xref: /linux/mm/page_alloc.c (revision 9429ec96c2718c0d1e3317cf60a87a0405223814)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 	[N_CPU] = { { [0] = 1UL } },
94 #endif	/* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97 
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101  * When calculating the number of globally allowed dirty pages, there
102  * is a certain number of per-zone reserves that should not be
103  * considered dirtyable memory.  This is the sum of those reserves
104  * over all existing zones that contribute dirtyable memory.
105  */
106 unsigned long dirty_balance_reserve __read_mostly;
107 
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110 
111 #ifdef CONFIG_PM_SLEEP
112 /*
113  * The following functions are used by the suspend/hibernate code to temporarily
114  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115  * while devices are suspended.  To avoid races with the suspend/hibernate code,
116  * they should always be called with pm_mutex held (gfp_allowed_mask also should
117  * only be modified with pm_mutex held, unless the suspend/hibernate code is
118  * guaranteed not to run in parallel with that modification).
119  */
120 
121 static gfp_t saved_gfp_mask;
122 
123 void pm_restore_gfp_mask(void)
124 {
125 	WARN_ON(!mutex_is_locked(&pm_mutex));
126 	if (saved_gfp_mask) {
127 		gfp_allowed_mask = saved_gfp_mask;
128 		saved_gfp_mask = 0;
129 	}
130 }
131 
132 void pm_restrict_gfp_mask(void)
133 {
134 	WARN_ON(!mutex_is_locked(&pm_mutex));
135 	WARN_ON(saved_gfp_mask);
136 	saved_gfp_mask = gfp_allowed_mask;
137 	gfp_allowed_mask &= ~GFP_IOFS;
138 }
139 
140 bool pm_suspended_storage(void)
141 {
142 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 		return false;
144 	return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147 
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151 
152 static void __free_pages_ok(struct page *page, unsigned int order);
153 
154 /*
155  * results with 256, 32 in the lowmem_reserve sysctl:
156  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157  *	1G machine -> (16M dma, 784M normal, 224M high)
158  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161  *
162  * TBD: should special case ZONE_DMA32 machines here - in those we normally
163  * don't need any ZONE_NORMAL reservation
164  */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 	 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 	 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 	 32,
174 #endif
175 	 32,
176 };
177 
178 EXPORT_SYMBOL(totalram_pages);
179 
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 	 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 	 "DMA32",
186 #endif
187 	 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 	 "HighMem",
190 #endif
191 	 "Movable",
192 };
193 
194 int min_free_kbytes = 1024;
195 
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199 
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206 
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211 
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218 
219 int page_group_by_mobility_disabled __read_mostly;
220 
221 /*
222  * NOTE:
223  * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224  * Instead, use {un}set_pageblock_isolate.
225  */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228 
229 	if (unlikely(page_group_by_mobility_disabled))
230 		migratetype = MIGRATE_UNMOVABLE;
231 
232 	set_pageblock_flags_group(page, (unsigned long)migratetype,
233 					PB_migrate, PB_migrate_end);
234 }
235 
236 bool oom_killer_disabled __read_mostly;
237 
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 	int ret = 0;
242 	unsigned seq;
243 	unsigned long pfn = page_to_pfn(page);
244 
245 	do {
246 		seq = zone_span_seqbegin(zone);
247 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 			ret = 1;
249 		else if (pfn < zone->zone_start_pfn)
250 			ret = 1;
251 	} while (zone_span_seqretry(zone, seq));
252 
253 	return ret;
254 }
255 
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 	if (!pfn_valid_within(page_to_pfn(page)))
259 		return 0;
260 	if (zone != page_zone(page))
261 		return 0;
262 
263 	return 1;
264 }
265 /*
266  * Temporary debugging check for pages not lying within a given zone.
267  */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 	if (page_outside_zone_boundaries(zone, page))
271 		return 1;
272 	if (!page_is_consistent(zone, page))
273 		return 1;
274 
275 	return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 	return 0;
281 }
282 #endif
283 
284 static void bad_page(struct page *page)
285 {
286 	static unsigned long resume;
287 	static unsigned long nr_shown;
288 	static unsigned long nr_unshown;
289 
290 	/* Don't complain about poisoned pages */
291 	if (PageHWPoison(page)) {
292 		reset_page_mapcount(page); /* remove PageBuddy */
293 		return;
294 	}
295 
296 	/*
297 	 * Allow a burst of 60 reports, then keep quiet for that minute;
298 	 * or allow a steady drip of one report per second.
299 	 */
300 	if (nr_shown == 60) {
301 		if (time_before(jiffies, resume)) {
302 			nr_unshown++;
303 			goto out;
304 		}
305 		if (nr_unshown) {
306 			printk(KERN_ALERT
307 			      "BUG: Bad page state: %lu messages suppressed\n",
308 				nr_unshown);
309 			nr_unshown = 0;
310 		}
311 		nr_shown = 0;
312 	}
313 	if (nr_shown++ == 0)
314 		resume = jiffies + 60 * HZ;
315 
316 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
317 		current->comm, page_to_pfn(page));
318 	dump_page(page);
319 
320 	print_modules();
321 	dump_stack();
322 out:
323 	/* Leave bad fields for debug, except PageBuddy could make trouble */
324 	reset_page_mapcount(page); /* remove PageBuddy */
325 	add_taint(TAINT_BAD_PAGE);
326 }
327 
328 /*
329  * Higher-order pages are called "compound pages".  They are structured thusly:
330  *
331  * The first PAGE_SIZE page is called the "head page".
332  *
333  * The remaining PAGE_SIZE pages are called "tail pages".
334  *
335  * All pages have PG_compound set.  All tail pages have their ->first_page
336  * pointing at the head page.
337  *
338  * The first tail page's ->lru.next holds the address of the compound page's
339  * put_page() function.  Its ->lru.prev holds the order of allocation.
340  * This usage means that zero-order pages may not be compound.
341  */
342 
343 static void free_compound_page(struct page *page)
344 {
345 	__free_pages_ok(page, compound_order(page));
346 }
347 
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 	int i;
351 	int nr_pages = 1 << order;
352 
353 	set_compound_page_dtor(page, free_compound_page);
354 	set_compound_order(page, order);
355 	__SetPageHead(page);
356 	for (i = 1; i < nr_pages; i++) {
357 		struct page *p = page + i;
358 		__SetPageTail(p);
359 		set_page_count(p, 0);
360 		p->first_page = page;
361 	}
362 }
363 
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 	int bad = 0;
370 
371 	if (unlikely(compound_order(page) != order) ||
372 	    unlikely(!PageHead(page))) {
373 		bad_page(page);
374 		bad++;
375 	}
376 
377 	__ClearPageHead(page);
378 
379 	for (i = 1; i < nr_pages; i++) {
380 		struct page *p = page + i;
381 
382 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 			bad_page(page);
384 			bad++;
385 		}
386 		__ClearPageTail(p);
387 	}
388 
389 	return bad;
390 }
391 
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 	int i;
395 
396 	/*
397 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 	 */
400 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 	for (i = 0; i < (1 << order); i++)
402 		clear_highpage(page + i);
403 }
404 
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407 
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 	unsigned long res;
411 
412 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
413 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 		return 0;
415 	}
416 	_debug_guardpage_minorder = res;
417 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 	return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421 
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426 
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435 
436 static inline void set_page_order(struct page *page, int order)
437 {
438 	set_page_private(page, order);
439 	__SetPageBuddy(page);
440 }
441 
442 static inline void rmv_page_order(struct page *page)
443 {
444 	__ClearPageBuddy(page);
445 	set_page_private(page, 0);
446 }
447 
448 /*
449  * Locate the struct page for both the matching buddy in our
450  * pair (buddy1) and the combined O(n+1) page they form (page).
451  *
452  * 1) Any buddy B1 will have an order O twin B2 which satisfies
453  * the following equation:
454  *     B2 = B1 ^ (1 << O)
455  * For example, if the starting buddy (buddy2) is #8 its order
456  * 1 buddy is #10:
457  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458  *
459  * 2) Any buddy B will have an order O+1 parent P which
460  * satisfies the following equation:
461  *     P = B & ~(1 << O)
462  *
463  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464  */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 	return page_idx ^ (1 << order);
469 }
470 
471 /*
472  * This function checks whether a page is free && is the buddy
473  * we can do coalesce a page and its buddy if
474  * (a) the buddy is not in a hole &&
475  * (b) the buddy is in the buddy system &&
476  * (c) a page and its buddy have the same order &&
477  * (d) a page and its buddy are in the same zone.
478  *
479  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481  *
482  * For recording page's order, we use page_private(page).
483  */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 								int order)
486 {
487 	if (!pfn_valid_within(page_to_pfn(buddy)))
488 		return 0;
489 
490 	if (page_zone_id(page) != page_zone_id(buddy))
491 		return 0;
492 
493 	if (page_is_guard(buddy) && page_order(buddy) == order) {
494 		VM_BUG_ON(page_count(buddy) != 0);
495 		return 1;
496 	}
497 
498 	if (PageBuddy(buddy) && page_order(buddy) == order) {
499 		VM_BUG_ON(page_count(buddy) != 0);
500 		return 1;
501 	}
502 	return 0;
503 }
504 
505 /*
506  * Freeing function for a buddy system allocator.
507  *
508  * The concept of a buddy system is to maintain direct-mapped table
509  * (containing bit values) for memory blocks of various "orders".
510  * The bottom level table contains the map for the smallest allocatable
511  * units of memory (here, pages), and each level above it describes
512  * pairs of units from the levels below, hence, "buddies".
513  * At a high level, all that happens here is marking the table entry
514  * at the bottom level available, and propagating the changes upward
515  * as necessary, plus some accounting needed to play nicely with other
516  * parts of the VM system.
517  * At each level, we keep a list of pages, which are heads of continuous
518  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519  * order is recorded in page_private(page) field.
520  * So when we are allocating or freeing one, we can derive the state of the
521  * other.  That is, if we allocate a small block, and both were
522  * free, the remainder of the region must be split into blocks.
523  * If a block is freed, and its buddy is also free, then this
524  * triggers coalescing into a block of larger size.
525  *
526  * -- wli
527  */
528 
529 static inline void __free_one_page(struct page *page,
530 		struct zone *zone, unsigned int order,
531 		int migratetype)
532 {
533 	unsigned long page_idx;
534 	unsigned long combined_idx;
535 	unsigned long uninitialized_var(buddy_idx);
536 	struct page *buddy;
537 
538 	if (unlikely(PageCompound(page)))
539 		if (unlikely(destroy_compound_page(page, order)))
540 			return;
541 
542 	VM_BUG_ON(migratetype == -1);
543 
544 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545 
546 	VM_BUG_ON(page_idx & ((1 << order) - 1));
547 	VM_BUG_ON(bad_range(zone, page));
548 
549 	while (order < MAX_ORDER-1) {
550 		buddy_idx = __find_buddy_index(page_idx, order);
551 		buddy = page + (buddy_idx - page_idx);
552 		if (!page_is_buddy(page, buddy, order))
553 			break;
554 		/*
555 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 		 * merge with it and move up one order.
557 		 */
558 		if (page_is_guard(buddy)) {
559 			clear_page_guard_flag(buddy);
560 			set_page_private(page, 0);
561 			__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 		} else {
563 			list_del(&buddy->lru);
564 			zone->free_area[order].nr_free--;
565 			rmv_page_order(buddy);
566 		}
567 		combined_idx = buddy_idx & page_idx;
568 		page = page + (combined_idx - page_idx);
569 		page_idx = combined_idx;
570 		order++;
571 	}
572 	set_page_order(page, order);
573 
574 	/*
575 	 * If this is not the largest possible page, check if the buddy
576 	 * of the next-highest order is free. If it is, it's possible
577 	 * that pages are being freed that will coalesce soon. In case,
578 	 * that is happening, add the free page to the tail of the list
579 	 * so it's less likely to be used soon and more likely to be merged
580 	 * as a higher order page
581 	 */
582 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
583 		struct page *higher_page, *higher_buddy;
584 		combined_idx = buddy_idx & page_idx;
585 		higher_page = page + (combined_idx - page_idx);
586 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
587 		higher_buddy = higher_page + (buddy_idx - combined_idx);
588 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 			list_add_tail(&page->lru,
590 				&zone->free_area[order].free_list[migratetype]);
591 			goto out;
592 		}
593 	}
594 
595 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596 out:
597 	zone->free_area[order].nr_free++;
598 }
599 
600 /*
601  * free_page_mlock() -- clean up attempts to free and mlocked() page.
602  * Page should not be on lru, so no need to fix that up.
603  * free_pages_check() will verify...
604  */
605 static inline void free_page_mlock(struct page *page)
606 {
607 	__dec_zone_page_state(page, NR_MLOCK);
608 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
609 }
610 
611 static inline int free_pages_check(struct page *page)
612 {
613 	if (unlikely(page_mapcount(page) |
614 		(page->mapping != NULL)  |
615 		(atomic_read(&page->_count) != 0) |
616 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 		(mem_cgroup_bad_page_check(page)))) {
618 		bad_page(page);
619 		return 1;
620 	}
621 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 	return 0;
624 }
625 
626 /*
627  * Frees a number of pages from the PCP lists
628  * Assumes all pages on list are in same zone, and of same order.
629  * count is the number of pages to free.
630  *
631  * If the zone was previously in an "all pages pinned" state then look to
632  * see if this freeing clears that state.
633  *
634  * And clear the zone's pages_scanned counter, to hold off the "all pages are
635  * pinned" detection logic.
636  */
637 static void free_pcppages_bulk(struct zone *zone, int count,
638 					struct per_cpu_pages *pcp)
639 {
640 	int migratetype = 0;
641 	int batch_free = 0;
642 	int to_free = count;
643 
644 	spin_lock(&zone->lock);
645 	zone->all_unreclaimable = 0;
646 	zone->pages_scanned = 0;
647 
648 	while (to_free) {
649 		struct page *page;
650 		struct list_head *list;
651 
652 		/*
653 		 * Remove pages from lists in a round-robin fashion. A
654 		 * batch_free count is maintained that is incremented when an
655 		 * empty list is encountered.  This is so more pages are freed
656 		 * off fuller lists instead of spinning excessively around empty
657 		 * lists
658 		 */
659 		do {
660 			batch_free++;
661 			if (++migratetype == MIGRATE_PCPTYPES)
662 				migratetype = 0;
663 			list = &pcp->lists[migratetype];
664 		} while (list_empty(list));
665 
666 		/* This is the only non-empty list. Free them all. */
667 		if (batch_free == MIGRATE_PCPTYPES)
668 			batch_free = to_free;
669 
670 		do {
671 			page = list_entry(list->prev, struct page, lru);
672 			/* must delete as __free_one_page list manipulates */
673 			list_del(&page->lru);
674 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 			__free_one_page(page, zone, 0, page_private(page));
676 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
677 		} while (--to_free && --batch_free && !list_empty(list));
678 	}
679 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
680 	spin_unlock(&zone->lock);
681 }
682 
683 static void free_one_page(struct zone *zone, struct page *page, int order,
684 				int migratetype)
685 {
686 	spin_lock(&zone->lock);
687 	zone->all_unreclaimable = 0;
688 	zone->pages_scanned = 0;
689 
690 	__free_one_page(page, zone, order, migratetype);
691 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
692 	spin_unlock(&zone->lock);
693 }
694 
695 static bool free_pages_prepare(struct page *page, unsigned int order)
696 {
697 	int i;
698 	int bad = 0;
699 
700 	trace_mm_page_free(page, order);
701 	kmemcheck_free_shadow(page, order);
702 
703 	if (PageAnon(page))
704 		page->mapping = NULL;
705 	for (i = 0; i < (1 << order); i++)
706 		bad += free_pages_check(page + i);
707 	if (bad)
708 		return false;
709 
710 	if (!PageHighMem(page)) {
711 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
712 		debug_check_no_obj_freed(page_address(page),
713 					   PAGE_SIZE << order);
714 	}
715 	arch_free_page(page, order);
716 	kernel_map_pages(page, 1 << order, 0);
717 
718 	return true;
719 }
720 
721 static void __free_pages_ok(struct page *page, unsigned int order)
722 {
723 	unsigned long flags;
724 	int wasMlocked = __TestClearPageMlocked(page);
725 
726 	if (!free_pages_prepare(page, order))
727 		return;
728 
729 	local_irq_save(flags);
730 	if (unlikely(wasMlocked))
731 		free_page_mlock(page);
732 	__count_vm_events(PGFREE, 1 << order);
733 	free_one_page(page_zone(page), page, order,
734 					get_pageblock_migratetype(page));
735 	local_irq_restore(flags);
736 }
737 
738 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
739 {
740 	unsigned int nr_pages = 1 << order;
741 	unsigned int loop;
742 
743 	prefetchw(page);
744 	for (loop = 0; loop < nr_pages; loop++) {
745 		struct page *p = &page[loop];
746 
747 		if (loop + 1 < nr_pages)
748 			prefetchw(p + 1);
749 		__ClearPageReserved(p);
750 		set_page_count(p, 0);
751 	}
752 
753 	set_page_refcounted(page);
754 	__free_pages(page, order);
755 }
756 
757 #ifdef CONFIG_CMA
758 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759 void __init init_cma_reserved_pageblock(struct page *page)
760 {
761 	unsigned i = pageblock_nr_pages;
762 	struct page *p = page;
763 
764 	do {
765 		__ClearPageReserved(p);
766 		set_page_count(p, 0);
767 	} while (++p, --i);
768 
769 	set_page_refcounted(page);
770 	set_pageblock_migratetype(page, MIGRATE_CMA);
771 	__free_pages(page, pageblock_order);
772 	totalram_pages += pageblock_nr_pages;
773 }
774 #endif
775 
776 /*
777  * The order of subdivision here is critical for the IO subsystem.
778  * Please do not alter this order without good reasons and regression
779  * testing. Specifically, as large blocks of memory are subdivided,
780  * the order in which smaller blocks are delivered depends on the order
781  * they're subdivided in this function. This is the primary factor
782  * influencing the order in which pages are delivered to the IO
783  * subsystem according to empirical testing, and this is also justified
784  * by considering the behavior of a buddy system containing a single
785  * large block of memory acted on by a series of small allocations.
786  * This behavior is a critical factor in sglist merging's success.
787  *
788  * -- wli
789  */
790 static inline void expand(struct zone *zone, struct page *page,
791 	int low, int high, struct free_area *area,
792 	int migratetype)
793 {
794 	unsigned long size = 1 << high;
795 
796 	while (high > low) {
797 		area--;
798 		high--;
799 		size >>= 1;
800 		VM_BUG_ON(bad_range(zone, &page[size]));
801 
802 #ifdef CONFIG_DEBUG_PAGEALLOC
803 		if (high < debug_guardpage_minorder()) {
804 			/*
805 			 * Mark as guard pages (or page), that will allow to
806 			 * merge back to allocator when buddy will be freed.
807 			 * Corresponding page table entries will not be touched,
808 			 * pages will stay not present in virtual address space
809 			 */
810 			INIT_LIST_HEAD(&page[size].lru);
811 			set_page_guard_flag(&page[size]);
812 			set_page_private(&page[size], high);
813 			/* Guard pages are not available for any usage */
814 			__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
815 			continue;
816 		}
817 #endif
818 		list_add(&page[size].lru, &area->free_list[migratetype]);
819 		area->nr_free++;
820 		set_page_order(&page[size], high);
821 	}
822 }
823 
824 /*
825  * This page is about to be returned from the page allocator
826  */
827 static inline int check_new_page(struct page *page)
828 {
829 	if (unlikely(page_mapcount(page) |
830 		(page->mapping != NULL)  |
831 		(atomic_read(&page->_count) != 0)  |
832 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
833 		(mem_cgroup_bad_page_check(page)))) {
834 		bad_page(page);
835 		return 1;
836 	}
837 	return 0;
838 }
839 
840 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
841 {
842 	int i;
843 
844 	for (i = 0; i < (1 << order); i++) {
845 		struct page *p = page + i;
846 		if (unlikely(check_new_page(p)))
847 			return 1;
848 	}
849 
850 	set_page_private(page, 0);
851 	set_page_refcounted(page);
852 
853 	arch_alloc_page(page, order);
854 	kernel_map_pages(page, 1 << order, 1);
855 
856 	if (gfp_flags & __GFP_ZERO)
857 		prep_zero_page(page, order, gfp_flags);
858 
859 	if (order && (gfp_flags & __GFP_COMP))
860 		prep_compound_page(page, order);
861 
862 	return 0;
863 }
864 
865 /*
866  * Go through the free lists for the given migratetype and remove
867  * the smallest available page from the freelists
868  */
869 static inline
870 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
871 						int migratetype)
872 {
873 	unsigned int current_order;
874 	struct free_area * area;
875 	struct page *page;
876 
877 	/* Find a page of the appropriate size in the preferred list */
878 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
879 		area = &(zone->free_area[current_order]);
880 		if (list_empty(&area->free_list[migratetype]))
881 			continue;
882 
883 		page = list_entry(area->free_list[migratetype].next,
884 							struct page, lru);
885 		list_del(&page->lru);
886 		rmv_page_order(page);
887 		area->nr_free--;
888 		expand(zone, page, order, current_order, area, migratetype);
889 		return page;
890 	}
891 
892 	return NULL;
893 }
894 
895 
896 /*
897  * This array describes the order lists are fallen back to when
898  * the free lists for the desirable migrate type are depleted
899  */
900 static int fallbacks[MIGRATE_TYPES][4] = {
901 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
902 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
903 #ifdef CONFIG_CMA
904 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
905 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
906 #else
907 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
908 #endif
909 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
910 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
911 };
912 
913 /*
914  * Move the free pages in a range to the free lists of the requested type.
915  * Note that start_page and end_pages are not aligned on a pageblock
916  * boundary. If alignment is required, use move_freepages_block()
917  */
918 static int move_freepages(struct zone *zone,
919 			  struct page *start_page, struct page *end_page,
920 			  int migratetype)
921 {
922 	struct page *page;
923 	unsigned long order;
924 	int pages_moved = 0;
925 
926 #ifndef CONFIG_HOLES_IN_ZONE
927 	/*
928 	 * page_zone is not safe to call in this context when
929 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 	 * anyway as we check zone boundaries in move_freepages_block().
931 	 * Remove at a later date when no bug reports exist related to
932 	 * grouping pages by mobility
933 	 */
934 	BUG_ON(page_zone(start_page) != page_zone(end_page));
935 #endif
936 
937 	for (page = start_page; page <= end_page;) {
938 		/* Make sure we are not inadvertently changing nodes */
939 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
940 
941 		if (!pfn_valid_within(page_to_pfn(page))) {
942 			page++;
943 			continue;
944 		}
945 
946 		if (!PageBuddy(page)) {
947 			page++;
948 			continue;
949 		}
950 
951 		order = page_order(page);
952 		list_move(&page->lru,
953 			  &zone->free_area[order].free_list[migratetype]);
954 		page += 1 << order;
955 		pages_moved += 1 << order;
956 	}
957 
958 	return pages_moved;
959 }
960 
961 int move_freepages_block(struct zone *zone, struct page *page,
962 				int migratetype)
963 {
964 	unsigned long start_pfn, end_pfn;
965 	struct page *start_page, *end_page;
966 
967 	start_pfn = page_to_pfn(page);
968 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
969 	start_page = pfn_to_page(start_pfn);
970 	end_page = start_page + pageblock_nr_pages - 1;
971 	end_pfn = start_pfn + pageblock_nr_pages - 1;
972 
973 	/* Do not cross zone boundaries */
974 	if (start_pfn < zone->zone_start_pfn)
975 		start_page = page;
976 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
977 		return 0;
978 
979 	return move_freepages(zone, start_page, end_page, migratetype);
980 }
981 
982 static void change_pageblock_range(struct page *pageblock_page,
983 					int start_order, int migratetype)
984 {
985 	int nr_pageblocks = 1 << (start_order - pageblock_order);
986 
987 	while (nr_pageblocks--) {
988 		set_pageblock_migratetype(pageblock_page, migratetype);
989 		pageblock_page += pageblock_nr_pages;
990 	}
991 }
992 
993 /* Remove an element from the buddy allocator from the fallback list */
994 static inline struct page *
995 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
996 {
997 	struct free_area * area;
998 	int current_order;
999 	struct page *page;
1000 	int migratetype, i;
1001 
1002 	/* Find the largest possible block of pages in the other list */
1003 	for (current_order = MAX_ORDER-1; current_order >= order;
1004 						--current_order) {
1005 		for (i = 0;; i++) {
1006 			migratetype = fallbacks[start_migratetype][i];
1007 
1008 			/* MIGRATE_RESERVE handled later if necessary */
1009 			if (migratetype == MIGRATE_RESERVE)
1010 				break;
1011 
1012 			area = &(zone->free_area[current_order]);
1013 			if (list_empty(&area->free_list[migratetype]))
1014 				continue;
1015 
1016 			page = list_entry(area->free_list[migratetype].next,
1017 					struct page, lru);
1018 			area->nr_free--;
1019 
1020 			/*
1021 			 * If breaking a large block of pages, move all free
1022 			 * pages to the preferred allocation list. If falling
1023 			 * back for a reclaimable kernel allocation, be more
1024 			 * aggressive about taking ownership of free pages
1025 			 *
1026 			 * On the other hand, never change migration
1027 			 * type of MIGRATE_CMA pageblocks nor move CMA
1028 			 * pages on different free lists. We don't
1029 			 * want unmovable pages to be allocated from
1030 			 * MIGRATE_CMA areas.
1031 			 */
1032 			if (!is_migrate_cma(migratetype) &&
1033 			    (unlikely(current_order >= pageblock_order / 2) ||
1034 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1035 			     page_group_by_mobility_disabled)) {
1036 				int pages;
1037 				pages = move_freepages_block(zone, page,
1038 								start_migratetype);
1039 
1040 				/* Claim the whole block if over half of it is free */
1041 				if (pages >= (1 << (pageblock_order-1)) ||
1042 						page_group_by_mobility_disabled)
1043 					set_pageblock_migratetype(page,
1044 								start_migratetype);
1045 
1046 				migratetype = start_migratetype;
1047 			}
1048 
1049 			/* Remove the page from the freelists */
1050 			list_del(&page->lru);
1051 			rmv_page_order(page);
1052 
1053 			/* Take ownership for orders >= pageblock_order */
1054 			if (current_order >= pageblock_order &&
1055 			    !is_migrate_cma(migratetype))
1056 				change_pageblock_range(page, current_order,
1057 							start_migratetype);
1058 
1059 			expand(zone, page, order, current_order, area,
1060 			       is_migrate_cma(migratetype)
1061 			     ? migratetype : start_migratetype);
1062 
1063 			trace_mm_page_alloc_extfrag(page, order, current_order,
1064 				start_migratetype, migratetype);
1065 
1066 			return page;
1067 		}
1068 	}
1069 
1070 	return NULL;
1071 }
1072 
1073 /*
1074  * Do the hard work of removing an element from the buddy allocator.
1075  * Call me with the zone->lock already held.
1076  */
1077 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1078 						int migratetype)
1079 {
1080 	struct page *page;
1081 
1082 retry_reserve:
1083 	page = __rmqueue_smallest(zone, order, migratetype);
1084 
1085 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1086 		page = __rmqueue_fallback(zone, order, migratetype);
1087 
1088 		/*
1089 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 		 * is used because __rmqueue_smallest is an inline function
1091 		 * and we want just one call site
1092 		 */
1093 		if (!page) {
1094 			migratetype = MIGRATE_RESERVE;
1095 			goto retry_reserve;
1096 		}
1097 	}
1098 
1099 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1100 	return page;
1101 }
1102 
1103 /*
1104  * Obtain a specified number of elements from the buddy allocator, all under
1105  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1106  * Returns the number of new pages which were placed at *list.
1107  */
1108 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1109 			unsigned long count, struct list_head *list,
1110 			int migratetype, int cold)
1111 {
1112 	int mt = migratetype, i;
1113 
1114 	spin_lock(&zone->lock);
1115 	for (i = 0; i < count; ++i) {
1116 		struct page *page = __rmqueue(zone, order, migratetype);
1117 		if (unlikely(page == NULL))
1118 			break;
1119 
1120 		/*
1121 		 * Split buddy pages returned by expand() are received here
1122 		 * in physical page order. The page is added to the callers and
1123 		 * list and the list head then moves forward. From the callers
1124 		 * perspective, the linked list is ordered by page number in
1125 		 * some conditions. This is useful for IO devices that can
1126 		 * merge IO requests if the physical pages are ordered
1127 		 * properly.
1128 		 */
1129 		if (likely(cold == 0))
1130 			list_add(&page->lru, list);
1131 		else
1132 			list_add_tail(&page->lru, list);
1133 		if (IS_ENABLED(CONFIG_CMA)) {
1134 			mt = get_pageblock_migratetype(page);
1135 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1136 				mt = migratetype;
1137 		}
1138 		set_page_private(page, mt);
1139 		list = &page->lru;
1140 	}
1141 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 	spin_unlock(&zone->lock);
1143 	return i;
1144 }
1145 
1146 #ifdef CONFIG_NUMA
1147 /*
1148  * Called from the vmstat counter updater to drain pagesets of this
1149  * currently executing processor on remote nodes after they have
1150  * expired.
1151  *
1152  * Note that this function must be called with the thread pinned to
1153  * a single processor.
1154  */
1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1156 {
1157 	unsigned long flags;
1158 	int to_drain;
1159 
1160 	local_irq_save(flags);
1161 	if (pcp->count >= pcp->batch)
1162 		to_drain = pcp->batch;
1163 	else
1164 		to_drain = pcp->count;
1165 	if (to_drain > 0) {
1166 		free_pcppages_bulk(zone, to_drain, pcp);
1167 		pcp->count -= to_drain;
1168 	}
1169 	local_irq_restore(flags);
1170 }
1171 #endif
1172 
1173 /*
1174  * Drain pages of the indicated processor.
1175  *
1176  * The processor must either be the current processor and the
1177  * thread pinned to the current processor or a processor that
1178  * is not online.
1179  */
1180 static void drain_pages(unsigned int cpu)
1181 {
1182 	unsigned long flags;
1183 	struct zone *zone;
1184 
1185 	for_each_populated_zone(zone) {
1186 		struct per_cpu_pageset *pset;
1187 		struct per_cpu_pages *pcp;
1188 
1189 		local_irq_save(flags);
1190 		pset = per_cpu_ptr(zone->pageset, cpu);
1191 
1192 		pcp = &pset->pcp;
1193 		if (pcp->count) {
1194 			free_pcppages_bulk(zone, pcp->count, pcp);
1195 			pcp->count = 0;
1196 		}
1197 		local_irq_restore(flags);
1198 	}
1199 }
1200 
1201 /*
1202  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203  */
1204 void drain_local_pages(void *arg)
1205 {
1206 	drain_pages(smp_processor_id());
1207 }
1208 
1209 /*
1210  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211  *
1212  * Note that this code is protected against sending an IPI to an offline
1213  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215  * nothing keeps CPUs from showing up after we populated the cpumask and
1216  * before the call to on_each_cpu_mask().
1217  */
1218 void drain_all_pages(void)
1219 {
1220 	int cpu;
1221 	struct per_cpu_pageset *pcp;
1222 	struct zone *zone;
1223 
1224 	/*
1225 	 * Allocate in the BSS so we wont require allocation in
1226 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 	 */
1228 	static cpumask_t cpus_with_pcps;
1229 
1230 	/*
1231 	 * We don't care about racing with CPU hotplug event
1232 	 * as offline notification will cause the notified
1233 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 	 * disables preemption as part of its processing
1235 	 */
1236 	for_each_online_cpu(cpu) {
1237 		bool has_pcps = false;
1238 		for_each_populated_zone(zone) {
1239 			pcp = per_cpu_ptr(zone->pageset, cpu);
1240 			if (pcp->pcp.count) {
1241 				has_pcps = true;
1242 				break;
1243 			}
1244 		}
1245 		if (has_pcps)
1246 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 		else
1248 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 	}
1250 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1251 }
1252 
1253 #ifdef CONFIG_HIBERNATION
1254 
1255 void mark_free_pages(struct zone *zone)
1256 {
1257 	unsigned long pfn, max_zone_pfn;
1258 	unsigned long flags;
1259 	int order, t;
1260 	struct list_head *curr;
1261 
1262 	if (!zone->spanned_pages)
1263 		return;
1264 
1265 	spin_lock_irqsave(&zone->lock, flags);
1266 
1267 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 		if (pfn_valid(pfn)) {
1270 			struct page *page = pfn_to_page(pfn);
1271 
1272 			if (!swsusp_page_is_forbidden(page))
1273 				swsusp_unset_page_free(page);
1274 		}
1275 
1276 	for_each_migratetype_order(order, t) {
1277 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 			unsigned long i;
1279 
1280 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 			for (i = 0; i < (1UL << order); i++)
1282 				swsusp_set_page_free(pfn_to_page(pfn + i));
1283 		}
1284 	}
1285 	spin_unlock_irqrestore(&zone->lock, flags);
1286 }
1287 #endif /* CONFIG_PM */
1288 
1289 /*
1290  * Free a 0-order page
1291  * cold == 1 ? free a cold page : free a hot page
1292  */
1293 void free_hot_cold_page(struct page *page, int cold)
1294 {
1295 	struct zone *zone = page_zone(page);
1296 	struct per_cpu_pages *pcp;
1297 	unsigned long flags;
1298 	int migratetype;
1299 	int wasMlocked = __TestClearPageMlocked(page);
1300 
1301 	if (!free_pages_prepare(page, 0))
1302 		return;
1303 
1304 	migratetype = get_pageblock_migratetype(page);
1305 	set_page_private(page, migratetype);
1306 	local_irq_save(flags);
1307 	if (unlikely(wasMlocked))
1308 		free_page_mlock(page);
1309 	__count_vm_event(PGFREE);
1310 
1311 	/*
1312 	 * We only track unmovable, reclaimable and movable on pcp lists.
1313 	 * Free ISOLATE pages back to the allocator because they are being
1314 	 * offlined but treat RESERVE as movable pages so we can get those
1315 	 * areas back if necessary. Otherwise, we may have to free
1316 	 * excessively into the page allocator
1317 	 */
1318 	if (migratetype >= MIGRATE_PCPTYPES) {
1319 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1320 			free_one_page(zone, page, 0, migratetype);
1321 			goto out;
1322 		}
1323 		migratetype = MIGRATE_MOVABLE;
1324 	}
1325 
1326 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1327 	if (cold)
1328 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1329 	else
1330 		list_add(&page->lru, &pcp->lists[migratetype]);
1331 	pcp->count++;
1332 	if (pcp->count >= pcp->high) {
1333 		free_pcppages_bulk(zone, pcp->batch, pcp);
1334 		pcp->count -= pcp->batch;
1335 	}
1336 
1337 out:
1338 	local_irq_restore(flags);
1339 }
1340 
1341 /*
1342  * Free a list of 0-order pages
1343  */
1344 void free_hot_cold_page_list(struct list_head *list, int cold)
1345 {
1346 	struct page *page, *next;
1347 
1348 	list_for_each_entry_safe(page, next, list, lru) {
1349 		trace_mm_page_free_batched(page, cold);
1350 		free_hot_cold_page(page, cold);
1351 	}
1352 }
1353 
1354 /*
1355  * split_page takes a non-compound higher-order page, and splits it into
1356  * n (1<<order) sub-pages: page[0..n]
1357  * Each sub-page must be freed individually.
1358  *
1359  * Note: this is probably too low level an operation for use in drivers.
1360  * Please consult with lkml before using this in your driver.
1361  */
1362 void split_page(struct page *page, unsigned int order)
1363 {
1364 	int i;
1365 
1366 	VM_BUG_ON(PageCompound(page));
1367 	VM_BUG_ON(!page_count(page));
1368 
1369 #ifdef CONFIG_KMEMCHECK
1370 	/*
1371 	 * Split shadow pages too, because free(page[0]) would
1372 	 * otherwise free the whole shadow.
1373 	 */
1374 	if (kmemcheck_page_is_tracked(page))
1375 		split_page(virt_to_page(page[0].shadow), order);
1376 #endif
1377 
1378 	for (i = 1; i < (1 << order); i++)
1379 		set_page_refcounted(page + i);
1380 }
1381 
1382 /*
1383  * Similar to split_page except the page is already free. As this is only
1384  * being used for migration, the migratetype of the block also changes.
1385  * As this is called with interrupts disabled, the caller is responsible
1386  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1387  * are enabled.
1388  *
1389  * Note: this is probably too low level an operation for use in drivers.
1390  * Please consult with lkml before using this in your driver.
1391  */
1392 int split_free_page(struct page *page)
1393 {
1394 	unsigned int order;
1395 	unsigned long watermark;
1396 	struct zone *zone;
1397 
1398 	BUG_ON(!PageBuddy(page));
1399 
1400 	zone = page_zone(page);
1401 	order = page_order(page);
1402 
1403 	/* Obey watermarks as if the page was being allocated */
1404 	watermark = low_wmark_pages(zone) + (1 << order);
1405 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 		return 0;
1407 
1408 	/* Remove page from free list */
1409 	list_del(&page->lru);
1410 	zone->free_area[order].nr_free--;
1411 	rmv_page_order(page);
1412 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1413 
1414 	/* Split into individual pages */
1415 	set_page_refcounted(page);
1416 	split_page(page, order);
1417 
1418 	if (order >= pageblock_order - 1) {
1419 		struct page *endpage = page + (1 << order) - 1;
1420 		for (; page < endpage; page += pageblock_nr_pages) {
1421 			int mt = get_pageblock_migratetype(page);
1422 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 				set_pageblock_migratetype(page,
1424 							  MIGRATE_MOVABLE);
1425 		}
1426 	}
1427 
1428 	return 1 << order;
1429 }
1430 
1431 /*
1432  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1433  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1434  * or two.
1435  */
1436 static inline
1437 struct page *buffered_rmqueue(struct zone *preferred_zone,
1438 			struct zone *zone, int order, gfp_t gfp_flags,
1439 			int migratetype)
1440 {
1441 	unsigned long flags;
1442 	struct page *page;
1443 	int cold = !!(gfp_flags & __GFP_COLD);
1444 
1445 again:
1446 	if (likely(order == 0)) {
1447 		struct per_cpu_pages *pcp;
1448 		struct list_head *list;
1449 
1450 		local_irq_save(flags);
1451 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1452 		list = &pcp->lists[migratetype];
1453 		if (list_empty(list)) {
1454 			pcp->count += rmqueue_bulk(zone, 0,
1455 					pcp->batch, list,
1456 					migratetype, cold);
1457 			if (unlikely(list_empty(list)))
1458 				goto failed;
1459 		}
1460 
1461 		if (cold)
1462 			page = list_entry(list->prev, struct page, lru);
1463 		else
1464 			page = list_entry(list->next, struct page, lru);
1465 
1466 		list_del(&page->lru);
1467 		pcp->count--;
1468 	} else {
1469 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1470 			/*
1471 			 * __GFP_NOFAIL is not to be used in new code.
1472 			 *
1473 			 * All __GFP_NOFAIL callers should be fixed so that they
1474 			 * properly detect and handle allocation failures.
1475 			 *
1476 			 * We most definitely don't want callers attempting to
1477 			 * allocate greater than order-1 page units with
1478 			 * __GFP_NOFAIL.
1479 			 */
1480 			WARN_ON_ONCE(order > 1);
1481 		}
1482 		spin_lock_irqsave(&zone->lock, flags);
1483 		page = __rmqueue(zone, order, migratetype);
1484 		spin_unlock(&zone->lock);
1485 		if (!page)
1486 			goto failed;
1487 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1488 	}
1489 
1490 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1491 	zone_statistics(preferred_zone, zone, gfp_flags);
1492 	local_irq_restore(flags);
1493 
1494 	VM_BUG_ON(bad_range(zone, page));
1495 	if (prep_new_page(page, order, gfp_flags))
1496 		goto again;
1497 	return page;
1498 
1499 failed:
1500 	local_irq_restore(flags);
1501 	return NULL;
1502 }
1503 
1504 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1505 #define ALLOC_WMARK_MIN		WMARK_MIN
1506 #define ALLOC_WMARK_LOW		WMARK_LOW
1507 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1508 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1509 
1510 /* Mask to get the watermark bits */
1511 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1512 
1513 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1514 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1515 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1516 
1517 #ifdef CONFIG_FAIL_PAGE_ALLOC
1518 
1519 static struct {
1520 	struct fault_attr attr;
1521 
1522 	u32 ignore_gfp_highmem;
1523 	u32 ignore_gfp_wait;
1524 	u32 min_order;
1525 } fail_page_alloc = {
1526 	.attr = FAULT_ATTR_INITIALIZER,
1527 	.ignore_gfp_wait = 1,
1528 	.ignore_gfp_highmem = 1,
1529 	.min_order = 1,
1530 };
1531 
1532 static int __init setup_fail_page_alloc(char *str)
1533 {
1534 	return setup_fault_attr(&fail_page_alloc.attr, str);
1535 }
1536 __setup("fail_page_alloc=", setup_fail_page_alloc);
1537 
1538 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1539 {
1540 	if (order < fail_page_alloc.min_order)
1541 		return false;
1542 	if (gfp_mask & __GFP_NOFAIL)
1543 		return false;
1544 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1545 		return false;
1546 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1547 		return false;
1548 
1549 	return should_fail(&fail_page_alloc.attr, 1 << order);
1550 }
1551 
1552 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1553 
1554 static int __init fail_page_alloc_debugfs(void)
1555 {
1556 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1557 	struct dentry *dir;
1558 
1559 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1560 					&fail_page_alloc.attr);
1561 	if (IS_ERR(dir))
1562 		return PTR_ERR(dir);
1563 
1564 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1565 				&fail_page_alloc.ignore_gfp_wait))
1566 		goto fail;
1567 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1568 				&fail_page_alloc.ignore_gfp_highmem))
1569 		goto fail;
1570 	if (!debugfs_create_u32("min-order", mode, dir,
1571 				&fail_page_alloc.min_order))
1572 		goto fail;
1573 
1574 	return 0;
1575 fail:
1576 	debugfs_remove_recursive(dir);
1577 
1578 	return -ENOMEM;
1579 }
1580 
1581 late_initcall(fail_page_alloc_debugfs);
1582 
1583 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1584 
1585 #else /* CONFIG_FAIL_PAGE_ALLOC */
1586 
1587 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1588 {
1589 	return false;
1590 }
1591 
1592 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1593 
1594 /*
1595  * Return true if free pages are above 'mark'. This takes into account the order
1596  * of the allocation.
1597  */
1598 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1599 		      int classzone_idx, int alloc_flags, long free_pages)
1600 {
1601 	/* free_pages my go negative - that's OK */
1602 	long min = mark;
1603 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1604 	int o;
1605 
1606 	free_pages -= (1 << order) - 1;
1607 	if (alloc_flags & ALLOC_HIGH)
1608 		min -= min / 2;
1609 	if (alloc_flags & ALLOC_HARDER)
1610 		min -= min / 4;
1611 
1612 	if (free_pages <= min + lowmem_reserve)
1613 		return false;
1614 	for (o = 0; o < order; o++) {
1615 		/* At the next order, this order's pages become unavailable */
1616 		free_pages -= z->free_area[o].nr_free << o;
1617 
1618 		/* Require fewer higher order pages to be free */
1619 		min >>= 1;
1620 
1621 		if (free_pages <= min)
1622 			return false;
1623 	}
1624 	return true;
1625 }
1626 
1627 #ifdef CONFIG_MEMORY_ISOLATION
1628 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1629 {
1630 	if (unlikely(zone->nr_pageblock_isolate))
1631 		return zone->nr_pageblock_isolate * pageblock_nr_pages;
1632 	return 0;
1633 }
1634 #else
1635 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1636 {
1637 	return 0;
1638 }
1639 #endif
1640 
1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1642 		      int classzone_idx, int alloc_flags)
1643 {
1644 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1645 					zone_page_state(z, NR_FREE_PAGES));
1646 }
1647 
1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1649 		      int classzone_idx, int alloc_flags)
1650 {
1651 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1652 
1653 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1654 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1655 
1656 	/*
1657 	 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1658 	 * it.  nr_zone_isolate_freepages is never accurate so kswapd might not
1659 	 * sleep although it could do so.  But this is more desirable for memory
1660 	 * hotplug than sleeping which can cause a livelock in the direct
1661 	 * reclaim path.
1662 	 */
1663 	free_pages -= nr_zone_isolate_freepages(z);
1664 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1665 								free_pages);
1666 }
1667 
1668 #ifdef CONFIG_NUMA
1669 /*
1670  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1671  * skip over zones that are not allowed by the cpuset, or that have
1672  * been recently (in last second) found to be nearly full.  See further
1673  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1674  * that have to skip over a lot of full or unallowed zones.
1675  *
1676  * If the zonelist cache is present in the passed in zonelist, then
1677  * returns a pointer to the allowed node mask (either the current
1678  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1679  *
1680  * If the zonelist cache is not available for this zonelist, does
1681  * nothing and returns NULL.
1682  *
1683  * If the fullzones BITMAP in the zonelist cache is stale (more than
1684  * a second since last zap'd) then we zap it out (clear its bits.)
1685  *
1686  * We hold off even calling zlc_setup, until after we've checked the
1687  * first zone in the zonelist, on the theory that most allocations will
1688  * be satisfied from that first zone, so best to examine that zone as
1689  * quickly as we can.
1690  */
1691 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1692 {
1693 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1694 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1695 
1696 	zlc = zonelist->zlcache_ptr;
1697 	if (!zlc)
1698 		return NULL;
1699 
1700 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1701 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1702 		zlc->last_full_zap = jiffies;
1703 	}
1704 
1705 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1706 					&cpuset_current_mems_allowed :
1707 					&node_states[N_HIGH_MEMORY];
1708 	return allowednodes;
1709 }
1710 
1711 /*
1712  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1713  * if it is worth looking at further for free memory:
1714  *  1) Check that the zone isn't thought to be full (doesn't have its
1715  *     bit set in the zonelist_cache fullzones BITMAP).
1716  *  2) Check that the zones node (obtained from the zonelist_cache
1717  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1718  * Return true (non-zero) if zone is worth looking at further, or
1719  * else return false (zero) if it is not.
1720  *
1721  * This check -ignores- the distinction between various watermarks,
1722  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1723  * found to be full for any variation of these watermarks, it will
1724  * be considered full for up to one second by all requests, unless
1725  * we are so low on memory on all allowed nodes that we are forced
1726  * into the second scan of the zonelist.
1727  *
1728  * In the second scan we ignore this zonelist cache and exactly
1729  * apply the watermarks to all zones, even it is slower to do so.
1730  * We are low on memory in the second scan, and should leave no stone
1731  * unturned looking for a free page.
1732  */
1733 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1734 						nodemask_t *allowednodes)
1735 {
1736 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1737 	int i;				/* index of *z in zonelist zones */
1738 	int n;				/* node that zone *z is on */
1739 
1740 	zlc = zonelist->zlcache_ptr;
1741 	if (!zlc)
1742 		return 1;
1743 
1744 	i = z - zonelist->_zonerefs;
1745 	n = zlc->z_to_n[i];
1746 
1747 	/* This zone is worth trying if it is allowed but not full */
1748 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1749 }
1750 
1751 /*
1752  * Given 'z' scanning a zonelist, set the corresponding bit in
1753  * zlc->fullzones, so that subsequent attempts to allocate a page
1754  * from that zone don't waste time re-examining it.
1755  */
1756 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1757 {
1758 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1759 	int i;				/* index of *z in zonelist zones */
1760 
1761 	zlc = zonelist->zlcache_ptr;
1762 	if (!zlc)
1763 		return;
1764 
1765 	i = z - zonelist->_zonerefs;
1766 
1767 	set_bit(i, zlc->fullzones);
1768 }
1769 
1770 /*
1771  * clear all zones full, called after direct reclaim makes progress so that
1772  * a zone that was recently full is not skipped over for up to a second
1773  */
1774 static void zlc_clear_zones_full(struct zonelist *zonelist)
1775 {
1776 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1777 
1778 	zlc = zonelist->zlcache_ptr;
1779 	if (!zlc)
1780 		return;
1781 
1782 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1783 }
1784 
1785 #else	/* CONFIG_NUMA */
1786 
1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1788 {
1789 	return NULL;
1790 }
1791 
1792 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1793 				nodemask_t *allowednodes)
1794 {
1795 	return 1;
1796 }
1797 
1798 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1799 {
1800 }
1801 
1802 static void zlc_clear_zones_full(struct zonelist *zonelist)
1803 {
1804 }
1805 #endif	/* CONFIG_NUMA */
1806 
1807 /*
1808  * get_page_from_freelist goes through the zonelist trying to allocate
1809  * a page.
1810  */
1811 static struct page *
1812 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1813 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1814 		struct zone *preferred_zone, int migratetype)
1815 {
1816 	struct zoneref *z;
1817 	struct page *page = NULL;
1818 	int classzone_idx;
1819 	struct zone *zone;
1820 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1821 	int zlc_active = 0;		/* set if using zonelist_cache */
1822 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1823 
1824 	classzone_idx = zone_idx(preferred_zone);
1825 zonelist_scan:
1826 	/*
1827 	 * Scan zonelist, looking for a zone with enough free.
1828 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1829 	 */
1830 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1831 						high_zoneidx, nodemask) {
1832 		if (NUMA_BUILD && zlc_active &&
1833 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1834 				continue;
1835 		if ((alloc_flags & ALLOC_CPUSET) &&
1836 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1837 				continue;
1838 		/*
1839 		 * When allocating a page cache page for writing, we
1840 		 * want to get it from a zone that is within its dirty
1841 		 * limit, such that no single zone holds more than its
1842 		 * proportional share of globally allowed dirty pages.
1843 		 * The dirty limits take into account the zone's
1844 		 * lowmem reserves and high watermark so that kswapd
1845 		 * should be able to balance it without having to
1846 		 * write pages from its LRU list.
1847 		 *
1848 		 * This may look like it could increase pressure on
1849 		 * lower zones by failing allocations in higher zones
1850 		 * before they are full.  But the pages that do spill
1851 		 * over are limited as the lower zones are protected
1852 		 * by this very same mechanism.  It should not become
1853 		 * a practical burden to them.
1854 		 *
1855 		 * XXX: For now, allow allocations to potentially
1856 		 * exceed the per-zone dirty limit in the slowpath
1857 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1858 		 * which is important when on a NUMA setup the allowed
1859 		 * zones are together not big enough to reach the
1860 		 * global limit.  The proper fix for these situations
1861 		 * will require awareness of zones in the
1862 		 * dirty-throttling and the flusher threads.
1863 		 */
1864 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1865 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1866 			goto this_zone_full;
1867 
1868 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1869 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1870 			unsigned long mark;
1871 			int ret;
1872 
1873 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1874 			if (zone_watermark_ok(zone, order, mark,
1875 				    classzone_idx, alloc_flags))
1876 				goto try_this_zone;
1877 
1878 			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1879 				/*
1880 				 * we do zlc_setup if there are multiple nodes
1881 				 * and before considering the first zone allowed
1882 				 * by the cpuset.
1883 				 */
1884 				allowednodes = zlc_setup(zonelist, alloc_flags);
1885 				zlc_active = 1;
1886 				did_zlc_setup = 1;
1887 			}
1888 
1889 			if (zone_reclaim_mode == 0)
1890 				goto this_zone_full;
1891 
1892 			/*
1893 			 * As we may have just activated ZLC, check if the first
1894 			 * eligible zone has failed zone_reclaim recently.
1895 			 */
1896 			if (NUMA_BUILD && zlc_active &&
1897 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1898 				continue;
1899 
1900 			ret = zone_reclaim(zone, gfp_mask, order);
1901 			switch (ret) {
1902 			case ZONE_RECLAIM_NOSCAN:
1903 				/* did not scan */
1904 				continue;
1905 			case ZONE_RECLAIM_FULL:
1906 				/* scanned but unreclaimable */
1907 				continue;
1908 			default:
1909 				/* did we reclaim enough */
1910 				if (!zone_watermark_ok(zone, order, mark,
1911 						classzone_idx, alloc_flags))
1912 					goto this_zone_full;
1913 			}
1914 		}
1915 
1916 try_this_zone:
1917 		page = buffered_rmqueue(preferred_zone, zone, order,
1918 						gfp_mask, migratetype);
1919 		if (page)
1920 			break;
1921 this_zone_full:
1922 		if (NUMA_BUILD)
1923 			zlc_mark_zone_full(zonelist, z);
1924 	}
1925 
1926 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1927 		/* Disable zlc cache for second zonelist scan */
1928 		zlc_active = 0;
1929 		goto zonelist_scan;
1930 	}
1931 
1932 	if (page)
1933 		/*
1934 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1935 		 * necessary to allocate the page. The expectation is
1936 		 * that the caller is taking steps that will free more
1937 		 * memory. The caller should avoid the page being used
1938 		 * for !PFMEMALLOC purposes.
1939 		 */
1940 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1941 
1942 	return page;
1943 }
1944 
1945 /*
1946  * Large machines with many possible nodes should not always dump per-node
1947  * meminfo in irq context.
1948  */
1949 static inline bool should_suppress_show_mem(void)
1950 {
1951 	bool ret = false;
1952 
1953 #if NODES_SHIFT > 8
1954 	ret = in_interrupt();
1955 #endif
1956 	return ret;
1957 }
1958 
1959 static DEFINE_RATELIMIT_STATE(nopage_rs,
1960 		DEFAULT_RATELIMIT_INTERVAL,
1961 		DEFAULT_RATELIMIT_BURST);
1962 
1963 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1964 {
1965 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1966 
1967 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1968 	    debug_guardpage_minorder() > 0)
1969 		return;
1970 
1971 	/*
1972 	 * This documents exceptions given to allocations in certain
1973 	 * contexts that are allowed to allocate outside current's set
1974 	 * of allowed nodes.
1975 	 */
1976 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1977 		if (test_thread_flag(TIF_MEMDIE) ||
1978 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1979 			filter &= ~SHOW_MEM_FILTER_NODES;
1980 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1981 		filter &= ~SHOW_MEM_FILTER_NODES;
1982 
1983 	if (fmt) {
1984 		struct va_format vaf;
1985 		va_list args;
1986 
1987 		va_start(args, fmt);
1988 
1989 		vaf.fmt = fmt;
1990 		vaf.va = &args;
1991 
1992 		pr_warn("%pV", &vaf);
1993 
1994 		va_end(args);
1995 	}
1996 
1997 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1998 		current->comm, order, gfp_mask);
1999 
2000 	dump_stack();
2001 	if (!should_suppress_show_mem())
2002 		show_mem(filter);
2003 }
2004 
2005 static inline int
2006 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2007 				unsigned long did_some_progress,
2008 				unsigned long pages_reclaimed)
2009 {
2010 	/* Do not loop if specifically requested */
2011 	if (gfp_mask & __GFP_NORETRY)
2012 		return 0;
2013 
2014 	/* Always retry if specifically requested */
2015 	if (gfp_mask & __GFP_NOFAIL)
2016 		return 1;
2017 
2018 	/*
2019 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2020 	 * making forward progress without invoking OOM. Suspend also disables
2021 	 * storage devices so kswapd will not help. Bail if we are suspending.
2022 	 */
2023 	if (!did_some_progress && pm_suspended_storage())
2024 		return 0;
2025 
2026 	/*
2027 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2028 	 * means __GFP_NOFAIL, but that may not be true in other
2029 	 * implementations.
2030 	 */
2031 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2032 		return 1;
2033 
2034 	/*
2035 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2036 	 * specified, then we retry until we no longer reclaim any pages
2037 	 * (above), or we've reclaimed an order of pages at least as
2038 	 * large as the allocation's order. In both cases, if the
2039 	 * allocation still fails, we stop retrying.
2040 	 */
2041 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2042 		return 1;
2043 
2044 	return 0;
2045 }
2046 
2047 static inline struct page *
2048 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2049 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2050 	nodemask_t *nodemask, struct zone *preferred_zone,
2051 	int migratetype)
2052 {
2053 	struct page *page;
2054 
2055 	/* Acquire the OOM killer lock for the zones in zonelist */
2056 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2057 		schedule_timeout_uninterruptible(1);
2058 		return NULL;
2059 	}
2060 
2061 	/*
2062 	 * Go through the zonelist yet one more time, keep very high watermark
2063 	 * here, this is only to catch a parallel oom killing, we must fail if
2064 	 * we're still under heavy pressure.
2065 	 */
2066 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2067 		order, zonelist, high_zoneidx,
2068 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2069 		preferred_zone, migratetype);
2070 	if (page)
2071 		goto out;
2072 
2073 	if (!(gfp_mask & __GFP_NOFAIL)) {
2074 		/* The OOM killer will not help higher order allocs */
2075 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2076 			goto out;
2077 		/* The OOM killer does not needlessly kill tasks for lowmem */
2078 		if (high_zoneidx < ZONE_NORMAL)
2079 			goto out;
2080 		/*
2081 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2082 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2083 		 * The caller should handle page allocation failure by itself if
2084 		 * it specifies __GFP_THISNODE.
2085 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2086 		 */
2087 		if (gfp_mask & __GFP_THISNODE)
2088 			goto out;
2089 	}
2090 	/* Exhausted what can be done so it's blamo time */
2091 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2092 
2093 out:
2094 	clear_zonelist_oom(zonelist, gfp_mask);
2095 	return page;
2096 }
2097 
2098 #ifdef CONFIG_COMPACTION
2099 /* Try memory compaction for high-order allocations before reclaim */
2100 static struct page *
2101 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2102 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2103 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2104 	int migratetype, bool sync_migration,
2105 	bool *contended_compaction, bool *deferred_compaction,
2106 	unsigned long *did_some_progress)
2107 {
2108 	struct page *page;
2109 
2110 	if (!order)
2111 		return NULL;
2112 
2113 	if (compaction_deferred(preferred_zone, order)) {
2114 		*deferred_compaction = true;
2115 		return NULL;
2116 	}
2117 
2118 	current->flags |= PF_MEMALLOC;
2119 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2120 						nodemask, sync_migration,
2121 						contended_compaction);
2122 	current->flags &= ~PF_MEMALLOC;
2123 	if (*did_some_progress != COMPACT_SKIPPED) {
2124 
2125 		/* Page migration frees to the PCP lists but we want merging */
2126 		drain_pages(get_cpu());
2127 		put_cpu();
2128 
2129 		page = get_page_from_freelist(gfp_mask, nodemask,
2130 				order, zonelist, high_zoneidx,
2131 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2132 				preferred_zone, migratetype);
2133 		if (page) {
2134 			preferred_zone->compact_considered = 0;
2135 			preferred_zone->compact_defer_shift = 0;
2136 			if (order >= preferred_zone->compact_order_failed)
2137 				preferred_zone->compact_order_failed = order + 1;
2138 			count_vm_event(COMPACTSUCCESS);
2139 			return page;
2140 		}
2141 
2142 		/*
2143 		 * It's bad if compaction run occurs and fails.
2144 		 * The most likely reason is that pages exist,
2145 		 * but not enough to satisfy watermarks.
2146 		 */
2147 		count_vm_event(COMPACTFAIL);
2148 
2149 		/*
2150 		 * As async compaction considers a subset of pageblocks, only
2151 		 * defer if the failure was a sync compaction failure.
2152 		 */
2153 		if (sync_migration)
2154 			defer_compaction(preferred_zone, order);
2155 
2156 		cond_resched();
2157 	}
2158 
2159 	return NULL;
2160 }
2161 #else
2162 static inline struct page *
2163 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2164 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2165 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2166 	int migratetype, bool sync_migration,
2167 	bool *contended_compaction, bool *deferred_compaction,
2168 	unsigned long *did_some_progress)
2169 {
2170 	return NULL;
2171 }
2172 #endif /* CONFIG_COMPACTION */
2173 
2174 /* Perform direct synchronous page reclaim */
2175 static int
2176 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2177 		  nodemask_t *nodemask)
2178 {
2179 	struct reclaim_state reclaim_state;
2180 	int progress;
2181 
2182 	cond_resched();
2183 
2184 	/* We now go into synchronous reclaim */
2185 	cpuset_memory_pressure_bump();
2186 	current->flags |= PF_MEMALLOC;
2187 	lockdep_set_current_reclaim_state(gfp_mask);
2188 	reclaim_state.reclaimed_slab = 0;
2189 	current->reclaim_state = &reclaim_state;
2190 
2191 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2192 
2193 	current->reclaim_state = NULL;
2194 	lockdep_clear_current_reclaim_state();
2195 	current->flags &= ~PF_MEMALLOC;
2196 
2197 	cond_resched();
2198 
2199 	return progress;
2200 }
2201 
2202 /* The really slow allocator path where we enter direct reclaim */
2203 static inline struct page *
2204 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2205 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2207 	int migratetype, unsigned long *did_some_progress)
2208 {
2209 	struct page *page = NULL;
2210 	bool drained = false;
2211 
2212 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2213 					       nodemask);
2214 	if (unlikely(!(*did_some_progress)))
2215 		return NULL;
2216 
2217 	/* After successful reclaim, reconsider all zones for allocation */
2218 	if (NUMA_BUILD)
2219 		zlc_clear_zones_full(zonelist);
2220 
2221 retry:
2222 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2223 					zonelist, high_zoneidx,
2224 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2225 					preferred_zone, migratetype);
2226 
2227 	/*
2228 	 * If an allocation failed after direct reclaim, it could be because
2229 	 * pages are pinned on the per-cpu lists. Drain them and try again
2230 	 */
2231 	if (!page && !drained) {
2232 		drain_all_pages();
2233 		drained = true;
2234 		goto retry;
2235 	}
2236 
2237 	return page;
2238 }
2239 
2240 /*
2241  * This is called in the allocator slow-path if the allocation request is of
2242  * sufficient urgency to ignore watermarks and take other desperate measures
2243  */
2244 static inline struct page *
2245 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2246 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2247 	nodemask_t *nodemask, struct zone *preferred_zone,
2248 	int migratetype)
2249 {
2250 	struct page *page;
2251 
2252 	do {
2253 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2254 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2255 			preferred_zone, migratetype);
2256 
2257 		if (!page && gfp_mask & __GFP_NOFAIL)
2258 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2259 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2260 
2261 	return page;
2262 }
2263 
2264 static inline
2265 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2266 						enum zone_type high_zoneidx,
2267 						enum zone_type classzone_idx)
2268 {
2269 	struct zoneref *z;
2270 	struct zone *zone;
2271 
2272 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2273 		wakeup_kswapd(zone, order, classzone_idx);
2274 }
2275 
2276 static inline int
2277 gfp_to_alloc_flags(gfp_t gfp_mask)
2278 {
2279 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2280 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2281 
2282 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2283 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2284 
2285 	/*
2286 	 * The caller may dip into page reserves a bit more if the caller
2287 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2288 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2289 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2290 	 */
2291 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2292 
2293 	if (!wait) {
2294 		/*
2295 		 * Not worth trying to allocate harder for
2296 		 * __GFP_NOMEMALLOC even if it can't schedule.
2297 		 */
2298 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2299 			alloc_flags |= ALLOC_HARDER;
2300 		/*
2301 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2302 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2303 		 */
2304 		alloc_flags &= ~ALLOC_CPUSET;
2305 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2306 		alloc_flags |= ALLOC_HARDER;
2307 
2308 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2309 		if (gfp_mask & __GFP_MEMALLOC)
2310 			alloc_flags |= ALLOC_NO_WATERMARKS;
2311 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2312 			alloc_flags |= ALLOC_NO_WATERMARKS;
2313 		else if (!in_interrupt() &&
2314 				((current->flags & PF_MEMALLOC) ||
2315 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2316 			alloc_flags |= ALLOC_NO_WATERMARKS;
2317 	}
2318 
2319 	return alloc_flags;
2320 }
2321 
2322 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2323 {
2324 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2325 }
2326 
2327 static inline struct page *
2328 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2329 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2330 	nodemask_t *nodemask, struct zone *preferred_zone,
2331 	int migratetype)
2332 {
2333 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2334 	struct page *page = NULL;
2335 	int alloc_flags;
2336 	unsigned long pages_reclaimed = 0;
2337 	unsigned long did_some_progress;
2338 	bool sync_migration = false;
2339 	bool deferred_compaction = false;
2340 	bool contended_compaction = false;
2341 
2342 	/*
2343 	 * In the slowpath, we sanity check order to avoid ever trying to
2344 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2345 	 * be using allocators in order of preference for an area that is
2346 	 * too large.
2347 	 */
2348 	if (order >= MAX_ORDER) {
2349 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2350 		return NULL;
2351 	}
2352 
2353 	/*
2354 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2355 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2356 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2357 	 * using a larger set of nodes after it has established that the
2358 	 * allowed per node queues are empty and that nodes are
2359 	 * over allocated.
2360 	 */
2361 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2362 		goto nopage;
2363 
2364 restart:
2365 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2366 		wake_all_kswapd(order, zonelist, high_zoneidx,
2367 						zone_idx(preferred_zone));
2368 
2369 	/*
2370 	 * OK, we're below the kswapd watermark and have kicked background
2371 	 * reclaim. Now things get more complex, so set up alloc_flags according
2372 	 * to how we want to proceed.
2373 	 */
2374 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2375 
2376 	/*
2377 	 * Find the true preferred zone if the allocation is unconstrained by
2378 	 * cpusets.
2379 	 */
2380 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2381 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2382 					&preferred_zone);
2383 
2384 rebalance:
2385 	/* This is the last chance, in general, before the goto nopage. */
2386 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2387 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2388 			preferred_zone, migratetype);
2389 	if (page)
2390 		goto got_pg;
2391 
2392 	/* Allocate without watermarks if the context allows */
2393 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2394 		/*
2395 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2396 		 * the allocation is high priority and these type of
2397 		 * allocations are system rather than user orientated
2398 		 */
2399 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2400 
2401 		page = __alloc_pages_high_priority(gfp_mask, order,
2402 				zonelist, high_zoneidx, nodemask,
2403 				preferred_zone, migratetype);
2404 		if (page) {
2405 			goto got_pg;
2406 		}
2407 	}
2408 
2409 	/* Atomic allocations - we can't balance anything */
2410 	if (!wait)
2411 		goto nopage;
2412 
2413 	/* Avoid recursion of direct reclaim */
2414 	if (current->flags & PF_MEMALLOC)
2415 		goto nopage;
2416 
2417 	/* Avoid allocations with no watermarks from looping endlessly */
2418 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2419 		goto nopage;
2420 
2421 	/*
2422 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2423 	 * attempts after direct reclaim are synchronous
2424 	 */
2425 	page = __alloc_pages_direct_compact(gfp_mask, order,
2426 					zonelist, high_zoneidx,
2427 					nodemask,
2428 					alloc_flags, preferred_zone,
2429 					migratetype, sync_migration,
2430 					&contended_compaction,
2431 					&deferred_compaction,
2432 					&did_some_progress);
2433 	if (page)
2434 		goto got_pg;
2435 	sync_migration = true;
2436 
2437 	/*
2438 	 * If compaction is deferred for high-order allocations, it is because
2439 	 * sync compaction recently failed. In this is the case and the caller
2440 	 * requested a movable allocation that does not heavily disrupt the
2441 	 * system then fail the allocation instead of entering direct reclaim.
2442 	 */
2443 	if ((deferred_compaction || contended_compaction) &&
2444 						(gfp_mask & __GFP_NO_KSWAPD))
2445 		goto nopage;
2446 
2447 	/* Try direct reclaim and then allocating */
2448 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2449 					zonelist, high_zoneidx,
2450 					nodemask,
2451 					alloc_flags, preferred_zone,
2452 					migratetype, &did_some_progress);
2453 	if (page)
2454 		goto got_pg;
2455 
2456 	/*
2457 	 * If we failed to make any progress reclaiming, then we are
2458 	 * running out of options and have to consider going OOM
2459 	 */
2460 	if (!did_some_progress) {
2461 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2462 			if (oom_killer_disabled)
2463 				goto nopage;
2464 			/* Coredumps can quickly deplete all memory reserves */
2465 			if ((current->flags & PF_DUMPCORE) &&
2466 			    !(gfp_mask & __GFP_NOFAIL))
2467 				goto nopage;
2468 			page = __alloc_pages_may_oom(gfp_mask, order,
2469 					zonelist, high_zoneidx,
2470 					nodemask, preferred_zone,
2471 					migratetype);
2472 			if (page)
2473 				goto got_pg;
2474 
2475 			if (!(gfp_mask & __GFP_NOFAIL)) {
2476 				/*
2477 				 * The oom killer is not called for high-order
2478 				 * allocations that may fail, so if no progress
2479 				 * is being made, there are no other options and
2480 				 * retrying is unlikely to help.
2481 				 */
2482 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2483 					goto nopage;
2484 				/*
2485 				 * The oom killer is not called for lowmem
2486 				 * allocations to prevent needlessly killing
2487 				 * innocent tasks.
2488 				 */
2489 				if (high_zoneidx < ZONE_NORMAL)
2490 					goto nopage;
2491 			}
2492 
2493 			goto restart;
2494 		}
2495 	}
2496 
2497 	/* Check if we should retry the allocation */
2498 	pages_reclaimed += did_some_progress;
2499 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2500 						pages_reclaimed)) {
2501 		/* Wait for some write requests to complete then retry */
2502 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2503 		goto rebalance;
2504 	} else {
2505 		/*
2506 		 * High-order allocations do not necessarily loop after
2507 		 * direct reclaim and reclaim/compaction depends on compaction
2508 		 * being called after reclaim so call directly if necessary
2509 		 */
2510 		page = __alloc_pages_direct_compact(gfp_mask, order,
2511 					zonelist, high_zoneidx,
2512 					nodemask,
2513 					alloc_flags, preferred_zone,
2514 					migratetype, sync_migration,
2515 					&contended_compaction,
2516 					&deferred_compaction,
2517 					&did_some_progress);
2518 		if (page)
2519 			goto got_pg;
2520 	}
2521 
2522 nopage:
2523 	warn_alloc_failed(gfp_mask, order, NULL);
2524 	return page;
2525 got_pg:
2526 	if (kmemcheck_enabled)
2527 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2528 
2529 	return page;
2530 }
2531 
2532 /*
2533  * This is the 'heart' of the zoned buddy allocator.
2534  */
2535 struct page *
2536 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2537 			struct zonelist *zonelist, nodemask_t *nodemask)
2538 {
2539 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2540 	struct zone *preferred_zone;
2541 	struct page *page = NULL;
2542 	int migratetype = allocflags_to_migratetype(gfp_mask);
2543 	unsigned int cpuset_mems_cookie;
2544 
2545 	gfp_mask &= gfp_allowed_mask;
2546 
2547 	lockdep_trace_alloc(gfp_mask);
2548 
2549 	might_sleep_if(gfp_mask & __GFP_WAIT);
2550 
2551 	if (should_fail_alloc_page(gfp_mask, order))
2552 		return NULL;
2553 
2554 	/*
2555 	 * Check the zones suitable for the gfp_mask contain at least one
2556 	 * valid zone. It's possible to have an empty zonelist as a result
2557 	 * of GFP_THISNODE and a memoryless node
2558 	 */
2559 	if (unlikely(!zonelist->_zonerefs->zone))
2560 		return NULL;
2561 
2562 retry_cpuset:
2563 	cpuset_mems_cookie = get_mems_allowed();
2564 
2565 	/* The preferred zone is used for statistics later */
2566 	first_zones_zonelist(zonelist, high_zoneidx,
2567 				nodemask ? : &cpuset_current_mems_allowed,
2568 				&preferred_zone);
2569 	if (!preferred_zone)
2570 		goto out;
2571 
2572 	/* First allocation attempt */
2573 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2574 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2575 			preferred_zone, migratetype);
2576 	if (unlikely(!page))
2577 		page = __alloc_pages_slowpath(gfp_mask, order,
2578 				zonelist, high_zoneidx, nodemask,
2579 				preferred_zone, migratetype);
2580 
2581 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2582 
2583 out:
2584 	/*
2585 	 * When updating a task's mems_allowed, it is possible to race with
2586 	 * parallel threads in such a way that an allocation can fail while
2587 	 * the mask is being updated. If a page allocation is about to fail,
2588 	 * check if the cpuset changed during allocation and if so, retry.
2589 	 */
2590 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2591 		goto retry_cpuset;
2592 
2593 	return page;
2594 }
2595 EXPORT_SYMBOL(__alloc_pages_nodemask);
2596 
2597 /*
2598  * Common helper functions.
2599  */
2600 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2601 {
2602 	struct page *page;
2603 
2604 	/*
2605 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2606 	 * a highmem page
2607 	 */
2608 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2609 
2610 	page = alloc_pages(gfp_mask, order);
2611 	if (!page)
2612 		return 0;
2613 	return (unsigned long) page_address(page);
2614 }
2615 EXPORT_SYMBOL(__get_free_pages);
2616 
2617 unsigned long get_zeroed_page(gfp_t gfp_mask)
2618 {
2619 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2620 }
2621 EXPORT_SYMBOL(get_zeroed_page);
2622 
2623 void __free_pages(struct page *page, unsigned int order)
2624 {
2625 	if (put_page_testzero(page)) {
2626 		if (order == 0)
2627 			free_hot_cold_page(page, 0);
2628 		else
2629 			__free_pages_ok(page, order);
2630 	}
2631 }
2632 
2633 EXPORT_SYMBOL(__free_pages);
2634 
2635 void free_pages(unsigned long addr, unsigned int order)
2636 {
2637 	if (addr != 0) {
2638 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2639 		__free_pages(virt_to_page((void *)addr), order);
2640 	}
2641 }
2642 
2643 EXPORT_SYMBOL(free_pages);
2644 
2645 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2646 {
2647 	if (addr) {
2648 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2649 		unsigned long used = addr + PAGE_ALIGN(size);
2650 
2651 		split_page(virt_to_page((void *)addr), order);
2652 		while (used < alloc_end) {
2653 			free_page(used);
2654 			used += PAGE_SIZE;
2655 		}
2656 	}
2657 	return (void *)addr;
2658 }
2659 
2660 /**
2661  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2662  * @size: the number of bytes to allocate
2663  * @gfp_mask: GFP flags for the allocation
2664  *
2665  * This function is similar to alloc_pages(), except that it allocates the
2666  * minimum number of pages to satisfy the request.  alloc_pages() can only
2667  * allocate memory in power-of-two pages.
2668  *
2669  * This function is also limited by MAX_ORDER.
2670  *
2671  * Memory allocated by this function must be released by free_pages_exact().
2672  */
2673 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2674 {
2675 	unsigned int order = get_order(size);
2676 	unsigned long addr;
2677 
2678 	addr = __get_free_pages(gfp_mask, order);
2679 	return make_alloc_exact(addr, order, size);
2680 }
2681 EXPORT_SYMBOL(alloc_pages_exact);
2682 
2683 /**
2684  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2685  *			   pages on a node.
2686  * @nid: the preferred node ID where memory should be allocated
2687  * @size: the number of bytes to allocate
2688  * @gfp_mask: GFP flags for the allocation
2689  *
2690  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2691  * back.
2692  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2693  * but is not exact.
2694  */
2695 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2696 {
2697 	unsigned order = get_order(size);
2698 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2699 	if (!p)
2700 		return NULL;
2701 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2702 }
2703 EXPORT_SYMBOL(alloc_pages_exact_nid);
2704 
2705 /**
2706  * free_pages_exact - release memory allocated via alloc_pages_exact()
2707  * @virt: the value returned by alloc_pages_exact.
2708  * @size: size of allocation, same value as passed to alloc_pages_exact().
2709  *
2710  * Release the memory allocated by a previous call to alloc_pages_exact.
2711  */
2712 void free_pages_exact(void *virt, size_t size)
2713 {
2714 	unsigned long addr = (unsigned long)virt;
2715 	unsigned long end = addr + PAGE_ALIGN(size);
2716 
2717 	while (addr < end) {
2718 		free_page(addr);
2719 		addr += PAGE_SIZE;
2720 	}
2721 }
2722 EXPORT_SYMBOL(free_pages_exact);
2723 
2724 static unsigned int nr_free_zone_pages(int offset)
2725 {
2726 	struct zoneref *z;
2727 	struct zone *zone;
2728 
2729 	/* Just pick one node, since fallback list is circular */
2730 	unsigned int sum = 0;
2731 
2732 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2733 
2734 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2735 		unsigned long size = zone->present_pages;
2736 		unsigned long high = high_wmark_pages(zone);
2737 		if (size > high)
2738 			sum += size - high;
2739 	}
2740 
2741 	return sum;
2742 }
2743 
2744 /*
2745  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2746  */
2747 unsigned int nr_free_buffer_pages(void)
2748 {
2749 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2750 }
2751 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2752 
2753 /*
2754  * Amount of free RAM allocatable within all zones
2755  */
2756 unsigned int nr_free_pagecache_pages(void)
2757 {
2758 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2759 }
2760 
2761 static inline void show_node(struct zone *zone)
2762 {
2763 	if (NUMA_BUILD)
2764 		printk("Node %d ", zone_to_nid(zone));
2765 }
2766 
2767 void si_meminfo(struct sysinfo *val)
2768 {
2769 	val->totalram = totalram_pages;
2770 	val->sharedram = 0;
2771 	val->freeram = global_page_state(NR_FREE_PAGES);
2772 	val->bufferram = nr_blockdev_pages();
2773 	val->totalhigh = totalhigh_pages;
2774 	val->freehigh = nr_free_highpages();
2775 	val->mem_unit = PAGE_SIZE;
2776 }
2777 
2778 EXPORT_SYMBOL(si_meminfo);
2779 
2780 #ifdef CONFIG_NUMA
2781 void si_meminfo_node(struct sysinfo *val, int nid)
2782 {
2783 	pg_data_t *pgdat = NODE_DATA(nid);
2784 
2785 	val->totalram = pgdat->node_present_pages;
2786 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2787 #ifdef CONFIG_HIGHMEM
2788 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2789 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2790 			NR_FREE_PAGES);
2791 #else
2792 	val->totalhigh = 0;
2793 	val->freehigh = 0;
2794 #endif
2795 	val->mem_unit = PAGE_SIZE;
2796 }
2797 #endif
2798 
2799 /*
2800  * Determine whether the node should be displayed or not, depending on whether
2801  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2802  */
2803 bool skip_free_areas_node(unsigned int flags, int nid)
2804 {
2805 	bool ret = false;
2806 	unsigned int cpuset_mems_cookie;
2807 
2808 	if (!(flags & SHOW_MEM_FILTER_NODES))
2809 		goto out;
2810 
2811 	do {
2812 		cpuset_mems_cookie = get_mems_allowed();
2813 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2814 	} while (!put_mems_allowed(cpuset_mems_cookie));
2815 out:
2816 	return ret;
2817 }
2818 
2819 #define K(x) ((x) << (PAGE_SHIFT-10))
2820 
2821 /*
2822  * Show free area list (used inside shift_scroll-lock stuff)
2823  * We also calculate the percentage fragmentation. We do this by counting the
2824  * memory on each free list with the exception of the first item on the list.
2825  * Suppresses nodes that are not allowed by current's cpuset if
2826  * SHOW_MEM_FILTER_NODES is passed.
2827  */
2828 void show_free_areas(unsigned int filter)
2829 {
2830 	int cpu;
2831 	struct zone *zone;
2832 
2833 	for_each_populated_zone(zone) {
2834 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2835 			continue;
2836 		show_node(zone);
2837 		printk("%s per-cpu:\n", zone->name);
2838 
2839 		for_each_online_cpu(cpu) {
2840 			struct per_cpu_pageset *pageset;
2841 
2842 			pageset = per_cpu_ptr(zone->pageset, cpu);
2843 
2844 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2845 			       cpu, pageset->pcp.high,
2846 			       pageset->pcp.batch, pageset->pcp.count);
2847 		}
2848 	}
2849 
2850 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2851 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2852 		" unevictable:%lu"
2853 		" dirty:%lu writeback:%lu unstable:%lu\n"
2854 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2855 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2856 		global_page_state(NR_ACTIVE_ANON),
2857 		global_page_state(NR_INACTIVE_ANON),
2858 		global_page_state(NR_ISOLATED_ANON),
2859 		global_page_state(NR_ACTIVE_FILE),
2860 		global_page_state(NR_INACTIVE_FILE),
2861 		global_page_state(NR_ISOLATED_FILE),
2862 		global_page_state(NR_UNEVICTABLE),
2863 		global_page_state(NR_FILE_DIRTY),
2864 		global_page_state(NR_WRITEBACK),
2865 		global_page_state(NR_UNSTABLE_NFS),
2866 		global_page_state(NR_FREE_PAGES),
2867 		global_page_state(NR_SLAB_RECLAIMABLE),
2868 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2869 		global_page_state(NR_FILE_MAPPED),
2870 		global_page_state(NR_SHMEM),
2871 		global_page_state(NR_PAGETABLE),
2872 		global_page_state(NR_BOUNCE));
2873 
2874 	for_each_populated_zone(zone) {
2875 		int i;
2876 
2877 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2878 			continue;
2879 		show_node(zone);
2880 		printk("%s"
2881 			" free:%lukB"
2882 			" min:%lukB"
2883 			" low:%lukB"
2884 			" high:%lukB"
2885 			" active_anon:%lukB"
2886 			" inactive_anon:%lukB"
2887 			" active_file:%lukB"
2888 			" inactive_file:%lukB"
2889 			" unevictable:%lukB"
2890 			" isolated(anon):%lukB"
2891 			" isolated(file):%lukB"
2892 			" present:%lukB"
2893 			" mlocked:%lukB"
2894 			" dirty:%lukB"
2895 			" writeback:%lukB"
2896 			" mapped:%lukB"
2897 			" shmem:%lukB"
2898 			" slab_reclaimable:%lukB"
2899 			" slab_unreclaimable:%lukB"
2900 			" kernel_stack:%lukB"
2901 			" pagetables:%lukB"
2902 			" unstable:%lukB"
2903 			" bounce:%lukB"
2904 			" writeback_tmp:%lukB"
2905 			" pages_scanned:%lu"
2906 			" all_unreclaimable? %s"
2907 			"\n",
2908 			zone->name,
2909 			K(zone_page_state(zone, NR_FREE_PAGES)),
2910 			K(min_wmark_pages(zone)),
2911 			K(low_wmark_pages(zone)),
2912 			K(high_wmark_pages(zone)),
2913 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2914 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2915 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2916 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2917 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2918 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2919 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2920 			K(zone->present_pages),
2921 			K(zone_page_state(zone, NR_MLOCK)),
2922 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2923 			K(zone_page_state(zone, NR_WRITEBACK)),
2924 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2925 			K(zone_page_state(zone, NR_SHMEM)),
2926 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2927 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2928 			zone_page_state(zone, NR_KERNEL_STACK) *
2929 				THREAD_SIZE / 1024,
2930 			K(zone_page_state(zone, NR_PAGETABLE)),
2931 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2932 			K(zone_page_state(zone, NR_BOUNCE)),
2933 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2934 			zone->pages_scanned,
2935 			(zone->all_unreclaimable ? "yes" : "no")
2936 			);
2937 		printk("lowmem_reserve[]:");
2938 		for (i = 0; i < MAX_NR_ZONES; i++)
2939 			printk(" %lu", zone->lowmem_reserve[i]);
2940 		printk("\n");
2941 	}
2942 
2943 	for_each_populated_zone(zone) {
2944  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2945 
2946 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2947 			continue;
2948 		show_node(zone);
2949 		printk("%s: ", zone->name);
2950 
2951 		spin_lock_irqsave(&zone->lock, flags);
2952 		for (order = 0; order < MAX_ORDER; order++) {
2953 			nr[order] = zone->free_area[order].nr_free;
2954 			total += nr[order] << order;
2955 		}
2956 		spin_unlock_irqrestore(&zone->lock, flags);
2957 		for (order = 0; order < MAX_ORDER; order++)
2958 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2959 		printk("= %lukB\n", K(total));
2960 	}
2961 
2962 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2963 
2964 	show_swap_cache_info();
2965 }
2966 
2967 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2968 {
2969 	zoneref->zone = zone;
2970 	zoneref->zone_idx = zone_idx(zone);
2971 }
2972 
2973 /*
2974  * Builds allocation fallback zone lists.
2975  *
2976  * Add all populated zones of a node to the zonelist.
2977  */
2978 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2979 				int nr_zones, enum zone_type zone_type)
2980 {
2981 	struct zone *zone;
2982 
2983 	BUG_ON(zone_type >= MAX_NR_ZONES);
2984 	zone_type++;
2985 
2986 	do {
2987 		zone_type--;
2988 		zone = pgdat->node_zones + zone_type;
2989 		if (populated_zone(zone)) {
2990 			zoneref_set_zone(zone,
2991 				&zonelist->_zonerefs[nr_zones++]);
2992 			check_highest_zone(zone_type);
2993 		}
2994 
2995 	} while (zone_type);
2996 	return nr_zones;
2997 }
2998 
2999 
3000 /*
3001  *  zonelist_order:
3002  *  0 = automatic detection of better ordering.
3003  *  1 = order by ([node] distance, -zonetype)
3004  *  2 = order by (-zonetype, [node] distance)
3005  *
3006  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3007  *  the same zonelist. So only NUMA can configure this param.
3008  */
3009 #define ZONELIST_ORDER_DEFAULT  0
3010 #define ZONELIST_ORDER_NODE     1
3011 #define ZONELIST_ORDER_ZONE     2
3012 
3013 /* zonelist order in the kernel.
3014  * set_zonelist_order() will set this to NODE or ZONE.
3015  */
3016 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3017 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3018 
3019 
3020 #ifdef CONFIG_NUMA
3021 /* The value user specified ....changed by config */
3022 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3023 /* string for sysctl */
3024 #define NUMA_ZONELIST_ORDER_LEN	16
3025 char numa_zonelist_order[16] = "default";
3026 
3027 /*
3028  * interface for configure zonelist ordering.
3029  * command line option "numa_zonelist_order"
3030  *	= "[dD]efault	- default, automatic configuration.
3031  *	= "[nN]ode 	- order by node locality, then by zone within node
3032  *	= "[zZ]one      - order by zone, then by locality within zone
3033  */
3034 
3035 static int __parse_numa_zonelist_order(char *s)
3036 {
3037 	if (*s == 'd' || *s == 'D') {
3038 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3039 	} else if (*s == 'n' || *s == 'N') {
3040 		user_zonelist_order = ZONELIST_ORDER_NODE;
3041 	} else if (*s == 'z' || *s == 'Z') {
3042 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3043 	} else {
3044 		printk(KERN_WARNING
3045 			"Ignoring invalid numa_zonelist_order value:  "
3046 			"%s\n", s);
3047 		return -EINVAL;
3048 	}
3049 	return 0;
3050 }
3051 
3052 static __init int setup_numa_zonelist_order(char *s)
3053 {
3054 	int ret;
3055 
3056 	if (!s)
3057 		return 0;
3058 
3059 	ret = __parse_numa_zonelist_order(s);
3060 	if (ret == 0)
3061 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3062 
3063 	return ret;
3064 }
3065 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3066 
3067 /*
3068  * sysctl handler for numa_zonelist_order
3069  */
3070 int numa_zonelist_order_handler(ctl_table *table, int write,
3071 		void __user *buffer, size_t *length,
3072 		loff_t *ppos)
3073 {
3074 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3075 	int ret;
3076 	static DEFINE_MUTEX(zl_order_mutex);
3077 
3078 	mutex_lock(&zl_order_mutex);
3079 	if (write)
3080 		strcpy(saved_string, (char*)table->data);
3081 	ret = proc_dostring(table, write, buffer, length, ppos);
3082 	if (ret)
3083 		goto out;
3084 	if (write) {
3085 		int oldval = user_zonelist_order;
3086 		if (__parse_numa_zonelist_order((char*)table->data)) {
3087 			/*
3088 			 * bogus value.  restore saved string
3089 			 */
3090 			strncpy((char*)table->data, saved_string,
3091 				NUMA_ZONELIST_ORDER_LEN);
3092 			user_zonelist_order = oldval;
3093 		} else if (oldval != user_zonelist_order) {
3094 			mutex_lock(&zonelists_mutex);
3095 			build_all_zonelists(NULL, NULL);
3096 			mutex_unlock(&zonelists_mutex);
3097 		}
3098 	}
3099 out:
3100 	mutex_unlock(&zl_order_mutex);
3101 	return ret;
3102 }
3103 
3104 
3105 #define MAX_NODE_LOAD (nr_online_nodes)
3106 static int node_load[MAX_NUMNODES];
3107 
3108 /**
3109  * find_next_best_node - find the next node that should appear in a given node's fallback list
3110  * @node: node whose fallback list we're appending
3111  * @used_node_mask: nodemask_t of already used nodes
3112  *
3113  * We use a number of factors to determine which is the next node that should
3114  * appear on a given node's fallback list.  The node should not have appeared
3115  * already in @node's fallback list, and it should be the next closest node
3116  * according to the distance array (which contains arbitrary distance values
3117  * from each node to each node in the system), and should also prefer nodes
3118  * with no CPUs, since presumably they'll have very little allocation pressure
3119  * on them otherwise.
3120  * It returns -1 if no node is found.
3121  */
3122 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3123 {
3124 	int n, val;
3125 	int min_val = INT_MAX;
3126 	int best_node = -1;
3127 	const struct cpumask *tmp = cpumask_of_node(0);
3128 
3129 	/* Use the local node if we haven't already */
3130 	if (!node_isset(node, *used_node_mask)) {
3131 		node_set(node, *used_node_mask);
3132 		return node;
3133 	}
3134 
3135 	for_each_node_state(n, N_HIGH_MEMORY) {
3136 
3137 		/* Don't want a node to appear more than once */
3138 		if (node_isset(n, *used_node_mask))
3139 			continue;
3140 
3141 		/* Use the distance array to find the distance */
3142 		val = node_distance(node, n);
3143 
3144 		/* Penalize nodes under us ("prefer the next node") */
3145 		val += (n < node);
3146 
3147 		/* Give preference to headless and unused nodes */
3148 		tmp = cpumask_of_node(n);
3149 		if (!cpumask_empty(tmp))
3150 			val += PENALTY_FOR_NODE_WITH_CPUS;
3151 
3152 		/* Slight preference for less loaded node */
3153 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3154 		val += node_load[n];
3155 
3156 		if (val < min_val) {
3157 			min_val = val;
3158 			best_node = n;
3159 		}
3160 	}
3161 
3162 	if (best_node >= 0)
3163 		node_set(best_node, *used_node_mask);
3164 
3165 	return best_node;
3166 }
3167 
3168 
3169 /*
3170  * Build zonelists ordered by node and zones within node.
3171  * This results in maximum locality--normal zone overflows into local
3172  * DMA zone, if any--but risks exhausting DMA zone.
3173  */
3174 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3175 {
3176 	int j;
3177 	struct zonelist *zonelist;
3178 
3179 	zonelist = &pgdat->node_zonelists[0];
3180 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3181 		;
3182 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3183 							MAX_NR_ZONES - 1);
3184 	zonelist->_zonerefs[j].zone = NULL;
3185 	zonelist->_zonerefs[j].zone_idx = 0;
3186 }
3187 
3188 /*
3189  * Build gfp_thisnode zonelists
3190  */
3191 static void build_thisnode_zonelists(pg_data_t *pgdat)
3192 {
3193 	int j;
3194 	struct zonelist *zonelist;
3195 
3196 	zonelist = &pgdat->node_zonelists[1];
3197 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3198 	zonelist->_zonerefs[j].zone = NULL;
3199 	zonelist->_zonerefs[j].zone_idx = 0;
3200 }
3201 
3202 /*
3203  * Build zonelists ordered by zone and nodes within zones.
3204  * This results in conserving DMA zone[s] until all Normal memory is
3205  * exhausted, but results in overflowing to remote node while memory
3206  * may still exist in local DMA zone.
3207  */
3208 static int node_order[MAX_NUMNODES];
3209 
3210 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3211 {
3212 	int pos, j, node;
3213 	int zone_type;		/* needs to be signed */
3214 	struct zone *z;
3215 	struct zonelist *zonelist;
3216 
3217 	zonelist = &pgdat->node_zonelists[0];
3218 	pos = 0;
3219 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3220 		for (j = 0; j < nr_nodes; j++) {
3221 			node = node_order[j];
3222 			z = &NODE_DATA(node)->node_zones[zone_type];
3223 			if (populated_zone(z)) {
3224 				zoneref_set_zone(z,
3225 					&zonelist->_zonerefs[pos++]);
3226 				check_highest_zone(zone_type);
3227 			}
3228 		}
3229 	}
3230 	zonelist->_zonerefs[pos].zone = NULL;
3231 	zonelist->_zonerefs[pos].zone_idx = 0;
3232 }
3233 
3234 static int default_zonelist_order(void)
3235 {
3236 	int nid, zone_type;
3237 	unsigned long low_kmem_size,total_size;
3238 	struct zone *z;
3239 	int average_size;
3240 	/*
3241          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3242 	 * If they are really small and used heavily, the system can fall
3243 	 * into OOM very easily.
3244 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3245 	 */
3246 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3247 	low_kmem_size = 0;
3248 	total_size = 0;
3249 	for_each_online_node(nid) {
3250 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3251 			z = &NODE_DATA(nid)->node_zones[zone_type];
3252 			if (populated_zone(z)) {
3253 				if (zone_type < ZONE_NORMAL)
3254 					low_kmem_size += z->present_pages;
3255 				total_size += z->present_pages;
3256 			} else if (zone_type == ZONE_NORMAL) {
3257 				/*
3258 				 * If any node has only lowmem, then node order
3259 				 * is preferred to allow kernel allocations
3260 				 * locally; otherwise, they can easily infringe
3261 				 * on other nodes when there is an abundance of
3262 				 * lowmem available to allocate from.
3263 				 */
3264 				return ZONELIST_ORDER_NODE;
3265 			}
3266 		}
3267 	}
3268 	if (!low_kmem_size ||  /* there are no DMA area. */
3269 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3270 		return ZONELIST_ORDER_NODE;
3271 	/*
3272 	 * look into each node's config.
3273   	 * If there is a node whose DMA/DMA32 memory is very big area on
3274  	 * local memory, NODE_ORDER may be suitable.
3275          */
3276 	average_size = total_size /
3277 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3278 	for_each_online_node(nid) {
3279 		low_kmem_size = 0;
3280 		total_size = 0;
3281 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3282 			z = &NODE_DATA(nid)->node_zones[zone_type];
3283 			if (populated_zone(z)) {
3284 				if (zone_type < ZONE_NORMAL)
3285 					low_kmem_size += z->present_pages;
3286 				total_size += z->present_pages;
3287 			}
3288 		}
3289 		if (low_kmem_size &&
3290 		    total_size > average_size && /* ignore small node */
3291 		    low_kmem_size > total_size * 70/100)
3292 			return ZONELIST_ORDER_NODE;
3293 	}
3294 	return ZONELIST_ORDER_ZONE;
3295 }
3296 
3297 static void set_zonelist_order(void)
3298 {
3299 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3300 		current_zonelist_order = default_zonelist_order();
3301 	else
3302 		current_zonelist_order = user_zonelist_order;
3303 }
3304 
3305 static void build_zonelists(pg_data_t *pgdat)
3306 {
3307 	int j, node, load;
3308 	enum zone_type i;
3309 	nodemask_t used_mask;
3310 	int local_node, prev_node;
3311 	struct zonelist *zonelist;
3312 	int order = current_zonelist_order;
3313 
3314 	/* initialize zonelists */
3315 	for (i = 0; i < MAX_ZONELISTS; i++) {
3316 		zonelist = pgdat->node_zonelists + i;
3317 		zonelist->_zonerefs[0].zone = NULL;
3318 		zonelist->_zonerefs[0].zone_idx = 0;
3319 	}
3320 
3321 	/* NUMA-aware ordering of nodes */
3322 	local_node = pgdat->node_id;
3323 	load = nr_online_nodes;
3324 	prev_node = local_node;
3325 	nodes_clear(used_mask);
3326 
3327 	memset(node_order, 0, sizeof(node_order));
3328 	j = 0;
3329 
3330 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3331 		int distance = node_distance(local_node, node);
3332 
3333 		/*
3334 		 * If another node is sufficiently far away then it is better
3335 		 * to reclaim pages in a zone before going off node.
3336 		 */
3337 		if (distance > RECLAIM_DISTANCE)
3338 			zone_reclaim_mode = 1;
3339 
3340 		/*
3341 		 * We don't want to pressure a particular node.
3342 		 * So adding penalty to the first node in same
3343 		 * distance group to make it round-robin.
3344 		 */
3345 		if (distance != node_distance(local_node, prev_node))
3346 			node_load[node] = load;
3347 
3348 		prev_node = node;
3349 		load--;
3350 		if (order == ZONELIST_ORDER_NODE)
3351 			build_zonelists_in_node_order(pgdat, node);
3352 		else
3353 			node_order[j++] = node;	/* remember order */
3354 	}
3355 
3356 	if (order == ZONELIST_ORDER_ZONE) {
3357 		/* calculate node order -- i.e., DMA last! */
3358 		build_zonelists_in_zone_order(pgdat, j);
3359 	}
3360 
3361 	build_thisnode_zonelists(pgdat);
3362 }
3363 
3364 /* Construct the zonelist performance cache - see further mmzone.h */
3365 static void build_zonelist_cache(pg_data_t *pgdat)
3366 {
3367 	struct zonelist *zonelist;
3368 	struct zonelist_cache *zlc;
3369 	struct zoneref *z;
3370 
3371 	zonelist = &pgdat->node_zonelists[0];
3372 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3373 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3374 	for (z = zonelist->_zonerefs; z->zone; z++)
3375 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3376 }
3377 
3378 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3379 /*
3380  * Return node id of node used for "local" allocations.
3381  * I.e., first node id of first zone in arg node's generic zonelist.
3382  * Used for initializing percpu 'numa_mem', which is used primarily
3383  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3384  */
3385 int local_memory_node(int node)
3386 {
3387 	struct zone *zone;
3388 
3389 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3390 				   gfp_zone(GFP_KERNEL),
3391 				   NULL,
3392 				   &zone);
3393 	return zone->node;
3394 }
3395 #endif
3396 
3397 #else	/* CONFIG_NUMA */
3398 
3399 static void set_zonelist_order(void)
3400 {
3401 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3402 }
3403 
3404 static void build_zonelists(pg_data_t *pgdat)
3405 {
3406 	int node, local_node;
3407 	enum zone_type j;
3408 	struct zonelist *zonelist;
3409 
3410 	local_node = pgdat->node_id;
3411 
3412 	zonelist = &pgdat->node_zonelists[0];
3413 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3414 
3415 	/*
3416 	 * Now we build the zonelist so that it contains the zones
3417 	 * of all the other nodes.
3418 	 * We don't want to pressure a particular node, so when
3419 	 * building the zones for node N, we make sure that the
3420 	 * zones coming right after the local ones are those from
3421 	 * node N+1 (modulo N)
3422 	 */
3423 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3424 		if (!node_online(node))
3425 			continue;
3426 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3427 							MAX_NR_ZONES - 1);
3428 	}
3429 	for (node = 0; node < local_node; node++) {
3430 		if (!node_online(node))
3431 			continue;
3432 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3433 							MAX_NR_ZONES - 1);
3434 	}
3435 
3436 	zonelist->_zonerefs[j].zone = NULL;
3437 	zonelist->_zonerefs[j].zone_idx = 0;
3438 }
3439 
3440 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3441 static void build_zonelist_cache(pg_data_t *pgdat)
3442 {
3443 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3444 }
3445 
3446 #endif	/* CONFIG_NUMA */
3447 
3448 /*
3449  * Boot pageset table. One per cpu which is going to be used for all
3450  * zones and all nodes. The parameters will be set in such a way
3451  * that an item put on a list will immediately be handed over to
3452  * the buddy list. This is safe since pageset manipulation is done
3453  * with interrupts disabled.
3454  *
3455  * The boot_pagesets must be kept even after bootup is complete for
3456  * unused processors and/or zones. They do play a role for bootstrapping
3457  * hotplugged processors.
3458  *
3459  * zoneinfo_show() and maybe other functions do
3460  * not check if the processor is online before following the pageset pointer.
3461  * Other parts of the kernel may not check if the zone is available.
3462  */
3463 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3464 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3465 static void setup_zone_pageset(struct zone *zone);
3466 
3467 /*
3468  * Global mutex to protect against size modification of zonelists
3469  * as well as to serialize pageset setup for the new populated zone.
3470  */
3471 DEFINE_MUTEX(zonelists_mutex);
3472 
3473 /* return values int ....just for stop_machine() */
3474 static int __build_all_zonelists(void *data)
3475 {
3476 	int nid;
3477 	int cpu;
3478 	pg_data_t *self = data;
3479 
3480 #ifdef CONFIG_NUMA
3481 	memset(node_load, 0, sizeof(node_load));
3482 #endif
3483 
3484 	if (self && !node_online(self->node_id)) {
3485 		build_zonelists(self);
3486 		build_zonelist_cache(self);
3487 	}
3488 
3489 	for_each_online_node(nid) {
3490 		pg_data_t *pgdat = NODE_DATA(nid);
3491 
3492 		build_zonelists(pgdat);
3493 		build_zonelist_cache(pgdat);
3494 	}
3495 
3496 	/*
3497 	 * Initialize the boot_pagesets that are going to be used
3498 	 * for bootstrapping processors. The real pagesets for
3499 	 * each zone will be allocated later when the per cpu
3500 	 * allocator is available.
3501 	 *
3502 	 * boot_pagesets are used also for bootstrapping offline
3503 	 * cpus if the system is already booted because the pagesets
3504 	 * are needed to initialize allocators on a specific cpu too.
3505 	 * F.e. the percpu allocator needs the page allocator which
3506 	 * needs the percpu allocator in order to allocate its pagesets
3507 	 * (a chicken-egg dilemma).
3508 	 */
3509 	for_each_possible_cpu(cpu) {
3510 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3511 
3512 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3513 		/*
3514 		 * We now know the "local memory node" for each node--
3515 		 * i.e., the node of the first zone in the generic zonelist.
3516 		 * Set up numa_mem percpu variable for on-line cpus.  During
3517 		 * boot, only the boot cpu should be on-line;  we'll init the
3518 		 * secondary cpus' numa_mem as they come on-line.  During
3519 		 * node/memory hotplug, we'll fixup all on-line cpus.
3520 		 */
3521 		if (cpu_online(cpu))
3522 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3523 #endif
3524 	}
3525 
3526 	return 0;
3527 }
3528 
3529 /*
3530  * Called with zonelists_mutex held always
3531  * unless system_state == SYSTEM_BOOTING.
3532  */
3533 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3534 {
3535 	set_zonelist_order();
3536 
3537 	if (system_state == SYSTEM_BOOTING) {
3538 		__build_all_zonelists(NULL);
3539 		mminit_verify_zonelist();
3540 		cpuset_init_current_mems_allowed();
3541 	} else {
3542 		/* we have to stop all cpus to guarantee there is no user
3543 		   of zonelist */
3544 #ifdef CONFIG_MEMORY_HOTPLUG
3545 		if (zone)
3546 			setup_zone_pageset(zone);
3547 #endif
3548 		stop_machine(__build_all_zonelists, pgdat, NULL);
3549 		/* cpuset refresh routine should be here */
3550 	}
3551 	vm_total_pages = nr_free_pagecache_pages();
3552 	/*
3553 	 * Disable grouping by mobility if the number of pages in the
3554 	 * system is too low to allow the mechanism to work. It would be
3555 	 * more accurate, but expensive to check per-zone. This check is
3556 	 * made on memory-hotadd so a system can start with mobility
3557 	 * disabled and enable it later
3558 	 */
3559 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3560 		page_group_by_mobility_disabled = 1;
3561 	else
3562 		page_group_by_mobility_disabled = 0;
3563 
3564 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3565 		"Total pages: %ld\n",
3566 			nr_online_nodes,
3567 			zonelist_order_name[current_zonelist_order],
3568 			page_group_by_mobility_disabled ? "off" : "on",
3569 			vm_total_pages);
3570 #ifdef CONFIG_NUMA
3571 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3572 #endif
3573 }
3574 
3575 /*
3576  * Helper functions to size the waitqueue hash table.
3577  * Essentially these want to choose hash table sizes sufficiently
3578  * large so that collisions trying to wait on pages are rare.
3579  * But in fact, the number of active page waitqueues on typical
3580  * systems is ridiculously low, less than 200. So this is even
3581  * conservative, even though it seems large.
3582  *
3583  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3584  * waitqueues, i.e. the size of the waitq table given the number of pages.
3585  */
3586 #define PAGES_PER_WAITQUEUE	256
3587 
3588 #ifndef CONFIG_MEMORY_HOTPLUG
3589 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3590 {
3591 	unsigned long size = 1;
3592 
3593 	pages /= PAGES_PER_WAITQUEUE;
3594 
3595 	while (size < pages)
3596 		size <<= 1;
3597 
3598 	/*
3599 	 * Once we have dozens or even hundreds of threads sleeping
3600 	 * on IO we've got bigger problems than wait queue collision.
3601 	 * Limit the size of the wait table to a reasonable size.
3602 	 */
3603 	size = min(size, 4096UL);
3604 
3605 	return max(size, 4UL);
3606 }
3607 #else
3608 /*
3609  * A zone's size might be changed by hot-add, so it is not possible to determine
3610  * a suitable size for its wait_table.  So we use the maximum size now.
3611  *
3612  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3613  *
3614  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3615  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3616  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3617  *
3618  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3619  * or more by the traditional way. (See above).  It equals:
3620  *
3621  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3622  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3623  *    powerpc (64K page size)             : =  (32G +16M)byte.
3624  */
3625 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3626 {
3627 	return 4096UL;
3628 }
3629 #endif
3630 
3631 /*
3632  * This is an integer logarithm so that shifts can be used later
3633  * to extract the more random high bits from the multiplicative
3634  * hash function before the remainder is taken.
3635  */
3636 static inline unsigned long wait_table_bits(unsigned long size)
3637 {
3638 	return ffz(~size);
3639 }
3640 
3641 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3642 
3643 /*
3644  * Check if a pageblock contains reserved pages
3645  */
3646 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3647 {
3648 	unsigned long pfn;
3649 
3650 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3651 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3652 			return 1;
3653 	}
3654 	return 0;
3655 }
3656 
3657 /*
3658  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3659  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3660  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3661  * higher will lead to a bigger reserve which will get freed as contiguous
3662  * blocks as reclaim kicks in
3663  */
3664 static void setup_zone_migrate_reserve(struct zone *zone)
3665 {
3666 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3667 	struct page *page;
3668 	unsigned long block_migratetype;
3669 	int reserve;
3670 
3671 	/*
3672 	 * Get the start pfn, end pfn and the number of blocks to reserve
3673 	 * We have to be careful to be aligned to pageblock_nr_pages to
3674 	 * make sure that we always check pfn_valid for the first page in
3675 	 * the block.
3676 	 */
3677 	start_pfn = zone->zone_start_pfn;
3678 	end_pfn = start_pfn + zone->spanned_pages;
3679 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3680 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3681 							pageblock_order;
3682 
3683 	/*
3684 	 * Reserve blocks are generally in place to help high-order atomic
3685 	 * allocations that are short-lived. A min_free_kbytes value that
3686 	 * would result in more than 2 reserve blocks for atomic allocations
3687 	 * is assumed to be in place to help anti-fragmentation for the
3688 	 * future allocation of hugepages at runtime.
3689 	 */
3690 	reserve = min(2, reserve);
3691 
3692 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3693 		if (!pfn_valid(pfn))
3694 			continue;
3695 		page = pfn_to_page(pfn);
3696 
3697 		/* Watch out for overlapping nodes */
3698 		if (page_to_nid(page) != zone_to_nid(zone))
3699 			continue;
3700 
3701 		block_migratetype = get_pageblock_migratetype(page);
3702 
3703 		/* Only test what is necessary when the reserves are not met */
3704 		if (reserve > 0) {
3705 			/*
3706 			 * Blocks with reserved pages will never free, skip
3707 			 * them.
3708 			 */
3709 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3710 			if (pageblock_is_reserved(pfn, block_end_pfn))
3711 				continue;
3712 
3713 			/* If this block is reserved, account for it */
3714 			if (block_migratetype == MIGRATE_RESERVE) {
3715 				reserve--;
3716 				continue;
3717 			}
3718 
3719 			/* Suitable for reserving if this block is movable */
3720 			if (block_migratetype == MIGRATE_MOVABLE) {
3721 				set_pageblock_migratetype(page,
3722 							MIGRATE_RESERVE);
3723 				move_freepages_block(zone, page,
3724 							MIGRATE_RESERVE);
3725 				reserve--;
3726 				continue;
3727 			}
3728 		}
3729 
3730 		/*
3731 		 * If the reserve is met and this is a previous reserved block,
3732 		 * take it back
3733 		 */
3734 		if (block_migratetype == MIGRATE_RESERVE) {
3735 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3736 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3737 		}
3738 	}
3739 }
3740 
3741 /*
3742  * Initially all pages are reserved - free ones are freed
3743  * up by free_all_bootmem() once the early boot process is
3744  * done. Non-atomic initialization, single-pass.
3745  */
3746 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3747 		unsigned long start_pfn, enum memmap_context context)
3748 {
3749 	struct page *page;
3750 	unsigned long end_pfn = start_pfn + size;
3751 	unsigned long pfn;
3752 	struct zone *z;
3753 
3754 	if (highest_memmap_pfn < end_pfn - 1)
3755 		highest_memmap_pfn = end_pfn - 1;
3756 
3757 	z = &NODE_DATA(nid)->node_zones[zone];
3758 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3759 		/*
3760 		 * There can be holes in boot-time mem_map[]s
3761 		 * handed to this function.  They do not
3762 		 * exist on hotplugged memory.
3763 		 */
3764 		if (context == MEMMAP_EARLY) {
3765 			if (!early_pfn_valid(pfn))
3766 				continue;
3767 			if (!early_pfn_in_nid(pfn, nid))
3768 				continue;
3769 		}
3770 		page = pfn_to_page(pfn);
3771 		set_page_links(page, zone, nid, pfn);
3772 		mminit_verify_page_links(page, zone, nid, pfn);
3773 		init_page_count(page);
3774 		reset_page_mapcount(page);
3775 		SetPageReserved(page);
3776 		/*
3777 		 * Mark the block movable so that blocks are reserved for
3778 		 * movable at startup. This will force kernel allocations
3779 		 * to reserve their blocks rather than leaking throughout
3780 		 * the address space during boot when many long-lived
3781 		 * kernel allocations are made. Later some blocks near
3782 		 * the start are marked MIGRATE_RESERVE by
3783 		 * setup_zone_migrate_reserve()
3784 		 *
3785 		 * bitmap is created for zone's valid pfn range. but memmap
3786 		 * can be created for invalid pages (for alignment)
3787 		 * check here not to call set_pageblock_migratetype() against
3788 		 * pfn out of zone.
3789 		 */
3790 		if ((z->zone_start_pfn <= pfn)
3791 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3792 		    && !(pfn & (pageblock_nr_pages - 1)))
3793 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3794 
3795 		INIT_LIST_HEAD(&page->lru);
3796 #ifdef WANT_PAGE_VIRTUAL
3797 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3798 		if (!is_highmem_idx(zone))
3799 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3800 #endif
3801 	}
3802 }
3803 
3804 static void __meminit zone_init_free_lists(struct zone *zone)
3805 {
3806 	int order, t;
3807 	for_each_migratetype_order(order, t) {
3808 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3809 		zone->free_area[order].nr_free = 0;
3810 	}
3811 }
3812 
3813 #ifndef __HAVE_ARCH_MEMMAP_INIT
3814 #define memmap_init(size, nid, zone, start_pfn) \
3815 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3816 #endif
3817 
3818 static int __meminit zone_batchsize(struct zone *zone)
3819 {
3820 #ifdef CONFIG_MMU
3821 	int batch;
3822 
3823 	/*
3824 	 * The per-cpu-pages pools are set to around 1000th of the
3825 	 * size of the zone.  But no more than 1/2 of a meg.
3826 	 *
3827 	 * OK, so we don't know how big the cache is.  So guess.
3828 	 */
3829 	batch = zone->present_pages / 1024;
3830 	if (batch * PAGE_SIZE > 512 * 1024)
3831 		batch = (512 * 1024) / PAGE_SIZE;
3832 	batch /= 4;		/* We effectively *= 4 below */
3833 	if (batch < 1)
3834 		batch = 1;
3835 
3836 	/*
3837 	 * Clamp the batch to a 2^n - 1 value. Having a power
3838 	 * of 2 value was found to be more likely to have
3839 	 * suboptimal cache aliasing properties in some cases.
3840 	 *
3841 	 * For example if 2 tasks are alternately allocating
3842 	 * batches of pages, one task can end up with a lot
3843 	 * of pages of one half of the possible page colors
3844 	 * and the other with pages of the other colors.
3845 	 */
3846 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3847 
3848 	return batch;
3849 
3850 #else
3851 	/* The deferral and batching of frees should be suppressed under NOMMU
3852 	 * conditions.
3853 	 *
3854 	 * The problem is that NOMMU needs to be able to allocate large chunks
3855 	 * of contiguous memory as there's no hardware page translation to
3856 	 * assemble apparent contiguous memory from discontiguous pages.
3857 	 *
3858 	 * Queueing large contiguous runs of pages for batching, however,
3859 	 * causes the pages to actually be freed in smaller chunks.  As there
3860 	 * can be a significant delay between the individual batches being
3861 	 * recycled, this leads to the once large chunks of space being
3862 	 * fragmented and becoming unavailable for high-order allocations.
3863 	 */
3864 	return 0;
3865 #endif
3866 }
3867 
3868 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3869 {
3870 	struct per_cpu_pages *pcp;
3871 	int migratetype;
3872 
3873 	memset(p, 0, sizeof(*p));
3874 
3875 	pcp = &p->pcp;
3876 	pcp->count = 0;
3877 	pcp->high = 6 * batch;
3878 	pcp->batch = max(1UL, 1 * batch);
3879 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3880 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3881 }
3882 
3883 /*
3884  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3885  * to the value high for the pageset p.
3886  */
3887 
3888 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3889 				unsigned long high)
3890 {
3891 	struct per_cpu_pages *pcp;
3892 
3893 	pcp = &p->pcp;
3894 	pcp->high = high;
3895 	pcp->batch = max(1UL, high/4);
3896 	if ((high/4) > (PAGE_SHIFT * 8))
3897 		pcp->batch = PAGE_SHIFT * 8;
3898 }
3899 
3900 static void __meminit setup_zone_pageset(struct zone *zone)
3901 {
3902 	int cpu;
3903 
3904 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3905 
3906 	for_each_possible_cpu(cpu) {
3907 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3908 
3909 		setup_pageset(pcp, zone_batchsize(zone));
3910 
3911 		if (percpu_pagelist_fraction)
3912 			setup_pagelist_highmark(pcp,
3913 				(zone->present_pages /
3914 					percpu_pagelist_fraction));
3915 	}
3916 }
3917 
3918 /*
3919  * Allocate per cpu pagesets and initialize them.
3920  * Before this call only boot pagesets were available.
3921  */
3922 void __init setup_per_cpu_pageset(void)
3923 {
3924 	struct zone *zone;
3925 
3926 	for_each_populated_zone(zone)
3927 		setup_zone_pageset(zone);
3928 }
3929 
3930 static noinline __init_refok
3931 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3932 {
3933 	int i;
3934 	struct pglist_data *pgdat = zone->zone_pgdat;
3935 	size_t alloc_size;
3936 
3937 	/*
3938 	 * The per-page waitqueue mechanism uses hashed waitqueues
3939 	 * per zone.
3940 	 */
3941 	zone->wait_table_hash_nr_entries =
3942 		 wait_table_hash_nr_entries(zone_size_pages);
3943 	zone->wait_table_bits =
3944 		wait_table_bits(zone->wait_table_hash_nr_entries);
3945 	alloc_size = zone->wait_table_hash_nr_entries
3946 					* sizeof(wait_queue_head_t);
3947 
3948 	if (!slab_is_available()) {
3949 		zone->wait_table = (wait_queue_head_t *)
3950 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3951 	} else {
3952 		/*
3953 		 * This case means that a zone whose size was 0 gets new memory
3954 		 * via memory hot-add.
3955 		 * But it may be the case that a new node was hot-added.  In
3956 		 * this case vmalloc() will not be able to use this new node's
3957 		 * memory - this wait_table must be initialized to use this new
3958 		 * node itself as well.
3959 		 * To use this new node's memory, further consideration will be
3960 		 * necessary.
3961 		 */
3962 		zone->wait_table = vmalloc(alloc_size);
3963 	}
3964 	if (!zone->wait_table)
3965 		return -ENOMEM;
3966 
3967 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3968 		init_waitqueue_head(zone->wait_table + i);
3969 
3970 	return 0;
3971 }
3972 
3973 static __meminit void zone_pcp_init(struct zone *zone)
3974 {
3975 	/*
3976 	 * per cpu subsystem is not up at this point. The following code
3977 	 * relies on the ability of the linker to provide the
3978 	 * offset of a (static) per cpu variable into the per cpu area.
3979 	 */
3980 	zone->pageset = &boot_pageset;
3981 
3982 	if (zone->present_pages)
3983 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3984 			zone->name, zone->present_pages,
3985 					 zone_batchsize(zone));
3986 }
3987 
3988 int __meminit init_currently_empty_zone(struct zone *zone,
3989 					unsigned long zone_start_pfn,
3990 					unsigned long size,
3991 					enum memmap_context context)
3992 {
3993 	struct pglist_data *pgdat = zone->zone_pgdat;
3994 	int ret;
3995 	ret = zone_wait_table_init(zone, size);
3996 	if (ret)
3997 		return ret;
3998 	pgdat->nr_zones = zone_idx(zone) + 1;
3999 
4000 	zone->zone_start_pfn = zone_start_pfn;
4001 
4002 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4003 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4004 			pgdat->node_id,
4005 			(unsigned long)zone_idx(zone),
4006 			zone_start_pfn, (zone_start_pfn + size));
4007 
4008 	zone_init_free_lists(zone);
4009 
4010 	return 0;
4011 }
4012 
4013 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4014 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4015 /*
4016  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4017  * Architectures may implement their own version but if add_active_range()
4018  * was used and there are no special requirements, this is a convenient
4019  * alternative
4020  */
4021 int __meminit __early_pfn_to_nid(unsigned long pfn)
4022 {
4023 	unsigned long start_pfn, end_pfn;
4024 	int i, nid;
4025 
4026 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4027 		if (start_pfn <= pfn && pfn < end_pfn)
4028 			return nid;
4029 	/* This is a memory hole */
4030 	return -1;
4031 }
4032 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4033 
4034 int __meminit early_pfn_to_nid(unsigned long pfn)
4035 {
4036 	int nid;
4037 
4038 	nid = __early_pfn_to_nid(pfn);
4039 	if (nid >= 0)
4040 		return nid;
4041 	/* just returns 0 */
4042 	return 0;
4043 }
4044 
4045 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4046 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4047 {
4048 	int nid;
4049 
4050 	nid = __early_pfn_to_nid(pfn);
4051 	if (nid >= 0 && nid != node)
4052 		return false;
4053 	return true;
4054 }
4055 #endif
4056 
4057 /**
4058  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4059  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4060  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4061  *
4062  * If an architecture guarantees that all ranges registered with
4063  * add_active_ranges() contain no holes and may be freed, this
4064  * this function may be used instead of calling free_bootmem() manually.
4065  */
4066 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4067 {
4068 	unsigned long start_pfn, end_pfn;
4069 	int i, this_nid;
4070 
4071 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4072 		start_pfn = min(start_pfn, max_low_pfn);
4073 		end_pfn = min(end_pfn, max_low_pfn);
4074 
4075 		if (start_pfn < end_pfn)
4076 			free_bootmem_node(NODE_DATA(this_nid),
4077 					  PFN_PHYS(start_pfn),
4078 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4079 	}
4080 }
4081 
4082 /**
4083  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4084  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4085  *
4086  * If an architecture guarantees that all ranges registered with
4087  * add_active_ranges() contain no holes and may be freed, this
4088  * function may be used instead of calling memory_present() manually.
4089  */
4090 void __init sparse_memory_present_with_active_regions(int nid)
4091 {
4092 	unsigned long start_pfn, end_pfn;
4093 	int i, this_nid;
4094 
4095 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4096 		memory_present(this_nid, start_pfn, end_pfn);
4097 }
4098 
4099 /**
4100  * get_pfn_range_for_nid - Return the start and end page frames for a node
4101  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4102  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4103  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4104  *
4105  * It returns the start and end page frame of a node based on information
4106  * provided by an arch calling add_active_range(). If called for a node
4107  * with no available memory, a warning is printed and the start and end
4108  * PFNs will be 0.
4109  */
4110 void __meminit get_pfn_range_for_nid(unsigned int nid,
4111 			unsigned long *start_pfn, unsigned long *end_pfn)
4112 {
4113 	unsigned long this_start_pfn, this_end_pfn;
4114 	int i;
4115 
4116 	*start_pfn = -1UL;
4117 	*end_pfn = 0;
4118 
4119 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4120 		*start_pfn = min(*start_pfn, this_start_pfn);
4121 		*end_pfn = max(*end_pfn, this_end_pfn);
4122 	}
4123 
4124 	if (*start_pfn == -1UL)
4125 		*start_pfn = 0;
4126 }
4127 
4128 /*
4129  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4130  * assumption is made that zones within a node are ordered in monotonic
4131  * increasing memory addresses so that the "highest" populated zone is used
4132  */
4133 static void __init find_usable_zone_for_movable(void)
4134 {
4135 	int zone_index;
4136 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4137 		if (zone_index == ZONE_MOVABLE)
4138 			continue;
4139 
4140 		if (arch_zone_highest_possible_pfn[zone_index] >
4141 				arch_zone_lowest_possible_pfn[zone_index])
4142 			break;
4143 	}
4144 
4145 	VM_BUG_ON(zone_index == -1);
4146 	movable_zone = zone_index;
4147 }
4148 
4149 /*
4150  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4151  * because it is sized independent of architecture. Unlike the other zones,
4152  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4153  * in each node depending on the size of each node and how evenly kernelcore
4154  * is distributed. This helper function adjusts the zone ranges
4155  * provided by the architecture for a given node by using the end of the
4156  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4157  * zones within a node are in order of monotonic increases memory addresses
4158  */
4159 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4160 					unsigned long zone_type,
4161 					unsigned long node_start_pfn,
4162 					unsigned long node_end_pfn,
4163 					unsigned long *zone_start_pfn,
4164 					unsigned long *zone_end_pfn)
4165 {
4166 	/* Only adjust if ZONE_MOVABLE is on this node */
4167 	if (zone_movable_pfn[nid]) {
4168 		/* Size ZONE_MOVABLE */
4169 		if (zone_type == ZONE_MOVABLE) {
4170 			*zone_start_pfn = zone_movable_pfn[nid];
4171 			*zone_end_pfn = min(node_end_pfn,
4172 				arch_zone_highest_possible_pfn[movable_zone]);
4173 
4174 		/* Adjust for ZONE_MOVABLE starting within this range */
4175 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4176 				*zone_end_pfn > zone_movable_pfn[nid]) {
4177 			*zone_end_pfn = zone_movable_pfn[nid];
4178 
4179 		/* Check if this whole range is within ZONE_MOVABLE */
4180 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4181 			*zone_start_pfn = *zone_end_pfn;
4182 	}
4183 }
4184 
4185 /*
4186  * Return the number of pages a zone spans in a node, including holes
4187  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4188  */
4189 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4190 					unsigned long zone_type,
4191 					unsigned long *ignored)
4192 {
4193 	unsigned long node_start_pfn, node_end_pfn;
4194 	unsigned long zone_start_pfn, zone_end_pfn;
4195 
4196 	/* Get the start and end of the node and zone */
4197 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4198 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4199 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4200 	adjust_zone_range_for_zone_movable(nid, zone_type,
4201 				node_start_pfn, node_end_pfn,
4202 				&zone_start_pfn, &zone_end_pfn);
4203 
4204 	/* Check that this node has pages within the zone's required range */
4205 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4206 		return 0;
4207 
4208 	/* Move the zone boundaries inside the node if necessary */
4209 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4210 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4211 
4212 	/* Return the spanned pages */
4213 	return zone_end_pfn - zone_start_pfn;
4214 }
4215 
4216 /*
4217  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4218  * then all holes in the requested range will be accounted for.
4219  */
4220 unsigned long __meminit __absent_pages_in_range(int nid,
4221 				unsigned long range_start_pfn,
4222 				unsigned long range_end_pfn)
4223 {
4224 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4225 	unsigned long start_pfn, end_pfn;
4226 	int i;
4227 
4228 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4229 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4230 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4231 		nr_absent -= end_pfn - start_pfn;
4232 	}
4233 	return nr_absent;
4234 }
4235 
4236 /**
4237  * absent_pages_in_range - Return number of page frames in holes within a range
4238  * @start_pfn: The start PFN to start searching for holes
4239  * @end_pfn: The end PFN to stop searching for holes
4240  *
4241  * It returns the number of pages frames in memory holes within a range.
4242  */
4243 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4244 							unsigned long end_pfn)
4245 {
4246 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4247 }
4248 
4249 /* Return the number of page frames in holes in a zone on a node */
4250 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4251 					unsigned long zone_type,
4252 					unsigned long *ignored)
4253 {
4254 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4255 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4256 	unsigned long node_start_pfn, node_end_pfn;
4257 	unsigned long zone_start_pfn, zone_end_pfn;
4258 
4259 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4260 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4261 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4262 
4263 	adjust_zone_range_for_zone_movable(nid, zone_type,
4264 			node_start_pfn, node_end_pfn,
4265 			&zone_start_pfn, &zone_end_pfn);
4266 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4267 }
4268 
4269 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4270 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4271 					unsigned long zone_type,
4272 					unsigned long *zones_size)
4273 {
4274 	return zones_size[zone_type];
4275 }
4276 
4277 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4278 						unsigned long zone_type,
4279 						unsigned long *zholes_size)
4280 {
4281 	if (!zholes_size)
4282 		return 0;
4283 
4284 	return zholes_size[zone_type];
4285 }
4286 
4287 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4288 
4289 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4290 		unsigned long *zones_size, unsigned long *zholes_size)
4291 {
4292 	unsigned long realtotalpages, totalpages = 0;
4293 	enum zone_type i;
4294 
4295 	for (i = 0; i < MAX_NR_ZONES; i++)
4296 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4297 								zones_size);
4298 	pgdat->node_spanned_pages = totalpages;
4299 
4300 	realtotalpages = totalpages;
4301 	for (i = 0; i < MAX_NR_ZONES; i++)
4302 		realtotalpages -=
4303 			zone_absent_pages_in_node(pgdat->node_id, i,
4304 								zholes_size);
4305 	pgdat->node_present_pages = realtotalpages;
4306 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4307 							realtotalpages);
4308 }
4309 
4310 #ifndef CONFIG_SPARSEMEM
4311 /*
4312  * Calculate the size of the zone->blockflags rounded to an unsigned long
4313  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4314  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4315  * round what is now in bits to nearest long in bits, then return it in
4316  * bytes.
4317  */
4318 static unsigned long __init usemap_size(unsigned long zonesize)
4319 {
4320 	unsigned long usemapsize;
4321 
4322 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4323 	usemapsize = usemapsize >> pageblock_order;
4324 	usemapsize *= NR_PAGEBLOCK_BITS;
4325 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4326 
4327 	return usemapsize / 8;
4328 }
4329 
4330 static void __init setup_usemap(struct pglist_data *pgdat,
4331 				struct zone *zone, unsigned long zonesize)
4332 {
4333 	unsigned long usemapsize = usemap_size(zonesize);
4334 	zone->pageblock_flags = NULL;
4335 	if (usemapsize)
4336 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4337 								   usemapsize);
4338 }
4339 #else
4340 static inline void setup_usemap(struct pglist_data *pgdat,
4341 				struct zone *zone, unsigned long zonesize) {}
4342 #endif /* CONFIG_SPARSEMEM */
4343 
4344 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4345 
4346 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4347 void __init set_pageblock_order(void)
4348 {
4349 	unsigned int order;
4350 
4351 	/* Check that pageblock_nr_pages has not already been setup */
4352 	if (pageblock_order)
4353 		return;
4354 
4355 	if (HPAGE_SHIFT > PAGE_SHIFT)
4356 		order = HUGETLB_PAGE_ORDER;
4357 	else
4358 		order = MAX_ORDER - 1;
4359 
4360 	/*
4361 	 * Assume the largest contiguous order of interest is a huge page.
4362 	 * This value may be variable depending on boot parameters on IA64 and
4363 	 * powerpc.
4364 	 */
4365 	pageblock_order = order;
4366 }
4367 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4368 
4369 /*
4370  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4371  * is unused as pageblock_order is set at compile-time. See
4372  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4373  * the kernel config
4374  */
4375 void __init set_pageblock_order(void)
4376 {
4377 }
4378 
4379 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4380 
4381 /*
4382  * Set up the zone data structures:
4383  *   - mark all pages reserved
4384  *   - mark all memory queues empty
4385  *   - clear the memory bitmaps
4386  *
4387  * NOTE: pgdat should get zeroed by caller.
4388  */
4389 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4390 		unsigned long *zones_size, unsigned long *zholes_size)
4391 {
4392 	enum zone_type j;
4393 	int nid = pgdat->node_id;
4394 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4395 	int ret;
4396 
4397 	pgdat_resize_init(pgdat);
4398 	init_waitqueue_head(&pgdat->kswapd_wait);
4399 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4400 	pgdat_page_cgroup_init(pgdat);
4401 
4402 	for (j = 0; j < MAX_NR_ZONES; j++) {
4403 		struct zone *zone = pgdat->node_zones + j;
4404 		unsigned long size, realsize, memmap_pages;
4405 
4406 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4407 		realsize = size - zone_absent_pages_in_node(nid, j,
4408 								zholes_size);
4409 
4410 		/*
4411 		 * Adjust realsize so that it accounts for how much memory
4412 		 * is used by this zone for memmap. This affects the watermark
4413 		 * and per-cpu initialisations
4414 		 */
4415 		memmap_pages =
4416 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4417 		if (realsize >= memmap_pages) {
4418 			realsize -= memmap_pages;
4419 			if (memmap_pages)
4420 				printk(KERN_DEBUG
4421 				       "  %s zone: %lu pages used for memmap\n",
4422 				       zone_names[j], memmap_pages);
4423 		} else
4424 			printk(KERN_WARNING
4425 				"  %s zone: %lu pages exceeds realsize %lu\n",
4426 				zone_names[j], memmap_pages, realsize);
4427 
4428 		/* Account for reserved pages */
4429 		if (j == 0 && realsize > dma_reserve) {
4430 			realsize -= dma_reserve;
4431 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4432 					zone_names[0], dma_reserve);
4433 		}
4434 
4435 		if (!is_highmem_idx(j))
4436 			nr_kernel_pages += realsize;
4437 		nr_all_pages += realsize;
4438 
4439 		zone->spanned_pages = size;
4440 		zone->present_pages = realsize;
4441 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
4442 		zone->compact_cached_free_pfn = zone->zone_start_pfn +
4443 						zone->spanned_pages;
4444 		zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4445 #endif
4446 #ifdef CONFIG_NUMA
4447 		zone->node = nid;
4448 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4449 						/ 100;
4450 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4451 #endif
4452 		zone->name = zone_names[j];
4453 		spin_lock_init(&zone->lock);
4454 		spin_lock_init(&zone->lru_lock);
4455 		zone_seqlock_init(zone);
4456 		zone->zone_pgdat = pgdat;
4457 
4458 		zone_pcp_init(zone);
4459 		lruvec_init(&zone->lruvec, zone);
4460 		if (!size)
4461 			continue;
4462 
4463 		set_pageblock_order();
4464 		setup_usemap(pgdat, zone, size);
4465 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4466 						size, MEMMAP_EARLY);
4467 		BUG_ON(ret);
4468 		memmap_init(size, nid, j, zone_start_pfn);
4469 		zone_start_pfn += size;
4470 	}
4471 }
4472 
4473 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4474 {
4475 	/* Skip empty nodes */
4476 	if (!pgdat->node_spanned_pages)
4477 		return;
4478 
4479 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4480 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4481 	if (!pgdat->node_mem_map) {
4482 		unsigned long size, start, end;
4483 		struct page *map;
4484 
4485 		/*
4486 		 * The zone's endpoints aren't required to be MAX_ORDER
4487 		 * aligned but the node_mem_map endpoints must be in order
4488 		 * for the buddy allocator to function correctly.
4489 		 */
4490 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4491 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4492 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4493 		size =  (end - start) * sizeof(struct page);
4494 		map = alloc_remap(pgdat->node_id, size);
4495 		if (!map)
4496 			map = alloc_bootmem_node_nopanic(pgdat, size);
4497 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4498 	}
4499 #ifndef CONFIG_NEED_MULTIPLE_NODES
4500 	/*
4501 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4502 	 */
4503 	if (pgdat == NODE_DATA(0)) {
4504 		mem_map = NODE_DATA(0)->node_mem_map;
4505 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4506 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4507 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4508 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4509 	}
4510 #endif
4511 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4512 }
4513 
4514 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4515 		unsigned long node_start_pfn, unsigned long *zholes_size)
4516 {
4517 	pg_data_t *pgdat = NODE_DATA(nid);
4518 
4519 	/* pg_data_t should be reset to zero when it's allocated */
4520 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4521 
4522 	pgdat->node_id = nid;
4523 	pgdat->node_start_pfn = node_start_pfn;
4524 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4525 
4526 	alloc_node_mem_map(pgdat);
4527 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4528 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4529 		nid, (unsigned long)pgdat,
4530 		(unsigned long)pgdat->node_mem_map);
4531 #endif
4532 
4533 	free_area_init_core(pgdat, zones_size, zholes_size);
4534 }
4535 
4536 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4537 
4538 #if MAX_NUMNODES > 1
4539 /*
4540  * Figure out the number of possible node ids.
4541  */
4542 static void __init setup_nr_node_ids(void)
4543 {
4544 	unsigned int node;
4545 	unsigned int highest = 0;
4546 
4547 	for_each_node_mask(node, node_possible_map)
4548 		highest = node;
4549 	nr_node_ids = highest + 1;
4550 }
4551 #else
4552 static inline void setup_nr_node_ids(void)
4553 {
4554 }
4555 #endif
4556 
4557 /**
4558  * node_map_pfn_alignment - determine the maximum internode alignment
4559  *
4560  * This function should be called after node map is populated and sorted.
4561  * It calculates the maximum power of two alignment which can distinguish
4562  * all the nodes.
4563  *
4564  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4565  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4566  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4567  * shifted, 1GiB is enough and this function will indicate so.
4568  *
4569  * This is used to test whether pfn -> nid mapping of the chosen memory
4570  * model has fine enough granularity to avoid incorrect mapping for the
4571  * populated node map.
4572  *
4573  * Returns the determined alignment in pfn's.  0 if there is no alignment
4574  * requirement (single node).
4575  */
4576 unsigned long __init node_map_pfn_alignment(void)
4577 {
4578 	unsigned long accl_mask = 0, last_end = 0;
4579 	unsigned long start, end, mask;
4580 	int last_nid = -1;
4581 	int i, nid;
4582 
4583 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4584 		if (!start || last_nid < 0 || last_nid == nid) {
4585 			last_nid = nid;
4586 			last_end = end;
4587 			continue;
4588 		}
4589 
4590 		/*
4591 		 * Start with a mask granular enough to pin-point to the
4592 		 * start pfn and tick off bits one-by-one until it becomes
4593 		 * too coarse to separate the current node from the last.
4594 		 */
4595 		mask = ~((1 << __ffs(start)) - 1);
4596 		while (mask && last_end <= (start & (mask << 1)))
4597 			mask <<= 1;
4598 
4599 		/* accumulate all internode masks */
4600 		accl_mask |= mask;
4601 	}
4602 
4603 	/* convert mask to number of pages */
4604 	return ~accl_mask + 1;
4605 }
4606 
4607 /* Find the lowest pfn for a node */
4608 static unsigned long __init find_min_pfn_for_node(int nid)
4609 {
4610 	unsigned long min_pfn = ULONG_MAX;
4611 	unsigned long start_pfn;
4612 	int i;
4613 
4614 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4615 		min_pfn = min(min_pfn, start_pfn);
4616 
4617 	if (min_pfn == ULONG_MAX) {
4618 		printk(KERN_WARNING
4619 			"Could not find start_pfn for node %d\n", nid);
4620 		return 0;
4621 	}
4622 
4623 	return min_pfn;
4624 }
4625 
4626 /**
4627  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4628  *
4629  * It returns the minimum PFN based on information provided via
4630  * add_active_range().
4631  */
4632 unsigned long __init find_min_pfn_with_active_regions(void)
4633 {
4634 	return find_min_pfn_for_node(MAX_NUMNODES);
4635 }
4636 
4637 /*
4638  * early_calculate_totalpages()
4639  * Sum pages in active regions for movable zone.
4640  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4641  */
4642 static unsigned long __init early_calculate_totalpages(void)
4643 {
4644 	unsigned long totalpages = 0;
4645 	unsigned long start_pfn, end_pfn;
4646 	int i, nid;
4647 
4648 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4649 		unsigned long pages = end_pfn - start_pfn;
4650 
4651 		totalpages += pages;
4652 		if (pages)
4653 			node_set_state(nid, N_HIGH_MEMORY);
4654 	}
4655   	return totalpages;
4656 }
4657 
4658 /*
4659  * Find the PFN the Movable zone begins in each node. Kernel memory
4660  * is spread evenly between nodes as long as the nodes have enough
4661  * memory. When they don't, some nodes will have more kernelcore than
4662  * others
4663  */
4664 static void __init find_zone_movable_pfns_for_nodes(void)
4665 {
4666 	int i, nid;
4667 	unsigned long usable_startpfn;
4668 	unsigned long kernelcore_node, kernelcore_remaining;
4669 	/* save the state before borrow the nodemask */
4670 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4671 	unsigned long totalpages = early_calculate_totalpages();
4672 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4673 
4674 	/*
4675 	 * If movablecore was specified, calculate what size of
4676 	 * kernelcore that corresponds so that memory usable for
4677 	 * any allocation type is evenly spread. If both kernelcore
4678 	 * and movablecore are specified, then the value of kernelcore
4679 	 * will be used for required_kernelcore if it's greater than
4680 	 * what movablecore would have allowed.
4681 	 */
4682 	if (required_movablecore) {
4683 		unsigned long corepages;
4684 
4685 		/*
4686 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4687 		 * was requested by the user
4688 		 */
4689 		required_movablecore =
4690 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4691 		corepages = totalpages - required_movablecore;
4692 
4693 		required_kernelcore = max(required_kernelcore, corepages);
4694 	}
4695 
4696 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4697 	if (!required_kernelcore)
4698 		goto out;
4699 
4700 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4701 	find_usable_zone_for_movable();
4702 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4703 
4704 restart:
4705 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4706 	kernelcore_node = required_kernelcore / usable_nodes;
4707 	for_each_node_state(nid, N_HIGH_MEMORY) {
4708 		unsigned long start_pfn, end_pfn;
4709 
4710 		/*
4711 		 * Recalculate kernelcore_node if the division per node
4712 		 * now exceeds what is necessary to satisfy the requested
4713 		 * amount of memory for the kernel
4714 		 */
4715 		if (required_kernelcore < kernelcore_node)
4716 			kernelcore_node = required_kernelcore / usable_nodes;
4717 
4718 		/*
4719 		 * As the map is walked, we track how much memory is usable
4720 		 * by the kernel using kernelcore_remaining. When it is
4721 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4722 		 */
4723 		kernelcore_remaining = kernelcore_node;
4724 
4725 		/* Go through each range of PFNs within this node */
4726 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4727 			unsigned long size_pages;
4728 
4729 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4730 			if (start_pfn >= end_pfn)
4731 				continue;
4732 
4733 			/* Account for what is only usable for kernelcore */
4734 			if (start_pfn < usable_startpfn) {
4735 				unsigned long kernel_pages;
4736 				kernel_pages = min(end_pfn, usable_startpfn)
4737 								- start_pfn;
4738 
4739 				kernelcore_remaining -= min(kernel_pages,
4740 							kernelcore_remaining);
4741 				required_kernelcore -= min(kernel_pages,
4742 							required_kernelcore);
4743 
4744 				/* Continue if range is now fully accounted */
4745 				if (end_pfn <= usable_startpfn) {
4746 
4747 					/*
4748 					 * Push zone_movable_pfn to the end so
4749 					 * that if we have to rebalance
4750 					 * kernelcore across nodes, we will
4751 					 * not double account here
4752 					 */
4753 					zone_movable_pfn[nid] = end_pfn;
4754 					continue;
4755 				}
4756 				start_pfn = usable_startpfn;
4757 			}
4758 
4759 			/*
4760 			 * The usable PFN range for ZONE_MOVABLE is from
4761 			 * start_pfn->end_pfn. Calculate size_pages as the
4762 			 * number of pages used as kernelcore
4763 			 */
4764 			size_pages = end_pfn - start_pfn;
4765 			if (size_pages > kernelcore_remaining)
4766 				size_pages = kernelcore_remaining;
4767 			zone_movable_pfn[nid] = start_pfn + size_pages;
4768 
4769 			/*
4770 			 * Some kernelcore has been met, update counts and
4771 			 * break if the kernelcore for this node has been
4772 			 * satisified
4773 			 */
4774 			required_kernelcore -= min(required_kernelcore,
4775 								size_pages);
4776 			kernelcore_remaining -= size_pages;
4777 			if (!kernelcore_remaining)
4778 				break;
4779 		}
4780 	}
4781 
4782 	/*
4783 	 * If there is still required_kernelcore, we do another pass with one
4784 	 * less node in the count. This will push zone_movable_pfn[nid] further
4785 	 * along on the nodes that still have memory until kernelcore is
4786 	 * satisified
4787 	 */
4788 	usable_nodes--;
4789 	if (usable_nodes && required_kernelcore > usable_nodes)
4790 		goto restart;
4791 
4792 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4793 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4794 		zone_movable_pfn[nid] =
4795 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4796 
4797 out:
4798 	/* restore the node_state */
4799 	node_states[N_HIGH_MEMORY] = saved_node_state;
4800 }
4801 
4802 /* Any regular memory on that node ? */
4803 static void __init check_for_regular_memory(pg_data_t *pgdat)
4804 {
4805 #ifdef CONFIG_HIGHMEM
4806 	enum zone_type zone_type;
4807 
4808 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4809 		struct zone *zone = &pgdat->node_zones[zone_type];
4810 		if (zone->present_pages) {
4811 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4812 			break;
4813 		}
4814 	}
4815 #endif
4816 }
4817 
4818 /**
4819  * free_area_init_nodes - Initialise all pg_data_t and zone data
4820  * @max_zone_pfn: an array of max PFNs for each zone
4821  *
4822  * This will call free_area_init_node() for each active node in the system.
4823  * Using the page ranges provided by add_active_range(), the size of each
4824  * zone in each node and their holes is calculated. If the maximum PFN
4825  * between two adjacent zones match, it is assumed that the zone is empty.
4826  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4827  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4828  * starts where the previous one ended. For example, ZONE_DMA32 starts
4829  * at arch_max_dma_pfn.
4830  */
4831 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4832 {
4833 	unsigned long start_pfn, end_pfn;
4834 	int i, nid;
4835 
4836 	/* Record where the zone boundaries are */
4837 	memset(arch_zone_lowest_possible_pfn, 0,
4838 				sizeof(arch_zone_lowest_possible_pfn));
4839 	memset(arch_zone_highest_possible_pfn, 0,
4840 				sizeof(arch_zone_highest_possible_pfn));
4841 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4842 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4843 	for (i = 1; i < MAX_NR_ZONES; i++) {
4844 		if (i == ZONE_MOVABLE)
4845 			continue;
4846 		arch_zone_lowest_possible_pfn[i] =
4847 			arch_zone_highest_possible_pfn[i-1];
4848 		arch_zone_highest_possible_pfn[i] =
4849 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4850 	}
4851 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4852 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4853 
4854 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4855 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4856 	find_zone_movable_pfns_for_nodes();
4857 
4858 	/* Print out the zone ranges */
4859 	printk("Zone ranges:\n");
4860 	for (i = 0; i < MAX_NR_ZONES; i++) {
4861 		if (i == ZONE_MOVABLE)
4862 			continue;
4863 		printk(KERN_CONT "  %-8s ", zone_names[i]);
4864 		if (arch_zone_lowest_possible_pfn[i] ==
4865 				arch_zone_highest_possible_pfn[i])
4866 			printk(KERN_CONT "empty\n");
4867 		else
4868 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4869 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4870 				(arch_zone_highest_possible_pfn[i]
4871 					<< PAGE_SHIFT) - 1);
4872 	}
4873 
4874 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4875 	printk("Movable zone start for each node\n");
4876 	for (i = 0; i < MAX_NUMNODES; i++) {
4877 		if (zone_movable_pfn[i])
4878 			printk("  Node %d: %#010lx\n", i,
4879 			       zone_movable_pfn[i] << PAGE_SHIFT);
4880 	}
4881 
4882 	/* Print out the early_node_map[] */
4883 	printk("Early memory node ranges\n");
4884 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4885 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
4886 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4887 
4888 	/* Initialise every node */
4889 	mminit_verify_pageflags_layout();
4890 	setup_nr_node_ids();
4891 	for_each_online_node(nid) {
4892 		pg_data_t *pgdat = NODE_DATA(nid);
4893 		free_area_init_node(nid, NULL,
4894 				find_min_pfn_for_node(nid), NULL);
4895 
4896 		/* Any memory on that node */
4897 		if (pgdat->node_present_pages)
4898 			node_set_state(nid, N_HIGH_MEMORY);
4899 		check_for_regular_memory(pgdat);
4900 	}
4901 }
4902 
4903 static int __init cmdline_parse_core(char *p, unsigned long *core)
4904 {
4905 	unsigned long long coremem;
4906 	if (!p)
4907 		return -EINVAL;
4908 
4909 	coremem = memparse(p, &p);
4910 	*core = coremem >> PAGE_SHIFT;
4911 
4912 	/* Paranoid check that UL is enough for the coremem value */
4913 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4914 
4915 	return 0;
4916 }
4917 
4918 /*
4919  * kernelcore=size sets the amount of memory for use for allocations that
4920  * cannot be reclaimed or migrated.
4921  */
4922 static int __init cmdline_parse_kernelcore(char *p)
4923 {
4924 	return cmdline_parse_core(p, &required_kernelcore);
4925 }
4926 
4927 /*
4928  * movablecore=size sets the amount of memory for use for allocations that
4929  * can be reclaimed or migrated.
4930  */
4931 static int __init cmdline_parse_movablecore(char *p)
4932 {
4933 	return cmdline_parse_core(p, &required_movablecore);
4934 }
4935 
4936 early_param("kernelcore", cmdline_parse_kernelcore);
4937 early_param("movablecore", cmdline_parse_movablecore);
4938 
4939 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4940 
4941 /**
4942  * set_dma_reserve - set the specified number of pages reserved in the first zone
4943  * @new_dma_reserve: The number of pages to mark reserved
4944  *
4945  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4946  * In the DMA zone, a significant percentage may be consumed by kernel image
4947  * and other unfreeable allocations which can skew the watermarks badly. This
4948  * function may optionally be used to account for unfreeable pages in the
4949  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4950  * smaller per-cpu batchsize.
4951  */
4952 void __init set_dma_reserve(unsigned long new_dma_reserve)
4953 {
4954 	dma_reserve = new_dma_reserve;
4955 }
4956 
4957 void __init free_area_init(unsigned long *zones_size)
4958 {
4959 	free_area_init_node(0, zones_size,
4960 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4961 }
4962 
4963 static int page_alloc_cpu_notify(struct notifier_block *self,
4964 				 unsigned long action, void *hcpu)
4965 {
4966 	int cpu = (unsigned long)hcpu;
4967 
4968 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4969 		lru_add_drain_cpu(cpu);
4970 		drain_pages(cpu);
4971 
4972 		/*
4973 		 * Spill the event counters of the dead processor
4974 		 * into the current processors event counters.
4975 		 * This artificially elevates the count of the current
4976 		 * processor.
4977 		 */
4978 		vm_events_fold_cpu(cpu);
4979 
4980 		/*
4981 		 * Zero the differential counters of the dead processor
4982 		 * so that the vm statistics are consistent.
4983 		 *
4984 		 * This is only okay since the processor is dead and cannot
4985 		 * race with what we are doing.
4986 		 */
4987 		refresh_cpu_vm_stats(cpu);
4988 	}
4989 	return NOTIFY_OK;
4990 }
4991 
4992 void __init page_alloc_init(void)
4993 {
4994 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4995 }
4996 
4997 /*
4998  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4999  *	or min_free_kbytes changes.
5000  */
5001 static void calculate_totalreserve_pages(void)
5002 {
5003 	struct pglist_data *pgdat;
5004 	unsigned long reserve_pages = 0;
5005 	enum zone_type i, j;
5006 
5007 	for_each_online_pgdat(pgdat) {
5008 		for (i = 0; i < MAX_NR_ZONES; i++) {
5009 			struct zone *zone = pgdat->node_zones + i;
5010 			unsigned long max = 0;
5011 
5012 			/* Find valid and maximum lowmem_reserve in the zone */
5013 			for (j = i; j < MAX_NR_ZONES; j++) {
5014 				if (zone->lowmem_reserve[j] > max)
5015 					max = zone->lowmem_reserve[j];
5016 			}
5017 
5018 			/* we treat the high watermark as reserved pages. */
5019 			max += high_wmark_pages(zone);
5020 
5021 			if (max > zone->present_pages)
5022 				max = zone->present_pages;
5023 			reserve_pages += max;
5024 			/*
5025 			 * Lowmem reserves are not available to
5026 			 * GFP_HIGHUSER page cache allocations and
5027 			 * kswapd tries to balance zones to their high
5028 			 * watermark.  As a result, neither should be
5029 			 * regarded as dirtyable memory, to prevent a
5030 			 * situation where reclaim has to clean pages
5031 			 * in order to balance the zones.
5032 			 */
5033 			zone->dirty_balance_reserve = max;
5034 		}
5035 	}
5036 	dirty_balance_reserve = reserve_pages;
5037 	totalreserve_pages = reserve_pages;
5038 }
5039 
5040 /*
5041  * setup_per_zone_lowmem_reserve - called whenever
5042  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5043  *	has a correct pages reserved value, so an adequate number of
5044  *	pages are left in the zone after a successful __alloc_pages().
5045  */
5046 static void setup_per_zone_lowmem_reserve(void)
5047 {
5048 	struct pglist_data *pgdat;
5049 	enum zone_type j, idx;
5050 
5051 	for_each_online_pgdat(pgdat) {
5052 		for (j = 0; j < MAX_NR_ZONES; j++) {
5053 			struct zone *zone = pgdat->node_zones + j;
5054 			unsigned long present_pages = zone->present_pages;
5055 
5056 			zone->lowmem_reserve[j] = 0;
5057 
5058 			idx = j;
5059 			while (idx) {
5060 				struct zone *lower_zone;
5061 
5062 				idx--;
5063 
5064 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5065 					sysctl_lowmem_reserve_ratio[idx] = 1;
5066 
5067 				lower_zone = pgdat->node_zones + idx;
5068 				lower_zone->lowmem_reserve[j] = present_pages /
5069 					sysctl_lowmem_reserve_ratio[idx];
5070 				present_pages += lower_zone->present_pages;
5071 			}
5072 		}
5073 	}
5074 
5075 	/* update totalreserve_pages */
5076 	calculate_totalreserve_pages();
5077 }
5078 
5079 static void __setup_per_zone_wmarks(void)
5080 {
5081 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5082 	unsigned long lowmem_pages = 0;
5083 	struct zone *zone;
5084 	unsigned long flags;
5085 
5086 	/* Calculate total number of !ZONE_HIGHMEM pages */
5087 	for_each_zone(zone) {
5088 		if (!is_highmem(zone))
5089 			lowmem_pages += zone->present_pages;
5090 	}
5091 
5092 	for_each_zone(zone) {
5093 		u64 tmp;
5094 
5095 		spin_lock_irqsave(&zone->lock, flags);
5096 		tmp = (u64)pages_min * zone->present_pages;
5097 		do_div(tmp, lowmem_pages);
5098 		if (is_highmem(zone)) {
5099 			/*
5100 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5101 			 * need highmem pages, so cap pages_min to a small
5102 			 * value here.
5103 			 *
5104 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5105 			 * deltas controls asynch page reclaim, and so should
5106 			 * not be capped for highmem.
5107 			 */
5108 			int min_pages;
5109 
5110 			min_pages = zone->present_pages / 1024;
5111 			if (min_pages < SWAP_CLUSTER_MAX)
5112 				min_pages = SWAP_CLUSTER_MAX;
5113 			if (min_pages > 128)
5114 				min_pages = 128;
5115 			zone->watermark[WMARK_MIN] = min_pages;
5116 		} else {
5117 			/*
5118 			 * If it's a lowmem zone, reserve a number of pages
5119 			 * proportionate to the zone's size.
5120 			 */
5121 			zone->watermark[WMARK_MIN] = tmp;
5122 		}
5123 
5124 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5125 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5126 
5127 		zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5128 		zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5129 		zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5130 
5131 		setup_zone_migrate_reserve(zone);
5132 		spin_unlock_irqrestore(&zone->lock, flags);
5133 	}
5134 
5135 	/* update totalreserve_pages */
5136 	calculate_totalreserve_pages();
5137 }
5138 
5139 /**
5140  * setup_per_zone_wmarks - called when min_free_kbytes changes
5141  * or when memory is hot-{added|removed}
5142  *
5143  * Ensures that the watermark[min,low,high] values for each zone are set
5144  * correctly with respect to min_free_kbytes.
5145  */
5146 void setup_per_zone_wmarks(void)
5147 {
5148 	mutex_lock(&zonelists_mutex);
5149 	__setup_per_zone_wmarks();
5150 	mutex_unlock(&zonelists_mutex);
5151 }
5152 
5153 /*
5154  * The inactive anon list should be small enough that the VM never has to
5155  * do too much work, but large enough that each inactive page has a chance
5156  * to be referenced again before it is swapped out.
5157  *
5158  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5159  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5160  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5161  * the anonymous pages are kept on the inactive list.
5162  *
5163  * total     target    max
5164  * memory    ratio     inactive anon
5165  * -------------------------------------
5166  *   10MB       1         5MB
5167  *  100MB       1        50MB
5168  *    1GB       3       250MB
5169  *   10GB      10       0.9GB
5170  *  100GB      31         3GB
5171  *    1TB     101        10GB
5172  *   10TB     320        32GB
5173  */
5174 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5175 {
5176 	unsigned int gb, ratio;
5177 
5178 	/* Zone size in gigabytes */
5179 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5180 	if (gb)
5181 		ratio = int_sqrt(10 * gb);
5182 	else
5183 		ratio = 1;
5184 
5185 	zone->inactive_ratio = ratio;
5186 }
5187 
5188 static void __meminit setup_per_zone_inactive_ratio(void)
5189 {
5190 	struct zone *zone;
5191 
5192 	for_each_zone(zone)
5193 		calculate_zone_inactive_ratio(zone);
5194 }
5195 
5196 /*
5197  * Initialise min_free_kbytes.
5198  *
5199  * For small machines we want it small (128k min).  For large machines
5200  * we want it large (64MB max).  But it is not linear, because network
5201  * bandwidth does not increase linearly with machine size.  We use
5202  *
5203  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5204  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5205  *
5206  * which yields
5207  *
5208  * 16MB:	512k
5209  * 32MB:	724k
5210  * 64MB:	1024k
5211  * 128MB:	1448k
5212  * 256MB:	2048k
5213  * 512MB:	2896k
5214  * 1024MB:	4096k
5215  * 2048MB:	5792k
5216  * 4096MB:	8192k
5217  * 8192MB:	11584k
5218  * 16384MB:	16384k
5219  */
5220 int __meminit init_per_zone_wmark_min(void)
5221 {
5222 	unsigned long lowmem_kbytes;
5223 
5224 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5225 
5226 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5227 	if (min_free_kbytes < 128)
5228 		min_free_kbytes = 128;
5229 	if (min_free_kbytes > 65536)
5230 		min_free_kbytes = 65536;
5231 	setup_per_zone_wmarks();
5232 	refresh_zone_stat_thresholds();
5233 	setup_per_zone_lowmem_reserve();
5234 	setup_per_zone_inactive_ratio();
5235 	return 0;
5236 }
5237 module_init(init_per_zone_wmark_min)
5238 
5239 /*
5240  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5241  *	that we can call two helper functions whenever min_free_kbytes
5242  *	changes.
5243  */
5244 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5245 	void __user *buffer, size_t *length, loff_t *ppos)
5246 {
5247 	proc_dointvec(table, write, buffer, length, ppos);
5248 	if (write)
5249 		setup_per_zone_wmarks();
5250 	return 0;
5251 }
5252 
5253 #ifdef CONFIG_NUMA
5254 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5255 	void __user *buffer, size_t *length, loff_t *ppos)
5256 {
5257 	struct zone *zone;
5258 	int rc;
5259 
5260 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5261 	if (rc)
5262 		return rc;
5263 
5264 	for_each_zone(zone)
5265 		zone->min_unmapped_pages = (zone->present_pages *
5266 				sysctl_min_unmapped_ratio) / 100;
5267 	return 0;
5268 }
5269 
5270 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5271 	void __user *buffer, size_t *length, loff_t *ppos)
5272 {
5273 	struct zone *zone;
5274 	int rc;
5275 
5276 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5277 	if (rc)
5278 		return rc;
5279 
5280 	for_each_zone(zone)
5281 		zone->min_slab_pages = (zone->present_pages *
5282 				sysctl_min_slab_ratio) / 100;
5283 	return 0;
5284 }
5285 #endif
5286 
5287 /*
5288  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5289  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5290  *	whenever sysctl_lowmem_reserve_ratio changes.
5291  *
5292  * The reserve ratio obviously has absolutely no relation with the
5293  * minimum watermarks. The lowmem reserve ratio can only make sense
5294  * if in function of the boot time zone sizes.
5295  */
5296 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5297 	void __user *buffer, size_t *length, loff_t *ppos)
5298 {
5299 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5300 	setup_per_zone_lowmem_reserve();
5301 	return 0;
5302 }
5303 
5304 /*
5305  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5306  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5307  * can have before it gets flushed back to buddy allocator.
5308  */
5309 
5310 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5311 	void __user *buffer, size_t *length, loff_t *ppos)
5312 {
5313 	struct zone *zone;
5314 	unsigned int cpu;
5315 	int ret;
5316 
5317 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5318 	if (!write || (ret < 0))
5319 		return ret;
5320 	for_each_populated_zone(zone) {
5321 		for_each_possible_cpu(cpu) {
5322 			unsigned long  high;
5323 			high = zone->present_pages / percpu_pagelist_fraction;
5324 			setup_pagelist_highmark(
5325 				per_cpu_ptr(zone->pageset, cpu), high);
5326 		}
5327 	}
5328 	return 0;
5329 }
5330 
5331 int hashdist = HASHDIST_DEFAULT;
5332 
5333 #ifdef CONFIG_NUMA
5334 static int __init set_hashdist(char *str)
5335 {
5336 	if (!str)
5337 		return 0;
5338 	hashdist = simple_strtoul(str, &str, 0);
5339 	return 1;
5340 }
5341 __setup("hashdist=", set_hashdist);
5342 #endif
5343 
5344 /*
5345  * allocate a large system hash table from bootmem
5346  * - it is assumed that the hash table must contain an exact power-of-2
5347  *   quantity of entries
5348  * - limit is the number of hash buckets, not the total allocation size
5349  */
5350 void *__init alloc_large_system_hash(const char *tablename,
5351 				     unsigned long bucketsize,
5352 				     unsigned long numentries,
5353 				     int scale,
5354 				     int flags,
5355 				     unsigned int *_hash_shift,
5356 				     unsigned int *_hash_mask,
5357 				     unsigned long low_limit,
5358 				     unsigned long high_limit)
5359 {
5360 	unsigned long long max = high_limit;
5361 	unsigned long log2qty, size;
5362 	void *table = NULL;
5363 
5364 	/* allow the kernel cmdline to have a say */
5365 	if (!numentries) {
5366 		/* round applicable memory size up to nearest megabyte */
5367 		numentries = nr_kernel_pages;
5368 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5369 		numentries >>= 20 - PAGE_SHIFT;
5370 		numentries <<= 20 - PAGE_SHIFT;
5371 
5372 		/* limit to 1 bucket per 2^scale bytes of low memory */
5373 		if (scale > PAGE_SHIFT)
5374 			numentries >>= (scale - PAGE_SHIFT);
5375 		else
5376 			numentries <<= (PAGE_SHIFT - scale);
5377 
5378 		/* Make sure we've got at least a 0-order allocation.. */
5379 		if (unlikely(flags & HASH_SMALL)) {
5380 			/* Makes no sense without HASH_EARLY */
5381 			WARN_ON(!(flags & HASH_EARLY));
5382 			if (!(numentries >> *_hash_shift)) {
5383 				numentries = 1UL << *_hash_shift;
5384 				BUG_ON(!numentries);
5385 			}
5386 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5387 			numentries = PAGE_SIZE / bucketsize;
5388 	}
5389 	numentries = roundup_pow_of_two(numentries);
5390 
5391 	/* limit allocation size to 1/16 total memory by default */
5392 	if (max == 0) {
5393 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5394 		do_div(max, bucketsize);
5395 	}
5396 	max = min(max, 0x80000000ULL);
5397 
5398 	if (numentries < low_limit)
5399 		numentries = low_limit;
5400 	if (numentries > max)
5401 		numentries = max;
5402 
5403 	log2qty = ilog2(numentries);
5404 
5405 	do {
5406 		size = bucketsize << log2qty;
5407 		if (flags & HASH_EARLY)
5408 			table = alloc_bootmem_nopanic(size);
5409 		else if (hashdist)
5410 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5411 		else {
5412 			/*
5413 			 * If bucketsize is not a power-of-two, we may free
5414 			 * some pages at the end of hash table which
5415 			 * alloc_pages_exact() automatically does
5416 			 */
5417 			if (get_order(size) < MAX_ORDER) {
5418 				table = alloc_pages_exact(size, GFP_ATOMIC);
5419 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5420 			}
5421 		}
5422 	} while (!table && size > PAGE_SIZE && --log2qty);
5423 
5424 	if (!table)
5425 		panic("Failed to allocate %s hash table\n", tablename);
5426 
5427 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5428 	       tablename,
5429 	       (1UL << log2qty),
5430 	       ilog2(size) - PAGE_SHIFT,
5431 	       size);
5432 
5433 	if (_hash_shift)
5434 		*_hash_shift = log2qty;
5435 	if (_hash_mask)
5436 		*_hash_mask = (1 << log2qty) - 1;
5437 
5438 	return table;
5439 }
5440 
5441 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5442 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5443 							unsigned long pfn)
5444 {
5445 #ifdef CONFIG_SPARSEMEM
5446 	return __pfn_to_section(pfn)->pageblock_flags;
5447 #else
5448 	return zone->pageblock_flags;
5449 #endif /* CONFIG_SPARSEMEM */
5450 }
5451 
5452 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5453 {
5454 #ifdef CONFIG_SPARSEMEM
5455 	pfn &= (PAGES_PER_SECTION-1);
5456 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5457 #else
5458 	pfn = pfn - zone->zone_start_pfn;
5459 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5460 #endif /* CONFIG_SPARSEMEM */
5461 }
5462 
5463 /**
5464  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5465  * @page: The page within the block of interest
5466  * @start_bitidx: The first bit of interest to retrieve
5467  * @end_bitidx: The last bit of interest
5468  * returns pageblock_bits flags
5469  */
5470 unsigned long get_pageblock_flags_group(struct page *page,
5471 					int start_bitidx, int end_bitidx)
5472 {
5473 	struct zone *zone;
5474 	unsigned long *bitmap;
5475 	unsigned long pfn, bitidx;
5476 	unsigned long flags = 0;
5477 	unsigned long value = 1;
5478 
5479 	zone = page_zone(page);
5480 	pfn = page_to_pfn(page);
5481 	bitmap = get_pageblock_bitmap(zone, pfn);
5482 	bitidx = pfn_to_bitidx(zone, pfn);
5483 
5484 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5485 		if (test_bit(bitidx + start_bitidx, bitmap))
5486 			flags |= value;
5487 
5488 	return flags;
5489 }
5490 
5491 /**
5492  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5493  * @page: The page within the block of interest
5494  * @start_bitidx: The first bit of interest
5495  * @end_bitidx: The last bit of interest
5496  * @flags: The flags to set
5497  */
5498 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5499 					int start_bitidx, int end_bitidx)
5500 {
5501 	struct zone *zone;
5502 	unsigned long *bitmap;
5503 	unsigned long pfn, bitidx;
5504 	unsigned long value = 1;
5505 
5506 	zone = page_zone(page);
5507 	pfn = page_to_pfn(page);
5508 	bitmap = get_pageblock_bitmap(zone, pfn);
5509 	bitidx = pfn_to_bitidx(zone, pfn);
5510 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5511 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5512 
5513 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5514 		if (flags & value)
5515 			__set_bit(bitidx + start_bitidx, bitmap);
5516 		else
5517 			__clear_bit(bitidx + start_bitidx, bitmap);
5518 }
5519 
5520 /*
5521  * This function checks whether pageblock includes unmovable pages or not.
5522  * If @count is not zero, it is okay to include less @count unmovable pages
5523  *
5524  * PageLRU check wihtout isolation or lru_lock could race so that
5525  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5526  * expect this function should be exact.
5527  */
5528 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5529 {
5530 	unsigned long pfn, iter, found;
5531 	int mt;
5532 
5533 	/*
5534 	 * For avoiding noise data, lru_add_drain_all() should be called
5535 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5536 	 */
5537 	if (zone_idx(zone) == ZONE_MOVABLE)
5538 		return false;
5539 	mt = get_pageblock_migratetype(page);
5540 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5541 		return false;
5542 
5543 	pfn = page_to_pfn(page);
5544 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5545 		unsigned long check = pfn + iter;
5546 
5547 		if (!pfn_valid_within(check))
5548 			continue;
5549 
5550 		page = pfn_to_page(check);
5551 		/*
5552 		 * We can't use page_count without pin a page
5553 		 * because another CPU can free compound page.
5554 		 * This check already skips compound tails of THP
5555 		 * because their page->_count is zero at all time.
5556 		 */
5557 		if (!atomic_read(&page->_count)) {
5558 			if (PageBuddy(page))
5559 				iter += (1 << page_order(page)) - 1;
5560 			continue;
5561 		}
5562 
5563 		if (!PageLRU(page))
5564 			found++;
5565 		/*
5566 		 * If there are RECLAIMABLE pages, we need to check it.
5567 		 * But now, memory offline itself doesn't call shrink_slab()
5568 		 * and it still to be fixed.
5569 		 */
5570 		/*
5571 		 * If the page is not RAM, page_count()should be 0.
5572 		 * we don't need more check. This is an _used_ not-movable page.
5573 		 *
5574 		 * The problematic thing here is PG_reserved pages. PG_reserved
5575 		 * is set to both of a memory hole page and a _used_ kernel
5576 		 * page at boot.
5577 		 */
5578 		if (found > count)
5579 			return true;
5580 	}
5581 	return false;
5582 }
5583 
5584 bool is_pageblock_removable_nolock(struct page *page)
5585 {
5586 	struct zone *zone;
5587 	unsigned long pfn;
5588 
5589 	/*
5590 	 * We have to be careful here because we are iterating over memory
5591 	 * sections which are not zone aware so we might end up outside of
5592 	 * the zone but still within the section.
5593 	 * We have to take care about the node as well. If the node is offline
5594 	 * its NODE_DATA will be NULL - see page_zone.
5595 	 */
5596 	if (!node_online(page_to_nid(page)))
5597 		return false;
5598 
5599 	zone = page_zone(page);
5600 	pfn = page_to_pfn(page);
5601 	if (zone->zone_start_pfn > pfn ||
5602 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5603 		return false;
5604 
5605 	return !has_unmovable_pages(zone, page, 0);
5606 }
5607 
5608 #ifdef CONFIG_CMA
5609 
5610 static unsigned long pfn_max_align_down(unsigned long pfn)
5611 {
5612 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5613 			     pageblock_nr_pages) - 1);
5614 }
5615 
5616 static unsigned long pfn_max_align_up(unsigned long pfn)
5617 {
5618 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5619 				pageblock_nr_pages));
5620 }
5621 
5622 static struct page *
5623 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5624 			     int **resultp)
5625 {
5626 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5627 
5628 	if (PageHighMem(page))
5629 		gfp_mask |= __GFP_HIGHMEM;
5630 
5631 	return alloc_page(gfp_mask);
5632 }
5633 
5634 /* [start, end) must belong to a single zone. */
5635 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5636 {
5637 	/* This function is based on compact_zone() from compaction.c. */
5638 
5639 	unsigned long pfn = start;
5640 	unsigned int tries = 0;
5641 	int ret = 0;
5642 
5643 	struct compact_control cc = {
5644 		.nr_migratepages = 0,
5645 		.order = -1,
5646 		.zone = page_zone(pfn_to_page(start)),
5647 		.sync = true,
5648 	};
5649 	INIT_LIST_HEAD(&cc.migratepages);
5650 
5651 	migrate_prep_local();
5652 
5653 	while (pfn < end || !list_empty(&cc.migratepages)) {
5654 		if (fatal_signal_pending(current)) {
5655 			ret = -EINTR;
5656 			break;
5657 		}
5658 
5659 		if (list_empty(&cc.migratepages)) {
5660 			cc.nr_migratepages = 0;
5661 			pfn = isolate_migratepages_range(cc.zone, &cc,
5662 							 pfn, end);
5663 			if (!pfn) {
5664 				ret = -EINTR;
5665 				break;
5666 			}
5667 			tries = 0;
5668 		} else if (++tries == 5) {
5669 			ret = ret < 0 ? ret : -EBUSY;
5670 			break;
5671 		}
5672 
5673 		ret = migrate_pages(&cc.migratepages,
5674 				    __alloc_contig_migrate_alloc,
5675 				    0, false, MIGRATE_SYNC);
5676 	}
5677 
5678 	putback_lru_pages(&cc.migratepages);
5679 	return ret > 0 ? 0 : ret;
5680 }
5681 
5682 /*
5683  * Update zone's cma pages counter used for watermark level calculation.
5684  */
5685 static inline void __update_cma_watermarks(struct zone *zone, int count)
5686 {
5687 	unsigned long flags;
5688 	spin_lock_irqsave(&zone->lock, flags);
5689 	zone->min_cma_pages += count;
5690 	spin_unlock_irqrestore(&zone->lock, flags);
5691 	setup_per_zone_wmarks();
5692 }
5693 
5694 /*
5695  * Trigger memory pressure bump to reclaim some pages in order to be able to
5696  * allocate 'count' pages in single page units. Does similar work as
5697  *__alloc_pages_slowpath() function.
5698  */
5699 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5700 {
5701 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5702 	struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5703 	int did_some_progress = 0;
5704 	int order = 1;
5705 
5706 	/*
5707 	 * Increase level of watermarks to force kswapd do his job
5708 	 * to stabilise at new watermark level.
5709 	 */
5710 	__update_cma_watermarks(zone, count);
5711 
5712 	/* Obey watermarks as if the page was being allocated */
5713 	while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5714 		wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5715 
5716 		did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5717 						      NULL);
5718 		if (!did_some_progress) {
5719 			/* Exhausted what can be done so it's blamo time */
5720 			out_of_memory(zonelist, gfp_mask, order, NULL, false);
5721 		}
5722 	}
5723 
5724 	/* Restore original watermark levels. */
5725 	__update_cma_watermarks(zone, -count);
5726 
5727 	return count;
5728 }
5729 
5730 /**
5731  * alloc_contig_range() -- tries to allocate given range of pages
5732  * @start:	start PFN to allocate
5733  * @end:	one-past-the-last PFN to allocate
5734  * @migratetype:	migratetype of the underlaying pageblocks (either
5735  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5736  *			in range must have the same migratetype and it must
5737  *			be either of the two.
5738  *
5739  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5740  * aligned, however it's the caller's responsibility to guarantee that
5741  * we are the only thread that changes migrate type of pageblocks the
5742  * pages fall in.
5743  *
5744  * The PFN range must belong to a single zone.
5745  *
5746  * Returns zero on success or negative error code.  On success all
5747  * pages which PFN is in [start, end) are allocated for the caller and
5748  * need to be freed with free_contig_range().
5749  */
5750 int alloc_contig_range(unsigned long start, unsigned long end,
5751 		       unsigned migratetype)
5752 {
5753 	struct zone *zone = page_zone(pfn_to_page(start));
5754 	unsigned long outer_start, outer_end;
5755 	int ret = 0, order;
5756 
5757 	/*
5758 	 * What we do here is we mark all pageblocks in range as
5759 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5760 	 * have different sizes, and due to the way page allocator
5761 	 * work, we align the range to biggest of the two pages so
5762 	 * that page allocator won't try to merge buddies from
5763 	 * different pageblocks and change MIGRATE_ISOLATE to some
5764 	 * other migration type.
5765 	 *
5766 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5767 	 * migrate the pages from an unaligned range (ie. pages that
5768 	 * we are interested in).  This will put all the pages in
5769 	 * range back to page allocator as MIGRATE_ISOLATE.
5770 	 *
5771 	 * When this is done, we take the pages in range from page
5772 	 * allocator removing them from the buddy system.  This way
5773 	 * page allocator will never consider using them.
5774 	 *
5775 	 * This lets us mark the pageblocks back as
5776 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5777 	 * aligned range but not in the unaligned, original range are
5778 	 * put back to page allocator so that buddy can use them.
5779 	 */
5780 
5781 	ret = start_isolate_page_range(pfn_max_align_down(start),
5782 				       pfn_max_align_up(end), migratetype);
5783 	if (ret)
5784 		goto done;
5785 
5786 	ret = __alloc_contig_migrate_range(start, end);
5787 	if (ret)
5788 		goto done;
5789 
5790 	/*
5791 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5792 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5793 	 * more, all pages in [start, end) are free in page allocator.
5794 	 * What we are going to do is to allocate all pages from
5795 	 * [start, end) (that is remove them from page allocator).
5796 	 *
5797 	 * The only problem is that pages at the beginning and at the
5798 	 * end of interesting range may be not aligned with pages that
5799 	 * page allocator holds, ie. they can be part of higher order
5800 	 * pages.  Because of this, we reserve the bigger range and
5801 	 * once this is done free the pages we are not interested in.
5802 	 *
5803 	 * We don't have to hold zone->lock here because the pages are
5804 	 * isolated thus they won't get removed from buddy.
5805 	 */
5806 
5807 	lru_add_drain_all();
5808 	drain_all_pages();
5809 
5810 	order = 0;
5811 	outer_start = start;
5812 	while (!PageBuddy(pfn_to_page(outer_start))) {
5813 		if (++order >= MAX_ORDER) {
5814 			ret = -EBUSY;
5815 			goto done;
5816 		}
5817 		outer_start &= ~0UL << order;
5818 	}
5819 
5820 	/* Make sure the range is really isolated. */
5821 	if (test_pages_isolated(outer_start, end)) {
5822 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5823 		       outer_start, end);
5824 		ret = -EBUSY;
5825 		goto done;
5826 	}
5827 
5828 	/*
5829 	 * Reclaim enough pages to make sure that contiguous allocation
5830 	 * will not starve the system.
5831 	 */
5832 	__reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5833 
5834 	/* Grab isolated pages from freelists. */
5835 	outer_end = isolate_freepages_range(outer_start, end);
5836 	if (!outer_end) {
5837 		ret = -EBUSY;
5838 		goto done;
5839 	}
5840 
5841 	/* Free head and tail (if any) */
5842 	if (start != outer_start)
5843 		free_contig_range(outer_start, start - outer_start);
5844 	if (end != outer_end)
5845 		free_contig_range(end, outer_end - end);
5846 
5847 done:
5848 	undo_isolate_page_range(pfn_max_align_down(start),
5849 				pfn_max_align_up(end), migratetype);
5850 	return ret;
5851 }
5852 
5853 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5854 {
5855 	for (; nr_pages--; ++pfn)
5856 		__free_page(pfn_to_page(pfn));
5857 }
5858 #endif
5859 
5860 #ifdef CONFIG_MEMORY_HOTPLUG
5861 static int __meminit __zone_pcp_update(void *data)
5862 {
5863 	struct zone *zone = data;
5864 	int cpu;
5865 	unsigned long batch = zone_batchsize(zone), flags;
5866 
5867 	for_each_possible_cpu(cpu) {
5868 		struct per_cpu_pageset *pset;
5869 		struct per_cpu_pages *pcp;
5870 
5871 		pset = per_cpu_ptr(zone->pageset, cpu);
5872 		pcp = &pset->pcp;
5873 
5874 		local_irq_save(flags);
5875 		if (pcp->count > 0)
5876 			free_pcppages_bulk(zone, pcp->count, pcp);
5877 		setup_pageset(pset, batch);
5878 		local_irq_restore(flags);
5879 	}
5880 	return 0;
5881 }
5882 
5883 void __meminit zone_pcp_update(struct zone *zone)
5884 {
5885 	stop_machine(__zone_pcp_update, zone, NULL);
5886 }
5887 #endif
5888 
5889 #ifdef CONFIG_MEMORY_HOTREMOVE
5890 void zone_pcp_reset(struct zone *zone)
5891 {
5892 	unsigned long flags;
5893 
5894 	/* avoid races with drain_pages()  */
5895 	local_irq_save(flags);
5896 	if (zone->pageset != &boot_pageset) {
5897 		free_percpu(zone->pageset);
5898 		zone->pageset = &boot_pageset;
5899 	}
5900 	local_irq_restore(flags);
5901 }
5902 
5903 /*
5904  * All pages in the range must be isolated before calling this.
5905  */
5906 void
5907 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5908 {
5909 	struct page *page;
5910 	struct zone *zone;
5911 	int order, i;
5912 	unsigned long pfn;
5913 	unsigned long flags;
5914 	/* find the first valid pfn */
5915 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5916 		if (pfn_valid(pfn))
5917 			break;
5918 	if (pfn == end_pfn)
5919 		return;
5920 	zone = page_zone(pfn_to_page(pfn));
5921 	spin_lock_irqsave(&zone->lock, flags);
5922 	pfn = start_pfn;
5923 	while (pfn < end_pfn) {
5924 		if (!pfn_valid(pfn)) {
5925 			pfn++;
5926 			continue;
5927 		}
5928 		page = pfn_to_page(pfn);
5929 		BUG_ON(page_count(page));
5930 		BUG_ON(!PageBuddy(page));
5931 		order = page_order(page);
5932 #ifdef CONFIG_DEBUG_VM
5933 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5934 		       pfn, 1 << order, end_pfn);
5935 #endif
5936 		list_del(&page->lru);
5937 		rmv_page_order(page);
5938 		zone->free_area[order].nr_free--;
5939 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5940 				      - (1UL << order));
5941 		for (i = 0; i < (1 << order); i++)
5942 			SetPageReserved((page+i));
5943 		pfn += (1 << order);
5944 	}
5945 	spin_unlock_irqrestore(&zone->lock, flags);
5946 }
5947 #endif
5948 
5949 #ifdef CONFIG_MEMORY_FAILURE
5950 bool is_free_buddy_page(struct page *page)
5951 {
5952 	struct zone *zone = page_zone(page);
5953 	unsigned long pfn = page_to_pfn(page);
5954 	unsigned long flags;
5955 	int order;
5956 
5957 	spin_lock_irqsave(&zone->lock, flags);
5958 	for (order = 0; order < MAX_ORDER; order++) {
5959 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5960 
5961 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5962 			break;
5963 	}
5964 	spin_unlock_irqrestore(&zone->lock, flags);
5965 
5966 	return order < MAX_ORDER;
5967 }
5968 #endif
5969 
5970 static const struct trace_print_flags pageflag_names[] = {
5971 	{1UL << PG_locked,		"locked"	},
5972 	{1UL << PG_error,		"error"		},
5973 	{1UL << PG_referenced,		"referenced"	},
5974 	{1UL << PG_uptodate,		"uptodate"	},
5975 	{1UL << PG_dirty,		"dirty"		},
5976 	{1UL << PG_lru,			"lru"		},
5977 	{1UL << PG_active,		"active"	},
5978 	{1UL << PG_slab,		"slab"		},
5979 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5980 	{1UL << PG_arch_1,		"arch_1"	},
5981 	{1UL << PG_reserved,		"reserved"	},
5982 	{1UL << PG_private,		"private"	},
5983 	{1UL << PG_private_2,		"private_2"	},
5984 	{1UL << PG_writeback,		"writeback"	},
5985 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5986 	{1UL << PG_head,		"head"		},
5987 	{1UL << PG_tail,		"tail"		},
5988 #else
5989 	{1UL << PG_compound,		"compound"	},
5990 #endif
5991 	{1UL << PG_swapcache,		"swapcache"	},
5992 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5993 	{1UL << PG_reclaim,		"reclaim"	},
5994 	{1UL << PG_swapbacked,		"swapbacked"	},
5995 	{1UL << PG_unevictable,		"unevictable"	},
5996 #ifdef CONFIG_MMU
5997 	{1UL << PG_mlocked,		"mlocked"	},
5998 #endif
5999 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6000 	{1UL << PG_uncached,		"uncached"	},
6001 #endif
6002 #ifdef CONFIG_MEMORY_FAILURE
6003 	{1UL << PG_hwpoison,		"hwpoison"	},
6004 #endif
6005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6006 	{1UL << PG_compound_lock,	"compound_lock"	},
6007 #endif
6008 };
6009 
6010 static void dump_page_flags(unsigned long flags)
6011 {
6012 	const char *delim = "";
6013 	unsigned long mask;
6014 	int i;
6015 
6016 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6017 
6018 	printk(KERN_ALERT "page flags: %#lx(", flags);
6019 
6020 	/* remove zone id */
6021 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6022 
6023 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6024 
6025 		mask = pageflag_names[i].mask;
6026 		if ((flags & mask) != mask)
6027 			continue;
6028 
6029 		flags &= ~mask;
6030 		printk("%s%s", delim, pageflag_names[i].name);
6031 		delim = "|";
6032 	}
6033 
6034 	/* check for left over flags */
6035 	if (flags)
6036 		printk("%s%#lx", delim, flags);
6037 
6038 	printk(")\n");
6039 }
6040 
6041 void dump_page(struct page *page)
6042 {
6043 	printk(KERN_ALERT
6044 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6045 		page, atomic_read(&page->_count), page_mapcount(page),
6046 		page->mapping, page->index);
6047 	dump_page_flags(page->flags);
6048 	mem_cgroup_print_bad_page(page);
6049 }
6050