1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page-debug-flags.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 74 DEFINE_PER_CPU(int, numa_node); 75 EXPORT_PER_CPU_SYMBOL(numa_node); 76 #endif 77 78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 79 /* 80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 83 * defined in <linux/topology.h>. 84 */ 85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 86 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 87 #endif 88 89 /* 90 * Array of node states. 91 */ 92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 93 [N_POSSIBLE] = NODE_MASK_ALL, 94 [N_ONLINE] = { { [0] = 1UL } }, 95 #ifndef CONFIG_NUMA 96 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 97 #ifdef CONFIG_HIGHMEM 98 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 99 #endif 100 #ifdef CONFIG_MOVABLE_NODE 101 [N_MEMORY] = { { [0] = 1UL } }, 102 #endif 103 [N_CPU] = { { [0] = 1UL } }, 104 #endif /* NUMA */ 105 }; 106 EXPORT_SYMBOL(node_states); 107 108 /* Protect totalram_pages and zone->managed_pages */ 109 static DEFINE_SPINLOCK(managed_page_count_lock); 110 111 unsigned long totalram_pages __read_mostly; 112 unsigned long totalreserve_pages __read_mostly; 113 /* 114 * When calculating the number of globally allowed dirty pages, there 115 * is a certain number of per-zone reserves that should not be 116 * considered dirtyable memory. This is the sum of those reserves 117 * over all existing zones that contribute dirtyable memory. 118 */ 119 unsigned long dirty_balance_reserve __read_mostly; 120 121 int percpu_pagelist_fraction; 122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 123 124 #ifdef CONFIG_PM_SLEEP 125 /* 126 * The following functions are used by the suspend/hibernate code to temporarily 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 128 * while devices are suspended. To avoid races with the suspend/hibernate code, 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is 131 * guaranteed not to run in parallel with that modification). 132 */ 133 134 static gfp_t saved_gfp_mask; 135 136 void pm_restore_gfp_mask(void) 137 { 138 WARN_ON(!mutex_is_locked(&pm_mutex)); 139 if (saved_gfp_mask) { 140 gfp_allowed_mask = saved_gfp_mask; 141 saved_gfp_mask = 0; 142 } 143 } 144 145 void pm_restrict_gfp_mask(void) 146 { 147 WARN_ON(!mutex_is_locked(&pm_mutex)); 148 WARN_ON(saved_gfp_mask); 149 saved_gfp_mask = gfp_allowed_mask; 150 gfp_allowed_mask &= ~GFP_IOFS; 151 } 152 153 bool pm_suspended_storage(void) 154 { 155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 156 return false; 157 return true; 158 } 159 #endif /* CONFIG_PM_SLEEP */ 160 161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 162 int pageblock_order __read_mostly; 163 #endif 164 165 static void __free_pages_ok(struct page *page, unsigned int order); 166 167 /* 168 * results with 256, 32 in the lowmem_reserve sysctl: 169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 170 * 1G machine -> (16M dma, 784M normal, 224M high) 171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 174 * 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally 176 * don't need any ZONE_NORMAL reservation 177 */ 178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 179 #ifdef CONFIG_ZONE_DMA 180 256, 181 #endif 182 #ifdef CONFIG_ZONE_DMA32 183 256, 184 #endif 185 #ifdef CONFIG_HIGHMEM 186 32, 187 #endif 188 32, 189 }; 190 191 EXPORT_SYMBOL(totalram_pages); 192 193 static char * const zone_names[MAX_NR_ZONES] = { 194 #ifdef CONFIG_ZONE_DMA 195 "DMA", 196 #endif 197 #ifdef CONFIG_ZONE_DMA32 198 "DMA32", 199 #endif 200 "Normal", 201 #ifdef CONFIG_HIGHMEM 202 "HighMem", 203 #endif 204 "Movable", 205 }; 206 207 int min_free_kbytes = 1024; 208 int user_min_free_kbytes; 209 210 static unsigned long __meminitdata nr_kernel_pages; 211 static unsigned long __meminitdata nr_all_pages; 212 static unsigned long __meminitdata dma_reserve; 213 214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __initdata required_kernelcore; 218 static unsigned long __initdata required_movablecore; 219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 220 221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 222 int movable_zone; 223 EXPORT_SYMBOL(movable_zone); 224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 225 226 #if MAX_NUMNODES > 1 227 int nr_node_ids __read_mostly = MAX_NUMNODES; 228 int nr_online_nodes __read_mostly = 1; 229 EXPORT_SYMBOL(nr_node_ids); 230 EXPORT_SYMBOL(nr_online_nodes); 231 #endif 232 233 int page_group_by_mobility_disabled __read_mostly; 234 235 void set_pageblock_migratetype(struct page *page, int migratetype) 236 { 237 if (unlikely(page_group_by_mobility_disabled && 238 migratetype < MIGRATE_PCPTYPES)) 239 migratetype = MIGRATE_UNMOVABLE; 240 241 set_pageblock_flags_group(page, (unsigned long)migratetype, 242 PB_migrate, PB_migrate_end); 243 } 244 245 bool oom_killer_disabled __read_mostly; 246 247 #ifdef CONFIG_DEBUG_VM 248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 249 { 250 int ret = 0; 251 unsigned seq; 252 unsigned long pfn = page_to_pfn(page); 253 unsigned long sp, start_pfn; 254 255 do { 256 seq = zone_span_seqbegin(zone); 257 start_pfn = zone->zone_start_pfn; 258 sp = zone->spanned_pages; 259 if (!zone_spans_pfn(zone, pfn)) 260 ret = 1; 261 } while (zone_span_seqretry(zone, seq)); 262 263 if (ret) 264 pr_err("page %lu outside zone [ %lu - %lu ]\n", 265 pfn, start_pfn, start_pfn + sp); 266 267 return ret; 268 } 269 270 static int page_is_consistent(struct zone *zone, struct page *page) 271 { 272 if (!pfn_valid_within(page_to_pfn(page))) 273 return 0; 274 if (zone != page_zone(page)) 275 return 0; 276 277 return 1; 278 } 279 /* 280 * Temporary debugging check for pages not lying within a given zone. 281 */ 282 static int bad_range(struct zone *zone, struct page *page) 283 { 284 if (page_outside_zone_boundaries(zone, page)) 285 return 1; 286 if (!page_is_consistent(zone, page)) 287 return 1; 288 289 return 0; 290 } 291 #else 292 static inline int bad_range(struct zone *zone, struct page *page) 293 { 294 return 0; 295 } 296 #endif 297 298 static void bad_page(struct page *page) 299 { 300 static unsigned long resume; 301 static unsigned long nr_shown; 302 static unsigned long nr_unshown; 303 304 /* Don't complain about poisoned pages */ 305 if (PageHWPoison(page)) { 306 page_mapcount_reset(page); /* remove PageBuddy */ 307 return; 308 } 309 310 /* 311 * Allow a burst of 60 reports, then keep quiet for that minute; 312 * or allow a steady drip of one report per second. 313 */ 314 if (nr_shown == 60) { 315 if (time_before(jiffies, resume)) { 316 nr_unshown++; 317 goto out; 318 } 319 if (nr_unshown) { 320 printk(KERN_ALERT 321 "BUG: Bad page state: %lu messages suppressed\n", 322 nr_unshown); 323 nr_unshown = 0; 324 } 325 nr_shown = 0; 326 } 327 if (nr_shown++ == 0) 328 resume = jiffies + 60 * HZ; 329 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 331 current->comm, page_to_pfn(page)); 332 dump_page(page); 333 334 print_modules(); 335 dump_stack(); 336 out: 337 /* Leave bad fields for debug, except PageBuddy could make trouble */ 338 page_mapcount_reset(page); /* remove PageBuddy */ 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 340 } 341 342 /* 343 * Higher-order pages are called "compound pages". They are structured thusly: 344 * 345 * The first PAGE_SIZE page is called the "head page". 346 * 347 * The remaining PAGE_SIZE pages are called "tail pages". 348 * 349 * All pages have PG_compound set. All tail pages have their ->first_page 350 * pointing at the head page. 351 * 352 * The first tail page's ->lru.next holds the address of the compound page's 353 * put_page() function. Its ->lru.prev holds the order of allocation. 354 * This usage means that zero-order pages may not be compound. 355 */ 356 357 static void free_compound_page(struct page *page) 358 { 359 __free_pages_ok(page, compound_order(page)); 360 } 361 362 void prep_compound_page(struct page *page, unsigned long order) 363 { 364 int i; 365 int nr_pages = 1 << order; 366 367 set_compound_page_dtor(page, free_compound_page); 368 set_compound_order(page, order); 369 __SetPageHead(page); 370 for (i = 1; i < nr_pages; i++) { 371 struct page *p = page + i; 372 __SetPageTail(p); 373 set_page_count(p, 0); 374 p->first_page = page; 375 } 376 } 377 378 /* update __split_huge_page_refcount if you change this function */ 379 static int destroy_compound_page(struct page *page, unsigned long order) 380 { 381 int i; 382 int nr_pages = 1 << order; 383 int bad = 0; 384 385 if (unlikely(compound_order(page) != order)) { 386 bad_page(page); 387 bad++; 388 } 389 390 __ClearPageHead(page); 391 392 for (i = 1; i < nr_pages; i++) { 393 struct page *p = page + i; 394 395 if (unlikely(!PageTail(p) || (p->first_page != page))) { 396 bad_page(page); 397 bad++; 398 } 399 __ClearPageTail(p); 400 } 401 402 return bad; 403 } 404 405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 406 { 407 int i; 408 409 /* 410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 411 * and __GFP_HIGHMEM from hard or soft interrupt context. 412 */ 413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 414 for (i = 0; i < (1 << order); i++) 415 clear_highpage(page + i); 416 } 417 418 #ifdef CONFIG_DEBUG_PAGEALLOC 419 unsigned int _debug_guardpage_minorder; 420 421 static int __init debug_guardpage_minorder_setup(char *buf) 422 { 423 unsigned long res; 424 425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 427 return 0; 428 } 429 _debug_guardpage_minorder = res; 430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 431 return 0; 432 } 433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 434 435 static inline void set_page_guard_flag(struct page *page) 436 { 437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 438 } 439 440 static inline void clear_page_guard_flag(struct page *page) 441 { 442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 443 } 444 #else 445 static inline void set_page_guard_flag(struct page *page) { } 446 static inline void clear_page_guard_flag(struct page *page) { } 447 #endif 448 449 static inline void set_page_order(struct page *page, int order) 450 { 451 set_page_private(page, order); 452 __SetPageBuddy(page); 453 } 454 455 static inline void rmv_page_order(struct page *page) 456 { 457 __ClearPageBuddy(page); 458 set_page_private(page, 0); 459 } 460 461 /* 462 * Locate the struct page for both the matching buddy in our 463 * pair (buddy1) and the combined O(n+1) page they form (page). 464 * 465 * 1) Any buddy B1 will have an order O twin B2 which satisfies 466 * the following equation: 467 * B2 = B1 ^ (1 << O) 468 * For example, if the starting buddy (buddy2) is #8 its order 469 * 1 buddy is #10: 470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 471 * 472 * 2) Any buddy B will have an order O+1 parent P which 473 * satisfies the following equation: 474 * P = B & ~(1 << O) 475 * 476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 477 */ 478 static inline unsigned long 479 __find_buddy_index(unsigned long page_idx, unsigned int order) 480 { 481 return page_idx ^ (1 << order); 482 } 483 484 /* 485 * This function checks whether a page is free && is the buddy 486 * we can do coalesce a page and its buddy if 487 * (a) the buddy is not in a hole && 488 * (b) the buddy is in the buddy system && 489 * (c) a page and its buddy have the same order && 490 * (d) a page and its buddy are in the same zone. 491 * 492 * For recording whether a page is in the buddy system, we set ->_mapcount 493 * PAGE_BUDDY_MAPCOUNT_VALUE. 494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 495 * serialized by zone->lock. 496 * 497 * For recording page's order, we use page_private(page). 498 */ 499 static inline int page_is_buddy(struct page *page, struct page *buddy, 500 int order) 501 { 502 if (!pfn_valid_within(page_to_pfn(buddy))) 503 return 0; 504 505 if (page_zone_id(page) != page_zone_id(buddy)) 506 return 0; 507 508 if (page_is_guard(buddy) && page_order(buddy) == order) { 509 VM_BUG_ON(page_count(buddy) != 0); 510 return 1; 511 } 512 513 if (PageBuddy(buddy) && page_order(buddy) == order) { 514 VM_BUG_ON(page_count(buddy) != 0); 515 return 1; 516 } 517 return 0; 518 } 519 520 /* 521 * Freeing function for a buddy system allocator. 522 * 523 * The concept of a buddy system is to maintain direct-mapped table 524 * (containing bit values) for memory blocks of various "orders". 525 * The bottom level table contains the map for the smallest allocatable 526 * units of memory (here, pages), and each level above it describes 527 * pairs of units from the levels below, hence, "buddies". 528 * At a high level, all that happens here is marking the table entry 529 * at the bottom level available, and propagating the changes upward 530 * as necessary, plus some accounting needed to play nicely with other 531 * parts of the VM system. 532 * At each level, we keep a list of pages, which are heads of continuous 533 * free pages of length of (1 << order) and marked with _mapcount 534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 535 * field. 536 * So when we are allocating or freeing one, we can derive the state of the 537 * other. That is, if we allocate a small block, and both were 538 * free, the remainder of the region must be split into blocks. 539 * If a block is freed, and its buddy is also free, then this 540 * triggers coalescing into a block of larger size. 541 * 542 * -- nyc 543 */ 544 545 static inline void __free_one_page(struct page *page, 546 struct zone *zone, unsigned int order, 547 int migratetype) 548 { 549 unsigned long page_idx; 550 unsigned long combined_idx; 551 unsigned long uninitialized_var(buddy_idx); 552 struct page *buddy; 553 554 VM_BUG_ON(!zone_is_initialized(zone)); 555 556 if (unlikely(PageCompound(page))) 557 if (unlikely(destroy_compound_page(page, order))) 558 return; 559 560 VM_BUG_ON(migratetype == -1); 561 562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 563 564 VM_BUG_ON(page_idx & ((1 << order) - 1)); 565 VM_BUG_ON(bad_range(zone, page)); 566 567 while (order < MAX_ORDER-1) { 568 buddy_idx = __find_buddy_index(page_idx, order); 569 buddy = page + (buddy_idx - page_idx); 570 if (!page_is_buddy(page, buddy, order)) 571 break; 572 /* 573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 574 * merge with it and move up one order. 575 */ 576 if (page_is_guard(buddy)) { 577 clear_page_guard_flag(buddy); 578 set_page_private(page, 0); 579 __mod_zone_freepage_state(zone, 1 << order, 580 migratetype); 581 } else { 582 list_del(&buddy->lru); 583 zone->free_area[order].nr_free--; 584 rmv_page_order(buddy); 585 } 586 combined_idx = buddy_idx & page_idx; 587 page = page + (combined_idx - page_idx); 588 page_idx = combined_idx; 589 order++; 590 } 591 set_page_order(page, order); 592 593 /* 594 * If this is not the largest possible page, check if the buddy 595 * of the next-highest order is free. If it is, it's possible 596 * that pages are being freed that will coalesce soon. In case, 597 * that is happening, add the free page to the tail of the list 598 * so it's less likely to be used soon and more likely to be merged 599 * as a higher order page 600 */ 601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 602 struct page *higher_page, *higher_buddy; 603 combined_idx = buddy_idx & page_idx; 604 higher_page = page + (combined_idx - page_idx); 605 buddy_idx = __find_buddy_index(combined_idx, order + 1); 606 higher_buddy = higher_page + (buddy_idx - combined_idx); 607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 608 list_add_tail(&page->lru, 609 &zone->free_area[order].free_list[migratetype]); 610 goto out; 611 } 612 } 613 614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 615 out: 616 zone->free_area[order].nr_free++; 617 } 618 619 static inline int free_pages_check(struct page *page) 620 { 621 if (unlikely(page_mapcount(page) | 622 (page->mapping != NULL) | 623 (atomic_read(&page->_count) != 0) | 624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 625 (mem_cgroup_bad_page_check(page)))) { 626 bad_page(page); 627 return 1; 628 } 629 page_cpupid_reset_last(page); 630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 632 return 0; 633 } 634 635 /* 636 * Frees a number of pages from the PCP lists 637 * Assumes all pages on list are in same zone, and of same order. 638 * count is the number of pages to free. 639 * 640 * If the zone was previously in an "all pages pinned" state then look to 641 * see if this freeing clears that state. 642 * 643 * And clear the zone's pages_scanned counter, to hold off the "all pages are 644 * pinned" detection logic. 645 */ 646 static void free_pcppages_bulk(struct zone *zone, int count, 647 struct per_cpu_pages *pcp) 648 { 649 int migratetype = 0; 650 int batch_free = 0; 651 int to_free = count; 652 653 spin_lock(&zone->lock); 654 zone->pages_scanned = 0; 655 656 while (to_free) { 657 struct page *page; 658 struct list_head *list; 659 660 /* 661 * Remove pages from lists in a round-robin fashion. A 662 * batch_free count is maintained that is incremented when an 663 * empty list is encountered. This is so more pages are freed 664 * off fuller lists instead of spinning excessively around empty 665 * lists 666 */ 667 do { 668 batch_free++; 669 if (++migratetype == MIGRATE_PCPTYPES) 670 migratetype = 0; 671 list = &pcp->lists[migratetype]; 672 } while (list_empty(list)); 673 674 /* This is the only non-empty list. Free them all. */ 675 if (batch_free == MIGRATE_PCPTYPES) 676 batch_free = to_free; 677 678 do { 679 int mt; /* migratetype of the to-be-freed page */ 680 681 page = list_entry(list->prev, struct page, lru); 682 /* must delete as __free_one_page list manipulates */ 683 list_del(&page->lru); 684 mt = get_freepage_migratetype(page); 685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 686 __free_one_page(page, zone, 0, mt); 687 trace_mm_page_pcpu_drain(page, 0, mt); 688 if (likely(!is_migrate_isolate_page(page))) { 689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 690 if (is_migrate_cma(mt)) 691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 692 } 693 } while (--to_free && --batch_free && !list_empty(list)); 694 } 695 spin_unlock(&zone->lock); 696 } 697 698 static void free_one_page(struct zone *zone, struct page *page, int order, 699 int migratetype) 700 { 701 spin_lock(&zone->lock); 702 zone->pages_scanned = 0; 703 704 __free_one_page(page, zone, order, migratetype); 705 if (unlikely(!is_migrate_isolate(migratetype))) 706 __mod_zone_freepage_state(zone, 1 << order, migratetype); 707 spin_unlock(&zone->lock); 708 } 709 710 static bool free_pages_prepare(struct page *page, unsigned int order) 711 { 712 int i; 713 int bad = 0; 714 715 trace_mm_page_free(page, order); 716 kmemcheck_free_shadow(page, order); 717 718 if (PageAnon(page)) 719 page->mapping = NULL; 720 for (i = 0; i < (1 << order); i++) 721 bad += free_pages_check(page + i); 722 if (bad) 723 return false; 724 725 if (!PageHighMem(page)) { 726 debug_check_no_locks_freed(page_address(page), 727 PAGE_SIZE << order); 728 debug_check_no_obj_freed(page_address(page), 729 PAGE_SIZE << order); 730 } 731 arch_free_page(page, order); 732 kernel_map_pages(page, 1 << order, 0); 733 734 return true; 735 } 736 737 static void __free_pages_ok(struct page *page, unsigned int order) 738 { 739 unsigned long flags; 740 int migratetype; 741 742 if (!free_pages_prepare(page, order)) 743 return; 744 745 local_irq_save(flags); 746 __count_vm_events(PGFREE, 1 << order); 747 migratetype = get_pageblock_migratetype(page); 748 set_freepage_migratetype(page, migratetype); 749 free_one_page(page_zone(page), page, order, migratetype); 750 local_irq_restore(flags); 751 } 752 753 void __init __free_pages_bootmem(struct page *page, unsigned int order) 754 { 755 unsigned int nr_pages = 1 << order; 756 struct page *p = page; 757 unsigned int loop; 758 759 prefetchw(p); 760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 761 prefetchw(p + 1); 762 __ClearPageReserved(p); 763 set_page_count(p, 0); 764 } 765 __ClearPageReserved(p); 766 set_page_count(p, 0); 767 768 page_zone(page)->managed_pages += nr_pages; 769 set_page_refcounted(page); 770 __free_pages(page, order); 771 } 772 773 #ifdef CONFIG_CMA 774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 775 void __init init_cma_reserved_pageblock(struct page *page) 776 { 777 unsigned i = pageblock_nr_pages; 778 struct page *p = page; 779 780 do { 781 __ClearPageReserved(p); 782 set_page_count(p, 0); 783 } while (++p, --i); 784 785 set_page_refcounted(page); 786 set_pageblock_migratetype(page, MIGRATE_CMA); 787 __free_pages(page, pageblock_order); 788 adjust_managed_page_count(page, pageblock_nr_pages); 789 } 790 #endif 791 792 /* 793 * The order of subdivision here is critical for the IO subsystem. 794 * Please do not alter this order without good reasons and regression 795 * testing. Specifically, as large blocks of memory are subdivided, 796 * the order in which smaller blocks are delivered depends on the order 797 * they're subdivided in this function. This is the primary factor 798 * influencing the order in which pages are delivered to the IO 799 * subsystem according to empirical testing, and this is also justified 800 * by considering the behavior of a buddy system containing a single 801 * large block of memory acted on by a series of small allocations. 802 * This behavior is a critical factor in sglist merging's success. 803 * 804 * -- nyc 805 */ 806 static inline void expand(struct zone *zone, struct page *page, 807 int low, int high, struct free_area *area, 808 int migratetype) 809 { 810 unsigned long size = 1 << high; 811 812 while (high > low) { 813 area--; 814 high--; 815 size >>= 1; 816 VM_BUG_ON(bad_range(zone, &page[size])); 817 818 #ifdef CONFIG_DEBUG_PAGEALLOC 819 if (high < debug_guardpage_minorder()) { 820 /* 821 * Mark as guard pages (or page), that will allow to 822 * merge back to allocator when buddy will be freed. 823 * Corresponding page table entries will not be touched, 824 * pages will stay not present in virtual address space 825 */ 826 INIT_LIST_HEAD(&page[size].lru); 827 set_page_guard_flag(&page[size]); 828 set_page_private(&page[size], high); 829 /* Guard pages are not available for any usage */ 830 __mod_zone_freepage_state(zone, -(1 << high), 831 migratetype); 832 continue; 833 } 834 #endif 835 list_add(&page[size].lru, &area->free_list[migratetype]); 836 area->nr_free++; 837 set_page_order(&page[size], high); 838 } 839 } 840 841 /* 842 * This page is about to be returned from the page allocator 843 */ 844 static inline int check_new_page(struct page *page) 845 { 846 if (unlikely(page_mapcount(page) | 847 (page->mapping != NULL) | 848 (atomic_read(&page->_count) != 0) | 849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 850 (mem_cgroup_bad_page_check(page)))) { 851 bad_page(page); 852 return 1; 853 } 854 return 0; 855 } 856 857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 858 { 859 int i; 860 861 for (i = 0; i < (1 << order); i++) { 862 struct page *p = page + i; 863 if (unlikely(check_new_page(p))) 864 return 1; 865 } 866 867 set_page_private(page, 0); 868 set_page_refcounted(page); 869 870 arch_alloc_page(page, order); 871 kernel_map_pages(page, 1 << order, 1); 872 873 if (gfp_flags & __GFP_ZERO) 874 prep_zero_page(page, order, gfp_flags); 875 876 if (order && (gfp_flags & __GFP_COMP)) 877 prep_compound_page(page, order); 878 879 return 0; 880 } 881 882 /* 883 * Go through the free lists for the given migratetype and remove 884 * the smallest available page from the freelists 885 */ 886 static inline 887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 888 int migratetype) 889 { 890 unsigned int current_order; 891 struct free_area *area; 892 struct page *page; 893 894 /* Find a page of the appropriate size in the preferred list */ 895 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 896 area = &(zone->free_area[current_order]); 897 if (list_empty(&area->free_list[migratetype])) 898 continue; 899 900 page = list_entry(area->free_list[migratetype].next, 901 struct page, lru); 902 list_del(&page->lru); 903 rmv_page_order(page); 904 area->nr_free--; 905 expand(zone, page, order, current_order, area, migratetype); 906 return page; 907 } 908 909 return NULL; 910 } 911 912 913 /* 914 * This array describes the order lists are fallen back to when 915 * the free lists for the desirable migrate type are depleted 916 */ 917 static int fallbacks[MIGRATE_TYPES][4] = { 918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 920 #ifdef CONFIG_CMA 921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 923 #else 924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 925 #endif 926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 927 #ifdef CONFIG_MEMORY_ISOLATION 928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 929 #endif 930 }; 931 932 /* 933 * Move the free pages in a range to the free lists of the requested type. 934 * Note that start_page and end_pages are not aligned on a pageblock 935 * boundary. If alignment is required, use move_freepages_block() 936 */ 937 int move_freepages(struct zone *zone, 938 struct page *start_page, struct page *end_page, 939 int migratetype) 940 { 941 struct page *page; 942 unsigned long order; 943 int pages_moved = 0; 944 945 #ifndef CONFIG_HOLES_IN_ZONE 946 /* 947 * page_zone is not safe to call in this context when 948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 949 * anyway as we check zone boundaries in move_freepages_block(). 950 * Remove at a later date when no bug reports exist related to 951 * grouping pages by mobility 952 */ 953 BUG_ON(page_zone(start_page) != page_zone(end_page)); 954 #endif 955 956 for (page = start_page; page <= end_page;) { 957 /* Make sure we are not inadvertently changing nodes */ 958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 959 960 if (!pfn_valid_within(page_to_pfn(page))) { 961 page++; 962 continue; 963 } 964 965 if (!PageBuddy(page)) { 966 page++; 967 continue; 968 } 969 970 order = page_order(page); 971 list_move(&page->lru, 972 &zone->free_area[order].free_list[migratetype]); 973 set_freepage_migratetype(page, migratetype); 974 page += 1 << order; 975 pages_moved += 1 << order; 976 } 977 978 return pages_moved; 979 } 980 981 int move_freepages_block(struct zone *zone, struct page *page, 982 int migratetype) 983 { 984 unsigned long start_pfn, end_pfn; 985 struct page *start_page, *end_page; 986 987 start_pfn = page_to_pfn(page); 988 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 989 start_page = pfn_to_page(start_pfn); 990 end_page = start_page + pageblock_nr_pages - 1; 991 end_pfn = start_pfn + pageblock_nr_pages - 1; 992 993 /* Do not cross zone boundaries */ 994 if (!zone_spans_pfn(zone, start_pfn)) 995 start_page = page; 996 if (!zone_spans_pfn(zone, end_pfn)) 997 return 0; 998 999 return move_freepages(zone, start_page, end_page, migratetype); 1000 } 1001 1002 static void change_pageblock_range(struct page *pageblock_page, 1003 int start_order, int migratetype) 1004 { 1005 int nr_pageblocks = 1 << (start_order - pageblock_order); 1006 1007 while (nr_pageblocks--) { 1008 set_pageblock_migratetype(pageblock_page, migratetype); 1009 pageblock_page += pageblock_nr_pages; 1010 } 1011 } 1012 1013 /* 1014 * If breaking a large block of pages, move all free pages to the preferred 1015 * allocation list. If falling back for a reclaimable kernel allocation, be 1016 * more aggressive about taking ownership of free pages. 1017 * 1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1019 * nor move CMA pages to different free lists. We don't want unmovable pages 1020 * to be allocated from MIGRATE_CMA areas. 1021 * 1022 * Returns the new migratetype of the pageblock (or the same old migratetype 1023 * if it was unchanged). 1024 */ 1025 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1026 int start_type, int fallback_type) 1027 { 1028 int current_order = page_order(page); 1029 1030 /* 1031 * When borrowing from MIGRATE_CMA, we need to release the excess 1032 * buddy pages to CMA itself. 1033 */ 1034 if (is_migrate_cma(fallback_type)) 1035 return fallback_type; 1036 1037 /* Take ownership for orders >= pageblock_order */ 1038 if (current_order >= pageblock_order) { 1039 change_pageblock_range(page, current_order, start_type); 1040 return start_type; 1041 } 1042 1043 if (current_order >= pageblock_order / 2 || 1044 start_type == MIGRATE_RECLAIMABLE || 1045 page_group_by_mobility_disabled) { 1046 int pages; 1047 1048 pages = move_freepages_block(zone, page, start_type); 1049 1050 /* Claim the whole block if over half of it is free */ 1051 if (pages >= (1 << (pageblock_order-1)) || 1052 page_group_by_mobility_disabled) { 1053 1054 set_pageblock_migratetype(page, start_type); 1055 return start_type; 1056 } 1057 1058 } 1059 1060 return fallback_type; 1061 } 1062 1063 /* Remove an element from the buddy allocator from the fallback list */ 1064 static inline struct page * 1065 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1066 { 1067 struct free_area *area; 1068 int current_order; 1069 struct page *page; 1070 int migratetype, new_type, i; 1071 1072 /* Find the largest possible block of pages in the other list */ 1073 for (current_order = MAX_ORDER-1; current_order >= order; 1074 --current_order) { 1075 for (i = 0;; i++) { 1076 migratetype = fallbacks[start_migratetype][i]; 1077 1078 /* MIGRATE_RESERVE handled later if necessary */ 1079 if (migratetype == MIGRATE_RESERVE) 1080 break; 1081 1082 area = &(zone->free_area[current_order]); 1083 if (list_empty(&area->free_list[migratetype])) 1084 continue; 1085 1086 page = list_entry(area->free_list[migratetype].next, 1087 struct page, lru); 1088 area->nr_free--; 1089 1090 new_type = try_to_steal_freepages(zone, page, 1091 start_migratetype, 1092 migratetype); 1093 1094 /* Remove the page from the freelists */ 1095 list_del(&page->lru); 1096 rmv_page_order(page); 1097 1098 expand(zone, page, order, current_order, area, 1099 new_type); 1100 1101 trace_mm_page_alloc_extfrag(page, order, current_order, 1102 start_migratetype, migratetype, new_type); 1103 1104 return page; 1105 } 1106 } 1107 1108 return NULL; 1109 } 1110 1111 /* 1112 * Do the hard work of removing an element from the buddy allocator. 1113 * Call me with the zone->lock already held. 1114 */ 1115 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1116 int migratetype) 1117 { 1118 struct page *page; 1119 1120 retry_reserve: 1121 page = __rmqueue_smallest(zone, order, migratetype); 1122 1123 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1124 page = __rmqueue_fallback(zone, order, migratetype); 1125 1126 /* 1127 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1128 * is used because __rmqueue_smallest is an inline function 1129 * and we want just one call site 1130 */ 1131 if (!page) { 1132 migratetype = MIGRATE_RESERVE; 1133 goto retry_reserve; 1134 } 1135 } 1136 1137 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1138 return page; 1139 } 1140 1141 /* 1142 * Obtain a specified number of elements from the buddy allocator, all under 1143 * a single hold of the lock, for efficiency. Add them to the supplied list. 1144 * Returns the number of new pages which were placed at *list. 1145 */ 1146 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1147 unsigned long count, struct list_head *list, 1148 int migratetype, int cold) 1149 { 1150 int mt = migratetype, i; 1151 1152 spin_lock(&zone->lock); 1153 for (i = 0; i < count; ++i) { 1154 struct page *page = __rmqueue(zone, order, migratetype); 1155 if (unlikely(page == NULL)) 1156 break; 1157 1158 /* 1159 * Split buddy pages returned by expand() are received here 1160 * in physical page order. The page is added to the callers and 1161 * list and the list head then moves forward. From the callers 1162 * perspective, the linked list is ordered by page number in 1163 * some conditions. This is useful for IO devices that can 1164 * merge IO requests if the physical pages are ordered 1165 * properly. 1166 */ 1167 if (likely(cold == 0)) 1168 list_add(&page->lru, list); 1169 else 1170 list_add_tail(&page->lru, list); 1171 if (IS_ENABLED(CONFIG_CMA)) { 1172 mt = get_pageblock_migratetype(page); 1173 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) 1174 mt = migratetype; 1175 } 1176 set_freepage_migratetype(page, mt); 1177 list = &page->lru; 1178 if (is_migrate_cma(mt)) 1179 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1180 -(1 << order)); 1181 } 1182 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1183 spin_unlock(&zone->lock); 1184 return i; 1185 } 1186 1187 #ifdef CONFIG_NUMA 1188 /* 1189 * Called from the vmstat counter updater to drain pagesets of this 1190 * currently executing processor on remote nodes after they have 1191 * expired. 1192 * 1193 * Note that this function must be called with the thread pinned to 1194 * a single processor. 1195 */ 1196 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1197 { 1198 unsigned long flags; 1199 int to_drain; 1200 unsigned long batch; 1201 1202 local_irq_save(flags); 1203 batch = ACCESS_ONCE(pcp->batch); 1204 if (pcp->count >= batch) 1205 to_drain = batch; 1206 else 1207 to_drain = pcp->count; 1208 if (to_drain > 0) { 1209 free_pcppages_bulk(zone, to_drain, pcp); 1210 pcp->count -= to_drain; 1211 } 1212 local_irq_restore(flags); 1213 } 1214 #endif 1215 1216 /* 1217 * Drain pages of the indicated processor. 1218 * 1219 * The processor must either be the current processor and the 1220 * thread pinned to the current processor or a processor that 1221 * is not online. 1222 */ 1223 static void drain_pages(unsigned int cpu) 1224 { 1225 unsigned long flags; 1226 struct zone *zone; 1227 1228 for_each_populated_zone(zone) { 1229 struct per_cpu_pageset *pset; 1230 struct per_cpu_pages *pcp; 1231 1232 local_irq_save(flags); 1233 pset = per_cpu_ptr(zone->pageset, cpu); 1234 1235 pcp = &pset->pcp; 1236 if (pcp->count) { 1237 free_pcppages_bulk(zone, pcp->count, pcp); 1238 pcp->count = 0; 1239 } 1240 local_irq_restore(flags); 1241 } 1242 } 1243 1244 /* 1245 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1246 */ 1247 void drain_local_pages(void *arg) 1248 { 1249 drain_pages(smp_processor_id()); 1250 } 1251 1252 /* 1253 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1254 * 1255 * Note that this code is protected against sending an IPI to an offline 1256 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1257 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1258 * nothing keeps CPUs from showing up after we populated the cpumask and 1259 * before the call to on_each_cpu_mask(). 1260 */ 1261 void drain_all_pages(void) 1262 { 1263 int cpu; 1264 struct per_cpu_pageset *pcp; 1265 struct zone *zone; 1266 1267 /* 1268 * Allocate in the BSS so we wont require allocation in 1269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1270 */ 1271 static cpumask_t cpus_with_pcps; 1272 1273 /* 1274 * We don't care about racing with CPU hotplug event 1275 * as offline notification will cause the notified 1276 * cpu to drain that CPU pcps and on_each_cpu_mask 1277 * disables preemption as part of its processing 1278 */ 1279 for_each_online_cpu(cpu) { 1280 bool has_pcps = false; 1281 for_each_populated_zone(zone) { 1282 pcp = per_cpu_ptr(zone->pageset, cpu); 1283 if (pcp->pcp.count) { 1284 has_pcps = true; 1285 break; 1286 } 1287 } 1288 if (has_pcps) 1289 cpumask_set_cpu(cpu, &cpus_with_pcps); 1290 else 1291 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1292 } 1293 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1294 } 1295 1296 #ifdef CONFIG_HIBERNATION 1297 1298 void mark_free_pages(struct zone *zone) 1299 { 1300 unsigned long pfn, max_zone_pfn; 1301 unsigned long flags; 1302 int order, t; 1303 struct list_head *curr; 1304 1305 if (zone_is_empty(zone)) 1306 return; 1307 1308 spin_lock_irqsave(&zone->lock, flags); 1309 1310 max_zone_pfn = zone_end_pfn(zone); 1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1312 if (pfn_valid(pfn)) { 1313 struct page *page = pfn_to_page(pfn); 1314 1315 if (!swsusp_page_is_forbidden(page)) 1316 swsusp_unset_page_free(page); 1317 } 1318 1319 for_each_migratetype_order(order, t) { 1320 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1321 unsigned long i; 1322 1323 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1324 for (i = 0; i < (1UL << order); i++) 1325 swsusp_set_page_free(pfn_to_page(pfn + i)); 1326 } 1327 } 1328 spin_unlock_irqrestore(&zone->lock, flags); 1329 } 1330 #endif /* CONFIG_PM */ 1331 1332 /* 1333 * Free a 0-order page 1334 * cold == 1 ? free a cold page : free a hot page 1335 */ 1336 void free_hot_cold_page(struct page *page, int cold) 1337 { 1338 struct zone *zone = page_zone(page); 1339 struct per_cpu_pages *pcp; 1340 unsigned long flags; 1341 int migratetype; 1342 1343 if (!free_pages_prepare(page, 0)) 1344 return; 1345 1346 migratetype = get_pageblock_migratetype(page); 1347 set_freepage_migratetype(page, migratetype); 1348 local_irq_save(flags); 1349 __count_vm_event(PGFREE); 1350 1351 /* 1352 * We only track unmovable, reclaimable and movable on pcp lists. 1353 * Free ISOLATE pages back to the allocator because they are being 1354 * offlined but treat RESERVE as movable pages so we can get those 1355 * areas back if necessary. Otherwise, we may have to free 1356 * excessively into the page allocator 1357 */ 1358 if (migratetype >= MIGRATE_PCPTYPES) { 1359 if (unlikely(is_migrate_isolate(migratetype))) { 1360 free_one_page(zone, page, 0, migratetype); 1361 goto out; 1362 } 1363 migratetype = MIGRATE_MOVABLE; 1364 } 1365 1366 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1367 if (cold) 1368 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1369 else 1370 list_add(&page->lru, &pcp->lists[migratetype]); 1371 pcp->count++; 1372 if (pcp->count >= pcp->high) { 1373 unsigned long batch = ACCESS_ONCE(pcp->batch); 1374 free_pcppages_bulk(zone, batch, pcp); 1375 pcp->count -= batch; 1376 } 1377 1378 out: 1379 local_irq_restore(flags); 1380 } 1381 1382 /* 1383 * Free a list of 0-order pages 1384 */ 1385 void free_hot_cold_page_list(struct list_head *list, int cold) 1386 { 1387 struct page *page, *next; 1388 1389 list_for_each_entry_safe(page, next, list, lru) { 1390 trace_mm_page_free_batched(page, cold); 1391 free_hot_cold_page(page, cold); 1392 } 1393 } 1394 1395 /* 1396 * split_page takes a non-compound higher-order page, and splits it into 1397 * n (1<<order) sub-pages: page[0..n] 1398 * Each sub-page must be freed individually. 1399 * 1400 * Note: this is probably too low level an operation for use in drivers. 1401 * Please consult with lkml before using this in your driver. 1402 */ 1403 void split_page(struct page *page, unsigned int order) 1404 { 1405 int i; 1406 1407 VM_BUG_ON(PageCompound(page)); 1408 VM_BUG_ON(!page_count(page)); 1409 1410 #ifdef CONFIG_KMEMCHECK 1411 /* 1412 * Split shadow pages too, because free(page[0]) would 1413 * otherwise free the whole shadow. 1414 */ 1415 if (kmemcheck_page_is_tracked(page)) 1416 split_page(virt_to_page(page[0].shadow), order); 1417 #endif 1418 1419 for (i = 1; i < (1 << order); i++) 1420 set_page_refcounted(page + i); 1421 } 1422 EXPORT_SYMBOL_GPL(split_page); 1423 1424 static int __isolate_free_page(struct page *page, unsigned int order) 1425 { 1426 unsigned long watermark; 1427 struct zone *zone; 1428 int mt; 1429 1430 BUG_ON(!PageBuddy(page)); 1431 1432 zone = page_zone(page); 1433 mt = get_pageblock_migratetype(page); 1434 1435 if (!is_migrate_isolate(mt)) { 1436 /* Obey watermarks as if the page was being allocated */ 1437 watermark = low_wmark_pages(zone) + (1 << order); 1438 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1439 return 0; 1440 1441 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1442 } 1443 1444 /* Remove page from free list */ 1445 list_del(&page->lru); 1446 zone->free_area[order].nr_free--; 1447 rmv_page_order(page); 1448 1449 /* Set the pageblock if the isolated page is at least a pageblock */ 1450 if (order >= pageblock_order - 1) { 1451 struct page *endpage = page + (1 << order) - 1; 1452 for (; page < endpage; page += pageblock_nr_pages) { 1453 int mt = get_pageblock_migratetype(page); 1454 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1455 set_pageblock_migratetype(page, 1456 MIGRATE_MOVABLE); 1457 } 1458 } 1459 1460 return 1UL << order; 1461 } 1462 1463 /* 1464 * Similar to split_page except the page is already free. As this is only 1465 * being used for migration, the migratetype of the block also changes. 1466 * As this is called with interrupts disabled, the caller is responsible 1467 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1468 * are enabled. 1469 * 1470 * Note: this is probably too low level an operation for use in drivers. 1471 * Please consult with lkml before using this in your driver. 1472 */ 1473 int split_free_page(struct page *page) 1474 { 1475 unsigned int order; 1476 int nr_pages; 1477 1478 order = page_order(page); 1479 1480 nr_pages = __isolate_free_page(page, order); 1481 if (!nr_pages) 1482 return 0; 1483 1484 /* Split into individual pages */ 1485 set_page_refcounted(page); 1486 split_page(page, order); 1487 return nr_pages; 1488 } 1489 1490 /* 1491 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1492 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1493 * or two. 1494 */ 1495 static inline 1496 struct page *buffered_rmqueue(struct zone *preferred_zone, 1497 struct zone *zone, int order, gfp_t gfp_flags, 1498 int migratetype) 1499 { 1500 unsigned long flags; 1501 struct page *page; 1502 int cold = !!(gfp_flags & __GFP_COLD); 1503 1504 again: 1505 if (likely(order == 0)) { 1506 struct per_cpu_pages *pcp; 1507 struct list_head *list; 1508 1509 local_irq_save(flags); 1510 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1511 list = &pcp->lists[migratetype]; 1512 if (list_empty(list)) { 1513 pcp->count += rmqueue_bulk(zone, 0, 1514 pcp->batch, list, 1515 migratetype, cold); 1516 if (unlikely(list_empty(list))) 1517 goto failed; 1518 } 1519 1520 if (cold) 1521 page = list_entry(list->prev, struct page, lru); 1522 else 1523 page = list_entry(list->next, struct page, lru); 1524 1525 list_del(&page->lru); 1526 pcp->count--; 1527 } else { 1528 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1529 /* 1530 * __GFP_NOFAIL is not to be used in new code. 1531 * 1532 * All __GFP_NOFAIL callers should be fixed so that they 1533 * properly detect and handle allocation failures. 1534 * 1535 * We most definitely don't want callers attempting to 1536 * allocate greater than order-1 page units with 1537 * __GFP_NOFAIL. 1538 */ 1539 WARN_ON_ONCE(order > 1); 1540 } 1541 spin_lock_irqsave(&zone->lock, flags); 1542 page = __rmqueue(zone, order, migratetype); 1543 spin_unlock(&zone->lock); 1544 if (!page) 1545 goto failed; 1546 __mod_zone_freepage_state(zone, -(1 << order), 1547 get_pageblock_migratetype(page)); 1548 } 1549 1550 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1551 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1552 zone_statistics(preferred_zone, zone, gfp_flags); 1553 local_irq_restore(flags); 1554 1555 VM_BUG_ON(bad_range(zone, page)); 1556 if (prep_new_page(page, order, gfp_flags)) 1557 goto again; 1558 return page; 1559 1560 failed: 1561 local_irq_restore(flags); 1562 return NULL; 1563 } 1564 1565 #ifdef CONFIG_FAIL_PAGE_ALLOC 1566 1567 static struct { 1568 struct fault_attr attr; 1569 1570 u32 ignore_gfp_highmem; 1571 u32 ignore_gfp_wait; 1572 u32 min_order; 1573 } fail_page_alloc = { 1574 .attr = FAULT_ATTR_INITIALIZER, 1575 .ignore_gfp_wait = 1, 1576 .ignore_gfp_highmem = 1, 1577 .min_order = 1, 1578 }; 1579 1580 static int __init setup_fail_page_alloc(char *str) 1581 { 1582 return setup_fault_attr(&fail_page_alloc.attr, str); 1583 } 1584 __setup("fail_page_alloc=", setup_fail_page_alloc); 1585 1586 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1587 { 1588 if (order < fail_page_alloc.min_order) 1589 return false; 1590 if (gfp_mask & __GFP_NOFAIL) 1591 return false; 1592 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1593 return false; 1594 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1595 return false; 1596 1597 return should_fail(&fail_page_alloc.attr, 1 << order); 1598 } 1599 1600 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1601 1602 static int __init fail_page_alloc_debugfs(void) 1603 { 1604 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1605 struct dentry *dir; 1606 1607 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1608 &fail_page_alloc.attr); 1609 if (IS_ERR(dir)) 1610 return PTR_ERR(dir); 1611 1612 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1613 &fail_page_alloc.ignore_gfp_wait)) 1614 goto fail; 1615 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1616 &fail_page_alloc.ignore_gfp_highmem)) 1617 goto fail; 1618 if (!debugfs_create_u32("min-order", mode, dir, 1619 &fail_page_alloc.min_order)) 1620 goto fail; 1621 1622 return 0; 1623 fail: 1624 debugfs_remove_recursive(dir); 1625 1626 return -ENOMEM; 1627 } 1628 1629 late_initcall(fail_page_alloc_debugfs); 1630 1631 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1632 1633 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1634 1635 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1636 { 1637 return false; 1638 } 1639 1640 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1641 1642 /* 1643 * Return true if free pages are above 'mark'. This takes into account the order 1644 * of the allocation. 1645 */ 1646 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1647 int classzone_idx, int alloc_flags, long free_pages) 1648 { 1649 /* free_pages my go negative - that's OK */ 1650 long min = mark; 1651 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1652 int o; 1653 long free_cma = 0; 1654 1655 free_pages -= (1 << order) - 1; 1656 if (alloc_flags & ALLOC_HIGH) 1657 min -= min / 2; 1658 if (alloc_flags & ALLOC_HARDER) 1659 min -= min / 4; 1660 #ifdef CONFIG_CMA 1661 /* If allocation can't use CMA areas don't use free CMA pages */ 1662 if (!(alloc_flags & ALLOC_CMA)) 1663 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1664 #endif 1665 1666 if (free_pages - free_cma <= min + lowmem_reserve) 1667 return false; 1668 for (o = 0; o < order; o++) { 1669 /* At the next order, this order's pages become unavailable */ 1670 free_pages -= z->free_area[o].nr_free << o; 1671 1672 /* Require fewer higher order pages to be free */ 1673 min >>= 1; 1674 1675 if (free_pages <= min) 1676 return false; 1677 } 1678 return true; 1679 } 1680 1681 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1682 int classzone_idx, int alloc_flags) 1683 { 1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1685 zone_page_state(z, NR_FREE_PAGES)); 1686 } 1687 1688 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1689 int classzone_idx, int alloc_flags) 1690 { 1691 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1692 1693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1695 1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1697 free_pages); 1698 } 1699 1700 #ifdef CONFIG_NUMA 1701 /* 1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1703 * skip over zones that are not allowed by the cpuset, or that have 1704 * been recently (in last second) found to be nearly full. See further 1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1706 * that have to skip over a lot of full or unallowed zones. 1707 * 1708 * If the zonelist cache is present in the passed zonelist, then 1709 * returns a pointer to the allowed node mask (either the current 1710 * tasks mems_allowed, or node_states[N_MEMORY].) 1711 * 1712 * If the zonelist cache is not available for this zonelist, does 1713 * nothing and returns NULL. 1714 * 1715 * If the fullzones BITMAP in the zonelist cache is stale (more than 1716 * a second since last zap'd) then we zap it out (clear its bits.) 1717 * 1718 * We hold off even calling zlc_setup, until after we've checked the 1719 * first zone in the zonelist, on the theory that most allocations will 1720 * be satisfied from that first zone, so best to examine that zone as 1721 * quickly as we can. 1722 */ 1723 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1724 { 1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1726 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1727 1728 zlc = zonelist->zlcache_ptr; 1729 if (!zlc) 1730 return NULL; 1731 1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1734 zlc->last_full_zap = jiffies; 1735 } 1736 1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1738 &cpuset_current_mems_allowed : 1739 &node_states[N_MEMORY]; 1740 return allowednodes; 1741 } 1742 1743 /* 1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1745 * if it is worth looking at further for free memory: 1746 * 1) Check that the zone isn't thought to be full (doesn't have its 1747 * bit set in the zonelist_cache fullzones BITMAP). 1748 * 2) Check that the zones node (obtained from the zonelist_cache 1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1750 * Return true (non-zero) if zone is worth looking at further, or 1751 * else return false (zero) if it is not. 1752 * 1753 * This check -ignores- the distinction between various watermarks, 1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1755 * found to be full for any variation of these watermarks, it will 1756 * be considered full for up to one second by all requests, unless 1757 * we are so low on memory on all allowed nodes that we are forced 1758 * into the second scan of the zonelist. 1759 * 1760 * In the second scan we ignore this zonelist cache and exactly 1761 * apply the watermarks to all zones, even it is slower to do so. 1762 * We are low on memory in the second scan, and should leave no stone 1763 * unturned looking for a free page. 1764 */ 1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1766 nodemask_t *allowednodes) 1767 { 1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1769 int i; /* index of *z in zonelist zones */ 1770 int n; /* node that zone *z is on */ 1771 1772 zlc = zonelist->zlcache_ptr; 1773 if (!zlc) 1774 return 1; 1775 1776 i = z - zonelist->_zonerefs; 1777 n = zlc->z_to_n[i]; 1778 1779 /* This zone is worth trying if it is allowed but not full */ 1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1781 } 1782 1783 /* 1784 * Given 'z' scanning a zonelist, set the corresponding bit in 1785 * zlc->fullzones, so that subsequent attempts to allocate a page 1786 * from that zone don't waste time re-examining it. 1787 */ 1788 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1789 { 1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1791 int i; /* index of *z in zonelist zones */ 1792 1793 zlc = zonelist->zlcache_ptr; 1794 if (!zlc) 1795 return; 1796 1797 i = z - zonelist->_zonerefs; 1798 1799 set_bit(i, zlc->fullzones); 1800 } 1801 1802 /* 1803 * clear all zones full, called after direct reclaim makes progress so that 1804 * a zone that was recently full is not skipped over for up to a second 1805 */ 1806 static void zlc_clear_zones_full(struct zonelist *zonelist) 1807 { 1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1809 1810 zlc = zonelist->zlcache_ptr; 1811 if (!zlc) 1812 return; 1813 1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1815 } 1816 1817 static bool zone_local(struct zone *local_zone, struct zone *zone) 1818 { 1819 return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE; 1820 } 1821 1822 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1823 { 1824 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1825 } 1826 1827 static void __paginginit init_zone_allows_reclaim(int nid) 1828 { 1829 int i; 1830 1831 for_each_online_node(i) 1832 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1833 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1834 else 1835 zone_reclaim_mode = 1; 1836 } 1837 1838 #else /* CONFIG_NUMA */ 1839 1840 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1841 { 1842 return NULL; 1843 } 1844 1845 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1846 nodemask_t *allowednodes) 1847 { 1848 return 1; 1849 } 1850 1851 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1852 { 1853 } 1854 1855 static void zlc_clear_zones_full(struct zonelist *zonelist) 1856 { 1857 } 1858 1859 static bool zone_local(struct zone *local_zone, struct zone *zone) 1860 { 1861 return true; 1862 } 1863 1864 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1865 { 1866 return true; 1867 } 1868 1869 static inline void init_zone_allows_reclaim(int nid) 1870 { 1871 } 1872 #endif /* CONFIG_NUMA */ 1873 1874 /* 1875 * get_page_from_freelist goes through the zonelist trying to allocate 1876 * a page. 1877 */ 1878 static struct page * 1879 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1880 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1881 struct zone *preferred_zone, int migratetype) 1882 { 1883 struct zoneref *z; 1884 struct page *page = NULL; 1885 int classzone_idx; 1886 struct zone *zone; 1887 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1888 int zlc_active = 0; /* set if using zonelist_cache */ 1889 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1890 1891 classzone_idx = zone_idx(preferred_zone); 1892 zonelist_scan: 1893 /* 1894 * Scan zonelist, looking for a zone with enough free. 1895 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1896 */ 1897 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1898 high_zoneidx, nodemask) { 1899 unsigned long mark; 1900 1901 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1902 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1903 continue; 1904 if ((alloc_flags & ALLOC_CPUSET) && 1905 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1906 continue; 1907 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1908 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS)) 1909 goto try_this_zone; 1910 /* 1911 * Distribute pages in proportion to the individual 1912 * zone size to ensure fair page aging. The zone a 1913 * page was allocated in should have no effect on the 1914 * time the page has in memory before being reclaimed. 1915 * 1916 * When zone_reclaim_mode is enabled, try to stay in 1917 * local zones in the fastpath. If that fails, the 1918 * slowpath is entered, which will do another pass 1919 * starting with the local zones, but ultimately fall 1920 * back to remote zones that do not partake in the 1921 * fairness round-robin cycle of this zonelist. 1922 */ 1923 if ((alloc_flags & ALLOC_WMARK_LOW) && 1924 (gfp_mask & GFP_MOVABLE_MASK)) { 1925 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0) 1926 continue; 1927 if (zone_reclaim_mode && 1928 !zone_local(preferred_zone, zone)) 1929 continue; 1930 } 1931 /* 1932 * When allocating a page cache page for writing, we 1933 * want to get it from a zone that is within its dirty 1934 * limit, such that no single zone holds more than its 1935 * proportional share of globally allowed dirty pages. 1936 * The dirty limits take into account the zone's 1937 * lowmem reserves and high watermark so that kswapd 1938 * should be able to balance it without having to 1939 * write pages from its LRU list. 1940 * 1941 * This may look like it could increase pressure on 1942 * lower zones by failing allocations in higher zones 1943 * before they are full. But the pages that do spill 1944 * over are limited as the lower zones are protected 1945 * by this very same mechanism. It should not become 1946 * a practical burden to them. 1947 * 1948 * XXX: For now, allow allocations to potentially 1949 * exceed the per-zone dirty limit in the slowpath 1950 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1951 * which is important when on a NUMA setup the allowed 1952 * zones are together not big enough to reach the 1953 * global limit. The proper fix for these situations 1954 * will require awareness of zones in the 1955 * dirty-throttling and the flusher threads. 1956 */ 1957 if ((alloc_flags & ALLOC_WMARK_LOW) && 1958 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1959 goto this_zone_full; 1960 1961 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1962 if (!zone_watermark_ok(zone, order, mark, 1963 classzone_idx, alloc_flags)) { 1964 int ret; 1965 1966 if (IS_ENABLED(CONFIG_NUMA) && 1967 !did_zlc_setup && nr_online_nodes > 1) { 1968 /* 1969 * we do zlc_setup if there are multiple nodes 1970 * and before considering the first zone allowed 1971 * by the cpuset. 1972 */ 1973 allowednodes = zlc_setup(zonelist, alloc_flags); 1974 zlc_active = 1; 1975 did_zlc_setup = 1; 1976 } 1977 1978 if (zone_reclaim_mode == 0 || 1979 !zone_allows_reclaim(preferred_zone, zone)) 1980 goto this_zone_full; 1981 1982 /* 1983 * As we may have just activated ZLC, check if the first 1984 * eligible zone has failed zone_reclaim recently. 1985 */ 1986 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1987 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1988 continue; 1989 1990 ret = zone_reclaim(zone, gfp_mask, order); 1991 switch (ret) { 1992 case ZONE_RECLAIM_NOSCAN: 1993 /* did not scan */ 1994 continue; 1995 case ZONE_RECLAIM_FULL: 1996 /* scanned but unreclaimable */ 1997 continue; 1998 default: 1999 /* did we reclaim enough */ 2000 if (zone_watermark_ok(zone, order, mark, 2001 classzone_idx, alloc_flags)) 2002 goto try_this_zone; 2003 2004 /* 2005 * Failed to reclaim enough to meet watermark. 2006 * Only mark the zone full if checking the min 2007 * watermark or if we failed to reclaim just 2008 * 1<<order pages or else the page allocator 2009 * fastpath will prematurely mark zones full 2010 * when the watermark is between the low and 2011 * min watermarks. 2012 */ 2013 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2014 ret == ZONE_RECLAIM_SOME) 2015 goto this_zone_full; 2016 2017 continue; 2018 } 2019 } 2020 2021 try_this_zone: 2022 page = buffered_rmqueue(preferred_zone, zone, order, 2023 gfp_mask, migratetype); 2024 if (page) 2025 break; 2026 this_zone_full: 2027 if (IS_ENABLED(CONFIG_NUMA)) 2028 zlc_mark_zone_full(zonelist, z); 2029 } 2030 2031 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 2032 /* Disable zlc cache for second zonelist scan */ 2033 zlc_active = 0; 2034 goto zonelist_scan; 2035 } 2036 2037 if (page) 2038 /* 2039 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2040 * necessary to allocate the page. The expectation is 2041 * that the caller is taking steps that will free more 2042 * memory. The caller should avoid the page being used 2043 * for !PFMEMALLOC purposes. 2044 */ 2045 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2046 2047 return page; 2048 } 2049 2050 /* 2051 * Large machines with many possible nodes should not always dump per-node 2052 * meminfo in irq context. 2053 */ 2054 static inline bool should_suppress_show_mem(void) 2055 { 2056 bool ret = false; 2057 2058 #if NODES_SHIFT > 8 2059 ret = in_interrupt(); 2060 #endif 2061 return ret; 2062 } 2063 2064 static DEFINE_RATELIMIT_STATE(nopage_rs, 2065 DEFAULT_RATELIMIT_INTERVAL, 2066 DEFAULT_RATELIMIT_BURST); 2067 2068 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2069 { 2070 unsigned int filter = SHOW_MEM_FILTER_NODES; 2071 2072 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2073 debug_guardpage_minorder() > 0) 2074 return; 2075 2076 /* 2077 * Walking all memory to count page types is very expensive and should 2078 * be inhibited in non-blockable contexts. 2079 */ 2080 if (!(gfp_mask & __GFP_WAIT)) 2081 filter |= SHOW_MEM_FILTER_PAGE_COUNT; 2082 2083 /* 2084 * This documents exceptions given to allocations in certain 2085 * contexts that are allowed to allocate outside current's set 2086 * of allowed nodes. 2087 */ 2088 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2089 if (test_thread_flag(TIF_MEMDIE) || 2090 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2091 filter &= ~SHOW_MEM_FILTER_NODES; 2092 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2093 filter &= ~SHOW_MEM_FILTER_NODES; 2094 2095 if (fmt) { 2096 struct va_format vaf; 2097 va_list args; 2098 2099 va_start(args, fmt); 2100 2101 vaf.fmt = fmt; 2102 vaf.va = &args; 2103 2104 pr_warn("%pV", &vaf); 2105 2106 va_end(args); 2107 } 2108 2109 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2110 current->comm, order, gfp_mask); 2111 2112 dump_stack(); 2113 if (!should_suppress_show_mem()) 2114 show_mem(filter); 2115 } 2116 2117 static inline int 2118 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2119 unsigned long did_some_progress, 2120 unsigned long pages_reclaimed) 2121 { 2122 /* Do not loop if specifically requested */ 2123 if (gfp_mask & __GFP_NORETRY) 2124 return 0; 2125 2126 /* Always retry if specifically requested */ 2127 if (gfp_mask & __GFP_NOFAIL) 2128 return 1; 2129 2130 /* 2131 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2132 * making forward progress without invoking OOM. Suspend also disables 2133 * storage devices so kswapd will not help. Bail if we are suspending. 2134 */ 2135 if (!did_some_progress && pm_suspended_storage()) 2136 return 0; 2137 2138 /* 2139 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2140 * means __GFP_NOFAIL, but that may not be true in other 2141 * implementations. 2142 */ 2143 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2144 return 1; 2145 2146 /* 2147 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2148 * specified, then we retry until we no longer reclaim any pages 2149 * (above), or we've reclaimed an order of pages at least as 2150 * large as the allocation's order. In both cases, if the 2151 * allocation still fails, we stop retrying. 2152 */ 2153 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2154 return 1; 2155 2156 return 0; 2157 } 2158 2159 static inline struct page * 2160 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2161 struct zonelist *zonelist, enum zone_type high_zoneidx, 2162 nodemask_t *nodemask, struct zone *preferred_zone, 2163 int migratetype) 2164 { 2165 struct page *page; 2166 2167 /* Acquire the OOM killer lock for the zones in zonelist */ 2168 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2169 schedule_timeout_uninterruptible(1); 2170 return NULL; 2171 } 2172 2173 /* 2174 * Go through the zonelist yet one more time, keep very high watermark 2175 * here, this is only to catch a parallel oom killing, we must fail if 2176 * we're still under heavy pressure. 2177 */ 2178 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2179 order, zonelist, high_zoneidx, 2180 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2181 preferred_zone, migratetype); 2182 if (page) 2183 goto out; 2184 2185 if (!(gfp_mask & __GFP_NOFAIL)) { 2186 /* The OOM killer will not help higher order allocs */ 2187 if (order > PAGE_ALLOC_COSTLY_ORDER) 2188 goto out; 2189 /* The OOM killer does not needlessly kill tasks for lowmem */ 2190 if (high_zoneidx < ZONE_NORMAL) 2191 goto out; 2192 /* 2193 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2194 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2195 * The caller should handle page allocation failure by itself if 2196 * it specifies __GFP_THISNODE. 2197 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2198 */ 2199 if (gfp_mask & __GFP_THISNODE) 2200 goto out; 2201 } 2202 /* Exhausted what can be done so it's blamo time */ 2203 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2204 2205 out: 2206 clear_zonelist_oom(zonelist, gfp_mask); 2207 return page; 2208 } 2209 2210 #ifdef CONFIG_COMPACTION 2211 /* Try memory compaction for high-order allocations before reclaim */ 2212 static struct page * 2213 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2214 struct zonelist *zonelist, enum zone_type high_zoneidx, 2215 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2216 int migratetype, bool sync_migration, 2217 bool *contended_compaction, bool *deferred_compaction, 2218 unsigned long *did_some_progress) 2219 { 2220 if (!order) 2221 return NULL; 2222 2223 if (compaction_deferred(preferred_zone, order)) { 2224 *deferred_compaction = true; 2225 return NULL; 2226 } 2227 2228 current->flags |= PF_MEMALLOC; 2229 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2230 nodemask, sync_migration, 2231 contended_compaction); 2232 current->flags &= ~PF_MEMALLOC; 2233 2234 if (*did_some_progress != COMPACT_SKIPPED) { 2235 struct page *page; 2236 2237 /* Page migration frees to the PCP lists but we want merging */ 2238 drain_pages(get_cpu()); 2239 put_cpu(); 2240 2241 page = get_page_from_freelist(gfp_mask, nodemask, 2242 order, zonelist, high_zoneidx, 2243 alloc_flags & ~ALLOC_NO_WATERMARKS, 2244 preferred_zone, migratetype); 2245 if (page) { 2246 preferred_zone->compact_blockskip_flush = false; 2247 preferred_zone->compact_considered = 0; 2248 preferred_zone->compact_defer_shift = 0; 2249 if (order >= preferred_zone->compact_order_failed) 2250 preferred_zone->compact_order_failed = order + 1; 2251 count_vm_event(COMPACTSUCCESS); 2252 return page; 2253 } 2254 2255 /* 2256 * It's bad if compaction run occurs and fails. 2257 * The most likely reason is that pages exist, 2258 * but not enough to satisfy watermarks. 2259 */ 2260 count_vm_event(COMPACTFAIL); 2261 2262 /* 2263 * As async compaction considers a subset of pageblocks, only 2264 * defer if the failure was a sync compaction failure. 2265 */ 2266 if (sync_migration) 2267 defer_compaction(preferred_zone, order); 2268 2269 cond_resched(); 2270 } 2271 2272 return NULL; 2273 } 2274 #else 2275 static inline struct page * 2276 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2277 struct zonelist *zonelist, enum zone_type high_zoneidx, 2278 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2279 int migratetype, bool sync_migration, 2280 bool *contended_compaction, bool *deferred_compaction, 2281 unsigned long *did_some_progress) 2282 { 2283 return NULL; 2284 } 2285 #endif /* CONFIG_COMPACTION */ 2286 2287 /* Perform direct synchronous page reclaim */ 2288 static int 2289 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2290 nodemask_t *nodemask) 2291 { 2292 struct reclaim_state reclaim_state; 2293 int progress; 2294 2295 cond_resched(); 2296 2297 /* We now go into synchronous reclaim */ 2298 cpuset_memory_pressure_bump(); 2299 current->flags |= PF_MEMALLOC; 2300 lockdep_set_current_reclaim_state(gfp_mask); 2301 reclaim_state.reclaimed_slab = 0; 2302 current->reclaim_state = &reclaim_state; 2303 2304 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2305 2306 current->reclaim_state = NULL; 2307 lockdep_clear_current_reclaim_state(); 2308 current->flags &= ~PF_MEMALLOC; 2309 2310 cond_resched(); 2311 2312 return progress; 2313 } 2314 2315 /* The really slow allocator path where we enter direct reclaim */ 2316 static inline struct page * 2317 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2318 struct zonelist *zonelist, enum zone_type high_zoneidx, 2319 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2320 int migratetype, unsigned long *did_some_progress) 2321 { 2322 struct page *page = NULL; 2323 bool drained = false; 2324 2325 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2326 nodemask); 2327 if (unlikely(!(*did_some_progress))) 2328 return NULL; 2329 2330 /* After successful reclaim, reconsider all zones for allocation */ 2331 if (IS_ENABLED(CONFIG_NUMA)) 2332 zlc_clear_zones_full(zonelist); 2333 2334 retry: 2335 page = get_page_from_freelist(gfp_mask, nodemask, order, 2336 zonelist, high_zoneidx, 2337 alloc_flags & ~ALLOC_NO_WATERMARKS, 2338 preferred_zone, migratetype); 2339 2340 /* 2341 * If an allocation failed after direct reclaim, it could be because 2342 * pages are pinned on the per-cpu lists. Drain them and try again 2343 */ 2344 if (!page && !drained) { 2345 drain_all_pages(); 2346 drained = true; 2347 goto retry; 2348 } 2349 2350 return page; 2351 } 2352 2353 /* 2354 * This is called in the allocator slow-path if the allocation request is of 2355 * sufficient urgency to ignore watermarks and take other desperate measures 2356 */ 2357 static inline struct page * 2358 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2359 struct zonelist *zonelist, enum zone_type high_zoneidx, 2360 nodemask_t *nodemask, struct zone *preferred_zone, 2361 int migratetype) 2362 { 2363 struct page *page; 2364 2365 do { 2366 page = get_page_from_freelist(gfp_mask, nodemask, order, 2367 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2368 preferred_zone, migratetype); 2369 2370 if (!page && gfp_mask & __GFP_NOFAIL) 2371 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2372 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2373 2374 return page; 2375 } 2376 2377 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order, 2378 struct zonelist *zonelist, 2379 enum zone_type high_zoneidx, 2380 struct zone *preferred_zone) 2381 { 2382 struct zoneref *z; 2383 struct zone *zone; 2384 2385 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 2386 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2387 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2388 /* 2389 * Only reset the batches of zones that were actually 2390 * considered in the fast path, we don't want to 2391 * thrash fairness information for zones that are not 2392 * actually part of this zonelist's round-robin cycle. 2393 */ 2394 if (zone_reclaim_mode && !zone_local(preferred_zone, zone)) 2395 continue; 2396 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2397 high_wmark_pages(zone) - 2398 low_wmark_pages(zone) - 2399 zone_page_state(zone, NR_ALLOC_BATCH)); 2400 } 2401 } 2402 2403 static inline int 2404 gfp_to_alloc_flags(gfp_t gfp_mask) 2405 { 2406 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2407 const gfp_t wait = gfp_mask & __GFP_WAIT; 2408 2409 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2410 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2411 2412 /* 2413 * The caller may dip into page reserves a bit more if the caller 2414 * cannot run direct reclaim, or if the caller has realtime scheduling 2415 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2416 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2417 */ 2418 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2419 2420 if (!wait) { 2421 /* 2422 * Not worth trying to allocate harder for 2423 * __GFP_NOMEMALLOC even if it can't schedule. 2424 */ 2425 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2426 alloc_flags |= ALLOC_HARDER; 2427 /* 2428 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2429 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2430 */ 2431 alloc_flags &= ~ALLOC_CPUSET; 2432 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2433 alloc_flags |= ALLOC_HARDER; 2434 2435 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2436 if (gfp_mask & __GFP_MEMALLOC) 2437 alloc_flags |= ALLOC_NO_WATERMARKS; 2438 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2439 alloc_flags |= ALLOC_NO_WATERMARKS; 2440 else if (!in_interrupt() && 2441 ((current->flags & PF_MEMALLOC) || 2442 unlikely(test_thread_flag(TIF_MEMDIE)))) 2443 alloc_flags |= ALLOC_NO_WATERMARKS; 2444 } 2445 #ifdef CONFIG_CMA 2446 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2447 alloc_flags |= ALLOC_CMA; 2448 #endif 2449 return alloc_flags; 2450 } 2451 2452 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2453 { 2454 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2455 } 2456 2457 static inline struct page * 2458 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2459 struct zonelist *zonelist, enum zone_type high_zoneidx, 2460 nodemask_t *nodemask, struct zone *preferred_zone, 2461 int migratetype) 2462 { 2463 const gfp_t wait = gfp_mask & __GFP_WAIT; 2464 struct page *page = NULL; 2465 int alloc_flags; 2466 unsigned long pages_reclaimed = 0; 2467 unsigned long did_some_progress; 2468 bool sync_migration = false; 2469 bool deferred_compaction = false; 2470 bool contended_compaction = false; 2471 2472 /* 2473 * In the slowpath, we sanity check order to avoid ever trying to 2474 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2475 * be using allocators in order of preference for an area that is 2476 * too large. 2477 */ 2478 if (order >= MAX_ORDER) { 2479 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2480 return NULL; 2481 } 2482 2483 /* 2484 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2485 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2486 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2487 * using a larger set of nodes after it has established that the 2488 * allowed per node queues are empty and that nodes are 2489 * over allocated. 2490 */ 2491 if (IS_ENABLED(CONFIG_NUMA) && 2492 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2493 goto nopage; 2494 2495 restart: 2496 prepare_slowpath(gfp_mask, order, zonelist, 2497 high_zoneidx, preferred_zone); 2498 2499 /* 2500 * OK, we're below the kswapd watermark and have kicked background 2501 * reclaim. Now things get more complex, so set up alloc_flags according 2502 * to how we want to proceed. 2503 */ 2504 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2505 2506 /* 2507 * Find the true preferred zone if the allocation is unconstrained by 2508 * cpusets. 2509 */ 2510 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2511 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2512 &preferred_zone); 2513 2514 rebalance: 2515 /* This is the last chance, in general, before the goto nopage. */ 2516 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2517 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2518 preferred_zone, migratetype); 2519 if (page) 2520 goto got_pg; 2521 2522 /* Allocate without watermarks if the context allows */ 2523 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2524 /* 2525 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2526 * the allocation is high priority and these type of 2527 * allocations are system rather than user orientated 2528 */ 2529 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2530 2531 page = __alloc_pages_high_priority(gfp_mask, order, 2532 zonelist, high_zoneidx, nodemask, 2533 preferred_zone, migratetype); 2534 if (page) { 2535 goto got_pg; 2536 } 2537 } 2538 2539 /* Atomic allocations - we can't balance anything */ 2540 if (!wait) 2541 goto nopage; 2542 2543 /* Avoid recursion of direct reclaim */ 2544 if (current->flags & PF_MEMALLOC) 2545 goto nopage; 2546 2547 /* Avoid allocations with no watermarks from looping endlessly */ 2548 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2549 goto nopage; 2550 2551 /* 2552 * Try direct compaction. The first pass is asynchronous. Subsequent 2553 * attempts after direct reclaim are synchronous 2554 */ 2555 page = __alloc_pages_direct_compact(gfp_mask, order, 2556 zonelist, high_zoneidx, 2557 nodemask, 2558 alloc_flags, preferred_zone, 2559 migratetype, sync_migration, 2560 &contended_compaction, 2561 &deferred_compaction, 2562 &did_some_progress); 2563 if (page) 2564 goto got_pg; 2565 sync_migration = true; 2566 2567 /* 2568 * If compaction is deferred for high-order allocations, it is because 2569 * sync compaction recently failed. In this is the case and the caller 2570 * requested a movable allocation that does not heavily disrupt the 2571 * system then fail the allocation instead of entering direct reclaim. 2572 */ 2573 if ((deferred_compaction || contended_compaction) && 2574 (gfp_mask & __GFP_NO_KSWAPD)) 2575 goto nopage; 2576 2577 /* Try direct reclaim and then allocating */ 2578 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2579 zonelist, high_zoneidx, 2580 nodemask, 2581 alloc_flags, preferred_zone, 2582 migratetype, &did_some_progress); 2583 if (page) 2584 goto got_pg; 2585 2586 /* 2587 * If we failed to make any progress reclaiming, then we are 2588 * running out of options and have to consider going OOM 2589 */ 2590 if (!did_some_progress) { 2591 if (oom_gfp_allowed(gfp_mask)) { 2592 if (oom_killer_disabled) 2593 goto nopage; 2594 /* Coredumps can quickly deplete all memory reserves */ 2595 if ((current->flags & PF_DUMPCORE) && 2596 !(gfp_mask & __GFP_NOFAIL)) 2597 goto nopage; 2598 page = __alloc_pages_may_oom(gfp_mask, order, 2599 zonelist, high_zoneidx, 2600 nodemask, preferred_zone, 2601 migratetype); 2602 if (page) 2603 goto got_pg; 2604 2605 if (!(gfp_mask & __GFP_NOFAIL)) { 2606 /* 2607 * The oom killer is not called for high-order 2608 * allocations that may fail, so if no progress 2609 * is being made, there are no other options and 2610 * retrying is unlikely to help. 2611 */ 2612 if (order > PAGE_ALLOC_COSTLY_ORDER) 2613 goto nopage; 2614 /* 2615 * The oom killer is not called for lowmem 2616 * allocations to prevent needlessly killing 2617 * innocent tasks. 2618 */ 2619 if (high_zoneidx < ZONE_NORMAL) 2620 goto nopage; 2621 } 2622 2623 goto restart; 2624 } 2625 } 2626 2627 /* Check if we should retry the allocation */ 2628 pages_reclaimed += did_some_progress; 2629 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2630 pages_reclaimed)) { 2631 /* Wait for some write requests to complete then retry */ 2632 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2633 goto rebalance; 2634 } else { 2635 /* 2636 * High-order allocations do not necessarily loop after 2637 * direct reclaim and reclaim/compaction depends on compaction 2638 * being called after reclaim so call directly if necessary 2639 */ 2640 page = __alloc_pages_direct_compact(gfp_mask, order, 2641 zonelist, high_zoneidx, 2642 nodemask, 2643 alloc_flags, preferred_zone, 2644 migratetype, sync_migration, 2645 &contended_compaction, 2646 &deferred_compaction, 2647 &did_some_progress); 2648 if (page) 2649 goto got_pg; 2650 } 2651 2652 nopage: 2653 warn_alloc_failed(gfp_mask, order, NULL); 2654 return page; 2655 got_pg: 2656 if (kmemcheck_enabled) 2657 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2658 2659 return page; 2660 } 2661 2662 /* 2663 * This is the 'heart' of the zoned buddy allocator. 2664 */ 2665 struct page * 2666 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2667 struct zonelist *zonelist, nodemask_t *nodemask) 2668 { 2669 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2670 struct zone *preferred_zone; 2671 struct page *page = NULL; 2672 int migratetype = allocflags_to_migratetype(gfp_mask); 2673 unsigned int cpuset_mems_cookie; 2674 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2675 struct mem_cgroup *memcg = NULL; 2676 2677 gfp_mask &= gfp_allowed_mask; 2678 2679 lockdep_trace_alloc(gfp_mask); 2680 2681 might_sleep_if(gfp_mask & __GFP_WAIT); 2682 2683 if (should_fail_alloc_page(gfp_mask, order)) 2684 return NULL; 2685 2686 /* 2687 * Check the zones suitable for the gfp_mask contain at least one 2688 * valid zone. It's possible to have an empty zonelist as a result 2689 * of GFP_THISNODE and a memoryless node 2690 */ 2691 if (unlikely(!zonelist->_zonerefs->zone)) 2692 return NULL; 2693 2694 /* 2695 * Will only have any effect when __GFP_KMEMCG is set. This is 2696 * verified in the (always inline) callee 2697 */ 2698 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2699 return NULL; 2700 2701 retry_cpuset: 2702 cpuset_mems_cookie = get_mems_allowed(); 2703 2704 /* The preferred zone is used for statistics later */ 2705 first_zones_zonelist(zonelist, high_zoneidx, 2706 nodemask ? : &cpuset_current_mems_allowed, 2707 &preferred_zone); 2708 if (!preferred_zone) 2709 goto out; 2710 2711 #ifdef CONFIG_CMA 2712 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2713 alloc_flags |= ALLOC_CMA; 2714 #endif 2715 /* First allocation attempt */ 2716 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2717 zonelist, high_zoneidx, alloc_flags, 2718 preferred_zone, migratetype); 2719 if (unlikely(!page)) { 2720 /* 2721 * Runtime PM, block IO and its error handling path 2722 * can deadlock because I/O on the device might not 2723 * complete. 2724 */ 2725 gfp_mask = memalloc_noio_flags(gfp_mask); 2726 page = __alloc_pages_slowpath(gfp_mask, order, 2727 zonelist, high_zoneidx, nodemask, 2728 preferred_zone, migratetype); 2729 } 2730 2731 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2732 2733 out: 2734 /* 2735 * When updating a task's mems_allowed, it is possible to race with 2736 * parallel threads in such a way that an allocation can fail while 2737 * the mask is being updated. If a page allocation is about to fail, 2738 * check if the cpuset changed during allocation and if so, retry. 2739 */ 2740 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2741 goto retry_cpuset; 2742 2743 memcg_kmem_commit_charge(page, memcg, order); 2744 2745 return page; 2746 } 2747 EXPORT_SYMBOL(__alloc_pages_nodemask); 2748 2749 /* 2750 * Common helper functions. 2751 */ 2752 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2753 { 2754 struct page *page; 2755 2756 /* 2757 * __get_free_pages() returns a 32-bit address, which cannot represent 2758 * a highmem page 2759 */ 2760 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2761 2762 page = alloc_pages(gfp_mask, order); 2763 if (!page) 2764 return 0; 2765 return (unsigned long) page_address(page); 2766 } 2767 EXPORT_SYMBOL(__get_free_pages); 2768 2769 unsigned long get_zeroed_page(gfp_t gfp_mask) 2770 { 2771 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2772 } 2773 EXPORT_SYMBOL(get_zeroed_page); 2774 2775 void __free_pages(struct page *page, unsigned int order) 2776 { 2777 if (put_page_testzero(page)) { 2778 if (order == 0) 2779 free_hot_cold_page(page, 0); 2780 else 2781 __free_pages_ok(page, order); 2782 } 2783 } 2784 2785 EXPORT_SYMBOL(__free_pages); 2786 2787 void free_pages(unsigned long addr, unsigned int order) 2788 { 2789 if (addr != 0) { 2790 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2791 __free_pages(virt_to_page((void *)addr), order); 2792 } 2793 } 2794 2795 EXPORT_SYMBOL(free_pages); 2796 2797 /* 2798 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2799 * pages allocated with __GFP_KMEMCG. 2800 * 2801 * Those pages are accounted to a particular memcg, embedded in the 2802 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2803 * for that information only to find out that it is NULL for users who have no 2804 * interest in that whatsoever, we provide these functions. 2805 * 2806 * The caller knows better which flags it relies on. 2807 */ 2808 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2809 { 2810 memcg_kmem_uncharge_pages(page, order); 2811 __free_pages(page, order); 2812 } 2813 2814 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2815 { 2816 if (addr != 0) { 2817 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2818 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2819 } 2820 } 2821 2822 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2823 { 2824 if (addr) { 2825 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2826 unsigned long used = addr + PAGE_ALIGN(size); 2827 2828 split_page(virt_to_page((void *)addr), order); 2829 while (used < alloc_end) { 2830 free_page(used); 2831 used += PAGE_SIZE; 2832 } 2833 } 2834 return (void *)addr; 2835 } 2836 2837 /** 2838 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2839 * @size: the number of bytes to allocate 2840 * @gfp_mask: GFP flags for the allocation 2841 * 2842 * This function is similar to alloc_pages(), except that it allocates the 2843 * minimum number of pages to satisfy the request. alloc_pages() can only 2844 * allocate memory in power-of-two pages. 2845 * 2846 * This function is also limited by MAX_ORDER. 2847 * 2848 * Memory allocated by this function must be released by free_pages_exact(). 2849 */ 2850 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2851 { 2852 unsigned int order = get_order(size); 2853 unsigned long addr; 2854 2855 addr = __get_free_pages(gfp_mask, order); 2856 return make_alloc_exact(addr, order, size); 2857 } 2858 EXPORT_SYMBOL(alloc_pages_exact); 2859 2860 /** 2861 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2862 * pages on a node. 2863 * @nid: the preferred node ID where memory should be allocated 2864 * @size: the number of bytes to allocate 2865 * @gfp_mask: GFP flags for the allocation 2866 * 2867 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2868 * back. 2869 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2870 * but is not exact. 2871 */ 2872 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2873 { 2874 unsigned order = get_order(size); 2875 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2876 if (!p) 2877 return NULL; 2878 return make_alloc_exact((unsigned long)page_address(p), order, size); 2879 } 2880 EXPORT_SYMBOL(alloc_pages_exact_nid); 2881 2882 /** 2883 * free_pages_exact - release memory allocated via alloc_pages_exact() 2884 * @virt: the value returned by alloc_pages_exact. 2885 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2886 * 2887 * Release the memory allocated by a previous call to alloc_pages_exact. 2888 */ 2889 void free_pages_exact(void *virt, size_t size) 2890 { 2891 unsigned long addr = (unsigned long)virt; 2892 unsigned long end = addr + PAGE_ALIGN(size); 2893 2894 while (addr < end) { 2895 free_page(addr); 2896 addr += PAGE_SIZE; 2897 } 2898 } 2899 EXPORT_SYMBOL(free_pages_exact); 2900 2901 /** 2902 * nr_free_zone_pages - count number of pages beyond high watermark 2903 * @offset: The zone index of the highest zone 2904 * 2905 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2906 * high watermark within all zones at or below a given zone index. For each 2907 * zone, the number of pages is calculated as: 2908 * managed_pages - high_pages 2909 */ 2910 static unsigned long nr_free_zone_pages(int offset) 2911 { 2912 struct zoneref *z; 2913 struct zone *zone; 2914 2915 /* Just pick one node, since fallback list is circular */ 2916 unsigned long sum = 0; 2917 2918 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2919 2920 for_each_zone_zonelist(zone, z, zonelist, offset) { 2921 unsigned long size = zone->managed_pages; 2922 unsigned long high = high_wmark_pages(zone); 2923 if (size > high) 2924 sum += size - high; 2925 } 2926 2927 return sum; 2928 } 2929 2930 /** 2931 * nr_free_buffer_pages - count number of pages beyond high watermark 2932 * 2933 * nr_free_buffer_pages() counts the number of pages which are beyond the high 2934 * watermark within ZONE_DMA and ZONE_NORMAL. 2935 */ 2936 unsigned long nr_free_buffer_pages(void) 2937 { 2938 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2939 } 2940 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2941 2942 /** 2943 * nr_free_pagecache_pages - count number of pages beyond high watermark 2944 * 2945 * nr_free_pagecache_pages() counts the number of pages which are beyond the 2946 * high watermark within all zones. 2947 */ 2948 unsigned long nr_free_pagecache_pages(void) 2949 { 2950 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2951 } 2952 2953 static inline void show_node(struct zone *zone) 2954 { 2955 if (IS_ENABLED(CONFIG_NUMA)) 2956 printk("Node %d ", zone_to_nid(zone)); 2957 } 2958 2959 void si_meminfo(struct sysinfo *val) 2960 { 2961 val->totalram = totalram_pages; 2962 val->sharedram = 0; 2963 val->freeram = global_page_state(NR_FREE_PAGES); 2964 val->bufferram = nr_blockdev_pages(); 2965 val->totalhigh = totalhigh_pages; 2966 val->freehigh = nr_free_highpages(); 2967 val->mem_unit = PAGE_SIZE; 2968 } 2969 2970 EXPORT_SYMBOL(si_meminfo); 2971 2972 #ifdef CONFIG_NUMA 2973 void si_meminfo_node(struct sysinfo *val, int nid) 2974 { 2975 int zone_type; /* needs to be signed */ 2976 unsigned long managed_pages = 0; 2977 pg_data_t *pgdat = NODE_DATA(nid); 2978 2979 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 2980 managed_pages += pgdat->node_zones[zone_type].managed_pages; 2981 val->totalram = managed_pages; 2982 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2983 #ifdef CONFIG_HIGHMEM 2984 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 2985 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2986 NR_FREE_PAGES); 2987 #else 2988 val->totalhigh = 0; 2989 val->freehigh = 0; 2990 #endif 2991 val->mem_unit = PAGE_SIZE; 2992 } 2993 #endif 2994 2995 /* 2996 * Determine whether the node should be displayed or not, depending on whether 2997 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2998 */ 2999 bool skip_free_areas_node(unsigned int flags, int nid) 3000 { 3001 bool ret = false; 3002 unsigned int cpuset_mems_cookie; 3003 3004 if (!(flags & SHOW_MEM_FILTER_NODES)) 3005 goto out; 3006 3007 do { 3008 cpuset_mems_cookie = get_mems_allowed(); 3009 ret = !node_isset(nid, cpuset_current_mems_allowed); 3010 } while (!put_mems_allowed(cpuset_mems_cookie)); 3011 out: 3012 return ret; 3013 } 3014 3015 #define K(x) ((x) << (PAGE_SHIFT-10)) 3016 3017 static void show_migration_types(unsigned char type) 3018 { 3019 static const char types[MIGRATE_TYPES] = { 3020 [MIGRATE_UNMOVABLE] = 'U', 3021 [MIGRATE_RECLAIMABLE] = 'E', 3022 [MIGRATE_MOVABLE] = 'M', 3023 [MIGRATE_RESERVE] = 'R', 3024 #ifdef CONFIG_CMA 3025 [MIGRATE_CMA] = 'C', 3026 #endif 3027 #ifdef CONFIG_MEMORY_ISOLATION 3028 [MIGRATE_ISOLATE] = 'I', 3029 #endif 3030 }; 3031 char tmp[MIGRATE_TYPES + 1]; 3032 char *p = tmp; 3033 int i; 3034 3035 for (i = 0; i < MIGRATE_TYPES; i++) { 3036 if (type & (1 << i)) 3037 *p++ = types[i]; 3038 } 3039 3040 *p = '\0'; 3041 printk("(%s) ", tmp); 3042 } 3043 3044 /* 3045 * Show free area list (used inside shift_scroll-lock stuff) 3046 * We also calculate the percentage fragmentation. We do this by counting the 3047 * memory on each free list with the exception of the first item on the list. 3048 * Suppresses nodes that are not allowed by current's cpuset if 3049 * SHOW_MEM_FILTER_NODES is passed. 3050 */ 3051 void show_free_areas(unsigned int filter) 3052 { 3053 int cpu; 3054 struct zone *zone; 3055 3056 for_each_populated_zone(zone) { 3057 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3058 continue; 3059 show_node(zone); 3060 printk("%s per-cpu:\n", zone->name); 3061 3062 for_each_online_cpu(cpu) { 3063 struct per_cpu_pageset *pageset; 3064 3065 pageset = per_cpu_ptr(zone->pageset, cpu); 3066 3067 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3068 cpu, pageset->pcp.high, 3069 pageset->pcp.batch, pageset->pcp.count); 3070 } 3071 } 3072 3073 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3074 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3075 " unevictable:%lu" 3076 " dirty:%lu writeback:%lu unstable:%lu\n" 3077 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3078 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3079 " free_cma:%lu\n", 3080 global_page_state(NR_ACTIVE_ANON), 3081 global_page_state(NR_INACTIVE_ANON), 3082 global_page_state(NR_ISOLATED_ANON), 3083 global_page_state(NR_ACTIVE_FILE), 3084 global_page_state(NR_INACTIVE_FILE), 3085 global_page_state(NR_ISOLATED_FILE), 3086 global_page_state(NR_UNEVICTABLE), 3087 global_page_state(NR_FILE_DIRTY), 3088 global_page_state(NR_WRITEBACK), 3089 global_page_state(NR_UNSTABLE_NFS), 3090 global_page_state(NR_FREE_PAGES), 3091 global_page_state(NR_SLAB_RECLAIMABLE), 3092 global_page_state(NR_SLAB_UNRECLAIMABLE), 3093 global_page_state(NR_FILE_MAPPED), 3094 global_page_state(NR_SHMEM), 3095 global_page_state(NR_PAGETABLE), 3096 global_page_state(NR_BOUNCE), 3097 global_page_state(NR_FREE_CMA_PAGES)); 3098 3099 for_each_populated_zone(zone) { 3100 int i; 3101 3102 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3103 continue; 3104 show_node(zone); 3105 printk("%s" 3106 " free:%lukB" 3107 " min:%lukB" 3108 " low:%lukB" 3109 " high:%lukB" 3110 " active_anon:%lukB" 3111 " inactive_anon:%lukB" 3112 " active_file:%lukB" 3113 " inactive_file:%lukB" 3114 " unevictable:%lukB" 3115 " isolated(anon):%lukB" 3116 " isolated(file):%lukB" 3117 " present:%lukB" 3118 " managed:%lukB" 3119 " mlocked:%lukB" 3120 " dirty:%lukB" 3121 " writeback:%lukB" 3122 " mapped:%lukB" 3123 " shmem:%lukB" 3124 " slab_reclaimable:%lukB" 3125 " slab_unreclaimable:%lukB" 3126 " kernel_stack:%lukB" 3127 " pagetables:%lukB" 3128 " unstable:%lukB" 3129 " bounce:%lukB" 3130 " free_cma:%lukB" 3131 " writeback_tmp:%lukB" 3132 " pages_scanned:%lu" 3133 " all_unreclaimable? %s" 3134 "\n", 3135 zone->name, 3136 K(zone_page_state(zone, NR_FREE_PAGES)), 3137 K(min_wmark_pages(zone)), 3138 K(low_wmark_pages(zone)), 3139 K(high_wmark_pages(zone)), 3140 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3141 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3142 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3143 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3144 K(zone_page_state(zone, NR_UNEVICTABLE)), 3145 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3146 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3147 K(zone->present_pages), 3148 K(zone->managed_pages), 3149 K(zone_page_state(zone, NR_MLOCK)), 3150 K(zone_page_state(zone, NR_FILE_DIRTY)), 3151 K(zone_page_state(zone, NR_WRITEBACK)), 3152 K(zone_page_state(zone, NR_FILE_MAPPED)), 3153 K(zone_page_state(zone, NR_SHMEM)), 3154 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3155 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3156 zone_page_state(zone, NR_KERNEL_STACK) * 3157 THREAD_SIZE / 1024, 3158 K(zone_page_state(zone, NR_PAGETABLE)), 3159 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3160 K(zone_page_state(zone, NR_BOUNCE)), 3161 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3162 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3163 zone->pages_scanned, 3164 (!zone_reclaimable(zone) ? "yes" : "no") 3165 ); 3166 printk("lowmem_reserve[]:"); 3167 for (i = 0; i < MAX_NR_ZONES; i++) 3168 printk(" %lu", zone->lowmem_reserve[i]); 3169 printk("\n"); 3170 } 3171 3172 for_each_populated_zone(zone) { 3173 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3174 unsigned char types[MAX_ORDER]; 3175 3176 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3177 continue; 3178 show_node(zone); 3179 printk("%s: ", zone->name); 3180 3181 spin_lock_irqsave(&zone->lock, flags); 3182 for (order = 0; order < MAX_ORDER; order++) { 3183 struct free_area *area = &zone->free_area[order]; 3184 int type; 3185 3186 nr[order] = area->nr_free; 3187 total += nr[order] << order; 3188 3189 types[order] = 0; 3190 for (type = 0; type < MIGRATE_TYPES; type++) { 3191 if (!list_empty(&area->free_list[type])) 3192 types[order] |= 1 << type; 3193 } 3194 } 3195 spin_unlock_irqrestore(&zone->lock, flags); 3196 for (order = 0; order < MAX_ORDER; order++) { 3197 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3198 if (nr[order]) 3199 show_migration_types(types[order]); 3200 } 3201 printk("= %lukB\n", K(total)); 3202 } 3203 3204 hugetlb_show_meminfo(); 3205 3206 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3207 3208 show_swap_cache_info(); 3209 } 3210 3211 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3212 { 3213 zoneref->zone = zone; 3214 zoneref->zone_idx = zone_idx(zone); 3215 } 3216 3217 /* 3218 * Builds allocation fallback zone lists. 3219 * 3220 * Add all populated zones of a node to the zonelist. 3221 */ 3222 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3223 int nr_zones) 3224 { 3225 struct zone *zone; 3226 enum zone_type zone_type = MAX_NR_ZONES; 3227 3228 do { 3229 zone_type--; 3230 zone = pgdat->node_zones + zone_type; 3231 if (populated_zone(zone)) { 3232 zoneref_set_zone(zone, 3233 &zonelist->_zonerefs[nr_zones++]); 3234 check_highest_zone(zone_type); 3235 } 3236 } while (zone_type); 3237 3238 return nr_zones; 3239 } 3240 3241 3242 /* 3243 * zonelist_order: 3244 * 0 = automatic detection of better ordering. 3245 * 1 = order by ([node] distance, -zonetype) 3246 * 2 = order by (-zonetype, [node] distance) 3247 * 3248 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3249 * the same zonelist. So only NUMA can configure this param. 3250 */ 3251 #define ZONELIST_ORDER_DEFAULT 0 3252 #define ZONELIST_ORDER_NODE 1 3253 #define ZONELIST_ORDER_ZONE 2 3254 3255 /* zonelist order in the kernel. 3256 * set_zonelist_order() will set this to NODE or ZONE. 3257 */ 3258 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3259 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3260 3261 3262 #ifdef CONFIG_NUMA 3263 /* The value user specified ....changed by config */ 3264 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3265 /* string for sysctl */ 3266 #define NUMA_ZONELIST_ORDER_LEN 16 3267 char numa_zonelist_order[16] = "default"; 3268 3269 /* 3270 * interface for configure zonelist ordering. 3271 * command line option "numa_zonelist_order" 3272 * = "[dD]efault - default, automatic configuration. 3273 * = "[nN]ode - order by node locality, then by zone within node 3274 * = "[zZ]one - order by zone, then by locality within zone 3275 */ 3276 3277 static int __parse_numa_zonelist_order(char *s) 3278 { 3279 if (*s == 'd' || *s == 'D') { 3280 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3281 } else if (*s == 'n' || *s == 'N') { 3282 user_zonelist_order = ZONELIST_ORDER_NODE; 3283 } else if (*s == 'z' || *s == 'Z') { 3284 user_zonelist_order = ZONELIST_ORDER_ZONE; 3285 } else { 3286 printk(KERN_WARNING 3287 "Ignoring invalid numa_zonelist_order value: " 3288 "%s\n", s); 3289 return -EINVAL; 3290 } 3291 return 0; 3292 } 3293 3294 static __init int setup_numa_zonelist_order(char *s) 3295 { 3296 int ret; 3297 3298 if (!s) 3299 return 0; 3300 3301 ret = __parse_numa_zonelist_order(s); 3302 if (ret == 0) 3303 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3304 3305 return ret; 3306 } 3307 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3308 3309 /* 3310 * sysctl handler for numa_zonelist_order 3311 */ 3312 int numa_zonelist_order_handler(ctl_table *table, int write, 3313 void __user *buffer, size_t *length, 3314 loff_t *ppos) 3315 { 3316 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3317 int ret; 3318 static DEFINE_MUTEX(zl_order_mutex); 3319 3320 mutex_lock(&zl_order_mutex); 3321 if (write) { 3322 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3323 ret = -EINVAL; 3324 goto out; 3325 } 3326 strcpy(saved_string, (char *)table->data); 3327 } 3328 ret = proc_dostring(table, write, buffer, length, ppos); 3329 if (ret) 3330 goto out; 3331 if (write) { 3332 int oldval = user_zonelist_order; 3333 3334 ret = __parse_numa_zonelist_order((char *)table->data); 3335 if (ret) { 3336 /* 3337 * bogus value. restore saved string 3338 */ 3339 strncpy((char *)table->data, saved_string, 3340 NUMA_ZONELIST_ORDER_LEN); 3341 user_zonelist_order = oldval; 3342 } else if (oldval != user_zonelist_order) { 3343 mutex_lock(&zonelists_mutex); 3344 build_all_zonelists(NULL, NULL); 3345 mutex_unlock(&zonelists_mutex); 3346 } 3347 } 3348 out: 3349 mutex_unlock(&zl_order_mutex); 3350 return ret; 3351 } 3352 3353 3354 #define MAX_NODE_LOAD (nr_online_nodes) 3355 static int node_load[MAX_NUMNODES]; 3356 3357 /** 3358 * find_next_best_node - find the next node that should appear in a given node's fallback list 3359 * @node: node whose fallback list we're appending 3360 * @used_node_mask: nodemask_t of already used nodes 3361 * 3362 * We use a number of factors to determine which is the next node that should 3363 * appear on a given node's fallback list. The node should not have appeared 3364 * already in @node's fallback list, and it should be the next closest node 3365 * according to the distance array (which contains arbitrary distance values 3366 * from each node to each node in the system), and should also prefer nodes 3367 * with no CPUs, since presumably they'll have very little allocation pressure 3368 * on them otherwise. 3369 * It returns -1 if no node is found. 3370 */ 3371 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3372 { 3373 int n, val; 3374 int min_val = INT_MAX; 3375 int best_node = NUMA_NO_NODE; 3376 const struct cpumask *tmp = cpumask_of_node(0); 3377 3378 /* Use the local node if we haven't already */ 3379 if (!node_isset(node, *used_node_mask)) { 3380 node_set(node, *used_node_mask); 3381 return node; 3382 } 3383 3384 for_each_node_state(n, N_MEMORY) { 3385 3386 /* Don't want a node to appear more than once */ 3387 if (node_isset(n, *used_node_mask)) 3388 continue; 3389 3390 /* Use the distance array to find the distance */ 3391 val = node_distance(node, n); 3392 3393 /* Penalize nodes under us ("prefer the next node") */ 3394 val += (n < node); 3395 3396 /* Give preference to headless and unused nodes */ 3397 tmp = cpumask_of_node(n); 3398 if (!cpumask_empty(tmp)) 3399 val += PENALTY_FOR_NODE_WITH_CPUS; 3400 3401 /* Slight preference for less loaded node */ 3402 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3403 val += node_load[n]; 3404 3405 if (val < min_val) { 3406 min_val = val; 3407 best_node = n; 3408 } 3409 } 3410 3411 if (best_node >= 0) 3412 node_set(best_node, *used_node_mask); 3413 3414 return best_node; 3415 } 3416 3417 3418 /* 3419 * Build zonelists ordered by node and zones within node. 3420 * This results in maximum locality--normal zone overflows into local 3421 * DMA zone, if any--but risks exhausting DMA zone. 3422 */ 3423 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3424 { 3425 int j; 3426 struct zonelist *zonelist; 3427 3428 zonelist = &pgdat->node_zonelists[0]; 3429 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3430 ; 3431 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3432 zonelist->_zonerefs[j].zone = NULL; 3433 zonelist->_zonerefs[j].zone_idx = 0; 3434 } 3435 3436 /* 3437 * Build gfp_thisnode zonelists 3438 */ 3439 static void build_thisnode_zonelists(pg_data_t *pgdat) 3440 { 3441 int j; 3442 struct zonelist *zonelist; 3443 3444 zonelist = &pgdat->node_zonelists[1]; 3445 j = build_zonelists_node(pgdat, zonelist, 0); 3446 zonelist->_zonerefs[j].zone = NULL; 3447 zonelist->_zonerefs[j].zone_idx = 0; 3448 } 3449 3450 /* 3451 * Build zonelists ordered by zone and nodes within zones. 3452 * This results in conserving DMA zone[s] until all Normal memory is 3453 * exhausted, but results in overflowing to remote node while memory 3454 * may still exist in local DMA zone. 3455 */ 3456 static int node_order[MAX_NUMNODES]; 3457 3458 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3459 { 3460 int pos, j, node; 3461 int zone_type; /* needs to be signed */ 3462 struct zone *z; 3463 struct zonelist *zonelist; 3464 3465 zonelist = &pgdat->node_zonelists[0]; 3466 pos = 0; 3467 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3468 for (j = 0; j < nr_nodes; j++) { 3469 node = node_order[j]; 3470 z = &NODE_DATA(node)->node_zones[zone_type]; 3471 if (populated_zone(z)) { 3472 zoneref_set_zone(z, 3473 &zonelist->_zonerefs[pos++]); 3474 check_highest_zone(zone_type); 3475 } 3476 } 3477 } 3478 zonelist->_zonerefs[pos].zone = NULL; 3479 zonelist->_zonerefs[pos].zone_idx = 0; 3480 } 3481 3482 static int default_zonelist_order(void) 3483 { 3484 int nid, zone_type; 3485 unsigned long low_kmem_size, total_size; 3486 struct zone *z; 3487 int average_size; 3488 /* 3489 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3490 * If they are really small and used heavily, the system can fall 3491 * into OOM very easily. 3492 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3493 */ 3494 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3495 low_kmem_size = 0; 3496 total_size = 0; 3497 for_each_online_node(nid) { 3498 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3499 z = &NODE_DATA(nid)->node_zones[zone_type]; 3500 if (populated_zone(z)) { 3501 if (zone_type < ZONE_NORMAL) 3502 low_kmem_size += z->managed_pages; 3503 total_size += z->managed_pages; 3504 } else if (zone_type == ZONE_NORMAL) { 3505 /* 3506 * If any node has only lowmem, then node order 3507 * is preferred to allow kernel allocations 3508 * locally; otherwise, they can easily infringe 3509 * on other nodes when there is an abundance of 3510 * lowmem available to allocate from. 3511 */ 3512 return ZONELIST_ORDER_NODE; 3513 } 3514 } 3515 } 3516 if (!low_kmem_size || /* there are no DMA area. */ 3517 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3518 return ZONELIST_ORDER_NODE; 3519 /* 3520 * look into each node's config. 3521 * If there is a node whose DMA/DMA32 memory is very big area on 3522 * local memory, NODE_ORDER may be suitable. 3523 */ 3524 average_size = total_size / 3525 (nodes_weight(node_states[N_MEMORY]) + 1); 3526 for_each_online_node(nid) { 3527 low_kmem_size = 0; 3528 total_size = 0; 3529 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3530 z = &NODE_DATA(nid)->node_zones[zone_type]; 3531 if (populated_zone(z)) { 3532 if (zone_type < ZONE_NORMAL) 3533 low_kmem_size += z->present_pages; 3534 total_size += z->present_pages; 3535 } 3536 } 3537 if (low_kmem_size && 3538 total_size > average_size && /* ignore small node */ 3539 low_kmem_size > total_size * 70/100) 3540 return ZONELIST_ORDER_NODE; 3541 } 3542 return ZONELIST_ORDER_ZONE; 3543 } 3544 3545 static void set_zonelist_order(void) 3546 { 3547 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3548 current_zonelist_order = default_zonelist_order(); 3549 else 3550 current_zonelist_order = user_zonelist_order; 3551 } 3552 3553 static void build_zonelists(pg_data_t *pgdat) 3554 { 3555 int j, node, load; 3556 enum zone_type i; 3557 nodemask_t used_mask; 3558 int local_node, prev_node; 3559 struct zonelist *zonelist; 3560 int order = current_zonelist_order; 3561 3562 /* initialize zonelists */ 3563 for (i = 0; i < MAX_ZONELISTS; i++) { 3564 zonelist = pgdat->node_zonelists + i; 3565 zonelist->_zonerefs[0].zone = NULL; 3566 zonelist->_zonerefs[0].zone_idx = 0; 3567 } 3568 3569 /* NUMA-aware ordering of nodes */ 3570 local_node = pgdat->node_id; 3571 load = nr_online_nodes; 3572 prev_node = local_node; 3573 nodes_clear(used_mask); 3574 3575 memset(node_order, 0, sizeof(node_order)); 3576 j = 0; 3577 3578 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3579 /* 3580 * We don't want to pressure a particular node. 3581 * So adding penalty to the first node in same 3582 * distance group to make it round-robin. 3583 */ 3584 if (node_distance(local_node, node) != 3585 node_distance(local_node, prev_node)) 3586 node_load[node] = load; 3587 3588 prev_node = node; 3589 load--; 3590 if (order == ZONELIST_ORDER_NODE) 3591 build_zonelists_in_node_order(pgdat, node); 3592 else 3593 node_order[j++] = node; /* remember order */ 3594 } 3595 3596 if (order == ZONELIST_ORDER_ZONE) { 3597 /* calculate node order -- i.e., DMA last! */ 3598 build_zonelists_in_zone_order(pgdat, j); 3599 } 3600 3601 build_thisnode_zonelists(pgdat); 3602 } 3603 3604 /* Construct the zonelist performance cache - see further mmzone.h */ 3605 static void build_zonelist_cache(pg_data_t *pgdat) 3606 { 3607 struct zonelist *zonelist; 3608 struct zonelist_cache *zlc; 3609 struct zoneref *z; 3610 3611 zonelist = &pgdat->node_zonelists[0]; 3612 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3613 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3614 for (z = zonelist->_zonerefs; z->zone; z++) 3615 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3616 } 3617 3618 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3619 /* 3620 * Return node id of node used for "local" allocations. 3621 * I.e., first node id of first zone in arg node's generic zonelist. 3622 * Used for initializing percpu 'numa_mem', which is used primarily 3623 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3624 */ 3625 int local_memory_node(int node) 3626 { 3627 struct zone *zone; 3628 3629 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3630 gfp_zone(GFP_KERNEL), 3631 NULL, 3632 &zone); 3633 return zone->node; 3634 } 3635 #endif 3636 3637 #else /* CONFIG_NUMA */ 3638 3639 static void set_zonelist_order(void) 3640 { 3641 current_zonelist_order = ZONELIST_ORDER_ZONE; 3642 } 3643 3644 static void build_zonelists(pg_data_t *pgdat) 3645 { 3646 int node, local_node; 3647 enum zone_type j; 3648 struct zonelist *zonelist; 3649 3650 local_node = pgdat->node_id; 3651 3652 zonelist = &pgdat->node_zonelists[0]; 3653 j = build_zonelists_node(pgdat, zonelist, 0); 3654 3655 /* 3656 * Now we build the zonelist so that it contains the zones 3657 * of all the other nodes. 3658 * We don't want to pressure a particular node, so when 3659 * building the zones for node N, we make sure that the 3660 * zones coming right after the local ones are those from 3661 * node N+1 (modulo N) 3662 */ 3663 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3664 if (!node_online(node)) 3665 continue; 3666 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3667 } 3668 for (node = 0; node < local_node; node++) { 3669 if (!node_online(node)) 3670 continue; 3671 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3672 } 3673 3674 zonelist->_zonerefs[j].zone = NULL; 3675 zonelist->_zonerefs[j].zone_idx = 0; 3676 } 3677 3678 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3679 static void build_zonelist_cache(pg_data_t *pgdat) 3680 { 3681 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3682 } 3683 3684 #endif /* CONFIG_NUMA */ 3685 3686 /* 3687 * Boot pageset table. One per cpu which is going to be used for all 3688 * zones and all nodes. The parameters will be set in such a way 3689 * that an item put on a list will immediately be handed over to 3690 * the buddy list. This is safe since pageset manipulation is done 3691 * with interrupts disabled. 3692 * 3693 * The boot_pagesets must be kept even after bootup is complete for 3694 * unused processors and/or zones. They do play a role for bootstrapping 3695 * hotplugged processors. 3696 * 3697 * zoneinfo_show() and maybe other functions do 3698 * not check if the processor is online before following the pageset pointer. 3699 * Other parts of the kernel may not check if the zone is available. 3700 */ 3701 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3702 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3703 static void setup_zone_pageset(struct zone *zone); 3704 3705 /* 3706 * Global mutex to protect against size modification of zonelists 3707 * as well as to serialize pageset setup for the new populated zone. 3708 */ 3709 DEFINE_MUTEX(zonelists_mutex); 3710 3711 /* return values int ....just for stop_machine() */ 3712 static int __build_all_zonelists(void *data) 3713 { 3714 int nid; 3715 int cpu; 3716 pg_data_t *self = data; 3717 3718 #ifdef CONFIG_NUMA 3719 memset(node_load, 0, sizeof(node_load)); 3720 #endif 3721 3722 if (self && !node_online(self->node_id)) { 3723 build_zonelists(self); 3724 build_zonelist_cache(self); 3725 } 3726 3727 for_each_online_node(nid) { 3728 pg_data_t *pgdat = NODE_DATA(nid); 3729 3730 build_zonelists(pgdat); 3731 build_zonelist_cache(pgdat); 3732 } 3733 3734 /* 3735 * Initialize the boot_pagesets that are going to be used 3736 * for bootstrapping processors. The real pagesets for 3737 * each zone will be allocated later when the per cpu 3738 * allocator is available. 3739 * 3740 * boot_pagesets are used also for bootstrapping offline 3741 * cpus if the system is already booted because the pagesets 3742 * are needed to initialize allocators on a specific cpu too. 3743 * F.e. the percpu allocator needs the page allocator which 3744 * needs the percpu allocator in order to allocate its pagesets 3745 * (a chicken-egg dilemma). 3746 */ 3747 for_each_possible_cpu(cpu) { 3748 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3749 3750 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3751 /* 3752 * We now know the "local memory node" for each node-- 3753 * i.e., the node of the first zone in the generic zonelist. 3754 * Set up numa_mem percpu variable for on-line cpus. During 3755 * boot, only the boot cpu should be on-line; we'll init the 3756 * secondary cpus' numa_mem as they come on-line. During 3757 * node/memory hotplug, we'll fixup all on-line cpus. 3758 */ 3759 if (cpu_online(cpu)) 3760 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3761 #endif 3762 } 3763 3764 return 0; 3765 } 3766 3767 /* 3768 * Called with zonelists_mutex held always 3769 * unless system_state == SYSTEM_BOOTING. 3770 */ 3771 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3772 { 3773 set_zonelist_order(); 3774 3775 if (system_state == SYSTEM_BOOTING) { 3776 __build_all_zonelists(NULL); 3777 mminit_verify_zonelist(); 3778 cpuset_init_current_mems_allowed(); 3779 } else { 3780 #ifdef CONFIG_MEMORY_HOTPLUG 3781 if (zone) 3782 setup_zone_pageset(zone); 3783 #endif 3784 /* we have to stop all cpus to guarantee there is no user 3785 of zonelist */ 3786 stop_machine(__build_all_zonelists, pgdat, NULL); 3787 /* cpuset refresh routine should be here */ 3788 } 3789 vm_total_pages = nr_free_pagecache_pages(); 3790 /* 3791 * Disable grouping by mobility if the number of pages in the 3792 * system is too low to allow the mechanism to work. It would be 3793 * more accurate, but expensive to check per-zone. This check is 3794 * made on memory-hotadd so a system can start with mobility 3795 * disabled and enable it later 3796 */ 3797 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3798 page_group_by_mobility_disabled = 1; 3799 else 3800 page_group_by_mobility_disabled = 0; 3801 3802 printk("Built %i zonelists in %s order, mobility grouping %s. " 3803 "Total pages: %ld\n", 3804 nr_online_nodes, 3805 zonelist_order_name[current_zonelist_order], 3806 page_group_by_mobility_disabled ? "off" : "on", 3807 vm_total_pages); 3808 #ifdef CONFIG_NUMA 3809 printk("Policy zone: %s\n", zone_names[policy_zone]); 3810 #endif 3811 } 3812 3813 /* 3814 * Helper functions to size the waitqueue hash table. 3815 * Essentially these want to choose hash table sizes sufficiently 3816 * large so that collisions trying to wait on pages are rare. 3817 * But in fact, the number of active page waitqueues on typical 3818 * systems is ridiculously low, less than 200. So this is even 3819 * conservative, even though it seems large. 3820 * 3821 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3822 * waitqueues, i.e. the size of the waitq table given the number of pages. 3823 */ 3824 #define PAGES_PER_WAITQUEUE 256 3825 3826 #ifndef CONFIG_MEMORY_HOTPLUG 3827 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3828 { 3829 unsigned long size = 1; 3830 3831 pages /= PAGES_PER_WAITQUEUE; 3832 3833 while (size < pages) 3834 size <<= 1; 3835 3836 /* 3837 * Once we have dozens or even hundreds of threads sleeping 3838 * on IO we've got bigger problems than wait queue collision. 3839 * Limit the size of the wait table to a reasonable size. 3840 */ 3841 size = min(size, 4096UL); 3842 3843 return max(size, 4UL); 3844 } 3845 #else 3846 /* 3847 * A zone's size might be changed by hot-add, so it is not possible to determine 3848 * a suitable size for its wait_table. So we use the maximum size now. 3849 * 3850 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3851 * 3852 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3853 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3854 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3855 * 3856 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3857 * or more by the traditional way. (See above). It equals: 3858 * 3859 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3860 * ia64(16K page size) : = ( 8G + 4M)byte. 3861 * powerpc (64K page size) : = (32G +16M)byte. 3862 */ 3863 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3864 { 3865 return 4096UL; 3866 } 3867 #endif 3868 3869 /* 3870 * This is an integer logarithm so that shifts can be used later 3871 * to extract the more random high bits from the multiplicative 3872 * hash function before the remainder is taken. 3873 */ 3874 static inline unsigned long wait_table_bits(unsigned long size) 3875 { 3876 return ffz(~size); 3877 } 3878 3879 /* 3880 * Check if a pageblock contains reserved pages 3881 */ 3882 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3883 { 3884 unsigned long pfn; 3885 3886 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3887 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3888 return 1; 3889 } 3890 return 0; 3891 } 3892 3893 /* 3894 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3895 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3896 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3897 * higher will lead to a bigger reserve which will get freed as contiguous 3898 * blocks as reclaim kicks in 3899 */ 3900 static void setup_zone_migrate_reserve(struct zone *zone) 3901 { 3902 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3903 struct page *page; 3904 unsigned long block_migratetype; 3905 int reserve; 3906 3907 /* 3908 * Get the start pfn, end pfn and the number of blocks to reserve 3909 * We have to be careful to be aligned to pageblock_nr_pages to 3910 * make sure that we always check pfn_valid for the first page in 3911 * the block. 3912 */ 3913 start_pfn = zone->zone_start_pfn; 3914 end_pfn = zone_end_pfn(zone); 3915 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3916 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3917 pageblock_order; 3918 3919 /* 3920 * Reserve blocks are generally in place to help high-order atomic 3921 * allocations that are short-lived. A min_free_kbytes value that 3922 * would result in more than 2 reserve blocks for atomic allocations 3923 * is assumed to be in place to help anti-fragmentation for the 3924 * future allocation of hugepages at runtime. 3925 */ 3926 reserve = min(2, reserve); 3927 3928 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3929 if (!pfn_valid(pfn)) 3930 continue; 3931 page = pfn_to_page(pfn); 3932 3933 /* Watch out for overlapping nodes */ 3934 if (page_to_nid(page) != zone_to_nid(zone)) 3935 continue; 3936 3937 block_migratetype = get_pageblock_migratetype(page); 3938 3939 /* Only test what is necessary when the reserves are not met */ 3940 if (reserve > 0) { 3941 /* 3942 * Blocks with reserved pages will never free, skip 3943 * them. 3944 */ 3945 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3946 if (pageblock_is_reserved(pfn, block_end_pfn)) 3947 continue; 3948 3949 /* If this block is reserved, account for it */ 3950 if (block_migratetype == MIGRATE_RESERVE) { 3951 reserve--; 3952 continue; 3953 } 3954 3955 /* Suitable for reserving if this block is movable */ 3956 if (block_migratetype == MIGRATE_MOVABLE) { 3957 set_pageblock_migratetype(page, 3958 MIGRATE_RESERVE); 3959 move_freepages_block(zone, page, 3960 MIGRATE_RESERVE); 3961 reserve--; 3962 continue; 3963 } 3964 } 3965 3966 /* 3967 * If the reserve is met and this is a previous reserved block, 3968 * take it back 3969 */ 3970 if (block_migratetype == MIGRATE_RESERVE) { 3971 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3972 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3973 } 3974 } 3975 } 3976 3977 /* 3978 * Initially all pages are reserved - free ones are freed 3979 * up by free_all_bootmem() once the early boot process is 3980 * done. Non-atomic initialization, single-pass. 3981 */ 3982 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3983 unsigned long start_pfn, enum memmap_context context) 3984 { 3985 struct page *page; 3986 unsigned long end_pfn = start_pfn + size; 3987 unsigned long pfn; 3988 struct zone *z; 3989 3990 if (highest_memmap_pfn < end_pfn - 1) 3991 highest_memmap_pfn = end_pfn - 1; 3992 3993 z = &NODE_DATA(nid)->node_zones[zone]; 3994 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3995 /* 3996 * There can be holes in boot-time mem_map[]s 3997 * handed to this function. They do not 3998 * exist on hotplugged memory. 3999 */ 4000 if (context == MEMMAP_EARLY) { 4001 if (!early_pfn_valid(pfn)) 4002 continue; 4003 if (!early_pfn_in_nid(pfn, nid)) 4004 continue; 4005 } 4006 page = pfn_to_page(pfn); 4007 set_page_links(page, zone, nid, pfn); 4008 mminit_verify_page_links(page, zone, nid, pfn); 4009 init_page_count(page); 4010 page_mapcount_reset(page); 4011 page_cpupid_reset_last(page); 4012 SetPageReserved(page); 4013 /* 4014 * Mark the block movable so that blocks are reserved for 4015 * movable at startup. This will force kernel allocations 4016 * to reserve their blocks rather than leaking throughout 4017 * the address space during boot when many long-lived 4018 * kernel allocations are made. Later some blocks near 4019 * the start are marked MIGRATE_RESERVE by 4020 * setup_zone_migrate_reserve() 4021 * 4022 * bitmap is created for zone's valid pfn range. but memmap 4023 * can be created for invalid pages (for alignment) 4024 * check here not to call set_pageblock_migratetype() against 4025 * pfn out of zone. 4026 */ 4027 if ((z->zone_start_pfn <= pfn) 4028 && (pfn < zone_end_pfn(z)) 4029 && !(pfn & (pageblock_nr_pages - 1))) 4030 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4031 4032 INIT_LIST_HEAD(&page->lru); 4033 #ifdef WANT_PAGE_VIRTUAL 4034 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4035 if (!is_highmem_idx(zone)) 4036 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4037 #endif 4038 } 4039 } 4040 4041 static void __meminit zone_init_free_lists(struct zone *zone) 4042 { 4043 int order, t; 4044 for_each_migratetype_order(order, t) { 4045 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4046 zone->free_area[order].nr_free = 0; 4047 } 4048 } 4049 4050 #ifndef __HAVE_ARCH_MEMMAP_INIT 4051 #define memmap_init(size, nid, zone, start_pfn) \ 4052 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4053 #endif 4054 4055 static int __meminit zone_batchsize(struct zone *zone) 4056 { 4057 #ifdef CONFIG_MMU 4058 int batch; 4059 4060 /* 4061 * The per-cpu-pages pools are set to around 1000th of the 4062 * size of the zone. But no more than 1/2 of a meg. 4063 * 4064 * OK, so we don't know how big the cache is. So guess. 4065 */ 4066 batch = zone->managed_pages / 1024; 4067 if (batch * PAGE_SIZE > 512 * 1024) 4068 batch = (512 * 1024) / PAGE_SIZE; 4069 batch /= 4; /* We effectively *= 4 below */ 4070 if (batch < 1) 4071 batch = 1; 4072 4073 /* 4074 * Clamp the batch to a 2^n - 1 value. Having a power 4075 * of 2 value was found to be more likely to have 4076 * suboptimal cache aliasing properties in some cases. 4077 * 4078 * For example if 2 tasks are alternately allocating 4079 * batches of pages, one task can end up with a lot 4080 * of pages of one half of the possible page colors 4081 * and the other with pages of the other colors. 4082 */ 4083 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4084 4085 return batch; 4086 4087 #else 4088 /* The deferral and batching of frees should be suppressed under NOMMU 4089 * conditions. 4090 * 4091 * The problem is that NOMMU needs to be able to allocate large chunks 4092 * of contiguous memory as there's no hardware page translation to 4093 * assemble apparent contiguous memory from discontiguous pages. 4094 * 4095 * Queueing large contiguous runs of pages for batching, however, 4096 * causes the pages to actually be freed in smaller chunks. As there 4097 * can be a significant delay between the individual batches being 4098 * recycled, this leads to the once large chunks of space being 4099 * fragmented and becoming unavailable for high-order allocations. 4100 */ 4101 return 0; 4102 #endif 4103 } 4104 4105 /* 4106 * pcp->high and pcp->batch values are related and dependent on one another: 4107 * ->batch must never be higher then ->high. 4108 * The following function updates them in a safe manner without read side 4109 * locking. 4110 * 4111 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4112 * those fields changing asynchronously (acording the the above rule). 4113 * 4114 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4115 * outside of boot time (or some other assurance that no concurrent updaters 4116 * exist). 4117 */ 4118 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4119 unsigned long batch) 4120 { 4121 /* start with a fail safe value for batch */ 4122 pcp->batch = 1; 4123 smp_wmb(); 4124 4125 /* Update high, then batch, in order */ 4126 pcp->high = high; 4127 smp_wmb(); 4128 4129 pcp->batch = batch; 4130 } 4131 4132 /* a companion to pageset_set_high() */ 4133 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4134 { 4135 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4136 } 4137 4138 static void pageset_init(struct per_cpu_pageset *p) 4139 { 4140 struct per_cpu_pages *pcp; 4141 int migratetype; 4142 4143 memset(p, 0, sizeof(*p)); 4144 4145 pcp = &p->pcp; 4146 pcp->count = 0; 4147 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4148 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4149 } 4150 4151 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4152 { 4153 pageset_init(p); 4154 pageset_set_batch(p, batch); 4155 } 4156 4157 /* 4158 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4159 * to the value high for the pageset p. 4160 */ 4161 static void pageset_set_high(struct per_cpu_pageset *p, 4162 unsigned long high) 4163 { 4164 unsigned long batch = max(1UL, high / 4); 4165 if ((high / 4) > (PAGE_SHIFT * 8)) 4166 batch = PAGE_SHIFT * 8; 4167 4168 pageset_update(&p->pcp, high, batch); 4169 } 4170 4171 static void __meminit pageset_set_high_and_batch(struct zone *zone, 4172 struct per_cpu_pageset *pcp) 4173 { 4174 if (percpu_pagelist_fraction) 4175 pageset_set_high(pcp, 4176 (zone->managed_pages / 4177 percpu_pagelist_fraction)); 4178 else 4179 pageset_set_batch(pcp, zone_batchsize(zone)); 4180 } 4181 4182 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4183 { 4184 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4185 4186 pageset_init(pcp); 4187 pageset_set_high_and_batch(zone, pcp); 4188 } 4189 4190 static void __meminit setup_zone_pageset(struct zone *zone) 4191 { 4192 int cpu; 4193 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4194 for_each_possible_cpu(cpu) 4195 zone_pageset_init(zone, cpu); 4196 } 4197 4198 /* 4199 * Allocate per cpu pagesets and initialize them. 4200 * Before this call only boot pagesets were available. 4201 */ 4202 void __init setup_per_cpu_pageset(void) 4203 { 4204 struct zone *zone; 4205 4206 for_each_populated_zone(zone) 4207 setup_zone_pageset(zone); 4208 } 4209 4210 static noinline __init_refok 4211 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4212 { 4213 int i; 4214 struct pglist_data *pgdat = zone->zone_pgdat; 4215 size_t alloc_size; 4216 4217 /* 4218 * The per-page waitqueue mechanism uses hashed waitqueues 4219 * per zone. 4220 */ 4221 zone->wait_table_hash_nr_entries = 4222 wait_table_hash_nr_entries(zone_size_pages); 4223 zone->wait_table_bits = 4224 wait_table_bits(zone->wait_table_hash_nr_entries); 4225 alloc_size = zone->wait_table_hash_nr_entries 4226 * sizeof(wait_queue_head_t); 4227 4228 if (!slab_is_available()) { 4229 zone->wait_table = (wait_queue_head_t *) 4230 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4231 } else { 4232 /* 4233 * This case means that a zone whose size was 0 gets new memory 4234 * via memory hot-add. 4235 * But it may be the case that a new node was hot-added. In 4236 * this case vmalloc() will not be able to use this new node's 4237 * memory - this wait_table must be initialized to use this new 4238 * node itself as well. 4239 * To use this new node's memory, further consideration will be 4240 * necessary. 4241 */ 4242 zone->wait_table = vmalloc(alloc_size); 4243 } 4244 if (!zone->wait_table) 4245 return -ENOMEM; 4246 4247 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4248 init_waitqueue_head(zone->wait_table + i); 4249 4250 return 0; 4251 } 4252 4253 static __meminit void zone_pcp_init(struct zone *zone) 4254 { 4255 /* 4256 * per cpu subsystem is not up at this point. The following code 4257 * relies on the ability of the linker to provide the 4258 * offset of a (static) per cpu variable into the per cpu area. 4259 */ 4260 zone->pageset = &boot_pageset; 4261 4262 if (populated_zone(zone)) 4263 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4264 zone->name, zone->present_pages, 4265 zone_batchsize(zone)); 4266 } 4267 4268 int __meminit init_currently_empty_zone(struct zone *zone, 4269 unsigned long zone_start_pfn, 4270 unsigned long size, 4271 enum memmap_context context) 4272 { 4273 struct pglist_data *pgdat = zone->zone_pgdat; 4274 int ret; 4275 ret = zone_wait_table_init(zone, size); 4276 if (ret) 4277 return ret; 4278 pgdat->nr_zones = zone_idx(zone) + 1; 4279 4280 zone->zone_start_pfn = zone_start_pfn; 4281 4282 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4283 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4284 pgdat->node_id, 4285 (unsigned long)zone_idx(zone), 4286 zone_start_pfn, (zone_start_pfn + size)); 4287 4288 zone_init_free_lists(zone); 4289 4290 return 0; 4291 } 4292 4293 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4294 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4295 /* 4296 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4297 * Architectures may implement their own version but if add_active_range() 4298 * was used and there are no special requirements, this is a convenient 4299 * alternative 4300 */ 4301 int __meminit __early_pfn_to_nid(unsigned long pfn) 4302 { 4303 unsigned long start_pfn, end_pfn; 4304 int nid; 4305 /* 4306 * NOTE: The following SMP-unsafe globals are only used early in boot 4307 * when the kernel is running single-threaded. 4308 */ 4309 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4310 static int __meminitdata last_nid; 4311 4312 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4313 return last_nid; 4314 4315 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4316 if (nid != -1) { 4317 last_start_pfn = start_pfn; 4318 last_end_pfn = end_pfn; 4319 last_nid = nid; 4320 } 4321 4322 return nid; 4323 } 4324 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4325 4326 int __meminit early_pfn_to_nid(unsigned long pfn) 4327 { 4328 int nid; 4329 4330 nid = __early_pfn_to_nid(pfn); 4331 if (nid >= 0) 4332 return nid; 4333 /* just returns 0 */ 4334 return 0; 4335 } 4336 4337 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4338 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4339 { 4340 int nid; 4341 4342 nid = __early_pfn_to_nid(pfn); 4343 if (nid >= 0 && nid != node) 4344 return false; 4345 return true; 4346 } 4347 #endif 4348 4349 /** 4350 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4351 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4352 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4353 * 4354 * If an architecture guarantees that all ranges registered with 4355 * add_active_ranges() contain no holes and may be freed, this 4356 * this function may be used instead of calling free_bootmem() manually. 4357 */ 4358 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4359 { 4360 unsigned long start_pfn, end_pfn; 4361 int i, this_nid; 4362 4363 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4364 start_pfn = min(start_pfn, max_low_pfn); 4365 end_pfn = min(end_pfn, max_low_pfn); 4366 4367 if (start_pfn < end_pfn) 4368 free_bootmem_node(NODE_DATA(this_nid), 4369 PFN_PHYS(start_pfn), 4370 (end_pfn - start_pfn) << PAGE_SHIFT); 4371 } 4372 } 4373 4374 /** 4375 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4376 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4377 * 4378 * If an architecture guarantees that all ranges registered with 4379 * add_active_ranges() contain no holes and may be freed, this 4380 * function may be used instead of calling memory_present() manually. 4381 */ 4382 void __init sparse_memory_present_with_active_regions(int nid) 4383 { 4384 unsigned long start_pfn, end_pfn; 4385 int i, this_nid; 4386 4387 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4388 memory_present(this_nid, start_pfn, end_pfn); 4389 } 4390 4391 /** 4392 * get_pfn_range_for_nid - Return the start and end page frames for a node 4393 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4394 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4395 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4396 * 4397 * It returns the start and end page frame of a node based on information 4398 * provided by an arch calling add_active_range(). If called for a node 4399 * with no available memory, a warning is printed and the start and end 4400 * PFNs will be 0. 4401 */ 4402 void __meminit get_pfn_range_for_nid(unsigned int nid, 4403 unsigned long *start_pfn, unsigned long *end_pfn) 4404 { 4405 unsigned long this_start_pfn, this_end_pfn; 4406 int i; 4407 4408 *start_pfn = -1UL; 4409 *end_pfn = 0; 4410 4411 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4412 *start_pfn = min(*start_pfn, this_start_pfn); 4413 *end_pfn = max(*end_pfn, this_end_pfn); 4414 } 4415 4416 if (*start_pfn == -1UL) 4417 *start_pfn = 0; 4418 } 4419 4420 /* 4421 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4422 * assumption is made that zones within a node are ordered in monotonic 4423 * increasing memory addresses so that the "highest" populated zone is used 4424 */ 4425 static void __init find_usable_zone_for_movable(void) 4426 { 4427 int zone_index; 4428 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4429 if (zone_index == ZONE_MOVABLE) 4430 continue; 4431 4432 if (arch_zone_highest_possible_pfn[zone_index] > 4433 arch_zone_lowest_possible_pfn[zone_index]) 4434 break; 4435 } 4436 4437 VM_BUG_ON(zone_index == -1); 4438 movable_zone = zone_index; 4439 } 4440 4441 /* 4442 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4443 * because it is sized independent of architecture. Unlike the other zones, 4444 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4445 * in each node depending on the size of each node and how evenly kernelcore 4446 * is distributed. This helper function adjusts the zone ranges 4447 * provided by the architecture for a given node by using the end of the 4448 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4449 * zones within a node are in order of monotonic increases memory addresses 4450 */ 4451 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4452 unsigned long zone_type, 4453 unsigned long node_start_pfn, 4454 unsigned long node_end_pfn, 4455 unsigned long *zone_start_pfn, 4456 unsigned long *zone_end_pfn) 4457 { 4458 /* Only adjust if ZONE_MOVABLE is on this node */ 4459 if (zone_movable_pfn[nid]) { 4460 /* Size ZONE_MOVABLE */ 4461 if (zone_type == ZONE_MOVABLE) { 4462 *zone_start_pfn = zone_movable_pfn[nid]; 4463 *zone_end_pfn = min(node_end_pfn, 4464 arch_zone_highest_possible_pfn[movable_zone]); 4465 4466 /* Adjust for ZONE_MOVABLE starting within this range */ 4467 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4468 *zone_end_pfn > zone_movable_pfn[nid]) { 4469 *zone_end_pfn = zone_movable_pfn[nid]; 4470 4471 /* Check if this whole range is within ZONE_MOVABLE */ 4472 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4473 *zone_start_pfn = *zone_end_pfn; 4474 } 4475 } 4476 4477 /* 4478 * Return the number of pages a zone spans in a node, including holes 4479 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4480 */ 4481 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4482 unsigned long zone_type, 4483 unsigned long node_start_pfn, 4484 unsigned long node_end_pfn, 4485 unsigned long *ignored) 4486 { 4487 unsigned long zone_start_pfn, zone_end_pfn; 4488 4489 /* Get the start and end of the zone */ 4490 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4491 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4492 adjust_zone_range_for_zone_movable(nid, zone_type, 4493 node_start_pfn, node_end_pfn, 4494 &zone_start_pfn, &zone_end_pfn); 4495 4496 /* Check that this node has pages within the zone's required range */ 4497 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4498 return 0; 4499 4500 /* Move the zone boundaries inside the node if necessary */ 4501 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4502 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4503 4504 /* Return the spanned pages */ 4505 return zone_end_pfn - zone_start_pfn; 4506 } 4507 4508 /* 4509 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4510 * then all holes in the requested range will be accounted for. 4511 */ 4512 unsigned long __meminit __absent_pages_in_range(int nid, 4513 unsigned long range_start_pfn, 4514 unsigned long range_end_pfn) 4515 { 4516 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4517 unsigned long start_pfn, end_pfn; 4518 int i; 4519 4520 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4521 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4522 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4523 nr_absent -= end_pfn - start_pfn; 4524 } 4525 return nr_absent; 4526 } 4527 4528 /** 4529 * absent_pages_in_range - Return number of page frames in holes within a range 4530 * @start_pfn: The start PFN to start searching for holes 4531 * @end_pfn: The end PFN to stop searching for holes 4532 * 4533 * It returns the number of pages frames in memory holes within a range. 4534 */ 4535 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4536 unsigned long end_pfn) 4537 { 4538 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4539 } 4540 4541 /* Return the number of page frames in holes in a zone on a node */ 4542 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4543 unsigned long zone_type, 4544 unsigned long node_start_pfn, 4545 unsigned long node_end_pfn, 4546 unsigned long *ignored) 4547 { 4548 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4549 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4550 unsigned long zone_start_pfn, zone_end_pfn; 4551 4552 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4553 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4554 4555 adjust_zone_range_for_zone_movable(nid, zone_type, 4556 node_start_pfn, node_end_pfn, 4557 &zone_start_pfn, &zone_end_pfn); 4558 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4559 } 4560 4561 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4562 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4563 unsigned long zone_type, 4564 unsigned long node_start_pfn, 4565 unsigned long node_end_pfn, 4566 unsigned long *zones_size) 4567 { 4568 return zones_size[zone_type]; 4569 } 4570 4571 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4572 unsigned long zone_type, 4573 unsigned long node_start_pfn, 4574 unsigned long node_end_pfn, 4575 unsigned long *zholes_size) 4576 { 4577 if (!zholes_size) 4578 return 0; 4579 4580 return zholes_size[zone_type]; 4581 } 4582 4583 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4584 4585 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4586 unsigned long node_start_pfn, 4587 unsigned long node_end_pfn, 4588 unsigned long *zones_size, 4589 unsigned long *zholes_size) 4590 { 4591 unsigned long realtotalpages, totalpages = 0; 4592 enum zone_type i; 4593 4594 for (i = 0; i < MAX_NR_ZONES; i++) 4595 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4596 node_start_pfn, 4597 node_end_pfn, 4598 zones_size); 4599 pgdat->node_spanned_pages = totalpages; 4600 4601 realtotalpages = totalpages; 4602 for (i = 0; i < MAX_NR_ZONES; i++) 4603 realtotalpages -= 4604 zone_absent_pages_in_node(pgdat->node_id, i, 4605 node_start_pfn, node_end_pfn, 4606 zholes_size); 4607 pgdat->node_present_pages = realtotalpages; 4608 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4609 realtotalpages); 4610 } 4611 4612 #ifndef CONFIG_SPARSEMEM 4613 /* 4614 * Calculate the size of the zone->blockflags rounded to an unsigned long 4615 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4616 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4617 * round what is now in bits to nearest long in bits, then return it in 4618 * bytes. 4619 */ 4620 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4621 { 4622 unsigned long usemapsize; 4623 4624 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4625 usemapsize = roundup(zonesize, pageblock_nr_pages); 4626 usemapsize = usemapsize >> pageblock_order; 4627 usemapsize *= NR_PAGEBLOCK_BITS; 4628 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4629 4630 return usemapsize / 8; 4631 } 4632 4633 static void __init setup_usemap(struct pglist_data *pgdat, 4634 struct zone *zone, 4635 unsigned long zone_start_pfn, 4636 unsigned long zonesize) 4637 { 4638 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4639 zone->pageblock_flags = NULL; 4640 if (usemapsize) 4641 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4642 usemapsize); 4643 } 4644 #else 4645 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4646 unsigned long zone_start_pfn, unsigned long zonesize) {} 4647 #endif /* CONFIG_SPARSEMEM */ 4648 4649 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4650 4651 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4652 void __paginginit set_pageblock_order(void) 4653 { 4654 unsigned int order; 4655 4656 /* Check that pageblock_nr_pages has not already been setup */ 4657 if (pageblock_order) 4658 return; 4659 4660 if (HPAGE_SHIFT > PAGE_SHIFT) 4661 order = HUGETLB_PAGE_ORDER; 4662 else 4663 order = MAX_ORDER - 1; 4664 4665 /* 4666 * Assume the largest contiguous order of interest is a huge page. 4667 * This value may be variable depending on boot parameters on IA64 and 4668 * powerpc. 4669 */ 4670 pageblock_order = order; 4671 } 4672 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4673 4674 /* 4675 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4676 * is unused as pageblock_order is set at compile-time. See 4677 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4678 * the kernel config 4679 */ 4680 void __paginginit set_pageblock_order(void) 4681 { 4682 } 4683 4684 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4685 4686 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4687 unsigned long present_pages) 4688 { 4689 unsigned long pages = spanned_pages; 4690 4691 /* 4692 * Provide a more accurate estimation if there are holes within 4693 * the zone and SPARSEMEM is in use. If there are holes within the 4694 * zone, each populated memory region may cost us one or two extra 4695 * memmap pages due to alignment because memmap pages for each 4696 * populated regions may not naturally algined on page boundary. 4697 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4698 */ 4699 if (spanned_pages > present_pages + (present_pages >> 4) && 4700 IS_ENABLED(CONFIG_SPARSEMEM)) 4701 pages = present_pages; 4702 4703 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4704 } 4705 4706 /* 4707 * Set up the zone data structures: 4708 * - mark all pages reserved 4709 * - mark all memory queues empty 4710 * - clear the memory bitmaps 4711 * 4712 * NOTE: pgdat should get zeroed by caller. 4713 */ 4714 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4715 unsigned long node_start_pfn, unsigned long node_end_pfn, 4716 unsigned long *zones_size, unsigned long *zholes_size) 4717 { 4718 enum zone_type j; 4719 int nid = pgdat->node_id; 4720 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4721 int ret; 4722 4723 pgdat_resize_init(pgdat); 4724 #ifdef CONFIG_NUMA_BALANCING 4725 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4726 pgdat->numabalancing_migrate_nr_pages = 0; 4727 pgdat->numabalancing_migrate_next_window = jiffies; 4728 #endif 4729 init_waitqueue_head(&pgdat->kswapd_wait); 4730 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4731 pgdat_page_cgroup_init(pgdat); 4732 4733 for (j = 0; j < MAX_NR_ZONES; j++) { 4734 struct zone *zone = pgdat->node_zones + j; 4735 unsigned long size, realsize, freesize, memmap_pages; 4736 4737 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4738 node_end_pfn, zones_size); 4739 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4740 node_start_pfn, 4741 node_end_pfn, 4742 zholes_size); 4743 4744 /* 4745 * Adjust freesize so that it accounts for how much memory 4746 * is used by this zone for memmap. This affects the watermark 4747 * and per-cpu initialisations 4748 */ 4749 memmap_pages = calc_memmap_size(size, realsize); 4750 if (freesize >= memmap_pages) { 4751 freesize -= memmap_pages; 4752 if (memmap_pages) 4753 printk(KERN_DEBUG 4754 " %s zone: %lu pages used for memmap\n", 4755 zone_names[j], memmap_pages); 4756 } else 4757 printk(KERN_WARNING 4758 " %s zone: %lu pages exceeds freesize %lu\n", 4759 zone_names[j], memmap_pages, freesize); 4760 4761 /* Account for reserved pages */ 4762 if (j == 0 && freesize > dma_reserve) { 4763 freesize -= dma_reserve; 4764 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4765 zone_names[0], dma_reserve); 4766 } 4767 4768 if (!is_highmem_idx(j)) 4769 nr_kernel_pages += freesize; 4770 /* Charge for highmem memmap if there are enough kernel pages */ 4771 else if (nr_kernel_pages > memmap_pages * 2) 4772 nr_kernel_pages -= memmap_pages; 4773 nr_all_pages += freesize; 4774 4775 zone->spanned_pages = size; 4776 zone->present_pages = realsize; 4777 /* 4778 * Set an approximate value for lowmem here, it will be adjusted 4779 * when the bootmem allocator frees pages into the buddy system. 4780 * And all highmem pages will be managed by the buddy system. 4781 */ 4782 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4783 #ifdef CONFIG_NUMA 4784 zone->node = nid; 4785 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4786 / 100; 4787 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4788 #endif 4789 zone->name = zone_names[j]; 4790 spin_lock_init(&zone->lock); 4791 spin_lock_init(&zone->lru_lock); 4792 zone_seqlock_init(zone); 4793 zone->zone_pgdat = pgdat; 4794 zone_pcp_init(zone); 4795 4796 /* For bootup, initialized properly in watermark setup */ 4797 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4798 4799 lruvec_init(&zone->lruvec); 4800 if (!size) 4801 continue; 4802 4803 set_pageblock_order(); 4804 setup_usemap(pgdat, zone, zone_start_pfn, size); 4805 ret = init_currently_empty_zone(zone, zone_start_pfn, 4806 size, MEMMAP_EARLY); 4807 BUG_ON(ret); 4808 memmap_init(size, nid, j, zone_start_pfn); 4809 zone_start_pfn += size; 4810 } 4811 } 4812 4813 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4814 { 4815 /* Skip empty nodes */ 4816 if (!pgdat->node_spanned_pages) 4817 return; 4818 4819 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4820 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4821 if (!pgdat->node_mem_map) { 4822 unsigned long size, start, end; 4823 struct page *map; 4824 4825 /* 4826 * The zone's endpoints aren't required to be MAX_ORDER 4827 * aligned but the node_mem_map endpoints must be in order 4828 * for the buddy allocator to function correctly. 4829 */ 4830 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4831 end = pgdat_end_pfn(pgdat); 4832 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4833 size = (end - start) * sizeof(struct page); 4834 map = alloc_remap(pgdat->node_id, size); 4835 if (!map) 4836 map = alloc_bootmem_node_nopanic(pgdat, size); 4837 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4838 } 4839 #ifndef CONFIG_NEED_MULTIPLE_NODES 4840 /* 4841 * With no DISCONTIG, the global mem_map is just set as node 0's 4842 */ 4843 if (pgdat == NODE_DATA(0)) { 4844 mem_map = NODE_DATA(0)->node_mem_map; 4845 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4846 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4847 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4848 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4849 } 4850 #endif 4851 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4852 } 4853 4854 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4855 unsigned long node_start_pfn, unsigned long *zholes_size) 4856 { 4857 pg_data_t *pgdat = NODE_DATA(nid); 4858 unsigned long start_pfn = 0; 4859 unsigned long end_pfn = 0; 4860 4861 /* pg_data_t should be reset to zero when it's allocated */ 4862 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4863 4864 pgdat->node_id = nid; 4865 pgdat->node_start_pfn = node_start_pfn; 4866 init_zone_allows_reclaim(nid); 4867 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4868 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4869 #endif 4870 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4871 zones_size, zholes_size); 4872 4873 alloc_node_mem_map(pgdat); 4874 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4875 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4876 nid, (unsigned long)pgdat, 4877 (unsigned long)pgdat->node_mem_map); 4878 #endif 4879 4880 free_area_init_core(pgdat, start_pfn, end_pfn, 4881 zones_size, zholes_size); 4882 } 4883 4884 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4885 4886 #if MAX_NUMNODES > 1 4887 /* 4888 * Figure out the number of possible node ids. 4889 */ 4890 void __init setup_nr_node_ids(void) 4891 { 4892 unsigned int node; 4893 unsigned int highest = 0; 4894 4895 for_each_node_mask(node, node_possible_map) 4896 highest = node; 4897 nr_node_ids = highest + 1; 4898 } 4899 #endif 4900 4901 /** 4902 * node_map_pfn_alignment - determine the maximum internode alignment 4903 * 4904 * This function should be called after node map is populated and sorted. 4905 * It calculates the maximum power of two alignment which can distinguish 4906 * all the nodes. 4907 * 4908 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4909 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4910 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4911 * shifted, 1GiB is enough and this function will indicate so. 4912 * 4913 * This is used to test whether pfn -> nid mapping of the chosen memory 4914 * model has fine enough granularity to avoid incorrect mapping for the 4915 * populated node map. 4916 * 4917 * Returns the determined alignment in pfn's. 0 if there is no alignment 4918 * requirement (single node). 4919 */ 4920 unsigned long __init node_map_pfn_alignment(void) 4921 { 4922 unsigned long accl_mask = 0, last_end = 0; 4923 unsigned long start, end, mask; 4924 int last_nid = -1; 4925 int i, nid; 4926 4927 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4928 if (!start || last_nid < 0 || last_nid == nid) { 4929 last_nid = nid; 4930 last_end = end; 4931 continue; 4932 } 4933 4934 /* 4935 * Start with a mask granular enough to pin-point to the 4936 * start pfn and tick off bits one-by-one until it becomes 4937 * too coarse to separate the current node from the last. 4938 */ 4939 mask = ~((1 << __ffs(start)) - 1); 4940 while (mask && last_end <= (start & (mask << 1))) 4941 mask <<= 1; 4942 4943 /* accumulate all internode masks */ 4944 accl_mask |= mask; 4945 } 4946 4947 /* convert mask to number of pages */ 4948 return ~accl_mask + 1; 4949 } 4950 4951 /* Find the lowest pfn for a node */ 4952 static unsigned long __init find_min_pfn_for_node(int nid) 4953 { 4954 unsigned long min_pfn = ULONG_MAX; 4955 unsigned long start_pfn; 4956 int i; 4957 4958 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4959 min_pfn = min(min_pfn, start_pfn); 4960 4961 if (min_pfn == ULONG_MAX) { 4962 printk(KERN_WARNING 4963 "Could not find start_pfn for node %d\n", nid); 4964 return 0; 4965 } 4966 4967 return min_pfn; 4968 } 4969 4970 /** 4971 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4972 * 4973 * It returns the minimum PFN based on information provided via 4974 * add_active_range(). 4975 */ 4976 unsigned long __init find_min_pfn_with_active_regions(void) 4977 { 4978 return find_min_pfn_for_node(MAX_NUMNODES); 4979 } 4980 4981 /* 4982 * early_calculate_totalpages() 4983 * Sum pages in active regions for movable zone. 4984 * Populate N_MEMORY for calculating usable_nodes. 4985 */ 4986 static unsigned long __init early_calculate_totalpages(void) 4987 { 4988 unsigned long totalpages = 0; 4989 unsigned long start_pfn, end_pfn; 4990 int i, nid; 4991 4992 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4993 unsigned long pages = end_pfn - start_pfn; 4994 4995 totalpages += pages; 4996 if (pages) 4997 node_set_state(nid, N_MEMORY); 4998 } 4999 return totalpages; 5000 } 5001 5002 /* 5003 * Find the PFN the Movable zone begins in each node. Kernel memory 5004 * is spread evenly between nodes as long as the nodes have enough 5005 * memory. When they don't, some nodes will have more kernelcore than 5006 * others 5007 */ 5008 static void __init find_zone_movable_pfns_for_nodes(void) 5009 { 5010 int i, nid; 5011 unsigned long usable_startpfn; 5012 unsigned long kernelcore_node, kernelcore_remaining; 5013 /* save the state before borrow the nodemask */ 5014 nodemask_t saved_node_state = node_states[N_MEMORY]; 5015 unsigned long totalpages = early_calculate_totalpages(); 5016 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5017 5018 /* 5019 * If movablecore was specified, calculate what size of 5020 * kernelcore that corresponds so that memory usable for 5021 * any allocation type is evenly spread. If both kernelcore 5022 * and movablecore are specified, then the value of kernelcore 5023 * will be used for required_kernelcore if it's greater than 5024 * what movablecore would have allowed. 5025 */ 5026 if (required_movablecore) { 5027 unsigned long corepages; 5028 5029 /* 5030 * Round-up so that ZONE_MOVABLE is at least as large as what 5031 * was requested by the user 5032 */ 5033 required_movablecore = 5034 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5035 corepages = totalpages - required_movablecore; 5036 5037 required_kernelcore = max(required_kernelcore, corepages); 5038 } 5039 5040 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5041 if (!required_kernelcore) 5042 goto out; 5043 5044 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5045 find_usable_zone_for_movable(); 5046 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5047 5048 restart: 5049 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5050 kernelcore_node = required_kernelcore / usable_nodes; 5051 for_each_node_state(nid, N_MEMORY) { 5052 unsigned long start_pfn, end_pfn; 5053 5054 /* 5055 * Recalculate kernelcore_node if the division per node 5056 * now exceeds what is necessary to satisfy the requested 5057 * amount of memory for the kernel 5058 */ 5059 if (required_kernelcore < kernelcore_node) 5060 kernelcore_node = required_kernelcore / usable_nodes; 5061 5062 /* 5063 * As the map is walked, we track how much memory is usable 5064 * by the kernel using kernelcore_remaining. When it is 5065 * 0, the rest of the node is usable by ZONE_MOVABLE 5066 */ 5067 kernelcore_remaining = kernelcore_node; 5068 5069 /* Go through each range of PFNs within this node */ 5070 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5071 unsigned long size_pages; 5072 5073 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5074 if (start_pfn >= end_pfn) 5075 continue; 5076 5077 /* Account for what is only usable for kernelcore */ 5078 if (start_pfn < usable_startpfn) { 5079 unsigned long kernel_pages; 5080 kernel_pages = min(end_pfn, usable_startpfn) 5081 - start_pfn; 5082 5083 kernelcore_remaining -= min(kernel_pages, 5084 kernelcore_remaining); 5085 required_kernelcore -= min(kernel_pages, 5086 required_kernelcore); 5087 5088 /* Continue if range is now fully accounted */ 5089 if (end_pfn <= usable_startpfn) { 5090 5091 /* 5092 * Push zone_movable_pfn to the end so 5093 * that if we have to rebalance 5094 * kernelcore across nodes, we will 5095 * not double account here 5096 */ 5097 zone_movable_pfn[nid] = end_pfn; 5098 continue; 5099 } 5100 start_pfn = usable_startpfn; 5101 } 5102 5103 /* 5104 * The usable PFN range for ZONE_MOVABLE is from 5105 * start_pfn->end_pfn. Calculate size_pages as the 5106 * number of pages used as kernelcore 5107 */ 5108 size_pages = end_pfn - start_pfn; 5109 if (size_pages > kernelcore_remaining) 5110 size_pages = kernelcore_remaining; 5111 zone_movable_pfn[nid] = start_pfn + size_pages; 5112 5113 /* 5114 * Some kernelcore has been met, update counts and 5115 * break if the kernelcore for this node has been 5116 * satisfied 5117 */ 5118 required_kernelcore -= min(required_kernelcore, 5119 size_pages); 5120 kernelcore_remaining -= size_pages; 5121 if (!kernelcore_remaining) 5122 break; 5123 } 5124 } 5125 5126 /* 5127 * If there is still required_kernelcore, we do another pass with one 5128 * less node in the count. This will push zone_movable_pfn[nid] further 5129 * along on the nodes that still have memory until kernelcore is 5130 * satisfied 5131 */ 5132 usable_nodes--; 5133 if (usable_nodes && required_kernelcore > usable_nodes) 5134 goto restart; 5135 5136 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5137 for (nid = 0; nid < MAX_NUMNODES; nid++) 5138 zone_movable_pfn[nid] = 5139 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5140 5141 out: 5142 /* restore the node_state */ 5143 node_states[N_MEMORY] = saved_node_state; 5144 } 5145 5146 /* Any regular or high memory on that node ? */ 5147 static void check_for_memory(pg_data_t *pgdat, int nid) 5148 { 5149 enum zone_type zone_type; 5150 5151 if (N_MEMORY == N_NORMAL_MEMORY) 5152 return; 5153 5154 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5155 struct zone *zone = &pgdat->node_zones[zone_type]; 5156 if (populated_zone(zone)) { 5157 node_set_state(nid, N_HIGH_MEMORY); 5158 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5159 zone_type <= ZONE_NORMAL) 5160 node_set_state(nid, N_NORMAL_MEMORY); 5161 break; 5162 } 5163 } 5164 } 5165 5166 /** 5167 * free_area_init_nodes - Initialise all pg_data_t and zone data 5168 * @max_zone_pfn: an array of max PFNs for each zone 5169 * 5170 * This will call free_area_init_node() for each active node in the system. 5171 * Using the page ranges provided by add_active_range(), the size of each 5172 * zone in each node and their holes is calculated. If the maximum PFN 5173 * between two adjacent zones match, it is assumed that the zone is empty. 5174 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5175 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5176 * starts where the previous one ended. For example, ZONE_DMA32 starts 5177 * at arch_max_dma_pfn. 5178 */ 5179 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5180 { 5181 unsigned long start_pfn, end_pfn; 5182 int i, nid; 5183 5184 /* Record where the zone boundaries are */ 5185 memset(arch_zone_lowest_possible_pfn, 0, 5186 sizeof(arch_zone_lowest_possible_pfn)); 5187 memset(arch_zone_highest_possible_pfn, 0, 5188 sizeof(arch_zone_highest_possible_pfn)); 5189 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5190 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5191 for (i = 1; i < MAX_NR_ZONES; i++) { 5192 if (i == ZONE_MOVABLE) 5193 continue; 5194 arch_zone_lowest_possible_pfn[i] = 5195 arch_zone_highest_possible_pfn[i-1]; 5196 arch_zone_highest_possible_pfn[i] = 5197 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5198 } 5199 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5200 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5201 5202 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5203 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5204 find_zone_movable_pfns_for_nodes(); 5205 5206 /* Print out the zone ranges */ 5207 printk("Zone ranges:\n"); 5208 for (i = 0; i < MAX_NR_ZONES; i++) { 5209 if (i == ZONE_MOVABLE) 5210 continue; 5211 printk(KERN_CONT " %-8s ", zone_names[i]); 5212 if (arch_zone_lowest_possible_pfn[i] == 5213 arch_zone_highest_possible_pfn[i]) 5214 printk(KERN_CONT "empty\n"); 5215 else 5216 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5217 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5218 (arch_zone_highest_possible_pfn[i] 5219 << PAGE_SHIFT) - 1); 5220 } 5221 5222 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5223 printk("Movable zone start for each node\n"); 5224 for (i = 0; i < MAX_NUMNODES; i++) { 5225 if (zone_movable_pfn[i]) 5226 printk(" Node %d: %#010lx\n", i, 5227 zone_movable_pfn[i] << PAGE_SHIFT); 5228 } 5229 5230 /* Print out the early node map */ 5231 printk("Early memory node ranges\n"); 5232 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5233 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5234 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5235 5236 /* Initialise every node */ 5237 mminit_verify_pageflags_layout(); 5238 setup_nr_node_ids(); 5239 for_each_online_node(nid) { 5240 pg_data_t *pgdat = NODE_DATA(nid); 5241 free_area_init_node(nid, NULL, 5242 find_min_pfn_for_node(nid), NULL); 5243 5244 /* Any memory on that node */ 5245 if (pgdat->node_present_pages) 5246 node_set_state(nid, N_MEMORY); 5247 check_for_memory(pgdat, nid); 5248 } 5249 } 5250 5251 static int __init cmdline_parse_core(char *p, unsigned long *core) 5252 { 5253 unsigned long long coremem; 5254 if (!p) 5255 return -EINVAL; 5256 5257 coremem = memparse(p, &p); 5258 *core = coremem >> PAGE_SHIFT; 5259 5260 /* Paranoid check that UL is enough for the coremem value */ 5261 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5262 5263 return 0; 5264 } 5265 5266 /* 5267 * kernelcore=size sets the amount of memory for use for allocations that 5268 * cannot be reclaimed or migrated. 5269 */ 5270 static int __init cmdline_parse_kernelcore(char *p) 5271 { 5272 return cmdline_parse_core(p, &required_kernelcore); 5273 } 5274 5275 /* 5276 * movablecore=size sets the amount of memory for use for allocations that 5277 * can be reclaimed or migrated. 5278 */ 5279 static int __init cmdline_parse_movablecore(char *p) 5280 { 5281 return cmdline_parse_core(p, &required_movablecore); 5282 } 5283 5284 early_param("kernelcore", cmdline_parse_kernelcore); 5285 early_param("movablecore", cmdline_parse_movablecore); 5286 5287 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5288 5289 void adjust_managed_page_count(struct page *page, long count) 5290 { 5291 spin_lock(&managed_page_count_lock); 5292 page_zone(page)->managed_pages += count; 5293 totalram_pages += count; 5294 #ifdef CONFIG_HIGHMEM 5295 if (PageHighMem(page)) 5296 totalhigh_pages += count; 5297 #endif 5298 spin_unlock(&managed_page_count_lock); 5299 } 5300 EXPORT_SYMBOL(adjust_managed_page_count); 5301 5302 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5303 { 5304 void *pos; 5305 unsigned long pages = 0; 5306 5307 start = (void *)PAGE_ALIGN((unsigned long)start); 5308 end = (void *)((unsigned long)end & PAGE_MASK); 5309 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5310 if ((unsigned int)poison <= 0xFF) 5311 memset(pos, poison, PAGE_SIZE); 5312 free_reserved_page(virt_to_page(pos)); 5313 } 5314 5315 if (pages && s) 5316 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5317 s, pages << (PAGE_SHIFT - 10), start, end); 5318 5319 return pages; 5320 } 5321 EXPORT_SYMBOL(free_reserved_area); 5322 5323 #ifdef CONFIG_HIGHMEM 5324 void free_highmem_page(struct page *page) 5325 { 5326 __free_reserved_page(page); 5327 totalram_pages++; 5328 page_zone(page)->managed_pages++; 5329 totalhigh_pages++; 5330 } 5331 #endif 5332 5333 5334 void __init mem_init_print_info(const char *str) 5335 { 5336 unsigned long physpages, codesize, datasize, rosize, bss_size; 5337 unsigned long init_code_size, init_data_size; 5338 5339 physpages = get_num_physpages(); 5340 codesize = _etext - _stext; 5341 datasize = _edata - _sdata; 5342 rosize = __end_rodata - __start_rodata; 5343 bss_size = __bss_stop - __bss_start; 5344 init_data_size = __init_end - __init_begin; 5345 init_code_size = _einittext - _sinittext; 5346 5347 /* 5348 * Detect special cases and adjust section sizes accordingly: 5349 * 1) .init.* may be embedded into .data sections 5350 * 2) .init.text.* may be out of [__init_begin, __init_end], 5351 * please refer to arch/tile/kernel/vmlinux.lds.S. 5352 * 3) .rodata.* may be embedded into .text or .data sections. 5353 */ 5354 #define adj_init_size(start, end, size, pos, adj) \ 5355 do { \ 5356 if (start <= pos && pos < end && size > adj) \ 5357 size -= adj; \ 5358 } while (0) 5359 5360 adj_init_size(__init_begin, __init_end, init_data_size, 5361 _sinittext, init_code_size); 5362 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5363 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5364 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5365 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5366 5367 #undef adj_init_size 5368 5369 printk("Memory: %luK/%luK available " 5370 "(%luK kernel code, %luK rwdata, %luK rodata, " 5371 "%luK init, %luK bss, %luK reserved" 5372 #ifdef CONFIG_HIGHMEM 5373 ", %luK highmem" 5374 #endif 5375 "%s%s)\n", 5376 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5377 codesize >> 10, datasize >> 10, rosize >> 10, 5378 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5379 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5380 #ifdef CONFIG_HIGHMEM 5381 totalhigh_pages << (PAGE_SHIFT-10), 5382 #endif 5383 str ? ", " : "", str ? str : ""); 5384 } 5385 5386 /** 5387 * set_dma_reserve - set the specified number of pages reserved in the first zone 5388 * @new_dma_reserve: The number of pages to mark reserved 5389 * 5390 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5391 * In the DMA zone, a significant percentage may be consumed by kernel image 5392 * and other unfreeable allocations which can skew the watermarks badly. This 5393 * function may optionally be used to account for unfreeable pages in the 5394 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5395 * smaller per-cpu batchsize. 5396 */ 5397 void __init set_dma_reserve(unsigned long new_dma_reserve) 5398 { 5399 dma_reserve = new_dma_reserve; 5400 } 5401 5402 void __init free_area_init(unsigned long *zones_size) 5403 { 5404 free_area_init_node(0, zones_size, 5405 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5406 } 5407 5408 static int page_alloc_cpu_notify(struct notifier_block *self, 5409 unsigned long action, void *hcpu) 5410 { 5411 int cpu = (unsigned long)hcpu; 5412 5413 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5414 lru_add_drain_cpu(cpu); 5415 drain_pages(cpu); 5416 5417 /* 5418 * Spill the event counters of the dead processor 5419 * into the current processors event counters. 5420 * This artificially elevates the count of the current 5421 * processor. 5422 */ 5423 vm_events_fold_cpu(cpu); 5424 5425 /* 5426 * Zero the differential counters of the dead processor 5427 * so that the vm statistics are consistent. 5428 * 5429 * This is only okay since the processor is dead and cannot 5430 * race with what we are doing. 5431 */ 5432 cpu_vm_stats_fold(cpu); 5433 } 5434 return NOTIFY_OK; 5435 } 5436 5437 void __init page_alloc_init(void) 5438 { 5439 hotcpu_notifier(page_alloc_cpu_notify, 0); 5440 } 5441 5442 /* 5443 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5444 * or min_free_kbytes changes. 5445 */ 5446 static void calculate_totalreserve_pages(void) 5447 { 5448 struct pglist_data *pgdat; 5449 unsigned long reserve_pages = 0; 5450 enum zone_type i, j; 5451 5452 for_each_online_pgdat(pgdat) { 5453 for (i = 0; i < MAX_NR_ZONES; i++) { 5454 struct zone *zone = pgdat->node_zones + i; 5455 unsigned long max = 0; 5456 5457 /* Find valid and maximum lowmem_reserve in the zone */ 5458 for (j = i; j < MAX_NR_ZONES; j++) { 5459 if (zone->lowmem_reserve[j] > max) 5460 max = zone->lowmem_reserve[j]; 5461 } 5462 5463 /* we treat the high watermark as reserved pages. */ 5464 max += high_wmark_pages(zone); 5465 5466 if (max > zone->managed_pages) 5467 max = zone->managed_pages; 5468 reserve_pages += max; 5469 /* 5470 * Lowmem reserves are not available to 5471 * GFP_HIGHUSER page cache allocations and 5472 * kswapd tries to balance zones to their high 5473 * watermark. As a result, neither should be 5474 * regarded as dirtyable memory, to prevent a 5475 * situation where reclaim has to clean pages 5476 * in order to balance the zones. 5477 */ 5478 zone->dirty_balance_reserve = max; 5479 } 5480 } 5481 dirty_balance_reserve = reserve_pages; 5482 totalreserve_pages = reserve_pages; 5483 } 5484 5485 /* 5486 * setup_per_zone_lowmem_reserve - called whenever 5487 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5488 * has a correct pages reserved value, so an adequate number of 5489 * pages are left in the zone after a successful __alloc_pages(). 5490 */ 5491 static void setup_per_zone_lowmem_reserve(void) 5492 { 5493 struct pglist_data *pgdat; 5494 enum zone_type j, idx; 5495 5496 for_each_online_pgdat(pgdat) { 5497 for (j = 0; j < MAX_NR_ZONES; j++) { 5498 struct zone *zone = pgdat->node_zones + j; 5499 unsigned long managed_pages = zone->managed_pages; 5500 5501 zone->lowmem_reserve[j] = 0; 5502 5503 idx = j; 5504 while (idx) { 5505 struct zone *lower_zone; 5506 5507 idx--; 5508 5509 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5510 sysctl_lowmem_reserve_ratio[idx] = 1; 5511 5512 lower_zone = pgdat->node_zones + idx; 5513 lower_zone->lowmem_reserve[j] = managed_pages / 5514 sysctl_lowmem_reserve_ratio[idx]; 5515 managed_pages += lower_zone->managed_pages; 5516 } 5517 } 5518 } 5519 5520 /* update totalreserve_pages */ 5521 calculate_totalreserve_pages(); 5522 } 5523 5524 static void __setup_per_zone_wmarks(void) 5525 { 5526 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5527 unsigned long lowmem_pages = 0; 5528 struct zone *zone; 5529 unsigned long flags; 5530 5531 /* Calculate total number of !ZONE_HIGHMEM pages */ 5532 for_each_zone(zone) { 5533 if (!is_highmem(zone)) 5534 lowmem_pages += zone->managed_pages; 5535 } 5536 5537 for_each_zone(zone) { 5538 u64 tmp; 5539 5540 spin_lock_irqsave(&zone->lock, flags); 5541 tmp = (u64)pages_min * zone->managed_pages; 5542 do_div(tmp, lowmem_pages); 5543 if (is_highmem(zone)) { 5544 /* 5545 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5546 * need highmem pages, so cap pages_min to a small 5547 * value here. 5548 * 5549 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5550 * deltas controls asynch page reclaim, and so should 5551 * not be capped for highmem. 5552 */ 5553 unsigned long min_pages; 5554 5555 min_pages = zone->managed_pages / 1024; 5556 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5557 zone->watermark[WMARK_MIN] = min_pages; 5558 } else { 5559 /* 5560 * If it's a lowmem zone, reserve a number of pages 5561 * proportionate to the zone's size. 5562 */ 5563 zone->watermark[WMARK_MIN] = tmp; 5564 } 5565 5566 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5567 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5568 5569 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5570 high_wmark_pages(zone) - 5571 low_wmark_pages(zone) - 5572 zone_page_state(zone, NR_ALLOC_BATCH)); 5573 5574 setup_zone_migrate_reserve(zone); 5575 spin_unlock_irqrestore(&zone->lock, flags); 5576 } 5577 5578 /* update totalreserve_pages */ 5579 calculate_totalreserve_pages(); 5580 } 5581 5582 /** 5583 * setup_per_zone_wmarks - called when min_free_kbytes changes 5584 * or when memory is hot-{added|removed} 5585 * 5586 * Ensures that the watermark[min,low,high] values for each zone are set 5587 * correctly with respect to min_free_kbytes. 5588 */ 5589 void setup_per_zone_wmarks(void) 5590 { 5591 mutex_lock(&zonelists_mutex); 5592 __setup_per_zone_wmarks(); 5593 mutex_unlock(&zonelists_mutex); 5594 } 5595 5596 /* 5597 * The inactive anon list should be small enough that the VM never has to 5598 * do too much work, but large enough that each inactive page has a chance 5599 * to be referenced again before it is swapped out. 5600 * 5601 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5602 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5603 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5604 * the anonymous pages are kept on the inactive list. 5605 * 5606 * total target max 5607 * memory ratio inactive anon 5608 * ------------------------------------- 5609 * 10MB 1 5MB 5610 * 100MB 1 50MB 5611 * 1GB 3 250MB 5612 * 10GB 10 0.9GB 5613 * 100GB 31 3GB 5614 * 1TB 101 10GB 5615 * 10TB 320 32GB 5616 */ 5617 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5618 { 5619 unsigned int gb, ratio; 5620 5621 /* Zone size in gigabytes */ 5622 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5623 if (gb) 5624 ratio = int_sqrt(10 * gb); 5625 else 5626 ratio = 1; 5627 5628 zone->inactive_ratio = ratio; 5629 } 5630 5631 static void __meminit setup_per_zone_inactive_ratio(void) 5632 { 5633 struct zone *zone; 5634 5635 for_each_zone(zone) 5636 calculate_zone_inactive_ratio(zone); 5637 } 5638 5639 /* 5640 * Initialise min_free_kbytes. 5641 * 5642 * For small machines we want it small (128k min). For large machines 5643 * we want it large (64MB max). But it is not linear, because network 5644 * bandwidth does not increase linearly with machine size. We use 5645 * 5646 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5647 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5648 * 5649 * which yields 5650 * 5651 * 16MB: 512k 5652 * 32MB: 724k 5653 * 64MB: 1024k 5654 * 128MB: 1448k 5655 * 256MB: 2048k 5656 * 512MB: 2896k 5657 * 1024MB: 4096k 5658 * 2048MB: 5792k 5659 * 4096MB: 8192k 5660 * 8192MB: 11584k 5661 * 16384MB: 16384k 5662 */ 5663 int __meminit init_per_zone_wmark_min(void) 5664 { 5665 unsigned long lowmem_kbytes; 5666 int new_min_free_kbytes; 5667 5668 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5669 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5670 5671 if (new_min_free_kbytes > user_min_free_kbytes) { 5672 min_free_kbytes = new_min_free_kbytes; 5673 if (min_free_kbytes < 128) 5674 min_free_kbytes = 128; 5675 if (min_free_kbytes > 65536) 5676 min_free_kbytes = 65536; 5677 } else { 5678 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5679 new_min_free_kbytes, user_min_free_kbytes); 5680 } 5681 setup_per_zone_wmarks(); 5682 refresh_zone_stat_thresholds(); 5683 setup_per_zone_lowmem_reserve(); 5684 setup_per_zone_inactive_ratio(); 5685 return 0; 5686 } 5687 module_init(init_per_zone_wmark_min) 5688 5689 /* 5690 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5691 * that we can call two helper functions whenever min_free_kbytes 5692 * changes. 5693 */ 5694 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5695 void __user *buffer, size_t *length, loff_t *ppos) 5696 { 5697 proc_dointvec(table, write, buffer, length, ppos); 5698 if (write) { 5699 user_min_free_kbytes = min_free_kbytes; 5700 setup_per_zone_wmarks(); 5701 } 5702 return 0; 5703 } 5704 5705 #ifdef CONFIG_NUMA 5706 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5707 void __user *buffer, size_t *length, loff_t *ppos) 5708 { 5709 struct zone *zone; 5710 int rc; 5711 5712 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5713 if (rc) 5714 return rc; 5715 5716 for_each_zone(zone) 5717 zone->min_unmapped_pages = (zone->managed_pages * 5718 sysctl_min_unmapped_ratio) / 100; 5719 return 0; 5720 } 5721 5722 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5723 void __user *buffer, size_t *length, loff_t *ppos) 5724 { 5725 struct zone *zone; 5726 int rc; 5727 5728 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5729 if (rc) 5730 return rc; 5731 5732 for_each_zone(zone) 5733 zone->min_slab_pages = (zone->managed_pages * 5734 sysctl_min_slab_ratio) / 100; 5735 return 0; 5736 } 5737 #endif 5738 5739 /* 5740 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5741 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5742 * whenever sysctl_lowmem_reserve_ratio changes. 5743 * 5744 * The reserve ratio obviously has absolutely no relation with the 5745 * minimum watermarks. The lowmem reserve ratio can only make sense 5746 * if in function of the boot time zone sizes. 5747 */ 5748 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5749 void __user *buffer, size_t *length, loff_t *ppos) 5750 { 5751 proc_dointvec_minmax(table, write, buffer, length, ppos); 5752 setup_per_zone_lowmem_reserve(); 5753 return 0; 5754 } 5755 5756 /* 5757 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5758 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5759 * pagelist can have before it gets flushed back to buddy allocator. 5760 */ 5761 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5762 void __user *buffer, size_t *length, loff_t *ppos) 5763 { 5764 struct zone *zone; 5765 unsigned int cpu; 5766 int ret; 5767 5768 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5769 if (!write || (ret < 0)) 5770 return ret; 5771 5772 mutex_lock(&pcp_batch_high_lock); 5773 for_each_populated_zone(zone) { 5774 unsigned long high; 5775 high = zone->managed_pages / percpu_pagelist_fraction; 5776 for_each_possible_cpu(cpu) 5777 pageset_set_high(per_cpu_ptr(zone->pageset, cpu), 5778 high); 5779 } 5780 mutex_unlock(&pcp_batch_high_lock); 5781 return 0; 5782 } 5783 5784 int hashdist = HASHDIST_DEFAULT; 5785 5786 #ifdef CONFIG_NUMA 5787 static int __init set_hashdist(char *str) 5788 { 5789 if (!str) 5790 return 0; 5791 hashdist = simple_strtoul(str, &str, 0); 5792 return 1; 5793 } 5794 __setup("hashdist=", set_hashdist); 5795 #endif 5796 5797 /* 5798 * allocate a large system hash table from bootmem 5799 * - it is assumed that the hash table must contain an exact power-of-2 5800 * quantity of entries 5801 * - limit is the number of hash buckets, not the total allocation size 5802 */ 5803 void *__init alloc_large_system_hash(const char *tablename, 5804 unsigned long bucketsize, 5805 unsigned long numentries, 5806 int scale, 5807 int flags, 5808 unsigned int *_hash_shift, 5809 unsigned int *_hash_mask, 5810 unsigned long low_limit, 5811 unsigned long high_limit) 5812 { 5813 unsigned long long max = high_limit; 5814 unsigned long log2qty, size; 5815 void *table = NULL; 5816 5817 /* allow the kernel cmdline to have a say */ 5818 if (!numentries) { 5819 /* round applicable memory size up to nearest megabyte */ 5820 numentries = nr_kernel_pages; 5821 5822 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5823 if (PAGE_SHIFT < 20) 5824 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5825 5826 /* limit to 1 bucket per 2^scale bytes of low memory */ 5827 if (scale > PAGE_SHIFT) 5828 numentries >>= (scale - PAGE_SHIFT); 5829 else 5830 numentries <<= (PAGE_SHIFT - scale); 5831 5832 /* Make sure we've got at least a 0-order allocation.. */ 5833 if (unlikely(flags & HASH_SMALL)) { 5834 /* Makes no sense without HASH_EARLY */ 5835 WARN_ON(!(flags & HASH_EARLY)); 5836 if (!(numentries >> *_hash_shift)) { 5837 numentries = 1UL << *_hash_shift; 5838 BUG_ON(!numentries); 5839 } 5840 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5841 numentries = PAGE_SIZE / bucketsize; 5842 } 5843 numentries = roundup_pow_of_two(numentries); 5844 5845 /* limit allocation size to 1/16 total memory by default */ 5846 if (max == 0) { 5847 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5848 do_div(max, bucketsize); 5849 } 5850 max = min(max, 0x80000000ULL); 5851 5852 if (numentries < low_limit) 5853 numentries = low_limit; 5854 if (numentries > max) 5855 numentries = max; 5856 5857 log2qty = ilog2(numentries); 5858 5859 do { 5860 size = bucketsize << log2qty; 5861 if (flags & HASH_EARLY) 5862 table = alloc_bootmem_nopanic(size); 5863 else if (hashdist) 5864 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5865 else { 5866 /* 5867 * If bucketsize is not a power-of-two, we may free 5868 * some pages at the end of hash table which 5869 * alloc_pages_exact() automatically does 5870 */ 5871 if (get_order(size) < MAX_ORDER) { 5872 table = alloc_pages_exact(size, GFP_ATOMIC); 5873 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5874 } 5875 } 5876 } while (!table && size > PAGE_SIZE && --log2qty); 5877 5878 if (!table) 5879 panic("Failed to allocate %s hash table\n", tablename); 5880 5881 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5882 tablename, 5883 (1UL << log2qty), 5884 ilog2(size) - PAGE_SHIFT, 5885 size); 5886 5887 if (_hash_shift) 5888 *_hash_shift = log2qty; 5889 if (_hash_mask) 5890 *_hash_mask = (1 << log2qty) - 1; 5891 5892 return table; 5893 } 5894 5895 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5896 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5897 unsigned long pfn) 5898 { 5899 #ifdef CONFIG_SPARSEMEM 5900 return __pfn_to_section(pfn)->pageblock_flags; 5901 #else 5902 return zone->pageblock_flags; 5903 #endif /* CONFIG_SPARSEMEM */ 5904 } 5905 5906 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5907 { 5908 #ifdef CONFIG_SPARSEMEM 5909 pfn &= (PAGES_PER_SECTION-1); 5910 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5911 #else 5912 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5913 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5914 #endif /* CONFIG_SPARSEMEM */ 5915 } 5916 5917 /** 5918 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5919 * @page: The page within the block of interest 5920 * @start_bitidx: The first bit of interest to retrieve 5921 * @end_bitidx: The last bit of interest 5922 * returns pageblock_bits flags 5923 */ 5924 unsigned long get_pageblock_flags_group(struct page *page, 5925 int start_bitidx, int end_bitidx) 5926 { 5927 struct zone *zone; 5928 unsigned long *bitmap; 5929 unsigned long pfn, bitidx; 5930 unsigned long flags = 0; 5931 unsigned long value = 1; 5932 5933 zone = page_zone(page); 5934 pfn = page_to_pfn(page); 5935 bitmap = get_pageblock_bitmap(zone, pfn); 5936 bitidx = pfn_to_bitidx(zone, pfn); 5937 5938 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5939 if (test_bit(bitidx + start_bitidx, bitmap)) 5940 flags |= value; 5941 5942 return flags; 5943 } 5944 5945 /** 5946 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5947 * @page: The page within the block of interest 5948 * @start_bitidx: The first bit of interest 5949 * @end_bitidx: The last bit of interest 5950 * @flags: The flags to set 5951 */ 5952 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5953 int start_bitidx, int end_bitidx) 5954 { 5955 struct zone *zone; 5956 unsigned long *bitmap; 5957 unsigned long pfn, bitidx; 5958 unsigned long value = 1; 5959 5960 zone = page_zone(page); 5961 pfn = page_to_pfn(page); 5962 bitmap = get_pageblock_bitmap(zone, pfn); 5963 bitidx = pfn_to_bitidx(zone, pfn); 5964 VM_BUG_ON(!zone_spans_pfn(zone, pfn)); 5965 5966 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5967 if (flags & value) 5968 __set_bit(bitidx + start_bitidx, bitmap); 5969 else 5970 __clear_bit(bitidx + start_bitidx, bitmap); 5971 } 5972 5973 /* 5974 * This function checks whether pageblock includes unmovable pages or not. 5975 * If @count is not zero, it is okay to include less @count unmovable pages 5976 * 5977 * PageLRU check without isolation or lru_lock could race so that 5978 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5979 * expect this function should be exact. 5980 */ 5981 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5982 bool skip_hwpoisoned_pages) 5983 { 5984 unsigned long pfn, iter, found; 5985 int mt; 5986 5987 /* 5988 * For avoiding noise data, lru_add_drain_all() should be called 5989 * If ZONE_MOVABLE, the zone never contains unmovable pages 5990 */ 5991 if (zone_idx(zone) == ZONE_MOVABLE) 5992 return false; 5993 mt = get_pageblock_migratetype(page); 5994 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5995 return false; 5996 5997 pfn = page_to_pfn(page); 5998 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5999 unsigned long check = pfn + iter; 6000 6001 if (!pfn_valid_within(check)) 6002 continue; 6003 6004 page = pfn_to_page(check); 6005 6006 /* 6007 * Hugepages are not in LRU lists, but they're movable. 6008 * We need not scan over tail pages bacause we don't 6009 * handle each tail page individually in migration. 6010 */ 6011 if (PageHuge(page)) { 6012 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6013 continue; 6014 } 6015 6016 /* 6017 * We can't use page_count without pin a page 6018 * because another CPU can free compound page. 6019 * This check already skips compound tails of THP 6020 * because their page->_count is zero at all time. 6021 */ 6022 if (!atomic_read(&page->_count)) { 6023 if (PageBuddy(page)) 6024 iter += (1 << page_order(page)) - 1; 6025 continue; 6026 } 6027 6028 /* 6029 * The HWPoisoned page may be not in buddy system, and 6030 * page_count() is not 0. 6031 */ 6032 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6033 continue; 6034 6035 if (!PageLRU(page)) 6036 found++; 6037 /* 6038 * If there are RECLAIMABLE pages, we need to check it. 6039 * But now, memory offline itself doesn't call shrink_slab() 6040 * and it still to be fixed. 6041 */ 6042 /* 6043 * If the page is not RAM, page_count()should be 0. 6044 * we don't need more check. This is an _used_ not-movable page. 6045 * 6046 * The problematic thing here is PG_reserved pages. PG_reserved 6047 * is set to both of a memory hole page and a _used_ kernel 6048 * page at boot. 6049 */ 6050 if (found > count) 6051 return true; 6052 } 6053 return false; 6054 } 6055 6056 bool is_pageblock_removable_nolock(struct page *page) 6057 { 6058 struct zone *zone; 6059 unsigned long pfn; 6060 6061 /* 6062 * We have to be careful here because we are iterating over memory 6063 * sections which are not zone aware so we might end up outside of 6064 * the zone but still within the section. 6065 * We have to take care about the node as well. If the node is offline 6066 * its NODE_DATA will be NULL - see page_zone. 6067 */ 6068 if (!node_online(page_to_nid(page))) 6069 return false; 6070 6071 zone = page_zone(page); 6072 pfn = page_to_pfn(page); 6073 if (!zone_spans_pfn(zone, pfn)) 6074 return false; 6075 6076 return !has_unmovable_pages(zone, page, 0, true); 6077 } 6078 6079 #ifdef CONFIG_CMA 6080 6081 static unsigned long pfn_max_align_down(unsigned long pfn) 6082 { 6083 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6084 pageblock_nr_pages) - 1); 6085 } 6086 6087 static unsigned long pfn_max_align_up(unsigned long pfn) 6088 { 6089 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6090 pageblock_nr_pages)); 6091 } 6092 6093 /* [start, end) must belong to a single zone. */ 6094 static int __alloc_contig_migrate_range(struct compact_control *cc, 6095 unsigned long start, unsigned long end) 6096 { 6097 /* This function is based on compact_zone() from compaction.c. */ 6098 unsigned long nr_reclaimed; 6099 unsigned long pfn = start; 6100 unsigned int tries = 0; 6101 int ret = 0; 6102 6103 migrate_prep(); 6104 6105 while (pfn < end || !list_empty(&cc->migratepages)) { 6106 if (fatal_signal_pending(current)) { 6107 ret = -EINTR; 6108 break; 6109 } 6110 6111 if (list_empty(&cc->migratepages)) { 6112 cc->nr_migratepages = 0; 6113 pfn = isolate_migratepages_range(cc->zone, cc, 6114 pfn, end, true); 6115 if (!pfn) { 6116 ret = -EINTR; 6117 break; 6118 } 6119 tries = 0; 6120 } else if (++tries == 5) { 6121 ret = ret < 0 ? ret : -EBUSY; 6122 break; 6123 } 6124 6125 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6126 &cc->migratepages); 6127 cc->nr_migratepages -= nr_reclaimed; 6128 6129 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6130 0, MIGRATE_SYNC, MR_CMA); 6131 } 6132 if (ret < 0) { 6133 putback_movable_pages(&cc->migratepages); 6134 return ret; 6135 } 6136 return 0; 6137 } 6138 6139 /** 6140 * alloc_contig_range() -- tries to allocate given range of pages 6141 * @start: start PFN to allocate 6142 * @end: one-past-the-last PFN to allocate 6143 * @migratetype: migratetype of the underlaying pageblocks (either 6144 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6145 * in range must have the same migratetype and it must 6146 * be either of the two. 6147 * 6148 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6149 * aligned, however it's the caller's responsibility to guarantee that 6150 * we are the only thread that changes migrate type of pageblocks the 6151 * pages fall in. 6152 * 6153 * The PFN range must belong to a single zone. 6154 * 6155 * Returns zero on success or negative error code. On success all 6156 * pages which PFN is in [start, end) are allocated for the caller and 6157 * need to be freed with free_contig_range(). 6158 */ 6159 int alloc_contig_range(unsigned long start, unsigned long end, 6160 unsigned migratetype) 6161 { 6162 unsigned long outer_start, outer_end; 6163 int ret = 0, order; 6164 6165 struct compact_control cc = { 6166 .nr_migratepages = 0, 6167 .order = -1, 6168 .zone = page_zone(pfn_to_page(start)), 6169 .sync = true, 6170 .ignore_skip_hint = true, 6171 }; 6172 INIT_LIST_HEAD(&cc.migratepages); 6173 6174 /* 6175 * What we do here is we mark all pageblocks in range as 6176 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6177 * have different sizes, and due to the way page allocator 6178 * work, we align the range to biggest of the two pages so 6179 * that page allocator won't try to merge buddies from 6180 * different pageblocks and change MIGRATE_ISOLATE to some 6181 * other migration type. 6182 * 6183 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6184 * migrate the pages from an unaligned range (ie. pages that 6185 * we are interested in). This will put all the pages in 6186 * range back to page allocator as MIGRATE_ISOLATE. 6187 * 6188 * When this is done, we take the pages in range from page 6189 * allocator removing them from the buddy system. This way 6190 * page allocator will never consider using them. 6191 * 6192 * This lets us mark the pageblocks back as 6193 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6194 * aligned range but not in the unaligned, original range are 6195 * put back to page allocator so that buddy can use them. 6196 */ 6197 6198 ret = start_isolate_page_range(pfn_max_align_down(start), 6199 pfn_max_align_up(end), migratetype, 6200 false); 6201 if (ret) 6202 return ret; 6203 6204 ret = __alloc_contig_migrate_range(&cc, start, end); 6205 if (ret) 6206 goto done; 6207 6208 /* 6209 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6210 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6211 * more, all pages in [start, end) are free in page allocator. 6212 * What we are going to do is to allocate all pages from 6213 * [start, end) (that is remove them from page allocator). 6214 * 6215 * The only problem is that pages at the beginning and at the 6216 * end of interesting range may be not aligned with pages that 6217 * page allocator holds, ie. they can be part of higher order 6218 * pages. Because of this, we reserve the bigger range and 6219 * once this is done free the pages we are not interested in. 6220 * 6221 * We don't have to hold zone->lock here because the pages are 6222 * isolated thus they won't get removed from buddy. 6223 */ 6224 6225 lru_add_drain_all(); 6226 drain_all_pages(); 6227 6228 order = 0; 6229 outer_start = start; 6230 while (!PageBuddy(pfn_to_page(outer_start))) { 6231 if (++order >= MAX_ORDER) { 6232 ret = -EBUSY; 6233 goto done; 6234 } 6235 outer_start &= ~0UL << order; 6236 } 6237 6238 /* Make sure the range is really isolated. */ 6239 if (test_pages_isolated(outer_start, end, false)) { 6240 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6241 outer_start, end); 6242 ret = -EBUSY; 6243 goto done; 6244 } 6245 6246 6247 /* Grab isolated pages from freelists. */ 6248 outer_end = isolate_freepages_range(&cc, outer_start, end); 6249 if (!outer_end) { 6250 ret = -EBUSY; 6251 goto done; 6252 } 6253 6254 /* Free head and tail (if any) */ 6255 if (start != outer_start) 6256 free_contig_range(outer_start, start - outer_start); 6257 if (end != outer_end) 6258 free_contig_range(end, outer_end - end); 6259 6260 done: 6261 undo_isolate_page_range(pfn_max_align_down(start), 6262 pfn_max_align_up(end), migratetype); 6263 return ret; 6264 } 6265 6266 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6267 { 6268 unsigned int count = 0; 6269 6270 for (; nr_pages--; pfn++) { 6271 struct page *page = pfn_to_page(pfn); 6272 6273 count += page_count(page) != 1; 6274 __free_page(page); 6275 } 6276 WARN(count != 0, "%d pages are still in use!\n", count); 6277 } 6278 #endif 6279 6280 #ifdef CONFIG_MEMORY_HOTPLUG 6281 /* 6282 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6283 * page high values need to be recalulated. 6284 */ 6285 void __meminit zone_pcp_update(struct zone *zone) 6286 { 6287 unsigned cpu; 6288 mutex_lock(&pcp_batch_high_lock); 6289 for_each_possible_cpu(cpu) 6290 pageset_set_high_and_batch(zone, 6291 per_cpu_ptr(zone->pageset, cpu)); 6292 mutex_unlock(&pcp_batch_high_lock); 6293 } 6294 #endif 6295 6296 void zone_pcp_reset(struct zone *zone) 6297 { 6298 unsigned long flags; 6299 int cpu; 6300 struct per_cpu_pageset *pset; 6301 6302 /* avoid races with drain_pages() */ 6303 local_irq_save(flags); 6304 if (zone->pageset != &boot_pageset) { 6305 for_each_online_cpu(cpu) { 6306 pset = per_cpu_ptr(zone->pageset, cpu); 6307 drain_zonestat(zone, pset); 6308 } 6309 free_percpu(zone->pageset); 6310 zone->pageset = &boot_pageset; 6311 } 6312 local_irq_restore(flags); 6313 } 6314 6315 #ifdef CONFIG_MEMORY_HOTREMOVE 6316 /* 6317 * All pages in the range must be isolated before calling this. 6318 */ 6319 void 6320 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6321 { 6322 struct page *page; 6323 struct zone *zone; 6324 int order, i; 6325 unsigned long pfn; 6326 unsigned long flags; 6327 /* find the first valid pfn */ 6328 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6329 if (pfn_valid(pfn)) 6330 break; 6331 if (pfn == end_pfn) 6332 return; 6333 zone = page_zone(pfn_to_page(pfn)); 6334 spin_lock_irqsave(&zone->lock, flags); 6335 pfn = start_pfn; 6336 while (pfn < end_pfn) { 6337 if (!pfn_valid(pfn)) { 6338 pfn++; 6339 continue; 6340 } 6341 page = pfn_to_page(pfn); 6342 /* 6343 * The HWPoisoned page may be not in buddy system, and 6344 * page_count() is not 0. 6345 */ 6346 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6347 pfn++; 6348 SetPageReserved(page); 6349 continue; 6350 } 6351 6352 BUG_ON(page_count(page)); 6353 BUG_ON(!PageBuddy(page)); 6354 order = page_order(page); 6355 #ifdef CONFIG_DEBUG_VM 6356 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6357 pfn, 1 << order, end_pfn); 6358 #endif 6359 list_del(&page->lru); 6360 rmv_page_order(page); 6361 zone->free_area[order].nr_free--; 6362 for (i = 0; i < (1 << order); i++) 6363 SetPageReserved((page+i)); 6364 pfn += (1 << order); 6365 } 6366 spin_unlock_irqrestore(&zone->lock, flags); 6367 } 6368 #endif 6369 6370 #ifdef CONFIG_MEMORY_FAILURE 6371 bool is_free_buddy_page(struct page *page) 6372 { 6373 struct zone *zone = page_zone(page); 6374 unsigned long pfn = page_to_pfn(page); 6375 unsigned long flags; 6376 int order; 6377 6378 spin_lock_irqsave(&zone->lock, flags); 6379 for (order = 0; order < MAX_ORDER; order++) { 6380 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6381 6382 if (PageBuddy(page_head) && page_order(page_head) >= order) 6383 break; 6384 } 6385 spin_unlock_irqrestore(&zone->lock, flags); 6386 6387 return order < MAX_ORDER; 6388 } 6389 #endif 6390 6391 static const struct trace_print_flags pageflag_names[] = { 6392 {1UL << PG_locked, "locked" }, 6393 {1UL << PG_error, "error" }, 6394 {1UL << PG_referenced, "referenced" }, 6395 {1UL << PG_uptodate, "uptodate" }, 6396 {1UL << PG_dirty, "dirty" }, 6397 {1UL << PG_lru, "lru" }, 6398 {1UL << PG_active, "active" }, 6399 {1UL << PG_slab, "slab" }, 6400 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6401 {1UL << PG_arch_1, "arch_1" }, 6402 {1UL << PG_reserved, "reserved" }, 6403 {1UL << PG_private, "private" }, 6404 {1UL << PG_private_2, "private_2" }, 6405 {1UL << PG_writeback, "writeback" }, 6406 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6407 {1UL << PG_head, "head" }, 6408 {1UL << PG_tail, "tail" }, 6409 #else 6410 {1UL << PG_compound, "compound" }, 6411 #endif 6412 {1UL << PG_swapcache, "swapcache" }, 6413 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6414 {1UL << PG_reclaim, "reclaim" }, 6415 {1UL << PG_swapbacked, "swapbacked" }, 6416 {1UL << PG_unevictable, "unevictable" }, 6417 #ifdef CONFIG_MMU 6418 {1UL << PG_mlocked, "mlocked" }, 6419 #endif 6420 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6421 {1UL << PG_uncached, "uncached" }, 6422 #endif 6423 #ifdef CONFIG_MEMORY_FAILURE 6424 {1UL << PG_hwpoison, "hwpoison" }, 6425 #endif 6426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6427 {1UL << PG_compound_lock, "compound_lock" }, 6428 #endif 6429 }; 6430 6431 static void dump_page_flags(unsigned long flags) 6432 { 6433 const char *delim = ""; 6434 unsigned long mask; 6435 int i; 6436 6437 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6438 6439 printk(KERN_ALERT "page flags: %#lx(", flags); 6440 6441 /* remove zone id */ 6442 flags &= (1UL << NR_PAGEFLAGS) - 1; 6443 6444 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6445 6446 mask = pageflag_names[i].mask; 6447 if ((flags & mask) != mask) 6448 continue; 6449 6450 flags &= ~mask; 6451 printk("%s%s", delim, pageflag_names[i].name); 6452 delim = "|"; 6453 } 6454 6455 /* check for left over flags */ 6456 if (flags) 6457 printk("%s%#lx", delim, flags); 6458 6459 printk(")\n"); 6460 } 6461 6462 void dump_page(struct page *page) 6463 { 6464 printk(KERN_ALERT 6465 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6466 page, atomic_read(&page->_count), page_mapcount(page), 6467 page->mapping, page->index); 6468 dump_page_flags(page->flags); 6469 mem_cgroup_print_bad_page(page); 6470 } 6471