1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 DEFINE_MUTEX(pcpu_drain_mutex); 101 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 102 103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 104 volatile unsigned long latent_entropy __latent_entropy; 105 EXPORT_SYMBOL(latent_entropy); 106 #endif 107 108 /* 109 * Array of node states. 110 */ 111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 112 [N_POSSIBLE] = NODE_MASK_ALL, 113 [N_ONLINE] = { { [0] = 1UL } }, 114 #ifndef CONFIG_NUMA 115 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 116 #ifdef CONFIG_HIGHMEM 117 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 118 #endif 119 [N_MEMORY] = { { [0] = 1UL } }, 120 [N_CPU] = { { [0] = 1UL } }, 121 #endif /* NUMA */ 122 }; 123 EXPORT_SYMBOL(node_states); 124 125 /* Protect totalram_pages and zone->managed_pages */ 126 static DEFINE_SPINLOCK(managed_page_count_lock); 127 128 unsigned long totalram_pages __read_mostly; 129 unsigned long totalreserve_pages __read_mostly; 130 unsigned long totalcma_pages __read_mostly; 131 132 int percpu_pagelist_fraction; 133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 134 135 /* 136 * A cached value of the page's pageblock's migratetype, used when the page is 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 139 * Also the migratetype set in the page does not necessarily match the pcplist 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 141 * other index - this ensures that it will be put on the correct CMA freelist. 142 */ 143 static inline int get_pcppage_migratetype(struct page *page) 144 { 145 return page->index; 146 } 147 148 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 149 { 150 page->index = migratetype; 151 } 152 153 #ifdef CONFIG_PM_SLEEP 154 /* 155 * The following functions are used by the suspend/hibernate code to temporarily 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 157 * while devices are suspended. To avoid races with the suspend/hibernate code, 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is 160 * guaranteed not to run in parallel with that modification). 161 */ 162 163 static gfp_t saved_gfp_mask; 164 165 void pm_restore_gfp_mask(void) 166 { 167 WARN_ON(!mutex_is_locked(&pm_mutex)); 168 if (saved_gfp_mask) { 169 gfp_allowed_mask = saved_gfp_mask; 170 saved_gfp_mask = 0; 171 } 172 } 173 174 void pm_restrict_gfp_mask(void) 175 { 176 WARN_ON(!mutex_is_locked(&pm_mutex)); 177 WARN_ON(saved_gfp_mask); 178 saved_gfp_mask = gfp_allowed_mask; 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 180 } 181 182 bool pm_suspended_storage(void) 183 { 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 185 return false; 186 return true; 187 } 188 #endif /* CONFIG_PM_SLEEP */ 189 190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 191 unsigned int pageblock_order __read_mostly; 192 #endif 193 194 static void __free_pages_ok(struct page *page, unsigned int order); 195 196 /* 197 * results with 256, 32 in the lowmem_reserve sysctl: 198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 199 * 1G machine -> (16M dma, 784M normal, 224M high) 200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 203 * 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally 205 * don't need any ZONE_NORMAL reservation 206 */ 207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 208 #ifdef CONFIG_ZONE_DMA 209 [ZONE_DMA] = 256, 210 #endif 211 #ifdef CONFIG_ZONE_DMA32 212 [ZONE_DMA32] = 256, 213 #endif 214 [ZONE_NORMAL] = 32, 215 #ifdef CONFIG_HIGHMEM 216 [ZONE_HIGHMEM] = 0, 217 #endif 218 [ZONE_MOVABLE] = 0, 219 }; 220 221 EXPORT_SYMBOL(totalram_pages); 222 223 static char * const zone_names[MAX_NR_ZONES] = { 224 #ifdef CONFIG_ZONE_DMA 225 "DMA", 226 #endif 227 #ifdef CONFIG_ZONE_DMA32 228 "DMA32", 229 #endif 230 "Normal", 231 #ifdef CONFIG_HIGHMEM 232 "HighMem", 233 #endif 234 "Movable", 235 #ifdef CONFIG_ZONE_DEVICE 236 "Device", 237 #endif 238 }; 239 240 char * const migratetype_names[MIGRATE_TYPES] = { 241 "Unmovable", 242 "Movable", 243 "Reclaimable", 244 "HighAtomic", 245 #ifdef CONFIG_CMA 246 "CMA", 247 #endif 248 #ifdef CONFIG_MEMORY_ISOLATION 249 "Isolate", 250 #endif 251 }; 252 253 compound_page_dtor * const compound_page_dtors[] = { 254 NULL, 255 free_compound_page, 256 #ifdef CONFIG_HUGETLB_PAGE 257 free_huge_page, 258 #endif 259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 260 free_transhuge_page, 261 #endif 262 }; 263 264 int min_free_kbytes = 1024; 265 int user_min_free_kbytes = -1; 266 int watermark_scale_factor = 10; 267 268 static unsigned long nr_kernel_pages __meminitdata; 269 static unsigned long nr_all_pages __meminitdata; 270 static unsigned long dma_reserve __meminitdata; 271 272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata; 274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata; 275 static unsigned long required_kernelcore __initdata; 276 static unsigned long required_kernelcore_percent __initdata; 277 static unsigned long required_movablecore __initdata; 278 static unsigned long required_movablecore_percent __initdata; 279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata; 280 static bool mirrored_kernelcore __meminitdata; 281 282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 283 int movable_zone; 284 EXPORT_SYMBOL(movable_zone); 285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 286 287 #if MAX_NUMNODES > 1 288 int nr_node_ids __read_mostly = MAX_NUMNODES; 289 int nr_online_nodes __read_mostly = 1; 290 EXPORT_SYMBOL(nr_node_ids); 291 EXPORT_SYMBOL(nr_online_nodes); 292 #endif 293 294 int page_group_by_mobility_disabled __read_mostly; 295 296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 297 /* Returns true if the struct page for the pfn is uninitialised */ 298 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 299 { 300 int nid = early_pfn_to_nid(pfn); 301 302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 303 return true; 304 305 return false; 306 } 307 308 /* 309 * Returns false when the remaining initialisation should be deferred until 310 * later in the boot cycle when it can be parallelised. 311 */ 312 static inline bool update_defer_init(pg_data_t *pgdat, 313 unsigned long pfn, unsigned long zone_end, 314 unsigned long *nr_initialised) 315 { 316 /* Always populate low zones for address-constrained allocations */ 317 if (zone_end < pgdat_end_pfn(pgdat)) 318 return true; 319 (*nr_initialised)++; 320 if ((*nr_initialised > pgdat->static_init_pgcnt) && 321 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 322 pgdat->first_deferred_pfn = pfn; 323 return false; 324 } 325 326 return true; 327 } 328 #else 329 static inline bool early_page_uninitialised(unsigned long pfn) 330 { 331 return false; 332 } 333 334 static inline bool update_defer_init(pg_data_t *pgdat, 335 unsigned long pfn, unsigned long zone_end, 336 unsigned long *nr_initialised) 337 { 338 return true; 339 } 340 #endif 341 342 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 343 static inline unsigned long *get_pageblock_bitmap(struct page *page, 344 unsigned long pfn) 345 { 346 #ifdef CONFIG_SPARSEMEM 347 return __pfn_to_section(pfn)->pageblock_flags; 348 #else 349 return page_zone(page)->pageblock_flags; 350 #endif /* CONFIG_SPARSEMEM */ 351 } 352 353 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 354 { 355 #ifdef CONFIG_SPARSEMEM 356 pfn &= (PAGES_PER_SECTION-1); 357 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 358 #else 359 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 361 #endif /* CONFIG_SPARSEMEM */ 362 } 363 364 /** 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 366 * @page: The page within the block of interest 367 * @pfn: The target page frame number 368 * @end_bitidx: The last bit of interest to retrieve 369 * @mask: mask of bits that the caller is interested in 370 * 371 * Return: pageblock_bits flags 372 */ 373 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 374 unsigned long pfn, 375 unsigned long end_bitidx, 376 unsigned long mask) 377 { 378 unsigned long *bitmap; 379 unsigned long bitidx, word_bitidx; 380 unsigned long word; 381 382 bitmap = get_pageblock_bitmap(page, pfn); 383 bitidx = pfn_to_bitidx(page, pfn); 384 word_bitidx = bitidx / BITS_PER_LONG; 385 bitidx &= (BITS_PER_LONG-1); 386 387 word = bitmap[word_bitidx]; 388 bitidx += end_bitidx; 389 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 390 } 391 392 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 393 unsigned long end_bitidx, 394 unsigned long mask) 395 { 396 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 397 } 398 399 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 400 { 401 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 402 } 403 404 /** 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 406 * @page: The page within the block of interest 407 * @flags: The flags to set 408 * @pfn: The target page frame number 409 * @end_bitidx: The last bit of interest 410 * @mask: mask of bits that the caller is interested in 411 */ 412 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 413 unsigned long pfn, 414 unsigned long end_bitidx, 415 unsigned long mask) 416 { 417 unsigned long *bitmap; 418 unsigned long bitidx, word_bitidx; 419 unsigned long old_word, word; 420 421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 422 423 bitmap = get_pageblock_bitmap(page, pfn); 424 bitidx = pfn_to_bitidx(page, pfn); 425 word_bitidx = bitidx / BITS_PER_LONG; 426 bitidx &= (BITS_PER_LONG-1); 427 428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 429 430 bitidx += end_bitidx; 431 mask <<= (BITS_PER_LONG - bitidx - 1); 432 flags <<= (BITS_PER_LONG - bitidx - 1); 433 434 word = READ_ONCE(bitmap[word_bitidx]); 435 for (;;) { 436 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 437 if (word == old_word) 438 break; 439 word = old_word; 440 } 441 } 442 443 void set_pageblock_migratetype(struct page *page, int migratetype) 444 { 445 if (unlikely(page_group_by_mobility_disabled && 446 migratetype < MIGRATE_PCPTYPES)) 447 migratetype = MIGRATE_UNMOVABLE; 448 449 set_pageblock_flags_group(page, (unsigned long)migratetype, 450 PB_migrate, PB_migrate_end); 451 } 452 453 #ifdef CONFIG_DEBUG_VM 454 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 455 { 456 int ret = 0; 457 unsigned seq; 458 unsigned long pfn = page_to_pfn(page); 459 unsigned long sp, start_pfn; 460 461 do { 462 seq = zone_span_seqbegin(zone); 463 start_pfn = zone->zone_start_pfn; 464 sp = zone->spanned_pages; 465 if (!zone_spans_pfn(zone, pfn)) 466 ret = 1; 467 } while (zone_span_seqretry(zone, seq)); 468 469 if (ret) 470 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 471 pfn, zone_to_nid(zone), zone->name, 472 start_pfn, start_pfn + sp); 473 474 return ret; 475 } 476 477 static int page_is_consistent(struct zone *zone, struct page *page) 478 { 479 if (!pfn_valid_within(page_to_pfn(page))) 480 return 0; 481 if (zone != page_zone(page)) 482 return 0; 483 484 return 1; 485 } 486 /* 487 * Temporary debugging check for pages not lying within a given zone. 488 */ 489 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 490 { 491 if (page_outside_zone_boundaries(zone, page)) 492 return 1; 493 if (!page_is_consistent(zone, page)) 494 return 1; 495 496 return 0; 497 } 498 #else 499 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 500 { 501 return 0; 502 } 503 #endif 504 505 static void bad_page(struct page *page, const char *reason, 506 unsigned long bad_flags) 507 { 508 static unsigned long resume; 509 static unsigned long nr_shown; 510 static unsigned long nr_unshown; 511 512 /* 513 * Allow a burst of 60 reports, then keep quiet for that minute; 514 * or allow a steady drip of one report per second. 515 */ 516 if (nr_shown == 60) { 517 if (time_before(jiffies, resume)) { 518 nr_unshown++; 519 goto out; 520 } 521 if (nr_unshown) { 522 pr_alert( 523 "BUG: Bad page state: %lu messages suppressed\n", 524 nr_unshown); 525 nr_unshown = 0; 526 } 527 nr_shown = 0; 528 } 529 if (nr_shown++ == 0) 530 resume = jiffies + 60 * HZ; 531 532 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 533 current->comm, page_to_pfn(page)); 534 __dump_page(page, reason); 535 bad_flags &= page->flags; 536 if (bad_flags) 537 pr_alert("bad because of flags: %#lx(%pGp)\n", 538 bad_flags, &bad_flags); 539 dump_page_owner(page); 540 541 print_modules(); 542 dump_stack(); 543 out: 544 /* Leave bad fields for debug, except PageBuddy could make trouble */ 545 page_mapcount_reset(page); /* remove PageBuddy */ 546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 547 } 548 549 /* 550 * Higher-order pages are called "compound pages". They are structured thusly: 551 * 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 553 * 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 556 * 557 * The first tail page's ->compound_dtor holds the offset in array of compound 558 * page destructors. See compound_page_dtors. 559 * 560 * The first tail page's ->compound_order holds the order of allocation. 561 * This usage means that zero-order pages may not be compound. 562 */ 563 564 void free_compound_page(struct page *page) 565 { 566 __free_pages_ok(page, compound_order(page)); 567 } 568 569 void prep_compound_page(struct page *page, unsigned int order) 570 { 571 int i; 572 int nr_pages = 1 << order; 573 574 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 575 set_compound_order(page, order); 576 __SetPageHead(page); 577 for (i = 1; i < nr_pages; i++) { 578 struct page *p = page + i; 579 set_page_count(p, 0); 580 p->mapping = TAIL_MAPPING; 581 set_compound_head(p, page); 582 } 583 atomic_set(compound_mapcount_ptr(page), -1); 584 } 585 586 #ifdef CONFIG_DEBUG_PAGEALLOC 587 unsigned int _debug_guardpage_minorder; 588 bool _debug_pagealloc_enabled __read_mostly 589 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 590 EXPORT_SYMBOL(_debug_pagealloc_enabled); 591 bool _debug_guardpage_enabled __read_mostly; 592 593 static int __init early_debug_pagealloc(char *buf) 594 { 595 if (!buf) 596 return -EINVAL; 597 return kstrtobool(buf, &_debug_pagealloc_enabled); 598 } 599 early_param("debug_pagealloc", early_debug_pagealloc); 600 601 static bool need_debug_guardpage(void) 602 { 603 /* If we don't use debug_pagealloc, we don't need guard page */ 604 if (!debug_pagealloc_enabled()) 605 return false; 606 607 if (!debug_guardpage_minorder()) 608 return false; 609 610 return true; 611 } 612 613 static void init_debug_guardpage(void) 614 { 615 if (!debug_pagealloc_enabled()) 616 return; 617 618 if (!debug_guardpage_minorder()) 619 return; 620 621 _debug_guardpage_enabled = true; 622 } 623 624 struct page_ext_operations debug_guardpage_ops = { 625 .need = need_debug_guardpage, 626 .init = init_debug_guardpage, 627 }; 628 629 static int __init debug_guardpage_minorder_setup(char *buf) 630 { 631 unsigned long res; 632 633 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 634 pr_err("Bad debug_guardpage_minorder value\n"); 635 return 0; 636 } 637 _debug_guardpage_minorder = res; 638 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 639 return 0; 640 } 641 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 642 643 static inline bool set_page_guard(struct zone *zone, struct page *page, 644 unsigned int order, int migratetype) 645 { 646 struct page_ext *page_ext; 647 648 if (!debug_guardpage_enabled()) 649 return false; 650 651 if (order >= debug_guardpage_minorder()) 652 return false; 653 654 page_ext = lookup_page_ext(page); 655 if (unlikely(!page_ext)) 656 return false; 657 658 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 659 660 INIT_LIST_HEAD(&page->lru); 661 set_page_private(page, order); 662 /* Guard pages are not available for any usage */ 663 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 664 665 return true; 666 } 667 668 static inline void clear_page_guard(struct zone *zone, struct page *page, 669 unsigned int order, int migratetype) 670 { 671 struct page_ext *page_ext; 672 673 if (!debug_guardpage_enabled()) 674 return; 675 676 page_ext = lookup_page_ext(page); 677 if (unlikely(!page_ext)) 678 return; 679 680 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 681 682 set_page_private(page, 0); 683 if (!is_migrate_isolate(migratetype)) 684 __mod_zone_freepage_state(zone, (1 << order), migratetype); 685 } 686 #else 687 struct page_ext_operations debug_guardpage_ops; 688 static inline bool set_page_guard(struct zone *zone, struct page *page, 689 unsigned int order, int migratetype) { return false; } 690 static inline void clear_page_guard(struct zone *zone, struct page *page, 691 unsigned int order, int migratetype) {} 692 #endif 693 694 static inline void set_page_order(struct page *page, unsigned int order) 695 { 696 set_page_private(page, order); 697 __SetPageBuddy(page); 698 } 699 700 static inline void rmv_page_order(struct page *page) 701 { 702 __ClearPageBuddy(page); 703 set_page_private(page, 0); 704 } 705 706 /* 707 * This function checks whether a page is free && is the buddy 708 * we can coalesce a page and its buddy if 709 * (a) the buddy is not in a hole (check before calling!) && 710 * (b) the buddy is in the buddy system && 711 * (c) a page and its buddy have the same order && 712 * (d) a page and its buddy are in the same zone. 713 * 714 * For recording whether a page is in the buddy system, we set PageBuddy. 715 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 716 * 717 * For recording page's order, we use page_private(page). 718 */ 719 static inline int page_is_buddy(struct page *page, struct page *buddy, 720 unsigned int order) 721 { 722 if (page_is_guard(buddy) && page_order(buddy) == order) { 723 if (page_zone_id(page) != page_zone_id(buddy)) 724 return 0; 725 726 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 727 728 return 1; 729 } 730 731 if (PageBuddy(buddy) && page_order(buddy) == order) { 732 /* 733 * zone check is done late to avoid uselessly 734 * calculating zone/node ids for pages that could 735 * never merge. 736 */ 737 if (page_zone_id(page) != page_zone_id(buddy)) 738 return 0; 739 740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 741 742 return 1; 743 } 744 return 0; 745 } 746 747 /* 748 * Freeing function for a buddy system allocator. 749 * 750 * The concept of a buddy system is to maintain direct-mapped table 751 * (containing bit values) for memory blocks of various "orders". 752 * The bottom level table contains the map for the smallest allocatable 753 * units of memory (here, pages), and each level above it describes 754 * pairs of units from the levels below, hence, "buddies". 755 * At a high level, all that happens here is marking the table entry 756 * at the bottom level available, and propagating the changes upward 757 * as necessary, plus some accounting needed to play nicely with other 758 * parts of the VM system. 759 * At each level, we keep a list of pages, which are heads of continuous 760 * free pages of length of (1 << order) and marked with PageBuddy. 761 * Page's order is recorded in page_private(page) field. 762 * So when we are allocating or freeing one, we can derive the state of the 763 * other. That is, if we allocate a small block, and both were 764 * free, the remainder of the region must be split into blocks. 765 * If a block is freed, and its buddy is also free, then this 766 * triggers coalescing into a block of larger size. 767 * 768 * -- nyc 769 */ 770 771 static inline void __free_one_page(struct page *page, 772 unsigned long pfn, 773 struct zone *zone, unsigned int order, 774 int migratetype) 775 { 776 unsigned long combined_pfn; 777 unsigned long uninitialized_var(buddy_pfn); 778 struct page *buddy; 779 unsigned int max_order; 780 781 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 782 783 VM_BUG_ON(!zone_is_initialized(zone)); 784 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 785 786 VM_BUG_ON(migratetype == -1); 787 if (likely(!is_migrate_isolate(migratetype))) 788 __mod_zone_freepage_state(zone, 1 << order, migratetype); 789 790 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 791 VM_BUG_ON_PAGE(bad_range(zone, page), page); 792 793 continue_merging: 794 while (order < max_order - 1) { 795 buddy_pfn = __find_buddy_pfn(pfn, order); 796 buddy = page + (buddy_pfn - pfn); 797 798 if (!pfn_valid_within(buddy_pfn)) 799 goto done_merging; 800 if (!page_is_buddy(page, buddy, order)) 801 goto done_merging; 802 /* 803 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 804 * merge with it and move up one order. 805 */ 806 if (page_is_guard(buddy)) { 807 clear_page_guard(zone, buddy, order, migratetype); 808 } else { 809 list_del(&buddy->lru); 810 zone->free_area[order].nr_free--; 811 rmv_page_order(buddy); 812 } 813 combined_pfn = buddy_pfn & pfn; 814 page = page + (combined_pfn - pfn); 815 pfn = combined_pfn; 816 order++; 817 } 818 if (max_order < MAX_ORDER) { 819 /* If we are here, it means order is >= pageblock_order. 820 * We want to prevent merge between freepages on isolate 821 * pageblock and normal pageblock. Without this, pageblock 822 * isolation could cause incorrect freepage or CMA accounting. 823 * 824 * We don't want to hit this code for the more frequent 825 * low-order merging. 826 */ 827 if (unlikely(has_isolate_pageblock(zone))) { 828 int buddy_mt; 829 830 buddy_pfn = __find_buddy_pfn(pfn, order); 831 buddy = page + (buddy_pfn - pfn); 832 buddy_mt = get_pageblock_migratetype(buddy); 833 834 if (migratetype != buddy_mt 835 && (is_migrate_isolate(migratetype) || 836 is_migrate_isolate(buddy_mt))) 837 goto done_merging; 838 } 839 max_order++; 840 goto continue_merging; 841 } 842 843 done_merging: 844 set_page_order(page, order); 845 846 /* 847 * If this is not the largest possible page, check if the buddy 848 * of the next-highest order is free. If it is, it's possible 849 * that pages are being freed that will coalesce soon. In case, 850 * that is happening, add the free page to the tail of the list 851 * so it's less likely to be used soon and more likely to be merged 852 * as a higher order page 853 */ 854 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 855 struct page *higher_page, *higher_buddy; 856 combined_pfn = buddy_pfn & pfn; 857 higher_page = page + (combined_pfn - pfn); 858 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 859 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 860 if (pfn_valid_within(buddy_pfn) && 861 page_is_buddy(higher_page, higher_buddy, order + 1)) { 862 list_add_tail(&page->lru, 863 &zone->free_area[order].free_list[migratetype]); 864 goto out; 865 } 866 } 867 868 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 869 out: 870 zone->free_area[order].nr_free++; 871 } 872 873 /* 874 * A bad page could be due to a number of fields. Instead of multiple branches, 875 * try and check multiple fields with one check. The caller must do a detailed 876 * check if necessary. 877 */ 878 static inline bool page_expected_state(struct page *page, 879 unsigned long check_flags) 880 { 881 if (unlikely(atomic_read(&page->_mapcount) != -1)) 882 return false; 883 884 if (unlikely((unsigned long)page->mapping | 885 page_ref_count(page) | 886 #ifdef CONFIG_MEMCG 887 (unsigned long)page->mem_cgroup | 888 #endif 889 (page->flags & check_flags))) 890 return false; 891 892 return true; 893 } 894 895 static void free_pages_check_bad(struct page *page) 896 { 897 const char *bad_reason; 898 unsigned long bad_flags; 899 900 bad_reason = NULL; 901 bad_flags = 0; 902 903 if (unlikely(atomic_read(&page->_mapcount) != -1)) 904 bad_reason = "nonzero mapcount"; 905 if (unlikely(page->mapping != NULL)) 906 bad_reason = "non-NULL mapping"; 907 if (unlikely(page_ref_count(page) != 0)) 908 bad_reason = "nonzero _refcount"; 909 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 910 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 911 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 912 } 913 #ifdef CONFIG_MEMCG 914 if (unlikely(page->mem_cgroup)) 915 bad_reason = "page still charged to cgroup"; 916 #endif 917 bad_page(page, bad_reason, bad_flags); 918 } 919 920 static inline int free_pages_check(struct page *page) 921 { 922 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 923 return 0; 924 925 /* Something has gone sideways, find it */ 926 free_pages_check_bad(page); 927 return 1; 928 } 929 930 static int free_tail_pages_check(struct page *head_page, struct page *page) 931 { 932 int ret = 1; 933 934 /* 935 * We rely page->lru.next never has bit 0 set, unless the page 936 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 937 */ 938 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 939 940 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 941 ret = 0; 942 goto out; 943 } 944 switch (page - head_page) { 945 case 1: 946 /* the first tail page: ->mapping may be compound_mapcount() */ 947 if (unlikely(compound_mapcount(page))) { 948 bad_page(page, "nonzero compound_mapcount", 0); 949 goto out; 950 } 951 break; 952 case 2: 953 /* 954 * the second tail page: ->mapping is 955 * deferred_list.next -- ignore value. 956 */ 957 break; 958 default: 959 if (page->mapping != TAIL_MAPPING) { 960 bad_page(page, "corrupted mapping in tail page", 0); 961 goto out; 962 } 963 break; 964 } 965 if (unlikely(!PageTail(page))) { 966 bad_page(page, "PageTail not set", 0); 967 goto out; 968 } 969 if (unlikely(compound_head(page) != head_page)) { 970 bad_page(page, "compound_head not consistent", 0); 971 goto out; 972 } 973 ret = 0; 974 out: 975 page->mapping = NULL; 976 clear_compound_head(page); 977 return ret; 978 } 979 980 static __always_inline bool free_pages_prepare(struct page *page, 981 unsigned int order, bool check_free) 982 { 983 int bad = 0; 984 985 VM_BUG_ON_PAGE(PageTail(page), page); 986 987 trace_mm_page_free(page, order); 988 989 /* 990 * Check tail pages before head page information is cleared to 991 * avoid checking PageCompound for order-0 pages. 992 */ 993 if (unlikely(order)) { 994 bool compound = PageCompound(page); 995 int i; 996 997 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 998 999 if (compound) 1000 ClearPageDoubleMap(page); 1001 for (i = 1; i < (1 << order); i++) { 1002 if (compound) 1003 bad += free_tail_pages_check(page, page + i); 1004 if (unlikely(free_pages_check(page + i))) { 1005 bad++; 1006 continue; 1007 } 1008 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1009 } 1010 } 1011 if (PageMappingFlags(page)) 1012 page->mapping = NULL; 1013 if (memcg_kmem_enabled() && PageKmemcg(page)) 1014 memcg_kmem_uncharge(page, order); 1015 if (check_free) 1016 bad += free_pages_check(page); 1017 if (bad) 1018 return false; 1019 1020 page_cpupid_reset_last(page); 1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1022 reset_page_owner(page, order); 1023 1024 if (!PageHighMem(page)) { 1025 debug_check_no_locks_freed(page_address(page), 1026 PAGE_SIZE << order); 1027 debug_check_no_obj_freed(page_address(page), 1028 PAGE_SIZE << order); 1029 } 1030 arch_free_page(page, order); 1031 kernel_poison_pages(page, 1 << order, 0); 1032 kernel_map_pages(page, 1 << order, 0); 1033 kasan_free_pages(page, order); 1034 1035 return true; 1036 } 1037 1038 #ifdef CONFIG_DEBUG_VM 1039 static inline bool free_pcp_prepare(struct page *page) 1040 { 1041 return free_pages_prepare(page, 0, true); 1042 } 1043 1044 static inline bool bulkfree_pcp_prepare(struct page *page) 1045 { 1046 return false; 1047 } 1048 #else 1049 static bool free_pcp_prepare(struct page *page) 1050 { 1051 return free_pages_prepare(page, 0, false); 1052 } 1053 1054 static bool bulkfree_pcp_prepare(struct page *page) 1055 { 1056 return free_pages_check(page); 1057 } 1058 #endif /* CONFIG_DEBUG_VM */ 1059 1060 static inline void prefetch_buddy(struct page *page) 1061 { 1062 unsigned long pfn = page_to_pfn(page); 1063 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1064 struct page *buddy = page + (buddy_pfn - pfn); 1065 1066 prefetch(buddy); 1067 } 1068 1069 /* 1070 * Frees a number of pages from the PCP lists 1071 * Assumes all pages on list are in same zone, and of same order. 1072 * count is the number of pages to free. 1073 * 1074 * If the zone was previously in an "all pages pinned" state then look to 1075 * see if this freeing clears that state. 1076 * 1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1078 * pinned" detection logic. 1079 */ 1080 static void free_pcppages_bulk(struct zone *zone, int count, 1081 struct per_cpu_pages *pcp) 1082 { 1083 int migratetype = 0; 1084 int batch_free = 0; 1085 int prefetch_nr = 0; 1086 bool isolated_pageblocks; 1087 struct page *page, *tmp; 1088 LIST_HEAD(head); 1089 1090 while (count) { 1091 struct list_head *list; 1092 1093 /* 1094 * Remove pages from lists in a round-robin fashion. A 1095 * batch_free count is maintained that is incremented when an 1096 * empty list is encountered. This is so more pages are freed 1097 * off fuller lists instead of spinning excessively around empty 1098 * lists 1099 */ 1100 do { 1101 batch_free++; 1102 if (++migratetype == MIGRATE_PCPTYPES) 1103 migratetype = 0; 1104 list = &pcp->lists[migratetype]; 1105 } while (list_empty(list)); 1106 1107 /* This is the only non-empty list. Free them all. */ 1108 if (batch_free == MIGRATE_PCPTYPES) 1109 batch_free = count; 1110 1111 do { 1112 page = list_last_entry(list, struct page, lru); 1113 /* must delete to avoid corrupting pcp list */ 1114 list_del(&page->lru); 1115 pcp->count--; 1116 1117 if (bulkfree_pcp_prepare(page)) 1118 continue; 1119 1120 list_add_tail(&page->lru, &head); 1121 1122 /* 1123 * We are going to put the page back to the global 1124 * pool, prefetch its buddy to speed up later access 1125 * under zone->lock. It is believed the overhead of 1126 * an additional test and calculating buddy_pfn here 1127 * can be offset by reduced memory latency later. To 1128 * avoid excessive prefetching due to large count, only 1129 * prefetch buddy for the first pcp->batch nr of pages. 1130 */ 1131 if (prefetch_nr++ < pcp->batch) 1132 prefetch_buddy(page); 1133 } while (--count && --batch_free && !list_empty(list)); 1134 } 1135 1136 spin_lock(&zone->lock); 1137 isolated_pageblocks = has_isolate_pageblock(zone); 1138 1139 /* 1140 * Use safe version since after __free_one_page(), 1141 * page->lru.next will not point to original list. 1142 */ 1143 list_for_each_entry_safe(page, tmp, &head, lru) { 1144 int mt = get_pcppage_migratetype(page); 1145 /* MIGRATE_ISOLATE page should not go to pcplists */ 1146 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1147 /* Pageblock could have been isolated meanwhile */ 1148 if (unlikely(isolated_pageblocks)) 1149 mt = get_pageblock_migratetype(page); 1150 1151 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1152 trace_mm_page_pcpu_drain(page, 0, mt); 1153 } 1154 spin_unlock(&zone->lock); 1155 } 1156 1157 static void free_one_page(struct zone *zone, 1158 struct page *page, unsigned long pfn, 1159 unsigned int order, 1160 int migratetype) 1161 { 1162 spin_lock(&zone->lock); 1163 if (unlikely(has_isolate_pageblock(zone) || 1164 is_migrate_isolate(migratetype))) { 1165 migratetype = get_pfnblock_migratetype(page, pfn); 1166 } 1167 __free_one_page(page, pfn, zone, order, migratetype); 1168 spin_unlock(&zone->lock); 1169 } 1170 1171 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1172 unsigned long zone, int nid) 1173 { 1174 mm_zero_struct_page(page); 1175 set_page_links(page, zone, nid, pfn); 1176 init_page_count(page); 1177 page_mapcount_reset(page); 1178 page_cpupid_reset_last(page); 1179 1180 INIT_LIST_HEAD(&page->lru); 1181 #ifdef WANT_PAGE_VIRTUAL 1182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1183 if (!is_highmem_idx(zone)) 1184 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1185 #endif 1186 } 1187 1188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1189 static void __meminit init_reserved_page(unsigned long pfn) 1190 { 1191 pg_data_t *pgdat; 1192 int nid, zid; 1193 1194 if (!early_page_uninitialised(pfn)) 1195 return; 1196 1197 nid = early_pfn_to_nid(pfn); 1198 pgdat = NODE_DATA(nid); 1199 1200 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1201 struct zone *zone = &pgdat->node_zones[zid]; 1202 1203 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1204 break; 1205 } 1206 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1207 } 1208 #else 1209 static inline void init_reserved_page(unsigned long pfn) 1210 { 1211 } 1212 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1213 1214 /* 1215 * Initialised pages do not have PageReserved set. This function is 1216 * called for each range allocated by the bootmem allocator and 1217 * marks the pages PageReserved. The remaining valid pages are later 1218 * sent to the buddy page allocator. 1219 */ 1220 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1221 { 1222 unsigned long start_pfn = PFN_DOWN(start); 1223 unsigned long end_pfn = PFN_UP(end); 1224 1225 for (; start_pfn < end_pfn; start_pfn++) { 1226 if (pfn_valid(start_pfn)) { 1227 struct page *page = pfn_to_page(start_pfn); 1228 1229 init_reserved_page(start_pfn); 1230 1231 /* Avoid false-positive PageTail() */ 1232 INIT_LIST_HEAD(&page->lru); 1233 1234 SetPageReserved(page); 1235 } 1236 } 1237 } 1238 1239 static void __free_pages_ok(struct page *page, unsigned int order) 1240 { 1241 unsigned long flags; 1242 int migratetype; 1243 unsigned long pfn = page_to_pfn(page); 1244 1245 if (!free_pages_prepare(page, order, true)) 1246 return; 1247 1248 migratetype = get_pfnblock_migratetype(page, pfn); 1249 local_irq_save(flags); 1250 __count_vm_events(PGFREE, 1 << order); 1251 free_one_page(page_zone(page), page, pfn, order, migratetype); 1252 local_irq_restore(flags); 1253 } 1254 1255 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1256 { 1257 unsigned int nr_pages = 1 << order; 1258 struct page *p = page; 1259 unsigned int loop; 1260 1261 prefetchw(p); 1262 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1263 prefetchw(p + 1); 1264 __ClearPageReserved(p); 1265 set_page_count(p, 0); 1266 } 1267 __ClearPageReserved(p); 1268 set_page_count(p, 0); 1269 1270 page_zone(page)->managed_pages += nr_pages; 1271 set_page_refcounted(page); 1272 __free_pages(page, order); 1273 } 1274 1275 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1276 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1277 1278 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1279 1280 int __meminit early_pfn_to_nid(unsigned long pfn) 1281 { 1282 static DEFINE_SPINLOCK(early_pfn_lock); 1283 int nid; 1284 1285 spin_lock(&early_pfn_lock); 1286 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1287 if (nid < 0) 1288 nid = first_online_node; 1289 spin_unlock(&early_pfn_lock); 1290 1291 return nid; 1292 } 1293 #endif 1294 1295 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1296 static inline bool __meminit __maybe_unused 1297 meminit_pfn_in_nid(unsigned long pfn, int node, 1298 struct mminit_pfnnid_cache *state) 1299 { 1300 int nid; 1301 1302 nid = __early_pfn_to_nid(pfn, state); 1303 if (nid >= 0 && nid != node) 1304 return false; 1305 return true; 1306 } 1307 1308 /* Only safe to use early in boot when initialisation is single-threaded */ 1309 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1310 { 1311 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1312 } 1313 1314 #else 1315 1316 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1317 { 1318 return true; 1319 } 1320 static inline bool __meminit __maybe_unused 1321 meminit_pfn_in_nid(unsigned long pfn, int node, 1322 struct mminit_pfnnid_cache *state) 1323 { 1324 return true; 1325 } 1326 #endif 1327 1328 1329 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1330 unsigned int order) 1331 { 1332 if (early_page_uninitialised(pfn)) 1333 return; 1334 return __free_pages_boot_core(page, order); 1335 } 1336 1337 /* 1338 * Check that the whole (or subset of) a pageblock given by the interval of 1339 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1340 * with the migration of free compaction scanner. The scanners then need to 1341 * use only pfn_valid_within() check for arches that allow holes within 1342 * pageblocks. 1343 * 1344 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1345 * 1346 * It's possible on some configurations to have a setup like node0 node1 node0 1347 * i.e. it's possible that all pages within a zones range of pages do not 1348 * belong to a single zone. We assume that a border between node0 and node1 1349 * can occur within a single pageblock, but not a node0 node1 node0 1350 * interleaving within a single pageblock. It is therefore sufficient to check 1351 * the first and last page of a pageblock and avoid checking each individual 1352 * page in a pageblock. 1353 */ 1354 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1355 unsigned long end_pfn, struct zone *zone) 1356 { 1357 struct page *start_page; 1358 struct page *end_page; 1359 1360 /* end_pfn is one past the range we are checking */ 1361 end_pfn--; 1362 1363 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1364 return NULL; 1365 1366 start_page = pfn_to_online_page(start_pfn); 1367 if (!start_page) 1368 return NULL; 1369 1370 if (page_zone(start_page) != zone) 1371 return NULL; 1372 1373 end_page = pfn_to_page(end_pfn); 1374 1375 /* This gives a shorter code than deriving page_zone(end_page) */ 1376 if (page_zone_id(start_page) != page_zone_id(end_page)) 1377 return NULL; 1378 1379 return start_page; 1380 } 1381 1382 void set_zone_contiguous(struct zone *zone) 1383 { 1384 unsigned long block_start_pfn = zone->zone_start_pfn; 1385 unsigned long block_end_pfn; 1386 1387 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1388 for (; block_start_pfn < zone_end_pfn(zone); 1389 block_start_pfn = block_end_pfn, 1390 block_end_pfn += pageblock_nr_pages) { 1391 1392 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1393 1394 if (!__pageblock_pfn_to_page(block_start_pfn, 1395 block_end_pfn, zone)) 1396 return; 1397 } 1398 1399 /* We confirm that there is no hole */ 1400 zone->contiguous = true; 1401 } 1402 1403 void clear_zone_contiguous(struct zone *zone) 1404 { 1405 zone->contiguous = false; 1406 } 1407 1408 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1409 static void __init deferred_free_range(unsigned long pfn, 1410 unsigned long nr_pages) 1411 { 1412 struct page *page; 1413 unsigned long i; 1414 1415 if (!nr_pages) 1416 return; 1417 1418 page = pfn_to_page(pfn); 1419 1420 /* Free a large naturally-aligned chunk if possible */ 1421 if (nr_pages == pageblock_nr_pages && 1422 (pfn & (pageblock_nr_pages - 1)) == 0) { 1423 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1424 __free_pages_boot_core(page, pageblock_order); 1425 return; 1426 } 1427 1428 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1429 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1430 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1431 __free_pages_boot_core(page, 0); 1432 } 1433 } 1434 1435 /* Completion tracking for deferred_init_memmap() threads */ 1436 static atomic_t pgdat_init_n_undone __initdata; 1437 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1438 1439 static inline void __init pgdat_init_report_one_done(void) 1440 { 1441 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1442 complete(&pgdat_init_all_done_comp); 1443 } 1444 1445 /* 1446 * Returns true if page needs to be initialized or freed to buddy allocator. 1447 * 1448 * First we check if pfn is valid on architectures where it is possible to have 1449 * holes within pageblock_nr_pages. On systems where it is not possible, this 1450 * function is optimized out. 1451 * 1452 * Then, we check if a current large page is valid by only checking the validity 1453 * of the head pfn. 1454 * 1455 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1456 * within a node: a pfn is between start and end of a node, but does not belong 1457 * to this memory node. 1458 */ 1459 static inline bool __init 1460 deferred_pfn_valid(int nid, unsigned long pfn, 1461 struct mminit_pfnnid_cache *nid_init_state) 1462 { 1463 if (!pfn_valid_within(pfn)) 1464 return false; 1465 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1466 return false; 1467 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1468 return false; 1469 return true; 1470 } 1471 1472 /* 1473 * Free pages to buddy allocator. Try to free aligned pages in 1474 * pageblock_nr_pages sizes. 1475 */ 1476 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1477 unsigned long end_pfn) 1478 { 1479 struct mminit_pfnnid_cache nid_init_state = { }; 1480 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1481 unsigned long nr_free = 0; 1482 1483 for (; pfn < end_pfn; pfn++) { 1484 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1485 deferred_free_range(pfn - nr_free, nr_free); 1486 nr_free = 0; 1487 } else if (!(pfn & nr_pgmask)) { 1488 deferred_free_range(pfn - nr_free, nr_free); 1489 nr_free = 1; 1490 touch_nmi_watchdog(); 1491 } else { 1492 nr_free++; 1493 } 1494 } 1495 /* Free the last block of pages to allocator */ 1496 deferred_free_range(pfn - nr_free, nr_free); 1497 } 1498 1499 /* 1500 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1501 * by performing it only once every pageblock_nr_pages. 1502 * Return number of pages initialized. 1503 */ 1504 static unsigned long __init deferred_init_pages(int nid, int zid, 1505 unsigned long pfn, 1506 unsigned long end_pfn) 1507 { 1508 struct mminit_pfnnid_cache nid_init_state = { }; 1509 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1510 unsigned long nr_pages = 0; 1511 struct page *page = NULL; 1512 1513 for (; pfn < end_pfn; pfn++) { 1514 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1515 page = NULL; 1516 continue; 1517 } else if (!page || !(pfn & nr_pgmask)) { 1518 page = pfn_to_page(pfn); 1519 touch_nmi_watchdog(); 1520 } else { 1521 page++; 1522 } 1523 __init_single_page(page, pfn, zid, nid); 1524 nr_pages++; 1525 } 1526 return (nr_pages); 1527 } 1528 1529 /* Initialise remaining memory on a node */ 1530 static int __init deferred_init_memmap(void *data) 1531 { 1532 pg_data_t *pgdat = data; 1533 int nid = pgdat->node_id; 1534 unsigned long start = jiffies; 1535 unsigned long nr_pages = 0; 1536 unsigned long spfn, epfn, first_init_pfn, flags; 1537 phys_addr_t spa, epa; 1538 int zid; 1539 struct zone *zone; 1540 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1541 u64 i; 1542 1543 /* Bind memory initialisation thread to a local node if possible */ 1544 if (!cpumask_empty(cpumask)) 1545 set_cpus_allowed_ptr(current, cpumask); 1546 1547 pgdat_resize_lock(pgdat, &flags); 1548 first_init_pfn = pgdat->first_deferred_pfn; 1549 if (first_init_pfn == ULONG_MAX) { 1550 pgdat_resize_unlock(pgdat, &flags); 1551 pgdat_init_report_one_done(); 1552 return 0; 1553 } 1554 1555 /* Sanity check boundaries */ 1556 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1557 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1558 pgdat->first_deferred_pfn = ULONG_MAX; 1559 1560 /* Only the highest zone is deferred so find it */ 1561 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1562 zone = pgdat->node_zones + zid; 1563 if (first_init_pfn < zone_end_pfn(zone)) 1564 break; 1565 } 1566 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1567 1568 /* 1569 * Initialize and free pages. We do it in two loops: first we initialize 1570 * struct page, than free to buddy allocator, because while we are 1571 * freeing pages we can access pages that are ahead (computing buddy 1572 * page in __free_one_page()). 1573 */ 1574 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1575 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1576 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1577 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1578 } 1579 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1580 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1581 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1582 deferred_free_pages(nid, zid, spfn, epfn); 1583 } 1584 pgdat_resize_unlock(pgdat, &flags); 1585 1586 /* Sanity check that the next zone really is unpopulated */ 1587 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1588 1589 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1590 jiffies_to_msecs(jiffies - start)); 1591 1592 pgdat_init_report_one_done(); 1593 return 0; 1594 } 1595 1596 /* 1597 * During boot we initialize deferred pages on-demand, as needed, but once 1598 * page_alloc_init_late() has finished, the deferred pages are all initialized, 1599 * and we can permanently disable that path. 1600 */ 1601 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 1602 1603 /* 1604 * If this zone has deferred pages, try to grow it by initializing enough 1605 * deferred pages to satisfy the allocation specified by order, rounded up to 1606 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1607 * of SECTION_SIZE bytes by initializing struct pages in increments of 1608 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1609 * 1610 * Return true when zone was grown, otherwise return false. We return true even 1611 * when we grow less than requested, to let the caller decide if there are 1612 * enough pages to satisfy the allocation. 1613 * 1614 * Note: We use noinline because this function is needed only during boot, and 1615 * it is called from a __ref function _deferred_grow_zone. This way we are 1616 * making sure that it is not inlined into permanent text section. 1617 */ 1618 static noinline bool __init 1619 deferred_grow_zone(struct zone *zone, unsigned int order) 1620 { 1621 int zid = zone_idx(zone); 1622 int nid = zone_to_nid(zone); 1623 pg_data_t *pgdat = NODE_DATA(nid); 1624 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1625 unsigned long nr_pages = 0; 1626 unsigned long first_init_pfn, spfn, epfn, t, flags; 1627 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1628 phys_addr_t spa, epa; 1629 u64 i; 1630 1631 /* Only the last zone may have deferred pages */ 1632 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1633 return false; 1634 1635 pgdat_resize_lock(pgdat, &flags); 1636 1637 /* 1638 * If deferred pages have been initialized while we were waiting for 1639 * the lock, return true, as the zone was grown. The caller will retry 1640 * this zone. We won't return to this function since the caller also 1641 * has this static branch. 1642 */ 1643 if (!static_branch_unlikely(&deferred_pages)) { 1644 pgdat_resize_unlock(pgdat, &flags); 1645 return true; 1646 } 1647 1648 /* 1649 * If someone grew this zone while we were waiting for spinlock, return 1650 * true, as there might be enough pages already. 1651 */ 1652 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1653 pgdat_resize_unlock(pgdat, &flags); 1654 return true; 1655 } 1656 1657 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); 1658 1659 if (first_init_pfn >= pgdat_end_pfn(pgdat)) { 1660 pgdat_resize_unlock(pgdat, &flags); 1661 return false; 1662 } 1663 1664 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1665 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1666 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1667 1668 while (spfn < epfn && nr_pages < nr_pages_needed) { 1669 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); 1670 first_deferred_pfn = min(t, epfn); 1671 nr_pages += deferred_init_pages(nid, zid, spfn, 1672 first_deferred_pfn); 1673 spfn = first_deferred_pfn; 1674 } 1675 1676 if (nr_pages >= nr_pages_needed) 1677 break; 1678 } 1679 1680 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1681 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1682 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); 1683 deferred_free_pages(nid, zid, spfn, epfn); 1684 1685 if (first_deferred_pfn == epfn) 1686 break; 1687 } 1688 pgdat->first_deferred_pfn = first_deferred_pfn; 1689 pgdat_resize_unlock(pgdat, &flags); 1690 1691 return nr_pages > 0; 1692 } 1693 1694 /* 1695 * deferred_grow_zone() is __init, but it is called from 1696 * get_page_from_freelist() during early boot until deferred_pages permanently 1697 * disables this call. This is why we have refdata wrapper to avoid warning, 1698 * and to ensure that the function body gets unloaded. 1699 */ 1700 static bool __ref 1701 _deferred_grow_zone(struct zone *zone, unsigned int order) 1702 { 1703 return deferred_grow_zone(zone, order); 1704 } 1705 1706 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1707 1708 void __init page_alloc_init_late(void) 1709 { 1710 struct zone *zone; 1711 1712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1713 int nid; 1714 1715 /* There will be num_node_state(N_MEMORY) threads */ 1716 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1717 for_each_node_state(nid, N_MEMORY) { 1718 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1719 } 1720 1721 /* Block until all are initialised */ 1722 wait_for_completion(&pgdat_init_all_done_comp); 1723 1724 /* 1725 * We initialized the rest of the deferred pages. Permanently disable 1726 * on-demand struct page initialization. 1727 */ 1728 static_branch_disable(&deferred_pages); 1729 1730 /* Reinit limits that are based on free pages after the kernel is up */ 1731 files_maxfiles_init(); 1732 #endif 1733 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1734 /* Discard memblock private memory */ 1735 memblock_discard(); 1736 #endif 1737 1738 for_each_populated_zone(zone) 1739 set_zone_contiguous(zone); 1740 } 1741 1742 #ifdef CONFIG_CMA 1743 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1744 void __init init_cma_reserved_pageblock(struct page *page) 1745 { 1746 unsigned i = pageblock_nr_pages; 1747 struct page *p = page; 1748 1749 do { 1750 __ClearPageReserved(p); 1751 set_page_count(p, 0); 1752 } while (++p, --i); 1753 1754 set_pageblock_migratetype(page, MIGRATE_CMA); 1755 1756 if (pageblock_order >= MAX_ORDER) { 1757 i = pageblock_nr_pages; 1758 p = page; 1759 do { 1760 set_page_refcounted(p); 1761 __free_pages(p, MAX_ORDER - 1); 1762 p += MAX_ORDER_NR_PAGES; 1763 } while (i -= MAX_ORDER_NR_PAGES); 1764 } else { 1765 set_page_refcounted(page); 1766 __free_pages(page, pageblock_order); 1767 } 1768 1769 adjust_managed_page_count(page, pageblock_nr_pages); 1770 } 1771 #endif 1772 1773 /* 1774 * The order of subdivision here is critical for the IO subsystem. 1775 * Please do not alter this order without good reasons and regression 1776 * testing. Specifically, as large blocks of memory are subdivided, 1777 * the order in which smaller blocks are delivered depends on the order 1778 * they're subdivided in this function. This is the primary factor 1779 * influencing the order in which pages are delivered to the IO 1780 * subsystem according to empirical testing, and this is also justified 1781 * by considering the behavior of a buddy system containing a single 1782 * large block of memory acted on by a series of small allocations. 1783 * This behavior is a critical factor in sglist merging's success. 1784 * 1785 * -- nyc 1786 */ 1787 static inline void expand(struct zone *zone, struct page *page, 1788 int low, int high, struct free_area *area, 1789 int migratetype) 1790 { 1791 unsigned long size = 1 << high; 1792 1793 while (high > low) { 1794 area--; 1795 high--; 1796 size >>= 1; 1797 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1798 1799 /* 1800 * Mark as guard pages (or page), that will allow to 1801 * merge back to allocator when buddy will be freed. 1802 * Corresponding page table entries will not be touched, 1803 * pages will stay not present in virtual address space 1804 */ 1805 if (set_page_guard(zone, &page[size], high, migratetype)) 1806 continue; 1807 1808 list_add(&page[size].lru, &area->free_list[migratetype]); 1809 area->nr_free++; 1810 set_page_order(&page[size], high); 1811 } 1812 } 1813 1814 static void check_new_page_bad(struct page *page) 1815 { 1816 const char *bad_reason = NULL; 1817 unsigned long bad_flags = 0; 1818 1819 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1820 bad_reason = "nonzero mapcount"; 1821 if (unlikely(page->mapping != NULL)) 1822 bad_reason = "non-NULL mapping"; 1823 if (unlikely(page_ref_count(page) != 0)) 1824 bad_reason = "nonzero _count"; 1825 if (unlikely(page->flags & __PG_HWPOISON)) { 1826 bad_reason = "HWPoisoned (hardware-corrupted)"; 1827 bad_flags = __PG_HWPOISON; 1828 /* Don't complain about hwpoisoned pages */ 1829 page_mapcount_reset(page); /* remove PageBuddy */ 1830 return; 1831 } 1832 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1833 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1834 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1835 } 1836 #ifdef CONFIG_MEMCG 1837 if (unlikely(page->mem_cgroup)) 1838 bad_reason = "page still charged to cgroup"; 1839 #endif 1840 bad_page(page, bad_reason, bad_flags); 1841 } 1842 1843 /* 1844 * This page is about to be returned from the page allocator 1845 */ 1846 static inline int check_new_page(struct page *page) 1847 { 1848 if (likely(page_expected_state(page, 1849 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1850 return 0; 1851 1852 check_new_page_bad(page); 1853 return 1; 1854 } 1855 1856 static inline bool free_pages_prezeroed(void) 1857 { 1858 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1859 page_poisoning_enabled(); 1860 } 1861 1862 #ifdef CONFIG_DEBUG_VM 1863 static bool check_pcp_refill(struct page *page) 1864 { 1865 return false; 1866 } 1867 1868 static bool check_new_pcp(struct page *page) 1869 { 1870 return check_new_page(page); 1871 } 1872 #else 1873 static bool check_pcp_refill(struct page *page) 1874 { 1875 return check_new_page(page); 1876 } 1877 static bool check_new_pcp(struct page *page) 1878 { 1879 return false; 1880 } 1881 #endif /* CONFIG_DEBUG_VM */ 1882 1883 static bool check_new_pages(struct page *page, unsigned int order) 1884 { 1885 int i; 1886 for (i = 0; i < (1 << order); i++) { 1887 struct page *p = page + i; 1888 1889 if (unlikely(check_new_page(p))) 1890 return true; 1891 } 1892 1893 return false; 1894 } 1895 1896 inline void post_alloc_hook(struct page *page, unsigned int order, 1897 gfp_t gfp_flags) 1898 { 1899 set_page_private(page, 0); 1900 set_page_refcounted(page); 1901 1902 arch_alloc_page(page, order); 1903 kernel_map_pages(page, 1 << order, 1); 1904 kernel_poison_pages(page, 1 << order, 1); 1905 kasan_alloc_pages(page, order); 1906 set_page_owner(page, order, gfp_flags); 1907 } 1908 1909 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1910 unsigned int alloc_flags) 1911 { 1912 int i; 1913 1914 post_alloc_hook(page, order, gfp_flags); 1915 1916 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1917 for (i = 0; i < (1 << order); i++) 1918 clear_highpage(page + i); 1919 1920 if (order && (gfp_flags & __GFP_COMP)) 1921 prep_compound_page(page, order); 1922 1923 /* 1924 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1925 * allocate the page. The expectation is that the caller is taking 1926 * steps that will free more memory. The caller should avoid the page 1927 * being used for !PFMEMALLOC purposes. 1928 */ 1929 if (alloc_flags & ALLOC_NO_WATERMARKS) 1930 set_page_pfmemalloc(page); 1931 else 1932 clear_page_pfmemalloc(page); 1933 } 1934 1935 /* 1936 * Go through the free lists for the given migratetype and remove 1937 * the smallest available page from the freelists 1938 */ 1939 static __always_inline 1940 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1941 int migratetype) 1942 { 1943 unsigned int current_order; 1944 struct free_area *area; 1945 struct page *page; 1946 1947 /* Find a page of the appropriate size in the preferred list */ 1948 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1949 area = &(zone->free_area[current_order]); 1950 page = list_first_entry_or_null(&area->free_list[migratetype], 1951 struct page, lru); 1952 if (!page) 1953 continue; 1954 list_del(&page->lru); 1955 rmv_page_order(page); 1956 area->nr_free--; 1957 expand(zone, page, order, current_order, area, migratetype); 1958 set_pcppage_migratetype(page, migratetype); 1959 return page; 1960 } 1961 1962 return NULL; 1963 } 1964 1965 1966 /* 1967 * This array describes the order lists are fallen back to when 1968 * the free lists for the desirable migrate type are depleted 1969 */ 1970 static int fallbacks[MIGRATE_TYPES][4] = { 1971 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1972 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1973 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1974 #ifdef CONFIG_CMA 1975 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1976 #endif 1977 #ifdef CONFIG_MEMORY_ISOLATION 1978 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1979 #endif 1980 }; 1981 1982 #ifdef CONFIG_CMA 1983 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1984 unsigned int order) 1985 { 1986 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1987 } 1988 #else 1989 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1990 unsigned int order) { return NULL; } 1991 #endif 1992 1993 /* 1994 * Move the free pages in a range to the free lists of the requested type. 1995 * Note that start_page and end_pages are not aligned on a pageblock 1996 * boundary. If alignment is required, use move_freepages_block() 1997 */ 1998 static int move_freepages(struct zone *zone, 1999 struct page *start_page, struct page *end_page, 2000 int migratetype, int *num_movable) 2001 { 2002 struct page *page; 2003 unsigned int order; 2004 int pages_moved = 0; 2005 2006 #ifndef CONFIG_HOLES_IN_ZONE 2007 /* 2008 * page_zone is not safe to call in this context when 2009 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2010 * anyway as we check zone boundaries in move_freepages_block(). 2011 * Remove at a later date when no bug reports exist related to 2012 * grouping pages by mobility 2013 */ 2014 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2015 pfn_valid(page_to_pfn(end_page)) && 2016 page_zone(start_page) != page_zone(end_page)); 2017 #endif 2018 2019 if (num_movable) 2020 *num_movable = 0; 2021 2022 for (page = start_page; page <= end_page;) { 2023 if (!pfn_valid_within(page_to_pfn(page))) { 2024 page++; 2025 continue; 2026 } 2027 2028 /* Make sure we are not inadvertently changing nodes */ 2029 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2030 2031 if (!PageBuddy(page)) { 2032 /* 2033 * We assume that pages that could be isolated for 2034 * migration are movable. But we don't actually try 2035 * isolating, as that would be expensive. 2036 */ 2037 if (num_movable && 2038 (PageLRU(page) || __PageMovable(page))) 2039 (*num_movable)++; 2040 2041 page++; 2042 continue; 2043 } 2044 2045 order = page_order(page); 2046 list_move(&page->lru, 2047 &zone->free_area[order].free_list[migratetype]); 2048 page += 1 << order; 2049 pages_moved += 1 << order; 2050 } 2051 2052 return pages_moved; 2053 } 2054 2055 int move_freepages_block(struct zone *zone, struct page *page, 2056 int migratetype, int *num_movable) 2057 { 2058 unsigned long start_pfn, end_pfn; 2059 struct page *start_page, *end_page; 2060 2061 start_pfn = page_to_pfn(page); 2062 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2063 start_page = pfn_to_page(start_pfn); 2064 end_page = start_page + pageblock_nr_pages - 1; 2065 end_pfn = start_pfn + pageblock_nr_pages - 1; 2066 2067 /* Do not cross zone boundaries */ 2068 if (!zone_spans_pfn(zone, start_pfn)) 2069 start_page = page; 2070 if (!zone_spans_pfn(zone, end_pfn)) 2071 return 0; 2072 2073 return move_freepages(zone, start_page, end_page, migratetype, 2074 num_movable); 2075 } 2076 2077 static void change_pageblock_range(struct page *pageblock_page, 2078 int start_order, int migratetype) 2079 { 2080 int nr_pageblocks = 1 << (start_order - pageblock_order); 2081 2082 while (nr_pageblocks--) { 2083 set_pageblock_migratetype(pageblock_page, migratetype); 2084 pageblock_page += pageblock_nr_pages; 2085 } 2086 } 2087 2088 /* 2089 * When we are falling back to another migratetype during allocation, try to 2090 * steal extra free pages from the same pageblocks to satisfy further 2091 * allocations, instead of polluting multiple pageblocks. 2092 * 2093 * If we are stealing a relatively large buddy page, it is likely there will 2094 * be more free pages in the pageblock, so try to steal them all. For 2095 * reclaimable and unmovable allocations, we steal regardless of page size, 2096 * as fragmentation caused by those allocations polluting movable pageblocks 2097 * is worse than movable allocations stealing from unmovable and reclaimable 2098 * pageblocks. 2099 */ 2100 static bool can_steal_fallback(unsigned int order, int start_mt) 2101 { 2102 /* 2103 * Leaving this order check is intended, although there is 2104 * relaxed order check in next check. The reason is that 2105 * we can actually steal whole pageblock if this condition met, 2106 * but, below check doesn't guarantee it and that is just heuristic 2107 * so could be changed anytime. 2108 */ 2109 if (order >= pageblock_order) 2110 return true; 2111 2112 if (order >= pageblock_order / 2 || 2113 start_mt == MIGRATE_RECLAIMABLE || 2114 start_mt == MIGRATE_UNMOVABLE || 2115 page_group_by_mobility_disabled) 2116 return true; 2117 2118 return false; 2119 } 2120 2121 /* 2122 * This function implements actual steal behaviour. If order is large enough, 2123 * we can steal whole pageblock. If not, we first move freepages in this 2124 * pageblock to our migratetype and determine how many already-allocated pages 2125 * are there in the pageblock with a compatible migratetype. If at least half 2126 * of pages are free or compatible, we can change migratetype of the pageblock 2127 * itself, so pages freed in the future will be put on the correct free list. 2128 */ 2129 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2130 int start_type, bool whole_block) 2131 { 2132 unsigned int current_order = page_order(page); 2133 struct free_area *area; 2134 int free_pages, movable_pages, alike_pages; 2135 int old_block_type; 2136 2137 old_block_type = get_pageblock_migratetype(page); 2138 2139 /* 2140 * This can happen due to races and we want to prevent broken 2141 * highatomic accounting. 2142 */ 2143 if (is_migrate_highatomic(old_block_type)) 2144 goto single_page; 2145 2146 /* Take ownership for orders >= pageblock_order */ 2147 if (current_order >= pageblock_order) { 2148 change_pageblock_range(page, current_order, start_type); 2149 goto single_page; 2150 } 2151 2152 /* We are not allowed to try stealing from the whole block */ 2153 if (!whole_block) 2154 goto single_page; 2155 2156 free_pages = move_freepages_block(zone, page, start_type, 2157 &movable_pages); 2158 /* 2159 * Determine how many pages are compatible with our allocation. 2160 * For movable allocation, it's the number of movable pages which 2161 * we just obtained. For other types it's a bit more tricky. 2162 */ 2163 if (start_type == MIGRATE_MOVABLE) { 2164 alike_pages = movable_pages; 2165 } else { 2166 /* 2167 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2168 * to MOVABLE pageblock, consider all non-movable pages as 2169 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2170 * vice versa, be conservative since we can't distinguish the 2171 * exact migratetype of non-movable pages. 2172 */ 2173 if (old_block_type == MIGRATE_MOVABLE) 2174 alike_pages = pageblock_nr_pages 2175 - (free_pages + movable_pages); 2176 else 2177 alike_pages = 0; 2178 } 2179 2180 /* moving whole block can fail due to zone boundary conditions */ 2181 if (!free_pages) 2182 goto single_page; 2183 2184 /* 2185 * If a sufficient number of pages in the block are either free or of 2186 * comparable migratability as our allocation, claim the whole block. 2187 */ 2188 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2189 page_group_by_mobility_disabled) 2190 set_pageblock_migratetype(page, start_type); 2191 2192 return; 2193 2194 single_page: 2195 area = &zone->free_area[current_order]; 2196 list_move(&page->lru, &area->free_list[start_type]); 2197 } 2198 2199 /* 2200 * Check whether there is a suitable fallback freepage with requested order. 2201 * If only_stealable is true, this function returns fallback_mt only if 2202 * we can steal other freepages all together. This would help to reduce 2203 * fragmentation due to mixed migratetype pages in one pageblock. 2204 */ 2205 int find_suitable_fallback(struct free_area *area, unsigned int order, 2206 int migratetype, bool only_stealable, bool *can_steal) 2207 { 2208 int i; 2209 int fallback_mt; 2210 2211 if (area->nr_free == 0) 2212 return -1; 2213 2214 *can_steal = false; 2215 for (i = 0;; i++) { 2216 fallback_mt = fallbacks[migratetype][i]; 2217 if (fallback_mt == MIGRATE_TYPES) 2218 break; 2219 2220 if (list_empty(&area->free_list[fallback_mt])) 2221 continue; 2222 2223 if (can_steal_fallback(order, migratetype)) 2224 *can_steal = true; 2225 2226 if (!only_stealable) 2227 return fallback_mt; 2228 2229 if (*can_steal) 2230 return fallback_mt; 2231 } 2232 2233 return -1; 2234 } 2235 2236 /* 2237 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2238 * there are no empty page blocks that contain a page with a suitable order 2239 */ 2240 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2241 unsigned int alloc_order) 2242 { 2243 int mt; 2244 unsigned long max_managed, flags; 2245 2246 /* 2247 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2248 * Check is race-prone but harmless. 2249 */ 2250 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2251 if (zone->nr_reserved_highatomic >= max_managed) 2252 return; 2253 2254 spin_lock_irqsave(&zone->lock, flags); 2255 2256 /* Recheck the nr_reserved_highatomic limit under the lock */ 2257 if (zone->nr_reserved_highatomic >= max_managed) 2258 goto out_unlock; 2259 2260 /* Yoink! */ 2261 mt = get_pageblock_migratetype(page); 2262 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2263 && !is_migrate_cma(mt)) { 2264 zone->nr_reserved_highatomic += pageblock_nr_pages; 2265 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2266 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2267 } 2268 2269 out_unlock: 2270 spin_unlock_irqrestore(&zone->lock, flags); 2271 } 2272 2273 /* 2274 * Used when an allocation is about to fail under memory pressure. This 2275 * potentially hurts the reliability of high-order allocations when under 2276 * intense memory pressure but failed atomic allocations should be easier 2277 * to recover from than an OOM. 2278 * 2279 * If @force is true, try to unreserve a pageblock even though highatomic 2280 * pageblock is exhausted. 2281 */ 2282 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2283 bool force) 2284 { 2285 struct zonelist *zonelist = ac->zonelist; 2286 unsigned long flags; 2287 struct zoneref *z; 2288 struct zone *zone; 2289 struct page *page; 2290 int order; 2291 bool ret; 2292 2293 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2294 ac->nodemask) { 2295 /* 2296 * Preserve at least one pageblock unless memory pressure 2297 * is really high. 2298 */ 2299 if (!force && zone->nr_reserved_highatomic <= 2300 pageblock_nr_pages) 2301 continue; 2302 2303 spin_lock_irqsave(&zone->lock, flags); 2304 for (order = 0; order < MAX_ORDER; order++) { 2305 struct free_area *area = &(zone->free_area[order]); 2306 2307 page = list_first_entry_or_null( 2308 &area->free_list[MIGRATE_HIGHATOMIC], 2309 struct page, lru); 2310 if (!page) 2311 continue; 2312 2313 /* 2314 * In page freeing path, migratetype change is racy so 2315 * we can counter several free pages in a pageblock 2316 * in this loop althoug we changed the pageblock type 2317 * from highatomic to ac->migratetype. So we should 2318 * adjust the count once. 2319 */ 2320 if (is_migrate_highatomic_page(page)) { 2321 /* 2322 * It should never happen but changes to 2323 * locking could inadvertently allow a per-cpu 2324 * drain to add pages to MIGRATE_HIGHATOMIC 2325 * while unreserving so be safe and watch for 2326 * underflows. 2327 */ 2328 zone->nr_reserved_highatomic -= min( 2329 pageblock_nr_pages, 2330 zone->nr_reserved_highatomic); 2331 } 2332 2333 /* 2334 * Convert to ac->migratetype and avoid the normal 2335 * pageblock stealing heuristics. Minimally, the caller 2336 * is doing the work and needs the pages. More 2337 * importantly, if the block was always converted to 2338 * MIGRATE_UNMOVABLE or another type then the number 2339 * of pageblocks that cannot be completely freed 2340 * may increase. 2341 */ 2342 set_pageblock_migratetype(page, ac->migratetype); 2343 ret = move_freepages_block(zone, page, ac->migratetype, 2344 NULL); 2345 if (ret) { 2346 spin_unlock_irqrestore(&zone->lock, flags); 2347 return ret; 2348 } 2349 } 2350 spin_unlock_irqrestore(&zone->lock, flags); 2351 } 2352 2353 return false; 2354 } 2355 2356 /* 2357 * Try finding a free buddy page on the fallback list and put it on the free 2358 * list of requested migratetype, possibly along with other pages from the same 2359 * block, depending on fragmentation avoidance heuristics. Returns true if 2360 * fallback was found so that __rmqueue_smallest() can grab it. 2361 * 2362 * The use of signed ints for order and current_order is a deliberate 2363 * deviation from the rest of this file, to make the for loop 2364 * condition simpler. 2365 */ 2366 static __always_inline bool 2367 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2368 { 2369 struct free_area *area; 2370 int current_order; 2371 struct page *page; 2372 int fallback_mt; 2373 bool can_steal; 2374 2375 /* 2376 * Find the largest available free page in the other list. This roughly 2377 * approximates finding the pageblock with the most free pages, which 2378 * would be too costly to do exactly. 2379 */ 2380 for (current_order = MAX_ORDER - 1; current_order >= order; 2381 --current_order) { 2382 area = &(zone->free_area[current_order]); 2383 fallback_mt = find_suitable_fallback(area, current_order, 2384 start_migratetype, false, &can_steal); 2385 if (fallback_mt == -1) 2386 continue; 2387 2388 /* 2389 * We cannot steal all free pages from the pageblock and the 2390 * requested migratetype is movable. In that case it's better to 2391 * steal and split the smallest available page instead of the 2392 * largest available page, because even if the next movable 2393 * allocation falls back into a different pageblock than this 2394 * one, it won't cause permanent fragmentation. 2395 */ 2396 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2397 && current_order > order) 2398 goto find_smallest; 2399 2400 goto do_steal; 2401 } 2402 2403 return false; 2404 2405 find_smallest: 2406 for (current_order = order; current_order < MAX_ORDER; 2407 current_order++) { 2408 area = &(zone->free_area[current_order]); 2409 fallback_mt = find_suitable_fallback(area, current_order, 2410 start_migratetype, false, &can_steal); 2411 if (fallback_mt != -1) 2412 break; 2413 } 2414 2415 /* 2416 * This should not happen - we already found a suitable fallback 2417 * when looking for the largest page. 2418 */ 2419 VM_BUG_ON(current_order == MAX_ORDER); 2420 2421 do_steal: 2422 page = list_first_entry(&area->free_list[fallback_mt], 2423 struct page, lru); 2424 2425 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2426 2427 trace_mm_page_alloc_extfrag(page, order, current_order, 2428 start_migratetype, fallback_mt); 2429 2430 return true; 2431 2432 } 2433 2434 /* 2435 * Do the hard work of removing an element from the buddy allocator. 2436 * Call me with the zone->lock already held. 2437 */ 2438 static __always_inline struct page * 2439 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2440 { 2441 struct page *page; 2442 2443 retry: 2444 page = __rmqueue_smallest(zone, order, migratetype); 2445 if (unlikely(!page)) { 2446 if (migratetype == MIGRATE_MOVABLE) 2447 page = __rmqueue_cma_fallback(zone, order); 2448 2449 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2450 goto retry; 2451 } 2452 2453 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2454 return page; 2455 } 2456 2457 /* 2458 * Obtain a specified number of elements from the buddy allocator, all under 2459 * a single hold of the lock, for efficiency. Add them to the supplied list. 2460 * Returns the number of new pages which were placed at *list. 2461 */ 2462 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2463 unsigned long count, struct list_head *list, 2464 int migratetype) 2465 { 2466 int i, alloced = 0; 2467 2468 spin_lock(&zone->lock); 2469 for (i = 0; i < count; ++i) { 2470 struct page *page = __rmqueue(zone, order, migratetype); 2471 if (unlikely(page == NULL)) 2472 break; 2473 2474 if (unlikely(check_pcp_refill(page))) 2475 continue; 2476 2477 /* 2478 * Split buddy pages returned by expand() are received here in 2479 * physical page order. The page is added to the tail of 2480 * caller's list. From the callers perspective, the linked list 2481 * is ordered by page number under some conditions. This is 2482 * useful for IO devices that can forward direction from the 2483 * head, thus also in the physical page order. This is useful 2484 * for IO devices that can merge IO requests if the physical 2485 * pages are ordered properly. 2486 */ 2487 list_add_tail(&page->lru, list); 2488 alloced++; 2489 if (is_migrate_cma(get_pcppage_migratetype(page))) 2490 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2491 -(1 << order)); 2492 } 2493 2494 /* 2495 * i pages were removed from the buddy list even if some leak due 2496 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2497 * on i. Do not confuse with 'alloced' which is the number of 2498 * pages added to the pcp list. 2499 */ 2500 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2501 spin_unlock(&zone->lock); 2502 return alloced; 2503 } 2504 2505 #ifdef CONFIG_NUMA 2506 /* 2507 * Called from the vmstat counter updater to drain pagesets of this 2508 * currently executing processor on remote nodes after they have 2509 * expired. 2510 * 2511 * Note that this function must be called with the thread pinned to 2512 * a single processor. 2513 */ 2514 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2515 { 2516 unsigned long flags; 2517 int to_drain, batch; 2518 2519 local_irq_save(flags); 2520 batch = READ_ONCE(pcp->batch); 2521 to_drain = min(pcp->count, batch); 2522 if (to_drain > 0) 2523 free_pcppages_bulk(zone, to_drain, pcp); 2524 local_irq_restore(flags); 2525 } 2526 #endif 2527 2528 /* 2529 * Drain pcplists of the indicated processor and zone. 2530 * 2531 * The processor must either be the current processor and the 2532 * thread pinned to the current processor or a processor that 2533 * is not online. 2534 */ 2535 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2536 { 2537 unsigned long flags; 2538 struct per_cpu_pageset *pset; 2539 struct per_cpu_pages *pcp; 2540 2541 local_irq_save(flags); 2542 pset = per_cpu_ptr(zone->pageset, cpu); 2543 2544 pcp = &pset->pcp; 2545 if (pcp->count) 2546 free_pcppages_bulk(zone, pcp->count, pcp); 2547 local_irq_restore(flags); 2548 } 2549 2550 /* 2551 * Drain pcplists of all zones on the indicated processor. 2552 * 2553 * The processor must either be the current processor and the 2554 * thread pinned to the current processor or a processor that 2555 * is not online. 2556 */ 2557 static void drain_pages(unsigned int cpu) 2558 { 2559 struct zone *zone; 2560 2561 for_each_populated_zone(zone) { 2562 drain_pages_zone(cpu, zone); 2563 } 2564 } 2565 2566 /* 2567 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2568 * 2569 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2570 * the single zone's pages. 2571 */ 2572 void drain_local_pages(struct zone *zone) 2573 { 2574 int cpu = smp_processor_id(); 2575 2576 if (zone) 2577 drain_pages_zone(cpu, zone); 2578 else 2579 drain_pages(cpu); 2580 } 2581 2582 static void drain_local_pages_wq(struct work_struct *work) 2583 { 2584 /* 2585 * drain_all_pages doesn't use proper cpu hotplug protection so 2586 * we can race with cpu offline when the WQ can move this from 2587 * a cpu pinned worker to an unbound one. We can operate on a different 2588 * cpu which is allright but we also have to make sure to not move to 2589 * a different one. 2590 */ 2591 preempt_disable(); 2592 drain_local_pages(NULL); 2593 preempt_enable(); 2594 } 2595 2596 /* 2597 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2598 * 2599 * When zone parameter is non-NULL, spill just the single zone's pages. 2600 * 2601 * Note that this can be extremely slow as the draining happens in a workqueue. 2602 */ 2603 void drain_all_pages(struct zone *zone) 2604 { 2605 int cpu; 2606 2607 /* 2608 * Allocate in the BSS so we wont require allocation in 2609 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2610 */ 2611 static cpumask_t cpus_with_pcps; 2612 2613 /* 2614 * Make sure nobody triggers this path before mm_percpu_wq is fully 2615 * initialized. 2616 */ 2617 if (WARN_ON_ONCE(!mm_percpu_wq)) 2618 return; 2619 2620 /* 2621 * Do not drain if one is already in progress unless it's specific to 2622 * a zone. Such callers are primarily CMA and memory hotplug and need 2623 * the drain to be complete when the call returns. 2624 */ 2625 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2626 if (!zone) 2627 return; 2628 mutex_lock(&pcpu_drain_mutex); 2629 } 2630 2631 /* 2632 * We don't care about racing with CPU hotplug event 2633 * as offline notification will cause the notified 2634 * cpu to drain that CPU pcps and on_each_cpu_mask 2635 * disables preemption as part of its processing 2636 */ 2637 for_each_online_cpu(cpu) { 2638 struct per_cpu_pageset *pcp; 2639 struct zone *z; 2640 bool has_pcps = false; 2641 2642 if (zone) { 2643 pcp = per_cpu_ptr(zone->pageset, cpu); 2644 if (pcp->pcp.count) 2645 has_pcps = true; 2646 } else { 2647 for_each_populated_zone(z) { 2648 pcp = per_cpu_ptr(z->pageset, cpu); 2649 if (pcp->pcp.count) { 2650 has_pcps = true; 2651 break; 2652 } 2653 } 2654 } 2655 2656 if (has_pcps) 2657 cpumask_set_cpu(cpu, &cpus_with_pcps); 2658 else 2659 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2660 } 2661 2662 for_each_cpu(cpu, &cpus_with_pcps) { 2663 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2664 INIT_WORK(work, drain_local_pages_wq); 2665 queue_work_on(cpu, mm_percpu_wq, work); 2666 } 2667 for_each_cpu(cpu, &cpus_with_pcps) 2668 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2669 2670 mutex_unlock(&pcpu_drain_mutex); 2671 } 2672 2673 #ifdef CONFIG_HIBERNATION 2674 2675 /* 2676 * Touch the watchdog for every WD_PAGE_COUNT pages. 2677 */ 2678 #define WD_PAGE_COUNT (128*1024) 2679 2680 void mark_free_pages(struct zone *zone) 2681 { 2682 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2683 unsigned long flags; 2684 unsigned int order, t; 2685 struct page *page; 2686 2687 if (zone_is_empty(zone)) 2688 return; 2689 2690 spin_lock_irqsave(&zone->lock, flags); 2691 2692 max_zone_pfn = zone_end_pfn(zone); 2693 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2694 if (pfn_valid(pfn)) { 2695 page = pfn_to_page(pfn); 2696 2697 if (!--page_count) { 2698 touch_nmi_watchdog(); 2699 page_count = WD_PAGE_COUNT; 2700 } 2701 2702 if (page_zone(page) != zone) 2703 continue; 2704 2705 if (!swsusp_page_is_forbidden(page)) 2706 swsusp_unset_page_free(page); 2707 } 2708 2709 for_each_migratetype_order(order, t) { 2710 list_for_each_entry(page, 2711 &zone->free_area[order].free_list[t], lru) { 2712 unsigned long i; 2713 2714 pfn = page_to_pfn(page); 2715 for (i = 0; i < (1UL << order); i++) { 2716 if (!--page_count) { 2717 touch_nmi_watchdog(); 2718 page_count = WD_PAGE_COUNT; 2719 } 2720 swsusp_set_page_free(pfn_to_page(pfn + i)); 2721 } 2722 } 2723 } 2724 spin_unlock_irqrestore(&zone->lock, flags); 2725 } 2726 #endif /* CONFIG_PM */ 2727 2728 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2729 { 2730 int migratetype; 2731 2732 if (!free_pcp_prepare(page)) 2733 return false; 2734 2735 migratetype = get_pfnblock_migratetype(page, pfn); 2736 set_pcppage_migratetype(page, migratetype); 2737 return true; 2738 } 2739 2740 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2741 { 2742 struct zone *zone = page_zone(page); 2743 struct per_cpu_pages *pcp; 2744 int migratetype; 2745 2746 migratetype = get_pcppage_migratetype(page); 2747 __count_vm_event(PGFREE); 2748 2749 /* 2750 * We only track unmovable, reclaimable and movable on pcp lists. 2751 * Free ISOLATE pages back to the allocator because they are being 2752 * offlined but treat HIGHATOMIC as movable pages so we can get those 2753 * areas back if necessary. Otherwise, we may have to free 2754 * excessively into the page allocator 2755 */ 2756 if (migratetype >= MIGRATE_PCPTYPES) { 2757 if (unlikely(is_migrate_isolate(migratetype))) { 2758 free_one_page(zone, page, pfn, 0, migratetype); 2759 return; 2760 } 2761 migratetype = MIGRATE_MOVABLE; 2762 } 2763 2764 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2765 list_add(&page->lru, &pcp->lists[migratetype]); 2766 pcp->count++; 2767 if (pcp->count >= pcp->high) { 2768 unsigned long batch = READ_ONCE(pcp->batch); 2769 free_pcppages_bulk(zone, batch, pcp); 2770 } 2771 } 2772 2773 /* 2774 * Free a 0-order page 2775 */ 2776 void free_unref_page(struct page *page) 2777 { 2778 unsigned long flags; 2779 unsigned long pfn = page_to_pfn(page); 2780 2781 if (!free_unref_page_prepare(page, pfn)) 2782 return; 2783 2784 local_irq_save(flags); 2785 free_unref_page_commit(page, pfn); 2786 local_irq_restore(flags); 2787 } 2788 2789 /* 2790 * Free a list of 0-order pages 2791 */ 2792 void free_unref_page_list(struct list_head *list) 2793 { 2794 struct page *page, *next; 2795 unsigned long flags, pfn; 2796 int batch_count = 0; 2797 2798 /* Prepare pages for freeing */ 2799 list_for_each_entry_safe(page, next, list, lru) { 2800 pfn = page_to_pfn(page); 2801 if (!free_unref_page_prepare(page, pfn)) 2802 list_del(&page->lru); 2803 set_page_private(page, pfn); 2804 } 2805 2806 local_irq_save(flags); 2807 list_for_each_entry_safe(page, next, list, lru) { 2808 unsigned long pfn = page_private(page); 2809 2810 set_page_private(page, 0); 2811 trace_mm_page_free_batched(page); 2812 free_unref_page_commit(page, pfn); 2813 2814 /* 2815 * Guard against excessive IRQ disabled times when we get 2816 * a large list of pages to free. 2817 */ 2818 if (++batch_count == SWAP_CLUSTER_MAX) { 2819 local_irq_restore(flags); 2820 batch_count = 0; 2821 local_irq_save(flags); 2822 } 2823 } 2824 local_irq_restore(flags); 2825 } 2826 2827 /* 2828 * split_page takes a non-compound higher-order page, and splits it into 2829 * n (1<<order) sub-pages: page[0..n] 2830 * Each sub-page must be freed individually. 2831 * 2832 * Note: this is probably too low level an operation for use in drivers. 2833 * Please consult with lkml before using this in your driver. 2834 */ 2835 void split_page(struct page *page, unsigned int order) 2836 { 2837 int i; 2838 2839 VM_BUG_ON_PAGE(PageCompound(page), page); 2840 VM_BUG_ON_PAGE(!page_count(page), page); 2841 2842 for (i = 1; i < (1 << order); i++) 2843 set_page_refcounted(page + i); 2844 split_page_owner(page, order); 2845 } 2846 EXPORT_SYMBOL_GPL(split_page); 2847 2848 int __isolate_free_page(struct page *page, unsigned int order) 2849 { 2850 unsigned long watermark; 2851 struct zone *zone; 2852 int mt; 2853 2854 BUG_ON(!PageBuddy(page)); 2855 2856 zone = page_zone(page); 2857 mt = get_pageblock_migratetype(page); 2858 2859 if (!is_migrate_isolate(mt)) { 2860 /* 2861 * Obey watermarks as if the page was being allocated. We can 2862 * emulate a high-order watermark check with a raised order-0 2863 * watermark, because we already know our high-order page 2864 * exists. 2865 */ 2866 watermark = min_wmark_pages(zone) + (1UL << order); 2867 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2868 return 0; 2869 2870 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2871 } 2872 2873 /* Remove page from free list */ 2874 list_del(&page->lru); 2875 zone->free_area[order].nr_free--; 2876 rmv_page_order(page); 2877 2878 /* 2879 * Set the pageblock if the isolated page is at least half of a 2880 * pageblock 2881 */ 2882 if (order >= pageblock_order - 1) { 2883 struct page *endpage = page + (1 << order) - 1; 2884 for (; page < endpage; page += pageblock_nr_pages) { 2885 int mt = get_pageblock_migratetype(page); 2886 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2887 && !is_migrate_highatomic(mt)) 2888 set_pageblock_migratetype(page, 2889 MIGRATE_MOVABLE); 2890 } 2891 } 2892 2893 2894 return 1UL << order; 2895 } 2896 2897 /* 2898 * Update NUMA hit/miss statistics 2899 * 2900 * Must be called with interrupts disabled. 2901 */ 2902 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2903 { 2904 #ifdef CONFIG_NUMA 2905 enum numa_stat_item local_stat = NUMA_LOCAL; 2906 2907 /* skip numa counters update if numa stats is disabled */ 2908 if (!static_branch_likely(&vm_numa_stat_key)) 2909 return; 2910 2911 if (z->node != numa_node_id()) 2912 local_stat = NUMA_OTHER; 2913 2914 if (z->node == preferred_zone->node) 2915 __inc_numa_state(z, NUMA_HIT); 2916 else { 2917 __inc_numa_state(z, NUMA_MISS); 2918 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2919 } 2920 __inc_numa_state(z, local_stat); 2921 #endif 2922 } 2923 2924 /* Remove page from the per-cpu list, caller must protect the list */ 2925 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2926 struct per_cpu_pages *pcp, 2927 struct list_head *list) 2928 { 2929 struct page *page; 2930 2931 do { 2932 if (list_empty(list)) { 2933 pcp->count += rmqueue_bulk(zone, 0, 2934 pcp->batch, list, 2935 migratetype); 2936 if (unlikely(list_empty(list))) 2937 return NULL; 2938 } 2939 2940 page = list_first_entry(list, struct page, lru); 2941 list_del(&page->lru); 2942 pcp->count--; 2943 } while (check_new_pcp(page)); 2944 2945 return page; 2946 } 2947 2948 /* Lock and remove page from the per-cpu list */ 2949 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2950 struct zone *zone, unsigned int order, 2951 gfp_t gfp_flags, int migratetype) 2952 { 2953 struct per_cpu_pages *pcp; 2954 struct list_head *list; 2955 struct page *page; 2956 unsigned long flags; 2957 2958 local_irq_save(flags); 2959 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2960 list = &pcp->lists[migratetype]; 2961 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2962 if (page) { 2963 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2964 zone_statistics(preferred_zone, zone); 2965 } 2966 local_irq_restore(flags); 2967 return page; 2968 } 2969 2970 /* 2971 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2972 */ 2973 static inline 2974 struct page *rmqueue(struct zone *preferred_zone, 2975 struct zone *zone, unsigned int order, 2976 gfp_t gfp_flags, unsigned int alloc_flags, 2977 int migratetype) 2978 { 2979 unsigned long flags; 2980 struct page *page; 2981 2982 if (likely(order == 0)) { 2983 page = rmqueue_pcplist(preferred_zone, zone, order, 2984 gfp_flags, migratetype); 2985 goto out; 2986 } 2987 2988 /* 2989 * We most definitely don't want callers attempting to 2990 * allocate greater than order-1 page units with __GFP_NOFAIL. 2991 */ 2992 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2993 spin_lock_irqsave(&zone->lock, flags); 2994 2995 do { 2996 page = NULL; 2997 if (alloc_flags & ALLOC_HARDER) { 2998 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2999 if (page) 3000 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3001 } 3002 if (!page) 3003 page = __rmqueue(zone, order, migratetype); 3004 } while (page && check_new_pages(page, order)); 3005 spin_unlock(&zone->lock); 3006 if (!page) 3007 goto failed; 3008 __mod_zone_freepage_state(zone, -(1 << order), 3009 get_pcppage_migratetype(page)); 3010 3011 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3012 zone_statistics(preferred_zone, zone); 3013 local_irq_restore(flags); 3014 3015 out: 3016 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3017 return page; 3018 3019 failed: 3020 local_irq_restore(flags); 3021 return NULL; 3022 } 3023 3024 #ifdef CONFIG_FAIL_PAGE_ALLOC 3025 3026 static struct { 3027 struct fault_attr attr; 3028 3029 bool ignore_gfp_highmem; 3030 bool ignore_gfp_reclaim; 3031 u32 min_order; 3032 } fail_page_alloc = { 3033 .attr = FAULT_ATTR_INITIALIZER, 3034 .ignore_gfp_reclaim = true, 3035 .ignore_gfp_highmem = true, 3036 .min_order = 1, 3037 }; 3038 3039 static int __init setup_fail_page_alloc(char *str) 3040 { 3041 return setup_fault_attr(&fail_page_alloc.attr, str); 3042 } 3043 __setup("fail_page_alloc=", setup_fail_page_alloc); 3044 3045 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3046 { 3047 if (order < fail_page_alloc.min_order) 3048 return false; 3049 if (gfp_mask & __GFP_NOFAIL) 3050 return false; 3051 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3052 return false; 3053 if (fail_page_alloc.ignore_gfp_reclaim && 3054 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3055 return false; 3056 3057 return should_fail(&fail_page_alloc.attr, 1 << order); 3058 } 3059 3060 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3061 3062 static int __init fail_page_alloc_debugfs(void) 3063 { 3064 umode_t mode = S_IFREG | 0600; 3065 struct dentry *dir; 3066 3067 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3068 &fail_page_alloc.attr); 3069 if (IS_ERR(dir)) 3070 return PTR_ERR(dir); 3071 3072 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 3073 &fail_page_alloc.ignore_gfp_reclaim)) 3074 goto fail; 3075 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3076 &fail_page_alloc.ignore_gfp_highmem)) 3077 goto fail; 3078 if (!debugfs_create_u32("min-order", mode, dir, 3079 &fail_page_alloc.min_order)) 3080 goto fail; 3081 3082 return 0; 3083 fail: 3084 debugfs_remove_recursive(dir); 3085 3086 return -ENOMEM; 3087 } 3088 3089 late_initcall(fail_page_alloc_debugfs); 3090 3091 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3092 3093 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3094 3095 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3096 { 3097 return false; 3098 } 3099 3100 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3101 3102 /* 3103 * Return true if free base pages are above 'mark'. For high-order checks it 3104 * will return true of the order-0 watermark is reached and there is at least 3105 * one free page of a suitable size. Checking now avoids taking the zone lock 3106 * to check in the allocation paths if no pages are free. 3107 */ 3108 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3109 int classzone_idx, unsigned int alloc_flags, 3110 long free_pages) 3111 { 3112 long min = mark; 3113 int o; 3114 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3115 3116 /* free_pages may go negative - that's OK */ 3117 free_pages -= (1 << order) - 1; 3118 3119 if (alloc_flags & ALLOC_HIGH) 3120 min -= min / 2; 3121 3122 /* 3123 * If the caller does not have rights to ALLOC_HARDER then subtract 3124 * the high-atomic reserves. This will over-estimate the size of the 3125 * atomic reserve but it avoids a search. 3126 */ 3127 if (likely(!alloc_harder)) { 3128 free_pages -= z->nr_reserved_highatomic; 3129 } else { 3130 /* 3131 * OOM victims can try even harder than normal ALLOC_HARDER 3132 * users on the grounds that it's definitely going to be in 3133 * the exit path shortly and free memory. Any allocation it 3134 * makes during the free path will be small and short-lived. 3135 */ 3136 if (alloc_flags & ALLOC_OOM) 3137 min -= min / 2; 3138 else 3139 min -= min / 4; 3140 } 3141 3142 3143 #ifdef CONFIG_CMA 3144 /* If allocation can't use CMA areas don't use free CMA pages */ 3145 if (!(alloc_flags & ALLOC_CMA)) 3146 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3147 #endif 3148 3149 /* 3150 * Check watermarks for an order-0 allocation request. If these 3151 * are not met, then a high-order request also cannot go ahead 3152 * even if a suitable page happened to be free. 3153 */ 3154 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3155 return false; 3156 3157 /* If this is an order-0 request then the watermark is fine */ 3158 if (!order) 3159 return true; 3160 3161 /* For a high-order request, check at least one suitable page is free */ 3162 for (o = order; o < MAX_ORDER; o++) { 3163 struct free_area *area = &z->free_area[o]; 3164 int mt; 3165 3166 if (!area->nr_free) 3167 continue; 3168 3169 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3170 if (!list_empty(&area->free_list[mt])) 3171 return true; 3172 } 3173 3174 #ifdef CONFIG_CMA 3175 if ((alloc_flags & ALLOC_CMA) && 3176 !list_empty(&area->free_list[MIGRATE_CMA])) { 3177 return true; 3178 } 3179 #endif 3180 if (alloc_harder && 3181 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3182 return true; 3183 } 3184 return false; 3185 } 3186 3187 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3188 int classzone_idx, unsigned int alloc_flags) 3189 { 3190 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3191 zone_page_state(z, NR_FREE_PAGES)); 3192 } 3193 3194 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3195 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3196 { 3197 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3198 long cma_pages = 0; 3199 3200 #ifdef CONFIG_CMA 3201 /* If allocation can't use CMA areas don't use free CMA pages */ 3202 if (!(alloc_flags & ALLOC_CMA)) 3203 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3204 #endif 3205 3206 /* 3207 * Fast check for order-0 only. If this fails then the reserves 3208 * need to be calculated. There is a corner case where the check 3209 * passes but only the high-order atomic reserve are free. If 3210 * the caller is !atomic then it'll uselessly search the free 3211 * list. That corner case is then slower but it is harmless. 3212 */ 3213 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3214 return true; 3215 3216 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3217 free_pages); 3218 } 3219 3220 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3221 unsigned long mark, int classzone_idx) 3222 { 3223 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3224 3225 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3226 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3227 3228 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3229 free_pages); 3230 } 3231 3232 #ifdef CONFIG_NUMA 3233 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3234 { 3235 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3236 RECLAIM_DISTANCE; 3237 } 3238 #else /* CONFIG_NUMA */ 3239 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3240 { 3241 return true; 3242 } 3243 #endif /* CONFIG_NUMA */ 3244 3245 /* 3246 * get_page_from_freelist goes through the zonelist trying to allocate 3247 * a page. 3248 */ 3249 static struct page * 3250 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3251 const struct alloc_context *ac) 3252 { 3253 struct zoneref *z = ac->preferred_zoneref; 3254 struct zone *zone; 3255 struct pglist_data *last_pgdat_dirty_limit = NULL; 3256 3257 /* 3258 * Scan zonelist, looking for a zone with enough free. 3259 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3260 */ 3261 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3262 ac->nodemask) { 3263 struct page *page; 3264 unsigned long mark; 3265 3266 if (cpusets_enabled() && 3267 (alloc_flags & ALLOC_CPUSET) && 3268 !__cpuset_zone_allowed(zone, gfp_mask)) 3269 continue; 3270 /* 3271 * When allocating a page cache page for writing, we 3272 * want to get it from a node that is within its dirty 3273 * limit, such that no single node holds more than its 3274 * proportional share of globally allowed dirty pages. 3275 * The dirty limits take into account the node's 3276 * lowmem reserves and high watermark so that kswapd 3277 * should be able to balance it without having to 3278 * write pages from its LRU list. 3279 * 3280 * XXX: For now, allow allocations to potentially 3281 * exceed the per-node dirty limit in the slowpath 3282 * (spread_dirty_pages unset) before going into reclaim, 3283 * which is important when on a NUMA setup the allowed 3284 * nodes are together not big enough to reach the 3285 * global limit. The proper fix for these situations 3286 * will require awareness of nodes in the 3287 * dirty-throttling and the flusher threads. 3288 */ 3289 if (ac->spread_dirty_pages) { 3290 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3291 continue; 3292 3293 if (!node_dirty_ok(zone->zone_pgdat)) { 3294 last_pgdat_dirty_limit = zone->zone_pgdat; 3295 continue; 3296 } 3297 } 3298 3299 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3300 if (!zone_watermark_fast(zone, order, mark, 3301 ac_classzone_idx(ac), alloc_flags)) { 3302 int ret; 3303 3304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3305 /* 3306 * Watermark failed for this zone, but see if we can 3307 * grow this zone if it contains deferred pages. 3308 */ 3309 if (static_branch_unlikely(&deferred_pages)) { 3310 if (_deferred_grow_zone(zone, order)) 3311 goto try_this_zone; 3312 } 3313 #endif 3314 /* Checked here to keep the fast path fast */ 3315 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3316 if (alloc_flags & ALLOC_NO_WATERMARKS) 3317 goto try_this_zone; 3318 3319 if (node_reclaim_mode == 0 || 3320 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3321 continue; 3322 3323 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3324 switch (ret) { 3325 case NODE_RECLAIM_NOSCAN: 3326 /* did not scan */ 3327 continue; 3328 case NODE_RECLAIM_FULL: 3329 /* scanned but unreclaimable */ 3330 continue; 3331 default: 3332 /* did we reclaim enough */ 3333 if (zone_watermark_ok(zone, order, mark, 3334 ac_classzone_idx(ac), alloc_flags)) 3335 goto try_this_zone; 3336 3337 continue; 3338 } 3339 } 3340 3341 try_this_zone: 3342 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3343 gfp_mask, alloc_flags, ac->migratetype); 3344 if (page) { 3345 prep_new_page(page, order, gfp_mask, alloc_flags); 3346 3347 /* 3348 * If this is a high-order atomic allocation then check 3349 * if the pageblock should be reserved for the future 3350 */ 3351 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3352 reserve_highatomic_pageblock(page, zone, order); 3353 3354 return page; 3355 } else { 3356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3357 /* Try again if zone has deferred pages */ 3358 if (static_branch_unlikely(&deferred_pages)) { 3359 if (_deferred_grow_zone(zone, order)) 3360 goto try_this_zone; 3361 } 3362 #endif 3363 } 3364 } 3365 3366 return NULL; 3367 } 3368 3369 /* 3370 * Large machines with many possible nodes should not always dump per-node 3371 * meminfo in irq context. 3372 */ 3373 static inline bool should_suppress_show_mem(void) 3374 { 3375 bool ret = false; 3376 3377 #if NODES_SHIFT > 8 3378 ret = in_interrupt(); 3379 #endif 3380 return ret; 3381 } 3382 3383 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3384 { 3385 unsigned int filter = SHOW_MEM_FILTER_NODES; 3386 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3387 3388 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3389 return; 3390 3391 /* 3392 * This documents exceptions given to allocations in certain 3393 * contexts that are allowed to allocate outside current's set 3394 * of allowed nodes. 3395 */ 3396 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3397 if (tsk_is_oom_victim(current) || 3398 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3399 filter &= ~SHOW_MEM_FILTER_NODES; 3400 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3401 filter &= ~SHOW_MEM_FILTER_NODES; 3402 3403 show_mem(filter, nodemask); 3404 } 3405 3406 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3407 { 3408 struct va_format vaf; 3409 va_list args; 3410 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3411 DEFAULT_RATELIMIT_BURST); 3412 3413 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3414 return; 3415 3416 va_start(args, fmt); 3417 vaf.fmt = fmt; 3418 vaf.va = &args; 3419 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3420 current->comm, &vaf, gfp_mask, &gfp_mask, 3421 nodemask_pr_args(nodemask)); 3422 va_end(args); 3423 3424 cpuset_print_current_mems_allowed(); 3425 3426 dump_stack(); 3427 warn_alloc_show_mem(gfp_mask, nodemask); 3428 } 3429 3430 static inline struct page * 3431 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3432 unsigned int alloc_flags, 3433 const struct alloc_context *ac) 3434 { 3435 struct page *page; 3436 3437 page = get_page_from_freelist(gfp_mask, order, 3438 alloc_flags|ALLOC_CPUSET, ac); 3439 /* 3440 * fallback to ignore cpuset restriction if our nodes 3441 * are depleted 3442 */ 3443 if (!page) 3444 page = get_page_from_freelist(gfp_mask, order, 3445 alloc_flags, ac); 3446 3447 return page; 3448 } 3449 3450 static inline struct page * 3451 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3452 const struct alloc_context *ac, unsigned long *did_some_progress) 3453 { 3454 struct oom_control oc = { 3455 .zonelist = ac->zonelist, 3456 .nodemask = ac->nodemask, 3457 .memcg = NULL, 3458 .gfp_mask = gfp_mask, 3459 .order = order, 3460 }; 3461 struct page *page; 3462 3463 *did_some_progress = 0; 3464 3465 /* 3466 * Acquire the oom lock. If that fails, somebody else is 3467 * making progress for us. 3468 */ 3469 if (!mutex_trylock(&oom_lock)) { 3470 *did_some_progress = 1; 3471 schedule_timeout_uninterruptible(1); 3472 return NULL; 3473 } 3474 3475 /* 3476 * Go through the zonelist yet one more time, keep very high watermark 3477 * here, this is only to catch a parallel oom killing, we must fail if 3478 * we're still under heavy pressure. But make sure that this reclaim 3479 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3480 * allocation which will never fail due to oom_lock already held. 3481 */ 3482 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3483 ~__GFP_DIRECT_RECLAIM, order, 3484 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3485 if (page) 3486 goto out; 3487 3488 /* Coredumps can quickly deplete all memory reserves */ 3489 if (current->flags & PF_DUMPCORE) 3490 goto out; 3491 /* The OOM killer will not help higher order allocs */ 3492 if (order > PAGE_ALLOC_COSTLY_ORDER) 3493 goto out; 3494 /* 3495 * We have already exhausted all our reclaim opportunities without any 3496 * success so it is time to admit defeat. We will skip the OOM killer 3497 * because it is very likely that the caller has a more reasonable 3498 * fallback than shooting a random task. 3499 */ 3500 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3501 goto out; 3502 /* The OOM killer does not needlessly kill tasks for lowmem */ 3503 if (ac->high_zoneidx < ZONE_NORMAL) 3504 goto out; 3505 if (pm_suspended_storage()) 3506 goto out; 3507 /* 3508 * XXX: GFP_NOFS allocations should rather fail than rely on 3509 * other request to make a forward progress. 3510 * We are in an unfortunate situation where out_of_memory cannot 3511 * do much for this context but let's try it to at least get 3512 * access to memory reserved if the current task is killed (see 3513 * out_of_memory). Once filesystems are ready to handle allocation 3514 * failures more gracefully we should just bail out here. 3515 */ 3516 3517 /* The OOM killer may not free memory on a specific node */ 3518 if (gfp_mask & __GFP_THISNODE) 3519 goto out; 3520 3521 /* Exhausted what can be done so it's blame time */ 3522 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3523 *did_some_progress = 1; 3524 3525 /* 3526 * Help non-failing allocations by giving them access to memory 3527 * reserves 3528 */ 3529 if (gfp_mask & __GFP_NOFAIL) 3530 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3531 ALLOC_NO_WATERMARKS, ac); 3532 } 3533 out: 3534 mutex_unlock(&oom_lock); 3535 return page; 3536 } 3537 3538 /* 3539 * Maximum number of compaction retries wit a progress before OOM 3540 * killer is consider as the only way to move forward. 3541 */ 3542 #define MAX_COMPACT_RETRIES 16 3543 3544 #ifdef CONFIG_COMPACTION 3545 /* Try memory compaction for high-order allocations before reclaim */ 3546 static struct page * 3547 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3548 unsigned int alloc_flags, const struct alloc_context *ac, 3549 enum compact_priority prio, enum compact_result *compact_result) 3550 { 3551 struct page *page; 3552 unsigned int noreclaim_flag; 3553 3554 if (!order) 3555 return NULL; 3556 3557 noreclaim_flag = memalloc_noreclaim_save(); 3558 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3559 prio); 3560 memalloc_noreclaim_restore(noreclaim_flag); 3561 3562 if (*compact_result <= COMPACT_INACTIVE) 3563 return NULL; 3564 3565 /* 3566 * At least in one zone compaction wasn't deferred or skipped, so let's 3567 * count a compaction stall 3568 */ 3569 count_vm_event(COMPACTSTALL); 3570 3571 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3572 3573 if (page) { 3574 struct zone *zone = page_zone(page); 3575 3576 zone->compact_blockskip_flush = false; 3577 compaction_defer_reset(zone, order, true); 3578 count_vm_event(COMPACTSUCCESS); 3579 return page; 3580 } 3581 3582 /* 3583 * It's bad if compaction run occurs and fails. The most likely reason 3584 * is that pages exist, but not enough to satisfy watermarks. 3585 */ 3586 count_vm_event(COMPACTFAIL); 3587 3588 cond_resched(); 3589 3590 return NULL; 3591 } 3592 3593 static inline bool 3594 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3595 enum compact_result compact_result, 3596 enum compact_priority *compact_priority, 3597 int *compaction_retries) 3598 { 3599 int max_retries = MAX_COMPACT_RETRIES; 3600 int min_priority; 3601 bool ret = false; 3602 int retries = *compaction_retries; 3603 enum compact_priority priority = *compact_priority; 3604 3605 if (!order) 3606 return false; 3607 3608 if (compaction_made_progress(compact_result)) 3609 (*compaction_retries)++; 3610 3611 /* 3612 * compaction considers all the zone as desperately out of memory 3613 * so it doesn't really make much sense to retry except when the 3614 * failure could be caused by insufficient priority 3615 */ 3616 if (compaction_failed(compact_result)) 3617 goto check_priority; 3618 3619 /* 3620 * make sure the compaction wasn't deferred or didn't bail out early 3621 * due to locks contention before we declare that we should give up. 3622 * But do not retry if the given zonelist is not suitable for 3623 * compaction. 3624 */ 3625 if (compaction_withdrawn(compact_result)) { 3626 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3627 goto out; 3628 } 3629 3630 /* 3631 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3632 * costly ones because they are de facto nofail and invoke OOM 3633 * killer to move on while costly can fail and users are ready 3634 * to cope with that. 1/4 retries is rather arbitrary but we 3635 * would need much more detailed feedback from compaction to 3636 * make a better decision. 3637 */ 3638 if (order > PAGE_ALLOC_COSTLY_ORDER) 3639 max_retries /= 4; 3640 if (*compaction_retries <= max_retries) { 3641 ret = true; 3642 goto out; 3643 } 3644 3645 /* 3646 * Make sure there are attempts at the highest priority if we exhausted 3647 * all retries or failed at the lower priorities. 3648 */ 3649 check_priority: 3650 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3651 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3652 3653 if (*compact_priority > min_priority) { 3654 (*compact_priority)--; 3655 *compaction_retries = 0; 3656 ret = true; 3657 } 3658 out: 3659 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3660 return ret; 3661 } 3662 #else 3663 static inline struct page * 3664 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3665 unsigned int alloc_flags, const struct alloc_context *ac, 3666 enum compact_priority prio, enum compact_result *compact_result) 3667 { 3668 *compact_result = COMPACT_SKIPPED; 3669 return NULL; 3670 } 3671 3672 static inline bool 3673 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3674 enum compact_result compact_result, 3675 enum compact_priority *compact_priority, 3676 int *compaction_retries) 3677 { 3678 struct zone *zone; 3679 struct zoneref *z; 3680 3681 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3682 return false; 3683 3684 /* 3685 * There are setups with compaction disabled which would prefer to loop 3686 * inside the allocator rather than hit the oom killer prematurely. 3687 * Let's give them a good hope and keep retrying while the order-0 3688 * watermarks are OK. 3689 */ 3690 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3691 ac->nodemask) { 3692 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3693 ac_classzone_idx(ac), alloc_flags)) 3694 return true; 3695 } 3696 return false; 3697 } 3698 #endif /* CONFIG_COMPACTION */ 3699 3700 #ifdef CONFIG_LOCKDEP 3701 static struct lockdep_map __fs_reclaim_map = 3702 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3703 3704 static bool __need_fs_reclaim(gfp_t gfp_mask) 3705 { 3706 gfp_mask = current_gfp_context(gfp_mask); 3707 3708 /* no reclaim without waiting on it */ 3709 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3710 return false; 3711 3712 /* this guy won't enter reclaim */ 3713 if (current->flags & PF_MEMALLOC) 3714 return false; 3715 3716 /* We're only interested __GFP_FS allocations for now */ 3717 if (!(gfp_mask & __GFP_FS)) 3718 return false; 3719 3720 if (gfp_mask & __GFP_NOLOCKDEP) 3721 return false; 3722 3723 return true; 3724 } 3725 3726 void __fs_reclaim_acquire(void) 3727 { 3728 lock_map_acquire(&__fs_reclaim_map); 3729 } 3730 3731 void __fs_reclaim_release(void) 3732 { 3733 lock_map_release(&__fs_reclaim_map); 3734 } 3735 3736 void fs_reclaim_acquire(gfp_t gfp_mask) 3737 { 3738 if (__need_fs_reclaim(gfp_mask)) 3739 __fs_reclaim_acquire(); 3740 } 3741 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3742 3743 void fs_reclaim_release(gfp_t gfp_mask) 3744 { 3745 if (__need_fs_reclaim(gfp_mask)) 3746 __fs_reclaim_release(); 3747 } 3748 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3749 #endif 3750 3751 /* Perform direct synchronous page reclaim */ 3752 static int 3753 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3754 const struct alloc_context *ac) 3755 { 3756 struct reclaim_state reclaim_state; 3757 int progress; 3758 unsigned int noreclaim_flag; 3759 3760 cond_resched(); 3761 3762 /* We now go into synchronous reclaim */ 3763 cpuset_memory_pressure_bump(); 3764 fs_reclaim_acquire(gfp_mask); 3765 noreclaim_flag = memalloc_noreclaim_save(); 3766 reclaim_state.reclaimed_slab = 0; 3767 current->reclaim_state = &reclaim_state; 3768 3769 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3770 ac->nodemask); 3771 3772 current->reclaim_state = NULL; 3773 memalloc_noreclaim_restore(noreclaim_flag); 3774 fs_reclaim_release(gfp_mask); 3775 3776 cond_resched(); 3777 3778 return progress; 3779 } 3780 3781 /* The really slow allocator path where we enter direct reclaim */ 3782 static inline struct page * 3783 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3784 unsigned int alloc_flags, const struct alloc_context *ac, 3785 unsigned long *did_some_progress) 3786 { 3787 struct page *page = NULL; 3788 bool drained = false; 3789 3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3791 if (unlikely(!(*did_some_progress))) 3792 return NULL; 3793 3794 retry: 3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3796 3797 /* 3798 * If an allocation failed after direct reclaim, it could be because 3799 * pages are pinned on the per-cpu lists or in high alloc reserves. 3800 * Shrink them them and try again 3801 */ 3802 if (!page && !drained) { 3803 unreserve_highatomic_pageblock(ac, false); 3804 drain_all_pages(NULL); 3805 drained = true; 3806 goto retry; 3807 } 3808 3809 return page; 3810 } 3811 3812 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3813 const struct alloc_context *ac) 3814 { 3815 struct zoneref *z; 3816 struct zone *zone; 3817 pg_data_t *last_pgdat = NULL; 3818 enum zone_type high_zoneidx = ac->high_zoneidx; 3819 3820 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 3821 ac->nodemask) { 3822 if (last_pgdat != zone->zone_pgdat) 3823 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 3824 last_pgdat = zone->zone_pgdat; 3825 } 3826 } 3827 3828 static inline unsigned int 3829 gfp_to_alloc_flags(gfp_t gfp_mask) 3830 { 3831 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3832 3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3834 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3835 3836 /* 3837 * The caller may dip into page reserves a bit more if the caller 3838 * cannot run direct reclaim, or if the caller has realtime scheduling 3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3841 */ 3842 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3843 3844 if (gfp_mask & __GFP_ATOMIC) { 3845 /* 3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3847 * if it can't schedule. 3848 */ 3849 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3850 alloc_flags |= ALLOC_HARDER; 3851 /* 3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3853 * comment for __cpuset_node_allowed(). 3854 */ 3855 alloc_flags &= ~ALLOC_CPUSET; 3856 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3857 alloc_flags |= ALLOC_HARDER; 3858 3859 #ifdef CONFIG_CMA 3860 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3861 alloc_flags |= ALLOC_CMA; 3862 #endif 3863 return alloc_flags; 3864 } 3865 3866 static bool oom_reserves_allowed(struct task_struct *tsk) 3867 { 3868 if (!tsk_is_oom_victim(tsk)) 3869 return false; 3870 3871 /* 3872 * !MMU doesn't have oom reaper so give access to memory reserves 3873 * only to the thread with TIF_MEMDIE set 3874 */ 3875 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3876 return false; 3877 3878 return true; 3879 } 3880 3881 /* 3882 * Distinguish requests which really need access to full memory 3883 * reserves from oom victims which can live with a portion of it 3884 */ 3885 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3886 { 3887 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3888 return 0; 3889 if (gfp_mask & __GFP_MEMALLOC) 3890 return ALLOC_NO_WATERMARKS; 3891 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3892 return ALLOC_NO_WATERMARKS; 3893 if (!in_interrupt()) { 3894 if (current->flags & PF_MEMALLOC) 3895 return ALLOC_NO_WATERMARKS; 3896 else if (oom_reserves_allowed(current)) 3897 return ALLOC_OOM; 3898 } 3899 3900 return 0; 3901 } 3902 3903 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3904 { 3905 return !!__gfp_pfmemalloc_flags(gfp_mask); 3906 } 3907 3908 /* 3909 * Checks whether it makes sense to retry the reclaim to make a forward progress 3910 * for the given allocation request. 3911 * 3912 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3913 * without success, or when we couldn't even meet the watermark if we 3914 * reclaimed all remaining pages on the LRU lists. 3915 * 3916 * Returns true if a retry is viable or false to enter the oom path. 3917 */ 3918 static inline bool 3919 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3920 struct alloc_context *ac, int alloc_flags, 3921 bool did_some_progress, int *no_progress_loops) 3922 { 3923 struct zone *zone; 3924 struct zoneref *z; 3925 3926 /* 3927 * Costly allocations might have made a progress but this doesn't mean 3928 * their order will become available due to high fragmentation so 3929 * always increment the no progress counter for them 3930 */ 3931 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3932 *no_progress_loops = 0; 3933 else 3934 (*no_progress_loops)++; 3935 3936 /* 3937 * Make sure we converge to OOM if we cannot make any progress 3938 * several times in the row. 3939 */ 3940 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3941 /* Before OOM, exhaust highatomic_reserve */ 3942 return unreserve_highatomic_pageblock(ac, true); 3943 } 3944 3945 /* 3946 * Keep reclaiming pages while there is a chance this will lead 3947 * somewhere. If none of the target zones can satisfy our allocation 3948 * request even if all reclaimable pages are considered then we are 3949 * screwed and have to go OOM. 3950 */ 3951 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3952 ac->nodemask) { 3953 unsigned long available; 3954 unsigned long reclaimable; 3955 unsigned long min_wmark = min_wmark_pages(zone); 3956 bool wmark; 3957 3958 available = reclaimable = zone_reclaimable_pages(zone); 3959 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3960 3961 /* 3962 * Would the allocation succeed if we reclaimed all 3963 * reclaimable pages? 3964 */ 3965 wmark = __zone_watermark_ok(zone, order, min_wmark, 3966 ac_classzone_idx(ac), alloc_flags, available); 3967 trace_reclaim_retry_zone(z, order, reclaimable, 3968 available, min_wmark, *no_progress_loops, wmark); 3969 if (wmark) { 3970 /* 3971 * If we didn't make any progress and have a lot of 3972 * dirty + writeback pages then we should wait for 3973 * an IO to complete to slow down the reclaim and 3974 * prevent from pre mature OOM 3975 */ 3976 if (!did_some_progress) { 3977 unsigned long write_pending; 3978 3979 write_pending = zone_page_state_snapshot(zone, 3980 NR_ZONE_WRITE_PENDING); 3981 3982 if (2 * write_pending > reclaimable) { 3983 congestion_wait(BLK_RW_ASYNC, HZ/10); 3984 return true; 3985 } 3986 } 3987 3988 /* 3989 * Memory allocation/reclaim might be called from a WQ 3990 * context and the current implementation of the WQ 3991 * concurrency control doesn't recognize that 3992 * a particular WQ is congested if the worker thread is 3993 * looping without ever sleeping. Therefore we have to 3994 * do a short sleep here rather than calling 3995 * cond_resched(). 3996 */ 3997 if (current->flags & PF_WQ_WORKER) 3998 schedule_timeout_uninterruptible(1); 3999 else 4000 cond_resched(); 4001 4002 return true; 4003 } 4004 } 4005 4006 return false; 4007 } 4008 4009 static inline bool 4010 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4011 { 4012 /* 4013 * It's possible that cpuset's mems_allowed and the nodemask from 4014 * mempolicy don't intersect. This should be normally dealt with by 4015 * policy_nodemask(), but it's possible to race with cpuset update in 4016 * such a way the check therein was true, and then it became false 4017 * before we got our cpuset_mems_cookie here. 4018 * This assumes that for all allocations, ac->nodemask can come only 4019 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4020 * when it does not intersect with the cpuset restrictions) or the 4021 * caller can deal with a violated nodemask. 4022 */ 4023 if (cpusets_enabled() && ac->nodemask && 4024 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4025 ac->nodemask = NULL; 4026 return true; 4027 } 4028 4029 /* 4030 * When updating a task's mems_allowed or mempolicy nodemask, it is 4031 * possible to race with parallel threads in such a way that our 4032 * allocation can fail while the mask is being updated. If we are about 4033 * to fail, check if the cpuset changed during allocation and if so, 4034 * retry. 4035 */ 4036 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4037 return true; 4038 4039 return false; 4040 } 4041 4042 static inline struct page * 4043 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4044 struct alloc_context *ac) 4045 { 4046 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4047 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4048 struct page *page = NULL; 4049 unsigned int alloc_flags; 4050 unsigned long did_some_progress; 4051 enum compact_priority compact_priority; 4052 enum compact_result compact_result; 4053 int compaction_retries; 4054 int no_progress_loops; 4055 unsigned int cpuset_mems_cookie; 4056 int reserve_flags; 4057 4058 /* 4059 * In the slowpath, we sanity check order to avoid ever trying to 4060 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 4061 * be using allocators in order of preference for an area that is 4062 * too large. 4063 */ 4064 if (order >= MAX_ORDER) { 4065 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4066 return NULL; 4067 } 4068 4069 /* 4070 * We also sanity check to catch abuse of atomic reserves being used by 4071 * callers that are not in atomic context. 4072 */ 4073 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4074 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4075 gfp_mask &= ~__GFP_ATOMIC; 4076 4077 retry_cpuset: 4078 compaction_retries = 0; 4079 no_progress_loops = 0; 4080 compact_priority = DEF_COMPACT_PRIORITY; 4081 cpuset_mems_cookie = read_mems_allowed_begin(); 4082 4083 /* 4084 * The fast path uses conservative alloc_flags to succeed only until 4085 * kswapd needs to be woken up, and to avoid the cost of setting up 4086 * alloc_flags precisely. So we do that now. 4087 */ 4088 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4089 4090 /* 4091 * We need to recalculate the starting point for the zonelist iterator 4092 * because we might have used different nodemask in the fast path, or 4093 * there was a cpuset modification and we are retrying - otherwise we 4094 * could end up iterating over non-eligible zones endlessly. 4095 */ 4096 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4097 ac->high_zoneidx, ac->nodemask); 4098 if (!ac->preferred_zoneref->zone) 4099 goto nopage; 4100 4101 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4102 wake_all_kswapds(order, gfp_mask, ac); 4103 4104 /* 4105 * The adjusted alloc_flags might result in immediate success, so try 4106 * that first 4107 */ 4108 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4109 if (page) 4110 goto got_pg; 4111 4112 /* 4113 * For costly allocations, try direct compaction first, as it's likely 4114 * that we have enough base pages and don't need to reclaim. For non- 4115 * movable high-order allocations, do that as well, as compaction will 4116 * try prevent permanent fragmentation by migrating from blocks of the 4117 * same migratetype. 4118 * Don't try this for allocations that are allowed to ignore 4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4120 */ 4121 if (can_direct_reclaim && 4122 (costly_order || 4123 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4124 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4125 page = __alloc_pages_direct_compact(gfp_mask, order, 4126 alloc_flags, ac, 4127 INIT_COMPACT_PRIORITY, 4128 &compact_result); 4129 if (page) 4130 goto got_pg; 4131 4132 /* 4133 * Checks for costly allocations with __GFP_NORETRY, which 4134 * includes THP page fault allocations 4135 */ 4136 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4137 /* 4138 * If compaction is deferred for high-order allocations, 4139 * it is because sync compaction recently failed. If 4140 * this is the case and the caller requested a THP 4141 * allocation, we do not want to heavily disrupt the 4142 * system, so we fail the allocation instead of entering 4143 * direct reclaim. 4144 */ 4145 if (compact_result == COMPACT_DEFERRED) 4146 goto nopage; 4147 4148 /* 4149 * Looks like reclaim/compaction is worth trying, but 4150 * sync compaction could be very expensive, so keep 4151 * using async compaction. 4152 */ 4153 compact_priority = INIT_COMPACT_PRIORITY; 4154 } 4155 } 4156 4157 retry: 4158 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4159 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4160 wake_all_kswapds(order, gfp_mask, ac); 4161 4162 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4163 if (reserve_flags) 4164 alloc_flags = reserve_flags; 4165 4166 /* 4167 * Reset the zonelist iterators if memory policies can be ignored. 4168 * These allocations are high priority and system rather than user 4169 * orientated. 4170 */ 4171 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4172 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4173 ac->high_zoneidx, ac->nodemask); 4174 } 4175 4176 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4177 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4178 if (page) 4179 goto got_pg; 4180 4181 /* Caller is not willing to reclaim, we can't balance anything */ 4182 if (!can_direct_reclaim) 4183 goto nopage; 4184 4185 /* Avoid recursion of direct reclaim */ 4186 if (current->flags & PF_MEMALLOC) 4187 goto nopage; 4188 4189 /* Try direct reclaim and then allocating */ 4190 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4191 &did_some_progress); 4192 if (page) 4193 goto got_pg; 4194 4195 /* Try direct compaction and then allocating */ 4196 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4197 compact_priority, &compact_result); 4198 if (page) 4199 goto got_pg; 4200 4201 /* Do not loop if specifically requested */ 4202 if (gfp_mask & __GFP_NORETRY) 4203 goto nopage; 4204 4205 /* 4206 * Do not retry costly high order allocations unless they are 4207 * __GFP_RETRY_MAYFAIL 4208 */ 4209 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4210 goto nopage; 4211 4212 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4213 did_some_progress > 0, &no_progress_loops)) 4214 goto retry; 4215 4216 /* 4217 * It doesn't make any sense to retry for the compaction if the order-0 4218 * reclaim is not able to make any progress because the current 4219 * implementation of the compaction depends on the sufficient amount 4220 * of free memory (see __compaction_suitable) 4221 */ 4222 if (did_some_progress > 0 && 4223 should_compact_retry(ac, order, alloc_flags, 4224 compact_result, &compact_priority, 4225 &compaction_retries)) 4226 goto retry; 4227 4228 4229 /* Deal with possible cpuset update races before we start OOM killing */ 4230 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4231 goto retry_cpuset; 4232 4233 /* Reclaim has failed us, start killing things */ 4234 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4235 if (page) 4236 goto got_pg; 4237 4238 /* Avoid allocations with no watermarks from looping endlessly */ 4239 if (tsk_is_oom_victim(current) && 4240 (alloc_flags == ALLOC_OOM || 4241 (gfp_mask & __GFP_NOMEMALLOC))) 4242 goto nopage; 4243 4244 /* Retry as long as the OOM killer is making progress */ 4245 if (did_some_progress) { 4246 no_progress_loops = 0; 4247 goto retry; 4248 } 4249 4250 nopage: 4251 /* Deal with possible cpuset update races before we fail */ 4252 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4253 goto retry_cpuset; 4254 4255 /* 4256 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4257 * we always retry 4258 */ 4259 if (gfp_mask & __GFP_NOFAIL) { 4260 /* 4261 * All existing users of the __GFP_NOFAIL are blockable, so warn 4262 * of any new users that actually require GFP_NOWAIT 4263 */ 4264 if (WARN_ON_ONCE(!can_direct_reclaim)) 4265 goto fail; 4266 4267 /* 4268 * PF_MEMALLOC request from this context is rather bizarre 4269 * because we cannot reclaim anything and only can loop waiting 4270 * for somebody to do a work for us 4271 */ 4272 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4273 4274 /* 4275 * non failing costly orders are a hard requirement which we 4276 * are not prepared for much so let's warn about these users 4277 * so that we can identify them and convert them to something 4278 * else. 4279 */ 4280 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4281 4282 /* 4283 * Help non-failing allocations by giving them access to memory 4284 * reserves but do not use ALLOC_NO_WATERMARKS because this 4285 * could deplete whole memory reserves which would just make 4286 * the situation worse 4287 */ 4288 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4289 if (page) 4290 goto got_pg; 4291 4292 cond_resched(); 4293 goto retry; 4294 } 4295 fail: 4296 warn_alloc(gfp_mask, ac->nodemask, 4297 "page allocation failure: order:%u", order); 4298 got_pg: 4299 return page; 4300 } 4301 4302 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4303 int preferred_nid, nodemask_t *nodemask, 4304 struct alloc_context *ac, gfp_t *alloc_mask, 4305 unsigned int *alloc_flags) 4306 { 4307 ac->high_zoneidx = gfp_zone(gfp_mask); 4308 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4309 ac->nodemask = nodemask; 4310 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4311 4312 if (cpusets_enabled()) { 4313 *alloc_mask |= __GFP_HARDWALL; 4314 if (!ac->nodemask) 4315 ac->nodemask = &cpuset_current_mems_allowed; 4316 else 4317 *alloc_flags |= ALLOC_CPUSET; 4318 } 4319 4320 fs_reclaim_acquire(gfp_mask); 4321 fs_reclaim_release(gfp_mask); 4322 4323 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4324 4325 if (should_fail_alloc_page(gfp_mask, order)) 4326 return false; 4327 4328 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4329 *alloc_flags |= ALLOC_CMA; 4330 4331 return true; 4332 } 4333 4334 /* Determine whether to spread dirty pages and what the first usable zone */ 4335 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4336 { 4337 /* Dirty zone balancing only done in the fast path */ 4338 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4339 4340 /* 4341 * The preferred zone is used for statistics but crucially it is 4342 * also used as the starting point for the zonelist iterator. It 4343 * may get reset for allocations that ignore memory policies. 4344 */ 4345 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4346 ac->high_zoneidx, ac->nodemask); 4347 } 4348 4349 /* 4350 * This is the 'heart' of the zoned buddy allocator. 4351 */ 4352 struct page * 4353 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4354 nodemask_t *nodemask) 4355 { 4356 struct page *page; 4357 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4358 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4359 struct alloc_context ac = { }; 4360 4361 gfp_mask &= gfp_allowed_mask; 4362 alloc_mask = gfp_mask; 4363 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4364 return NULL; 4365 4366 finalise_ac(gfp_mask, &ac); 4367 4368 /* First allocation attempt */ 4369 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4370 if (likely(page)) 4371 goto out; 4372 4373 /* 4374 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4375 * resp. GFP_NOIO which has to be inherited for all allocation requests 4376 * from a particular context which has been marked by 4377 * memalloc_no{fs,io}_{save,restore}. 4378 */ 4379 alloc_mask = current_gfp_context(gfp_mask); 4380 ac.spread_dirty_pages = false; 4381 4382 /* 4383 * Restore the original nodemask if it was potentially replaced with 4384 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4385 */ 4386 if (unlikely(ac.nodemask != nodemask)) 4387 ac.nodemask = nodemask; 4388 4389 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4390 4391 out: 4392 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4393 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4394 __free_pages(page, order); 4395 page = NULL; 4396 } 4397 4398 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4399 4400 return page; 4401 } 4402 EXPORT_SYMBOL(__alloc_pages_nodemask); 4403 4404 /* 4405 * Common helper functions. 4406 */ 4407 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4408 { 4409 struct page *page; 4410 4411 /* 4412 * __get_free_pages() returns a virtual address, which cannot represent 4413 * a highmem page 4414 */ 4415 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4416 4417 page = alloc_pages(gfp_mask, order); 4418 if (!page) 4419 return 0; 4420 return (unsigned long) page_address(page); 4421 } 4422 EXPORT_SYMBOL(__get_free_pages); 4423 4424 unsigned long get_zeroed_page(gfp_t gfp_mask) 4425 { 4426 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4427 } 4428 EXPORT_SYMBOL(get_zeroed_page); 4429 4430 void __free_pages(struct page *page, unsigned int order) 4431 { 4432 if (put_page_testzero(page)) { 4433 if (order == 0) 4434 free_unref_page(page); 4435 else 4436 __free_pages_ok(page, order); 4437 } 4438 } 4439 4440 EXPORT_SYMBOL(__free_pages); 4441 4442 void free_pages(unsigned long addr, unsigned int order) 4443 { 4444 if (addr != 0) { 4445 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4446 __free_pages(virt_to_page((void *)addr), order); 4447 } 4448 } 4449 4450 EXPORT_SYMBOL(free_pages); 4451 4452 /* 4453 * Page Fragment: 4454 * An arbitrary-length arbitrary-offset area of memory which resides 4455 * within a 0 or higher order page. Multiple fragments within that page 4456 * are individually refcounted, in the page's reference counter. 4457 * 4458 * The page_frag functions below provide a simple allocation framework for 4459 * page fragments. This is used by the network stack and network device 4460 * drivers to provide a backing region of memory for use as either an 4461 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4462 */ 4463 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4464 gfp_t gfp_mask) 4465 { 4466 struct page *page = NULL; 4467 gfp_t gfp = gfp_mask; 4468 4469 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4470 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4471 __GFP_NOMEMALLOC; 4472 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4473 PAGE_FRAG_CACHE_MAX_ORDER); 4474 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4475 #endif 4476 if (unlikely(!page)) 4477 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4478 4479 nc->va = page ? page_address(page) : NULL; 4480 4481 return page; 4482 } 4483 4484 void __page_frag_cache_drain(struct page *page, unsigned int count) 4485 { 4486 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4487 4488 if (page_ref_sub_and_test(page, count)) { 4489 unsigned int order = compound_order(page); 4490 4491 if (order == 0) 4492 free_unref_page(page); 4493 else 4494 __free_pages_ok(page, order); 4495 } 4496 } 4497 EXPORT_SYMBOL(__page_frag_cache_drain); 4498 4499 void *page_frag_alloc(struct page_frag_cache *nc, 4500 unsigned int fragsz, gfp_t gfp_mask) 4501 { 4502 unsigned int size = PAGE_SIZE; 4503 struct page *page; 4504 int offset; 4505 4506 if (unlikely(!nc->va)) { 4507 refill: 4508 page = __page_frag_cache_refill(nc, gfp_mask); 4509 if (!page) 4510 return NULL; 4511 4512 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4513 /* if size can vary use size else just use PAGE_SIZE */ 4514 size = nc->size; 4515 #endif 4516 /* Even if we own the page, we do not use atomic_set(). 4517 * This would break get_page_unless_zero() users. 4518 */ 4519 page_ref_add(page, size - 1); 4520 4521 /* reset page count bias and offset to start of new frag */ 4522 nc->pfmemalloc = page_is_pfmemalloc(page); 4523 nc->pagecnt_bias = size; 4524 nc->offset = size; 4525 } 4526 4527 offset = nc->offset - fragsz; 4528 if (unlikely(offset < 0)) { 4529 page = virt_to_page(nc->va); 4530 4531 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4532 goto refill; 4533 4534 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4535 /* if size can vary use size else just use PAGE_SIZE */ 4536 size = nc->size; 4537 #endif 4538 /* OK, page count is 0, we can safely set it */ 4539 set_page_count(page, size); 4540 4541 /* reset page count bias and offset to start of new frag */ 4542 nc->pagecnt_bias = size; 4543 offset = size - fragsz; 4544 } 4545 4546 nc->pagecnt_bias--; 4547 nc->offset = offset; 4548 4549 return nc->va + offset; 4550 } 4551 EXPORT_SYMBOL(page_frag_alloc); 4552 4553 /* 4554 * Frees a page fragment allocated out of either a compound or order 0 page. 4555 */ 4556 void page_frag_free(void *addr) 4557 { 4558 struct page *page = virt_to_head_page(addr); 4559 4560 if (unlikely(put_page_testzero(page))) 4561 __free_pages_ok(page, compound_order(page)); 4562 } 4563 EXPORT_SYMBOL(page_frag_free); 4564 4565 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4566 size_t size) 4567 { 4568 if (addr) { 4569 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4570 unsigned long used = addr + PAGE_ALIGN(size); 4571 4572 split_page(virt_to_page((void *)addr), order); 4573 while (used < alloc_end) { 4574 free_page(used); 4575 used += PAGE_SIZE; 4576 } 4577 } 4578 return (void *)addr; 4579 } 4580 4581 /** 4582 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4583 * @size: the number of bytes to allocate 4584 * @gfp_mask: GFP flags for the allocation 4585 * 4586 * This function is similar to alloc_pages(), except that it allocates the 4587 * minimum number of pages to satisfy the request. alloc_pages() can only 4588 * allocate memory in power-of-two pages. 4589 * 4590 * This function is also limited by MAX_ORDER. 4591 * 4592 * Memory allocated by this function must be released by free_pages_exact(). 4593 */ 4594 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4595 { 4596 unsigned int order = get_order(size); 4597 unsigned long addr; 4598 4599 addr = __get_free_pages(gfp_mask, order); 4600 return make_alloc_exact(addr, order, size); 4601 } 4602 EXPORT_SYMBOL(alloc_pages_exact); 4603 4604 /** 4605 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4606 * pages on a node. 4607 * @nid: the preferred node ID where memory should be allocated 4608 * @size: the number of bytes to allocate 4609 * @gfp_mask: GFP flags for the allocation 4610 * 4611 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4612 * back. 4613 */ 4614 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4615 { 4616 unsigned int order = get_order(size); 4617 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4618 if (!p) 4619 return NULL; 4620 return make_alloc_exact((unsigned long)page_address(p), order, size); 4621 } 4622 4623 /** 4624 * free_pages_exact - release memory allocated via alloc_pages_exact() 4625 * @virt: the value returned by alloc_pages_exact. 4626 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4627 * 4628 * Release the memory allocated by a previous call to alloc_pages_exact. 4629 */ 4630 void free_pages_exact(void *virt, size_t size) 4631 { 4632 unsigned long addr = (unsigned long)virt; 4633 unsigned long end = addr + PAGE_ALIGN(size); 4634 4635 while (addr < end) { 4636 free_page(addr); 4637 addr += PAGE_SIZE; 4638 } 4639 } 4640 EXPORT_SYMBOL(free_pages_exact); 4641 4642 /** 4643 * nr_free_zone_pages - count number of pages beyond high watermark 4644 * @offset: The zone index of the highest zone 4645 * 4646 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4647 * high watermark within all zones at or below a given zone index. For each 4648 * zone, the number of pages is calculated as: 4649 * 4650 * nr_free_zone_pages = managed_pages - high_pages 4651 */ 4652 static unsigned long nr_free_zone_pages(int offset) 4653 { 4654 struct zoneref *z; 4655 struct zone *zone; 4656 4657 /* Just pick one node, since fallback list is circular */ 4658 unsigned long sum = 0; 4659 4660 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4661 4662 for_each_zone_zonelist(zone, z, zonelist, offset) { 4663 unsigned long size = zone->managed_pages; 4664 unsigned long high = high_wmark_pages(zone); 4665 if (size > high) 4666 sum += size - high; 4667 } 4668 4669 return sum; 4670 } 4671 4672 /** 4673 * nr_free_buffer_pages - count number of pages beyond high watermark 4674 * 4675 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4676 * watermark within ZONE_DMA and ZONE_NORMAL. 4677 */ 4678 unsigned long nr_free_buffer_pages(void) 4679 { 4680 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4681 } 4682 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4683 4684 /** 4685 * nr_free_pagecache_pages - count number of pages beyond high watermark 4686 * 4687 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4688 * high watermark within all zones. 4689 */ 4690 unsigned long nr_free_pagecache_pages(void) 4691 { 4692 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4693 } 4694 4695 static inline void show_node(struct zone *zone) 4696 { 4697 if (IS_ENABLED(CONFIG_NUMA)) 4698 printk("Node %d ", zone_to_nid(zone)); 4699 } 4700 4701 long si_mem_available(void) 4702 { 4703 long available; 4704 unsigned long pagecache; 4705 unsigned long wmark_low = 0; 4706 unsigned long pages[NR_LRU_LISTS]; 4707 struct zone *zone; 4708 int lru; 4709 4710 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4711 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4712 4713 for_each_zone(zone) 4714 wmark_low += zone->watermark[WMARK_LOW]; 4715 4716 /* 4717 * Estimate the amount of memory available for userspace allocations, 4718 * without causing swapping. 4719 */ 4720 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4721 4722 /* 4723 * Not all the page cache can be freed, otherwise the system will 4724 * start swapping. Assume at least half of the page cache, or the 4725 * low watermark worth of cache, needs to stay. 4726 */ 4727 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4728 pagecache -= min(pagecache / 2, wmark_low); 4729 available += pagecache; 4730 4731 /* 4732 * Part of the reclaimable slab consists of items that are in use, 4733 * and cannot be freed. Cap this estimate at the low watermark. 4734 */ 4735 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4736 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4737 wmark_low); 4738 4739 /* 4740 * Part of the kernel memory, which can be released under memory 4741 * pressure. 4742 */ 4743 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >> 4744 PAGE_SHIFT; 4745 4746 if (available < 0) 4747 available = 0; 4748 return available; 4749 } 4750 EXPORT_SYMBOL_GPL(si_mem_available); 4751 4752 void si_meminfo(struct sysinfo *val) 4753 { 4754 val->totalram = totalram_pages; 4755 val->sharedram = global_node_page_state(NR_SHMEM); 4756 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4757 val->bufferram = nr_blockdev_pages(); 4758 val->totalhigh = totalhigh_pages; 4759 val->freehigh = nr_free_highpages(); 4760 val->mem_unit = PAGE_SIZE; 4761 } 4762 4763 EXPORT_SYMBOL(si_meminfo); 4764 4765 #ifdef CONFIG_NUMA 4766 void si_meminfo_node(struct sysinfo *val, int nid) 4767 { 4768 int zone_type; /* needs to be signed */ 4769 unsigned long managed_pages = 0; 4770 unsigned long managed_highpages = 0; 4771 unsigned long free_highpages = 0; 4772 pg_data_t *pgdat = NODE_DATA(nid); 4773 4774 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4775 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4776 val->totalram = managed_pages; 4777 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4778 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4779 #ifdef CONFIG_HIGHMEM 4780 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4781 struct zone *zone = &pgdat->node_zones[zone_type]; 4782 4783 if (is_highmem(zone)) { 4784 managed_highpages += zone->managed_pages; 4785 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4786 } 4787 } 4788 val->totalhigh = managed_highpages; 4789 val->freehigh = free_highpages; 4790 #else 4791 val->totalhigh = managed_highpages; 4792 val->freehigh = free_highpages; 4793 #endif 4794 val->mem_unit = PAGE_SIZE; 4795 } 4796 #endif 4797 4798 /* 4799 * Determine whether the node should be displayed or not, depending on whether 4800 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4801 */ 4802 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4803 { 4804 if (!(flags & SHOW_MEM_FILTER_NODES)) 4805 return false; 4806 4807 /* 4808 * no node mask - aka implicit memory numa policy. Do not bother with 4809 * the synchronization - read_mems_allowed_begin - because we do not 4810 * have to be precise here. 4811 */ 4812 if (!nodemask) 4813 nodemask = &cpuset_current_mems_allowed; 4814 4815 return !node_isset(nid, *nodemask); 4816 } 4817 4818 #define K(x) ((x) << (PAGE_SHIFT-10)) 4819 4820 static void show_migration_types(unsigned char type) 4821 { 4822 static const char types[MIGRATE_TYPES] = { 4823 [MIGRATE_UNMOVABLE] = 'U', 4824 [MIGRATE_MOVABLE] = 'M', 4825 [MIGRATE_RECLAIMABLE] = 'E', 4826 [MIGRATE_HIGHATOMIC] = 'H', 4827 #ifdef CONFIG_CMA 4828 [MIGRATE_CMA] = 'C', 4829 #endif 4830 #ifdef CONFIG_MEMORY_ISOLATION 4831 [MIGRATE_ISOLATE] = 'I', 4832 #endif 4833 }; 4834 char tmp[MIGRATE_TYPES + 1]; 4835 char *p = tmp; 4836 int i; 4837 4838 for (i = 0; i < MIGRATE_TYPES; i++) { 4839 if (type & (1 << i)) 4840 *p++ = types[i]; 4841 } 4842 4843 *p = '\0'; 4844 printk(KERN_CONT "(%s) ", tmp); 4845 } 4846 4847 /* 4848 * Show free area list (used inside shift_scroll-lock stuff) 4849 * We also calculate the percentage fragmentation. We do this by counting the 4850 * memory on each free list with the exception of the first item on the list. 4851 * 4852 * Bits in @filter: 4853 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4854 * cpuset. 4855 */ 4856 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4857 { 4858 unsigned long free_pcp = 0; 4859 int cpu; 4860 struct zone *zone; 4861 pg_data_t *pgdat; 4862 4863 for_each_populated_zone(zone) { 4864 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4865 continue; 4866 4867 for_each_online_cpu(cpu) 4868 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4869 } 4870 4871 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4872 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4873 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4874 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4875 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4876 " free:%lu free_pcp:%lu free_cma:%lu\n", 4877 global_node_page_state(NR_ACTIVE_ANON), 4878 global_node_page_state(NR_INACTIVE_ANON), 4879 global_node_page_state(NR_ISOLATED_ANON), 4880 global_node_page_state(NR_ACTIVE_FILE), 4881 global_node_page_state(NR_INACTIVE_FILE), 4882 global_node_page_state(NR_ISOLATED_FILE), 4883 global_node_page_state(NR_UNEVICTABLE), 4884 global_node_page_state(NR_FILE_DIRTY), 4885 global_node_page_state(NR_WRITEBACK), 4886 global_node_page_state(NR_UNSTABLE_NFS), 4887 global_node_page_state(NR_SLAB_RECLAIMABLE), 4888 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4889 global_node_page_state(NR_FILE_MAPPED), 4890 global_node_page_state(NR_SHMEM), 4891 global_zone_page_state(NR_PAGETABLE), 4892 global_zone_page_state(NR_BOUNCE), 4893 global_zone_page_state(NR_FREE_PAGES), 4894 free_pcp, 4895 global_zone_page_state(NR_FREE_CMA_PAGES)); 4896 4897 for_each_online_pgdat(pgdat) { 4898 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4899 continue; 4900 4901 printk("Node %d" 4902 " active_anon:%lukB" 4903 " inactive_anon:%lukB" 4904 " active_file:%lukB" 4905 " inactive_file:%lukB" 4906 " unevictable:%lukB" 4907 " isolated(anon):%lukB" 4908 " isolated(file):%lukB" 4909 " mapped:%lukB" 4910 " dirty:%lukB" 4911 " writeback:%lukB" 4912 " shmem:%lukB" 4913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4914 " shmem_thp: %lukB" 4915 " shmem_pmdmapped: %lukB" 4916 " anon_thp: %lukB" 4917 #endif 4918 " writeback_tmp:%lukB" 4919 " unstable:%lukB" 4920 " all_unreclaimable? %s" 4921 "\n", 4922 pgdat->node_id, 4923 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4924 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4925 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4926 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4927 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4928 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4929 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4930 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4931 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4932 K(node_page_state(pgdat, NR_WRITEBACK)), 4933 K(node_page_state(pgdat, NR_SHMEM)), 4934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4935 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4936 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4937 * HPAGE_PMD_NR), 4938 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4939 #endif 4940 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4941 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4942 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4943 "yes" : "no"); 4944 } 4945 4946 for_each_populated_zone(zone) { 4947 int i; 4948 4949 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4950 continue; 4951 4952 free_pcp = 0; 4953 for_each_online_cpu(cpu) 4954 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4955 4956 show_node(zone); 4957 printk(KERN_CONT 4958 "%s" 4959 " free:%lukB" 4960 " min:%lukB" 4961 " low:%lukB" 4962 " high:%lukB" 4963 " active_anon:%lukB" 4964 " inactive_anon:%lukB" 4965 " active_file:%lukB" 4966 " inactive_file:%lukB" 4967 " unevictable:%lukB" 4968 " writepending:%lukB" 4969 " present:%lukB" 4970 " managed:%lukB" 4971 " mlocked:%lukB" 4972 " kernel_stack:%lukB" 4973 " pagetables:%lukB" 4974 " bounce:%lukB" 4975 " free_pcp:%lukB" 4976 " local_pcp:%ukB" 4977 " free_cma:%lukB" 4978 "\n", 4979 zone->name, 4980 K(zone_page_state(zone, NR_FREE_PAGES)), 4981 K(min_wmark_pages(zone)), 4982 K(low_wmark_pages(zone)), 4983 K(high_wmark_pages(zone)), 4984 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4985 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4986 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4987 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4988 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4989 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4990 K(zone->present_pages), 4991 K(zone->managed_pages), 4992 K(zone_page_state(zone, NR_MLOCK)), 4993 zone_page_state(zone, NR_KERNEL_STACK_KB), 4994 K(zone_page_state(zone, NR_PAGETABLE)), 4995 K(zone_page_state(zone, NR_BOUNCE)), 4996 K(free_pcp), 4997 K(this_cpu_read(zone->pageset->pcp.count)), 4998 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4999 printk("lowmem_reserve[]:"); 5000 for (i = 0; i < MAX_NR_ZONES; i++) 5001 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5002 printk(KERN_CONT "\n"); 5003 } 5004 5005 for_each_populated_zone(zone) { 5006 unsigned int order; 5007 unsigned long nr[MAX_ORDER], flags, total = 0; 5008 unsigned char types[MAX_ORDER]; 5009 5010 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5011 continue; 5012 show_node(zone); 5013 printk(KERN_CONT "%s: ", zone->name); 5014 5015 spin_lock_irqsave(&zone->lock, flags); 5016 for (order = 0; order < MAX_ORDER; order++) { 5017 struct free_area *area = &zone->free_area[order]; 5018 int type; 5019 5020 nr[order] = area->nr_free; 5021 total += nr[order] << order; 5022 5023 types[order] = 0; 5024 for (type = 0; type < MIGRATE_TYPES; type++) { 5025 if (!list_empty(&area->free_list[type])) 5026 types[order] |= 1 << type; 5027 } 5028 } 5029 spin_unlock_irqrestore(&zone->lock, flags); 5030 for (order = 0; order < MAX_ORDER; order++) { 5031 printk(KERN_CONT "%lu*%lukB ", 5032 nr[order], K(1UL) << order); 5033 if (nr[order]) 5034 show_migration_types(types[order]); 5035 } 5036 printk(KERN_CONT "= %lukB\n", K(total)); 5037 } 5038 5039 hugetlb_show_meminfo(); 5040 5041 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5042 5043 show_swap_cache_info(); 5044 } 5045 5046 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5047 { 5048 zoneref->zone = zone; 5049 zoneref->zone_idx = zone_idx(zone); 5050 } 5051 5052 /* 5053 * Builds allocation fallback zone lists. 5054 * 5055 * Add all populated zones of a node to the zonelist. 5056 */ 5057 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5058 { 5059 struct zone *zone; 5060 enum zone_type zone_type = MAX_NR_ZONES; 5061 int nr_zones = 0; 5062 5063 do { 5064 zone_type--; 5065 zone = pgdat->node_zones + zone_type; 5066 if (managed_zone(zone)) { 5067 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5068 check_highest_zone(zone_type); 5069 } 5070 } while (zone_type); 5071 5072 return nr_zones; 5073 } 5074 5075 #ifdef CONFIG_NUMA 5076 5077 static int __parse_numa_zonelist_order(char *s) 5078 { 5079 /* 5080 * We used to support different zonlists modes but they turned 5081 * out to be just not useful. Let's keep the warning in place 5082 * if somebody still use the cmd line parameter so that we do 5083 * not fail it silently 5084 */ 5085 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5086 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5087 return -EINVAL; 5088 } 5089 return 0; 5090 } 5091 5092 static __init int setup_numa_zonelist_order(char *s) 5093 { 5094 if (!s) 5095 return 0; 5096 5097 return __parse_numa_zonelist_order(s); 5098 } 5099 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5100 5101 char numa_zonelist_order[] = "Node"; 5102 5103 /* 5104 * sysctl handler for numa_zonelist_order 5105 */ 5106 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5107 void __user *buffer, size_t *length, 5108 loff_t *ppos) 5109 { 5110 char *str; 5111 int ret; 5112 5113 if (!write) 5114 return proc_dostring(table, write, buffer, length, ppos); 5115 str = memdup_user_nul(buffer, 16); 5116 if (IS_ERR(str)) 5117 return PTR_ERR(str); 5118 5119 ret = __parse_numa_zonelist_order(str); 5120 kfree(str); 5121 return ret; 5122 } 5123 5124 5125 #define MAX_NODE_LOAD (nr_online_nodes) 5126 static int node_load[MAX_NUMNODES]; 5127 5128 /** 5129 * find_next_best_node - find the next node that should appear in a given node's fallback list 5130 * @node: node whose fallback list we're appending 5131 * @used_node_mask: nodemask_t of already used nodes 5132 * 5133 * We use a number of factors to determine which is the next node that should 5134 * appear on a given node's fallback list. The node should not have appeared 5135 * already in @node's fallback list, and it should be the next closest node 5136 * according to the distance array (which contains arbitrary distance values 5137 * from each node to each node in the system), and should also prefer nodes 5138 * with no CPUs, since presumably they'll have very little allocation pressure 5139 * on them otherwise. 5140 * It returns -1 if no node is found. 5141 */ 5142 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5143 { 5144 int n, val; 5145 int min_val = INT_MAX; 5146 int best_node = NUMA_NO_NODE; 5147 const struct cpumask *tmp = cpumask_of_node(0); 5148 5149 /* Use the local node if we haven't already */ 5150 if (!node_isset(node, *used_node_mask)) { 5151 node_set(node, *used_node_mask); 5152 return node; 5153 } 5154 5155 for_each_node_state(n, N_MEMORY) { 5156 5157 /* Don't want a node to appear more than once */ 5158 if (node_isset(n, *used_node_mask)) 5159 continue; 5160 5161 /* Use the distance array to find the distance */ 5162 val = node_distance(node, n); 5163 5164 /* Penalize nodes under us ("prefer the next node") */ 5165 val += (n < node); 5166 5167 /* Give preference to headless and unused nodes */ 5168 tmp = cpumask_of_node(n); 5169 if (!cpumask_empty(tmp)) 5170 val += PENALTY_FOR_NODE_WITH_CPUS; 5171 5172 /* Slight preference for less loaded node */ 5173 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5174 val += node_load[n]; 5175 5176 if (val < min_val) { 5177 min_val = val; 5178 best_node = n; 5179 } 5180 } 5181 5182 if (best_node >= 0) 5183 node_set(best_node, *used_node_mask); 5184 5185 return best_node; 5186 } 5187 5188 5189 /* 5190 * Build zonelists ordered by node and zones within node. 5191 * This results in maximum locality--normal zone overflows into local 5192 * DMA zone, if any--but risks exhausting DMA zone. 5193 */ 5194 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5195 unsigned nr_nodes) 5196 { 5197 struct zoneref *zonerefs; 5198 int i; 5199 5200 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5201 5202 for (i = 0; i < nr_nodes; i++) { 5203 int nr_zones; 5204 5205 pg_data_t *node = NODE_DATA(node_order[i]); 5206 5207 nr_zones = build_zonerefs_node(node, zonerefs); 5208 zonerefs += nr_zones; 5209 } 5210 zonerefs->zone = NULL; 5211 zonerefs->zone_idx = 0; 5212 } 5213 5214 /* 5215 * Build gfp_thisnode zonelists 5216 */ 5217 static void build_thisnode_zonelists(pg_data_t *pgdat) 5218 { 5219 struct zoneref *zonerefs; 5220 int nr_zones; 5221 5222 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5223 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5224 zonerefs += nr_zones; 5225 zonerefs->zone = NULL; 5226 zonerefs->zone_idx = 0; 5227 } 5228 5229 /* 5230 * Build zonelists ordered by zone and nodes within zones. 5231 * This results in conserving DMA zone[s] until all Normal memory is 5232 * exhausted, but results in overflowing to remote node while memory 5233 * may still exist in local DMA zone. 5234 */ 5235 5236 static void build_zonelists(pg_data_t *pgdat) 5237 { 5238 static int node_order[MAX_NUMNODES]; 5239 int node, load, nr_nodes = 0; 5240 nodemask_t used_mask; 5241 int local_node, prev_node; 5242 5243 /* NUMA-aware ordering of nodes */ 5244 local_node = pgdat->node_id; 5245 load = nr_online_nodes; 5246 prev_node = local_node; 5247 nodes_clear(used_mask); 5248 5249 memset(node_order, 0, sizeof(node_order)); 5250 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5251 /* 5252 * We don't want to pressure a particular node. 5253 * So adding penalty to the first node in same 5254 * distance group to make it round-robin. 5255 */ 5256 if (node_distance(local_node, node) != 5257 node_distance(local_node, prev_node)) 5258 node_load[node] = load; 5259 5260 node_order[nr_nodes++] = node; 5261 prev_node = node; 5262 load--; 5263 } 5264 5265 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5266 build_thisnode_zonelists(pgdat); 5267 } 5268 5269 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5270 /* 5271 * Return node id of node used for "local" allocations. 5272 * I.e., first node id of first zone in arg node's generic zonelist. 5273 * Used for initializing percpu 'numa_mem', which is used primarily 5274 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5275 */ 5276 int local_memory_node(int node) 5277 { 5278 struct zoneref *z; 5279 5280 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5281 gfp_zone(GFP_KERNEL), 5282 NULL); 5283 return z->zone->node; 5284 } 5285 #endif 5286 5287 static void setup_min_unmapped_ratio(void); 5288 static void setup_min_slab_ratio(void); 5289 #else /* CONFIG_NUMA */ 5290 5291 static void build_zonelists(pg_data_t *pgdat) 5292 { 5293 int node, local_node; 5294 struct zoneref *zonerefs; 5295 int nr_zones; 5296 5297 local_node = pgdat->node_id; 5298 5299 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5300 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5301 zonerefs += nr_zones; 5302 5303 /* 5304 * Now we build the zonelist so that it contains the zones 5305 * of all the other nodes. 5306 * We don't want to pressure a particular node, so when 5307 * building the zones for node N, we make sure that the 5308 * zones coming right after the local ones are those from 5309 * node N+1 (modulo N) 5310 */ 5311 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5312 if (!node_online(node)) 5313 continue; 5314 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5315 zonerefs += nr_zones; 5316 } 5317 for (node = 0; node < local_node; node++) { 5318 if (!node_online(node)) 5319 continue; 5320 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5321 zonerefs += nr_zones; 5322 } 5323 5324 zonerefs->zone = NULL; 5325 zonerefs->zone_idx = 0; 5326 } 5327 5328 #endif /* CONFIG_NUMA */ 5329 5330 /* 5331 * Boot pageset table. One per cpu which is going to be used for all 5332 * zones and all nodes. The parameters will be set in such a way 5333 * that an item put on a list will immediately be handed over to 5334 * the buddy list. This is safe since pageset manipulation is done 5335 * with interrupts disabled. 5336 * 5337 * The boot_pagesets must be kept even after bootup is complete for 5338 * unused processors and/or zones. They do play a role for bootstrapping 5339 * hotplugged processors. 5340 * 5341 * zoneinfo_show() and maybe other functions do 5342 * not check if the processor is online before following the pageset pointer. 5343 * Other parts of the kernel may not check if the zone is available. 5344 */ 5345 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5346 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5347 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5348 5349 static void __build_all_zonelists(void *data) 5350 { 5351 int nid; 5352 int __maybe_unused cpu; 5353 pg_data_t *self = data; 5354 static DEFINE_SPINLOCK(lock); 5355 5356 spin_lock(&lock); 5357 5358 #ifdef CONFIG_NUMA 5359 memset(node_load, 0, sizeof(node_load)); 5360 #endif 5361 5362 /* 5363 * This node is hotadded and no memory is yet present. So just 5364 * building zonelists is fine - no need to touch other nodes. 5365 */ 5366 if (self && !node_online(self->node_id)) { 5367 build_zonelists(self); 5368 } else { 5369 for_each_online_node(nid) { 5370 pg_data_t *pgdat = NODE_DATA(nid); 5371 5372 build_zonelists(pgdat); 5373 } 5374 5375 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5376 /* 5377 * We now know the "local memory node" for each node-- 5378 * i.e., the node of the first zone in the generic zonelist. 5379 * Set up numa_mem percpu variable for on-line cpus. During 5380 * boot, only the boot cpu should be on-line; we'll init the 5381 * secondary cpus' numa_mem as they come on-line. During 5382 * node/memory hotplug, we'll fixup all on-line cpus. 5383 */ 5384 for_each_online_cpu(cpu) 5385 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5386 #endif 5387 } 5388 5389 spin_unlock(&lock); 5390 } 5391 5392 static noinline void __init 5393 build_all_zonelists_init(void) 5394 { 5395 int cpu; 5396 5397 __build_all_zonelists(NULL); 5398 5399 /* 5400 * Initialize the boot_pagesets that are going to be used 5401 * for bootstrapping processors. The real pagesets for 5402 * each zone will be allocated later when the per cpu 5403 * allocator is available. 5404 * 5405 * boot_pagesets are used also for bootstrapping offline 5406 * cpus if the system is already booted because the pagesets 5407 * are needed to initialize allocators on a specific cpu too. 5408 * F.e. the percpu allocator needs the page allocator which 5409 * needs the percpu allocator in order to allocate its pagesets 5410 * (a chicken-egg dilemma). 5411 */ 5412 for_each_possible_cpu(cpu) 5413 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5414 5415 mminit_verify_zonelist(); 5416 cpuset_init_current_mems_allowed(); 5417 } 5418 5419 /* 5420 * unless system_state == SYSTEM_BOOTING. 5421 * 5422 * __ref due to call of __init annotated helper build_all_zonelists_init 5423 * [protected by SYSTEM_BOOTING]. 5424 */ 5425 void __ref build_all_zonelists(pg_data_t *pgdat) 5426 { 5427 if (system_state == SYSTEM_BOOTING) { 5428 build_all_zonelists_init(); 5429 } else { 5430 __build_all_zonelists(pgdat); 5431 /* cpuset refresh routine should be here */ 5432 } 5433 vm_total_pages = nr_free_pagecache_pages(); 5434 /* 5435 * Disable grouping by mobility if the number of pages in the 5436 * system is too low to allow the mechanism to work. It would be 5437 * more accurate, but expensive to check per-zone. This check is 5438 * made on memory-hotadd so a system can start with mobility 5439 * disabled and enable it later 5440 */ 5441 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5442 page_group_by_mobility_disabled = 1; 5443 else 5444 page_group_by_mobility_disabled = 0; 5445 5446 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5447 nr_online_nodes, 5448 page_group_by_mobility_disabled ? "off" : "on", 5449 vm_total_pages); 5450 #ifdef CONFIG_NUMA 5451 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5452 #endif 5453 } 5454 5455 /* 5456 * Initially all pages are reserved - free ones are freed 5457 * up by free_all_bootmem() once the early boot process is 5458 * done. Non-atomic initialization, single-pass. 5459 */ 5460 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5461 unsigned long start_pfn, enum memmap_context context, 5462 struct vmem_altmap *altmap) 5463 { 5464 unsigned long end_pfn = start_pfn + size; 5465 pg_data_t *pgdat = NODE_DATA(nid); 5466 unsigned long pfn; 5467 unsigned long nr_initialised = 0; 5468 struct page *page; 5469 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5470 struct memblock_region *r = NULL, *tmp; 5471 #endif 5472 5473 if (highest_memmap_pfn < end_pfn - 1) 5474 highest_memmap_pfn = end_pfn - 1; 5475 5476 /* 5477 * Honor reservation requested by the driver for this ZONE_DEVICE 5478 * memory 5479 */ 5480 if (altmap && start_pfn == altmap->base_pfn) 5481 start_pfn += altmap->reserve; 5482 5483 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5484 /* 5485 * There can be holes in boot-time mem_map[]s handed to this 5486 * function. They do not exist on hotplugged memory. 5487 */ 5488 if (context != MEMMAP_EARLY) 5489 goto not_early; 5490 5491 if (!early_pfn_valid(pfn)) 5492 continue; 5493 if (!early_pfn_in_nid(pfn, nid)) 5494 continue; 5495 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5496 break; 5497 5498 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5499 /* 5500 * Check given memblock attribute by firmware which can affect 5501 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5502 * mirrored, it's an overlapped memmap init. skip it. 5503 */ 5504 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5505 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5506 for_each_memblock(memory, tmp) 5507 if (pfn < memblock_region_memory_end_pfn(tmp)) 5508 break; 5509 r = tmp; 5510 } 5511 if (pfn >= memblock_region_memory_base_pfn(r) && 5512 memblock_is_mirror(r)) { 5513 /* already initialized as NORMAL */ 5514 pfn = memblock_region_memory_end_pfn(r); 5515 continue; 5516 } 5517 } 5518 #endif 5519 5520 not_early: 5521 page = pfn_to_page(pfn); 5522 __init_single_page(page, pfn, zone, nid); 5523 if (context == MEMMAP_HOTPLUG) 5524 SetPageReserved(page); 5525 5526 /* 5527 * Mark the block movable so that blocks are reserved for 5528 * movable at startup. This will force kernel allocations 5529 * to reserve their blocks rather than leaking throughout 5530 * the address space during boot when many long-lived 5531 * kernel allocations are made. 5532 * 5533 * bitmap is created for zone's valid pfn range. but memmap 5534 * can be created for invalid pages (for alignment) 5535 * check here not to call set_pageblock_migratetype() against 5536 * pfn out of zone. 5537 * 5538 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5539 * because this is done early in sparse_add_one_section 5540 */ 5541 if (!(pfn & (pageblock_nr_pages - 1))) { 5542 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5543 cond_resched(); 5544 } 5545 } 5546 } 5547 5548 static void __meminit zone_init_free_lists(struct zone *zone) 5549 { 5550 unsigned int order, t; 5551 for_each_migratetype_order(order, t) { 5552 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5553 zone->free_area[order].nr_free = 0; 5554 } 5555 } 5556 5557 #ifndef __HAVE_ARCH_MEMMAP_INIT 5558 #define memmap_init(size, nid, zone, start_pfn) \ 5559 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL) 5560 #endif 5561 5562 static int zone_batchsize(struct zone *zone) 5563 { 5564 #ifdef CONFIG_MMU 5565 int batch; 5566 5567 /* 5568 * The per-cpu-pages pools are set to around 1000th of the 5569 * size of the zone. But no more than 1/2 of a meg. 5570 * 5571 * OK, so we don't know how big the cache is. So guess. 5572 */ 5573 batch = zone->managed_pages / 1024; 5574 if (batch * PAGE_SIZE > 512 * 1024) 5575 batch = (512 * 1024) / PAGE_SIZE; 5576 batch /= 4; /* We effectively *= 4 below */ 5577 if (batch < 1) 5578 batch = 1; 5579 5580 /* 5581 * Clamp the batch to a 2^n - 1 value. Having a power 5582 * of 2 value was found to be more likely to have 5583 * suboptimal cache aliasing properties in some cases. 5584 * 5585 * For example if 2 tasks are alternately allocating 5586 * batches of pages, one task can end up with a lot 5587 * of pages of one half of the possible page colors 5588 * and the other with pages of the other colors. 5589 */ 5590 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5591 5592 return batch; 5593 5594 #else 5595 /* The deferral and batching of frees should be suppressed under NOMMU 5596 * conditions. 5597 * 5598 * The problem is that NOMMU needs to be able to allocate large chunks 5599 * of contiguous memory as there's no hardware page translation to 5600 * assemble apparent contiguous memory from discontiguous pages. 5601 * 5602 * Queueing large contiguous runs of pages for batching, however, 5603 * causes the pages to actually be freed in smaller chunks. As there 5604 * can be a significant delay between the individual batches being 5605 * recycled, this leads to the once large chunks of space being 5606 * fragmented and becoming unavailable for high-order allocations. 5607 */ 5608 return 0; 5609 #endif 5610 } 5611 5612 /* 5613 * pcp->high and pcp->batch values are related and dependent on one another: 5614 * ->batch must never be higher then ->high. 5615 * The following function updates them in a safe manner without read side 5616 * locking. 5617 * 5618 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5619 * those fields changing asynchronously (acording the the above rule). 5620 * 5621 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5622 * outside of boot time (or some other assurance that no concurrent updaters 5623 * exist). 5624 */ 5625 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5626 unsigned long batch) 5627 { 5628 /* start with a fail safe value for batch */ 5629 pcp->batch = 1; 5630 smp_wmb(); 5631 5632 /* Update high, then batch, in order */ 5633 pcp->high = high; 5634 smp_wmb(); 5635 5636 pcp->batch = batch; 5637 } 5638 5639 /* a companion to pageset_set_high() */ 5640 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5641 { 5642 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5643 } 5644 5645 static void pageset_init(struct per_cpu_pageset *p) 5646 { 5647 struct per_cpu_pages *pcp; 5648 int migratetype; 5649 5650 memset(p, 0, sizeof(*p)); 5651 5652 pcp = &p->pcp; 5653 pcp->count = 0; 5654 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5655 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5656 } 5657 5658 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5659 { 5660 pageset_init(p); 5661 pageset_set_batch(p, batch); 5662 } 5663 5664 /* 5665 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5666 * to the value high for the pageset p. 5667 */ 5668 static void pageset_set_high(struct per_cpu_pageset *p, 5669 unsigned long high) 5670 { 5671 unsigned long batch = max(1UL, high / 4); 5672 if ((high / 4) > (PAGE_SHIFT * 8)) 5673 batch = PAGE_SHIFT * 8; 5674 5675 pageset_update(&p->pcp, high, batch); 5676 } 5677 5678 static void pageset_set_high_and_batch(struct zone *zone, 5679 struct per_cpu_pageset *pcp) 5680 { 5681 if (percpu_pagelist_fraction) 5682 pageset_set_high(pcp, 5683 (zone->managed_pages / 5684 percpu_pagelist_fraction)); 5685 else 5686 pageset_set_batch(pcp, zone_batchsize(zone)); 5687 } 5688 5689 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5690 { 5691 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5692 5693 pageset_init(pcp); 5694 pageset_set_high_and_batch(zone, pcp); 5695 } 5696 5697 void __meminit setup_zone_pageset(struct zone *zone) 5698 { 5699 int cpu; 5700 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5701 for_each_possible_cpu(cpu) 5702 zone_pageset_init(zone, cpu); 5703 } 5704 5705 /* 5706 * Allocate per cpu pagesets and initialize them. 5707 * Before this call only boot pagesets were available. 5708 */ 5709 void __init setup_per_cpu_pageset(void) 5710 { 5711 struct pglist_data *pgdat; 5712 struct zone *zone; 5713 5714 for_each_populated_zone(zone) 5715 setup_zone_pageset(zone); 5716 5717 for_each_online_pgdat(pgdat) 5718 pgdat->per_cpu_nodestats = 5719 alloc_percpu(struct per_cpu_nodestat); 5720 } 5721 5722 static __meminit void zone_pcp_init(struct zone *zone) 5723 { 5724 /* 5725 * per cpu subsystem is not up at this point. The following code 5726 * relies on the ability of the linker to provide the 5727 * offset of a (static) per cpu variable into the per cpu area. 5728 */ 5729 zone->pageset = &boot_pageset; 5730 5731 if (populated_zone(zone)) 5732 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5733 zone->name, zone->present_pages, 5734 zone_batchsize(zone)); 5735 } 5736 5737 void __meminit init_currently_empty_zone(struct zone *zone, 5738 unsigned long zone_start_pfn, 5739 unsigned long size) 5740 { 5741 struct pglist_data *pgdat = zone->zone_pgdat; 5742 5743 pgdat->nr_zones = zone_idx(zone) + 1; 5744 5745 zone->zone_start_pfn = zone_start_pfn; 5746 5747 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5748 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5749 pgdat->node_id, 5750 (unsigned long)zone_idx(zone), 5751 zone_start_pfn, (zone_start_pfn + size)); 5752 5753 zone_init_free_lists(zone); 5754 zone->initialized = 1; 5755 } 5756 5757 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5758 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5759 5760 /* 5761 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5762 */ 5763 int __meminit __early_pfn_to_nid(unsigned long pfn, 5764 struct mminit_pfnnid_cache *state) 5765 { 5766 unsigned long start_pfn, end_pfn; 5767 int nid; 5768 5769 if (state->last_start <= pfn && pfn < state->last_end) 5770 return state->last_nid; 5771 5772 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5773 if (nid != -1) { 5774 state->last_start = start_pfn; 5775 state->last_end = end_pfn; 5776 state->last_nid = nid; 5777 } 5778 5779 return nid; 5780 } 5781 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5782 5783 /** 5784 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5785 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5786 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5787 * 5788 * If an architecture guarantees that all ranges registered contain no holes 5789 * and may be freed, this this function may be used instead of calling 5790 * memblock_free_early_nid() manually. 5791 */ 5792 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5793 { 5794 unsigned long start_pfn, end_pfn; 5795 int i, this_nid; 5796 5797 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5798 start_pfn = min(start_pfn, max_low_pfn); 5799 end_pfn = min(end_pfn, max_low_pfn); 5800 5801 if (start_pfn < end_pfn) 5802 memblock_free_early_nid(PFN_PHYS(start_pfn), 5803 (end_pfn - start_pfn) << PAGE_SHIFT, 5804 this_nid); 5805 } 5806 } 5807 5808 /** 5809 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5810 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5811 * 5812 * If an architecture guarantees that all ranges registered contain no holes and may 5813 * be freed, this function may be used instead of calling memory_present() manually. 5814 */ 5815 void __init sparse_memory_present_with_active_regions(int nid) 5816 { 5817 unsigned long start_pfn, end_pfn; 5818 int i, this_nid; 5819 5820 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5821 memory_present(this_nid, start_pfn, end_pfn); 5822 } 5823 5824 /** 5825 * get_pfn_range_for_nid - Return the start and end page frames for a node 5826 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5827 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5828 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5829 * 5830 * It returns the start and end page frame of a node based on information 5831 * provided by memblock_set_node(). If called for a node 5832 * with no available memory, a warning is printed and the start and end 5833 * PFNs will be 0. 5834 */ 5835 void __meminit get_pfn_range_for_nid(unsigned int nid, 5836 unsigned long *start_pfn, unsigned long *end_pfn) 5837 { 5838 unsigned long this_start_pfn, this_end_pfn; 5839 int i; 5840 5841 *start_pfn = -1UL; 5842 *end_pfn = 0; 5843 5844 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5845 *start_pfn = min(*start_pfn, this_start_pfn); 5846 *end_pfn = max(*end_pfn, this_end_pfn); 5847 } 5848 5849 if (*start_pfn == -1UL) 5850 *start_pfn = 0; 5851 } 5852 5853 /* 5854 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5855 * assumption is made that zones within a node are ordered in monotonic 5856 * increasing memory addresses so that the "highest" populated zone is used 5857 */ 5858 static void __init find_usable_zone_for_movable(void) 5859 { 5860 int zone_index; 5861 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5862 if (zone_index == ZONE_MOVABLE) 5863 continue; 5864 5865 if (arch_zone_highest_possible_pfn[zone_index] > 5866 arch_zone_lowest_possible_pfn[zone_index]) 5867 break; 5868 } 5869 5870 VM_BUG_ON(zone_index == -1); 5871 movable_zone = zone_index; 5872 } 5873 5874 /* 5875 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5876 * because it is sized independent of architecture. Unlike the other zones, 5877 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5878 * in each node depending on the size of each node and how evenly kernelcore 5879 * is distributed. This helper function adjusts the zone ranges 5880 * provided by the architecture for a given node by using the end of the 5881 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5882 * zones within a node are in order of monotonic increases memory addresses 5883 */ 5884 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5885 unsigned long zone_type, 5886 unsigned long node_start_pfn, 5887 unsigned long node_end_pfn, 5888 unsigned long *zone_start_pfn, 5889 unsigned long *zone_end_pfn) 5890 { 5891 /* Only adjust if ZONE_MOVABLE is on this node */ 5892 if (zone_movable_pfn[nid]) { 5893 /* Size ZONE_MOVABLE */ 5894 if (zone_type == ZONE_MOVABLE) { 5895 *zone_start_pfn = zone_movable_pfn[nid]; 5896 *zone_end_pfn = min(node_end_pfn, 5897 arch_zone_highest_possible_pfn[movable_zone]); 5898 5899 /* Adjust for ZONE_MOVABLE starting within this range */ 5900 } else if (!mirrored_kernelcore && 5901 *zone_start_pfn < zone_movable_pfn[nid] && 5902 *zone_end_pfn > zone_movable_pfn[nid]) { 5903 *zone_end_pfn = zone_movable_pfn[nid]; 5904 5905 /* Check if this whole range is within ZONE_MOVABLE */ 5906 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5907 *zone_start_pfn = *zone_end_pfn; 5908 } 5909 } 5910 5911 /* 5912 * Return the number of pages a zone spans in a node, including holes 5913 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5914 */ 5915 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5916 unsigned long zone_type, 5917 unsigned long node_start_pfn, 5918 unsigned long node_end_pfn, 5919 unsigned long *zone_start_pfn, 5920 unsigned long *zone_end_pfn, 5921 unsigned long *ignored) 5922 { 5923 /* When hotadd a new node from cpu_up(), the node should be empty */ 5924 if (!node_start_pfn && !node_end_pfn) 5925 return 0; 5926 5927 /* Get the start and end of the zone */ 5928 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5929 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5930 adjust_zone_range_for_zone_movable(nid, zone_type, 5931 node_start_pfn, node_end_pfn, 5932 zone_start_pfn, zone_end_pfn); 5933 5934 /* Check that this node has pages within the zone's required range */ 5935 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5936 return 0; 5937 5938 /* Move the zone boundaries inside the node if necessary */ 5939 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5940 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5941 5942 /* Return the spanned pages */ 5943 return *zone_end_pfn - *zone_start_pfn; 5944 } 5945 5946 /* 5947 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5948 * then all holes in the requested range will be accounted for. 5949 */ 5950 unsigned long __meminit __absent_pages_in_range(int nid, 5951 unsigned long range_start_pfn, 5952 unsigned long range_end_pfn) 5953 { 5954 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5955 unsigned long start_pfn, end_pfn; 5956 int i; 5957 5958 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5959 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5960 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5961 nr_absent -= end_pfn - start_pfn; 5962 } 5963 return nr_absent; 5964 } 5965 5966 /** 5967 * absent_pages_in_range - Return number of page frames in holes within a range 5968 * @start_pfn: The start PFN to start searching for holes 5969 * @end_pfn: The end PFN to stop searching for holes 5970 * 5971 * It returns the number of pages frames in memory holes within a range. 5972 */ 5973 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5974 unsigned long end_pfn) 5975 { 5976 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5977 } 5978 5979 /* Return the number of page frames in holes in a zone on a node */ 5980 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5981 unsigned long zone_type, 5982 unsigned long node_start_pfn, 5983 unsigned long node_end_pfn, 5984 unsigned long *ignored) 5985 { 5986 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5987 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5988 unsigned long zone_start_pfn, zone_end_pfn; 5989 unsigned long nr_absent; 5990 5991 /* When hotadd a new node from cpu_up(), the node should be empty */ 5992 if (!node_start_pfn && !node_end_pfn) 5993 return 0; 5994 5995 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5996 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5997 5998 adjust_zone_range_for_zone_movable(nid, zone_type, 5999 node_start_pfn, node_end_pfn, 6000 &zone_start_pfn, &zone_end_pfn); 6001 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6002 6003 /* 6004 * ZONE_MOVABLE handling. 6005 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6006 * and vice versa. 6007 */ 6008 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6009 unsigned long start_pfn, end_pfn; 6010 struct memblock_region *r; 6011 6012 for_each_memblock(memory, r) { 6013 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6014 zone_start_pfn, zone_end_pfn); 6015 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6016 zone_start_pfn, zone_end_pfn); 6017 6018 if (zone_type == ZONE_MOVABLE && 6019 memblock_is_mirror(r)) 6020 nr_absent += end_pfn - start_pfn; 6021 6022 if (zone_type == ZONE_NORMAL && 6023 !memblock_is_mirror(r)) 6024 nr_absent += end_pfn - start_pfn; 6025 } 6026 } 6027 6028 return nr_absent; 6029 } 6030 6031 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6032 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 6033 unsigned long zone_type, 6034 unsigned long node_start_pfn, 6035 unsigned long node_end_pfn, 6036 unsigned long *zone_start_pfn, 6037 unsigned long *zone_end_pfn, 6038 unsigned long *zones_size) 6039 { 6040 unsigned int zone; 6041 6042 *zone_start_pfn = node_start_pfn; 6043 for (zone = 0; zone < zone_type; zone++) 6044 *zone_start_pfn += zones_size[zone]; 6045 6046 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6047 6048 return zones_size[zone_type]; 6049 } 6050 6051 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 6052 unsigned long zone_type, 6053 unsigned long node_start_pfn, 6054 unsigned long node_end_pfn, 6055 unsigned long *zholes_size) 6056 { 6057 if (!zholes_size) 6058 return 0; 6059 6060 return zholes_size[zone_type]; 6061 } 6062 6063 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6064 6065 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 6066 unsigned long node_start_pfn, 6067 unsigned long node_end_pfn, 6068 unsigned long *zones_size, 6069 unsigned long *zholes_size) 6070 { 6071 unsigned long realtotalpages = 0, totalpages = 0; 6072 enum zone_type i; 6073 6074 for (i = 0; i < MAX_NR_ZONES; i++) { 6075 struct zone *zone = pgdat->node_zones + i; 6076 unsigned long zone_start_pfn, zone_end_pfn; 6077 unsigned long size, real_size; 6078 6079 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6080 node_start_pfn, 6081 node_end_pfn, 6082 &zone_start_pfn, 6083 &zone_end_pfn, 6084 zones_size); 6085 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6086 node_start_pfn, node_end_pfn, 6087 zholes_size); 6088 if (size) 6089 zone->zone_start_pfn = zone_start_pfn; 6090 else 6091 zone->zone_start_pfn = 0; 6092 zone->spanned_pages = size; 6093 zone->present_pages = real_size; 6094 6095 totalpages += size; 6096 realtotalpages += real_size; 6097 } 6098 6099 pgdat->node_spanned_pages = totalpages; 6100 pgdat->node_present_pages = realtotalpages; 6101 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6102 realtotalpages); 6103 } 6104 6105 #ifndef CONFIG_SPARSEMEM 6106 /* 6107 * Calculate the size of the zone->blockflags rounded to an unsigned long 6108 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6109 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6110 * round what is now in bits to nearest long in bits, then return it in 6111 * bytes. 6112 */ 6113 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6114 { 6115 unsigned long usemapsize; 6116 6117 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6118 usemapsize = roundup(zonesize, pageblock_nr_pages); 6119 usemapsize = usemapsize >> pageblock_order; 6120 usemapsize *= NR_PAGEBLOCK_BITS; 6121 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6122 6123 return usemapsize / 8; 6124 } 6125 6126 static void __init setup_usemap(struct pglist_data *pgdat, 6127 struct zone *zone, 6128 unsigned long zone_start_pfn, 6129 unsigned long zonesize) 6130 { 6131 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6132 zone->pageblock_flags = NULL; 6133 if (usemapsize) 6134 zone->pageblock_flags = 6135 memblock_virt_alloc_node_nopanic(usemapsize, 6136 pgdat->node_id); 6137 } 6138 #else 6139 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6140 unsigned long zone_start_pfn, unsigned long zonesize) {} 6141 #endif /* CONFIG_SPARSEMEM */ 6142 6143 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6144 6145 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6146 void __paginginit set_pageblock_order(void) 6147 { 6148 unsigned int order; 6149 6150 /* Check that pageblock_nr_pages has not already been setup */ 6151 if (pageblock_order) 6152 return; 6153 6154 if (HPAGE_SHIFT > PAGE_SHIFT) 6155 order = HUGETLB_PAGE_ORDER; 6156 else 6157 order = MAX_ORDER - 1; 6158 6159 /* 6160 * Assume the largest contiguous order of interest is a huge page. 6161 * This value may be variable depending on boot parameters on IA64 and 6162 * powerpc. 6163 */ 6164 pageblock_order = order; 6165 } 6166 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6167 6168 /* 6169 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6170 * is unused as pageblock_order is set at compile-time. See 6171 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6172 * the kernel config 6173 */ 6174 void __paginginit set_pageblock_order(void) 6175 { 6176 } 6177 6178 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6179 6180 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6181 unsigned long present_pages) 6182 { 6183 unsigned long pages = spanned_pages; 6184 6185 /* 6186 * Provide a more accurate estimation if there are holes within 6187 * the zone and SPARSEMEM is in use. If there are holes within the 6188 * zone, each populated memory region may cost us one or two extra 6189 * memmap pages due to alignment because memmap pages for each 6190 * populated regions may not be naturally aligned on page boundary. 6191 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6192 */ 6193 if (spanned_pages > present_pages + (present_pages >> 4) && 6194 IS_ENABLED(CONFIG_SPARSEMEM)) 6195 pages = present_pages; 6196 6197 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6198 } 6199 6200 /* 6201 * Set up the zone data structures: 6202 * - mark all pages reserved 6203 * - mark all memory queues empty 6204 * - clear the memory bitmaps 6205 * 6206 * NOTE: pgdat should get zeroed by caller. 6207 */ 6208 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6209 { 6210 enum zone_type j; 6211 int nid = pgdat->node_id; 6212 6213 pgdat_resize_init(pgdat); 6214 #ifdef CONFIG_NUMA_BALANCING 6215 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6216 pgdat->numabalancing_migrate_nr_pages = 0; 6217 pgdat->numabalancing_migrate_next_window = jiffies; 6218 #endif 6219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6220 spin_lock_init(&pgdat->split_queue_lock); 6221 INIT_LIST_HEAD(&pgdat->split_queue); 6222 pgdat->split_queue_len = 0; 6223 #endif 6224 init_waitqueue_head(&pgdat->kswapd_wait); 6225 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6226 #ifdef CONFIG_COMPACTION 6227 init_waitqueue_head(&pgdat->kcompactd_wait); 6228 #endif 6229 pgdat_page_ext_init(pgdat); 6230 spin_lock_init(&pgdat->lru_lock); 6231 lruvec_init(node_lruvec(pgdat)); 6232 6233 pgdat->per_cpu_nodestats = &boot_nodestats; 6234 6235 for (j = 0; j < MAX_NR_ZONES; j++) { 6236 struct zone *zone = pgdat->node_zones + j; 6237 unsigned long size, freesize, memmap_pages; 6238 unsigned long zone_start_pfn = zone->zone_start_pfn; 6239 6240 size = zone->spanned_pages; 6241 freesize = zone->present_pages; 6242 6243 /* 6244 * Adjust freesize so that it accounts for how much memory 6245 * is used by this zone for memmap. This affects the watermark 6246 * and per-cpu initialisations 6247 */ 6248 memmap_pages = calc_memmap_size(size, freesize); 6249 if (!is_highmem_idx(j)) { 6250 if (freesize >= memmap_pages) { 6251 freesize -= memmap_pages; 6252 if (memmap_pages) 6253 printk(KERN_DEBUG 6254 " %s zone: %lu pages used for memmap\n", 6255 zone_names[j], memmap_pages); 6256 } else 6257 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6258 zone_names[j], memmap_pages, freesize); 6259 } 6260 6261 /* Account for reserved pages */ 6262 if (j == 0 && freesize > dma_reserve) { 6263 freesize -= dma_reserve; 6264 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6265 zone_names[0], dma_reserve); 6266 } 6267 6268 if (!is_highmem_idx(j)) 6269 nr_kernel_pages += freesize; 6270 /* Charge for highmem memmap if there are enough kernel pages */ 6271 else if (nr_kernel_pages > memmap_pages * 2) 6272 nr_kernel_pages -= memmap_pages; 6273 nr_all_pages += freesize; 6274 6275 /* 6276 * Set an approximate value for lowmem here, it will be adjusted 6277 * when the bootmem allocator frees pages into the buddy system. 6278 * And all highmem pages will be managed by the buddy system. 6279 */ 6280 zone->managed_pages = freesize; 6281 #ifdef CONFIG_NUMA 6282 zone->node = nid; 6283 #endif 6284 zone->name = zone_names[j]; 6285 zone->zone_pgdat = pgdat; 6286 spin_lock_init(&zone->lock); 6287 zone_seqlock_init(zone); 6288 zone_pcp_init(zone); 6289 6290 if (!size) 6291 continue; 6292 6293 set_pageblock_order(); 6294 setup_usemap(pgdat, zone, zone_start_pfn, size); 6295 init_currently_empty_zone(zone, zone_start_pfn, size); 6296 memmap_init(size, nid, j, zone_start_pfn); 6297 } 6298 } 6299 6300 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6301 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6302 { 6303 unsigned long __maybe_unused start = 0; 6304 unsigned long __maybe_unused offset = 0; 6305 6306 /* Skip empty nodes */ 6307 if (!pgdat->node_spanned_pages) 6308 return; 6309 6310 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6311 offset = pgdat->node_start_pfn - start; 6312 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6313 if (!pgdat->node_mem_map) { 6314 unsigned long size, end; 6315 struct page *map; 6316 6317 /* 6318 * The zone's endpoints aren't required to be MAX_ORDER 6319 * aligned but the node_mem_map endpoints must be in order 6320 * for the buddy allocator to function correctly. 6321 */ 6322 end = pgdat_end_pfn(pgdat); 6323 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6324 size = (end - start) * sizeof(struct page); 6325 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 6326 pgdat->node_mem_map = map + offset; 6327 } 6328 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6329 __func__, pgdat->node_id, (unsigned long)pgdat, 6330 (unsigned long)pgdat->node_mem_map); 6331 #ifndef CONFIG_NEED_MULTIPLE_NODES 6332 /* 6333 * With no DISCONTIG, the global mem_map is just set as node 0's 6334 */ 6335 if (pgdat == NODE_DATA(0)) { 6336 mem_map = NODE_DATA(0)->node_mem_map; 6337 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6338 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6339 mem_map -= offset; 6340 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6341 } 6342 #endif 6343 } 6344 #else 6345 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6346 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6347 6348 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6349 unsigned long node_start_pfn, unsigned long *zholes_size) 6350 { 6351 pg_data_t *pgdat = NODE_DATA(nid); 6352 unsigned long start_pfn = 0; 6353 unsigned long end_pfn = 0; 6354 6355 /* pg_data_t should be reset to zero when it's allocated */ 6356 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6357 6358 pgdat->node_id = nid; 6359 pgdat->node_start_pfn = node_start_pfn; 6360 pgdat->per_cpu_nodestats = NULL; 6361 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6362 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6363 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6364 (u64)start_pfn << PAGE_SHIFT, 6365 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6366 #else 6367 start_pfn = node_start_pfn; 6368 #endif 6369 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6370 zones_size, zholes_size); 6371 6372 alloc_node_mem_map(pgdat); 6373 6374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6375 /* 6376 * We start only with one section of pages, more pages are added as 6377 * needed until the rest of deferred pages are initialized. 6378 */ 6379 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION, 6380 pgdat->node_spanned_pages); 6381 pgdat->first_deferred_pfn = ULONG_MAX; 6382 #endif 6383 free_area_init_core(pgdat); 6384 } 6385 6386 #ifdef CONFIG_HAVE_MEMBLOCK 6387 /* 6388 * Only struct pages that are backed by physical memory are zeroed and 6389 * initialized by going through __init_single_page(). But, there are some 6390 * struct pages which are reserved in memblock allocator and their fields 6391 * may be accessed (for example page_to_pfn() on some configuration accesses 6392 * flags). We must explicitly zero those struct pages. 6393 */ 6394 void __paginginit zero_resv_unavail(void) 6395 { 6396 phys_addr_t start, end; 6397 unsigned long pfn; 6398 u64 i, pgcnt; 6399 6400 /* 6401 * Loop through ranges that are reserved, but do not have reported 6402 * physical memory backing. 6403 */ 6404 pgcnt = 0; 6405 for_each_resv_unavail_range(i, &start, &end) { 6406 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6407 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) 6408 continue; 6409 mm_zero_struct_page(pfn_to_page(pfn)); 6410 pgcnt++; 6411 } 6412 } 6413 6414 /* 6415 * Struct pages that do not have backing memory. This could be because 6416 * firmware is using some of this memory, or for some other reasons. 6417 * Once memblock is changed so such behaviour is not allowed: i.e. 6418 * list of "reserved" memory must be a subset of list of "memory", then 6419 * this code can be removed. 6420 */ 6421 if (pgcnt) 6422 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6423 } 6424 #endif /* CONFIG_HAVE_MEMBLOCK */ 6425 6426 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6427 6428 #if MAX_NUMNODES > 1 6429 /* 6430 * Figure out the number of possible node ids. 6431 */ 6432 void __init setup_nr_node_ids(void) 6433 { 6434 unsigned int highest; 6435 6436 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6437 nr_node_ids = highest + 1; 6438 } 6439 #endif 6440 6441 /** 6442 * node_map_pfn_alignment - determine the maximum internode alignment 6443 * 6444 * This function should be called after node map is populated and sorted. 6445 * It calculates the maximum power of two alignment which can distinguish 6446 * all the nodes. 6447 * 6448 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6449 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6450 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6451 * shifted, 1GiB is enough and this function will indicate so. 6452 * 6453 * This is used to test whether pfn -> nid mapping of the chosen memory 6454 * model has fine enough granularity to avoid incorrect mapping for the 6455 * populated node map. 6456 * 6457 * Returns the determined alignment in pfn's. 0 if there is no alignment 6458 * requirement (single node). 6459 */ 6460 unsigned long __init node_map_pfn_alignment(void) 6461 { 6462 unsigned long accl_mask = 0, last_end = 0; 6463 unsigned long start, end, mask; 6464 int last_nid = -1; 6465 int i, nid; 6466 6467 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6468 if (!start || last_nid < 0 || last_nid == nid) { 6469 last_nid = nid; 6470 last_end = end; 6471 continue; 6472 } 6473 6474 /* 6475 * Start with a mask granular enough to pin-point to the 6476 * start pfn and tick off bits one-by-one until it becomes 6477 * too coarse to separate the current node from the last. 6478 */ 6479 mask = ~((1 << __ffs(start)) - 1); 6480 while (mask && last_end <= (start & (mask << 1))) 6481 mask <<= 1; 6482 6483 /* accumulate all internode masks */ 6484 accl_mask |= mask; 6485 } 6486 6487 /* convert mask to number of pages */ 6488 return ~accl_mask + 1; 6489 } 6490 6491 /* Find the lowest pfn for a node */ 6492 static unsigned long __init find_min_pfn_for_node(int nid) 6493 { 6494 unsigned long min_pfn = ULONG_MAX; 6495 unsigned long start_pfn; 6496 int i; 6497 6498 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6499 min_pfn = min(min_pfn, start_pfn); 6500 6501 if (min_pfn == ULONG_MAX) { 6502 pr_warn("Could not find start_pfn for node %d\n", nid); 6503 return 0; 6504 } 6505 6506 return min_pfn; 6507 } 6508 6509 /** 6510 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6511 * 6512 * It returns the minimum PFN based on information provided via 6513 * memblock_set_node(). 6514 */ 6515 unsigned long __init find_min_pfn_with_active_regions(void) 6516 { 6517 return find_min_pfn_for_node(MAX_NUMNODES); 6518 } 6519 6520 /* 6521 * early_calculate_totalpages() 6522 * Sum pages in active regions for movable zone. 6523 * Populate N_MEMORY for calculating usable_nodes. 6524 */ 6525 static unsigned long __init early_calculate_totalpages(void) 6526 { 6527 unsigned long totalpages = 0; 6528 unsigned long start_pfn, end_pfn; 6529 int i, nid; 6530 6531 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6532 unsigned long pages = end_pfn - start_pfn; 6533 6534 totalpages += pages; 6535 if (pages) 6536 node_set_state(nid, N_MEMORY); 6537 } 6538 return totalpages; 6539 } 6540 6541 /* 6542 * Find the PFN the Movable zone begins in each node. Kernel memory 6543 * is spread evenly between nodes as long as the nodes have enough 6544 * memory. When they don't, some nodes will have more kernelcore than 6545 * others 6546 */ 6547 static void __init find_zone_movable_pfns_for_nodes(void) 6548 { 6549 int i, nid; 6550 unsigned long usable_startpfn; 6551 unsigned long kernelcore_node, kernelcore_remaining; 6552 /* save the state before borrow the nodemask */ 6553 nodemask_t saved_node_state = node_states[N_MEMORY]; 6554 unsigned long totalpages = early_calculate_totalpages(); 6555 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6556 struct memblock_region *r; 6557 6558 /* Need to find movable_zone earlier when movable_node is specified. */ 6559 find_usable_zone_for_movable(); 6560 6561 /* 6562 * If movable_node is specified, ignore kernelcore and movablecore 6563 * options. 6564 */ 6565 if (movable_node_is_enabled()) { 6566 for_each_memblock(memory, r) { 6567 if (!memblock_is_hotpluggable(r)) 6568 continue; 6569 6570 nid = r->nid; 6571 6572 usable_startpfn = PFN_DOWN(r->base); 6573 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6574 min(usable_startpfn, zone_movable_pfn[nid]) : 6575 usable_startpfn; 6576 } 6577 6578 goto out2; 6579 } 6580 6581 /* 6582 * If kernelcore=mirror is specified, ignore movablecore option 6583 */ 6584 if (mirrored_kernelcore) { 6585 bool mem_below_4gb_not_mirrored = false; 6586 6587 for_each_memblock(memory, r) { 6588 if (memblock_is_mirror(r)) 6589 continue; 6590 6591 nid = r->nid; 6592 6593 usable_startpfn = memblock_region_memory_base_pfn(r); 6594 6595 if (usable_startpfn < 0x100000) { 6596 mem_below_4gb_not_mirrored = true; 6597 continue; 6598 } 6599 6600 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6601 min(usable_startpfn, zone_movable_pfn[nid]) : 6602 usable_startpfn; 6603 } 6604 6605 if (mem_below_4gb_not_mirrored) 6606 pr_warn("This configuration results in unmirrored kernel memory."); 6607 6608 goto out2; 6609 } 6610 6611 /* 6612 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 6613 * amount of necessary memory. 6614 */ 6615 if (required_kernelcore_percent) 6616 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 6617 10000UL; 6618 if (required_movablecore_percent) 6619 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 6620 10000UL; 6621 6622 /* 6623 * If movablecore= was specified, calculate what size of 6624 * kernelcore that corresponds so that memory usable for 6625 * any allocation type is evenly spread. If both kernelcore 6626 * and movablecore are specified, then the value of kernelcore 6627 * will be used for required_kernelcore if it's greater than 6628 * what movablecore would have allowed. 6629 */ 6630 if (required_movablecore) { 6631 unsigned long corepages; 6632 6633 /* 6634 * Round-up so that ZONE_MOVABLE is at least as large as what 6635 * was requested by the user 6636 */ 6637 required_movablecore = 6638 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6639 required_movablecore = min(totalpages, required_movablecore); 6640 corepages = totalpages - required_movablecore; 6641 6642 required_kernelcore = max(required_kernelcore, corepages); 6643 } 6644 6645 /* 6646 * If kernelcore was not specified or kernelcore size is larger 6647 * than totalpages, there is no ZONE_MOVABLE. 6648 */ 6649 if (!required_kernelcore || required_kernelcore >= totalpages) 6650 goto out; 6651 6652 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6653 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6654 6655 restart: 6656 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6657 kernelcore_node = required_kernelcore / usable_nodes; 6658 for_each_node_state(nid, N_MEMORY) { 6659 unsigned long start_pfn, end_pfn; 6660 6661 /* 6662 * Recalculate kernelcore_node if the division per node 6663 * now exceeds what is necessary to satisfy the requested 6664 * amount of memory for the kernel 6665 */ 6666 if (required_kernelcore < kernelcore_node) 6667 kernelcore_node = required_kernelcore / usable_nodes; 6668 6669 /* 6670 * As the map is walked, we track how much memory is usable 6671 * by the kernel using kernelcore_remaining. When it is 6672 * 0, the rest of the node is usable by ZONE_MOVABLE 6673 */ 6674 kernelcore_remaining = kernelcore_node; 6675 6676 /* Go through each range of PFNs within this node */ 6677 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6678 unsigned long size_pages; 6679 6680 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6681 if (start_pfn >= end_pfn) 6682 continue; 6683 6684 /* Account for what is only usable for kernelcore */ 6685 if (start_pfn < usable_startpfn) { 6686 unsigned long kernel_pages; 6687 kernel_pages = min(end_pfn, usable_startpfn) 6688 - start_pfn; 6689 6690 kernelcore_remaining -= min(kernel_pages, 6691 kernelcore_remaining); 6692 required_kernelcore -= min(kernel_pages, 6693 required_kernelcore); 6694 6695 /* Continue if range is now fully accounted */ 6696 if (end_pfn <= usable_startpfn) { 6697 6698 /* 6699 * Push zone_movable_pfn to the end so 6700 * that if we have to rebalance 6701 * kernelcore across nodes, we will 6702 * not double account here 6703 */ 6704 zone_movable_pfn[nid] = end_pfn; 6705 continue; 6706 } 6707 start_pfn = usable_startpfn; 6708 } 6709 6710 /* 6711 * The usable PFN range for ZONE_MOVABLE is from 6712 * start_pfn->end_pfn. Calculate size_pages as the 6713 * number of pages used as kernelcore 6714 */ 6715 size_pages = end_pfn - start_pfn; 6716 if (size_pages > kernelcore_remaining) 6717 size_pages = kernelcore_remaining; 6718 zone_movable_pfn[nid] = start_pfn + size_pages; 6719 6720 /* 6721 * Some kernelcore has been met, update counts and 6722 * break if the kernelcore for this node has been 6723 * satisfied 6724 */ 6725 required_kernelcore -= min(required_kernelcore, 6726 size_pages); 6727 kernelcore_remaining -= size_pages; 6728 if (!kernelcore_remaining) 6729 break; 6730 } 6731 } 6732 6733 /* 6734 * If there is still required_kernelcore, we do another pass with one 6735 * less node in the count. This will push zone_movable_pfn[nid] further 6736 * along on the nodes that still have memory until kernelcore is 6737 * satisfied 6738 */ 6739 usable_nodes--; 6740 if (usable_nodes && required_kernelcore > usable_nodes) 6741 goto restart; 6742 6743 out2: 6744 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6745 for (nid = 0; nid < MAX_NUMNODES; nid++) 6746 zone_movable_pfn[nid] = 6747 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6748 6749 out: 6750 /* restore the node_state */ 6751 node_states[N_MEMORY] = saved_node_state; 6752 } 6753 6754 /* Any regular or high memory on that node ? */ 6755 static void check_for_memory(pg_data_t *pgdat, int nid) 6756 { 6757 enum zone_type zone_type; 6758 6759 if (N_MEMORY == N_NORMAL_MEMORY) 6760 return; 6761 6762 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6763 struct zone *zone = &pgdat->node_zones[zone_type]; 6764 if (populated_zone(zone)) { 6765 node_set_state(nid, N_HIGH_MEMORY); 6766 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6767 zone_type <= ZONE_NORMAL) 6768 node_set_state(nid, N_NORMAL_MEMORY); 6769 break; 6770 } 6771 } 6772 } 6773 6774 /** 6775 * free_area_init_nodes - Initialise all pg_data_t and zone data 6776 * @max_zone_pfn: an array of max PFNs for each zone 6777 * 6778 * This will call free_area_init_node() for each active node in the system. 6779 * Using the page ranges provided by memblock_set_node(), the size of each 6780 * zone in each node and their holes is calculated. If the maximum PFN 6781 * between two adjacent zones match, it is assumed that the zone is empty. 6782 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6783 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6784 * starts where the previous one ended. For example, ZONE_DMA32 starts 6785 * at arch_max_dma_pfn. 6786 */ 6787 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6788 { 6789 unsigned long start_pfn, end_pfn; 6790 int i, nid; 6791 6792 /* Record where the zone boundaries are */ 6793 memset(arch_zone_lowest_possible_pfn, 0, 6794 sizeof(arch_zone_lowest_possible_pfn)); 6795 memset(arch_zone_highest_possible_pfn, 0, 6796 sizeof(arch_zone_highest_possible_pfn)); 6797 6798 start_pfn = find_min_pfn_with_active_regions(); 6799 6800 for (i = 0; i < MAX_NR_ZONES; i++) { 6801 if (i == ZONE_MOVABLE) 6802 continue; 6803 6804 end_pfn = max(max_zone_pfn[i], start_pfn); 6805 arch_zone_lowest_possible_pfn[i] = start_pfn; 6806 arch_zone_highest_possible_pfn[i] = end_pfn; 6807 6808 start_pfn = end_pfn; 6809 } 6810 6811 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6812 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6813 find_zone_movable_pfns_for_nodes(); 6814 6815 /* Print out the zone ranges */ 6816 pr_info("Zone ranges:\n"); 6817 for (i = 0; i < MAX_NR_ZONES; i++) { 6818 if (i == ZONE_MOVABLE) 6819 continue; 6820 pr_info(" %-8s ", zone_names[i]); 6821 if (arch_zone_lowest_possible_pfn[i] == 6822 arch_zone_highest_possible_pfn[i]) 6823 pr_cont("empty\n"); 6824 else 6825 pr_cont("[mem %#018Lx-%#018Lx]\n", 6826 (u64)arch_zone_lowest_possible_pfn[i] 6827 << PAGE_SHIFT, 6828 ((u64)arch_zone_highest_possible_pfn[i] 6829 << PAGE_SHIFT) - 1); 6830 } 6831 6832 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6833 pr_info("Movable zone start for each node\n"); 6834 for (i = 0; i < MAX_NUMNODES; i++) { 6835 if (zone_movable_pfn[i]) 6836 pr_info(" Node %d: %#018Lx\n", i, 6837 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6838 } 6839 6840 /* Print out the early node map */ 6841 pr_info("Early memory node ranges\n"); 6842 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6843 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6844 (u64)start_pfn << PAGE_SHIFT, 6845 ((u64)end_pfn << PAGE_SHIFT) - 1); 6846 6847 /* Initialise every node */ 6848 mminit_verify_pageflags_layout(); 6849 setup_nr_node_ids(); 6850 for_each_online_node(nid) { 6851 pg_data_t *pgdat = NODE_DATA(nid); 6852 free_area_init_node(nid, NULL, 6853 find_min_pfn_for_node(nid), NULL); 6854 6855 /* Any memory on that node */ 6856 if (pgdat->node_present_pages) 6857 node_set_state(nid, N_MEMORY); 6858 check_for_memory(pgdat, nid); 6859 } 6860 zero_resv_unavail(); 6861 } 6862 6863 static int __init cmdline_parse_core(char *p, unsigned long *core, 6864 unsigned long *percent) 6865 { 6866 unsigned long long coremem; 6867 char *endptr; 6868 6869 if (!p) 6870 return -EINVAL; 6871 6872 /* Value may be a percentage of total memory, otherwise bytes */ 6873 coremem = simple_strtoull(p, &endptr, 0); 6874 if (*endptr == '%') { 6875 /* Paranoid check for percent values greater than 100 */ 6876 WARN_ON(coremem > 100); 6877 6878 *percent = coremem; 6879 } else { 6880 coremem = memparse(p, &p); 6881 /* Paranoid check that UL is enough for the coremem value */ 6882 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6883 6884 *core = coremem >> PAGE_SHIFT; 6885 *percent = 0UL; 6886 } 6887 return 0; 6888 } 6889 6890 /* 6891 * kernelcore=size sets the amount of memory for use for allocations that 6892 * cannot be reclaimed or migrated. 6893 */ 6894 static int __init cmdline_parse_kernelcore(char *p) 6895 { 6896 /* parse kernelcore=mirror */ 6897 if (parse_option_str(p, "mirror")) { 6898 mirrored_kernelcore = true; 6899 return 0; 6900 } 6901 6902 return cmdline_parse_core(p, &required_kernelcore, 6903 &required_kernelcore_percent); 6904 } 6905 6906 /* 6907 * movablecore=size sets the amount of memory for use for allocations that 6908 * can be reclaimed or migrated. 6909 */ 6910 static int __init cmdline_parse_movablecore(char *p) 6911 { 6912 return cmdline_parse_core(p, &required_movablecore, 6913 &required_movablecore_percent); 6914 } 6915 6916 early_param("kernelcore", cmdline_parse_kernelcore); 6917 early_param("movablecore", cmdline_parse_movablecore); 6918 6919 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6920 6921 void adjust_managed_page_count(struct page *page, long count) 6922 { 6923 spin_lock(&managed_page_count_lock); 6924 page_zone(page)->managed_pages += count; 6925 totalram_pages += count; 6926 #ifdef CONFIG_HIGHMEM 6927 if (PageHighMem(page)) 6928 totalhigh_pages += count; 6929 #endif 6930 spin_unlock(&managed_page_count_lock); 6931 } 6932 EXPORT_SYMBOL(adjust_managed_page_count); 6933 6934 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6935 { 6936 void *pos; 6937 unsigned long pages = 0; 6938 6939 start = (void *)PAGE_ALIGN((unsigned long)start); 6940 end = (void *)((unsigned long)end & PAGE_MASK); 6941 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6942 if ((unsigned int)poison <= 0xFF) 6943 memset(pos, poison, PAGE_SIZE); 6944 free_reserved_page(virt_to_page(pos)); 6945 } 6946 6947 if (pages && s) 6948 pr_info("Freeing %s memory: %ldK\n", 6949 s, pages << (PAGE_SHIFT - 10)); 6950 6951 return pages; 6952 } 6953 EXPORT_SYMBOL(free_reserved_area); 6954 6955 #ifdef CONFIG_HIGHMEM 6956 void free_highmem_page(struct page *page) 6957 { 6958 __free_reserved_page(page); 6959 totalram_pages++; 6960 page_zone(page)->managed_pages++; 6961 totalhigh_pages++; 6962 } 6963 #endif 6964 6965 6966 void __init mem_init_print_info(const char *str) 6967 { 6968 unsigned long physpages, codesize, datasize, rosize, bss_size; 6969 unsigned long init_code_size, init_data_size; 6970 6971 physpages = get_num_physpages(); 6972 codesize = _etext - _stext; 6973 datasize = _edata - _sdata; 6974 rosize = __end_rodata - __start_rodata; 6975 bss_size = __bss_stop - __bss_start; 6976 init_data_size = __init_end - __init_begin; 6977 init_code_size = _einittext - _sinittext; 6978 6979 /* 6980 * Detect special cases and adjust section sizes accordingly: 6981 * 1) .init.* may be embedded into .data sections 6982 * 2) .init.text.* may be out of [__init_begin, __init_end], 6983 * please refer to arch/tile/kernel/vmlinux.lds.S. 6984 * 3) .rodata.* may be embedded into .text or .data sections. 6985 */ 6986 #define adj_init_size(start, end, size, pos, adj) \ 6987 do { \ 6988 if (start <= pos && pos < end && size > adj) \ 6989 size -= adj; \ 6990 } while (0) 6991 6992 adj_init_size(__init_begin, __init_end, init_data_size, 6993 _sinittext, init_code_size); 6994 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6995 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6996 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6997 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6998 6999 #undef adj_init_size 7000 7001 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7002 #ifdef CONFIG_HIGHMEM 7003 ", %luK highmem" 7004 #endif 7005 "%s%s)\n", 7006 nr_free_pages() << (PAGE_SHIFT - 10), 7007 physpages << (PAGE_SHIFT - 10), 7008 codesize >> 10, datasize >> 10, rosize >> 10, 7009 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7010 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 7011 totalcma_pages << (PAGE_SHIFT - 10), 7012 #ifdef CONFIG_HIGHMEM 7013 totalhigh_pages << (PAGE_SHIFT - 10), 7014 #endif 7015 str ? ", " : "", str ? str : ""); 7016 } 7017 7018 /** 7019 * set_dma_reserve - set the specified number of pages reserved in the first zone 7020 * @new_dma_reserve: The number of pages to mark reserved 7021 * 7022 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7023 * In the DMA zone, a significant percentage may be consumed by kernel image 7024 * and other unfreeable allocations which can skew the watermarks badly. This 7025 * function may optionally be used to account for unfreeable pages in the 7026 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7027 * smaller per-cpu batchsize. 7028 */ 7029 void __init set_dma_reserve(unsigned long new_dma_reserve) 7030 { 7031 dma_reserve = new_dma_reserve; 7032 } 7033 7034 void __init free_area_init(unsigned long *zones_size) 7035 { 7036 free_area_init_node(0, zones_size, 7037 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7038 zero_resv_unavail(); 7039 } 7040 7041 static int page_alloc_cpu_dead(unsigned int cpu) 7042 { 7043 7044 lru_add_drain_cpu(cpu); 7045 drain_pages(cpu); 7046 7047 /* 7048 * Spill the event counters of the dead processor 7049 * into the current processors event counters. 7050 * This artificially elevates the count of the current 7051 * processor. 7052 */ 7053 vm_events_fold_cpu(cpu); 7054 7055 /* 7056 * Zero the differential counters of the dead processor 7057 * so that the vm statistics are consistent. 7058 * 7059 * This is only okay since the processor is dead and cannot 7060 * race with what we are doing. 7061 */ 7062 cpu_vm_stats_fold(cpu); 7063 return 0; 7064 } 7065 7066 void __init page_alloc_init(void) 7067 { 7068 int ret; 7069 7070 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7071 "mm/page_alloc:dead", NULL, 7072 page_alloc_cpu_dead); 7073 WARN_ON(ret < 0); 7074 } 7075 7076 /* 7077 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7078 * or min_free_kbytes changes. 7079 */ 7080 static void calculate_totalreserve_pages(void) 7081 { 7082 struct pglist_data *pgdat; 7083 unsigned long reserve_pages = 0; 7084 enum zone_type i, j; 7085 7086 for_each_online_pgdat(pgdat) { 7087 7088 pgdat->totalreserve_pages = 0; 7089 7090 for (i = 0; i < MAX_NR_ZONES; i++) { 7091 struct zone *zone = pgdat->node_zones + i; 7092 long max = 0; 7093 7094 /* Find valid and maximum lowmem_reserve in the zone */ 7095 for (j = i; j < MAX_NR_ZONES; j++) { 7096 if (zone->lowmem_reserve[j] > max) 7097 max = zone->lowmem_reserve[j]; 7098 } 7099 7100 /* we treat the high watermark as reserved pages. */ 7101 max += high_wmark_pages(zone); 7102 7103 if (max > zone->managed_pages) 7104 max = zone->managed_pages; 7105 7106 pgdat->totalreserve_pages += max; 7107 7108 reserve_pages += max; 7109 } 7110 } 7111 totalreserve_pages = reserve_pages; 7112 } 7113 7114 /* 7115 * setup_per_zone_lowmem_reserve - called whenever 7116 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7117 * has a correct pages reserved value, so an adequate number of 7118 * pages are left in the zone after a successful __alloc_pages(). 7119 */ 7120 static void setup_per_zone_lowmem_reserve(void) 7121 { 7122 struct pglist_data *pgdat; 7123 enum zone_type j, idx; 7124 7125 for_each_online_pgdat(pgdat) { 7126 for (j = 0; j < MAX_NR_ZONES; j++) { 7127 struct zone *zone = pgdat->node_zones + j; 7128 unsigned long managed_pages = zone->managed_pages; 7129 7130 zone->lowmem_reserve[j] = 0; 7131 7132 idx = j; 7133 while (idx) { 7134 struct zone *lower_zone; 7135 7136 idx--; 7137 lower_zone = pgdat->node_zones + idx; 7138 7139 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7140 sysctl_lowmem_reserve_ratio[idx] = 0; 7141 lower_zone->lowmem_reserve[j] = 0; 7142 } else { 7143 lower_zone->lowmem_reserve[j] = 7144 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7145 } 7146 managed_pages += lower_zone->managed_pages; 7147 } 7148 } 7149 } 7150 7151 /* update totalreserve_pages */ 7152 calculate_totalreserve_pages(); 7153 } 7154 7155 static void __setup_per_zone_wmarks(void) 7156 { 7157 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7158 unsigned long lowmem_pages = 0; 7159 struct zone *zone; 7160 unsigned long flags; 7161 7162 /* Calculate total number of !ZONE_HIGHMEM pages */ 7163 for_each_zone(zone) { 7164 if (!is_highmem(zone)) 7165 lowmem_pages += zone->managed_pages; 7166 } 7167 7168 for_each_zone(zone) { 7169 u64 tmp; 7170 7171 spin_lock_irqsave(&zone->lock, flags); 7172 tmp = (u64)pages_min * zone->managed_pages; 7173 do_div(tmp, lowmem_pages); 7174 if (is_highmem(zone)) { 7175 /* 7176 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7177 * need highmem pages, so cap pages_min to a small 7178 * value here. 7179 * 7180 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7181 * deltas control asynch page reclaim, and so should 7182 * not be capped for highmem. 7183 */ 7184 unsigned long min_pages; 7185 7186 min_pages = zone->managed_pages / 1024; 7187 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7188 zone->watermark[WMARK_MIN] = min_pages; 7189 } else { 7190 /* 7191 * If it's a lowmem zone, reserve a number of pages 7192 * proportionate to the zone's size. 7193 */ 7194 zone->watermark[WMARK_MIN] = tmp; 7195 } 7196 7197 /* 7198 * Set the kswapd watermarks distance according to the 7199 * scale factor in proportion to available memory, but 7200 * ensure a minimum size on small systems. 7201 */ 7202 tmp = max_t(u64, tmp >> 2, 7203 mult_frac(zone->managed_pages, 7204 watermark_scale_factor, 10000)); 7205 7206 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7207 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7208 7209 spin_unlock_irqrestore(&zone->lock, flags); 7210 } 7211 7212 /* update totalreserve_pages */ 7213 calculate_totalreserve_pages(); 7214 } 7215 7216 /** 7217 * setup_per_zone_wmarks - called when min_free_kbytes changes 7218 * or when memory is hot-{added|removed} 7219 * 7220 * Ensures that the watermark[min,low,high] values for each zone are set 7221 * correctly with respect to min_free_kbytes. 7222 */ 7223 void setup_per_zone_wmarks(void) 7224 { 7225 static DEFINE_SPINLOCK(lock); 7226 7227 spin_lock(&lock); 7228 __setup_per_zone_wmarks(); 7229 spin_unlock(&lock); 7230 } 7231 7232 /* 7233 * Initialise min_free_kbytes. 7234 * 7235 * For small machines we want it small (128k min). For large machines 7236 * we want it large (64MB max). But it is not linear, because network 7237 * bandwidth does not increase linearly with machine size. We use 7238 * 7239 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7240 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7241 * 7242 * which yields 7243 * 7244 * 16MB: 512k 7245 * 32MB: 724k 7246 * 64MB: 1024k 7247 * 128MB: 1448k 7248 * 256MB: 2048k 7249 * 512MB: 2896k 7250 * 1024MB: 4096k 7251 * 2048MB: 5792k 7252 * 4096MB: 8192k 7253 * 8192MB: 11584k 7254 * 16384MB: 16384k 7255 */ 7256 int __meminit init_per_zone_wmark_min(void) 7257 { 7258 unsigned long lowmem_kbytes; 7259 int new_min_free_kbytes; 7260 7261 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7262 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7263 7264 if (new_min_free_kbytes > user_min_free_kbytes) { 7265 min_free_kbytes = new_min_free_kbytes; 7266 if (min_free_kbytes < 128) 7267 min_free_kbytes = 128; 7268 if (min_free_kbytes > 65536) 7269 min_free_kbytes = 65536; 7270 } else { 7271 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7272 new_min_free_kbytes, user_min_free_kbytes); 7273 } 7274 setup_per_zone_wmarks(); 7275 refresh_zone_stat_thresholds(); 7276 setup_per_zone_lowmem_reserve(); 7277 7278 #ifdef CONFIG_NUMA 7279 setup_min_unmapped_ratio(); 7280 setup_min_slab_ratio(); 7281 #endif 7282 7283 return 0; 7284 } 7285 core_initcall(init_per_zone_wmark_min) 7286 7287 /* 7288 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7289 * that we can call two helper functions whenever min_free_kbytes 7290 * changes. 7291 */ 7292 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7293 void __user *buffer, size_t *length, loff_t *ppos) 7294 { 7295 int rc; 7296 7297 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7298 if (rc) 7299 return rc; 7300 7301 if (write) { 7302 user_min_free_kbytes = min_free_kbytes; 7303 setup_per_zone_wmarks(); 7304 } 7305 return 0; 7306 } 7307 7308 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7309 void __user *buffer, size_t *length, loff_t *ppos) 7310 { 7311 int rc; 7312 7313 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7314 if (rc) 7315 return rc; 7316 7317 if (write) 7318 setup_per_zone_wmarks(); 7319 7320 return 0; 7321 } 7322 7323 #ifdef CONFIG_NUMA 7324 static void setup_min_unmapped_ratio(void) 7325 { 7326 pg_data_t *pgdat; 7327 struct zone *zone; 7328 7329 for_each_online_pgdat(pgdat) 7330 pgdat->min_unmapped_pages = 0; 7331 7332 for_each_zone(zone) 7333 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7334 sysctl_min_unmapped_ratio) / 100; 7335 } 7336 7337 7338 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7339 void __user *buffer, size_t *length, loff_t *ppos) 7340 { 7341 int rc; 7342 7343 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7344 if (rc) 7345 return rc; 7346 7347 setup_min_unmapped_ratio(); 7348 7349 return 0; 7350 } 7351 7352 static void setup_min_slab_ratio(void) 7353 { 7354 pg_data_t *pgdat; 7355 struct zone *zone; 7356 7357 for_each_online_pgdat(pgdat) 7358 pgdat->min_slab_pages = 0; 7359 7360 for_each_zone(zone) 7361 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7362 sysctl_min_slab_ratio) / 100; 7363 } 7364 7365 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7366 void __user *buffer, size_t *length, loff_t *ppos) 7367 { 7368 int rc; 7369 7370 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7371 if (rc) 7372 return rc; 7373 7374 setup_min_slab_ratio(); 7375 7376 return 0; 7377 } 7378 #endif 7379 7380 /* 7381 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7382 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7383 * whenever sysctl_lowmem_reserve_ratio changes. 7384 * 7385 * The reserve ratio obviously has absolutely no relation with the 7386 * minimum watermarks. The lowmem reserve ratio can only make sense 7387 * if in function of the boot time zone sizes. 7388 */ 7389 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7390 void __user *buffer, size_t *length, loff_t *ppos) 7391 { 7392 proc_dointvec_minmax(table, write, buffer, length, ppos); 7393 setup_per_zone_lowmem_reserve(); 7394 return 0; 7395 } 7396 7397 /* 7398 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7399 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7400 * pagelist can have before it gets flushed back to buddy allocator. 7401 */ 7402 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7403 void __user *buffer, size_t *length, loff_t *ppos) 7404 { 7405 struct zone *zone; 7406 int old_percpu_pagelist_fraction; 7407 int ret; 7408 7409 mutex_lock(&pcp_batch_high_lock); 7410 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7411 7412 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7413 if (!write || ret < 0) 7414 goto out; 7415 7416 /* Sanity checking to avoid pcp imbalance */ 7417 if (percpu_pagelist_fraction && 7418 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7419 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7420 ret = -EINVAL; 7421 goto out; 7422 } 7423 7424 /* No change? */ 7425 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7426 goto out; 7427 7428 for_each_populated_zone(zone) { 7429 unsigned int cpu; 7430 7431 for_each_possible_cpu(cpu) 7432 pageset_set_high_and_batch(zone, 7433 per_cpu_ptr(zone->pageset, cpu)); 7434 } 7435 out: 7436 mutex_unlock(&pcp_batch_high_lock); 7437 return ret; 7438 } 7439 7440 #ifdef CONFIG_NUMA 7441 int hashdist = HASHDIST_DEFAULT; 7442 7443 static int __init set_hashdist(char *str) 7444 { 7445 if (!str) 7446 return 0; 7447 hashdist = simple_strtoul(str, &str, 0); 7448 return 1; 7449 } 7450 __setup("hashdist=", set_hashdist); 7451 #endif 7452 7453 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7454 /* 7455 * Returns the number of pages that arch has reserved but 7456 * is not known to alloc_large_system_hash(). 7457 */ 7458 static unsigned long __init arch_reserved_kernel_pages(void) 7459 { 7460 return 0; 7461 } 7462 #endif 7463 7464 /* 7465 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7466 * machines. As memory size is increased the scale is also increased but at 7467 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7468 * quadruples the scale is increased by one, which means the size of hash table 7469 * only doubles, instead of quadrupling as well. 7470 * Because 32-bit systems cannot have large physical memory, where this scaling 7471 * makes sense, it is disabled on such platforms. 7472 */ 7473 #if __BITS_PER_LONG > 32 7474 #define ADAPT_SCALE_BASE (64ul << 30) 7475 #define ADAPT_SCALE_SHIFT 2 7476 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7477 #endif 7478 7479 /* 7480 * allocate a large system hash table from bootmem 7481 * - it is assumed that the hash table must contain an exact power-of-2 7482 * quantity of entries 7483 * - limit is the number of hash buckets, not the total allocation size 7484 */ 7485 void *__init alloc_large_system_hash(const char *tablename, 7486 unsigned long bucketsize, 7487 unsigned long numentries, 7488 int scale, 7489 int flags, 7490 unsigned int *_hash_shift, 7491 unsigned int *_hash_mask, 7492 unsigned long low_limit, 7493 unsigned long high_limit) 7494 { 7495 unsigned long long max = high_limit; 7496 unsigned long log2qty, size; 7497 void *table = NULL; 7498 gfp_t gfp_flags; 7499 7500 /* allow the kernel cmdline to have a say */ 7501 if (!numentries) { 7502 /* round applicable memory size up to nearest megabyte */ 7503 numentries = nr_kernel_pages; 7504 numentries -= arch_reserved_kernel_pages(); 7505 7506 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7507 if (PAGE_SHIFT < 20) 7508 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7509 7510 #if __BITS_PER_LONG > 32 7511 if (!high_limit) { 7512 unsigned long adapt; 7513 7514 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7515 adapt <<= ADAPT_SCALE_SHIFT) 7516 scale++; 7517 } 7518 #endif 7519 7520 /* limit to 1 bucket per 2^scale bytes of low memory */ 7521 if (scale > PAGE_SHIFT) 7522 numentries >>= (scale - PAGE_SHIFT); 7523 else 7524 numentries <<= (PAGE_SHIFT - scale); 7525 7526 /* Make sure we've got at least a 0-order allocation.. */ 7527 if (unlikely(flags & HASH_SMALL)) { 7528 /* Makes no sense without HASH_EARLY */ 7529 WARN_ON(!(flags & HASH_EARLY)); 7530 if (!(numentries >> *_hash_shift)) { 7531 numentries = 1UL << *_hash_shift; 7532 BUG_ON(!numentries); 7533 } 7534 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7535 numentries = PAGE_SIZE / bucketsize; 7536 } 7537 numentries = roundup_pow_of_two(numentries); 7538 7539 /* limit allocation size to 1/16 total memory by default */ 7540 if (max == 0) { 7541 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7542 do_div(max, bucketsize); 7543 } 7544 max = min(max, 0x80000000ULL); 7545 7546 if (numentries < low_limit) 7547 numentries = low_limit; 7548 if (numentries > max) 7549 numentries = max; 7550 7551 log2qty = ilog2(numentries); 7552 7553 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7554 do { 7555 size = bucketsize << log2qty; 7556 if (flags & HASH_EARLY) { 7557 if (flags & HASH_ZERO) 7558 table = memblock_virt_alloc_nopanic(size, 0); 7559 else 7560 table = memblock_virt_alloc_raw(size, 0); 7561 } else if (hashdist) { 7562 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7563 } else { 7564 /* 7565 * If bucketsize is not a power-of-two, we may free 7566 * some pages at the end of hash table which 7567 * alloc_pages_exact() automatically does 7568 */ 7569 if (get_order(size) < MAX_ORDER) { 7570 table = alloc_pages_exact(size, gfp_flags); 7571 kmemleak_alloc(table, size, 1, gfp_flags); 7572 } 7573 } 7574 } while (!table && size > PAGE_SIZE && --log2qty); 7575 7576 if (!table) 7577 panic("Failed to allocate %s hash table\n", tablename); 7578 7579 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7580 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7581 7582 if (_hash_shift) 7583 *_hash_shift = log2qty; 7584 if (_hash_mask) 7585 *_hash_mask = (1 << log2qty) - 1; 7586 7587 return table; 7588 } 7589 7590 /* 7591 * This function checks whether pageblock includes unmovable pages or not. 7592 * If @count is not zero, it is okay to include less @count unmovable pages 7593 * 7594 * PageLRU check without isolation or lru_lock could race so that 7595 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7596 * check without lock_page also may miss some movable non-lru pages at 7597 * race condition. So you can't expect this function should be exact. 7598 */ 7599 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7600 int migratetype, 7601 bool skip_hwpoisoned_pages) 7602 { 7603 unsigned long pfn, iter, found; 7604 7605 /* 7606 * TODO we could make this much more efficient by not checking every 7607 * page in the range if we know all of them are in MOVABLE_ZONE and 7608 * that the movable zone guarantees that pages are migratable but 7609 * the later is not the case right now unfortunatelly. E.g. movablecore 7610 * can still lead to having bootmem allocations in zone_movable. 7611 */ 7612 7613 /* 7614 * CMA allocations (alloc_contig_range) really need to mark isolate 7615 * CMA pageblocks even when they are not movable in fact so consider 7616 * them movable here. 7617 */ 7618 if (is_migrate_cma(migratetype) && 7619 is_migrate_cma(get_pageblock_migratetype(page))) 7620 return false; 7621 7622 pfn = page_to_pfn(page); 7623 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7624 unsigned long check = pfn + iter; 7625 7626 if (!pfn_valid_within(check)) 7627 continue; 7628 7629 page = pfn_to_page(check); 7630 7631 if (PageReserved(page)) 7632 goto unmovable; 7633 7634 /* 7635 * Hugepages are not in LRU lists, but they're movable. 7636 * We need not scan over tail pages bacause we don't 7637 * handle each tail page individually in migration. 7638 */ 7639 if (PageHuge(page)) { 7640 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7641 continue; 7642 } 7643 7644 /* 7645 * We can't use page_count without pin a page 7646 * because another CPU can free compound page. 7647 * This check already skips compound tails of THP 7648 * because their page->_refcount is zero at all time. 7649 */ 7650 if (!page_ref_count(page)) { 7651 if (PageBuddy(page)) 7652 iter += (1 << page_order(page)) - 1; 7653 continue; 7654 } 7655 7656 /* 7657 * The HWPoisoned page may be not in buddy system, and 7658 * page_count() is not 0. 7659 */ 7660 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7661 continue; 7662 7663 if (__PageMovable(page)) 7664 continue; 7665 7666 if (!PageLRU(page)) 7667 found++; 7668 /* 7669 * If there are RECLAIMABLE pages, we need to check 7670 * it. But now, memory offline itself doesn't call 7671 * shrink_node_slabs() and it still to be fixed. 7672 */ 7673 /* 7674 * If the page is not RAM, page_count()should be 0. 7675 * we don't need more check. This is an _used_ not-movable page. 7676 * 7677 * The problematic thing here is PG_reserved pages. PG_reserved 7678 * is set to both of a memory hole page and a _used_ kernel 7679 * page at boot. 7680 */ 7681 if (found > count) 7682 goto unmovable; 7683 } 7684 return false; 7685 unmovable: 7686 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 7687 return true; 7688 } 7689 7690 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7691 7692 static unsigned long pfn_max_align_down(unsigned long pfn) 7693 { 7694 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7695 pageblock_nr_pages) - 1); 7696 } 7697 7698 static unsigned long pfn_max_align_up(unsigned long pfn) 7699 { 7700 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7701 pageblock_nr_pages)); 7702 } 7703 7704 /* [start, end) must belong to a single zone. */ 7705 static int __alloc_contig_migrate_range(struct compact_control *cc, 7706 unsigned long start, unsigned long end) 7707 { 7708 /* This function is based on compact_zone() from compaction.c. */ 7709 unsigned long nr_reclaimed; 7710 unsigned long pfn = start; 7711 unsigned int tries = 0; 7712 int ret = 0; 7713 7714 migrate_prep(); 7715 7716 while (pfn < end || !list_empty(&cc->migratepages)) { 7717 if (fatal_signal_pending(current)) { 7718 ret = -EINTR; 7719 break; 7720 } 7721 7722 if (list_empty(&cc->migratepages)) { 7723 cc->nr_migratepages = 0; 7724 pfn = isolate_migratepages_range(cc, pfn, end); 7725 if (!pfn) { 7726 ret = -EINTR; 7727 break; 7728 } 7729 tries = 0; 7730 } else if (++tries == 5) { 7731 ret = ret < 0 ? ret : -EBUSY; 7732 break; 7733 } 7734 7735 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7736 &cc->migratepages); 7737 cc->nr_migratepages -= nr_reclaimed; 7738 7739 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7740 NULL, 0, cc->mode, MR_CONTIG_RANGE); 7741 } 7742 if (ret < 0) { 7743 putback_movable_pages(&cc->migratepages); 7744 return ret; 7745 } 7746 return 0; 7747 } 7748 7749 /** 7750 * alloc_contig_range() -- tries to allocate given range of pages 7751 * @start: start PFN to allocate 7752 * @end: one-past-the-last PFN to allocate 7753 * @migratetype: migratetype of the underlaying pageblocks (either 7754 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7755 * in range must have the same migratetype and it must 7756 * be either of the two. 7757 * @gfp_mask: GFP mask to use during compaction 7758 * 7759 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7760 * aligned. The PFN range must belong to a single zone. 7761 * 7762 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 7763 * pageblocks in the range. Once isolated, the pageblocks should not 7764 * be modified by others. 7765 * 7766 * Returns zero on success or negative error code. On success all 7767 * pages which PFN is in [start, end) are allocated for the caller and 7768 * need to be freed with free_contig_range(). 7769 */ 7770 int alloc_contig_range(unsigned long start, unsigned long end, 7771 unsigned migratetype, gfp_t gfp_mask) 7772 { 7773 unsigned long outer_start, outer_end; 7774 unsigned int order; 7775 int ret = 0; 7776 7777 struct compact_control cc = { 7778 .nr_migratepages = 0, 7779 .order = -1, 7780 .zone = page_zone(pfn_to_page(start)), 7781 .mode = MIGRATE_SYNC, 7782 .ignore_skip_hint = true, 7783 .no_set_skip_hint = true, 7784 .gfp_mask = current_gfp_context(gfp_mask), 7785 }; 7786 INIT_LIST_HEAD(&cc.migratepages); 7787 7788 /* 7789 * What we do here is we mark all pageblocks in range as 7790 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7791 * have different sizes, and due to the way page allocator 7792 * work, we align the range to biggest of the two pages so 7793 * that page allocator won't try to merge buddies from 7794 * different pageblocks and change MIGRATE_ISOLATE to some 7795 * other migration type. 7796 * 7797 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7798 * migrate the pages from an unaligned range (ie. pages that 7799 * we are interested in). This will put all the pages in 7800 * range back to page allocator as MIGRATE_ISOLATE. 7801 * 7802 * When this is done, we take the pages in range from page 7803 * allocator removing them from the buddy system. This way 7804 * page allocator will never consider using them. 7805 * 7806 * This lets us mark the pageblocks back as 7807 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7808 * aligned range but not in the unaligned, original range are 7809 * put back to page allocator so that buddy can use them. 7810 */ 7811 7812 ret = start_isolate_page_range(pfn_max_align_down(start), 7813 pfn_max_align_up(end), migratetype, 7814 false); 7815 if (ret) 7816 return ret; 7817 7818 /* 7819 * In case of -EBUSY, we'd like to know which page causes problem. 7820 * So, just fall through. test_pages_isolated() has a tracepoint 7821 * which will report the busy page. 7822 * 7823 * It is possible that busy pages could become available before 7824 * the call to test_pages_isolated, and the range will actually be 7825 * allocated. So, if we fall through be sure to clear ret so that 7826 * -EBUSY is not accidentally used or returned to caller. 7827 */ 7828 ret = __alloc_contig_migrate_range(&cc, start, end); 7829 if (ret && ret != -EBUSY) 7830 goto done; 7831 ret =0; 7832 7833 /* 7834 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7835 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7836 * more, all pages in [start, end) are free in page allocator. 7837 * What we are going to do is to allocate all pages from 7838 * [start, end) (that is remove them from page allocator). 7839 * 7840 * The only problem is that pages at the beginning and at the 7841 * end of interesting range may be not aligned with pages that 7842 * page allocator holds, ie. they can be part of higher order 7843 * pages. Because of this, we reserve the bigger range and 7844 * once this is done free the pages we are not interested in. 7845 * 7846 * We don't have to hold zone->lock here because the pages are 7847 * isolated thus they won't get removed from buddy. 7848 */ 7849 7850 lru_add_drain_all(); 7851 drain_all_pages(cc.zone); 7852 7853 order = 0; 7854 outer_start = start; 7855 while (!PageBuddy(pfn_to_page(outer_start))) { 7856 if (++order >= MAX_ORDER) { 7857 outer_start = start; 7858 break; 7859 } 7860 outer_start &= ~0UL << order; 7861 } 7862 7863 if (outer_start != start) { 7864 order = page_order(pfn_to_page(outer_start)); 7865 7866 /* 7867 * outer_start page could be small order buddy page and 7868 * it doesn't include start page. Adjust outer_start 7869 * in this case to report failed page properly 7870 * on tracepoint in test_pages_isolated() 7871 */ 7872 if (outer_start + (1UL << order) <= start) 7873 outer_start = start; 7874 } 7875 7876 /* Make sure the range is really isolated. */ 7877 if (test_pages_isolated(outer_start, end, false)) { 7878 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7879 __func__, outer_start, end); 7880 ret = -EBUSY; 7881 goto done; 7882 } 7883 7884 /* Grab isolated pages from freelists. */ 7885 outer_end = isolate_freepages_range(&cc, outer_start, end); 7886 if (!outer_end) { 7887 ret = -EBUSY; 7888 goto done; 7889 } 7890 7891 /* Free head and tail (if any) */ 7892 if (start != outer_start) 7893 free_contig_range(outer_start, start - outer_start); 7894 if (end != outer_end) 7895 free_contig_range(end, outer_end - end); 7896 7897 done: 7898 undo_isolate_page_range(pfn_max_align_down(start), 7899 pfn_max_align_up(end), migratetype); 7900 return ret; 7901 } 7902 7903 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7904 { 7905 unsigned int count = 0; 7906 7907 for (; nr_pages--; pfn++) { 7908 struct page *page = pfn_to_page(pfn); 7909 7910 count += page_count(page) != 1; 7911 __free_page(page); 7912 } 7913 WARN(count != 0, "%d pages are still in use!\n", count); 7914 } 7915 #endif 7916 7917 #ifdef CONFIG_MEMORY_HOTPLUG 7918 /* 7919 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7920 * page high values need to be recalulated. 7921 */ 7922 void __meminit zone_pcp_update(struct zone *zone) 7923 { 7924 unsigned cpu; 7925 mutex_lock(&pcp_batch_high_lock); 7926 for_each_possible_cpu(cpu) 7927 pageset_set_high_and_batch(zone, 7928 per_cpu_ptr(zone->pageset, cpu)); 7929 mutex_unlock(&pcp_batch_high_lock); 7930 } 7931 #endif 7932 7933 void zone_pcp_reset(struct zone *zone) 7934 { 7935 unsigned long flags; 7936 int cpu; 7937 struct per_cpu_pageset *pset; 7938 7939 /* avoid races with drain_pages() */ 7940 local_irq_save(flags); 7941 if (zone->pageset != &boot_pageset) { 7942 for_each_online_cpu(cpu) { 7943 pset = per_cpu_ptr(zone->pageset, cpu); 7944 drain_zonestat(zone, pset); 7945 } 7946 free_percpu(zone->pageset); 7947 zone->pageset = &boot_pageset; 7948 } 7949 local_irq_restore(flags); 7950 } 7951 7952 #ifdef CONFIG_MEMORY_HOTREMOVE 7953 /* 7954 * All pages in the range must be in a single zone and isolated 7955 * before calling this. 7956 */ 7957 void 7958 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7959 { 7960 struct page *page; 7961 struct zone *zone; 7962 unsigned int order, i; 7963 unsigned long pfn; 7964 unsigned long flags; 7965 /* find the first valid pfn */ 7966 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7967 if (pfn_valid(pfn)) 7968 break; 7969 if (pfn == end_pfn) 7970 return; 7971 offline_mem_sections(pfn, end_pfn); 7972 zone = page_zone(pfn_to_page(pfn)); 7973 spin_lock_irqsave(&zone->lock, flags); 7974 pfn = start_pfn; 7975 while (pfn < end_pfn) { 7976 if (!pfn_valid(pfn)) { 7977 pfn++; 7978 continue; 7979 } 7980 page = pfn_to_page(pfn); 7981 /* 7982 * The HWPoisoned page may be not in buddy system, and 7983 * page_count() is not 0. 7984 */ 7985 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7986 pfn++; 7987 SetPageReserved(page); 7988 continue; 7989 } 7990 7991 BUG_ON(page_count(page)); 7992 BUG_ON(!PageBuddy(page)); 7993 order = page_order(page); 7994 #ifdef CONFIG_DEBUG_VM 7995 pr_info("remove from free list %lx %d %lx\n", 7996 pfn, 1 << order, end_pfn); 7997 #endif 7998 list_del(&page->lru); 7999 rmv_page_order(page); 8000 zone->free_area[order].nr_free--; 8001 for (i = 0; i < (1 << order); i++) 8002 SetPageReserved((page+i)); 8003 pfn += (1 << order); 8004 } 8005 spin_unlock_irqrestore(&zone->lock, flags); 8006 } 8007 #endif 8008 8009 bool is_free_buddy_page(struct page *page) 8010 { 8011 struct zone *zone = page_zone(page); 8012 unsigned long pfn = page_to_pfn(page); 8013 unsigned long flags; 8014 unsigned int order; 8015 8016 spin_lock_irqsave(&zone->lock, flags); 8017 for (order = 0; order < MAX_ORDER; order++) { 8018 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8019 8020 if (PageBuddy(page_head) && page_order(page_head) >= order) 8021 break; 8022 } 8023 spin_unlock_irqrestore(&zone->lock, flags); 8024 8025 return order < MAX_ORDER; 8026 } 8027