xref: /linux/mm/page_alloc.c (revision 84ed8a99058e61567f495cc43118344261641c5f)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77 
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83  * defined in <linux/topology.h>.
84  */
85 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88 
89 /*
90  * Array of node states.
91  */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 	[N_POSSIBLE] = NODE_MASK_ALL,
94 	[N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 	[N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 	[N_CPU] = { { [0] = 1UL } },
104 #endif	/* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107 
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110 
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114  * When calculating the number of globally allowed dirty pages, there
115  * is a certain number of per-zone reserves that should not be
116  * considered dirtyable memory.  This is the sum of those reserves
117  * over all existing zones that contribute dirtyable memory.
118  */
119 unsigned long dirty_balance_reserve __read_mostly;
120 
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 
124 #ifdef CONFIG_PM_SLEEP
125 /*
126  * The following functions are used by the suspend/hibernate code to temporarily
127  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128  * while devices are suspended.  To avoid races with the suspend/hibernate code,
129  * they should always be called with pm_mutex held (gfp_allowed_mask also should
130  * only be modified with pm_mutex held, unless the suspend/hibernate code is
131  * guaranteed not to run in parallel with that modification).
132  */
133 
134 static gfp_t saved_gfp_mask;
135 
136 void pm_restore_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	if (saved_gfp_mask) {
140 		gfp_allowed_mask = saved_gfp_mask;
141 		saved_gfp_mask = 0;
142 	}
143 }
144 
145 void pm_restrict_gfp_mask(void)
146 {
147 	WARN_ON(!mutex_is_locked(&pm_mutex));
148 	WARN_ON(saved_gfp_mask);
149 	saved_gfp_mask = gfp_allowed_mask;
150 	gfp_allowed_mask &= ~GFP_IOFS;
151 }
152 
153 bool pm_suspended_storage(void)
154 {
155 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 		return false;
157 	return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160 
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164 
165 static void __free_pages_ok(struct page *page, unsigned int order);
166 
167 /*
168  * results with 256, 32 in the lowmem_reserve sysctl:
169  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170  *	1G machine -> (16M dma, 784M normal, 224M high)
171  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174  *
175  * TBD: should special case ZONE_DMA32 machines here - in those we normally
176  * don't need any ZONE_NORMAL reservation
177  */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 	 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 	 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 	 32,
187 #endif
188 	 32,
189 };
190 
191 EXPORT_SYMBOL(totalram_pages);
192 
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 	 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 	 "DMA32",
199 #endif
200 	 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 	 "HighMem",
203 #endif
204 	 "Movable",
205 };
206 
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes;
209 
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213 
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232 
233 int page_group_by_mobility_disabled __read_mostly;
234 
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 	if (unlikely(page_group_by_mobility_disabled &&
238 		     migratetype < MIGRATE_PCPTYPES))
239 		migratetype = MIGRATE_UNMOVABLE;
240 
241 	set_pageblock_flags_group(page, (unsigned long)migratetype,
242 					PB_migrate, PB_migrate_end);
243 }
244 
245 bool oom_killer_disabled __read_mostly;
246 
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 	int ret = 0;
251 	unsigned seq;
252 	unsigned long pfn = page_to_pfn(page);
253 	unsigned long sp, start_pfn;
254 
255 	do {
256 		seq = zone_span_seqbegin(zone);
257 		start_pfn = zone->zone_start_pfn;
258 		sp = zone->spanned_pages;
259 		if (!zone_spans_pfn(zone, pfn))
260 			ret = 1;
261 	} while (zone_span_seqretry(zone, seq));
262 
263 	if (ret)
264 		pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 			pfn, start_pfn, start_pfn + sp);
266 
267 	return ret;
268 }
269 
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 	if (!pfn_valid_within(page_to_pfn(page)))
273 		return 0;
274 	if (zone != page_zone(page))
275 		return 0;
276 
277 	return 1;
278 }
279 /*
280  * Temporary debugging check for pages not lying within a given zone.
281  */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 	if (page_outside_zone_boundaries(zone, page))
285 		return 1;
286 	if (!page_is_consistent(zone, page))
287 		return 1;
288 
289 	return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 	return 0;
295 }
296 #endif
297 
298 static void bad_page(struct page *page)
299 {
300 	static unsigned long resume;
301 	static unsigned long nr_shown;
302 	static unsigned long nr_unshown;
303 
304 	/* Don't complain about poisoned pages */
305 	if (PageHWPoison(page)) {
306 		page_mapcount_reset(page); /* remove PageBuddy */
307 		return;
308 	}
309 
310 	/*
311 	 * Allow a burst of 60 reports, then keep quiet for that minute;
312 	 * or allow a steady drip of one report per second.
313 	 */
314 	if (nr_shown == 60) {
315 		if (time_before(jiffies, resume)) {
316 			nr_unshown++;
317 			goto out;
318 		}
319 		if (nr_unshown) {
320 			printk(KERN_ALERT
321 			      "BUG: Bad page state: %lu messages suppressed\n",
322 				nr_unshown);
323 			nr_unshown = 0;
324 		}
325 		nr_shown = 0;
326 	}
327 	if (nr_shown++ == 0)
328 		resume = jiffies + 60 * HZ;
329 
330 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
331 		current->comm, page_to_pfn(page));
332 	dump_page(page);
333 
334 	print_modules();
335 	dump_stack();
336 out:
337 	/* Leave bad fields for debug, except PageBuddy could make trouble */
338 	page_mapcount_reset(page); /* remove PageBuddy */
339 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341 
342 /*
343  * Higher-order pages are called "compound pages".  They are structured thusly:
344  *
345  * The first PAGE_SIZE page is called the "head page".
346  *
347  * The remaining PAGE_SIZE pages are called "tail pages".
348  *
349  * All pages have PG_compound set.  All tail pages have their ->first_page
350  * pointing at the head page.
351  *
352  * The first tail page's ->lru.next holds the address of the compound page's
353  * put_page() function.  Its ->lru.prev holds the order of allocation.
354  * This usage means that zero-order pages may not be compound.
355  */
356 
357 static void free_compound_page(struct page *page)
358 {
359 	__free_pages_ok(page, compound_order(page));
360 }
361 
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 	int i;
365 	int nr_pages = 1 << order;
366 
367 	set_compound_page_dtor(page, free_compound_page);
368 	set_compound_order(page, order);
369 	__SetPageHead(page);
370 	for (i = 1; i < nr_pages; i++) {
371 		struct page *p = page + i;
372 		__SetPageTail(p);
373 		set_page_count(p, 0);
374 		p->first_page = page;
375 	}
376 }
377 
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page *page, unsigned long order)
380 {
381 	int i;
382 	int nr_pages = 1 << order;
383 	int bad = 0;
384 
385 	if (unlikely(compound_order(page) != order)) {
386 		bad_page(page);
387 		bad++;
388 	}
389 
390 	__ClearPageHead(page);
391 
392 	for (i = 1; i < nr_pages; i++) {
393 		struct page *p = page + i;
394 
395 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
396 			bad_page(page);
397 			bad++;
398 		}
399 		__ClearPageTail(p);
400 	}
401 
402 	return bad;
403 }
404 
405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406 {
407 	int i;
408 
409 	/*
410 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 	 */
413 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
414 	for (i = 0; i < (1 << order); i++)
415 		clear_highpage(page + i);
416 }
417 
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 unsigned int _debug_guardpage_minorder;
420 
421 static int __init debug_guardpage_minorder_setup(char *buf)
422 {
423 	unsigned long res;
424 
425 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
426 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 		return 0;
428 	}
429 	_debug_guardpage_minorder = res;
430 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 	return 0;
432 }
433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434 
435 static inline void set_page_guard_flag(struct page *page)
436 {
437 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438 }
439 
440 static inline void clear_page_guard_flag(struct page *page)
441 {
442 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 }
444 #else
445 static inline void set_page_guard_flag(struct page *page) { }
446 static inline void clear_page_guard_flag(struct page *page) { }
447 #endif
448 
449 static inline void set_page_order(struct page *page, int order)
450 {
451 	set_page_private(page, order);
452 	__SetPageBuddy(page);
453 }
454 
455 static inline void rmv_page_order(struct page *page)
456 {
457 	__ClearPageBuddy(page);
458 	set_page_private(page, 0);
459 }
460 
461 /*
462  * Locate the struct page for both the matching buddy in our
463  * pair (buddy1) and the combined O(n+1) page they form (page).
464  *
465  * 1) Any buddy B1 will have an order O twin B2 which satisfies
466  * the following equation:
467  *     B2 = B1 ^ (1 << O)
468  * For example, if the starting buddy (buddy2) is #8 its order
469  * 1 buddy is #10:
470  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471  *
472  * 2) Any buddy B will have an order O+1 parent P which
473  * satisfies the following equation:
474  *     P = B & ~(1 << O)
475  *
476  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477  */
478 static inline unsigned long
479 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 {
481 	return page_idx ^ (1 << order);
482 }
483 
484 /*
485  * This function checks whether a page is free && is the buddy
486  * we can do coalesce a page and its buddy if
487  * (a) the buddy is not in a hole &&
488  * (b) the buddy is in the buddy system &&
489  * (c) a page and its buddy have the same order &&
490  * (d) a page and its buddy are in the same zone.
491  *
492  * For recording whether a page is in the buddy system, we set ->_mapcount
493  * PAGE_BUDDY_MAPCOUNT_VALUE.
494  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495  * serialized by zone->lock.
496  *
497  * For recording page's order, we use page_private(page).
498  */
499 static inline int page_is_buddy(struct page *page, struct page *buddy,
500 								int order)
501 {
502 	if (!pfn_valid_within(page_to_pfn(buddy)))
503 		return 0;
504 
505 	if (page_zone_id(page) != page_zone_id(buddy))
506 		return 0;
507 
508 	if (page_is_guard(buddy) && page_order(buddy) == order) {
509 		VM_BUG_ON(page_count(buddy) != 0);
510 		return 1;
511 	}
512 
513 	if (PageBuddy(buddy) && page_order(buddy) == order) {
514 		VM_BUG_ON(page_count(buddy) != 0);
515 		return 1;
516 	}
517 	return 0;
518 }
519 
520 /*
521  * Freeing function for a buddy system allocator.
522  *
523  * The concept of a buddy system is to maintain direct-mapped table
524  * (containing bit values) for memory blocks of various "orders".
525  * The bottom level table contains the map for the smallest allocatable
526  * units of memory (here, pages), and each level above it describes
527  * pairs of units from the levels below, hence, "buddies".
528  * At a high level, all that happens here is marking the table entry
529  * at the bottom level available, and propagating the changes upward
530  * as necessary, plus some accounting needed to play nicely with other
531  * parts of the VM system.
532  * At each level, we keep a list of pages, which are heads of continuous
533  * free pages of length of (1 << order) and marked with _mapcount
534  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535  * field.
536  * So when we are allocating or freeing one, we can derive the state of the
537  * other.  That is, if we allocate a small block, and both were
538  * free, the remainder of the region must be split into blocks.
539  * If a block is freed, and its buddy is also free, then this
540  * triggers coalescing into a block of larger size.
541  *
542  * -- nyc
543  */
544 
545 static inline void __free_one_page(struct page *page,
546 		struct zone *zone, unsigned int order,
547 		int migratetype)
548 {
549 	unsigned long page_idx;
550 	unsigned long combined_idx;
551 	unsigned long uninitialized_var(buddy_idx);
552 	struct page *buddy;
553 
554 	VM_BUG_ON(!zone_is_initialized(zone));
555 
556 	if (unlikely(PageCompound(page)))
557 		if (unlikely(destroy_compound_page(page, order)))
558 			return;
559 
560 	VM_BUG_ON(migratetype == -1);
561 
562 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563 
564 	VM_BUG_ON(page_idx & ((1 << order) - 1));
565 	VM_BUG_ON(bad_range(zone, page));
566 
567 	while (order < MAX_ORDER-1) {
568 		buddy_idx = __find_buddy_index(page_idx, order);
569 		buddy = page + (buddy_idx - page_idx);
570 		if (!page_is_buddy(page, buddy, order))
571 			break;
572 		/*
573 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 		 * merge with it and move up one order.
575 		 */
576 		if (page_is_guard(buddy)) {
577 			clear_page_guard_flag(buddy);
578 			set_page_private(page, 0);
579 			__mod_zone_freepage_state(zone, 1 << order,
580 						  migratetype);
581 		} else {
582 			list_del(&buddy->lru);
583 			zone->free_area[order].nr_free--;
584 			rmv_page_order(buddy);
585 		}
586 		combined_idx = buddy_idx & page_idx;
587 		page = page + (combined_idx - page_idx);
588 		page_idx = combined_idx;
589 		order++;
590 	}
591 	set_page_order(page, order);
592 
593 	/*
594 	 * If this is not the largest possible page, check if the buddy
595 	 * of the next-highest order is free. If it is, it's possible
596 	 * that pages are being freed that will coalesce soon. In case,
597 	 * that is happening, add the free page to the tail of the list
598 	 * so it's less likely to be used soon and more likely to be merged
599 	 * as a higher order page
600 	 */
601 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
602 		struct page *higher_page, *higher_buddy;
603 		combined_idx = buddy_idx & page_idx;
604 		higher_page = page + (combined_idx - page_idx);
605 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
606 		higher_buddy = higher_page + (buddy_idx - combined_idx);
607 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 			list_add_tail(&page->lru,
609 				&zone->free_area[order].free_list[migratetype]);
610 			goto out;
611 		}
612 	}
613 
614 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615 out:
616 	zone->free_area[order].nr_free++;
617 }
618 
619 static inline int free_pages_check(struct page *page)
620 {
621 	if (unlikely(page_mapcount(page) |
622 		(page->mapping != NULL)  |
623 		(atomic_read(&page->_count) != 0) |
624 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 		(mem_cgroup_bad_page_check(page)))) {
626 		bad_page(page);
627 		return 1;
628 	}
629 	page_cpupid_reset_last(page);
630 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 	return 0;
633 }
634 
635 /*
636  * Frees a number of pages from the PCP lists
637  * Assumes all pages on list are in same zone, and of same order.
638  * count is the number of pages to free.
639  *
640  * If the zone was previously in an "all pages pinned" state then look to
641  * see if this freeing clears that state.
642  *
643  * And clear the zone's pages_scanned counter, to hold off the "all pages are
644  * pinned" detection logic.
645  */
646 static void free_pcppages_bulk(struct zone *zone, int count,
647 					struct per_cpu_pages *pcp)
648 {
649 	int migratetype = 0;
650 	int batch_free = 0;
651 	int to_free = count;
652 
653 	spin_lock(&zone->lock);
654 	zone->pages_scanned = 0;
655 
656 	while (to_free) {
657 		struct page *page;
658 		struct list_head *list;
659 
660 		/*
661 		 * Remove pages from lists in a round-robin fashion. A
662 		 * batch_free count is maintained that is incremented when an
663 		 * empty list is encountered.  This is so more pages are freed
664 		 * off fuller lists instead of spinning excessively around empty
665 		 * lists
666 		 */
667 		do {
668 			batch_free++;
669 			if (++migratetype == MIGRATE_PCPTYPES)
670 				migratetype = 0;
671 			list = &pcp->lists[migratetype];
672 		} while (list_empty(list));
673 
674 		/* This is the only non-empty list. Free them all. */
675 		if (batch_free == MIGRATE_PCPTYPES)
676 			batch_free = to_free;
677 
678 		do {
679 			int mt;	/* migratetype of the to-be-freed page */
680 
681 			page = list_entry(list->prev, struct page, lru);
682 			/* must delete as __free_one_page list manipulates */
683 			list_del(&page->lru);
684 			mt = get_freepage_migratetype(page);
685 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
686 			__free_one_page(page, zone, 0, mt);
687 			trace_mm_page_pcpu_drain(page, 0, mt);
688 			if (likely(!is_migrate_isolate_page(page))) {
689 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 				if (is_migrate_cma(mt))
691 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 			}
693 		} while (--to_free && --batch_free && !list_empty(list));
694 	}
695 	spin_unlock(&zone->lock);
696 }
697 
698 static void free_one_page(struct zone *zone, struct page *page, int order,
699 				int migratetype)
700 {
701 	spin_lock(&zone->lock);
702 	zone->pages_scanned = 0;
703 
704 	__free_one_page(page, zone, order, migratetype);
705 	if (unlikely(!is_migrate_isolate(migratetype)))
706 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
707 	spin_unlock(&zone->lock);
708 }
709 
710 static bool free_pages_prepare(struct page *page, unsigned int order)
711 {
712 	int i;
713 	int bad = 0;
714 
715 	trace_mm_page_free(page, order);
716 	kmemcheck_free_shadow(page, order);
717 
718 	if (PageAnon(page))
719 		page->mapping = NULL;
720 	for (i = 0; i < (1 << order); i++)
721 		bad += free_pages_check(page + i);
722 	if (bad)
723 		return false;
724 
725 	if (!PageHighMem(page)) {
726 		debug_check_no_locks_freed(page_address(page),
727 					   PAGE_SIZE << order);
728 		debug_check_no_obj_freed(page_address(page),
729 					   PAGE_SIZE << order);
730 	}
731 	arch_free_page(page, order);
732 	kernel_map_pages(page, 1 << order, 0);
733 
734 	return true;
735 }
736 
737 static void __free_pages_ok(struct page *page, unsigned int order)
738 {
739 	unsigned long flags;
740 	int migratetype;
741 
742 	if (!free_pages_prepare(page, order))
743 		return;
744 
745 	local_irq_save(flags);
746 	__count_vm_events(PGFREE, 1 << order);
747 	migratetype = get_pageblock_migratetype(page);
748 	set_freepage_migratetype(page, migratetype);
749 	free_one_page(page_zone(page), page, order, migratetype);
750 	local_irq_restore(flags);
751 }
752 
753 void __init __free_pages_bootmem(struct page *page, unsigned int order)
754 {
755 	unsigned int nr_pages = 1 << order;
756 	struct page *p = page;
757 	unsigned int loop;
758 
759 	prefetchw(p);
760 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 		prefetchw(p + 1);
762 		__ClearPageReserved(p);
763 		set_page_count(p, 0);
764 	}
765 	__ClearPageReserved(p);
766 	set_page_count(p, 0);
767 
768 	page_zone(page)->managed_pages += nr_pages;
769 	set_page_refcounted(page);
770 	__free_pages(page, order);
771 }
772 
773 #ifdef CONFIG_CMA
774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
775 void __init init_cma_reserved_pageblock(struct page *page)
776 {
777 	unsigned i = pageblock_nr_pages;
778 	struct page *p = page;
779 
780 	do {
781 		__ClearPageReserved(p);
782 		set_page_count(p, 0);
783 	} while (++p, --i);
784 
785 	set_page_refcounted(page);
786 	set_pageblock_migratetype(page, MIGRATE_CMA);
787 	__free_pages(page, pageblock_order);
788 	adjust_managed_page_count(page, pageblock_nr_pages);
789 }
790 #endif
791 
792 /*
793  * The order of subdivision here is critical for the IO subsystem.
794  * Please do not alter this order without good reasons and regression
795  * testing. Specifically, as large blocks of memory are subdivided,
796  * the order in which smaller blocks are delivered depends on the order
797  * they're subdivided in this function. This is the primary factor
798  * influencing the order in which pages are delivered to the IO
799  * subsystem according to empirical testing, and this is also justified
800  * by considering the behavior of a buddy system containing a single
801  * large block of memory acted on by a series of small allocations.
802  * This behavior is a critical factor in sglist merging's success.
803  *
804  * -- nyc
805  */
806 static inline void expand(struct zone *zone, struct page *page,
807 	int low, int high, struct free_area *area,
808 	int migratetype)
809 {
810 	unsigned long size = 1 << high;
811 
812 	while (high > low) {
813 		area--;
814 		high--;
815 		size >>= 1;
816 		VM_BUG_ON(bad_range(zone, &page[size]));
817 
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 		if (high < debug_guardpage_minorder()) {
820 			/*
821 			 * Mark as guard pages (or page), that will allow to
822 			 * merge back to allocator when buddy will be freed.
823 			 * Corresponding page table entries will not be touched,
824 			 * pages will stay not present in virtual address space
825 			 */
826 			INIT_LIST_HEAD(&page[size].lru);
827 			set_page_guard_flag(&page[size]);
828 			set_page_private(&page[size], high);
829 			/* Guard pages are not available for any usage */
830 			__mod_zone_freepage_state(zone, -(1 << high),
831 						  migratetype);
832 			continue;
833 		}
834 #endif
835 		list_add(&page[size].lru, &area->free_list[migratetype]);
836 		area->nr_free++;
837 		set_page_order(&page[size], high);
838 	}
839 }
840 
841 /*
842  * This page is about to be returned from the page allocator
843  */
844 static inline int check_new_page(struct page *page)
845 {
846 	if (unlikely(page_mapcount(page) |
847 		(page->mapping != NULL)  |
848 		(atomic_read(&page->_count) != 0)  |
849 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 		(mem_cgroup_bad_page_check(page)))) {
851 		bad_page(page);
852 		return 1;
853 	}
854 	return 0;
855 }
856 
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 	int i;
860 
861 	for (i = 0; i < (1 << order); i++) {
862 		struct page *p = page + i;
863 		if (unlikely(check_new_page(p)))
864 			return 1;
865 	}
866 
867 	set_page_private(page, 0);
868 	set_page_refcounted(page);
869 
870 	arch_alloc_page(page, order);
871 	kernel_map_pages(page, 1 << order, 1);
872 
873 	if (gfp_flags & __GFP_ZERO)
874 		prep_zero_page(page, order, gfp_flags);
875 
876 	if (order && (gfp_flags & __GFP_COMP))
877 		prep_compound_page(page, order);
878 
879 	return 0;
880 }
881 
882 /*
883  * Go through the free lists for the given migratetype and remove
884  * the smallest available page from the freelists
885  */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 						int migratetype)
889 {
890 	unsigned int current_order;
891 	struct free_area *area;
892 	struct page *page;
893 
894 	/* Find a page of the appropriate size in the preferred list */
895 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 		area = &(zone->free_area[current_order]);
897 		if (list_empty(&area->free_list[migratetype]))
898 			continue;
899 
900 		page = list_entry(area->free_list[migratetype].next,
901 							struct page, lru);
902 		list_del(&page->lru);
903 		rmv_page_order(page);
904 		area->nr_free--;
905 		expand(zone, page, order, current_order, area, migratetype);
906 		return page;
907 	}
908 
909 	return NULL;
910 }
911 
912 
913 /*
914  * This array describes the order lists are fallen back to when
915  * the free lists for the desirable migrate type are depleted
916  */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
919 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
925 #endif
926 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931 
932 /*
933  * Move the free pages in a range to the free lists of the requested type.
934  * Note that start_page and end_pages are not aligned on a pageblock
935  * boundary. If alignment is required, use move_freepages_block()
936  */
937 int move_freepages(struct zone *zone,
938 			  struct page *start_page, struct page *end_page,
939 			  int migratetype)
940 {
941 	struct page *page;
942 	unsigned long order;
943 	int pages_moved = 0;
944 
945 #ifndef CONFIG_HOLES_IN_ZONE
946 	/*
947 	 * page_zone is not safe to call in this context when
948 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 	 * anyway as we check zone boundaries in move_freepages_block().
950 	 * Remove at a later date when no bug reports exist related to
951 	 * grouping pages by mobility
952 	 */
953 	BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955 
956 	for (page = start_page; page <= end_page;) {
957 		/* Make sure we are not inadvertently changing nodes */
958 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959 
960 		if (!pfn_valid_within(page_to_pfn(page))) {
961 			page++;
962 			continue;
963 		}
964 
965 		if (!PageBuddy(page)) {
966 			page++;
967 			continue;
968 		}
969 
970 		order = page_order(page);
971 		list_move(&page->lru,
972 			  &zone->free_area[order].free_list[migratetype]);
973 		set_freepage_migratetype(page, migratetype);
974 		page += 1 << order;
975 		pages_moved += 1 << order;
976 	}
977 
978 	return pages_moved;
979 }
980 
981 int move_freepages_block(struct zone *zone, struct page *page,
982 				int migratetype)
983 {
984 	unsigned long start_pfn, end_pfn;
985 	struct page *start_page, *end_page;
986 
987 	start_pfn = page_to_pfn(page);
988 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 	start_page = pfn_to_page(start_pfn);
990 	end_page = start_page + pageblock_nr_pages - 1;
991 	end_pfn = start_pfn + pageblock_nr_pages - 1;
992 
993 	/* Do not cross zone boundaries */
994 	if (!zone_spans_pfn(zone, start_pfn))
995 		start_page = page;
996 	if (!zone_spans_pfn(zone, end_pfn))
997 		return 0;
998 
999 	return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001 
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 					int start_order, int migratetype)
1004 {
1005 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1006 
1007 	while (nr_pageblocks--) {
1008 		set_pageblock_migratetype(pageblock_page, migratetype);
1009 		pageblock_page += pageblock_nr_pages;
1010 	}
1011 }
1012 
1013 /*
1014  * If breaking a large block of pages, move all free pages to the preferred
1015  * allocation list. If falling back for a reclaimable kernel allocation, be
1016  * more aggressive about taking ownership of free pages.
1017  *
1018  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019  * nor move CMA pages to different free lists. We don't want unmovable pages
1020  * to be allocated from MIGRATE_CMA areas.
1021  *
1022  * Returns the new migratetype of the pageblock (or the same old migratetype
1023  * if it was unchanged).
1024  */
1025 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 				  int start_type, int fallback_type)
1027 {
1028 	int current_order = page_order(page);
1029 
1030 	/*
1031 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1032 	 * buddy pages to CMA itself.
1033 	 */
1034 	if (is_migrate_cma(fallback_type))
1035 		return fallback_type;
1036 
1037 	/* Take ownership for orders >= pageblock_order */
1038 	if (current_order >= pageblock_order) {
1039 		change_pageblock_range(page, current_order, start_type);
1040 		return start_type;
1041 	}
1042 
1043 	if (current_order >= pageblock_order / 2 ||
1044 	    start_type == MIGRATE_RECLAIMABLE ||
1045 	    page_group_by_mobility_disabled) {
1046 		int pages;
1047 
1048 		pages = move_freepages_block(zone, page, start_type);
1049 
1050 		/* Claim the whole block if over half of it is free */
1051 		if (pages >= (1 << (pageblock_order-1)) ||
1052 				page_group_by_mobility_disabled) {
1053 
1054 			set_pageblock_migratetype(page, start_type);
1055 			return start_type;
1056 		}
1057 
1058 	}
1059 
1060 	return fallback_type;
1061 }
1062 
1063 /* Remove an element from the buddy allocator from the fallback list */
1064 static inline struct page *
1065 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1066 {
1067 	struct free_area *area;
1068 	int current_order;
1069 	struct page *page;
1070 	int migratetype, new_type, i;
1071 
1072 	/* Find the largest possible block of pages in the other list */
1073 	for (current_order = MAX_ORDER-1; current_order >= order;
1074 						--current_order) {
1075 		for (i = 0;; i++) {
1076 			migratetype = fallbacks[start_migratetype][i];
1077 
1078 			/* MIGRATE_RESERVE handled later if necessary */
1079 			if (migratetype == MIGRATE_RESERVE)
1080 				break;
1081 
1082 			area = &(zone->free_area[current_order]);
1083 			if (list_empty(&area->free_list[migratetype]))
1084 				continue;
1085 
1086 			page = list_entry(area->free_list[migratetype].next,
1087 					struct page, lru);
1088 			area->nr_free--;
1089 
1090 			new_type = try_to_steal_freepages(zone, page,
1091 							  start_migratetype,
1092 							  migratetype);
1093 
1094 			/* Remove the page from the freelists */
1095 			list_del(&page->lru);
1096 			rmv_page_order(page);
1097 
1098 			expand(zone, page, order, current_order, area,
1099 			       new_type);
1100 
1101 			trace_mm_page_alloc_extfrag(page, order, current_order,
1102 				start_migratetype, migratetype, new_type);
1103 
1104 			return page;
1105 		}
1106 	}
1107 
1108 	return NULL;
1109 }
1110 
1111 /*
1112  * Do the hard work of removing an element from the buddy allocator.
1113  * Call me with the zone->lock already held.
1114  */
1115 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1116 						int migratetype)
1117 {
1118 	struct page *page;
1119 
1120 retry_reserve:
1121 	page = __rmqueue_smallest(zone, order, migratetype);
1122 
1123 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1124 		page = __rmqueue_fallback(zone, order, migratetype);
1125 
1126 		/*
1127 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1128 		 * is used because __rmqueue_smallest is an inline function
1129 		 * and we want just one call site
1130 		 */
1131 		if (!page) {
1132 			migratetype = MIGRATE_RESERVE;
1133 			goto retry_reserve;
1134 		}
1135 	}
1136 
1137 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1138 	return page;
1139 }
1140 
1141 /*
1142  * Obtain a specified number of elements from the buddy allocator, all under
1143  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1144  * Returns the number of new pages which were placed at *list.
1145  */
1146 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1147 			unsigned long count, struct list_head *list,
1148 			int migratetype, int cold)
1149 {
1150 	int mt = migratetype, i;
1151 
1152 	spin_lock(&zone->lock);
1153 	for (i = 0; i < count; ++i) {
1154 		struct page *page = __rmqueue(zone, order, migratetype);
1155 		if (unlikely(page == NULL))
1156 			break;
1157 
1158 		/*
1159 		 * Split buddy pages returned by expand() are received here
1160 		 * in physical page order. The page is added to the callers and
1161 		 * list and the list head then moves forward. From the callers
1162 		 * perspective, the linked list is ordered by page number in
1163 		 * some conditions. This is useful for IO devices that can
1164 		 * merge IO requests if the physical pages are ordered
1165 		 * properly.
1166 		 */
1167 		if (likely(cold == 0))
1168 			list_add(&page->lru, list);
1169 		else
1170 			list_add_tail(&page->lru, list);
1171 		if (IS_ENABLED(CONFIG_CMA)) {
1172 			mt = get_pageblock_migratetype(page);
1173 			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1174 				mt = migratetype;
1175 		}
1176 		set_freepage_migratetype(page, mt);
1177 		list = &page->lru;
1178 		if (is_migrate_cma(mt))
1179 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1180 					      -(1 << order));
1181 	}
1182 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1183 	spin_unlock(&zone->lock);
1184 	return i;
1185 }
1186 
1187 #ifdef CONFIG_NUMA
1188 /*
1189  * Called from the vmstat counter updater to drain pagesets of this
1190  * currently executing processor on remote nodes after they have
1191  * expired.
1192  *
1193  * Note that this function must be called with the thread pinned to
1194  * a single processor.
1195  */
1196 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1197 {
1198 	unsigned long flags;
1199 	int to_drain;
1200 	unsigned long batch;
1201 
1202 	local_irq_save(flags);
1203 	batch = ACCESS_ONCE(pcp->batch);
1204 	if (pcp->count >= batch)
1205 		to_drain = batch;
1206 	else
1207 		to_drain = pcp->count;
1208 	if (to_drain > 0) {
1209 		free_pcppages_bulk(zone, to_drain, pcp);
1210 		pcp->count -= to_drain;
1211 	}
1212 	local_irq_restore(flags);
1213 }
1214 #endif
1215 
1216 /*
1217  * Drain pages of the indicated processor.
1218  *
1219  * The processor must either be the current processor and the
1220  * thread pinned to the current processor or a processor that
1221  * is not online.
1222  */
1223 static void drain_pages(unsigned int cpu)
1224 {
1225 	unsigned long flags;
1226 	struct zone *zone;
1227 
1228 	for_each_populated_zone(zone) {
1229 		struct per_cpu_pageset *pset;
1230 		struct per_cpu_pages *pcp;
1231 
1232 		local_irq_save(flags);
1233 		pset = per_cpu_ptr(zone->pageset, cpu);
1234 
1235 		pcp = &pset->pcp;
1236 		if (pcp->count) {
1237 			free_pcppages_bulk(zone, pcp->count, pcp);
1238 			pcp->count = 0;
1239 		}
1240 		local_irq_restore(flags);
1241 	}
1242 }
1243 
1244 /*
1245  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1246  */
1247 void drain_local_pages(void *arg)
1248 {
1249 	drain_pages(smp_processor_id());
1250 }
1251 
1252 /*
1253  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1254  *
1255  * Note that this code is protected against sending an IPI to an offline
1256  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1257  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1258  * nothing keeps CPUs from showing up after we populated the cpumask and
1259  * before the call to on_each_cpu_mask().
1260  */
1261 void drain_all_pages(void)
1262 {
1263 	int cpu;
1264 	struct per_cpu_pageset *pcp;
1265 	struct zone *zone;
1266 
1267 	/*
1268 	 * Allocate in the BSS so we wont require allocation in
1269 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1270 	 */
1271 	static cpumask_t cpus_with_pcps;
1272 
1273 	/*
1274 	 * We don't care about racing with CPU hotplug event
1275 	 * as offline notification will cause the notified
1276 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1277 	 * disables preemption as part of its processing
1278 	 */
1279 	for_each_online_cpu(cpu) {
1280 		bool has_pcps = false;
1281 		for_each_populated_zone(zone) {
1282 			pcp = per_cpu_ptr(zone->pageset, cpu);
1283 			if (pcp->pcp.count) {
1284 				has_pcps = true;
1285 				break;
1286 			}
1287 		}
1288 		if (has_pcps)
1289 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1290 		else
1291 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1292 	}
1293 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1294 }
1295 
1296 #ifdef CONFIG_HIBERNATION
1297 
1298 void mark_free_pages(struct zone *zone)
1299 {
1300 	unsigned long pfn, max_zone_pfn;
1301 	unsigned long flags;
1302 	int order, t;
1303 	struct list_head *curr;
1304 
1305 	if (zone_is_empty(zone))
1306 		return;
1307 
1308 	spin_lock_irqsave(&zone->lock, flags);
1309 
1310 	max_zone_pfn = zone_end_pfn(zone);
1311 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 		if (pfn_valid(pfn)) {
1313 			struct page *page = pfn_to_page(pfn);
1314 
1315 			if (!swsusp_page_is_forbidden(page))
1316 				swsusp_unset_page_free(page);
1317 		}
1318 
1319 	for_each_migratetype_order(order, t) {
1320 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1321 			unsigned long i;
1322 
1323 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1324 			for (i = 0; i < (1UL << order); i++)
1325 				swsusp_set_page_free(pfn_to_page(pfn + i));
1326 		}
1327 	}
1328 	spin_unlock_irqrestore(&zone->lock, flags);
1329 }
1330 #endif /* CONFIG_PM */
1331 
1332 /*
1333  * Free a 0-order page
1334  * cold == 1 ? free a cold page : free a hot page
1335  */
1336 void free_hot_cold_page(struct page *page, int cold)
1337 {
1338 	struct zone *zone = page_zone(page);
1339 	struct per_cpu_pages *pcp;
1340 	unsigned long flags;
1341 	int migratetype;
1342 
1343 	if (!free_pages_prepare(page, 0))
1344 		return;
1345 
1346 	migratetype = get_pageblock_migratetype(page);
1347 	set_freepage_migratetype(page, migratetype);
1348 	local_irq_save(flags);
1349 	__count_vm_event(PGFREE);
1350 
1351 	/*
1352 	 * We only track unmovable, reclaimable and movable on pcp lists.
1353 	 * Free ISOLATE pages back to the allocator because they are being
1354 	 * offlined but treat RESERVE as movable pages so we can get those
1355 	 * areas back if necessary. Otherwise, we may have to free
1356 	 * excessively into the page allocator
1357 	 */
1358 	if (migratetype >= MIGRATE_PCPTYPES) {
1359 		if (unlikely(is_migrate_isolate(migratetype))) {
1360 			free_one_page(zone, page, 0, migratetype);
1361 			goto out;
1362 		}
1363 		migratetype = MIGRATE_MOVABLE;
1364 	}
1365 
1366 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1367 	if (cold)
1368 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1369 	else
1370 		list_add(&page->lru, &pcp->lists[migratetype]);
1371 	pcp->count++;
1372 	if (pcp->count >= pcp->high) {
1373 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1374 		free_pcppages_bulk(zone, batch, pcp);
1375 		pcp->count -= batch;
1376 	}
1377 
1378 out:
1379 	local_irq_restore(flags);
1380 }
1381 
1382 /*
1383  * Free a list of 0-order pages
1384  */
1385 void free_hot_cold_page_list(struct list_head *list, int cold)
1386 {
1387 	struct page *page, *next;
1388 
1389 	list_for_each_entry_safe(page, next, list, lru) {
1390 		trace_mm_page_free_batched(page, cold);
1391 		free_hot_cold_page(page, cold);
1392 	}
1393 }
1394 
1395 /*
1396  * split_page takes a non-compound higher-order page, and splits it into
1397  * n (1<<order) sub-pages: page[0..n]
1398  * Each sub-page must be freed individually.
1399  *
1400  * Note: this is probably too low level an operation for use in drivers.
1401  * Please consult with lkml before using this in your driver.
1402  */
1403 void split_page(struct page *page, unsigned int order)
1404 {
1405 	int i;
1406 
1407 	VM_BUG_ON(PageCompound(page));
1408 	VM_BUG_ON(!page_count(page));
1409 
1410 #ifdef CONFIG_KMEMCHECK
1411 	/*
1412 	 * Split shadow pages too, because free(page[0]) would
1413 	 * otherwise free the whole shadow.
1414 	 */
1415 	if (kmemcheck_page_is_tracked(page))
1416 		split_page(virt_to_page(page[0].shadow), order);
1417 #endif
1418 
1419 	for (i = 1; i < (1 << order); i++)
1420 		set_page_refcounted(page + i);
1421 }
1422 EXPORT_SYMBOL_GPL(split_page);
1423 
1424 static int __isolate_free_page(struct page *page, unsigned int order)
1425 {
1426 	unsigned long watermark;
1427 	struct zone *zone;
1428 	int mt;
1429 
1430 	BUG_ON(!PageBuddy(page));
1431 
1432 	zone = page_zone(page);
1433 	mt = get_pageblock_migratetype(page);
1434 
1435 	if (!is_migrate_isolate(mt)) {
1436 		/* Obey watermarks as if the page was being allocated */
1437 		watermark = low_wmark_pages(zone) + (1 << order);
1438 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1439 			return 0;
1440 
1441 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1442 	}
1443 
1444 	/* Remove page from free list */
1445 	list_del(&page->lru);
1446 	zone->free_area[order].nr_free--;
1447 	rmv_page_order(page);
1448 
1449 	/* Set the pageblock if the isolated page is at least a pageblock */
1450 	if (order >= pageblock_order - 1) {
1451 		struct page *endpage = page + (1 << order) - 1;
1452 		for (; page < endpage; page += pageblock_nr_pages) {
1453 			int mt = get_pageblock_migratetype(page);
1454 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1455 				set_pageblock_migratetype(page,
1456 							  MIGRATE_MOVABLE);
1457 		}
1458 	}
1459 
1460 	return 1UL << order;
1461 }
1462 
1463 /*
1464  * Similar to split_page except the page is already free. As this is only
1465  * being used for migration, the migratetype of the block also changes.
1466  * As this is called with interrupts disabled, the caller is responsible
1467  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1468  * are enabled.
1469  *
1470  * Note: this is probably too low level an operation for use in drivers.
1471  * Please consult with lkml before using this in your driver.
1472  */
1473 int split_free_page(struct page *page)
1474 {
1475 	unsigned int order;
1476 	int nr_pages;
1477 
1478 	order = page_order(page);
1479 
1480 	nr_pages = __isolate_free_page(page, order);
1481 	if (!nr_pages)
1482 		return 0;
1483 
1484 	/* Split into individual pages */
1485 	set_page_refcounted(page);
1486 	split_page(page, order);
1487 	return nr_pages;
1488 }
1489 
1490 /*
1491  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1492  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1493  * or two.
1494  */
1495 static inline
1496 struct page *buffered_rmqueue(struct zone *preferred_zone,
1497 			struct zone *zone, int order, gfp_t gfp_flags,
1498 			int migratetype)
1499 {
1500 	unsigned long flags;
1501 	struct page *page;
1502 	int cold = !!(gfp_flags & __GFP_COLD);
1503 
1504 again:
1505 	if (likely(order == 0)) {
1506 		struct per_cpu_pages *pcp;
1507 		struct list_head *list;
1508 
1509 		local_irq_save(flags);
1510 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1511 		list = &pcp->lists[migratetype];
1512 		if (list_empty(list)) {
1513 			pcp->count += rmqueue_bulk(zone, 0,
1514 					pcp->batch, list,
1515 					migratetype, cold);
1516 			if (unlikely(list_empty(list)))
1517 				goto failed;
1518 		}
1519 
1520 		if (cold)
1521 			page = list_entry(list->prev, struct page, lru);
1522 		else
1523 			page = list_entry(list->next, struct page, lru);
1524 
1525 		list_del(&page->lru);
1526 		pcp->count--;
1527 	} else {
1528 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1529 			/*
1530 			 * __GFP_NOFAIL is not to be used in new code.
1531 			 *
1532 			 * All __GFP_NOFAIL callers should be fixed so that they
1533 			 * properly detect and handle allocation failures.
1534 			 *
1535 			 * We most definitely don't want callers attempting to
1536 			 * allocate greater than order-1 page units with
1537 			 * __GFP_NOFAIL.
1538 			 */
1539 			WARN_ON_ONCE(order > 1);
1540 		}
1541 		spin_lock_irqsave(&zone->lock, flags);
1542 		page = __rmqueue(zone, order, migratetype);
1543 		spin_unlock(&zone->lock);
1544 		if (!page)
1545 			goto failed;
1546 		__mod_zone_freepage_state(zone, -(1 << order),
1547 					  get_pageblock_migratetype(page));
1548 	}
1549 
1550 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1551 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1552 	zone_statistics(preferred_zone, zone, gfp_flags);
1553 	local_irq_restore(flags);
1554 
1555 	VM_BUG_ON(bad_range(zone, page));
1556 	if (prep_new_page(page, order, gfp_flags))
1557 		goto again;
1558 	return page;
1559 
1560 failed:
1561 	local_irq_restore(flags);
1562 	return NULL;
1563 }
1564 
1565 #ifdef CONFIG_FAIL_PAGE_ALLOC
1566 
1567 static struct {
1568 	struct fault_attr attr;
1569 
1570 	u32 ignore_gfp_highmem;
1571 	u32 ignore_gfp_wait;
1572 	u32 min_order;
1573 } fail_page_alloc = {
1574 	.attr = FAULT_ATTR_INITIALIZER,
1575 	.ignore_gfp_wait = 1,
1576 	.ignore_gfp_highmem = 1,
1577 	.min_order = 1,
1578 };
1579 
1580 static int __init setup_fail_page_alloc(char *str)
1581 {
1582 	return setup_fault_attr(&fail_page_alloc.attr, str);
1583 }
1584 __setup("fail_page_alloc=", setup_fail_page_alloc);
1585 
1586 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1587 {
1588 	if (order < fail_page_alloc.min_order)
1589 		return false;
1590 	if (gfp_mask & __GFP_NOFAIL)
1591 		return false;
1592 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1593 		return false;
1594 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1595 		return false;
1596 
1597 	return should_fail(&fail_page_alloc.attr, 1 << order);
1598 }
1599 
1600 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1601 
1602 static int __init fail_page_alloc_debugfs(void)
1603 {
1604 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1605 	struct dentry *dir;
1606 
1607 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1608 					&fail_page_alloc.attr);
1609 	if (IS_ERR(dir))
1610 		return PTR_ERR(dir);
1611 
1612 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1613 				&fail_page_alloc.ignore_gfp_wait))
1614 		goto fail;
1615 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1616 				&fail_page_alloc.ignore_gfp_highmem))
1617 		goto fail;
1618 	if (!debugfs_create_u32("min-order", mode, dir,
1619 				&fail_page_alloc.min_order))
1620 		goto fail;
1621 
1622 	return 0;
1623 fail:
1624 	debugfs_remove_recursive(dir);
1625 
1626 	return -ENOMEM;
1627 }
1628 
1629 late_initcall(fail_page_alloc_debugfs);
1630 
1631 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1632 
1633 #else /* CONFIG_FAIL_PAGE_ALLOC */
1634 
1635 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1636 {
1637 	return false;
1638 }
1639 
1640 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1641 
1642 /*
1643  * Return true if free pages are above 'mark'. This takes into account the order
1644  * of the allocation.
1645  */
1646 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 		      int classzone_idx, int alloc_flags, long free_pages)
1648 {
1649 	/* free_pages my go negative - that's OK */
1650 	long min = mark;
1651 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1652 	int o;
1653 	long free_cma = 0;
1654 
1655 	free_pages -= (1 << order) - 1;
1656 	if (alloc_flags & ALLOC_HIGH)
1657 		min -= min / 2;
1658 	if (alloc_flags & ALLOC_HARDER)
1659 		min -= min / 4;
1660 #ifdef CONFIG_CMA
1661 	/* If allocation can't use CMA areas don't use free CMA pages */
1662 	if (!(alloc_flags & ALLOC_CMA))
1663 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1664 #endif
1665 
1666 	if (free_pages - free_cma <= min + lowmem_reserve)
1667 		return false;
1668 	for (o = 0; o < order; o++) {
1669 		/* At the next order, this order's pages become unavailable */
1670 		free_pages -= z->free_area[o].nr_free << o;
1671 
1672 		/* Require fewer higher order pages to be free */
1673 		min >>= 1;
1674 
1675 		if (free_pages <= min)
1676 			return false;
1677 	}
1678 	return true;
1679 }
1680 
1681 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1682 		      int classzone_idx, int alloc_flags)
1683 {
1684 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 					zone_page_state(z, NR_FREE_PAGES));
1686 }
1687 
1688 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1689 		      int classzone_idx, int alloc_flags)
1690 {
1691 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1692 
1693 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1694 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1695 
1696 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 								free_pages);
1698 }
1699 
1700 #ifdef CONFIG_NUMA
1701 /*
1702  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1703  * skip over zones that are not allowed by the cpuset, or that have
1704  * been recently (in last second) found to be nearly full.  See further
1705  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1706  * that have to skip over a lot of full or unallowed zones.
1707  *
1708  * If the zonelist cache is present in the passed zonelist, then
1709  * returns a pointer to the allowed node mask (either the current
1710  * tasks mems_allowed, or node_states[N_MEMORY].)
1711  *
1712  * If the zonelist cache is not available for this zonelist, does
1713  * nothing and returns NULL.
1714  *
1715  * If the fullzones BITMAP in the zonelist cache is stale (more than
1716  * a second since last zap'd) then we zap it out (clear its bits.)
1717  *
1718  * We hold off even calling zlc_setup, until after we've checked the
1719  * first zone in the zonelist, on the theory that most allocations will
1720  * be satisfied from that first zone, so best to examine that zone as
1721  * quickly as we can.
1722  */
1723 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724 {
1725 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1726 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1727 
1728 	zlc = zonelist->zlcache_ptr;
1729 	if (!zlc)
1730 		return NULL;
1731 
1732 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1733 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 		zlc->last_full_zap = jiffies;
1735 	}
1736 
1737 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 					&cpuset_current_mems_allowed :
1739 					&node_states[N_MEMORY];
1740 	return allowednodes;
1741 }
1742 
1743 /*
1744  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745  * if it is worth looking at further for free memory:
1746  *  1) Check that the zone isn't thought to be full (doesn't have its
1747  *     bit set in the zonelist_cache fullzones BITMAP).
1748  *  2) Check that the zones node (obtained from the zonelist_cache
1749  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750  * Return true (non-zero) if zone is worth looking at further, or
1751  * else return false (zero) if it is not.
1752  *
1753  * This check -ignores- the distinction between various watermarks,
1754  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1755  * found to be full for any variation of these watermarks, it will
1756  * be considered full for up to one second by all requests, unless
1757  * we are so low on memory on all allowed nodes that we are forced
1758  * into the second scan of the zonelist.
1759  *
1760  * In the second scan we ignore this zonelist cache and exactly
1761  * apply the watermarks to all zones, even it is slower to do so.
1762  * We are low on memory in the second scan, and should leave no stone
1763  * unturned looking for a free page.
1764  */
1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1766 						nodemask_t *allowednodes)
1767 {
1768 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1769 	int i;				/* index of *z in zonelist zones */
1770 	int n;				/* node that zone *z is on */
1771 
1772 	zlc = zonelist->zlcache_ptr;
1773 	if (!zlc)
1774 		return 1;
1775 
1776 	i = z - zonelist->_zonerefs;
1777 	n = zlc->z_to_n[i];
1778 
1779 	/* This zone is worth trying if it is allowed but not full */
1780 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781 }
1782 
1783 /*
1784  * Given 'z' scanning a zonelist, set the corresponding bit in
1785  * zlc->fullzones, so that subsequent attempts to allocate a page
1786  * from that zone don't waste time re-examining it.
1787  */
1788 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1789 {
1790 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1791 	int i;				/* index of *z in zonelist zones */
1792 
1793 	zlc = zonelist->zlcache_ptr;
1794 	if (!zlc)
1795 		return;
1796 
1797 	i = z - zonelist->_zonerefs;
1798 
1799 	set_bit(i, zlc->fullzones);
1800 }
1801 
1802 /*
1803  * clear all zones full, called after direct reclaim makes progress so that
1804  * a zone that was recently full is not skipped over for up to a second
1805  */
1806 static void zlc_clear_zones_full(struct zonelist *zonelist)
1807 {
1808 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1809 
1810 	zlc = zonelist->zlcache_ptr;
1811 	if (!zlc)
1812 		return;
1813 
1814 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815 }
1816 
1817 static bool zone_local(struct zone *local_zone, struct zone *zone)
1818 {
1819 	return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
1820 }
1821 
1822 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1823 {
1824 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1825 }
1826 
1827 static void __paginginit init_zone_allows_reclaim(int nid)
1828 {
1829 	int i;
1830 
1831 	for_each_online_node(i)
1832 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1833 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1834 		else
1835 			zone_reclaim_mode = 1;
1836 }
1837 
1838 #else	/* CONFIG_NUMA */
1839 
1840 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1841 {
1842 	return NULL;
1843 }
1844 
1845 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1846 				nodemask_t *allowednodes)
1847 {
1848 	return 1;
1849 }
1850 
1851 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1852 {
1853 }
1854 
1855 static void zlc_clear_zones_full(struct zonelist *zonelist)
1856 {
1857 }
1858 
1859 static bool zone_local(struct zone *local_zone, struct zone *zone)
1860 {
1861 	return true;
1862 }
1863 
1864 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1865 {
1866 	return true;
1867 }
1868 
1869 static inline void init_zone_allows_reclaim(int nid)
1870 {
1871 }
1872 #endif	/* CONFIG_NUMA */
1873 
1874 /*
1875  * get_page_from_freelist goes through the zonelist trying to allocate
1876  * a page.
1877  */
1878 static struct page *
1879 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1880 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1881 		struct zone *preferred_zone, int migratetype)
1882 {
1883 	struct zoneref *z;
1884 	struct page *page = NULL;
1885 	int classzone_idx;
1886 	struct zone *zone;
1887 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1888 	int zlc_active = 0;		/* set if using zonelist_cache */
1889 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1890 
1891 	classzone_idx = zone_idx(preferred_zone);
1892 zonelist_scan:
1893 	/*
1894 	 * Scan zonelist, looking for a zone with enough free.
1895 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1896 	 */
1897 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1898 						high_zoneidx, nodemask) {
1899 		unsigned long mark;
1900 
1901 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1902 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1903 				continue;
1904 		if ((alloc_flags & ALLOC_CPUSET) &&
1905 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1906 				continue;
1907 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1908 		if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1909 			goto try_this_zone;
1910 		/*
1911 		 * Distribute pages in proportion to the individual
1912 		 * zone size to ensure fair page aging.  The zone a
1913 		 * page was allocated in should have no effect on the
1914 		 * time the page has in memory before being reclaimed.
1915 		 *
1916 		 * When zone_reclaim_mode is enabled, try to stay in
1917 		 * local zones in the fastpath.  If that fails, the
1918 		 * slowpath is entered, which will do another pass
1919 		 * starting with the local zones, but ultimately fall
1920 		 * back to remote zones that do not partake in the
1921 		 * fairness round-robin cycle of this zonelist.
1922 		 */
1923 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1924 		    (gfp_mask & GFP_MOVABLE_MASK)) {
1925 			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1926 				continue;
1927 			if (zone_reclaim_mode &&
1928 			    !zone_local(preferred_zone, zone))
1929 				continue;
1930 		}
1931 		/*
1932 		 * When allocating a page cache page for writing, we
1933 		 * want to get it from a zone that is within its dirty
1934 		 * limit, such that no single zone holds more than its
1935 		 * proportional share of globally allowed dirty pages.
1936 		 * The dirty limits take into account the zone's
1937 		 * lowmem reserves and high watermark so that kswapd
1938 		 * should be able to balance it without having to
1939 		 * write pages from its LRU list.
1940 		 *
1941 		 * This may look like it could increase pressure on
1942 		 * lower zones by failing allocations in higher zones
1943 		 * before they are full.  But the pages that do spill
1944 		 * over are limited as the lower zones are protected
1945 		 * by this very same mechanism.  It should not become
1946 		 * a practical burden to them.
1947 		 *
1948 		 * XXX: For now, allow allocations to potentially
1949 		 * exceed the per-zone dirty limit in the slowpath
1950 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1951 		 * which is important when on a NUMA setup the allowed
1952 		 * zones are together not big enough to reach the
1953 		 * global limit.  The proper fix for these situations
1954 		 * will require awareness of zones in the
1955 		 * dirty-throttling and the flusher threads.
1956 		 */
1957 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1958 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1959 			goto this_zone_full;
1960 
1961 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1962 		if (!zone_watermark_ok(zone, order, mark,
1963 				       classzone_idx, alloc_flags)) {
1964 			int ret;
1965 
1966 			if (IS_ENABLED(CONFIG_NUMA) &&
1967 					!did_zlc_setup && nr_online_nodes > 1) {
1968 				/*
1969 				 * we do zlc_setup if there are multiple nodes
1970 				 * and before considering the first zone allowed
1971 				 * by the cpuset.
1972 				 */
1973 				allowednodes = zlc_setup(zonelist, alloc_flags);
1974 				zlc_active = 1;
1975 				did_zlc_setup = 1;
1976 			}
1977 
1978 			if (zone_reclaim_mode == 0 ||
1979 			    !zone_allows_reclaim(preferred_zone, zone))
1980 				goto this_zone_full;
1981 
1982 			/*
1983 			 * As we may have just activated ZLC, check if the first
1984 			 * eligible zone has failed zone_reclaim recently.
1985 			 */
1986 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1987 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1988 				continue;
1989 
1990 			ret = zone_reclaim(zone, gfp_mask, order);
1991 			switch (ret) {
1992 			case ZONE_RECLAIM_NOSCAN:
1993 				/* did not scan */
1994 				continue;
1995 			case ZONE_RECLAIM_FULL:
1996 				/* scanned but unreclaimable */
1997 				continue;
1998 			default:
1999 				/* did we reclaim enough */
2000 				if (zone_watermark_ok(zone, order, mark,
2001 						classzone_idx, alloc_flags))
2002 					goto try_this_zone;
2003 
2004 				/*
2005 				 * Failed to reclaim enough to meet watermark.
2006 				 * Only mark the zone full if checking the min
2007 				 * watermark or if we failed to reclaim just
2008 				 * 1<<order pages or else the page allocator
2009 				 * fastpath will prematurely mark zones full
2010 				 * when the watermark is between the low and
2011 				 * min watermarks.
2012 				 */
2013 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2014 				    ret == ZONE_RECLAIM_SOME)
2015 					goto this_zone_full;
2016 
2017 				continue;
2018 			}
2019 		}
2020 
2021 try_this_zone:
2022 		page = buffered_rmqueue(preferred_zone, zone, order,
2023 						gfp_mask, migratetype);
2024 		if (page)
2025 			break;
2026 this_zone_full:
2027 		if (IS_ENABLED(CONFIG_NUMA))
2028 			zlc_mark_zone_full(zonelist, z);
2029 	}
2030 
2031 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2032 		/* Disable zlc cache for second zonelist scan */
2033 		zlc_active = 0;
2034 		goto zonelist_scan;
2035 	}
2036 
2037 	if (page)
2038 		/*
2039 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2040 		 * necessary to allocate the page. The expectation is
2041 		 * that the caller is taking steps that will free more
2042 		 * memory. The caller should avoid the page being used
2043 		 * for !PFMEMALLOC purposes.
2044 		 */
2045 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2046 
2047 	return page;
2048 }
2049 
2050 /*
2051  * Large machines with many possible nodes should not always dump per-node
2052  * meminfo in irq context.
2053  */
2054 static inline bool should_suppress_show_mem(void)
2055 {
2056 	bool ret = false;
2057 
2058 #if NODES_SHIFT > 8
2059 	ret = in_interrupt();
2060 #endif
2061 	return ret;
2062 }
2063 
2064 static DEFINE_RATELIMIT_STATE(nopage_rs,
2065 		DEFAULT_RATELIMIT_INTERVAL,
2066 		DEFAULT_RATELIMIT_BURST);
2067 
2068 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2069 {
2070 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2071 
2072 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2073 	    debug_guardpage_minorder() > 0)
2074 		return;
2075 
2076 	/*
2077 	 * Walking all memory to count page types is very expensive and should
2078 	 * be inhibited in non-blockable contexts.
2079 	 */
2080 	if (!(gfp_mask & __GFP_WAIT))
2081 		filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2082 
2083 	/*
2084 	 * This documents exceptions given to allocations in certain
2085 	 * contexts that are allowed to allocate outside current's set
2086 	 * of allowed nodes.
2087 	 */
2088 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2089 		if (test_thread_flag(TIF_MEMDIE) ||
2090 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2091 			filter &= ~SHOW_MEM_FILTER_NODES;
2092 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2093 		filter &= ~SHOW_MEM_FILTER_NODES;
2094 
2095 	if (fmt) {
2096 		struct va_format vaf;
2097 		va_list args;
2098 
2099 		va_start(args, fmt);
2100 
2101 		vaf.fmt = fmt;
2102 		vaf.va = &args;
2103 
2104 		pr_warn("%pV", &vaf);
2105 
2106 		va_end(args);
2107 	}
2108 
2109 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2110 		current->comm, order, gfp_mask);
2111 
2112 	dump_stack();
2113 	if (!should_suppress_show_mem())
2114 		show_mem(filter);
2115 }
2116 
2117 static inline int
2118 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2119 				unsigned long did_some_progress,
2120 				unsigned long pages_reclaimed)
2121 {
2122 	/* Do not loop if specifically requested */
2123 	if (gfp_mask & __GFP_NORETRY)
2124 		return 0;
2125 
2126 	/* Always retry if specifically requested */
2127 	if (gfp_mask & __GFP_NOFAIL)
2128 		return 1;
2129 
2130 	/*
2131 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2132 	 * making forward progress without invoking OOM. Suspend also disables
2133 	 * storage devices so kswapd will not help. Bail if we are suspending.
2134 	 */
2135 	if (!did_some_progress && pm_suspended_storage())
2136 		return 0;
2137 
2138 	/*
2139 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2140 	 * means __GFP_NOFAIL, but that may not be true in other
2141 	 * implementations.
2142 	 */
2143 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2144 		return 1;
2145 
2146 	/*
2147 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2148 	 * specified, then we retry until we no longer reclaim any pages
2149 	 * (above), or we've reclaimed an order of pages at least as
2150 	 * large as the allocation's order. In both cases, if the
2151 	 * allocation still fails, we stop retrying.
2152 	 */
2153 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2154 		return 1;
2155 
2156 	return 0;
2157 }
2158 
2159 static inline struct page *
2160 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2161 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2162 	nodemask_t *nodemask, struct zone *preferred_zone,
2163 	int migratetype)
2164 {
2165 	struct page *page;
2166 
2167 	/* Acquire the OOM killer lock for the zones in zonelist */
2168 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2169 		schedule_timeout_uninterruptible(1);
2170 		return NULL;
2171 	}
2172 
2173 	/*
2174 	 * Go through the zonelist yet one more time, keep very high watermark
2175 	 * here, this is only to catch a parallel oom killing, we must fail if
2176 	 * we're still under heavy pressure.
2177 	 */
2178 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2179 		order, zonelist, high_zoneidx,
2180 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2181 		preferred_zone, migratetype);
2182 	if (page)
2183 		goto out;
2184 
2185 	if (!(gfp_mask & __GFP_NOFAIL)) {
2186 		/* The OOM killer will not help higher order allocs */
2187 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2188 			goto out;
2189 		/* The OOM killer does not needlessly kill tasks for lowmem */
2190 		if (high_zoneidx < ZONE_NORMAL)
2191 			goto out;
2192 		/*
2193 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2194 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2195 		 * The caller should handle page allocation failure by itself if
2196 		 * it specifies __GFP_THISNODE.
2197 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2198 		 */
2199 		if (gfp_mask & __GFP_THISNODE)
2200 			goto out;
2201 	}
2202 	/* Exhausted what can be done so it's blamo time */
2203 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2204 
2205 out:
2206 	clear_zonelist_oom(zonelist, gfp_mask);
2207 	return page;
2208 }
2209 
2210 #ifdef CONFIG_COMPACTION
2211 /* Try memory compaction for high-order allocations before reclaim */
2212 static struct page *
2213 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2214 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2215 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2216 	int migratetype, bool sync_migration,
2217 	bool *contended_compaction, bool *deferred_compaction,
2218 	unsigned long *did_some_progress)
2219 {
2220 	if (!order)
2221 		return NULL;
2222 
2223 	if (compaction_deferred(preferred_zone, order)) {
2224 		*deferred_compaction = true;
2225 		return NULL;
2226 	}
2227 
2228 	current->flags |= PF_MEMALLOC;
2229 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2230 						nodemask, sync_migration,
2231 						contended_compaction);
2232 	current->flags &= ~PF_MEMALLOC;
2233 
2234 	if (*did_some_progress != COMPACT_SKIPPED) {
2235 		struct page *page;
2236 
2237 		/* Page migration frees to the PCP lists but we want merging */
2238 		drain_pages(get_cpu());
2239 		put_cpu();
2240 
2241 		page = get_page_from_freelist(gfp_mask, nodemask,
2242 				order, zonelist, high_zoneidx,
2243 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2244 				preferred_zone, migratetype);
2245 		if (page) {
2246 			preferred_zone->compact_blockskip_flush = false;
2247 			preferred_zone->compact_considered = 0;
2248 			preferred_zone->compact_defer_shift = 0;
2249 			if (order >= preferred_zone->compact_order_failed)
2250 				preferred_zone->compact_order_failed = order + 1;
2251 			count_vm_event(COMPACTSUCCESS);
2252 			return page;
2253 		}
2254 
2255 		/*
2256 		 * It's bad if compaction run occurs and fails.
2257 		 * The most likely reason is that pages exist,
2258 		 * but not enough to satisfy watermarks.
2259 		 */
2260 		count_vm_event(COMPACTFAIL);
2261 
2262 		/*
2263 		 * As async compaction considers a subset of pageblocks, only
2264 		 * defer if the failure was a sync compaction failure.
2265 		 */
2266 		if (sync_migration)
2267 			defer_compaction(preferred_zone, order);
2268 
2269 		cond_resched();
2270 	}
2271 
2272 	return NULL;
2273 }
2274 #else
2275 static inline struct page *
2276 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2277 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2278 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2279 	int migratetype, bool sync_migration,
2280 	bool *contended_compaction, bool *deferred_compaction,
2281 	unsigned long *did_some_progress)
2282 {
2283 	return NULL;
2284 }
2285 #endif /* CONFIG_COMPACTION */
2286 
2287 /* Perform direct synchronous page reclaim */
2288 static int
2289 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2290 		  nodemask_t *nodemask)
2291 {
2292 	struct reclaim_state reclaim_state;
2293 	int progress;
2294 
2295 	cond_resched();
2296 
2297 	/* We now go into synchronous reclaim */
2298 	cpuset_memory_pressure_bump();
2299 	current->flags |= PF_MEMALLOC;
2300 	lockdep_set_current_reclaim_state(gfp_mask);
2301 	reclaim_state.reclaimed_slab = 0;
2302 	current->reclaim_state = &reclaim_state;
2303 
2304 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2305 
2306 	current->reclaim_state = NULL;
2307 	lockdep_clear_current_reclaim_state();
2308 	current->flags &= ~PF_MEMALLOC;
2309 
2310 	cond_resched();
2311 
2312 	return progress;
2313 }
2314 
2315 /* The really slow allocator path where we enter direct reclaim */
2316 static inline struct page *
2317 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2318 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2319 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2320 	int migratetype, unsigned long *did_some_progress)
2321 {
2322 	struct page *page = NULL;
2323 	bool drained = false;
2324 
2325 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2326 					       nodemask);
2327 	if (unlikely(!(*did_some_progress)))
2328 		return NULL;
2329 
2330 	/* After successful reclaim, reconsider all zones for allocation */
2331 	if (IS_ENABLED(CONFIG_NUMA))
2332 		zlc_clear_zones_full(zonelist);
2333 
2334 retry:
2335 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2336 					zonelist, high_zoneidx,
2337 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2338 					preferred_zone, migratetype);
2339 
2340 	/*
2341 	 * If an allocation failed after direct reclaim, it could be because
2342 	 * pages are pinned on the per-cpu lists. Drain them and try again
2343 	 */
2344 	if (!page && !drained) {
2345 		drain_all_pages();
2346 		drained = true;
2347 		goto retry;
2348 	}
2349 
2350 	return page;
2351 }
2352 
2353 /*
2354  * This is called in the allocator slow-path if the allocation request is of
2355  * sufficient urgency to ignore watermarks and take other desperate measures
2356  */
2357 static inline struct page *
2358 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2359 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2360 	nodemask_t *nodemask, struct zone *preferred_zone,
2361 	int migratetype)
2362 {
2363 	struct page *page;
2364 
2365 	do {
2366 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2367 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2368 			preferred_zone, migratetype);
2369 
2370 		if (!page && gfp_mask & __GFP_NOFAIL)
2371 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2372 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2373 
2374 	return page;
2375 }
2376 
2377 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2378 			     struct zonelist *zonelist,
2379 			     enum zone_type high_zoneidx,
2380 			     struct zone *preferred_zone)
2381 {
2382 	struct zoneref *z;
2383 	struct zone *zone;
2384 
2385 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2386 		if (!(gfp_mask & __GFP_NO_KSWAPD))
2387 			wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2388 		/*
2389 		 * Only reset the batches of zones that were actually
2390 		 * considered in the fast path, we don't want to
2391 		 * thrash fairness information for zones that are not
2392 		 * actually part of this zonelist's round-robin cycle.
2393 		 */
2394 		if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
2395 			continue;
2396 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2397 				    high_wmark_pages(zone) -
2398 				    low_wmark_pages(zone) -
2399 				    zone_page_state(zone, NR_ALLOC_BATCH));
2400 	}
2401 }
2402 
2403 static inline int
2404 gfp_to_alloc_flags(gfp_t gfp_mask)
2405 {
2406 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2407 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2408 
2409 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2410 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2411 
2412 	/*
2413 	 * The caller may dip into page reserves a bit more if the caller
2414 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2415 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2416 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2417 	 */
2418 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2419 
2420 	if (!wait) {
2421 		/*
2422 		 * Not worth trying to allocate harder for
2423 		 * __GFP_NOMEMALLOC even if it can't schedule.
2424 		 */
2425 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2426 			alloc_flags |= ALLOC_HARDER;
2427 		/*
2428 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2429 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2430 		 */
2431 		alloc_flags &= ~ALLOC_CPUSET;
2432 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2433 		alloc_flags |= ALLOC_HARDER;
2434 
2435 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2436 		if (gfp_mask & __GFP_MEMALLOC)
2437 			alloc_flags |= ALLOC_NO_WATERMARKS;
2438 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2439 			alloc_flags |= ALLOC_NO_WATERMARKS;
2440 		else if (!in_interrupt() &&
2441 				((current->flags & PF_MEMALLOC) ||
2442 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2443 			alloc_flags |= ALLOC_NO_WATERMARKS;
2444 	}
2445 #ifdef CONFIG_CMA
2446 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2447 		alloc_flags |= ALLOC_CMA;
2448 #endif
2449 	return alloc_flags;
2450 }
2451 
2452 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2453 {
2454 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2455 }
2456 
2457 static inline struct page *
2458 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2459 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2460 	nodemask_t *nodemask, struct zone *preferred_zone,
2461 	int migratetype)
2462 {
2463 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2464 	struct page *page = NULL;
2465 	int alloc_flags;
2466 	unsigned long pages_reclaimed = 0;
2467 	unsigned long did_some_progress;
2468 	bool sync_migration = false;
2469 	bool deferred_compaction = false;
2470 	bool contended_compaction = false;
2471 
2472 	/*
2473 	 * In the slowpath, we sanity check order to avoid ever trying to
2474 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2475 	 * be using allocators in order of preference for an area that is
2476 	 * too large.
2477 	 */
2478 	if (order >= MAX_ORDER) {
2479 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2480 		return NULL;
2481 	}
2482 
2483 	/*
2484 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2485 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2486 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2487 	 * using a larger set of nodes after it has established that the
2488 	 * allowed per node queues are empty and that nodes are
2489 	 * over allocated.
2490 	 */
2491 	if (IS_ENABLED(CONFIG_NUMA) &&
2492 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2493 		goto nopage;
2494 
2495 restart:
2496 	prepare_slowpath(gfp_mask, order, zonelist,
2497 			 high_zoneidx, preferred_zone);
2498 
2499 	/*
2500 	 * OK, we're below the kswapd watermark and have kicked background
2501 	 * reclaim. Now things get more complex, so set up alloc_flags according
2502 	 * to how we want to proceed.
2503 	 */
2504 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2505 
2506 	/*
2507 	 * Find the true preferred zone if the allocation is unconstrained by
2508 	 * cpusets.
2509 	 */
2510 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2511 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2512 					&preferred_zone);
2513 
2514 rebalance:
2515 	/* This is the last chance, in general, before the goto nopage. */
2516 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2517 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2518 			preferred_zone, migratetype);
2519 	if (page)
2520 		goto got_pg;
2521 
2522 	/* Allocate without watermarks if the context allows */
2523 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2524 		/*
2525 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2526 		 * the allocation is high priority and these type of
2527 		 * allocations are system rather than user orientated
2528 		 */
2529 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2530 
2531 		page = __alloc_pages_high_priority(gfp_mask, order,
2532 				zonelist, high_zoneidx, nodemask,
2533 				preferred_zone, migratetype);
2534 		if (page) {
2535 			goto got_pg;
2536 		}
2537 	}
2538 
2539 	/* Atomic allocations - we can't balance anything */
2540 	if (!wait)
2541 		goto nopage;
2542 
2543 	/* Avoid recursion of direct reclaim */
2544 	if (current->flags & PF_MEMALLOC)
2545 		goto nopage;
2546 
2547 	/* Avoid allocations with no watermarks from looping endlessly */
2548 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2549 		goto nopage;
2550 
2551 	/*
2552 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2553 	 * attempts after direct reclaim are synchronous
2554 	 */
2555 	page = __alloc_pages_direct_compact(gfp_mask, order,
2556 					zonelist, high_zoneidx,
2557 					nodemask,
2558 					alloc_flags, preferred_zone,
2559 					migratetype, sync_migration,
2560 					&contended_compaction,
2561 					&deferred_compaction,
2562 					&did_some_progress);
2563 	if (page)
2564 		goto got_pg;
2565 	sync_migration = true;
2566 
2567 	/*
2568 	 * If compaction is deferred for high-order allocations, it is because
2569 	 * sync compaction recently failed. In this is the case and the caller
2570 	 * requested a movable allocation that does not heavily disrupt the
2571 	 * system then fail the allocation instead of entering direct reclaim.
2572 	 */
2573 	if ((deferred_compaction || contended_compaction) &&
2574 						(gfp_mask & __GFP_NO_KSWAPD))
2575 		goto nopage;
2576 
2577 	/* Try direct reclaim and then allocating */
2578 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2579 					zonelist, high_zoneidx,
2580 					nodemask,
2581 					alloc_flags, preferred_zone,
2582 					migratetype, &did_some_progress);
2583 	if (page)
2584 		goto got_pg;
2585 
2586 	/*
2587 	 * If we failed to make any progress reclaiming, then we are
2588 	 * running out of options and have to consider going OOM
2589 	 */
2590 	if (!did_some_progress) {
2591 		if (oom_gfp_allowed(gfp_mask)) {
2592 			if (oom_killer_disabled)
2593 				goto nopage;
2594 			/* Coredumps can quickly deplete all memory reserves */
2595 			if ((current->flags & PF_DUMPCORE) &&
2596 			    !(gfp_mask & __GFP_NOFAIL))
2597 				goto nopage;
2598 			page = __alloc_pages_may_oom(gfp_mask, order,
2599 					zonelist, high_zoneidx,
2600 					nodemask, preferred_zone,
2601 					migratetype);
2602 			if (page)
2603 				goto got_pg;
2604 
2605 			if (!(gfp_mask & __GFP_NOFAIL)) {
2606 				/*
2607 				 * The oom killer is not called for high-order
2608 				 * allocations that may fail, so if no progress
2609 				 * is being made, there are no other options and
2610 				 * retrying is unlikely to help.
2611 				 */
2612 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2613 					goto nopage;
2614 				/*
2615 				 * The oom killer is not called for lowmem
2616 				 * allocations to prevent needlessly killing
2617 				 * innocent tasks.
2618 				 */
2619 				if (high_zoneidx < ZONE_NORMAL)
2620 					goto nopage;
2621 			}
2622 
2623 			goto restart;
2624 		}
2625 	}
2626 
2627 	/* Check if we should retry the allocation */
2628 	pages_reclaimed += did_some_progress;
2629 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2630 						pages_reclaimed)) {
2631 		/* Wait for some write requests to complete then retry */
2632 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2633 		goto rebalance;
2634 	} else {
2635 		/*
2636 		 * High-order allocations do not necessarily loop after
2637 		 * direct reclaim and reclaim/compaction depends on compaction
2638 		 * being called after reclaim so call directly if necessary
2639 		 */
2640 		page = __alloc_pages_direct_compact(gfp_mask, order,
2641 					zonelist, high_zoneidx,
2642 					nodemask,
2643 					alloc_flags, preferred_zone,
2644 					migratetype, sync_migration,
2645 					&contended_compaction,
2646 					&deferred_compaction,
2647 					&did_some_progress);
2648 		if (page)
2649 			goto got_pg;
2650 	}
2651 
2652 nopage:
2653 	warn_alloc_failed(gfp_mask, order, NULL);
2654 	return page;
2655 got_pg:
2656 	if (kmemcheck_enabled)
2657 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2658 
2659 	return page;
2660 }
2661 
2662 /*
2663  * This is the 'heart' of the zoned buddy allocator.
2664  */
2665 struct page *
2666 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2667 			struct zonelist *zonelist, nodemask_t *nodemask)
2668 {
2669 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2670 	struct zone *preferred_zone;
2671 	struct page *page = NULL;
2672 	int migratetype = allocflags_to_migratetype(gfp_mask);
2673 	unsigned int cpuset_mems_cookie;
2674 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2675 	struct mem_cgroup *memcg = NULL;
2676 
2677 	gfp_mask &= gfp_allowed_mask;
2678 
2679 	lockdep_trace_alloc(gfp_mask);
2680 
2681 	might_sleep_if(gfp_mask & __GFP_WAIT);
2682 
2683 	if (should_fail_alloc_page(gfp_mask, order))
2684 		return NULL;
2685 
2686 	/*
2687 	 * Check the zones suitable for the gfp_mask contain at least one
2688 	 * valid zone. It's possible to have an empty zonelist as a result
2689 	 * of GFP_THISNODE and a memoryless node
2690 	 */
2691 	if (unlikely(!zonelist->_zonerefs->zone))
2692 		return NULL;
2693 
2694 	/*
2695 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2696 	 * verified in the (always inline) callee
2697 	 */
2698 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2699 		return NULL;
2700 
2701 retry_cpuset:
2702 	cpuset_mems_cookie = get_mems_allowed();
2703 
2704 	/* The preferred zone is used for statistics later */
2705 	first_zones_zonelist(zonelist, high_zoneidx,
2706 				nodemask ? : &cpuset_current_mems_allowed,
2707 				&preferred_zone);
2708 	if (!preferred_zone)
2709 		goto out;
2710 
2711 #ifdef CONFIG_CMA
2712 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2713 		alloc_flags |= ALLOC_CMA;
2714 #endif
2715 	/* First allocation attempt */
2716 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2717 			zonelist, high_zoneidx, alloc_flags,
2718 			preferred_zone, migratetype);
2719 	if (unlikely(!page)) {
2720 		/*
2721 		 * Runtime PM, block IO and its error handling path
2722 		 * can deadlock because I/O on the device might not
2723 		 * complete.
2724 		 */
2725 		gfp_mask = memalloc_noio_flags(gfp_mask);
2726 		page = __alloc_pages_slowpath(gfp_mask, order,
2727 				zonelist, high_zoneidx, nodemask,
2728 				preferred_zone, migratetype);
2729 	}
2730 
2731 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2732 
2733 out:
2734 	/*
2735 	 * When updating a task's mems_allowed, it is possible to race with
2736 	 * parallel threads in such a way that an allocation can fail while
2737 	 * the mask is being updated. If a page allocation is about to fail,
2738 	 * check if the cpuset changed during allocation and if so, retry.
2739 	 */
2740 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2741 		goto retry_cpuset;
2742 
2743 	memcg_kmem_commit_charge(page, memcg, order);
2744 
2745 	return page;
2746 }
2747 EXPORT_SYMBOL(__alloc_pages_nodemask);
2748 
2749 /*
2750  * Common helper functions.
2751  */
2752 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2753 {
2754 	struct page *page;
2755 
2756 	/*
2757 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2758 	 * a highmem page
2759 	 */
2760 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2761 
2762 	page = alloc_pages(gfp_mask, order);
2763 	if (!page)
2764 		return 0;
2765 	return (unsigned long) page_address(page);
2766 }
2767 EXPORT_SYMBOL(__get_free_pages);
2768 
2769 unsigned long get_zeroed_page(gfp_t gfp_mask)
2770 {
2771 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2772 }
2773 EXPORT_SYMBOL(get_zeroed_page);
2774 
2775 void __free_pages(struct page *page, unsigned int order)
2776 {
2777 	if (put_page_testzero(page)) {
2778 		if (order == 0)
2779 			free_hot_cold_page(page, 0);
2780 		else
2781 			__free_pages_ok(page, order);
2782 	}
2783 }
2784 
2785 EXPORT_SYMBOL(__free_pages);
2786 
2787 void free_pages(unsigned long addr, unsigned int order)
2788 {
2789 	if (addr != 0) {
2790 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2791 		__free_pages(virt_to_page((void *)addr), order);
2792 	}
2793 }
2794 
2795 EXPORT_SYMBOL(free_pages);
2796 
2797 /*
2798  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2799  * pages allocated with __GFP_KMEMCG.
2800  *
2801  * Those pages are accounted to a particular memcg, embedded in the
2802  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2803  * for that information only to find out that it is NULL for users who have no
2804  * interest in that whatsoever, we provide these functions.
2805  *
2806  * The caller knows better which flags it relies on.
2807  */
2808 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2809 {
2810 	memcg_kmem_uncharge_pages(page, order);
2811 	__free_pages(page, order);
2812 }
2813 
2814 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2815 {
2816 	if (addr != 0) {
2817 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2818 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2819 	}
2820 }
2821 
2822 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2823 {
2824 	if (addr) {
2825 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2826 		unsigned long used = addr + PAGE_ALIGN(size);
2827 
2828 		split_page(virt_to_page((void *)addr), order);
2829 		while (used < alloc_end) {
2830 			free_page(used);
2831 			used += PAGE_SIZE;
2832 		}
2833 	}
2834 	return (void *)addr;
2835 }
2836 
2837 /**
2838  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2839  * @size: the number of bytes to allocate
2840  * @gfp_mask: GFP flags for the allocation
2841  *
2842  * This function is similar to alloc_pages(), except that it allocates the
2843  * minimum number of pages to satisfy the request.  alloc_pages() can only
2844  * allocate memory in power-of-two pages.
2845  *
2846  * This function is also limited by MAX_ORDER.
2847  *
2848  * Memory allocated by this function must be released by free_pages_exact().
2849  */
2850 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2851 {
2852 	unsigned int order = get_order(size);
2853 	unsigned long addr;
2854 
2855 	addr = __get_free_pages(gfp_mask, order);
2856 	return make_alloc_exact(addr, order, size);
2857 }
2858 EXPORT_SYMBOL(alloc_pages_exact);
2859 
2860 /**
2861  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2862  *			   pages on a node.
2863  * @nid: the preferred node ID where memory should be allocated
2864  * @size: the number of bytes to allocate
2865  * @gfp_mask: GFP flags for the allocation
2866  *
2867  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2868  * back.
2869  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2870  * but is not exact.
2871  */
2872 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2873 {
2874 	unsigned order = get_order(size);
2875 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2876 	if (!p)
2877 		return NULL;
2878 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2879 }
2880 EXPORT_SYMBOL(alloc_pages_exact_nid);
2881 
2882 /**
2883  * free_pages_exact - release memory allocated via alloc_pages_exact()
2884  * @virt: the value returned by alloc_pages_exact.
2885  * @size: size of allocation, same value as passed to alloc_pages_exact().
2886  *
2887  * Release the memory allocated by a previous call to alloc_pages_exact.
2888  */
2889 void free_pages_exact(void *virt, size_t size)
2890 {
2891 	unsigned long addr = (unsigned long)virt;
2892 	unsigned long end = addr + PAGE_ALIGN(size);
2893 
2894 	while (addr < end) {
2895 		free_page(addr);
2896 		addr += PAGE_SIZE;
2897 	}
2898 }
2899 EXPORT_SYMBOL(free_pages_exact);
2900 
2901 /**
2902  * nr_free_zone_pages - count number of pages beyond high watermark
2903  * @offset: The zone index of the highest zone
2904  *
2905  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2906  * high watermark within all zones at or below a given zone index.  For each
2907  * zone, the number of pages is calculated as:
2908  *     managed_pages - high_pages
2909  */
2910 static unsigned long nr_free_zone_pages(int offset)
2911 {
2912 	struct zoneref *z;
2913 	struct zone *zone;
2914 
2915 	/* Just pick one node, since fallback list is circular */
2916 	unsigned long sum = 0;
2917 
2918 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2919 
2920 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2921 		unsigned long size = zone->managed_pages;
2922 		unsigned long high = high_wmark_pages(zone);
2923 		if (size > high)
2924 			sum += size - high;
2925 	}
2926 
2927 	return sum;
2928 }
2929 
2930 /**
2931  * nr_free_buffer_pages - count number of pages beyond high watermark
2932  *
2933  * nr_free_buffer_pages() counts the number of pages which are beyond the high
2934  * watermark within ZONE_DMA and ZONE_NORMAL.
2935  */
2936 unsigned long nr_free_buffer_pages(void)
2937 {
2938 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2939 }
2940 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2941 
2942 /**
2943  * nr_free_pagecache_pages - count number of pages beyond high watermark
2944  *
2945  * nr_free_pagecache_pages() counts the number of pages which are beyond the
2946  * high watermark within all zones.
2947  */
2948 unsigned long nr_free_pagecache_pages(void)
2949 {
2950 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2951 }
2952 
2953 static inline void show_node(struct zone *zone)
2954 {
2955 	if (IS_ENABLED(CONFIG_NUMA))
2956 		printk("Node %d ", zone_to_nid(zone));
2957 }
2958 
2959 void si_meminfo(struct sysinfo *val)
2960 {
2961 	val->totalram = totalram_pages;
2962 	val->sharedram = 0;
2963 	val->freeram = global_page_state(NR_FREE_PAGES);
2964 	val->bufferram = nr_blockdev_pages();
2965 	val->totalhigh = totalhigh_pages;
2966 	val->freehigh = nr_free_highpages();
2967 	val->mem_unit = PAGE_SIZE;
2968 }
2969 
2970 EXPORT_SYMBOL(si_meminfo);
2971 
2972 #ifdef CONFIG_NUMA
2973 void si_meminfo_node(struct sysinfo *val, int nid)
2974 {
2975 	int zone_type;		/* needs to be signed */
2976 	unsigned long managed_pages = 0;
2977 	pg_data_t *pgdat = NODE_DATA(nid);
2978 
2979 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2980 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
2981 	val->totalram = managed_pages;
2982 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2983 #ifdef CONFIG_HIGHMEM
2984 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2985 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2986 			NR_FREE_PAGES);
2987 #else
2988 	val->totalhigh = 0;
2989 	val->freehigh = 0;
2990 #endif
2991 	val->mem_unit = PAGE_SIZE;
2992 }
2993 #endif
2994 
2995 /*
2996  * Determine whether the node should be displayed or not, depending on whether
2997  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2998  */
2999 bool skip_free_areas_node(unsigned int flags, int nid)
3000 {
3001 	bool ret = false;
3002 	unsigned int cpuset_mems_cookie;
3003 
3004 	if (!(flags & SHOW_MEM_FILTER_NODES))
3005 		goto out;
3006 
3007 	do {
3008 		cpuset_mems_cookie = get_mems_allowed();
3009 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3010 	} while (!put_mems_allowed(cpuset_mems_cookie));
3011 out:
3012 	return ret;
3013 }
3014 
3015 #define K(x) ((x) << (PAGE_SHIFT-10))
3016 
3017 static void show_migration_types(unsigned char type)
3018 {
3019 	static const char types[MIGRATE_TYPES] = {
3020 		[MIGRATE_UNMOVABLE]	= 'U',
3021 		[MIGRATE_RECLAIMABLE]	= 'E',
3022 		[MIGRATE_MOVABLE]	= 'M',
3023 		[MIGRATE_RESERVE]	= 'R',
3024 #ifdef CONFIG_CMA
3025 		[MIGRATE_CMA]		= 'C',
3026 #endif
3027 #ifdef CONFIG_MEMORY_ISOLATION
3028 		[MIGRATE_ISOLATE]	= 'I',
3029 #endif
3030 	};
3031 	char tmp[MIGRATE_TYPES + 1];
3032 	char *p = tmp;
3033 	int i;
3034 
3035 	for (i = 0; i < MIGRATE_TYPES; i++) {
3036 		if (type & (1 << i))
3037 			*p++ = types[i];
3038 	}
3039 
3040 	*p = '\0';
3041 	printk("(%s) ", tmp);
3042 }
3043 
3044 /*
3045  * Show free area list (used inside shift_scroll-lock stuff)
3046  * We also calculate the percentage fragmentation. We do this by counting the
3047  * memory on each free list with the exception of the first item on the list.
3048  * Suppresses nodes that are not allowed by current's cpuset if
3049  * SHOW_MEM_FILTER_NODES is passed.
3050  */
3051 void show_free_areas(unsigned int filter)
3052 {
3053 	int cpu;
3054 	struct zone *zone;
3055 
3056 	for_each_populated_zone(zone) {
3057 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3058 			continue;
3059 		show_node(zone);
3060 		printk("%s per-cpu:\n", zone->name);
3061 
3062 		for_each_online_cpu(cpu) {
3063 			struct per_cpu_pageset *pageset;
3064 
3065 			pageset = per_cpu_ptr(zone->pageset, cpu);
3066 
3067 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3068 			       cpu, pageset->pcp.high,
3069 			       pageset->pcp.batch, pageset->pcp.count);
3070 		}
3071 	}
3072 
3073 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3074 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3075 		" unevictable:%lu"
3076 		" dirty:%lu writeback:%lu unstable:%lu\n"
3077 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3078 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3079 		" free_cma:%lu\n",
3080 		global_page_state(NR_ACTIVE_ANON),
3081 		global_page_state(NR_INACTIVE_ANON),
3082 		global_page_state(NR_ISOLATED_ANON),
3083 		global_page_state(NR_ACTIVE_FILE),
3084 		global_page_state(NR_INACTIVE_FILE),
3085 		global_page_state(NR_ISOLATED_FILE),
3086 		global_page_state(NR_UNEVICTABLE),
3087 		global_page_state(NR_FILE_DIRTY),
3088 		global_page_state(NR_WRITEBACK),
3089 		global_page_state(NR_UNSTABLE_NFS),
3090 		global_page_state(NR_FREE_PAGES),
3091 		global_page_state(NR_SLAB_RECLAIMABLE),
3092 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3093 		global_page_state(NR_FILE_MAPPED),
3094 		global_page_state(NR_SHMEM),
3095 		global_page_state(NR_PAGETABLE),
3096 		global_page_state(NR_BOUNCE),
3097 		global_page_state(NR_FREE_CMA_PAGES));
3098 
3099 	for_each_populated_zone(zone) {
3100 		int i;
3101 
3102 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3103 			continue;
3104 		show_node(zone);
3105 		printk("%s"
3106 			" free:%lukB"
3107 			" min:%lukB"
3108 			" low:%lukB"
3109 			" high:%lukB"
3110 			" active_anon:%lukB"
3111 			" inactive_anon:%lukB"
3112 			" active_file:%lukB"
3113 			" inactive_file:%lukB"
3114 			" unevictable:%lukB"
3115 			" isolated(anon):%lukB"
3116 			" isolated(file):%lukB"
3117 			" present:%lukB"
3118 			" managed:%lukB"
3119 			" mlocked:%lukB"
3120 			" dirty:%lukB"
3121 			" writeback:%lukB"
3122 			" mapped:%lukB"
3123 			" shmem:%lukB"
3124 			" slab_reclaimable:%lukB"
3125 			" slab_unreclaimable:%lukB"
3126 			" kernel_stack:%lukB"
3127 			" pagetables:%lukB"
3128 			" unstable:%lukB"
3129 			" bounce:%lukB"
3130 			" free_cma:%lukB"
3131 			" writeback_tmp:%lukB"
3132 			" pages_scanned:%lu"
3133 			" all_unreclaimable? %s"
3134 			"\n",
3135 			zone->name,
3136 			K(zone_page_state(zone, NR_FREE_PAGES)),
3137 			K(min_wmark_pages(zone)),
3138 			K(low_wmark_pages(zone)),
3139 			K(high_wmark_pages(zone)),
3140 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3141 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3142 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3143 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3144 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3145 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3146 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3147 			K(zone->present_pages),
3148 			K(zone->managed_pages),
3149 			K(zone_page_state(zone, NR_MLOCK)),
3150 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3151 			K(zone_page_state(zone, NR_WRITEBACK)),
3152 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3153 			K(zone_page_state(zone, NR_SHMEM)),
3154 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3155 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3156 			zone_page_state(zone, NR_KERNEL_STACK) *
3157 				THREAD_SIZE / 1024,
3158 			K(zone_page_state(zone, NR_PAGETABLE)),
3159 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3160 			K(zone_page_state(zone, NR_BOUNCE)),
3161 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3162 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3163 			zone->pages_scanned,
3164 			(!zone_reclaimable(zone) ? "yes" : "no")
3165 			);
3166 		printk("lowmem_reserve[]:");
3167 		for (i = 0; i < MAX_NR_ZONES; i++)
3168 			printk(" %lu", zone->lowmem_reserve[i]);
3169 		printk("\n");
3170 	}
3171 
3172 	for_each_populated_zone(zone) {
3173 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3174 		unsigned char types[MAX_ORDER];
3175 
3176 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3177 			continue;
3178 		show_node(zone);
3179 		printk("%s: ", zone->name);
3180 
3181 		spin_lock_irqsave(&zone->lock, flags);
3182 		for (order = 0; order < MAX_ORDER; order++) {
3183 			struct free_area *area = &zone->free_area[order];
3184 			int type;
3185 
3186 			nr[order] = area->nr_free;
3187 			total += nr[order] << order;
3188 
3189 			types[order] = 0;
3190 			for (type = 0; type < MIGRATE_TYPES; type++) {
3191 				if (!list_empty(&area->free_list[type]))
3192 					types[order] |= 1 << type;
3193 			}
3194 		}
3195 		spin_unlock_irqrestore(&zone->lock, flags);
3196 		for (order = 0; order < MAX_ORDER; order++) {
3197 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3198 			if (nr[order])
3199 				show_migration_types(types[order]);
3200 		}
3201 		printk("= %lukB\n", K(total));
3202 	}
3203 
3204 	hugetlb_show_meminfo();
3205 
3206 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3207 
3208 	show_swap_cache_info();
3209 }
3210 
3211 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3212 {
3213 	zoneref->zone = zone;
3214 	zoneref->zone_idx = zone_idx(zone);
3215 }
3216 
3217 /*
3218  * Builds allocation fallback zone lists.
3219  *
3220  * Add all populated zones of a node to the zonelist.
3221  */
3222 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3223 				int nr_zones)
3224 {
3225 	struct zone *zone;
3226 	enum zone_type zone_type = MAX_NR_ZONES;
3227 
3228 	do {
3229 		zone_type--;
3230 		zone = pgdat->node_zones + zone_type;
3231 		if (populated_zone(zone)) {
3232 			zoneref_set_zone(zone,
3233 				&zonelist->_zonerefs[nr_zones++]);
3234 			check_highest_zone(zone_type);
3235 		}
3236 	} while (zone_type);
3237 
3238 	return nr_zones;
3239 }
3240 
3241 
3242 /*
3243  *  zonelist_order:
3244  *  0 = automatic detection of better ordering.
3245  *  1 = order by ([node] distance, -zonetype)
3246  *  2 = order by (-zonetype, [node] distance)
3247  *
3248  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3249  *  the same zonelist. So only NUMA can configure this param.
3250  */
3251 #define ZONELIST_ORDER_DEFAULT  0
3252 #define ZONELIST_ORDER_NODE     1
3253 #define ZONELIST_ORDER_ZONE     2
3254 
3255 /* zonelist order in the kernel.
3256  * set_zonelist_order() will set this to NODE or ZONE.
3257  */
3258 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3259 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3260 
3261 
3262 #ifdef CONFIG_NUMA
3263 /* The value user specified ....changed by config */
3264 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3265 /* string for sysctl */
3266 #define NUMA_ZONELIST_ORDER_LEN	16
3267 char numa_zonelist_order[16] = "default";
3268 
3269 /*
3270  * interface for configure zonelist ordering.
3271  * command line option "numa_zonelist_order"
3272  *	= "[dD]efault	- default, automatic configuration.
3273  *	= "[nN]ode 	- order by node locality, then by zone within node
3274  *	= "[zZ]one      - order by zone, then by locality within zone
3275  */
3276 
3277 static int __parse_numa_zonelist_order(char *s)
3278 {
3279 	if (*s == 'd' || *s == 'D') {
3280 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3281 	} else if (*s == 'n' || *s == 'N') {
3282 		user_zonelist_order = ZONELIST_ORDER_NODE;
3283 	} else if (*s == 'z' || *s == 'Z') {
3284 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3285 	} else {
3286 		printk(KERN_WARNING
3287 			"Ignoring invalid numa_zonelist_order value:  "
3288 			"%s\n", s);
3289 		return -EINVAL;
3290 	}
3291 	return 0;
3292 }
3293 
3294 static __init int setup_numa_zonelist_order(char *s)
3295 {
3296 	int ret;
3297 
3298 	if (!s)
3299 		return 0;
3300 
3301 	ret = __parse_numa_zonelist_order(s);
3302 	if (ret == 0)
3303 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3304 
3305 	return ret;
3306 }
3307 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3308 
3309 /*
3310  * sysctl handler for numa_zonelist_order
3311  */
3312 int numa_zonelist_order_handler(ctl_table *table, int write,
3313 		void __user *buffer, size_t *length,
3314 		loff_t *ppos)
3315 {
3316 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3317 	int ret;
3318 	static DEFINE_MUTEX(zl_order_mutex);
3319 
3320 	mutex_lock(&zl_order_mutex);
3321 	if (write) {
3322 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3323 			ret = -EINVAL;
3324 			goto out;
3325 		}
3326 		strcpy(saved_string, (char *)table->data);
3327 	}
3328 	ret = proc_dostring(table, write, buffer, length, ppos);
3329 	if (ret)
3330 		goto out;
3331 	if (write) {
3332 		int oldval = user_zonelist_order;
3333 
3334 		ret = __parse_numa_zonelist_order((char *)table->data);
3335 		if (ret) {
3336 			/*
3337 			 * bogus value.  restore saved string
3338 			 */
3339 			strncpy((char *)table->data, saved_string,
3340 				NUMA_ZONELIST_ORDER_LEN);
3341 			user_zonelist_order = oldval;
3342 		} else if (oldval != user_zonelist_order) {
3343 			mutex_lock(&zonelists_mutex);
3344 			build_all_zonelists(NULL, NULL);
3345 			mutex_unlock(&zonelists_mutex);
3346 		}
3347 	}
3348 out:
3349 	mutex_unlock(&zl_order_mutex);
3350 	return ret;
3351 }
3352 
3353 
3354 #define MAX_NODE_LOAD (nr_online_nodes)
3355 static int node_load[MAX_NUMNODES];
3356 
3357 /**
3358  * find_next_best_node - find the next node that should appear in a given node's fallback list
3359  * @node: node whose fallback list we're appending
3360  * @used_node_mask: nodemask_t of already used nodes
3361  *
3362  * We use a number of factors to determine which is the next node that should
3363  * appear on a given node's fallback list.  The node should not have appeared
3364  * already in @node's fallback list, and it should be the next closest node
3365  * according to the distance array (which contains arbitrary distance values
3366  * from each node to each node in the system), and should also prefer nodes
3367  * with no CPUs, since presumably they'll have very little allocation pressure
3368  * on them otherwise.
3369  * It returns -1 if no node is found.
3370  */
3371 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3372 {
3373 	int n, val;
3374 	int min_val = INT_MAX;
3375 	int best_node = NUMA_NO_NODE;
3376 	const struct cpumask *tmp = cpumask_of_node(0);
3377 
3378 	/* Use the local node if we haven't already */
3379 	if (!node_isset(node, *used_node_mask)) {
3380 		node_set(node, *used_node_mask);
3381 		return node;
3382 	}
3383 
3384 	for_each_node_state(n, N_MEMORY) {
3385 
3386 		/* Don't want a node to appear more than once */
3387 		if (node_isset(n, *used_node_mask))
3388 			continue;
3389 
3390 		/* Use the distance array to find the distance */
3391 		val = node_distance(node, n);
3392 
3393 		/* Penalize nodes under us ("prefer the next node") */
3394 		val += (n < node);
3395 
3396 		/* Give preference to headless and unused nodes */
3397 		tmp = cpumask_of_node(n);
3398 		if (!cpumask_empty(tmp))
3399 			val += PENALTY_FOR_NODE_WITH_CPUS;
3400 
3401 		/* Slight preference for less loaded node */
3402 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3403 		val += node_load[n];
3404 
3405 		if (val < min_val) {
3406 			min_val = val;
3407 			best_node = n;
3408 		}
3409 	}
3410 
3411 	if (best_node >= 0)
3412 		node_set(best_node, *used_node_mask);
3413 
3414 	return best_node;
3415 }
3416 
3417 
3418 /*
3419  * Build zonelists ordered by node and zones within node.
3420  * This results in maximum locality--normal zone overflows into local
3421  * DMA zone, if any--but risks exhausting DMA zone.
3422  */
3423 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3424 {
3425 	int j;
3426 	struct zonelist *zonelist;
3427 
3428 	zonelist = &pgdat->node_zonelists[0];
3429 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3430 		;
3431 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3432 	zonelist->_zonerefs[j].zone = NULL;
3433 	zonelist->_zonerefs[j].zone_idx = 0;
3434 }
3435 
3436 /*
3437  * Build gfp_thisnode zonelists
3438  */
3439 static void build_thisnode_zonelists(pg_data_t *pgdat)
3440 {
3441 	int j;
3442 	struct zonelist *zonelist;
3443 
3444 	zonelist = &pgdat->node_zonelists[1];
3445 	j = build_zonelists_node(pgdat, zonelist, 0);
3446 	zonelist->_zonerefs[j].zone = NULL;
3447 	zonelist->_zonerefs[j].zone_idx = 0;
3448 }
3449 
3450 /*
3451  * Build zonelists ordered by zone and nodes within zones.
3452  * This results in conserving DMA zone[s] until all Normal memory is
3453  * exhausted, but results in overflowing to remote node while memory
3454  * may still exist in local DMA zone.
3455  */
3456 static int node_order[MAX_NUMNODES];
3457 
3458 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3459 {
3460 	int pos, j, node;
3461 	int zone_type;		/* needs to be signed */
3462 	struct zone *z;
3463 	struct zonelist *zonelist;
3464 
3465 	zonelist = &pgdat->node_zonelists[0];
3466 	pos = 0;
3467 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3468 		for (j = 0; j < nr_nodes; j++) {
3469 			node = node_order[j];
3470 			z = &NODE_DATA(node)->node_zones[zone_type];
3471 			if (populated_zone(z)) {
3472 				zoneref_set_zone(z,
3473 					&zonelist->_zonerefs[pos++]);
3474 				check_highest_zone(zone_type);
3475 			}
3476 		}
3477 	}
3478 	zonelist->_zonerefs[pos].zone = NULL;
3479 	zonelist->_zonerefs[pos].zone_idx = 0;
3480 }
3481 
3482 static int default_zonelist_order(void)
3483 {
3484 	int nid, zone_type;
3485 	unsigned long low_kmem_size, total_size;
3486 	struct zone *z;
3487 	int average_size;
3488 	/*
3489 	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3490 	 * If they are really small and used heavily, the system can fall
3491 	 * into OOM very easily.
3492 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3493 	 */
3494 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3495 	low_kmem_size = 0;
3496 	total_size = 0;
3497 	for_each_online_node(nid) {
3498 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3499 			z = &NODE_DATA(nid)->node_zones[zone_type];
3500 			if (populated_zone(z)) {
3501 				if (zone_type < ZONE_NORMAL)
3502 					low_kmem_size += z->managed_pages;
3503 				total_size += z->managed_pages;
3504 			} else if (zone_type == ZONE_NORMAL) {
3505 				/*
3506 				 * If any node has only lowmem, then node order
3507 				 * is preferred to allow kernel allocations
3508 				 * locally; otherwise, they can easily infringe
3509 				 * on other nodes when there is an abundance of
3510 				 * lowmem available to allocate from.
3511 				 */
3512 				return ZONELIST_ORDER_NODE;
3513 			}
3514 		}
3515 	}
3516 	if (!low_kmem_size ||  /* there are no DMA area. */
3517 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3518 		return ZONELIST_ORDER_NODE;
3519 	/*
3520 	 * look into each node's config.
3521 	 * If there is a node whose DMA/DMA32 memory is very big area on
3522 	 * local memory, NODE_ORDER may be suitable.
3523 	 */
3524 	average_size = total_size /
3525 				(nodes_weight(node_states[N_MEMORY]) + 1);
3526 	for_each_online_node(nid) {
3527 		low_kmem_size = 0;
3528 		total_size = 0;
3529 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3530 			z = &NODE_DATA(nid)->node_zones[zone_type];
3531 			if (populated_zone(z)) {
3532 				if (zone_type < ZONE_NORMAL)
3533 					low_kmem_size += z->present_pages;
3534 				total_size += z->present_pages;
3535 			}
3536 		}
3537 		if (low_kmem_size &&
3538 		    total_size > average_size && /* ignore small node */
3539 		    low_kmem_size > total_size * 70/100)
3540 			return ZONELIST_ORDER_NODE;
3541 	}
3542 	return ZONELIST_ORDER_ZONE;
3543 }
3544 
3545 static void set_zonelist_order(void)
3546 {
3547 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3548 		current_zonelist_order = default_zonelist_order();
3549 	else
3550 		current_zonelist_order = user_zonelist_order;
3551 }
3552 
3553 static void build_zonelists(pg_data_t *pgdat)
3554 {
3555 	int j, node, load;
3556 	enum zone_type i;
3557 	nodemask_t used_mask;
3558 	int local_node, prev_node;
3559 	struct zonelist *zonelist;
3560 	int order = current_zonelist_order;
3561 
3562 	/* initialize zonelists */
3563 	for (i = 0; i < MAX_ZONELISTS; i++) {
3564 		zonelist = pgdat->node_zonelists + i;
3565 		zonelist->_zonerefs[0].zone = NULL;
3566 		zonelist->_zonerefs[0].zone_idx = 0;
3567 	}
3568 
3569 	/* NUMA-aware ordering of nodes */
3570 	local_node = pgdat->node_id;
3571 	load = nr_online_nodes;
3572 	prev_node = local_node;
3573 	nodes_clear(used_mask);
3574 
3575 	memset(node_order, 0, sizeof(node_order));
3576 	j = 0;
3577 
3578 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3579 		/*
3580 		 * We don't want to pressure a particular node.
3581 		 * So adding penalty to the first node in same
3582 		 * distance group to make it round-robin.
3583 		 */
3584 		if (node_distance(local_node, node) !=
3585 		    node_distance(local_node, prev_node))
3586 			node_load[node] = load;
3587 
3588 		prev_node = node;
3589 		load--;
3590 		if (order == ZONELIST_ORDER_NODE)
3591 			build_zonelists_in_node_order(pgdat, node);
3592 		else
3593 			node_order[j++] = node;	/* remember order */
3594 	}
3595 
3596 	if (order == ZONELIST_ORDER_ZONE) {
3597 		/* calculate node order -- i.e., DMA last! */
3598 		build_zonelists_in_zone_order(pgdat, j);
3599 	}
3600 
3601 	build_thisnode_zonelists(pgdat);
3602 }
3603 
3604 /* Construct the zonelist performance cache - see further mmzone.h */
3605 static void build_zonelist_cache(pg_data_t *pgdat)
3606 {
3607 	struct zonelist *zonelist;
3608 	struct zonelist_cache *zlc;
3609 	struct zoneref *z;
3610 
3611 	zonelist = &pgdat->node_zonelists[0];
3612 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3613 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3614 	for (z = zonelist->_zonerefs; z->zone; z++)
3615 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3616 }
3617 
3618 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3619 /*
3620  * Return node id of node used for "local" allocations.
3621  * I.e., first node id of first zone in arg node's generic zonelist.
3622  * Used for initializing percpu 'numa_mem', which is used primarily
3623  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3624  */
3625 int local_memory_node(int node)
3626 {
3627 	struct zone *zone;
3628 
3629 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3630 				   gfp_zone(GFP_KERNEL),
3631 				   NULL,
3632 				   &zone);
3633 	return zone->node;
3634 }
3635 #endif
3636 
3637 #else	/* CONFIG_NUMA */
3638 
3639 static void set_zonelist_order(void)
3640 {
3641 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3642 }
3643 
3644 static void build_zonelists(pg_data_t *pgdat)
3645 {
3646 	int node, local_node;
3647 	enum zone_type j;
3648 	struct zonelist *zonelist;
3649 
3650 	local_node = pgdat->node_id;
3651 
3652 	zonelist = &pgdat->node_zonelists[0];
3653 	j = build_zonelists_node(pgdat, zonelist, 0);
3654 
3655 	/*
3656 	 * Now we build the zonelist so that it contains the zones
3657 	 * of all the other nodes.
3658 	 * We don't want to pressure a particular node, so when
3659 	 * building the zones for node N, we make sure that the
3660 	 * zones coming right after the local ones are those from
3661 	 * node N+1 (modulo N)
3662 	 */
3663 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3664 		if (!node_online(node))
3665 			continue;
3666 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3667 	}
3668 	for (node = 0; node < local_node; node++) {
3669 		if (!node_online(node))
3670 			continue;
3671 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3672 	}
3673 
3674 	zonelist->_zonerefs[j].zone = NULL;
3675 	zonelist->_zonerefs[j].zone_idx = 0;
3676 }
3677 
3678 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3679 static void build_zonelist_cache(pg_data_t *pgdat)
3680 {
3681 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3682 }
3683 
3684 #endif	/* CONFIG_NUMA */
3685 
3686 /*
3687  * Boot pageset table. One per cpu which is going to be used for all
3688  * zones and all nodes. The parameters will be set in such a way
3689  * that an item put on a list will immediately be handed over to
3690  * the buddy list. This is safe since pageset manipulation is done
3691  * with interrupts disabled.
3692  *
3693  * The boot_pagesets must be kept even after bootup is complete for
3694  * unused processors and/or zones. They do play a role for bootstrapping
3695  * hotplugged processors.
3696  *
3697  * zoneinfo_show() and maybe other functions do
3698  * not check if the processor is online before following the pageset pointer.
3699  * Other parts of the kernel may not check if the zone is available.
3700  */
3701 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3702 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3703 static void setup_zone_pageset(struct zone *zone);
3704 
3705 /*
3706  * Global mutex to protect against size modification of zonelists
3707  * as well as to serialize pageset setup for the new populated zone.
3708  */
3709 DEFINE_MUTEX(zonelists_mutex);
3710 
3711 /* return values int ....just for stop_machine() */
3712 static int __build_all_zonelists(void *data)
3713 {
3714 	int nid;
3715 	int cpu;
3716 	pg_data_t *self = data;
3717 
3718 #ifdef CONFIG_NUMA
3719 	memset(node_load, 0, sizeof(node_load));
3720 #endif
3721 
3722 	if (self && !node_online(self->node_id)) {
3723 		build_zonelists(self);
3724 		build_zonelist_cache(self);
3725 	}
3726 
3727 	for_each_online_node(nid) {
3728 		pg_data_t *pgdat = NODE_DATA(nid);
3729 
3730 		build_zonelists(pgdat);
3731 		build_zonelist_cache(pgdat);
3732 	}
3733 
3734 	/*
3735 	 * Initialize the boot_pagesets that are going to be used
3736 	 * for bootstrapping processors. The real pagesets for
3737 	 * each zone will be allocated later when the per cpu
3738 	 * allocator is available.
3739 	 *
3740 	 * boot_pagesets are used also for bootstrapping offline
3741 	 * cpus if the system is already booted because the pagesets
3742 	 * are needed to initialize allocators on a specific cpu too.
3743 	 * F.e. the percpu allocator needs the page allocator which
3744 	 * needs the percpu allocator in order to allocate its pagesets
3745 	 * (a chicken-egg dilemma).
3746 	 */
3747 	for_each_possible_cpu(cpu) {
3748 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3749 
3750 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3751 		/*
3752 		 * We now know the "local memory node" for each node--
3753 		 * i.e., the node of the first zone in the generic zonelist.
3754 		 * Set up numa_mem percpu variable for on-line cpus.  During
3755 		 * boot, only the boot cpu should be on-line;  we'll init the
3756 		 * secondary cpus' numa_mem as they come on-line.  During
3757 		 * node/memory hotplug, we'll fixup all on-line cpus.
3758 		 */
3759 		if (cpu_online(cpu))
3760 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3761 #endif
3762 	}
3763 
3764 	return 0;
3765 }
3766 
3767 /*
3768  * Called with zonelists_mutex held always
3769  * unless system_state == SYSTEM_BOOTING.
3770  */
3771 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3772 {
3773 	set_zonelist_order();
3774 
3775 	if (system_state == SYSTEM_BOOTING) {
3776 		__build_all_zonelists(NULL);
3777 		mminit_verify_zonelist();
3778 		cpuset_init_current_mems_allowed();
3779 	} else {
3780 #ifdef CONFIG_MEMORY_HOTPLUG
3781 		if (zone)
3782 			setup_zone_pageset(zone);
3783 #endif
3784 		/* we have to stop all cpus to guarantee there is no user
3785 		   of zonelist */
3786 		stop_machine(__build_all_zonelists, pgdat, NULL);
3787 		/* cpuset refresh routine should be here */
3788 	}
3789 	vm_total_pages = nr_free_pagecache_pages();
3790 	/*
3791 	 * Disable grouping by mobility if the number of pages in the
3792 	 * system is too low to allow the mechanism to work. It would be
3793 	 * more accurate, but expensive to check per-zone. This check is
3794 	 * made on memory-hotadd so a system can start with mobility
3795 	 * disabled and enable it later
3796 	 */
3797 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3798 		page_group_by_mobility_disabled = 1;
3799 	else
3800 		page_group_by_mobility_disabled = 0;
3801 
3802 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3803 		"Total pages: %ld\n",
3804 			nr_online_nodes,
3805 			zonelist_order_name[current_zonelist_order],
3806 			page_group_by_mobility_disabled ? "off" : "on",
3807 			vm_total_pages);
3808 #ifdef CONFIG_NUMA
3809 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3810 #endif
3811 }
3812 
3813 /*
3814  * Helper functions to size the waitqueue hash table.
3815  * Essentially these want to choose hash table sizes sufficiently
3816  * large so that collisions trying to wait on pages are rare.
3817  * But in fact, the number of active page waitqueues on typical
3818  * systems is ridiculously low, less than 200. So this is even
3819  * conservative, even though it seems large.
3820  *
3821  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3822  * waitqueues, i.e. the size of the waitq table given the number of pages.
3823  */
3824 #define PAGES_PER_WAITQUEUE	256
3825 
3826 #ifndef CONFIG_MEMORY_HOTPLUG
3827 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3828 {
3829 	unsigned long size = 1;
3830 
3831 	pages /= PAGES_PER_WAITQUEUE;
3832 
3833 	while (size < pages)
3834 		size <<= 1;
3835 
3836 	/*
3837 	 * Once we have dozens or even hundreds of threads sleeping
3838 	 * on IO we've got bigger problems than wait queue collision.
3839 	 * Limit the size of the wait table to a reasonable size.
3840 	 */
3841 	size = min(size, 4096UL);
3842 
3843 	return max(size, 4UL);
3844 }
3845 #else
3846 /*
3847  * A zone's size might be changed by hot-add, so it is not possible to determine
3848  * a suitable size for its wait_table.  So we use the maximum size now.
3849  *
3850  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3851  *
3852  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3853  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3854  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3855  *
3856  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3857  * or more by the traditional way. (See above).  It equals:
3858  *
3859  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3860  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3861  *    powerpc (64K page size)             : =  (32G +16M)byte.
3862  */
3863 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3864 {
3865 	return 4096UL;
3866 }
3867 #endif
3868 
3869 /*
3870  * This is an integer logarithm so that shifts can be used later
3871  * to extract the more random high bits from the multiplicative
3872  * hash function before the remainder is taken.
3873  */
3874 static inline unsigned long wait_table_bits(unsigned long size)
3875 {
3876 	return ffz(~size);
3877 }
3878 
3879 /*
3880  * Check if a pageblock contains reserved pages
3881  */
3882 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3883 {
3884 	unsigned long pfn;
3885 
3886 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3887 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3888 			return 1;
3889 	}
3890 	return 0;
3891 }
3892 
3893 /*
3894  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3895  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3896  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3897  * higher will lead to a bigger reserve which will get freed as contiguous
3898  * blocks as reclaim kicks in
3899  */
3900 static void setup_zone_migrate_reserve(struct zone *zone)
3901 {
3902 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3903 	struct page *page;
3904 	unsigned long block_migratetype;
3905 	int reserve;
3906 
3907 	/*
3908 	 * Get the start pfn, end pfn and the number of blocks to reserve
3909 	 * We have to be careful to be aligned to pageblock_nr_pages to
3910 	 * make sure that we always check pfn_valid for the first page in
3911 	 * the block.
3912 	 */
3913 	start_pfn = zone->zone_start_pfn;
3914 	end_pfn = zone_end_pfn(zone);
3915 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3916 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3917 							pageblock_order;
3918 
3919 	/*
3920 	 * Reserve blocks are generally in place to help high-order atomic
3921 	 * allocations that are short-lived. A min_free_kbytes value that
3922 	 * would result in more than 2 reserve blocks for atomic allocations
3923 	 * is assumed to be in place to help anti-fragmentation for the
3924 	 * future allocation of hugepages at runtime.
3925 	 */
3926 	reserve = min(2, reserve);
3927 
3928 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3929 		if (!pfn_valid(pfn))
3930 			continue;
3931 		page = pfn_to_page(pfn);
3932 
3933 		/* Watch out for overlapping nodes */
3934 		if (page_to_nid(page) != zone_to_nid(zone))
3935 			continue;
3936 
3937 		block_migratetype = get_pageblock_migratetype(page);
3938 
3939 		/* Only test what is necessary when the reserves are not met */
3940 		if (reserve > 0) {
3941 			/*
3942 			 * Blocks with reserved pages will never free, skip
3943 			 * them.
3944 			 */
3945 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3946 			if (pageblock_is_reserved(pfn, block_end_pfn))
3947 				continue;
3948 
3949 			/* If this block is reserved, account for it */
3950 			if (block_migratetype == MIGRATE_RESERVE) {
3951 				reserve--;
3952 				continue;
3953 			}
3954 
3955 			/* Suitable for reserving if this block is movable */
3956 			if (block_migratetype == MIGRATE_MOVABLE) {
3957 				set_pageblock_migratetype(page,
3958 							MIGRATE_RESERVE);
3959 				move_freepages_block(zone, page,
3960 							MIGRATE_RESERVE);
3961 				reserve--;
3962 				continue;
3963 			}
3964 		}
3965 
3966 		/*
3967 		 * If the reserve is met and this is a previous reserved block,
3968 		 * take it back
3969 		 */
3970 		if (block_migratetype == MIGRATE_RESERVE) {
3971 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3972 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3973 		}
3974 	}
3975 }
3976 
3977 /*
3978  * Initially all pages are reserved - free ones are freed
3979  * up by free_all_bootmem() once the early boot process is
3980  * done. Non-atomic initialization, single-pass.
3981  */
3982 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3983 		unsigned long start_pfn, enum memmap_context context)
3984 {
3985 	struct page *page;
3986 	unsigned long end_pfn = start_pfn + size;
3987 	unsigned long pfn;
3988 	struct zone *z;
3989 
3990 	if (highest_memmap_pfn < end_pfn - 1)
3991 		highest_memmap_pfn = end_pfn - 1;
3992 
3993 	z = &NODE_DATA(nid)->node_zones[zone];
3994 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3995 		/*
3996 		 * There can be holes in boot-time mem_map[]s
3997 		 * handed to this function.  They do not
3998 		 * exist on hotplugged memory.
3999 		 */
4000 		if (context == MEMMAP_EARLY) {
4001 			if (!early_pfn_valid(pfn))
4002 				continue;
4003 			if (!early_pfn_in_nid(pfn, nid))
4004 				continue;
4005 		}
4006 		page = pfn_to_page(pfn);
4007 		set_page_links(page, zone, nid, pfn);
4008 		mminit_verify_page_links(page, zone, nid, pfn);
4009 		init_page_count(page);
4010 		page_mapcount_reset(page);
4011 		page_cpupid_reset_last(page);
4012 		SetPageReserved(page);
4013 		/*
4014 		 * Mark the block movable so that blocks are reserved for
4015 		 * movable at startup. This will force kernel allocations
4016 		 * to reserve their blocks rather than leaking throughout
4017 		 * the address space during boot when many long-lived
4018 		 * kernel allocations are made. Later some blocks near
4019 		 * the start are marked MIGRATE_RESERVE by
4020 		 * setup_zone_migrate_reserve()
4021 		 *
4022 		 * bitmap is created for zone's valid pfn range. but memmap
4023 		 * can be created for invalid pages (for alignment)
4024 		 * check here not to call set_pageblock_migratetype() against
4025 		 * pfn out of zone.
4026 		 */
4027 		if ((z->zone_start_pfn <= pfn)
4028 		    && (pfn < zone_end_pfn(z))
4029 		    && !(pfn & (pageblock_nr_pages - 1)))
4030 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4031 
4032 		INIT_LIST_HEAD(&page->lru);
4033 #ifdef WANT_PAGE_VIRTUAL
4034 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4035 		if (!is_highmem_idx(zone))
4036 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4037 #endif
4038 	}
4039 }
4040 
4041 static void __meminit zone_init_free_lists(struct zone *zone)
4042 {
4043 	int order, t;
4044 	for_each_migratetype_order(order, t) {
4045 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4046 		zone->free_area[order].nr_free = 0;
4047 	}
4048 }
4049 
4050 #ifndef __HAVE_ARCH_MEMMAP_INIT
4051 #define memmap_init(size, nid, zone, start_pfn) \
4052 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4053 #endif
4054 
4055 static int __meminit zone_batchsize(struct zone *zone)
4056 {
4057 #ifdef CONFIG_MMU
4058 	int batch;
4059 
4060 	/*
4061 	 * The per-cpu-pages pools are set to around 1000th of the
4062 	 * size of the zone.  But no more than 1/2 of a meg.
4063 	 *
4064 	 * OK, so we don't know how big the cache is.  So guess.
4065 	 */
4066 	batch = zone->managed_pages / 1024;
4067 	if (batch * PAGE_SIZE > 512 * 1024)
4068 		batch = (512 * 1024) / PAGE_SIZE;
4069 	batch /= 4;		/* We effectively *= 4 below */
4070 	if (batch < 1)
4071 		batch = 1;
4072 
4073 	/*
4074 	 * Clamp the batch to a 2^n - 1 value. Having a power
4075 	 * of 2 value was found to be more likely to have
4076 	 * suboptimal cache aliasing properties in some cases.
4077 	 *
4078 	 * For example if 2 tasks are alternately allocating
4079 	 * batches of pages, one task can end up with a lot
4080 	 * of pages of one half of the possible page colors
4081 	 * and the other with pages of the other colors.
4082 	 */
4083 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4084 
4085 	return batch;
4086 
4087 #else
4088 	/* The deferral and batching of frees should be suppressed under NOMMU
4089 	 * conditions.
4090 	 *
4091 	 * The problem is that NOMMU needs to be able to allocate large chunks
4092 	 * of contiguous memory as there's no hardware page translation to
4093 	 * assemble apparent contiguous memory from discontiguous pages.
4094 	 *
4095 	 * Queueing large contiguous runs of pages for batching, however,
4096 	 * causes the pages to actually be freed in smaller chunks.  As there
4097 	 * can be a significant delay between the individual batches being
4098 	 * recycled, this leads to the once large chunks of space being
4099 	 * fragmented and becoming unavailable for high-order allocations.
4100 	 */
4101 	return 0;
4102 #endif
4103 }
4104 
4105 /*
4106  * pcp->high and pcp->batch values are related and dependent on one another:
4107  * ->batch must never be higher then ->high.
4108  * The following function updates them in a safe manner without read side
4109  * locking.
4110  *
4111  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4112  * those fields changing asynchronously (acording the the above rule).
4113  *
4114  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4115  * outside of boot time (or some other assurance that no concurrent updaters
4116  * exist).
4117  */
4118 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4119 		unsigned long batch)
4120 {
4121        /* start with a fail safe value for batch */
4122 	pcp->batch = 1;
4123 	smp_wmb();
4124 
4125        /* Update high, then batch, in order */
4126 	pcp->high = high;
4127 	smp_wmb();
4128 
4129 	pcp->batch = batch;
4130 }
4131 
4132 /* a companion to pageset_set_high() */
4133 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4134 {
4135 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4136 }
4137 
4138 static void pageset_init(struct per_cpu_pageset *p)
4139 {
4140 	struct per_cpu_pages *pcp;
4141 	int migratetype;
4142 
4143 	memset(p, 0, sizeof(*p));
4144 
4145 	pcp = &p->pcp;
4146 	pcp->count = 0;
4147 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4148 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4149 }
4150 
4151 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4152 {
4153 	pageset_init(p);
4154 	pageset_set_batch(p, batch);
4155 }
4156 
4157 /*
4158  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4159  * to the value high for the pageset p.
4160  */
4161 static void pageset_set_high(struct per_cpu_pageset *p,
4162 				unsigned long high)
4163 {
4164 	unsigned long batch = max(1UL, high / 4);
4165 	if ((high / 4) > (PAGE_SHIFT * 8))
4166 		batch = PAGE_SHIFT * 8;
4167 
4168 	pageset_update(&p->pcp, high, batch);
4169 }
4170 
4171 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4172 		struct per_cpu_pageset *pcp)
4173 {
4174 	if (percpu_pagelist_fraction)
4175 		pageset_set_high(pcp,
4176 			(zone->managed_pages /
4177 				percpu_pagelist_fraction));
4178 	else
4179 		pageset_set_batch(pcp, zone_batchsize(zone));
4180 }
4181 
4182 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4183 {
4184 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4185 
4186 	pageset_init(pcp);
4187 	pageset_set_high_and_batch(zone, pcp);
4188 }
4189 
4190 static void __meminit setup_zone_pageset(struct zone *zone)
4191 {
4192 	int cpu;
4193 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4194 	for_each_possible_cpu(cpu)
4195 		zone_pageset_init(zone, cpu);
4196 }
4197 
4198 /*
4199  * Allocate per cpu pagesets and initialize them.
4200  * Before this call only boot pagesets were available.
4201  */
4202 void __init setup_per_cpu_pageset(void)
4203 {
4204 	struct zone *zone;
4205 
4206 	for_each_populated_zone(zone)
4207 		setup_zone_pageset(zone);
4208 }
4209 
4210 static noinline __init_refok
4211 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4212 {
4213 	int i;
4214 	struct pglist_data *pgdat = zone->zone_pgdat;
4215 	size_t alloc_size;
4216 
4217 	/*
4218 	 * The per-page waitqueue mechanism uses hashed waitqueues
4219 	 * per zone.
4220 	 */
4221 	zone->wait_table_hash_nr_entries =
4222 		 wait_table_hash_nr_entries(zone_size_pages);
4223 	zone->wait_table_bits =
4224 		wait_table_bits(zone->wait_table_hash_nr_entries);
4225 	alloc_size = zone->wait_table_hash_nr_entries
4226 					* sizeof(wait_queue_head_t);
4227 
4228 	if (!slab_is_available()) {
4229 		zone->wait_table = (wait_queue_head_t *)
4230 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4231 	} else {
4232 		/*
4233 		 * This case means that a zone whose size was 0 gets new memory
4234 		 * via memory hot-add.
4235 		 * But it may be the case that a new node was hot-added.  In
4236 		 * this case vmalloc() will not be able to use this new node's
4237 		 * memory - this wait_table must be initialized to use this new
4238 		 * node itself as well.
4239 		 * To use this new node's memory, further consideration will be
4240 		 * necessary.
4241 		 */
4242 		zone->wait_table = vmalloc(alloc_size);
4243 	}
4244 	if (!zone->wait_table)
4245 		return -ENOMEM;
4246 
4247 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4248 		init_waitqueue_head(zone->wait_table + i);
4249 
4250 	return 0;
4251 }
4252 
4253 static __meminit void zone_pcp_init(struct zone *zone)
4254 {
4255 	/*
4256 	 * per cpu subsystem is not up at this point. The following code
4257 	 * relies on the ability of the linker to provide the
4258 	 * offset of a (static) per cpu variable into the per cpu area.
4259 	 */
4260 	zone->pageset = &boot_pageset;
4261 
4262 	if (populated_zone(zone))
4263 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4264 			zone->name, zone->present_pages,
4265 					 zone_batchsize(zone));
4266 }
4267 
4268 int __meminit init_currently_empty_zone(struct zone *zone,
4269 					unsigned long zone_start_pfn,
4270 					unsigned long size,
4271 					enum memmap_context context)
4272 {
4273 	struct pglist_data *pgdat = zone->zone_pgdat;
4274 	int ret;
4275 	ret = zone_wait_table_init(zone, size);
4276 	if (ret)
4277 		return ret;
4278 	pgdat->nr_zones = zone_idx(zone) + 1;
4279 
4280 	zone->zone_start_pfn = zone_start_pfn;
4281 
4282 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4283 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4284 			pgdat->node_id,
4285 			(unsigned long)zone_idx(zone),
4286 			zone_start_pfn, (zone_start_pfn + size));
4287 
4288 	zone_init_free_lists(zone);
4289 
4290 	return 0;
4291 }
4292 
4293 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4294 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4295 /*
4296  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4297  * Architectures may implement their own version but if add_active_range()
4298  * was used and there are no special requirements, this is a convenient
4299  * alternative
4300  */
4301 int __meminit __early_pfn_to_nid(unsigned long pfn)
4302 {
4303 	unsigned long start_pfn, end_pfn;
4304 	int nid;
4305 	/*
4306 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4307 	 * when the kernel is running single-threaded.
4308 	 */
4309 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4310 	static int __meminitdata last_nid;
4311 
4312 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4313 		return last_nid;
4314 
4315 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4316 	if (nid != -1) {
4317 		last_start_pfn = start_pfn;
4318 		last_end_pfn = end_pfn;
4319 		last_nid = nid;
4320 	}
4321 
4322 	return nid;
4323 }
4324 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4325 
4326 int __meminit early_pfn_to_nid(unsigned long pfn)
4327 {
4328 	int nid;
4329 
4330 	nid = __early_pfn_to_nid(pfn);
4331 	if (nid >= 0)
4332 		return nid;
4333 	/* just returns 0 */
4334 	return 0;
4335 }
4336 
4337 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4338 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4339 {
4340 	int nid;
4341 
4342 	nid = __early_pfn_to_nid(pfn);
4343 	if (nid >= 0 && nid != node)
4344 		return false;
4345 	return true;
4346 }
4347 #endif
4348 
4349 /**
4350  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4351  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4352  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4353  *
4354  * If an architecture guarantees that all ranges registered with
4355  * add_active_ranges() contain no holes and may be freed, this
4356  * this function may be used instead of calling free_bootmem() manually.
4357  */
4358 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4359 {
4360 	unsigned long start_pfn, end_pfn;
4361 	int i, this_nid;
4362 
4363 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4364 		start_pfn = min(start_pfn, max_low_pfn);
4365 		end_pfn = min(end_pfn, max_low_pfn);
4366 
4367 		if (start_pfn < end_pfn)
4368 			free_bootmem_node(NODE_DATA(this_nid),
4369 					  PFN_PHYS(start_pfn),
4370 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4371 	}
4372 }
4373 
4374 /**
4375  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4376  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4377  *
4378  * If an architecture guarantees that all ranges registered with
4379  * add_active_ranges() contain no holes and may be freed, this
4380  * function may be used instead of calling memory_present() manually.
4381  */
4382 void __init sparse_memory_present_with_active_regions(int nid)
4383 {
4384 	unsigned long start_pfn, end_pfn;
4385 	int i, this_nid;
4386 
4387 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4388 		memory_present(this_nid, start_pfn, end_pfn);
4389 }
4390 
4391 /**
4392  * get_pfn_range_for_nid - Return the start and end page frames for a node
4393  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4394  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4395  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4396  *
4397  * It returns the start and end page frame of a node based on information
4398  * provided by an arch calling add_active_range(). If called for a node
4399  * with no available memory, a warning is printed and the start and end
4400  * PFNs will be 0.
4401  */
4402 void __meminit get_pfn_range_for_nid(unsigned int nid,
4403 			unsigned long *start_pfn, unsigned long *end_pfn)
4404 {
4405 	unsigned long this_start_pfn, this_end_pfn;
4406 	int i;
4407 
4408 	*start_pfn = -1UL;
4409 	*end_pfn = 0;
4410 
4411 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4412 		*start_pfn = min(*start_pfn, this_start_pfn);
4413 		*end_pfn = max(*end_pfn, this_end_pfn);
4414 	}
4415 
4416 	if (*start_pfn == -1UL)
4417 		*start_pfn = 0;
4418 }
4419 
4420 /*
4421  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4422  * assumption is made that zones within a node are ordered in monotonic
4423  * increasing memory addresses so that the "highest" populated zone is used
4424  */
4425 static void __init find_usable_zone_for_movable(void)
4426 {
4427 	int zone_index;
4428 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4429 		if (zone_index == ZONE_MOVABLE)
4430 			continue;
4431 
4432 		if (arch_zone_highest_possible_pfn[zone_index] >
4433 				arch_zone_lowest_possible_pfn[zone_index])
4434 			break;
4435 	}
4436 
4437 	VM_BUG_ON(zone_index == -1);
4438 	movable_zone = zone_index;
4439 }
4440 
4441 /*
4442  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4443  * because it is sized independent of architecture. Unlike the other zones,
4444  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4445  * in each node depending on the size of each node and how evenly kernelcore
4446  * is distributed. This helper function adjusts the zone ranges
4447  * provided by the architecture for a given node by using the end of the
4448  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4449  * zones within a node are in order of monotonic increases memory addresses
4450  */
4451 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4452 					unsigned long zone_type,
4453 					unsigned long node_start_pfn,
4454 					unsigned long node_end_pfn,
4455 					unsigned long *zone_start_pfn,
4456 					unsigned long *zone_end_pfn)
4457 {
4458 	/* Only adjust if ZONE_MOVABLE is on this node */
4459 	if (zone_movable_pfn[nid]) {
4460 		/* Size ZONE_MOVABLE */
4461 		if (zone_type == ZONE_MOVABLE) {
4462 			*zone_start_pfn = zone_movable_pfn[nid];
4463 			*zone_end_pfn = min(node_end_pfn,
4464 				arch_zone_highest_possible_pfn[movable_zone]);
4465 
4466 		/* Adjust for ZONE_MOVABLE starting within this range */
4467 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4468 				*zone_end_pfn > zone_movable_pfn[nid]) {
4469 			*zone_end_pfn = zone_movable_pfn[nid];
4470 
4471 		/* Check if this whole range is within ZONE_MOVABLE */
4472 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4473 			*zone_start_pfn = *zone_end_pfn;
4474 	}
4475 }
4476 
4477 /*
4478  * Return the number of pages a zone spans in a node, including holes
4479  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4480  */
4481 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4482 					unsigned long zone_type,
4483 					unsigned long node_start_pfn,
4484 					unsigned long node_end_pfn,
4485 					unsigned long *ignored)
4486 {
4487 	unsigned long zone_start_pfn, zone_end_pfn;
4488 
4489 	/* Get the start and end of the zone */
4490 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4491 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4492 	adjust_zone_range_for_zone_movable(nid, zone_type,
4493 				node_start_pfn, node_end_pfn,
4494 				&zone_start_pfn, &zone_end_pfn);
4495 
4496 	/* Check that this node has pages within the zone's required range */
4497 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4498 		return 0;
4499 
4500 	/* Move the zone boundaries inside the node if necessary */
4501 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4502 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4503 
4504 	/* Return the spanned pages */
4505 	return zone_end_pfn - zone_start_pfn;
4506 }
4507 
4508 /*
4509  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4510  * then all holes in the requested range will be accounted for.
4511  */
4512 unsigned long __meminit __absent_pages_in_range(int nid,
4513 				unsigned long range_start_pfn,
4514 				unsigned long range_end_pfn)
4515 {
4516 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4517 	unsigned long start_pfn, end_pfn;
4518 	int i;
4519 
4520 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4521 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4522 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4523 		nr_absent -= end_pfn - start_pfn;
4524 	}
4525 	return nr_absent;
4526 }
4527 
4528 /**
4529  * absent_pages_in_range - Return number of page frames in holes within a range
4530  * @start_pfn: The start PFN to start searching for holes
4531  * @end_pfn: The end PFN to stop searching for holes
4532  *
4533  * It returns the number of pages frames in memory holes within a range.
4534  */
4535 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4536 							unsigned long end_pfn)
4537 {
4538 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4539 }
4540 
4541 /* Return the number of page frames in holes in a zone on a node */
4542 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4543 					unsigned long zone_type,
4544 					unsigned long node_start_pfn,
4545 					unsigned long node_end_pfn,
4546 					unsigned long *ignored)
4547 {
4548 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4549 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4550 	unsigned long zone_start_pfn, zone_end_pfn;
4551 
4552 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4553 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4554 
4555 	adjust_zone_range_for_zone_movable(nid, zone_type,
4556 			node_start_pfn, node_end_pfn,
4557 			&zone_start_pfn, &zone_end_pfn);
4558 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4559 }
4560 
4561 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4562 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4563 					unsigned long zone_type,
4564 					unsigned long node_start_pfn,
4565 					unsigned long node_end_pfn,
4566 					unsigned long *zones_size)
4567 {
4568 	return zones_size[zone_type];
4569 }
4570 
4571 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4572 						unsigned long zone_type,
4573 						unsigned long node_start_pfn,
4574 						unsigned long node_end_pfn,
4575 						unsigned long *zholes_size)
4576 {
4577 	if (!zholes_size)
4578 		return 0;
4579 
4580 	return zholes_size[zone_type];
4581 }
4582 
4583 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4584 
4585 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4586 						unsigned long node_start_pfn,
4587 						unsigned long node_end_pfn,
4588 						unsigned long *zones_size,
4589 						unsigned long *zholes_size)
4590 {
4591 	unsigned long realtotalpages, totalpages = 0;
4592 	enum zone_type i;
4593 
4594 	for (i = 0; i < MAX_NR_ZONES; i++)
4595 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4596 							 node_start_pfn,
4597 							 node_end_pfn,
4598 							 zones_size);
4599 	pgdat->node_spanned_pages = totalpages;
4600 
4601 	realtotalpages = totalpages;
4602 	for (i = 0; i < MAX_NR_ZONES; i++)
4603 		realtotalpages -=
4604 			zone_absent_pages_in_node(pgdat->node_id, i,
4605 						  node_start_pfn, node_end_pfn,
4606 						  zholes_size);
4607 	pgdat->node_present_pages = realtotalpages;
4608 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4609 							realtotalpages);
4610 }
4611 
4612 #ifndef CONFIG_SPARSEMEM
4613 /*
4614  * Calculate the size of the zone->blockflags rounded to an unsigned long
4615  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4616  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4617  * round what is now in bits to nearest long in bits, then return it in
4618  * bytes.
4619  */
4620 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4621 {
4622 	unsigned long usemapsize;
4623 
4624 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4625 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4626 	usemapsize = usemapsize >> pageblock_order;
4627 	usemapsize *= NR_PAGEBLOCK_BITS;
4628 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4629 
4630 	return usemapsize / 8;
4631 }
4632 
4633 static void __init setup_usemap(struct pglist_data *pgdat,
4634 				struct zone *zone,
4635 				unsigned long zone_start_pfn,
4636 				unsigned long zonesize)
4637 {
4638 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4639 	zone->pageblock_flags = NULL;
4640 	if (usemapsize)
4641 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4642 								   usemapsize);
4643 }
4644 #else
4645 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4646 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4647 #endif /* CONFIG_SPARSEMEM */
4648 
4649 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4650 
4651 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4652 void __paginginit set_pageblock_order(void)
4653 {
4654 	unsigned int order;
4655 
4656 	/* Check that pageblock_nr_pages has not already been setup */
4657 	if (pageblock_order)
4658 		return;
4659 
4660 	if (HPAGE_SHIFT > PAGE_SHIFT)
4661 		order = HUGETLB_PAGE_ORDER;
4662 	else
4663 		order = MAX_ORDER - 1;
4664 
4665 	/*
4666 	 * Assume the largest contiguous order of interest is a huge page.
4667 	 * This value may be variable depending on boot parameters on IA64 and
4668 	 * powerpc.
4669 	 */
4670 	pageblock_order = order;
4671 }
4672 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4673 
4674 /*
4675  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4676  * is unused as pageblock_order is set at compile-time. See
4677  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4678  * the kernel config
4679  */
4680 void __paginginit set_pageblock_order(void)
4681 {
4682 }
4683 
4684 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4685 
4686 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4687 						   unsigned long present_pages)
4688 {
4689 	unsigned long pages = spanned_pages;
4690 
4691 	/*
4692 	 * Provide a more accurate estimation if there are holes within
4693 	 * the zone and SPARSEMEM is in use. If there are holes within the
4694 	 * zone, each populated memory region may cost us one or two extra
4695 	 * memmap pages due to alignment because memmap pages for each
4696 	 * populated regions may not naturally algined on page boundary.
4697 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4698 	 */
4699 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4700 	    IS_ENABLED(CONFIG_SPARSEMEM))
4701 		pages = present_pages;
4702 
4703 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4704 }
4705 
4706 /*
4707  * Set up the zone data structures:
4708  *   - mark all pages reserved
4709  *   - mark all memory queues empty
4710  *   - clear the memory bitmaps
4711  *
4712  * NOTE: pgdat should get zeroed by caller.
4713  */
4714 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4715 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4716 		unsigned long *zones_size, unsigned long *zholes_size)
4717 {
4718 	enum zone_type j;
4719 	int nid = pgdat->node_id;
4720 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4721 	int ret;
4722 
4723 	pgdat_resize_init(pgdat);
4724 #ifdef CONFIG_NUMA_BALANCING
4725 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4726 	pgdat->numabalancing_migrate_nr_pages = 0;
4727 	pgdat->numabalancing_migrate_next_window = jiffies;
4728 #endif
4729 	init_waitqueue_head(&pgdat->kswapd_wait);
4730 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4731 	pgdat_page_cgroup_init(pgdat);
4732 
4733 	for (j = 0; j < MAX_NR_ZONES; j++) {
4734 		struct zone *zone = pgdat->node_zones + j;
4735 		unsigned long size, realsize, freesize, memmap_pages;
4736 
4737 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4738 						  node_end_pfn, zones_size);
4739 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4740 								node_start_pfn,
4741 								node_end_pfn,
4742 								zholes_size);
4743 
4744 		/*
4745 		 * Adjust freesize so that it accounts for how much memory
4746 		 * is used by this zone for memmap. This affects the watermark
4747 		 * and per-cpu initialisations
4748 		 */
4749 		memmap_pages = calc_memmap_size(size, realsize);
4750 		if (freesize >= memmap_pages) {
4751 			freesize -= memmap_pages;
4752 			if (memmap_pages)
4753 				printk(KERN_DEBUG
4754 				       "  %s zone: %lu pages used for memmap\n",
4755 				       zone_names[j], memmap_pages);
4756 		} else
4757 			printk(KERN_WARNING
4758 				"  %s zone: %lu pages exceeds freesize %lu\n",
4759 				zone_names[j], memmap_pages, freesize);
4760 
4761 		/* Account for reserved pages */
4762 		if (j == 0 && freesize > dma_reserve) {
4763 			freesize -= dma_reserve;
4764 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4765 					zone_names[0], dma_reserve);
4766 		}
4767 
4768 		if (!is_highmem_idx(j))
4769 			nr_kernel_pages += freesize;
4770 		/* Charge for highmem memmap if there are enough kernel pages */
4771 		else if (nr_kernel_pages > memmap_pages * 2)
4772 			nr_kernel_pages -= memmap_pages;
4773 		nr_all_pages += freesize;
4774 
4775 		zone->spanned_pages = size;
4776 		zone->present_pages = realsize;
4777 		/*
4778 		 * Set an approximate value for lowmem here, it will be adjusted
4779 		 * when the bootmem allocator frees pages into the buddy system.
4780 		 * And all highmem pages will be managed by the buddy system.
4781 		 */
4782 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4783 #ifdef CONFIG_NUMA
4784 		zone->node = nid;
4785 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4786 						/ 100;
4787 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4788 #endif
4789 		zone->name = zone_names[j];
4790 		spin_lock_init(&zone->lock);
4791 		spin_lock_init(&zone->lru_lock);
4792 		zone_seqlock_init(zone);
4793 		zone->zone_pgdat = pgdat;
4794 		zone_pcp_init(zone);
4795 
4796 		/* For bootup, initialized properly in watermark setup */
4797 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4798 
4799 		lruvec_init(&zone->lruvec);
4800 		if (!size)
4801 			continue;
4802 
4803 		set_pageblock_order();
4804 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4805 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4806 						size, MEMMAP_EARLY);
4807 		BUG_ON(ret);
4808 		memmap_init(size, nid, j, zone_start_pfn);
4809 		zone_start_pfn += size;
4810 	}
4811 }
4812 
4813 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4814 {
4815 	/* Skip empty nodes */
4816 	if (!pgdat->node_spanned_pages)
4817 		return;
4818 
4819 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4820 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4821 	if (!pgdat->node_mem_map) {
4822 		unsigned long size, start, end;
4823 		struct page *map;
4824 
4825 		/*
4826 		 * The zone's endpoints aren't required to be MAX_ORDER
4827 		 * aligned but the node_mem_map endpoints must be in order
4828 		 * for the buddy allocator to function correctly.
4829 		 */
4830 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4831 		end = pgdat_end_pfn(pgdat);
4832 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4833 		size =  (end - start) * sizeof(struct page);
4834 		map = alloc_remap(pgdat->node_id, size);
4835 		if (!map)
4836 			map = alloc_bootmem_node_nopanic(pgdat, size);
4837 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4838 	}
4839 #ifndef CONFIG_NEED_MULTIPLE_NODES
4840 	/*
4841 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4842 	 */
4843 	if (pgdat == NODE_DATA(0)) {
4844 		mem_map = NODE_DATA(0)->node_mem_map;
4845 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4846 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4847 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4848 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4849 	}
4850 #endif
4851 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4852 }
4853 
4854 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4855 		unsigned long node_start_pfn, unsigned long *zholes_size)
4856 {
4857 	pg_data_t *pgdat = NODE_DATA(nid);
4858 	unsigned long start_pfn = 0;
4859 	unsigned long end_pfn = 0;
4860 
4861 	/* pg_data_t should be reset to zero when it's allocated */
4862 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4863 
4864 	pgdat->node_id = nid;
4865 	pgdat->node_start_pfn = node_start_pfn;
4866 	init_zone_allows_reclaim(nid);
4867 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4868 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4869 #endif
4870 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4871 				  zones_size, zholes_size);
4872 
4873 	alloc_node_mem_map(pgdat);
4874 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4875 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4876 		nid, (unsigned long)pgdat,
4877 		(unsigned long)pgdat->node_mem_map);
4878 #endif
4879 
4880 	free_area_init_core(pgdat, start_pfn, end_pfn,
4881 			    zones_size, zholes_size);
4882 }
4883 
4884 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4885 
4886 #if MAX_NUMNODES > 1
4887 /*
4888  * Figure out the number of possible node ids.
4889  */
4890 void __init setup_nr_node_ids(void)
4891 {
4892 	unsigned int node;
4893 	unsigned int highest = 0;
4894 
4895 	for_each_node_mask(node, node_possible_map)
4896 		highest = node;
4897 	nr_node_ids = highest + 1;
4898 }
4899 #endif
4900 
4901 /**
4902  * node_map_pfn_alignment - determine the maximum internode alignment
4903  *
4904  * This function should be called after node map is populated and sorted.
4905  * It calculates the maximum power of two alignment which can distinguish
4906  * all the nodes.
4907  *
4908  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4909  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4910  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4911  * shifted, 1GiB is enough and this function will indicate so.
4912  *
4913  * This is used to test whether pfn -> nid mapping of the chosen memory
4914  * model has fine enough granularity to avoid incorrect mapping for the
4915  * populated node map.
4916  *
4917  * Returns the determined alignment in pfn's.  0 if there is no alignment
4918  * requirement (single node).
4919  */
4920 unsigned long __init node_map_pfn_alignment(void)
4921 {
4922 	unsigned long accl_mask = 0, last_end = 0;
4923 	unsigned long start, end, mask;
4924 	int last_nid = -1;
4925 	int i, nid;
4926 
4927 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4928 		if (!start || last_nid < 0 || last_nid == nid) {
4929 			last_nid = nid;
4930 			last_end = end;
4931 			continue;
4932 		}
4933 
4934 		/*
4935 		 * Start with a mask granular enough to pin-point to the
4936 		 * start pfn and tick off bits one-by-one until it becomes
4937 		 * too coarse to separate the current node from the last.
4938 		 */
4939 		mask = ~((1 << __ffs(start)) - 1);
4940 		while (mask && last_end <= (start & (mask << 1)))
4941 			mask <<= 1;
4942 
4943 		/* accumulate all internode masks */
4944 		accl_mask |= mask;
4945 	}
4946 
4947 	/* convert mask to number of pages */
4948 	return ~accl_mask + 1;
4949 }
4950 
4951 /* Find the lowest pfn for a node */
4952 static unsigned long __init find_min_pfn_for_node(int nid)
4953 {
4954 	unsigned long min_pfn = ULONG_MAX;
4955 	unsigned long start_pfn;
4956 	int i;
4957 
4958 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4959 		min_pfn = min(min_pfn, start_pfn);
4960 
4961 	if (min_pfn == ULONG_MAX) {
4962 		printk(KERN_WARNING
4963 			"Could not find start_pfn for node %d\n", nid);
4964 		return 0;
4965 	}
4966 
4967 	return min_pfn;
4968 }
4969 
4970 /**
4971  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4972  *
4973  * It returns the minimum PFN based on information provided via
4974  * add_active_range().
4975  */
4976 unsigned long __init find_min_pfn_with_active_regions(void)
4977 {
4978 	return find_min_pfn_for_node(MAX_NUMNODES);
4979 }
4980 
4981 /*
4982  * early_calculate_totalpages()
4983  * Sum pages in active regions for movable zone.
4984  * Populate N_MEMORY for calculating usable_nodes.
4985  */
4986 static unsigned long __init early_calculate_totalpages(void)
4987 {
4988 	unsigned long totalpages = 0;
4989 	unsigned long start_pfn, end_pfn;
4990 	int i, nid;
4991 
4992 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4993 		unsigned long pages = end_pfn - start_pfn;
4994 
4995 		totalpages += pages;
4996 		if (pages)
4997 			node_set_state(nid, N_MEMORY);
4998 	}
4999 	return totalpages;
5000 }
5001 
5002 /*
5003  * Find the PFN the Movable zone begins in each node. Kernel memory
5004  * is spread evenly between nodes as long as the nodes have enough
5005  * memory. When they don't, some nodes will have more kernelcore than
5006  * others
5007  */
5008 static void __init find_zone_movable_pfns_for_nodes(void)
5009 {
5010 	int i, nid;
5011 	unsigned long usable_startpfn;
5012 	unsigned long kernelcore_node, kernelcore_remaining;
5013 	/* save the state before borrow the nodemask */
5014 	nodemask_t saved_node_state = node_states[N_MEMORY];
5015 	unsigned long totalpages = early_calculate_totalpages();
5016 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5017 
5018 	/*
5019 	 * If movablecore was specified, calculate what size of
5020 	 * kernelcore that corresponds so that memory usable for
5021 	 * any allocation type is evenly spread. If both kernelcore
5022 	 * and movablecore are specified, then the value of kernelcore
5023 	 * will be used for required_kernelcore if it's greater than
5024 	 * what movablecore would have allowed.
5025 	 */
5026 	if (required_movablecore) {
5027 		unsigned long corepages;
5028 
5029 		/*
5030 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5031 		 * was requested by the user
5032 		 */
5033 		required_movablecore =
5034 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5035 		corepages = totalpages - required_movablecore;
5036 
5037 		required_kernelcore = max(required_kernelcore, corepages);
5038 	}
5039 
5040 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5041 	if (!required_kernelcore)
5042 		goto out;
5043 
5044 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5045 	find_usable_zone_for_movable();
5046 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5047 
5048 restart:
5049 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5050 	kernelcore_node = required_kernelcore / usable_nodes;
5051 	for_each_node_state(nid, N_MEMORY) {
5052 		unsigned long start_pfn, end_pfn;
5053 
5054 		/*
5055 		 * Recalculate kernelcore_node if the division per node
5056 		 * now exceeds what is necessary to satisfy the requested
5057 		 * amount of memory for the kernel
5058 		 */
5059 		if (required_kernelcore < kernelcore_node)
5060 			kernelcore_node = required_kernelcore / usable_nodes;
5061 
5062 		/*
5063 		 * As the map is walked, we track how much memory is usable
5064 		 * by the kernel using kernelcore_remaining. When it is
5065 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5066 		 */
5067 		kernelcore_remaining = kernelcore_node;
5068 
5069 		/* Go through each range of PFNs within this node */
5070 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5071 			unsigned long size_pages;
5072 
5073 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5074 			if (start_pfn >= end_pfn)
5075 				continue;
5076 
5077 			/* Account for what is only usable for kernelcore */
5078 			if (start_pfn < usable_startpfn) {
5079 				unsigned long kernel_pages;
5080 				kernel_pages = min(end_pfn, usable_startpfn)
5081 								- start_pfn;
5082 
5083 				kernelcore_remaining -= min(kernel_pages,
5084 							kernelcore_remaining);
5085 				required_kernelcore -= min(kernel_pages,
5086 							required_kernelcore);
5087 
5088 				/* Continue if range is now fully accounted */
5089 				if (end_pfn <= usable_startpfn) {
5090 
5091 					/*
5092 					 * Push zone_movable_pfn to the end so
5093 					 * that if we have to rebalance
5094 					 * kernelcore across nodes, we will
5095 					 * not double account here
5096 					 */
5097 					zone_movable_pfn[nid] = end_pfn;
5098 					continue;
5099 				}
5100 				start_pfn = usable_startpfn;
5101 			}
5102 
5103 			/*
5104 			 * The usable PFN range for ZONE_MOVABLE is from
5105 			 * start_pfn->end_pfn. Calculate size_pages as the
5106 			 * number of pages used as kernelcore
5107 			 */
5108 			size_pages = end_pfn - start_pfn;
5109 			if (size_pages > kernelcore_remaining)
5110 				size_pages = kernelcore_remaining;
5111 			zone_movable_pfn[nid] = start_pfn + size_pages;
5112 
5113 			/*
5114 			 * Some kernelcore has been met, update counts and
5115 			 * break if the kernelcore for this node has been
5116 			 * satisfied
5117 			 */
5118 			required_kernelcore -= min(required_kernelcore,
5119 								size_pages);
5120 			kernelcore_remaining -= size_pages;
5121 			if (!kernelcore_remaining)
5122 				break;
5123 		}
5124 	}
5125 
5126 	/*
5127 	 * If there is still required_kernelcore, we do another pass with one
5128 	 * less node in the count. This will push zone_movable_pfn[nid] further
5129 	 * along on the nodes that still have memory until kernelcore is
5130 	 * satisfied
5131 	 */
5132 	usable_nodes--;
5133 	if (usable_nodes && required_kernelcore > usable_nodes)
5134 		goto restart;
5135 
5136 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5137 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5138 		zone_movable_pfn[nid] =
5139 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5140 
5141 out:
5142 	/* restore the node_state */
5143 	node_states[N_MEMORY] = saved_node_state;
5144 }
5145 
5146 /* Any regular or high memory on that node ? */
5147 static void check_for_memory(pg_data_t *pgdat, int nid)
5148 {
5149 	enum zone_type zone_type;
5150 
5151 	if (N_MEMORY == N_NORMAL_MEMORY)
5152 		return;
5153 
5154 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5155 		struct zone *zone = &pgdat->node_zones[zone_type];
5156 		if (populated_zone(zone)) {
5157 			node_set_state(nid, N_HIGH_MEMORY);
5158 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5159 			    zone_type <= ZONE_NORMAL)
5160 				node_set_state(nid, N_NORMAL_MEMORY);
5161 			break;
5162 		}
5163 	}
5164 }
5165 
5166 /**
5167  * free_area_init_nodes - Initialise all pg_data_t and zone data
5168  * @max_zone_pfn: an array of max PFNs for each zone
5169  *
5170  * This will call free_area_init_node() for each active node in the system.
5171  * Using the page ranges provided by add_active_range(), the size of each
5172  * zone in each node and their holes is calculated. If the maximum PFN
5173  * between two adjacent zones match, it is assumed that the zone is empty.
5174  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5175  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5176  * starts where the previous one ended. For example, ZONE_DMA32 starts
5177  * at arch_max_dma_pfn.
5178  */
5179 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5180 {
5181 	unsigned long start_pfn, end_pfn;
5182 	int i, nid;
5183 
5184 	/* Record where the zone boundaries are */
5185 	memset(arch_zone_lowest_possible_pfn, 0,
5186 				sizeof(arch_zone_lowest_possible_pfn));
5187 	memset(arch_zone_highest_possible_pfn, 0,
5188 				sizeof(arch_zone_highest_possible_pfn));
5189 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5190 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5191 	for (i = 1; i < MAX_NR_ZONES; i++) {
5192 		if (i == ZONE_MOVABLE)
5193 			continue;
5194 		arch_zone_lowest_possible_pfn[i] =
5195 			arch_zone_highest_possible_pfn[i-1];
5196 		arch_zone_highest_possible_pfn[i] =
5197 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5198 	}
5199 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5200 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5201 
5202 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5203 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5204 	find_zone_movable_pfns_for_nodes();
5205 
5206 	/* Print out the zone ranges */
5207 	printk("Zone ranges:\n");
5208 	for (i = 0; i < MAX_NR_ZONES; i++) {
5209 		if (i == ZONE_MOVABLE)
5210 			continue;
5211 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5212 		if (arch_zone_lowest_possible_pfn[i] ==
5213 				arch_zone_highest_possible_pfn[i])
5214 			printk(KERN_CONT "empty\n");
5215 		else
5216 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5217 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5218 				(arch_zone_highest_possible_pfn[i]
5219 					<< PAGE_SHIFT) - 1);
5220 	}
5221 
5222 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5223 	printk("Movable zone start for each node\n");
5224 	for (i = 0; i < MAX_NUMNODES; i++) {
5225 		if (zone_movable_pfn[i])
5226 			printk("  Node %d: %#010lx\n", i,
5227 			       zone_movable_pfn[i] << PAGE_SHIFT);
5228 	}
5229 
5230 	/* Print out the early node map */
5231 	printk("Early memory node ranges\n");
5232 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5233 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5234 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5235 
5236 	/* Initialise every node */
5237 	mminit_verify_pageflags_layout();
5238 	setup_nr_node_ids();
5239 	for_each_online_node(nid) {
5240 		pg_data_t *pgdat = NODE_DATA(nid);
5241 		free_area_init_node(nid, NULL,
5242 				find_min_pfn_for_node(nid), NULL);
5243 
5244 		/* Any memory on that node */
5245 		if (pgdat->node_present_pages)
5246 			node_set_state(nid, N_MEMORY);
5247 		check_for_memory(pgdat, nid);
5248 	}
5249 }
5250 
5251 static int __init cmdline_parse_core(char *p, unsigned long *core)
5252 {
5253 	unsigned long long coremem;
5254 	if (!p)
5255 		return -EINVAL;
5256 
5257 	coremem = memparse(p, &p);
5258 	*core = coremem >> PAGE_SHIFT;
5259 
5260 	/* Paranoid check that UL is enough for the coremem value */
5261 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5262 
5263 	return 0;
5264 }
5265 
5266 /*
5267  * kernelcore=size sets the amount of memory for use for allocations that
5268  * cannot be reclaimed or migrated.
5269  */
5270 static int __init cmdline_parse_kernelcore(char *p)
5271 {
5272 	return cmdline_parse_core(p, &required_kernelcore);
5273 }
5274 
5275 /*
5276  * movablecore=size sets the amount of memory for use for allocations that
5277  * can be reclaimed or migrated.
5278  */
5279 static int __init cmdline_parse_movablecore(char *p)
5280 {
5281 	return cmdline_parse_core(p, &required_movablecore);
5282 }
5283 
5284 early_param("kernelcore", cmdline_parse_kernelcore);
5285 early_param("movablecore", cmdline_parse_movablecore);
5286 
5287 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5288 
5289 void adjust_managed_page_count(struct page *page, long count)
5290 {
5291 	spin_lock(&managed_page_count_lock);
5292 	page_zone(page)->managed_pages += count;
5293 	totalram_pages += count;
5294 #ifdef CONFIG_HIGHMEM
5295 	if (PageHighMem(page))
5296 		totalhigh_pages += count;
5297 #endif
5298 	spin_unlock(&managed_page_count_lock);
5299 }
5300 EXPORT_SYMBOL(adjust_managed_page_count);
5301 
5302 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5303 {
5304 	void *pos;
5305 	unsigned long pages = 0;
5306 
5307 	start = (void *)PAGE_ALIGN((unsigned long)start);
5308 	end = (void *)((unsigned long)end & PAGE_MASK);
5309 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5310 		if ((unsigned int)poison <= 0xFF)
5311 			memset(pos, poison, PAGE_SIZE);
5312 		free_reserved_page(virt_to_page(pos));
5313 	}
5314 
5315 	if (pages && s)
5316 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5317 			s, pages << (PAGE_SHIFT - 10), start, end);
5318 
5319 	return pages;
5320 }
5321 EXPORT_SYMBOL(free_reserved_area);
5322 
5323 #ifdef	CONFIG_HIGHMEM
5324 void free_highmem_page(struct page *page)
5325 {
5326 	__free_reserved_page(page);
5327 	totalram_pages++;
5328 	page_zone(page)->managed_pages++;
5329 	totalhigh_pages++;
5330 }
5331 #endif
5332 
5333 
5334 void __init mem_init_print_info(const char *str)
5335 {
5336 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5337 	unsigned long init_code_size, init_data_size;
5338 
5339 	physpages = get_num_physpages();
5340 	codesize = _etext - _stext;
5341 	datasize = _edata - _sdata;
5342 	rosize = __end_rodata - __start_rodata;
5343 	bss_size = __bss_stop - __bss_start;
5344 	init_data_size = __init_end - __init_begin;
5345 	init_code_size = _einittext - _sinittext;
5346 
5347 	/*
5348 	 * Detect special cases and adjust section sizes accordingly:
5349 	 * 1) .init.* may be embedded into .data sections
5350 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5351 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5352 	 * 3) .rodata.* may be embedded into .text or .data sections.
5353 	 */
5354 #define adj_init_size(start, end, size, pos, adj) \
5355 	do { \
5356 		if (start <= pos && pos < end && size > adj) \
5357 			size -= adj; \
5358 	} while (0)
5359 
5360 	adj_init_size(__init_begin, __init_end, init_data_size,
5361 		     _sinittext, init_code_size);
5362 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5363 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5364 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5365 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5366 
5367 #undef	adj_init_size
5368 
5369 	printk("Memory: %luK/%luK available "
5370 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5371 	       "%luK init, %luK bss, %luK reserved"
5372 #ifdef	CONFIG_HIGHMEM
5373 	       ", %luK highmem"
5374 #endif
5375 	       "%s%s)\n",
5376 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5377 	       codesize >> 10, datasize >> 10, rosize >> 10,
5378 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5379 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5380 #ifdef	CONFIG_HIGHMEM
5381 	       totalhigh_pages << (PAGE_SHIFT-10),
5382 #endif
5383 	       str ? ", " : "", str ? str : "");
5384 }
5385 
5386 /**
5387  * set_dma_reserve - set the specified number of pages reserved in the first zone
5388  * @new_dma_reserve: The number of pages to mark reserved
5389  *
5390  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5391  * In the DMA zone, a significant percentage may be consumed by kernel image
5392  * and other unfreeable allocations which can skew the watermarks badly. This
5393  * function may optionally be used to account for unfreeable pages in the
5394  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5395  * smaller per-cpu batchsize.
5396  */
5397 void __init set_dma_reserve(unsigned long new_dma_reserve)
5398 {
5399 	dma_reserve = new_dma_reserve;
5400 }
5401 
5402 void __init free_area_init(unsigned long *zones_size)
5403 {
5404 	free_area_init_node(0, zones_size,
5405 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5406 }
5407 
5408 static int page_alloc_cpu_notify(struct notifier_block *self,
5409 				 unsigned long action, void *hcpu)
5410 {
5411 	int cpu = (unsigned long)hcpu;
5412 
5413 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5414 		lru_add_drain_cpu(cpu);
5415 		drain_pages(cpu);
5416 
5417 		/*
5418 		 * Spill the event counters of the dead processor
5419 		 * into the current processors event counters.
5420 		 * This artificially elevates the count of the current
5421 		 * processor.
5422 		 */
5423 		vm_events_fold_cpu(cpu);
5424 
5425 		/*
5426 		 * Zero the differential counters of the dead processor
5427 		 * so that the vm statistics are consistent.
5428 		 *
5429 		 * This is only okay since the processor is dead and cannot
5430 		 * race with what we are doing.
5431 		 */
5432 		cpu_vm_stats_fold(cpu);
5433 	}
5434 	return NOTIFY_OK;
5435 }
5436 
5437 void __init page_alloc_init(void)
5438 {
5439 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5440 }
5441 
5442 /*
5443  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5444  *	or min_free_kbytes changes.
5445  */
5446 static void calculate_totalreserve_pages(void)
5447 {
5448 	struct pglist_data *pgdat;
5449 	unsigned long reserve_pages = 0;
5450 	enum zone_type i, j;
5451 
5452 	for_each_online_pgdat(pgdat) {
5453 		for (i = 0; i < MAX_NR_ZONES; i++) {
5454 			struct zone *zone = pgdat->node_zones + i;
5455 			unsigned long max = 0;
5456 
5457 			/* Find valid and maximum lowmem_reserve in the zone */
5458 			for (j = i; j < MAX_NR_ZONES; j++) {
5459 				if (zone->lowmem_reserve[j] > max)
5460 					max = zone->lowmem_reserve[j];
5461 			}
5462 
5463 			/* we treat the high watermark as reserved pages. */
5464 			max += high_wmark_pages(zone);
5465 
5466 			if (max > zone->managed_pages)
5467 				max = zone->managed_pages;
5468 			reserve_pages += max;
5469 			/*
5470 			 * Lowmem reserves are not available to
5471 			 * GFP_HIGHUSER page cache allocations and
5472 			 * kswapd tries to balance zones to their high
5473 			 * watermark.  As a result, neither should be
5474 			 * regarded as dirtyable memory, to prevent a
5475 			 * situation where reclaim has to clean pages
5476 			 * in order to balance the zones.
5477 			 */
5478 			zone->dirty_balance_reserve = max;
5479 		}
5480 	}
5481 	dirty_balance_reserve = reserve_pages;
5482 	totalreserve_pages = reserve_pages;
5483 }
5484 
5485 /*
5486  * setup_per_zone_lowmem_reserve - called whenever
5487  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5488  *	has a correct pages reserved value, so an adequate number of
5489  *	pages are left in the zone after a successful __alloc_pages().
5490  */
5491 static void setup_per_zone_lowmem_reserve(void)
5492 {
5493 	struct pglist_data *pgdat;
5494 	enum zone_type j, idx;
5495 
5496 	for_each_online_pgdat(pgdat) {
5497 		for (j = 0; j < MAX_NR_ZONES; j++) {
5498 			struct zone *zone = pgdat->node_zones + j;
5499 			unsigned long managed_pages = zone->managed_pages;
5500 
5501 			zone->lowmem_reserve[j] = 0;
5502 
5503 			idx = j;
5504 			while (idx) {
5505 				struct zone *lower_zone;
5506 
5507 				idx--;
5508 
5509 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5510 					sysctl_lowmem_reserve_ratio[idx] = 1;
5511 
5512 				lower_zone = pgdat->node_zones + idx;
5513 				lower_zone->lowmem_reserve[j] = managed_pages /
5514 					sysctl_lowmem_reserve_ratio[idx];
5515 				managed_pages += lower_zone->managed_pages;
5516 			}
5517 		}
5518 	}
5519 
5520 	/* update totalreserve_pages */
5521 	calculate_totalreserve_pages();
5522 }
5523 
5524 static void __setup_per_zone_wmarks(void)
5525 {
5526 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5527 	unsigned long lowmem_pages = 0;
5528 	struct zone *zone;
5529 	unsigned long flags;
5530 
5531 	/* Calculate total number of !ZONE_HIGHMEM pages */
5532 	for_each_zone(zone) {
5533 		if (!is_highmem(zone))
5534 			lowmem_pages += zone->managed_pages;
5535 	}
5536 
5537 	for_each_zone(zone) {
5538 		u64 tmp;
5539 
5540 		spin_lock_irqsave(&zone->lock, flags);
5541 		tmp = (u64)pages_min * zone->managed_pages;
5542 		do_div(tmp, lowmem_pages);
5543 		if (is_highmem(zone)) {
5544 			/*
5545 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5546 			 * need highmem pages, so cap pages_min to a small
5547 			 * value here.
5548 			 *
5549 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5550 			 * deltas controls asynch page reclaim, and so should
5551 			 * not be capped for highmem.
5552 			 */
5553 			unsigned long min_pages;
5554 
5555 			min_pages = zone->managed_pages / 1024;
5556 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5557 			zone->watermark[WMARK_MIN] = min_pages;
5558 		} else {
5559 			/*
5560 			 * If it's a lowmem zone, reserve a number of pages
5561 			 * proportionate to the zone's size.
5562 			 */
5563 			zone->watermark[WMARK_MIN] = tmp;
5564 		}
5565 
5566 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5567 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5568 
5569 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5570 				      high_wmark_pages(zone) -
5571 				      low_wmark_pages(zone) -
5572 				      zone_page_state(zone, NR_ALLOC_BATCH));
5573 
5574 		setup_zone_migrate_reserve(zone);
5575 		spin_unlock_irqrestore(&zone->lock, flags);
5576 	}
5577 
5578 	/* update totalreserve_pages */
5579 	calculate_totalreserve_pages();
5580 }
5581 
5582 /**
5583  * setup_per_zone_wmarks - called when min_free_kbytes changes
5584  * or when memory is hot-{added|removed}
5585  *
5586  * Ensures that the watermark[min,low,high] values for each zone are set
5587  * correctly with respect to min_free_kbytes.
5588  */
5589 void setup_per_zone_wmarks(void)
5590 {
5591 	mutex_lock(&zonelists_mutex);
5592 	__setup_per_zone_wmarks();
5593 	mutex_unlock(&zonelists_mutex);
5594 }
5595 
5596 /*
5597  * The inactive anon list should be small enough that the VM never has to
5598  * do too much work, but large enough that each inactive page has a chance
5599  * to be referenced again before it is swapped out.
5600  *
5601  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5602  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5603  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5604  * the anonymous pages are kept on the inactive list.
5605  *
5606  * total     target    max
5607  * memory    ratio     inactive anon
5608  * -------------------------------------
5609  *   10MB       1         5MB
5610  *  100MB       1        50MB
5611  *    1GB       3       250MB
5612  *   10GB      10       0.9GB
5613  *  100GB      31         3GB
5614  *    1TB     101        10GB
5615  *   10TB     320        32GB
5616  */
5617 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5618 {
5619 	unsigned int gb, ratio;
5620 
5621 	/* Zone size in gigabytes */
5622 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5623 	if (gb)
5624 		ratio = int_sqrt(10 * gb);
5625 	else
5626 		ratio = 1;
5627 
5628 	zone->inactive_ratio = ratio;
5629 }
5630 
5631 static void __meminit setup_per_zone_inactive_ratio(void)
5632 {
5633 	struct zone *zone;
5634 
5635 	for_each_zone(zone)
5636 		calculate_zone_inactive_ratio(zone);
5637 }
5638 
5639 /*
5640  * Initialise min_free_kbytes.
5641  *
5642  * For small machines we want it small (128k min).  For large machines
5643  * we want it large (64MB max).  But it is not linear, because network
5644  * bandwidth does not increase linearly with machine size.  We use
5645  *
5646  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5647  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5648  *
5649  * which yields
5650  *
5651  * 16MB:	512k
5652  * 32MB:	724k
5653  * 64MB:	1024k
5654  * 128MB:	1448k
5655  * 256MB:	2048k
5656  * 512MB:	2896k
5657  * 1024MB:	4096k
5658  * 2048MB:	5792k
5659  * 4096MB:	8192k
5660  * 8192MB:	11584k
5661  * 16384MB:	16384k
5662  */
5663 int __meminit init_per_zone_wmark_min(void)
5664 {
5665 	unsigned long lowmem_kbytes;
5666 	int new_min_free_kbytes;
5667 
5668 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5669 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5670 
5671 	if (new_min_free_kbytes > user_min_free_kbytes) {
5672 		min_free_kbytes = new_min_free_kbytes;
5673 		if (min_free_kbytes < 128)
5674 			min_free_kbytes = 128;
5675 		if (min_free_kbytes > 65536)
5676 			min_free_kbytes = 65536;
5677 	} else {
5678 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5679 				new_min_free_kbytes, user_min_free_kbytes);
5680 	}
5681 	setup_per_zone_wmarks();
5682 	refresh_zone_stat_thresholds();
5683 	setup_per_zone_lowmem_reserve();
5684 	setup_per_zone_inactive_ratio();
5685 	return 0;
5686 }
5687 module_init(init_per_zone_wmark_min)
5688 
5689 /*
5690  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5691  *	that we can call two helper functions whenever min_free_kbytes
5692  *	changes.
5693  */
5694 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5695 	void __user *buffer, size_t *length, loff_t *ppos)
5696 {
5697 	proc_dointvec(table, write, buffer, length, ppos);
5698 	if (write) {
5699 		user_min_free_kbytes = min_free_kbytes;
5700 		setup_per_zone_wmarks();
5701 	}
5702 	return 0;
5703 }
5704 
5705 #ifdef CONFIG_NUMA
5706 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5707 	void __user *buffer, size_t *length, loff_t *ppos)
5708 {
5709 	struct zone *zone;
5710 	int rc;
5711 
5712 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5713 	if (rc)
5714 		return rc;
5715 
5716 	for_each_zone(zone)
5717 		zone->min_unmapped_pages = (zone->managed_pages *
5718 				sysctl_min_unmapped_ratio) / 100;
5719 	return 0;
5720 }
5721 
5722 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5723 	void __user *buffer, size_t *length, loff_t *ppos)
5724 {
5725 	struct zone *zone;
5726 	int rc;
5727 
5728 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5729 	if (rc)
5730 		return rc;
5731 
5732 	for_each_zone(zone)
5733 		zone->min_slab_pages = (zone->managed_pages *
5734 				sysctl_min_slab_ratio) / 100;
5735 	return 0;
5736 }
5737 #endif
5738 
5739 /*
5740  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5741  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5742  *	whenever sysctl_lowmem_reserve_ratio changes.
5743  *
5744  * The reserve ratio obviously has absolutely no relation with the
5745  * minimum watermarks. The lowmem reserve ratio can only make sense
5746  * if in function of the boot time zone sizes.
5747  */
5748 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5749 	void __user *buffer, size_t *length, loff_t *ppos)
5750 {
5751 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5752 	setup_per_zone_lowmem_reserve();
5753 	return 0;
5754 }
5755 
5756 /*
5757  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5758  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5759  * pagelist can have before it gets flushed back to buddy allocator.
5760  */
5761 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5762 	void __user *buffer, size_t *length, loff_t *ppos)
5763 {
5764 	struct zone *zone;
5765 	unsigned int cpu;
5766 	int ret;
5767 
5768 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5769 	if (!write || (ret < 0))
5770 		return ret;
5771 
5772 	mutex_lock(&pcp_batch_high_lock);
5773 	for_each_populated_zone(zone) {
5774 		unsigned long  high;
5775 		high = zone->managed_pages / percpu_pagelist_fraction;
5776 		for_each_possible_cpu(cpu)
5777 			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5778 					 high);
5779 	}
5780 	mutex_unlock(&pcp_batch_high_lock);
5781 	return 0;
5782 }
5783 
5784 int hashdist = HASHDIST_DEFAULT;
5785 
5786 #ifdef CONFIG_NUMA
5787 static int __init set_hashdist(char *str)
5788 {
5789 	if (!str)
5790 		return 0;
5791 	hashdist = simple_strtoul(str, &str, 0);
5792 	return 1;
5793 }
5794 __setup("hashdist=", set_hashdist);
5795 #endif
5796 
5797 /*
5798  * allocate a large system hash table from bootmem
5799  * - it is assumed that the hash table must contain an exact power-of-2
5800  *   quantity of entries
5801  * - limit is the number of hash buckets, not the total allocation size
5802  */
5803 void *__init alloc_large_system_hash(const char *tablename,
5804 				     unsigned long bucketsize,
5805 				     unsigned long numentries,
5806 				     int scale,
5807 				     int flags,
5808 				     unsigned int *_hash_shift,
5809 				     unsigned int *_hash_mask,
5810 				     unsigned long low_limit,
5811 				     unsigned long high_limit)
5812 {
5813 	unsigned long long max = high_limit;
5814 	unsigned long log2qty, size;
5815 	void *table = NULL;
5816 
5817 	/* allow the kernel cmdline to have a say */
5818 	if (!numentries) {
5819 		/* round applicable memory size up to nearest megabyte */
5820 		numentries = nr_kernel_pages;
5821 
5822 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5823 		if (PAGE_SHIFT < 20)
5824 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5825 
5826 		/* limit to 1 bucket per 2^scale bytes of low memory */
5827 		if (scale > PAGE_SHIFT)
5828 			numentries >>= (scale - PAGE_SHIFT);
5829 		else
5830 			numentries <<= (PAGE_SHIFT - scale);
5831 
5832 		/* Make sure we've got at least a 0-order allocation.. */
5833 		if (unlikely(flags & HASH_SMALL)) {
5834 			/* Makes no sense without HASH_EARLY */
5835 			WARN_ON(!(flags & HASH_EARLY));
5836 			if (!(numentries >> *_hash_shift)) {
5837 				numentries = 1UL << *_hash_shift;
5838 				BUG_ON(!numentries);
5839 			}
5840 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5841 			numentries = PAGE_SIZE / bucketsize;
5842 	}
5843 	numentries = roundup_pow_of_two(numentries);
5844 
5845 	/* limit allocation size to 1/16 total memory by default */
5846 	if (max == 0) {
5847 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5848 		do_div(max, bucketsize);
5849 	}
5850 	max = min(max, 0x80000000ULL);
5851 
5852 	if (numentries < low_limit)
5853 		numentries = low_limit;
5854 	if (numentries > max)
5855 		numentries = max;
5856 
5857 	log2qty = ilog2(numentries);
5858 
5859 	do {
5860 		size = bucketsize << log2qty;
5861 		if (flags & HASH_EARLY)
5862 			table = alloc_bootmem_nopanic(size);
5863 		else if (hashdist)
5864 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5865 		else {
5866 			/*
5867 			 * If bucketsize is not a power-of-two, we may free
5868 			 * some pages at the end of hash table which
5869 			 * alloc_pages_exact() automatically does
5870 			 */
5871 			if (get_order(size) < MAX_ORDER) {
5872 				table = alloc_pages_exact(size, GFP_ATOMIC);
5873 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5874 			}
5875 		}
5876 	} while (!table && size > PAGE_SIZE && --log2qty);
5877 
5878 	if (!table)
5879 		panic("Failed to allocate %s hash table\n", tablename);
5880 
5881 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5882 	       tablename,
5883 	       (1UL << log2qty),
5884 	       ilog2(size) - PAGE_SHIFT,
5885 	       size);
5886 
5887 	if (_hash_shift)
5888 		*_hash_shift = log2qty;
5889 	if (_hash_mask)
5890 		*_hash_mask = (1 << log2qty) - 1;
5891 
5892 	return table;
5893 }
5894 
5895 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5896 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5897 							unsigned long pfn)
5898 {
5899 #ifdef CONFIG_SPARSEMEM
5900 	return __pfn_to_section(pfn)->pageblock_flags;
5901 #else
5902 	return zone->pageblock_flags;
5903 #endif /* CONFIG_SPARSEMEM */
5904 }
5905 
5906 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5907 {
5908 #ifdef CONFIG_SPARSEMEM
5909 	pfn &= (PAGES_PER_SECTION-1);
5910 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5911 #else
5912 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5913 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5914 #endif /* CONFIG_SPARSEMEM */
5915 }
5916 
5917 /**
5918  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5919  * @page: The page within the block of interest
5920  * @start_bitidx: The first bit of interest to retrieve
5921  * @end_bitidx: The last bit of interest
5922  * returns pageblock_bits flags
5923  */
5924 unsigned long get_pageblock_flags_group(struct page *page,
5925 					int start_bitidx, int end_bitidx)
5926 {
5927 	struct zone *zone;
5928 	unsigned long *bitmap;
5929 	unsigned long pfn, bitidx;
5930 	unsigned long flags = 0;
5931 	unsigned long value = 1;
5932 
5933 	zone = page_zone(page);
5934 	pfn = page_to_pfn(page);
5935 	bitmap = get_pageblock_bitmap(zone, pfn);
5936 	bitidx = pfn_to_bitidx(zone, pfn);
5937 
5938 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5939 		if (test_bit(bitidx + start_bitidx, bitmap))
5940 			flags |= value;
5941 
5942 	return flags;
5943 }
5944 
5945 /**
5946  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5947  * @page: The page within the block of interest
5948  * @start_bitidx: The first bit of interest
5949  * @end_bitidx: The last bit of interest
5950  * @flags: The flags to set
5951  */
5952 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5953 					int start_bitidx, int end_bitidx)
5954 {
5955 	struct zone *zone;
5956 	unsigned long *bitmap;
5957 	unsigned long pfn, bitidx;
5958 	unsigned long value = 1;
5959 
5960 	zone = page_zone(page);
5961 	pfn = page_to_pfn(page);
5962 	bitmap = get_pageblock_bitmap(zone, pfn);
5963 	bitidx = pfn_to_bitidx(zone, pfn);
5964 	VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5965 
5966 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5967 		if (flags & value)
5968 			__set_bit(bitidx + start_bitidx, bitmap);
5969 		else
5970 			__clear_bit(bitidx + start_bitidx, bitmap);
5971 }
5972 
5973 /*
5974  * This function checks whether pageblock includes unmovable pages or not.
5975  * If @count is not zero, it is okay to include less @count unmovable pages
5976  *
5977  * PageLRU check without isolation or lru_lock could race so that
5978  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5979  * expect this function should be exact.
5980  */
5981 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5982 			 bool skip_hwpoisoned_pages)
5983 {
5984 	unsigned long pfn, iter, found;
5985 	int mt;
5986 
5987 	/*
5988 	 * For avoiding noise data, lru_add_drain_all() should be called
5989 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5990 	 */
5991 	if (zone_idx(zone) == ZONE_MOVABLE)
5992 		return false;
5993 	mt = get_pageblock_migratetype(page);
5994 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5995 		return false;
5996 
5997 	pfn = page_to_pfn(page);
5998 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5999 		unsigned long check = pfn + iter;
6000 
6001 		if (!pfn_valid_within(check))
6002 			continue;
6003 
6004 		page = pfn_to_page(check);
6005 
6006 		/*
6007 		 * Hugepages are not in LRU lists, but they're movable.
6008 		 * We need not scan over tail pages bacause we don't
6009 		 * handle each tail page individually in migration.
6010 		 */
6011 		if (PageHuge(page)) {
6012 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6013 			continue;
6014 		}
6015 
6016 		/*
6017 		 * We can't use page_count without pin a page
6018 		 * because another CPU can free compound page.
6019 		 * This check already skips compound tails of THP
6020 		 * because their page->_count is zero at all time.
6021 		 */
6022 		if (!atomic_read(&page->_count)) {
6023 			if (PageBuddy(page))
6024 				iter += (1 << page_order(page)) - 1;
6025 			continue;
6026 		}
6027 
6028 		/*
6029 		 * The HWPoisoned page may be not in buddy system, and
6030 		 * page_count() is not 0.
6031 		 */
6032 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6033 			continue;
6034 
6035 		if (!PageLRU(page))
6036 			found++;
6037 		/*
6038 		 * If there are RECLAIMABLE pages, we need to check it.
6039 		 * But now, memory offline itself doesn't call shrink_slab()
6040 		 * and it still to be fixed.
6041 		 */
6042 		/*
6043 		 * If the page is not RAM, page_count()should be 0.
6044 		 * we don't need more check. This is an _used_ not-movable page.
6045 		 *
6046 		 * The problematic thing here is PG_reserved pages. PG_reserved
6047 		 * is set to both of a memory hole page and a _used_ kernel
6048 		 * page at boot.
6049 		 */
6050 		if (found > count)
6051 			return true;
6052 	}
6053 	return false;
6054 }
6055 
6056 bool is_pageblock_removable_nolock(struct page *page)
6057 {
6058 	struct zone *zone;
6059 	unsigned long pfn;
6060 
6061 	/*
6062 	 * We have to be careful here because we are iterating over memory
6063 	 * sections which are not zone aware so we might end up outside of
6064 	 * the zone but still within the section.
6065 	 * We have to take care about the node as well. If the node is offline
6066 	 * its NODE_DATA will be NULL - see page_zone.
6067 	 */
6068 	if (!node_online(page_to_nid(page)))
6069 		return false;
6070 
6071 	zone = page_zone(page);
6072 	pfn = page_to_pfn(page);
6073 	if (!zone_spans_pfn(zone, pfn))
6074 		return false;
6075 
6076 	return !has_unmovable_pages(zone, page, 0, true);
6077 }
6078 
6079 #ifdef CONFIG_CMA
6080 
6081 static unsigned long pfn_max_align_down(unsigned long pfn)
6082 {
6083 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6084 			     pageblock_nr_pages) - 1);
6085 }
6086 
6087 static unsigned long pfn_max_align_up(unsigned long pfn)
6088 {
6089 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6090 				pageblock_nr_pages));
6091 }
6092 
6093 /* [start, end) must belong to a single zone. */
6094 static int __alloc_contig_migrate_range(struct compact_control *cc,
6095 					unsigned long start, unsigned long end)
6096 {
6097 	/* This function is based on compact_zone() from compaction.c. */
6098 	unsigned long nr_reclaimed;
6099 	unsigned long pfn = start;
6100 	unsigned int tries = 0;
6101 	int ret = 0;
6102 
6103 	migrate_prep();
6104 
6105 	while (pfn < end || !list_empty(&cc->migratepages)) {
6106 		if (fatal_signal_pending(current)) {
6107 			ret = -EINTR;
6108 			break;
6109 		}
6110 
6111 		if (list_empty(&cc->migratepages)) {
6112 			cc->nr_migratepages = 0;
6113 			pfn = isolate_migratepages_range(cc->zone, cc,
6114 							 pfn, end, true);
6115 			if (!pfn) {
6116 				ret = -EINTR;
6117 				break;
6118 			}
6119 			tries = 0;
6120 		} else if (++tries == 5) {
6121 			ret = ret < 0 ? ret : -EBUSY;
6122 			break;
6123 		}
6124 
6125 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6126 							&cc->migratepages);
6127 		cc->nr_migratepages -= nr_reclaimed;
6128 
6129 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6130 				    0, MIGRATE_SYNC, MR_CMA);
6131 	}
6132 	if (ret < 0) {
6133 		putback_movable_pages(&cc->migratepages);
6134 		return ret;
6135 	}
6136 	return 0;
6137 }
6138 
6139 /**
6140  * alloc_contig_range() -- tries to allocate given range of pages
6141  * @start:	start PFN to allocate
6142  * @end:	one-past-the-last PFN to allocate
6143  * @migratetype:	migratetype of the underlaying pageblocks (either
6144  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6145  *			in range must have the same migratetype and it must
6146  *			be either of the two.
6147  *
6148  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6149  * aligned, however it's the caller's responsibility to guarantee that
6150  * we are the only thread that changes migrate type of pageblocks the
6151  * pages fall in.
6152  *
6153  * The PFN range must belong to a single zone.
6154  *
6155  * Returns zero on success or negative error code.  On success all
6156  * pages which PFN is in [start, end) are allocated for the caller and
6157  * need to be freed with free_contig_range().
6158  */
6159 int alloc_contig_range(unsigned long start, unsigned long end,
6160 		       unsigned migratetype)
6161 {
6162 	unsigned long outer_start, outer_end;
6163 	int ret = 0, order;
6164 
6165 	struct compact_control cc = {
6166 		.nr_migratepages = 0,
6167 		.order = -1,
6168 		.zone = page_zone(pfn_to_page(start)),
6169 		.sync = true,
6170 		.ignore_skip_hint = true,
6171 	};
6172 	INIT_LIST_HEAD(&cc.migratepages);
6173 
6174 	/*
6175 	 * What we do here is we mark all pageblocks in range as
6176 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6177 	 * have different sizes, and due to the way page allocator
6178 	 * work, we align the range to biggest of the two pages so
6179 	 * that page allocator won't try to merge buddies from
6180 	 * different pageblocks and change MIGRATE_ISOLATE to some
6181 	 * other migration type.
6182 	 *
6183 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6184 	 * migrate the pages from an unaligned range (ie. pages that
6185 	 * we are interested in).  This will put all the pages in
6186 	 * range back to page allocator as MIGRATE_ISOLATE.
6187 	 *
6188 	 * When this is done, we take the pages in range from page
6189 	 * allocator removing them from the buddy system.  This way
6190 	 * page allocator will never consider using them.
6191 	 *
6192 	 * This lets us mark the pageblocks back as
6193 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6194 	 * aligned range but not in the unaligned, original range are
6195 	 * put back to page allocator so that buddy can use them.
6196 	 */
6197 
6198 	ret = start_isolate_page_range(pfn_max_align_down(start),
6199 				       pfn_max_align_up(end), migratetype,
6200 				       false);
6201 	if (ret)
6202 		return ret;
6203 
6204 	ret = __alloc_contig_migrate_range(&cc, start, end);
6205 	if (ret)
6206 		goto done;
6207 
6208 	/*
6209 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6210 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6211 	 * more, all pages in [start, end) are free in page allocator.
6212 	 * What we are going to do is to allocate all pages from
6213 	 * [start, end) (that is remove them from page allocator).
6214 	 *
6215 	 * The only problem is that pages at the beginning and at the
6216 	 * end of interesting range may be not aligned with pages that
6217 	 * page allocator holds, ie. they can be part of higher order
6218 	 * pages.  Because of this, we reserve the bigger range and
6219 	 * once this is done free the pages we are not interested in.
6220 	 *
6221 	 * We don't have to hold zone->lock here because the pages are
6222 	 * isolated thus they won't get removed from buddy.
6223 	 */
6224 
6225 	lru_add_drain_all();
6226 	drain_all_pages();
6227 
6228 	order = 0;
6229 	outer_start = start;
6230 	while (!PageBuddy(pfn_to_page(outer_start))) {
6231 		if (++order >= MAX_ORDER) {
6232 			ret = -EBUSY;
6233 			goto done;
6234 		}
6235 		outer_start &= ~0UL << order;
6236 	}
6237 
6238 	/* Make sure the range is really isolated. */
6239 	if (test_pages_isolated(outer_start, end, false)) {
6240 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6241 		       outer_start, end);
6242 		ret = -EBUSY;
6243 		goto done;
6244 	}
6245 
6246 
6247 	/* Grab isolated pages from freelists. */
6248 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6249 	if (!outer_end) {
6250 		ret = -EBUSY;
6251 		goto done;
6252 	}
6253 
6254 	/* Free head and tail (if any) */
6255 	if (start != outer_start)
6256 		free_contig_range(outer_start, start - outer_start);
6257 	if (end != outer_end)
6258 		free_contig_range(end, outer_end - end);
6259 
6260 done:
6261 	undo_isolate_page_range(pfn_max_align_down(start),
6262 				pfn_max_align_up(end), migratetype);
6263 	return ret;
6264 }
6265 
6266 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6267 {
6268 	unsigned int count = 0;
6269 
6270 	for (; nr_pages--; pfn++) {
6271 		struct page *page = pfn_to_page(pfn);
6272 
6273 		count += page_count(page) != 1;
6274 		__free_page(page);
6275 	}
6276 	WARN(count != 0, "%d pages are still in use!\n", count);
6277 }
6278 #endif
6279 
6280 #ifdef CONFIG_MEMORY_HOTPLUG
6281 /*
6282  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6283  * page high values need to be recalulated.
6284  */
6285 void __meminit zone_pcp_update(struct zone *zone)
6286 {
6287 	unsigned cpu;
6288 	mutex_lock(&pcp_batch_high_lock);
6289 	for_each_possible_cpu(cpu)
6290 		pageset_set_high_and_batch(zone,
6291 				per_cpu_ptr(zone->pageset, cpu));
6292 	mutex_unlock(&pcp_batch_high_lock);
6293 }
6294 #endif
6295 
6296 void zone_pcp_reset(struct zone *zone)
6297 {
6298 	unsigned long flags;
6299 	int cpu;
6300 	struct per_cpu_pageset *pset;
6301 
6302 	/* avoid races with drain_pages()  */
6303 	local_irq_save(flags);
6304 	if (zone->pageset != &boot_pageset) {
6305 		for_each_online_cpu(cpu) {
6306 			pset = per_cpu_ptr(zone->pageset, cpu);
6307 			drain_zonestat(zone, pset);
6308 		}
6309 		free_percpu(zone->pageset);
6310 		zone->pageset = &boot_pageset;
6311 	}
6312 	local_irq_restore(flags);
6313 }
6314 
6315 #ifdef CONFIG_MEMORY_HOTREMOVE
6316 /*
6317  * All pages in the range must be isolated before calling this.
6318  */
6319 void
6320 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6321 {
6322 	struct page *page;
6323 	struct zone *zone;
6324 	int order, i;
6325 	unsigned long pfn;
6326 	unsigned long flags;
6327 	/* find the first valid pfn */
6328 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6329 		if (pfn_valid(pfn))
6330 			break;
6331 	if (pfn == end_pfn)
6332 		return;
6333 	zone = page_zone(pfn_to_page(pfn));
6334 	spin_lock_irqsave(&zone->lock, flags);
6335 	pfn = start_pfn;
6336 	while (pfn < end_pfn) {
6337 		if (!pfn_valid(pfn)) {
6338 			pfn++;
6339 			continue;
6340 		}
6341 		page = pfn_to_page(pfn);
6342 		/*
6343 		 * The HWPoisoned page may be not in buddy system, and
6344 		 * page_count() is not 0.
6345 		 */
6346 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6347 			pfn++;
6348 			SetPageReserved(page);
6349 			continue;
6350 		}
6351 
6352 		BUG_ON(page_count(page));
6353 		BUG_ON(!PageBuddy(page));
6354 		order = page_order(page);
6355 #ifdef CONFIG_DEBUG_VM
6356 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6357 		       pfn, 1 << order, end_pfn);
6358 #endif
6359 		list_del(&page->lru);
6360 		rmv_page_order(page);
6361 		zone->free_area[order].nr_free--;
6362 		for (i = 0; i < (1 << order); i++)
6363 			SetPageReserved((page+i));
6364 		pfn += (1 << order);
6365 	}
6366 	spin_unlock_irqrestore(&zone->lock, flags);
6367 }
6368 #endif
6369 
6370 #ifdef CONFIG_MEMORY_FAILURE
6371 bool is_free_buddy_page(struct page *page)
6372 {
6373 	struct zone *zone = page_zone(page);
6374 	unsigned long pfn = page_to_pfn(page);
6375 	unsigned long flags;
6376 	int order;
6377 
6378 	spin_lock_irqsave(&zone->lock, flags);
6379 	for (order = 0; order < MAX_ORDER; order++) {
6380 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6381 
6382 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6383 			break;
6384 	}
6385 	spin_unlock_irqrestore(&zone->lock, flags);
6386 
6387 	return order < MAX_ORDER;
6388 }
6389 #endif
6390 
6391 static const struct trace_print_flags pageflag_names[] = {
6392 	{1UL << PG_locked,		"locked"	},
6393 	{1UL << PG_error,		"error"		},
6394 	{1UL << PG_referenced,		"referenced"	},
6395 	{1UL << PG_uptodate,		"uptodate"	},
6396 	{1UL << PG_dirty,		"dirty"		},
6397 	{1UL << PG_lru,			"lru"		},
6398 	{1UL << PG_active,		"active"	},
6399 	{1UL << PG_slab,		"slab"		},
6400 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6401 	{1UL << PG_arch_1,		"arch_1"	},
6402 	{1UL << PG_reserved,		"reserved"	},
6403 	{1UL << PG_private,		"private"	},
6404 	{1UL << PG_private_2,		"private_2"	},
6405 	{1UL << PG_writeback,		"writeback"	},
6406 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6407 	{1UL << PG_head,		"head"		},
6408 	{1UL << PG_tail,		"tail"		},
6409 #else
6410 	{1UL << PG_compound,		"compound"	},
6411 #endif
6412 	{1UL << PG_swapcache,		"swapcache"	},
6413 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6414 	{1UL << PG_reclaim,		"reclaim"	},
6415 	{1UL << PG_swapbacked,		"swapbacked"	},
6416 	{1UL << PG_unevictable,		"unevictable"	},
6417 #ifdef CONFIG_MMU
6418 	{1UL << PG_mlocked,		"mlocked"	},
6419 #endif
6420 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6421 	{1UL << PG_uncached,		"uncached"	},
6422 #endif
6423 #ifdef CONFIG_MEMORY_FAILURE
6424 	{1UL << PG_hwpoison,		"hwpoison"	},
6425 #endif
6426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6427 	{1UL << PG_compound_lock,	"compound_lock"	},
6428 #endif
6429 };
6430 
6431 static void dump_page_flags(unsigned long flags)
6432 {
6433 	const char *delim = "";
6434 	unsigned long mask;
6435 	int i;
6436 
6437 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6438 
6439 	printk(KERN_ALERT "page flags: %#lx(", flags);
6440 
6441 	/* remove zone id */
6442 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6443 
6444 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6445 
6446 		mask = pageflag_names[i].mask;
6447 		if ((flags & mask) != mask)
6448 			continue;
6449 
6450 		flags &= ~mask;
6451 		printk("%s%s", delim, pageflag_names[i].name);
6452 		delim = "|";
6453 	}
6454 
6455 	/* check for left over flags */
6456 	if (flags)
6457 		printk("%s%#lx", delim, flags);
6458 
6459 	printk(")\n");
6460 }
6461 
6462 void dump_page(struct page *page)
6463 {
6464 	printk(KERN_ALERT
6465 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6466 		page, atomic_read(&page->_count), page_mapcount(page),
6467 		page->mapping, page->index);
6468 	dump_page_flags(page->flags);
6469 	mem_cgroup_print_bad_page(page);
6470 }
6471