1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 79 static DEFINE_MUTEX(pcp_batch_high_lock); 80 #define MIN_PERCPU_PAGELIST_FRACTION (8) 81 82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 83 DEFINE_PER_CPU(int, numa_node); 84 EXPORT_PER_CPU_SYMBOL(numa_node); 85 #endif 86 87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 88 89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 90 /* 91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 94 * defined in <linux/topology.h>. 95 */ 96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 97 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 98 int _node_numa_mem_[MAX_NUMNODES]; 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 DEFINE_MUTEX(pcpu_drain_mutex); 107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 139 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 140 #else 141 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 142 #endif 143 EXPORT_SYMBOL(init_on_alloc); 144 145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 146 DEFINE_STATIC_KEY_TRUE(init_on_free); 147 #else 148 DEFINE_STATIC_KEY_FALSE(init_on_free); 149 #endif 150 EXPORT_SYMBOL(init_on_free); 151 152 static int __init early_init_on_alloc(char *buf) 153 { 154 int ret; 155 bool bool_result; 156 157 if (!buf) 158 return -EINVAL; 159 ret = kstrtobool(buf, &bool_result); 160 if (bool_result && page_poisoning_enabled()) 161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 162 if (bool_result) 163 static_branch_enable(&init_on_alloc); 164 else 165 static_branch_disable(&init_on_alloc); 166 return ret; 167 } 168 early_param("init_on_alloc", early_init_on_alloc); 169 170 static int __init early_init_on_free(char *buf) 171 { 172 int ret; 173 bool bool_result; 174 175 if (!buf) 176 return -EINVAL; 177 ret = kstrtobool(buf, &bool_result); 178 if (bool_result && page_poisoning_enabled()) 179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 180 if (bool_result) 181 static_branch_enable(&init_on_free); 182 else 183 static_branch_disable(&init_on_free); 184 return ret; 185 } 186 early_param("init_on_free", early_init_on_free); 187 188 /* 189 * A cached value of the page's pageblock's migratetype, used when the page is 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 192 * Also the migratetype set in the page does not necessarily match the pcplist 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 194 * other index - this ensures that it will be put on the correct CMA freelist. 195 */ 196 static inline int get_pcppage_migratetype(struct page *page) 197 { 198 return page->index; 199 } 200 201 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 202 { 203 page->index = migratetype; 204 } 205 206 #ifdef CONFIG_PM_SLEEP 207 /* 208 * The following functions are used by the suspend/hibernate code to temporarily 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 210 * while devices are suspended. To avoid races with the suspend/hibernate code, 211 * they should always be called with system_transition_mutex held 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 214 * with that modification). 215 */ 216 217 static gfp_t saved_gfp_mask; 218 219 void pm_restore_gfp_mask(void) 220 { 221 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 222 if (saved_gfp_mask) { 223 gfp_allowed_mask = saved_gfp_mask; 224 saved_gfp_mask = 0; 225 } 226 } 227 228 void pm_restrict_gfp_mask(void) 229 { 230 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 231 WARN_ON(saved_gfp_mask); 232 saved_gfp_mask = gfp_allowed_mask; 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 234 } 235 236 bool pm_suspended_storage(void) 237 { 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 239 return false; 240 return true; 241 } 242 #endif /* CONFIG_PM_SLEEP */ 243 244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 245 unsigned int pageblock_order __read_mostly; 246 #endif 247 248 static void __free_pages_ok(struct page *page, unsigned int order); 249 250 /* 251 * results with 256, 32 in the lowmem_reserve sysctl: 252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 253 * 1G machine -> (16M dma, 784M normal, 224M high) 254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 257 * 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally 259 * don't need any ZONE_NORMAL reservation 260 */ 261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 262 #ifdef CONFIG_ZONE_DMA 263 [ZONE_DMA] = 256, 264 #endif 265 #ifdef CONFIG_ZONE_DMA32 266 [ZONE_DMA32] = 256, 267 #endif 268 [ZONE_NORMAL] = 32, 269 #ifdef CONFIG_HIGHMEM 270 [ZONE_HIGHMEM] = 0, 271 #endif 272 [ZONE_MOVABLE] = 0, 273 }; 274 275 static char * const zone_names[MAX_NR_ZONES] = { 276 #ifdef CONFIG_ZONE_DMA 277 "DMA", 278 #endif 279 #ifdef CONFIG_ZONE_DMA32 280 "DMA32", 281 #endif 282 "Normal", 283 #ifdef CONFIG_HIGHMEM 284 "HighMem", 285 #endif 286 "Movable", 287 #ifdef CONFIG_ZONE_DEVICE 288 "Device", 289 #endif 290 }; 291 292 const char * const migratetype_names[MIGRATE_TYPES] = { 293 "Unmovable", 294 "Movable", 295 "Reclaimable", 296 "HighAtomic", 297 #ifdef CONFIG_CMA 298 "CMA", 299 #endif 300 #ifdef CONFIG_MEMORY_ISOLATION 301 "Isolate", 302 #endif 303 }; 304 305 compound_page_dtor * const compound_page_dtors[] = { 306 NULL, 307 free_compound_page, 308 #ifdef CONFIG_HUGETLB_PAGE 309 free_huge_page, 310 #endif 311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 312 free_transhuge_page, 313 #endif 314 }; 315 316 int min_free_kbytes = 1024; 317 int user_min_free_kbytes = -1; 318 #ifdef CONFIG_DISCONTIGMEM 319 /* 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 321 * are not on separate NUMA nodes. Functionally this works but with 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 323 * quite small. By default, do not boost watermarks on discontigmem as in 324 * many cases very high-order allocations like THP are likely to be 325 * unsupported and the premature reclaim offsets the advantage of long-term 326 * fragmentation avoidance. 327 */ 328 int watermark_boost_factor __read_mostly; 329 #else 330 int watermark_boost_factor __read_mostly = 15000; 331 #endif 332 int watermark_scale_factor = 10; 333 334 static unsigned long nr_kernel_pages __initdata; 335 static unsigned long nr_all_pages __initdata; 336 static unsigned long dma_reserve __initdata; 337 338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 352 353 #if MAX_NUMNODES > 1 354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 355 unsigned int nr_online_nodes __read_mostly = 1; 356 EXPORT_SYMBOL(nr_node_ids); 357 EXPORT_SYMBOL(nr_online_nodes); 358 #endif 359 360 int page_group_by_mobility_disabled __read_mostly; 361 362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 363 /* 364 * During boot we initialize deferred pages on-demand, as needed, but once 365 * page_alloc_init_late() has finished, the deferred pages are all initialized, 366 * and we can permanently disable that path. 367 */ 368 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 369 370 /* 371 * Calling kasan_free_pages() only after deferred memory initialization 372 * has completed. Poisoning pages during deferred memory init will greatly 373 * lengthen the process and cause problem in large memory systems as the 374 * deferred pages initialization is done with interrupt disabled. 375 * 376 * Assuming that there will be no reference to those newly initialized 377 * pages before they are ever allocated, this should have no effect on 378 * KASAN memory tracking as the poison will be properly inserted at page 379 * allocation time. The only corner case is when pages are allocated by 380 * on-demand allocation and then freed again before the deferred pages 381 * initialization is done, but this is not likely to happen. 382 */ 383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 384 { 385 if (!static_branch_unlikely(&deferred_pages)) 386 kasan_free_pages(page, order); 387 } 388 389 /* Returns true if the struct page for the pfn is uninitialised */ 390 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 391 { 392 int nid = early_pfn_to_nid(pfn); 393 394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 395 return true; 396 397 return false; 398 } 399 400 /* 401 * Returns true when the remaining initialisation should be deferred until 402 * later in the boot cycle when it can be parallelised. 403 */ 404 static bool __meminit 405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 406 { 407 static unsigned long prev_end_pfn, nr_initialised; 408 409 /* 410 * prev_end_pfn static that contains the end of previous zone 411 * No need to protect because called very early in boot before smp_init. 412 */ 413 if (prev_end_pfn != end_pfn) { 414 prev_end_pfn = end_pfn; 415 nr_initialised = 0; 416 } 417 418 /* Always populate low zones for address-constrained allocations */ 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 420 return false; 421 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 436 437 static inline bool early_page_uninitialised(unsigned long pfn) 438 { 439 return false; 440 } 441 442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 443 { 444 return false; 445 } 446 #endif 447 448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 449 static inline unsigned long *get_pageblock_bitmap(struct page *page, 450 unsigned long pfn) 451 { 452 #ifdef CONFIG_SPARSEMEM 453 return section_to_usemap(__pfn_to_section(pfn)); 454 #else 455 return page_zone(page)->pageblock_flags; 456 #endif /* CONFIG_SPARSEMEM */ 457 } 458 459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 460 { 461 #ifdef CONFIG_SPARSEMEM 462 pfn &= (PAGES_PER_SECTION-1); 463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 464 #else 465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 467 #endif /* CONFIG_SPARSEMEM */ 468 } 469 470 /** 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 472 * @page: The page within the block of interest 473 * @pfn: The target page frame number 474 * @end_bitidx: The last bit of interest to retrieve 475 * @mask: mask of bits that the caller is interested in 476 * 477 * Return: pageblock_bits flags 478 */ 479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 480 unsigned long pfn, 481 unsigned long end_bitidx, 482 unsigned long mask) 483 { 484 unsigned long *bitmap; 485 unsigned long bitidx, word_bitidx; 486 unsigned long word; 487 488 bitmap = get_pageblock_bitmap(page, pfn); 489 bitidx = pfn_to_bitidx(page, pfn); 490 word_bitidx = bitidx / BITS_PER_LONG; 491 bitidx &= (BITS_PER_LONG-1); 492 493 word = bitmap[word_bitidx]; 494 bitidx += end_bitidx; 495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 496 } 497 498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 499 unsigned long end_bitidx, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @end_bitidx: The last bit of interest 516 * @mask: mask of bits that the caller is interested in 517 */ 518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 519 unsigned long pfn, 520 unsigned long end_bitidx, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 bitidx += end_bitidx; 538 mask <<= (BITS_PER_LONG - bitidx - 1); 539 flags <<= (BITS_PER_LONG - bitidx - 1); 540 541 word = READ_ONCE(bitmap[word_bitidx]); 542 for (;;) { 543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 544 if (word == old_word) 545 break; 546 word = old_word; 547 } 548 } 549 550 void set_pageblock_migratetype(struct page *page, int migratetype) 551 { 552 if (unlikely(page_group_by_mobility_disabled && 553 migratetype < MIGRATE_PCPTYPES)) 554 migratetype = MIGRATE_UNMOVABLE; 555 556 set_pageblock_flags_group(page, (unsigned long)migratetype, 557 PB_migrate, PB_migrate_end); 558 } 559 560 #ifdef CONFIG_DEBUG_VM 561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 562 { 563 int ret = 0; 564 unsigned seq; 565 unsigned long pfn = page_to_pfn(page); 566 unsigned long sp, start_pfn; 567 568 do { 569 seq = zone_span_seqbegin(zone); 570 start_pfn = zone->zone_start_pfn; 571 sp = zone->spanned_pages; 572 if (!zone_spans_pfn(zone, pfn)) 573 ret = 1; 574 } while (zone_span_seqretry(zone, seq)); 575 576 if (ret) 577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 578 pfn, zone_to_nid(zone), zone->name, 579 start_pfn, start_pfn + sp); 580 581 return ret; 582 } 583 584 static int page_is_consistent(struct zone *zone, struct page *page) 585 { 586 if (!pfn_valid_within(page_to_pfn(page))) 587 return 0; 588 if (zone != page_zone(page)) 589 return 0; 590 591 return 1; 592 } 593 /* 594 * Temporary debugging check for pages not lying within a given zone. 595 */ 596 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 597 { 598 if (page_outside_zone_boundaries(zone, page)) 599 return 1; 600 if (!page_is_consistent(zone, page)) 601 return 1; 602 603 return 0; 604 } 605 #else 606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 return 0; 609 } 610 #endif 611 612 static void bad_page(struct page *page, const char *reason, 613 unsigned long bad_flags) 614 { 615 static unsigned long resume; 616 static unsigned long nr_shown; 617 static unsigned long nr_unshown; 618 619 /* 620 * Allow a burst of 60 reports, then keep quiet for that minute; 621 * or allow a steady drip of one report per second. 622 */ 623 if (nr_shown == 60) { 624 if (time_before(jiffies, resume)) { 625 nr_unshown++; 626 goto out; 627 } 628 if (nr_unshown) { 629 pr_alert( 630 "BUG: Bad page state: %lu messages suppressed\n", 631 nr_unshown); 632 nr_unshown = 0; 633 } 634 nr_shown = 0; 635 } 636 if (nr_shown++ == 0) 637 resume = jiffies + 60 * HZ; 638 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 640 current->comm, page_to_pfn(page)); 641 __dump_page(page, reason); 642 bad_flags &= page->flags; 643 if (bad_flags) 644 pr_alert("bad because of flags: %#lx(%pGp)\n", 645 bad_flags, &bad_flags); 646 dump_page_owner(page); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 page_mapcount_reset(page); /* remove PageBuddy */ 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 654 } 655 656 /* 657 * Higher-order pages are called "compound pages". They are structured thusly: 658 * 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 660 * 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 663 * 664 * The first tail page's ->compound_dtor holds the offset in array of compound 665 * page destructors. See compound_page_dtors. 666 * 667 * The first tail page's ->compound_order holds the order of allocation. 668 * This usage means that zero-order pages may not be compound. 669 */ 670 671 void free_compound_page(struct page *page) 672 { 673 mem_cgroup_uncharge(page); 674 __free_pages_ok(page, compound_order(page)); 675 } 676 677 void prep_compound_page(struct page *page, unsigned int order) 678 { 679 int i; 680 int nr_pages = 1 << order; 681 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 683 set_compound_order(page, order); 684 __SetPageHead(page); 685 for (i = 1; i < nr_pages; i++) { 686 struct page *p = page + i; 687 set_page_count(p, 0); 688 p->mapping = TAIL_MAPPING; 689 set_compound_head(p, page); 690 } 691 atomic_set(compound_mapcount_ptr(page), -1); 692 } 693 694 #ifdef CONFIG_DEBUG_PAGEALLOC 695 unsigned int _debug_guardpage_minorder; 696 697 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 698 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 699 #else 700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 701 #endif 702 EXPORT_SYMBOL(_debug_pagealloc_enabled); 703 704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 705 706 static int __init early_debug_pagealloc(char *buf) 707 { 708 bool enable = false; 709 710 if (kstrtobool(buf, &enable)) 711 return -EINVAL; 712 713 if (enable) 714 static_branch_enable(&_debug_pagealloc_enabled); 715 716 return 0; 717 } 718 early_param("debug_pagealloc", early_debug_pagealloc); 719 720 static void init_debug_guardpage(void) 721 { 722 if (!debug_pagealloc_enabled()) 723 return; 724 725 if (!debug_guardpage_minorder()) 726 return; 727 728 static_branch_enable(&_debug_guardpage_enabled); 729 } 730 731 static int __init debug_guardpage_minorder_setup(char *buf) 732 { 733 unsigned long res; 734 735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 736 pr_err("Bad debug_guardpage_minorder value\n"); 737 return 0; 738 } 739 _debug_guardpage_minorder = res; 740 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 741 return 0; 742 } 743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 744 745 static inline bool set_page_guard(struct zone *zone, struct page *page, 746 unsigned int order, int migratetype) 747 { 748 if (!debug_guardpage_enabled()) 749 return false; 750 751 if (order >= debug_guardpage_minorder()) 752 return false; 753 754 __SetPageGuard(page); 755 INIT_LIST_HEAD(&page->lru); 756 set_page_private(page, order); 757 /* Guard pages are not available for any usage */ 758 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 759 760 return true; 761 } 762 763 static inline void clear_page_guard(struct zone *zone, struct page *page, 764 unsigned int order, int migratetype) 765 { 766 if (!debug_guardpage_enabled()) 767 return; 768 769 __ClearPageGuard(page); 770 771 set_page_private(page, 0); 772 if (!is_migrate_isolate(migratetype)) 773 __mod_zone_freepage_state(zone, (1 << order), migratetype); 774 } 775 #else 776 static inline bool set_page_guard(struct zone *zone, struct page *page, 777 unsigned int order, int migratetype) { return false; } 778 static inline void clear_page_guard(struct zone *zone, struct page *page, 779 unsigned int order, int migratetype) {} 780 #endif 781 782 static inline void set_page_order(struct page *page, unsigned int order) 783 { 784 set_page_private(page, order); 785 __SetPageBuddy(page); 786 } 787 788 /* 789 * This function checks whether a page is free && is the buddy 790 * we can coalesce a page and its buddy if 791 * (a) the buddy is not in a hole (check before calling!) && 792 * (b) the buddy is in the buddy system && 793 * (c) a page and its buddy have the same order && 794 * (d) a page and its buddy are in the same zone. 795 * 796 * For recording whether a page is in the buddy system, we set PageBuddy. 797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 798 * 799 * For recording page's order, we use page_private(page). 800 */ 801 static inline int page_is_buddy(struct page *page, struct page *buddy, 802 unsigned int order) 803 { 804 if (page_is_guard(buddy) && page_order(buddy) == order) { 805 if (page_zone_id(page) != page_zone_id(buddy)) 806 return 0; 807 808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 809 810 return 1; 811 } 812 813 if (PageBuddy(buddy) && page_order(buddy) == order) { 814 /* 815 * zone check is done late to avoid uselessly 816 * calculating zone/node ids for pages that could 817 * never merge. 818 */ 819 if (page_zone_id(page) != page_zone_id(buddy)) 820 return 0; 821 822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 823 824 return 1; 825 } 826 return 0; 827 } 828 829 #ifdef CONFIG_COMPACTION 830 static inline struct capture_control *task_capc(struct zone *zone) 831 { 832 struct capture_control *capc = current->capture_control; 833 834 return capc && 835 !(current->flags & PF_KTHREAD) && 836 !capc->page && 837 capc->cc->zone == zone && 838 capc->cc->direct_compaction ? capc : NULL; 839 } 840 841 static inline bool 842 compaction_capture(struct capture_control *capc, struct page *page, 843 int order, int migratetype) 844 { 845 if (!capc || order != capc->cc->order) 846 return false; 847 848 /* Do not accidentally pollute CMA or isolated regions*/ 849 if (is_migrate_cma(migratetype) || 850 is_migrate_isolate(migratetype)) 851 return false; 852 853 /* 854 * Do not let lower order allocations polluate a movable pageblock. 855 * This might let an unmovable request use a reclaimable pageblock 856 * and vice-versa but no more than normal fallback logic which can 857 * have trouble finding a high-order free page. 858 */ 859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 860 return false; 861 862 capc->page = page; 863 return true; 864 } 865 866 #else 867 static inline struct capture_control *task_capc(struct zone *zone) 868 { 869 return NULL; 870 } 871 872 static inline bool 873 compaction_capture(struct capture_control *capc, struct page *page, 874 int order, int migratetype) 875 { 876 return false; 877 } 878 #endif /* CONFIG_COMPACTION */ 879 880 /* 881 * Freeing function for a buddy system allocator. 882 * 883 * The concept of a buddy system is to maintain direct-mapped table 884 * (containing bit values) for memory blocks of various "orders". 885 * The bottom level table contains the map for the smallest allocatable 886 * units of memory (here, pages), and each level above it describes 887 * pairs of units from the levels below, hence, "buddies". 888 * At a high level, all that happens here is marking the table entry 889 * at the bottom level available, and propagating the changes upward 890 * as necessary, plus some accounting needed to play nicely with other 891 * parts of the VM system. 892 * At each level, we keep a list of pages, which are heads of continuous 893 * free pages of length of (1 << order) and marked with PageBuddy. 894 * Page's order is recorded in page_private(page) field. 895 * So when we are allocating or freeing one, we can derive the state of the 896 * other. That is, if we allocate a small block, and both were 897 * free, the remainder of the region must be split into blocks. 898 * If a block is freed, and its buddy is also free, then this 899 * triggers coalescing into a block of larger size. 900 * 901 * -- nyc 902 */ 903 904 static inline void __free_one_page(struct page *page, 905 unsigned long pfn, 906 struct zone *zone, unsigned int order, 907 int migratetype) 908 { 909 unsigned long combined_pfn; 910 unsigned long uninitialized_var(buddy_pfn); 911 struct page *buddy; 912 unsigned int max_order; 913 struct capture_control *capc = task_capc(zone); 914 915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 916 917 VM_BUG_ON(!zone_is_initialized(zone)); 918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 919 920 VM_BUG_ON(migratetype == -1); 921 if (likely(!is_migrate_isolate(migratetype))) 922 __mod_zone_freepage_state(zone, 1 << order, migratetype); 923 924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 925 VM_BUG_ON_PAGE(bad_range(zone, page), page); 926 927 continue_merging: 928 while (order < max_order - 1) { 929 if (compaction_capture(capc, page, order, migratetype)) { 930 __mod_zone_freepage_state(zone, -(1 << order), 931 migratetype); 932 return; 933 } 934 buddy_pfn = __find_buddy_pfn(pfn, order); 935 buddy = page + (buddy_pfn - pfn); 936 937 if (!pfn_valid_within(buddy_pfn)) 938 goto done_merging; 939 if (!page_is_buddy(page, buddy, order)) 940 goto done_merging; 941 /* 942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 943 * merge with it and move up one order. 944 */ 945 if (page_is_guard(buddy)) 946 clear_page_guard(zone, buddy, order, migratetype); 947 else 948 del_page_from_free_area(buddy, &zone->free_area[order]); 949 combined_pfn = buddy_pfn & pfn; 950 page = page + (combined_pfn - pfn); 951 pfn = combined_pfn; 952 order++; 953 } 954 if (max_order < MAX_ORDER) { 955 /* If we are here, it means order is >= pageblock_order. 956 * We want to prevent merge between freepages on isolate 957 * pageblock and normal pageblock. Without this, pageblock 958 * isolation could cause incorrect freepage or CMA accounting. 959 * 960 * We don't want to hit this code for the more frequent 961 * low-order merging. 962 */ 963 if (unlikely(has_isolate_pageblock(zone))) { 964 int buddy_mt; 965 966 buddy_pfn = __find_buddy_pfn(pfn, order); 967 buddy = page + (buddy_pfn - pfn); 968 buddy_mt = get_pageblock_migratetype(buddy); 969 970 if (migratetype != buddy_mt 971 && (is_migrate_isolate(migratetype) || 972 is_migrate_isolate(buddy_mt))) 973 goto done_merging; 974 } 975 max_order++; 976 goto continue_merging; 977 } 978 979 done_merging: 980 set_page_order(page, order); 981 982 /* 983 * If this is not the largest possible page, check if the buddy 984 * of the next-highest order is free. If it is, it's possible 985 * that pages are being freed that will coalesce soon. In case, 986 * that is happening, add the free page to the tail of the list 987 * so it's less likely to be used soon and more likely to be merged 988 * as a higher order page 989 */ 990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 991 && !is_shuffle_order(order)) { 992 struct page *higher_page, *higher_buddy; 993 combined_pfn = buddy_pfn & pfn; 994 higher_page = page + (combined_pfn - pfn); 995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 996 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 997 if (pfn_valid_within(buddy_pfn) && 998 page_is_buddy(higher_page, higher_buddy, order + 1)) { 999 add_to_free_area_tail(page, &zone->free_area[order], 1000 migratetype); 1001 return; 1002 } 1003 } 1004 1005 if (is_shuffle_order(order)) 1006 add_to_free_area_random(page, &zone->free_area[order], 1007 migratetype); 1008 else 1009 add_to_free_area(page, &zone->free_area[order], migratetype); 1010 1011 } 1012 1013 /* 1014 * A bad page could be due to a number of fields. Instead of multiple branches, 1015 * try and check multiple fields with one check. The caller must do a detailed 1016 * check if necessary. 1017 */ 1018 static inline bool page_expected_state(struct page *page, 1019 unsigned long check_flags) 1020 { 1021 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1022 return false; 1023 1024 if (unlikely((unsigned long)page->mapping | 1025 page_ref_count(page) | 1026 #ifdef CONFIG_MEMCG 1027 (unsigned long)page->mem_cgroup | 1028 #endif 1029 (page->flags & check_flags))) 1030 return false; 1031 1032 return true; 1033 } 1034 1035 static void free_pages_check_bad(struct page *page) 1036 { 1037 const char *bad_reason; 1038 unsigned long bad_flags; 1039 1040 bad_reason = NULL; 1041 bad_flags = 0; 1042 1043 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1044 bad_reason = "nonzero mapcount"; 1045 if (unlikely(page->mapping != NULL)) 1046 bad_reason = "non-NULL mapping"; 1047 if (unlikely(page_ref_count(page) != 0)) 1048 bad_reason = "nonzero _refcount"; 1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1052 } 1053 #ifdef CONFIG_MEMCG 1054 if (unlikely(page->mem_cgroup)) 1055 bad_reason = "page still charged to cgroup"; 1056 #endif 1057 bad_page(page, bad_reason, bad_flags); 1058 } 1059 1060 static inline int free_pages_check(struct page *page) 1061 { 1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1063 return 0; 1064 1065 /* Something has gone sideways, find it */ 1066 free_pages_check_bad(page); 1067 return 1; 1068 } 1069 1070 static int free_tail_pages_check(struct page *head_page, struct page *page) 1071 { 1072 int ret = 1; 1073 1074 /* 1075 * We rely page->lru.next never has bit 0 set, unless the page 1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1077 */ 1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1079 1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1081 ret = 0; 1082 goto out; 1083 } 1084 switch (page - head_page) { 1085 case 1: 1086 /* the first tail page: ->mapping may be compound_mapcount() */ 1087 if (unlikely(compound_mapcount(page))) { 1088 bad_page(page, "nonzero compound_mapcount", 0); 1089 goto out; 1090 } 1091 break; 1092 case 2: 1093 /* 1094 * the second tail page: ->mapping is 1095 * deferred_list.next -- ignore value. 1096 */ 1097 break; 1098 default: 1099 if (page->mapping != TAIL_MAPPING) { 1100 bad_page(page, "corrupted mapping in tail page", 0); 1101 goto out; 1102 } 1103 break; 1104 } 1105 if (unlikely(!PageTail(page))) { 1106 bad_page(page, "PageTail not set", 0); 1107 goto out; 1108 } 1109 if (unlikely(compound_head(page) != head_page)) { 1110 bad_page(page, "compound_head not consistent", 0); 1111 goto out; 1112 } 1113 ret = 0; 1114 out: 1115 page->mapping = NULL; 1116 clear_compound_head(page); 1117 return ret; 1118 } 1119 1120 static void kernel_init_free_pages(struct page *page, int numpages) 1121 { 1122 int i; 1123 1124 for (i = 0; i < numpages; i++) 1125 clear_highpage(page + i); 1126 } 1127 1128 static __always_inline bool free_pages_prepare(struct page *page, 1129 unsigned int order, bool check_free) 1130 { 1131 int bad = 0; 1132 1133 VM_BUG_ON_PAGE(PageTail(page), page); 1134 1135 trace_mm_page_free(page, order); 1136 1137 /* 1138 * Check tail pages before head page information is cleared to 1139 * avoid checking PageCompound for order-0 pages. 1140 */ 1141 if (unlikely(order)) { 1142 bool compound = PageCompound(page); 1143 int i; 1144 1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1146 1147 if (compound) 1148 ClearPageDoubleMap(page); 1149 for (i = 1; i < (1 << order); i++) { 1150 if (compound) 1151 bad += free_tail_pages_check(page, page + i); 1152 if (unlikely(free_pages_check(page + i))) { 1153 bad++; 1154 continue; 1155 } 1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1157 } 1158 } 1159 if (PageMappingFlags(page)) 1160 page->mapping = NULL; 1161 if (memcg_kmem_enabled() && PageKmemcg(page)) 1162 __memcg_kmem_uncharge(page, order); 1163 if (check_free) 1164 bad += free_pages_check(page); 1165 if (bad) 1166 return false; 1167 1168 page_cpupid_reset_last(page); 1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1170 reset_page_owner(page, order); 1171 1172 if (!PageHighMem(page)) { 1173 debug_check_no_locks_freed(page_address(page), 1174 PAGE_SIZE << order); 1175 debug_check_no_obj_freed(page_address(page), 1176 PAGE_SIZE << order); 1177 } 1178 if (want_init_on_free()) 1179 kernel_init_free_pages(page, 1 << order); 1180 1181 kernel_poison_pages(page, 1 << order, 0); 1182 /* 1183 * arch_free_page() can make the page's contents inaccessible. s390 1184 * does this. So nothing which can access the page's contents should 1185 * happen after this. 1186 */ 1187 arch_free_page(page, order); 1188 1189 if (debug_pagealloc_enabled()) 1190 kernel_map_pages(page, 1 << order, 0); 1191 1192 kasan_free_nondeferred_pages(page, order); 1193 1194 return true; 1195 } 1196 1197 #ifdef CONFIG_DEBUG_VM 1198 /* 1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1200 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1201 * moved from pcp lists to free lists. 1202 */ 1203 static bool free_pcp_prepare(struct page *page) 1204 { 1205 return free_pages_prepare(page, 0, true); 1206 } 1207 1208 static bool bulkfree_pcp_prepare(struct page *page) 1209 { 1210 if (debug_pagealloc_enabled()) 1211 return free_pages_check(page); 1212 else 1213 return false; 1214 } 1215 #else 1216 /* 1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1218 * moving from pcp lists to free list in order to reduce overhead. With 1219 * debug_pagealloc enabled, they are checked also immediately when being freed 1220 * to the pcp lists. 1221 */ 1222 static bool free_pcp_prepare(struct page *page) 1223 { 1224 if (debug_pagealloc_enabled()) 1225 return free_pages_prepare(page, 0, true); 1226 else 1227 return free_pages_prepare(page, 0, false); 1228 } 1229 1230 static bool bulkfree_pcp_prepare(struct page *page) 1231 { 1232 return free_pages_check(page); 1233 } 1234 #endif /* CONFIG_DEBUG_VM */ 1235 1236 static inline void prefetch_buddy(struct page *page) 1237 { 1238 unsigned long pfn = page_to_pfn(page); 1239 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1240 struct page *buddy = page + (buddy_pfn - pfn); 1241 1242 prefetch(buddy); 1243 } 1244 1245 /* 1246 * Frees a number of pages from the PCP lists 1247 * Assumes all pages on list are in same zone, and of same order. 1248 * count is the number of pages to free. 1249 * 1250 * If the zone was previously in an "all pages pinned" state then look to 1251 * see if this freeing clears that state. 1252 * 1253 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1254 * pinned" detection logic. 1255 */ 1256 static void free_pcppages_bulk(struct zone *zone, int count, 1257 struct per_cpu_pages *pcp) 1258 { 1259 int migratetype = 0; 1260 int batch_free = 0; 1261 int prefetch_nr = 0; 1262 bool isolated_pageblocks; 1263 struct page *page, *tmp; 1264 LIST_HEAD(head); 1265 1266 while (count) { 1267 struct list_head *list; 1268 1269 /* 1270 * Remove pages from lists in a round-robin fashion. A 1271 * batch_free count is maintained that is incremented when an 1272 * empty list is encountered. This is so more pages are freed 1273 * off fuller lists instead of spinning excessively around empty 1274 * lists 1275 */ 1276 do { 1277 batch_free++; 1278 if (++migratetype == MIGRATE_PCPTYPES) 1279 migratetype = 0; 1280 list = &pcp->lists[migratetype]; 1281 } while (list_empty(list)); 1282 1283 /* This is the only non-empty list. Free them all. */ 1284 if (batch_free == MIGRATE_PCPTYPES) 1285 batch_free = count; 1286 1287 do { 1288 page = list_last_entry(list, struct page, lru); 1289 /* must delete to avoid corrupting pcp list */ 1290 list_del(&page->lru); 1291 pcp->count--; 1292 1293 if (bulkfree_pcp_prepare(page)) 1294 continue; 1295 1296 list_add_tail(&page->lru, &head); 1297 1298 /* 1299 * We are going to put the page back to the global 1300 * pool, prefetch its buddy to speed up later access 1301 * under zone->lock. It is believed the overhead of 1302 * an additional test and calculating buddy_pfn here 1303 * can be offset by reduced memory latency later. To 1304 * avoid excessive prefetching due to large count, only 1305 * prefetch buddy for the first pcp->batch nr of pages. 1306 */ 1307 if (prefetch_nr++ < pcp->batch) 1308 prefetch_buddy(page); 1309 } while (--count && --batch_free && !list_empty(list)); 1310 } 1311 1312 spin_lock(&zone->lock); 1313 isolated_pageblocks = has_isolate_pageblock(zone); 1314 1315 /* 1316 * Use safe version since after __free_one_page(), 1317 * page->lru.next will not point to original list. 1318 */ 1319 list_for_each_entry_safe(page, tmp, &head, lru) { 1320 int mt = get_pcppage_migratetype(page); 1321 /* MIGRATE_ISOLATE page should not go to pcplists */ 1322 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1323 /* Pageblock could have been isolated meanwhile */ 1324 if (unlikely(isolated_pageblocks)) 1325 mt = get_pageblock_migratetype(page); 1326 1327 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1328 trace_mm_page_pcpu_drain(page, 0, mt); 1329 } 1330 spin_unlock(&zone->lock); 1331 } 1332 1333 static void free_one_page(struct zone *zone, 1334 struct page *page, unsigned long pfn, 1335 unsigned int order, 1336 int migratetype) 1337 { 1338 spin_lock(&zone->lock); 1339 if (unlikely(has_isolate_pageblock(zone) || 1340 is_migrate_isolate(migratetype))) { 1341 migratetype = get_pfnblock_migratetype(page, pfn); 1342 } 1343 __free_one_page(page, pfn, zone, order, migratetype); 1344 spin_unlock(&zone->lock); 1345 } 1346 1347 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1348 unsigned long zone, int nid) 1349 { 1350 mm_zero_struct_page(page); 1351 set_page_links(page, zone, nid, pfn); 1352 init_page_count(page); 1353 page_mapcount_reset(page); 1354 page_cpupid_reset_last(page); 1355 page_kasan_tag_reset(page); 1356 1357 INIT_LIST_HEAD(&page->lru); 1358 #ifdef WANT_PAGE_VIRTUAL 1359 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1360 if (!is_highmem_idx(zone)) 1361 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1362 #endif 1363 } 1364 1365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1366 static void __meminit init_reserved_page(unsigned long pfn) 1367 { 1368 pg_data_t *pgdat; 1369 int nid, zid; 1370 1371 if (!early_page_uninitialised(pfn)) 1372 return; 1373 1374 nid = early_pfn_to_nid(pfn); 1375 pgdat = NODE_DATA(nid); 1376 1377 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1378 struct zone *zone = &pgdat->node_zones[zid]; 1379 1380 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1381 break; 1382 } 1383 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1384 } 1385 #else 1386 static inline void init_reserved_page(unsigned long pfn) 1387 { 1388 } 1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1390 1391 /* 1392 * Initialised pages do not have PageReserved set. This function is 1393 * called for each range allocated by the bootmem allocator and 1394 * marks the pages PageReserved. The remaining valid pages are later 1395 * sent to the buddy page allocator. 1396 */ 1397 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1398 { 1399 unsigned long start_pfn = PFN_DOWN(start); 1400 unsigned long end_pfn = PFN_UP(end); 1401 1402 for (; start_pfn < end_pfn; start_pfn++) { 1403 if (pfn_valid(start_pfn)) { 1404 struct page *page = pfn_to_page(start_pfn); 1405 1406 init_reserved_page(start_pfn); 1407 1408 /* Avoid false-positive PageTail() */ 1409 INIT_LIST_HEAD(&page->lru); 1410 1411 /* 1412 * no need for atomic set_bit because the struct 1413 * page is not visible yet so nobody should 1414 * access it yet. 1415 */ 1416 __SetPageReserved(page); 1417 } 1418 } 1419 } 1420 1421 static void __free_pages_ok(struct page *page, unsigned int order) 1422 { 1423 unsigned long flags; 1424 int migratetype; 1425 unsigned long pfn = page_to_pfn(page); 1426 1427 if (!free_pages_prepare(page, order, true)) 1428 return; 1429 1430 migratetype = get_pfnblock_migratetype(page, pfn); 1431 local_irq_save(flags); 1432 __count_vm_events(PGFREE, 1 << order); 1433 free_one_page(page_zone(page), page, pfn, order, migratetype); 1434 local_irq_restore(flags); 1435 } 1436 1437 void __free_pages_core(struct page *page, unsigned int order) 1438 { 1439 unsigned int nr_pages = 1 << order; 1440 struct page *p = page; 1441 unsigned int loop; 1442 1443 prefetchw(p); 1444 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1445 prefetchw(p + 1); 1446 __ClearPageReserved(p); 1447 set_page_count(p, 0); 1448 } 1449 __ClearPageReserved(p); 1450 set_page_count(p, 0); 1451 1452 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1453 set_page_refcounted(page); 1454 __free_pages(page, order); 1455 } 1456 1457 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1458 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1459 1460 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1461 1462 int __meminit early_pfn_to_nid(unsigned long pfn) 1463 { 1464 static DEFINE_SPINLOCK(early_pfn_lock); 1465 int nid; 1466 1467 spin_lock(&early_pfn_lock); 1468 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1469 if (nid < 0) 1470 nid = first_online_node; 1471 spin_unlock(&early_pfn_lock); 1472 1473 return nid; 1474 } 1475 #endif 1476 1477 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1478 /* Only safe to use early in boot when initialisation is single-threaded */ 1479 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1480 { 1481 int nid; 1482 1483 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1484 if (nid >= 0 && nid != node) 1485 return false; 1486 return true; 1487 } 1488 1489 #else 1490 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1491 { 1492 return true; 1493 } 1494 #endif 1495 1496 1497 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1498 unsigned int order) 1499 { 1500 if (early_page_uninitialised(pfn)) 1501 return; 1502 __free_pages_core(page, order); 1503 } 1504 1505 /* 1506 * Check that the whole (or subset of) a pageblock given by the interval of 1507 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1508 * with the migration of free compaction scanner. The scanners then need to 1509 * use only pfn_valid_within() check for arches that allow holes within 1510 * pageblocks. 1511 * 1512 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1513 * 1514 * It's possible on some configurations to have a setup like node0 node1 node0 1515 * i.e. it's possible that all pages within a zones range of pages do not 1516 * belong to a single zone. We assume that a border between node0 and node1 1517 * can occur within a single pageblock, but not a node0 node1 node0 1518 * interleaving within a single pageblock. It is therefore sufficient to check 1519 * the first and last page of a pageblock and avoid checking each individual 1520 * page in a pageblock. 1521 */ 1522 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1523 unsigned long end_pfn, struct zone *zone) 1524 { 1525 struct page *start_page; 1526 struct page *end_page; 1527 1528 /* end_pfn is one past the range we are checking */ 1529 end_pfn--; 1530 1531 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1532 return NULL; 1533 1534 start_page = pfn_to_online_page(start_pfn); 1535 if (!start_page) 1536 return NULL; 1537 1538 if (page_zone(start_page) != zone) 1539 return NULL; 1540 1541 end_page = pfn_to_page(end_pfn); 1542 1543 /* This gives a shorter code than deriving page_zone(end_page) */ 1544 if (page_zone_id(start_page) != page_zone_id(end_page)) 1545 return NULL; 1546 1547 return start_page; 1548 } 1549 1550 void set_zone_contiguous(struct zone *zone) 1551 { 1552 unsigned long block_start_pfn = zone->zone_start_pfn; 1553 unsigned long block_end_pfn; 1554 1555 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1556 for (; block_start_pfn < zone_end_pfn(zone); 1557 block_start_pfn = block_end_pfn, 1558 block_end_pfn += pageblock_nr_pages) { 1559 1560 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1561 1562 if (!__pageblock_pfn_to_page(block_start_pfn, 1563 block_end_pfn, zone)) 1564 return; 1565 } 1566 1567 /* We confirm that there is no hole */ 1568 zone->contiguous = true; 1569 } 1570 1571 void clear_zone_contiguous(struct zone *zone) 1572 { 1573 zone->contiguous = false; 1574 } 1575 1576 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1577 static void __init deferred_free_range(unsigned long pfn, 1578 unsigned long nr_pages) 1579 { 1580 struct page *page; 1581 unsigned long i; 1582 1583 if (!nr_pages) 1584 return; 1585 1586 page = pfn_to_page(pfn); 1587 1588 /* Free a large naturally-aligned chunk if possible */ 1589 if (nr_pages == pageblock_nr_pages && 1590 (pfn & (pageblock_nr_pages - 1)) == 0) { 1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1592 __free_pages_core(page, pageblock_order); 1593 return; 1594 } 1595 1596 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1597 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1598 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1599 __free_pages_core(page, 0); 1600 } 1601 } 1602 1603 /* Completion tracking for deferred_init_memmap() threads */ 1604 static atomic_t pgdat_init_n_undone __initdata; 1605 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1606 1607 static inline void __init pgdat_init_report_one_done(void) 1608 { 1609 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1610 complete(&pgdat_init_all_done_comp); 1611 } 1612 1613 /* 1614 * Returns true if page needs to be initialized or freed to buddy allocator. 1615 * 1616 * First we check if pfn is valid on architectures where it is possible to have 1617 * holes within pageblock_nr_pages. On systems where it is not possible, this 1618 * function is optimized out. 1619 * 1620 * Then, we check if a current large page is valid by only checking the validity 1621 * of the head pfn. 1622 */ 1623 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1624 { 1625 if (!pfn_valid_within(pfn)) 1626 return false; 1627 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1628 return false; 1629 return true; 1630 } 1631 1632 /* 1633 * Free pages to buddy allocator. Try to free aligned pages in 1634 * pageblock_nr_pages sizes. 1635 */ 1636 static void __init deferred_free_pages(unsigned long pfn, 1637 unsigned long end_pfn) 1638 { 1639 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1640 unsigned long nr_free = 0; 1641 1642 for (; pfn < end_pfn; pfn++) { 1643 if (!deferred_pfn_valid(pfn)) { 1644 deferred_free_range(pfn - nr_free, nr_free); 1645 nr_free = 0; 1646 } else if (!(pfn & nr_pgmask)) { 1647 deferred_free_range(pfn - nr_free, nr_free); 1648 nr_free = 1; 1649 touch_nmi_watchdog(); 1650 } else { 1651 nr_free++; 1652 } 1653 } 1654 /* Free the last block of pages to allocator */ 1655 deferred_free_range(pfn - nr_free, nr_free); 1656 } 1657 1658 /* 1659 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1660 * by performing it only once every pageblock_nr_pages. 1661 * Return number of pages initialized. 1662 */ 1663 static unsigned long __init deferred_init_pages(struct zone *zone, 1664 unsigned long pfn, 1665 unsigned long end_pfn) 1666 { 1667 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1668 int nid = zone_to_nid(zone); 1669 unsigned long nr_pages = 0; 1670 int zid = zone_idx(zone); 1671 struct page *page = NULL; 1672 1673 for (; pfn < end_pfn; pfn++) { 1674 if (!deferred_pfn_valid(pfn)) { 1675 page = NULL; 1676 continue; 1677 } else if (!page || !(pfn & nr_pgmask)) { 1678 page = pfn_to_page(pfn); 1679 touch_nmi_watchdog(); 1680 } else { 1681 page++; 1682 } 1683 __init_single_page(page, pfn, zid, nid); 1684 nr_pages++; 1685 } 1686 return (nr_pages); 1687 } 1688 1689 /* 1690 * This function is meant to pre-load the iterator for the zone init. 1691 * Specifically it walks through the ranges until we are caught up to the 1692 * first_init_pfn value and exits there. If we never encounter the value we 1693 * return false indicating there are no valid ranges left. 1694 */ 1695 static bool __init 1696 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1697 unsigned long *spfn, unsigned long *epfn, 1698 unsigned long first_init_pfn) 1699 { 1700 u64 j; 1701 1702 /* 1703 * Start out by walking through the ranges in this zone that have 1704 * already been initialized. We don't need to do anything with them 1705 * so we just need to flush them out of the system. 1706 */ 1707 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1708 if (*epfn <= first_init_pfn) 1709 continue; 1710 if (*spfn < first_init_pfn) 1711 *spfn = first_init_pfn; 1712 *i = j; 1713 return true; 1714 } 1715 1716 return false; 1717 } 1718 1719 /* 1720 * Initialize and free pages. We do it in two loops: first we initialize 1721 * struct page, then free to buddy allocator, because while we are 1722 * freeing pages we can access pages that are ahead (computing buddy 1723 * page in __free_one_page()). 1724 * 1725 * In order to try and keep some memory in the cache we have the loop 1726 * broken along max page order boundaries. This way we will not cause 1727 * any issues with the buddy page computation. 1728 */ 1729 static unsigned long __init 1730 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1731 unsigned long *end_pfn) 1732 { 1733 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1734 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1735 unsigned long nr_pages = 0; 1736 u64 j = *i; 1737 1738 /* First we loop through and initialize the page values */ 1739 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1740 unsigned long t; 1741 1742 if (mo_pfn <= *start_pfn) 1743 break; 1744 1745 t = min(mo_pfn, *end_pfn); 1746 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1747 1748 if (mo_pfn < *end_pfn) { 1749 *start_pfn = mo_pfn; 1750 break; 1751 } 1752 } 1753 1754 /* Reset values and now loop through freeing pages as needed */ 1755 swap(j, *i); 1756 1757 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1758 unsigned long t; 1759 1760 if (mo_pfn <= spfn) 1761 break; 1762 1763 t = min(mo_pfn, epfn); 1764 deferred_free_pages(spfn, t); 1765 1766 if (mo_pfn <= epfn) 1767 break; 1768 } 1769 1770 return nr_pages; 1771 } 1772 1773 /* Initialise remaining memory on a node */ 1774 static int __init deferred_init_memmap(void *data) 1775 { 1776 pg_data_t *pgdat = data; 1777 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1778 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1779 unsigned long first_init_pfn, flags; 1780 unsigned long start = jiffies; 1781 struct zone *zone; 1782 int zid; 1783 u64 i; 1784 1785 /* Bind memory initialisation thread to a local node if possible */ 1786 if (!cpumask_empty(cpumask)) 1787 set_cpus_allowed_ptr(current, cpumask); 1788 1789 pgdat_resize_lock(pgdat, &flags); 1790 first_init_pfn = pgdat->first_deferred_pfn; 1791 if (first_init_pfn == ULONG_MAX) { 1792 pgdat_resize_unlock(pgdat, &flags); 1793 pgdat_init_report_one_done(); 1794 return 0; 1795 } 1796 1797 /* Sanity check boundaries */ 1798 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1799 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1800 pgdat->first_deferred_pfn = ULONG_MAX; 1801 1802 /* Only the highest zone is deferred so find it */ 1803 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1804 zone = pgdat->node_zones + zid; 1805 if (first_init_pfn < zone_end_pfn(zone)) 1806 break; 1807 } 1808 1809 /* If the zone is empty somebody else may have cleared out the zone */ 1810 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1811 first_init_pfn)) 1812 goto zone_empty; 1813 1814 /* 1815 * Initialize and free pages in MAX_ORDER sized increments so 1816 * that we can avoid introducing any issues with the buddy 1817 * allocator. 1818 */ 1819 while (spfn < epfn) 1820 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1821 zone_empty: 1822 pgdat_resize_unlock(pgdat, &flags); 1823 1824 /* Sanity check that the next zone really is unpopulated */ 1825 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1826 1827 pr_info("node %d initialised, %lu pages in %ums\n", 1828 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1829 1830 pgdat_init_report_one_done(); 1831 return 0; 1832 } 1833 1834 /* 1835 * If this zone has deferred pages, try to grow it by initializing enough 1836 * deferred pages to satisfy the allocation specified by order, rounded up to 1837 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1838 * of SECTION_SIZE bytes by initializing struct pages in increments of 1839 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1840 * 1841 * Return true when zone was grown, otherwise return false. We return true even 1842 * when we grow less than requested, to let the caller decide if there are 1843 * enough pages to satisfy the allocation. 1844 * 1845 * Note: We use noinline because this function is needed only during boot, and 1846 * it is called from a __ref function _deferred_grow_zone. This way we are 1847 * making sure that it is not inlined into permanent text section. 1848 */ 1849 static noinline bool __init 1850 deferred_grow_zone(struct zone *zone, unsigned int order) 1851 { 1852 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1853 pg_data_t *pgdat = zone->zone_pgdat; 1854 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1855 unsigned long spfn, epfn, flags; 1856 unsigned long nr_pages = 0; 1857 u64 i; 1858 1859 /* Only the last zone may have deferred pages */ 1860 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1861 return false; 1862 1863 pgdat_resize_lock(pgdat, &flags); 1864 1865 /* 1866 * If deferred pages have been initialized while we were waiting for 1867 * the lock, return true, as the zone was grown. The caller will retry 1868 * this zone. We won't return to this function since the caller also 1869 * has this static branch. 1870 */ 1871 if (!static_branch_unlikely(&deferred_pages)) { 1872 pgdat_resize_unlock(pgdat, &flags); 1873 return true; 1874 } 1875 1876 /* 1877 * If someone grew this zone while we were waiting for spinlock, return 1878 * true, as there might be enough pages already. 1879 */ 1880 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1881 pgdat_resize_unlock(pgdat, &flags); 1882 return true; 1883 } 1884 1885 /* If the zone is empty somebody else may have cleared out the zone */ 1886 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1887 first_deferred_pfn)) { 1888 pgdat->first_deferred_pfn = ULONG_MAX; 1889 pgdat_resize_unlock(pgdat, &flags); 1890 /* Retry only once. */ 1891 return first_deferred_pfn != ULONG_MAX; 1892 } 1893 1894 /* 1895 * Initialize and free pages in MAX_ORDER sized increments so 1896 * that we can avoid introducing any issues with the buddy 1897 * allocator. 1898 */ 1899 while (spfn < epfn) { 1900 /* update our first deferred PFN for this section */ 1901 first_deferred_pfn = spfn; 1902 1903 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1904 1905 /* We should only stop along section boundaries */ 1906 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1907 continue; 1908 1909 /* If our quota has been met we can stop here */ 1910 if (nr_pages >= nr_pages_needed) 1911 break; 1912 } 1913 1914 pgdat->first_deferred_pfn = spfn; 1915 pgdat_resize_unlock(pgdat, &flags); 1916 1917 return nr_pages > 0; 1918 } 1919 1920 /* 1921 * deferred_grow_zone() is __init, but it is called from 1922 * get_page_from_freelist() during early boot until deferred_pages permanently 1923 * disables this call. This is why we have refdata wrapper to avoid warning, 1924 * and to ensure that the function body gets unloaded. 1925 */ 1926 static bool __ref 1927 _deferred_grow_zone(struct zone *zone, unsigned int order) 1928 { 1929 return deferred_grow_zone(zone, order); 1930 } 1931 1932 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1933 1934 void __init page_alloc_init_late(void) 1935 { 1936 struct zone *zone; 1937 int nid; 1938 1939 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1940 1941 /* There will be num_node_state(N_MEMORY) threads */ 1942 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1943 for_each_node_state(nid, N_MEMORY) { 1944 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1945 } 1946 1947 /* Block until all are initialised */ 1948 wait_for_completion(&pgdat_init_all_done_comp); 1949 1950 /* 1951 * The number of managed pages has changed due to the initialisation 1952 * so the pcpu batch and high limits needs to be updated or the limits 1953 * will be artificially small. 1954 */ 1955 for_each_populated_zone(zone) 1956 zone_pcp_update(zone); 1957 1958 /* 1959 * We initialized the rest of the deferred pages. Permanently disable 1960 * on-demand struct page initialization. 1961 */ 1962 static_branch_disable(&deferred_pages); 1963 1964 /* Reinit limits that are based on free pages after the kernel is up */ 1965 files_maxfiles_init(); 1966 #endif 1967 1968 /* Discard memblock private memory */ 1969 memblock_discard(); 1970 1971 for_each_node_state(nid, N_MEMORY) 1972 shuffle_free_memory(NODE_DATA(nid)); 1973 1974 for_each_populated_zone(zone) 1975 set_zone_contiguous(zone); 1976 1977 #ifdef CONFIG_DEBUG_PAGEALLOC 1978 init_debug_guardpage(); 1979 #endif 1980 } 1981 1982 #ifdef CONFIG_CMA 1983 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1984 void __init init_cma_reserved_pageblock(struct page *page) 1985 { 1986 unsigned i = pageblock_nr_pages; 1987 struct page *p = page; 1988 1989 do { 1990 __ClearPageReserved(p); 1991 set_page_count(p, 0); 1992 } while (++p, --i); 1993 1994 set_pageblock_migratetype(page, MIGRATE_CMA); 1995 1996 if (pageblock_order >= MAX_ORDER) { 1997 i = pageblock_nr_pages; 1998 p = page; 1999 do { 2000 set_page_refcounted(p); 2001 __free_pages(p, MAX_ORDER - 1); 2002 p += MAX_ORDER_NR_PAGES; 2003 } while (i -= MAX_ORDER_NR_PAGES); 2004 } else { 2005 set_page_refcounted(page); 2006 __free_pages(page, pageblock_order); 2007 } 2008 2009 adjust_managed_page_count(page, pageblock_nr_pages); 2010 } 2011 #endif 2012 2013 /* 2014 * The order of subdivision here is critical for the IO subsystem. 2015 * Please do not alter this order without good reasons and regression 2016 * testing. Specifically, as large blocks of memory are subdivided, 2017 * the order in which smaller blocks are delivered depends on the order 2018 * they're subdivided in this function. This is the primary factor 2019 * influencing the order in which pages are delivered to the IO 2020 * subsystem according to empirical testing, and this is also justified 2021 * by considering the behavior of a buddy system containing a single 2022 * large block of memory acted on by a series of small allocations. 2023 * This behavior is a critical factor in sglist merging's success. 2024 * 2025 * -- nyc 2026 */ 2027 static inline void expand(struct zone *zone, struct page *page, 2028 int low, int high, struct free_area *area, 2029 int migratetype) 2030 { 2031 unsigned long size = 1 << high; 2032 2033 while (high > low) { 2034 area--; 2035 high--; 2036 size >>= 1; 2037 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2038 2039 /* 2040 * Mark as guard pages (or page), that will allow to 2041 * merge back to allocator when buddy will be freed. 2042 * Corresponding page table entries will not be touched, 2043 * pages will stay not present in virtual address space 2044 */ 2045 if (set_page_guard(zone, &page[size], high, migratetype)) 2046 continue; 2047 2048 add_to_free_area(&page[size], area, migratetype); 2049 set_page_order(&page[size], high); 2050 } 2051 } 2052 2053 static void check_new_page_bad(struct page *page) 2054 { 2055 const char *bad_reason = NULL; 2056 unsigned long bad_flags = 0; 2057 2058 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2059 bad_reason = "nonzero mapcount"; 2060 if (unlikely(page->mapping != NULL)) 2061 bad_reason = "non-NULL mapping"; 2062 if (unlikely(page_ref_count(page) != 0)) 2063 bad_reason = "nonzero _refcount"; 2064 if (unlikely(page->flags & __PG_HWPOISON)) { 2065 bad_reason = "HWPoisoned (hardware-corrupted)"; 2066 bad_flags = __PG_HWPOISON; 2067 /* Don't complain about hwpoisoned pages */ 2068 page_mapcount_reset(page); /* remove PageBuddy */ 2069 return; 2070 } 2071 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2072 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2073 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2074 } 2075 #ifdef CONFIG_MEMCG 2076 if (unlikely(page->mem_cgroup)) 2077 bad_reason = "page still charged to cgroup"; 2078 #endif 2079 bad_page(page, bad_reason, bad_flags); 2080 } 2081 2082 /* 2083 * This page is about to be returned from the page allocator 2084 */ 2085 static inline int check_new_page(struct page *page) 2086 { 2087 if (likely(page_expected_state(page, 2088 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2089 return 0; 2090 2091 check_new_page_bad(page); 2092 return 1; 2093 } 2094 2095 static inline bool free_pages_prezeroed(void) 2096 { 2097 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2098 page_poisoning_enabled()) || want_init_on_free(); 2099 } 2100 2101 #ifdef CONFIG_DEBUG_VM 2102 /* 2103 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2104 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2105 * also checked when pcp lists are refilled from the free lists. 2106 */ 2107 static inline bool check_pcp_refill(struct page *page) 2108 { 2109 if (debug_pagealloc_enabled()) 2110 return check_new_page(page); 2111 else 2112 return false; 2113 } 2114 2115 static inline bool check_new_pcp(struct page *page) 2116 { 2117 return check_new_page(page); 2118 } 2119 #else 2120 /* 2121 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2122 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2123 * enabled, they are also checked when being allocated from the pcp lists. 2124 */ 2125 static inline bool check_pcp_refill(struct page *page) 2126 { 2127 return check_new_page(page); 2128 } 2129 static inline bool check_new_pcp(struct page *page) 2130 { 2131 if (debug_pagealloc_enabled()) 2132 return check_new_page(page); 2133 else 2134 return false; 2135 } 2136 #endif /* CONFIG_DEBUG_VM */ 2137 2138 static bool check_new_pages(struct page *page, unsigned int order) 2139 { 2140 int i; 2141 for (i = 0; i < (1 << order); i++) { 2142 struct page *p = page + i; 2143 2144 if (unlikely(check_new_page(p))) 2145 return true; 2146 } 2147 2148 return false; 2149 } 2150 2151 inline void post_alloc_hook(struct page *page, unsigned int order, 2152 gfp_t gfp_flags) 2153 { 2154 set_page_private(page, 0); 2155 set_page_refcounted(page); 2156 2157 arch_alloc_page(page, order); 2158 if (debug_pagealloc_enabled()) 2159 kernel_map_pages(page, 1 << order, 1); 2160 kasan_alloc_pages(page, order); 2161 kernel_poison_pages(page, 1 << order, 1); 2162 set_page_owner(page, order, gfp_flags); 2163 } 2164 2165 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2166 unsigned int alloc_flags) 2167 { 2168 post_alloc_hook(page, order, gfp_flags); 2169 2170 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2171 kernel_init_free_pages(page, 1 << order); 2172 2173 if (order && (gfp_flags & __GFP_COMP)) 2174 prep_compound_page(page, order); 2175 2176 /* 2177 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2178 * allocate the page. The expectation is that the caller is taking 2179 * steps that will free more memory. The caller should avoid the page 2180 * being used for !PFMEMALLOC purposes. 2181 */ 2182 if (alloc_flags & ALLOC_NO_WATERMARKS) 2183 set_page_pfmemalloc(page); 2184 else 2185 clear_page_pfmemalloc(page); 2186 } 2187 2188 /* 2189 * Go through the free lists for the given migratetype and remove 2190 * the smallest available page from the freelists 2191 */ 2192 static __always_inline 2193 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2194 int migratetype) 2195 { 2196 unsigned int current_order; 2197 struct free_area *area; 2198 struct page *page; 2199 2200 /* Find a page of the appropriate size in the preferred list */ 2201 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2202 area = &(zone->free_area[current_order]); 2203 page = get_page_from_free_area(area, migratetype); 2204 if (!page) 2205 continue; 2206 del_page_from_free_area(page, area); 2207 expand(zone, page, order, current_order, area, migratetype); 2208 set_pcppage_migratetype(page, migratetype); 2209 return page; 2210 } 2211 2212 return NULL; 2213 } 2214 2215 2216 /* 2217 * This array describes the order lists are fallen back to when 2218 * the free lists for the desirable migrate type are depleted 2219 */ 2220 static int fallbacks[MIGRATE_TYPES][4] = { 2221 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2222 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2223 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2224 #ifdef CONFIG_CMA 2225 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2226 #endif 2227 #ifdef CONFIG_MEMORY_ISOLATION 2228 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2229 #endif 2230 }; 2231 2232 #ifdef CONFIG_CMA 2233 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2234 unsigned int order) 2235 { 2236 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2237 } 2238 #else 2239 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2240 unsigned int order) { return NULL; } 2241 #endif 2242 2243 /* 2244 * Move the free pages in a range to the free lists of the requested type. 2245 * Note that start_page and end_pages are not aligned on a pageblock 2246 * boundary. If alignment is required, use move_freepages_block() 2247 */ 2248 static int move_freepages(struct zone *zone, 2249 struct page *start_page, struct page *end_page, 2250 int migratetype, int *num_movable) 2251 { 2252 struct page *page; 2253 unsigned int order; 2254 int pages_moved = 0; 2255 2256 for (page = start_page; page <= end_page;) { 2257 if (!pfn_valid_within(page_to_pfn(page))) { 2258 page++; 2259 continue; 2260 } 2261 2262 if (!PageBuddy(page)) { 2263 /* 2264 * We assume that pages that could be isolated for 2265 * migration are movable. But we don't actually try 2266 * isolating, as that would be expensive. 2267 */ 2268 if (num_movable && 2269 (PageLRU(page) || __PageMovable(page))) 2270 (*num_movable)++; 2271 2272 page++; 2273 continue; 2274 } 2275 2276 /* Make sure we are not inadvertently changing nodes */ 2277 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2278 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2279 2280 order = page_order(page); 2281 move_to_free_area(page, &zone->free_area[order], migratetype); 2282 page += 1 << order; 2283 pages_moved += 1 << order; 2284 } 2285 2286 return pages_moved; 2287 } 2288 2289 int move_freepages_block(struct zone *zone, struct page *page, 2290 int migratetype, int *num_movable) 2291 { 2292 unsigned long start_pfn, end_pfn; 2293 struct page *start_page, *end_page; 2294 2295 if (num_movable) 2296 *num_movable = 0; 2297 2298 start_pfn = page_to_pfn(page); 2299 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2300 start_page = pfn_to_page(start_pfn); 2301 end_page = start_page + pageblock_nr_pages - 1; 2302 end_pfn = start_pfn + pageblock_nr_pages - 1; 2303 2304 /* Do not cross zone boundaries */ 2305 if (!zone_spans_pfn(zone, start_pfn)) 2306 start_page = page; 2307 if (!zone_spans_pfn(zone, end_pfn)) 2308 return 0; 2309 2310 return move_freepages(zone, start_page, end_page, migratetype, 2311 num_movable); 2312 } 2313 2314 static void change_pageblock_range(struct page *pageblock_page, 2315 int start_order, int migratetype) 2316 { 2317 int nr_pageblocks = 1 << (start_order - pageblock_order); 2318 2319 while (nr_pageblocks--) { 2320 set_pageblock_migratetype(pageblock_page, migratetype); 2321 pageblock_page += pageblock_nr_pages; 2322 } 2323 } 2324 2325 /* 2326 * When we are falling back to another migratetype during allocation, try to 2327 * steal extra free pages from the same pageblocks to satisfy further 2328 * allocations, instead of polluting multiple pageblocks. 2329 * 2330 * If we are stealing a relatively large buddy page, it is likely there will 2331 * be more free pages in the pageblock, so try to steal them all. For 2332 * reclaimable and unmovable allocations, we steal regardless of page size, 2333 * as fragmentation caused by those allocations polluting movable pageblocks 2334 * is worse than movable allocations stealing from unmovable and reclaimable 2335 * pageblocks. 2336 */ 2337 static bool can_steal_fallback(unsigned int order, int start_mt) 2338 { 2339 /* 2340 * Leaving this order check is intended, although there is 2341 * relaxed order check in next check. The reason is that 2342 * we can actually steal whole pageblock if this condition met, 2343 * but, below check doesn't guarantee it and that is just heuristic 2344 * so could be changed anytime. 2345 */ 2346 if (order >= pageblock_order) 2347 return true; 2348 2349 if (order >= pageblock_order / 2 || 2350 start_mt == MIGRATE_RECLAIMABLE || 2351 start_mt == MIGRATE_UNMOVABLE || 2352 page_group_by_mobility_disabled) 2353 return true; 2354 2355 return false; 2356 } 2357 2358 static inline void boost_watermark(struct zone *zone) 2359 { 2360 unsigned long max_boost; 2361 2362 if (!watermark_boost_factor) 2363 return; 2364 2365 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2366 watermark_boost_factor, 10000); 2367 2368 /* 2369 * high watermark may be uninitialised if fragmentation occurs 2370 * very early in boot so do not boost. We do not fall 2371 * through and boost by pageblock_nr_pages as failing 2372 * allocations that early means that reclaim is not going 2373 * to help and it may even be impossible to reclaim the 2374 * boosted watermark resulting in a hang. 2375 */ 2376 if (!max_boost) 2377 return; 2378 2379 max_boost = max(pageblock_nr_pages, max_boost); 2380 2381 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2382 max_boost); 2383 } 2384 2385 /* 2386 * This function implements actual steal behaviour. If order is large enough, 2387 * we can steal whole pageblock. If not, we first move freepages in this 2388 * pageblock to our migratetype and determine how many already-allocated pages 2389 * are there in the pageblock with a compatible migratetype. If at least half 2390 * of pages are free or compatible, we can change migratetype of the pageblock 2391 * itself, so pages freed in the future will be put on the correct free list. 2392 */ 2393 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2394 unsigned int alloc_flags, int start_type, bool whole_block) 2395 { 2396 unsigned int current_order = page_order(page); 2397 struct free_area *area; 2398 int free_pages, movable_pages, alike_pages; 2399 int old_block_type; 2400 2401 old_block_type = get_pageblock_migratetype(page); 2402 2403 /* 2404 * This can happen due to races and we want to prevent broken 2405 * highatomic accounting. 2406 */ 2407 if (is_migrate_highatomic(old_block_type)) 2408 goto single_page; 2409 2410 /* Take ownership for orders >= pageblock_order */ 2411 if (current_order >= pageblock_order) { 2412 change_pageblock_range(page, current_order, start_type); 2413 goto single_page; 2414 } 2415 2416 /* 2417 * Boost watermarks to increase reclaim pressure to reduce the 2418 * likelihood of future fallbacks. Wake kswapd now as the node 2419 * may be balanced overall and kswapd will not wake naturally. 2420 */ 2421 boost_watermark(zone); 2422 if (alloc_flags & ALLOC_KSWAPD) 2423 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2424 2425 /* We are not allowed to try stealing from the whole block */ 2426 if (!whole_block) 2427 goto single_page; 2428 2429 free_pages = move_freepages_block(zone, page, start_type, 2430 &movable_pages); 2431 /* 2432 * Determine how many pages are compatible with our allocation. 2433 * For movable allocation, it's the number of movable pages which 2434 * we just obtained. For other types it's a bit more tricky. 2435 */ 2436 if (start_type == MIGRATE_MOVABLE) { 2437 alike_pages = movable_pages; 2438 } else { 2439 /* 2440 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2441 * to MOVABLE pageblock, consider all non-movable pages as 2442 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2443 * vice versa, be conservative since we can't distinguish the 2444 * exact migratetype of non-movable pages. 2445 */ 2446 if (old_block_type == MIGRATE_MOVABLE) 2447 alike_pages = pageblock_nr_pages 2448 - (free_pages + movable_pages); 2449 else 2450 alike_pages = 0; 2451 } 2452 2453 /* moving whole block can fail due to zone boundary conditions */ 2454 if (!free_pages) 2455 goto single_page; 2456 2457 /* 2458 * If a sufficient number of pages in the block are either free or of 2459 * comparable migratability as our allocation, claim the whole block. 2460 */ 2461 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2462 page_group_by_mobility_disabled) 2463 set_pageblock_migratetype(page, start_type); 2464 2465 return; 2466 2467 single_page: 2468 area = &zone->free_area[current_order]; 2469 move_to_free_area(page, area, start_type); 2470 } 2471 2472 /* 2473 * Check whether there is a suitable fallback freepage with requested order. 2474 * If only_stealable is true, this function returns fallback_mt only if 2475 * we can steal other freepages all together. This would help to reduce 2476 * fragmentation due to mixed migratetype pages in one pageblock. 2477 */ 2478 int find_suitable_fallback(struct free_area *area, unsigned int order, 2479 int migratetype, bool only_stealable, bool *can_steal) 2480 { 2481 int i; 2482 int fallback_mt; 2483 2484 if (area->nr_free == 0) 2485 return -1; 2486 2487 *can_steal = false; 2488 for (i = 0;; i++) { 2489 fallback_mt = fallbacks[migratetype][i]; 2490 if (fallback_mt == MIGRATE_TYPES) 2491 break; 2492 2493 if (free_area_empty(area, fallback_mt)) 2494 continue; 2495 2496 if (can_steal_fallback(order, migratetype)) 2497 *can_steal = true; 2498 2499 if (!only_stealable) 2500 return fallback_mt; 2501 2502 if (*can_steal) 2503 return fallback_mt; 2504 } 2505 2506 return -1; 2507 } 2508 2509 /* 2510 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2511 * there are no empty page blocks that contain a page with a suitable order 2512 */ 2513 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2514 unsigned int alloc_order) 2515 { 2516 int mt; 2517 unsigned long max_managed, flags; 2518 2519 /* 2520 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2521 * Check is race-prone but harmless. 2522 */ 2523 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2524 if (zone->nr_reserved_highatomic >= max_managed) 2525 return; 2526 2527 spin_lock_irqsave(&zone->lock, flags); 2528 2529 /* Recheck the nr_reserved_highatomic limit under the lock */ 2530 if (zone->nr_reserved_highatomic >= max_managed) 2531 goto out_unlock; 2532 2533 /* Yoink! */ 2534 mt = get_pageblock_migratetype(page); 2535 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2536 && !is_migrate_cma(mt)) { 2537 zone->nr_reserved_highatomic += pageblock_nr_pages; 2538 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2539 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2540 } 2541 2542 out_unlock: 2543 spin_unlock_irqrestore(&zone->lock, flags); 2544 } 2545 2546 /* 2547 * Used when an allocation is about to fail under memory pressure. This 2548 * potentially hurts the reliability of high-order allocations when under 2549 * intense memory pressure but failed atomic allocations should be easier 2550 * to recover from than an OOM. 2551 * 2552 * If @force is true, try to unreserve a pageblock even though highatomic 2553 * pageblock is exhausted. 2554 */ 2555 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2556 bool force) 2557 { 2558 struct zonelist *zonelist = ac->zonelist; 2559 unsigned long flags; 2560 struct zoneref *z; 2561 struct zone *zone; 2562 struct page *page; 2563 int order; 2564 bool ret; 2565 2566 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2567 ac->nodemask) { 2568 /* 2569 * Preserve at least one pageblock unless memory pressure 2570 * is really high. 2571 */ 2572 if (!force && zone->nr_reserved_highatomic <= 2573 pageblock_nr_pages) 2574 continue; 2575 2576 spin_lock_irqsave(&zone->lock, flags); 2577 for (order = 0; order < MAX_ORDER; order++) { 2578 struct free_area *area = &(zone->free_area[order]); 2579 2580 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2581 if (!page) 2582 continue; 2583 2584 /* 2585 * In page freeing path, migratetype change is racy so 2586 * we can counter several free pages in a pageblock 2587 * in this loop althoug we changed the pageblock type 2588 * from highatomic to ac->migratetype. So we should 2589 * adjust the count once. 2590 */ 2591 if (is_migrate_highatomic_page(page)) { 2592 /* 2593 * It should never happen but changes to 2594 * locking could inadvertently allow a per-cpu 2595 * drain to add pages to MIGRATE_HIGHATOMIC 2596 * while unreserving so be safe and watch for 2597 * underflows. 2598 */ 2599 zone->nr_reserved_highatomic -= min( 2600 pageblock_nr_pages, 2601 zone->nr_reserved_highatomic); 2602 } 2603 2604 /* 2605 * Convert to ac->migratetype and avoid the normal 2606 * pageblock stealing heuristics. Minimally, the caller 2607 * is doing the work and needs the pages. More 2608 * importantly, if the block was always converted to 2609 * MIGRATE_UNMOVABLE or another type then the number 2610 * of pageblocks that cannot be completely freed 2611 * may increase. 2612 */ 2613 set_pageblock_migratetype(page, ac->migratetype); 2614 ret = move_freepages_block(zone, page, ac->migratetype, 2615 NULL); 2616 if (ret) { 2617 spin_unlock_irqrestore(&zone->lock, flags); 2618 return ret; 2619 } 2620 } 2621 spin_unlock_irqrestore(&zone->lock, flags); 2622 } 2623 2624 return false; 2625 } 2626 2627 /* 2628 * Try finding a free buddy page on the fallback list and put it on the free 2629 * list of requested migratetype, possibly along with other pages from the same 2630 * block, depending on fragmentation avoidance heuristics. Returns true if 2631 * fallback was found so that __rmqueue_smallest() can grab it. 2632 * 2633 * The use of signed ints for order and current_order is a deliberate 2634 * deviation from the rest of this file, to make the for loop 2635 * condition simpler. 2636 */ 2637 static __always_inline bool 2638 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2639 unsigned int alloc_flags) 2640 { 2641 struct free_area *area; 2642 int current_order; 2643 int min_order = order; 2644 struct page *page; 2645 int fallback_mt; 2646 bool can_steal; 2647 2648 /* 2649 * Do not steal pages from freelists belonging to other pageblocks 2650 * i.e. orders < pageblock_order. If there are no local zones free, 2651 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2652 */ 2653 if (alloc_flags & ALLOC_NOFRAGMENT) 2654 min_order = pageblock_order; 2655 2656 /* 2657 * Find the largest available free page in the other list. This roughly 2658 * approximates finding the pageblock with the most free pages, which 2659 * would be too costly to do exactly. 2660 */ 2661 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2662 --current_order) { 2663 area = &(zone->free_area[current_order]); 2664 fallback_mt = find_suitable_fallback(area, current_order, 2665 start_migratetype, false, &can_steal); 2666 if (fallback_mt == -1) 2667 continue; 2668 2669 /* 2670 * We cannot steal all free pages from the pageblock and the 2671 * requested migratetype is movable. In that case it's better to 2672 * steal and split the smallest available page instead of the 2673 * largest available page, because even if the next movable 2674 * allocation falls back into a different pageblock than this 2675 * one, it won't cause permanent fragmentation. 2676 */ 2677 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2678 && current_order > order) 2679 goto find_smallest; 2680 2681 goto do_steal; 2682 } 2683 2684 return false; 2685 2686 find_smallest: 2687 for (current_order = order; current_order < MAX_ORDER; 2688 current_order++) { 2689 area = &(zone->free_area[current_order]); 2690 fallback_mt = find_suitable_fallback(area, current_order, 2691 start_migratetype, false, &can_steal); 2692 if (fallback_mt != -1) 2693 break; 2694 } 2695 2696 /* 2697 * This should not happen - we already found a suitable fallback 2698 * when looking for the largest page. 2699 */ 2700 VM_BUG_ON(current_order == MAX_ORDER); 2701 2702 do_steal: 2703 page = get_page_from_free_area(area, fallback_mt); 2704 2705 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2706 can_steal); 2707 2708 trace_mm_page_alloc_extfrag(page, order, current_order, 2709 start_migratetype, fallback_mt); 2710 2711 return true; 2712 2713 } 2714 2715 /* 2716 * Do the hard work of removing an element from the buddy allocator. 2717 * Call me with the zone->lock already held. 2718 */ 2719 static __always_inline struct page * 2720 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2721 unsigned int alloc_flags) 2722 { 2723 struct page *page; 2724 2725 retry: 2726 page = __rmqueue_smallest(zone, order, migratetype); 2727 if (unlikely(!page)) { 2728 if (migratetype == MIGRATE_MOVABLE) 2729 page = __rmqueue_cma_fallback(zone, order); 2730 2731 if (!page && __rmqueue_fallback(zone, order, migratetype, 2732 alloc_flags)) 2733 goto retry; 2734 } 2735 2736 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2737 return page; 2738 } 2739 2740 /* 2741 * Obtain a specified number of elements from the buddy allocator, all under 2742 * a single hold of the lock, for efficiency. Add them to the supplied list. 2743 * Returns the number of new pages which were placed at *list. 2744 */ 2745 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2746 unsigned long count, struct list_head *list, 2747 int migratetype, unsigned int alloc_flags) 2748 { 2749 int i, alloced = 0; 2750 2751 spin_lock(&zone->lock); 2752 for (i = 0; i < count; ++i) { 2753 struct page *page = __rmqueue(zone, order, migratetype, 2754 alloc_flags); 2755 if (unlikely(page == NULL)) 2756 break; 2757 2758 if (unlikely(check_pcp_refill(page))) 2759 continue; 2760 2761 /* 2762 * Split buddy pages returned by expand() are received here in 2763 * physical page order. The page is added to the tail of 2764 * caller's list. From the callers perspective, the linked list 2765 * is ordered by page number under some conditions. This is 2766 * useful for IO devices that can forward direction from the 2767 * head, thus also in the physical page order. This is useful 2768 * for IO devices that can merge IO requests if the physical 2769 * pages are ordered properly. 2770 */ 2771 list_add_tail(&page->lru, list); 2772 alloced++; 2773 if (is_migrate_cma(get_pcppage_migratetype(page))) 2774 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2775 -(1 << order)); 2776 } 2777 2778 /* 2779 * i pages were removed from the buddy list even if some leak due 2780 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2781 * on i. Do not confuse with 'alloced' which is the number of 2782 * pages added to the pcp list. 2783 */ 2784 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2785 spin_unlock(&zone->lock); 2786 return alloced; 2787 } 2788 2789 #ifdef CONFIG_NUMA 2790 /* 2791 * Called from the vmstat counter updater to drain pagesets of this 2792 * currently executing processor on remote nodes after they have 2793 * expired. 2794 * 2795 * Note that this function must be called with the thread pinned to 2796 * a single processor. 2797 */ 2798 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2799 { 2800 unsigned long flags; 2801 int to_drain, batch; 2802 2803 local_irq_save(flags); 2804 batch = READ_ONCE(pcp->batch); 2805 to_drain = min(pcp->count, batch); 2806 if (to_drain > 0) 2807 free_pcppages_bulk(zone, to_drain, pcp); 2808 local_irq_restore(flags); 2809 } 2810 #endif 2811 2812 /* 2813 * Drain pcplists of the indicated processor and zone. 2814 * 2815 * The processor must either be the current processor and the 2816 * thread pinned to the current processor or a processor that 2817 * is not online. 2818 */ 2819 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2820 { 2821 unsigned long flags; 2822 struct per_cpu_pageset *pset; 2823 struct per_cpu_pages *pcp; 2824 2825 local_irq_save(flags); 2826 pset = per_cpu_ptr(zone->pageset, cpu); 2827 2828 pcp = &pset->pcp; 2829 if (pcp->count) 2830 free_pcppages_bulk(zone, pcp->count, pcp); 2831 local_irq_restore(flags); 2832 } 2833 2834 /* 2835 * Drain pcplists of all zones on the indicated processor. 2836 * 2837 * The processor must either be the current processor and the 2838 * thread pinned to the current processor or a processor that 2839 * is not online. 2840 */ 2841 static void drain_pages(unsigned int cpu) 2842 { 2843 struct zone *zone; 2844 2845 for_each_populated_zone(zone) { 2846 drain_pages_zone(cpu, zone); 2847 } 2848 } 2849 2850 /* 2851 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2852 * 2853 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2854 * the single zone's pages. 2855 */ 2856 void drain_local_pages(struct zone *zone) 2857 { 2858 int cpu = smp_processor_id(); 2859 2860 if (zone) 2861 drain_pages_zone(cpu, zone); 2862 else 2863 drain_pages(cpu); 2864 } 2865 2866 static void drain_local_pages_wq(struct work_struct *work) 2867 { 2868 struct pcpu_drain *drain; 2869 2870 drain = container_of(work, struct pcpu_drain, work); 2871 2872 /* 2873 * drain_all_pages doesn't use proper cpu hotplug protection so 2874 * we can race with cpu offline when the WQ can move this from 2875 * a cpu pinned worker to an unbound one. We can operate on a different 2876 * cpu which is allright but we also have to make sure to not move to 2877 * a different one. 2878 */ 2879 preempt_disable(); 2880 drain_local_pages(drain->zone); 2881 preempt_enable(); 2882 } 2883 2884 /* 2885 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2886 * 2887 * When zone parameter is non-NULL, spill just the single zone's pages. 2888 * 2889 * Note that this can be extremely slow as the draining happens in a workqueue. 2890 */ 2891 void drain_all_pages(struct zone *zone) 2892 { 2893 int cpu; 2894 2895 /* 2896 * Allocate in the BSS so we wont require allocation in 2897 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2898 */ 2899 static cpumask_t cpus_with_pcps; 2900 2901 /* 2902 * Make sure nobody triggers this path before mm_percpu_wq is fully 2903 * initialized. 2904 */ 2905 if (WARN_ON_ONCE(!mm_percpu_wq)) 2906 return; 2907 2908 /* 2909 * Do not drain if one is already in progress unless it's specific to 2910 * a zone. Such callers are primarily CMA and memory hotplug and need 2911 * the drain to be complete when the call returns. 2912 */ 2913 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2914 if (!zone) 2915 return; 2916 mutex_lock(&pcpu_drain_mutex); 2917 } 2918 2919 /* 2920 * We don't care about racing with CPU hotplug event 2921 * as offline notification will cause the notified 2922 * cpu to drain that CPU pcps and on_each_cpu_mask 2923 * disables preemption as part of its processing 2924 */ 2925 for_each_online_cpu(cpu) { 2926 struct per_cpu_pageset *pcp; 2927 struct zone *z; 2928 bool has_pcps = false; 2929 2930 if (zone) { 2931 pcp = per_cpu_ptr(zone->pageset, cpu); 2932 if (pcp->pcp.count) 2933 has_pcps = true; 2934 } else { 2935 for_each_populated_zone(z) { 2936 pcp = per_cpu_ptr(z->pageset, cpu); 2937 if (pcp->pcp.count) { 2938 has_pcps = true; 2939 break; 2940 } 2941 } 2942 } 2943 2944 if (has_pcps) 2945 cpumask_set_cpu(cpu, &cpus_with_pcps); 2946 else 2947 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2948 } 2949 2950 for_each_cpu(cpu, &cpus_with_pcps) { 2951 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2952 2953 drain->zone = zone; 2954 INIT_WORK(&drain->work, drain_local_pages_wq); 2955 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2956 } 2957 for_each_cpu(cpu, &cpus_with_pcps) 2958 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2959 2960 mutex_unlock(&pcpu_drain_mutex); 2961 } 2962 2963 #ifdef CONFIG_HIBERNATION 2964 2965 /* 2966 * Touch the watchdog for every WD_PAGE_COUNT pages. 2967 */ 2968 #define WD_PAGE_COUNT (128*1024) 2969 2970 void mark_free_pages(struct zone *zone) 2971 { 2972 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2973 unsigned long flags; 2974 unsigned int order, t; 2975 struct page *page; 2976 2977 if (zone_is_empty(zone)) 2978 return; 2979 2980 spin_lock_irqsave(&zone->lock, flags); 2981 2982 max_zone_pfn = zone_end_pfn(zone); 2983 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2984 if (pfn_valid(pfn)) { 2985 page = pfn_to_page(pfn); 2986 2987 if (!--page_count) { 2988 touch_nmi_watchdog(); 2989 page_count = WD_PAGE_COUNT; 2990 } 2991 2992 if (page_zone(page) != zone) 2993 continue; 2994 2995 if (!swsusp_page_is_forbidden(page)) 2996 swsusp_unset_page_free(page); 2997 } 2998 2999 for_each_migratetype_order(order, t) { 3000 list_for_each_entry(page, 3001 &zone->free_area[order].free_list[t], lru) { 3002 unsigned long i; 3003 3004 pfn = page_to_pfn(page); 3005 for (i = 0; i < (1UL << order); i++) { 3006 if (!--page_count) { 3007 touch_nmi_watchdog(); 3008 page_count = WD_PAGE_COUNT; 3009 } 3010 swsusp_set_page_free(pfn_to_page(pfn + i)); 3011 } 3012 } 3013 } 3014 spin_unlock_irqrestore(&zone->lock, flags); 3015 } 3016 #endif /* CONFIG_PM */ 3017 3018 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3019 { 3020 int migratetype; 3021 3022 if (!free_pcp_prepare(page)) 3023 return false; 3024 3025 migratetype = get_pfnblock_migratetype(page, pfn); 3026 set_pcppage_migratetype(page, migratetype); 3027 return true; 3028 } 3029 3030 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3031 { 3032 struct zone *zone = page_zone(page); 3033 struct per_cpu_pages *pcp; 3034 int migratetype; 3035 3036 migratetype = get_pcppage_migratetype(page); 3037 __count_vm_event(PGFREE); 3038 3039 /* 3040 * We only track unmovable, reclaimable and movable on pcp lists. 3041 * Free ISOLATE pages back to the allocator because they are being 3042 * offlined but treat HIGHATOMIC as movable pages so we can get those 3043 * areas back if necessary. Otherwise, we may have to free 3044 * excessively into the page allocator 3045 */ 3046 if (migratetype >= MIGRATE_PCPTYPES) { 3047 if (unlikely(is_migrate_isolate(migratetype))) { 3048 free_one_page(zone, page, pfn, 0, migratetype); 3049 return; 3050 } 3051 migratetype = MIGRATE_MOVABLE; 3052 } 3053 3054 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3055 list_add(&page->lru, &pcp->lists[migratetype]); 3056 pcp->count++; 3057 if (pcp->count >= pcp->high) { 3058 unsigned long batch = READ_ONCE(pcp->batch); 3059 free_pcppages_bulk(zone, batch, pcp); 3060 } 3061 } 3062 3063 /* 3064 * Free a 0-order page 3065 */ 3066 void free_unref_page(struct page *page) 3067 { 3068 unsigned long flags; 3069 unsigned long pfn = page_to_pfn(page); 3070 3071 if (!free_unref_page_prepare(page, pfn)) 3072 return; 3073 3074 local_irq_save(flags); 3075 free_unref_page_commit(page, pfn); 3076 local_irq_restore(flags); 3077 } 3078 3079 /* 3080 * Free a list of 0-order pages 3081 */ 3082 void free_unref_page_list(struct list_head *list) 3083 { 3084 struct page *page, *next; 3085 unsigned long flags, pfn; 3086 int batch_count = 0; 3087 3088 /* Prepare pages for freeing */ 3089 list_for_each_entry_safe(page, next, list, lru) { 3090 pfn = page_to_pfn(page); 3091 if (!free_unref_page_prepare(page, pfn)) 3092 list_del(&page->lru); 3093 set_page_private(page, pfn); 3094 } 3095 3096 local_irq_save(flags); 3097 list_for_each_entry_safe(page, next, list, lru) { 3098 unsigned long pfn = page_private(page); 3099 3100 set_page_private(page, 0); 3101 trace_mm_page_free_batched(page); 3102 free_unref_page_commit(page, pfn); 3103 3104 /* 3105 * Guard against excessive IRQ disabled times when we get 3106 * a large list of pages to free. 3107 */ 3108 if (++batch_count == SWAP_CLUSTER_MAX) { 3109 local_irq_restore(flags); 3110 batch_count = 0; 3111 local_irq_save(flags); 3112 } 3113 } 3114 local_irq_restore(flags); 3115 } 3116 3117 /* 3118 * split_page takes a non-compound higher-order page, and splits it into 3119 * n (1<<order) sub-pages: page[0..n] 3120 * Each sub-page must be freed individually. 3121 * 3122 * Note: this is probably too low level an operation for use in drivers. 3123 * Please consult with lkml before using this in your driver. 3124 */ 3125 void split_page(struct page *page, unsigned int order) 3126 { 3127 int i; 3128 3129 VM_BUG_ON_PAGE(PageCompound(page), page); 3130 VM_BUG_ON_PAGE(!page_count(page), page); 3131 3132 for (i = 1; i < (1 << order); i++) 3133 set_page_refcounted(page + i); 3134 split_page_owner(page, order); 3135 } 3136 EXPORT_SYMBOL_GPL(split_page); 3137 3138 int __isolate_free_page(struct page *page, unsigned int order) 3139 { 3140 struct free_area *area = &page_zone(page)->free_area[order]; 3141 unsigned long watermark; 3142 struct zone *zone; 3143 int mt; 3144 3145 BUG_ON(!PageBuddy(page)); 3146 3147 zone = page_zone(page); 3148 mt = get_pageblock_migratetype(page); 3149 3150 if (!is_migrate_isolate(mt)) { 3151 /* 3152 * Obey watermarks as if the page was being allocated. We can 3153 * emulate a high-order watermark check with a raised order-0 3154 * watermark, because we already know our high-order page 3155 * exists. 3156 */ 3157 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3158 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3159 return 0; 3160 3161 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3162 } 3163 3164 /* Remove page from free list */ 3165 3166 del_page_from_free_area(page, area); 3167 3168 /* 3169 * Set the pageblock if the isolated page is at least half of a 3170 * pageblock 3171 */ 3172 if (order >= pageblock_order - 1) { 3173 struct page *endpage = page + (1 << order) - 1; 3174 for (; page < endpage; page += pageblock_nr_pages) { 3175 int mt = get_pageblock_migratetype(page); 3176 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3177 && !is_migrate_highatomic(mt)) 3178 set_pageblock_migratetype(page, 3179 MIGRATE_MOVABLE); 3180 } 3181 } 3182 3183 3184 return 1UL << order; 3185 } 3186 3187 /* 3188 * Update NUMA hit/miss statistics 3189 * 3190 * Must be called with interrupts disabled. 3191 */ 3192 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3193 { 3194 #ifdef CONFIG_NUMA 3195 enum numa_stat_item local_stat = NUMA_LOCAL; 3196 3197 /* skip numa counters update if numa stats is disabled */ 3198 if (!static_branch_likely(&vm_numa_stat_key)) 3199 return; 3200 3201 if (zone_to_nid(z) != numa_node_id()) 3202 local_stat = NUMA_OTHER; 3203 3204 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3205 __inc_numa_state(z, NUMA_HIT); 3206 else { 3207 __inc_numa_state(z, NUMA_MISS); 3208 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3209 } 3210 __inc_numa_state(z, local_stat); 3211 #endif 3212 } 3213 3214 /* Remove page from the per-cpu list, caller must protect the list */ 3215 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3216 unsigned int alloc_flags, 3217 struct per_cpu_pages *pcp, 3218 struct list_head *list) 3219 { 3220 struct page *page; 3221 3222 do { 3223 if (list_empty(list)) { 3224 pcp->count += rmqueue_bulk(zone, 0, 3225 pcp->batch, list, 3226 migratetype, alloc_flags); 3227 if (unlikely(list_empty(list))) 3228 return NULL; 3229 } 3230 3231 page = list_first_entry(list, struct page, lru); 3232 list_del(&page->lru); 3233 pcp->count--; 3234 } while (check_new_pcp(page)); 3235 3236 return page; 3237 } 3238 3239 /* Lock and remove page from the per-cpu list */ 3240 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3241 struct zone *zone, gfp_t gfp_flags, 3242 int migratetype, unsigned int alloc_flags) 3243 { 3244 struct per_cpu_pages *pcp; 3245 struct list_head *list; 3246 struct page *page; 3247 unsigned long flags; 3248 3249 local_irq_save(flags); 3250 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3251 list = &pcp->lists[migratetype]; 3252 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3253 if (page) { 3254 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3255 zone_statistics(preferred_zone, zone); 3256 } 3257 local_irq_restore(flags); 3258 return page; 3259 } 3260 3261 /* 3262 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3263 */ 3264 static inline 3265 struct page *rmqueue(struct zone *preferred_zone, 3266 struct zone *zone, unsigned int order, 3267 gfp_t gfp_flags, unsigned int alloc_flags, 3268 int migratetype) 3269 { 3270 unsigned long flags; 3271 struct page *page; 3272 3273 if (likely(order == 0)) { 3274 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3275 migratetype, alloc_flags); 3276 goto out; 3277 } 3278 3279 /* 3280 * We most definitely don't want callers attempting to 3281 * allocate greater than order-1 page units with __GFP_NOFAIL. 3282 */ 3283 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3284 spin_lock_irqsave(&zone->lock, flags); 3285 3286 do { 3287 page = NULL; 3288 if (alloc_flags & ALLOC_HARDER) { 3289 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3290 if (page) 3291 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3292 } 3293 if (!page) 3294 page = __rmqueue(zone, order, migratetype, alloc_flags); 3295 } while (page && check_new_pages(page, order)); 3296 spin_unlock(&zone->lock); 3297 if (!page) 3298 goto failed; 3299 __mod_zone_freepage_state(zone, -(1 << order), 3300 get_pcppage_migratetype(page)); 3301 3302 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3303 zone_statistics(preferred_zone, zone); 3304 local_irq_restore(flags); 3305 3306 out: 3307 /* Separate test+clear to avoid unnecessary atomics */ 3308 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3309 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3310 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3311 } 3312 3313 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3314 return page; 3315 3316 failed: 3317 local_irq_restore(flags); 3318 return NULL; 3319 } 3320 3321 #ifdef CONFIG_FAIL_PAGE_ALLOC 3322 3323 static struct { 3324 struct fault_attr attr; 3325 3326 bool ignore_gfp_highmem; 3327 bool ignore_gfp_reclaim; 3328 u32 min_order; 3329 } fail_page_alloc = { 3330 .attr = FAULT_ATTR_INITIALIZER, 3331 .ignore_gfp_reclaim = true, 3332 .ignore_gfp_highmem = true, 3333 .min_order = 1, 3334 }; 3335 3336 static int __init setup_fail_page_alloc(char *str) 3337 { 3338 return setup_fault_attr(&fail_page_alloc.attr, str); 3339 } 3340 __setup("fail_page_alloc=", setup_fail_page_alloc); 3341 3342 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3343 { 3344 if (order < fail_page_alloc.min_order) 3345 return false; 3346 if (gfp_mask & __GFP_NOFAIL) 3347 return false; 3348 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3349 return false; 3350 if (fail_page_alloc.ignore_gfp_reclaim && 3351 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3352 return false; 3353 3354 return should_fail(&fail_page_alloc.attr, 1 << order); 3355 } 3356 3357 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3358 3359 static int __init fail_page_alloc_debugfs(void) 3360 { 3361 umode_t mode = S_IFREG | 0600; 3362 struct dentry *dir; 3363 3364 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3365 &fail_page_alloc.attr); 3366 3367 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3368 &fail_page_alloc.ignore_gfp_reclaim); 3369 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3370 &fail_page_alloc.ignore_gfp_highmem); 3371 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3372 3373 return 0; 3374 } 3375 3376 late_initcall(fail_page_alloc_debugfs); 3377 3378 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3379 3380 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3381 3382 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3383 { 3384 return false; 3385 } 3386 3387 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3388 3389 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3390 { 3391 return __should_fail_alloc_page(gfp_mask, order); 3392 } 3393 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3394 3395 /* 3396 * Return true if free base pages are above 'mark'. For high-order checks it 3397 * will return true of the order-0 watermark is reached and there is at least 3398 * one free page of a suitable size. Checking now avoids taking the zone lock 3399 * to check in the allocation paths if no pages are free. 3400 */ 3401 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3402 int classzone_idx, unsigned int alloc_flags, 3403 long free_pages) 3404 { 3405 long min = mark; 3406 int o; 3407 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3408 3409 /* free_pages may go negative - that's OK */ 3410 free_pages -= (1 << order) - 1; 3411 3412 if (alloc_flags & ALLOC_HIGH) 3413 min -= min / 2; 3414 3415 /* 3416 * If the caller does not have rights to ALLOC_HARDER then subtract 3417 * the high-atomic reserves. This will over-estimate the size of the 3418 * atomic reserve but it avoids a search. 3419 */ 3420 if (likely(!alloc_harder)) { 3421 free_pages -= z->nr_reserved_highatomic; 3422 } else { 3423 /* 3424 * OOM victims can try even harder than normal ALLOC_HARDER 3425 * users on the grounds that it's definitely going to be in 3426 * the exit path shortly and free memory. Any allocation it 3427 * makes during the free path will be small and short-lived. 3428 */ 3429 if (alloc_flags & ALLOC_OOM) 3430 min -= min / 2; 3431 else 3432 min -= min / 4; 3433 } 3434 3435 3436 #ifdef CONFIG_CMA 3437 /* If allocation can't use CMA areas don't use free CMA pages */ 3438 if (!(alloc_flags & ALLOC_CMA)) 3439 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3440 #endif 3441 3442 /* 3443 * Check watermarks for an order-0 allocation request. If these 3444 * are not met, then a high-order request also cannot go ahead 3445 * even if a suitable page happened to be free. 3446 */ 3447 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3448 return false; 3449 3450 /* If this is an order-0 request then the watermark is fine */ 3451 if (!order) 3452 return true; 3453 3454 /* For a high-order request, check at least one suitable page is free */ 3455 for (o = order; o < MAX_ORDER; o++) { 3456 struct free_area *area = &z->free_area[o]; 3457 int mt; 3458 3459 if (!area->nr_free) 3460 continue; 3461 3462 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3463 if (!free_area_empty(area, mt)) 3464 return true; 3465 } 3466 3467 #ifdef CONFIG_CMA 3468 if ((alloc_flags & ALLOC_CMA) && 3469 !free_area_empty(area, MIGRATE_CMA)) { 3470 return true; 3471 } 3472 #endif 3473 if (alloc_harder && 3474 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3475 return true; 3476 } 3477 return false; 3478 } 3479 3480 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3481 int classzone_idx, unsigned int alloc_flags) 3482 { 3483 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3484 zone_page_state(z, NR_FREE_PAGES)); 3485 } 3486 3487 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3488 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3489 { 3490 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3491 long cma_pages = 0; 3492 3493 #ifdef CONFIG_CMA 3494 /* If allocation can't use CMA areas don't use free CMA pages */ 3495 if (!(alloc_flags & ALLOC_CMA)) 3496 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3497 #endif 3498 3499 /* 3500 * Fast check for order-0 only. If this fails then the reserves 3501 * need to be calculated. There is a corner case where the check 3502 * passes but only the high-order atomic reserve are free. If 3503 * the caller is !atomic then it'll uselessly search the free 3504 * list. That corner case is then slower but it is harmless. 3505 */ 3506 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3507 return true; 3508 3509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3510 free_pages); 3511 } 3512 3513 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3514 unsigned long mark, int classzone_idx) 3515 { 3516 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3517 3518 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3519 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3520 3521 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3522 free_pages); 3523 } 3524 3525 #ifdef CONFIG_NUMA 3526 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3527 { 3528 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3529 node_reclaim_distance; 3530 } 3531 #else /* CONFIG_NUMA */ 3532 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3533 { 3534 return true; 3535 } 3536 #endif /* CONFIG_NUMA */ 3537 3538 /* 3539 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3540 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3541 * premature use of a lower zone may cause lowmem pressure problems that 3542 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3543 * probably too small. It only makes sense to spread allocations to avoid 3544 * fragmentation between the Normal and DMA32 zones. 3545 */ 3546 static inline unsigned int 3547 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3548 { 3549 unsigned int alloc_flags = 0; 3550 3551 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3552 alloc_flags |= ALLOC_KSWAPD; 3553 3554 #ifdef CONFIG_ZONE_DMA32 3555 if (!zone) 3556 return alloc_flags; 3557 3558 if (zone_idx(zone) != ZONE_NORMAL) 3559 return alloc_flags; 3560 3561 /* 3562 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3563 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3564 * on UMA that if Normal is populated then so is DMA32. 3565 */ 3566 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3567 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3568 return alloc_flags; 3569 3570 alloc_flags |= ALLOC_NOFRAGMENT; 3571 #endif /* CONFIG_ZONE_DMA32 */ 3572 return alloc_flags; 3573 } 3574 3575 /* 3576 * get_page_from_freelist goes through the zonelist trying to allocate 3577 * a page. 3578 */ 3579 static struct page * 3580 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3581 const struct alloc_context *ac) 3582 { 3583 struct zoneref *z; 3584 struct zone *zone; 3585 struct pglist_data *last_pgdat_dirty_limit = NULL; 3586 bool no_fallback; 3587 3588 retry: 3589 /* 3590 * Scan zonelist, looking for a zone with enough free. 3591 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3592 */ 3593 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3594 z = ac->preferred_zoneref; 3595 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3596 ac->nodemask) { 3597 struct page *page; 3598 unsigned long mark; 3599 3600 if (cpusets_enabled() && 3601 (alloc_flags & ALLOC_CPUSET) && 3602 !__cpuset_zone_allowed(zone, gfp_mask)) 3603 continue; 3604 /* 3605 * When allocating a page cache page for writing, we 3606 * want to get it from a node that is within its dirty 3607 * limit, such that no single node holds more than its 3608 * proportional share of globally allowed dirty pages. 3609 * The dirty limits take into account the node's 3610 * lowmem reserves and high watermark so that kswapd 3611 * should be able to balance it without having to 3612 * write pages from its LRU list. 3613 * 3614 * XXX: For now, allow allocations to potentially 3615 * exceed the per-node dirty limit in the slowpath 3616 * (spread_dirty_pages unset) before going into reclaim, 3617 * which is important when on a NUMA setup the allowed 3618 * nodes are together not big enough to reach the 3619 * global limit. The proper fix for these situations 3620 * will require awareness of nodes in the 3621 * dirty-throttling and the flusher threads. 3622 */ 3623 if (ac->spread_dirty_pages) { 3624 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3625 continue; 3626 3627 if (!node_dirty_ok(zone->zone_pgdat)) { 3628 last_pgdat_dirty_limit = zone->zone_pgdat; 3629 continue; 3630 } 3631 } 3632 3633 if (no_fallback && nr_online_nodes > 1 && 3634 zone != ac->preferred_zoneref->zone) { 3635 int local_nid; 3636 3637 /* 3638 * If moving to a remote node, retry but allow 3639 * fragmenting fallbacks. Locality is more important 3640 * than fragmentation avoidance. 3641 */ 3642 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3643 if (zone_to_nid(zone) != local_nid) { 3644 alloc_flags &= ~ALLOC_NOFRAGMENT; 3645 goto retry; 3646 } 3647 } 3648 3649 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3650 if (!zone_watermark_fast(zone, order, mark, 3651 ac_classzone_idx(ac), alloc_flags)) { 3652 int ret; 3653 3654 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3655 /* 3656 * Watermark failed for this zone, but see if we can 3657 * grow this zone if it contains deferred pages. 3658 */ 3659 if (static_branch_unlikely(&deferred_pages)) { 3660 if (_deferred_grow_zone(zone, order)) 3661 goto try_this_zone; 3662 } 3663 #endif 3664 /* Checked here to keep the fast path fast */ 3665 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3666 if (alloc_flags & ALLOC_NO_WATERMARKS) 3667 goto try_this_zone; 3668 3669 if (node_reclaim_mode == 0 || 3670 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3671 continue; 3672 3673 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3674 switch (ret) { 3675 case NODE_RECLAIM_NOSCAN: 3676 /* did not scan */ 3677 continue; 3678 case NODE_RECLAIM_FULL: 3679 /* scanned but unreclaimable */ 3680 continue; 3681 default: 3682 /* did we reclaim enough */ 3683 if (zone_watermark_ok(zone, order, mark, 3684 ac_classzone_idx(ac), alloc_flags)) 3685 goto try_this_zone; 3686 3687 continue; 3688 } 3689 } 3690 3691 try_this_zone: 3692 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3693 gfp_mask, alloc_flags, ac->migratetype); 3694 if (page) { 3695 prep_new_page(page, order, gfp_mask, alloc_flags); 3696 3697 /* 3698 * If this is a high-order atomic allocation then check 3699 * if the pageblock should be reserved for the future 3700 */ 3701 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3702 reserve_highatomic_pageblock(page, zone, order); 3703 3704 return page; 3705 } else { 3706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3707 /* Try again if zone has deferred pages */ 3708 if (static_branch_unlikely(&deferred_pages)) { 3709 if (_deferred_grow_zone(zone, order)) 3710 goto try_this_zone; 3711 } 3712 #endif 3713 } 3714 } 3715 3716 /* 3717 * It's possible on a UMA machine to get through all zones that are 3718 * fragmented. If avoiding fragmentation, reset and try again. 3719 */ 3720 if (no_fallback) { 3721 alloc_flags &= ~ALLOC_NOFRAGMENT; 3722 goto retry; 3723 } 3724 3725 return NULL; 3726 } 3727 3728 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3729 { 3730 unsigned int filter = SHOW_MEM_FILTER_NODES; 3731 3732 /* 3733 * This documents exceptions given to allocations in certain 3734 * contexts that are allowed to allocate outside current's set 3735 * of allowed nodes. 3736 */ 3737 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3738 if (tsk_is_oom_victim(current) || 3739 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3740 filter &= ~SHOW_MEM_FILTER_NODES; 3741 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3742 filter &= ~SHOW_MEM_FILTER_NODES; 3743 3744 show_mem(filter, nodemask); 3745 } 3746 3747 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3748 { 3749 struct va_format vaf; 3750 va_list args; 3751 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3752 3753 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3754 return; 3755 3756 va_start(args, fmt); 3757 vaf.fmt = fmt; 3758 vaf.va = &args; 3759 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3760 current->comm, &vaf, gfp_mask, &gfp_mask, 3761 nodemask_pr_args(nodemask)); 3762 va_end(args); 3763 3764 cpuset_print_current_mems_allowed(); 3765 pr_cont("\n"); 3766 dump_stack(); 3767 warn_alloc_show_mem(gfp_mask, nodemask); 3768 } 3769 3770 static inline struct page * 3771 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3772 unsigned int alloc_flags, 3773 const struct alloc_context *ac) 3774 { 3775 struct page *page; 3776 3777 page = get_page_from_freelist(gfp_mask, order, 3778 alloc_flags|ALLOC_CPUSET, ac); 3779 /* 3780 * fallback to ignore cpuset restriction if our nodes 3781 * are depleted 3782 */ 3783 if (!page) 3784 page = get_page_from_freelist(gfp_mask, order, 3785 alloc_flags, ac); 3786 3787 return page; 3788 } 3789 3790 static inline struct page * 3791 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3792 const struct alloc_context *ac, unsigned long *did_some_progress) 3793 { 3794 struct oom_control oc = { 3795 .zonelist = ac->zonelist, 3796 .nodemask = ac->nodemask, 3797 .memcg = NULL, 3798 .gfp_mask = gfp_mask, 3799 .order = order, 3800 }; 3801 struct page *page; 3802 3803 *did_some_progress = 0; 3804 3805 /* 3806 * Acquire the oom lock. If that fails, somebody else is 3807 * making progress for us. 3808 */ 3809 if (!mutex_trylock(&oom_lock)) { 3810 *did_some_progress = 1; 3811 schedule_timeout_uninterruptible(1); 3812 return NULL; 3813 } 3814 3815 /* 3816 * Go through the zonelist yet one more time, keep very high watermark 3817 * here, this is only to catch a parallel oom killing, we must fail if 3818 * we're still under heavy pressure. But make sure that this reclaim 3819 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3820 * allocation which will never fail due to oom_lock already held. 3821 */ 3822 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3823 ~__GFP_DIRECT_RECLAIM, order, 3824 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3825 if (page) 3826 goto out; 3827 3828 /* Coredumps can quickly deplete all memory reserves */ 3829 if (current->flags & PF_DUMPCORE) 3830 goto out; 3831 /* The OOM killer will not help higher order allocs */ 3832 if (order > PAGE_ALLOC_COSTLY_ORDER) 3833 goto out; 3834 /* 3835 * We have already exhausted all our reclaim opportunities without any 3836 * success so it is time to admit defeat. We will skip the OOM killer 3837 * because it is very likely that the caller has a more reasonable 3838 * fallback than shooting a random task. 3839 */ 3840 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3841 goto out; 3842 /* The OOM killer does not needlessly kill tasks for lowmem */ 3843 if (ac->high_zoneidx < ZONE_NORMAL) 3844 goto out; 3845 if (pm_suspended_storage()) 3846 goto out; 3847 /* 3848 * XXX: GFP_NOFS allocations should rather fail than rely on 3849 * other request to make a forward progress. 3850 * We are in an unfortunate situation where out_of_memory cannot 3851 * do much for this context but let's try it to at least get 3852 * access to memory reserved if the current task is killed (see 3853 * out_of_memory). Once filesystems are ready to handle allocation 3854 * failures more gracefully we should just bail out here. 3855 */ 3856 3857 /* The OOM killer may not free memory on a specific node */ 3858 if (gfp_mask & __GFP_THISNODE) 3859 goto out; 3860 3861 /* Exhausted what can be done so it's blame time */ 3862 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3863 *did_some_progress = 1; 3864 3865 /* 3866 * Help non-failing allocations by giving them access to memory 3867 * reserves 3868 */ 3869 if (gfp_mask & __GFP_NOFAIL) 3870 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3871 ALLOC_NO_WATERMARKS, ac); 3872 } 3873 out: 3874 mutex_unlock(&oom_lock); 3875 return page; 3876 } 3877 3878 /* 3879 * Maximum number of compaction retries wit a progress before OOM 3880 * killer is consider as the only way to move forward. 3881 */ 3882 #define MAX_COMPACT_RETRIES 16 3883 3884 #ifdef CONFIG_COMPACTION 3885 /* Try memory compaction for high-order allocations before reclaim */ 3886 static struct page * 3887 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3888 unsigned int alloc_flags, const struct alloc_context *ac, 3889 enum compact_priority prio, enum compact_result *compact_result) 3890 { 3891 struct page *page = NULL; 3892 unsigned long pflags; 3893 unsigned int noreclaim_flag; 3894 3895 if (!order) 3896 return NULL; 3897 3898 psi_memstall_enter(&pflags); 3899 noreclaim_flag = memalloc_noreclaim_save(); 3900 3901 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3902 prio, &page); 3903 3904 memalloc_noreclaim_restore(noreclaim_flag); 3905 psi_memstall_leave(&pflags); 3906 3907 /* 3908 * At least in one zone compaction wasn't deferred or skipped, so let's 3909 * count a compaction stall 3910 */ 3911 count_vm_event(COMPACTSTALL); 3912 3913 /* Prep a captured page if available */ 3914 if (page) 3915 prep_new_page(page, order, gfp_mask, alloc_flags); 3916 3917 /* Try get a page from the freelist if available */ 3918 if (!page) 3919 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3920 3921 if (page) { 3922 struct zone *zone = page_zone(page); 3923 3924 zone->compact_blockskip_flush = false; 3925 compaction_defer_reset(zone, order, true); 3926 count_vm_event(COMPACTSUCCESS); 3927 return page; 3928 } 3929 3930 /* 3931 * It's bad if compaction run occurs and fails. The most likely reason 3932 * is that pages exist, but not enough to satisfy watermarks. 3933 */ 3934 count_vm_event(COMPACTFAIL); 3935 3936 cond_resched(); 3937 3938 return NULL; 3939 } 3940 3941 static inline bool 3942 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3943 enum compact_result compact_result, 3944 enum compact_priority *compact_priority, 3945 int *compaction_retries) 3946 { 3947 int max_retries = MAX_COMPACT_RETRIES; 3948 int min_priority; 3949 bool ret = false; 3950 int retries = *compaction_retries; 3951 enum compact_priority priority = *compact_priority; 3952 3953 if (!order) 3954 return false; 3955 3956 if (compaction_made_progress(compact_result)) 3957 (*compaction_retries)++; 3958 3959 /* 3960 * compaction considers all the zone as desperately out of memory 3961 * so it doesn't really make much sense to retry except when the 3962 * failure could be caused by insufficient priority 3963 */ 3964 if (compaction_failed(compact_result)) 3965 goto check_priority; 3966 3967 /* 3968 * compaction was skipped because there are not enough order-0 pages 3969 * to work with, so we retry only if it looks like reclaim can help. 3970 */ 3971 if (compaction_needs_reclaim(compact_result)) { 3972 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3973 goto out; 3974 } 3975 3976 /* 3977 * make sure the compaction wasn't deferred or didn't bail out early 3978 * due to locks contention before we declare that we should give up. 3979 * But the next retry should use a higher priority if allowed, so 3980 * we don't just keep bailing out endlessly. 3981 */ 3982 if (compaction_withdrawn(compact_result)) { 3983 goto check_priority; 3984 } 3985 3986 /* 3987 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3988 * costly ones because they are de facto nofail and invoke OOM 3989 * killer to move on while costly can fail and users are ready 3990 * to cope with that. 1/4 retries is rather arbitrary but we 3991 * would need much more detailed feedback from compaction to 3992 * make a better decision. 3993 */ 3994 if (order > PAGE_ALLOC_COSTLY_ORDER) 3995 max_retries /= 4; 3996 if (*compaction_retries <= max_retries) { 3997 ret = true; 3998 goto out; 3999 } 4000 4001 /* 4002 * Make sure there are attempts at the highest priority if we exhausted 4003 * all retries or failed at the lower priorities. 4004 */ 4005 check_priority: 4006 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4007 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4008 4009 if (*compact_priority > min_priority) { 4010 (*compact_priority)--; 4011 *compaction_retries = 0; 4012 ret = true; 4013 } 4014 out: 4015 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4016 return ret; 4017 } 4018 #else 4019 static inline struct page * 4020 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4021 unsigned int alloc_flags, const struct alloc_context *ac, 4022 enum compact_priority prio, enum compact_result *compact_result) 4023 { 4024 *compact_result = COMPACT_SKIPPED; 4025 return NULL; 4026 } 4027 4028 static inline bool 4029 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4030 enum compact_result compact_result, 4031 enum compact_priority *compact_priority, 4032 int *compaction_retries) 4033 { 4034 struct zone *zone; 4035 struct zoneref *z; 4036 4037 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4038 return false; 4039 4040 /* 4041 * There are setups with compaction disabled which would prefer to loop 4042 * inside the allocator rather than hit the oom killer prematurely. 4043 * Let's give them a good hope and keep retrying while the order-0 4044 * watermarks are OK. 4045 */ 4046 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4047 ac->nodemask) { 4048 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4049 ac_classzone_idx(ac), alloc_flags)) 4050 return true; 4051 } 4052 return false; 4053 } 4054 #endif /* CONFIG_COMPACTION */ 4055 4056 #ifdef CONFIG_LOCKDEP 4057 static struct lockdep_map __fs_reclaim_map = 4058 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4059 4060 static bool __need_fs_reclaim(gfp_t gfp_mask) 4061 { 4062 gfp_mask = current_gfp_context(gfp_mask); 4063 4064 /* no reclaim without waiting on it */ 4065 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4066 return false; 4067 4068 /* this guy won't enter reclaim */ 4069 if (current->flags & PF_MEMALLOC) 4070 return false; 4071 4072 /* We're only interested __GFP_FS allocations for now */ 4073 if (!(gfp_mask & __GFP_FS)) 4074 return false; 4075 4076 if (gfp_mask & __GFP_NOLOCKDEP) 4077 return false; 4078 4079 return true; 4080 } 4081 4082 void __fs_reclaim_acquire(void) 4083 { 4084 lock_map_acquire(&__fs_reclaim_map); 4085 } 4086 4087 void __fs_reclaim_release(void) 4088 { 4089 lock_map_release(&__fs_reclaim_map); 4090 } 4091 4092 void fs_reclaim_acquire(gfp_t gfp_mask) 4093 { 4094 if (__need_fs_reclaim(gfp_mask)) 4095 __fs_reclaim_acquire(); 4096 } 4097 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4098 4099 void fs_reclaim_release(gfp_t gfp_mask) 4100 { 4101 if (__need_fs_reclaim(gfp_mask)) 4102 __fs_reclaim_release(); 4103 } 4104 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4105 #endif 4106 4107 /* Perform direct synchronous page reclaim */ 4108 static int 4109 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4110 const struct alloc_context *ac) 4111 { 4112 int progress; 4113 unsigned int noreclaim_flag; 4114 unsigned long pflags; 4115 4116 cond_resched(); 4117 4118 /* We now go into synchronous reclaim */ 4119 cpuset_memory_pressure_bump(); 4120 psi_memstall_enter(&pflags); 4121 fs_reclaim_acquire(gfp_mask); 4122 noreclaim_flag = memalloc_noreclaim_save(); 4123 4124 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4125 ac->nodemask); 4126 4127 memalloc_noreclaim_restore(noreclaim_flag); 4128 fs_reclaim_release(gfp_mask); 4129 psi_memstall_leave(&pflags); 4130 4131 cond_resched(); 4132 4133 return progress; 4134 } 4135 4136 /* The really slow allocator path where we enter direct reclaim */ 4137 static inline struct page * 4138 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4139 unsigned int alloc_flags, const struct alloc_context *ac, 4140 unsigned long *did_some_progress) 4141 { 4142 struct page *page = NULL; 4143 bool drained = false; 4144 4145 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4146 if (unlikely(!(*did_some_progress))) 4147 return NULL; 4148 4149 retry: 4150 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4151 4152 /* 4153 * If an allocation failed after direct reclaim, it could be because 4154 * pages are pinned on the per-cpu lists or in high alloc reserves. 4155 * Shrink them them and try again 4156 */ 4157 if (!page && !drained) { 4158 unreserve_highatomic_pageblock(ac, false); 4159 drain_all_pages(NULL); 4160 drained = true; 4161 goto retry; 4162 } 4163 4164 return page; 4165 } 4166 4167 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4168 const struct alloc_context *ac) 4169 { 4170 struct zoneref *z; 4171 struct zone *zone; 4172 pg_data_t *last_pgdat = NULL; 4173 enum zone_type high_zoneidx = ac->high_zoneidx; 4174 4175 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4176 ac->nodemask) { 4177 if (last_pgdat != zone->zone_pgdat) 4178 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4179 last_pgdat = zone->zone_pgdat; 4180 } 4181 } 4182 4183 static inline unsigned int 4184 gfp_to_alloc_flags(gfp_t gfp_mask) 4185 { 4186 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4187 4188 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4189 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4190 4191 /* 4192 * The caller may dip into page reserves a bit more if the caller 4193 * cannot run direct reclaim, or if the caller has realtime scheduling 4194 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4195 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4196 */ 4197 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4198 4199 if (gfp_mask & __GFP_ATOMIC) { 4200 /* 4201 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4202 * if it can't schedule. 4203 */ 4204 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4205 alloc_flags |= ALLOC_HARDER; 4206 /* 4207 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4208 * comment for __cpuset_node_allowed(). 4209 */ 4210 alloc_flags &= ~ALLOC_CPUSET; 4211 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4212 alloc_flags |= ALLOC_HARDER; 4213 4214 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4215 alloc_flags |= ALLOC_KSWAPD; 4216 4217 #ifdef CONFIG_CMA 4218 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4219 alloc_flags |= ALLOC_CMA; 4220 #endif 4221 return alloc_flags; 4222 } 4223 4224 static bool oom_reserves_allowed(struct task_struct *tsk) 4225 { 4226 if (!tsk_is_oom_victim(tsk)) 4227 return false; 4228 4229 /* 4230 * !MMU doesn't have oom reaper so give access to memory reserves 4231 * only to the thread with TIF_MEMDIE set 4232 */ 4233 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4234 return false; 4235 4236 return true; 4237 } 4238 4239 /* 4240 * Distinguish requests which really need access to full memory 4241 * reserves from oom victims which can live with a portion of it 4242 */ 4243 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4244 { 4245 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4246 return 0; 4247 if (gfp_mask & __GFP_MEMALLOC) 4248 return ALLOC_NO_WATERMARKS; 4249 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4250 return ALLOC_NO_WATERMARKS; 4251 if (!in_interrupt()) { 4252 if (current->flags & PF_MEMALLOC) 4253 return ALLOC_NO_WATERMARKS; 4254 else if (oom_reserves_allowed(current)) 4255 return ALLOC_OOM; 4256 } 4257 4258 return 0; 4259 } 4260 4261 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4262 { 4263 return !!__gfp_pfmemalloc_flags(gfp_mask); 4264 } 4265 4266 /* 4267 * Checks whether it makes sense to retry the reclaim to make a forward progress 4268 * for the given allocation request. 4269 * 4270 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4271 * without success, or when we couldn't even meet the watermark if we 4272 * reclaimed all remaining pages on the LRU lists. 4273 * 4274 * Returns true if a retry is viable or false to enter the oom path. 4275 */ 4276 static inline bool 4277 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4278 struct alloc_context *ac, int alloc_flags, 4279 bool did_some_progress, int *no_progress_loops) 4280 { 4281 struct zone *zone; 4282 struct zoneref *z; 4283 bool ret = false; 4284 4285 /* 4286 * Costly allocations might have made a progress but this doesn't mean 4287 * their order will become available due to high fragmentation so 4288 * always increment the no progress counter for them 4289 */ 4290 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4291 *no_progress_loops = 0; 4292 else 4293 (*no_progress_loops)++; 4294 4295 /* 4296 * Make sure we converge to OOM if we cannot make any progress 4297 * several times in the row. 4298 */ 4299 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4300 /* Before OOM, exhaust highatomic_reserve */ 4301 return unreserve_highatomic_pageblock(ac, true); 4302 } 4303 4304 /* 4305 * Keep reclaiming pages while there is a chance this will lead 4306 * somewhere. If none of the target zones can satisfy our allocation 4307 * request even if all reclaimable pages are considered then we are 4308 * screwed and have to go OOM. 4309 */ 4310 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4311 ac->nodemask) { 4312 unsigned long available; 4313 unsigned long reclaimable; 4314 unsigned long min_wmark = min_wmark_pages(zone); 4315 bool wmark; 4316 4317 available = reclaimable = zone_reclaimable_pages(zone); 4318 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4319 4320 /* 4321 * Would the allocation succeed if we reclaimed all 4322 * reclaimable pages? 4323 */ 4324 wmark = __zone_watermark_ok(zone, order, min_wmark, 4325 ac_classzone_idx(ac), alloc_flags, available); 4326 trace_reclaim_retry_zone(z, order, reclaimable, 4327 available, min_wmark, *no_progress_loops, wmark); 4328 if (wmark) { 4329 /* 4330 * If we didn't make any progress and have a lot of 4331 * dirty + writeback pages then we should wait for 4332 * an IO to complete to slow down the reclaim and 4333 * prevent from pre mature OOM 4334 */ 4335 if (!did_some_progress) { 4336 unsigned long write_pending; 4337 4338 write_pending = zone_page_state_snapshot(zone, 4339 NR_ZONE_WRITE_PENDING); 4340 4341 if (2 * write_pending > reclaimable) { 4342 congestion_wait(BLK_RW_ASYNC, HZ/10); 4343 return true; 4344 } 4345 } 4346 4347 ret = true; 4348 goto out; 4349 } 4350 } 4351 4352 out: 4353 /* 4354 * Memory allocation/reclaim might be called from a WQ context and the 4355 * current implementation of the WQ concurrency control doesn't 4356 * recognize that a particular WQ is congested if the worker thread is 4357 * looping without ever sleeping. Therefore we have to do a short sleep 4358 * here rather than calling cond_resched(). 4359 */ 4360 if (current->flags & PF_WQ_WORKER) 4361 schedule_timeout_uninterruptible(1); 4362 else 4363 cond_resched(); 4364 return ret; 4365 } 4366 4367 static inline bool 4368 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4369 { 4370 /* 4371 * It's possible that cpuset's mems_allowed and the nodemask from 4372 * mempolicy don't intersect. This should be normally dealt with by 4373 * policy_nodemask(), but it's possible to race with cpuset update in 4374 * such a way the check therein was true, and then it became false 4375 * before we got our cpuset_mems_cookie here. 4376 * This assumes that for all allocations, ac->nodemask can come only 4377 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4378 * when it does not intersect with the cpuset restrictions) or the 4379 * caller can deal with a violated nodemask. 4380 */ 4381 if (cpusets_enabled() && ac->nodemask && 4382 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4383 ac->nodemask = NULL; 4384 return true; 4385 } 4386 4387 /* 4388 * When updating a task's mems_allowed or mempolicy nodemask, it is 4389 * possible to race with parallel threads in such a way that our 4390 * allocation can fail while the mask is being updated. If we are about 4391 * to fail, check if the cpuset changed during allocation and if so, 4392 * retry. 4393 */ 4394 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4395 return true; 4396 4397 return false; 4398 } 4399 4400 static inline struct page * 4401 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4402 struct alloc_context *ac) 4403 { 4404 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4405 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4406 struct page *page = NULL; 4407 unsigned int alloc_flags; 4408 unsigned long did_some_progress; 4409 enum compact_priority compact_priority; 4410 enum compact_result compact_result; 4411 int compaction_retries; 4412 int no_progress_loops; 4413 unsigned int cpuset_mems_cookie; 4414 int reserve_flags; 4415 4416 /* 4417 * We also sanity check to catch abuse of atomic reserves being used by 4418 * callers that are not in atomic context. 4419 */ 4420 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4421 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4422 gfp_mask &= ~__GFP_ATOMIC; 4423 4424 retry_cpuset: 4425 compaction_retries = 0; 4426 no_progress_loops = 0; 4427 compact_priority = DEF_COMPACT_PRIORITY; 4428 cpuset_mems_cookie = read_mems_allowed_begin(); 4429 4430 /* 4431 * The fast path uses conservative alloc_flags to succeed only until 4432 * kswapd needs to be woken up, and to avoid the cost of setting up 4433 * alloc_flags precisely. So we do that now. 4434 */ 4435 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4436 4437 /* 4438 * We need to recalculate the starting point for the zonelist iterator 4439 * because we might have used different nodemask in the fast path, or 4440 * there was a cpuset modification and we are retrying - otherwise we 4441 * could end up iterating over non-eligible zones endlessly. 4442 */ 4443 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4444 ac->high_zoneidx, ac->nodemask); 4445 if (!ac->preferred_zoneref->zone) 4446 goto nopage; 4447 4448 if (alloc_flags & ALLOC_KSWAPD) 4449 wake_all_kswapds(order, gfp_mask, ac); 4450 4451 /* 4452 * The adjusted alloc_flags might result in immediate success, so try 4453 * that first 4454 */ 4455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4456 if (page) 4457 goto got_pg; 4458 4459 /* 4460 * For costly allocations, try direct compaction first, as it's likely 4461 * that we have enough base pages and don't need to reclaim. For non- 4462 * movable high-order allocations, do that as well, as compaction will 4463 * try prevent permanent fragmentation by migrating from blocks of the 4464 * same migratetype. 4465 * Don't try this for allocations that are allowed to ignore 4466 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4467 */ 4468 if (can_direct_reclaim && 4469 (costly_order || 4470 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4471 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4472 page = __alloc_pages_direct_compact(gfp_mask, order, 4473 alloc_flags, ac, 4474 INIT_COMPACT_PRIORITY, 4475 &compact_result); 4476 if (page) 4477 goto got_pg; 4478 4479 if (order >= pageblock_order && (gfp_mask & __GFP_IO) && 4480 !(gfp_mask & __GFP_RETRY_MAYFAIL)) { 4481 /* 4482 * If allocating entire pageblock(s) and compaction 4483 * failed because all zones are below low watermarks 4484 * or is prohibited because it recently failed at this 4485 * order, fail immediately unless the allocator has 4486 * requested compaction and reclaim retry. 4487 * 4488 * Reclaim is 4489 * - potentially very expensive because zones are far 4490 * below their low watermarks or this is part of very 4491 * bursty high order allocations, 4492 * - not guaranteed to help because isolate_freepages() 4493 * may not iterate over freed pages as part of its 4494 * linear scan, and 4495 * - unlikely to make entire pageblocks free on its 4496 * own. 4497 */ 4498 if (compact_result == COMPACT_SKIPPED || 4499 compact_result == COMPACT_DEFERRED) 4500 goto nopage; 4501 } 4502 4503 /* 4504 * Checks for costly allocations with __GFP_NORETRY, which 4505 * includes THP page fault allocations 4506 */ 4507 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4508 /* 4509 * If compaction is deferred for high-order allocations, 4510 * it is because sync compaction recently failed. If 4511 * this is the case and the caller requested a THP 4512 * allocation, we do not want to heavily disrupt the 4513 * system, so we fail the allocation instead of entering 4514 * direct reclaim. 4515 */ 4516 if (compact_result == COMPACT_DEFERRED) 4517 goto nopage; 4518 4519 /* 4520 * Looks like reclaim/compaction is worth trying, but 4521 * sync compaction could be very expensive, so keep 4522 * using async compaction. 4523 */ 4524 compact_priority = INIT_COMPACT_PRIORITY; 4525 } 4526 } 4527 4528 retry: 4529 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4530 if (alloc_flags & ALLOC_KSWAPD) 4531 wake_all_kswapds(order, gfp_mask, ac); 4532 4533 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4534 if (reserve_flags) 4535 alloc_flags = reserve_flags; 4536 4537 /* 4538 * Reset the nodemask and zonelist iterators if memory policies can be 4539 * ignored. These allocations are high priority and system rather than 4540 * user oriented. 4541 */ 4542 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4543 ac->nodemask = NULL; 4544 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4545 ac->high_zoneidx, ac->nodemask); 4546 } 4547 4548 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4549 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4550 if (page) 4551 goto got_pg; 4552 4553 /* Caller is not willing to reclaim, we can't balance anything */ 4554 if (!can_direct_reclaim) 4555 goto nopage; 4556 4557 /* Avoid recursion of direct reclaim */ 4558 if (current->flags & PF_MEMALLOC) 4559 goto nopage; 4560 4561 /* Try direct reclaim and then allocating */ 4562 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4563 &did_some_progress); 4564 if (page) 4565 goto got_pg; 4566 4567 /* Try direct compaction and then allocating */ 4568 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4569 compact_priority, &compact_result); 4570 if (page) 4571 goto got_pg; 4572 4573 /* Do not loop if specifically requested */ 4574 if (gfp_mask & __GFP_NORETRY) 4575 goto nopage; 4576 4577 /* 4578 * Do not retry costly high order allocations unless they are 4579 * __GFP_RETRY_MAYFAIL 4580 */ 4581 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4582 goto nopage; 4583 4584 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4585 did_some_progress > 0, &no_progress_loops)) 4586 goto retry; 4587 4588 /* 4589 * It doesn't make any sense to retry for the compaction if the order-0 4590 * reclaim is not able to make any progress because the current 4591 * implementation of the compaction depends on the sufficient amount 4592 * of free memory (see __compaction_suitable) 4593 */ 4594 if (did_some_progress > 0 && 4595 should_compact_retry(ac, order, alloc_flags, 4596 compact_result, &compact_priority, 4597 &compaction_retries)) 4598 goto retry; 4599 4600 4601 /* Deal with possible cpuset update races before we start OOM killing */ 4602 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4603 goto retry_cpuset; 4604 4605 /* Reclaim has failed us, start killing things */ 4606 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4607 if (page) 4608 goto got_pg; 4609 4610 /* Avoid allocations with no watermarks from looping endlessly */ 4611 if (tsk_is_oom_victim(current) && 4612 (alloc_flags == ALLOC_OOM || 4613 (gfp_mask & __GFP_NOMEMALLOC))) 4614 goto nopage; 4615 4616 /* Retry as long as the OOM killer is making progress */ 4617 if (did_some_progress) { 4618 no_progress_loops = 0; 4619 goto retry; 4620 } 4621 4622 nopage: 4623 /* Deal with possible cpuset update races before we fail */ 4624 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4625 goto retry_cpuset; 4626 4627 /* 4628 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4629 * we always retry 4630 */ 4631 if (gfp_mask & __GFP_NOFAIL) { 4632 /* 4633 * All existing users of the __GFP_NOFAIL are blockable, so warn 4634 * of any new users that actually require GFP_NOWAIT 4635 */ 4636 if (WARN_ON_ONCE(!can_direct_reclaim)) 4637 goto fail; 4638 4639 /* 4640 * PF_MEMALLOC request from this context is rather bizarre 4641 * because we cannot reclaim anything and only can loop waiting 4642 * for somebody to do a work for us 4643 */ 4644 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4645 4646 /* 4647 * non failing costly orders are a hard requirement which we 4648 * are not prepared for much so let's warn about these users 4649 * so that we can identify them and convert them to something 4650 * else. 4651 */ 4652 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4653 4654 /* 4655 * Help non-failing allocations by giving them access to memory 4656 * reserves but do not use ALLOC_NO_WATERMARKS because this 4657 * could deplete whole memory reserves which would just make 4658 * the situation worse 4659 */ 4660 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4661 if (page) 4662 goto got_pg; 4663 4664 cond_resched(); 4665 goto retry; 4666 } 4667 fail: 4668 warn_alloc(gfp_mask, ac->nodemask, 4669 "page allocation failure: order:%u", order); 4670 got_pg: 4671 return page; 4672 } 4673 4674 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4675 int preferred_nid, nodemask_t *nodemask, 4676 struct alloc_context *ac, gfp_t *alloc_mask, 4677 unsigned int *alloc_flags) 4678 { 4679 ac->high_zoneidx = gfp_zone(gfp_mask); 4680 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4681 ac->nodemask = nodemask; 4682 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4683 4684 if (cpusets_enabled()) { 4685 *alloc_mask |= __GFP_HARDWALL; 4686 if (!ac->nodemask) 4687 ac->nodemask = &cpuset_current_mems_allowed; 4688 else 4689 *alloc_flags |= ALLOC_CPUSET; 4690 } 4691 4692 fs_reclaim_acquire(gfp_mask); 4693 fs_reclaim_release(gfp_mask); 4694 4695 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4696 4697 if (should_fail_alloc_page(gfp_mask, order)) 4698 return false; 4699 4700 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4701 *alloc_flags |= ALLOC_CMA; 4702 4703 return true; 4704 } 4705 4706 /* Determine whether to spread dirty pages and what the first usable zone */ 4707 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4708 { 4709 /* Dirty zone balancing only done in the fast path */ 4710 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4711 4712 /* 4713 * The preferred zone is used for statistics but crucially it is 4714 * also used as the starting point for the zonelist iterator. It 4715 * may get reset for allocations that ignore memory policies. 4716 */ 4717 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4718 ac->high_zoneidx, ac->nodemask); 4719 } 4720 4721 /* 4722 * This is the 'heart' of the zoned buddy allocator. 4723 */ 4724 struct page * 4725 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4726 nodemask_t *nodemask) 4727 { 4728 struct page *page; 4729 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4730 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4731 struct alloc_context ac = { }; 4732 4733 /* 4734 * There are several places where we assume that the order value is sane 4735 * so bail out early if the request is out of bound. 4736 */ 4737 if (unlikely(order >= MAX_ORDER)) { 4738 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4739 return NULL; 4740 } 4741 4742 gfp_mask &= gfp_allowed_mask; 4743 alloc_mask = gfp_mask; 4744 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4745 return NULL; 4746 4747 finalise_ac(gfp_mask, &ac); 4748 4749 /* 4750 * Forbid the first pass from falling back to types that fragment 4751 * memory until all local zones are considered. 4752 */ 4753 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4754 4755 /* First allocation attempt */ 4756 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4757 if (likely(page)) 4758 goto out; 4759 4760 /* 4761 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4762 * resp. GFP_NOIO which has to be inherited for all allocation requests 4763 * from a particular context which has been marked by 4764 * memalloc_no{fs,io}_{save,restore}. 4765 */ 4766 alloc_mask = current_gfp_context(gfp_mask); 4767 ac.spread_dirty_pages = false; 4768 4769 /* 4770 * Restore the original nodemask if it was potentially replaced with 4771 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4772 */ 4773 if (unlikely(ac.nodemask != nodemask)) 4774 ac.nodemask = nodemask; 4775 4776 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4777 4778 out: 4779 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4780 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4781 __free_pages(page, order); 4782 page = NULL; 4783 } 4784 4785 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4786 4787 return page; 4788 } 4789 EXPORT_SYMBOL(__alloc_pages_nodemask); 4790 4791 /* 4792 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4793 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4794 * you need to access high mem. 4795 */ 4796 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4797 { 4798 struct page *page; 4799 4800 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4801 if (!page) 4802 return 0; 4803 return (unsigned long) page_address(page); 4804 } 4805 EXPORT_SYMBOL(__get_free_pages); 4806 4807 unsigned long get_zeroed_page(gfp_t gfp_mask) 4808 { 4809 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4810 } 4811 EXPORT_SYMBOL(get_zeroed_page); 4812 4813 static inline void free_the_page(struct page *page, unsigned int order) 4814 { 4815 if (order == 0) /* Via pcp? */ 4816 free_unref_page(page); 4817 else 4818 __free_pages_ok(page, order); 4819 } 4820 4821 void __free_pages(struct page *page, unsigned int order) 4822 { 4823 if (put_page_testzero(page)) 4824 free_the_page(page, order); 4825 } 4826 EXPORT_SYMBOL(__free_pages); 4827 4828 void free_pages(unsigned long addr, unsigned int order) 4829 { 4830 if (addr != 0) { 4831 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4832 __free_pages(virt_to_page((void *)addr), order); 4833 } 4834 } 4835 4836 EXPORT_SYMBOL(free_pages); 4837 4838 /* 4839 * Page Fragment: 4840 * An arbitrary-length arbitrary-offset area of memory which resides 4841 * within a 0 or higher order page. Multiple fragments within that page 4842 * are individually refcounted, in the page's reference counter. 4843 * 4844 * The page_frag functions below provide a simple allocation framework for 4845 * page fragments. This is used by the network stack and network device 4846 * drivers to provide a backing region of memory for use as either an 4847 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4848 */ 4849 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4850 gfp_t gfp_mask) 4851 { 4852 struct page *page = NULL; 4853 gfp_t gfp = gfp_mask; 4854 4855 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4856 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4857 __GFP_NOMEMALLOC; 4858 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4859 PAGE_FRAG_CACHE_MAX_ORDER); 4860 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4861 #endif 4862 if (unlikely(!page)) 4863 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4864 4865 nc->va = page ? page_address(page) : NULL; 4866 4867 return page; 4868 } 4869 4870 void __page_frag_cache_drain(struct page *page, unsigned int count) 4871 { 4872 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4873 4874 if (page_ref_sub_and_test(page, count)) 4875 free_the_page(page, compound_order(page)); 4876 } 4877 EXPORT_SYMBOL(__page_frag_cache_drain); 4878 4879 void *page_frag_alloc(struct page_frag_cache *nc, 4880 unsigned int fragsz, gfp_t gfp_mask) 4881 { 4882 unsigned int size = PAGE_SIZE; 4883 struct page *page; 4884 int offset; 4885 4886 if (unlikely(!nc->va)) { 4887 refill: 4888 page = __page_frag_cache_refill(nc, gfp_mask); 4889 if (!page) 4890 return NULL; 4891 4892 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4893 /* if size can vary use size else just use PAGE_SIZE */ 4894 size = nc->size; 4895 #endif 4896 /* Even if we own the page, we do not use atomic_set(). 4897 * This would break get_page_unless_zero() users. 4898 */ 4899 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4900 4901 /* reset page count bias and offset to start of new frag */ 4902 nc->pfmemalloc = page_is_pfmemalloc(page); 4903 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4904 nc->offset = size; 4905 } 4906 4907 offset = nc->offset - fragsz; 4908 if (unlikely(offset < 0)) { 4909 page = virt_to_page(nc->va); 4910 4911 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4912 goto refill; 4913 4914 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4915 /* if size can vary use size else just use PAGE_SIZE */ 4916 size = nc->size; 4917 #endif 4918 /* OK, page count is 0, we can safely set it */ 4919 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4920 4921 /* reset page count bias and offset to start of new frag */ 4922 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4923 offset = size - fragsz; 4924 } 4925 4926 nc->pagecnt_bias--; 4927 nc->offset = offset; 4928 4929 return nc->va + offset; 4930 } 4931 EXPORT_SYMBOL(page_frag_alloc); 4932 4933 /* 4934 * Frees a page fragment allocated out of either a compound or order 0 page. 4935 */ 4936 void page_frag_free(void *addr) 4937 { 4938 struct page *page = virt_to_head_page(addr); 4939 4940 if (unlikely(put_page_testzero(page))) 4941 free_the_page(page, compound_order(page)); 4942 } 4943 EXPORT_SYMBOL(page_frag_free); 4944 4945 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4946 size_t size) 4947 { 4948 if (addr) { 4949 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4950 unsigned long used = addr + PAGE_ALIGN(size); 4951 4952 split_page(virt_to_page((void *)addr), order); 4953 while (used < alloc_end) { 4954 free_page(used); 4955 used += PAGE_SIZE; 4956 } 4957 } 4958 return (void *)addr; 4959 } 4960 4961 /** 4962 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4963 * @size: the number of bytes to allocate 4964 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4965 * 4966 * This function is similar to alloc_pages(), except that it allocates the 4967 * minimum number of pages to satisfy the request. alloc_pages() can only 4968 * allocate memory in power-of-two pages. 4969 * 4970 * This function is also limited by MAX_ORDER. 4971 * 4972 * Memory allocated by this function must be released by free_pages_exact(). 4973 * 4974 * Return: pointer to the allocated area or %NULL in case of error. 4975 */ 4976 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4977 { 4978 unsigned int order = get_order(size); 4979 unsigned long addr; 4980 4981 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4982 gfp_mask &= ~__GFP_COMP; 4983 4984 addr = __get_free_pages(gfp_mask, order); 4985 return make_alloc_exact(addr, order, size); 4986 } 4987 EXPORT_SYMBOL(alloc_pages_exact); 4988 4989 /** 4990 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4991 * pages on a node. 4992 * @nid: the preferred node ID where memory should be allocated 4993 * @size: the number of bytes to allocate 4994 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4995 * 4996 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4997 * back. 4998 * 4999 * Return: pointer to the allocated area or %NULL in case of error. 5000 */ 5001 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5002 { 5003 unsigned int order = get_order(size); 5004 struct page *p; 5005 5006 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5007 gfp_mask &= ~__GFP_COMP; 5008 5009 p = alloc_pages_node(nid, gfp_mask, order); 5010 if (!p) 5011 return NULL; 5012 return make_alloc_exact((unsigned long)page_address(p), order, size); 5013 } 5014 5015 /** 5016 * free_pages_exact - release memory allocated via alloc_pages_exact() 5017 * @virt: the value returned by alloc_pages_exact. 5018 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5019 * 5020 * Release the memory allocated by a previous call to alloc_pages_exact. 5021 */ 5022 void free_pages_exact(void *virt, size_t size) 5023 { 5024 unsigned long addr = (unsigned long)virt; 5025 unsigned long end = addr + PAGE_ALIGN(size); 5026 5027 while (addr < end) { 5028 free_page(addr); 5029 addr += PAGE_SIZE; 5030 } 5031 } 5032 EXPORT_SYMBOL(free_pages_exact); 5033 5034 /** 5035 * nr_free_zone_pages - count number of pages beyond high watermark 5036 * @offset: The zone index of the highest zone 5037 * 5038 * nr_free_zone_pages() counts the number of pages which are beyond the 5039 * high watermark within all zones at or below a given zone index. For each 5040 * zone, the number of pages is calculated as: 5041 * 5042 * nr_free_zone_pages = managed_pages - high_pages 5043 * 5044 * Return: number of pages beyond high watermark. 5045 */ 5046 static unsigned long nr_free_zone_pages(int offset) 5047 { 5048 struct zoneref *z; 5049 struct zone *zone; 5050 5051 /* Just pick one node, since fallback list is circular */ 5052 unsigned long sum = 0; 5053 5054 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5055 5056 for_each_zone_zonelist(zone, z, zonelist, offset) { 5057 unsigned long size = zone_managed_pages(zone); 5058 unsigned long high = high_wmark_pages(zone); 5059 if (size > high) 5060 sum += size - high; 5061 } 5062 5063 return sum; 5064 } 5065 5066 /** 5067 * nr_free_buffer_pages - count number of pages beyond high watermark 5068 * 5069 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5070 * watermark within ZONE_DMA and ZONE_NORMAL. 5071 * 5072 * Return: number of pages beyond high watermark within ZONE_DMA and 5073 * ZONE_NORMAL. 5074 */ 5075 unsigned long nr_free_buffer_pages(void) 5076 { 5077 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5078 } 5079 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5080 5081 /** 5082 * nr_free_pagecache_pages - count number of pages beyond high watermark 5083 * 5084 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5085 * high watermark within all zones. 5086 * 5087 * Return: number of pages beyond high watermark within all zones. 5088 */ 5089 unsigned long nr_free_pagecache_pages(void) 5090 { 5091 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5092 } 5093 5094 static inline void show_node(struct zone *zone) 5095 { 5096 if (IS_ENABLED(CONFIG_NUMA)) 5097 printk("Node %d ", zone_to_nid(zone)); 5098 } 5099 5100 long si_mem_available(void) 5101 { 5102 long available; 5103 unsigned long pagecache; 5104 unsigned long wmark_low = 0; 5105 unsigned long pages[NR_LRU_LISTS]; 5106 unsigned long reclaimable; 5107 struct zone *zone; 5108 int lru; 5109 5110 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5111 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5112 5113 for_each_zone(zone) 5114 wmark_low += low_wmark_pages(zone); 5115 5116 /* 5117 * Estimate the amount of memory available for userspace allocations, 5118 * without causing swapping. 5119 */ 5120 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5121 5122 /* 5123 * Not all the page cache can be freed, otherwise the system will 5124 * start swapping. Assume at least half of the page cache, or the 5125 * low watermark worth of cache, needs to stay. 5126 */ 5127 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5128 pagecache -= min(pagecache / 2, wmark_low); 5129 available += pagecache; 5130 5131 /* 5132 * Part of the reclaimable slab and other kernel memory consists of 5133 * items that are in use, and cannot be freed. Cap this estimate at the 5134 * low watermark. 5135 */ 5136 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5137 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5138 available += reclaimable - min(reclaimable / 2, wmark_low); 5139 5140 if (available < 0) 5141 available = 0; 5142 return available; 5143 } 5144 EXPORT_SYMBOL_GPL(si_mem_available); 5145 5146 void si_meminfo(struct sysinfo *val) 5147 { 5148 val->totalram = totalram_pages(); 5149 val->sharedram = global_node_page_state(NR_SHMEM); 5150 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5151 val->bufferram = nr_blockdev_pages(); 5152 val->totalhigh = totalhigh_pages(); 5153 val->freehigh = nr_free_highpages(); 5154 val->mem_unit = PAGE_SIZE; 5155 } 5156 5157 EXPORT_SYMBOL(si_meminfo); 5158 5159 #ifdef CONFIG_NUMA 5160 void si_meminfo_node(struct sysinfo *val, int nid) 5161 { 5162 int zone_type; /* needs to be signed */ 5163 unsigned long managed_pages = 0; 5164 unsigned long managed_highpages = 0; 5165 unsigned long free_highpages = 0; 5166 pg_data_t *pgdat = NODE_DATA(nid); 5167 5168 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5169 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5170 val->totalram = managed_pages; 5171 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5172 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5173 #ifdef CONFIG_HIGHMEM 5174 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5175 struct zone *zone = &pgdat->node_zones[zone_type]; 5176 5177 if (is_highmem(zone)) { 5178 managed_highpages += zone_managed_pages(zone); 5179 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5180 } 5181 } 5182 val->totalhigh = managed_highpages; 5183 val->freehigh = free_highpages; 5184 #else 5185 val->totalhigh = managed_highpages; 5186 val->freehigh = free_highpages; 5187 #endif 5188 val->mem_unit = PAGE_SIZE; 5189 } 5190 #endif 5191 5192 /* 5193 * Determine whether the node should be displayed or not, depending on whether 5194 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5195 */ 5196 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5197 { 5198 if (!(flags & SHOW_MEM_FILTER_NODES)) 5199 return false; 5200 5201 /* 5202 * no node mask - aka implicit memory numa policy. Do not bother with 5203 * the synchronization - read_mems_allowed_begin - because we do not 5204 * have to be precise here. 5205 */ 5206 if (!nodemask) 5207 nodemask = &cpuset_current_mems_allowed; 5208 5209 return !node_isset(nid, *nodemask); 5210 } 5211 5212 #define K(x) ((x) << (PAGE_SHIFT-10)) 5213 5214 static void show_migration_types(unsigned char type) 5215 { 5216 static const char types[MIGRATE_TYPES] = { 5217 [MIGRATE_UNMOVABLE] = 'U', 5218 [MIGRATE_MOVABLE] = 'M', 5219 [MIGRATE_RECLAIMABLE] = 'E', 5220 [MIGRATE_HIGHATOMIC] = 'H', 5221 #ifdef CONFIG_CMA 5222 [MIGRATE_CMA] = 'C', 5223 #endif 5224 #ifdef CONFIG_MEMORY_ISOLATION 5225 [MIGRATE_ISOLATE] = 'I', 5226 #endif 5227 }; 5228 char tmp[MIGRATE_TYPES + 1]; 5229 char *p = tmp; 5230 int i; 5231 5232 for (i = 0; i < MIGRATE_TYPES; i++) { 5233 if (type & (1 << i)) 5234 *p++ = types[i]; 5235 } 5236 5237 *p = '\0'; 5238 printk(KERN_CONT "(%s) ", tmp); 5239 } 5240 5241 /* 5242 * Show free area list (used inside shift_scroll-lock stuff) 5243 * We also calculate the percentage fragmentation. We do this by counting the 5244 * memory on each free list with the exception of the first item on the list. 5245 * 5246 * Bits in @filter: 5247 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5248 * cpuset. 5249 */ 5250 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5251 { 5252 unsigned long free_pcp = 0; 5253 int cpu; 5254 struct zone *zone; 5255 pg_data_t *pgdat; 5256 5257 for_each_populated_zone(zone) { 5258 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5259 continue; 5260 5261 for_each_online_cpu(cpu) 5262 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5263 } 5264 5265 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5266 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5267 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5268 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5269 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5270 " free:%lu free_pcp:%lu free_cma:%lu\n", 5271 global_node_page_state(NR_ACTIVE_ANON), 5272 global_node_page_state(NR_INACTIVE_ANON), 5273 global_node_page_state(NR_ISOLATED_ANON), 5274 global_node_page_state(NR_ACTIVE_FILE), 5275 global_node_page_state(NR_INACTIVE_FILE), 5276 global_node_page_state(NR_ISOLATED_FILE), 5277 global_node_page_state(NR_UNEVICTABLE), 5278 global_node_page_state(NR_FILE_DIRTY), 5279 global_node_page_state(NR_WRITEBACK), 5280 global_node_page_state(NR_UNSTABLE_NFS), 5281 global_node_page_state(NR_SLAB_RECLAIMABLE), 5282 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5283 global_node_page_state(NR_FILE_MAPPED), 5284 global_node_page_state(NR_SHMEM), 5285 global_zone_page_state(NR_PAGETABLE), 5286 global_zone_page_state(NR_BOUNCE), 5287 global_zone_page_state(NR_FREE_PAGES), 5288 free_pcp, 5289 global_zone_page_state(NR_FREE_CMA_PAGES)); 5290 5291 for_each_online_pgdat(pgdat) { 5292 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5293 continue; 5294 5295 printk("Node %d" 5296 " active_anon:%lukB" 5297 " inactive_anon:%lukB" 5298 " active_file:%lukB" 5299 " inactive_file:%lukB" 5300 " unevictable:%lukB" 5301 " isolated(anon):%lukB" 5302 " isolated(file):%lukB" 5303 " mapped:%lukB" 5304 " dirty:%lukB" 5305 " writeback:%lukB" 5306 " shmem:%lukB" 5307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5308 " shmem_thp: %lukB" 5309 " shmem_pmdmapped: %lukB" 5310 " anon_thp: %lukB" 5311 #endif 5312 " writeback_tmp:%lukB" 5313 " unstable:%lukB" 5314 " all_unreclaimable? %s" 5315 "\n", 5316 pgdat->node_id, 5317 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5318 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5319 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5320 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5321 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5322 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5323 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5324 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5325 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5326 K(node_page_state(pgdat, NR_WRITEBACK)), 5327 K(node_page_state(pgdat, NR_SHMEM)), 5328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5329 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5330 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5331 * HPAGE_PMD_NR), 5332 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5333 #endif 5334 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5335 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5336 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5337 "yes" : "no"); 5338 } 5339 5340 for_each_populated_zone(zone) { 5341 int i; 5342 5343 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5344 continue; 5345 5346 free_pcp = 0; 5347 for_each_online_cpu(cpu) 5348 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5349 5350 show_node(zone); 5351 printk(KERN_CONT 5352 "%s" 5353 " free:%lukB" 5354 " min:%lukB" 5355 " low:%lukB" 5356 " high:%lukB" 5357 " reserved_highatomic:%luKB" 5358 " active_anon:%lukB" 5359 " inactive_anon:%lukB" 5360 " active_file:%lukB" 5361 " inactive_file:%lukB" 5362 " unevictable:%lukB" 5363 " writepending:%lukB" 5364 " present:%lukB" 5365 " managed:%lukB" 5366 " mlocked:%lukB" 5367 " kernel_stack:%lukB" 5368 " pagetables:%lukB" 5369 " bounce:%lukB" 5370 " free_pcp:%lukB" 5371 " local_pcp:%ukB" 5372 " free_cma:%lukB" 5373 "\n", 5374 zone->name, 5375 K(zone_page_state(zone, NR_FREE_PAGES)), 5376 K(min_wmark_pages(zone)), 5377 K(low_wmark_pages(zone)), 5378 K(high_wmark_pages(zone)), 5379 K(zone->nr_reserved_highatomic), 5380 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5381 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5382 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5383 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5384 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5385 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5386 K(zone->present_pages), 5387 K(zone_managed_pages(zone)), 5388 K(zone_page_state(zone, NR_MLOCK)), 5389 zone_page_state(zone, NR_KERNEL_STACK_KB), 5390 K(zone_page_state(zone, NR_PAGETABLE)), 5391 K(zone_page_state(zone, NR_BOUNCE)), 5392 K(free_pcp), 5393 K(this_cpu_read(zone->pageset->pcp.count)), 5394 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5395 printk("lowmem_reserve[]:"); 5396 for (i = 0; i < MAX_NR_ZONES; i++) 5397 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5398 printk(KERN_CONT "\n"); 5399 } 5400 5401 for_each_populated_zone(zone) { 5402 unsigned int order; 5403 unsigned long nr[MAX_ORDER], flags, total = 0; 5404 unsigned char types[MAX_ORDER]; 5405 5406 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5407 continue; 5408 show_node(zone); 5409 printk(KERN_CONT "%s: ", zone->name); 5410 5411 spin_lock_irqsave(&zone->lock, flags); 5412 for (order = 0; order < MAX_ORDER; order++) { 5413 struct free_area *area = &zone->free_area[order]; 5414 int type; 5415 5416 nr[order] = area->nr_free; 5417 total += nr[order] << order; 5418 5419 types[order] = 0; 5420 for (type = 0; type < MIGRATE_TYPES; type++) { 5421 if (!free_area_empty(area, type)) 5422 types[order] |= 1 << type; 5423 } 5424 } 5425 spin_unlock_irqrestore(&zone->lock, flags); 5426 for (order = 0; order < MAX_ORDER; order++) { 5427 printk(KERN_CONT "%lu*%lukB ", 5428 nr[order], K(1UL) << order); 5429 if (nr[order]) 5430 show_migration_types(types[order]); 5431 } 5432 printk(KERN_CONT "= %lukB\n", K(total)); 5433 } 5434 5435 hugetlb_show_meminfo(); 5436 5437 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5438 5439 show_swap_cache_info(); 5440 } 5441 5442 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5443 { 5444 zoneref->zone = zone; 5445 zoneref->zone_idx = zone_idx(zone); 5446 } 5447 5448 /* 5449 * Builds allocation fallback zone lists. 5450 * 5451 * Add all populated zones of a node to the zonelist. 5452 */ 5453 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5454 { 5455 struct zone *zone; 5456 enum zone_type zone_type = MAX_NR_ZONES; 5457 int nr_zones = 0; 5458 5459 do { 5460 zone_type--; 5461 zone = pgdat->node_zones + zone_type; 5462 if (managed_zone(zone)) { 5463 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5464 check_highest_zone(zone_type); 5465 } 5466 } while (zone_type); 5467 5468 return nr_zones; 5469 } 5470 5471 #ifdef CONFIG_NUMA 5472 5473 static int __parse_numa_zonelist_order(char *s) 5474 { 5475 /* 5476 * We used to support different zonlists modes but they turned 5477 * out to be just not useful. Let's keep the warning in place 5478 * if somebody still use the cmd line parameter so that we do 5479 * not fail it silently 5480 */ 5481 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5482 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5483 return -EINVAL; 5484 } 5485 return 0; 5486 } 5487 5488 static __init int setup_numa_zonelist_order(char *s) 5489 { 5490 if (!s) 5491 return 0; 5492 5493 return __parse_numa_zonelist_order(s); 5494 } 5495 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5496 5497 char numa_zonelist_order[] = "Node"; 5498 5499 /* 5500 * sysctl handler for numa_zonelist_order 5501 */ 5502 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5503 void __user *buffer, size_t *length, 5504 loff_t *ppos) 5505 { 5506 char *str; 5507 int ret; 5508 5509 if (!write) 5510 return proc_dostring(table, write, buffer, length, ppos); 5511 str = memdup_user_nul(buffer, 16); 5512 if (IS_ERR(str)) 5513 return PTR_ERR(str); 5514 5515 ret = __parse_numa_zonelist_order(str); 5516 kfree(str); 5517 return ret; 5518 } 5519 5520 5521 #define MAX_NODE_LOAD (nr_online_nodes) 5522 static int node_load[MAX_NUMNODES]; 5523 5524 /** 5525 * find_next_best_node - find the next node that should appear in a given node's fallback list 5526 * @node: node whose fallback list we're appending 5527 * @used_node_mask: nodemask_t of already used nodes 5528 * 5529 * We use a number of factors to determine which is the next node that should 5530 * appear on a given node's fallback list. The node should not have appeared 5531 * already in @node's fallback list, and it should be the next closest node 5532 * according to the distance array (which contains arbitrary distance values 5533 * from each node to each node in the system), and should also prefer nodes 5534 * with no CPUs, since presumably they'll have very little allocation pressure 5535 * on them otherwise. 5536 * 5537 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5538 */ 5539 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5540 { 5541 int n, val; 5542 int min_val = INT_MAX; 5543 int best_node = NUMA_NO_NODE; 5544 const struct cpumask *tmp = cpumask_of_node(0); 5545 5546 /* Use the local node if we haven't already */ 5547 if (!node_isset(node, *used_node_mask)) { 5548 node_set(node, *used_node_mask); 5549 return node; 5550 } 5551 5552 for_each_node_state(n, N_MEMORY) { 5553 5554 /* Don't want a node to appear more than once */ 5555 if (node_isset(n, *used_node_mask)) 5556 continue; 5557 5558 /* Use the distance array to find the distance */ 5559 val = node_distance(node, n); 5560 5561 /* Penalize nodes under us ("prefer the next node") */ 5562 val += (n < node); 5563 5564 /* Give preference to headless and unused nodes */ 5565 tmp = cpumask_of_node(n); 5566 if (!cpumask_empty(tmp)) 5567 val += PENALTY_FOR_NODE_WITH_CPUS; 5568 5569 /* Slight preference for less loaded node */ 5570 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5571 val += node_load[n]; 5572 5573 if (val < min_val) { 5574 min_val = val; 5575 best_node = n; 5576 } 5577 } 5578 5579 if (best_node >= 0) 5580 node_set(best_node, *used_node_mask); 5581 5582 return best_node; 5583 } 5584 5585 5586 /* 5587 * Build zonelists ordered by node and zones within node. 5588 * This results in maximum locality--normal zone overflows into local 5589 * DMA zone, if any--but risks exhausting DMA zone. 5590 */ 5591 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5592 unsigned nr_nodes) 5593 { 5594 struct zoneref *zonerefs; 5595 int i; 5596 5597 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5598 5599 for (i = 0; i < nr_nodes; i++) { 5600 int nr_zones; 5601 5602 pg_data_t *node = NODE_DATA(node_order[i]); 5603 5604 nr_zones = build_zonerefs_node(node, zonerefs); 5605 zonerefs += nr_zones; 5606 } 5607 zonerefs->zone = NULL; 5608 zonerefs->zone_idx = 0; 5609 } 5610 5611 /* 5612 * Build gfp_thisnode zonelists 5613 */ 5614 static void build_thisnode_zonelists(pg_data_t *pgdat) 5615 { 5616 struct zoneref *zonerefs; 5617 int nr_zones; 5618 5619 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5620 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5621 zonerefs += nr_zones; 5622 zonerefs->zone = NULL; 5623 zonerefs->zone_idx = 0; 5624 } 5625 5626 /* 5627 * Build zonelists ordered by zone and nodes within zones. 5628 * This results in conserving DMA zone[s] until all Normal memory is 5629 * exhausted, but results in overflowing to remote node while memory 5630 * may still exist in local DMA zone. 5631 */ 5632 5633 static void build_zonelists(pg_data_t *pgdat) 5634 { 5635 static int node_order[MAX_NUMNODES]; 5636 int node, load, nr_nodes = 0; 5637 nodemask_t used_mask; 5638 int local_node, prev_node; 5639 5640 /* NUMA-aware ordering of nodes */ 5641 local_node = pgdat->node_id; 5642 load = nr_online_nodes; 5643 prev_node = local_node; 5644 nodes_clear(used_mask); 5645 5646 memset(node_order, 0, sizeof(node_order)); 5647 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5648 /* 5649 * We don't want to pressure a particular node. 5650 * So adding penalty to the first node in same 5651 * distance group to make it round-robin. 5652 */ 5653 if (node_distance(local_node, node) != 5654 node_distance(local_node, prev_node)) 5655 node_load[node] = load; 5656 5657 node_order[nr_nodes++] = node; 5658 prev_node = node; 5659 load--; 5660 } 5661 5662 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5663 build_thisnode_zonelists(pgdat); 5664 } 5665 5666 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5667 /* 5668 * Return node id of node used for "local" allocations. 5669 * I.e., first node id of first zone in arg node's generic zonelist. 5670 * Used for initializing percpu 'numa_mem', which is used primarily 5671 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5672 */ 5673 int local_memory_node(int node) 5674 { 5675 struct zoneref *z; 5676 5677 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5678 gfp_zone(GFP_KERNEL), 5679 NULL); 5680 return zone_to_nid(z->zone); 5681 } 5682 #endif 5683 5684 static void setup_min_unmapped_ratio(void); 5685 static void setup_min_slab_ratio(void); 5686 #else /* CONFIG_NUMA */ 5687 5688 static void build_zonelists(pg_data_t *pgdat) 5689 { 5690 int node, local_node; 5691 struct zoneref *zonerefs; 5692 int nr_zones; 5693 5694 local_node = pgdat->node_id; 5695 5696 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5697 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5698 zonerefs += nr_zones; 5699 5700 /* 5701 * Now we build the zonelist so that it contains the zones 5702 * of all the other nodes. 5703 * We don't want to pressure a particular node, so when 5704 * building the zones for node N, we make sure that the 5705 * zones coming right after the local ones are those from 5706 * node N+1 (modulo N) 5707 */ 5708 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5709 if (!node_online(node)) 5710 continue; 5711 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5712 zonerefs += nr_zones; 5713 } 5714 for (node = 0; node < local_node; node++) { 5715 if (!node_online(node)) 5716 continue; 5717 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5718 zonerefs += nr_zones; 5719 } 5720 5721 zonerefs->zone = NULL; 5722 zonerefs->zone_idx = 0; 5723 } 5724 5725 #endif /* CONFIG_NUMA */ 5726 5727 /* 5728 * Boot pageset table. One per cpu which is going to be used for all 5729 * zones and all nodes. The parameters will be set in such a way 5730 * that an item put on a list will immediately be handed over to 5731 * the buddy list. This is safe since pageset manipulation is done 5732 * with interrupts disabled. 5733 * 5734 * The boot_pagesets must be kept even after bootup is complete for 5735 * unused processors and/or zones. They do play a role for bootstrapping 5736 * hotplugged processors. 5737 * 5738 * zoneinfo_show() and maybe other functions do 5739 * not check if the processor is online before following the pageset pointer. 5740 * Other parts of the kernel may not check if the zone is available. 5741 */ 5742 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5743 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5744 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5745 5746 static void __build_all_zonelists(void *data) 5747 { 5748 int nid; 5749 int __maybe_unused cpu; 5750 pg_data_t *self = data; 5751 static DEFINE_SPINLOCK(lock); 5752 5753 spin_lock(&lock); 5754 5755 #ifdef CONFIG_NUMA 5756 memset(node_load, 0, sizeof(node_load)); 5757 #endif 5758 5759 /* 5760 * This node is hotadded and no memory is yet present. So just 5761 * building zonelists is fine - no need to touch other nodes. 5762 */ 5763 if (self && !node_online(self->node_id)) { 5764 build_zonelists(self); 5765 } else { 5766 for_each_online_node(nid) { 5767 pg_data_t *pgdat = NODE_DATA(nid); 5768 5769 build_zonelists(pgdat); 5770 } 5771 5772 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5773 /* 5774 * We now know the "local memory node" for each node-- 5775 * i.e., the node of the first zone in the generic zonelist. 5776 * Set up numa_mem percpu variable for on-line cpus. During 5777 * boot, only the boot cpu should be on-line; we'll init the 5778 * secondary cpus' numa_mem as they come on-line. During 5779 * node/memory hotplug, we'll fixup all on-line cpus. 5780 */ 5781 for_each_online_cpu(cpu) 5782 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5783 #endif 5784 } 5785 5786 spin_unlock(&lock); 5787 } 5788 5789 static noinline void __init 5790 build_all_zonelists_init(void) 5791 { 5792 int cpu; 5793 5794 __build_all_zonelists(NULL); 5795 5796 /* 5797 * Initialize the boot_pagesets that are going to be used 5798 * for bootstrapping processors. The real pagesets for 5799 * each zone will be allocated later when the per cpu 5800 * allocator is available. 5801 * 5802 * boot_pagesets are used also for bootstrapping offline 5803 * cpus if the system is already booted because the pagesets 5804 * are needed to initialize allocators on a specific cpu too. 5805 * F.e. the percpu allocator needs the page allocator which 5806 * needs the percpu allocator in order to allocate its pagesets 5807 * (a chicken-egg dilemma). 5808 */ 5809 for_each_possible_cpu(cpu) 5810 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5811 5812 mminit_verify_zonelist(); 5813 cpuset_init_current_mems_allowed(); 5814 } 5815 5816 /* 5817 * unless system_state == SYSTEM_BOOTING. 5818 * 5819 * __ref due to call of __init annotated helper build_all_zonelists_init 5820 * [protected by SYSTEM_BOOTING]. 5821 */ 5822 void __ref build_all_zonelists(pg_data_t *pgdat) 5823 { 5824 if (system_state == SYSTEM_BOOTING) { 5825 build_all_zonelists_init(); 5826 } else { 5827 __build_all_zonelists(pgdat); 5828 /* cpuset refresh routine should be here */ 5829 } 5830 vm_total_pages = nr_free_pagecache_pages(); 5831 /* 5832 * Disable grouping by mobility if the number of pages in the 5833 * system is too low to allow the mechanism to work. It would be 5834 * more accurate, but expensive to check per-zone. This check is 5835 * made on memory-hotadd so a system can start with mobility 5836 * disabled and enable it later 5837 */ 5838 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5839 page_group_by_mobility_disabled = 1; 5840 else 5841 page_group_by_mobility_disabled = 0; 5842 5843 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5844 nr_online_nodes, 5845 page_group_by_mobility_disabled ? "off" : "on", 5846 vm_total_pages); 5847 #ifdef CONFIG_NUMA 5848 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5849 #endif 5850 } 5851 5852 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5853 static bool __meminit 5854 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5855 { 5856 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5857 static struct memblock_region *r; 5858 5859 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5860 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5861 for_each_memblock(memory, r) { 5862 if (*pfn < memblock_region_memory_end_pfn(r)) 5863 break; 5864 } 5865 } 5866 if (*pfn >= memblock_region_memory_base_pfn(r) && 5867 memblock_is_mirror(r)) { 5868 *pfn = memblock_region_memory_end_pfn(r); 5869 return true; 5870 } 5871 } 5872 #endif 5873 return false; 5874 } 5875 5876 /* 5877 * Initially all pages are reserved - free ones are freed 5878 * up by memblock_free_all() once the early boot process is 5879 * done. Non-atomic initialization, single-pass. 5880 */ 5881 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5882 unsigned long start_pfn, enum memmap_context context, 5883 struct vmem_altmap *altmap) 5884 { 5885 unsigned long pfn, end_pfn = start_pfn + size; 5886 struct page *page; 5887 5888 if (highest_memmap_pfn < end_pfn - 1) 5889 highest_memmap_pfn = end_pfn - 1; 5890 5891 #ifdef CONFIG_ZONE_DEVICE 5892 /* 5893 * Honor reservation requested by the driver for this ZONE_DEVICE 5894 * memory. We limit the total number of pages to initialize to just 5895 * those that might contain the memory mapping. We will defer the 5896 * ZONE_DEVICE page initialization until after we have released 5897 * the hotplug lock. 5898 */ 5899 if (zone == ZONE_DEVICE) { 5900 if (!altmap) 5901 return; 5902 5903 if (start_pfn == altmap->base_pfn) 5904 start_pfn += altmap->reserve; 5905 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5906 } 5907 #endif 5908 5909 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5910 /* 5911 * There can be holes in boot-time mem_map[]s handed to this 5912 * function. They do not exist on hotplugged memory. 5913 */ 5914 if (context == MEMMAP_EARLY) { 5915 if (!early_pfn_valid(pfn)) 5916 continue; 5917 if (!early_pfn_in_nid(pfn, nid)) 5918 continue; 5919 if (overlap_memmap_init(zone, &pfn)) 5920 continue; 5921 if (defer_init(nid, pfn, end_pfn)) 5922 break; 5923 } 5924 5925 page = pfn_to_page(pfn); 5926 __init_single_page(page, pfn, zone, nid); 5927 if (context == MEMMAP_HOTPLUG) 5928 __SetPageReserved(page); 5929 5930 /* 5931 * Mark the block movable so that blocks are reserved for 5932 * movable at startup. This will force kernel allocations 5933 * to reserve their blocks rather than leaking throughout 5934 * the address space during boot when many long-lived 5935 * kernel allocations are made. 5936 * 5937 * bitmap is created for zone's valid pfn range. but memmap 5938 * can be created for invalid pages (for alignment) 5939 * check here not to call set_pageblock_migratetype() against 5940 * pfn out of zone. 5941 */ 5942 if (!(pfn & (pageblock_nr_pages - 1))) { 5943 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5944 cond_resched(); 5945 } 5946 } 5947 } 5948 5949 #ifdef CONFIG_ZONE_DEVICE 5950 void __ref memmap_init_zone_device(struct zone *zone, 5951 unsigned long start_pfn, 5952 unsigned long size, 5953 struct dev_pagemap *pgmap) 5954 { 5955 unsigned long pfn, end_pfn = start_pfn + size; 5956 struct pglist_data *pgdat = zone->zone_pgdat; 5957 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 5958 unsigned long zone_idx = zone_idx(zone); 5959 unsigned long start = jiffies; 5960 int nid = pgdat->node_id; 5961 5962 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 5963 return; 5964 5965 /* 5966 * The call to memmap_init_zone should have already taken care 5967 * of the pages reserved for the memmap, so we can just jump to 5968 * the end of that region and start processing the device pages. 5969 */ 5970 if (altmap) { 5971 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5972 size = end_pfn - start_pfn; 5973 } 5974 5975 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5976 struct page *page = pfn_to_page(pfn); 5977 5978 __init_single_page(page, pfn, zone_idx, nid); 5979 5980 /* 5981 * Mark page reserved as it will need to wait for onlining 5982 * phase for it to be fully associated with a zone. 5983 * 5984 * We can use the non-atomic __set_bit operation for setting 5985 * the flag as we are still initializing the pages. 5986 */ 5987 __SetPageReserved(page); 5988 5989 /* 5990 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 5991 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 5992 * ever freed or placed on a driver-private list. 5993 */ 5994 page->pgmap = pgmap; 5995 page->zone_device_data = NULL; 5996 5997 /* 5998 * Mark the block movable so that blocks are reserved for 5999 * movable at startup. This will force kernel allocations 6000 * to reserve their blocks rather than leaking throughout 6001 * the address space during boot when many long-lived 6002 * kernel allocations are made. 6003 * 6004 * bitmap is created for zone's valid pfn range. but memmap 6005 * can be created for invalid pages (for alignment) 6006 * check here not to call set_pageblock_migratetype() against 6007 * pfn out of zone. 6008 * 6009 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 6010 * because this is done early in section_activate() 6011 */ 6012 if (!(pfn & (pageblock_nr_pages - 1))) { 6013 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6014 cond_resched(); 6015 } 6016 } 6017 6018 pr_info("%s initialised %lu pages in %ums\n", __func__, 6019 size, jiffies_to_msecs(jiffies - start)); 6020 } 6021 6022 #endif 6023 static void __meminit zone_init_free_lists(struct zone *zone) 6024 { 6025 unsigned int order, t; 6026 for_each_migratetype_order(order, t) { 6027 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6028 zone->free_area[order].nr_free = 0; 6029 } 6030 } 6031 6032 void __meminit __weak memmap_init(unsigned long size, int nid, 6033 unsigned long zone, unsigned long start_pfn) 6034 { 6035 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6036 } 6037 6038 static int zone_batchsize(struct zone *zone) 6039 { 6040 #ifdef CONFIG_MMU 6041 int batch; 6042 6043 /* 6044 * The per-cpu-pages pools are set to around 1000th of the 6045 * size of the zone. 6046 */ 6047 batch = zone_managed_pages(zone) / 1024; 6048 /* But no more than a meg. */ 6049 if (batch * PAGE_SIZE > 1024 * 1024) 6050 batch = (1024 * 1024) / PAGE_SIZE; 6051 batch /= 4; /* We effectively *= 4 below */ 6052 if (batch < 1) 6053 batch = 1; 6054 6055 /* 6056 * Clamp the batch to a 2^n - 1 value. Having a power 6057 * of 2 value was found to be more likely to have 6058 * suboptimal cache aliasing properties in some cases. 6059 * 6060 * For example if 2 tasks are alternately allocating 6061 * batches of pages, one task can end up with a lot 6062 * of pages of one half of the possible page colors 6063 * and the other with pages of the other colors. 6064 */ 6065 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6066 6067 return batch; 6068 6069 #else 6070 /* The deferral and batching of frees should be suppressed under NOMMU 6071 * conditions. 6072 * 6073 * The problem is that NOMMU needs to be able to allocate large chunks 6074 * of contiguous memory as there's no hardware page translation to 6075 * assemble apparent contiguous memory from discontiguous pages. 6076 * 6077 * Queueing large contiguous runs of pages for batching, however, 6078 * causes the pages to actually be freed in smaller chunks. As there 6079 * can be a significant delay between the individual batches being 6080 * recycled, this leads to the once large chunks of space being 6081 * fragmented and becoming unavailable for high-order allocations. 6082 */ 6083 return 0; 6084 #endif 6085 } 6086 6087 /* 6088 * pcp->high and pcp->batch values are related and dependent on one another: 6089 * ->batch must never be higher then ->high. 6090 * The following function updates them in a safe manner without read side 6091 * locking. 6092 * 6093 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6094 * those fields changing asynchronously (acording the the above rule). 6095 * 6096 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6097 * outside of boot time (or some other assurance that no concurrent updaters 6098 * exist). 6099 */ 6100 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6101 unsigned long batch) 6102 { 6103 /* start with a fail safe value for batch */ 6104 pcp->batch = 1; 6105 smp_wmb(); 6106 6107 /* Update high, then batch, in order */ 6108 pcp->high = high; 6109 smp_wmb(); 6110 6111 pcp->batch = batch; 6112 } 6113 6114 /* a companion to pageset_set_high() */ 6115 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6116 { 6117 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6118 } 6119 6120 static void pageset_init(struct per_cpu_pageset *p) 6121 { 6122 struct per_cpu_pages *pcp; 6123 int migratetype; 6124 6125 memset(p, 0, sizeof(*p)); 6126 6127 pcp = &p->pcp; 6128 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6129 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6130 } 6131 6132 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6133 { 6134 pageset_init(p); 6135 pageset_set_batch(p, batch); 6136 } 6137 6138 /* 6139 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6140 * to the value high for the pageset p. 6141 */ 6142 static void pageset_set_high(struct per_cpu_pageset *p, 6143 unsigned long high) 6144 { 6145 unsigned long batch = max(1UL, high / 4); 6146 if ((high / 4) > (PAGE_SHIFT * 8)) 6147 batch = PAGE_SHIFT * 8; 6148 6149 pageset_update(&p->pcp, high, batch); 6150 } 6151 6152 static void pageset_set_high_and_batch(struct zone *zone, 6153 struct per_cpu_pageset *pcp) 6154 { 6155 if (percpu_pagelist_fraction) 6156 pageset_set_high(pcp, 6157 (zone_managed_pages(zone) / 6158 percpu_pagelist_fraction)); 6159 else 6160 pageset_set_batch(pcp, zone_batchsize(zone)); 6161 } 6162 6163 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6164 { 6165 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6166 6167 pageset_init(pcp); 6168 pageset_set_high_and_batch(zone, pcp); 6169 } 6170 6171 void __meminit setup_zone_pageset(struct zone *zone) 6172 { 6173 int cpu; 6174 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6175 for_each_possible_cpu(cpu) 6176 zone_pageset_init(zone, cpu); 6177 } 6178 6179 /* 6180 * Allocate per cpu pagesets and initialize them. 6181 * Before this call only boot pagesets were available. 6182 */ 6183 void __init setup_per_cpu_pageset(void) 6184 { 6185 struct pglist_data *pgdat; 6186 struct zone *zone; 6187 6188 for_each_populated_zone(zone) 6189 setup_zone_pageset(zone); 6190 6191 for_each_online_pgdat(pgdat) 6192 pgdat->per_cpu_nodestats = 6193 alloc_percpu(struct per_cpu_nodestat); 6194 } 6195 6196 static __meminit void zone_pcp_init(struct zone *zone) 6197 { 6198 /* 6199 * per cpu subsystem is not up at this point. The following code 6200 * relies on the ability of the linker to provide the 6201 * offset of a (static) per cpu variable into the per cpu area. 6202 */ 6203 zone->pageset = &boot_pageset; 6204 6205 if (populated_zone(zone)) 6206 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6207 zone->name, zone->present_pages, 6208 zone_batchsize(zone)); 6209 } 6210 6211 void __meminit init_currently_empty_zone(struct zone *zone, 6212 unsigned long zone_start_pfn, 6213 unsigned long size) 6214 { 6215 struct pglist_data *pgdat = zone->zone_pgdat; 6216 int zone_idx = zone_idx(zone) + 1; 6217 6218 if (zone_idx > pgdat->nr_zones) 6219 pgdat->nr_zones = zone_idx; 6220 6221 zone->zone_start_pfn = zone_start_pfn; 6222 6223 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6224 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6225 pgdat->node_id, 6226 (unsigned long)zone_idx(zone), 6227 zone_start_pfn, (zone_start_pfn + size)); 6228 6229 zone_init_free_lists(zone); 6230 zone->initialized = 1; 6231 } 6232 6233 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6234 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6235 6236 /* 6237 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6238 */ 6239 int __meminit __early_pfn_to_nid(unsigned long pfn, 6240 struct mminit_pfnnid_cache *state) 6241 { 6242 unsigned long start_pfn, end_pfn; 6243 int nid; 6244 6245 if (state->last_start <= pfn && pfn < state->last_end) 6246 return state->last_nid; 6247 6248 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6249 if (nid != NUMA_NO_NODE) { 6250 state->last_start = start_pfn; 6251 state->last_end = end_pfn; 6252 state->last_nid = nid; 6253 } 6254 6255 return nid; 6256 } 6257 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6258 6259 /** 6260 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6261 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6262 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6263 * 6264 * If an architecture guarantees that all ranges registered contain no holes 6265 * and may be freed, this this function may be used instead of calling 6266 * memblock_free_early_nid() manually. 6267 */ 6268 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6269 { 6270 unsigned long start_pfn, end_pfn; 6271 int i, this_nid; 6272 6273 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6274 start_pfn = min(start_pfn, max_low_pfn); 6275 end_pfn = min(end_pfn, max_low_pfn); 6276 6277 if (start_pfn < end_pfn) 6278 memblock_free_early_nid(PFN_PHYS(start_pfn), 6279 (end_pfn - start_pfn) << PAGE_SHIFT, 6280 this_nid); 6281 } 6282 } 6283 6284 /** 6285 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6286 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6287 * 6288 * If an architecture guarantees that all ranges registered contain no holes and may 6289 * be freed, this function may be used instead of calling memory_present() manually. 6290 */ 6291 void __init sparse_memory_present_with_active_regions(int nid) 6292 { 6293 unsigned long start_pfn, end_pfn; 6294 int i, this_nid; 6295 6296 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6297 memory_present(this_nid, start_pfn, end_pfn); 6298 } 6299 6300 /** 6301 * get_pfn_range_for_nid - Return the start and end page frames for a node 6302 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6303 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6304 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6305 * 6306 * It returns the start and end page frame of a node based on information 6307 * provided by memblock_set_node(). If called for a node 6308 * with no available memory, a warning is printed and the start and end 6309 * PFNs will be 0. 6310 */ 6311 void __init get_pfn_range_for_nid(unsigned int nid, 6312 unsigned long *start_pfn, unsigned long *end_pfn) 6313 { 6314 unsigned long this_start_pfn, this_end_pfn; 6315 int i; 6316 6317 *start_pfn = -1UL; 6318 *end_pfn = 0; 6319 6320 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6321 *start_pfn = min(*start_pfn, this_start_pfn); 6322 *end_pfn = max(*end_pfn, this_end_pfn); 6323 } 6324 6325 if (*start_pfn == -1UL) 6326 *start_pfn = 0; 6327 } 6328 6329 /* 6330 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6331 * assumption is made that zones within a node are ordered in monotonic 6332 * increasing memory addresses so that the "highest" populated zone is used 6333 */ 6334 static void __init find_usable_zone_for_movable(void) 6335 { 6336 int zone_index; 6337 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6338 if (zone_index == ZONE_MOVABLE) 6339 continue; 6340 6341 if (arch_zone_highest_possible_pfn[zone_index] > 6342 arch_zone_lowest_possible_pfn[zone_index]) 6343 break; 6344 } 6345 6346 VM_BUG_ON(zone_index == -1); 6347 movable_zone = zone_index; 6348 } 6349 6350 /* 6351 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6352 * because it is sized independent of architecture. Unlike the other zones, 6353 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6354 * in each node depending on the size of each node and how evenly kernelcore 6355 * is distributed. This helper function adjusts the zone ranges 6356 * provided by the architecture for a given node by using the end of the 6357 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6358 * zones within a node are in order of monotonic increases memory addresses 6359 */ 6360 static void __init adjust_zone_range_for_zone_movable(int nid, 6361 unsigned long zone_type, 6362 unsigned long node_start_pfn, 6363 unsigned long node_end_pfn, 6364 unsigned long *zone_start_pfn, 6365 unsigned long *zone_end_pfn) 6366 { 6367 /* Only adjust if ZONE_MOVABLE is on this node */ 6368 if (zone_movable_pfn[nid]) { 6369 /* Size ZONE_MOVABLE */ 6370 if (zone_type == ZONE_MOVABLE) { 6371 *zone_start_pfn = zone_movable_pfn[nid]; 6372 *zone_end_pfn = min(node_end_pfn, 6373 arch_zone_highest_possible_pfn[movable_zone]); 6374 6375 /* Adjust for ZONE_MOVABLE starting within this range */ 6376 } else if (!mirrored_kernelcore && 6377 *zone_start_pfn < zone_movable_pfn[nid] && 6378 *zone_end_pfn > zone_movable_pfn[nid]) { 6379 *zone_end_pfn = zone_movable_pfn[nid]; 6380 6381 /* Check if this whole range is within ZONE_MOVABLE */ 6382 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6383 *zone_start_pfn = *zone_end_pfn; 6384 } 6385 } 6386 6387 /* 6388 * Return the number of pages a zone spans in a node, including holes 6389 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6390 */ 6391 static unsigned long __init zone_spanned_pages_in_node(int nid, 6392 unsigned long zone_type, 6393 unsigned long node_start_pfn, 6394 unsigned long node_end_pfn, 6395 unsigned long *zone_start_pfn, 6396 unsigned long *zone_end_pfn, 6397 unsigned long *ignored) 6398 { 6399 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6400 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6401 /* When hotadd a new node from cpu_up(), the node should be empty */ 6402 if (!node_start_pfn && !node_end_pfn) 6403 return 0; 6404 6405 /* Get the start and end of the zone */ 6406 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6407 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6408 adjust_zone_range_for_zone_movable(nid, zone_type, 6409 node_start_pfn, node_end_pfn, 6410 zone_start_pfn, zone_end_pfn); 6411 6412 /* Check that this node has pages within the zone's required range */ 6413 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6414 return 0; 6415 6416 /* Move the zone boundaries inside the node if necessary */ 6417 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6418 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6419 6420 /* Return the spanned pages */ 6421 return *zone_end_pfn - *zone_start_pfn; 6422 } 6423 6424 /* 6425 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6426 * then all holes in the requested range will be accounted for. 6427 */ 6428 unsigned long __init __absent_pages_in_range(int nid, 6429 unsigned long range_start_pfn, 6430 unsigned long range_end_pfn) 6431 { 6432 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6433 unsigned long start_pfn, end_pfn; 6434 int i; 6435 6436 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6437 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6438 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6439 nr_absent -= end_pfn - start_pfn; 6440 } 6441 return nr_absent; 6442 } 6443 6444 /** 6445 * absent_pages_in_range - Return number of page frames in holes within a range 6446 * @start_pfn: The start PFN to start searching for holes 6447 * @end_pfn: The end PFN to stop searching for holes 6448 * 6449 * Return: the number of pages frames in memory holes within a range. 6450 */ 6451 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6452 unsigned long end_pfn) 6453 { 6454 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6455 } 6456 6457 /* Return the number of page frames in holes in a zone on a node */ 6458 static unsigned long __init zone_absent_pages_in_node(int nid, 6459 unsigned long zone_type, 6460 unsigned long node_start_pfn, 6461 unsigned long node_end_pfn, 6462 unsigned long *ignored) 6463 { 6464 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6465 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6466 unsigned long zone_start_pfn, zone_end_pfn; 6467 unsigned long nr_absent; 6468 6469 /* When hotadd a new node from cpu_up(), the node should be empty */ 6470 if (!node_start_pfn && !node_end_pfn) 6471 return 0; 6472 6473 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6474 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6475 6476 adjust_zone_range_for_zone_movable(nid, zone_type, 6477 node_start_pfn, node_end_pfn, 6478 &zone_start_pfn, &zone_end_pfn); 6479 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6480 6481 /* 6482 * ZONE_MOVABLE handling. 6483 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6484 * and vice versa. 6485 */ 6486 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6487 unsigned long start_pfn, end_pfn; 6488 struct memblock_region *r; 6489 6490 for_each_memblock(memory, r) { 6491 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6492 zone_start_pfn, zone_end_pfn); 6493 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6494 zone_start_pfn, zone_end_pfn); 6495 6496 if (zone_type == ZONE_MOVABLE && 6497 memblock_is_mirror(r)) 6498 nr_absent += end_pfn - start_pfn; 6499 6500 if (zone_type == ZONE_NORMAL && 6501 !memblock_is_mirror(r)) 6502 nr_absent += end_pfn - start_pfn; 6503 } 6504 } 6505 6506 return nr_absent; 6507 } 6508 6509 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6510 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6511 unsigned long zone_type, 6512 unsigned long node_start_pfn, 6513 unsigned long node_end_pfn, 6514 unsigned long *zone_start_pfn, 6515 unsigned long *zone_end_pfn, 6516 unsigned long *zones_size) 6517 { 6518 unsigned int zone; 6519 6520 *zone_start_pfn = node_start_pfn; 6521 for (zone = 0; zone < zone_type; zone++) 6522 *zone_start_pfn += zones_size[zone]; 6523 6524 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6525 6526 return zones_size[zone_type]; 6527 } 6528 6529 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6530 unsigned long zone_type, 6531 unsigned long node_start_pfn, 6532 unsigned long node_end_pfn, 6533 unsigned long *zholes_size) 6534 { 6535 if (!zholes_size) 6536 return 0; 6537 6538 return zholes_size[zone_type]; 6539 } 6540 6541 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6542 6543 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6544 unsigned long node_start_pfn, 6545 unsigned long node_end_pfn, 6546 unsigned long *zones_size, 6547 unsigned long *zholes_size) 6548 { 6549 unsigned long realtotalpages = 0, totalpages = 0; 6550 enum zone_type i; 6551 6552 for (i = 0; i < MAX_NR_ZONES; i++) { 6553 struct zone *zone = pgdat->node_zones + i; 6554 unsigned long zone_start_pfn, zone_end_pfn; 6555 unsigned long size, real_size; 6556 6557 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6558 node_start_pfn, 6559 node_end_pfn, 6560 &zone_start_pfn, 6561 &zone_end_pfn, 6562 zones_size); 6563 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6564 node_start_pfn, node_end_pfn, 6565 zholes_size); 6566 if (size) 6567 zone->zone_start_pfn = zone_start_pfn; 6568 else 6569 zone->zone_start_pfn = 0; 6570 zone->spanned_pages = size; 6571 zone->present_pages = real_size; 6572 6573 totalpages += size; 6574 realtotalpages += real_size; 6575 } 6576 6577 pgdat->node_spanned_pages = totalpages; 6578 pgdat->node_present_pages = realtotalpages; 6579 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6580 realtotalpages); 6581 } 6582 6583 #ifndef CONFIG_SPARSEMEM 6584 /* 6585 * Calculate the size of the zone->blockflags rounded to an unsigned long 6586 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6587 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6588 * round what is now in bits to nearest long in bits, then return it in 6589 * bytes. 6590 */ 6591 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6592 { 6593 unsigned long usemapsize; 6594 6595 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6596 usemapsize = roundup(zonesize, pageblock_nr_pages); 6597 usemapsize = usemapsize >> pageblock_order; 6598 usemapsize *= NR_PAGEBLOCK_BITS; 6599 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6600 6601 return usemapsize / 8; 6602 } 6603 6604 static void __ref setup_usemap(struct pglist_data *pgdat, 6605 struct zone *zone, 6606 unsigned long zone_start_pfn, 6607 unsigned long zonesize) 6608 { 6609 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6610 zone->pageblock_flags = NULL; 6611 if (usemapsize) { 6612 zone->pageblock_flags = 6613 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6614 pgdat->node_id); 6615 if (!zone->pageblock_flags) 6616 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6617 usemapsize, zone->name, pgdat->node_id); 6618 } 6619 } 6620 #else 6621 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6622 unsigned long zone_start_pfn, unsigned long zonesize) {} 6623 #endif /* CONFIG_SPARSEMEM */ 6624 6625 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6626 6627 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6628 void __init set_pageblock_order(void) 6629 { 6630 unsigned int order; 6631 6632 /* Check that pageblock_nr_pages has not already been setup */ 6633 if (pageblock_order) 6634 return; 6635 6636 if (HPAGE_SHIFT > PAGE_SHIFT) 6637 order = HUGETLB_PAGE_ORDER; 6638 else 6639 order = MAX_ORDER - 1; 6640 6641 /* 6642 * Assume the largest contiguous order of interest is a huge page. 6643 * This value may be variable depending on boot parameters on IA64 and 6644 * powerpc. 6645 */ 6646 pageblock_order = order; 6647 } 6648 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6649 6650 /* 6651 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6652 * is unused as pageblock_order is set at compile-time. See 6653 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6654 * the kernel config 6655 */ 6656 void __init set_pageblock_order(void) 6657 { 6658 } 6659 6660 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6661 6662 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6663 unsigned long present_pages) 6664 { 6665 unsigned long pages = spanned_pages; 6666 6667 /* 6668 * Provide a more accurate estimation if there are holes within 6669 * the zone and SPARSEMEM is in use. If there are holes within the 6670 * zone, each populated memory region may cost us one or two extra 6671 * memmap pages due to alignment because memmap pages for each 6672 * populated regions may not be naturally aligned on page boundary. 6673 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6674 */ 6675 if (spanned_pages > present_pages + (present_pages >> 4) && 6676 IS_ENABLED(CONFIG_SPARSEMEM)) 6677 pages = present_pages; 6678 6679 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6680 } 6681 6682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6683 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6684 { 6685 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6686 6687 spin_lock_init(&ds_queue->split_queue_lock); 6688 INIT_LIST_HEAD(&ds_queue->split_queue); 6689 ds_queue->split_queue_len = 0; 6690 } 6691 #else 6692 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6693 #endif 6694 6695 #ifdef CONFIG_COMPACTION 6696 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6697 { 6698 init_waitqueue_head(&pgdat->kcompactd_wait); 6699 } 6700 #else 6701 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6702 #endif 6703 6704 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6705 { 6706 pgdat_resize_init(pgdat); 6707 6708 pgdat_init_split_queue(pgdat); 6709 pgdat_init_kcompactd(pgdat); 6710 6711 init_waitqueue_head(&pgdat->kswapd_wait); 6712 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6713 6714 pgdat_page_ext_init(pgdat); 6715 spin_lock_init(&pgdat->lru_lock); 6716 lruvec_init(&pgdat->__lruvec); 6717 } 6718 6719 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6720 unsigned long remaining_pages) 6721 { 6722 atomic_long_set(&zone->managed_pages, remaining_pages); 6723 zone_set_nid(zone, nid); 6724 zone->name = zone_names[idx]; 6725 zone->zone_pgdat = NODE_DATA(nid); 6726 spin_lock_init(&zone->lock); 6727 zone_seqlock_init(zone); 6728 zone_pcp_init(zone); 6729 } 6730 6731 /* 6732 * Set up the zone data structures 6733 * - init pgdat internals 6734 * - init all zones belonging to this node 6735 * 6736 * NOTE: this function is only called during memory hotplug 6737 */ 6738 #ifdef CONFIG_MEMORY_HOTPLUG 6739 void __ref free_area_init_core_hotplug(int nid) 6740 { 6741 enum zone_type z; 6742 pg_data_t *pgdat = NODE_DATA(nid); 6743 6744 pgdat_init_internals(pgdat); 6745 for (z = 0; z < MAX_NR_ZONES; z++) 6746 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6747 } 6748 #endif 6749 6750 /* 6751 * Set up the zone data structures: 6752 * - mark all pages reserved 6753 * - mark all memory queues empty 6754 * - clear the memory bitmaps 6755 * 6756 * NOTE: pgdat should get zeroed by caller. 6757 * NOTE: this function is only called during early init. 6758 */ 6759 static void __init free_area_init_core(struct pglist_data *pgdat) 6760 { 6761 enum zone_type j; 6762 int nid = pgdat->node_id; 6763 6764 pgdat_init_internals(pgdat); 6765 pgdat->per_cpu_nodestats = &boot_nodestats; 6766 6767 for (j = 0; j < MAX_NR_ZONES; j++) { 6768 struct zone *zone = pgdat->node_zones + j; 6769 unsigned long size, freesize, memmap_pages; 6770 unsigned long zone_start_pfn = zone->zone_start_pfn; 6771 6772 size = zone->spanned_pages; 6773 freesize = zone->present_pages; 6774 6775 /* 6776 * Adjust freesize so that it accounts for how much memory 6777 * is used by this zone for memmap. This affects the watermark 6778 * and per-cpu initialisations 6779 */ 6780 memmap_pages = calc_memmap_size(size, freesize); 6781 if (!is_highmem_idx(j)) { 6782 if (freesize >= memmap_pages) { 6783 freesize -= memmap_pages; 6784 if (memmap_pages) 6785 printk(KERN_DEBUG 6786 " %s zone: %lu pages used for memmap\n", 6787 zone_names[j], memmap_pages); 6788 } else 6789 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6790 zone_names[j], memmap_pages, freesize); 6791 } 6792 6793 /* Account for reserved pages */ 6794 if (j == 0 && freesize > dma_reserve) { 6795 freesize -= dma_reserve; 6796 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6797 zone_names[0], dma_reserve); 6798 } 6799 6800 if (!is_highmem_idx(j)) 6801 nr_kernel_pages += freesize; 6802 /* Charge for highmem memmap if there are enough kernel pages */ 6803 else if (nr_kernel_pages > memmap_pages * 2) 6804 nr_kernel_pages -= memmap_pages; 6805 nr_all_pages += freesize; 6806 6807 /* 6808 * Set an approximate value for lowmem here, it will be adjusted 6809 * when the bootmem allocator frees pages into the buddy system. 6810 * And all highmem pages will be managed by the buddy system. 6811 */ 6812 zone_init_internals(zone, j, nid, freesize); 6813 6814 if (!size) 6815 continue; 6816 6817 set_pageblock_order(); 6818 setup_usemap(pgdat, zone, zone_start_pfn, size); 6819 init_currently_empty_zone(zone, zone_start_pfn, size); 6820 memmap_init(size, nid, j, zone_start_pfn); 6821 } 6822 } 6823 6824 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6825 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6826 { 6827 unsigned long __maybe_unused start = 0; 6828 unsigned long __maybe_unused offset = 0; 6829 6830 /* Skip empty nodes */ 6831 if (!pgdat->node_spanned_pages) 6832 return; 6833 6834 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6835 offset = pgdat->node_start_pfn - start; 6836 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6837 if (!pgdat->node_mem_map) { 6838 unsigned long size, end; 6839 struct page *map; 6840 6841 /* 6842 * The zone's endpoints aren't required to be MAX_ORDER 6843 * aligned but the node_mem_map endpoints must be in order 6844 * for the buddy allocator to function correctly. 6845 */ 6846 end = pgdat_end_pfn(pgdat); 6847 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6848 size = (end - start) * sizeof(struct page); 6849 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6850 pgdat->node_id); 6851 if (!map) 6852 panic("Failed to allocate %ld bytes for node %d memory map\n", 6853 size, pgdat->node_id); 6854 pgdat->node_mem_map = map + offset; 6855 } 6856 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6857 __func__, pgdat->node_id, (unsigned long)pgdat, 6858 (unsigned long)pgdat->node_mem_map); 6859 #ifndef CONFIG_NEED_MULTIPLE_NODES 6860 /* 6861 * With no DISCONTIG, the global mem_map is just set as node 0's 6862 */ 6863 if (pgdat == NODE_DATA(0)) { 6864 mem_map = NODE_DATA(0)->node_mem_map; 6865 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6866 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6867 mem_map -= offset; 6868 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6869 } 6870 #endif 6871 } 6872 #else 6873 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6874 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6875 6876 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6877 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6878 { 6879 pgdat->first_deferred_pfn = ULONG_MAX; 6880 } 6881 #else 6882 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6883 #endif 6884 6885 void __init free_area_init_node(int nid, unsigned long *zones_size, 6886 unsigned long node_start_pfn, 6887 unsigned long *zholes_size) 6888 { 6889 pg_data_t *pgdat = NODE_DATA(nid); 6890 unsigned long start_pfn = 0; 6891 unsigned long end_pfn = 0; 6892 6893 /* pg_data_t should be reset to zero when it's allocated */ 6894 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6895 6896 pgdat->node_id = nid; 6897 pgdat->node_start_pfn = node_start_pfn; 6898 pgdat->per_cpu_nodestats = NULL; 6899 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6900 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6901 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6902 (u64)start_pfn << PAGE_SHIFT, 6903 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6904 #else 6905 start_pfn = node_start_pfn; 6906 #endif 6907 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6908 zones_size, zholes_size); 6909 6910 alloc_node_mem_map(pgdat); 6911 pgdat_set_deferred_range(pgdat); 6912 6913 free_area_init_core(pgdat); 6914 } 6915 6916 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6917 /* 6918 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6919 * pages zeroed 6920 */ 6921 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6922 { 6923 unsigned long pfn; 6924 u64 pgcnt = 0; 6925 6926 for (pfn = spfn; pfn < epfn; pfn++) { 6927 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6928 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6929 + pageblock_nr_pages - 1; 6930 continue; 6931 } 6932 mm_zero_struct_page(pfn_to_page(pfn)); 6933 pgcnt++; 6934 } 6935 6936 return pgcnt; 6937 } 6938 6939 /* 6940 * Only struct pages that are backed by physical memory are zeroed and 6941 * initialized by going through __init_single_page(). But, there are some 6942 * struct pages which are reserved in memblock allocator and their fields 6943 * may be accessed (for example page_to_pfn() on some configuration accesses 6944 * flags). We must explicitly zero those struct pages. 6945 * 6946 * This function also addresses a similar issue where struct pages are left 6947 * uninitialized because the physical address range is not covered by 6948 * memblock.memory or memblock.reserved. That could happen when memblock 6949 * layout is manually configured via memmap=. 6950 */ 6951 void __init zero_resv_unavail(void) 6952 { 6953 phys_addr_t start, end; 6954 u64 i, pgcnt; 6955 phys_addr_t next = 0; 6956 6957 /* 6958 * Loop through unavailable ranges not covered by memblock.memory. 6959 */ 6960 pgcnt = 0; 6961 for_each_mem_range(i, &memblock.memory, NULL, 6962 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6963 if (next < start) 6964 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6965 next = end; 6966 } 6967 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6968 6969 /* 6970 * Struct pages that do not have backing memory. This could be because 6971 * firmware is using some of this memory, or for some other reasons. 6972 */ 6973 if (pgcnt) 6974 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6975 } 6976 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6977 6978 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6979 6980 #if MAX_NUMNODES > 1 6981 /* 6982 * Figure out the number of possible node ids. 6983 */ 6984 void __init setup_nr_node_ids(void) 6985 { 6986 unsigned int highest; 6987 6988 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6989 nr_node_ids = highest + 1; 6990 } 6991 #endif 6992 6993 /** 6994 * node_map_pfn_alignment - determine the maximum internode alignment 6995 * 6996 * This function should be called after node map is populated and sorted. 6997 * It calculates the maximum power of two alignment which can distinguish 6998 * all the nodes. 6999 * 7000 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7001 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7002 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7003 * shifted, 1GiB is enough and this function will indicate so. 7004 * 7005 * This is used to test whether pfn -> nid mapping of the chosen memory 7006 * model has fine enough granularity to avoid incorrect mapping for the 7007 * populated node map. 7008 * 7009 * Return: the determined alignment in pfn's. 0 if there is no alignment 7010 * requirement (single node). 7011 */ 7012 unsigned long __init node_map_pfn_alignment(void) 7013 { 7014 unsigned long accl_mask = 0, last_end = 0; 7015 unsigned long start, end, mask; 7016 int last_nid = NUMA_NO_NODE; 7017 int i, nid; 7018 7019 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7020 if (!start || last_nid < 0 || last_nid == nid) { 7021 last_nid = nid; 7022 last_end = end; 7023 continue; 7024 } 7025 7026 /* 7027 * Start with a mask granular enough to pin-point to the 7028 * start pfn and tick off bits one-by-one until it becomes 7029 * too coarse to separate the current node from the last. 7030 */ 7031 mask = ~((1 << __ffs(start)) - 1); 7032 while (mask && last_end <= (start & (mask << 1))) 7033 mask <<= 1; 7034 7035 /* accumulate all internode masks */ 7036 accl_mask |= mask; 7037 } 7038 7039 /* convert mask to number of pages */ 7040 return ~accl_mask + 1; 7041 } 7042 7043 /* Find the lowest pfn for a node */ 7044 static unsigned long __init find_min_pfn_for_node(int nid) 7045 { 7046 unsigned long min_pfn = ULONG_MAX; 7047 unsigned long start_pfn; 7048 int i; 7049 7050 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7051 min_pfn = min(min_pfn, start_pfn); 7052 7053 if (min_pfn == ULONG_MAX) { 7054 pr_warn("Could not find start_pfn for node %d\n", nid); 7055 return 0; 7056 } 7057 7058 return min_pfn; 7059 } 7060 7061 /** 7062 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7063 * 7064 * Return: the minimum PFN based on information provided via 7065 * memblock_set_node(). 7066 */ 7067 unsigned long __init find_min_pfn_with_active_regions(void) 7068 { 7069 return find_min_pfn_for_node(MAX_NUMNODES); 7070 } 7071 7072 /* 7073 * early_calculate_totalpages() 7074 * Sum pages in active regions for movable zone. 7075 * Populate N_MEMORY for calculating usable_nodes. 7076 */ 7077 static unsigned long __init early_calculate_totalpages(void) 7078 { 7079 unsigned long totalpages = 0; 7080 unsigned long start_pfn, end_pfn; 7081 int i, nid; 7082 7083 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7084 unsigned long pages = end_pfn - start_pfn; 7085 7086 totalpages += pages; 7087 if (pages) 7088 node_set_state(nid, N_MEMORY); 7089 } 7090 return totalpages; 7091 } 7092 7093 /* 7094 * Find the PFN the Movable zone begins in each node. Kernel memory 7095 * is spread evenly between nodes as long as the nodes have enough 7096 * memory. When they don't, some nodes will have more kernelcore than 7097 * others 7098 */ 7099 static void __init find_zone_movable_pfns_for_nodes(void) 7100 { 7101 int i, nid; 7102 unsigned long usable_startpfn; 7103 unsigned long kernelcore_node, kernelcore_remaining; 7104 /* save the state before borrow the nodemask */ 7105 nodemask_t saved_node_state = node_states[N_MEMORY]; 7106 unsigned long totalpages = early_calculate_totalpages(); 7107 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7108 struct memblock_region *r; 7109 7110 /* Need to find movable_zone earlier when movable_node is specified. */ 7111 find_usable_zone_for_movable(); 7112 7113 /* 7114 * If movable_node is specified, ignore kernelcore and movablecore 7115 * options. 7116 */ 7117 if (movable_node_is_enabled()) { 7118 for_each_memblock(memory, r) { 7119 if (!memblock_is_hotpluggable(r)) 7120 continue; 7121 7122 nid = r->nid; 7123 7124 usable_startpfn = PFN_DOWN(r->base); 7125 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7126 min(usable_startpfn, zone_movable_pfn[nid]) : 7127 usable_startpfn; 7128 } 7129 7130 goto out2; 7131 } 7132 7133 /* 7134 * If kernelcore=mirror is specified, ignore movablecore option 7135 */ 7136 if (mirrored_kernelcore) { 7137 bool mem_below_4gb_not_mirrored = false; 7138 7139 for_each_memblock(memory, r) { 7140 if (memblock_is_mirror(r)) 7141 continue; 7142 7143 nid = r->nid; 7144 7145 usable_startpfn = memblock_region_memory_base_pfn(r); 7146 7147 if (usable_startpfn < 0x100000) { 7148 mem_below_4gb_not_mirrored = true; 7149 continue; 7150 } 7151 7152 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7153 min(usable_startpfn, zone_movable_pfn[nid]) : 7154 usable_startpfn; 7155 } 7156 7157 if (mem_below_4gb_not_mirrored) 7158 pr_warn("This configuration results in unmirrored kernel memory."); 7159 7160 goto out2; 7161 } 7162 7163 /* 7164 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7165 * amount of necessary memory. 7166 */ 7167 if (required_kernelcore_percent) 7168 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7169 10000UL; 7170 if (required_movablecore_percent) 7171 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7172 10000UL; 7173 7174 /* 7175 * If movablecore= was specified, calculate what size of 7176 * kernelcore that corresponds so that memory usable for 7177 * any allocation type is evenly spread. If both kernelcore 7178 * and movablecore are specified, then the value of kernelcore 7179 * will be used for required_kernelcore if it's greater than 7180 * what movablecore would have allowed. 7181 */ 7182 if (required_movablecore) { 7183 unsigned long corepages; 7184 7185 /* 7186 * Round-up so that ZONE_MOVABLE is at least as large as what 7187 * was requested by the user 7188 */ 7189 required_movablecore = 7190 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7191 required_movablecore = min(totalpages, required_movablecore); 7192 corepages = totalpages - required_movablecore; 7193 7194 required_kernelcore = max(required_kernelcore, corepages); 7195 } 7196 7197 /* 7198 * If kernelcore was not specified or kernelcore size is larger 7199 * than totalpages, there is no ZONE_MOVABLE. 7200 */ 7201 if (!required_kernelcore || required_kernelcore >= totalpages) 7202 goto out; 7203 7204 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7205 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7206 7207 restart: 7208 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7209 kernelcore_node = required_kernelcore / usable_nodes; 7210 for_each_node_state(nid, N_MEMORY) { 7211 unsigned long start_pfn, end_pfn; 7212 7213 /* 7214 * Recalculate kernelcore_node if the division per node 7215 * now exceeds what is necessary to satisfy the requested 7216 * amount of memory for the kernel 7217 */ 7218 if (required_kernelcore < kernelcore_node) 7219 kernelcore_node = required_kernelcore / usable_nodes; 7220 7221 /* 7222 * As the map is walked, we track how much memory is usable 7223 * by the kernel using kernelcore_remaining. When it is 7224 * 0, the rest of the node is usable by ZONE_MOVABLE 7225 */ 7226 kernelcore_remaining = kernelcore_node; 7227 7228 /* Go through each range of PFNs within this node */ 7229 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7230 unsigned long size_pages; 7231 7232 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7233 if (start_pfn >= end_pfn) 7234 continue; 7235 7236 /* Account for what is only usable for kernelcore */ 7237 if (start_pfn < usable_startpfn) { 7238 unsigned long kernel_pages; 7239 kernel_pages = min(end_pfn, usable_startpfn) 7240 - start_pfn; 7241 7242 kernelcore_remaining -= min(kernel_pages, 7243 kernelcore_remaining); 7244 required_kernelcore -= min(kernel_pages, 7245 required_kernelcore); 7246 7247 /* Continue if range is now fully accounted */ 7248 if (end_pfn <= usable_startpfn) { 7249 7250 /* 7251 * Push zone_movable_pfn to the end so 7252 * that if we have to rebalance 7253 * kernelcore across nodes, we will 7254 * not double account here 7255 */ 7256 zone_movable_pfn[nid] = end_pfn; 7257 continue; 7258 } 7259 start_pfn = usable_startpfn; 7260 } 7261 7262 /* 7263 * The usable PFN range for ZONE_MOVABLE is from 7264 * start_pfn->end_pfn. Calculate size_pages as the 7265 * number of pages used as kernelcore 7266 */ 7267 size_pages = end_pfn - start_pfn; 7268 if (size_pages > kernelcore_remaining) 7269 size_pages = kernelcore_remaining; 7270 zone_movable_pfn[nid] = start_pfn + size_pages; 7271 7272 /* 7273 * Some kernelcore has been met, update counts and 7274 * break if the kernelcore for this node has been 7275 * satisfied 7276 */ 7277 required_kernelcore -= min(required_kernelcore, 7278 size_pages); 7279 kernelcore_remaining -= size_pages; 7280 if (!kernelcore_remaining) 7281 break; 7282 } 7283 } 7284 7285 /* 7286 * If there is still required_kernelcore, we do another pass with one 7287 * less node in the count. This will push zone_movable_pfn[nid] further 7288 * along on the nodes that still have memory until kernelcore is 7289 * satisfied 7290 */ 7291 usable_nodes--; 7292 if (usable_nodes && required_kernelcore > usable_nodes) 7293 goto restart; 7294 7295 out2: 7296 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7297 for (nid = 0; nid < MAX_NUMNODES; nid++) 7298 zone_movable_pfn[nid] = 7299 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7300 7301 out: 7302 /* restore the node_state */ 7303 node_states[N_MEMORY] = saved_node_state; 7304 } 7305 7306 /* Any regular or high memory on that node ? */ 7307 static void check_for_memory(pg_data_t *pgdat, int nid) 7308 { 7309 enum zone_type zone_type; 7310 7311 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7312 struct zone *zone = &pgdat->node_zones[zone_type]; 7313 if (populated_zone(zone)) { 7314 if (IS_ENABLED(CONFIG_HIGHMEM)) 7315 node_set_state(nid, N_HIGH_MEMORY); 7316 if (zone_type <= ZONE_NORMAL) 7317 node_set_state(nid, N_NORMAL_MEMORY); 7318 break; 7319 } 7320 } 7321 } 7322 7323 /** 7324 * free_area_init_nodes - Initialise all pg_data_t and zone data 7325 * @max_zone_pfn: an array of max PFNs for each zone 7326 * 7327 * This will call free_area_init_node() for each active node in the system. 7328 * Using the page ranges provided by memblock_set_node(), the size of each 7329 * zone in each node and their holes is calculated. If the maximum PFN 7330 * between two adjacent zones match, it is assumed that the zone is empty. 7331 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7332 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7333 * starts where the previous one ended. For example, ZONE_DMA32 starts 7334 * at arch_max_dma_pfn. 7335 */ 7336 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7337 { 7338 unsigned long start_pfn, end_pfn; 7339 int i, nid; 7340 7341 /* Record where the zone boundaries are */ 7342 memset(arch_zone_lowest_possible_pfn, 0, 7343 sizeof(arch_zone_lowest_possible_pfn)); 7344 memset(arch_zone_highest_possible_pfn, 0, 7345 sizeof(arch_zone_highest_possible_pfn)); 7346 7347 start_pfn = find_min_pfn_with_active_regions(); 7348 7349 for (i = 0; i < MAX_NR_ZONES; i++) { 7350 if (i == ZONE_MOVABLE) 7351 continue; 7352 7353 end_pfn = max(max_zone_pfn[i], start_pfn); 7354 arch_zone_lowest_possible_pfn[i] = start_pfn; 7355 arch_zone_highest_possible_pfn[i] = end_pfn; 7356 7357 start_pfn = end_pfn; 7358 } 7359 7360 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7361 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7362 find_zone_movable_pfns_for_nodes(); 7363 7364 /* Print out the zone ranges */ 7365 pr_info("Zone ranges:\n"); 7366 for (i = 0; i < MAX_NR_ZONES; i++) { 7367 if (i == ZONE_MOVABLE) 7368 continue; 7369 pr_info(" %-8s ", zone_names[i]); 7370 if (arch_zone_lowest_possible_pfn[i] == 7371 arch_zone_highest_possible_pfn[i]) 7372 pr_cont("empty\n"); 7373 else 7374 pr_cont("[mem %#018Lx-%#018Lx]\n", 7375 (u64)arch_zone_lowest_possible_pfn[i] 7376 << PAGE_SHIFT, 7377 ((u64)arch_zone_highest_possible_pfn[i] 7378 << PAGE_SHIFT) - 1); 7379 } 7380 7381 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7382 pr_info("Movable zone start for each node\n"); 7383 for (i = 0; i < MAX_NUMNODES; i++) { 7384 if (zone_movable_pfn[i]) 7385 pr_info(" Node %d: %#018Lx\n", i, 7386 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7387 } 7388 7389 /* 7390 * Print out the early node map, and initialize the 7391 * subsection-map relative to active online memory ranges to 7392 * enable future "sub-section" extensions of the memory map. 7393 */ 7394 pr_info("Early memory node ranges\n"); 7395 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7396 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7397 (u64)start_pfn << PAGE_SHIFT, 7398 ((u64)end_pfn << PAGE_SHIFT) - 1); 7399 subsection_map_init(start_pfn, end_pfn - start_pfn); 7400 } 7401 7402 /* Initialise every node */ 7403 mminit_verify_pageflags_layout(); 7404 setup_nr_node_ids(); 7405 zero_resv_unavail(); 7406 for_each_online_node(nid) { 7407 pg_data_t *pgdat = NODE_DATA(nid); 7408 free_area_init_node(nid, NULL, 7409 find_min_pfn_for_node(nid), NULL); 7410 7411 /* Any memory on that node */ 7412 if (pgdat->node_present_pages) 7413 node_set_state(nid, N_MEMORY); 7414 check_for_memory(pgdat, nid); 7415 } 7416 } 7417 7418 static int __init cmdline_parse_core(char *p, unsigned long *core, 7419 unsigned long *percent) 7420 { 7421 unsigned long long coremem; 7422 char *endptr; 7423 7424 if (!p) 7425 return -EINVAL; 7426 7427 /* Value may be a percentage of total memory, otherwise bytes */ 7428 coremem = simple_strtoull(p, &endptr, 0); 7429 if (*endptr == '%') { 7430 /* Paranoid check for percent values greater than 100 */ 7431 WARN_ON(coremem > 100); 7432 7433 *percent = coremem; 7434 } else { 7435 coremem = memparse(p, &p); 7436 /* Paranoid check that UL is enough for the coremem value */ 7437 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7438 7439 *core = coremem >> PAGE_SHIFT; 7440 *percent = 0UL; 7441 } 7442 return 0; 7443 } 7444 7445 /* 7446 * kernelcore=size sets the amount of memory for use for allocations that 7447 * cannot be reclaimed or migrated. 7448 */ 7449 static int __init cmdline_parse_kernelcore(char *p) 7450 { 7451 /* parse kernelcore=mirror */ 7452 if (parse_option_str(p, "mirror")) { 7453 mirrored_kernelcore = true; 7454 return 0; 7455 } 7456 7457 return cmdline_parse_core(p, &required_kernelcore, 7458 &required_kernelcore_percent); 7459 } 7460 7461 /* 7462 * movablecore=size sets the amount of memory for use for allocations that 7463 * can be reclaimed or migrated. 7464 */ 7465 static int __init cmdline_parse_movablecore(char *p) 7466 { 7467 return cmdline_parse_core(p, &required_movablecore, 7468 &required_movablecore_percent); 7469 } 7470 7471 early_param("kernelcore", cmdline_parse_kernelcore); 7472 early_param("movablecore", cmdline_parse_movablecore); 7473 7474 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7475 7476 void adjust_managed_page_count(struct page *page, long count) 7477 { 7478 atomic_long_add(count, &page_zone(page)->managed_pages); 7479 totalram_pages_add(count); 7480 #ifdef CONFIG_HIGHMEM 7481 if (PageHighMem(page)) 7482 totalhigh_pages_add(count); 7483 #endif 7484 } 7485 EXPORT_SYMBOL(adjust_managed_page_count); 7486 7487 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7488 { 7489 void *pos; 7490 unsigned long pages = 0; 7491 7492 start = (void *)PAGE_ALIGN((unsigned long)start); 7493 end = (void *)((unsigned long)end & PAGE_MASK); 7494 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7495 struct page *page = virt_to_page(pos); 7496 void *direct_map_addr; 7497 7498 /* 7499 * 'direct_map_addr' might be different from 'pos' 7500 * because some architectures' virt_to_page() 7501 * work with aliases. Getting the direct map 7502 * address ensures that we get a _writeable_ 7503 * alias for the memset(). 7504 */ 7505 direct_map_addr = page_address(page); 7506 if ((unsigned int)poison <= 0xFF) 7507 memset(direct_map_addr, poison, PAGE_SIZE); 7508 7509 free_reserved_page(page); 7510 } 7511 7512 if (pages && s) 7513 pr_info("Freeing %s memory: %ldK\n", 7514 s, pages << (PAGE_SHIFT - 10)); 7515 7516 return pages; 7517 } 7518 7519 #ifdef CONFIG_HIGHMEM 7520 void free_highmem_page(struct page *page) 7521 { 7522 __free_reserved_page(page); 7523 totalram_pages_inc(); 7524 atomic_long_inc(&page_zone(page)->managed_pages); 7525 totalhigh_pages_inc(); 7526 } 7527 #endif 7528 7529 7530 void __init mem_init_print_info(const char *str) 7531 { 7532 unsigned long physpages, codesize, datasize, rosize, bss_size; 7533 unsigned long init_code_size, init_data_size; 7534 7535 physpages = get_num_physpages(); 7536 codesize = _etext - _stext; 7537 datasize = _edata - _sdata; 7538 rosize = __end_rodata - __start_rodata; 7539 bss_size = __bss_stop - __bss_start; 7540 init_data_size = __init_end - __init_begin; 7541 init_code_size = _einittext - _sinittext; 7542 7543 /* 7544 * Detect special cases and adjust section sizes accordingly: 7545 * 1) .init.* may be embedded into .data sections 7546 * 2) .init.text.* may be out of [__init_begin, __init_end], 7547 * please refer to arch/tile/kernel/vmlinux.lds.S. 7548 * 3) .rodata.* may be embedded into .text or .data sections. 7549 */ 7550 #define adj_init_size(start, end, size, pos, adj) \ 7551 do { \ 7552 if (start <= pos && pos < end && size > adj) \ 7553 size -= adj; \ 7554 } while (0) 7555 7556 adj_init_size(__init_begin, __init_end, init_data_size, 7557 _sinittext, init_code_size); 7558 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7559 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7560 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7561 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7562 7563 #undef adj_init_size 7564 7565 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7566 #ifdef CONFIG_HIGHMEM 7567 ", %luK highmem" 7568 #endif 7569 "%s%s)\n", 7570 nr_free_pages() << (PAGE_SHIFT - 10), 7571 physpages << (PAGE_SHIFT - 10), 7572 codesize >> 10, datasize >> 10, rosize >> 10, 7573 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7574 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7575 totalcma_pages << (PAGE_SHIFT - 10), 7576 #ifdef CONFIG_HIGHMEM 7577 totalhigh_pages() << (PAGE_SHIFT - 10), 7578 #endif 7579 str ? ", " : "", str ? str : ""); 7580 } 7581 7582 /** 7583 * set_dma_reserve - set the specified number of pages reserved in the first zone 7584 * @new_dma_reserve: The number of pages to mark reserved 7585 * 7586 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7587 * In the DMA zone, a significant percentage may be consumed by kernel image 7588 * and other unfreeable allocations which can skew the watermarks badly. This 7589 * function may optionally be used to account for unfreeable pages in the 7590 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7591 * smaller per-cpu batchsize. 7592 */ 7593 void __init set_dma_reserve(unsigned long new_dma_reserve) 7594 { 7595 dma_reserve = new_dma_reserve; 7596 } 7597 7598 void __init free_area_init(unsigned long *zones_size) 7599 { 7600 zero_resv_unavail(); 7601 free_area_init_node(0, zones_size, 7602 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7603 } 7604 7605 static int page_alloc_cpu_dead(unsigned int cpu) 7606 { 7607 7608 lru_add_drain_cpu(cpu); 7609 drain_pages(cpu); 7610 7611 /* 7612 * Spill the event counters of the dead processor 7613 * into the current processors event counters. 7614 * This artificially elevates the count of the current 7615 * processor. 7616 */ 7617 vm_events_fold_cpu(cpu); 7618 7619 /* 7620 * Zero the differential counters of the dead processor 7621 * so that the vm statistics are consistent. 7622 * 7623 * This is only okay since the processor is dead and cannot 7624 * race with what we are doing. 7625 */ 7626 cpu_vm_stats_fold(cpu); 7627 return 0; 7628 } 7629 7630 #ifdef CONFIG_NUMA 7631 int hashdist = HASHDIST_DEFAULT; 7632 7633 static int __init set_hashdist(char *str) 7634 { 7635 if (!str) 7636 return 0; 7637 hashdist = simple_strtoul(str, &str, 0); 7638 return 1; 7639 } 7640 __setup("hashdist=", set_hashdist); 7641 #endif 7642 7643 void __init page_alloc_init(void) 7644 { 7645 int ret; 7646 7647 #ifdef CONFIG_NUMA 7648 if (num_node_state(N_MEMORY) == 1) 7649 hashdist = 0; 7650 #endif 7651 7652 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7653 "mm/page_alloc:dead", NULL, 7654 page_alloc_cpu_dead); 7655 WARN_ON(ret < 0); 7656 } 7657 7658 /* 7659 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7660 * or min_free_kbytes changes. 7661 */ 7662 static void calculate_totalreserve_pages(void) 7663 { 7664 struct pglist_data *pgdat; 7665 unsigned long reserve_pages = 0; 7666 enum zone_type i, j; 7667 7668 for_each_online_pgdat(pgdat) { 7669 7670 pgdat->totalreserve_pages = 0; 7671 7672 for (i = 0; i < MAX_NR_ZONES; i++) { 7673 struct zone *zone = pgdat->node_zones + i; 7674 long max = 0; 7675 unsigned long managed_pages = zone_managed_pages(zone); 7676 7677 /* Find valid and maximum lowmem_reserve in the zone */ 7678 for (j = i; j < MAX_NR_ZONES; j++) { 7679 if (zone->lowmem_reserve[j] > max) 7680 max = zone->lowmem_reserve[j]; 7681 } 7682 7683 /* we treat the high watermark as reserved pages. */ 7684 max += high_wmark_pages(zone); 7685 7686 if (max > managed_pages) 7687 max = managed_pages; 7688 7689 pgdat->totalreserve_pages += max; 7690 7691 reserve_pages += max; 7692 } 7693 } 7694 totalreserve_pages = reserve_pages; 7695 } 7696 7697 /* 7698 * setup_per_zone_lowmem_reserve - called whenever 7699 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7700 * has a correct pages reserved value, so an adequate number of 7701 * pages are left in the zone after a successful __alloc_pages(). 7702 */ 7703 static void setup_per_zone_lowmem_reserve(void) 7704 { 7705 struct pglist_data *pgdat; 7706 enum zone_type j, idx; 7707 7708 for_each_online_pgdat(pgdat) { 7709 for (j = 0; j < MAX_NR_ZONES; j++) { 7710 struct zone *zone = pgdat->node_zones + j; 7711 unsigned long managed_pages = zone_managed_pages(zone); 7712 7713 zone->lowmem_reserve[j] = 0; 7714 7715 idx = j; 7716 while (idx) { 7717 struct zone *lower_zone; 7718 7719 idx--; 7720 lower_zone = pgdat->node_zones + idx; 7721 7722 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7723 sysctl_lowmem_reserve_ratio[idx] = 0; 7724 lower_zone->lowmem_reserve[j] = 0; 7725 } else { 7726 lower_zone->lowmem_reserve[j] = 7727 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7728 } 7729 managed_pages += zone_managed_pages(lower_zone); 7730 } 7731 } 7732 } 7733 7734 /* update totalreserve_pages */ 7735 calculate_totalreserve_pages(); 7736 } 7737 7738 static void __setup_per_zone_wmarks(void) 7739 { 7740 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7741 unsigned long lowmem_pages = 0; 7742 struct zone *zone; 7743 unsigned long flags; 7744 7745 /* Calculate total number of !ZONE_HIGHMEM pages */ 7746 for_each_zone(zone) { 7747 if (!is_highmem(zone)) 7748 lowmem_pages += zone_managed_pages(zone); 7749 } 7750 7751 for_each_zone(zone) { 7752 u64 tmp; 7753 7754 spin_lock_irqsave(&zone->lock, flags); 7755 tmp = (u64)pages_min * zone_managed_pages(zone); 7756 do_div(tmp, lowmem_pages); 7757 if (is_highmem(zone)) { 7758 /* 7759 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7760 * need highmem pages, so cap pages_min to a small 7761 * value here. 7762 * 7763 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7764 * deltas control async page reclaim, and so should 7765 * not be capped for highmem. 7766 */ 7767 unsigned long min_pages; 7768 7769 min_pages = zone_managed_pages(zone) / 1024; 7770 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7771 zone->_watermark[WMARK_MIN] = min_pages; 7772 } else { 7773 /* 7774 * If it's a lowmem zone, reserve a number of pages 7775 * proportionate to the zone's size. 7776 */ 7777 zone->_watermark[WMARK_MIN] = tmp; 7778 } 7779 7780 /* 7781 * Set the kswapd watermarks distance according to the 7782 * scale factor in proportion to available memory, but 7783 * ensure a minimum size on small systems. 7784 */ 7785 tmp = max_t(u64, tmp >> 2, 7786 mult_frac(zone_managed_pages(zone), 7787 watermark_scale_factor, 10000)); 7788 7789 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7790 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7791 zone->watermark_boost = 0; 7792 7793 spin_unlock_irqrestore(&zone->lock, flags); 7794 } 7795 7796 /* update totalreserve_pages */ 7797 calculate_totalreserve_pages(); 7798 } 7799 7800 /** 7801 * setup_per_zone_wmarks - called when min_free_kbytes changes 7802 * or when memory is hot-{added|removed} 7803 * 7804 * Ensures that the watermark[min,low,high] values for each zone are set 7805 * correctly with respect to min_free_kbytes. 7806 */ 7807 void setup_per_zone_wmarks(void) 7808 { 7809 static DEFINE_SPINLOCK(lock); 7810 7811 spin_lock(&lock); 7812 __setup_per_zone_wmarks(); 7813 spin_unlock(&lock); 7814 } 7815 7816 /* 7817 * Initialise min_free_kbytes. 7818 * 7819 * For small machines we want it small (128k min). For large machines 7820 * we want it large (64MB max). But it is not linear, because network 7821 * bandwidth does not increase linearly with machine size. We use 7822 * 7823 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7824 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7825 * 7826 * which yields 7827 * 7828 * 16MB: 512k 7829 * 32MB: 724k 7830 * 64MB: 1024k 7831 * 128MB: 1448k 7832 * 256MB: 2048k 7833 * 512MB: 2896k 7834 * 1024MB: 4096k 7835 * 2048MB: 5792k 7836 * 4096MB: 8192k 7837 * 8192MB: 11584k 7838 * 16384MB: 16384k 7839 */ 7840 int __meminit init_per_zone_wmark_min(void) 7841 { 7842 unsigned long lowmem_kbytes; 7843 int new_min_free_kbytes; 7844 7845 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7846 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7847 7848 if (new_min_free_kbytes > user_min_free_kbytes) { 7849 min_free_kbytes = new_min_free_kbytes; 7850 if (min_free_kbytes < 128) 7851 min_free_kbytes = 128; 7852 if (min_free_kbytes > 65536) 7853 min_free_kbytes = 65536; 7854 } else { 7855 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7856 new_min_free_kbytes, user_min_free_kbytes); 7857 } 7858 setup_per_zone_wmarks(); 7859 refresh_zone_stat_thresholds(); 7860 setup_per_zone_lowmem_reserve(); 7861 7862 #ifdef CONFIG_NUMA 7863 setup_min_unmapped_ratio(); 7864 setup_min_slab_ratio(); 7865 #endif 7866 7867 return 0; 7868 } 7869 core_initcall(init_per_zone_wmark_min) 7870 7871 /* 7872 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7873 * that we can call two helper functions whenever min_free_kbytes 7874 * changes. 7875 */ 7876 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7877 void __user *buffer, size_t *length, loff_t *ppos) 7878 { 7879 int rc; 7880 7881 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7882 if (rc) 7883 return rc; 7884 7885 if (write) { 7886 user_min_free_kbytes = min_free_kbytes; 7887 setup_per_zone_wmarks(); 7888 } 7889 return 0; 7890 } 7891 7892 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7893 void __user *buffer, size_t *length, loff_t *ppos) 7894 { 7895 int rc; 7896 7897 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7898 if (rc) 7899 return rc; 7900 7901 return 0; 7902 } 7903 7904 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7905 void __user *buffer, size_t *length, loff_t *ppos) 7906 { 7907 int rc; 7908 7909 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7910 if (rc) 7911 return rc; 7912 7913 if (write) 7914 setup_per_zone_wmarks(); 7915 7916 return 0; 7917 } 7918 7919 #ifdef CONFIG_NUMA 7920 static void setup_min_unmapped_ratio(void) 7921 { 7922 pg_data_t *pgdat; 7923 struct zone *zone; 7924 7925 for_each_online_pgdat(pgdat) 7926 pgdat->min_unmapped_pages = 0; 7927 7928 for_each_zone(zone) 7929 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7930 sysctl_min_unmapped_ratio) / 100; 7931 } 7932 7933 7934 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7935 void __user *buffer, size_t *length, loff_t *ppos) 7936 { 7937 int rc; 7938 7939 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7940 if (rc) 7941 return rc; 7942 7943 setup_min_unmapped_ratio(); 7944 7945 return 0; 7946 } 7947 7948 static void setup_min_slab_ratio(void) 7949 { 7950 pg_data_t *pgdat; 7951 struct zone *zone; 7952 7953 for_each_online_pgdat(pgdat) 7954 pgdat->min_slab_pages = 0; 7955 7956 for_each_zone(zone) 7957 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7958 sysctl_min_slab_ratio) / 100; 7959 } 7960 7961 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7962 void __user *buffer, size_t *length, loff_t *ppos) 7963 { 7964 int rc; 7965 7966 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7967 if (rc) 7968 return rc; 7969 7970 setup_min_slab_ratio(); 7971 7972 return 0; 7973 } 7974 #endif 7975 7976 /* 7977 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7978 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7979 * whenever sysctl_lowmem_reserve_ratio changes. 7980 * 7981 * The reserve ratio obviously has absolutely no relation with the 7982 * minimum watermarks. The lowmem reserve ratio can only make sense 7983 * if in function of the boot time zone sizes. 7984 */ 7985 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7986 void __user *buffer, size_t *length, loff_t *ppos) 7987 { 7988 proc_dointvec_minmax(table, write, buffer, length, ppos); 7989 setup_per_zone_lowmem_reserve(); 7990 return 0; 7991 } 7992 7993 static void __zone_pcp_update(struct zone *zone) 7994 { 7995 unsigned int cpu; 7996 7997 for_each_possible_cpu(cpu) 7998 pageset_set_high_and_batch(zone, 7999 per_cpu_ptr(zone->pageset, cpu)); 8000 } 8001 8002 /* 8003 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8004 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8005 * pagelist can have before it gets flushed back to buddy allocator. 8006 */ 8007 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8008 void __user *buffer, size_t *length, loff_t *ppos) 8009 { 8010 struct zone *zone; 8011 int old_percpu_pagelist_fraction; 8012 int ret; 8013 8014 mutex_lock(&pcp_batch_high_lock); 8015 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8016 8017 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8018 if (!write || ret < 0) 8019 goto out; 8020 8021 /* Sanity checking to avoid pcp imbalance */ 8022 if (percpu_pagelist_fraction && 8023 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8024 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8025 ret = -EINVAL; 8026 goto out; 8027 } 8028 8029 /* No change? */ 8030 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8031 goto out; 8032 8033 for_each_populated_zone(zone) 8034 __zone_pcp_update(zone); 8035 out: 8036 mutex_unlock(&pcp_batch_high_lock); 8037 return ret; 8038 } 8039 8040 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8041 /* 8042 * Returns the number of pages that arch has reserved but 8043 * is not known to alloc_large_system_hash(). 8044 */ 8045 static unsigned long __init arch_reserved_kernel_pages(void) 8046 { 8047 return 0; 8048 } 8049 #endif 8050 8051 /* 8052 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8053 * machines. As memory size is increased the scale is also increased but at 8054 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8055 * quadruples the scale is increased by one, which means the size of hash table 8056 * only doubles, instead of quadrupling as well. 8057 * Because 32-bit systems cannot have large physical memory, where this scaling 8058 * makes sense, it is disabled on such platforms. 8059 */ 8060 #if __BITS_PER_LONG > 32 8061 #define ADAPT_SCALE_BASE (64ul << 30) 8062 #define ADAPT_SCALE_SHIFT 2 8063 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8064 #endif 8065 8066 /* 8067 * allocate a large system hash table from bootmem 8068 * - it is assumed that the hash table must contain an exact power-of-2 8069 * quantity of entries 8070 * - limit is the number of hash buckets, not the total allocation size 8071 */ 8072 void *__init alloc_large_system_hash(const char *tablename, 8073 unsigned long bucketsize, 8074 unsigned long numentries, 8075 int scale, 8076 int flags, 8077 unsigned int *_hash_shift, 8078 unsigned int *_hash_mask, 8079 unsigned long low_limit, 8080 unsigned long high_limit) 8081 { 8082 unsigned long long max = high_limit; 8083 unsigned long log2qty, size; 8084 void *table = NULL; 8085 gfp_t gfp_flags; 8086 bool virt; 8087 8088 /* allow the kernel cmdline to have a say */ 8089 if (!numentries) { 8090 /* round applicable memory size up to nearest megabyte */ 8091 numentries = nr_kernel_pages; 8092 numentries -= arch_reserved_kernel_pages(); 8093 8094 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8095 if (PAGE_SHIFT < 20) 8096 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8097 8098 #if __BITS_PER_LONG > 32 8099 if (!high_limit) { 8100 unsigned long adapt; 8101 8102 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8103 adapt <<= ADAPT_SCALE_SHIFT) 8104 scale++; 8105 } 8106 #endif 8107 8108 /* limit to 1 bucket per 2^scale bytes of low memory */ 8109 if (scale > PAGE_SHIFT) 8110 numentries >>= (scale - PAGE_SHIFT); 8111 else 8112 numentries <<= (PAGE_SHIFT - scale); 8113 8114 /* Make sure we've got at least a 0-order allocation.. */ 8115 if (unlikely(flags & HASH_SMALL)) { 8116 /* Makes no sense without HASH_EARLY */ 8117 WARN_ON(!(flags & HASH_EARLY)); 8118 if (!(numentries >> *_hash_shift)) { 8119 numentries = 1UL << *_hash_shift; 8120 BUG_ON(!numentries); 8121 } 8122 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8123 numentries = PAGE_SIZE / bucketsize; 8124 } 8125 numentries = roundup_pow_of_two(numentries); 8126 8127 /* limit allocation size to 1/16 total memory by default */ 8128 if (max == 0) { 8129 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8130 do_div(max, bucketsize); 8131 } 8132 max = min(max, 0x80000000ULL); 8133 8134 if (numentries < low_limit) 8135 numentries = low_limit; 8136 if (numentries > max) 8137 numentries = max; 8138 8139 log2qty = ilog2(numentries); 8140 8141 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8142 do { 8143 virt = false; 8144 size = bucketsize << log2qty; 8145 if (flags & HASH_EARLY) { 8146 if (flags & HASH_ZERO) 8147 table = memblock_alloc(size, SMP_CACHE_BYTES); 8148 else 8149 table = memblock_alloc_raw(size, 8150 SMP_CACHE_BYTES); 8151 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8152 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8153 virt = true; 8154 } else { 8155 /* 8156 * If bucketsize is not a power-of-two, we may free 8157 * some pages at the end of hash table which 8158 * alloc_pages_exact() automatically does 8159 */ 8160 table = alloc_pages_exact(size, gfp_flags); 8161 kmemleak_alloc(table, size, 1, gfp_flags); 8162 } 8163 } while (!table && size > PAGE_SIZE && --log2qty); 8164 8165 if (!table) 8166 panic("Failed to allocate %s hash table\n", tablename); 8167 8168 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8169 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8170 virt ? "vmalloc" : "linear"); 8171 8172 if (_hash_shift) 8173 *_hash_shift = log2qty; 8174 if (_hash_mask) 8175 *_hash_mask = (1 << log2qty) - 1; 8176 8177 return table; 8178 } 8179 8180 /* 8181 * This function checks whether pageblock includes unmovable pages or not. 8182 * If @count is not zero, it is okay to include less @count unmovable pages 8183 * 8184 * PageLRU check without isolation or lru_lock could race so that 8185 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8186 * check without lock_page also may miss some movable non-lru pages at 8187 * race condition. So you can't expect this function should be exact. 8188 */ 8189 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8190 int migratetype, int flags) 8191 { 8192 unsigned long found; 8193 unsigned long iter = 0; 8194 unsigned long pfn = page_to_pfn(page); 8195 const char *reason = "unmovable page"; 8196 8197 /* 8198 * TODO we could make this much more efficient by not checking every 8199 * page in the range if we know all of them are in MOVABLE_ZONE and 8200 * that the movable zone guarantees that pages are migratable but 8201 * the later is not the case right now unfortunatelly. E.g. movablecore 8202 * can still lead to having bootmem allocations in zone_movable. 8203 */ 8204 8205 if (is_migrate_cma_page(page)) { 8206 /* 8207 * CMA allocations (alloc_contig_range) really need to mark 8208 * isolate CMA pageblocks even when they are not movable in fact 8209 * so consider them movable here. 8210 */ 8211 if (is_migrate_cma(migratetype)) 8212 return false; 8213 8214 reason = "CMA page"; 8215 goto unmovable; 8216 } 8217 8218 for (found = 0; iter < pageblock_nr_pages; iter++) { 8219 unsigned long check = pfn + iter; 8220 8221 if (!pfn_valid_within(check)) 8222 continue; 8223 8224 page = pfn_to_page(check); 8225 8226 if (PageReserved(page)) 8227 goto unmovable; 8228 8229 /* 8230 * If the zone is movable and we have ruled out all reserved 8231 * pages then it should be reasonably safe to assume the rest 8232 * is movable. 8233 */ 8234 if (zone_idx(zone) == ZONE_MOVABLE) 8235 continue; 8236 8237 /* 8238 * Hugepages are not in LRU lists, but they're movable. 8239 * We need not scan over tail pages because we don't 8240 * handle each tail page individually in migration. 8241 */ 8242 if (PageHuge(page)) { 8243 struct page *head = compound_head(page); 8244 unsigned int skip_pages; 8245 8246 if (!hugepage_migration_supported(page_hstate(head))) 8247 goto unmovable; 8248 8249 skip_pages = compound_nr(head) - (page - head); 8250 iter += skip_pages - 1; 8251 continue; 8252 } 8253 8254 /* 8255 * We can't use page_count without pin a page 8256 * because another CPU can free compound page. 8257 * This check already skips compound tails of THP 8258 * because their page->_refcount is zero at all time. 8259 */ 8260 if (!page_ref_count(page)) { 8261 if (PageBuddy(page)) 8262 iter += (1 << page_order(page)) - 1; 8263 continue; 8264 } 8265 8266 /* 8267 * The HWPoisoned page may be not in buddy system, and 8268 * page_count() is not 0. 8269 */ 8270 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8271 continue; 8272 8273 if (__PageMovable(page)) 8274 continue; 8275 8276 if (!PageLRU(page)) 8277 found++; 8278 /* 8279 * If there are RECLAIMABLE pages, we need to check 8280 * it. But now, memory offline itself doesn't call 8281 * shrink_node_slabs() and it still to be fixed. 8282 */ 8283 /* 8284 * If the page is not RAM, page_count()should be 0. 8285 * we don't need more check. This is an _used_ not-movable page. 8286 * 8287 * The problematic thing here is PG_reserved pages. PG_reserved 8288 * is set to both of a memory hole page and a _used_ kernel 8289 * page at boot. 8290 */ 8291 if (found > count) 8292 goto unmovable; 8293 } 8294 return false; 8295 unmovable: 8296 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8297 if (flags & REPORT_FAILURE) 8298 dump_page(pfn_to_page(pfn + iter), reason); 8299 return true; 8300 } 8301 8302 #ifdef CONFIG_CONTIG_ALLOC 8303 static unsigned long pfn_max_align_down(unsigned long pfn) 8304 { 8305 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8306 pageblock_nr_pages) - 1); 8307 } 8308 8309 static unsigned long pfn_max_align_up(unsigned long pfn) 8310 { 8311 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8312 pageblock_nr_pages)); 8313 } 8314 8315 /* [start, end) must belong to a single zone. */ 8316 static int __alloc_contig_migrate_range(struct compact_control *cc, 8317 unsigned long start, unsigned long end) 8318 { 8319 /* This function is based on compact_zone() from compaction.c. */ 8320 unsigned long nr_reclaimed; 8321 unsigned long pfn = start; 8322 unsigned int tries = 0; 8323 int ret = 0; 8324 8325 migrate_prep(); 8326 8327 while (pfn < end || !list_empty(&cc->migratepages)) { 8328 if (fatal_signal_pending(current)) { 8329 ret = -EINTR; 8330 break; 8331 } 8332 8333 if (list_empty(&cc->migratepages)) { 8334 cc->nr_migratepages = 0; 8335 pfn = isolate_migratepages_range(cc, pfn, end); 8336 if (!pfn) { 8337 ret = -EINTR; 8338 break; 8339 } 8340 tries = 0; 8341 } else if (++tries == 5) { 8342 ret = ret < 0 ? ret : -EBUSY; 8343 break; 8344 } 8345 8346 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8347 &cc->migratepages); 8348 cc->nr_migratepages -= nr_reclaimed; 8349 8350 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8351 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8352 } 8353 if (ret < 0) { 8354 putback_movable_pages(&cc->migratepages); 8355 return ret; 8356 } 8357 return 0; 8358 } 8359 8360 /** 8361 * alloc_contig_range() -- tries to allocate given range of pages 8362 * @start: start PFN to allocate 8363 * @end: one-past-the-last PFN to allocate 8364 * @migratetype: migratetype of the underlaying pageblocks (either 8365 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8366 * in range must have the same migratetype and it must 8367 * be either of the two. 8368 * @gfp_mask: GFP mask to use during compaction 8369 * 8370 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8371 * aligned. The PFN range must belong to a single zone. 8372 * 8373 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8374 * pageblocks in the range. Once isolated, the pageblocks should not 8375 * be modified by others. 8376 * 8377 * Return: zero on success or negative error code. On success all 8378 * pages which PFN is in [start, end) are allocated for the caller and 8379 * need to be freed with free_contig_range(). 8380 */ 8381 int alloc_contig_range(unsigned long start, unsigned long end, 8382 unsigned migratetype, gfp_t gfp_mask) 8383 { 8384 unsigned long outer_start, outer_end; 8385 unsigned int order; 8386 int ret = 0; 8387 8388 struct compact_control cc = { 8389 .nr_migratepages = 0, 8390 .order = -1, 8391 .zone = page_zone(pfn_to_page(start)), 8392 .mode = MIGRATE_SYNC, 8393 .ignore_skip_hint = true, 8394 .no_set_skip_hint = true, 8395 .gfp_mask = current_gfp_context(gfp_mask), 8396 }; 8397 INIT_LIST_HEAD(&cc.migratepages); 8398 8399 /* 8400 * What we do here is we mark all pageblocks in range as 8401 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8402 * have different sizes, and due to the way page allocator 8403 * work, we align the range to biggest of the two pages so 8404 * that page allocator won't try to merge buddies from 8405 * different pageblocks and change MIGRATE_ISOLATE to some 8406 * other migration type. 8407 * 8408 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8409 * migrate the pages from an unaligned range (ie. pages that 8410 * we are interested in). This will put all the pages in 8411 * range back to page allocator as MIGRATE_ISOLATE. 8412 * 8413 * When this is done, we take the pages in range from page 8414 * allocator removing them from the buddy system. This way 8415 * page allocator will never consider using them. 8416 * 8417 * This lets us mark the pageblocks back as 8418 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8419 * aligned range but not in the unaligned, original range are 8420 * put back to page allocator so that buddy can use them. 8421 */ 8422 8423 ret = start_isolate_page_range(pfn_max_align_down(start), 8424 pfn_max_align_up(end), migratetype, 0); 8425 if (ret < 0) 8426 return ret; 8427 8428 /* 8429 * In case of -EBUSY, we'd like to know which page causes problem. 8430 * So, just fall through. test_pages_isolated() has a tracepoint 8431 * which will report the busy page. 8432 * 8433 * It is possible that busy pages could become available before 8434 * the call to test_pages_isolated, and the range will actually be 8435 * allocated. So, if we fall through be sure to clear ret so that 8436 * -EBUSY is not accidentally used or returned to caller. 8437 */ 8438 ret = __alloc_contig_migrate_range(&cc, start, end); 8439 if (ret && ret != -EBUSY) 8440 goto done; 8441 ret =0; 8442 8443 /* 8444 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8445 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8446 * more, all pages in [start, end) are free in page allocator. 8447 * What we are going to do is to allocate all pages from 8448 * [start, end) (that is remove them from page allocator). 8449 * 8450 * The only problem is that pages at the beginning and at the 8451 * end of interesting range may be not aligned with pages that 8452 * page allocator holds, ie. they can be part of higher order 8453 * pages. Because of this, we reserve the bigger range and 8454 * once this is done free the pages we are not interested in. 8455 * 8456 * We don't have to hold zone->lock here because the pages are 8457 * isolated thus they won't get removed from buddy. 8458 */ 8459 8460 lru_add_drain_all(); 8461 8462 order = 0; 8463 outer_start = start; 8464 while (!PageBuddy(pfn_to_page(outer_start))) { 8465 if (++order >= MAX_ORDER) { 8466 outer_start = start; 8467 break; 8468 } 8469 outer_start &= ~0UL << order; 8470 } 8471 8472 if (outer_start != start) { 8473 order = page_order(pfn_to_page(outer_start)); 8474 8475 /* 8476 * outer_start page could be small order buddy page and 8477 * it doesn't include start page. Adjust outer_start 8478 * in this case to report failed page properly 8479 * on tracepoint in test_pages_isolated() 8480 */ 8481 if (outer_start + (1UL << order) <= start) 8482 outer_start = start; 8483 } 8484 8485 /* Make sure the range is really isolated. */ 8486 if (test_pages_isolated(outer_start, end, 0)) { 8487 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8488 __func__, outer_start, end); 8489 ret = -EBUSY; 8490 goto done; 8491 } 8492 8493 /* Grab isolated pages from freelists. */ 8494 outer_end = isolate_freepages_range(&cc, outer_start, end); 8495 if (!outer_end) { 8496 ret = -EBUSY; 8497 goto done; 8498 } 8499 8500 /* Free head and tail (if any) */ 8501 if (start != outer_start) 8502 free_contig_range(outer_start, start - outer_start); 8503 if (end != outer_end) 8504 free_contig_range(end, outer_end - end); 8505 8506 done: 8507 undo_isolate_page_range(pfn_max_align_down(start), 8508 pfn_max_align_up(end), migratetype); 8509 return ret; 8510 } 8511 8512 static int __alloc_contig_pages(unsigned long start_pfn, 8513 unsigned long nr_pages, gfp_t gfp_mask) 8514 { 8515 unsigned long end_pfn = start_pfn + nr_pages; 8516 8517 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8518 gfp_mask); 8519 } 8520 8521 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8522 unsigned long nr_pages) 8523 { 8524 unsigned long i, end_pfn = start_pfn + nr_pages; 8525 struct page *page; 8526 8527 for (i = start_pfn; i < end_pfn; i++) { 8528 page = pfn_to_online_page(i); 8529 if (!page) 8530 return false; 8531 8532 if (page_zone(page) != z) 8533 return false; 8534 8535 if (PageReserved(page)) 8536 return false; 8537 8538 if (page_count(page) > 0) 8539 return false; 8540 8541 if (PageHuge(page)) 8542 return false; 8543 } 8544 return true; 8545 } 8546 8547 static bool zone_spans_last_pfn(const struct zone *zone, 8548 unsigned long start_pfn, unsigned long nr_pages) 8549 { 8550 unsigned long last_pfn = start_pfn + nr_pages - 1; 8551 8552 return zone_spans_pfn(zone, last_pfn); 8553 } 8554 8555 /** 8556 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8557 * @nr_pages: Number of contiguous pages to allocate 8558 * @gfp_mask: GFP mask to limit search and used during compaction 8559 * @nid: Target node 8560 * @nodemask: Mask for other possible nodes 8561 * 8562 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8563 * on an applicable zonelist to find a contiguous pfn range which can then be 8564 * tried for allocation with alloc_contig_range(). This routine is intended 8565 * for allocation requests which can not be fulfilled with the buddy allocator. 8566 * 8567 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8568 * power of two then the alignment is guaranteed to be to the given nr_pages 8569 * (e.g. 1GB request would be aligned to 1GB). 8570 * 8571 * Allocated pages can be freed with free_contig_range() or by manually calling 8572 * __free_page() on each allocated page. 8573 * 8574 * Return: pointer to contiguous pages on success, or NULL if not successful. 8575 */ 8576 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8577 int nid, nodemask_t *nodemask) 8578 { 8579 unsigned long ret, pfn, flags; 8580 struct zonelist *zonelist; 8581 struct zone *zone; 8582 struct zoneref *z; 8583 8584 zonelist = node_zonelist(nid, gfp_mask); 8585 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8586 gfp_zone(gfp_mask), nodemask) { 8587 spin_lock_irqsave(&zone->lock, flags); 8588 8589 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8590 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8591 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8592 /* 8593 * We release the zone lock here because 8594 * alloc_contig_range() will also lock the zone 8595 * at some point. If there's an allocation 8596 * spinning on this lock, it may win the race 8597 * and cause alloc_contig_range() to fail... 8598 */ 8599 spin_unlock_irqrestore(&zone->lock, flags); 8600 ret = __alloc_contig_pages(pfn, nr_pages, 8601 gfp_mask); 8602 if (!ret) 8603 return pfn_to_page(pfn); 8604 spin_lock_irqsave(&zone->lock, flags); 8605 } 8606 pfn += nr_pages; 8607 } 8608 spin_unlock_irqrestore(&zone->lock, flags); 8609 } 8610 return NULL; 8611 } 8612 #endif /* CONFIG_CONTIG_ALLOC */ 8613 8614 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8615 { 8616 unsigned int count = 0; 8617 8618 for (; nr_pages--; pfn++) { 8619 struct page *page = pfn_to_page(pfn); 8620 8621 count += page_count(page) != 1; 8622 __free_page(page); 8623 } 8624 WARN(count != 0, "%d pages are still in use!\n", count); 8625 } 8626 8627 /* 8628 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8629 * page high values need to be recalulated. 8630 */ 8631 void __meminit zone_pcp_update(struct zone *zone) 8632 { 8633 mutex_lock(&pcp_batch_high_lock); 8634 __zone_pcp_update(zone); 8635 mutex_unlock(&pcp_batch_high_lock); 8636 } 8637 8638 void zone_pcp_reset(struct zone *zone) 8639 { 8640 unsigned long flags; 8641 int cpu; 8642 struct per_cpu_pageset *pset; 8643 8644 /* avoid races with drain_pages() */ 8645 local_irq_save(flags); 8646 if (zone->pageset != &boot_pageset) { 8647 for_each_online_cpu(cpu) { 8648 pset = per_cpu_ptr(zone->pageset, cpu); 8649 drain_zonestat(zone, pset); 8650 } 8651 free_percpu(zone->pageset); 8652 zone->pageset = &boot_pageset; 8653 } 8654 local_irq_restore(flags); 8655 } 8656 8657 #ifdef CONFIG_MEMORY_HOTREMOVE 8658 /* 8659 * All pages in the range must be in a single zone and isolated 8660 * before calling this. 8661 */ 8662 unsigned long 8663 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8664 { 8665 struct page *page; 8666 struct zone *zone; 8667 unsigned int order; 8668 unsigned long pfn; 8669 unsigned long flags; 8670 unsigned long offlined_pages = 0; 8671 8672 /* find the first valid pfn */ 8673 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8674 if (pfn_valid(pfn)) 8675 break; 8676 if (pfn == end_pfn) 8677 return offlined_pages; 8678 8679 offline_mem_sections(pfn, end_pfn); 8680 zone = page_zone(pfn_to_page(pfn)); 8681 spin_lock_irqsave(&zone->lock, flags); 8682 pfn = start_pfn; 8683 while (pfn < end_pfn) { 8684 if (!pfn_valid(pfn)) { 8685 pfn++; 8686 continue; 8687 } 8688 page = pfn_to_page(pfn); 8689 /* 8690 * The HWPoisoned page may be not in buddy system, and 8691 * page_count() is not 0. 8692 */ 8693 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8694 pfn++; 8695 offlined_pages++; 8696 continue; 8697 } 8698 8699 BUG_ON(page_count(page)); 8700 BUG_ON(!PageBuddy(page)); 8701 order = page_order(page); 8702 offlined_pages += 1 << order; 8703 #ifdef CONFIG_DEBUG_VM 8704 pr_info("remove from free list %lx %d %lx\n", 8705 pfn, 1 << order, end_pfn); 8706 #endif 8707 del_page_from_free_area(page, &zone->free_area[order]); 8708 pfn += (1 << order); 8709 } 8710 spin_unlock_irqrestore(&zone->lock, flags); 8711 8712 return offlined_pages; 8713 } 8714 #endif 8715 8716 bool is_free_buddy_page(struct page *page) 8717 { 8718 struct zone *zone = page_zone(page); 8719 unsigned long pfn = page_to_pfn(page); 8720 unsigned long flags; 8721 unsigned int order; 8722 8723 spin_lock_irqsave(&zone->lock, flags); 8724 for (order = 0; order < MAX_ORDER; order++) { 8725 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8726 8727 if (PageBuddy(page_head) && page_order(page_head) >= order) 8728 break; 8729 } 8730 spin_unlock_irqrestore(&zone->lock, flags); 8731 8732 return order < MAX_ORDER; 8733 } 8734 8735 #ifdef CONFIG_MEMORY_FAILURE 8736 /* 8737 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8738 * test is performed under the zone lock to prevent a race against page 8739 * allocation. 8740 */ 8741 bool set_hwpoison_free_buddy_page(struct page *page) 8742 { 8743 struct zone *zone = page_zone(page); 8744 unsigned long pfn = page_to_pfn(page); 8745 unsigned long flags; 8746 unsigned int order; 8747 bool hwpoisoned = false; 8748 8749 spin_lock_irqsave(&zone->lock, flags); 8750 for (order = 0; order < MAX_ORDER; order++) { 8751 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8752 8753 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8754 if (!TestSetPageHWPoison(page)) 8755 hwpoisoned = true; 8756 break; 8757 } 8758 } 8759 spin_unlock_irqrestore(&zone->lock, flags); 8760 8761 return hwpoisoned; 8762 } 8763 #endif 8764