_SHIFT * 8;
3577 }
3578 
3579 static void setup_zone_pageset(struct zone *zone)
3580 {
3581 	int cpu;
3582 
3583 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3584 
3585 	for_each_possible_cpu(cpu) {
3586 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3587 
3588 		setup_pageset(pcp, zone_batchsize(zone));
3589 
3590 		if (percpu_pagelist_fraction)
3591 			setup_pagelist_highmark(pcp,
3592 				(zone->present_pages /
3593 					percpu_pagelist_fraction));
3594 	}
3595 }
3596 
3597 /*
3598  * Allocate per cpu pagesets and initialize them.
3599  * Before this call only boot pagesets were available.
3600  */
3601 void __init setup_per_cpu_pageset(void)
3602 {
3603 	struct zone *zone;
3604 
3605 	for_each_populated_zone(zone)
3606 		setup_zone_pageset(zone);
3607 }
3608 
3609 static noinline __init_refok
3610 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3611 {
3612 	int i;
3613 	struct pglist_data *pgdat = zone->zone_pgdat;
3614 	size_t alloc_size;
3615 
3616 	/*
3617 	 * The per-page waitqueue mechanism uses hashed waitqueues
3618 	 * per zone.
3619 	 */
3620 	zone->wait_table_hash_nr_entries =
3621 		 wait_table_hash_nr_entries(zone_size_pages);
3622 	zone->wait_table_bits =
3623 		wait_table_bits(zone->wait_table_hash_nr_entries);
3624 	alloc_size = zone->wait_table_hash_nr_entries
3625 					* sizeof(wait_queue_head_t);
3626 
3627 	if (!slab_is_available()) {
3628 		zone->wait_table = (wait_queue_head_t *)
3629 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3630 	} else {
3631 		/*
3632 		 * This case means that a zone whose size was 0 gets new memory
3633 		 * via memory hot-add.
3634 		 * But it may be the case that a new node was hot-added.  In
3635 		 * this case vmalloc() will not be able to use this new node's
3636 		 * memory - this wait_table must be initialized to use this new
3637 		 * node itself as well.
3638 		 * To use this new node's memory, further consideration will be
3639 		 * necessary.
3640 		 */
3641 		zone->wait_table = vmalloc(alloc_size);
3642 	}
3643 	if (!zone->wait_table)
3644 		return -ENOMEM;
3645 
3646 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3647 		init_waitqueue_head(zone->wait_table + i);
3648 
3649 	return 0;
3650 }
3651 
3652 static int __zone_pcp_update(void *data)
3653 {
3654 	struct zone *zone = data;
3655 	int cpu;
3656 	unsigned long batch = zone_batchsize(zone), flags;
3657 
3658 	for_each_possible_cpu(cpu) {
3659 		struct per_cpu_pageset *pset;
3660 		struct per_cpu_pages *pcp;
3661 
3662 		pset = per_cpu_ptr(zone->pageset, cpu);
3663 		pcp = &pset->pcp;
3664 
3665 		local_irq_save(flags);
3666 		free_pcppages_bulk(zone, pcp->count, pcp);
3667 		setup_pageset(pset, batch);
3668 		local_irq_restore(flags);
3669 	}
3670 	return 0;
3671 }
3672 
3673 void zone_pcp_update(struct zone *zone)
3674 {
3675 	stop_machine(__zone_pcp_update, zone, NULL);
3676 }
3677 
3678 static __meminit void zone_pcp_init(struct zone *zone)
3679 {
3680 	/*
3681 	 * per cpu subsystem is not up at this point. The following code
3682 	 * relies on the ability of the linker to provide the
3683 	 * offset of a (static) per cpu variable into the per cpu area.
3684 	 */
3685 	zone->pageset = &boot_pageset;
3686 
3687 	if (zone->present_pages)
3688 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3689 			zone->name, zone->present_pages,
3690 					 zone_batchsize(zone));
3691 }
3692 
3693 __meminit int init_currently_empty_zone(struct zone *zone,
3694 					unsigned long zone_start_pfn,
3695 					unsigned long size,
3696 					enum memmap_context context)
3697 {
3698 	struct pglist_data *pgdat = zone->zone_pgdat;
3699 	int ret;
3700 	ret = zone_wait_table_init(zone, size);
3701 	if (ret)
3702 		return ret;
3703 	pgdat->nr_zones = zone_idx(zone) + 1;
3704 
3705 	zone->zone_start_pfn = zone_start_pfn;
3706 
3707 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3708 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3709 			pgdat->node_id,
3710 			(unsigned long)zone_idx(zone),
3711 			zone_start_pfn, (zone_start_pfn + size));
3712 
3713 	zone_init_free_lists(zone);
3714 
3715 	return 0;
3716 }
3717 
3718 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3719 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3720 /*
3721  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3722  * Architectures may implement their own version but if add_active_range()
3723  * was used and there are no special requirements, this is a convenient
3724  * alternative
3725  */
3726 int __meminit __early_pfn_to_nid(unsigned long pfn)
3727 {
3728 	unsigned long start_pfn, end_pfn;
3729 	int i, nid;
3730 
3731 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3732 		if (start_pfn <= pfn && pfn < end_pfn)
3733 			return nid;
3734 	/* This is a memory hole */
3735 	return -1;
3736 }
3737 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3738 
3739 int __meminit early_pfn_to_nid(unsigned long pfn)
3740 {
3741 	int nid;
3742 
3743 	nid = __early_pfn_to_nid(pfn);
3744 	if (nid >= 0)
3745 		return nid;
3746 	/* just returns 0 */
3747 	return 0;
3748 }
3749 
3750 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3751 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3752 {
3753 	int nid;
3754 
3755 	nid = __early_pfn_to_nid(pfn);
3756 	if (nid >= 0 && nid != node)
3757 		return false;
3758 	return true;
3759 }
3760 #endif
3761 
3762 /**
3763  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3764  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3765  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3766  *
3767  * If an architecture guarantees that all ranges registered with
3768  * add_active_ranges() contain no holes and may be freed, this
3769  * this function may be used instead of calling free_bootmem() manually.
3770  */
3771 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
3772 {
3773 	unsigned long start_pfn, end_pfn;
3774 	int i, this_nid;
3775 
3776 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3777 		start_pfn = min(start_pfn, max_low_pfn);
3778 		end_pfn = min(end_pfn, max_low_pfn);
3779 
3780 		if (start_pfn < end_pfn)
3781 			free_bootmem_node(NODE_DATA(this_nid),
3782 					  PFN_PHYS(start_pfn),
3783 					  (end_pfn - start_pfn) << PAGE_SHIFT);
3784 	}
3785 }
3786 
3787 int __init add_from_early_node_map(struct range *range, int az,
3788 				   int nr_range, int nid)
3789 {
3790 	unsigned long start_pfn, end_pfn;
3791 	int i;
3792 
3793 	/* need to go over early_node_map to find out good range for node */
3794 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3795 		nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
3796 	return nr_range;
3797 }
3798 
3799 /**
3800  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3801  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3802  *
3803  * If an architecture guarantees that all ranges registered with
3804  * add_active_ranges() contain no holes and may be freed, this
3805  * function may be used instead of calling memory_present() manually.
3806  */
3807 void __init sparse_memory_present_with_active_regions(int nid)
3808 {
3809 	unsigned long start_pfn, end_pfn;
3810 	int i, this_nid;
3811 
3812 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3813 		memory_present(this_nid, start_pfn, end_pfn);
3814 }
3815 
3816 /**
3817  * get_pfn_range_for_nid - Return the start and end page frames for a node
3818  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3819  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3820  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3821  *
3822  * It returns the start and end page frame of a node based on information
3823  * provided by an arch calling add_active_range(). If called for a node
3824  * with no available memory, a warning is printed and the start and end
3825  * PFNs will be 0.
3826  */
3827 void __meminit get_pfn_range_for_nid(unsigned int nid,
3828 			unsigned long *start_pfn, unsigned long *end_pfn)
3829 {
3830 	unsigned long this_start_pfn, this_end_pfn;
3831 	int i;
3832 
3833 	*start_pfn = -1UL;
3834 	*end_pfn = 0;
3835 
3836 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3837 		*start_pfn = min(*start_pfn, this_start_pfn);
3838 		*end_pfn = max(*end_pfn, this_end_pfn);
3839 	}
3840 
3841 	if (*start_pfn == -1UL)
3842 		*start_pfn = 0;
3843 }
3844 
3845 /*
3846  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3847  * assumption is made that zones within a node are ordered in monotonic
3848  * increasing memory addresses so that the "highest" populated zone is used
3849  */
3850 static void __init find_usable_zone_for_movable(void)
3851 {
3852 	int zone_index;
3853 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3854 		if (zone_index == ZONE_MOVABLE)
3855 			continue;
3856 
3857 		if (arch_zone_highest_possible_pfn[zone_index] >
3858 				arch_zone_lowest_possible_pfn[zone_index])
3859 			break;
3860 	}
3861 
3862 	VM_BUG_ON(zone_index == -1);
3863 	movable_zone = zone_index;
3864 }
3865 
3866 /*
3867  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3868  * because it is sized independent of architecture. Unlike the other zones,
3869  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3870  * in each node depending on the size of each node and how evenly kernelcore
3871  * is distributed. This helper function adjusts the zone ranges
3872  * provided by the architecture for a given node by using the end of the
3873  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3874  * zones within a node are in order of monotonic increases memory addresses
3875  */
3876 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3877 					unsigned long zone_type,
3878 					unsigned long node_start_pfn,
3879 					unsigned long node_end_pfn,
3880 					unsigned long *zone_start_pfn,
3881 					unsigned long *zone_end_pfn)
3882 {
3883 	/* Only adjust if ZONE_MOVABLE is on this node */
3884 	if (zone_movable_pfn[nid]) {
3885 		/* Size ZONE_MOVABLE */
3886 		if (zone_type == ZONE_MOVABLE) {
3887 			*zone_start_pfn = zone_movable_pfn[nid];
3888 			*zone_end_pfn = min(node_end_pfn,
3889 				arch_zone_highest_possible_pfn[movable_zone]);
3890 
3891 		/* Adjust for ZONE_MOVABLE starting within this range */
3892 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3893 				*zone_end_pfn > zone_movable_pfn[nid]) {
3894 			*zone_end_pfn = zone_movable_pfn[nid];
3895 
3896 		/* Check if this whole range is within ZONE_MOVABLE */
3897 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3898 			*zone_start_pfn = *zone_end_pfn;
3899 	}
3900 }
3901 
3902 /*
3903  * Return the number of pages a zone spans in a node, including holes
3904  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3905  */
3906 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3907 					unsigned long zone_type,
3908 					unsigned long *ignored)
3909 {
3910 	unsigned long node_start_pfn, node_end_pfn;
3911 	unsigned long zone_start_pfn, zone_end_pfn;
3912 
3913 	/* Get the start and end of the node and zone */
3914 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3915 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3916 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3917 	adjust_zone_range_for_zone_movable(nid, zone_type,
3918 				node_start_pfn, node_end_pfn,
3919 				&zone_start_pfn, &zone_end_pfn);
3920 
3921 	/* Check that this node has pages within the zone's required range */
3922 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3923 		return 0;
3924 
3925 	/* Move the zone boundaries inside the node if necessary */
3926 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3927 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3928 
3929 	/* Return the spanned pages */
3930 	return zone_end_pfn - zone_start_pfn;
3931 }
3932 
3933 /*
3934  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3935  * then all holes in the requested range will be accounted for.
3936  */
3937 unsigned long __meminit __absent_pages_in_range(int nid,
3938 				unsigned long range_start_pfn,
3939 				unsigned long range_end_pfn)
3940 {
3941 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
3942 	unsigned long start_pfn, end_pfn;
3943 	int i;
3944 
3945 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3946 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
3947 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
3948 		nr_absent -= end_pfn - start_pfn;
3949 	}
3950 	return nr_absent;
3951 }
3952 
3953 /**
3954  * absent_pages_in_range - Return number of page frames in holes within a range
3955  * @start_pfn: The start PFN to start searching for holes
3956  * @end_pfn: The end PFN to stop searching for holes
3957  *
3958  * It returns the number of pages frames in memory holes within a range.
3959  */
3960 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3961 							unsigned long end_pfn)
3962 {
3963 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3964 }
3965 
3966 /* Return the number of page frames in holes in a zone on a node */
3967 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3968 					unsigned long zone_type,
3969 					unsigned long *ignored)
3970 {
3971 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
3972 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
3973 	unsigned long node_start_pfn, node_end_pfn;
3974 	unsigned long zone_start_pfn, zone_end_pfn;
3975 
3976 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3977 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
3978 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
3979 
3980 	adjust_zone_range_for_zone_movable(nid, zone_type,
3981 			node_start_pfn, node_end_pfn,
3982 			&zone_start_pfn, &zone_end_pfn);
3983 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3984 }
3985 
3986 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
3987 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3988 					unsigned long zone_type,
3989 					unsigned long *zones_size)
3990 {
3991 	return zones_size[zone_type];
3992 }
3993 
3994 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3995 						unsigned long zone_type,
3996 						unsigned long *zholes_size)
3997 {
3998 	if (!zholes_size)
3999 		return 0;
4000 
4001 	return zholes_size[zone_type];
4002 }
4003 
4004 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4005 
4006 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4007 		unsigned long *zones_size, unsigned long *zholes_size)
4008 {
4009 	unsigned long realtotalpages, totalpages = 0;
4010 	enum zone_type i;
4011 
4012 	for (i = 0; i < MAX_NR_ZONES; i++)
4013 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4014 								zones_size);
4015 	pgdat->node_spanned_pages = totalpages;
4016 
4017 	realtotalpages = totalpages;
4018 	for (i = 0; i < MAX_NR_ZONES; i++)
4019 		realtotalpages -=
4020 			zone_absent_pages_in_node(pgdat->node_id, i,
4021 								zholes_size);
4022 	pgdat->node_present_pages = realtotalpages;
4023 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4024 							realtotalpages);
4025 }
4026 
4027 #ifndef CONFIG_SPARSEMEM
4028 /*
4029  * Calculate the size of the zone->blockflags rounded to an unsigned long
4030  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4031  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4032  * round what is now in bits to nearest long in bits, then return it in
4033  * bytes.
4034  */
4035 static unsigned long __init usemap_size(unsigned long zonesize)
4036 {
4037 	unsigned long usemapsize;
4038 
4039 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4040 	usemapsize = usemapsize >> pageblock_order;
4041 	usemapsize *= NR_PAGEBLOCK_BITS;
4042 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4043 
4044 	return usemapsize / 8;
4045 }
4046 
4047 static void __init setup_usemap(struct pglist_data *pgdat,
4048 				struct zone *zone, unsigned long zonesize)
4049 {
4050 	unsigned long usemapsize = usemap_size(zonesize);
4051 	zone->pageblock_flags = NULL;
4052 	if (usemapsize)
4053 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4054 								   usemapsize);
4055 }
4056 #else
4057 static inline void setup_usemap(struct pglist_data *pgdat,
4058 				struct zone *zone, unsigned long zonesize) {}
4059 #endif /* CONFIG_SPARSEMEM */
4060 
4061 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4062 
4063 /* Return a sensible default order for the pageblock size. */
4064 static inline int pageblock_default_order(void)
4065 {
4066 	if (HPAGE_SHIFT > PAGE_SHIFT)
4067 		return HUGETLB_PAGE_ORDER;
4068 
4069 	return MAX_ORDER-1;
4070 }
4071 
4072 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4073 static inline void __init set_pageblock_order(unsigned int order)
4074 {
4075 	/* Check that pageblock_nr_pages has not already been setup */
4076 	if (pageblock_order)
4077 		return;
4078 
4079 	/*
4080 	 * Assume the largest contiguous order of interest is a huge page.
4081 	 * This value may be variable depending on boot parameters on IA64
4082 	 */
4083 	pageblock_order = order;
4084 }
4085 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4086 
4087 /*
4088  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4089  * and pageblock_default_order() are unused as pageblock_order is set
4090  * at compile-time. See include/linux/pageblock-flags.h for the values of
4091  * pageblock_order based on the kernel config
4092  */
4093 static inline int pageblock_default_order(unsigned int order)
4094 {
4095 	return MAX_ORDER-1;
4096 }
4097 #define set_pageblock_order(x)	do {} while (0)
4098 
4099 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4100 
4101 /*
4102  * Set up the zone data structures:
4103  *   - mark all pages reserved
4104  *   - mark all memory queues empty
4105  *   - clear the memory bitmaps
4106  */
4107 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4108 		unsigned long *zones_size, unsigned long *zholes_size)
4109 {
4110 	enum zone_type j;
4111 	int nid = pgdat->node_id;
4112 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4113 	int ret;
4114 
4115 	pgdat_resize_init(pgdat);
4116 	pgdat->nr_zones = 0;
4117 	init_waitqueue_head(&pgdat->kswapd_wait);
4118 	pgdat->kswapd_max_order = 0;
4119 	pgdat_page_cgroup_init(pgdat);
4120 
4121 	for (j = 0; j < MAX_NR_ZONES; j++) {
4122 		struct zone *zone = pgdat->node_zones + j;
4123 		unsigned long size, realsize, memmap_pages;
4124 		enum lru_list l;
4125 
4126 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4127 		realsize = size - zone_absent_pages_in_node(nid, j,
4128 								zholes_size);
4129 
4130 		/*
4131 		 * Adjust realsize so that it accounts for how much memory
4132 		 * is used by this zone for memmap. This affects the watermark
4133 		 * and per-cpu initialisations
4134 		 */
4135 		memmap_pages =
4136 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4137 		if (realsize >= memmap_pages) {
4138 			realsize -= memmap_pages;
4139 			if (memmap_pages)
4140 				printk(KERN_DEBUG
4141 				       "  %s zone: %lu pages used for memmap\n",
4142 				       zone_names[j], memmap_pages);
4143 		} else
4144 			printk(KERN_WARNING
4145 				"  %s zone: %lu pages exceeds realsize %lu\n",
4146 				zone_names[j], memmap_pages, realsize);
4147 
4148 		/* Account for reserved pages */
4149 		if (j == 0 && realsize > dma_reserve) {
4150 			realsize -= dma_reserve;
4151 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4152 					zone_names[0], dma_reserve);
4153 		}
4154 
4155 		if (!is_highmem_idx(j))
4156 			nr_kernel_pages += realsize;
4157 		nr_all_pages += realsize;
4158 
4159 		zone->spanned_pages = size;
4160 		zone->present_pages = realsize;
4161 #ifdef CONFIG_NUMA
4162 		zone->node = nid;
4163 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4164 						/ 100;
4165 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4166 #endif
4167 		zone->name = zone_names[j];
4168 		spin_lock_init(&zone->lock);
4169 		spin_lock_init(&zone->lru_lock);
4170 		zone_seqlock_init(zone);
4171 		zone->zone_pgdat = pgdat;
4172 
4173 		zone_pcp_init(zone);
4174 		for_each_lru(l)
4175 			INIT_LIST_HEAD(&zone->lru[l].list);
4176 		zone->reclaim_stat.recent_rotated[0] = 0;
4177 		zone->reclaim_stat.recent_rotated[1] = 0;
4178 		zone->reclaim_stat.recent_scanned[0] = 0;
4179 		zone->reclaim_stat.recent_scanned[1] = 0;
4180 		zap_zone_vm_stats(zone);
4181 		zone->flags = 0;
4182 		if (!size)
4183 			continue;
4184 
4185 		set_pageblock_order(pageblock_default_order());
4186 		setup_usemap(pgdat, zone, size);
4187 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4188 						size, MEMMAP_EARLY);
4189 		BUG_ON(ret);
4190 		memmap_init(size, nid, j, zone_start_pfn);
4191 		zone_start_pfn += size;
4192 	}
4193 }
4194 
4195 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4196 {
4197 	/* Skip empty nodes */
4198 	if (!pgdat->node_spanned_pages)
4199 		return;
4200 
4201 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4202 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4203 	if (!pgdat->node_mem_map) {
4204 		unsigned long size, start, end;
4205 		struct page *map;
4206 
4207 		/*
4208 		 * The zone's endpoints aren't required to be MAX_ORDER
4209 		 * aligned but the node_mem_map endpoints must be in order
4210 		 * for the buddy allocator to function correctly.
4211 		 */
4212 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4213 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4214 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4215 		size =  (end - start) * sizeof(struct page);
4216 		map = alloc_remap(pgdat->node_id, size);
4217 		if (!map)
4218 			map = alloc_bootmem_node_nopanic(pgdat, size);
4219 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4220 	}
4221 #ifndef CONFIG_NEED_MULTIPLE_NODES
4222 	/*
4223 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4224 	 */
4225 	if (pgdat == NODE_DATA(0)) {
4226 		mem_map = NODE_DATA(0)->node_mem_map;
4227 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4228 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4229 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4230 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4231 	}
4232 #endif
4233 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4234 }
4235 
4236 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4237 		unsigned long node_start_pfn, unsigned long *zholes_size)
4238 {
4239 	pg_data_t *pgdat = NODE_DATA(nid);
4240 
4241 	pgdat->node_id = nid;
4242 	pgdat->node_start_pfn = node_start_pfn;
4243 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4244 
4245 	alloc_node_mem_map(pgdat);
4246 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4247 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4248 		nid, (unsigned long)pgdat,
4249 		(unsigned long)pgdat->node_mem_map);
4250 #endif
4251 
4252 	free_area_init_core(pgdat, zones_size, zholes_size);
4253 }
4254 
4255 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4256 
4257 #if MAX_NUMNODES > 1
4258 /*
4259  * Figure out the number of possible node ids.
4260  */
4261 static void __init setup_nr_node_ids(void)
4262 {
4263 	unsigned int node;
4264 	unsigned int highest = 0;
4265 
4266 	for_each_node_mask(node, node_possible_map)
4267 		highest = node;
4268 	nr_node_ids = highest + 1;
4269 }
4270 #else
4271 static inline void setup_nr_node_ids(void)
4272 {
4273 }
4274 #endif
4275 
4276 /**
4277  * node_map_pfn_alignment - determine the maximum internode alignment
4278  *
4279  * This function should be called after node map is populated and sorted.
4280  * It calculates the maximum power of two alignment which can distinguish
4281  * all the nodes.
4282  *
4283  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4284  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4285  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4286  * shifted, 1GiB is enough and this function will indicate so.
4287  *
4288  * This is used to test whether pfn -> nid mapping of the chosen memory
4289  * model has fine enough granularity to avoid incorrect mapping for the
4290  * populated node map.
4291  *
4292  * Returns the determined alignment in pfn's.  0 if there is no alignment
4293  * requirement (single node).
4294  */
4295 unsigned long __init node_map_pfn_alignment(void)
4296 {
4297 	unsigned long accl_mask = 0, last_end = 0;
4298 	unsigned long start, end, mask;
4299 	int last_nid = -1;
4300 	int i, nid;
4301 
4302 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4303 		if (!start || last_nid < 0 || last_nid == nid) {
4304 			last_nid = nid;
4305 			last_end = end;
4306 			continue;
4307 		}
4308 
4309 		/*
4310 		 * Start with a mask granular enough to pin-point to the
4311 		 * start pfn and tick off bits one-by-one until it becomes
4312 		 * too coarse to separate the current node from the last.
4313 		 */
4314 		mask = ~((1 << __ffs(start)) - 1);
4315 		while (mask && last_end <= (start & (mask << 1)))
4316 			mask <<= 1;
4317 
4318 		/* accumulate all internode masks */
4319 		accl_mask |= mask;
4320 	}
4321 
4322 	/* convert mask to number of pages */
4323 	return ~accl_mask + 1;
4324 }
4325 
4326 /* Find the lowest pfn for a node */
4327 static unsigned long __init find_min_pfn_for_node(int nid)
4328 {
4329 	unsigned long min_pfn = ULONG_MAX;
4330 	unsigned long start_pfn;
4331 	int i;
4332 
4333 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4334 		min_pfn = min(min_pfn, start_pfn);
4335 
4336 	if (min_pfn == ULONG_MAX) {
4337 		printk(KERN_WARNING
4338 			"Could not find start_pfn for node %d\n", nid);
4339 		return 0;
4340 	}
4341 
4342 	return min_pfn;
4343 }
4344 
4345 /**
4346  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4347  *
4348  * It returns the minimum PFN based on information provided via
4349  * add_active_range().
4350  */
4351 unsigned long __init find_min_pfn_with_active_regions(void)
4352 {
4353 	return find_min_pfn_for_node(MAX_NUMNODES);
4354 }
4355 
4356 /*
4357  * early_calculate_totalpages()
4358  * Sum pages in active regions for movable zone.
4359  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4360  */
4361 static unsigned long __init early_calculate_totalpages(void)
4362 {
4363 	unsigned long totalpages = 0;
4364 	unsigned long start_pfn, end_pfn;
4365 	int i, nid;
4366 
4367 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4368 		unsigned long pages = end_pfn - start_pfn;
4369 
4370 		totalpages += pages;
4371 		if (pages)
4372 			node_set_state(nid, N_HIGH_MEMORY);
4373 	}
4374   	return totalpages;
4375 }
4376 
4377 /*
4378  * Find the PFN the Movable zone begins in each node. Kernel memory
4379  * is spread evenly between nodes as long as the nodes have enough
4380  * memory. When they don't, some nodes will have more kernelcore than
4381  * others
4382  */
4383 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4384 {
4385 	int i, nid;
4386 	unsigned long usable_startpfn;
4387 	unsigned long kernelcore_node, kernelcore_remaining;
4388 	/* save the state before borrow the nodemask */
4389 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4390 	unsigned long totalpages = early_calculate_totalpages();
4391 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4392 
4393 	/*
4394 	 * If movablecore was specified, calculate what size of
4395 	 * kernelcore that corresponds so that memory usable for
4396 	 * any allocation type is evenly spread. If both kernelcore
4397 	 * and movablecore are specified, then the value of kernelcore
4398 	 * will be used for required_kernelcore if it's greater than
4399 	 * what movablecore would have allowed.
4400 	 */
4401 	if (required_movablecore) {
4402 		unsigned long corepages;
4403 
4404 		/*
4405 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4406 		 * was requested by the user
4407 		 */
4408 		required_movablecore =
4409 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4410 		corepages = totalpages - required_movablecore;
4411 
4412 		required_kernelcore = max(required_kernelcore, corepages);
4413 	}
4414 
4415 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4416 	if (!required_kernelcore)
4417 		goto out;
4418 
4419 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4420 	find_usable_zone_for_movable();
4421 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4422 
4423 restart:
4424 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4425 	kernelcore_node = required_kernelcore / usable_nodes;
4426 	for_each_node_state(nid, N_HIGH_MEMORY) {
4427 		unsigned long start_pfn, end_pfn;
4428 
4429 		/*
4430 		 * Recalculate kernelcore_node if the division per node
4431 		 * now exceeds what is necessary to satisfy the requested
4432 		 * amount of memory for the kernel
4433 		 */
4434 		if (required_kernelcore < kernelcore_node)
4435 			kernelcore_node = required_kernelcore / usable_nodes;
4436 
4437 		/*
4438 		 * As the map is walked, we track how much memory is usable
4439 		 * by the kernel using kernelcore_remaining. When it is
4440 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4441 		 */
4442 		kernelcore_remaining = kernelcore_node;
4443 
4444 		/* Go through each range of PFNs within this node */
4445 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4446 			unsigned long size_pages;
4447 
4448 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4449 			if (start_pfn >= end_pfn)
4450 				continue;
4451 
4452 			/* Account for what is only usable for kernelcore */
4453 			if (start_pfn < usable_startpfn) {
4454 				unsigned long kernel_pages;
4455 				kernel_pages = min(end_pfn, usable_startpfn)
4456 								- start_pfn;
4457 
4458 				kernelcore_remaining -= min(kernel_pages,
4459 							kernelcore_remaining);
4460 				required_kernelcore -= min(kernel_pages,
4461 							required_kernelcore);
4462 
4463 				/* Continue if range is now fully accounted */
4464 				if (end_pfn <= usable_startpfn) {
4465 
4466 					/*
4467 					 * Push zone_movable_pfn to the end so
4468 					 * that if we have to rebalance
4469 					 * kernelcore across nodes, we will
4470 					 * not double account here
4471 					 */
4472 					zone_movable_pfn[nid] = end_pfn;
4473 					continue;
4474 				}
4475 				start_pfn = usable_startpfn;
4476 			}
4477 
4478 			/*
4479 			 * The usable PFN range for ZONE_MOVABLE is from
4480 			 * start_pfn->end_pfn. Calculate size_pages as the
4481 			 * number of pages used as kernelcore
4482 			 */
4483 			size_pages = end_pfn - start_pfn;
4484 			if (size_pages > kernelcore_remaining)
4485 				size_pages = kernelcore_remaining;
4486 			zone_movable_pfn[nid] = start_pfn + size_pages;
4487 
4488 			/*
4489 			 * Some kernelcore has been met, update counts and
4490 			 * break if the kernelcore for this node has been
4491 			 * satisified
4492 			 */
4493 			required_kernelcore -= min(required_kernelcore,
4494 								size_pages);
4495 			kernelcore_remaining -= size_pages;
4496 			if (!kernelcore_remaining)
4497 				break;
4498 		}
4499 	}
4500 
4501 	/*
4502 	 * If there is still required_kernelcore, we do another pass with one
4503 	 * less node in the count. This will push zone_movable_pfn[nid] further
4504 	 * along on the nodes that still have memory until kernelcore is
4505 	 * satisified
4506 	 */
4507 	usable_nodes--;
4508 	if (usable_nodes && required_kernelcore > usable_nodes)
4509 		goto restart;
4510 
4511 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4512 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4513 		zone_movable_pfn[nid] =
4514 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4515 
4516 out:
4517 	/* restore the node_state */
4518 	node_states[N_HIGH_MEMORY] = saved_node_state;
4519 }
4520 
4521 /* Any regular memory on that node ? */
4522 static void check_for_regular_memory(pg_data_t *pgdat)
4523 {
4524 #ifdef CONFIG_HIGHMEM
4525 	enum zone_type zone_type;
4526 
4527 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4528 		struct zone *zone = &pgdat->node_zones[zone_type];
4529 		if (zone->present_pages)
4530 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4531 	}
4532 #endif
4533 }
4534 
4535 /**
4536  * free_area_init_nodes - Initialise all pg_data_t and zone data
4537  * @max_zone_pfn: an array of max PFNs for each zone
4538  *
4539  * This will call free_area_init_node() for each active node in the system.
4540  * Using the page ranges provided by add_active_range(), the size of each
4541  * zone in each node and their holes is calculated. If the maximum PFN
4542  * between two adjacent zones match, it is assumed that the zone is empty.
4543  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4544  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4545  * starts where the previous one ended. For example, ZONE_DMA32 starts
4546  * at arch_max_dma_pfn.
4547  */
4548 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4549 {
4550 	unsigned long start_pfn, end_pfn;
4551 	int i, nid;
4552 
4553 	/* Record where the zone boundaries are */
4554 	memset(arch_zone_lowest_possible_pfn, 0,
4555 				sizeof(arch_zone_lowest_possible_pfn));
4556 	memset(arch_zone_highest_possible_pfn, 0,
4557 				sizeof(arch_zone_highest_possible_pfn));
4558 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4559 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4560 	for (i = 1; i < MAX_NR_ZONES; i++) {
4561 		if (i == ZONE_MOVABLE)
4562 			continue;
4563 		arch_zone_lowest_possible_pfn[i] =
4564 			arch_zone_highest_possible_pfn[i-1];
4565 		arch_zone_highest_possible_pfn[i] =
4566 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4567 	}
4568 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4569 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4570 
4571 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4572 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4573 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4574 
4575 	/* Print out the zone ranges */
4576 	printk("Zone PFN ranges:\n");
4577 	for (i = 0; i < MAX_NR_ZONES; i++) {
4578 		if (i == ZONE_MOVABLE)
4579 			continue;
4580 		printk("  %-8s ", zone_names[i]);
4581 		if (arch_zone_lowest_possible_pfn[i] ==
4582 				arch_zone_highest_possible_pfn[i])
4583 			printk("empty\n");
4584 		else
4585 			printk("%0#10lx -> %0#10lx\n",
4586 				arch_zone_lowest_possible_pfn[i],
4587 				arch_zone_highest_possible_pfn[i]);
4588 	}
4589 
4590 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4591 	printk("Movable zone start PFN for each node\n");
4592 	for (i = 0; i < MAX_NUMNODES; i++) {
4593 		if (zone_movable_pfn[i])
4594 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4595 	}
4596 
4597 	/* Print out the early_node_map[] */
4598 	printk("Early memory PFN ranges\n");
4599 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4600 		printk("  %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4601 
4602 	/* Initialise every node */
4603 	mminit_verify_pageflags_layout();
4604 	setup_nr_node_ids();
4605 	for_each_online_node(nid) {
4606 		pg_data_t *pgdat = NODE_DATA(nid);
4607 		free_area_init_node(nid, NULL,
4608 				find_min_pfn_for_node(nid), NULL);
4609 
4610 		/* Any memory on that node */
4611 		if (pgdat->node_present_pages)
4612 			node_set_state(nid, N_HIGH_MEMORY);
4613 		check_for_regular_memory(pgdat);
4614 	}
4615 }
4616 
4617 static int __init cmdline_parse_core(char *p, unsigned long *core)
4618 {
4619 	unsigned long long coremem;
4620 	if (!p)
4621 		return -EINVAL;
4622 
4623 	coremem = memparse(p, &p);
4624 	*core = coremem >> PAGE_SHIFT;
4625 
4626 	/* Paranoid check that UL is enough for the coremem value */
4627 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4628 
4629 	return 0;
4630 }
4631 
4632 /*
4633  * kernelcore=size sets the amount of memory for use for allocations that
4634  * cannot be reclaimed or migrated.
4635  */
4636 static int __init cmdline_parse_kernelcore(char *p)
4637 {
4638 	return cmdline_parse_core(p, &required_kernelcore);
4639 }
4640 
4641 /*
4642  * movablecore=size sets the amount of memory for use for allocations that
4643  * can be reclaimed or migrated.
4644  */
4645 static int __init cmdline_parse_movablecore(char *p)
4646 {
4647 	return cmdline_parse_core(p, &required_movablecore);
4648 }
4649 
4650 early_param("kernelcore", cmdline_parse_kernelcore);
4651 early_param("movablecore", cmdline_parse_movablecore);
4652 
4653 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4654 
4655 /**
4656  * set_dma_reserve - set the specified number of pages reserved in the first zone
4657  * @new_dma_reserve: The number of pages to mark reserved
4658  *
4659  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4660  * In the DMA zone, a significant percentage may be consumed by kernel image
4661  * and other unfreeable allocations which can skew the watermarks badly. This
4662  * function may optionally be used to account for unfreeable pages in the
4663  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4664  * smaller per-cpu batchsize.
4665  */
4666 void __init set_dma_reserve(unsigned long new_dma_reserve)
4667 {
4668 	dma_reserve = new_dma_reserve;
4669 }
4670 
4671 void __init free_area_init(unsigned long *zones_size)
4672 {
4673 	free_area_init_node(0, zones_size,
4674 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4675 }
4676 
4677 static int page_alloc_cpu_notify(struct notifier_block *self,
4678 				 unsigned long action, void *hcpu)
4679 {
4680 	int cpu = (unsigned long)hcpu;
4681 
4682 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4683 		drain_pages(cpu);
4684 
4685 		/*
4686 		 * Spill the event counters of the dead processor
4687 		 * into the current processors event counters.
4688 		 * This artificially elevates the count of the current
4689 		 * processor.
4690 		 */
4691 		vm_events_fold_cpu(cpu);
4692 
4693 		/*
4694 		 * Zero the differential counters of the dead processor
4695 		 * so that the vm statistics are consistent.
4696 		 *
4697 		 * This is only okay since the processor is dead and cannot
4698 		 * race with what we are doing.
4699 		 */
4700 		refresh_cpu_vm_stats(cpu);
4701 	}
4702 	return NOTIFY_OK;
4703 }
4704 
4705 void __init page_alloc_init(void)
4706 {
4707 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4708 }
4709 
4710 /*
4711  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4712  *	or min_free_kbytes changes.
4713  */
4714 static void calculate_totalreserve_pages(void)
4715 {
4716 	struct pglist_data *pgdat;
4717 	unsigned long reserve_pages = 0;
4718 	enum zone_type i, j;
4719 
4720 	for_each_online_pgdat(pgdat) {
4721 		for (i = 0; i < MAX_NR_ZONES; i++) {
4722 			struct zone *zone = pgdat->node_zones + i;
4723 			unsigned long max = 0;
4724 
4725 			/* Find valid and maximum lowmem_reserve in the zone */
4726 			for (j = i; j < MAX_NR_ZONES; j++) {
4727 				if (zone->lowmem_reserve[j] > max)
4728 					max = zone->lowmem_reserve[j];
4729 			}
4730 
4731 			/* we treat the high watermark as reserved pages. */
4732 			max += high_wmark_pages(zone);
4733 
4734 			if (max > zone->present_pages)
4735 				max = zone->present_pages;
4736 			reserve_pages += max;
4737 		}
4738 	}
4739 	totalreserve_pages = reserve_pages;
4740 }
4741 
4742 /*
4743  * setup_per_zone_lowmem_reserve - called whenever
4744  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4745  *	has a correct pages reserved value, so an adequate number of
4746  *	pages are left in the zone after a successful __alloc_pages().
4747  */
4748 static void setup_per_zone_lowmem_reserve(void)
4749 {
4750 	struct pglist_data *pgdat;
4751 	enum zone_type j, idx;
4752 
4753 	for_each_online_pgdat(pgdat) {
4754 		for (j = 0; j < MAX_NR_ZONES; j++) {
4755 			struct zone *zone = pgdat->node_zones + j;
4756 			unsigned long present_pages = zone->present_pages;
4757 
4758 			zone->lowmem_reserve[j] = 0;
4759 
4760 			idx = j;
4761 			while (idx) {
4762 				struct zone *lower_zone;
4763 
4764 				idx--;
4765 
4766 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4767 					sysctl_lowmem_reserve_ratio[idx] = 1;
4768 
4769 				lower_zone = pgdat->node_zones + idx;
4770 				lower_zone->lowmem_reserve[j] = present_pages /
4771 					sysctl_lowmem_reserve_ratio[idx];
4772 				present_pages += lower_zone->present_pages;
4773 			}
4774 		}
4775 	}
4776 
4777 	/* update totalreserve_pages */
4778 	calculate_totalreserve_pages();
4779 }
4780 
4781 /**
4782  * setup_per_zone_wmarks - called when min_free_kbytes changes
4783  * or when memory is hot-{added|removed}
4784  *
4785  * Ensures that the watermark[min,low,high] values for each zone are set
4786  * correctly with respect to min_free_kbytes.
4787  */
4788 void setup_per_zone_wmarks(void)
4789 {
4790 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4791 	unsigned long lowmem_pages = 0;
4792 	struct zone *zone;
4793 	unsigned long flags;
4794 
4795 	/* Calculate total number of !ZONE_HIGHMEM pages */
4796 	for_each_zone(zone) {
4797 		if (!is_highmem(zone))
4798 			lowmem_pages += zone->present_pages;
4799 	}
4800 
4801 	for_each_zone(zone) {
4802 		u64 tmp;
4803 
4804 		spin_lock_irqsave(&zone->lock, flags);
4805 		tmp = (u64)pages_min * zone->present_pages;
4806 		do_div(tmp, lowmem_pages);
4807 		if (is_highmem(zone)) {
4808 			/*
4809 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4810 			 * need highmem pages, so cap pages_min to a small
4811 			 * value here.
4812 			 *
4813 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4814 			 * deltas controls asynch page reclaim, and so should
4815 			 * not be capped for highmem.
4816 			 */
4817 			int min_pages;
4818 
4819 			min_pages = zone->present_pages / 1024;
4820 			if (min_pages < SWAP_CLUSTER_MAX)
4821 				min_pages = SWAP_CLUSTER_MAX;
4822 			if (min_pages > 128)
4823 				min_pages = 128;
4824 			zone->watermark[WMARK_MIN] = min_pages;
4825 		} else {
4826 			/*
4827 			 * If it's a lowmem zone, reserve a number of pages
4828 			 * proportionate to the zone's size.
4829 			 */
4830 			zone->watermark[WMARK_MIN] = tmp;
4831 		}
4832 
4833 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4834 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4835 		setup_zone_migrate_reserve(zone);
4836 		spin_unlock_irqrestore(&zone->lock, flags);
4837 	}
4838 
4839 	/* update totalreserve_pages */
4840 	calculate_totalreserve_pages();
4841 }
4842 
4843 /*
4844  * The inactive anon list should be small enough that the VM never has to
4845  * do too much work, but large enough that each inactive page has a chance
4846  * to be referenced again before it is swapped out.
4847  *
4848  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4849  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4850  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4851  * the anonymous pages are kept on the inactive list.
4852  *
4853  * total     target    max
4854  * memory    ratio     inactive anon
4855  * -------------------------------------
4856  *   10MB       1         5MB
4857  *  100MB       1        50MB
4858  *    1GB       3       250MB
4859  *   10GB      10       0.9GB
4860  *  100GB      31         3GB
4861  *    1TB     101        10GB
4862  *   10TB     320        32GB
4863  */
4864 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
4865 {
4866 	unsigned int gb, ratio;
4867 
4868 	/* Zone size in gigabytes */
4869 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4870 	if (gb)
4871 		ratio = int_sqrt(10 * gb);
4872 	else
4873 		ratio = 1;
4874 
4875 	zone->inactive_ratio = ratio;
4876 }
4877 
4878 static void __meminit setup_per_zone_inactive_ratio(void)
4879 {
4880 	struct zone *zone;
4881 
4882 	for_each_zone(zone)
4883 		calculate_zone_inactive_ratio(zone);
4884 }
4885 
4886 /*
4887  * Initialise min_free_kbytes.
4888  *
4889  * For small machines we want it small (128k min).  For large machines
4890  * we want it large (64MB max).  But it is not linear, because network
4891  * bandwidth does not increase linearly with machine size.  We use
4892  *
4893  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4894  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4895  *
4896  * which yields
4897  *
4898  * 16MB:	512k
4899  * 32MB:	724k
4900  * 64MB:	1024k
4901  * 128MB:	1448k
4902  * 256MB:	2048k
4903  * 512MB:	2896k
4904  * 1024MB:	4096k
4905  * 2048MB:	5792k
4906  * 4096MB:	8192k
4907  * 8192MB:	11584k
4908  * 16384MB:	16384k
4909  */
4910 int __meminit init_per_zone_wmark_min(void)
4911 {
4912 	unsigned long lowmem_kbytes;
4913 
4914 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4915 
4916 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4917 	if (min_free_kbytes < 128)
4918 		min_free_kbytes = 128;
4919 	if (min_free_kbytes > 65536)
4920 		min_free_kbytes = 65536;
4921 	setup_per_zone_wmarks();
4922 	refresh_zone_stat_thresholds();
4923 	setup_per_zone_lowmem_reserve();
4924 	setup_per_zone_inactive_ratio();
4925 	return 0;
4926 }
4927 module_init(init_per_zone_wmark_min)
4928 
4929 /*
4930  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4931  *	that we can call two helper functions whenever min_free_kbytes
4932  *	changes.
4933  */
4934 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4935 	void __user *buffer, size_t *length, loff_t *ppos)
4936 {
4937 	proc_dointvec(table, write, buffer, length, ppos);
4938 	if (write)
4939 		setup_per_zone_wmarks();
4940 	return 0;
4941 }
4942 
4943 #ifdef CONFIG_NUMA
4944 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4945 	void __user *buffer, size_t *length, loff_t *ppos)
4946 {
4947 	struct zone *zone;
4948 	int rc;
4949 
4950 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4951 	if (rc)
4952 		return rc;
4953 
4954 	for_each_zone(zone)
4955 		zone->min_unmapped_pages = (zone->present_pages *
4956 				sysctl_min_unmapped_ratio) / 100;
4957 	return 0;
4958 }
4959 
4960 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4961 	void __user *buffer, size_t *length, loff_t *ppos)
4962 {
4963 	struct zone *zone;
4964 	int rc;
4965 
4966 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4967 	if (rc)
4968 		return rc;
4969 
4970 	for_each_zone(zone)
4971 		zone->min_slab_pages = (zone->present_pages *
4972 				sysctl_min_slab_ratio) / 100;
4973 	return 0;
4974 }
4975 #endif
4976 
4977 /*
4978  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4979  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4980  *	whenever sysctl_lowmem_reserve_ratio changes.
4981  *
4982  * The reserve ratio obviously has absolutely no relation with the
4983  * minimum watermarks. The lowmem reserve ratio can only make sense
4984  * if in function of the boot time zone sizes.
4985  */
4986 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4987 	void __user *buffer, size_t *length, loff_t *ppos)
4988 {
4989 	proc_dointvec_minmax(table, write, buffer, length, ppos);
4990 	setup_per_zone_lowmem_reserve();
4991 	return 0;
4992 }
4993 
4994 /*
4995  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4996  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4997  * can have before it gets flushed back to buddy allocator.
4998  */
4999 
5000 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5001 	void __user *buffer, size_t *length, loff_t *ppos)
5002 {
5003 	struct zone *zone;
5004 	unsigned int cpu;
5005 	int ret;
5006 
5007 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5008 	if (!write || (ret == -EINVAL))
5009 		return ret;
5010 	for_each_populated_zone(zone) {
5011 		for_each_possible_cpu(cpu) {
5012 			unsigned long  high;
5013 			high = zone->present_pages / percpu_pagelist_fraction;
5014 			setup_pagelist_highmark(
5015 				per_cpu_ptr(zone->pageset, cpu), high);
5016 		}
5017 	}
5018 	return 0;
5019 }
5020 
5021 int hashdist = HASHDIST_DEFAULT;
5022 
5023 #ifdef CONFIG_NUMA
5024 static int __init set_hashdist(char *str)
5025 {
5026 	if (!str)
5027 		return 0;
5028 	hashdist = simple_strtoul(str, &str, 0);
5029 	return 1;
5030 }
5031 __setup("hashdist=", set_hashdist);
5032 #endif
5033 
5034 /*
5035  * allocate a large system hash table from bootmem
5036  * - it is assumed that the hash table must contain an exact power-of-2
5037  *   quantity of entries
5038  * - limit is the number of hash buckets, not the total allocation size
5039  */
5040 void *__init alloc_large_system_hash(const char *tablename,
5041 				     unsigned long bucketsize,
5042 				     unsigned long numentries,
5043 				     int scale,
5044 				     int flags,
5045 				     unsigned int *_hash_shift,
5046 				     unsigned int *_hash_mask,
5047 				     unsigned long limit)
5048 {
5049 	unsigned long long max = limit;
5050 	unsigned long log2qty, size;
5051 	void *table = NULL;
5052 
5053 	/* allow the kernel cmdline to have a say */
5054 	if (!numentries) {
5055 		/* round applicable memory size up to nearest megabyte */
5056 		numentries = nr_kernel_pages;
5057 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5058 		numentries >>= 20 - PAGE_SHIFT;
5059 		numentries <<= 20 - PAGE_SHIFT;
5060 
5061 		/* limit to 1 bucket per 2^scale bytes of low memory */
5062 		if (scale > PAGE_SHIFT)
5063 			numentries >>= (scale - PAGE_SHIFT);
5064 		else
5065 			numentries <<= (PAGE_SHIFT - scale);
5066 
5067 		/* Make sure we've got at least a 0-order allocation.. */
5068 		if (unlikely(flags & HASH_SMALL)) {
5069 			/* Makes no sense without HASH_EARLY */
5070 			WARN_ON(!(flags & HASH_EARLY));
5071 			if (!(numentries >> *_hash_shift)) {
5072 				numentries = 1UL << *_hash_shift;
5073 				BUG_ON(!numentries);
5074 			}
5075 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5076 			numentries = PAGE_SIZE / bucketsize;
5077 	}
5078 	numentries = roundup_pow_of_two(numentries);
5079 
5080 	/* limit allocation size to 1/16 total memory by default */
5081 	if (max == 0) {
5082 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5083 		do_div(max, bucketsize);
5084 	}
5085 
5086 	if (numentries > max)
5087 		numentries = max;
5088 
5089 	log2qty = ilog2(numentries);
5090 
5091 	do {
5092 		size = bucketsize << log2qty;
5093 		if (flags & HASH_EARLY)
5094 			table = alloc_bootmem_nopanic(size);
5095 		else if (hashdist)
5096 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5097 		else {
5098 			/*
5099 			 * If bucketsize is not a power-of-two, we may free
5100 			 * some pages at the end of hash table which
5101 			 * alloc_pages_exact() automatically does
5102 			 */
5103 			if (get_order(size) < MAX_ORDER) {
5104 				table = alloc_pages_exact(size, GFP_ATOMIC);
5105 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5106 			}
5107 		}
5108 	} while (!table && size > PAGE_SIZE && --log2qty);
5109 
5110 	if (!table)
5111 		panic("Failed to allocate %s hash table\n", tablename);
5112 
5113 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5114 	       tablename,
5115 	       (1UL << log2qty),
5116 	       ilog2(size) - PAGE_SHIFT,
5117 	       size);
5118 
5119 	if (_hash_shift)
5120 		*_hash_shift = log2qty;
5121 	if (_hash_mask)
5122 		*_hash_mask = (1 << log2qty) - 1;
5123 
5124 	return table;
5125 }
5126 
5127 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5128 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5129 							unsigned long pfn)
5130 {
5131 #ifdef CONFIG_SPARSEMEM
5132 	return __pfn_to_section(pfn)->pageblock_flags;
5133 #else
5134 	return zone->pageblock_flags;
5135 #endif /* CONFIG_SPARSEMEM */
5136 }
5137 
5138 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5139 {
5140 #ifdef CONFIG_SPARSEMEM
5141 	pfn &= (PAGES_PER_SECTION-1);
5142 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5143 #else
5144 	pfn = pfn - zone->zone_start_pfn;
5145 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5146 #endif /* CONFIG_SPARSEMEM */
5147 }
5148 
5149 /**
5150  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5151  * @page: The page within the block of interest
5152  * @start_bitidx: The first bit of interest to retrieve
5153  * @end_bitidx: The last bit of interest
5154  * returns pageblock_bits flags
5155  */
5156 unsigned long get_pageblock_flags_group(struct page *page,
5157 					int start_bitidx, int end_bitidx)
5158 {
5159 	struct zone *zone;
5160 	unsigned long *bitmap;
5161 	unsigned long pfn, bitidx;
5162 	unsigned long flags = 0;
5163 	unsigned long value = 1;
5164 
5165 	zone = page_zone(page);
5166 	pfn = page_to_pfn(page);
5167 	bitmap = get_pageblock_bitmap(zone, pfn);
5168 	bitidx = pfn_to_bitidx(zone, pfn);
5169 
5170 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5171 		if (test_bit(bitidx + start_bitidx, bitmap))
5172 			flags |= value;
5173 
5174 	return flags;
5175 }
5176 
5177 /**
5178  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5179  * @page: The page within the block of interest
5180  * @start_bitidx: The first bit of interest
5181  * @end_bitidx: The last bit of interest
5182  * @flags: The flags to set
5183  */
5184 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5185 					int start_bitidx, int end_bitidx)
5186 {
5187 	struct zone *zone;
5188 	unsigned long *bitmap;
5189 	unsigned long pfn, bitidx;
5190 	unsigned long value = 1;
5191 
5192 	zone = page_zone(page);
5193 	pfn = page_to_pfn(page);
5194 	bitmap = get_pageblock_bitmap(zone, pfn);
5195 	bitidx = pfn_to_bitidx(zone, pfn);
5196 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5197 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5198 
5199 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5200 		if (flags & value)
5201 			__set_bit(bitidx + start_bitidx, bitmap);
5202 		else
5203 			__clear_bit(bitidx + start_bitidx, bitmap);
5204 }
5205 
5206 /*
5207  * This is designed as sub function...plz see page_isolation.c also.
5208  * set/clear page block's type to be ISOLATE.
5209  * page allocater never alloc memory from ISOLATE block.
5210  */
5211 
5212 static int
5213 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5214 {
5215 	unsigned long pfn, iter, found;
5216 	/*
5217 	 * For avoiding noise data, lru_add_drain_all() should be called
5218 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5219 	 */
5220 	if (zone_idx(zone) == ZONE_MOVABLE)
5221 		return true;
5222 
5223 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5224 		return true;
5225 
5226 	pfn = page_to_pfn(page);
5227 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5228 		unsigned long check = pfn + iter;
5229 
5230 		if (!pfn_valid_within(check))
5231 			continue;
5232 
5233 		page = pfn_to_page(check);
5234 		if (!page_count(page)) {
5235 			if (PageBuddy(page))
5236 				iter += (1 << page_order(page)) - 1;
5237 			continue;
5238 		}
5239 		if (!PageLRU(page))
5240 			found++;
5241 		/*
5242 		 * If there are RECLAIMABLE pages, we need to check it.
5243 		 * But now, memory offline itself doesn't call shrink_slab()
5244 		 * and it still to be fixed.
5245 		 */
5246 		/*
5247 		 * If the page is not RAM, page_count()should be 0.
5248 		 * we don't need more check. This is an _used_ not-movable page.
5249 		 *
5250 		 * The problematic thing here is PG_reserved pages. PG_reserved
5251 		 * is set to both of a memory hole page and a _used_ kernel
5252 		 * page at boot.
5253 		 */
5254 		if (found > count)
5255 			return false;
5256 	}
5257 	return true;
5258 }
5259 
5260 bool is_pageblock_removable_nolock(struct page *page)
5261 {
5262 	struct zone *zone = page_zone(page);
5263 	return __count_immobile_pages(zone, page, 0);
5264 }
5265 
5266 int set_migratetype_isolate(struct page *page)
5267 {
5268 	struct zone *zone;
5269 	unsigned long flags, pfn;
5270 	struct memory_isolate_notify arg;
5271 	int notifier_ret;
5272 	int ret = -EBUSY;
5273 
5274 	zone = page_zone(page);
5275 
5276 	spin_lock_irqsave(&zone->lock, flags);
5277 
5278 	pfn = page_to_pfn(page);
5279 	arg.start_pfn = pfn;
5280 	arg.nr_pages = pageblock_nr_pages;
5281 	arg.pages_found = 0;
5282 
5283 	/*
5284 	 * It may be possible to isolate a pageblock even if the
5285 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5286 	 * notifier chain is used by balloon drivers to return the
5287 	 * number of pages in a range that are held by the balloon
5288 	 * driver to shrink memory. If all the pages are accounted for
5289 	 * by balloons, are free, or on the LRU, isolation can continue.
5290 	 * Later, for example, when memory hotplug notifier runs, these
5291 	 * pages reported as "can be isolated" should be isolated(freed)
5292 	 * by the balloon driver through the memory notifier chain.
5293 	 */
5294 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5295 	notifier_ret = notifier_to_errno(notifier_ret);
5296 	if (notifier_ret)
5297 		goto out;
5298 	/*
5299 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5300 	 * We just check MOVABLE pages.
5301 	 */
5302 	if (__count_immobile_pages(zone, page, arg.pages_found))
5303 		ret = 0;
5304 
5305 	/*
5306 	 * immobile means "not-on-lru" paes. If immobile is larger than
5307 	 * removable-by-driver pages reported by notifier, we'll fail.
5308 	 */
5309 
5310 out:
5311 	if (!ret) {
5312 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5313 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5314 	}
5315 
5316 	spin_unlock_irqrestore(&zone->lock, flags);
5317 	if (!ret)
5318 		drain_all_pages();
5319 	return ret;
5320 }
5321 
5322 void unset_migratetype_isolate(struct page *page)
5323 {
5324 	struct zone *zone;
5325 	unsigned long flags;
5326 	zone = page_zone(page);
5327 	spin_lock_irqsave(&zone->lock, flags);
5328 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5329 		goto out;
5330 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5331 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5332 out:
5333 	spin_unlock_irqrestore(&zone->lock, flags);
5334 }
5335 
5336 #ifdef CONFIG_MEMORY_HOTREMOVE
5337 /*
5338  * All pages in the range must be isolated before calling this.
5339  */
5340 void
5341 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5342 {
5343 	struct page *page;
5344 	struct zone *zone;
5345 	int order, i;
5346 	unsigned long pfn;
5347 	unsigned long flags;
5348 	/* find the first valid pfn */
5349 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5350 		if (pfn_valid(pfn))
5351 			break;
5352 	if (pfn == end_pfn)
5353 		return;
5354 	zone = page_zone(pfn_to_page(pfn));
5355 	spin_lock_irqsave(&zone->lock, flags);
5356 	pfn = start_pfn;
5357 	while (pfn < end_pfn) {
5358 		if (!pfn_valid(pfn)) {
5359 			pfn++;
5360 			continue;
5361 		}
5362 		page = pfn_to_page(pfn);
5363 		BUG_ON(page_count(page));
5364 		BUG_ON(!PageBuddy(page));
5365 		order = page_order(page);
5366 #ifdef CONFIG_DEBUG_VM
5367 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5368 		       pfn, 1 << order, end_pfn);
5369 #endif
5370 		list_del(&page->lru);
5371 		rmv_page_order(page);
5372 		zone->free_area[order].nr_free--;
5373 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5374 				      - (1UL << order));
5375 		for (i = 0; i < (1 << order); i++)
5376 			SetPageReserved((page+i));
5377 		pfn += (1 << order);
5378 	}
5379 	spin_unlock_irqrestore(&zone->lock, flags);
5380 }
5381 #endif
5382 
5383 #ifdef CONFIG_MEMORY_FAILURE
5384 bool is_free_buddy_page(struct page *page)
5385 {
5386 	struct zone *zone = page_zone(page);
5387 	unsigned long pfn = page_to_pfn(page);
5388 	unsigned long flags;
5389 	int order;
5390 
5391 	spin_lock_irqsave(&zone->lock, flags);
5392 	for (order = 0; order < MAX_ORDER; order++) {
5393 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5394 
5395 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5396 			break;
5397 	}
5398 	spin_unlock_irqrestore(&zone->lock, flags);
5399 
5400 	return order < MAX_ORDER;
5401 }
5402 #endif
5403 
5404 static struct trace_print_flags pageflag_names[] = {
5405 	{1UL << PG_locked,		"locked"	},
5406 	{1UL << PG_error,		"error"		},
5407 	{1UL << PG_referenced,		"referenced"	},
5408 	{1UL << PG_uptodate,		"uptodate"	},
5409 	{1UL << PG_dirty,		"dirty"		},
5410 	{1UL << PG_lru,			"lru"		},
5411 	{1UL << PG_active,		"active"	},
5412 	{1UL << PG_slab,		"slab"		},
5413 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5414 	{1UL << PG_arch_1,		"arch_1"	},
5415 	{1UL << PG_reserved,		"reserved"	},
5416 	{1UL << PG_private,		"private"	},
5417 	{1UL << PG_private_2,		"private_2"	},
5418 	{1UL << PG_writeback,		"writeback"	},
5419 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5420 	{1UL << PG_head,		"head"		},
5421 	{1UL << PG_tail,		"tail"		},
5422 #else
5423 	{1UL << PG_compound,		"compound"	},
5424 #endif
5425 	{1UL << PG_swapcache,		"swapcache"	},
5426 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5427 	{1UL << PG_reclaim,		"reclaim"	},
5428 	{1UL << PG_swapbacked,		"swapbacked"	},
5429 	{1UL << PG_unevictable,		"unevictable"	},
5430 #ifdef CONFIG_MMU
5431 	{1UL << PG_mlocked,		"mlocked"	},
5432 #endif
5433 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5434 	{1UL << PG_uncached,		"uncached"	},
5435 #endif
5436 #ifdef CONFIG_MEMORY_FAILURE
5437 	{1UL << PG_hwpoison,		"hwpoison"	},
5438 #endif
5439 	{-1UL,				NULL		},
5440 };
5441 
5442 static void dump_page_flags(unsigned long flags)
5443 {
5444 	const char *delim = "";
5445 	unsigned long mask;
5446 	int i;
5447 
5448 	printk(KERN_ALERT "page flags: %#lx(", flags);
5449 
5450 	/* remove zone id */
5451 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5452 
5453 	for (i = 0; pageflag_names[i].name && flags; i++) {
5454 
5455 		mask = pageflag_names[i].mask;
5456 		if ((flags & mask) != mask)
5457 			continue;
5458 
5459 		flags &= ~mask;
5460 		printk("%s%s", delim, pageflag_names[i].name);
5461 		delim = "|";
5462 	}
5463 
5464 	/* check for left over flags */
5465 	if (flags)
5466 		printk("%s%#lx", delim, flags);
5467 
5468 	printk(")\n");
5469 }
5470 
5471 void dump_page(struct page *page)
5472 {
5473 	printk(KERN_ALERT
5474 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5475 		page, atomic_read(&page->_count), page_mapcount(page),
5476 		page->mapping, page->index);
5477 	dump_page_flags(page->flags);
5478 	mem_cgroup_print_bad_page(page);
5479 }
5480