1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/oom.h> 34 #include <linux/notifier.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/mempolicy.h> 43 #include <linux/stop_machine.h> 44 #include <linux/sort.h> 45 #include <linux/pfn.h> 46 #include <linux/backing-dev.h> 47 #include <linux/fault-inject.h> 48 #include <linux/page-isolation.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/debugobjects.h> 51 #include <linux/kmemleak.h> 52 #include <linux/memory.h> 53 #include <linux/compaction.h> 54 #include <trace/events/kmem.h> 55 #include <linux/ftrace_event.h> 56 #include <linux/memcontrol.h> 57 58 #include <asm/tlbflush.h> 59 #include <asm/div64.h> 60 #include "internal.h" 61 62 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 63 DEFINE_PER_CPU(int, numa_node); 64 EXPORT_PER_CPU_SYMBOL(numa_node); 65 #endif 66 67 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 68 /* 69 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 70 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 71 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 72 * defined in <linux/topology.h>. 73 */ 74 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 75 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 76 #endif 77 78 /* 79 * Array of node states. 80 */ 81 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 82 [N_POSSIBLE] = NODE_MASK_ALL, 83 [N_ONLINE] = { { [0] = 1UL } }, 84 #ifndef CONFIG_NUMA 85 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 86 #ifdef CONFIG_HIGHMEM 87 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 88 #endif 89 [N_CPU] = { { [0] = 1UL } }, 90 #endif /* NUMA */ 91 }; 92 EXPORT_SYMBOL(node_states); 93 94 unsigned long totalram_pages __read_mostly; 95 unsigned long totalreserve_pages __read_mostly; 96 int percpu_pagelist_fraction; 97 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 98 99 #ifdef CONFIG_PM_SLEEP 100 /* 101 * The following functions are used by the suspend/hibernate code to temporarily 102 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 103 * while devices are suspended. To avoid races with the suspend/hibernate code, 104 * they should always be called with pm_mutex held (gfp_allowed_mask also should 105 * only be modified with pm_mutex held, unless the suspend/hibernate code is 106 * guaranteed not to run in parallel with that modification). 107 */ 108 109 static gfp_t saved_gfp_mask; 110 111 void pm_restore_gfp_mask(void) 112 { 113 WARN_ON(!mutex_is_locked(&pm_mutex)); 114 if (saved_gfp_mask) { 115 gfp_allowed_mask = saved_gfp_mask; 116 saved_gfp_mask = 0; 117 } 118 } 119 120 void pm_restrict_gfp_mask(void) 121 { 122 WARN_ON(!mutex_is_locked(&pm_mutex)); 123 WARN_ON(saved_gfp_mask); 124 saved_gfp_mask = gfp_allowed_mask; 125 gfp_allowed_mask &= ~GFP_IOFS; 126 } 127 #endif /* CONFIG_PM_SLEEP */ 128 129 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 130 int pageblock_order __read_mostly; 131 #endif 132 133 static void __free_pages_ok(struct page *page, unsigned int order); 134 135 /* 136 * results with 256, 32 in the lowmem_reserve sysctl: 137 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 138 * 1G machine -> (16M dma, 784M normal, 224M high) 139 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 140 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 141 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 142 * 143 * TBD: should special case ZONE_DMA32 machines here - in those we normally 144 * don't need any ZONE_NORMAL reservation 145 */ 146 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 147 #ifdef CONFIG_ZONE_DMA 148 256, 149 #endif 150 #ifdef CONFIG_ZONE_DMA32 151 256, 152 #endif 153 #ifdef CONFIG_HIGHMEM 154 32, 155 #endif 156 32, 157 }; 158 159 EXPORT_SYMBOL(totalram_pages); 160 161 static char * const zone_names[MAX_NR_ZONES] = { 162 #ifdef CONFIG_ZONE_DMA 163 "DMA", 164 #endif 165 #ifdef CONFIG_ZONE_DMA32 166 "DMA32", 167 #endif 168 "Normal", 169 #ifdef CONFIG_HIGHMEM 170 "HighMem", 171 #endif 172 "Movable", 173 }; 174 175 int min_free_kbytes = 1024; 176 177 static unsigned long __meminitdata nr_kernel_pages; 178 static unsigned long __meminitdata nr_all_pages; 179 static unsigned long __meminitdata dma_reserve; 180 181 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 182 /* 183 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 184 * ranges of memory (RAM) that may be registered with add_active_range(). 185 * Ranges passed to add_active_range() will be merged if possible 186 * so the number of times add_active_range() can be called is 187 * related to the number of nodes and the number of holes 188 */ 189 #ifdef CONFIG_MAX_ACTIVE_REGIONS 190 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 191 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 192 #else 193 #if MAX_NUMNODES >= 32 194 /* If there can be many nodes, allow up to 50 holes per node */ 195 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 196 #else 197 /* By default, allow up to 256 distinct regions */ 198 #define MAX_ACTIVE_REGIONS 256 199 #endif 200 #endif 201 202 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 203 static int __meminitdata nr_nodemap_entries; 204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 206 static unsigned long __initdata required_kernelcore; 207 static unsigned long __initdata required_movablecore; 208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 209 210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 211 int movable_zone; 212 EXPORT_SYMBOL(movable_zone); 213 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 214 215 #if MAX_NUMNODES > 1 216 int nr_node_ids __read_mostly = MAX_NUMNODES; 217 int nr_online_nodes __read_mostly = 1; 218 EXPORT_SYMBOL(nr_node_ids); 219 EXPORT_SYMBOL(nr_online_nodes); 220 #endif 221 222 int page_group_by_mobility_disabled __read_mostly; 223 224 static void set_pageblock_migratetype(struct page *page, int migratetype) 225 { 226 227 if (unlikely(page_group_by_mobility_disabled)) 228 migratetype = MIGRATE_UNMOVABLE; 229 230 set_pageblock_flags_group(page, (unsigned long)migratetype, 231 PB_migrate, PB_migrate_end); 232 } 233 234 bool oom_killer_disabled __read_mostly; 235 236 #ifdef CONFIG_DEBUG_VM 237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 238 { 239 int ret = 0; 240 unsigned seq; 241 unsigned long pfn = page_to_pfn(page); 242 243 do { 244 seq = zone_span_seqbegin(zone); 245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 246 ret = 1; 247 else if (pfn < zone->zone_start_pfn) 248 ret = 1; 249 } while (zone_span_seqretry(zone, seq)); 250 251 return ret; 252 } 253 254 static int page_is_consistent(struct zone *zone, struct page *page) 255 { 256 if (!pfn_valid_within(page_to_pfn(page))) 257 return 0; 258 if (zone != page_zone(page)) 259 return 0; 260 261 return 1; 262 } 263 /* 264 * Temporary debugging check for pages not lying within a given zone. 265 */ 266 static int bad_range(struct zone *zone, struct page *page) 267 { 268 if (page_outside_zone_boundaries(zone, page)) 269 return 1; 270 if (!page_is_consistent(zone, page)) 271 return 1; 272 273 return 0; 274 } 275 #else 276 static inline int bad_range(struct zone *zone, struct page *page) 277 { 278 return 0; 279 } 280 #endif 281 282 static void bad_page(struct page *page) 283 { 284 static unsigned long resume; 285 static unsigned long nr_shown; 286 static unsigned long nr_unshown; 287 288 /* Don't complain about poisoned pages */ 289 if (PageHWPoison(page)) { 290 reset_page_mapcount(page); /* remove PageBuddy */ 291 return; 292 } 293 294 /* 295 * Allow a burst of 60 reports, then keep quiet for that minute; 296 * or allow a steady drip of one report per second. 297 */ 298 if (nr_shown == 60) { 299 if (time_before(jiffies, resume)) { 300 nr_unshown++; 301 goto out; 302 } 303 if (nr_unshown) { 304 printk(KERN_ALERT 305 "BUG: Bad page state: %lu messages suppressed\n", 306 nr_unshown); 307 nr_unshown = 0; 308 } 309 nr_shown = 0; 310 } 311 if (nr_shown++ == 0) 312 resume = jiffies + 60 * HZ; 313 314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 315 current->comm, page_to_pfn(page)); 316 dump_page(page); 317 318 dump_stack(); 319 out: 320 /* Leave bad fields for debug, except PageBuddy could make trouble */ 321 reset_page_mapcount(page); /* remove PageBuddy */ 322 add_taint(TAINT_BAD_PAGE); 323 } 324 325 /* 326 * Higher-order pages are called "compound pages". They are structured thusly: 327 * 328 * The first PAGE_SIZE page is called the "head page". 329 * 330 * The remaining PAGE_SIZE pages are called "tail pages". 331 * 332 * All pages have PG_compound set. All pages have their ->private pointing at 333 * the head page (even the head page has this). 334 * 335 * The first tail page's ->lru.next holds the address of the compound page's 336 * put_page() function. Its ->lru.prev holds the order of allocation. 337 * This usage means that zero-order pages may not be compound. 338 */ 339 340 static void free_compound_page(struct page *page) 341 { 342 __free_pages_ok(page, compound_order(page)); 343 } 344 345 void prep_compound_page(struct page *page, unsigned long order) 346 { 347 int i; 348 int nr_pages = 1 << order; 349 350 set_compound_page_dtor(page, free_compound_page); 351 set_compound_order(page, order); 352 __SetPageHead(page); 353 for (i = 1; i < nr_pages; i++) { 354 struct page *p = page + i; 355 356 __SetPageTail(p); 357 p->first_page = page; 358 } 359 } 360 361 /* update __split_huge_page_refcount if you change this function */ 362 static int destroy_compound_page(struct page *page, unsigned long order) 363 { 364 int i; 365 int nr_pages = 1 << order; 366 int bad = 0; 367 368 if (unlikely(compound_order(page) != order) || 369 unlikely(!PageHead(page))) { 370 bad_page(page); 371 bad++; 372 } 373 374 __ClearPageHead(page); 375 376 for (i = 1; i < nr_pages; i++) { 377 struct page *p = page + i; 378 379 if (unlikely(!PageTail(p) || (p->first_page != page))) { 380 bad_page(page); 381 bad++; 382 } 383 __ClearPageTail(p); 384 } 385 386 return bad; 387 } 388 389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 390 { 391 int i; 392 393 /* 394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 395 * and __GFP_HIGHMEM from hard or soft interrupt context. 396 */ 397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 398 for (i = 0; i < (1 << order); i++) 399 clear_highpage(page + i); 400 } 401 402 static inline void set_page_order(struct page *page, int order) 403 { 404 set_page_private(page, order); 405 __SetPageBuddy(page); 406 } 407 408 static inline void rmv_page_order(struct page *page) 409 { 410 __ClearPageBuddy(page); 411 set_page_private(page, 0); 412 } 413 414 /* 415 * Locate the struct page for both the matching buddy in our 416 * pair (buddy1) and the combined O(n+1) page they form (page). 417 * 418 * 1) Any buddy B1 will have an order O twin B2 which satisfies 419 * the following equation: 420 * B2 = B1 ^ (1 << O) 421 * For example, if the starting buddy (buddy2) is #8 its order 422 * 1 buddy is #10: 423 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 424 * 425 * 2) Any buddy B will have an order O+1 parent P which 426 * satisfies the following equation: 427 * P = B & ~(1 << O) 428 * 429 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 430 */ 431 static inline unsigned long 432 __find_buddy_index(unsigned long page_idx, unsigned int order) 433 { 434 return page_idx ^ (1 << order); 435 } 436 437 /* 438 * This function checks whether a page is free && is the buddy 439 * we can do coalesce a page and its buddy if 440 * (a) the buddy is not in a hole && 441 * (b) the buddy is in the buddy system && 442 * (c) a page and its buddy have the same order && 443 * (d) a page and its buddy are in the same zone. 444 * 445 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 446 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 447 * 448 * For recording page's order, we use page_private(page). 449 */ 450 static inline int page_is_buddy(struct page *page, struct page *buddy, 451 int order) 452 { 453 if (!pfn_valid_within(page_to_pfn(buddy))) 454 return 0; 455 456 if (page_zone_id(page) != page_zone_id(buddy)) 457 return 0; 458 459 if (PageBuddy(buddy) && page_order(buddy) == order) { 460 VM_BUG_ON(page_count(buddy) != 0); 461 return 1; 462 } 463 return 0; 464 } 465 466 /* 467 * Freeing function for a buddy system allocator. 468 * 469 * The concept of a buddy system is to maintain direct-mapped table 470 * (containing bit values) for memory blocks of various "orders". 471 * The bottom level table contains the map for the smallest allocatable 472 * units of memory (here, pages), and each level above it describes 473 * pairs of units from the levels below, hence, "buddies". 474 * At a high level, all that happens here is marking the table entry 475 * at the bottom level available, and propagating the changes upward 476 * as necessary, plus some accounting needed to play nicely with other 477 * parts of the VM system. 478 * At each level, we keep a list of pages, which are heads of continuous 479 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 480 * order is recorded in page_private(page) field. 481 * So when we are allocating or freeing one, we can derive the state of the 482 * other. That is, if we allocate a small block, and both were 483 * free, the remainder of the region must be split into blocks. 484 * If a block is freed, and its buddy is also free, then this 485 * triggers coalescing into a block of larger size. 486 * 487 * -- wli 488 */ 489 490 static inline void __free_one_page(struct page *page, 491 struct zone *zone, unsigned int order, 492 int migratetype) 493 { 494 unsigned long page_idx; 495 unsigned long combined_idx; 496 unsigned long uninitialized_var(buddy_idx); 497 struct page *buddy; 498 499 if (unlikely(PageCompound(page))) 500 if (unlikely(destroy_compound_page(page, order))) 501 return; 502 503 VM_BUG_ON(migratetype == -1); 504 505 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 506 507 VM_BUG_ON(page_idx & ((1 << order) - 1)); 508 VM_BUG_ON(bad_range(zone, page)); 509 510 while (order < MAX_ORDER-1) { 511 buddy_idx = __find_buddy_index(page_idx, order); 512 buddy = page + (buddy_idx - page_idx); 513 if (!page_is_buddy(page, buddy, order)) 514 break; 515 516 /* Our buddy is free, merge with it and move up one order. */ 517 list_del(&buddy->lru); 518 zone->free_area[order].nr_free--; 519 rmv_page_order(buddy); 520 combined_idx = buddy_idx & page_idx; 521 page = page + (combined_idx - page_idx); 522 page_idx = combined_idx; 523 order++; 524 } 525 set_page_order(page, order); 526 527 /* 528 * If this is not the largest possible page, check if the buddy 529 * of the next-highest order is free. If it is, it's possible 530 * that pages are being freed that will coalesce soon. In case, 531 * that is happening, add the free page to the tail of the list 532 * so it's less likely to be used soon and more likely to be merged 533 * as a higher order page 534 */ 535 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 536 struct page *higher_page, *higher_buddy; 537 combined_idx = buddy_idx & page_idx; 538 higher_page = page + (combined_idx - page_idx); 539 buddy_idx = __find_buddy_index(combined_idx, order + 1); 540 higher_buddy = page + (buddy_idx - combined_idx); 541 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 542 list_add_tail(&page->lru, 543 &zone->free_area[order].free_list[migratetype]); 544 goto out; 545 } 546 } 547 548 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 549 out: 550 zone->free_area[order].nr_free++; 551 } 552 553 /* 554 * free_page_mlock() -- clean up attempts to free and mlocked() page. 555 * Page should not be on lru, so no need to fix that up. 556 * free_pages_check() will verify... 557 */ 558 static inline void free_page_mlock(struct page *page) 559 { 560 __dec_zone_page_state(page, NR_MLOCK); 561 __count_vm_event(UNEVICTABLE_MLOCKFREED); 562 } 563 564 static inline int free_pages_check(struct page *page) 565 { 566 if (unlikely(page_mapcount(page) | 567 (page->mapping != NULL) | 568 (atomic_read(&page->_count) != 0) | 569 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 570 (mem_cgroup_bad_page_check(page)))) { 571 bad_page(page); 572 return 1; 573 } 574 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 575 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 576 return 0; 577 } 578 579 /* 580 * Frees a number of pages from the PCP lists 581 * Assumes all pages on list are in same zone, and of same order. 582 * count is the number of pages to free. 583 * 584 * If the zone was previously in an "all pages pinned" state then look to 585 * see if this freeing clears that state. 586 * 587 * And clear the zone's pages_scanned counter, to hold off the "all pages are 588 * pinned" detection logic. 589 */ 590 static void free_pcppages_bulk(struct zone *zone, int count, 591 struct per_cpu_pages *pcp) 592 { 593 int migratetype = 0; 594 int batch_free = 0; 595 int to_free = count; 596 597 spin_lock(&zone->lock); 598 zone->all_unreclaimable = 0; 599 zone->pages_scanned = 0; 600 601 while (to_free) { 602 struct page *page; 603 struct list_head *list; 604 605 /* 606 * Remove pages from lists in a round-robin fashion. A 607 * batch_free count is maintained that is incremented when an 608 * empty list is encountered. This is so more pages are freed 609 * off fuller lists instead of spinning excessively around empty 610 * lists 611 */ 612 do { 613 batch_free++; 614 if (++migratetype == MIGRATE_PCPTYPES) 615 migratetype = 0; 616 list = &pcp->lists[migratetype]; 617 } while (list_empty(list)); 618 619 /* This is the only non-empty list. Free them all. */ 620 if (batch_free == MIGRATE_PCPTYPES) 621 batch_free = to_free; 622 623 do { 624 page = list_entry(list->prev, struct page, lru); 625 /* must delete as __free_one_page list manipulates */ 626 list_del(&page->lru); 627 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 628 __free_one_page(page, zone, 0, page_private(page)); 629 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 630 } while (--to_free && --batch_free && !list_empty(list)); 631 } 632 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 633 spin_unlock(&zone->lock); 634 } 635 636 static void free_one_page(struct zone *zone, struct page *page, int order, 637 int migratetype) 638 { 639 spin_lock(&zone->lock); 640 zone->all_unreclaimable = 0; 641 zone->pages_scanned = 0; 642 643 __free_one_page(page, zone, order, migratetype); 644 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 645 spin_unlock(&zone->lock); 646 } 647 648 static bool free_pages_prepare(struct page *page, unsigned int order) 649 { 650 int i; 651 int bad = 0; 652 653 trace_mm_page_free_direct(page, order); 654 kmemcheck_free_shadow(page, order); 655 656 if (PageAnon(page)) 657 page->mapping = NULL; 658 for (i = 0; i < (1 << order); i++) 659 bad += free_pages_check(page + i); 660 if (bad) 661 return false; 662 663 if (!PageHighMem(page)) { 664 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 665 debug_check_no_obj_freed(page_address(page), 666 PAGE_SIZE << order); 667 } 668 arch_free_page(page, order); 669 kernel_map_pages(page, 1 << order, 0); 670 671 return true; 672 } 673 674 static void __free_pages_ok(struct page *page, unsigned int order) 675 { 676 unsigned long flags; 677 int wasMlocked = __TestClearPageMlocked(page); 678 679 if (!free_pages_prepare(page, order)) 680 return; 681 682 local_irq_save(flags); 683 if (unlikely(wasMlocked)) 684 free_page_mlock(page); 685 __count_vm_events(PGFREE, 1 << order); 686 free_one_page(page_zone(page), page, order, 687 get_pageblock_migratetype(page)); 688 local_irq_restore(flags); 689 } 690 691 /* 692 * permit the bootmem allocator to evade page validation on high-order frees 693 */ 694 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 695 { 696 if (order == 0) { 697 __ClearPageReserved(page); 698 set_page_count(page, 0); 699 set_page_refcounted(page); 700 __free_page(page); 701 } else { 702 int loop; 703 704 prefetchw(page); 705 for (loop = 0; loop < BITS_PER_LONG; loop++) { 706 struct page *p = &page[loop]; 707 708 if (loop + 1 < BITS_PER_LONG) 709 prefetchw(p + 1); 710 __ClearPageReserved(p); 711 set_page_count(p, 0); 712 } 713 714 set_page_refcounted(page); 715 __free_pages(page, order); 716 } 717 } 718 719 720 /* 721 * The order of subdivision here is critical for the IO subsystem. 722 * Please do not alter this order without good reasons and regression 723 * testing. Specifically, as large blocks of memory are subdivided, 724 * the order in which smaller blocks are delivered depends on the order 725 * they're subdivided in this function. This is the primary factor 726 * influencing the order in which pages are delivered to the IO 727 * subsystem according to empirical testing, and this is also justified 728 * by considering the behavior of a buddy system containing a single 729 * large block of memory acted on by a series of small allocations. 730 * This behavior is a critical factor in sglist merging's success. 731 * 732 * -- wli 733 */ 734 static inline void expand(struct zone *zone, struct page *page, 735 int low, int high, struct free_area *area, 736 int migratetype) 737 { 738 unsigned long size = 1 << high; 739 740 while (high > low) { 741 area--; 742 high--; 743 size >>= 1; 744 VM_BUG_ON(bad_range(zone, &page[size])); 745 list_add(&page[size].lru, &area->free_list[migratetype]); 746 area->nr_free++; 747 set_page_order(&page[size], high); 748 } 749 } 750 751 /* 752 * This page is about to be returned from the page allocator 753 */ 754 static inline int check_new_page(struct page *page) 755 { 756 if (unlikely(page_mapcount(page) | 757 (page->mapping != NULL) | 758 (atomic_read(&page->_count) != 0) | 759 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 760 (mem_cgroup_bad_page_check(page)))) { 761 bad_page(page); 762 return 1; 763 } 764 return 0; 765 } 766 767 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 768 { 769 int i; 770 771 for (i = 0; i < (1 << order); i++) { 772 struct page *p = page + i; 773 if (unlikely(check_new_page(p))) 774 return 1; 775 } 776 777 set_page_private(page, 0); 778 set_page_refcounted(page); 779 780 arch_alloc_page(page, order); 781 kernel_map_pages(page, 1 << order, 1); 782 783 if (gfp_flags & __GFP_ZERO) 784 prep_zero_page(page, order, gfp_flags); 785 786 if (order && (gfp_flags & __GFP_COMP)) 787 prep_compound_page(page, order); 788 789 return 0; 790 } 791 792 /* 793 * Go through the free lists for the given migratetype and remove 794 * the smallest available page from the freelists 795 */ 796 static inline 797 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 798 int migratetype) 799 { 800 unsigned int current_order; 801 struct free_area * area; 802 struct page *page; 803 804 /* Find a page of the appropriate size in the preferred list */ 805 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 806 area = &(zone->free_area[current_order]); 807 if (list_empty(&area->free_list[migratetype])) 808 continue; 809 810 page = list_entry(area->free_list[migratetype].next, 811 struct page, lru); 812 list_del(&page->lru); 813 rmv_page_order(page); 814 area->nr_free--; 815 expand(zone, page, order, current_order, area, migratetype); 816 return page; 817 } 818 819 return NULL; 820 } 821 822 823 /* 824 * This array describes the order lists are fallen back to when 825 * the free lists for the desirable migrate type are depleted 826 */ 827 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 831 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 832 }; 833 834 /* 835 * Move the free pages in a range to the free lists of the requested type. 836 * Note that start_page and end_pages are not aligned on a pageblock 837 * boundary. If alignment is required, use move_freepages_block() 838 */ 839 static int move_freepages(struct zone *zone, 840 struct page *start_page, struct page *end_page, 841 int migratetype) 842 { 843 struct page *page; 844 unsigned long order; 845 int pages_moved = 0; 846 847 #ifndef CONFIG_HOLES_IN_ZONE 848 /* 849 * page_zone is not safe to call in this context when 850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 851 * anyway as we check zone boundaries in move_freepages_block(). 852 * Remove at a later date when no bug reports exist related to 853 * grouping pages by mobility 854 */ 855 BUG_ON(page_zone(start_page) != page_zone(end_page)); 856 #endif 857 858 for (page = start_page; page <= end_page;) { 859 /* Make sure we are not inadvertently changing nodes */ 860 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 861 862 if (!pfn_valid_within(page_to_pfn(page))) { 863 page++; 864 continue; 865 } 866 867 if (!PageBuddy(page)) { 868 page++; 869 continue; 870 } 871 872 order = page_order(page); 873 list_move(&page->lru, 874 &zone->free_area[order].free_list[migratetype]); 875 page += 1 << order; 876 pages_moved += 1 << order; 877 } 878 879 return pages_moved; 880 } 881 882 static int move_freepages_block(struct zone *zone, struct page *page, 883 int migratetype) 884 { 885 unsigned long start_pfn, end_pfn; 886 struct page *start_page, *end_page; 887 888 start_pfn = page_to_pfn(page); 889 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 890 start_page = pfn_to_page(start_pfn); 891 end_page = start_page + pageblock_nr_pages - 1; 892 end_pfn = start_pfn + pageblock_nr_pages - 1; 893 894 /* Do not cross zone boundaries */ 895 if (start_pfn < zone->zone_start_pfn) 896 start_page = page; 897 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 898 return 0; 899 900 return move_freepages(zone, start_page, end_page, migratetype); 901 } 902 903 static void change_pageblock_range(struct page *pageblock_page, 904 int start_order, int migratetype) 905 { 906 int nr_pageblocks = 1 << (start_order - pageblock_order); 907 908 while (nr_pageblocks--) { 909 set_pageblock_migratetype(pageblock_page, migratetype); 910 pageblock_page += pageblock_nr_pages; 911 } 912 } 913 914 /* Remove an element from the buddy allocator from the fallback list */ 915 static inline struct page * 916 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 917 { 918 struct free_area * area; 919 int current_order; 920 struct page *page; 921 int migratetype, i; 922 923 /* Find the largest possible block of pages in the other list */ 924 for (current_order = MAX_ORDER-1; current_order >= order; 925 --current_order) { 926 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 927 migratetype = fallbacks[start_migratetype][i]; 928 929 /* MIGRATE_RESERVE handled later if necessary */ 930 if (migratetype == MIGRATE_RESERVE) 931 continue; 932 933 area = &(zone->free_area[current_order]); 934 if (list_empty(&area->free_list[migratetype])) 935 continue; 936 937 page = list_entry(area->free_list[migratetype].next, 938 struct page, lru); 939 area->nr_free--; 940 941 /* 942 * If breaking a large block of pages, move all free 943 * pages to the preferred allocation list. If falling 944 * back for a reclaimable kernel allocation, be more 945 * aggressive about taking ownership of free pages 946 */ 947 if (unlikely(current_order >= (pageblock_order >> 1)) || 948 start_migratetype == MIGRATE_RECLAIMABLE || 949 page_group_by_mobility_disabled) { 950 unsigned long pages; 951 pages = move_freepages_block(zone, page, 952 start_migratetype); 953 954 /* Claim the whole block if over half of it is free */ 955 if (pages >= (1 << (pageblock_order-1)) || 956 page_group_by_mobility_disabled) 957 set_pageblock_migratetype(page, 958 start_migratetype); 959 960 migratetype = start_migratetype; 961 } 962 963 /* Remove the page from the freelists */ 964 list_del(&page->lru); 965 rmv_page_order(page); 966 967 /* Take ownership for orders >= pageblock_order */ 968 if (current_order >= pageblock_order) 969 change_pageblock_range(page, current_order, 970 start_migratetype); 971 972 expand(zone, page, order, current_order, area, migratetype); 973 974 trace_mm_page_alloc_extfrag(page, order, current_order, 975 start_migratetype, migratetype); 976 977 return page; 978 } 979 } 980 981 return NULL; 982 } 983 984 /* 985 * Do the hard work of removing an element from the buddy allocator. 986 * Call me with the zone->lock already held. 987 */ 988 static struct page *__rmqueue(struct zone *zone, unsigned int order, 989 int migratetype) 990 { 991 struct page *page; 992 993 retry_reserve: 994 page = __rmqueue_smallest(zone, order, migratetype); 995 996 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 997 page = __rmqueue_fallback(zone, order, migratetype); 998 999 /* 1000 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1001 * is used because __rmqueue_smallest is an inline function 1002 * and we want just one call site 1003 */ 1004 if (!page) { 1005 migratetype = MIGRATE_RESERVE; 1006 goto retry_reserve; 1007 } 1008 } 1009 1010 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1011 return page; 1012 } 1013 1014 /* 1015 * Obtain a specified number of elements from the buddy allocator, all under 1016 * a single hold of the lock, for efficiency. Add them to the supplied list. 1017 * Returns the number of new pages which were placed at *list. 1018 */ 1019 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1020 unsigned long count, struct list_head *list, 1021 int migratetype, int cold) 1022 { 1023 int i; 1024 1025 spin_lock(&zone->lock); 1026 for (i = 0; i < count; ++i) { 1027 struct page *page = __rmqueue(zone, order, migratetype); 1028 if (unlikely(page == NULL)) 1029 break; 1030 1031 /* 1032 * Split buddy pages returned by expand() are received here 1033 * in physical page order. The page is added to the callers and 1034 * list and the list head then moves forward. From the callers 1035 * perspective, the linked list is ordered by page number in 1036 * some conditions. This is useful for IO devices that can 1037 * merge IO requests if the physical pages are ordered 1038 * properly. 1039 */ 1040 if (likely(cold == 0)) 1041 list_add(&page->lru, list); 1042 else 1043 list_add_tail(&page->lru, list); 1044 set_page_private(page, migratetype); 1045 list = &page->lru; 1046 } 1047 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1048 spin_unlock(&zone->lock); 1049 return i; 1050 } 1051 1052 #ifdef CONFIG_NUMA 1053 /* 1054 * Called from the vmstat counter updater to drain pagesets of this 1055 * currently executing processor on remote nodes after they have 1056 * expired. 1057 * 1058 * Note that this function must be called with the thread pinned to 1059 * a single processor. 1060 */ 1061 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1062 { 1063 unsigned long flags; 1064 int to_drain; 1065 1066 local_irq_save(flags); 1067 if (pcp->count >= pcp->batch) 1068 to_drain = pcp->batch; 1069 else 1070 to_drain = pcp->count; 1071 free_pcppages_bulk(zone, to_drain, pcp); 1072 pcp->count -= to_drain; 1073 local_irq_restore(flags); 1074 } 1075 #endif 1076 1077 /* 1078 * Drain pages of the indicated processor. 1079 * 1080 * The processor must either be the current processor and the 1081 * thread pinned to the current processor or a processor that 1082 * is not online. 1083 */ 1084 static void drain_pages(unsigned int cpu) 1085 { 1086 unsigned long flags; 1087 struct zone *zone; 1088 1089 for_each_populated_zone(zone) { 1090 struct per_cpu_pageset *pset; 1091 struct per_cpu_pages *pcp; 1092 1093 local_irq_save(flags); 1094 pset = per_cpu_ptr(zone->pageset, cpu); 1095 1096 pcp = &pset->pcp; 1097 if (pcp->count) { 1098 free_pcppages_bulk(zone, pcp->count, pcp); 1099 pcp->count = 0; 1100 } 1101 local_irq_restore(flags); 1102 } 1103 } 1104 1105 /* 1106 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1107 */ 1108 void drain_local_pages(void *arg) 1109 { 1110 drain_pages(smp_processor_id()); 1111 } 1112 1113 /* 1114 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1115 */ 1116 void drain_all_pages(void) 1117 { 1118 on_each_cpu(drain_local_pages, NULL, 1); 1119 } 1120 1121 #ifdef CONFIG_HIBERNATION 1122 1123 void mark_free_pages(struct zone *zone) 1124 { 1125 unsigned long pfn, max_zone_pfn; 1126 unsigned long flags; 1127 int order, t; 1128 struct list_head *curr; 1129 1130 if (!zone->spanned_pages) 1131 return; 1132 1133 spin_lock_irqsave(&zone->lock, flags); 1134 1135 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1136 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1137 if (pfn_valid(pfn)) { 1138 struct page *page = pfn_to_page(pfn); 1139 1140 if (!swsusp_page_is_forbidden(page)) 1141 swsusp_unset_page_free(page); 1142 } 1143 1144 for_each_migratetype_order(order, t) { 1145 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1146 unsigned long i; 1147 1148 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1149 for (i = 0; i < (1UL << order); i++) 1150 swsusp_set_page_free(pfn_to_page(pfn + i)); 1151 } 1152 } 1153 spin_unlock_irqrestore(&zone->lock, flags); 1154 } 1155 #endif /* CONFIG_PM */ 1156 1157 /* 1158 * Free a 0-order page 1159 * cold == 1 ? free a cold page : free a hot page 1160 */ 1161 void free_hot_cold_page(struct page *page, int cold) 1162 { 1163 struct zone *zone = page_zone(page); 1164 struct per_cpu_pages *pcp; 1165 unsigned long flags; 1166 int migratetype; 1167 int wasMlocked = __TestClearPageMlocked(page); 1168 1169 if (!free_pages_prepare(page, 0)) 1170 return; 1171 1172 migratetype = get_pageblock_migratetype(page); 1173 set_page_private(page, migratetype); 1174 local_irq_save(flags); 1175 if (unlikely(wasMlocked)) 1176 free_page_mlock(page); 1177 __count_vm_event(PGFREE); 1178 1179 /* 1180 * We only track unmovable, reclaimable and movable on pcp lists. 1181 * Free ISOLATE pages back to the allocator because they are being 1182 * offlined but treat RESERVE as movable pages so we can get those 1183 * areas back if necessary. Otherwise, we may have to free 1184 * excessively into the page allocator 1185 */ 1186 if (migratetype >= MIGRATE_PCPTYPES) { 1187 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1188 free_one_page(zone, page, 0, migratetype); 1189 goto out; 1190 } 1191 migratetype = MIGRATE_MOVABLE; 1192 } 1193 1194 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1195 if (cold) 1196 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1197 else 1198 list_add(&page->lru, &pcp->lists[migratetype]); 1199 pcp->count++; 1200 if (pcp->count >= pcp->high) { 1201 free_pcppages_bulk(zone, pcp->batch, pcp); 1202 pcp->count -= pcp->batch; 1203 } 1204 1205 out: 1206 local_irq_restore(flags); 1207 } 1208 1209 /* 1210 * split_page takes a non-compound higher-order page, and splits it into 1211 * n (1<<order) sub-pages: page[0..n] 1212 * Each sub-page must be freed individually. 1213 * 1214 * Note: this is probably too low level an operation for use in drivers. 1215 * Please consult with lkml before using this in your driver. 1216 */ 1217 void split_page(struct page *page, unsigned int order) 1218 { 1219 int i; 1220 1221 VM_BUG_ON(PageCompound(page)); 1222 VM_BUG_ON(!page_count(page)); 1223 1224 #ifdef CONFIG_KMEMCHECK 1225 /* 1226 * Split shadow pages too, because free(page[0]) would 1227 * otherwise free the whole shadow. 1228 */ 1229 if (kmemcheck_page_is_tracked(page)) 1230 split_page(virt_to_page(page[0].shadow), order); 1231 #endif 1232 1233 for (i = 1; i < (1 << order); i++) 1234 set_page_refcounted(page + i); 1235 } 1236 1237 /* 1238 * Similar to split_page except the page is already free. As this is only 1239 * being used for migration, the migratetype of the block also changes. 1240 * As this is called with interrupts disabled, the caller is responsible 1241 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1242 * are enabled. 1243 * 1244 * Note: this is probably too low level an operation for use in drivers. 1245 * Please consult with lkml before using this in your driver. 1246 */ 1247 int split_free_page(struct page *page) 1248 { 1249 unsigned int order; 1250 unsigned long watermark; 1251 struct zone *zone; 1252 1253 BUG_ON(!PageBuddy(page)); 1254 1255 zone = page_zone(page); 1256 order = page_order(page); 1257 1258 /* Obey watermarks as if the page was being allocated */ 1259 watermark = low_wmark_pages(zone) + (1 << order); 1260 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1261 return 0; 1262 1263 /* Remove page from free list */ 1264 list_del(&page->lru); 1265 zone->free_area[order].nr_free--; 1266 rmv_page_order(page); 1267 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1268 1269 /* Split into individual pages */ 1270 set_page_refcounted(page); 1271 split_page(page, order); 1272 1273 if (order >= pageblock_order - 1) { 1274 struct page *endpage = page + (1 << order) - 1; 1275 for (; page < endpage; page += pageblock_nr_pages) 1276 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1277 } 1278 1279 return 1 << order; 1280 } 1281 1282 /* 1283 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1284 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1285 * or two. 1286 */ 1287 static inline 1288 struct page *buffered_rmqueue(struct zone *preferred_zone, 1289 struct zone *zone, int order, gfp_t gfp_flags, 1290 int migratetype) 1291 { 1292 unsigned long flags; 1293 struct page *page; 1294 int cold = !!(gfp_flags & __GFP_COLD); 1295 1296 again: 1297 if (likely(order == 0)) { 1298 struct per_cpu_pages *pcp; 1299 struct list_head *list; 1300 1301 local_irq_save(flags); 1302 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1303 list = &pcp->lists[migratetype]; 1304 if (list_empty(list)) { 1305 pcp->count += rmqueue_bulk(zone, 0, 1306 pcp->batch, list, 1307 migratetype, cold); 1308 if (unlikely(list_empty(list))) 1309 goto failed; 1310 } 1311 1312 if (cold) 1313 page = list_entry(list->prev, struct page, lru); 1314 else 1315 page = list_entry(list->next, struct page, lru); 1316 1317 list_del(&page->lru); 1318 pcp->count--; 1319 } else { 1320 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1321 /* 1322 * __GFP_NOFAIL is not to be used in new code. 1323 * 1324 * All __GFP_NOFAIL callers should be fixed so that they 1325 * properly detect and handle allocation failures. 1326 * 1327 * We most definitely don't want callers attempting to 1328 * allocate greater than order-1 page units with 1329 * __GFP_NOFAIL. 1330 */ 1331 WARN_ON_ONCE(order > 1); 1332 } 1333 spin_lock_irqsave(&zone->lock, flags); 1334 page = __rmqueue(zone, order, migratetype); 1335 spin_unlock(&zone->lock); 1336 if (!page) 1337 goto failed; 1338 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1339 } 1340 1341 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1342 zone_statistics(preferred_zone, zone, gfp_flags); 1343 local_irq_restore(flags); 1344 1345 VM_BUG_ON(bad_range(zone, page)); 1346 if (prep_new_page(page, order, gfp_flags)) 1347 goto again; 1348 return page; 1349 1350 failed: 1351 local_irq_restore(flags); 1352 return NULL; 1353 } 1354 1355 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1356 #define ALLOC_WMARK_MIN WMARK_MIN 1357 #define ALLOC_WMARK_LOW WMARK_LOW 1358 #define ALLOC_WMARK_HIGH WMARK_HIGH 1359 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1360 1361 /* Mask to get the watermark bits */ 1362 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1363 1364 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1365 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1366 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1367 1368 #ifdef CONFIG_FAIL_PAGE_ALLOC 1369 1370 static struct fail_page_alloc_attr { 1371 struct fault_attr attr; 1372 1373 u32 ignore_gfp_highmem; 1374 u32 ignore_gfp_wait; 1375 u32 min_order; 1376 1377 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1378 1379 struct dentry *ignore_gfp_highmem_file; 1380 struct dentry *ignore_gfp_wait_file; 1381 struct dentry *min_order_file; 1382 1383 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1384 1385 } fail_page_alloc = { 1386 .attr = FAULT_ATTR_INITIALIZER, 1387 .ignore_gfp_wait = 1, 1388 .ignore_gfp_highmem = 1, 1389 .min_order = 1, 1390 }; 1391 1392 static int __init setup_fail_page_alloc(char *str) 1393 { 1394 return setup_fault_attr(&fail_page_alloc.attr, str); 1395 } 1396 __setup("fail_page_alloc=", setup_fail_page_alloc); 1397 1398 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1399 { 1400 if (order < fail_page_alloc.min_order) 1401 return 0; 1402 if (gfp_mask & __GFP_NOFAIL) 1403 return 0; 1404 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1405 return 0; 1406 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1407 return 0; 1408 1409 return should_fail(&fail_page_alloc.attr, 1 << order); 1410 } 1411 1412 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1413 1414 static int __init fail_page_alloc_debugfs(void) 1415 { 1416 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1417 struct dentry *dir; 1418 int err; 1419 1420 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1421 "fail_page_alloc"); 1422 if (err) 1423 return err; 1424 dir = fail_page_alloc.attr.dentries.dir; 1425 1426 fail_page_alloc.ignore_gfp_wait_file = 1427 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1428 &fail_page_alloc.ignore_gfp_wait); 1429 1430 fail_page_alloc.ignore_gfp_highmem_file = 1431 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1432 &fail_page_alloc.ignore_gfp_highmem); 1433 fail_page_alloc.min_order_file = 1434 debugfs_create_u32("min-order", mode, dir, 1435 &fail_page_alloc.min_order); 1436 1437 if (!fail_page_alloc.ignore_gfp_wait_file || 1438 !fail_page_alloc.ignore_gfp_highmem_file || 1439 !fail_page_alloc.min_order_file) { 1440 err = -ENOMEM; 1441 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1442 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1443 debugfs_remove(fail_page_alloc.min_order_file); 1444 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1445 } 1446 1447 return err; 1448 } 1449 1450 late_initcall(fail_page_alloc_debugfs); 1451 1452 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1453 1454 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1455 1456 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1457 { 1458 return 0; 1459 } 1460 1461 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1462 1463 /* 1464 * Return true if free pages are above 'mark'. This takes into account the order 1465 * of the allocation. 1466 */ 1467 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1468 int classzone_idx, int alloc_flags, long free_pages) 1469 { 1470 /* free_pages my go negative - that's OK */ 1471 long min = mark; 1472 int o; 1473 1474 free_pages -= (1 << order) + 1; 1475 if (alloc_flags & ALLOC_HIGH) 1476 min -= min / 2; 1477 if (alloc_flags & ALLOC_HARDER) 1478 min -= min / 4; 1479 1480 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1481 return false; 1482 for (o = 0; o < order; o++) { 1483 /* At the next order, this order's pages become unavailable */ 1484 free_pages -= z->free_area[o].nr_free << o; 1485 1486 /* Require fewer higher order pages to be free */ 1487 min >>= 1; 1488 1489 if (free_pages <= min) 1490 return false; 1491 } 1492 return true; 1493 } 1494 1495 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1496 int classzone_idx, int alloc_flags) 1497 { 1498 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1499 zone_page_state(z, NR_FREE_PAGES)); 1500 } 1501 1502 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1503 int classzone_idx, int alloc_flags) 1504 { 1505 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1506 1507 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1508 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1509 1510 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1511 free_pages); 1512 } 1513 1514 #ifdef CONFIG_NUMA 1515 /* 1516 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1517 * skip over zones that are not allowed by the cpuset, or that have 1518 * been recently (in last second) found to be nearly full. See further 1519 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1520 * that have to skip over a lot of full or unallowed zones. 1521 * 1522 * If the zonelist cache is present in the passed in zonelist, then 1523 * returns a pointer to the allowed node mask (either the current 1524 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1525 * 1526 * If the zonelist cache is not available for this zonelist, does 1527 * nothing and returns NULL. 1528 * 1529 * If the fullzones BITMAP in the zonelist cache is stale (more than 1530 * a second since last zap'd) then we zap it out (clear its bits.) 1531 * 1532 * We hold off even calling zlc_setup, until after we've checked the 1533 * first zone in the zonelist, on the theory that most allocations will 1534 * be satisfied from that first zone, so best to examine that zone as 1535 * quickly as we can. 1536 */ 1537 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1538 { 1539 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1540 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1541 1542 zlc = zonelist->zlcache_ptr; 1543 if (!zlc) 1544 return NULL; 1545 1546 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1547 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1548 zlc->last_full_zap = jiffies; 1549 } 1550 1551 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1552 &cpuset_current_mems_allowed : 1553 &node_states[N_HIGH_MEMORY]; 1554 return allowednodes; 1555 } 1556 1557 /* 1558 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1559 * if it is worth looking at further for free memory: 1560 * 1) Check that the zone isn't thought to be full (doesn't have its 1561 * bit set in the zonelist_cache fullzones BITMAP). 1562 * 2) Check that the zones node (obtained from the zonelist_cache 1563 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1564 * Return true (non-zero) if zone is worth looking at further, or 1565 * else return false (zero) if it is not. 1566 * 1567 * This check -ignores- the distinction between various watermarks, 1568 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1569 * found to be full for any variation of these watermarks, it will 1570 * be considered full for up to one second by all requests, unless 1571 * we are so low on memory on all allowed nodes that we are forced 1572 * into the second scan of the zonelist. 1573 * 1574 * In the second scan we ignore this zonelist cache and exactly 1575 * apply the watermarks to all zones, even it is slower to do so. 1576 * We are low on memory in the second scan, and should leave no stone 1577 * unturned looking for a free page. 1578 */ 1579 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1580 nodemask_t *allowednodes) 1581 { 1582 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1583 int i; /* index of *z in zonelist zones */ 1584 int n; /* node that zone *z is on */ 1585 1586 zlc = zonelist->zlcache_ptr; 1587 if (!zlc) 1588 return 1; 1589 1590 i = z - zonelist->_zonerefs; 1591 n = zlc->z_to_n[i]; 1592 1593 /* This zone is worth trying if it is allowed but not full */ 1594 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1595 } 1596 1597 /* 1598 * Given 'z' scanning a zonelist, set the corresponding bit in 1599 * zlc->fullzones, so that subsequent attempts to allocate a page 1600 * from that zone don't waste time re-examining it. 1601 */ 1602 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1603 { 1604 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1605 int i; /* index of *z in zonelist zones */ 1606 1607 zlc = zonelist->zlcache_ptr; 1608 if (!zlc) 1609 return; 1610 1611 i = z - zonelist->_zonerefs; 1612 1613 set_bit(i, zlc->fullzones); 1614 } 1615 1616 #else /* CONFIG_NUMA */ 1617 1618 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1619 { 1620 return NULL; 1621 } 1622 1623 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1624 nodemask_t *allowednodes) 1625 { 1626 return 1; 1627 } 1628 1629 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1630 { 1631 } 1632 #endif /* CONFIG_NUMA */ 1633 1634 /* 1635 * get_page_from_freelist goes through the zonelist trying to allocate 1636 * a page. 1637 */ 1638 static struct page * 1639 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1640 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1641 struct zone *preferred_zone, int migratetype) 1642 { 1643 struct zoneref *z; 1644 struct page *page = NULL; 1645 int classzone_idx; 1646 struct zone *zone; 1647 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1648 int zlc_active = 0; /* set if using zonelist_cache */ 1649 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1650 1651 classzone_idx = zone_idx(preferred_zone); 1652 zonelist_scan: 1653 /* 1654 * Scan zonelist, looking for a zone with enough free. 1655 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1656 */ 1657 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1658 high_zoneidx, nodemask) { 1659 if (NUMA_BUILD && zlc_active && 1660 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1661 continue; 1662 if ((alloc_flags & ALLOC_CPUSET) && 1663 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1664 goto try_next_zone; 1665 1666 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1667 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1668 unsigned long mark; 1669 int ret; 1670 1671 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1672 if (zone_watermark_ok(zone, order, mark, 1673 classzone_idx, alloc_flags)) 1674 goto try_this_zone; 1675 1676 if (zone_reclaim_mode == 0) 1677 goto this_zone_full; 1678 1679 ret = zone_reclaim(zone, gfp_mask, order); 1680 switch (ret) { 1681 case ZONE_RECLAIM_NOSCAN: 1682 /* did not scan */ 1683 goto try_next_zone; 1684 case ZONE_RECLAIM_FULL: 1685 /* scanned but unreclaimable */ 1686 goto this_zone_full; 1687 default: 1688 /* did we reclaim enough */ 1689 if (!zone_watermark_ok(zone, order, mark, 1690 classzone_idx, alloc_flags)) 1691 goto this_zone_full; 1692 } 1693 } 1694 1695 try_this_zone: 1696 page = buffered_rmqueue(preferred_zone, zone, order, 1697 gfp_mask, migratetype); 1698 if (page) 1699 break; 1700 this_zone_full: 1701 if (NUMA_BUILD) 1702 zlc_mark_zone_full(zonelist, z); 1703 try_next_zone: 1704 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1705 /* 1706 * we do zlc_setup after the first zone is tried but only 1707 * if there are multiple nodes make it worthwhile 1708 */ 1709 allowednodes = zlc_setup(zonelist, alloc_flags); 1710 zlc_active = 1; 1711 did_zlc_setup = 1; 1712 } 1713 } 1714 1715 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1716 /* Disable zlc cache for second zonelist scan */ 1717 zlc_active = 0; 1718 goto zonelist_scan; 1719 } 1720 return page; 1721 } 1722 1723 /* 1724 * Large machines with many possible nodes should not always dump per-node 1725 * meminfo in irq context. 1726 */ 1727 static inline bool should_suppress_show_mem(void) 1728 { 1729 bool ret = false; 1730 1731 #if NODES_SHIFT > 8 1732 ret = in_interrupt(); 1733 #endif 1734 return ret; 1735 } 1736 1737 static inline int 1738 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1739 unsigned long pages_reclaimed) 1740 { 1741 /* Do not loop if specifically requested */ 1742 if (gfp_mask & __GFP_NORETRY) 1743 return 0; 1744 1745 /* 1746 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1747 * means __GFP_NOFAIL, but that may not be true in other 1748 * implementations. 1749 */ 1750 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1751 return 1; 1752 1753 /* 1754 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1755 * specified, then we retry until we no longer reclaim any pages 1756 * (above), or we've reclaimed an order of pages at least as 1757 * large as the allocation's order. In both cases, if the 1758 * allocation still fails, we stop retrying. 1759 */ 1760 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1761 return 1; 1762 1763 /* 1764 * Don't let big-order allocations loop unless the caller 1765 * explicitly requests that. 1766 */ 1767 if (gfp_mask & __GFP_NOFAIL) 1768 return 1; 1769 1770 return 0; 1771 } 1772 1773 static inline struct page * 1774 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1775 struct zonelist *zonelist, enum zone_type high_zoneidx, 1776 nodemask_t *nodemask, struct zone *preferred_zone, 1777 int migratetype) 1778 { 1779 struct page *page; 1780 1781 /* Acquire the OOM killer lock for the zones in zonelist */ 1782 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1783 schedule_timeout_uninterruptible(1); 1784 return NULL; 1785 } 1786 1787 /* 1788 * Go through the zonelist yet one more time, keep very high watermark 1789 * here, this is only to catch a parallel oom killing, we must fail if 1790 * we're still under heavy pressure. 1791 */ 1792 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1793 order, zonelist, high_zoneidx, 1794 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1795 preferred_zone, migratetype); 1796 if (page) 1797 goto out; 1798 1799 if (!(gfp_mask & __GFP_NOFAIL)) { 1800 /* The OOM killer will not help higher order allocs */ 1801 if (order > PAGE_ALLOC_COSTLY_ORDER) 1802 goto out; 1803 /* The OOM killer does not needlessly kill tasks for lowmem */ 1804 if (high_zoneidx < ZONE_NORMAL) 1805 goto out; 1806 /* 1807 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1808 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1809 * The caller should handle page allocation failure by itself if 1810 * it specifies __GFP_THISNODE. 1811 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1812 */ 1813 if (gfp_mask & __GFP_THISNODE) 1814 goto out; 1815 } 1816 /* Exhausted what can be done so it's blamo time */ 1817 out_of_memory(zonelist, gfp_mask, order, nodemask); 1818 1819 out: 1820 clear_zonelist_oom(zonelist, gfp_mask); 1821 return page; 1822 } 1823 1824 #ifdef CONFIG_COMPACTION 1825 /* Try memory compaction for high-order allocations before reclaim */ 1826 static struct page * 1827 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1828 struct zonelist *zonelist, enum zone_type high_zoneidx, 1829 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1830 int migratetype, unsigned long *did_some_progress, 1831 bool sync_migration) 1832 { 1833 struct page *page; 1834 1835 if (!order || compaction_deferred(preferred_zone)) 1836 return NULL; 1837 1838 current->flags |= PF_MEMALLOC; 1839 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1840 nodemask, sync_migration); 1841 current->flags &= ~PF_MEMALLOC; 1842 if (*did_some_progress != COMPACT_SKIPPED) { 1843 1844 /* Page migration frees to the PCP lists but we want merging */ 1845 drain_pages(get_cpu()); 1846 put_cpu(); 1847 1848 page = get_page_from_freelist(gfp_mask, nodemask, 1849 order, zonelist, high_zoneidx, 1850 alloc_flags, preferred_zone, 1851 migratetype); 1852 if (page) { 1853 preferred_zone->compact_considered = 0; 1854 preferred_zone->compact_defer_shift = 0; 1855 count_vm_event(COMPACTSUCCESS); 1856 return page; 1857 } 1858 1859 /* 1860 * It's bad if compaction run occurs and fails. 1861 * The most likely reason is that pages exist, 1862 * but not enough to satisfy watermarks. 1863 */ 1864 count_vm_event(COMPACTFAIL); 1865 defer_compaction(preferred_zone); 1866 1867 cond_resched(); 1868 } 1869 1870 return NULL; 1871 } 1872 #else 1873 static inline struct page * 1874 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1875 struct zonelist *zonelist, enum zone_type high_zoneidx, 1876 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1877 int migratetype, unsigned long *did_some_progress, 1878 bool sync_migration) 1879 { 1880 return NULL; 1881 } 1882 #endif /* CONFIG_COMPACTION */ 1883 1884 /* The really slow allocator path where we enter direct reclaim */ 1885 static inline struct page * 1886 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1887 struct zonelist *zonelist, enum zone_type high_zoneidx, 1888 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1889 int migratetype, unsigned long *did_some_progress) 1890 { 1891 struct page *page = NULL; 1892 struct reclaim_state reclaim_state; 1893 bool drained = false; 1894 1895 cond_resched(); 1896 1897 /* We now go into synchronous reclaim */ 1898 cpuset_memory_pressure_bump(); 1899 current->flags |= PF_MEMALLOC; 1900 lockdep_set_current_reclaim_state(gfp_mask); 1901 reclaim_state.reclaimed_slab = 0; 1902 current->reclaim_state = &reclaim_state; 1903 1904 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1905 1906 current->reclaim_state = NULL; 1907 lockdep_clear_current_reclaim_state(); 1908 current->flags &= ~PF_MEMALLOC; 1909 1910 cond_resched(); 1911 1912 if (unlikely(!(*did_some_progress))) 1913 return NULL; 1914 1915 retry: 1916 page = get_page_from_freelist(gfp_mask, nodemask, order, 1917 zonelist, high_zoneidx, 1918 alloc_flags, preferred_zone, 1919 migratetype); 1920 1921 /* 1922 * If an allocation failed after direct reclaim, it could be because 1923 * pages are pinned on the per-cpu lists. Drain them and try again 1924 */ 1925 if (!page && !drained) { 1926 drain_all_pages(); 1927 drained = true; 1928 goto retry; 1929 } 1930 1931 return page; 1932 } 1933 1934 /* 1935 * This is called in the allocator slow-path if the allocation request is of 1936 * sufficient urgency to ignore watermarks and take other desperate measures 1937 */ 1938 static inline struct page * 1939 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1940 struct zonelist *zonelist, enum zone_type high_zoneidx, 1941 nodemask_t *nodemask, struct zone *preferred_zone, 1942 int migratetype) 1943 { 1944 struct page *page; 1945 1946 do { 1947 page = get_page_from_freelist(gfp_mask, nodemask, order, 1948 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1949 preferred_zone, migratetype); 1950 1951 if (!page && gfp_mask & __GFP_NOFAIL) 1952 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 1953 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1954 1955 return page; 1956 } 1957 1958 static inline 1959 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1960 enum zone_type high_zoneidx, 1961 enum zone_type classzone_idx) 1962 { 1963 struct zoneref *z; 1964 struct zone *zone; 1965 1966 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1967 wakeup_kswapd(zone, order, classzone_idx); 1968 } 1969 1970 static inline int 1971 gfp_to_alloc_flags(gfp_t gfp_mask) 1972 { 1973 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1974 const gfp_t wait = gfp_mask & __GFP_WAIT; 1975 1976 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1977 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 1978 1979 /* 1980 * The caller may dip into page reserves a bit more if the caller 1981 * cannot run direct reclaim, or if the caller has realtime scheduling 1982 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1983 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1984 */ 1985 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 1986 1987 if (!wait) { 1988 /* 1989 * Not worth trying to allocate harder for 1990 * __GFP_NOMEMALLOC even if it can't schedule. 1991 */ 1992 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1993 alloc_flags |= ALLOC_HARDER; 1994 /* 1995 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1996 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1997 */ 1998 alloc_flags &= ~ALLOC_CPUSET; 1999 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2000 alloc_flags |= ALLOC_HARDER; 2001 2002 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2003 if (!in_interrupt() && 2004 ((current->flags & PF_MEMALLOC) || 2005 unlikely(test_thread_flag(TIF_MEMDIE)))) 2006 alloc_flags |= ALLOC_NO_WATERMARKS; 2007 } 2008 2009 return alloc_flags; 2010 } 2011 2012 static inline struct page * 2013 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2014 struct zonelist *zonelist, enum zone_type high_zoneidx, 2015 nodemask_t *nodemask, struct zone *preferred_zone, 2016 int migratetype) 2017 { 2018 const gfp_t wait = gfp_mask & __GFP_WAIT; 2019 struct page *page = NULL; 2020 int alloc_flags; 2021 unsigned long pages_reclaimed = 0; 2022 unsigned long did_some_progress; 2023 bool sync_migration = false; 2024 2025 /* 2026 * In the slowpath, we sanity check order to avoid ever trying to 2027 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2028 * be using allocators in order of preference for an area that is 2029 * too large. 2030 */ 2031 if (order >= MAX_ORDER) { 2032 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2033 return NULL; 2034 } 2035 2036 /* 2037 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2038 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2039 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2040 * using a larger set of nodes after it has established that the 2041 * allowed per node queues are empty and that nodes are 2042 * over allocated. 2043 */ 2044 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2045 goto nopage; 2046 2047 restart: 2048 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2049 wake_all_kswapd(order, zonelist, high_zoneidx, 2050 zone_idx(preferred_zone)); 2051 2052 /* 2053 * OK, we're below the kswapd watermark and have kicked background 2054 * reclaim. Now things get more complex, so set up alloc_flags according 2055 * to how we want to proceed. 2056 */ 2057 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2058 2059 /* 2060 * Find the true preferred zone if the allocation is unconstrained by 2061 * cpusets. 2062 */ 2063 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2064 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2065 &preferred_zone); 2066 2067 /* This is the last chance, in general, before the goto nopage. */ 2068 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2069 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2070 preferred_zone, migratetype); 2071 if (page) 2072 goto got_pg; 2073 2074 rebalance: 2075 /* Allocate without watermarks if the context allows */ 2076 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2077 page = __alloc_pages_high_priority(gfp_mask, order, 2078 zonelist, high_zoneidx, nodemask, 2079 preferred_zone, migratetype); 2080 if (page) 2081 goto got_pg; 2082 } 2083 2084 /* Atomic allocations - we can't balance anything */ 2085 if (!wait) 2086 goto nopage; 2087 2088 /* Avoid recursion of direct reclaim */ 2089 if (current->flags & PF_MEMALLOC) 2090 goto nopage; 2091 2092 /* Avoid allocations with no watermarks from looping endlessly */ 2093 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2094 goto nopage; 2095 2096 /* 2097 * Try direct compaction. The first pass is asynchronous. Subsequent 2098 * attempts after direct reclaim are synchronous 2099 */ 2100 page = __alloc_pages_direct_compact(gfp_mask, order, 2101 zonelist, high_zoneidx, 2102 nodemask, 2103 alloc_flags, preferred_zone, 2104 migratetype, &did_some_progress, 2105 sync_migration); 2106 if (page) 2107 goto got_pg; 2108 sync_migration = !(gfp_mask & __GFP_NO_KSWAPD); 2109 2110 /* Try direct reclaim and then allocating */ 2111 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2112 zonelist, high_zoneidx, 2113 nodemask, 2114 alloc_flags, preferred_zone, 2115 migratetype, &did_some_progress); 2116 if (page) 2117 goto got_pg; 2118 2119 /* 2120 * If we failed to make any progress reclaiming, then we are 2121 * running out of options and have to consider going OOM 2122 */ 2123 if (!did_some_progress) { 2124 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2125 if (oom_killer_disabled) 2126 goto nopage; 2127 page = __alloc_pages_may_oom(gfp_mask, order, 2128 zonelist, high_zoneidx, 2129 nodemask, preferred_zone, 2130 migratetype); 2131 if (page) 2132 goto got_pg; 2133 2134 if (!(gfp_mask & __GFP_NOFAIL)) { 2135 /* 2136 * The oom killer is not called for high-order 2137 * allocations that may fail, so if no progress 2138 * is being made, there are no other options and 2139 * retrying is unlikely to help. 2140 */ 2141 if (order > PAGE_ALLOC_COSTLY_ORDER) 2142 goto nopage; 2143 /* 2144 * The oom killer is not called for lowmem 2145 * allocations to prevent needlessly killing 2146 * innocent tasks. 2147 */ 2148 if (high_zoneidx < ZONE_NORMAL) 2149 goto nopage; 2150 } 2151 2152 goto restart; 2153 } 2154 } 2155 2156 /* Check if we should retry the allocation */ 2157 pages_reclaimed += did_some_progress; 2158 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2159 /* Wait for some write requests to complete then retry */ 2160 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2161 goto rebalance; 2162 } else { 2163 /* 2164 * High-order allocations do not necessarily loop after 2165 * direct reclaim and reclaim/compaction depends on compaction 2166 * being called after reclaim so call directly if necessary 2167 */ 2168 page = __alloc_pages_direct_compact(gfp_mask, order, 2169 zonelist, high_zoneidx, 2170 nodemask, 2171 alloc_flags, preferred_zone, 2172 migratetype, &did_some_progress, 2173 sync_migration); 2174 if (page) 2175 goto got_pg; 2176 } 2177 2178 nopage: 2179 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 2180 unsigned int filter = SHOW_MEM_FILTER_NODES; 2181 2182 /* 2183 * This documents exceptions given to allocations in certain 2184 * contexts that are allowed to allocate outside current's set 2185 * of allowed nodes. 2186 */ 2187 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2188 if (test_thread_flag(TIF_MEMDIE) || 2189 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2190 filter &= ~SHOW_MEM_FILTER_NODES; 2191 if (in_interrupt() || !wait) 2192 filter &= ~SHOW_MEM_FILTER_NODES; 2193 2194 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n", 2195 current->comm, order, gfp_mask); 2196 dump_stack(); 2197 if (!should_suppress_show_mem()) 2198 show_mem(filter); 2199 } 2200 return page; 2201 got_pg: 2202 if (kmemcheck_enabled) 2203 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2204 return page; 2205 2206 } 2207 2208 /* 2209 * This is the 'heart' of the zoned buddy allocator. 2210 */ 2211 struct page * 2212 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2213 struct zonelist *zonelist, nodemask_t *nodemask) 2214 { 2215 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2216 struct zone *preferred_zone; 2217 struct page *page; 2218 int migratetype = allocflags_to_migratetype(gfp_mask); 2219 2220 gfp_mask &= gfp_allowed_mask; 2221 2222 lockdep_trace_alloc(gfp_mask); 2223 2224 might_sleep_if(gfp_mask & __GFP_WAIT); 2225 2226 if (should_fail_alloc_page(gfp_mask, order)) 2227 return NULL; 2228 2229 /* 2230 * Check the zones suitable for the gfp_mask contain at least one 2231 * valid zone. It's possible to have an empty zonelist as a result 2232 * of GFP_THISNODE and a memoryless node 2233 */ 2234 if (unlikely(!zonelist->_zonerefs->zone)) 2235 return NULL; 2236 2237 get_mems_allowed(); 2238 /* The preferred zone is used for statistics later */ 2239 first_zones_zonelist(zonelist, high_zoneidx, 2240 nodemask ? : &cpuset_current_mems_allowed, 2241 &preferred_zone); 2242 if (!preferred_zone) { 2243 put_mems_allowed(); 2244 return NULL; 2245 } 2246 2247 /* First allocation attempt */ 2248 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2249 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2250 preferred_zone, migratetype); 2251 if (unlikely(!page)) 2252 page = __alloc_pages_slowpath(gfp_mask, order, 2253 zonelist, high_zoneidx, nodemask, 2254 preferred_zone, migratetype); 2255 put_mems_allowed(); 2256 2257 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2258 return page; 2259 } 2260 EXPORT_SYMBOL(__alloc_pages_nodemask); 2261 2262 /* 2263 * Common helper functions. 2264 */ 2265 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2266 { 2267 struct page *page; 2268 2269 /* 2270 * __get_free_pages() returns a 32-bit address, which cannot represent 2271 * a highmem page 2272 */ 2273 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2274 2275 page = alloc_pages(gfp_mask, order); 2276 if (!page) 2277 return 0; 2278 return (unsigned long) page_address(page); 2279 } 2280 EXPORT_SYMBOL(__get_free_pages); 2281 2282 unsigned long get_zeroed_page(gfp_t gfp_mask) 2283 { 2284 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2285 } 2286 EXPORT_SYMBOL(get_zeroed_page); 2287 2288 void __pagevec_free(struct pagevec *pvec) 2289 { 2290 int i = pagevec_count(pvec); 2291 2292 while (--i >= 0) { 2293 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2294 free_hot_cold_page(pvec->pages[i], pvec->cold); 2295 } 2296 } 2297 2298 void __free_pages(struct page *page, unsigned int order) 2299 { 2300 if (put_page_testzero(page)) { 2301 if (order == 0) 2302 free_hot_cold_page(page, 0); 2303 else 2304 __free_pages_ok(page, order); 2305 } 2306 } 2307 2308 EXPORT_SYMBOL(__free_pages); 2309 2310 void free_pages(unsigned long addr, unsigned int order) 2311 { 2312 if (addr != 0) { 2313 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2314 __free_pages(virt_to_page((void *)addr), order); 2315 } 2316 } 2317 2318 EXPORT_SYMBOL(free_pages); 2319 2320 /** 2321 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2322 * @size: the number of bytes to allocate 2323 * @gfp_mask: GFP flags for the allocation 2324 * 2325 * This function is similar to alloc_pages(), except that it allocates the 2326 * minimum number of pages to satisfy the request. alloc_pages() can only 2327 * allocate memory in power-of-two pages. 2328 * 2329 * This function is also limited by MAX_ORDER. 2330 * 2331 * Memory allocated by this function must be released by free_pages_exact(). 2332 */ 2333 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2334 { 2335 unsigned int order = get_order(size); 2336 unsigned long addr; 2337 2338 addr = __get_free_pages(gfp_mask, order); 2339 if (addr) { 2340 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2341 unsigned long used = addr + PAGE_ALIGN(size); 2342 2343 split_page(virt_to_page((void *)addr), order); 2344 while (used < alloc_end) { 2345 free_page(used); 2346 used += PAGE_SIZE; 2347 } 2348 } 2349 2350 return (void *)addr; 2351 } 2352 EXPORT_SYMBOL(alloc_pages_exact); 2353 2354 /** 2355 * free_pages_exact - release memory allocated via alloc_pages_exact() 2356 * @virt: the value returned by alloc_pages_exact. 2357 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2358 * 2359 * Release the memory allocated by a previous call to alloc_pages_exact. 2360 */ 2361 void free_pages_exact(void *virt, size_t size) 2362 { 2363 unsigned long addr = (unsigned long)virt; 2364 unsigned long end = addr + PAGE_ALIGN(size); 2365 2366 while (addr < end) { 2367 free_page(addr); 2368 addr += PAGE_SIZE; 2369 } 2370 } 2371 EXPORT_SYMBOL(free_pages_exact); 2372 2373 static unsigned int nr_free_zone_pages(int offset) 2374 { 2375 struct zoneref *z; 2376 struct zone *zone; 2377 2378 /* Just pick one node, since fallback list is circular */ 2379 unsigned int sum = 0; 2380 2381 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2382 2383 for_each_zone_zonelist(zone, z, zonelist, offset) { 2384 unsigned long size = zone->present_pages; 2385 unsigned long high = high_wmark_pages(zone); 2386 if (size > high) 2387 sum += size - high; 2388 } 2389 2390 return sum; 2391 } 2392 2393 /* 2394 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2395 */ 2396 unsigned int nr_free_buffer_pages(void) 2397 { 2398 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2399 } 2400 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2401 2402 /* 2403 * Amount of free RAM allocatable within all zones 2404 */ 2405 unsigned int nr_free_pagecache_pages(void) 2406 { 2407 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2408 } 2409 2410 static inline void show_node(struct zone *zone) 2411 { 2412 if (NUMA_BUILD) 2413 printk("Node %d ", zone_to_nid(zone)); 2414 } 2415 2416 void si_meminfo(struct sysinfo *val) 2417 { 2418 val->totalram = totalram_pages; 2419 val->sharedram = 0; 2420 val->freeram = global_page_state(NR_FREE_PAGES); 2421 val->bufferram = nr_blockdev_pages(); 2422 val->totalhigh = totalhigh_pages; 2423 val->freehigh = nr_free_highpages(); 2424 val->mem_unit = PAGE_SIZE; 2425 } 2426 2427 EXPORT_SYMBOL(si_meminfo); 2428 2429 #ifdef CONFIG_NUMA 2430 void si_meminfo_node(struct sysinfo *val, int nid) 2431 { 2432 pg_data_t *pgdat = NODE_DATA(nid); 2433 2434 val->totalram = pgdat->node_present_pages; 2435 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2436 #ifdef CONFIG_HIGHMEM 2437 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2438 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2439 NR_FREE_PAGES); 2440 #else 2441 val->totalhigh = 0; 2442 val->freehigh = 0; 2443 #endif 2444 val->mem_unit = PAGE_SIZE; 2445 } 2446 #endif 2447 2448 /* 2449 * Determine whether the zone's node should be displayed or not, depending on 2450 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas(). 2451 */ 2452 static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone) 2453 { 2454 bool ret = false; 2455 2456 if (!(flags & SHOW_MEM_FILTER_NODES)) 2457 goto out; 2458 2459 get_mems_allowed(); 2460 ret = !node_isset(zone->zone_pgdat->node_id, 2461 cpuset_current_mems_allowed); 2462 put_mems_allowed(); 2463 out: 2464 return ret; 2465 } 2466 2467 #define K(x) ((x) << (PAGE_SHIFT-10)) 2468 2469 /* 2470 * Show free area list (used inside shift_scroll-lock stuff) 2471 * We also calculate the percentage fragmentation. We do this by counting the 2472 * memory on each free list with the exception of the first item on the list. 2473 * Suppresses nodes that are not allowed by current's cpuset if 2474 * SHOW_MEM_FILTER_NODES is passed. 2475 */ 2476 void __show_free_areas(unsigned int filter) 2477 { 2478 int cpu; 2479 struct zone *zone; 2480 2481 for_each_populated_zone(zone) { 2482 if (skip_free_areas_zone(filter, zone)) 2483 continue; 2484 show_node(zone); 2485 printk("%s per-cpu:\n", zone->name); 2486 2487 for_each_online_cpu(cpu) { 2488 struct per_cpu_pageset *pageset; 2489 2490 pageset = per_cpu_ptr(zone->pageset, cpu); 2491 2492 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2493 cpu, pageset->pcp.high, 2494 pageset->pcp.batch, pageset->pcp.count); 2495 } 2496 } 2497 2498 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2499 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2500 " unevictable:%lu" 2501 " dirty:%lu writeback:%lu unstable:%lu\n" 2502 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2503 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2504 global_page_state(NR_ACTIVE_ANON), 2505 global_page_state(NR_INACTIVE_ANON), 2506 global_page_state(NR_ISOLATED_ANON), 2507 global_page_state(NR_ACTIVE_FILE), 2508 global_page_state(NR_INACTIVE_FILE), 2509 global_page_state(NR_ISOLATED_FILE), 2510 global_page_state(NR_UNEVICTABLE), 2511 global_page_state(NR_FILE_DIRTY), 2512 global_page_state(NR_WRITEBACK), 2513 global_page_state(NR_UNSTABLE_NFS), 2514 global_page_state(NR_FREE_PAGES), 2515 global_page_state(NR_SLAB_RECLAIMABLE), 2516 global_page_state(NR_SLAB_UNRECLAIMABLE), 2517 global_page_state(NR_FILE_MAPPED), 2518 global_page_state(NR_SHMEM), 2519 global_page_state(NR_PAGETABLE), 2520 global_page_state(NR_BOUNCE)); 2521 2522 for_each_populated_zone(zone) { 2523 int i; 2524 2525 if (skip_free_areas_zone(filter, zone)) 2526 continue; 2527 show_node(zone); 2528 printk("%s" 2529 " free:%lukB" 2530 " min:%lukB" 2531 " low:%lukB" 2532 " high:%lukB" 2533 " active_anon:%lukB" 2534 " inactive_anon:%lukB" 2535 " active_file:%lukB" 2536 " inactive_file:%lukB" 2537 " unevictable:%lukB" 2538 " isolated(anon):%lukB" 2539 " isolated(file):%lukB" 2540 " present:%lukB" 2541 " mlocked:%lukB" 2542 " dirty:%lukB" 2543 " writeback:%lukB" 2544 " mapped:%lukB" 2545 " shmem:%lukB" 2546 " slab_reclaimable:%lukB" 2547 " slab_unreclaimable:%lukB" 2548 " kernel_stack:%lukB" 2549 " pagetables:%lukB" 2550 " unstable:%lukB" 2551 " bounce:%lukB" 2552 " writeback_tmp:%lukB" 2553 " pages_scanned:%lu" 2554 " all_unreclaimable? %s" 2555 "\n", 2556 zone->name, 2557 K(zone_page_state(zone, NR_FREE_PAGES)), 2558 K(min_wmark_pages(zone)), 2559 K(low_wmark_pages(zone)), 2560 K(high_wmark_pages(zone)), 2561 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2562 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2563 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2564 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2565 K(zone_page_state(zone, NR_UNEVICTABLE)), 2566 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2567 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2568 K(zone->present_pages), 2569 K(zone_page_state(zone, NR_MLOCK)), 2570 K(zone_page_state(zone, NR_FILE_DIRTY)), 2571 K(zone_page_state(zone, NR_WRITEBACK)), 2572 K(zone_page_state(zone, NR_FILE_MAPPED)), 2573 K(zone_page_state(zone, NR_SHMEM)), 2574 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2575 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2576 zone_page_state(zone, NR_KERNEL_STACK) * 2577 THREAD_SIZE / 1024, 2578 K(zone_page_state(zone, NR_PAGETABLE)), 2579 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2580 K(zone_page_state(zone, NR_BOUNCE)), 2581 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2582 zone->pages_scanned, 2583 (zone->all_unreclaimable ? "yes" : "no") 2584 ); 2585 printk("lowmem_reserve[]:"); 2586 for (i = 0; i < MAX_NR_ZONES; i++) 2587 printk(" %lu", zone->lowmem_reserve[i]); 2588 printk("\n"); 2589 } 2590 2591 for_each_populated_zone(zone) { 2592 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2593 2594 if (skip_free_areas_zone(filter, zone)) 2595 continue; 2596 show_node(zone); 2597 printk("%s: ", zone->name); 2598 2599 spin_lock_irqsave(&zone->lock, flags); 2600 for (order = 0; order < MAX_ORDER; order++) { 2601 nr[order] = zone->free_area[order].nr_free; 2602 total += nr[order] << order; 2603 } 2604 spin_unlock_irqrestore(&zone->lock, flags); 2605 for (order = 0; order < MAX_ORDER; order++) 2606 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2607 printk("= %lukB\n", K(total)); 2608 } 2609 2610 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2611 2612 show_swap_cache_info(); 2613 } 2614 2615 void show_free_areas(void) 2616 { 2617 __show_free_areas(0); 2618 } 2619 2620 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2621 { 2622 zoneref->zone = zone; 2623 zoneref->zone_idx = zone_idx(zone); 2624 } 2625 2626 /* 2627 * Builds allocation fallback zone lists. 2628 * 2629 * Add all populated zones of a node to the zonelist. 2630 */ 2631 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2632 int nr_zones, enum zone_type zone_type) 2633 { 2634 struct zone *zone; 2635 2636 BUG_ON(zone_type >= MAX_NR_ZONES); 2637 zone_type++; 2638 2639 do { 2640 zone_type--; 2641 zone = pgdat->node_zones + zone_type; 2642 if (populated_zone(zone)) { 2643 zoneref_set_zone(zone, 2644 &zonelist->_zonerefs[nr_zones++]); 2645 check_highest_zone(zone_type); 2646 } 2647 2648 } while (zone_type); 2649 return nr_zones; 2650 } 2651 2652 2653 /* 2654 * zonelist_order: 2655 * 0 = automatic detection of better ordering. 2656 * 1 = order by ([node] distance, -zonetype) 2657 * 2 = order by (-zonetype, [node] distance) 2658 * 2659 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2660 * the same zonelist. So only NUMA can configure this param. 2661 */ 2662 #define ZONELIST_ORDER_DEFAULT 0 2663 #define ZONELIST_ORDER_NODE 1 2664 #define ZONELIST_ORDER_ZONE 2 2665 2666 /* zonelist order in the kernel. 2667 * set_zonelist_order() will set this to NODE or ZONE. 2668 */ 2669 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2670 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2671 2672 2673 #ifdef CONFIG_NUMA 2674 /* The value user specified ....changed by config */ 2675 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2676 /* string for sysctl */ 2677 #define NUMA_ZONELIST_ORDER_LEN 16 2678 char numa_zonelist_order[16] = "default"; 2679 2680 /* 2681 * interface for configure zonelist ordering. 2682 * command line option "numa_zonelist_order" 2683 * = "[dD]efault - default, automatic configuration. 2684 * = "[nN]ode - order by node locality, then by zone within node 2685 * = "[zZ]one - order by zone, then by locality within zone 2686 */ 2687 2688 static int __parse_numa_zonelist_order(char *s) 2689 { 2690 if (*s == 'd' || *s == 'D') { 2691 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2692 } else if (*s == 'n' || *s == 'N') { 2693 user_zonelist_order = ZONELIST_ORDER_NODE; 2694 } else if (*s == 'z' || *s == 'Z') { 2695 user_zonelist_order = ZONELIST_ORDER_ZONE; 2696 } else { 2697 printk(KERN_WARNING 2698 "Ignoring invalid numa_zonelist_order value: " 2699 "%s\n", s); 2700 return -EINVAL; 2701 } 2702 return 0; 2703 } 2704 2705 static __init int setup_numa_zonelist_order(char *s) 2706 { 2707 int ret; 2708 2709 if (!s) 2710 return 0; 2711 2712 ret = __parse_numa_zonelist_order(s); 2713 if (ret == 0) 2714 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2715 2716 return ret; 2717 } 2718 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2719 2720 /* 2721 * sysctl handler for numa_zonelist_order 2722 */ 2723 int numa_zonelist_order_handler(ctl_table *table, int write, 2724 void __user *buffer, size_t *length, 2725 loff_t *ppos) 2726 { 2727 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2728 int ret; 2729 static DEFINE_MUTEX(zl_order_mutex); 2730 2731 mutex_lock(&zl_order_mutex); 2732 if (write) 2733 strcpy(saved_string, (char*)table->data); 2734 ret = proc_dostring(table, write, buffer, length, ppos); 2735 if (ret) 2736 goto out; 2737 if (write) { 2738 int oldval = user_zonelist_order; 2739 if (__parse_numa_zonelist_order((char*)table->data)) { 2740 /* 2741 * bogus value. restore saved string 2742 */ 2743 strncpy((char*)table->data, saved_string, 2744 NUMA_ZONELIST_ORDER_LEN); 2745 user_zonelist_order = oldval; 2746 } else if (oldval != user_zonelist_order) { 2747 mutex_lock(&zonelists_mutex); 2748 build_all_zonelists(NULL); 2749 mutex_unlock(&zonelists_mutex); 2750 } 2751 } 2752 out: 2753 mutex_unlock(&zl_order_mutex); 2754 return ret; 2755 } 2756 2757 2758 #define MAX_NODE_LOAD (nr_online_nodes) 2759 static int node_load[MAX_NUMNODES]; 2760 2761 /** 2762 * find_next_best_node - find the next node that should appear in a given node's fallback list 2763 * @node: node whose fallback list we're appending 2764 * @used_node_mask: nodemask_t of already used nodes 2765 * 2766 * We use a number of factors to determine which is the next node that should 2767 * appear on a given node's fallback list. The node should not have appeared 2768 * already in @node's fallback list, and it should be the next closest node 2769 * according to the distance array (which contains arbitrary distance values 2770 * from each node to each node in the system), and should also prefer nodes 2771 * with no CPUs, since presumably they'll have very little allocation pressure 2772 * on them otherwise. 2773 * It returns -1 if no node is found. 2774 */ 2775 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2776 { 2777 int n, val; 2778 int min_val = INT_MAX; 2779 int best_node = -1; 2780 const struct cpumask *tmp = cpumask_of_node(0); 2781 2782 /* Use the local node if we haven't already */ 2783 if (!node_isset(node, *used_node_mask)) { 2784 node_set(node, *used_node_mask); 2785 return node; 2786 } 2787 2788 for_each_node_state(n, N_HIGH_MEMORY) { 2789 2790 /* Don't want a node to appear more than once */ 2791 if (node_isset(n, *used_node_mask)) 2792 continue; 2793 2794 /* Use the distance array to find the distance */ 2795 val = node_distance(node, n); 2796 2797 /* Penalize nodes under us ("prefer the next node") */ 2798 val += (n < node); 2799 2800 /* Give preference to headless and unused nodes */ 2801 tmp = cpumask_of_node(n); 2802 if (!cpumask_empty(tmp)) 2803 val += PENALTY_FOR_NODE_WITH_CPUS; 2804 2805 /* Slight preference for less loaded node */ 2806 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2807 val += node_load[n]; 2808 2809 if (val < min_val) { 2810 min_val = val; 2811 best_node = n; 2812 } 2813 } 2814 2815 if (best_node >= 0) 2816 node_set(best_node, *used_node_mask); 2817 2818 return best_node; 2819 } 2820 2821 2822 /* 2823 * Build zonelists ordered by node and zones within node. 2824 * This results in maximum locality--normal zone overflows into local 2825 * DMA zone, if any--but risks exhausting DMA zone. 2826 */ 2827 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2828 { 2829 int j; 2830 struct zonelist *zonelist; 2831 2832 zonelist = &pgdat->node_zonelists[0]; 2833 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2834 ; 2835 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2836 MAX_NR_ZONES - 1); 2837 zonelist->_zonerefs[j].zone = NULL; 2838 zonelist->_zonerefs[j].zone_idx = 0; 2839 } 2840 2841 /* 2842 * Build gfp_thisnode zonelists 2843 */ 2844 static void build_thisnode_zonelists(pg_data_t *pgdat) 2845 { 2846 int j; 2847 struct zonelist *zonelist; 2848 2849 zonelist = &pgdat->node_zonelists[1]; 2850 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2851 zonelist->_zonerefs[j].zone = NULL; 2852 zonelist->_zonerefs[j].zone_idx = 0; 2853 } 2854 2855 /* 2856 * Build zonelists ordered by zone and nodes within zones. 2857 * This results in conserving DMA zone[s] until all Normal memory is 2858 * exhausted, but results in overflowing to remote node while memory 2859 * may still exist in local DMA zone. 2860 */ 2861 static int node_order[MAX_NUMNODES]; 2862 2863 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2864 { 2865 int pos, j, node; 2866 int zone_type; /* needs to be signed */ 2867 struct zone *z; 2868 struct zonelist *zonelist; 2869 2870 zonelist = &pgdat->node_zonelists[0]; 2871 pos = 0; 2872 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2873 for (j = 0; j < nr_nodes; j++) { 2874 node = node_order[j]; 2875 z = &NODE_DATA(node)->node_zones[zone_type]; 2876 if (populated_zone(z)) { 2877 zoneref_set_zone(z, 2878 &zonelist->_zonerefs[pos++]); 2879 check_highest_zone(zone_type); 2880 } 2881 } 2882 } 2883 zonelist->_zonerefs[pos].zone = NULL; 2884 zonelist->_zonerefs[pos].zone_idx = 0; 2885 } 2886 2887 static int default_zonelist_order(void) 2888 { 2889 int nid, zone_type; 2890 unsigned long low_kmem_size,total_size; 2891 struct zone *z; 2892 int average_size; 2893 /* 2894 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2895 * If they are really small and used heavily, the system can fall 2896 * into OOM very easily. 2897 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2898 */ 2899 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2900 low_kmem_size = 0; 2901 total_size = 0; 2902 for_each_online_node(nid) { 2903 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2904 z = &NODE_DATA(nid)->node_zones[zone_type]; 2905 if (populated_zone(z)) { 2906 if (zone_type < ZONE_NORMAL) 2907 low_kmem_size += z->present_pages; 2908 total_size += z->present_pages; 2909 } else if (zone_type == ZONE_NORMAL) { 2910 /* 2911 * If any node has only lowmem, then node order 2912 * is preferred to allow kernel allocations 2913 * locally; otherwise, they can easily infringe 2914 * on other nodes when there is an abundance of 2915 * lowmem available to allocate from. 2916 */ 2917 return ZONELIST_ORDER_NODE; 2918 } 2919 } 2920 } 2921 if (!low_kmem_size || /* there are no DMA area. */ 2922 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2923 return ZONELIST_ORDER_NODE; 2924 /* 2925 * look into each node's config. 2926 * If there is a node whose DMA/DMA32 memory is very big area on 2927 * local memory, NODE_ORDER may be suitable. 2928 */ 2929 average_size = total_size / 2930 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2931 for_each_online_node(nid) { 2932 low_kmem_size = 0; 2933 total_size = 0; 2934 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2935 z = &NODE_DATA(nid)->node_zones[zone_type]; 2936 if (populated_zone(z)) { 2937 if (zone_type < ZONE_NORMAL) 2938 low_kmem_size += z->present_pages; 2939 total_size += z->present_pages; 2940 } 2941 } 2942 if (low_kmem_size && 2943 total_size > average_size && /* ignore small node */ 2944 low_kmem_size > total_size * 70/100) 2945 return ZONELIST_ORDER_NODE; 2946 } 2947 return ZONELIST_ORDER_ZONE; 2948 } 2949 2950 static void set_zonelist_order(void) 2951 { 2952 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2953 current_zonelist_order = default_zonelist_order(); 2954 else 2955 current_zonelist_order = user_zonelist_order; 2956 } 2957 2958 static void build_zonelists(pg_data_t *pgdat) 2959 { 2960 int j, node, load; 2961 enum zone_type i; 2962 nodemask_t used_mask; 2963 int local_node, prev_node; 2964 struct zonelist *zonelist; 2965 int order = current_zonelist_order; 2966 2967 /* initialize zonelists */ 2968 for (i = 0; i < MAX_ZONELISTS; i++) { 2969 zonelist = pgdat->node_zonelists + i; 2970 zonelist->_zonerefs[0].zone = NULL; 2971 zonelist->_zonerefs[0].zone_idx = 0; 2972 } 2973 2974 /* NUMA-aware ordering of nodes */ 2975 local_node = pgdat->node_id; 2976 load = nr_online_nodes; 2977 prev_node = local_node; 2978 nodes_clear(used_mask); 2979 2980 memset(node_order, 0, sizeof(node_order)); 2981 j = 0; 2982 2983 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2984 int distance = node_distance(local_node, node); 2985 2986 /* 2987 * If another node is sufficiently far away then it is better 2988 * to reclaim pages in a zone before going off node. 2989 */ 2990 if (distance > RECLAIM_DISTANCE) 2991 zone_reclaim_mode = 1; 2992 2993 /* 2994 * We don't want to pressure a particular node. 2995 * So adding penalty to the first node in same 2996 * distance group to make it round-robin. 2997 */ 2998 if (distance != node_distance(local_node, prev_node)) 2999 node_load[node] = load; 3000 3001 prev_node = node; 3002 load--; 3003 if (order == ZONELIST_ORDER_NODE) 3004 build_zonelists_in_node_order(pgdat, node); 3005 else 3006 node_order[j++] = node; /* remember order */ 3007 } 3008 3009 if (order == ZONELIST_ORDER_ZONE) { 3010 /* calculate node order -- i.e., DMA last! */ 3011 build_zonelists_in_zone_order(pgdat, j); 3012 } 3013 3014 build_thisnode_zonelists(pgdat); 3015 } 3016 3017 /* Construct the zonelist performance cache - see further mmzone.h */ 3018 static void build_zonelist_cache(pg_data_t *pgdat) 3019 { 3020 struct zonelist *zonelist; 3021 struct zonelist_cache *zlc; 3022 struct zoneref *z; 3023 3024 zonelist = &pgdat->node_zonelists[0]; 3025 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3026 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3027 for (z = zonelist->_zonerefs; z->zone; z++) 3028 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3029 } 3030 3031 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3032 /* 3033 * Return node id of node used for "local" allocations. 3034 * I.e., first node id of first zone in arg node's generic zonelist. 3035 * Used for initializing percpu 'numa_mem', which is used primarily 3036 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3037 */ 3038 int local_memory_node(int node) 3039 { 3040 struct zone *zone; 3041 3042 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3043 gfp_zone(GFP_KERNEL), 3044 NULL, 3045 &zone); 3046 return zone->node; 3047 } 3048 #endif 3049 3050 #else /* CONFIG_NUMA */ 3051 3052 static void set_zonelist_order(void) 3053 { 3054 current_zonelist_order = ZONELIST_ORDER_ZONE; 3055 } 3056 3057 static void build_zonelists(pg_data_t *pgdat) 3058 { 3059 int node, local_node; 3060 enum zone_type j; 3061 struct zonelist *zonelist; 3062 3063 local_node = pgdat->node_id; 3064 3065 zonelist = &pgdat->node_zonelists[0]; 3066 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3067 3068 /* 3069 * Now we build the zonelist so that it contains the zones 3070 * of all the other nodes. 3071 * We don't want to pressure a particular node, so when 3072 * building the zones for node N, we make sure that the 3073 * zones coming right after the local ones are those from 3074 * node N+1 (modulo N) 3075 */ 3076 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3077 if (!node_online(node)) 3078 continue; 3079 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3080 MAX_NR_ZONES - 1); 3081 } 3082 for (node = 0; node < local_node; node++) { 3083 if (!node_online(node)) 3084 continue; 3085 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3086 MAX_NR_ZONES - 1); 3087 } 3088 3089 zonelist->_zonerefs[j].zone = NULL; 3090 zonelist->_zonerefs[j].zone_idx = 0; 3091 } 3092 3093 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3094 static void build_zonelist_cache(pg_data_t *pgdat) 3095 { 3096 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3097 } 3098 3099 #endif /* CONFIG_NUMA */ 3100 3101 /* 3102 * Boot pageset table. One per cpu which is going to be used for all 3103 * zones and all nodes. The parameters will be set in such a way 3104 * that an item put on a list will immediately be handed over to 3105 * the buddy list. This is safe since pageset manipulation is done 3106 * with interrupts disabled. 3107 * 3108 * The boot_pagesets must be kept even after bootup is complete for 3109 * unused processors and/or zones. They do play a role for bootstrapping 3110 * hotplugged processors. 3111 * 3112 * zoneinfo_show() and maybe other functions do 3113 * not check if the processor is online before following the pageset pointer. 3114 * Other parts of the kernel may not check if the zone is available. 3115 */ 3116 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3117 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3118 static void setup_zone_pageset(struct zone *zone); 3119 3120 /* 3121 * Global mutex to protect against size modification of zonelists 3122 * as well as to serialize pageset setup for the new populated zone. 3123 */ 3124 DEFINE_MUTEX(zonelists_mutex); 3125 3126 /* return values int ....just for stop_machine() */ 3127 static __init_refok int __build_all_zonelists(void *data) 3128 { 3129 int nid; 3130 int cpu; 3131 3132 #ifdef CONFIG_NUMA 3133 memset(node_load, 0, sizeof(node_load)); 3134 #endif 3135 for_each_online_node(nid) { 3136 pg_data_t *pgdat = NODE_DATA(nid); 3137 3138 build_zonelists(pgdat); 3139 build_zonelist_cache(pgdat); 3140 } 3141 3142 /* 3143 * Initialize the boot_pagesets that are going to be used 3144 * for bootstrapping processors. The real pagesets for 3145 * each zone will be allocated later when the per cpu 3146 * allocator is available. 3147 * 3148 * boot_pagesets are used also for bootstrapping offline 3149 * cpus if the system is already booted because the pagesets 3150 * are needed to initialize allocators on a specific cpu too. 3151 * F.e. the percpu allocator needs the page allocator which 3152 * needs the percpu allocator in order to allocate its pagesets 3153 * (a chicken-egg dilemma). 3154 */ 3155 for_each_possible_cpu(cpu) { 3156 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3157 3158 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3159 /* 3160 * We now know the "local memory node" for each node-- 3161 * i.e., the node of the first zone in the generic zonelist. 3162 * Set up numa_mem percpu variable for on-line cpus. During 3163 * boot, only the boot cpu should be on-line; we'll init the 3164 * secondary cpus' numa_mem as they come on-line. During 3165 * node/memory hotplug, we'll fixup all on-line cpus. 3166 */ 3167 if (cpu_online(cpu)) 3168 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3169 #endif 3170 } 3171 3172 return 0; 3173 } 3174 3175 /* 3176 * Called with zonelists_mutex held always 3177 * unless system_state == SYSTEM_BOOTING. 3178 */ 3179 void __ref build_all_zonelists(void *data) 3180 { 3181 set_zonelist_order(); 3182 3183 if (system_state == SYSTEM_BOOTING) { 3184 __build_all_zonelists(NULL); 3185 mminit_verify_zonelist(); 3186 cpuset_init_current_mems_allowed(); 3187 } else { 3188 /* we have to stop all cpus to guarantee there is no user 3189 of zonelist */ 3190 #ifdef CONFIG_MEMORY_HOTPLUG 3191 if (data) 3192 setup_zone_pageset((struct zone *)data); 3193 #endif 3194 stop_machine(__build_all_zonelists, NULL, NULL); 3195 /* cpuset refresh routine should be here */ 3196 } 3197 vm_total_pages = nr_free_pagecache_pages(); 3198 /* 3199 * Disable grouping by mobility if the number of pages in the 3200 * system is too low to allow the mechanism to work. It would be 3201 * more accurate, but expensive to check per-zone. This check is 3202 * made on memory-hotadd so a system can start with mobility 3203 * disabled and enable it later 3204 */ 3205 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3206 page_group_by_mobility_disabled = 1; 3207 else 3208 page_group_by_mobility_disabled = 0; 3209 3210 printk("Built %i zonelists in %s order, mobility grouping %s. " 3211 "Total pages: %ld\n", 3212 nr_online_nodes, 3213 zonelist_order_name[current_zonelist_order], 3214 page_group_by_mobility_disabled ? "off" : "on", 3215 vm_total_pages); 3216 #ifdef CONFIG_NUMA 3217 printk("Policy zone: %s\n", zone_names[policy_zone]); 3218 #endif 3219 } 3220 3221 /* 3222 * Helper functions to size the waitqueue hash table. 3223 * Essentially these want to choose hash table sizes sufficiently 3224 * large so that collisions trying to wait on pages are rare. 3225 * But in fact, the number of active page waitqueues on typical 3226 * systems is ridiculously low, less than 200. So this is even 3227 * conservative, even though it seems large. 3228 * 3229 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3230 * waitqueues, i.e. the size of the waitq table given the number of pages. 3231 */ 3232 #define PAGES_PER_WAITQUEUE 256 3233 3234 #ifndef CONFIG_MEMORY_HOTPLUG 3235 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3236 { 3237 unsigned long size = 1; 3238 3239 pages /= PAGES_PER_WAITQUEUE; 3240 3241 while (size < pages) 3242 size <<= 1; 3243 3244 /* 3245 * Once we have dozens or even hundreds of threads sleeping 3246 * on IO we've got bigger problems than wait queue collision. 3247 * Limit the size of the wait table to a reasonable size. 3248 */ 3249 size = min(size, 4096UL); 3250 3251 return max(size, 4UL); 3252 } 3253 #else 3254 /* 3255 * A zone's size might be changed by hot-add, so it is not possible to determine 3256 * a suitable size for its wait_table. So we use the maximum size now. 3257 * 3258 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3259 * 3260 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3261 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3262 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3263 * 3264 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3265 * or more by the traditional way. (See above). It equals: 3266 * 3267 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3268 * ia64(16K page size) : = ( 8G + 4M)byte. 3269 * powerpc (64K page size) : = (32G +16M)byte. 3270 */ 3271 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3272 { 3273 return 4096UL; 3274 } 3275 #endif 3276 3277 /* 3278 * This is an integer logarithm so that shifts can be used later 3279 * to extract the more random high bits from the multiplicative 3280 * hash function before the remainder is taken. 3281 */ 3282 static inline unsigned long wait_table_bits(unsigned long size) 3283 { 3284 return ffz(~size); 3285 } 3286 3287 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3288 3289 /* 3290 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3291 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3292 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3293 * higher will lead to a bigger reserve which will get freed as contiguous 3294 * blocks as reclaim kicks in 3295 */ 3296 static void setup_zone_migrate_reserve(struct zone *zone) 3297 { 3298 unsigned long start_pfn, pfn, end_pfn; 3299 struct page *page; 3300 unsigned long block_migratetype; 3301 int reserve; 3302 3303 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3304 start_pfn = zone->zone_start_pfn; 3305 end_pfn = start_pfn + zone->spanned_pages; 3306 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3307 pageblock_order; 3308 3309 /* 3310 * Reserve blocks are generally in place to help high-order atomic 3311 * allocations that are short-lived. A min_free_kbytes value that 3312 * would result in more than 2 reserve blocks for atomic allocations 3313 * is assumed to be in place to help anti-fragmentation for the 3314 * future allocation of hugepages at runtime. 3315 */ 3316 reserve = min(2, reserve); 3317 3318 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3319 if (!pfn_valid(pfn)) 3320 continue; 3321 page = pfn_to_page(pfn); 3322 3323 /* Watch out for overlapping nodes */ 3324 if (page_to_nid(page) != zone_to_nid(zone)) 3325 continue; 3326 3327 /* Blocks with reserved pages will never free, skip them. */ 3328 if (PageReserved(page)) 3329 continue; 3330 3331 block_migratetype = get_pageblock_migratetype(page); 3332 3333 /* If this block is reserved, account for it */ 3334 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3335 reserve--; 3336 continue; 3337 } 3338 3339 /* Suitable for reserving if this block is movable */ 3340 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3341 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3342 move_freepages_block(zone, page, MIGRATE_RESERVE); 3343 reserve--; 3344 continue; 3345 } 3346 3347 /* 3348 * If the reserve is met and this is a previous reserved block, 3349 * take it back 3350 */ 3351 if (block_migratetype == MIGRATE_RESERVE) { 3352 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3353 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3354 } 3355 } 3356 } 3357 3358 /* 3359 * Initially all pages are reserved - free ones are freed 3360 * up by free_all_bootmem() once the early boot process is 3361 * done. Non-atomic initialization, single-pass. 3362 */ 3363 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3364 unsigned long start_pfn, enum memmap_context context) 3365 { 3366 struct page *page; 3367 unsigned long end_pfn = start_pfn + size; 3368 unsigned long pfn; 3369 struct zone *z; 3370 3371 if (highest_memmap_pfn < end_pfn - 1) 3372 highest_memmap_pfn = end_pfn - 1; 3373 3374 z = &NODE_DATA(nid)->node_zones[zone]; 3375 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3376 /* 3377 * There can be holes in boot-time mem_map[]s 3378 * handed to this function. They do not 3379 * exist on hotplugged memory. 3380 */ 3381 if (context == MEMMAP_EARLY) { 3382 if (!early_pfn_valid(pfn)) 3383 continue; 3384 if (!early_pfn_in_nid(pfn, nid)) 3385 continue; 3386 } 3387 page = pfn_to_page(pfn); 3388 set_page_links(page, zone, nid, pfn); 3389 mminit_verify_page_links(page, zone, nid, pfn); 3390 init_page_count(page); 3391 reset_page_mapcount(page); 3392 SetPageReserved(page); 3393 /* 3394 * Mark the block movable so that blocks are reserved for 3395 * movable at startup. This will force kernel allocations 3396 * to reserve their blocks rather than leaking throughout 3397 * the address space during boot when many long-lived 3398 * kernel allocations are made. Later some blocks near 3399 * the start are marked MIGRATE_RESERVE by 3400 * setup_zone_migrate_reserve() 3401 * 3402 * bitmap is created for zone's valid pfn range. but memmap 3403 * can be created for invalid pages (for alignment) 3404 * check here not to call set_pageblock_migratetype() against 3405 * pfn out of zone. 3406 */ 3407 if ((z->zone_start_pfn <= pfn) 3408 && (pfn < z->zone_start_pfn + z->spanned_pages) 3409 && !(pfn & (pageblock_nr_pages - 1))) 3410 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3411 3412 INIT_LIST_HEAD(&page->lru); 3413 #ifdef WANT_PAGE_VIRTUAL 3414 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3415 if (!is_highmem_idx(zone)) 3416 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3417 #endif 3418 } 3419 } 3420 3421 static void __meminit zone_init_free_lists(struct zone *zone) 3422 { 3423 int order, t; 3424 for_each_migratetype_order(order, t) { 3425 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3426 zone->free_area[order].nr_free = 0; 3427 } 3428 } 3429 3430 #ifndef __HAVE_ARCH_MEMMAP_INIT 3431 #define memmap_init(size, nid, zone, start_pfn) \ 3432 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3433 #endif 3434 3435 static int zone_batchsize(struct zone *zone) 3436 { 3437 #ifdef CONFIG_MMU 3438 int batch; 3439 3440 /* 3441 * The per-cpu-pages pools are set to around 1000th of the 3442 * size of the zone. But no more than 1/2 of a meg. 3443 * 3444 * OK, so we don't know how big the cache is. So guess. 3445 */ 3446 batch = zone->present_pages / 1024; 3447 if (batch * PAGE_SIZE > 512 * 1024) 3448 batch = (512 * 1024) / PAGE_SIZE; 3449 batch /= 4; /* We effectively *= 4 below */ 3450 if (batch < 1) 3451 batch = 1; 3452 3453 /* 3454 * Clamp the batch to a 2^n - 1 value. Having a power 3455 * of 2 value was found to be more likely to have 3456 * suboptimal cache aliasing properties in some cases. 3457 * 3458 * For example if 2 tasks are alternately allocating 3459 * batches of pages, one task can end up with a lot 3460 * of pages of one half of the possible page colors 3461 * and the other with pages of the other colors. 3462 */ 3463 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3464 3465 return batch; 3466 3467 #else 3468 /* The deferral and batching of frees should be suppressed under NOMMU 3469 * conditions. 3470 * 3471 * The problem is that NOMMU needs to be able to allocate large chunks 3472 * of contiguous memory as there's no hardware page translation to 3473 * assemble apparent contiguous memory from discontiguous pages. 3474 * 3475 * Queueing large contiguous runs of pages for batching, however, 3476 * causes the pages to actually be freed in smaller chunks. As there 3477 * can be a significant delay between the individual batches being 3478 * recycled, this leads to the once large chunks of space being 3479 * fragmented and becoming unavailable for high-order allocations. 3480 */ 3481 return 0; 3482 #endif 3483 } 3484 3485 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3486 { 3487 struct per_cpu_pages *pcp; 3488 int migratetype; 3489 3490 memset(p, 0, sizeof(*p)); 3491 3492 pcp = &p->pcp; 3493 pcp->count = 0; 3494 pcp->high = 6 * batch; 3495 pcp->batch = max(1UL, 1 * batch); 3496 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3497 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3498 } 3499 3500 /* 3501 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3502 * to the value high for the pageset p. 3503 */ 3504 3505 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3506 unsigned long high) 3507 { 3508 struct per_cpu_pages *pcp; 3509 3510 pcp = &p->pcp; 3511 pcp->high = high; 3512 pcp->batch = max(1UL, high/4); 3513 if ((high/4) > (PAGE_SHIFT * 8)) 3514 pcp->batch = PAGE_SHIFT * 8; 3515 } 3516 3517 static __meminit void setup_zone_pageset(struct zone *zone) 3518 { 3519 int cpu; 3520 3521 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3522 3523 for_each_possible_cpu(cpu) { 3524 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3525 3526 setup_pageset(pcp, zone_batchsize(zone)); 3527 3528 if (percpu_pagelist_fraction) 3529 setup_pagelist_highmark(pcp, 3530 (zone->present_pages / 3531 percpu_pagelist_fraction)); 3532 } 3533 } 3534 3535 /* 3536 * Allocate per cpu pagesets and initialize them. 3537 * Before this call only boot pagesets were available. 3538 */ 3539 void __init setup_per_cpu_pageset(void) 3540 { 3541 struct zone *zone; 3542 3543 for_each_populated_zone(zone) 3544 setup_zone_pageset(zone); 3545 } 3546 3547 static noinline __init_refok 3548 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3549 { 3550 int i; 3551 struct pglist_data *pgdat = zone->zone_pgdat; 3552 size_t alloc_size; 3553 3554 /* 3555 * The per-page waitqueue mechanism uses hashed waitqueues 3556 * per zone. 3557 */ 3558 zone->wait_table_hash_nr_entries = 3559 wait_table_hash_nr_entries(zone_size_pages); 3560 zone->wait_table_bits = 3561 wait_table_bits(zone->wait_table_hash_nr_entries); 3562 alloc_size = zone->wait_table_hash_nr_entries 3563 * sizeof(wait_queue_head_t); 3564 3565 if (!slab_is_available()) { 3566 zone->wait_table = (wait_queue_head_t *) 3567 alloc_bootmem_node(pgdat, alloc_size); 3568 } else { 3569 /* 3570 * This case means that a zone whose size was 0 gets new memory 3571 * via memory hot-add. 3572 * But it may be the case that a new node was hot-added. In 3573 * this case vmalloc() will not be able to use this new node's 3574 * memory - this wait_table must be initialized to use this new 3575 * node itself as well. 3576 * To use this new node's memory, further consideration will be 3577 * necessary. 3578 */ 3579 zone->wait_table = vmalloc(alloc_size); 3580 } 3581 if (!zone->wait_table) 3582 return -ENOMEM; 3583 3584 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3585 init_waitqueue_head(zone->wait_table + i); 3586 3587 return 0; 3588 } 3589 3590 static int __zone_pcp_update(void *data) 3591 { 3592 struct zone *zone = data; 3593 int cpu; 3594 unsigned long batch = zone_batchsize(zone), flags; 3595 3596 for_each_possible_cpu(cpu) { 3597 struct per_cpu_pageset *pset; 3598 struct per_cpu_pages *pcp; 3599 3600 pset = per_cpu_ptr(zone->pageset, cpu); 3601 pcp = &pset->pcp; 3602 3603 local_irq_save(flags); 3604 free_pcppages_bulk(zone, pcp->count, pcp); 3605 setup_pageset(pset, batch); 3606 local_irq_restore(flags); 3607 } 3608 return 0; 3609 } 3610 3611 void zone_pcp_update(struct zone *zone) 3612 { 3613 stop_machine(__zone_pcp_update, zone, NULL); 3614 } 3615 3616 static __meminit void zone_pcp_init(struct zone *zone) 3617 { 3618 /* 3619 * per cpu subsystem is not up at this point. The following code 3620 * relies on the ability of the linker to provide the 3621 * offset of a (static) per cpu variable into the per cpu area. 3622 */ 3623 zone->pageset = &boot_pageset; 3624 3625 if (zone->present_pages) 3626 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3627 zone->name, zone->present_pages, 3628 zone_batchsize(zone)); 3629 } 3630 3631 __meminit int init_currently_empty_zone(struct zone *zone, 3632 unsigned long zone_start_pfn, 3633 unsigned long size, 3634 enum memmap_context context) 3635 { 3636 struct pglist_data *pgdat = zone->zone_pgdat; 3637 int ret; 3638 ret = zone_wait_table_init(zone, size); 3639 if (ret) 3640 return ret; 3641 pgdat->nr_zones = zone_idx(zone) + 1; 3642 3643 zone->zone_start_pfn = zone_start_pfn; 3644 3645 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3646 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3647 pgdat->node_id, 3648 (unsigned long)zone_idx(zone), 3649 zone_start_pfn, (zone_start_pfn + size)); 3650 3651 zone_init_free_lists(zone); 3652 3653 return 0; 3654 } 3655 3656 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3657 /* 3658 * Basic iterator support. Return the first range of PFNs for a node 3659 * Note: nid == MAX_NUMNODES returns first region regardless of node 3660 */ 3661 static int __meminit first_active_region_index_in_nid(int nid) 3662 { 3663 int i; 3664 3665 for (i = 0; i < nr_nodemap_entries; i++) 3666 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3667 return i; 3668 3669 return -1; 3670 } 3671 3672 /* 3673 * Basic iterator support. Return the next active range of PFNs for a node 3674 * Note: nid == MAX_NUMNODES returns next region regardless of node 3675 */ 3676 static int __meminit next_active_region_index_in_nid(int index, int nid) 3677 { 3678 for (index = index + 1; index < nr_nodemap_entries; index++) 3679 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3680 return index; 3681 3682 return -1; 3683 } 3684 3685 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3686 /* 3687 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3688 * Architectures may implement their own version but if add_active_range() 3689 * was used and there are no special requirements, this is a convenient 3690 * alternative 3691 */ 3692 int __meminit __early_pfn_to_nid(unsigned long pfn) 3693 { 3694 int i; 3695 3696 for (i = 0; i < nr_nodemap_entries; i++) { 3697 unsigned long start_pfn = early_node_map[i].start_pfn; 3698 unsigned long end_pfn = early_node_map[i].end_pfn; 3699 3700 if (start_pfn <= pfn && pfn < end_pfn) 3701 return early_node_map[i].nid; 3702 } 3703 /* This is a memory hole */ 3704 return -1; 3705 } 3706 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3707 3708 int __meminit early_pfn_to_nid(unsigned long pfn) 3709 { 3710 int nid; 3711 3712 nid = __early_pfn_to_nid(pfn); 3713 if (nid >= 0) 3714 return nid; 3715 /* just returns 0 */ 3716 return 0; 3717 } 3718 3719 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3720 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3721 { 3722 int nid; 3723 3724 nid = __early_pfn_to_nid(pfn); 3725 if (nid >= 0 && nid != node) 3726 return false; 3727 return true; 3728 } 3729 #endif 3730 3731 /* Basic iterator support to walk early_node_map[] */ 3732 #define for_each_active_range_index_in_nid(i, nid) \ 3733 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3734 i = next_active_region_index_in_nid(i, nid)) 3735 3736 /** 3737 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3738 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3739 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3740 * 3741 * If an architecture guarantees that all ranges registered with 3742 * add_active_ranges() contain no holes and may be freed, this 3743 * this function may be used instead of calling free_bootmem() manually. 3744 */ 3745 void __init free_bootmem_with_active_regions(int nid, 3746 unsigned long max_low_pfn) 3747 { 3748 int i; 3749 3750 for_each_active_range_index_in_nid(i, nid) { 3751 unsigned long size_pages = 0; 3752 unsigned long end_pfn = early_node_map[i].end_pfn; 3753 3754 if (early_node_map[i].start_pfn >= max_low_pfn) 3755 continue; 3756 3757 if (end_pfn > max_low_pfn) 3758 end_pfn = max_low_pfn; 3759 3760 size_pages = end_pfn - early_node_map[i].start_pfn; 3761 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3762 PFN_PHYS(early_node_map[i].start_pfn), 3763 size_pages << PAGE_SHIFT); 3764 } 3765 } 3766 3767 #ifdef CONFIG_HAVE_MEMBLOCK 3768 /* 3769 * Basic iterator support. Return the last range of PFNs for a node 3770 * Note: nid == MAX_NUMNODES returns last region regardless of node 3771 */ 3772 static int __meminit last_active_region_index_in_nid(int nid) 3773 { 3774 int i; 3775 3776 for (i = nr_nodemap_entries - 1; i >= 0; i--) 3777 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3778 return i; 3779 3780 return -1; 3781 } 3782 3783 /* 3784 * Basic iterator support. Return the previous active range of PFNs for a node 3785 * Note: nid == MAX_NUMNODES returns next region regardless of node 3786 */ 3787 static int __meminit previous_active_region_index_in_nid(int index, int nid) 3788 { 3789 for (index = index - 1; index >= 0; index--) 3790 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3791 return index; 3792 3793 return -1; 3794 } 3795 3796 #define for_each_active_range_index_in_nid_reverse(i, nid) \ 3797 for (i = last_active_region_index_in_nid(nid); i != -1; \ 3798 i = previous_active_region_index_in_nid(i, nid)) 3799 3800 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 3801 u64 goal, u64 limit) 3802 { 3803 int i; 3804 3805 /* Need to go over early_node_map to find out good range for node */ 3806 for_each_active_range_index_in_nid_reverse(i, nid) { 3807 u64 addr; 3808 u64 ei_start, ei_last; 3809 u64 final_start, final_end; 3810 3811 ei_last = early_node_map[i].end_pfn; 3812 ei_last <<= PAGE_SHIFT; 3813 ei_start = early_node_map[i].start_pfn; 3814 ei_start <<= PAGE_SHIFT; 3815 3816 final_start = max(ei_start, goal); 3817 final_end = min(ei_last, limit); 3818 3819 if (final_start >= final_end) 3820 continue; 3821 3822 addr = memblock_find_in_range(final_start, final_end, size, align); 3823 3824 if (addr == MEMBLOCK_ERROR) 3825 continue; 3826 3827 return addr; 3828 } 3829 3830 return MEMBLOCK_ERROR; 3831 } 3832 #endif 3833 3834 int __init add_from_early_node_map(struct range *range, int az, 3835 int nr_range, int nid) 3836 { 3837 int i; 3838 u64 start, end; 3839 3840 /* need to go over early_node_map to find out good range for node */ 3841 for_each_active_range_index_in_nid(i, nid) { 3842 start = early_node_map[i].start_pfn; 3843 end = early_node_map[i].end_pfn; 3844 nr_range = add_range(range, az, nr_range, start, end); 3845 } 3846 return nr_range; 3847 } 3848 3849 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3850 { 3851 int i; 3852 int ret; 3853 3854 for_each_active_range_index_in_nid(i, nid) { 3855 ret = work_fn(early_node_map[i].start_pfn, 3856 early_node_map[i].end_pfn, data); 3857 if (ret) 3858 break; 3859 } 3860 } 3861 /** 3862 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3863 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3864 * 3865 * If an architecture guarantees that all ranges registered with 3866 * add_active_ranges() contain no holes and may be freed, this 3867 * function may be used instead of calling memory_present() manually. 3868 */ 3869 void __init sparse_memory_present_with_active_regions(int nid) 3870 { 3871 int i; 3872 3873 for_each_active_range_index_in_nid(i, nid) 3874 memory_present(early_node_map[i].nid, 3875 early_node_map[i].start_pfn, 3876 early_node_map[i].end_pfn); 3877 } 3878 3879 /** 3880 * get_pfn_range_for_nid - Return the start and end page frames for a node 3881 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3882 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3883 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3884 * 3885 * It returns the start and end page frame of a node based on information 3886 * provided by an arch calling add_active_range(). If called for a node 3887 * with no available memory, a warning is printed and the start and end 3888 * PFNs will be 0. 3889 */ 3890 void __meminit get_pfn_range_for_nid(unsigned int nid, 3891 unsigned long *start_pfn, unsigned long *end_pfn) 3892 { 3893 int i; 3894 *start_pfn = -1UL; 3895 *end_pfn = 0; 3896 3897 for_each_active_range_index_in_nid(i, nid) { 3898 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3899 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3900 } 3901 3902 if (*start_pfn == -1UL) 3903 *start_pfn = 0; 3904 } 3905 3906 /* 3907 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3908 * assumption is made that zones within a node are ordered in monotonic 3909 * increasing memory addresses so that the "highest" populated zone is used 3910 */ 3911 static void __init find_usable_zone_for_movable(void) 3912 { 3913 int zone_index; 3914 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3915 if (zone_index == ZONE_MOVABLE) 3916 continue; 3917 3918 if (arch_zone_highest_possible_pfn[zone_index] > 3919 arch_zone_lowest_possible_pfn[zone_index]) 3920 break; 3921 } 3922 3923 VM_BUG_ON(zone_index == -1); 3924 movable_zone = zone_index; 3925 } 3926 3927 /* 3928 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3929 * because it is sized independent of architecture. Unlike the other zones, 3930 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3931 * in each node depending on the size of each node and how evenly kernelcore 3932 * is distributed. This helper function adjusts the zone ranges 3933 * provided by the architecture for a given node by using the end of the 3934 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3935 * zones within a node are in order of monotonic increases memory addresses 3936 */ 3937 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3938 unsigned long zone_type, 3939 unsigned long node_start_pfn, 3940 unsigned long node_end_pfn, 3941 unsigned long *zone_start_pfn, 3942 unsigned long *zone_end_pfn) 3943 { 3944 /* Only adjust if ZONE_MOVABLE is on this node */ 3945 if (zone_movable_pfn[nid]) { 3946 /* Size ZONE_MOVABLE */ 3947 if (zone_type == ZONE_MOVABLE) { 3948 *zone_start_pfn = zone_movable_pfn[nid]; 3949 *zone_end_pfn = min(node_end_pfn, 3950 arch_zone_highest_possible_pfn[movable_zone]); 3951 3952 /* Adjust for ZONE_MOVABLE starting within this range */ 3953 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3954 *zone_end_pfn > zone_movable_pfn[nid]) { 3955 *zone_end_pfn = zone_movable_pfn[nid]; 3956 3957 /* Check if this whole range is within ZONE_MOVABLE */ 3958 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3959 *zone_start_pfn = *zone_end_pfn; 3960 } 3961 } 3962 3963 /* 3964 * Return the number of pages a zone spans in a node, including holes 3965 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3966 */ 3967 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3968 unsigned long zone_type, 3969 unsigned long *ignored) 3970 { 3971 unsigned long node_start_pfn, node_end_pfn; 3972 unsigned long zone_start_pfn, zone_end_pfn; 3973 3974 /* Get the start and end of the node and zone */ 3975 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3976 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3977 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3978 adjust_zone_range_for_zone_movable(nid, zone_type, 3979 node_start_pfn, node_end_pfn, 3980 &zone_start_pfn, &zone_end_pfn); 3981 3982 /* Check that this node has pages within the zone's required range */ 3983 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3984 return 0; 3985 3986 /* Move the zone boundaries inside the node if necessary */ 3987 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3988 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3989 3990 /* Return the spanned pages */ 3991 return zone_end_pfn - zone_start_pfn; 3992 } 3993 3994 /* 3995 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3996 * then all holes in the requested range will be accounted for. 3997 */ 3998 unsigned long __meminit __absent_pages_in_range(int nid, 3999 unsigned long range_start_pfn, 4000 unsigned long range_end_pfn) 4001 { 4002 int i = 0; 4003 unsigned long prev_end_pfn = 0, hole_pages = 0; 4004 unsigned long start_pfn; 4005 4006 /* Find the end_pfn of the first active range of pfns in the node */ 4007 i = first_active_region_index_in_nid(nid); 4008 if (i == -1) 4009 return 0; 4010 4011 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4012 4013 /* Account for ranges before physical memory on this node */ 4014 if (early_node_map[i].start_pfn > range_start_pfn) 4015 hole_pages = prev_end_pfn - range_start_pfn; 4016 4017 /* Find all holes for the zone within the node */ 4018 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 4019 4020 /* No need to continue if prev_end_pfn is outside the zone */ 4021 if (prev_end_pfn >= range_end_pfn) 4022 break; 4023 4024 /* Make sure the end of the zone is not within the hole */ 4025 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4026 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 4027 4028 /* Update the hole size cound and move on */ 4029 if (start_pfn > range_start_pfn) { 4030 BUG_ON(prev_end_pfn > start_pfn); 4031 hole_pages += start_pfn - prev_end_pfn; 4032 } 4033 prev_end_pfn = early_node_map[i].end_pfn; 4034 } 4035 4036 /* Account for ranges past physical memory on this node */ 4037 if (range_end_pfn > prev_end_pfn) 4038 hole_pages += range_end_pfn - 4039 max(range_start_pfn, prev_end_pfn); 4040 4041 return hole_pages; 4042 } 4043 4044 /** 4045 * absent_pages_in_range - Return number of page frames in holes within a range 4046 * @start_pfn: The start PFN to start searching for holes 4047 * @end_pfn: The end PFN to stop searching for holes 4048 * 4049 * It returns the number of pages frames in memory holes within a range. 4050 */ 4051 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4052 unsigned long end_pfn) 4053 { 4054 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4055 } 4056 4057 /* Return the number of page frames in holes in a zone on a node */ 4058 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4059 unsigned long zone_type, 4060 unsigned long *ignored) 4061 { 4062 unsigned long node_start_pfn, node_end_pfn; 4063 unsigned long zone_start_pfn, zone_end_pfn; 4064 4065 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4066 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 4067 node_start_pfn); 4068 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 4069 node_end_pfn); 4070 4071 adjust_zone_range_for_zone_movable(nid, zone_type, 4072 node_start_pfn, node_end_pfn, 4073 &zone_start_pfn, &zone_end_pfn); 4074 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4075 } 4076 4077 #else 4078 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4079 unsigned long zone_type, 4080 unsigned long *zones_size) 4081 { 4082 return zones_size[zone_type]; 4083 } 4084 4085 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4086 unsigned long zone_type, 4087 unsigned long *zholes_size) 4088 { 4089 if (!zholes_size) 4090 return 0; 4091 4092 return zholes_size[zone_type]; 4093 } 4094 4095 #endif 4096 4097 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4098 unsigned long *zones_size, unsigned long *zholes_size) 4099 { 4100 unsigned long realtotalpages, totalpages = 0; 4101 enum zone_type i; 4102 4103 for (i = 0; i < MAX_NR_ZONES; i++) 4104 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4105 zones_size); 4106 pgdat->node_spanned_pages = totalpages; 4107 4108 realtotalpages = totalpages; 4109 for (i = 0; i < MAX_NR_ZONES; i++) 4110 realtotalpages -= 4111 zone_absent_pages_in_node(pgdat->node_id, i, 4112 zholes_size); 4113 pgdat->node_present_pages = realtotalpages; 4114 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4115 realtotalpages); 4116 } 4117 4118 #ifndef CONFIG_SPARSEMEM 4119 /* 4120 * Calculate the size of the zone->blockflags rounded to an unsigned long 4121 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4122 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4123 * round what is now in bits to nearest long in bits, then return it in 4124 * bytes. 4125 */ 4126 static unsigned long __init usemap_size(unsigned long zonesize) 4127 { 4128 unsigned long usemapsize; 4129 4130 usemapsize = roundup(zonesize, pageblock_nr_pages); 4131 usemapsize = usemapsize >> pageblock_order; 4132 usemapsize *= NR_PAGEBLOCK_BITS; 4133 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4134 4135 return usemapsize / 8; 4136 } 4137 4138 static void __init setup_usemap(struct pglist_data *pgdat, 4139 struct zone *zone, unsigned long zonesize) 4140 { 4141 unsigned long usemapsize = usemap_size(zonesize); 4142 zone->pageblock_flags = NULL; 4143 if (usemapsize) 4144 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 4145 } 4146 #else 4147 static inline void setup_usemap(struct pglist_data *pgdat, 4148 struct zone *zone, unsigned long zonesize) {} 4149 #endif /* CONFIG_SPARSEMEM */ 4150 4151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4152 4153 /* Return a sensible default order for the pageblock size. */ 4154 static inline int pageblock_default_order(void) 4155 { 4156 if (HPAGE_SHIFT > PAGE_SHIFT) 4157 return HUGETLB_PAGE_ORDER; 4158 4159 return MAX_ORDER-1; 4160 } 4161 4162 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4163 static inline void __init set_pageblock_order(unsigned int order) 4164 { 4165 /* Check that pageblock_nr_pages has not already been setup */ 4166 if (pageblock_order) 4167 return; 4168 4169 /* 4170 * Assume the largest contiguous order of interest is a huge page. 4171 * This value may be variable depending on boot parameters on IA64 4172 */ 4173 pageblock_order = order; 4174 } 4175 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4176 4177 /* 4178 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4179 * and pageblock_default_order() are unused as pageblock_order is set 4180 * at compile-time. See include/linux/pageblock-flags.h for the values of 4181 * pageblock_order based on the kernel config 4182 */ 4183 static inline int pageblock_default_order(unsigned int order) 4184 { 4185 return MAX_ORDER-1; 4186 } 4187 #define set_pageblock_order(x) do {} while (0) 4188 4189 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4190 4191 /* 4192 * Set up the zone data structures: 4193 * - mark all pages reserved 4194 * - mark all memory queues empty 4195 * - clear the memory bitmaps 4196 */ 4197 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4198 unsigned long *zones_size, unsigned long *zholes_size) 4199 { 4200 enum zone_type j; 4201 int nid = pgdat->node_id; 4202 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4203 int ret; 4204 4205 pgdat_resize_init(pgdat); 4206 pgdat->nr_zones = 0; 4207 init_waitqueue_head(&pgdat->kswapd_wait); 4208 pgdat->kswapd_max_order = 0; 4209 pgdat_page_cgroup_init(pgdat); 4210 4211 for (j = 0; j < MAX_NR_ZONES; j++) { 4212 struct zone *zone = pgdat->node_zones + j; 4213 unsigned long size, realsize, memmap_pages; 4214 enum lru_list l; 4215 4216 size = zone_spanned_pages_in_node(nid, j, zones_size); 4217 realsize = size - zone_absent_pages_in_node(nid, j, 4218 zholes_size); 4219 4220 /* 4221 * Adjust realsize so that it accounts for how much memory 4222 * is used by this zone for memmap. This affects the watermark 4223 * and per-cpu initialisations 4224 */ 4225 memmap_pages = 4226 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4227 if (realsize >= memmap_pages) { 4228 realsize -= memmap_pages; 4229 if (memmap_pages) 4230 printk(KERN_DEBUG 4231 " %s zone: %lu pages used for memmap\n", 4232 zone_names[j], memmap_pages); 4233 } else 4234 printk(KERN_WARNING 4235 " %s zone: %lu pages exceeds realsize %lu\n", 4236 zone_names[j], memmap_pages, realsize); 4237 4238 /* Account for reserved pages */ 4239 if (j == 0 && realsize > dma_reserve) { 4240 realsize -= dma_reserve; 4241 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4242 zone_names[0], dma_reserve); 4243 } 4244 4245 if (!is_highmem_idx(j)) 4246 nr_kernel_pages += realsize; 4247 nr_all_pages += realsize; 4248 4249 zone->spanned_pages = size; 4250 zone->present_pages = realsize; 4251 #ifdef CONFIG_NUMA 4252 zone->node = nid; 4253 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4254 / 100; 4255 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4256 #endif 4257 zone->name = zone_names[j]; 4258 spin_lock_init(&zone->lock); 4259 spin_lock_init(&zone->lru_lock); 4260 zone_seqlock_init(zone); 4261 zone->zone_pgdat = pgdat; 4262 4263 zone_pcp_init(zone); 4264 for_each_lru(l) { 4265 INIT_LIST_HEAD(&zone->lru[l].list); 4266 zone->reclaim_stat.nr_saved_scan[l] = 0; 4267 } 4268 zone->reclaim_stat.recent_rotated[0] = 0; 4269 zone->reclaim_stat.recent_rotated[1] = 0; 4270 zone->reclaim_stat.recent_scanned[0] = 0; 4271 zone->reclaim_stat.recent_scanned[1] = 0; 4272 zap_zone_vm_stats(zone); 4273 zone->flags = 0; 4274 if (!size) 4275 continue; 4276 4277 set_pageblock_order(pageblock_default_order()); 4278 setup_usemap(pgdat, zone, size); 4279 ret = init_currently_empty_zone(zone, zone_start_pfn, 4280 size, MEMMAP_EARLY); 4281 BUG_ON(ret); 4282 memmap_init(size, nid, j, zone_start_pfn); 4283 zone_start_pfn += size; 4284 } 4285 } 4286 4287 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4288 { 4289 /* Skip empty nodes */ 4290 if (!pgdat->node_spanned_pages) 4291 return; 4292 4293 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4294 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4295 if (!pgdat->node_mem_map) { 4296 unsigned long size, start, end; 4297 struct page *map; 4298 4299 /* 4300 * The zone's endpoints aren't required to be MAX_ORDER 4301 * aligned but the node_mem_map endpoints must be in order 4302 * for the buddy allocator to function correctly. 4303 */ 4304 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4305 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4306 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4307 size = (end - start) * sizeof(struct page); 4308 map = alloc_remap(pgdat->node_id, size); 4309 if (!map) 4310 map = alloc_bootmem_node(pgdat, size); 4311 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4312 } 4313 #ifndef CONFIG_NEED_MULTIPLE_NODES 4314 /* 4315 * With no DISCONTIG, the global mem_map is just set as node 0's 4316 */ 4317 if (pgdat == NODE_DATA(0)) { 4318 mem_map = NODE_DATA(0)->node_mem_map; 4319 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4320 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4321 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4322 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4323 } 4324 #endif 4325 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4326 } 4327 4328 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4329 unsigned long node_start_pfn, unsigned long *zholes_size) 4330 { 4331 pg_data_t *pgdat = NODE_DATA(nid); 4332 4333 pgdat->node_id = nid; 4334 pgdat->node_start_pfn = node_start_pfn; 4335 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4336 4337 alloc_node_mem_map(pgdat); 4338 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4339 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4340 nid, (unsigned long)pgdat, 4341 (unsigned long)pgdat->node_mem_map); 4342 #endif 4343 4344 free_area_init_core(pgdat, zones_size, zholes_size); 4345 } 4346 4347 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4348 4349 #if MAX_NUMNODES > 1 4350 /* 4351 * Figure out the number of possible node ids. 4352 */ 4353 static void __init setup_nr_node_ids(void) 4354 { 4355 unsigned int node; 4356 unsigned int highest = 0; 4357 4358 for_each_node_mask(node, node_possible_map) 4359 highest = node; 4360 nr_node_ids = highest + 1; 4361 } 4362 #else 4363 static inline void setup_nr_node_ids(void) 4364 { 4365 } 4366 #endif 4367 4368 /** 4369 * add_active_range - Register a range of PFNs backed by physical memory 4370 * @nid: The node ID the range resides on 4371 * @start_pfn: The start PFN of the available physical memory 4372 * @end_pfn: The end PFN of the available physical memory 4373 * 4374 * These ranges are stored in an early_node_map[] and later used by 4375 * free_area_init_nodes() to calculate zone sizes and holes. If the 4376 * range spans a memory hole, it is up to the architecture to ensure 4377 * the memory is not freed by the bootmem allocator. If possible 4378 * the range being registered will be merged with existing ranges. 4379 */ 4380 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4381 unsigned long end_pfn) 4382 { 4383 int i; 4384 4385 mminit_dprintk(MMINIT_TRACE, "memory_register", 4386 "Entering add_active_range(%d, %#lx, %#lx) " 4387 "%d entries of %d used\n", 4388 nid, start_pfn, end_pfn, 4389 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4390 4391 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4392 4393 /* Merge with existing active regions if possible */ 4394 for (i = 0; i < nr_nodemap_entries; i++) { 4395 if (early_node_map[i].nid != nid) 4396 continue; 4397 4398 /* Skip if an existing region covers this new one */ 4399 if (start_pfn >= early_node_map[i].start_pfn && 4400 end_pfn <= early_node_map[i].end_pfn) 4401 return; 4402 4403 /* Merge forward if suitable */ 4404 if (start_pfn <= early_node_map[i].end_pfn && 4405 end_pfn > early_node_map[i].end_pfn) { 4406 early_node_map[i].end_pfn = end_pfn; 4407 return; 4408 } 4409 4410 /* Merge backward if suitable */ 4411 if (start_pfn < early_node_map[i].start_pfn && 4412 end_pfn >= early_node_map[i].start_pfn) { 4413 early_node_map[i].start_pfn = start_pfn; 4414 return; 4415 } 4416 } 4417 4418 /* Check that early_node_map is large enough */ 4419 if (i >= MAX_ACTIVE_REGIONS) { 4420 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4421 MAX_ACTIVE_REGIONS); 4422 return; 4423 } 4424 4425 early_node_map[i].nid = nid; 4426 early_node_map[i].start_pfn = start_pfn; 4427 early_node_map[i].end_pfn = end_pfn; 4428 nr_nodemap_entries = i + 1; 4429 } 4430 4431 /** 4432 * remove_active_range - Shrink an existing registered range of PFNs 4433 * @nid: The node id the range is on that should be shrunk 4434 * @start_pfn: The new PFN of the range 4435 * @end_pfn: The new PFN of the range 4436 * 4437 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4438 * The map is kept near the end physical page range that has already been 4439 * registered. This function allows an arch to shrink an existing registered 4440 * range. 4441 */ 4442 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4443 unsigned long end_pfn) 4444 { 4445 int i, j; 4446 int removed = 0; 4447 4448 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4449 nid, start_pfn, end_pfn); 4450 4451 /* Find the old active region end and shrink */ 4452 for_each_active_range_index_in_nid(i, nid) { 4453 if (early_node_map[i].start_pfn >= start_pfn && 4454 early_node_map[i].end_pfn <= end_pfn) { 4455 /* clear it */ 4456 early_node_map[i].start_pfn = 0; 4457 early_node_map[i].end_pfn = 0; 4458 removed = 1; 4459 continue; 4460 } 4461 if (early_node_map[i].start_pfn < start_pfn && 4462 early_node_map[i].end_pfn > start_pfn) { 4463 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4464 early_node_map[i].end_pfn = start_pfn; 4465 if (temp_end_pfn > end_pfn) 4466 add_active_range(nid, end_pfn, temp_end_pfn); 4467 continue; 4468 } 4469 if (early_node_map[i].start_pfn >= start_pfn && 4470 early_node_map[i].end_pfn > end_pfn && 4471 early_node_map[i].start_pfn < end_pfn) { 4472 early_node_map[i].start_pfn = end_pfn; 4473 continue; 4474 } 4475 } 4476 4477 if (!removed) 4478 return; 4479 4480 /* remove the blank ones */ 4481 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4482 if (early_node_map[i].nid != nid) 4483 continue; 4484 if (early_node_map[i].end_pfn) 4485 continue; 4486 /* we found it, get rid of it */ 4487 for (j = i; j < nr_nodemap_entries - 1; j++) 4488 memcpy(&early_node_map[j], &early_node_map[j+1], 4489 sizeof(early_node_map[j])); 4490 j = nr_nodemap_entries - 1; 4491 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4492 nr_nodemap_entries--; 4493 } 4494 } 4495 4496 /** 4497 * remove_all_active_ranges - Remove all currently registered regions 4498 * 4499 * During discovery, it may be found that a table like SRAT is invalid 4500 * and an alternative discovery method must be used. This function removes 4501 * all currently registered regions. 4502 */ 4503 void __init remove_all_active_ranges(void) 4504 { 4505 memset(early_node_map, 0, sizeof(early_node_map)); 4506 nr_nodemap_entries = 0; 4507 } 4508 4509 /* Compare two active node_active_regions */ 4510 static int __init cmp_node_active_region(const void *a, const void *b) 4511 { 4512 struct node_active_region *arange = (struct node_active_region *)a; 4513 struct node_active_region *brange = (struct node_active_region *)b; 4514 4515 /* Done this way to avoid overflows */ 4516 if (arange->start_pfn > brange->start_pfn) 4517 return 1; 4518 if (arange->start_pfn < brange->start_pfn) 4519 return -1; 4520 4521 return 0; 4522 } 4523 4524 /* sort the node_map by start_pfn */ 4525 void __init sort_node_map(void) 4526 { 4527 sort(early_node_map, (size_t)nr_nodemap_entries, 4528 sizeof(struct node_active_region), 4529 cmp_node_active_region, NULL); 4530 } 4531 4532 /* Find the lowest pfn for a node */ 4533 static unsigned long __init find_min_pfn_for_node(int nid) 4534 { 4535 int i; 4536 unsigned long min_pfn = ULONG_MAX; 4537 4538 /* Assuming a sorted map, the first range found has the starting pfn */ 4539 for_each_active_range_index_in_nid(i, nid) 4540 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4541 4542 if (min_pfn == ULONG_MAX) { 4543 printk(KERN_WARNING 4544 "Could not find start_pfn for node %d\n", nid); 4545 return 0; 4546 } 4547 4548 return min_pfn; 4549 } 4550 4551 /** 4552 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4553 * 4554 * It returns the minimum PFN based on information provided via 4555 * add_active_range(). 4556 */ 4557 unsigned long __init find_min_pfn_with_active_regions(void) 4558 { 4559 return find_min_pfn_for_node(MAX_NUMNODES); 4560 } 4561 4562 /* 4563 * early_calculate_totalpages() 4564 * Sum pages in active regions for movable zone. 4565 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4566 */ 4567 static unsigned long __init early_calculate_totalpages(void) 4568 { 4569 int i; 4570 unsigned long totalpages = 0; 4571 4572 for (i = 0; i < nr_nodemap_entries; i++) { 4573 unsigned long pages = early_node_map[i].end_pfn - 4574 early_node_map[i].start_pfn; 4575 totalpages += pages; 4576 if (pages) 4577 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4578 } 4579 return totalpages; 4580 } 4581 4582 /* 4583 * Find the PFN the Movable zone begins in each node. Kernel memory 4584 * is spread evenly between nodes as long as the nodes have enough 4585 * memory. When they don't, some nodes will have more kernelcore than 4586 * others 4587 */ 4588 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4589 { 4590 int i, nid; 4591 unsigned long usable_startpfn; 4592 unsigned long kernelcore_node, kernelcore_remaining; 4593 /* save the state before borrow the nodemask */ 4594 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4595 unsigned long totalpages = early_calculate_totalpages(); 4596 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4597 4598 /* 4599 * If movablecore was specified, calculate what size of 4600 * kernelcore that corresponds so that memory usable for 4601 * any allocation type is evenly spread. If both kernelcore 4602 * and movablecore are specified, then the value of kernelcore 4603 * will be used for required_kernelcore if it's greater than 4604 * what movablecore would have allowed. 4605 */ 4606 if (required_movablecore) { 4607 unsigned long corepages; 4608 4609 /* 4610 * Round-up so that ZONE_MOVABLE is at least as large as what 4611 * was requested by the user 4612 */ 4613 required_movablecore = 4614 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4615 corepages = totalpages - required_movablecore; 4616 4617 required_kernelcore = max(required_kernelcore, corepages); 4618 } 4619 4620 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4621 if (!required_kernelcore) 4622 goto out; 4623 4624 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4625 find_usable_zone_for_movable(); 4626 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4627 4628 restart: 4629 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4630 kernelcore_node = required_kernelcore / usable_nodes; 4631 for_each_node_state(nid, N_HIGH_MEMORY) { 4632 /* 4633 * Recalculate kernelcore_node if the division per node 4634 * now exceeds what is necessary to satisfy the requested 4635 * amount of memory for the kernel 4636 */ 4637 if (required_kernelcore < kernelcore_node) 4638 kernelcore_node = required_kernelcore / usable_nodes; 4639 4640 /* 4641 * As the map is walked, we track how much memory is usable 4642 * by the kernel using kernelcore_remaining. When it is 4643 * 0, the rest of the node is usable by ZONE_MOVABLE 4644 */ 4645 kernelcore_remaining = kernelcore_node; 4646 4647 /* Go through each range of PFNs within this node */ 4648 for_each_active_range_index_in_nid(i, nid) { 4649 unsigned long start_pfn, end_pfn; 4650 unsigned long size_pages; 4651 4652 start_pfn = max(early_node_map[i].start_pfn, 4653 zone_movable_pfn[nid]); 4654 end_pfn = early_node_map[i].end_pfn; 4655 if (start_pfn >= end_pfn) 4656 continue; 4657 4658 /* Account for what is only usable for kernelcore */ 4659 if (start_pfn < usable_startpfn) { 4660 unsigned long kernel_pages; 4661 kernel_pages = min(end_pfn, usable_startpfn) 4662 - start_pfn; 4663 4664 kernelcore_remaining -= min(kernel_pages, 4665 kernelcore_remaining); 4666 required_kernelcore -= min(kernel_pages, 4667 required_kernelcore); 4668 4669 /* Continue if range is now fully accounted */ 4670 if (end_pfn <= usable_startpfn) { 4671 4672 /* 4673 * Push zone_movable_pfn to the end so 4674 * that if we have to rebalance 4675 * kernelcore across nodes, we will 4676 * not double account here 4677 */ 4678 zone_movable_pfn[nid] = end_pfn; 4679 continue; 4680 } 4681 start_pfn = usable_startpfn; 4682 } 4683 4684 /* 4685 * The usable PFN range for ZONE_MOVABLE is from 4686 * start_pfn->end_pfn. Calculate size_pages as the 4687 * number of pages used as kernelcore 4688 */ 4689 size_pages = end_pfn - start_pfn; 4690 if (size_pages > kernelcore_remaining) 4691 size_pages = kernelcore_remaining; 4692 zone_movable_pfn[nid] = start_pfn + size_pages; 4693 4694 /* 4695 * Some kernelcore has been met, update counts and 4696 * break if the kernelcore for this node has been 4697 * satisified 4698 */ 4699 required_kernelcore -= min(required_kernelcore, 4700 size_pages); 4701 kernelcore_remaining -= size_pages; 4702 if (!kernelcore_remaining) 4703 break; 4704 } 4705 } 4706 4707 /* 4708 * If there is still required_kernelcore, we do another pass with one 4709 * less node in the count. This will push zone_movable_pfn[nid] further 4710 * along on the nodes that still have memory until kernelcore is 4711 * satisified 4712 */ 4713 usable_nodes--; 4714 if (usable_nodes && required_kernelcore > usable_nodes) 4715 goto restart; 4716 4717 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4718 for (nid = 0; nid < MAX_NUMNODES; nid++) 4719 zone_movable_pfn[nid] = 4720 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4721 4722 out: 4723 /* restore the node_state */ 4724 node_states[N_HIGH_MEMORY] = saved_node_state; 4725 } 4726 4727 /* Any regular memory on that node ? */ 4728 static void check_for_regular_memory(pg_data_t *pgdat) 4729 { 4730 #ifdef CONFIG_HIGHMEM 4731 enum zone_type zone_type; 4732 4733 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4734 struct zone *zone = &pgdat->node_zones[zone_type]; 4735 if (zone->present_pages) 4736 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4737 } 4738 #endif 4739 } 4740 4741 /** 4742 * free_area_init_nodes - Initialise all pg_data_t and zone data 4743 * @max_zone_pfn: an array of max PFNs for each zone 4744 * 4745 * This will call free_area_init_node() for each active node in the system. 4746 * Using the page ranges provided by add_active_range(), the size of each 4747 * zone in each node and their holes is calculated. If the maximum PFN 4748 * between two adjacent zones match, it is assumed that the zone is empty. 4749 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4750 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4751 * starts where the previous one ended. For example, ZONE_DMA32 starts 4752 * at arch_max_dma_pfn. 4753 */ 4754 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4755 { 4756 unsigned long nid; 4757 int i; 4758 4759 /* Sort early_node_map as initialisation assumes it is sorted */ 4760 sort_node_map(); 4761 4762 /* Record where the zone boundaries are */ 4763 memset(arch_zone_lowest_possible_pfn, 0, 4764 sizeof(arch_zone_lowest_possible_pfn)); 4765 memset(arch_zone_highest_possible_pfn, 0, 4766 sizeof(arch_zone_highest_possible_pfn)); 4767 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4768 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4769 for (i = 1; i < MAX_NR_ZONES; i++) { 4770 if (i == ZONE_MOVABLE) 4771 continue; 4772 arch_zone_lowest_possible_pfn[i] = 4773 arch_zone_highest_possible_pfn[i-1]; 4774 arch_zone_highest_possible_pfn[i] = 4775 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4776 } 4777 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4778 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4779 4780 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4781 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4782 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4783 4784 /* Print out the zone ranges */ 4785 printk("Zone PFN ranges:\n"); 4786 for (i = 0; i < MAX_NR_ZONES; i++) { 4787 if (i == ZONE_MOVABLE) 4788 continue; 4789 printk(" %-8s ", zone_names[i]); 4790 if (arch_zone_lowest_possible_pfn[i] == 4791 arch_zone_highest_possible_pfn[i]) 4792 printk("empty\n"); 4793 else 4794 printk("%0#10lx -> %0#10lx\n", 4795 arch_zone_lowest_possible_pfn[i], 4796 arch_zone_highest_possible_pfn[i]); 4797 } 4798 4799 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4800 printk("Movable zone start PFN for each node\n"); 4801 for (i = 0; i < MAX_NUMNODES; i++) { 4802 if (zone_movable_pfn[i]) 4803 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4804 } 4805 4806 /* Print out the early_node_map[] */ 4807 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4808 for (i = 0; i < nr_nodemap_entries; i++) 4809 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4810 early_node_map[i].start_pfn, 4811 early_node_map[i].end_pfn); 4812 4813 /* Initialise every node */ 4814 mminit_verify_pageflags_layout(); 4815 setup_nr_node_ids(); 4816 for_each_online_node(nid) { 4817 pg_data_t *pgdat = NODE_DATA(nid); 4818 free_area_init_node(nid, NULL, 4819 find_min_pfn_for_node(nid), NULL); 4820 4821 /* Any memory on that node */ 4822 if (pgdat->node_present_pages) 4823 node_set_state(nid, N_HIGH_MEMORY); 4824 check_for_regular_memory(pgdat); 4825 } 4826 } 4827 4828 static int __init cmdline_parse_core(char *p, unsigned long *core) 4829 { 4830 unsigned long long coremem; 4831 if (!p) 4832 return -EINVAL; 4833 4834 coremem = memparse(p, &p); 4835 *core = coremem >> PAGE_SHIFT; 4836 4837 /* Paranoid check that UL is enough for the coremem value */ 4838 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4839 4840 return 0; 4841 } 4842 4843 /* 4844 * kernelcore=size sets the amount of memory for use for allocations that 4845 * cannot be reclaimed or migrated. 4846 */ 4847 static int __init cmdline_parse_kernelcore(char *p) 4848 { 4849 return cmdline_parse_core(p, &required_kernelcore); 4850 } 4851 4852 /* 4853 * movablecore=size sets the amount of memory for use for allocations that 4854 * can be reclaimed or migrated. 4855 */ 4856 static int __init cmdline_parse_movablecore(char *p) 4857 { 4858 return cmdline_parse_core(p, &required_movablecore); 4859 } 4860 4861 early_param("kernelcore", cmdline_parse_kernelcore); 4862 early_param("movablecore", cmdline_parse_movablecore); 4863 4864 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4865 4866 /** 4867 * set_dma_reserve - set the specified number of pages reserved in the first zone 4868 * @new_dma_reserve: The number of pages to mark reserved 4869 * 4870 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4871 * In the DMA zone, a significant percentage may be consumed by kernel image 4872 * and other unfreeable allocations which can skew the watermarks badly. This 4873 * function may optionally be used to account for unfreeable pages in the 4874 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4875 * smaller per-cpu batchsize. 4876 */ 4877 void __init set_dma_reserve(unsigned long new_dma_reserve) 4878 { 4879 dma_reserve = new_dma_reserve; 4880 } 4881 4882 void __init free_area_init(unsigned long *zones_size) 4883 { 4884 free_area_init_node(0, zones_size, 4885 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4886 } 4887 4888 static int page_alloc_cpu_notify(struct notifier_block *self, 4889 unsigned long action, void *hcpu) 4890 { 4891 int cpu = (unsigned long)hcpu; 4892 4893 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4894 drain_pages(cpu); 4895 4896 /* 4897 * Spill the event counters of the dead processor 4898 * into the current processors event counters. 4899 * This artificially elevates the count of the current 4900 * processor. 4901 */ 4902 vm_events_fold_cpu(cpu); 4903 4904 /* 4905 * Zero the differential counters of the dead processor 4906 * so that the vm statistics are consistent. 4907 * 4908 * This is only okay since the processor is dead and cannot 4909 * race with what we are doing. 4910 */ 4911 refresh_cpu_vm_stats(cpu); 4912 } 4913 return NOTIFY_OK; 4914 } 4915 4916 void __init page_alloc_init(void) 4917 { 4918 hotcpu_notifier(page_alloc_cpu_notify, 0); 4919 } 4920 4921 /* 4922 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4923 * or min_free_kbytes changes. 4924 */ 4925 static void calculate_totalreserve_pages(void) 4926 { 4927 struct pglist_data *pgdat; 4928 unsigned long reserve_pages = 0; 4929 enum zone_type i, j; 4930 4931 for_each_online_pgdat(pgdat) { 4932 for (i = 0; i < MAX_NR_ZONES; i++) { 4933 struct zone *zone = pgdat->node_zones + i; 4934 unsigned long max = 0; 4935 4936 /* Find valid and maximum lowmem_reserve in the zone */ 4937 for (j = i; j < MAX_NR_ZONES; j++) { 4938 if (zone->lowmem_reserve[j] > max) 4939 max = zone->lowmem_reserve[j]; 4940 } 4941 4942 /* we treat the high watermark as reserved pages. */ 4943 max += high_wmark_pages(zone); 4944 4945 if (max > zone->present_pages) 4946 max = zone->present_pages; 4947 reserve_pages += max; 4948 } 4949 } 4950 totalreserve_pages = reserve_pages; 4951 } 4952 4953 /* 4954 * setup_per_zone_lowmem_reserve - called whenever 4955 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4956 * has a correct pages reserved value, so an adequate number of 4957 * pages are left in the zone after a successful __alloc_pages(). 4958 */ 4959 static void setup_per_zone_lowmem_reserve(void) 4960 { 4961 struct pglist_data *pgdat; 4962 enum zone_type j, idx; 4963 4964 for_each_online_pgdat(pgdat) { 4965 for (j = 0; j < MAX_NR_ZONES; j++) { 4966 struct zone *zone = pgdat->node_zones + j; 4967 unsigned long present_pages = zone->present_pages; 4968 4969 zone->lowmem_reserve[j] = 0; 4970 4971 idx = j; 4972 while (idx) { 4973 struct zone *lower_zone; 4974 4975 idx--; 4976 4977 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4978 sysctl_lowmem_reserve_ratio[idx] = 1; 4979 4980 lower_zone = pgdat->node_zones + idx; 4981 lower_zone->lowmem_reserve[j] = present_pages / 4982 sysctl_lowmem_reserve_ratio[idx]; 4983 present_pages += lower_zone->present_pages; 4984 } 4985 } 4986 } 4987 4988 /* update totalreserve_pages */ 4989 calculate_totalreserve_pages(); 4990 } 4991 4992 /** 4993 * setup_per_zone_wmarks - called when min_free_kbytes changes 4994 * or when memory is hot-{added|removed} 4995 * 4996 * Ensures that the watermark[min,low,high] values for each zone are set 4997 * correctly with respect to min_free_kbytes. 4998 */ 4999 void setup_per_zone_wmarks(void) 5000 { 5001 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5002 unsigned long lowmem_pages = 0; 5003 struct zone *zone; 5004 unsigned long flags; 5005 5006 /* Calculate total number of !ZONE_HIGHMEM pages */ 5007 for_each_zone(zone) { 5008 if (!is_highmem(zone)) 5009 lowmem_pages += zone->present_pages; 5010 } 5011 5012 for_each_zone(zone) { 5013 u64 tmp; 5014 5015 spin_lock_irqsave(&zone->lock, flags); 5016 tmp = (u64)pages_min * zone->present_pages; 5017 do_div(tmp, lowmem_pages); 5018 if (is_highmem(zone)) { 5019 /* 5020 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5021 * need highmem pages, so cap pages_min to a small 5022 * value here. 5023 * 5024 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5025 * deltas controls asynch page reclaim, and so should 5026 * not be capped for highmem. 5027 */ 5028 int min_pages; 5029 5030 min_pages = zone->present_pages / 1024; 5031 if (min_pages < SWAP_CLUSTER_MAX) 5032 min_pages = SWAP_CLUSTER_MAX; 5033 if (min_pages > 128) 5034 min_pages = 128; 5035 zone->watermark[WMARK_MIN] = min_pages; 5036 } else { 5037 /* 5038 * If it's a lowmem zone, reserve a number of pages 5039 * proportionate to the zone's size. 5040 */ 5041 zone->watermark[WMARK_MIN] = tmp; 5042 } 5043 5044 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5045 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5046 setup_zone_migrate_reserve(zone); 5047 spin_unlock_irqrestore(&zone->lock, flags); 5048 } 5049 5050 /* update totalreserve_pages */ 5051 calculate_totalreserve_pages(); 5052 } 5053 5054 /* 5055 * The inactive anon list should be small enough that the VM never has to 5056 * do too much work, but large enough that each inactive page has a chance 5057 * to be referenced again before it is swapped out. 5058 * 5059 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5060 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5061 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5062 * the anonymous pages are kept on the inactive list. 5063 * 5064 * total target max 5065 * memory ratio inactive anon 5066 * ------------------------------------- 5067 * 10MB 1 5MB 5068 * 100MB 1 50MB 5069 * 1GB 3 250MB 5070 * 10GB 10 0.9GB 5071 * 100GB 31 3GB 5072 * 1TB 101 10GB 5073 * 10TB 320 32GB 5074 */ 5075 void calculate_zone_inactive_ratio(struct zone *zone) 5076 { 5077 unsigned int gb, ratio; 5078 5079 /* Zone size in gigabytes */ 5080 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5081 if (gb) 5082 ratio = int_sqrt(10 * gb); 5083 else 5084 ratio = 1; 5085 5086 zone->inactive_ratio = ratio; 5087 } 5088 5089 static void __init setup_per_zone_inactive_ratio(void) 5090 { 5091 struct zone *zone; 5092 5093 for_each_zone(zone) 5094 calculate_zone_inactive_ratio(zone); 5095 } 5096 5097 /* 5098 * Initialise min_free_kbytes. 5099 * 5100 * For small machines we want it small (128k min). For large machines 5101 * we want it large (64MB max). But it is not linear, because network 5102 * bandwidth does not increase linearly with machine size. We use 5103 * 5104 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5105 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5106 * 5107 * which yields 5108 * 5109 * 16MB: 512k 5110 * 32MB: 724k 5111 * 64MB: 1024k 5112 * 128MB: 1448k 5113 * 256MB: 2048k 5114 * 512MB: 2896k 5115 * 1024MB: 4096k 5116 * 2048MB: 5792k 5117 * 4096MB: 8192k 5118 * 8192MB: 11584k 5119 * 16384MB: 16384k 5120 */ 5121 static int __init init_per_zone_wmark_min(void) 5122 { 5123 unsigned long lowmem_kbytes; 5124 5125 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5126 5127 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5128 if (min_free_kbytes < 128) 5129 min_free_kbytes = 128; 5130 if (min_free_kbytes > 65536) 5131 min_free_kbytes = 65536; 5132 setup_per_zone_wmarks(); 5133 setup_per_zone_lowmem_reserve(); 5134 setup_per_zone_inactive_ratio(); 5135 return 0; 5136 } 5137 module_init(init_per_zone_wmark_min) 5138 5139 /* 5140 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5141 * that we can call two helper functions whenever min_free_kbytes 5142 * changes. 5143 */ 5144 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5145 void __user *buffer, size_t *length, loff_t *ppos) 5146 { 5147 proc_dointvec(table, write, buffer, length, ppos); 5148 if (write) 5149 setup_per_zone_wmarks(); 5150 return 0; 5151 } 5152 5153 #ifdef CONFIG_NUMA 5154 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5155 void __user *buffer, size_t *length, loff_t *ppos) 5156 { 5157 struct zone *zone; 5158 int rc; 5159 5160 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5161 if (rc) 5162 return rc; 5163 5164 for_each_zone(zone) 5165 zone->min_unmapped_pages = (zone->present_pages * 5166 sysctl_min_unmapped_ratio) / 100; 5167 return 0; 5168 } 5169 5170 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5171 void __user *buffer, size_t *length, loff_t *ppos) 5172 { 5173 struct zone *zone; 5174 int rc; 5175 5176 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5177 if (rc) 5178 return rc; 5179 5180 for_each_zone(zone) 5181 zone->min_slab_pages = (zone->present_pages * 5182 sysctl_min_slab_ratio) / 100; 5183 return 0; 5184 } 5185 #endif 5186 5187 /* 5188 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5189 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5190 * whenever sysctl_lowmem_reserve_ratio changes. 5191 * 5192 * The reserve ratio obviously has absolutely no relation with the 5193 * minimum watermarks. The lowmem reserve ratio can only make sense 5194 * if in function of the boot time zone sizes. 5195 */ 5196 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5197 void __user *buffer, size_t *length, loff_t *ppos) 5198 { 5199 proc_dointvec_minmax(table, write, buffer, length, ppos); 5200 setup_per_zone_lowmem_reserve(); 5201 return 0; 5202 } 5203 5204 /* 5205 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5206 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5207 * can have before it gets flushed back to buddy allocator. 5208 */ 5209 5210 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5211 void __user *buffer, size_t *length, loff_t *ppos) 5212 { 5213 struct zone *zone; 5214 unsigned int cpu; 5215 int ret; 5216 5217 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5218 if (!write || (ret == -EINVAL)) 5219 return ret; 5220 for_each_populated_zone(zone) { 5221 for_each_possible_cpu(cpu) { 5222 unsigned long high; 5223 high = zone->present_pages / percpu_pagelist_fraction; 5224 setup_pagelist_highmark( 5225 per_cpu_ptr(zone->pageset, cpu), high); 5226 } 5227 } 5228 return 0; 5229 } 5230 5231 int hashdist = HASHDIST_DEFAULT; 5232 5233 #ifdef CONFIG_NUMA 5234 static int __init set_hashdist(char *str) 5235 { 5236 if (!str) 5237 return 0; 5238 hashdist = simple_strtoul(str, &str, 0); 5239 return 1; 5240 } 5241 __setup("hashdist=", set_hashdist); 5242 #endif 5243 5244 /* 5245 * allocate a large system hash table from bootmem 5246 * - it is assumed that the hash table must contain an exact power-of-2 5247 * quantity of entries 5248 * - limit is the number of hash buckets, not the total allocation size 5249 */ 5250 void *__init alloc_large_system_hash(const char *tablename, 5251 unsigned long bucketsize, 5252 unsigned long numentries, 5253 int scale, 5254 int flags, 5255 unsigned int *_hash_shift, 5256 unsigned int *_hash_mask, 5257 unsigned long limit) 5258 { 5259 unsigned long long max = limit; 5260 unsigned long log2qty, size; 5261 void *table = NULL; 5262 5263 /* allow the kernel cmdline to have a say */ 5264 if (!numentries) { 5265 /* round applicable memory size up to nearest megabyte */ 5266 numentries = nr_kernel_pages; 5267 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5268 numentries >>= 20 - PAGE_SHIFT; 5269 numentries <<= 20 - PAGE_SHIFT; 5270 5271 /* limit to 1 bucket per 2^scale bytes of low memory */ 5272 if (scale > PAGE_SHIFT) 5273 numentries >>= (scale - PAGE_SHIFT); 5274 else 5275 numentries <<= (PAGE_SHIFT - scale); 5276 5277 /* Make sure we've got at least a 0-order allocation.. */ 5278 if (unlikely(flags & HASH_SMALL)) { 5279 /* Makes no sense without HASH_EARLY */ 5280 WARN_ON(!(flags & HASH_EARLY)); 5281 if (!(numentries >> *_hash_shift)) { 5282 numentries = 1UL << *_hash_shift; 5283 BUG_ON(!numentries); 5284 } 5285 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5286 numentries = PAGE_SIZE / bucketsize; 5287 } 5288 numentries = roundup_pow_of_two(numentries); 5289 5290 /* limit allocation size to 1/16 total memory by default */ 5291 if (max == 0) { 5292 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5293 do_div(max, bucketsize); 5294 } 5295 5296 if (numentries > max) 5297 numentries = max; 5298 5299 log2qty = ilog2(numentries); 5300 5301 do { 5302 size = bucketsize << log2qty; 5303 if (flags & HASH_EARLY) 5304 table = alloc_bootmem_nopanic(size); 5305 else if (hashdist) 5306 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5307 else { 5308 /* 5309 * If bucketsize is not a power-of-two, we may free 5310 * some pages at the end of hash table which 5311 * alloc_pages_exact() automatically does 5312 */ 5313 if (get_order(size) < MAX_ORDER) { 5314 table = alloc_pages_exact(size, GFP_ATOMIC); 5315 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5316 } 5317 } 5318 } while (!table && size > PAGE_SIZE && --log2qty); 5319 5320 if (!table) 5321 panic("Failed to allocate %s hash table\n", tablename); 5322 5323 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5324 tablename, 5325 (1UL << log2qty), 5326 ilog2(size) - PAGE_SHIFT, 5327 size); 5328 5329 if (_hash_shift) 5330 *_hash_shift = log2qty; 5331 if (_hash_mask) 5332 *_hash_mask = (1 << log2qty) - 1; 5333 5334 return table; 5335 } 5336 5337 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5338 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5339 unsigned long pfn) 5340 { 5341 #ifdef CONFIG_SPARSEMEM 5342 return __pfn_to_section(pfn)->pageblock_flags; 5343 #else 5344 return zone->pageblock_flags; 5345 #endif /* CONFIG_SPARSEMEM */ 5346 } 5347 5348 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5349 { 5350 #ifdef CONFIG_SPARSEMEM 5351 pfn &= (PAGES_PER_SECTION-1); 5352 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5353 #else 5354 pfn = pfn - zone->zone_start_pfn; 5355 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5356 #endif /* CONFIG_SPARSEMEM */ 5357 } 5358 5359 /** 5360 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5361 * @page: The page within the block of interest 5362 * @start_bitidx: The first bit of interest to retrieve 5363 * @end_bitidx: The last bit of interest 5364 * returns pageblock_bits flags 5365 */ 5366 unsigned long get_pageblock_flags_group(struct page *page, 5367 int start_bitidx, int end_bitidx) 5368 { 5369 struct zone *zone; 5370 unsigned long *bitmap; 5371 unsigned long pfn, bitidx; 5372 unsigned long flags = 0; 5373 unsigned long value = 1; 5374 5375 zone = page_zone(page); 5376 pfn = page_to_pfn(page); 5377 bitmap = get_pageblock_bitmap(zone, pfn); 5378 bitidx = pfn_to_bitidx(zone, pfn); 5379 5380 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5381 if (test_bit(bitidx + start_bitidx, bitmap)) 5382 flags |= value; 5383 5384 return flags; 5385 } 5386 5387 /** 5388 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5389 * @page: The page within the block of interest 5390 * @start_bitidx: The first bit of interest 5391 * @end_bitidx: The last bit of interest 5392 * @flags: The flags to set 5393 */ 5394 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5395 int start_bitidx, int end_bitidx) 5396 { 5397 struct zone *zone; 5398 unsigned long *bitmap; 5399 unsigned long pfn, bitidx; 5400 unsigned long value = 1; 5401 5402 zone = page_zone(page); 5403 pfn = page_to_pfn(page); 5404 bitmap = get_pageblock_bitmap(zone, pfn); 5405 bitidx = pfn_to_bitidx(zone, pfn); 5406 VM_BUG_ON(pfn < zone->zone_start_pfn); 5407 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5408 5409 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5410 if (flags & value) 5411 __set_bit(bitidx + start_bitidx, bitmap); 5412 else 5413 __clear_bit(bitidx + start_bitidx, bitmap); 5414 } 5415 5416 /* 5417 * This is designed as sub function...plz see page_isolation.c also. 5418 * set/clear page block's type to be ISOLATE. 5419 * page allocater never alloc memory from ISOLATE block. 5420 */ 5421 5422 static int 5423 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5424 { 5425 unsigned long pfn, iter, found; 5426 /* 5427 * For avoiding noise data, lru_add_drain_all() should be called 5428 * If ZONE_MOVABLE, the zone never contains immobile pages 5429 */ 5430 if (zone_idx(zone) == ZONE_MOVABLE) 5431 return true; 5432 5433 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5434 return true; 5435 5436 pfn = page_to_pfn(page); 5437 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5438 unsigned long check = pfn + iter; 5439 5440 if (!pfn_valid_within(check)) 5441 continue; 5442 5443 page = pfn_to_page(check); 5444 if (!page_count(page)) { 5445 if (PageBuddy(page)) 5446 iter += (1 << page_order(page)) - 1; 5447 continue; 5448 } 5449 if (!PageLRU(page)) 5450 found++; 5451 /* 5452 * If there are RECLAIMABLE pages, we need to check it. 5453 * But now, memory offline itself doesn't call shrink_slab() 5454 * and it still to be fixed. 5455 */ 5456 /* 5457 * If the page is not RAM, page_count()should be 0. 5458 * we don't need more check. This is an _used_ not-movable page. 5459 * 5460 * The problematic thing here is PG_reserved pages. PG_reserved 5461 * is set to both of a memory hole page and a _used_ kernel 5462 * page at boot. 5463 */ 5464 if (found > count) 5465 return false; 5466 } 5467 return true; 5468 } 5469 5470 bool is_pageblock_removable_nolock(struct page *page) 5471 { 5472 struct zone *zone = page_zone(page); 5473 return __count_immobile_pages(zone, page, 0); 5474 } 5475 5476 int set_migratetype_isolate(struct page *page) 5477 { 5478 struct zone *zone; 5479 unsigned long flags, pfn; 5480 struct memory_isolate_notify arg; 5481 int notifier_ret; 5482 int ret = -EBUSY; 5483 int zone_idx; 5484 5485 zone = page_zone(page); 5486 zone_idx = zone_idx(zone); 5487 5488 spin_lock_irqsave(&zone->lock, flags); 5489 5490 pfn = page_to_pfn(page); 5491 arg.start_pfn = pfn; 5492 arg.nr_pages = pageblock_nr_pages; 5493 arg.pages_found = 0; 5494 5495 /* 5496 * It may be possible to isolate a pageblock even if the 5497 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5498 * notifier chain is used by balloon drivers to return the 5499 * number of pages in a range that are held by the balloon 5500 * driver to shrink memory. If all the pages are accounted for 5501 * by balloons, are free, or on the LRU, isolation can continue. 5502 * Later, for example, when memory hotplug notifier runs, these 5503 * pages reported as "can be isolated" should be isolated(freed) 5504 * by the balloon driver through the memory notifier chain. 5505 */ 5506 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5507 notifier_ret = notifier_to_errno(notifier_ret); 5508 if (notifier_ret) 5509 goto out; 5510 /* 5511 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5512 * We just check MOVABLE pages. 5513 */ 5514 if (__count_immobile_pages(zone, page, arg.pages_found)) 5515 ret = 0; 5516 5517 /* 5518 * immobile means "not-on-lru" paes. If immobile is larger than 5519 * removable-by-driver pages reported by notifier, we'll fail. 5520 */ 5521 5522 out: 5523 if (!ret) { 5524 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5525 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5526 } 5527 5528 spin_unlock_irqrestore(&zone->lock, flags); 5529 if (!ret) 5530 drain_all_pages(); 5531 return ret; 5532 } 5533 5534 void unset_migratetype_isolate(struct page *page) 5535 { 5536 struct zone *zone; 5537 unsigned long flags; 5538 zone = page_zone(page); 5539 spin_lock_irqsave(&zone->lock, flags); 5540 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5541 goto out; 5542 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5543 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5544 out: 5545 spin_unlock_irqrestore(&zone->lock, flags); 5546 } 5547 5548 #ifdef CONFIG_MEMORY_HOTREMOVE 5549 /* 5550 * All pages in the range must be isolated before calling this. 5551 */ 5552 void 5553 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5554 { 5555 struct page *page; 5556 struct zone *zone; 5557 int order, i; 5558 unsigned long pfn; 5559 unsigned long flags; 5560 /* find the first valid pfn */ 5561 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5562 if (pfn_valid(pfn)) 5563 break; 5564 if (pfn == end_pfn) 5565 return; 5566 zone = page_zone(pfn_to_page(pfn)); 5567 spin_lock_irqsave(&zone->lock, flags); 5568 pfn = start_pfn; 5569 while (pfn < end_pfn) { 5570 if (!pfn_valid(pfn)) { 5571 pfn++; 5572 continue; 5573 } 5574 page = pfn_to_page(pfn); 5575 BUG_ON(page_count(page)); 5576 BUG_ON(!PageBuddy(page)); 5577 order = page_order(page); 5578 #ifdef CONFIG_DEBUG_VM 5579 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5580 pfn, 1 << order, end_pfn); 5581 #endif 5582 list_del(&page->lru); 5583 rmv_page_order(page); 5584 zone->free_area[order].nr_free--; 5585 __mod_zone_page_state(zone, NR_FREE_PAGES, 5586 - (1UL << order)); 5587 for (i = 0; i < (1 << order); i++) 5588 SetPageReserved((page+i)); 5589 pfn += (1 << order); 5590 } 5591 spin_unlock_irqrestore(&zone->lock, flags); 5592 } 5593 #endif 5594 5595 #ifdef CONFIG_MEMORY_FAILURE 5596 bool is_free_buddy_page(struct page *page) 5597 { 5598 struct zone *zone = page_zone(page); 5599 unsigned long pfn = page_to_pfn(page); 5600 unsigned long flags; 5601 int order; 5602 5603 spin_lock_irqsave(&zone->lock, flags); 5604 for (order = 0; order < MAX_ORDER; order++) { 5605 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5606 5607 if (PageBuddy(page_head) && page_order(page_head) >= order) 5608 break; 5609 } 5610 spin_unlock_irqrestore(&zone->lock, flags); 5611 5612 return order < MAX_ORDER; 5613 } 5614 #endif 5615 5616 static struct trace_print_flags pageflag_names[] = { 5617 {1UL << PG_locked, "locked" }, 5618 {1UL << PG_error, "error" }, 5619 {1UL << PG_referenced, "referenced" }, 5620 {1UL << PG_uptodate, "uptodate" }, 5621 {1UL << PG_dirty, "dirty" }, 5622 {1UL << PG_lru, "lru" }, 5623 {1UL << PG_active, "active" }, 5624 {1UL << PG_slab, "slab" }, 5625 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5626 {1UL << PG_arch_1, "arch_1" }, 5627 {1UL << PG_reserved, "reserved" }, 5628 {1UL << PG_private, "private" }, 5629 {1UL << PG_private_2, "private_2" }, 5630 {1UL << PG_writeback, "writeback" }, 5631 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5632 {1UL << PG_head, "head" }, 5633 {1UL << PG_tail, "tail" }, 5634 #else 5635 {1UL << PG_compound, "compound" }, 5636 #endif 5637 {1UL << PG_swapcache, "swapcache" }, 5638 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5639 {1UL << PG_reclaim, "reclaim" }, 5640 {1UL << PG_swapbacked, "swapbacked" }, 5641 {1UL << PG_unevictable, "unevictable" }, 5642 #ifdef CONFIG_MMU 5643 {1UL << PG_mlocked, "mlocked" }, 5644 #endif 5645 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5646 {1UL << PG_uncached, "uncached" }, 5647 #endif 5648 #ifdef CONFIG_MEMORY_FAILURE 5649 {1UL << PG_hwpoison, "hwpoison" }, 5650 #endif 5651 {-1UL, NULL }, 5652 }; 5653 5654 static void dump_page_flags(unsigned long flags) 5655 { 5656 const char *delim = ""; 5657 unsigned long mask; 5658 int i; 5659 5660 printk(KERN_ALERT "page flags: %#lx(", flags); 5661 5662 /* remove zone id */ 5663 flags &= (1UL << NR_PAGEFLAGS) - 1; 5664 5665 for (i = 0; pageflag_names[i].name && flags; i++) { 5666 5667 mask = pageflag_names[i].mask; 5668 if ((flags & mask) != mask) 5669 continue; 5670 5671 flags &= ~mask; 5672 printk("%s%s", delim, pageflag_names[i].name); 5673 delim = "|"; 5674 } 5675 5676 /* check for left over flags */ 5677 if (flags) 5678 printk("%s%#lx", delim, flags); 5679 5680 printk(")\n"); 5681 } 5682 5683 void dump_page(struct page *page) 5684 { 5685 printk(KERN_ALERT 5686 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5687 page, atomic_read(&page->_count), page_mapcount(page), 5688 page->mapping, page->index); 5689 dump_page_flags(page->flags); 5690 mem_cgroup_print_bad_page(page); 5691 } 5692