xref: /linux/mm/page_alloc.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44 
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48 
49 /*
50  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51  * initializer cleaner
52  */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61 
62 static void __free_pages_ok(struct page *page, unsigned int order);
63 
64 /*
65  * results with 256, 32 in the lowmem_reserve sysctl:
66  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67  *	1G machine -> (16M dma, 784M normal, 224M high)
68  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71  *
72  * TBD: should special case ZONE_DMA32 machines here - in those we normally
73  * don't need any ZONE_NORMAL reservation
74  */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 	 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 	 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
83 	 32,
84 #endif
85 	 32,
86 };
87 
88 EXPORT_SYMBOL(totalram_pages);
89 
90 static char * const zone_names[MAX_NR_ZONES] = {
91 #ifdef CONFIG_ZONE_DMA
92 	 "DMA",
93 #endif
94 #ifdef CONFIG_ZONE_DMA32
95 	 "DMA32",
96 #endif
97 	 "Normal",
98 #ifdef CONFIG_HIGHMEM
99 	 "HighMem",
100 #endif
101 	 "Movable",
102 };
103 
104 int min_free_kbytes = 1024;
105 
106 unsigned long __meminitdata nr_kernel_pages;
107 unsigned long __meminitdata nr_all_pages;
108 static unsigned long __meminitdata dma_reserve;
109 
110 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
111   /*
112    * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113    * ranges of memory (RAM) that may be registered with add_active_range().
114    * Ranges passed to add_active_range() will be merged if possible
115    * so the number of times add_active_range() can be called is
116    * related to the number of nodes and the number of holes
117    */
118   #ifdef CONFIG_MAX_ACTIVE_REGIONS
119     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
121   #else
122     #if MAX_NUMNODES >= 32
123       /* If there can be many nodes, allow up to 50 holes per node */
124       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
125     #else
126       /* By default, allow up to 256 distinct regions */
127       #define MAX_ACTIVE_REGIONS 256
128     #endif
129   #endif
130 
131   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
132   static int __meminitdata nr_nodemap_entries;
133   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
134   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
135 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
136   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
137   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
138 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
139   unsigned long __initdata required_kernelcore;
140   unsigned long __initdata required_movablecore;
141   unsigned long __initdata zone_movable_pfn[MAX_NUMNODES];
142 
143   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
144   int movable_zone;
145   EXPORT_SYMBOL(movable_zone);
146 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
147 
148 #if MAX_NUMNODES > 1
149 int nr_node_ids __read_mostly = MAX_NUMNODES;
150 EXPORT_SYMBOL(nr_node_ids);
151 #endif
152 
153 #ifdef CONFIG_DEBUG_VM
154 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
155 {
156 	int ret = 0;
157 	unsigned seq;
158 	unsigned long pfn = page_to_pfn(page);
159 
160 	do {
161 		seq = zone_span_seqbegin(zone);
162 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
163 			ret = 1;
164 		else if (pfn < zone->zone_start_pfn)
165 			ret = 1;
166 	} while (zone_span_seqretry(zone, seq));
167 
168 	return ret;
169 }
170 
171 static int page_is_consistent(struct zone *zone, struct page *page)
172 {
173 	if (!pfn_valid_within(page_to_pfn(page)))
174 		return 0;
175 	if (zone != page_zone(page))
176 		return 0;
177 
178 	return 1;
179 }
180 /*
181  * Temporary debugging check for pages not lying within a given zone.
182  */
183 static int bad_range(struct zone *zone, struct page *page)
184 {
185 	if (page_outside_zone_boundaries(zone, page))
186 		return 1;
187 	if (!page_is_consistent(zone, page))
188 		return 1;
189 
190 	return 0;
191 }
192 #else
193 static inline int bad_range(struct zone *zone, struct page *page)
194 {
195 	return 0;
196 }
197 #endif
198 
199 static void bad_page(struct page *page)
200 {
201 	printk(KERN_EMERG "Bad page state in process '%s'\n"
202 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
203 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
204 		KERN_EMERG "Backtrace:\n",
205 		current->comm, page, (int)(2*sizeof(unsigned long)),
206 		(unsigned long)page->flags, page->mapping,
207 		page_mapcount(page), page_count(page));
208 	dump_stack();
209 	page->flags &= ~(1 << PG_lru	|
210 			1 << PG_private |
211 			1 << PG_locked	|
212 			1 << PG_active	|
213 			1 << PG_dirty	|
214 			1 << PG_reclaim |
215 			1 << PG_slab    |
216 			1 << PG_swapcache |
217 			1 << PG_writeback |
218 			1 << PG_buddy );
219 	set_page_count(page, 0);
220 	reset_page_mapcount(page);
221 	page->mapping = NULL;
222 	add_taint(TAINT_BAD_PAGE);
223 }
224 
225 /*
226  * Higher-order pages are called "compound pages".  They are structured thusly:
227  *
228  * The first PAGE_SIZE page is called the "head page".
229  *
230  * The remaining PAGE_SIZE pages are called "tail pages".
231  *
232  * All pages have PG_compound set.  All pages have their ->private pointing at
233  * the head page (even the head page has this).
234  *
235  * The first tail page's ->lru.next holds the address of the compound page's
236  * put_page() function.  Its ->lru.prev holds the order of allocation.
237  * This usage means that zero-order pages may not be compound.
238  */
239 
240 static void free_compound_page(struct page *page)
241 {
242 	__free_pages_ok(page, compound_order(page));
243 }
244 
245 static void prep_compound_page(struct page *page, unsigned long order)
246 {
247 	int i;
248 	int nr_pages = 1 << order;
249 
250 	set_compound_page_dtor(page, free_compound_page);
251 	set_compound_order(page, order);
252 	__SetPageHead(page);
253 	for (i = 1; i < nr_pages; i++) {
254 		struct page *p = page + i;
255 
256 		__SetPageTail(p);
257 		p->first_page = page;
258 	}
259 }
260 
261 static void destroy_compound_page(struct page *page, unsigned long order)
262 {
263 	int i;
264 	int nr_pages = 1 << order;
265 
266 	if (unlikely(compound_order(page) != order))
267 		bad_page(page);
268 
269 	if (unlikely(!PageHead(page)))
270 			bad_page(page);
271 	__ClearPageHead(page);
272 	for (i = 1; i < nr_pages; i++) {
273 		struct page *p = page + i;
274 
275 		if (unlikely(!PageTail(p) |
276 				(p->first_page != page)))
277 			bad_page(page);
278 		__ClearPageTail(p);
279 	}
280 }
281 
282 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
283 {
284 	int i;
285 
286 	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
287 	/*
288 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
289 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
290 	 */
291 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
292 	for (i = 0; i < (1 << order); i++)
293 		clear_highpage(page + i);
294 }
295 
296 /*
297  * function for dealing with page's order in buddy system.
298  * zone->lock is already acquired when we use these.
299  * So, we don't need atomic page->flags operations here.
300  */
301 static inline unsigned long page_order(struct page *page)
302 {
303 	return page_private(page);
304 }
305 
306 static inline void set_page_order(struct page *page, int order)
307 {
308 	set_page_private(page, order);
309 	__SetPageBuddy(page);
310 }
311 
312 static inline void rmv_page_order(struct page *page)
313 {
314 	__ClearPageBuddy(page);
315 	set_page_private(page, 0);
316 }
317 
318 /*
319  * Locate the struct page for both the matching buddy in our
320  * pair (buddy1) and the combined O(n+1) page they form (page).
321  *
322  * 1) Any buddy B1 will have an order O twin B2 which satisfies
323  * the following equation:
324  *     B2 = B1 ^ (1 << O)
325  * For example, if the starting buddy (buddy2) is #8 its order
326  * 1 buddy is #10:
327  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
328  *
329  * 2) Any buddy B will have an order O+1 parent P which
330  * satisfies the following equation:
331  *     P = B & ~(1 << O)
332  *
333  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
334  */
335 static inline struct page *
336 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
337 {
338 	unsigned long buddy_idx = page_idx ^ (1 << order);
339 
340 	return page + (buddy_idx - page_idx);
341 }
342 
343 static inline unsigned long
344 __find_combined_index(unsigned long page_idx, unsigned int order)
345 {
346 	return (page_idx & ~(1 << order));
347 }
348 
349 /*
350  * This function checks whether a page is free && is the buddy
351  * we can do coalesce a page and its buddy if
352  * (a) the buddy is not in a hole &&
353  * (b) the buddy is in the buddy system &&
354  * (c) a page and its buddy have the same order &&
355  * (d) a page and its buddy are in the same zone.
356  *
357  * For recording whether a page is in the buddy system, we use PG_buddy.
358  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
359  *
360  * For recording page's order, we use page_private(page).
361  */
362 static inline int page_is_buddy(struct page *page, struct page *buddy,
363 								int order)
364 {
365 	if (!pfn_valid_within(page_to_pfn(buddy)))
366 		return 0;
367 
368 	if (page_zone_id(page) != page_zone_id(buddy))
369 		return 0;
370 
371 	if (PageBuddy(buddy) && page_order(buddy) == order) {
372 		BUG_ON(page_count(buddy) != 0);
373 		return 1;
374 	}
375 	return 0;
376 }
377 
378 /*
379  * Freeing function for a buddy system allocator.
380  *
381  * The concept of a buddy system is to maintain direct-mapped table
382  * (containing bit values) for memory blocks of various "orders".
383  * The bottom level table contains the map for the smallest allocatable
384  * units of memory (here, pages), and each level above it describes
385  * pairs of units from the levels below, hence, "buddies".
386  * At a high level, all that happens here is marking the table entry
387  * at the bottom level available, and propagating the changes upward
388  * as necessary, plus some accounting needed to play nicely with other
389  * parts of the VM system.
390  * At each level, we keep a list of pages, which are heads of continuous
391  * free pages of length of (1 << order) and marked with PG_buddy. Page's
392  * order is recorded in page_private(page) field.
393  * So when we are allocating or freeing one, we can derive the state of the
394  * other.  That is, if we allocate a small block, and both were
395  * free, the remainder of the region must be split into blocks.
396  * If a block is freed, and its buddy is also free, then this
397  * triggers coalescing into a block of larger size.
398  *
399  * -- wli
400  */
401 
402 static inline void __free_one_page(struct page *page,
403 		struct zone *zone, unsigned int order)
404 {
405 	unsigned long page_idx;
406 	int order_size = 1 << order;
407 
408 	if (unlikely(PageCompound(page)))
409 		destroy_compound_page(page, order);
410 
411 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
412 
413 	VM_BUG_ON(page_idx & (order_size - 1));
414 	VM_BUG_ON(bad_range(zone, page));
415 
416 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
417 	while (order < MAX_ORDER-1) {
418 		unsigned long combined_idx;
419 		struct free_area *area;
420 		struct page *buddy;
421 
422 		buddy = __page_find_buddy(page, page_idx, order);
423 		if (!page_is_buddy(page, buddy, order))
424 			break;		/* Move the buddy up one level. */
425 
426 		list_del(&buddy->lru);
427 		area = zone->free_area + order;
428 		area->nr_free--;
429 		rmv_page_order(buddy);
430 		combined_idx = __find_combined_index(page_idx, order);
431 		page = page + (combined_idx - page_idx);
432 		page_idx = combined_idx;
433 		order++;
434 	}
435 	set_page_order(page, order);
436 	list_add(&page->lru, &zone->free_area[order].free_list);
437 	zone->free_area[order].nr_free++;
438 }
439 
440 static inline int free_pages_check(struct page *page)
441 {
442 	if (unlikely(page_mapcount(page) |
443 		(page->mapping != NULL)  |
444 		(page_count(page) != 0)  |
445 		(page->flags & (
446 			1 << PG_lru	|
447 			1 << PG_private |
448 			1 << PG_locked	|
449 			1 << PG_active	|
450 			1 << PG_slab	|
451 			1 << PG_swapcache |
452 			1 << PG_writeback |
453 			1 << PG_reserved |
454 			1 << PG_buddy ))))
455 		bad_page(page);
456 	/*
457 	 * PageReclaim == PageTail. It is only an error
458 	 * for PageReclaim to be set if PageCompound is clear.
459 	 */
460 	if (unlikely(!PageCompound(page) && PageReclaim(page)))
461 		bad_page(page);
462 	if (PageDirty(page))
463 		__ClearPageDirty(page);
464 	/*
465 	 * For now, we report if PG_reserved was found set, but do not
466 	 * clear it, and do not free the page.  But we shall soon need
467 	 * to do more, for when the ZERO_PAGE count wraps negative.
468 	 */
469 	return PageReserved(page);
470 }
471 
472 /*
473  * Frees a list of pages.
474  * Assumes all pages on list are in same zone, and of same order.
475  * count is the number of pages to free.
476  *
477  * If the zone was previously in an "all pages pinned" state then look to
478  * see if this freeing clears that state.
479  *
480  * And clear the zone's pages_scanned counter, to hold off the "all pages are
481  * pinned" detection logic.
482  */
483 static void free_pages_bulk(struct zone *zone, int count,
484 					struct list_head *list, int order)
485 {
486 	spin_lock(&zone->lock);
487 	zone->all_unreclaimable = 0;
488 	zone->pages_scanned = 0;
489 	while (count--) {
490 		struct page *page;
491 
492 		VM_BUG_ON(list_empty(list));
493 		page = list_entry(list->prev, struct page, lru);
494 		/* have to delete it as __free_one_page list manipulates */
495 		list_del(&page->lru);
496 		__free_one_page(page, zone, order);
497 	}
498 	spin_unlock(&zone->lock);
499 }
500 
501 static void free_one_page(struct zone *zone, struct page *page, int order)
502 {
503 	spin_lock(&zone->lock);
504 	zone->all_unreclaimable = 0;
505 	zone->pages_scanned = 0;
506 	__free_one_page(page, zone, order);
507 	spin_unlock(&zone->lock);
508 }
509 
510 static void __free_pages_ok(struct page *page, unsigned int order)
511 {
512 	unsigned long flags;
513 	int i;
514 	int reserved = 0;
515 
516 	for (i = 0 ; i < (1 << order) ; ++i)
517 		reserved += free_pages_check(page + i);
518 	if (reserved)
519 		return;
520 
521 	if (!PageHighMem(page))
522 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
523 	arch_free_page(page, order);
524 	kernel_map_pages(page, 1 << order, 0);
525 
526 	local_irq_save(flags);
527 	__count_vm_events(PGFREE, 1 << order);
528 	free_one_page(page_zone(page), page, order);
529 	local_irq_restore(flags);
530 }
531 
532 /*
533  * permit the bootmem allocator to evade page validation on high-order frees
534  */
535 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
536 {
537 	if (order == 0) {
538 		__ClearPageReserved(page);
539 		set_page_count(page, 0);
540 		set_page_refcounted(page);
541 		__free_page(page);
542 	} else {
543 		int loop;
544 
545 		prefetchw(page);
546 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
547 			struct page *p = &page[loop];
548 
549 			if (loop + 1 < BITS_PER_LONG)
550 				prefetchw(p + 1);
551 			__ClearPageReserved(p);
552 			set_page_count(p, 0);
553 		}
554 
555 		set_page_refcounted(page);
556 		__free_pages(page, order);
557 	}
558 }
559 
560 
561 /*
562  * The order of subdivision here is critical for the IO subsystem.
563  * Please do not alter this order without good reasons and regression
564  * testing. Specifically, as large blocks of memory are subdivided,
565  * the order in which smaller blocks are delivered depends on the order
566  * they're subdivided in this function. This is the primary factor
567  * influencing the order in which pages are delivered to the IO
568  * subsystem according to empirical testing, and this is also justified
569  * by considering the behavior of a buddy system containing a single
570  * large block of memory acted on by a series of small allocations.
571  * This behavior is a critical factor in sglist merging's success.
572  *
573  * -- wli
574  */
575 static inline void expand(struct zone *zone, struct page *page,
576  	int low, int high, struct free_area *area)
577 {
578 	unsigned long size = 1 << high;
579 
580 	while (high > low) {
581 		area--;
582 		high--;
583 		size >>= 1;
584 		VM_BUG_ON(bad_range(zone, &page[size]));
585 		list_add(&page[size].lru, &area->free_list);
586 		area->nr_free++;
587 		set_page_order(&page[size], high);
588 	}
589 }
590 
591 /*
592  * This page is about to be returned from the page allocator
593  */
594 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
595 {
596 	if (unlikely(page_mapcount(page) |
597 		(page->mapping != NULL)  |
598 		(page_count(page) != 0)  |
599 		(page->flags & (
600 			1 << PG_lru	|
601 			1 << PG_private	|
602 			1 << PG_locked	|
603 			1 << PG_active	|
604 			1 << PG_dirty	|
605 			1 << PG_reclaim	|
606 			1 << PG_slab    |
607 			1 << PG_swapcache |
608 			1 << PG_writeback |
609 			1 << PG_reserved |
610 			1 << PG_buddy ))))
611 		bad_page(page);
612 
613 	/*
614 	 * For now, we report if PG_reserved was found set, but do not
615 	 * clear it, and do not allocate the page: as a safety net.
616 	 */
617 	if (PageReserved(page))
618 		return 1;
619 
620 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
621 			1 << PG_referenced | 1 << PG_arch_1 |
622 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
623 	set_page_private(page, 0);
624 	set_page_refcounted(page);
625 
626 	arch_alloc_page(page, order);
627 	kernel_map_pages(page, 1 << order, 1);
628 
629 	if (gfp_flags & __GFP_ZERO)
630 		prep_zero_page(page, order, gfp_flags);
631 
632 	if (order && (gfp_flags & __GFP_COMP))
633 		prep_compound_page(page, order);
634 
635 	return 0;
636 }
637 
638 /*
639  * Do the hard work of removing an element from the buddy allocator.
640  * Call me with the zone->lock already held.
641  */
642 static struct page *__rmqueue(struct zone *zone, unsigned int order)
643 {
644 	struct free_area * area;
645 	unsigned int current_order;
646 	struct page *page;
647 
648 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
649 		area = zone->free_area + current_order;
650 		if (list_empty(&area->free_list))
651 			continue;
652 
653 		page = list_entry(area->free_list.next, struct page, lru);
654 		list_del(&page->lru);
655 		rmv_page_order(page);
656 		area->nr_free--;
657 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
658 		expand(zone, page, order, current_order, area);
659 		return page;
660 	}
661 
662 	return NULL;
663 }
664 
665 /*
666  * Obtain a specified number of elements from the buddy allocator, all under
667  * a single hold of the lock, for efficiency.  Add them to the supplied list.
668  * Returns the number of new pages which were placed at *list.
669  */
670 static int rmqueue_bulk(struct zone *zone, unsigned int order,
671 			unsigned long count, struct list_head *list)
672 {
673 	int i;
674 
675 	spin_lock(&zone->lock);
676 	for (i = 0; i < count; ++i) {
677 		struct page *page = __rmqueue(zone, order);
678 		if (unlikely(page == NULL))
679 			break;
680 		list_add_tail(&page->lru, list);
681 	}
682 	spin_unlock(&zone->lock);
683 	return i;
684 }
685 
686 #ifdef CONFIG_NUMA
687 /*
688  * Called from the vmstat counter updater to drain pagesets of this
689  * currently executing processor on remote nodes after they have
690  * expired.
691  *
692  * Note that this function must be called with the thread pinned to
693  * a single processor.
694  */
695 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
696 {
697 	unsigned long flags;
698 	int to_drain;
699 
700 	local_irq_save(flags);
701 	if (pcp->count >= pcp->batch)
702 		to_drain = pcp->batch;
703 	else
704 		to_drain = pcp->count;
705 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
706 	pcp->count -= to_drain;
707 	local_irq_restore(flags);
708 }
709 #endif
710 
711 static void __drain_pages(unsigned int cpu)
712 {
713 	unsigned long flags;
714 	struct zone *zone;
715 	int i;
716 
717 	for_each_zone(zone) {
718 		struct per_cpu_pageset *pset;
719 
720 		if (!populated_zone(zone))
721 			continue;
722 
723 		pset = zone_pcp(zone, cpu);
724 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
725 			struct per_cpu_pages *pcp;
726 
727 			pcp = &pset->pcp[i];
728 			local_irq_save(flags);
729 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
730 			pcp->count = 0;
731 			local_irq_restore(flags);
732 		}
733 	}
734 }
735 
736 #ifdef CONFIG_PM
737 
738 void mark_free_pages(struct zone *zone)
739 {
740 	unsigned long pfn, max_zone_pfn;
741 	unsigned long flags;
742 	int order;
743 	struct list_head *curr;
744 
745 	if (!zone->spanned_pages)
746 		return;
747 
748 	spin_lock_irqsave(&zone->lock, flags);
749 
750 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
751 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
752 		if (pfn_valid(pfn)) {
753 			struct page *page = pfn_to_page(pfn);
754 
755 			if (!swsusp_page_is_forbidden(page))
756 				swsusp_unset_page_free(page);
757 		}
758 
759 	for (order = MAX_ORDER - 1; order >= 0; --order)
760 		list_for_each(curr, &zone->free_area[order].free_list) {
761 			unsigned long i;
762 
763 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
764 			for (i = 0; i < (1UL << order); i++)
765 				swsusp_set_page_free(pfn_to_page(pfn + i));
766 		}
767 
768 	spin_unlock_irqrestore(&zone->lock, flags);
769 }
770 
771 /*
772  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
773  */
774 void drain_local_pages(void)
775 {
776 	unsigned long flags;
777 
778 	local_irq_save(flags);
779 	__drain_pages(smp_processor_id());
780 	local_irq_restore(flags);
781 }
782 #endif /* CONFIG_PM */
783 
784 /*
785  * Free a 0-order page
786  */
787 static void fastcall free_hot_cold_page(struct page *page, int cold)
788 {
789 	struct zone *zone = page_zone(page);
790 	struct per_cpu_pages *pcp;
791 	unsigned long flags;
792 
793 	if (PageAnon(page))
794 		page->mapping = NULL;
795 	if (free_pages_check(page))
796 		return;
797 
798 	if (!PageHighMem(page))
799 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
800 	arch_free_page(page, 0);
801 	kernel_map_pages(page, 1, 0);
802 
803 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
804 	local_irq_save(flags);
805 	__count_vm_event(PGFREE);
806 	list_add(&page->lru, &pcp->list);
807 	pcp->count++;
808 	if (pcp->count >= pcp->high) {
809 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
810 		pcp->count -= pcp->batch;
811 	}
812 	local_irq_restore(flags);
813 	put_cpu();
814 }
815 
816 void fastcall free_hot_page(struct page *page)
817 {
818 	free_hot_cold_page(page, 0);
819 }
820 
821 void fastcall free_cold_page(struct page *page)
822 {
823 	free_hot_cold_page(page, 1);
824 }
825 
826 /*
827  * split_page takes a non-compound higher-order page, and splits it into
828  * n (1<<order) sub-pages: page[0..n]
829  * Each sub-page must be freed individually.
830  *
831  * Note: this is probably too low level an operation for use in drivers.
832  * Please consult with lkml before using this in your driver.
833  */
834 void split_page(struct page *page, unsigned int order)
835 {
836 	int i;
837 
838 	VM_BUG_ON(PageCompound(page));
839 	VM_BUG_ON(!page_count(page));
840 	for (i = 1; i < (1 << order); i++)
841 		set_page_refcounted(page + i);
842 }
843 
844 /*
845  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
846  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
847  * or two.
848  */
849 static struct page *buffered_rmqueue(struct zonelist *zonelist,
850 			struct zone *zone, int order, gfp_t gfp_flags)
851 {
852 	unsigned long flags;
853 	struct page *page;
854 	int cold = !!(gfp_flags & __GFP_COLD);
855 	int cpu;
856 
857 again:
858 	cpu  = get_cpu();
859 	if (likely(order == 0)) {
860 		struct per_cpu_pages *pcp;
861 
862 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
863 		local_irq_save(flags);
864 		if (!pcp->count) {
865 			pcp->count = rmqueue_bulk(zone, 0,
866 						pcp->batch, &pcp->list);
867 			if (unlikely(!pcp->count))
868 				goto failed;
869 		}
870 		page = list_entry(pcp->list.next, struct page, lru);
871 		list_del(&page->lru);
872 		pcp->count--;
873 	} else {
874 		spin_lock_irqsave(&zone->lock, flags);
875 		page = __rmqueue(zone, order);
876 		spin_unlock(&zone->lock);
877 		if (!page)
878 			goto failed;
879 	}
880 
881 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
882 	zone_statistics(zonelist, zone);
883 	local_irq_restore(flags);
884 	put_cpu();
885 
886 	VM_BUG_ON(bad_range(zone, page));
887 	if (prep_new_page(page, order, gfp_flags))
888 		goto again;
889 	return page;
890 
891 failed:
892 	local_irq_restore(flags);
893 	put_cpu();
894 	return NULL;
895 }
896 
897 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
898 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
899 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
900 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
901 #define ALLOC_HARDER		0x10 /* try to alloc harder */
902 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
903 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
904 
905 #ifdef CONFIG_FAIL_PAGE_ALLOC
906 
907 static struct fail_page_alloc_attr {
908 	struct fault_attr attr;
909 
910 	u32 ignore_gfp_highmem;
911 	u32 ignore_gfp_wait;
912 	u32 min_order;
913 
914 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
915 
916 	struct dentry *ignore_gfp_highmem_file;
917 	struct dentry *ignore_gfp_wait_file;
918 	struct dentry *min_order_file;
919 
920 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
921 
922 } fail_page_alloc = {
923 	.attr = FAULT_ATTR_INITIALIZER,
924 	.ignore_gfp_wait = 1,
925 	.ignore_gfp_highmem = 1,
926 	.min_order = 1,
927 };
928 
929 static int __init setup_fail_page_alloc(char *str)
930 {
931 	return setup_fault_attr(&fail_page_alloc.attr, str);
932 }
933 __setup("fail_page_alloc=", setup_fail_page_alloc);
934 
935 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
936 {
937 	if (order < fail_page_alloc.min_order)
938 		return 0;
939 	if (gfp_mask & __GFP_NOFAIL)
940 		return 0;
941 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
942 		return 0;
943 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
944 		return 0;
945 
946 	return should_fail(&fail_page_alloc.attr, 1 << order);
947 }
948 
949 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
950 
951 static int __init fail_page_alloc_debugfs(void)
952 {
953 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
954 	struct dentry *dir;
955 	int err;
956 
957 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
958 				       "fail_page_alloc");
959 	if (err)
960 		return err;
961 	dir = fail_page_alloc.attr.dentries.dir;
962 
963 	fail_page_alloc.ignore_gfp_wait_file =
964 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
965 				      &fail_page_alloc.ignore_gfp_wait);
966 
967 	fail_page_alloc.ignore_gfp_highmem_file =
968 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
969 				      &fail_page_alloc.ignore_gfp_highmem);
970 	fail_page_alloc.min_order_file =
971 		debugfs_create_u32("min-order", mode, dir,
972 				   &fail_page_alloc.min_order);
973 
974 	if (!fail_page_alloc.ignore_gfp_wait_file ||
975             !fail_page_alloc.ignore_gfp_highmem_file ||
976             !fail_page_alloc.min_order_file) {
977 		err = -ENOMEM;
978 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
979 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
980 		debugfs_remove(fail_page_alloc.min_order_file);
981 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
982 	}
983 
984 	return err;
985 }
986 
987 late_initcall(fail_page_alloc_debugfs);
988 
989 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
990 
991 #else /* CONFIG_FAIL_PAGE_ALLOC */
992 
993 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
994 {
995 	return 0;
996 }
997 
998 #endif /* CONFIG_FAIL_PAGE_ALLOC */
999 
1000 /*
1001  * Return 1 if free pages are above 'mark'. This takes into account the order
1002  * of the allocation.
1003  */
1004 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1005 		      int classzone_idx, int alloc_flags)
1006 {
1007 	/* free_pages my go negative - that's OK */
1008 	long min = mark;
1009 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1010 	int o;
1011 
1012 	if (alloc_flags & ALLOC_HIGH)
1013 		min -= min / 2;
1014 	if (alloc_flags & ALLOC_HARDER)
1015 		min -= min / 4;
1016 
1017 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1018 		return 0;
1019 	for (o = 0; o < order; o++) {
1020 		/* At the next order, this order's pages become unavailable */
1021 		free_pages -= z->free_area[o].nr_free << o;
1022 
1023 		/* Require fewer higher order pages to be free */
1024 		min >>= 1;
1025 
1026 		if (free_pages <= min)
1027 			return 0;
1028 	}
1029 	return 1;
1030 }
1031 
1032 #ifdef CONFIG_NUMA
1033 /*
1034  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1035  * skip over zones that are not allowed by the cpuset, or that have
1036  * been recently (in last second) found to be nearly full.  See further
1037  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1038  * that have to skip over alot of full or unallowed zones.
1039  *
1040  * If the zonelist cache is present in the passed in zonelist, then
1041  * returns a pointer to the allowed node mask (either the current
1042  * tasks mems_allowed, or node_online_map.)
1043  *
1044  * If the zonelist cache is not available for this zonelist, does
1045  * nothing and returns NULL.
1046  *
1047  * If the fullzones BITMAP in the zonelist cache is stale (more than
1048  * a second since last zap'd) then we zap it out (clear its bits.)
1049  *
1050  * We hold off even calling zlc_setup, until after we've checked the
1051  * first zone in the zonelist, on the theory that most allocations will
1052  * be satisfied from that first zone, so best to examine that zone as
1053  * quickly as we can.
1054  */
1055 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1056 {
1057 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1058 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1059 
1060 	zlc = zonelist->zlcache_ptr;
1061 	if (!zlc)
1062 		return NULL;
1063 
1064 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1065 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1066 		zlc->last_full_zap = jiffies;
1067 	}
1068 
1069 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1070 					&cpuset_current_mems_allowed :
1071 					&node_online_map;
1072 	return allowednodes;
1073 }
1074 
1075 /*
1076  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1077  * if it is worth looking at further for free memory:
1078  *  1) Check that the zone isn't thought to be full (doesn't have its
1079  *     bit set in the zonelist_cache fullzones BITMAP).
1080  *  2) Check that the zones node (obtained from the zonelist_cache
1081  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1082  * Return true (non-zero) if zone is worth looking at further, or
1083  * else return false (zero) if it is not.
1084  *
1085  * This check -ignores- the distinction between various watermarks,
1086  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1087  * found to be full for any variation of these watermarks, it will
1088  * be considered full for up to one second by all requests, unless
1089  * we are so low on memory on all allowed nodes that we are forced
1090  * into the second scan of the zonelist.
1091  *
1092  * In the second scan we ignore this zonelist cache and exactly
1093  * apply the watermarks to all zones, even it is slower to do so.
1094  * We are low on memory in the second scan, and should leave no stone
1095  * unturned looking for a free page.
1096  */
1097 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1098 						nodemask_t *allowednodes)
1099 {
1100 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1101 	int i;				/* index of *z in zonelist zones */
1102 	int n;				/* node that zone *z is on */
1103 
1104 	zlc = zonelist->zlcache_ptr;
1105 	if (!zlc)
1106 		return 1;
1107 
1108 	i = z - zonelist->zones;
1109 	n = zlc->z_to_n[i];
1110 
1111 	/* This zone is worth trying if it is allowed but not full */
1112 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1113 }
1114 
1115 /*
1116  * Given 'z' scanning a zonelist, set the corresponding bit in
1117  * zlc->fullzones, so that subsequent attempts to allocate a page
1118  * from that zone don't waste time re-examining it.
1119  */
1120 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1121 {
1122 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1123 	int i;				/* index of *z in zonelist zones */
1124 
1125 	zlc = zonelist->zlcache_ptr;
1126 	if (!zlc)
1127 		return;
1128 
1129 	i = z - zonelist->zones;
1130 
1131 	set_bit(i, zlc->fullzones);
1132 }
1133 
1134 #else	/* CONFIG_NUMA */
1135 
1136 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1137 {
1138 	return NULL;
1139 }
1140 
1141 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1142 				nodemask_t *allowednodes)
1143 {
1144 	return 1;
1145 }
1146 
1147 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1148 {
1149 }
1150 #endif	/* CONFIG_NUMA */
1151 
1152 /*
1153  * get_page_from_freelist goes through the zonelist trying to allocate
1154  * a page.
1155  */
1156 static struct page *
1157 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1158 		struct zonelist *zonelist, int alloc_flags)
1159 {
1160 	struct zone **z;
1161 	struct page *page = NULL;
1162 	int classzone_idx = zone_idx(zonelist->zones[0]);
1163 	struct zone *zone;
1164 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1165 	int zlc_active = 0;		/* set if using zonelist_cache */
1166 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1167 
1168 zonelist_scan:
1169 	/*
1170 	 * Scan zonelist, looking for a zone with enough free.
1171 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1172 	 */
1173 	z = zonelist->zones;
1174 
1175 	do {
1176 		if (NUMA_BUILD && zlc_active &&
1177 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1178 				continue;
1179 		zone = *z;
1180 		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1181 			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1182 				break;
1183 		if ((alloc_flags & ALLOC_CPUSET) &&
1184 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1185 				goto try_next_zone;
1186 
1187 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1188 			unsigned long mark;
1189 			if (alloc_flags & ALLOC_WMARK_MIN)
1190 				mark = zone->pages_min;
1191 			else if (alloc_flags & ALLOC_WMARK_LOW)
1192 				mark = zone->pages_low;
1193 			else
1194 				mark = zone->pages_high;
1195 			if (!zone_watermark_ok(zone, order, mark,
1196 				    classzone_idx, alloc_flags)) {
1197 				if (!zone_reclaim_mode ||
1198 				    !zone_reclaim(zone, gfp_mask, order))
1199 					goto this_zone_full;
1200 			}
1201 		}
1202 
1203 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1204 		if (page)
1205 			break;
1206 this_zone_full:
1207 		if (NUMA_BUILD)
1208 			zlc_mark_zone_full(zonelist, z);
1209 try_next_zone:
1210 		if (NUMA_BUILD && !did_zlc_setup) {
1211 			/* we do zlc_setup after the first zone is tried */
1212 			allowednodes = zlc_setup(zonelist, alloc_flags);
1213 			zlc_active = 1;
1214 			did_zlc_setup = 1;
1215 		}
1216 	} while (*(++z) != NULL);
1217 
1218 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1219 		/* Disable zlc cache for second zonelist scan */
1220 		zlc_active = 0;
1221 		goto zonelist_scan;
1222 	}
1223 	return page;
1224 }
1225 
1226 /*
1227  * This is the 'heart' of the zoned buddy allocator.
1228  */
1229 struct page * fastcall
1230 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1231 		struct zonelist *zonelist)
1232 {
1233 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1234 	struct zone **z;
1235 	struct page *page;
1236 	struct reclaim_state reclaim_state;
1237 	struct task_struct *p = current;
1238 	int do_retry;
1239 	int alloc_flags;
1240 	int did_some_progress;
1241 
1242 	might_sleep_if(wait);
1243 
1244 	if (should_fail_alloc_page(gfp_mask, order))
1245 		return NULL;
1246 
1247 restart:
1248 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1249 
1250 	if (unlikely(*z == NULL)) {
1251 		/* Should this ever happen?? */
1252 		return NULL;
1253 	}
1254 
1255 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1256 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1257 	if (page)
1258 		goto got_pg;
1259 
1260 	/*
1261 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1262 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1263 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1264 	 * using a larger set of nodes after it has established that the
1265 	 * allowed per node queues are empty and that nodes are
1266 	 * over allocated.
1267 	 */
1268 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1269 		goto nopage;
1270 
1271 	for (z = zonelist->zones; *z; z++)
1272 		wakeup_kswapd(*z, order);
1273 
1274 	/*
1275 	 * OK, we're below the kswapd watermark and have kicked background
1276 	 * reclaim. Now things get more complex, so set up alloc_flags according
1277 	 * to how we want to proceed.
1278 	 *
1279 	 * The caller may dip into page reserves a bit more if the caller
1280 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1281 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1282 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1283 	 */
1284 	alloc_flags = ALLOC_WMARK_MIN;
1285 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1286 		alloc_flags |= ALLOC_HARDER;
1287 	if (gfp_mask & __GFP_HIGH)
1288 		alloc_flags |= ALLOC_HIGH;
1289 	if (wait)
1290 		alloc_flags |= ALLOC_CPUSET;
1291 
1292 	/*
1293 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1294 	 * coming from realtime tasks go deeper into reserves.
1295 	 *
1296 	 * This is the last chance, in general, before the goto nopage.
1297 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1298 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1299 	 */
1300 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1301 	if (page)
1302 		goto got_pg;
1303 
1304 	/* This allocation should allow future memory freeing. */
1305 
1306 rebalance:
1307 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1308 			&& !in_interrupt()) {
1309 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1310 nofail_alloc:
1311 			/* go through the zonelist yet again, ignoring mins */
1312 			page = get_page_from_freelist(gfp_mask, order,
1313 				zonelist, ALLOC_NO_WATERMARKS);
1314 			if (page)
1315 				goto got_pg;
1316 			if (gfp_mask & __GFP_NOFAIL) {
1317 				congestion_wait(WRITE, HZ/50);
1318 				goto nofail_alloc;
1319 			}
1320 		}
1321 		goto nopage;
1322 	}
1323 
1324 	/* Atomic allocations - we can't balance anything */
1325 	if (!wait)
1326 		goto nopage;
1327 
1328 	cond_resched();
1329 
1330 	/* We now go into synchronous reclaim */
1331 	cpuset_memory_pressure_bump();
1332 	p->flags |= PF_MEMALLOC;
1333 	reclaim_state.reclaimed_slab = 0;
1334 	p->reclaim_state = &reclaim_state;
1335 
1336 	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1337 
1338 	p->reclaim_state = NULL;
1339 	p->flags &= ~PF_MEMALLOC;
1340 
1341 	cond_resched();
1342 
1343 	if (likely(did_some_progress)) {
1344 		page = get_page_from_freelist(gfp_mask, order,
1345 						zonelist, alloc_flags);
1346 		if (page)
1347 			goto got_pg;
1348 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1349 		/*
1350 		 * Go through the zonelist yet one more time, keep
1351 		 * very high watermark here, this is only to catch
1352 		 * a parallel oom killing, we must fail if we're still
1353 		 * under heavy pressure.
1354 		 */
1355 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1356 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1357 		if (page)
1358 			goto got_pg;
1359 
1360 		out_of_memory(zonelist, gfp_mask, order);
1361 		goto restart;
1362 	}
1363 
1364 	/*
1365 	 * Don't let big-order allocations loop unless the caller explicitly
1366 	 * requests that.  Wait for some write requests to complete then retry.
1367 	 *
1368 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1369 	 * <= 3, but that may not be true in other implementations.
1370 	 */
1371 	do_retry = 0;
1372 	if (!(gfp_mask & __GFP_NORETRY)) {
1373 		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1374 						(gfp_mask & __GFP_REPEAT))
1375 			do_retry = 1;
1376 		if (gfp_mask & __GFP_NOFAIL)
1377 			do_retry = 1;
1378 	}
1379 	if (do_retry) {
1380 		congestion_wait(WRITE, HZ/50);
1381 		goto rebalance;
1382 	}
1383 
1384 nopage:
1385 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1386 		printk(KERN_WARNING "%s: page allocation failure."
1387 			" order:%d, mode:0x%x\n",
1388 			p->comm, order, gfp_mask);
1389 		dump_stack();
1390 		show_mem();
1391 	}
1392 got_pg:
1393 	return page;
1394 }
1395 
1396 EXPORT_SYMBOL(__alloc_pages);
1397 
1398 /*
1399  * Common helper functions.
1400  */
1401 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1402 {
1403 	struct page * page;
1404 	page = alloc_pages(gfp_mask, order);
1405 	if (!page)
1406 		return 0;
1407 	return (unsigned long) page_address(page);
1408 }
1409 
1410 EXPORT_SYMBOL(__get_free_pages);
1411 
1412 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1413 {
1414 	struct page * page;
1415 
1416 	/*
1417 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1418 	 * a highmem page
1419 	 */
1420 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1421 
1422 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1423 	if (page)
1424 		return (unsigned long) page_address(page);
1425 	return 0;
1426 }
1427 
1428 EXPORT_SYMBOL(get_zeroed_page);
1429 
1430 void __pagevec_free(struct pagevec *pvec)
1431 {
1432 	int i = pagevec_count(pvec);
1433 
1434 	while (--i >= 0)
1435 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1436 }
1437 
1438 fastcall void __free_pages(struct page *page, unsigned int order)
1439 {
1440 	if (put_page_testzero(page)) {
1441 		if (order == 0)
1442 			free_hot_page(page);
1443 		else
1444 			__free_pages_ok(page, order);
1445 	}
1446 }
1447 
1448 EXPORT_SYMBOL(__free_pages);
1449 
1450 fastcall void free_pages(unsigned long addr, unsigned int order)
1451 {
1452 	if (addr != 0) {
1453 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1454 		__free_pages(virt_to_page((void *)addr), order);
1455 	}
1456 }
1457 
1458 EXPORT_SYMBOL(free_pages);
1459 
1460 static unsigned int nr_free_zone_pages(int offset)
1461 {
1462 	/* Just pick one node, since fallback list is circular */
1463 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1464 	unsigned int sum = 0;
1465 
1466 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1467 	struct zone **zonep = zonelist->zones;
1468 	struct zone *zone;
1469 
1470 	for (zone = *zonep++; zone; zone = *zonep++) {
1471 		unsigned long size = zone->present_pages;
1472 		unsigned long high = zone->pages_high;
1473 		if (size > high)
1474 			sum += size - high;
1475 	}
1476 
1477 	return sum;
1478 }
1479 
1480 /*
1481  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1482  */
1483 unsigned int nr_free_buffer_pages(void)
1484 {
1485 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1486 }
1487 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1488 
1489 /*
1490  * Amount of free RAM allocatable within all zones
1491  */
1492 unsigned int nr_free_pagecache_pages(void)
1493 {
1494 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1495 }
1496 
1497 static inline void show_node(struct zone *zone)
1498 {
1499 	if (NUMA_BUILD)
1500 		printk("Node %d ", zone_to_nid(zone));
1501 }
1502 
1503 void si_meminfo(struct sysinfo *val)
1504 {
1505 	val->totalram = totalram_pages;
1506 	val->sharedram = 0;
1507 	val->freeram = global_page_state(NR_FREE_PAGES);
1508 	val->bufferram = nr_blockdev_pages();
1509 	val->totalhigh = totalhigh_pages;
1510 	val->freehigh = nr_free_highpages();
1511 	val->mem_unit = PAGE_SIZE;
1512 }
1513 
1514 EXPORT_SYMBOL(si_meminfo);
1515 
1516 #ifdef CONFIG_NUMA
1517 void si_meminfo_node(struct sysinfo *val, int nid)
1518 {
1519 	pg_data_t *pgdat = NODE_DATA(nid);
1520 
1521 	val->totalram = pgdat->node_present_pages;
1522 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1523 #ifdef CONFIG_HIGHMEM
1524 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1525 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1526 			NR_FREE_PAGES);
1527 #else
1528 	val->totalhigh = 0;
1529 	val->freehigh = 0;
1530 #endif
1531 	val->mem_unit = PAGE_SIZE;
1532 }
1533 #endif
1534 
1535 #define K(x) ((x) << (PAGE_SHIFT-10))
1536 
1537 /*
1538  * Show free area list (used inside shift_scroll-lock stuff)
1539  * We also calculate the percentage fragmentation. We do this by counting the
1540  * memory on each free list with the exception of the first item on the list.
1541  */
1542 void show_free_areas(void)
1543 {
1544 	int cpu;
1545 	struct zone *zone;
1546 
1547 	for_each_zone(zone) {
1548 		if (!populated_zone(zone))
1549 			continue;
1550 
1551 		show_node(zone);
1552 		printk("%s per-cpu:\n", zone->name);
1553 
1554 		for_each_online_cpu(cpu) {
1555 			struct per_cpu_pageset *pageset;
1556 
1557 			pageset = zone_pcp(zone, cpu);
1558 
1559 			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1560 			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1561 			       cpu, pageset->pcp[0].high,
1562 			       pageset->pcp[0].batch, pageset->pcp[0].count,
1563 			       pageset->pcp[1].high, pageset->pcp[1].batch,
1564 			       pageset->pcp[1].count);
1565 		}
1566 	}
1567 
1568 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1569 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1570 		global_page_state(NR_ACTIVE),
1571 		global_page_state(NR_INACTIVE),
1572 		global_page_state(NR_FILE_DIRTY),
1573 		global_page_state(NR_WRITEBACK),
1574 		global_page_state(NR_UNSTABLE_NFS),
1575 		global_page_state(NR_FREE_PAGES),
1576 		global_page_state(NR_SLAB_RECLAIMABLE) +
1577 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1578 		global_page_state(NR_FILE_MAPPED),
1579 		global_page_state(NR_PAGETABLE),
1580 		global_page_state(NR_BOUNCE));
1581 
1582 	for_each_zone(zone) {
1583 		int i;
1584 
1585 		if (!populated_zone(zone))
1586 			continue;
1587 
1588 		show_node(zone);
1589 		printk("%s"
1590 			" free:%lukB"
1591 			" min:%lukB"
1592 			" low:%lukB"
1593 			" high:%lukB"
1594 			" active:%lukB"
1595 			" inactive:%lukB"
1596 			" present:%lukB"
1597 			" pages_scanned:%lu"
1598 			" all_unreclaimable? %s"
1599 			"\n",
1600 			zone->name,
1601 			K(zone_page_state(zone, NR_FREE_PAGES)),
1602 			K(zone->pages_min),
1603 			K(zone->pages_low),
1604 			K(zone->pages_high),
1605 			K(zone_page_state(zone, NR_ACTIVE)),
1606 			K(zone_page_state(zone, NR_INACTIVE)),
1607 			K(zone->present_pages),
1608 			zone->pages_scanned,
1609 			(zone->all_unreclaimable ? "yes" : "no")
1610 			);
1611 		printk("lowmem_reserve[]:");
1612 		for (i = 0; i < MAX_NR_ZONES; i++)
1613 			printk(" %lu", zone->lowmem_reserve[i]);
1614 		printk("\n");
1615 	}
1616 
1617 	for_each_zone(zone) {
1618  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1619 
1620 		if (!populated_zone(zone))
1621 			continue;
1622 
1623 		show_node(zone);
1624 		printk("%s: ", zone->name);
1625 
1626 		spin_lock_irqsave(&zone->lock, flags);
1627 		for (order = 0; order < MAX_ORDER; order++) {
1628 			nr[order] = zone->free_area[order].nr_free;
1629 			total += nr[order] << order;
1630 		}
1631 		spin_unlock_irqrestore(&zone->lock, flags);
1632 		for (order = 0; order < MAX_ORDER; order++)
1633 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1634 		printk("= %lukB\n", K(total));
1635 	}
1636 
1637 	show_swap_cache_info();
1638 }
1639 
1640 /*
1641  * Builds allocation fallback zone lists.
1642  *
1643  * Add all populated zones of a node to the zonelist.
1644  */
1645 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1646 				int nr_zones, enum zone_type zone_type)
1647 {
1648 	struct zone *zone;
1649 
1650 	BUG_ON(zone_type >= MAX_NR_ZONES);
1651 	zone_type++;
1652 
1653 	do {
1654 		zone_type--;
1655 		zone = pgdat->node_zones + zone_type;
1656 		if (populated_zone(zone)) {
1657 			zonelist->zones[nr_zones++] = zone;
1658 			check_highest_zone(zone_type);
1659 		}
1660 
1661 	} while (zone_type);
1662 	return nr_zones;
1663 }
1664 
1665 
1666 /*
1667  *  zonelist_order:
1668  *  0 = automatic detection of better ordering.
1669  *  1 = order by ([node] distance, -zonetype)
1670  *  2 = order by (-zonetype, [node] distance)
1671  *
1672  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1673  *  the same zonelist. So only NUMA can configure this param.
1674  */
1675 #define ZONELIST_ORDER_DEFAULT  0
1676 #define ZONELIST_ORDER_NODE     1
1677 #define ZONELIST_ORDER_ZONE     2
1678 
1679 /* zonelist order in the kernel.
1680  * set_zonelist_order() will set this to NODE or ZONE.
1681  */
1682 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1683 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1684 
1685 
1686 #ifdef CONFIG_NUMA
1687 /* The value user specified ....changed by config */
1688 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1689 /* string for sysctl */
1690 #define NUMA_ZONELIST_ORDER_LEN	16
1691 char numa_zonelist_order[16] = "default";
1692 
1693 /*
1694  * interface for configure zonelist ordering.
1695  * command line option "numa_zonelist_order"
1696  *	= "[dD]efault	- default, automatic configuration.
1697  *	= "[nN]ode 	- order by node locality, then by zone within node
1698  *	= "[zZ]one      - order by zone, then by locality within zone
1699  */
1700 
1701 static int __parse_numa_zonelist_order(char *s)
1702 {
1703 	if (*s == 'd' || *s == 'D') {
1704 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1705 	} else if (*s == 'n' || *s == 'N') {
1706 		user_zonelist_order = ZONELIST_ORDER_NODE;
1707 	} else if (*s == 'z' || *s == 'Z') {
1708 		user_zonelist_order = ZONELIST_ORDER_ZONE;
1709 	} else {
1710 		printk(KERN_WARNING
1711 			"Ignoring invalid numa_zonelist_order value:  "
1712 			"%s\n", s);
1713 		return -EINVAL;
1714 	}
1715 	return 0;
1716 }
1717 
1718 static __init int setup_numa_zonelist_order(char *s)
1719 {
1720 	if (s)
1721 		return __parse_numa_zonelist_order(s);
1722 	return 0;
1723 }
1724 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1725 
1726 /*
1727  * sysctl handler for numa_zonelist_order
1728  */
1729 int numa_zonelist_order_handler(ctl_table *table, int write,
1730 		struct file *file, void __user *buffer, size_t *length,
1731 		loff_t *ppos)
1732 {
1733 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1734 	int ret;
1735 
1736 	if (write)
1737 		strncpy(saved_string, (char*)table->data,
1738 			NUMA_ZONELIST_ORDER_LEN);
1739 	ret = proc_dostring(table, write, file, buffer, length, ppos);
1740 	if (ret)
1741 		return ret;
1742 	if (write) {
1743 		int oldval = user_zonelist_order;
1744 		if (__parse_numa_zonelist_order((char*)table->data)) {
1745 			/*
1746 			 * bogus value.  restore saved string
1747 			 */
1748 			strncpy((char*)table->data, saved_string,
1749 				NUMA_ZONELIST_ORDER_LEN);
1750 			user_zonelist_order = oldval;
1751 		} else if (oldval != user_zonelist_order)
1752 			build_all_zonelists();
1753 	}
1754 	return 0;
1755 }
1756 
1757 
1758 #define MAX_NODE_LOAD (num_online_nodes())
1759 static int node_load[MAX_NUMNODES];
1760 
1761 /**
1762  * find_next_best_node - find the next node that should appear in a given node's fallback list
1763  * @node: node whose fallback list we're appending
1764  * @used_node_mask: nodemask_t of already used nodes
1765  *
1766  * We use a number of factors to determine which is the next node that should
1767  * appear on a given node's fallback list.  The node should not have appeared
1768  * already in @node's fallback list, and it should be the next closest node
1769  * according to the distance array (which contains arbitrary distance values
1770  * from each node to each node in the system), and should also prefer nodes
1771  * with no CPUs, since presumably they'll have very little allocation pressure
1772  * on them otherwise.
1773  * It returns -1 if no node is found.
1774  */
1775 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1776 {
1777 	int n, val;
1778 	int min_val = INT_MAX;
1779 	int best_node = -1;
1780 
1781 	/* Use the local node if we haven't already */
1782 	if (!node_isset(node, *used_node_mask)) {
1783 		node_set(node, *used_node_mask);
1784 		return node;
1785 	}
1786 
1787 	for_each_online_node(n) {
1788 		cpumask_t tmp;
1789 
1790 		/* Don't want a node to appear more than once */
1791 		if (node_isset(n, *used_node_mask))
1792 			continue;
1793 
1794 		/* Use the distance array to find the distance */
1795 		val = node_distance(node, n);
1796 
1797 		/* Penalize nodes under us ("prefer the next node") */
1798 		val += (n < node);
1799 
1800 		/* Give preference to headless and unused nodes */
1801 		tmp = node_to_cpumask(n);
1802 		if (!cpus_empty(tmp))
1803 			val += PENALTY_FOR_NODE_WITH_CPUS;
1804 
1805 		/* Slight preference for less loaded node */
1806 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1807 		val += node_load[n];
1808 
1809 		if (val < min_val) {
1810 			min_val = val;
1811 			best_node = n;
1812 		}
1813 	}
1814 
1815 	if (best_node >= 0)
1816 		node_set(best_node, *used_node_mask);
1817 
1818 	return best_node;
1819 }
1820 
1821 
1822 /*
1823  * Build zonelists ordered by node and zones within node.
1824  * This results in maximum locality--normal zone overflows into local
1825  * DMA zone, if any--but risks exhausting DMA zone.
1826  */
1827 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1828 {
1829 	enum zone_type i;
1830 	int j;
1831 	struct zonelist *zonelist;
1832 
1833 	for (i = 0; i < MAX_NR_ZONES; i++) {
1834 		zonelist = pgdat->node_zonelists + i;
1835 		for (j = 0; zonelist->zones[j] != NULL; j++)
1836 			;
1837  		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1838 		zonelist->zones[j] = NULL;
1839 	}
1840 }
1841 
1842 /*
1843  * Build zonelists ordered by zone and nodes within zones.
1844  * This results in conserving DMA zone[s] until all Normal memory is
1845  * exhausted, but results in overflowing to remote node while memory
1846  * may still exist in local DMA zone.
1847  */
1848 static int node_order[MAX_NUMNODES];
1849 
1850 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1851 {
1852 	enum zone_type i;
1853 	int pos, j, node;
1854 	int zone_type;		/* needs to be signed */
1855 	struct zone *z;
1856 	struct zonelist *zonelist;
1857 
1858 	for (i = 0; i < MAX_NR_ZONES; i++) {
1859 		zonelist = pgdat->node_zonelists + i;
1860 		pos = 0;
1861 		for (zone_type = i; zone_type >= 0; zone_type--) {
1862 			for (j = 0; j < nr_nodes; j++) {
1863 				node = node_order[j];
1864 				z = &NODE_DATA(node)->node_zones[zone_type];
1865 				if (populated_zone(z)) {
1866 					zonelist->zones[pos++] = z;
1867 					check_highest_zone(zone_type);
1868 				}
1869 			}
1870 		}
1871 		zonelist->zones[pos] = NULL;
1872 	}
1873 }
1874 
1875 static int default_zonelist_order(void)
1876 {
1877 	int nid, zone_type;
1878 	unsigned long low_kmem_size,total_size;
1879 	struct zone *z;
1880 	int average_size;
1881 	/*
1882          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1883 	 * If they are really small and used heavily, the system can fall
1884 	 * into OOM very easily.
1885 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1886 	 */
1887 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1888 	low_kmem_size = 0;
1889 	total_size = 0;
1890 	for_each_online_node(nid) {
1891 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1892 			z = &NODE_DATA(nid)->node_zones[zone_type];
1893 			if (populated_zone(z)) {
1894 				if (zone_type < ZONE_NORMAL)
1895 					low_kmem_size += z->present_pages;
1896 				total_size += z->present_pages;
1897 			}
1898 		}
1899 	}
1900 	if (!low_kmem_size ||  /* there are no DMA area. */
1901 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1902 		return ZONELIST_ORDER_NODE;
1903 	/*
1904 	 * look into each node's config.
1905   	 * If there is a node whose DMA/DMA32 memory is very big area on
1906  	 * local memory, NODE_ORDER may be suitable.
1907          */
1908 	average_size = total_size / (num_online_nodes() + 1);
1909 	for_each_online_node(nid) {
1910 		low_kmem_size = 0;
1911 		total_size = 0;
1912 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1913 			z = &NODE_DATA(nid)->node_zones[zone_type];
1914 			if (populated_zone(z)) {
1915 				if (zone_type < ZONE_NORMAL)
1916 					low_kmem_size += z->present_pages;
1917 				total_size += z->present_pages;
1918 			}
1919 		}
1920 		if (low_kmem_size &&
1921 		    total_size > average_size && /* ignore small node */
1922 		    low_kmem_size > total_size * 70/100)
1923 			return ZONELIST_ORDER_NODE;
1924 	}
1925 	return ZONELIST_ORDER_ZONE;
1926 }
1927 
1928 static void set_zonelist_order(void)
1929 {
1930 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1931 		current_zonelist_order = default_zonelist_order();
1932 	else
1933 		current_zonelist_order = user_zonelist_order;
1934 }
1935 
1936 static void build_zonelists(pg_data_t *pgdat)
1937 {
1938 	int j, node, load;
1939 	enum zone_type i;
1940 	nodemask_t used_mask;
1941 	int local_node, prev_node;
1942 	struct zonelist *zonelist;
1943 	int order = current_zonelist_order;
1944 
1945 	/* initialize zonelists */
1946 	for (i = 0; i < MAX_NR_ZONES; i++) {
1947 		zonelist = pgdat->node_zonelists + i;
1948 		zonelist->zones[0] = NULL;
1949 	}
1950 
1951 	/* NUMA-aware ordering of nodes */
1952 	local_node = pgdat->node_id;
1953 	load = num_online_nodes();
1954 	prev_node = local_node;
1955 	nodes_clear(used_mask);
1956 
1957 	memset(node_load, 0, sizeof(node_load));
1958 	memset(node_order, 0, sizeof(node_order));
1959 	j = 0;
1960 
1961 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1962 		int distance = node_distance(local_node, node);
1963 
1964 		/*
1965 		 * If another node is sufficiently far away then it is better
1966 		 * to reclaim pages in a zone before going off node.
1967 		 */
1968 		if (distance > RECLAIM_DISTANCE)
1969 			zone_reclaim_mode = 1;
1970 
1971 		/*
1972 		 * We don't want to pressure a particular node.
1973 		 * So adding penalty to the first node in same
1974 		 * distance group to make it round-robin.
1975 		 */
1976 		if (distance != node_distance(local_node, prev_node))
1977 			node_load[node] = load;
1978 
1979 		prev_node = node;
1980 		load--;
1981 		if (order == ZONELIST_ORDER_NODE)
1982 			build_zonelists_in_node_order(pgdat, node);
1983 		else
1984 			node_order[j++] = node;	/* remember order */
1985 	}
1986 
1987 	if (order == ZONELIST_ORDER_ZONE) {
1988 		/* calculate node order -- i.e., DMA last! */
1989 		build_zonelists_in_zone_order(pgdat, j);
1990 	}
1991 }
1992 
1993 /* Construct the zonelist performance cache - see further mmzone.h */
1994 static void build_zonelist_cache(pg_data_t *pgdat)
1995 {
1996 	int i;
1997 
1998 	for (i = 0; i < MAX_NR_ZONES; i++) {
1999 		struct zonelist *zonelist;
2000 		struct zonelist_cache *zlc;
2001 		struct zone **z;
2002 
2003 		zonelist = pgdat->node_zonelists + i;
2004 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2005 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2006 		for (z = zonelist->zones; *z; z++)
2007 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2008 	}
2009 }
2010 
2011 
2012 #else	/* CONFIG_NUMA */
2013 
2014 static void set_zonelist_order(void)
2015 {
2016 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2017 }
2018 
2019 static void build_zonelists(pg_data_t *pgdat)
2020 {
2021 	int node, local_node;
2022 	enum zone_type i,j;
2023 
2024 	local_node = pgdat->node_id;
2025 	for (i = 0; i < MAX_NR_ZONES; i++) {
2026 		struct zonelist *zonelist;
2027 
2028 		zonelist = pgdat->node_zonelists + i;
2029 
2030  		j = build_zonelists_node(pgdat, zonelist, 0, i);
2031  		/*
2032  		 * Now we build the zonelist so that it contains the zones
2033  		 * of all the other nodes.
2034  		 * We don't want to pressure a particular node, so when
2035  		 * building the zones for node N, we make sure that the
2036  		 * zones coming right after the local ones are those from
2037  		 * node N+1 (modulo N)
2038  		 */
2039 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2040 			if (!node_online(node))
2041 				continue;
2042 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2043 		}
2044 		for (node = 0; node < local_node; node++) {
2045 			if (!node_online(node))
2046 				continue;
2047 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2048 		}
2049 
2050 		zonelist->zones[j] = NULL;
2051 	}
2052 }
2053 
2054 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2055 static void build_zonelist_cache(pg_data_t *pgdat)
2056 {
2057 	int i;
2058 
2059 	for (i = 0; i < MAX_NR_ZONES; i++)
2060 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2061 }
2062 
2063 #endif	/* CONFIG_NUMA */
2064 
2065 /* return values int ....just for stop_machine_run() */
2066 static int __build_all_zonelists(void *dummy)
2067 {
2068 	int nid;
2069 
2070 	for_each_online_node(nid) {
2071 		build_zonelists(NODE_DATA(nid));
2072 		build_zonelist_cache(NODE_DATA(nid));
2073 	}
2074 	return 0;
2075 }
2076 
2077 void build_all_zonelists(void)
2078 {
2079 	set_zonelist_order();
2080 
2081 	if (system_state == SYSTEM_BOOTING) {
2082 		__build_all_zonelists(NULL);
2083 		cpuset_init_current_mems_allowed();
2084 	} else {
2085 		/* we have to stop all cpus to guaranntee there is no user
2086 		   of zonelist */
2087 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2088 		/* cpuset refresh routine should be here */
2089 	}
2090 	vm_total_pages = nr_free_pagecache_pages();
2091 	printk("Built %i zonelists in %s order.  Total pages: %ld\n",
2092 			num_online_nodes(),
2093 			zonelist_order_name[current_zonelist_order],
2094 			vm_total_pages);
2095 #ifdef CONFIG_NUMA
2096 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2097 #endif
2098 }
2099 
2100 /*
2101  * Helper functions to size the waitqueue hash table.
2102  * Essentially these want to choose hash table sizes sufficiently
2103  * large so that collisions trying to wait on pages are rare.
2104  * But in fact, the number of active page waitqueues on typical
2105  * systems is ridiculously low, less than 200. So this is even
2106  * conservative, even though it seems large.
2107  *
2108  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2109  * waitqueues, i.e. the size of the waitq table given the number of pages.
2110  */
2111 #define PAGES_PER_WAITQUEUE	256
2112 
2113 #ifndef CONFIG_MEMORY_HOTPLUG
2114 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2115 {
2116 	unsigned long size = 1;
2117 
2118 	pages /= PAGES_PER_WAITQUEUE;
2119 
2120 	while (size < pages)
2121 		size <<= 1;
2122 
2123 	/*
2124 	 * Once we have dozens or even hundreds of threads sleeping
2125 	 * on IO we've got bigger problems than wait queue collision.
2126 	 * Limit the size of the wait table to a reasonable size.
2127 	 */
2128 	size = min(size, 4096UL);
2129 
2130 	return max(size, 4UL);
2131 }
2132 #else
2133 /*
2134  * A zone's size might be changed by hot-add, so it is not possible to determine
2135  * a suitable size for its wait_table.  So we use the maximum size now.
2136  *
2137  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2138  *
2139  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2140  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2141  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2142  *
2143  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2144  * or more by the traditional way. (See above).  It equals:
2145  *
2146  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2147  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2148  *    powerpc (64K page size)             : =  (32G +16M)byte.
2149  */
2150 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2151 {
2152 	return 4096UL;
2153 }
2154 #endif
2155 
2156 /*
2157  * This is an integer logarithm so that shifts can be used later
2158  * to extract the more random high bits from the multiplicative
2159  * hash function before the remainder is taken.
2160  */
2161 static inline unsigned long wait_table_bits(unsigned long size)
2162 {
2163 	return ffz(~size);
2164 }
2165 
2166 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2167 
2168 /*
2169  * Initially all pages are reserved - free ones are freed
2170  * up by free_all_bootmem() once the early boot process is
2171  * done. Non-atomic initialization, single-pass.
2172  */
2173 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2174 		unsigned long start_pfn, enum memmap_context context)
2175 {
2176 	struct page *page;
2177 	unsigned long end_pfn = start_pfn + size;
2178 	unsigned long pfn;
2179 
2180 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2181 		/*
2182 		 * There can be holes in boot-time mem_map[]s
2183 		 * handed to this function.  They do not
2184 		 * exist on hotplugged memory.
2185 		 */
2186 		if (context == MEMMAP_EARLY) {
2187 			if (!early_pfn_valid(pfn))
2188 				continue;
2189 			if (!early_pfn_in_nid(pfn, nid))
2190 				continue;
2191 		}
2192 		page = pfn_to_page(pfn);
2193 		set_page_links(page, zone, nid, pfn);
2194 		init_page_count(page);
2195 		reset_page_mapcount(page);
2196 		SetPageReserved(page);
2197 		INIT_LIST_HEAD(&page->lru);
2198 #ifdef WANT_PAGE_VIRTUAL
2199 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2200 		if (!is_highmem_idx(zone))
2201 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2202 #endif
2203 	}
2204 }
2205 
2206 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2207 				struct zone *zone, unsigned long size)
2208 {
2209 	int order;
2210 	for (order = 0; order < MAX_ORDER ; order++) {
2211 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
2212 		zone->free_area[order].nr_free = 0;
2213 	}
2214 }
2215 
2216 #ifndef __HAVE_ARCH_MEMMAP_INIT
2217 #define memmap_init(size, nid, zone, start_pfn) \
2218 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2219 #endif
2220 
2221 static int __devinit zone_batchsize(struct zone *zone)
2222 {
2223 	int batch;
2224 
2225 	/*
2226 	 * The per-cpu-pages pools are set to around 1000th of the
2227 	 * size of the zone.  But no more than 1/2 of a meg.
2228 	 *
2229 	 * OK, so we don't know how big the cache is.  So guess.
2230 	 */
2231 	batch = zone->present_pages / 1024;
2232 	if (batch * PAGE_SIZE > 512 * 1024)
2233 		batch = (512 * 1024) / PAGE_SIZE;
2234 	batch /= 4;		/* We effectively *= 4 below */
2235 	if (batch < 1)
2236 		batch = 1;
2237 
2238 	/*
2239 	 * Clamp the batch to a 2^n - 1 value. Having a power
2240 	 * of 2 value was found to be more likely to have
2241 	 * suboptimal cache aliasing properties in some cases.
2242 	 *
2243 	 * For example if 2 tasks are alternately allocating
2244 	 * batches of pages, one task can end up with a lot
2245 	 * of pages of one half of the possible page colors
2246 	 * and the other with pages of the other colors.
2247 	 */
2248 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2249 
2250 	return batch;
2251 }
2252 
2253 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2254 {
2255 	struct per_cpu_pages *pcp;
2256 
2257 	memset(p, 0, sizeof(*p));
2258 
2259 	pcp = &p->pcp[0];		/* hot */
2260 	pcp->count = 0;
2261 	pcp->high = 6 * batch;
2262 	pcp->batch = max(1UL, 1 * batch);
2263 	INIT_LIST_HEAD(&pcp->list);
2264 
2265 	pcp = &p->pcp[1];		/* cold*/
2266 	pcp->count = 0;
2267 	pcp->high = 2 * batch;
2268 	pcp->batch = max(1UL, batch/2);
2269 	INIT_LIST_HEAD(&pcp->list);
2270 }
2271 
2272 /*
2273  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2274  * to the value high for the pageset p.
2275  */
2276 
2277 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2278 				unsigned long high)
2279 {
2280 	struct per_cpu_pages *pcp;
2281 
2282 	pcp = &p->pcp[0]; /* hot list */
2283 	pcp->high = high;
2284 	pcp->batch = max(1UL, high/4);
2285 	if ((high/4) > (PAGE_SHIFT * 8))
2286 		pcp->batch = PAGE_SHIFT * 8;
2287 }
2288 
2289 
2290 #ifdef CONFIG_NUMA
2291 /*
2292  * Boot pageset table. One per cpu which is going to be used for all
2293  * zones and all nodes. The parameters will be set in such a way
2294  * that an item put on a list will immediately be handed over to
2295  * the buddy list. This is safe since pageset manipulation is done
2296  * with interrupts disabled.
2297  *
2298  * Some NUMA counter updates may also be caught by the boot pagesets.
2299  *
2300  * The boot_pagesets must be kept even after bootup is complete for
2301  * unused processors and/or zones. They do play a role for bootstrapping
2302  * hotplugged processors.
2303  *
2304  * zoneinfo_show() and maybe other functions do
2305  * not check if the processor is online before following the pageset pointer.
2306  * Other parts of the kernel may not check if the zone is available.
2307  */
2308 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2309 
2310 /*
2311  * Dynamically allocate memory for the
2312  * per cpu pageset array in struct zone.
2313  */
2314 static int __cpuinit process_zones(int cpu)
2315 {
2316 	struct zone *zone, *dzone;
2317 
2318 	for_each_zone(zone) {
2319 
2320 		if (!populated_zone(zone))
2321 			continue;
2322 
2323 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2324 					 GFP_KERNEL, cpu_to_node(cpu));
2325 		if (!zone_pcp(zone, cpu))
2326 			goto bad;
2327 
2328 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2329 
2330 		if (percpu_pagelist_fraction)
2331 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2332 			 	(zone->present_pages / percpu_pagelist_fraction));
2333 	}
2334 
2335 	return 0;
2336 bad:
2337 	for_each_zone(dzone) {
2338 		if (dzone == zone)
2339 			break;
2340 		kfree(zone_pcp(dzone, cpu));
2341 		zone_pcp(dzone, cpu) = NULL;
2342 	}
2343 	return -ENOMEM;
2344 }
2345 
2346 static inline void free_zone_pagesets(int cpu)
2347 {
2348 	struct zone *zone;
2349 
2350 	for_each_zone(zone) {
2351 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2352 
2353 		/* Free per_cpu_pageset if it is slab allocated */
2354 		if (pset != &boot_pageset[cpu])
2355 			kfree(pset);
2356 		zone_pcp(zone, cpu) = NULL;
2357 	}
2358 }
2359 
2360 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2361 		unsigned long action,
2362 		void *hcpu)
2363 {
2364 	int cpu = (long)hcpu;
2365 	int ret = NOTIFY_OK;
2366 
2367 	switch (action) {
2368 	case CPU_UP_PREPARE:
2369 	case CPU_UP_PREPARE_FROZEN:
2370 		if (process_zones(cpu))
2371 			ret = NOTIFY_BAD;
2372 		break;
2373 	case CPU_UP_CANCELED:
2374 	case CPU_UP_CANCELED_FROZEN:
2375 	case CPU_DEAD:
2376 	case CPU_DEAD_FROZEN:
2377 		free_zone_pagesets(cpu);
2378 		break;
2379 	default:
2380 		break;
2381 	}
2382 	return ret;
2383 }
2384 
2385 static struct notifier_block __cpuinitdata pageset_notifier =
2386 	{ &pageset_cpuup_callback, NULL, 0 };
2387 
2388 void __init setup_per_cpu_pageset(void)
2389 {
2390 	int err;
2391 
2392 	/* Initialize per_cpu_pageset for cpu 0.
2393 	 * A cpuup callback will do this for every cpu
2394 	 * as it comes online
2395 	 */
2396 	err = process_zones(smp_processor_id());
2397 	BUG_ON(err);
2398 	register_cpu_notifier(&pageset_notifier);
2399 }
2400 
2401 #endif
2402 
2403 static noinline __init_refok
2404 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2405 {
2406 	int i;
2407 	struct pglist_data *pgdat = zone->zone_pgdat;
2408 	size_t alloc_size;
2409 
2410 	/*
2411 	 * The per-page waitqueue mechanism uses hashed waitqueues
2412 	 * per zone.
2413 	 */
2414 	zone->wait_table_hash_nr_entries =
2415 		 wait_table_hash_nr_entries(zone_size_pages);
2416 	zone->wait_table_bits =
2417 		wait_table_bits(zone->wait_table_hash_nr_entries);
2418 	alloc_size = zone->wait_table_hash_nr_entries
2419 					* sizeof(wait_queue_head_t);
2420 
2421  	if (system_state == SYSTEM_BOOTING) {
2422 		zone->wait_table = (wait_queue_head_t *)
2423 			alloc_bootmem_node(pgdat, alloc_size);
2424 	} else {
2425 		/*
2426 		 * This case means that a zone whose size was 0 gets new memory
2427 		 * via memory hot-add.
2428 		 * But it may be the case that a new node was hot-added.  In
2429 		 * this case vmalloc() will not be able to use this new node's
2430 		 * memory - this wait_table must be initialized to use this new
2431 		 * node itself as well.
2432 		 * To use this new node's memory, further consideration will be
2433 		 * necessary.
2434 		 */
2435 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2436 	}
2437 	if (!zone->wait_table)
2438 		return -ENOMEM;
2439 
2440 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2441 		init_waitqueue_head(zone->wait_table + i);
2442 
2443 	return 0;
2444 }
2445 
2446 static __meminit void zone_pcp_init(struct zone *zone)
2447 {
2448 	int cpu;
2449 	unsigned long batch = zone_batchsize(zone);
2450 
2451 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2452 #ifdef CONFIG_NUMA
2453 		/* Early boot. Slab allocator not functional yet */
2454 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2455 		setup_pageset(&boot_pageset[cpu],0);
2456 #else
2457 		setup_pageset(zone_pcp(zone,cpu), batch);
2458 #endif
2459 	}
2460 	if (zone->present_pages)
2461 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2462 			zone->name, zone->present_pages, batch);
2463 }
2464 
2465 __meminit int init_currently_empty_zone(struct zone *zone,
2466 					unsigned long zone_start_pfn,
2467 					unsigned long size,
2468 					enum memmap_context context)
2469 {
2470 	struct pglist_data *pgdat = zone->zone_pgdat;
2471 	int ret;
2472 	ret = zone_wait_table_init(zone, size);
2473 	if (ret)
2474 		return ret;
2475 	pgdat->nr_zones = zone_idx(zone) + 1;
2476 
2477 	zone->zone_start_pfn = zone_start_pfn;
2478 
2479 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2480 
2481 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2482 
2483 	return 0;
2484 }
2485 
2486 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2487 /*
2488  * Basic iterator support. Return the first range of PFNs for a node
2489  * Note: nid == MAX_NUMNODES returns first region regardless of node
2490  */
2491 static int __meminit first_active_region_index_in_nid(int nid)
2492 {
2493 	int i;
2494 
2495 	for (i = 0; i < nr_nodemap_entries; i++)
2496 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2497 			return i;
2498 
2499 	return -1;
2500 }
2501 
2502 /*
2503  * Basic iterator support. Return the next active range of PFNs for a node
2504  * Note: nid == MAX_NUMNODES returns next region regardles of node
2505  */
2506 static int __meminit next_active_region_index_in_nid(int index, int nid)
2507 {
2508 	for (index = index + 1; index < nr_nodemap_entries; index++)
2509 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2510 			return index;
2511 
2512 	return -1;
2513 }
2514 
2515 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2516 /*
2517  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2518  * Architectures may implement their own version but if add_active_range()
2519  * was used and there are no special requirements, this is a convenient
2520  * alternative
2521  */
2522 int __meminit early_pfn_to_nid(unsigned long pfn)
2523 {
2524 	int i;
2525 
2526 	for (i = 0; i < nr_nodemap_entries; i++) {
2527 		unsigned long start_pfn = early_node_map[i].start_pfn;
2528 		unsigned long end_pfn = early_node_map[i].end_pfn;
2529 
2530 		if (start_pfn <= pfn && pfn < end_pfn)
2531 			return early_node_map[i].nid;
2532 	}
2533 
2534 	return 0;
2535 }
2536 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2537 
2538 /* Basic iterator support to walk early_node_map[] */
2539 #define for_each_active_range_index_in_nid(i, nid) \
2540 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2541 				i = next_active_region_index_in_nid(i, nid))
2542 
2543 /**
2544  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2545  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2546  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2547  *
2548  * If an architecture guarantees that all ranges registered with
2549  * add_active_ranges() contain no holes and may be freed, this
2550  * this function may be used instead of calling free_bootmem() manually.
2551  */
2552 void __init free_bootmem_with_active_regions(int nid,
2553 						unsigned long max_low_pfn)
2554 {
2555 	int i;
2556 
2557 	for_each_active_range_index_in_nid(i, nid) {
2558 		unsigned long size_pages = 0;
2559 		unsigned long end_pfn = early_node_map[i].end_pfn;
2560 
2561 		if (early_node_map[i].start_pfn >= max_low_pfn)
2562 			continue;
2563 
2564 		if (end_pfn > max_low_pfn)
2565 			end_pfn = max_low_pfn;
2566 
2567 		size_pages = end_pfn - early_node_map[i].start_pfn;
2568 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2569 				PFN_PHYS(early_node_map[i].start_pfn),
2570 				size_pages << PAGE_SHIFT);
2571 	}
2572 }
2573 
2574 /**
2575  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2576  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2577  *
2578  * If an architecture guarantees that all ranges registered with
2579  * add_active_ranges() contain no holes and may be freed, this
2580  * function may be used instead of calling memory_present() manually.
2581  */
2582 void __init sparse_memory_present_with_active_regions(int nid)
2583 {
2584 	int i;
2585 
2586 	for_each_active_range_index_in_nid(i, nid)
2587 		memory_present(early_node_map[i].nid,
2588 				early_node_map[i].start_pfn,
2589 				early_node_map[i].end_pfn);
2590 }
2591 
2592 /**
2593  * push_node_boundaries - Push node boundaries to at least the requested boundary
2594  * @nid: The nid of the node to push the boundary for
2595  * @start_pfn: The start pfn of the node
2596  * @end_pfn: The end pfn of the node
2597  *
2598  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2599  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2600  * be hotplugged even though no physical memory exists. This function allows
2601  * an arch to push out the node boundaries so mem_map is allocated that can
2602  * be used later.
2603  */
2604 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2605 void __init push_node_boundaries(unsigned int nid,
2606 		unsigned long start_pfn, unsigned long end_pfn)
2607 {
2608 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2609 			nid, start_pfn, end_pfn);
2610 
2611 	/* Initialise the boundary for this node if necessary */
2612 	if (node_boundary_end_pfn[nid] == 0)
2613 		node_boundary_start_pfn[nid] = -1UL;
2614 
2615 	/* Update the boundaries */
2616 	if (node_boundary_start_pfn[nid] > start_pfn)
2617 		node_boundary_start_pfn[nid] = start_pfn;
2618 	if (node_boundary_end_pfn[nid] < end_pfn)
2619 		node_boundary_end_pfn[nid] = end_pfn;
2620 }
2621 
2622 /* If necessary, push the node boundary out for reserve hotadd */
2623 static void __meminit account_node_boundary(unsigned int nid,
2624 		unsigned long *start_pfn, unsigned long *end_pfn)
2625 {
2626 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2627 			nid, *start_pfn, *end_pfn);
2628 
2629 	/* Return if boundary information has not been provided */
2630 	if (node_boundary_end_pfn[nid] == 0)
2631 		return;
2632 
2633 	/* Check the boundaries and update if necessary */
2634 	if (node_boundary_start_pfn[nid] < *start_pfn)
2635 		*start_pfn = node_boundary_start_pfn[nid];
2636 	if (node_boundary_end_pfn[nid] > *end_pfn)
2637 		*end_pfn = node_boundary_end_pfn[nid];
2638 }
2639 #else
2640 void __init push_node_boundaries(unsigned int nid,
2641 		unsigned long start_pfn, unsigned long end_pfn) {}
2642 
2643 static void __meminit account_node_boundary(unsigned int nid,
2644 		unsigned long *start_pfn, unsigned long *end_pfn) {}
2645 #endif
2646 
2647 
2648 /**
2649  * get_pfn_range_for_nid - Return the start and end page frames for a node
2650  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2651  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2652  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2653  *
2654  * It returns the start and end page frame of a node based on information
2655  * provided by an arch calling add_active_range(). If called for a node
2656  * with no available memory, a warning is printed and the start and end
2657  * PFNs will be 0.
2658  */
2659 void __meminit get_pfn_range_for_nid(unsigned int nid,
2660 			unsigned long *start_pfn, unsigned long *end_pfn)
2661 {
2662 	int i;
2663 	*start_pfn = -1UL;
2664 	*end_pfn = 0;
2665 
2666 	for_each_active_range_index_in_nid(i, nid) {
2667 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2668 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2669 	}
2670 
2671 	if (*start_pfn == -1UL) {
2672 		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2673 		*start_pfn = 0;
2674 	}
2675 
2676 	/* Push the node boundaries out if requested */
2677 	account_node_boundary(nid, start_pfn, end_pfn);
2678 }
2679 
2680 /*
2681  * This finds a zone that can be used for ZONE_MOVABLE pages. The
2682  * assumption is made that zones within a node are ordered in monotonic
2683  * increasing memory addresses so that the "highest" populated zone is used
2684  */
2685 void __init find_usable_zone_for_movable(void)
2686 {
2687 	int zone_index;
2688 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2689 		if (zone_index == ZONE_MOVABLE)
2690 			continue;
2691 
2692 		if (arch_zone_highest_possible_pfn[zone_index] >
2693 				arch_zone_lowest_possible_pfn[zone_index])
2694 			break;
2695 	}
2696 
2697 	VM_BUG_ON(zone_index == -1);
2698 	movable_zone = zone_index;
2699 }
2700 
2701 /*
2702  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2703  * because it is sized independant of architecture. Unlike the other zones,
2704  * the starting point for ZONE_MOVABLE is not fixed. It may be different
2705  * in each node depending on the size of each node and how evenly kernelcore
2706  * is distributed. This helper function adjusts the zone ranges
2707  * provided by the architecture for a given node by using the end of the
2708  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2709  * zones within a node are in order of monotonic increases memory addresses
2710  */
2711 void __meminit adjust_zone_range_for_zone_movable(int nid,
2712 					unsigned long zone_type,
2713 					unsigned long node_start_pfn,
2714 					unsigned long node_end_pfn,
2715 					unsigned long *zone_start_pfn,
2716 					unsigned long *zone_end_pfn)
2717 {
2718 	/* Only adjust if ZONE_MOVABLE is on this node */
2719 	if (zone_movable_pfn[nid]) {
2720 		/* Size ZONE_MOVABLE */
2721 		if (zone_type == ZONE_MOVABLE) {
2722 			*zone_start_pfn = zone_movable_pfn[nid];
2723 			*zone_end_pfn = min(node_end_pfn,
2724 				arch_zone_highest_possible_pfn[movable_zone]);
2725 
2726 		/* Adjust for ZONE_MOVABLE starting within this range */
2727 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2728 				*zone_end_pfn > zone_movable_pfn[nid]) {
2729 			*zone_end_pfn = zone_movable_pfn[nid];
2730 
2731 		/* Check if this whole range is within ZONE_MOVABLE */
2732 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
2733 			*zone_start_pfn = *zone_end_pfn;
2734 	}
2735 }
2736 
2737 /*
2738  * Return the number of pages a zone spans in a node, including holes
2739  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2740  */
2741 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2742 					unsigned long zone_type,
2743 					unsigned long *ignored)
2744 {
2745 	unsigned long node_start_pfn, node_end_pfn;
2746 	unsigned long zone_start_pfn, zone_end_pfn;
2747 
2748 	/* Get the start and end of the node and zone */
2749 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2750 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2751 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2752 	adjust_zone_range_for_zone_movable(nid, zone_type,
2753 				node_start_pfn, node_end_pfn,
2754 				&zone_start_pfn, &zone_end_pfn);
2755 
2756 	/* Check that this node has pages within the zone's required range */
2757 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2758 		return 0;
2759 
2760 	/* Move the zone boundaries inside the node if necessary */
2761 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2762 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2763 
2764 	/* Return the spanned pages */
2765 	return zone_end_pfn - zone_start_pfn;
2766 }
2767 
2768 /*
2769  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2770  * then all holes in the requested range will be accounted for.
2771  */
2772 unsigned long __meminit __absent_pages_in_range(int nid,
2773 				unsigned long range_start_pfn,
2774 				unsigned long range_end_pfn)
2775 {
2776 	int i = 0;
2777 	unsigned long prev_end_pfn = 0, hole_pages = 0;
2778 	unsigned long start_pfn;
2779 
2780 	/* Find the end_pfn of the first active range of pfns in the node */
2781 	i = first_active_region_index_in_nid(nid);
2782 	if (i == -1)
2783 		return 0;
2784 
2785 	/* Account for ranges before physical memory on this node */
2786 	if (early_node_map[i].start_pfn > range_start_pfn)
2787 		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2788 
2789 	prev_end_pfn = early_node_map[i].start_pfn;
2790 
2791 	/* Find all holes for the zone within the node */
2792 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2793 
2794 		/* No need to continue if prev_end_pfn is outside the zone */
2795 		if (prev_end_pfn >= range_end_pfn)
2796 			break;
2797 
2798 		/* Make sure the end of the zone is not within the hole */
2799 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2800 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2801 
2802 		/* Update the hole size cound and move on */
2803 		if (start_pfn > range_start_pfn) {
2804 			BUG_ON(prev_end_pfn > start_pfn);
2805 			hole_pages += start_pfn - prev_end_pfn;
2806 		}
2807 		prev_end_pfn = early_node_map[i].end_pfn;
2808 	}
2809 
2810 	/* Account for ranges past physical memory on this node */
2811 	if (range_end_pfn > prev_end_pfn)
2812 		hole_pages += range_end_pfn -
2813 				max(range_start_pfn, prev_end_pfn);
2814 
2815 	return hole_pages;
2816 }
2817 
2818 /**
2819  * absent_pages_in_range - Return number of page frames in holes within a range
2820  * @start_pfn: The start PFN to start searching for holes
2821  * @end_pfn: The end PFN to stop searching for holes
2822  *
2823  * It returns the number of pages frames in memory holes within a range.
2824  */
2825 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2826 							unsigned long end_pfn)
2827 {
2828 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2829 }
2830 
2831 /* Return the number of page frames in holes in a zone on a node */
2832 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2833 					unsigned long zone_type,
2834 					unsigned long *ignored)
2835 {
2836 	unsigned long node_start_pfn, node_end_pfn;
2837 	unsigned long zone_start_pfn, zone_end_pfn;
2838 
2839 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2840 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2841 							node_start_pfn);
2842 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2843 							node_end_pfn);
2844 
2845 	adjust_zone_range_for_zone_movable(nid, zone_type,
2846 			node_start_pfn, node_end_pfn,
2847 			&zone_start_pfn, &zone_end_pfn);
2848 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2849 }
2850 
2851 #else
2852 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2853 					unsigned long zone_type,
2854 					unsigned long *zones_size)
2855 {
2856 	return zones_size[zone_type];
2857 }
2858 
2859 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2860 						unsigned long zone_type,
2861 						unsigned long *zholes_size)
2862 {
2863 	if (!zholes_size)
2864 		return 0;
2865 
2866 	return zholes_size[zone_type];
2867 }
2868 
2869 #endif
2870 
2871 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2872 		unsigned long *zones_size, unsigned long *zholes_size)
2873 {
2874 	unsigned long realtotalpages, totalpages = 0;
2875 	enum zone_type i;
2876 
2877 	for (i = 0; i < MAX_NR_ZONES; i++)
2878 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2879 								zones_size);
2880 	pgdat->node_spanned_pages = totalpages;
2881 
2882 	realtotalpages = totalpages;
2883 	for (i = 0; i < MAX_NR_ZONES; i++)
2884 		realtotalpages -=
2885 			zone_absent_pages_in_node(pgdat->node_id, i,
2886 								zholes_size);
2887 	pgdat->node_present_pages = realtotalpages;
2888 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2889 							realtotalpages);
2890 }
2891 
2892 /*
2893  * Set up the zone data structures:
2894  *   - mark all pages reserved
2895  *   - mark all memory queues empty
2896  *   - clear the memory bitmaps
2897  */
2898 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2899 		unsigned long *zones_size, unsigned long *zholes_size)
2900 {
2901 	enum zone_type j;
2902 	int nid = pgdat->node_id;
2903 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2904 	int ret;
2905 
2906 	pgdat_resize_init(pgdat);
2907 	pgdat->nr_zones = 0;
2908 	init_waitqueue_head(&pgdat->kswapd_wait);
2909 	pgdat->kswapd_max_order = 0;
2910 
2911 	for (j = 0; j < MAX_NR_ZONES; j++) {
2912 		struct zone *zone = pgdat->node_zones + j;
2913 		unsigned long size, realsize, memmap_pages;
2914 
2915 		size = zone_spanned_pages_in_node(nid, j, zones_size);
2916 		realsize = size - zone_absent_pages_in_node(nid, j,
2917 								zholes_size);
2918 
2919 		/*
2920 		 * Adjust realsize so that it accounts for how much memory
2921 		 * is used by this zone for memmap. This affects the watermark
2922 		 * and per-cpu initialisations
2923 		 */
2924 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2925 		if (realsize >= memmap_pages) {
2926 			realsize -= memmap_pages;
2927 			printk(KERN_DEBUG
2928 				"  %s zone: %lu pages used for memmap\n",
2929 				zone_names[j], memmap_pages);
2930 		} else
2931 			printk(KERN_WARNING
2932 				"  %s zone: %lu pages exceeds realsize %lu\n",
2933 				zone_names[j], memmap_pages, realsize);
2934 
2935 		/* Account for reserved pages */
2936 		if (j == 0 && realsize > dma_reserve) {
2937 			realsize -= dma_reserve;
2938 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
2939 					zone_names[0], dma_reserve);
2940 		}
2941 
2942 		if (!is_highmem_idx(j))
2943 			nr_kernel_pages += realsize;
2944 		nr_all_pages += realsize;
2945 
2946 		zone->spanned_pages = size;
2947 		zone->present_pages = realsize;
2948 #ifdef CONFIG_NUMA
2949 		zone->node = nid;
2950 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2951 						/ 100;
2952 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2953 #endif
2954 		zone->name = zone_names[j];
2955 		spin_lock_init(&zone->lock);
2956 		spin_lock_init(&zone->lru_lock);
2957 		zone_seqlock_init(zone);
2958 		zone->zone_pgdat = pgdat;
2959 
2960 		zone->prev_priority = DEF_PRIORITY;
2961 
2962 		zone_pcp_init(zone);
2963 		INIT_LIST_HEAD(&zone->active_list);
2964 		INIT_LIST_HEAD(&zone->inactive_list);
2965 		zone->nr_scan_active = 0;
2966 		zone->nr_scan_inactive = 0;
2967 		zap_zone_vm_stats(zone);
2968 		atomic_set(&zone->reclaim_in_progress, 0);
2969 		if (!size)
2970 			continue;
2971 
2972 		ret = init_currently_empty_zone(zone, zone_start_pfn,
2973 						size, MEMMAP_EARLY);
2974 		BUG_ON(ret);
2975 		zone_start_pfn += size;
2976 	}
2977 }
2978 
2979 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2980 {
2981 	/* Skip empty nodes */
2982 	if (!pgdat->node_spanned_pages)
2983 		return;
2984 
2985 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2986 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2987 	if (!pgdat->node_mem_map) {
2988 		unsigned long size, start, end;
2989 		struct page *map;
2990 
2991 		/*
2992 		 * The zone's endpoints aren't required to be MAX_ORDER
2993 		 * aligned but the node_mem_map endpoints must be in order
2994 		 * for the buddy allocator to function correctly.
2995 		 */
2996 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2997 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2998 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2999 		size =  (end - start) * sizeof(struct page);
3000 		map = alloc_remap(pgdat->node_id, size);
3001 		if (!map)
3002 			map = alloc_bootmem_node(pgdat, size);
3003 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3004 	}
3005 #ifndef CONFIG_NEED_MULTIPLE_NODES
3006 	/*
3007 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3008 	 */
3009 	if (pgdat == NODE_DATA(0)) {
3010 		mem_map = NODE_DATA(0)->node_mem_map;
3011 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3012 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3013 			mem_map -= pgdat->node_start_pfn;
3014 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3015 	}
3016 #endif
3017 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3018 }
3019 
3020 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3021 		unsigned long *zones_size, unsigned long node_start_pfn,
3022 		unsigned long *zholes_size)
3023 {
3024 	pgdat->node_id = nid;
3025 	pgdat->node_start_pfn = node_start_pfn;
3026 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3027 
3028 	alloc_node_mem_map(pgdat);
3029 
3030 	free_area_init_core(pgdat, zones_size, zholes_size);
3031 }
3032 
3033 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3034 
3035 #if MAX_NUMNODES > 1
3036 /*
3037  * Figure out the number of possible node ids.
3038  */
3039 static void __init setup_nr_node_ids(void)
3040 {
3041 	unsigned int node;
3042 	unsigned int highest = 0;
3043 
3044 	for_each_node_mask(node, node_possible_map)
3045 		highest = node;
3046 	nr_node_ids = highest + 1;
3047 }
3048 #else
3049 static inline void setup_nr_node_ids(void)
3050 {
3051 }
3052 #endif
3053 
3054 /**
3055  * add_active_range - Register a range of PFNs backed by physical memory
3056  * @nid: The node ID the range resides on
3057  * @start_pfn: The start PFN of the available physical memory
3058  * @end_pfn: The end PFN of the available physical memory
3059  *
3060  * These ranges are stored in an early_node_map[] and later used by
3061  * free_area_init_nodes() to calculate zone sizes and holes. If the
3062  * range spans a memory hole, it is up to the architecture to ensure
3063  * the memory is not freed by the bootmem allocator. If possible
3064  * the range being registered will be merged with existing ranges.
3065  */
3066 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3067 						unsigned long end_pfn)
3068 {
3069 	int i;
3070 
3071 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3072 			  "%d entries of %d used\n",
3073 			  nid, start_pfn, end_pfn,
3074 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3075 
3076 	/* Merge with existing active regions if possible */
3077 	for (i = 0; i < nr_nodemap_entries; i++) {
3078 		if (early_node_map[i].nid != nid)
3079 			continue;
3080 
3081 		/* Skip if an existing region covers this new one */
3082 		if (start_pfn >= early_node_map[i].start_pfn &&
3083 				end_pfn <= early_node_map[i].end_pfn)
3084 			return;
3085 
3086 		/* Merge forward if suitable */
3087 		if (start_pfn <= early_node_map[i].end_pfn &&
3088 				end_pfn > early_node_map[i].end_pfn) {
3089 			early_node_map[i].end_pfn = end_pfn;
3090 			return;
3091 		}
3092 
3093 		/* Merge backward if suitable */
3094 		if (start_pfn < early_node_map[i].end_pfn &&
3095 				end_pfn >= early_node_map[i].start_pfn) {
3096 			early_node_map[i].start_pfn = start_pfn;
3097 			return;
3098 		}
3099 	}
3100 
3101 	/* Check that early_node_map is large enough */
3102 	if (i >= MAX_ACTIVE_REGIONS) {
3103 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3104 							MAX_ACTIVE_REGIONS);
3105 		return;
3106 	}
3107 
3108 	early_node_map[i].nid = nid;
3109 	early_node_map[i].start_pfn = start_pfn;
3110 	early_node_map[i].end_pfn = end_pfn;
3111 	nr_nodemap_entries = i + 1;
3112 }
3113 
3114 /**
3115  * shrink_active_range - Shrink an existing registered range of PFNs
3116  * @nid: The node id the range is on that should be shrunk
3117  * @old_end_pfn: The old end PFN of the range
3118  * @new_end_pfn: The new PFN of the range
3119  *
3120  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3121  * The map is kept at the end physical page range that has already been
3122  * registered with add_active_range(). This function allows an arch to shrink
3123  * an existing registered range.
3124  */
3125 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3126 						unsigned long new_end_pfn)
3127 {
3128 	int i;
3129 
3130 	/* Find the old active region end and shrink */
3131 	for_each_active_range_index_in_nid(i, nid)
3132 		if (early_node_map[i].end_pfn == old_end_pfn) {
3133 			early_node_map[i].end_pfn = new_end_pfn;
3134 			break;
3135 		}
3136 }
3137 
3138 /**
3139  * remove_all_active_ranges - Remove all currently registered regions
3140  *
3141  * During discovery, it may be found that a table like SRAT is invalid
3142  * and an alternative discovery method must be used. This function removes
3143  * all currently registered regions.
3144  */
3145 void __init remove_all_active_ranges(void)
3146 {
3147 	memset(early_node_map, 0, sizeof(early_node_map));
3148 	nr_nodemap_entries = 0;
3149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3150 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3151 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3153 }
3154 
3155 /* Compare two active node_active_regions */
3156 static int __init cmp_node_active_region(const void *a, const void *b)
3157 {
3158 	struct node_active_region *arange = (struct node_active_region *)a;
3159 	struct node_active_region *brange = (struct node_active_region *)b;
3160 
3161 	/* Done this way to avoid overflows */
3162 	if (arange->start_pfn > brange->start_pfn)
3163 		return 1;
3164 	if (arange->start_pfn < brange->start_pfn)
3165 		return -1;
3166 
3167 	return 0;
3168 }
3169 
3170 /* sort the node_map by start_pfn */
3171 static void __init sort_node_map(void)
3172 {
3173 	sort(early_node_map, (size_t)nr_nodemap_entries,
3174 			sizeof(struct node_active_region),
3175 			cmp_node_active_region, NULL);
3176 }
3177 
3178 /* Find the lowest pfn for a node */
3179 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3180 {
3181 	int i;
3182 	unsigned long min_pfn = ULONG_MAX;
3183 
3184 	/* Assuming a sorted map, the first range found has the starting pfn */
3185 	for_each_active_range_index_in_nid(i, nid)
3186 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3187 
3188 	if (min_pfn == ULONG_MAX) {
3189 		printk(KERN_WARNING
3190 			"Could not find start_pfn for node %lu\n", nid);
3191 		return 0;
3192 	}
3193 
3194 	return min_pfn;
3195 }
3196 
3197 /**
3198  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3199  *
3200  * It returns the minimum PFN based on information provided via
3201  * add_active_range().
3202  */
3203 unsigned long __init find_min_pfn_with_active_regions(void)
3204 {
3205 	return find_min_pfn_for_node(MAX_NUMNODES);
3206 }
3207 
3208 /**
3209  * find_max_pfn_with_active_regions - Find the maximum PFN registered
3210  *
3211  * It returns the maximum PFN based on information provided via
3212  * add_active_range().
3213  */
3214 unsigned long __init find_max_pfn_with_active_regions(void)
3215 {
3216 	int i;
3217 	unsigned long max_pfn = 0;
3218 
3219 	for (i = 0; i < nr_nodemap_entries; i++)
3220 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3221 
3222 	return max_pfn;
3223 }
3224 
3225 unsigned long __init early_calculate_totalpages(void)
3226 {
3227 	int i;
3228 	unsigned long totalpages = 0;
3229 
3230 	for (i = 0; i < nr_nodemap_entries; i++)
3231 		totalpages += early_node_map[i].end_pfn -
3232 						early_node_map[i].start_pfn;
3233 
3234 	return totalpages;
3235 }
3236 
3237 /*
3238  * Find the PFN the Movable zone begins in each node. Kernel memory
3239  * is spread evenly between nodes as long as the nodes have enough
3240  * memory. When they don't, some nodes will have more kernelcore than
3241  * others
3242  */
3243 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3244 {
3245 	int i, nid;
3246 	unsigned long usable_startpfn;
3247 	unsigned long kernelcore_node, kernelcore_remaining;
3248 	int usable_nodes = num_online_nodes();
3249 
3250 	/*
3251 	 * If movablecore was specified, calculate what size of
3252 	 * kernelcore that corresponds so that memory usable for
3253 	 * any allocation type is evenly spread. If both kernelcore
3254 	 * and movablecore are specified, then the value of kernelcore
3255 	 * will be used for required_kernelcore if it's greater than
3256 	 * what movablecore would have allowed.
3257 	 */
3258 	if (required_movablecore) {
3259 		unsigned long totalpages = early_calculate_totalpages();
3260 		unsigned long corepages;
3261 
3262 		/*
3263 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3264 		 * was requested by the user
3265 		 */
3266 		required_movablecore =
3267 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3268 		corepages = totalpages - required_movablecore;
3269 
3270 		required_kernelcore = max(required_kernelcore, corepages);
3271 	}
3272 
3273 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3274 	if (!required_kernelcore)
3275 		return;
3276 
3277 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3278 	find_usable_zone_for_movable();
3279 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3280 
3281 restart:
3282 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3283 	kernelcore_node = required_kernelcore / usable_nodes;
3284 	for_each_online_node(nid) {
3285 		/*
3286 		 * Recalculate kernelcore_node if the division per node
3287 		 * now exceeds what is necessary to satisfy the requested
3288 		 * amount of memory for the kernel
3289 		 */
3290 		if (required_kernelcore < kernelcore_node)
3291 			kernelcore_node = required_kernelcore / usable_nodes;
3292 
3293 		/*
3294 		 * As the map is walked, we track how much memory is usable
3295 		 * by the kernel using kernelcore_remaining. When it is
3296 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3297 		 */
3298 		kernelcore_remaining = kernelcore_node;
3299 
3300 		/* Go through each range of PFNs within this node */
3301 		for_each_active_range_index_in_nid(i, nid) {
3302 			unsigned long start_pfn, end_pfn;
3303 			unsigned long size_pages;
3304 
3305 			start_pfn = max(early_node_map[i].start_pfn,
3306 						zone_movable_pfn[nid]);
3307 			end_pfn = early_node_map[i].end_pfn;
3308 			if (start_pfn >= end_pfn)
3309 				continue;
3310 
3311 			/* Account for what is only usable for kernelcore */
3312 			if (start_pfn < usable_startpfn) {
3313 				unsigned long kernel_pages;
3314 				kernel_pages = min(end_pfn, usable_startpfn)
3315 								- start_pfn;
3316 
3317 				kernelcore_remaining -= min(kernel_pages,
3318 							kernelcore_remaining);
3319 				required_kernelcore -= min(kernel_pages,
3320 							required_kernelcore);
3321 
3322 				/* Continue if range is now fully accounted */
3323 				if (end_pfn <= usable_startpfn) {
3324 
3325 					/*
3326 					 * Push zone_movable_pfn to the end so
3327 					 * that if we have to rebalance
3328 					 * kernelcore across nodes, we will
3329 					 * not double account here
3330 					 */
3331 					zone_movable_pfn[nid] = end_pfn;
3332 					continue;
3333 				}
3334 				start_pfn = usable_startpfn;
3335 			}
3336 
3337 			/*
3338 			 * The usable PFN range for ZONE_MOVABLE is from
3339 			 * start_pfn->end_pfn. Calculate size_pages as the
3340 			 * number of pages used as kernelcore
3341 			 */
3342 			size_pages = end_pfn - start_pfn;
3343 			if (size_pages > kernelcore_remaining)
3344 				size_pages = kernelcore_remaining;
3345 			zone_movable_pfn[nid] = start_pfn + size_pages;
3346 
3347 			/*
3348 			 * Some kernelcore has been met, update counts and
3349 			 * break if the kernelcore for this node has been
3350 			 * satisified
3351 			 */
3352 			required_kernelcore -= min(required_kernelcore,
3353 								size_pages);
3354 			kernelcore_remaining -= size_pages;
3355 			if (!kernelcore_remaining)
3356 				break;
3357 		}
3358 	}
3359 
3360 	/*
3361 	 * If there is still required_kernelcore, we do another pass with one
3362 	 * less node in the count. This will push zone_movable_pfn[nid] further
3363 	 * along on the nodes that still have memory until kernelcore is
3364 	 * satisified
3365 	 */
3366 	usable_nodes--;
3367 	if (usable_nodes && required_kernelcore > usable_nodes)
3368 		goto restart;
3369 
3370 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3371 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3372 		zone_movable_pfn[nid] =
3373 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3374 }
3375 
3376 /**
3377  * free_area_init_nodes - Initialise all pg_data_t and zone data
3378  * @max_zone_pfn: an array of max PFNs for each zone
3379  *
3380  * This will call free_area_init_node() for each active node in the system.
3381  * Using the page ranges provided by add_active_range(), the size of each
3382  * zone in each node and their holes is calculated. If the maximum PFN
3383  * between two adjacent zones match, it is assumed that the zone is empty.
3384  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3385  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3386  * starts where the previous one ended. For example, ZONE_DMA32 starts
3387  * at arch_max_dma_pfn.
3388  */
3389 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3390 {
3391 	unsigned long nid;
3392 	enum zone_type i;
3393 
3394 	/* Sort early_node_map as initialisation assumes it is sorted */
3395 	sort_node_map();
3396 
3397 	/* Record where the zone boundaries are */
3398 	memset(arch_zone_lowest_possible_pfn, 0,
3399 				sizeof(arch_zone_lowest_possible_pfn));
3400 	memset(arch_zone_highest_possible_pfn, 0,
3401 				sizeof(arch_zone_highest_possible_pfn));
3402 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3403 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3404 	for (i = 1; i < MAX_NR_ZONES; i++) {
3405 		if (i == ZONE_MOVABLE)
3406 			continue;
3407 		arch_zone_lowest_possible_pfn[i] =
3408 			arch_zone_highest_possible_pfn[i-1];
3409 		arch_zone_highest_possible_pfn[i] =
3410 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3411 	}
3412 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3413 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3414 
3415 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3416 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3417 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3418 
3419 	/* Print out the zone ranges */
3420 	printk("Zone PFN ranges:\n");
3421 	for (i = 0; i < MAX_NR_ZONES; i++) {
3422 		if (i == ZONE_MOVABLE)
3423 			continue;
3424 		printk("  %-8s %8lu -> %8lu\n",
3425 				zone_names[i],
3426 				arch_zone_lowest_possible_pfn[i],
3427 				arch_zone_highest_possible_pfn[i]);
3428 	}
3429 
3430 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3431 	printk("Movable zone start PFN for each node\n");
3432 	for (i = 0; i < MAX_NUMNODES; i++) {
3433 		if (zone_movable_pfn[i])
3434 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3435 	}
3436 
3437 	/* Print out the early_node_map[] */
3438 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3439 	for (i = 0; i < nr_nodemap_entries; i++)
3440 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3441 						early_node_map[i].start_pfn,
3442 						early_node_map[i].end_pfn);
3443 
3444 	/* Initialise every node */
3445 	setup_nr_node_ids();
3446 	for_each_online_node(nid) {
3447 		pg_data_t *pgdat = NODE_DATA(nid);
3448 		free_area_init_node(nid, pgdat, NULL,
3449 				find_min_pfn_for_node(nid), NULL);
3450 	}
3451 }
3452 
3453 static int __init cmdline_parse_core(char *p, unsigned long *core)
3454 {
3455 	unsigned long long coremem;
3456 	if (!p)
3457 		return -EINVAL;
3458 
3459 	coremem = memparse(p, &p);
3460 	*core = coremem >> PAGE_SHIFT;
3461 
3462 	/* Paranoid check that UL is enough for the coremem value */
3463 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3464 
3465 	return 0;
3466 }
3467 
3468 /*
3469  * kernelcore=size sets the amount of memory for use for allocations that
3470  * cannot be reclaimed or migrated.
3471  */
3472 static int __init cmdline_parse_kernelcore(char *p)
3473 {
3474 	return cmdline_parse_core(p, &required_kernelcore);
3475 }
3476 
3477 /*
3478  * movablecore=size sets the amount of memory for use for allocations that
3479  * can be reclaimed or migrated.
3480  */
3481 static int __init cmdline_parse_movablecore(char *p)
3482 {
3483 	return cmdline_parse_core(p, &required_movablecore);
3484 }
3485 
3486 early_param("kernelcore", cmdline_parse_kernelcore);
3487 early_param("movablecore", cmdline_parse_movablecore);
3488 
3489 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3490 
3491 /**
3492  * set_dma_reserve - set the specified number of pages reserved in the first zone
3493  * @new_dma_reserve: The number of pages to mark reserved
3494  *
3495  * The per-cpu batchsize and zone watermarks are determined by present_pages.
3496  * In the DMA zone, a significant percentage may be consumed by kernel image
3497  * and other unfreeable allocations which can skew the watermarks badly. This
3498  * function may optionally be used to account for unfreeable pages in the
3499  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3500  * smaller per-cpu batchsize.
3501  */
3502 void __init set_dma_reserve(unsigned long new_dma_reserve)
3503 {
3504 	dma_reserve = new_dma_reserve;
3505 }
3506 
3507 #ifndef CONFIG_NEED_MULTIPLE_NODES
3508 static bootmem_data_t contig_bootmem_data;
3509 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3510 
3511 EXPORT_SYMBOL(contig_page_data);
3512 #endif
3513 
3514 void __init free_area_init(unsigned long *zones_size)
3515 {
3516 	free_area_init_node(0, NODE_DATA(0), zones_size,
3517 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3518 }
3519 
3520 static int page_alloc_cpu_notify(struct notifier_block *self,
3521 				 unsigned long action, void *hcpu)
3522 {
3523 	int cpu = (unsigned long)hcpu;
3524 
3525 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3526 		local_irq_disable();
3527 		__drain_pages(cpu);
3528 		vm_events_fold_cpu(cpu);
3529 		local_irq_enable();
3530 		refresh_cpu_vm_stats(cpu);
3531 	}
3532 	return NOTIFY_OK;
3533 }
3534 
3535 void __init page_alloc_init(void)
3536 {
3537 	hotcpu_notifier(page_alloc_cpu_notify, 0);
3538 }
3539 
3540 /*
3541  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3542  *	or min_free_kbytes changes.
3543  */
3544 static void calculate_totalreserve_pages(void)
3545 {
3546 	struct pglist_data *pgdat;
3547 	unsigned long reserve_pages = 0;
3548 	enum zone_type i, j;
3549 
3550 	for_each_online_pgdat(pgdat) {
3551 		for (i = 0; i < MAX_NR_ZONES; i++) {
3552 			struct zone *zone = pgdat->node_zones + i;
3553 			unsigned long max = 0;
3554 
3555 			/* Find valid and maximum lowmem_reserve in the zone */
3556 			for (j = i; j < MAX_NR_ZONES; j++) {
3557 				if (zone->lowmem_reserve[j] > max)
3558 					max = zone->lowmem_reserve[j];
3559 			}
3560 
3561 			/* we treat pages_high as reserved pages. */
3562 			max += zone->pages_high;
3563 
3564 			if (max > zone->present_pages)
3565 				max = zone->present_pages;
3566 			reserve_pages += max;
3567 		}
3568 	}
3569 	totalreserve_pages = reserve_pages;
3570 }
3571 
3572 /*
3573  * setup_per_zone_lowmem_reserve - called whenever
3574  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3575  *	has a correct pages reserved value, so an adequate number of
3576  *	pages are left in the zone after a successful __alloc_pages().
3577  */
3578 static void setup_per_zone_lowmem_reserve(void)
3579 {
3580 	struct pglist_data *pgdat;
3581 	enum zone_type j, idx;
3582 
3583 	for_each_online_pgdat(pgdat) {
3584 		for (j = 0; j < MAX_NR_ZONES; j++) {
3585 			struct zone *zone = pgdat->node_zones + j;
3586 			unsigned long present_pages = zone->present_pages;
3587 
3588 			zone->lowmem_reserve[j] = 0;
3589 
3590 			idx = j;
3591 			while (idx) {
3592 				struct zone *lower_zone;
3593 
3594 				idx--;
3595 
3596 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3597 					sysctl_lowmem_reserve_ratio[idx] = 1;
3598 
3599 				lower_zone = pgdat->node_zones + idx;
3600 				lower_zone->lowmem_reserve[j] = present_pages /
3601 					sysctl_lowmem_reserve_ratio[idx];
3602 				present_pages += lower_zone->present_pages;
3603 			}
3604 		}
3605 	}
3606 
3607 	/* update totalreserve_pages */
3608 	calculate_totalreserve_pages();
3609 }
3610 
3611 /**
3612  * setup_per_zone_pages_min - called when min_free_kbytes changes.
3613  *
3614  * Ensures that the pages_{min,low,high} values for each zone are set correctly
3615  * with respect to min_free_kbytes.
3616  */
3617 void setup_per_zone_pages_min(void)
3618 {
3619 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3620 	unsigned long lowmem_pages = 0;
3621 	struct zone *zone;
3622 	unsigned long flags;
3623 
3624 	/* Calculate total number of !ZONE_HIGHMEM pages */
3625 	for_each_zone(zone) {
3626 		if (!is_highmem(zone))
3627 			lowmem_pages += zone->present_pages;
3628 	}
3629 
3630 	for_each_zone(zone) {
3631 		u64 tmp;
3632 
3633 		spin_lock_irqsave(&zone->lru_lock, flags);
3634 		tmp = (u64)pages_min * zone->present_pages;
3635 		do_div(tmp, lowmem_pages);
3636 		if (is_highmem(zone)) {
3637 			/*
3638 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3639 			 * need highmem pages, so cap pages_min to a small
3640 			 * value here.
3641 			 *
3642 			 * The (pages_high-pages_low) and (pages_low-pages_min)
3643 			 * deltas controls asynch page reclaim, and so should
3644 			 * not be capped for highmem.
3645 			 */
3646 			int min_pages;
3647 
3648 			min_pages = zone->present_pages / 1024;
3649 			if (min_pages < SWAP_CLUSTER_MAX)
3650 				min_pages = SWAP_CLUSTER_MAX;
3651 			if (min_pages > 128)
3652 				min_pages = 128;
3653 			zone->pages_min = min_pages;
3654 		} else {
3655 			/*
3656 			 * If it's a lowmem zone, reserve a number of pages
3657 			 * proportionate to the zone's size.
3658 			 */
3659 			zone->pages_min = tmp;
3660 		}
3661 
3662 		zone->pages_low   = zone->pages_min + (tmp >> 2);
3663 		zone->pages_high  = zone->pages_min + (tmp >> 1);
3664 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3665 	}
3666 
3667 	/* update totalreserve_pages */
3668 	calculate_totalreserve_pages();
3669 }
3670 
3671 /*
3672  * Initialise min_free_kbytes.
3673  *
3674  * For small machines we want it small (128k min).  For large machines
3675  * we want it large (64MB max).  But it is not linear, because network
3676  * bandwidth does not increase linearly with machine size.  We use
3677  *
3678  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3679  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3680  *
3681  * which yields
3682  *
3683  * 16MB:	512k
3684  * 32MB:	724k
3685  * 64MB:	1024k
3686  * 128MB:	1448k
3687  * 256MB:	2048k
3688  * 512MB:	2896k
3689  * 1024MB:	4096k
3690  * 2048MB:	5792k
3691  * 4096MB:	8192k
3692  * 8192MB:	11584k
3693  * 16384MB:	16384k
3694  */
3695 static int __init init_per_zone_pages_min(void)
3696 {
3697 	unsigned long lowmem_kbytes;
3698 
3699 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3700 
3701 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3702 	if (min_free_kbytes < 128)
3703 		min_free_kbytes = 128;
3704 	if (min_free_kbytes > 65536)
3705 		min_free_kbytes = 65536;
3706 	setup_per_zone_pages_min();
3707 	setup_per_zone_lowmem_reserve();
3708 	return 0;
3709 }
3710 module_init(init_per_zone_pages_min)
3711 
3712 /*
3713  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3714  *	that we can call two helper functions whenever min_free_kbytes
3715  *	changes.
3716  */
3717 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3718 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3719 {
3720 	proc_dointvec(table, write, file, buffer, length, ppos);
3721 	if (write)
3722 		setup_per_zone_pages_min();
3723 	return 0;
3724 }
3725 
3726 #ifdef CONFIG_NUMA
3727 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3728 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3729 {
3730 	struct zone *zone;
3731 	int rc;
3732 
3733 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3734 	if (rc)
3735 		return rc;
3736 
3737 	for_each_zone(zone)
3738 		zone->min_unmapped_pages = (zone->present_pages *
3739 				sysctl_min_unmapped_ratio) / 100;
3740 	return 0;
3741 }
3742 
3743 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3744 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3745 {
3746 	struct zone *zone;
3747 	int rc;
3748 
3749 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3750 	if (rc)
3751 		return rc;
3752 
3753 	for_each_zone(zone)
3754 		zone->min_slab_pages = (zone->present_pages *
3755 				sysctl_min_slab_ratio) / 100;
3756 	return 0;
3757 }
3758 #endif
3759 
3760 /*
3761  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3762  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3763  *	whenever sysctl_lowmem_reserve_ratio changes.
3764  *
3765  * The reserve ratio obviously has absolutely no relation with the
3766  * pages_min watermarks. The lowmem reserve ratio can only make sense
3767  * if in function of the boot time zone sizes.
3768  */
3769 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3770 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3771 {
3772 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3773 	setup_per_zone_lowmem_reserve();
3774 	return 0;
3775 }
3776 
3777 /*
3778  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3779  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3780  * can have before it gets flushed back to buddy allocator.
3781  */
3782 
3783 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3784 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3785 {
3786 	struct zone *zone;
3787 	unsigned int cpu;
3788 	int ret;
3789 
3790 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3791 	if (!write || (ret == -EINVAL))
3792 		return ret;
3793 	for_each_zone(zone) {
3794 		for_each_online_cpu(cpu) {
3795 			unsigned long  high;
3796 			high = zone->present_pages / percpu_pagelist_fraction;
3797 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3798 		}
3799 	}
3800 	return 0;
3801 }
3802 
3803 int hashdist = HASHDIST_DEFAULT;
3804 
3805 #ifdef CONFIG_NUMA
3806 static int __init set_hashdist(char *str)
3807 {
3808 	if (!str)
3809 		return 0;
3810 	hashdist = simple_strtoul(str, &str, 0);
3811 	return 1;
3812 }
3813 __setup("hashdist=", set_hashdist);
3814 #endif
3815 
3816 /*
3817  * allocate a large system hash table from bootmem
3818  * - it is assumed that the hash table must contain an exact power-of-2
3819  *   quantity of entries
3820  * - limit is the number of hash buckets, not the total allocation size
3821  */
3822 void *__init alloc_large_system_hash(const char *tablename,
3823 				     unsigned long bucketsize,
3824 				     unsigned long numentries,
3825 				     int scale,
3826 				     int flags,
3827 				     unsigned int *_hash_shift,
3828 				     unsigned int *_hash_mask,
3829 				     unsigned long limit)
3830 {
3831 	unsigned long long max = limit;
3832 	unsigned long log2qty, size;
3833 	void *table = NULL;
3834 
3835 	/* allow the kernel cmdline to have a say */
3836 	if (!numentries) {
3837 		/* round applicable memory size up to nearest megabyte */
3838 		numentries = nr_kernel_pages;
3839 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3840 		numentries >>= 20 - PAGE_SHIFT;
3841 		numentries <<= 20 - PAGE_SHIFT;
3842 
3843 		/* limit to 1 bucket per 2^scale bytes of low memory */
3844 		if (scale > PAGE_SHIFT)
3845 			numentries >>= (scale - PAGE_SHIFT);
3846 		else
3847 			numentries <<= (PAGE_SHIFT - scale);
3848 
3849 		/* Make sure we've got at least a 0-order allocation.. */
3850 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3851 			numentries = PAGE_SIZE / bucketsize;
3852 	}
3853 	numentries = roundup_pow_of_two(numentries);
3854 
3855 	/* limit allocation size to 1/16 total memory by default */
3856 	if (max == 0) {
3857 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3858 		do_div(max, bucketsize);
3859 	}
3860 
3861 	if (numentries > max)
3862 		numentries = max;
3863 
3864 	log2qty = ilog2(numentries);
3865 
3866 	do {
3867 		size = bucketsize << log2qty;
3868 		if (flags & HASH_EARLY)
3869 			table = alloc_bootmem(size);
3870 		else if (hashdist)
3871 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3872 		else {
3873 			unsigned long order;
3874 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3875 				;
3876 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3877 			/*
3878 			 * If bucketsize is not a power-of-two, we may free
3879 			 * some pages at the end of hash table.
3880 			 */
3881 			if (table) {
3882 				unsigned long alloc_end = (unsigned long)table +
3883 						(PAGE_SIZE << order);
3884 				unsigned long used = (unsigned long)table +
3885 						PAGE_ALIGN(size);
3886 				split_page(virt_to_page(table), order);
3887 				while (used < alloc_end) {
3888 					free_page(used);
3889 					used += PAGE_SIZE;
3890 				}
3891 			}
3892 		}
3893 	} while (!table && size > PAGE_SIZE && --log2qty);
3894 
3895 	if (!table)
3896 		panic("Failed to allocate %s hash table\n", tablename);
3897 
3898 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3899 	       tablename,
3900 	       (1U << log2qty),
3901 	       ilog2(size) - PAGE_SHIFT,
3902 	       size);
3903 
3904 	if (_hash_shift)
3905 		*_hash_shift = log2qty;
3906 	if (_hash_mask)
3907 		*_hash_mask = (1 << log2qty) - 1;
3908 
3909 	return table;
3910 }
3911 
3912 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3913 struct page *pfn_to_page(unsigned long pfn)
3914 {
3915 	return __pfn_to_page(pfn);
3916 }
3917 unsigned long page_to_pfn(struct page *page)
3918 {
3919 	return __page_to_pfn(page);
3920 }
3921 EXPORT_SYMBOL(pfn_to_page);
3922 EXPORT_SYMBOL(page_to_pfn);
3923 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3924 
3925 
3926