xref: /linux/mm/page_alloc.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 
40 #include <asm/tlbflush.h>
41 #include "internal.h"
42 
43 /*
44  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45  * initializer cleaner
46  */
47 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48 EXPORT_SYMBOL(node_online_map);
49 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50 EXPORT_SYMBOL(node_possible_map);
51 struct pglist_data *pgdat_list __read_mostly;
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 long nr_swap_pages;
55 
56 /*
57  * results with 256, 32 in the lowmem_reserve sysctl:
58  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59  *	1G machine -> (16M dma, 784M normal, 224M high)
60  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
63  *
64  * TBD: should special case ZONE_DMA32 machines here - in those we normally
65  * don't need any ZONE_NORMAL reservation
66  */
67 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
68 
69 EXPORT_SYMBOL(totalram_pages);
70 
71 /*
72  * Used by page_zone() to look up the address of the struct zone whose
73  * id is encoded in the upper bits of page->flags
74  */
75 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
76 EXPORT_SYMBOL(zone_table);
77 
78 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
79 int min_free_kbytes = 1024;
80 
81 unsigned long __initdata nr_kernel_pages;
82 unsigned long __initdata nr_all_pages;
83 
84 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
85 {
86 	int ret = 0;
87 	unsigned seq;
88 	unsigned long pfn = page_to_pfn(page);
89 
90 	do {
91 		seq = zone_span_seqbegin(zone);
92 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
93 			ret = 1;
94 		else if (pfn < zone->zone_start_pfn)
95 			ret = 1;
96 	} while (zone_span_seqretry(zone, seq));
97 
98 	return ret;
99 }
100 
101 static int page_is_consistent(struct zone *zone, struct page *page)
102 {
103 #ifdef CONFIG_HOLES_IN_ZONE
104 	if (!pfn_valid(page_to_pfn(page)))
105 		return 0;
106 #endif
107 	if (zone != page_zone(page))
108 		return 0;
109 
110 	return 1;
111 }
112 /*
113  * Temporary debugging check for pages not lying within a given zone.
114  */
115 static int bad_range(struct zone *zone, struct page *page)
116 {
117 	if (page_outside_zone_boundaries(zone, page))
118 		return 1;
119 	if (!page_is_consistent(zone, page))
120 		return 1;
121 
122 	return 0;
123 }
124 
125 static void bad_page(const char *function, struct page *page)
126 {
127 	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
128 		function, current->comm, page);
129 	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
130 		(int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
131 		page->mapping, page_mapcount(page), page_count(page));
132 	printk(KERN_EMERG "Backtrace:\n");
133 	dump_stack();
134 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
135 	page->flags &= ~(1 << PG_lru	|
136 			1 << PG_private |
137 			1 << PG_locked	|
138 			1 << PG_active	|
139 			1 << PG_dirty	|
140 			1 << PG_reclaim |
141 			1 << PG_slab    |
142 			1 << PG_swapcache |
143 			1 << PG_writeback );
144 	set_page_count(page, 0);
145 	reset_page_mapcount(page);
146 	page->mapping = NULL;
147 	add_taint(TAINT_BAD_PAGE);
148 }
149 
150 /*
151  * Higher-order pages are called "compound pages".  They are structured thusly:
152  *
153  * The first PAGE_SIZE page is called the "head page".
154  *
155  * The remaining PAGE_SIZE pages are called "tail pages".
156  *
157  * All pages have PG_compound set.  All pages have their ->private pointing at
158  * the head page (even the head page has this).
159  *
160  * The first tail page's ->mapping, if non-zero, holds the address of the
161  * compound page's put_page() function.
162  *
163  * The order of the allocation is stored in the first tail page's ->index
164  * This is only for debug at present.  This usage means that zero-order pages
165  * may not be compound.
166  */
167 static void prep_compound_page(struct page *page, unsigned long order)
168 {
169 	int i;
170 	int nr_pages = 1 << order;
171 
172 	page[1].mapping = NULL;
173 	page[1].index = order;
174 	for (i = 0; i < nr_pages; i++) {
175 		struct page *p = page + i;
176 
177 		SetPageCompound(p);
178 		set_page_private(p, (unsigned long)page);
179 	}
180 }
181 
182 static void destroy_compound_page(struct page *page, unsigned long order)
183 {
184 	int i;
185 	int nr_pages = 1 << order;
186 
187 	if (!PageCompound(page))
188 		return;
189 
190 	if (page[1].index != order)
191 		bad_page(__FUNCTION__, page);
192 
193 	for (i = 0; i < nr_pages; i++) {
194 		struct page *p = page + i;
195 
196 		if (!PageCompound(p))
197 			bad_page(__FUNCTION__, page);
198 		if (page_private(p) != (unsigned long)page)
199 			bad_page(__FUNCTION__, page);
200 		ClearPageCompound(p);
201 	}
202 }
203 
204 /*
205  * function for dealing with page's order in buddy system.
206  * zone->lock is already acquired when we use these.
207  * So, we don't need atomic page->flags operations here.
208  */
209 static inline unsigned long page_order(struct page *page) {
210 	return page_private(page);
211 }
212 
213 static inline void set_page_order(struct page *page, int order) {
214 	set_page_private(page, order);
215 	__SetPagePrivate(page);
216 }
217 
218 static inline void rmv_page_order(struct page *page)
219 {
220 	__ClearPagePrivate(page);
221 	set_page_private(page, 0);
222 }
223 
224 /*
225  * Locate the struct page for both the matching buddy in our
226  * pair (buddy1) and the combined O(n+1) page they form (page).
227  *
228  * 1) Any buddy B1 will have an order O twin B2 which satisfies
229  * the following equation:
230  *     B2 = B1 ^ (1 << O)
231  * For example, if the starting buddy (buddy2) is #8 its order
232  * 1 buddy is #10:
233  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
234  *
235  * 2) Any buddy B will have an order O+1 parent P which
236  * satisfies the following equation:
237  *     P = B & ~(1 << O)
238  *
239  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
240  */
241 static inline struct page *
242 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
243 {
244 	unsigned long buddy_idx = page_idx ^ (1 << order);
245 
246 	return page + (buddy_idx - page_idx);
247 }
248 
249 static inline unsigned long
250 __find_combined_index(unsigned long page_idx, unsigned int order)
251 {
252 	return (page_idx & ~(1 << order));
253 }
254 
255 /*
256  * This function checks whether a page is free && is the buddy
257  * we can do coalesce a page and its buddy if
258  * (a) the buddy is free &&
259  * (b) the buddy is on the buddy system &&
260  * (c) a page and its buddy have the same order.
261  * for recording page's order, we use page_private(page) and PG_private.
262  *
263  */
264 static inline int page_is_buddy(struct page *page, int order)
265 {
266        if (PagePrivate(page)           &&
267            (page_order(page) == order) &&
268             page_count(page) == 0)
269                return 1;
270        return 0;
271 }
272 
273 /*
274  * Freeing function for a buddy system allocator.
275  *
276  * The concept of a buddy system is to maintain direct-mapped table
277  * (containing bit values) for memory blocks of various "orders".
278  * The bottom level table contains the map for the smallest allocatable
279  * units of memory (here, pages), and each level above it describes
280  * pairs of units from the levels below, hence, "buddies".
281  * At a high level, all that happens here is marking the table entry
282  * at the bottom level available, and propagating the changes upward
283  * as necessary, plus some accounting needed to play nicely with other
284  * parts of the VM system.
285  * At each level, we keep a list of pages, which are heads of continuous
286  * free pages of length of (1 << order) and marked with PG_Private.Page's
287  * order is recorded in page_private(page) field.
288  * So when we are allocating or freeing one, we can derive the state of the
289  * other.  That is, if we allocate a small block, and both were
290  * free, the remainder of the region must be split into blocks.
291  * If a block is freed, and its buddy is also free, then this
292  * triggers coalescing into a block of larger size.
293  *
294  * -- wli
295  */
296 
297 static inline void __free_pages_bulk (struct page *page,
298 		struct zone *zone, unsigned int order)
299 {
300 	unsigned long page_idx;
301 	int order_size = 1 << order;
302 
303 	if (unlikely(order))
304 		destroy_compound_page(page, order);
305 
306 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
307 
308 	BUG_ON(page_idx & (order_size - 1));
309 	BUG_ON(bad_range(zone, page));
310 
311 	zone->free_pages += order_size;
312 	while (order < MAX_ORDER-1) {
313 		unsigned long combined_idx;
314 		struct free_area *area;
315 		struct page *buddy;
316 
317 		combined_idx = __find_combined_index(page_idx, order);
318 		buddy = __page_find_buddy(page, page_idx, order);
319 
320 		if (bad_range(zone, buddy))
321 			break;
322 		if (!page_is_buddy(buddy, order))
323 			break;		/* Move the buddy up one level. */
324 		list_del(&buddy->lru);
325 		area = zone->free_area + order;
326 		area->nr_free--;
327 		rmv_page_order(buddy);
328 		page = page + (combined_idx - page_idx);
329 		page_idx = combined_idx;
330 		order++;
331 	}
332 	set_page_order(page, order);
333 	list_add(&page->lru, &zone->free_area[order].free_list);
334 	zone->free_area[order].nr_free++;
335 }
336 
337 static inline int free_pages_check(const char *function, struct page *page)
338 {
339 	if (	page_mapcount(page) ||
340 		page->mapping != NULL ||
341 		page_count(page) != 0 ||
342 		(page->flags & (
343 			1 << PG_lru	|
344 			1 << PG_private |
345 			1 << PG_locked	|
346 			1 << PG_active	|
347 			1 << PG_reclaim	|
348 			1 << PG_slab	|
349 			1 << PG_swapcache |
350 			1 << PG_writeback |
351 			1 << PG_reserved )))
352 		bad_page(function, page);
353 	if (PageDirty(page))
354 		__ClearPageDirty(page);
355 	/*
356 	 * For now, we report if PG_reserved was found set, but do not
357 	 * clear it, and do not free the page.  But we shall soon need
358 	 * to do more, for when the ZERO_PAGE count wraps negative.
359 	 */
360 	return PageReserved(page);
361 }
362 
363 /*
364  * Frees a list of pages.
365  * Assumes all pages on list are in same zone, and of same order.
366  * count is the number of pages to free.
367  *
368  * If the zone was previously in an "all pages pinned" state then look to
369  * see if this freeing clears that state.
370  *
371  * And clear the zone's pages_scanned counter, to hold off the "all pages are
372  * pinned" detection logic.
373  */
374 static int
375 free_pages_bulk(struct zone *zone, int count,
376 		struct list_head *list, unsigned int order)
377 {
378 	unsigned long flags;
379 	struct page *page = NULL;
380 	int ret = 0;
381 
382 	spin_lock_irqsave(&zone->lock, flags);
383 	zone->all_unreclaimable = 0;
384 	zone->pages_scanned = 0;
385 	while (!list_empty(list) && count--) {
386 		page = list_entry(list->prev, struct page, lru);
387 		/* have to delete it as __free_pages_bulk list manipulates */
388 		list_del(&page->lru);
389 		__free_pages_bulk(page, zone, order);
390 		ret++;
391 	}
392 	spin_unlock_irqrestore(&zone->lock, flags);
393 	return ret;
394 }
395 
396 void __free_pages_ok(struct page *page, unsigned int order)
397 {
398 	LIST_HEAD(list);
399 	int i;
400 	int reserved = 0;
401 
402 	arch_free_page(page, order);
403 
404 #ifndef CONFIG_MMU
405 	if (order > 0)
406 		for (i = 1 ; i < (1 << order) ; ++i)
407 			__put_page(page + i);
408 #endif
409 
410 	for (i = 0 ; i < (1 << order) ; ++i)
411 		reserved += free_pages_check(__FUNCTION__, page + i);
412 	if (reserved)
413 		return;
414 
415 	list_add(&page->lru, &list);
416 	mod_page_state(pgfree, 1 << order);
417 	kernel_map_pages(page, 1<<order, 0);
418 	free_pages_bulk(page_zone(page), 1, &list, order);
419 }
420 
421 
422 /*
423  * The order of subdivision here is critical for the IO subsystem.
424  * Please do not alter this order without good reasons and regression
425  * testing. Specifically, as large blocks of memory are subdivided,
426  * the order in which smaller blocks are delivered depends on the order
427  * they're subdivided in this function. This is the primary factor
428  * influencing the order in which pages are delivered to the IO
429  * subsystem according to empirical testing, and this is also justified
430  * by considering the behavior of a buddy system containing a single
431  * large block of memory acted on by a series of small allocations.
432  * This behavior is a critical factor in sglist merging's success.
433  *
434  * -- wli
435  */
436 static inline struct page *
437 expand(struct zone *zone, struct page *page,
438  	int low, int high, struct free_area *area)
439 {
440 	unsigned long size = 1 << high;
441 
442 	while (high > low) {
443 		area--;
444 		high--;
445 		size >>= 1;
446 		BUG_ON(bad_range(zone, &page[size]));
447 		list_add(&page[size].lru, &area->free_list);
448 		area->nr_free++;
449 		set_page_order(&page[size], high);
450 	}
451 	return page;
452 }
453 
454 void set_page_refs(struct page *page, int order)
455 {
456 #ifdef CONFIG_MMU
457 	set_page_count(page, 1);
458 #else
459 	int i;
460 
461 	/*
462 	 * We need to reference all the pages for this order, otherwise if
463 	 * anyone accesses one of the pages with (get/put) it will be freed.
464 	 * - eg: access_process_vm()
465 	 */
466 	for (i = 0; i < (1 << order); i++)
467 		set_page_count(page + i, 1);
468 #endif /* CONFIG_MMU */
469 }
470 
471 /*
472  * This page is about to be returned from the page allocator
473  */
474 static int prep_new_page(struct page *page, int order)
475 {
476 	if (	page_mapcount(page) ||
477 		page->mapping != NULL ||
478 		page_count(page) != 0 ||
479 		(page->flags & (
480 			1 << PG_lru	|
481 			1 << PG_private	|
482 			1 << PG_locked	|
483 			1 << PG_active	|
484 			1 << PG_dirty	|
485 			1 << PG_reclaim	|
486 			1 << PG_slab    |
487 			1 << PG_swapcache |
488 			1 << PG_writeback |
489 			1 << PG_reserved )))
490 		bad_page(__FUNCTION__, page);
491 
492 	/*
493 	 * For now, we report if PG_reserved was found set, but do not
494 	 * clear it, and do not allocate the page: as a safety net.
495 	 */
496 	if (PageReserved(page))
497 		return 1;
498 
499 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
500 			1 << PG_referenced | 1 << PG_arch_1 |
501 			1 << PG_checked | 1 << PG_mappedtodisk);
502 	set_page_private(page, 0);
503 	set_page_refs(page, order);
504 	kernel_map_pages(page, 1 << order, 1);
505 	return 0;
506 }
507 
508 /*
509  * Do the hard work of removing an element from the buddy allocator.
510  * Call me with the zone->lock already held.
511  */
512 static struct page *__rmqueue(struct zone *zone, unsigned int order)
513 {
514 	struct free_area * area;
515 	unsigned int current_order;
516 	struct page *page;
517 
518 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
519 		area = zone->free_area + current_order;
520 		if (list_empty(&area->free_list))
521 			continue;
522 
523 		page = list_entry(area->free_list.next, struct page, lru);
524 		list_del(&page->lru);
525 		rmv_page_order(page);
526 		area->nr_free--;
527 		zone->free_pages -= 1UL << order;
528 		return expand(zone, page, order, current_order, area);
529 	}
530 
531 	return NULL;
532 }
533 
534 /*
535  * Obtain a specified number of elements from the buddy allocator, all under
536  * a single hold of the lock, for efficiency.  Add them to the supplied list.
537  * Returns the number of new pages which were placed at *list.
538  */
539 static int rmqueue_bulk(struct zone *zone, unsigned int order,
540 			unsigned long count, struct list_head *list)
541 {
542 	unsigned long flags;
543 	int i;
544 	int allocated = 0;
545 	struct page *page;
546 
547 	spin_lock_irqsave(&zone->lock, flags);
548 	for (i = 0; i < count; ++i) {
549 		page = __rmqueue(zone, order);
550 		if (page == NULL)
551 			break;
552 		allocated++;
553 		list_add_tail(&page->lru, list);
554 	}
555 	spin_unlock_irqrestore(&zone->lock, flags);
556 	return allocated;
557 }
558 
559 #ifdef CONFIG_NUMA
560 /* Called from the slab reaper to drain remote pagesets */
561 void drain_remote_pages(void)
562 {
563 	struct zone *zone;
564 	int i;
565 	unsigned long flags;
566 
567 	local_irq_save(flags);
568 	for_each_zone(zone) {
569 		struct per_cpu_pageset *pset;
570 
571 		/* Do not drain local pagesets */
572 		if (zone->zone_pgdat->node_id == numa_node_id())
573 			continue;
574 
575 		pset = zone->pageset[smp_processor_id()];
576 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
577 			struct per_cpu_pages *pcp;
578 
579 			pcp = &pset->pcp[i];
580 			if (pcp->count)
581 				pcp->count -= free_pages_bulk(zone, pcp->count,
582 						&pcp->list, 0);
583 		}
584 	}
585 	local_irq_restore(flags);
586 }
587 #endif
588 
589 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
590 static void __drain_pages(unsigned int cpu)
591 {
592 	struct zone *zone;
593 	int i;
594 
595 	for_each_zone(zone) {
596 		struct per_cpu_pageset *pset;
597 
598 		pset = zone_pcp(zone, cpu);
599 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
600 			struct per_cpu_pages *pcp;
601 
602 			pcp = &pset->pcp[i];
603 			pcp->count -= free_pages_bulk(zone, pcp->count,
604 						&pcp->list, 0);
605 		}
606 	}
607 }
608 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
609 
610 #ifdef CONFIG_PM
611 
612 void mark_free_pages(struct zone *zone)
613 {
614 	unsigned long zone_pfn, flags;
615 	int order;
616 	struct list_head *curr;
617 
618 	if (!zone->spanned_pages)
619 		return;
620 
621 	spin_lock_irqsave(&zone->lock, flags);
622 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
623 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
624 
625 	for (order = MAX_ORDER - 1; order >= 0; --order)
626 		list_for_each(curr, &zone->free_area[order].free_list) {
627 			unsigned long start_pfn, i;
628 
629 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
630 
631 			for (i=0; i < (1<<order); i++)
632 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
633 	}
634 	spin_unlock_irqrestore(&zone->lock, flags);
635 }
636 
637 /*
638  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
639  */
640 void drain_local_pages(void)
641 {
642 	unsigned long flags;
643 
644 	local_irq_save(flags);
645 	__drain_pages(smp_processor_id());
646 	local_irq_restore(flags);
647 }
648 #endif /* CONFIG_PM */
649 
650 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
651 {
652 #ifdef CONFIG_NUMA
653 	unsigned long flags;
654 	int cpu;
655 	pg_data_t *pg = z->zone_pgdat;
656 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
657 	struct per_cpu_pageset *p;
658 
659 	local_irq_save(flags);
660 	cpu = smp_processor_id();
661 	p = zone_pcp(z,cpu);
662 	if (pg == orig) {
663 		p->numa_hit++;
664 	} else {
665 		p->numa_miss++;
666 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
667 	}
668 	if (pg == NODE_DATA(numa_node_id()))
669 		p->local_node++;
670 	else
671 		p->other_node++;
672 	local_irq_restore(flags);
673 #endif
674 }
675 
676 /*
677  * Free a 0-order page
678  */
679 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
680 static void fastcall free_hot_cold_page(struct page *page, int cold)
681 {
682 	struct zone *zone = page_zone(page);
683 	struct per_cpu_pages *pcp;
684 	unsigned long flags;
685 
686 	arch_free_page(page, 0);
687 
688 	if (PageAnon(page))
689 		page->mapping = NULL;
690 	if (free_pages_check(__FUNCTION__, page))
691 		return;
692 
693 	inc_page_state(pgfree);
694 	kernel_map_pages(page, 1, 0);
695 
696 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
697 	local_irq_save(flags);
698 	list_add(&page->lru, &pcp->list);
699 	pcp->count++;
700 	if (pcp->count >= pcp->high)
701 		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
702 	local_irq_restore(flags);
703 	put_cpu();
704 }
705 
706 void fastcall free_hot_page(struct page *page)
707 {
708 	free_hot_cold_page(page, 0);
709 }
710 
711 void fastcall free_cold_page(struct page *page)
712 {
713 	free_hot_cold_page(page, 1);
714 }
715 
716 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
717 {
718 	int i;
719 
720 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
721 	for(i = 0; i < (1 << order); i++)
722 		clear_highpage(page + i);
723 }
724 
725 /*
726  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
727  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
728  * or two.
729  */
730 static struct page *
731 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
732 {
733 	unsigned long flags;
734 	struct page *page;
735 	int cold = !!(gfp_flags & __GFP_COLD);
736 
737 again:
738 	if (order == 0) {
739 		struct per_cpu_pages *pcp;
740 
741 		page = NULL;
742 		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
743 		local_irq_save(flags);
744 		if (pcp->count <= pcp->low)
745 			pcp->count += rmqueue_bulk(zone, 0,
746 						pcp->batch, &pcp->list);
747 		if (pcp->count) {
748 			page = list_entry(pcp->list.next, struct page, lru);
749 			list_del(&page->lru);
750 			pcp->count--;
751 		}
752 		local_irq_restore(flags);
753 		put_cpu();
754 	} else {
755 		spin_lock_irqsave(&zone->lock, flags);
756 		page = __rmqueue(zone, order);
757 		spin_unlock_irqrestore(&zone->lock, flags);
758 	}
759 
760 	if (page != NULL) {
761 		BUG_ON(bad_range(zone, page));
762 		mod_page_state_zone(zone, pgalloc, 1 << order);
763 		if (prep_new_page(page, order))
764 			goto again;
765 
766 		if (gfp_flags & __GFP_ZERO)
767 			prep_zero_page(page, order, gfp_flags);
768 
769 		if (order && (gfp_flags & __GFP_COMP))
770 			prep_compound_page(page, order);
771 	}
772 	return page;
773 }
774 
775 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
776 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
777 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
778 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
779 #define ALLOC_HARDER		0x10 /* try to alloc harder */
780 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
781 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
782 
783 /*
784  * Return 1 if free pages are above 'mark'. This takes into account the order
785  * of the allocation.
786  */
787 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
788 		      int classzone_idx, int alloc_flags)
789 {
790 	/* free_pages my go negative - that's OK */
791 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
792 	int o;
793 
794 	if (alloc_flags & ALLOC_HIGH)
795 		min -= min / 2;
796 	if (alloc_flags & ALLOC_HARDER)
797 		min -= min / 4;
798 
799 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
800 		return 0;
801 	for (o = 0; o < order; o++) {
802 		/* At the next order, this order's pages become unavailable */
803 		free_pages -= z->free_area[o].nr_free << o;
804 
805 		/* Require fewer higher order pages to be free */
806 		min >>= 1;
807 
808 		if (free_pages <= min)
809 			return 0;
810 	}
811 	return 1;
812 }
813 
814 /*
815  * get_page_from_freeliest goes through the zonelist trying to allocate
816  * a page.
817  */
818 static struct page *
819 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
820 		struct zonelist *zonelist, int alloc_flags)
821 {
822 	struct zone **z = zonelist->zones;
823 	struct page *page = NULL;
824 	int classzone_idx = zone_idx(*z);
825 
826 	/*
827 	 * Go through the zonelist once, looking for a zone with enough free.
828 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
829 	 */
830 	do {
831 		if ((alloc_flags & ALLOC_CPUSET) &&
832 				!cpuset_zone_allowed(*z, gfp_mask))
833 			continue;
834 
835 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
836 			unsigned long mark;
837 			if (alloc_flags & ALLOC_WMARK_MIN)
838 				mark = (*z)->pages_min;
839 			else if (alloc_flags & ALLOC_WMARK_LOW)
840 				mark = (*z)->pages_low;
841 			else
842 				mark = (*z)->pages_high;
843 			if (!zone_watermark_ok(*z, order, mark,
844 				    classzone_idx, alloc_flags))
845 				continue;
846 		}
847 
848 		page = buffered_rmqueue(*z, order, gfp_mask);
849 		if (page) {
850 			zone_statistics(zonelist, *z);
851 			break;
852 		}
853 	} while (*(++z) != NULL);
854 	return page;
855 }
856 
857 /*
858  * This is the 'heart' of the zoned buddy allocator.
859  */
860 struct page * fastcall
861 __alloc_pages(gfp_t gfp_mask, unsigned int order,
862 		struct zonelist *zonelist)
863 {
864 	const gfp_t wait = gfp_mask & __GFP_WAIT;
865 	struct zone **z;
866 	struct page *page;
867 	struct reclaim_state reclaim_state;
868 	struct task_struct *p = current;
869 	int do_retry;
870 	int alloc_flags;
871 	int did_some_progress;
872 
873 	might_sleep_if(wait);
874 
875 restart:
876 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
877 
878 	if (unlikely(*z == NULL)) {
879 		/* Should this ever happen?? */
880 		return NULL;
881 	}
882 
883 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
884 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
885 	if (page)
886 		goto got_pg;
887 
888 	do {
889 		wakeup_kswapd(*z, order);
890 	} while (*(++z));
891 
892 	/*
893 	 * OK, we're below the kswapd watermark and have kicked background
894 	 * reclaim. Now things get more complex, so set up alloc_flags according
895 	 * to how we want to proceed.
896 	 *
897 	 * The caller may dip into page reserves a bit more if the caller
898 	 * cannot run direct reclaim, or if the caller has realtime scheduling
899 	 * policy.
900 	 */
901 	alloc_flags = ALLOC_WMARK_MIN;
902 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
903 		alloc_flags |= ALLOC_HARDER;
904 	if (gfp_mask & __GFP_HIGH)
905 		alloc_flags |= ALLOC_HIGH;
906 	if (wait)
907 		alloc_flags |= ALLOC_CPUSET;
908 
909 	/*
910 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
911 	 * coming from realtime tasks go deeper into reserves.
912 	 *
913 	 * This is the last chance, in general, before the goto nopage.
914 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
915 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
916 	 */
917 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
918 	if (page)
919 		goto got_pg;
920 
921 	/* This allocation should allow future memory freeing. */
922 
923 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
924 			&& !in_interrupt()) {
925 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
926 nofail_alloc:
927 			/* go through the zonelist yet again, ignoring mins */
928 			page = get_page_from_freelist(gfp_mask, order,
929 				zonelist, ALLOC_NO_WATERMARKS|ALLOC_CPUSET);
930 			if (page)
931 				goto got_pg;
932 			if (gfp_mask & __GFP_NOFAIL) {
933 				blk_congestion_wait(WRITE, HZ/50);
934 				goto nofail_alloc;
935 			}
936 		}
937 		goto nopage;
938 	}
939 
940 	/* Atomic allocations - we can't balance anything */
941 	if (!wait)
942 		goto nopage;
943 
944 rebalance:
945 	cond_resched();
946 
947 	/* We now go into synchronous reclaim */
948 	p->flags |= PF_MEMALLOC;
949 	reclaim_state.reclaimed_slab = 0;
950 	p->reclaim_state = &reclaim_state;
951 
952 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
953 
954 	p->reclaim_state = NULL;
955 	p->flags &= ~PF_MEMALLOC;
956 
957 	cond_resched();
958 
959 	if (likely(did_some_progress)) {
960 		page = get_page_from_freelist(gfp_mask, order,
961 						zonelist, alloc_flags);
962 		if (page)
963 			goto got_pg;
964 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
965 		/*
966 		 * Go through the zonelist yet one more time, keep
967 		 * very high watermark here, this is only to catch
968 		 * a parallel oom killing, we must fail if we're still
969 		 * under heavy pressure.
970 		 */
971 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
972 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
973 		if (page)
974 			goto got_pg;
975 
976 		out_of_memory(gfp_mask, order);
977 		goto restart;
978 	}
979 
980 	/*
981 	 * Don't let big-order allocations loop unless the caller explicitly
982 	 * requests that.  Wait for some write requests to complete then retry.
983 	 *
984 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
985 	 * <= 3, but that may not be true in other implementations.
986 	 */
987 	do_retry = 0;
988 	if (!(gfp_mask & __GFP_NORETRY)) {
989 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
990 			do_retry = 1;
991 		if (gfp_mask & __GFP_NOFAIL)
992 			do_retry = 1;
993 	}
994 	if (do_retry) {
995 		blk_congestion_wait(WRITE, HZ/50);
996 		goto rebalance;
997 	}
998 
999 nopage:
1000 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1001 		printk(KERN_WARNING "%s: page allocation failure."
1002 			" order:%d, mode:0x%x\n",
1003 			p->comm, order, gfp_mask);
1004 		dump_stack();
1005 		show_mem();
1006 	}
1007 got_pg:
1008 	return page;
1009 }
1010 
1011 EXPORT_SYMBOL(__alloc_pages);
1012 
1013 /*
1014  * Common helper functions.
1015  */
1016 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1017 {
1018 	struct page * page;
1019 	page = alloc_pages(gfp_mask, order);
1020 	if (!page)
1021 		return 0;
1022 	return (unsigned long) page_address(page);
1023 }
1024 
1025 EXPORT_SYMBOL(__get_free_pages);
1026 
1027 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1028 {
1029 	struct page * page;
1030 
1031 	/*
1032 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1033 	 * a highmem page
1034 	 */
1035 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1036 
1037 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1038 	if (page)
1039 		return (unsigned long) page_address(page);
1040 	return 0;
1041 }
1042 
1043 EXPORT_SYMBOL(get_zeroed_page);
1044 
1045 void __pagevec_free(struct pagevec *pvec)
1046 {
1047 	int i = pagevec_count(pvec);
1048 
1049 	while (--i >= 0)
1050 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1051 }
1052 
1053 fastcall void __free_pages(struct page *page, unsigned int order)
1054 {
1055 	if (put_page_testzero(page)) {
1056 		if (order == 0)
1057 			free_hot_page(page);
1058 		else
1059 			__free_pages_ok(page, order);
1060 	}
1061 }
1062 
1063 EXPORT_SYMBOL(__free_pages);
1064 
1065 fastcall void free_pages(unsigned long addr, unsigned int order)
1066 {
1067 	if (addr != 0) {
1068 		BUG_ON(!virt_addr_valid((void *)addr));
1069 		__free_pages(virt_to_page((void *)addr), order);
1070 	}
1071 }
1072 
1073 EXPORT_SYMBOL(free_pages);
1074 
1075 /*
1076  * Total amount of free (allocatable) RAM:
1077  */
1078 unsigned int nr_free_pages(void)
1079 {
1080 	unsigned int sum = 0;
1081 	struct zone *zone;
1082 
1083 	for_each_zone(zone)
1084 		sum += zone->free_pages;
1085 
1086 	return sum;
1087 }
1088 
1089 EXPORT_SYMBOL(nr_free_pages);
1090 
1091 #ifdef CONFIG_NUMA
1092 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1093 {
1094 	unsigned int i, sum = 0;
1095 
1096 	for (i = 0; i < MAX_NR_ZONES; i++)
1097 		sum += pgdat->node_zones[i].free_pages;
1098 
1099 	return sum;
1100 }
1101 #endif
1102 
1103 static unsigned int nr_free_zone_pages(int offset)
1104 {
1105 	/* Just pick one node, since fallback list is circular */
1106 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1107 	unsigned int sum = 0;
1108 
1109 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1110 	struct zone **zonep = zonelist->zones;
1111 	struct zone *zone;
1112 
1113 	for (zone = *zonep++; zone; zone = *zonep++) {
1114 		unsigned long size = zone->present_pages;
1115 		unsigned long high = zone->pages_high;
1116 		if (size > high)
1117 			sum += size - high;
1118 	}
1119 
1120 	return sum;
1121 }
1122 
1123 /*
1124  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1125  */
1126 unsigned int nr_free_buffer_pages(void)
1127 {
1128 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1129 }
1130 
1131 /*
1132  * Amount of free RAM allocatable within all zones
1133  */
1134 unsigned int nr_free_pagecache_pages(void)
1135 {
1136 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1137 }
1138 
1139 #ifdef CONFIG_HIGHMEM
1140 unsigned int nr_free_highpages (void)
1141 {
1142 	pg_data_t *pgdat;
1143 	unsigned int pages = 0;
1144 
1145 	for_each_pgdat(pgdat)
1146 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1147 
1148 	return pages;
1149 }
1150 #endif
1151 
1152 #ifdef CONFIG_NUMA
1153 static void show_node(struct zone *zone)
1154 {
1155 	printk("Node %d ", zone->zone_pgdat->node_id);
1156 }
1157 #else
1158 #define show_node(zone)	do { } while (0)
1159 #endif
1160 
1161 /*
1162  * Accumulate the page_state information across all CPUs.
1163  * The result is unavoidably approximate - it can change
1164  * during and after execution of this function.
1165  */
1166 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1167 
1168 atomic_t nr_pagecache = ATOMIC_INIT(0);
1169 EXPORT_SYMBOL(nr_pagecache);
1170 #ifdef CONFIG_SMP
1171 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1172 #endif
1173 
1174 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1175 {
1176 	int cpu = 0;
1177 
1178 	memset(ret, 0, sizeof(*ret));
1179 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1180 
1181 	cpu = first_cpu(*cpumask);
1182 	while (cpu < NR_CPUS) {
1183 		unsigned long *in, *out, off;
1184 
1185 		in = (unsigned long *)&per_cpu(page_states, cpu);
1186 
1187 		cpu = next_cpu(cpu, *cpumask);
1188 
1189 		if (cpu < NR_CPUS)
1190 			prefetch(&per_cpu(page_states, cpu));
1191 
1192 		out = (unsigned long *)ret;
1193 		for (off = 0; off < nr; off++)
1194 			*out++ += *in++;
1195 	}
1196 }
1197 
1198 void get_page_state_node(struct page_state *ret, int node)
1199 {
1200 	int nr;
1201 	cpumask_t mask = node_to_cpumask(node);
1202 
1203 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1204 	nr /= sizeof(unsigned long);
1205 
1206 	__get_page_state(ret, nr+1, &mask);
1207 }
1208 
1209 void get_page_state(struct page_state *ret)
1210 {
1211 	int nr;
1212 	cpumask_t mask = CPU_MASK_ALL;
1213 
1214 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1215 	nr /= sizeof(unsigned long);
1216 
1217 	__get_page_state(ret, nr + 1, &mask);
1218 }
1219 
1220 void get_full_page_state(struct page_state *ret)
1221 {
1222 	cpumask_t mask = CPU_MASK_ALL;
1223 
1224 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1225 }
1226 
1227 unsigned long __read_page_state(unsigned long offset)
1228 {
1229 	unsigned long ret = 0;
1230 	int cpu;
1231 
1232 	for_each_online_cpu(cpu) {
1233 		unsigned long in;
1234 
1235 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1236 		ret += *((unsigned long *)in);
1237 	}
1238 	return ret;
1239 }
1240 
1241 void __mod_page_state(unsigned long offset, unsigned long delta)
1242 {
1243 	unsigned long flags;
1244 	void* ptr;
1245 
1246 	local_irq_save(flags);
1247 	ptr = &__get_cpu_var(page_states);
1248 	*(unsigned long*)(ptr + offset) += delta;
1249 	local_irq_restore(flags);
1250 }
1251 
1252 EXPORT_SYMBOL(__mod_page_state);
1253 
1254 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1255 			unsigned long *free, struct pglist_data *pgdat)
1256 {
1257 	struct zone *zones = pgdat->node_zones;
1258 	int i;
1259 
1260 	*active = 0;
1261 	*inactive = 0;
1262 	*free = 0;
1263 	for (i = 0; i < MAX_NR_ZONES; i++) {
1264 		*active += zones[i].nr_active;
1265 		*inactive += zones[i].nr_inactive;
1266 		*free += zones[i].free_pages;
1267 	}
1268 }
1269 
1270 void get_zone_counts(unsigned long *active,
1271 		unsigned long *inactive, unsigned long *free)
1272 {
1273 	struct pglist_data *pgdat;
1274 
1275 	*active = 0;
1276 	*inactive = 0;
1277 	*free = 0;
1278 	for_each_pgdat(pgdat) {
1279 		unsigned long l, m, n;
1280 		__get_zone_counts(&l, &m, &n, pgdat);
1281 		*active += l;
1282 		*inactive += m;
1283 		*free += n;
1284 	}
1285 }
1286 
1287 void si_meminfo(struct sysinfo *val)
1288 {
1289 	val->totalram = totalram_pages;
1290 	val->sharedram = 0;
1291 	val->freeram = nr_free_pages();
1292 	val->bufferram = nr_blockdev_pages();
1293 #ifdef CONFIG_HIGHMEM
1294 	val->totalhigh = totalhigh_pages;
1295 	val->freehigh = nr_free_highpages();
1296 #else
1297 	val->totalhigh = 0;
1298 	val->freehigh = 0;
1299 #endif
1300 	val->mem_unit = PAGE_SIZE;
1301 }
1302 
1303 EXPORT_SYMBOL(si_meminfo);
1304 
1305 #ifdef CONFIG_NUMA
1306 void si_meminfo_node(struct sysinfo *val, int nid)
1307 {
1308 	pg_data_t *pgdat = NODE_DATA(nid);
1309 
1310 	val->totalram = pgdat->node_present_pages;
1311 	val->freeram = nr_free_pages_pgdat(pgdat);
1312 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1313 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1314 	val->mem_unit = PAGE_SIZE;
1315 }
1316 #endif
1317 
1318 #define K(x) ((x) << (PAGE_SHIFT-10))
1319 
1320 /*
1321  * Show free area list (used inside shift_scroll-lock stuff)
1322  * We also calculate the percentage fragmentation. We do this by counting the
1323  * memory on each free list with the exception of the first item on the list.
1324  */
1325 void show_free_areas(void)
1326 {
1327 	struct page_state ps;
1328 	int cpu, temperature;
1329 	unsigned long active;
1330 	unsigned long inactive;
1331 	unsigned long free;
1332 	struct zone *zone;
1333 
1334 	for_each_zone(zone) {
1335 		show_node(zone);
1336 		printk("%s per-cpu:", zone->name);
1337 
1338 		if (!zone->present_pages) {
1339 			printk(" empty\n");
1340 			continue;
1341 		} else
1342 			printk("\n");
1343 
1344 		for_each_online_cpu(cpu) {
1345 			struct per_cpu_pageset *pageset;
1346 
1347 			pageset = zone_pcp(zone, cpu);
1348 
1349 			for (temperature = 0; temperature < 2; temperature++)
1350 				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1351 					cpu,
1352 					temperature ? "cold" : "hot",
1353 					pageset->pcp[temperature].low,
1354 					pageset->pcp[temperature].high,
1355 					pageset->pcp[temperature].batch,
1356 					pageset->pcp[temperature].count);
1357 		}
1358 	}
1359 
1360 	get_page_state(&ps);
1361 	get_zone_counts(&active, &inactive, &free);
1362 
1363 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1364 		K(nr_free_pages()),
1365 		K(nr_free_highpages()));
1366 
1367 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1368 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1369 		active,
1370 		inactive,
1371 		ps.nr_dirty,
1372 		ps.nr_writeback,
1373 		ps.nr_unstable,
1374 		nr_free_pages(),
1375 		ps.nr_slab,
1376 		ps.nr_mapped,
1377 		ps.nr_page_table_pages);
1378 
1379 	for_each_zone(zone) {
1380 		int i;
1381 
1382 		show_node(zone);
1383 		printk("%s"
1384 			" free:%lukB"
1385 			" min:%lukB"
1386 			" low:%lukB"
1387 			" high:%lukB"
1388 			" active:%lukB"
1389 			" inactive:%lukB"
1390 			" present:%lukB"
1391 			" pages_scanned:%lu"
1392 			" all_unreclaimable? %s"
1393 			"\n",
1394 			zone->name,
1395 			K(zone->free_pages),
1396 			K(zone->pages_min),
1397 			K(zone->pages_low),
1398 			K(zone->pages_high),
1399 			K(zone->nr_active),
1400 			K(zone->nr_inactive),
1401 			K(zone->present_pages),
1402 			zone->pages_scanned,
1403 			(zone->all_unreclaimable ? "yes" : "no")
1404 			);
1405 		printk("lowmem_reserve[]:");
1406 		for (i = 0; i < MAX_NR_ZONES; i++)
1407 			printk(" %lu", zone->lowmem_reserve[i]);
1408 		printk("\n");
1409 	}
1410 
1411 	for_each_zone(zone) {
1412  		unsigned long nr, flags, order, total = 0;
1413 
1414 		show_node(zone);
1415 		printk("%s: ", zone->name);
1416 		if (!zone->present_pages) {
1417 			printk("empty\n");
1418 			continue;
1419 		}
1420 
1421 		spin_lock_irqsave(&zone->lock, flags);
1422 		for (order = 0; order < MAX_ORDER; order++) {
1423 			nr = zone->free_area[order].nr_free;
1424 			total += nr << order;
1425 			printk("%lu*%lukB ", nr, K(1UL) << order);
1426 		}
1427 		spin_unlock_irqrestore(&zone->lock, flags);
1428 		printk("= %lukB\n", K(total));
1429 	}
1430 
1431 	show_swap_cache_info();
1432 }
1433 
1434 /*
1435  * Builds allocation fallback zone lists.
1436  */
1437 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1438 {
1439 	switch (k) {
1440 		struct zone *zone;
1441 	default:
1442 		BUG();
1443 	case ZONE_HIGHMEM:
1444 		zone = pgdat->node_zones + ZONE_HIGHMEM;
1445 		if (zone->present_pages) {
1446 #ifndef CONFIG_HIGHMEM
1447 			BUG();
1448 #endif
1449 			zonelist->zones[j++] = zone;
1450 		}
1451 	case ZONE_NORMAL:
1452 		zone = pgdat->node_zones + ZONE_NORMAL;
1453 		if (zone->present_pages)
1454 			zonelist->zones[j++] = zone;
1455 	case ZONE_DMA32:
1456 		zone = pgdat->node_zones + ZONE_DMA32;
1457 		if (zone->present_pages)
1458 			zonelist->zones[j++] = zone;
1459 	case ZONE_DMA:
1460 		zone = pgdat->node_zones + ZONE_DMA;
1461 		if (zone->present_pages)
1462 			zonelist->zones[j++] = zone;
1463 	}
1464 
1465 	return j;
1466 }
1467 
1468 static inline int highest_zone(int zone_bits)
1469 {
1470 	int res = ZONE_NORMAL;
1471 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1472 		res = ZONE_HIGHMEM;
1473 	if (zone_bits & (__force int)__GFP_DMA32)
1474 		res = ZONE_DMA32;
1475 	if (zone_bits & (__force int)__GFP_DMA)
1476 		res = ZONE_DMA;
1477 	return res;
1478 }
1479 
1480 #ifdef CONFIG_NUMA
1481 #define MAX_NODE_LOAD (num_online_nodes())
1482 static int __initdata node_load[MAX_NUMNODES];
1483 /**
1484  * find_next_best_node - find the next node that should appear in a given node's fallback list
1485  * @node: node whose fallback list we're appending
1486  * @used_node_mask: nodemask_t of already used nodes
1487  *
1488  * We use a number of factors to determine which is the next node that should
1489  * appear on a given node's fallback list.  The node should not have appeared
1490  * already in @node's fallback list, and it should be the next closest node
1491  * according to the distance array (which contains arbitrary distance values
1492  * from each node to each node in the system), and should also prefer nodes
1493  * with no CPUs, since presumably they'll have very little allocation pressure
1494  * on them otherwise.
1495  * It returns -1 if no node is found.
1496  */
1497 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1498 {
1499 	int i, n, val;
1500 	int min_val = INT_MAX;
1501 	int best_node = -1;
1502 
1503 	for_each_online_node(i) {
1504 		cpumask_t tmp;
1505 
1506 		/* Start from local node */
1507 		n = (node+i) % num_online_nodes();
1508 
1509 		/* Don't want a node to appear more than once */
1510 		if (node_isset(n, *used_node_mask))
1511 			continue;
1512 
1513 		/* Use the local node if we haven't already */
1514 		if (!node_isset(node, *used_node_mask)) {
1515 			best_node = node;
1516 			break;
1517 		}
1518 
1519 		/* Use the distance array to find the distance */
1520 		val = node_distance(node, n);
1521 
1522 		/* Give preference to headless and unused nodes */
1523 		tmp = node_to_cpumask(n);
1524 		if (!cpus_empty(tmp))
1525 			val += PENALTY_FOR_NODE_WITH_CPUS;
1526 
1527 		/* Slight preference for less loaded node */
1528 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1529 		val += node_load[n];
1530 
1531 		if (val < min_val) {
1532 			min_val = val;
1533 			best_node = n;
1534 		}
1535 	}
1536 
1537 	if (best_node >= 0)
1538 		node_set(best_node, *used_node_mask);
1539 
1540 	return best_node;
1541 }
1542 
1543 static void __init build_zonelists(pg_data_t *pgdat)
1544 {
1545 	int i, j, k, node, local_node;
1546 	int prev_node, load;
1547 	struct zonelist *zonelist;
1548 	nodemask_t used_mask;
1549 
1550 	/* initialize zonelists */
1551 	for (i = 0; i < GFP_ZONETYPES; i++) {
1552 		zonelist = pgdat->node_zonelists + i;
1553 		zonelist->zones[0] = NULL;
1554 	}
1555 
1556 	/* NUMA-aware ordering of nodes */
1557 	local_node = pgdat->node_id;
1558 	load = num_online_nodes();
1559 	prev_node = local_node;
1560 	nodes_clear(used_mask);
1561 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1562 		/*
1563 		 * We don't want to pressure a particular node.
1564 		 * So adding penalty to the first node in same
1565 		 * distance group to make it round-robin.
1566 		 */
1567 		if (node_distance(local_node, node) !=
1568 				node_distance(local_node, prev_node))
1569 			node_load[node] += load;
1570 		prev_node = node;
1571 		load--;
1572 		for (i = 0; i < GFP_ZONETYPES; i++) {
1573 			zonelist = pgdat->node_zonelists + i;
1574 			for (j = 0; zonelist->zones[j] != NULL; j++);
1575 
1576 			k = highest_zone(i);
1577 
1578 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1579 			zonelist->zones[j] = NULL;
1580 		}
1581 	}
1582 }
1583 
1584 #else	/* CONFIG_NUMA */
1585 
1586 static void __init build_zonelists(pg_data_t *pgdat)
1587 {
1588 	int i, j, k, node, local_node;
1589 
1590 	local_node = pgdat->node_id;
1591 	for (i = 0; i < GFP_ZONETYPES; i++) {
1592 		struct zonelist *zonelist;
1593 
1594 		zonelist = pgdat->node_zonelists + i;
1595 
1596 		j = 0;
1597 		k = highest_zone(i);
1598  		j = build_zonelists_node(pgdat, zonelist, j, k);
1599  		/*
1600  		 * Now we build the zonelist so that it contains the zones
1601  		 * of all the other nodes.
1602  		 * We don't want to pressure a particular node, so when
1603  		 * building the zones for node N, we make sure that the
1604  		 * zones coming right after the local ones are those from
1605  		 * node N+1 (modulo N)
1606  		 */
1607 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1608 			if (!node_online(node))
1609 				continue;
1610 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1611 		}
1612 		for (node = 0; node < local_node; node++) {
1613 			if (!node_online(node))
1614 				continue;
1615 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1616 		}
1617 
1618 		zonelist->zones[j] = NULL;
1619 	}
1620 }
1621 
1622 #endif	/* CONFIG_NUMA */
1623 
1624 void __init build_all_zonelists(void)
1625 {
1626 	int i;
1627 
1628 	for_each_online_node(i)
1629 		build_zonelists(NODE_DATA(i));
1630 	printk("Built %i zonelists\n", num_online_nodes());
1631 	cpuset_init_current_mems_allowed();
1632 }
1633 
1634 /*
1635  * Helper functions to size the waitqueue hash table.
1636  * Essentially these want to choose hash table sizes sufficiently
1637  * large so that collisions trying to wait on pages are rare.
1638  * But in fact, the number of active page waitqueues on typical
1639  * systems is ridiculously low, less than 200. So this is even
1640  * conservative, even though it seems large.
1641  *
1642  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1643  * waitqueues, i.e. the size of the waitq table given the number of pages.
1644  */
1645 #define PAGES_PER_WAITQUEUE	256
1646 
1647 static inline unsigned long wait_table_size(unsigned long pages)
1648 {
1649 	unsigned long size = 1;
1650 
1651 	pages /= PAGES_PER_WAITQUEUE;
1652 
1653 	while (size < pages)
1654 		size <<= 1;
1655 
1656 	/*
1657 	 * Once we have dozens or even hundreds of threads sleeping
1658 	 * on IO we've got bigger problems than wait queue collision.
1659 	 * Limit the size of the wait table to a reasonable size.
1660 	 */
1661 	size = min(size, 4096UL);
1662 
1663 	return max(size, 4UL);
1664 }
1665 
1666 /*
1667  * This is an integer logarithm so that shifts can be used later
1668  * to extract the more random high bits from the multiplicative
1669  * hash function before the remainder is taken.
1670  */
1671 static inline unsigned long wait_table_bits(unsigned long size)
1672 {
1673 	return ffz(~size);
1674 }
1675 
1676 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1677 
1678 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1679 		unsigned long *zones_size, unsigned long *zholes_size)
1680 {
1681 	unsigned long realtotalpages, totalpages = 0;
1682 	int i;
1683 
1684 	for (i = 0; i < MAX_NR_ZONES; i++)
1685 		totalpages += zones_size[i];
1686 	pgdat->node_spanned_pages = totalpages;
1687 
1688 	realtotalpages = totalpages;
1689 	if (zholes_size)
1690 		for (i = 0; i < MAX_NR_ZONES; i++)
1691 			realtotalpages -= zholes_size[i];
1692 	pgdat->node_present_pages = realtotalpages;
1693 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1694 }
1695 
1696 
1697 /*
1698  * Initially all pages are reserved - free ones are freed
1699  * up by free_all_bootmem() once the early boot process is
1700  * done. Non-atomic initialization, single-pass.
1701  */
1702 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1703 		unsigned long start_pfn)
1704 {
1705 	struct page *page;
1706 	unsigned long end_pfn = start_pfn + size;
1707 	unsigned long pfn;
1708 
1709 	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1710 		if (!early_pfn_valid(pfn))
1711 			continue;
1712 		if (!early_pfn_in_nid(pfn, nid))
1713 			continue;
1714 		page = pfn_to_page(pfn);
1715 		set_page_links(page, zone, nid, pfn);
1716 		set_page_count(page, 1);
1717 		reset_page_mapcount(page);
1718 		SetPageReserved(page);
1719 		INIT_LIST_HEAD(&page->lru);
1720 #ifdef WANT_PAGE_VIRTUAL
1721 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1722 		if (!is_highmem_idx(zone))
1723 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1724 #endif
1725 	}
1726 }
1727 
1728 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1729 				unsigned long size)
1730 {
1731 	int order;
1732 	for (order = 0; order < MAX_ORDER ; order++) {
1733 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1734 		zone->free_area[order].nr_free = 0;
1735 	}
1736 }
1737 
1738 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1739 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1740 		unsigned long size)
1741 {
1742 	unsigned long snum = pfn_to_section_nr(pfn);
1743 	unsigned long end = pfn_to_section_nr(pfn + size);
1744 
1745 	if (FLAGS_HAS_NODE)
1746 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1747 	else
1748 		for (; snum <= end; snum++)
1749 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1750 }
1751 
1752 #ifndef __HAVE_ARCH_MEMMAP_INIT
1753 #define memmap_init(size, nid, zone, start_pfn) \
1754 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1755 #endif
1756 
1757 static int __devinit zone_batchsize(struct zone *zone)
1758 {
1759 	int batch;
1760 
1761 	/*
1762 	 * The per-cpu-pages pools are set to around 1000th of the
1763 	 * size of the zone.  But no more than 1/2 of a meg.
1764 	 *
1765 	 * OK, so we don't know how big the cache is.  So guess.
1766 	 */
1767 	batch = zone->present_pages / 1024;
1768 	if (batch * PAGE_SIZE > 512 * 1024)
1769 		batch = (512 * 1024) / PAGE_SIZE;
1770 	batch /= 4;		/* We effectively *= 4 below */
1771 	if (batch < 1)
1772 		batch = 1;
1773 
1774 	/*
1775 	 * Clamp the batch to a 2^n - 1 value. Having a power
1776 	 * of 2 value was found to be more likely to have
1777 	 * suboptimal cache aliasing properties in some cases.
1778 	 *
1779 	 * For example if 2 tasks are alternately allocating
1780 	 * batches of pages, one task can end up with a lot
1781 	 * of pages of one half of the possible page colors
1782 	 * and the other with pages of the other colors.
1783 	 */
1784 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1785 
1786 	return batch;
1787 }
1788 
1789 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1790 {
1791 	struct per_cpu_pages *pcp;
1792 
1793 	memset(p, 0, sizeof(*p));
1794 
1795 	pcp = &p->pcp[0];		/* hot */
1796 	pcp->count = 0;
1797 	pcp->low = 0;
1798 	pcp->high = 6 * batch;
1799 	pcp->batch = max(1UL, 1 * batch);
1800 	INIT_LIST_HEAD(&pcp->list);
1801 
1802 	pcp = &p->pcp[1];		/* cold*/
1803 	pcp->count = 0;
1804 	pcp->low = 0;
1805 	pcp->high = 2 * batch;
1806 	pcp->batch = max(1UL, batch/2);
1807 	INIT_LIST_HEAD(&pcp->list);
1808 }
1809 
1810 #ifdef CONFIG_NUMA
1811 /*
1812  * Boot pageset table. One per cpu which is going to be used for all
1813  * zones and all nodes. The parameters will be set in such a way
1814  * that an item put on a list will immediately be handed over to
1815  * the buddy list. This is safe since pageset manipulation is done
1816  * with interrupts disabled.
1817  *
1818  * Some NUMA counter updates may also be caught by the boot pagesets.
1819  *
1820  * The boot_pagesets must be kept even after bootup is complete for
1821  * unused processors and/or zones. They do play a role for bootstrapping
1822  * hotplugged processors.
1823  *
1824  * zoneinfo_show() and maybe other functions do
1825  * not check if the processor is online before following the pageset pointer.
1826  * Other parts of the kernel may not check if the zone is available.
1827  */
1828 static struct per_cpu_pageset
1829 	boot_pageset[NR_CPUS];
1830 
1831 /*
1832  * Dynamically allocate memory for the
1833  * per cpu pageset array in struct zone.
1834  */
1835 static int __devinit process_zones(int cpu)
1836 {
1837 	struct zone *zone, *dzone;
1838 
1839 	for_each_zone(zone) {
1840 
1841 		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1842 					 GFP_KERNEL, cpu_to_node(cpu));
1843 		if (!zone->pageset[cpu])
1844 			goto bad;
1845 
1846 		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1847 	}
1848 
1849 	return 0;
1850 bad:
1851 	for_each_zone(dzone) {
1852 		if (dzone == zone)
1853 			break;
1854 		kfree(dzone->pageset[cpu]);
1855 		dzone->pageset[cpu] = NULL;
1856 	}
1857 	return -ENOMEM;
1858 }
1859 
1860 static inline void free_zone_pagesets(int cpu)
1861 {
1862 #ifdef CONFIG_NUMA
1863 	struct zone *zone;
1864 
1865 	for_each_zone(zone) {
1866 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1867 
1868 		zone_pcp(zone, cpu) = NULL;
1869 		kfree(pset);
1870 	}
1871 #endif
1872 }
1873 
1874 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1875 		unsigned long action,
1876 		void *hcpu)
1877 {
1878 	int cpu = (long)hcpu;
1879 	int ret = NOTIFY_OK;
1880 
1881 	switch (action) {
1882 		case CPU_UP_PREPARE:
1883 			if (process_zones(cpu))
1884 				ret = NOTIFY_BAD;
1885 			break;
1886 		case CPU_UP_CANCELED:
1887 		case CPU_DEAD:
1888 			free_zone_pagesets(cpu);
1889 			break;
1890 		default:
1891 			break;
1892 	}
1893 	return ret;
1894 }
1895 
1896 static struct notifier_block pageset_notifier =
1897 	{ &pageset_cpuup_callback, NULL, 0 };
1898 
1899 void __init setup_per_cpu_pageset(void)
1900 {
1901 	int err;
1902 
1903 	/* Initialize per_cpu_pageset for cpu 0.
1904 	 * A cpuup callback will do this for every cpu
1905 	 * as it comes online
1906 	 */
1907 	err = process_zones(smp_processor_id());
1908 	BUG_ON(err);
1909 	register_cpu_notifier(&pageset_notifier);
1910 }
1911 
1912 #endif
1913 
1914 static __devinit
1915 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1916 {
1917 	int i;
1918 	struct pglist_data *pgdat = zone->zone_pgdat;
1919 
1920 	/*
1921 	 * The per-page waitqueue mechanism uses hashed waitqueues
1922 	 * per zone.
1923 	 */
1924 	zone->wait_table_size = wait_table_size(zone_size_pages);
1925 	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
1926 	zone->wait_table = (wait_queue_head_t *)
1927 		alloc_bootmem_node(pgdat, zone->wait_table_size
1928 					* sizeof(wait_queue_head_t));
1929 
1930 	for(i = 0; i < zone->wait_table_size; ++i)
1931 		init_waitqueue_head(zone->wait_table + i);
1932 }
1933 
1934 static __devinit void zone_pcp_init(struct zone *zone)
1935 {
1936 	int cpu;
1937 	unsigned long batch = zone_batchsize(zone);
1938 
1939 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1940 #ifdef CONFIG_NUMA
1941 		/* Early boot. Slab allocator not functional yet */
1942 		zone->pageset[cpu] = &boot_pageset[cpu];
1943 		setup_pageset(&boot_pageset[cpu],0);
1944 #else
1945 		setup_pageset(zone_pcp(zone,cpu), batch);
1946 #endif
1947 	}
1948 	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1949 		zone->name, zone->present_pages, batch);
1950 }
1951 
1952 static __devinit void init_currently_empty_zone(struct zone *zone,
1953 		unsigned long zone_start_pfn, unsigned long size)
1954 {
1955 	struct pglist_data *pgdat = zone->zone_pgdat;
1956 
1957 	zone_wait_table_init(zone, size);
1958 	pgdat->nr_zones = zone_idx(zone) + 1;
1959 
1960 	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1961 	zone->zone_start_pfn = zone_start_pfn;
1962 
1963 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1964 
1965 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1966 }
1967 
1968 /*
1969  * Set up the zone data structures:
1970  *   - mark all pages reserved
1971  *   - mark all memory queues empty
1972  *   - clear the memory bitmaps
1973  */
1974 static void __init free_area_init_core(struct pglist_data *pgdat,
1975 		unsigned long *zones_size, unsigned long *zholes_size)
1976 {
1977 	unsigned long j;
1978 	int nid = pgdat->node_id;
1979 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1980 
1981 	pgdat_resize_init(pgdat);
1982 	pgdat->nr_zones = 0;
1983 	init_waitqueue_head(&pgdat->kswapd_wait);
1984 	pgdat->kswapd_max_order = 0;
1985 
1986 	for (j = 0; j < MAX_NR_ZONES; j++) {
1987 		struct zone *zone = pgdat->node_zones + j;
1988 		unsigned long size, realsize;
1989 
1990 		realsize = size = zones_size[j];
1991 		if (zholes_size)
1992 			realsize -= zholes_size[j];
1993 
1994 		if (j < ZONE_HIGHMEM)
1995 			nr_kernel_pages += realsize;
1996 		nr_all_pages += realsize;
1997 
1998 		zone->spanned_pages = size;
1999 		zone->present_pages = realsize;
2000 		zone->name = zone_names[j];
2001 		spin_lock_init(&zone->lock);
2002 		spin_lock_init(&zone->lru_lock);
2003 		zone_seqlock_init(zone);
2004 		zone->zone_pgdat = pgdat;
2005 		zone->free_pages = 0;
2006 
2007 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2008 
2009 		zone_pcp_init(zone);
2010 		INIT_LIST_HEAD(&zone->active_list);
2011 		INIT_LIST_HEAD(&zone->inactive_list);
2012 		zone->nr_scan_active = 0;
2013 		zone->nr_scan_inactive = 0;
2014 		zone->nr_active = 0;
2015 		zone->nr_inactive = 0;
2016 		atomic_set(&zone->reclaim_in_progress, 0);
2017 		if (!size)
2018 			continue;
2019 
2020 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2021 		init_currently_empty_zone(zone, zone_start_pfn, size);
2022 		zone_start_pfn += size;
2023 	}
2024 }
2025 
2026 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2027 {
2028 	/* Skip empty nodes */
2029 	if (!pgdat->node_spanned_pages)
2030 		return;
2031 
2032 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2033 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2034 	if (!pgdat->node_mem_map) {
2035 		unsigned long size;
2036 		struct page *map;
2037 
2038 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2039 		map = alloc_remap(pgdat->node_id, size);
2040 		if (!map)
2041 			map = alloc_bootmem_node(pgdat, size);
2042 		pgdat->node_mem_map = map;
2043 	}
2044 #ifdef CONFIG_FLATMEM
2045 	/*
2046 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2047 	 */
2048 	if (pgdat == NODE_DATA(0))
2049 		mem_map = NODE_DATA(0)->node_mem_map;
2050 #endif
2051 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2052 }
2053 
2054 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2055 		unsigned long *zones_size, unsigned long node_start_pfn,
2056 		unsigned long *zholes_size)
2057 {
2058 	pgdat->node_id = nid;
2059 	pgdat->node_start_pfn = node_start_pfn;
2060 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2061 
2062 	alloc_node_mem_map(pgdat);
2063 
2064 	free_area_init_core(pgdat, zones_size, zholes_size);
2065 }
2066 
2067 #ifndef CONFIG_NEED_MULTIPLE_NODES
2068 static bootmem_data_t contig_bootmem_data;
2069 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2070 
2071 EXPORT_SYMBOL(contig_page_data);
2072 #endif
2073 
2074 void __init free_area_init(unsigned long *zones_size)
2075 {
2076 	free_area_init_node(0, NODE_DATA(0), zones_size,
2077 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2078 }
2079 
2080 #ifdef CONFIG_PROC_FS
2081 
2082 #include <linux/seq_file.h>
2083 
2084 static void *frag_start(struct seq_file *m, loff_t *pos)
2085 {
2086 	pg_data_t *pgdat;
2087 	loff_t node = *pos;
2088 
2089 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2090 		--node;
2091 
2092 	return pgdat;
2093 }
2094 
2095 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2096 {
2097 	pg_data_t *pgdat = (pg_data_t *)arg;
2098 
2099 	(*pos)++;
2100 	return pgdat->pgdat_next;
2101 }
2102 
2103 static void frag_stop(struct seq_file *m, void *arg)
2104 {
2105 }
2106 
2107 /*
2108  * This walks the free areas for each zone.
2109  */
2110 static int frag_show(struct seq_file *m, void *arg)
2111 {
2112 	pg_data_t *pgdat = (pg_data_t *)arg;
2113 	struct zone *zone;
2114 	struct zone *node_zones = pgdat->node_zones;
2115 	unsigned long flags;
2116 	int order;
2117 
2118 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2119 		if (!zone->present_pages)
2120 			continue;
2121 
2122 		spin_lock_irqsave(&zone->lock, flags);
2123 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2124 		for (order = 0; order < MAX_ORDER; ++order)
2125 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2126 		spin_unlock_irqrestore(&zone->lock, flags);
2127 		seq_putc(m, '\n');
2128 	}
2129 	return 0;
2130 }
2131 
2132 struct seq_operations fragmentation_op = {
2133 	.start	= frag_start,
2134 	.next	= frag_next,
2135 	.stop	= frag_stop,
2136 	.show	= frag_show,
2137 };
2138 
2139 /*
2140  * Output information about zones in @pgdat.
2141  */
2142 static int zoneinfo_show(struct seq_file *m, void *arg)
2143 {
2144 	pg_data_t *pgdat = arg;
2145 	struct zone *zone;
2146 	struct zone *node_zones = pgdat->node_zones;
2147 	unsigned long flags;
2148 
2149 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2150 		int i;
2151 
2152 		if (!zone->present_pages)
2153 			continue;
2154 
2155 		spin_lock_irqsave(&zone->lock, flags);
2156 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2157 		seq_printf(m,
2158 			   "\n  pages free     %lu"
2159 			   "\n        min      %lu"
2160 			   "\n        low      %lu"
2161 			   "\n        high     %lu"
2162 			   "\n        active   %lu"
2163 			   "\n        inactive %lu"
2164 			   "\n        scanned  %lu (a: %lu i: %lu)"
2165 			   "\n        spanned  %lu"
2166 			   "\n        present  %lu",
2167 			   zone->free_pages,
2168 			   zone->pages_min,
2169 			   zone->pages_low,
2170 			   zone->pages_high,
2171 			   zone->nr_active,
2172 			   zone->nr_inactive,
2173 			   zone->pages_scanned,
2174 			   zone->nr_scan_active, zone->nr_scan_inactive,
2175 			   zone->spanned_pages,
2176 			   zone->present_pages);
2177 		seq_printf(m,
2178 			   "\n        protection: (%lu",
2179 			   zone->lowmem_reserve[0]);
2180 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2181 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2182 		seq_printf(m,
2183 			   ")"
2184 			   "\n  pagesets");
2185 		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2186 			struct per_cpu_pageset *pageset;
2187 			int j;
2188 
2189 			pageset = zone_pcp(zone, i);
2190 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2191 				if (pageset->pcp[j].count)
2192 					break;
2193 			}
2194 			if (j == ARRAY_SIZE(pageset->pcp))
2195 				continue;
2196 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2197 				seq_printf(m,
2198 					   "\n    cpu: %i pcp: %i"
2199 					   "\n              count: %i"
2200 					   "\n              low:   %i"
2201 					   "\n              high:  %i"
2202 					   "\n              batch: %i",
2203 					   i, j,
2204 					   pageset->pcp[j].count,
2205 					   pageset->pcp[j].low,
2206 					   pageset->pcp[j].high,
2207 					   pageset->pcp[j].batch);
2208 			}
2209 #ifdef CONFIG_NUMA
2210 			seq_printf(m,
2211 				   "\n            numa_hit:       %lu"
2212 				   "\n            numa_miss:      %lu"
2213 				   "\n            numa_foreign:   %lu"
2214 				   "\n            interleave_hit: %lu"
2215 				   "\n            local_node:     %lu"
2216 				   "\n            other_node:     %lu",
2217 				   pageset->numa_hit,
2218 				   pageset->numa_miss,
2219 				   pageset->numa_foreign,
2220 				   pageset->interleave_hit,
2221 				   pageset->local_node,
2222 				   pageset->other_node);
2223 #endif
2224 		}
2225 		seq_printf(m,
2226 			   "\n  all_unreclaimable: %u"
2227 			   "\n  prev_priority:     %i"
2228 			   "\n  temp_priority:     %i"
2229 			   "\n  start_pfn:         %lu",
2230 			   zone->all_unreclaimable,
2231 			   zone->prev_priority,
2232 			   zone->temp_priority,
2233 			   zone->zone_start_pfn);
2234 		spin_unlock_irqrestore(&zone->lock, flags);
2235 		seq_putc(m, '\n');
2236 	}
2237 	return 0;
2238 }
2239 
2240 struct seq_operations zoneinfo_op = {
2241 	.start	= frag_start, /* iterate over all zones. The same as in
2242 			       * fragmentation. */
2243 	.next	= frag_next,
2244 	.stop	= frag_stop,
2245 	.show	= zoneinfo_show,
2246 };
2247 
2248 static char *vmstat_text[] = {
2249 	"nr_dirty",
2250 	"nr_writeback",
2251 	"nr_unstable",
2252 	"nr_page_table_pages",
2253 	"nr_mapped",
2254 	"nr_slab",
2255 
2256 	"pgpgin",
2257 	"pgpgout",
2258 	"pswpin",
2259 	"pswpout",
2260 	"pgalloc_high",
2261 
2262 	"pgalloc_normal",
2263 	"pgalloc_dma",
2264 	"pgfree",
2265 	"pgactivate",
2266 	"pgdeactivate",
2267 
2268 	"pgfault",
2269 	"pgmajfault",
2270 	"pgrefill_high",
2271 	"pgrefill_normal",
2272 	"pgrefill_dma",
2273 
2274 	"pgsteal_high",
2275 	"pgsteal_normal",
2276 	"pgsteal_dma",
2277 	"pgscan_kswapd_high",
2278 	"pgscan_kswapd_normal",
2279 
2280 	"pgscan_kswapd_dma",
2281 	"pgscan_direct_high",
2282 	"pgscan_direct_normal",
2283 	"pgscan_direct_dma",
2284 	"pginodesteal",
2285 
2286 	"slabs_scanned",
2287 	"kswapd_steal",
2288 	"kswapd_inodesteal",
2289 	"pageoutrun",
2290 	"allocstall",
2291 
2292 	"pgrotated",
2293 	"nr_bounce",
2294 };
2295 
2296 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2297 {
2298 	struct page_state *ps;
2299 
2300 	if (*pos >= ARRAY_SIZE(vmstat_text))
2301 		return NULL;
2302 
2303 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2304 	m->private = ps;
2305 	if (!ps)
2306 		return ERR_PTR(-ENOMEM);
2307 	get_full_page_state(ps);
2308 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2309 	ps->pgpgout /= 2;
2310 	return (unsigned long *)ps + *pos;
2311 }
2312 
2313 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2314 {
2315 	(*pos)++;
2316 	if (*pos >= ARRAY_SIZE(vmstat_text))
2317 		return NULL;
2318 	return (unsigned long *)m->private + *pos;
2319 }
2320 
2321 static int vmstat_show(struct seq_file *m, void *arg)
2322 {
2323 	unsigned long *l = arg;
2324 	unsigned long off = l - (unsigned long *)m->private;
2325 
2326 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2327 	return 0;
2328 }
2329 
2330 static void vmstat_stop(struct seq_file *m, void *arg)
2331 {
2332 	kfree(m->private);
2333 	m->private = NULL;
2334 }
2335 
2336 struct seq_operations vmstat_op = {
2337 	.start	= vmstat_start,
2338 	.next	= vmstat_next,
2339 	.stop	= vmstat_stop,
2340 	.show	= vmstat_show,
2341 };
2342 
2343 #endif /* CONFIG_PROC_FS */
2344 
2345 #ifdef CONFIG_HOTPLUG_CPU
2346 static int page_alloc_cpu_notify(struct notifier_block *self,
2347 				 unsigned long action, void *hcpu)
2348 {
2349 	int cpu = (unsigned long)hcpu;
2350 	long *count;
2351 	unsigned long *src, *dest;
2352 
2353 	if (action == CPU_DEAD) {
2354 		int i;
2355 
2356 		/* Drain local pagecache count. */
2357 		count = &per_cpu(nr_pagecache_local, cpu);
2358 		atomic_add(*count, &nr_pagecache);
2359 		*count = 0;
2360 		local_irq_disable();
2361 		__drain_pages(cpu);
2362 
2363 		/* Add dead cpu's page_states to our own. */
2364 		dest = (unsigned long *)&__get_cpu_var(page_states);
2365 		src = (unsigned long *)&per_cpu(page_states, cpu);
2366 
2367 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2368 				i++) {
2369 			dest[i] += src[i];
2370 			src[i] = 0;
2371 		}
2372 
2373 		local_irq_enable();
2374 	}
2375 	return NOTIFY_OK;
2376 }
2377 #endif /* CONFIG_HOTPLUG_CPU */
2378 
2379 void __init page_alloc_init(void)
2380 {
2381 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2382 }
2383 
2384 /*
2385  * setup_per_zone_lowmem_reserve - called whenever
2386  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2387  *	has a correct pages reserved value, so an adequate number of
2388  *	pages are left in the zone after a successful __alloc_pages().
2389  */
2390 static void setup_per_zone_lowmem_reserve(void)
2391 {
2392 	struct pglist_data *pgdat;
2393 	int j, idx;
2394 
2395 	for_each_pgdat(pgdat) {
2396 		for (j = 0; j < MAX_NR_ZONES; j++) {
2397 			struct zone *zone = pgdat->node_zones + j;
2398 			unsigned long present_pages = zone->present_pages;
2399 
2400 			zone->lowmem_reserve[j] = 0;
2401 
2402 			for (idx = j-1; idx >= 0; idx--) {
2403 				struct zone *lower_zone;
2404 
2405 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2406 					sysctl_lowmem_reserve_ratio[idx] = 1;
2407 
2408 				lower_zone = pgdat->node_zones + idx;
2409 				lower_zone->lowmem_reserve[j] = present_pages /
2410 					sysctl_lowmem_reserve_ratio[idx];
2411 				present_pages += lower_zone->present_pages;
2412 			}
2413 		}
2414 	}
2415 }
2416 
2417 /*
2418  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2419  *	that the pages_{min,low,high} values for each zone are set correctly
2420  *	with respect to min_free_kbytes.
2421  */
2422 void setup_per_zone_pages_min(void)
2423 {
2424 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2425 	unsigned long lowmem_pages = 0;
2426 	struct zone *zone;
2427 	unsigned long flags;
2428 
2429 	/* Calculate total number of !ZONE_HIGHMEM pages */
2430 	for_each_zone(zone) {
2431 		if (!is_highmem(zone))
2432 			lowmem_pages += zone->present_pages;
2433 	}
2434 
2435 	for_each_zone(zone) {
2436 		unsigned long tmp;
2437 		spin_lock_irqsave(&zone->lru_lock, flags);
2438 		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2439 		if (is_highmem(zone)) {
2440 			/*
2441 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2442 			 * need highmem pages, so cap pages_min to a small
2443 			 * value here.
2444 			 *
2445 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2446 			 * deltas controls asynch page reclaim, and so should
2447 			 * not be capped for highmem.
2448 			 */
2449 			int min_pages;
2450 
2451 			min_pages = zone->present_pages / 1024;
2452 			if (min_pages < SWAP_CLUSTER_MAX)
2453 				min_pages = SWAP_CLUSTER_MAX;
2454 			if (min_pages > 128)
2455 				min_pages = 128;
2456 			zone->pages_min = min_pages;
2457 		} else {
2458 			/*
2459 			 * If it's a lowmem zone, reserve a number of pages
2460 			 * proportionate to the zone's size.
2461 			 */
2462 			zone->pages_min = tmp;
2463 		}
2464 
2465 		zone->pages_low   = zone->pages_min + tmp / 4;
2466 		zone->pages_high  = zone->pages_min + tmp / 2;
2467 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2468 	}
2469 }
2470 
2471 /*
2472  * Initialise min_free_kbytes.
2473  *
2474  * For small machines we want it small (128k min).  For large machines
2475  * we want it large (64MB max).  But it is not linear, because network
2476  * bandwidth does not increase linearly with machine size.  We use
2477  *
2478  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2479  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2480  *
2481  * which yields
2482  *
2483  * 16MB:	512k
2484  * 32MB:	724k
2485  * 64MB:	1024k
2486  * 128MB:	1448k
2487  * 256MB:	2048k
2488  * 512MB:	2896k
2489  * 1024MB:	4096k
2490  * 2048MB:	5792k
2491  * 4096MB:	8192k
2492  * 8192MB:	11584k
2493  * 16384MB:	16384k
2494  */
2495 static int __init init_per_zone_pages_min(void)
2496 {
2497 	unsigned long lowmem_kbytes;
2498 
2499 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2500 
2501 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2502 	if (min_free_kbytes < 128)
2503 		min_free_kbytes = 128;
2504 	if (min_free_kbytes > 65536)
2505 		min_free_kbytes = 65536;
2506 	setup_per_zone_pages_min();
2507 	setup_per_zone_lowmem_reserve();
2508 	return 0;
2509 }
2510 module_init(init_per_zone_pages_min)
2511 
2512 /*
2513  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2514  *	that we can call two helper functions whenever min_free_kbytes
2515  *	changes.
2516  */
2517 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2518 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2519 {
2520 	proc_dointvec(table, write, file, buffer, length, ppos);
2521 	setup_per_zone_pages_min();
2522 	return 0;
2523 }
2524 
2525 /*
2526  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2527  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2528  *	whenever sysctl_lowmem_reserve_ratio changes.
2529  *
2530  * The reserve ratio obviously has absolutely no relation with the
2531  * pages_min watermarks. The lowmem reserve ratio can only make sense
2532  * if in function of the boot time zone sizes.
2533  */
2534 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2535 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2536 {
2537 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2538 	setup_per_zone_lowmem_reserve();
2539 	return 0;
2540 }
2541 
2542 __initdata int hashdist = HASHDIST_DEFAULT;
2543 
2544 #ifdef CONFIG_NUMA
2545 static int __init set_hashdist(char *str)
2546 {
2547 	if (!str)
2548 		return 0;
2549 	hashdist = simple_strtoul(str, &str, 0);
2550 	return 1;
2551 }
2552 __setup("hashdist=", set_hashdist);
2553 #endif
2554 
2555 /*
2556  * allocate a large system hash table from bootmem
2557  * - it is assumed that the hash table must contain an exact power-of-2
2558  *   quantity of entries
2559  * - limit is the number of hash buckets, not the total allocation size
2560  */
2561 void *__init alloc_large_system_hash(const char *tablename,
2562 				     unsigned long bucketsize,
2563 				     unsigned long numentries,
2564 				     int scale,
2565 				     int flags,
2566 				     unsigned int *_hash_shift,
2567 				     unsigned int *_hash_mask,
2568 				     unsigned long limit)
2569 {
2570 	unsigned long long max = limit;
2571 	unsigned long log2qty, size;
2572 	void *table = NULL;
2573 
2574 	/* allow the kernel cmdline to have a say */
2575 	if (!numentries) {
2576 		/* round applicable memory size up to nearest megabyte */
2577 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2578 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2579 		numentries >>= 20 - PAGE_SHIFT;
2580 		numentries <<= 20 - PAGE_SHIFT;
2581 
2582 		/* limit to 1 bucket per 2^scale bytes of low memory */
2583 		if (scale > PAGE_SHIFT)
2584 			numentries >>= (scale - PAGE_SHIFT);
2585 		else
2586 			numentries <<= (PAGE_SHIFT - scale);
2587 	}
2588 	/* rounded up to nearest power of 2 in size */
2589 	numentries = 1UL << (long_log2(numentries) + 1);
2590 
2591 	/* limit allocation size to 1/16 total memory by default */
2592 	if (max == 0) {
2593 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2594 		do_div(max, bucketsize);
2595 	}
2596 
2597 	if (numentries > max)
2598 		numentries = max;
2599 
2600 	log2qty = long_log2(numentries);
2601 
2602 	do {
2603 		size = bucketsize << log2qty;
2604 		if (flags & HASH_EARLY)
2605 			table = alloc_bootmem(size);
2606 		else if (hashdist)
2607 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2608 		else {
2609 			unsigned long order;
2610 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2611 				;
2612 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2613 		}
2614 	} while (!table && size > PAGE_SIZE && --log2qty);
2615 
2616 	if (!table)
2617 		panic("Failed to allocate %s hash table\n", tablename);
2618 
2619 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2620 	       tablename,
2621 	       (1U << log2qty),
2622 	       long_log2(size) - PAGE_SHIFT,
2623 	       size);
2624 
2625 	if (_hash_shift)
2626 		*_hash_shift = log2qty;
2627 	if (_hash_mask)
2628 		*_hash_mask = (1 << log2qty) - 1;
2629 
2630 	return table;
2631 }
2632