1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 [N_CPU] = { { [0] = 1UL } }, 94 #endif /* NUMA */ 95 }; 96 EXPORT_SYMBOL(node_states); 97 98 unsigned long totalram_pages __read_mostly; 99 unsigned long totalreserve_pages __read_mostly; 100 /* 101 * When calculating the number of globally allowed dirty pages, there 102 * is a certain number of per-zone reserves that should not be 103 * considered dirtyable memory. This is the sum of those reserves 104 * over all existing zones that contribute dirtyable memory. 105 */ 106 unsigned long dirty_balance_reserve __read_mostly; 107 108 int percpu_pagelist_fraction; 109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 110 111 #ifdef CONFIG_PM_SLEEP 112 /* 113 * The following functions are used by the suspend/hibernate code to temporarily 114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 115 * while devices are suspended. To avoid races with the suspend/hibernate code, 116 * they should always be called with pm_mutex held (gfp_allowed_mask also should 117 * only be modified with pm_mutex held, unless the suspend/hibernate code is 118 * guaranteed not to run in parallel with that modification). 119 */ 120 121 static gfp_t saved_gfp_mask; 122 123 void pm_restore_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 if (saved_gfp_mask) { 127 gfp_allowed_mask = saved_gfp_mask; 128 saved_gfp_mask = 0; 129 } 130 } 131 132 void pm_restrict_gfp_mask(void) 133 { 134 WARN_ON(!mutex_is_locked(&pm_mutex)); 135 WARN_ON(saved_gfp_mask); 136 saved_gfp_mask = gfp_allowed_mask; 137 gfp_allowed_mask &= ~GFP_IOFS; 138 } 139 140 bool pm_suspended_storage(void) 141 { 142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 143 return false; 144 return true; 145 } 146 #endif /* CONFIG_PM_SLEEP */ 147 148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 149 int pageblock_order __read_mostly; 150 #endif 151 152 static void __free_pages_ok(struct page *page, unsigned int order); 153 154 /* 155 * results with 256, 32 in the lowmem_reserve sysctl: 156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 157 * 1G machine -> (16M dma, 784M normal, 224M high) 158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 161 * 162 * TBD: should special case ZONE_DMA32 machines here - in those we normally 163 * don't need any ZONE_NORMAL reservation 164 */ 165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 166 #ifdef CONFIG_ZONE_DMA 167 256, 168 #endif 169 #ifdef CONFIG_ZONE_DMA32 170 256, 171 #endif 172 #ifdef CONFIG_HIGHMEM 173 32, 174 #endif 175 32, 176 }; 177 178 EXPORT_SYMBOL(totalram_pages); 179 180 static char * const zone_names[MAX_NR_ZONES] = { 181 #ifdef CONFIG_ZONE_DMA 182 "DMA", 183 #endif 184 #ifdef CONFIG_ZONE_DMA32 185 "DMA32", 186 #endif 187 "Normal", 188 #ifdef CONFIG_HIGHMEM 189 "HighMem", 190 #endif 191 "Movable", 192 }; 193 194 int min_free_kbytes = 1024; 195 196 static unsigned long __meminitdata nr_kernel_pages; 197 static unsigned long __meminitdata nr_all_pages; 198 static unsigned long __meminitdata dma_reserve; 199 200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 203 static unsigned long __initdata required_kernelcore; 204 static unsigned long __initdata required_movablecore; 205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 206 207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 208 int movable_zone; 209 EXPORT_SYMBOL(movable_zone); 210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 211 212 #if MAX_NUMNODES > 1 213 int nr_node_ids __read_mostly = MAX_NUMNODES; 214 int nr_online_nodes __read_mostly = 1; 215 EXPORT_SYMBOL(nr_node_ids); 216 EXPORT_SYMBOL(nr_online_nodes); 217 #endif 218 219 int page_group_by_mobility_disabled __read_mostly; 220 221 /* 222 * NOTE: 223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly. 224 * Instead, use {un}set_pageblock_isolate. 225 */ 226 void set_pageblock_migratetype(struct page *page, int migratetype) 227 { 228 229 if (unlikely(page_group_by_mobility_disabled)) 230 migratetype = MIGRATE_UNMOVABLE; 231 232 set_pageblock_flags_group(page, (unsigned long)migratetype, 233 PB_migrate, PB_migrate_end); 234 } 235 236 bool oom_killer_disabled __read_mostly; 237 238 #ifdef CONFIG_DEBUG_VM 239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 240 { 241 int ret = 0; 242 unsigned seq; 243 unsigned long pfn = page_to_pfn(page); 244 245 do { 246 seq = zone_span_seqbegin(zone); 247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 248 ret = 1; 249 else if (pfn < zone->zone_start_pfn) 250 ret = 1; 251 } while (zone_span_seqretry(zone, seq)); 252 253 return ret; 254 } 255 256 static int page_is_consistent(struct zone *zone, struct page *page) 257 { 258 if (!pfn_valid_within(page_to_pfn(page))) 259 return 0; 260 if (zone != page_zone(page)) 261 return 0; 262 263 return 1; 264 } 265 /* 266 * Temporary debugging check for pages not lying within a given zone. 267 */ 268 static int bad_range(struct zone *zone, struct page *page) 269 { 270 if (page_outside_zone_boundaries(zone, page)) 271 return 1; 272 if (!page_is_consistent(zone, page)) 273 return 1; 274 275 return 0; 276 } 277 #else 278 static inline int bad_range(struct zone *zone, struct page *page) 279 { 280 return 0; 281 } 282 #endif 283 284 static void bad_page(struct page *page) 285 { 286 static unsigned long resume; 287 static unsigned long nr_shown; 288 static unsigned long nr_unshown; 289 290 /* Don't complain about poisoned pages */ 291 if (PageHWPoison(page)) { 292 reset_page_mapcount(page); /* remove PageBuddy */ 293 return; 294 } 295 296 /* 297 * Allow a burst of 60 reports, then keep quiet for that minute; 298 * or allow a steady drip of one report per second. 299 */ 300 if (nr_shown == 60) { 301 if (time_before(jiffies, resume)) { 302 nr_unshown++; 303 goto out; 304 } 305 if (nr_unshown) { 306 printk(KERN_ALERT 307 "BUG: Bad page state: %lu messages suppressed\n", 308 nr_unshown); 309 nr_unshown = 0; 310 } 311 nr_shown = 0; 312 } 313 if (nr_shown++ == 0) 314 resume = jiffies + 60 * HZ; 315 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 317 current->comm, page_to_pfn(page)); 318 dump_page(page); 319 320 print_modules(); 321 dump_stack(); 322 out: 323 /* Leave bad fields for debug, except PageBuddy could make trouble */ 324 reset_page_mapcount(page); /* remove PageBuddy */ 325 add_taint(TAINT_BAD_PAGE); 326 } 327 328 /* 329 * Higher-order pages are called "compound pages". They are structured thusly: 330 * 331 * The first PAGE_SIZE page is called the "head page". 332 * 333 * The remaining PAGE_SIZE pages are called "tail pages". 334 * 335 * All pages have PG_compound set. All tail pages have their ->first_page 336 * pointing at the head page. 337 * 338 * The first tail page's ->lru.next holds the address of the compound page's 339 * put_page() function. Its ->lru.prev holds the order of allocation. 340 * This usage means that zero-order pages may not be compound. 341 */ 342 343 static void free_compound_page(struct page *page) 344 { 345 __free_pages_ok(page, compound_order(page)); 346 } 347 348 void prep_compound_page(struct page *page, unsigned long order) 349 { 350 int i; 351 int nr_pages = 1 << order; 352 353 set_compound_page_dtor(page, free_compound_page); 354 set_compound_order(page, order); 355 __SetPageHead(page); 356 for (i = 1; i < nr_pages; i++) { 357 struct page *p = page + i; 358 __SetPageTail(p); 359 set_page_count(p, 0); 360 p->first_page = page; 361 } 362 } 363 364 /* update __split_huge_page_refcount if you change this function */ 365 static int destroy_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 int bad = 0; 370 371 if (unlikely(compound_order(page) != order) || 372 unlikely(!PageHead(page))) { 373 bad_page(page); 374 bad++; 375 } 376 377 __ClearPageHead(page); 378 379 for (i = 1; i < nr_pages; i++) { 380 struct page *p = page + i; 381 382 if (unlikely(!PageTail(p) || (p->first_page != page))) { 383 bad_page(page); 384 bad++; 385 } 386 __ClearPageTail(p); 387 } 388 389 return bad; 390 } 391 392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 393 { 394 int i; 395 396 /* 397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 398 * and __GFP_HIGHMEM from hard or soft interrupt context. 399 */ 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 401 for (i = 0; i < (1 << order); i++) 402 clear_highpage(page + i); 403 } 404 405 #ifdef CONFIG_DEBUG_PAGEALLOC 406 unsigned int _debug_guardpage_minorder; 407 408 static int __init debug_guardpage_minorder_setup(char *buf) 409 { 410 unsigned long res; 411 412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 414 return 0; 415 } 416 _debug_guardpage_minorder = res; 417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 418 return 0; 419 } 420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 421 422 static inline void set_page_guard_flag(struct page *page) 423 { 424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 425 } 426 427 static inline void clear_page_guard_flag(struct page *page) 428 { 429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 430 } 431 #else 432 static inline void set_page_guard_flag(struct page *page) { } 433 static inline void clear_page_guard_flag(struct page *page) { } 434 #endif 435 436 static inline void set_page_order(struct page *page, int order) 437 { 438 set_page_private(page, order); 439 __SetPageBuddy(page); 440 } 441 442 static inline void rmv_page_order(struct page *page) 443 { 444 __ClearPageBuddy(page); 445 set_page_private(page, 0); 446 } 447 448 /* 449 * Locate the struct page for both the matching buddy in our 450 * pair (buddy1) and the combined O(n+1) page they form (page). 451 * 452 * 1) Any buddy B1 will have an order O twin B2 which satisfies 453 * the following equation: 454 * B2 = B1 ^ (1 << O) 455 * For example, if the starting buddy (buddy2) is #8 its order 456 * 1 buddy is #10: 457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 458 * 459 * 2) Any buddy B will have an order O+1 parent P which 460 * satisfies the following equation: 461 * P = B & ~(1 << O) 462 * 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 464 */ 465 static inline unsigned long 466 __find_buddy_index(unsigned long page_idx, unsigned int order) 467 { 468 return page_idx ^ (1 << order); 469 } 470 471 /* 472 * This function checks whether a page is free && is the buddy 473 * we can do coalesce a page and its buddy if 474 * (a) the buddy is not in a hole && 475 * (b) the buddy is in the buddy system && 476 * (c) a page and its buddy have the same order && 477 * (d) a page and its buddy are in the same zone. 478 * 479 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 481 * 482 * For recording page's order, we use page_private(page). 483 */ 484 static inline int page_is_buddy(struct page *page, struct page *buddy, 485 int order) 486 { 487 if (!pfn_valid_within(page_to_pfn(buddy))) 488 return 0; 489 490 if (page_zone_id(page) != page_zone_id(buddy)) 491 return 0; 492 493 if (page_is_guard(buddy) && page_order(buddy) == order) { 494 VM_BUG_ON(page_count(buddy) != 0); 495 return 1; 496 } 497 498 if (PageBuddy(buddy) && page_order(buddy) == order) { 499 VM_BUG_ON(page_count(buddy) != 0); 500 return 1; 501 } 502 return 0; 503 } 504 505 /* 506 * Freeing function for a buddy system allocator. 507 * 508 * The concept of a buddy system is to maintain direct-mapped table 509 * (containing bit values) for memory blocks of various "orders". 510 * The bottom level table contains the map for the smallest allocatable 511 * units of memory (here, pages), and each level above it describes 512 * pairs of units from the levels below, hence, "buddies". 513 * At a high level, all that happens here is marking the table entry 514 * at the bottom level available, and propagating the changes upward 515 * as necessary, plus some accounting needed to play nicely with other 516 * parts of the VM system. 517 * At each level, we keep a list of pages, which are heads of continuous 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 519 * order is recorded in page_private(page) field. 520 * So when we are allocating or freeing one, we can derive the state of the 521 * other. That is, if we allocate a small block, and both were 522 * free, the remainder of the region must be split into blocks. 523 * If a block is freed, and its buddy is also free, then this 524 * triggers coalescing into a block of larger size. 525 * 526 * -- wli 527 */ 528 529 static inline void __free_one_page(struct page *page, 530 struct zone *zone, unsigned int order, 531 int migratetype) 532 { 533 unsigned long page_idx; 534 unsigned long combined_idx; 535 unsigned long uninitialized_var(buddy_idx); 536 struct page *buddy; 537 538 if (unlikely(PageCompound(page))) 539 if (unlikely(destroy_compound_page(page, order))) 540 return; 541 542 VM_BUG_ON(migratetype == -1); 543 544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 545 546 VM_BUG_ON(page_idx & ((1 << order) - 1)); 547 VM_BUG_ON(bad_range(zone, page)); 548 549 while (order < MAX_ORDER-1) { 550 buddy_idx = __find_buddy_index(page_idx, order); 551 buddy = page + (buddy_idx - page_idx); 552 if (!page_is_buddy(page, buddy, order)) 553 break; 554 /* 555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 556 * merge with it and move up one order. 557 */ 558 if (page_is_guard(buddy)) { 559 clear_page_guard_flag(buddy); 560 set_page_private(page, 0); 561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 562 } else { 563 list_del(&buddy->lru); 564 zone->free_area[order].nr_free--; 565 rmv_page_order(buddy); 566 } 567 combined_idx = buddy_idx & page_idx; 568 page = page + (combined_idx - page_idx); 569 page_idx = combined_idx; 570 order++; 571 } 572 set_page_order(page, order); 573 574 /* 575 * If this is not the largest possible page, check if the buddy 576 * of the next-highest order is free. If it is, it's possible 577 * that pages are being freed that will coalesce soon. In case, 578 * that is happening, add the free page to the tail of the list 579 * so it's less likely to be used soon and more likely to be merged 580 * as a higher order page 581 */ 582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 583 struct page *higher_page, *higher_buddy; 584 combined_idx = buddy_idx & page_idx; 585 higher_page = page + (combined_idx - page_idx); 586 buddy_idx = __find_buddy_index(combined_idx, order + 1); 587 higher_buddy = higher_page + (buddy_idx - combined_idx); 588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 589 list_add_tail(&page->lru, 590 &zone->free_area[order].free_list[migratetype]); 591 goto out; 592 } 593 } 594 595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 596 out: 597 zone->free_area[order].nr_free++; 598 } 599 600 /* 601 * free_page_mlock() -- clean up attempts to free and mlocked() page. 602 * Page should not be on lru, so no need to fix that up. 603 * free_pages_check() will verify... 604 */ 605 static inline void free_page_mlock(struct page *page) 606 { 607 __dec_zone_page_state(page, NR_MLOCK); 608 __count_vm_event(UNEVICTABLE_MLOCKFREED); 609 } 610 611 static inline int free_pages_check(struct page *page) 612 { 613 if (unlikely(page_mapcount(page) | 614 (page->mapping != NULL) | 615 (atomic_read(&page->_count) != 0) | 616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 617 (mem_cgroup_bad_page_check(page)))) { 618 bad_page(page); 619 return 1; 620 } 621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 623 return 0; 624 } 625 626 /* 627 * Frees a number of pages from the PCP lists 628 * Assumes all pages on list are in same zone, and of same order. 629 * count is the number of pages to free. 630 * 631 * If the zone was previously in an "all pages pinned" state then look to 632 * see if this freeing clears that state. 633 * 634 * And clear the zone's pages_scanned counter, to hold off the "all pages are 635 * pinned" detection logic. 636 */ 637 static void free_pcppages_bulk(struct zone *zone, int count, 638 struct per_cpu_pages *pcp) 639 { 640 int migratetype = 0; 641 int batch_free = 0; 642 int to_free = count; 643 644 spin_lock(&zone->lock); 645 zone->all_unreclaimable = 0; 646 zone->pages_scanned = 0; 647 648 while (to_free) { 649 struct page *page; 650 struct list_head *list; 651 652 /* 653 * Remove pages from lists in a round-robin fashion. A 654 * batch_free count is maintained that is incremented when an 655 * empty list is encountered. This is so more pages are freed 656 * off fuller lists instead of spinning excessively around empty 657 * lists 658 */ 659 do { 660 batch_free++; 661 if (++migratetype == MIGRATE_PCPTYPES) 662 migratetype = 0; 663 list = &pcp->lists[migratetype]; 664 } while (list_empty(list)); 665 666 /* This is the only non-empty list. Free them all. */ 667 if (batch_free == MIGRATE_PCPTYPES) 668 batch_free = to_free; 669 670 do { 671 page = list_entry(list->prev, struct page, lru); 672 /* must delete as __free_one_page list manipulates */ 673 list_del(&page->lru); 674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 675 __free_one_page(page, zone, 0, page_private(page)); 676 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 677 } while (--to_free && --batch_free && !list_empty(list)); 678 } 679 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 680 spin_unlock(&zone->lock); 681 } 682 683 static void free_one_page(struct zone *zone, struct page *page, int order, 684 int migratetype) 685 { 686 spin_lock(&zone->lock); 687 zone->all_unreclaimable = 0; 688 zone->pages_scanned = 0; 689 690 __free_one_page(page, zone, order, migratetype); 691 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 692 spin_unlock(&zone->lock); 693 } 694 695 static bool free_pages_prepare(struct page *page, unsigned int order) 696 { 697 int i; 698 int bad = 0; 699 700 trace_mm_page_free(page, order); 701 kmemcheck_free_shadow(page, order); 702 703 if (PageAnon(page)) 704 page->mapping = NULL; 705 for (i = 0; i < (1 << order); i++) 706 bad += free_pages_check(page + i); 707 if (bad) 708 return false; 709 710 if (!PageHighMem(page)) { 711 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 712 debug_check_no_obj_freed(page_address(page), 713 PAGE_SIZE << order); 714 } 715 arch_free_page(page, order); 716 kernel_map_pages(page, 1 << order, 0); 717 718 return true; 719 } 720 721 static void __free_pages_ok(struct page *page, unsigned int order) 722 { 723 unsigned long flags; 724 int wasMlocked = __TestClearPageMlocked(page); 725 726 if (!free_pages_prepare(page, order)) 727 return; 728 729 local_irq_save(flags); 730 if (unlikely(wasMlocked)) 731 free_page_mlock(page); 732 __count_vm_events(PGFREE, 1 << order); 733 free_one_page(page_zone(page), page, order, 734 get_pageblock_migratetype(page)); 735 local_irq_restore(flags); 736 } 737 738 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 739 { 740 unsigned int nr_pages = 1 << order; 741 unsigned int loop; 742 743 prefetchw(page); 744 for (loop = 0; loop < nr_pages; loop++) { 745 struct page *p = &page[loop]; 746 747 if (loop + 1 < nr_pages) 748 prefetchw(p + 1); 749 __ClearPageReserved(p); 750 set_page_count(p, 0); 751 } 752 753 set_page_refcounted(page); 754 __free_pages(page, order); 755 } 756 757 #ifdef CONFIG_CMA 758 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 759 void __init init_cma_reserved_pageblock(struct page *page) 760 { 761 unsigned i = pageblock_nr_pages; 762 struct page *p = page; 763 764 do { 765 __ClearPageReserved(p); 766 set_page_count(p, 0); 767 } while (++p, --i); 768 769 set_page_refcounted(page); 770 set_pageblock_migratetype(page, MIGRATE_CMA); 771 __free_pages(page, pageblock_order); 772 totalram_pages += pageblock_nr_pages; 773 } 774 #endif 775 776 /* 777 * The order of subdivision here is critical for the IO subsystem. 778 * Please do not alter this order without good reasons and regression 779 * testing. Specifically, as large blocks of memory are subdivided, 780 * the order in which smaller blocks are delivered depends on the order 781 * they're subdivided in this function. This is the primary factor 782 * influencing the order in which pages are delivered to the IO 783 * subsystem according to empirical testing, and this is also justified 784 * by considering the behavior of a buddy system containing a single 785 * large block of memory acted on by a series of small allocations. 786 * This behavior is a critical factor in sglist merging's success. 787 * 788 * -- wli 789 */ 790 static inline void expand(struct zone *zone, struct page *page, 791 int low, int high, struct free_area *area, 792 int migratetype) 793 { 794 unsigned long size = 1 << high; 795 796 while (high > low) { 797 area--; 798 high--; 799 size >>= 1; 800 VM_BUG_ON(bad_range(zone, &page[size])); 801 802 #ifdef CONFIG_DEBUG_PAGEALLOC 803 if (high < debug_guardpage_minorder()) { 804 /* 805 * Mark as guard pages (or page), that will allow to 806 * merge back to allocator when buddy will be freed. 807 * Corresponding page table entries will not be touched, 808 * pages will stay not present in virtual address space 809 */ 810 INIT_LIST_HEAD(&page[size].lru); 811 set_page_guard_flag(&page[size]); 812 set_page_private(&page[size], high); 813 /* Guard pages are not available for any usage */ 814 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); 815 continue; 816 } 817 #endif 818 list_add(&page[size].lru, &area->free_list[migratetype]); 819 area->nr_free++; 820 set_page_order(&page[size], high); 821 } 822 } 823 824 /* 825 * This page is about to be returned from the page allocator 826 */ 827 static inline int check_new_page(struct page *page) 828 { 829 if (unlikely(page_mapcount(page) | 830 (page->mapping != NULL) | 831 (atomic_read(&page->_count) != 0) | 832 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 833 (mem_cgroup_bad_page_check(page)))) { 834 bad_page(page); 835 return 1; 836 } 837 return 0; 838 } 839 840 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 841 { 842 int i; 843 844 for (i = 0; i < (1 << order); i++) { 845 struct page *p = page + i; 846 if (unlikely(check_new_page(p))) 847 return 1; 848 } 849 850 set_page_private(page, 0); 851 set_page_refcounted(page); 852 853 arch_alloc_page(page, order); 854 kernel_map_pages(page, 1 << order, 1); 855 856 if (gfp_flags & __GFP_ZERO) 857 prep_zero_page(page, order, gfp_flags); 858 859 if (order && (gfp_flags & __GFP_COMP)) 860 prep_compound_page(page, order); 861 862 return 0; 863 } 864 865 /* 866 * Go through the free lists for the given migratetype and remove 867 * the smallest available page from the freelists 868 */ 869 static inline 870 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 871 int migratetype) 872 { 873 unsigned int current_order; 874 struct free_area * area; 875 struct page *page; 876 877 /* Find a page of the appropriate size in the preferred list */ 878 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 879 area = &(zone->free_area[current_order]); 880 if (list_empty(&area->free_list[migratetype])) 881 continue; 882 883 page = list_entry(area->free_list[migratetype].next, 884 struct page, lru); 885 list_del(&page->lru); 886 rmv_page_order(page); 887 area->nr_free--; 888 expand(zone, page, order, current_order, area, migratetype); 889 return page; 890 } 891 892 return NULL; 893 } 894 895 896 /* 897 * This array describes the order lists are fallen back to when 898 * the free lists for the desirable migrate type are depleted 899 */ 900 static int fallbacks[MIGRATE_TYPES][4] = { 901 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 902 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 903 #ifdef CONFIG_CMA 904 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 905 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 906 #else 907 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 908 #endif 909 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 910 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 911 }; 912 913 /* 914 * Move the free pages in a range to the free lists of the requested type. 915 * Note that start_page and end_pages are not aligned on a pageblock 916 * boundary. If alignment is required, use move_freepages_block() 917 */ 918 static int move_freepages(struct zone *zone, 919 struct page *start_page, struct page *end_page, 920 int migratetype) 921 { 922 struct page *page; 923 unsigned long order; 924 int pages_moved = 0; 925 926 #ifndef CONFIG_HOLES_IN_ZONE 927 /* 928 * page_zone is not safe to call in this context when 929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 930 * anyway as we check zone boundaries in move_freepages_block(). 931 * Remove at a later date when no bug reports exist related to 932 * grouping pages by mobility 933 */ 934 BUG_ON(page_zone(start_page) != page_zone(end_page)); 935 #endif 936 937 for (page = start_page; page <= end_page;) { 938 /* Make sure we are not inadvertently changing nodes */ 939 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 940 941 if (!pfn_valid_within(page_to_pfn(page))) { 942 page++; 943 continue; 944 } 945 946 if (!PageBuddy(page)) { 947 page++; 948 continue; 949 } 950 951 order = page_order(page); 952 list_move(&page->lru, 953 &zone->free_area[order].free_list[migratetype]); 954 page += 1 << order; 955 pages_moved += 1 << order; 956 } 957 958 return pages_moved; 959 } 960 961 int move_freepages_block(struct zone *zone, struct page *page, 962 int migratetype) 963 { 964 unsigned long start_pfn, end_pfn; 965 struct page *start_page, *end_page; 966 967 start_pfn = page_to_pfn(page); 968 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 969 start_page = pfn_to_page(start_pfn); 970 end_page = start_page + pageblock_nr_pages - 1; 971 end_pfn = start_pfn + pageblock_nr_pages - 1; 972 973 /* Do not cross zone boundaries */ 974 if (start_pfn < zone->zone_start_pfn) 975 start_page = page; 976 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 977 return 0; 978 979 return move_freepages(zone, start_page, end_page, migratetype); 980 } 981 982 static void change_pageblock_range(struct page *pageblock_page, 983 int start_order, int migratetype) 984 { 985 int nr_pageblocks = 1 << (start_order - pageblock_order); 986 987 while (nr_pageblocks--) { 988 set_pageblock_migratetype(pageblock_page, migratetype); 989 pageblock_page += pageblock_nr_pages; 990 } 991 } 992 993 /* Remove an element from the buddy allocator from the fallback list */ 994 static inline struct page * 995 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 996 { 997 struct free_area * area; 998 int current_order; 999 struct page *page; 1000 int migratetype, i; 1001 1002 /* Find the largest possible block of pages in the other list */ 1003 for (current_order = MAX_ORDER-1; current_order >= order; 1004 --current_order) { 1005 for (i = 0;; i++) { 1006 migratetype = fallbacks[start_migratetype][i]; 1007 1008 /* MIGRATE_RESERVE handled later if necessary */ 1009 if (migratetype == MIGRATE_RESERVE) 1010 break; 1011 1012 area = &(zone->free_area[current_order]); 1013 if (list_empty(&area->free_list[migratetype])) 1014 continue; 1015 1016 page = list_entry(area->free_list[migratetype].next, 1017 struct page, lru); 1018 area->nr_free--; 1019 1020 /* 1021 * If breaking a large block of pages, move all free 1022 * pages to the preferred allocation list. If falling 1023 * back for a reclaimable kernel allocation, be more 1024 * aggressive about taking ownership of free pages 1025 * 1026 * On the other hand, never change migration 1027 * type of MIGRATE_CMA pageblocks nor move CMA 1028 * pages on different free lists. We don't 1029 * want unmovable pages to be allocated from 1030 * MIGRATE_CMA areas. 1031 */ 1032 if (!is_migrate_cma(migratetype) && 1033 (unlikely(current_order >= pageblock_order / 2) || 1034 start_migratetype == MIGRATE_RECLAIMABLE || 1035 page_group_by_mobility_disabled)) { 1036 int pages; 1037 pages = move_freepages_block(zone, page, 1038 start_migratetype); 1039 1040 /* Claim the whole block if over half of it is free */ 1041 if (pages >= (1 << (pageblock_order-1)) || 1042 page_group_by_mobility_disabled) 1043 set_pageblock_migratetype(page, 1044 start_migratetype); 1045 1046 migratetype = start_migratetype; 1047 } 1048 1049 /* Remove the page from the freelists */ 1050 list_del(&page->lru); 1051 rmv_page_order(page); 1052 1053 /* Take ownership for orders >= pageblock_order */ 1054 if (current_order >= pageblock_order && 1055 !is_migrate_cma(migratetype)) 1056 change_pageblock_range(page, current_order, 1057 start_migratetype); 1058 1059 expand(zone, page, order, current_order, area, 1060 is_migrate_cma(migratetype) 1061 ? migratetype : start_migratetype); 1062 1063 trace_mm_page_alloc_extfrag(page, order, current_order, 1064 start_migratetype, migratetype); 1065 1066 return page; 1067 } 1068 } 1069 1070 return NULL; 1071 } 1072 1073 /* 1074 * Do the hard work of removing an element from the buddy allocator. 1075 * Call me with the zone->lock already held. 1076 */ 1077 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1078 int migratetype) 1079 { 1080 struct page *page; 1081 1082 retry_reserve: 1083 page = __rmqueue_smallest(zone, order, migratetype); 1084 1085 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1086 page = __rmqueue_fallback(zone, order, migratetype); 1087 1088 /* 1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1090 * is used because __rmqueue_smallest is an inline function 1091 * and we want just one call site 1092 */ 1093 if (!page) { 1094 migratetype = MIGRATE_RESERVE; 1095 goto retry_reserve; 1096 } 1097 } 1098 1099 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1100 return page; 1101 } 1102 1103 /* 1104 * Obtain a specified number of elements from the buddy allocator, all under 1105 * a single hold of the lock, for efficiency. Add them to the supplied list. 1106 * Returns the number of new pages which were placed at *list. 1107 */ 1108 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1109 unsigned long count, struct list_head *list, 1110 int migratetype, int cold) 1111 { 1112 int mt = migratetype, i; 1113 1114 spin_lock(&zone->lock); 1115 for (i = 0; i < count; ++i) { 1116 struct page *page = __rmqueue(zone, order, migratetype); 1117 if (unlikely(page == NULL)) 1118 break; 1119 1120 /* 1121 * Split buddy pages returned by expand() are received here 1122 * in physical page order. The page is added to the callers and 1123 * list and the list head then moves forward. From the callers 1124 * perspective, the linked list is ordered by page number in 1125 * some conditions. This is useful for IO devices that can 1126 * merge IO requests if the physical pages are ordered 1127 * properly. 1128 */ 1129 if (likely(cold == 0)) 1130 list_add(&page->lru, list); 1131 else 1132 list_add_tail(&page->lru, list); 1133 if (IS_ENABLED(CONFIG_CMA)) { 1134 mt = get_pageblock_migratetype(page); 1135 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1136 mt = migratetype; 1137 } 1138 set_page_private(page, mt); 1139 list = &page->lru; 1140 } 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1142 spin_unlock(&zone->lock); 1143 return i; 1144 } 1145 1146 #ifdef CONFIG_NUMA 1147 /* 1148 * Called from the vmstat counter updater to drain pagesets of this 1149 * currently executing processor on remote nodes after they have 1150 * expired. 1151 * 1152 * Note that this function must be called with the thread pinned to 1153 * a single processor. 1154 */ 1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1156 { 1157 unsigned long flags; 1158 int to_drain; 1159 1160 local_irq_save(flags); 1161 if (pcp->count >= pcp->batch) 1162 to_drain = pcp->batch; 1163 else 1164 to_drain = pcp->count; 1165 if (to_drain > 0) { 1166 free_pcppages_bulk(zone, to_drain, pcp); 1167 pcp->count -= to_drain; 1168 } 1169 local_irq_restore(flags); 1170 } 1171 #endif 1172 1173 /* 1174 * Drain pages of the indicated processor. 1175 * 1176 * The processor must either be the current processor and the 1177 * thread pinned to the current processor or a processor that 1178 * is not online. 1179 */ 1180 static void drain_pages(unsigned int cpu) 1181 { 1182 unsigned long flags; 1183 struct zone *zone; 1184 1185 for_each_populated_zone(zone) { 1186 struct per_cpu_pageset *pset; 1187 struct per_cpu_pages *pcp; 1188 1189 local_irq_save(flags); 1190 pset = per_cpu_ptr(zone->pageset, cpu); 1191 1192 pcp = &pset->pcp; 1193 if (pcp->count) { 1194 free_pcppages_bulk(zone, pcp->count, pcp); 1195 pcp->count = 0; 1196 } 1197 local_irq_restore(flags); 1198 } 1199 } 1200 1201 /* 1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1203 */ 1204 void drain_local_pages(void *arg) 1205 { 1206 drain_pages(smp_processor_id()); 1207 } 1208 1209 /* 1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1211 * 1212 * Note that this code is protected against sending an IPI to an offline 1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1215 * nothing keeps CPUs from showing up after we populated the cpumask and 1216 * before the call to on_each_cpu_mask(). 1217 */ 1218 void drain_all_pages(void) 1219 { 1220 int cpu; 1221 struct per_cpu_pageset *pcp; 1222 struct zone *zone; 1223 1224 /* 1225 * Allocate in the BSS so we wont require allocation in 1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1227 */ 1228 static cpumask_t cpus_with_pcps; 1229 1230 /* 1231 * We don't care about racing with CPU hotplug event 1232 * as offline notification will cause the notified 1233 * cpu to drain that CPU pcps and on_each_cpu_mask 1234 * disables preemption as part of its processing 1235 */ 1236 for_each_online_cpu(cpu) { 1237 bool has_pcps = false; 1238 for_each_populated_zone(zone) { 1239 pcp = per_cpu_ptr(zone->pageset, cpu); 1240 if (pcp->pcp.count) { 1241 has_pcps = true; 1242 break; 1243 } 1244 } 1245 if (has_pcps) 1246 cpumask_set_cpu(cpu, &cpus_with_pcps); 1247 else 1248 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1249 } 1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1251 } 1252 1253 #ifdef CONFIG_HIBERNATION 1254 1255 void mark_free_pages(struct zone *zone) 1256 { 1257 unsigned long pfn, max_zone_pfn; 1258 unsigned long flags; 1259 int order, t; 1260 struct list_head *curr; 1261 1262 if (!zone->spanned_pages) 1263 return; 1264 1265 spin_lock_irqsave(&zone->lock, flags); 1266 1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1269 if (pfn_valid(pfn)) { 1270 struct page *page = pfn_to_page(pfn); 1271 1272 if (!swsusp_page_is_forbidden(page)) 1273 swsusp_unset_page_free(page); 1274 } 1275 1276 for_each_migratetype_order(order, t) { 1277 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1278 unsigned long i; 1279 1280 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1281 for (i = 0; i < (1UL << order); i++) 1282 swsusp_set_page_free(pfn_to_page(pfn + i)); 1283 } 1284 } 1285 spin_unlock_irqrestore(&zone->lock, flags); 1286 } 1287 #endif /* CONFIG_PM */ 1288 1289 /* 1290 * Free a 0-order page 1291 * cold == 1 ? free a cold page : free a hot page 1292 */ 1293 void free_hot_cold_page(struct page *page, int cold) 1294 { 1295 struct zone *zone = page_zone(page); 1296 struct per_cpu_pages *pcp; 1297 unsigned long flags; 1298 int migratetype; 1299 int wasMlocked = __TestClearPageMlocked(page); 1300 1301 if (!free_pages_prepare(page, 0)) 1302 return; 1303 1304 migratetype = get_pageblock_migratetype(page); 1305 set_page_private(page, migratetype); 1306 local_irq_save(flags); 1307 if (unlikely(wasMlocked)) 1308 free_page_mlock(page); 1309 __count_vm_event(PGFREE); 1310 1311 /* 1312 * We only track unmovable, reclaimable and movable on pcp lists. 1313 * Free ISOLATE pages back to the allocator because they are being 1314 * offlined but treat RESERVE as movable pages so we can get those 1315 * areas back if necessary. Otherwise, we may have to free 1316 * excessively into the page allocator 1317 */ 1318 if (migratetype >= MIGRATE_PCPTYPES) { 1319 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1320 free_one_page(zone, page, 0, migratetype); 1321 goto out; 1322 } 1323 migratetype = MIGRATE_MOVABLE; 1324 } 1325 1326 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1327 if (cold) 1328 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1329 else 1330 list_add(&page->lru, &pcp->lists[migratetype]); 1331 pcp->count++; 1332 if (pcp->count >= pcp->high) { 1333 free_pcppages_bulk(zone, pcp->batch, pcp); 1334 pcp->count -= pcp->batch; 1335 } 1336 1337 out: 1338 local_irq_restore(flags); 1339 } 1340 1341 /* 1342 * Free a list of 0-order pages 1343 */ 1344 void free_hot_cold_page_list(struct list_head *list, int cold) 1345 { 1346 struct page *page, *next; 1347 1348 list_for_each_entry_safe(page, next, list, lru) { 1349 trace_mm_page_free_batched(page, cold); 1350 free_hot_cold_page(page, cold); 1351 } 1352 } 1353 1354 /* 1355 * split_page takes a non-compound higher-order page, and splits it into 1356 * n (1<<order) sub-pages: page[0..n] 1357 * Each sub-page must be freed individually. 1358 * 1359 * Note: this is probably too low level an operation for use in drivers. 1360 * Please consult with lkml before using this in your driver. 1361 */ 1362 void split_page(struct page *page, unsigned int order) 1363 { 1364 int i; 1365 1366 VM_BUG_ON(PageCompound(page)); 1367 VM_BUG_ON(!page_count(page)); 1368 1369 #ifdef CONFIG_KMEMCHECK 1370 /* 1371 * Split shadow pages too, because free(page[0]) would 1372 * otherwise free the whole shadow. 1373 */ 1374 if (kmemcheck_page_is_tracked(page)) 1375 split_page(virt_to_page(page[0].shadow), order); 1376 #endif 1377 1378 for (i = 1; i < (1 << order); i++) 1379 set_page_refcounted(page + i); 1380 } 1381 1382 /* 1383 * Similar to split_page except the page is already free. As this is only 1384 * being used for migration, the migratetype of the block also changes. 1385 * As this is called with interrupts disabled, the caller is responsible 1386 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1387 * are enabled. 1388 * 1389 * Note: this is probably too low level an operation for use in drivers. 1390 * Please consult with lkml before using this in your driver. 1391 */ 1392 int split_free_page(struct page *page) 1393 { 1394 unsigned int order; 1395 unsigned long watermark; 1396 struct zone *zone; 1397 1398 BUG_ON(!PageBuddy(page)); 1399 1400 zone = page_zone(page); 1401 order = page_order(page); 1402 1403 /* Obey watermarks as if the page was being allocated */ 1404 watermark = low_wmark_pages(zone) + (1 << order); 1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1406 return 0; 1407 1408 /* Remove page from free list */ 1409 list_del(&page->lru); 1410 zone->free_area[order].nr_free--; 1411 rmv_page_order(page); 1412 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1413 1414 /* Split into individual pages */ 1415 set_page_refcounted(page); 1416 split_page(page, order); 1417 1418 if (order >= pageblock_order - 1) { 1419 struct page *endpage = page + (1 << order) - 1; 1420 for (; page < endpage; page += pageblock_nr_pages) { 1421 int mt = get_pageblock_migratetype(page); 1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1423 set_pageblock_migratetype(page, 1424 MIGRATE_MOVABLE); 1425 } 1426 } 1427 1428 return 1 << order; 1429 } 1430 1431 /* 1432 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1433 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1434 * or two. 1435 */ 1436 static inline 1437 struct page *buffered_rmqueue(struct zone *preferred_zone, 1438 struct zone *zone, int order, gfp_t gfp_flags, 1439 int migratetype) 1440 { 1441 unsigned long flags; 1442 struct page *page; 1443 int cold = !!(gfp_flags & __GFP_COLD); 1444 1445 again: 1446 if (likely(order == 0)) { 1447 struct per_cpu_pages *pcp; 1448 struct list_head *list; 1449 1450 local_irq_save(flags); 1451 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1452 list = &pcp->lists[migratetype]; 1453 if (list_empty(list)) { 1454 pcp->count += rmqueue_bulk(zone, 0, 1455 pcp->batch, list, 1456 migratetype, cold); 1457 if (unlikely(list_empty(list))) 1458 goto failed; 1459 } 1460 1461 if (cold) 1462 page = list_entry(list->prev, struct page, lru); 1463 else 1464 page = list_entry(list->next, struct page, lru); 1465 1466 list_del(&page->lru); 1467 pcp->count--; 1468 } else { 1469 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1470 /* 1471 * __GFP_NOFAIL is not to be used in new code. 1472 * 1473 * All __GFP_NOFAIL callers should be fixed so that they 1474 * properly detect and handle allocation failures. 1475 * 1476 * We most definitely don't want callers attempting to 1477 * allocate greater than order-1 page units with 1478 * __GFP_NOFAIL. 1479 */ 1480 WARN_ON_ONCE(order > 1); 1481 } 1482 spin_lock_irqsave(&zone->lock, flags); 1483 page = __rmqueue(zone, order, migratetype); 1484 spin_unlock(&zone->lock); 1485 if (!page) 1486 goto failed; 1487 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1488 } 1489 1490 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1491 zone_statistics(preferred_zone, zone, gfp_flags); 1492 local_irq_restore(flags); 1493 1494 VM_BUG_ON(bad_range(zone, page)); 1495 if (prep_new_page(page, order, gfp_flags)) 1496 goto again; 1497 return page; 1498 1499 failed: 1500 local_irq_restore(flags); 1501 return NULL; 1502 } 1503 1504 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1505 #define ALLOC_WMARK_MIN WMARK_MIN 1506 #define ALLOC_WMARK_LOW WMARK_LOW 1507 #define ALLOC_WMARK_HIGH WMARK_HIGH 1508 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1509 1510 /* Mask to get the watermark bits */ 1511 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1512 1513 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1514 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1515 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1516 1517 #ifdef CONFIG_FAIL_PAGE_ALLOC 1518 1519 static struct { 1520 struct fault_attr attr; 1521 1522 u32 ignore_gfp_highmem; 1523 u32 ignore_gfp_wait; 1524 u32 min_order; 1525 } fail_page_alloc = { 1526 .attr = FAULT_ATTR_INITIALIZER, 1527 .ignore_gfp_wait = 1, 1528 .ignore_gfp_highmem = 1, 1529 .min_order = 1, 1530 }; 1531 1532 static int __init setup_fail_page_alloc(char *str) 1533 { 1534 return setup_fault_attr(&fail_page_alloc.attr, str); 1535 } 1536 __setup("fail_page_alloc=", setup_fail_page_alloc); 1537 1538 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1539 { 1540 if (order < fail_page_alloc.min_order) 1541 return false; 1542 if (gfp_mask & __GFP_NOFAIL) 1543 return false; 1544 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1545 return false; 1546 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1547 return false; 1548 1549 return should_fail(&fail_page_alloc.attr, 1 << order); 1550 } 1551 1552 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1553 1554 static int __init fail_page_alloc_debugfs(void) 1555 { 1556 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1557 struct dentry *dir; 1558 1559 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1560 &fail_page_alloc.attr); 1561 if (IS_ERR(dir)) 1562 return PTR_ERR(dir); 1563 1564 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1565 &fail_page_alloc.ignore_gfp_wait)) 1566 goto fail; 1567 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1568 &fail_page_alloc.ignore_gfp_highmem)) 1569 goto fail; 1570 if (!debugfs_create_u32("min-order", mode, dir, 1571 &fail_page_alloc.min_order)) 1572 goto fail; 1573 1574 return 0; 1575 fail: 1576 debugfs_remove_recursive(dir); 1577 1578 return -ENOMEM; 1579 } 1580 1581 late_initcall(fail_page_alloc_debugfs); 1582 1583 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1584 1585 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1586 1587 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1588 { 1589 return false; 1590 } 1591 1592 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1593 1594 /* 1595 * Return true if free pages are above 'mark'. This takes into account the order 1596 * of the allocation. 1597 */ 1598 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1599 int classzone_idx, int alloc_flags, long free_pages) 1600 { 1601 /* free_pages my go negative - that's OK */ 1602 long min = mark; 1603 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1604 int o; 1605 1606 free_pages -= (1 << order) - 1; 1607 if (alloc_flags & ALLOC_HIGH) 1608 min -= min / 2; 1609 if (alloc_flags & ALLOC_HARDER) 1610 min -= min / 4; 1611 1612 if (free_pages <= min + lowmem_reserve) 1613 return false; 1614 for (o = 0; o < order; o++) { 1615 /* At the next order, this order's pages become unavailable */ 1616 free_pages -= z->free_area[o].nr_free << o; 1617 1618 /* Require fewer higher order pages to be free */ 1619 min >>= 1; 1620 1621 if (free_pages <= min) 1622 return false; 1623 } 1624 return true; 1625 } 1626 1627 #ifdef CONFIG_MEMORY_ISOLATION 1628 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1629 { 1630 if (unlikely(zone->nr_pageblock_isolate)) 1631 return zone->nr_pageblock_isolate * pageblock_nr_pages; 1632 return 0; 1633 } 1634 #else 1635 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1636 { 1637 return 0; 1638 } 1639 #endif 1640 1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1642 int classzone_idx, int alloc_flags) 1643 { 1644 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1645 zone_page_state(z, NR_FREE_PAGES)); 1646 } 1647 1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1649 int classzone_idx, int alloc_flags) 1650 { 1651 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1652 1653 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1654 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1655 1656 /* 1657 * If the zone has MIGRATE_ISOLATE type free pages, we should consider 1658 * it. nr_zone_isolate_freepages is never accurate so kswapd might not 1659 * sleep although it could do so. But this is more desirable for memory 1660 * hotplug than sleeping which can cause a livelock in the direct 1661 * reclaim path. 1662 */ 1663 free_pages -= nr_zone_isolate_freepages(z); 1664 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1665 free_pages); 1666 } 1667 1668 #ifdef CONFIG_NUMA 1669 /* 1670 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1671 * skip over zones that are not allowed by the cpuset, or that have 1672 * been recently (in last second) found to be nearly full. See further 1673 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1674 * that have to skip over a lot of full or unallowed zones. 1675 * 1676 * If the zonelist cache is present in the passed in zonelist, then 1677 * returns a pointer to the allowed node mask (either the current 1678 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1679 * 1680 * If the zonelist cache is not available for this zonelist, does 1681 * nothing and returns NULL. 1682 * 1683 * If the fullzones BITMAP in the zonelist cache is stale (more than 1684 * a second since last zap'd) then we zap it out (clear its bits.) 1685 * 1686 * We hold off even calling zlc_setup, until after we've checked the 1687 * first zone in the zonelist, on the theory that most allocations will 1688 * be satisfied from that first zone, so best to examine that zone as 1689 * quickly as we can. 1690 */ 1691 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1692 { 1693 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1694 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1695 1696 zlc = zonelist->zlcache_ptr; 1697 if (!zlc) 1698 return NULL; 1699 1700 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1701 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1702 zlc->last_full_zap = jiffies; 1703 } 1704 1705 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1706 &cpuset_current_mems_allowed : 1707 &node_states[N_HIGH_MEMORY]; 1708 return allowednodes; 1709 } 1710 1711 /* 1712 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1713 * if it is worth looking at further for free memory: 1714 * 1) Check that the zone isn't thought to be full (doesn't have its 1715 * bit set in the zonelist_cache fullzones BITMAP). 1716 * 2) Check that the zones node (obtained from the zonelist_cache 1717 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1718 * Return true (non-zero) if zone is worth looking at further, or 1719 * else return false (zero) if it is not. 1720 * 1721 * This check -ignores- the distinction between various watermarks, 1722 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1723 * found to be full for any variation of these watermarks, it will 1724 * be considered full for up to one second by all requests, unless 1725 * we are so low on memory on all allowed nodes that we are forced 1726 * into the second scan of the zonelist. 1727 * 1728 * In the second scan we ignore this zonelist cache and exactly 1729 * apply the watermarks to all zones, even it is slower to do so. 1730 * We are low on memory in the second scan, and should leave no stone 1731 * unturned looking for a free page. 1732 */ 1733 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1734 nodemask_t *allowednodes) 1735 { 1736 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1737 int i; /* index of *z in zonelist zones */ 1738 int n; /* node that zone *z is on */ 1739 1740 zlc = zonelist->zlcache_ptr; 1741 if (!zlc) 1742 return 1; 1743 1744 i = z - zonelist->_zonerefs; 1745 n = zlc->z_to_n[i]; 1746 1747 /* This zone is worth trying if it is allowed but not full */ 1748 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1749 } 1750 1751 /* 1752 * Given 'z' scanning a zonelist, set the corresponding bit in 1753 * zlc->fullzones, so that subsequent attempts to allocate a page 1754 * from that zone don't waste time re-examining it. 1755 */ 1756 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1757 { 1758 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1759 int i; /* index of *z in zonelist zones */ 1760 1761 zlc = zonelist->zlcache_ptr; 1762 if (!zlc) 1763 return; 1764 1765 i = z - zonelist->_zonerefs; 1766 1767 set_bit(i, zlc->fullzones); 1768 } 1769 1770 /* 1771 * clear all zones full, called after direct reclaim makes progress so that 1772 * a zone that was recently full is not skipped over for up to a second 1773 */ 1774 static void zlc_clear_zones_full(struct zonelist *zonelist) 1775 { 1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1777 1778 zlc = zonelist->zlcache_ptr; 1779 if (!zlc) 1780 return; 1781 1782 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1783 } 1784 1785 #else /* CONFIG_NUMA */ 1786 1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1788 { 1789 return NULL; 1790 } 1791 1792 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1793 nodemask_t *allowednodes) 1794 { 1795 return 1; 1796 } 1797 1798 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1799 { 1800 } 1801 1802 static void zlc_clear_zones_full(struct zonelist *zonelist) 1803 { 1804 } 1805 #endif /* CONFIG_NUMA */ 1806 1807 /* 1808 * get_page_from_freelist goes through the zonelist trying to allocate 1809 * a page. 1810 */ 1811 static struct page * 1812 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1813 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1814 struct zone *preferred_zone, int migratetype) 1815 { 1816 struct zoneref *z; 1817 struct page *page = NULL; 1818 int classzone_idx; 1819 struct zone *zone; 1820 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1821 int zlc_active = 0; /* set if using zonelist_cache */ 1822 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1823 1824 classzone_idx = zone_idx(preferred_zone); 1825 zonelist_scan: 1826 /* 1827 * Scan zonelist, looking for a zone with enough free. 1828 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1829 */ 1830 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1831 high_zoneidx, nodemask) { 1832 if (NUMA_BUILD && zlc_active && 1833 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1834 continue; 1835 if ((alloc_flags & ALLOC_CPUSET) && 1836 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1837 continue; 1838 /* 1839 * When allocating a page cache page for writing, we 1840 * want to get it from a zone that is within its dirty 1841 * limit, such that no single zone holds more than its 1842 * proportional share of globally allowed dirty pages. 1843 * The dirty limits take into account the zone's 1844 * lowmem reserves and high watermark so that kswapd 1845 * should be able to balance it without having to 1846 * write pages from its LRU list. 1847 * 1848 * This may look like it could increase pressure on 1849 * lower zones by failing allocations in higher zones 1850 * before they are full. But the pages that do spill 1851 * over are limited as the lower zones are protected 1852 * by this very same mechanism. It should not become 1853 * a practical burden to them. 1854 * 1855 * XXX: For now, allow allocations to potentially 1856 * exceed the per-zone dirty limit in the slowpath 1857 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1858 * which is important when on a NUMA setup the allowed 1859 * zones are together not big enough to reach the 1860 * global limit. The proper fix for these situations 1861 * will require awareness of zones in the 1862 * dirty-throttling and the flusher threads. 1863 */ 1864 if ((alloc_flags & ALLOC_WMARK_LOW) && 1865 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1866 goto this_zone_full; 1867 1868 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1869 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1870 unsigned long mark; 1871 int ret; 1872 1873 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1874 if (zone_watermark_ok(zone, order, mark, 1875 classzone_idx, alloc_flags)) 1876 goto try_this_zone; 1877 1878 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1879 /* 1880 * we do zlc_setup if there are multiple nodes 1881 * and before considering the first zone allowed 1882 * by the cpuset. 1883 */ 1884 allowednodes = zlc_setup(zonelist, alloc_flags); 1885 zlc_active = 1; 1886 did_zlc_setup = 1; 1887 } 1888 1889 if (zone_reclaim_mode == 0) 1890 goto this_zone_full; 1891 1892 /* 1893 * As we may have just activated ZLC, check if the first 1894 * eligible zone has failed zone_reclaim recently. 1895 */ 1896 if (NUMA_BUILD && zlc_active && 1897 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1898 continue; 1899 1900 ret = zone_reclaim(zone, gfp_mask, order); 1901 switch (ret) { 1902 case ZONE_RECLAIM_NOSCAN: 1903 /* did not scan */ 1904 continue; 1905 case ZONE_RECLAIM_FULL: 1906 /* scanned but unreclaimable */ 1907 continue; 1908 default: 1909 /* did we reclaim enough */ 1910 if (!zone_watermark_ok(zone, order, mark, 1911 classzone_idx, alloc_flags)) 1912 goto this_zone_full; 1913 } 1914 } 1915 1916 try_this_zone: 1917 page = buffered_rmqueue(preferred_zone, zone, order, 1918 gfp_mask, migratetype); 1919 if (page) 1920 break; 1921 this_zone_full: 1922 if (NUMA_BUILD) 1923 zlc_mark_zone_full(zonelist, z); 1924 } 1925 1926 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1927 /* Disable zlc cache for second zonelist scan */ 1928 zlc_active = 0; 1929 goto zonelist_scan; 1930 } 1931 1932 if (page) 1933 /* 1934 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1935 * necessary to allocate the page. The expectation is 1936 * that the caller is taking steps that will free more 1937 * memory. The caller should avoid the page being used 1938 * for !PFMEMALLOC purposes. 1939 */ 1940 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1941 1942 return page; 1943 } 1944 1945 /* 1946 * Large machines with many possible nodes should not always dump per-node 1947 * meminfo in irq context. 1948 */ 1949 static inline bool should_suppress_show_mem(void) 1950 { 1951 bool ret = false; 1952 1953 #if NODES_SHIFT > 8 1954 ret = in_interrupt(); 1955 #endif 1956 return ret; 1957 } 1958 1959 static DEFINE_RATELIMIT_STATE(nopage_rs, 1960 DEFAULT_RATELIMIT_INTERVAL, 1961 DEFAULT_RATELIMIT_BURST); 1962 1963 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1964 { 1965 unsigned int filter = SHOW_MEM_FILTER_NODES; 1966 1967 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 1968 debug_guardpage_minorder() > 0) 1969 return; 1970 1971 /* 1972 * This documents exceptions given to allocations in certain 1973 * contexts that are allowed to allocate outside current's set 1974 * of allowed nodes. 1975 */ 1976 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1977 if (test_thread_flag(TIF_MEMDIE) || 1978 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1979 filter &= ~SHOW_MEM_FILTER_NODES; 1980 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1981 filter &= ~SHOW_MEM_FILTER_NODES; 1982 1983 if (fmt) { 1984 struct va_format vaf; 1985 va_list args; 1986 1987 va_start(args, fmt); 1988 1989 vaf.fmt = fmt; 1990 vaf.va = &args; 1991 1992 pr_warn("%pV", &vaf); 1993 1994 va_end(args); 1995 } 1996 1997 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 1998 current->comm, order, gfp_mask); 1999 2000 dump_stack(); 2001 if (!should_suppress_show_mem()) 2002 show_mem(filter); 2003 } 2004 2005 static inline int 2006 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2007 unsigned long did_some_progress, 2008 unsigned long pages_reclaimed) 2009 { 2010 /* Do not loop if specifically requested */ 2011 if (gfp_mask & __GFP_NORETRY) 2012 return 0; 2013 2014 /* Always retry if specifically requested */ 2015 if (gfp_mask & __GFP_NOFAIL) 2016 return 1; 2017 2018 /* 2019 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2020 * making forward progress without invoking OOM. Suspend also disables 2021 * storage devices so kswapd will not help. Bail if we are suspending. 2022 */ 2023 if (!did_some_progress && pm_suspended_storage()) 2024 return 0; 2025 2026 /* 2027 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2028 * means __GFP_NOFAIL, but that may not be true in other 2029 * implementations. 2030 */ 2031 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2032 return 1; 2033 2034 /* 2035 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2036 * specified, then we retry until we no longer reclaim any pages 2037 * (above), or we've reclaimed an order of pages at least as 2038 * large as the allocation's order. In both cases, if the 2039 * allocation still fails, we stop retrying. 2040 */ 2041 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2042 return 1; 2043 2044 return 0; 2045 } 2046 2047 static inline struct page * 2048 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2049 struct zonelist *zonelist, enum zone_type high_zoneidx, 2050 nodemask_t *nodemask, struct zone *preferred_zone, 2051 int migratetype) 2052 { 2053 struct page *page; 2054 2055 /* Acquire the OOM killer lock for the zones in zonelist */ 2056 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2057 schedule_timeout_uninterruptible(1); 2058 return NULL; 2059 } 2060 2061 /* 2062 * Go through the zonelist yet one more time, keep very high watermark 2063 * here, this is only to catch a parallel oom killing, we must fail if 2064 * we're still under heavy pressure. 2065 */ 2066 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2067 order, zonelist, high_zoneidx, 2068 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2069 preferred_zone, migratetype); 2070 if (page) 2071 goto out; 2072 2073 if (!(gfp_mask & __GFP_NOFAIL)) { 2074 /* The OOM killer will not help higher order allocs */ 2075 if (order > PAGE_ALLOC_COSTLY_ORDER) 2076 goto out; 2077 /* The OOM killer does not needlessly kill tasks for lowmem */ 2078 if (high_zoneidx < ZONE_NORMAL) 2079 goto out; 2080 /* 2081 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2082 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2083 * The caller should handle page allocation failure by itself if 2084 * it specifies __GFP_THISNODE. 2085 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2086 */ 2087 if (gfp_mask & __GFP_THISNODE) 2088 goto out; 2089 } 2090 /* Exhausted what can be done so it's blamo time */ 2091 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2092 2093 out: 2094 clear_zonelist_oom(zonelist, gfp_mask); 2095 return page; 2096 } 2097 2098 #ifdef CONFIG_COMPACTION 2099 /* Try memory compaction for high-order allocations before reclaim */ 2100 static struct page * 2101 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2102 struct zonelist *zonelist, enum zone_type high_zoneidx, 2103 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2104 int migratetype, bool sync_migration, 2105 bool *contended_compaction, bool *deferred_compaction, 2106 unsigned long *did_some_progress) 2107 { 2108 struct page *page; 2109 2110 if (!order) 2111 return NULL; 2112 2113 if (compaction_deferred(preferred_zone, order)) { 2114 *deferred_compaction = true; 2115 return NULL; 2116 } 2117 2118 current->flags |= PF_MEMALLOC; 2119 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2120 nodemask, sync_migration, 2121 contended_compaction); 2122 current->flags &= ~PF_MEMALLOC; 2123 if (*did_some_progress != COMPACT_SKIPPED) { 2124 2125 /* Page migration frees to the PCP lists but we want merging */ 2126 drain_pages(get_cpu()); 2127 put_cpu(); 2128 2129 page = get_page_from_freelist(gfp_mask, nodemask, 2130 order, zonelist, high_zoneidx, 2131 alloc_flags & ~ALLOC_NO_WATERMARKS, 2132 preferred_zone, migratetype); 2133 if (page) { 2134 preferred_zone->compact_considered = 0; 2135 preferred_zone->compact_defer_shift = 0; 2136 if (order >= preferred_zone->compact_order_failed) 2137 preferred_zone->compact_order_failed = order + 1; 2138 count_vm_event(COMPACTSUCCESS); 2139 return page; 2140 } 2141 2142 /* 2143 * It's bad if compaction run occurs and fails. 2144 * The most likely reason is that pages exist, 2145 * but not enough to satisfy watermarks. 2146 */ 2147 count_vm_event(COMPACTFAIL); 2148 2149 /* 2150 * As async compaction considers a subset of pageblocks, only 2151 * defer if the failure was a sync compaction failure. 2152 */ 2153 if (sync_migration) 2154 defer_compaction(preferred_zone, order); 2155 2156 cond_resched(); 2157 } 2158 2159 return NULL; 2160 } 2161 #else 2162 static inline struct page * 2163 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2164 struct zonelist *zonelist, enum zone_type high_zoneidx, 2165 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2166 int migratetype, bool sync_migration, 2167 bool *contended_compaction, bool *deferred_compaction, 2168 unsigned long *did_some_progress) 2169 { 2170 return NULL; 2171 } 2172 #endif /* CONFIG_COMPACTION */ 2173 2174 /* Perform direct synchronous page reclaim */ 2175 static int 2176 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2177 nodemask_t *nodemask) 2178 { 2179 struct reclaim_state reclaim_state; 2180 int progress; 2181 2182 cond_resched(); 2183 2184 /* We now go into synchronous reclaim */ 2185 cpuset_memory_pressure_bump(); 2186 current->flags |= PF_MEMALLOC; 2187 lockdep_set_current_reclaim_state(gfp_mask); 2188 reclaim_state.reclaimed_slab = 0; 2189 current->reclaim_state = &reclaim_state; 2190 2191 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2192 2193 current->reclaim_state = NULL; 2194 lockdep_clear_current_reclaim_state(); 2195 current->flags &= ~PF_MEMALLOC; 2196 2197 cond_resched(); 2198 2199 return progress; 2200 } 2201 2202 /* The really slow allocator path where we enter direct reclaim */ 2203 static inline struct page * 2204 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2205 struct zonelist *zonelist, enum zone_type high_zoneidx, 2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2207 int migratetype, unsigned long *did_some_progress) 2208 { 2209 struct page *page = NULL; 2210 bool drained = false; 2211 2212 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2213 nodemask); 2214 if (unlikely(!(*did_some_progress))) 2215 return NULL; 2216 2217 /* After successful reclaim, reconsider all zones for allocation */ 2218 if (NUMA_BUILD) 2219 zlc_clear_zones_full(zonelist); 2220 2221 retry: 2222 page = get_page_from_freelist(gfp_mask, nodemask, order, 2223 zonelist, high_zoneidx, 2224 alloc_flags & ~ALLOC_NO_WATERMARKS, 2225 preferred_zone, migratetype); 2226 2227 /* 2228 * If an allocation failed after direct reclaim, it could be because 2229 * pages are pinned on the per-cpu lists. Drain them and try again 2230 */ 2231 if (!page && !drained) { 2232 drain_all_pages(); 2233 drained = true; 2234 goto retry; 2235 } 2236 2237 return page; 2238 } 2239 2240 /* 2241 * This is called in the allocator slow-path if the allocation request is of 2242 * sufficient urgency to ignore watermarks and take other desperate measures 2243 */ 2244 static inline struct page * 2245 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2246 struct zonelist *zonelist, enum zone_type high_zoneidx, 2247 nodemask_t *nodemask, struct zone *preferred_zone, 2248 int migratetype) 2249 { 2250 struct page *page; 2251 2252 do { 2253 page = get_page_from_freelist(gfp_mask, nodemask, order, 2254 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2255 preferred_zone, migratetype); 2256 2257 if (!page && gfp_mask & __GFP_NOFAIL) 2258 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2259 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2260 2261 return page; 2262 } 2263 2264 static inline 2265 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2266 enum zone_type high_zoneidx, 2267 enum zone_type classzone_idx) 2268 { 2269 struct zoneref *z; 2270 struct zone *zone; 2271 2272 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2273 wakeup_kswapd(zone, order, classzone_idx); 2274 } 2275 2276 static inline int 2277 gfp_to_alloc_flags(gfp_t gfp_mask) 2278 { 2279 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2280 const gfp_t wait = gfp_mask & __GFP_WAIT; 2281 2282 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2283 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2284 2285 /* 2286 * The caller may dip into page reserves a bit more if the caller 2287 * cannot run direct reclaim, or if the caller has realtime scheduling 2288 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2289 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2290 */ 2291 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2292 2293 if (!wait) { 2294 /* 2295 * Not worth trying to allocate harder for 2296 * __GFP_NOMEMALLOC even if it can't schedule. 2297 */ 2298 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2299 alloc_flags |= ALLOC_HARDER; 2300 /* 2301 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2302 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2303 */ 2304 alloc_flags &= ~ALLOC_CPUSET; 2305 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2306 alloc_flags |= ALLOC_HARDER; 2307 2308 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2309 if (gfp_mask & __GFP_MEMALLOC) 2310 alloc_flags |= ALLOC_NO_WATERMARKS; 2311 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2312 alloc_flags |= ALLOC_NO_WATERMARKS; 2313 else if (!in_interrupt() && 2314 ((current->flags & PF_MEMALLOC) || 2315 unlikely(test_thread_flag(TIF_MEMDIE)))) 2316 alloc_flags |= ALLOC_NO_WATERMARKS; 2317 } 2318 2319 return alloc_flags; 2320 } 2321 2322 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2323 { 2324 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2325 } 2326 2327 static inline struct page * 2328 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2329 struct zonelist *zonelist, enum zone_type high_zoneidx, 2330 nodemask_t *nodemask, struct zone *preferred_zone, 2331 int migratetype) 2332 { 2333 const gfp_t wait = gfp_mask & __GFP_WAIT; 2334 struct page *page = NULL; 2335 int alloc_flags; 2336 unsigned long pages_reclaimed = 0; 2337 unsigned long did_some_progress; 2338 bool sync_migration = false; 2339 bool deferred_compaction = false; 2340 bool contended_compaction = false; 2341 2342 /* 2343 * In the slowpath, we sanity check order to avoid ever trying to 2344 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2345 * be using allocators in order of preference for an area that is 2346 * too large. 2347 */ 2348 if (order >= MAX_ORDER) { 2349 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2350 return NULL; 2351 } 2352 2353 /* 2354 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2355 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2356 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2357 * using a larger set of nodes after it has established that the 2358 * allowed per node queues are empty and that nodes are 2359 * over allocated. 2360 */ 2361 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2362 goto nopage; 2363 2364 restart: 2365 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2366 wake_all_kswapd(order, zonelist, high_zoneidx, 2367 zone_idx(preferred_zone)); 2368 2369 /* 2370 * OK, we're below the kswapd watermark and have kicked background 2371 * reclaim. Now things get more complex, so set up alloc_flags according 2372 * to how we want to proceed. 2373 */ 2374 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2375 2376 /* 2377 * Find the true preferred zone if the allocation is unconstrained by 2378 * cpusets. 2379 */ 2380 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2381 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2382 &preferred_zone); 2383 2384 rebalance: 2385 /* This is the last chance, in general, before the goto nopage. */ 2386 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2387 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2388 preferred_zone, migratetype); 2389 if (page) 2390 goto got_pg; 2391 2392 /* Allocate without watermarks if the context allows */ 2393 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2394 /* 2395 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2396 * the allocation is high priority and these type of 2397 * allocations are system rather than user orientated 2398 */ 2399 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2400 2401 page = __alloc_pages_high_priority(gfp_mask, order, 2402 zonelist, high_zoneidx, nodemask, 2403 preferred_zone, migratetype); 2404 if (page) { 2405 goto got_pg; 2406 } 2407 } 2408 2409 /* Atomic allocations - we can't balance anything */ 2410 if (!wait) 2411 goto nopage; 2412 2413 /* Avoid recursion of direct reclaim */ 2414 if (current->flags & PF_MEMALLOC) 2415 goto nopage; 2416 2417 /* Avoid allocations with no watermarks from looping endlessly */ 2418 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2419 goto nopage; 2420 2421 /* 2422 * Try direct compaction. The first pass is asynchronous. Subsequent 2423 * attempts after direct reclaim are synchronous 2424 */ 2425 page = __alloc_pages_direct_compact(gfp_mask, order, 2426 zonelist, high_zoneidx, 2427 nodemask, 2428 alloc_flags, preferred_zone, 2429 migratetype, sync_migration, 2430 &contended_compaction, 2431 &deferred_compaction, 2432 &did_some_progress); 2433 if (page) 2434 goto got_pg; 2435 sync_migration = true; 2436 2437 /* 2438 * If compaction is deferred for high-order allocations, it is because 2439 * sync compaction recently failed. In this is the case and the caller 2440 * requested a movable allocation that does not heavily disrupt the 2441 * system then fail the allocation instead of entering direct reclaim. 2442 */ 2443 if ((deferred_compaction || contended_compaction) && 2444 (gfp_mask & __GFP_NO_KSWAPD)) 2445 goto nopage; 2446 2447 /* Try direct reclaim and then allocating */ 2448 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2449 zonelist, high_zoneidx, 2450 nodemask, 2451 alloc_flags, preferred_zone, 2452 migratetype, &did_some_progress); 2453 if (page) 2454 goto got_pg; 2455 2456 /* 2457 * If we failed to make any progress reclaiming, then we are 2458 * running out of options and have to consider going OOM 2459 */ 2460 if (!did_some_progress) { 2461 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2462 if (oom_killer_disabled) 2463 goto nopage; 2464 /* Coredumps can quickly deplete all memory reserves */ 2465 if ((current->flags & PF_DUMPCORE) && 2466 !(gfp_mask & __GFP_NOFAIL)) 2467 goto nopage; 2468 page = __alloc_pages_may_oom(gfp_mask, order, 2469 zonelist, high_zoneidx, 2470 nodemask, preferred_zone, 2471 migratetype); 2472 if (page) 2473 goto got_pg; 2474 2475 if (!(gfp_mask & __GFP_NOFAIL)) { 2476 /* 2477 * The oom killer is not called for high-order 2478 * allocations that may fail, so if no progress 2479 * is being made, there are no other options and 2480 * retrying is unlikely to help. 2481 */ 2482 if (order > PAGE_ALLOC_COSTLY_ORDER) 2483 goto nopage; 2484 /* 2485 * The oom killer is not called for lowmem 2486 * allocations to prevent needlessly killing 2487 * innocent tasks. 2488 */ 2489 if (high_zoneidx < ZONE_NORMAL) 2490 goto nopage; 2491 } 2492 2493 goto restart; 2494 } 2495 } 2496 2497 /* Check if we should retry the allocation */ 2498 pages_reclaimed += did_some_progress; 2499 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2500 pages_reclaimed)) { 2501 /* Wait for some write requests to complete then retry */ 2502 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2503 goto rebalance; 2504 } else { 2505 /* 2506 * High-order allocations do not necessarily loop after 2507 * direct reclaim and reclaim/compaction depends on compaction 2508 * being called after reclaim so call directly if necessary 2509 */ 2510 page = __alloc_pages_direct_compact(gfp_mask, order, 2511 zonelist, high_zoneidx, 2512 nodemask, 2513 alloc_flags, preferred_zone, 2514 migratetype, sync_migration, 2515 &contended_compaction, 2516 &deferred_compaction, 2517 &did_some_progress); 2518 if (page) 2519 goto got_pg; 2520 } 2521 2522 nopage: 2523 warn_alloc_failed(gfp_mask, order, NULL); 2524 return page; 2525 got_pg: 2526 if (kmemcheck_enabled) 2527 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2528 2529 return page; 2530 } 2531 2532 /* 2533 * This is the 'heart' of the zoned buddy allocator. 2534 */ 2535 struct page * 2536 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2537 struct zonelist *zonelist, nodemask_t *nodemask) 2538 { 2539 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2540 struct zone *preferred_zone; 2541 struct page *page = NULL; 2542 int migratetype = allocflags_to_migratetype(gfp_mask); 2543 unsigned int cpuset_mems_cookie; 2544 2545 gfp_mask &= gfp_allowed_mask; 2546 2547 lockdep_trace_alloc(gfp_mask); 2548 2549 might_sleep_if(gfp_mask & __GFP_WAIT); 2550 2551 if (should_fail_alloc_page(gfp_mask, order)) 2552 return NULL; 2553 2554 /* 2555 * Check the zones suitable for the gfp_mask contain at least one 2556 * valid zone. It's possible to have an empty zonelist as a result 2557 * of GFP_THISNODE and a memoryless node 2558 */ 2559 if (unlikely(!zonelist->_zonerefs->zone)) 2560 return NULL; 2561 2562 retry_cpuset: 2563 cpuset_mems_cookie = get_mems_allowed(); 2564 2565 /* The preferred zone is used for statistics later */ 2566 first_zones_zonelist(zonelist, high_zoneidx, 2567 nodemask ? : &cpuset_current_mems_allowed, 2568 &preferred_zone); 2569 if (!preferred_zone) 2570 goto out; 2571 2572 /* First allocation attempt */ 2573 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2574 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2575 preferred_zone, migratetype); 2576 if (unlikely(!page)) 2577 page = __alloc_pages_slowpath(gfp_mask, order, 2578 zonelist, high_zoneidx, nodemask, 2579 preferred_zone, migratetype); 2580 2581 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2582 2583 out: 2584 /* 2585 * When updating a task's mems_allowed, it is possible to race with 2586 * parallel threads in such a way that an allocation can fail while 2587 * the mask is being updated. If a page allocation is about to fail, 2588 * check if the cpuset changed during allocation and if so, retry. 2589 */ 2590 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2591 goto retry_cpuset; 2592 2593 return page; 2594 } 2595 EXPORT_SYMBOL(__alloc_pages_nodemask); 2596 2597 /* 2598 * Common helper functions. 2599 */ 2600 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2601 { 2602 struct page *page; 2603 2604 /* 2605 * __get_free_pages() returns a 32-bit address, which cannot represent 2606 * a highmem page 2607 */ 2608 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2609 2610 page = alloc_pages(gfp_mask, order); 2611 if (!page) 2612 return 0; 2613 return (unsigned long) page_address(page); 2614 } 2615 EXPORT_SYMBOL(__get_free_pages); 2616 2617 unsigned long get_zeroed_page(gfp_t gfp_mask) 2618 { 2619 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2620 } 2621 EXPORT_SYMBOL(get_zeroed_page); 2622 2623 void __free_pages(struct page *page, unsigned int order) 2624 { 2625 if (put_page_testzero(page)) { 2626 if (order == 0) 2627 free_hot_cold_page(page, 0); 2628 else 2629 __free_pages_ok(page, order); 2630 } 2631 } 2632 2633 EXPORT_SYMBOL(__free_pages); 2634 2635 void free_pages(unsigned long addr, unsigned int order) 2636 { 2637 if (addr != 0) { 2638 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2639 __free_pages(virt_to_page((void *)addr), order); 2640 } 2641 } 2642 2643 EXPORT_SYMBOL(free_pages); 2644 2645 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2646 { 2647 if (addr) { 2648 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2649 unsigned long used = addr + PAGE_ALIGN(size); 2650 2651 split_page(virt_to_page((void *)addr), order); 2652 while (used < alloc_end) { 2653 free_page(used); 2654 used += PAGE_SIZE; 2655 } 2656 } 2657 return (void *)addr; 2658 } 2659 2660 /** 2661 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2662 * @size: the number of bytes to allocate 2663 * @gfp_mask: GFP flags for the allocation 2664 * 2665 * This function is similar to alloc_pages(), except that it allocates the 2666 * minimum number of pages to satisfy the request. alloc_pages() can only 2667 * allocate memory in power-of-two pages. 2668 * 2669 * This function is also limited by MAX_ORDER. 2670 * 2671 * Memory allocated by this function must be released by free_pages_exact(). 2672 */ 2673 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2674 { 2675 unsigned int order = get_order(size); 2676 unsigned long addr; 2677 2678 addr = __get_free_pages(gfp_mask, order); 2679 return make_alloc_exact(addr, order, size); 2680 } 2681 EXPORT_SYMBOL(alloc_pages_exact); 2682 2683 /** 2684 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2685 * pages on a node. 2686 * @nid: the preferred node ID where memory should be allocated 2687 * @size: the number of bytes to allocate 2688 * @gfp_mask: GFP flags for the allocation 2689 * 2690 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2691 * back. 2692 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2693 * but is not exact. 2694 */ 2695 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2696 { 2697 unsigned order = get_order(size); 2698 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2699 if (!p) 2700 return NULL; 2701 return make_alloc_exact((unsigned long)page_address(p), order, size); 2702 } 2703 EXPORT_SYMBOL(alloc_pages_exact_nid); 2704 2705 /** 2706 * free_pages_exact - release memory allocated via alloc_pages_exact() 2707 * @virt: the value returned by alloc_pages_exact. 2708 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2709 * 2710 * Release the memory allocated by a previous call to alloc_pages_exact. 2711 */ 2712 void free_pages_exact(void *virt, size_t size) 2713 { 2714 unsigned long addr = (unsigned long)virt; 2715 unsigned long end = addr + PAGE_ALIGN(size); 2716 2717 while (addr < end) { 2718 free_page(addr); 2719 addr += PAGE_SIZE; 2720 } 2721 } 2722 EXPORT_SYMBOL(free_pages_exact); 2723 2724 static unsigned int nr_free_zone_pages(int offset) 2725 { 2726 struct zoneref *z; 2727 struct zone *zone; 2728 2729 /* Just pick one node, since fallback list is circular */ 2730 unsigned int sum = 0; 2731 2732 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2733 2734 for_each_zone_zonelist(zone, z, zonelist, offset) { 2735 unsigned long size = zone->present_pages; 2736 unsigned long high = high_wmark_pages(zone); 2737 if (size > high) 2738 sum += size - high; 2739 } 2740 2741 return sum; 2742 } 2743 2744 /* 2745 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2746 */ 2747 unsigned int nr_free_buffer_pages(void) 2748 { 2749 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2750 } 2751 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2752 2753 /* 2754 * Amount of free RAM allocatable within all zones 2755 */ 2756 unsigned int nr_free_pagecache_pages(void) 2757 { 2758 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2759 } 2760 2761 static inline void show_node(struct zone *zone) 2762 { 2763 if (NUMA_BUILD) 2764 printk("Node %d ", zone_to_nid(zone)); 2765 } 2766 2767 void si_meminfo(struct sysinfo *val) 2768 { 2769 val->totalram = totalram_pages; 2770 val->sharedram = 0; 2771 val->freeram = global_page_state(NR_FREE_PAGES); 2772 val->bufferram = nr_blockdev_pages(); 2773 val->totalhigh = totalhigh_pages; 2774 val->freehigh = nr_free_highpages(); 2775 val->mem_unit = PAGE_SIZE; 2776 } 2777 2778 EXPORT_SYMBOL(si_meminfo); 2779 2780 #ifdef CONFIG_NUMA 2781 void si_meminfo_node(struct sysinfo *val, int nid) 2782 { 2783 pg_data_t *pgdat = NODE_DATA(nid); 2784 2785 val->totalram = pgdat->node_present_pages; 2786 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2787 #ifdef CONFIG_HIGHMEM 2788 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2789 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2790 NR_FREE_PAGES); 2791 #else 2792 val->totalhigh = 0; 2793 val->freehigh = 0; 2794 #endif 2795 val->mem_unit = PAGE_SIZE; 2796 } 2797 #endif 2798 2799 /* 2800 * Determine whether the node should be displayed or not, depending on whether 2801 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2802 */ 2803 bool skip_free_areas_node(unsigned int flags, int nid) 2804 { 2805 bool ret = false; 2806 unsigned int cpuset_mems_cookie; 2807 2808 if (!(flags & SHOW_MEM_FILTER_NODES)) 2809 goto out; 2810 2811 do { 2812 cpuset_mems_cookie = get_mems_allowed(); 2813 ret = !node_isset(nid, cpuset_current_mems_allowed); 2814 } while (!put_mems_allowed(cpuset_mems_cookie)); 2815 out: 2816 return ret; 2817 } 2818 2819 #define K(x) ((x) << (PAGE_SHIFT-10)) 2820 2821 /* 2822 * Show free area list (used inside shift_scroll-lock stuff) 2823 * We also calculate the percentage fragmentation. We do this by counting the 2824 * memory on each free list with the exception of the first item on the list. 2825 * Suppresses nodes that are not allowed by current's cpuset if 2826 * SHOW_MEM_FILTER_NODES is passed. 2827 */ 2828 void show_free_areas(unsigned int filter) 2829 { 2830 int cpu; 2831 struct zone *zone; 2832 2833 for_each_populated_zone(zone) { 2834 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2835 continue; 2836 show_node(zone); 2837 printk("%s per-cpu:\n", zone->name); 2838 2839 for_each_online_cpu(cpu) { 2840 struct per_cpu_pageset *pageset; 2841 2842 pageset = per_cpu_ptr(zone->pageset, cpu); 2843 2844 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2845 cpu, pageset->pcp.high, 2846 pageset->pcp.batch, pageset->pcp.count); 2847 } 2848 } 2849 2850 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2851 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2852 " unevictable:%lu" 2853 " dirty:%lu writeback:%lu unstable:%lu\n" 2854 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2855 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2856 global_page_state(NR_ACTIVE_ANON), 2857 global_page_state(NR_INACTIVE_ANON), 2858 global_page_state(NR_ISOLATED_ANON), 2859 global_page_state(NR_ACTIVE_FILE), 2860 global_page_state(NR_INACTIVE_FILE), 2861 global_page_state(NR_ISOLATED_FILE), 2862 global_page_state(NR_UNEVICTABLE), 2863 global_page_state(NR_FILE_DIRTY), 2864 global_page_state(NR_WRITEBACK), 2865 global_page_state(NR_UNSTABLE_NFS), 2866 global_page_state(NR_FREE_PAGES), 2867 global_page_state(NR_SLAB_RECLAIMABLE), 2868 global_page_state(NR_SLAB_UNRECLAIMABLE), 2869 global_page_state(NR_FILE_MAPPED), 2870 global_page_state(NR_SHMEM), 2871 global_page_state(NR_PAGETABLE), 2872 global_page_state(NR_BOUNCE)); 2873 2874 for_each_populated_zone(zone) { 2875 int i; 2876 2877 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2878 continue; 2879 show_node(zone); 2880 printk("%s" 2881 " free:%lukB" 2882 " min:%lukB" 2883 " low:%lukB" 2884 " high:%lukB" 2885 " active_anon:%lukB" 2886 " inactive_anon:%lukB" 2887 " active_file:%lukB" 2888 " inactive_file:%lukB" 2889 " unevictable:%lukB" 2890 " isolated(anon):%lukB" 2891 " isolated(file):%lukB" 2892 " present:%lukB" 2893 " mlocked:%lukB" 2894 " dirty:%lukB" 2895 " writeback:%lukB" 2896 " mapped:%lukB" 2897 " shmem:%lukB" 2898 " slab_reclaimable:%lukB" 2899 " slab_unreclaimable:%lukB" 2900 " kernel_stack:%lukB" 2901 " pagetables:%lukB" 2902 " unstable:%lukB" 2903 " bounce:%lukB" 2904 " writeback_tmp:%lukB" 2905 " pages_scanned:%lu" 2906 " all_unreclaimable? %s" 2907 "\n", 2908 zone->name, 2909 K(zone_page_state(zone, NR_FREE_PAGES)), 2910 K(min_wmark_pages(zone)), 2911 K(low_wmark_pages(zone)), 2912 K(high_wmark_pages(zone)), 2913 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2914 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2915 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2916 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2917 K(zone_page_state(zone, NR_UNEVICTABLE)), 2918 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2919 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2920 K(zone->present_pages), 2921 K(zone_page_state(zone, NR_MLOCK)), 2922 K(zone_page_state(zone, NR_FILE_DIRTY)), 2923 K(zone_page_state(zone, NR_WRITEBACK)), 2924 K(zone_page_state(zone, NR_FILE_MAPPED)), 2925 K(zone_page_state(zone, NR_SHMEM)), 2926 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2927 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2928 zone_page_state(zone, NR_KERNEL_STACK) * 2929 THREAD_SIZE / 1024, 2930 K(zone_page_state(zone, NR_PAGETABLE)), 2931 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2932 K(zone_page_state(zone, NR_BOUNCE)), 2933 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2934 zone->pages_scanned, 2935 (zone->all_unreclaimable ? "yes" : "no") 2936 ); 2937 printk("lowmem_reserve[]:"); 2938 for (i = 0; i < MAX_NR_ZONES; i++) 2939 printk(" %lu", zone->lowmem_reserve[i]); 2940 printk("\n"); 2941 } 2942 2943 for_each_populated_zone(zone) { 2944 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2945 2946 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2947 continue; 2948 show_node(zone); 2949 printk("%s: ", zone->name); 2950 2951 spin_lock_irqsave(&zone->lock, flags); 2952 for (order = 0; order < MAX_ORDER; order++) { 2953 nr[order] = zone->free_area[order].nr_free; 2954 total += nr[order] << order; 2955 } 2956 spin_unlock_irqrestore(&zone->lock, flags); 2957 for (order = 0; order < MAX_ORDER; order++) 2958 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2959 printk("= %lukB\n", K(total)); 2960 } 2961 2962 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2963 2964 show_swap_cache_info(); 2965 } 2966 2967 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2968 { 2969 zoneref->zone = zone; 2970 zoneref->zone_idx = zone_idx(zone); 2971 } 2972 2973 /* 2974 * Builds allocation fallback zone lists. 2975 * 2976 * Add all populated zones of a node to the zonelist. 2977 */ 2978 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2979 int nr_zones, enum zone_type zone_type) 2980 { 2981 struct zone *zone; 2982 2983 BUG_ON(zone_type >= MAX_NR_ZONES); 2984 zone_type++; 2985 2986 do { 2987 zone_type--; 2988 zone = pgdat->node_zones + zone_type; 2989 if (populated_zone(zone)) { 2990 zoneref_set_zone(zone, 2991 &zonelist->_zonerefs[nr_zones++]); 2992 check_highest_zone(zone_type); 2993 } 2994 2995 } while (zone_type); 2996 return nr_zones; 2997 } 2998 2999 3000 /* 3001 * zonelist_order: 3002 * 0 = automatic detection of better ordering. 3003 * 1 = order by ([node] distance, -zonetype) 3004 * 2 = order by (-zonetype, [node] distance) 3005 * 3006 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3007 * the same zonelist. So only NUMA can configure this param. 3008 */ 3009 #define ZONELIST_ORDER_DEFAULT 0 3010 #define ZONELIST_ORDER_NODE 1 3011 #define ZONELIST_ORDER_ZONE 2 3012 3013 /* zonelist order in the kernel. 3014 * set_zonelist_order() will set this to NODE or ZONE. 3015 */ 3016 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3017 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3018 3019 3020 #ifdef CONFIG_NUMA 3021 /* The value user specified ....changed by config */ 3022 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3023 /* string for sysctl */ 3024 #define NUMA_ZONELIST_ORDER_LEN 16 3025 char numa_zonelist_order[16] = "default"; 3026 3027 /* 3028 * interface for configure zonelist ordering. 3029 * command line option "numa_zonelist_order" 3030 * = "[dD]efault - default, automatic configuration. 3031 * = "[nN]ode - order by node locality, then by zone within node 3032 * = "[zZ]one - order by zone, then by locality within zone 3033 */ 3034 3035 static int __parse_numa_zonelist_order(char *s) 3036 { 3037 if (*s == 'd' || *s == 'D') { 3038 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3039 } else if (*s == 'n' || *s == 'N') { 3040 user_zonelist_order = ZONELIST_ORDER_NODE; 3041 } else if (*s == 'z' || *s == 'Z') { 3042 user_zonelist_order = ZONELIST_ORDER_ZONE; 3043 } else { 3044 printk(KERN_WARNING 3045 "Ignoring invalid numa_zonelist_order value: " 3046 "%s\n", s); 3047 return -EINVAL; 3048 } 3049 return 0; 3050 } 3051 3052 static __init int setup_numa_zonelist_order(char *s) 3053 { 3054 int ret; 3055 3056 if (!s) 3057 return 0; 3058 3059 ret = __parse_numa_zonelist_order(s); 3060 if (ret == 0) 3061 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3062 3063 return ret; 3064 } 3065 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3066 3067 /* 3068 * sysctl handler for numa_zonelist_order 3069 */ 3070 int numa_zonelist_order_handler(ctl_table *table, int write, 3071 void __user *buffer, size_t *length, 3072 loff_t *ppos) 3073 { 3074 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3075 int ret; 3076 static DEFINE_MUTEX(zl_order_mutex); 3077 3078 mutex_lock(&zl_order_mutex); 3079 if (write) 3080 strcpy(saved_string, (char*)table->data); 3081 ret = proc_dostring(table, write, buffer, length, ppos); 3082 if (ret) 3083 goto out; 3084 if (write) { 3085 int oldval = user_zonelist_order; 3086 if (__parse_numa_zonelist_order((char*)table->data)) { 3087 /* 3088 * bogus value. restore saved string 3089 */ 3090 strncpy((char*)table->data, saved_string, 3091 NUMA_ZONELIST_ORDER_LEN); 3092 user_zonelist_order = oldval; 3093 } else if (oldval != user_zonelist_order) { 3094 mutex_lock(&zonelists_mutex); 3095 build_all_zonelists(NULL, NULL); 3096 mutex_unlock(&zonelists_mutex); 3097 } 3098 } 3099 out: 3100 mutex_unlock(&zl_order_mutex); 3101 return ret; 3102 } 3103 3104 3105 #define MAX_NODE_LOAD (nr_online_nodes) 3106 static int node_load[MAX_NUMNODES]; 3107 3108 /** 3109 * find_next_best_node - find the next node that should appear in a given node's fallback list 3110 * @node: node whose fallback list we're appending 3111 * @used_node_mask: nodemask_t of already used nodes 3112 * 3113 * We use a number of factors to determine which is the next node that should 3114 * appear on a given node's fallback list. The node should not have appeared 3115 * already in @node's fallback list, and it should be the next closest node 3116 * according to the distance array (which contains arbitrary distance values 3117 * from each node to each node in the system), and should also prefer nodes 3118 * with no CPUs, since presumably they'll have very little allocation pressure 3119 * on them otherwise. 3120 * It returns -1 if no node is found. 3121 */ 3122 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3123 { 3124 int n, val; 3125 int min_val = INT_MAX; 3126 int best_node = -1; 3127 const struct cpumask *tmp = cpumask_of_node(0); 3128 3129 /* Use the local node if we haven't already */ 3130 if (!node_isset(node, *used_node_mask)) { 3131 node_set(node, *used_node_mask); 3132 return node; 3133 } 3134 3135 for_each_node_state(n, N_HIGH_MEMORY) { 3136 3137 /* Don't want a node to appear more than once */ 3138 if (node_isset(n, *used_node_mask)) 3139 continue; 3140 3141 /* Use the distance array to find the distance */ 3142 val = node_distance(node, n); 3143 3144 /* Penalize nodes under us ("prefer the next node") */ 3145 val += (n < node); 3146 3147 /* Give preference to headless and unused nodes */ 3148 tmp = cpumask_of_node(n); 3149 if (!cpumask_empty(tmp)) 3150 val += PENALTY_FOR_NODE_WITH_CPUS; 3151 3152 /* Slight preference for less loaded node */ 3153 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3154 val += node_load[n]; 3155 3156 if (val < min_val) { 3157 min_val = val; 3158 best_node = n; 3159 } 3160 } 3161 3162 if (best_node >= 0) 3163 node_set(best_node, *used_node_mask); 3164 3165 return best_node; 3166 } 3167 3168 3169 /* 3170 * Build zonelists ordered by node and zones within node. 3171 * This results in maximum locality--normal zone overflows into local 3172 * DMA zone, if any--but risks exhausting DMA zone. 3173 */ 3174 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3175 { 3176 int j; 3177 struct zonelist *zonelist; 3178 3179 zonelist = &pgdat->node_zonelists[0]; 3180 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3181 ; 3182 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3183 MAX_NR_ZONES - 1); 3184 zonelist->_zonerefs[j].zone = NULL; 3185 zonelist->_zonerefs[j].zone_idx = 0; 3186 } 3187 3188 /* 3189 * Build gfp_thisnode zonelists 3190 */ 3191 static void build_thisnode_zonelists(pg_data_t *pgdat) 3192 { 3193 int j; 3194 struct zonelist *zonelist; 3195 3196 zonelist = &pgdat->node_zonelists[1]; 3197 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3198 zonelist->_zonerefs[j].zone = NULL; 3199 zonelist->_zonerefs[j].zone_idx = 0; 3200 } 3201 3202 /* 3203 * Build zonelists ordered by zone and nodes within zones. 3204 * This results in conserving DMA zone[s] until all Normal memory is 3205 * exhausted, but results in overflowing to remote node while memory 3206 * may still exist in local DMA zone. 3207 */ 3208 static int node_order[MAX_NUMNODES]; 3209 3210 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3211 { 3212 int pos, j, node; 3213 int zone_type; /* needs to be signed */ 3214 struct zone *z; 3215 struct zonelist *zonelist; 3216 3217 zonelist = &pgdat->node_zonelists[0]; 3218 pos = 0; 3219 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3220 for (j = 0; j < nr_nodes; j++) { 3221 node = node_order[j]; 3222 z = &NODE_DATA(node)->node_zones[zone_type]; 3223 if (populated_zone(z)) { 3224 zoneref_set_zone(z, 3225 &zonelist->_zonerefs[pos++]); 3226 check_highest_zone(zone_type); 3227 } 3228 } 3229 } 3230 zonelist->_zonerefs[pos].zone = NULL; 3231 zonelist->_zonerefs[pos].zone_idx = 0; 3232 } 3233 3234 static int default_zonelist_order(void) 3235 { 3236 int nid, zone_type; 3237 unsigned long low_kmem_size,total_size; 3238 struct zone *z; 3239 int average_size; 3240 /* 3241 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3242 * If they are really small and used heavily, the system can fall 3243 * into OOM very easily. 3244 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3245 */ 3246 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3247 low_kmem_size = 0; 3248 total_size = 0; 3249 for_each_online_node(nid) { 3250 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3251 z = &NODE_DATA(nid)->node_zones[zone_type]; 3252 if (populated_zone(z)) { 3253 if (zone_type < ZONE_NORMAL) 3254 low_kmem_size += z->present_pages; 3255 total_size += z->present_pages; 3256 } else if (zone_type == ZONE_NORMAL) { 3257 /* 3258 * If any node has only lowmem, then node order 3259 * is preferred to allow kernel allocations 3260 * locally; otherwise, they can easily infringe 3261 * on other nodes when there is an abundance of 3262 * lowmem available to allocate from. 3263 */ 3264 return ZONELIST_ORDER_NODE; 3265 } 3266 } 3267 } 3268 if (!low_kmem_size || /* there are no DMA area. */ 3269 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3270 return ZONELIST_ORDER_NODE; 3271 /* 3272 * look into each node's config. 3273 * If there is a node whose DMA/DMA32 memory is very big area on 3274 * local memory, NODE_ORDER may be suitable. 3275 */ 3276 average_size = total_size / 3277 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 3278 for_each_online_node(nid) { 3279 low_kmem_size = 0; 3280 total_size = 0; 3281 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3282 z = &NODE_DATA(nid)->node_zones[zone_type]; 3283 if (populated_zone(z)) { 3284 if (zone_type < ZONE_NORMAL) 3285 low_kmem_size += z->present_pages; 3286 total_size += z->present_pages; 3287 } 3288 } 3289 if (low_kmem_size && 3290 total_size > average_size && /* ignore small node */ 3291 low_kmem_size > total_size * 70/100) 3292 return ZONELIST_ORDER_NODE; 3293 } 3294 return ZONELIST_ORDER_ZONE; 3295 } 3296 3297 static void set_zonelist_order(void) 3298 { 3299 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3300 current_zonelist_order = default_zonelist_order(); 3301 else 3302 current_zonelist_order = user_zonelist_order; 3303 } 3304 3305 static void build_zonelists(pg_data_t *pgdat) 3306 { 3307 int j, node, load; 3308 enum zone_type i; 3309 nodemask_t used_mask; 3310 int local_node, prev_node; 3311 struct zonelist *zonelist; 3312 int order = current_zonelist_order; 3313 3314 /* initialize zonelists */ 3315 for (i = 0; i < MAX_ZONELISTS; i++) { 3316 zonelist = pgdat->node_zonelists + i; 3317 zonelist->_zonerefs[0].zone = NULL; 3318 zonelist->_zonerefs[0].zone_idx = 0; 3319 } 3320 3321 /* NUMA-aware ordering of nodes */ 3322 local_node = pgdat->node_id; 3323 load = nr_online_nodes; 3324 prev_node = local_node; 3325 nodes_clear(used_mask); 3326 3327 memset(node_order, 0, sizeof(node_order)); 3328 j = 0; 3329 3330 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3331 int distance = node_distance(local_node, node); 3332 3333 /* 3334 * If another node is sufficiently far away then it is better 3335 * to reclaim pages in a zone before going off node. 3336 */ 3337 if (distance > RECLAIM_DISTANCE) 3338 zone_reclaim_mode = 1; 3339 3340 /* 3341 * We don't want to pressure a particular node. 3342 * So adding penalty to the first node in same 3343 * distance group to make it round-robin. 3344 */ 3345 if (distance != node_distance(local_node, prev_node)) 3346 node_load[node] = load; 3347 3348 prev_node = node; 3349 load--; 3350 if (order == ZONELIST_ORDER_NODE) 3351 build_zonelists_in_node_order(pgdat, node); 3352 else 3353 node_order[j++] = node; /* remember order */ 3354 } 3355 3356 if (order == ZONELIST_ORDER_ZONE) { 3357 /* calculate node order -- i.e., DMA last! */ 3358 build_zonelists_in_zone_order(pgdat, j); 3359 } 3360 3361 build_thisnode_zonelists(pgdat); 3362 } 3363 3364 /* Construct the zonelist performance cache - see further mmzone.h */ 3365 static void build_zonelist_cache(pg_data_t *pgdat) 3366 { 3367 struct zonelist *zonelist; 3368 struct zonelist_cache *zlc; 3369 struct zoneref *z; 3370 3371 zonelist = &pgdat->node_zonelists[0]; 3372 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3373 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3374 for (z = zonelist->_zonerefs; z->zone; z++) 3375 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3376 } 3377 3378 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3379 /* 3380 * Return node id of node used for "local" allocations. 3381 * I.e., first node id of first zone in arg node's generic zonelist. 3382 * Used for initializing percpu 'numa_mem', which is used primarily 3383 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3384 */ 3385 int local_memory_node(int node) 3386 { 3387 struct zone *zone; 3388 3389 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3390 gfp_zone(GFP_KERNEL), 3391 NULL, 3392 &zone); 3393 return zone->node; 3394 } 3395 #endif 3396 3397 #else /* CONFIG_NUMA */ 3398 3399 static void set_zonelist_order(void) 3400 { 3401 current_zonelist_order = ZONELIST_ORDER_ZONE; 3402 } 3403 3404 static void build_zonelists(pg_data_t *pgdat) 3405 { 3406 int node, local_node; 3407 enum zone_type j; 3408 struct zonelist *zonelist; 3409 3410 local_node = pgdat->node_id; 3411 3412 zonelist = &pgdat->node_zonelists[0]; 3413 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3414 3415 /* 3416 * Now we build the zonelist so that it contains the zones 3417 * of all the other nodes. 3418 * We don't want to pressure a particular node, so when 3419 * building the zones for node N, we make sure that the 3420 * zones coming right after the local ones are those from 3421 * node N+1 (modulo N) 3422 */ 3423 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3424 if (!node_online(node)) 3425 continue; 3426 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3427 MAX_NR_ZONES - 1); 3428 } 3429 for (node = 0; node < local_node; node++) { 3430 if (!node_online(node)) 3431 continue; 3432 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3433 MAX_NR_ZONES - 1); 3434 } 3435 3436 zonelist->_zonerefs[j].zone = NULL; 3437 zonelist->_zonerefs[j].zone_idx = 0; 3438 } 3439 3440 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3441 static void build_zonelist_cache(pg_data_t *pgdat) 3442 { 3443 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3444 } 3445 3446 #endif /* CONFIG_NUMA */ 3447 3448 /* 3449 * Boot pageset table. One per cpu which is going to be used for all 3450 * zones and all nodes. The parameters will be set in such a way 3451 * that an item put on a list will immediately be handed over to 3452 * the buddy list. This is safe since pageset manipulation is done 3453 * with interrupts disabled. 3454 * 3455 * The boot_pagesets must be kept even after bootup is complete for 3456 * unused processors and/or zones. They do play a role for bootstrapping 3457 * hotplugged processors. 3458 * 3459 * zoneinfo_show() and maybe other functions do 3460 * not check if the processor is online before following the pageset pointer. 3461 * Other parts of the kernel may not check if the zone is available. 3462 */ 3463 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3464 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3465 static void setup_zone_pageset(struct zone *zone); 3466 3467 /* 3468 * Global mutex to protect against size modification of zonelists 3469 * as well as to serialize pageset setup for the new populated zone. 3470 */ 3471 DEFINE_MUTEX(zonelists_mutex); 3472 3473 /* return values int ....just for stop_machine() */ 3474 static int __build_all_zonelists(void *data) 3475 { 3476 int nid; 3477 int cpu; 3478 pg_data_t *self = data; 3479 3480 #ifdef CONFIG_NUMA 3481 memset(node_load, 0, sizeof(node_load)); 3482 #endif 3483 3484 if (self && !node_online(self->node_id)) { 3485 build_zonelists(self); 3486 build_zonelist_cache(self); 3487 } 3488 3489 for_each_online_node(nid) { 3490 pg_data_t *pgdat = NODE_DATA(nid); 3491 3492 build_zonelists(pgdat); 3493 build_zonelist_cache(pgdat); 3494 } 3495 3496 /* 3497 * Initialize the boot_pagesets that are going to be used 3498 * for bootstrapping processors. The real pagesets for 3499 * each zone will be allocated later when the per cpu 3500 * allocator is available. 3501 * 3502 * boot_pagesets are used also for bootstrapping offline 3503 * cpus if the system is already booted because the pagesets 3504 * are needed to initialize allocators on a specific cpu too. 3505 * F.e. the percpu allocator needs the page allocator which 3506 * needs the percpu allocator in order to allocate its pagesets 3507 * (a chicken-egg dilemma). 3508 */ 3509 for_each_possible_cpu(cpu) { 3510 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3511 3512 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3513 /* 3514 * We now know the "local memory node" for each node-- 3515 * i.e., the node of the first zone in the generic zonelist. 3516 * Set up numa_mem percpu variable for on-line cpus. During 3517 * boot, only the boot cpu should be on-line; we'll init the 3518 * secondary cpus' numa_mem as they come on-line. During 3519 * node/memory hotplug, we'll fixup all on-line cpus. 3520 */ 3521 if (cpu_online(cpu)) 3522 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3523 #endif 3524 } 3525 3526 return 0; 3527 } 3528 3529 /* 3530 * Called with zonelists_mutex held always 3531 * unless system_state == SYSTEM_BOOTING. 3532 */ 3533 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3534 { 3535 set_zonelist_order(); 3536 3537 if (system_state == SYSTEM_BOOTING) { 3538 __build_all_zonelists(NULL); 3539 mminit_verify_zonelist(); 3540 cpuset_init_current_mems_allowed(); 3541 } else { 3542 /* we have to stop all cpus to guarantee there is no user 3543 of zonelist */ 3544 #ifdef CONFIG_MEMORY_HOTPLUG 3545 if (zone) 3546 setup_zone_pageset(zone); 3547 #endif 3548 stop_machine(__build_all_zonelists, pgdat, NULL); 3549 /* cpuset refresh routine should be here */ 3550 } 3551 vm_total_pages = nr_free_pagecache_pages(); 3552 /* 3553 * Disable grouping by mobility if the number of pages in the 3554 * system is too low to allow the mechanism to work. It would be 3555 * more accurate, but expensive to check per-zone. This check is 3556 * made on memory-hotadd so a system can start with mobility 3557 * disabled and enable it later 3558 */ 3559 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3560 page_group_by_mobility_disabled = 1; 3561 else 3562 page_group_by_mobility_disabled = 0; 3563 3564 printk("Built %i zonelists in %s order, mobility grouping %s. " 3565 "Total pages: %ld\n", 3566 nr_online_nodes, 3567 zonelist_order_name[current_zonelist_order], 3568 page_group_by_mobility_disabled ? "off" : "on", 3569 vm_total_pages); 3570 #ifdef CONFIG_NUMA 3571 printk("Policy zone: %s\n", zone_names[policy_zone]); 3572 #endif 3573 } 3574 3575 /* 3576 * Helper functions to size the waitqueue hash table. 3577 * Essentially these want to choose hash table sizes sufficiently 3578 * large so that collisions trying to wait on pages are rare. 3579 * But in fact, the number of active page waitqueues on typical 3580 * systems is ridiculously low, less than 200. So this is even 3581 * conservative, even though it seems large. 3582 * 3583 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3584 * waitqueues, i.e. the size of the waitq table given the number of pages. 3585 */ 3586 #define PAGES_PER_WAITQUEUE 256 3587 3588 #ifndef CONFIG_MEMORY_HOTPLUG 3589 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3590 { 3591 unsigned long size = 1; 3592 3593 pages /= PAGES_PER_WAITQUEUE; 3594 3595 while (size < pages) 3596 size <<= 1; 3597 3598 /* 3599 * Once we have dozens or even hundreds of threads sleeping 3600 * on IO we've got bigger problems than wait queue collision. 3601 * Limit the size of the wait table to a reasonable size. 3602 */ 3603 size = min(size, 4096UL); 3604 3605 return max(size, 4UL); 3606 } 3607 #else 3608 /* 3609 * A zone's size might be changed by hot-add, so it is not possible to determine 3610 * a suitable size for its wait_table. So we use the maximum size now. 3611 * 3612 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3613 * 3614 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3615 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3616 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3617 * 3618 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3619 * or more by the traditional way. (See above). It equals: 3620 * 3621 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3622 * ia64(16K page size) : = ( 8G + 4M)byte. 3623 * powerpc (64K page size) : = (32G +16M)byte. 3624 */ 3625 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3626 { 3627 return 4096UL; 3628 } 3629 #endif 3630 3631 /* 3632 * This is an integer logarithm so that shifts can be used later 3633 * to extract the more random high bits from the multiplicative 3634 * hash function before the remainder is taken. 3635 */ 3636 static inline unsigned long wait_table_bits(unsigned long size) 3637 { 3638 return ffz(~size); 3639 } 3640 3641 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3642 3643 /* 3644 * Check if a pageblock contains reserved pages 3645 */ 3646 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3647 { 3648 unsigned long pfn; 3649 3650 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3651 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3652 return 1; 3653 } 3654 return 0; 3655 } 3656 3657 /* 3658 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3659 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3660 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3661 * higher will lead to a bigger reserve which will get freed as contiguous 3662 * blocks as reclaim kicks in 3663 */ 3664 static void setup_zone_migrate_reserve(struct zone *zone) 3665 { 3666 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3667 struct page *page; 3668 unsigned long block_migratetype; 3669 int reserve; 3670 3671 /* 3672 * Get the start pfn, end pfn and the number of blocks to reserve 3673 * We have to be careful to be aligned to pageblock_nr_pages to 3674 * make sure that we always check pfn_valid for the first page in 3675 * the block. 3676 */ 3677 start_pfn = zone->zone_start_pfn; 3678 end_pfn = start_pfn + zone->spanned_pages; 3679 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3680 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3681 pageblock_order; 3682 3683 /* 3684 * Reserve blocks are generally in place to help high-order atomic 3685 * allocations that are short-lived. A min_free_kbytes value that 3686 * would result in more than 2 reserve blocks for atomic allocations 3687 * is assumed to be in place to help anti-fragmentation for the 3688 * future allocation of hugepages at runtime. 3689 */ 3690 reserve = min(2, reserve); 3691 3692 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3693 if (!pfn_valid(pfn)) 3694 continue; 3695 page = pfn_to_page(pfn); 3696 3697 /* Watch out for overlapping nodes */ 3698 if (page_to_nid(page) != zone_to_nid(zone)) 3699 continue; 3700 3701 block_migratetype = get_pageblock_migratetype(page); 3702 3703 /* Only test what is necessary when the reserves are not met */ 3704 if (reserve > 0) { 3705 /* 3706 * Blocks with reserved pages will never free, skip 3707 * them. 3708 */ 3709 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3710 if (pageblock_is_reserved(pfn, block_end_pfn)) 3711 continue; 3712 3713 /* If this block is reserved, account for it */ 3714 if (block_migratetype == MIGRATE_RESERVE) { 3715 reserve--; 3716 continue; 3717 } 3718 3719 /* Suitable for reserving if this block is movable */ 3720 if (block_migratetype == MIGRATE_MOVABLE) { 3721 set_pageblock_migratetype(page, 3722 MIGRATE_RESERVE); 3723 move_freepages_block(zone, page, 3724 MIGRATE_RESERVE); 3725 reserve--; 3726 continue; 3727 } 3728 } 3729 3730 /* 3731 * If the reserve is met and this is a previous reserved block, 3732 * take it back 3733 */ 3734 if (block_migratetype == MIGRATE_RESERVE) { 3735 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3736 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3737 } 3738 } 3739 } 3740 3741 /* 3742 * Initially all pages are reserved - free ones are freed 3743 * up by free_all_bootmem() once the early boot process is 3744 * done. Non-atomic initialization, single-pass. 3745 */ 3746 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3747 unsigned long start_pfn, enum memmap_context context) 3748 { 3749 struct page *page; 3750 unsigned long end_pfn = start_pfn + size; 3751 unsigned long pfn; 3752 struct zone *z; 3753 3754 if (highest_memmap_pfn < end_pfn - 1) 3755 highest_memmap_pfn = end_pfn - 1; 3756 3757 z = &NODE_DATA(nid)->node_zones[zone]; 3758 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3759 /* 3760 * There can be holes in boot-time mem_map[]s 3761 * handed to this function. They do not 3762 * exist on hotplugged memory. 3763 */ 3764 if (context == MEMMAP_EARLY) { 3765 if (!early_pfn_valid(pfn)) 3766 continue; 3767 if (!early_pfn_in_nid(pfn, nid)) 3768 continue; 3769 } 3770 page = pfn_to_page(pfn); 3771 set_page_links(page, zone, nid, pfn); 3772 mminit_verify_page_links(page, zone, nid, pfn); 3773 init_page_count(page); 3774 reset_page_mapcount(page); 3775 SetPageReserved(page); 3776 /* 3777 * Mark the block movable so that blocks are reserved for 3778 * movable at startup. This will force kernel allocations 3779 * to reserve their blocks rather than leaking throughout 3780 * the address space during boot when many long-lived 3781 * kernel allocations are made. Later some blocks near 3782 * the start are marked MIGRATE_RESERVE by 3783 * setup_zone_migrate_reserve() 3784 * 3785 * bitmap is created for zone's valid pfn range. but memmap 3786 * can be created for invalid pages (for alignment) 3787 * check here not to call set_pageblock_migratetype() against 3788 * pfn out of zone. 3789 */ 3790 if ((z->zone_start_pfn <= pfn) 3791 && (pfn < z->zone_start_pfn + z->spanned_pages) 3792 && !(pfn & (pageblock_nr_pages - 1))) 3793 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3794 3795 INIT_LIST_HEAD(&page->lru); 3796 #ifdef WANT_PAGE_VIRTUAL 3797 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3798 if (!is_highmem_idx(zone)) 3799 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3800 #endif 3801 } 3802 } 3803 3804 static void __meminit zone_init_free_lists(struct zone *zone) 3805 { 3806 int order, t; 3807 for_each_migratetype_order(order, t) { 3808 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3809 zone->free_area[order].nr_free = 0; 3810 } 3811 } 3812 3813 #ifndef __HAVE_ARCH_MEMMAP_INIT 3814 #define memmap_init(size, nid, zone, start_pfn) \ 3815 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3816 #endif 3817 3818 static int __meminit zone_batchsize(struct zone *zone) 3819 { 3820 #ifdef CONFIG_MMU 3821 int batch; 3822 3823 /* 3824 * The per-cpu-pages pools are set to around 1000th of the 3825 * size of the zone. But no more than 1/2 of a meg. 3826 * 3827 * OK, so we don't know how big the cache is. So guess. 3828 */ 3829 batch = zone->present_pages / 1024; 3830 if (batch * PAGE_SIZE > 512 * 1024) 3831 batch = (512 * 1024) / PAGE_SIZE; 3832 batch /= 4; /* We effectively *= 4 below */ 3833 if (batch < 1) 3834 batch = 1; 3835 3836 /* 3837 * Clamp the batch to a 2^n - 1 value. Having a power 3838 * of 2 value was found to be more likely to have 3839 * suboptimal cache aliasing properties in some cases. 3840 * 3841 * For example if 2 tasks are alternately allocating 3842 * batches of pages, one task can end up with a lot 3843 * of pages of one half of the possible page colors 3844 * and the other with pages of the other colors. 3845 */ 3846 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3847 3848 return batch; 3849 3850 #else 3851 /* The deferral and batching of frees should be suppressed under NOMMU 3852 * conditions. 3853 * 3854 * The problem is that NOMMU needs to be able to allocate large chunks 3855 * of contiguous memory as there's no hardware page translation to 3856 * assemble apparent contiguous memory from discontiguous pages. 3857 * 3858 * Queueing large contiguous runs of pages for batching, however, 3859 * causes the pages to actually be freed in smaller chunks. As there 3860 * can be a significant delay between the individual batches being 3861 * recycled, this leads to the once large chunks of space being 3862 * fragmented and becoming unavailable for high-order allocations. 3863 */ 3864 return 0; 3865 #endif 3866 } 3867 3868 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3869 { 3870 struct per_cpu_pages *pcp; 3871 int migratetype; 3872 3873 memset(p, 0, sizeof(*p)); 3874 3875 pcp = &p->pcp; 3876 pcp->count = 0; 3877 pcp->high = 6 * batch; 3878 pcp->batch = max(1UL, 1 * batch); 3879 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3880 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3881 } 3882 3883 /* 3884 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3885 * to the value high for the pageset p. 3886 */ 3887 3888 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3889 unsigned long high) 3890 { 3891 struct per_cpu_pages *pcp; 3892 3893 pcp = &p->pcp; 3894 pcp->high = high; 3895 pcp->batch = max(1UL, high/4); 3896 if ((high/4) > (PAGE_SHIFT * 8)) 3897 pcp->batch = PAGE_SHIFT * 8; 3898 } 3899 3900 static void __meminit setup_zone_pageset(struct zone *zone) 3901 { 3902 int cpu; 3903 3904 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3905 3906 for_each_possible_cpu(cpu) { 3907 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3908 3909 setup_pageset(pcp, zone_batchsize(zone)); 3910 3911 if (percpu_pagelist_fraction) 3912 setup_pagelist_highmark(pcp, 3913 (zone->present_pages / 3914 percpu_pagelist_fraction)); 3915 } 3916 } 3917 3918 /* 3919 * Allocate per cpu pagesets and initialize them. 3920 * Before this call only boot pagesets were available. 3921 */ 3922 void __init setup_per_cpu_pageset(void) 3923 { 3924 struct zone *zone; 3925 3926 for_each_populated_zone(zone) 3927 setup_zone_pageset(zone); 3928 } 3929 3930 static noinline __init_refok 3931 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3932 { 3933 int i; 3934 struct pglist_data *pgdat = zone->zone_pgdat; 3935 size_t alloc_size; 3936 3937 /* 3938 * The per-page waitqueue mechanism uses hashed waitqueues 3939 * per zone. 3940 */ 3941 zone->wait_table_hash_nr_entries = 3942 wait_table_hash_nr_entries(zone_size_pages); 3943 zone->wait_table_bits = 3944 wait_table_bits(zone->wait_table_hash_nr_entries); 3945 alloc_size = zone->wait_table_hash_nr_entries 3946 * sizeof(wait_queue_head_t); 3947 3948 if (!slab_is_available()) { 3949 zone->wait_table = (wait_queue_head_t *) 3950 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3951 } else { 3952 /* 3953 * This case means that a zone whose size was 0 gets new memory 3954 * via memory hot-add. 3955 * But it may be the case that a new node was hot-added. In 3956 * this case vmalloc() will not be able to use this new node's 3957 * memory - this wait_table must be initialized to use this new 3958 * node itself as well. 3959 * To use this new node's memory, further consideration will be 3960 * necessary. 3961 */ 3962 zone->wait_table = vmalloc(alloc_size); 3963 } 3964 if (!zone->wait_table) 3965 return -ENOMEM; 3966 3967 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3968 init_waitqueue_head(zone->wait_table + i); 3969 3970 return 0; 3971 } 3972 3973 static __meminit void zone_pcp_init(struct zone *zone) 3974 { 3975 /* 3976 * per cpu subsystem is not up at this point. The following code 3977 * relies on the ability of the linker to provide the 3978 * offset of a (static) per cpu variable into the per cpu area. 3979 */ 3980 zone->pageset = &boot_pageset; 3981 3982 if (zone->present_pages) 3983 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3984 zone->name, zone->present_pages, 3985 zone_batchsize(zone)); 3986 } 3987 3988 int __meminit init_currently_empty_zone(struct zone *zone, 3989 unsigned long zone_start_pfn, 3990 unsigned long size, 3991 enum memmap_context context) 3992 { 3993 struct pglist_data *pgdat = zone->zone_pgdat; 3994 int ret; 3995 ret = zone_wait_table_init(zone, size); 3996 if (ret) 3997 return ret; 3998 pgdat->nr_zones = zone_idx(zone) + 1; 3999 4000 zone->zone_start_pfn = zone_start_pfn; 4001 4002 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4003 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4004 pgdat->node_id, 4005 (unsigned long)zone_idx(zone), 4006 zone_start_pfn, (zone_start_pfn + size)); 4007 4008 zone_init_free_lists(zone); 4009 4010 return 0; 4011 } 4012 4013 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4014 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4015 /* 4016 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4017 * Architectures may implement their own version but if add_active_range() 4018 * was used and there are no special requirements, this is a convenient 4019 * alternative 4020 */ 4021 int __meminit __early_pfn_to_nid(unsigned long pfn) 4022 { 4023 unsigned long start_pfn, end_pfn; 4024 int i, nid; 4025 4026 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4027 if (start_pfn <= pfn && pfn < end_pfn) 4028 return nid; 4029 /* This is a memory hole */ 4030 return -1; 4031 } 4032 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4033 4034 int __meminit early_pfn_to_nid(unsigned long pfn) 4035 { 4036 int nid; 4037 4038 nid = __early_pfn_to_nid(pfn); 4039 if (nid >= 0) 4040 return nid; 4041 /* just returns 0 */ 4042 return 0; 4043 } 4044 4045 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4046 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4047 { 4048 int nid; 4049 4050 nid = __early_pfn_to_nid(pfn); 4051 if (nid >= 0 && nid != node) 4052 return false; 4053 return true; 4054 } 4055 #endif 4056 4057 /** 4058 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4059 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4060 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4061 * 4062 * If an architecture guarantees that all ranges registered with 4063 * add_active_ranges() contain no holes and may be freed, this 4064 * this function may be used instead of calling free_bootmem() manually. 4065 */ 4066 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4067 { 4068 unsigned long start_pfn, end_pfn; 4069 int i, this_nid; 4070 4071 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4072 start_pfn = min(start_pfn, max_low_pfn); 4073 end_pfn = min(end_pfn, max_low_pfn); 4074 4075 if (start_pfn < end_pfn) 4076 free_bootmem_node(NODE_DATA(this_nid), 4077 PFN_PHYS(start_pfn), 4078 (end_pfn - start_pfn) << PAGE_SHIFT); 4079 } 4080 } 4081 4082 /** 4083 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4084 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4085 * 4086 * If an architecture guarantees that all ranges registered with 4087 * add_active_ranges() contain no holes and may be freed, this 4088 * function may be used instead of calling memory_present() manually. 4089 */ 4090 void __init sparse_memory_present_with_active_regions(int nid) 4091 { 4092 unsigned long start_pfn, end_pfn; 4093 int i, this_nid; 4094 4095 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4096 memory_present(this_nid, start_pfn, end_pfn); 4097 } 4098 4099 /** 4100 * get_pfn_range_for_nid - Return the start and end page frames for a node 4101 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4102 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4103 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4104 * 4105 * It returns the start and end page frame of a node based on information 4106 * provided by an arch calling add_active_range(). If called for a node 4107 * with no available memory, a warning is printed and the start and end 4108 * PFNs will be 0. 4109 */ 4110 void __meminit get_pfn_range_for_nid(unsigned int nid, 4111 unsigned long *start_pfn, unsigned long *end_pfn) 4112 { 4113 unsigned long this_start_pfn, this_end_pfn; 4114 int i; 4115 4116 *start_pfn = -1UL; 4117 *end_pfn = 0; 4118 4119 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4120 *start_pfn = min(*start_pfn, this_start_pfn); 4121 *end_pfn = max(*end_pfn, this_end_pfn); 4122 } 4123 4124 if (*start_pfn == -1UL) 4125 *start_pfn = 0; 4126 } 4127 4128 /* 4129 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4130 * assumption is made that zones within a node are ordered in monotonic 4131 * increasing memory addresses so that the "highest" populated zone is used 4132 */ 4133 static void __init find_usable_zone_for_movable(void) 4134 { 4135 int zone_index; 4136 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4137 if (zone_index == ZONE_MOVABLE) 4138 continue; 4139 4140 if (arch_zone_highest_possible_pfn[zone_index] > 4141 arch_zone_lowest_possible_pfn[zone_index]) 4142 break; 4143 } 4144 4145 VM_BUG_ON(zone_index == -1); 4146 movable_zone = zone_index; 4147 } 4148 4149 /* 4150 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4151 * because it is sized independent of architecture. Unlike the other zones, 4152 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4153 * in each node depending on the size of each node and how evenly kernelcore 4154 * is distributed. This helper function adjusts the zone ranges 4155 * provided by the architecture for a given node by using the end of the 4156 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4157 * zones within a node are in order of monotonic increases memory addresses 4158 */ 4159 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4160 unsigned long zone_type, 4161 unsigned long node_start_pfn, 4162 unsigned long node_end_pfn, 4163 unsigned long *zone_start_pfn, 4164 unsigned long *zone_end_pfn) 4165 { 4166 /* Only adjust if ZONE_MOVABLE is on this node */ 4167 if (zone_movable_pfn[nid]) { 4168 /* Size ZONE_MOVABLE */ 4169 if (zone_type == ZONE_MOVABLE) { 4170 *zone_start_pfn = zone_movable_pfn[nid]; 4171 *zone_end_pfn = min(node_end_pfn, 4172 arch_zone_highest_possible_pfn[movable_zone]); 4173 4174 /* Adjust for ZONE_MOVABLE starting within this range */ 4175 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4176 *zone_end_pfn > zone_movable_pfn[nid]) { 4177 *zone_end_pfn = zone_movable_pfn[nid]; 4178 4179 /* Check if this whole range is within ZONE_MOVABLE */ 4180 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4181 *zone_start_pfn = *zone_end_pfn; 4182 } 4183 } 4184 4185 /* 4186 * Return the number of pages a zone spans in a node, including holes 4187 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4188 */ 4189 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4190 unsigned long zone_type, 4191 unsigned long *ignored) 4192 { 4193 unsigned long node_start_pfn, node_end_pfn; 4194 unsigned long zone_start_pfn, zone_end_pfn; 4195 4196 /* Get the start and end of the node and zone */ 4197 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4198 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4199 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4200 adjust_zone_range_for_zone_movable(nid, zone_type, 4201 node_start_pfn, node_end_pfn, 4202 &zone_start_pfn, &zone_end_pfn); 4203 4204 /* Check that this node has pages within the zone's required range */ 4205 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4206 return 0; 4207 4208 /* Move the zone boundaries inside the node if necessary */ 4209 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4210 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4211 4212 /* Return the spanned pages */ 4213 return zone_end_pfn - zone_start_pfn; 4214 } 4215 4216 /* 4217 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4218 * then all holes in the requested range will be accounted for. 4219 */ 4220 unsigned long __meminit __absent_pages_in_range(int nid, 4221 unsigned long range_start_pfn, 4222 unsigned long range_end_pfn) 4223 { 4224 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4225 unsigned long start_pfn, end_pfn; 4226 int i; 4227 4228 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4229 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4230 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4231 nr_absent -= end_pfn - start_pfn; 4232 } 4233 return nr_absent; 4234 } 4235 4236 /** 4237 * absent_pages_in_range - Return number of page frames in holes within a range 4238 * @start_pfn: The start PFN to start searching for holes 4239 * @end_pfn: The end PFN to stop searching for holes 4240 * 4241 * It returns the number of pages frames in memory holes within a range. 4242 */ 4243 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4244 unsigned long end_pfn) 4245 { 4246 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4247 } 4248 4249 /* Return the number of page frames in holes in a zone on a node */ 4250 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4251 unsigned long zone_type, 4252 unsigned long *ignored) 4253 { 4254 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4255 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4256 unsigned long node_start_pfn, node_end_pfn; 4257 unsigned long zone_start_pfn, zone_end_pfn; 4258 4259 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4260 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4261 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4262 4263 adjust_zone_range_for_zone_movable(nid, zone_type, 4264 node_start_pfn, node_end_pfn, 4265 &zone_start_pfn, &zone_end_pfn); 4266 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4267 } 4268 4269 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4270 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4271 unsigned long zone_type, 4272 unsigned long *zones_size) 4273 { 4274 return zones_size[zone_type]; 4275 } 4276 4277 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4278 unsigned long zone_type, 4279 unsigned long *zholes_size) 4280 { 4281 if (!zholes_size) 4282 return 0; 4283 4284 return zholes_size[zone_type]; 4285 } 4286 4287 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4288 4289 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4290 unsigned long *zones_size, unsigned long *zholes_size) 4291 { 4292 unsigned long realtotalpages, totalpages = 0; 4293 enum zone_type i; 4294 4295 for (i = 0; i < MAX_NR_ZONES; i++) 4296 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4297 zones_size); 4298 pgdat->node_spanned_pages = totalpages; 4299 4300 realtotalpages = totalpages; 4301 for (i = 0; i < MAX_NR_ZONES; i++) 4302 realtotalpages -= 4303 zone_absent_pages_in_node(pgdat->node_id, i, 4304 zholes_size); 4305 pgdat->node_present_pages = realtotalpages; 4306 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4307 realtotalpages); 4308 } 4309 4310 #ifndef CONFIG_SPARSEMEM 4311 /* 4312 * Calculate the size of the zone->blockflags rounded to an unsigned long 4313 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4314 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4315 * round what is now in bits to nearest long in bits, then return it in 4316 * bytes. 4317 */ 4318 static unsigned long __init usemap_size(unsigned long zonesize) 4319 { 4320 unsigned long usemapsize; 4321 4322 usemapsize = roundup(zonesize, pageblock_nr_pages); 4323 usemapsize = usemapsize >> pageblock_order; 4324 usemapsize *= NR_PAGEBLOCK_BITS; 4325 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4326 4327 return usemapsize / 8; 4328 } 4329 4330 static void __init setup_usemap(struct pglist_data *pgdat, 4331 struct zone *zone, unsigned long zonesize) 4332 { 4333 unsigned long usemapsize = usemap_size(zonesize); 4334 zone->pageblock_flags = NULL; 4335 if (usemapsize) 4336 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4337 usemapsize); 4338 } 4339 #else 4340 static inline void setup_usemap(struct pglist_data *pgdat, 4341 struct zone *zone, unsigned long zonesize) {} 4342 #endif /* CONFIG_SPARSEMEM */ 4343 4344 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4345 4346 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4347 void __init set_pageblock_order(void) 4348 { 4349 unsigned int order; 4350 4351 /* Check that pageblock_nr_pages has not already been setup */ 4352 if (pageblock_order) 4353 return; 4354 4355 if (HPAGE_SHIFT > PAGE_SHIFT) 4356 order = HUGETLB_PAGE_ORDER; 4357 else 4358 order = MAX_ORDER - 1; 4359 4360 /* 4361 * Assume the largest contiguous order of interest is a huge page. 4362 * This value may be variable depending on boot parameters on IA64 and 4363 * powerpc. 4364 */ 4365 pageblock_order = order; 4366 } 4367 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4368 4369 /* 4370 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4371 * is unused as pageblock_order is set at compile-time. See 4372 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4373 * the kernel config 4374 */ 4375 void __init set_pageblock_order(void) 4376 { 4377 } 4378 4379 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4380 4381 /* 4382 * Set up the zone data structures: 4383 * - mark all pages reserved 4384 * - mark all memory queues empty 4385 * - clear the memory bitmaps 4386 * 4387 * NOTE: pgdat should get zeroed by caller. 4388 */ 4389 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4390 unsigned long *zones_size, unsigned long *zholes_size) 4391 { 4392 enum zone_type j; 4393 int nid = pgdat->node_id; 4394 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4395 int ret; 4396 4397 pgdat_resize_init(pgdat); 4398 init_waitqueue_head(&pgdat->kswapd_wait); 4399 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4400 pgdat_page_cgroup_init(pgdat); 4401 4402 for (j = 0; j < MAX_NR_ZONES; j++) { 4403 struct zone *zone = pgdat->node_zones + j; 4404 unsigned long size, realsize, memmap_pages; 4405 4406 size = zone_spanned_pages_in_node(nid, j, zones_size); 4407 realsize = size - zone_absent_pages_in_node(nid, j, 4408 zholes_size); 4409 4410 /* 4411 * Adjust realsize so that it accounts for how much memory 4412 * is used by this zone for memmap. This affects the watermark 4413 * and per-cpu initialisations 4414 */ 4415 memmap_pages = 4416 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4417 if (realsize >= memmap_pages) { 4418 realsize -= memmap_pages; 4419 if (memmap_pages) 4420 printk(KERN_DEBUG 4421 " %s zone: %lu pages used for memmap\n", 4422 zone_names[j], memmap_pages); 4423 } else 4424 printk(KERN_WARNING 4425 " %s zone: %lu pages exceeds realsize %lu\n", 4426 zone_names[j], memmap_pages, realsize); 4427 4428 /* Account for reserved pages */ 4429 if (j == 0 && realsize > dma_reserve) { 4430 realsize -= dma_reserve; 4431 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4432 zone_names[0], dma_reserve); 4433 } 4434 4435 if (!is_highmem_idx(j)) 4436 nr_kernel_pages += realsize; 4437 nr_all_pages += realsize; 4438 4439 zone->spanned_pages = size; 4440 zone->present_pages = realsize; 4441 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 4442 zone->compact_cached_free_pfn = zone->zone_start_pfn + 4443 zone->spanned_pages; 4444 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1); 4445 #endif 4446 #ifdef CONFIG_NUMA 4447 zone->node = nid; 4448 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4449 / 100; 4450 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4451 #endif 4452 zone->name = zone_names[j]; 4453 spin_lock_init(&zone->lock); 4454 spin_lock_init(&zone->lru_lock); 4455 zone_seqlock_init(zone); 4456 zone->zone_pgdat = pgdat; 4457 4458 zone_pcp_init(zone); 4459 lruvec_init(&zone->lruvec, zone); 4460 if (!size) 4461 continue; 4462 4463 set_pageblock_order(); 4464 setup_usemap(pgdat, zone, size); 4465 ret = init_currently_empty_zone(zone, zone_start_pfn, 4466 size, MEMMAP_EARLY); 4467 BUG_ON(ret); 4468 memmap_init(size, nid, j, zone_start_pfn); 4469 zone_start_pfn += size; 4470 } 4471 } 4472 4473 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4474 { 4475 /* Skip empty nodes */ 4476 if (!pgdat->node_spanned_pages) 4477 return; 4478 4479 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4480 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4481 if (!pgdat->node_mem_map) { 4482 unsigned long size, start, end; 4483 struct page *map; 4484 4485 /* 4486 * The zone's endpoints aren't required to be MAX_ORDER 4487 * aligned but the node_mem_map endpoints must be in order 4488 * for the buddy allocator to function correctly. 4489 */ 4490 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4491 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4492 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4493 size = (end - start) * sizeof(struct page); 4494 map = alloc_remap(pgdat->node_id, size); 4495 if (!map) 4496 map = alloc_bootmem_node_nopanic(pgdat, size); 4497 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4498 } 4499 #ifndef CONFIG_NEED_MULTIPLE_NODES 4500 /* 4501 * With no DISCONTIG, the global mem_map is just set as node 0's 4502 */ 4503 if (pgdat == NODE_DATA(0)) { 4504 mem_map = NODE_DATA(0)->node_mem_map; 4505 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4506 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4507 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4508 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4509 } 4510 #endif 4511 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4512 } 4513 4514 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4515 unsigned long node_start_pfn, unsigned long *zholes_size) 4516 { 4517 pg_data_t *pgdat = NODE_DATA(nid); 4518 4519 /* pg_data_t should be reset to zero when it's allocated */ 4520 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4521 4522 pgdat->node_id = nid; 4523 pgdat->node_start_pfn = node_start_pfn; 4524 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4525 4526 alloc_node_mem_map(pgdat); 4527 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4528 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4529 nid, (unsigned long)pgdat, 4530 (unsigned long)pgdat->node_mem_map); 4531 #endif 4532 4533 free_area_init_core(pgdat, zones_size, zholes_size); 4534 } 4535 4536 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4537 4538 #if MAX_NUMNODES > 1 4539 /* 4540 * Figure out the number of possible node ids. 4541 */ 4542 static void __init setup_nr_node_ids(void) 4543 { 4544 unsigned int node; 4545 unsigned int highest = 0; 4546 4547 for_each_node_mask(node, node_possible_map) 4548 highest = node; 4549 nr_node_ids = highest + 1; 4550 } 4551 #else 4552 static inline void setup_nr_node_ids(void) 4553 { 4554 } 4555 #endif 4556 4557 /** 4558 * node_map_pfn_alignment - determine the maximum internode alignment 4559 * 4560 * This function should be called after node map is populated and sorted. 4561 * It calculates the maximum power of two alignment which can distinguish 4562 * all the nodes. 4563 * 4564 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4565 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4566 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4567 * shifted, 1GiB is enough and this function will indicate so. 4568 * 4569 * This is used to test whether pfn -> nid mapping of the chosen memory 4570 * model has fine enough granularity to avoid incorrect mapping for the 4571 * populated node map. 4572 * 4573 * Returns the determined alignment in pfn's. 0 if there is no alignment 4574 * requirement (single node). 4575 */ 4576 unsigned long __init node_map_pfn_alignment(void) 4577 { 4578 unsigned long accl_mask = 0, last_end = 0; 4579 unsigned long start, end, mask; 4580 int last_nid = -1; 4581 int i, nid; 4582 4583 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4584 if (!start || last_nid < 0 || last_nid == nid) { 4585 last_nid = nid; 4586 last_end = end; 4587 continue; 4588 } 4589 4590 /* 4591 * Start with a mask granular enough to pin-point to the 4592 * start pfn and tick off bits one-by-one until it becomes 4593 * too coarse to separate the current node from the last. 4594 */ 4595 mask = ~((1 << __ffs(start)) - 1); 4596 while (mask && last_end <= (start & (mask << 1))) 4597 mask <<= 1; 4598 4599 /* accumulate all internode masks */ 4600 accl_mask |= mask; 4601 } 4602 4603 /* convert mask to number of pages */ 4604 return ~accl_mask + 1; 4605 } 4606 4607 /* Find the lowest pfn for a node */ 4608 static unsigned long __init find_min_pfn_for_node(int nid) 4609 { 4610 unsigned long min_pfn = ULONG_MAX; 4611 unsigned long start_pfn; 4612 int i; 4613 4614 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4615 min_pfn = min(min_pfn, start_pfn); 4616 4617 if (min_pfn == ULONG_MAX) { 4618 printk(KERN_WARNING 4619 "Could not find start_pfn for node %d\n", nid); 4620 return 0; 4621 } 4622 4623 return min_pfn; 4624 } 4625 4626 /** 4627 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4628 * 4629 * It returns the minimum PFN based on information provided via 4630 * add_active_range(). 4631 */ 4632 unsigned long __init find_min_pfn_with_active_regions(void) 4633 { 4634 return find_min_pfn_for_node(MAX_NUMNODES); 4635 } 4636 4637 /* 4638 * early_calculate_totalpages() 4639 * Sum pages in active regions for movable zone. 4640 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4641 */ 4642 static unsigned long __init early_calculate_totalpages(void) 4643 { 4644 unsigned long totalpages = 0; 4645 unsigned long start_pfn, end_pfn; 4646 int i, nid; 4647 4648 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4649 unsigned long pages = end_pfn - start_pfn; 4650 4651 totalpages += pages; 4652 if (pages) 4653 node_set_state(nid, N_HIGH_MEMORY); 4654 } 4655 return totalpages; 4656 } 4657 4658 /* 4659 * Find the PFN the Movable zone begins in each node. Kernel memory 4660 * is spread evenly between nodes as long as the nodes have enough 4661 * memory. When they don't, some nodes will have more kernelcore than 4662 * others 4663 */ 4664 static void __init find_zone_movable_pfns_for_nodes(void) 4665 { 4666 int i, nid; 4667 unsigned long usable_startpfn; 4668 unsigned long kernelcore_node, kernelcore_remaining; 4669 /* save the state before borrow the nodemask */ 4670 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4671 unsigned long totalpages = early_calculate_totalpages(); 4672 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4673 4674 /* 4675 * If movablecore was specified, calculate what size of 4676 * kernelcore that corresponds so that memory usable for 4677 * any allocation type is evenly spread. If both kernelcore 4678 * and movablecore are specified, then the value of kernelcore 4679 * will be used for required_kernelcore if it's greater than 4680 * what movablecore would have allowed. 4681 */ 4682 if (required_movablecore) { 4683 unsigned long corepages; 4684 4685 /* 4686 * Round-up so that ZONE_MOVABLE is at least as large as what 4687 * was requested by the user 4688 */ 4689 required_movablecore = 4690 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4691 corepages = totalpages - required_movablecore; 4692 4693 required_kernelcore = max(required_kernelcore, corepages); 4694 } 4695 4696 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4697 if (!required_kernelcore) 4698 goto out; 4699 4700 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4701 find_usable_zone_for_movable(); 4702 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4703 4704 restart: 4705 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4706 kernelcore_node = required_kernelcore / usable_nodes; 4707 for_each_node_state(nid, N_HIGH_MEMORY) { 4708 unsigned long start_pfn, end_pfn; 4709 4710 /* 4711 * Recalculate kernelcore_node if the division per node 4712 * now exceeds what is necessary to satisfy the requested 4713 * amount of memory for the kernel 4714 */ 4715 if (required_kernelcore < kernelcore_node) 4716 kernelcore_node = required_kernelcore / usable_nodes; 4717 4718 /* 4719 * As the map is walked, we track how much memory is usable 4720 * by the kernel using kernelcore_remaining. When it is 4721 * 0, the rest of the node is usable by ZONE_MOVABLE 4722 */ 4723 kernelcore_remaining = kernelcore_node; 4724 4725 /* Go through each range of PFNs within this node */ 4726 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4727 unsigned long size_pages; 4728 4729 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4730 if (start_pfn >= end_pfn) 4731 continue; 4732 4733 /* Account for what is only usable for kernelcore */ 4734 if (start_pfn < usable_startpfn) { 4735 unsigned long kernel_pages; 4736 kernel_pages = min(end_pfn, usable_startpfn) 4737 - start_pfn; 4738 4739 kernelcore_remaining -= min(kernel_pages, 4740 kernelcore_remaining); 4741 required_kernelcore -= min(kernel_pages, 4742 required_kernelcore); 4743 4744 /* Continue if range is now fully accounted */ 4745 if (end_pfn <= usable_startpfn) { 4746 4747 /* 4748 * Push zone_movable_pfn to the end so 4749 * that if we have to rebalance 4750 * kernelcore across nodes, we will 4751 * not double account here 4752 */ 4753 zone_movable_pfn[nid] = end_pfn; 4754 continue; 4755 } 4756 start_pfn = usable_startpfn; 4757 } 4758 4759 /* 4760 * The usable PFN range for ZONE_MOVABLE is from 4761 * start_pfn->end_pfn. Calculate size_pages as the 4762 * number of pages used as kernelcore 4763 */ 4764 size_pages = end_pfn - start_pfn; 4765 if (size_pages > kernelcore_remaining) 4766 size_pages = kernelcore_remaining; 4767 zone_movable_pfn[nid] = start_pfn + size_pages; 4768 4769 /* 4770 * Some kernelcore has been met, update counts and 4771 * break if the kernelcore for this node has been 4772 * satisified 4773 */ 4774 required_kernelcore -= min(required_kernelcore, 4775 size_pages); 4776 kernelcore_remaining -= size_pages; 4777 if (!kernelcore_remaining) 4778 break; 4779 } 4780 } 4781 4782 /* 4783 * If there is still required_kernelcore, we do another pass with one 4784 * less node in the count. This will push zone_movable_pfn[nid] further 4785 * along on the nodes that still have memory until kernelcore is 4786 * satisified 4787 */ 4788 usable_nodes--; 4789 if (usable_nodes && required_kernelcore > usable_nodes) 4790 goto restart; 4791 4792 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4793 for (nid = 0; nid < MAX_NUMNODES; nid++) 4794 zone_movable_pfn[nid] = 4795 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4796 4797 out: 4798 /* restore the node_state */ 4799 node_states[N_HIGH_MEMORY] = saved_node_state; 4800 } 4801 4802 /* Any regular memory on that node ? */ 4803 static void __init check_for_regular_memory(pg_data_t *pgdat) 4804 { 4805 #ifdef CONFIG_HIGHMEM 4806 enum zone_type zone_type; 4807 4808 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4809 struct zone *zone = &pgdat->node_zones[zone_type]; 4810 if (zone->present_pages) { 4811 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4812 break; 4813 } 4814 } 4815 #endif 4816 } 4817 4818 /** 4819 * free_area_init_nodes - Initialise all pg_data_t and zone data 4820 * @max_zone_pfn: an array of max PFNs for each zone 4821 * 4822 * This will call free_area_init_node() for each active node in the system. 4823 * Using the page ranges provided by add_active_range(), the size of each 4824 * zone in each node and their holes is calculated. If the maximum PFN 4825 * between two adjacent zones match, it is assumed that the zone is empty. 4826 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4827 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4828 * starts where the previous one ended. For example, ZONE_DMA32 starts 4829 * at arch_max_dma_pfn. 4830 */ 4831 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4832 { 4833 unsigned long start_pfn, end_pfn; 4834 int i, nid; 4835 4836 /* Record where the zone boundaries are */ 4837 memset(arch_zone_lowest_possible_pfn, 0, 4838 sizeof(arch_zone_lowest_possible_pfn)); 4839 memset(arch_zone_highest_possible_pfn, 0, 4840 sizeof(arch_zone_highest_possible_pfn)); 4841 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4842 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4843 for (i = 1; i < MAX_NR_ZONES; i++) { 4844 if (i == ZONE_MOVABLE) 4845 continue; 4846 arch_zone_lowest_possible_pfn[i] = 4847 arch_zone_highest_possible_pfn[i-1]; 4848 arch_zone_highest_possible_pfn[i] = 4849 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4850 } 4851 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4852 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4853 4854 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4855 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4856 find_zone_movable_pfns_for_nodes(); 4857 4858 /* Print out the zone ranges */ 4859 printk("Zone ranges:\n"); 4860 for (i = 0; i < MAX_NR_ZONES; i++) { 4861 if (i == ZONE_MOVABLE) 4862 continue; 4863 printk(KERN_CONT " %-8s ", zone_names[i]); 4864 if (arch_zone_lowest_possible_pfn[i] == 4865 arch_zone_highest_possible_pfn[i]) 4866 printk(KERN_CONT "empty\n"); 4867 else 4868 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 4869 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 4870 (arch_zone_highest_possible_pfn[i] 4871 << PAGE_SHIFT) - 1); 4872 } 4873 4874 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4875 printk("Movable zone start for each node\n"); 4876 for (i = 0; i < MAX_NUMNODES; i++) { 4877 if (zone_movable_pfn[i]) 4878 printk(" Node %d: %#010lx\n", i, 4879 zone_movable_pfn[i] << PAGE_SHIFT); 4880 } 4881 4882 /* Print out the early_node_map[] */ 4883 printk("Early memory node ranges\n"); 4884 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4885 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 4886 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 4887 4888 /* Initialise every node */ 4889 mminit_verify_pageflags_layout(); 4890 setup_nr_node_ids(); 4891 for_each_online_node(nid) { 4892 pg_data_t *pgdat = NODE_DATA(nid); 4893 free_area_init_node(nid, NULL, 4894 find_min_pfn_for_node(nid), NULL); 4895 4896 /* Any memory on that node */ 4897 if (pgdat->node_present_pages) 4898 node_set_state(nid, N_HIGH_MEMORY); 4899 check_for_regular_memory(pgdat); 4900 } 4901 } 4902 4903 static int __init cmdline_parse_core(char *p, unsigned long *core) 4904 { 4905 unsigned long long coremem; 4906 if (!p) 4907 return -EINVAL; 4908 4909 coremem = memparse(p, &p); 4910 *core = coremem >> PAGE_SHIFT; 4911 4912 /* Paranoid check that UL is enough for the coremem value */ 4913 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4914 4915 return 0; 4916 } 4917 4918 /* 4919 * kernelcore=size sets the amount of memory for use for allocations that 4920 * cannot be reclaimed or migrated. 4921 */ 4922 static int __init cmdline_parse_kernelcore(char *p) 4923 { 4924 return cmdline_parse_core(p, &required_kernelcore); 4925 } 4926 4927 /* 4928 * movablecore=size sets the amount of memory for use for allocations that 4929 * can be reclaimed or migrated. 4930 */ 4931 static int __init cmdline_parse_movablecore(char *p) 4932 { 4933 return cmdline_parse_core(p, &required_movablecore); 4934 } 4935 4936 early_param("kernelcore", cmdline_parse_kernelcore); 4937 early_param("movablecore", cmdline_parse_movablecore); 4938 4939 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4940 4941 /** 4942 * set_dma_reserve - set the specified number of pages reserved in the first zone 4943 * @new_dma_reserve: The number of pages to mark reserved 4944 * 4945 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4946 * In the DMA zone, a significant percentage may be consumed by kernel image 4947 * and other unfreeable allocations which can skew the watermarks badly. This 4948 * function may optionally be used to account for unfreeable pages in the 4949 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4950 * smaller per-cpu batchsize. 4951 */ 4952 void __init set_dma_reserve(unsigned long new_dma_reserve) 4953 { 4954 dma_reserve = new_dma_reserve; 4955 } 4956 4957 void __init free_area_init(unsigned long *zones_size) 4958 { 4959 free_area_init_node(0, zones_size, 4960 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4961 } 4962 4963 static int page_alloc_cpu_notify(struct notifier_block *self, 4964 unsigned long action, void *hcpu) 4965 { 4966 int cpu = (unsigned long)hcpu; 4967 4968 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4969 lru_add_drain_cpu(cpu); 4970 drain_pages(cpu); 4971 4972 /* 4973 * Spill the event counters of the dead processor 4974 * into the current processors event counters. 4975 * This artificially elevates the count of the current 4976 * processor. 4977 */ 4978 vm_events_fold_cpu(cpu); 4979 4980 /* 4981 * Zero the differential counters of the dead processor 4982 * so that the vm statistics are consistent. 4983 * 4984 * This is only okay since the processor is dead and cannot 4985 * race with what we are doing. 4986 */ 4987 refresh_cpu_vm_stats(cpu); 4988 } 4989 return NOTIFY_OK; 4990 } 4991 4992 void __init page_alloc_init(void) 4993 { 4994 hotcpu_notifier(page_alloc_cpu_notify, 0); 4995 } 4996 4997 /* 4998 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4999 * or min_free_kbytes changes. 5000 */ 5001 static void calculate_totalreserve_pages(void) 5002 { 5003 struct pglist_data *pgdat; 5004 unsigned long reserve_pages = 0; 5005 enum zone_type i, j; 5006 5007 for_each_online_pgdat(pgdat) { 5008 for (i = 0; i < MAX_NR_ZONES; i++) { 5009 struct zone *zone = pgdat->node_zones + i; 5010 unsigned long max = 0; 5011 5012 /* Find valid and maximum lowmem_reserve in the zone */ 5013 for (j = i; j < MAX_NR_ZONES; j++) { 5014 if (zone->lowmem_reserve[j] > max) 5015 max = zone->lowmem_reserve[j]; 5016 } 5017 5018 /* we treat the high watermark as reserved pages. */ 5019 max += high_wmark_pages(zone); 5020 5021 if (max > zone->present_pages) 5022 max = zone->present_pages; 5023 reserve_pages += max; 5024 /* 5025 * Lowmem reserves are not available to 5026 * GFP_HIGHUSER page cache allocations and 5027 * kswapd tries to balance zones to their high 5028 * watermark. As a result, neither should be 5029 * regarded as dirtyable memory, to prevent a 5030 * situation where reclaim has to clean pages 5031 * in order to balance the zones. 5032 */ 5033 zone->dirty_balance_reserve = max; 5034 } 5035 } 5036 dirty_balance_reserve = reserve_pages; 5037 totalreserve_pages = reserve_pages; 5038 } 5039 5040 /* 5041 * setup_per_zone_lowmem_reserve - called whenever 5042 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5043 * has a correct pages reserved value, so an adequate number of 5044 * pages are left in the zone after a successful __alloc_pages(). 5045 */ 5046 static void setup_per_zone_lowmem_reserve(void) 5047 { 5048 struct pglist_data *pgdat; 5049 enum zone_type j, idx; 5050 5051 for_each_online_pgdat(pgdat) { 5052 for (j = 0; j < MAX_NR_ZONES; j++) { 5053 struct zone *zone = pgdat->node_zones + j; 5054 unsigned long present_pages = zone->present_pages; 5055 5056 zone->lowmem_reserve[j] = 0; 5057 5058 idx = j; 5059 while (idx) { 5060 struct zone *lower_zone; 5061 5062 idx--; 5063 5064 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5065 sysctl_lowmem_reserve_ratio[idx] = 1; 5066 5067 lower_zone = pgdat->node_zones + idx; 5068 lower_zone->lowmem_reserve[j] = present_pages / 5069 sysctl_lowmem_reserve_ratio[idx]; 5070 present_pages += lower_zone->present_pages; 5071 } 5072 } 5073 } 5074 5075 /* update totalreserve_pages */ 5076 calculate_totalreserve_pages(); 5077 } 5078 5079 static void __setup_per_zone_wmarks(void) 5080 { 5081 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5082 unsigned long lowmem_pages = 0; 5083 struct zone *zone; 5084 unsigned long flags; 5085 5086 /* Calculate total number of !ZONE_HIGHMEM pages */ 5087 for_each_zone(zone) { 5088 if (!is_highmem(zone)) 5089 lowmem_pages += zone->present_pages; 5090 } 5091 5092 for_each_zone(zone) { 5093 u64 tmp; 5094 5095 spin_lock_irqsave(&zone->lock, flags); 5096 tmp = (u64)pages_min * zone->present_pages; 5097 do_div(tmp, lowmem_pages); 5098 if (is_highmem(zone)) { 5099 /* 5100 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5101 * need highmem pages, so cap pages_min to a small 5102 * value here. 5103 * 5104 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5105 * deltas controls asynch page reclaim, and so should 5106 * not be capped for highmem. 5107 */ 5108 int min_pages; 5109 5110 min_pages = zone->present_pages / 1024; 5111 if (min_pages < SWAP_CLUSTER_MAX) 5112 min_pages = SWAP_CLUSTER_MAX; 5113 if (min_pages > 128) 5114 min_pages = 128; 5115 zone->watermark[WMARK_MIN] = min_pages; 5116 } else { 5117 /* 5118 * If it's a lowmem zone, reserve a number of pages 5119 * proportionate to the zone's size. 5120 */ 5121 zone->watermark[WMARK_MIN] = tmp; 5122 } 5123 5124 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5125 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5126 5127 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone); 5128 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone); 5129 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone); 5130 5131 setup_zone_migrate_reserve(zone); 5132 spin_unlock_irqrestore(&zone->lock, flags); 5133 } 5134 5135 /* update totalreserve_pages */ 5136 calculate_totalreserve_pages(); 5137 } 5138 5139 /** 5140 * setup_per_zone_wmarks - called when min_free_kbytes changes 5141 * or when memory is hot-{added|removed} 5142 * 5143 * Ensures that the watermark[min,low,high] values for each zone are set 5144 * correctly with respect to min_free_kbytes. 5145 */ 5146 void setup_per_zone_wmarks(void) 5147 { 5148 mutex_lock(&zonelists_mutex); 5149 __setup_per_zone_wmarks(); 5150 mutex_unlock(&zonelists_mutex); 5151 } 5152 5153 /* 5154 * The inactive anon list should be small enough that the VM never has to 5155 * do too much work, but large enough that each inactive page has a chance 5156 * to be referenced again before it is swapped out. 5157 * 5158 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5159 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5160 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5161 * the anonymous pages are kept on the inactive list. 5162 * 5163 * total target max 5164 * memory ratio inactive anon 5165 * ------------------------------------- 5166 * 10MB 1 5MB 5167 * 100MB 1 50MB 5168 * 1GB 3 250MB 5169 * 10GB 10 0.9GB 5170 * 100GB 31 3GB 5171 * 1TB 101 10GB 5172 * 10TB 320 32GB 5173 */ 5174 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5175 { 5176 unsigned int gb, ratio; 5177 5178 /* Zone size in gigabytes */ 5179 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5180 if (gb) 5181 ratio = int_sqrt(10 * gb); 5182 else 5183 ratio = 1; 5184 5185 zone->inactive_ratio = ratio; 5186 } 5187 5188 static void __meminit setup_per_zone_inactive_ratio(void) 5189 { 5190 struct zone *zone; 5191 5192 for_each_zone(zone) 5193 calculate_zone_inactive_ratio(zone); 5194 } 5195 5196 /* 5197 * Initialise min_free_kbytes. 5198 * 5199 * For small machines we want it small (128k min). For large machines 5200 * we want it large (64MB max). But it is not linear, because network 5201 * bandwidth does not increase linearly with machine size. We use 5202 * 5203 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5204 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5205 * 5206 * which yields 5207 * 5208 * 16MB: 512k 5209 * 32MB: 724k 5210 * 64MB: 1024k 5211 * 128MB: 1448k 5212 * 256MB: 2048k 5213 * 512MB: 2896k 5214 * 1024MB: 4096k 5215 * 2048MB: 5792k 5216 * 4096MB: 8192k 5217 * 8192MB: 11584k 5218 * 16384MB: 16384k 5219 */ 5220 int __meminit init_per_zone_wmark_min(void) 5221 { 5222 unsigned long lowmem_kbytes; 5223 5224 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5225 5226 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5227 if (min_free_kbytes < 128) 5228 min_free_kbytes = 128; 5229 if (min_free_kbytes > 65536) 5230 min_free_kbytes = 65536; 5231 setup_per_zone_wmarks(); 5232 refresh_zone_stat_thresholds(); 5233 setup_per_zone_lowmem_reserve(); 5234 setup_per_zone_inactive_ratio(); 5235 return 0; 5236 } 5237 module_init(init_per_zone_wmark_min) 5238 5239 /* 5240 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5241 * that we can call two helper functions whenever min_free_kbytes 5242 * changes. 5243 */ 5244 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5245 void __user *buffer, size_t *length, loff_t *ppos) 5246 { 5247 proc_dointvec(table, write, buffer, length, ppos); 5248 if (write) 5249 setup_per_zone_wmarks(); 5250 return 0; 5251 } 5252 5253 #ifdef CONFIG_NUMA 5254 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5255 void __user *buffer, size_t *length, loff_t *ppos) 5256 { 5257 struct zone *zone; 5258 int rc; 5259 5260 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5261 if (rc) 5262 return rc; 5263 5264 for_each_zone(zone) 5265 zone->min_unmapped_pages = (zone->present_pages * 5266 sysctl_min_unmapped_ratio) / 100; 5267 return 0; 5268 } 5269 5270 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5271 void __user *buffer, size_t *length, loff_t *ppos) 5272 { 5273 struct zone *zone; 5274 int rc; 5275 5276 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5277 if (rc) 5278 return rc; 5279 5280 for_each_zone(zone) 5281 zone->min_slab_pages = (zone->present_pages * 5282 sysctl_min_slab_ratio) / 100; 5283 return 0; 5284 } 5285 #endif 5286 5287 /* 5288 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5289 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5290 * whenever sysctl_lowmem_reserve_ratio changes. 5291 * 5292 * The reserve ratio obviously has absolutely no relation with the 5293 * minimum watermarks. The lowmem reserve ratio can only make sense 5294 * if in function of the boot time zone sizes. 5295 */ 5296 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5297 void __user *buffer, size_t *length, loff_t *ppos) 5298 { 5299 proc_dointvec_minmax(table, write, buffer, length, ppos); 5300 setup_per_zone_lowmem_reserve(); 5301 return 0; 5302 } 5303 5304 /* 5305 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5306 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5307 * can have before it gets flushed back to buddy allocator. 5308 */ 5309 5310 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5311 void __user *buffer, size_t *length, loff_t *ppos) 5312 { 5313 struct zone *zone; 5314 unsigned int cpu; 5315 int ret; 5316 5317 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5318 if (!write || (ret < 0)) 5319 return ret; 5320 for_each_populated_zone(zone) { 5321 for_each_possible_cpu(cpu) { 5322 unsigned long high; 5323 high = zone->present_pages / percpu_pagelist_fraction; 5324 setup_pagelist_highmark( 5325 per_cpu_ptr(zone->pageset, cpu), high); 5326 } 5327 } 5328 return 0; 5329 } 5330 5331 int hashdist = HASHDIST_DEFAULT; 5332 5333 #ifdef CONFIG_NUMA 5334 static int __init set_hashdist(char *str) 5335 { 5336 if (!str) 5337 return 0; 5338 hashdist = simple_strtoul(str, &str, 0); 5339 return 1; 5340 } 5341 __setup("hashdist=", set_hashdist); 5342 #endif 5343 5344 /* 5345 * allocate a large system hash table from bootmem 5346 * - it is assumed that the hash table must contain an exact power-of-2 5347 * quantity of entries 5348 * - limit is the number of hash buckets, not the total allocation size 5349 */ 5350 void *__init alloc_large_system_hash(const char *tablename, 5351 unsigned long bucketsize, 5352 unsigned long numentries, 5353 int scale, 5354 int flags, 5355 unsigned int *_hash_shift, 5356 unsigned int *_hash_mask, 5357 unsigned long low_limit, 5358 unsigned long high_limit) 5359 { 5360 unsigned long long max = high_limit; 5361 unsigned long log2qty, size; 5362 void *table = NULL; 5363 5364 /* allow the kernel cmdline to have a say */ 5365 if (!numentries) { 5366 /* round applicable memory size up to nearest megabyte */ 5367 numentries = nr_kernel_pages; 5368 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5369 numentries >>= 20 - PAGE_SHIFT; 5370 numentries <<= 20 - PAGE_SHIFT; 5371 5372 /* limit to 1 bucket per 2^scale bytes of low memory */ 5373 if (scale > PAGE_SHIFT) 5374 numentries >>= (scale - PAGE_SHIFT); 5375 else 5376 numentries <<= (PAGE_SHIFT - scale); 5377 5378 /* Make sure we've got at least a 0-order allocation.. */ 5379 if (unlikely(flags & HASH_SMALL)) { 5380 /* Makes no sense without HASH_EARLY */ 5381 WARN_ON(!(flags & HASH_EARLY)); 5382 if (!(numentries >> *_hash_shift)) { 5383 numentries = 1UL << *_hash_shift; 5384 BUG_ON(!numentries); 5385 } 5386 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5387 numentries = PAGE_SIZE / bucketsize; 5388 } 5389 numentries = roundup_pow_of_two(numentries); 5390 5391 /* limit allocation size to 1/16 total memory by default */ 5392 if (max == 0) { 5393 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5394 do_div(max, bucketsize); 5395 } 5396 max = min(max, 0x80000000ULL); 5397 5398 if (numentries < low_limit) 5399 numentries = low_limit; 5400 if (numentries > max) 5401 numentries = max; 5402 5403 log2qty = ilog2(numentries); 5404 5405 do { 5406 size = bucketsize << log2qty; 5407 if (flags & HASH_EARLY) 5408 table = alloc_bootmem_nopanic(size); 5409 else if (hashdist) 5410 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5411 else { 5412 /* 5413 * If bucketsize is not a power-of-two, we may free 5414 * some pages at the end of hash table which 5415 * alloc_pages_exact() automatically does 5416 */ 5417 if (get_order(size) < MAX_ORDER) { 5418 table = alloc_pages_exact(size, GFP_ATOMIC); 5419 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5420 } 5421 } 5422 } while (!table && size > PAGE_SIZE && --log2qty); 5423 5424 if (!table) 5425 panic("Failed to allocate %s hash table\n", tablename); 5426 5427 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5428 tablename, 5429 (1UL << log2qty), 5430 ilog2(size) - PAGE_SHIFT, 5431 size); 5432 5433 if (_hash_shift) 5434 *_hash_shift = log2qty; 5435 if (_hash_mask) 5436 *_hash_mask = (1 << log2qty) - 1; 5437 5438 return table; 5439 } 5440 5441 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5442 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5443 unsigned long pfn) 5444 { 5445 #ifdef CONFIG_SPARSEMEM 5446 return __pfn_to_section(pfn)->pageblock_flags; 5447 #else 5448 return zone->pageblock_flags; 5449 #endif /* CONFIG_SPARSEMEM */ 5450 } 5451 5452 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5453 { 5454 #ifdef CONFIG_SPARSEMEM 5455 pfn &= (PAGES_PER_SECTION-1); 5456 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5457 #else 5458 pfn = pfn - zone->zone_start_pfn; 5459 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5460 #endif /* CONFIG_SPARSEMEM */ 5461 } 5462 5463 /** 5464 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5465 * @page: The page within the block of interest 5466 * @start_bitidx: The first bit of interest to retrieve 5467 * @end_bitidx: The last bit of interest 5468 * returns pageblock_bits flags 5469 */ 5470 unsigned long get_pageblock_flags_group(struct page *page, 5471 int start_bitidx, int end_bitidx) 5472 { 5473 struct zone *zone; 5474 unsigned long *bitmap; 5475 unsigned long pfn, bitidx; 5476 unsigned long flags = 0; 5477 unsigned long value = 1; 5478 5479 zone = page_zone(page); 5480 pfn = page_to_pfn(page); 5481 bitmap = get_pageblock_bitmap(zone, pfn); 5482 bitidx = pfn_to_bitidx(zone, pfn); 5483 5484 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5485 if (test_bit(bitidx + start_bitidx, bitmap)) 5486 flags |= value; 5487 5488 return flags; 5489 } 5490 5491 /** 5492 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5493 * @page: The page within the block of interest 5494 * @start_bitidx: The first bit of interest 5495 * @end_bitidx: The last bit of interest 5496 * @flags: The flags to set 5497 */ 5498 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5499 int start_bitidx, int end_bitidx) 5500 { 5501 struct zone *zone; 5502 unsigned long *bitmap; 5503 unsigned long pfn, bitidx; 5504 unsigned long value = 1; 5505 5506 zone = page_zone(page); 5507 pfn = page_to_pfn(page); 5508 bitmap = get_pageblock_bitmap(zone, pfn); 5509 bitidx = pfn_to_bitidx(zone, pfn); 5510 VM_BUG_ON(pfn < zone->zone_start_pfn); 5511 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5512 5513 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5514 if (flags & value) 5515 __set_bit(bitidx + start_bitidx, bitmap); 5516 else 5517 __clear_bit(bitidx + start_bitidx, bitmap); 5518 } 5519 5520 /* 5521 * This function checks whether pageblock includes unmovable pages or not. 5522 * If @count is not zero, it is okay to include less @count unmovable pages 5523 * 5524 * PageLRU check wihtout isolation or lru_lock could race so that 5525 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5526 * expect this function should be exact. 5527 */ 5528 bool has_unmovable_pages(struct zone *zone, struct page *page, int count) 5529 { 5530 unsigned long pfn, iter, found; 5531 int mt; 5532 5533 /* 5534 * For avoiding noise data, lru_add_drain_all() should be called 5535 * If ZONE_MOVABLE, the zone never contains unmovable pages 5536 */ 5537 if (zone_idx(zone) == ZONE_MOVABLE) 5538 return false; 5539 mt = get_pageblock_migratetype(page); 5540 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5541 return false; 5542 5543 pfn = page_to_pfn(page); 5544 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5545 unsigned long check = pfn + iter; 5546 5547 if (!pfn_valid_within(check)) 5548 continue; 5549 5550 page = pfn_to_page(check); 5551 /* 5552 * We can't use page_count without pin a page 5553 * because another CPU can free compound page. 5554 * This check already skips compound tails of THP 5555 * because their page->_count is zero at all time. 5556 */ 5557 if (!atomic_read(&page->_count)) { 5558 if (PageBuddy(page)) 5559 iter += (1 << page_order(page)) - 1; 5560 continue; 5561 } 5562 5563 if (!PageLRU(page)) 5564 found++; 5565 /* 5566 * If there are RECLAIMABLE pages, we need to check it. 5567 * But now, memory offline itself doesn't call shrink_slab() 5568 * and it still to be fixed. 5569 */ 5570 /* 5571 * If the page is not RAM, page_count()should be 0. 5572 * we don't need more check. This is an _used_ not-movable page. 5573 * 5574 * The problematic thing here is PG_reserved pages. PG_reserved 5575 * is set to both of a memory hole page and a _used_ kernel 5576 * page at boot. 5577 */ 5578 if (found > count) 5579 return true; 5580 } 5581 return false; 5582 } 5583 5584 bool is_pageblock_removable_nolock(struct page *page) 5585 { 5586 struct zone *zone; 5587 unsigned long pfn; 5588 5589 /* 5590 * We have to be careful here because we are iterating over memory 5591 * sections which are not zone aware so we might end up outside of 5592 * the zone but still within the section. 5593 * We have to take care about the node as well. If the node is offline 5594 * its NODE_DATA will be NULL - see page_zone. 5595 */ 5596 if (!node_online(page_to_nid(page))) 5597 return false; 5598 5599 zone = page_zone(page); 5600 pfn = page_to_pfn(page); 5601 if (zone->zone_start_pfn > pfn || 5602 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5603 return false; 5604 5605 return !has_unmovable_pages(zone, page, 0); 5606 } 5607 5608 #ifdef CONFIG_CMA 5609 5610 static unsigned long pfn_max_align_down(unsigned long pfn) 5611 { 5612 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5613 pageblock_nr_pages) - 1); 5614 } 5615 5616 static unsigned long pfn_max_align_up(unsigned long pfn) 5617 { 5618 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5619 pageblock_nr_pages)); 5620 } 5621 5622 static struct page * 5623 __alloc_contig_migrate_alloc(struct page *page, unsigned long private, 5624 int **resultp) 5625 { 5626 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; 5627 5628 if (PageHighMem(page)) 5629 gfp_mask |= __GFP_HIGHMEM; 5630 5631 return alloc_page(gfp_mask); 5632 } 5633 5634 /* [start, end) must belong to a single zone. */ 5635 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end) 5636 { 5637 /* This function is based on compact_zone() from compaction.c. */ 5638 5639 unsigned long pfn = start; 5640 unsigned int tries = 0; 5641 int ret = 0; 5642 5643 struct compact_control cc = { 5644 .nr_migratepages = 0, 5645 .order = -1, 5646 .zone = page_zone(pfn_to_page(start)), 5647 .sync = true, 5648 }; 5649 INIT_LIST_HEAD(&cc.migratepages); 5650 5651 migrate_prep_local(); 5652 5653 while (pfn < end || !list_empty(&cc.migratepages)) { 5654 if (fatal_signal_pending(current)) { 5655 ret = -EINTR; 5656 break; 5657 } 5658 5659 if (list_empty(&cc.migratepages)) { 5660 cc.nr_migratepages = 0; 5661 pfn = isolate_migratepages_range(cc.zone, &cc, 5662 pfn, end); 5663 if (!pfn) { 5664 ret = -EINTR; 5665 break; 5666 } 5667 tries = 0; 5668 } else if (++tries == 5) { 5669 ret = ret < 0 ? ret : -EBUSY; 5670 break; 5671 } 5672 5673 ret = migrate_pages(&cc.migratepages, 5674 __alloc_contig_migrate_alloc, 5675 0, false, MIGRATE_SYNC); 5676 } 5677 5678 putback_lru_pages(&cc.migratepages); 5679 return ret > 0 ? 0 : ret; 5680 } 5681 5682 /* 5683 * Update zone's cma pages counter used for watermark level calculation. 5684 */ 5685 static inline void __update_cma_watermarks(struct zone *zone, int count) 5686 { 5687 unsigned long flags; 5688 spin_lock_irqsave(&zone->lock, flags); 5689 zone->min_cma_pages += count; 5690 spin_unlock_irqrestore(&zone->lock, flags); 5691 setup_per_zone_wmarks(); 5692 } 5693 5694 /* 5695 * Trigger memory pressure bump to reclaim some pages in order to be able to 5696 * allocate 'count' pages in single page units. Does similar work as 5697 *__alloc_pages_slowpath() function. 5698 */ 5699 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count) 5700 { 5701 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 5702 struct zonelist *zonelist = node_zonelist(0, gfp_mask); 5703 int did_some_progress = 0; 5704 int order = 1; 5705 5706 /* 5707 * Increase level of watermarks to force kswapd do his job 5708 * to stabilise at new watermark level. 5709 */ 5710 __update_cma_watermarks(zone, count); 5711 5712 /* Obey watermarks as if the page was being allocated */ 5713 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) { 5714 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone)); 5715 5716 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 5717 NULL); 5718 if (!did_some_progress) { 5719 /* Exhausted what can be done so it's blamo time */ 5720 out_of_memory(zonelist, gfp_mask, order, NULL, false); 5721 } 5722 } 5723 5724 /* Restore original watermark levels. */ 5725 __update_cma_watermarks(zone, -count); 5726 5727 return count; 5728 } 5729 5730 /** 5731 * alloc_contig_range() -- tries to allocate given range of pages 5732 * @start: start PFN to allocate 5733 * @end: one-past-the-last PFN to allocate 5734 * @migratetype: migratetype of the underlaying pageblocks (either 5735 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5736 * in range must have the same migratetype and it must 5737 * be either of the two. 5738 * 5739 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5740 * aligned, however it's the caller's responsibility to guarantee that 5741 * we are the only thread that changes migrate type of pageblocks the 5742 * pages fall in. 5743 * 5744 * The PFN range must belong to a single zone. 5745 * 5746 * Returns zero on success or negative error code. On success all 5747 * pages which PFN is in [start, end) are allocated for the caller and 5748 * need to be freed with free_contig_range(). 5749 */ 5750 int alloc_contig_range(unsigned long start, unsigned long end, 5751 unsigned migratetype) 5752 { 5753 struct zone *zone = page_zone(pfn_to_page(start)); 5754 unsigned long outer_start, outer_end; 5755 int ret = 0, order; 5756 5757 /* 5758 * What we do here is we mark all pageblocks in range as 5759 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5760 * have different sizes, and due to the way page allocator 5761 * work, we align the range to biggest of the two pages so 5762 * that page allocator won't try to merge buddies from 5763 * different pageblocks and change MIGRATE_ISOLATE to some 5764 * other migration type. 5765 * 5766 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5767 * migrate the pages from an unaligned range (ie. pages that 5768 * we are interested in). This will put all the pages in 5769 * range back to page allocator as MIGRATE_ISOLATE. 5770 * 5771 * When this is done, we take the pages in range from page 5772 * allocator removing them from the buddy system. This way 5773 * page allocator will never consider using them. 5774 * 5775 * This lets us mark the pageblocks back as 5776 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5777 * aligned range but not in the unaligned, original range are 5778 * put back to page allocator so that buddy can use them. 5779 */ 5780 5781 ret = start_isolate_page_range(pfn_max_align_down(start), 5782 pfn_max_align_up(end), migratetype); 5783 if (ret) 5784 goto done; 5785 5786 ret = __alloc_contig_migrate_range(start, end); 5787 if (ret) 5788 goto done; 5789 5790 /* 5791 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5792 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5793 * more, all pages in [start, end) are free in page allocator. 5794 * What we are going to do is to allocate all pages from 5795 * [start, end) (that is remove them from page allocator). 5796 * 5797 * The only problem is that pages at the beginning and at the 5798 * end of interesting range may be not aligned with pages that 5799 * page allocator holds, ie. they can be part of higher order 5800 * pages. Because of this, we reserve the bigger range and 5801 * once this is done free the pages we are not interested in. 5802 * 5803 * We don't have to hold zone->lock here because the pages are 5804 * isolated thus they won't get removed from buddy. 5805 */ 5806 5807 lru_add_drain_all(); 5808 drain_all_pages(); 5809 5810 order = 0; 5811 outer_start = start; 5812 while (!PageBuddy(pfn_to_page(outer_start))) { 5813 if (++order >= MAX_ORDER) { 5814 ret = -EBUSY; 5815 goto done; 5816 } 5817 outer_start &= ~0UL << order; 5818 } 5819 5820 /* Make sure the range is really isolated. */ 5821 if (test_pages_isolated(outer_start, end)) { 5822 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5823 outer_start, end); 5824 ret = -EBUSY; 5825 goto done; 5826 } 5827 5828 /* 5829 * Reclaim enough pages to make sure that contiguous allocation 5830 * will not starve the system. 5831 */ 5832 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start); 5833 5834 /* Grab isolated pages from freelists. */ 5835 outer_end = isolate_freepages_range(outer_start, end); 5836 if (!outer_end) { 5837 ret = -EBUSY; 5838 goto done; 5839 } 5840 5841 /* Free head and tail (if any) */ 5842 if (start != outer_start) 5843 free_contig_range(outer_start, start - outer_start); 5844 if (end != outer_end) 5845 free_contig_range(end, outer_end - end); 5846 5847 done: 5848 undo_isolate_page_range(pfn_max_align_down(start), 5849 pfn_max_align_up(end), migratetype); 5850 return ret; 5851 } 5852 5853 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5854 { 5855 for (; nr_pages--; ++pfn) 5856 __free_page(pfn_to_page(pfn)); 5857 } 5858 #endif 5859 5860 #ifdef CONFIG_MEMORY_HOTPLUG 5861 static int __meminit __zone_pcp_update(void *data) 5862 { 5863 struct zone *zone = data; 5864 int cpu; 5865 unsigned long batch = zone_batchsize(zone), flags; 5866 5867 for_each_possible_cpu(cpu) { 5868 struct per_cpu_pageset *pset; 5869 struct per_cpu_pages *pcp; 5870 5871 pset = per_cpu_ptr(zone->pageset, cpu); 5872 pcp = &pset->pcp; 5873 5874 local_irq_save(flags); 5875 if (pcp->count > 0) 5876 free_pcppages_bulk(zone, pcp->count, pcp); 5877 setup_pageset(pset, batch); 5878 local_irq_restore(flags); 5879 } 5880 return 0; 5881 } 5882 5883 void __meminit zone_pcp_update(struct zone *zone) 5884 { 5885 stop_machine(__zone_pcp_update, zone, NULL); 5886 } 5887 #endif 5888 5889 #ifdef CONFIG_MEMORY_HOTREMOVE 5890 void zone_pcp_reset(struct zone *zone) 5891 { 5892 unsigned long flags; 5893 5894 /* avoid races with drain_pages() */ 5895 local_irq_save(flags); 5896 if (zone->pageset != &boot_pageset) { 5897 free_percpu(zone->pageset); 5898 zone->pageset = &boot_pageset; 5899 } 5900 local_irq_restore(flags); 5901 } 5902 5903 /* 5904 * All pages in the range must be isolated before calling this. 5905 */ 5906 void 5907 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5908 { 5909 struct page *page; 5910 struct zone *zone; 5911 int order, i; 5912 unsigned long pfn; 5913 unsigned long flags; 5914 /* find the first valid pfn */ 5915 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5916 if (pfn_valid(pfn)) 5917 break; 5918 if (pfn == end_pfn) 5919 return; 5920 zone = page_zone(pfn_to_page(pfn)); 5921 spin_lock_irqsave(&zone->lock, flags); 5922 pfn = start_pfn; 5923 while (pfn < end_pfn) { 5924 if (!pfn_valid(pfn)) { 5925 pfn++; 5926 continue; 5927 } 5928 page = pfn_to_page(pfn); 5929 BUG_ON(page_count(page)); 5930 BUG_ON(!PageBuddy(page)); 5931 order = page_order(page); 5932 #ifdef CONFIG_DEBUG_VM 5933 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5934 pfn, 1 << order, end_pfn); 5935 #endif 5936 list_del(&page->lru); 5937 rmv_page_order(page); 5938 zone->free_area[order].nr_free--; 5939 __mod_zone_page_state(zone, NR_FREE_PAGES, 5940 - (1UL << order)); 5941 for (i = 0; i < (1 << order); i++) 5942 SetPageReserved((page+i)); 5943 pfn += (1 << order); 5944 } 5945 spin_unlock_irqrestore(&zone->lock, flags); 5946 } 5947 #endif 5948 5949 #ifdef CONFIG_MEMORY_FAILURE 5950 bool is_free_buddy_page(struct page *page) 5951 { 5952 struct zone *zone = page_zone(page); 5953 unsigned long pfn = page_to_pfn(page); 5954 unsigned long flags; 5955 int order; 5956 5957 spin_lock_irqsave(&zone->lock, flags); 5958 for (order = 0; order < MAX_ORDER; order++) { 5959 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5960 5961 if (PageBuddy(page_head) && page_order(page_head) >= order) 5962 break; 5963 } 5964 spin_unlock_irqrestore(&zone->lock, flags); 5965 5966 return order < MAX_ORDER; 5967 } 5968 #endif 5969 5970 static const struct trace_print_flags pageflag_names[] = { 5971 {1UL << PG_locked, "locked" }, 5972 {1UL << PG_error, "error" }, 5973 {1UL << PG_referenced, "referenced" }, 5974 {1UL << PG_uptodate, "uptodate" }, 5975 {1UL << PG_dirty, "dirty" }, 5976 {1UL << PG_lru, "lru" }, 5977 {1UL << PG_active, "active" }, 5978 {1UL << PG_slab, "slab" }, 5979 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5980 {1UL << PG_arch_1, "arch_1" }, 5981 {1UL << PG_reserved, "reserved" }, 5982 {1UL << PG_private, "private" }, 5983 {1UL << PG_private_2, "private_2" }, 5984 {1UL << PG_writeback, "writeback" }, 5985 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5986 {1UL << PG_head, "head" }, 5987 {1UL << PG_tail, "tail" }, 5988 #else 5989 {1UL << PG_compound, "compound" }, 5990 #endif 5991 {1UL << PG_swapcache, "swapcache" }, 5992 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5993 {1UL << PG_reclaim, "reclaim" }, 5994 {1UL << PG_swapbacked, "swapbacked" }, 5995 {1UL << PG_unevictable, "unevictable" }, 5996 #ifdef CONFIG_MMU 5997 {1UL << PG_mlocked, "mlocked" }, 5998 #endif 5999 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6000 {1UL << PG_uncached, "uncached" }, 6001 #endif 6002 #ifdef CONFIG_MEMORY_FAILURE 6003 {1UL << PG_hwpoison, "hwpoison" }, 6004 #endif 6005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6006 {1UL << PG_compound_lock, "compound_lock" }, 6007 #endif 6008 }; 6009 6010 static void dump_page_flags(unsigned long flags) 6011 { 6012 const char *delim = ""; 6013 unsigned long mask; 6014 int i; 6015 6016 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6017 6018 printk(KERN_ALERT "page flags: %#lx(", flags); 6019 6020 /* remove zone id */ 6021 flags &= (1UL << NR_PAGEFLAGS) - 1; 6022 6023 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6024 6025 mask = pageflag_names[i].mask; 6026 if ((flags & mask) != mask) 6027 continue; 6028 6029 flags &= ~mask; 6030 printk("%s%s", delim, pageflag_names[i].name); 6031 delim = "|"; 6032 } 6033 6034 /* check for left over flags */ 6035 if (flags) 6036 printk("%s%#lx", delim, flags); 6037 6038 printk(")\n"); 6039 } 6040 6041 void dump_page(struct page *page) 6042 { 6043 printk(KERN_ALERT 6044 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6045 page, atomic_read(&page->_count), page_mapcount(page), 6046 page->mapping, page->index); 6047 dump_page_flags(page->flags); 6048 mem_cgroup_print_bad_page(page); 6049 } 6050