1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 40 #include <asm/tlbflush.h> 41 #include "internal.h" 42 43 /* 44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 45 * initializer cleaner 46 */ 47 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 48 EXPORT_SYMBOL(node_online_map); 49 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 50 EXPORT_SYMBOL(node_possible_map); 51 struct pglist_data *pgdat_list __read_mostly; 52 unsigned long totalram_pages __read_mostly; 53 unsigned long totalhigh_pages __read_mostly; 54 long nr_swap_pages; 55 56 /* 57 * results with 256, 32 in the lowmem_reserve sysctl: 58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 59 * 1G machine -> (16M dma, 784M normal, 224M high) 60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 63 * 64 * TBD: should special case ZONE_DMA32 machines here - in those we normally 65 * don't need any ZONE_NORMAL reservation 66 */ 67 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 68 69 EXPORT_SYMBOL(totalram_pages); 70 71 /* 72 * Used by page_zone() to look up the address of the struct zone whose 73 * id is encoded in the upper bits of page->flags 74 */ 75 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 76 EXPORT_SYMBOL(zone_table); 77 78 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 79 int min_free_kbytes = 1024; 80 81 unsigned long __initdata nr_kernel_pages; 82 unsigned long __initdata nr_all_pages; 83 84 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 85 { 86 int ret = 0; 87 unsigned seq; 88 unsigned long pfn = page_to_pfn(page); 89 90 do { 91 seq = zone_span_seqbegin(zone); 92 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 93 ret = 1; 94 else if (pfn < zone->zone_start_pfn) 95 ret = 1; 96 } while (zone_span_seqretry(zone, seq)); 97 98 return ret; 99 } 100 101 static int page_is_consistent(struct zone *zone, struct page *page) 102 { 103 #ifdef CONFIG_HOLES_IN_ZONE 104 if (!pfn_valid(page_to_pfn(page))) 105 return 0; 106 #endif 107 if (zone != page_zone(page)) 108 return 0; 109 110 return 1; 111 } 112 /* 113 * Temporary debugging check for pages not lying within a given zone. 114 */ 115 static int bad_range(struct zone *zone, struct page *page) 116 { 117 if (page_outside_zone_boundaries(zone, page)) 118 return 1; 119 if (!page_is_consistent(zone, page)) 120 return 1; 121 122 return 0; 123 } 124 125 static void bad_page(const char *function, struct page *page) 126 { 127 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", 128 function, current->comm, page); 129 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 130 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags, 131 page->mapping, page_mapcount(page), page_count(page)); 132 printk(KERN_EMERG "Backtrace:\n"); 133 dump_stack(); 134 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); 135 page->flags &= ~(1 << PG_lru | 136 1 << PG_private | 137 1 << PG_locked | 138 1 << PG_active | 139 1 << PG_dirty | 140 1 << PG_reclaim | 141 1 << PG_slab | 142 1 << PG_swapcache | 143 1 << PG_writeback ); 144 set_page_count(page, 0); 145 reset_page_mapcount(page); 146 page->mapping = NULL; 147 add_taint(TAINT_BAD_PAGE); 148 } 149 150 /* 151 * Higher-order pages are called "compound pages". They are structured thusly: 152 * 153 * The first PAGE_SIZE page is called the "head page". 154 * 155 * The remaining PAGE_SIZE pages are called "tail pages". 156 * 157 * All pages have PG_compound set. All pages have their ->private pointing at 158 * the head page (even the head page has this). 159 * 160 * The first tail page's ->mapping, if non-zero, holds the address of the 161 * compound page's put_page() function. 162 * 163 * The order of the allocation is stored in the first tail page's ->index 164 * This is only for debug at present. This usage means that zero-order pages 165 * may not be compound. 166 */ 167 static void prep_compound_page(struct page *page, unsigned long order) 168 { 169 int i; 170 int nr_pages = 1 << order; 171 172 page[1].mapping = NULL; 173 page[1].index = order; 174 for (i = 0; i < nr_pages; i++) { 175 struct page *p = page + i; 176 177 SetPageCompound(p); 178 set_page_private(p, (unsigned long)page); 179 } 180 } 181 182 static void destroy_compound_page(struct page *page, unsigned long order) 183 { 184 int i; 185 int nr_pages = 1 << order; 186 187 if (!PageCompound(page)) 188 return; 189 190 if (page[1].index != order) 191 bad_page(__FUNCTION__, page); 192 193 for (i = 0; i < nr_pages; i++) { 194 struct page *p = page + i; 195 196 if (!PageCompound(p)) 197 bad_page(__FUNCTION__, page); 198 if (page_private(p) != (unsigned long)page) 199 bad_page(__FUNCTION__, page); 200 ClearPageCompound(p); 201 } 202 } 203 204 /* 205 * function for dealing with page's order in buddy system. 206 * zone->lock is already acquired when we use these. 207 * So, we don't need atomic page->flags operations here. 208 */ 209 static inline unsigned long page_order(struct page *page) { 210 return page_private(page); 211 } 212 213 static inline void set_page_order(struct page *page, int order) { 214 set_page_private(page, order); 215 __SetPagePrivate(page); 216 } 217 218 static inline void rmv_page_order(struct page *page) 219 { 220 __ClearPagePrivate(page); 221 set_page_private(page, 0); 222 } 223 224 /* 225 * Locate the struct page for both the matching buddy in our 226 * pair (buddy1) and the combined O(n+1) page they form (page). 227 * 228 * 1) Any buddy B1 will have an order O twin B2 which satisfies 229 * the following equation: 230 * B2 = B1 ^ (1 << O) 231 * For example, if the starting buddy (buddy2) is #8 its order 232 * 1 buddy is #10: 233 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 234 * 235 * 2) Any buddy B will have an order O+1 parent P which 236 * satisfies the following equation: 237 * P = B & ~(1 << O) 238 * 239 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 240 */ 241 static inline struct page * 242 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 243 { 244 unsigned long buddy_idx = page_idx ^ (1 << order); 245 246 return page + (buddy_idx - page_idx); 247 } 248 249 static inline unsigned long 250 __find_combined_index(unsigned long page_idx, unsigned int order) 251 { 252 return (page_idx & ~(1 << order)); 253 } 254 255 /* 256 * This function checks whether a page is free && is the buddy 257 * we can do coalesce a page and its buddy if 258 * (a) the buddy is free && 259 * (b) the buddy is on the buddy system && 260 * (c) a page and its buddy have the same order. 261 * for recording page's order, we use page_private(page) and PG_private. 262 * 263 */ 264 static inline int page_is_buddy(struct page *page, int order) 265 { 266 if (PagePrivate(page) && 267 (page_order(page) == order) && 268 page_count(page) == 0) 269 return 1; 270 return 0; 271 } 272 273 /* 274 * Freeing function for a buddy system allocator. 275 * 276 * The concept of a buddy system is to maintain direct-mapped table 277 * (containing bit values) for memory blocks of various "orders". 278 * The bottom level table contains the map for the smallest allocatable 279 * units of memory (here, pages), and each level above it describes 280 * pairs of units from the levels below, hence, "buddies". 281 * At a high level, all that happens here is marking the table entry 282 * at the bottom level available, and propagating the changes upward 283 * as necessary, plus some accounting needed to play nicely with other 284 * parts of the VM system. 285 * At each level, we keep a list of pages, which are heads of continuous 286 * free pages of length of (1 << order) and marked with PG_Private.Page's 287 * order is recorded in page_private(page) field. 288 * So when we are allocating or freeing one, we can derive the state of the 289 * other. That is, if we allocate a small block, and both were 290 * free, the remainder of the region must be split into blocks. 291 * If a block is freed, and its buddy is also free, then this 292 * triggers coalescing into a block of larger size. 293 * 294 * -- wli 295 */ 296 297 static inline void __free_pages_bulk (struct page *page, 298 struct zone *zone, unsigned int order) 299 { 300 unsigned long page_idx; 301 int order_size = 1 << order; 302 303 if (unlikely(order)) 304 destroy_compound_page(page, order); 305 306 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 307 308 BUG_ON(page_idx & (order_size - 1)); 309 BUG_ON(bad_range(zone, page)); 310 311 zone->free_pages += order_size; 312 while (order < MAX_ORDER-1) { 313 unsigned long combined_idx; 314 struct free_area *area; 315 struct page *buddy; 316 317 combined_idx = __find_combined_index(page_idx, order); 318 buddy = __page_find_buddy(page, page_idx, order); 319 320 if (bad_range(zone, buddy)) 321 break; 322 if (!page_is_buddy(buddy, order)) 323 break; /* Move the buddy up one level. */ 324 list_del(&buddy->lru); 325 area = zone->free_area + order; 326 area->nr_free--; 327 rmv_page_order(buddy); 328 page = page + (combined_idx - page_idx); 329 page_idx = combined_idx; 330 order++; 331 } 332 set_page_order(page, order); 333 list_add(&page->lru, &zone->free_area[order].free_list); 334 zone->free_area[order].nr_free++; 335 } 336 337 static inline int free_pages_check(const char *function, struct page *page) 338 { 339 if ( page_mapcount(page) || 340 page->mapping != NULL || 341 page_count(page) != 0 || 342 (page->flags & ( 343 1 << PG_lru | 344 1 << PG_private | 345 1 << PG_locked | 346 1 << PG_active | 347 1 << PG_reclaim | 348 1 << PG_slab | 349 1 << PG_swapcache | 350 1 << PG_writeback | 351 1 << PG_reserved ))) 352 bad_page(function, page); 353 if (PageDirty(page)) 354 __ClearPageDirty(page); 355 /* 356 * For now, we report if PG_reserved was found set, but do not 357 * clear it, and do not free the page. But we shall soon need 358 * to do more, for when the ZERO_PAGE count wraps negative. 359 */ 360 return PageReserved(page); 361 } 362 363 /* 364 * Frees a list of pages. 365 * Assumes all pages on list are in same zone, and of same order. 366 * count is the number of pages to free. 367 * 368 * If the zone was previously in an "all pages pinned" state then look to 369 * see if this freeing clears that state. 370 * 371 * And clear the zone's pages_scanned counter, to hold off the "all pages are 372 * pinned" detection logic. 373 */ 374 static int 375 free_pages_bulk(struct zone *zone, int count, 376 struct list_head *list, unsigned int order) 377 { 378 unsigned long flags; 379 struct page *page = NULL; 380 int ret = 0; 381 382 spin_lock_irqsave(&zone->lock, flags); 383 zone->all_unreclaimable = 0; 384 zone->pages_scanned = 0; 385 while (!list_empty(list) && count--) { 386 page = list_entry(list->prev, struct page, lru); 387 /* have to delete it as __free_pages_bulk list manipulates */ 388 list_del(&page->lru); 389 __free_pages_bulk(page, zone, order); 390 ret++; 391 } 392 spin_unlock_irqrestore(&zone->lock, flags); 393 return ret; 394 } 395 396 void __free_pages_ok(struct page *page, unsigned int order) 397 { 398 LIST_HEAD(list); 399 int i; 400 int reserved = 0; 401 402 arch_free_page(page, order); 403 404 #ifndef CONFIG_MMU 405 if (order > 0) 406 for (i = 1 ; i < (1 << order) ; ++i) 407 __put_page(page + i); 408 #endif 409 410 for (i = 0 ; i < (1 << order) ; ++i) 411 reserved += free_pages_check(__FUNCTION__, page + i); 412 if (reserved) 413 return; 414 415 list_add(&page->lru, &list); 416 mod_page_state(pgfree, 1 << order); 417 kernel_map_pages(page, 1<<order, 0); 418 free_pages_bulk(page_zone(page), 1, &list, order); 419 } 420 421 422 /* 423 * The order of subdivision here is critical for the IO subsystem. 424 * Please do not alter this order without good reasons and regression 425 * testing. Specifically, as large blocks of memory are subdivided, 426 * the order in which smaller blocks are delivered depends on the order 427 * they're subdivided in this function. This is the primary factor 428 * influencing the order in which pages are delivered to the IO 429 * subsystem according to empirical testing, and this is also justified 430 * by considering the behavior of a buddy system containing a single 431 * large block of memory acted on by a series of small allocations. 432 * This behavior is a critical factor in sglist merging's success. 433 * 434 * -- wli 435 */ 436 static inline struct page * 437 expand(struct zone *zone, struct page *page, 438 int low, int high, struct free_area *area) 439 { 440 unsigned long size = 1 << high; 441 442 while (high > low) { 443 area--; 444 high--; 445 size >>= 1; 446 BUG_ON(bad_range(zone, &page[size])); 447 list_add(&page[size].lru, &area->free_list); 448 area->nr_free++; 449 set_page_order(&page[size], high); 450 } 451 return page; 452 } 453 454 void set_page_refs(struct page *page, int order) 455 { 456 #ifdef CONFIG_MMU 457 set_page_count(page, 1); 458 #else 459 int i; 460 461 /* 462 * We need to reference all the pages for this order, otherwise if 463 * anyone accesses one of the pages with (get/put) it will be freed. 464 * - eg: access_process_vm() 465 */ 466 for (i = 0; i < (1 << order); i++) 467 set_page_count(page + i, 1); 468 #endif /* CONFIG_MMU */ 469 } 470 471 /* 472 * This page is about to be returned from the page allocator 473 */ 474 static int prep_new_page(struct page *page, int order) 475 { 476 if ( page_mapcount(page) || 477 page->mapping != NULL || 478 page_count(page) != 0 || 479 (page->flags & ( 480 1 << PG_lru | 481 1 << PG_private | 482 1 << PG_locked | 483 1 << PG_active | 484 1 << PG_dirty | 485 1 << PG_reclaim | 486 1 << PG_slab | 487 1 << PG_swapcache | 488 1 << PG_writeback | 489 1 << PG_reserved ))) 490 bad_page(__FUNCTION__, page); 491 492 /* 493 * For now, we report if PG_reserved was found set, but do not 494 * clear it, and do not allocate the page: as a safety net. 495 */ 496 if (PageReserved(page)) 497 return 1; 498 499 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 500 1 << PG_referenced | 1 << PG_arch_1 | 501 1 << PG_checked | 1 << PG_mappedtodisk); 502 set_page_private(page, 0); 503 set_page_refs(page, order); 504 kernel_map_pages(page, 1 << order, 1); 505 return 0; 506 } 507 508 /* 509 * Do the hard work of removing an element from the buddy allocator. 510 * Call me with the zone->lock already held. 511 */ 512 static struct page *__rmqueue(struct zone *zone, unsigned int order) 513 { 514 struct free_area * area; 515 unsigned int current_order; 516 struct page *page; 517 518 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 519 area = zone->free_area + current_order; 520 if (list_empty(&area->free_list)) 521 continue; 522 523 page = list_entry(area->free_list.next, struct page, lru); 524 list_del(&page->lru); 525 rmv_page_order(page); 526 area->nr_free--; 527 zone->free_pages -= 1UL << order; 528 return expand(zone, page, order, current_order, area); 529 } 530 531 return NULL; 532 } 533 534 /* 535 * Obtain a specified number of elements from the buddy allocator, all under 536 * a single hold of the lock, for efficiency. Add them to the supplied list. 537 * Returns the number of new pages which were placed at *list. 538 */ 539 static int rmqueue_bulk(struct zone *zone, unsigned int order, 540 unsigned long count, struct list_head *list) 541 { 542 unsigned long flags; 543 int i; 544 int allocated = 0; 545 struct page *page; 546 547 spin_lock_irqsave(&zone->lock, flags); 548 for (i = 0; i < count; ++i) { 549 page = __rmqueue(zone, order); 550 if (page == NULL) 551 break; 552 allocated++; 553 list_add_tail(&page->lru, list); 554 } 555 spin_unlock_irqrestore(&zone->lock, flags); 556 return allocated; 557 } 558 559 #ifdef CONFIG_NUMA 560 /* Called from the slab reaper to drain remote pagesets */ 561 void drain_remote_pages(void) 562 { 563 struct zone *zone; 564 int i; 565 unsigned long flags; 566 567 local_irq_save(flags); 568 for_each_zone(zone) { 569 struct per_cpu_pageset *pset; 570 571 /* Do not drain local pagesets */ 572 if (zone->zone_pgdat->node_id == numa_node_id()) 573 continue; 574 575 pset = zone->pageset[smp_processor_id()]; 576 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 577 struct per_cpu_pages *pcp; 578 579 pcp = &pset->pcp[i]; 580 if (pcp->count) 581 pcp->count -= free_pages_bulk(zone, pcp->count, 582 &pcp->list, 0); 583 } 584 } 585 local_irq_restore(flags); 586 } 587 #endif 588 589 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 590 static void __drain_pages(unsigned int cpu) 591 { 592 struct zone *zone; 593 int i; 594 595 for_each_zone(zone) { 596 struct per_cpu_pageset *pset; 597 598 pset = zone_pcp(zone, cpu); 599 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 600 struct per_cpu_pages *pcp; 601 602 pcp = &pset->pcp[i]; 603 pcp->count -= free_pages_bulk(zone, pcp->count, 604 &pcp->list, 0); 605 } 606 } 607 } 608 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 609 610 #ifdef CONFIG_PM 611 612 void mark_free_pages(struct zone *zone) 613 { 614 unsigned long zone_pfn, flags; 615 int order; 616 struct list_head *curr; 617 618 if (!zone->spanned_pages) 619 return; 620 621 spin_lock_irqsave(&zone->lock, flags); 622 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 623 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 624 625 for (order = MAX_ORDER - 1; order >= 0; --order) 626 list_for_each(curr, &zone->free_area[order].free_list) { 627 unsigned long start_pfn, i; 628 629 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 630 631 for (i=0; i < (1<<order); i++) 632 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 633 } 634 spin_unlock_irqrestore(&zone->lock, flags); 635 } 636 637 /* 638 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 639 */ 640 void drain_local_pages(void) 641 { 642 unsigned long flags; 643 644 local_irq_save(flags); 645 __drain_pages(smp_processor_id()); 646 local_irq_restore(flags); 647 } 648 #endif /* CONFIG_PM */ 649 650 static void zone_statistics(struct zonelist *zonelist, struct zone *z) 651 { 652 #ifdef CONFIG_NUMA 653 unsigned long flags; 654 int cpu; 655 pg_data_t *pg = z->zone_pgdat; 656 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 657 struct per_cpu_pageset *p; 658 659 local_irq_save(flags); 660 cpu = smp_processor_id(); 661 p = zone_pcp(z,cpu); 662 if (pg == orig) { 663 p->numa_hit++; 664 } else { 665 p->numa_miss++; 666 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 667 } 668 if (pg == NODE_DATA(numa_node_id())) 669 p->local_node++; 670 else 671 p->other_node++; 672 local_irq_restore(flags); 673 #endif 674 } 675 676 /* 677 * Free a 0-order page 678 */ 679 static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); 680 static void fastcall free_hot_cold_page(struct page *page, int cold) 681 { 682 struct zone *zone = page_zone(page); 683 struct per_cpu_pages *pcp; 684 unsigned long flags; 685 686 arch_free_page(page, 0); 687 688 if (PageAnon(page)) 689 page->mapping = NULL; 690 if (free_pages_check(__FUNCTION__, page)) 691 return; 692 693 inc_page_state(pgfree); 694 kernel_map_pages(page, 1, 0); 695 696 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 697 local_irq_save(flags); 698 list_add(&page->lru, &pcp->list); 699 pcp->count++; 700 if (pcp->count >= pcp->high) 701 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 702 local_irq_restore(flags); 703 put_cpu(); 704 } 705 706 void fastcall free_hot_page(struct page *page) 707 { 708 free_hot_cold_page(page, 0); 709 } 710 711 void fastcall free_cold_page(struct page *page) 712 { 713 free_hot_cold_page(page, 1); 714 } 715 716 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 717 { 718 int i; 719 720 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 721 for(i = 0; i < (1 << order); i++) 722 clear_highpage(page + i); 723 } 724 725 /* 726 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 727 * we cheat by calling it from here, in the order > 0 path. Saves a branch 728 * or two. 729 */ 730 static struct page * 731 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags) 732 { 733 unsigned long flags; 734 struct page *page; 735 int cold = !!(gfp_flags & __GFP_COLD); 736 737 again: 738 if (order == 0) { 739 struct per_cpu_pages *pcp; 740 741 page = NULL; 742 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 743 local_irq_save(flags); 744 if (pcp->count <= pcp->low) 745 pcp->count += rmqueue_bulk(zone, 0, 746 pcp->batch, &pcp->list); 747 if (pcp->count) { 748 page = list_entry(pcp->list.next, struct page, lru); 749 list_del(&page->lru); 750 pcp->count--; 751 } 752 local_irq_restore(flags); 753 put_cpu(); 754 } else { 755 spin_lock_irqsave(&zone->lock, flags); 756 page = __rmqueue(zone, order); 757 spin_unlock_irqrestore(&zone->lock, flags); 758 } 759 760 if (page != NULL) { 761 BUG_ON(bad_range(zone, page)); 762 mod_page_state_zone(zone, pgalloc, 1 << order); 763 if (prep_new_page(page, order)) 764 goto again; 765 766 if (gfp_flags & __GFP_ZERO) 767 prep_zero_page(page, order, gfp_flags); 768 769 if (order && (gfp_flags & __GFP_COMP)) 770 prep_compound_page(page, order); 771 } 772 return page; 773 } 774 775 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 776 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 777 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 778 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 779 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 780 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 781 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 782 783 /* 784 * Return 1 if free pages are above 'mark'. This takes into account the order 785 * of the allocation. 786 */ 787 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 788 int classzone_idx, int alloc_flags) 789 { 790 /* free_pages my go negative - that's OK */ 791 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 792 int o; 793 794 if (alloc_flags & ALLOC_HIGH) 795 min -= min / 2; 796 if (alloc_flags & ALLOC_HARDER) 797 min -= min / 4; 798 799 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 800 return 0; 801 for (o = 0; o < order; o++) { 802 /* At the next order, this order's pages become unavailable */ 803 free_pages -= z->free_area[o].nr_free << o; 804 805 /* Require fewer higher order pages to be free */ 806 min >>= 1; 807 808 if (free_pages <= min) 809 return 0; 810 } 811 return 1; 812 } 813 814 /* 815 * get_page_from_freeliest goes through the zonelist trying to allocate 816 * a page. 817 */ 818 static struct page * 819 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 820 struct zonelist *zonelist, int alloc_flags) 821 { 822 struct zone **z = zonelist->zones; 823 struct page *page = NULL; 824 int classzone_idx = zone_idx(*z); 825 826 /* 827 * Go through the zonelist once, looking for a zone with enough free. 828 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 829 */ 830 do { 831 if ((alloc_flags & ALLOC_CPUSET) && 832 !cpuset_zone_allowed(*z, gfp_mask)) 833 continue; 834 835 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 836 unsigned long mark; 837 if (alloc_flags & ALLOC_WMARK_MIN) 838 mark = (*z)->pages_min; 839 else if (alloc_flags & ALLOC_WMARK_LOW) 840 mark = (*z)->pages_low; 841 else 842 mark = (*z)->pages_high; 843 if (!zone_watermark_ok(*z, order, mark, 844 classzone_idx, alloc_flags)) 845 continue; 846 } 847 848 page = buffered_rmqueue(*z, order, gfp_mask); 849 if (page) { 850 zone_statistics(zonelist, *z); 851 break; 852 } 853 } while (*(++z) != NULL); 854 return page; 855 } 856 857 /* 858 * This is the 'heart' of the zoned buddy allocator. 859 */ 860 struct page * fastcall 861 __alloc_pages(gfp_t gfp_mask, unsigned int order, 862 struct zonelist *zonelist) 863 { 864 const gfp_t wait = gfp_mask & __GFP_WAIT; 865 struct zone **z; 866 struct page *page; 867 struct reclaim_state reclaim_state; 868 struct task_struct *p = current; 869 int do_retry; 870 int alloc_flags; 871 int did_some_progress; 872 873 might_sleep_if(wait); 874 875 restart: 876 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 877 878 if (unlikely(*z == NULL)) { 879 /* Should this ever happen?? */ 880 return NULL; 881 } 882 883 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 884 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 885 if (page) 886 goto got_pg; 887 888 do { 889 wakeup_kswapd(*z, order); 890 } while (*(++z)); 891 892 /* 893 * OK, we're below the kswapd watermark and have kicked background 894 * reclaim. Now things get more complex, so set up alloc_flags according 895 * to how we want to proceed. 896 * 897 * The caller may dip into page reserves a bit more if the caller 898 * cannot run direct reclaim, or if the caller has realtime scheduling 899 * policy. 900 */ 901 alloc_flags = ALLOC_WMARK_MIN; 902 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 903 alloc_flags |= ALLOC_HARDER; 904 if (gfp_mask & __GFP_HIGH) 905 alloc_flags |= ALLOC_HIGH; 906 if (wait) 907 alloc_flags |= ALLOC_CPUSET; 908 909 /* 910 * Go through the zonelist again. Let __GFP_HIGH and allocations 911 * coming from realtime tasks go deeper into reserves. 912 * 913 * This is the last chance, in general, before the goto nopage. 914 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 915 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 916 */ 917 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 918 if (page) 919 goto got_pg; 920 921 /* This allocation should allow future memory freeing. */ 922 923 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 924 && !in_interrupt()) { 925 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 926 nofail_alloc: 927 /* go through the zonelist yet again, ignoring mins */ 928 page = get_page_from_freelist(gfp_mask, order, 929 zonelist, ALLOC_NO_WATERMARKS|ALLOC_CPUSET); 930 if (page) 931 goto got_pg; 932 if (gfp_mask & __GFP_NOFAIL) { 933 blk_congestion_wait(WRITE, HZ/50); 934 goto nofail_alloc; 935 } 936 } 937 goto nopage; 938 } 939 940 /* Atomic allocations - we can't balance anything */ 941 if (!wait) 942 goto nopage; 943 944 rebalance: 945 cond_resched(); 946 947 /* We now go into synchronous reclaim */ 948 p->flags |= PF_MEMALLOC; 949 reclaim_state.reclaimed_slab = 0; 950 p->reclaim_state = &reclaim_state; 951 952 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 953 954 p->reclaim_state = NULL; 955 p->flags &= ~PF_MEMALLOC; 956 957 cond_resched(); 958 959 if (likely(did_some_progress)) { 960 page = get_page_from_freelist(gfp_mask, order, 961 zonelist, alloc_flags); 962 if (page) 963 goto got_pg; 964 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 965 /* 966 * Go through the zonelist yet one more time, keep 967 * very high watermark here, this is only to catch 968 * a parallel oom killing, we must fail if we're still 969 * under heavy pressure. 970 */ 971 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 972 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 973 if (page) 974 goto got_pg; 975 976 out_of_memory(gfp_mask, order); 977 goto restart; 978 } 979 980 /* 981 * Don't let big-order allocations loop unless the caller explicitly 982 * requests that. Wait for some write requests to complete then retry. 983 * 984 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 985 * <= 3, but that may not be true in other implementations. 986 */ 987 do_retry = 0; 988 if (!(gfp_mask & __GFP_NORETRY)) { 989 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 990 do_retry = 1; 991 if (gfp_mask & __GFP_NOFAIL) 992 do_retry = 1; 993 } 994 if (do_retry) { 995 blk_congestion_wait(WRITE, HZ/50); 996 goto rebalance; 997 } 998 999 nopage: 1000 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1001 printk(KERN_WARNING "%s: page allocation failure." 1002 " order:%d, mode:0x%x\n", 1003 p->comm, order, gfp_mask); 1004 dump_stack(); 1005 show_mem(); 1006 } 1007 got_pg: 1008 return page; 1009 } 1010 1011 EXPORT_SYMBOL(__alloc_pages); 1012 1013 /* 1014 * Common helper functions. 1015 */ 1016 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1017 { 1018 struct page * page; 1019 page = alloc_pages(gfp_mask, order); 1020 if (!page) 1021 return 0; 1022 return (unsigned long) page_address(page); 1023 } 1024 1025 EXPORT_SYMBOL(__get_free_pages); 1026 1027 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1028 { 1029 struct page * page; 1030 1031 /* 1032 * get_zeroed_page() returns a 32-bit address, which cannot represent 1033 * a highmem page 1034 */ 1035 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1036 1037 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1038 if (page) 1039 return (unsigned long) page_address(page); 1040 return 0; 1041 } 1042 1043 EXPORT_SYMBOL(get_zeroed_page); 1044 1045 void __pagevec_free(struct pagevec *pvec) 1046 { 1047 int i = pagevec_count(pvec); 1048 1049 while (--i >= 0) 1050 free_hot_cold_page(pvec->pages[i], pvec->cold); 1051 } 1052 1053 fastcall void __free_pages(struct page *page, unsigned int order) 1054 { 1055 if (put_page_testzero(page)) { 1056 if (order == 0) 1057 free_hot_page(page); 1058 else 1059 __free_pages_ok(page, order); 1060 } 1061 } 1062 1063 EXPORT_SYMBOL(__free_pages); 1064 1065 fastcall void free_pages(unsigned long addr, unsigned int order) 1066 { 1067 if (addr != 0) { 1068 BUG_ON(!virt_addr_valid((void *)addr)); 1069 __free_pages(virt_to_page((void *)addr), order); 1070 } 1071 } 1072 1073 EXPORT_SYMBOL(free_pages); 1074 1075 /* 1076 * Total amount of free (allocatable) RAM: 1077 */ 1078 unsigned int nr_free_pages(void) 1079 { 1080 unsigned int sum = 0; 1081 struct zone *zone; 1082 1083 for_each_zone(zone) 1084 sum += zone->free_pages; 1085 1086 return sum; 1087 } 1088 1089 EXPORT_SYMBOL(nr_free_pages); 1090 1091 #ifdef CONFIG_NUMA 1092 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1093 { 1094 unsigned int i, sum = 0; 1095 1096 for (i = 0; i < MAX_NR_ZONES; i++) 1097 sum += pgdat->node_zones[i].free_pages; 1098 1099 return sum; 1100 } 1101 #endif 1102 1103 static unsigned int nr_free_zone_pages(int offset) 1104 { 1105 /* Just pick one node, since fallback list is circular */ 1106 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1107 unsigned int sum = 0; 1108 1109 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1110 struct zone **zonep = zonelist->zones; 1111 struct zone *zone; 1112 1113 for (zone = *zonep++; zone; zone = *zonep++) { 1114 unsigned long size = zone->present_pages; 1115 unsigned long high = zone->pages_high; 1116 if (size > high) 1117 sum += size - high; 1118 } 1119 1120 return sum; 1121 } 1122 1123 /* 1124 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1125 */ 1126 unsigned int nr_free_buffer_pages(void) 1127 { 1128 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1129 } 1130 1131 /* 1132 * Amount of free RAM allocatable within all zones 1133 */ 1134 unsigned int nr_free_pagecache_pages(void) 1135 { 1136 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1137 } 1138 1139 #ifdef CONFIG_HIGHMEM 1140 unsigned int nr_free_highpages (void) 1141 { 1142 pg_data_t *pgdat; 1143 unsigned int pages = 0; 1144 1145 for_each_pgdat(pgdat) 1146 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1147 1148 return pages; 1149 } 1150 #endif 1151 1152 #ifdef CONFIG_NUMA 1153 static void show_node(struct zone *zone) 1154 { 1155 printk("Node %d ", zone->zone_pgdat->node_id); 1156 } 1157 #else 1158 #define show_node(zone) do { } while (0) 1159 #endif 1160 1161 /* 1162 * Accumulate the page_state information across all CPUs. 1163 * The result is unavoidably approximate - it can change 1164 * during and after execution of this function. 1165 */ 1166 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1167 1168 atomic_t nr_pagecache = ATOMIC_INIT(0); 1169 EXPORT_SYMBOL(nr_pagecache); 1170 #ifdef CONFIG_SMP 1171 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1172 #endif 1173 1174 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1175 { 1176 int cpu = 0; 1177 1178 memset(ret, 0, sizeof(*ret)); 1179 cpus_and(*cpumask, *cpumask, cpu_online_map); 1180 1181 cpu = first_cpu(*cpumask); 1182 while (cpu < NR_CPUS) { 1183 unsigned long *in, *out, off; 1184 1185 in = (unsigned long *)&per_cpu(page_states, cpu); 1186 1187 cpu = next_cpu(cpu, *cpumask); 1188 1189 if (cpu < NR_CPUS) 1190 prefetch(&per_cpu(page_states, cpu)); 1191 1192 out = (unsigned long *)ret; 1193 for (off = 0; off < nr; off++) 1194 *out++ += *in++; 1195 } 1196 } 1197 1198 void get_page_state_node(struct page_state *ret, int node) 1199 { 1200 int nr; 1201 cpumask_t mask = node_to_cpumask(node); 1202 1203 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1204 nr /= sizeof(unsigned long); 1205 1206 __get_page_state(ret, nr+1, &mask); 1207 } 1208 1209 void get_page_state(struct page_state *ret) 1210 { 1211 int nr; 1212 cpumask_t mask = CPU_MASK_ALL; 1213 1214 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1215 nr /= sizeof(unsigned long); 1216 1217 __get_page_state(ret, nr + 1, &mask); 1218 } 1219 1220 void get_full_page_state(struct page_state *ret) 1221 { 1222 cpumask_t mask = CPU_MASK_ALL; 1223 1224 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1225 } 1226 1227 unsigned long __read_page_state(unsigned long offset) 1228 { 1229 unsigned long ret = 0; 1230 int cpu; 1231 1232 for_each_online_cpu(cpu) { 1233 unsigned long in; 1234 1235 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1236 ret += *((unsigned long *)in); 1237 } 1238 return ret; 1239 } 1240 1241 void __mod_page_state(unsigned long offset, unsigned long delta) 1242 { 1243 unsigned long flags; 1244 void* ptr; 1245 1246 local_irq_save(flags); 1247 ptr = &__get_cpu_var(page_states); 1248 *(unsigned long*)(ptr + offset) += delta; 1249 local_irq_restore(flags); 1250 } 1251 1252 EXPORT_SYMBOL(__mod_page_state); 1253 1254 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1255 unsigned long *free, struct pglist_data *pgdat) 1256 { 1257 struct zone *zones = pgdat->node_zones; 1258 int i; 1259 1260 *active = 0; 1261 *inactive = 0; 1262 *free = 0; 1263 for (i = 0; i < MAX_NR_ZONES; i++) { 1264 *active += zones[i].nr_active; 1265 *inactive += zones[i].nr_inactive; 1266 *free += zones[i].free_pages; 1267 } 1268 } 1269 1270 void get_zone_counts(unsigned long *active, 1271 unsigned long *inactive, unsigned long *free) 1272 { 1273 struct pglist_data *pgdat; 1274 1275 *active = 0; 1276 *inactive = 0; 1277 *free = 0; 1278 for_each_pgdat(pgdat) { 1279 unsigned long l, m, n; 1280 __get_zone_counts(&l, &m, &n, pgdat); 1281 *active += l; 1282 *inactive += m; 1283 *free += n; 1284 } 1285 } 1286 1287 void si_meminfo(struct sysinfo *val) 1288 { 1289 val->totalram = totalram_pages; 1290 val->sharedram = 0; 1291 val->freeram = nr_free_pages(); 1292 val->bufferram = nr_blockdev_pages(); 1293 #ifdef CONFIG_HIGHMEM 1294 val->totalhigh = totalhigh_pages; 1295 val->freehigh = nr_free_highpages(); 1296 #else 1297 val->totalhigh = 0; 1298 val->freehigh = 0; 1299 #endif 1300 val->mem_unit = PAGE_SIZE; 1301 } 1302 1303 EXPORT_SYMBOL(si_meminfo); 1304 1305 #ifdef CONFIG_NUMA 1306 void si_meminfo_node(struct sysinfo *val, int nid) 1307 { 1308 pg_data_t *pgdat = NODE_DATA(nid); 1309 1310 val->totalram = pgdat->node_present_pages; 1311 val->freeram = nr_free_pages_pgdat(pgdat); 1312 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1313 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1314 val->mem_unit = PAGE_SIZE; 1315 } 1316 #endif 1317 1318 #define K(x) ((x) << (PAGE_SHIFT-10)) 1319 1320 /* 1321 * Show free area list (used inside shift_scroll-lock stuff) 1322 * We also calculate the percentage fragmentation. We do this by counting the 1323 * memory on each free list with the exception of the first item on the list. 1324 */ 1325 void show_free_areas(void) 1326 { 1327 struct page_state ps; 1328 int cpu, temperature; 1329 unsigned long active; 1330 unsigned long inactive; 1331 unsigned long free; 1332 struct zone *zone; 1333 1334 for_each_zone(zone) { 1335 show_node(zone); 1336 printk("%s per-cpu:", zone->name); 1337 1338 if (!zone->present_pages) { 1339 printk(" empty\n"); 1340 continue; 1341 } else 1342 printk("\n"); 1343 1344 for_each_online_cpu(cpu) { 1345 struct per_cpu_pageset *pageset; 1346 1347 pageset = zone_pcp(zone, cpu); 1348 1349 for (temperature = 0; temperature < 2; temperature++) 1350 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n", 1351 cpu, 1352 temperature ? "cold" : "hot", 1353 pageset->pcp[temperature].low, 1354 pageset->pcp[temperature].high, 1355 pageset->pcp[temperature].batch, 1356 pageset->pcp[temperature].count); 1357 } 1358 } 1359 1360 get_page_state(&ps); 1361 get_zone_counts(&active, &inactive, &free); 1362 1363 printk("Free pages: %11ukB (%ukB HighMem)\n", 1364 K(nr_free_pages()), 1365 K(nr_free_highpages())); 1366 1367 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1368 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1369 active, 1370 inactive, 1371 ps.nr_dirty, 1372 ps.nr_writeback, 1373 ps.nr_unstable, 1374 nr_free_pages(), 1375 ps.nr_slab, 1376 ps.nr_mapped, 1377 ps.nr_page_table_pages); 1378 1379 for_each_zone(zone) { 1380 int i; 1381 1382 show_node(zone); 1383 printk("%s" 1384 " free:%lukB" 1385 " min:%lukB" 1386 " low:%lukB" 1387 " high:%lukB" 1388 " active:%lukB" 1389 " inactive:%lukB" 1390 " present:%lukB" 1391 " pages_scanned:%lu" 1392 " all_unreclaimable? %s" 1393 "\n", 1394 zone->name, 1395 K(zone->free_pages), 1396 K(zone->pages_min), 1397 K(zone->pages_low), 1398 K(zone->pages_high), 1399 K(zone->nr_active), 1400 K(zone->nr_inactive), 1401 K(zone->present_pages), 1402 zone->pages_scanned, 1403 (zone->all_unreclaimable ? "yes" : "no") 1404 ); 1405 printk("lowmem_reserve[]:"); 1406 for (i = 0; i < MAX_NR_ZONES; i++) 1407 printk(" %lu", zone->lowmem_reserve[i]); 1408 printk("\n"); 1409 } 1410 1411 for_each_zone(zone) { 1412 unsigned long nr, flags, order, total = 0; 1413 1414 show_node(zone); 1415 printk("%s: ", zone->name); 1416 if (!zone->present_pages) { 1417 printk("empty\n"); 1418 continue; 1419 } 1420 1421 spin_lock_irqsave(&zone->lock, flags); 1422 for (order = 0; order < MAX_ORDER; order++) { 1423 nr = zone->free_area[order].nr_free; 1424 total += nr << order; 1425 printk("%lu*%lukB ", nr, K(1UL) << order); 1426 } 1427 spin_unlock_irqrestore(&zone->lock, flags); 1428 printk("= %lukB\n", K(total)); 1429 } 1430 1431 show_swap_cache_info(); 1432 } 1433 1434 /* 1435 * Builds allocation fallback zone lists. 1436 */ 1437 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) 1438 { 1439 switch (k) { 1440 struct zone *zone; 1441 default: 1442 BUG(); 1443 case ZONE_HIGHMEM: 1444 zone = pgdat->node_zones + ZONE_HIGHMEM; 1445 if (zone->present_pages) { 1446 #ifndef CONFIG_HIGHMEM 1447 BUG(); 1448 #endif 1449 zonelist->zones[j++] = zone; 1450 } 1451 case ZONE_NORMAL: 1452 zone = pgdat->node_zones + ZONE_NORMAL; 1453 if (zone->present_pages) 1454 zonelist->zones[j++] = zone; 1455 case ZONE_DMA32: 1456 zone = pgdat->node_zones + ZONE_DMA32; 1457 if (zone->present_pages) 1458 zonelist->zones[j++] = zone; 1459 case ZONE_DMA: 1460 zone = pgdat->node_zones + ZONE_DMA; 1461 if (zone->present_pages) 1462 zonelist->zones[j++] = zone; 1463 } 1464 1465 return j; 1466 } 1467 1468 static inline int highest_zone(int zone_bits) 1469 { 1470 int res = ZONE_NORMAL; 1471 if (zone_bits & (__force int)__GFP_HIGHMEM) 1472 res = ZONE_HIGHMEM; 1473 if (zone_bits & (__force int)__GFP_DMA32) 1474 res = ZONE_DMA32; 1475 if (zone_bits & (__force int)__GFP_DMA) 1476 res = ZONE_DMA; 1477 return res; 1478 } 1479 1480 #ifdef CONFIG_NUMA 1481 #define MAX_NODE_LOAD (num_online_nodes()) 1482 static int __initdata node_load[MAX_NUMNODES]; 1483 /** 1484 * find_next_best_node - find the next node that should appear in a given node's fallback list 1485 * @node: node whose fallback list we're appending 1486 * @used_node_mask: nodemask_t of already used nodes 1487 * 1488 * We use a number of factors to determine which is the next node that should 1489 * appear on a given node's fallback list. The node should not have appeared 1490 * already in @node's fallback list, and it should be the next closest node 1491 * according to the distance array (which contains arbitrary distance values 1492 * from each node to each node in the system), and should also prefer nodes 1493 * with no CPUs, since presumably they'll have very little allocation pressure 1494 * on them otherwise. 1495 * It returns -1 if no node is found. 1496 */ 1497 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1498 { 1499 int i, n, val; 1500 int min_val = INT_MAX; 1501 int best_node = -1; 1502 1503 for_each_online_node(i) { 1504 cpumask_t tmp; 1505 1506 /* Start from local node */ 1507 n = (node+i) % num_online_nodes(); 1508 1509 /* Don't want a node to appear more than once */ 1510 if (node_isset(n, *used_node_mask)) 1511 continue; 1512 1513 /* Use the local node if we haven't already */ 1514 if (!node_isset(node, *used_node_mask)) { 1515 best_node = node; 1516 break; 1517 } 1518 1519 /* Use the distance array to find the distance */ 1520 val = node_distance(node, n); 1521 1522 /* Give preference to headless and unused nodes */ 1523 tmp = node_to_cpumask(n); 1524 if (!cpus_empty(tmp)) 1525 val += PENALTY_FOR_NODE_WITH_CPUS; 1526 1527 /* Slight preference for less loaded node */ 1528 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1529 val += node_load[n]; 1530 1531 if (val < min_val) { 1532 min_val = val; 1533 best_node = n; 1534 } 1535 } 1536 1537 if (best_node >= 0) 1538 node_set(best_node, *used_node_mask); 1539 1540 return best_node; 1541 } 1542 1543 static void __init build_zonelists(pg_data_t *pgdat) 1544 { 1545 int i, j, k, node, local_node; 1546 int prev_node, load; 1547 struct zonelist *zonelist; 1548 nodemask_t used_mask; 1549 1550 /* initialize zonelists */ 1551 for (i = 0; i < GFP_ZONETYPES; i++) { 1552 zonelist = pgdat->node_zonelists + i; 1553 zonelist->zones[0] = NULL; 1554 } 1555 1556 /* NUMA-aware ordering of nodes */ 1557 local_node = pgdat->node_id; 1558 load = num_online_nodes(); 1559 prev_node = local_node; 1560 nodes_clear(used_mask); 1561 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1562 /* 1563 * We don't want to pressure a particular node. 1564 * So adding penalty to the first node in same 1565 * distance group to make it round-robin. 1566 */ 1567 if (node_distance(local_node, node) != 1568 node_distance(local_node, prev_node)) 1569 node_load[node] += load; 1570 prev_node = node; 1571 load--; 1572 for (i = 0; i < GFP_ZONETYPES; i++) { 1573 zonelist = pgdat->node_zonelists + i; 1574 for (j = 0; zonelist->zones[j] != NULL; j++); 1575 1576 k = highest_zone(i); 1577 1578 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1579 zonelist->zones[j] = NULL; 1580 } 1581 } 1582 } 1583 1584 #else /* CONFIG_NUMA */ 1585 1586 static void __init build_zonelists(pg_data_t *pgdat) 1587 { 1588 int i, j, k, node, local_node; 1589 1590 local_node = pgdat->node_id; 1591 for (i = 0; i < GFP_ZONETYPES; i++) { 1592 struct zonelist *zonelist; 1593 1594 zonelist = pgdat->node_zonelists + i; 1595 1596 j = 0; 1597 k = highest_zone(i); 1598 j = build_zonelists_node(pgdat, zonelist, j, k); 1599 /* 1600 * Now we build the zonelist so that it contains the zones 1601 * of all the other nodes. 1602 * We don't want to pressure a particular node, so when 1603 * building the zones for node N, we make sure that the 1604 * zones coming right after the local ones are those from 1605 * node N+1 (modulo N) 1606 */ 1607 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1608 if (!node_online(node)) 1609 continue; 1610 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1611 } 1612 for (node = 0; node < local_node; node++) { 1613 if (!node_online(node)) 1614 continue; 1615 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1616 } 1617 1618 zonelist->zones[j] = NULL; 1619 } 1620 } 1621 1622 #endif /* CONFIG_NUMA */ 1623 1624 void __init build_all_zonelists(void) 1625 { 1626 int i; 1627 1628 for_each_online_node(i) 1629 build_zonelists(NODE_DATA(i)); 1630 printk("Built %i zonelists\n", num_online_nodes()); 1631 cpuset_init_current_mems_allowed(); 1632 } 1633 1634 /* 1635 * Helper functions to size the waitqueue hash table. 1636 * Essentially these want to choose hash table sizes sufficiently 1637 * large so that collisions trying to wait on pages are rare. 1638 * But in fact, the number of active page waitqueues on typical 1639 * systems is ridiculously low, less than 200. So this is even 1640 * conservative, even though it seems large. 1641 * 1642 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1643 * waitqueues, i.e. the size of the waitq table given the number of pages. 1644 */ 1645 #define PAGES_PER_WAITQUEUE 256 1646 1647 static inline unsigned long wait_table_size(unsigned long pages) 1648 { 1649 unsigned long size = 1; 1650 1651 pages /= PAGES_PER_WAITQUEUE; 1652 1653 while (size < pages) 1654 size <<= 1; 1655 1656 /* 1657 * Once we have dozens or even hundreds of threads sleeping 1658 * on IO we've got bigger problems than wait queue collision. 1659 * Limit the size of the wait table to a reasonable size. 1660 */ 1661 size = min(size, 4096UL); 1662 1663 return max(size, 4UL); 1664 } 1665 1666 /* 1667 * This is an integer logarithm so that shifts can be used later 1668 * to extract the more random high bits from the multiplicative 1669 * hash function before the remainder is taken. 1670 */ 1671 static inline unsigned long wait_table_bits(unsigned long size) 1672 { 1673 return ffz(~size); 1674 } 1675 1676 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1677 1678 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1679 unsigned long *zones_size, unsigned long *zholes_size) 1680 { 1681 unsigned long realtotalpages, totalpages = 0; 1682 int i; 1683 1684 for (i = 0; i < MAX_NR_ZONES; i++) 1685 totalpages += zones_size[i]; 1686 pgdat->node_spanned_pages = totalpages; 1687 1688 realtotalpages = totalpages; 1689 if (zholes_size) 1690 for (i = 0; i < MAX_NR_ZONES; i++) 1691 realtotalpages -= zholes_size[i]; 1692 pgdat->node_present_pages = realtotalpages; 1693 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1694 } 1695 1696 1697 /* 1698 * Initially all pages are reserved - free ones are freed 1699 * up by free_all_bootmem() once the early boot process is 1700 * done. Non-atomic initialization, single-pass. 1701 */ 1702 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1703 unsigned long start_pfn) 1704 { 1705 struct page *page; 1706 unsigned long end_pfn = start_pfn + size; 1707 unsigned long pfn; 1708 1709 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) { 1710 if (!early_pfn_valid(pfn)) 1711 continue; 1712 if (!early_pfn_in_nid(pfn, nid)) 1713 continue; 1714 page = pfn_to_page(pfn); 1715 set_page_links(page, zone, nid, pfn); 1716 set_page_count(page, 1); 1717 reset_page_mapcount(page); 1718 SetPageReserved(page); 1719 INIT_LIST_HEAD(&page->lru); 1720 #ifdef WANT_PAGE_VIRTUAL 1721 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1722 if (!is_highmem_idx(zone)) 1723 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1724 #endif 1725 } 1726 } 1727 1728 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1729 unsigned long size) 1730 { 1731 int order; 1732 for (order = 0; order < MAX_ORDER ; order++) { 1733 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1734 zone->free_area[order].nr_free = 0; 1735 } 1736 } 1737 1738 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1739 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1740 unsigned long size) 1741 { 1742 unsigned long snum = pfn_to_section_nr(pfn); 1743 unsigned long end = pfn_to_section_nr(pfn + size); 1744 1745 if (FLAGS_HAS_NODE) 1746 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1747 else 1748 for (; snum <= end; snum++) 1749 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1750 } 1751 1752 #ifndef __HAVE_ARCH_MEMMAP_INIT 1753 #define memmap_init(size, nid, zone, start_pfn) \ 1754 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1755 #endif 1756 1757 static int __devinit zone_batchsize(struct zone *zone) 1758 { 1759 int batch; 1760 1761 /* 1762 * The per-cpu-pages pools are set to around 1000th of the 1763 * size of the zone. But no more than 1/2 of a meg. 1764 * 1765 * OK, so we don't know how big the cache is. So guess. 1766 */ 1767 batch = zone->present_pages / 1024; 1768 if (batch * PAGE_SIZE > 512 * 1024) 1769 batch = (512 * 1024) / PAGE_SIZE; 1770 batch /= 4; /* We effectively *= 4 below */ 1771 if (batch < 1) 1772 batch = 1; 1773 1774 /* 1775 * Clamp the batch to a 2^n - 1 value. Having a power 1776 * of 2 value was found to be more likely to have 1777 * suboptimal cache aliasing properties in some cases. 1778 * 1779 * For example if 2 tasks are alternately allocating 1780 * batches of pages, one task can end up with a lot 1781 * of pages of one half of the possible page colors 1782 * and the other with pages of the other colors. 1783 */ 1784 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1785 1786 return batch; 1787 } 1788 1789 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1790 { 1791 struct per_cpu_pages *pcp; 1792 1793 memset(p, 0, sizeof(*p)); 1794 1795 pcp = &p->pcp[0]; /* hot */ 1796 pcp->count = 0; 1797 pcp->low = 0; 1798 pcp->high = 6 * batch; 1799 pcp->batch = max(1UL, 1 * batch); 1800 INIT_LIST_HEAD(&pcp->list); 1801 1802 pcp = &p->pcp[1]; /* cold*/ 1803 pcp->count = 0; 1804 pcp->low = 0; 1805 pcp->high = 2 * batch; 1806 pcp->batch = max(1UL, batch/2); 1807 INIT_LIST_HEAD(&pcp->list); 1808 } 1809 1810 #ifdef CONFIG_NUMA 1811 /* 1812 * Boot pageset table. One per cpu which is going to be used for all 1813 * zones and all nodes. The parameters will be set in such a way 1814 * that an item put on a list will immediately be handed over to 1815 * the buddy list. This is safe since pageset manipulation is done 1816 * with interrupts disabled. 1817 * 1818 * Some NUMA counter updates may also be caught by the boot pagesets. 1819 * 1820 * The boot_pagesets must be kept even after bootup is complete for 1821 * unused processors and/or zones. They do play a role for bootstrapping 1822 * hotplugged processors. 1823 * 1824 * zoneinfo_show() and maybe other functions do 1825 * not check if the processor is online before following the pageset pointer. 1826 * Other parts of the kernel may not check if the zone is available. 1827 */ 1828 static struct per_cpu_pageset 1829 boot_pageset[NR_CPUS]; 1830 1831 /* 1832 * Dynamically allocate memory for the 1833 * per cpu pageset array in struct zone. 1834 */ 1835 static int __devinit process_zones(int cpu) 1836 { 1837 struct zone *zone, *dzone; 1838 1839 for_each_zone(zone) { 1840 1841 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset), 1842 GFP_KERNEL, cpu_to_node(cpu)); 1843 if (!zone->pageset[cpu]) 1844 goto bad; 1845 1846 setup_pageset(zone->pageset[cpu], zone_batchsize(zone)); 1847 } 1848 1849 return 0; 1850 bad: 1851 for_each_zone(dzone) { 1852 if (dzone == zone) 1853 break; 1854 kfree(dzone->pageset[cpu]); 1855 dzone->pageset[cpu] = NULL; 1856 } 1857 return -ENOMEM; 1858 } 1859 1860 static inline void free_zone_pagesets(int cpu) 1861 { 1862 #ifdef CONFIG_NUMA 1863 struct zone *zone; 1864 1865 for_each_zone(zone) { 1866 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1867 1868 zone_pcp(zone, cpu) = NULL; 1869 kfree(pset); 1870 } 1871 #endif 1872 } 1873 1874 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb, 1875 unsigned long action, 1876 void *hcpu) 1877 { 1878 int cpu = (long)hcpu; 1879 int ret = NOTIFY_OK; 1880 1881 switch (action) { 1882 case CPU_UP_PREPARE: 1883 if (process_zones(cpu)) 1884 ret = NOTIFY_BAD; 1885 break; 1886 case CPU_UP_CANCELED: 1887 case CPU_DEAD: 1888 free_zone_pagesets(cpu); 1889 break; 1890 default: 1891 break; 1892 } 1893 return ret; 1894 } 1895 1896 static struct notifier_block pageset_notifier = 1897 { &pageset_cpuup_callback, NULL, 0 }; 1898 1899 void __init setup_per_cpu_pageset(void) 1900 { 1901 int err; 1902 1903 /* Initialize per_cpu_pageset for cpu 0. 1904 * A cpuup callback will do this for every cpu 1905 * as it comes online 1906 */ 1907 err = process_zones(smp_processor_id()); 1908 BUG_ON(err); 1909 register_cpu_notifier(&pageset_notifier); 1910 } 1911 1912 #endif 1913 1914 static __devinit 1915 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 1916 { 1917 int i; 1918 struct pglist_data *pgdat = zone->zone_pgdat; 1919 1920 /* 1921 * The per-page waitqueue mechanism uses hashed waitqueues 1922 * per zone. 1923 */ 1924 zone->wait_table_size = wait_table_size(zone_size_pages); 1925 zone->wait_table_bits = wait_table_bits(zone->wait_table_size); 1926 zone->wait_table = (wait_queue_head_t *) 1927 alloc_bootmem_node(pgdat, zone->wait_table_size 1928 * sizeof(wait_queue_head_t)); 1929 1930 for(i = 0; i < zone->wait_table_size; ++i) 1931 init_waitqueue_head(zone->wait_table + i); 1932 } 1933 1934 static __devinit void zone_pcp_init(struct zone *zone) 1935 { 1936 int cpu; 1937 unsigned long batch = zone_batchsize(zone); 1938 1939 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1940 #ifdef CONFIG_NUMA 1941 /* Early boot. Slab allocator not functional yet */ 1942 zone->pageset[cpu] = &boot_pageset[cpu]; 1943 setup_pageset(&boot_pageset[cpu],0); 1944 #else 1945 setup_pageset(zone_pcp(zone,cpu), batch); 1946 #endif 1947 } 1948 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 1949 zone->name, zone->present_pages, batch); 1950 } 1951 1952 static __devinit void init_currently_empty_zone(struct zone *zone, 1953 unsigned long zone_start_pfn, unsigned long size) 1954 { 1955 struct pglist_data *pgdat = zone->zone_pgdat; 1956 1957 zone_wait_table_init(zone, size); 1958 pgdat->nr_zones = zone_idx(zone) + 1; 1959 1960 zone->zone_mem_map = pfn_to_page(zone_start_pfn); 1961 zone->zone_start_pfn = zone_start_pfn; 1962 1963 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 1964 1965 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 1966 } 1967 1968 /* 1969 * Set up the zone data structures: 1970 * - mark all pages reserved 1971 * - mark all memory queues empty 1972 * - clear the memory bitmaps 1973 */ 1974 static void __init free_area_init_core(struct pglist_data *pgdat, 1975 unsigned long *zones_size, unsigned long *zholes_size) 1976 { 1977 unsigned long j; 1978 int nid = pgdat->node_id; 1979 unsigned long zone_start_pfn = pgdat->node_start_pfn; 1980 1981 pgdat_resize_init(pgdat); 1982 pgdat->nr_zones = 0; 1983 init_waitqueue_head(&pgdat->kswapd_wait); 1984 pgdat->kswapd_max_order = 0; 1985 1986 for (j = 0; j < MAX_NR_ZONES; j++) { 1987 struct zone *zone = pgdat->node_zones + j; 1988 unsigned long size, realsize; 1989 1990 realsize = size = zones_size[j]; 1991 if (zholes_size) 1992 realsize -= zholes_size[j]; 1993 1994 if (j < ZONE_HIGHMEM) 1995 nr_kernel_pages += realsize; 1996 nr_all_pages += realsize; 1997 1998 zone->spanned_pages = size; 1999 zone->present_pages = realsize; 2000 zone->name = zone_names[j]; 2001 spin_lock_init(&zone->lock); 2002 spin_lock_init(&zone->lru_lock); 2003 zone_seqlock_init(zone); 2004 zone->zone_pgdat = pgdat; 2005 zone->free_pages = 0; 2006 2007 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2008 2009 zone_pcp_init(zone); 2010 INIT_LIST_HEAD(&zone->active_list); 2011 INIT_LIST_HEAD(&zone->inactive_list); 2012 zone->nr_scan_active = 0; 2013 zone->nr_scan_inactive = 0; 2014 zone->nr_active = 0; 2015 zone->nr_inactive = 0; 2016 atomic_set(&zone->reclaim_in_progress, 0); 2017 if (!size) 2018 continue; 2019 2020 zonetable_add(zone, nid, j, zone_start_pfn, size); 2021 init_currently_empty_zone(zone, zone_start_pfn, size); 2022 zone_start_pfn += size; 2023 } 2024 } 2025 2026 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2027 { 2028 /* Skip empty nodes */ 2029 if (!pgdat->node_spanned_pages) 2030 return; 2031 2032 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2033 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2034 if (!pgdat->node_mem_map) { 2035 unsigned long size; 2036 struct page *map; 2037 2038 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 2039 map = alloc_remap(pgdat->node_id, size); 2040 if (!map) 2041 map = alloc_bootmem_node(pgdat, size); 2042 pgdat->node_mem_map = map; 2043 } 2044 #ifdef CONFIG_FLATMEM 2045 /* 2046 * With no DISCONTIG, the global mem_map is just set as node 0's 2047 */ 2048 if (pgdat == NODE_DATA(0)) 2049 mem_map = NODE_DATA(0)->node_mem_map; 2050 #endif 2051 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2052 } 2053 2054 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 2055 unsigned long *zones_size, unsigned long node_start_pfn, 2056 unsigned long *zholes_size) 2057 { 2058 pgdat->node_id = nid; 2059 pgdat->node_start_pfn = node_start_pfn; 2060 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2061 2062 alloc_node_mem_map(pgdat); 2063 2064 free_area_init_core(pgdat, zones_size, zholes_size); 2065 } 2066 2067 #ifndef CONFIG_NEED_MULTIPLE_NODES 2068 static bootmem_data_t contig_bootmem_data; 2069 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2070 2071 EXPORT_SYMBOL(contig_page_data); 2072 #endif 2073 2074 void __init free_area_init(unsigned long *zones_size) 2075 { 2076 free_area_init_node(0, NODE_DATA(0), zones_size, 2077 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2078 } 2079 2080 #ifdef CONFIG_PROC_FS 2081 2082 #include <linux/seq_file.h> 2083 2084 static void *frag_start(struct seq_file *m, loff_t *pos) 2085 { 2086 pg_data_t *pgdat; 2087 loff_t node = *pos; 2088 2089 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) 2090 --node; 2091 2092 return pgdat; 2093 } 2094 2095 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2096 { 2097 pg_data_t *pgdat = (pg_data_t *)arg; 2098 2099 (*pos)++; 2100 return pgdat->pgdat_next; 2101 } 2102 2103 static void frag_stop(struct seq_file *m, void *arg) 2104 { 2105 } 2106 2107 /* 2108 * This walks the free areas for each zone. 2109 */ 2110 static int frag_show(struct seq_file *m, void *arg) 2111 { 2112 pg_data_t *pgdat = (pg_data_t *)arg; 2113 struct zone *zone; 2114 struct zone *node_zones = pgdat->node_zones; 2115 unsigned long flags; 2116 int order; 2117 2118 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2119 if (!zone->present_pages) 2120 continue; 2121 2122 spin_lock_irqsave(&zone->lock, flags); 2123 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2124 for (order = 0; order < MAX_ORDER; ++order) 2125 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2126 spin_unlock_irqrestore(&zone->lock, flags); 2127 seq_putc(m, '\n'); 2128 } 2129 return 0; 2130 } 2131 2132 struct seq_operations fragmentation_op = { 2133 .start = frag_start, 2134 .next = frag_next, 2135 .stop = frag_stop, 2136 .show = frag_show, 2137 }; 2138 2139 /* 2140 * Output information about zones in @pgdat. 2141 */ 2142 static int zoneinfo_show(struct seq_file *m, void *arg) 2143 { 2144 pg_data_t *pgdat = arg; 2145 struct zone *zone; 2146 struct zone *node_zones = pgdat->node_zones; 2147 unsigned long flags; 2148 2149 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2150 int i; 2151 2152 if (!zone->present_pages) 2153 continue; 2154 2155 spin_lock_irqsave(&zone->lock, flags); 2156 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2157 seq_printf(m, 2158 "\n pages free %lu" 2159 "\n min %lu" 2160 "\n low %lu" 2161 "\n high %lu" 2162 "\n active %lu" 2163 "\n inactive %lu" 2164 "\n scanned %lu (a: %lu i: %lu)" 2165 "\n spanned %lu" 2166 "\n present %lu", 2167 zone->free_pages, 2168 zone->pages_min, 2169 zone->pages_low, 2170 zone->pages_high, 2171 zone->nr_active, 2172 zone->nr_inactive, 2173 zone->pages_scanned, 2174 zone->nr_scan_active, zone->nr_scan_inactive, 2175 zone->spanned_pages, 2176 zone->present_pages); 2177 seq_printf(m, 2178 "\n protection: (%lu", 2179 zone->lowmem_reserve[0]); 2180 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2181 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2182 seq_printf(m, 2183 ")" 2184 "\n pagesets"); 2185 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) { 2186 struct per_cpu_pageset *pageset; 2187 int j; 2188 2189 pageset = zone_pcp(zone, i); 2190 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2191 if (pageset->pcp[j].count) 2192 break; 2193 } 2194 if (j == ARRAY_SIZE(pageset->pcp)) 2195 continue; 2196 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2197 seq_printf(m, 2198 "\n cpu: %i pcp: %i" 2199 "\n count: %i" 2200 "\n low: %i" 2201 "\n high: %i" 2202 "\n batch: %i", 2203 i, j, 2204 pageset->pcp[j].count, 2205 pageset->pcp[j].low, 2206 pageset->pcp[j].high, 2207 pageset->pcp[j].batch); 2208 } 2209 #ifdef CONFIG_NUMA 2210 seq_printf(m, 2211 "\n numa_hit: %lu" 2212 "\n numa_miss: %lu" 2213 "\n numa_foreign: %lu" 2214 "\n interleave_hit: %lu" 2215 "\n local_node: %lu" 2216 "\n other_node: %lu", 2217 pageset->numa_hit, 2218 pageset->numa_miss, 2219 pageset->numa_foreign, 2220 pageset->interleave_hit, 2221 pageset->local_node, 2222 pageset->other_node); 2223 #endif 2224 } 2225 seq_printf(m, 2226 "\n all_unreclaimable: %u" 2227 "\n prev_priority: %i" 2228 "\n temp_priority: %i" 2229 "\n start_pfn: %lu", 2230 zone->all_unreclaimable, 2231 zone->prev_priority, 2232 zone->temp_priority, 2233 zone->zone_start_pfn); 2234 spin_unlock_irqrestore(&zone->lock, flags); 2235 seq_putc(m, '\n'); 2236 } 2237 return 0; 2238 } 2239 2240 struct seq_operations zoneinfo_op = { 2241 .start = frag_start, /* iterate over all zones. The same as in 2242 * fragmentation. */ 2243 .next = frag_next, 2244 .stop = frag_stop, 2245 .show = zoneinfo_show, 2246 }; 2247 2248 static char *vmstat_text[] = { 2249 "nr_dirty", 2250 "nr_writeback", 2251 "nr_unstable", 2252 "nr_page_table_pages", 2253 "nr_mapped", 2254 "nr_slab", 2255 2256 "pgpgin", 2257 "pgpgout", 2258 "pswpin", 2259 "pswpout", 2260 "pgalloc_high", 2261 2262 "pgalloc_normal", 2263 "pgalloc_dma", 2264 "pgfree", 2265 "pgactivate", 2266 "pgdeactivate", 2267 2268 "pgfault", 2269 "pgmajfault", 2270 "pgrefill_high", 2271 "pgrefill_normal", 2272 "pgrefill_dma", 2273 2274 "pgsteal_high", 2275 "pgsteal_normal", 2276 "pgsteal_dma", 2277 "pgscan_kswapd_high", 2278 "pgscan_kswapd_normal", 2279 2280 "pgscan_kswapd_dma", 2281 "pgscan_direct_high", 2282 "pgscan_direct_normal", 2283 "pgscan_direct_dma", 2284 "pginodesteal", 2285 2286 "slabs_scanned", 2287 "kswapd_steal", 2288 "kswapd_inodesteal", 2289 "pageoutrun", 2290 "allocstall", 2291 2292 "pgrotated", 2293 "nr_bounce", 2294 }; 2295 2296 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2297 { 2298 struct page_state *ps; 2299 2300 if (*pos >= ARRAY_SIZE(vmstat_text)) 2301 return NULL; 2302 2303 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2304 m->private = ps; 2305 if (!ps) 2306 return ERR_PTR(-ENOMEM); 2307 get_full_page_state(ps); 2308 ps->pgpgin /= 2; /* sectors -> kbytes */ 2309 ps->pgpgout /= 2; 2310 return (unsigned long *)ps + *pos; 2311 } 2312 2313 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2314 { 2315 (*pos)++; 2316 if (*pos >= ARRAY_SIZE(vmstat_text)) 2317 return NULL; 2318 return (unsigned long *)m->private + *pos; 2319 } 2320 2321 static int vmstat_show(struct seq_file *m, void *arg) 2322 { 2323 unsigned long *l = arg; 2324 unsigned long off = l - (unsigned long *)m->private; 2325 2326 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2327 return 0; 2328 } 2329 2330 static void vmstat_stop(struct seq_file *m, void *arg) 2331 { 2332 kfree(m->private); 2333 m->private = NULL; 2334 } 2335 2336 struct seq_operations vmstat_op = { 2337 .start = vmstat_start, 2338 .next = vmstat_next, 2339 .stop = vmstat_stop, 2340 .show = vmstat_show, 2341 }; 2342 2343 #endif /* CONFIG_PROC_FS */ 2344 2345 #ifdef CONFIG_HOTPLUG_CPU 2346 static int page_alloc_cpu_notify(struct notifier_block *self, 2347 unsigned long action, void *hcpu) 2348 { 2349 int cpu = (unsigned long)hcpu; 2350 long *count; 2351 unsigned long *src, *dest; 2352 2353 if (action == CPU_DEAD) { 2354 int i; 2355 2356 /* Drain local pagecache count. */ 2357 count = &per_cpu(nr_pagecache_local, cpu); 2358 atomic_add(*count, &nr_pagecache); 2359 *count = 0; 2360 local_irq_disable(); 2361 __drain_pages(cpu); 2362 2363 /* Add dead cpu's page_states to our own. */ 2364 dest = (unsigned long *)&__get_cpu_var(page_states); 2365 src = (unsigned long *)&per_cpu(page_states, cpu); 2366 2367 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2368 i++) { 2369 dest[i] += src[i]; 2370 src[i] = 0; 2371 } 2372 2373 local_irq_enable(); 2374 } 2375 return NOTIFY_OK; 2376 } 2377 #endif /* CONFIG_HOTPLUG_CPU */ 2378 2379 void __init page_alloc_init(void) 2380 { 2381 hotcpu_notifier(page_alloc_cpu_notify, 0); 2382 } 2383 2384 /* 2385 * setup_per_zone_lowmem_reserve - called whenever 2386 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2387 * has a correct pages reserved value, so an adequate number of 2388 * pages are left in the zone after a successful __alloc_pages(). 2389 */ 2390 static void setup_per_zone_lowmem_reserve(void) 2391 { 2392 struct pglist_data *pgdat; 2393 int j, idx; 2394 2395 for_each_pgdat(pgdat) { 2396 for (j = 0; j < MAX_NR_ZONES; j++) { 2397 struct zone *zone = pgdat->node_zones + j; 2398 unsigned long present_pages = zone->present_pages; 2399 2400 zone->lowmem_reserve[j] = 0; 2401 2402 for (idx = j-1; idx >= 0; idx--) { 2403 struct zone *lower_zone; 2404 2405 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2406 sysctl_lowmem_reserve_ratio[idx] = 1; 2407 2408 lower_zone = pgdat->node_zones + idx; 2409 lower_zone->lowmem_reserve[j] = present_pages / 2410 sysctl_lowmem_reserve_ratio[idx]; 2411 present_pages += lower_zone->present_pages; 2412 } 2413 } 2414 } 2415 } 2416 2417 /* 2418 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2419 * that the pages_{min,low,high} values for each zone are set correctly 2420 * with respect to min_free_kbytes. 2421 */ 2422 void setup_per_zone_pages_min(void) 2423 { 2424 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2425 unsigned long lowmem_pages = 0; 2426 struct zone *zone; 2427 unsigned long flags; 2428 2429 /* Calculate total number of !ZONE_HIGHMEM pages */ 2430 for_each_zone(zone) { 2431 if (!is_highmem(zone)) 2432 lowmem_pages += zone->present_pages; 2433 } 2434 2435 for_each_zone(zone) { 2436 unsigned long tmp; 2437 spin_lock_irqsave(&zone->lru_lock, flags); 2438 tmp = (pages_min * zone->present_pages) / lowmem_pages; 2439 if (is_highmem(zone)) { 2440 /* 2441 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2442 * need highmem pages, so cap pages_min to a small 2443 * value here. 2444 * 2445 * The (pages_high-pages_low) and (pages_low-pages_min) 2446 * deltas controls asynch page reclaim, and so should 2447 * not be capped for highmem. 2448 */ 2449 int min_pages; 2450 2451 min_pages = zone->present_pages / 1024; 2452 if (min_pages < SWAP_CLUSTER_MAX) 2453 min_pages = SWAP_CLUSTER_MAX; 2454 if (min_pages > 128) 2455 min_pages = 128; 2456 zone->pages_min = min_pages; 2457 } else { 2458 /* 2459 * If it's a lowmem zone, reserve a number of pages 2460 * proportionate to the zone's size. 2461 */ 2462 zone->pages_min = tmp; 2463 } 2464 2465 zone->pages_low = zone->pages_min + tmp / 4; 2466 zone->pages_high = zone->pages_min + tmp / 2; 2467 spin_unlock_irqrestore(&zone->lru_lock, flags); 2468 } 2469 } 2470 2471 /* 2472 * Initialise min_free_kbytes. 2473 * 2474 * For small machines we want it small (128k min). For large machines 2475 * we want it large (64MB max). But it is not linear, because network 2476 * bandwidth does not increase linearly with machine size. We use 2477 * 2478 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2479 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2480 * 2481 * which yields 2482 * 2483 * 16MB: 512k 2484 * 32MB: 724k 2485 * 64MB: 1024k 2486 * 128MB: 1448k 2487 * 256MB: 2048k 2488 * 512MB: 2896k 2489 * 1024MB: 4096k 2490 * 2048MB: 5792k 2491 * 4096MB: 8192k 2492 * 8192MB: 11584k 2493 * 16384MB: 16384k 2494 */ 2495 static int __init init_per_zone_pages_min(void) 2496 { 2497 unsigned long lowmem_kbytes; 2498 2499 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2500 2501 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2502 if (min_free_kbytes < 128) 2503 min_free_kbytes = 128; 2504 if (min_free_kbytes > 65536) 2505 min_free_kbytes = 65536; 2506 setup_per_zone_pages_min(); 2507 setup_per_zone_lowmem_reserve(); 2508 return 0; 2509 } 2510 module_init(init_per_zone_pages_min) 2511 2512 /* 2513 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2514 * that we can call two helper functions whenever min_free_kbytes 2515 * changes. 2516 */ 2517 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2518 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2519 { 2520 proc_dointvec(table, write, file, buffer, length, ppos); 2521 setup_per_zone_pages_min(); 2522 return 0; 2523 } 2524 2525 /* 2526 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2527 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2528 * whenever sysctl_lowmem_reserve_ratio changes. 2529 * 2530 * The reserve ratio obviously has absolutely no relation with the 2531 * pages_min watermarks. The lowmem reserve ratio can only make sense 2532 * if in function of the boot time zone sizes. 2533 */ 2534 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2535 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2536 { 2537 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2538 setup_per_zone_lowmem_reserve(); 2539 return 0; 2540 } 2541 2542 __initdata int hashdist = HASHDIST_DEFAULT; 2543 2544 #ifdef CONFIG_NUMA 2545 static int __init set_hashdist(char *str) 2546 { 2547 if (!str) 2548 return 0; 2549 hashdist = simple_strtoul(str, &str, 0); 2550 return 1; 2551 } 2552 __setup("hashdist=", set_hashdist); 2553 #endif 2554 2555 /* 2556 * allocate a large system hash table from bootmem 2557 * - it is assumed that the hash table must contain an exact power-of-2 2558 * quantity of entries 2559 * - limit is the number of hash buckets, not the total allocation size 2560 */ 2561 void *__init alloc_large_system_hash(const char *tablename, 2562 unsigned long bucketsize, 2563 unsigned long numentries, 2564 int scale, 2565 int flags, 2566 unsigned int *_hash_shift, 2567 unsigned int *_hash_mask, 2568 unsigned long limit) 2569 { 2570 unsigned long long max = limit; 2571 unsigned long log2qty, size; 2572 void *table = NULL; 2573 2574 /* allow the kernel cmdline to have a say */ 2575 if (!numentries) { 2576 /* round applicable memory size up to nearest megabyte */ 2577 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2578 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2579 numentries >>= 20 - PAGE_SHIFT; 2580 numentries <<= 20 - PAGE_SHIFT; 2581 2582 /* limit to 1 bucket per 2^scale bytes of low memory */ 2583 if (scale > PAGE_SHIFT) 2584 numentries >>= (scale - PAGE_SHIFT); 2585 else 2586 numentries <<= (PAGE_SHIFT - scale); 2587 } 2588 /* rounded up to nearest power of 2 in size */ 2589 numentries = 1UL << (long_log2(numentries) + 1); 2590 2591 /* limit allocation size to 1/16 total memory by default */ 2592 if (max == 0) { 2593 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2594 do_div(max, bucketsize); 2595 } 2596 2597 if (numentries > max) 2598 numentries = max; 2599 2600 log2qty = long_log2(numentries); 2601 2602 do { 2603 size = bucketsize << log2qty; 2604 if (flags & HASH_EARLY) 2605 table = alloc_bootmem(size); 2606 else if (hashdist) 2607 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2608 else { 2609 unsigned long order; 2610 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2611 ; 2612 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2613 } 2614 } while (!table && size > PAGE_SIZE && --log2qty); 2615 2616 if (!table) 2617 panic("Failed to allocate %s hash table\n", tablename); 2618 2619 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2620 tablename, 2621 (1U << log2qty), 2622 long_log2(size) - PAGE_SHIFT, 2623 size); 2624 2625 if (_hash_shift) 2626 *_hash_shift = log2qty; 2627 if (_hash_mask) 2628 *_hash_mask = (1 << log2qty) - 1; 2629 2630 return table; 2631 } 2632