xref: /linux/mm/page_alloc.c (revision 9052e9c95d908d6c3d7570aadc8898e1d871c8bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /*
111  * Don't poison memory with KASAN (only for the tag-based modes).
112  * During boot, all non-reserved memblock memory is exposed to page_alloc.
113  * Poisoning all that memory lengthens boot time, especially on systems with
114  * large amount of RAM. This flag is used to skip that poisoning.
115  * This is only done for the tag-based KASAN modes, as those are able to
116  * detect memory corruptions with the memory tags assigned by default.
117  * All memory allocated normally after boot gets poisoned as usual.
118  */
119 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
120 
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124 
125 struct pagesets {
126 	local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 	.lock = INIT_LOCAL_LOCK(lock),
130 };
131 
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136 
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138 
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144  * defined in <linux/topology.h>.
145  */
146 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149 
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 	struct zone *zone;
153 	struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157 
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162 
163 /*
164  * Array of node states.
165  */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 	[N_POSSIBLE] = NODE_MASK_ALL,
168 	[N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 	[N_MEMORY] = { { [0] = 1UL } },
175 	[N_CPU] = { { [0] = 1UL } },
176 #endif	/* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179 
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184 
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189 
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192 
193 static bool _init_on_alloc_enabled_early __read_mostly
194 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195 static int __init early_init_on_alloc(char *buf)
196 {
197 
198 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201 
202 static bool _init_on_free_enabled_early __read_mostly
203 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204 static int __init early_init_on_free(char *buf)
205 {
206 	return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209 
210 /*
211  * A cached value of the page's pageblock's migratetype, used when the page is
212  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214  * Also the migratetype set in the page does not necessarily match the pcplist
215  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216  * other index - this ensures that it will be put on the correct CMA freelist.
217  */
218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 	return page->index;
221 }
222 
223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 	page->index = migratetype;
226 }
227 
228 #ifdef CONFIG_PM_SLEEP
229 /*
230  * The following functions are used by the suspend/hibernate code to temporarily
231  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232  * while devices are suspended.  To avoid races with the suspend/hibernate code,
233  * they should always be called with system_transition_mutex held
234  * (gfp_allowed_mask also should only be modified with system_transition_mutex
235  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236  * with that modification).
237  */
238 
239 static gfp_t saved_gfp_mask;
240 
241 void pm_restore_gfp_mask(void)
242 {
243 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 	if (saved_gfp_mask) {
245 		gfp_allowed_mask = saved_gfp_mask;
246 		saved_gfp_mask = 0;
247 	}
248 }
249 
250 void pm_restrict_gfp_mask(void)
251 {
252 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 	WARN_ON(saved_gfp_mask);
254 	saved_gfp_mask = gfp_allowed_mask;
255 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257 
258 bool pm_suspended_storage(void)
259 {
260 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 		return false;
262 	return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265 
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269 
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 			    fpi_t fpi_flags);
272 
273 /*
274  * results with 256, 32 in the lowmem_reserve sysctl:
275  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276  *	1G machine -> (16M dma, 784M normal, 224M high)
277  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280  *
281  * TBD: should special case ZONE_DMA32 machines here - in those we normally
282  * don't need any ZONE_NORMAL reservation
283  */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 	[ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 	[ZONE_DMA32] = 256,
290 #endif
291 	[ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 	[ZONE_HIGHMEM] = 0,
294 #endif
295 	[ZONE_MOVABLE] = 0,
296 };
297 
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 	 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 	 "DMA32",
304 #endif
305 	 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 	 "HighMem",
308 #endif
309 	 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 	 "Device",
312 #endif
313 };
314 
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 	"Unmovable",
317 	"Movable",
318 	"Reclaimable",
319 	"HighAtomic",
320 #ifdef CONFIG_CMA
321 	"CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 	"Isolate",
325 #endif
326 };
327 
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 	[NULL_COMPOUND_DTOR] = NULL,
330 	[COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 	[HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338 
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343 
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347 
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356 
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360 
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367 
368 int page_group_by_mobility_disabled __read_mostly;
369 
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372  * During boot we initialize deferred pages on-demand, as needed, but once
373  * page_alloc_init_late() has finished, the deferred pages are all initialized,
374  * and we can permanently disable that path.
375  */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377 
378 /*
379  * Calling kasan_poison_pages() only after deferred memory initialization
380  * has completed. Poisoning pages during deferred memory init will greatly
381  * lengthen the process and cause problem in large memory systems as the
382  * deferred pages initialization is done with interrupt disabled.
383  *
384  * Assuming that there will be no reference to those newly initialized
385  * pages before they are ever allocated, this should have no effect on
386  * KASAN memory tracking as the poison will be properly inserted at page
387  * allocation time. The only corner case is when pages are allocated by
388  * on-demand allocation and then freed again before the deferred pages
389  * initialization is done, but this is not likely to happen.
390  */
391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 	return static_branch_unlikely(&deferred_pages) ||
394 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 	       PageSkipKASanPoison(page);
397 }
398 
399 /* Returns true if the struct page for the pfn is uninitialised */
400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 	int nid = early_pfn_to_nid(pfn);
403 
404 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 		return true;
406 
407 	return false;
408 }
409 
410 /*
411  * Returns true when the remaining initialisation should be deferred until
412  * later in the boot cycle when it can be parallelised.
413  */
414 static bool __meminit
415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 	static unsigned long prev_end_pfn, nr_initialised;
418 
419 	/*
420 	 * prev_end_pfn static that contains the end of previous zone
421 	 * No need to protect because called very early in boot before smp_init.
422 	 */
423 	if (prev_end_pfn != end_pfn) {
424 		prev_end_pfn = end_pfn;
425 		nr_initialised = 0;
426 	}
427 
428 	/* Always populate low zones for address-constrained allocations */
429 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 		return false;
431 
432 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 		return true;
434 	/*
435 	 * We start only with one section of pages, more pages are added as
436 	 * needed until the rest of deferred pages are initialized.
437 	 */
438 	nr_initialised++;
439 	if ((nr_initialised > PAGES_PER_SECTION) &&
440 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 		NODE_DATA(nid)->first_deferred_pfn = pfn;
442 		return true;
443 	}
444 	return false;
445 }
446 #else
447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 	       PageSkipKASanPoison(page);
452 }
453 
454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 	return false;
457 }
458 
459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 	return false;
462 }
463 #endif
464 
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 							unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 	return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 	return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475 
476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 	pfn &= (PAGES_PER_SECTION-1);
480 #else
481 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485 
486 static __always_inline
487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 					unsigned long pfn,
489 					unsigned long mask)
490 {
491 	unsigned long *bitmap;
492 	unsigned long bitidx, word_bitidx;
493 	unsigned long word;
494 
495 	bitmap = get_pageblock_bitmap(page, pfn);
496 	bitidx = pfn_to_bitidx(page, pfn);
497 	word_bitidx = bitidx / BITS_PER_LONG;
498 	bitidx &= (BITS_PER_LONG-1);
499 
500 	word = bitmap[word_bitidx];
501 	return (word >> bitidx) & mask;
502 }
503 
504 /**
505  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506  * @page: The page within the block of interest
507  * @pfn: The target page frame number
508  * @mask: mask of bits that the caller is interested in
509  *
510  * Return: pageblock_bits flags
511  */
512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 					unsigned long pfn, unsigned long mask)
514 {
515 	return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517 
518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 					unsigned long pfn)
520 {
521 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523 
524 /**
525  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526  * @page: The page within the block of interest
527  * @flags: The flags to set
528  * @pfn: The target page frame number
529  * @mask: mask of bits that the caller is interested in
530  */
531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 					unsigned long pfn,
533 					unsigned long mask)
534 {
535 	unsigned long *bitmap;
536 	unsigned long bitidx, word_bitidx;
537 	unsigned long old_word, word;
538 
539 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541 
542 	bitmap = get_pageblock_bitmap(page, pfn);
543 	bitidx = pfn_to_bitidx(page, pfn);
544 	word_bitidx = bitidx / BITS_PER_LONG;
545 	bitidx &= (BITS_PER_LONG-1);
546 
547 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548 
549 	mask <<= bitidx;
550 	flags <<= bitidx;
551 
552 	word = READ_ONCE(bitmap[word_bitidx]);
553 	for (;;) {
554 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 		if (word == old_word)
556 			break;
557 		word = old_word;
558 	}
559 }
560 
561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 	if (unlikely(page_group_by_mobility_disabled &&
564 		     migratetype < MIGRATE_PCPTYPES))
565 		migratetype = MIGRATE_UNMOVABLE;
566 
567 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 				page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570 
571 #ifdef CONFIG_DEBUG_VM
572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 	int ret = 0;
575 	unsigned seq;
576 	unsigned long pfn = page_to_pfn(page);
577 	unsigned long sp, start_pfn;
578 
579 	do {
580 		seq = zone_span_seqbegin(zone);
581 		start_pfn = zone->zone_start_pfn;
582 		sp = zone->spanned_pages;
583 		if (!zone_spans_pfn(zone, pfn))
584 			ret = 1;
585 	} while (zone_span_seqretry(zone, seq));
586 
587 	if (ret)
588 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 			pfn, zone_to_nid(zone), zone->name,
590 			start_pfn, start_pfn + sp);
591 
592 	return ret;
593 }
594 
595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 	if (zone != page_zone(page))
598 		return 0;
599 
600 	return 1;
601 }
602 /*
603  * Temporary debugging check for pages not lying within a given zone.
604  */
605 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 	if (page_outside_zone_boundaries(zone, page))
608 		return 1;
609 	if (!page_is_consistent(zone, page))
610 		return 1;
611 
612 	return 0;
613 }
614 #else
615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616 {
617 	return 0;
618 }
619 #endif
620 
621 static void bad_page(struct page *page, const char *reason)
622 {
623 	static unsigned long resume;
624 	static unsigned long nr_shown;
625 	static unsigned long nr_unshown;
626 
627 	/*
628 	 * Allow a burst of 60 reports, then keep quiet for that minute;
629 	 * or allow a steady drip of one report per second.
630 	 */
631 	if (nr_shown == 60) {
632 		if (time_before(jiffies, resume)) {
633 			nr_unshown++;
634 			goto out;
635 		}
636 		if (nr_unshown) {
637 			pr_alert(
638 			      "BUG: Bad page state: %lu messages suppressed\n",
639 				nr_unshown);
640 			nr_unshown = 0;
641 		}
642 		nr_shown = 0;
643 	}
644 	if (nr_shown++ == 0)
645 		resume = jiffies + 60 * HZ;
646 
647 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
648 		current->comm, page_to_pfn(page));
649 	dump_page(page, reason);
650 
651 	print_modules();
652 	dump_stack();
653 out:
654 	/* Leave bad fields for debug, except PageBuddy could make trouble */
655 	page_mapcount_reset(page); /* remove PageBuddy */
656 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 }
658 
659 static inline unsigned int order_to_pindex(int migratetype, int order)
660 {
661 	int base = order;
662 
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 		VM_BUG_ON(order != pageblock_order);
666 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 	}
668 #else
669 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671 
672 	return (MIGRATE_PCPTYPES * base) + migratetype;
673 }
674 
675 static inline int pindex_to_order(unsigned int pindex)
676 {
677 	int order = pindex / MIGRATE_PCPTYPES;
678 
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
681 		order = pageblock_order;
682 		VM_BUG_ON(order != pageblock_order);
683 	}
684 #else
685 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686 #endif
687 
688 	return order;
689 }
690 
691 static inline bool pcp_allowed_order(unsigned int order)
692 {
693 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 		return true;
695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 	if (order == pageblock_order)
697 		return true;
698 #endif
699 	return false;
700 }
701 
702 static inline void free_the_page(struct page *page, unsigned int order)
703 {
704 	if (pcp_allowed_order(order))		/* Via pcp? */
705 		free_unref_page(page, order);
706 	else
707 		__free_pages_ok(page, order, FPI_NONE);
708 }
709 
710 /*
711  * Higher-order pages are called "compound pages".  They are structured thusly:
712  *
713  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
714  *
715  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
716  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
717  *
718  * The first tail page's ->compound_dtor holds the offset in array of compound
719  * page destructors. See compound_page_dtors.
720  *
721  * The first tail page's ->compound_order holds the order of allocation.
722  * This usage means that zero-order pages may not be compound.
723  */
724 
725 void free_compound_page(struct page *page)
726 {
727 	mem_cgroup_uncharge(page);
728 	free_the_page(page, compound_order(page));
729 }
730 
731 void prep_compound_page(struct page *page, unsigned int order)
732 {
733 	int i;
734 	int nr_pages = 1 << order;
735 
736 	__SetPageHead(page);
737 	for (i = 1; i < nr_pages; i++) {
738 		struct page *p = page + i;
739 		p->mapping = TAIL_MAPPING;
740 		set_compound_head(p, page);
741 	}
742 
743 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
744 	set_compound_order(page, order);
745 	atomic_set(compound_mapcount_ptr(page), -1);
746 	if (hpage_pincount_available(page))
747 		atomic_set(compound_pincount_ptr(page), 0);
748 }
749 
750 #ifdef CONFIG_DEBUG_PAGEALLOC
751 unsigned int _debug_guardpage_minorder;
752 
753 bool _debug_pagealloc_enabled_early __read_mostly
754 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
755 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
756 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
757 EXPORT_SYMBOL(_debug_pagealloc_enabled);
758 
759 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
760 
761 static int __init early_debug_pagealloc(char *buf)
762 {
763 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
764 }
765 early_param("debug_pagealloc", early_debug_pagealloc);
766 
767 static int __init debug_guardpage_minorder_setup(char *buf)
768 {
769 	unsigned long res;
770 
771 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
772 		pr_err("Bad debug_guardpage_minorder value\n");
773 		return 0;
774 	}
775 	_debug_guardpage_minorder = res;
776 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
777 	return 0;
778 }
779 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
780 
781 static inline bool set_page_guard(struct zone *zone, struct page *page,
782 				unsigned int order, int migratetype)
783 {
784 	if (!debug_guardpage_enabled())
785 		return false;
786 
787 	if (order >= debug_guardpage_minorder())
788 		return false;
789 
790 	__SetPageGuard(page);
791 	INIT_LIST_HEAD(&page->lru);
792 	set_page_private(page, order);
793 	/* Guard pages are not available for any usage */
794 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
795 
796 	return true;
797 }
798 
799 static inline void clear_page_guard(struct zone *zone, struct page *page,
800 				unsigned int order, int migratetype)
801 {
802 	if (!debug_guardpage_enabled())
803 		return;
804 
805 	__ClearPageGuard(page);
806 
807 	set_page_private(page, 0);
808 	if (!is_migrate_isolate(migratetype))
809 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
810 }
811 #else
812 static inline bool set_page_guard(struct zone *zone, struct page *page,
813 			unsigned int order, int migratetype) { return false; }
814 static inline void clear_page_guard(struct zone *zone, struct page *page,
815 				unsigned int order, int migratetype) {}
816 #endif
817 
818 /*
819  * Enable static keys related to various memory debugging and hardening options.
820  * Some override others, and depend on early params that are evaluated in the
821  * order of appearance. So we need to first gather the full picture of what was
822  * enabled, and then make decisions.
823  */
824 void init_mem_debugging_and_hardening(void)
825 {
826 	bool page_poisoning_requested = false;
827 
828 #ifdef CONFIG_PAGE_POISONING
829 	/*
830 	 * Page poisoning is debug page alloc for some arches. If
831 	 * either of those options are enabled, enable poisoning.
832 	 */
833 	if (page_poisoning_enabled() ||
834 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
835 	      debug_pagealloc_enabled())) {
836 		static_branch_enable(&_page_poisoning_enabled);
837 		page_poisoning_requested = true;
838 	}
839 #endif
840 
841 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
842 	    page_poisoning_requested) {
843 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
844 			"will take precedence over init_on_alloc and init_on_free\n");
845 		_init_on_alloc_enabled_early = false;
846 		_init_on_free_enabled_early = false;
847 	}
848 
849 	if (_init_on_alloc_enabled_early)
850 		static_branch_enable(&init_on_alloc);
851 	else
852 		static_branch_disable(&init_on_alloc);
853 
854 	if (_init_on_free_enabled_early)
855 		static_branch_enable(&init_on_free);
856 	else
857 		static_branch_disable(&init_on_free);
858 
859 #ifdef CONFIG_DEBUG_PAGEALLOC
860 	if (!debug_pagealloc_enabled())
861 		return;
862 
863 	static_branch_enable(&_debug_pagealloc_enabled);
864 
865 	if (!debug_guardpage_minorder())
866 		return;
867 
868 	static_branch_enable(&_debug_guardpage_enabled);
869 #endif
870 }
871 
872 static inline void set_buddy_order(struct page *page, unsigned int order)
873 {
874 	set_page_private(page, order);
875 	__SetPageBuddy(page);
876 }
877 
878 /*
879  * This function checks whether a page is free && is the buddy
880  * we can coalesce a page and its buddy if
881  * (a) the buddy is not in a hole (check before calling!) &&
882  * (b) the buddy is in the buddy system &&
883  * (c) a page and its buddy have the same order &&
884  * (d) a page and its buddy are in the same zone.
885  *
886  * For recording whether a page is in the buddy system, we set PageBuddy.
887  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
888  *
889  * For recording page's order, we use page_private(page).
890  */
891 static inline bool page_is_buddy(struct page *page, struct page *buddy,
892 							unsigned int order)
893 {
894 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
895 		return false;
896 
897 	if (buddy_order(buddy) != order)
898 		return false;
899 
900 	/*
901 	 * zone check is done late to avoid uselessly calculating
902 	 * zone/node ids for pages that could never merge.
903 	 */
904 	if (page_zone_id(page) != page_zone_id(buddy))
905 		return false;
906 
907 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
908 
909 	return true;
910 }
911 
912 #ifdef CONFIG_COMPACTION
913 static inline struct capture_control *task_capc(struct zone *zone)
914 {
915 	struct capture_control *capc = current->capture_control;
916 
917 	return unlikely(capc) &&
918 		!(current->flags & PF_KTHREAD) &&
919 		!capc->page &&
920 		capc->cc->zone == zone ? capc : NULL;
921 }
922 
923 static inline bool
924 compaction_capture(struct capture_control *capc, struct page *page,
925 		   int order, int migratetype)
926 {
927 	if (!capc || order != capc->cc->order)
928 		return false;
929 
930 	/* Do not accidentally pollute CMA or isolated regions*/
931 	if (is_migrate_cma(migratetype) ||
932 	    is_migrate_isolate(migratetype))
933 		return false;
934 
935 	/*
936 	 * Do not let lower order allocations pollute a movable pageblock.
937 	 * This might let an unmovable request use a reclaimable pageblock
938 	 * and vice-versa but no more than normal fallback logic which can
939 	 * have trouble finding a high-order free page.
940 	 */
941 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
942 		return false;
943 
944 	capc->page = page;
945 	return true;
946 }
947 
948 #else
949 static inline struct capture_control *task_capc(struct zone *zone)
950 {
951 	return NULL;
952 }
953 
954 static inline bool
955 compaction_capture(struct capture_control *capc, struct page *page,
956 		   int order, int migratetype)
957 {
958 	return false;
959 }
960 #endif /* CONFIG_COMPACTION */
961 
962 /* Used for pages not on another list */
963 static inline void add_to_free_list(struct page *page, struct zone *zone,
964 				    unsigned int order, int migratetype)
965 {
966 	struct free_area *area = &zone->free_area[order];
967 
968 	list_add(&page->lru, &area->free_list[migratetype]);
969 	area->nr_free++;
970 }
971 
972 /* Used for pages not on another list */
973 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
974 					 unsigned int order, int migratetype)
975 {
976 	struct free_area *area = &zone->free_area[order];
977 
978 	list_add_tail(&page->lru, &area->free_list[migratetype]);
979 	area->nr_free++;
980 }
981 
982 /*
983  * Used for pages which are on another list. Move the pages to the tail
984  * of the list - so the moved pages won't immediately be considered for
985  * allocation again (e.g., optimization for memory onlining).
986  */
987 static inline void move_to_free_list(struct page *page, struct zone *zone,
988 				     unsigned int order, int migratetype)
989 {
990 	struct free_area *area = &zone->free_area[order];
991 
992 	list_move_tail(&page->lru, &area->free_list[migratetype]);
993 }
994 
995 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
996 					   unsigned int order)
997 {
998 	/* clear reported state and update reported page count */
999 	if (page_reported(page))
1000 		__ClearPageReported(page);
1001 
1002 	list_del(&page->lru);
1003 	__ClearPageBuddy(page);
1004 	set_page_private(page, 0);
1005 	zone->free_area[order].nr_free--;
1006 }
1007 
1008 /*
1009  * If this is not the largest possible page, check if the buddy
1010  * of the next-highest order is free. If it is, it's possible
1011  * that pages are being freed that will coalesce soon. In case,
1012  * that is happening, add the free page to the tail of the list
1013  * so it's less likely to be used soon and more likely to be merged
1014  * as a higher order page
1015  */
1016 static inline bool
1017 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1018 		   struct page *page, unsigned int order)
1019 {
1020 	struct page *higher_page, *higher_buddy;
1021 	unsigned long combined_pfn;
1022 
1023 	if (order >= MAX_ORDER - 2)
1024 		return false;
1025 
1026 	combined_pfn = buddy_pfn & pfn;
1027 	higher_page = page + (combined_pfn - pfn);
1028 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1029 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1030 
1031 	return page_is_buddy(higher_page, higher_buddy, order + 1);
1032 }
1033 
1034 /*
1035  * Freeing function for a buddy system allocator.
1036  *
1037  * The concept of a buddy system is to maintain direct-mapped table
1038  * (containing bit values) for memory blocks of various "orders".
1039  * The bottom level table contains the map for the smallest allocatable
1040  * units of memory (here, pages), and each level above it describes
1041  * pairs of units from the levels below, hence, "buddies".
1042  * At a high level, all that happens here is marking the table entry
1043  * at the bottom level available, and propagating the changes upward
1044  * as necessary, plus some accounting needed to play nicely with other
1045  * parts of the VM system.
1046  * At each level, we keep a list of pages, which are heads of continuous
1047  * free pages of length of (1 << order) and marked with PageBuddy.
1048  * Page's order is recorded in page_private(page) field.
1049  * So when we are allocating or freeing one, we can derive the state of the
1050  * other.  That is, if we allocate a small block, and both were
1051  * free, the remainder of the region must be split into blocks.
1052  * If a block is freed, and its buddy is also free, then this
1053  * triggers coalescing into a block of larger size.
1054  *
1055  * -- nyc
1056  */
1057 
1058 static inline void __free_one_page(struct page *page,
1059 		unsigned long pfn,
1060 		struct zone *zone, unsigned int order,
1061 		int migratetype, fpi_t fpi_flags)
1062 {
1063 	struct capture_control *capc = task_capc(zone);
1064 	unsigned long buddy_pfn;
1065 	unsigned long combined_pfn;
1066 	unsigned int max_order;
1067 	struct page *buddy;
1068 	bool to_tail;
1069 
1070 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1071 
1072 	VM_BUG_ON(!zone_is_initialized(zone));
1073 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1074 
1075 	VM_BUG_ON(migratetype == -1);
1076 	if (likely(!is_migrate_isolate(migratetype)))
1077 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1078 
1079 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1080 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1081 
1082 continue_merging:
1083 	while (order < max_order) {
1084 		if (compaction_capture(capc, page, order, migratetype)) {
1085 			__mod_zone_freepage_state(zone, -(1 << order),
1086 								migratetype);
1087 			return;
1088 		}
1089 		buddy_pfn = __find_buddy_pfn(pfn, order);
1090 		buddy = page + (buddy_pfn - pfn);
1091 
1092 		if (!page_is_buddy(page, buddy, order))
1093 			goto done_merging;
1094 		/*
1095 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1096 		 * merge with it and move up one order.
1097 		 */
1098 		if (page_is_guard(buddy))
1099 			clear_page_guard(zone, buddy, order, migratetype);
1100 		else
1101 			del_page_from_free_list(buddy, zone, order);
1102 		combined_pfn = buddy_pfn & pfn;
1103 		page = page + (combined_pfn - pfn);
1104 		pfn = combined_pfn;
1105 		order++;
1106 	}
1107 	if (order < MAX_ORDER - 1) {
1108 		/* If we are here, it means order is >= pageblock_order.
1109 		 * We want to prevent merge between freepages on isolate
1110 		 * pageblock and normal pageblock. Without this, pageblock
1111 		 * isolation could cause incorrect freepage or CMA accounting.
1112 		 *
1113 		 * We don't want to hit this code for the more frequent
1114 		 * low-order merging.
1115 		 */
1116 		if (unlikely(has_isolate_pageblock(zone))) {
1117 			int buddy_mt;
1118 
1119 			buddy_pfn = __find_buddy_pfn(pfn, order);
1120 			buddy = page + (buddy_pfn - pfn);
1121 			buddy_mt = get_pageblock_migratetype(buddy);
1122 
1123 			if (migratetype != buddy_mt
1124 					&& (is_migrate_isolate(migratetype) ||
1125 						is_migrate_isolate(buddy_mt)))
1126 				goto done_merging;
1127 		}
1128 		max_order = order + 1;
1129 		goto continue_merging;
1130 	}
1131 
1132 done_merging:
1133 	set_buddy_order(page, order);
1134 
1135 	if (fpi_flags & FPI_TO_TAIL)
1136 		to_tail = true;
1137 	else if (is_shuffle_order(order))
1138 		to_tail = shuffle_pick_tail();
1139 	else
1140 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1141 
1142 	if (to_tail)
1143 		add_to_free_list_tail(page, zone, order, migratetype);
1144 	else
1145 		add_to_free_list(page, zone, order, migratetype);
1146 
1147 	/* Notify page reporting subsystem of freed page */
1148 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1149 		page_reporting_notify_free(order);
1150 }
1151 
1152 /*
1153  * A bad page could be due to a number of fields. Instead of multiple branches,
1154  * try and check multiple fields with one check. The caller must do a detailed
1155  * check if necessary.
1156  */
1157 static inline bool page_expected_state(struct page *page,
1158 					unsigned long check_flags)
1159 {
1160 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1161 		return false;
1162 
1163 	if (unlikely((unsigned long)page->mapping |
1164 			page_ref_count(page) |
1165 #ifdef CONFIG_MEMCG
1166 			page->memcg_data |
1167 #endif
1168 			(page->flags & check_flags)))
1169 		return false;
1170 
1171 	return true;
1172 }
1173 
1174 static const char *page_bad_reason(struct page *page, unsigned long flags)
1175 {
1176 	const char *bad_reason = NULL;
1177 
1178 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1179 		bad_reason = "nonzero mapcount";
1180 	if (unlikely(page->mapping != NULL))
1181 		bad_reason = "non-NULL mapping";
1182 	if (unlikely(page_ref_count(page) != 0))
1183 		bad_reason = "nonzero _refcount";
1184 	if (unlikely(page->flags & flags)) {
1185 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1186 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1187 		else
1188 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1189 	}
1190 #ifdef CONFIG_MEMCG
1191 	if (unlikely(page->memcg_data))
1192 		bad_reason = "page still charged to cgroup";
1193 #endif
1194 	return bad_reason;
1195 }
1196 
1197 static void check_free_page_bad(struct page *page)
1198 {
1199 	bad_page(page,
1200 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1201 }
1202 
1203 static inline int check_free_page(struct page *page)
1204 {
1205 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1206 		return 0;
1207 
1208 	/* Something has gone sideways, find it */
1209 	check_free_page_bad(page);
1210 	return 1;
1211 }
1212 
1213 static int free_tail_pages_check(struct page *head_page, struct page *page)
1214 {
1215 	int ret = 1;
1216 
1217 	/*
1218 	 * We rely page->lru.next never has bit 0 set, unless the page
1219 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1220 	 */
1221 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1222 
1223 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1224 		ret = 0;
1225 		goto out;
1226 	}
1227 	switch (page - head_page) {
1228 	case 1:
1229 		/* the first tail page: ->mapping may be compound_mapcount() */
1230 		if (unlikely(compound_mapcount(page))) {
1231 			bad_page(page, "nonzero compound_mapcount");
1232 			goto out;
1233 		}
1234 		break;
1235 	case 2:
1236 		/*
1237 		 * the second tail page: ->mapping is
1238 		 * deferred_list.next -- ignore value.
1239 		 */
1240 		break;
1241 	default:
1242 		if (page->mapping != TAIL_MAPPING) {
1243 			bad_page(page, "corrupted mapping in tail page");
1244 			goto out;
1245 		}
1246 		break;
1247 	}
1248 	if (unlikely(!PageTail(page))) {
1249 		bad_page(page, "PageTail not set");
1250 		goto out;
1251 	}
1252 	if (unlikely(compound_head(page) != head_page)) {
1253 		bad_page(page, "compound_head not consistent");
1254 		goto out;
1255 	}
1256 	ret = 0;
1257 out:
1258 	page->mapping = NULL;
1259 	clear_compound_head(page);
1260 	return ret;
1261 }
1262 
1263 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1264 {
1265 	int i;
1266 
1267 	if (zero_tags) {
1268 		for (i = 0; i < numpages; i++)
1269 			tag_clear_highpage(page + i);
1270 		return;
1271 	}
1272 
1273 	/* s390's use of memset() could override KASAN redzones. */
1274 	kasan_disable_current();
1275 	for (i = 0; i < numpages; i++) {
1276 		u8 tag = page_kasan_tag(page + i);
1277 		page_kasan_tag_reset(page + i);
1278 		clear_highpage(page + i);
1279 		page_kasan_tag_set(page + i, tag);
1280 	}
1281 	kasan_enable_current();
1282 }
1283 
1284 static __always_inline bool free_pages_prepare(struct page *page,
1285 			unsigned int order, bool check_free, fpi_t fpi_flags)
1286 {
1287 	int bad = 0;
1288 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1289 
1290 	VM_BUG_ON_PAGE(PageTail(page), page);
1291 
1292 	trace_mm_page_free(page, order);
1293 
1294 	if (unlikely(PageHWPoison(page)) && !order) {
1295 		/*
1296 		 * Do not let hwpoison pages hit pcplists/buddy
1297 		 * Untie memcg state and reset page's owner
1298 		 */
1299 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1300 			__memcg_kmem_uncharge_page(page, order);
1301 		reset_page_owner(page, order);
1302 		return false;
1303 	}
1304 
1305 	/*
1306 	 * Check tail pages before head page information is cleared to
1307 	 * avoid checking PageCompound for order-0 pages.
1308 	 */
1309 	if (unlikely(order)) {
1310 		bool compound = PageCompound(page);
1311 		int i;
1312 
1313 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1314 
1315 		if (compound)
1316 			ClearPageDoubleMap(page);
1317 		for (i = 1; i < (1 << order); i++) {
1318 			if (compound)
1319 				bad += free_tail_pages_check(page, page + i);
1320 			if (unlikely(check_free_page(page + i))) {
1321 				bad++;
1322 				continue;
1323 			}
1324 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1325 		}
1326 	}
1327 	if (PageMappingFlags(page))
1328 		page->mapping = NULL;
1329 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 		__memcg_kmem_uncharge_page(page, order);
1331 	if (check_free)
1332 		bad += check_free_page(page);
1333 	if (bad)
1334 		return false;
1335 
1336 	page_cpupid_reset_last(page);
1337 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 	reset_page_owner(page, order);
1339 
1340 	if (!PageHighMem(page)) {
1341 		debug_check_no_locks_freed(page_address(page),
1342 					   PAGE_SIZE << order);
1343 		debug_check_no_obj_freed(page_address(page),
1344 					   PAGE_SIZE << order);
1345 	}
1346 
1347 	kernel_poison_pages(page, 1 << order);
1348 
1349 	/*
1350 	 * As memory initialization might be integrated into KASAN,
1351 	 * kasan_free_pages and kernel_init_free_pages must be
1352 	 * kept together to avoid discrepancies in behavior.
1353 	 *
1354 	 * With hardware tag-based KASAN, memory tags must be set before the
1355 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1356 	 */
1357 	if (kasan_has_integrated_init()) {
1358 		if (!skip_kasan_poison)
1359 			kasan_free_pages(page, order);
1360 	} else {
1361 		bool init = want_init_on_free();
1362 
1363 		if (init)
1364 			kernel_init_free_pages(page, 1 << order, false);
1365 		if (!skip_kasan_poison)
1366 			kasan_poison_pages(page, order, init);
1367 	}
1368 
1369 	/*
1370 	 * arch_free_page() can make the page's contents inaccessible.  s390
1371 	 * does this.  So nothing which can access the page's contents should
1372 	 * happen after this.
1373 	 */
1374 	arch_free_page(page, order);
1375 
1376 	debug_pagealloc_unmap_pages(page, 1 << order);
1377 
1378 	return true;
1379 }
1380 
1381 #ifdef CONFIG_DEBUG_VM
1382 /*
1383  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1384  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1385  * moved from pcp lists to free lists.
1386  */
1387 static bool free_pcp_prepare(struct page *page, unsigned int order)
1388 {
1389 	return free_pages_prepare(page, order, true, FPI_NONE);
1390 }
1391 
1392 static bool bulkfree_pcp_prepare(struct page *page)
1393 {
1394 	if (debug_pagealloc_enabled_static())
1395 		return check_free_page(page);
1396 	else
1397 		return false;
1398 }
1399 #else
1400 /*
1401  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1402  * moving from pcp lists to free list in order to reduce overhead. With
1403  * debug_pagealloc enabled, they are checked also immediately when being freed
1404  * to the pcp lists.
1405  */
1406 static bool free_pcp_prepare(struct page *page, unsigned int order)
1407 {
1408 	if (debug_pagealloc_enabled_static())
1409 		return free_pages_prepare(page, order, true, FPI_NONE);
1410 	else
1411 		return free_pages_prepare(page, order, false, FPI_NONE);
1412 }
1413 
1414 static bool bulkfree_pcp_prepare(struct page *page)
1415 {
1416 	return check_free_page(page);
1417 }
1418 #endif /* CONFIG_DEBUG_VM */
1419 
1420 static inline void prefetch_buddy(struct page *page)
1421 {
1422 	unsigned long pfn = page_to_pfn(page);
1423 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1424 	struct page *buddy = page + (buddy_pfn - pfn);
1425 
1426 	prefetch(buddy);
1427 }
1428 
1429 /*
1430  * Frees a number of pages from the PCP lists
1431  * Assumes all pages on list are in same zone, and of same order.
1432  * count is the number of pages to free.
1433  *
1434  * If the zone was previously in an "all pages pinned" state then look to
1435  * see if this freeing clears that state.
1436  *
1437  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1438  * pinned" detection logic.
1439  */
1440 static void free_pcppages_bulk(struct zone *zone, int count,
1441 					struct per_cpu_pages *pcp)
1442 {
1443 	int pindex = 0;
1444 	int batch_free = 0;
1445 	int nr_freed = 0;
1446 	unsigned int order;
1447 	int prefetch_nr = READ_ONCE(pcp->batch);
1448 	bool isolated_pageblocks;
1449 	struct page *page, *tmp;
1450 	LIST_HEAD(head);
1451 
1452 	/*
1453 	 * Ensure proper count is passed which otherwise would stuck in the
1454 	 * below while (list_empty(list)) loop.
1455 	 */
1456 	count = min(pcp->count, count);
1457 	while (count > 0) {
1458 		struct list_head *list;
1459 
1460 		/*
1461 		 * Remove pages from lists in a round-robin fashion. A
1462 		 * batch_free count is maintained that is incremented when an
1463 		 * empty list is encountered.  This is so more pages are freed
1464 		 * off fuller lists instead of spinning excessively around empty
1465 		 * lists
1466 		 */
1467 		do {
1468 			batch_free++;
1469 			if (++pindex == NR_PCP_LISTS)
1470 				pindex = 0;
1471 			list = &pcp->lists[pindex];
1472 		} while (list_empty(list));
1473 
1474 		/* This is the only non-empty list. Free them all. */
1475 		if (batch_free == NR_PCP_LISTS)
1476 			batch_free = count;
1477 
1478 		order = pindex_to_order(pindex);
1479 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1480 		do {
1481 			page = list_last_entry(list, struct page, lru);
1482 			/* must delete to avoid corrupting pcp list */
1483 			list_del(&page->lru);
1484 			nr_freed += 1 << order;
1485 			count -= 1 << order;
1486 
1487 			if (bulkfree_pcp_prepare(page))
1488 				continue;
1489 
1490 			/* Encode order with the migratetype */
1491 			page->index <<= NR_PCP_ORDER_WIDTH;
1492 			page->index |= order;
1493 
1494 			list_add_tail(&page->lru, &head);
1495 
1496 			/*
1497 			 * We are going to put the page back to the global
1498 			 * pool, prefetch its buddy to speed up later access
1499 			 * under zone->lock. It is believed the overhead of
1500 			 * an additional test and calculating buddy_pfn here
1501 			 * can be offset by reduced memory latency later. To
1502 			 * avoid excessive prefetching due to large count, only
1503 			 * prefetch buddy for the first pcp->batch nr of pages.
1504 			 */
1505 			if (prefetch_nr) {
1506 				prefetch_buddy(page);
1507 				prefetch_nr--;
1508 			}
1509 		} while (count > 0 && --batch_free && !list_empty(list));
1510 	}
1511 	pcp->count -= nr_freed;
1512 
1513 	/*
1514 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1515 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1516 	 */
1517 	spin_lock(&zone->lock);
1518 	isolated_pageblocks = has_isolate_pageblock(zone);
1519 
1520 	/*
1521 	 * Use safe version since after __free_one_page(),
1522 	 * page->lru.next will not point to original list.
1523 	 */
1524 	list_for_each_entry_safe(page, tmp, &head, lru) {
1525 		int mt = get_pcppage_migratetype(page);
1526 
1527 		/* mt has been encoded with the order (see above) */
1528 		order = mt & NR_PCP_ORDER_MASK;
1529 		mt >>= NR_PCP_ORDER_WIDTH;
1530 
1531 		/* MIGRATE_ISOLATE page should not go to pcplists */
1532 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1533 		/* Pageblock could have been isolated meanwhile */
1534 		if (unlikely(isolated_pageblocks))
1535 			mt = get_pageblock_migratetype(page);
1536 
1537 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1538 		trace_mm_page_pcpu_drain(page, order, mt);
1539 	}
1540 	spin_unlock(&zone->lock);
1541 }
1542 
1543 static void free_one_page(struct zone *zone,
1544 				struct page *page, unsigned long pfn,
1545 				unsigned int order,
1546 				int migratetype, fpi_t fpi_flags)
1547 {
1548 	unsigned long flags;
1549 
1550 	spin_lock_irqsave(&zone->lock, flags);
1551 	if (unlikely(has_isolate_pageblock(zone) ||
1552 		is_migrate_isolate(migratetype))) {
1553 		migratetype = get_pfnblock_migratetype(page, pfn);
1554 	}
1555 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1556 	spin_unlock_irqrestore(&zone->lock, flags);
1557 }
1558 
1559 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1560 				unsigned long zone, int nid)
1561 {
1562 	mm_zero_struct_page(page);
1563 	set_page_links(page, zone, nid, pfn);
1564 	init_page_count(page);
1565 	page_mapcount_reset(page);
1566 	page_cpupid_reset_last(page);
1567 	page_kasan_tag_reset(page);
1568 
1569 	INIT_LIST_HEAD(&page->lru);
1570 #ifdef WANT_PAGE_VIRTUAL
1571 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1572 	if (!is_highmem_idx(zone))
1573 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1574 #endif
1575 }
1576 
1577 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1578 static void __meminit init_reserved_page(unsigned long pfn)
1579 {
1580 	pg_data_t *pgdat;
1581 	int nid, zid;
1582 
1583 	if (!early_page_uninitialised(pfn))
1584 		return;
1585 
1586 	nid = early_pfn_to_nid(pfn);
1587 	pgdat = NODE_DATA(nid);
1588 
1589 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1590 		struct zone *zone = &pgdat->node_zones[zid];
1591 
1592 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1593 			break;
1594 	}
1595 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1596 }
1597 #else
1598 static inline void init_reserved_page(unsigned long pfn)
1599 {
1600 }
1601 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1602 
1603 /*
1604  * Initialised pages do not have PageReserved set. This function is
1605  * called for each range allocated by the bootmem allocator and
1606  * marks the pages PageReserved. The remaining valid pages are later
1607  * sent to the buddy page allocator.
1608  */
1609 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1610 {
1611 	unsigned long start_pfn = PFN_DOWN(start);
1612 	unsigned long end_pfn = PFN_UP(end);
1613 
1614 	for (; start_pfn < end_pfn; start_pfn++) {
1615 		if (pfn_valid(start_pfn)) {
1616 			struct page *page = pfn_to_page(start_pfn);
1617 
1618 			init_reserved_page(start_pfn);
1619 
1620 			/* Avoid false-positive PageTail() */
1621 			INIT_LIST_HEAD(&page->lru);
1622 
1623 			/*
1624 			 * no need for atomic set_bit because the struct
1625 			 * page is not visible yet so nobody should
1626 			 * access it yet.
1627 			 */
1628 			__SetPageReserved(page);
1629 		}
1630 	}
1631 }
1632 
1633 static void __free_pages_ok(struct page *page, unsigned int order,
1634 			    fpi_t fpi_flags)
1635 {
1636 	unsigned long flags;
1637 	int migratetype;
1638 	unsigned long pfn = page_to_pfn(page);
1639 	struct zone *zone = page_zone(page);
1640 
1641 	if (!free_pages_prepare(page, order, true, fpi_flags))
1642 		return;
1643 
1644 	migratetype = get_pfnblock_migratetype(page, pfn);
1645 
1646 	spin_lock_irqsave(&zone->lock, flags);
1647 	if (unlikely(has_isolate_pageblock(zone) ||
1648 		is_migrate_isolate(migratetype))) {
1649 		migratetype = get_pfnblock_migratetype(page, pfn);
1650 	}
1651 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1652 	spin_unlock_irqrestore(&zone->lock, flags);
1653 
1654 	__count_vm_events(PGFREE, 1 << order);
1655 }
1656 
1657 void __free_pages_core(struct page *page, unsigned int order)
1658 {
1659 	unsigned int nr_pages = 1 << order;
1660 	struct page *p = page;
1661 	unsigned int loop;
1662 
1663 	/*
1664 	 * When initializing the memmap, __init_single_page() sets the refcount
1665 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1666 	 * refcount of all involved pages to 0.
1667 	 */
1668 	prefetchw(p);
1669 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1670 		prefetchw(p + 1);
1671 		__ClearPageReserved(p);
1672 		set_page_count(p, 0);
1673 	}
1674 	__ClearPageReserved(p);
1675 	set_page_count(p, 0);
1676 
1677 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1678 
1679 	/*
1680 	 * Bypass PCP and place fresh pages right to the tail, primarily
1681 	 * relevant for memory onlining.
1682 	 */
1683 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1684 }
1685 
1686 #ifdef CONFIG_NUMA
1687 
1688 /*
1689  * During memory init memblocks map pfns to nids. The search is expensive and
1690  * this caches recent lookups. The implementation of __early_pfn_to_nid
1691  * treats start/end as pfns.
1692  */
1693 struct mminit_pfnnid_cache {
1694 	unsigned long last_start;
1695 	unsigned long last_end;
1696 	int last_nid;
1697 };
1698 
1699 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1700 
1701 /*
1702  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1703  */
1704 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1705 					struct mminit_pfnnid_cache *state)
1706 {
1707 	unsigned long start_pfn, end_pfn;
1708 	int nid;
1709 
1710 	if (state->last_start <= pfn && pfn < state->last_end)
1711 		return state->last_nid;
1712 
1713 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1714 	if (nid != NUMA_NO_NODE) {
1715 		state->last_start = start_pfn;
1716 		state->last_end = end_pfn;
1717 		state->last_nid = nid;
1718 	}
1719 
1720 	return nid;
1721 }
1722 
1723 int __meminit early_pfn_to_nid(unsigned long pfn)
1724 {
1725 	static DEFINE_SPINLOCK(early_pfn_lock);
1726 	int nid;
1727 
1728 	spin_lock(&early_pfn_lock);
1729 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1730 	if (nid < 0)
1731 		nid = first_online_node;
1732 	spin_unlock(&early_pfn_lock);
1733 
1734 	return nid;
1735 }
1736 #endif /* CONFIG_NUMA */
1737 
1738 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1739 							unsigned int order)
1740 {
1741 	if (early_page_uninitialised(pfn))
1742 		return;
1743 	__free_pages_core(page, order);
1744 }
1745 
1746 /*
1747  * Check that the whole (or subset of) a pageblock given by the interval of
1748  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1749  * with the migration of free compaction scanner.
1750  *
1751  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1752  *
1753  * It's possible on some configurations to have a setup like node0 node1 node0
1754  * i.e. it's possible that all pages within a zones range of pages do not
1755  * belong to a single zone. We assume that a border between node0 and node1
1756  * can occur within a single pageblock, but not a node0 node1 node0
1757  * interleaving within a single pageblock. It is therefore sufficient to check
1758  * the first and last page of a pageblock and avoid checking each individual
1759  * page in a pageblock.
1760  */
1761 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1762 				     unsigned long end_pfn, struct zone *zone)
1763 {
1764 	struct page *start_page;
1765 	struct page *end_page;
1766 
1767 	/* end_pfn is one past the range we are checking */
1768 	end_pfn--;
1769 
1770 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1771 		return NULL;
1772 
1773 	start_page = pfn_to_online_page(start_pfn);
1774 	if (!start_page)
1775 		return NULL;
1776 
1777 	if (page_zone(start_page) != zone)
1778 		return NULL;
1779 
1780 	end_page = pfn_to_page(end_pfn);
1781 
1782 	/* This gives a shorter code than deriving page_zone(end_page) */
1783 	if (page_zone_id(start_page) != page_zone_id(end_page))
1784 		return NULL;
1785 
1786 	return start_page;
1787 }
1788 
1789 void set_zone_contiguous(struct zone *zone)
1790 {
1791 	unsigned long block_start_pfn = zone->zone_start_pfn;
1792 	unsigned long block_end_pfn;
1793 
1794 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1795 	for (; block_start_pfn < zone_end_pfn(zone);
1796 			block_start_pfn = block_end_pfn,
1797 			 block_end_pfn += pageblock_nr_pages) {
1798 
1799 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1800 
1801 		if (!__pageblock_pfn_to_page(block_start_pfn,
1802 					     block_end_pfn, zone))
1803 			return;
1804 		cond_resched();
1805 	}
1806 
1807 	/* We confirm that there is no hole */
1808 	zone->contiguous = true;
1809 }
1810 
1811 void clear_zone_contiguous(struct zone *zone)
1812 {
1813 	zone->contiguous = false;
1814 }
1815 
1816 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1817 static void __init deferred_free_range(unsigned long pfn,
1818 				       unsigned long nr_pages)
1819 {
1820 	struct page *page;
1821 	unsigned long i;
1822 
1823 	if (!nr_pages)
1824 		return;
1825 
1826 	page = pfn_to_page(pfn);
1827 
1828 	/* Free a large naturally-aligned chunk if possible */
1829 	if (nr_pages == pageblock_nr_pages &&
1830 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1831 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1832 		__free_pages_core(page, pageblock_order);
1833 		return;
1834 	}
1835 
1836 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1837 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1838 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1839 		__free_pages_core(page, 0);
1840 	}
1841 }
1842 
1843 /* Completion tracking for deferred_init_memmap() threads */
1844 static atomic_t pgdat_init_n_undone __initdata;
1845 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1846 
1847 static inline void __init pgdat_init_report_one_done(void)
1848 {
1849 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1850 		complete(&pgdat_init_all_done_comp);
1851 }
1852 
1853 /*
1854  * Returns true if page needs to be initialized or freed to buddy allocator.
1855  *
1856  * First we check if pfn is valid on architectures where it is possible to have
1857  * holes within pageblock_nr_pages. On systems where it is not possible, this
1858  * function is optimized out.
1859  *
1860  * Then, we check if a current large page is valid by only checking the validity
1861  * of the head pfn.
1862  */
1863 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1864 {
1865 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1866 		return false;
1867 	return true;
1868 }
1869 
1870 /*
1871  * Free pages to buddy allocator. Try to free aligned pages in
1872  * pageblock_nr_pages sizes.
1873  */
1874 static void __init deferred_free_pages(unsigned long pfn,
1875 				       unsigned long end_pfn)
1876 {
1877 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1878 	unsigned long nr_free = 0;
1879 
1880 	for (; pfn < end_pfn; pfn++) {
1881 		if (!deferred_pfn_valid(pfn)) {
1882 			deferred_free_range(pfn - nr_free, nr_free);
1883 			nr_free = 0;
1884 		} else if (!(pfn & nr_pgmask)) {
1885 			deferred_free_range(pfn - nr_free, nr_free);
1886 			nr_free = 1;
1887 		} else {
1888 			nr_free++;
1889 		}
1890 	}
1891 	/* Free the last block of pages to allocator */
1892 	deferred_free_range(pfn - nr_free, nr_free);
1893 }
1894 
1895 /*
1896  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1897  * by performing it only once every pageblock_nr_pages.
1898  * Return number of pages initialized.
1899  */
1900 static unsigned long  __init deferred_init_pages(struct zone *zone,
1901 						 unsigned long pfn,
1902 						 unsigned long end_pfn)
1903 {
1904 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1905 	int nid = zone_to_nid(zone);
1906 	unsigned long nr_pages = 0;
1907 	int zid = zone_idx(zone);
1908 	struct page *page = NULL;
1909 
1910 	for (; pfn < end_pfn; pfn++) {
1911 		if (!deferred_pfn_valid(pfn)) {
1912 			page = NULL;
1913 			continue;
1914 		} else if (!page || !(pfn & nr_pgmask)) {
1915 			page = pfn_to_page(pfn);
1916 		} else {
1917 			page++;
1918 		}
1919 		__init_single_page(page, pfn, zid, nid);
1920 		nr_pages++;
1921 	}
1922 	return (nr_pages);
1923 }
1924 
1925 /*
1926  * This function is meant to pre-load the iterator for the zone init.
1927  * Specifically it walks through the ranges until we are caught up to the
1928  * first_init_pfn value and exits there. If we never encounter the value we
1929  * return false indicating there are no valid ranges left.
1930  */
1931 static bool __init
1932 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1933 				    unsigned long *spfn, unsigned long *epfn,
1934 				    unsigned long first_init_pfn)
1935 {
1936 	u64 j;
1937 
1938 	/*
1939 	 * Start out by walking through the ranges in this zone that have
1940 	 * already been initialized. We don't need to do anything with them
1941 	 * so we just need to flush them out of the system.
1942 	 */
1943 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1944 		if (*epfn <= first_init_pfn)
1945 			continue;
1946 		if (*spfn < first_init_pfn)
1947 			*spfn = first_init_pfn;
1948 		*i = j;
1949 		return true;
1950 	}
1951 
1952 	return false;
1953 }
1954 
1955 /*
1956  * Initialize and free pages. We do it in two loops: first we initialize
1957  * struct page, then free to buddy allocator, because while we are
1958  * freeing pages we can access pages that are ahead (computing buddy
1959  * page in __free_one_page()).
1960  *
1961  * In order to try and keep some memory in the cache we have the loop
1962  * broken along max page order boundaries. This way we will not cause
1963  * any issues with the buddy page computation.
1964  */
1965 static unsigned long __init
1966 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1967 		       unsigned long *end_pfn)
1968 {
1969 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1970 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1971 	unsigned long nr_pages = 0;
1972 	u64 j = *i;
1973 
1974 	/* First we loop through and initialize the page values */
1975 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1976 		unsigned long t;
1977 
1978 		if (mo_pfn <= *start_pfn)
1979 			break;
1980 
1981 		t = min(mo_pfn, *end_pfn);
1982 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1983 
1984 		if (mo_pfn < *end_pfn) {
1985 			*start_pfn = mo_pfn;
1986 			break;
1987 		}
1988 	}
1989 
1990 	/* Reset values and now loop through freeing pages as needed */
1991 	swap(j, *i);
1992 
1993 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1994 		unsigned long t;
1995 
1996 		if (mo_pfn <= spfn)
1997 			break;
1998 
1999 		t = min(mo_pfn, epfn);
2000 		deferred_free_pages(spfn, t);
2001 
2002 		if (mo_pfn <= epfn)
2003 			break;
2004 	}
2005 
2006 	return nr_pages;
2007 }
2008 
2009 static void __init
2010 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2011 			   void *arg)
2012 {
2013 	unsigned long spfn, epfn;
2014 	struct zone *zone = arg;
2015 	u64 i;
2016 
2017 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2018 
2019 	/*
2020 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2021 	 * can avoid introducing any issues with the buddy allocator.
2022 	 */
2023 	while (spfn < end_pfn) {
2024 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2025 		cond_resched();
2026 	}
2027 }
2028 
2029 /* An arch may override for more concurrency. */
2030 __weak int __init
2031 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2032 {
2033 	return 1;
2034 }
2035 
2036 /* Initialise remaining memory on a node */
2037 static int __init deferred_init_memmap(void *data)
2038 {
2039 	pg_data_t *pgdat = data;
2040 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2041 	unsigned long spfn = 0, epfn = 0;
2042 	unsigned long first_init_pfn, flags;
2043 	unsigned long start = jiffies;
2044 	struct zone *zone;
2045 	int zid, max_threads;
2046 	u64 i;
2047 
2048 	/* Bind memory initialisation thread to a local node if possible */
2049 	if (!cpumask_empty(cpumask))
2050 		set_cpus_allowed_ptr(current, cpumask);
2051 
2052 	pgdat_resize_lock(pgdat, &flags);
2053 	first_init_pfn = pgdat->first_deferred_pfn;
2054 	if (first_init_pfn == ULONG_MAX) {
2055 		pgdat_resize_unlock(pgdat, &flags);
2056 		pgdat_init_report_one_done();
2057 		return 0;
2058 	}
2059 
2060 	/* Sanity check boundaries */
2061 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2062 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2063 	pgdat->first_deferred_pfn = ULONG_MAX;
2064 
2065 	/*
2066 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2067 	 * interrupt thread must allocate this early in boot, zone must be
2068 	 * pre-grown prior to start of deferred page initialization.
2069 	 */
2070 	pgdat_resize_unlock(pgdat, &flags);
2071 
2072 	/* Only the highest zone is deferred so find it */
2073 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2074 		zone = pgdat->node_zones + zid;
2075 		if (first_init_pfn < zone_end_pfn(zone))
2076 			break;
2077 	}
2078 
2079 	/* If the zone is empty somebody else may have cleared out the zone */
2080 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2081 						 first_init_pfn))
2082 		goto zone_empty;
2083 
2084 	max_threads = deferred_page_init_max_threads(cpumask);
2085 
2086 	while (spfn < epfn) {
2087 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2088 		struct padata_mt_job job = {
2089 			.thread_fn   = deferred_init_memmap_chunk,
2090 			.fn_arg      = zone,
2091 			.start       = spfn,
2092 			.size        = epfn_align - spfn,
2093 			.align       = PAGES_PER_SECTION,
2094 			.min_chunk   = PAGES_PER_SECTION,
2095 			.max_threads = max_threads,
2096 		};
2097 
2098 		padata_do_multithreaded(&job);
2099 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2100 						    epfn_align);
2101 	}
2102 zone_empty:
2103 	/* Sanity check that the next zone really is unpopulated */
2104 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2105 
2106 	pr_info("node %d deferred pages initialised in %ums\n",
2107 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2108 
2109 	pgdat_init_report_one_done();
2110 	return 0;
2111 }
2112 
2113 /*
2114  * If this zone has deferred pages, try to grow it by initializing enough
2115  * deferred pages to satisfy the allocation specified by order, rounded up to
2116  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2117  * of SECTION_SIZE bytes by initializing struct pages in increments of
2118  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2119  *
2120  * Return true when zone was grown, otherwise return false. We return true even
2121  * when we grow less than requested, to let the caller decide if there are
2122  * enough pages to satisfy the allocation.
2123  *
2124  * Note: We use noinline because this function is needed only during boot, and
2125  * it is called from a __ref function _deferred_grow_zone. This way we are
2126  * making sure that it is not inlined into permanent text section.
2127  */
2128 static noinline bool __init
2129 deferred_grow_zone(struct zone *zone, unsigned int order)
2130 {
2131 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2132 	pg_data_t *pgdat = zone->zone_pgdat;
2133 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2134 	unsigned long spfn, epfn, flags;
2135 	unsigned long nr_pages = 0;
2136 	u64 i;
2137 
2138 	/* Only the last zone may have deferred pages */
2139 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2140 		return false;
2141 
2142 	pgdat_resize_lock(pgdat, &flags);
2143 
2144 	/*
2145 	 * If someone grew this zone while we were waiting for spinlock, return
2146 	 * true, as there might be enough pages already.
2147 	 */
2148 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2149 		pgdat_resize_unlock(pgdat, &flags);
2150 		return true;
2151 	}
2152 
2153 	/* If the zone is empty somebody else may have cleared out the zone */
2154 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2155 						 first_deferred_pfn)) {
2156 		pgdat->first_deferred_pfn = ULONG_MAX;
2157 		pgdat_resize_unlock(pgdat, &flags);
2158 		/* Retry only once. */
2159 		return first_deferred_pfn != ULONG_MAX;
2160 	}
2161 
2162 	/*
2163 	 * Initialize and free pages in MAX_ORDER sized increments so
2164 	 * that we can avoid introducing any issues with the buddy
2165 	 * allocator.
2166 	 */
2167 	while (spfn < epfn) {
2168 		/* update our first deferred PFN for this section */
2169 		first_deferred_pfn = spfn;
2170 
2171 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2172 		touch_nmi_watchdog();
2173 
2174 		/* We should only stop along section boundaries */
2175 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2176 			continue;
2177 
2178 		/* If our quota has been met we can stop here */
2179 		if (nr_pages >= nr_pages_needed)
2180 			break;
2181 	}
2182 
2183 	pgdat->first_deferred_pfn = spfn;
2184 	pgdat_resize_unlock(pgdat, &flags);
2185 
2186 	return nr_pages > 0;
2187 }
2188 
2189 /*
2190  * deferred_grow_zone() is __init, but it is called from
2191  * get_page_from_freelist() during early boot until deferred_pages permanently
2192  * disables this call. This is why we have refdata wrapper to avoid warning,
2193  * and to ensure that the function body gets unloaded.
2194  */
2195 static bool __ref
2196 _deferred_grow_zone(struct zone *zone, unsigned int order)
2197 {
2198 	return deferred_grow_zone(zone, order);
2199 }
2200 
2201 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2202 
2203 void __init page_alloc_init_late(void)
2204 {
2205 	struct zone *zone;
2206 	int nid;
2207 
2208 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2209 
2210 	/* There will be num_node_state(N_MEMORY) threads */
2211 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2212 	for_each_node_state(nid, N_MEMORY) {
2213 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2214 	}
2215 
2216 	/* Block until all are initialised */
2217 	wait_for_completion(&pgdat_init_all_done_comp);
2218 
2219 	/*
2220 	 * We initialized the rest of the deferred pages.  Permanently disable
2221 	 * on-demand struct page initialization.
2222 	 */
2223 	static_branch_disable(&deferred_pages);
2224 
2225 	/* Reinit limits that are based on free pages after the kernel is up */
2226 	files_maxfiles_init();
2227 #endif
2228 
2229 	buffer_init();
2230 
2231 	/* Discard memblock private memory */
2232 	memblock_discard();
2233 
2234 	for_each_node_state(nid, N_MEMORY)
2235 		shuffle_free_memory(NODE_DATA(nid));
2236 
2237 	for_each_populated_zone(zone)
2238 		set_zone_contiguous(zone);
2239 }
2240 
2241 #ifdef CONFIG_CMA
2242 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2243 void __init init_cma_reserved_pageblock(struct page *page)
2244 {
2245 	unsigned i = pageblock_nr_pages;
2246 	struct page *p = page;
2247 
2248 	do {
2249 		__ClearPageReserved(p);
2250 		set_page_count(p, 0);
2251 	} while (++p, --i);
2252 
2253 	set_pageblock_migratetype(page, MIGRATE_CMA);
2254 
2255 	if (pageblock_order >= MAX_ORDER) {
2256 		i = pageblock_nr_pages;
2257 		p = page;
2258 		do {
2259 			set_page_refcounted(p);
2260 			__free_pages(p, MAX_ORDER - 1);
2261 			p += MAX_ORDER_NR_PAGES;
2262 		} while (i -= MAX_ORDER_NR_PAGES);
2263 	} else {
2264 		set_page_refcounted(page);
2265 		__free_pages(page, pageblock_order);
2266 	}
2267 
2268 	adjust_managed_page_count(page, pageblock_nr_pages);
2269 	page_zone(page)->cma_pages += pageblock_nr_pages;
2270 }
2271 #endif
2272 
2273 /*
2274  * The order of subdivision here is critical for the IO subsystem.
2275  * Please do not alter this order without good reasons and regression
2276  * testing. Specifically, as large blocks of memory are subdivided,
2277  * the order in which smaller blocks are delivered depends on the order
2278  * they're subdivided in this function. This is the primary factor
2279  * influencing the order in which pages are delivered to the IO
2280  * subsystem according to empirical testing, and this is also justified
2281  * by considering the behavior of a buddy system containing a single
2282  * large block of memory acted on by a series of small allocations.
2283  * This behavior is a critical factor in sglist merging's success.
2284  *
2285  * -- nyc
2286  */
2287 static inline void expand(struct zone *zone, struct page *page,
2288 	int low, int high, int migratetype)
2289 {
2290 	unsigned long size = 1 << high;
2291 
2292 	while (high > low) {
2293 		high--;
2294 		size >>= 1;
2295 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2296 
2297 		/*
2298 		 * Mark as guard pages (or page), that will allow to
2299 		 * merge back to allocator when buddy will be freed.
2300 		 * Corresponding page table entries will not be touched,
2301 		 * pages will stay not present in virtual address space
2302 		 */
2303 		if (set_page_guard(zone, &page[size], high, migratetype))
2304 			continue;
2305 
2306 		add_to_free_list(&page[size], zone, high, migratetype);
2307 		set_buddy_order(&page[size], high);
2308 	}
2309 }
2310 
2311 static void check_new_page_bad(struct page *page)
2312 {
2313 	if (unlikely(page->flags & __PG_HWPOISON)) {
2314 		/* Don't complain about hwpoisoned pages */
2315 		page_mapcount_reset(page); /* remove PageBuddy */
2316 		return;
2317 	}
2318 
2319 	bad_page(page,
2320 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2321 }
2322 
2323 /*
2324  * This page is about to be returned from the page allocator
2325  */
2326 static inline int check_new_page(struct page *page)
2327 {
2328 	if (likely(page_expected_state(page,
2329 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2330 		return 0;
2331 
2332 	check_new_page_bad(page);
2333 	return 1;
2334 }
2335 
2336 #ifdef CONFIG_DEBUG_VM
2337 /*
2338  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2339  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2340  * also checked when pcp lists are refilled from the free lists.
2341  */
2342 static inline bool check_pcp_refill(struct page *page)
2343 {
2344 	if (debug_pagealloc_enabled_static())
2345 		return check_new_page(page);
2346 	else
2347 		return false;
2348 }
2349 
2350 static inline bool check_new_pcp(struct page *page)
2351 {
2352 	return check_new_page(page);
2353 }
2354 #else
2355 /*
2356  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2357  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2358  * enabled, they are also checked when being allocated from the pcp lists.
2359  */
2360 static inline bool check_pcp_refill(struct page *page)
2361 {
2362 	return check_new_page(page);
2363 }
2364 static inline bool check_new_pcp(struct page *page)
2365 {
2366 	if (debug_pagealloc_enabled_static())
2367 		return check_new_page(page);
2368 	else
2369 		return false;
2370 }
2371 #endif /* CONFIG_DEBUG_VM */
2372 
2373 static bool check_new_pages(struct page *page, unsigned int order)
2374 {
2375 	int i;
2376 	for (i = 0; i < (1 << order); i++) {
2377 		struct page *p = page + i;
2378 
2379 		if (unlikely(check_new_page(p)))
2380 			return true;
2381 	}
2382 
2383 	return false;
2384 }
2385 
2386 inline void post_alloc_hook(struct page *page, unsigned int order,
2387 				gfp_t gfp_flags)
2388 {
2389 	set_page_private(page, 0);
2390 	set_page_refcounted(page);
2391 
2392 	arch_alloc_page(page, order);
2393 	debug_pagealloc_map_pages(page, 1 << order);
2394 
2395 	/*
2396 	 * Page unpoisoning must happen before memory initialization.
2397 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2398 	 * allocations and the page unpoisoning code will complain.
2399 	 */
2400 	kernel_unpoison_pages(page, 1 << order);
2401 
2402 	/*
2403 	 * As memory initialization might be integrated into KASAN,
2404 	 * kasan_alloc_pages and kernel_init_free_pages must be
2405 	 * kept together to avoid discrepancies in behavior.
2406 	 */
2407 	if (kasan_has_integrated_init()) {
2408 		kasan_alloc_pages(page, order, gfp_flags);
2409 	} else {
2410 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2411 
2412 		kasan_unpoison_pages(page, order, init);
2413 		if (init)
2414 			kernel_init_free_pages(page, 1 << order,
2415 					       gfp_flags & __GFP_ZEROTAGS);
2416 	}
2417 
2418 	set_page_owner(page, order, gfp_flags);
2419 }
2420 
2421 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2422 							unsigned int alloc_flags)
2423 {
2424 	post_alloc_hook(page, order, gfp_flags);
2425 
2426 	if (order && (gfp_flags & __GFP_COMP))
2427 		prep_compound_page(page, order);
2428 
2429 	/*
2430 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2431 	 * allocate the page. The expectation is that the caller is taking
2432 	 * steps that will free more memory. The caller should avoid the page
2433 	 * being used for !PFMEMALLOC purposes.
2434 	 */
2435 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2436 		set_page_pfmemalloc(page);
2437 	else
2438 		clear_page_pfmemalloc(page);
2439 }
2440 
2441 /*
2442  * Go through the free lists for the given migratetype and remove
2443  * the smallest available page from the freelists
2444  */
2445 static __always_inline
2446 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2447 						int migratetype)
2448 {
2449 	unsigned int current_order;
2450 	struct free_area *area;
2451 	struct page *page;
2452 
2453 	/* Find a page of the appropriate size in the preferred list */
2454 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2455 		area = &(zone->free_area[current_order]);
2456 		page = get_page_from_free_area(area, migratetype);
2457 		if (!page)
2458 			continue;
2459 		del_page_from_free_list(page, zone, current_order);
2460 		expand(zone, page, order, current_order, migratetype);
2461 		set_pcppage_migratetype(page, migratetype);
2462 		return page;
2463 	}
2464 
2465 	return NULL;
2466 }
2467 
2468 
2469 /*
2470  * This array describes the order lists are fallen back to when
2471  * the free lists for the desirable migrate type are depleted
2472  */
2473 static int fallbacks[MIGRATE_TYPES][3] = {
2474 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2475 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2476 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2477 #ifdef CONFIG_CMA
2478 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2479 #endif
2480 #ifdef CONFIG_MEMORY_ISOLATION
2481 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2482 #endif
2483 };
2484 
2485 #ifdef CONFIG_CMA
2486 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2487 					unsigned int order)
2488 {
2489 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2490 }
2491 #else
2492 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2493 					unsigned int order) { return NULL; }
2494 #endif
2495 
2496 /*
2497  * Move the free pages in a range to the freelist tail of the requested type.
2498  * Note that start_page and end_pages are not aligned on a pageblock
2499  * boundary. If alignment is required, use move_freepages_block()
2500  */
2501 static int move_freepages(struct zone *zone,
2502 			  unsigned long start_pfn, unsigned long end_pfn,
2503 			  int migratetype, int *num_movable)
2504 {
2505 	struct page *page;
2506 	unsigned long pfn;
2507 	unsigned int order;
2508 	int pages_moved = 0;
2509 
2510 	for (pfn = start_pfn; pfn <= end_pfn;) {
2511 		page = pfn_to_page(pfn);
2512 		if (!PageBuddy(page)) {
2513 			/*
2514 			 * We assume that pages that could be isolated for
2515 			 * migration are movable. But we don't actually try
2516 			 * isolating, as that would be expensive.
2517 			 */
2518 			if (num_movable &&
2519 					(PageLRU(page) || __PageMovable(page)))
2520 				(*num_movable)++;
2521 			pfn++;
2522 			continue;
2523 		}
2524 
2525 		/* Make sure we are not inadvertently changing nodes */
2526 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2527 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2528 
2529 		order = buddy_order(page);
2530 		move_to_free_list(page, zone, order, migratetype);
2531 		pfn += 1 << order;
2532 		pages_moved += 1 << order;
2533 	}
2534 
2535 	return pages_moved;
2536 }
2537 
2538 int move_freepages_block(struct zone *zone, struct page *page,
2539 				int migratetype, int *num_movable)
2540 {
2541 	unsigned long start_pfn, end_pfn, pfn;
2542 
2543 	if (num_movable)
2544 		*num_movable = 0;
2545 
2546 	pfn = page_to_pfn(page);
2547 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2548 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2549 
2550 	/* Do not cross zone boundaries */
2551 	if (!zone_spans_pfn(zone, start_pfn))
2552 		start_pfn = pfn;
2553 	if (!zone_spans_pfn(zone, end_pfn))
2554 		return 0;
2555 
2556 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2557 								num_movable);
2558 }
2559 
2560 static void change_pageblock_range(struct page *pageblock_page,
2561 					int start_order, int migratetype)
2562 {
2563 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2564 
2565 	while (nr_pageblocks--) {
2566 		set_pageblock_migratetype(pageblock_page, migratetype);
2567 		pageblock_page += pageblock_nr_pages;
2568 	}
2569 }
2570 
2571 /*
2572  * When we are falling back to another migratetype during allocation, try to
2573  * steal extra free pages from the same pageblocks to satisfy further
2574  * allocations, instead of polluting multiple pageblocks.
2575  *
2576  * If we are stealing a relatively large buddy page, it is likely there will
2577  * be more free pages in the pageblock, so try to steal them all. For
2578  * reclaimable and unmovable allocations, we steal regardless of page size,
2579  * as fragmentation caused by those allocations polluting movable pageblocks
2580  * is worse than movable allocations stealing from unmovable and reclaimable
2581  * pageblocks.
2582  */
2583 static bool can_steal_fallback(unsigned int order, int start_mt)
2584 {
2585 	/*
2586 	 * Leaving this order check is intended, although there is
2587 	 * relaxed order check in next check. The reason is that
2588 	 * we can actually steal whole pageblock if this condition met,
2589 	 * but, below check doesn't guarantee it and that is just heuristic
2590 	 * so could be changed anytime.
2591 	 */
2592 	if (order >= pageblock_order)
2593 		return true;
2594 
2595 	if (order >= pageblock_order / 2 ||
2596 		start_mt == MIGRATE_RECLAIMABLE ||
2597 		start_mt == MIGRATE_UNMOVABLE ||
2598 		page_group_by_mobility_disabled)
2599 		return true;
2600 
2601 	return false;
2602 }
2603 
2604 static inline bool boost_watermark(struct zone *zone)
2605 {
2606 	unsigned long max_boost;
2607 
2608 	if (!watermark_boost_factor)
2609 		return false;
2610 	/*
2611 	 * Don't bother in zones that are unlikely to produce results.
2612 	 * On small machines, including kdump capture kernels running
2613 	 * in a small area, boosting the watermark can cause an out of
2614 	 * memory situation immediately.
2615 	 */
2616 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2617 		return false;
2618 
2619 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2620 			watermark_boost_factor, 10000);
2621 
2622 	/*
2623 	 * high watermark may be uninitialised if fragmentation occurs
2624 	 * very early in boot so do not boost. We do not fall
2625 	 * through and boost by pageblock_nr_pages as failing
2626 	 * allocations that early means that reclaim is not going
2627 	 * to help and it may even be impossible to reclaim the
2628 	 * boosted watermark resulting in a hang.
2629 	 */
2630 	if (!max_boost)
2631 		return false;
2632 
2633 	max_boost = max(pageblock_nr_pages, max_boost);
2634 
2635 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2636 		max_boost);
2637 
2638 	return true;
2639 }
2640 
2641 /*
2642  * This function implements actual steal behaviour. If order is large enough,
2643  * we can steal whole pageblock. If not, we first move freepages in this
2644  * pageblock to our migratetype and determine how many already-allocated pages
2645  * are there in the pageblock with a compatible migratetype. If at least half
2646  * of pages are free or compatible, we can change migratetype of the pageblock
2647  * itself, so pages freed in the future will be put on the correct free list.
2648  */
2649 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2650 		unsigned int alloc_flags, int start_type, bool whole_block)
2651 {
2652 	unsigned int current_order = buddy_order(page);
2653 	int free_pages, movable_pages, alike_pages;
2654 	int old_block_type;
2655 
2656 	old_block_type = get_pageblock_migratetype(page);
2657 
2658 	/*
2659 	 * This can happen due to races and we want to prevent broken
2660 	 * highatomic accounting.
2661 	 */
2662 	if (is_migrate_highatomic(old_block_type))
2663 		goto single_page;
2664 
2665 	/* Take ownership for orders >= pageblock_order */
2666 	if (current_order >= pageblock_order) {
2667 		change_pageblock_range(page, current_order, start_type);
2668 		goto single_page;
2669 	}
2670 
2671 	/*
2672 	 * Boost watermarks to increase reclaim pressure to reduce the
2673 	 * likelihood of future fallbacks. Wake kswapd now as the node
2674 	 * may be balanced overall and kswapd will not wake naturally.
2675 	 */
2676 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2677 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2678 
2679 	/* We are not allowed to try stealing from the whole block */
2680 	if (!whole_block)
2681 		goto single_page;
2682 
2683 	free_pages = move_freepages_block(zone, page, start_type,
2684 						&movable_pages);
2685 	/*
2686 	 * Determine how many pages are compatible with our allocation.
2687 	 * For movable allocation, it's the number of movable pages which
2688 	 * we just obtained. For other types it's a bit more tricky.
2689 	 */
2690 	if (start_type == MIGRATE_MOVABLE) {
2691 		alike_pages = movable_pages;
2692 	} else {
2693 		/*
2694 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2695 		 * to MOVABLE pageblock, consider all non-movable pages as
2696 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2697 		 * vice versa, be conservative since we can't distinguish the
2698 		 * exact migratetype of non-movable pages.
2699 		 */
2700 		if (old_block_type == MIGRATE_MOVABLE)
2701 			alike_pages = pageblock_nr_pages
2702 						- (free_pages + movable_pages);
2703 		else
2704 			alike_pages = 0;
2705 	}
2706 
2707 	/* moving whole block can fail due to zone boundary conditions */
2708 	if (!free_pages)
2709 		goto single_page;
2710 
2711 	/*
2712 	 * If a sufficient number of pages in the block are either free or of
2713 	 * comparable migratability as our allocation, claim the whole block.
2714 	 */
2715 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2716 			page_group_by_mobility_disabled)
2717 		set_pageblock_migratetype(page, start_type);
2718 
2719 	return;
2720 
2721 single_page:
2722 	move_to_free_list(page, zone, current_order, start_type);
2723 }
2724 
2725 /*
2726  * Check whether there is a suitable fallback freepage with requested order.
2727  * If only_stealable is true, this function returns fallback_mt only if
2728  * we can steal other freepages all together. This would help to reduce
2729  * fragmentation due to mixed migratetype pages in one pageblock.
2730  */
2731 int find_suitable_fallback(struct free_area *area, unsigned int order,
2732 			int migratetype, bool only_stealable, bool *can_steal)
2733 {
2734 	int i;
2735 	int fallback_mt;
2736 
2737 	if (area->nr_free == 0)
2738 		return -1;
2739 
2740 	*can_steal = false;
2741 	for (i = 0;; i++) {
2742 		fallback_mt = fallbacks[migratetype][i];
2743 		if (fallback_mt == MIGRATE_TYPES)
2744 			break;
2745 
2746 		if (free_area_empty(area, fallback_mt))
2747 			continue;
2748 
2749 		if (can_steal_fallback(order, migratetype))
2750 			*can_steal = true;
2751 
2752 		if (!only_stealable)
2753 			return fallback_mt;
2754 
2755 		if (*can_steal)
2756 			return fallback_mt;
2757 	}
2758 
2759 	return -1;
2760 }
2761 
2762 /*
2763  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2764  * there are no empty page blocks that contain a page with a suitable order
2765  */
2766 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2767 				unsigned int alloc_order)
2768 {
2769 	int mt;
2770 	unsigned long max_managed, flags;
2771 
2772 	/*
2773 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2774 	 * Check is race-prone but harmless.
2775 	 */
2776 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2777 	if (zone->nr_reserved_highatomic >= max_managed)
2778 		return;
2779 
2780 	spin_lock_irqsave(&zone->lock, flags);
2781 
2782 	/* Recheck the nr_reserved_highatomic limit under the lock */
2783 	if (zone->nr_reserved_highatomic >= max_managed)
2784 		goto out_unlock;
2785 
2786 	/* Yoink! */
2787 	mt = get_pageblock_migratetype(page);
2788 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2789 	    && !is_migrate_cma(mt)) {
2790 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2791 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2792 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2793 	}
2794 
2795 out_unlock:
2796 	spin_unlock_irqrestore(&zone->lock, flags);
2797 }
2798 
2799 /*
2800  * Used when an allocation is about to fail under memory pressure. This
2801  * potentially hurts the reliability of high-order allocations when under
2802  * intense memory pressure but failed atomic allocations should be easier
2803  * to recover from than an OOM.
2804  *
2805  * If @force is true, try to unreserve a pageblock even though highatomic
2806  * pageblock is exhausted.
2807  */
2808 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2809 						bool force)
2810 {
2811 	struct zonelist *zonelist = ac->zonelist;
2812 	unsigned long flags;
2813 	struct zoneref *z;
2814 	struct zone *zone;
2815 	struct page *page;
2816 	int order;
2817 	bool ret;
2818 
2819 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2820 								ac->nodemask) {
2821 		/*
2822 		 * Preserve at least one pageblock unless memory pressure
2823 		 * is really high.
2824 		 */
2825 		if (!force && zone->nr_reserved_highatomic <=
2826 					pageblock_nr_pages)
2827 			continue;
2828 
2829 		spin_lock_irqsave(&zone->lock, flags);
2830 		for (order = 0; order < MAX_ORDER; order++) {
2831 			struct free_area *area = &(zone->free_area[order]);
2832 
2833 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2834 			if (!page)
2835 				continue;
2836 
2837 			/*
2838 			 * In page freeing path, migratetype change is racy so
2839 			 * we can counter several free pages in a pageblock
2840 			 * in this loop although we changed the pageblock type
2841 			 * from highatomic to ac->migratetype. So we should
2842 			 * adjust the count once.
2843 			 */
2844 			if (is_migrate_highatomic_page(page)) {
2845 				/*
2846 				 * It should never happen but changes to
2847 				 * locking could inadvertently allow a per-cpu
2848 				 * drain to add pages to MIGRATE_HIGHATOMIC
2849 				 * while unreserving so be safe and watch for
2850 				 * underflows.
2851 				 */
2852 				zone->nr_reserved_highatomic -= min(
2853 						pageblock_nr_pages,
2854 						zone->nr_reserved_highatomic);
2855 			}
2856 
2857 			/*
2858 			 * Convert to ac->migratetype and avoid the normal
2859 			 * pageblock stealing heuristics. Minimally, the caller
2860 			 * is doing the work and needs the pages. More
2861 			 * importantly, if the block was always converted to
2862 			 * MIGRATE_UNMOVABLE or another type then the number
2863 			 * of pageblocks that cannot be completely freed
2864 			 * may increase.
2865 			 */
2866 			set_pageblock_migratetype(page, ac->migratetype);
2867 			ret = move_freepages_block(zone, page, ac->migratetype,
2868 									NULL);
2869 			if (ret) {
2870 				spin_unlock_irqrestore(&zone->lock, flags);
2871 				return ret;
2872 			}
2873 		}
2874 		spin_unlock_irqrestore(&zone->lock, flags);
2875 	}
2876 
2877 	return false;
2878 }
2879 
2880 /*
2881  * Try finding a free buddy page on the fallback list and put it on the free
2882  * list of requested migratetype, possibly along with other pages from the same
2883  * block, depending on fragmentation avoidance heuristics. Returns true if
2884  * fallback was found so that __rmqueue_smallest() can grab it.
2885  *
2886  * The use of signed ints for order and current_order is a deliberate
2887  * deviation from the rest of this file, to make the for loop
2888  * condition simpler.
2889  */
2890 static __always_inline bool
2891 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2892 						unsigned int alloc_flags)
2893 {
2894 	struct free_area *area;
2895 	int current_order;
2896 	int min_order = order;
2897 	struct page *page;
2898 	int fallback_mt;
2899 	bool can_steal;
2900 
2901 	/*
2902 	 * Do not steal pages from freelists belonging to other pageblocks
2903 	 * i.e. orders < pageblock_order. If there are no local zones free,
2904 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2905 	 */
2906 	if (alloc_flags & ALLOC_NOFRAGMENT)
2907 		min_order = pageblock_order;
2908 
2909 	/*
2910 	 * Find the largest available free page in the other list. This roughly
2911 	 * approximates finding the pageblock with the most free pages, which
2912 	 * would be too costly to do exactly.
2913 	 */
2914 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2915 				--current_order) {
2916 		area = &(zone->free_area[current_order]);
2917 		fallback_mt = find_suitable_fallback(area, current_order,
2918 				start_migratetype, false, &can_steal);
2919 		if (fallback_mt == -1)
2920 			continue;
2921 
2922 		/*
2923 		 * We cannot steal all free pages from the pageblock and the
2924 		 * requested migratetype is movable. In that case it's better to
2925 		 * steal and split the smallest available page instead of the
2926 		 * largest available page, because even if the next movable
2927 		 * allocation falls back into a different pageblock than this
2928 		 * one, it won't cause permanent fragmentation.
2929 		 */
2930 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2931 					&& current_order > order)
2932 			goto find_smallest;
2933 
2934 		goto do_steal;
2935 	}
2936 
2937 	return false;
2938 
2939 find_smallest:
2940 	for (current_order = order; current_order < MAX_ORDER;
2941 							current_order++) {
2942 		area = &(zone->free_area[current_order]);
2943 		fallback_mt = find_suitable_fallback(area, current_order,
2944 				start_migratetype, false, &can_steal);
2945 		if (fallback_mt != -1)
2946 			break;
2947 	}
2948 
2949 	/*
2950 	 * This should not happen - we already found a suitable fallback
2951 	 * when looking for the largest page.
2952 	 */
2953 	VM_BUG_ON(current_order == MAX_ORDER);
2954 
2955 do_steal:
2956 	page = get_page_from_free_area(area, fallback_mt);
2957 
2958 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2959 								can_steal);
2960 
2961 	trace_mm_page_alloc_extfrag(page, order, current_order,
2962 		start_migratetype, fallback_mt);
2963 
2964 	return true;
2965 
2966 }
2967 
2968 /*
2969  * Do the hard work of removing an element from the buddy allocator.
2970  * Call me with the zone->lock already held.
2971  */
2972 static __always_inline struct page *
2973 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2974 						unsigned int alloc_flags)
2975 {
2976 	struct page *page;
2977 
2978 	if (IS_ENABLED(CONFIG_CMA)) {
2979 		/*
2980 		 * Balance movable allocations between regular and CMA areas by
2981 		 * allocating from CMA when over half of the zone's free memory
2982 		 * is in the CMA area.
2983 		 */
2984 		if (alloc_flags & ALLOC_CMA &&
2985 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2986 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2987 			page = __rmqueue_cma_fallback(zone, order);
2988 			if (page)
2989 				goto out;
2990 		}
2991 	}
2992 retry:
2993 	page = __rmqueue_smallest(zone, order, migratetype);
2994 	if (unlikely(!page)) {
2995 		if (alloc_flags & ALLOC_CMA)
2996 			page = __rmqueue_cma_fallback(zone, order);
2997 
2998 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2999 								alloc_flags))
3000 			goto retry;
3001 	}
3002 out:
3003 	if (page)
3004 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3005 	return page;
3006 }
3007 
3008 /*
3009  * Obtain a specified number of elements from the buddy allocator, all under
3010  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3011  * Returns the number of new pages which were placed at *list.
3012  */
3013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3014 			unsigned long count, struct list_head *list,
3015 			int migratetype, unsigned int alloc_flags)
3016 {
3017 	int i, allocated = 0;
3018 
3019 	/*
3020 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3021 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3022 	 */
3023 	spin_lock(&zone->lock);
3024 	for (i = 0; i < count; ++i) {
3025 		struct page *page = __rmqueue(zone, order, migratetype,
3026 								alloc_flags);
3027 		if (unlikely(page == NULL))
3028 			break;
3029 
3030 		if (unlikely(check_pcp_refill(page)))
3031 			continue;
3032 
3033 		/*
3034 		 * Split buddy pages returned by expand() are received here in
3035 		 * physical page order. The page is added to the tail of
3036 		 * caller's list. From the callers perspective, the linked list
3037 		 * is ordered by page number under some conditions. This is
3038 		 * useful for IO devices that can forward direction from the
3039 		 * head, thus also in the physical page order. This is useful
3040 		 * for IO devices that can merge IO requests if the physical
3041 		 * pages are ordered properly.
3042 		 */
3043 		list_add_tail(&page->lru, list);
3044 		allocated++;
3045 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3046 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3047 					      -(1 << order));
3048 	}
3049 
3050 	/*
3051 	 * i pages were removed from the buddy list even if some leak due
3052 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3053 	 * on i. Do not confuse with 'allocated' which is the number of
3054 	 * pages added to the pcp list.
3055 	 */
3056 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3057 	spin_unlock(&zone->lock);
3058 	return allocated;
3059 }
3060 
3061 #ifdef CONFIG_NUMA
3062 /*
3063  * Called from the vmstat counter updater to drain pagesets of this
3064  * currently executing processor on remote nodes after they have
3065  * expired.
3066  *
3067  * Note that this function must be called with the thread pinned to
3068  * a single processor.
3069  */
3070 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3071 {
3072 	unsigned long flags;
3073 	int to_drain, batch;
3074 
3075 	local_lock_irqsave(&pagesets.lock, flags);
3076 	batch = READ_ONCE(pcp->batch);
3077 	to_drain = min(pcp->count, batch);
3078 	if (to_drain > 0)
3079 		free_pcppages_bulk(zone, to_drain, pcp);
3080 	local_unlock_irqrestore(&pagesets.lock, flags);
3081 }
3082 #endif
3083 
3084 /*
3085  * Drain pcplists of the indicated processor and zone.
3086  *
3087  * The processor must either be the current processor and the
3088  * thread pinned to the current processor or a processor that
3089  * is not online.
3090  */
3091 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3092 {
3093 	unsigned long flags;
3094 	struct per_cpu_pages *pcp;
3095 
3096 	local_lock_irqsave(&pagesets.lock, flags);
3097 
3098 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3099 	if (pcp->count)
3100 		free_pcppages_bulk(zone, pcp->count, pcp);
3101 
3102 	local_unlock_irqrestore(&pagesets.lock, flags);
3103 }
3104 
3105 /*
3106  * Drain pcplists of all zones on the indicated processor.
3107  *
3108  * The processor must either be the current processor and the
3109  * thread pinned to the current processor or a processor that
3110  * is not online.
3111  */
3112 static void drain_pages(unsigned int cpu)
3113 {
3114 	struct zone *zone;
3115 
3116 	for_each_populated_zone(zone) {
3117 		drain_pages_zone(cpu, zone);
3118 	}
3119 }
3120 
3121 /*
3122  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3123  *
3124  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3125  * the single zone's pages.
3126  */
3127 void drain_local_pages(struct zone *zone)
3128 {
3129 	int cpu = smp_processor_id();
3130 
3131 	if (zone)
3132 		drain_pages_zone(cpu, zone);
3133 	else
3134 		drain_pages(cpu);
3135 }
3136 
3137 static void drain_local_pages_wq(struct work_struct *work)
3138 {
3139 	struct pcpu_drain *drain;
3140 
3141 	drain = container_of(work, struct pcpu_drain, work);
3142 
3143 	/*
3144 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3145 	 * we can race with cpu offline when the WQ can move this from
3146 	 * a cpu pinned worker to an unbound one. We can operate on a different
3147 	 * cpu which is alright but we also have to make sure to not move to
3148 	 * a different one.
3149 	 */
3150 	preempt_disable();
3151 	drain_local_pages(drain->zone);
3152 	preempt_enable();
3153 }
3154 
3155 /*
3156  * The implementation of drain_all_pages(), exposing an extra parameter to
3157  * drain on all cpus.
3158  *
3159  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3160  * not empty. The check for non-emptiness can however race with a free to
3161  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3162  * that need the guarantee that every CPU has drained can disable the
3163  * optimizing racy check.
3164  */
3165 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3166 {
3167 	int cpu;
3168 
3169 	/*
3170 	 * Allocate in the BSS so we won't require allocation in
3171 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3172 	 */
3173 	static cpumask_t cpus_with_pcps;
3174 
3175 	/*
3176 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3177 	 * initialized.
3178 	 */
3179 	if (WARN_ON_ONCE(!mm_percpu_wq))
3180 		return;
3181 
3182 	/*
3183 	 * Do not drain if one is already in progress unless it's specific to
3184 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3185 	 * the drain to be complete when the call returns.
3186 	 */
3187 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3188 		if (!zone)
3189 			return;
3190 		mutex_lock(&pcpu_drain_mutex);
3191 	}
3192 
3193 	/*
3194 	 * We don't care about racing with CPU hotplug event
3195 	 * as offline notification will cause the notified
3196 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3197 	 * disables preemption as part of its processing
3198 	 */
3199 	for_each_online_cpu(cpu) {
3200 		struct per_cpu_pages *pcp;
3201 		struct zone *z;
3202 		bool has_pcps = false;
3203 
3204 		if (force_all_cpus) {
3205 			/*
3206 			 * The pcp.count check is racy, some callers need a
3207 			 * guarantee that no cpu is missed.
3208 			 */
3209 			has_pcps = true;
3210 		} else if (zone) {
3211 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3212 			if (pcp->count)
3213 				has_pcps = true;
3214 		} else {
3215 			for_each_populated_zone(z) {
3216 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3217 				if (pcp->count) {
3218 					has_pcps = true;
3219 					break;
3220 				}
3221 			}
3222 		}
3223 
3224 		if (has_pcps)
3225 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3226 		else
3227 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3228 	}
3229 
3230 	for_each_cpu(cpu, &cpus_with_pcps) {
3231 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3232 
3233 		drain->zone = zone;
3234 		INIT_WORK(&drain->work, drain_local_pages_wq);
3235 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3236 	}
3237 	for_each_cpu(cpu, &cpus_with_pcps)
3238 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3239 
3240 	mutex_unlock(&pcpu_drain_mutex);
3241 }
3242 
3243 /*
3244  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3245  *
3246  * When zone parameter is non-NULL, spill just the single zone's pages.
3247  *
3248  * Note that this can be extremely slow as the draining happens in a workqueue.
3249  */
3250 void drain_all_pages(struct zone *zone)
3251 {
3252 	__drain_all_pages(zone, false);
3253 }
3254 
3255 #ifdef CONFIG_HIBERNATION
3256 
3257 /*
3258  * Touch the watchdog for every WD_PAGE_COUNT pages.
3259  */
3260 #define WD_PAGE_COUNT	(128*1024)
3261 
3262 void mark_free_pages(struct zone *zone)
3263 {
3264 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3265 	unsigned long flags;
3266 	unsigned int order, t;
3267 	struct page *page;
3268 
3269 	if (zone_is_empty(zone))
3270 		return;
3271 
3272 	spin_lock_irqsave(&zone->lock, flags);
3273 
3274 	max_zone_pfn = zone_end_pfn(zone);
3275 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3276 		if (pfn_valid(pfn)) {
3277 			page = pfn_to_page(pfn);
3278 
3279 			if (!--page_count) {
3280 				touch_nmi_watchdog();
3281 				page_count = WD_PAGE_COUNT;
3282 			}
3283 
3284 			if (page_zone(page) != zone)
3285 				continue;
3286 
3287 			if (!swsusp_page_is_forbidden(page))
3288 				swsusp_unset_page_free(page);
3289 		}
3290 
3291 	for_each_migratetype_order(order, t) {
3292 		list_for_each_entry(page,
3293 				&zone->free_area[order].free_list[t], lru) {
3294 			unsigned long i;
3295 
3296 			pfn = page_to_pfn(page);
3297 			for (i = 0; i < (1UL << order); i++) {
3298 				if (!--page_count) {
3299 					touch_nmi_watchdog();
3300 					page_count = WD_PAGE_COUNT;
3301 				}
3302 				swsusp_set_page_free(pfn_to_page(pfn + i));
3303 			}
3304 		}
3305 	}
3306 	spin_unlock_irqrestore(&zone->lock, flags);
3307 }
3308 #endif /* CONFIG_PM */
3309 
3310 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3311 							unsigned int order)
3312 {
3313 	int migratetype;
3314 
3315 	if (!free_pcp_prepare(page, order))
3316 		return false;
3317 
3318 	migratetype = get_pfnblock_migratetype(page, pfn);
3319 	set_pcppage_migratetype(page, migratetype);
3320 	return true;
3321 }
3322 
3323 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3324 {
3325 	int min_nr_free, max_nr_free;
3326 
3327 	/* Check for PCP disabled or boot pageset */
3328 	if (unlikely(high < batch))
3329 		return 1;
3330 
3331 	/* Leave at least pcp->batch pages on the list */
3332 	min_nr_free = batch;
3333 	max_nr_free = high - batch;
3334 
3335 	/*
3336 	 * Double the number of pages freed each time there is subsequent
3337 	 * freeing of pages without any allocation.
3338 	 */
3339 	batch <<= pcp->free_factor;
3340 	if (batch < max_nr_free)
3341 		pcp->free_factor++;
3342 	batch = clamp(batch, min_nr_free, max_nr_free);
3343 
3344 	return batch;
3345 }
3346 
3347 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3348 {
3349 	int high = READ_ONCE(pcp->high);
3350 
3351 	if (unlikely(!high))
3352 		return 0;
3353 
3354 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3355 		return high;
3356 
3357 	/*
3358 	 * If reclaim is active, limit the number of pages that can be
3359 	 * stored on pcp lists
3360 	 */
3361 	return min(READ_ONCE(pcp->batch) << 2, high);
3362 }
3363 
3364 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3365 				   int migratetype, unsigned int order)
3366 {
3367 	struct zone *zone = page_zone(page);
3368 	struct per_cpu_pages *pcp;
3369 	int high;
3370 	int pindex;
3371 
3372 	__count_vm_event(PGFREE);
3373 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3374 	pindex = order_to_pindex(migratetype, order);
3375 	list_add(&page->lru, &pcp->lists[pindex]);
3376 	pcp->count += 1 << order;
3377 	high = nr_pcp_high(pcp, zone);
3378 	if (pcp->count >= high) {
3379 		int batch = READ_ONCE(pcp->batch);
3380 
3381 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3382 	}
3383 }
3384 
3385 /*
3386  * Free a pcp page
3387  */
3388 void free_unref_page(struct page *page, unsigned int order)
3389 {
3390 	unsigned long flags;
3391 	unsigned long pfn = page_to_pfn(page);
3392 	int migratetype;
3393 
3394 	if (!free_unref_page_prepare(page, pfn, order))
3395 		return;
3396 
3397 	/*
3398 	 * We only track unmovable, reclaimable and movable on pcp lists.
3399 	 * Place ISOLATE pages on the isolated list because they are being
3400 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3401 	 * areas back if necessary. Otherwise, we may have to free
3402 	 * excessively into the page allocator
3403 	 */
3404 	migratetype = get_pcppage_migratetype(page);
3405 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3406 		if (unlikely(is_migrate_isolate(migratetype))) {
3407 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3408 			return;
3409 		}
3410 		migratetype = MIGRATE_MOVABLE;
3411 	}
3412 
3413 	local_lock_irqsave(&pagesets.lock, flags);
3414 	free_unref_page_commit(page, pfn, migratetype, order);
3415 	local_unlock_irqrestore(&pagesets.lock, flags);
3416 }
3417 
3418 /*
3419  * Free a list of 0-order pages
3420  */
3421 void free_unref_page_list(struct list_head *list)
3422 {
3423 	struct page *page, *next;
3424 	unsigned long flags, pfn;
3425 	int batch_count = 0;
3426 	int migratetype;
3427 
3428 	/* Prepare pages for freeing */
3429 	list_for_each_entry_safe(page, next, list, lru) {
3430 		pfn = page_to_pfn(page);
3431 		if (!free_unref_page_prepare(page, pfn, 0)) {
3432 			list_del(&page->lru);
3433 			continue;
3434 		}
3435 
3436 		/*
3437 		 * Free isolated pages directly to the allocator, see
3438 		 * comment in free_unref_page.
3439 		 */
3440 		migratetype = get_pcppage_migratetype(page);
3441 		if (unlikely(is_migrate_isolate(migratetype))) {
3442 			list_del(&page->lru);
3443 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3444 			continue;
3445 		}
3446 
3447 		set_page_private(page, pfn);
3448 	}
3449 
3450 	local_lock_irqsave(&pagesets.lock, flags);
3451 	list_for_each_entry_safe(page, next, list, lru) {
3452 		pfn = page_private(page);
3453 		set_page_private(page, 0);
3454 
3455 		/*
3456 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3457 		 * to the MIGRATE_MOVABLE pcp list.
3458 		 */
3459 		migratetype = get_pcppage_migratetype(page);
3460 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3461 			migratetype = MIGRATE_MOVABLE;
3462 
3463 		trace_mm_page_free_batched(page);
3464 		free_unref_page_commit(page, pfn, migratetype, 0);
3465 
3466 		/*
3467 		 * Guard against excessive IRQ disabled times when we get
3468 		 * a large list of pages to free.
3469 		 */
3470 		if (++batch_count == SWAP_CLUSTER_MAX) {
3471 			local_unlock_irqrestore(&pagesets.lock, flags);
3472 			batch_count = 0;
3473 			local_lock_irqsave(&pagesets.lock, flags);
3474 		}
3475 	}
3476 	local_unlock_irqrestore(&pagesets.lock, flags);
3477 }
3478 
3479 /*
3480  * split_page takes a non-compound higher-order page, and splits it into
3481  * n (1<<order) sub-pages: page[0..n]
3482  * Each sub-page must be freed individually.
3483  *
3484  * Note: this is probably too low level an operation for use in drivers.
3485  * Please consult with lkml before using this in your driver.
3486  */
3487 void split_page(struct page *page, unsigned int order)
3488 {
3489 	int i;
3490 
3491 	VM_BUG_ON_PAGE(PageCompound(page), page);
3492 	VM_BUG_ON_PAGE(!page_count(page), page);
3493 
3494 	for (i = 1; i < (1 << order); i++)
3495 		set_page_refcounted(page + i);
3496 	split_page_owner(page, 1 << order);
3497 	split_page_memcg(page, 1 << order);
3498 }
3499 EXPORT_SYMBOL_GPL(split_page);
3500 
3501 int __isolate_free_page(struct page *page, unsigned int order)
3502 {
3503 	unsigned long watermark;
3504 	struct zone *zone;
3505 	int mt;
3506 
3507 	BUG_ON(!PageBuddy(page));
3508 
3509 	zone = page_zone(page);
3510 	mt = get_pageblock_migratetype(page);
3511 
3512 	if (!is_migrate_isolate(mt)) {
3513 		/*
3514 		 * Obey watermarks as if the page was being allocated. We can
3515 		 * emulate a high-order watermark check with a raised order-0
3516 		 * watermark, because we already know our high-order page
3517 		 * exists.
3518 		 */
3519 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3520 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3521 			return 0;
3522 
3523 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3524 	}
3525 
3526 	/* Remove page from free list */
3527 
3528 	del_page_from_free_list(page, zone, order);
3529 
3530 	/*
3531 	 * Set the pageblock if the isolated page is at least half of a
3532 	 * pageblock
3533 	 */
3534 	if (order >= pageblock_order - 1) {
3535 		struct page *endpage = page + (1 << order) - 1;
3536 		for (; page < endpage; page += pageblock_nr_pages) {
3537 			int mt = get_pageblock_migratetype(page);
3538 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3539 			    && !is_migrate_highatomic(mt))
3540 				set_pageblock_migratetype(page,
3541 							  MIGRATE_MOVABLE);
3542 		}
3543 	}
3544 
3545 
3546 	return 1UL << order;
3547 }
3548 
3549 /**
3550  * __putback_isolated_page - Return a now-isolated page back where we got it
3551  * @page: Page that was isolated
3552  * @order: Order of the isolated page
3553  * @mt: The page's pageblock's migratetype
3554  *
3555  * This function is meant to return a page pulled from the free lists via
3556  * __isolate_free_page back to the free lists they were pulled from.
3557  */
3558 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3559 {
3560 	struct zone *zone = page_zone(page);
3561 
3562 	/* zone lock should be held when this function is called */
3563 	lockdep_assert_held(&zone->lock);
3564 
3565 	/* Return isolated page to tail of freelist. */
3566 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3567 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3568 }
3569 
3570 /*
3571  * Update NUMA hit/miss statistics
3572  *
3573  * Must be called with interrupts disabled.
3574  */
3575 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3576 				   long nr_account)
3577 {
3578 #ifdef CONFIG_NUMA
3579 	enum numa_stat_item local_stat = NUMA_LOCAL;
3580 
3581 	/* skip numa counters update if numa stats is disabled */
3582 	if (!static_branch_likely(&vm_numa_stat_key))
3583 		return;
3584 
3585 	if (zone_to_nid(z) != numa_node_id())
3586 		local_stat = NUMA_OTHER;
3587 
3588 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3589 		__count_numa_events(z, NUMA_HIT, nr_account);
3590 	else {
3591 		__count_numa_events(z, NUMA_MISS, nr_account);
3592 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3593 	}
3594 	__count_numa_events(z, local_stat, nr_account);
3595 #endif
3596 }
3597 
3598 /* Remove page from the per-cpu list, caller must protect the list */
3599 static inline
3600 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3601 			int migratetype,
3602 			unsigned int alloc_flags,
3603 			struct per_cpu_pages *pcp,
3604 			struct list_head *list)
3605 {
3606 	struct page *page;
3607 
3608 	do {
3609 		if (list_empty(list)) {
3610 			int batch = READ_ONCE(pcp->batch);
3611 			int alloced;
3612 
3613 			/*
3614 			 * Scale batch relative to order if batch implies
3615 			 * free pages can be stored on the PCP. Batch can
3616 			 * be 1 for small zones or for boot pagesets which
3617 			 * should never store free pages as the pages may
3618 			 * belong to arbitrary zones.
3619 			 */
3620 			if (batch > 1)
3621 				batch = max(batch >> order, 2);
3622 			alloced = rmqueue_bulk(zone, order,
3623 					batch, list,
3624 					migratetype, alloc_flags);
3625 
3626 			pcp->count += alloced << order;
3627 			if (unlikely(list_empty(list)))
3628 				return NULL;
3629 		}
3630 
3631 		page = list_first_entry(list, struct page, lru);
3632 		list_del(&page->lru);
3633 		pcp->count -= 1 << order;
3634 	} while (check_new_pcp(page));
3635 
3636 	return page;
3637 }
3638 
3639 /* Lock and remove page from the per-cpu list */
3640 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3641 			struct zone *zone, unsigned int order,
3642 			gfp_t gfp_flags, int migratetype,
3643 			unsigned int alloc_flags)
3644 {
3645 	struct per_cpu_pages *pcp;
3646 	struct list_head *list;
3647 	struct page *page;
3648 	unsigned long flags;
3649 
3650 	local_lock_irqsave(&pagesets.lock, flags);
3651 
3652 	/*
3653 	 * On allocation, reduce the number of pages that are batch freed.
3654 	 * See nr_pcp_free() where free_factor is increased for subsequent
3655 	 * frees.
3656 	 */
3657 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3658 	pcp->free_factor >>= 1;
3659 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3660 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3661 	local_unlock_irqrestore(&pagesets.lock, flags);
3662 	if (page) {
3663 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3664 		zone_statistics(preferred_zone, zone, 1);
3665 	}
3666 	return page;
3667 }
3668 
3669 /*
3670  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3671  */
3672 static inline
3673 struct page *rmqueue(struct zone *preferred_zone,
3674 			struct zone *zone, unsigned int order,
3675 			gfp_t gfp_flags, unsigned int alloc_flags,
3676 			int migratetype)
3677 {
3678 	unsigned long flags;
3679 	struct page *page;
3680 
3681 	if (likely(pcp_allowed_order(order))) {
3682 		/*
3683 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3684 		 * we need to skip it when CMA area isn't allowed.
3685 		 */
3686 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3687 				migratetype != MIGRATE_MOVABLE) {
3688 			page = rmqueue_pcplist(preferred_zone, zone, order,
3689 					gfp_flags, migratetype, alloc_flags);
3690 			goto out;
3691 		}
3692 	}
3693 
3694 	/*
3695 	 * We most definitely don't want callers attempting to
3696 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3697 	 */
3698 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3699 	spin_lock_irqsave(&zone->lock, flags);
3700 
3701 	do {
3702 		page = NULL;
3703 		/*
3704 		 * order-0 request can reach here when the pcplist is skipped
3705 		 * due to non-CMA allocation context. HIGHATOMIC area is
3706 		 * reserved for high-order atomic allocation, so order-0
3707 		 * request should skip it.
3708 		 */
3709 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3710 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3711 			if (page)
3712 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3713 		}
3714 		if (!page)
3715 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3716 	} while (page && check_new_pages(page, order));
3717 	if (!page)
3718 		goto failed;
3719 
3720 	__mod_zone_freepage_state(zone, -(1 << order),
3721 				  get_pcppage_migratetype(page));
3722 	spin_unlock_irqrestore(&zone->lock, flags);
3723 
3724 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3725 	zone_statistics(preferred_zone, zone, 1);
3726 
3727 out:
3728 	/* Separate test+clear to avoid unnecessary atomics */
3729 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3730 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3731 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3732 	}
3733 
3734 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3735 	return page;
3736 
3737 failed:
3738 	spin_unlock_irqrestore(&zone->lock, flags);
3739 	return NULL;
3740 }
3741 
3742 #ifdef CONFIG_FAIL_PAGE_ALLOC
3743 
3744 static struct {
3745 	struct fault_attr attr;
3746 
3747 	bool ignore_gfp_highmem;
3748 	bool ignore_gfp_reclaim;
3749 	u32 min_order;
3750 } fail_page_alloc = {
3751 	.attr = FAULT_ATTR_INITIALIZER,
3752 	.ignore_gfp_reclaim = true,
3753 	.ignore_gfp_highmem = true,
3754 	.min_order = 1,
3755 };
3756 
3757 static int __init setup_fail_page_alloc(char *str)
3758 {
3759 	return setup_fault_attr(&fail_page_alloc.attr, str);
3760 }
3761 __setup("fail_page_alloc=", setup_fail_page_alloc);
3762 
3763 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3764 {
3765 	if (order < fail_page_alloc.min_order)
3766 		return false;
3767 	if (gfp_mask & __GFP_NOFAIL)
3768 		return false;
3769 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3770 		return false;
3771 	if (fail_page_alloc.ignore_gfp_reclaim &&
3772 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3773 		return false;
3774 
3775 	return should_fail(&fail_page_alloc.attr, 1 << order);
3776 }
3777 
3778 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3779 
3780 static int __init fail_page_alloc_debugfs(void)
3781 {
3782 	umode_t mode = S_IFREG | 0600;
3783 	struct dentry *dir;
3784 
3785 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3786 					&fail_page_alloc.attr);
3787 
3788 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3789 			    &fail_page_alloc.ignore_gfp_reclaim);
3790 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3791 			    &fail_page_alloc.ignore_gfp_highmem);
3792 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3793 
3794 	return 0;
3795 }
3796 
3797 late_initcall(fail_page_alloc_debugfs);
3798 
3799 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3800 
3801 #else /* CONFIG_FAIL_PAGE_ALLOC */
3802 
3803 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3804 {
3805 	return false;
3806 }
3807 
3808 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3809 
3810 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3811 {
3812 	return __should_fail_alloc_page(gfp_mask, order);
3813 }
3814 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3815 
3816 static inline long __zone_watermark_unusable_free(struct zone *z,
3817 				unsigned int order, unsigned int alloc_flags)
3818 {
3819 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3820 	long unusable_free = (1 << order) - 1;
3821 
3822 	/*
3823 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3824 	 * the high-atomic reserves. This will over-estimate the size of the
3825 	 * atomic reserve but it avoids a search.
3826 	 */
3827 	if (likely(!alloc_harder))
3828 		unusable_free += z->nr_reserved_highatomic;
3829 
3830 #ifdef CONFIG_CMA
3831 	/* If allocation can't use CMA areas don't use free CMA pages */
3832 	if (!(alloc_flags & ALLOC_CMA))
3833 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3834 #endif
3835 
3836 	return unusable_free;
3837 }
3838 
3839 /*
3840  * Return true if free base pages are above 'mark'. For high-order checks it
3841  * will return true of the order-0 watermark is reached and there is at least
3842  * one free page of a suitable size. Checking now avoids taking the zone lock
3843  * to check in the allocation paths if no pages are free.
3844  */
3845 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3846 			 int highest_zoneidx, unsigned int alloc_flags,
3847 			 long free_pages)
3848 {
3849 	long min = mark;
3850 	int o;
3851 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3852 
3853 	/* free_pages may go negative - that's OK */
3854 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3855 
3856 	if (alloc_flags & ALLOC_HIGH)
3857 		min -= min / 2;
3858 
3859 	if (unlikely(alloc_harder)) {
3860 		/*
3861 		 * OOM victims can try even harder than normal ALLOC_HARDER
3862 		 * users on the grounds that it's definitely going to be in
3863 		 * the exit path shortly and free memory. Any allocation it
3864 		 * makes during the free path will be small and short-lived.
3865 		 */
3866 		if (alloc_flags & ALLOC_OOM)
3867 			min -= min / 2;
3868 		else
3869 			min -= min / 4;
3870 	}
3871 
3872 	/*
3873 	 * Check watermarks for an order-0 allocation request. If these
3874 	 * are not met, then a high-order request also cannot go ahead
3875 	 * even if a suitable page happened to be free.
3876 	 */
3877 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3878 		return false;
3879 
3880 	/* If this is an order-0 request then the watermark is fine */
3881 	if (!order)
3882 		return true;
3883 
3884 	/* For a high-order request, check at least one suitable page is free */
3885 	for (o = order; o < MAX_ORDER; o++) {
3886 		struct free_area *area = &z->free_area[o];
3887 		int mt;
3888 
3889 		if (!area->nr_free)
3890 			continue;
3891 
3892 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3893 			if (!free_area_empty(area, mt))
3894 				return true;
3895 		}
3896 
3897 #ifdef CONFIG_CMA
3898 		if ((alloc_flags & ALLOC_CMA) &&
3899 		    !free_area_empty(area, MIGRATE_CMA)) {
3900 			return true;
3901 		}
3902 #endif
3903 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3904 			return true;
3905 	}
3906 	return false;
3907 }
3908 
3909 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3910 		      int highest_zoneidx, unsigned int alloc_flags)
3911 {
3912 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3913 					zone_page_state(z, NR_FREE_PAGES));
3914 }
3915 
3916 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3917 				unsigned long mark, int highest_zoneidx,
3918 				unsigned int alloc_flags, gfp_t gfp_mask)
3919 {
3920 	long free_pages;
3921 
3922 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3923 
3924 	/*
3925 	 * Fast check for order-0 only. If this fails then the reserves
3926 	 * need to be calculated.
3927 	 */
3928 	if (!order) {
3929 		long fast_free;
3930 
3931 		fast_free = free_pages;
3932 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3933 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3934 			return true;
3935 	}
3936 
3937 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3938 					free_pages))
3939 		return true;
3940 	/*
3941 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3942 	 * when checking the min watermark. The min watermark is the
3943 	 * point where boosting is ignored so that kswapd is woken up
3944 	 * when below the low watermark.
3945 	 */
3946 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3947 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3948 		mark = z->_watermark[WMARK_MIN];
3949 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3950 					alloc_flags, free_pages);
3951 	}
3952 
3953 	return false;
3954 }
3955 
3956 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3957 			unsigned long mark, int highest_zoneidx)
3958 {
3959 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3960 
3961 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3962 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3963 
3964 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3965 								free_pages);
3966 }
3967 
3968 #ifdef CONFIG_NUMA
3969 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3970 {
3971 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3972 				node_reclaim_distance;
3973 }
3974 #else	/* CONFIG_NUMA */
3975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3976 {
3977 	return true;
3978 }
3979 #endif	/* CONFIG_NUMA */
3980 
3981 /*
3982  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3983  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3984  * premature use of a lower zone may cause lowmem pressure problems that
3985  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3986  * probably too small. It only makes sense to spread allocations to avoid
3987  * fragmentation between the Normal and DMA32 zones.
3988  */
3989 static inline unsigned int
3990 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3991 {
3992 	unsigned int alloc_flags;
3993 
3994 	/*
3995 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3996 	 * to save a branch.
3997 	 */
3998 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3999 
4000 #ifdef CONFIG_ZONE_DMA32
4001 	if (!zone)
4002 		return alloc_flags;
4003 
4004 	if (zone_idx(zone) != ZONE_NORMAL)
4005 		return alloc_flags;
4006 
4007 	/*
4008 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4009 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4010 	 * on UMA that if Normal is populated then so is DMA32.
4011 	 */
4012 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4013 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4014 		return alloc_flags;
4015 
4016 	alloc_flags |= ALLOC_NOFRAGMENT;
4017 #endif /* CONFIG_ZONE_DMA32 */
4018 	return alloc_flags;
4019 }
4020 
4021 /* Must be called after current_gfp_context() which can change gfp_mask */
4022 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4023 						  unsigned int alloc_flags)
4024 {
4025 #ifdef CONFIG_CMA
4026 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4027 		alloc_flags |= ALLOC_CMA;
4028 #endif
4029 	return alloc_flags;
4030 }
4031 
4032 /*
4033  * get_page_from_freelist goes through the zonelist trying to allocate
4034  * a page.
4035  */
4036 static struct page *
4037 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4038 						const struct alloc_context *ac)
4039 {
4040 	struct zoneref *z;
4041 	struct zone *zone;
4042 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4043 	bool no_fallback;
4044 
4045 retry:
4046 	/*
4047 	 * Scan zonelist, looking for a zone with enough free.
4048 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4049 	 */
4050 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4051 	z = ac->preferred_zoneref;
4052 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4053 					ac->nodemask) {
4054 		struct page *page;
4055 		unsigned long mark;
4056 
4057 		if (cpusets_enabled() &&
4058 			(alloc_flags & ALLOC_CPUSET) &&
4059 			!__cpuset_zone_allowed(zone, gfp_mask))
4060 				continue;
4061 		/*
4062 		 * When allocating a page cache page for writing, we
4063 		 * want to get it from a node that is within its dirty
4064 		 * limit, such that no single node holds more than its
4065 		 * proportional share of globally allowed dirty pages.
4066 		 * The dirty limits take into account the node's
4067 		 * lowmem reserves and high watermark so that kswapd
4068 		 * should be able to balance it without having to
4069 		 * write pages from its LRU list.
4070 		 *
4071 		 * XXX: For now, allow allocations to potentially
4072 		 * exceed the per-node dirty limit in the slowpath
4073 		 * (spread_dirty_pages unset) before going into reclaim,
4074 		 * which is important when on a NUMA setup the allowed
4075 		 * nodes are together not big enough to reach the
4076 		 * global limit.  The proper fix for these situations
4077 		 * will require awareness of nodes in the
4078 		 * dirty-throttling and the flusher threads.
4079 		 */
4080 		if (ac->spread_dirty_pages) {
4081 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4082 				continue;
4083 
4084 			if (!node_dirty_ok(zone->zone_pgdat)) {
4085 				last_pgdat_dirty_limit = zone->zone_pgdat;
4086 				continue;
4087 			}
4088 		}
4089 
4090 		if (no_fallback && nr_online_nodes > 1 &&
4091 		    zone != ac->preferred_zoneref->zone) {
4092 			int local_nid;
4093 
4094 			/*
4095 			 * If moving to a remote node, retry but allow
4096 			 * fragmenting fallbacks. Locality is more important
4097 			 * than fragmentation avoidance.
4098 			 */
4099 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4100 			if (zone_to_nid(zone) != local_nid) {
4101 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4102 				goto retry;
4103 			}
4104 		}
4105 
4106 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4107 		if (!zone_watermark_fast(zone, order, mark,
4108 				       ac->highest_zoneidx, alloc_flags,
4109 				       gfp_mask)) {
4110 			int ret;
4111 
4112 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4113 			/*
4114 			 * Watermark failed for this zone, but see if we can
4115 			 * grow this zone if it contains deferred pages.
4116 			 */
4117 			if (static_branch_unlikely(&deferred_pages)) {
4118 				if (_deferred_grow_zone(zone, order))
4119 					goto try_this_zone;
4120 			}
4121 #endif
4122 			/* Checked here to keep the fast path fast */
4123 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4124 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4125 				goto try_this_zone;
4126 
4127 			if (!node_reclaim_enabled() ||
4128 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4129 				continue;
4130 
4131 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4132 			switch (ret) {
4133 			case NODE_RECLAIM_NOSCAN:
4134 				/* did not scan */
4135 				continue;
4136 			case NODE_RECLAIM_FULL:
4137 				/* scanned but unreclaimable */
4138 				continue;
4139 			default:
4140 				/* did we reclaim enough */
4141 				if (zone_watermark_ok(zone, order, mark,
4142 					ac->highest_zoneidx, alloc_flags))
4143 					goto try_this_zone;
4144 
4145 				continue;
4146 			}
4147 		}
4148 
4149 try_this_zone:
4150 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4151 				gfp_mask, alloc_flags, ac->migratetype);
4152 		if (page) {
4153 			prep_new_page(page, order, gfp_mask, alloc_flags);
4154 
4155 			/*
4156 			 * If this is a high-order atomic allocation then check
4157 			 * if the pageblock should be reserved for the future
4158 			 */
4159 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4160 				reserve_highatomic_pageblock(page, zone, order);
4161 
4162 			return page;
4163 		} else {
4164 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4165 			/* Try again if zone has deferred pages */
4166 			if (static_branch_unlikely(&deferred_pages)) {
4167 				if (_deferred_grow_zone(zone, order))
4168 					goto try_this_zone;
4169 			}
4170 #endif
4171 		}
4172 	}
4173 
4174 	/*
4175 	 * It's possible on a UMA machine to get through all zones that are
4176 	 * fragmented. If avoiding fragmentation, reset and try again.
4177 	 */
4178 	if (no_fallback) {
4179 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4180 		goto retry;
4181 	}
4182 
4183 	return NULL;
4184 }
4185 
4186 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4187 {
4188 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4189 
4190 	/*
4191 	 * This documents exceptions given to allocations in certain
4192 	 * contexts that are allowed to allocate outside current's set
4193 	 * of allowed nodes.
4194 	 */
4195 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4196 		if (tsk_is_oom_victim(current) ||
4197 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4198 			filter &= ~SHOW_MEM_FILTER_NODES;
4199 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4200 		filter &= ~SHOW_MEM_FILTER_NODES;
4201 
4202 	show_mem(filter, nodemask);
4203 }
4204 
4205 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4206 {
4207 	struct va_format vaf;
4208 	va_list args;
4209 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4210 
4211 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4212 		return;
4213 
4214 	va_start(args, fmt);
4215 	vaf.fmt = fmt;
4216 	vaf.va = &args;
4217 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4218 			current->comm, &vaf, gfp_mask, &gfp_mask,
4219 			nodemask_pr_args(nodemask));
4220 	va_end(args);
4221 
4222 	cpuset_print_current_mems_allowed();
4223 	pr_cont("\n");
4224 	dump_stack();
4225 	warn_alloc_show_mem(gfp_mask, nodemask);
4226 }
4227 
4228 static inline struct page *
4229 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4230 			      unsigned int alloc_flags,
4231 			      const struct alloc_context *ac)
4232 {
4233 	struct page *page;
4234 
4235 	page = get_page_from_freelist(gfp_mask, order,
4236 			alloc_flags|ALLOC_CPUSET, ac);
4237 	/*
4238 	 * fallback to ignore cpuset restriction if our nodes
4239 	 * are depleted
4240 	 */
4241 	if (!page)
4242 		page = get_page_from_freelist(gfp_mask, order,
4243 				alloc_flags, ac);
4244 
4245 	return page;
4246 }
4247 
4248 static inline struct page *
4249 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4250 	const struct alloc_context *ac, unsigned long *did_some_progress)
4251 {
4252 	struct oom_control oc = {
4253 		.zonelist = ac->zonelist,
4254 		.nodemask = ac->nodemask,
4255 		.memcg = NULL,
4256 		.gfp_mask = gfp_mask,
4257 		.order = order,
4258 	};
4259 	struct page *page;
4260 
4261 	*did_some_progress = 0;
4262 
4263 	/*
4264 	 * Acquire the oom lock.  If that fails, somebody else is
4265 	 * making progress for us.
4266 	 */
4267 	if (!mutex_trylock(&oom_lock)) {
4268 		*did_some_progress = 1;
4269 		schedule_timeout_uninterruptible(1);
4270 		return NULL;
4271 	}
4272 
4273 	/*
4274 	 * Go through the zonelist yet one more time, keep very high watermark
4275 	 * here, this is only to catch a parallel oom killing, we must fail if
4276 	 * we're still under heavy pressure. But make sure that this reclaim
4277 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4278 	 * allocation which will never fail due to oom_lock already held.
4279 	 */
4280 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4281 				      ~__GFP_DIRECT_RECLAIM, order,
4282 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4283 	if (page)
4284 		goto out;
4285 
4286 	/* Coredumps can quickly deplete all memory reserves */
4287 	if (current->flags & PF_DUMPCORE)
4288 		goto out;
4289 	/* The OOM killer will not help higher order allocs */
4290 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4291 		goto out;
4292 	/*
4293 	 * We have already exhausted all our reclaim opportunities without any
4294 	 * success so it is time to admit defeat. We will skip the OOM killer
4295 	 * because it is very likely that the caller has a more reasonable
4296 	 * fallback than shooting a random task.
4297 	 *
4298 	 * The OOM killer may not free memory on a specific node.
4299 	 */
4300 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4301 		goto out;
4302 	/* The OOM killer does not needlessly kill tasks for lowmem */
4303 	if (ac->highest_zoneidx < ZONE_NORMAL)
4304 		goto out;
4305 	if (pm_suspended_storage())
4306 		goto out;
4307 	/*
4308 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4309 	 * other request to make a forward progress.
4310 	 * We are in an unfortunate situation where out_of_memory cannot
4311 	 * do much for this context but let's try it to at least get
4312 	 * access to memory reserved if the current task is killed (see
4313 	 * out_of_memory). Once filesystems are ready to handle allocation
4314 	 * failures more gracefully we should just bail out here.
4315 	 */
4316 
4317 	/* Exhausted what can be done so it's blame time */
4318 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4319 		*did_some_progress = 1;
4320 
4321 		/*
4322 		 * Help non-failing allocations by giving them access to memory
4323 		 * reserves
4324 		 */
4325 		if (gfp_mask & __GFP_NOFAIL)
4326 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4327 					ALLOC_NO_WATERMARKS, ac);
4328 	}
4329 out:
4330 	mutex_unlock(&oom_lock);
4331 	return page;
4332 }
4333 
4334 /*
4335  * Maximum number of compaction retries with a progress before OOM
4336  * killer is consider as the only way to move forward.
4337  */
4338 #define MAX_COMPACT_RETRIES 16
4339 
4340 #ifdef CONFIG_COMPACTION
4341 /* Try memory compaction for high-order allocations before reclaim */
4342 static struct page *
4343 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4344 		unsigned int alloc_flags, const struct alloc_context *ac,
4345 		enum compact_priority prio, enum compact_result *compact_result)
4346 {
4347 	struct page *page = NULL;
4348 	unsigned long pflags;
4349 	unsigned int noreclaim_flag;
4350 
4351 	if (!order)
4352 		return NULL;
4353 
4354 	psi_memstall_enter(&pflags);
4355 	noreclaim_flag = memalloc_noreclaim_save();
4356 
4357 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4358 								prio, &page);
4359 
4360 	memalloc_noreclaim_restore(noreclaim_flag);
4361 	psi_memstall_leave(&pflags);
4362 
4363 	if (*compact_result == COMPACT_SKIPPED)
4364 		return NULL;
4365 	/*
4366 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4367 	 * count a compaction stall
4368 	 */
4369 	count_vm_event(COMPACTSTALL);
4370 
4371 	/* Prep a captured page if available */
4372 	if (page)
4373 		prep_new_page(page, order, gfp_mask, alloc_flags);
4374 
4375 	/* Try get a page from the freelist if available */
4376 	if (!page)
4377 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4378 
4379 	if (page) {
4380 		struct zone *zone = page_zone(page);
4381 
4382 		zone->compact_blockskip_flush = false;
4383 		compaction_defer_reset(zone, order, true);
4384 		count_vm_event(COMPACTSUCCESS);
4385 		return page;
4386 	}
4387 
4388 	/*
4389 	 * It's bad if compaction run occurs and fails. The most likely reason
4390 	 * is that pages exist, but not enough to satisfy watermarks.
4391 	 */
4392 	count_vm_event(COMPACTFAIL);
4393 
4394 	cond_resched();
4395 
4396 	return NULL;
4397 }
4398 
4399 static inline bool
4400 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4401 		     enum compact_result compact_result,
4402 		     enum compact_priority *compact_priority,
4403 		     int *compaction_retries)
4404 {
4405 	int max_retries = MAX_COMPACT_RETRIES;
4406 	int min_priority;
4407 	bool ret = false;
4408 	int retries = *compaction_retries;
4409 	enum compact_priority priority = *compact_priority;
4410 
4411 	if (!order)
4412 		return false;
4413 
4414 	if (fatal_signal_pending(current))
4415 		return false;
4416 
4417 	if (compaction_made_progress(compact_result))
4418 		(*compaction_retries)++;
4419 
4420 	/*
4421 	 * compaction considers all the zone as desperately out of memory
4422 	 * so it doesn't really make much sense to retry except when the
4423 	 * failure could be caused by insufficient priority
4424 	 */
4425 	if (compaction_failed(compact_result))
4426 		goto check_priority;
4427 
4428 	/*
4429 	 * compaction was skipped because there are not enough order-0 pages
4430 	 * to work with, so we retry only if it looks like reclaim can help.
4431 	 */
4432 	if (compaction_needs_reclaim(compact_result)) {
4433 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4434 		goto out;
4435 	}
4436 
4437 	/*
4438 	 * make sure the compaction wasn't deferred or didn't bail out early
4439 	 * due to locks contention before we declare that we should give up.
4440 	 * But the next retry should use a higher priority if allowed, so
4441 	 * we don't just keep bailing out endlessly.
4442 	 */
4443 	if (compaction_withdrawn(compact_result)) {
4444 		goto check_priority;
4445 	}
4446 
4447 	/*
4448 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4449 	 * costly ones because they are de facto nofail and invoke OOM
4450 	 * killer to move on while costly can fail and users are ready
4451 	 * to cope with that. 1/4 retries is rather arbitrary but we
4452 	 * would need much more detailed feedback from compaction to
4453 	 * make a better decision.
4454 	 */
4455 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4456 		max_retries /= 4;
4457 	if (*compaction_retries <= max_retries) {
4458 		ret = true;
4459 		goto out;
4460 	}
4461 
4462 	/*
4463 	 * Make sure there are attempts at the highest priority if we exhausted
4464 	 * all retries or failed at the lower priorities.
4465 	 */
4466 check_priority:
4467 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4468 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4469 
4470 	if (*compact_priority > min_priority) {
4471 		(*compact_priority)--;
4472 		*compaction_retries = 0;
4473 		ret = true;
4474 	}
4475 out:
4476 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4477 	return ret;
4478 }
4479 #else
4480 static inline struct page *
4481 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4482 		unsigned int alloc_flags, const struct alloc_context *ac,
4483 		enum compact_priority prio, enum compact_result *compact_result)
4484 {
4485 	*compact_result = COMPACT_SKIPPED;
4486 	return NULL;
4487 }
4488 
4489 static inline bool
4490 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4491 		     enum compact_result compact_result,
4492 		     enum compact_priority *compact_priority,
4493 		     int *compaction_retries)
4494 {
4495 	struct zone *zone;
4496 	struct zoneref *z;
4497 
4498 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4499 		return false;
4500 
4501 	/*
4502 	 * There are setups with compaction disabled which would prefer to loop
4503 	 * inside the allocator rather than hit the oom killer prematurely.
4504 	 * Let's give them a good hope and keep retrying while the order-0
4505 	 * watermarks are OK.
4506 	 */
4507 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4508 				ac->highest_zoneidx, ac->nodemask) {
4509 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4510 					ac->highest_zoneidx, alloc_flags))
4511 			return true;
4512 	}
4513 	return false;
4514 }
4515 #endif /* CONFIG_COMPACTION */
4516 
4517 #ifdef CONFIG_LOCKDEP
4518 static struct lockdep_map __fs_reclaim_map =
4519 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4520 
4521 static bool __need_reclaim(gfp_t gfp_mask)
4522 {
4523 	/* no reclaim without waiting on it */
4524 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4525 		return false;
4526 
4527 	/* this guy won't enter reclaim */
4528 	if (current->flags & PF_MEMALLOC)
4529 		return false;
4530 
4531 	if (gfp_mask & __GFP_NOLOCKDEP)
4532 		return false;
4533 
4534 	return true;
4535 }
4536 
4537 void __fs_reclaim_acquire(unsigned long ip)
4538 {
4539 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4540 }
4541 
4542 void __fs_reclaim_release(unsigned long ip)
4543 {
4544 	lock_release(&__fs_reclaim_map, ip);
4545 }
4546 
4547 void fs_reclaim_acquire(gfp_t gfp_mask)
4548 {
4549 	gfp_mask = current_gfp_context(gfp_mask);
4550 
4551 	if (__need_reclaim(gfp_mask)) {
4552 		if (gfp_mask & __GFP_FS)
4553 			__fs_reclaim_acquire(_RET_IP_);
4554 
4555 #ifdef CONFIG_MMU_NOTIFIER
4556 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4557 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4558 #endif
4559 
4560 	}
4561 }
4562 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4563 
4564 void fs_reclaim_release(gfp_t gfp_mask)
4565 {
4566 	gfp_mask = current_gfp_context(gfp_mask);
4567 
4568 	if (__need_reclaim(gfp_mask)) {
4569 		if (gfp_mask & __GFP_FS)
4570 			__fs_reclaim_release(_RET_IP_);
4571 	}
4572 }
4573 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4574 #endif
4575 
4576 /* Perform direct synchronous page reclaim */
4577 static unsigned long
4578 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4579 					const struct alloc_context *ac)
4580 {
4581 	unsigned int noreclaim_flag;
4582 	unsigned long pflags, progress;
4583 
4584 	cond_resched();
4585 
4586 	/* We now go into synchronous reclaim */
4587 	cpuset_memory_pressure_bump();
4588 	psi_memstall_enter(&pflags);
4589 	fs_reclaim_acquire(gfp_mask);
4590 	noreclaim_flag = memalloc_noreclaim_save();
4591 
4592 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4593 								ac->nodemask);
4594 
4595 	memalloc_noreclaim_restore(noreclaim_flag);
4596 	fs_reclaim_release(gfp_mask);
4597 	psi_memstall_leave(&pflags);
4598 
4599 	cond_resched();
4600 
4601 	return progress;
4602 }
4603 
4604 /* The really slow allocator path where we enter direct reclaim */
4605 static inline struct page *
4606 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4607 		unsigned int alloc_flags, const struct alloc_context *ac,
4608 		unsigned long *did_some_progress)
4609 {
4610 	struct page *page = NULL;
4611 	bool drained = false;
4612 
4613 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4614 	if (unlikely(!(*did_some_progress)))
4615 		return NULL;
4616 
4617 retry:
4618 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4619 
4620 	/*
4621 	 * If an allocation failed after direct reclaim, it could be because
4622 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4623 	 * Shrink them and try again
4624 	 */
4625 	if (!page && !drained) {
4626 		unreserve_highatomic_pageblock(ac, false);
4627 		drain_all_pages(NULL);
4628 		drained = true;
4629 		goto retry;
4630 	}
4631 
4632 	return page;
4633 }
4634 
4635 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4636 			     const struct alloc_context *ac)
4637 {
4638 	struct zoneref *z;
4639 	struct zone *zone;
4640 	pg_data_t *last_pgdat = NULL;
4641 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4642 
4643 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4644 					ac->nodemask) {
4645 		if (last_pgdat != zone->zone_pgdat)
4646 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4647 		last_pgdat = zone->zone_pgdat;
4648 	}
4649 }
4650 
4651 static inline unsigned int
4652 gfp_to_alloc_flags(gfp_t gfp_mask)
4653 {
4654 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4655 
4656 	/*
4657 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4658 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4659 	 * to save two branches.
4660 	 */
4661 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4662 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4663 
4664 	/*
4665 	 * The caller may dip into page reserves a bit more if the caller
4666 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4667 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4668 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4669 	 */
4670 	alloc_flags |= (__force int)
4671 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4672 
4673 	if (gfp_mask & __GFP_ATOMIC) {
4674 		/*
4675 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4676 		 * if it can't schedule.
4677 		 */
4678 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4679 			alloc_flags |= ALLOC_HARDER;
4680 		/*
4681 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4682 		 * comment for __cpuset_node_allowed().
4683 		 */
4684 		alloc_flags &= ~ALLOC_CPUSET;
4685 	} else if (unlikely(rt_task(current)) && in_task())
4686 		alloc_flags |= ALLOC_HARDER;
4687 
4688 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4689 
4690 	return alloc_flags;
4691 }
4692 
4693 static bool oom_reserves_allowed(struct task_struct *tsk)
4694 {
4695 	if (!tsk_is_oom_victim(tsk))
4696 		return false;
4697 
4698 	/*
4699 	 * !MMU doesn't have oom reaper so give access to memory reserves
4700 	 * only to the thread with TIF_MEMDIE set
4701 	 */
4702 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4703 		return false;
4704 
4705 	return true;
4706 }
4707 
4708 /*
4709  * Distinguish requests which really need access to full memory
4710  * reserves from oom victims which can live with a portion of it
4711  */
4712 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4713 {
4714 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4715 		return 0;
4716 	if (gfp_mask & __GFP_MEMALLOC)
4717 		return ALLOC_NO_WATERMARKS;
4718 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4719 		return ALLOC_NO_WATERMARKS;
4720 	if (!in_interrupt()) {
4721 		if (current->flags & PF_MEMALLOC)
4722 			return ALLOC_NO_WATERMARKS;
4723 		else if (oom_reserves_allowed(current))
4724 			return ALLOC_OOM;
4725 	}
4726 
4727 	return 0;
4728 }
4729 
4730 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4731 {
4732 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4733 }
4734 
4735 /*
4736  * Checks whether it makes sense to retry the reclaim to make a forward progress
4737  * for the given allocation request.
4738  *
4739  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4740  * without success, or when we couldn't even meet the watermark if we
4741  * reclaimed all remaining pages on the LRU lists.
4742  *
4743  * Returns true if a retry is viable or false to enter the oom path.
4744  */
4745 static inline bool
4746 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4747 		     struct alloc_context *ac, int alloc_flags,
4748 		     bool did_some_progress, int *no_progress_loops)
4749 {
4750 	struct zone *zone;
4751 	struct zoneref *z;
4752 	bool ret = false;
4753 
4754 	/*
4755 	 * Costly allocations might have made a progress but this doesn't mean
4756 	 * their order will become available due to high fragmentation so
4757 	 * always increment the no progress counter for them
4758 	 */
4759 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4760 		*no_progress_loops = 0;
4761 	else
4762 		(*no_progress_loops)++;
4763 
4764 	/*
4765 	 * Make sure we converge to OOM if we cannot make any progress
4766 	 * several times in the row.
4767 	 */
4768 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4769 		/* Before OOM, exhaust highatomic_reserve */
4770 		return unreserve_highatomic_pageblock(ac, true);
4771 	}
4772 
4773 	/*
4774 	 * Keep reclaiming pages while there is a chance this will lead
4775 	 * somewhere.  If none of the target zones can satisfy our allocation
4776 	 * request even if all reclaimable pages are considered then we are
4777 	 * screwed and have to go OOM.
4778 	 */
4779 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4780 				ac->highest_zoneidx, ac->nodemask) {
4781 		unsigned long available;
4782 		unsigned long reclaimable;
4783 		unsigned long min_wmark = min_wmark_pages(zone);
4784 		bool wmark;
4785 
4786 		available = reclaimable = zone_reclaimable_pages(zone);
4787 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4788 
4789 		/*
4790 		 * Would the allocation succeed if we reclaimed all
4791 		 * reclaimable pages?
4792 		 */
4793 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4794 				ac->highest_zoneidx, alloc_flags, available);
4795 		trace_reclaim_retry_zone(z, order, reclaimable,
4796 				available, min_wmark, *no_progress_loops, wmark);
4797 		if (wmark) {
4798 			/*
4799 			 * If we didn't make any progress and have a lot of
4800 			 * dirty + writeback pages then we should wait for
4801 			 * an IO to complete to slow down the reclaim and
4802 			 * prevent from pre mature OOM
4803 			 */
4804 			if (!did_some_progress) {
4805 				unsigned long write_pending;
4806 
4807 				write_pending = zone_page_state_snapshot(zone,
4808 							NR_ZONE_WRITE_PENDING);
4809 
4810 				if (2 * write_pending > reclaimable) {
4811 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4812 					return true;
4813 				}
4814 			}
4815 
4816 			ret = true;
4817 			goto out;
4818 		}
4819 	}
4820 
4821 out:
4822 	/*
4823 	 * Memory allocation/reclaim might be called from a WQ context and the
4824 	 * current implementation of the WQ concurrency control doesn't
4825 	 * recognize that a particular WQ is congested if the worker thread is
4826 	 * looping without ever sleeping. Therefore we have to do a short sleep
4827 	 * here rather than calling cond_resched().
4828 	 */
4829 	if (current->flags & PF_WQ_WORKER)
4830 		schedule_timeout_uninterruptible(1);
4831 	else
4832 		cond_resched();
4833 	return ret;
4834 }
4835 
4836 static inline bool
4837 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4838 {
4839 	/*
4840 	 * It's possible that cpuset's mems_allowed and the nodemask from
4841 	 * mempolicy don't intersect. This should be normally dealt with by
4842 	 * policy_nodemask(), but it's possible to race with cpuset update in
4843 	 * such a way the check therein was true, and then it became false
4844 	 * before we got our cpuset_mems_cookie here.
4845 	 * This assumes that for all allocations, ac->nodemask can come only
4846 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4847 	 * when it does not intersect with the cpuset restrictions) or the
4848 	 * caller can deal with a violated nodemask.
4849 	 */
4850 	if (cpusets_enabled() && ac->nodemask &&
4851 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4852 		ac->nodemask = NULL;
4853 		return true;
4854 	}
4855 
4856 	/*
4857 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4858 	 * possible to race with parallel threads in such a way that our
4859 	 * allocation can fail while the mask is being updated. If we are about
4860 	 * to fail, check if the cpuset changed during allocation and if so,
4861 	 * retry.
4862 	 */
4863 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4864 		return true;
4865 
4866 	return false;
4867 }
4868 
4869 static inline struct page *
4870 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4871 						struct alloc_context *ac)
4872 {
4873 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4874 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4875 	struct page *page = NULL;
4876 	unsigned int alloc_flags;
4877 	unsigned long did_some_progress;
4878 	enum compact_priority compact_priority;
4879 	enum compact_result compact_result;
4880 	int compaction_retries;
4881 	int no_progress_loops;
4882 	unsigned int cpuset_mems_cookie;
4883 	int reserve_flags;
4884 
4885 	/*
4886 	 * We also sanity check to catch abuse of atomic reserves being used by
4887 	 * callers that are not in atomic context.
4888 	 */
4889 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4890 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4891 		gfp_mask &= ~__GFP_ATOMIC;
4892 
4893 retry_cpuset:
4894 	compaction_retries = 0;
4895 	no_progress_loops = 0;
4896 	compact_priority = DEF_COMPACT_PRIORITY;
4897 	cpuset_mems_cookie = read_mems_allowed_begin();
4898 
4899 	/*
4900 	 * The fast path uses conservative alloc_flags to succeed only until
4901 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4902 	 * alloc_flags precisely. So we do that now.
4903 	 */
4904 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4905 
4906 	/*
4907 	 * We need to recalculate the starting point for the zonelist iterator
4908 	 * because we might have used different nodemask in the fast path, or
4909 	 * there was a cpuset modification and we are retrying - otherwise we
4910 	 * could end up iterating over non-eligible zones endlessly.
4911 	 */
4912 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4913 					ac->highest_zoneidx, ac->nodemask);
4914 	if (!ac->preferred_zoneref->zone)
4915 		goto nopage;
4916 
4917 	if (alloc_flags & ALLOC_KSWAPD)
4918 		wake_all_kswapds(order, gfp_mask, ac);
4919 
4920 	/*
4921 	 * The adjusted alloc_flags might result in immediate success, so try
4922 	 * that first
4923 	 */
4924 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4925 	if (page)
4926 		goto got_pg;
4927 
4928 	/*
4929 	 * For costly allocations, try direct compaction first, as it's likely
4930 	 * that we have enough base pages and don't need to reclaim. For non-
4931 	 * movable high-order allocations, do that as well, as compaction will
4932 	 * try prevent permanent fragmentation by migrating from blocks of the
4933 	 * same migratetype.
4934 	 * Don't try this for allocations that are allowed to ignore
4935 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4936 	 */
4937 	if (can_direct_reclaim &&
4938 			(costly_order ||
4939 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4940 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4941 		page = __alloc_pages_direct_compact(gfp_mask, order,
4942 						alloc_flags, ac,
4943 						INIT_COMPACT_PRIORITY,
4944 						&compact_result);
4945 		if (page)
4946 			goto got_pg;
4947 
4948 		/*
4949 		 * Checks for costly allocations with __GFP_NORETRY, which
4950 		 * includes some THP page fault allocations
4951 		 */
4952 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4953 			/*
4954 			 * If allocating entire pageblock(s) and compaction
4955 			 * failed because all zones are below low watermarks
4956 			 * or is prohibited because it recently failed at this
4957 			 * order, fail immediately unless the allocator has
4958 			 * requested compaction and reclaim retry.
4959 			 *
4960 			 * Reclaim is
4961 			 *  - potentially very expensive because zones are far
4962 			 *    below their low watermarks or this is part of very
4963 			 *    bursty high order allocations,
4964 			 *  - not guaranteed to help because isolate_freepages()
4965 			 *    may not iterate over freed pages as part of its
4966 			 *    linear scan, and
4967 			 *  - unlikely to make entire pageblocks free on its
4968 			 *    own.
4969 			 */
4970 			if (compact_result == COMPACT_SKIPPED ||
4971 			    compact_result == COMPACT_DEFERRED)
4972 				goto nopage;
4973 
4974 			/*
4975 			 * Looks like reclaim/compaction is worth trying, but
4976 			 * sync compaction could be very expensive, so keep
4977 			 * using async compaction.
4978 			 */
4979 			compact_priority = INIT_COMPACT_PRIORITY;
4980 		}
4981 	}
4982 
4983 retry:
4984 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4985 	if (alloc_flags & ALLOC_KSWAPD)
4986 		wake_all_kswapds(order, gfp_mask, ac);
4987 
4988 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4989 	if (reserve_flags)
4990 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4991 
4992 	/*
4993 	 * Reset the nodemask and zonelist iterators if memory policies can be
4994 	 * ignored. These allocations are high priority and system rather than
4995 	 * user oriented.
4996 	 */
4997 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4998 		ac->nodemask = NULL;
4999 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5000 					ac->highest_zoneidx, ac->nodemask);
5001 	}
5002 
5003 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5004 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5005 	if (page)
5006 		goto got_pg;
5007 
5008 	/* Caller is not willing to reclaim, we can't balance anything */
5009 	if (!can_direct_reclaim)
5010 		goto nopage;
5011 
5012 	/* Avoid recursion of direct reclaim */
5013 	if (current->flags & PF_MEMALLOC)
5014 		goto nopage;
5015 
5016 	/* Try direct reclaim and then allocating */
5017 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5018 							&did_some_progress);
5019 	if (page)
5020 		goto got_pg;
5021 
5022 	/* Try direct compaction and then allocating */
5023 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5024 					compact_priority, &compact_result);
5025 	if (page)
5026 		goto got_pg;
5027 
5028 	/* Do not loop if specifically requested */
5029 	if (gfp_mask & __GFP_NORETRY)
5030 		goto nopage;
5031 
5032 	/*
5033 	 * Do not retry costly high order allocations unless they are
5034 	 * __GFP_RETRY_MAYFAIL
5035 	 */
5036 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5037 		goto nopage;
5038 
5039 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5040 				 did_some_progress > 0, &no_progress_loops))
5041 		goto retry;
5042 
5043 	/*
5044 	 * It doesn't make any sense to retry for the compaction if the order-0
5045 	 * reclaim is not able to make any progress because the current
5046 	 * implementation of the compaction depends on the sufficient amount
5047 	 * of free memory (see __compaction_suitable)
5048 	 */
5049 	if (did_some_progress > 0 &&
5050 			should_compact_retry(ac, order, alloc_flags,
5051 				compact_result, &compact_priority,
5052 				&compaction_retries))
5053 		goto retry;
5054 
5055 
5056 	/* Deal with possible cpuset update races before we start OOM killing */
5057 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5058 		goto retry_cpuset;
5059 
5060 	/* Reclaim has failed us, start killing things */
5061 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5062 	if (page)
5063 		goto got_pg;
5064 
5065 	/* Avoid allocations with no watermarks from looping endlessly */
5066 	if (tsk_is_oom_victim(current) &&
5067 	    (alloc_flags & ALLOC_OOM ||
5068 	     (gfp_mask & __GFP_NOMEMALLOC)))
5069 		goto nopage;
5070 
5071 	/* Retry as long as the OOM killer is making progress */
5072 	if (did_some_progress) {
5073 		no_progress_loops = 0;
5074 		goto retry;
5075 	}
5076 
5077 nopage:
5078 	/* Deal with possible cpuset update races before we fail */
5079 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5080 		goto retry_cpuset;
5081 
5082 	/*
5083 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5084 	 * we always retry
5085 	 */
5086 	if (gfp_mask & __GFP_NOFAIL) {
5087 		/*
5088 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5089 		 * of any new users that actually require GFP_NOWAIT
5090 		 */
5091 		if (WARN_ON_ONCE(!can_direct_reclaim))
5092 			goto fail;
5093 
5094 		/*
5095 		 * PF_MEMALLOC request from this context is rather bizarre
5096 		 * because we cannot reclaim anything and only can loop waiting
5097 		 * for somebody to do a work for us
5098 		 */
5099 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5100 
5101 		/*
5102 		 * non failing costly orders are a hard requirement which we
5103 		 * are not prepared for much so let's warn about these users
5104 		 * so that we can identify them and convert them to something
5105 		 * else.
5106 		 */
5107 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5108 
5109 		/*
5110 		 * Help non-failing allocations by giving them access to memory
5111 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5112 		 * could deplete whole memory reserves which would just make
5113 		 * the situation worse
5114 		 */
5115 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5116 		if (page)
5117 			goto got_pg;
5118 
5119 		cond_resched();
5120 		goto retry;
5121 	}
5122 fail:
5123 	warn_alloc(gfp_mask, ac->nodemask,
5124 			"page allocation failure: order:%u", order);
5125 got_pg:
5126 	return page;
5127 }
5128 
5129 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5130 		int preferred_nid, nodemask_t *nodemask,
5131 		struct alloc_context *ac, gfp_t *alloc_gfp,
5132 		unsigned int *alloc_flags)
5133 {
5134 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5135 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5136 	ac->nodemask = nodemask;
5137 	ac->migratetype = gfp_migratetype(gfp_mask);
5138 
5139 	if (cpusets_enabled()) {
5140 		*alloc_gfp |= __GFP_HARDWALL;
5141 		/*
5142 		 * When we are in the interrupt context, it is irrelevant
5143 		 * to the current task context. It means that any node ok.
5144 		 */
5145 		if (in_task() && !ac->nodemask)
5146 			ac->nodemask = &cpuset_current_mems_allowed;
5147 		else
5148 			*alloc_flags |= ALLOC_CPUSET;
5149 	}
5150 
5151 	fs_reclaim_acquire(gfp_mask);
5152 	fs_reclaim_release(gfp_mask);
5153 
5154 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5155 
5156 	if (should_fail_alloc_page(gfp_mask, order))
5157 		return false;
5158 
5159 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5160 
5161 	/* Dirty zone balancing only done in the fast path */
5162 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5163 
5164 	/*
5165 	 * The preferred zone is used for statistics but crucially it is
5166 	 * also used as the starting point for the zonelist iterator. It
5167 	 * may get reset for allocations that ignore memory policies.
5168 	 */
5169 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5170 					ac->highest_zoneidx, ac->nodemask);
5171 
5172 	return true;
5173 }
5174 
5175 /*
5176  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5177  * @gfp: GFP flags for the allocation
5178  * @preferred_nid: The preferred NUMA node ID to allocate from
5179  * @nodemask: Set of nodes to allocate from, may be NULL
5180  * @nr_pages: The number of pages desired on the list or array
5181  * @page_list: Optional list to store the allocated pages
5182  * @page_array: Optional array to store the pages
5183  *
5184  * This is a batched version of the page allocator that attempts to
5185  * allocate nr_pages quickly. Pages are added to page_list if page_list
5186  * is not NULL, otherwise it is assumed that the page_array is valid.
5187  *
5188  * For lists, nr_pages is the number of pages that should be allocated.
5189  *
5190  * For arrays, only NULL elements are populated with pages and nr_pages
5191  * is the maximum number of pages that will be stored in the array.
5192  *
5193  * Returns the number of pages on the list or array.
5194  */
5195 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5196 			nodemask_t *nodemask, int nr_pages,
5197 			struct list_head *page_list,
5198 			struct page **page_array)
5199 {
5200 	struct page *page;
5201 	unsigned long flags;
5202 	struct zone *zone;
5203 	struct zoneref *z;
5204 	struct per_cpu_pages *pcp;
5205 	struct list_head *pcp_list;
5206 	struct alloc_context ac;
5207 	gfp_t alloc_gfp;
5208 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5209 	int nr_populated = 0, nr_account = 0;
5210 
5211 	/*
5212 	 * Skip populated array elements to determine if any pages need
5213 	 * to be allocated before disabling IRQs.
5214 	 */
5215 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5216 		nr_populated++;
5217 
5218 	/* No pages requested? */
5219 	if (unlikely(nr_pages <= 0))
5220 		goto out;
5221 
5222 	/* Already populated array? */
5223 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5224 		goto out;
5225 
5226 	/* Use the single page allocator for one page. */
5227 	if (nr_pages - nr_populated == 1)
5228 		goto failed;
5229 
5230 #ifdef CONFIG_PAGE_OWNER
5231 	/*
5232 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5233 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5234 	 * removes much of the performance benefit of bulk allocation so
5235 	 * force the caller to allocate one page at a time as it'll have
5236 	 * similar performance to added complexity to the bulk allocator.
5237 	 */
5238 	if (static_branch_unlikely(&page_owner_inited))
5239 		goto failed;
5240 #endif
5241 
5242 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5243 	gfp &= gfp_allowed_mask;
5244 	alloc_gfp = gfp;
5245 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5246 		goto out;
5247 	gfp = alloc_gfp;
5248 
5249 	/* Find an allowed local zone that meets the low watermark. */
5250 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5251 		unsigned long mark;
5252 
5253 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5254 		    !__cpuset_zone_allowed(zone, gfp)) {
5255 			continue;
5256 		}
5257 
5258 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5259 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5260 			goto failed;
5261 		}
5262 
5263 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5264 		if (zone_watermark_fast(zone, 0,  mark,
5265 				zonelist_zone_idx(ac.preferred_zoneref),
5266 				alloc_flags, gfp)) {
5267 			break;
5268 		}
5269 	}
5270 
5271 	/*
5272 	 * If there are no allowed local zones that meets the watermarks then
5273 	 * try to allocate a single page and reclaim if necessary.
5274 	 */
5275 	if (unlikely(!zone))
5276 		goto failed;
5277 
5278 	/* Attempt the batch allocation */
5279 	local_lock_irqsave(&pagesets.lock, flags);
5280 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5281 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5282 
5283 	while (nr_populated < nr_pages) {
5284 
5285 		/* Skip existing pages */
5286 		if (page_array && page_array[nr_populated]) {
5287 			nr_populated++;
5288 			continue;
5289 		}
5290 
5291 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5292 								pcp, pcp_list);
5293 		if (unlikely(!page)) {
5294 			/* Try and get at least one page */
5295 			if (!nr_populated)
5296 				goto failed_irq;
5297 			break;
5298 		}
5299 		nr_account++;
5300 
5301 		prep_new_page(page, 0, gfp, 0);
5302 		if (page_list)
5303 			list_add(&page->lru, page_list);
5304 		else
5305 			page_array[nr_populated] = page;
5306 		nr_populated++;
5307 	}
5308 
5309 	local_unlock_irqrestore(&pagesets.lock, flags);
5310 
5311 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5312 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5313 
5314 out:
5315 	return nr_populated;
5316 
5317 failed_irq:
5318 	local_unlock_irqrestore(&pagesets.lock, flags);
5319 
5320 failed:
5321 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5322 	if (page) {
5323 		if (page_list)
5324 			list_add(&page->lru, page_list);
5325 		else
5326 			page_array[nr_populated] = page;
5327 		nr_populated++;
5328 	}
5329 
5330 	goto out;
5331 }
5332 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5333 
5334 /*
5335  * This is the 'heart' of the zoned buddy allocator.
5336  */
5337 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5338 							nodemask_t *nodemask)
5339 {
5340 	struct page *page;
5341 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5342 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5343 	struct alloc_context ac = { };
5344 
5345 	/*
5346 	 * There are several places where we assume that the order value is sane
5347 	 * so bail out early if the request is out of bound.
5348 	 */
5349 	if (unlikely(order >= MAX_ORDER)) {
5350 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5351 		return NULL;
5352 	}
5353 
5354 	gfp &= gfp_allowed_mask;
5355 	/*
5356 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5357 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5358 	 * from a particular context which has been marked by
5359 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5360 	 * movable zones are not used during allocation.
5361 	 */
5362 	gfp = current_gfp_context(gfp);
5363 	alloc_gfp = gfp;
5364 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5365 			&alloc_gfp, &alloc_flags))
5366 		return NULL;
5367 
5368 	/*
5369 	 * Forbid the first pass from falling back to types that fragment
5370 	 * memory until all local zones are considered.
5371 	 */
5372 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5373 
5374 	/* First allocation attempt */
5375 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5376 	if (likely(page))
5377 		goto out;
5378 
5379 	alloc_gfp = gfp;
5380 	ac.spread_dirty_pages = false;
5381 
5382 	/*
5383 	 * Restore the original nodemask if it was potentially replaced with
5384 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5385 	 */
5386 	ac.nodemask = nodemask;
5387 
5388 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5389 
5390 out:
5391 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5392 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5393 		__free_pages(page, order);
5394 		page = NULL;
5395 	}
5396 
5397 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5398 
5399 	return page;
5400 }
5401 EXPORT_SYMBOL(__alloc_pages);
5402 
5403 /*
5404  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5405  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5406  * you need to access high mem.
5407  */
5408 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5409 {
5410 	struct page *page;
5411 
5412 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5413 	if (!page)
5414 		return 0;
5415 	return (unsigned long) page_address(page);
5416 }
5417 EXPORT_SYMBOL(__get_free_pages);
5418 
5419 unsigned long get_zeroed_page(gfp_t gfp_mask)
5420 {
5421 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5422 }
5423 EXPORT_SYMBOL(get_zeroed_page);
5424 
5425 /**
5426  * __free_pages - Free pages allocated with alloc_pages().
5427  * @page: The page pointer returned from alloc_pages().
5428  * @order: The order of the allocation.
5429  *
5430  * This function can free multi-page allocations that are not compound
5431  * pages.  It does not check that the @order passed in matches that of
5432  * the allocation, so it is easy to leak memory.  Freeing more memory
5433  * than was allocated will probably emit a warning.
5434  *
5435  * If the last reference to this page is speculative, it will be released
5436  * by put_page() which only frees the first page of a non-compound
5437  * allocation.  To prevent the remaining pages from being leaked, we free
5438  * the subsequent pages here.  If you want to use the page's reference
5439  * count to decide when to free the allocation, you should allocate a
5440  * compound page, and use put_page() instead of __free_pages().
5441  *
5442  * Context: May be called in interrupt context or while holding a normal
5443  * spinlock, but not in NMI context or while holding a raw spinlock.
5444  */
5445 void __free_pages(struct page *page, unsigned int order)
5446 {
5447 	if (put_page_testzero(page))
5448 		free_the_page(page, order);
5449 	else if (!PageHead(page))
5450 		while (order-- > 0)
5451 			free_the_page(page + (1 << order), order);
5452 }
5453 EXPORT_SYMBOL(__free_pages);
5454 
5455 void free_pages(unsigned long addr, unsigned int order)
5456 {
5457 	if (addr != 0) {
5458 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5459 		__free_pages(virt_to_page((void *)addr), order);
5460 	}
5461 }
5462 
5463 EXPORT_SYMBOL(free_pages);
5464 
5465 /*
5466  * Page Fragment:
5467  *  An arbitrary-length arbitrary-offset area of memory which resides
5468  *  within a 0 or higher order page.  Multiple fragments within that page
5469  *  are individually refcounted, in the page's reference counter.
5470  *
5471  * The page_frag functions below provide a simple allocation framework for
5472  * page fragments.  This is used by the network stack and network device
5473  * drivers to provide a backing region of memory for use as either an
5474  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5475  */
5476 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5477 					     gfp_t gfp_mask)
5478 {
5479 	struct page *page = NULL;
5480 	gfp_t gfp = gfp_mask;
5481 
5482 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5483 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5484 		    __GFP_NOMEMALLOC;
5485 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5486 				PAGE_FRAG_CACHE_MAX_ORDER);
5487 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5488 #endif
5489 	if (unlikely(!page))
5490 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5491 
5492 	nc->va = page ? page_address(page) : NULL;
5493 
5494 	return page;
5495 }
5496 
5497 void __page_frag_cache_drain(struct page *page, unsigned int count)
5498 {
5499 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5500 
5501 	if (page_ref_sub_and_test(page, count))
5502 		free_the_page(page, compound_order(page));
5503 }
5504 EXPORT_SYMBOL(__page_frag_cache_drain);
5505 
5506 void *page_frag_alloc_align(struct page_frag_cache *nc,
5507 		      unsigned int fragsz, gfp_t gfp_mask,
5508 		      unsigned int align_mask)
5509 {
5510 	unsigned int size = PAGE_SIZE;
5511 	struct page *page;
5512 	int offset;
5513 
5514 	if (unlikely(!nc->va)) {
5515 refill:
5516 		page = __page_frag_cache_refill(nc, gfp_mask);
5517 		if (!page)
5518 			return NULL;
5519 
5520 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5521 		/* if size can vary use size else just use PAGE_SIZE */
5522 		size = nc->size;
5523 #endif
5524 		/* Even if we own the page, we do not use atomic_set().
5525 		 * This would break get_page_unless_zero() users.
5526 		 */
5527 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5528 
5529 		/* reset page count bias and offset to start of new frag */
5530 		nc->pfmemalloc = page_is_pfmemalloc(page);
5531 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5532 		nc->offset = size;
5533 	}
5534 
5535 	offset = nc->offset - fragsz;
5536 	if (unlikely(offset < 0)) {
5537 		page = virt_to_page(nc->va);
5538 
5539 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5540 			goto refill;
5541 
5542 		if (unlikely(nc->pfmemalloc)) {
5543 			free_the_page(page, compound_order(page));
5544 			goto refill;
5545 		}
5546 
5547 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5548 		/* if size can vary use size else just use PAGE_SIZE */
5549 		size = nc->size;
5550 #endif
5551 		/* OK, page count is 0, we can safely set it */
5552 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5553 
5554 		/* reset page count bias and offset to start of new frag */
5555 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5556 		offset = size - fragsz;
5557 	}
5558 
5559 	nc->pagecnt_bias--;
5560 	offset &= align_mask;
5561 	nc->offset = offset;
5562 
5563 	return nc->va + offset;
5564 }
5565 EXPORT_SYMBOL(page_frag_alloc_align);
5566 
5567 /*
5568  * Frees a page fragment allocated out of either a compound or order 0 page.
5569  */
5570 void page_frag_free(void *addr)
5571 {
5572 	struct page *page = virt_to_head_page(addr);
5573 
5574 	if (unlikely(put_page_testzero(page)))
5575 		free_the_page(page, compound_order(page));
5576 }
5577 EXPORT_SYMBOL(page_frag_free);
5578 
5579 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5580 		size_t size)
5581 {
5582 	if (addr) {
5583 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5584 		unsigned long used = addr + PAGE_ALIGN(size);
5585 
5586 		split_page(virt_to_page((void *)addr), order);
5587 		while (used < alloc_end) {
5588 			free_page(used);
5589 			used += PAGE_SIZE;
5590 		}
5591 	}
5592 	return (void *)addr;
5593 }
5594 
5595 /**
5596  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5597  * @size: the number of bytes to allocate
5598  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5599  *
5600  * This function is similar to alloc_pages(), except that it allocates the
5601  * minimum number of pages to satisfy the request.  alloc_pages() can only
5602  * allocate memory in power-of-two pages.
5603  *
5604  * This function is also limited by MAX_ORDER.
5605  *
5606  * Memory allocated by this function must be released by free_pages_exact().
5607  *
5608  * Return: pointer to the allocated area or %NULL in case of error.
5609  */
5610 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5611 {
5612 	unsigned int order = get_order(size);
5613 	unsigned long addr;
5614 
5615 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5616 		gfp_mask &= ~__GFP_COMP;
5617 
5618 	addr = __get_free_pages(gfp_mask, order);
5619 	return make_alloc_exact(addr, order, size);
5620 }
5621 EXPORT_SYMBOL(alloc_pages_exact);
5622 
5623 /**
5624  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5625  *			   pages on a node.
5626  * @nid: the preferred node ID where memory should be allocated
5627  * @size: the number of bytes to allocate
5628  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5629  *
5630  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5631  * back.
5632  *
5633  * Return: pointer to the allocated area or %NULL in case of error.
5634  */
5635 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5636 {
5637 	unsigned int order = get_order(size);
5638 	struct page *p;
5639 
5640 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5641 		gfp_mask &= ~__GFP_COMP;
5642 
5643 	p = alloc_pages_node(nid, gfp_mask, order);
5644 	if (!p)
5645 		return NULL;
5646 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5647 }
5648 
5649 /**
5650  * free_pages_exact - release memory allocated via alloc_pages_exact()
5651  * @virt: the value returned by alloc_pages_exact.
5652  * @size: size of allocation, same value as passed to alloc_pages_exact().
5653  *
5654  * Release the memory allocated by a previous call to alloc_pages_exact.
5655  */
5656 void free_pages_exact(void *virt, size_t size)
5657 {
5658 	unsigned long addr = (unsigned long)virt;
5659 	unsigned long end = addr + PAGE_ALIGN(size);
5660 
5661 	while (addr < end) {
5662 		free_page(addr);
5663 		addr += PAGE_SIZE;
5664 	}
5665 }
5666 EXPORT_SYMBOL(free_pages_exact);
5667 
5668 /**
5669  * nr_free_zone_pages - count number of pages beyond high watermark
5670  * @offset: The zone index of the highest zone
5671  *
5672  * nr_free_zone_pages() counts the number of pages which are beyond the
5673  * high watermark within all zones at or below a given zone index.  For each
5674  * zone, the number of pages is calculated as:
5675  *
5676  *     nr_free_zone_pages = managed_pages - high_pages
5677  *
5678  * Return: number of pages beyond high watermark.
5679  */
5680 static unsigned long nr_free_zone_pages(int offset)
5681 {
5682 	struct zoneref *z;
5683 	struct zone *zone;
5684 
5685 	/* Just pick one node, since fallback list is circular */
5686 	unsigned long sum = 0;
5687 
5688 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5689 
5690 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5691 		unsigned long size = zone_managed_pages(zone);
5692 		unsigned long high = high_wmark_pages(zone);
5693 		if (size > high)
5694 			sum += size - high;
5695 	}
5696 
5697 	return sum;
5698 }
5699 
5700 /**
5701  * nr_free_buffer_pages - count number of pages beyond high watermark
5702  *
5703  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5704  * watermark within ZONE_DMA and ZONE_NORMAL.
5705  *
5706  * Return: number of pages beyond high watermark within ZONE_DMA and
5707  * ZONE_NORMAL.
5708  */
5709 unsigned long nr_free_buffer_pages(void)
5710 {
5711 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5712 }
5713 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5714 
5715 static inline void show_node(struct zone *zone)
5716 {
5717 	if (IS_ENABLED(CONFIG_NUMA))
5718 		printk("Node %d ", zone_to_nid(zone));
5719 }
5720 
5721 long si_mem_available(void)
5722 {
5723 	long available;
5724 	unsigned long pagecache;
5725 	unsigned long wmark_low = 0;
5726 	unsigned long pages[NR_LRU_LISTS];
5727 	unsigned long reclaimable;
5728 	struct zone *zone;
5729 	int lru;
5730 
5731 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5732 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5733 
5734 	for_each_zone(zone)
5735 		wmark_low += low_wmark_pages(zone);
5736 
5737 	/*
5738 	 * Estimate the amount of memory available for userspace allocations,
5739 	 * without causing swapping.
5740 	 */
5741 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5742 
5743 	/*
5744 	 * Not all the page cache can be freed, otherwise the system will
5745 	 * start swapping. Assume at least half of the page cache, or the
5746 	 * low watermark worth of cache, needs to stay.
5747 	 */
5748 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5749 	pagecache -= min(pagecache / 2, wmark_low);
5750 	available += pagecache;
5751 
5752 	/*
5753 	 * Part of the reclaimable slab and other kernel memory consists of
5754 	 * items that are in use, and cannot be freed. Cap this estimate at the
5755 	 * low watermark.
5756 	 */
5757 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5758 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5759 	available += reclaimable - min(reclaimable / 2, wmark_low);
5760 
5761 	if (available < 0)
5762 		available = 0;
5763 	return available;
5764 }
5765 EXPORT_SYMBOL_GPL(si_mem_available);
5766 
5767 void si_meminfo(struct sysinfo *val)
5768 {
5769 	val->totalram = totalram_pages();
5770 	val->sharedram = global_node_page_state(NR_SHMEM);
5771 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5772 	val->bufferram = nr_blockdev_pages();
5773 	val->totalhigh = totalhigh_pages();
5774 	val->freehigh = nr_free_highpages();
5775 	val->mem_unit = PAGE_SIZE;
5776 }
5777 
5778 EXPORT_SYMBOL(si_meminfo);
5779 
5780 #ifdef CONFIG_NUMA
5781 void si_meminfo_node(struct sysinfo *val, int nid)
5782 {
5783 	int zone_type;		/* needs to be signed */
5784 	unsigned long managed_pages = 0;
5785 	unsigned long managed_highpages = 0;
5786 	unsigned long free_highpages = 0;
5787 	pg_data_t *pgdat = NODE_DATA(nid);
5788 
5789 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5790 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5791 	val->totalram = managed_pages;
5792 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5793 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5794 #ifdef CONFIG_HIGHMEM
5795 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5796 		struct zone *zone = &pgdat->node_zones[zone_type];
5797 
5798 		if (is_highmem(zone)) {
5799 			managed_highpages += zone_managed_pages(zone);
5800 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5801 		}
5802 	}
5803 	val->totalhigh = managed_highpages;
5804 	val->freehigh = free_highpages;
5805 #else
5806 	val->totalhigh = managed_highpages;
5807 	val->freehigh = free_highpages;
5808 #endif
5809 	val->mem_unit = PAGE_SIZE;
5810 }
5811 #endif
5812 
5813 /*
5814  * Determine whether the node should be displayed or not, depending on whether
5815  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5816  */
5817 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5818 {
5819 	if (!(flags & SHOW_MEM_FILTER_NODES))
5820 		return false;
5821 
5822 	/*
5823 	 * no node mask - aka implicit memory numa policy. Do not bother with
5824 	 * the synchronization - read_mems_allowed_begin - because we do not
5825 	 * have to be precise here.
5826 	 */
5827 	if (!nodemask)
5828 		nodemask = &cpuset_current_mems_allowed;
5829 
5830 	return !node_isset(nid, *nodemask);
5831 }
5832 
5833 #define K(x) ((x) << (PAGE_SHIFT-10))
5834 
5835 static void show_migration_types(unsigned char type)
5836 {
5837 	static const char types[MIGRATE_TYPES] = {
5838 		[MIGRATE_UNMOVABLE]	= 'U',
5839 		[MIGRATE_MOVABLE]	= 'M',
5840 		[MIGRATE_RECLAIMABLE]	= 'E',
5841 		[MIGRATE_HIGHATOMIC]	= 'H',
5842 #ifdef CONFIG_CMA
5843 		[MIGRATE_CMA]		= 'C',
5844 #endif
5845 #ifdef CONFIG_MEMORY_ISOLATION
5846 		[MIGRATE_ISOLATE]	= 'I',
5847 #endif
5848 	};
5849 	char tmp[MIGRATE_TYPES + 1];
5850 	char *p = tmp;
5851 	int i;
5852 
5853 	for (i = 0; i < MIGRATE_TYPES; i++) {
5854 		if (type & (1 << i))
5855 			*p++ = types[i];
5856 	}
5857 
5858 	*p = '\0';
5859 	printk(KERN_CONT "(%s) ", tmp);
5860 }
5861 
5862 /*
5863  * Show free area list (used inside shift_scroll-lock stuff)
5864  * We also calculate the percentage fragmentation. We do this by counting the
5865  * memory on each free list with the exception of the first item on the list.
5866  *
5867  * Bits in @filter:
5868  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5869  *   cpuset.
5870  */
5871 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5872 {
5873 	unsigned long free_pcp = 0;
5874 	int cpu;
5875 	struct zone *zone;
5876 	pg_data_t *pgdat;
5877 
5878 	for_each_populated_zone(zone) {
5879 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5880 			continue;
5881 
5882 		for_each_online_cpu(cpu)
5883 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5884 	}
5885 
5886 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5887 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5888 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5889 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5890 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5891 		" kernel_misc_reclaimable:%lu\n"
5892 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5893 		global_node_page_state(NR_ACTIVE_ANON),
5894 		global_node_page_state(NR_INACTIVE_ANON),
5895 		global_node_page_state(NR_ISOLATED_ANON),
5896 		global_node_page_state(NR_ACTIVE_FILE),
5897 		global_node_page_state(NR_INACTIVE_FILE),
5898 		global_node_page_state(NR_ISOLATED_FILE),
5899 		global_node_page_state(NR_UNEVICTABLE),
5900 		global_node_page_state(NR_FILE_DIRTY),
5901 		global_node_page_state(NR_WRITEBACK),
5902 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5903 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5904 		global_node_page_state(NR_FILE_MAPPED),
5905 		global_node_page_state(NR_SHMEM),
5906 		global_node_page_state(NR_PAGETABLE),
5907 		global_zone_page_state(NR_BOUNCE),
5908 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5909 		global_zone_page_state(NR_FREE_PAGES),
5910 		free_pcp,
5911 		global_zone_page_state(NR_FREE_CMA_PAGES));
5912 
5913 	for_each_online_pgdat(pgdat) {
5914 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5915 			continue;
5916 
5917 		printk("Node %d"
5918 			" active_anon:%lukB"
5919 			" inactive_anon:%lukB"
5920 			" active_file:%lukB"
5921 			" inactive_file:%lukB"
5922 			" unevictable:%lukB"
5923 			" isolated(anon):%lukB"
5924 			" isolated(file):%lukB"
5925 			" mapped:%lukB"
5926 			" dirty:%lukB"
5927 			" writeback:%lukB"
5928 			" shmem:%lukB"
5929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5930 			" shmem_thp: %lukB"
5931 			" shmem_pmdmapped: %lukB"
5932 			" anon_thp: %lukB"
5933 #endif
5934 			" writeback_tmp:%lukB"
5935 			" kernel_stack:%lukB"
5936 #ifdef CONFIG_SHADOW_CALL_STACK
5937 			" shadow_call_stack:%lukB"
5938 #endif
5939 			" pagetables:%lukB"
5940 			" all_unreclaimable? %s"
5941 			"\n",
5942 			pgdat->node_id,
5943 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5944 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5945 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5946 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5947 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5948 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5949 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5950 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5951 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5952 			K(node_page_state(pgdat, NR_WRITEBACK)),
5953 			K(node_page_state(pgdat, NR_SHMEM)),
5954 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5955 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5956 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5957 			K(node_page_state(pgdat, NR_ANON_THPS)),
5958 #endif
5959 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5960 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5961 #ifdef CONFIG_SHADOW_CALL_STACK
5962 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5963 #endif
5964 			K(node_page_state(pgdat, NR_PAGETABLE)),
5965 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5966 				"yes" : "no");
5967 	}
5968 
5969 	for_each_populated_zone(zone) {
5970 		int i;
5971 
5972 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5973 			continue;
5974 
5975 		free_pcp = 0;
5976 		for_each_online_cpu(cpu)
5977 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5978 
5979 		show_node(zone);
5980 		printk(KERN_CONT
5981 			"%s"
5982 			" free:%lukB"
5983 			" min:%lukB"
5984 			" low:%lukB"
5985 			" high:%lukB"
5986 			" reserved_highatomic:%luKB"
5987 			" active_anon:%lukB"
5988 			" inactive_anon:%lukB"
5989 			" active_file:%lukB"
5990 			" inactive_file:%lukB"
5991 			" unevictable:%lukB"
5992 			" writepending:%lukB"
5993 			" present:%lukB"
5994 			" managed:%lukB"
5995 			" mlocked:%lukB"
5996 			" bounce:%lukB"
5997 			" free_pcp:%lukB"
5998 			" local_pcp:%ukB"
5999 			" free_cma:%lukB"
6000 			"\n",
6001 			zone->name,
6002 			K(zone_page_state(zone, NR_FREE_PAGES)),
6003 			K(min_wmark_pages(zone)),
6004 			K(low_wmark_pages(zone)),
6005 			K(high_wmark_pages(zone)),
6006 			K(zone->nr_reserved_highatomic),
6007 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6008 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6009 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6010 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6011 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6012 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6013 			K(zone->present_pages),
6014 			K(zone_managed_pages(zone)),
6015 			K(zone_page_state(zone, NR_MLOCK)),
6016 			K(zone_page_state(zone, NR_BOUNCE)),
6017 			K(free_pcp),
6018 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6019 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6020 		printk("lowmem_reserve[]:");
6021 		for (i = 0; i < MAX_NR_ZONES; i++)
6022 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6023 		printk(KERN_CONT "\n");
6024 	}
6025 
6026 	for_each_populated_zone(zone) {
6027 		unsigned int order;
6028 		unsigned long nr[MAX_ORDER], flags, total = 0;
6029 		unsigned char types[MAX_ORDER];
6030 
6031 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6032 			continue;
6033 		show_node(zone);
6034 		printk(KERN_CONT "%s: ", zone->name);
6035 
6036 		spin_lock_irqsave(&zone->lock, flags);
6037 		for (order = 0; order < MAX_ORDER; order++) {
6038 			struct free_area *area = &zone->free_area[order];
6039 			int type;
6040 
6041 			nr[order] = area->nr_free;
6042 			total += nr[order] << order;
6043 
6044 			types[order] = 0;
6045 			for (type = 0; type < MIGRATE_TYPES; type++) {
6046 				if (!free_area_empty(area, type))
6047 					types[order] |= 1 << type;
6048 			}
6049 		}
6050 		spin_unlock_irqrestore(&zone->lock, flags);
6051 		for (order = 0; order < MAX_ORDER; order++) {
6052 			printk(KERN_CONT "%lu*%lukB ",
6053 			       nr[order], K(1UL) << order);
6054 			if (nr[order])
6055 				show_migration_types(types[order]);
6056 		}
6057 		printk(KERN_CONT "= %lukB\n", K(total));
6058 	}
6059 
6060 	hugetlb_show_meminfo();
6061 
6062 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6063 
6064 	show_swap_cache_info();
6065 }
6066 
6067 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6068 {
6069 	zoneref->zone = zone;
6070 	zoneref->zone_idx = zone_idx(zone);
6071 }
6072 
6073 /*
6074  * Builds allocation fallback zone lists.
6075  *
6076  * Add all populated zones of a node to the zonelist.
6077  */
6078 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6079 {
6080 	struct zone *zone;
6081 	enum zone_type zone_type = MAX_NR_ZONES;
6082 	int nr_zones = 0;
6083 
6084 	do {
6085 		zone_type--;
6086 		zone = pgdat->node_zones + zone_type;
6087 		if (managed_zone(zone)) {
6088 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6089 			check_highest_zone(zone_type);
6090 		}
6091 	} while (zone_type);
6092 
6093 	return nr_zones;
6094 }
6095 
6096 #ifdef CONFIG_NUMA
6097 
6098 static int __parse_numa_zonelist_order(char *s)
6099 {
6100 	/*
6101 	 * We used to support different zonelists modes but they turned
6102 	 * out to be just not useful. Let's keep the warning in place
6103 	 * if somebody still use the cmd line parameter so that we do
6104 	 * not fail it silently
6105 	 */
6106 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6107 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6108 		return -EINVAL;
6109 	}
6110 	return 0;
6111 }
6112 
6113 char numa_zonelist_order[] = "Node";
6114 
6115 /*
6116  * sysctl handler for numa_zonelist_order
6117  */
6118 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6119 		void *buffer, size_t *length, loff_t *ppos)
6120 {
6121 	if (write)
6122 		return __parse_numa_zonelist_order(buffer);
6123 	return proc_dostring(table, write, buffer, length, ppos);
6124 }
6125 
6126 
6127 #define MAX_NODE_LOAD (nr_online_nodes)
6128 static int node_load[MAX_NUMNODES];
6129 
6130 /**
6131  * find_next_best_node - find the next node that should appear in a given node's fallback list
6132  * @node: node whose fallback list we're appending
6133  * @used_node_mask: nodemask_t of already used nodes
6134  *
6135  * We use a number of factors to determine which is the next node that should
6136  * appear on a given node's fallback list.  The node should not have appeared
6137  * already in @node's fallback list, and it should be the next closest node
6138  * according to the distance array (which contains arbitrary distance values
6139  * from each node to each node in the system), and should also prefer nodes
6140  * with no CPUs, since presumably they'll have very little allocation pressure
6141  * on them otherwise.
6142  *
6143  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6144  */
6145 int find_next_best_node(int node, nodemask_t *used_node_mask)
6146 {
6147 	int n, val;
6148 	int min_val = INT_MAX;
6149 	int best_node = NUMA_NO_NODE;
6150 
6151 	/* Use the local node if we haven't already */
6152 	if (!node_isset(node, *used_node_mask)) {
6153 		node_set(node, *used_node_mask);
6154 		return node;
6155 	}
6156 
6157 	for_each_node_state(n, N_MEMORY) {
6158 
6159 		/* Don't want a node to appear more than once */
6160 		if (node_isset(n, *used_node_mask))
6161 			continue;
6162 
6163 		/* Use the distance array to find the distance */
6164 		val = node_distance(node, n);
6165 
6166 		/* Penalize nodes under us ("prefer the next node") */
6167 		val += (n < node);
6168 
6169 		/* Give preference to headless and unused nodes */
6170 		if (!cpumask_empty(cpumask_of_node(n)))
6171 			val += PENALTY_FOR_NODE_WITH_CPUS;
6172 
6173 		/* Slight preference for less loaded node */
6174 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6175 		val += node_load[n];
6176 
6177 		if (val < min_val) {
6178 			min_val = val;
6179 			best_node = n;
6180 		}
6181 	}
6182 
6183 	if (best_node >= 0)
6184 		node_set(best_node, *used_node_mask);
6185 
6186 	return best_node;
6187 }
6188 
6189 
6190 /*
6191  * Build zonelists ordered by node and zones within node.
6192  * This results in maximum locality--normal zone overflows into local
6193  * DMA zone, if any--but risks exhausting DMA zone.
6194  */
6195 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6196 		unsigned nr_nodes)
6197 {
6198 	struct zoneref *zonerefs;
6199 	int i;
6200 
6201 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6202 
6203 	for (i = 0; i < nr_nodes; i++) {
6204 		int nr_zones;
6205 
6206 		pg_data_t *node = NODE_DATA(node_order[i]);
6207 
6208 		nr_zones = build_zonerefs_node(node, zonerefs);
6209 		zonerefs += nr_zones;
6210 	}
6211 	zonerefs->zone = NULL;
6212 	zonerefs->zone_idx = 0;
6213 }
6214 
6215 /*
6216  * Build gfp_thisnode zonelists
6217  */
6218 static void build_thisnode_zonelists(pg_data_t *pgdat)
6219 {
6220 	struct zoneref *zonerefs;
6221 	int nr_zones;
6222 
6223 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6224 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6225 	zonerefs += nr_zones;
6226 	zonerefs->zone = NULL;
6227 	zonerefs->zone_idx = 0;
6228 }
6229 
6230 /*
6231  * Build zonelists ordered by zone and nodes within zones.
6232  * This results in conserving DMA zone[s] until all Normal memory is
6233  * exhausted, but results in overflowing to remote node while memory
6234  * may still exist in local DMA zone.
6235  */
6236 
6237 static void build_zonelists(pg_data_t *pgdat)
6238 {
6239 	static int node_order[MAX_NUMNODES];
6240 	int node, load, nr_nodes = 0;
6241 	nodemask_t used_mask = NODE_MASK_NONE;
6242 	int local_node, prev_node;
6243 
6244 	/* NUMA-aware ordering of nodes */
6245 	local_node = pgdat->node_id;
6246 	load = nr_online_nodes;
6247 	prev_node = local_node;
6248 
6249 	memset(node_order, 0, sizeof(node_order));
6250 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6251 		/*
6252 		 * We don't want to pressure a particular node.
6253 		 * So adding penalty to the first node in same
6254 		 * distance group to make it round-robin.
6255 		 */
6256 		if (node_distance(local_node, node) !=
6257 		    node_distance(local_node, prev_node))
6258 			node_load[node] = load;
6259 
6260 		node_order[nr_nodes++] = node;
6261 		prev_node = node;
6262 		load--;
6263 	}
6264 
6265 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6266 	build_thisnode_zonelists(pgdat);
6267 }
6268 
6269 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6270 /*
6271  * Return node id of node used for "local" allocations.
6272  * I.e., first node id of first zone in arg node's generic zonelist.
6273  * Used for initializing percpu 'numa_mem', which is used primarily
6274  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6275  */
6276 int local_memory_node(int node)
6277 {
6278 	struct zoneref *z;
6279 
6280 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6281 				   gfp_zone(GFP_KERNEL),
6282 				   NULL);
6283 	return zone_to_nid(z->zone);
6284 }
6285 #endif
6286 
6287 static void setup_min_unmapped_ratio(void);
6288 static void setup_min_slab_ratio(void);
6289 #else	/* CONFIG_NUMA */
6290 
6291 static void build_zonelists(pg_data_t *pgdat)
6292 {
6293 	int node, local_node;
6294 	struct zoneref *zonerefs;
6295 	int nr_zones;
6296 
6297 	local_node = pgdat->node_id;
6298 
6299 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6300 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6301 	zonerefs += nr_zones;
6302 
6303 	/*
6304 	 * Now we build the zonelist so that it contains the zones
6305 	 * of all the other nodes.
6306 	 * We don't want to pressure a particular node, so when
6307 	 * building the zones for node N, we make sure that the
6308 	 * zones coming right after the local ones are those from
6309 	 * node N+1 (modulo N)
6310 	 */
6311 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6312 		if (!node_online(node))
6313 			continue;
6314 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6315 		zonerefs += nr_zones;
6316 	}
6317 	for (node = 0; node < local_node; node++) {
6318 		if (!node_online(node))
6319 			continue;
6320 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6321 		zonerefs += nr_zones;
6322 	}
6323 
6324 	zonerefs->zone = NULL;
6325 	zonerefs->zone_idx = 0;
6326 }
6327 
6328 #endif	/* CONFIG_NUMA */
6329 
6330 /*
6331  * Boot pageset table. One per cpu which is going to be used for all
6332  * zones and all nodes. The parameters will be set in such a way
6333  * that an item put on a list will immediately be handed over to
6334  * the buddy list. This is safe since pageset manipulation is done
6335  * with interrupts disabled.
6336  *
6337  * The boot_pagesets must be kept even after bootup is complete for
6338  * unused processors and/or zones. They do play a role for bootstrapping
6339  * hotplugged processors.
6340  *
6341  * zoneinfo_show() and maybe other functions do
6342  * not check if the processor is online before following the pageset pointer.
6343  * Other parts of the kernel may not check if the zone is available.
6344  */
6345 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6346 /* These effectively disable the pcplists in the boot pageset completely */
6347 #define BOOT_PAGESET_HIGH	0
6348 #define BOOT_PAGESET_BATCH	1
6349 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6350 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6351 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6352 
6353 static void __build_all_zonelists(void *data)
6354 {
6355 	int nid;
6356 	int __maybe_unused cpu;
6357 	pg_data_t *self = data;
6358 	static DEFINE_SPINLOCK(lock);
6359 
6360 	spin_lock(&lock);
6361 
6362 #ifdef CONFIG_NUMA
6363 	memset(node_load, 0, sizeof(node_load));
6364 #endif
6365 
6366 	/*
6367 	 * This node is hotadded and no memory is yet present.   So just
6368 	 * building zonelists is fine - no need to touch other nodes.
6369 	 */
6370 	if (self && !node_online(self->node_id)) {
6371 		build_zonelists(self);
6372 	} else {
6373 		for_each_online_node(nid) {
6374 			pg_data_t *pgdat = NODE_DATA(nid);
6375 
6376 			build_zonelists(pgdat);
6377 		}
6378 
6379 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6380 		/*
6381 		 * We now know the "local memory node" for each node--
6382 		 * i.e., the node of the first zone in the generic zonelist.
6383 		 * Set up numa_mem percpu variable for on-line cpus.  During
6384 		 * boot, only the boot cpu should be on-line;  we'll init the
6385 		 * secondary cpus' numa_mem as they come on-line.  During
6386 		 * node/memory hotplug, we'll fixup all on-line cpus.
6387 		 */
6388 		for_each_online_cpu(cpu)
6389 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6390 #endif
6391 	}
6392 
6393 	spin_unlock(&lock);
6394 }
6395 
6396 static noinline void __init
6397 build_all_zonelists_init(void)
6398 {
6399 	int cpu;
6400 
6401 	__build_all_zonelists(NULL);
6402 
6403 	/*
6404 	 * Initialize the boot_pagesets that are going to be used
6405 	 * for bootstrapping processors. The real pagesets for
6406 	 * each zone will be allocated later when the per cpu
6407 	 * allocator is available.
6408 	 *
6409 	 * boot_pagesets are used also for bootstrapping offline
6410 	 * cpus if the system is already booted because the pagesets
6411 	 * are needed to initialize allocators on a specific cpu too.
6412 	 * F.e. the percpu allocator needs the page allocator which
6413 	 * needs the percpu allocator in order to allocate its pagesets
6414 	 * (a chicken-egg dilemma).
6415 	 */
6416 	for_each_possible_cpu(cpu)
6417 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6418 
6419 	mminit_verify_zonelist();
6420 	cpuset_init_current_mems_allowed();
6421 }
6422 
6423 /*
6424  * unless system_state == SYSTEM_BOOTING.
6425  *
6426  * __ref due to call of __init annotated helper build_all_zonelists_init
6427  * [protected by SYSTEM_BOOTING].
6428  */
6429 void __ref build_all_zonelists(pg_data_t *pgdat)
6430 {
6431 	unsigned long vm_total_pages;
6432 
6433 	if (system_state == SYSTEM_BOOTING) {
6434 		build_all_zonelists_init();
6435 	} else {
6436 		__build_all_zonelists(pgdat);
6437 		/* cpuset refresh routine should be here */
6438 	}
6439 	/* Get the number of free pages beyond high watermark in all zones. */
6440 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6441 	/*
6442 	 * Disable grouping by mobility if the number of pages in the
6443 	 * system is too low to allow the mechanism to work. It would be
6444 	 * more accurate, but expensive to check per-zone. This check is
6445 	 * made on memory-hotadd so a system can start with mobility
6446 	 * disabled and enable it later
6447 	 */
6448 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6449 		page_group_by_mobility_disabled = 1;
6450 	else
6451 		page_group_by_mobility_disabled = 0;
6452 
6453 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6454 		nr_online_nodes,
6455 		page_group_by_mobility_disabled ? "off" : "on",
6456 		vm_total_pages);
6457 #ifdef CONFIG_NUMA
6458 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6459 #endif
6460 }
6461 
6462 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6463 static bool __meminit
6464 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6465 {
6466 	static struct memblock_region *r;
6467 
6468 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6469 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6470 			for_each_mem_region(r) {
6471 				if (*pfn < memblock_region_memory_end_pfn(r))
6472 					break;
6473 			}
6474 		}
6475 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6476 		    memblock_is_mirror(r)) {
6477 			*pfn = memblock_region_memory_end_pfn(r);
6478 			return true;
6479 		}
6480 	}
6481 	return false;
6482 }
6483 
6484 /*
6485  * Initially all pages are reserved - free ones are freed
6486  * up by memblock_free_all() once the early boot process is
6487  * done. Non-atomic initialization, single-pass.
6488  *
6489  * All aligned pageblocks are initialized to the specified migratetype
6490  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6491  * zone stats (e.g., nr_isolate_pageblock) are touched.
6492  */
6493 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6494 		unsigned long start_pfn, unsigned long zone_end_pfn,
6495 		enum meminit_context context,
6496 		struct vmem_altmap *altmap, int migratetype)
6497 {
6498 	unsigned long pfn, end_pfn = start_pfn + size;
6499 	struct page *page;
6500 
6501 	if (highest_memmap_pfn < end_pfn - 1)
6502 		highest_memmap_pfn = end_pfn - 1;
6503 
6504 #ifdef CONFIG_ZONE_DEVICE
6505 	/*
6506 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6507 	 * memory. We limit the total number of pages to initialize to just
6508 	 * those that might contain the memory mapping. We will defer the
6509 	 * ZONE_DEVICE page initialization until after we have released
6510 	 * the hotplug lock.
6511 	 */
6512 	if (zone == ZONE_DEVICE) {
6513 		if (!altmap)
6514 			return;
6515 
6516 		if (start_pfn == altmap->base_pfn)
6517 			start_pfn += altmap->reserve;
6518 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6519 	}
6520 #endif
6521 
6522 	for (pfn = start_pfn; pfn < end_pfn; ) {
6523 		/*
6524 		 * There can be holes in boot-time mem_map[]s handed to this
6525 		 * function.  They do not exist on hotplugged memory.
6526 		 */
6527 		if (context == MEMINIT_EARLY) {
6528 			if (overlap_memmap_init(zone, &pfn))
6529 				continue;
6530 			if (defer_init(nid, pfn, zone_end_pfn))
6531 				break;
6532 		}
6533 
6534 		page = pfn_to_page(pfn);
6535 		__init_single_page(page, pfn, zone, nid);
6536 		if (context == MEMINIT_HOTPLUG)
6537 			__SetPageReserved(page);
6538 
6539 		/*
6540 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6541 		 * such that unmovable allocations won't be scattered all
6542 		 * over the place during system boot.
6543 		 */
6544 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6545 			set_pageblock_migratetype(page, migratetype);
6546 			cond_resched();
6547 		}
6548 		pfn++;
6549 	}
6550 }
6551 
6552 #ifdef CONFIG_ZONE_DEVICE
6553 void __ref memmap_init_zone_device(struct zone *zone,
6554 				   unsigned long start_pfn,
6555 				   unsigned long nr_pages,
6556 				   struct dev_pagemap *pgmap)
6557 {
6558 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6559 	struct pglist_data *pgdat = zone->zone_pgdat;
6560 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6561 	unsigned long zone_idx = zone_idx(zone);
6562 	unsigned long start = jiffies;
6563 	int nid = pgdat->node_id;
6564 
6565 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6566 		return;
6567 
6568 	/*
6569 	 * The call to memmap_init should have already taken care
6570 	 * of the pages reserved for the memmap, so we can just jump to
6571 	 * the end of that region and start processing the device pages.
6572 	 */
6573 	if (altmap) {
6574 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6575 		nr_pages = end_pfn - start_pfn;
6576 	}
6577 
6578 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6579 		struct page *page = pfn_to_page(pfn);
6580 
6581 		__init_single_page(page, pfn, zone_idx, nid);
6582 
6583 		/*
6584 		 * Mark page reserved as it will need to wait for onlining
6585 		 * phase for it to be fully associated with a zone.
6586 		 *
6587 		 * We can use the non-atomic __set_bit operation for setting
6588 		 * the flag as we are still initializing the pages.
6589 		 */
6590 		__SetPageReserved(page);
6591 
6592 		/*
6593 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6594 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6595 		 * ever freed or placed on a driver-private list.
6596 		 */
6597 		page->pgmap = pgmap;
6598 		page->zone_device_data = NULL;
6599 
6600 		/*
6601 		 * Mark the block movable so that blocks are reserved for
6602 		 * movable at startup. This will force kernel allocations
6603 		 * to reserve their blocks rather than leaking throughout
6604 		 * the address space during boot when many long-lived
6605 		 * kernel allocations are made.
6606 		 *
6607 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6608 		 * because this is done early in section_activate()
6609 		 */
6610 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6611 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6612 			cond_resched();
6613 		}
6614 	}
6615 
6616 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6617 		nr_pages, jiffies_to_msecs(jiffies - start));
6618 }
6619 
6620 #endif
6621 static void __meminit zone_init_free_lists(struct zone *zone)
6622 {
6623 	unsigned int order, t;
6624 	for_each_migratetype_order(order, t) {
6625 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6626 		zone->free_area[order].nr_free = 0;
6627 	}
6628 }
6629 
6630 /*
6631  * Only struct pages that correspond to ranges defined by memblock.memory
6632  * are zeroed and initialized by going through __init_single_page() during
6633  * memmap_init_zone_range().
6634  *
6635  * But, there could be struct pages that correspond to holes in
6636  * memblock.memory. This can happen because of the following reasons:
6637  * - physical memory bank size is not necessarily the exact multiple of the
6638  *   arbitrary section size
6639  * - early reserved memory may not be listed in memblock.memory
6640  * - memory layouts defined with memmap= kernel parameter may not align
6641  *   nicely with memmap sections
6642  *
6643  * Explicitly initialize those struct pages so that:
6644  * - PG_Reserved is set
6645  * - zone and node links point to zone and node that span the page if the
6646  *   hole is in the middle of a zone
6647  * - zone and node links point to adjacent zone/node if the hole falls on
6648  *   the zone boundary; the pages in such holes will be prepended to the
6649  *   zone/node above the hole except for the trailing pages in the last
6650  *   section that will be appended to the zone/node below.
6651  */
6652 static void __init init_unavailable_range(unsigned long spfn,
6653 					  unsigned long epfn,
6654 					  int zone, int node)
6655 {
6656 	unsigned long pfn;
6657 	u64 pgcnt = 0;
6658 
6659 	for (pfn = spfn; pfn < epfn; pfn++) {
6660 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6661 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6662 				+ pageblock_nr_pages - 1;
6663 			continue;
6664 		}
6665 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6666 		__SetPageReserved(pfn_to_page(pfn));
6667 		pgcnt++;
6668 	}
6669 
6670 	if (pgcnt)
6671 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6672 			node, zone_names[zone], pgcnt);
6673 }
6674 
6675 static void __init memmap_init_zone_range(struct zone *zone,
6676 					  unsigned long start_pfn,
6677 					  unsigned long end_pfn,
6678 					  unsigned long *hole_pfn)
6679 {
6680 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6681 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6682 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6683 
6684 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6685 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6686 
6687 	if (start_pfn >= end_pfn)
6688 		return;
6689 
6690 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6691 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6692 
6693 	if (*hole_pfn < start_pfn)
6694 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6695 
6696 	*hole_pfn = end_pfn;
6697 }
6698 
6699 static void __init memmap_init(void)
6700 {
6701 	unsigned long start_pfn, end_pfn;
6702 	unsigned long hole_pfn = 0;
6703 	int i, j, zone_id = 0, nid;
6704 
6705 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6706 		struct pglist_data *node = NODE_DATA(nid);
6707 
6708 		for (j = 0; j < MAX_NR_ZONES; j++) {
6709 			struct zone *zone = node->node_zones + j;
6710 
6711 			if (!populated_zone(zone))
6712 				continue;
6713 
6714 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6715 					       &hole_pfn);
6716 			zone_id = j;
6717 		}
6718 	}
6719 
6720 #ifdef CONFIG_SPARSEMEM
6721 	/*
6722 	 * Initialize the memory map for hole in the range [memory_end,
6723 	 * section_end].
6724 	 * Append the pages in this hole to the highest zone in the last
6725 	 * node.
6726 	 * The call to init_unavailable_range() is outside the ifdef to
6727 	 * silence the compiler warining about zone_id set but not used;
6728 	 * for FLATMEM it is a nop anyway
6729 	 */
6730 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6731 	if (hole_pfn < end_pfn)
6732 #endif
6733 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6734 }
6735 
6736 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6737 			  phys_addr_t min_addr, int nid, bool exact_nid)
6738 {
6739 	void *ptr;
6740 
6741 	if (exact_nid)
6742 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6743 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6744 						   nid);
6745 	else
6746 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6747 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6748 						 nid);
6749 
6750 	if (ptr && size > 0)
6751 		page_init_poison(ptr, size);
6752 
6753 	return ptr;
6754 }
6755 
6756 static int zone_batchsize(struct zone *zone)
6757 {
6758 #ifdef CONFIG_MMU
6759 	int batch;
6760 
6761 	/*
6762 	 * The number of pages to batch allocate is either ~0.1%
6763 	 * of the zone or 1MB, whichever is smaller. The batch
6764 	 * size is striking a balance between allocation latency
6765 	 * and zone lock contention.
6766 	 */
6767 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6768 	batch /= 4;		/* We effectively *= 4 below */
6769 	if (batch < 1)
6770 		batch = 1;
6771 
6772 	/*
6773 	 * Clamp the batch to a 2^n - 1 value. Having a power
6774 	 * of 2 value was found to be more likely to have
6775 	 * suboptimal cache aliasing properties in some cases.
6776 	 *
6777 	 * For example if 2 tasks are alternately allocating
6778 	 * batches of pages, one task can end up with a lot
6779 	 * of pages of one half of the possible page colors
6780 	 * and the other with pages of the other colors.
6781 	 */
6782 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6783 
6784 	return batch;
6785 
6786 #else
6787 	/* The deferral and batching of frees should be suppressed under NOMMU
6788 	 * conditions.
6789 	 *
6790 	 * The problem is that NOMMU needs to be able to allocate large chunks
6791 	 * of contiguous memory as there's no hardware page translation to
6792 	 * assemble apparent contiguous memory from discontiguous pages.
6793 	 *
6794 	 * Queueing large contiguous runs of pages for batching, however,
6795 	 * causes the pages to actually be freed in smaller chunks.  As there
6796 	 * can be a significant delay between the individual batches being
6797 	 * recycled, this leads to the once large chunks of space being
6798 	 * fragmented and becoming unavailable for high-order allocations.
6799 	 */
6800 	return 0;
6801 #endif
6802 }
6803 
6804 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6805 {
6806 #ifdef CONFIG_MMU
6807 	int high;
6808 	int nr_split_cpus;
6809 	unsigned long total_pages;
6810 
6811 	if (!percpu_pagelist_high_fraction) {
6812 		/*
6813 		 * By default, the high value of the pcp is based on the zone
6814 		 * low watermark so that if they are full then background
6815 		 * reclaim will not be started prematurely.
6816 		 */
6817 		total_pages = low_wmark_pages(zone);
6818 	} else {
6819 		/*
6820 		 * If percpu_pagelist_high_fraction is configured, the high
6821 		 * value is based on a fraction of the managed pages in the
6822 		 * zone.
6823 		 */
6824 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6825 	}
6826 
6827 	/*
6828 	 * Split the high value across all online CPUs local to the zone. Note
6829 	 * that early in boot that CPUs may not be online yet and that during
6830 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6831 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6832 	 * all online CPUs to mitigate the risk that reclaim is triggered
6833 	 * prematurely due to pages stored on pcp lists.
6834 	 */
6835 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6836 	if (!nr_split_cpus)
6837 		nr_split_cpus = num_online_cpus();
6838 	high = total_pages / nr_split_cpus;
6839 
6840 	/*
6841 	 * Ensure high is at least batch*4. The multiple is based on the
6842 	 * historical relationship between high and batch.
6843 	 */
6844 	high = max(high, batch << 2);
6845 
6846 	return high;
6847 #else
6848 	return 0;
6849 #endif
6850 }
6851 
6852 /*
6853  * pcp->high and pcp->batch values are related and generally batch is lower
6854  * than high. They are also related to pcp->count such that count is lower
6855  * than high, and as soon as it reaches high, the pcplist is flushed.
6856  *
6857  * However, guaranteeing these relations at all times would require e.g. write
6858  * barriers here but also careful usage of read barriers at the read side, and
6859  * thus be prone to error and bad for performance. Thus the update only prevents
6860  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6861  * can cope with those fields changing asynchronously, and fully trust only the
6862  * pcp->count field on the local CPU with interrupts disabled.
6863  *
6864  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6865  * outside of boot time (or some other assurance that no concurrent updaters
6866  * exist).
6867  */
6868 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6869 		unsigned long batch)
6870 {
6871 	WRITE_ONCE(pcp->batch, batch);
6872 	WRITE_ONCE(pcp->high, high);
6873 }
6874 
6875 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6876 {
6877 	int pindex;
6878 
6879 	memset(pcp, 0, sizeof(*pcp));
6880 	memset(pzstats, 0, sizeof(*pzstats));
6881 
6882 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6883 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6884 
6885 	/*
6886 	 * Set batch and high values safe for a boot pageset. A true percpu
6887 	 * pageset's initialization will update them subsequently. Here we don't
6888 	 * need to be as careful as pageset_update() as nobody can access the
6889 	 * pageset yet.
6890 	 */
6891 	pcp->high = BOOT_PAGESET_HIGH;
6892 	pcp->batch = BOOT_PAGESET_BATCH;
6893 	pcp->free_factor = 0;
6894 }
6895 
6896 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6897 		unsigned long batch)
6898 {
6899 	struct per_cpu_pages *pcp;
6900 	int cpu;
6901 
6902 	for_each_possible_cpu(cpu) {
6903 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6904 		pageset_update(pcp, high, batch);
6905 	}
6906 }
6907 
6908 /*
6909  * Calculate and set new high and batch values for all per-cpu pagesets of a
6910  * zone based on the zone's size.
6911  */
6912 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6913 {
6914 	int new_high, new_batch;
6915 
6916 	new_batch = max(1, zone_batchsize(zone));
6917 	new_high = zone_highsize(zone, new_batch, cpu_online);
6918 
6919 	if (zone->pageset_high == new_high &&
6920 	    zone->pageset_batch == new_batch)
6921 		return;
6922 
6923 	zone->pageset_high = new_high;
6924 	zone->pageset_batch = new_batch;
6925 
6926 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6927 }
6928 
6929 void __meminit setup_zone_pageset(struct zone *zone)
6930 {
6931 	int cpu;
6932 
6933 	/* Size may be 0 on !SMP && !NUMA */
6934 	if (sizeof(struct per_cpu_zonestat) > 0)
6935 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6936 
6937 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6938 	for_each_possible_cpu(cpu) {
6939 		struct per_cpu_pages *pcp;
6940 		struct per_cpu_zonestat *pzstats;
6941 
6942 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6943 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6944 		per_cpu_pages_init(pcp, pzstats);
6945 	}
6946 
6947 	zone_set_pageset_high_and_batch(zone, 0);
6948 }
6949 
6950 /*
6951  * Allocate per cpu pagesets and initialize them.
6952  * Before this call only boot pagesets were available.
6953  */
6954 void __init setup_per_cpu_pageset(void)
6955 {
6956 	struct pglist_data *pgdat;
6957 	struct zone *zone;
6958 	int __maybe_unused cpu;
6959 
6960 	for_each_populated_zone(zone)
6961 		setup_zone_pageset(zone);
6962 
6963 #ifdef CONFIG_NUMA
6964 	/*
6965 	 * Unpopulated zones continue using the boot pagesets.
6966 	 * The numa stats for these pagesets need to be reset.
6967 	 * Otherwise, they will end up skewing the stats of
6968 	 * the nodes these zones are associated with.
6969 	 */
6970 	for_each_possible_cpu(cpu) {
6971 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6972 		memset(pzstats->vm_numa_event, 0,
6973 		       sizeof(pzstats->vm_numa_event));
6974 	}
6975 #endif
6976 
6977 	for_each_online_pgdat(pgdat)
6978 		pgdat->per_cpu_nodestats =
6979 			alloc_percpu(struct per_cpu_nodestat);
6980 }
6981 
6982 static __meminit void zone_pcp_init(struct zone *zone)
6983 {
6984 	/*
6985 	 * per cpu subsystem is not up at this point. The following code
6986 	 * relies on the ability of the linker to provide the
6987 	 * offset of a (static) per cpu variable into the per cpu area.
6988 	 */
6989 	zone->per_cpu_pageset = &boot_pageset;
6990 	zone->per_cpu_zonestats = &boot_zonestats;
6991 	zone->pageset_high = BOOT_PAGESET_HIGH;
6992 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6993 
6994 	if (populated_zone(zone))
6995 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6996 			 zone->present_pages, zone_batchsize(zone));
6997 }
6998 
6999 void __meminit init_currently_empty_zone(struct zone *zone,
7000 					unsigned long zone_start_pfn,
7001 					unsigned long size)
7002 {
7003 	struct pglist_data *pgdat = zone->zone_pgdat;
7004 	int zone_idx = zone_idx(zone) + 1;
7005 
7006 	if (zone_idx > pgdat->nr_zones)
7007 		pgdat->nr_zones = zone_idx;
7008 
7009 	zone->zone_start_pfn = zone_start_pfn;
7010 
7011 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7012 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7013 			pgdat->node_id,
7014 			(unsigned long)zone_idx(zone),
7015 			zone_start_pfn, (zone_start_pfn + size));
7016 
7017 	zone_init_free_lists(zone);
7018 	zone->initialized = 1;
7019 }
7020 
7021 /**
7022  * get_pfn_range_for_nid - Return the start and end page frames for a node
7023  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7024  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7025  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7026  *
7027  * It returns the start and end page frame of a node based on information
7028  * provided by memblock_set_node(). If called for a node
7029  * with no available memory, a warning is printed and the start and end
7030  * PFNs will be 0.
7031  */
7032 void __init get_pfn_range_for_nid(unsigned int nid,
7033 			unsigned long *start_pfn, unsigned long *end_pfn)
7034 {
7035 	unsigned long this_start_pfn, this_end_pfn;
7036 	int i;
7037 
7038 	*start_pfn = -1UL;
7039 	*end_pfn = 0;
7040 
7041 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7042 		*start_pfn = min(*start_pfn, this_start_pfn);
7043 		*end_pfn = max(*end_pfn, this_end_pfn);
7044 	}
7045 
7046 	if (*start_pfn == -1UL)
7047 		*start_pfn = 0;
7048 }
7049 
7050 /*
7051  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7052  * assumption is made that zones within a node are ordered in monotonic
7053  * increasing memory addresses so that the "highest" populated zone is used
7054  */
7055 static void __init find_usable_zone_for_movable(void)
7056 {
7057 	int zone_index;
7058 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7059 		if (zone_index == ZONE_MOVABLE)
7060 			continue;
7061 
7062 		if (arch_zone_highest_possible_pfn[zone_index] >
7063 				arch_zone_lowest_possible_pfn[zone_index])
7064 			break;
7065 	}
7066 
7067 	VM_BUG_ON(zone_index == -1);
7068 	movable_zone = zone_index;
7069 }
7070 
7071 /*
7072  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7073  * because it is sized independent of architecture. Unlike the other zones,
7074  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7075  * in each node depending on the size of each node and how evenly kernelcore
7076  * is distributed. This helper function adjusts the zone ranges
7077  * provided by the architecture for a given node by using the end of the
7078  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7079  * zones within a node are in order of monotonic increases memory addresses
7080  */
7081 static void __init adjust_zone_range_for_zone_movable(int nid,
7082 					unsigned long zone_type,
7083 					unsigned long node_start_pfn,
7084 					unsigned long node_end_pfn,
7085 					unsigned long *zone_start_pfn,
7086 					unsigned long *zone_end_pfn)
7087 {
7088 	/* Only adjust if ZONE_MOVABLE is on this node */
7089 	if (zone_movable_pfn[nid]) {
7090 		/* Size ZONE_MOVABLE */
7091 		if (zone_type == ZONE_MOVABLE) {
7092 			*zone_start_pfn = zone_movable_pfn[nid];
7093 			*zone_end_pfn = min(node_end_pfn,
7094 				arch_zone_highest_possible_pfn[movable_zone]);
7095 
7096 		/* Adjust for ZONE_MOVABLE starting within this range */
7097 		} else if (!mirrored_kernelcore &&
7098 			*zone_start_pfn < zone_movable_pfn[nid] &&
7099 			*zone_end_pfn > zone_movable_pfn[nid]) {
7100 			*zone_end_pfn = zone_movable_pfn[nid];
7101 
7102 		/* Check if this whole range is within ZONE_MOVABLE */
7103 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7104 			*zone_start_pfn = *zone_end_pfn;
7105 	}
7106 }
7107 
7108 /*
7109  * Return the number of pages a zone spans in a node, including holes
7110  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7111  */
7112 static unsigned long __init zone_spanned_pages_in_node(int nid,
7113 					unsigned long zone_type,
7114 					unsigned long node_start_pfn,
7115 					unsigned long node_end_pfn,
7116 					unsigned long *zone_start_pfn,
7117 					unsigned long *zone_end_pfn)
7118 {
7119 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7120 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7121 	/* When hotadd a new node from cpu_up(), the node should be empty */
7122 	if (!node_start_pfn && !node_end_pfn)
7123 		return 0;
7124 
7125 	/* Get the start and end of the zone */
7126 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7127 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7128 	adjust_zone_range_for_zone_movable(nid, zone_type,
7129 				node_start_pfn, node_end_pfn,
7130 				zone_start_pfn, zone_end_pfn);
7131 
7132 	/* Check that this node has pages within the zone's required range */
7133 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7134 		return 0;
7135 
7136 	/* Move the zone boundaries inside the node if necessary */
7137 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7138 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7139 
7140 	/* Return the spanned pages */
7141 	return *zone_end_pfn - *zone_start_pfn;
7142 }
7143 
7144 /*
7145  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7146  * then all holes in the requested range will be accounted for.
7147  */
7148 unsigned long __init __absent_pages_in_range(int nid,
7149 				unsigned long range_start_pfn,
7150 				unsigned long range_end_pfn)
7151 {
7152 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7153 	unsigned long start_pfn, end_pfn;
7154 	int i;
7155 
7156 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7157 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7158 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7159 		nr_absent -= end_pfn - start_pfn;
7160 	}
7161 	return nr_absent;
7162 }
7163 
7164 /**
7165  * absent_pages_in_range - Return number of page frames in holes within a range
7166  * @start_pfn: The start PFN to start searching for holes
7167  * @end_pfn: The end PFN to stop searching for holes
7168  *
7169  * Return: the number of pages frames in memory holes within a range.
7170  */
7171 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7172 							unsigned long end_pfn)
7173 {
7174 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7175 }
7176 
7177 /* Return the number of page frames in holes in a zone on a node */
7178 static unsigned long __init zone_absent_pages_in_node(int nid,
7179 					unsigned long zone_type,
7180 					unsigned long node_start_pfn,
7181 					unsigned long node_end_pfn)
7182 {
7183 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7184 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7185 	unsigned long zone_start_pfn, zone_end_pfn;
7186 	unsigned long nr_absent;
7187 
7188 	/* When hotadd a new node from cpu_up(), the node should be empty */
7189 	if (!node_start_pfn && !node_end_pfn)
7190 		return 0;
7191 
7192 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7193 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7194 
7195 	adjust_zone_range_for_zone_movable(nid, zone_type,
7196 			node_start_pfn, node_end_pfn,
7197 			&zone_start_pfn, &zone_end_pfn);
7198 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7199 
7200 	/*
7201 	 * ZONE_MOVABLE handling.
7202 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7203 	 * and vice versa.
7204 	 */
7205 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7206 		unsigned long start_pfn, end_pfn;
7207 		struct memblock_region *r;
7208 
7209 		for_each_mem_region(r) {
7210 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7211 					  zone_start_pfn, zone_end_pfn);
7212 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7213 					zone_start_pfn, zone_end_pfn);
7214 
7215 			if (zone_type == ZONE_MOVABLE &&
7216 			    memblock_is_mirror(r))
7217 				nr_absent += end_pfn - start_pfn;
7218 
7219 			if (zone_type == ZONE_NORMAL &&
7220 			    !memblock_is_mirror(r))
7221 				nr_absent += end_pfn - start_pfn;
7222 		}
7223 	}
7224 
7225 	return nr_absent;
7226 }
7227 
7228 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7229 						unsigned long node_start_pfn,
7230 						unsigned long node_end_pfn)
7231 {
7232 	unsigned long realtotalpages = 0, totalpages = 0;
7233 	enum zone_type i;
7234 
7235 	for (i = 0; i < MAX_NR_ZONES; i++) {
7236 		struct zone *zone = pgdat->node_zones + i;
7237 		unsigned long zone_start_pfn, zone_end_pfn;
7238 		unsigned long spanned, absent;
7239 		unsigned long size, real_size;
7240 
7241 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7242 						     node_start_pfn,
7243 						     node_end_pfn,
7244 						     &zone_start_pfn,
7245 						     &zone_end_pfn);
7246 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7247 						   node_start_pfn,
7248 						   node_end_pfn);
7249 
7250 		size = spanned;
7251 		real_size = size - absent;
7252 
7253 		if (size)
7254 			zone->zone_start_pfn = zone_start_pfn;
7255 		else
7256 			zone->zone_start_pfn = 0;
7257 		zone->spanned_pages = size;
7258 		zone->present_pages = real_size;
7259 #if defined(CONFIG_MEMORY_HOTPLUG)
7260 		zone->present_early_pages = real_size;
7261 #endif
7262 
7263 		totalpages += size;
7264 		realtotalpages += real_size;
7265 	}
7266 
7267 	pgdat->node_spanned_pages = totalpages;
7268 	pgdat->node_present_pages = realtotalpages;
7269 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7270 }
7271 
7272 #ifndef CONFIG_SPARSEMEM
7273 /*
7274  * Calculate the size of the zone->blockflags rounded to an unsigned long
7275  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7276  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7277  * round what is now in bits to nearest long in bits, then return it in
7278  * bytes.
7279  */
7280 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7281 {
7282 	unsigned long usemapsize;
7283 
7284 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7285 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7286 	usemapsize = usemapsize >> pageblock_order;
7287 	usemapsize *= NR_PAGEBLOCK_BITS;
7288 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7289 
7290 	return usemapsize / 8;
7291 }
7292 
7293 static void __ref setup_usemap(struct zone *zone)
7294 {
7295 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7296 					       zone->spanned_pages);
7297 	zone->pageblock_flags = NULL;
7298 	if (usemapsize) {
7299 		zone->pageblock_flags =
7300 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7301 					    zone_to_nid(zone));
7302 		if (!zone->pageblock_flags)
7303 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7304 			      usemapsize, zone->name, zone_to_nid(zone));
7305 	}
7306 }
7307 #else
7308 static inline void setup_usemap(struct zone *zone) {}
7309 #endif /* CONFIG_SPARSEMEM */
7310 
7311 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7312 
7313 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7314 void __init set_pageblock_order(void)
7315 {
7316 	unsigned int order;
7317 
7318 	/* Check that pageblock_nr_pages has not already been setup */
7319 	if (pageblock_order)
7320 		return;
7321 
7322 	if (HPAGE_SHIFT > PAGE_SHIFT)
7323 		order = HUGETLB_PAGE_ORDER;
7324 	else
7325 		order = MAX_ORDER - 1;
7326 
7327 	/*
7328 	 * Assume the largest contiguous order of interest is a huge page.
7329 	 * This value may be variable depending on boot parameters on IA64 and
7330 	 * powerpc.
7331 	 */
7332 	pageblock_order = order;
7333 }
7334 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7335 
7336 /*
7337  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7338  * is unused as pageblock_order is set at compile-time. See
7339  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7340  * the kernel config
7341  */
7342 void __init set_pageblock_order(void)
7343 {
7344 }
7345 
7346 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7347 
7348 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7349 						unsigned long present_pages)
7350 {
7351 	unsigned long pages = spanned_pages;
7352 
7353 	/*
7354 	 * Provide a more accurate estimation if there are holes within
7355 	 * the zone and SPARSEMEM is in use. If there are holes within the
7356 	 * zone, each populated memory region may cost us one or two extra
7357 	 * memmap pages due to alignment because memmap pages for each
7358 	 * populated regions may not be naturally aligned on page boundary.
7359 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7360 	 */
7361 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7362 	    IS_ENABLED(CONFIG_SPARSEMEM))
7363 		pages = present_pages;
7364 
7365 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7366 }
7367 
7368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7369 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7370 {
7371 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7372 
7373 	spin_lock_init(&ds_queue->split_queue_lock);
7374 	INIT_LIST_HEAD(&ds_queue->split_queue);
7375 	ds_queue->split_queue_len = 0;
7376 }
7377 #else
7378 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7379 #endif
7380 
7381 #ifdef CONFIG_COMPACTION
7382 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7383 {
7384 	init_waitqueue_head(&pgdat->kcompactd_wait);
7385 }
7386 #else
7387 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7388 #endif
7389 
7390 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7391 {
7392 	pgdat_resize_init(pgdat);
7393 
7394 	pgdat_init_split_queue(pgdat);
7395 	pgdat_init_kcompactd(pgdat);
7396 
7397 	init_waitqueue_head(&pgdat->kswapd_wait);
7398 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7399 
7400 	pgdat_page_ext_init(pgdat);
7401 	lruvec_init(&pgdat->__lruvec);
7402 }
7403 
7404 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7405 							unsigned long remaining_pages)
7406 {
7407 	atomic_long_set(&zone->managed_pages, remaining_pages);
7408 	zone_set_nid(zone, nid);
7409 	zone->name = zone_names[idx];
7410 	zone->zone_pgdat = NODE_DATA(nid);
7411 	spin_lock_init(&zone->lock);
7412 	zone_seqlock_init(zone);
7413 	zone_pcp_init(zone);
7414 }
7415 
7416 /*
7417  * Set up the zone data structures
7418  * - init pgdat internals
7419  * - init all zones belonging to this node
7420  *
7421  * NOTE: this function is only called during memory hotplug
7422  */
7423 #ifdef CONFIG_MEMORY_HOTPLUG
7424 void __ref free_area_init_core_hotplug(int nid)
7425 {
7426 	enum zone_type z;
7427 	pg_data_t *pgdat = NODE_DATA(nid);
7428 
7429 	pgdat_init_internals(pgdat);
7430 	for (z = 0; z < MAX_NR_ZONES; z++)
7431 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7432 }
7433 #endif
7434 
7435 /*
7436  * Set up the zone data structures:
7437  *   - mark all pages reserved
7438  *   - mark all memory queues empty
7439  *   - clear the memory bitmaps
7440  *
7441  * NOTE: pgdat should get zeroed by caller.
7442  * NOTE: this function is only called during early init.
7443  */
7444 static void __init free_area_init_core(struct pglist_data *pgdat)
7445 {
7446 	enum zone_type j;
7447 	int nid = pgdat->node_id;
7448 
7449 	pgdat_init_internals(pgdat);
7450 	pgdat->per_cpu_nodestats = &boot_nodestats;
7451 
7452 	for (j = 0; j < MAX_NR_ZONES; j++) {
7453 		struct zone *zone = pgdat->node_zones + j;
7454 		unsigned long size, freesize, memmap_pages;
7455 
7456 		size = zone->spanned_pages;
7457 		freesize = zone->present_pages;
7458 
7459 		/*
7460 		 * Adjust freesize so that it accounts for how much memory
7461 		 * is used by this zone for memmap. This affects the watermark
7462 		 * and per-cpu initialisations
7463 		 */
7464 		memmap_pages = calc_memmap_size(size, freesize);
7465 		if (!is_highmem_idx(j)) {
7466 			if (freesize >= memmap_pages) {
7467 				freesize -= memmap_pages;
7468 				if (memmap_pages)
7469 					pr_debug("  %s zone: %lu pages used for memmap\n",
7470 						 zone_names[j], memmap_pages);
7471 			} else
7472 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7473 					zone_names[j], memmap_pages, freesize);
7474 		}
7475 
7476 		/* Account for reserved pages */
7477 		if (j == 0 && freesize > dma_reserve) {
7478 			freesize -= dma_reserve;
7479 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7480 		}
7481 
7482 		if (!is_highmem_idx(j))
7483 			nr_kernel_pages += freesize;
7484 		/* Charge for highmem memmap if there are enough kernel pages */
7485 		else if (nr_kernel_pages > memmap_pages * 2)
7486 			nr_kernel_pages -= memmap_pages;
7487 		nr_all_pages += freesize;
7488 
7489 		/*
7490 		 * Set an approximate value for lowmem here, it will be adjusted
7491 		 * when the bootmem allocator frees pages into the buddy system.
7492 		 * And all highmem pages will be managed by the buddy system.
7493 		 */
7494 		zone_init_internals(zone, j, nid, freesize);
7495 
7496 		if (!size)
7497 			continue;
7498 
7499 		set_pageblock_order();
7500 		setup_usemap(zone);
7501 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7502 	}
7503 }
7504 
7505 #ifdef CONFIG_FLATMEM
7506 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7507 {
7508 	unsigned long __maybe_unused start = 0;
7509 	unsigned long __maybe_unused offset = 0;
7510 
7511 	/* Skip empty nodes */
7512 	if (!pgdat->node_spanned_pages)
7513 		return;
7514 
7515 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7516 	offset = pgdat->node_start_pfn - start;
7517 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7518 	if (!pgdat->node_mem_map) {
7519 		unsigned long size, end;
7520 		struct page *map;
7521 
7522 		/*
7523 		 * The zone's endpoints aren't required to be MAX_ORDER
7524 		 * aligned but the node_mem_map endpoints must be in order
7525 		 * for the buddy allocator to function correctly.
7526 		 */
7527 		end = pgdat_end_pfn(pgdat);
7528 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7529 		size =  (end - start) * sizeof(struct page);
7530 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7531 				   pgdat->node_id, false);
7532 		if (!map)
7533 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7534 			      size, pgdat->node_id);
7535 		pgdat->node_mem_map = map + offset;
7536 	}
7537 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7538 				__func__, pgdat->node_id, (unsigned long)pgdat,
7539 				(unsigned long)pgdat->node_mem_map);
7540 #ifndef CONFIG_NUMA
7541 	/*
7542 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7543 	 */
7544 	if (pgdat == NODE_DATA(0)) {
7545 		mem_map = NODE_DATA(0)->node_mem_map;
7546 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7547 			mem_map -= offset;
7548 	}
7549 #endif
7550 }
7551 #else
7552 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7553 #endif /* CONFIG_FLATMEM */
7554 
7555 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7556 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7557 {
7558 	pgdat->first_deferred_pfn = ULONG_MAX;
7559 }
7560 #else
7561 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7562 #endif
7563 
7564 static void __init free_area_init_node(int nid)
7565 {
7566 	pg_data_t *pgdat = NODE_DATA(nid);
7567 	unsigned long start_pfn = 0;
7568 	unsigned long end_pfn = 0;
7569 
7570 	/* pg_data_t should be reset to zero when it's allocated */
7571 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7572 
7573 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7574 
7575 	pgdat->node_id = nid;
7576 	pgdat->node_start_pfn = start_pfn;
7577 	pgdat->per_cpu_nodestats = NULL;
7578 
7579 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7580 		(u64)start_pfn << PAGE_SHIFT,
7581 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7582 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7583 
7584 	alloc_node_mem_map(pgdat);
7585 	pgdat_set_deferred_range(pgdat);
7586 
7587 	free_area_init_core(pgdat);
7588 }
7589 
7590 void __init free_area_init_memoryless_node(int nid)
7591 {
7592 	free_area_init_node(nid);
7593 }
7594 
7595 #if MAX_NUMNODES > 1
7596 /*
7597  * Figure out the number of possible node ids.
7598  */
7599 void __init setup_nr_node_ids(void)
7600 {
7601 	unsigned int highest;
7602 
7603 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7604 	nr_node_ids = highest + 1;
7605 }
7606 #endif
7607 
7608 /**
7609  * node_map_pfn_alignment - determine the maximum internode alignment
7610  *
7611  * This function should be called after node map is populated and sorted.
7612  * It calculates the maximum power of two alignment which can distinguish
7613  * all the nodes.
7614  *
7615  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7616  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7617  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7618  * shifted, 1GiB is enough and this function will indicate so.
7619  *
7620  * This is used to test whether pfn -> nid mapping of the chosen memory
7621  * model has fine enough granularity to avoid incorrect mapping for the
7622  * populated node map.
7623  *
7624  * Return: the determined alignment in pfn's.  0 if there is no alignment
7625  * requirement (single node).
7626  */
7627 unsigned long __init node_map_pfn_alignment(void)
7628 {
7629 	unsigned long accl_mask = 0, last_end = 0;
7630 	unsigned long start, end, mask;
7631 	int last_nid = NUMA_NO_NODE;
7632 	int i, nid;
7633 
7634 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7635 		if (!start || last_nid < 0 || last_nid == nid) {
7636 			last_nid = nid;
7637 			last_end = end;
7638 			continue;
7639 		}
7640 
7641 		/*
7642 		 * Start with a mask granular enough to pin-point to the
7643 		 * start pfn and tick off bits one-by-one until it becomes
7644 		 * too coarse to separate the current node from the last.
7645 		 */
7646 		mask = ~((1 << __ffs(start)) - 1);
7647 		while (mask && last_end <= (start & (mask << 1)))
7648 			mask <<= 1;
7649 
7650 		/* accumulate all internode masks */
7651 		accl_mask |= mask;
7652 	}
7653 
7654 	/* convert mask to number of pages */
7655 	return ~accl_mask + 1;
7656 }
7657 
7658 /**
7659  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7660  *
7661  * Return: the minimum PFN based on information provided via
7662  * memblock_set_node().
7663  */
7664 unsigned long __init find_min_pfn_with_active_regions(void)
7665 {
7666 	return PHYS_PFN(memblock_start_of_DRAM());
7667 }
7668 
7669 /*
7670  * early_calculate_totalpages()
7671  * Sum pages in active regions for movable zone.
7672  * Populate N_MEMORY for calculating usable_nodes.
7673  */
7674 static unsigned long __init early_calculate_totalpages(void)
7675 {
7676 	unsigned long totalpages = 0;
7677 	unsigned long start_pfn, end_pfn;
7678 	int i, nid;
7679 
7680 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7681 		unsigned long pages = end_pfn - start_pfn;
7682 
7683 		totalpages += pages;
7684 		if (pages)
7685 			node_set_state(nid, N_MEMORY);
7686 	}
7687 	return totalpages;
7688 }
7689 
7690 /*
7691  * Find the PFN the Movable zone begins in each node. Kernel memory
7692  * is spread evenly between nodes as long as the nodes have enough
7693  * memory. When they don't, some nodes will have more kernelcore than
7694  * others
7695  */
7696 static void __init find_zone_movable_pfns_for_nodes(void)
7697 {
7698 	int i, nid;
7699 	unsigned long usable_startpfn;
7700 	unsigned long kernelcore_node, kernelcore_remaining;
7701 	/* save the state before borrow the nodemask */
7702 	nodemask_t saved_node_state = node_states[N_MEMORY];
7703 	unsigned long totalpages = early_calculate_totalpages();
7704 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7705 	struct memblock_region *r;
7706 
7707 	/* Need to find movable_zone earlier when movable_node is specified. */
7708 	find_usable_zone_for_movable();
7709 
7710 	/*
7711 	 * If movable_node is specified, ignore kernelcore and movablecore
7712 	 * options.
7713 	 */
7714 	if (movable_node_is_enabled()) {
7715 		for_each_mem_region(r) {
7716 			if (!memblock_is_hotpluggable(r))
7717 				continue;
7718 
7719 			nid = memblock_get_region_node(r);
7720 
7721 			usable_startpfn = PFN_DOWN(r->base);
7722 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7723 				min(usable_startpfn, zone_movable_pfn[nid]) :
7724 				usable_startpfn;
7725 		}
7726 
7727 		goto out2;
7728 	}
7729 
7730 	/*
7731 	 * If kernelcore=mirror is specified, ignore movablecore option
7732 	 */
7733 	if (mirrored_kernelcore) {
7734 		bool mem_below_4gb_not_mirrored = false;
7735 
7736 		for_each_mem_region(r) {
7737 			if (memblock_is_mirror(r))
7738 				continue;
7739 
7740 			nid = memblock_get_region_node(r);
7741 
7742 			usable_startpfn = memblock_region_memory_base_pfn(r);
7743 
7744 			if (usable_startpfn < 0x100000) {
7745 				mem_below_4gb_not_mirrored = true;
7746 				continue;
7747 			}
7748 
7749 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7750 				min(usable_startpfn, zone_movable_pfn[nid]) :
7751 				usable_startpfn;
7752 		}
7753 
7754 		if (mem_below_4gb_not_mirrored)
7755 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7756 
7757 		goto out2;
7758 	}
7759 
7760 	/*
7761 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7762 	 * amount of necessary memory.
7763 	 */
7764 	if (required_kernelcore_percent)
7765 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7766 				       10000UL;
7767 	if (required_movablecore_percent)
7768 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7769 					10000UL;
7770 
7771 	/*
7772 	 * If movablecore= was specified, calculate what size of
7773 	 * kernelcore that corresponds so that memory usable for
7774 	 * any allocation type is evenly spread. If both kernelcore
7775 	 * and movablecore are specified, then the value of kernelcore
7776 	 * will be used for required_kernelcore if it's greater than
7777 	 * what movablecore would have allowed.
7778 	 */
7779 	if (required_movablecore) {
7780 		unsigned long corepages;
7781 
7782 		/*
7783 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7784 		 * was requested by the user
7785 		 */
7786 		required_movablecore =
7787 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7788 		required_movablecore = min(totalpages, required_movablecore);
7789 		corepages = totalpages - required_movablecore;
7790 
7791 		required_kernelcore = max(required_kernelcore, corepages);
7792 	}
7793 
7794 	/*
7795 	 * If kernelcore was not specified or kernelcore size is larger
7796 	 * than totalpages, there is no ZONE_MOVABLE.
7797 	 */
7798 	if (!required_kernelcore || required_kernelcore >= totalpages)
7799 		goto out;
7800 
7801 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7802 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7803 
7804 restart:
7805 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7806 	kernelcore_node = required_kernelcore / usable_nodes;
7807 	for_each_node_state(nid, N_MEMORY) {
7808 		unsigned long start_pfn, end_pfn;
7809 
7810 		/*
7811 		 * Recalculate kernelcore_node if the division per node
7812 		 * now exceeds what is necessary to satisfy the requested
7813 		 * amount of memory for the kernel
7814 		 */
7815 		if (required_kernelcore < kernelcore_node)
7816 			kernelcore_node = required_kernelcore / usable_nodes;
7817 
7818 		/*
7819 		 * As the map is walked, we track how much memory is usable
7820 		 * by the kernel using kernelcore_remaining. When it is
7821 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7822 		 */
7823 		kernelcore_remaining = kernelcore_node;
7824 
7825 		/* Go through each range of PFNs within this node */
7826 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7827 			unsigned long size_pages;
7828 
7829 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7830 			if (start_pfn >= end_pfn)
7831 				continue;
7832 
7833 			/* Account for what is only usable for kernelcore */
7834 			if (start_pfn < usable_startpfn) {
7835 				unsigned long kernel_pages;
7836 				kernel_pages = min(end_pfn, usable_startpfn)
7837 								- start_pfn;
7838 
7839 				kernelcore_remaining -= min(kernel_pages,
7840 							kernelcore_remaining);
7841 				required_kernelcore -= min(kernel_pages,
7842 							required_kernelcore);
7843 
7844 				/* Continue if range is now fully accounted */
7845 				if (end_pfn <= usable_startpfn) {
7846 
7847 					/*
7848 					 * Push zone_movable_pfn to the end so
7849 					 * that if we have to rebalance
7850 					 * kernelcore across nodes, we will
7851 					 * not double account here
7852 					 */
7853 					zone_movable_pfn[nid] = end_pfn;
7854 					continue;
7855 				}
7856 				start_pfn = usable_startpfn;
7857 			}
7858 
7859 			/*
7860 			 * The usable PFN range for ZONE_MOVABLE is from
7861 			 * start_pfn->end_pfn. Calculate size_pages as the
7862 			 * number of pages used as kernelcore
7863 			 */
7864 			size_pages = end_pfn - start_pfn;
7865 			if (size_pages > kernelcore_remaining)
7866 				size_pages = kernelcore_remaining;
7867 			zone_movable_pfn[nid] = start_pfn + size_pages;
7868 
7869 			/*
7870 			 * Some kernelcore has been met, update counts and
7871 			 * break if the kernelcore for this node has been
7872 			 * satisfied
7873 			 */
7874 			required_kernelcore -= min(required_kernelcore,
7875 								size_pages);
7876 			kernelcore_remaining -= size_pages;
7877 			if (!kernelcore_remaining)
7878 				break;
7879 		}
7880 	}
7881 
7882 	/*
7883 	 * If there is still required_kernelcore, we do another pass with one
7884 	 * less node in the count. This will push zone_movable_pfn[nid] further
7885 	 * along on the nodes that still have memory until kernelcore is
7886 	 * satisfied
7887 	 */
7888 	usable_nodes--;
7889 	if (usable_nodes && required_kernelcore > usable_nodes)
7890 		goto restart;
7891 
7892 out2:
7893 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7894 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7895 		zone_movable_pfn[nid] =
7896 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7897 
7898 out:
7899 	/* restore the node_state */
7900 	node_states[N_MEMORY] = saved_node_state;
7901 }
7902 
7903 /* Any regular or high memory on that node ? */
7904 static void check_for_memory(pg_data_t *pgdat, int nid)
7905 {
7906 	enum zone_type zone_type;
7907 
7908 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7909 		struct zone *zone = &pgdat->node_zones[zone_type];
7910 		if (populated_zone(zone)) {
7911 			if (IS_ENABLED(CONFIG_HIGHMEM))
7912 				node_set_state(nid, N_HIGH_MEMORY);
7913 			if (zone_type <= ZONE_NORMAL)
7914 				node_set_state(nid, N_NORMAL_MEMORY);
7915 			break;
7916 		}
7917 	}
7918 }
7919 
7920 /*
7921  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7922  * such cases we allow max_zone_pfn sorted in the descending order
7923  */
7924 bool __weak arch_has_descending_max_zone_pfns(void)
7925 {
7926 	return false;
7927 }
7928 
7929 /**
7930  * free_area_init - Initialise all pg_data_t and zone data
7931  * @max_zone_pfn: an array of max PFNs for each zone
7932  *
7933  * This will call free_area_init_node() for each active node in the system.
7934  * Using the page ranges provided by memblock_set_node(), the size of each
7935  * zone in each node and their holes is calculated. If the maximum PFN
7936  * between two adjacent zones match, it is assumed that the zone is empty.
7937  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7938  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7939  * starts where the previous one ended. For example, ZONE_DMA32 starts
7940  * at arch_max_dma_pfn.
7941  */
7942 void __init free_area_init(unsigned long *max_zone_pfn)
7943 {
7944 	unsigned long start_pfn, end_pfn;
7945 	int i, nid, zone;
7946 	bool descending;
7947 
7948 	/* Record where the zone boundaries are */
7949 	memset(arch_zone_lowest_possible_pfn, 0,
7950 				sizeof(arch_zone_lowest_possible_pfn));
7951 	memset(arch_zone_highest_possible_pfn, 0,
7952 				sizeof(arch_zone_highest_possible_pfn));
7953 
7954 	start_pfn = find_min_pfn_with_active_regions();
7955 	descending = arch_has_descending_max_zone_pfns();
7956 
7957 	for (i = 0; i < MAX_NR_ZONES; i++) {
7958 		if (descending)
7959 			zone = MAX_NR_ZONES - i - 1;
7960 		else
7961 			zone = i;
7962 
7963 		if (zone == ZONE_MOVABLE)
7964 			continue;
7965 
7966 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7967 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7968 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7969 
7970 		start_pfn = end_pfn;
7971 	}
7972 
7973 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7974 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7975 	find_zone_movable_pfns_for_nodes();
7976 
7977 	/* Print out the zone ranges */
7978 	pr_info("Zone ranges:\n");
7979 	for (i = 0; i < MAX_NR_ZONES; i++) {
7980 		if (i == ZONE_MOVABLE)
7981 			continue;
7982 		pr_info("  %-8s ", zone_names[i]);
7983 		if (arch_zone_lowest_possible_pfn[i] ==
7984 				arch_zone_highest_possible_pfn[i])
7985 			pr_cont("empty\n");
7986 		else
7987 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7988 				(u64)arch_zone_lowest_possible_pfn[i]
7989 					<< PAGE_SHIFT,
7990 				((u64)arch_zone_highest_possible_pfn[i]
7991 					<< PAGE_SHIFT) - 1);
7992 	}
7993 
7994 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7995 	pr_info("Movable zone start for each node\n");
7996 	for (i = 0; i < MAX_NUMNODES; i++) {
7997 		if (zone_movable_pfn[i])
7998 			pr_info("  Node %d: %#018Lx\n", i,
7999 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8000 	}
8001 
8002 	/*
8003 	 * Print out the early node map, and initialize the
8004 	 * subsection-map relative to active online memory ranges to
8005 	 * enable future "sub-section" extensions of the memory map.
8006 	 */
8007 	pr_info("Early memory node ranges\n");
8008 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8009 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8010 			(u64)start_pfn << PAGE_SHIFT,
8011 			((u64)end_pfn << PAGE_SHIFT) - 1);
8012 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8013 	}
8014 
8015 	/* Initialise every node */
8016 	mminit_verify_pageflags_layout();
8017 	setup_nr_node_ids();
8018 	for_each_online_node(nid) {
8019 		pg_data_t *pgdat = NODE_DATA(nid);
8020 		free_area_init_node(nid);
8021 
8022 		/* Any memory on that node */
8023 		if (pgdat->node_present_pages)
8024 			node_set_state(nid, N_MEMORY);
8025 		check_for_memory(pgdat, nid);
8026 	}
8027 
8028 	memmap_init();
8029 }
8030 
8031 static int __init cmdline_parse_core(char *p, unsigned long *core,
8032 				     unsigned long *percent)
8033 {
8034 	unsigned long long coremem;
8035 	char *endptr;
8036 
8037 	if (!p)
8038 		return -EINVAL;
8039 
8040 	/* Value may be a percentage of total memory, otherwise bytes */
8041 	coremem = simple_strtoull(p, &endptr, 0);
8042 	if (*endptr == '%') {
8043 		/* Paranoid check for percent values greater than 100 */
8044 		WARN_ON(coremem > 100);
8045 
8046 		*percent = coremem;
8047 	} else {
8048 		coremem = memparse(p, &p);
8049 		/* Paranoid check that UL is enough for the coremem value */
8050 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8051 
8052 		*core = coremem >> PAGE_SHIFT;
8053 		*percent = 0UL;
8054 	}
8055 	return 0;
8056 }
8057 
8058 /*
8059  * kernelcore=size sets the amount of memory for use for allocations that
8060  * cannot be reclaimed or migrated.
8061  */
8062 static int __init cmdline_parse_kernelcore(char *p)
8063 {
8064 	/* parse kernelcore=mirror */
8065 	if (parse_option_str(p, "mirror")) {
8066 		mirrored_kernelcore = true;
8067 		return 0;
8068 	}
8069 
8070 	return cmdline_parse_core(p, &required_kernelcore,
8071 				  &required_kernelcore_percent);
8072 }
8073 
8074 /*
8075  * movablecore=size sets the amount of memory for use for allocations that
8076  * can be reclaimed or migrated.
8077  */
8078 static int __init cmdline_parse_movablecore(char *p)
8079 {
8080 	return cmdline_parse_core(p, &required_movablecore,
8081 				  &required_movablecore_percent);
8082 }
8083 
8084 early_param("kernelcore", cmdline_parse_kernelcore);
8085 early_param("movablecore", cmdline_parse_movablecore);
8086 
8087 void adjust_managed_page_count(struct page *page, long count)
8088 {
8089 	atomic_long_add(count, &page_zone(page)->managed_pages);
8090 	totalram_pages_add(count);
8091 #ifdef CONFIG_HIGHMEM
8092 	if (PageHighMem(page))
8093 		totalhigh_pages_add(count);
8094 #endif
8095 }
8096 EXPORT_SYMBOL(adjust_managed_page_count);
8097 
8098 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8099 {
8100 	void *pos;
8101 	unsigned long pages = 0;
8102 
8103 	start = (void *)PAGE_ALIGN((unsigned long)start);
8104 	end = (void *)((unsigned long)end & PAGE_MASK);
8105 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8106 		struct page *page = virt_to_page(pos);
8107 		void *direct_map_addr;
8108 
8109 		/*
8110 		 * 'direct_map_addr' might be different from 'pos'
8111 		 * because some architectures' virt_to_page()
8112 		 * work with aliases.  Getting the direct map
8113 		 * address ensures that we get a _writeable_
8114 		 * alias for the memset().
8115 		 */
8116 		direct_map_addr = page_address(page);
8117 		/*
8118 		 * Perform a kasan-unchecked memset() since this memory
8119 		 * has not been initialized.
8120 		 */
8121 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8122 		if ((unsigned int)poison <= 0xFF)
8123 			memset(direct_map_addr, poison, PAGE_SIZE);
8124 
8125 		free_reserved_page(page);
8126 	}
8127 
8128 	if (pages && s)
8129 		pr_info("Freeing %s memory: %ldK\n",
8130 			s, pages << (PAGE_SHIFT - 10));
8131 
8132 	return pages;
8133 }
8134 
8135 void __init mem_init_print_info(void)
8136 {
8137 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8138 	unsigned long init_code_size, init_data_size;
8139 
8140 	physpages = get_num_physpages();
8141 	codesize = _etext - _stext;
8142 	datasize = _edata - _sdata;
8143 	rosize = __end_rodata - __start_rodata;
8144 	bss_size = __bss_stop - __bss_start;
8145 	init_data_size = __init_end - __init_begin;
8146 	init_code_size = _einittext - _sinittext;
8147 
8148 	/*
8149 	 * Detect special cases and adjust section sizes accordingly:
8150 	 * 1) .init.* may be embedded into .data sections
8151 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8152 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8153 	 * 3) .rodata.* may be embedded into .text or .data sections.
8154 	 */
8155 #define adj_init_size(start, end, size, pos, adj) \
8156 	do { \
8157 		if (start <= pos && pos < end && size > adj) \
8158 			size -= adj; \
8159 	} while (0)
8160 
8161 	adj_init_size(__init_begin, __init_end, init_data_size,
8162 		     _sinittext, init_code_size);
8163 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8164 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8165 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8166 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8167 
8168 #undef	adj_init_size
8169 
8170 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8171 #ifdef	CONFIG_HIGHMEM
8172 		", %luK highmem"
8173 #endif
8174 		")\n",
8175 		nr_free_pages() << (PAGE_SHIFT - 10),
8176 		physpages << (PAGE_SHIFT - 10),
8177 		codesize >> 10, datasize >> 10, rosize >> 10,
8178 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8179 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8180 		totalcma_pages << (PAGE_SHIFT - 10)
8181 #ifdef	CONFIG_HIGHMEM
8182 		, totalhigh_pages() << (PAGE_SHIFT - 10)
8183 #endif
8184 		);
8185 }
8186 
8187 /**
8188  * set_dma_reserve - set the specified number of pages reserved in the first zone
8189  * @new_dma_reserve: The number of pages to mark reserved
8190  *
8191  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8192  * In the DMA zone, a significant percentage may be consumed by kernel image
8193  * and other unfreeable allocations which can skew the watermarks badly. This
8194  * function may optionally be used to account for unfreeable pages in the
8195  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8196  * smaller per-cpu batchsize.
8197  */
8198 void __init set_dma_reserve(unsigned long new_dma_reserve)
8199 {
8200 	dma_reserve = new_dma_reserve;
8201 }
8202 
8203 static int page_alloc_cpu_dead(unsigned int cpu)
8204 {
8205 	struct zone *zone;
8206 
8207 	lru_add_drain_cpu(cpu);
8208 	drain_pages(cpu);
8209 
8210 	/*
8211 	 * Spill the event counters of the dead processor
8212 	 * into the current processors event counters.
8213 	 * This artificially elevates the count of the current
8214 	 * processor.
8215 	 */
8216 	vm_events_fold_cpu(cpu);
8217 
8218 	/*
8219 	 * Zero the differential counters of the dead processor
8220 	 * so that the vm statistics are consistent.
8221 	 *
8222 	 * This is only okay since the processor is dead and cannot
8223 	 * race with what we are doing.
8224 	 */
8225 	cpu_vm_stats_fold(cpu);
8226 
8227 	for_each_populated_zone(zone)
8228 		zone_pcp_update(zone, 0);
8229 
8230 	return 0;
8231 }
8232 
8233 static int page_alloc_cpu_online(unsigned int cpu)
8234 {
8235 	struct zone *zone;
8236 
8237 	for_each_populated_zone(zone)
8238 		zone_pcp_update(zone, 1);
8239 	return 0;
8240 }
8241 
8242 #ifdef CONFIG_NUMA
8243 int hashdist = HASHDIST_DEFAULT;
8244 
8245 static int __init set_hashdist(char *str)
8246 {
8247 	if (!str)
8248 		return 0;
8249 	hashdist = simple_strtoul(str, &str, 0);
8250 	return 1;
8251 }
8252 __setup("hashdist=", set_hashdist);
8253 #endif
8254 
8255 void __init page_alloc_init(void)
8256 {
8257 	int ret;
8258 
8259 #ifdef CONFIG_NUMA
8260 	if (num_node_state(N_MEMORY) == 1)
8261 		hashdist = 0;
8262 #endif
8263 
8264 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8265 					"mm/page_alloc:pcp",
8266 					page_alloc_cpu_online,
8267 					page_alloc_cpu_dead);
8268 	WARN_ON(ret < 0);
8269 }
8270 
8271 /*
8272  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8273  *	or min_free_kbytes changes.
8274  */
8275 static void calculate_totalreserve_pages(void)
8276 {
8277 	struct pglist_data *pgdat;
8278 	unsigned long reserve_pages = 0;
8279 	enum zone_type i, j;
8280 
8281 	for_each_online_pgdat(pgdat) {
8282 
8283 		pgdat->totalreserve_pages = 0;
8284 
8285 		for (i = 0; i < MAX_NR_ZONES; i++) {
8286 			struct zone *zone = pgdat->node_zones + i;
8287 			long max = 0;
8288 			unsigned long managed_pages = zone_managed_pages(zone);
8289 
8290 			/* Find valid and maximum lowmem_reserve in the zone */
8291 			for (j = i; j < MAX_NR_ZONES; j++) {
8292 				if (zone->lowmem_reserve[j] > max)
8293 					max = zone->lowmem_reserve[j];
8294 			}
8295 
8296 			/* we treat the high watermark as reserved pages. */
8297 			max += high_wmark_pages(zone);
8298 
8299 			if (max > managed_pages)
8300 				max = managed_pages;
8301 
8302 			pgdat->totalreserve_pages += max;
8303 
8304 			reserve_pages += max;
8305 		}
8306 	}
8307 	totalreserve_pages = reserve_pages;
8308 }
8309 
8310 /*
8311  * setup_per_zone_lowmem_reserve - called whenever
8312  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8313  *	has a correct pages reserved value, so an adequate number of
8314  *	pages are left in the zone after a successful __alloc_pages().
8315  */
8316 static void setup_per_zone_lowmem_reserve(void)
8317 {
8318 	struct pglist_data *pgdat;
8319 	enum zone_type i, j;
8320 
8321 	for_each_online_pgdat(pgdat) {
8322 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8323 			struct zone *zone = &pgdat->node_zones[i];
8324 			int ratio = sysctl_lowmem_reserve_ratio[i];
8325 			bool clear = !ratio || !zone_managed_pages(zone);
8326 			unsigned long managed_pages = 0;
8327 
8328 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8329 				struct zone *upper_zone = &pgdat->node_zones[j];
8330 
8331 				managed_pages += zone_managed_pages(upper_zone);
8332 
8333 				if (clear)
8334 					zone->lowmem_reserve[j] = 0;
8335 				else
8336 					zone->lowmem_reserve[j] = managed_pages / ratio;
8337 			}
8338 		}
8339 	}
8340 
8341 	/* update totalreserve_pages */
8342 	calculate_totalreserve_pages();
8343 }
8344 
8345 static void __setup_per_zone_wmarks(void)
8346 {
8347 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8348 	unsigned long lowmem_pages = 0;
8349 	struct zone *zone;
8350 	unsigned long flags;
8351 
8352 	/* Calculate total number of !ZONE_HIGHMEM pages */
8353 	for_each_zone(zone) {
8354 		if (!is_highmem(zone))
8355 			lowmem_pages += zone_managed_pages(zone);
8356 	}
8357 
8358 	for_each_zone(zone) {
8359 		u64 tmp;
8360 
8361 		spin_lock_irqsave(&zone->lock, flags);
8362 		tmp = (u64)pages_min * zone_managed_pages(zone);
8363 		do_div(tmp, lowmem_pages);
8364 		if (is_highmem(zone)) {
8365 			/*
8366 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8367 			 * need highmem pages, so cap pages_min to a small
8368 			 * value here.
8369 			 *
8370 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8371 			 * deltas control async page reclaim, and so should
8372 			 * not be capped for highmem.
8373 			 */
8374 			unsigned long min_pages;
8375 
8376 			min_pages = zone_managed_pages(zone) / 1024;
8377 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8378 			zone->_watermark[WMARK_MIN] = min_pages;
8379 		} else {
8380 			/*
8381 			 * If it's a lowmem zone, reserve a number of pages
8382 			 * proportionate to the zone's size.
8383 			 */
8384 			zone->_watermark[WMARK_MIN] = tmp;
8385 		}
8386 
8387 		/*
8388 		 * Set the kswapd watermarks distance according to the
8389 		 * scale factor in proportion to available memory, but
8390 		 * ensure a minimum size on small systems.
8391 		 */
8392 		tmp = max_t(u64, tmp >> 2,
8393 			    mult_frac(zone_managed_pages(zone),
8394 				      watermark_scale_factor, 10000));
8395 
8396 		zone->watermark_boost = 0;
8397 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8398 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8399 
8400 		spin_unlock_irqrestore(&zone->lock, flags);
8401 	}
8402 
8403 	/* update totalreserve_pages */
8404 	calculate_totalreserve_pages();
8405 }
8406 
8407 /**
8408  * setup_per_zone_wmarks - called when min_free_kbytes changes
8409  * or when memory is hot-{added|removed}
8410  *
8411  * Ensures that the watermark[min,low,high] values for each zone are set
8412  * correctly with respect to min_free_kbytes.
8413  */
8414 void setup_per_zone_wmarks(void)
8415 {
8416 	struct zone *zone;
8417 	static DEFINE_SPINLOCK(lock);
8418 
8419 	spin_lock(&lock);
8420 	__setup_per_zone_wmarks();
8421 	spin_unlock(&lock);
8422 
8423 	/*
8424 	 * The watermark size have changed so update the pcpu batch
8425 	 * and high limits or the limits may be inappropriate.
8426 	 */
8427 	for_each_zone(zone)
8428 		zone_pcp_update(zone, 0);
8429 }
8430 
8431 /*
8432  * Initialise min_free_kbytes.
8433  *
8434  * For small machines we want it small (128k min).  For large machines
8435  * we want it large (256MB max).  But it is not linear, because network
8436  * bandwidth does not increase linearly with machine size.  We use
8437  *
8438  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8439  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8440  *
8441  * which yields
8442  *
8443  * 16MB:	512k
8444  * 32MB:	724k
8445  * 64MB:	1024k
8446  * 128MB:	1448k
8447  * 256MB:	2048k
8448  * 512MB:	2896k
8449  * 1024MB:	4096k
8450  * 2048MB:	5792k
8451  * 4096MB:	8192k
8452  * 8192MB:	11584k
8453  * 16384MB:	16384k
8454  */
8455 int __meminit init_per_zone_wmark_min(void)
8456 {
8457 	unsigned long lowmem_kbytes;
8458 	int new_min_free_kbytes;
8459 
8460 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8461 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8462 
8463 	if (new_min_free_kbytes > user_min_free_kbytes) {
8464 		min_free_kbytes = new_min_free_kbytes;
8465 		if (min_free_kbytes < 128)
8466 			min_free_kbytes = 128;
8467 		if (min_free_kbytes > 262144)
8468 			min_free_kbytes = 262144;
8469 	} else {
8470 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8471 				new_min_free_kbytes, user_min_free_kbytes);
8472 	}
8473 	setup_per_zone_wmarks();
8474 	refresh_zone_stat_thresholds();
8475 	setup_per_zone_lowmem_reserve();
8476 
8477 #ifdef CONFIG_NUMA
8478 	setup_min_unmapped_ratio();
8479 	setup_min_slab_ratio();
8480 #endif
8481 
8482 	khugepaged_min_free_kbytes_update();
8483 
8484 	return 0;
8485 }
8486 postcore_initcall(init_per_zone_wmark_min)
8487 
8488 /*
8489  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8490  *	that we can call two helper functions whenever min_free_kbytes
8491  *	changes.
8492  */
8493 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8494 		void *buffer, size_t *length, loff_t *ppos)
8495 {
8496 	int rc;
8497 
8498 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8499 	if (rc)
8500 		return rc;
8501 
8502 	if (write) {
8503 		user_min_free_kbytes = min_free_kbytes;
8504 		setup_per_zone_wmarks();
8505 	}
8506 	return 0;
8507 }
8508 
8509 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8510 		void *buffer, size_t *length, loff_t *ppos)
8511 {
8512 	int rc;
8513 
8514 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8515 	if (rc)
8516 		return rc;
8517 
8518 	if (write)
8519 		setup_per_zone_wmarks();
8520 
8521 	return 0;
8522 }
8523 
8524 #ifdef CONFIG_NUMA
8525 static void setup_min_unmapped_ratio(void)
8526 {
8527 	pg_data_t *pgdat;
8528 	struct zone *zone;
8529 
8530 	for_each_online_pgdat(pgdat)
8531 		pgdat->min_unmapped_pages = 0;
8532 
8533 	for_each_zone(zone)
8534 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8535 						         sysctl_min_unmapped_ratio) / 100;
8536 }
8537 
8538 
8539 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8540 		void *buffer, size_t *length, loff_t *ppos)
8541 {
8542 	int rc;
8543 
8544 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8545 	if (rc)
8546 		return rc;
8547 
8548 	setup_min_unmapped_ratio();
8549 
8550 	return 0;
8551 }
8552 
8553 static void setup_min_slab_ratio(void)
8554 {
8555 	pg_data_t *pgdat;
8556 	struct zone *zone;
8557 
8558 	for_each_online_pgdat(pgdat)
8559 		pgdat->min_slab_pages = 0;
8560 
8561 	for_each_zone(zone)
8562 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8563 						     sysctl_min_slab_ratio) / 100;
8564 }
8565 
8566 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8567 		void *buffer, size_t *length, loff_t *ppos)
8568 {
8569 	int rc;
8570 
8571 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8572 	if (rc)
8573 		return rc;
8574 
8575 	setup_min_slab_ratio();
8576 
8577 	return 0;
8578 }
8579 #endif
8580 
8581 /*
8582  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8583  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8584  *	whenever sysctl_lowmem_reserve_ratio changes.
8585  *
8586  * The reserve ratio obviously has absolutely no relation with the
8587  * minimum watermarks. The lowmem reserve ratio can only make sense
8588  * if in function of the boot time zone sizes.
8589  */
8590 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8591 		void *buffer, size_t *length, loff_t *ppos)
8592 {
8593 	int i;
8594 
8595 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8596 
8597 	for (i = 0; i < MAX_NR_ZONES; i++) {
8598 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8599 			sysctl_lowmem_reserve_ratio[i] = 0;
8600 	}
8601 
8602 	setup_per_zone_lowmem_reserve();
8603 	return 0;
8604 }
8605 
8606 /*
8607  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8608  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8609  * pagelist can have before it gets flushed back to buddy allocator.
8610  */
8611 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8612 		int write, void *buffer, size_t *length, loff_t *ppos)
8613 {
8614 	struct zone *zone;
8615 	int old_percpu_pagelist_high_fraction;
8616 	int ret;
8617 
8618 	mutex_lock(&pcp_batch_high_lock);
8619 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8620 
8621 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8622 	if (!write || ret < 0)
8623 		goto out;
8624 
8625 	/* Sanity checking to avoid pcp imbalance */
8626 	if (percpu_pagelist_high_fraction &&
8627 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8628 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8629 		ret = -EINVAL;
8630 		goto out;
8631 	}
8632 
8633 	/* No change? */
8634 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8635 		goto out;
8636 
8637 	for_each_populated_zone(zone)
8638 		zone_set_pageset_high_and_batch(zone, 0);
8639 out:
8640 	mutex_unlock(&pcp_batch_high_lock);
8641 	return ret;
8642 }
8643 
8644 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8645 /*
8646  * Returns the number of pages that arch has reserved but
8647  * is not known to alloc_large_system_hash().
8648  */
8649 static unsigned long __init arch_reserved_kernel_pages(void)
8650 {
8651 	return 0;
8652 }
8653 #endif
8654 
8655 /*
8656  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8657  * machines. As memory size is increased the scale is also increased but at
8658  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8659  * quadruples the scale is increased by one, which means the size of hash table
8660  * only doubles, instead of quadrupling as well.
8661  * Because 32-bit systems cannot have large physical memory, where this scaling
8662  * makes sense, it is disabled on such platforms.
8663  */
8664 #if __BITS_PER_LONG > 32
8665 #define ADAPT_SCALE_BASE	(64ul << 30)
8666 #define ADAPT_SCALE_SHIFT	2
8667 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8668 #endif
8669 
8670 /*
8671  * allocate a large system hash table from bootmem
8672  * - it is assumed that the hash table must contain an exact power-of-2
8673  *   quantity of entries
8674  * - limit is the number of hash buckets, not the total allocation size
8675  */
8676 void *__init alloc_large_system_hash(const char *tablename,
8677 				     unsigned long bucketsize,
8678 				     unsigned long numentries,
8679 				     int scale,
8680 				     int flags,
8681 				     unsigned int *_hash_shift,
8682 				     unsigned int *_hash_mask,
8683 				     unsigned long low_limit,
8684 				     unsigned long high_limit)
8685 {
8686 	unsigned long long max = high_limit;
8687 	unsigned long log2qty, size;
8688 	void *table = NULL;
8689 	gfp_t gfp_flags;
8690 	bool virt;
8691 	bool huge;
8692 
8693 	/* allow the kernel cmdline to have a say */
8694 	if (!numentries) {
8695 		/* round applicable memory size up to nearest megabyte */
8696 		numentries = nr_kernel_pages;
8697 		numentries -= arch_reserved_kernel_pages();
8698 
8699 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8700 		if (PAGE_SHIFT < 20)
8701 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8702 
8703 #if __BITS_PER_LONG > 32
8704 		if (!high_limit) {
8705 			unsigned long adapt;
8706 
8707 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8708 			     adapt <<= ADAPT_SCALE_SHIFT)
8709 				scale++;
8710 		}
8711 #endif
8712 
8713 		/* limit to 1 bucket per 2^scale bytes of low memory */
8714 		if (scale > PAGE_SHIFT)
8715 			numentries >>= (scale - PAGE_SHIFT);
8716 		else
8717 			numentries <<= (PAGE_SHIFT - scale);
8718 
8719 		/* Make sure we've got at least a 0-order allocation.. */
8720 		if (unlikely(flags & HASH_SMALL)) {
8721 			/* Makes no sense without HASH_EARLY */
8722 			WARN_ON(!(flags & HASH_EARLY));
8723 			if (!(numentries >> *_hash_shift)) {
8724 				numentries = 1UL << *_hash_shift;
8725 				BUG_ON(!numentries);
8726 			}
8727 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8728 			numentries = PAGE_SIZE / bucketsize;
8729 	}
8730 	numentries = roundup_pow_of_two(numentries);
8731 
8732 	/* limit allocation size to 1/16 total memory by default */
8733 	if (max == 0) {
8734 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8735 		do_div(max, bucketsize);
8736 	}
8737 	max = min(max, 0x80000000ULL);
8738 
8739 	if (numentries < low_limit)
8740 		numentries = low_limit;
8741 	if (numentries > max)
8742 		numentries = max;
8743 
8744 	log2qty = ilog2(numentries);
8745 
8746 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8747 	do {
8748 		virt = false;
8749 		size = bucketsize << log2qty;
8750 		if (flags & HASH_EARLY) {
8751 			if (flags & HASH_ZERO)
8752 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8753 			else
8754 				table = memblock_alloc_raw(size,
8755 							   SMP_CACHE_BYTES);
8756 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8757 			table = __vmalloc(size, gfp_flags);
8758 			virt = true;
8759 			huge = is_vm_area_hugepages(table);
8760 		} else {
8761 			/*
8762 			 * If bucketsize is not a power-of-two, we may free
8763 			 * some pages at the end of hash table which
8764 			 * alloc_pages_exact() automatically does
8765 			 */
8766 			table = alloc_pages_exact(size, gfp_flags);
8767 			kmemleak_alloc(table, size, 1, gfp_flags);
8768 		}
8769 	} while (!table && size > PAGE_SIZE && --log2qty);
8770 
8771 	if (!table)
8772 		panic("Failed to allocate %s hash table\n", tablename);
8773 
8774 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8775 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8776 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8777 
8778 	if (_hash_shift)
8779 		*_hash_shift = log2qty;
8780 	if (_hash_mask)
8781 		*_hash_mask = (1 << log2qty) - 1;
8782 
8783 	return table;
8784 }
8785 
8786 /*
8787  * This function checks whether pageblock includes unmovable pages or not.
8788  *
8789  * PageLRU check without isolation or lru_lock could race so that
8790  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8791  * check without lock_page also may miss some movable non-lru pages at
8792  * race condition. So you can't expect this function should be exact.
8793  *
8794  * Returns a page without holding a reference. If the caller wants to
8795  * dereference that page (e.g., dumping), it has to make sure that it
8796  * cannot get removed (e.g., via memory unplug) concurrently.
8797  *
8798  */
8799 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8800 				 int migratetype, int flags)
8801 {
8802 	unsigned long iter = 0;
8803 	unsigned long pfn = page_to_pfn(page);
8804 	unsigned long offset = pfn % pageblock_nr_pages;
8805 
8806 	if (is_migrate_cma_page(page)) {
8807 		/*
8808 		 * CMA allocations (alloc_contig_range) really need to mark
8809 		 * isolate CMA pageblocks even when they are not movable in fact
8810 		 * so consider them movable here.
8811 		 */
8812 		if (is_migrate_cma(migratetype))
8813 			return NULL;
8814 
8815 		return page;
8816 	}
8817 
8818 	for (; iter < pageblock_nr_pages - offset; iter++) {
8819 		page = pfn_to_page(pfn + iter);
8820 
8821 		/*
8822 		 * Both, bootmem allocations and memory holes are marked
8823 		 * PG_reserved and are unmovable. We can even have unmovable
8824 		 * allocations inside ZONE_MOVABLE, for example when
8825 		 * specifying "movablecore".
8826 		 */
8827 		if (PageReserved(page))
8828 			return page;
8829 
8830 		/*
8831 		 * If the zone is movable and we have ruled out all reserved
8832 		 * pages then it should be reasonably safe to assume the rest
8833 		 * is movable.
8834 		 */
8835 		if (zone_idx(zone) == ZONE_MOVABLE)
8836 			continue;
8837 
8838 		/*
8839 		 * Hugepages are not in LRU lists, but they're movable.
8840 		 * THPs are on the LRU, but need to be counted as #small pages.
8841 		 * We need not scan over tail pages because we don't
8842 		 * handle each tail page individually in migration.
8843 		 */
8844 		if (PageHuge(page) || PageTransCompound(page)) {
8845 			struct page *head = compound_head(page);
8846 			unsigned int skip_pages;
8847 
8848 			if (PageHuge(page)) {
8849 				if (!hugepage_migration_supported(page_hstate(head)))
8850 					return page;
8851 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8852 				return page;
8853 			}
8854 
8855 			skip_pages = compound_nr(head) - (page - head);
8856 			iter += skip_pages - 1;
8857 			continue;
8858 		}
8859 
8860 		/*
8861 		 * We can't use page_count without pin a page
8862 		 * because another CPU can free compound page.
8863 		 * This check already skips compound tails of THP
8864 		 * because their page->_refcount is zero at all time.
8865 		 */
8866 		if (!page_ref_count(page)) {
8867 			if (PageBuddy(page))
8868 				iter += (1 << buddy_order(page)) - 1;
8869 			continue;
8870 		}
8871 
8872 		/*
8873 		 * The HWPoisoned page may be not in buddy system, and
8874 		 * page_count() is not 0.
8875 		 */
8876 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8877 			continue;
8878 
8879 		/*
8880 		 * We treat all PageOffline() pages as movable when offlining
8881 		 * to give drivers a chance to decrement their reference count
8882 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8883 		 * can be offlined as there are no direct references anymore.
8884 		 * For actually unmovable PageOffline() where the driver does
8885 		 * not support this, we will fail later when trying to actually
8886 		 * move these pages that still have a reference count > 0.
8887 		 * (false negatives in this function only)
8888 		 */
8889 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8890 			continue;
8891 
8892 		if (__PageMovable(page) || PageLRU(page))
8893 			continue;
8894 
8895 		/*
8896 		 * If there are RECLAIMABLE pages, we need to check
8897 		 * it.  But now, memory offline itself doesn't call
8898 		 * shrink_node_slabs() and it still to be fixed.
8899 		 */
8900 		return page;
8901 	}
8902 	return NULL;
8903 }
8904 
8905 #ifdef CONFIG_CONTIG_ALLOC
8906 static unsigned long pfn_max_align_down(unsigned long pfn)
8907 {
8908 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8909 			     pageblock_nr_pages) - 1);
8910 }
8911 
8912 static unsigned long pfn_max_align_up(unsigned long pfn)
8913 {
8914 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8915 				pageblock_nr_pages));
8916 }
8917 
8918 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8919 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8920 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8921 static void alloc_contig_dump_pages(struct list_head *page_list)
8922 {
8923 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8924 
8925 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8926 		struct page *page;
8927 
8928 		dump_stack();
8929 		list_for_each_entry(page, page_list, lru)
8930 			dump_page(page, "migration failure");
8931 	}
8932 }
8933 #else
8934 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8935 {
8936 }
8937 #endif
8938 
8939 /* [start, end) must belong to a single zone. */
8940 static int __alloc_contig_migrate_range(struct compact_control *cc,
8941 					unsigned long start, unsigned long end)
8942 {
8943 	/* This function is based on compact_zone() from compaction.c. */
8944 	unsigned int nr_reclaimed;
8945 	unsigned long pfn = start;
8946 	unsigned int tries = 0;
8947 	int ret = 0;
8948 	struct migration_target_control mtc = {
8949 		.nid = zone_to_nid(cc->zone),
8950 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8951 	};
8952 
8953 	lru_cache_disable();
8954 
8955 	while (pfn < end || !list_empty(&cc->migratepages)) {
8956 		if (fatal_signal_pending(current)) {
8957 			ret = -EINTR;
8958 			break;
8959 		}
8960 
8961 		if (list_empty(&cc->migratepages)) {
8962 			cc->nr_migratepages = 0;
8963 			ret = isolate_migratepages_range(cc, pfn, end);
8964 			if (ret && ret != -EAGAIN)
8965 				break;
8966 			pfn = cc->migrate_pfn;
8967 			tries = 0;
8968 		} else if (++tries == 5) {
8969 			ret = -EBUSY;
8970 			break;
8971 		}
8972 
8973 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8974 							&cc->migratepages);
8975 		cc->nr_migratepages -= nr_reclaimed;
8976 
8977 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8978 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
8979 
8980 		/*
8981 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8982 		 * to retry again over this error, so do the same here.
8983 		 */
8984 		if (ret == -ENOMEM)
8985 			break;
8986 	}
8987 
8988 	lru_cache_enable();
8989 	if (ret < 0) {
8990 		if (ret == -EBUSY)
8991 			alloc_contig_dump_pages(&cc->migratepages);
8992 		putback_movable_pages(&cc->migratepages);
8993 		return ret;
8994 	}
8995 	return 0;
8996 }
8997 
8998 /**
8999  * alloc_contig_range() -- tries to allocate given range of pages
9000  * @start:	start PFN to allocate
9001  * @end:	one-past-the-last PFN to allocate
9002  * @migratetype:	migratetype of the underlying pageblocks (either
9003  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9004  *			in range must have the same migratetype and it must
9005  *			be either of the two.
9006  * @gfp_mask:	GFP mask to use during compaction
9007  *
9008  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9009  * aligned.  The PFN range must belong to a single zone.
9010  *
9011  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9012  * pageblocks in the range.  Once isolated, the pageblocks should not
9013  * be modified by others.
9014  *
9015  * Return: zero on success or negative error code.  On success all
9016  * pages which PFN is in [start, end) are allocated for the caller and
9017  * need to be freed with free_contig_range().
9018  */
9019 int alloc_contig_range(unsigned long start, unsigned long end,
9020 		       unsigned migratetype, gfp_t gfp_mask)
9021 {
9022 	unsigned long outer_start, outer_end;
9023 	unsigned int order;
9024 	int ret = 0;
9025 
9026 	struct compact_control cc = {
9027 		.nr_migratepages = 0,
9028 		.order = -1,
9029 		.zone = page_zone(pfn_to_page(start)),
9030 		.mode = MIGRATE_SYNC,
9031 		.ignore_skip_hint = true,
9032 		.no_set_skip_hint = true,
9033 		.gfp_mask = current_gfp_context(gfp_mask),
9034 		.alloc_contig = true,
9035 	};
9036 	INIT_LIST_HEAD(&cc.migratepages);
9037 
9038 	/*
9039 	 * What we do here is we mark all pageblocks in range as
9040 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9041 	 * have different sizes, and due to the way page allocator
9042 	 * work, we align the range to biggest of the two pages so
9043 	 * that page allocator won't try to merge buddies from
9044 	 * different pageblocks and change MIGRATE_ISOLATE to some
9045 	 * other migration type.
9046 	 *
9047 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9048 	 * migrate the pages from an unaligned range (ie. pages that
9049 	 * we are interested in).  This will put all the pages in
9050 	 * range back to page allocator as MIGRATE_ISOLATE.
9051 	 *
9052 	 * When this is done, we take the pages in range from page
9053 	 * allocator removing them from the buddy system.  This way
9054 	 * page allocator will never consider using them.
9055 	 *
9056 	 * This lets us mark the pageblocks back as
9057 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9058 	 * aligned range but not in the unaligned, original range are
9059 	 * put back to page allocator so that buddy can use them.
9060 	 */
9061 
9062 	ret = start_isolate_page_range(pfn_max_align_down(start),
9063 				       pfn_max_align_up(end), migratetype, 0);
9064 	if (ret)
9065 		return ret;
9066 
9067 	drain_all_pages(cc.zone);
9068 
9069 	/*
9070 	 * In case of -EBUSY, we'd like to know which page causes problem.
9071 	 * So, just fall through. test_pages_isolated() has a tracepoint
9072 	 * which will report the busy page.
9073 	 *
9074 	 * It is possible that busy pages could become available before
9075 	 * the call to test_pages_isolated, and the range will actually be
9076 	 * allocated.  So, if we fall through be sure to clear ret so that
9077 	 * -EBUSY is not accidentally used or returned to caller.
9078 	 */
9079 	ret = __alloc_contig_migrate_range(&cc, start, end);
9080 	if (ret && ret != -EBUSY)
9081 		goto done;
9082 	ret = 0;
9083 
9084 	/*
9085 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9086 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9087 	 * more, all pages in [start, end) are free in page allocator.
9088 	 * What we are going to do is to allocate all pages from
9089 	 * [start, end) (that is remove them from page allocator).
9090 	 *
9091 	 * The only problem is that pages at the beginning and at the
9092 	 * end of interesting range may be not aligned with pages that
9093 	 * page allocator holds, ie. they can be part of higher order
9094 	 * pages.  Because of this, we reserve the bigger range and
9095 	 * once this is done free the pages we are not interested in.
9096 	 *
9097 	 * We don't have to hold zone->lock here because the pages are
9098 	 * isolated thus they won't get removed from buddy.
9099 	 */
9100 
9101 	order = 0;
9102 	outer_start = start;
9103 	while (!PageBuddy(pfn_to_page(outer_start))) {
9104 		if (++order >= MAX_ORDER) {
9105 			outer_start = start;
9106 			break;
9107 		}
9108 		outer_start &= ~0UL << order;
9109 	}
9110 
9111 	if (outer_start != start) {
9112 		order = buddy_order(pfn_to_page(outer_start));
9113 
9114 		/*
9115 		 * outer_start page could be small order buddy page and
9116 		 * it doesn't include start page. Adjust outer_start
9117 		 * in this case to report failed page properly
9118 		 * on tracepoint in test_pages_isolated()
9119 		 */
9120 		if (outer_start + (1UL << order) <= start)
9121 			outer_start = start;
9122 	}
9123 
9124 	/* Make sure the range is really isolated. */
9125 	if (test_pages_isolated(outer_start, end, 0)) {
9126 		ret = -EBUSY;
9127 		goto done;
9128 	}
9129 
9130 	/* Grab isolated pages from freelists. */
9131 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9132 	if (!outer_end) {
9133 		ret = -EBUSY;
9134 		goto done;
9135 	}
9136 
9137 	/* Free head and tail (if any) */
9138 	if (start != outer_start)
9139 		free_contig_range(outer_start, start - outer_start);
9140 	if (end != outer_end)
9141 		free_contig_range(end, outer_end - end);
9142 
9143 done:
9144 	undo_isolate_page_range(pfn_max_align_down(start),
9145 				pfn_max_align_up(end), migratetype);
9146 	return ret;
9147 }
9148 EXPORT_SYMBOL(alloc_contig_range);
9149 
9150 static int __alloc_contig_pages(unsigned long start_pfn,
9151 				unsigned long nr_pages, gfp_t gfp_mask)
9152 {
9153 	unsigned long end_pfn = start_pfn + nr_pages;
9154 
9155 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9156 				  gfp_mask);
9157 }
9158 
9159 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9160 				   unsigned long nr_pages)
9161 {
9162 	unsigned long i, end_pfn = start_pfn + nr_pages;
9163 	struct page *page;
9164 
9165 	for (i = start_pfn; i < end_pfn; i++) {
9166 		page = pfn_to_online_page(i);
9167 		if (!page)
9168 			return false;
9169 
9170 		if (page_zone(page) != z)
9171 			return false;
9172 
9173 		if (PageReserved(page))
9174 			return false;
9175 	}
9176 	return true;
9177 }
9178 
9179 static bool zone_spans_last_pfn(const struct zone *zone,
9180 				unsigned long start_pfn, unsigned long nr_pages)
9181 {
9182 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9183 
9184 	return zone_spans_pfn(zone, last_pfn);
9185 }
9186 
9187 /**
9188  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9189  * @nr_pages:	Number of contiguous pages to allocate
9190  * @gfp_mask:	GFP mask to limit search and used during compaction
9191  * @nid:	Target node
9192  * @nodemask:	Mask for other possible nodes
9193  *
9194  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9195  * on an applicable zonelist to find a contiguous pfn range which can then be
9196  * tried for allocation with alloc_contig_range(). This routine is intended
9197  * for allocation requests which can not be fulfilled with the buddy allocator.
9198  *
9199  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9200  * power of two then the alignment is guaranteed to be to the given nr_pages
9201  * (e.g. 1GB request would be aligned to 1GB).
9202  *
9203  * Allocated pages can be freed with free_contig_range() or by manually calling
9204  * __free_page() on each allocated page.
9205  *
9206  * Return: pointer to contiguous pages on success, or NULL if not successful.
9207  */
9208 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9209 				int nid, nodemask_t *nodemask)
9210 {
9211 	unsigned long ret, pfn, flags;
9212 	struct zonelist *zonelist;
9213 	struct zone *zone;
9214 	struct zoneref *z;
9215 
9216 	zonelist = node_zonelist(nid, gfp_mask);
9217 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9218 					gfp_zone(gfp_mask), nodemask) {
9219 		spin_lock_irqsave(&zone->lock, flags);
9220 
9221 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9222 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9223 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9224 				/*
9225 				 * We release the zone lock here because
9226 				 * alloc_contig_range() will also lock the zone
9227 				 * at some point. If there's an allocation
9228 				 * spinning on this lock, it may win the race
9229 				 * and cause alloc_contig_range() to fail...
9230 				 */
9231 				spin_unlock_irqrestore(&zone->lock, flags);
9232 				ret = __alloc_contig_pages(pfn, nr_pages,
9233 							gfp_mask);
9234 				if (!ret)
9235 					return pfn_to_page(pfn);
9236 				spin_lock_irqsave(&zone->lock, flags);
9237 			}
9238 			pfn += nr_pages;
9239 		}
9240 		spin_unlock_irqrestore(&zone->lock, flags);
9241 	}
9242 	return NULL;
9243 }
9244 #endif /* CONFIG_CONTIG_ALLOC */
9245 
9246 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9247 {
9248 	unsigned long count = 0;
9249 
9250 	for (; nr_pages--; pfn++) {
9251 		struct page *page = pfn_to_page(pfn);
9252 
9253 		count += page_count(page) != 1;
9254 		__free_page(page);
9255 	}
9256 	WARN(count != 0, "%lu pages are still in use!\n", count);
9257 }
9258 EXPORT_SYMBOL(free_contig_range);
9259 
9260 /*
9261  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9262  * page high values need to be recalculated.
9263  */
9264 void zone_pcp_update(struct zone *zone, int cpu_online)
9265 {
9266 	mutex_lock(&pcp_batch_high_lock);
9267 	zone_set_pageset_high_and_batch(zone, cpu_online);
9268 	mutex_unlock(&pcp_batch_high_lock);
9269 }
9270 
9271 /*
9272  * Effectively disable pcplists for the zone by setting the high limit to 0
9273  * and draining all cpus. A concurrent page freeing on another CPU that's about
9274  * to put the page on pcplist will either finish before the drain and the page
9275  * will be drained, or observe the new high limit and skip the pcplist.
9276  *
9277  * Must be paired with a call to zone_pcp_enable().
9278  */
9279 void zone_pcp_disable(struct zone *zone)
9280 {
9281 	mutex_lock(&pcp_batch_high_lock);
9282 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9283 	__drain_all_pages(zone, true);
9284 }
9285 
9286 void zone_pcp_enable(struct zone *zone)
9287 {
9288 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9289 	mutex_unlock(&pcp_batch_high_lock);
9290 }
9291 
9292 void zone_pcp_reset(struct zone *zone)
9293 {
9294 	int cpu;
9295 	struct per_cpu_zonestat *pzstats;
9296 
9297 	if (zone->per_cpu_pageset != &boot_pageset) {
9298 		for_each_online_cpu(cpu) {
9299 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9300 			drain_zonestat(zone, pzstats);
9301 		}
9302 		free_percpu(zone->per_cpu_pageset);
9303 		free_percpu(zone->per_cpu_zonestats);
9304 		zone->per_cpu_pageset = &boot_pageset;
9305 		zone->per_cpu_zonestats = &boot_zonestats;
9306 	}
9307 }
9308 
9309 #ifdef CONFIG_MEMORY_HOTREMOVE
9310 /*
9311  * All pages in the range must be in a single zone, must not contain holes,
9312  * must span full sections, and must be isolated before calling this function.
9313  */
9314 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9315 {
9316 	unsigned long pfn = start_pfn;
9317 	struct page *page;
9318 	struct zone *zone;
9319 	unsigned int order;
9320 	unsigned long flags;
9321 
9322 	offline_mem_sections(pfn, end_pfn);
9323 	zone = page_zone(pfn_to_page(pfn));
9324 	spin_lock_irqsave(&zone->lock, flags);
9325 	while (pfn < end_pfn) {
9326 		page = pfn_to_page(pfn);
9327 		/*
9328 		 * The HWPoisoned page may be not in buddy system, and
9329 		 * page_count() is not 0.
9330 		 */
9331 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9332 			pfn++;
9333 			continue;
9334 		}
9335 		/*
9336 		 * At this point all remaining PageOffline() pages have a
9337 		 * reference count of 0 and can simply be skipped.
9338 		 */
9339 		if (PageOffline(page)) {
9340 			BUG_ON(page_count(page));
9341 			BUG_ON(PageBuddy(page));
9342 			pfn++;
9343 			continue;
9344 		}
9345 
9346 		BUG_ON(page_count(page));
9347 		BUG_ON(!PageBuddy(page));
9348 		order = buddy_order(page);
9349 		del_page_from_free_list(page, zone, order);
9350 		pfn += (1 << order);
9351 	}
9352 	spin_unlock_irqrestore(&zone->lock, flags);
9353 }
9354 #endif
9355 
9356 bool is_free_buddy_page(struct page *page)
9357 {
9358 	struct zone *zone = page_zone(page);
9359 	unsigned long pfn = page_to_pfn(page);
9360 	unsigned long flags;
9361 	unsigned int order;
9362 
9363 	spin_lock_irqsave(&zone->lock, flags);
9364 	for (order = 0; order < MAX_ORDER; order++) {
9365 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9366 
9367 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9368 			break;
9369 	}
9370 	spin_unlock_irqrestore(&zone->lock, flags);
9371 
9372 	return order < MAX_ORDER;
9373 }
9374 
9375 #ifdef CONFIG_MEMORY_FAILURE
9376 /*
9377  * Break down a higher-order page in sub-pages, and keep our target out of
9378  * buddy allocator.
9379  */
9380 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9381 				   struct page *target, int low, int high,
9382 				   int migratetype)
9383 {
9384 	unsigned long size = 1 << high;
9385 	struct page *current_buddy, *next_page;
9386 
9387 	while (high > low) {
9388 		high--;
9389 		size >>= 1;
9390 
9391 		if (target >= &page[size]) {
9392 			next_page = page + size;
9393 			current_buddy = page;
9394 		} else {
9395 			next_page = page;
9396 			current_buddy = page + size;
9397 		}
9398 
9399 		if (set_page_guard(zone, current_buddy, high, migratetype))
9400 			continue;
9401 
9402 		if (current_buddy != target) {
9403 			add_to_free_list(current_buddy, zone, high, migratetype);
9404 			set_buddy_order(current_buddy, high);
9405 			page = next_page;
9406 		}
9407 	}
9408 }
9409 
9410 /*
9411  * Take a page that will be marked as poisoned off the buddy allocator.
9412  */
9413 bool take_page_off_buddy(struct page *page)
9414 {
9415 	struct zone *zone = page_zone(page);
9416 	unsigned long pfn = page_to_pfn(page);
9417 	unsigned long flags;
9418 	unsigned int order;
9419 	bool ret = false;
9420 
9421 	spin_lock_irqsave(&zone->lock, flags);
9422 	for (order = 0; order < MAX_ORDER; order++) {
9423 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9424 		int page_order = buddy_order(page_head);
9425 
9426 		if (PageBuddy(page_head) && page_order >= order) {
9427 			unsigned long pfn_head = page_to_pfn(page_head);
9428 			int migratetype = get_pfnblock_migratetype(page_head,
9429 								   pfn_head);
9430 
9431 			del_page_from_free_list(page_head, zone, page_order);
9432 			break_down_buddy_pages(zone, page_head, page, 0,
9433 						page_order, migratetype);
9434 			if (!is_migrate_isolate(migratetype))
9435 				__mod_zone_freepage_state(zone, -1, migratetype);
9436 			ret = true;
9437 			break;
9438 		}
9439 		if (page_count(page_head) > 0)
9440 			break;
9441 	}
9442 	spin_unlock_irqrestore(&zone->lock, flags);
9443 	return ret;
9444 }
9445 #endif
9446