xref: /linux/mm/page_alloc.c (revision 9307c29524502c21f0e8a6d96d850b2f5bc0bd9a)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68 
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71 
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76 
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82  * defined in <linux/topology.h>.
83  */
84 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 #endif
87 
88 /*
89  * Array of node states.
90  */
91 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 	[N_POSSIBLE] = NODE_MASK_ALL,
93 	[N_ONLINE] = { { [0] = 1UL } },
94 #ifndef CONFIG_NUMA
95 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
96 #ifdef CONFIG_HIGHMEM
97 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
98 #endif
99 #ifdef CONFIG_MOVABLE_NODE
100 	[N_MEMORY] = { { [0] = 1UL } },
101 #endif
102 	[N_CPU] = { { [0] = 1UL } },
103 #endif	/* NUMA */
104 };
105 EXPORT_SYMBOL(node_states);
106 
107 /* Protect totalram_pages and zone->managed_pages */
108 static DEFINE_SPINLOCK(managed_page_count_lock);
109 
110 unsigned long totalram_pages __read_mostly;
111 unsigned long totalreserve_pages __read_mostly;
112 /*
113  * When calculating the number of globally allowed dirty pages, there
114  * is a certain number of per-zone reserves that should not be
115  * considered dirtyable memory.  This is the sum of those reserves
116  * over all existing zones that contribute dirtyable memory.
117  */
118 unsigned long dirty_balance_reserve __read_mostly;
119 
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122 
123 #ifdef CONFIG_PM_SLEEP
124 /*
125  * The following functions are used by the suspend/hibernate code to temporarily
126  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127  * while devices are suspended.  To avoid races with the suspend/hibernate code,
128  * they should always be called with pm_mutex held (gfp_allowed_mask also should
129  * only be modified with pm_mutex held, unless the suspend/hibernate code is
130  * guaranteed not to run in parallel with that modification).
131  */
132 
133 static gfp_t saved_gfp_mask;
134 
135 void pm_restore_gfp_mask(void)
136 {
137 	WARN_ON(!mutex_is_locked(&pm_mutex));
138 	if (saved_gfp_mask) {
139 		gfp_allowed_mask = saved_gfp_mask;
140 		saved_gfp_mask = 0;
141 	}
142 }
143 
144 void pm_restrict_gfp_mask(void)
145 {
146 	WARN_ON(!mutex_is_locked(&pm_mutex));
147 	WARN_ON(saved_gfp_mask);
148 	saved_gfp_mask = gfp_allowed_mask;
149 	gfp_allowed_mask &= ~GFP_IOFS;
150 }
151 
152 bool pm_suspended_storage(void)
153 {
154 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
155 		return false;
156 	return true;
157 }
158 #endif /* CONFIG_PM_SLEEP */
159 
160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161 int pageblock_order __read_mostly;
162 #endif
163 
164 static void __free_pages_ok(struct page *page, unsigned int order);
165 
166 /*
167  * results with 256, 32 in the lowmem_reserve sysctl:
168  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169  *	1G machine -> (16M dma, 784M normal, 224M high)
170  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
173  *
174  * TBD: should special case ZONE_DMA32 machines here - in those we normally
175  * don't need any ZONE_NORMAL reservation
176  */
177 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
178 #ifdef CONFIG_ZONE_DMA
179 	 256,
180 #endif
181 #ifdef CONFIG_ZONE_DMA32
182 	 256,
183 #endif
184 #ifdef CONFIG_HIGHMEM
185 	 32,
186 #endif
187 	 32,
188 };
189 
190 EXPORT_SYMBOL(totalram_pages);
191 
192 static char * const zone_names[MAX_NR_ZONES] = {
193 #ifdef CONFIG_ZONE_DMA
194 	 "DMA",
195 #endif
196 #ifdef CONFIG_ZONE_DMA32
197 	 "DMA32",
198 #endif
199 	 "Normal",
200 #ifdef CONFIG_HIGHMEM
201 	 "HighMem",
202 #endif
203 	 "Movable",
204 };
205 
206 int min_free_kbytes = 1024;
207 
208 static unsigned long __meminitdata nr_kernel_pages;
209 static unsigned long __meminitdata nr_all_pages;
210 static unsigned long __meminitdata dma_reserve;
211 
212 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
213 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
214 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
215 static unsigned long __initdata required_kernelcore;
216 static unsigned long __initdata required_movablecore;
217 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
218 
219 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
220 int movable_zone;
221 EXPORT_SYMBOL(movable_zone);
222 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
223 
224 #if MAX_NUMNODES > 1
225 int nr_node_ids __read_mostly = MAX_NUMNODES;
226 int nr_online_nodes __read_mostly = 1;
227 EXPORT_SYMBOL(nr_node_ids);
228 EXPORT_SYMBOL(nr_online_nodes);
229 #endif
230 
231 int page_group_by_mobility_disabled __read_mostly;
232 
233 void set_pageblock_migratetype(struct page *page, int migratetype)
234 {
235 
236 	if (unlikely(page_group_by_mobility_disabled))
237 		migratetype = MIGRATE_UNMOVABLE;
238 
239 	set_pageblock_flags_group(page, (unsigned long)migratetype,
240 					PB_migrate, PB_migrate_end);
241 }
242 
243 bool oom_killer_disabled __read_mostly;
244 
245 #ifdef CONFIG_DEBUG_VM
246 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
247 {
248 	int ret = 0;
249 	unsigned seq;
250 	unsigned long pfn = page_to_pfn(page);
251 	unsigned long sp, start_pfn;
252 
253 	do {
254 		seq = zone_span_seqbegin(zone);
255 		start_pfn = zone->zone_start_pfn;
256 		sp = zone->spanned_pages;
257 		if (!zone_spans_pfn(zone, pfn))
258 			ret = 1;
259 	} while (zone_span_seqretry(zone, seq));
260 
261 	if (ret)
262 		pr_err("page %lu outside zone [ %lu - %lu ]\n",
263 			pfn, start_pfn, start_pfn + sp);
264 
265 	return ret;
266 }
267 
268 static int page_is_consistent(struct zone *zone, struct page *page)
269 {
270 	if (!pfn_valid_within(page_to_pfn(page)))
271 		return 0;
272 	if (zone != page_zone(page))
273 		return 0;
274 
275 	return 1;
276 }
277 /*
278  * Temporary debugging check for pages not lying within a given zone.
279  */
280 static int bad_range(struct zone *zone, struct page *page)
281 {
282 	if (page_outside_zone_boundaries(zone, page))
283 		return 1;
284 	if (!page_is_consistent(zone, page))
285 		return 1;
286 
287 	return 0;
288 }
289 #else
290 static inline int bad_range(struct zone *zone, struct page *page)
291 {
292 	return 0;
293 }
294 #endif
295 
296 static void bad_page(struct page *page)
297 {
298 	static unsigned long resume;
299 	static unsigned long nr_shown;
300 	static unsigned long nr_unshown;
301 
302 	/* Don't complain about poisoned pages */
303 	if (PageHWPoison(page)) {
304 		page_mapcount_reset(page); /* remove PageBuddy */
305 		return;
306 	}
307 
308 	/*
309 	 * Allow a burst of 60 reports, then keep quiet for that minute;
310 	 * or allow a steady drip of one report per second.
311 	 */
312 	if (nr_shown == 60) {
313 		if (time_before(jiffies, resume)) {
314 			nr_unshown++;
315 			goto out;
316 		}
317 		if (nr_unshown) {
318 			printk(KERN_ALERT
319 			      "BUG: Bad page state: %lu messages suppressed\n",
320 				nr_unshown);
321 			nr_unshown = 0;
322 		}
323 		nr_shown = 0;
324 	}
325 	if (nr_shown++ == 0)
326 		resume = jiffies + 60 * HZ;
327 
328 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
329 		current->comm, page_to_pfn(page));
330 	dump_page(page);
331 
332 	print_modules();
333 	dump_stack();
334 out:
335 	/* Leave bad fields for debug, except PageBuddy could make trouble */
336 	page_mapcount_reset(page); /* remove PageBuddy */
337 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
338 }
339 
340 /*
341  * Higher-order pages are called "compound pages".  They are structured thusly:
342  *
343  * The first PAGE_SIZE page is called the "head page".
344  *
345  * The remaining PAGE_SIZE pages are called "tail pages".
346  *
347  * All pages have PG_compound set.  All tail pages have their ->first_page
348  * pointing at the head page.
349  *
350  * The first tail page's ->lru.next holds the address of the compound page's
351  * put_page() function.  Its ->lru.prev holds the order of allocation.
352  * This usage means that zero-order pages may not be compound.
353  */
354 
355 static void free_compound_page(struct page *page)
356 {
357 	__free_pages_ok(page, compound_order(page));
358 }
359 
360 void prep_compound_page(struct page *page, unsigned long order)
361 {
362 	int i;
363 	int nr_pages = 1 << order;
364 
365 	set_compound_page_dtor(page, free_compound_page);
366 	set_compound_order(page, order);
367 	__SetPageHead(page);
368 	for (i = 1; i < nr_pages; i++) {
369 		struct page *p = page + i;
370 		__SetPageTail(p);
371 		set_page_count(p, 0);
372 		p->first_page = page;
373 	}
374 }
375 
376 /* update __split_huge_page_refcount if you change this function */
377 static int destroy_compound_page(struct page *page, unsigned long order)
378 {
379 	int i;
380 	int nr_pages = 1 << order;
381 	int bad = 0;
382 
383 	if (unlikely(compound_order(page) != order)) {
384 		bad_page(page);
385 		bad++;
386 	}
387 
388 	__ClearPageHead(page);
389 
390 	for (i = 1; i < nr_pages; i++) {
391 		struct page *p = page + i;
392 
393 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
394 			bad_page(page);
395 			bad++;
396 		}
397 		__ClearPageTail(p);
398 	}
399 
400 	return bad;
401 }
402 
403 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
404 {
405 	int i;
406 
407 	/*
408 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
409 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
410 	 */
411 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
412 	for (i = 0; i < (1 << order); i++)
413 		clear_highpage(page + i);
414 }
415 
416 #ifdef CONFIG_DEBUG_PAGEALLOC
417 unsigned int _debug_guardpage_minorder;
418 
419 static int __init debug_guardpage_minorder_setup(char *buf)
420 {
421 	unsigned long res;
422 
423 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
424 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
425 		return 0;
426 	}
427 	_debug_guardpage_minorder = res;
428 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
429 	return 0;
430 }
431 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
432 
433 static inline void set_page_guard_flag(struct page *page)
434 {
435 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
436 }
437 
438 static inline void clear_page_guard_flag(struct page *page)
439 {
440 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
441 }
442 #else
443 static inline void set_page_guard_flag(struct page *page) { }
444 static inline void clear_page_guard_flag(struct page *page) { }
445 #endif
446 
447 static inline void set_page_order(struct page *page, int order)
448 {
449 	set_page_private(page, order);
450 	__SetPageBuddy(page);
451 }
452 
453 static inline void rmv_page_order(struct page *page)
454 {
455 	__ClearPageBuddy(page);
456 	set_page_private(page, 0);
457 }
458 
459 /*
460  * Locate the struct page for both the matching buddy in our
461  * pair (buddy1) and the combined O(n+1) page they form (page).
462  *
463  * 1) Any buddy B1 will have an order O twin B2 which satisfies
464  * the following equation:
465  *     B2 = B1 ^ (1 << O)
466  * For example, if the starting buddy (buddy2) is #8 its order
467  * 1 buddy is #10:
468  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
469  *
470  * 2) Any buddy B will have an order O+1 parent P which
471  * satisfies the following equation:
472  *     P = B & ~(1 << O)
473  *
474  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
475  */
476 static inline unsigned long
477 __find_buddy_index(unsigned long page_idx, unsigned int order)
478 {
479 	return page_idx ^ (1 << order);
480 }
481 
482 /*
483  * This function checks whether a page is free && is the buddy
484  * we can do coalesce a page and its buddy if
485  * (a) the buddy is not in a hole &&
486  * (b) the buddy is in the buddy system &&
487  * (c) a page and its buddy have the same order &&
488  * (d) a page and its buddy are in the same zone.
489  *
490  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
491  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
492  *
493  * For recording page's order, we use page_private(page).
494  */
495 static inline int page_is_buddy(struct page *page, struct page *buddy,
496 								int order)
497 {
498 	if (!pfn_valid_within(page_to_pfn(buddy)))
499 		return 0;
500 
501 	if (page_zone_id(page) != page_zone_id(buddy))
502 		return 0;
503 
504 	if (page_is_guard(buddy) && page_order(buddy) == order) {
505 		VM_BUG_ON(page_count(buddy) != 0);
506 		return 1;
507 	}
508 
509 	if (PageBuddy(buddy) && page_order(buddy) == order) {
510 		VM_BUG_ON(page_count(buddy) != 0);
511 		return 1;
512 	}
513 	return 0;
514 }
515 
516 /*
517  * Freeing function for a buddy system allocator.
518  *
519  * The concept of a buddy system is to maintain direct-mapped table
520  * (containing bit values) for memory blocks of various "orders".
521  * The bottom level table contains the map for the smallest allocatable
522  * units of memory (here, pages), and each level above it describes
523  * pairs of units from the levels below, hence, "buddies".
524  * At a high level, all that happens here is marking the table entry
525  * at the bottom level available, and propagating the changes upward
526  * as necessary, plus some accounting needed to play nicely with other
527  * parts of the VM system.
528  * At each level, we keep a list of pages, which are heads of continuous
529  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
530  * order is recorded in page_private(page) field.
531  * So when we are allocating or freeing one, we can derive the state of the
532  * other.  That is, if we allocate a small block, and both were
533  * free, the remainder of the region must be split into blocks.
534  * If a block is freed, and its buddy is also free, then this
535  * triggers coalescing into a block of larger size.
536  *
537  * -- nyc
538  */
539 
540 static inline void __free_one_page(struct page *page,
541 		struct zone *zone, unsigned int order,
542 		int migratetype)
543 {
544 	unsigned long page_idx;
545 	unsigned long combined_idx;
546 	unsigned long uninitialized_var(buddy_idx);
547 	struct page *buddy;
548 
549 	VM_BUG_ON(!zone_is_initialized(zone));
550 
551 	if (unlikely(PageCompound(page)))
552 		if (unlikely(destroy_compound_page(page, order)))
553 			return;
554 
555 	VM_BUG_ON(migratetype == -1);
556 
557 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
558 
559 	VM_BUG_ON(page_idx & ((1 << order) - 1));
560 	VM_BUG_ON(bad_range(zone, page));
561 
562 	while (order < MAX_ORDER-1) {
563 		buddy_idx = __find_buddy_index(page_idx, order);
564 		buddy = page + (buddy_idx - page_idx);
565 		if (!page_is_buddy(page, buddy, order))
566 			break;
567 		/*
568 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
569 		 * merge with it and move up one order.
570 		 */
571 		if (page_is_guard(buddy)) {
572 			clear_page_guard_flag(buddy);
573 			set_page_private(page, 0);
574 			__mod_zone_freepage_state(zone, 1 << order,
575 						  migratetype);
576 		} else {
577 			list_del(&buddy->lru);
578 			zone->free_area[order].nr_free--;
579 			rmv_page_order(buddy);
580 		}
581 		combined_idx = buddy_idx & page_idx;
582 		page = page + (combined_idx - page_idx);
583 		page_idx = combined_idx;
584 		order++;
585 	}
586 	set_page_order(page, order);
587 
588 	/*
589 	 * If this is not the largest possible page, check if the buddy
590 	 * of the next-highest order is free. If it is, it's possible
591 	 * that pages are being freed that will coalesce soon. In case,
592 	 * that is happening, add the free page to the tail of the list
593 	 * so it's less likely to be used soon and more likely to be merged
594 	 * as a higher order page
595 	 */
596 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
597 		struct page *higher_page, *higher_buddy;
598 		combined_idx = buddy_idx & page_idx;
599 		higher_page = page + (combined_idx - page_idx);
600 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
601 		higher_buddy = higher_page + (buddy_idx - combined_idx);
602 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
603 			list_add_tail(&page->lru,
604 				&zone->free_area[order].free_list[migratetype]);
605 			goto out;
606 		}
607 	}
608 
609 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
610 out:
611 	zone->free_area[order].nr_free++;
612 }
613 
614 static inline int free_pages_check(struct page *page)
615 {
616 	if (unlikely(page_mapcount(page) |
617 		(page->mapping != NULL)  |
618 		(atomic_read(&page->_count) != 0) |
619 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
620 		(mem_cgroup_bad_page_check(page)))) {
621 		bad_page(page);
622 		return 1;
623 	}
624 	page_nid_reset_last(page);
625 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
626 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
627 	return 0;
628 }
629 
630 /*
631  * Frees a number of pages from the PCP lists
632  * Assumes all pages on list are in same zone, and of same order.
633  * count is the number of pages to free.
634  *
635  * If the zone was previously in an "all pages pinned" state then look to
636  * see if this freeing clears that state.
637  *
638  * And clear the zone's pages_scanned counter, to hold off the "all pages are
639  * pinned" detection logic.
640  */
641 static void free_pcppages_bulk(struct zone *zone, int count,
642 					struct per_cpu_pages *pcp)
643 {
644 	int migratetype = 0;
645 	int batch_free = 0;
646 	int to_free = count;
647 
648 	spin_lock(&zone->lock);
649 	zone->all_unreclaimable = 0;
650 	zone->pages_scanned = 0;
651 
652 	while (to_free) {
653 		struct page *page;
654 		struct list_head *list;
655 
656 		/*
657 		 * Remove pages from lists in a round-robin fashion. A
658 		 * batch_free count is maintained that is incremented when an
659 		 * empty list is encountered.  This is so more pages are freed
660 		 * off fuller lists instead of spinning excessively around empty
661 		 * lists
662 		 */
663 		do {
664 			batch_free++;
665 			if (++migratetype == MIGRATE_PCPTYPES)
666 				migratetype = 0;
667 			list = &pcp->lists[migratetype];
668 		} while (list_empty(list));
669 
670 		/* This is the only non-empty list. Free them all. */
671 		if (batch_free == MIGRATE_PCPTYPES)
672 			batch_free = to_free;
673 
674 		do {
675 			int mt;	/* migratetype of the to-be-freed page */
676 
677 			page = list_entry(list->prev, struct page, lru);
678 			/* must delete as __free_one_page list manipulates */
679 			list_del(&page->lru);
680 			mt = get_freepage_migratetype(page);
681 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
682 			__free_one_page(page, zone, 0, mt);
683 			trace_mm_page_pcpu_drain(page, 0, mt);
684 			if (likely(!is_migrate_isolate_page(page))) {
685 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
686 				if (is_migrate_cma(mt))
687 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
688 			}
689 		} while (--to_free && --batch_free && !list_empty(list));
690 	}
691 	spin_unlock(&zone->lock);
692 }
693 
694 static void free_one_page(struct zone *zone, struct page *page, int order,
695 				int migratetype)
696 {
697 	spin_lock(&zone->lock);
698 	zone->all_unreclaimable = 0;
699 	zone->pages_scanned = 0;
700 
701 	__free_one_page(page, zone, order, migratetype);
702 	if (unlikely(!is_migrate_isolate(migratetype)))
703 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
704 	spin_unlock(&zone->lock);
705 }
706 
707 static bool free_pages_prepare(struct page *page, unsigned int order)
708 {
709 	int i;
710 	int bad = 0;
711 
712 	trace_mm_page_free(page, order);
713 	kmemcheck_free_shadow(page, order);
714 
715 	if (PageAnon(page))
716 		page->mapping = NULL;
717 	for (i = 0; i < (1 << order); i++)
718 		bad += free_pages_check(page + i);
719 	if (bad)
720 		return false;
721 
722 	if (!PageHighMem(page)) {
723 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
724 		debug_check_no_obj_freed(page_address(page),
725 					   PAGE_SIZE << order);
726 	}
727 	arch_free_page(page, order);
728 	kernel_map_pages(page, 1 << order, 0);
729 
730 	return true;
731 }
732 
733 static void __free_pages_ok(struct page *page, unsigned int order)
734 {
735 	unsigned long flags;
736 	int migratetype;
737 
738 	if (!free_pages_prepare(page, order))
739 		return;
740 
741 	local_irq_save(flags);
742 	__count_vm_events(PGFREE, 1 << order);
743 	migratetype = get_pageblock_migratetype(page);
744 	set_freepage_migratetype(page, migratetype);
745 	free_one_page(page_zone(page), page, order, migratetype);
746 	local_irq_restore(flags);
747 }
748 
749 void __init __free_pages_bootmem(struct page *page, unsigned int order)
750 {
751 	unsigned int nr_pages = 1 << order;
752 	unsigned int loop;
753 
754 	prefetchw(page);
755 	for (loop = 0; loop < nr_pages; loop++) {
756 		struct page *p = &page[loop];
757 
758 		if (loop + 1 < nr_pages)
759 			prefetchw(p + 1);
760 		__ClearPageReserved(p);
761 		set_page_count(p, 0);
762 	}
763 
764 	page_zone(page)->managed_pages += 1 << order;
765 	set_page_refcounted(page);
766 	__free_pages(page, order);
767 }
768 
769 #ifdef CONFIG_CMA
770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
771 void __init init_cma_reserved_pageblock(struct page *page)
772 {
773 	unsigned i = pageblock_nr_pages;
774 	struct page *p = page;
775 
776 	do {
777 		__ClearPageReserved(p);
778 		set_page_count(p, 0);
779 	} while (++p, --i);
780 
781 	set_page_refcounted(page);
782 	set_pageblock_migratetype(page, MIGRATE_CMA);
783 	__free_pages(page, pageblock_order);
784 	adjust_managed_page_count(page, pageblock_nr_pages);
785 }
786 #endif
787 
788 /*
789  * The order of subdivision here is critical for the IO subsystem.
790  * Please do not alter this order without good reasons and regression
791  * testing. Specifically, as large blocks of memory are subdivided,
792  * the order in which smaller blocks are delivered depends on the order
793  * they're subdivided in this function. This is the primary factor
794  * influencing the order in which pages are delivered to the IO
795  * subsystem according to empirical testing, and this is also justified
796  * by considering the behavior of a buddy system containing a single
797  * large block of memory acted on by a series of small allocations.
798  * This behavior is a critical factor in sglist merging's success.
799  *
800  * -- nyc
801  */
802 static inline void expand(struct zone *zone, struct page *page,
803 	int low, int high, struct free_area *area,
804 	int migratetype)
805 {
806 	unsigned long size = 1 << high;
807 
808 	while (high > low) {
809 		area--;
810 		high--;
811 		size >>= 1;
812 		VM_BUG_ON(bad_range(zone, &page[size]));
813 
814 #ifdef CONFIG_DEBUG_PAGEALLOC
815 		if (high < debug_guardpage_minorder()) {
816 			/*
817 			 * Mark as guard pages (or page), that will allow to
818 			 * merge back to allocator when buddy will be freed.
819 			 * Corresponding page table entries will not be touched,
820 			 * pages will stay not present in virtual address space
821 			 */
822 			INIT_LIST_HEAD(&page[size].lru);
823 			set_page_guard_flag(&page[size]);
824 			set_page_private(&page[size], high);
825 			/* Guard pages are not available for any usage */
826 			__mod_zone_freepage_state(zone, -(1 << high),
827 						  migratetype);
828 			continue;
829 		}
830 #endif
831 		list_add(&page[size].lru, &area->free_list[migratetype]);
832 		area->nr_free++;
833 		set_page_order(&page[size], high);
834 	}
835 }
836 
837 /*
838  * This page is about to be returned from the page allocator
839  */
840 static inline int check_new_page(struct page *page)
841 {
842 	if (unlikely(page_mapcount(page) |
843 		(page->mapping != NULL)  |
844 		(atomic_read(&page->_count) != 0)  |
845 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
846 		(mem_cgroup_bad_page_check(page)))) {
847 		bad_page(page);
848 		return 1;
849 	}
850 	return 0;
851 }
852 
853 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
854 {
855 	int i;
856 
857 	for (i = 0; i < (1 << order); i++) {
858 		struct page *p = page + i;
859 		if (unlikely(check_new_page(p)))
860 			return 1;
861 	}
862 
863 	set_page_private(page, 0);
864 	set_page_refcounted(page);
865 
866 	arch_alloc_page(page, order);
867 	kernel_map_pages(page, 1 << order, 1);
868 
869 	if (gfp_flags & __GFP_ZERO)
870 		prep_zero_page(page, order, gfp_flags);
871 
872 	if (order && (gfp_flags & __GFP_COMP))
873 		prep_compound_page(page, order);
874 
875 	return 0;
876 }
877 
878 /*
879  * Go through the free lists for the given migratetype and remove
880  * the smallest available page from the freelists
881  */
882 static inline
883 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
884 						int migratetype)
885 {
886 	unsigned int current_order;
887 	struct free_area * area;
888 	struct page *page;
889 
890 	/* Find a page of the appropriate size in the preferred list */
891 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
892 		area = &(zone->free_area[current_order]);
893 		if (list_empty(&area->free_list[migratetype]))
894 			continue;
895 
896 		page = list_entry(area->free_list[migratetype].next,
897 							struct page, lru);
898 		list_del(&page->lru);
899 		rmv_page_order(page);
900 		area->nr_free--;
901 		expand(zone, page, order, current_order, area, migratetype);
902 		return page;
903 	}
904 
905 	return NULL;
906 }
907 
908 
909 /*
910  * This array describes the order lists are fallen back to when
911  * the free lists for the desirable migrate type are depleted
912  */
913 static int fallbacks[MIGRATE_TYPES][4] = {
914 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
915 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
916 #ifdef CONFIG_CMA
917 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
918 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
919 #else
920 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
921 #endif
922 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
923 #ifdef CONFIG_MEMORY_ISOLATION
924 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
925 #endif
926 };
927 
928 /*
929  * Move the free pages in a range to the free lists of the requested type.
930  * Note that start_page and end_pages are not aligned on a pageblock
931  * boundary. If alignment is required, use move_freepages_block()
932  */
933 int move_freepages(struct zone *zone,
934 			  struct page *start_page, struct page *end_page,
935 			  int migratetype)
936 {
937 	struct page *page;
938 	unsigned long order;
939 	int pages_moved = 0;
940 
941 #ifndef CONFIG_HOLES_IN_ZONE
942 	/*
943 	 * page_zone is not safe to call in this context when
944 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
945 	 * anyway as we check zone boundaries in move_freepages_block().
946 	 * Remove at a later date when no bug reports exist related to
947 	 * grouping pages by mobility
948 	 */
949 	BUG_ON(page_zone(start_page) != page_zone(end_page));
950 #endif
951 
952 	for (page = start_page; page <= end_page;) {
953 		/* Make sure we are not inadvertently changing nodes */
954 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
955 
956 		if (!pfn_valid_within(page_to_pfn(page))) {
957 			page++;
958 			continue;
959 		}
960 
961 		if (!PageBuddy(page)) {
962 			page++;
963 			continue;
964 		}
965 
966 		order = page_order(page);
967 		list_move(&page->lru,
968 			  &zone->free_area[order].free_list[migratetype]);
969 		set_freepage_migratetype(page, migratetype);
970 		page += 1 << order;
971 		pages_moved += 1 << order;
972 	}
973 
974 	return pages_moved;
975 }
976 
977 int move_freepages_block(struct zone *zone, struct page *page,
978 				int migratetype)
979 {
980 	unsigned long start_pfn, end_pfn;
981 	struct page *start_page, *end_page;
982 
983 	start_pfn = page_to_pfn(page);
984 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
985 	start_page = pfn_to_page(start_pfn);
986 	end_page = start_page + pageblock_nr_pages - 1;
987 	end_pfn = start_pfn + pageblock_nr_pages - 1;
988 
989 	/* Do not cross zone boundaries */
990 	if (!zone_spans_pfn(zone, start_pfn))
991 		start_page = page;
992 	if (!zone_spans_pfn(zone, end_pfn))
993 		return 0;
994 
995 	return move_freepages(zone, start_page, end_page, migratetype);
996 }
997 
998 static void change_pageblock_range(struct page *pageblock_page,
999 					int start_order, int migratetype)
1000 {
1001 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1002 
1003 	while (nr_pageblocks--) {
1004 		set_pageblock_migratetype(pageblock_page, migratetype);
1005 		pageblock_page += pageblock_nr_pages;
1006 	}
1007 }
1008 
1009 /* Remove an element from the buddy allocator from the fallback list */
1010 static inline struct page *
1011 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1012 {
1013 	struct free_area * area;
1014 	int current_order;
1015 	struct page *page;
1016 	int migratetype, i;
1017 
1018 	/* Find the largest possible block of pages in the other list */
1019 	for (current_order = MAX_ORDER-1; current_order >= order;
1020 						--current_order) {
1021 		for (i = 0;; i++) {
1022 			migratetype = fallbacks[start_migratetype][i];
1023 
1024 			/* MIGRATE_RESERVE handled later if necessary */
1025 			if (migratetype == MIGRATE_RESERVE)
1026 				break;
1027 
1028 			area = &(zone->free_area[current_order]);
1029 			if (list_empty(&area->free_list[migratetype]))
1030 				continue;
1031 
1032 			page = list_entry(area->free_list[migratetype].next,
1033 					struct page, lru);
1034 			area->nr_free--;
1035 
1036 			/*
1037 			 * If breaking a large block of pages, move all free
1038 			 * pages to the preferred allocation list. If falling
1039 			 * back for a reclaimable kernel allocation, be more
1040 			 * aggressive about taking ownership of free pages
1041 			 *
1042 			 * On the other hand, never change migration
1043 			 * type of MIGRATE_CMA pageblocks nor move CMA
1044 			 * pages on different free lists. We don't
1045 			 * want unmovable pages to be allocated from
1046 			 * MIGRATE_CMA areas.
1047 			 */
1048 			if (!is_migrate_cma(migratetype) &&
1049 			    (unlikely(current_order >= pageblock_order / 2) ||
1050 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1051 			     page_group_by_mobility_disabled)) {
1052 				int pages;
1053 				pages = move_freepages_block(zone, page,
1054 								start_migratetype);
1055 
1056 				/* Claim the whole block if over half of it is free */
1057 				if (pages >= (1 << (pageblock_order-1)) ||
1058 						page_group_by_mobility_disabled)
1059 					set_pageblock_migratetype(page,
1060 								start_migratetype);
1061 
1062 				migratetype = start_migratetype;
1063 			}
1064 
1065 			/* Remove the page from the freelists */
1066 			list_del(&page->lru);
1067 			rmv_page_order(page);
1068 
1069 			/* Take ownership for orders >= pageblock_order */
1070 			if (current_order >= pageblock_order &&
1071 			    !is_migrate_cma(migratetype))
1072 				change_pageblock_range(page, current_order,
1073 							start_migratetype);
1074 
1075 			expand(zone, page, order, current_order, area,
1076 			       is_migrate_cma(migratetype)
1077 			     ? migratetype : start_migratetype);
1078 
1079 			trace_mm_page_alloc_extfrag(page, order, current_order,
1080 				start_migratetype, migratetype);
1081 
1082 			return page;
1083 		}
1084 	}
1085 
1086 	return NULL;
1087 }
1088 
1089 /*
1090  * Do the hard work of removing an element from the buddy allocator.
1091  * Call me with the zone->lock already held.
1092  */
1093 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1094 						int migratetype)
1095 {
1096 	struct page *page;
1097 
1098 retry_reserve:
1099 	page = __rmqueue_smallest(zone, order, migratetype);
1100 
1101 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1102 		page = __rmqueue_fallback(zone, order, migratetype);
1103 
1104 		/*
1105 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1106 		 * is used because __rmqueue_smallest is an inline function
1107 		 * and we want just one call site
1108 		 */
1109 		if (!page) {
1110 			migratetype = MIGRATE_RESERVE;
1111 			goto retry_reserve;
1112 		}
1113 	}
1114 
1115 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1116 	return page;
1117 }
1118 
1119 /*
1120  * Obtain a specified number of elements from the buddy allocator, all under
1121  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1122  * Returns the number of new pages which were placed at *list.
1123  */
1124 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1125 			unsigned long count, struct list_head *list,
1126 			int migratetype, int cold)
1127 {
1128 	int mt = migratetype, i;
1129 
1130 	spin_lock(&zone->lock);
1131 	for (i = 0; i < count; ++i) {
1132 		struct page *page = __rmqueue(zone, order, migratetype);
1133 		if (unlikely(page == NULL))
1134 			break;
1135 
1136 		/*
1137 		 * Split buddy pages returned by expand() are received here
1138 		 * in physical page order. The page is added to the callers and
1139 		 * list and the list head then moves forward. From the callers
1140 		 * perspective, the linked list is ordered by page number in
1141 		 * some conditions. This is useful for IO devices that can
1142 		 * merge IO requests if the physical pages are ordered
1143 		 * properly.
1144 		 */
1145 		if (likely(cold == 0))
1146 			list_add(&page->lru, list);
1147 		else
1148 			list_add_tail(&page->lru, list);
1149 		if (IS_ENABLED(CONFIG_CMA)) {
1150 			mt = get_pageblock_migratetype(page);
1151 			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1152 				mt = migratetype;
1153 		}
1154 		set_freepage_migratetype(page, mt);
1155 		list = &page->lru;
1156 		if (is_migrate_cma(mt))
1157 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1158 					      -(1 << order));
1159 	}
1160 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1161 	spin_unlock(&zone->lock);
1162 	return i;
1163 }
1164 
1165 #ifdef CONFIG_NUMA
1166 /*
1167  * Called from the vmstat counter updater to drain pagesets of this
1168  * currently executing processor on remote nodes after they have
1169  * expired.
1170  *
1171  * Note that this function must be called with the thread pinned to
1172  * a single processor.
1173  */
1174 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1175 {
1176 	unsigned long flags;
1177 	int to_drain;
1178 	unsigned long batch;
1179 
1180 	local_irq_save(flags);
1181 	batch = ACCESS_ONCE(pcp->batch);
1182 	if (pcp->count >= batch)
1183 		to_drain = batch;
1184 	else
1185 		to_drain = pcp->count;
1186 	if (to_drain > 0) {
1187 		free_pcppages_bulk(zone, to_drain, pcp);
1188 		pcp->count -= to_drain;
1189 	}
1190 	local_irq_restore(flags);
1191 }
1192 #endif
1193 
1194 /*
1195  * Drain pages of the indicated processor.
1196  *
1197  * The processor must either be the current processor and the
1198  * thread pinned to the current processor or a processor that
1199  * is not online.
1200  */
1201 static void drain_pages(unsigned int cpu)
1202 {
1203 	unsigned long flags;
1204 	struct zone *zone;
1205 
1206 	for_each_populated_zone(zone) {
1207 		struct per_cpu_pageset *pset;
1208 		struct per_cpu_pages *pcp;
1209 
1210 		local_irq_save(flags);
1211 		pset = per_cpu_ptr(zone->pageset, cpu);
1212 
1213 		pcp = &pset->pcp;
1214 		if (pcp->count) {
1215 			free_pcppages_bulk(zone, pcp->count, pcp);
1216 			pcp->count = 0;
1217 		}
1218 		local_irq_restore(flags);
1219 	}
1220 }
1221 
1222 /*
1223  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1224  */
1225 void drain_local_pages(void *arg)
1226 {
1227 	drain_pages(smp_processor_id());
1228 }
1229 
1230 /*
1231  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1232  *
1233  * Note that this code is protected against sending an IPI to an offline
1234  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1235  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1236  * nothing keeps CPUs from showing up after we populated the cpumask and
1237  * before the call to on_each_cpu_mask().
1238  */
1239 void drain_all_pages(void)
1240 {
1241 	int cpu;
1242 	struct per_cpu_pageset *pcp;
1243 	struct zone *zone;
1244 
1245 	/*
1246 	 * Allocate in the BSS so we wont require allocation in
1247 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1248 	 */
1249 	static cpumask_t cpus_with_pcps;
1250 
1251 	/*
1252 	 * We don't care about racing with CPU hotplug event
1253 	 * as offline notification will cause the notified
1254 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1255 	 * disables preemption as part of its processing
1256 	 */
1257 	for_each_online_cpu(cpu) {
1258 		bool has_pcps = false;
1259 		for_each_populated_zone(zone) {
1260 			pcp = per_cpu_ptr(zone->pageset, cpu);
1261 			if (pcp->pcp.count) {
1262 				has_pcps = true;
1263 				break;
1264 			}
1265 		}
1266 		if (has_pcps)
1267 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1268 		else
1269 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1270 	}
1271 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1272 }
1273 
1274 #ifdef CONFIG_HIBERNATION
1275 
1276 void mark_free_pages(struct zone *zone)
1277 {
1278 	unsigned long pfn, max_zone_pfn;
1279 	unsigned long flags;
1280 	int order, t;
1281 	struct list_head *curr;
1282 
1283 	if (!zone->spanned_pages)
1284 		return;
1285 
1286 	spin_lock_irqsave(&zone->lock, flags);
1287 
1288 	max_zone_pfn = zone_end_pfn(zone);
1289 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1290 		if (pfn_valid(pfn)) {
1291 			struct page *page = pfn_to_page(pfn);
1292 
1293 			if (!swsusp_page_is_forbidden(page))
1294 				swsusp_unset_page_free(page);
1295 		}
1296 
1297 	for_each_migratetype_order(order, t) {
1298 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1299 			unsigned long i;
1300 
1301 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1302 			for (i = 0; i < (1UL << order); i++)
1303 				swsusp_set_page_free(pfn_to_page(pfn + i));
1304 		}
1305 	}
1306 	spin_unlock_irqrestore(&zone->lock, flags);
1307 }
1308 #endif /* CONFIG_PM */
1309 
1310 /*
1311  * Free a 0-order page
1312  * cold == 1 ? free a cold page : free a hot page
1313  */
1314 void free_hot_cold_page(struct page *page, int cold)
1315 {
1316 	struct zone *zone = page_zone(page);
1317 	struct per_cpu_pages *pcp;
1318 	unsigned long flags;
1319 	int migratetype;
1320 
1321 	if (!free_pages_prepare(page, 0))
1322 		return;
1323 
1324 	migratetype = get_pageblock_migratetype(page);
1325 	set_freepage_migratetype(page, migratetype);
1326 	local_irq_save(flags);
1327 	__count_vm_event(PGFREE);
1328 
1329 	/*
1330 	 * We only track unmovable, reclaimable and movable on pcp lists.
1331 	 * Free ISOLATE pages back to the allocator because they are being
1332 	 * offlined but treat RESERVE as movable pages so we can get those
1333 	 * areas back if necessary. Otherwise, we may have to free
1334 	 * excessively into the page allocator
1335 	 */
1336 	if (migratetype >= MIGRATE_PCPTYPES) {
1337 		if (unlikely(is_migrate_isolate(migratetype))) {
1338 			free_one_page(zone, page, 0, migratetype);
1339 			goto out;
1340 		}
1341 		migratetype = MIGRATE_MOVABLE;
1342 	}
1343 
1344 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1345 	if (cold)
1346 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1347 	else
1348 		list_add(&page->lru, &pcp->lists[migratetype]);
1349 	pcp->count++;
1350 	if (pcp->count >= pcp->high) {
1351 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1352 		free_pcppages_bulk(zone, batch, pcp);
1353 		pcp->count -= batch;
1354 	}
1355 
1356 out:
1357 	local_irq_restore(flags);
1358 }
1359 
1360 /*
1361  * Free a list of 0-order pages
1362  */
1363 void free_hot_cold_page_list(struct list_head *list, int cold)
1364 {
1365 	struct page *page, *next;
1366 
1367 	list_for_each_entry_safe(page, next, list, lru) {
1368 		trace_mm_page_free_batched(page, cold);
1369 		free_hot_cold_page(page, cold);
1370 	}
1371 }
1372 
1373 /*
1374  * split_page takes a non-compound higher-order page, and splits it into
1375  * n (1<<order) sub-pages: page[0..n]
1376  * Each sub-page must be freed individually.
1377  *
1378  * Note: this is probably too low level an operation for use in drivers.
1379  * Please consult with lkml before using this in your driver.
1380  */
1381 void split_page(struct page *page, unsigned int order)
1382 {
1383 	int i;
1384 
1385 	VM_BUG_ON(PageCompound(page));
1386 	VM_BUG_ON(!page_count(page));
1387 
1388 #ifdef CONFIG_KMEMCHECK
1389 	/*
1390 	 * Split shadow pages too, because free(page[0]) would
1391 	 * otherwise free the whole shadow.
1392 	 */
1393 	if (kmemcheck_page_is_tracked(page))
1394 		split_page(virt_to_page(page[0].shadow), order);
1395 #endif
1396 
1397 	for (i = 1; i < (1 << order); i++)
1398 		set_page_refcounted(page + i);
1399 }
1400 EXPORT_SYMBOL_GPL(split_page);
1401 
1402 static int __isolate_free_page(struct page *page, unsigned int order)
1403 {
1404 	unsigned long watermark;
1405 	struct zone *zone;
1406 	int mt;
1407 
1408 	BUG_ON(!PageBuddy(page));
1409 
1410 	zone = page_zone(page);
1411 	mt = get_pageblock_migratetype(page);
1412 
1413 	if (!is_migrate_isolate(mt)) {
1414 		/* Obey watermarks as if the page was being allocated */
1415 		watermark = low_wmark_pages(zone) + (1 << order);
1416 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1417 			return 0;
1418 
1419 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1420 	}
1421 
1422 	/* Remove page from free list */
1423 	list_del(&page->lru);
1424 	zone->free_area[order].nr_free--;
1425 	rmv_page_order(page);
1426 
1427 	/* Set the pageblock if the isolated page is at least a pageblock */
1428 	if (order >= pageblock_order - 1) {
1429 		struct page *endpage = page + (1 << order) - 1;
1430 		for (; page < endpage; page += pageblock_nr_pages) {
1431 			int mt = get_pageblock_migratetype(page);
1432 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1433 				set_pageblock_migratetype(page,
1434 							  MIGRATE_MOVABLE);
1435 		}
1436 	}
1437 
1438 	return 1UL << order;
1439 }
1440 
1441 /*
1442  * Similar to split_page except the page is already free. As this is only
1443  * being used for migration, the migratetype of the block also changes.
1444  * As this is called with interrupts disabled, the caller is responsible
1445  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1446  * are enabled.
1447  *
1448  * Note: this is probably too low level an operation for use in drivers.
1449  * Please consult with lkml before using this in your driver.
1450  */
1451 int split_free_page(struct page *page)
1452 {
1453 	unsigned int order;
1454 	int nr_pages;
1455 
1456 	order = page_order(page);
1457 
1458 	nr_pages = __isolate_free_page(page, order);
1459 	if (!nr_pages)
1460 		return 0;
1461 
1462 	/* Split into individual pages */
1463 	set_page_refcounted(page);
1464 	split_page(page, order);
1465 	return nr_pages;
1466 }
1467 
1468 /*
1469  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1470  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1471  * or two.
1472  */
1473 static inline
1474 struct page *buffered_rmqueue(struct zone *preferred_zone,
1475 			struct zone *zone, int order, gfp_t gfp_flags,
1476 			int migratetype)
1477 {
1478 	unsigned long flags;
1479 	struct page *page;
1480 	int cold = !!(gfp_flags & __GFP_COLD);
1481 
1482 again:
1483 	if (likely(order == 0)) {
1484 		struct per_cpu_pages *pcp;
1485 		struct list_head *list;
1486 
1487 		local_irq_save(flags);
1488 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1489 		list = &pcp->lists[migratetype];
1490 		if (list_empty(list)) {
1491 			pcp->count += rmqueue_bulk(zone, 0,
1492 					pcp->batch, list,
1493 					migratetype, cold);
1494 			if (unlikely(list_empty(list)))
1495 				goto failed;
1496 		}
1497 
1498 		if (cold)
1499 			page = list_entry(list->prev, struct page, lru);
1500 		else
1501 			page = list_entry(list->next, struct page, lru);
1502 
1503 		list_del(&page->lru);
1504 		pcp->count--;
1505 	} else {
1506 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1507 			/*
1508 			 * __GFP_NOFAIL is not to be used in new code.
1509 			 *
1510 			 * All __GFP_NOFAIL callers should be fixed so that they
1511 			 * properly detect and handle allocation failures.
1512 			 *
1513 			 * We most definitely don't want callers attempting to
1514 			 * allocate greater than order-1 page units with
1515 			 * __GFP_NOFAIL.
1516 			 */
1517 			WARN_ON_ONCE(order > 1);
1518 		}
1519 		spin_lock_irqsave(&zone->lock, flags);
1520 		page = __rmqueue(zone, order, migratetype);
1521 		spin_unlock(&zone->lock);
1522 		if (!page)
1523 			goto failed;
1524 		__mod_zone_freepage_state(zone, -(1 << order),
1525 					  get_pageblock_migratetype(page));
1526 	}
1527 
1528 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1529 	zone_statistics(preferred_zone, zone, gfp_flags);
1530 	local_irq_restore(flags);
1531 
1532 	VM_BUG_ON(bad_range(zone, page));
1533 	if (prep_new_page(page, order, gfp_flags))
1534 		goto again;
1535 	return page;
1536 
1537 failed:
1538 	local_irq_restore(flags);
1539 	return NULL;
1540 }
1541 
1542 #ifdef CONFIG_FAIL_PAGE_ALLOC
1543 
1544 static struct {
1545 	struct fault_attr attr;
1546 
1547 	u32 ignore_gfp_highmem;
1548 	u32 ignore_gfp_wait;
1549 	u32 min_order;
1550 } fail_page_alloc = {
1551 	.attr = FAULT_ATTR_INITIALIZER,
1552 	.ignore_gfp_wait = 1,
1553 	.ignore_gfp_highmem = 1,
1554 	.min_order = 1,
1555 };
1556 
1557 static int __init setup_fail_page_alloc(char *str)
1558 {
1559 	return setup_fault_attr(&fail_page_alloc.attr, str);
1560 }
1561 __setup("fail_page_alloc=", setup_fail_page_alloc);
1562 
1563 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1564 {
1565 	if (order < fail_page_alloc.min_order)
1566 		return false;
1567 	if (gfp_mask & __GFP_NOFAIL)
1568 		return false;
1569 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1570 		return false;
1571 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1572 		return false;
1573 
1574 	return should_fail(&fail_page_alloc.attr, 1 << order);
1575 }
1576 
1577 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1578 
1579 static int __init fail_page_alloc_debugfs(void)
1580 {
1581 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1582 	struct dentry *dir;
1583 
1584 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1585 					&fail_page_alloc.attr);
1586 	if (IS_ERR(dir))
1587 		return PTR_ERR(dir);
1588 
1589 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1590 				&fail_page_alloc.ignore_gfp_wait))
1591 		goto fail;
1592 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1593 				&fail_page_alloc.ignore_gfp_highmem))
1594 		goto fail;
1595 	if (!debugfs_create_u32("min-order", mode, dir,
1596 				&fail_page_alloc.min_order))
1597 		goto fail;
1598 
1599 	return 0;
1600 fail:
1601 	debugfs_remove_recursive(dir);
1602 
1603 	return -ENOMEM;
1604 }
1605 
1606 late_initcall(fail_page_alloc_debugfs);
1607 
1608 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1609 
1610 #else /* CONFIG_FAIL_PAGE_ALLOC */
1611 
1612 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1613 {
1614 	return false;
1615 }
1616 
1617 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1618 
1619 /*
1620  * Return true if free pages are above 'mark'. This takes into account the order
1621  * of the allocation.
1622  */
1623 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1624 		      int classzone_idx, int alloc_flags, long free_pages)
1625 {
1626 	/* free_pages my go negative - that's OK */
1627 	long min = mark;
1628 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1629 	int o;
1630 	long free_cma = 0;
1631 
1632 	free_pages -= (1 << order) - 1;
1633 	if (alloc_flags & ALLOC_HIGH)
1634 		min -= min / 2;
1635 	if (alloc_flags & ALLOC_HARDER)
1636 		min -= min / 4;
1637 #ifdef CONFIG_CMA
1638 	/* If allocation can't use CMA areas don't use free CMA pages */
1639 	if (!(alloc_flags & ALLOC_CMA))
1640 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1641 #endif
1642 
1643 	if (free_pages - free_cma <= min + lowmem_reserve)
1644 		return false;
1645 	for (o = 0; o < order; o++) {
1646 		/* At the next order, this order's pages become unavailable */
1647 		free_pages -= z->free_area[o].nr_free << o;
1648 
1649 		/* Require fewer higher order pages to be free */
1650 		min >>= 1;
1651 
1652 		if (free_pages <= min)
1653 			return false;
1654 	}
1655 	return true;
1656 }
1657 
1658 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 		      int classzone_idx, int alloc_flags)
1660 {
1661 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 					zone_page_state(z, NR_FREE_PAGES));
1663 }
1664 
1665 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 		      int classzone_idx, int alloc_flags)
1667 {
1668 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669 
1670 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672 
1673 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1674 								free_pages);
1675 }
1676 
1677 #ifdef CONFIG_NUMA
1678 /*
1679  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1680  * skip over zones that are not allowed by the cpuset, or that have
1681  * been recently (in last second) found to be nearly full.  See further
1682  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1683  * that have to skip over a lot of full or unallowed zones.
1684  *
1685  * If the zonelist cache is present in the passed in zonelist, then
1686  * returns a pointer to the allowed node mask (either the current
1687  * tasks mems_allowed, or node_states[N_MEMORY].)
1688  *
1689  * If the zonelist cache is not available for this zonelist, does
1690  * nothing and returns NULL.
1691  *
1692  * If the fullzones BITMAP in the zonelist cache is stale (more than
1693  * a second since last zap'd) then we zap it out (clear its bits.)
1694  *
1695  * We hold off even calling zlc_setup, until after we've checked the
1696  * first zone in the zonelist, on the theory that most allocations will
1697  * be satisfied from that first zone, so best to examine that zone as
1698  * quickly as we can.
1699  */
1700 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1701 {
1702 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1703 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1704 
1705 	zlc = zonelist->zlcache_ptr;
1706 	if (!zlc)
1707 		return NULL;
1708 
1709 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1710 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1711 		zlc->last_full_zap = jiffies;
1712 	}
1713 
1714 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1715 					&cpuset_current_mems_allowed :
1716 					&node_states[N_MEMORY];
1717 	return allowednodes;
1718 }
1719 
1720 /*
1721  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1722  * if it is worth looking at further for free memory:
1723  *  1) Check that the zone isn't thought to be full (doesn't have its
1724  *     bit set in the zonelist_cache fullzones BITMAP).
1725  *  2) Check that the zones node (obtained from the zonelist_cache
1726  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1727  * Return true (non-zero) if zone is worth looking at further, or
1728  * else return false (zero) if it is not.
1729  *
1730  * This check -ignores- the distinction between various watermarks,
1731  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1732  * found to be full for any variation of these watermarks, it will
1733  * be considered full for up to one second by all requests, unless
1734  * we are so low on memory on all allowed nodes that we are forced
1735  * into the second scan of the zonelist.
1736  *
1737  * In the second scan we ignore this zonelist cache and exactly
1738  * apply the watermarks to all zones, even it is slower to do so.
1739  * We are low on memory in the second scan, and should leave no stone
1740  * unturned looking for a free page.
1741  */
1742 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1743 						nodemask_t *allowednodes)
1744 {
1745 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1746 	int i;				/* index of *z in zonelist zones */
1747 	int n;				/* node that zone *z is on */
1748 
1749 	zlc = zonelist->zlcache_ptr;
1750 	if (!zlc)
1751 		return 1;
1752 
1753 	i = z - zonelist->_zonerefs;
1754 	n = zlc->z_to_n[i];
1755 
1756 	/* This zone is worth trying if it is allowed but not full */
1757 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1758 }
1759 
1760 /*
1761  * Given 'z' scanning a zonelist, set the corresponding bit in
1762  * zlc->fullzones, so that subsequent attempts to allocate a page
1763  * from that zone don't waste time re-examining it.
1764  */
1765 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1766 {
1767 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1768 	int i;				/* index of *z in zonelist zones */
1769 
1770 	zlc = zonelist->zlcache_ptr;
1771 	if (!zlc)
1772 		return;
1773 
1774 	i = z - zonelist->_zonerefs;
1775 
1776 	set_bit(i, zlc->fullzones);
1777 }
1778 
1779 /*
1780  * clear all zones full, called after direct reclaim makes progress so that
1781  * a zone that was recently full is not skipped over for up to a second
1782  */
1783 static void zlc_clear_zones_full(struct zonelist *zonelist)
1784 {
1785 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1786 
1787 	zlc = zonelist->zlcache_ptr;
1788 	if (!zlc)
1789 		return;
1790 
1791 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1792 }
1793 
1794 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1795 {
1796 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1797 }
1798 
1799 static void __paginginit init_zone_allows_reclaim(int nid)
1800 {
1801 	int i;
1802 
1803 	for_each_online_node(i)
1804 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1805 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1806 		else
1807 			zone_reclaim_mode = 1;
1808 }
1809 
1810 #else	/* CONFIG_NUMA */
1811 
1812 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1813 {
1814 	return NULL;
1815 }
1816 
1817 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1818 				nodemask_t *allowednodes)
1819 {
1820 	return 1;
1821 }
1822 
1823 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1824 {
1825 }
1826 
1827 static void zlc_clear_zones_full(struct zonelist *zonelist)
1828 {
1829 }
1830 
1831 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1832 {
1833 	return true;
1834 }
1835 
1836 static inline void init_zone_allows_reclaim(int nid)
1837 {
1838 }
1839 #endif	/* CONFIG_NUMA */
1840 
1841 /*
1842  * get_page_from_freelist goes through the zonelist trying to allocate
1843  * a page.
1844  */
1845 static struct page *
1846 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1847 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1848 		struct zone *preferred_zone, int migratetype)
1849 {
1850 	struct zoneref *z;
1851 	struct page *page = NULL;
1852 	int classzone_idx;
1853 	struct zone *zone;
1854 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1855 	int zlc_active = 0;		/* set if using zonelist_cache */
1856 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1857 
1858 	classzone_idx = zone_idx(preferred_zone);
1859 zonelist_scan:
1860 	/*
1861 	 * Scan zonelist, looking for a zone with enough free.
1862 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1863 	 */
1864 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1865 						high_zoneidx, nodemask) {
1866 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1867 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1868 				continue;
1869 		if ((alloc_flags & ALLOC_CPUSET) &&
1870 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1871 				continue;
1872 		/*
1873 		 * When allocating a page cache page for writing, we
1874 		 * want to get it from a zone that is within its dirty
1875 		 * limit, such that no single zone holds more than its
1876 		 * proportional share of globally allowed dirty pages.
1877 		 * The dirty limits take into account the zone's
1878 		 * lowmem reserves and high watermark so that kswapd
1879 		 * should be able to balance it without having to
1880 		 * write pages from its LRU list.
1881 		 *
1882 		 * This may look like it could increase pressure on
1883 		 * lower zones by failing allocations in higher zones
1884 		 * before they are full.  But the pages that do spill
1885 		 * over are limited as the lower zones are protected
1886 		 * by this very same mechanism.  It should not become
1887 		 * a practical burden to them.
1888 		 *
1889 		 * XXX: For now, allow allocations to potentially
1890 		 * exceed the per-zone dirty limit in the slowpath
1891 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1892 		 * which is important when on a NUMA setup the allowed
1893 		 * zones are together not big enough to reach the
1894 		 * global limit.  The proper fix for these situations
1895 		 * will require awareness of zones in the
1896 		 * dirty-throttling and the flusher threads.
1897 		 */
1898 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1899 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1900 			goto this_zone_full;
1901 
1902 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1903 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1904 			unsigned long mark;
1905 			int ret;
1906 
1907 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1908 			if (zone_watermark_ok(zone, order, mark,
1909 				    classzone_idx, alloc_flags))
1910 				goto try_this_zone;
1911 
1912 			if (IS_ENABLED(CONFIG_NUMA) &&
1913 					!did_zlc_setup && nr_online_nodes > 1) {
1914 				/*
1915 				 * we do zlc_setup if there are multiple nodes
1916 				 * and before considering the first zone allowed
1917 				 * by the cpuset.
1918 				 */
1919 				allowednodes = zlc_setup(zonelist, alloc_flags);
1920 				zlc_active = 1;
1921 				did_zlc_setup = 1;
1922 			}
1923 
1924 			if (zone_reclaim_mode == 0 ||
1925 			    !zone_allows_reclaim(preferred_zone, zone))
1926 				goto this_zone_full;
1927 
1928 			/*
1929 			 * As we may have just activated ZLC, check if the first
1930 			 * eligible zone has failed zone_reclaim recently.
1931 			 */
1932 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1933 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1934 				continue;
1935 
1936 			ret = zone_reclaim(zone, gfp_mask, order);
1937 			switch (ret) {
1938 			case ZONE_RECLAIM_NOSCAN:
1939 				/* did not scan */
1940 				continue;
1941 			case ZONE_RECLAIM_FULL:
1942 				/* scanned but unreclaimable */
1943 				continue;
1944 			default:
1945 				/* did we reclaim enough */
1946 				if (zone_watermark_ok(zone, order, mark,
1947 						classzone_idx, alloc_flags))
1948 					goto try_this_zone;
1949 
1950 				/*
1951 				 * Failed to reclaim enough to meet watermark.
1952 				 * Only mark the zone full if checking the min
1953 				 * watermark or if we failed to reclaim just
1954 				 * 1<<order pages or else the page allocator
1955 				 * fastpath will prematurely mark zones full
1956 				 * when the watermark is between the low and
1957 				 * min watermarks.
1958 				 */
1959 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1960 				    ret == ZONE_RECLAIM_SOME)
1961 					goto this_zone_full;
1962 
1963 				continue;
1964 			}
1965 		}
1966 
1967 try_this_zone:
1968 		page = buffered_rmqueue(preferred_zone, zone, order,
1969 						gfp_mask, migratetype);
1970 		if (page)
1971 			break;
1972 this_zone_full:
1973 		if (IS_ENABLED(CONFIG_NUMA))
1974 			zlc_mark_zone_full(zonelist, z);
1975 	}
1976 
1977 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1978 		/* Disable zlc cache for second zonelist scan */
1979 		zlc_active = 0;
1980 		goto zonelist_scan;
1981 	}
1982 
1983 	if (page)
1984 		/*
1985 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1986 		 * necessary to allocate the page. The expectation is
1987 		 * that the caller is taking steps that will free more
1988 		 * memory. The caller should avoid the page being used
1989 		 * for !PFMEMALLOC purposes.
1990 		 */
1991 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1992 
1993 	return page;
1994 }
1995 
1996 /*
1997  * Large machines with many possible nodes should not always dump per-node
1998  * meminfo in irq context.
1999  */
2000 static inline bool should_suppress_show_mem(void)
2001 {
2002 	bool ret = false;
2003 
2004 #if NODES_SHIFT > 8
2005 	ret = in_interrupt();
2006 #endif
2007 	return ret;
2008 }
2009 
2010 static DEFINE_RATELIMIT_STATE(nopage_rs,
2011 		DEFAULT_RATELIMIT_INTERVAL,
2012 		DEFAULT_RATELIMIT_BURST);
2013 
2014 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2015 {
2016 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2017 
2018 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2019 	    debug_guardpage_minorder() > 0)
2020 		return;
2021 
2022 	/*
2023 	 * Walking all memory to count page types is very expensive and should
2024 	 * be inhibited in non-blockable contexts.
2025 	 */
2026 	if (!(gfp_mask & __GFP_WAIT))
2027 		filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2028 
2029 	/*
2030 	 * This documents exceptions given to allocations in certain
2031 	 * contexts that are allowed to allocate outside current's set
2032 	 * of allowed nodes.
2033 	 */
2034 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2035 		if (test_thread_flag(TIF_MEMDIE) ||
2036 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2037 			filter &= ~SHOW_MEM_FILTER_NODES;
2038 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2039 		filter &= ~SHOW_MEM_FILTER_NODES;
2040 
2041 	if (fmt) {
2042 		struct va_format vaf;
2043 		va_list args;
2044 
2045 		va_start(args, fmt);
2046 
2047 		vaf.fmt = fmt;
2048 		vaf.va = &args;
2049 
2050 		pr_warn("%pV", &vaf);
2051 
2052 		va_end(args);
2053 	}
2054 
2055 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2056 		current->comm, order, gfp_mask);
2057 
2058 	dump_stack();
2059 	if (!should_suppress_show_mem())
2060 		show_mem(filter);
2061 }
2062 
2063 static inline int
2064 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2065 				unsigned long did_some_progress,
2066 				unsigned long pages_reclaimed)
2067 {
2068 	/* Do not loop if specifically requested */
2069 	if (gfp_mask & __GFP_NORETRY)
2070 		return 0;
2071 
2072 	/* Always retry if specifically requested */
2073 	if (gfp_mask & __GFP_NOFAIL)
2074 		return 1;
2075 
2076 	/*
2077 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2078 	 * making forward progress without invoking OOM. Suspend also disables
2079 	 * storage devices so kswapd will not help. Bail if we are suspending.
2080 	 */
2081 	if (!did_some_progress && pm_suspended_storage())
2082 		return 0;
2083 
2084 	/*
2085 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2086 	 * means __GFP_NOFAIL, but that may not be true in other
2087 	 * implementations.
2088 	 */
2089 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2090 		return 1;
2091 
2092 	/*
2093 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2094 	 * specified, then we retry until we no longer reclaim any pages
2095 	 * (above), or we've reclaimed an order of pages at least as
2096 	 * large as the allocation's order. In both cases, if the
2097 	 * allocation still fails, we stop retrying.
2098 	 */
2099 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2100 		return 1;
2101 
2102 	return 0;
2103 }
2104 
2105 static inline struct page *
2106 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2107 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2108 	nodemask_t *nodemask, struct zone *preferred_zone,
2109 	int migratetype)
2110 {
2111 	struct page *page;
2112 
2113 	/* Acquire the OOM killer lock for the zones in zonelist */
2114 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2115 		schedule_timeout_uninterruptible(1);
2116 		return NULL;
2117 	}
2118 
2119 	/*
2120 	 * Go through the zonelist yet one more time, keep very high watermark
2121 	 * here, this is only to catch a parallel oom killing, we must fail if
2122 	 * we're still under heavy pressure.
2123 	 */
2124 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2125 		order, zonelist, high_zoneidx,
2126 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2127 		preferred_zone, migratetype);
2128 	if (page)
2129 		goto out;
2130 
2131 	if (!(gfp_mask & __GFP_NOFAIL)) {
2132 		/* The OOM killer will not help higher order allocs */
2133 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2134 			goto out;
2135 		/* The OOM killer does not needlessly kill tasks for lowmem */
2136 		if (high_zoneidx < ZONE_NORMAL)
2137 			goto out;
2138 		/*
2139 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2140 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2141 		 * The caller should handle page allocation failure by itself if
2142 		 * it specifies __GFP_THISNODE.
2143 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2144 		 */
2145 		if (gfp_mask & __GFP_THISNODE)
2146 			goto out;
2147 	}
2148 	/* Exhausted what can be done so it's blamo time */
2149 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2150 
2151 out:
2152 	clear_zonelist_oom(zonelist, gfp_mask);
2153 	return page;
2154 }
2155 
2156 #ifdef CONFIG_COMPACTION
2157 /* Try memory compaction for high-order allocations before reclaim */
2158 static struct page *
2159 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2160 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2161 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2162 	int migratetype, bool sync_migration,
2163 	bool *contended_compaction, bool *deferred_compaction,
2164 	unsigned long *did_some_progress)
2165 {
2166 	if (!order)
2167 		return NULL;
2168 
2169 	if (compaction_deferred(preferred_zone, order)) {
2170 		*deferred_compaction = true;
2171 		return NULL;
2172 	}
2173 
2174 	current->flags |= PF_MEMALLOC;
2175 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2176 						nodemask, sync_migration,
2177 						contended_compaction);
2178 	current->flags &= ~PF_MEMALLOC;
2179 
2180 	if (*did_some_progress != COMPACT_SKIPPED) {
2181 		struct page *page;
2182 
2183 		/* Page migration frees to the PCP lists but we want merging */
2184 		drain_pages(get_cpu());
2185 		put_cpu();
2186 
2187 		page = get_page_from_freelist(gfp_mask, nodemask,
2188 				order, zonelist, high_zoneidx,
2189 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2190 				preferred_zone, migratetype);
2191 		if (page) {
2192 			preferred_zone->compact_blockskip_flush = false;
2193 			preferred_zone->compact_considered = 0;
2194 			preferred_zone->compact_defer_shift = 0;
2195 			if (order >= preferred_zone->compact_order_failed)
2196 				preferred_zone->compact_order_failed = order + 1;
2197 			count_vm_event(COMPACTSUCCESS);
2198 			return page;
2199 		}
2200 
2201 		/*
2202 		 * It's bad if compaction run occurs and fails.
2203 		 * The most likely reason is that pages exist,
2204 		 * but not enough to satisfy watermarks.
2205 		 */
2206 		count_vm_event(COMPACTFAIL);
2207 
2208 		/*
2209 		 * As async compaction considers a subset of pageblocks, only
2210 		 * defer if the failure was a sync compaction failure.
2211 		 */
2212 		if (sync_migration)
2213 			defer_compaction(preferred_zone, order);
2214 
2215 		cond_resched();
2216 	}
2217 
2218 	return NULL;
2219 }
2220 #else
2221 static inline struct page *
2222 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2223 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2224 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2225 	int migratetype, bool sync_migration,
2226 	bool *contended_compaction, bool *deferred_compaction,
2227 	unsigned long *did_some_progress)
2228 {
2229 	return NULL;
2230 }
2231 #endif /* CONFIG_COMPACTION */
2232 
2233 /* Perform direct synchronous page reclaim */
2234 static int
2235 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2236 		  nodemask_t *nodemask)
2237 {
2238 	struct reclaim_state reclaim_state;
2239 	int progress;
2240 
2241 	cond_resched();
2242 
2243 	/* We now go into synchronous reclaim */
2244 	cpuset_memory_pressure_bump();
2245 	current->flags |= PF_MEMALLOC;
2246 	lockdep_set_current_reclaim_state(gfp_mask);
2247 	reclaim_state.reclaimed_slab = 0;
2248 	current->reclaim_state = &reclaim_state;
2249 
2250 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2251 
2252 	current->reclaim_state = NULL;
2253 	lockdep_clear_current_reclaim_state();
2254 	current->flags &= ~PF_MEMALLOC;
2255 
2256 	cond_resched();
2257 
2258 	return progress;
2259 }
2260 
2261 /* The really slow allocator path where we enter direct reclaim */
2262 static inline struct page *
2263 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2264 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2265 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2266 	int migratetype, unsigned long *did_some_progress)
2267 {
2268 	struct page *page = NULL;
2269 	bool drained = false;
2270 
2271 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2272 					       nodemask);
2273 	if (unlikely(!(*did_some_progress)))
2274 		return NULL;
2275 
2276 	/* After successful reclaim, reconsider all zones for allocation */
2277 	if (IS_ENABLED(CONFIG_NUMA))
2278 		zlc_clear_zones_full(zonelist);
2279 
2280 retry:
2281 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2282 					zonelist, high_zoneidx,
2283 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2284 					preferred_zone, migratetype);
2285 
2286 	/*
2287 	 * If an allocation failed after direct reclaim, it could be because
2288 	 * pages are pinned on the per-cpu lists. Drain them and try again
2289 	 */
2290 	if (!page && !drained) {
2291 		drain_all_pages();
2292 		drained = true;
2293 		goto retry;
2294 	}
2295 
2296 	return page;
2297 }
2298 
2299 /*
2300  * This is called in the allocator slow-path if the allocation request is of
2301  * sufficient urgency to ignore watermarks and take other desperate measures
2302  */
2303 static inline struct page *
2304 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2305 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2306 	nodemask_t *nodemask, struct zone *preferred_zone,
2307 	int migratetype)
2308 {
2309 	struct page *page;
2310 
2311 	do {
2312 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2313 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2314 			preferred_zone, migratetype);
2315 
2316 		if (!page && gfp_mask & __GFP_NOFAIL)
2317 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2318 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2319 
2320 	return page;
2321 }
2322 
2323 static inline
2324 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2325 						enum zone_type high_zoneidx,
2326 						enum zone_type classzone_idx)
2327 {
2328 	struct zoneref *z;
2329 	struct zone *zone;
2330 
2331 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2332 		wakeup_kswapd(zone, order, classzone_idx);
2333 }
2334 
2335 static inline int
2336 gfp_to_alloc_flags(gfp_t gfp_mask)
2337 {
2338 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2339 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2340 
2341 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2342 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2343 
2344 	/*
2345 	 * The caller may dip into page reserves a bit more if the caller
2346 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2347 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2348 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2349 	 */
2350 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2351 
2352 	if (!wait) {
2353 		/*
2354 		 * Not worth trying to allocate harder for
2355 		 * __GFP_NOMEMALLOC even if it can't schedule.
2356 		 */
2357 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2358 			alloc_flags |= ALLOC_HARDER;
2359 		/*
2360 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2361 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2362 		 */
2363 		alloc_flags &= ~ALLOC_CPUSET;
2364 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2365 		alloc_flags |= ALLOC_HARDER;
2366 
2367 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2368 		if (gfp_mask & __GFP_MEMALLOC)
2369 			alloc_flags |= ALLOC_NO_WATERMARKS;
2370 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2371 			alloc_flags |= ALLOC_NO_WATERMARKS;
2372 		else if (!in_interrupt() &&
2373 				((current->flags & PF_MEMALLOC) ||
2374 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2375 			alloc_flags |= ALLOC_NO_WATERMARKS;
2376 	}
2377 #ifdef CONFIG_CMA
2378 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2379 		alloc_flags |= ALLOC_CMA;
2380 #endif
2381 	return alloc_flags;
2382 }
2383 
2384 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2385 {
2386 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2387 }
2388 
2389 static inline struct page *
2390 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2391 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2392 	nodemask_t *nodemask, struct zone *preferred_zone,
2393 	int migratetype)
2394 {
2395 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2396 	struct page *page = NULL;
2397 	int alloc_flags;
2398 	unsigned long pages_reclaimed = 0;
2399 	unsigned long did_some_progress;
2400 	bool sync_migration = false;
2401 	bool deferred_compaction = false;
2402 	bool contended_compaction = false;
2403 
2404 	/*
2405 	 * In the slowpath, we sanity check order to avoid ever trying to
2406 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2407 	 * be using allocators in order of preference for an area that is
2408 	 * too large.
2409 	 */
2410 	if (order >= MAX_ORDER) {
2411 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2412 		return NULL;
2413 	}
2414 
2415 	/*
2416 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2417 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2418 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2419 	 * using a larger set of nodes after it has established that the
2420 	 * allowed per node queues are empty and that nodes are
2421 	 * over allocated.
2422 	 */
2423 	if (IS_ENABLED(CONFIG_NUMA) &&
2424 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2425 		goto nopage;
2426 
2427 restart:
2428 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2429 		wake_all_kswapd(order, zonelist, high_zoneidx,
2430 						zone_idx(preferred_zone));
2431 
2432 	/*
2433 	 * OK, we're below the kswapd watermark and have kicked background
2434 	 * reclaim. Now things get more complex, so set up alloc_flags according
2435 	 * to how we want to proceed.
2436 	 */
2437 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2438 
2439 	/*
2440 	 * Find the true preferred zone if the allocation is unconstrained by
2441 	 * cpusets.
2442 	 */
2443 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2444 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2445 					&preferred_zone);
2446 
2447 rebalance:
2448 	/* This is the last chance, in general, before the goto nopage. */
2449 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2450 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2451 			preferred_zone, migratetype);
2452 	if (page)
2453 		goto got_pg;
2454 
2455 	/* Allocate without watermarks if the context allows */
2456 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2457 		/*
2458 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2459 		 * the allocation is high priority and these type of
2460 		 * allocations are system rather than user orientated
2461 		 */
2462 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2463 
2464 		page = __alloc_pages_high_priority(gfp_mask, order,
2465 				zonelist, high_zoneidx, nodemask,
2466 				preferred_zone, migratetype);
2467 		if (page) {
2468 			goto got_pg;
2469 		}
2470 	}
2471 
2472 	/* Atomic allocations - we can't balance anything */
2473 	if (!wait)
2474 		goto nopage;
2475 
2476 	/* Avoid recursion of direct reclaim */
2477 	if (current->flags & PF_MEMALLOC)
2478 		goto nopage;
2479 
2480 	/* Avoid allocations with no watermarks from looping endlessly */
2481 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2482 		goto nopage;
2483 
2484 	/*
2485 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2486 	 * attempts after direct reclaim are synchronous
2487 	 */
2488 	page = __alloc_pages_direct_compact(gfp_mask, order,
2489 					zonelist, high_zoneidx,
2490 					nodemask,
2491 					alloc_flags, preferred_zone,
2492 					migratetype, sync_migration,
2493 					&contended_compaction,
2494 					&deferred_compaction,
2495 					&did_some_progress);
2496 	if (page)
2497 		goto got_pg;
2498 	sync_migration = true;
2499 
2500 	/*
2501 	 * If compaction is deferred for high-order allocations, it is because
2502 	 * sync compaction recently failed. In this is the case and the caller
2503 	 * requested a movable allocation that does not heavily disrupt the
2504 	 * system then fail the allocation instead of entering direct reclaim.
2505 	 */
2506 	if ((deferred_compaction || contended_compaction) &&
2507 						(gfp_mask & __GFP_NO_KSWAPD))
2508 		goto nopage;
2509 
2510 	/* Try direct reclaim and then allocating */
2511 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2512 					zonelist, high_zoneidx,
2513 					nodemask,
2514 					alloc_flags, preferred_zone,
2515 					migratetype, &did_some_progress);
2516 	if (page)
2517 		goto got_pg;
2518 
2519 	/*
2520 	 * If we failed to make any progress reclaiming, then we are
2521 	 * running out of options and have to consider going OOM
2522 	 */
2523 	if (!did_some_progress) {
2524 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2525 			if (oom_killer_disabled)
2526 				goto nopage;
2527 			/* Coredumps can quickly deplete all memory reserves */
2528 			if ((current->flags & PF_DUMPCORE) &&
2529 			    !(gfp_mask & __GFP_NOFAIL))
2530 				goto nopage;
2531 			page = __alloc_pages_may_oom(gfp_mask, order,
2532 					zonelist, high_zoneidx,
2533 					nodemask, preferred_zone,
2534 					migratetype);
2535 			if (page)
2536 				goto got_pg;
2537 
2538 			if (!(gfp_mask & __GFP_NOFAIL)) {
2539 				/*
2540 				 * The oom killer is not called for high-order
2541 				 * allocations that may fail, so if no progress
2542 				 * is being made, there are no other options and
2543 				 * retrying is unlikely to help.
2544 				 */
2545 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2546 					goto nopage;
2547 				/*
2548 				 * The oom killer is not called for lowmem
2549 				 * allocations to prevent needlessly killing
2550 				 * innocent tasks.
2551 				 */
2552 				if (high_zoneidx < ZONE_NORMAL)
2553 					goto nopage;
2554 			}
2555 
2556 			goto restart;
2557 		}
2558 	}
2559 
2560 	/* Check if we should retry the allocation */
2561 	pages_reclaimed += did_some_progress;
2562 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2563 						pages_reclaimed)) {
2564 		/* Wait for some write requests to complete then retry */
2565 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2566 		goto rebalance;
2567 	} else {
2568 		/*
2569 		 * High-order allocations do not necessarily loop after
2570 		 * direct reclaim and reclaim/compaction depends on compaction
2571 		 * being called after reclaim so call directly if necessary
2572 		 */
2573 		page = __alloc_pages_direct_compact(gfp_mask, order,
2574 					zonelist, high_zoneidx,
2575 					nodemask,
2576 					alloc_flags, preferred_zone,
2577 					migratetype, sync_migration,
2578 					&contended_compaction,
2579 					&deferred_compaction,
2580 					&did_some_progress);
2581 		if (page)
2582 			goto got_pg;
2583 	}
2584 
2585 nopage:
2586 	warn_alloc_failed(gfp_mask, order, NULL);
2587 	return page;
2588 got_pg:
2589 	if (kmemcheck_enabled)
2590 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2591 
2592 	return page;
2593 }
2594 
2595 /*
2596  * This is the 'heart' of the zoned buddy allocator.
2597  */
2598 struct page *
2599 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2600 			struct zonelist *zonelist, nodemask_t *nodemask)
2601 {
2602 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2603 	struct zone *preferred_zone;
2604 	struct page *page = NULL;
2605 	int migratetype = allocflags_to_migratetype(gfp_mask);
2606 	unsigned int cpuset_mems_cookie;
2607 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2608 	struct mem_cgroup *memcg = NULL;
2609 
2610 	gfp_mask &= gfp_allowed_mask;
2611 
2612 	lockdep_trace_alloc(gfp_mask);
2613 
2614 	might_sleep_if(gfp_mask & __GFP_WAIT);
2615 
2616 	if (should_fail_alloc_page(gfp_mask, order))
2617 		return NULL;
2618 
2619 	/*
2620 	 * Check the zones suitable for the gfp_mask contain at least one
2621 	 * valid zone. It's possible to have an empty zonelist as a result
2622 	 * of GFP_THISNODE and a memoryless node
2623 	 */
2624 	if (unlikely(!zonelist->_zonerefs->zone))
2625 		return NULL;
2626 
2627 	/*
2628 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2629 	 * verified in the (always inline) callee
2630 	 */
2631 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2632 		return NULL;
2633 
2634 retry_cpuset:
2635 	cpuset_mems_cookie = get_mems_allowed();
2636 
2637 	/* The preferred zone is used for statistics later */
2638 	first_zones_zonelist(zonelist, high_zoneidx,
2639 				nodemask ? : &cpuset_current_mems_allowed,
2640 				&preferred_zone);
2641 	if (!preferred_zone)
2642 		goto out;
2643 
2644 #ifdef CONFIG_CMA
2645 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2646 		alloc_flags |= ALLOC_CMA;
2647 #endif
2648 	/* First allocation attempt */
2649 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2650 			zonelist, high_zoneidx, alloc_flags,
2651 			preferred_zone, migratetype);
2652 	if (unlikely(!page)) {
2653 		/*
2654 		 * Runtime PM, block IO and its error handling path
2655 		 * can deadlock because I/O on the device might not
2656 		 * complete.
2657 		 */
2658 		gfp_mask = memalloc_noio_flags(gfp_mask);
2659 		page = __alloc_pages_slowpath(gfp_mask, order,
2660 				zonelist, high_zoneidx, nodemask,
2661 				preferred_zone, migratetype);
2662 	}
2663 
2664 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2665 
2666 out:
2667 	/*
2668 	 * When updating a task's mems_allowed, it is possible to race with
2669 	 * parallel threads in such a way that an allocation can fail while
2670 	 * the mask is being updated. If a page allocation is about to fail,
2671 	 * check if the cpuset changed during allocation and if so, retry.
2672 	 */
2673 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2674 		goto retry_cpuset;
2675 
2676 	memcg_kmem_commit_charge(page, memcg, order);
2677 
2678 	return page;
2679 }
2680 EXPORT_SYMBOL(__alloc_pages_nodemask);
2681 
2682 /*
2683  * Common helper functions.
2684  */
2685 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2686 {
2687 	struct page *page;
2688 
2689 	/*
2690 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2691 	 * a highmem page
2692 	 */
2693 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2694 
2695 	page = alloc_pages(gfp_mask, order);
2696 	if (!page)
2697 		return 0;
2698 	return (unsigned long) page_address(page);
2699 }
2700 EXPORT_SYMBOL(__get_free_pages);
2701 
2702 unsigned long get_zeroed_page(gfp_t gfp_mask)
2703 {
2704 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2705 }
2706 EXPORT_SYMBOL(get_zeroed_page);
2707 
2708 void __free_pages(struct page *page, unsigned int order)
2709 {
2710 	if (put_page_testzero(page)) {
2711 		if (order == 0)
2712 			free_hot_cold_page(page, 0);
2713 		else
2714 			__free_pages_ok(page, order);
2715 	}
2716 }
2717 
2718 EXPORT_SYMBOL(__free_pages);
2719 
2720 void free_pages(unsigned long addr, unsigned int order)
2721 {
2722 	if (addr != 0) {
2723 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2724 		__free_pages(virt_to_page((void *)addr), order);
2725 	}
2726 }
2727 
2728 EXPORT_SYMBOL(free_pages);
2729 
2730 /*
2731  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2732  * pages allocated with __GFP_KMEMCG.
2733  *
2734  * Those pages are accounted to a particular memcg, embedded in the
2735  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2736  * for that information only to find out that it is NULL for users who have no
2737  * interest in that whatsoever, we provide these functions.
2738  *
2739  * The caller knows better which flags it relies on.
2740  */
2741 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2742 {
2743 	memcg_kmem_uncharge_pages(page, order);
2744 	__free_pages(page, order);
2745 }
2746 
2747 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2748 {
2749 	if (addr != 0) {
2750 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2751 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2752 	}
2753 }
2754 
2755 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2756 {
2757 	if (addr) {
2758 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2759 		unsigned long used = addr + PAGE_ALIGN(size);
2760 
2761 		split_page(virt_to_page((void *)addr), order);
2762 		while (used < alloc_end) {
2763 			free_page(used);
2764 			used += PAGE_SIZE;
2765 		}
2766 	}
2767 	return (void *)addr;
2768 }
2769 
2770 /**
2771  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2772  * @size: the number of bytes to allocate
2773  * @gfp_mask: GFP flags for the allocation
2774  *
2775  * This function is similar to alloc_pages(), except that it allocates the
2776  * minimum number of pages to satisfy the request.  alloc_pages() can only
2777  * allocate memory in power-of-two pages.
2778  *
2779  * This function is also limited by MAX_ORDER.
2780  *
2781  * Memory allocated by this function must be released by free_pages_exact().
2782  */
2783 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2784 {
2785 	unsigned int order = get_order(size);
2786 	unsigned long addr;
2787 
2788 	addr = __get_free_pages(gfp_mask, order);
2789 	return make_alloc_exact(addr, order, size);
2790 }
2791 EXPORT_SYMBOL(alloc_pages_exact);
2792 
2793 /**
2794  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2795  *			   pages on a node.
2796  * @nid: the preferred node ID where memory should be allocated
2797  * @size: the number of bytes to allocate
2798  * @gfp_mask: GFP flags for the allocation
2799  *
2800  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2801  * back.
2802  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2803  * but is not exact.
2804  */
2805 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2806 {
2807 	unsigned order = get_order(size);
2808 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2809 	if (!p)
2810 		return NULL;
2811 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2812 }
2813 EXPORT_SYMBOL(alloc_pages_exact_nid);
2814 
2815 /**
2816  * free_pages_exact - release memory allocated via alloc_pages_exact()
2817  * @virt: the value returned by alloc_pages_exact.
2818  * @size: size of allocation, same value as passed to alloc_pages_exact().
2819  *
2820  * Release the memory allocated by a previous call to alloc_pages_exact.
2821  */
2822 void free_pages_exact(void *virt, size_t size)
2823 {
2824 	unsigned long addr = (unsigned long)virt;
2825 	unsigned long end = addr + PAGE_ALIGN(size);
2826 
2827 	while (addr < end) {
2828 		free_page(addr);
2829 		addr += PAGE_SIZE;
2830 	}
2831 }
2832 EXPORT_SYMBOL(free_pages_exact);
2833 
2834 /**
2835  * nr_free_zone_pages - count number of pages beyond high watermark
2836  * @offset: The zone index of the highest zone
2837  *
2838  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2839  * high watermark within all zones at or below a given zone index.  For each
2840  * zone, the number of pages is calculated as:
2841  *     managed_pages - high_pages
2842  */
2843 static unsigned long nr_free_zone_pages(int offset)
2844 {
2845 	struct zoneref *z;
2846 	struct zone *zone;
2847 
2848 	/* Just pick one node, since fallback list is circular */
2849 	unsigned long sum = 0;
2850 
2851 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2852 
2853 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2854 		unsigned long size = zone->managed_pages;
2855 		unsigned long high = high_wmark_pages(zone);
2856 		if (size > high)
2857 			sum += size - high;
2858 	}
2859 
2860 	return sum;
2861 }
2862 
2863 /**
2864  * nr_free_buffer_pages - count number of pages beyond high watermark
2865  *
2866  * nr_free_buffer_pages() counts the number of pages which are beyond the high
2867  * watermark within ZONE_DMA and ZONE_NORMAL.
2868  */
2869 unsigned long nr_free_buffer_pages(void)
2870 {
2871 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2872 }
2873 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2874 
2875 /**
2876  * nr_free_pagecache_pages - count number of pages beyond high watermark
2877  *
2878  * nr_free_pagecache_pages() counts the number of pages which are beyond the
2879  * high watermark within all zones.
2880  */
2881 unsigned long nr_free_pagecache_pages(void)
2882 {
2883 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2884 }
2885 
2886 static inline void show_node(struct zone *zone)
2887 {
2888 	if (IS_ENABLED(CONFIG_NUMA))
2889 		printk("Node %d ", zone_to_nid(zone));
2890 }
2891 
2892 void si_meminfo(struct sysinfo *val)
2893 {
2894 	val->totalram = totalram_pages;
2895 	val->sharedram = 0;
2896 	val->freeram = global_page_state(NR_FREE_PAGES);
2897 	val->bufferram = nr_blockdev_pages();
2898 	val->totalhigh = totalhigh_pages;
2899 	val->freehigh = nr_free_highpages();
2900 	val->mem_unit = PAGE_SIZE;
2901 }
2902 
2903 EXPORT_SYMBOL(si_meminfo);
2904 
2905 #ifdef CONFIG_NUMA
2906 void si_meminfo_node(struct sysinfo *val, int nid)
2907 {
2908 	int zone_type;		/* needs to be signed */
2909 	unsigned long managed_pages = 0;
2910 	pg_data_t *pgdat = NODE_DATA(nid);
2911 
2912 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2913 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
2914 	val->totalram = managed_pages;
2915 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2916 #ifdef CONFIG_HIGHMEM
2917 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2918 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2919 			NR_FREE_PAGES);
2920 #else
2921 	val->totalhigh = 0;
2922 	val->freehigh = 0;
2923 #endif
2924 	val->mem_unit = PAGE_SIZE;
2925 }
2926 #endif
2927 
2928 /*
2929  * Determine whether the node should be displayed or not, depending on whether
2930  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2931  */
2932 bool skip_free_areas_node(unsigned int flags, int nid)
2933 {
2934 	bool ret = false;
2935 	unsigned int cpuset_mems_cookie;
2936 
2937 	if (!(flags & SHOW_MEM_FILTER_NODES))
2938 		goto out;
2939 
2940 	do {
2941 		cpuset_mems_cookie = get_mems_allowed();
2942 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2943 	} while (!put_mems_allowed(cpuset_mems_cookie));
2944 out:
2945 	return ret;
2946 }
2947 
2948 #define K(x) ((x) << (PAGE_SHIFT-10))
2949 
2950 static void show_migration_types(unsigned char type)
2951 {
2952 	static const char types[MIGRATE_TYPES] = {
2953 		[MIGRATE_UNMOVABLE]	= 'U',
2954 		[MIGRATE_RECLAIMABLE]	= 'E',
2955 		[MIGRATE_MOVABLE]	= 'M',
2956 		[MIGRATE_RESERVE]	= 'R',
2957 #ifdef CONFIG_CMA
2958 		[MIGRATE_CMA]		= 'C',
2959 #endif
2960 #ifdef CONFIG_MEMORY_ISOLATION
2961 		[MIGRATE_ISOLATE]	= 'I',
2962 #endif
2963 	};
2964 	char tmp[MIGRATE_TYPES + 1];
2965 	char *p = tmp;
2966 	int i;
2967 
2968 	for (i = 0; i < MIGRATE_TYPES; i++) {
2969 		if (type & (1 << i))
2970 			*p++ = types[i];
2971 	}
2972 
2973 	*p = '\0';
2974 	printk("(%s) ", tmp);
2975 }
2976 
2977 /*
2978  * Show free area list (used inside shift_scroll-lock stuff)
2979  * We also calculate the percentage fragmentation. We do this by counting the
2980  * memory on each free list with the exception of the first item on the list.
2981  * Suppresses nodes that are not allowed by current's cpuset if
2982  * SHOW_MEM_FILTER_NODES is passed.
2983  */
2984 void show_free_areas(unsigned int filter)
2985 {
2986 	int cpu;
2987 	struct zone *zone;
2988 
2989 	for_each_populated_zone(zone) {
2990 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2991 			continue;
2992 		show_node(zone);
2993 		printk("%s per-cpu:\n", zone->name);
2994 
2995 		for_each_online_cpu(cpu) {
2996 			struct per_cpu_pageset *pageset;
2997 
2998 			pageset = per_cpu_ptr(zone->pageset, cpu);
2999 
3000 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3001 			       cpu, pageset->pcp.high,
3002 			       pageset->pcp.batch, pageset->pcp.count);
3003 		}
3004 	}
3005 
3006 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3007 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3008 		" unevictable:%lu"
3009 		" dirty:%lu writeback:%lu unstable:%lu\n"
3010 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3011 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3012 		" free_cma:%lu\n",
3013 		global_page_state(NR_ACTIVE_ANON),
3014 		global_page_state(NR_INACTIVE_ANON),
3015 		global_page_state(NR_ISOLATED_ANON),
3016 		global_page_state(NR_ACTIVE_FILE),
3017 		global_page_state(NR_INACTIVE_FILE),
3018 		global_page_state(NR_ISOLATED_FILE),
3019 		global_page_state(NR_UNEVICTABLE),
3020 		global_page_state(NR_FILE_DIRTY),
3021 		global_page_state(NR_WRITEBACK),
3022 		global_page_state(NR_UNSTABLE_NFS),
3023 		global_page_state(NR_FREE_PAGES),
3024 		global_page_state(NR_SLAB_RECLAIMABLE),
3025 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3026 		global_page_state(NR_FILE_MAPPED),
3027 		global_page_state(NR_SHMEM),
3028 		global_page_state(NR_PAGETABLE),
3029 		global_page_state(NR_BOUNCE),
3030 		global_page_state(NR_FREE_CMA_PAGES));
3031 
3032 	for_each_populated_zone(zone) {
3033 		int i;
3034 
3035 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3036 			continue;
3037 		show_node(zone);
3038 		printk("%s"
3039 			" free:%lukB"
3040 			" min:%lukB"
3041 			" low:%lukB"
3042 			" high:%lukB"
3043 			" active_anon:%lukB"
3044 			" inactive_anon:%lukB"
3045 			" active_file:%lukB"
3046 			" inactive_file:%lukB"
3047 			" unevictable:%lukB"
3048 			" isolated(anon):%lukB"
3049 			" isolated(file):%lukB"
3050 			" present:%lukB"
3051 			" managed:%lukB"
3052 			" mlocked:%lukB"
3053 			" dirty:%lukB"
3054 			" writeback:%lukB"
3055 			" mapped:%lukB"
3056 			" shmem:%lukB"
3057 			" slab_reclaimable:%lukB"
3058 			" slab_unreclaimable:%lukB"
3059 			" kernel_stack:%lukB"
3060 			" pagetables:%lukB"
3061 			" unstable:%lukB"
3062 			" bounce:%lukB"
3063 			" free_cma:%lukB"
3064 			" writeback_tmp:%lukB"
3065 			" pages_scanned:%lu"
3066 			" all_unreclaimable? %s"
3067 			"\n",
3068 			zone->name,
3069 			K(zone_page_state(zone, NR_FREE_PAGES)),
3070 			K(min_wmark_pages(zone)),
3071 			K(low_wmark_pages(zone)),
3072 			K(high_wmark_pages(zone)),
3073 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3074 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3075 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3076 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3077 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3078 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3079 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3080 			K(zone->present_pages),
3081 			K(zone->managed_pages),
3082 			K(zone_page_state(zone, NR_MLOCK)),
3083 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3084 			K(zone_page_state(zone, NR_WRITEBACK)),
3085 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3086 			K(zone_page_state(zone, NR_SHMEM)),
3087 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3088 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3089 			zone_page_state(zone, NR_KERNEL_STACK) *
3090 				THREAD_SIZE / 1024,
3091 			K(zone_page_state(zone, NR_PAGETABLE)),
3092 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3093 			K(zone_page_state(zone, NR_BOUNCE)),
3094 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3095 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3096 			zone->pages_scanned,
3097 			(zone->all_unreclaimable ? "yes" : "no")
3098 			);
3099 		printk("lowmem_reserve[]:");
3100 		for (i = 0; i < MAX_NR_ZONES; i++)
3101 			printk(" %lu", zone->lowmem_reserve[i]);
3102 		printk("\n");
3103 	}
3104 
3105 	for_each_populated_zone(zone) {
3106  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3107 		unsigned char types[MAX_ORDER];
3108 
3109 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3110 			continue;
3111 		show_node(zone);
3112 		printk("%s: ", zone->name);
3113 
3114 		spin_lock_irqsave(&zone->lock, flags);
3115 		for (order = 0; order < MAX_ORDER; order++) {
3116 			struct free_area *area = &zone->free_area[order];
3117 			int type;
3118 
3119 			nr[order] = area->nr_free;
3120 			total += nr[order] << order;
3121 
3122 			types[order] = 0;
3123 			for (type = 0; type < MIGRATE_TYPES; type++) {
3124 				if (!list_empty(&area->free_list[type]))
3125 					types[order] |= 1 << type;
3126 			}
3127 		}
3128 		spin_unlock_irqrestore(&zone->lock, flags);
3129 		for (order = 0; order < MAX_ORDER; order++) {
3130 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3131 			if (nr[order])
3132 				show_migration_types(types[order]);
3133 		}
3134 		printk("= %lukB\n", K(total));
3135 	}
3136 
3137 	hugetlb_show_meminfo();
3138 
3139 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3140 
3141 	show_swap_cache_info();
3142 }
3143 
3144 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3145 {
3146 	zoneref->zone = zone;
3147 	zoneref->zone_idx = zone_idx(zone);
3148 }
3149 
3150 /*
3151  * Builds allocation fallback zone lists.
3152  *
3153  * Add all populated zones of a node to the zonelist.
3154  */
3155 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3156 				int nr_zones, enum zone_type zone_type)
3157 {
3158 	struct zone *zone;
3159 
3160 	BUG_ON(zone_type >= MAX_NR_ZONES);
3161 	zone_type++;
3162 
3163 	do {
3164 		zone_type--;
3165 		zone = pgdat->node_zones + zone_type;
3166 		if (populated_zone(zone)) {
3167 			zoneref_set_zone(zone,
3168 				&zonelist->_zonerefs[nr_zones++]);
3169 			check_highest_zone(zone_type);
3170 		}
3171 
3172 	} while (zone_type);
3173 	return nr_zones;
3174 }
3175 
3176 
3177 /*
3178  *  zonelist_order:
3179  *  0 = automatic detection of better ordering.
3180  *  1 = order by ([node] distance, -zonetype)
3181  *  2 = order by (-zonetype, [node] distance)
3182  *
3183  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3184  *  the same zonelist. So only NUMA can configure this param.
3185  */
3186 #define ZONELIST_ORDER_DEFAULT  0
3187 #define ZONELIST_ORDER_NODE     1
3188 #define ZONELIST_ORDER_ZONE     2
3189 
3190 /* zonelist order in the kernel.
3191  * set_zonelist_order() will set this to NODE or ZONE.
3192  */
3193 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3194 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3195 
3196 
3197 #ifdef CONFIG_NUMA
3198 /* The value user specified ....changed by config */
3199 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3200 /* string for sysctl */
3201 #define NUMA_ZONELIST_ORDER_LEN	16
3202 char numa_zonelist_order[16] = "default";
3203 
3204 /*
3205  * interface for configure zonelist ordering.
3206  * command line option "numa_zonelist_order"
3207  *	= "[dD]efault	- default, automatic configuration.
3208  *	= "[nN]ode 	- order by node locality, then by zone within node
3209  *	= "[zZ]one      - order by zone, then by locality within zone
3210  */
3211 
3212 static int __parse_numa_zonelist_order(char *s)
3213 {
3214 	if (*s == 'd' || *s == 'D') {
3215 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3216 	} else if (*s == 'n' || *s == 'N') {
3217 		user_zonelist_order = ZONELIST_ORDER_NODE;
3218 	} else if (*s == 'z' || *s == 'Z') {
3219 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3220 	} else {
3221 		printk(KERN_WARNING
3222 			"Ignoring invalid numa_zonelist_order value:  "
3223 			"%s\n", s);
3224 		return -EINVAL;
3225 	}
3226 	return 0;
3227 }
3228 
3229 static __init int setup_numa_zonelist_order(char *s)
3230 {
3231 	int ret;
3232 
3233 	if (!s)
3234 		return 0;
3235 
3236 	ret = __parse_numa_zonelist_order(s);
3237 	if (ret == 0)
3238 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3239 
3240 	return ret;
3241 }
3242 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3243 
3244 /*
3245  * sysctl handler for numa_zonelist_order
3246  */
3247 int numa_zonelist_order_handler(ctl_table *table, int write,
3248 		void __user *buffer, size_t *length,
3249 		loff_t *ppos)
3250 {
3251 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3252 	int ret;
3253 	static DEFINE_MUTEX(zl_order_mutex);
3254 
3255 	mutex_lock(&zl_order_mutex);
3256 	if (write) {
3257 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3258 			ret = -EINVAL;
3259 			goto out;
3260 		}
3261 		strcpy(saved_string, (char *)table->data);
3262 	}
3263 	ret = proc_dostring(table, write, buffer, length, ppos);
3264 	if (ret)
3265 		goto out;
3266 	if (write) {
3267 		int oldval = user_zonelist_order;
3268 
3269 		ret = __parse_numa_zonelist_order((char *)table->data);
3270 		if (ret) {
3271 			/*
3272 			 * bogus value.  restore saved string
3273 			 */
3274 			strncpy((char *)table->data, saved_string,
3275 				NUMA_ZONELIST_ORDER_LEN);
3276 			user_zonelist_order = oldval;
3277 		} else if (oldval != user_zonelist_order) {
3278 			mutex_lock(&zonelists_mutex);
3279 			build_all_zonelists(NULL, NULL);
3280 			mutex_unlock(&zonelists_mutex);
3281 		}
3282 	}
3283 out:
3284 	mutex_unlock(&zl_order_mutex);
3285 	return ret;
3286 }
3287 
3288 
3289 #define MAX_NODE_LOAD (nr_online_nodes)
3290 static int node_load[MAX_NUMNODES];
3291 
3292 /**
3293  * find_next_best_node - find the next node that should appear in a given node's fallback list
3294  * @node: node whose fallback list we're appending
3295  * @used_node_mask: nodemask_t of already used nodes
3296  *
3297  * We use a number of factors to determine which is the next node that should
3298  * appear on a given node's fallback list.  The node should not have appeared
3299  * already in @node's fallback list, and it should be the next closest node
3300  * according to the distance array (which contains arbitrary distance values
3301  * from each node to each node in the system), and should also prefer nodes
3302  * with no CPUs, since presumably they'll have very little allocation pressure
3303  * on them otherwise.
3304  * It returns -1 if no node is found.
3305  */
3306 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3307 {
3308 	int n, val;
3309 	int min_val = INT_MAX;
3310 	int best_node = NUMA_NO_NODE;
3311 	const struct cpumask *tmp = cpumask_of_node(0);
3312 
3313 	/* Use the local node if we haven't already */
3314 	if (!node_isset(node, *used_node_mask)) {
3315 		node_set(node, *used_node_mask);
3316 		return node;
3317 	}
3318 
3319 	for_each_node_state(n, N_MEMORY) {
3320 
3321 		/* Don't want a node to appear more than once */
3322 		if (node_isset(n, *used_node_mask))
3323 			continue;
3324 
3325 		/* Use the distance array to find the distance */
3326 		val = node_distance(node, n);
3327 
3328 		/* Penalize nodes under us ("prefer the next node") */
3329 		val += (n < node);
3330 
3331 		/* Give preference to headless and unused nodes */
3332 		tmp = cpumask_of_node(n);
3333 		if (!cpumask_empty(tmp))
3334 			val += PENALTY_FOR_NODE_WITH_CPUS;
3335 
3336 		/* Slight preference for less loaded node */
3337 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3338 		val += node_load[n];
3339 
3340 		if (val < min_val) {
3341 			min_val = val;
3342 			best_node = n;
3343 		}
3344 	}
3345 
3346 	if (best_node >= 0)
3347 		node_set(best_node, *used_node_mask);
3348 
3349 	return best_node;
3350 }
3351 
3352 
3353 /*
3354  * Build zonelists ordered by node and zones within node.
3355  * This results in maximum locality--normal zone overflows into local
3356  * DMA zone, if any--but risks exhausting DMA zone.
3357  */
3358 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3359 {
3360 	int j;
3361 	struct zonelist *zonelist;
3362 
3363 	zonelist = &pgdat->node_zonelists[0];
3364 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3365 		;
3366 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3367 							MAX_NR_ZONES - 1);
3368 	zonelist->_zonerefs[j].zone = NULL;
3369 	zonelist->_zonerefs[j].zone_idx = 0;
3370 }
3371 
3372 /*
3373  * Build gfp_thisnode zonelists
3374  */
3375 static void build_thisnode_zonelists(pg_data_t *pgdat)
3376 {
3377 	int j;
3378 	struct zonelist *zonelist;
3379 
3380 	zonelist = &pgdat->node_zonelists[1];
3381 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3382 	zonelist->_zonerefs[j].zone = NULL;
3383 	zonelist->_zonerefs[j].zone_idx = 0;
3384 }
3385 
3386 /*
3387  * Build zonelists ordered by zone and nodes within zones.
3388  * This results in conserving DMA zone[s] until all Normal memory is
3389  * exhausted, but results in overflowing to remote node while memory
3390  * may still exist in local DMA zone.
3391  */
3392 static int node_order[MAX_NUMNODES];
3393 
3394 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3395 {
3396 	int pos, j, node;
3397 	int zone_type;		/* needs to be signed */
3398 	struct zone *z;
3399 	struct zonelist *zonelist;
3400 
3401 	zonelist = &pgdat->node_zonelists[0];
3402 	pos = 0;
3403 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3404 		for (j = 0; j < nr_nodes; j++) {
3405 			node = node_order[j];
3406 			z = &NODE_DATA(node)->node_zones[zone_type];
3407 			if (populated_zone(z)) {
3408 				zoneref_set_zone(z,
3409 					&zonelist->_zonerefs[pos++]);
3410 				check_highest_zone(zone_type);
3411 			}
3412 		}
3413 	}
3414 	zonelist->_zonerefs[pos].zone = NULL;
3415 	zonelist->_zonerefs[pos].zone_idx = 0;
3416 }
3417 
3418 static int default_zonelist_order(void)
3419 {
3420 	int nid, zone_type;
3421 	unsigned long low_kmem_size,total_size;
3422 	struct zone *z;
3423 	int average_size;
3424 	/*
3425          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3426 	 * If they are really small and used heavily, the system can fall
3427 	 * into OOM very easily.
3428 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3429 	 */
3430 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3431 	low_kmem_size = 0;
3432 	total_size = 0;
3433 	for_each_online_node(nid) {
3434 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3435 			z = &NODE_DATA(nid)->node_zones[zone_type];
3436 			if (populated_zone(z)) {
3437 				if (zone_type < ZONE_NORMAL)
3438 					low_kmem_size += z->managed_pages;
3439 				total_size += z->managed_pages;
3440 			} else if (zone_type == ZONE_NORMAL) {
3441 				/*
3442 				 * If any node has only lowmem, then node order
3443 				 * is preferred to allow kernel allocations
3444 				 * locally; otherwise, they can easily infringe
3445 				 * on other nodes when there is an abundance of
3446 				 * lowmem available to allocate from.
3447 				 */
3448 				return ZONELIST_ORDER_NODE;
3449 			}
3450 		}
3451 	}
3452 	if (!low_kmem_size ||  /* there are no DMA area. */
3453 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3454 		return ZONELIST_ORDER_NODE;
3455 	/*
3456 	 * look into each node's config.
3457   	 * If there is a node whose DMA/DMA32 memory is very big area on
3458  	 * local memory, NODE_ORDER may be suitable.
3459          */
3460 	average_size = total_size /
3461 				(nodes_weight(node_states[N_MEMORY]) + 1);
3462 	for_each_online_node(nid) {
3463 		low_kmem_size = 0;
3464 		total_size = 0;
3465 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3466 			z = &NODE_DATA(nid)->node_zones[zone_type];
3467 			if (populated_zone(z)) {
3468 				if (zone_type < ZONE_NORMAL)
3469 					low_kmem_size += z->present_pages;
3470 				total_size += z->present_pages;
3471 			}
3472 		}
3473 		if (low_kmem_size &&
3474 		    total_size > average_size && /* ignore small node */
3475 		    low_kmem_size > total_size * 70/100)
3476 			return ZONELIST_ORDER_NODE;
3477 	}
3478 	return ZONELIST_ORDER_ZONE;
3479 }
3480 
3481 static void set_zonelist_order(void)
3482 {
3483 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3484 		current_zonelist_order = default_zonelist_order();
3485 	else
3486 		current_zonelist_order = user_zonelist_order;
3487 }
3488 
3489 static void build_zonelists(pg_data_t *pgdat)
3490 {
3491 	int j, node, load;
3492 	enum zone_type i;
3493 	nodemask_t used_mask;
3494 	int local_node, prev_node;
3495 	struct zonelist *zonelist;
3496 	int order = current_zonelist_order;
3497 
3498 	/* initialize zonelists */
3499 	for (i = 0; i < MAX_ZONELISTS; i++) {
3500 		zonelist = pgdat->node_zonelists + i;
3501 		zonelist->_zonerefs[0].zone = NULL;
3502 		zonelist->_zonerefs[0].zone_idx = 0;
3503 	}
3504 
3505 	/* NUMA-aware ordering of nodes */
3506 	local_node = pgdat->node_id;
3507 	load = nr_online_nodes;
3508 	prev_node = local_node;
3509 	nodes_clear(used_mask);
3510 
3511 	memset(node_order, 0, sizeof(node_order));
3512 	j = 0;
3513 
3514 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3515 		/*
3516 		 * We don't want to pressure a particular node.
3517 		 * So adding penalty to the first node in same
3518 		 * distance group to make it round-robin.
3519 		 */
3520 		if (node_distance(local_node, node) !=
3521 		    node_distance(local_node, prev_node))
3522 			node_load[node] = load;
3523 
3524 		prev_node = node;
3525 		load--;
3526 		if (order == ZONELIST_ORDER_NODE)
3527 			build_zonelists_in_node_order(pgdat, node);
3528 		else
3529 			node_order[j++] = node;	/* remember order */
3530 	}
3531 
3532 	if (order == ZONELIST_ORDER_ZONE) {
3533 		/* calculate node order -- i.e., DMA last! */
3534 		build_zonelists_in_zone_order(pgdat, j);
3535 	}
3536 
3537 	build_thisnode_zonelists(pgdat);
3538 }
3539 
3540 /* Construct the zonelist performance cache - see further mmzone.h */
3541 static void build_zonelist_cache(pg_data_t *pgdat)
3542 {
3543 	struct zonelist *zonelist;
3544 	struct zonelist_cache *zlc;
3545 	struct zoneref *z;
3546 
3547 	zonelist = &pgdat->node_zonelists[0];
3548 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3549 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3550 	for (z = zonelist->_zonerefs; z->zone; z++)
3551 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3552 }
3553 
3554 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3555 /*
3556  * Return node id of node used for "local" allocations.
3557  * I.e., first node id of first zone in arg node's generic zonelist.
3558  * Used for initializing percpu 'numa_mem', which is used primarily
3559  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3560  */
3561 int local_memory_node(int node)
3562 {
3563 	struct zone *zone;
3564 
3565 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3566 				   gfp_zone(GFP_KERNEL),
3567 				   NULL,
3568 				   &zone);
3569 	return zone->node;
3570 }
3571 #endif
3572 
3573 #else	/* CONFIG_NUMA */
3574 
3575 static void set_zonelist_order(void)
3576 {
3577 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3578 }
3579 
3580 static void build_zonelists(pg_data_t *pgdat)
3581 {
3582 	int node, local_node;
3583 	enum zone_type j;
3584 	struct zonelist *zonelist;
3585 
3586 	local_node = pgdat->node_id;
3587 
3588 	zonelist = &pgdat->node_zonelists[0];
3589 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3590 
3591 	/*
3592 	 * Now we build the zonelist so that it contains the zones
3593 	 * of all the other nodes.
3594 	 * We don't want to pressure a particular node, so when
3595 	 * building the zones for node N, we make sure that the
3596 	 * zones coming right after the local ones are those from
3597 	 * node N+1 (modulo N)
3598 	 */
3599 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3600 		if (!node_online(node))
3601 			continue;
3602 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3603 							MAX_NR_ZONES - 1);
3604 	}
3605 	for (node = 0; node < local_node; node++) {
3606 		if (!node_online(node))
3607 			continue;
3608 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3609 							MAX_NR_ZONES - 1);
3610 	}
3611 
3612 	zonelist->_zonerefs[j].zone = NULL;
3613 	zonelist->_zonerefs[j].zone_idx = 0;
3614 }
3615 
3616 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3617 static void build_zonelist_cache(pg_data_t *pgdat)
3618 {
3619 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3620 }
3621 
3622 #endif	/* CONFIG_NUMA */
3623 
3624 /*
3625  * Boot pageset table. One per cpu which is going to be used for all
3626  * zones and all nodes. The parameters will be set in such a way
3627  * that an item put on a list will immediately be handed over to
3628  * the buddy list. This is safe since pageset manipulation is done
3629  * with interrupts disabled.
3630  *
3631  * The boot_pagesets must be kept even after bootup is complete for
3632  * unused processors and/or zones. They do play a role for bootstrapping
3633  * hotplugged processors.
3634  *
3635  * zoneinfo_show() and maybe other functions do
3636  * not check if the processor is online before following the pageset pointer.
3637  * Other parts of the kernel may not check if the zone is available.
3638  */
3639 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3640 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3641 static void setup_zone_pageset(struct zone *zone);
3642 
3643 /*
3644  * Global mutex to protect against size modification of zonelists
3645  * as well as to serialize pageset setup for the new populated zone.
3646  */
3647 DEFINE_MUTEX(zonelists_mutex);
3648 
3649 /* return values int ....just for stop_machine() */
3650 static int __build_all_zonelists(void *data)
3651 {
3652 	int nid;
3653 	int cpu;
3654 	pg_data_t *self = data;
3655 
3656 #ifdef CONFIG_NUMA
3657 	memset(node_load, 0, sizeof(node_load));
3658 #endif
3659 
3660 	if (self && !node_online(self->node_id)) {
3661 		build_zonelists(self);
3662 		build_zonelist_cache(self);
3663 	}
3664 
3665 	for_each_online_node(nid) {
3666 		pg_data_t *pgdat = NODE_DATA(nid);
3667 
3668 		build_zonelists(pgdat);
3669 		build_zonelist_cache(pgdat);
3670 	}
3671 
3672 	/*
3673 	 * Initialize the boot_pagesets that are going to be used
3674 	 * for bootstrapping processors. The real pagesets for
3675 	 * each zone will be allocated later when the per cpu
3676 	 * allocator is available.
3677 	 *
3678 	 * boot_pagesets are used also for bootstrapping offline
3679 	 * cpus if the system is already booted because the pagesets
3680 	 * are needed to initialize allocators on a specific cpu too.
3681 	 * F.e. the percpu allocator needs the page allocator which
3682 	 * needs the percpu allocator in order to allocate its pagesets
3683 	 * (a chicken-egg dilemma).
3684 	 */
3685 	for_each_possible_cpu(cpu) {
3686 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3687 
3688 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3689 		/*
3690 		 * We now know the "local memory node" for each node--
3691 		 * i.e., the node of the first zone in the generic zonelist.
3692 		 * Set up numa_mem percpu variable for on-line cpus.  During
3693 		 * boot, only the boot cpu should be on-line;  we'll init the
3694 		 * secondary cpus' numa_mem as they come on-line.  During
3695 		 * node/memory hotplug, we'll fixup all on-line cpus.
3696 		 */
3697 		if (cpu_online(cpu))
3698 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3699 #endif
3700 	}
3701 
3702 	return 0;
3703 }
3704 
3705 /*
3706  * Called with zonelists_mutex held always
3707  * unless system_state == SYSTEM_BOOTING.
3708  */
3709 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3710 {
3711 	set_zonelist_order();
3712 
3713 	if (system_state == SYSTEM_BOOTING) {
3714 		__build_all_zonelists(NULL);
3715 		mminit_verify_zonelist();
3716 		cpuset_init_current_mems_allowed();
3717 	} else {
3718 #ifdef CONFIG_MEMORY_HOTPLUG
3719 		if (zone)
3720 			setup_zone_pageset(zone);
3721 #endif
3722 		/* we have to stop all cpus to guarantee there is no user
3723 		   of zonelist */
3724 		stop_machine(__build_all_zonelists, pgdat, NULL);
3725 		/* cpuset refresh routine should be here */
3726 	}
3727 	vm_total_pages = nr_free_pagecache_pages();
3728 	/*
3729 	 * Disable grouping by mobility if the number of pages in the
3730 	 * system is too low to allow the mechanism to work. It would be
3731 	 * more accurate, but expensive to check per-zone. This check is
3732 	 * made on memory-hotadd so a system can start with mobility
3733 	 * disabled and enable it later
3734 	 */
3735 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3736 		page_group_by_mobility_disabled = 1;
3737 	else
3738 		page_group_by_mobility_disabled = 0;
3739 
3740 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3741 		"Total pages: %ld\n",
3742 			nr_online_nodes,
3743 			zonelist_order_name[current_zonelist_order],
3744 			page_group_by_mobility_disabled ? "off" : "on",
3745 			vm_total_pages);
3746 #ifdef CONFIG_NUMA
3747 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3748 #endif
3749 }
3750 
3751 /*
3752  * Helper functions to size the waitqueue hash table.
3753  * Essentially these want to choose hash table sizes sufficiently
3754  * large so that collisions trying to wait on pages are rare.
3755  * But in fact, the number of active page waitqueues on typical
3756  * systems is ridiculously low, less than 200. So this is even
3757  * conservative, even though it seems large.
3758  *
3759  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3760  * waitqueues, i.e. the size of the waitq table given the number of pages.
3761  */
3762 #define PAGES_PER_WAITQUEUE	256
3763 
3764 #ifndef CONFIG_MEMORY_HOTPLUG
3765 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3766 {
3767 	unsigned long size = 1;
3768 
3769 	pages /= PAGES_PER_WAITQUEUE;
3770 
3771 	while (size < pages)
3772 		size <<= 1;
3773 
3774 	/*
3775 	 * Once we have dozens or even hundreds of threads sleeping
3776 	 * on IO we've got bigger problems than wait queue collision.
3777 	 * Limit the size of the wait table to a reasonable size.
3778 	 */
3779 	size = min(size, 4096UL);
3780 
3781 	return max(size, 4UL);
3782 }
3783 #else
3784 /*
3785  * A zone's size might be changed by hot-add, so it is not possible to determine
3786  * a suitable size for its wait_table.  So we use the maximum size now.
3787  *
3788  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3789  *
3790  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3791  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3792  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3793  *
3794  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3795  * or more by the traditional way. (See above).  It equals:
3796  *
3797  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3798  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3799  *    powerpc (64K page size)             : =  (32G +16M)byte.
3800  */
3801 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3802 {
3803 	return 4096UL;
3804 }
3805 #endif
3806 
3807 /*
3808  * This is an integer logarithm so that shifts can be used later
3809  * to extract the more random high bits from the multiplicative
3810  * hash function before the remainder is taken.
3811  */
3812 static inline unsigned long wait_table_bits(unsigned long size)
3813 {
3814 	return ffz(~size);
3815 }
3816 
3817 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3818 
3819 /*
3820  * Check if a pageblock contains reserved pages
3821  */
3822 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3823 {
3824 	unsigned long pfn;
3825 
3826 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3827 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3828 			return 1;
3829 	}
3830 	return 0;
3831 }
3832 
3833 /*
3834  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3835  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3836  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3837  * higher will lead to a bigger reserve which will get freed as contiguous
3838  * blocks as reclaim kicks in
3839  */
3840 static void setup_zone_migrate_reserve(struct zone *zone)
3841 {
3842 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3843 	struct page *page;
3844 	unsigned long block_migratetype;
3845 	int reserve;
3846 
3847 	/*
3848 	 * Get the start pfn, end pfn and the number of blocks to reserve
3849 	 * We have to be careful to be aligned to pageblock_nr_pages to
3850 	 * make sure that we always check pfn_valid for the first page in
3851 	 * the block.
3852 	 */
3853 	start_pfn = zone->zone_start_pfn;
3854 	end_pfn = zone_end_pfn(zone);
3855 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3856 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3857 							pageblock_order;
3858 
3859 	/*
3860 	 * Reserve blocks are generally in place to help high-order atomic
3861 	 * allocations that are short-lived. A min_free_kbytes value that
3862 	 * would result in more than 2 reserve blocks for atomic allocations
3863 	 * is assumed to be in place to help anti-fragmentation for the
3864 	 * future allocation of hugepages at runtime.
3865 	 */
3866 	reserve = min(2, reserve);
3867 
3868 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3869 		if (!pfn_valid(pfn))
3870 			continue;
3871 		page = pfn_to_page(pfn);
3872 
3873 		/* Watch out for overlapping nodes */
3874 		if (page_to_nid(page) != zone_to_nid(zone))
3875 			continue;
3876 
3877 		block_migratetype = get_pageblock_migratetype(page);
3878 
3879 		/* Only test what is necessary when the reserves are not met */
3880 		if (reserve > 0) {
3881 			/*
3882 			 * Blocks with reserved pages will never free, skip
3883 			 * them.
3884 			 */
3885 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3886 			if (pageblock_is_reserved(pfn, block_end_pfn))
3887 				continue;
3888 
3889 			/* If this block is reserved, account for it */
3890 			if (block_migratetype == MIGRATE_RESERVE) {
3891 				reserve--;
3892 				continue;
3893 			}
3894 
3895 			/* Suitable for reserving if this block is movable */
3896 			if (block_migratetype == MIGRATE_MOVABLE) {
3897 				set_pageblock_migratetype(page,
3898 							MIGRATE_RESERVE);
3899 				move_freepages_block(zone, page,
3900 							MIGRATE_RESERVE);
3901 				reserve--;
3902 				continue;
3903 			}
3904 		}
3905 
3906 		/*
3907 		 * If the reserve is met and this is a previous reserved block,
3908 		 * take it back
3909 		 */
3910 		if (block_migratetype == MIGRATE_RESERVE) {
3911 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3912 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3913 		}
3914 	}
3915 }
3916 
3917 /*
3918  * Initially all pages are reserved - free ones are freed
3919  * up by free_all_bootmem() once the early boot process is
3920  * done. Non-atomic initialization, single-pass.
3921  */
3922 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3923 		unsigned long start_pfn, enum memmap_context context)
3924 {
3925 	struct page *page;
3926 	unsigned long end_pfn = start_pfn + size;
3927 	unsigned long pfn;
3928 	struct zone *z;
3929 
3930 	if (highest_memmap_pfn < end_pfn - 1)
3931 		highest_memmap_pfn = end_pfn - 1;
3932 
3933 	z = &NODE_DATA(nid)->node_zones[zone];
3934 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3935 		/*
3936 		 * There can be holes in boot-time mem_map[]s
3937 		 * handed to this function.  They do not
3938 		 * exist on hotplugged memory.
3939 		 */
3940 		if (context == MEMMAP_EARLY) {
3941 			if (!early_pfn_valid(pfn))
3942 				continue;
3943 			if (!early_pfn_in_nid(pfn, nid))
3944 				continue;
3945 		}
3946 		page = pfn_to_page(pfn);
3947 		set_page_links(page, zone, nid, pfn);
3948 		mminit_verify_page_links(page, zone, nid, pfn);
3949 		init_page_count(page);
3950 		page_mapcount_reset(page);
3951 		page_nid_reset_last(page);
3952 		SetPageReserved(page);
3953 		/*
3954 		 * Mark the block movable so that blocks are reserved for
3955 		 * movable at startup. This will force kernel allocations
3956 		 * to reserve their blocks rather than leaking throughout
3957 		 * the address space during boot when many long-lived
3958 		 * kernel allocations are made. Later some blocks near
3959 		 * the start are marked MIGRATE_RESERVE by
3960 		 * setup_zone_migrate_reserve()
3961 		 *
3962 		 * bitmap is created for zone's valid pfn range. but memmap
3963 		 * can be created for invalid pages (for alignment)
3964 		 * check here not to call set_pageblock_migratetype() against
3965 		 * pfn out of zone.
3966 		 */
3967 		if ((z->zone_start_pfn <= pfn)
3968 		    && (pfn < zone_end_pfn(z))
3969 		    && !(pfn & (pageblock_nr_pages - 1)))
3970 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3971 
3972 		INIT_LIST_HEAD(&page->lru);
3973 #ifdef WANT_PAGE_VIRTUAL
3974 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3975 		if (!is_highmem_idx(zone))
3976 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3977 #endif
3978 	}
3979 }
3980 
3981 static void __meminit zone_init_free_lists(struct zone *zone)
3982 {
3983 	int order, t;
3984 	for_each_migratetype_order(order, t) {
3985 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3986 		zone->free_area[order].nr_free = 0;
3987 	}
3988 }
3989 
3990 #ifndef __HAVE_ARCH_MEMMAP_INIT
3991 #define memmap_init(size, nid, zone, start_pfn) \
3992 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3993 #endif
3994 
3995 static int __meminit zone_batchsize(struct zone *zone)
3996 {
3997 #ifdef CONFIG_MMU
3998 	int batch;
3999 
4000 	/*
4001 	 * The per-cpu-pages pools are set to around 1000th of the
4002 	 * size of the zone.  But no more than 1/2 of a meg.
4003 	 *
4004 	 * OK, so we don't know how big the cache is.  So guess.
4005 	 */
4006 	batch = zone->managed_pages / 1024;
4007 	if (batch * PAGE_SIZE > 512 * 1024)
4008 		batch = (512 * 1024) / PAGE_SIZE;
4009 	batch /= 4;		/* We effectively *= 4 below */
4010 	if (batch < 1)
4011 		batch = 1;
4012 
4013 	/*
4014 	 * Clamp the batch to a 2^n - 1 value. Having a power
4015 	 * of 2 value was found to be more likely to have
4016 	 * suboptimal cache aliasing properties in some cases.
4017 	 *
4018 	 * For example if 2 tasks are alternately allocating
4019 	 * batches of pages, one task can end up with a lot
4020 	 * of pages of one half of the possible page colors
4021 	 * and the other with pages of the other colors.
4022 	 */
4023 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4024 
4025 	return batch;
4026 
4027 #else
4028 	/* The deferral and batching of frees should be suppressed under NOMMU
4029 	 * conditions.
4030 	 *
4031 	 * The problem is that NOMMU needs to be able to allocate large chunks
4032 	 * of contiguous memory as there's no hardware page translation to
4033 	 * assemble apparent contiguous memory from discontiguous pages.
4034 	 *
4035 	 * Queueing large contiguous runs of pages for batching, however,
4036 	 * causes the pages to actually be freed in smaller chunks.  As there
4037 	 * can be a significant delay between the individual batches being
4038 	 * recycled, this leads to the once large chunks of space being
4039 	 * fragmented and becoming unavailable for high-order allocations.
4040 	 */
4041 	return 0;
4042 #endif
4043 }
4044 
4045 /*
4046  * pcp->high and pcp->batch values are related and dependent on one another:
4047  * ->batch must never be higher then ->high.
4048  * The following function updates them in a safe manner without read side
4049  * locking.
4050  *
4051  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4052  * those fields changing asynchronously (acording the the above rule).
4053  *
4054  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4055  * outside of boot time (or some other assurance that no concurrent updaters
4056  * exist).
4057  */
4058 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4059 		unsigned long batch)
4060 {
4061        /* start with a fail safe value for batch */
4062 	pcp->batch = 1;
4063 	smp_wmb();
4064 
4065        /* Update high, then batch, in order */
4066 	pcp->high = high;
4067 	smp_wmb();
4068 
4069 	pcp->batch = batch;
4070 }
4071 
4072 /* a companion to pageset_set_high() */
4073 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4074 {
4075 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4076 }
4077 
4078 static void pageset_init(struct per_cpu_pageset *p)
4079 {
4080 	struct per_cpu_pages *pcp;
4081 	int migratetype;
4082 
4083 	memset(p, 0, sizeof(*p));
4084 
4085 	pcp = &p->pcp;
4086 	pcp->count = 0;
4087 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4088 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4089 }
4090 
4091 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4092 {
4093 	pageset_init(p);
4094 	pageset_set_batch(p, batch);
4095 }
4096 
4097 /*
4098  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4099  * to the value high for the pageset p.
4100  */
4101 static void pageset_set_high(struct per_cpu_pageset *p,
4102 				unsigned long high)
4103 {
4104 	unsigned long batch = max(1UL, high / 4);
4105 	if ((high / 4) > (PAGE_SHIFT * 8))
4106 		batch = PAGE_SHIFT * 8;
4107 
4108 	pageset_update(&p->pcp, high, batch);
4109 }
4110 
4111 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4112 		struct per_cpu_pageset *pcp)
4113 {
4114 	if (percpu_pagelist_fraction)
4115 		pageset_set_high(pcp,
4116 			(zone->managed_pages /
4117 				percpu_pagelist_fraction));
4118 	else
4119 		pageset_set_batch(pcp, zone_batchsize(zone));
4120 }
4121 
4122 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4123 {
4124 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4125 
4126 	pageset_init(pcp);
4127 	pageset_set_high_and_batch(zone, pcp);
4128 }
4129 
4130 static void __meminit setup_zone_pageset(struct zone *zone)
4131 {
4132 	int cpu;
4133 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4134 	for_each_possible_cpu(cpu)
4135 		zone_pageset_init(zone, cpu);
4136 }
4137 
4138 /*
4139  * Allocate per cpu pagesets and initialize them.
4140  * Before this call only boot pagesets were available.
4141  */
4142 void __init setup_per_cpu_pageset(void)
4143 {
4144 	struct zone *zone;
4145 
4146 	for_each_populated_zone(zone)
4147 		setup_zone_pageset(zone);
4148 }
4149 
4150 static noinline __init_refok
4151 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4152 {
4153 	int i;
4154 	struct pglist_data *pgdat = zone->zone_pgdat;
4155 	size_t alloc_size;
4156 
4157 	/*
4158 	 * The per-page waitqueue mechanism uses hashed waitqueues
4159 	 * per zone.
4160 	 */
4161 	zone->wait_table_hash_nr_entries =
4162 		 wait_table_hash_nr_entries(zone_size_pages);
4163 	zone->wait_table_bits =
4164 		wait_table_bits(zone->wait_table_hash_nr_entries);
4165 	alloc_size = zone->wait_table_hash_nr_entries
4166 					* sizeof(wait_queue_head_t);
4167 
4168 	if (!slab_is_available()) {
4169 		zone->wait_table = (wait_queue_head_t *)
4170 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4171 	} else {
4172 		/*
4173 		 * This case means that a zone whose size was 0 gets new memory
4174 		 * via memory hot-add.
4175 		 * But it may be the case that a new node was hot-added.  In
4176 		 * this case vmalloc() will not be able to use this new node's
4177 		 * memory - this wait_table must be initialized to use this new
4178 		 * node itself as well.
4179 		 * To use this new node's memory, further consideration will be
4180 		 * necessary.
4181 		 */
4182 		zone->wait_table = vmalloc(alloc_size);
4183 	}
4184 	if (!zone->wait_table)
4185 		return -ENOMEM;
4186 
4187 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4188 		init_waitqueue_head(zone->wait_table + i);
4189 
4190 	return 0;
4191 }
4192 
4193 static __meminit void zone_pcp_init(struct zone *zone)
4194 {
4195 	/*
4196 	 * per cpu subsystem is not up at this point. The following code
4197 	 * relies on the ability of the linker to provide the
4198 	 * offset of a (static) per cpu variable into the per cpu area.
4199 	 */
4200 	zone->pageset = &boot_pageset;
4201 
4202 	if (zone->present_pages)
4203 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4204 			zone->name, zone->present_pages,
4205 					 zone_batchsize(zone));
4206 }
4207 
4208 int __meminit init_currently_empty_zone(struct zone *zone,
4209 					unsigned long zone_start_pfn,
4210 					unsigned long size,
4211 					enum memmap_context context)
4212 {
4213 	struct pglist_data *pgdat = zone->zone_pgdat;
4214 	int ret;
4215 	ret = zone_wait_table_init(zone, size);
4216 	if (ret)
4217 		return ret;
4218 	pgdat->nr_zones = zone_idx(zone) + 1;
4219 
4220 	zone->zone_start_pfn = zone_start_pfn;
4221 
4222 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4223 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4224 			pgdat->node_id,
4225 			(unsigned long)zone_idx(zone),
4226 			zone_start_pfn, (zone_start_pfn + size));
4227 
4228 	zone_init_free_lists(zone);
4229 
4230 	return 0;
4231 }
4232 
4233 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4234 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4235 /*
4236  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4237  * Architectures may implement their own version but if add_active_range()
4238  * was used and there are no special requirements, this is a convenient
4239  * alternative
4240  */
4241 int __meminit __early_pfn_to_nid(unsigned long pfn)
4242 {
4243 	unsigned long start_pfn, end_pfn;
4244 	int i, nid;
4245 	/*
4246 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4247 	 * when the kernel is running single-threaded.
4248 	 */
4249 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4250 	static int __meminitdata last_nid;
4251 
4252 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4253 		return last_nid;
4254 
4255 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4256 		if (start_pfn <= pfn && pfn < end_pfn) {
4257 			last_start_pfn = start_pfn;
4258 			last_end_pfn = end_pfn;
4259 			last_nid = nid;
4260 			return nid;
4261 		}
4262 	/* This is a memory hole */
4263 	return -1;
4264 }
4265 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4266 
4267 int __meminit early_pfn_to_nid(unsigned long pfn)
4268 {
4269 	int nid;
4270 
4271 	nid = __early_pfn_to_nid(pfn);
4272 	if (nid >= 0)
4273 		return nid;
4274 	/* just returns 0 */
4275 	return 0;
4276 }
4277 
4278 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4279 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4280 {
4281 	int nid;
4282 
4283 	nid = __early_pfn_to_nid(pfn);
4284 	if (nid >= 0 && nid != node)
4285 		return false;
4286 	return true;
4287 }
4288 #endif
4289 
4290 /**
4291  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4292  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4293  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4294  *
4295  * If an architecture guarantees that all ranges registered with
4296  * add_active_ranges() contain no holes and may be freed, this
4297  * this function may be used instead of calling free_bootmem() manually.
4298  */
4299 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4300 {
4301 	unsigned long start_pfn, end_pfn;
4302 	int i, this_nid;
4303 
4304 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4305 		start_pfn = min(start_pfn, max_low_pfn);
4306 		end_pfn = min(end_pfn, max_low_pfn);
4307 
4308 		if (start_pfn < end_pfn)
4309 			free_bootmem_node(NODE_DATA(this_nid),
4310 					  PFN_PHYS(start_pfn),
4311 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4312 	}
4313 }
4314 
4315 /**
4316  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4317  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4318  *
4319  * If an architecture guarantees that all ranges registered with
4320  * add_active_ranges() contain no holes and may be freed, this
4321  * function may be used instead of calling memory_present() manually.
4322  */
4323 void __init sparse_memory_present_with_active_regions(int nid)
4324 {
4325 	unsigned long start_pfn, end_pfn;
4326 	int i, this_nid;
4327 
4328 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4329 		memory_present(this_nid, start_pfn, end_pfn);
4330 }
4331 
4332 /**
4333  * get_pfn_range_for_nid - Return the start and end page frames for a node
4334  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4335  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4336  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4337  *
4338  * It returns the start and end page frame of a node based on information
4339  * provided by an arch calling add_active_range(). If called for a node
4340  * with no available memory, a warning is printed and the start and end
4341  * PFNs will be 0.
4342  */
4343 void __meminit get_pfn_range_for_nid(unsigned int nid,
4344 			unsigned long *start_pfn, unsigned long *end_pfn)
4345 {
4346 	unsigned long this_start_pfn, this_end_pfn;
4347 	int i;
4348 
4349 	*start_pfn = -1UL;
4350 	*end_pfn = 0;
4351 
4352 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4353 		*start_pfn = min(*start_pfn, this_start_pfn);
4354 		*end_pfn = max(*end_pfn, this_end_pfn);
4355 	}
4356 
4357 	if (*start_pfn == -1UL)
4358 		*start_pfn = 0;
4359 }
4360 
4361 /*
4362  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4363  * assumption is made that zones within a node are ordered in monotonic
4364  * increasing memory addresses so that the "highest" populated zone is used
4365  */
4366 static void __init find_usable_zone_for_movable(void)
4367 {
4368 	int zone_index;
4369 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4370 		if (zone_index == ZONE_MOVABLE)
4371 			continue;
4372 
4373 		if (arch_zone_highest_possible_pfn[zone_index] >
4374 				arch_zone_lowest_possible_pfn[zone_index])
4375 			break;
4376 	}
4377 
4378 	VM_BUG_ON(zone_index == -1);
4379 	movable_zone = zone_index;
4380 }
4381 
4382 /*
4383  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4384  * because it is sized independent of architecture. Unlike the other zones,
4385  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4386  * in each node depending on the size of each node and how evenly kernelcore
4387  * is distributed. This helper function adjusts the zone ranges
4388  * provided by the architecture for a given node by using the end of the
4389  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4390  * zones within a node are in order of monotonic increases memory addresses
4391  */
4392 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4393 					unsigned long zone_type,
4394 					unsigned long node_start_pfn,
4395 					unsigned long node_end_pfn,
4396 					unsigned long *zone_start_pfn,
4397 					unsigned long *zone_end_pfn)
4398 {
4399 	/* Only adjust if ZONE_MOVABLE is on this node */
4400 	if (zone_movable_pfn[nid]) {
4401 		/* Size ZONE_MOVABLE */
4402 		if (zone_type == ZONE_MOVABLE) {
4403 			*zone_start_pfn = zone_movable_pfn[nid];
4404 			*zone_end_pfn = min(node_end_pfn,
4405 				arch_zone_highest_possible_pfn[movable_zone]);
4406 
4407 		/* Adjust for ZONE_MOVABLE starting within this range */
4408 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4409 				*zone_end_pfn > zone_movable_pfn[nid]) {
4410 			*zone_end_pfn = zone_movable_pfn[nid];
4411 
4412 		/* Check if this whole range is within ZONE_MOVABLE */
4413 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4414 			*zone_start_pfn = *zone_end_pfn;
4415 	}
4416 }
4417 
4418 /*
4419  * Return the number of pages a zone spans in a node, including holes
4420  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4421  */
4422 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4423 					unsigned long zone_type,
4424 					unsigned long *ignored)
4425 {
4426 	unsigned long node_start_pfn, node_end_pfn;
4427 	unsigned long zone_start_pfn, zone_end_pfn;
4428 
4429 	/* Get the start and end of the node and zone */
4430 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4431 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4432 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4433 	adjust_zone_range_for_zone_movable(nid, zone_type,
4434 				node_start_pfn, node_end_pfn,
4435 				&zone_start_pfn, &zone_end_pfn);
4436 
4437 	/* Check that this node has pages within the zone's required range */
4438 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4439 		return 0;
4440 
4441 	/* Move the zone boundaries inside the node if necessary */
4442 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4443 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4444 
4445 	/* Return the spanned pages */
4446 	return zone_end_pfn - zone_start_pfn;
4447 }
4448 
4449 /*
4450  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4451  * then all holes in the requested range will be accounted for.
4452  */
4453 unsigned long __meminit __absent_pages_in_range(int nid,
4454 				unsigned long range_start_pfn,
4455 				unsigned long range_end_pfn)
4456 {
4457 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4458 	unsigned long start_pfn, end_pfn;
4459 	int i;
4460 
4461 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4462 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4463 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4464 		nr_absent -= end_pfn - start_pfn;
4465 	}
4466 	return nr_absent;
4467 }
4468 
4469 /**
4470  * absent_pages_in_range - Return number of page frames in holes within a range
4471  * @start_pfn: The start PFN to start searching for holes
4472  * @end_pfn: The end PFN to stop searching for holes
4473  *
4474  * It returns the number of pages frames in memory holes within a range.
4475  */
4476 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4477 							unsigned long end_pfn)
4478 {
4479 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4480 }
4481 
4482 /* Return the number of page frames in holes in a zone on a node */
4483 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4484 					unsigned long zone_type,
4485 					unsigned long *ignored)
4486 {
4487 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4488 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4489 	unsigned long node_start_pfn, node_end_pfn;
4490 	unsigned long zone_start_pfn, zone_end_pfn;
4491 
4492 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4493 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4494 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4495 
4496 	adjust_zone_range_for_zone_movable(nid, zone_type,
4497 			node_start_pfn, node_end_pfn,
4498 			&zone_start_pfn, &zone_end_pfn);
4499 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4500 }
4501 
4502 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4503 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4504 					unsigned long zone_type,
4505 					unsigned long *zones_size)
4506 {
4507 	return zones_size[zone_type];
4508 }
4509 
4510 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4511 						unsigned long zone_type,
4512 						unsigned long *zholes_size)
4513 {
4514 	if (!zholes_size)
4515 		return 0;
4516 
4517 	return zholes_size[zone_type];
4518 }
4519 
4520 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4521 
4522 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4523 		unsigned long *zones_size, unsigned long *zholes_size)
4524 {
4525 	unsigned long realtotalpages, totalpages = 0;
4526 	enum zone_type i;
4527 
4528 	for (i = 0; i < MAX_NR_ZONES; i++)
4529 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4530 								zones_size);
4531 	pgdat->node_spanned_pages = totalpages;
4532 
4533 	realtotalpages = totalpages;
4534 	for (i = 0; i < MAX_NR_ZONES; i++)
4535 		realtotalpages -=
4536 			zone_absent_pages_in_node(pgdat->node_id, i,
4537 								zholes_size);
4538 	pgdat->node_present_pages = realtotalpages;
4539 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4540 							realtotalpages);
4541 }
4542 
4543 #ifndef CONFIG_SPARSEMEM
4544 /*
4545  * Calculate the size of the zone->blockflags rounded to an unsigned long
4546  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4547  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4548  * round what is now in bits to nearest long in bits, then return it in
4549  * bytes.
4550  */
4551 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4552 {
4553 	unsigned long usemapsize;
4554 
4555 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4556 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4557 	usemapsize = usemapsize >> pageblock_order;
4558 	usemapsize *= NR_PAGEBLOCK_BITS;
4559 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4560 
4561 	return usemapsize / 8;
4562 }
4563 
4564 static void __init setup_usemap(struct pglist_data *pgdat,
4565 				struct zone *zone,
4566 				unsigned long zone_start_pfn,
4567 				unsigned long zonesize)
4568 {
4569 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4570 	zone->pageblock_flags = NULL;
4571 	if (usemapsize)
4572 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4573 								   usemapsize);
4574 }
4575 #else
4576 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4577 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4578 #endif /* CONFIG_SPARSEMEM */
4579 
4580 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4581 
4582 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4583 void __init set_pageblock_order(void)
4584 {
4585 	unsigned int order;
4586 
4587 	/* Check that pageblock_nr_pages has not already been setup */
4588 	if (pageblock_order)
4589 		return;
4590 
4591 	if (HPAGE_SHIFT > PAGE_SHIFT)
4592 		order = HUGETLB_PAGE_ORDER;
4593 	else
4594 		order = MAX_ORDER - 1;
4595 
4596 	/*
4597 	 * Assume the largest contiguous order of interest is a huge page.
4598 	 * This value may be variable depending on boot parameters on IA64 and
4599 	 * powerpc.
4600 	 */
4601 	pageblock_order = order;
4602 }
4603 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4604 
4605 /*
4606  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4607  * is unused as pageblock_order is set at compile-time. See
4608  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4609  * the kernel config
4610  */
4611 void __init set_pageblock_order(void)
4612 {
4613 }
4614 
4615 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4616 
4617 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4618 						   unsigned long present_pages)
4619 {
4620 	unsigned long pages = spanned_pages;
4621 
4622 	/*
4623 	 * Provide a more accurate estimation if there are holes within
4624 	 * the zone and SPARSEMEM is in use. If there are holes within the
4625 	 * zone, each populated memory region may cost us one or two extra
4626 	 * memmap pages due to alignment because memmap pages for each
4627 	 * populated regions may not naturally algined on page boundary.
4628 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4629 	 */
4630 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4631 	    IS_ENABLED(CONFIG_SPARSEMEM))
4632 		pages = present_pages;
4633 
4634 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4635 }
4636 
4637 /*
4638  * Set up the zone data structures:
4639  *   - mark all pages reserved
4640  *   - mark all memory queues empty
4641  *   - clear the memory bitmaps
4642  *
4643  * NOTE: pgdat should get zeroed by caller.
4644  */
4645 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4646 		unsigned long *zones_size, unsigned long *zholes_size)
4647 {
4648 	enum zone_type j;
4649 	int nid = pgdat->node_id;
4650 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4651 	int ret;
4652 
4653 	pgdat_resize_init(pgdat);
4654 #ifdef CONFIG_NUMA_BALANCING
4655 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4656 	pgdat->numabalancing_migrate_nr_pages = 0;
4657 	pgdat->numabalancing_migrate_next_window = jiffies;
4658 #endif
4659 	init_waitqueue_head(&pgdat->kswapd_wait);
4660 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4661 	pgdat_page_cgroup_init(pgdat);
4662 
4663 	for (j = 0; j < MAX_NR_ZONES; j++) {
4664 		struct zone *zone = pgdat->node_zones + j;
4665 		unsigned long size, realsize, freesize, memmap_pages;
4666 
4667 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4668 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4669 								zholes_size);
4670 
4671 		/*
4672 		 * Adjust freesize so that it accounts for how much memory
4673 		 * is used by this zone for memmap. This affects the watermark
4674 		 * and per-cpu initialisations
4675 		 */
4676 		memmap_pages = calc_memmap_size(size, realsize);
4677 		if (freesize >= memmap_pages) {
4678 			freesize -= memmap_pages;
4679 			if (memmap_pages)
4680 				printk(KERN_DEBUG
4681 				       "  %s zone: %lu pages used for memmap\n",
4682 				       zone_names[j], memmap_pages);
4683 		} else
4684 			printk(KERN_WARNING
4685 				"  %s zone: %lu pages exceeds freesize %lu\n",
4686 				zone_names[j], memmap_pages, freesize);
4687 
4688 		/* Account for reserved pages */
4689 		if (j == 0 && freesize > dma_reserve) {
4690 			freesize -= dma_reserve;
4691 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4692 					zone_names[0], dma_reserve);
4693 		}
4694 
4695 		if (!is_highmem_idx(j))
4696 			nr_kernel_pages += freesize;
4697 		/* Charge for highmem memmap if there are enough kernel pages */
4698 		else if (nr_kernel_pages > memmap_pages * 2)
4699 			nr_kernel_pages -= memmap_pages;
4700 		nr_all_pages += freesize;
4701 
4702 		zone->spanned_pages = size;
4703 		zone->present_pages = realsize;
4704 		/*
4705 		 * Set an approximate value for lowmem here, it will be adjusted
4706 		 * when the bootmem allocator frees pages into the buddy system.
4707 		 * And all highmem pages will be managed by the buddy system.
4708 		 */
4709 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4710 #ifdef CONFIG_NUMA
4711 		zone->node = nid;
4712 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4713 						/ 100;
4714 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4715 #endif
4716 		zone->name = zone_names[j];
4717 		spin_lock_init(&zone->lock);
4718 		spin_lock_init(&zone->lru_lock);
4719 		zone_seqlock_init(zone);
4720 		zone->zone_pgdat = pgdat;
4721 
4722 		zone_pcp_init(zone);
4723 		lruvec_init(&zone->lruvec);
4724 		if (!size)
4725 			continue;
4726 
4727 		set_pageblock_order();
4728 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4729 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4730 						size, MEMMAP_EARLY);
4731 		BUG_ON(ret);
4732 		memmap_init(size, nid, j, zone_start_pfn);
4733 		zone_start_pfn += size;
4734 	}
4735 }
4736 
4737 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4738 {
4739 	/* Skip empty nodes */
4740 	if (!pgdat->node_spanned_pages)
4741 		return;
4742 
4743 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4744 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4745 	if (!pgdat->node_mem_map) {
4746 		unsigned long size, start, end;
4747 		struct page *map;
4748 
4749 		/*
4750 		 * The zone's endpoints aren't required to be MAX_ORDER
4751 		 * aligned but the node_mem_map endpoints must be in order
4752 		 * for the buddy allocator to function correctly.
4753 		 */
4754 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4755 		end = pgdat_end_pfn(pgdat);
4756 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4757 		size =  (end - start) * sizeof(struct page);
4758 		map = alloc_remap(pgdat->node_id, size);
4759 		if (!map)
4760 			map = alloc_bootmem_node_nopanic(pgdat, size);
4761 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4762 	}
4763 #ifndef CONFIG_NEED_MULTIPLE_NODES
4764 	/*
4765 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4766 	 */
4767 	if (pgdat == NODE_DATA(0)) {
4768 		mem_map = NODE_DATA(0)->node_mem_map;
4769 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4770 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4771 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4772 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4773 	}
4774 #endif
4775 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4776 }
4777 
4778 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4779 		unsigned long node_start_pfn, unsigned long *zholes_size)
4780 {
4781 	pg_data_t *pgdat = NODE_DATA(nid);
4782 
4783 	/* pg_data_t should be reset to zero when it's allocated */
4784 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4785 
4786 	pgdat->node_id = nid;
4787 	pgdat->node_start_pfn = node_start_pfn;
4788 	init_zone_allows_reclaim(nid);
4789 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4790 
4791 	alloc_node_mem_map(pgdat);
4792 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4793 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4794 		nid, (unsigned long)pgdat,
4795 		(unsigned long)pgdat->node_mem_map);
4796 #endif
4797 
4798 	free_area_init_core(pgdat, zones_size, zholes_size);
4799 }
4800 
4801 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4802 
4803 #if MAX_NUMNODES > 1
4804 /*
4805  * Figure out the number of possible node ids.
4806  */
4807 void __init setup_nr_node_ids(void)
4808 {
4809 	unsigned int node;
4810 	unsigned int highest = 0;
4811 
4812 	for_each_node_mask(node, node_possible_map)
4813 		highest = node;
4814 	nr_node_ids = highest + 1;
4815 }
4816 #endif
4817 
4818 /**
4819  * node_map_pfn_alignment - determine the maximum internode alignment
4820  *
4821  * This function should be called after node map is populated and sorted.
4822  * It calculates the maximum power of two alignment which can distinguish
4823  * all the nodes.
4824  *
4825  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4826  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4827  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4828  * shifted, 1GiB is enough and this function will indicate so.
4829  *
4830  * This is used to test whether pfn -> nid mapping of the chosen memory
4831  * model has fine enough granularity to avoid incorrect mapping for the
4832  * populated node map.
4833  *
4834  * Returns the determined alignment in pfn's.  0 if there is no alignment
4835  * requirement (single node).
4836  */
4837 unsigned long __init node_map_pfn_alignment(void)
4838 {
4839 	unsigned long accl_mask = 0, last_end = 0;
4840 	unsigned long start, end, mask;
4841 	int last_nid = -1;
4842 	int i, nid;
4843 
4844 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4845 		if (!start || last_nid < 0 || last_nid == nid) {
4846 			last_nid = nid;
4847 			last_end = end;
4848 			continue;
4849 		}
4850 
4851 		/*
4852 		 * Start with a mask granular enough to pin-point to the
4853 		 * start pfn and tick off bits one-by-one until it becomes
4854 		 * too coarse to separate the current node from the last.
4855 		 */
4856 		mask = ~((1 << __ffs(start)) - 1);
4857 		while (mask && last_end <= (start & (mask << 1)))
4858 			mask <<= 1;
4859 
4860 		/* accumulate all internode masks */
4861 		accl_mask |= mask;
4862 	}
4863 
4864 	/* convert mask to number of pages */
4865 	return ~accl_mask + 1;
4866 }
4867 
4868 /* Find the lowest pfn for a node */
4869 static unsigned long __init find_min_pfn_for_node(int nid)
4870 {
4871 	unsigned long min_pfn = ULONG_MAX;
4872 	unsigned long start_pfn;
4873 	int i;
4874 
4875 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4876 		min_pfn = min(min_pfn, start_pfn);
4877 
4878 	if (min_pfn == ULONG_MAX) {
4879 		printk(KERN_WARNING
4880 			"Could not find start_pfn for node %d\n", nid);
4881 		return 0;
4882 	}
4883 
4884 	return min_pfn;
4885 }
4886 
4887 /**
4888  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4889  *
4890  * It returns the minimum PFN based on information provided via
4891  * add_active_range().
4892  */
4893 unsigned long __init find_min_pfn_with_active_regions(void)
4894 {
4895 	return find_min_pfn_for_node(MAX_NUMNODES);
4896 }
4897 
4898 /*
4899  * early_calculate_totalpages()
4900  * Sum pages in active regions for movable zone.
4901  * Populate N_MEMORY for calculating usable_nodes.
4902  */
4903 static unsigned long __init early_calculate_totalpages(void)
4904 {
4905 	unsigned long totalpages = 0;
4906 	unsigned long start_pfn, end_pfn;
4907 	int i, nid;
4908 
4909 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4910 		unsigned long pages = end_pfn - start_pfn;
4911 
4912 		totalpages += pages;
4913 		if (pages)
4914 			node_set_state(nid, N_MEMORY);
4915 	}
4916   	return totalpages;
4917 }
4918 
4919 /*
4920  * Find the PFN the Movable zone begins in each node. Kernel memory
4921  * is spread evenly between nodes as long as the nodes have enough
4922  * memory. When they don't, some nodes will have more kernelcore than
4923  * others
4924  */
4925 static void __init find_zone_movable_pfns_for_nodes(void)
4926 {
4927 	int i, nid;
4928 	unsigned long usable_startpfn;
4929 	unsigned long kernelcore_node, kernelcore_remaining;
4930 	/* save the state before borrow the nodemask */
4931 	nodemask_t saved_node_state = node_states[N_MEMORY];
4932 	unsigned long totalpages = early_calculate_totalpages();
4933 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4934 
4935 	/*
4936 	 * If movablecore was specified, calculate what size of
4937 	 * kernelcore that corresponds so that memory usable for
4938 	 * any allocation type is evenly spread. If both kernelcore
4939 	 * and movablecore are specified, then the value of kernelcore
4940 	 * will be used for required_kernelcore if it's greater than
4941 	 * what movablecore would have allowed.
4942 	 */
4943 	if (required_movablecore) {
4944 		unsigned long corepages;
4945 
4946 		/*
4947 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4948 		 * was requested by the user
4949 		 */
4950 		required_movablecore =
4951 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4952 		corepages = totalpages - required_movablecore;
4953 
4954 		required_kernelcore = max(required_kernelcore, corepages);
4955 	}
4956 
4957 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4958 	if (!required_kernelcore)
4959 		goto out;
4960 
4961 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4962 	find_usable_zone_for_movable();
4963 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4964 
4965 restart:
4966 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4967 	kernelcore_node = required_kernelcore / usable_nodes;
4968 	for_each_node_state(nid, N_MEMORY) {
4969 		unsigned long start_pfn, end_pfn;
4970 
4971 		/*
4972 		 * Recalculate kernelcore_node if the division per node
4973 		 * now exceeds what is necessary to satisfy the requested
4974 		 * amount of memory for the kernel
4975 		 */
4976 		if (required_kernelcore < kernelcore_node)
4977 			kernelcore_node = required_kernelcore / usable_nodes;
4978 
4979 		/*
4980 		 * As the map is walked, we track how much memory is usable
4981 		 * by the kernel using kernelcore_remaining. When it is
4982 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4983 		 */
4984 		kernelcore_remaining = kernelcore_node;
4985 
4986 		/* Go through each range of PFNs within this node */
4987 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4988 			unsigned long size_pages;
4989 
4990 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4991 			if (start_pfn >= end_pfn)
4992 				continue;
4993 
4994 			/* Account for what is only usable for kernelcore */
4995 			if (start_pfn < usable_startpfn) {
4996 				unsigned long kernel_pages;
4997 				kernel_pages = min(end_pfn, usable_startpfn)
4998 								- start_pfn;
4999 
5000 				kernelcore_remaining -= min(kernel_pages,
5001 							kernelcore_remaining);
5002 				required_kernelcore -= min(kernel_pages,
5003 							required_kernelcore);
5004 
5005 				/* Continue if range is now fully accounted */
5006 				if (end_pfn <= usable_startpfn) {
5007 
5008 					/*
5009 					 * Push zone_movable_pfn to the end so
5010 					 * that if we have to rebalance
5011 					 * kernelcore across nodes, we will
5012 					 * not double account here
5013 					 */
5014 					zone_movable_pfn[nid] = end_pfn;
5015 					continue;
5016 				}
5017 				start_pfn = usable_startpfn;
5018 			}
5019 
5020 			/*
5021 			 * The usable PFN range for ZONE_MOVABLE is from
5022 			 * start_pfn->end_pfn. Calculate size_pages as the
5023 			 * number of pages used as kernelcore
5024 			 */
5025 			size_pages = end_pfn - start_pfn;
5026 			if (size_pages > kernelcore_remaining)
5027 				size_pages = kernelcore_remaining;
5028 			zone_movable_pfn[nid] = start_pfn + size_pages;
5029 
5030 			/*
5031 			 * Some kernelcore has been met, update counts and
5032 			 * break if the kernelcore for this node has been
5033 			 * satisified
5034 			 */
5035 			required_kernelcore -= min(required_kernelcore,
5036 								size_pages);
5037 			kernelcore_remaining -= size_pages;
5038 			if (!kernelcore_remaining)
5039 				break;
5040 		}
5041 	}
5042 
5043 	/*
5044 	 * If there is still required_kernelcore, we do another pass with one
5045 	 * less node in the count. This will push zone_movable_pfn[nid] further
5046 	 * along on the nodes that still have memory until kernelcore is
5047 	 * satisified
5048 	 */
5049 	usable_nodes--;
5050 	if (usable_nodes && required_kernelcore > usable_nodes)
5051 		goto restart;
5052 
5053 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5054 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5055 		zone_movable_pfn[nid] =
5056 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5057 
5058 out:
5059 	/* restore the node_state */
5060 	node_states[N_MEMORY] = saved_node_state;
5061 }
5062 
5063 /* Any regular or high memory on that node ? */
5064 static void check_for_memory(pg_data_t *pgdat, int nid)
5065 {
5066 	enum zone_type zone_type;
5067 
5068 	if (N_MEMORY == N_NORMAL_MEMORY)
5069 		return;
5070 
5071 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5072 		struct zone *zone = &pgdat->node_zones[zone_type];
5073 		if (zone->present_pages) {
5074 			node_set_state(nid, N_HIGH_MEMORY);
5075 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5076 			    zone_type <= ZONE_NORMAL)
5077 				node_set_state(nid, N_NORMAL_MEMORY);
5078 			break;
5079 		}
5080 	}
5081 }
5082 
5083 /**
5084  * free_area_init_nodes - Initialise all pg_data_t and zone data
5085  * @max_zone_pfn: an array of max PFNs for each zone
5086  *
5087  * This will call free_area_init_node() for each active node in the system.
5088  * Using the page ranges provided by add_active_range(), the size of each
5089  * zone in each node and their holes is calculated. If the maximum PFN
5090  * between two adjacent zones match, it is assumed that the zone is empty.
5091  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5092  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5093  * starts where the previous one ended. For example, ZONE_DMA32 starts
5094  * at arch_max_dma_pfn.
5095  */
5096 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5097 {
5098 	unsigned long start_pfn, end_pfn;
5099 	int i, nid;
5100 
5101 	/* Record where the zone boundaries are */
5102 	memset(arch_zone_lowest_possible_pfn, 0,
5103 				sizeof(arch_zone_lowest_possible_pfn));
5104 	memset(arch_zone_highest_possible_pfn, 0,
5105 				sizeof(arch_zone_highest_possible_pfn));
5106 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5107 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5108 	for (i = 1; i < MAX_NR_ZONES; i++) {
5109 		if (i == ZONE_MOVABLE)
5110 			continue;
5111 		arch_zone_lowest_possible_pfn[i] =
5112 			arch_zone_highest_possible_pfn[i-1];
5113 		arch_zone_highest_possible_pfn[i] =
5114 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5115 	}
5116 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5117 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5118 
5119 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5120 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5121 	find_zone_movable_pfns_for_nodes();
5122 
5123 	/* Print out the zone ranges */
5124 	printk("Zone ranges:\n");
5125 	for (i = 0; i < MAX_NR_ZONES; i++) {
5126 		if (i == ZONE_MOVABLE)
5127 			continue;
5128 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5129 		if (arch_zone_lowest_possible_pfn[i] ==
5130 				arch_zone_highest_possible_pfn[i])
5131 			printk(KERN_CONT "empty\n");
5132 		else
5133 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5134 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5135 				(arch_zone_highest_possible_pfn[i]
5136 					<< PAGE_SHIFT) - 1);
5137 	}
5138 
5139 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5140 	printk("Movable zone start for each node\n");
5141 	for (i = 0; i < MAX_NUMNODES; i++) {
5142 		if (zone_movable_pfn[i])
5143 			printk("  Node %d: %#010lx\n", i,
5144 			       zone_movable_pfn[i] << PAGE_SHIFT);
5145 	}
5146 
5147 	/* Print out the early node map */
5148 	printk("Early memory node ranges\n");
5149 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5150 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5151 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5152 
5153 	/* Initialise every node */
5154 	mminit_verify_pageflags_layout();
5155 	setup_nr_node_ids();
5156 	for_each_online_node(nid) {
5157 		pg_data_t *pgdat = NODE_DATA(nid);
5158 		free_area_init_node(nid, NULL,
5159 				find_min_pfn_for_node(nid), NULL);
5160 
5161 		/* Any memory on that node */
5162 		if (pgdat->node_present_pages)
5163 			node_set_state(nid, N_MEMORY);
5164 		check_for_memory(pgdat, nid);
5165 	}
5166 }
5167 
5168 static int __init cmdline_parse_core(char *p, unsigned long *core)
5169 {
5170 	unsigned long long coremem;
5171 	if (!p)
5172 		return -EINVAL;
5173 
5174 	coremem = memparse(p, &p);
5175 	*core = coremem >> PAGE_SHIFT;
5176 
5177 	/* Paranoid check that UL is enough for the coremem value */
5178 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5179 
5180 	return 0;
5181 }
5182 
5183 /*
5184  * kernelcore=size sets the amount of memory for use for allocations that
5185  * cannot be reclaimed or migrated.
5186  */
5187 static int __init cmdline_parse_kernelcore(char *p)
5188 {
5189 	return cmdline_parse_core(p, &required_kernelcore);
5190 }
5191 
5192 /*
5193  * movablecore=size sets the amount of memory for use for allocations that
5194  * can be reclaimed or migrated.
5195  */
5196 static int __init cmdline_parse_movablecore(char *p)
5197 {
5198 	return cmdline_parse_core(p, &required_movablecore);
5199 }
5200 
5201 early_param("kernelcore", cmdline_parse_kernelcore);
5202 early_param("movablecore", cmdline_parse_movablecore);
5203 
5204 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5205 
5206 void adjust_managed_page_count(struct page *page, long count)
5207 {
5208 	spin_lock(&managed_page_count_lock);
5209 	page_zone(page)->managed_pages += count;
5210 	totalram_pages += count;
5211 #ifdef CONFIG_HIGHMEM
5212 	if (PageHighMem(page))
5213 		totalhigh_pages += count;
5214 #endif
5215 	spin_unlock(&managed_page_count_lock);
5216 }
5217 EXPORT_SYMBOL(adjust_managed_page_count);
5218 
5219 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5220 {
5221 	void *pos;
5222 	unsigned long pages = 0;
5223 
5224 	start = (void *)PAGE_ALIGN((unsigned long)start);
5225 	end = (void *)((unsigned long)end & PAGE_MASK);
5226 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5227 		if ((unsigned int)poison <= 0xFF)
5228 			memset(pos, poison, PAGE_SIZE);
5229 		free_reserved_page(virt_to_page(pos));
5230 	}
5231 
5232 	if (pages && s)
5233 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5234 			s, pages << (PAGE_SHIFT - 10), start, end);
5235 
5236 	return pages;
5237 }
5238 EXPORT_SYMBOL(free_reserved_area);
5239 
5240 #ifdef	CONFIG_HIGHMEM
5241 void free_highmem_page(struct page *page)
5242 {
5243 	__free_reserved_page(page);
5244 	totalram_pages++;
5245 	page_zone(page)->managed_pages++;
5246 	totalhigh_pages++;
5247 }
5248 #endif
5249 
5250 
5251 void __init mem_init_print_info(const char *str)
5252 {
5253 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5254 	unsigned long init_code_size, init_data_size;
5255 
5256 	physpages = get_num_physpages();
5257 	codesize = _etext - _stext;
5258 	datasize = _edata - _sdata;
5259 	rosize = __end_rodata - __start_rodata;
5260 	bss_size = __bss_stop - __bss_start;
5261 	init_data_size = __init_end - __init_begin;
5262 	init_code_size = _einittext - _sinittext;
5263 
5264 	/*
5265 	 * Detect special cases and adjust section sizes accordingly:
5266 	 * 1) .init.* may be embedded into .data sections
5267 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5268 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5269 	 * 3) .rodata.* may be embedded into .text or .data sections.
5270 	 */
5271 #define adj_init_size(start, end, size, pos, adj) \
5272 	if (start <= pos && pos < end && size > adj) \
5273 		size -= adj;
5274 
5275 	adj_init_size(__init_begin, __init_end, init_data_size,
5276 		     _sinittext, init_code_size);
5277 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5278 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5279 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5280 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5281 
5282 #undef	adj_init_size
5283 
5284 	printk("Memory: %luK/%luK available "
5285 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5286 	       "%luK init, %luK bss, %luK reserved"
5287 #ifdef	CONFIG_HIGHMEM
5288 	       ", %luK highmem"
5289 #endif
5290 	       "%s%s)\n",
5291 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5292 	       codesize >> 10, datasize >> 10, rosize >> 10,
5293 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5294 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5295 #ifdef	CONFIG_HIGHMEM
5296 	       totalhigh_pages << (PAGE_SHIFT-10),
5297 #endif
5298 	       str ? ", " : "", str ? str : "");
5299 }
5300 
5301 /**
5302  * set_dma_reserve - set the specified number of pages reserved in the first zone
5303  * @new_dma_reserve: The number of pages to mark reserved
5304  *
5305  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5306  * In the DMA zone, a significant percentage may be consumed by kernel image
5307  * and other unfreeable allocations which can skew the watermarks badly. This
5308  * function may optionally be used to account for unfreeable pages in the
5309  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5310  * smaller per-cpu batchsize.
5311  */
5312 void __init set_dma_reserve(unsigned long new_dma_reserve)
5313 {
5314 	dma_reserve = new_dma_reserve;
5315 }
5316 
5317 void __init free_area_init(unsigned long *zones_size)
5318 {
5319 	free_area_init_node(0, zones_size,
5320 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5321 }
5322 
5323 static int page_alloc_cpu_notify(struct notifier_block *self,
5324 				 unsigned long action, void *hcpu)
5325 {
5326 	int cpu = (unsigned long)hcpu;
5327 
5328 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5329 		lru_add_drain_cpu(cpu);
5330 		drain_pages(cpu);
5331 
5332 		/*
5333 		 * Spill the event counters of the dead processor
5334 		 * into the current processors event counters.
5335 		 * This artificially elevates the count of the current
5336 		 * processor.
5337 		 */
5338 		vm_events_fold_cpu(cpu);
5339 
5340 		/*
5341 		 * Zero the differential counters of the dead processor
5342 		 * so that the vm statistics are consistent.
5343 		 *
5344 		 * This is only okay since the processor is dead and cannot
5345 		 * race with what we are doing.
5346 		 */
5347 		refresh_cpu_vm_stats(cpu);
5348 	}
5349 	return NOTIFY_OK;
5350 }
5351 
5352 void __init page_alloc_init(void)
5353 {
5354 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5355 }
5356 
5357 /*
5358  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5359  *	or min_free_kbytes changes.
5360  */
5361 static void calculate_totalreserve_pages(void)
5362 {
5363 	struct pglist_data *pgdat;
5364 	unsigned long reserve_pages = 0;
5365 	enum zone_type i, j;
5366 
5367 	for_each_online_pgdat(pgdat) {
5368 		for (i = 0; i < MAX_NR_ZONES; i++) {
5369 			struct zone *zone = pgdat->node_zones + i;
5370 			unsigned long max = 0;
5371 
5372 			/* Find valid and maximum lowmem_reserve in the zone */
5373 			for (j = i; j < MAX_NR_ZONES; j++) {
5374 				if (zone->lowmem_reserve[j] > max)
5375 					max = zone->lowmem_reserve[j];
5376 			}
5377 
5378 			/* we treat the high watermark as reserved pages. */
5379 			max += high_wmark_pages(zone);
5380 
5381 			if (max > zone->managed_pages)
5382 				max = zone->managed_pages;
5383 			reserve_pages += max;
5384 			/*
5385 			 * Lowmem reserves are not available to
5386 			 * GFP_HIGHUSER page cache allocations and
5387 			 * kswapd tries to balance zones to their high
5388 			 * watermark.  As a result, neither should be
5389 			 * regarded as dirtyable memory, to prevent a
5390 			 * situation where reclaim has to clean pages
5391 			 * in order to balance the zones.
5392 			 */
5393 			zone->dirty_balance_reserve = max;
5394 		}
5395 	}
5396 	dirty_balance_reserve = reserve_pages;
5397 	totalreserve_pages = reserve_pages;
5398 }
5399 
5400 /*
5401  * setup_per_zone_lowmem_reserve - called whenever
5402  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5403  *	has a correct pages reserved value, so an adequate number of
5404  *	pages are left in the zone after a successful __alloc_pages().
5405  */
5406 static void setup_per_zone_lowmem_reserve(void)
5407 {
5408 	struct pglist_data *pgdat;
5409 	enum zone_type j, idx;
5410 
5411 	for_each_online_pgdat(pgdat) {
5412 		for (j = 0; j < MAX_NR_ZONES; j++) {
5413 			struct zone *zone = pgdat->node_zones + j;
5414 			unsigned long managed_pages = zone->managed_pages;
5415 
5416 			zone->lowmem_reserve[j] = 0;
5417 
5418 			idx = j;
5419 			while (idx) {
5420 				struct zone *lower_zone;
5421 
5422 				idx--;
5423 
5424 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5425 					sysctl_lowmem_reserve_ratio[idx] = 1;
5426 
5427 				lower_zone = pgdat->node_zones + idx;
5428 				lower_zone->lowmem_reserve[j] = managed_pages /
5429 					sysctl_lowmem_reserve_ratio[idx];
5430 				managed_pages += lower_zone->managed_pages;
5431 			}
5432 		}
5433 	}
5434 
5435 	/* update totalreserve_pages */
5436 	calculate_totalreserve_pages();
5437 }
5438 
5439 static void __setup_per_zone_wmarks(void)
5440 {
5441 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5442 	unsigned long lowmem_pages = 0;
5443 	struct zone *zone;
5444 	unsigned long flags;
5445 
5446 	/* Calculate total number of !ZONE_HIGHMEM pages */
5447 	for_each_zone(zone) {
5448 		if (!is_highmem(zone))
5449 			lowmem_pages += zone->managed_pages;
5450 	}
5451 
5452 	for_each_zone(zone) {
5453 		u64 tmp;
5454 
5455 		spin_lock_irqsave(&zone->lock, flags);
5456 		tmp = (u64)pages_min * zone->managed_pages;
5457 		do_div(tmp, lowmem_pages);
5458 		if (is_highmem(zone)) {
5459 			/*
5460 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5461 			 * need highmem pages, so cap pages_min to a small
5462 			 * value here.
5463 			 *
5464 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5465 			 * deltas controls asynch page reclaim, and so should
5466 			 * not be capped for highmem.
5467 			 */
5468 			unsigned long min_pages;
5469 
5470 			min_pages = zone->managed_pages / 1024;
5471 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5472 			zone->watermark[WMARK_MIN] = min_pages;
5473 		} else {
5474 			/*
5475 			 * If it's a lowmem zone, reserve a number of pages
5476 			 * proportionate to the zone's size.
5477 			 */
5478 			zone->watermark[WMARK_MIN] = tmp;
5479 		}
5480 
5481 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5482 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5483 
5484 		setup_zone_migrate_reserve(zone);
5485 		spin_unlock_irqrestore(&zone->lock, flags);
5486 	}
5487 
5488 	/* update totalreserve_pages */
5489 	calculate_totalreserve_pages();
5490 }
5491 
5492 /**
5493  * setup_per_zone_wmarks - called when min_free_kbytes changes
5494  * or when memory is hot-{added|removed}
5495  *
5496  * Ensures that the watermark[min,low,high] values for each zone are set
5497  * correctly with respect to min_free_kbytes.
5498  */
5499 void setup_per_zone_wmarks(void)
5500 {
5501 	mutex_lock(&zonelists_mutex);
5502 	__setup_per_zone_wmarks();
5503 	mutex_unlock(&zonelists_mutex);
5504 }
5505 
5506 /*
5507  * The inactive anon list should be small enough that the VM never has to
5508  * do too much work, but large enough that each inactive page has a chance
5509  * to be referenced again before it is swapped out.
5510  *
5511  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5512  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5513  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5514  * the anonymous pages are kept on the inactive list.
5515  *
5516  * total     target    max
5517  * memory    ratio     inactive anon
5518  * -------------------------------------
5519  *   10MB       1         5MB
5520  *  100MB       1        50MB
5521  *    1GB       3       250MB
5522  *   10GB      10       0.9GB
5523  *  100GB      31         3GB
5524  *    1TB     101        10GB
5525  *   10TB     320        32GB
5526  */
5527 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5528 {
5529 	unsigned int gb, ratio;
5530 
5531 	/* Zone size in gigabytes */
5532 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5533 	if (gb)
5534 		ratio = int_sqrt(10 * gb);
5535 	else
5536 		ratio = 1;
5537 
5538 	zone->inactive_ratio = ratio;
5539 }
5540 
5541 static void __meminit setup_per_zone_inactive_ratio(void)
5542 {
5543 	struct zone *zone;
5544 
5545 	for_each_zone(zone)
5546 		calculate_zone_inactive_ratio(zone);
5547 }
5548 
5549 /*
5550  * Initialise min_free_kbytes.
5551  *
5552  * For small machines we want it small (128k min).  For large machines
5553  * we want it large (64MB max).  But it is not linear, because network
5554  * bandwidth does not increase linearly with machine size.  We use
5555  *
5556  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5557  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5558  *
5559  * which yields
5560  *
5561  * 16MB:	512k
5562  * 32MB:	724k
5563  * 64MB:	1024k
5564  * 128MB:	1448k
5565  * 256MB:	2048k
5566  * 512MB:	2896k
5567  * 1024MB:	4096k
5568  * 2048MB:	5792k
5569  * 4096MB:	8192k
5570  * 8192MB:	11584k
5571  * 16384MB:	16384k
5572  */
5573 int __meminit init_per_zone_wmark_min(void)
5574 {
5575 	unsigned long lowmem_kbytes;
5576 
5577 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5578 
5579 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5580 	if (min_free_kbytes < 128)
5581 		min_free_kbytes = 128;
5582 	if (min_free_kbytes > 65536)
5583 		min_free_kbytes = 65536;
5584 	setup_per_zone_wmarks();
5585 	refresh_zone_stat_thresholds();
5586 	setup_per_zone_lowmem_reserve();
5587 	setup_per_zone_inactive_ratio();
5588 	return 0;
5589 }
5590 module_init(init_per_zone_wmark_min)
5591 
5592 /*
5593  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5594  *	that we can call two helper functions whenever min_free_kbytes
5595  *	changes.
5596  */
5597 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5598 	void __user *buffer, size_t *length, loff_t *ppos)
5599 {
5600 	proc_dointvec(table, write, buffer, length, ppos);
5601 	if (write)
5602 		setup_per_zone_wmarks();
5603 	return 0;
5604 }
5605 
5606 #ifdef CONFIG_NUMA
5607 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5608 	void __user *buffer, size_t *length, loff_t *ppos)
5609 {
5610 	struct zone *zone;
5611 	int rc;
5612 
5613 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5614 	if (rc)
5615 		return rc;
5616 
5617 	for_each_zone(zone)
5618 		zone->min_unmapped_pages = (zone->managed_pages *
5619 				sysctl_min_unmapped_ratio) / 100;
5620 	return 0;
5621 }
5622 
5623 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5624 	void __user *buffer, size_t *length, loff_t *ppos)
5625 {
5626 	struct zone *zone;
5627 	int rc;
5628 
5629 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5630 	if (rc)
5631 		return rc;
5632 
5633 	for_each_zone(zone)
5634 		zone->min_slab_pages = (zone->managed_pages *
5635 				sysctl_min_slab_ratio) / 100;
5636 	return 0;
5637 }
5638 #endif
5639 
5640 /*
5641  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5642  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5643  *	whenever sysctl_lowmem_reserve_ratio changes.
5644  *
5645  * The reserve ratio obviously has absolutely no relation with the
5646  * minimum watermarks. The lowmem reserve ratio can only make sense
5647  * if in function of the boot time zone sizes.
5648  */
5649 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5650 	void __user *buffer, size_t *length, loff_t *ppos)
5651 {
5652 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5653 	setup_per_zone_lowmem_reserve();
5654 	return 0;
5655 }
5656 
5657 /*
5658  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5659  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5660  * can have before it gets flushed back to buddy allocator.
5661  */
5662 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5663 	void __user *buffer, size_t *length, loff_t *ppos)
5664 {
5665 	struct zone *zone;
5666 	unsigned int cpu;
5667 	int ret;
5668 
5669 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5670 	if (!write || (ret < 0))
5671 		return ret;
5672 
5673 	mutex_lock(&pcp_batch_high_lock);
5674 	for_each_populated_zone(zone) {
5675 		unsigned long  high;
5676 		high = zone->managed_pages / percpu_pagelist_fraction;
5677 		for_each_possible_cpu(cpu)
5678 			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5679 					 high);
5680 	}
5681 	mutex_unlock(&pcp_batch_high_lock);
5682 	return 0;
5683 }
5684 
5685 int hashdist = HASHDIST_DEFAULT;
5686 
5687 #ifdef CONFIG_NUMA
5688 static int __init set_hashdist(char *str)
5689 {
5690 	if (!str)
5691 		return 0;
5692 	hashdist = simple_strtoul(str, &str, 0);
5693 	return 1;
5694 }
5695 __setup("hashdist=", set_hashdist);
5696 #endif
5697 
5698 /*
5699  * allocate a large system hash table from bootmem
5700  * - it is assumed that the hash table must contain an exact power-of-2
5701  *   quantity of entries
5702  * - limit is the number of hash buckets, not the total allocation size
5703  */
5704 void *__init alloc_large_system_hash(const char *tablename,
5705 				     unsigned long bucketsize,
5706 				     unsigned long numentries,
5707 				     int scale,
5708 				     int flags,
5709 				     unsigned int *_hash_shift,
5710 				     unsigned int *_hash_mask,
5711 				     unsigned long low_limit,
5712 				     unsigned long high_limit)
5713 {
5714 	unsigned long long max = high_limit;
5715 	unsigned long log2qty, size;
5716 	void *table = NULL;
5717 
5718 	/* allow the kernel cmdline to have a say */
5719 	if (!numentries) {
5720 		/* round applicable memory size up to nearest megabyte */
5721 		numentries = nr_kernel_pages;
5722 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5723 		numentries >>= 20 - PAGE_SHIFT;
5724 		numentries <<= 20 - PAGE_SHIFT;
5725 
5726 		/* limit to 1 bucket per 2^scale bytes of low memory */
5727 		if (scale > PAGE_SHIFT)
5728 			numentries >>= (scale - PAGE_SHIFT);
5729 		else
5730 			numentries <<= (PAGE_SHIFT - scale);
5731 
5732 		/* Make sure we've got at least a 0-order allocation.. */
5733 		if (unlikely(flags & HASH_SMALL)) {
5734 			/* Makes no sense without HASH_EARLY */
5735 			WARN_ON(!(flags & HASH_EARLY));
5736 			if (!(numentries >> *_hash_shift)) {
5737 				numentries = 1UL << *_hash_shift;
5738 				BUG_ON(!numentries);
5739 			}
5740 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5741 			numentries = PAGE_SIZE / bucketsize;
5742 	}
5743 	numentries = roundup_pow_of_two(numentries);
5744 
5745 	/* limit allocation size to 1/16 total memory by default */
5746 	if (max == 0) {
5747 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5748 		do_div(max, bucketsize);
5749 	}
5750 	max = min(max, 0x80000000ULL);
5751 
5752 	if (numentries < low_limit)
5753 		numentries = low_limit;
5754 	if (numentries > max)
5755 		numentries = max;
5756 
5757 	log2qty = ilog2(numentries);
5758 
5759 	do {
5760 		size = bucketsize << log2qty;
5761 		if (flags & HASH_EARLY)
5762 			table = alloc_bootmem_nopanic(size);
5763 		else if (hashdist)
5764 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5765 		else {
5766 			/*
5767 			 * If bucketsize is not a power-of-two, we may free
5768 			 * some pages at the end of hash table which
5769 			 * alloc_pages_exact() automatically does
5770 			 */
5771 			if (get_order(size) < MAX_ORDER) {
5772 				table = alloc_pages_exact(size, GFP_ATOMIC);
5773 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5774 			}
5775 		}
5776 	} while (!table && size > PAGE_SIZE && --log2qty);
5777 
5778 	if (!table)
5779 		panic("Failed to allocate %s hash table\n", tablename);
5780 
5781 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5782 	       tablename,
5783 	       (1UL << log2qty),
5784 	       ilog2(size) - PAGE_SHIFT,
5785 	       size);
5786 
5787 	if (_hash_shift)
5788 		*_hash_shift = log2qty;
5789 	if (_hash_mask)
5790 		*_hash_mask = (1 << log2qty) - 1;
5791 
5792 	return table;
5793 }
5794 
5795 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5796 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5797 							unsigned long pfn)
5798 {
5799 #ifdef CONFIG_SPARSEMEM
5800 	return __pfn_to_section(pfn)->pageblock_flags;
5801 #else
5802 	return zone->pageblock_flags;
5803 #endif /* CONFIG_SPARSEMEM */
5804 }
5805 
5806 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5807 {
5808 #ifdef CONFIG_SPARSEMEM
5809 	pfn &= (PAGES_PER_SECTION-1);
5810 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5811 #else
5812 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5813 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5814 #endif /* CONFIG_SPARSEMEM */
5815 }
5816 
5817 /**
5818  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5819  * @page: The page within the block of interest
5820  * @start_bitidx: The first bit of interest to retrieve
5821  * @end_bitidx: The last bit of interest
5822  * returns pageblock_bits flags
5823  */
5824 unsigned long get_pageblock_flags_group(struct page *page,
5825 					int start_bitidx, int end_bitidx)
5826 {
5827 	struct zone *zone;
5828 	unsigned long *bitmap;
5829 	unsigned long pfn, bitidx;
5830 	unsigned long flags = 0;
5831 	unsigned long value = 1;
5832 
5833 	zone = page_zone(page);
5834 	pfn = page_to_pfn(page);
5835 	bitmap = get_pageblock_bitmap(zone, pfn);
5836 	bitidx = pfn_to_bitidx(zone, pfn);
5837 
5838 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5839 		if (test_bit(bitidx + start_bitidx, bitmap))
5840 			flags |= value;
5841 
5842 	return flags;
5843 }
5844 
5845 /**
5846  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5847  * @page: The page within the block of interest
5848  * @start_bitidx: The first bit of interest
5849  * @end_bitidx: The last bit of interest
5850  * @flags: The flags to set
5851  */
5852 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5853 					int start_bitidx, int end_bitidx)
5854 {
5855 	struct zone *zone;
5856 	unsigned long *bitmap;
5857 	unsigned long pfn, bitidx;
5858 	unsigned long value = 1;
5859 
5860 	zone = page_zone(page);
5861 	pfn = page_to_pfn(page);
5862 	bitmap = get_pageblock_bitmap(zone, pfn);
5863 	bitidx = pfn_to_bitidx(zone, pfn);
5864 	VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5865 
5866 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5867 		if (flags & value)
5868 			__set_bit(bitidx + start_bitidx, bitmap);
5869 		else
5870 			__clear_bit(bitidx + start_bitidx, bitmap);
5871 }
5872 
5873 /*
5874  * This function checks whether pageblock includes unmovable pages or not.
5875  * If @count is not zero, it is okay to include less @count unmovable pages
5876  *
5877  * PageLRU check wihtout isolation or lru_lock could race so that
5878  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5879  * expect this function should be exact.
5880  */
5881 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5882 			 bool skip_hwpoisoned_pages)
5883 {
5884 	unsigned long pfn, iter, found;
5885 	int mt;
5886 
5887 	/*
5888 	 * For avoiding noise data, lru_add_drain_all() should be called
5889 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5890 	 */
5891 	if (zone_idx(zone) == ZONE_MOVABLE)
5892 		return false;
5893 	mt = get_pageblock_migratetype(page);
5894 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5895 		return false;
5896 
5897 	pfn = page_to_pfn(page);
5898 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5899 		unsigned long check = pfn + iter;
5900 
5901 		if (!pfn_valid_within(check))
5902 			continue;
5903 
5904 		page = pfn_to_page(check);
5905 		/*
5906 		 * We can't use page_count without pin a page
5907 		 * because another CPU can free compound page.
5908 		 * This check already skips compound tails of THP
5909 		 * because their page->_count is zero at all time.
5910 		 */
5911 		if (!atomic_read(&page->_count)) {
5912 			if (PageBuddy(page))
5913 				iter += (1 << page_order(page)) - 1;
5914 			continue;
5915 		}
5916 
5917 		/*
5918 		 * The HWPoisoned page may be not in buddy system, and
5919 		 * page_count() is not 0.
5920 		 */
5921 		if (skip_hwpoisoned_pages && PageHWPoison(page))
5922 			continue;
5923 
5924 		if (!PageLRU(page))
5925 			found++;
5926 		/*
5927 		 * If there are RECLAIMABLE pages, we need to check it.
5928 		 * But now, memory offline itself doesn't call shrink_slab()
5929 		 * and it still to be fixed.
5930 		 */
5931 		/*
5932 		 * If the page is not RAM, page_count()should be 0.
5933 		 * we don't need more check. This is an _used_ not-movable page.
5934 		 *
5935 		 * The problematic thing here is PG_reserved pages. PG_reserved
5936 		 * is set to both of a memory hole page and a _used_ kernel
5937 		 * page at boot.
5938 		 */
5939 		if (found > count)
5940 			return true;
5941 	}
5942 	return false;
5943 }
5944 
5945 bool is_pageblock_removable_nolock(struct page *page)
5946 {
5947 	struct zone *zone;
5948 	unsigned long pfn;
5949 
5950 	/*
5951 	 * We have to be careful here because we are iterating over memory
5952 	 * sections which are not zone aware so we might end up outside of
5953 	 * the zone but still within the section.
5954 	 * We have to take care about the node as well. If the node is offline
5955 	 * its NODE_DATA will be NULL - see page_zone.
5956 	 */
5957 	if (!node_online(page_to_nid(page)))
5958 		return false;
5959 
5960 	zone = page_zone(page);
5961 	pfn = page_to_pfn(page);
5962 	if (!zone_spans_pfn(zone, pfn))
5963 		return false;
5964 
5965 	return !has_unmovable_pages(zone, page, 0, true);
5966 }
5967 
5968 #ifdef CONFIG_CMA
5969 
5970 static unsigned long pfn_max_align_down(unsigned long pfn)
5971 {
5972 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5973 			     pageblock_nr_pages) - 1);
5974 }
5975 
5976 static unsigned long pfn_max_align_up(unsigned long pfn)
5977 {
5978 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5979 				pageblock_nr_pages));
5980 }
5981 
5982 /* [start, end) must belong to a single zone. */
5983 static int __alloc_contig_migrate_range(struct compact_control *cc,
5984 					unsigned long start, unsigned long end)
5985 {
5986 	/* This function is based on compact_zone() from compaction.c. */
5987 	unsigned long nr_reclaimed;
5988 	unsigned long pfn = start;
5989 	unsigned int tries = 0;
5990 	int ret = 0;
5991 
5992 	migrate_prep();
5993 
5994 	while (pfn < end || !list_empty(&cc->migratepages)) {
5995 		if (fatal_signal_pending(current)) {
5996 			ret = -EINTR;
5997 			break;
5998 		}
5999 
6000 		if (list_empty(&cc->migratepages)) {
6001 			cc->nr_migratepages = 0;
6002 			pfn = isolate_migratepages_range(cc->zone, cc,
6003 							 pfn, end, true);
6004 			if (!pfn) {
6005 				ret = -EINTR;
6006 				break;
6007 			}
6008 			tries = 0;
6009 		} else if (++tries == 5) {
6010 			ret = ret < 0 ? ret : -EBUSY;
6011 			break;
6012 		}
6013 
6014 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6015 							&cc->migratepages);
6016 		cc->nr_migratepages -= nr_reclaimed;
6017 
6018 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6019 				    0, MIGRATE_SYNC, MR_CMA);
6020 	}
6021 	if (ret < 0) {
6022 		putback_movable_pages(&cc->migratepages);
6023 		return ret;
6024 	}
6025 	return 0;
6026 }
6027 
6028 /**
6029  * alloc_contig_range() -- tries to allocate given range of pages
6030  * @start:	start PFN to allocate
6031  * @end:	one-past-the-last PFN to allocate
6032  * @migratetype:	migratetype of the underlaying pageblocks (either
6033  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6034  *			in range must have the same migratetype and it must
6035  *			be either of the two.
6036  *
6037  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6038  * aligned, however it's the caller's responsibility to guarantee that
6039  * we are the only thread that changes migrate type of pageblocks the
6040  * pages fall in.
6041  *
6042  * The PFN range must belong to a single zone.
6043  *
6044  * Returns zero on success or negative error code.  On success all
6045  * pages which PFN is in [start, end) are allocated for the caller and
6046  * need to be freed with free_contig_range().
6047  */
6048 int alloc_contig_range(unsigned long start, unsigned long end,
6049 		       unsigned migratetype)
6050 {
6051 	unsigned long outer_start, outer_end;
6052 	int ret = 0, order;
6053 
6054 	struct compact_control cc = {
6055 		.nr_migratepages = 0,
6056 		.order = -1,
6057 		.zone = page_zone(pfn_to_page(start)),
6058 		.sync = true,
6059 		.ignore_skip_hint = true,
6060 	};
6061 	INIT_LIST_HEAD(&cc.migratepages);
6062 
6063 	/*
6064 	 * What we do here is we mark all pageblocks in range as
6065 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6066 	 * have different sizes, and due to the way page allocator
6067 	 * work, we align the range to biggest of the two pages so
6068 	 * that page allocator won't try to merge buddies from
6069 	 * different pageblocks and change MIGRATE_ISOLATE to some
6070 	 * other migration type.
6071 	 *
6072 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6073 	 * migrate the pages from an unaligned range (ie. pages that
6074 	 * we are interested in).  This will put all the pages in
6075 	 * range back to page allocator as MIGRATE_ISOLATE.
6076 	 *
6077 	 * When this is done, we take the pages in range from page
6078 	 * allocator removing them from the buddy system.  This way
6079 	 * page allocator will never consider using them.
6080 	 *
6081 	 * This lets us mark the pageblocks back as
6082 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6083 	 * aligned range but not in the unaligned, original range are
6084 	 * put back to page allocator so that buddy can use them.
6085 	 */
6086 
6087 	ret = start_isolate_page_range(pfn_max_align_down(start),
6088 				       pfn_max_align_up(end), migratetype,
6089 				       false);
6090 	if (ret)
6091 		return ret;
6092 
6093 	ret = __alloc_contig_migrate_range(&cc, start, end);
6094 	if (ret)
6095 		goto done;
6096 
6097 	/*
6098 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6099 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6100 	 * more, all pages in [start, end) are free in page allocator.
6101 	 * What we are going to do is to allocate all pages from
6102 	 * [start, end) (that is remove them from page allocator).
6103 	 *
6104 	 * The only problem is that pages at the beginning and at the
6105 	 * end of interesting range may be not aligned with pages that
6106 	 * page allocator holds, ie. they can be part of higher order
6107 	 * pages.  Because of this, we reserve the bigger range and
6108 	 * once this is done free the pages we are not interested in.
6109 	 *
6110 	 * We don't have to hold zone->lock here because the pages are
6111 	 * isolated thus they won't get removed from buddy.
6112 	 */
6113 
6114 	lru_add_drain_all();
6115 	drain_all_pages();
6116 
6117 	order = 0;
6118 	outer_start = start;
6119 	while (!PageBuddy(pfn_to_page(outer_start))) {
6120 		if (++order >= MAX_ORDER) {
6121 			ret = -EBUSY;
6122 			goto done;
6123 		}
6124 		outer_start &= ~0UL << order;
6125 	}
6126 
6127 	/* Make sure the range is really isolated. */
6128 	if (test_pages_isolated(outer_start, end, false)) {
6129 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6130 		       outer_start, end);
6131 		ret = -EBUSY;
6132 		goto done;
6133 	}
6134 
6135 
6136 	/* Grab isolated pages from freelists. */
6137 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6138 	if (!outer_end) {
6139 		ret = -EBUSY;
6140 		goto done;
6141 	}
6142 
6143 	/* Free head and tail (if any) */
6144 	if (start != outer_start)
6145 		free_contig_range(outer_start, start - outer_start);
6146 	if (end != outer_end)
6147 		free_contig_range(end, outer_end - end);
6148 
6149 done:
6150 	undo_isolate_page_range(pfn_max_align_down(start),
6151 				pfn_max_align_up(end), migratetype);
6152 	return ret;
6153 }
6154 
6155 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6156 {
6157 	unsigned int count = 0;
6158 
6159 	for (; nr_pages--; pfn++) {
6160 		struct page *page = pfn_to_page(pfn);
6161 
6162 		count += page_count(page) != 1;
6163 		__free_page(page);
6164 	}
6165 	WARN(count != 0, "%d pages are still in use!\n", count);
6166 }
6167 #endif
6168 
6169 #ifdef CONFIG_MEMORY_HOTPLUG
6170 /*
6171  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6172  * page high values need to be recalulated.
6173  */
6174 void __meminit zone_pcp_update(struct zone *zone)
6175 {
6176 	unsigned cpu;
6177 	mutex_lock(&pcp_batch_high_lock);
6178 	for_each_possible_cpu(cpu)
6179 		pageset_set_high_and_batch(zone,
6180 				per_cpu_ptr(zone->pageset, cpu));
6181 	mutex_unlock(&pcp_batch_high_lock);
6182 }
6183 #endif
6184 
6185 void zone_pcp_reset(struct zone *zone)
6186 {
6187 	unsigned long flags;
6188 	int cpu;
6189 	struct per_cpu_pageset *pset;
6190 
6191 	/* avoid races with drain_pages()  */
6192 	local_irq_save(flags);
6193 	if (zone->pageset != &boot_pageset) {
6194 		for_each_online_cpu(cpu) {
6195 			pset = per_cpu_ptr(zone->pageset, cpu);
6196 			drain_zonestat(zone, pset);
6197 		}
6198 		free_percpu(zone->pageset);
6199 		zone->pageset = &boot_pageset;
6200 	}
6201 	local_irq_restore(flags);
6202 }
6203 
6204 #ifdef CONFIG_MEMORY_HOTREMOVE
6205 /*
6206  * All pages in the range must be isolated before calling this.
6207  */
6208 void
6209 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6210 {
6211 	struct page *page;
6212 	struct zone *zone;
6213 	int order, i;
6214 	unsigned long pfn;
6215 	unsigned long flags;
6216 	/* find the first valid pfn */
6217 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6218 		if (pfn_valid(pfn))
6219 			break;
6220 	if (pfn == end_pfn)
6221 		return;
6222 	zone = page_zone(pfn_to_page(pfn));
6223 	spin_lock_irqsave(&zone->lock, flags);
6224 	pfn = start_pfn;
6225 	while (pfn < end_pfn) {
6226 		if (!pfn_valid(pfn)) {
6227 			pfn++;
6228 			continue;
6229 		}
6230 		page = pfn_to_page(pfn);
6231 		/*
6232 		 * The HWPoisoned page may be not in buddy system, and
6233 		 * page_count() is not 0.
6234 		 */
6235 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6236 			pfn++;
6237 			SetPageReserved(page);
6238 			continue;
6239 		}
6240 
6241 		BUG_ON(page_count(page));
6242 		BUG_ON(!PageBuddy(page));
6243 		order = page_order(page);
6244 #ifdef CONFIG_DEBUG_VM
6245 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6246 		       pfn, 1 << order, end_pfn);
6247 #endif
6248 		list_del(&page->lru);
6249 		rmv_page_order(page);
6250 		zone->free_area[order].nr_free--;
6251 #ifdef CONFIG_HIGHMEM
6252 		if (PageHighMem(page))
6253 			totalhigh_pages -= 1 << order;
6254 #endif
6255 		for (i = 0; i < (1 << order); i++)
6256 			SetPageReserved((page+i));
6257 		pfn += (1 << order);
6258 	}
6259 	spin_unlock_irqrestore(&zone->lock, flags);
6260 }
6261 #endif
6262 
6263 #ifdef CONFIG_MEMORY_FAILURE
6264 bool is_free_buddy_page(struct page *page)
6265 {
6266 	struct zone *zone = page_zone(page);
6267 	unsigned long pfn = page_to_pfn(page);
6268 	unsigned long flags;
6269 	int order;
6270 
6271 	spin_lock_irqsave(&zone->lock, flags);
6272 	for (order = 0; order < MAX_ORDER; order++) {
6273 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6274 
6275 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6276 			break;
6277 	}
6278 	spin_unlock_irqrestore(&zone->lock, flags);
6279 
6280 	return order < MAX_ORDER;
6281 }
6282 #endif
6283 
6284 static const struct trace_print_flags pageflag_names[] = {
6285 	{1UL << PG_locked,		"locked"	},
6286 	{1UL << PG_error,		"error"		},
6287 	{1UL << PG_referenced,		"referenced"	},
6288 	{1UL << PG_uptodate,		"uptodate"	},
6289 	{1UL << PG_dirty,		"dirty"		},
6290 	{1UL << PG_lru,			"lru"		},
6291 	{1UL << PG_active,		"active"	},
6292 	{1UL << PG_slab,		"slab"		},
6293 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6294 	{1UL << PG_arch_1,		"arch_1"	},
6295 	{1UL << PG_reserved,		"reserved"	},
6296 	{1UL << PG_private,		"private"	},
6297 	{1UL << PG_private_2,		"private_2"	},
6298 	{1UL << PG_writeback,		"writeback"	},
6299 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6300 	{1UL << PG_head,		"head"		},
6301 	{1UL << PG_tail,		"tail"		},
6302 #else
6303 	{1UL << PG_compound,		"compound"	},
6304 #endif
6305 	{1UL << PG_swapcache,		"swapcache"	},
6306 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6307 	{1UL << PG_reclaim,		"reclaim"	},
6308 	{1UL << PG_swapbacked,		"swapbacked"	},
6309 	{1UL << PG_unevictable,		"unevictable"	},
6310 #ifdef CONFIG_MMU
6311 	{1UL << PG_mlocked,		"mlocked"	},
6312 #endif
6313 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6314 	{1UL << PG_uncached,		"uncached"	},
6315 #endif
6316 #ifdef CONFIG_MEMORY_FAILURE
6317 	{1UL << PG_hwpoison,		"hwpoison"	},
6318 #endif
6319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6320 	{1UL << PG_compound_lock,	"compound_lock"	},
6321 #endif
6322 };
6323 
6324 static void dump_page_flags(unsigned long flags)
6325 {
6326 	const char *delim = "";
6327 	unsigned long mask;
6328 	int i;
6329 
6330 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6331 
6332 	printk(KERN_ALERT "page flags: %#lx(", flags);
6333 
6334 	/* remove zone id */
6335 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6336 
6337 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6338 
6339 		mask = pageflag_names[i].mask;
6340 		if ((flags & mask) != mask)
6341 			continue;
6342 
6343 		flags &= ~mask;
6344 		printk("%s%s", delim, pageflag_names[i].name);
6345 		delim = "|";
6346 	}
6347 
6348 	/* check for left over flags */
6349 	if (flags)
6350 		printk("%s%#lx", delim, flags);
6351 
6352 	printk(")\n");
6353 }
6354 
6355 void dump_page(struct page *page)
6356 {
6357 	printk(KERN_ALERT
6358 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6359 		page, atomic_read(&page->_count), page_mapcount(page),
6360 		page->mapping, page->index);
6361 	dump_page_flags(page->flags);
6362 	mem_cgroup_print_bad_page(page);
6363 }
6364