1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/bootmem.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/suspend.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mempolicy.h> 39 #include <linux/stop_machine.h> 40 #include <linux/sort.h> 41 #include <linux/pfn.h> 42 #include <linux/backing-dev.h> 43 #include <linux/fault-inject.h> 44 45 #include <asm/tlbflush.h> 46 #include <asm/div64.h> 47 #include "internal.h" 48 49 /* 50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 51 * initializer cleaner 52 */ 53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 54 EXPORT_SYMBOL(node_online_map); 55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 56 EXPORT_SYMBOL(node_possible_map); 57 unsigned long totalram_pages __read_mostly; 58 unsigned long totalreserve_pages __read_mostly; 59 long nr_swap_pages; 60 int percpu_pagelist_fraction; 61 62 static void __free_pages_ok(struct page *page, unsigned int order); 63 64 /* 65 * results with 256, 32 in the lowmem_reserve sysctl: 66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 67 * 1G machine -> (16M dma, 784M normal, 224M high) 68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 71 * 72 * TBD: should special case ZONE_DMA32 machines here - in those we normally 73 * don't need any ZONE_NORMAL reservation 74 */ 75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 76 256, 77 #ifdef CONFIG_ZONE_DMA32 78 256, 79 #endif 80 #ifdef CONFIG_HIGHMEM 81 32 82 #endif 83 }; 84 85 EXPORT_SYMBOL(totalram_pages); 86 87 static char * const zone_names[MAX_NR_ZONES] = { 88 "DMA", 89 #ifdef CONFIG_ZONE_DMA32 90 "DMA32", 91 #endif 92 "Normal", 93 #ifdef CONFIG_HIGHMEM 94 "HighMem" 95 #endif 96 }; 97 98 int min_free_kbytes = 1024; 99 100 unsigned long __meminitdata nr_kernel_pages; 101 unsigned long __meminitdata nr_all_pages; 102 static unsigned long __initdata dma_reserve; 103 104 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 105 /* 106 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct 107 * ranges of memory (RAM) that may be registered with add_active_range(). 108 * Ranges passed to add_active_range() will be merged if possible 109 * so the number of times add_active_range() can be called is 110 * related to the number of nodes and the number of holes 111 */ 112 #ifdef CONFIG_MAX_ACTIVE_REGIONS 113 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 114 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 115 #else 116 #if MAX_NUMNODES >= 32 117 /* If there can be many nodes, allow up to 50 holes per node */ 118 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 119 #else 120 /* By default, allow up to 256 distinct regions */ 121 #define MAX_ACTIVE_REGIONS 256 122 #endif 123 #endif 124 125 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS]; 126 int __initdata nr_nodemap_entries; 127 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 128 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 129 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 130 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES]; 131 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES]; 132 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 133 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 134 135 #ifdef CONFIG_DEBUG_VM 136 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 137 { 138 int ret = 0; 139 unsigned seq; 140 unsigned long pfn = page_to_pfn(page); 141 142 do { 143 seq = zone_span_seqbegin(zone); 144 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 145 ret = 1; 146 else if (pfn < zone->zone_start_pfn) 147 ret = 1; 148 } while (zone_span_seqretry(zone, seq)); 149 150 return ret; 151 } 152 153 static int page_is_consistent(struct zone *zone, struct page *page) 154 { 155 #ifdef CONFIG_HOLES_IN_ZONE 156 if (!pfn_valid(page_to_pfn(page))) 157 return 0; 158 #endif 159 if (zone != page_zone(page)) 160 return 0; 161 162 return 1; 163 } 164 /* 165 * Temporary debugging check for pages not lying within a given zone. 166 */ 167 static int bad_range(struct zone *zone, struct page *page) 168 { 169 if (page_outside_zone_boundaries(zone, page)) 170 return 1; 171 if (!page_is_consistent(zone, page)) 172 return 1; 173 174 return 0; 175 } 176 #else 177 static inline int bad_range(struct zone *zone, struct page *page) 178 { 179 return 0; 180 } 181 #endif 182 183 static void bad_page(struct page *page) 184 { 185 printk(KERN_EMERG "Bad page state in process '%s'\n" 186 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 187 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 188 KERN_EMERG "Backtrace:\n", 189 current->comm, page, (int)(2*sizeof(unsigned long)), 190 (unsigned long)page->flags, page->mapping, 191 page_mapcount(page), page_count(page)); 192 dump_stack(); 193 page->flags &= ~(1 << PG_lru | 194 1 << PG_private | 195 1 << PG_locked | 196 1 << PG_active | 197 1 << PG_dirty | 198 1 << PG_reclaim | 199 1 << PG_slab | 200 1 << PG_swapcache | 201 1 << PG_writeback | 202 1 << PG_buddy ); 203 set_page_count(page, 0); 204 reset_page_mapcount(page); 205 page->mapping = NULL; 206 add_taint(TAINT_BAD_PAGE); 207 } 208 209 /* 210 * Higher-order pages are called "compound pages". They are structured thusly: 211 * 212 * The first PAGE_SIZE page is called the "head page". 213 * 214 * The remaining PAGE_SIZE pages are called "tail pages". 215 * 216 * All pages have PG_compound set. All pages have their ->private pointing at 217 * the head page (even the head page has this). 218 * 219 * The first tail page's ->lru.next holds the address of the compound page's 220 * put_page() function. Its ->lru.prev holds the order of allocation. 221 * This usage means that zero-order pages may not be compound. 222 */ 223 224 static void free_compound_page(struct page *page) 225 { 226 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 227 } 228 229 static void prep_compound_page(struct page *page, unsigned long order) 230 { 231 int i; 232 int nr_pages = 1 << order; 233 234 set_compound_page_dtor(page, free_compound_page); 235 page[1].lru.prev = (void *)order; 236 for (i = 0; i < nr_pages; i++) { 237 struct page *p = page + i; 238 239 __SetPageCompound(p); 240 set_page_private(p, (unsigned long)page); 241 } 242 } 243 244 static void destroy_compound_page(struct page *page, unsigned long order) 245 { 246 int i; 247 int nr_pages = 1 << order; 248 249 if (unlikely((unsigned long)page[1].lru.prev != order)) 250 bad_page(page); 251 252 for (i = 0; i < nr_pages; i++) { 253 struct page *p = page + i; 254 255 if (unlikely(!PageCompound(p) | 256 (page_private(p) != (unsigned long)page))) 257 bad_page(page); 258 __ClearPageCompound(p); 259 } 260 } 261 262 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 263 { 264 int i; 265 266 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 267 /* 268 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 269 * and __GFP_HIGHMEM from hard or soft interrupt context. 270 */ 271 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 272 for (i = 0; i < (1 << order); i++) 273 clear_highpage(page + i); 274 } 275 276 /* 277 * function for dealing with page's order in buddy system. 278 * zone->lock is already acquired when we use these. 279 * So, we don't need atomic page->flags operations here. 280 */ 281 static inline unsigned long page_order(struct page *page) 282 { 283 return page_private(page); 284 } 285 286 static inline void set_page_order(struct page *page, int order) 287 { 288 set_page_private(page, order); 289 __SetPageBuddy(page); 290 } 291 292 static inline void rmv_page_order(struct page *page) 293 { 294 __ClearPageBuddy(page); 295 set_page_private(page, 0); 296 } 297 298 /* 299 * Locate the struct page for both the matching buddy in our 300 * pair (buddy1) and the combined O(n+1) page they form (page). 301 * 302 * 1) Any buddy B1 will have an order O twin B2 which satisfies 303 * the following equation: 304 * B2 = B1 ^ (1 << O) 305 * For example, if the starting buddy (buddy2) is #8 its order 306 * 1 buddy is #10: 307 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 308 * 309 * 2) Any buddy B will have an order O+1 parent P which 310 * satisfies the following equation: 311 * P = B & ~(1 << O) 312 * 313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 314 */ 315 static inline struct page * 316 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 317 { 318 unsigned long buddy_idx = page_idx ^ (1 << order); 319 320 return page + (buddy_idx - page_idx); 321 } 322 323 static inline unsigned long 324 __find_combined_index(unsigned long page_idx, unsigned int order) 325 { 326 return (page_idx & ~(1 << order)); 327 } 328 329 /* 330 * This function checks whether a page is free && is the buddy 331 * we can do coalesce a page and its buddy if 332 * (a) the buddy is not in a hole && 333 * (b) the buddy is in the buddy system && 334 * (c) a page and its buddy have the same order && 335 * (d) a page and its buddy are in the same zone. 336 * 337 * For recording whether a page is in the buddy system, we use PG_buddy. 338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 339 * 340 * For recording page's order, we use page_private(page). 341 */ 342 static inline int page_is_buddy(struct page *page, struct page *buddy, 343 int order) 344 { 345 #ifdef CONFIG_HOLES_IN_ZONE 346 if (!pfn_valid(page_to_pfn(buddy))) 347 return 0; 348 #endif 349 350 if (page_zone_id(page) != page_zone_id(buddy)) 351 return 0; 352 353 if (PageBuddy(buddy) && page_order(buddy) == order) { 354 BUG_ON(page_count(buddy) != 0); 355 return 1; 356 } 357 return 0; 358 } 359 360 /* 361 * Freeing function for a buddy system allocator. 362 * 363 * The concept of a buddy system is to maintain direct-mapped table 364 * (containing bit values) for memory blocks of various "orders". 365 * The bottom level table contains the map for the smallest allocatable 366 * units of memory (here, pages), and each level above it describes 367 * pairs of units from the levels below, hence, "buddies". 368 * At a high level, all that happens here is marking the table entry 369 * at the bottom level available, and propagating the changes upward 370 * as necessary, plus some accounting needed to play nicely with other 371 * parts of the VM system. 372 * At each level, we keep a list of pages, which are heads of continuous 373 * free pages of length of (1 << order) and marked with PG_buddy. Page's 374 * order is recorded in page_private(page) field. 375 * So when we are allocating or freeing one, we can derive the state of the 376 * other. That is, if we allocate a small block, and both were 377 * free, the remainder of the region must be split into blocks. 378 * If a block is freed, and its buddy is also free, then this 379 * triggers coalescing into a block of larger size. 380 * 381 * -- wli 382 */ 383 384 static inline void __free_one_page(struct page *page, 385 struct zone *zone, unsigned int order) 386 { 387 unsigned long page_idx; 388 int order_size = 1 << order; 389 390 if (unlikely(PageCompound(page))) 391 destroy_compound_page(page, order); 392 393 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 394 395 VM_BUG_ON(page_idx & (order_size - 1)); 396 VM_BUG_ON(bad_range(zone, page)); 397 398 zone->free_pages += order_size; 399 while (order < MAX_ORDER-1) { 400 unsigned long combined_idx; 401 struct free_area *area; 402 struct page *buddy; 403 404 buddy = __page_find_buddy(page, page_idx, order); 405 if (!page_is_buddy(page, buddy, order)) 406 break; /* Move the buddy up one level. */ 407 408 list_del(&buddy->lru); 409 area = zone->free_area + order; 410 area->nr_free--; 411 rmv_page_order(buddy); 412 combined_idx = __find_combined_index(page_idx, order); 413 page = page + (combined_idx - page_idx); 414 page_idx = combined_idx; 415 order++; 416 } 417 set_page_order(page, order); 418 list_add(&page->lru, &zone->free_area[order].free_list); 419 zone->free_area[order].nr_free++; 420 } 421 422 static inline int free_pages_check(struct page *page) 423 { 424 if (unlikely(page_mapcount(page) | 425 (page->mapping != NULL) | 426 (page_count(page) != 0) | 427 (page->flags & ( 428 1 << PG_lru | 429 1 << PG_private | 430 1 << PG_locked | 431 1 << PG_active | 432 1 << PG_reclaim | 433 1 << PG_slab | 434 1 << PG_swapcache | 435 1 << PG_writeback | 436 1 << PG_reserved | 437 1 << PG_buddy )))) 438 bad_page(page); 439 if (PageDirty(page)) 440 __ClearPageDirty(page); 441 /* 442 * For now, we report if PG_reserved was found set, but do not 443 * clear it, and do not free the page. But we shall soon need 444 * to do more, for when the ZERO_PAGE count wraps negative. 445 */ 446 return PageReserved(page); 447 } 448 449 /* 450 * Frees a list of pages. 451 * Assumes all pages on list are in same zone, and of same order. 452 * count is the number of pages to free. 453 * 454 * If the zone was previously in an "all pages pinned" state then look to 455 * see if this freeing clears that state. 456 * 457 * And clear the zone's pages_scanned counter, to hold off the "all pages are 458 * pinned" detection logic. 459 */ 460 static void free_pages_bulk(struct zone *zone, int count, 461 struct list_head *list, int order) 462 { 463 spin_lock(&zone->lock); 464 zone->all_unreclaimable = 0; 465 zone->pages_scanned = 0; 466 while (count--) { 467 struct page *page; 468 469 VM_BUG_ON(list_empty(list)); 470 page = list_entry(list->prev, struct page, lru); 471 /* have to delete it as __free_one_page list manipulates */ 472 list_del(&page->lru); 473 __free_one_page(page, zone, order); 474 } 475 spin_unlock(&zone->lock); 476 } 477 478 static void free_one_page(struct zone *zone, struct page *page, int order) 479 { 480 spin_lock(&zone->lock); 481 zone->all_unreclaimable = 0; 482 zone->pages_scanned = 0; 483 __free_one_page(page, zone, order); 484 spin_unlock(&zone->lock); 485 } 486 487 static void __free_pages_ok(struct page *page, unsigned int order) 488 { 489 unsigned long flags; 490 int i; 491 int reserved = 0; 492 493 for (i = 0 ; i < (1 << order) ; ++i) 494 reserved += free_pages_check(page + i); 495 if (reserved) 496 return; 497 498 if (!PageHighMem(page)) 499 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 500 arch_free_page(page, order); 501 kernel_map_pages(page, 1 << order, 0); 502 503 local_irq_save(flags); 504 __count_vm_events(PGFREE, 1 << order); 505 free_one_page(page_zone(page), page, order); 506 local_irq_restore(flags); 507 } 508 509 /* 510 * permit the bootmem allocator to evade page validation on high-order frees 511 */ 512 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 513 { 514 if (order == 0) { 515 __ClearPageReserved(page); 516 set_page_count(page, 0); 517 set_page_refcounted(page); 518 __free_page(page); 519 } else { 520 int loop; 521 522 prefetchw(page); 523 for (loop = 0; loop < BITS_PER_LONG; loop++) { 524 struct page *p = &page[loop]; 525 526 if (loop + 1 < BITS_PER_LONG) 527 prefetchw(p + 1); 528 __ClearPageReserved(p); 529 set_page_count(p, 0); 530 } 531 532 set_page_refcounted(page); 533 __free_pages(page, order); 534 } 535 } 536 537 538 /* 539 * The order of subdivision here is critical for the IO subsystem. 540 * Please do not alter this order without good reasons and regression 541 * testing. Specifically, as large blocks of memory are subdivided, 542 * the order in which smaller blocks are delivered depends on the order 543 * they're subdivided in this function. This is the primary factor 544 * influencing the order in which pages are delivered to the IO 545 * subsystem according to empirical testing, and this is also justified 546 * by considering the behavior of a buddy system containing a single 547 * large block of memory acted on by a series of small allocations. 548 * This behavior is a critical factor in sglist merging's success. 549 * 550 * -- wli 551 */ 552 static inline void expand(struct zone *zone, struct page *page, 553 int low, int high, struct free_area *area) 554 { 555 unsigned long size = 1 << high; 556 557 while (high > low) { 558 area--; 559 high--; 560 size >>= 1; 561 VM_BUG_ON(bad_range(zone, &page[size])); 562 list_add(&page[size].lru, &area->free_list); 563 area->nr_free++; 564 set_page_order(&page[size], high); 565 } 566 } 567 568 /* 569 * This page is about to be returned from the page allocator 570 */ 571 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 572 { 573 if (unlikely(page_mapcount(page) | 574 (page->mapping != NULL) | 575 (page_count(page) != 0) | 576 (page->flags & ( 577 1 << PG_lru | 578 1 << PG_private | 579 1 << PG_locked | 580 1 << PG_active | 581 1 << PG_dirty | 582 1 << PG_reclaim | 583 1 << PG_slab | 584 1 << PG_swapcache | 585 1 << PG_writeback | 586 1 << PG_reserved | 587 1 << PG_buddy )))) 588 bad_page(page); 589 590 /* 591 * For now, we report if PG_reserved was found set, but do not 592 * clear it, and do not allocate the page: as a safety net. 593 */ 594 if (PageReserved(page)) 595 return 1; 596 597 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 598 1 << PG_referenced | 1 << PG_arch_1 | 599 1 << PG_checked | 1 << PG_mappedtodisk); 600 set_page_private(page, 0); 601 set_page_refcounted(page); 602 603 arch_alloc_page(page, order); 604 kernel_map_pages(page, 1 << order, 1); 605 606 if (gfp_flags & __GFP_ZERO) 607 prep_zero_page(page, order, gfp_flags); 608 609 if (order && (gfp_flags & __GFP_COMP)) 610 prep_compound_page(page, order); 611 612 return 0; 613 } 614 615 /* 616 * Do the hard work of removing an element from the buddy allocator. 617 * Call me with the zone->lock already held. 618 */ 619 static struct page *__rmqueue(struct zone *zone, unsigned int order) 620 { 621 struct free_area * area; 622 unsigned int current_order; 623 struct page *page; 624 625 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 626 area = zone->free_area + current_order; 627 if (list_empty(&area->free_list)) 628 continue; 629 630 page = list_entry(area->free_list.next, struct page, lru); 631 list_del(&page->lru); 632 rmv_page_order(page); 633 area->nr_free--; 634 zone->free_pages -= 1UL << order; 635 expand(zone, page, order, current_order, area); 636 return page; 637 } 638 639 return NULL; 640 } 641 642 /* 643 * Obtain a specified number of elements from the buddy allocator, all under 644 * a single hold of the lock, for efficiency. Add them to the supplied list. 645 * Returns the number of new pages which were placed at *list. 646 */ 647 static int rmqueue_bulk(struct zone *zone, unsigned int order, 648 unsigned long count, struct list_head *list) 649 { 650 int i; 651 652 spin_lock(&zone->lock); 653 for (i = 0; i < count; ++i) { 654 struct page *page = __rmqueue(zone, order); 655 if (unlikely(page == NULL)) 656 break; 657 list_add_tail(&page->lru, list); 658 } 659 spin_unlock(&zone->lock); 660 return i; 661 } 662 663 #ifdef CONFIG_NUMA 664 /* 665 * Called from the slab reaper to drain pagesets on a particular node that 666 * belongs to the currently executing processor. 667 * Note that this function must be called with the thread pinned to 668 * a single processor. 669 */ 670 void drain_node_pages(int nodeid) 671 { 672 int i; 673 enum zone_type z; 674 unsigned long flags; 675 676 for (z = 0; z < MAX_NR_ZONES; z++) { 677 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 678 struct per_cpu_pageset *pset; 679 680 if (!populated_zone(zone)) 681 continue; 682 683 pset = zone_pcp(zone, smp_processor_id()); 684 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 685 struct per_cpu_pages *pcp; 686 687 pcp = &pset->pcp[i]; 688 if (pcp->count) { 689 int to_drain; 690 691 local_irq_save(flags); 692 if (pcp->count >= pcp->batch) 693 to_drain = pcp->batch; 694 else 695 to_drain = pcp->count; 696 free_pages_bulk(zone, to_drain, &pcp->list, 0); 697 pcp->count -= to_drain; 698 local_irq_restore(flags); 699 } 700 } 701 } 702 } 703 #endif 704 705 static void __drain_pages(unsigned int cpu) 706 { 707 unsigned long flags; 708 struct zone *zone; 709 int i; 710 711 for_each_zone(zone) { 712 struct per_cpu_pageset *pset; 713 714 pset = zone_pcp(zone, cpu); 715 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 716 struct per_cpu_pages *pcp; 717 718 pcp = &pset->pcp[i]; 719 local_irq_save(flags); 720 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 721 pcp->count = 0; 722 local_irq_restore(flags); 723 } 724 } 725 } 726 727 #ifdef CONFIG_PM 728 729 void mark_free_pages(struct zone *zone) 730 { 731 unsigned long pfn, max_zone_pfn; 732 unsigned long flags; 733 int order; 734 struct list_head *curr; 735 736 if (!zone->spanned_pages) 737 return; 738 739 spin_lock_irqsave(&zone->lock, flags); 740 741 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 742 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 743 if (pfn_valid(pfn)) { 744 struct page *page = pfn_to_page(pfn); 745 746 if (!PageNosave(page)) 747 ClearPageNosaveFree(page); 748 } 749 750 for (order = MAX_ORDER - 1; order >= 0; --order) 751 list_for_each(curr, &zone->free_area[order].free_list) { 752 unsigned long i; 753 754 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 755 for (i = 0; i < (1UL << order); i++) 756 SetPageNosaveFree(pfn_to_page(pfn + i)); 757 } 758 759 spin_unlock_irqrestore(&zone->lock, flags); 760 } 761 762 /* 763 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 764 */ 765 void drain_local_pages(void) 766 { 767 unsigned long flags; 768 769 local_irq_save(flags); 770 __drain_pages(smp_processor_id()); 771 local_irq_restore(flags); 772 } 773 #endif /* CONFIG_PM */ 774 775 /* 776 * Free a 0-order page 777 */ 778 static void fastcall free_hot_cold_page(struct page *page, int cold) 779 { 780 struct zone *zone = page_zone(page); 781 struct per_cpu_pages *pcp; 782 unsigned long flags; 783 784 if (PageAnon(page)) 785 page->mapping = NULL; 786 if (free_pages_check(page)) 787 return; 788 789 if (!PageHighMem(page)) 790 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 791 arch_free_page(page, 0); 792 kernel_map_pages(page, 1, 0); 793 794 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 795 local_irq_save(flags); 796 __count_vm_event(PGFREE); 797 list_add(&page->lru, &pcp->list); 798 pcp->count++; 799 if (pcp->count >= pcp->high) { 800 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 801 pcp->count -= pcp->batch; 802 } 803 local_irq_restore(flags); 804 put_cpu(); 805 } 806 807 void fastcall free_hot_page(struct page *page) 808 { 809 free_hot_cold_page(page, 0); 810 } 811 812 void fastcall free_cold_page(struct page *page) 813 { 814 free_hot_cold_page(page, 1); 815 } 816 817 /* 818 * split_page takes a non-compound higher-order page, and splits it into 819 * n (1<<order) sub-pages: page[0..n] 820 * Each sub-page must be freed individually. 821 * 822 * Note: this is probably too low level an operation for use in drivers. 823 * Please consult with lkml before using this in your driver. 824 */ 825 void split_page(struct page *page, unsigned int order) 826 { 827 int i; 828 829 VM_BUG_ON(PageCompound(page)); 830 VM_BUG_ON(!page_count(page)); 831 for (i = 1; i < (1 << order); i++) 832 set_page_refcounted(page + i); 833 } 834 835 /* 836 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 837 * we cheat by calling it from here, in the order > 0 path. Saves a branch 838 * or two. 839 */ 840 static struct page *buffered_rmqueue(struct zonelist *zonelist, 841 struct zone *zone, int order, gfp_t gfp_flags) 842 { 843 unsigned long flags; 844 struct page *page; 845 int cold = !!(gfp_flags & __GFP_COLD); 846 int cpu; 847 848 again: 849 cpu = get_cpu(); 850 if (likely(order == 0)) { 851 struct per_cpu_pages *pcp; 852 853 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 854 local_irq_save(flags); 855 if (!pcp->count) { 856 pcp->count = rmqueue_bulk(zone, 0, 857 pcp->batch, &pcp->list); 858 if (unlikely(!pcp->count)) 859 goto failed; 860 } 861 page = list_entry(pcp->list.next, struct page, lru); 862 list_del(&page->lru); 863 pcp->count--; 864 } else { 865 spin_lock_irqsave(&zone->lock, flags); 866 page = __rmqueue(zone, order); 867 spin_unlock(&zone->lock); 868 if (!page) 869 goto failed; 870 } 871 872 __count_zone_vm_events(PGALLOC, zone, 1 << order); 873 zone_statistics(zonelist, zone); 874 local_irq_restore(flags); 875 put_cpu(); 876 877 VM_BUG_ON(bad_range(zone, page)); 878 if (prep_new_page(page, order, gfp_flags)) 879 goto again; 880 return page; 881 882 failed: 883 local_irq_restore(flags); 884 put_cpu(); 885 return NULL; 886 } 887 888 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 889 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 890 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 891 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 892 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 893 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 894 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 895 896 #ifdef CONFIG_FAIL_PAGE_ALLOC 897 898 static struct fail_page_alloc_attr { 899 struct fault_attr attr; 900 901 u32 ignore_gfp_highmem; 902 u32 ignore_gfp_wait; 903 904 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 905 906 struct dentry *ignore_gfp_highmem_file; 907 struct dentry *ignore_gfp_wait_file; 908 909 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 910 911 } fail_page_alloc = { 912 .attr = FAULT_ATTR_INITIALIZER, 913 .ignore_gfp_wait = 1, 914 .ignore_gfp_highmem = 1, 915 }; 916 917 static int __init setup_fail_page_alloc(char *str) 918 { 919 return setup_fault_attr(&fail_page_alloc.attr, str); 920 } 921 __setup("fail_page_alloc=", setup_fail_page_alloc); 922 923 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 924 { 925 if (gfp_mask & __GFP_NOFAIL) 926 return 0; 927 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 928 return 0; 929 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 930 return 0; 931 932 return should_fail(&fail_page_alloc.attr, 1 << order); 933 } 934 935 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 936 937 static int __init fail_page_alloc_debugfs(void) 938 { 939 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 940 struct dentry *dir; 941 int err; 942 943 err = init_fault_attr_dentries(&fail_page_alloc.attr, 944 "fail_page_alloc"); 945 if (err) 946 return err; 947 dir = fail_page_alloc.attr.dentries.dir; 948 949 fail_page_alloc.ignore_gfp_wait_file = 950 debugfs_create_bool("ignore-gfp-wait", mode, dir, 951 &fail_page_alloc.ignore_gfp_wait); 952 953 fail_page_alloc.ignore_gfp_highmem_file = 954 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 955 &fail_page_alloc.ignore_gfp_highmem); 956 957 if (!fail_page_alloc.ignore_gfp_wait_file || 958 !fail_page_alloc.ignore_gfp_highmem_file) { 959 err = -ENOMEM; 960 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 961 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 962 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 963 } 964 965 return err; 966 } 967 968 late_initcall(fail_page_alloc_debugfs); 969 970 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 971 972 #else /* CONFIG_FAIL_PAGE_ALLOC */ 973 974 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 975 { 976 return 0; 977 } 978 979 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 980 981 /* 982 * Return 1 if free pages are above 'mark'. This takes into account the order 983 * of the allocation. 984 */ 985 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 986 int classzone_idx, int alloc_flags) 987 { 988 /* free_pages my go negative - that's OK */ 989 unsigned long min = mark; 990 long free_pages = z->free_pages - (1 << order) + 1; 991 int o; 992 993 if (alloc_flags & ALLOC_HIGH) 994 min -= min / 2; 995 if (alloc_flags & ALLOC_HARDER) 996 min -= min / 4; 997 998 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 999 return 0; 1000 for (o = 0; o < order; o++) { 1001 /* At the next order, this order's pages become unavailable */ 1002 free_pages -= z->free_area[o].nr_free << o; 1003 1004 /* Require fewer higher order pages to be free */ 1005 min >>= 1; 1006 1007 if (free_pages <= min) 1008 return 0; 1009 } 1010 return 1; 1011 } 1012 1013 #ifdef CONFIG_NUMA 1014 /* 1015 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1016 * skip over zones that are not allowed by the cpuset, or that have 1017 * been recently (in last second) found to be nearly full. See further 1018 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1019 * that have to skip over alot of full or unallowed zones. 1020 * 1021 * If the zonelist cache is present in the passed in zonelist, then 1022 * returns a pointer to the allowed node mask (either the current 1023 * tasks mems_allowed, or node_online_map.) 1024 * 1025 * If the zonelist cache is not available for this zonelist, does 1026 * nothing and returns NULL. 1027 * 1028 * If the fullzones BITMAP in the zonelist cache is stale (more than 1029 * a second since last zap'd) then we zap it out (clear its bits.) 1030 * 1031 * We hold off even calling zlc_setup, until after we've checked the 1032 * first zone in the zonelist, on the theory that most allocations will 1033 * be satisfied from that first zone, so best to examine that zone as 1034 * quickly as we can. 1035 */ 1036 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1037 { 1038 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1039 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1040 1041 zlc = zonelist->zlcache_ptr; 1042 if (!zlc) 1043 return NULL; 1044 1045 if (jiffies - zlc->last_full_zap > 1 * HZ) { 1046 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1047 zlc->last_full_zap = jiffies; 1048 } 1049 1050 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1051 &cpuset_current_mems_allowed : 1052 &node_online_map; 1053 return allowednodes; 1054 } 1055 1056 /* 1057 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1058 * if it is worth looking at further for free memory: 1059 * 1) Check that the zone isn't thought to be full (doesn't have its 1060 * bit set in the zonelist_cache fullzones BITMAP). 1061 * 2) Check that the zones node (obtained from the zonelist_cache 1062 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1063 * Return true (non-zero) if zone is worth looking at further, or 1064 * else return false (zero) if it is not. 1065 * 1066 * This check -ignores- the distinction between various watermarks, 1067 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1068 * found to be full for any variation of these watermarks, it will 1069 * be considered full for up to one second by all requests, unless 1070 * we are so low on memory on all allowed nodes that we are forced 1071 * into the second scan of the zonelist. 1072 * 1073 * In the second scan we ignore this zonelist cache and exactly 1074 * apply the watermarks to all zones, even it is slower to do so. 1075 * We are low on memory in the second scan, and should leave no stone 1076 * unturned looking for a free page. 1077 */ 1078 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1079 nodemask_t *allowednodes) 1080 { 1081 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1082 int i; /* index of *z in zonelist zones */ 1083 int n; /* node that zone *z is on */ 1084 1085 zlc = zonelist->zlcache_ptr; 1086 if (!zlc) 1087 return 1; 1088 1089 i = z - zonelist->zones; 1090 n = zlc->z_to_n[i]; 1091 1092 /* This zone is worth trying if it is allowed but not full */ 1093 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1094 } 1095 1096 /* 1097 * Given 'z' scanning a zonelist, set the corresponding bit in 1098 * zlc->fullzones, so that subsequent attempts to allocate a page 1099 * from that zone don't waste time re-examining it. 1100 */ 1101 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1102 { 1103 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1104 int i; /* index of *z in zonelist zones */ 1105 1106 zlc = zonelist->zlcache_ptr; 1107 if (!zlc) 1108 return; 1109 1110 i = z - zonelist->zones; 1111 1112 set_bit(i, zlc->fullzones); 1113 } 1114 1115 #else /* CONFIG_NUMA */ 1116 1117 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1118 { 1119 return NULL; 1120 } 1121 1122 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1123 nodemask_t *allowednodes) 1124 { 1125 return 1; 1126 } 1127 1128 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1129 { 1130 } 1131 #endif /* CONFIG_NUMA */ 1132 1133 /* 1134 * get_page_from_freelist goes through the zonelist trying to allocate 1135 * a page. 1136 */ 1137 static struct page * 1138 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 1139 struct zonelist *zonelist, int alloc_flags) 1140 { 1141 struct zone **z; 1142 struct page *page = NULL; 1143 int classzone_idx = zone_idx(zonelist->zones[0]); 1144 struct zone *zone; 1145 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1146 int zlc_active = 0; /* set if using zonelist_cache */ 1147 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1148 1149 zonelist_scan: 1150 /* 1151 * Scan zonelist, looking for a zone with enough free. 1152 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1153 */ 1154 z = zonelist->zones; 1155 1156 do { 1157 if (NUMA_BUILD && zlc_active && 1158 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1159 continue; 1160 zone = *z; 1161 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) && 1162 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat)) 1163 break; 1164 if ((alloc_flags & ALLOC_CPUSET) && 1165 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1166 goto try_next_zone; 1167 1168 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1169 unsigned long mark; 1170 if (alloc_flags & ALLOC_WMARK_MIN) 1171 mark = zone->pages_min; 1172 else if (alloc_flags & ALLOC_WMARK_LOW) 1173 mark = zone->pages_low; 1174 else 1175 mark = zone->pages_high; 1176 if (!zone_watermark_ok(zone, order, mark, 1177 classzone_idx, alloc_flags)) { 1178 if (!zone_reclaim_mode || 1179 !zone_reclaim(zone, gfp_mask, order)) 1180 goto this_zone_full; 1181 } 1182 } 1183 1184 page = buffered_rmqueue(zonelist, zone, order, gfp_mask); 1185 if (page) 1186 break; 1187 this_zone_full: 1188 if (NUMA_BUILD) 1189 zlc_mark_zone_full(zonelist, z); 1190 try_next_zone: 1191 if (NUMA_BUILD && !did_zlc_setup) { 1192 /* we do zlc_setup after the first zone is tried */ 1193 allowednodes = zlc_setup(zonelist, alloc_flags); 1194 zlc_active = 1; 1195 did_zlc_setup = 1; 1196 } 1197 } while (*(++z) != NULL); 1198 1199 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1200 /* Disable zlc cache for second zonelist scan */ 1201 zlc_active = 0; 1202 goto zonelist_scan; 1203 } 1204 return page; 1205 } 1206 1207 /* 1208 * This is the 'heart' of the zoned buddy allocator. 1209 */ 1210 struct page * fastcall 1211 __alloc_pages(gfp_t gfp_mask, unsigned int order, 1212 struct zonelist *zonelist) 1213 { 1214 const gfp_t wait = gfp_mask & __GFP_WAIT; 1215 struct zone **z; 1216 struct page *page; 1217 struct reclaim_state reclaim_state; 1218 struct task_struct *p = current; 1219 int do_retry; 1220 int alloc_flags; 1221 int did_some_progress; 1222 1223 might_sleep_if(wait); 1224 1225 if (should_fail_alloc_page(gfp_mask, order)) 1226 return NULL; 1227 1228 restart: 1229 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 1230 1231 if (unlikely(*z == NULL)) { 1232 /* Should this ever happen?? */ 1233 return NULL; 1234 } 1235 1236 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1237 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1238 if (page) 1239 goto got_pg; 1240 1241 /* 1242 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1243 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1244 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1245 * using a larger set of nodes after it has established that the 1246 * allowed per node queues are empty and that nodes are 1247 * over allocated. 1248 */ 1249 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1250 goto nopage; 1251 1252 for (z = zonelist->zones; *z; z++) 1253 wakeup_kswapd(*z, order); 1254 1255 /* 1256 * OK, we're below the kswapd watermark and have kicked background 1257 * reclaim. Now things get more complex, so set up alloc_flags according 1258 * to how we want to proceed. 1259 * 1260 * The caller may dip into page reserves a bit more if the caller 1261 * cannot run direct reclaim, or if the caller has realtime scheduling 1262 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1263 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1264 */ 1265 alloc_flags = ALLOC_WMARK_MIN; 1266 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1267 alloc_flags |= ALLOC_HARDER; 1268 if (gfp_mask & __GFP_HIGH) 1269 alloc_flags |= ALLOC_HIGH; 1270 if (wait) 1271 alloc_flags |= ALLOC_CPUSET; 1272 1273 /* 1274 * Go through the zonelist again. Let __GFP_HIGH and allocations 1275 * coming from realtime tasks go deeper into reserves. 1276 * 1277 * This is the last chance, in general, before the goto nopage. 1278 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1279 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1280 */ 1281 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 1282 if (page) 1283 goto got_pg; 1284 1285 /* This allocation should allow future memory freeing. */ 1286 1287 rebalance: 1288 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1289 && !in_interrupt()) { 1290 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1291 nofail_alloc: 1292 /* go through the zonelist yet again, ignoring mins */ 1293 page = get_page_from_freelist(gfp_mask, order, 1294 zonelist, ALLOC_NO_WATERMARKS); 1295 if (page) 1296 goto got_pg; 1297 if (gfp_mask & __GFP_NOFAIL) { 1298 congestion_wait(WRITE, HZ/50); 1299 goto nofail_alloc; 1300 } 1301 } 1302 goto nopage; 1303 } 1304 1305 /* Atomic allocations - we can't balance anything */ 1306 if (!wait) 1307 goto nopage; 1308 1309 cond_resched(); 1310 1311 /* We now go into synchronous reclaim */ 1312 cpuset_memory_pressure_bump(); 1313 p->flags |= PF_MEMALLOC; 1314 reclaim_state.reclaimed_slab = 0; 1315 p->reclaim_state = &reclaim_state; 1316 1317 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1318 1319 p->reclaim_state = NULL; 1320 p->flags &= ~PF_MEMALLOC; 1321 1322 cond_resched(); 1323 1324 if (likely(did_some_progress)) { 1325 page = get_page_from_freelist(gfp_mask, order, 1326 zonelist, alloc_flags); 1327 if (page) 1328 goto got_pg; 1329 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1330 /* 1331 * Go through the zonelist yet one more time, keep 1332 * very high watermark here, this is only to catch 1333 * a parallel oom killing, we must fail if we're still 1334 * under heavy pressure. 1335 */ 1336 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1337 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1338 if (page) 1339 goto got_pg; 1340 1341 out_of_memory(zonelist, gfp_mask, order); 1342 goto restart; 1343 } 1344 1345 /* 1346 * Don't let big-order allocations loop unless the caller explicitly 1347 * requests that. Wait for some write requests to complete then retry. 1348 * 1349 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1350 * <= 3, but that may not be true in other implementations. 1351 */ 1352 do_retry = 0; 1353 if (!(gfp_mask & __GFP_NORETRY)) { 1354 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1355 do_retry = 1; 1356 if (gfp_mask & __GFP_NOFAIL) 1357 do_retry = 1; 1358 } 1359 if (do_retry) { 1360 congestion_wait(WRITE, HZ/50); 1361 goto rebalance; 1362 } 1363 1364 nopage: 1365 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1366 printk(KERN_WARNING "%s: page allocation failure." 1367 " order:%d, mode:0x%x\n", 1368 p->comm, order, gfp_mask); 1369 dump_stack(); 1370 show_mem(); 1371 } 1372 got_pg: 1373 return page; 1374 } 1375 1376 EXPORT_SYMBOL(__alloc_pages); 1377 1378 /* 1379 * Common helper functions. 1380 */ 1381 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1382 { 1383 struct page * page; 1384 page = alloc_pages(gfp_mask, order); 1385 if (!page) 1386 return 0; 1387 return (unsigned long) page_address(page); 1388 } 1389 1390 EXPORT_SYMBOL(__get_free_pages); 1391 1392 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1393 { 1394 struct page * page; 1395 1396 /* 1397 * get_zeroed_page() returns a 32-bit address, which cannot represent 1398 * a highmem page 1399 */ 1400 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1401 1402 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1403 if (page) 1404 return (unsigned long) page_address(page); 1405 return 0; 1406 } 1407 1408 EXPORT_SYMBOL(get_zeroed_page); 1409 1410 void __pagevec_free(struct pagevec *pvec) 1411 { 1412 int i = pagevec_count(pvec); 1413 1414 while (--i >= 0) 1415 free_hot_cold_page(pvec->pages[i], pvec->cold); 1416 } 1417 1418 fastcall void __free_pages(struct page *page, unsigned int order) 1419 { 1420 if (put_page_testzero(page)) { 1421 if (order == 0) 1422 free_hot_page(page); 1423 else 1424 __free_pages_ok(page, order); 1425 } 1426 } 1427 1428 EXPORT_SYMBOL(__free_pages); 1429 1430 fastcall void free_pages(unsigned long addr, unsigned int order) 1431 { 1432 if (addr != 0) { 1433 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1434 __free_pages(virt_to_page((void *)addr), order); 1435 } 1436 } 1437 1438 EXPORT_SYMBOL(free_pages); 1439 1440 /* 1441 * Total amount of free (allocatable) RAM: 1442 */ 1443 unsigned int nr_free_pages(void) 1444 { 1445 unsigned int sum = 0; 1446 struct zone *zone; 1447 1448 for_each_zone(zone) 1449 sum += zone->free_pages; 1450 1451 return sum; 1452 } 1453 1454 EXPORT_SYMBOL(nr_free_pages); 1455 1456 #ifdef CONFIG_NUMA 1457 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1458 { 1459 unsigned int sum = 0; 1460 enum zone_type i; 1461 1462 for (i = 0; i < MAX_NR_ZONES; i++) 1463 sum += pgdat->node_zones[i].free_pages; 1464 1465 return sum; 1466 } 1467 #endif 1468 1469 static unsigned int nr_free_zone_pages(int offset) 1470 { 1471 /* Just pick one node, since fallback list is circular */ 1472 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1473 unsigned int sum = 0; 1474 1475 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1476 struct zone **zonep = zonelist->zones; 1477 struct zone *zone; 1478 1479 for (zone = *zonep++; zone; zone = *zonep++) { 1480 unsigned long size = zone->present_pages; 1481 unsigned long high = zone->pages_high; 1482 if (size > high) 1483 sum += size - high; 1484 } 1485 1486 return sum; 1487 } 1488 1489 /* 1490 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1491 */ 1492 unsigned int nr_free_buffer_pages(void) 1493 { 1494 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1495 } 1496 1497 /* 1498 * Amount of free RAM allocatable within all zones 1499 */ 1500 unsigned int nr_free_pagecache_pages(void) 1501 { 1502 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1503 } 1504 1505 static inline void show_node(struct zone *zone) 1506 { 1507 if (NUMA_BUILD) 1508 printk("Node %d ", zone_to_nid(zone)); 1509 } 1510 1511 void si_meminfo(struct sysinfo *val) 1512 { 1513 val->totalram = totalram_pages; 1514 val->sharedram = 0; 1515 val->freeram = nr_free_pages(); 1516 val->bufferram = nr_blockdev_pages(); 1517 val->totalhigh = totalhigh_pages; 1518 val->freehigh = nr_free_highpages(); 1519 val->mem_unit = PAGE_SIZE; 1520 } 1521 1522 EXPORT_SYMBOL(si_meminfo); 1523 1524 #ifdef CONFIG_NUMA 1525 void si_meminfo_node(struct sysinfo *val, int nid) 1526 { 1527 pg_data_t *pgdat = NODE_DATA(nid); 1528 1529 val->totalram = pgdat->node_present_pages; 1530 val->freeram = nr_free_pages_pgdat(pgdat); 1531 #ifdef CONFIG_HIGHMEM 1532 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1533 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1534 #else 1535 val->totalhigh = 0; 1536 val->freehigh = 0; 1537 #endif 1538 val->mem_unit = PAGE_SIZE; 1539 } 1540 #endif 1541 1542 #define K(x) ((x) << (PAGE_SHIFT-10)) 1543 1544 /* 1545 * Show free area list (used inside shift_scroll-lock stuff) 1546 * We also calculate the percentage fragmentation. We do this by counting the 1547 * memory on each free list with the exception of the first item on the list. 1548 */ 1549 void show_free_areas(void) 1550 { 1551 int cpu; 1552 unsigned long active; 1553 unsigned long inactive; 1554 unsigned long free; 1555 struct zone *zone; 1556 1557 for_each_zone(zone) { 1558 if (!populated_zone(zone)) 1559 continue; 1560 1561 show_node(zone); 1562 printk("%s per-cpu:\n", zone->name); 1563 1564 for_each_online_cpu(cpu) { 1565 struct per_cpu_pageset *pageset; 1566 1567 pageset = zone_pcp(zone, cpu); 1568 1569 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d " 1570 "Cold: hi:%5d, btch:%4d usd:%4d\n", 1571 cpu, pageset->pcp[0].high, 1572 pageset->pcp[0].batch, pageset->pcp[0].count, 1573 pageset->pcp[1].high, pageset->pcp[1].batch, 1574 pageset->pcp[1].count); 1575 } 1576 } 1577 1578 get_zone_counts(&active, &inactive, &free); 1579 1580 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1581 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1582 active, 1583 inactive, 1584 global_page_state(NR_FILE_DIRTY), 1585 global_page_state(NR_WRITEBACK), 1586 global_page_state(NR_UNSTABLE_NFS), 1587 nr_free_pages(), 1588 global_page_state(NR_SLAB_RECLAIMABLE) + 1589 global_page_state(NR_SLAB_UNRECLAIMABLE), 1590 global_page_state(NR_FILE_MAPPED), 1591 global_page_state(NR_PAGETABLE)); 1592 1593 for_each_zone(zone) { 1594 int i; 1595 1596 if (!populated_zone(zone)) 1597 continue; 1598 1599 show_node(zone); 1600 printk("%s" 1601 " free:%lukB" 1602 " min:%lukB" 1603 " low:%lukB" 1604 " high:%lukB" 1605 " active:%lukB" 1606 " inactive:%lukB" 1607 " present:%lukB" 1608 " pages_scanned:%lu" 1609 " all_unreclaimable? %s" 1610 "\n", 1611 zone->name, 1612 K(zone->free_pages), 1613 K(zone->pages_min), 1614 K(zone->pages_low), 1615 K(zone->pages_high), 1616 K(zone->nr_active), 1617 K(zone->nr_inactive), 1618 K(zone->present_pages), 1619 zone->pages_scanned, 1620 (zone->all_unreclaimable ? "yes" : "no") 1621 ); 1622 printk("lowmem_reserve[]:"); 1623 for (i = 0; i < MAX_NR_ZONES; i++) 1624 printk(" %lu", zone->lowmem_reserve[i]); 1625 printk("\n"); 1626 } 1627 1628 for_each_zone(zone) { 1629 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1630 1631 if (!populated_zone(zone)) 1632 continue; 1633 1634 show_node(zone); 1635 printk("%s: ", zone->name); 1636 1637 spin_lock_irqsave(&zone->lock, flags); 1638 for (order = 0; order < MAX_ORDER; order++) { 1639 nr[order] = zone->free_area[order].nr_free; 1640 total += nr[order] << order; 1641 } 1642 spin_unlock_irqrestore(&zone->lock, flags); 1643 for (order = 0; order < MAX_ORDER; order++) 1644 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1645 printk("= %lukB\n", K(total)); 1646 } 1647 1648 show_swap_cache_info(); 1649 } 1650 1651 /* 1652 * Builds allocation fallback zone lists. 1653 * 1654 * Add all populated zones of a node to the zonelist. 1655 */ 1656 static int __meminit build_zonelists_node(pg_data_t *pgdat, 1657 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type) 1658 { 1659 struct zone *zone; 1660 1661 BUG_ON(zone_type >= MAX_NR_ZONES); 1662 zone_type++; 1663 1664 do { 1665 zone_type--; 1666 zone = pgdat->node_zones + zone_type; 1667 if (populated_zone(zone)) { 1668 zonelist->zones[nr_zones++] = zone; 1669 check_highest_zone(zone_type); 1670 } 1671 1672 } while (zone_type); 1673 return nr_zones; 1674 } 1675 1676 #ifdef CONFIG_NUMA 1677 #define MAX_NODE_LOAD (num_online_nodes()) 1678 static int __meminitdata node_load[MAX_NUMNODES]; 1679 /** 1680 * find_next_best_node - find the next node that should appear in a given node's fallback list 1681 * @node: node whose fallback list we're appending 1682 * @used_node_mask: nodemask_t of already used nodes 1683 * 1684 * We use a number of factors to determine which is the next node that should 1685 * appear on a given node's fallback list. The node should not have appeared 1686 * already in @node's fallback list, and it should be the next closest node 1687 * according to the distance array (which contains arbitrary distance values 1688 * from each node to each node in the system), and should also prefer nodes 1689 * with no CPUs, since presumably they'll have very little allocation pressure 1690 * on them otherwise. 1691 * It returns -1 if no node is found. 1692 */ 1693 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) 1694 { 1695 int n, val; 1696 int min_val = INT_MAX; 1697 int best_node = -1; 1698 1699 /* Use the local node if we haven't already */ 1700 if (!node_isset(node, *used_node_mask)) { 1701 node_set(node, *used_node_mask); 1702 return node; 1703 } 1704 1705 for_each_online_node(n) { 1706 cpumask_t tmp; 1707 1708 /* Don't want a node to appear more than once */ 1709 if (node_isset(n, *used_node_mask)) 1710 continue; 1711 1712 /* Use the distance array to find the distance */ 1713 val = node_distance(node, n); 1714 1715 /* Penalize nodes under us ("prefer the next node") */ 1716 val += (n < node); 1717 1718 /* Give preference to headless and unused nodes */ 1719 tmp = node_to_cpumask(n); 1720 if (!cpus_empty(tmp)) 1721 val += PENALTY_FOR_NODE_WITH_CPUS; 1722 1723 /* Slight preference for less loaded node */ 1724 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1725 val += node_load[n]; 1726 1727 if (val < min_val) { 1728 min_val = val; 1729 best_node = n; 1730 } 1731 } 1732 1733 if (best_node >= 0) 1734 node_set(best_node, *used_node_mask); 1735 1736 return best_node; 1737 } 1738 1739 static void __meminit build_zonelists(pg_data_t *pgdat) 1740 { 1741 int j, node, local_node; 1742 enum zone_type i; 1743 int prev_node, load; 1744 struct zonelist *zonelist; 1745 nodemask_t used_mask; 1746 1747 /* initialize zonelists */ 1748 for (i = 0; i < MAX_NR_ZONES; i++) { 1749 zonelist = pgdat->node_zonelists + i; 1750 zonelist->zones[0] = NULL; 1751 } 1752 1753 /* NUMA-aware ordering of nodes */ 1754 local_node = pgdat->node_id; 1755 load = num_online_nodes(); 1756 prev_node = local_node; 1757 nodes_clear(used_mask); 1758 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1759 int distance = node_distance(local_node, node); 1760 1761 /* 1762 * If another node is sufficiently far away then it is better 1763 * to reclaim pages in a zone before going off node. 1764 */ 1765 if (distance > RECLAIM_DISTANCE) 1766 zone_reclaim_mode = 1; 1767 1768 /* 1769 * We don't want to pressure a particular node. 1770 * So adding penalty to the first node in same 1771 * distance group to make it round-robin. 1772 */ 1773 1774 if (distance != node_distance(local_node, prev_node)) 1775 node_load[node] += load; 1776 prev_node = node; 1777 load--; 1778 for (i = 0; i < MAX_NR_ZONES; i++) { 1779 zonelist = pgdat->node_zonelists + i; 1780 for (j = 0; zonelist->zones[j] != NULL; j++); 1781 1782 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1783 zonelist->zones[j] = NULL; 1784 } 1785 } 1786 } 1787 1788 /* Construct the zonelist performance cache - see further mmzone.h */ 1789 static void __meminit build_zonelist_cache(pg_data_t *pgdat) 1790 { 1791 int i; 1792 1793 for (i = 0; i < MAX_NR_ZONES; i++) { 1794 struct zonelist *zonelist; 1795 struct zonelist_cache *zlc; 1796 struct zone **z; 1797 1798 zonelist = pgdat->node_zonelists + i; 1799 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 1800 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1801 for (z = zonelist->zones; *z; z++) 1802 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z); 1803 } 1804 } 1805 1806 #else /* CONFIG_NUMA */ 1807 1808 static void __meminit build_zonelists(pg_data_t *pgdat) 1809 { 1810 int node, local_node; 1811 enum zone_type i,j; 1812 1813 local_node = pgdat->node_id; 1814 for (i = 0; i < MAX_NR_ZONES; i++) { 1815 struct zonelist *zonelist; 1816 1817 zonelist = pgdat->node_zonelists + i; 1818 1819 j = build_zonelists_node(pgdat, zonelist, 0, i); 1820 /* 1821 * Now we build the zonelist so that it contains the zones 1822 * of all the other nodes. 1823 * We don't want to pressure a particular node, so when 1824 * building the zones for node N, we make sure that the 1825 * zones coming right after the local ones are those from 1826 * node N+1 (modulo N) 1827 */ 1828 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1829 if (!node_online(node)) 1830 continue; 1831 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1832 } 1833 for (node = 0; node < local_node; node++) { 1834 if (!node_online(node)) 1835 continue; 1836 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1837 } 1838 1839 zonelist->zones[j] = NULL; 1840 } 1841 } 1842 1843 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 1844 static void __meminit build_zonelist_cache(pg_data_t *pgdat) 1845 { 1846 int i; 1847 1848 for (i = 0; i < MAX_NR_ZONES; i++) 1849 pgdat->node_zonelists[i].zlcache_ptr = NULL; 1850 } 1851 1852 #endif /* CONFIG_NUMA */ 1853 1854 /* return values int ....just for stop_machine_run() */ 1855 static int __meminit __build_all_zonelists(void *dummy) 1856 { 1857 int nid; 1858 1859 for_each_online_node(nid) { 1860 build_zonelists(NODE_DATA(nid)); 1861 build_zonelist_cache(NODE_DATA(nid)); 1862 } 1863 return 0; 1864 } 1865 1866 void __meminit build_all_zonelists(void) 1867 { 1868 if (system_state == SYSTEM_BOOTING) { 1869 __build_all_zonelists(NULL); 1870 cpuset_init_current_mems_allowed(); 1871 } else { 1872 /* we have to stop all cpus to guaranntee there is no user 1873 of zonelist */ 1874 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 1875 /* cpuset refresh routine should be here */ 1876 } 1877 vm_total_pages = nr_free_pagecache_pages(); 1878 printk("Built %i zonelists. Total pages: %ld\n", 1879 num_online_nodes(), vm_total_pages); 1880 } 1881 1882 /* 1883 * Helper functions to size the waitqueue hash table. 1884 * Essentially these want to choose hash table sizes sufficiently 1885 * large so that collisions trying to wait on pages are rare. 1886 * But in fact, the number of active page waitqueues on typical 1887 * systems is ridiculously low, less than 200. So this is even 1888 * conservative, even though it seems large. 1889 * 1890 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1891 * waitqueues, i.e. the size of the waitq table given the number of pages. 1892 */ 1893 #define PAGES_PER_WAITQUEUE 256 1894 1895 #ifndef CONFIG_MEMORY_HOTPLUG 1896 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1897 { 1898 unsigned long size = 1; 1899 1900 pages /= PAGES_PER_WAITQUEUE; 1901 1902 while (size < pages) 1903 size <<= 1; 1904 1905 /* 1906 * Once we have dozens or even hundreds of threads sleeping 1907 * on IO we've got bigger problems than wait queue collision. 1908 * Limit the size of the wait table to a reasonable size. 1909 */ 1910 size = min(size, 4096UL); 1911 1912 return max(size, 4UL); 1913 } 1914 #else 1915 /* 1916 * A zone's size might be changed by hot-add, so it is not possible to determine 1917 * a suitable size for its wait_table. So we use the maximum size now. 1918 * 1919 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 1920 * 1921 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 1922 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 1923 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 1924 * 1925 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 1926 * or more by the traditional way. (See above). It equals: 1927 * 1928 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 1929 * ia64(16K page size) : = ( 8G + 4M)byte. 1930 * powerpc (64K page size) : = (32G +16M)byte. 1931 */ 1932 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1933 { 1934 return 4096UL; 1935 } 1936 #endif 1937 1938 /* 1939 * This is an integer logarithm so that shifts can be used later 1940 * to extract the more random high bits from the multiplicative 1941 * hash function before the remainder is taken. 1942 */ 1943 static inline unsigned long wait_table_bits(unsigned long size) 1944 { 1945 return ffz(~size); 1946 } 1947 1948 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1949 1950 /* 1951 * Initially all pages are reserved - free ones are freed 1952 * up by free_all_bootmem() once the early boot process is 1953 * done. Non-atomic initialization, single-pass. 1954 */ 1955 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1956 unsigned long start_pfn) 1957 { 1958 struct page *page; 1959 unsigned long end_pfn = start_pfn + size; 1960 unsigned long pfn; 1961 1962 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1963 if (!early_pfn_valid(pfn)) 1964 continue; 1965 if (!early_pfn_in_nid(pfn, nid)) 1966 continue; 1967 page = pfn_to_page(pfn); 1968 set_page_links(page, zone, nid, pfn); 1969 init_page_count(page); 1970 reset_page_mapcount(page); 1971 SetPageReserved(page); 1972 INIT_LIST_HEAD(&page->lru); 1973 #ifdef WANT_PAGE_VIRTUAL 1974 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1975 if (!is_highmem_idx(zone)) 1976 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1977 #endif 1978 } 1979 } 1980 1981 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1982 unsigned long size) 1983 { 1984 int order; 1985 for (order = 0; order < MAX_ORDER ; order++) { 1986 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1987 zone->free_area[order].nr_free = 0; 1988 } 1989 } 1990 1991 #ifndef __HAVE_ARCH_MEMMAP_INIT 1992 #define memmap_init(size, nid, zone, start_pfn) \ 1993 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1994 #endif 1995 1996 static int __cpuinit zone_batchsize(struct zone *zone) 1997 { 1998 int batch; 1999 2000 /* 2001 * The per-cpu-pages pools are set to around 1000th of the 2002 * size of the zone. But no more than 1/2 of a meg. 2003 * 2004 * OK, so we don't know how big the cache is. So guess. 2005 */ 2006 batch = zone->present_pages / 1024; 2007 if (batch * PAGE_SIZE > 512 * 1024) 2008 batch = (512 * 1024) / PAGE_SIZE; 2009 batch /= 4; /* We effectively *= 4 below */ 2010 if (batch < 1) 2011 batch = 1; 2012 2013 /* 2014 * Clamp the batch to a 2^n - 1 value. Having a power 2015 * of 2 value was found to be more likely to have 2016 * suboptimal cache aliasing properties in some cases. 2017 * 2018 * For example if 2 tasks are alternately allocating 2019 * batches of pages, one task can end up with a lot 2020 * of pages of one half of the possible page colors 2021 * and the other with pages of the other colors. 2022 */ 2023 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2024 2025 return batch; 2026 } 2027 2028 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2029 { 2030 struct per_cpu_pages *pcp; 2031 2032 memset(p, 0, sizeof(*p)); 2033 2034 pcp = &p->pcp[0]; /* hot */ 2035 pcp->count = 0; 2036 pcp->high = 6 * batch; 2037 pcp->batch = max(1UL, 1 * batch); 2038 INIT_LIST_HEAD(&pcp->list); 2039 2040 pcp = &p->pcp[1]; /* cold*/ 2041 pcp->count = 0; 2042 pcp->high = 2 * batch; 2043 pcp->batch = max(1UL, batch/2); 2044 INIT_LIST_HEAD(&pcp->list); 2045 } 2046 2047 /* 2048 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2049 * to the value high for the pageset p. 2050 */ 2051 2052 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2053 unsigned long high) 2054 { 2055 struct per_cpu_pages *pcp; 2056 2057 pcp = &p->pcp[0]; /* hot list */ 2058 pcp->high = high; 2059 pcp->batch = max(1UL, high/4); 2060 if ((high/4) > (PAGE_SHIFT * 8)) 2061 pcp->batch = PAGE_SHIFT * 8; 2062 } 2063 2064 2065 #ifdef CONFIG_NUMA 2066 /* 2067 * Boot pageset table. One per cpu which is going to be used for all 2068 * zones and all nodes. The parameters will be set in such a way 2069 * that an item put on a list will immediately be handed over to 2070 * the buddy list. This is safe since pageset manipulation is done 2071 * with interrupts disabled. 2072 * 2073 * Some NUMA counter updates may also be caught by the boot pagesets. 2074 * 2075 * The boot_pagesets must be kept even after bootup is complete for 2076 * unused processors and/or zones. They do play a role for bootstrapping 2077 * hotplugged processors. 2078 * 2079 * zoneinfo_show() and maybe other functions do 2080 * not check if the processor is online before following the pageset pointer. 2081 * Other parts of the kernel may not check if the zone is available. 2082 */ 2083 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2084 2085 /* 2086 * Dynamically allocate memory for the 2087 * per cpu pageset array in struct zone. 2088 */ 2089 static int __cpuinit process_zones(int cpu) 2090 { 2091 struct zone *zone, *dzone; 2092 2093 for_each_zone(zone) { 2094 2095 if (!populated_zone(zone)) 2096 continue; 2097 2098 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2099 GFP_KERNEL, cpu_to_node(cpu)); 2100 if (!zone_pcp(zone, cpu)) 2101 goto bad; 2102 2103 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2104 2105 if (percpu_pagelist_fraction) 2106 setup_pagelist_highmark(zone_pcp(zone, cpu), 2107 (zone->present_pages / percpu_pagelist_fraction)); 2108 } 2109 2110 return 0; 2111 bad: 2112 for_each_zone(dzone) { 2113 if (dzone == zone) 2114 break; 2115 kfree(zone_pcp(dzone, cpu)); 2116 zone_pcp(dzone, cpu) = NULL; 2117 } 2118 return -ENOMEM; 2119 } 2120 2121 static inline void free_zone_pagesets(int cpu) 2122 { 2123 struct zone *zone; 2124 2125 for_each_zone(zone) { 2126 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2127 2128 /* Free per_cpu_pageset if it is slab allocated */ 2129 if (pset != &boot_pageset[cpu]) 2130 kfree(pset); 2131 zone_pcp(zone, cpu) = NULL; 2132 } 2133 } 2134 2135 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2136 unsigned long action, 2137 void *hcpu) 2138 { 2139 int cpu = (long)hcpu; 2140 int ret = NOTIFY_OK; 2141 2142 switch (action) { 2143 case CPU_UP_PREPARE: 2144 if (process_zones(cpu)) 2145 ret = NOTIFY_BAD; 2146 break; 2147 case CPU_UP_CANCELED: 2148 case CPU_DEAD: 2149 free_zone_pagesets(cpu); 2150 break; 2151 default: 2152 break; 2153 } 2154 return ret; 2155 } 2156 2157 static struct notifier_block __cpuinitdata pageset_notifier = 2158 { &pageset_cpuup_callback, NULL, 0 }; 2159 2160 void __init setup_per_cpu_pageset(void) 2161 { 2162 int err; 2163 2164 /* Initialize per_cpu_pageset for cpu 0. 2165 * A cpuup callback will do this for every cpu 2166 * as it comes online 2167 */ 2168 err = process_zones(smp_processor_id()); 2169 BUG_ON(err); 2170 register_cpu_notifier(&pageset_notifier); 2171 } 2172 2173 #endif 2174 2175 static __meminit 2176 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2177 { 2178 int i; 2179 struct pglist_data *pgdat = zone->zone_pgdat; 2180 size_t alloc_size; 2181 2182 /* 2183 * The per-page waitqueue mechanism uses hashed waitqueues 2184 * per zone. 2185 */ 2186 zone->wait_table_hash_nr_entries = 2187 wait_table_hash_nr_entries(zone_size_pages); 2188 zone->wait_table_bits = 2189 wait_table_bits(zone->wait_table_hash_nr_entries); 2190 alloc_size = zone->wait_table_hash_nr_entries 2191 * sizeof(wait_queue_head_t); 2192 2193 if (system_state == SYSTEM_BOOTING) { 2194 zone->wait_table = (wait_queue_head_t *) 2195 alloc_bootmem_node(pgdat, alloc_size); 2196 } else { 2197 /* 2198 * This case means that a zone whose size was 0 gets new memory 2199 * via memory hot-add. 2200 * But it may be the case that a new node was hot-added. In 2201 * this case vmalloc() will not be able to use this new node's 2202 * memory - this wait_table must be initialized to use this new 2203 * node itself as well. 2204 * To use this new node's memory, further consideration will be 2205 * necessary. 2206 */ 2207 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); 2208 } 2209 if (!zone->wait_table) 2210 return -ENOMEM; 2211 2212 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2213 init_waitqueue_head(zone->wait_table + i); 2214 2215 return 0; 2216 } 2217 2218 static __meminit void zone_pcp_init(struct zone *zone) 2219 { 2220 int cpu; 2221 unsigned long batch = zone_batchsize(zone); 2222 2223 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2224 #ifdef CONFIG_NUMA 2225 /* Early boot. Slab allocator not functional yet */ 2226 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2227 setup_pageset(&boot_pageset[cpu],0); 2228 #else 2229 setup_pageset(zone_pcp(zone,cpu), batch); 2230 #endif 2231 } 2232 if (zone->present_pages) 2233 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2234 zone->name, zone->present_pages, batch); 2235 } 2236 2237 __meminit int init_currently_empty_zone(struct zone *zone, 2238 unsigned long zone_start_pfn, 2239 unsigned long size) 2240 { 2241 struct pglist_data *pgdat = zone->zone_pgdat; 2242 int ret; 2243 ret = zone_wait_table_init(zone, size); 2244 if (ret) 2245 return ret; 2246 pgdat->nr_zones = zone_idx(zone) + 1; 2247 2248 zone->zone_start_pfn = zone_start_pfn; 2249 2250 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2251 2252 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2253 2254 return 0; 2255 } 2256 2257 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2258 /* 2259 * Basic iterator support. Return the first range of PFNs for a node 2260 * Note: nid == MAX_NUMNODES returns first region regardless of node 2261 */ 2262 static int __init first_active_region_index_in_nid(int nid) 2263 { 2264 int i; 2265 2266 for (i = 0; i < nr_nodemap_entries; i++) 2267 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2268 return i; 2269 2270 return -1; 2271 } 2272 2273 /* 2274 * Basic iterator support. Return the next active range of PFNs for a node 2275 * Note: nid == MAX_NUMNODES returns next region regardles of node 2276 */ 2277 static int __init next_active_region_index_in_nid(int index, int nid) 2278 { 2279 for (index = index + 1; index < nr_nodemap_entries; index++) 2280 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2281 return index; 2282 2283 return -1; 2284 } 2285 2286 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2287 /* 2288 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2289 * Architectures may implement their own version but if add_active_range() 2290 * was used and there are no special requirements, this is a convenient 2291 * alternative 2292 */ 2293 int __init early_pfn_to_nid(unsigned long pfn) 2294 { 2295 int i; 2296 2297 for (i = 0; i < nr_nodemap_entries; i++) { 2298 unsigned long start_pfn = early_node_map[i].start_pfn; 2299 unsigned long end_pfn = early_node_map[i].end_pfn; 2300 2301 if (start_pfn <= pfn && pfn < end_pfn) 2302 return early_node_map[i].nid; 2303 } 2304 2305 return 0; 2306 } 2307 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2308 2309 /* Basic iterator support to walk early_node_map[] */ 2310 #define for_each_active_range_index_in_nid(i, nid) \ 2311 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2312 i = next_active_region_index_in_nid(i, nid)) 2313 2314 /** 2315 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2316 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2317 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2318 * 2319 * If an architecture guarantees that all ranges registered with 2320 * add_active_ranges() contain no holes and may be freed, this 2321 * this function may be used instead of calling free_bootmem() manually. 2322 */ 2323 void __init free_bootmem_with_active_regions(int nid, 2324 unsigned long max_low_pfn) 2325 { 2326 int i; 2327 2328 for_each_active_range_index_in_nid(i, nid) { 2329 unsigned long size_pages = 0; 2330 unsigned long end_pfn = early_node_map[i].end_pfn; 2331 2332 if (early_node_map[i].start_pfn >= max_low_pfn) 2333 continue; 2334 2335 if (end_pfn > max_low_pfn) 2336 end_pfn = max_low_pfn; 2337 2338 size_pages = end_pfn - early_node_map[i].start_pfn; 2339 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2340 PFN_PHYS(early_node_map[i].start_pfn), 2341 size_pages << PAGE_SHIFT); 2342 } 2343 } 2344 2345 /** 2346 * sparse_memory_present_with_active_regions - Call memory_present for each active range 2347 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 2348 * 2349 * If an architecture guarantees that all ranges registered with 2350 * add_active_ranges() contain no holes and may be freed, this 2351 * function may be used instead of calling memory_present() manually. 2352 */ 2353 void __init sparse_memory_present_with_active_regions(int nid) 2354 { 2355 int i; 2356 2357 for_each_active_range_index_in_nid(i, nid) 2358 memory_present(early_node_map[i].nid, 2359 early_node_map[i].start_pfn, 2360 early_node_map[i].end_pfn); 2361 } 2362 2363 /** 2364 * push_node_boundaries - Push node boundaries to at least the requested boundary 2365 * @nid: The nid of the node to push the boundary for 2366 * @start_pfn: The start pfn of the node 2367 * @end_pfn: The end pfn of the node 2368 * 2369 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 2370 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 2371 * be hotplugged even though no physical memory exists. This function allows 2372 * an arch to push out the node boundaries so mem_map is allocated that can 2373 * be used later. 2374 */ 2375 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2376 void __init push_node_boundaries(unsigned int nid, 2377 unsigned long start_pfn, unsigned long end_pfn) 2378 { 2379 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", 2380 nid, start_pfn, end_pfn); 2381 2382 /* Initialise the boundary for this node if necessary */ 2383 if (node_boundary_end_pfn[nid] == 0) 2384 node_boundary_start_pfn[nid] = -1UL; 2385 2386 /* Update the boundaries */ 2387 if (node_boundary_start_pfn[nid] > start_pfn) 2388 node_boundary_start_pfn[nid] = start_pfn; 2389 if (node_boundary_end_pfn[nid] < end_pfn) 2390 node_boundary_end_pfn[nid] = end_pfn; 2391 } 2392 2393 /* If necessary, push the node boundary out for reserve hotadd */ 2394 static void __init account_node_boundary(unsigned int nid, 2395 unsigned long *start_pfn, unsigned long *end_pfn) 2396 { 2397 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", 2398 nid, *start_pfn, *end_pfn); 2399 2400 /* Return if boundary information has not been provided */ 2401 if (node_boundary_end_pfn[nid] == 0) 2402 return; 2403 2404 /* Check the boundaries and update if necessary */ 2405 if (node_boundary_start_pfn[nid] < *start_pfn) 2406 *start_pfn = node_boundary_start_pfn[nid]; 2407 if (node_boundary_end_pfn[nid] > *end_pfn) 2408 *end_pfn = node_boundary_end_pfn[nid]; 2409 } 2410 #else 2411 void __init push_node_boundaries(unsigned int nid, 2412 unsigned long start_pfn, unsigned long end_pfn) {} 2413 2414 static void __init account_node_boundary(unsigned int nid, 2415 unsigned long *start_pfn, unsigned long *end_pfn) {} 2416 #endif 2417 2418 2419 /** 2420 * get_pfn_range_for_nid - Return the start and end page frames for a node 2421 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 2422 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 2423 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 2424 * 2425 * It returns the start and end page frame of a node based on information 2426 * provided by an arch calling add_active_range(). If called for a node 2427 * with no available memory, a warning is printed and the start and end 2428 * PFNs will be 0. 2429 */ 2430 void __init get_pfn_range_for_nid(unsigned int nid, 2431 unsigned long *start_pfn, unsigned long *end_pfn) 2432 { 2433 int i; 2434 *start_pfn = -1UL; 2435 *end_pfn = 0; 2436 2437 for_each_active_range_index_in_nid(i, nid) { 2438 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 2439 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 2440 } 2441 2442 if (*start_pfn == -1UL) { 2443 printk(KERN_WARNING "Node %u active with no memory\n", nid); 2444 *start_pfn = 0; 2445 } 2446 2447 /* Push the node boundaries out if requested */ 2448 account_node_boundary(nid, start_pfn, end_pfn); 2449 } 2450 2451 /* 2452 * Return the number of pages a zone spans in a node, including holes 2453 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 2454 */ 2455 unsigned long __init zone_spanned_pages_in_node(int nid, 2456 unsigned long zone_type, 2457 unsigned long *ignored) 2458 { 2459 unsigned long node_start_pfn, node_end_pfn; 2460 unsigned long zone_start_pfn, zone_end_pfn; 2461 2462 /* Get the start and end of the node and zone */ 2463 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2464 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 2465 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 2466 2467 /* Check that this node has pages within the zone's required range */ 2468 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 2469 return 0; 2470 2471 /* Move the zone boundaries inside the node if necessary */ 2472 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 2473 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 2474 2475 /* Return the spanned pages */ 2476 return zone_end_pfn - zone_start_pfn; 2477 } 2478 2479 /* 2480 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 2481 * then all holes in the requested range will be accounted for. 2482 */ 2483 unsigned long __init __absent_pages_in_range(int nid, 2484 unsigned long range_start_pfn, 2485 unsigned long range_end_pfn) 2486 { 2487 int i = 0; 2488 unsigned long prev_end_pfn = 0, hole_pages = 0; 2489 unsigned long start_pfn; 2490 2491 /* Find the end_pfn of the first active range of pfns in the node */ 2492 i = first_active_region_index_in_nid(nid); 2493 if (i == -1) 2494 return 0; 2495 2496 /* Account for ranges before physical memory on this node */ 2497 if (early_node_map[i].start_pfn > range_start_pfn) 2498 hole_pages = early_node_map[i].start_pfn - range_start_pfn; 2499 2500 prev_end_pfn = early_node_map[i].start_pfn; 2501 2502 /* Find all holes for the zone within the node */ 2503 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 2504 2505 /* No need to continue if prev_end_pfn is outside the zone */ 2506 if (prev_end_pfn >= range_end_pfn) 2507 break; 2508 2509 /* Make sure the end of the zone is not within the hole */ 2510 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 2511 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 2512 2513 /* Update the hole size cound and move on */ 2514 if (start_pfn > range_start_pfn) { 2515 BUG_ON(prev_end_pfn > start_pfn); 2516 hole_pages += start_pfn - prev_end_pfn; 2517 } 2518 prev_end_pfn = early_node_map[i].end_pfn; 2519 } 2520 2521 /* Account for ranges past physical memory on this node */ 2522 if (range_end_pfn > prev_end_pfn) 2523 hole_pages += range_end_pfn - 2524 max(range_start_pfn, prev_end_pfn); 2525 2526 return hole_pages; 2527 } 2528 2529 /** 2530 * absent_pages_in_range - Return number of page frames in holes within a range 2531 * @start_pfn: The start PFN to start searching for holes 2532 * @end_pfn: The end PFN to stop searching for holes 2533 * 2534 * It returns the number of pages frames in memory holes within a range. 2535 */ 2536 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 2537 unsigned long end_pfn) 2538 { 2539 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 2540 } 2541 2542 /* Return the number of page frames in holes in a zone on a node */ 2543 unsigned long __init zone_absent_pages_in_node(int nid, 2544 unsigned long zone_type, 2545 unsigned long *ignored) 2546 { 2547 unsigned long node_start_pfn, node_end_pfn; 2548 unsigned long zone_start_pfn, zone_end_pfn; 2549 2550 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2551 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 2552 node_start_pfn); 2553 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 2554 node_end_pfn); 2555 2556 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 2557 } 2558 2559 #else 2560 static inline unsigned long zone_spanned_pages_in_node(int nid, 2561 unsigned long zone_type, 2562 unsigned long *zones_size) 2563 { 2564 return zones_size[zone_type]; 2565 } 2566 2567 static inline unsigned long zone_absent_pages_in_node(int nid, 2568 unsigned long zone_type, 2569 unsigned long *zholes_size) 2570 { 2571 if (!zholes_size) 2572 return 0; 2573 2574 return zholes_size[zone_type]; 2575 } 2576 2577 #endif 2578 2579 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 2580 unsigned long *zones_size, unsigned long *zholes_size) 2581 { 2582 unsigned long realtotalpages, totalpages = 0; 2583 enum zone_type i; 2584 2585 for (i = 0; i < MAX_NR_ZONES; i++) 2586 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 2587 zones_size); 2588 pgdat->node_spanned_pages = totalpages; 2589 2590 realtotalpages = totalpages; 2591 for (i = 0; i < MAX_NR_ZONES; i++) 2592 realtotalpages -= 2593 zone_absent_pages_in_node(pgdat->node_id, i, 2594 zholes_size); 2595 pgdat->node_present_pages = realtotalpages; 2596 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 2597 realtotalpages); 2598 } 2599 2600 /* 2601 * Set up the zone data structures: 2602 * - mark all pages reserved 2603 * - mark all memory queues empty 2604 * - clear the memory bitmaps 2605 */ 2606 static void __meminit free_area_init_core(struct pglist_data *pgdat, 2607 unsigned long *zones_size, unsigned long *zholes_size) 2608 { 2609 enum zone_type j; 2610 int nid = pgdat->node_id; 2611 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2612 int ret; 2613 2614 pgdat_resize_init(pgdat); 2615 pgdat->nr_zones = 0; 2616 init_waitqueue_head(&pgdat->kswapd_wait); 2617 pgdat->kswapd_max_order = 0; 2618 2619 for (j = 0; j < MAX_NR_ZONES; j++) { 2620 struct zone *zone = pgdat->node_zones + j; 2621 unsigned long size, realsize, memmap_pages; 2622 2623 size = zone_spanned_pages_in_node(nid, j, zones_size); 2624 realsize = size - zone_absent_pages_in_node(nid, j, 2625 zholes_size); 2626 2627 /* 2628 * Adjust realsize so that it accounts for how much memory 2629 * is used by this zone for memmap. This affects the watermark 2630 * and per-cpu initialisations 2631 */ 2632 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; 2633 if (realsize >= memmap_pages) { 2634 realsize -= memmap_pages; 2635 printk(KERN_DEBUG 2636 " %s zone: %lu pages used for memmap\n", 2637 zone_names[j], memmap_pages); 2638 } else 2639 printk(KERN_WARNING 2640 " %s zone: %lu pages exceeds realsize %lu\n", 2641 zone_names[j], memmap_pages, realsize); 2642 2643 /* Account for reserved DMA pages */ 2644 if (j == ZONE_DMA && realsize > dma_reserve) { 2645 realsize -= dma_reserve; 2646 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n", 2647 dma_reserve); 2648 } 2649 2650 if (!is_highmem_idx(j)) 2651 nr_kernel_pages += realsize; 2652 nr_all_pages += realsize; 2653 2654 zone->spanned_pages = size; 2655 zone->present_pages = realsize; 2656 #ifdef CONFIG_NUMA 2657 zone->node = nid; 2658 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 2659 / 100; 2660 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 2661 #endif 2662 zone->name = zone_names[j]; 2663 spin_lock_init(&zone->lock); 2664 spin_lock_init(&zone->lru_lock); 2665 zone_seqlock_init(zone); 2666 zone->zone_pgdat = pgdat; 2667 zone->free_pages = 0; 2668 2669 zone->prev_priority = DEF_PRIORITY; 2670 2671 zone_pcp_init(zone); 2672 INIT_LIST_HEAD(&zone->active_list); 2673 INIT_LIST_HEAD(&zone->inactive_list); 2674 zone->nr_scan_active = 0; 2675 zone->nr_scan_inactive = 0; 2676 zone->nr_active = 0; 2677 zone->nr_inactive = 0; 2678 zap_zone_vm_stats(zone); 2679 atomic_set(&zone->reclaim_in_progress, 0); 2680 if (!size) 2681 continue; 2682 2683 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 2684 BUG_ON(ret); 2685 zone_start_pfn += size; 2686 } 2687 } 2688 2689 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2690 { 2691 /* Skip empty nodes */ 2692 if (!pgdat->node_spanned_pages) 2693 return; 2694 2695 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2696 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2697 if (!pgdat->node_mem_map) { 2698 unsigned long size, start, end; 2699 struct page *map; 2700 2701 /* 2702 * The zone's endpoints aren't required to be MAX_ORDER 2703 * aligned but the node_mem_map endpoints must be in order 2704 * for the buddy allocator to function correctly. 2705 */ 2706 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 2707 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 2708 end = ALIGN(end, MAX_ORDER_NR_PAGES); 2709 size = (end - start) * sizeof(struct page); 2710 map = alloc_remap(pgdat->node_id, size); 2711 if (!map) 2712 map = alloc_bootmem_node(pgdat, size); 2713 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 2714 } 2715 #ifdef CONFIG_FLATMEM 2716 /* 2717 * With no DISCONTIG, the global mem_map is just set as node 0's 2718 */ 2719 if (pgdat == NODE_DATA(0)) { 2720 mem_map = NODE_DATA(0)->node_mem_map; 2721 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2722 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 2723 mem_map -= pgdat->node_start_pfn; 2724 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 2725 } 2726 #endif 2727 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2728 } 2729 2730 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 2731 unsigned long *zones_size, unsigned long node_start_pfn, 2732 unsigned long *zholes_size) 2733 { 2734 pgdat->node_id = nid; 2735 pgdat->node_start_pfn = node_start_pfn; 2736 calculate_node_totalpages(pgdat, zones_size, zholes_size); 2737 2738 alloc_node_mem_map(pgdat); 2739 2740 free_area_init_core(pgdat, zones_size, zholes_size); 2741 } 2742 2743 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2744 /** 2745 * add_active_range - Register a range of PFNs backed by physical memory 2746 * @nid: The node ID the range resides on 2747 * @start_pfn: The start PFN of the available physical memory 2748 * @end_pfn: The end PFN of the available physical memory 2749 * 2750 * These ranges are stored in an early_node_map[] and later used by 2751 * free_area_init_nodes() to calculate zone sizes and holes. If the 2752 * range spans a memory hole, it is up to the architecture to ensure 2753 * the memory is not freed by the bootmem allocator. If possible 2754 * the range being registered will be merged with existing ranges. 2755 */ 2756 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 2757 unsigned long end_pfn) 2758 { 2759 int i; 2760 2761 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " 2762 "%d entries of %d used\n", 2763 nid, start_pfn, end_pfn, 2764 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 2765 2766 /* Merge with existing active regions if possible */ 2767 for (i = 0; i < nr_nodemap_entries; i++) { 2768 if (early_node_map[i].nid != nid) 2769 continue; 2770 2771 /* Skip if an existing region covers this new one */ 2772 if (start_pfn >= early_node_map[i].start_pfn && 2773 end_pfn <= early_node_map[i].end_pfn) 2774 return; 2775 2776 /* Merge forward if suitable */ 2777 if (start_pfn <= early_node_map[i].end_pfn && 2778 end_pfn > early_node_map[i].end_pfn) { 2779 early_node_map[i].end_pfn = end_pfn; 2780 return; 2781 } 2782 2783 /* Merge backward if suitable */ 2784 if (start_pfn < early_node_map[i].end_pfn && 2785 end_pfn >= early_node_map[i].start_pfn) { 2786 early_node_map[i].start_pfn = start_pfn; 2787 return; 2788 } 2789 } 2790 2791 /* Check that early_node_map is large enough */ 2792 if (i >= MAX_ACTIVE_REGIONS) { 2793 printk(KERN_CRIT "More than %d memory regions, truncating\n", 2794 MAX_ACTIVE_REGIONS); 2795 return; 2796 } 2797 2798 early_node_map[i].nid = nid; 2799 early_node_map[i].start_pfn = start_pfn; 2800 early_node_map[i].end_pfn = end_pfn; 2801 nr_nodemap_entries = i + 1; 2802 } 2803 2804 /** 2805 * shrink_active_range - Shrink an existing registered range of PFNs 2806 * @nid: The node id the range is on that should be shrunk 2807 * @old_end_pfn: The old end PFN of the range 2808 * @new_end_pfn: The new PFN of the range 2809 * 2810 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 2811 * The map is kept at the end physical page range that has already been 2812 * registered with add_active_range(). This function allows an arch to shrink 2813 * an existing registered range. 2814 */ 2815 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 2816 unsigned long new_end_pfn) 2817 { 2818 int i; 2819 2820 /* Find the old active region end and shrink */ 2821 for_each_active_range_index_in_nid(i, nid) 2822 if (early_node_map[i].end_pfn == old_end_pfn) { 2823 early_node_map[i].end_pfn = new_end_pfn; 2824 break; 2825 } 2826 } 2827 2828 /** 2829 * remove_all_active_ranges - Remove all currently registered regions 2830 * 2831 * During discovery, it may be found that a table like SRAT is invalid 2832 * and an alternative discovery method must be used. This function removes 2833 * all currently registered regions. 2834 */ 2835 void __init remove_all_active_ranges(void) 2836 { 2837 memset(early_node_map, 0, sizeof(early_node_map)); 2838 nr_nodemap_entries = 0; 2839 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2840 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 2841 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 2842 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 2843 } 2844 2845 /* Compare two active node_active_regions */ 2846 static int __init cmp_node_active_region(const void *a, const void *b) 2847 { 2848 struct node_active_region *arange = (struct node_active_region *)a; 2849 struct node_active_region *brange = (struct node_active_region *)b; 2850 2851 /* Done this way to avoid overflows */ 2852 if (arange->start_pfn > brange->start_pfn) 2853 return 1; 2854 if (arange->start_pfn < brange->start_pfn) 2855 return -1; 2856 2857 return 0; 2858 } 2859 2860 /* sort the node_map by start_pfn */ 2861 static void __init sort_node_map(void) 2862 { 2863 sort(early_node_map, (size_t)nr_nodemap_entries, 2864 sizeof(struct node_active_region), 2865 cmp_node_active_region, NULL); 2866 } 2867 2868 /* Find the lowest pfn for a node. This depends on a sorted early_node_map */ 2869 unsigned long __init find_min_pfn_for_node(unsigned long nid) 2870 { 2871 int i; 2872 2873 /* Regions in the early_node_map can be in any order */ 2874 sort_node_map(); 2875 2876 /* Assuming a sorted map, the first range found has the starting pfn */ 2877 for_each_active_range_index_in_nid(i, nid) 2878 return early_node_map[i].start_pfn; 2879 2880 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid); 2881 return 0; 2882 } 2883 2884 /** 2885 * find_min_pfn_with_active_regions - Find the minimum PFN registered 2886 * 2887 * It returns the minimum PFN based on information provided via 2888 * add_active_range(). 2889 */ 2890 unsigned long __init find_min_pfn_with_active_regions(void) 2891 { 2892 return find_min_pfn_for_node(MAX_NUMNODES); 2893 } 2894 2895 /** 2896 * find_max_pfn_with_active_regions - Find the maximum PFN registered 2897 * 2898 * It returns the maximum PFN based on information provided via 2899 * add_active_range(). 2900 */ 2901 unsigned long __init find_max_pfn_with_active_regions(void) 2902 { 2903 int i; 2904 unsigned long max_pfn = 0; 2905 2906 for (i = 0; i < nr_nodemap_entries; i++) 2907 max_pfn = max(max_pfn, early_node_map[i].end_pfn); 2908 2909 return max_pfn; 2910 } 2911 2912 /** 2913 * free_area_init_nodes - Initialise all pg_data_t and zone data 2914 * @max_zone_pfn: an array of max PFNs for each zone 2915 * 2916 * This will call free_area_init_node() for each active node in the system. 2917 * Using the page ranges provided by add_active_range(), the size of each 2918 * zone in each node and their holes is calculated. If the maximum PFN 2919 * between two adjacent zones match, it is assumed that the zone is empty. 2920 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 2921 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 2922 * starts where the previous one ended. For example, ZONE_DMA32 starts 2923 * at arch_max_dma_pfn. 2924 */ 2925 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 2926 { 2927 unsigned long nid; 2928 enum zone_type i; 2929 2930 /* Record where the zone boundaries are */ 2931 memset(arch_zone_lowest_possible_pfn, 0, 2932 sizeof(arch_zone_lowest_possible_pfn)); 2933 memset(arch_zone_highest_possible_pfn, 0, 2934 sizeof(arch_zone_highest_possible_pfn)); 2935 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 2936 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 2937 for (i = 1; i < MAX_NR_ZONES; i++) { 2938 arch_zone_lowest_possible_pfn[i] = 2939 arch_zone_highest_possible_pfn[i-1]; 2940 arch_zone_highest_possible_pfn[i] = 2941 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 2942 } 2943 2944 /* Print out the zone ranges */ 2945 printk("Zone PFN ranges:\n"); 2946 for (i = 0; i < MAX_NR_ZONES; i++) 2947 printk(" %-8s %8lu -> %8lu\n", 2948 zone_names[i], 2949 arch_zone_lowest_possible_pfn[i], 2950 arch_zone_highest_possible_pfn[i]); 2951 2952 /* Print out the early_node_map[] */ 2953 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 2954 for (i = 0; i < nr_nodemap_entries; i++) 2955 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, 2956 early_node_map[i].start_pfn, 2957 early_node_map[i].end_pfn); 2958 2959 /* Initialise every node */ 2960 for_each_online_node(nid) { 2961 pg_data_t *pgdat = NODE_DATA(nid); 2962 free_area_init_node(nid, pgdat, NULL, 2963 find_min_pfn_for_node(nid), NULL); 2964 } 2965 } 2966 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 2967 2968 /** 2969 * set_dma_reserve - set the specified number of pages reserved in the first zone 2970 * @new_dma_reserve: The number of pages to mark reserved 2971 * 2972 * The per-cpu batchsize and zone watermarks are determined by present_pages. 2973 * In the DMA zone, a significant percentage may be consumed by kernel image 2974 * and other unfreeable allocations which can skew the watermarks badly. This 2975 * function may optionally be used to account for unfreeable pages in the 2976 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 2977 * smaller per-cpu batchsize. 2978 */ 2979 void __init set_dma_reserve(unsigned long new_dma_reserve) 2980 { 2981 dma_reserve = new_dma_reserve; 2982 } 2983 2984 #ifndef CONFIG_NEED_MULTIPLE_NODES 2985 static bootmem_data_t contig_bootmem_data; 2986 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2987 2988 EXPORT_SYMBOL(contig_page_data); 2989 #endif 2990 2991 void __init free_area_init(unsigned long *zones_size) 2992 { 2993 free_area_init_node(0, NODE_DATA(0), zones_size, 2994 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2995 } 2996 2997 static int page_alloc_cpu_notify(struct notifier_block *self, 2998 unsigned long action, void *hcpu) 2999 { 3000 int cpu = (unsigned long)hcpu; 3001 3002 if (action == CPU_DEAD) { 3003 local_irq_disable(); 3004 __drain_pages(cpu); 3005 vm_events_fold_cpu(cpu); 3006 local_irq_enable(); 3007 refresh_cpu_vm_stats(cpu); 3008 } 3009 return NOTIFY_OK; 3010 } 3011 3012 void __init page_alloc_init(void) 3013 { 3014 hotcpu_notifier(page_alloc_cpu_notify, 0); 3015 } 3016 3017 /* 3018 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 3019 * or min_free_kbytes changes. 3020 */ 3021 static void calculate_totalreserve_pages(void) 3022 { 3023 struct pglist_data *pgdat; 3024 unsigned long reserve_pages = 0; 3025 enum zone_type i, j; 3026 3027 for_each_online_pgdat(pgdat) { 3028 for (i = 0; i < MAX_NR_ZONES; i++) { 3029 struct zone *zone = pgdat->node_zones + i; 3030 unsigned long max = 0; 3031 3032 /* Find valid and maximum lowmem_reserve in the zone */ 3033 for (j = i; j < MAX_NR_ZONES; j++) { 3034 if (zone->lowmem_reserve[j] > max) 3035 max = zone->lowmem_reserve[j]; 3036 } 3037 3038 /* we treat pages_high as reserved pages. */ 3039 max += zone->pages_high; 3040 3041 if (max > zone->present_pages) 3042 max = zone->present_pages; 3043 reserve_pages += max; 3044 } 3045 } 3046 totalreserve_pages = reserve_pages; 3047 } 3048 3049 /* 3050 * setup_per_zone_lowmem_reserve - called whenever 3051 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 3052 * has a correct pages reserved value, so an adequate number of 3053 * pages are left in the zone after a successful __alloc_pages(). 3054 */ 3055 static void setup_per_zone_lowmem_reserve(void) 3056 { 3057 struct pglist_data *pgdat; 3058 enum zone_type j, idx; 3059 3060 for_each_online_pgdat(pgdat) { 3061 for (j = 0; j < MAX_NR_ZONES; j++) { 3062 struct zone *zone = pgdat->node_zones + j; 3063 unsigned long present_pages = zone->present_pages; 3064 3065 zone->lowmem_reserve[j] = 0; 3066 3067 idx = j; 3068 while (idx) { 3069 struct zone *lower_zone; 3070 3071 idx--; 3072 3073 if (sysctl_lowmem_reserve_ratio[idx] < 1) 3074 sysctl_lowmem_reserve_ratio[idx] = 1; 3075 3076 lower_zone = pgdat->node_zones + idx; 3077 lower_zone->lowmem_reserve[j] = present_pages / 3078 sysctl_lowmem_reserve_ratio[idx]; 3079 present_pages += lower_zone->present_pages; 3080 } 3081 } 3082 } 3083 3084 /* update totalreserve_pages */ 3085 calculate_totalreserve_pages(); 3086 } 3087 3088 /** 3089 * setup_per_zone_pages_min - called when min_free_kbytes changes. 3090 * 3091 * Ensures that the pages_{min,low,high} values for each zone are set correctly 3092 * with respect to min_free_kbytes. 3093 */ 3094 void setup_per_zone_pages_min(void) 3095 { 3096 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 3097 unsigned long lowmem_pages = 0; 3098 struct zone *zone; 3099 unsigned long flags; 3100 3101 /* Calculate total number of !ZONE_HIGHMEM pages */ 3102 for_each_zone(zone) { 3103 if (!is_highmem(zone)) 3104 lowmem_pages += zone->present_pages; 3105 } 3106 3107 for_each_zone(zone) { 3108 u64 tmp; 3109 3110 spin_lock_irqsave(&zone->lru_lock, flags); 3111 tmp = (u64)pages_min * zone->present_pages; 3112 do_div(tmp, lowmem_pages); 3113 if (is_highmem(zone)) { 3114 /* 3115 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 3116 * need highmem pages, so cap pages_min to a small 3117 * value here. 3118 * 3119 * The (pages_high-pages_low) and (pages_low-pages_min) 3120 * deltas controls asynch page reclaim, and so should 3121 * not be capped for highmem. 3122 */ 3123 int min_pages; 3124 3125 min_pages = zone->present_pages / 1024; 3126 if (min_pages < SWAP_CLUSTER_MAX) 3127 min_pages = SWAP_CLUSTER_MAX; 3128 if (min_pages > 128) 3129 min_pages = 128; 3130 zone->pages_min = min_pages; 3131 } else { 3132 /* 3133 * If it's a lowmem zone, reserve a number of pages 3134 * proportionate to the zone's size. 3135 */ 3136 zone->pages_min = tmp; 3137 } 3138 3139 zone->pages_low = zone->pages_min + (tmp >> 2); 3140 zone->pages_high = zone->pages_min + (tmp >> 1); 3141 spin_unlock_irqrestore(&zone->lru_lock, flags); 3142 } 3143 3144 /* update totalreserve_pages */ 3145 calculate_totalreserve_pages(); 3146 } 3147 3148 /* 3149 * Initialise min_free_kbytes. 3150 * 3151 * For small machines we want it small (128k min). For large machines 3152 * we want it large (64MB max). But it is not linear, because network 3153 * bandwidth does not increase linearly with machine size. We use 3154 * 3155 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 3156 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 3157 * 3158 * which yields 3159 * 3160 * 16MB: 512k 3161 * 32MB: 724k 3162 * 64MB: 1024k 3163 * 128MB: 1448k 3164 * 256MB: 2048k 3165 * 512MB: 2896k 3166 * 1024MB: 4096k 3167 * 2048MB: 5792k 3168 * 4096MB: 8192k 3169 * 8192MB: 11584k 3170 * 16384MB: 16384k 3171 */ 3172 static int __init init_per_zone_pages_min(void) 3173 { 3174 unsigned long lowmem_kbytes; 3175 3176 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 3177 3178 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 3179 if (min_free_kbytes < 128) 3180 min_free_kbytes = 128; 3181 if (min_free_kbytes > 65536) 3182 min_free_kbytes = 65536; 3183 setup_per_zone_pages_min(); 3184 setup_per_zone_lowmem_reserve(); 3185 return 0; 3186 } 3187 module_init(init_per_zone_pages_min) 3188 3189 /* 3190 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 3191 * that we can call two helper functions whenever min_free_kbytes 3192 * changes. 3193 */ 3194 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 3195 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3196 { 3197 proc_dointvec(table, write, file, buffer, length, ppos); 3198 setup_per_zone_pages_min(); 3199 return 0; 3200 } 3201 3202 #ifdef CONFIG_NUMA 3203 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 3204 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3205 { 3206 struct zone *zone; 3207 int rc; 3208 3209 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3210 if (rc) 3211 return rc; 3212 3213 for_each_zone(zone) 3214 zone->min_unmapped_pages = (zone->present_pages * 3215 sysctl_min_unmapped_ratio) / 100; 3216 return 0; 3217 } 3218 3219 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 3220 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3221 { 3222 struct zone *zone; 3223 int rc; 3224 3225 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3226 if (rc) 3227 return rc; 3228 3229 for_each_zone(zone) 3230 zone->min_slab_pages = (zone->present_pages * 3231 sysctl_min_slab_ratio) / 100; 3232 return 0; 3233 } 3234 #endif 3235 3236 /* 3237 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 3238 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 3239 * whenever sysctl_lowmem_reserve_ratio changes. 3240 * 3241 * The reserve ratio obviously has absolutely no relation with the 3242 * pages_min watermarks. The lowmem reserve ratio can only make sense 3243 * if in function of the boot time zone sizes. 3244 */ 3245 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 3246 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3247 { 3248 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3249 setup_per_zone_lowmem_reserve(); 3250 return 0; 3251 } 3252 3253 /* 3254 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 3255 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 3256 * can have before it gets flushed back to buddy allocator. 3257 */ 3258 3259 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 3260 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3261 { 3262 struct zone *zone; 3263 unsigned int cpu; 3264 int ret; 3265 3266 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3267 if (!write || (ret == -EINVAL)) 3268 return ret; 3269 for_each_zone(zone) { 3270 for_each_online_cpu(cpu) { 3271 unsigned long high; 3272 high = zone->present_pages / percpu_pagelist_fraction; 3273 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 3274 } 3275 } 3276 return 0; 3277 } 3278 3279 int hashdist = HASHDIST_DEFAULT; 3280 3281 #ifdef CONFIG_NUMA 3282 static int __init set_hashdist(char *str) 3283 { 3284 if (!str) 3285 return 0; 3286 hashdist = simple_strtoul(str, &str, 0); 3287 return 1; 3288 } 3289 __setup("hashdist=", set_hashdist); 3290 #endif 3291 3292 /* 3293 * allocate a large system hash table from bootmem 3294 * - it is assumed that the hash table must contain an exact power-of-2 3295 * quantity of entries 3296 * - limit is the number of hash buckets, not the total allocation size 3297 */ 3298 void *__init alloc_large_system_hash(const char *tablename, 3299 unsigned long bucketsize, 3300 unsigned long numentries, 3301 int scale, 3302 int flags, 3303 unsigned int *_hash_shift, 3304 unsigned int *_hash_mask, 3305 unsigned long limit) 3306 { 3307 unsigned long long max = limit; 3308 unsigned long log2qty, size; 3309 void *table = NULL; 3310 3311 /* allow the kernel cmdline to have a say */ 3312 if (!numentries) { 3313 /* round applicable memory size up to nearest megabyte */ 3314 numentries = nr_kernel_pages; 3315 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 3316 numentries >>= 20 - PAGE_SHIFT; 3317 numentries <<= 20 - PAGE_SHIFT; 3318 3319 /* limit to 1 bucket per 2^scale bytes of low memory */ 3320 if (scale > PAGE_SHIFT) 3321 numentries >>= (scale - PAGE_SHIFT); 3322 else 3323 numentries <<= (PAGE_SHIFT - scale); 3324 } 3325 numentries = roundup_pow_of_two(numentries); 3326 3327 /* limit allocation size to 1/16 total memory by default */ 3328 if (max == 0) { 3329 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 3330 do_div(max, bucketsize); 3331 } 3332 3333 if (numentries > max) 3334 numentries = max; 3335 3336 log2qty = ilog2(numentries); 3337 3338 do { 3339 size = bucketsize << log2qty; 3340 if (flags & HASH_EARLY) 3341 table = alloc_bootmem(size); 3342 else if (hashdist) 3343 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 3344 else { 3345 unsigned long order; 3346 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 3347 ; 3348 table = (void*) __get_free_pages(GFP_ATOMIC, order); 3349 } 3350 } while (!table && size > PAGE_SIZE && --log2qty); 3351 3352 if (!table) 3353 panic("Failed to allocate %s hash table\n", tablename); 3354 3355 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 3356 tablename, 3357 (1U << log2qty), 3358 ilog2(size) - PAGE_SHIFT, 3359 size); 3360 3361 if (_hash_shift) 3362 *_hash_shift = log2qty; 3363 if (_hash_mask) 3364 *_hash_mask = (1 << log2qty) - 1; 3365 3366 return table; 3367 } 3368 3369 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 3370 struct page *pfn_to_page(unsigned long pfn) 3371 { 3372 return __pfn_to_page(pfn); 3373 } 3374 unsigned long page_to_pfn(struct page *page) 3375 { 3376 return __page_to_pfn(page); 3377 } 3378 EXPORT_SYMBOL(pfn_to_page); 3379 EXPORT_SYMBOL(page_to_pfn); 3380 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 3381 3382 #if MAX_NUMNODES > 1 3383 /* 3384 * Find the highest possible node id. 3385 */ 3386 int highest_possible_node_id(void) 3387 { 3388 unsigned int node; 3389 unsigned int highest = 0; 3390 3391 for_each_node_mask(node, node_possible_map) 3392 highest = node; 3393 return highest; 3394 } 3395 EXPORT_SYMBOL(highest_possible_node_id); 3396 #endif 3397