1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/memory.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/memcontrol.h> 59 #include <linux/prefetch.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 #include "internal.h" 64 65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 66 DEFINE_PER_CPU(int, numa_node); 67 EXPORT_PER_CPU_SYMBOL(numa_node); 68 #endif 69 70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 71 /* 72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 75 * defined in <linux/topology.h>. 76 */ 77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 78 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 79 #endif 80 81 /* 82 * Array of node states. 83 */ 84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 85 [N_POSSIBLE] = NODE_MASK_ALL, 86 [N_ONLINE] = { { [0] = 1UL } }, 87 #ifndef CONFIG_NUMA 88 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 89 #ifdef CONFIG_HIGHMEM 90 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 91 #endif 92 [N_CPU] = { { [0] = 1UL } }, 93 #endif /* NUMA */ 94 }; 95 EXPORT_SYMBOL(node_states); 96 97 unsigned long totalram_pages __read_mostly; 98 unsigned long totalreserve_pages __read_mostly; 99 int percpu_pagelist_fraction; 100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 101 102 #ifdef CONFIG_PM_SLEEP 103 /* 104 * The following functions are used by the suspend/hibernate code to temporarily 105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 106 * while devices are suspended. To avoid races with the suspend/hibernate code, 107 * they should always be called with pm_mutex held (gfp_allowed_mask also should 108 * only be modified with pm_mutex held, unless the suspend/hibernate code is 109 * guaranteed not to run in parallel with that modification). 110 */ 111 112 static gfp_t saved_gfp_mask; 113 114 void pm_restore_gfp_mask(void) 115 { 116 WARN_ON(!mutex_is_locked(&pm_mutex)); 117 if (saved_gfp_mask) { 118 gfp_allowed_mask = saved_gfp_mask; 119 saved_gfp_mask = 0; 120 } 121 } 122 123 void pm_restrict_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 WARN_ON(saved_gfp_mask); 127 saved_gfp_mask = gfp_allowed_mask; 128 gfp_allowed_mask &= ~GFP_IOFS; 129 } 130 #endif /* CONFIG_PM_SLEEP */ 131 132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 133 int pageblock_order __read_mostly; 134 #endif 135 136 static void __free_pages_ok(struct page *page, unsigned int order); 137 138 /* 139 * results with 256, 32 in the lowmem_reserve sysctl: 140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 141 * 1G machine -> (16M dma, 784M normal, 224M high) 142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 145 * 146 * TBD: should special case ZONE_DMA32 machines here - in those we normally 147 * don't need any ZONE_NORMAL reservation 148 */ 149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 150 #ifdef CONFIG_ZONE_DMA 151 256, 152 #endif 153 #ifdef CONFIG_ZONE_DMA32 154 256, 155 #endif 156 #ifdef CONFIG_HIGHMEM 157 32, 158 #endif 159 32, 160 }; 161 162 EXPORT_SYMBOL(totalram_pages); 163 164 static char * const zone_names[MAX_NR_ZONES] = { 165 #ifdef CONFIG_ZONE_DMA 166 "DMA", 167 #endif 168 #ifdef CONFIG_ZONE_DMA32 169 "DMA32", 170 #endif 171 "Normal", 172 #ifdef CONFIG_HIGHMEM 173 "HighMem", 174 #endif 175 "Movable", 176 }; 177 178 int min_free_kbytes = 1024; 179 180 static unsigned long __meminitdata nr_kernel_pages; 181 static unsigned long __meminitdata nr_all_pages; 182 static unsigned long __meminitdata dma_reserve; 183 184 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 185 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 186 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 187 static unsigned long __initdata required_kernelcore; 188 static unsigned long __initdata required_movablecore; 189 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 190 191 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 192 int movable_zone; 193 EXPORT_SYMBOL(movable_zone); 194 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 195 196 #if MAX_NUMNODES > 1 197 int nr_node_ids __read_mostly = MAX_NUMNODES; 198 int nr_online_nodes __read_mostly = 1; 199 EXPORT_SYMBOL(nr_node_ids); 200 EXPORT_SYMBOL(nr_online_nodes); 201 #endif 202 203 int page_group_by_mobility_disabled __read_mostly; 204 205 static void set_pageblock_migratetype(struct page *page, int migratetype) 206 { 207 208 if (unlikely(page_group_by_mobility_disabled)) 209 migratetype = MIGRATE_UNMOVABLE; 210 211 set_pageblock_flags_group(page, (unsigned long)migratetype, 212 PB_migrate, PB_migrate_end); 213 } 214 215 bool oom_killer_disabled __read_mostly; 216 217 #ifdef CONFIG_DEBUG_VM 218 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 219 { 220 int ret = 0; 221 unsigned seq; 222 unsigned long pfn = page_to_pfn(page); 223 224 do { 225 seq = zone_span_seqbegin(zone); 226 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 227 ret = 1; 228 else if (pfn < zone->zone_start_pfn) 229 ret = 1; 230 } while (zone_span_seqretry(zone, seq)); 231 232 return ret; 233 } 234 235 static int page_is_consistent(struct zone *zone, struct page *page) 236 { 237 if (!pfn_valid_within(page_to_pfn(page))) 238 return 0; 239 if (zone != page_zone(page)) 240 return 0; 241 242 return 1; 243 } 244 /* 245 * Temporary debugging check for pages not lying within a given zone. 246 */ 247 static int bad_range(struct zone *zone, struct page *page) 248 { 249 if (page_outside_zone_boundaries(zone, page)) 250 return 1; 251 if (!page_is_consistent(zone, page)) 252 return 1; 253 254 return 0; 255 } 256 #else 257 static inline int bad_range(struct zone *zone, struct page *page) 258 { 259 return 0; 260 } 261 #endif 262 263 static void bad_page(struct page *page) 264 { 265 static unsigned long resume; 266 static unsigned long nr_shown; 267 static unsigned long nr_unshown; 268 269 /* Don't complain about poisoned pages */ 270 if (PageHWPoison(page)) { 271 reset_page_mapcount(page); /* remove PageBuddy */ 272 return; 273 } 274 275 /* 276 * Allow a burst of 60 reports, then keep quiet for that minute; 277 * or allow a steady drip of one report per second. 278 */ 279 if (nr_shown == 60) { 280 if (time_before(jiffies, resume)) { 281 nr_unshown++; 282 goto out; 283 } 284 if (nr_unshown) { 285 printk(KERN_ALERT 286 "BUG: Bad page state: %lu messages suppressed\n", 287 nr_unshown); 288 nr_unshown = 0; 289 } 290 nr_shown = 0; 291 } 292 if (nr_shown++ == 0) 293 resume = jiffies + 60 * HZ; 294 295 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 296 current->comm, page_to_pfn(page)); 297 dump_page(page); 298 299 print_modules(); 300 dump_stack(); 301 out: 302 /* Leave bad fields for debug, except PageBuddy could make trouble */ 303 reset_page_mapcount(page); /* remove PageBuddy */ 304 add_taint(TAINT_BAD_PAGE); 305 } 306 307 /* 308 * Higher-order pages are called "compound pages". They are structured thusly: 309 * 310 * The first PAGE_SIZE page is called the "head page". 311 * 312 * The remaining PAGE_SIZE pages are called "tail pages". 313 * 314 * All pages have PG_compound set. All tail pages have their ->first_page 315 * pointing at the head page. 316 * 317 * The first tail page's ->lru.next holds the address of the compound page's 318 * put_page() function. Its ->lru.prev holds the order of allocation. 319 * This usage means that zero-order pages may not be compound. 320 */ 321 322 static void free_compound_page(struct page *page) 323 { 324 __free_pages_ok(page, compound_order(page)); 325 } 326 327 void prep_compound_page(struct page *page, unsigned long order) 328 { 329 int i; 330 int nr_pages = 1 << order; 331 332 set_compound_page_dtor(page, free_compound_page); 333 set_compound_order(page, order); 334 __SetPageHead(page); 335 for (i = 1; i < nr_pages; i++) { 336 struct page *p = page + i; 337 __SetPageTail(p); 338 set_page_count(p, 0); 339 p->first_page = page; 340 } 341 } 342 343 /* update __split_huge_page_refcount if you change this function */ 344 static int destroy_compound_page(struct page *page, unsigned long order) 345 { 346 int i; 347 int nr_pages = 1 << order; 348 int bad = 0; 349 350 if (unlikely(compound_order(page) != order) || 351 unlikely(!PageHead(page))) { 352 bad_page(page); 353 bad++; 354 } 355 356 __ClearPageHead(page); 357 358 for (i = 1; i < nr_pages; i++) { 359 struct page *p = page + i; 360 361 if (unlikely(!PageTail(p) || (p->first_page != page))) { 362 bad_page(page); 363 bad++; 364 } 365 __ClearPageTail(p); 366 } 367 368 return bad; 369 } 370 371 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 372 { 373 int i; 374 375 /* 376 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 377 * and __GFP_HIGHMEM from hard or soft interrupt context. 378 */ 379 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 380 for (i = 0; i < (1 << order); i++) 381 clear_highpage(page + i); 382 } 383 384 static inline void set_page_order(struct page *page, int order) 385 { 386 set_page_private(page, order); 387 __SetPageBuddy(page); 388 } 389 390 static inline void rmv_page_order(struct page *page) 391 { 392 __ClearPageBuddy(page); 393 set_page_private(page, 0); 394 } 395 396 /* 397 * Locate the struct page for both the matching buddy in our 398 * pair (buddy1) and the combined O(n+1) page they form (page). 399 * 400 * 1) Any buddy B1 will have an order O twin B2 which satisfies 401 * the following equation: 402 * B2 = B1 ^ (1 << O) 403 * For example, if the starting buddy (buddy2) is #8 its order 404 * 1 buddy is #10: 405 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 406 * 407 * 2) Any buddy B will have an order O+1 parent P which 408 * satisfies the following equation: 409 * P = B & ~(1 << O) 410 * 411 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 412 */ 413 static inline unsigned long 414 __find_buddy_index(unsigned long page_idx, unsigned int order) 415 { 416 return page_idx ^ (1 << order); 417 } 418 419 /* 420 * This function checks whether a page is free && is the buddy 421 * we can do coalesce a page and its buddy if 422 * (a) the buddy is not in a hole && 423 * (b) the buddy is in the buddy system && 424 * (c) a page and its buddy have the same order && 425 * (d) a page and its buddy are in the same zone. 426 * 427 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 428 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 429 * 430 * For recording page's order, we use page_private(page). 431 */ 432 static inline int page_is_buddy(struct page *page, struct page *buddy, 433 int order) 434 { 435 if (!pfn_valid_within(page_to_pfn(buddy))) 436 return 0; 437 438 if (page_zone_id(page) != page_zone_id(buddy)) 439 return 0; 440 441 if (PageBuddy(buddy) && page_order(buddy) == order) { 442 VM_BUG_ON(page_count(buddy) != 0); 443 return 1; 444 } 445 return 0; 446 } 447 448 /* 449 * Freeing function for a buddy system allocator. 450 * 451 * The concept of a buddy system is to maintain direct-mapped table 452 * (containing bit values) for memory blocks of various "orders". 453 * The bottom level table contains the map for the smallest allocatable 454 * units of memory (here, pages), and each level above it describes 455 * pairs of units from the levels below, hence, "buddies". 456 * At a high level, all that happens here is marking the table entry 457 * at the bottom level available, and propagating the changes upward 458 * as necessary, plus some accounting needed to play nicely with other 459 * parts of the VM system. 460 * At each level, we keep a list of pages, which are heads of continuous 461 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 462 * order is recorded in page_private(page) field. 463 * So when we are allocating or freeing one, we can derive the state of the 464 * other. That is, if we allocate a small block, and both were 465 * free, the remainder of the region must be split into blocks. 466 * If a block is freed, and its buddy is also free, then this 467 * triggers coalescing into a block of larger size. 468 * 469 * -- wli 470 */ 471 472 static inline void __free_one_page(struct page *page, 473 struct zone *zone, unsigned int order, 474 int migratetype) 475 { 476 unsigned long page_idx; 477 unsigned long combined_idx; 478 unsigned long uninitialized_var(buddy_idx); 479 struct page *buddy; 480 481 if (unlikely(PageCompound(page))) 482 if (unlikely(destroy_compound_page(page, order))) 483 return; 484 485 VM_BUG_ON(migratetype == -1); 486 487 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 488 489 VM_BUG_ON(page_idx & ((1 << order) - 1)); 490 VM_BUG_ON(bad_range(zone, page)); 491 492 while (order < MAX_ORDER-1) { 493 buddy_idx = __find_buddy_index(page_idx, order); 494 buddy = page + (buddy_idx - page_idx); 495 if (!page_is_buddy(page, buddy, order)) 496 break; 497 498 /* Our buddy is free, merge with it and move up one order. */ 499 list_del(&buddy->lru); 500 zone->free_area[order].nr_free--; 501 rmv_page_order(buddy); 502 combined_idx = buddy_idx & page_idx; 503 page = page + (combined_idx - page_idx); 504 page_idx = combined_idx; 505 order++; 506 } 507 set_page_order(page, order); 508 509 /* 510 * If this is not the largest possible page, check if the buddy 511 * of the next-highest order is free. If it is, it's possible 512 * that pages are being freed that will coalesce soon. In case, 513 * that is happening, add the free page to the tail of the list 514 * so it's less likely to be used soon and more likely to be merged 515 * as a higher order page 516 */ 517 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 518 struct page *higher_page, *higher_buddy; 519 combined_idx = buddy_idx & page_idx; 520 higher_page = page + (combined_idx - page_idx); 521 buddy_idx = __find_buddy_index(combined_idx, order + 1); 522 higher_buddy = page + (buddy_idx - combined_idx); 523 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 524 list_add_tail(&page->lru, 525 &zone->free_area[order].free_list[migratetype]); 526 goto out; 527 } 528 } 529 530 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 531 out: 532 zone->free_area[order].nr_free++; 533 } 534 535 /* 536 * free_page_mlock() -- clean up attempts to free and mlocked() page. 537 * Page should not be on lru, so no need to fix that up. 538 * free_pages_check() will verify... 539 */ 540 static inline void free_page_mlock(struct page *page) 541 { 542 __dec_zone_page_state(page, NR_MLOCK); 543 __count_vm_event(UNEVICTABLE_MLOCKFREED); 544 } 545 546 static inline int free_pages_check(struct page *page) 547 { 548 if (unlikely(page_mapcount(page) | 549 (page->mapping != NULL) | 550 (atomic_read(&page->_count) != 0) | 551 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 552 (mem_cgroup_bad_page_check(page)))) { 553 bad_page(page); 554 return 1; 555 } 556 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 557 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 558 return 0; 559 } 560 561 /* 562 * Frees a number of pages from the PCP lists 563 * Assumes all pages on list are in same zone, and of same order. 564 * count is the number of pages to free. 565 * 566 * If the zone was previously in an "all pages pinned" state then look to 567 * see if this freeing clears that state. 568 * 569 * And clear the zone's pages_scanned counter, to hold off the "all pages are 570 * pinned" detection logic. 571 */ 572 static void free_pcppages_bulk(struct zone *zone, int count, 573 struct per_cpu_pages *pcp) 574 { 575 int migratetype = 0; 576 int batch_free = 0; 577 int to_free = count; 578 579 spin_lock(&zone->lock); 580 zone->all_unreclaimable = 0; 581 zone->pages_scanned = 0; 582 583 while (to_free) { 584 struct page *page; 585 struct list_head *list; 586 587 /* 588 * Remove pages from lists in a round-robin fashion. A 589 * batch_free count is maintained that is incremented when an 590 * empty list is encountered. This is so more pages are freed 591 * off fuller lists instead of spinning excessively around empty 592 * lists 593 */ 594 do { 595 batch_free++; 596 if (++migratetype == MIGRATE_PCPTYPES) 597 migratetype = 0; 598 list = &pcp->lists[migratetype]; 599 } while (list_empty(list)); 600 601 /* This is the only non-empty list. Free them all. */ 602 if (batch_free == MIGRATE_PCPTYPES) 603 batch_free = to_free; 604 605 do { 606 page = list_entry(list->prev, struct page, lru); 607 /* must delete as __free_one_page list manipulates */ 608 list_del(&page->lru); 609 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 610 __free_one_page(page, zone, 0, page_private(page)); 611 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 612 } while (--to_free && --batch_free && !list_empty(list)); 613 } 614 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 615 spin_unlock(&zone->lock); 616 } 617 618 static void free_one_page(struct zone *zone, struct page *page, int order, 619 int migratetype) 620 { 621 spin_lock(&zone->lock); 622 zone->all_unreclaimable = 0; 623 zone->pages_scanned = 0; 624 625 __free_one_page(page, zone, order, migratetype); 626 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 627 spin_unlock(&zone->lock); 628 } 629 630 static bool free_pages_prepare(struct page *page, unsigned int order) 631 { 632 int i; 633 int bad = 0; 634 635 trace_mm_page_free_direct(page, order); 636 kmemcheck_free_shadow(page, order); 637 638 if (PageAnon(page)) 639 page->mapping = NULL; 640 for (i = 0; i < (1 << order); i++) 641 bad += free_pages_check(page + i); 642 if (bad) 643 return false; 644 645 if (!PageHighMem(page)) { 646 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 647 debug_check_no_obj_freed(page_address(page), 648 PAGE_SIZE << order); 649 } 650 arch_free_page(page, order); 651 kernel_map_pages(page, 1 << order, 0); 652 653 return true; 654 } 655 656 static void __free_pages_ok(struct page *page, unsigned int order) 657 { 658 unsigned long flags; 659 int wasMlocked = __TestClearPageMlocked(page); 660 661 if (!free_pages_prepare(page, order)) 662 return; 663 664 local_irq_save(flags); 665 if (unlikely(wasMlocked)) 666 free_page_mlock(page); 667 __count_vm_events(PGFREE, 1 << order); 668 free_one_page(page_zone(page), page, order, 669 get_pageblock_migratetype(page)); 670 local_irq_restore(flags); 671 } 672 673 /* 674 * permit the bootmem allocator to evade page validation on high-order frees 675 */ 676 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 677 { 678 if (order == 0) { 679 __ClearPageReserved(page); 680 set_page_count(page, 0); 681 set_page_refcounted(page); 682 __free_page(page); 683 } else { 684 int loop; 685 686 prefetchw(page); 687 for (loop = 0; loop < (1 << order); loop++) { 688 struct page *p = &page[loop]; 689 690 if (loop + 1 < (1 << order)) 691 prefetchw(p + 1); 692 __ClearPageReserved(p); 693 set_page_count(p, 0); 694 } 695 696 set_page_refcounted(page); 697 __free_pages(page, order); 698 } 699 } 700 701 702 /* 703 * The order of subdivision here is critical for the IO subsystem. 704 * Please do not alter this order without good reasons and regression 705 * testing. Specifically, as large blocks of memory are subdivided, 706 * the order in which smaller blocks are delivered depends on the order 707 * they're subdivided in this function. This is the primary factor 708 * influencing the order in which pages are delivered to the IO 709 * subsystem according to empirical testing, and this is also justified 710 * by considering the behavior of a buddy system containing a single 711 * large block of memory acted on by a series of small allocations. 712 * This behavior is a critical factor in sglist merging's success. 713 * 714 * -- wli 715 */ 716 static inline void expand(struct zone *zone, struct page *page, 717 int low, int high, struct free_area *area, 718 int migratetype) 719 { 720 unsigned long size = 1 << high; 721 722 while (high > low) { 723 area--; 724 high--; 725 size >>= 1; 726 VM_BUG_ON(bad_range(zone, &page[size])); 727 list_add(&page[size].lru, &area->free_list[migratetype]); 728 area->nr_free++; 729 set_page_order(&page[size], high); 730 } 731 } 732 733 /* 734 * This page is about to be returned from the page allocator 735 */ 736 static inline int check_new_page(struct page *page) 737 { 738 if (unlikely(page_mapcount(page) | 739 (page->mapping != NULL) | 740 (atomic_read(&page->_count) != 0) | 741 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 742 (mem_cgroup_bad_page_check(page)))) { 743 bad_page(page); 744 return 1; 745 } 746 return 0; 747 } 748 749 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 750 { 751 int i; 752 753 for (i = 0; i < (1 << order); i++) { 754 struct page *p = page + i; 755 if (unlikely(check_new_page(p))) 756 return 1; 757 } 758 759 set_page_private(page, 0); 760 set_page_refcounted(page); 761 762 arch_alloc_page(page, order); 763 kernel_map_pages(page, 1 << order, 1); 764 765 if (gfp_flags & __GFP_ZERO) 766 prep_zero_page(page, order, gfp_flags); 767 768 if (order && (gfp_flags & __GFP_COMP)) 769 prep_compound_page(page, order); 770 771 return 0; 772 } 773 774 /* 775 * Go through the free lists for the given migratetype and remove 776 * the smallest available page from the freelists 777 */ 778 static inline 779 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 780 int migratetype) 781 { 782 unsigned int current_order; 783 struct free_area * area; 784 struct page *page; 785 786 /* Find a page of the appropriate size in the preferred list */ 787 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 788 area = &(zone->free_area[current_order]); 789 if (list_empty(&area->free_list[migratetype])) 790 continue; 791 792 page = list_entry(area->free_list[migratetype].next, 793 struct page, lru); 794 list_del(&page->lru); 795 rmv_page_order(page); 796 area->nr_free--; 797 expand(zone, page, order, current_order, area, migratetype); 798 return page; 799 } 800 801 return NULL; 802 } 803 804 805 /* 806 * This array describes the order lists are fallen back to when 807 * the free lists for the desirable migrate type are depleted 808 */ 809 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 810 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 811 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 812 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 813 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 814 }; 815 816 /* 817 * Move the free pages in a range to the free lists of the requested type. 818 * Note that start_page and end_pages are not aligned on a pageblock 819 * boundary. If alignment is required, use move_freepages_block() 820 */ 821 static int move_freepages(struct zone *zone, 822 struct page *start_page, struct page *end_page, 823 int migratetype) 824 { 825 struct page *page; 826 unsigned long order; 827 int pages_moved = 0; 828 829 #ifndef CONFIG_HOLES_IN_ZONE 830 /* 831 * page_zone is not safe to call in this context when 832 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 833 * anyway as we check zone boundaries in move_freepages_block(). 834 * Remove at a later date when no bug reports exist related to 835 * grouping pages by mobility 836 */ 837 BUG_ON(page_zone(start_page) != page_zone(end_page)); 838 #endif 839 840 for (page = start_page; page <= end_page;) { 841 /* Make sure we are not inadvertently changing nodes */ 842 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 843 844 if (!pfn_valid_within(page_to_pfn(page))) { 845 page++; 846 continue; 847 } 848 849 if (!PageBuddy(page)) { 850 page++; 851 continue; 852 } 853 854 order = page_order(page); 855 list_move(&page->lru, 856 &zone->free_area[order].free_list[migratetype]); 857 page += 1 << order; 858 pages_moved += 1 << order; 859 } 860 861 return pages_moved; 862 } 863 864 static int move_freepages_block(struct zone *zone, struct page *page, 865 int migratetype) 866 { 867 unsigned long start_pfn, end_pfn; 868 struct page *start_page, *end_page; 869 870 start_pfn = page_to_pfn(page); 871 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 872 start_page = pfn_to_page(start_pfn); 873 end_page = start_page + pageblock_nr_pages - 1; 874 end_pfn = start_pfn + pageblock_nr_pages - 1; 875 876 /* Do not cross zone boundaries */ 877 if (start_pfn < zone->zone_start_pfn) 878 start_page = page; 879 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 880 return 0; 881 882 return move_freepages(zone, start_page, end_page, migratetype); 883 } 884 885 static void change_pageblock_range(struct page *pageblock_page, 886 int start_order, int migratetype) 887 { 888 int nr_pageblocks = 1 << (start_order - pageblock_order); 889 890 while (nr_pageblocks--) { 891 set_pageblock_migratetype(pageblock_page, migratetype); 892 pageblock_page += pageblock_nr_pages; 893 } 894 } 895 896 /* Remove an element from the buddy allocator from the fallback list */ 897 static inline struct page * 898 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 899 { 900 struct free_area * area; 901 int current_order; 902 struct page *page; 903 int migratetype, i; 904 905 /* Find the largest possible block of pages in the other list */ 906 for (current_order = MAX_ORDER-1; current_order >= order; 907 --current_order) { 908 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 909 migratetype = fallbacks[start_migratetype][i]; 910 911 /* MIGRATE_RESERVE handled later if necessary */ 912 if (migratetype == MIGRATE_RESERVE) 913 continue; 914 915 area = &(zone->free_area[current_order]); 916 if (list_empty(&area->free_list[migratetype])) 917 continue; 918 919 page = list_entry(area->free_list[migratetype].next, 920 struct page, lru); 921 area->nr_free--; 922 923 /* 924 * If breaking a large block of pages, move all free 925 * pages to the preferred allocation list. If falling 926 * back for a reclaimable kernel allocation, be more 927 * aggressive about taking ownership of free pages 928 */ 929 if (unlikely(current_order >= (pageblock_order >> 1)) || 930 start_migratetype == MIGRATE_RECLAIMABLE || 931 page_group_by_mobility_disabled) { 932 unsigned long pages; 933 pages = move_freepages_block(zone, page, 934 start_migratetype); 935 936 /* Claim the whole block if over half of it is free */ 937 if (pages >= (1 << (pageblock_order-1)) || 938 page_group_by_mobility_disabled) 939 set_pageblock_migratetype(page, 940 start_migratetype); 941 942 migratetype = start_migratetype; 943 } 944 945 /* Remove the page from the freelists */ 946 list_del(&page->lru); 947 rmv_page_order(page); 948 949 /* Take ownership for orders >= pageblock_order */ 950 if (current_order >= pageblock_order) 951 change_pageblock_range(page, current_order, 952 start_migratetype); 953 954 expand(zone, page, order, current_order, area, migratetype); 955 956 trace_mm_page_alloc_extfrag(page, order, current_order, 957 start_migratetype, migratetype); 958 959 return page; 960 } 961 } 962 963 return NULL; 964 } 965 966 /* 967 * Do the hard work of removing an element from the buddy allocator. 968 * Call me with the zone->lock already held. 969 */ 970 static struct page *__rmqueue(struct zone *zone, unsigned int order, 971 int migratetype) 972 { 973 struct page *page; 974 975 retry_reserve: 976 page = __rmqueue_smallest(zone, order, migratetype); 977 978 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 979 page = __rmqueue_fallback(zone, order, migratetype); 980 981 /* 982 * Use MIGRATE_RESERVE rather than fail an allocation. goto 983 * is used because __rmqueue_smallest is an inline function 984 * and we want just one call site 985 */ 986 if (!page) { 987 migratetype = MIGRATE_RESERVE; 988 goto retry_reserve; 989 } 990 } 991 992 trace_mm_page_alloc_zone_locked(page, order, migratetype); 993 return page; 994 } 995 996 /* 997 * Obtain a specified number of elements from the buddy allocator, all under 998 * a single hold of the lock, for efficiency. Add them to the supplied list. 999 * Returns the number of new pages which were placed at *list. 1000 */ 1001 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1002 unsigned long count, struct list_head *list, 1003 int migratetype, int cold) 1004 { 1005 int i; 1006 1007 spin_lock(&zone->lock); 1008 for (i = 0; i < count; ++i) { 1009 struct page *page = __rmqueue(zone, order, migratetype); 1010 if (unlikely(page == NULL)) 1011 break; 1012 1013 /* 1014 * Split buddy pages returned by expand() are received here 1015 * in physical page order. The page is added to the callers and 1016 * list and the list head then moves forward. From the callers 1017 * perspective, the linked list is ordered by page number in 1018 * some conditions. This is useful for IO devices that can 1019 * merge IO requests if the physical pages are ordered 1020 * properly. 1021 */ 1022 if (likely(cold == 0)) 1023 list_add(&page->lru, list); 1024 else 1025 list_add_tail(&page->lru, list); 1026 set_page_private(page, migratetype); 1027 list = &page->lru; 1028 } 1029 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1030 spin_unlock(&zone->lock); 1031 return i; 1032 } 1033 1034 #ifdef CONFIG_NUMA 1035 /* 1036 * Called from the vmstat counter updater to drain pagesets of this 1037 * currently executing processor on remote nodes after they have 1038 * expired. 1039 * 1040 * Note that this function must be called with the thread pinned to 1041 * a single processor. 1042 */ 1043 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1044 { 1045 unsigned long flags; 1046 int to_drain; 1047 1048 local_irq_save(flags); 1049 if (pcp->count >= pcp->batch) 1050 to_drain = pcp->batch; 1051 else 1052 to_drain = pcp->count; 1053 free_pcppages_bulk(zone, to_drain, pcp); 1054 pcp->count -= to_drain; 1055 local_irq_restore(flags); 1056 } 1057 #endif 1058 1059 /* 1060 * Drain pages of the indicated processor. 1061 * 1062 * The processor must either be the current processor and the 1063 * thread pinned to the current processor or a processor that 1064 * is not online. 1065 */ 1066 static void drain_pages(unsigned int cpu) 1067 { 1068 unsigned long flags; 1069 struct zone *zone; 1070 1071 for_each_populated_zone(zone) { 1072 struct per_cpu_pageset *pset; 1073 struct per_cpu_pages *pcp; 1074 1075 local_irq_save(flags); 1076 pset = per_cpu_ptr(zone->pageset, cpu); 1077 1078 pcp = &pset->pcp; 1079 if (pcp->count) { 1080 free_pcppages_bulk(zone, pcp->count, pcp); 1081 pcp->count = 0; 1082 } 1083 local_irq_restore(flags); 1084 } 1085 } 1086 1087 /* 1088 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1089 */ 1090 void drain_local_pages(void *arg) 1091 { 1092 drain_pages(smp_processor_id()); 1093 } 1094 1095 /* 1096 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1097 */ 1098 void drain_all_pages(void) 1099 { 1100 on_each_cpu(drain_local_pages, NULL, 1); 1101 } 1102 1103 #ifdef CONFIG_HIBERNATION 1104 1105 void mark_free_pages(struct zone *zone) 1106 { 1107 unsigned long pfn, max_zone_pfn; 1108 unsigned long flags; 1109 int order, t; 1110 struct list_head *curr; 1111 1112 if (!zone->spanned_pages) 1113 return; 1114 1115 spin_lock_irqsave(&zone->lock, flags); 1116 1117 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1118 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1119 if (pfn_valid(pfn)) { 1120 struct page *page = pfn_to_page(pfn); 1121 1122 if (!swsusp_page_is_forbidden(page)) 1123 swsusp_unset_page_free(page); 1124 } 1125 1126 for_each_migratetype_order(order, t) { 1127 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1128 unsigned long i; 1129 1130 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1131 for (i = 0; i < (1UL << order); i++) 1132 swsusp_set_page_free(pfn_to_page(pfn + i)); 1133 } 1134 } 1135 spin_unlock_irqrestore(&zone->lock, flags); 1136 } 1137 #endif /* CONFIG_PM */ 1138 1139 /* 1140 * Free a 0-order page 1141 * cold == 1 ? free a cold page : free a hot page 1142 */ 1143 void free_hot_cold_page(struct page *page, int cold) 1144 { 1145 struct zone *zone = page_zone(page); 1146 struct per_cpu_pages *pcp; 1147 unsigned long flags; 1148 int migratetype; 1149 int wasMlocked = __TestClearPageMlocked(page); 1150 1151 if (!free_pages_prepare(page, 0)) 1152 return; 1153 1154 migratetype = get_pageblock_migratetype(page); 1155 set_page_private(page, migratetype); 1156 local_irq_save(flags); 1157 if (unlikely(wasMlocked)) 1158 free_page_mlock(page); 1159 __count_vm_event(PGFREE); 1160 1161 /* 1162 * We only track unmovable, reclaimable and movable on pcp lists. 1163 * Free ISOLATE pages back to the allocator because they are being 1164 * offlined but treat RESERVE as movable pages so we can get those 1165 * areas back if necessary. Otherwise, we may have to free 1166 * excessively into the page allocator 1167 */ 1168 if (migratetype >= MIGRATE_PCPTYPES) { 1169 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1170 free_one_page(zone, page, 0, migratetype); 1171 goto out; 1172 } 1173 migratetype = MIGRATE_MOVABLE; 1174 } 1175 1176 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1177 if (cold) 1178 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1179 else 1180 list_add(&page->lru, &pcp->lists[migratetype]); 1181 pcp->count++; 1182 if (pcp->count >= pcp->high) { 1183 free_pcppages_bulk(zone, pcp->batch, pcp); 1184 pcp->count -= pcp->batch; 1185 } 1186 1187 out: 1188 local_irq_restore(flags); 1189 } 1190 1191 /* 1192 * split_page takes a non-compound higher-order page, and splits it into 1193 * n (1<<order) sub-pages: page[0..n] 1194 * Each sub-page must be freed individually. 1195 * 1196 * Note: this is probably too low level an operation for use in drivers. 1197 * Please consult with lkml before using this in your driver. 1198 */ 1199 void split_page(struct page *page, unsigned int order) 1200 { 1201 int i; 1202 1203 VM_BUG_ON(PageCompound(page)); 1204 VM_BUG_ON(!page_count(page)); 1205 1206 #ifdef CONFIG_KMEMCHECK 1207 /* 1208 * Split shadow pages too, because free(page[0]) would 1209 * otherwise free the whole shadow. 1210 */ 1211 if (kmemcheck_page_is_tracked(page)) 1212 split_page(virt_to_page(page[0].shadow), order); 1213 #endif 1214 1215 for (i = 1; i < (1 << order); i++) 1216 set_page_refcounted(page + i); 1217 } 1218 1219 /* 1220 * Similar to split_page except the page is already free. As this is only 1221 * being used for migration, the migratetype of the block also changes. 1222 * As this is called with interrupts disabled, the caller is responsible 1223 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1224 * are enabled. 1225 * 1226 * Note: this is probably too low level an operation for use in drivers. 1227 * Please consult with lkml before using this in your driver. 1228 */ 1229 int split_free_page(struct page *page) 1230 { 1231 unsigned int order; 1232 unsigned long watermark; 1233 struct zone *zone; 1234 1235 BUG_ON(!PageBuddy(page)); 1236 1237 zone = page_zone(page); 1238 order = page_order(page); 1239 1240 /* Obey watermarks as if the page was being allocated */ 1241 watermark = low_wmark_pages(zone) + (1 << order); 1242 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1243 return 0; 1244 1245 /* Remove page from free list */ 1246 list_del(&page->lru); 1247 zone->free_area[order].nr_free--; 1248 rmv_page_order(page); 1249 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1250 1251 /* Split into individual pages */ 1252 set_page_refcounted(page); 1253 split_page(page, order); 1254 1255 if (order >= pageblock_order - 1) { 1256 struct page *endpage = page + (1 << order) - 1; 1257 for (; page < endpage; page += pageblock_nr_pages) 1258 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1259 } 1260 1261 return 1 << order; 1262 } 1263 1264 /* 1265 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1266 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1267 * or two. 1268 */ 1269 static inline 1270 struct page *buffered_rmqueue(struct zone *preferred_zone, 1271 struct zone *zone, int order, gfp_t gfp_flags, 1272 int migratetype) 1273 { 1274 unsigned long flags; 1275 struct page *page; 1276 int cold = !!(gfp_flags & __GFP_COLD); 1277 1278 again: 1279 if (likely(order == 0)) { 1280 struct per_cpu_pages *pcp; 1281 struct list_head *list; 1282 1283 local_irq_save(flags); 1284 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1285 list = &pcp->lists[migratetype]; 1286 if (list_empty(list)) { 1287 pcp->count += rmqueue_bulk(zone, 0, 1288 pcp->batch, list, 1289 migratetype, cold); 1290 if (unlikely(list_empty(list))) 1291 goto failed; 1292 } 1293 1294 if (cold) 1295 page = list_entry(list->prev, struct page, lru); 1296 else 1297 page = list_entry(list->next, struct page, lru); 1298 1299 list_del(&page->lru); 1300 pcp->count--; 1301 } else { 1302 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1303 /* 1304 * __GFP_NOFAIL is not to be used in new code. 1305 * 1306 * All __GFP_NOFAIL callers should be fixed so that they 1307 * properly detect and handle allocation failures. 1308 * 1309 * We most definitely don't want callers attempting to 1310 * allocate greater than order-1 page units with 1311 * __GFP_NOFAIL. 1312 */ 1313 WARN_ON_ONCE(order > 1); 1314 } 1315 spin_lock_irqsave(&zone->lock, flags); 1316 page = __rmqueue(zone, order, migratetype); 1317 spin_unlock(&zone->lock); 1318 if (!page) 1319 goto failed; 1320 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1321 } 1322 1323 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1324 zone_statistics(preferred_zone, zone, gfp_flags); 1325 local_irq_restore(flags); 1326 1327 VM_BUG_ON(bad_range(zone, page)); 1328 if (prep_new_page(page, order, gfp_flags)) 1329 goto again; 1330 return page; 1331 1332 failed: 1333 local_irq_restore(flags); 1334 return NULL; 1335 } 1336 1337 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1338 #define ALLOC_WMARK_MIN WMARK_MIN 1339 #define ALLOC_WMARK_LOW WMARK_LOW 1340 #define ALLOC_WMARK_HIGH WMARK_HIGH 1341 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1342 1343 /* Mask to get the watermark bits */ 1344 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1345 1346 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1347 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1348 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1349 1350 #ifdef CONFIG_FAIL_PAGE_ALLOC 1351 1352 static struct { 1353 struct fault_attr attr; 1354 1355 u32 ignore_gfp_highmem; 1356 u32 ignore_gfp_wait; 1357 u32 min_order; 1358 } fail_page_alloc = { 1359 .attr = FAULT_ATTR_INITIALIZER, 1360 .ignore_gfp_wait = 1, 1361 .ignore_gfp_highmem = 1, 1362 .min_order = 1, 1363 }; 1364 1365 static int __init setup_fail_page_alloc(char *str) 1366 { 1367 return setup_fault_attr(&fail_page_alloc.attr, str); 1368 } 1369 __setup("fail_page_alloc=", setup_fail_page_alloc); 1370 1371 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1372 { 1373 if (order < fail_page_alloc.min_order) 1374 return 0; 1375 if (gfp_mask & __GFP_NOFAIL) 1376 return 0; 1377 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1378 return 0; 1379 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1380 return 0; 1381 1382 return should_fail(&fail_page_alloc.attr, 1 << order); 1383 } 1384 1385 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1386 1387 static int __init fail_page_alloc_debugfs(void) 1388 { 1389 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1390 struct dentry *dir; 1391 1392 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1393 &fail_page_alloc.attr); 1394 if (IS_ERR(dir)) 1395 return PTR_ERR(dir); 1396 1397 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1398 &fail_page_alloc.ignore_gfp_wait)) 1399 goto fail; 1400 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1401 &fail_page_alloc.ignore_gfp_highmem)) 1402 goto fail; 1403 if (!debugfs_create_u32("min-order", mode, dir, 1404 &fail_page_alloc.min_order)) 1405 goto fail; 1406 1407 return 0; 1408 fail: 1409 debugfs_remove_recursive(dir); 1410 1411 return -ENOMEM; 1412 } 1413 1414 late_initcall(fail_page_alloc_debugfs); 1415 1416 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1417 1418 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1419 1420 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1421 { 1422 return 0; 1423 } 1424 1425 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1426 1427 /* 1428 * Return true if free pages are above 'mark'. This takes into account the order 1429 * of the allocation. 1430 */ 1431 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1432 int classzone_idx, int alloc_flags, long free_pages) 1433 { 1434 /* free_pages my go negative - that's OK */ 1435 long min = mark; 1436 int o; 1437 1438 free_pages -= (1 << order) + 1; 1439 if (alloc_flags & ALLOC_HIGH) 1440 min -= min / 2; 1441 if (alloc_flags & ALLOC_HARDER) 1442 min -= min / 4; 1443 1444 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1445 return false; 1446 for (o = 0; o < order; o++) { 1447 /* At the next order, this order's pages become unavailable */ 1448 free_pages -= z->free_area[o].nr_free << o; 1449 1450 /* Require fewer higher order pages to be free */ 1451 min >>= 1; 1452 1453 if (free_pages <= min) 1454 return false; 1455 } 1456 return true; 1457 } 1458 1459 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1460 int classzone_idx, int alloc_flags) 1461 { 1462 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1463 zone_page_state(z, NR_FREE_PAGES)); 1464 } 1465 1466 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1467 int classzone_idx, int alloc_flags) 1468 { 1469 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1470 1471 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1472 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1473 1474 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1475 free_pages); 1476 } 1477 1478 #ifdef CONFIG_NUMA 1479 /* 1480 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1481 * skip over zones that are not allowed by the cpuset, or that have 1482 * been recently (in last second) found to be nearly full. See further 1483 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1484 * that have to skip over a lot of full or unallowed zones. 1485 * 1486 * If the zonelist cache is present in the passed in zonelist, then 1487 * returns a pointer to the allowed node mask (either the current 1488 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1489 * 1490 * If the zonelist cache is not available for this zonelist, does 1491 * nothing and returns NULL. 1492 * 1493 * If the fullzones BITMAP in the zonelist cache is stale (more than 1494 * a second since last zap'd) then we zap it out (clear its bits.) 1495 * 1496 * We hold off even calling zlc_setup, until after we've checked the 1497 * first zone in the zonelist, on the theory that most allocations will 1498 * be satisfied from that first zone, so best to examine that zone as 1499 * quickly as we can. 1500 */ 1501 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1502 { 1503 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1504 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1505 1506 zlc = zonelist->zlcache_ptr; 1507 if (!zlc) 1508 return NULL; 1509 1510 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1511 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1512 zlc->last_full_zap = jiffies; 1513 } 1514 1515 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1516 &cpuset_current_mems_allowed : 1517 &node_states[N_HIGH_MEMORY]; 1518 return allowednodes; 1519 } 1520 1521 /* 1522 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1523 * if it is worth looking at further for free memory: 1524 * 1) Check that the zone isn't thought to be full (doesn't have its 1525 * bit set in the zonelist_cache fullzones BITMAP). 1526 * 2) Check that the zones node (obtained from the zonelist_cache 1527 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1528 * Return true (non-zero) if zone is worth looking at further, or 1529 * else return false (zero) if it is not. 1530 * 1531 * This check -ignores- the distinction between various watermarks, 1532 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1533 * found to be full for any variation of these watermarks, it will 1534 * be considered full for up to one second by all requests, unless 1535 * we are so low on memory on all allowed nodes that we are forced 1536 * into the second scan of the zonelist. 1537 * 1538 * In the second scan we ignore this zonelist cache and exactly 1539 * apply the watermarks to all zones, even it is slower to do so. 1540 * We are low on memory in the second scan, and should leave no stone 1541 * unturned looking for a free page. 1542 */ 1543 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1544 nodemask_t *allowednodes) 1545 { 1546 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1547 int i; /* index of *z in zonelist zones */ 1548 int n; /* node that zone *z is on */ 1549 1550 zlc = zonelist->zlcache_ptr; 1551 if (!zlc) 1552 return 1; 1553 1554 i = z - zonelist->_zonerefs; 1555 n = zlc->z_to_n[i]; 1556 1557 /* This zone is worth trying if it is allowed but not full */ 1558 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1559 } 1560 1561 /* 1562 * Given 'z' scanning a zonelist, set the corresponding bit in 1563 * zlc->fullzones, so that subsequent attempts to allocate a page 1564 * from that zone don't waste time re-examining it. 1565 */ 1566 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1567 { 1568 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1569 int i; /* index of *z in zonelist zones */ 1570 1571 zlc = zonelist->zlcache_ptr; 1572 if (!zlc) 1573 return; 1574 1575 i = z - zonelist->_zonerefs; 1576 1577 set_bit(i, zlc->fullzones); 1578 } 1579 1580 /* 1581 * clear all zones full, called after direct reclaim makes progress so that 1582 * a zone that was recently full is not skipped over for up to a second 1583 */ 1584 static void zlc_clear_zones_full(struct zonelist *zonelist) 1585 { 1586 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1587 1588 zlc = zonelist->zlcache_ptr; 1589 if (!zlc) 1590 return; 1591 1592 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1593 } 1594 1595 #else /* CONFIG_NUMA */ 1596 1597 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1598 { 1599 return NULL; 1600 } 1601 1602 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1603 nodemask_t *allowednodes) 1604 { 1605 return 1; 1606 } 1607 1608 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1609 { 1610 } 1611 1612 static void zlc_clear_zones_full(struct zonelist *zonelist) 1613 { 1614 } 1615 #endif /* CONFIG_NUMA */ 1616 1617 /* 1618 * get_page_from_freelist goes through the zonelist trying to allocate 1619 * a page. 1620 */ 1621 static struct page * 1622 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1623 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1624 struct zone *preferred_zone, int migratetype) 1625 { 1626 struct zoneref *z; 1627 struct page *page = NULL; 1628 int classzone_idx; 1629 struct zone *zone; 1630 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1631 int zlc_active = 0; /* set if using zonelist_cache */ 1632 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1633 1634 classzone_idx = zone_idx(preferred_zone); 1635 zonelist_scan: 1636 /* 1637 * Scan zonelist, looking for a zone with enough free. 1638 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1639 */ 1640 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1641 high_zoneidx, nodemask) { 1642 if (NUMA_BUILD && zlc_active && 1643 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1644 continue; 1645 if ((alloc_flags & ALLOC_CPUSET) && 1646 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1647 continue; 1648 1649 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1650 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1651 unsigned long mark; 1652 int ret; 1653 1654 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1655 if (zone_watermark_ok(zone, order, mark, 1656 classzone_idx, alloc_flags)) 1657 goto try_this_zone; 1658 1659 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1660 /* 1661 * we do zlc_setup if there are multiple nodes 1662 * and before considering the first zone allowed 1663 * by the cpuset. 1664 */ 1665 allowednodes = zlc_setup(zonelist, alloc_flags); 1666 zlc_active = 1; 1667 did_zlc_setup = 1; 1668 } 1669 1670 if (zone_reclaim_mode == 0) 1671 goto this_zone_full; 1672 1673 /* 1674 * As we may have just activated ZLC, check if the first 1675 * eligible zone has failed zone_reclaim recently. 1676 */ 1677 if (NUMA_BUILD && zlc_active && 1678 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1679 continue; 1680 1681 ret = zone_reclaim(zone, gfp_mask, order); 1682 switch (ret) { 1683 case ZONE_RECLAIM_NOSCAN: 1684 /* did not scan */ 1685 continue; 1686 case ZONE_RECLAIM_FULL: 1687 /* scanned but unreclaimable */ 1688 continue; 1689 default: 1690 /* did we reclaim enough */ 1691 if (!zone_watermark_ok(zone, order, mark, 1692 classzone_idx, alloc_flags)) 1693 goto this_zone_full; 1694 } 1695 } 1696 1697 try_this_zone: 1698 page = buffered_rmqueue(preferred_zone, zone, order, 1699 gfp_mask, migratetype); 1700 if (page) 1701 break; 1702 this_zone_full: 1703 if (NUMA_BUILD) 1704 zlc_mark_zone_full(zonelist, z); 1705 } 1706 1707 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1708 /* Disable zlc cache for second zonelist scan */ 1709 zlc_active = 0; 1710 goto zonelist_scan; 1711 } 1712 return page; 1713 } 1714 1715 /* 1716 * Large machines with many possible nodes should not always dump per-node 1717 * meminfo in irq context. 1718 */ 1719 static inline bool should_suppress_show_mem(void) 1720 { 1721 bool ret = false; 1722 1723 #if NODES_SHIFT > 8 1724 ret = in_interrupt(); 1725 #endif 1726 return ret; 1727 } 1728 1729 static DEFINE_RATELIMIT_STATE(nopage_rs, 1730 DEFAULT_RATELIMIT_INTERVAL, 1731 DEFAULT_RATELIMIT_BURST); 1732 1733 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1734 { 1735 unsigned int filter = SHOW_MEM_FILTER_NODES; 1736 1737 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 1738 return; 1739 1740 /* 1741 * This documents exceptions given to allocations in certain 1742 * contexts that are allowed to allocate outside current's set 1743 * of allowed nodes. 1744 */ 1745 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1746 if (test_thread_flag(TIF_MEMDIE) || 1747 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1748 filter &= ~SHOW_MEM_FILTER_NODES; 1749 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1750 filter &= ~SHOW_MEM_FILTER_NODES; 1751 1752 if (fmt) { 1753 struct va_format vaf; 1754 va_list args; 1755 1756 va_start(args, fmt); 1757 1758 vaf.fmt = fmt; 1759 vaf.va = &args; 1760 1761 pr_warn("%pV", &vaf); 1762 1763 va_end(args); 1764 } 1765 1766 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 1767 current->comm, order, gfp_mask); 1768 1769 dump_stack(); 1770 if (!should_suppress_show_mem()) 1771 show_mem(filter); 1772 } 1773 1774 static inline int 1775 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1776 unsigned long pages_reclaimed) 1777 { 1778 /* Do not loop if specifically requested */ 1779 if (gfp_mask & __GFP_NORETRY) 1780 return 0; 1781 1782 /* 1783 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1784 * means __GFP_NOFAIL, but that may not be true in other 1785 * implementations. 1786 */ 1787 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1788 return 1; 1789 1790 /* 1791 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1792 * specified, then we retry until we no longer reclaim any pages 1793 * (above), or we've reclaimed an order of pages at least as 1794 * large as the allocation's order. In both cases, if the 1795 * allocation still fails, we stop retrying. 1796 */ 1797 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1798 return 1; 1799 1800 /* 1801 * Don't let big-order allocations loop unless the caller 1802 * explicitly requests that. 1803 */ 1804 if (gfp_mask & __GFP_NOFAIL) 1805 return 1; 1806 1807 return 0; 1808 } 1809 1810 static inline struct page * 1811 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1812 struct zonelist *zonelist, enum zone_type high_zoneidx, 1813 nodemask_t *nodemask, struct zone *preferred_zone, 1814 int migratetype) 1815 { 1816 struct page *page; 1817 1818 /* Acquire the OOM killer lock for the zones in zonelist */ 1819 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1820 schedule_timeout_uninterruptible(1); 1821 return NULL; 1822 } 1823 1824 /* 1825 * Go through the zonelist yet one more time, keep very high watermark 1826 * here, this is only to catch a parallel oom killing, we must fail if 1827 * we're still under heavy pressure. 1828 */ 1829 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1830 order, zonelist, high_zoneidx, 1831 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1832 preferred_zone, migratetype); 1833 if (page) 1834 goto out; 1835 1836 if (!(gfp_mask & __GFP_NOFAIL)) { 1837 /* The OOM killer will not help higher order allocs */ 1838 if (order > PAGE_ALLOC_COSTLY_ORDER) 1839 goto out; 1840 /* The OOM killer does not needlessly kill tasks for lowmem */ 1841 if (high_zoneidx < ZONE_NORMAL) 1842 goto out; 1843 /* 1844 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1845 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1846 * The caller should handle page allocation failure by itself if 1847 * it specifies __GFP_THISNODE. 1848 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1849 */ 1850 if (gfp_mask & __GFP_THISNODE) 1851 goto out; 1852 } 1853 /* Exhausted what can be done so it's blamo time */ 1854 out_of_memory(zonelist, gfp_mask, order, nodemask); 1855 1856 out: 1857 clear_zonelist_oom(zonelist, gfp_mask); 1858 return page; 1859 } 1860 1861 #ifdef CONFIG_COMPACTION 1862 /* Try memory compaction for high-order allocations before reclaim */ 1863 static struct page * 1864 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1865 struct zonelist *zonelist, enum zone_type high_zoneidx, 1866 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1867 int migratetype, unsigned long *did_some_progress, 1868 bool sync_migration) 1869 { 1870 struct page *page; 1871 1872 if (!order || compaction_deferred(preferred_zone)) 1873 return NULL; 1874 1875 current->flags |= PF_MEMALLOC; 1876 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1877 nodemask, sync_migration); 1878 current->flags &= ~PF_MEMALLOC; 1879 if (*did_some_progress != COMPACT_SKIPPED) { 1880 1881 /* Page migration frees to the PCP lists but we want merging */ 1882 drain_pages(get_cpu()); 1883 put_cpu(); 1884 1885 page = get_page_from_freelist(gfp_mask, nodemask, 1886 order, zonelist, high_zoneidx, 1887 alloc_flags, preferred_zone, 1888 migratetype); 1889 if (page) { 1890 preferred_zone->compact_considered = 0; 1891 preferred_zone->compact_defer_shift = 0; 1892 count_vm_event(COMPACTSUCCESS); 1893 return page; 1894 } 1895 1896 /* 1897 * It's bad if compaction run occurs and fails. 1898 * The most likely reason is that pages exist, 1899 * but not enough to satisfy watermarks. 1900 */ 1901 count_vm_event(COMPACTFAIL); 1902 defer_compaction(preferred_zone); 1903 1904 cond_resched(); 1905 } 1906 1907 return NULL; 1908 } 1909 #else 1910 static inline struct page * 1911 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1912 struct zonelist *zonelist, enum zone_type high_zoneidx, 1913 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1914 int migratetype, unsigned long *did_some_progress, 1915 bool sync_migration) 1916 { 1917 return NULL; 1918 } 1919 #endif /* CONFIG_COMPACTION */ 1920 1921 /* The really slow allocator path where we enter direct reclaim */ 1922 static inline struct page * 1923 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1924 struct zonelist *zonelist, enum zone_type high_zoneidx, 1925 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1926 int migratetype, unsigned long *did_some_progress) 1927 { 1928 struct page *page = NULL; 1929 struct reclaim_state reclaim_state; 1930 bool drained = false; 1931 1932 cond_resched(); 1933 1934 /* We now go into synchronous reclaim */ 1935 cpuset_memory_pressure_bump(); 1936 current->flags |= PF_MEMALLOC; 1937 lockdep_set_current_reclaim_state(gfp_mask); 1938 reclaim_state.reclaimed_slab = 0; 1939 current->reclaim_state = &reclaim_state; 1940 1941 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1942 1943 current->reclaim_state = NULL; 1944 lockdep_clear_current_reclaim_state(); 1945 current->flags &= ~PF_MEMALLOC; 1946 1947 cond_resched(); 1948 1949 if (unlikely(!(*did_some_progress))) 1950 return NULL; 1951 1952 /* After successful reclaim, reconsider all zones for allocation */ 1953 if (NUMA_BUILD) 1954 zlc_clear_zones_full(zonelist); 1955 1956 retry: 1957 page = get_page_from_freelist(gfp_mask, nodemask, order, 1958 zonelist, high_zoneidx, 1959 alloc_flags, preferred_zone, 1960 migratetype); 1961 1962 /* 1963 * If an allocation failed after direct reclaim, it could be because 1964 * pages are pinned on the per-cpu lists. Drain them and try again 1965 */ 1966 if (!page && !drained) { 1967 drain_all_pages(); 1968 drained = true; 1969 goto retry; 1970 } 1971 1972 return page; 1973 } 1974 1975 /* 1976 * This is called in the allocator slow-path if the allocation request is of 1977 * sufficient urgency to ignore watermarks and take other desperate measures 1978 */ 1979 static inline struct page * 1980 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1981 struct zonelist *zonelist, enum zone_type high_zoneidx, 1982 nodemask_t *nodemask, struct zone *preferred_zone, 1983 int migratetype) 1984 { 1985 struct page *page; 1986 1987 do { 1988 page = get_page_from_freelist(gfp_mask, nodemask, order, 1989 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1990 preferred_zone, migratetype); 1991 1992 if (!page && gfp_mask & __GFP_NOFAIL) 1993 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 1994 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1995 1996 return page; 1997 } 1998 1999 static inline 2000 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2001 enum zone_type high_zoneidx, 2002 enum zone_type classzone_idx) 2003 { 2004 struct zoneref *z; 2005 struct zone *zone; 2006 2007 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2008 wakeup_kswapd(zone, order, classzone_idx); 2009 } 2010 2011 static inline int 2012 gfp_to_alloc_flags(gfp_t gfp_mask) 2013 { 2014 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2015 const gfp_t wait = gfp_mask & __GFP_WAIT; 2016 2017 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2018 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2019 2020 /* 2021 * The caller may dip into page reserves a bit more if the caller 2022 * cannot run direct reclaim, or if the caller has realtime scheduling 2023 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2024 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2025 */ 2026 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2027 2028 if (!wait) { 2029 /* 2030 * Not worth trying to allocate harder for 2031 * __GFP_NOMEMALLOC even if it can't schedule. 2032 */ 2033 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2034 alloc_flags |= ALLOC_HARDER; 2035 /* 2036 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2037 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2038 */ 2039 alloc_flags &= ~ALLOC_CPUSET; 2040 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2041 alloc_flags |= ALLOC_HARDER; 2042 2043 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2044 if (!in_interrupt() && 2045 ((current->flags & PF_MEMALLOC) || 2046 unlikely(test_thread_flag(TIF_MEMDIE)))) 2047 alloc_flags |= ALLOC_NO_WATERMARKS; 2048 } 2049 2050 return alloc_flags; 2051 } 2052 2053 static inline struct page * 2054 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2055 struct zonelist *zonelist, enum zone_type high_zoneidx, 2056 nodemask_t *nodemask, struct zone *preferred_zone, 2057 int migratetype) 2058 { 2059 const gfp_t wait = gfp_mask & __GFP_WAIT; 2060 struct page *page = NULL; 2061 int alloc_flags; 2062 unsigned long pages_reclaimed = 0; 2063 unsigned long did_some_progress; 2064 bool sync_migration = false; 2065 2066 /* 2067 * In the slowpath, we sanity check order to avoid ever trying to 2068 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2069 * be using allocators in order of preference for an area that is 2070 * too large. 2071 */ 2072 if (order >= MAX_ORDER) { 2073 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2074 return NULL; 2075 } 2076 2077 /* 2078 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2079 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2080 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2081 * using a larger set of nodes after it has established that the 2082 * allowed per node queues are empty and that nodes are 2083 * over allocated. 2084 */ 2085 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2086 goto nopage; 2087 2088 restart: 2089 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2090 wake_all_kswapd(order, zonelist, high_zoneidx, 2091 zone_idx(preferred_zone)); 2092 2093 /* 2094 * OK, we're below the kswapd watermark and have kicked background 2095 * reclaim. Now things get more complex, so set up alloc_flags according 2096 * to how we want to proceed. 2097 */ 2098 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2099 2100 /* 2101 * Find the true preferred zone if the allocation is unconstrained by 2102 * cpusets. 2103 */ 2104 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2105 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2106 &preferred_zone); 2107 2108 rebalance: 2109 /* This is the last chance, in general, before the goto nopage. */ 2110 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2111 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2112 preferred_zone, migratetype); 2113 if (page) 2114 goto got_pg; 2115 2116 /* Allocate without watermarks if the context allows */ 2117 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2118 page = __alloc_pages_high_priority(gfp_mask, order, 2119 zonelist, high_zoneidx, nodemask, 2120 preferred_zone, migratetype); 2121 if (page) 2122 goto got_pg; 2123 } 2124 2125 /* Atomic allocations - we can't balance anything */ 2126 if (!wait) 2127 goto nopage; 2128 2129 /* Avoid recursion of direct reclaim */ 2130 if (current->flags & PF_MEMALLOC) 2131 goto nopage; 2132 2133 /* Avoid allocations with no watermarks from looping endlessly */ 2134 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2135 goto nopage; 2136 2137 /* 2138 * Try direct compaction. The first pass is asynchronous. Subsequent 2139 * attempts after direct reclaim are synchronous 2140 */ 2141 page = __alloc_pages_direct_compact(gfp_mask, order, 2142 zonelist, high_zoneidx, 2143 nodemask, 2144 alloc_flags, preferred_zone, 2145 migratetype, &did_some_progress, 2146 sync_migration); 2147 if (page) 2148 goto got_pg; 2149 sync_migration = true; 2150 2151 /* Try direct reclaim and then allocating */ 2152 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2153 zonelist, high_zoneidx, 2154 nodemask, 2155 alloc_flags, preferred_zone, 2156 migratetype, &did_some_progress); 2157 if (page) 2158 goto got_pg; 2159 2160 /* 2161 * If we failed to make any progress reclaiming, then we are 2162 * running out of options and have to consider going OOM 2163 */ 2164 if (!did_some_progress) { 2165 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2166 if (oom_killer_disabled) 2167 goto nopage; 2168 page = __alloc_pages_may_oom(gfp_mask, order, 2169 zonelist, high_zoneidx, 2170 nodemask, preferred_zone, 2171 migratetype); 2172 if (page) 2173 goto got_pg; 2174 2175 if (!(gfp_mask & __GFP_NOFAIL)) { 2176 /* 2177 * The oom killer is not called for high-order 2178 * allocations that may fail, so if no progress 2179 * is being made, there are no other options and 2180 * retrying is unlikely to help. 2181 */ 2182 if (order > PAGE_ALLOC_COSTLY_ORDER) 2183 goto nopage; 2184 /* 2185 * The oom killer is not called for lowmem 2186 * allocations to prevent needlessly killing 2187 * innocent tasks. 2188 */ 2189 if (high_zoneidx < ZONE_NORMAL) 2190 goto nopage; 2191 } 2192 2193 goto restart; 2194 } 2195 } 2196 2197 /* Check if we should retry the allocation */ 2198 pages_reclaimed += did_some_progress; 2199 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2200 /* Wait for some write requests to complete then retry */ 2201 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2202 goto rebalance; 2203 } else { 2204 /* 2205 * High-order allocations do not necessarily loop after 2206 * direct reclaim and reclaim/compaction depends on compaction 2207 * being called after reclaim so call directly if necessary 2208 */ 2209 page = __alloc_pages_direct_compact(gfp_mask, order, 2210 zonelist, high_zoneidx, 2211 nodemask, 2212 alloc_flags, preferred_zone, 2213 migratetype, &did_some_progress, 2214 sync_migration); 2215 if (page) 2216 goto got_pg; 2217 } 2218 2219 nopage: 2220 warn_alloc_failed(gfp_mask, order, NULL); 2221 return page; 2222 got_pg: 2223 if (kmemcheck_enabled) 2224 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2225 return page; 2226 2227 } 2228 2229 /* 2230 * This is the 'heart' of the zoned buddy allocator. 2231 */ 2232 struct page * 2233 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2234 struct zonelist *zonelist, nodemask_t *nodemask) 2235 { 2236 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2237 struct zone *preferred_zone; 2238 struct page *page; 2239 int migratetype = allocflags_to_migratetype(gfp_mask); 2240 2241 gfp_mask &= gfp_allowed_mask; 2242 2243 lockdep_trace_alloc(gfp_mask); 2244 2245 might_sleep_if(gfp_mask & __GFP_WAIT); 2246 2247 if (should_fail_alloc_page(gfp_mask, order)) 2248 return NULL; 2249 2250 /* 2251 * Check the zones suitable for the gfp_mask contain at least one 2252 * valid zone. It's possible to have an empty zonelist as a result 2253 * of GFP_THISNODE and a memoryless node 2254 */ 2255 if (unlikely(!zonelist->_zonerefs->zone)) 2256 return NULL; 2257 2258 get_mems_allowed(); 2259 /* The preferred zone is used for statistics later */ 2260 first_zones_zonelist(zonelist, high_zoneidx, 2261 nodemask ? : &cpuset_current_mems_allowed, 2262 &preferred_zone); 2263 if (!preferred_zone) { 2264 put_mems_allowed(); 2265 return NULL; 2266 } 2267 2268 /* First allocation attempt */ 2269 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2270 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2271 preferred_zone, migratetype); 2272 if (unlikely(!page)) 2273 page = __alloc_pages_slowpath(gfp_mask, order, 2274 zonelist, high_zoneidx, nodemask, 2275 preferred_zone, migratetype); 2276 put_mems_allowed(); 2277 2278 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2279 return page; 2280 } 2281 EXPORT_SYMBOL(__alloc_pages_nodemask); 2282 2283 /* 2284 * Common helper functions. 2285 */ 2286 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2287 { 2288 struct page *page; 2289 2290 /* 2291 * __get_free_pages() returns a 32-bit address, which cannot represent 2292 * a highmem page 2293 */ 2294 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2295 2296 page = alloc_pages(gfp_mask, order); 2297 if (!page) 2298 return 0; 2299 return (unsigned long) page_address(page); 2300 } 2301 EXPORT_SYMBOL(__get_free_pages); 2302 2303 unsigned long get_zeroed_page(gfp_t gfp_mask) 2304 { 2305 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2306 } 2307 EXPORT_SYMBOL(get_zeroed_page); 2308 2309 void __pagevec_free(struct pagevec *pvec) 2310 { 2311 int i = pagevec_count(pvec); 2312 2313 while (--i >= 0) { 2314 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2315 free_hot_cold_page(pvec->pages[i], pvec->cold); 2316 } 2317 } 2318 2319 void __free_pages(struct page *page, unsigned int order) 2320 { 2321 if (put_page_testzero(page)) { 2322 if (order == 0) 2323 free_hot_cold_page(page, 0); 2324 else 2325 __free_pages_ok(page, order); 2326 } 2327 } 2328 2329 EXPORT_SYMBOL(__free_pages); 2330 2331 void free_pages(unsigned long addr, unsigned int order) 2332 { 2333 if (addr != 0) { 2334 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2335 __free_pages(virt_to_page((void *)addr), order); 2336 } 2337 } 2338 2339 EXPORT_SYMBOL(free_pages); 2340 2341 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2342 { 2343 if (addr) { 2344 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2345 unsigned long used = addr + PAGE_ALIGN(size); 2346 2347 split_page(virt_to_page((void *)addr), order); 2348 while (used < alloc_end) { 2349 free_page(used); 2350 used += PAGE_SIZE; 2351 } 2352 } 2353 return (void *)addr; 2354 } 2355 2356 /** 2357 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2358 * @size: the number of bytes to allocate 2359 * @gfp_mask: GFP flags for the allocation 2360 * 2361 * This function is similar to alloc_pages(), except that it allocates the 2362 * minimum number of pages to satisfy the request. alloc_pages() can only 2363 * allocate memory in power-of-two pages. 2364 * 2365 * This function is also limited by MAX_ORDER. 2366 * 2367 * Memory allocated by this function must be released by free_pages_exact(). 2368 */ 2369 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2370 { 2371 unsigned int order = get_order(size); 2372 unsigned long addr; 2373 2374 addr = __get_free_pages(gfp_mask, order); 2375 return make_alloc_exact(addr, order, size); 2376 } 2377 EXPORT_SYMBOL(alloc_pages_exact); 2378 2379 /** 2380 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2381 * pages on a node. 2382 * @nid: the preferred node ID where memory should be allocated 2383 * @size: the number of bytes to allocate 2384 * @gfp_mask: GFP flags for the allocation 2385 * 2386 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2387 * back. 2388 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2389 * but is not exact. 2390 */ 2391 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2392 { 2393 unsigned order = get_order(size); 2394 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2395 if (!p) 2396 return NULL; 2397 return make_alloc_exact((unsigned long)page_address(p), order, size); 2398 } 2399 EXPORT_SYMBOL(alloc_pages_exact_nid); 2400 2401 /** 2402 * free_pages_exact - release memory allocated via alloc_pages_exact() 2403 * @virt: the value returned by alloc_pages_exact. 2404 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2405 * 2406 * Release the memory allocated by a previous call to alloc_pages_exact. 2407 */ 2408 void free_pages_exact(void *virt, size_t size) 2409 { 2410 unsigned long addr = (unsigned long)virt; 2411 unsigned long end = addr + PAGE_ALIGN(size); 2412 2413 while (addr < end) { 2414 free_page(addr); 2415 addr += PAGE_SIZE; 2416 } 2417 } 2418 EXPORT_SYMBOL(free_pages_exact); 2419 2420 static unsigned int nr_free_zone_pages(int offset) 2421 { 2422 struct zoneref *z; 2423 struct zone *zone; 2424 2425 /* Just pick one node, since fallback list is circular */ 2426 unsigned int sum = 0; 2427 2428 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2429 2430 for_each_zone_zonelist(zone, z, zonelist, offset) { 2431 unsigned long size = zone->present_pages; 2432 unsigned long high = high_wmark_pages(zone); 2433 if (size > high) 2434 sum += size - high; 2435 } 2436 2437 return sum; 2438 } 2439 2440 /* 2441 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2442 */ 2443 unsigned int nr_free_buffer_pages(void) 2444 { 2445 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2446 } 2447 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2448 2449 /* 2450 * Amount of free RAM allocatable within all zones 2451 */ 2452 unsigned int nr_free_pagecache_pages(void) 2453 { 2454 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2455 } 2456 2457 static inline void show_node(struct zone *zone) 2458 { 2459 if (NUMA_BUILD) 2460 printk("Node %d ", zone_to_nid(zone)); 2461 } 2462 2463 void si_meminfo(struct sysinfo *val) 2464 { 2465 val->totalram = totalram_pages; 2466 val->sharedram = 0; 2467 val->freeram = global_page_state(NR_FREE_PAGES); 2468 val->bufferram = nr_blockdev_pages(); 2469 val->totalhigh = totalhigh_pages; 2470 val->freehigh = nr_free_highpages(); 2471 val->mem_unit = PAGE_SIZE; 2472 } 2473 2474 EXPORT_SYMBOL(si_meminfo); 2475 2476 #ifdef CONFIG_NUMA 2477 void si_meminfo_node(struct sysinfo *val, int nid) 2478 { 2479 pg_data_t *pgdat = NODE_DATA(nid); 2480 2481 val->totalram = pgdat->node_present_pages; 2482 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2483 #ifdef CONFIG_HIGHMEM 2484 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2485 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2486 NR_FREE_PAGES); 2487 #else 2488 val->totalhigh = 0; 2489 val->freehigh = 0; 2490 #endif 2491 val->mem_unit = PAGE_SIZE; 2492 } 2493 #endif 2494 2495 /* 2496 * Determine whether the node should be displayed or not, depending on whether 2497 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2498 */ 2499 bool skip_free_areas_node(unsigned int flags, int nid) 2500 { 2501 bool ret = false; 2502 2503 if (!(flags & SHOW_MEM_FILTER_NODES)) 2504 goto out; 2505 2506 get_mems_allowed(); 2507 ret = !node_isset(nid, cpuset_current_mems_allowed); 2508 put_mems_allowed(); 2509 out: 2510 return ret; 2511 } 2512 2513 #define K(x) ((x) << (PAGE_SHIFT-10)) 2514 2515 /* 2516 * Show free area list (used inside shift_scroll-lock stuff) 2517 * We also calculate the percentage fragmentation. We do this by counting the 2518 * memory on each free list with the exception of the first item on the list. 2519 * Suppresses nodes that are not allowed by current's cpuset if 2520 * SHOW_MEM_FILTER_NODES is passed. 2521 */ 2522 void show_free_areas(unsigned int filter) 2523 { 2524 int cpu; 2525 struct zone *zone; 2526 2527 for_each_populated_zone(zone) { 2528 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2529 continue; 2530 show_node(zone); 2531 printk("%s per-cpu:\n", zone->name); 2532 2533 for_each_online_cpu(cpu) { 2534 struct per_cpu_pageset *pageset; 2535 2536 pageset = per_cpu_ptr(zone->pageset, cpu); 2537 2538 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2539 cpu, pageset->pcp.high, 2540 pageset->pcp.batch, pageset->pcp.count); 2541 } 2542 } 2543 2544 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2545 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2546 " unevictable:%lu" 2547 " dirty:%lu writeback:%lu unstable:%lu\n" 2548 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2549 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2550 global_page_state(NR_ACTIVE_ANON), 2551 global_page_state(NR_INACTIVE_ANON), 2552 global_page_state(NR_ISOLATED_ANON), 2553 global_page_state(NR_ACTIVE_FILE), 2554 global_page_state(NR_INACTIVE_FILE), 2555 global_page_state(NR_ISOLATED_FILE), 2556 global_page_state(NR_UNEVICTABLE), 2557 global_page_state(NR_FILE_DIRTY), 2558 global_page_state(NR_WRITEBACK), 2559 global_page_state(NR_UNSTABLE_NFS), 2560 global_page_state(NR_FREE_PAGES), 2561 global_page_state(NR_SLAB_RECLAIMABLE), 2562 global_page_state(NR_SLAB_UNRECLAIMABLE), 2563 global_page_state(NR_FILE_MAPPED), 2564 global_page_state(NR_SHMEM), 2565 global_page_state(NR_PAGETABLE), 2566 global_page_state(NR_BOUNCE)); 2567 2568 for_each_populated_zone(zone) { 2569 int i; 2570 2571 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2572 continue; 2573 show_node(zone); 2574 printk("%s" 2575 " free:%lukB" 2576 " min:%lukB" 2577 " low:%lukB" 2578 " high:%lukB" 2579 " active_anon:%lukB" 2580 " inactive_anon:%lukB" 2581 " active_file:%lukB" 2582 " inactive_file:%lukB" 2583 " unevictable:%lukB" 2584 " isolated(anon):%lukB" 2585 " isolated(file):%lukB" 2586 " present:%lukB" 2587 " mlocked:%lukB" 2588 " dirty:%lukB" 2589 " writeback:%lukB" 2590 " mapped:%lukB" 2591 " shmem:%lukB" 2592 " slab_reclaimable:%lukB" 2593 " slab_unreclaimable:%lukB" 2594 " kernel_stack:%lukB" 2595 " pagetables:%lukB" 2596 " unstable:%lukB" 2597 " bounce:%lukB" 2598 " writeback_tmp:%lukB" 2599 " pages_scanned:%lu" 2600 " all_unreclaimable? %s" 2601 "\n", 2602 zone->name, 2603 K(zone_page_state(zone, NR_FREE_PAGES)), 2604 K(min_wmark_pages(zone)), 2605 K(low_wmark_pages(zone)), 2606 K(high_wmark_pages(zone)), 2607 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2608 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2609 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2610 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2611 K(zone_page_state(zone, NR_UNEVICTABLE)), 2612 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2613 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2614 K(zone->present_pages), 2615 K(zone_page_state(zone, NR_MLOCK)), 2616 K(zone_page_state(zone, NR_FILE_DIRTY)), 2617 K(zone_page_state(zone, NR_WRITEBACK)), 2618 K(zone_page_state(zone, NR_FILE_MAPPED)), 2619 K(zone_page_state(zone, NR_SHMEM)), 2620 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2621 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2622 zone_page_state(zone, NR_KERNEL_STACK) * 2623 THREAD_SIZE / 1024, 2624 K(zone_page_state(zone, NR_PAGETABLE)), 2625 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2626 K(zone_page_state(zone, NR_BOUNCE)), 2627 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2628 zone->pages_scanned, 2629 (zone->all_unreclaimable ? "yes" : "no") 2630 ); 2631 printk("lowmem_reserve[]:"); 2632 for (i = 0; i < MAX_NR_ZONES; i++) 2633 printk(" %lu", zone->lowmem_reserve[i]); 2634 printk("\n"); 2635 } 2636 2637 for_each_populated_zone(zone) { 2638 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2639 2640 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2641 continue; 2642 show_node(zone); 2643 printk("%s: ", zone->name); 2644 2645 spin_lock_irqsave(&zone->lock, flags); 2646 for (order = 0; order < MAX_ORDER; order++) { 2647 nr[order] = zone->free_area[order].nr_free; 2648 total += nr[order] << order; 2649 } 2650 spin_unlock_irqrestore(&zone->lock, flags); 2651 for (order = 0; order < MAX_ORDER; order++) 2652 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2653 printk("= %lukB\n", K(total)); 2654 } 2655 2656 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2657 2658 show_swap_cache_info(); 2659 } 2660 2661 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2662 { 2663 zoneref->zone = zone; 2664 zoneref->zone_idx = zone_idx(zone); 2665 } 2666 2667 /* 2668 * Builds allocation fallback zone lists. 2669 * 2670 * Add all populated zones of a node to the zonelist. 2671 */ 2672 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2673 int nr_zones, enum zone_type zone_type) 2674 { 2675 struct zone *zone; 2676 2677 BUG_ON(zone_type >= MAX_NR_ZONES); 2678 zone_type++; 2679 2680 do { 2681 zone_type--; 2682 zone = pgdat->node_zones + zone_type; 2683 if (populated_zone(zone)) { 2684 zoneref_set_zone(zone, 2685 &zonelist->_zonerefs[nr_zones++]); 2686 check_highest_zone(zone_type); 2687 } 2688 2689 } while (zone_type); 2690 return nr_zones; 2691 } 2692 2693 2694 /* 2695 * zonelist_order: 2696 * 0 = automatic detection of better ordering. 2697 * 1 = order by ([node] distance, -zonetype) 2698 * 2 = order by (-zonetype, [node] distance) 2699 * 2700 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2701 * the same zonelist. So only NUMA can configure this param. 2702 */ 2703 #define ZONELIST_ORDER_DEFAULT 0 2704 #define ZONELIST_ORDER_NODE 1 2705 #define ZONELIST_ORDER_ZONE 2 2706 2707 /* zonelist order in the kernel. 2708 * set_zonelist_order() will set this to NODE or ZONE. 2709 */ 2710 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2711 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2712 2713 2714 #ifdef CONFIG_NUMA 2715 /* The value user specified ....changed by config */ 2716 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2717 /* string for sysctl */ 2718 #define NUMA_ZONELIST_ORDER_LEN 16 2719 char numa_zonelist_order[16] = "default"; 2720 2721 /* 2722 * interface for configure zonelist ordering. 2723 * command line option "numa_zonelist_order" 2724 * = "[dD]efault - default, automatic configuration. 2725 * = "[nN]ode - order by node locality, then by zone within node 2726 * = "[zZ]one - order by zone, then by locality within zone 2727 */ 2728 2729 static int __parse_numa_zonelist_order(char *s) 2730 { 2731 if (*s == 'd' || *s == 'D') { 2732 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2733 } else if (*s == 'n' || *s == 'N') { 2734 user_zonelist_order = ZONELIST_ORDER_NODE; 2735 } else if (*s == 'z' || *s == 'Z') { 2736 user_zonelist_order = ZONELIST_ORDER_ZONE; 2737 } else { 2738 printk(KERN_WARNING 2739 "Ignoring invalid numa_zonelist_order value: " 2740 "%s\n", s); 2741 return -EINVAL; 2742 } 2743 return 0; 2744 } 2745 2746 static __init int setup_numa_zonelist_order(char *s) 2747 { 2748 int ret; 2749 2750 if (!s) 2751 return 0; 2752 2753 ret = __parse_numa_zonelist_order(s); 2754 if (ret == 0) 2755 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2756 2757 return ret; 2758 } 2759 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2760 2761 /* 2762 * sysctl handler for numa_zonelist_order 2763 */ 2764 int numa_zonelist_order_handler(ctl_table *table, int write, 2765 void __user *buffer, size_t *length, 2766 loff_t *ppos) 2767 { 2768 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2769 int ret; 2770 static DEFINE_MUTEX(zl_order_mutex); 2771 2772 mutex_lock(&zl_order_mutex); 2773 if (write) 2774 strcpy(saved_string, (char*)table->data); 2775 ret = proc_dostring(table, write, buffer, length, ppos); 2776 if (ret) 2777 goto out; 2778 if (write) { 2779 int oldval = user_zonelist_order; 2780 if (__parse_numa_zonelist_order((char*)table->data)) { 2781 /* 2782 * bogus value. restore saved string 2783 */ 2784 strncpy((char*)table->data, saved_string, 2785 NUMA_ZONELIST_ORDER_LEN); 2786 user_zonelist_order = oldval; 2787 } else if (oldval != user_zonelist_order) { 2788 mutex_lock(&zonelists_mutex); 2789 build_all_zonelists(NULL); 2790 mutex_unlock(&zonelists_mutex); 2791 } 2792 } 2793 out: 2794 mutex_unlock(&zl_order_mutex); 2795 return ret; 2796 } 2797 2798 2799 #define MAX_NODE_LOAD (nr_online_nodes) 2800 static int node_load[MAX_NUMNODES]; 2801 2802 /** 2803 * find_next_best_node - find the next node that should appear in a given node's fallback list 2804 * @node: node whose fallback list we're appending 2805 * @used_node_mask: nodemask_t of already used nodes 2806 * 2807 * We use a number of factors to determine which is the next node that should 2808 * appear on a given node's fallback list. The node should not have appeared 2809 * already in @node's fallback list, and it should be the next closest node 2810 * according to the distance array (which contains arbitrary distance values 2811 * from each node to each node in the system), and should also prefer nodes 2812 * with no CPUs, since presumably they'll have very little allocation pressure 2813 * on them otherwise. 2814 * It returns -1 if no node is found. 2815 */ 2816 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2817 { 2818 int n, val; 2819 int min_val = INT_MAX; 2820 int best_node = -1; 2821 const struct cpumask *tmp = cpumask_of_node(0); 2822 2823 /* Use the local node if we haven't already */ 2824 if (!node_isset(node, *used_node_mask)) { 2825 node_set(node, *used_node_mask); 2826 return node; 2827 } 2828 2829 for_each_node_state(n, N_HIGH_MEMORY) { 2830 2831 /* Don't want a node to appear more than once */ 2832 if (node_isset(n, *used_node_mask)) 2833 continue; 2834 2835 /* Use the distance array to find the distance */ 2836 val = node_distance(node, n); 2837 2838 /* Penalize nodes under us ("prefer the next node") */ 2839 val += (n < node); 2840 2841 /* Give preference to headless and unused nodes */ 2842 tmp = cpumask_of_node(n); 2843 if (!cpumask_empty(tmp)) 2844 val += PENALTY_FOR_NODE_WITH_CPUS; 2845 2846 /* Slight preference for less loaded node */ 2847 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2848 val += node_load[n]; 2849 2850 if (val < min_val) { 2851 min_val = val; 2852 best_node = n; 2853 } 2854 } 2855 2856 if (best_node >= 0) 2857 node_set(best_node, *used_node_mask); 2858 2859 return best_node; 2860 } 2861 2862 2863 /* 2864 * Build zonelists ordered by node and zones within node. 2865 * This results in maximum locality--normal zone overflows into local 2866 * DMA zone, if any--but risks exhausting DMA zone. 2867 */ 2868 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2869 { 2870 int j; 2871 struct zonelist *zonelist; 2872 2873 zonelist = &pgdat->node_zonelists[0]; 2874 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2875 ; 2876 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2877 MAX_NR_ZONES - 1); 2878 zonelist->_zonerefs[j].zone = NULL; 2879 zonelist->_zonerefs[j].zone_idx = 0; 2880 } 2881 2882 /* 2883 * Build gfp_thisnode zonelists 2884 */ 2885 static void build_thisnode_zonelists(pg_data_t *pgdat) 2886 { 2887 int j; 2888 struct zonelist *zonelist; 2889 2890 zonelist = &pgdat->node_zonelists[1]; 2891 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2892 zonelist->_zonerefs[j].zone = NULL; 2893 zonelist->_zonerefs[j].zone_idx = 0; 2894 } 2895 2896 /* 2897 * Build zonelists ordered by zone and nodes within zones. 2898 * This results in conserving DMA zone[s] until all Normal memory is 2899 * exhausted, but results in overflowing to remote node while memory 2900 * may still exist in local DMA zone. 2901 */ 2902 static int node_order[MAX_NUMNODES]; 2903 2904 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2905 { 2906 int pos, j, node; 2907 int zone_type; /* needs to be signed */ 2908 struct zone *z; 2909 struct zonelist *zonelist; 2910 2911 zonelist = &pgdat->node_zonelists[0]; 2912 pos = 0; 2913 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2914 for (j = 0; j < nr_nodes; j++) { 2915 node = node_order[j]; 2916 z = &NODE_DATA(node)->node_zones[zone_type]; 2917 if (populated_zone(z)) { 2918 zoneref_set_zone(z, 2919 &zonelist->_zonerefs[pos++]); 2920 check_highest_zone(zone_type); 2921 } 2922 } 2923 } 2924 zonelist->_zonerefs[pos].zone = NULL; 2925 zonelist->_zonerefs[pos].zone_idx = 0; 2926 } 2927 2928 static int default_zonelist_order(void) 2929 { 2930 int nid, zone_type; 2931 unsigned long low_kmem_size,total_size; 2932 struct zone *z; 2933 int average_size; 2934 /* 2935 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2936 * If they are really small and used heavily, the system can fall 2937 * into OOM very easily. 2938 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2939 */ 2940 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2941 low_kmem_size = 0; 2942 total_size = 0; 2943 for_each_online_node(nid) { 2944 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2945 z = &NODE_DATA(nid)->node_zones[zone_type]; 2946 if (populated_zone(z)) { 2947 if (zone_type < ZONE_NORMAL) 2948 low_kmem_size += z->present_pages; 2949 total_size += z->present_pages; 2950 } else if (zone_type == ZONE_NORMAL) { 2951 /* 2952 * If any node has only lowmem, then node order 2953 * is preferred to allow kernel allocations 2954 * locally; otherwise, they can easily infringe 2955 * on other nodes when there is an abundance of 2956 * lowmem available to allocate from. 2957 */ 2958 return ZONELIST_ORDER_NODE; 2959 } 2960 } 2961 } 2962 if (!low_kmem_size || /* there are no DMA area. */ 2963 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2964 return ZONELIST_ORDER_NODE; 2965 /* 2966 * look into each node's config. 2967 * If there is a node whose DMA/DMA32 memory is very big area on 2968 * local memory, NODE_ORDER may be suitable. 2969 */ 2970 average_size = total_size / 2971 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2972 for_each_online_node(nid) { 2973 low_kmem_size = 0; 2974 total_size = 0; 2975 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2976 z = &NODE_DATA(nid)->node_zones[zone_type]; 2977 if (populated_zone(z)) { 2978 if (zone_type < ZONE_NORMAL) 2979 low_kmem_size += z->present_pages; 2980 total_size += z->present_pages; 2981 } 2982 } 2983 if (low_kmem_size && 2984 total_size > average_size && /* ignore small node */ 2985 low_kmem_size > total_size * 70/100) 2986 return ZONELIST_ORDER_NODE; 2987 } 2988 return ZONELIST_ORDER_ZONE; 2989 } 2990 2991 static void set_zonelist_order(void) 2992 { 2993 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2994 current_zonelist_order = default_zonelist_order(); 2995 else 2996 current_zonelist_order = user_zonelist_order; 2997 } 2998 2999 static void build_zonelists(pg_data_t *pgdat) 3000 { 3001 int j, node, load; 3002 enum zone_type i; 3003 nodemask_t used_mask; 3004 int local_node, prev_node; 3005 struct zonelist *zonelist; 3006 int order = current_zonelist_order; 3007 3008 /* initialize zonelists */ 3009 for (i = 0; i < MAX_ZONELISTS; i++) { 3010 zonelist = pgdat->node_zonelists + i; 3011 zonelist->_zonerefs[0].zone = NULL; 3012 zonelist->_zonerefs[0].zone_idx = 0; 3013 } 3014 3015 /* NUMA-aware ordering of nodes */ 3016 local_node = pgdat->node_id; 3017 load = nr_online_nodes; 3018 prev_node = local_node; 3019 nodes_clear(used_mask); 3020 3021 memset(node_order, 0, sizeof(node_order)); 3022 j = 0; 3023 3024 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3025 int distance = node_distance(local_node, node); 3026 3027 /* 3028 * If another node is sufficiently far away then it is better 3029 * to reclaim pages in a zone before going off node. 3030 */ 3031 if (distance > RECLAIM_DISTANCE) 3032 zone_reclaim_mode = 1; 3033 3034 /* 3035 * We don't want to pressure a particular node. 3036 * So adding penalty to the first node in same 3037 * distance group to make it round-robin. 3038 */ 3039 if (distance != node_distance(local_node, prev_node)) 3040 node_load[node] = load; 3041 3042 prev_node = node; 3043 load--; 3044 if (order == ZONELIST_ORDER_NODE) 3045 build_zonelists_in_node_order(pgdat, node); 3046 else 3047 node_order[j++] = node; /* remember order */ 3048 } 3049 3050 if (order == ZONELIST_ORDER_ZONE) { 3051 /* calculate node order -- i.e., DMA last! */ 3052 build_zonelists_in_zone_order(pgdat, j); 3053 } 3054 3055 build_thisnode_zonelists(pgdat); 3056 } 3057 3058 /* Construct the zonelist performance cache - see further mmzone.h */ 3059 static void build_zonelist_cache(pg_data_t *pgdat) 3060 { 3061 struct zonelist *zonelist; 3062 struct zonelist_cache *zlc; 3063 struct zoneref *z; 3064 3065 zonelist = &pgdat->node_zonelists[0]; 3066 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3067 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3068 for (z = zonelist->_zonerefs; z->zone; z++) 3069 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3070 } 3071 3072 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3073 /* 3074 * Return node id of node used for "local" allocations. 3075 * I.e., first node id of first zone in arg node's generic zonelist. 3076 * Used for initializing percpu 'numa_mem', which is used primarily 3077 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3078 */ 3079 int local_memory_node(int node) 3080 { 3081 struct zone *zone; 3082 3083 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3084 gfp_zone(GFP_KERNEL), 3085 NULL, 3086 &zone); 3087 return zone->node; 3088 } 3089 #endif 3090 3091 #else /* CONFIG_NUMA */ 3092 3093 static void set_zonelist_order(void) 3094 { 3095 current_zonelist_order = ZONELIST_ORDER_ZONE; 3096 } 3097 3098 static void build_zonelists(pg_data_t *pgdat) 3099 { 3100 int node, local_node; 3101 enum zone_type j; 3102 struct zonelist *zonelist; 3103 3104 local_node = pgdat->node_id; 3105 3106 zonelist = &pgdat->node_zonelists[0]; 3107 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3108 3109 /* 3110 * Now we build the zonelist so that it contains the zones 3111 * of all the other nodes. 3112 * We don't want to pressure a particular node, so when 3113 * building the zones for node N, we make sure that the 3114 * zones coming right after the local ones are those from 3115 * node N+1 (modulo N) 3116 */ 3117 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3118 if (!node_online(node)) 3119 continue; 3120 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3121 MAX_NR_ZONES - 1); 3122 } 3123 for (node = 0; node < local_node; node++) { 3124 if (!node_online(node)) 3125 continue; 3126 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3127 MAX_NR_ZONES - 1); 3128 } 3129 3130 zonelist->_zonerefs[j].zone = NULL; 3131 zonelist->_zonerefs[j].zone_idx = 0; 3132 } 3133 3134 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3135 static void build_zonelist_cache(pg_data_t *pgdat) 3136 { 3137 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3138 } 3139 3140 #endif /* CONFIG_NUMA */ 3141 3142 /* 3143 * Boot pageset table. One per cpu which is going to be used for all 3144 * zones and all nodes. The parameters will be set in such a way 3145 * that an item put on a list will immediately be handed over to 3146 * the buddy list. This is safe since pageset manipulation is done 3147 * with interrupts disabled. 3148 * 3149 * The boot_pagesets must be kept even after bootup is complete for 3150 * unused processors and/or zones. They do play a role for bootstrapping 3151 * hotplugged processors. 3152 * 3153 * zoneinfo_show() and maybe other functions do 3154 * not check if the processor is online before following the pageset pointer. 3155 * Other parts of the kernel may not check if the zone is available. 3156 */ 3157 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3158 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3159 static void setup_zone_pageset(struct zone *zone); 3160 3161 /* 3162 * Global mutex to protect against size modification of zonelists 3163 * as well as to serialize pageset setup for the new populated zone. 3164 */ 3165 DEFINE_MUTEX(zonelists_mutex); 3166 3167 /* return values int ....just for stop_machine() */ 3168 static __init_refok int __build_all_zonelists(void *data) 3169 { 3170 int nid; 3171 int cpu; 3172 3173 #ifdef CONFIG_NUMA 3174 memset(node_load, 0, sizeof(node_load)); 3175 #endif 3176 for_each_online_node(nid) { 3177 pg_data_t *pgdat = NODE_DATA(nid); 3178 3179 build_zonelists(pgdat); 3180 build_zonelist_cache(pgdat); 3181 } 3182 3183 /* 3184 * Initialize the boot_pagesets that are going to be used 3185 * for bootstrapping processors. The real pagesets for 3186 * each zone will be allocated later when the per cpu 3187 * allocator is available. 3188 * 3189 * boot_pagesets are used also for bootstrapping offline 3190 * cpus if the system is already booted because the pagesets 3191 * are needed to initialize allocators on a specific cpu too. 3192 * F.e. the percpu allocator needs the page allocator which 3193 * needs the percpu allocator in order to allocate its pagesets 3194 * (a chicken-egg dilemma). 3195 */ 3196 for_each_possible_cpu(cpu) { 3197 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3198 3199 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3200 /* 3201 * We now know the "local memory node" for each node-- 3202 * i.e., the node of the first zone in the generic zonelist. 3203 * Set up numa_mem percpu variable for on-line cpus. During 3204 * boot, only the boot cpu should be on-line; we'll init the 3205 * secondary cpus' numa_mem as they come on-line. During 3206 * node/memory hotplug, we'll fixup all on-line cpus. 3207 */ 3208 if (cpu_online(cpu)) 3209 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3210 #endif 3211 } 3212 3213 return 0; 3214 } 3215 3216 /* 3217 * Called with zonelists_mutex held always 3218 * unless system_state == SYSTEM_BOOTING. 3219 */ 3220 void __ref build_all_zonelists(void *data) 3221 { 3222 set_zonelist_order(); 3223 3224 if (system_state == SYSTEM_BOOTING) { 3225 __build_all_zonelists(NULL); 3226 mminit_verify_zonelist(); 3227 cpuset_init_current_mems_allowed(); 3228 } else { 3229 /* we have to stop all cpus to guarantee there is no user 3230 of zonelist */ 3231 #ifdef CONFIG_MEMORY_HOTPLUG 3232 if (data) 3233 setup_zone_pageset((struct zone *)data); 3234 #endif 3235 stop_machine(__build_all_zonelists, NULL, NULL); 3236 /* cpuset refresh routine should be here */ 3237 } 3238 vm_total_pages = nr_free_pagecache_pages(); 3239 /* 3240 * Disable grouping by mobility if the number of pages in the 3241 * system is too low to allow the mechanism to work. It would be 3242 * more accurate, but expensive to check per-zone. This check is 3243 * made on memory-hotadd so a system can start with mobility 3244 * disabled and enable it later 3245 */ 3246 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3247 page_group_by_mobility_disabled = 1; 3248 else 3249 page_group_by_mobility_disabled = 0; 3250 3251 printk("Built %i zonelists in %s order, mobility grouping %s. " 3252 "Total pages: %ld\n", 3253 nr_online_nodes, 3254 zonelist_order_name[current_zonelist_order], 3255 page_group_by_mobility_disabled ? "off" : "on", 3256 vm_total_pages); 3257 #ifdef CONFIG_NUMA 3258 printk("Policy zone: %s\n", zone_names[policy_zone]); 3259 #endif 3260 } 3261 3262 /* 3263 * Helper functions to size the waitqueue hash table. 3264 * Essentially these want to choose hash table sizes sufficiently 3265 * large so that collisions trying to wait on pages are rare. 3266 * But in fact, the number of active page waitqueues on typical 3267 * systems is ridiculously low, less than 200. So this is even 3268 * conservative, even though it seems large. 3269 * 3270 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3271 * waitqueues, i.e. the size of the waitq table given the number of pages. 3272 */ 3273 #define PAGES_PER_WAITQUEUE 256 3274 3275 #ifndef CONFIG_MEMORY_HOTPLUG 3276 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3277 { 3278 unsigned long size = 1; 3279 3280 pages /= PAGES_PER_WAITQUEUE; 3281 3282 while (size < pages) 3283 size <<= 1; 3284 3285 /* 3286 * Once we have dozens or even hundreds of threads sleeping 3287 * on IO we've got bigger problems than wait queue collision. 3288 * Limit the size of the wait table to a reasonable size. 3289 */ 3290 size = min(size, 4096UL); 3291 3292 return max(size, 4UL); 3293 } 3294 #else 3295 /* 3296 * A zone's size might be changed by hot-add, so it is not possible to determine 3297 * a suitable size for its wait_table. So we use the maximum size now. 3298 * 3299 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3300 * 3301 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3302 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3303 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3304 * 3305 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3306 * or more by the traditional way. (See above). It equals: 3307 * 3308 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3309 * ia64(16K page size) : = ( 8G + 4M)byte. 3310 * powerpc (64K page size) : = (32G +16M)byte. 3311 */ 3312 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3313 { 3314 return 4096UL; 3315 } 3316 #endif 3317 3318 /* 3319 * This is an integer logarithm so that shifts can be used later 3320 * to extract the more random high bits from the multiplicative 3321 * hash function before the remainder is taken. 3322 */ 3323 static inline unsigned long wait_table_bits(unsigned long size) 3324 { 3325 return ffz(~size); 3326 } 3327 3328 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3329 3330 /* 3331 * Check if a pageblock contains reserved pages 3332 */ 3333 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3334 { 3335 unsigned long pfn; 3336 3337 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3338 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3339 return 1; 3340 } 3341 return 0; 3342 } 3343 3344 /* 3345 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3346 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3347 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3348 * higher will lead to a bigger reserve which will get freed as contiguous 3349 * blocks as reclaim kicks in 3350 */ 3351 static void setup_zone_migrate_reserve(struct zone *zone) 3352 { 3353 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3354 struct page *page; 3355 unsigned long block_migratetype; 3356 int reserve; 3357 3358 /* 3359 * Get the start pfn, end pfn and the number of blocks to reserve 3360 * We have to be careful to be aligned to pageblock_nr_pages to 3361 * make sure that we always check pfn_valid for the first page in 3362 * the block. 3363 */ 3364 start_pfn = zone->zone_start_pfn; 3365 end_pfn = start_pfn + zone->spanned_pages; 3366 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3367 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3368 pageblock_order; 3369 3370 /* 3371 * Reserve blocks are generally in place to help high-order atomic 3372 * allocations that are short-lived. A min_free_kbytes value that 3373 * would result in more than 2 reserve blocks for atomic allocations 3374 * is assumed to be in place to help anti-fragmentation for the 3375 * future allocation of hugepages at runtime. 3376 */ 3377 reserve = min(2, reserve); 3378 3379 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3380 if (!pfn_valid(pfn)) 3381 continue; 3382 page = pfn_to_page(pfn); 3383 3384 /* Watch out for overlapping nodes */ 3385 if (page_to_nid(page) != zone_to_nid(zone)) 3386 continue; 3387 3388 /* Blocks with reserved pages will never free, skip them. */ 3389 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3390 if (pageblock_is_reserved(pfn, block_end_pfn)) 3391 continue; 3392 3393 block_migratetype = get_pageblock_migratetype(page); 3394 3395 /* If this block is reserved, account for it */ 3396 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3397 reserve--; 3398 continue; 3399 } 3400 3401 /* Suitable for reserving if this block is movable */ 3402 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3403 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3404 move_freepages_block(zone, page, MIGRATE_RESERVE); 3405 reserve--; 3406 continue; 3407 } 3408 3409 /* 3410 * If the reserve is met and this is a previous reserved block, 3411 * take it back 3412 */ 3413 if (block_migratetype == MIGRATE_RESERVE) { 3414 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3415 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3416 } 3417 } 3418 } 3419 3420 /* 3421 * Initially all pages are reserved - free ones are freed 3422 * up by free_all_bootmem() once the early boot process is 3423 * done. Non-atomic initialization, single-pass. 3424 */ 3425 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3426 unsigned long start_pfn, enum memmap_context context) 3427 { 3428 struct page *page; 3429 unsigned long end_pfn = start_pfn + size; 3430 unsigned long pfn; 3431 struct zone *z; 3432 3433 if (highest_memmap_pfn < end_pfn - 1) 3434 highest_memmap_pfn = end_pfn - 1; 3435 3436 z = &NODE_DATA(nid)->node_zones[zone]; 3437 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3438 /* 3439 * There can be holes in boot-time mem_map[]s 3440 * handed to this function. They do not 3441 * exist on hotplugged memory. 3442 */ 3443 if (context == MEMMAP_EARLY) { 3444 if (!early_pfn_valid(pfn)) 3445 continue; 3446 if (!early_pfn_in_nid(pfn, nid)) 3447 continue; 3448 } 3449 page = pfn_to_page(pfn); 3450 set_page_links(page, zone, nid, pfn); 3451 mminit_verify_page_links(page, zone, nid, pfn); 3452 init_page_count(page); 3453 reset_page_mapcount(page); 3454 SetPageReserved(page); 3455 /* 3456 * Mark the block movable so that blocks are reserved for 3457 * movable at startup. This will force kernel allocations 3458 * to reserve their blocks rather than leaking throughout 3459 * the address space during boot when many long-lived 3460 * kernel allocations are made. Later some blocks near 3461 * the start are marked MIGRATE_RESERVE by 3462 * setup_zone_migrate_reserve() 3463 * 3464 * bitmap is created for zone's valid pfn range. but memmap 3465 * can be created for invalid pages (for alignment) 3466 * check here not to call set_pageblock_migratetype() against 3467 * pfn out of zone. 3468 */ 3469 if ((z->zone_start_pfn <= pfn) 3470 && (pfn < z->zone_start_pfn + z->spanned_pages) 3471 && !(pfn & (pageblock_nr_pages - 1))) 3472 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3473 3474 INIT_LIST_HEAD(&page->lru); 3475 #ifdef WANT_PAGE_VIRTUAL 3476 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3477 if (!is_highmem_idx(zone)) 3478 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3479 #endif 3480 } 3481 } 3482 3483 static void __meminit zone_init_free_lists(struct zone *zone) 3484 { 3485 int order, t; 3486 for_each_migratetype_order(order, t) { 3487 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3488 zone->free_area[order].nr_free = 0; 3489 } 3490 } 3491 3492 #ifndef __HAVE_ARCH_MEMMAP_INIT 3493 #define memmap_init(size, nid, zone, start_pfn) \ 3494 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3495 #endif 3496 3497 static int zone_batchsize(struct zone *zone) 3498 { 3499 #ifdef CONFIG_MMU 3500 int batch; 3501 3502 /* 3503 * The per-cpu-pages pools are set to around 1000th of the 3504 * size of the zone. But no more than 1/2 of a meg. 3505 * 3506 * OK, so we don't know how big the cache is. So guess. 3507 */ 3508 batch = zone->present_pages / 1024; 3509 if (batch * PAGE_SIZE > 512 * 1024) 3510 batch = (512 * 1024) / PAGE_SIZE; 3511 batch /= 4; /* We effectively *= 4 below */ 3512 if (batch < 1) 3513 batch = 1; 3514 3515 /* 3516 * Clamp the batch to a 2^n - 1 value. Having a power 3517 * of 2 value was found to be more likely to have 3518 * suboptimal cache aliasing properties in some cases. 3519 * 3520 * For example if 2 tasks are alternately allocating 3521 * batches of pages, one task can end up with a lot 3522 * of pages of one half of the possible page colors 3523 * and the other with pages of the other colors. 3524 */ 3525 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3526 3527 return batch; 3528 3529 #else 3530 /* The deferral and batching of frees should be suppressed under NOMMU 3531 * conditions. 3532 * 3533 * The problem is that NOMMU needs to be able to allocate large chunks 3534 * of contiguous memory as there's no hardware page translation to 3535 * assemble apparent contiguous memory from discontiguous pages. 3536 * 3537 * Queueing large contiguous runs of pages for batching, however, 3538 * causes the pages to actually be freed in smaller chunks. As there 3539 * can be a significant delay between the individual batches being 3540 * recycled, this leads to the once large chunks of space being 3541 * fragmented and becoming unavailable for high-order allocations. 3542 */ 3543 return 0; 3544 #endif 3545 } 3546 3547 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3548 { 3549 struct per_cpu_pages *pcp; 3550 int migratetype; 3551 3552 memset(p, 0, sizeof(*p)); 3553 3554 pcp = &p->pcp; 3555 pcp->count = 0; 3556 pcp->high = 6 * batch; 3557 pcp->batch = max(1UL, 1 * batch); 3558 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3559 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3560 } 3561 3562 /* 3563 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3564 * to the value high for the pageset p. 3565 */ 3566 3567 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3568 unsigned long high) 3569 { 3570 struct per_cpu_pages *pcp; 3571 3572 pcp = &p->pcp; 3573 pcp->high = high; 3574 pcp->batch = max(1UL, high/4); 3575 if ((high/4) > (PAGE_SHIFT * 8)) 3576 pcp->batch = PAGE_SHIFT * 8; 3577 } 3578 3579 static void setup_zone_pageset(struct zone *zone) 3580 { 3581 int cpu; 3582 3583 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3584 3585 for_each_possible_cpu(cpu) { 3586 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3587 3588 setup_pageset(pcp, zone_batchsize(zone)); 3589 3590 if (percpu_pagelist_fraction) 3591 setup_pagelist_highmark(pcp, 3592 (zone->present_pages / 3593 percpu_pagelist_fraction)); 3594 } 3595 } 3596 3597 /* 3598 * Allocate per cpu pagesets and initialize them. 3599 * Before this call only boot pagesets were available. 3600 */ 3601 void __init setup_per_cpu_pageset(void) 3602 { 3603 struct zone *zone; 3604 3605 for_each_populated_zone(zone) 3606 setup_zone_pageset(zone); 3607 } 3608 3609 static noinline __init_refok 3610 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3611 { 3612 int i; 3613 struct pglist_data *pgdat = zone->zone_pgdat; 3614 size_t alloc_size; 3615 3616 /* 3617 * The per-page waitqueue mechanism uses hashed waitqueues 3618 * per zone. 3619 */ 3620 zone->wait_table_hash_nr_entries = 3621 wait_table_hash_nr_entries(zone_size_pages); 3622 zone->wait_table_bits = 3623 wait_table_bits(zone->wait_table_hash_nr_entries); 3624 alloc_size = zone->wait_table_hash_nr_entries 3625 * sizeof(wait_queue_head_t); 3626 3627 if (!slab_is_available()) { 3628 zone->wait_table = (wait_queue_head_t *) 3629 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3630 } else { 3631 /* 3632 * This case means that a zone whose size was 0 gets new memory 3633 * via memory hot-add. 3634 * But it may be the case that a new node was hot-added. In 3635 * this case vmalloc() will not be able to use this new node's 3636 * memory - this wait_table must be initialized to use this new 3637 * node itself as well. 3638 * To use this new node's memory, further consideration will be 3639 * necessary. 3640 */ 3641 zone->wait_table = vmalloc(alloc_size); 3642 } 3643 if (!zone->wait_table) 3644 return -ENOMEM; 3645 3646 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3647 init_waitqueue_head(zone->wait_table + i); 3648 3649 return 0; 3650 } 3651 3652 static int __zone_pcp_update(void *data) 3653 { 3654 struct zone *zone = data; 3655 int cpu; 3656 unsigned long batch = zone_batchsize(zone), flags; 3657 3658 for_each_possible_cpu(cpu) { 3659 struct per_cpu_pageset *pset; 3660 struct per_cpu_pages *pcp; 3661 3662 pset = per_cpu_ptr(zone->pageset, cpu); 3663 pcp = &pset->pcp; 3664 3665 local_irq_save(flags); 3666 free_pcppages_bulk(zone, pcp->count, pcp); 3667 setup_pageset(pset, batch); 3668 local_irq_restore(flags); 3669 } 3670 return 0; 3671 } 3672 3673 void zone_pcp_update(struct zone *zone) 3674 { 3675 stop_machine(__zone_pcp_update, zone, NULL); 3676 } 3677 3678 static __meminit void zone_pcp_init(struct zone *zone) 3679 { 3680 /* 3681 * per cpu subsystem is not up at this point. The following code 3682 * relies on the ability of the linker to provide the 3683 * offset of a (static) per cpu variable into the per cpu area. 3684 */ 3685 zone->pageset = &boot_pageset; 3686 3687 if (zone->present_pages) 3688 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3689 zone->name, zone->present_pages, 3690 zone_batchsize(zone)); 3691 } 3692 3693 __meminit int init_currently_empty_zone(struct zone *zone, 3694 unsigned long zone_start_pfn, 3695 unsigned long size, 3696 enum memmap_context context) 3697 { 3698 struct pglist_data *pgdat = zone->zone_pgdat; 3699 int ret; 3700 ret = zone_wait_table_init(zone, size); 3701 if (ret) 3702 return ret; 3703 pgdat->nr_zones = zone_idx(zone) + 1; 3704 3705 zone->zone_start_pfn = zone_start_pfn; 3706 3707 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3708 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3709 pgdat->node_id, 3710 (unsigned long)zone_idx(zone), 3711 zone_start_pfn, (zone_start_pfn + size)); 3712 3713 zone_init_free_lists(zone); 3714 3715 return 0; 3716 } 3717 3718 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 3719 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3720 /* 3721 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3722 * Architectures may implement their own version but if add_active_range() 3723 * was used and there are no special requirements, this is a convenient 3724 * alternative 3725 */ 3726 int __meminit __early_pfn_to_nid(unsigned long pfn) 3727 { 3728 unsigned long start_pfn, end_pfn; 3729 int i, nid; 3730 3731 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 3732 if (start_pfn <= pfn && pfn < end_pfn) 3733 return nid; 3734 /* This is a memory hole */ 3735 return -1; 3736 } 3737 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3738 3739 int __meminit early_pfn_to_nid(unsigned long pfn) 3740 { 3741 int nid; 3742 3743 nid = __early_pfn_to_nid(pfn); 3744 if (nid >= 0) 3745 return nid; 3746 /* just returns 0 */ 3747 return 0; 3748 } 3749 3750 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3751 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3752 { 3753 int nid; 3754 3755 nid = __early_pfn_to_nid(pfn); 3756 if (nid >= 0 && nid != node) 3757 return false; 3758 return true; 3759 } 3760 #endif 3761 3762 /** 3763 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3764 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3765 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3766 * 3767 * If an architecture guarantees that all ranges registered with 3768 * add_active_ranges() contain no holes and may be freed, this 3769 * this function may be used instead of calling free_bootmem() manually. 3770 */ 3771 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 3772 { 3773 unsigned long start_pfn, end_pfn; 3774 int i, this_nid; 3775 3776 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 3777 start_pfn = min(start_pfn, max_low_pfn); 3778 end_pfn = min(end_pfn, max_low_pfn); 3779 3780 if (start_pfn < end_pfn) 3781 free_bootmem_node(NODE_DATA(this_nid), 3782 PFN_PHYS(start_pfn), 3783 (end_pfn - start_pfn) << PAGE_SHIFT); 3784 } 3785 } 3786 3787 int __init add_from_early_node_map(struct range *range, int az, 3788 int nr_range, int nid) 3789 { 3790 unsigned long start_pfn, end_pfn; 3791 int i; 3792 3793 /* need to go over early_node_map to find out good range for node */ 3794 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) 3795 nr_range = add_range(range, az, nr_range, start_pfn, end_pfn); 3796 return nr_range; 3797 } 3798 3799 /** 3800 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3801 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3802 * 3803 * If an architecture guarantees that all ranges registered with 3804 * add_active_ranges() contain no holes and may be freed, this 3805 * function may be used instead of calling memory_present() manually. 3806 */ 3807 void __init sparse_memory_present_with_active_regions(int nid) 3808 { 3809 unsigned long start_pfn, end_pfn; 3810 int i, this_nid; 3811 3812 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 3813 memory_present(this_nid, start_pfn, end_pfn); 3814 } 3815 3816 /** 3817 * get_pfn_range_for_nid - Return the start and end page frames for a node 3818 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3819 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3820 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3821 * 3822 * It returns the start and end page frame of a node based on information 3823 * provided by an arch calling add_active_range(). If called for a node 3824 * with no available memory, a warning is printed and the start and end 3825 * PFNs will be 0. 3826 */ 3827 void __meminit get_pfn_range_for_nid(unsigned int nid, 3828 unsigned long *start_pfn, unsigned long *end_pfn) 3829 { 3830 unsigned long this_start_pfn, this_end_pfn; 3831 int i; 3832 3833 *start_pfn = -1UL; 3834 *end_pfn = 0; 3835 3836 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 3837 *start_pfn = min(*start_pfn, this_start_pfn); 3838 *end_pfn = max(*end_pfn, this_end_pfn); 3839 } 3840 3841 if (*start_pfn == -1UL) 3842 *start_pfn = 0; 3843 } 3844 3845 /* 3846 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3847 * assumption is made that zones within a node are ordered in monotonic 3848 * increasing memory addresses so that the "highest" populated zone is used 3849 */ 3850 static void __init find_usable_zone_for_movable(void) 3851 { 3852 int zone_index; 3853 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3854 if (zone_index == ZONE_MOVABLE) 3855 continue; 3856 3857 if (arch_zone_highest_possible_pfn[zone_index] > 3858 arch_zone_lowest_possible_pfn[zone_index]) 3859 break; 3860 } 3861 3862 VM_BUG_ON(zone_index == -1); 3863 movable_zone = zone_index; 3864 } 3865 3866 /* 3867 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3868 * because it is sized independent of architecture. Unlike the other zones, 3869 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3870 * in each node depending on the size of each node and how evenly kernelcore 3871 * is distributed. This helper function adjusts the zone ranges 3872 * provided by the architecture for a given node by using the end of the 3873 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3874 * zones within a node are in order of monotonic increases memory addresses 3875 */ 3876 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3877 unsigned long zone_type, 3878 unsigned long node_start_pfn, 3879 unsigned long node_end_pfn, 3880 unsigned long *zone_start_pfn, 3881 unsigned long *zone_end_pfn) 3882 { 3883 /* Only adjust if ZONE_MOVABLE is on this node */ 3884 if (zone_movable_pfn[nid]) { 3885 /* Size ZONE_MOVABLE */ 3886 if (zone_type == ZONE_MOVABLE) { 3887 *zone_start_pfn = zone_movable_pfn[nid]; 3888 *zone_end_pfn = min(node_end_pfn, 3889 arch_zone_highest_possible_pfn[movable_zone]); 3890 3891 /* Adjust for ZONE_MOVABLE starting within this range */ 3892 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3893 *zone_end_pfn > zone_movable_pfn[nid]) { 3894 *zone_end_pfn = zone_movable_pfn[nid]; 3895 3896 /* Check if this whole range is within ZONE_MOVABLE */ 3897 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3898 *zone_start_pfn = *zone_end_pfn; 3899 } 3900 } 3901 3902 /* 3903 * Return the number of pages a zone spans in a node, including holes 3904 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3905 */ 3906 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3907 unsigned long zone_type, 3908 unsigned long *ignored) 3909 { 3910 unsigned long node_start_pfn, node_end_pfn; 3911 unsigned long zone_start_pfn, zone_end_pfn; 3912 3913 /* Get the start and end of the node and zone */ 3914 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3915 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3916 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3917 adjust_zone_range_for_zone_movable(nid, zone_type, 3918 node_start_pfn, node_end_pfn, 3919 &zone_start_pfn, &zone_end_pfn); 3920 3921 /* Check that this node has pages within the zone's required range */ 3922 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3923 return 0; 3924 3925 /* Move the zone boundaries inside the node if necessary */ 3926 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3927 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3928 3929 /* Return the spanned pages */ 3930 return zone_end_pfn - zone_start_pfn; 3931 } 3932 3933 /* 3934 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3935 * then all holes in the requested range will be accounted for. 3936 */ 3937 unsigned long __meminit __absent_pages_in_range(int nid, 3938 unsigned long range_start_pfn, 3939 unsigned long range_end_pfn) 3940 { 3941 unsigned long nr_absent = range_end_pfn - range_start_pfn; 3942 unsigned long start_pfn, end_pfn; 3943 int i; 3944 3945 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 3946 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 3947 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 3948 nr_absent -= end_pfn - start_pfn; 3949 } 3950 return nr_absent; 3951 } 3952 3953 /** 3954 * absent_pages_in_range - Return number of page frames in holes within a range 3955 * @start_pfn: The start PFN to start searching for holes 3956 * @end_pfn: The end PFN to stop searching for holes 3957 * 3958 * It returns the number of pages frames in memory holes within a range. 3959 */ 3960 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3961 unsigned long end_pfn) 3962 { 3963 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3964 } 3965 3966 /* Return the number of page frames in holes in a zone on a node */ 3967 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3968 unsigned long zone_type, 3969 unsigned long *ignored) 3970 { 3971 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 3972 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 3973 unsigned long node_start_pfn, node_end_pfn; 3974 unsigned long zone_start_pfn, zone_end_pfn; 3975 3976 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3977 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 3978 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 3979 3980 adjust_zone_range_for_zone_movable(nid, zone_type, 3981 node_start_pfn, node_end_pfn, 3982 &zone_start_pfn, &zone_end_pfn); 3983 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3984 } 3985 3986 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 3987 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3988 unsigned long zone_type, 3989 unsigned long *zones_size) 3990 { 3991 return zones_size[zone_type]; 3992 } 3993 3994 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3995 unsigned long zone_type, 3996 unsigned long *zholes_size) 3997 { 3998 if (!zholes_size) 3999 return 0; 4000 4001 return zholes_size[zone_type]; 4002 } 4003 4004 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4005 4006 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4007 unsigned long *zones_size, unsigned long *zholes_size) 4008 { 4009 unsigned long realtotalpages, totalpages = 0; 4010 enum zone_type i; 4011 4012 for (i = 0; i < MAX_NR_ZONES; i++) 4013 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4014 zones_size); 4015 pgdat->node_spanned_pages = totalpages; 4016 4017 realtotalpages = totalpages; 4018 for (i = 0; i < MAX_NR_ZONES; i++) 4019 realtotalpages -= 4020 zone_absent_pages_in_node(pgdat->node_id, i, 4021 zholes_size); 4022 pgdat->node_present_pages = realtotalpages; 4023 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4024 realtotalpages); 4025 } 4026 4027 #ifndef CONFIG_SPARSEMEM 4028 /* 4029 * Calculate the size of the zone->blockflags rounded to an unsigned long 4030 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4031 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4032 * round what is now in bits to nearest long in bits, then return it in 4033 * bytes. 4034 */ 4035 static unsigned long __init usemap_size(unsigned long zonesize) 4036 { 4037 unsigned long usemapsize; 4038 4039 usemapsize = roundup(zonesize, pageblock_nr_pages); 4040 usemapsize = usemapsize >> pageblock_order; 4041 usemapsize *= NR_PAGEBLOCK_BITS; 4042 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4043 4044 return usemapsize / 8; 4045 } 4046 4047 static void __init setup_usemap(struct pglist_data *pgdat, 4048 struct zone *zone, unsigned long zonesize) 4049 { 4050 unsigned long usemapsize = usemap_size(zonesize); 4051 zone->pageblock_flags = NULL; 4052 if (usemapsize) 4053 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4054 usemapsize); 4055 } 4056 #else 4057 static inline void setup_usemap(struct pglist_data *pgdat, 4058 struct zone *zone, unsigned long zonesize) {} 4059 #endif /* CONFIG_SPARSEMEM */ 4060 4061 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4062 4063 /* Return a sensible default order for the pageblock size. */ 4064 static inline int pageblock_default_order(void) 4065 { 4066 if (HPAGE_SHIFT > PAGE_SHIFT) 4067 return HUGETLB_PAGE_ORDER; 4068 4069 return MAX_ORDER-1; 4070 } 4071 4072 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4073 static inline void __init set_pageblock_order(unsigned int order) 4074 { 4075 /* Check that pageblock_nr_pages has not already been setup */ 4076 if (pageblock_order) 4077 return; 4078 4079 /* 4080 * Assume the largest contiguous order of interest is a huge page. 4081 * This value may be variable depending on boot parameters on IA64 4082 */ 4083 pageblock_order = order; 4084 } 4085 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4086 4087 /* 4088 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4089 * and pageblock_default_order() are unused as pageblock_order is set 4090 * at compile-time. See include/linux/pageblock-flags.h for the values of 4091 * pageblock_order based on the kernel config 4092 */ 4093 static inline int pageblock_default_order(unsigned int order) 4094 { 4095 return MAX_ORDER-1; 4096 } 4097 #define set_pageblock_order(x) do {} while (0) 4098 4099 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4100 4101 /* 4102 * Set up the zone data structures: 4103 * - mark all pages reserved 4104 * - mark all memory queues empty 4105 * - clear the memory bitmaps 4106 */ 4107 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4108 unsigned long *zones_size, unsigned long *zholes_size) 4109 { 4110 enum zone_type j; 4111 int nid = pgdat->node_id; 4112 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4113 int ret; 4114 4115 pgdat_resize_init(pgdat); 4116 pgdat->nr_zones = 0; 4117 init_waitqueue_head(&pgdat->kswapd_wait); 4118 pgdat->kswapd_max_order = 0; 4119 pgdat_page_cgroup_init(pgdat); 4120 4121 for (j = 0; j < MAX_NR_ZONES; j++) { 4122 struct zone *zone = pgdat->node_zones + j; 4123 unsigned long size, realsize, memmap_pages; 4124 enum lru_list l; 4125 4126 size = zone_spanned_pages_in_node(nid, j, zones_size); 4127 realsize = size - zone_absent_pages_in_node(nid, j, 4128 zholes_size); 4129 4130 /* 4131 * Adjust realsize so that it accounts for how much memory 4132 * is used by this zone for memmap. This affects the watermark 4133 * and per-cpu initialisations 4134 */ 4135 memmap_pages = 4136 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4137 if (realsize >= memmap_pages) { 4138 realsize -= memmap_pages; 4139 if (memmap_pages) 4140 printk(KERN_DEBUG 4141 " %s zone: %lu pages used for memmap\n", 4142 zone_names[j], memmap_pages); 4143 } else 4144 printk(KERN_WARNING 4145 " %s zone: %lu pages exceeds realsize %lu\n", 4146 zone_names[j], memmap_pages, realsize); 4147 4148 /* Account for reserved pages */ 4149 if (j == 0 && realsize > dma_reserve) { 4150 realsize -= dma_reserve; 4151 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4152 zone_names[0], dma_reserve); 4153 } 4154 4155 if (!is_highmem_idx(j)) 4156 nr_kernel_pages += realsize; 4157 nr_all_pages += realsize; 4158 4159 zone->spanned_pages = size; 4160 zone->present_pages = realsize; 4161 #ifdef CONFIG_NUMA 4162 zone->node = nid; 4163 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4164 / 100; 4165 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4166 #endif 4167 zone->name = zone_names[j]; 4168 spin_lock_init(&zone->lock); 4169 spin_lock_init(&zone->lru_lock); 4170 zone_seqlock_init(zone); 4171 zone->zone_pgdat = pgdat; 4172 4173 zone_pcp_init(zone); 4174 for_each_lru(l) 4175 INIT_LIST_HEAD(&zone->lru[l].list); 4176 zone->reclaim_stat.recent_rotated[0] = 0; 4177 zone->reclaim_stat.recent_rotated[1] = 0; 4178 zone->reclaim_stat.recent_scanned[0] = 0; 4179 zone->reclaim_stat.recent_scanned[1] = 0; 4180 zap_zone_vm_stats(zone); 4181 zone->flags = 0; 4182 if (!size) 4183 continue; 4184 4185 set_pageblock_order(pageblock_default_order()); 4186 setup_usemap(pgdat, zone, size); 4187 ret = init_currently_empty_zone(zone, zone_start_pfn, 4188 size, MEMMAP_EARLY); 4189 BUG_ON(ret); 4190 memmap_init(size, nid, j, zone_start_pfn); 4191 zone_start_pfn += size; 4192 } 4193 } 4194 4195 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4196 { 4197 /* Skip empty nodes */ 4198 if (!pgdat->node_spanned_pages) 4199 return; 4200 4201 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4202 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4203 if (!pgdat->node_mem_map) { 4204 unsigned long size, start, end; 4205 struct page *map; 4206 4207 /* 4208 * The zone's endpoints aren't required to be MAX_ORDER 4209 * aligned but the node_mem_map endpoints must be in order 4210 * for the buddy allocator to function correctly. 4211 */ 4212 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4213 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4214 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4215 size = (end - start) * sizeof(struct page); 4216 map = alloc_remap(pgdat->node_id, size); 4217 if (!map) 4218 map = alloc_bootmem_node_nopanic(pgdat, size); 4219 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4220 } 4221 #ifndef CONFIG_NEED_MULTIPLE_NODES 4222 /* 4223 * With no DISCONTIG, the global mem_map is just set as node 0's 4224 */ 4225 if (pgdat == NODE_DATA(0)) { 4226 mem_map = NODE_DATA(0)->node_mem_map; 4227 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4228 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4229 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4230 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4231 } 4232 #endif 4233 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4234 } 4235 4236 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4237 unsigned long node_start_pfn, unsigned long *zholes_size) 4238 { 4239 pg_data_t *pgdat = NODE_DATA(nid); 4240 4241 pgdat->node_id = nid; 4242 pgdat->node_start_pfn = node_start_pfn; 4243 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4244 4245 alloc_node_mem_map(pgdat); 4246 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4247 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4248 nid, (unsigned long)pgdat, 4249 (unsigned long)pgdat->node_mem_map); 4250 #endif 4251 4252 free_area_init_core(pgdat, zones_size, zholes_size); 4253 } 4254 4255 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4256 4257 #if MAX_NUMNODES > 1 4258 /* 4259 * Figure out the number of possible node ids. 4260 */ 4261 static void __init setup_nr_node_ids(void) 4262 { 4263 unsigned int node; 4264 unsigned int highest = 0; 4265 4266 for_each_node_mask(node, node_possible_map) 4267 highest = node; 4268 nr_node_ids = highest + 1; 4269 } 4270 #else 4271 static inline void setup_nr_node_ids(void) 4272 { 4273 } 4274 #endif 4275 4276 /** 4277 * node_map_pfn_alignment - determine the maximum internode alignment 4278 * 4279 * This function should be called after node map is populated and sorted. 4280 * It calculates the maximum power of two alignment which can distinguish 4281 * all the nodes. 4282 * 4283 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4284 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4285 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4286 * shifted, 1GiB is enough and this function will indicate so. 4287 * 4288 * This is used to test whether pfn -> nid mapping of the chosen memory 4289 * model has fine enough granularity to avoid incorrect mapping for the 4290 * populated node map. 4291 * 4292 * Returns the determined alignment in pfn's. 0 if there is no alignment 4293 * requirement (single node). 4294 */ 4295 unsigned long __init node_map_pfn_alignment(void) 4296 { 4297 unsigned long accl_mask = 0, last_end = 0; 4298 unsigned long start, end, mask; 4299 int last_nid = -1; 4300 int i, nid; 4301 4302 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4303 if (!start || last_nid < 0 || last_nid == nid) { 4304 last_nid = nid; 4305 last_end = end; 4306 continue; 4307 } 4308 4309 /* 4310 * Start with a mask granular enough to pin-point to the 4311 * start pfn and tick off bits one-by-one until it becomes 4312 * too coarse to separate the current node from the last. 4313 */ 4314 mask = ~((1 << __ffs(start)) - 1); 4315 while (mask && last_end <= (start & (mask << 1))) 4316 mask <<= 1; 4317 4318 /* accumulate all internode masks */ 4319 accl_mask |= mask; 4320 } 4321 4322 /* convert mask to number of pages */ 4323 return ~accl_mask + 1; 4324 } 4325 4326 /* Find the lowest pfn for a node */ 4327 static unsigned long __init find_min_pfn_for_node(int nid) 4328 { 4329 unsigned long min_pfn = ULONG_MAX; 4330 unsigned long start_pfn; 4331 int i; 4332 4333 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4334 min_pfn = min(min_pfn, start_pfn); 4335 4336 if (min_pfn == ULONG_MAX) { 4337 printk(KERN_WARNING 4338 "Could not find start_pfn for node %d\n", nid); 4339 return 0; 4340 } 4341 4342 return min_pfn; 4343 } 4344 4345 /** 4346 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4347 * 4348 * It returns the minimum PFN based on information provided via 4349 * add_active_range(). 4350 */ 4351 unsigned long __init find_min_pfn_with_active_regions(void) 4352 { 4353 return find_min_pfn_for_node(MAX_NUMNODES); 4354 } 4355 4356 /* 4357 * early_calculate_totalpages() 4358 * Sum pages in active regions for movable zone. 4359 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4360 */ 4361 static unsigned long __init early_calculate_totalpages(void) 4362 { 4363 unsigned long totalpages = 0; 4364 unsigned long start_pfn, end_pfn; 4365 int i, nid; 4366 4367 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4368 unsigned long pages = end_pfn - start_pfn; 4369 4370 totalpages += pages; 4371 if (pages) 4372 node_set_state(nid, N_HIGH_MEMORY); 4373 } 4374 return totalpages; 4375 } 4376 4377 /* 4378 * Find the PFN the Movable zone begins in each node. Kernel memory 4379 * is spread evenly between nodes as long as the nodes have enough 4380 * memory. When they don't, some nodes will have more kernelcore than 4381 * others 4382 */ 4383 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4384 { 4385 int i, nid; 4386 unsigned long usable_startpfn; 4387 unsigned long kernelcore_node, kernelcore_remaining; 4388 /* save the state before borrow the nodemask */ 4389 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4390 unsigned long totalpages = early_calculate_totalpages(); 4391 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4392 4393 /* 4394 * If movablecore was specified, calculate what size of 4395 * kernelcore that corresponds so that memory usable for 4396 * any allocation type is evenly spread. If both kernelcore 4397 * and movablecore are specified, then the value of kernelcore 4398 * will be used for required_kernelcore if it's greater than 4399 * what movablecore would have allowed. 4400 */ 4401 if (required_movablecore) { 4402 unsigned long corepages; 4403 4404 /* 4405 * Round-up so that ZONE_MOVABLE is at least as large as what 4406 * was requested by the user 4407 */ 4408 required_movablecore = 4409 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4410 corepages = totalpages - required_movablecore; 4411 4412 required_kernelcore = max(required_kernelcore, corepages); 4413 } 4414 4415 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4416 if (!required_kernelcore) 4417 goto out; 4418 4419 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4420 find_usable_zone_for_movable(); 4421 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4422 4423 restart: 4424 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4425 kernelcore_node = required_kernelcore / usable_nodes; 4426 for_each_node_state(nid, N_HIGH_MEMORY) { 4427 unsigned long start_pfn, end_pfn; 4428 4429 /* 4430 * Recalculate kernelcore_node if the division per node 4431 * now exceeds what is necessary to satisfy the requested 4432 * amount of memory for the kernel 4433 */ 4434 if (required_kernelcore < kernelcore_node) 4435 kernelcore_node = required_kernelcore / usable_nodes; 4436 4437 /* 4438 * As the map is walked, we track how much memory is usable 4439 * by the kernel using kernelcore_remaining. When it is 4440 * 0, the rest of the node is usable by ZONE_MOVABLE 4441 */ 4442 kernelcore_remaining = kernelcore_node; 4443 4444 /* Go through each range of PFNs within this node */ 4445 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4446 unsigned long size_pages; 4447 4448 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4449 if (start_pfn >= end_pfn) 4450 continue; 4451 4452 /* Account for what is only usable for kernelcore */ 4453 if (start_pfn < usable_startpfn) { 4454 unsigned long kernel_pages; 4455 kernel_pages = min(end_pfn, usable_startpfn) 4456 - start_pfn; 4457 4458 kernelcore_remaining -= min(kernel_pages, 4459 kernelcore_remaining); 4460 required_kernelcore -= min(kernel_pages, 4461 required_kernelcore); 4462 4463 /* Continue if range is now fully accounted */ 4464 if (end_pfn <= usable_startpfn) { 4465 4466 /* 4467 * Push zone_movable_pfn to the end so 4468 * that if we have to rebalance 4469 * kernelcore across nodes, we will 4470 * not double account here 4471 */ 4472 zone_movable_pfn[nid] = end_pfn; 4473 continue; 4474 } 4475 start_pfn = usable_startpfn; 4476 } 4477 4478 /* 4479 * The usable PFN range for ZONE_MOVABLE is from 4480 * start_pfn->end_pfn. Calculate size_pages as the 4481 * number of pages used as kernelcore 4482 */ 4483 size_pages = end_pfn - start_pfn; 4484 if (size_pages > kernelcore_remaining) 4485 size_pages = kernelcore_remaining; 4486 zone_movable_pfn[nid] = start_pfn + size_pages; 4487 4488 /* 4489 * Some kernelcore has been met, update counts and 4490 * break if the kernelcore for this node has been 4491 * satisified 4492 */ 4493 required_kernelcore -= min(required_kernelcore, 4494 size_pages); 4495 kernelcore_remaining -= size_pages; 4496 if (!kernelcore_remaining) 4497 break; 4498 } 4499 } 4500 4501 /* 4502 * If there is still required_kernelcore, we do another pass with one 4503 * less node in the count. This will push zone_movable_pfn[nid] further 4504 * along on the nodes that still have memory until kernelcore is 4505 * satisified 4506 */ 4507 usable_nodes--; 4508 if (usable_nodes && required_kernelcore > usable_nodes) 4509 goto restart; 4510 4511 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4512 for (nid = 0; nid < MAX_NUMNODES; nid++) 4513 zone_movable_pfn[nid] = 4514 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4515 4516 out: 4517 /* restore the node_state */ 4518 node_states[N_HIGH_MEMORY] = saved_node_state; 4519 } 4520 4521 /* Any regular memory on that node ? */ 4522 static void check_for_regular_memory(pg_data_t *pgdat) 4523 { 4524 #ifdef CONFIG_HIGHMEM 4525 enum zone_type zone_type; 4526 4527 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4528 struct zone *zone = &pgdat->node_zones[zone_type]; 4529 if (zone->present_pages) 4530 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4531 } 4532 #endif 4533 } 4534 4535 /** 4536 * free_area_init_nodes - Initialise all pg_data_t and zone data 4537 * @max_zone_pfn: an array of max PFNs for each zone 4538 * 4539 * This will call free_area_init_node() for each active node in the system. 4540 * Using the page ranges provided by add_active_range(), the size of each 4541 * zone in each node and their holes is calculated. If the maximum PFN 4542 * between two adjacent zones match, it is assumed that the zone is empty. 4543 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4544 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4545 * starts where the previous one ended. For example, ZONE_DMA32 starts 4546 * at arch_max_dma_pfn. 4547 */ 4548 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4549 { 4550 unsigned long start_pfn, end_pfn; 4551 int i, nid; 4552 4553 /* Record where the zone boundaries are */ 4554 memset(arch_zone_lowest_possible_pfn, 0, 4555 sizeof(arch_zone_lowest_possible_pfn)); 4556 memset(arch_zone_highest_possible_pfn, 0, 4557 sizeof(arch_zone_highest_possible_pfn)); 4558 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4559 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4560 for (i = 1; i < MAX_NR_ZONES; i++) { 4561 if (i == ZONE_MOVABLE) 4562 continue; 4563 arch_zone_lowest_possible_pfn[i] = 4564 arch_zone_highest_possible_pfn[i-1]; 4565 arch_zone_highest_possible_pfn[i] = 4566 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4567 } 4568 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4569 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4570 4571 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4572 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4573 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4574 4575 /* Print out the zone ranges */ 4576 printk("Zone PFN ranges:\n"); 4577 for (i = 0; i < MAX_NR_ZONES; i++) { 4578 if (i == ZONE_MOVABLE) 4579 continue; 4580 printk(" %-8s ", zone_names[i]); 4581 if (arch_zone_lowest_possible_pfn[i] == 4582 arch_zone_highest_possible_pfn[i]) 4583 printk("empty\n"); 4584 else 4585 printk("%0#10lx -> %0#10lx\n", 4586 arch_zone_lowest_possible_pfn[i], 4587 arch_zone_highest_possible_pfn[i]); 4588 } 4589 4590 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4591 printk("Movable zone start PFN for each node\n"); 4592 for (i = 0; i < MAX_NUMNODES; i++) { 4593 if (zone_movable_pfn[i]) 4594 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4595 } 4596 4597 /* Print out the early_node_map[] */ 4598 printk("Early memory PFN ranges\n"); 4599 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4600 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn); 4601 4602 /* Initialise every node */ 4603 mminit_verify_pageflags_layout(); 4604 setup_nr_node_ids(); 4605 for_each_online_node(nid) { 4606 pg_data_t *pgdat = NODE_DATA(nid); 4607 free_area_init_node(nid, NULL, 4608 find_min_pfn_for_node(nid), NULL); 4609 4610 /* Any memory on that node */ 4611 if (pgdat->node_present_pages) 4612 node_set_state(nid, N_HIGH_MEMORY); 4613 check_for_regular_memory(pgdat); 4614 } 4615 } 4616 4617 static int __init cmdline_parse_core(char *p, unsigned long *core) 4618 { 4619 unsigned long long coremem; 4620 if (!p) 4621 return -EINVAL; 4622 4623 coremem = memparse(p, &p); 4624 *core = coremem >> PAGE_SHIFT; 4625 4626 /* Paranoid check that UL is enough for the coremem value */ 4627 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4628 4629 return 0; 4630 } 4631 4632 /* 4633 * kernelcore=size sets the amount of memory for use for allocations that 4634 * cannot be reclaimed or migrated. 4635 */ 4636 static int __init cmdline_parse_kernelcore(char *p) 4637 { 4638 return cmdline_parse_core(p, &required_kernelcore); 4639 } 4640 4641 /* 4642 * movablecore=size sets the amount of memory for use for allocations that 4643 * can be reclaimed or migrated. 4644 */ 4645 static int __init cmdline_parse_movablecore(char *p) 4646 { 4647 return cmdline_parse_core(p, &required_movablecore); 4648 } 4649 4650 early_param("kernelcore", cmdline_parse_kernelcore); 4651 early_param("movablecore", cmdline_parse_movablecore); 4652 4653 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4654 4655 /** 4656 * set_dma_reserve - set the specified number of pages reserved in the first zone 4657 * @new_dma_reserve: The number of pages to mark reserved 4658 * 4659 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4660 * In the DMA zone, a significant percentage may be consumed by kernel image 4661 * and other unfreeable allocations which can skew the watermarks badly. This 4662 * function may optionally be used to account for unfreeable pages in the 4663 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4664 * smaller per-cpu batchsize. 4665 */ 4666 void __init set_dma_reserve(unsigned long new_dma_reserve) 4667 { 4668 dma_reserve = new_dma_reserve; 4669 } 4670 4671 void __init free_area_init(unsigned long *zones_size) 4672 { 4673 free_area_init_node(0, zones_size, 4674 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4675 } 4676 4677 static int page_alloc_cpu_notify(struct notifier_block *self, 4678 unsigned long action, void *hcpu) 4679 { 4680 int cpu = (unsigned long)hcpu; 4681 4682 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4683 drain_pages(cpu); 4684 4685 /* 4686 * Spill the event counters of the dead processor 4687 * into the current processors event counters. 4688 * This artificially elevates the count of the current 4689 * processor. 4690 */ 4691 vm_events_fold_cpu(cpu); 4692 4693 /* 4694 * Zero the differential counters of the dead processor 4695 * so that the vm statistics are consistent. 4696 * 4697 * This is only okay since the processor is dead and cannot 4698 * race with what we are doing. 4699 */ 4700 refresh_cpu_vm_stats(cpu); 4701 } 4702 return NOTIFY_OK; 4703 } 4704 4705 void __init page_alloc_init(void) 4706 { 4707 hotcpu_notifier(page_alloc_cpu_notify, 0); 4708 } 4709 4710 /* 4711 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4712 * or min_free_kbytes changes. 4713 */ 4714 static void calculate_totalreserve_pages(void) 4715 { 4716 struct pglist_data *pgdat; 4717 unsigned long reserve_pages = 0; 4718 enum zone_type i, j; 4719 4720 for_each_online_pgdat(pgdat) { 4721 for (i = 0; i < MAX_NR_ZONES; i++) { 4722 struct zone *zone = pgdat->node_zones + i; 4723 unsigned long max = 0; 4724 4725 /* Find valid and maximum lowmem_reserve in the zone */ 4726 for (j = i; j < MAX_NR_ZONES; j++) { 4727 if (zone->lowmem_reserve[j] > max) 4728 max = zone->lowmem_reserve[j]; 4729 } 4730 4731 /* we treat the high watermark as reserved pages. */ 4732 max += high_wmark_pages(zone); 4733 4734 if (max > zone->present_pages) 4735 max = zone->present_pages; 4736 reserve_pages += max; 4737 } 4738 } 4739 totalreserve_pages = reserve_pages; 4740 } 4741 4742 /* 4743 * setup_per_zone_lowmem_reserve - called whenever 4744 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4745 * has a correct pages reserved value, so an adequate number of 4746 * pages are left in the zone after a successful __alloc_pages(). 4747 */ 4748 static void setup_per_zone_lowmem_reserve(void) 4749 { 4750 struct pglist_data *pgdat; 4751 enum zone_type j, idx; 4752 4753 for_each_online_pgdat(pgdat) { 4754 for (j = 0; j < MAX_NR_ZONES; j++) { 4755 struct zone *zone = pgdat->node_zones + j; 4756 unsigned long present_pages = zone->present_pages; 4757 4758 zone->lowmem_reserve[j] = 0; 4759 4760 idx = j; 4761 while (idx) { 4762 struct zone *lower_zone; 4763 4764 idx--; 4765 4766 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4767 sysctl_lowmem_reserve_ratio[idx] = 1; 4768 4769 lower_zone = pgdat->node_zones + idx; 4770 lower_zone->lowmem_reserve[j] = present_pages / 4771 sysctl_lowmem_reserve_ratio[idx]; 4772 present_pages += lower_zone->present_pages; 4773 } 4774 } 4775 } 4776 4777 /* update totalreserve_pages */ 4778 calculate_totalreserve_pages(); 4779 } 4780 4781 /** 4782 * setup_per_zone_wmarks - called when min_free_kbytes changes 4783 * or when memory is hot-{added|removed} 4784 * 4785 * Ensures that the watermark[min,low,high] values for each zone are set 4786 * correctly with respect to min_free_kbytes. 4787 */ 4788 void setup_per_zone_wmarks(void) 4789 { 4790 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4791 unsigned long lowmem_pages = 0; 4792 struct zone *zone; 4793 unsigned long flags; 4794 4795 /* Calculate total number of !ZONE_HIGHMEM pages */ 4796 for_each_zone(zone) { 4797 if (!is_highmem(zone)) 4798 lowmem_pages += zone->present_pages; 4799 } 4800 4801 for_each_zone(zone) { 4802 u64 tmp; 4803 4804 spin_lock_irqsave(&zone->lock, flags); 4805 tmp = (u64)pages_min * zone->present_pages; 4806 do_div(tmp, lowmem_pages); 4807 if (is_highmem(zone)) { 4808 /* 4809 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4810 * need highmem pages, so cap pages_min to a small 4811 * value here. 4812 * 4813 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4814 * deltas controls asynch page reclaim, and so should 4815 * not be capped for highmem. 4816 */ 4817 int min_pages; 4818 4819 min_pages = zone->present_pages / 1024; 4820 if (min_pages < SWAP_CLUSTER_MAX) 4821 min_pages = SWAP_CLUSTER_MAX; 4822 if (min_pages > 128) 4823 min_pages = 128; 4824 zone->watermark[WMARK_MIN] = min_pages; 4825 } else { 4826 /* 4827 * If it's a lowmem zone, reserve a number of pages 4828 * proportionate to the zone's size. 4829 */ 4830 zone->watermark[WMARK_MIN] = tmp; 4831 } 4832 4833 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4834 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4835 setup_zone_migrate_reserve(zone); 4836 spin_unlock_irqrestore(&zone->lock, flags); 4837 } 4838 4839 /* update totalreserve_pages */ 4840 calculate_totalreserve_pages(); 4841 } 4842 4843 /* 4844 * The inactive anon list should be small enough that the VM never has to 4845 * do too much work, but large enough that each inactive page has a chance 4846 * to be referenced again before it is swapped out. 4847 * 4848 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4849 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4850 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4851 * the anonymous pages are kept on the inactive list. 4852 * 4853 * total target max 4854 * memory ratio inactive anon 4855 * ------------------------------------- 4856 * 10MB 1 5MB 4857 * 100MB 1 50MB 4858 * 1GB 3 250MB 4859 * 10GB 10 0.9GB 4860 * 100GB 31 3GB 4861 * 1TB 101 10GB 4862 * 10TB 320 32GB 4863 */ 4864 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 4865 { 4866 unsigned int gb, ratio; 4867 4868 /* Zone size in gigabytes */ 4869 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4870 if (gb) 4871 ratio = int_sqrt(10 * gb); 4872 else 4873 ratio = 1; 4874 4875 zone->inactive_ratio = ratio; 4876 } 4877 4878 static void __meminit setup_per_zone_inactive_ratio(void) 4879 { 4880 struct zone *zone; 4881 4882 for_each_zone(zone) 4883 calculate_zone_inactive_ratio(zone); 4884 } 4885 4886 /* 4887 * Initialise min_free_kbytes. 4888 * 4889 * For small machines we want it small (128k min). For large machines 4890 * we want it large (64MB max). But it is not linear, because network 4891 * bandwidth does not increase linearly with machine size. We use 4892 * 4893 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4894 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4895 * 4896 * which yields 4897 * 4898 * 16MB: 512k 4899 * 32MB: 724k 4900 * 64MB: 1024k 4901 * 128MB: 1448k 4902 * 256MB: 2048k 4903 * 512MB: 2896k 4904 * 1024MB: 4096k 4905 * 2048MB: 5792k 4906 * 4096MB: 8192k 4907 * 8192MB: 11584k 4908 * 16384MB: 16384k 4909 */ 4910 int __meminit init_per_zone_wmark_min(void) 4911 { 4912 unsigned long lowmem_kbytes; 4913 4914 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4915 4916 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4917 if (min_free_kbytes < 128) 4918 min_free_kbytes = 128; 4919 if (min_free_kbytes > 65536) 4920 min_free_kbytes = 65536; 4921 setup_per_zone_wmarks(); 4922 refresh_zone_stat_thresholds(); 4923 setup_per_zone_lowmem_reserve(); 4924 setup_per_zone_inactive_ratio(); 4925 return 0; 4926 } 4927 module_init(init_per_zone_wmark_min) 4928 4929 /* 4930 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4931 * that we can call two helper functions whenever min_free_kbytes 4932 * changes. 4933 */ 4934 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4935 void __user *buffer, size_t *length, loff_t *ppos) 4936 { 4937 proc_dointvec(table, write, buffer, length, ppos); 4938 if (write) 4939 setup_per_zone_wmarks(); 4940 return 0; 4941 } 4942 4943 #ifdef CONFIG_NUMA 4944 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4945 void __user *buffer, size_t *length, loff_t *ppos) 4946 { 4947 struct zone *zone; 4948 int rc; 4949 4950 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4951 if (rc) 4952 return rc; 4953 4954 for_each_zone(zone) 4955 zone->min_unmapped_pages = (zone->present_pages * 4956 sysctl_min_unmapped_ratio) / 100; 4957 return 0; 4958 } 4959 4960 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4961 void __user *buffer, size_t *length, loff_t *ppos) 4962 { 4963 struct zone *zone; 4964 int rc; 4965 4966 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4967 if (rc) 4968 return rc; 4969 4970 for_each_zone(zone) 4971 zone->min_slab_pages = (zone->present_pages * 4972 sysctl_min_slab_ratio) / 100; 4973 return 0; 4974 } 4975 #endif 4976 4977 /* 4978 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4979 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4980 * whenever sysctl_lowmem_reserve_ratio changes. 4981 * 4982 * The reserve ratio obviously has absolutely no relation with the 4983 * minimum watermarks. The lowmem reserve ratio can only make sense 4984 * if in function of the boot time zone sizes. 4985 */ 4986 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4987 void __user *buffer, size_t *length, loff_t *ppos) 4988 { 4989 proc_dointvec_minmax(table, write, buffer, length, ppos); 4990 setup_per_zone_lowmem_reserve(); 4991 return 0; 4992 } 4993 4994 /* 4995 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4996 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4997 * can have before it gets flushed back to buddy allocator. 4998 */ 4999 5000 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5001 void __user *buffer, size_t *length, loff_t *ppos) 5002 { 5003 struct zone *zone; 5004 unsigned int cpu; 5005 int ret; 5006 5007 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5008 if (!write || (ret == -EINVAL)) 5009 return ret; 5010 for_each_populated_zone(zone) { 5011 for_each_possible_cpu(cpu) { 5012 unsigned long high; 5013 high = zone->present_pages / percpu_pagelist_fraction; 5014 setup_pagelist_highmark( 5015 per_cpu_ptr(zone->pageset, cpu), high); 5016 } 5017 } 5018 return 0; 5019 } 5020 5021 int hashdist = HASHDIST_DEFAULT; 5022 5023 #ifdef CONFIG_NUMA 5024 static int __init set_hashdist(char *str) 5025 { 5026 if (!str) 5027 return 0; 5028 hashdist = simple_strtoul(str, &str, 0); 5029 return 1; 5030 } 5031 __setup("hashdist=", set_hashdist); 5032 #endif 5033 5034 /* 5035 * allocate a large system hash table from bootmem 5036 * - it is assumed that the hash table must contain an exact power-of-2 5037 * quantity of entries 5038 * - limit is the number of hash buckets, not the total allocation size 5039 */ 5040 void *__init alloc_large_system_hash(const char *tablename, 5041 unsigned long bucketsize, 5042 unsigned long numentries, 5043 int scale, 5044 int flags, 5045 unsigned int *_hash_shift, 5046 unsigned int *_hash_mask, 5047 unsigned long limit) 5048 { 5049 unsigned long long max = limit; 5050 unsigned long log2qty, size; 5051 void *table = NULL; 5052 5053 /* allow the kernel cmdline to have a say */ 5054 if (!numentries) { 5055 /* round applicable memory size up to nearest megabyte */ 5056 numentries = nr_kernel_pages; 5057 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5058 numentries >>= 20 - PAGE_SHIFT; 5059 numentries <<= 20 - PAGE_SHIFT; 5060 5061 /* limit to 1 bucket per 2^scale bytes of low memory */ 5062 if (scale > PAGE_SHIFT) 5063 numentries >>= (scale - PAGE_SHIFT); 5064 else 5065 numentries <<= (PAGE_SHIFT - scale); 5066 5067 /* Make sure we've got at least a 0-order allocation.. */ 5068 if (unlikely(flags & HASH_SMALL)) { 5069 /* Makes no sense without HASH_EARLY */ 5070 WARN_ON(!(flags & HASH_EARLY)); 5071 if (!(numentries >> *_hash_shift)) { 5072 numentries = 1UL << *_hash_shift; 5073 BUG_ON(!numentries); 5074 } 5075 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5076 numentries = PAGE_SIZE / bucketsize; 5077 } 5078 numentries = roundup_pow_of_two(numentries); 5079 5080 /* limit allocation size to 1/16 total memory by default */ 5081 if (max == 0) { 5082 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5083 do_div(max, bucketsize); 5084 } 5085 5086 if (numentries > max) 5087 numentries = max; 5088 5089 log2qty = ilog2(numentries); 5090 5091 do { 5092 size = bucketsize << log2qty; 5093 if (flags & HASH_EARLY) 5094 table = alloc_bootmem_nopanic(size); 5095 else if (hashdist) 5096 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5097 else { 5098 /* 5099 * If bucketsize is not a power-of-two, we may free 5100 * some pages at the end of hash table which 5101 * alloc_pages_exact() automatically does 5102 */ 5103 if (get_order(size) < MAX_ORDER) { 5104 table = alloc_pages_exact(size, GFP_ATOMIC); 5105 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5106 } 5107 } 5108 } while (!table && size > PAGE_SIZE && --log2qty); 5109 5110 if (!table) 5111 panic("Failed to allocate %s hash table\n", tablename); 5112 5113 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5114 tablename, 5115 (1UL << log2qty), 5116 ilog2(size) - PAGE_SHIFT, 5117 size); 5118 5119 if (_hash_shift) 5120 *_hash_shift = log2qty; 5121 if (_hash_mask) 5122 *_hash_mask = (1 << log2qty) - 1; 5123 5124 return table; 5125 } 5126 5127 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5128 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5129 unsigned long pfn) 5130 { 5131 #ifdef CONFIG_SPARSEMEM 5132 return __pfn_to_section(pfn)->pageblock_flags; 5133 #else 5134 return zone->pageblock_flags; 5135 #endif /* CONFIG_SPARSEMEM */ 5136 } 5137 5138 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5139 { 5140 #ifdef CONFIG_SPARSEMEM 5141 pfn &= (PAGES_PER_SECTION-1); 5142 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5143 #else 5144 pfn = pfn - zone->zone_start_pfn; 5145 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5146 #endif /* CONFIG_SPARSEMEM */ 5147 } 5148 5149 /** 5150 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5151 * @page: The page within the block of interest 5152 * @start_bitidx: The first bit of interest to retrieve 5153 * @end_bitidx: The last bit of interest 5154 * returns pageblock_bits flags 5155 */ 5156 unsigned long get_pageblock_flags_group(struct page *page, 5157 int start_bitidx, int end_bitidx) 5158 { 5159 struct zone *zone; 5160 unsigned long *bitmap; 5161 unsigned long pfn, bitidx; 5162 unsigned long flags = 0; 5163 unsigned long value = 1; 5164 5165 zone = page_zone(page); 5166 pfn = page_to_pfn(page); 5167 bitmap = get_pageblock_bitmap(zone, pfn); 5168 bitidx = pfn_to_bitidx(zone, pfn); 5169 5170 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5171 if (test_bit(bitidx + start_bitidx, bitmap)) 5172 flags |= value; 5173 5174 return flags; 5175 } 5176 5177 /** 5178 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5179 * @page: The page within the block of interest 5180 * @start_bitidx: The first bit of interest 5181 * @end_bitidx: The last bit of interest 5182 * @flags: The flags to set 5183 */ 5184 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5185 int start_bitidx, int end_bitidx) 5186 { 5187 struct zone *zone; 5188 unsigned long *bitmap; 5189 unsigned long pfn, bitidx; 5190 unsigned long value = 1; 5191 5192 zone = page_zone(page); 5193 pfn = page_to_pfn(page); 5194 bitmap = get_pageblock_bitmap(zone, pfn); 5195 bitidx = pfn_to_bitidx(zone, pfn); 5196 VM_BUG_ON(pfn < zone->zone_start_pfn); 5197 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5198 5199 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5200 if (flags & value) 5201 __set_bit(bitidx + start_bitidx, bitmap); 5202 else 5203 __clear_bit(bitidx + start_bitidx, bitmap); 5204 } 5205 5206 /* 5207 * This is designed as sub function...plz see page_isolation.c also. 5208 * set/clear page block's type to be ISOLATE. 5209 * page allocater never alloc memory from ISOLATE block. 5210 */ 5211 5212 static int 5213 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5214 { 5215 unsigned long pfn, iter, found; 5216 /* 5217 * For avoiding noise data, lru_add_drain_all() should be called 5218 * If ZONE_MOVABLE, the zone never contains immobile pages 5219 */ 5220 if (zone_idx(zone) == ZONE_MOVABLE) 5221 return true; 5222 5223 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5224 return true; 5225 5226 pfn = page_to_pfn(page); 5227 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5228 unsigned long check = pfn + iter; 5229 5230 if (!pfn_valid_within(check)) 5231 continue; 5232 5233 page = pfn_to_page(check); 5234 if (!page_count(page)) { 5235 if (PageBuddy(page)) 5236 iter += (1 << page_order(page)) - 1; 5237 continue; 5238 } 5239 if (!PageLRU(page)) 5240 found++; 5241 /* 5242 * If there are RECLAIMABLE pages, we need to check it. 5243 * But now, memory offline itself doesn't call shrink_slab() 5244 * and it still to be fixed. 5245 */ 5246 /* 5247 * If the page is not RAM, page_count()should be 0. 5248 * we don't need more check. This is an _used_ not-movable page. 5249 * 5250 * The problematic thing here is PG_reserved pages. PG_reserved 5251 * is set to both of a memory hole page and a _used_ kernel 5252 * page at boot. 5253 */ 5254 if (found > count) 5255 return false; 5256 } 5257 return true; 5258 } 5259 5260 bool is_pageblock_removable_nolock(struct page *page) 5261 { 5262 struct zone *zone = page_zone(page); 5263 return __count_immobile_pages(zone, page, 0); 5264 } 5265 5266 int set_migratetype_isolate(struct page *page) 5267 { 5268 struct zone *zone; 5269 unsigned long flags, pfn; 5270 struct memory_isolate_notify arg; 5271 int notifier_ret; 5272 int ret = -EBUSY; 5273 5274 zone = page_zone(page); 5275 5276 spin_lock_irqsave(&zone->lock, flags); 5277 5278 pfn = page_to_pfn(page); 5279 arg.start_pfn = pfn; 5280 arg.nr_pages = pageblock_nr_pages; 5281 arg.pages_found = 0; 5282 5283 /* 5284 * It may be possible to isolate a pageblock even if the 5285 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5286 * notifier chain is used by balloon drivers to return the 5287 * number of pages in a range that are held by the balloon 5288 * driver to shrink memory. If all the pages are accounted for 5289 * by balloons, are free, or on the LRU, isolation can continue. 5290 * Later, for example, when memory hotplug notifier runs, these 5291 * pages reported as "can be isolated" should be isolated(freed) 5292 * by the balloon driver through the memory notifier chain. 5293 */ 5294 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5295 notifier_ret = notifier_to_errno(notifier_ret); 5296 if (notifier_ret) 5297 goto out; 5298 /* 5299 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5300 * We just check MOVABLE pages. 5301 */ 5302 if (__count_immobile_pages(zone, page, arg.pages_found)) 5303 ret = 0; 5304 5305 /* 5306 * immobile means "not-on-lru" paes. If immobile is larger than 5307 * removable-by-driver pages reported by notifier, we'll fail. 5308 */ 5309 5310 out: 5311 if (!ret) { 5312 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5313 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5314 } 5315 5316 spin_unlock_irqrestore(&zone->lock, flags); 5317 if (!ret) 5318 drain_all_pages(); 5319 return ret; 5320 } 5321 5322 void unset_migratetype_isolate(struct page *page) 5323 { 5324 struct zone *zone; 5325 unsigned long flags; 5326 zone = page_zone(page); 5327 spin_lock_irqsave(&zone->lock, flags); 5328 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5329 goto out; 5330 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5331 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5332 out: 5333 spin_unlock_irqrestore(&zone->lock, flags); 5334 } 5335 5336 #ifdef CONFIG_MEMORY_HOTREMOVE 5337 /* 5338 * All pages in the range must be isolated before calling this. 5339 */ 5340 void 5341 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5342 { 5343 struct page *page; 5344 struct zone *zone; 5345 int order, i; 5346 unsigned long pfn; 5347 unsigned long flags; 5348 /* find the first valid pfn */ 5349 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5350 if (pfn_valid(pfn)) 5351 break; 5352 if (pfn == end_pfn) 5353 return; 5354 zone = page_zone(pfn_to_page(pfn)); 5355 spin_lock_irqsave(&zone->lock, flags); 5356 pfn = start_pfn; 5357 while (pfn < end_pfn) { 5358 if (!pfn_valid(pfn)) { 5359 pfn++; 5360 continue; 5361 } 5362 page = pfn_to_page(pfn); 5363 BUG_ON(page_count(page)); 5364 BUG_ON(!PageBuddy(page)); 5365 order = page_order(page); 5366 #ifdef CONFIG_DEBUG_VM 5367 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5368 pfn, 1 << order, end_pfn); 5369 #endif 5370 list_del(&page->lru); 5371 rmv_page_order(page); 5372 zone->free_area[order].nr_free--; 5373 __mod_zone_page_state(zone, NR_FREE_PAGES, 5374 - (1UL << order)); 5375 for (i = 0; i < (1 << order); i++) 5376 SetPageReserved((page+i)); 5377 pfn += (1 << order); 5378 } 5379 spin_unlock_irqrestore(&zone->lock, flags); 5380 } 5381 #endif 5382 5383 #ifdef CONFIG_MEMORY_FAILURE 5384 bool is_free_buddy_page(struct page *page) 5385 { 5386 struct zone *zone = page_zone(page); 5387 unsigned long pfn = page_to_pfn(page); 5388 unsigned long flags; 5389 int order; 5390 5391 spin_lock_irqsave(&zone->lock, flags); 5392 for (order = 0; order < MAX_ORDER; order++) { 5393 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5394 5395 if (PageBuddy(page_head) && page_order(page_head) >= order) 5396 break; 5397 } 5398 spin_unlock_irqrestore(&zone->lock, flags); 5399 5400 return order < MAX_ORDER; 5401 } 5402 #endif 5403 5404 static struct trace_print_flags pageflag_names[] = { 5405 {1UL << PG_locked, "locked" }, 5406 {1UL << PG_error, "error" }, 5407 {1UL << PG_referenced, "referenced" }, 5408 {1UL << PG_uptodate, "uptodate" }, 5409 {1UL << PG_dirty, "dirty" }, 5410 {1UL << PG_lru, "lru" }, 5411 {1UL << PG_active, "active" }, 5412 {1UL << PG_slab, "slab" }, 5413 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5414 {1UL << PG_arch_1, "arch_1" }, 5415 {1UL << PG_reserved, "reserved" }, 5416 {1UL << PG_private, "private" }, 5417 {1UL << PG_private_2, "private_2" }, 5418 {1UL << PG_writeback, "writeback" }, 5419 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5420 {1UL << PG_head, "head" }, 5421 {1UL << PG_tail, "tail" }, 5422 #else 5423 {1UL << PG_compound, "compound" }, 5424 #endif 5425 {1UL << PG_swapcache, "swapcache" }, 5426 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5427 {1UL << PG_reclaim, "reclaim" }, 5428 {1UL << PG_swapbacked, "swapbacked" }, 5429 {1UL << PG_unevictable, "unevictable" }, 5430 #ifdef CONFIG_MMU 5431 {1UL << PG_mlocked, "mlocked" }, 5432 #endif 5433 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5434 {1UL << PG_uncached, "uncached" }, 5435 #endif 5436 #ifdef CONFIG_MEMORY_FAILURE 5437 {1UL << PG_hwpoison, "hwpoison" }, 5438 #endif 5439 {-1UL, NULL }, 5440 }; 5441 5442 static void dump_page_flags(unsigned long flags) 5443 { 5444 const char *delim = ""; 5445 unsigned long mask; 5446 int i; 5447 5448 printk(KERN_ALERT "page flags: %#lx(", flags); 5449 5450 /* remove zone id */ 5451 flags &= (1UL << NR_PAGEFLAGS) - 1; 5452 5453 for (i = 0; pageflag_names[i].name && flags; i++) { 5454 5455 mask = pageflag_names[i].mask; 5456 if ((flags & mask) != mask) 5457 continue; 5458 5459 flags &= ~mask; 5460 printk("%s%s", delim, pageflag_names[i].name); 5461 delim = "|"; 5462 } 5463 5464 /* check for left over flags */ 5465 if (flags) 5466 printk("%s%#lx", delim, flags); 5467 5468 printk(")\n"); 5469 } 5470 5471 void dump_page(struct page *page) 5472 { 5473 printk(KERN_ALERT 5474 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5475 page, atomic_read(&page->_count), page_mapcount(page), 5476 page->mapping, page->index); 5477 dump_page_flags(page->flags); 5478 mem_cgroup_print_bad_page(page); 5479 } 5480