1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 64 #include <asm/sections.h> 65 #include <asm/tlbflush.h> 66 #include <asm/div64.h> 67 #include "internal.h" 68 69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 70 static DEFINE_MUTEX(pcp_batch_high_lock); 71 72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 73 DEFINE_PER_CPU(int, numa_node); 74 EXPORT_PER_CPU_SYMBOL(numa_node); 75 #endif 76 77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 78 /* 79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 82 * defined in <linux/topology.h>. 83 */ 84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 85 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 86 #endif 87 88 /* 89 * Array of node states. 90 */ 91 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 92 [N_POSSIBLE] = NODE_MASK_ALL, 93 [N_ONLINE] = { { [0] = 1UL } }, 94 #ifndef CONFIG_NUMA 95 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 96 #ifdef CONFIG_HIGHMEM 97 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 98 #endif 99 #ifdef CONFIG_MOVABLE_NODE 100 [N_MEMORY] = { { [0] = 1UL } }, 101 #endif 102 [N_CPU] = { { [0] = 1UL } }, 103 #endif /* NUMA */ 104 }; 105 EXPORT_SYMBOL(node_states); 106 107 /* Protect totalram_pages and zone->managed_pages */ 108 static DEFINE_SPINLOCK(managed_page_count_lock); 109 110 unsigned long totalram_pages __read_mostly; 111 unsigned long totalreserve_pages __read_mostly; 112 /* 113 * When calculating the number of globally allowed dirty pages, there 114 * is a certain number of per-zone reserves that should not be 115 * considered dirtyable memory. This is the sum of those reserves 116 * over all existing zones that contribute dirtyable memory. 117 */ 118 unsigned long dirty_balance_reserve __read_mostly; 119 120 int percpu_pagelist_fraction; 121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 122 123 #ifdef CONFIG_PM_SLEEP 124 /* 125 * The following functions are used by the suspend/hibernate code to temporarily 126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 127 * while devices are suspended. To avoid races with the suspend/hibernate code, 128 * they should always be called with pm_mutex held (gfp_allowed_mask also should 129 * only be modified with pm_mutex held, unless the suspend/hibernate code is 130 * guaranteed not to run in parallel with that modification). 131 */ 132 133 static gfp_t saved_gfp_mask; 134 135 void pm_restore_gfp_mask(void) 136 { 137 WARN_ON(!mutex_is_locked(&pm_mutex)); 138 if (saved_gfp_mask) { 139 gfp_allowed_mask = saved_gfp_mask; 140 saved_gfp_mask = 0; 141 } 142 } 143 144 void pm_restrict_gfp_mask(void) 145 { 146 WARN_ON(!mutex_is_locked(&pm_mutex)); 147 WARN_ON(saved_gfp_mask); 148 saved_gfp_mask = gfp_allowed_mask; 149 gfp_allowed_mask &= ~GFP_IOFS; 150 } 151 152 bool pm_suspended_storage(void) 153 { 154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 155 return false; 156 return true; 157 } 158 #endif /* CONFIG_PM_SLEEP */ 159 160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 161 int pageblock_order __read_mostly; 162 #endif 163 164 static void __free_pages_ok(struct page *page, unsigned int order); 165 166 /* 167 * results with 256, 32 in the lowmem_reserve sysctl: 168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 169 * 1G machine -> (16M dma, 784M normal, 224M high) 170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 173 * 174 * TBD: should special case ZONE_DMA32 machines here - in those we normally 175 * don't need any ZONE_NORMAL reservation 176 */ 177 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 178 #ifdef CONFIG_ZONE_DMA 179 256, 180 #endif 181 #ifdef CONFIG_ZONE_DMA32 182 256, 183 #endif 184 #ifdef CONFIG_HIGHMEM 185 32, 186 #endif 187 32, 188 }; 189 190 EXPORT_SYMBOL(totalram_pages); 191 192 static char * const zone_names[MAX_NR_ZONES] = { 193 #ifdef CONFIG_ZONE_DMA 194 "DMA", 195 #endif 196 #ifdef CONFIG_ZONE_DMA32 197 "DMA32", 198 #endif 199 "Normal", 200 #ifdef CONFIG_HIGHMEM 201 "HighMem", 202 #endif 203 "Movable", 204 }; 205 206 int min_free_kbytes = 1024; 207 208 static unsigned long __meminitdata nr_kernel_pages; 209 static unsigned long __meminitdata nr_all_pages; 210 static unsigned long __meminitdata dma_reserve; 211 212 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 213 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 214 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 215 static unsigned long __initdata required_kernelcore; 216 static unsigned long __initdata required_movablecore; 217 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 218 219 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 220 int movable_zone; 221 EXPORT_SYMBOL(movable_zone); 222 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 223 224 #if MAX_NUMNODES > 1 225 int nr_node_ids __read_mostly = MAX_NUMNODES; 226 int nr_online_nodes __read_mostly = 1; 227 EXPORT_SYMBOL(nr_node_ids); 228 EXPORT_SYMBOL(nr_online_nodes); 229 #endif 230 231 int page_group_by_mobility_disabled __read_mostly; 232 233 void set_pageblock_migratetype(struct page *page, int migratetype) 234 { 235 236 if (unlikely(page_group_by_mobility_disabled)) 237 migratetype = MIGRATE_UNMOVABLE; 238 239 set_pageblock_flags_group(page, (unsigned long)migratetype, 240 PB_migrate, PB_migrate_end); 241 } 242 243 bool oom_killer_disabled __read_mostly; 244 245 #ifdef CONFIG_DEBUG_VM 246 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 247 { 248 int ret = 0; 249 unsigned seq; 250 unsigned long pfn = page_to_pfn(page); 251 unsigned long sp, start_pfn; 252 253 do { 254 seq = zone_span_seqbegin(zone); 255 start_pfn = zone->zone_start_pfn; 256 sp = zone->spanned_pages; 257 if (!zone_spans_pfn(zone, pfn)) 258 ret = 1; 259 } while (zone_span_seqretry(zone, seq)); 260 261 if (ret) 262 pr_err("page %lu outside zone [ %lu - %lu ]\n", 263 pfn, start_pfn, start_pfn + sp); 264 265 return ret; 266 } 267 268 static int page_is_consistent(struct zone *zone, struct page *page) 269 { 270 if (!pfn_valid_within(page_to_pfn(page))) 271 return 0; 272 if (zone != page_zone(page)) 273 return 0; 274 275 return 1; 276 } 277 /* 278 * Temporary debugging check for pages not lying within a given zone. 279 */ 280 static int bad_range(struct zone *zone, struct page *page) 281 { 282 if (page_outside_zone_boundaries(zone, page)) 283 return 1; 284 if (!page_is_consistent(zone, page)) 285 return 1; 286 287 return 0; 288 } 289 #else 290 static inline int bad_range(struct zone *zone, struct page *page) 291 { 292 return 0; 293 } 294 #endif 295 296 static void bad_page(struct page *page) 297 { 298 static unsigned long resume; 299 static unsigned long nr_shown; 300 static unsigned long nr_unshown; 301 302 /* Don't complain about poisoned pages */ 303 if (PageHWPoison(page)) { 304 page_mapcount_reset(page); /* remove PageBuddy */ 305 return; 306 } 307 308 /* 309 * Allow a burst of 60 reports, then keep quiet for that minute; 310 * or allow a steady drip of one report per second. 311 */ 312 if (nr_shown == 60) { 313 if (time_before(jiffies, resume)) { 314 nr_unshown++; 315 goto out; 316 } 317 if (nr_unshown) { 318 printk(KERN_ALERT 319 "BUG: Bad page state: %lu messages suppressed\n", 320 nr_unshown); 321 nr_unshown = 0; 322 } 323 nr_shown = 0; 324 } 325 if (nr_shown++ == 0) 326 resume = jiffies + 60 * HZ; 327 328 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 329 current->comm, page_to_pfn(page)); 330 dump_page(page); 331 332 print_modules(); 333 dump_stack(); 334 out: 335 /* Leave bad fields for debug, except PageBuddy could make trouble */ 336 page_mapcount_reset(page); /* remove PageBuddy */ 337 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 338 } 339 340 /* 341 * Higher-order pages are called "compound pages". They are structured thusly: 342 * 343 * The first PAGE_SIZE page is called the "head page". 344 * 345 * The remaining PAGE_SIZE pages are called "tail pages". 346 * 347 * All pages have PG_compound set. All tail pages have their ->first_page 348 * pointing at the head page. 349 * 350 * The first tail page's ->lru.next holds the address of the compound page's 351 * put_page() function. Its ->lru.prev holds the order of allocation. 352 * This usage means that zero-order pages may not be compound. 353 */ 354 355 static void free_compound_page(struct page *page) 356 { 357 __free_pages_ok(page, compound_order(page)); 358 } 359 360 void prep_compound_page(struct page *page, unsigned long order) 361 { 362 int i; 363 int nr_pages = 1 << order; 364 365 set_compound_page_dtor(page, free_compound_page); 366 set_compound_order(page, order); 367 __SetPageHead(page); 368 for (i = 1; i < nr_pages; i++) { 369 struct page *p = page + i; 370 __SetPageTail(p); 371 set_page_count(p, 0); 372 p->first_page = page; 373 } 374 } 375 376 /* update __split_huge_page_refcount if you change this function */ 377 static int destroy_compound_page(struct page *page, unsigned long order) 378 { 379 int i; 380 int nr_pages = 1 << order; 381 int bad = 0; 382 383 if (unlikely(compound_order(page) != order)) { 384 bad_page(page); 385 bad++; 386 } 387 388 __ClearPageHead(page); 389 390 for (i = 1; i < nr_pages; i++) { 391 struct page *p = page + i; 392 393 if (unlikely(!PageTail(p) || (p->first_page != page))) { 394 bad_page(page); 395 bad++; 396 } 397 __ClearPageTail(p); 398 } 399 400 return bad; 401 } 402 403 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 404 { 405 int i; 406 407 /* 408 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 409 * and __GFP_HIGHMEM from hard or soft interrupt context. 410 */ 411 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 412 for (i = 0; i < (1 << order); i++) 413 clear_highpage(page + i); 414 } 415 416 #ifdef CONFIG_DEBUG_PAGEALLOC 417 unsigned int _debug_guardpage_minorder; 418 419 static int __init debug_guardpage_minorder_setup(char *buf) 420 { 421 unsigned long res; 422 423 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 424 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 425 return 0; 426 } 427 _debug_guardpage_minorder = res; 428 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 429 return 0; 430 } 431 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 432 433 static inline void set_page_guard_flag(struct page *page) 434 { 435 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 436 } 437 438 static inline void clear_page_guard_flag(struct page *page) 439 { 440 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 441 } 442 #else 443 static inline void set_page_guard_flag(struct page *page) { } 444 static inline void clear_page_guard_flag(struct page *page) { } 445 #endif 446 447 static inline void set_page_order(struct page *page, int order) 448 { 449 set_page_private(page, order); 450 __SetPageBuddy(page); 451 } 452 453 static inline void rmv_page_order(struct page *page) 454 { 455 __ClearPageBuddy(page); 456 set_page_private(page, 0); 457 } 458 459 /* 460 * Locate the struct page for both the matching buddy in our 461 * pair (buddy1) and the combined O(n+1) page they form (page). 462 * 463 * 1) Any buddy B1 will have an order O twin B2 which satisfies 464 * the following equation: 465 * B2 = B1 ^ (1 << O) 466 * For example, if the starting buddy (buddy2) is #8 its order 467 * 1 buddy is #10: 468 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 469 * 470 * 2) Any buddy B will have an order O+1 parent P which 471 * satisfies the following equation: 472 * P = B & ~(1 << O) 473 * 474 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 475 */ 476 static inline unsigned long 477 __find_buddy_index(unsigned long page_idx, unsigned int order) 478 { 479 return page_idx ^ (1 << order); 480 } 481 482 /* 483 * This function checks whether a page is free && is the buddy 484 * we can do coalesce a page and its buddy if 485 * (a) the buddy is not in a hole && 486 * (b) the buddy is in the buddy system && 487 * (c) a page and its buddy have the same order && 488 * (d) a page and its buddy are in the same zone. 489 * 490 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 491 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 492 * 493 * For recording page's order, we use page_private(page). 494 */ 495 static inline int page_is_buddy(struct page *page, struct page *buddy, 496 int order) 497 { 498 if (!pfn_valid_within(page_to_pfn(buddy))) 499 return 0; 500 501 if (page_zone_id(page) != page_zone_id(buddy)) 502 return 0; 503 504 if (page_is_guard(buddy) && page_order(buddy) == order) { 505 VM_BUG_ON(page_count(buddy) != 0); 506 return 1; 507 } 508 509 if (PageBuddy(buddy) && page_order(buddy) == order) { 510 VM_BUG_ON(page_count(buddy) != 0); 511 return 1; 512 } 513 return 0; 514 } 515 516 /* 517 * Freeing function for a buddy system allocator. 518 * 519 * The concept of a buddy system is to maintain direct-mapped table 520 * (containing bit values) for memory blocks of various "orders". 521 * The bottom level table contains the map for the smallest allocatable 522 * units of memory (here, pages), and each level above it describes 523 * pairs of units from the levels below, hence, "buddies". 524 * At a high level, all that happens here is marking the table entry 525 * at the bottom level available, and propagating the changes upward 526 * as necessary, plus some accounting needed to play nicely with other 527 * parts of the VM system. 528 * At each level, we keep a list of pages, which are heads of continuous 529 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 530 * order is recorded in page_private(page) field. 531 * So when we are allocating or freeing one, we can derive the state of the 532 * other. That is, if we allocate a small block, and both were 533 * free, the remainder of the region must be split into blocks. 534 * If a block is freed, and its buddy is also free, then this 535 * triggers coalescing into a block of larger size. 536 * 537 * -- nyc 538 */ 539 540 static inline void __free_one_page(struct page *page, 541 struct zone *zone, unsigned int order, 542 int migratetype) 543 { 544 unsigned long page_idx; 545 unsigned long combined_idx; 546 unsigned long uninitialized_var(buddy_idx); 547 struct page *buddy; 548 549 VM_BUG_ON(!zone_is_initialized(zone)); 550 551 if (unlikely(PageCompound(page))) 552 if (unlikely(destroy_compound_page(page, order))) 553 return; 554 555 VM_BUG_ON(migratetype == -1); 556 557 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 558 559 VM_BUG_ON(page_idx & ((1 << order) - 1)); 560 VM_BUG_ON(bad_range(zone, page)); 561 562 while (order < MAX_ORDER-1) { 563 buddy_idx = __find_buddy_index(page_idx, order); 564 buddy = page + (buddy_idx - page_idx); 565 if (!page_is_buddy(page, buddy, order)) 566 break; 567 /* 568 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 569 * merge with it and move up one order. 570 */ 571 if (page_is_guard(buddy)) { 572 clear_page_guard_flag(buddy); 573 set_page_private(page, 0); 574 __mod_zone_freepage_state(zone, 1 << order, 575 migratetype); 576 } else { 577 list_del(&buddy->lru); 578 zone->free_area[order].nr_free--; 579 rmv_page_order(buddy); 580 } 581 combined_idx = buddy_idx & page_idx; 582 page = page + (combined_idx - page_idx); 583 page_idx = combined_idx; 584 order++; 585 } 586 set_page_order(page, order); 587 588 /* 589 * If this is not the largest possible page, check if the buddy 590 * of the next-highest order is free. If it is, it's possible 591 * that pages are being freed that will coalesce soon. In case, 592 * that is happening, add the free page to the tail of the list 593 * so it's less likely to be used soon and more likely to be merged 594 * as a higher order page 595 */ 596 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 597 struct page *higher_page, *higher_buddy; 598 combined_idx = buddy_idx & page_idx; 599 higher_page = page + (combined_idx - page_idx); 600 buddy_idx = __find_buddy_index(combined_idx, order + 1); 601 higher_buddy = higher_page + (buddy_idx - combined_idx); 602 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 603 list_add_tail(&page->lru, 604 &zone->free_area[order].free_list[migratetype]); 605 goto out; 606 } 607 } 608 609 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 610 out: 611 zone->free_area[order].nr_free++; 612 } 613 614 static inline int free_pages_check(struct page *page) 615 { 616 if (unlikely(page_mapcount(page) | 617 (page->mapping != NULL) | 618 (atomic_read(&page->_count) != 0) | 619 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 620 (mem_cgroup_bad_page_check(page)))) { 621 bad_page(page); 622 return 1; 623 } 624 page_nid_reset_last(page); 625 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 626 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 627 return 0; 628 } 629 630 /* 631 * Frees a number of pages from the PCP lists 632 * Assumes all pages on list are in same zone, and of same order. 633 * count is the number of pages to free. 634 * 635 * If the zone was previously in an "all pages pinned" state then look to 636 * see if this freeing clears that state. 637 * 638 * And clear the zone's pages_scanned counter, to hold off the "all pages are 639 * pinned" detection logic. 640 */ 641 static void free_pcppages_bulk(struct zone *zone, int count, 642 struct per_cpu_pages *pcp) 643 { 644 int migratetype = 0; 645 int batch_free = 0; 646 int to_free = count; 647 648 spin_lock(&zone->lock); 649 zone->all_unreclaimable = 0; 650 zone->pages_scanned = 0; 651 652 while (to_free) { 653 struct page *page; 654 struct list_head *list; 655 656 /* 657 * Remove pages from lists in a round-robin fashion. A 658 * batch_free count is maintained that is incremented when an 659 * empty list is encountered. This is so more pages are freed 660 * off fuller lists instead of spinning excessively around empty 661 * lists 662 */ 663 do { 664 batch_free++; 665 if (++migratetype == MIGRATE_PCPTYPES) 666 migratetype = 0; 667 list = &pcp->lists[migratetype]; 668 } while (list_empty(list)); 669 670 /* This is the only non-empty list. Free them all. */ 671 if (batch_free == MIGRATE_PCPTYPES) 672 batch_free = to_free; 673 674 do { 675 int mt; /* migratetype of the to-be-freed page */ 676 677 page = list_entry(list->prev, struct page, lru); 678 /* must delete as __free_one_page list manipulates */ 679 list_del(&page->lru); 680 mt = get_freepage_migratetype(page); 681 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 682 __free_one_page(page, zone, 0, mt); 683 trace_mm_page_pcpu_drain(page, 0, mt); 684 if (likely(!is_migrate_isolate_page(page))) { 685 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 686 if (is_migrate_cma(mt)) 687 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 688 } 689 } while (--to_free && --batch_free && !list_empty(list)); 690 } 691 spin_unlock(&zone->lock); 692 } 693 694 static void free_one_page(struct zone *zone, struct page *page, int order, 695 int migratetype) 696 { 697 spin_lock(&zone->lock); 698 zone->all_unreclaimable = 0; 699 zone->pages_scanned = 0; 700 701 __free_one_page(page, zone, order, migratetype); 702 if (unlikely(!is_migrate_isolate(migratetype))) 703 __mod_zone_freepage_state(zone, 1 << order, migratetype); 704 spin_unlock(&zone->lock); 705 } 706 707 static bool free_pages_prepare(struct page *page, unsigned int order) 708 { 709 int i; 710 int bad = 0; 711 712 trace_mm_page_free(page, order); 713 kmemcheck_free_shadow(page, order); 714 715 if (PageAnon(page)) 716 page->mapping = NULL; 717 for (i = 0; i < (1 << order); i++) 718 bad += free_pages_check(page + i); 719 if (bad) 720 return false; 721 722 if (!PageHighMem(page)) { 723 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 724 debug_check_no_obj_freed(page_address(page), 725 PAGE_SIZE << order); 726 } 727 arch_free_page(page, order); 728 kernel_map_pages(page, 1 << order, 0); 729 730 return true; 731 } 732 733 static void __free_pages_ok(struct page *page, unsigned int order) 734 { 735 unsigned long flags; 736 int migratetype; 737 738 if (!free_pages_prepare(page, order)) 739 return; 740 741 local_irq_save(flags); 742 __count_vm_events(PGFREE, 1 << order); 743 migratetype = get_pageblock_migratetype(page); 744 set_freepage_migratetype(page, migratetype); 745 free_one_page(page_zone(page), page, order, migratetype); 746 local_irq_restore(flags); 747 } 748 749 void __init __free_pages_bootmem(struct page *page, unsigned int order) 750 { 751 unsigned int nr_pages = 1 << order; 752 unsigned int loop; 753 754 prefetchw(page); 755 for (loop = 0; loop < nr_pages; loop++) { 756 struct page *p = &page[loop]; 757 758 if (loop + 1 < nr_pages) 759 prefetchw(p + 1); 760 __ClearPageReserved(p); 761 set_page_count(p, 0); 762 } 763 764 page_zone(page)->managed_pages += 1 << order; 765 set_page_refcounted(page); 766 __free_pages(page, order); 767 } 768 769 #ifdef CONFIG_CMA 770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 771 void __init init_cma_reserved_pageblock(struct page *page) 772 { 773 unsigned i = pageblock_nr_pages; 774 struct page *p = page; 775 776 do { 777 __ClearPageReserved(p); 778 set_page_count(p, 0); 779 } while (++p, --i); 780 781 set_page_refcounted(page); 782 set_pageblock_migratetype(page, MIGRATE_CMA); 783 __free_pages(page, pageblock_order); 784 adjust_managed_page_count(page, pageblock_nr_pages); 785 } 786 #endif 787 788 /* 789 * The order of subdivision here is critical for the IO subsystem. 790 * Please do not alter this order without good reasons and regression 791 * testing. Specifically, as large blocks of memory are subdivided, 792 * the order in which smaller blocks are delivered depends on the order 793 * they're subdivided in this function. This is the primary factor 794 * influencing the order in which pages are delivered to the IO 795 * subsystem according to empirical testing, and this is also justified 796 * by considering the behavior of a buddy system containing a single 797 * large block of memory acted on by a series of small allocations. 798 * This behavior is a critical factor in sglist merging's success. 799 * 800 * -- nyc 801 */ 802 static inline void expand(struct zone *zone, struct page *page, 803 int low, int high, struct free_area *area, 804 int migratetype) 805 { 806 unsigned long size = 1 << high; 807 808 while (high > low) { 809 area--; 810 high--; 811 size >>= 1; 812 VM_BUG_ON(bad_range(zone, &page[size])); 813 814 #ifdef CONFIG_DEBUG_PAGEALLOC 815 if (high < debug_guardpage_minorder()) { 816 /* 817 * Mark as guard pages (or page), that will allow to 818 * merge back to allocator when buddy will be freed. 819 * Corresponding page table entries will not be touched, 820 * pages will stay not present in virtual address space 821 */ 822 INIT_LIST_HEAD(&page[size].lru); 823 set_page_guard_flag(&page[size]); 824 set_page_private(&page[size], high); 825 /* Guard pages are not available for any usage */ 826 __mod_zone_freepage_state(zone, -(1 << high), 827 migratetype); 828 continue; 829 } 830 #endif 831 list_add(&page[size].lru, &area->free_list[migratetype]); 832 area->nr_free++; 833 set_page_order(&page[size], high); 834 } 835 } 836 837 /* 838 * This page is about to be returned from the page allocator 839 */ 840 static inline int check_new_page(struct page *page) 841 { 842 if (unlikely(page_mapcount(page) | 843 (page->mapping != NULL) | 844 (atomic_read(&page->_count) != 0) | 845 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 846 (mem_cgroup_bad_page_check(page)))) { 847 bad_page(page); 848 return 1; 849 } 850 return 0; 851 } 852 853 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 854 { 855 int i; 856 857 for (i = 0; i < (1 << order); i++) { 858 struct page *p = page + i; 859 if (unlikely(check_new_page(p))) 860 return 1; 861 } 862 863 set_page_private(page, 0); 864 set_page_refcounted(page); 865 866 arch_alloc_page(page, order); 867 kernel_map_pages(page, 1 << order, 1); 868 869 if (gfp_flags & __GFP_ZERO) 870 prep_zero_page(page, order, gfp_flags); 871 872 if (order && (gfp_flags & __GFP_COMP)) 873 prep_compound_page(page, order); 874 875 return 0; 876 } 877 878 /* 879 * Go through the free lists for the given migratetype and remove 880 * the smallest available page from the freelists 881 */ 882 static inline 883 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 884 int migratetype) 885 { 886 unsigned int current_order; 887 struct free_area * area; 888 struct page *page; 889 890 /* Find a page of the appropriate size in the preferred list */ 891 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 892 area = &(zone->free_area[current_order]); 893 if (list_empty(&area->free_list[migratetype])) 894 continue; 895 896 page = list_entry(area->free_list[migratetype].next, 897 struct page, lru); 898 list_del(&page->lru); 899 rmv_page_order(page); 900 area->nr_free--; 901 expand(zone, page, order, current_order, area, migratetype); 902 return page; 903 } 904 905 return NULL; 906 } 907 908 909 /* 910 * This array describes the order lists are fallen back to when 911 * the free lists for the desirable migrate type are depleted 912 */ 913 static int fallbacks[MIGRATE_TYPES][4] = { 914 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 915 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 916 #ifdef CONFIG_CMA 917 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 918 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 919 #else 920 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 921 #endif 922 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 923 #ifdef CONFIG_MEMORY_ISOLATION 924 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 925 #endif 926 }; 927 928 /* 929 * Move the free pages in a range to the free lists of the requested type. 930 * Note that start_page and end_pages are not aligned on a pageblock 931 * boundary. If alignment is required, use move_freepages_block() 932 */ 933 int move_freepages(struct zone *zone, 934 struct page *start_page, struct page *end_page, 935 int migratetype) 936 { 937 struct page *page; 938 unsigned long order; 939 int pages_moved = 0; 940 941 #ifndef CONFIG_HOLES_IN_ZONE 942 /* 943 * page_zone is not safe to call in this context when 944 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 945 * anyway as we check zone boundaries in move_freepages_block(). 946 * Remove at a later date when no bug reports exist related to 947 * grouping pages by mobility 948 */ 949 BUG_ON(page_zone(start_page) != page_zone(end_page)); 950 #endif 951 952 for (page = start_page; page <= end_page;) { 953 /* Make sure we are not inadvertently changing nodes */ 954 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 955 956 if (!pfn_valid_within(page_to_pfn(page))) { 957 page++; 958 continue; 959 } 960 961 if (!PageBuddy(page)) { 962 page++; 963 continue; 964 } 965 966 order = page_order(page); 967 list_move(&page->lru, 968 &zone->free_area[order].free_list[migratetype]); 969 set_freepage_migratetype(page, migratetype); 970 page += 1 << order; 971 pages_moved += 1 << order; 972 } 973 974 return pages_moved; 975 } 976 977 int move_freepages_block(struct zone *zone, struct page *page, 978 int migratetype) 979 { 980 unsigned long start_pfn, end_pfn; 981 struct page *start_page, *end_page; 982 983 start_pfn = page_to_pfn(page); 984 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 985 start_page = pfn_to_page(start_pfn); 986 end_page = start_page + pageblock_nr_pages - 1; 987 end_pfn = start_pfn + pageblock_nr_pages - 1; 988 989 /* Do not cross zone boundaries */ 990 if (!zone_spans_pfn(zone, start_pfn)) 991 start_page = page; 992 if (!zone_spans_pfn(zone, end_pfn)) 993 return 0; 994 995 return move_freepages(zone, start_page, end_page, migratetype); 996 } 997 998 static void change_pageblock_range(struct page *pageblock_page, 999 int start_order, int migratetype) 1000 { 1001 int nr_pageblocks = 1 << (start_order - pageblock_order); 1002 1003 while (nr_pageblocks--) { 1004 set_pageblock_migratetype(pageblock_page, migratetype); 1005 pageblock_page += pageblock_nr_pages; 1006 } 1007 } 1008 1009 /* Remove an element from the buddy allocator from the fallback list */ 1010 static inline struct page * 1011 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1012 { 1013 struct free_area * area; 1014 int current_order; 1015 struct page *page; 1016 int migratetype, i; 1017 1018 /* Find the largest possible block of pages in the other list */ 1019 for (current_order = MAX_ORDER-1; current_order >= order; 1020 --current_order) { 1021 for (i = 0;; i++) { 1022 migratetype = fallbacks[start_migratetype][i]; 1023 1024 /* MIGRATE_RESERVE handled later if necessary */ 1025 if (migratetype == MIGRATE_RESERVE) 1026 break; 1027 1028 area = &(zone->free_area[current_order]); 1029 if (list_empty(&area->free_list[migratetype])) 1030 continue; 1031 1032 page = list_entry(area->free_list[migratetype].next, 1033 struct page, lru); 1034 area->nr_free--; 1035 1036 /* 1037 * If breaking a large block of pages, move all free 1038 * pages to the preferred allocation list. If falling 1039 * back for a reclaimable kernel allocation, be more 1040 * aggressive about taking ownership of free pages 1041 * 1042 * On the other hand, never change migration 1043 * type of MIGRATE_CMA pageblocks nor move CMA 1044 * pages on different free lists. We don't 1045 * want unmovable pages to be allocated from 1046 * MIGRATE_CMA areas. 1047 */ 1048 if (!is_migrate_cma(migratetype) && 1049 (unlikely(current_order >= pageblock_order / 2) || 1050 start_migratetype == MIGRATE_RECLAIMABLE || 1051 page_group_by_mobility_disabled)) { 1052 int pages; 1053 pages = move_freepages_block(zone, page, 1054 start_migratetype); 1055 1056 /* Claim the whole block if over half of it is free */ 1057 if (pages >= (1 << (pageblock_order-1)) || 1058 page_group_by_mobility_disabled) 1059 set_pageblock_migratetype(page, 1060 start_migratetype); 1061 1062 migratetype = start_migratetype; 1063 } 1064 1065 /* Remove the page from the freelists */ 1066 list_del(&page->lru); 1067 rmv_page_order(page); 1068 1069 /* Take ownership for orders >= pageblock_order */ 1070 if (current_order >= pageblock_order && 1071 !is_migrate_cma(migratetype)) 1072 change_pageblock_range(page, current_order, 1073 start_migratetype); 1074 1075 expand(zone, page, order, current_order, area, 1076 is_migrate_cma(migratetype) 1077 ? migratetype : start_migratetype); 1078 1079 trace_mm_page_alloc_extfrag(page, order, current_order, 1080 start_migratetype, migratetype); 1081 1082 return page; 1083 } 1084 } 1085 1086 return NULL; 1087 } 1088 1089 /* 1090 * Do the hard work of removing an element from the buddy allocator. 1091 * Call me with the zone->lock already held. 1092 */ 1093 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1094 int migratetype) 1095 { 1096 struct page *page; 1097 1098 retry_reserve: 1099 page = __rmqueue_smallest(zone, order, migratetype); 1100 1101 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1102 page = __rmqueue_fallback(zone, order, migratetype); 1103 1104 /* 1105 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1106 * is used because __rmqueue_smallest is an inline function 1107 * and we want just one call site 1108 */ 1109 if (!page) { 1110 migratetype = MIGRATE_RESERVE; 1111 goto retry_reserve; 1112 } 1113 } 1114 1115 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1116 return page; 1117 } 1118 1119 /* 1120 * Obtain a specified number of elements from the buddy allocator, all under 1121 * a single hold of the lock, for efficiency. Add them to the supplied list. 1122 * Returns the number of new pages which were placed at *list. 1123 */ 1124 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1125 unsigned long count, struct list_head *list, 1126 int migratetype, int cold) 1127 { 1128 int mt = migratetype, i; 1129 1130 spin_lock(&zone->lock); 1131 for (i = 0; i < count; ++i) { 1132 struct page *page = __rmqueue(zone, order, migratetype); 1133 if (unlikely(page == NULL)) 1134 break; 1135 1136 /* 1137 * Split buddy pages returned by expand() are received here 1138 * in physical page order. The page is added to the callers and 1139 * list and the list head then moves forward. From the callers 1140 * perspective, the linked list is ordered by page number in 1141 * some conditions. This is useful for IO devices that can 1142 * merge IO requests if the physical pages are ordered 1143 * properly. 1144 */ 1145 if (likely(cold == 0)) 1146 list_add(&page->lru, list); 1147 else 1148 list_add_tail(&page->lru, list); 1149 if (IS_ENABLED(CONFIG_CMA)) { 1150 mt = get_pageblock_migratetype(page); 1151 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) 1152 mt = migratetype; 1153 } 1154 set_freepage_migratetype(page, mt); 1155 list = &page->lru; 1156 if (is_migrate_cma(mt)) 1157 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1158 -(1 << order)); 1159 } 1160 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1161 spin_unlock(&zone->lock); 1162 return i; 1163 } 1164 1165 #ifdef CONFIG_NUMA 1166 /* 1167 * Called from the vmstat counter updater to drain pagesets of this 1168 * currently executing processor on remote nodes after they have 1169 * expired. 1170 * 1171 * Note that this function must be called with the thread pinned to 1172 * a single processor. 1173 */ 1174 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1175 { 1176 unsigned long flags; 1177 int to_drain; 1178 unsigned long batch; 1179 1180 local_irq_save(flags); 1181 batch = ACCESS_ONCE(pcp->batch); 1182 if (pcp->count >= batch) 1183 to_drain = batch; 1184 else 1185 to_drain = pcp->count; 1186 if (to_drain > 0) { 1187 free_pcppages_bulk(zone, to_drain, pcp); 1188 pcp->count -= to_drain; 1189 } 1190 local_irq_restore(flags); 1191 } 1192 #endif 1193 1194 /* 1195 * Drain pages of the indicated processor. 1196 * 1197 * The processor must either be the current processor and the 1198 * thread pinned to the current processor or a processor that 1199 * is not online. 1200 */ 1201 static void drain_pages(unsigned int cpu) 1202 { 1203 unsigned long flags; 1204 struct zone *zone; 1205 1206 for_each_populated_zone(zone) { 1207 struct per_cpu_pageset *pset; 1208 struct per_cpu_pages *pcp; 1209 1210 local_irq_save(flags); 1211 pset = per_cpu_ptr(zone->pageset, cpu); 1212 1213 pcp = &pset->pcp; 1214 if (pcp->count) { 1215 free_pcppages_bulk(zone, pcp->count, pcp); 1216 pcp->count = 0; 1217 } 1218 local_irq_restore(flags); 1219 } 1220 } 1221 1222 /* 1223 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1224 */ 1225 void drain_local_pages(void *arg) 1226 { 1227 drain_pages(smp_processor_id()); 1228 } 1229 1230 /* 1231 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1232 * 1233 * Note that this code is protected against sending an IPI to an offline 1234 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1235 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1236 * nothing keeps CPUs from showing up after we populated the cpumask and 1237 * before the call to on_each_cpu_mask(). 1238 */ 1239 void drain_all_pages(void) 1240 { 1241 int cpu; 1242 struct per_cpu_pageset *pcp; 1243 struct zone *zone; 1244 1245 /* 1246 * Allocate in the BSS so we wont require allocation in 1247 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1248 */ 1249 static cpumask_t cpus_with_pcps; 1250 1251 /* 1252 * We don't care about racing with CPU hotplug event 1253 * as offline notification will cause the notified 1254 * cpu to drain that CPU pcps and on_each_cpu_mask 1255 * disables preemption as part of its processing 1256 */ 1257 for_each_online_cpu(cpu) { 1258 bool has_pcps = false; 1259 for_each_populated_zone(zone) { 1260 pcp = per_cpu_ptr(zone->pageset, cpu); 1261 if (pcp->pcp.count) { 1262 has_pcps = true; 1263 break; 1264 } 1265 } 1266 if (has_pcps) 1267 cpumask_set_cpu(cpu, &cpus_with_pcps); 1268 else 1269 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1270 } 1271 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1272 } 1273 1274 #ifdef CONFIG_HIBERNATION 1275 1276 void mark_free_pages(struct zone *zone) 1277 { 1278 unsigned long pfn, max_zone_pfn; 1279 unsigned long flags; 1280 int order, t; 1281 struct list_head *curr; 1282 1283 if (!zone->spanned_pages) 1284 return; 1285 1286 spin_lock_irqsave(&zone->lock, flags); 1287 1288 max_zone_pfn = zone_end_pfn(zone); 1289 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1290 if (pfn_valid(pfn)) { 1291 struct page *page = pfn_to_page(pfn); 1292 1293 if (!swsusp_page_is_forbidden(page)) 1294 swsusp_unset_page_free(page); 1295 } 1296 1297 for_each_migratetype_order(order, t) { 1298 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1299 unsigned long i; 1300 1301 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1302 for (i = 0; i < (1UL << order); i++) 1303 swsusp_set_page_free(pfn_to_page(pfn + i)); 1304 } 1305 } 1306 spin_unlock_irqrestore(&zone->lock, flags); 1307 } 1308 #endif /* CONFIG_PM */ 1309 1310 /* 1311 * Free a 0-order page 1312 * cold == 1 ? free a cold page : free a hot page 1313 */ 1314 void free_hot_cold_page(struct page *page, int cold) 1315 { 1316 struct zone *zone = page_zone(page); 1317 struct per_cpu_pages *pcp; 1318 unsigned long flags; 1319 int migratetype; 1320 1321 if (!free_pages_prepare(page, 0)) 1322 return; 1323 1324 migratetype = get_pageblock_migratetype(page); 1325 set_freepage_migratetype(page, migratetype); 1326 local_irq_save(flags); 1327 __count_vm_event(PGFREE); 1328 1329 /* 1330 * We only track unmovable, reclaimable and movable on pcp lists. 1331 * Free ISOLATE pages back to the allocator because they are being 1332 * offlined but treat RESERVE as movable pages so we can get those 1333 * areas back if necessary. Otherwise, we may have to free 1334 * excessively into the page allocator 1335 */ 1336 if (migratetype >= MIGRATE_PCPTYPES) { 1337 if (unlikely(is_migrate_isolate(migratetype))) { 1338 free_one_page(zone, page, 0, migratetype); 1339 goto out; 1340 } 1341 migratetype = MIGRATE_MOVABLE; 1342 } 1343 1344 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1345 if (cold) 1346 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1347 else 1348 list_add(&page->lru, &pcp->lists[migratetype]); 1349 pcp->count++; 1350 if (pcp->count >= pcp->high) { 1351 unsigned long batch = ACCESS_ONCE(pcp->batch); 1352 free_pcppages_bulk(zone, batch, pcp); 1353 pcp->count -= batch; 1354 } 1355 1356 out: 1357 local_irq_restore(flags); 1358 } 1359 1360 /* 1361 * Free a list of 0-order pages 1362 */ 1363 void free_hot_cold_page_list(struct list_head *list, int cold) 1364 { 1365 struct page *page, *next; 1366 1367 list_for_each_entry_safe(page, next, list, lru) { 1368 trace_mm_page_free_batched(page, cold); 1369 free_hot_cold_page(page, cold); 1370 } 1371 } 1372 1373 /* 1374 * split_page takes a non-compound higher-order page, and splits it into 1375 * n (1<<order) sub-pages: page[0..n] 1376 * Each sub-page must be freed individually. 1377 * 1378 * Note: this is probably too low level an operation for use in drivers. 1379 * Please consult with lkml before using this in your driver. 1380 */ 1381 void split_page(struct page *page, unsigned int order) 1382 { 1383 int i; 1384 1385 VM_BUG_ON(PageCompound(page)); 1386 VM_BUG_ON(!page_count(page)); 1387 1388 #ifdef CONFIG_KMEMCHECK 1389 /* 1390 * Split shadow pages too, because free(page[0]) would 1391 * otherwise free the whole shadow. 1392 */ 1393 if (kmemcheck_page_is_tracked(page)) 1394 split_page(virt_to_page(page[0].shadow), order); 1395 #endif 1396 1397 for (i = 1; i < (1 << order); i++) 1398 set_page_refcounted(page + i); 1399 } 1400 EXPORT_SYMBOL_GPL(split_page); 1401 1402 static int __isolate_free_page(struct page *page, unsigned int order) 1403 { 1404 unsigned long watermark; 1405 struct zone *zone; 1406 int mt; 1407 1408 BUG_ON(!PageBuddy(page)); 1409 1410 zone = page_zone(page); 1411 mt = get_pageblock_migratetype(page); 1412 1413 if (!is_migrate_isolate(mt)) { 1414 /* Obey watermarks as if the page was being allocated */ 1415 watermark = low_wmark_pages(zone) + (1 << order); 1416 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1417 return 0; 1418 1419 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1420 } 1421 1422 /* Remove page from free list */ 1423 list_del(&page->lru); 1424 zone->free_area[order].nr_free--; 1425 rmv_page_order(page); 1426 1427 /* Set the pageblock if the isolated page is at least a pageblock */ 1428 if (order >= pageblock_order - 1) { 1429 struct page *endpage = page + (1 << order) - 1; 1430 for (; page < endpage; page += pageblock_nr_pages) { 1431 int mt = get_pageblock_migratetype(page); 1432 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1433 set_pageblock_migratetype(page, 1434 MIGRATE_MOVABLE); 1435 } 1436 } 1437 1438 return 1UL << order; 1439 } 1440 1441 /* 1442 * Similar to split_page except the page is already free. As this is only 1443 * being used for migration, the migratetype of the block also changes. 1444 * As this is called with interrupts disabled, the caller is responsible 1445 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1446 * are enabled. 1447 * 1448 * Note: this is probably too low level an operation for use in drivers. 1449 * Please consult with lkml before using this in your driver. 1450 */ 1451 int split_free_page(struct page *page) 1452 { 1453 unsigned int order; 1454 int nr_pages; 1455 1456 order = page_order(page); 1457 1458 nr_pages = __isolate_free_page(page, order); 1459 if (!nr_pages) 1460 return 0; 1461 1462 /* Split into individual pages */ 1463 set_page_refcounted(page); 1464 split_page(page, order); 1465 return nr_pages; 1466 } 1467 1468 /* 1469 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1470 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1471 * or two. 1472 */ 1473 static inline 1474 struct page *buffered_rmqueue(struct zone *preferred_zone, 1475 struct zone *zone, int order, gfp_t gfp_flags, 1476 int migratetype) 1477 { 1478 unsigned long flags; 1479 struct page *page; 1480 int cold = !!(gfp_flags & __GFP_COLD); 1481 1482 again: 1483 if (likely(order == 0)) { 1484 struct per_cpu_pages *pcp; 1485 struct list_head *list; 1486 1487 local_irq_save(flags); 1488 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1489 list = &pcp->lists[migratetype]; 1490 if (list_empty(list)) { 1491 pcp->count += rmqueue_bulk(zone, 0, 1492 pcp->batch, list, 1493 migratetype, cold); 1494 if (unlikely(list_empty(list))) 1495 goto failed; 1496 } 1497 1498 if (cold) 1499 page = list_entry(list->prev, struct page, lru); 1500 else 1501 page = list_entry(list->next, struct page, lru); 1502 1503 list_del(&page->lru); 1504 pcp->count--; 1505 } else { 1506 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1507 /* 1508 * __GFP_NOFAIL is not to be used in new code. 1509 * 1510 * All __GFP_NOFAIL callers should be fixed so that they 1511 * properly detect and handle allocation failures. 1512 * 1513 * We most definitely don't want callers attempting to 1514 * allocate greater than order-1 page units with 1515 * __GFP_NOFAIL. 1516 */ 1517 WARN_ON_ONCE(order > 1); 1518 } 1519 spin_lock_irqsave(&zone->lock, flags); 1520 page = __rmqueue(zone, order, migratetype); 1521 spin_unlock(&zone->lock); 1522 if (!page) 1523 goto failed; 1524 __mod_zone_freepage_state(zone, -(1 << order), 1525 get_pageblock_migratetype(page)); 1526 } 1527 1528 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1529 zone_statistics(preferred_zone, zone, gfp_flags); 1530 local_irq_restore(flags); 1531 1532 VM_BUG_ON(bad_range(zone, page)); 1533 if (prep_new_page(page, order, gfp_flags)) 1534 goto again; 1535 return page; 1536 1537 failed: 1538 local_irq_restore(flags); 1539 return NULL; 1540 } 1541 1542 #ifdef CONFIG_FAIL_PAGE_ALLOC 1543 1544 static struct { 1545 struct fault_attr attr; 1546 1547 u32 ignore_gfp_highmem; 1548 u32 ignore_gfp_wait; 1549 u32 min_order; 1550 } fail_page_alloc = { 1551 .attr = FAULT_ATTR_INITIALIZER, 1552 .ignore_gfp_wait = 1, 1553 .ignore_gfp_highmem = 1, 1554 .min_order = 1, 1555 }; 1556 1557 static int __init setup_fail_page_alloc(char *str) 1558 { 1559 return setup_fault_attr(&fail_page_alloc.attr, str); 1560 } 1561 __setup("fail_page_alloc=", setup_fail_page_alloc); 1562 1563 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1564 { 1565 if (order < fail_page_alloc.min_order) 1566 return false; 1567 if (gfp_mask & __GFP_NOFAIL) 1568 return false; 1569 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1570 return false; 1571 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1572 return false; 1573 1574 return should_fail(&fail_page_alloc.attr, 1 << order); 1575 } 1576 1577 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1578 1579 static int __init fail_page_alloc_debugfs(void) 1580 { 1581 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1582 struct dentry *dir; 1583 1584 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1585 &fail_page_alloc.attr); 1586 if (IS_ERR(dir)) 1587 return PTR_ERR(dir); 1588 1589 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1590 &fail_page_alloc.ignore_gfp_wait)) 1591 goto fail; 1592 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1593 &fail_page_alloc.ignore_gfp_highmem)) 1594 goto fail; 1595 if (!debugfs_create_u32("min-order", mode, dir, 1596 &fail_page_alloc.min_order)) 1597 goto fail; 1598 1599 return 0; 1600 fail: 1601 debugfs_remove_recursive(dir); 1602 1603 return -ENOMEM; 1604 } 1605 1606 late_initcall(fail_page_alloc_debugfs); 1607 1608 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1609 1610 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1611 1612 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1613 { 1614 return false; 1615 } 1616 1617 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1618 1619 /* 1620 * Return true if free pages are above 'mark'. This takes into account the order 1621 * of the allocation. 1622 */ 1623 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1624 int classzone_idx, int alloc_flags, long free_pages) 1625 { 1626 /* free_pages my go negative - that's OK */ 1627 long min = mark; 1628 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1629 int o; 1630 long free_cma = 0; 1631 1632 free_pages -= (1 << order) - 1; 1633 if (alloc_flags & ALLOC_HIGH) 1634 min -= min / 2; 1635 if (alloc_flags & ALLOC_HARDER) 1636 min -= min / 4; 1637 #ifdef CONFIG_CMA 1638 /* If allocation can't use CMA areas don't use free CMA pages */ 1639 if (!(alloc_flags & ALLOC_CMA)) 1640 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1641 #endif 1642 1643 if (free_pages - free_cma <= min + lowmem_reserve) 1644 return false; 1645 for (o = 0; o < order; o++) { 1646 /* At the next order, this order's pages become unavailable */ 1647 free_pages -= z->free_area[o].nr_free << o; 1648 1649 /* Require fewer higher order pages to be free */ 1650 min >>= 1; 1651 1652 if (free_pages <= min) 1653 return false; 1654 } 1655 return true; 1656 } 1657 1658 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1659 int classzone_idx, int alloc_flags) 1660 { 1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1662 zone_page_state(z, NR_FREE_PAGES)); 1663 } 1664 1665 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1666 int classzone_idx, int alloc_flags) 1667 { 1668 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1669 1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1672 1673 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1674 free_pages); 1675 } 1676 1677 #ifdef CONFIG_NUMA 1678 /* 1679 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1680 * skip over zones that are not allowed by the cpuset, or that have 1681 * been recently (in last second) found to be nearly full. See further 1682 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1683 * that have to skip over a lot of full or unallowed zones. 1684 * 1685 * If the zonelist cache is present in the passed in zonelist, then 1686 * returns a pointer to the allowed node mask (either the current 1687 * tasks mems_allowed, or node_states[N_MEMORY].) 1688 * 1689 * If the zonelist cache is not available for this zonelist, does 1690 * nothing and returns NULL. 1691 * 1692 * If the fullzones BITMAP in the zonelist cache is stale (more than 1693 * a second since last zap'd) then we zap it out (clear its bits.) 1694 * 1695 * We hold off even calling zlc_setup, until after we've checked the 1696 * first zone in the zonelist, on the theory that most allocations will 1697 * be satisfied from that first zone, so best to examine that zone as 1698 * quickly as we can. 1699 */ 1700 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1701 { 1702 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1703 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1704 1705 zlc = zonelist->zlcache_ptr; 1706 if (!zlc) 1707 return NULL; 1708 1709 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1710 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1711 zlc->last_full_zap = jiffies; 1712 } 1713 1714 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1715 &cpuset_current_mems_allowed : 1716 &node_states[N_MEMORY]; 1717 return allowednodes; 1718 } 1719 1720 /* 1721 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1722 * if it is worth looking at further for free memory: 1723 * 1) Check that the zone isn't thought to be full (doesn't have its 1724 * bit set in the zonelist_cache fullzones BITMAP). 1725 * 2) Check that the zones node (obtained from the zonelist_cache 1726 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1727 * Return true (non-zero) if zone is worth looking at further, or 1728 * else return false (zero) if it is not. 1729 * 1730 * This check -ignores- the distinction between various watermarks, 1731 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1732 * found to be full for any variation of these watermarks, it will 1733 * be considered full for up to one second by all requests, unless 1734 * we are so low on memory on all allowed nodes that we are forced 1735 * into the second scan of the zonelist. 1736 * 1737 * In the second scan we ignore this zonelist cache and exactly 1738 * apply the watermarks to all zones, even it is slower to do so. 1739 * We are low on memory in the second scan, and should leave no stone 1740 * unturned looking for a free page. 1741 */ 1742 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1743 nodemask_t *allowednodes) 1744 { 1745 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1746 int i; /* index of *z in zonelist zones */ 1747 int n; /* node that zone *z is on */ 1748 1749 zlc = zonelist->zlcache_ptr; 1750 if (!zlc) 1751 return 1; 1752 1753 i = z - zonelist->_zonerefs; 1754 n = zlc->z_to_n[i]; 1755 1756 /* This zone is worth trying if it is allowed but not full */ 1757 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1758 } 1759 1760 /* 1761 * Given 'z' scanning a zonelist, set the corresponding bit in 1762 * zlc->fullzones, so that subsequent attempts to allocate a page 1763 * from that zone don't waste time re-examining it. 1764 */ 1765 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1766 { 1767 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1768 int i; /* index of *z in zonelist zones */ 1769 1770 zlc = zonelist->zlcache_ptr; 1771 if (!zlc) 1772 return; 1773 1774 i = z - zonelist->_zonerefs; 1775 1776 set_bit(i, zlc->fullzones); 1777 } 1778 1779 /* 1780 * clear all zones full, called after direct reclaim makes progress so that 1781 * a zone that was recently full is not skipped over for up to a second 1782 */ 1783 static void zlc_clear_zones_full(struct zonelist *zonelist) 1784 { 1785 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1786 1787 zlc = zonelist->zlcache_ptr; 1788 if (!zlc) 1789 return; 1790 1791 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1792 } 1793 1794 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1795 { 1796 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1797 } 1798 1799 static void __paginginit init_zone_allows_reclaim(int nid) 1800 { 1801 int i; 1802 1803 for_each_online_node(i) 1804 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1805 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1806 else 1807 zone_reclaim_mode = 1; 1808 } 1809 1810 #else /* CONFIG_NUMA */ 1811 1812 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1813 { 1814 return NULL; 1815 } 1816 1817 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1818 nodemask_t *allowednodes) 1819 { 1820 return 1; 1821 } 1822 1823 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1824 { 1825 } 1826 1827 static void zlc_clear_zones_full(struct zonelist *zonelist) 1828 { 1829 } 1830 1831 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1832 { 1833 return true; 1834 } 1835 1836 static inline void init_zone_allows_reclaim(int nid) 1837 { 1838 } 1839 #endif /* CONFIG_NUMA */ 1840 1841 /* 1842 * get_page_from_freelist goes through the zonelist trying to allocate 1843 * a page. 1844 */ 1845 static struct page * 1846 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1847 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1848 struct zone *preferred_zone, int migratetype) 1849 { 1850 struct zoneref *z; 1851 struct page *page = NULL; 1852 int classzone_idx; 1853 struct zone *zone; 1854 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1855 int zlc_active = 0; /* set if using zonelist_cache */ 1856 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1857 1858 classzone_idx = zone_idx(preferred_zone); 1859 zonelist_scan: 1860 /* 1861 * Scan zonelist, looking for a zone with enough free. 1862 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1863 */ 1864 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1865 high_zoneidx, nodemask) { 1866 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1867 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1868 continue; 1869 if ((alloc_flags & ALLOC_CPUSET) && 1870 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1871 continue; 1872 /* 1873 * When allocating a page cache page for writing, we 1874 * want to get it from a zone that is within its dirty 1875 * limit, such that no single zone holds more than its 1876 * proportional share of globally allowed dirty pages. 1877 * The dirty limits take into account the zone's 1878 * lowmem reserves and high watermark so that kswapd 1879 * should be able to balance it without having to 1880 * write pages from its LRU list. 1881 * 1882 * This may look like it could increase pressure on 1883 * lower zones by failing allocations in higher zones 1884 * before they are full. But the pages that do spill 1885 * over are limited as the lower zones are protected 1886 * by this very same mechanism. It should not become 1887 * a practical burden to them. 1888 * 1889 * XXX: For now, allow allocations to potentially 1890 * exceed the per-zone dirty limit in the slowpath 1891 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1892 * which is important when on a NUMA setup the allowed 1893 * zones are together not big enough to reach the 1894 * global limit. The proper fix for these situations 1895 * will require awareness of zones in the 1896 * dirty-throttling and the flusher threads. 1897 */ 1898 if ((alloc_flags & ALLOC_WMARK_LOW) && 1899 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1900 goto this_zone_full; 1901 1902 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1903 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1904 unsigned long mark; 1905 int ret; 1906 1907 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1908 if (zone_watermark_ok(zone, order, mark, 1909 classzone_idx, alloc_flags)) 1910 goto try_this_zone; 1911 1912 if (IS_ENABLED(CONFIG_NUMA) && 1913 !did_zlc_setup && nr_online_nodes > 1) { 1914 /* 1915 * we do zlc_setup if there are multiple nodes 1916 * and before considering the first zone allowed 1917 * by the cpuset. 1918 */ 1919 allowednodes = zlc_setup(zonelist, alloc_flags); 1920 zlc_active = 1; 1921 did_zlc_setup = 1; 1922 } 1923 1924 if (zone_reclaim_mode == 0 || 1925 !zone_allows_reclaim(preferred_zone, zone)) 1926 goto this_zone_full; 1927 1928 /* 1929 * As we may have just activated ZLC, check if the first 1930 * eligible zone has failed zone_reclaim recently. 1931 */ 1932 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1933 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1934 continue; 1935 1936 ret = zone_reclaim(zone, gfp_mask, order); 1937 switch (ret) { 1938 case ZONE_RECLAIM_NOSCAN: 1939 /* did not scan */ 1940 continue; 1941 case ZONE_RECLAIM_FULL: 1942 /* scanned but unreclaimable */ 1943 continue; 1944 default: 1945 /* did we reclaim enough */ 1946 if (zone_watermark_ok(zone, order, mark, 1947 classzone_idx, alloc_flags)) 1948 goto try_this_zone; 1949 1950 /* 1951 * Failed to reclaim enough to meet watermark. 1952 * Only mark the zone full if checking the min 1953 * watermark or if we failed to reclaim just 1954 * 1<<order pages or else the page allocator 1955 * fastpath will prematurely mark zones full 1956 * when the watermark is between the low and 1957 * min watermarks. 1958 */ 1959 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 1960 ret == ZONE_RECLAIM_SOME) 1961 goto this_zone_full; 1962 1963 continue; 1964 } 1965 } 1966 1967 try_this_zone: 1968 page = buffered_rmqueue(preferred_zone, zone, order, 1969 gfp_mask, migratetype); 1970 if (page) 1971 break; 1972 this_zone_full: 1973 if (IS_ENABLED(CONFIG_NUMA)) 1974 zlc_mark_zone_full(zonelist, z); 1975 } 1976 1977 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1978 /* Disable zlc cache for second zonelist scan */ 1979 zlc_active = 0; 1980 goto zonelist_scan; 1981 } 1982 1983 if (page) 1984 /* 1985 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1986 * necessary to allocate the page. The expectation is 1987 * that the caller is taking steps that will free more 1988 * memory. The caller should avoid the page being used 1989 * for !PFMEMALLOC purposes. 1990 */ 1991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1992 1993 return page; 1994 } 1995 1996 /* 1997 * Large machines with many possible nodes should not always dump per-node 1998 * meminfo in irq context. 1999 */ 2000 static inline bool should_suppress_show_mem(void) 2001 { 2002 bool ret = false; 2003 2004 #if NODES_SHIFT > 8 2005 ret = in_interrupt(); 2006 #endif 2007 return ret; 2008 } 2009 2010 static DEFINE_RATELIMIT_STATE(nopage_rs, 2011 DEFAULT_RATELIMIT_INTERVAL, 2012 DEFAULT_RATELIMIT_BURST); 2013 2014 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2015 { 2016 unsigned int filter = SHOW_MEM_FILTER_NODES; 2017 2018 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2019 debug_guardpage_minorder() > 0) 2020 return; 2021 2022 /* 2023 * Walking all memory to count page types is very expensive and should 2024 * be inhibited in non-blockable contexts. 2025 */ 2026 if (!(gfp_mask & __GFP_WAIT)) 2027 filter |= SHOW_MEM_FILTER_PAGE_COUNT; 2028 2029 /* 2030 * This documents exceptions given to allocations in certain 2031 * contexts that are allowed to allocate outside current's set 2032 * of allowed nodes. 2033 */ 2034 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2035 if (test_thread_flag(TIF_MEMDIE) || 2036 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2037 filter &= ~SHOW_MEM_FILTER_NODES; 2038 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2039 filter &= ~SHOW_MEM_FILTER_NODES; 2040 2041 if (fmt) { 2042 struct va_format vaf; 2043 va_list args; 2044 2045 va_start(args, fmt); 2046 2047 vaf.fmt = fmt; 2048 vaf.va = &args; 2049 2050 pr_warn("%pV", &vaf); 2051 2052 va_end(args); 2053 } 2054 2055 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2056 current->comm, order, gfp_mask); 2057 2058 dump_stack(); 2059 if (!should_suppress_show_mem()) 2060 show_mem(filter); 2061 } 2062 2063 static inline int 2064 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2065 unsigned long did_some_progress, 2066 unsigned long pages_reclaimed) 2067 { 2068 /* Do not loop if specifically requested */ 2069 if (gfp_mask & __GFP_NORETRY) 2070 return 0; 2071 2072 /* Always retry if specifically requested */ 2073 if (gfp_mask & __GFP_NOFAIL) 2074 return 1; 2075 2076 /* 2077 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2078 * making forward progress without invoking OOM. Suspend also disables 2079 * storage devices so kswapd will not help. Bail if we are suspending. 2080 */ 2081 if (!did_some_progress && pm_suspended_storage()) 2082 return 0; 2083 2084 /* 2085 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2086 * means __GFP_NOFAIL, but that may not be true in other 2087 * implementations. 2088 */ 2089 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2090 return 1; 2091 2092 /* 2093 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2094 * specified, then we retry until we no longer reclaim any pages 2095 * (above), or we've reclaimed an order of pages at least as 2096 * large as the allocation's order. In both cases, if the 2097 * allocation still fails, we stop retrying. 2098 */ 2099 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2100 return 1; 2101 2102 return 0; 2103 } 2104 2105 static inline struct page * 2106 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2107 struct zonelist *zonelist, enum zone_type high_zoneidx, 2108 nodemask_t *nodemask, struct zone *preferred_zone, 2109 int migratetype) 2110 { 2111 struct page *page; 2112 2113 /* Acquire the OOM killer lock for the zones in zonelist */ 2114 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2115 schedule_timeout_uninterruptible(1); 2116 return NULL; 2117 } 2118 2119 /* 2120 * Go through the zonelist yet one more time, keep very high watermark 2121 * here, this is only to catch a parallel oom killing, we must fail if 2122 * we're still under heavy pressure. 2123 */ 2124 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2125 order, zonelist, high_zoneidx, 2126 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2127 preferred_zone, migratetype); 2128 if (page) 2129 goto out; 2130 2131 if (!(gfp_mask & __GFP_NOFAIL)) { 2132 /* The OOM killer will not help higher order allocs */ 2133 if (order > PAGE_ALLOC_COSTLY_ORDER) 2134 goto out; 2135 /* The OOM killer does not needlessly kill tasks for lowmem */ 2136 if (high_zoneidx < ZONE_NORMAL) 2137 goto out; 2138 /* 2139 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2140 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2141 * The caller should handle page allocation failure by itself if 2142 * it specifies __GFP_THISNODE. 2143 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2144 */ 2145 if (gfp_mask & __GFP_THISNODE) 2146 goto out; 2147 } 2148 /* Exhausted what can be done so it's blamo time */ 2149 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2150 2151 out: 2152 clear_zonelist_oom(zonelist, gfp_mask); 2153 return page; 2154 } 2155 2156 #ifdef CONFIG_COMPACTION 2157 /* Try memory compaction for high-order allocations before reclaim */ 2158 static struct page * 2159 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2160 struct zonelist *zonelist, enum zone_type high_zoneidx, 2161 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2162 int migratetype, bool sync_migration, 2163 bool *contended_compaction, bool *deferred_compaction, 2164 unsigned long *did_some_progress) 2165 { 2166 if (!order) 2167 return NULL; 2168 2169 if (compaction_deferred(preferred_zone, order)) { 2170 *deferred_compaction = true; 2171 return NULL; 2172 } 2173 2174 current->flags |= PF_MEMALLOC; 2175 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2176 nodemask, sync_migration, 2177 contended_compaction); 2178 current->flags &= ~PF_MEMALLOC; 2179 2180 if (*did_some_progress != COMPACT_SKIPPED) { 2181 struct page *page; 2182 2183 /* Page migration frees to the PCP lists but we want merging */ 2184 drain_pages(get_cpu()); 2185 put_cpu(); 2186 2187 page = get_page_from_freelist(gfp_mask, nodemask, 2188 order, zonelist, high_zoneidx, 2189 alloc_flags & ~ALLOC_NO_WATERMARKS, 2190 preferred_zone, migratetype); 2191 if (page) { 2192 preferred_zone->compact_blockskip_flush = false; 2193 preferred_zone->compact_considered = 0; 2194 preferred_zone->compact_defer_shift = 0; 2195 if (order >= preferred_zone->compact_order_failed) 2196 preferred_zone->compact_order_failed = order + 1; 2197 count_vm_event(COMPACTSUCCESS); 2198 return page; 2199 } 2200 2201 /* 2202 * It's bad if compaction run occurs and fails. 2203 * The most likely reason is that pages exist, 2204 * but not enough to satisfy watermarks. 2205 */ 2206 count_vm_event(COMPACTFAIL); 2207 2208 /* 2209 * As async compaction considers a subset of pageblocks, only 2210 * defer if the failure was a sync compaction failure. 2211 */ 2212 if (sync_migration) 2213 defer_compaction(preferred_zone, order); 2214 2215 cond_resched(); 2216 } 2217 2218 return NULL; 2219 } 2220 #else 2221 static inline struct page * 2222 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2223 struct zonelist *zonelist, enum zone_type high_zoneidx, 2224 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2225 int migratetype, bool sync_migration, 2226 bool *contended_compaction, bool *deferred_compaction, 2227 unsigned long *did_some_progress) 2228 { 2229 return NULL; 2230 } 2231 #endif /* CONFIG_COMPACTION */ 2232 2233 /* Perform direct synchronous page reclaim */ 2234 static int 2235 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2236 nodemask_t *nodemask) 2237 { 2238 struct reclaim_state reclaim_state; 2239 int progress; 2240 2241 cond_resched(); 2242 2243 /* We now go into synchronous reclaim */ 2244 cpuset_memory_pressure_bump(); 2245 current->flags |= PF_MEMALLOC; 2246 lockdep_set_current_reclaim_state(gfp_mask); 2247 reclaim_state.reclaimed_slab = 0; 2248 current->reclaim_state = &reclaim_state; 2249 2250 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2251 2252 current->reclaim_state = NULL; 2253 lockdep_clear_current_reclaim_state(); 2254 current->flags &= ~PF_MEMALLOC; 2255 2256 cond_resched(); 2257 2258 return progress; 2259 } 2260 2261 /* The really slow allocator path where we enter direct reclaim */ 2262 static inline struct page * 2263 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2264 struct zonelist *zonelist, enum zone_type high_zoneidx, 2265 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2266 int migratetype, unsigned long *did_some_progress) 2267 { 2268 struct page *page = NULL; 2269 bool drained = false; 2270 2271 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2272 nodemask); 2273 if (unlikely(!(*did_some_progress))) 2274 return NULL; 2275 2276 /* After successful reclaim, reconsider all zones for allocation */ 2277 if (IS_ENABLED(CONFIG_NUMA)) 2278 zlc_clear_zones_full(zonelist); 2279 2280 retry: 2281 page = get_page_from_freelist(gfp_mask, nodemask, order, 2282 zonelist, high_zoneidx, 2283 alloc_flags & ~ALLOC_NO_WATERMARKS, 2284 preferred_zone, migratetype); 2285 2286 /* 2287 * If an allocation failed after direct reclaim, it could be because 2288 * pages are pinned on the per-cpu lists. Drain them and try again 2289 */ 2290 if (!page && !drained) { 2291 drain_all_pages(); 2292 drained = true; 2293 goto retry; 2294 } 2295 2296 return page; 2297 } 2298 2299 /* 2300 * This is called in the allocator slow-path if the allocation request is of 2301 * sufficient urgency to ignore watermarks and take other desperate measures 2302 */ 2303 static inline struct page * 2304 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2305 struct zonelist *zonelist, enum zone_type high_zoneidx, 2306 nodemask_t *nodemask, struct zone *preferred_zone, 2307 int migratetype) 2308 { 2309 struct page *page; 2310 2311 do { 2312 page = get_page_from_freelist(gfp_mask, nodemask, order, 2313 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2314 preferred_zone, migratetype); 2315 2316 if (!page && gfp_mask & __GFP_NOFAIL) 2317 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2318 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2319 2320 return page; 2321 } 2322 2323 static inline 2324 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2325 enum zone_type high_zoneidx, 2326 enum zone_type classzone_idx) 2327 { 2328 struct zoneref *z; 2329 struct zone *zone; 2330 2331 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2332 wakeup_kswapd(zone, order, classzone_idx); 2333 } 2334 2335 static inline int 2336 gfp_to_alloc_flags(gfp_t gfp_mask) 2337 { 2338 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2339 const gfp_t wait = gfp_mask & __GFP_WAIT; 2340 2341 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2342 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2343 2344 /* 2345 * The caller may dip into page reserves a bit more if the caller 2346 * cannot run direct reclaim, or if the caller has realtime scheduling 2347 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2348 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2349 */ 2350 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2351 2352 if (!wait) { 2353 /* 2354 * Not worth trying to allocate harder for 2355 * __GFP_NOMEMALLOC even if it can't schedule. 2356 */ 2357 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2358 alloc_flags |= ALLOC_HARDER; 2359 /* 2360 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2361 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2362 */ 2363 alloc_flags &= ~ALLOC_CPUSET; 2364 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2365 alloc_flags |= ALLOC_HARDER; 2366 2367 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2368 if (gfp_mask & __GFP_MEMALLOC) 2369 alloc_flags |= ALLOC_NO_WATERMARKS; 2370 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2371 alloc_flags |= ALLOC_NO_WATERMARKS; 2372 else if (!in_interrupt() && 2373 ((current->flags & PF_MEMALLOC) || 2374 unlikely(test_thread_flag(TIF_MEMDIE)))) 2375 alloc_flags |= ALLOC_NO_WATERMARKS; 2376 } 2377 #ifdef CONFIG_CMA 2378 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2379 alloc_flags |= ALLOC_CMA; 2380 #endif 2381 return alloc_flags; 2382 } 2383 2384 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2385 { 2386 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2387 } 2388 2389 static inline struct page * 2390 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2391 struct zonelist *zonelist, enum zone_type high_zoneidx, 2392 nodemask_t *nodemask, struct zone *preferred_zone, 2393 int migratetype) 2394 { 2395 const gfp_t wait = gfp_mask & __GFP_WAIT; 2396 struct page *page = NULL; 2397 int alloc_flags; 2398 unsigned long pages_reclaimed = 0; 2399 unsigned long did_some_progress; 2400 bool sync_migration = false; 2401 bool deferred_compaction = false; 2402 bool contended_compaction = false; 2403 2404 /* 2405 * In the slowpath, we sanity check order to avoid ever trying to 2406 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2407 * be using allocators in order of preference for an area that is 2408 * too large. 2409 */ 2410 if (order >= MAX_ORDER) { 2411 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2412 return NULL; 2413 } 2414 2415 /* 2416 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2417 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2418 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2419 * using a larger set of nodes after it has established that the 2420 * allowed per node queues are empty and that nodes are 2421 * over allocated. 2422 */ 2423 if (IS_ENABLED(CONFIG_NUMA) && 2424 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2425 goto nopage; 2426 2427 restart: 2428 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2429 wake_all_kswapd(order, zonelist, high_zoneidx, 2430 zone_idx(preferred_zone)); 2431 2432 /* 2433 * OK, we're below the kswapd watermark and have kicked background 2434 * reclaim. Now things get more complex, so set up alloc_flags according 2435 * to how we want to proceed. 2436 */ 2437 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2438 2439 /* 2440 * Find the true preferred zone if the allocation is unconstrained by 2441 * cpusets. 2442 */ 2443 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2444 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2445 &preferred_zone); 2446 2447 rebalance: 2448 /* This is the last chance, in general, before the goto nopage. */ 2449 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2450 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2451 preferred_zone, migratetype); 2452 if (page) 2453 goto got_pg; 2454 2455 /* Allocate without watermarks if the context allows */ 2456 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2457 /* 2458 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2459 * the allocation is high priority and these type of 2460 * allocations are system rather than user orientated 2461 */ 2462 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2463 2464 page = __alloc_pages_high_priority(gfp_mask, order, 2465 zonelist, high_zoneidx, nodemask, 2466 preferred_zone, migratetype); 2467 if (page) { 2468 goto got_pg; 2469 } 2470 } 2471 2472 /* Atomic allocations - we can't balance anything */ 2473 if (!wait) 2474 goto nopage; 2475 2476 /* Avoid recursion of direct reclaim */ 2477 if (current->flags & PF_MEMALLOC) 2478 goto nopage; 2479 2480 /* Avoid allocations with no watermarks from looping endlessly */ 2481 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2482 goto nopage; 2483 2484 /* 2485 * Try direct compaction. The first pass is asynchronous. Subsequent 2486 * attempts after direct reclaim are synchronous 2487 */ 2488 page = __alloc_pages_direct_compact(gfp_mask, order, 2489 zonelist, high_zoneidx, 2490 nodemask, 2491 alloc_flags, preferred_zone, 2492 migratetype, sync_migration, 2493 &contended_compaction, 2494 &deferred_compaction, 2495 &did_some_progress); 2496 if (page) 2497 goto got_pg; 2498 sync_migration = true; 2499 2500 /* 2501 * If compaction is deferred for high-order allocations, it is because 2502 * sync compaction recently failed. In this is the case and the caller 2503 * requested a movable allocation that does not heavily disrupt the 2504 * system then fail the allocation instead of entering direct reclaim. 2505 */ 2506 if ((deferred_compaction || contended_compaction) && 2507 (gfp_mask & __GFP_NO_KSWAPD)) 2508 goto nopage; 2509 2510 /* Try direct reclaim and then allocating */ 2511 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2512 zonelist, high_zoneidx, 2513 nodemask, 2514 alloc_flags, preferred_zone, 2515 migratetype, &did_some_progress); 2516 if (page) 2517 goto got_pg; 2518 2519 /* 2520 * If we failed to make any progress reclaiming, then we are 2521 * running out of options and have to consider going OOM 2522 */ 2523 if (!did_some_progress) { 2524 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2525 if (oom_killer_disabled) 2526 goto nopage; 2527 /* Coredumps can quickly deplete all memory reserves */ 2528 if ((current->flags & PF_DUMPCORE) && 2529 !(gfp_mask & __GFP_NOFAIL)) 2530 goto nopage; 2531 page = __alloc_pages_may_oom(gfp_mask, order, 2532 zonelist, high_zoneidx, 2533 nodemask, preferred_zone, 2534 migratetype); 2535 if (page) 2536 goto got_pg; 2537 2538 if (!(gfp_mask & __GFP_NOFAIL)) { 2539 /* 2540 * The oom killer is not called for high-order 2541 * allocations that may fail, so if no progress 2542 * is being made, there are no other options and 2543 * retrying is unlikely to help. 2544 */ 2545 if (order > PAGE_ALLOC_COSTLY_ORDER) 2546 goto nopage; 2547 /* 2548 * The oom killer is not called for lowmem 2549 * allocations to prevent needlessly killing 2550 * innocent tasks. 2551 */ 2552 if (high_zoneidx < ZONE_NORMAL) 2553 goto nopage; 2554 } 2555 2556 goto restart; 2557 } 2558 } 2559 2560 /* Check if we should retry the allocation */ 2561 pages_reclaimed += did_some_progress; 2562 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2563 pages_reclaimed)) { 2564 /* Wait for some write requests to complete then retry */ 2565 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2566 goto rebalance; 2567 } else { 2568 /* 2569 * High-order allocations do not necessarily loop after 2570 * direct reclaim and reclaim/compaction depends on compaction 2571 * being called after reclaim so call directly if necessary 2572 */ 2573 page = __alloc_pages_direct_compact(gfp_mask, order, 2574 zonelist, high_zoneidx, 2575 nodemask, 2576 alloc_flags, preferred_zone, 2577 migratetype, sync_migration, 2578 &contended_compaction, 2579 &deferred_compaction, 2580 &did_some_progress); 2581 if (page) 2582 goto got_pg; 2583 } 2584 2585 nopage: 2586 warn_alloc_failed(gfp_mask, order, NULL); 2587 return page; 2588 got_pg: 2589 if (kmemcheck_enabled) 2590 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2591 2592 return page; 2593 } 2594 2595 /* 2596 * This is the 'heart' of the zoned buddy allocator. 2597 */ 2598 struct page * 2599 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2600 struct zonelist *zonelist, nodemask_t *nodemask) 2601 { 2602 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2603 struct zone *preferred_zone; 2604 struct page *page = NULL; 2605 int migratetype = allocflags_to_migratetype(gfp_mask); 2606 unsigned int cpuset_mems_cookie; 2607 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2608 struct mem_cgroup *memcg = NULL; 2609 2610 gfp_mask &= gfp_allowed_mask; 2611 2612 lockdep_trace_alloc(gfp_mask); 2613 2614 might_sleep_if(gfp_mask & __GFP_WAIT); 2615 2616 if (should_fail_alloc_page(gfp_mask, order)) 2617 return NULL; 2618 2619 /* 2620 * Check the zones suitable for the gfp_mask contain at least one 2621 * valid zone. It's possible to have an empty zonelist as a result 2622 * of GFP_THISNODE and a memoryless node 2623 */ 2624 if (unlikely(!zonelist->_zonerefs->zone)) 2625 return NULL; 2626 2627 /* 2628 * Will only have any effect when __GFP_KMEMCG is set. This is 2629 * verified in the (always inline) callee 2630 */ 2631 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2632 return NULL; 2633 2634 retry_cpuset: 2635 cpuset_mems_cookie = get_mems_allowed(); 2636 2637 /* The preferred zone is used for statistics later */ 2638 first_zones_zonelist(zonelist, high_zoneidx, 2639 nodemask ? : &cpuset_current_mems_allowed, 2640 &preferred_zone); 2641 if (!preferred_zone) 2642 goto out; 2643 2644 #ifdef CONFIG_CMA 2645 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2646 alloc_flags |= ALLOC_CMA; 2647 #endif 2648 /* First allocation attempt */ 2649 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2650 zonelist, high_zoneidx, alloc_flags, 2651 preferred_zone, migratetype); 2652 if (unlikely(!page)) { 2653 /* 2654 * Runtime PM, block IO and its error handling path 2655 * can deadlock because I/O on the device might not 2656 * complete. 2657 */ 2658 gfp_mask = memalloc_noio_flags(gfp_mask); 2659 page = __alloc_pages_slowpath(gfp_mask, order, 2660 zonelist, high_zoneidx, nodemask, 2661 preferred_zone, migratetype); 2662 } 2663 2664 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2665 2666 out: 2667 /* 2668 * When updating a task's mems_allowed, it is possible to race with 2669 * parallel threads in such a way that an allocation can fail while 2670 * the mask is being updated. If a page allocation is about to fail, 2671 * check if the cpuset changed during allocation and if so, retry. 2672 */ 2673 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2674 goto retry_cpuset; 2675 2676 memcg_kmem_commit_charge(page, memcg, order); 2677 2678 return page; 2679 } 2680 EXPORT_SYMBOL(__alloc_pages_nodemask); 2681 2682 /* 2683 * Common helper functions. 2684 */ 2685 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2686 { 2687 struct page *page; 2688 2689 /* 2690 * __get_free_pages() returns a 32-bit address, which cannot represent 2691 * a highmem page 2692 */ 2693 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2694 2695 page = alloc_pages(gfp_mask, order); 2696 if (!page) 2697 return 0; 2698 return (unsigned long) page_address(page); 2699 } 2700 EXPORT_SYMBOL(__get_free_pages); 2701 2702 unsigned long get_zeroed_page(gfp_t gfp_mask) 2703 { 2704 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2705 } 2706 EXPORT_SYMBOL(get_zeroed_page); 2707 2708 void __free_pages(struct page *page, unsigned int order) 2709 { 2710 if (put_page_testzero(page)) { 2711 if (order == 0) 2712 free_hot_cold_page(page, 0); 2713 else 2714 __free_pages_ok(page, order); 2715 } 2716 } 2717 2718 EXPORT_SYMBOL(__free_pages); 2719 2720 void free_pages(unsigned long addr, unsigned int order) 2721 { 2722 if (addr != 0) { 2723 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2724 __free_pages(virt_to_page((void *)addr), order); 2725 } 2726 } 2727 2728 EXPORT_SYMBOL(free_pages); 2729 2730 /* 2731 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2732 * pages allocated with __GFP_KMEMCG. 2733 * 2734 * Those pages are accounted to a particular memcg, embedded in the 2735 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2736 * for that information only to find out that it is NULL for users who have no 2737 * interest in that whatsoever, we provide these functions. 2738 * 2739 * The caller knows better which flags it relies on. 2740 */ 2741 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2742 { 2743 memcg_kmem_uncharge_pages(page, order); 2744 __free_pages(page, order); 2745 } 2746 2747 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2748 { 2749 if (addr != 0) { 2750 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2751 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2752 } 2753 } 2754 2755 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2756 { 2757 if (addr) { 2758 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2759 unsigned long used = addr + PAGE_ALIGN(size); 2760 2761 split_page(virt_to_page((void *)addr), order); 2762 while (used < alloc_end) { 2763 free_page(used); 2764 used += PAGE_SIZE; 2765 } 2766 } 2767 return (void *)addr; 2768 } 2769 2770 /** 2771 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2772 * @size: the number of bytes to allocate 2773 * @gfp_mask: GFP flags for the allocation 2774 * 2775 * This function is similar to alloc_pages(), except that it allocates the 2776 * minimum number of pages to satisfy the request. alloc_pages() can only 2777 * allocate memory in power-of-two pages. 2778 * 2779 * This function is also limited by MAX_ORDER. 2780 * 2781 * Memory allocated by this function must be released by free_pages_exact(). 2782 */ 2783 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2784 { 2785 unsigned int order = get_order(size); 2786 unsigned long addr; 2787 2788 addr = __get_free_pages(gfp_mask, order); 2789 return make_alloc_exact(addr, order, size); 2790 } 2791 EXPORT_SYMBOL(alloc_pages_exact); 2792 2793 /** 2794 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2795 * pages on a node. 2796 * @nid: the preferred node ID where memory should be allocated 2797 * @size: the number of bytes to allocate 2798 * @gfp_mask: GFP flags for the allocation 2799 * 2800 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2801 * back. 2802 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2803 * but is not exact. 2804 */ 2805 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2806 { 2807 unsigned order = get_order(size); 2808 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2809 if (!p) 2810 return NULL; 2811 return make_alloc_exact((unsigned long)page_address(p), order, size); 2812 } 2813 EXPORT_SYMBOL(alloc_pages_exact_nid); 2814 2815 /** 2816 * free_pages_exact - release memory allocated via alloc_pages_exact() 2817 * @virt: the value returned by alloc_pages_exact. 2818 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2819 * 2820 * Release the memory allocated by a previous call to alloc_pages_exact. 2821 */ 2822 void free_pages_exact(void *virt, size_t size) 2823 { 2824 unsigned long addr = (unsigned long)virt; 2825 unsigned long end = addr + PAGE_ALIGN(size); 2826 2827 while (addr < end) { 2828 free_page(addr); 2829 addr += PAGE_SIZE; 2830 } 2831 } 2832 EXPORT_SYMBOL(free_pages_exact); 2833 2834 /** 2835 * nr_free_zone_pages - count number of pages beyond high watermark 2836 * @offset: The zone index of the highest zone 2837 * 2838 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2839 * high watermark within all zones at or below a given zone index. For each 2840 * zone, the number of pages is calculated as: 2841 * managed_pages - high_pages 2842 */ 2843 static unsigned long nr_free_zone_pages(int offset) 2844 { 2845 struct zoneref *z; 2846 struct zone *zone; 2847 2848 /* Just pick one node, since fallback list is circular */ 2849 unsigned long sum = 0; 2850 2851 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2852 2853 for_each_zone_zonelist(zone, z, zonelist, offset) { 2854 unsigned long size = zone->managed_pages; 2855 unsigned long high = high_wmark_pages(zone); 2856 if (size > high) 2857 sum += size - high; 2858 } 2859 2860 return sum; 2861 } 2862 2863 /** 2864 * nr_free_buffer_pages - count number of pages beyond high watermark 2865 * 2866 * nr_free_buffer_pages() counts the number of pages which are beyond the high 2867 * watermark within ZONE_DMA and ZONE_NORMAL. 2868 */ 2869 unsigned long nr_free_buffer_pages(void) 2870 { 2871 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2872 } 2873 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2874 2875 /** 2876 * nr_free_pagecache_pages - count number of pages beyond high watermark 2877 * 2878 * nr_free_pagecache_pages() counts the number of pages which are beyond the 2879 * high watermark within all zones. 2880 */ 2881 unsigned long nr_free_pagecache_pages(void) 2882 { 2883 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2884 } 2885 2886 static inline void show_node(struct zone *zone) 2887 { 2888 if (IS_ENABLED(CONFIG_NUMA)) 2889 printk("Node %d ", zone_to_nid(zone)); 2890 } 2891 2892 void si_meminfo(struct sysinfo *val) 2893 { 2894 val->totalram = totalram_pages; 2895 val->sharedram = 0; 2896 val->freeram = global_page_state(NR_FREE_PAGES); 2897 val->bufferram = nr_blockdev_pages(); 2898 val->totalhigh = totalhigh_pages; 2899 val->freehigh = nr_free_highpages(); 2900 val->mem_unit = PAGE_SIZE; 2901 } 2902 2903 EXPORT_SYMBOL(si_meminfo); 2904 2905 #ifdef CONFIG_NUMA 2906 void si_meminfo_node(struct sysinfo *val, int nid) 2907 { 2908 int zone_type; /* needs to be signed */ 2909 unsigned long managed_pages = 0; 2910 pg_data_t *pgdat = NODE_DATA(nid); 2911 2912 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 2913 managed_pages += pgdat->node_zones[zone_type].managed_pages; 2914 val->totalram = managed_pages; 2915 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2916 #ifdef CONFIG_HIGHMEM 2917 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 2918 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2919 NR_FREE_PAGES); 2920 #else 2921 val->totalhigh = 0; 2922 val->freehigh = 0; 2923 #endif 2924 val->mem_unit = PAGE_SIZE; 2925 } 2926 #endif 2927 2928 /* 2929 * Determine whether the node should be displayed or not, depending on whether 2930 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2931 */ 2932 bool skip_free_areas_node(unsigned int flags, int nid) 2933 { 2934 bool ret = false; 2935 unsigned int cpuset_mems_cookie; 2936 2937 if (!(flags & SHOW_MEM_FILTER_NODES)) 2938 goto out; 2939 2940 do { 2941 cpuset_mems_cookie = get_mems_allowed(); 2942 ret = !node_isset(nid, cpuset_current_mems_allowed); 2943 } while (!put_mems_allowed(cpuset_mems_cookie)); 2944 out: 2945 return ret; 2946 } 2947 2948 #define K(x) ((x) << (PAGE_SHIFT-10)) 2949 2950 static void show_migration_types(unsigned char type) 2951 { 2952 static const char types[MIGRATE_TYPES] = { 2953 [MIGRATE_UNMOVABLE] = 'U', 2954 [MIGRATE_RECLAIMABLE] = 'E', 2955 [MIGRATE_MOVABLE] = 'M', 2956 [MIGRATE_RESERVE] = 'R', 2957 #ifdef CONFIG_CMA 2958 [MIGRATE_CMA] = 'C', 2959 #endif 2960 #ifdef CONFIG_MEMORY_ISOLATION 2961 [MIGRATE_ISOLATE] = 'I', 2962 #endif 2963 }; 2964 char tmp[MIGRATE_TYPES + 1]; 2965 char *p = tmp; 2966 int i; 2967 2968 for (i = 0; i < MIGRATE_TYPES; i++) { 2969 if (type & (1 << i)) 2970 *p++ = types[i]; 2971 } 2972 2973 *p = '\0'; 2974 printk("(%s) ", tmp); 2975 } 2976 2977 /* 2978 * Show free area list (used inside shift_scroll-lock stuff) 2979 * We also calculate the percentage fragmentation. We do this by counting the 2980 * memory on each free list with the exception of the first item on the list. 2981 * Suppresses nodes that are not allowed by current's cpuset if 2982 * SHOW_MEM_FILTER_NODES is passed. 2983 */ 2984 void show_free_areas(unsigned int filter) 2985 { 2986 int cpu; 2987 struct zone *zone; 2988 2989 for_each_populated_zone(zone) { 2990 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2991 continue; 2992 show_node(zone); 2993 printk("%s per-cpu:\n", zone->name); 2994 2995 for_each_online_cpu(cpu) { 2996 struct per_cpu_pageset *pageset; 2997 2998 pageset = per_cpu_ptr(zone->pageset, cpu); 2999 3000 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3001 cpu, pageset->pcp.high, 3002 pageset->pcp.batch, pageset->pcp.count); 3003 } 3004 } 3005 3006 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3007 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3008 " unevictable:%lu" 3009 " dirty:%lu writeback:%lu unstable:%lu\n" 3010 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3011 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3012 " free_cma:%lu\n", 3013 global_page_state(NR_ACTIVE_ANON), 3014 global_page_state(NR_INACTIVE_ANON), 3015 global_page_state(NR_ISOLATED_ANON), 3016 global_page_state(NR_ACTIVE_FILE), 3017 global_page_state(NR_INACTIVE_FILE), 3018 global_page_state(NR_ISOLATED_FILE), 3019 global_page_state(NR_UNEVICTABLE), 3020 global_page_state(NR_FILE_DIRTY), 3021 global_page_state(NR_WRITEBACK), 3022 global_page_state(NR_UNSTABLE_NFS), 3023 global_page_state(NR_FREE_PAGES), 3024 global_page_state(NR_SLAB_RECLAIMABLE), 3025 global_page_state(NR_SLAB_UNRECLAIMABLE), 3026 global_page_state(NR_FILE_MAPPED), 3027 global_page_state(NR_SHMEM), 3028 global_page_state(NR_PAGETABLE), 3029 global_page_state(NR_BOUNCE), 3030 global_page_state(NR_FREE_CMA_PAGES)); 3031 3032 for_each_populated_zone(zone) { 3033 int i; 3034 3035 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3036 continue; 3037 show_node(zone); 3038 printk("%s" 3039 " free:%lukB" 3040 " min:%lukB" 3041 " low:%lukB" 3042 " high:%lukB" 3043 " active_anon:%lukB" 3044 " inactive_anon:%lukB" 3045 " active_file:%lukB" 3046 " inactive_file:%lukB" 3047 " unevictable:%lukB" 3048 " isolated(anon):%lukB" 3049 " isolated(file):%lukB" 3050 " present:%lukB" 3051 " managed:%lukB" 3052 " mlocked:%lukB" 3053 " dirty:%lukB" 3054 " writeback:%lukB" 3055 " mapped:%lukB" 3056 " shmem:%lukB" 3057 " slab_reclaimable:%lukB" 3058 " slab_unreclaimable:%lukB" 3059 " kernel_stack:%lukB" 3060 " pagetables:%lukB" 3061 " unstable:%lukB" 3062 " bounce:%lukB" 3063 " free_cma:%lukB" 3064 " writeback_tmp:%lukB" 3065 " pages_scanned:%lu" 3066 " all_unreclaimable? %s" 3067 "\n", 3068 zone->name, 3069 K(zone_page_state(zone, NR_FREE_PAGES)), 3070 K(min_wmark_pages(zone)), 3071 K(low_wmark_pages(zone)), 3072 K(high_wmark_pages(zone)), 3073 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3074 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3075 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3076 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3077 K(zone_page_state(zone, NR_UNEVICTABLE)), 3078 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3079 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3080 K(zone->present_pages), 3081 K(zone->managed_pages), 3082 K(zone_page_state(zone, NR_MLOCK)), 3083 K(zone_page_state(zone, NR_FILE_DIRTY)), 3084 K(zone_page_state(zone, NR_WRITEBACK)), 3085 K(zone_page_state(zone, NR_FILE_MAPPED)), 3086 K(zone_page_state(zone, NR_SHMEM)), 3087 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3088 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3089 zone_page_state(zone, NR_KERNEL_STACK) * 3090 THREAD_SIZE / 1024, 3091 K(zone_page_state(zone, NR_PAGETABLE)), 3092 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3093 K(zone_page_state(zone, NR_BOUNCE)), 3094 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3095 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3096 zone->pages_scanned, 3097 (zone->all_unreclaimable ? "yes" : "no") 3098 ); 3099 printk("lowmem_reserve[]:"); 3100 for (i = 0; i < MAX_NR_ZONES; i++) 3101 printk(" %lu", zone->lowmem_reserve[i]); 3102 printk("\n"); 3103 } 3104 3105 for_each_populated_zone(zone) { 3106 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3107 unsigned char types[MAX_ORDER]; 3108 3109 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3110 continue; 3111 show_node(zone); 3112 printk("%s: ", zone->name); 3113 3114 spin_lock_irqsave(&zone->lock, flags); 3115 for (order = 0; order < MAX_ORDER; order++) { 3116 struct free_area *area = &zone->free_area[order]; 3117 int type; 3118 3119 nr[order] = area->nr_free; 3120 total += nr[order] << order; 3121 3122 types[order] = 0; 3123 for (type = 0; type < MIGRATE_TYPES; type++) { 3124 if (!list_empty(&area->free_list[type])) 3125 types[order] |= 1 << type; 3126 } 3127 } 3128 spin_unlock_irqrestore(&zone->lock, flags); 3129 for (order = 0; order < MAX_ORDER; order++) { 3130 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3131 if (nr[order]) 3132 show_migration_types(types[order]); 3133 } 3134 printk("= %lukB\n", K(total)); 3135 } 3136 3137 hugetlb_show_meminfo(); 3138 3139 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3140 3141 show_swap_cache_info(); 3142 } 3143 3144 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3145 { 3146 zoneref->zone = zone; 3147 zoneref->zone_idx = zone_idx(zone); 3148 } 3149 3150 /* 3151 * Builds allocation fallback zone lists. 3152 * 3153 * Add all populated zones of a node to the zonelist. 3154 */ 3155 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3156 int nr_zones, enum zone_type zone_type) 3157 { 3158 struct zone *zone; 3159 3160 BUG_ON(zone_type >= MAX_NR_ZONES); 3161 zone_type++; 3162 3163 do { 3164 zone_type--; 3165 zone = pgdat->node_zones + zone_type; 3166 if (populated_zone(zone)) { 3167 zoneref_set_zone(zone, 3168 &zonelist->_zonerefs[nr_zones++]); 3169 check_highest_zone(zone_type); 3170 } 3171 3172 } while (zone_type); 3173 return nr_zones; 3174 } 3175 3176 3177 /* 3178 * zonelist_order: 3179 * 0 = automatic detection of better ordering. 3180 * 1 = order by ([node] distance, -zonetype) 3181 * 2 = order by (-zonetype, [node] distance) 3182 * 3183 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3184 * the same zonelist. So only NUMA can configure this param. 3185 */ 3186 #define ZONELIST_ORDER_DEFAULT 0 3187 #define ZONELIST_ORDER_NODE 1 3188 #define ZONELIST_ORDER_ZONE 2 3189 3190 /* zonelist order in the kernel. 3191 * set_zonelist_order() will set this to NODE or ZONE. 3192 */ 3193 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3194 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3195 3196 3197 #ifdef CONFIG_NUMA 3198 /* The value user specified ....changed by config */ 3199 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3200 /* string for sysctl */ 3201 #define NUMA_ZONELIST_ORDER_LEN 16 3202 char numa_zonelist_order[16] = "default"; 3203 3204 /* 3205 * interface for configure zonelist ordering. 3206 * command line option "numa_zonelist_order" 3207 * = "[dD]efault - default, automatic configuration. 3208 * = "[nN]ode - order by node locality, then by zone within node 3209 * = "[zZ]one - order by zone, then by locality within zone 3210 */ 3211 3212 static int __parse_numa_zonelist_order(char *s) 3213 { 3214 if (*s == 'd' || *s == 'D') { 3215 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3216 } else if (*s == 'n' || *s == 'N') { 3217 user_zonelist_order = ZONELIST_ORDER_NODE; 3218 } else if (*s == 'z' || *s == 'Z') { 3219 user_zonelist_order = ZONELIST_ORDER_ZONE; 3220 } else { 3221 printk(KERN_WARNING 3222 "Ignoring invalid numa_zonelist_order value: " 3223 "%s\n", s); 3224 return -EINVAL; 3225 } 3226 return 0; 3227 } 3228 3229 static __init int setup_numa_zonelist_order(char *s) 3230 { 3231 int ret; 3232 3233 if (!s) 3234 return 0; 3235 3236 ret = __parse_numa_zonelist_order(s); 3237 if (ret == 0) 3238 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3239 3240 return ret; 3241 } 3242 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3243 3244 /* 3245 * sysctl handler for numa_zonelist_order 3246 */ 3247 int numa_zonelist_order_handler(ctl_table *table, int write, 3248 void __user *buffer, size_t *length, 3249 loff_t *ppos) 3250 { 3251 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3252 int ret; 3253 static DEFINE_MUTEX(zl_order_mutex); 3254 3255 mutex_lock(&zl_order_mutex); 3256 if (write) { 3257 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3258 ret = -EINVAL; 3259 goto out; 3260 } 3261 strcpy(saved_string, (char *)table->data); 3262 } 3263 ret = proc_dostring(table, write, buffer, length, ppos); 3264 if (ret) 3265 goto out; 3266 if (write) { 3267 int oldval = user_zonelist_order; 3268 3269 ret = __parse_numa_zonelist_order((char *)table->data); 3270 if (ret) { 3271 /* 3272 * bogus value. restore saved string 3273 */ 3274 strncpy((char *)table->data, saved_string, 3275 NUMA_ZONELIST_ORDER_LEN); 3276 user_zonelist_order = oldval; 3277 } else if (oldval != user_zonelist_order) { 3278 mutex_lock(&zonelists_mutex); 3279 build_all_zonelists(NULL, NULL); 3280 mutex_unlock(&zonelists_mutex); 3281 } 3282 } 3283 out: 3284 mutex_unlock(&zl_order_mutex); 3285 return ret; 3286 } 3287 3288 3289 #define MAX_NODE_LOAD (nr_online_nodes) 3290 static int node_load[MAX_NUMNODES]; 3291 3292 /** 3293 * find_next_best_node - find the next node that should appear in a given node's fallback list 3294 * @node: node whose fallback list we're appending 3295 * @used_node_mask: nodemask_t of already used nodes 3296 * 3297 * We use a number of factors to determine which is the next node that should 3298 * appear on a given node's fallback list. The node should not have appeared 3299 * already in @node's fallback list, and it should be the next closest node 3300 * according to the distance array (which contains arbitrary distance values 3301 * from each node to each node in the system), and should also prefer nodes 3302 * with no CPUs, since presumably they'll have very little allocation pressure 3303 * on them otherwise. 3304 * It returns -1 if no node is found. 3305 */ 3306 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3307 { 3308 int n, val; 3309 int min_val = INT_MAX; 3310 int best_node = NUMA_NO_NODE; 3311 const struct cpumask *tmp = cpumask_of_node(0); 3312 3313 /* Use the local node if we haven't already */ 3314 if (!node_isset(node, *used_node_mask)) { 3315 node_set(node, *used_node_mask); 3316 return node; 3317 } 3318 3319 for_each_node_state(n, N_MEMORY) { 3320 3321 /* Don't want a node to appear more than once */ 3322 if (node_isset(n, *used_node_mask)) 3323 continue; 3324 3325 /* Use the distance array to find the distance */ 3326 val = node_distance(node, n); 3327 3328 /* Penalize nodes under us ("prefer the next node") */ 3329 val += (n < node); 3330 3331 /* Give preference to headless and unused nodes */ 3332 tmp = cpumask_of_node(n); 3333 if (!cpumask_empty(tmp)) 3334 val += PENALTY_FOR_NODE_WITH_CPUS; 3335 3336 /* Slight preference for less loaded node */ 3337 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3338 val += node_load[n]; 3339 3340 if (val < min_val) { 3341 min_val = val; 3342 best_node = n; 3343 } 3344 } 3345 3346 if (best_node >= 0) 3347 node_set(best_node, *used_node_mask); 3348 3349 return best_node; 3350 } 3351 3352 3353 /* 3354 * Build zonelists ordered by node and zones within node. 3355 * This results in maximum locality--normal zone overflows into local 3356 * DMA zone, if any--but risks exhausting DMA zone. 3357 */ 3358 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3359 { 3360 int j; 3361 struct zonelist *zonelist; 3362 3363 zonelist = &pgdat->node_zonelists[0]; 3364 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3365 ; 3366 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3367 MAX_NR_ZONES - 1); 3368 zonelist->_zonerefs[j].zone = NULL; 3369 zonelist->_zonerefs[j].zone_idx = 0; 3370 } 3371 3372 /* 3373 * Build gfp_thisnode zonelists 3374 */ 3375 static void build_thisnode_zonelists(pg_data_t *pgdat) 3376 { 3377 int j; 3378 struct zonelist *zonelist; 3379 3380 zonelist = &pgdat->node_zonelists[1]; 3381 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3382 zonelist->_zonerefs[j].zone = NULL; 3383 zonelist->_zonerefs[j].zone_idx = 0; 3384 } 3385 3386 /* 3387 * Build zonelists ordered by zone and nodes within zones. 3388 * This results in conserving DMA zone[s] until all Normal memory is 3389 * exhausted, but results in overflowing to remote node while memory 3390 * may still exist in local DMA zone. 3391 */ 3392 static int node_order[MAX_NUMNODES]; 3393 3394 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3395 { 3396 int pos, j, node; 3397 int zone_type; /* needs to be signed */ 3398 struct zone *z; 3399 struct zonelist *zonelist; 3400 3401 zonelist = &pgdat->node_zonelists[0]; 3402 pos = 0; 3403 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3404 for (j = 0; j < nr_nodes; j++) { 3405 node = node_order[j]; 3406 z = &NODE_DATA(node)->node_zones[zone_type]; 3407 if (populated_zone(z)) { 3408 zoneref_set_zone(z, 3409 &zonelist->_zonerefs[pos++]); 3410 check_highest_zone(zone_type); 3411 } 3412 } 3413 } 3414 zonelist->_zonerefs[pos].zone = NULL; 3415 zonelist->_zonerefs[pos].zone_idx = 0; 3416 } 3417 3418 static int default_zonelist_order(void) 3419 { 3420 int nid, zone_type; 3421 unsigned long low_kmem_size,total_size; 3422 struct zone *z; 3423 int average_size; 3424 /* 3425 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3426 * If they are really small and used heavily, the system can fall 3427 * into OOM very easily. 3428 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3429 */ 3430 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3431 low_kmem_size = 0; 3432 total_size = 0; 3433 for_each_online_node(nid) { 3434 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3435 z = &NODE_DATA(nid)->node_zones[zone_type]; 3436 if (populated_zone(z)) { 3437 if (zone_type < ZONE_NORMAL) 3438 low_kmem_size += z->managed_pages; 3439 total_size += z->managed_pages; 3440 } else if (zone_type == ZONE_NORMAL) { 3441 /* 3442 * If any node has only lowmem, then node order 3443 * is preferred to allow kernel allocations 3444 * locally; otherwise, they can easily infringe 3445 * on other nodes when there is an abundance of 3446 * lowmem available to allocate from. 3447 */ 3448 return ZONELIST_ORDER_NODE; 3449 } 3450 } 3451 } 3452 if (!low_kmem_size || /* there are no DMA area. */ 3453 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3454 return ZONELIST_ORDER_NODE; 3455 /* 3456 * look into each node's config. 3457 * If there is a node whose DMA/DMA32 memory is very big area on 3458 * local memory, NODE_ORDER may be suitable. 3459 */ 3460 average_size = total_size / 3461 (nodes_weight(node_states[N_MEMORY]) + 1); 3462 for_each_online_node(nid) { 3463 low_kmem_size = 0; 3464 total_size = 0; 3465 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3466 z = &NODE_DATA(nid)->node_zones[zone_type]; 3467 if (populated_zone(z)) { 3468 if (zone_type < ZONE_NORMAL) 3469 low_kmem_size += z->present_pages; 3470 total_size += z->present_pages; 3471 } 3472 } 3473 if (low_kmem_size && 3474 total_size > average_size && /* ignore small node */ 3475 low_kmem_size > total_size * 70/100) 3476 return ZONELIST_ORDER_NODE; 3477 } 3478 return ZONELIST_ORDER_ZONE; 3479 } 3480 3481 static void set_zonelist_order(void) 3482 { 3483 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3484 current_zonelist_order = default_zonelist_order(); 3485 else 3486 current_zonelist_order = user_zonelist_order; 3487 } 3488 3489 static void build_zonelists(pg_data_t *pgdat) 3490 { 3491 int j, node, load; 3492 enum zone_type i; 3493 nodemask_t used_mask; 3494 int local_node, prev_node; 3495 struct zonelist *zonelist; 3496 int order = current_zonelist_order; 3497 3498 /* initialize zonelists */ 3499 for (i = 0; i < MAX_ZONELISTS; i++) { 3500 zonelist = pgdat->node_zonelists + i; 3501 zonelist->_zonerefs[0].zone = NULL; 3502 zonelist->_zonerefs[0].zone_idx = 0; 3503 } 3504 3505 /* NUMA-aware ordering of nodes */ 3506 local_node = pgdat->node_id; 3507 load = nr_online_nodes; 3508 prev_node = local_node; 3509 nodes_clear(used_mask); 3510 3511 memset(node_order, 0, sizeof(node_order)); 3512 j = 0; 3513 3514 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3515 /* 3516 * We don't want to pressure a particular node. 3517 * So adding penalty to the first node in same 3518 * distance group to make it round-robin. 3519 */ 3520 if (node_distance(local_node, node) != 3521 node_distance(local_node, prev_node)) 3522 node_load[node] = load; 3523 3524 prev_node = node; 3525 load--; 3526 if (order == ZONELIST_ORDER_NODE) 3527 build_zonelists_in_node_order(pgdat, node); 3528 else 3529 node_order[j++] = node; /* remember order */ 3530 } 3531 3532 if (order == ZONELIST_ORDER_ZONE) { 3533 /* calculate node order -- i.e., DMA last! */ 3534 build_zonelists_in_zone_order(pgdat, j); 3535 } 3536 3537 build_thisnode_zonelists(pgdat); 3538 } 3539 3540 /* Construct the zonelist performance cache - see further mmzone.h */ 3541 static void build_zonelist_cache(pg_data_t *pgdat) 3542 { 3543 struct zonelist *zonelist; 3544 struct zonelist_cache *zlc; 3545 struct zoneref *z; 3546 3547 zonelist = &pgdat->node_zonelists[0]; 3548 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3549 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3550 for (z = zonelist->_zonerefs; z->zone; z++) 3551 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3552 } 3553 3554 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3555 /* 3556 * Return node id of node used for "local" allocations. 3557 * I.e., first node id of first zone in arg node's generic zonelist. 3558 * Used for initializing percpu 'numa_mem', which is used primarily 3559 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3560 */ 3561 int local_memory_node(int node) 3562 { 3563 struct zone *zone; 3564 3565 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3566 gfp_zone(GFP_KERNEL), 3567 NULL, 3568 &zone); 3569 return zone->node; 3570 } 3571 #endif 3572 3573 #else /* CONFIG_NUMA */ 3574 3575 static void set_zonelist_order(void) 3576 { 3577 current_zonelist_order = ZONELIST_ORDER_ZONE; 3578 } 3579 3580 static void build_zonelists(pg_data_t *pgdat) 3581 { 3582 int node, local_node; 3583 enum zone_type j; 3584 struct zonelist *zonelist; 3585 3586 local_node = pgdat->node_id; 3587 3588 zonelist = &pgdat->node_zonelists[0]; 3589 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3590 3591 /* 3592 * Now we build the zonelist so that it contains the zones 3593 * of all the other nodes. 3594 * We don't want to pressure a particular node, so when 3595 * building the zones for node N, we make sure that the 3596 * zones coming right after the local ones are those from 3597 * node N+1 (modulo N) 3598 */ 3599 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3600 if (!node_online(node)) 3601 continue; 3602 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3603 MAX_NR_ZONES - 1); 3604 } 3605 for (node = 0; node < local_node; node++) { 3606 if (!node_online(node)) 3607 continue; 3608 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3609 MAX_NR_ZONES - 1); 3610 } 3611 3612 zonelist->_zonerefs[j].zone = NULL; 3613 zonelist->_zonerefs[j].zone_idx = 0; 3614 } 3615 3616 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3617 static void build_zonelist_cache(pg_data_t *pgdat) 3618 { 3619 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3620 } 3621 3622 #endif /* CONFIG_NUMA */ 3623 3624 /* 3625 * Boot pageset table. One per cpu which is going to be used for all 3626 * zones and all nodes. The parameters will be set in such a way 3627 * that an item put on a list will immediately be handed over to 3628 * the buddy list. This is safe since pageset manipulation is done 3629 * with interrupts disabled. 3630 * 3631 * The boot_pagesets must be kept even after bootup is complete for 3632 * unused processors and/or zones. They do play a role for bootstrapping 3633 * hotplugged processors. 3634 * 3635 * zoneinfo_show() and maybe other functions do 3636 * not check if the processor is online before following the pageset pointer. 3637 * Other parts of the kernel may not check if the zone is available. 3638 */ 3639 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3640 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3641 static void setup_zone_pageset(struct zone *zone); 3642 3643 /* 3644 * Global mutex to protect against size modification of zonelists 3645 * as well as to serialize pageset setup for the new populated zone. 3646 */ 3647 DEFINE_MUTEX(zonelists_mutex); 3648 3649 /* return values int ....just for stop_machine() */ 3650 static int __build_all_zonelists(void *data) 3651 { 3652 int nid; 3653 int cpu; 3654 pg_data_t *self = data; 3655 3656 #ifdef CONFIG_NUMA 3657 memset(node_load, 0, sizeof(node_load)); 3658 #endif 3659 3660 if (self && !node_online(self->node_id)) { 3661 build_zonelists(self); 3662 build_zonelist_cache(self); 3663 } 3664 3665 for_each_online_node(nid) { 3666 pg_data_t *pgdat = NODE_DATA(nid); 3667 3668 build_zonelists(pgdat); 3669 build_zonelist_cache(pgdat); 3670 } 3671 3672 /* 3673 * Initialize the boot_pagesets that are going to be used 3674 * for bootstrapping processors. The real pagesets for 3675 * each zone will be allocated later when the per cpu 3676 * allocator is available. 3677 * 3678 * boot_pagesets are used also for bootstrapping offline 3679 * cpus if the system is already booted because the pagesets 3680 * are needed to initialize allocators on a specific cpu too. 3681 * F.e. the percpu allocator needs the page allocator which 3682 * needs the percpu allocator in order to allocate its pagesets 3683 * (a chicken-egg dilemma). 3684 */ 3685 for_each_possible_cpu(cpu) { 3686 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3687 3688 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3689 /* 3690 * We now know the "local memory node" for each node-- 3691 * i.e., the node of the first zone in the generic zonelist. 3692 * Set up numa_mem percpu variable for on-line cpus. During 3693 * boot, only the boot cpu should be on-line; we'll init the 3694 * secondary cpus' numa_mem as they come on-line. During 3695 * node/memory hotplug, we'll fixup all on-line cpus. 3696 */ 3697 if (cpu_online(cpu)) 3698 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3699 #endif 3700 } 3701 3702 return 0; 3703 } 3704 3705 /* 3706 * Called with zonelists_mutex held always 3707 * unless system_state == SYSTEM_BOOTING. 3708 */ 3709 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3710 { 3711 set_zonelist_order(); 3712 3713 if (system_state == SYSTEM_BOOTING) { 3714 __build_all_zonelists(NULL); 3715 mminit_verify_zonelist(); 3716 cpuset_init_current_mems_allowed(); 3717 } else { 3718 #ifdef CONFIG_MEMORY_HOTPLUG 3719 if (zone) 3720 setup_zone_pageset(zone); 3721 #endif 3722 /* we have to stop all cpus to guarantee there is no user 3723 of zonelist */ 3724 stop_machine(__build_all_zonelists, pgdat, NULL); 3725 /* cpuset refresh routine should be here */ 3726 } 3727 vm_total_pages = nr_free_pagecache_pages(); 3728 /* 3729 * Disable grouping by mobility if the number of pages in the 3730 * system is too low to allow the mechanism to work. It would be 3731 * more accurate, but expensive to check per-zone. This check is 3732 * made on memory-hotadd so a system can start with mobility 3733 * disabled and enable it later 3734 */ 3735 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3736 page_group_by_mobility_disabled = 1; 3737 else 3738 page_group_by_mobility_disabled = 0; 3739 3740 printk("Built %i zonelists in %s order, mobility grouping %s. " 3741 "Total pages: %ld\n", 3742 nr_online_nodes, 3743 zonelist_order_name[current_zonelist_order], 3744 page_group_by_mobility_disabled ? "off" : "on", 3745 vm_total_pages); 3746 #ifdef CONFIG_NUMA 3747 printk("Policy zone: %s\n", zone_names[policy_zone]); 3748 #endif 3749 } 3750 3751 /* 3752 * Helper functions to size the waitqueue hash table. 3753 * Essentially these want to choose hash table sizes sufficiently 3754 * large so that collisions trying to wait on pages are rare. 3755 * But in fact, the number of active page waitqueues on typical 3756 * systems is ridiculously low, less than 200. So this is even 3757 * conservative, even though it seems large. 3758 * 3759 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3760 * waitqueues, i.e. the size of the waitq table given the number of pages. 3761 */ 3762 #define PAGES_PER_WAITQUEUE 256 3763 3764 #ifndef CONFIG_MEMORY_HOTPLUG 3765 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3766 { 3767 unsigned long size = 1; 3768 3769 pages /= PAGES_PER_WAITQUEUE; 3770 3771 while (size < pages) 3772 size <<= 1; 3773 3774 /* 3775 * Once we have dozens or even hundreds of threads sleeping 3776 * on IO we've got bigger problems than wait queue collision. 3777 * Limit the size of the wait table to a reasonable size. 3778 */ 3779 size = min(size, 4096UL); 3780 3781 return max(size, 4UL); 3782 } 3783 #else 3784 /* 3785 * A zone's size might be changed by hot-add, so it is not possible to determine 3786 * a suitable size for its wait_table. So we use the maximum size now. 3787 * 3788 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3789 * 3790 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3791 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3792 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3793 * 3794 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3795 * or more by the traditional way. (See above). It equals: 3796 * 3797 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3798 * ia64(16K page size) : = ( 8G + 4M)byte. 3799 * powerpc (64K page size) : = (32G +16M)byte. 3800 */ 3801 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3802 { 3803 return 4096UL; 3804 } 3805 #endif 3806 3807 /* 3808 * This is an integer logarithm so that shifts can be used later 3809 * to extract the more random high bits from the multiplicative 3810 * hash function before the remainder is taken. 3811 */ 3812 static inline unsigned long wait_table_bits(unsigned long size) 3813 { 3814 return ffz(~size); 3815 } 3816 3817 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3818 3819 /* 3820 * Check if a pageblock contains reserved pages 3821 */ 3822 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3823 { 3824 unsigned long pfn; 3825 3826 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3827 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3828 return 1; 3829 } 3830 return 0; 3831 } 3832 3833 /* 3834 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3835 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3836 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3837 * higher will lead to a bigger reserve which will get freed as contiguous 3838 * blocks as reclaim kicks in 3839 */ 3840 static void setup_zone_migrate_reserve(struct zone *zone) 3841 { 3842 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3843 struct page *page; 3844 unsigned long block_migratetype; 3845 int reserve; 3846 3847 /* 3848 * Get the start pfn, end pfn and the number of blocks to reserve 3849 * We have to be careful to be aligned to pageblock_nr_pages to 3850 * make sure that we always check pfn_valid for the first page in 3851 * the block. 3852 */ 3853 start_pfn = zone->zone_start_pfn; 3854 end_pfn = zone_end_pfn(zone); 3855 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3856 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3857 pageblock_order; 3858 3859 /* 3860 * Reserve blocks are generally in place to help high-order atomic 3861 * allocations that are short-lived. A min_free_kbytes value that 3862 * would result in more than 2 reserve blocks for atomic allocations 3863 * is assumed to be in place to help anti-fragmentation for the 3864 * future allocation of hugepages at runtime. 3865 */ 3866 reserve = min(2, reserve); 3867 3868 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3869 if (!pfn_valid(pfn)) 3870 continue; 3871 page = pfn_to_page(pfn); 3872 3873 /* Watch out for overlapping nodes */ 3874 if (page_to_nid(page) != zone_to_nid(zone)) 3875 continue; 3876 3877 block_migratetype = get_pageblock_migratetype(page); 3878 3879 /* Only test what is necessary when the reserves are not met */ 3880 if (reserve > 0) { 3881 /* 3882 * Blocks with reserved pages will never free, skip 3883 * them. 3884 */ 3885 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3886 if (pageblock_is_reserved(pfn, block_end_pfn)) 3887 continue; 3888 3889 /* If this block is reserved, account for it */ 3890 if (block_migratetype == MIGRATE_RESERVE) { 3891 reserve--; 3892 continue; 3893 } 3894 3895 /* Suitable for reserving if this block is movable */ 3896 if (block_migratetype == MIGRATE_MOVABLE) { 3897 set_pageblock_migratetype(page, 3898 MIGRATE_RESERVE); 3899 move_freepages_block(zone, page, 3900 MIGRATE_RESERVE); 3901 reserve--; 3902 continue; 3903 } 3904 } 3905 3906 /* 3907 * If the reserve is met and this is a previous reserved block, 3908 * take it back 3909 */ 3910 if (block_migratetype == MIGRATE_RESERVE) { 3911 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3912 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3913 } 3914 } 3915 } 3916 3917 /* 3918 * Initially all pages are reserved - free ones are freed 3919 * up by free_all_bootmem() once the early boot process is 3920 * done. Non-atomic initialization, single-pass. 3921 */ 3922 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3923 unsigned long start_pfn, enum memmap_context context) 3924 { 3925 struct page *page; 3926 unsigned long end_pfn = start_pfn + size; 3927 unsigned long pfn; 3928 struct zone *z; 3929 3930 if (highest_memmap_pfn < end_pfn - 1) 3931 highest_memmap_pfn = end_pfn - 1; 3932 3933 z = &NODE_DATA(nid)->node_zones[zone]; 3934 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3935 /* 3936 * There can be holes in boot-time mem_map[]s 3937 * handed to this function. They do not 3938 * exist on hotplugged memory. 3939 */ 3940 if (context == MEMMAP_EARLY) { 3941 if (!early_pfn_valid(pfn)) 3942 continue; 3943 if (!early_pfn_in_nid(pfn, nid)) 3944 continue; 3945 } 3946 page = pfn_to_page(pfn); 3947 set_page_links(page, zone, nid, pfn); 3948 mminit_verify_page_links(page, zone, nid, pfn); 3949 init_page_count(page); 3950 page_mapcount_reset(page); 3951 page_nid_reset_last(page); 3952 SetPageReserved(page); 3953 /* 3954 * Mark the block movable so that blocks are reserved for 3955 * movable at startup. This will force kernel allocations 3956 * to reserve their blocks rather than leaking throughout 3957 * the address space during boot when many long-lived 3958 * kernel allocations are made. Later some blocks near 3959 * the start are marked MIGRATE_RESERVE by 3960 * setup_zone_migrate_reserve() 3961 * 3962 * bitmap is created for zone's valid pfn range. but memmap 3963 * can be created for invalid pages (for alignment) 3964 * check here not to call set_pageblock_migratetype() against 3965 * pfn out of zone. 3966 */ 3967 if ((z->zone_start_pfn <= pfn) 3968 && (pfn < zone_end_pfn(z)) 3969 && !(pfn & (pageblock_nr_pages - 1))) 3970 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3971 3972 INIT_LIST_HEAD(&page->lru); 3973 #ifdef WANT_PAGE_VIRTUAL 3974 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3975 if (!is_highmem_idx(zone)) 3976 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3977 #endif 3978 } 3979 } 3980 3981 static void __meminit zone_init_free_lists(struct zone *zone) 3982 { 3983 int order, t; 3984 for_each_migratetype_order(order, t) { 3985 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3986 zone->free_area[order].nr_free = 0; 3987 } 3988 } 3989 3990 #ifndef __HAVE_ARCH_MEMMAP_INIT 3991 #define memmap_init(size, nid, zone, start_pfn) \ 3992 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3993 #endif 3994 3995 static int __meminit zone_batchsize(struct zone *zone) 3996 { 3997 #ifdef CONFIG_MMU 3998 int batch; 3999 4000 /* 4001 * The per-cpu-pages pools are set to around 1000th of the 4002 * size of the zone. But no more than 1/2 of a meg. 4003 * 4004 * OK, so we don't know how big the cache is. So guess. 4005 */ 4006 batch = zone->managed_pages / 1024; 4007 if (batch * PAGE_SIZE > 512 * 1024) 4008 batch = (512 * 1024) / PAGE_SIZE; 4009 batch /= 4; /* We effectively *= 4 below */ 4010 if (batch < 1) 4011 batch = 1; 4012 4013 /* 4014 * Clamp the batch to a 2^n - 1 value. Having a power 4015 * of 2 value was found to be more likely to have 4016 * suboptimal cache aliasing properties in some cases. 4017 * 4018 * For example if 2 tasks are alternately allocating 4019 * batches of pages, one task can end up with a lot 4020 * of pages of one half of the possible page colors 4021 * and the other with pages of the other colors. 4022 */ 4023 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4024 4025 return batch; 4026 4027 #else 4028 /* The deferral and batching of frees should be suppressed under NOMMU 4029 * conditions. 4030 * 4031 * The problem is that NOMMU needs to be able to allocate large chunks 4032 * of contiguous memory as there's no hardware page translation to 4033 * assemble apparent contiguous memory from discontiguous pages. 4034 * 4035 * Queueing large contiguous runs of pages for batching, however, 4036 * causes the pages to actually be freed in smaller chunks. As there 4037 * can be a significant delay between the individual batches being 4038 * recycled, this leads to the once large chunks of space being 4039 * fragmented and becoming unavailable for high-order allocations. 4040 */ 4041 return 0; 4042 #endif 4043 } 4044 4045 /* 4046 * pcp->high and pcp->batch values are related and dependent on one another: 4047 * ->batch must never be higher then ->high. 4048 * The following function updates them in a safe manner without read side 4049 * locking. 4050 * 4051 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4052 * those fields changing asynchronously (acording the the above rule). 4053 * 4054 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4055 * outside of boot time (or some other assurance that no concurrent updaters 4056 * exist). 4057 */ 4058 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4059 unsigned long batch) 4060 { 4061 /* start with a fail safe value for batch */ 4062 pcp->batch = 1; 4063 smp_wmb(); 4064 4065 /* Update high, then batch, in order */ 4066 pcp->high = high; 4067 smp_wmb(); 4068 4069 pcp->batch = batch; 4070 } 4071 4072 /* a companion to pageset_set_high() */ 4073 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4074 { 4075 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4076 } 4077 4078 static void pageset_init(struct per_cpu_pageset *p) 4079 { 4080 struct per_cpu_pages *pcp; 4081 int migratetype; 4082 4083 memset(p, 0, sizeof(*p)); 4084 4085 pcp = &p->pcp; 4086 pcp->count = 0; 4087 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4088 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4089 } 4090 4091 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4092 { 4093 pageset_init(p); 4094 pageset_set_batch(p, batch); 4095 } 4096 4097 /* 4098 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4099 * to the value high for the pageset p. 4100 */ 4101 static void pageset_set_high(struct per_cpu_pageset *p, 4102 unsigned long high) 4103 { 4104 unsigned long batch = max(1UL, high / 4); 4105 if ((high / 4) > (PAGE_SHIFT * 8)) 4106 batch = PAGE_SHIFT * 8; 4107 4108 pageset_update(&p->pcp, high, batch); 4109 } 4110 4111 static void __meminit pageset_set_high_and_batch(struct zone *zone, 4112 struct per_cpu_pageset *pcp) 4113 { 4114 if (percpu_pagelist_fraction) 4115 pageset_set_high(pcp, 4116 (zone->managed_pages / 4117 percpu_pagelist_fraction)); 4118 else 4119 pageset_set_batch(pcp, zone_batchsize(zone)); 4120 } 4121 4122 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4123 { 4124 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4125 4126 pageset_init(pcp); 4127 pageset_set_high_and_batch(zone, pcp); 4128 } 4129 4130 static void __meminit setup_zone_pageset(struct zone *zone) 4131 { 4132 int cpu; 4133 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4134 for_each_possible_cpu(cpu) 4135 zone_pageset_init(zone, cpu); 4136 } 4137 4138 /* 4139 * Allocate per cpu pagesets and initialize them. 4140 * Before this call only boot pagesets were available. 4141 */ 4142 void __init setup_per_cpu_pageset(void) 4143 { 4144 struct zone *zone; 4145 4146 for_each_populated_zone(zone) 4147 setup_zone_pageset(zone); 4148 } 4149 4150 static noinline __init_refok 4151 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4152 { 4153 int i; 4154 struct pglist_data *pgdat = zone->zone_pgdat; 4155 size_t alloc_size; 4156 4157 /* 4158 * The per-page waitqueue mechanism uses hashed waitqueues 4159 * per zone. 4160 */ 4161 zone->wait_table_hash_nr_entries = 4162 wait_table_hash_nr_entries(zone_size_pages); 4163 zone->wait_table_bits = 4164 wait_table_bits(zone->wait_table_hash_nr_entries); 4165 alloc_size = zone->wait_table_hash_nr_entries 4166 * sizeof(wait_queue_head_t); 4167 4168 if (!slab_is_available()) { 4169 zone->wait_table = (wait_queue_head_t *) 4170 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4171 } else { 4172 /* 4173 * This case means that a zone whose size was 0 gets new memory 4174 * via memory hot-add. 4175 * But it may be the case that a new node was hot-added. In 4176 * this case vmalloc() will not be able to use this new node's 4177 * memory - this wait_table must be initialized to use this new 4178 * node itself as well. 4179 * To use this new node's memory, further consideration will be 4180 * necessary. 4181 */ 4182 zone->wait_table = vmalloc(alloc_size); 4183 } 4184 if (!zone->wait_table) 4185 return -ENOMEM; 4186 4187 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4188 init_waitqueue_head(zone->wait_table + i); 4189 4190 return 0; 4191 } 4192 4193 static __meminit void zone_pcp_init(struct zone *zone) 4194 { 4195 /* 4196 * per cpu subsystem is not up at this point. The following code 4197 * relies on the ability of the linker to provide the 4198 * offset of a (static) per cpu variable into the per cpu area. 4199 */ 4200 zone->pageset = &boot_pageset; 4201 4202 if (zone->present_pages) 4203 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4204 zone->name, zone->present_pages, 4205 zone_batchsize(zone)); 4206 } 4207 4208 int __meminit init_currently_empty_zone(struct zone *zone, 4209 unsigned long zone_start_pfn, 4210 unsigned long size, 4211 enum memmap_context context) 4212 { 4213 struct pglist_data *pgdat = zone->zone_pgdat; 4214 int ret; 4215 ret = zone_wait_table_init(zone, size); 4216 if (ret) 4217 return ret; 4218 pgdat->nr_zones = zone_idx(zone) + 1; 4219 4220 zone->zone_start_pfn = zone_start_pfn; 4221 4222 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4223 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4224 pgdat->node_id, 4225 (unsigned long)zone_idx(zone), 4226 zone_start_pfn, (zone_start_pfn + size)); 4227 4228 zone_init_free_lists(zone); 4229 4230 return 0; 4231 } 4232 4233 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4234 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4235 /* 4236 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4237 * Architectures may implement their own version but if add_active_range() 4238 * was used and there are no special requirements, this is a convenient 4239 * alternative 4240 */ 4241 int __meminit __early_pfn_to_nid(unsigned long pfn) 4242 { 4243 unsigned long start_pfn, end_pfn; 4244 int i, nid; 4245 /* 4246 * NOTE: The following SMP-unsafe globals are only used early in boot 4247 * when the kernel is running single-threaded. 4248 */ 4249 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4250 static int __meminitdata last_nid; 4251 4252 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4253 return last_nid; 4254 4255 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4256 if (start_pfn <= pfn && pfn < end_pfn) { 4257 last_start_pfn = start_pfn; 4258 last_end_pfn = end_pfn; 4259 last_nid = nid; 4260 return nid; 4261 } 4262 /* This is a memory hole */ 4263 return -1; 4264 } 4265 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4266 4267 int __meminit early_pfn_to_nid(unsigned long pfn) 4268 { 4269 int nid; 4270 4271 nid = __early_pfn_to_nid(pfn); 4272 if (nid >= 0) 4273 return nid; 4274 /* just returns 0 */ 4275 return 0; 4276 } 4277 4278 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4279 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4280 { 4281 int nid; 4282 4283 nid = __early_pfn_to_nid(pfn); 4284 if (nid >= 0 && nid != node) 4285 return false; 4286 return true; 4287 } 4288 #endif 4289 4290 /** 4291 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4292 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4293 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4294 * 4295 * If an architecture guarantees that all ranges registered with 4296 * add_active_ranges() contain no holes and may be freed, this 4297 * this function may be used instead of calling free_bootmem() manually. 4298 */ 4299 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4300 { 4301 unsigned long start_pfn, end_pfn; 4302 int i, this_nid; 4303 4304 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4305 start_pfn = min(start_pfn, max_low_pfn); 4306 end_pfn = min(end_pfn, max_low_pfn); 4307 4308 if (start_pfn < end_pfn) 4309 free_bootmem_node(NODE_DATA(this_nid), 4310 PFN_PHYS(start_pfn), 4311 (end_pfn - start_pfn) << PAGE_SHIFT); 4312 } 4313 } 4314 4315 /** 4316 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4317 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4318 * 4319 * If an architecture guarantees that all ranges registered with 4320 * add_active_ranges() contain no holes and may be freed, this 4321 * function may be used instead of calling memory_present() manually. 4322 */ 4323 void __init sparse_memory_present_with_active_regions(int nid) 4324 { 4325 unsigned long start_pfn, end_pfn; 4326 int i, this_nid; 4327 4328 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4329 memory_present(this_nid, start_pfn, end_pfn); 4330 } 4331 4332 /** 4333 * get_pfn_range_for_nid - Return the start and end page frames for a node 4334 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4335 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4336 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4337 * 4338 * It returns the start and end page frame of a node based on information 4339 * provided by an arch calling add_active_range(). If called for a node 4340 * with no available memory, a warning is printed and the start and end 4341 * PFNs will be 0. 4342 */ 4343 void __meminit get_pfn_range_for_nid(unsigned int nid, 4344 unsigned long *start_pfn, unsigned long *end_pfn) 4345 { 4346 unsigned long this_start_pfn, this_end_pfn; 4347 int i; 4348 4349 *start_pfn = -1UL; 4350 *end_pfn = 0; 4351 4352 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4353 *start_pfn = min(*start_pfn, this_start_pfn); 4354 *end_pfn = max(*end_pfn, this_end_pfn); 4355 } 4356 4357 if (*start_pfn == -1UL) 4358 *start_pfn = 0; 4359 } 4360 4361 /* 4362 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4363 * assumption is made that zones within a node are ordered in monotonic 4364 * increasing memory addresses so that the "highest" populated zone is used 4365 */ 4366 static void __init find_usable_zone_for_movable(void) 4367 { 4368 int zone_index; 4369 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4370 if (zone_index == ZONE_MOVABLE) 4371 continue; 4372 4373 if (arch_zone_highest_possible_pfn[zone_index] > 4374 arch_zone_lowest_possible_pfn[zone_index]) 4375 break; 4376 } 4377 4378 VM_BUG_ON(zone_index == -1); 4379 movable_zone = zone_index; 4380 } 4381 4382 /* 4383 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4384 * because it is sized independent of architecture. Unlike the other zones, 4385 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4386 * in each node depending on the size of each node and how evenly kernelcore 4387 * is distributed. This helper function adjusts the zone ranges 4388 * provided by the architecture for a given node by using the end of the 4389 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4390 * zones within a node are in order of monotonic increases memory addresses 4391 */ 4392 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4393 unsigned long zone_type, 4394 unsigned long node_start_pfn, 4395 unsigned long node_end_pfn, 4396 unsigned long *zone_start_pfn, 4397 unsigned long *zone_end_pfn) 4398 { 4399 /* Only adjust if ZONE_MOVABLE is on this node */ 4400 if (zone_movable_pfn[nid]) { 4401 /* Size ZONE_MOVABLE */ 4402 if (zone_type == ZONE_MOVABLE) { 4403 *zone_start_pfn = zone_movable_pfn[nid]; 4404 *zone_end_pfn = min(node_end_pfn, 4405 arch_zone_highest_possible_pfn[movable_zone]); 4406 4407 /* Adjust for ZONE_MOVABLE starting within this range */ 4408 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4409 *zone_end_pfn > zone_movable_pfn[nid]) { 4410 *zone_end_pfn = zone_movable_pfn[nid]; 4411 4412 /* Check if this whole range is within ZONE_MOVABLE */ 4413 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4414 *zone_start_pfn = *zone_end_pfn; 4415 } 4416 } 4417 4418 /* 4419 * Return the number of pages a zone spans in a node, including holes 4420 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4421 */ 4422 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4423 unsigned long zone_type, 4424 unsigned long *ignored) 4425 { 4426 unsigned long node_start_pfn, node_end_pfn; 4427 unsigned long zone_start_pfn, zone_end_pfn; 4428 4429 /* Get the start and end of the node and zone */ 4430 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4431 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4432 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4433 adjust_zone_range_for_zone_movable(nid, zone_type, 4434 node_start_pfn, node_end_pfn, 4435 &zone_start_pfn, &zone_end_pfn); 4436 4437 /* Check that this node has pages within the zone's required range */ 4438 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4439 return 0; 4440 4441 /* Move the zone boundaries inside the node if necessary */ 4442 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4443 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4444 4445 /* Return the spanned pages */ 4446 return zone_end_pfn - zone_start_pfn; 4447 } 4448 4449 /* 4450 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4451 * then all holes in the requested range will be accounted for. 4452 */ 4453 unsigned long __meminit __absent_pages_in_range(int nid, 4454 unsigned long range_start_pfn, 4455 unsigned long range_end_pfn) 4456 { 4457 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4458 unsigned long start_pfn, end_pfn; 4459 int i; 4460 4461 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4462 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4463 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4464 nr_absent -= end_pfn - start_pfn; 4465 } 4466 return nr_absent; 4467 } 4468 4469 /** 4470 * absent_pages_in_range - Return number of page frames in holes within a range 4471 * @start_pfn: The start PFN to start searching for holes 4472 * @end_pfn: The end PFN to stop searching for holes 4473 * 4474 * It returns the number of pages frames in memory holes within a range. 4475 */ 4476 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4477 unsigned long end_pfn) 4478 { 4479 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4480 } 4481 4482 /* Return the number of page frames in holes in a zone on a node */ 4483 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4484 unsigned long zone_type, 4485 unsigned long *ignored) 4486 { 4487 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4488 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4489 unsigned long node_start_pfn, node_end_pfn; 4490 unsigned long zone_start_pfn, zone_end_pfn; 4491 4492 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4493 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4494 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4495 4496 adjust_zone_range_for_zone_movable(nid, zone_type, 4497 node_start_pfn, node_end_pfn, 4498 &zone_start_pfn, &zone_end_pfn); 4499 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4500 } 4501 4502 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4503 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4504 unsigned long zone_type, 4505 unsigned long *zones_size) 4506 { 4507 return zones_size[zone_type]; 4508 } 4509 4510 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4511 unsigned long zone_type, 4512 unsigned long *zholes_size) 4513 { 4514 if (!zholes_size) 4515 return 0; 4516 4517 return zholes_size[zone_type]; 4518 } 4519 4520 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4521 4522 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4523 unsigned long *zones_size, unsigned long *zholes_size) 4524 { 4525 unsigned long realtotalpages, totalpages = 0; 4526 enum zone_type i; 4527 4528 for (i = 0; i < MAX_NR_ZONES; i++) 4529 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4530 zones_size); 4531 pgdat->node_spanned_pages = totalpages; 4532 4533 realtotalpages = totalpages; 4534 for (i = 0; i < MAX_NR_ZONES; i++) 4535 realtotalpages -= 4536 zone_absent_pages_in_node(pgdat->node_id, i, 4537 zholes_size); 4538 pgdat->node_present_pages = realtotalpages; 4539 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4540 realtotalpages); 4541 } 4542 4543 #ifndef CONFIG_SPARSEMEM 4544 /* 4545 * Calculate the size of the zone->blockflags rounded to an unsigned long 4546 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4547 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4548 * round what is now in bits to nearest long in bits, then return it in 4549 * bytes. 4550 */ 4551 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4552 { 4553 unsigned long usemapsize; 4554 4555 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4556 usemapsize = roundup(zonesize, pageblock_nr_pages); 4557 usemapsize = usemapsize >> pageblock_order; 4558 usemapsize *= NR_PAGEBLOCK_BITS; 4559 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4560 4561 return usemapsize / 8; 4562 } 4563 4564 static void __init setup_usemap(struct pglist_data *pgdat, 4565 struct zone *zone, 4566 unsigned long zone_start_pfn, 4567 unsigned long zonesize) 4568 { 4569 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4570 zone->pageblock_flags = NULL; 4571 if (usemapsize) 4572 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4573 usemapsize); 4574 } 4575 #else 4576 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4577 unsigned long zone_start_pfn, unsigned long zonesize) {} 4578 #endif /* CONFIG_SPARSEMEM */ 4579 4580 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4581 4582 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4583 void __init set_pageblock_order(void) 4584 { 4585 unsigned int order; 4586 4587 /* Check that pageblock_nr_pages has not already been setup */ 4588 if (pageblock_order) 4589 return; 4590 4591 if (HPAGE_SHIFT > PAGE_SHIFT) 4592 order = HUGETLB_PAGE_ORDER; 4593 else 4594 order = MAX_ORDER - 1; 4595 4596 /* 4597 * Assume the largest contiguous order of interest is a huge page. 4598 * This value may be variable depending on boot parameters on IA64 and 4599 * powerpc. 4600 */ 4601 pageblock_order = order; 4602 } 4603 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4604 4605 /* 4606 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4607 * is unused as pageblock_order is set at compile-time. See 4608 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4609 * the kernel config 4610 */ 4611 void __init set_pageblock_order(void) 4612 { 4613 } 4614 4615 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4616 4617 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4618 unsigned long present_pages) 4619 { 4620 unsigned long pages = spanned_pages; 4621 4622 /* 4623 * Provide a more accurate estimation if there are holes within 4624 * the zone and SPARSEMEM is in use. If there are holes within the 4625 * zone, each populated memory region may cost us one or two extra 4626 * memmap pages due to alignment because memmap pages for each 4627 * populated regions may not naturally algined on page boundary. 4628 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4629 */ 4630 if (spanned_pages > present_pages + (present_pages >> 4) && 4631 IS_ENABLED(CONFIG_SPARSEMEM)) 4632 pages = present_pages; 4633 4634 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4635 } 4636 4637 /* 4638 * Set up the zone data structures: 4639 * - mark all pages reserved 4640 * - mark all memory queues empty 4641 * - clear the memory bitmaps 4642 * 4643 * NOTE: pgdat should get zeroed by caller. 4644 */ 4645 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4646 unsigned long *zones_size, unsigned long *zholes_size) 4647 { 4648 enum zone_type j; 4649 int nid = pgdat->node_id; 4650 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4651 int ret; 4652 4653 pgdat_resize_init(pgdat); 4654 #ifdef CONFIG_NUMA_BALANCING 4655 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4656 pgdat->numabalancing_migrate_nr_pages = 0; 4657 pgdat->numabalancing_migrate_next_window = jiffies; 4658 #endif 4659 init_waitqueue_head(&pgdat->kswapd_wait); 4660 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4661 pgdat_page_cgroup_init(pgdat); 4662 4663 for (j = 0; j < MAX_NR_ZONES; j++) { 4664 struct zone *zone = pgdat->node_zones + j; 4665 unsigned long size, realsize, freesize, memmap_pages; 4666 4667 size = zone_spanned_pages_in_node(nid, j, zones_size); 4668 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4669 zholes_size); 4670 4671 /* 4672 * Adjust freesize so that it accounts for how much memory 4673 * is used by this zone for memmap. This affects the watermark 4674 * and per-cpu initialisations 4675 */ 4676 memmap_pages = calc_memmap_size(size, realsize); 4677 if (freesize >= memmap_pages) { 4678 freesize -= memmap_pages; 4679 if (memmap_pages) 4680 printk(KERN_DEBUG 4681 " %s zone: %lu pages used for memmap\n", 4682 zone_names[j], memmap_pages); 4683 } else 4684 printk(KERN_WARNING 4685 " %s zone: %lu pages exceeds freesize %lu\n", 4686 zone_names[j], memmap_pages, freesize); 4687 4688 /* Account for reserved pages */ 4689 if (j == 0 && freesize > dma_reserve) { 4690 freesize -= dma_reserve; 4691 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4692 zone_names[0], dma_reserve); 4693 } 4694 4695 if (!is_highmem_idx(j)) 4696 nr_kernel_pages += freesize; 4697 /* Charge for highmem memmap if there are enough kernel pages */ 4698 else if (nr_kernel_pages > memmap_pages * 2) 4699 nr_kernel_pages -= memmap_pages; 4700 nr_all_pages += freesize; 4701 4702 zone->spanned_pages = size; 4703 zone->present_pages = realsize; 4704 /* 4705 * Set an approximate value for lowmem here, it will be adjusted 4706 * when the bootmem allocator frees pages into the buddy system. 4707 * And all highmem pages will be managed by the buddy system. 4708 */ 4709 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4710 #ifdef CONFIG_NUMA 4711 zone->node = nid; 4712 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4713 / 100; 4714 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4715 #endif 4716 zone->name = zone_names[j]; 4717 spin_lock_init(&zone->lock); 4718 spin_lock_init(&zone->lru_lock); 4719 zone_seqlock_init(zone); 4720 zone->zone_pgdat = pgdat; 4721 4722 zone_pcp_init(zone); 4723 lruvec_init(&zone->lruvec); 4724 if (!size) 4725 continue; 4726 4727 set_pageblock_order(); 4728 setup_usemap(pgdat, zone, zone_start_pfn, size); 4729 ret = init_currently_empty_zone(zone, zone_start_pfn, 4730 size, MEMMAP_EARLY); 4731 BUG_ON(ret); 4732 memmap_init(size, nid, j, zone_start_pfn); 4733 zone_start_pfn += size; 4734 } 4735 } 4736 4737 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4738 { 4739 /* Skip empty nodes */ 4740 if (!pgdat->node_spanned_pages) 4741 return; 4742 4743 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4744 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4745 if (!pgdat->node_mem_map) { 4746 unsigned long size, start, end; 4747 struct page *map; 4748 4749 /* 4750 * The zone's endpoints aren't required to be MAX_ORDER 4751 * aligned but the node_mem_map endpoints must be in order 4752 * for the buddy allocator to function correctly. 4753 */ 4754 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4755 end = pgdat_end_pfn(pgdat); 4756 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4757 size = (end - start) * sizeof(struct page); 4758 map = alloc_remap(pgdat->node_id, size); 4759 if (!map) 4760 map = alloc_bootmem_node_nopanic(pgdat, size); 4761 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4762 } 4763 #ifndef CONFIG_NEED_MULTIPLE_NODES 4764 /* 4765 * With no DISCONTIG, the global mem_map is just set as node 0's 4766 */ 4767 if (pgdat == NODE_DATA(0)) { 4768 mem_map = NODE_DATA(0)->node_mem_map; 4769 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4770 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4771 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4772 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4773 } 4774 #endif 4775 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4776 } 4777 4778 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4779 unsigned long node_start_pfn, unsigned long *zholes_size) 4780 { 4781 pg_data_t *pgdat = NODE_DATA(nid); 4782 4783 /* pg_data_t should be reset to zero when it's allocated */ 4784 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4785 4786 pgdat->node_id = nid; 4787 pgdat->node_start_pfn = node_start_pfn; 4788 init_zone_allows_reclaim(nid); 4789 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4790 4791 alloc_node_mem_map(pgdat); 4792 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4793 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4794 nid, (unsigned long)pgdat, 4795 (unsigned long)pgdat->node_mem_map); 4796 #endif 4797 4798 free_area_init_core(pgdat, zones_size, zholes_size); 4799 } 4800 4801 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4802 4803 #if MAX_NUMNODES > 1 4804 /* 4805 * Figure out the number of possible node ids. 4806 */ 4807 void __init setup_nr_node_ids(void) 4808 { 4809 unsigned int node; 4810 unsigned int highest = 0; 4811 4812 for_each_node_mask(node, node_possible_map) 4813 highest = node; 4814 nr_node_ids = highest + 1; 4815 } 4816 #endif 4817 4818 /** 4819 * node_map_pfn_alignment - determine the maximum internode alignment 4820 * 4821 * This function should be called after node map is populated and sorted. 4822 * It calculates the maximum power of two alignment which can distinguish 4823 * all the nodes. 4824 * 4825 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4826 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4827 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4828 * shifted, 1GiB is enough and this function will indicate so. 4829 * 4830 * This is used to test whether pfn -> nid mapping of the chosen memory 4831 * model has fine enough granularity to avoid incorrect mapping for the 4832 * populated node map. 4833 * 4834 * Returns the determined alignment in pfn's. 0 if there is no alignment 4835 * requirement (single node). 4836 */ 4837 unsigned long __init node_map_pfn_alignment(void) 4838 { 4839 unsigned long accl_mask = 0, last_end = 0; 4840 unsigned long start, end, mask; 4841 int last_nid = -1; 4842 int i, nid; 4843 4844 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4845 if (!start || last_nid < 0 || last_nid == nid) { 4846 last_nid = nid; 4847 last_end = end; 4848 continue; 4849 } 4850 4851 /* 4852 * Start with a mask granular enough to pin-point to the 4853 * start pfn and tick off bits one-by-one until it becomes 4854 * too coarse to separate the current node from the last. 4855 */ 4856 mask = ~((1 << __ffs(start)) - 1); 4857 while (mask && last_end <= (start & (mask << 1))) 4858 mask <<= 1; 4859 4860 /* accumulate all internode masks */ 4861 accl_mask |= mask; 4862 } 4863 4864 /* convert mask to number of pages */ 4865 return ~accl_mask + 1; 4866 } 4867 4868 /* Find the lowest pfn for a node */ 4869 static unsigned long __init find_min_pfn_for_node(int nid) 4870 { 4871 unsigned long min_pfn = ULONG_MAX; 4872 unsigned long start_pfn; 4873 int i; 4874 4875 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4876 min_pfn = min(min_pfn, start_pfn); 4877 4878 if (min_pfn == ULONG_MAX) { 4879 printk(KERN_WARNING 4880 "Could not find start_pfn for node %d\n", nid); 4881 return 0; 4882 } 4883 4884 return min_pfn; 4885 } 4886 4887 /** 4888 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4889 * 4890 * It returns the minimum PFN based on information provided via 4891 * add_active_range(). 4892 */ 4893 unsigned long __init find_min_pfn_with_active_regions(void) 4894 { 4895 return find_min_pfn_for_node(MAX_NUMNODES); 4896 } 4897 4898 /* 4899 * early_calculate_totalpages() 4900 * Sum pages in active regions for movable zone. 4901 * Populate N_MEMORY for calculating usable_nodes. 4902 */ 4903 static unsigned long __init early_calculate_totalpages(void) 4904 { 4905 unsigned long totalpages = 0; 4906 unsigned long start_pfn, end_pfn; 4907 int i, nid; 4908 4909 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4910 unsigned long pages = end_pfn - start_pfn; 4911 4912 totalpages += pages; 4913 if (pages) 4914 node_set_state(nid, N_MEMORY); 4915 } 4916 return totalpages; 4917 } 4918 4919 /* 4920 * Find the PFN the Movable zone begins in each node. Kernel memory 4921 * is spread evenly between nodes as long as the nodes have enough 4922 * memory. When they don't, some nodes will have more kernelcore than 4923 * others 4924 */ 4925 static void __init find_zone_movable_pfns_for_nodes(void) 4926 { 4927 int i, nid; 4928 unsigned long usable_startpfn; 4929 unsigned long kernelcore_node, kernelcore_remaining; 4930 /* save the state before borrow the nodemask */ 4931 nodemask_t saved_node_state = node_states[N_MEMORY]; 4932 unsigned long totalpages = early_calculate_totalpages(); 4933 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4934 4935 /* 4936 * If movablecore was specified, calculate what size of 4937 * kernelcore that corresponds so that memory usable for 4938 * any allocation type is evenly spread. If both kernelcore 4939 * and movablecore are specified, then the value of kernelcore 4940 * will be used for required_kernelcore if it's greater than 4941 * what movablecore would have allowed. 4942 */ 4943 if (required_movablecore) { 4944 unsigned long corepages; 4945 4946 /* 4947 * Round-up so that ZONE_MOVABLE is at least as large as what 4948 * was requested by the user 4949 */ 4950 required_movablecore = 4951 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4952 corepages = totalpages - required_movablecore; 4953 4954 required_kernelcore = max(required_kernelcore, corepages); 4955 } 4956 4957 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4958 if (!required_kernelcore) 4959 goto out; 4960 4961 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4962 find_usable_zone_for_movable(); 4963 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4964 4965 restart: 4966 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4967 kernelcore_node = required_kernelcore / usable_nodes; 4968 for_each_node_state(nid, N_MEMORY) { 4969 unsigned long start_pfn, end_pfn; 4970 4971 /* 4972 * Recalculate kernelcore_node if the division per node 4973 * now exceeds what is necessary to satisfy the requested 4974 * amount of memory for the kernel 4975 */ 4976 if (required_kernelcore < kernelcore_node) 4977 kernelcore_node = required_kernelcore / usable_nodes; 4978 4979 /* 4980 * As the map is walked, we track how much memory is usable 4981 * by the kernel using kernelcore_remaining. When it is 4982 * 0, the rest of the node is usable by ZONE_MOVABLE 4983 */ 4984 kernelcore_remaining = kernelcore_node; 4985 4986 /* Go through each range of PFNs within this node */ 4987 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4988 unsigned long size_pages; 4989 4990 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4991 if (start_pfn >= end_pfn) 4992 continue; 4993 4994 /* Account for what is only usable for kernelcore */ 4995 if (start_pfn < usable_startpfn) { 4996 unsigned long kernel_pages; 4997 kernel_pages = min(end_pfn, usable_startpfn) 4998 - start_pfn; 4999 5000 kernelcore_remaining -= min(kernel_pages, 5001 kernelcore_remaining); 5002 required_kernelcore -= min(kernel_pages, 5003 required_kernelcore); 5004 5005 /* Continue if range is now fully accounted */ 5006 if (end_pfn <= usable_startpfn) { 5007 5008 /* 5009 * Push zone_movable_pfn to the end so 5010 * that if we have to rebalance 5011 * kernelcore across nodes, we will 5012 * not double account here 5013 */ 5014 zone_movable_pfn[nid] = end_pfn; 5015 continue; 5016 } 5017 start_pfn = usable_startpfn; 5018 } 5019 5020 /* 5021 * The usable PFN range for ZONE_MOVABLE is from 5022 * start_pfn->end_pfn. Calculate size_pages as the 5023 * number of pages used as kernelcore 5024 */ 5025 size_pages = end_pfn - start_pfn; 5026 if (size_pages > kernelcore_remaining) 5027 size_pages = kernelcore_remaining; 5028 zone_movable_pfn[nid] = start_pfn + size_pages; 5029 5030 /* 5031 * Some kernelcore has been met, update counts and 5032 * break if the kernelcore for this node has been 5033 * satisified 5034 */ 5035 required_kernelcore -= min(required_kernelcore, 5036 size_pages); 5037 kernelcore_remaining -= size_pages; 5038 if (!kernelcore_remaining) 5039 break; 5040 } 5041 } 5042 5043 /* 5044 * If there is still required_kernelcore, we do another pass with one 5045 * less node in the count. This will push zone_movable_pfn[nid] further 5046 * along on the nodes that still have memory until kernelcore is 5047 * satisified 5048 */ 5049 usable_nodes--; 5050 if (usable_nodes && required_kernelcore > usable_nodes) 5051 goto restart; 5052 5053 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5054 for (nid = 0; nid < MAX_NUMNODES; nid++) 5055 zone_movable_pfn[nid] = 5056 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5057 5058 out: 5059 /* restore the node_state */ 5060 node_states[N_MEMORY] = saved_node_state; 5061 } 5062 5063 /* Any regular or high memory on that node ? */ 5064 static void check_for_memory(pg_data_t *pgdat, int nid) 5065 { 5066 enum zone_type zone_type; 5067 5068 if (N_MEMORY == N_NORMAL_MEMORY) 5069 return; 5070 5071 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5072 struct zone *zone = &pgdat->node_zones[zone_type]; 5073 if (zone->present_pages) { 5074 node_set_state(nid, N_HIGH_MEMORY); 5075 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5076 zone_type <= ZONE_NORMAL) 5077 node_set_state(nid, N_NORMAL_MEMORY); 5078 break; 5079 } 5080 } 5081 } 5082 5083 /** 5084 * free_area_init_nodes - Initialise all pg_data_t and zone data 5085 * @max_zone_pfn: an array of max PFNs for each zone 5086 * 5087 * This will call free_area_init_node() for each active node in the system. 5088 * Using the page ranges provided by add_active_range(), the size of each 5089 * zone in each node and their holes is calculated. If the maximum PFN 5090 * between two adjacent zones match, it is assumed that the zone is empty. 5091 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5092 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5093 * starts where the previous one ended. For example, ZONE_DMA32 starts 5094 * at arch_max_dma_pfn. 5095 */ 5096 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5097 { 5098 unsigned long start_pfn, end_pfn; 5099 int i, nid; 5100 5101 /* Record where the zone boundaries are */ 5102 memset(arch_zone_lowest_possible_pfn, 0, 5103 sizeof(arch_zone_lowest_possible_pfn)); 5104 memset(arch_zone_highest_possible_pfn, 0, 5105 sizeof(arch_zone_highest_possible_pfn)); 5106 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5107 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5108 for (i = 1; i < MAX_NR_ZONES; i++) { 5109 if (i == ZONE_MOVABLE) 5110 continue; 5111 arch_zone_lowest_possible_pfn[i] = 5112 arch_zone_highest_possible_pfn[i-1]; 5113 arch_zone_highest_possible_pfn[i] = 5114 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5115 } 5116 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5117 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5118 5119 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5120 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5121 find_zone_movable_pfns_for_nodes(); 5122 5123 /* Print out the zone ranges */ 5124 printk("Zone ranges:\n"); 5125 for (i = 0; i < MAX_NR_ZONES; i++) { 5126 if (i == ZONE_MOVABLE) 5127 continue; 5128 printk(KERN_CONT " %-8s ", zone_names[i]); 5129 if (arch_zone_lowest_possible_pfn[i] == 5130 arch_zone_highest_possible_pfn[i]) 5131 printk(KERN_CONT "empty\n"); 5132 else 5133 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5134 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5135 (arch_zone_highest_possible_pfn[i] 5136 << PAGE_SHIFT) - 1); 5137 } 5138 5139 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5140 printk("Movable zone start for each node\n"); 5141 for (i = 0; i < MAX_NUMNODES; i++) { 5142 if (zone_movable_pfn[i]) 5143 printk(" Node %d: %#010lx\n", i, 5144 zone_movable_pfn[i] << PAGE_SHIFT); 5145 } 5146 5147 /* Print out the early node map */ 5148 printk("Early memory node ranges\n"); 5149 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5150 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5151 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5152 5153 /* Initialise every node */ 5154 mminit_verify_pageflags_layout(); 5155 setup_nr_node_ids(); 5156 for_each_online_node(nid) { 5157 pg_data_t *pgdat = NODE_DATA(nid); 5158 free_area_init_node(nid, NULL, 5159 find_min_pfn_for_node(nid), NULL); 5160 5161 /* Any memory on that node */ 5162 if (pgdat->node_present_pages) 5163 node_set_state(nid, N_MEMORY); 5164 check_for_memory(pgdat, nid); 5165 } 5166 } 5167 5168 static int __init cmdline_parse_core(char *p, unsigned long *core) 5169 { 5170 unsigned long long coremem; 5171 if (!p) 5172 return -EINVAL; 5173 5174 coremem = memparse(p, &p); 5175 *core = coremem >> PAGE_SHIFT; 5176 5177 /* Paranoid check that UL is enough for the coremem value */ 5178 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5179 5180 return 0; 5181 } 5182 5183 /* 5184 * kernelcore=size sets the amount of memory for use for allocations that 5185 * cannot be reclaimed or migrated. 5186 */ 5187 static int __init cmdline_parse_kernelcore(char *p) 5188 { 5189 return cmdline_parse_core(p, &required_kernelcore); 5190 } 5191 5192 /* 5193 * movablecore=size sets the amount of memory for use for allocations that 5194 * can be reclaimed or migrated. 5195 */ 5196 static int __init cmdline_parse_movablecore(char *p) 5197 { 5198 return cmdline_parse_core(p, &required_movablecore); 5199 } 5200 5201 early_param("kernelcore", cmdline_parse_kernelcore); 5202 early_param("movablecore", cmdline_parse_movablecore); 5203 5204 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5205 5206 void adjust_managed_page_count(struct page *page, long count) 5207 { 5208 spin_lock(&managed_page_count_lock); 5209 page_zone(page)->managed_pages += count; 5210 totalram_pages += count; 5211 #ifdef CONFIG_HIGHMEM 5212 if (PageHighMem(page)) 5213 totalhigh_pages += count; 5214 #endif 5215 spin_unlock(&managed_page_count_lock); 5216 } 5217 EXPORT_SYMBOL(adjust_managed_page_count); 5218 5219 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5220 { 5221 void *pos; 5222 unsigned long pages = 0; 5223 5224 start = (void *)PAGE_ALIGN((unsigned long)start); 5225 end = (void *)((unsigned long)end & PAGE_MASK); 5226 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5227 if ((unsigned int)poison <= 0xFF) 5228 memset(pos, poison, PAGE_SIZE); 5229 free_reserved_page(virt_to_page(pos)); 5230 } 5231 5232 if (pages && s) 5233 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5234 s, pages << (PAGE_SHIFT - 10), start, end); 5235 5236 return pages; 5237 } 5238 EXPORT_SYMBOL(free_reserved_area); 5239 5240 #ifdef CONFIG_HIGHMEM 5241 void free_highmem_page(struct page *page) 5242 { 5243 __free_reserved_page(page); 5244 totalram_pages++; 5245 page_zone(page)->managed_pages++; 5246 totalhigh_pages++; 5247 } 5248 #endif 5249 5250 5251 void __init mem_init_print_info(const char *str) 5252 { 5253 unsigned long physpages, codesize, datasize, rosize, bss_size; 5254 unsigned long init_code_size, init_data_size; 5255 5256 physpages = get_num_physpages(); 5257 codesize = _etext - _stext; 5258 datasize = _edata - _sdata; 5259 rosize = __end_rodata - __start_rodata; 5260 bss_size = __bss_stop - __bss_start; 5261 init_data_size = __init_end - __init_begin; 5262 init_code_size = _einittext - _sinittext; 5263 5264 /* 5265 * Detect special cases and adjust section sizes accordingly: 5266 * 1) .init.* may be embedded into .data sections 5267 * 2) .init.text.* may be out of [__init_begin, __init_end], 5268 * please refer to arch/tile/kernel/vmlinux.lds.S. 5269 * 3) .rodata.* may be embedded into .text or .data sections. 5270 */ 5271 #define adj_init_size(start, end, size, pos, adj) \ 5272 if (start <= pos && pos < end && size > adj) \ 5273 size -= adj; 5274 5275 adj_init_size(__init_begin, __init_end, init_data_size, 5276 _sinittext, init_code_size); 5277 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5278 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5279 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5280 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5281 5282 #undef adj_init_size 5283 5284 printk("Memory: %luK/%luK available " 5285 "(%luK kernel code, %luK rwdata, %luK rodata, " 5286 "%luK init, %luK bss, %luK reserved" 5287 #ifdef CONFIG_HIGHMEM 5288 ", %luK highmem" 5289 #endif 5290 "%s%s)\n", 5291 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5292 codesize >> 10, datasize >> 10, rosize >> 10, 5293 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5294 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5295 #ifdef CONFIG_HIGHMEM 5296 totalhigh_pages << (PAGE_SHIFT-10), 5297 #endif 5298 str ? ", " : "", str ? str : ""); 5299 } 5300 5301 /** 5302 * set_dma_reserve - set the specified number of pages reserved in the first zone 5303 * @new_dma_reserve: The number of pages to mark reserved 5304 * 5305 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5306 * In the DMA zone, a significant percentage may be consumed by kernel image 5307 * and other unfreeable allocations which can skew the watermarks badly. This 5308 * function may optionally be used to account for unfreeable pages in the 5309 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5310 * smaller per-cpu batchsize. 5311 */ 5312 void __init set_dma_reserve(unsigned long new_dma_reserve) 5313 { 5314 dma_reserve = new_dma_reserve; 5315 } 5316 5317 void __init free_area_init(unsigned long *zones_size) 5318 { 5319 free_area_init_node(0, zones_size, 5320 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5321 } 5322 5323 static int page_alloc_cpu_notify(struct notifier_block *self, 5324 unsigned long action, void *hcpu) 5325 { 5326 int cpu = (unsigned long)hcpu; 5327 5328 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5329 lru_add_drain_cpu(cpu); 5330 drain_pages(cpu); 5331 5332 /* 5333 * Spill the event counters of the dead processor 5334 * into the current processors event counters. 5335 * This artificially elevates the count of the current 5336 * processor. 5337 */ 5338 vm_events_fold_cpu(cpu); 5339 5340 /* 5341 * Zero the differential counters of the dead processor 5342 * so that the vm statistics are consistent. 5343 * 5344 * This is only okay since the processor is dead and cannot 5345 * race with what we are doing. 5346 */ 5347 refresh_cpu_vm_stats(cpu); 5348 } 5349 return NOTIFY_OK; 5350 } 5351 5352 void __init page_alloc_init(void) 5353 { 5354 hotcpu_notifier(page_alloc_cpu_notify, 0); 5355 } 5356 5357 /* 5358 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5359 * or min_free_kbytes changes. 5360 */ 5361 static void calculate_totalreserve_pages(void) 5362 { 5363 struct pglist_data *pgdat; 5364 unsigned long reserve_pages = 0; 5365 enum zone_type i, j; 5366 5367 for_each_online_pgdat(pgdat) { 5368 for (i = 0; i < MAX_NR_ZONES; i++) { 5369 struct zone *zone = pgdat->node_zones + i; 5370 unsigned long max = 0; 5371 5372 /* Find valid and maximum lowmem_reserve in the zone */ 5373 for (j = i; j < MAX_NR_ZONES; j++) { 5374 if (zone->lowmem_reserve[j] > max) 5375 max = zone->lowmem_reserve[j]; 5376 } 5377 5378 /* we treat the high watermark as reserved pages. */ 5379 max += high_wmark_pages(zone); 5380 5381 if (max > zone->managed_pages) 5382 max = zone->managed_pages; 5383 reserve_pages += max; 5384 /* 5385 * Lowmem reserves are not available to 5386 * GFP_HIGHUSER page cache allocations and 5387 * kswapd tries to balance zones to their high 5388 * watermark. As a result, neither should be 5389 * regarded as dirtyable memory, to prevent a 5390 * situation where reclaim has to clean pages 5391 * in order to balance the zones. 5392 */ 5393 zone->dirty_balance_reserve = max; 5394 } 5395 } 5396 dirty_balance_reserve = reserve_pages; 5397 totalreserve_pages = reserve_pages; 5398 } 5399 5400 /* 5401 * setup_per_zone_lowmem_reserve - called whenever 5402 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5403 * has a correct pages reserved value, so an adequate number of 5404 * pages are left in the zone after a successful __alloc_pages(). 5405 */ 5406 static void setup_per_zone_lowmem_reserve(void) 5407 { 5408 struct pglist_data *pgdat; 5409 enum zone_type j, idx; 5410 5411 for_each_online_pgdat(pgdat) { 5412 for (j = 0; j < MAX_NR_ZONES; j++) { 5413 struct zone *zone = pgdat->node_zones + j; 5414 unsigned long managed_pages = zone->managed_pages; 5415 5416 zone->lowmem_reserve[j] = 0; 5417 5418 idx = j; 5419 while (idx) { 5420 struct zone *lower_zone; 5421 5422 idx--; 5423 5424 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5425 sysctl_lowmem_reserve_ratio[idx] = 1; 5426 5427 lower_zone = pgdat->node_zones + idx; 5428 lower_zone->lowmem_reserve[j] = managed_pages / 5429 sysctl_lowmem_reserve_ratio[idx]; 5430 managed_pages += lower_zone->managed_pages; 5431 } 5432 } 5433 } 5434 5435 /* update totalreserve_pages */ 5436 calculate_totalreserve_pages(); 5437 } 5438 5439 static void __setup_per_zone_wmarks(void) 5440 { 5441 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5442 unsigned long lowmem_pages = 0; 5443 struct zone *zone; 5444 unsigned long flags; 5445 5446 /* Calculate total number of !ZONE_HIGHMEM pages */ 5447 for_each_zone(zone) { 5448 if (!is_highmem(zone)) 5449 lowmem_pages += zone->managed_pages; 5450 } 5451 5452 for_each_zone(zone) { 5453 u64 tmp; 5454 5455 spin_lock_irqsave(&zone->lock, flags); 5456 tmp = (u64)pages_min * zone->managed_pages; 5457 do_div(tmp, lowmem_pages); 5458 if (is_highmem(zone)) { 5459 /* 5460 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5461 * need highmem pages, so cap pages_min to a small 5462 * value here. 5463 * 5464 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5465 * deltas controls asynch page reclaim, and so should 5466 * not be capped for highmem. 5467 */ 5468 unsigned long min_pages; 5469 5470 min_pages = zone->managed_pages / 1024; 5471 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5472 zone->watermark[WMARK_MIN] = min_pages; 5473 } else { 5474 /* 5475 * If it's a lowmem zone, reserve a number of pages 5476 * proportionate to the zone's size. 5477 */ 5478 zone->watermark[WMARK_MIN] = tmp; 5479 } 5480 5481 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5482 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5483 5484 setup_zone_migrate_reserve(zone); 5485 spin_unlock_irqrestore(&zone->lock, flags); 5486 } 5487 5488 /* update totalreserve_pages */ 5489 calculate_totalreserve_pages(); 5490 } 5491 5492 /** 5493 * setup_per_zone_wmarks - called when min_free_kbytes changes 5494 * or when memory is hot-{added|removed} 5495 * 5496 * Ensures that the watermark[min,low,high] values for each zone are set 5497 * correctly with respect to min_free_kbytes. 5498 */ 5499 void setup_per_zone_wmarks(void) 5500 { 5501 mutex_lock(&zonelists_mutex); 5502 __setup_per_zone_wmarks(); 5503 mutex_unlock(&zonelists_mutex); 5504 } 5505 5506 /* 5507 * The inactive anon list should be small enough that the VM never has to 5508 * do too much work, but large enough that each inactive page has a chance 5509 * to be referenced again before it is swapped out. 5510 * 5511 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5512 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5513 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5514 * the anonymous pages are kept on the inactive list. 5515 * 5516 * total target max 5517 * memory ratio inactive anon 5518 * ------------------------------------- 5519 * 10MB 1 5MB 5520 * 100MB 1 50MB 5521 * 1GB 3 250MB 5522 * 10GB 10 0.9GB 5523 * 100GB 31 3GB 5524 * 1TB 101 10GB 5525 * 10TB 320 32GB 5526 */ 5527 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5528 { 5529 unsigned int gb, ratio; 5530 5531 /* Zone size in gigabytes */ 5532 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5533 if (gb) 5534 ratio = int_sqrt(10 * gb); 5535 else 5536 ratio = 1; 5537 5538 zone->inactive_ratio = ratio; 5539 } 5540 5541 static void __meminit setup_per_zone_inactive_ratio(void) 5542 { 5543 struct zone *zone; 5544 5545 for_each_zone(zone) 5546 calculate_zone_inactive_ratio(zone); 5547 } 5548 5549 /* 5550 * Initialise min_free_kbytes. 5551 * 5552 * For small machines we want it small (128k min). For large machines 5553 * we want it large (64MB max). But it is not linear, because network 5554 * bandwidth does not increase linearly with machine size. We use 5555 * 5556 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5557 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5558 * 5559 * which yields 5560 * 5561 * 16MB: 512k 5562 * 32MB: 724k 5563 * 64MB: 1024k 5564 * 128MB: 1448k 5565 * 256MB: 2048k 5566 * 512MB: 2896k 5567 * 1024MB: 4096k 5568 * 2048MB: 5792k 5569 * 4096MB: 8192k 5570 * 8192MB: 11584k 5571 * 16384MB: 16384k 5572 */ 5573 int __meminit init_per_zone_wmark_min(void) 5574 { 5575 unsigned long lowmem_kbytes; 5576 5577 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5578 5579 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5580 if (min_free_kbytes < 128) 5581 min_free_kbytes = 128; 5582 if (min_free_kbytes > 65536) 5583 min_free_kbytes = 65536; 5584 setup_per_zone_wmarks(); 5585 refresh_zone_stat_thresholds(); 5586 setup_per_zone_lowmem_reserve(); 5587 setup_per_zone_inactive_ratio(); 5588 return 0; 5589 } 5590 module_init(init_per_zone_wmark_min) 5591 5592 /* 5593 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5594 * that we can call two helper functions whenever min_free_kbytes 5595 * changes. 5596 */ 5597 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5598 void __user *buffer, size_t *length, loff_t *ppos) 5599 { 5600 proc_dointvec(table, write, buffer, length, ppos); 5601 if (write) 5602 setup_per_zone_wmarks(); 5603 return 0; 5604 } 5605 5606 #ifdef CONFIG_NUMA 5607 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5608 void __user *buffer, size_t *length, loff_t *ppos) 5609 { 5610 struct zone *zone; 5611 int rc; 5612 5613 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5614 if (rc) 5615 return rc; 5616 5617 for_each_zone(zone) 5618 zone->min_unmapped_pages = (zone->managed_pages * 5619 sysctl_min_unmapped_ratio) / 100; 5620 return 0; 5621 } 5622 5623 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5624 void __user *buffer, size_t *length, loff_t *ppos) 5625 { 5626 struct zone *zone; 5627 int rc; 5628 5629 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5630 if (rc) 5631 return rc; 5632 5633 for_each_zone(zone) 5634 zone->min_slab_pages = (zone->managed_pages * 5635 sysctl_min_slab_ratio) / 100; 5636 return 0; 5637 } 5638 #endif 5639 5640 /* 5641 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5642 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5643 * whenever sysctl_lowmem_reserve_ratio changes. 5644 * 5645 * The reserve ratio obviously has absolutely no relation with the 5646 * minimum watermarks. The lowmem reserve ratio can only make sense 5647 * if in function of the boot time zone sizes. 5648 */ 5649 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5650 void __user *buffer, size_t *length, loff_t *ppos) 5651 { 5652 proc_dointvec_minmax(table, write, buffer, length, ppos); 5653 setup_per_zone_lowmem_reserve(); 5654 return 0; 5655 } 5656 5657 /* 5658 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5659 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5660 * can have before it gets flushed back to buddy allocator. 5661 */ 5662 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5663 void __user *buffer, size_t *length, loff_t *ppos) 5664 { 5665 struct zone *zone; 5666 unsigned int cpu; 5667 int ret; 5668 5669 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5670 if (!write || (ret < 0)) 5671 return ret; 5672 5673 mutex_lock(&pcp_batch_high_lock); 5674 for_each_populated_zone(zone) { 5675 unsigned long high; 5676 high = zone->managed_pages / percpu_pagelist_fraction; 5677 for_each_possible_cpu(cpu) 5678 pageset_set_high(per_cpu_ptr(zone->pageset, cpu), 5679 high); 5680 } 5681 mutex_unlock(&pcp_batch_high_lock); 5682 return 0; 5683 } 5684 5685 int hashdist = HASHDIST_DEFAULT; 5686 5687 #ifdef CONFIG_NUMA 5688 static int __init set_hashdist(char *str) 5689 { 5690 if (!str) 5691 return 0; 5692 hashdist = simple_strtoul(str, &str, 0); 5693 return 1; 5694 } 5695 __setup("hashdist=", set_hashdist); 5696 #endif 5697 5698 /* 5699 * allocate a large system hash table from bootmem 5700 * - it is assumed that the hash table must contain an exact power-of-2 5701 * quantity of entries 5702 * - limit is the number of hash buckets, not the total allocation size 5703 */ 5704 void *__init alloc_large_system_hash(const char *tablename, 5705 unsigned long bucketsize, 5706 unsigned long numentries, 5707 int scale, 5708 int flags, 5709 unsigned int *_hash_shift, 5710 unsigned int *_hash_mask, 5711 unsigned long low_limit, 5712 unsigned long high_limit) 5713 { 5714 unsigned long long max = high_limit; 5715 unsigned long log2qty, size; 5716 void *table = NULL; 5717 5718 /* allow the kernel cmdline to have a say */ 5719 if (!numentries) { 5720 /* round applicable memory size up to nearest megabyte */ 5721 numentries = nr_kernel_pages; 5722 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5723 numentries >>= 20 - PAGE_SHIFT; 5724 numentries <<= 20 - PAGE_SHIFT; 5725 5726 /* limit to 1 bucket per 2^scale bytes of low memory */ 5727 if (scale > PAGE_SHIFT) 5728 numentries >>= (scale - PAGE_SHIFT); 5729 else 5730 numentries <<= (PAGE_SHIFT - scale); 5731 5732 /* Make sure we've got at least a 0-order allocation.. */ 5733 if (unlikely(flags & HASH_SMALL)) { 5734 /* Makes no sense without HASH_EARLY */ 5735 WARN_ON(!(flags & HASH_EARLY)); 5736 if (!(numentries >> *_hash_shift)) { 5737 numentries = 1UL << *_hash_shift; 5738 BUG_ON(!numentries); 5739 } 5740 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5741 numentries = PAGE_SIZE / bucketsize; 5742 } 5743 numentries = roundup_pow_of_two(numentries); 5744 5745 /* limit allocation size to 1/16 total memory by default */ 5746 if (max == 0) { 5747 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5748 do_div(max, bucketsize); 5749 } 5750 max = min(max, 0x80000000ULL); 5751 5752 if (numentries < low_limit) 5753 numentries = low_limit; 5754 if (numentries > max) 5755 numentries = max; 5756 5757 log2qty = ilog2(numentries); 5758 5759 do { 5760 size = bucketsize << log2qty; 5761 if (flags & HASH_EARLY) 5762 table = alloc_bootmem_nopanic(size); 5763 else if (hashdist) 5764 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5765 else { 5766 /* 5767 * If bucketsize is not a power-of-two, we may free 5768 * some pages at the end of hash table which 5769 * alloc_pages_exact() automatically does 5770 */ 5771 if (get_order(size) < MAX_ORDER) { 5772 table = alloc_pages_exact(size, GFP_ATOMIC); 5773 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5774 } 5775 } 5776 } while (!table && size > PAGE_SIZE && --log2qty); 5777 5778 if (!table) 5779 panic("Failed to allocate %s hash table\n", tablename); 5780 5781 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5782 tablename, 5783 (1UL << log2qty), 5784 ilog2(size) - PAGE_SHIFT, 5785 size); 5786 5787 if (_hash_shift) 5788 *_hash_shift = log2qty; 5789 if (_hash_mask) 5790 *_hash_mask = (1 << log2qty) - 1; 5791 5792 return table; 5793 } 5794 5795 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5796 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5797 unsigned long pfn) 5798 { 5799 #ifdef CONFIG_SPARSEMEM 5800 return __pfn_to_section(pfn)->pageblock_flags; 5801 #else 5802 return zone->pageblock_flags; 5803 #endif /* CONFIG_SPARSEMEM */ 5804 } 5805 5806 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5807 { 5808 #ifdef CONFIG_SPARSEMEM 5809 pfn &= (PAGES_PER_SECTION-1); 5810 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5811 #else 5812 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5813 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5814 #endif /* CONFIG_SPARSEMEM */ 5815 } 5816 5817 /** 5818 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5819 * @page: The page within the block of interest 5820 * @start_bitidx: The first bit of interest to retrieve 5821 * @end_bitidx: The last bit of interest 5822 * returns pageblock_bits flags 5823 */ 5824 unsigned long get_pageblock_flags_group(struct page *page, 5825 int start_bitidx, int end_bitidx) 5826 { 5827 struct zone *zone; 5828 unsigned long *bitmap; 5829 unsigned long pfn, bitidx; 5830 unsigned long flags = 0; 5831 unsigned long value = 1; 5832 5833 zone = page_zone(page); 5834 pfn = page_to_pfn(page); 5835 bitmap = get_pageblock_bitmap(zone, pfn); 5836 bitidx = pfn_to_bitidx(zone, pfn); 5837 5838 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5839 if (test_bit(bitidx + start_bitidx, bitmap)) 5840 flags |= value; 5841 5842 return flags; 5843 } 5844 5845 /** 5846 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5847 * @page: The page within the block of interest 5848 * @start_bitidx: The first bit of interest 5849 * @end_bitidx: The last bit of interest 5850 * @flags: The flags to set 5851 */ 5852 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5853 int start_bitidx, int end_bitidx) 5854 { 5855 struct zone *zone; 5856 unsigned long *bitmap; 5857 unsigned long pfn, bitidx; 5858 unsigned long value = 1; 5859 5860 zone = page_zone(page); 5861 pfn = page_to_pfn(page); 5862 bitmap = get_pageblock_bitmap(zone, pfn); 5863 bitidx = pfn_to_bitidx(zone, pfn); 5864 VM_BUG_ON(!zone_spans_pfn(zone, pfn)); 5865 5866 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5867 if (flags & value) 5868 __set_bit(bitidx + start_bitidx, bitmap); 5869 else 5870 __clear_bit(bitidx + start_bitidx, bitmap); 5871 } 5872 5873 /* 5874 * This function checks whether pageblock includes unmovable pages or not. 5875 * If @count is not zero, it is okay to include less @count unmovable pages 5876 * 5877 * PageLRU check wihtout isolation or lru_lock could race so that 5878 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5879 * expect this function should be exact. 5880 */ 5881 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5882 bool skip_hwpoisoned_pages) 5883 { 5884 unsigned long pfn, iter, found; 5885 int mt; 5886 5887 /* 5888 * For avoiding noise data, lru_add_drain_all() should be called 5889 * If ZONE_MOVABLE, the zone never contains unmovable pages 5890 */ 5891 if (zone_idx(zone) == ZONE_MOVABLE) 5892 return false; 5893 mt = get_pageblock_migratetype(page); 5894 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5895 return false; 5896 5897 pfn = page_to_pfn(page); 5898 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5899 unsigned long check = pfn + iter; 5900 5901 if (!pfn_valid_within(check)) 5902 continue; 5903 5904 page = pfn_to_page(check); 5905 /* 5906 * We can't use page_count without pin a page 5907 * because another CPU can free compound page. 5908 * This check already skips compound tails of THP 5909 * because their page->_count is zero at all time. 5910 */ 5911 if (!atomic_read(&page->_count)) { 5912 if (PageBuddy(page)) 5913 iter += (1 << page_order(page)) - 1; 5914 continue; 5915 } 5916 5917 /* 5918 * The HWPoisoned page may be not in buddy system, and 5919 * page_count() is not 0. 5920 */ 5921 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5922 continue; 5923 5924 if (!PageLRU(page)) 5925 found++; 5926 /* 5927 * If there are RECLAIMABLE pages, we need to check it. 5928 * But now, memory offline itself doesn't call shrink_slab() 5929 * and it still to be fixed. 5930 */ 5931 /* 5932 * If the page is not RAM, page_count()should be 0. 5933 * we don't need more check. This is an _used_ not-movable page. 5934 * 5935 * The problematic thing here is PG_reserved pages. PG_reserved 5936 * is set to both of a memory hole page and a _used_ kernel 5937 * page at boot. 5938 */ 5939 if (found > count) 5940 return true; 5941 } 5942 return false; 5943 } 5944 5945 bool is_pageblock_removable_nolock(struct page *page) 5946 { 5947 struct zone *zone; 5948 unsigned long pfn; 5949 5950 /* 5951 * We have to be careful here because we are iterating over memory 5952 * sections which are not zone aware so we might end up outside of 5953 * the zone but still within the section. 5954 * We have to take care about the node as well. If the node is offline 5955 * its NODE_DATA will be NULL - see page_zone. 5956 */ 5957 if (!node_online(page_to_nid(page))) 5958 return false; 5959 5960 zone = page_zone(page); 5961 pfn = page_to_pfn(page); 5962 if (!zone_spans_pfn(zone, pfn)) 5963 return false; 5964 5965 return !has_unmovable_pages(zone, page, 0, true); 5966 } 5967 5968 #ifdef CONFIG_CMA 5969 5970 static unsigned long pfn_max_align_down(unsigned long pfn) 5971 { 5972 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5973 pageblock_nr_pages) - 1); 5974 } 5975 5976 static unsigned long pfn_max_align_up(unsigned long pfn) 5977 { 5978 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5979 pageblock_nr_pages)); 5980 } 5981 5982 /* [start, end) must belong to a single zone. */ 5983 static int __alloc_contig_migrate_range(struct compact_control *cc, 5984 unsigned long start, unsigned long end) 5985 { 5986 /* This function is based on compact_zone() from compaction.c. */ 5987 unsigned long nr_reclaimed; 5988 unsigned long pfn = start; 5989 unsigned int tries = 0; 5990 int ret = 0; 5991 5992 migrate_prep(); 5993 5994 while (pfn < end || !list_empty(&cc->migratepages)) { 5995 if (fatal_signal_pending(current)) { 5996 ret = -EINTR; 5997 break; 5998 } 5999 6000 if (list_empty(&cc->migratepages)) { 6001 cc->nr_migratepages = 0; 6002 pfn = isolate_migratepages_range(cc->zone, cc, 6003 pfn, end, true); 6004 if (!pfn) { 6005 ret = -EINTR; 6006 break; 6007 } 6008 tries = 0; 6009 } else if (++tries == 5) { 6010 ret = ret < 0 ? ret : -EBUSY; 6011 break; 6012 } 6013 6014 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6015 &cc->migratepages); 6016 cc->nr_migratepages -= nr_reclaimed; 6017 6018 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6019 0, MIGRATE_SYNC, MR_CMA); 6020 } 6021 if (ret < 0) { 6022 putback_movable_pages(&cc->migratepages); 6023 return ret; 6024 } 6025 return 0; 6026 } 6027 6028 /** 6029 * alloc_contig_range() -- tries to allocate given range of pages 6030 * @start: start PFN to allocate 6031 * @end: one-past-the-last PFN to allocate 6032 * @migratetype: migratetype of the underlaying pageblocks (either 6033 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6034 * in range must have the same migratetype and it must 6035 * be either of the two. 6036 * 6037 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6038 * aligned, however it's the caller's responsibility to guarantee that 6039 * we are the only thread that changes migrate type of pageblocks the 6040 * pages fall in. 6041 * 6042 * The PFN range must belong to a single zone. 6043 * 6044 * Returns zero on success or negative error code. On success all 6045 * pages which PFN is in [start, end) are allocated for the caller and 6046 * need to be freed with free_contig_range(). 6047 */ 6048 int alloc_contig_range(unsigned long start, unsigned long end, 6049 unsigned migratetype) 6050 { 6051 unsigned long outer_start, outer_end; 6052 int ret = 0, order; 6053 6054 struct compact_control cc = { 6055 .nr_migratepages = 0, 6056 .order = -1, 6057 .zone = page_zone(pfn_to_page(start)), 6058 .sync = true, 6059 .ignore_skip_hint = true, 6060 }; 6061 INIT_LIST_HEAD(&cc.migratepages); 6062 6063 /* 6064 * What we do here is we mark all pageblocks in range as 6065 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6066 * have different sizes, and due to the way page allocator 6067 * work, we align the range to biggest of the two pages so 6068 * that page allocator won't try to merge buddies from 6069 * different pageblocks and change MIGRATE_ISOLATE to some 6070 * other migration type. 6071 * 6072 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6073 * migrate the pages from an unaligned range (ie. pages that 6074 * we are interested in). This will put all the pages in 6075 * range back to page allocator as MIGRATE_ISOLATE. 6076 * 6077 * When this is done, we take the pages in range from page 6078 * allocator removing them from the buddy system. This way 6079 * page allocator will never consider using them. 6080 * 6081 * This lets us mark the pageblocks back as 6082 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6083 * aligned range but not in the unaligned, original range are 6084 * put back to page allocator so that buddy can use them. 6085 */ 6086 6087 ret = start_isolate_page_range(pfn_max_align_down(start), 6088 pfn_max_align_up(end), migratetype, 6089 false); 6090 if (ret) 6091 return ret; 6092 6093 ret = __alloc_contig_migrate_range(&cc, start, end); 6094 if (ret) 6095 goto done; 6096 6097 /* 6098 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6099 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6100 * more, all pages in [start, end) are free in page allocator. 6101 * What we are going to do is to allocate all pages from 6102 * [start, end) (that is remove them from page allocator). 6103 * 6104 * The only problem is that pages at the beginning and at the 6105 * end of interesting range may be not aligned with pages that 6106 * page allocator holds, ie. they can be part of higher order 6107 * pages. Because of this, we reserve the bigger range and 6108 * once this is done free the pages we are not interested in. 6109 * 6110 * We don't have to hold zone->lock here because the pages are 6111 * isolated thus they won't get removed from buddy. 6112 */ 6113 6114 lru_add_drain_all(); 6115 drain_all_pages(); 6116 6117 order = 0; 6118 outer_start = start; 6119 while (!PageBuddy(pfn_to_page(outer_start))) { 6120 if (++order >= MAX_ORDER) { 6121 ret = -EBUSY; 6122 goto done; 6123 } 6124 outer_start &= ~0UL << order; 6125 } 6126 6127 /* Make sure the range is really isolated. */ 6128 if (test_pages_isolated(outer_start, end, false)) { 6129 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6130 outer_start, end); 6131 ret = -EBUSY; 6132 goto done; 6133 } 6134 6135 6136 /* Grab isolated pages from freelists. */ 6137 outer_end = isolate_freepages_range(&cc, outer_start, end); 6138 if (!outer_end) { 6139 ret = -EBUSY; 6140 goto done; 6141 } 6142 6143 /* Free head and tail (if any) */ 6144 if (start != outer_start) 6145 free_contig_range(outer_start, start - outer_start); 6146 if (end != outer_end) 6147 free_contig_range(end, outer_end - end); 6148 6149 done: 6150 undo_isolate_page_range(pfn_max_align_down(start), 6151 pfn_max_align_up(end), migratetype); 6152 return ret; 6153 } 6154 6155 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6156 { 6157 unsigned int count = 0; 6158 6159 for (; nr_pages--; pfn++) { 6160 struct page *page = pfn_to_page(pfn); 6161 6162 count += page_count(page) != 1; 6163 __free_page(page); 6164 } 6165 WARN(count != 0, "%d pages are still in use!\n", count); 6166 } 6167 #endif 6168 6169 #ifdef CONFIG_MEMORY_HOTPLUG 6170 /* 6171 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6172 * page high values need to be recalulated. 6173 */ 6174 void __meminit zone_pcp_update(struct zone *zone) 6175 { 6176 unsigned cpu; 6177 mutex_lock(&pcp_batch_high_lock); 6178 for_each_possible_cpu(cpu) 6179 pageset_set_high_and_batch(zone, 6180 per_cpu_ptr(zone->pageset, cpu)); 6181 mutex_unlock(&pcp_batch_high_lock); 6182 } 6183 #endif 6184 6185 void zone_pcp_reset(struct zone *zone) 6186 { 6187 unsigned long flags; 6188 int cpu; 6189 struct per_cpu_pageset *pset; 6190 6191 /* avoid races with drain_pages() */ 6192 local_irq_save(flags); 6193 if (zone->pageset != &boot_pageset) { 6194 for_each_online_cpu(cpu) { 6195 pset = per_cpu_ptr(zone->pageset, cpu); 6196 drain_zonestat(zone, pset); 6197 } 6198 free_percpu(zone->pageset); 6199 zone->pageset = &boot_pageset; 6200 } 6201 local_irq_restore(flags); 6202 } 6203 6204 #ifdef CONFIG_MEMORY_HOTREMOVE 6205 /* 6206 * All pages in the range must be isolated before calling this. 6207 */ 6208 void 6209 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6210 { 6211 struct page *page; 6212 struct zone *zone; 6213 int order, i; 6214 unsigned long pfn; 6215 unsigned long flags; 6216 /* find the first valid pfn */ 6217 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6218 if (pfn_valid(pfn)) 6219 break; 6220 if (pfn == end_pfn) 6221 return; 6222 zone = page_zone(pfn_to_page(pfn)); 6223 spin_lock_irqsave(&zone->lock, flags); 6224 pfn = start_pfn; 6225 while (pfn < end_pfn) { 6226 if (!pfn_valid(pfn)) { 6227 pfn++; 6228 continue; 6229 } 6230 page = pfn_to_page(pfn); 6231 /* 6232 * The HWPoisoned page may be not in buddy system, and 6233 * page_count() is not 0. 6234 */ 6235 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6236 pfn++; 6237 SetPageReserved(page); 6238 continue; 6239 } 6240 6241 BUG_ON(page_count(page)); 6242 BUG_ON(!PageBuddy(page)); 6243 order = page_order(page); 6244 #ifdef CONFIG_DEBUG_VM 6245 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6246 pfn, 1 << order, end_pfn); 6247 #endif 6248 list_del(&page->lru); 6249 rmv_page_order(page); 6250 zone->free_area[order].nr_free--; 6251 #ifdef CONFIG_HIGHMEM 6252 if (PageHighMem(page)) 6253 totalhigh_pages -= 1 << order; 6254 #endif 6255 for (i = 0; i < (1 << order); i++) 6256 SetPageReserved((page+i)); 6257 pfn += (1 << order); 6258 } 6259 spin_unlock_irqrestore(&zone->lock, flags); 6260 } 6261 #endif 6262 6263 #ifdef CONFIG_MEMORY_FAILURE 6264 bool is_free_buddy_page(struct page *page) 6265 { 6266 struct zone *zone = page_zone(page); 6267 unsigned long pfn = page_to_pfn(page); 6268 unsigned long flags; 6269 int order; 6270 6271 spin_lock_irqsave(&zone->lock, flags); 6272 for (order = 0; order < MAX_ORDER; order++) { 6273 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6274 6275 if (PageBuddy(page_head) && page_order(page_head) >= order) 6276 break; 6277 } 6278 spin_unlock_irqrestore(&zone->lock, flags); 6279 6280 return order < MAX_ORDER; 6281 } 6282 #endif 6283 6284 static const struct trace_print_flags pageflag_names[] = { 6285 {1UL << PG_locked, "locked" }, 6286 {1UL << PG_error, "error" }, 6287 {1UL << PG_referenced, "referenced" }, 6288 {1UL << PG_uptodate, "uptodate" }, 6289 {1UL << PG_dirty, "dirty" }, 6290 {1UL << PG_lru, "lru" }, 6291 {1UL << PG_active, "active" }, 6292 {1UL << PG_slab, "slab" }, 6293 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6294 {1UL << PG_arch_1, "arch_1" }, 6295 {1UL << PG_reserved, "reserved" }, 6296 {1UL << PG_private, "private" }, 6297 {1UL << PG_private_2, "private_2" }, 6298 {1UL << PG_writeback, "writeback" }, 6299 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6300 {1UL << PG_head, "head" }, 6301 {1UL << PG_tail, "tail" }, 6302 #else 6303 {1UL << PG_compound, "compound" }, 6304 #endif 6305 {1UL << PG_swapcache, "swapcache" }, 6306 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6307 {1UL << PG_reclaim, "reclaim" }, 6308 {1UL << PG_swapbacked, "swapbacked" }, 6309 {1UL << PG_unevictable, "unevictable" }, 6310 #ifdef CONFIG_MMU 6311 {1UL << PG_mlocked, "mlocked" }, 6312 #endif 6313 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6314 {1UL << PG_uncached, "uncached" }, 6315 #endif 6316 #ifdef CONFIG_MEMORY_FAILURE 6317 {1UL << PG_hwpoison, "hwpoison" }, 6318 #endif 6319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6320 {1UL << PG_compound_lock, "compound_lock" }, 6321 #endif 6322 }; 6323 6324 static void dump_page_flags(unsigned long flags) 6325 { 6326 const char *delim = ""; 6327 unsigned long mask; 6328 int i; 6329 6330 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6331 6332 printk(KERN_ALERT "page flags: %#lx(", flags); 6333 6334 /* remove zone id */ 6335 flags &= (1UL << NR_PAGEFLAGS) - 1; 6336 6337 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6338 6339 mask = pageflag_names[i].mask; 6340 if ((flags & mask) != mask) 6341 continue; 6342 6343 flags &= ~mask; 6344 printk("%s%s", delim, pageflag_names[i].name); 6345 delim = "|"; 6346 } 6347 6348 /* check for left over flags */ 6349 if (flags) 6350 printk("%s%#lx", delim, flags); 6351 6352 printk(")\n"); 6353 } 6354 6355 void dump_page(struct page *page) 6356 { 6357 printk(KERN_ALERT 6358 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6359 page, atomic_read(&page->_count), page_mapcount(page), 6360 page->mapping, page->index); 6361 dump_page_flags(page->flags); 6362 mem_cgroup_print_bad_page(page); 6363 } 6364