1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order); 294 static bool __free_unaccepted(struct page *page); 295 296 int page_group_by_mobility_disabled __read_mostly; 297 298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 299 /* 300 * During boot we initialize deferred pages on-demand, as needed, but once 301 * page_alloc_init_late() has finished, the deferred pages are all initialized, 302 * and we can permanently disable that path. 303 */ 304 DEFINE_STATIC_KEY_TRUE(deferred_pages); 305 306 static inline bool deferred_pages_enabled(void) 307 { 308 return static_branch_unlikely(&deferred_pages); 309 } 310 311 /* 312 * deferred_grow_zone() is __init, but it is called from 313 * get_page_from_freelist() during early boot until deferred_pages permanently 314 * disables this call. This is why we have refdata wrapper to avoid warning, 315 * and to ensure that the function body gets unloaded. 316 */ 317 static bool __ref 318 _deferred_grow_zone(struct zone *zone, unsigned int order) 319 { 320 return deferred_grow_zone(zone, order); 321 } 322 #else 323 static inline bool deferred_pages_enabled(void) 324 { 325 return false; 326 } 327 328 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 329 { 330 return false; 331 } 332 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 333 334 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 335 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 336 unsigned long pfn) 337 { 338 #ifdef CONFIG_SPARSEMEM 339 return section_to_usemap(__pfn_to_section(pfn)); 340 #else 341 return page_zone(page)->pageblock_flags; 342 #endif /* CONFIG_SPARSEMEM */ 343 } 344 345 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 pfn &= (PAGES_PER_SECTION-1); 349 #else 350 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 351 #endif /* CONFIG_SPARSEMEM */ 352 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 353 } 354 355 /** 356 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 357 * @page: The page within the block of interest 358 * @pfn: The target page frame number 359 * @mask: mask of bits that the caller is interested in 360 * 361 * Return: pageblock_bits flags 362 */ 363 unsigned long get_pfnblock_flags_mask(const struct page *page, 364 unsigned long pfn, unsigned long mask) 365 { 366 unsigned long *bitmap; 367 unsigned long bitidx, word_bitidx; 368 unsigned long word; 369 370 bitmap = get_pageblock_bitmap(page, pfn); 371 bitidx = pfn_to_bitidx(page, pfn); 372 word_bitidx = bitidx / BITS_PER_LONG; 373 bitidx &= (BITS_PER_LONG-1); 374 /* 375 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 376 * a consistent read of the memory array, so that results, even though 377 * racy, are not corrupted. 378 */ 379 word = READ_ONCE(bitmap[word_bitidx]); 380 return (word >> bitidx) & mask; 381 } 382 383 static __always_inline int get_pfnblock_migratetype(const struct page *page, 384 unsigned long pfn) 385 { 386 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 387 } 388 389 /** 390 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 391 * @page: The page within the block of interest 392 * @flags: The flags to set 393 * @pfn: The target page frame number 394 * @mask: mask of bits that the caller is interested in 395 */ 396 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 397 unsigned long pfn, 398 unsigned long mask) 399 { 400 unsigned long *bitmap; 401 unsigned long bitidx, word_bitidx; 402 unsigned long word; 403 404 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 405 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 406 407 bitmap = get_pageblock_bitmap(page, pfn); 408 bitidx = pfn_to_bitidx(page, pfn); 409 word_bitidx = bitidx / BITS_PER_LONG; 410 bitidx &= (BITS_PER_LONG-1); 411 412 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 413 414 mask <<= bitidx; 415 flags <<= bitidx; 416 417 word = READ_ONCE(bitmap[word_bitidx]); 418 do { 419 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 420 } 421 422 void set_pageblock_migratetype(struct page *page, int migratetype) 423 { 424 if (unlikely(page_group_by_mobility_disabled && 425 migratetype < MIGRATE_PCPTYPES)) 426 migratetype = MIGRATE_UNMOVABLE; 427 428 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 429 page_to_pfn(page), MIGRATETYPE_MASK); 430 } 431 432 #ifdef CONFIG_DEBUG_VM 433 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 434 { 435 int ret; 436 unsigned seq; 437 unsigned long pfn = page_to_pfn(page); 438 unsigned long sp, start_pfn; 439 440 do { 441 seq = zone_span_seqbegin(zone); 442 start_pfn = zone->zone_start_pfn; 443 sp = zone->spanned_pages; 444 ret = !zone_spans_pfn(zone, pfn); 445 } while (zone_span_seqretry(zone, seq)); 446 447 if (ret) 448 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 449 pfn, zone_to_nid(zone), zone->name, 450 start_pfn, start_pfn + sp); 451 452 return ret; 453 } 454 455 /* 456 * Temporary debugging check for pages not lying within a given zone. 457 */ 458 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 459 { 460 if (page_outside_zone_boundaries(zone, page)) 461 return true; 462 if (zone != page_zone(page)) 463 return true; 464 465 return false; 466 } 467 #else 468 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 469 { 470 return false; 471 } 472 #endif 473 474 static void bad_page(struct page *page, const char *reason) 475 { 476 static unsigned long resume; 477 static unsigned long nr_shown; 478 static unsigned long nr_unshown; 479 480 /* 481 * Allow a burst of 60 reports, then keep quiet for that minute; 482 * or allow a steady drip of one report per second. 483 */ 484 if (nr_shown == 60) { 485 if (time_before(jiffies, resume)) { 486 nr_unshown++; 487 goto out; 488 } 489 if (nr_unshown) { 490 pr_alert( 491 "BUG: Bad page state: %lu messages suppressed\n", 492 nr_unshown); 493 nr_unshown = 0; 494 } 495 nr_shown = 0; 496 } 497 if (nr_shown++ == 0) 498 resume = jiffies + 60 * HZ; 499 500 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 501 current->comm, page_to_pfn(page)); 502 dump_page(page, reason); 503 504 print_modules(); 505 dump_stack(); 506 out: 507 /* Leave bad fields for debug, except PageBuddy could make trouble */ 508 if (PageBuddy(page)) 509 __ClearPageBuddy(page); 510 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 511 } 512 513 static inline unsigned int order_to_pindex(int migratetype, int order) 514 { 515 516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 517 bool movable; 518 if (order > PAGE_ALLOC_COSTLY_ORDER) { 519 VM_BUG_ON(order != HPAGE_PMD_ORDER); 520 521 movable = migratetype == MIGRATE_MOVABLE; 522 523 return NR_LOWORDER_PCP_LISTS + movable; 524 } 525 #else 526 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 527 #endif 528 529 return (MIGRATE_PCPTYPES * order) + migratetype; 530 } 531 532 static inline int pindex_to_order(unsigned int pindex) 533 { 534 int order = pindex / MIGRATE_PCPTYPES; 535 536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 537 if (pindex >= NR_LOWORDER_PCP_LISTS) 538 order = HPAGE_PMD_ORDER; 539 #else 540 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 541 #endif 542 543 return order; 544 } 545 546 static inline bool pcp_allowed_order(unsigned int order) 547 { 548 if (order <= PAGE_ALLOC_COSTLY_ORDER) 549 return true; 550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 if (order == HPAGE_PMD_ORDER) 552 return true; 553 #endif 554 return false; 555 } 556 557 /* 558 * Higher-order pages are called "compound pages". They are structured thusly: 559 * 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 561 * 562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 564 * 565 * The first tail page's ->compound_order holds the order of allocation. 566 * This usage means that zero-order pages may not be compound. 567 */ 568 569 void prep_compound_page(struct page *page, unsigned int order) 570 { 571 int i; 572 int nr_pages = 1 << order; 573 574 __SetPageHead(page); 575 for (i = 1; i < nr_pages; i++) 576 prep_compound_tail(page, i); 577 578 prep_compound_head(page, order); 579 } 580 581 static inline void set_buddy_order(struct page *page, unsigned int order) 582 { 583 set_page_private(page, order); 584 __SetPageBuddy(page); 585 } 586 587 #ifdef CONFIG_COMPACTION 588 static inline struct capture_control *task_capc(struct zone *zone) 589 { 590 struct capture_control *capc = current->capture_control; 591 592 return unlikely(capc) && 593 !(current->flags & PF_KTHREAD) && 594 !capc->page && 595 capc->cc->zone == zone ? capc : NULL; 596 } 597 598 static inline bool 599 compaction_capture(struct capture_control *capc, struct page *page, 600 int order, int migratetype) 601 { 602 if (!capc || order != capc->cc->order) 603 return false; 604 605 /* Do not accidentally pollute CMA or isolated regions*/ 606 if (is_migrate_cma(migratetype) || 607 is_migrate_isolate(migratetype)) 608 return false; 609 610 /* 611 * Do not let lower order allocations pollute a movable pageblock 612 * unless compaction is also requesting movable pages. 613 * This might let an unmovable request use a reclaimable pageblock 614 * and vice-versa but no more than normal fallback logic which can 615 * have trouble finding a high-order free page. 616 */ 617 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 618 capc->cc->migratetype != MIGRATE_MOVABLE) 619 return false; 620 621 if (migratetype != capc->cc->migratetype) 622 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 623 capc->cc->migratetype, migratetype); 624 625 capc->page = page; 626 return true; 627 } 628 629 #else 630 static inline struct capture_control *task_capc(struct zone *zone) 631 { 632 return NULL; 633 } 634 635 static inline bool 636 compaction_capture(struct capture_control *capc, struct page *page, 637 int order, int migratetype) 638 { 639 return false; 640 } 641 #endif /* CONFIG_COMPACTION */ 642 643 static inline void account_freepages(struct zone *zone, int nr_pages, 644 int migratetype) 645 { 646 lockdep_assert_held(&zone->lock); 647 648 if (is_migrate_isolate(migratetype)) 649 return; 650 651 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 652 653 if (is_migrate_cma(migratetype)) 654 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 655 else if (is_migrate_highatomic(migratetype)) 656 WRITE_ONCE(zone->nr_free_highatomic, 657 zone->nr_free_highatomic + nr_pages); 658 } 659 660 /* Used for pages not on another list */ 661 static inline void __add_to_free_list(struct page *page, struct zone *zone, 662 unsigned int order, int migratetype, 663 bool tail) 664 { 665 struct free_area *area = &zone->free_area[order]; 666 int nr_pages = 1 << order; 667 668 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 669 "page type is %lu, passed migratetype is %d (nr=%d)\n", 670 get_pageblock_migratetype(page), migratetype, nr_pages); 671 672 if (tail) 673 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 674 else 675 list_add(&page->buddy_list, &area->free_list[migratetype]); 676 area->nr_free++; 677 678 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 679 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 680 } 681 682 /* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687 static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int old_mt, int new_mt) 689 { 690 struct free_area *area = &zone->free_area[order]; 691 int nr_pages = 1 << order; 692 693 /* Free page moving can fail, so it happens before the type update */ 694 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 695 "page type is %lu, passed migratetype is %d (nr=%d)\n", 696 get_pageblock_migratetype(page), old_mt, nr_pages); 697 698 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 699 700 account_freepages(zone, -nr_pages, old_mt); 701 account_freepages(zone, nr_pages, new_mt); 702 703 if (order >= pageblock_order && 704 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 705 if (!is_migrate_isolate(old_mt)) 706 nr_pages = -nr_pages; 707 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 708 } 709 } 710 711 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 712 unsigned int order, int migratetype) 713 { 714 int nr_pages = 1 << order; 715 716 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 717 "page type is %lu, passed migratetype is %d (nr=%d)\n", 718 get_pageblock_migratetype(page), migratetype, nr_pages); 719 720 /* clear reported state and update reported page count */ 721 if (page_reported(page)) 722 __ClearPageReported(page); 723 724 list_del(&page->buddy_list); 725 __ClearPageBuddy(page); 726 set_page_private(page, 0); 727 zone->free_area[order].nr_free--; 728 729 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 730 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 731 } 732 733 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 734 unsigned int order, int migratetype) 735 { 736 __del_page_from_free_list(page, zone, order, migratetype); 737 account_freepages(zone, -(1 << order), migratetype); 738 } 739 740 static inline struct page *get_page_from_free_area(struct free_area *area, 741 int migratetype) 742 { 743 return list_first_entry_or_null(&area->free_list[migratetype], 744 struct page, buddy_list); 745 } 746 747 /* 748 * If this is less than the 2nd largest possible page, check if the buddy 749 * of the next-higher order is free. If it is, it's possible 750 * that pages are being freed that will coalesce soon. In case, 751 * that is happening, add the free page to the tail of the list 752 * so it's less likely to be used soon and more likely to be merged 753 * as a 2-level higher order page 754 */ 755 static inline bool 756 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 757 struct page *page, unsigned int order) 758 { 759 unsigned long higher_page_pfn; 760 struct page *higher_page; 761 762 if (order >= MAX_PAGE_ORDER - 1) 763 return false; 764 765 higher_page_pfn = buddy_pfn & pfn; 766 higher_page = page + (higher_page_pfn - pfn); 767 768 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 769 NULL) != NULL; 770 } 771 772 /* 773 * Freeing function for a buddy system allocator. 774 * 775 * The concept of a buddy system is to maintain direct-mapped table 776 * (containing bit values) for memory blocks of various "orders". 777 * The bottom level table contains the map for the smallest allocatable 778 * units of memory (here, pages), and each level above it describes 779 * pairs of units from the levels below, hence, "buddies". 780 * At a high level, all that happens here is marking the table entry 781 * at the bottom level available, and propagating the changes upward 782 * as necessary, plus some accounting needed to play nicely with other 783 * parts of the VM system. 784 * At each level, we keep a list of pages, which are heads of continuous 785 * free pages of length of (1 << order) and marked with PageBuddy. 786 * Page's order is recorded in page_private(page) field. 787 * So when we are allocating or freeing one, we can derive the state of the 788 * other. That is, if we allocate a small block, and both were 789 * free, the remainder of the region must be split into blocks. 790 * If a block is freed, and its buddy is also free, then this 791 * triggers coalescing into a block of larger size. 792 * 793 * -- nyc 794 */ 795 796 static inline void __free_one_page(struct page *page, 797 unsigned long pfn, 798 struct zone *zone, unsigned int order, 799 int migratetype, fpi_t fpi_flags) 800 { 801 struct capture_control *capc = task_capc(zone); 802 unsigned long buddy_pfn = 0; 803 unsigned long combined_pfn; 804 struct page *buddy; 805 bool to_tail; 806 807 VM_BUG_ON(!zone_is_initialized(zone)); 808 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 809 810 VM_BUG_ON(migratetype == -1); 811 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 812 VM_BUG_ON_PAGE(bad_range(zone, page), page); 813 814 account_freepages(zone, 1 << order, migratetype); 815 816 while (order < MAX_PAGE_ORDER) { 817 int buddy_mt = migratetype; 818 819 if (compaction_capture(capc, page, order, migratetype)) { 820 account_freepages(zone, -(1 << order), migratetype); 821 return; 822 } 823 824 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 825 if (!buddy) 826 goto done_merging; 827 828 if (unlikely(order >= pageblock_order)) { 829 /* 830 * We want to prevent merge between freepages on pageblock 831 * without fallbacks and normal pageblock. Without this, 832 * pageblock isolation could cause incorrect freepage or CMA 833 * accounting or HIGHATOMIC accounting. 834 */ 835 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 836 837 if (migratetype != buddy_mt && 838 (!migratetype_is_mergeable(migratetype) || 839 !migratetype_is_mergeable(buddy_mt))) 840 goto done_merging; 841 } 842 843 /* 844 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 845 * merge with it and move up one order. 846 */ 847 if (page_is_guard(buddy)) 848 clear_page_guard(zone, buddy, order); 849 else 850 __del_page_from_free_list(buddy, zone, order, buddy_mt); 851 852 if (unlikely(buddy_mt != migratetype)) { 853 /* 854 * Match buddy type. This ensures that an 855 * expand() down the line puts the sub-blocks 856 * on the right freelists. 857 */ 858 set_pageblock_migratetype(buddy, migratetype); 859 } 860 861 combined_pfn = buddy_pfn & pfn; 862 page = page + (combined_pfn - pfn); 863 pfn = combined_pfn; 864 order++; 865 } 866 867 done_merging: 868 set_buddy_order(page, order); 869 870 if (fpi_flags & FPI_TO_TAIL) 871 to_tail = true; 872 else if (is_shuffle_order(order)) 873 to_tail = shuffle_pick_tail(); 874 else 875 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 876 877 __add_to_free_list(page, zone, order, migratetype, to_tail); 878 879 /* Notify page reporting subsystem of freed page */ 880 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 881 page_reporting_notify_free(order); 882 } 883 884 /* 885 * A bad page could be due to a number of fields. Instead of multiple branches, 886 * try and check multiple fields with one check. The caller must do a detailed 887 * check if necessary. 888 */ 889 static inline bool page_expected_state(struct page *page, 890 unsigned long check_flags) 891 { 892 if (unlikely(atomic_read(&page->_mapcount) != -1)) 893 return false; 894 895 if (unlikely((unsigned long)page->mapping | 896 page_ref_count(page) | 897 #ifdef CONFIG_MEMCG 898 page->memcg_data | 899 #endif 900 #ifdef CONFIG_PAGE_POOL 901 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 902 #endif 903 (page->flags & check_flags))) 904 return false; 905 906 return true; 907 } 908 909 static const char *page_bad_reason(struct page *page, unsigned long flags) 910 { 911 const char *bad_reason = NULL; 912 913 if (unlikely(atomic_read(&page->_mapcount) != -1)) 914 bad_reason = "nonzero mapcount"; 915 if (unlikely(page->mapping != NULL)) 916 bad_reason = "non-NULL mapping"; 917 if (unlikely(page_ref_count(page) != 0)) 918 bad_reason = "nonzero _refcount"; 919 if (unlikely(page->flags & flags)) { 920 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 921 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 922 else 923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 924 } 925 #ifdef CONFIG_MEMCG 926 if (unlikely(page->memcg_data)) 927 bad_reason = "page still charged to cgroup"; 928 #endif 929 #ifdef CONFIG_PAGE_POOL 930 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 931 bad_reason = "page_pool leak"; 932 #endif 933 return bad_reason; 934 } 935 936 static void free_page_is_bad_report(struct page *page) 937 { 938 bad_page(page, 939 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 940 } 941 942 static inline bool free_page_is_bad(struct page *page) 943 { 944 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 945 return false; 946 947 /* Something has gone sideways, find it */ 948 free_page_is_bad_report(page); 949 return true; 950 } 951 952 static inline bool is_check_pages_enabled(void) 953 { 954 return static_branch_unlikely(&check_pages_enabled); 955 } 956 957 static int free_tail_page_prepare(struct page *head_page, struct page *page) 958 { 959 struct folio *folio = (struct folio *)head_page; 960 int ret = 1; 961 962 /* 963 * We rely page->lru.next never has bit 0 set, unless the page 964 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 965 */ 966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 967 968 if (!is_check_pages_enabled()) { 969 ret = 0; 970 goto out; 971 } 972 switch (page - head_page) { 973 case 1: 974 /* the first tail page: these may be in place of ->mapping */ 975 if (unlikely(folio_large_mapcount(folio))) { 976 bad_page(page, "nonzero large_mapcount"); 977 goto out; 978 } 979 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 980 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 981 bad_page(page, "nonzero nr_pages_mapped"); 982 goto out; 983 } 984 if (IS_ENABLED(CONFIG_MM_ID)) { 985 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 986 bad_page(page, "nonzero mm mapcount 0"); 987 goto out; 988 } 989 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 990 bad_page(page, "nonzero mm mapcount 1"); 991 goto out; 992 } 993 } 994 if (IS_ENABLED(CONFIG_64BIT)) { 995 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 996 bad_page(page, "nonzero entire_mapcount"); 997 goto out; 998 } 999 if (unlikely(atomic_read(&folio->_pincount))) { 1000 bad_page(page, "nonzero pincount"); 1001 goto out; 1002 } 1003 } 1004 break; 1005 case 2: 1006 /* the second tail page: deferred_list overlaps ->mapping */ 1007 if (unlikely(!list_empty(&folio->_deferred_list))) { 1008 bad_page(page, "on deferred list"); 1009 goto out; 1010 } 1011 if (!IS_ENABLED(CONFIG_64BIT)) { 1012 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1013 bad_page(page, "nonzero entire_mapcount"); 1014 goto out; 1015 } 1016 if (unlikely(atomic_read(&folio->_pincount))) { 1017 bad_page(page, "nonzero pincount"); 1018 goto out; 1019 } 1020 } 1021 break; 1022 case 3: 1023 /* the third tail page: hugetlb specifics overlap ->mappings */ 1024 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1025 break; 1026 fallthrough; 1027 default: 1028 if (page->mapping != TAIL_MAPPING) { 1029 bad_page(page, "corrupted mapping in tail page"); 1030 goto out; 1031 } 1032 break; 1033 } 1034 if (unlikely(!PageTail(page))) { 1035 bad_page(page, "PageTail not set"); 1036 goto out; 1037 } 1038 if (unlikely(compound_head(page) != head_page)) { 1039 bad_page(page, "compound_head not consistent"); 1040 goto out; 1041 } 1042 ret = 0; 1043 out: 1044 page->mapping = NULL; 1045 clear_compound_head(page); 1046 return ret; 1047 } 1048 1049 /* 1050 * Skip KASAN memory poisoning when either: 1051 * 1052 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1053 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1054 * using page tags instead (see below). 1055 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1056 * that error detection is disabled for accesses via the page address. 1057 * 1058 * Pages will have match-all tags in the following circumstances: 1059 * 1060 * 1. Pages are being initialized for the first time, including during deferred 1061 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1062 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1063 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1064 * 3. The allocation was excluded from being checked due to sampling, 1065 * see the call to kasan_unpoison_pages. 1066 * 1067 * Poisoning pages during deferred memory init will greatly lengthen the 1068 * process and cause problem in large memory systems as the deferred pages 1069 * initialization is done with interrupt disabled. 1070 * 1071 * Assuming that there will be no reference to those newly initialized 1072 * pages before they are ever allocated, this should have no effect on 1073 * KASAN memory tracking as the poison will be properly inserted at page 1074 * allocation time. The only corner case is when pages are allocated by 1075 * on-demand allocation and then freed again before the deferred pages 1076 * initialization is done, but this is not likely to happen. 1077 */ 1078 static inline bool should_skip_kasan_poison(struct page *page) 1079 { 1080 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1081 return deferred_pages_enabled(); 1082 1083 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1084 } 1085 1086 static void kernel_init_pages(struct page *page, int numpages) 1087 { 1088 int i; 1089 1090 /* s390's use of memset() could override KASAN redzones. */ 1091 kasan_disable_current(); 1092 for (i = 0; i < numpages; i++) 1093 clear_highpage_kasan_tagged(page + i); 1094 kasan_enable_current(); 1095 } 1096 1097 #ifdef CONFIG_MEM_ALLOC_PROFILING 1098 1099 /* Should be called only if mem_alloc_profiling_enabled() */ 1100 void __clear_page_tag_ref(struct page *page) 1101 { 1102 union pgtag_ref_handle handle; 1103 union codetag_ref ref; 1104 1105 if (get_page_tag_ref(page, &ref, &handle)) { 1106 set_codetag_empty(&ref); 1107 update_page_tag_ref(handle, &ref); 1108 put_page_tag_ref(handle); 1109 } 1110 } 1111 1112 /* Should be called only if mem_alloc_profiling_enabled() */ 1113 static noinline 1114 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1115 unsigned int nr) 1116 { 1117 union pgtag_ref_handle handle; 1118 union codetag_ref ref; 1119 1120 if (get_page_tag_ref(page, &ref, &handle)) { 1121 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1122 update_page_tag_ref(handle, &ref); 1123 put_page_tag_ref(handle); 1124 } 1125 } 1126 1127 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1128 unsigned int nr) 1129 { 1130 if (mem_alloc_profiling_enabled()) 1131 __pgalloc_tag_add(page, task, nr); 1132 } 1133 1134 /* Should be called only if mem_alloc_profiling_enabled() */ 1135 static noinline 1136 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1137 { 1138 union pgtag_ref_handle handle; 1139 union codetag_ref ref; 1140 1141 if (get_page_tag_ref(page, &ref, &handle)) { 1142 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1143 update_page_tag_ref(handle, &ref); 1144 put_page_tag_ref(handle); 1145 } 1146 } 1147 1148 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1149 { 1150 if (mem_alloc_profiling_enabled()) 1151 __pgalloc_tag_sub(page, nr); 1152 } 1153 1154 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) 1155 { 1156 struct alloc_tag *tag; 1157 1158 if (!mem_alloc_profiling_enabled()) 1159 return; 1160 1161 tag = __pgalloc_tag_get(page); 1162 if (tag) 1163 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1164 } 1165 1166 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1167 1168 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1169 unsigned int nr) {} 1170 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1171 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {} 1172 1173 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1174 1175 __always_inline bool free_pages_prepare(struct page *page, 1176 unsigned int order) 1177 { 1178 int bad = 0; 1179 bool skip_kasan_poison = should_skip_kasan_poison(page); 1180 bool init = want_init_on_free(); 1181 bool compound = PageCompound(page); 1182 struct folio *folio = page_folio(page); 1183 1184 VM_BUG_ON_PAGE(PageTail(page), page); 1185 1186 trace_mm_page_free(page, order); 1187 kmsan_free_page(page, order); 1188 1189 if (memcg_kmem_online() && PageMemcgKmem(page)) 1190 __memcg_kmem_uncharge_page(page, order); 1191 1192 /* 1193 * In rare cases, when truncation or holepunching raced with 1194 * munlock after VM_LOCKED was cleared, Mlocked may still be 1195 * found set here. This does not indicate a problem, unless 1196 * "unevictable_pgs_cleared" appears worryingly large. 1197 */ 1198 if (unlikely(folio_test_mlocked(folio))) { 1199 long nr_pages = folio_nr_pages(folio); 1200 1201 __folio_clear_mlocked(folio); 1202 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1203 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1204 } 1205 1206 if (unlikely(PageHWPoison(page)) && !order) { 1207 /* Do not let hwpoison pages hit pcplists/buddy */ 1208 reset_page_owner(page, order); 1209 page_table_check_free(page, order); 1210 pgalloc_tag_sub(page, 1 << order); 1211 1212 /* 1213 * The page is isolated and accounted for. 1214 * Mark the codetag as empty to avoid accounting error 1215 * when the page is freed by unpoison_memory(). 1216 */ 1217 clear_page_tag_ref(page); 1218 return false; 1219 } 1220 1221 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1222 1223 /* 1224 * Check tail pages before head page information is cleared to 1225 * avoid checking PageCompound for order-0 pages. 1226 */ 1227 if (unlikely(order)) { 1228 int i; 1229 1230 if (compound) { 1231 page[1].flags &= ~PAGE_FLAGS_SECOND; 1232 #ifdef NR_PAGES_IN_LARGE_FOLIO 1233 folio->_nr_pages = 0; 1234 #endif 1235 } 1236 for (i = 1; i < (1 << order); i++) { 1237 if (compound) 1238 bad += free_tail_page_prepare(page, page + i); 1239 if (is_check_pages_enabled()) { 1240 if (free_page_is_bad(page + i)) { 1241 bad++; 1242 continue; 1243 } 1244 } 1245 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1246 } 1247 } 1248 if (PageMappingFlags(page)) { 1249 if (PageAnon(page)) 1250 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1251 page->mapping = NULL; 1252 } 1253 if (is_check_pages_enabled()) { 1254 if (free_page_is_bad(page)) 1255 bad++; 1256 if (bad) 1257 return false; 1258 } 1259 1260 page_cpupid_reset_last(page); 1261 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1262 reset_page_owner(page, order); 1263 page_table_check_free(page, order); 1264 pgalloc_tag_sub(page, 1 << order); 1265 1266 if (!PageHighMem(page)) { 1267 debug_check_no_locks_freed(page_address(page), 1268 PAGE_SIZE << order); 1269 debug_check_no_obj_freed(page_address(page), 1270 PAGE_SIZE << order); 1271 } 1272 1273 kernel_poison_pages(page, 1 << order); 1274 1275 /* 1276 * As memory initialization might be integrated into KASAN, 1277 * KASAN poisoning and memory initialization code must be 1278 * kept together to avoid discrepancies in behavior. 1279 * 1280 * With hardware tag-based KASAN, memory tags must be set before the 1281 * page becomes unavailable via debug_pagealloc or arch_free_page. 1282 */ 1283 if (!skip_kasan_poison) { 1284 kasan_poison_pages(page, order, init); 1285 1286 /* Memory is already initialized if KASAN did it internally. */ 1287 if (kasan_has_integrated_init()) 1288 init = false; 1289 } 1290 if (init) 1291 kernel_init_pages(page, 1 << order); 1292 1293 /* 1294 * arch_free_page() can make the page's contents inaccessible. s390 1295 * does this. So nothing which can access the page's contents should 1296 * happen after this. 1297 */ 1298 arch_free_page(page, order); 1299 1300 debug_pagealloc_unmap_pages(page, 1 << order); 1301 1302 return true; 1303 } 1304 1305 /* 1306 * Frees a number of pages from the PCP lists 1307 * Assumes all pages on list are in same zone. 1308 * count is the number of pages to free. 1309 */ 1310 static void free_pcppages_bulk(struct zone *zone, int count, 1311 struct per_cpu_pages *pcp, 1312 int pindex) 1313 { 1314 unsigned long flags; 1315 unsigned int order; 1316 struct page *page; 1317 1318 /* 1319 * Ensure proper count is passed which otherwise would stuck in the 1320 * below while (list_empty(list)) loop. 1321 */ 1322 count = min(pcp->count, count); 1323 1324 /* Ensure requested pindex is drained first. */ 1325 pindex = pindex - 1; 1326 1327 spin_lock_irqsave(&zone->lock, flags); 1328 1329 while (count > 0) { 1330 struct list_head *list; 1331 int nr_pages; 1332 1333 /* Remove pages from lists in a round-robin fashion. */ 1334 do { 1335 if (++pindex > NR_PCP_LISTS - 1) 1336 pindex = 0; 1337 list = &pcp->lists[pindex]; 1338 } while (list_empty(list)); 1339 1340 order = pindex_to_order(pindex); 1341 nr_pages = 1 << order; 1342 do { 1343 unsigned long pfn; 1344 int mt; 1345 1346 page = list_last_entry(list, struct page, pcp_list); 1347 pfn = page_to_pfn(page); 1348 mt = get_pfnblock_migratetype(page, pfn); 1349 1350 /* must delete to avoid corrupting pcp list */ 1351 list_del(&page->pcp_list); 1352 count -= nr_pages; 1353 pcp->count -= nr_pages; 1354 1355 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1356 trace_mm_page_pcpu_drain(page, order, mt); 1357 } while (count > 0 && !list_empty(list)); 1358 } 1359 1360 spin_unlock_irqrestore(&zone->lock, flags); 1361 } 1362 1363 /* Split a multi-block free page into its individual pageblocks. */ 1364 static void split_large_buddy(struct zone *zone, struct page *page, 1365 unsigned long pfn, int order, fpi_t fpi) 1366 { 1367 unsigned long end = pfn + (1 << order); 1368 1369 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1370 /* Caller removed page from freelist, buddy info cleared! */ 1371 VM_WARN_ON_ONCE(PageBuddy(page)); 1372 1373 if (order > pageblock_order) 1374 order = pageblock_order; 1375 1376 do { 1377 int mt = get_pfnblock_migratetype(page, pfn); 1378 1379 __free_one_page(page, pfn, zone, order, mt, fpi); 1380 pfn += 1 << order; 1381 if (pfn == end) 1382 break; 1383 page = pfn_to_page(pfn); 1384 } while (1); 1385 } 1386 1387 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1388 unsigned int order) 1389 { 1390 /* Remember the order */ 1391 page->order = order; 1392 /* Add the page to the free list */ 1393 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1394 } 1395 1396 static void free_one_page(struct zone *zone, struct page *page, 1397 unsigned long pfn, unsigned int order, 1398 fpi_t fpi_flags) 1399 { 1400 struct llist_head *llhead; 1401 unsigned long flags; 1402 1403 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1404 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1405 add_page_to_zone_llist(zone, page, order); 1406 return; 1407 } 1408 } else { 1409 spin_lock_irqsave(&zone->lock, flags); 1410 } 1411 1412 /* The lock succeeded. Process deferred pages. */ 1413 llhead = &zone->trylock_free_pages; 1414 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1415 struct llist_node *llnode; 1416 struct page *p, *tmp; 1417 1418 llnode = llist_del_all(llhead); 1419 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1420 unsigned int p_order = p->order; 1421 1422 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1423 __count_vm_events(PGFREE, 1 << p_order); 1424 } 1425 } 1426 split_large_buddy(zone, page, pfn, order, fpi_flags); 1427 spin_unlock_irqrestore(&zone->lock, flags); 1428 1429 __count_vm_events(PGFREE, 1 << order); 1430 } 1431 1432 static void __free_pages_ok(struct page *page, unsigned int order, 1433 fpi_t fpi_flags) 1434 { 1435 unsigned long pfn = page_to_pfn(page); 1436 struct zone *zone = page_zone(page); 1437 1438 if (free_pages_prepare(page, order)) 1439 free_one_page(zone, page, pfn, order, fpi_flags); 1440 } 1441 1442 void __meminit __free_pages_core(struct page *page, unsigned int order, 1443 enum meminit_context context) 1444 { 1445 unsigned int nr_pages = 1 << order; 1446 struct page *p = page; 1447 unsigned int loop; 1448 1449 /* 1450 * When initializing the memmap, __init_single_page() sets the refcount 1451 * of all pages to 1 ("allocated"/"not free"). We have to set the 1452 * refcount of all involved pages to 0. 1453 * 1454 * Note that hotplugged memory pages are initialized to PageOffline(). 1455 * Pages freed from memblock might be marked as reserved. 1456 */ 1457 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1458 unlikely(context == MEMINIT_HOTPLUG)) { 1459 for (loop = 0; loop < nr_pages; loop++, p++) { 1460 VM_WARN_ON_ONCE(PageReserved(p)); 1461 __ClearPageOffline(p); 1462 set_page_count(p, 0); 1463 } 1464 1465 adjust_managed_page_count(page, nr_pages); 1466 } else { 1467 for (loop = 0; loop < nr_pages; loop++, p++) { 1468 __ClearPageReserved(p); 1469 set_page_count(p, 0); 1470 } 1471 1472 /* memblock adjusts totalram_pages() manually. */ 1473 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1474 } 1475 1476 if (page_contains_unaccepted(page, order)) { 1477 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1478 return; 1479 1480 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1481 } 1482 1483 /* 1484 * Bypass PCP and place fresh pages right to the tail, primarily 1485 * relevant for memory onlining. 1486 */ 1487 __free_pages_ok(page, order, FPI_TO_TAIL); 1488 } 1489 1490 /* 1491 * Check that the whole (or subset of) a pageblock given by the interval of 1492 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1493 * with the migration of free compaction scanner. 1494 * 1495 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1496 * 1497 * It's possible on some configurations to have a setup like node0 node1 node0 1498 * i.e. it's possible that all pages within a zones range of pages do not 1499 * belong to a single zone. We assume that a border between node0 and node1 1500 * can occur within a single pageblock, but not a node0 node1 node0 1501 * interleaving within a single pageblock. It is therefore sufficient to check 1502 * the first and last page of a pageblock and avoid checking each individual 1503 * page in a pageblock. 1504 * 1505 * Note: the function may return non-NULL struct page even for a page block 1506 * which contains a memory hole (i.e. there is no physical memory for a subset 1507 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1508 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1509 * even though the start pfn is online and valid. This should be safe most of 1510 * the time because struct pages are still initialized via init_unavailable_range() 1511 * and pfn walkers shouldn't touch any physical memory range for which they do 1512 * not recognize any specific metadata in struct pages. 1513 */ 1514 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1515 unsigned long end_pfn, struct zone *zone) 1516 { 1517 struct page *start_page; 1518 struct page *end_page; 1519 1520 /* end_pfn is one past the range we are checking */ 1521 end_pfn--; 1522 1523 if (!pfn_valid(end_pfn)) 1524 return NULL; 1525 1526 start_page = pfn_to_online_page(start_pfn); 1527 if (!start_page) 1528 return NULL; 1529 1530 if (page_zone(start_page) != zone) 1531 return NULL; 1532 1533 end_page = pfn_to_page(end_pfn); 1534 1535 /* This gives a shorter code than deriving page_zone(end_page) */ 1536 if (page_zone_id(start_page) != page_zone_id(end_page)) 1537 return NULL; 1538 1539 return start_page; 1540 } 1541 1542 /* 1543 * The order of subdivision here is critical for the IO subsystem. 1544 * Please do not alter this order without good reasons and regression 1545 * testing. Specifically, as large blocks of memory are subdivided, 1546 * the order in which smaller blocks are delivered depends on the order 1547 * they're subdivided in this function. This is the primary factor 1548 * influencing the order in which pages are delivered to the IO 1549 * subsystem according to empirical testing, and this is also justified 1550 * by considering the behavior of a buddy system containing a single 1551 * large block of memory acted on by a series of small allocations. 1552 * This behavior is a critical factor in sglist merging's success. 1553 * 1554 * -- nyc 1555 */ 1556 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1557 int high, int migratetype) 1558 { 1559 unsigned int size = 1 << high; 1560 unsigned int nr_added = 0; 1561 1562 while (high > low) { 1563 high--; 1564 size >>= 1; 1565 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1566 1567 /* 1568 * Mark as guard pages (or page), that will allow to 1569 * merge back to allocator when buddy will be freed. 1570 * Corresponding page table entries will not be touched, 1571 * pages will stay not present in virtual address space 1572 */ 1573 if (set_page_guard(zone, &page[size], high)) 1574 continue; 1575 1576 __add_to_free_list(&page[size], zone, high, migratetype, false); 1577 set_buddy_order(&page[size], high); 1578 nr_added += size; 1579 } 1580 1581 return nr_added; 1582 } 1583 1584 static __always_inline void page_del_and_expand(struct zone *zone, 1585 struct page *page, int low, 1586 int high, int migratetype) 1587 { 1588 int nr_pages = 1 << high; 1589 1590 __del_page_from_free_list(page, zone, high, migratetype); 1591 nr_pages -= expand(zone, page, low, high, migratetype); 1592 account_freepages(zone, -nr_pages, migratetype); 1593 } 1594 1595 static void check_new_page_bad(struct page *page) 1596 { 1597 if (unlikely(PageHWPoison(page))) { 1598 /* Don't complain about hwpoisoned pages */ 1599 if (PageBuddy(page)) 1600 __ClearPageBuddy(page); 1601 return; 1602 } 1603 1604 bad_page(page, 1605 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1606 } 1607 1608 /* 1609 * This page is about to be returned from the page allocator 1610 */ 1611 static bool check_new_page(struct page *page) 1612 { 1613 if (likely(page_expected_state(page, 1614 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1615 return false; 1616 1617 check_new_page_bad(page); 1618 return true; 1619 } 1620 1621 static inline bool check_new_pages(struct page *page, unsigned int order) 1622 { 1623 if (is_check_pages_enabled()) { 1624 for (int i = 0; i < (1 << order); i++) { 1625 struct page *p = page + i; 1626 1627 if (check_new_page(p)) 1628 return true; 1629 } 1630 } 1631 1632 return false; 1633 } 1634 1635 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1636 { 1637 /* Don't skip if a software KASAN mode is enabled. */ 1638 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1639 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1640 return false; 1641 1642 /* Skip, if hardware tag-based KASAN is not enabled. */ 1643 if (!kasan_hw_tags_enabled()) 1644 return true; 1645 1646 /* 1647 * With hardware tag-based KASAN enabled, skip if this has been 1648 * requested via __GFP_SKIP_KASAN. 1649 */ 1650 return flags & __GFP_SKIP_KASAN; 1651 } 1652 1653 static inline bool should_skip_init(gfp_t flags) 1654 { 1655 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1656 if (!kasan_hw_tags_enabled()) 1657 return false; 1658 1659 /* For hardware tag-based KASAN, skip if requested. */ 1660 return (flags & __GFP_SKIP_ZERO); 1661 } 1662 1663 inline void post_alloc_hook(struct page *page, unsigned int order, 1664 gfp_t gfp_flags) 1665 { 1666 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1667 !should_skip_init(gfp_flags); 1668 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1669 int i; 1670 1671 set_page_private(page, 0); 1672 1673 arch_alloc_page(page, order); 1674 debug_pagealloc_map_pages(page, 1 << order); 1675 1676 /* 1677 * Page unpoisoning must happen before memory initialization. 1678 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1679 * allocations and the page unpoisoning code will complain. 1680 */ 1681 kernel_unpoison_pages(page, 1 << order); 1682 1683 /* 1684 * As memory initialization might be integrated into KASAN, 1685 * KASAN unpoisoning and memory initializion code must be 1686 * kept together to avoid discrepancies in behavior. 1687 */ 1688 1689 /* 1690 * If memory tags should be zeroed 1691 * (which happens only when memory should be initialized as well). 1692 */ 1693 if (zero_tags) { 1694 /* Initialize both memory and memory tags. */ 1695 for (i = 0; i != 1 << order; ++i) 1696 tag_clear_highpage(page + i); 1697 1698 /* Take note that memory was initialized by the loop above. */ 1699 init = false; 1700 } 1701 if (!should_skip_kasan_unpoison(gfp_flags) && 1702 kasan_unpoison_pages(page, order, init)) { 1703 /* Take note that memory was initialized by KASAN. */ 1704 if (kasan_has_integrated_init()) 1705 init = false; 1706 } else { 1707 /* 1708 * If memory tags have not been set by KASAN, reset the page 1709 * tags to ensure page_address() dereferencing does not fault. 1710 */ 1711 for (i = 0; i != 1 << order; ++i) 1712 page_kasan_tag_reset(page + i); 1713 } 1714 /* If memory is still not initialized, initialize it now. */ 1715 if (init) 1716 kernel_init_pages(page, 1 << order); 1717 1718 set_page_owner(page, order, gfp_flags); 1719 page_table_check_alloc(page, order); 1720 pgalloc_tag_add(page, current, 1 << order); 1721 } 1722 1723 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1724 unsigned int alloc_flags) 1725 { 1726 post_alloc_hook(page, order, gfp_flags); 1727 1728 if (order && (gfp_flags & __GFP_COMP)) 1729 prep_compound_page(page, order); 1730 1731 /* 1732 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1733 * allocate the page. The expectation is that the caller is taking 1734 * steps that will free more memory. The caller should avoid the page 1735 * being used for !PFMEMALLOC purposes. 1736 */ 1737 if (alloc_flags & ALLOC_NO_WATERMARKS) 1738 set_page_pfmemalloc(page); 1739 else 1740 clear_page_pfmemalloc(page); 1741 } 1742 1743 /* 1744 * Go through the free lists for the given migratetype and remove 1745 * the smallest available page from the freelists 1746 */ 1747 static __always_inline 1748 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1749 int migratetype) 1750 { 1751 unsigned int current_order; 1752 struct free_area *area; 1753 struct page *page; 1754 1755 /* Find a page of the appropriate size in the preferred list */ 1756 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1757 area = &(zone->free_area[current_order]); 1758 page = get_page_from_free_area(area, migratetype); 1759 if (!page) 1760 continue; 1761 1762 page_del_and_expand(zone, page, order, current_order, 1763 migratetype); 1764 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1765 pcp_allowed_order(order) && 1766 migratetype < MIGRATE_PCPTYPES); 1767 return page; 1768 } 1769 1770 return NULL; 1771 } 1772 1773 1774 /* 1775 * This array describes the order lists are fallen back to when 1776 * the free lists for the desirable migrate type are depleted 1777 * 1778 * The other migratetypes do not have fallbacks. 1779 */ 1780 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1781 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1782 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1783 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1784 }; 1785 1786 #ifdef CONFIG_CMA 1787 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1788 unsigned int order) 1789 { 1790 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1791 } 1792 #else 1793 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1794 unsigned int order) { return NULL; } 1795 #endif 1796 1797 /* 1798 * Change the type of a block and move all its free pages to that 1799 * type's freelist. 1800 */ 1801 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1802 int old_mt, int new_mt) 1803 { 1804 struct page *page; 1805 unsigned long pfn, end_pfn; 1806 unsigned int order; 1807 int pages_moved = 0; 1808 1809 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1810 end_pfn = pageblock_end_pfn(start_pfn); 1811 1812 for (pfn = start_pfn; pfn < end_pfn;) { 1813 page = pfn_to_page(pfn); 1814 if (!PageBuddy(page)) { 1815 pfn++; 1816 continue; 1817 } 1818 1819 /* Make sure we are not inadvertently changing nodes */ 1820 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1821 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1822 1823 order = buddy_order(page); 1824 1825 move_to_free_list(page, zone, order, old_mt, new_mt); 1826 1827 pfn += 1 << order; 1828 pages_moved += 1 << order; 1829 } 1830 1831 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1832 1833 return pages_moved; 1834 } 1835 1836 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1837 unsigned long *start_pfn, 1838 int *num_free, int *num_movable) 1839 { 1840 unsigned long pfn, start, end; 1841 1842 pfn = page_to_pfn(page); 1843 start = pageblock_start_pfn(pfn); 1844 end = pageblock_end_pfn(pfn); 1845 1846 /* 1847 * The caller only has the lock for @zone, don't touch ranges 1848 * that straddle into other zones. While we could move part of 1849 * the range that's inside the zone, this call is usually 1850 * accompanied by other operations such as migratetype updates 1851 * which also should be locked. 1852 */ 1853 if (!zone_spans_pfn(zone, start)) 1854 return false; 1855 if (!zone_spans_pfn(zone, end - 1)) 1856 return false; 1857 1858 *start_pfn = start; 1859 1860 if (num_free) { 1861 *num_free = 0; 1862 *num_movable = 0; 1863 for (pfn = start; pfn < end;) { 1864 page = pfn_to_page(pfn); 1865 if (PageBuddy(page)) { 1866 int nr = 1 << buddy_order(page); 1867 1868 *num_free += nr; 1869 pfn += nr; 1870 continue; 1871 } 1872 /* 1873 * We assume that pages that could be isolated for 1874 * migration are movable. But we don't actually try 1875 * isolating, as that would be expensive. 1876 */ 1877 if (PageLRU(page) || __PageMovable(page)) 1878 (*num_movable)++; 1879 pfn++; 1880 } 1881 } 1882 1883 return true; 1884 } 1885 1886 static int move_freepages_block(struct zone *zone, struct page *page, 1887 int old_mt, int new_mt) 1888 { 1889 unsigned long start_pfn; 1890 1891 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1892 return -1; 1893 1894 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1895 } 1896 1897 #ifdef CONFIG_MEMORY_ISOLATION 1898 /* Look for a buddy that straddles start_pfn */ 1899 static unsigned long find_large_buddy(unsigned long start_pfn) 1900 { 1901 int order = 0; 1902 struct page *page; 1903 unsigned long pfn = start_pfn; 1904 1905 while (!PageBuddy(page = pfn_to_page(pfn))) { 1906 /* Nothing found */ 1907 if (++order > MAX_PAGE_ORDER) 1908 return start_pfn; 1909 pfn &= ~0UL << order; 1910 } 1911 1912 /* 1913 * Found a preceding buddy, but does it straddle? 1914 */ 1915 if (pfn + (1 << buddy_order(page)) > start_pfn) 1916 return pfn; 1917 1918 /* Nothing found */ 1919 return start_pfn; 1920 } 1921 1922 /** 1923 * move_freepages_block_isolate - move free pages in block for page isolation 1924 * @zone: the zone 1925 * @page: the pageblock page 1926 * @migratetype: migratetype to set on the pageblock 1927 * 1928 * This is similar to move_freepages_block(), but handles the special 1929 * case encountered in page isolation, where the block of interest 1930 * might be part of a larger buddy spanning multiple pageblocks. 1931 * 1932 * Unlike the regular page allocator path, which moves pages while 1933 * stealing buddies off the freelist, page isolation is interested in 1934 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1935 * 1936 * This function handles that. Straddling buddies are split into 1937 * individual pageblocks. Only the block of interest is moved. 1938 * 1939 * Returns %true if pages could be moved, %false otherwise. 1940 */ 1941 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1942 int migratetype) 1943 { 1944 unsigned long start_pfn, pfn; 1945 1946 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1947 return false; 1948 1949 /* No splits needed if buddies can't span multiple blocks */ 1950 if (pageblock_order == MAX_PAGE_ORDER) 1951 goto move; 1952 1953 /* We're a tail block in a larger buddy */ 1954 pfn = find_large_buddy(start_pfn); 1955 if (pfn != start_pfn) { 1956 struct page *buddy = pfn_to_page(pfn); 1957 int order = buddy_order(buddy); 1958 1959 del_page_from_free_list(buddy, zone, order, 1960 get_pfnblock_migratetype(buddy, pfn)); 1961 set_pageblock_migratetype(page, migratetype); 1962 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1963 return true; 1964 } 1965 1966 /* We're the starting block of a larger buddy */ 1967 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1968 int order = buddy_order(page); 1969 1970 del_page_from_free_list(page, zone, order, 1971 get_pfnblock_migratetype(page, pfn)); 1972 set_pageblock_migratetype(page, migratetype); 1973 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1974 return true; 1975 } 1976 move: 1977 __move_freepages_block(zone, start_pfn, 1978 get_pfnblock_migratetype(page, start_pfn), 1979 migratetype); 1980 return true; 1981 } 1982 #endif /* CONFIG_MEMORY_ISOLATION */ 1983 1984 static void change_pageblock_range(struct page *pageblock_page, 1985 int start_order, int migratetype) 1986 { 1987 int nr_pageblocks = 1 << (start_order - pageblock_order); 1988 1989 while (nr_pageblocks--) { 1990 set_pageblock_migratetype(pageblock_page, migratetype); 1991 pageblock_page += pageblock_nr_pages; 1992 } 1993 } 1994 1995 static inline bool boost_watermark(struct zone *zone) 1996 { 1997 unsigned long max_boost; 1998 1999 if (!watermark_boost_factor) 2000 return false; 2001 /* 2002 * Don't bother in zones that are unlikely to produce results. 2003 * On small machines, including kdump capture kernels running 2004 * in a small area, boosting the watermark can cause an out of 2005 * memory situation immediately. 2006 */ 2007 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2008 return false; 2009 2010 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2011 watermark_boost_factor, 10000); 2012 2013 /* 2014 * high watermark may be uninitialised if fragmentation occurs 2015 * very early in boot so do not boost. We do not fall 2016 * through and boost by pageblock_nr_pages as failing 2017 * allocations that early means that reclaim is not going 2018 * to help and it may even be impossible to reclaim the 2019 * boosted watermark resulting in a hang. 2020 */ 2021 if (!max_boost) 2022 return false; 2023 2024 max_boost = max(pageblock_nr_pages, max_boost); 2025 2026 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2027 max_boost); 2028 2029 return true; 2030 } 2031 2032 /* 2033 * When we are falling back to another migratetype during allocation, should we 2034 * try to claim an entire block to satisfy further allocations, instead of 2035 * polluting multiple pageblocks? 2036 */ 2037 static bool should_try_claim_block(unsigned int order, int start_mt) 2038 { 2039 /* 2040 * Leaving this order check is intended, although there is 2041 * relaxed order check in next check. The reason is that 2042 * we can actually claim the whole pageblock if this condition met, 2043 * but, below check doesn't guarantee it and that is just heuristic 2044 * so could be changed anytime. 2045 */ 2046 if (order >= pageblock_order) 2047 return true; 2048 2049 /* 2050 * Above a certain threshold, always try to claim, as it's likely there 2051 * will be more free pages in the pageblock. 2052 */ 2053 if (order >= pageblock_order / 2) 2054 return true; 2055 2056 /* 2057 * Unmovable/reclaimable allocations would cause permanent 2058 * fragmentations if they fell back to allocating from a movable block 2059 * (polluting it), so we try to claim the whole block regardless of the 2060 * allocation size. Later movable allocations can always steal from this 2061 * block, which is less problematic. 2062 */ 2063 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2064 return true; 2065 2066 if (page_group_by_mobility_disabled) 2067 return true; 2068 2069 /* 2070 * Movable pages won't cause permanent fragmentation, so when you alloc 2071 * small pages, we just need to temporarily steal unmovable or 2072 * reclaimable pages that are closest to the request size. After a 2073 * while, memory compaction may occur to form large contiguous pages, 2074 * and the next movable allocation may not need to steal. 2075 */ 2076 return false; 2077 } 2078 2079 /* 2080 * Check whether there is a suitable fallback freepage with requested order. 2081 * Sets *claim_block to instruct the caller whether it should convert a whole 2082 * pageblock to the returned migratetype. 2083 * If only_claim is true, this function returns fallback_mt only if 2084 * we would do this whole-block claiming. This would help to reduce 2085 * fragmentation due to mixed migratetype pages in one pageblock. 2086 */ 2087 int find_suitable_fallback(struct free_area *area, unsigned int order, 2088 int migratetype, bool only_claim, bool *claim_block) 2089 { 2090 int i; 2091 int fallback_mt; 2092 2093 if (area->nr_free == 0) 2094 return -1; 2095 2096 *claim_block = false; 2097 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2098 fallback_mt = fallbacks[migratetype][i]; 2099 if (free_area_empty(area, fallback_mt)) 2100 continue; 2101 2102 if (should_try_claim_block(order, migratetype)) 2103 *claim_block = true; 2104 2105 if (*claim_block || !only_claim) 2106 return fallback_mt; 2107 } 2108 2109 return -1; 2110 } 2111 2112 /* 2113 * This function implements actual block claiming behaviour. If order is large 2114 * enough, we can claim the whole pageblock for the requested migratetype. If 2115 * not, we check the pageblock for constituent pages; if at least half of the 2116 * pages are free or compatible, we can still claim the whole block, so pages 2117 * freed in the future will be put on the correct free list. 2118 */ 2119 static struct page * 2120 try_to_claim_block(struct zone *zone, struct page *page, 2121 int current_order, int order, int start_type, 2122 int block_type, unsigned int alloc_flags) 2123 { 2124 int free_pages, movable_pages, alike_pages; 2125 unsigned long start_pfn; 2126 2127 /* Take ownership for orders >= pageblock_order */ 2128 if (current_order >= pageblock_order) { 2129 unsigned int nr_added; 2130 2131 del_page_from_free_list(page, zone, current_order, block_type); 2132 change_pageblock_range(page, current_order, start_type); 2133 nr_added = expand(zone, page, order, current_order, start_type); 2134 account_freepages(zone, nr_added, start_type); 2135 return page; 2136 } 2137 2138 /* 2139 * Boost watermarks to increase reclaim pressure to reduce the 2140 * likelihood of future fallbacks. Wake kswapd now as the node 2141 * may be balanced overall and kswapd will not wake naturally. 2142 */ 2143 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2144 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2145 2146 /* moving whole block can fail due to zone boundary conditions */ 2147 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2148 &movable_pages)) 2149 return NULL; 2150 2151 /* 2152 * Determine how many pages are compatible with our allocation. 2153 * For movable allocation, it's the number of movable pages which 2154 * we just obtained. For other types it's a bit more tricky. 2155 */ 2156 if (start_type == MIGRATE_MOVABLE) { 2157 alike_pages = movable_pages; 2158 } else { 2159 /* 2160 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2161 * to MOVABLE pageblock, consider all non-movable pages as 2162 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2163 * vice versa, be conservative since we can't distinguish the 2164 * exact migratetype of non-movable pages. 2165 */ 2166 if (block_type == MIGRATE_MOVABLE) 2167 alike_pages = pageblock_nr_pages 2168 - (free_pages + movable_pages); 2169 else 2170 alike_pages = 0; 2171 } 2172 /* 2173 * If a sufficient number of pages in the block are either free or of 2174 * compatible migratability as our allocation, claim the whole block. 2175 */ 2176 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2177 page_group_by_mobility_disabled) { 2178 __move_freepages_block(zone, start_pfn, block_type, start_type); 2179 return __rmqueue_smallest(zone, order, start_type); 2180 } 2181 2182 return NULL; 2183 } 2184 2185 /* 2186 * Try to allocate from some fallback migratetype by claiming the entire block, 2187 * i.e. converting it to the allocation's start migratetype. 2188 * 2189 * The use of signed ints for order and current_order is a deliberate 2190 * deviation from the rest of this file, to make the for loop 2191 * condition simpler. 2192 */ 2193 static __always_inline struct page * 2194 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2195 unsigned int alloc_flags) 2196 { 2197 struct free_area *area; 2198 int current_order; 2199 int min_order = order; 2200 struct page *page; 2201 int fallback_mt; 2202 bool claim_block; 2203 2204 /* 2205 * Do not steal pages from freelists belonging to other pageblocks 2206 * i.e. orders < pageblock_order. If there are no local zones free, 2207 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2208 */ 2209 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2210 min_order = pageblock_order; 2211 2212 /* 2213 * Find the largest available free page in the other list. This roughly 2214 * approximates finding the pageblock with the most free pages, which 2215 * would be too costly to do exactly. 2216 */ 2217 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2218 --current_order) { 2219 area = &(zone->free_area[current_order]); 2220 fallback_mt = find_suitable_fallback(area, current_order, 2221 start_migratetype, false, &claim_block); 2222 if (fallback_mt == -1) 2223 continue; 2224 2225 if (!claim_block) 2226 break; 2227 2228 page = get_page_from_free_area(area, fallback_mt); 2229 page = try_to_claim_block(zone, page, current_order, order, 2230 start_migratetype, fallback_mt, 2231 alloc_flags); 2232 if (page) { 2233 trace_mm_page_alloc_extfrag(page, order, current_order, 2234 start_migratetype, fallback_mt); 2235 return page; 2236 } 2237 } 2238 2239 return NULL; 2240 } 2241 2242 /* 2243 * Try to steal a single page from some fallback migratetype. Leave the rest of 2244 * the block as its current migratetype, potentially causing fragmentation. 2245 */ 2246 static __always_inline struct page * 2247 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2248 { 2249 struct free_area *area; 2250 int current_order; 2251 struct page *page; 2252 int fallback_mt; 2253 bool claim_block; 2254 2255 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2256 area = &(zone->free_area[current_order]); 2257 fallback_mt = find_suitable_fallback(area, current_order, 2258 start_migratetype, false, &claim_block); 2259 if (fallback_mt == -1) 2260 continue; 2261 2262 page = get_page_from_free_area(area, fallback_mt); 2263 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2264 trace_mm_page_alloc_extfrag(page, order, current_order, 2265 start_migratetype, fallback_mt); 2266 return page; 2267 } 2268 2269 return NULL; 2270 } 2271 2272 enum rmqueue_mode { 2273 RMQUEUE_NORMAL, 2274 RMQUEUE_CMA, 2275 RMQUEUE_CLAIM, 2276 RMQUEUE_STEAL, 2277 }; 2278 2279 /* 2280 * Do the hard work of removing an element from the buddy allocator. 2281 * Call me with the zone->lock already held. 2282 */ 2283 static __always_inline struct page * 2284 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2285 unsigned int alloc_flags, enum rmqueue_mode *mode) 2286 { 2287 struct page *page; 2288 2289 if (IS_ENABLED(CONFIG_CMA)) { 2290 /* 2291 * Balance movable allocations between regular and CMA areas by 2292 * allocating from CMA when over half of the zone's free memory 2293 * is in the CMA area. 2294 */ 2295 if (alloc_flags & ALLOC_CMA && 2296 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2297 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2298 page = __rmqueue_cma_fallback(zone, order); 2299 if (page) 2300 return page; 2301 } 2302 } 2303 2304 /* 2305 * First try the freelists of the requested migratetype, then try 2306 * fallbacks modes with increasing levels of fragmentation risk. 2307 * 2308 * The fallback logic is expensive and rmqueue_bulk() calls in 2309 * a loop with the zone->lock held, meaning the freelists are 2310 * not subject to any outside changes. Remember in *mode where 2311 * we found pay dirt, to save us the search on the next call. 2312 */ 2313 switch (*mode) { 2314 case RMQUEUE_NORMAL: 2315 page = __rmqueue_smallest(zone, order, migratetype); 2316 if (page) 2317 return page; 2318 fallthrough; 2319 case RMQUEUE_CMA: 2320 if (alloc_flags & ALLOC_CMA) { 2321 page = __rmqueue_cma_fallback(zone, order); 2322 if (page) { 2323 *mode = RMQUEUE_CMA; 2324 return page; 2325 } 2326 } 2327 fallthrough; 2328 case RMQUEUE_CLAIM: 2329 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2330 if (page) { 2331 /* Replenished preferred freelist, back to normal mode. */ 2332 *mode = RMQUEUE_NORMAL; 2333 return page; 2334 } 2335 fallthrough; 2336 case RMQUEUE_STEAL: 2337 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2338 page = __rmqueue_steal(zone, order, migratetype); 2339 if (page) { 2340 *mode = RMQUEUE_STEAL; 2341 return page; 2342 } 2343 } 2344 } 2345 return NULL; 2346 } 2347 2348 /* 2349 * Obtain a specified number of elements from the buddy allocator, all under 2350 * a single hold of the lock, for efficiency. Add them to the supplied list. 2351 * Returns the number of new pages which were placed at *list. 2352 */ 2353 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2354 unsigned long count, struct list_head *list, 2355 int migratetype, unsigned int alloc_flags) 2356 { 2357 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2358 unsigned long flags; 2359 int i; 2360 2361 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2362 if (!spin_trylock_irqsave(&zone->lock, flags)) 2363 return 0; 2364 } else { 2365 spin_lock_irqsave(&zone->lock, flags); 2366 } 2367 for (i = 0; i < count; ++i) { 2368 struct page *page = __rmqueue(zone, order, migratetype, 2369 alloc_flags, &rmqm); 2370 if (unlikely(page == NULL)) 2371 break; 2372 2373 /* 2374 * Split buddy pages returned by expand() are received here in 2375 * physical page order. The page is added to the tail of 2376 * caller's list. From the callers perspective, the linked list 2377 * is ordered by page number under some conditions. This is 2378 * useful for IO devices that can forward direction from the 2379 * head, thus also in the physical page order. This is useful 2380 * for IO devices that can merge IO requests if the physical 2381 * pages are ordered properly. 2382 */ 2383 list_add_tail(&page->pcp_list, list); 2384 } 2385 spin_unlock_irqrestore(&zone->lock, flags); 2386 2387 return i; 2388 } 2389 2390 /* 2391 * Called from the vmstat counter updater to decay the PCP high. 2392 * Return whether there are addition works to do. 2393 */ 2394 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2395 { 2396 int high_min, to_drain, batch; 2397 int todo = 0; 2398 2399 high_min = READ_ONCE(pcp->high_min); 2400 batch = READ_ONCE(pcp->batch); 2401 /* 2402 * Decrease pcp->high periodically to try to free possible 2403 * idle PCP pages. And, avoid to free too many pages to 2404 * control latency. This caps pcp->high decrement too. 2405 */ 2406 if (pcp->high > high_min) { 2407 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2408 pcp->high - (pcp->high >> 3), high_min); 2409 if (pcp->high > high_min) 2410 todo++; 2411 } 2412 2413 to_drain = pcp->count - pcp->high; 2414 if (to_drain > 0) { 2415 spin_lock(&pcp->lock); 2416 free_pcppages_bulk(zone, to_drain, pcp, 0); 2417 spin_unlock(&pcp->lock); 2418 todo++; 2419 } 2420 2421 return todo; 2422 } 2423 2424 #ifdef CONFIG_NUMA 2425 /* 2426 * Called from the vmstat counter updater to drain pagesets of this 2427 * currently executing processor on remote nodes after they have 2428 * expired. 2429 */ 2430 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2431 { 2432 int to_drain, batch; 2433 2434 batch = READ_ONCE(pcp->batch); 2435 to_drain = min(pcp->count, batch); 2436 if (to_drain > 0) { 2437 spin_lock(&pcp->lock); 2438 free_pcppages_bulk(zone, to_drain, pcp, 0); 2439 spin_unlock(&pcp->lock); 2440 } 2441 } 2442 #endif 2443 2444 /* 2445 * Drain pcplists of the indicated processor and zone. 2446 */ 2447 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2448 { 2449 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2450 int count; 2451 2452 do { 2453 spin_lock(&pcp->lock); 2454 count = pcp->count; 2455 if (count) { 2456 int to_drain = min(count, 2457 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2458 2459 free_pcppages_bulk(zone, to_drain, pcp, 0); 2460 count -= to_drain; 2461 } 2462 spin_unlock(&pcp->lock); 2463 } while (count); 2464 } 2465 2466 /* 2467 * Drain pcplists of all zones on the indicated processor. 2468 */ 2469 static void drain_pages(unsigned int cpu) 2470 { 2471 struct zone *zone; 2472 2473 for_each_populated_zone(zone) { 2474 drain_pages_zone(cpu, zone); 2475 } 2476 } 2477 2478 /* 2479 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2480 */ 2481 void drain_local_pages(struct zone *zone) 2482 { 2483 int cpu = smp_processor_id(); 2484 2485 if (zone) 2486 drain_pages_zone(cpu, zone); 2487 else 2488 drain_pages(cpu); 2489 } 2490 2491 /* 2492 * The implementation of drain_all_pages(), exposing an extra parameter to 2493 * drain on all cpus. 2494 * 2495 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2496 * not empty. The check for non-emptiness can however race with a free to 2497 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2498 * that need the guarantee that every CPU has drained can disable the 2499 * optimizing racy check. 2500 */ 2501 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2502 { 2503 int cpu; 2504 2505 /* 2506 * Allocate in the BSS so we won't require allocation in 2507 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2508 */ 2509 static cpumask_t cpus_with_pcps; 2510 2511 /* 2512 * Do not drain if one is already in progress unless it's specific to 2513 * a zone. Such callers are primarily CMA and memory hotplug and need 2514 * the drain to be complete when the call returns. 2515 */ 2516 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2517 if (!zone) 2518 return; 2519 mutex_lock(&pcpu_drain_mutex); 2520 } 2521 2522 /* 2523 * We don't care about racing with CPU hotplug event 2524 * as offline notification will cause the notified 2525 * cpu to drain that CPU pcps and on_each_cpu_mask 2526 * disables preemption as part of its processing 2527 */ 2528 for_each_online_cpu(cpu) { 2529 struct per_cpu_pages *pcp; 2530 struct zone *z; 2531 bool has_pcps = false; 2532 2533 if (force_all_cpus) { 2534 /* 2535 * The pcp.count check is racy, some callers need a 2536 * guarantee that no cpu is missed. 2537 */ 2538 has_pcps = true; 2539 } else if (zone) { 2540 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2541 if (pcp->count) 2542 has_pcps = true; 2543 } else { 2544 for_each_populated_zone(z) { 2545 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2546 if (pcp->count) { 2547 has_pcps = true; 2548 break; 2549 } 2550 } 2551 } 2552 2553 if (has_pcps) 2554 cpumask_set_cpu(cpu, &cpus_with_pcps); 2555 else 2556 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2557 } 2558 2559 for_each_cpu(cpu, &cpus_with_pcps) { 2560 if (zone) 2561 drain_pages_zone(cpu, zone); 2562 else 2563 drain_pages(cpu); 2564 } 2565 2566 mutex_unlock(&pcpu_drain_mutex); 2567 } 2568 2569 /* 2570 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2571 * 2572 * When zone parameter is non-NULL, spill just the single zone's pages. 2573 */ 2574 void drain_all_pages(struct zone *zone) 2575 { 2576 __drain_all_pages(zone, false); 2577 } 2578 2579 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2580 { 2581 int min_nr_free, max_nr_free; 2582 2583 /* Free as much as possible if batch freeing high-order pages. */ 2584 if (unlikely(free_high)) 2585 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2586 2587 /* Check for PCP disabled or boot pageset */ 2588 if (unlikely(high < batch)) 2589 return 1; 2590 2591 /* Leave at least pcp->batch pages on the list */ 2592 min_nr_free = batch; 2593 max_nr_free = high - batch; 2594 2595 /* 2596 * Increase the batch number to the number of the consecutive 2597 * freed pages to reduce zone lock contention. 2598 */ 2599 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2600 2601 return batch; 2602 } 2603 2604 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2605 int batch, bool free_high) 2606 { 2607 int high, high_min, high_max; 2608 2609 high_min = READ_ONCE(pcp->high_min); 2610 high_max = READ_ONCE(pcp->high_max); 2611 high = pcp->high = clamp(pcp->high, high_min, high_max); 2612 2613 if (unlikely(!high)) 2614 return 0; 2615 2616 if (unlikely(free_high)) { 2617 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2618 high_min); 2619 return 0; 2620 } 2621 2622 /* 2623 * If reclaim is active, limit the number of pages that can be 2624 * stored on pcp lists 2625 */ 2626 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2627 int free_count = max_t(int, pcp->free_count, batch); 2628 2629 pcp->high = max(high - free_count, high_min); 2630 return min(batch << 2, pcp->high); 2631 } 2632 2633 if (high_min == high_max) 2634 return high; 2635 2636 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2637 int free_count = max_t(int, pcp->free_count, batch); 2638 2639 pcp->high = max(high - free_count, high_min); 2640 high = max(pcp->count, high_min); 2641 } else if (pcp->count >= high) { 2642 int need_high = pcp->free_count + batch; 2643 2644 /* pcp->high should be large enough to hold batch freed pages */ 2645 if (pcp->high < need_high) 2646 pcp->high = clamp(need_high, high_min, high_max); 2647 } 2648 2649 return high; 2650 } 2651 2652 static void free_frozen_page_commit(struct zone *zone, 2653 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2654 unsigned int order, fpi_t fpi_flags) 2655 { 2656 int high, batch; 2657 int pindex; 2658 bool free_high = false; 2659 2660 /* 2661 * On freeing, reduce the number of pages that are batch allocated. 2662 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2663 * allocations. 2664 */ 2665 pcp->alloc_factor >>= 1; 2666 __count_vm_events(PGFREE, 1 << order); 2667 pindex = order_to_pindex(migratetype, order); 2668 list_add(&page->pcp_list, &pcp->lists[pindex]); 2669 pcp->count += 1 << order; 2670 2671 batch = READ_ONCE(pcp->batch); 2672 /* 2673 * As high-order pages other than THP's stored on PCP can contribute 2674 * to fragmentation, limit the number stored when PCP is heavily 2675 * freeing without allocation. The remainder after bulk freeing 2676 * stops will be drained from vmstat refresh context. 2677 */ 2678 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2679 free_high = (pcp->free_count >= batch && 2680 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2681 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2682 pcp->count >= READ_ONCE(batch))); 2683 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2684 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2685 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2686 } 2687 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2688 pcp->free_count += (1 << order); 2689 2690 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2691 /* 2692 * Do not attempt to take a zone lock. Let pcp->count get 2693 * over high mark temporarily. 2694 */ 2695 return; 2696 } 2697 high = nr_pcp_high(pcp, zone, batch, free_high); 2698 if (pcp->count >= high) { 2699 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2700 pcp, pindex); 2701 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2702 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2703 ZONE_MOVABLE, 0)) 2704 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2705 } 2706 } 2707 2708 /* 2709 * Free a pcp page 2710 */ 2711 static void __free_frozen_pages(struct page *page, unsigned int order, 2712 fpi_t fpi_flags) 2713 { 2714 unsigned long __maybe_unused UP_flags; 2715 struct per_cpu_pages *pcp; 2716 struct zone *zone; 2717 unsigned long pfn = page_to_pfn(page); 2718 int migratetype; 2719 2720 if (!pcp_allowed_order(order)) { 2721 __free_pages_ok(page, order, fpi_flags); 2722 return; 2723 } 2724 2725 if (!free_pages_prepare(page, order)) 2726 return; 2727 2728 /* 2729 * We only track unmovable, reclaimable and movable on pcp lists. 2730 * Place ISOLATE pages on the isolated list because they are being 2731 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2732 * get those areas back if necessary. Otherwise, we may have to free 2733 * excessively into the page allocator 2734 */ 2735 zone = page_zone(page); 2736 migratetype = get_pfnblock_migratetype(page, pfn); 2737 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2738 if (unlikely(is_migrate_isolate(migratetype))) { 2739 free_one_page(zone, page, pfn, order, fpi_flags); 2740 return; 2741 } 2742 migratetype = MIGRATE_MOVABLE; 2743 } 2744 2745 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2746 && (in_nmi() || in_hardirq()))) { 2747 add_page_to_zone_llist(zone, page, order); 2748 return; 2749 } 2750 pcp_trylock_prepare(UP_flags); 2751 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2752 if (pcp) { 2753 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2754 pcp_spin_unlock(pcp); 2755 } else { 2756 free_one_page(zone, page, pfn, order, fpi_flags); 2757 } 2758 pcp_trylock_finish(UP_flags); 2759 } 2760 2761 void free_frozen_pages(struct page *page, unsigned int order) 2762 { 2763 __free_frozen_pages(page, order, FPI_NONE); 2764 } 2765 2766 /* 2767 * Free a batch of folios 2768 */ 2769 void free_unref_folios(struct folio_batch *folios) 2770 { 2771 unsigned long __maybe_unused UP_flags; 2772 struct per_cpu_pages *pcp = NULL; 2773 struct zone *locked_zone = NULL; 2774 int i, j; 2775 2776 /* Prepare folios for freeing */ 2777 for (i = 0, j = 0; i < folios->nr; i++) { 2778 struct folio *folio = folios->folios[i]; 2779 unsigned long pfn = folio_pfn(folio); 2780 unsigned int order = folio_order(folio); 2781 2782 if (!free_pages_prepare(&folio->page, order)) 2783 continue; 2784 /* 2785 * Free orders not handled on the PCP directly to the 2786 * allocator. 2787 */ 2788 if (!pcp_allowed_order(order)) { 2789 free_one_page(folio_zone(folio), &folio->page, 2790 pfn, order, FPI_NONE); 2791 continue; 2792 } 2793 folio->private = (void *)(unsigned long)order; 2794 if (j != i) 2795 folios->folios[j] = folio; 2796 j++; 2797 } 2798 folios->nr = j; 2799 2800 for (i = 0; i < folios->nr; i++) { 2801 struct folio *folio = folios->folios[i]; 2802 struct zone *zone = folio_zone(folio); 2803 unsigned long pfn = folio_pfn(folio); 2804 unsigned int order = (unsigned long)folio->private; 2805 int migratetype; 2806 2807 folio->private = NULL; 2808 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2809 2810 /* Different zone requires a different pcp lock */ 2811 if (zone != locked_zone || 2812 is_migrate_isolate(migratetype)) { 2813 if (pcp) { 2814 pcp_spin_unlock(pcp); 2815 pcp_trylock_finish(UP_flags); 2816 locked_zone = NULL; 2817 pcp = NULL; 2818 } 2819 2820 /* 2821 * Free isolated pages directly to the 2822 * allocator, see comment in free_frozen_pages. 2823 */ 2824 if (is_migrate_isolate(migratetype)) { 2825 free_one_page(zone, &folio->page, pfn, 2826 order, FPI_NONE); 2827 continue; 2828 } 2829 2830 /* 2831 * trylock is necessary as folios may be getting freed 2832 * from IRQ or SoftIRQ context after an IO completion. 2833 */ 2834 pcp_trylock_prepare(UP_flags); 2835 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2836 if (unlikely(!pcp)) { 2837 pcp_trylock_finish(UP_flags); 2838 free_one_page(zone, &folio->page, pfn, 2839 order, FPI_NONE); 2840 continue; 2841 } 2842 locked_zone = zone; 2843 } 2844 2845 /* 2846 * Non-isolated types over MIGRATE_PCPTYPES get added 2847 * to the MIGRATE_MOVABLE pcp list. 2848 */ 2849 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2850 migratetype = MIGRATE_MOVABLE; 2851 2852 trace_mm_page_free_batched(&folio->page); 2853 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 2854 order, FPI_NONE); 2855 } 2856 2857 if (pcp) { 2858 pcp_spin_unlock(pcp); 2859 pcp_trylock_finish(UP_flags); 2860 } 2861 folio_batch_reinit(folios); 2862 } 2863 2864 /* 2865 * split_page takes a non-compound higher-order page, and splits it into 2866 * n (1<<order) sub-pages: page[0..n] 2867 * Each sub-page must be freed individually. 2868 * 2869 * Note: this is probably too low level an operation for use in drivers. 2870 * Please consult with lkml before using this in your driver. 2871 */ 2872 void split_page(struct page *page, unsigned int order) 2873 { 2874 int i; 2875 2876 VM_BUG_ON_PAGE(PageCompound(page), page); 2877 VM_BUG_ON_PAGE(!page_count(page), page); 2878 2879 for (i = 1; i < (1 << order); i++) 2880 set_page_refcounted(page + i); 2881 split_page_owner(page, order, 0); 2882 pgalloc_tag_split(page_folio(page), order, 0); 2883 split_page_memcg(page, order); 2884 } 2885 EXPORT_SYMBOL_GPL(split_page); 2886 2887 int __isolate_free_page(struct page *page, unsigned int order) 2888 { 2889 struct zone *zone = page_zone(page); 2890 int mt = get_pageblock_migratetype(page); 2891 2892 if (!is_migrate_isolate(mt)) { 2893 unsigned long watermark; 2894 /* 2895 * Obey watermarks as if the page was being allocated. We can 2896 * emulate a high-order watermark check with a raised order-0 2897 * watermark, because we already know our high-order page 2898 * exists. 2899 */ 2900 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2901 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2902 return 0; 2903 } 2904 2905 del_page_from_free_list(page, zone, order, mt); 2906 2907 /* 2908 * Set the pageblock if the isolated page is at least half of a 2909 * pageblock 2910 */ 2911 if (order >= pageblock_order - 1) { 2912 struct page *endpage = page + (1 << order) - 1; 2913 for (; page < endpage; page += pageblock_nr_pages) { 2914 int mt = get_pageblock_migratetype(page); 2915 /* 2916 * Only change normal pageblocks (i.e., they can merge 2917 * with others) 2918 */ 2919 if (migratetype_is_mergeable(mt)) 2920 move_freepages_block(zone, page, mt, 2921 MIGRATE_MOVABLE); 2922 } 2923 } 2924 2925 return 1UL << order; 2926 } 2927 2928 /** 2929 * __putback_isolated_page - Return a now-isolated page back where we got it 2930 * @page: Page that was isolated 2931 * @order: Order of the isolated page 2932 * @mt: The page's pageblock's migratetype 2933 * 2934 * This function is meant to return a page pulled from the free lists via 2935 * __isolate_free_page back to the free lists they were pulled from. 2936 */ 2937 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2938 { 2939 struct zone *zone = page_zone(page); 2940 2941 /* zone lock should be held when this function is called */ 2942 lockdep_assert_held(&zone->lock); 2943 2944 /* Return isolated page to tail of freelist. */ 2945 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2946 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2947 } 2948 2949 /* 2950 * Update NUMA hit/miss statistics 2951 */ 2952 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2953 long nr_account) 2954 { 2955 #ifdef CONFIG_NUMA 2956 enum numa_stat_item local_stat = NUMA_LOCAL; 2957 2958 /* skip numa counters update if numa stats is disabled */ 2959 if (!static_branch_likely(&vm_numa_stat_key)) 2960 return; 2961 2962 if (zone_to_nid(z) != numa_node_id()) 2963 local_stat = NUMA_OTHER; 2964 2965 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2966 __count_numa_events(z, NUMA_HIT, nr_account); 2967 else { 2968 __count_numa_events(z, NUMA_MISS, nr_account); 2969 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2970 } 2971 __count_numa_events(z, local_stat, nr_account); 2972 #endif 2973 } 2974 2975 static __always_inline 2976 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2977 unsigned int order, unsigned int alloc_flags, 2978 int migratetype) 2979 { 2980 struct page *page; 2981 unsigned long flags; 2982 2983 do { 2984 page = NULL; 2985 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2986 if (!spin_trylock_irqsave(&zone->lock, flags)) 2987 return NULL; 2988 } else { 2989 spin_lock_irqsave(&zone->lock, flags); 2990 } 2991 if (alloc_flags & ALLOC_HIGHATOMIC) 2992 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2993 if (!page) { 2994 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2995 2996 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 2997 2998 /* 2999 * If the allocation fails, allow OOM handling and 3000 * order-0 (atomic) allocs access to HIGHATOMIC 3001 * reserves as failing now is worse than failing a 3002 * high-order atomic allocation in the future. 3003 */ 3004 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3005 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3006 3007 if (!page) { 3008 spin_unlock_irqrestore(&zone->lock, flags); 3009 return NULL; 3010 } 3011 } 3012 spin_unlock_irqrestore(&zone->lock, flags); 3013 } while (check_new_pages(page, order)); 3014 3015 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3016 zone_statistics(preferred_zone, zone, 1); 3017 3018 return page; 3019 } 3020 3021 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3022 { 3023 int high, base_batch, batch, max_nr_alloc; 3024 int high_max, high_min; 3025 3026 base_batch = READ_ONCE(pcp->batch); 3027 high_min = READ_ONCE(pcp->high_min); 3028 high_max = READ_ONCE(pcp->high_max); 3029 high = pcp->high = clamp(pcp->high, high_min, high_max); 3030 3031 /* Check for PCP disabled or boot pageset */ 3032 if (unlikely(high < base_batch)) 3033 return 1; 3034 3035 if (order) 3036 batch = base_batch; 3037 else 3038 batch = (base_batch << pcp->alloc_factor); 3039 3040 /* 3041 * If we had larger pcp->high, we could avoid to allocate from 3042 * zone. 3043 */ 3044 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3045 high = pcp->high = min(high + batch, high_max); 3046 3047 if (!order) { 3048 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3049 /* 3050 * Double the number of pages allocated each time there is 3051 * subsequent allocation of order-0 pages without any freeing. 3052 */ 3053 if (batch <= max_nr_alloc && 3054 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3055 pcp->alloc_factor++; 3056 batch = min(batch, max_nr_alloc); 3057 } 3058 3059 /* 3060 * Scale batch relative to order if batch implies free pages 3061 * can be stored on the PCP. Batch can be 1 for small zones or 3062 * for boot pagesets which should never store free pages as 3063 * the pages may belong to arbitrary zones. 3064 */ 3065 if (batch > 1) 3066 batch = max(batch >> order, 2); 3067 3068 return batch; 3069 } 3070 3071 /* Remove page from the per-cpu list, caller must protect the list */ 3072 static inline 3073 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3074 int migratetype, 3075 unsigned int alloc_flags, 3076 struct per_cpu_pages *pcp, 3077 struct list_head *list) 3078 { 3079 struct page *page; 3080 3081 do { 3082 if (list_empty(list)) { 3083 int batch = nr_pcp_alloc(pcp, zone, order); 3084 int alloced; 3085 3086 alloced = rmqueue_bulk(zone, order, 3087 batch, list, 3088 migratetype, alloc_flags); 3089 3090 pcp->count += alloced << order; 3091 if (unlikely(list_empty(list))) 3092 return NULL; 3093 } 3094 3095 page = list_first_entry(list, struct page, pcp_list); 3096 list_del(&page->pcp_list); 3097 pcp->count -= 1 << order; 3098 } while (check_new_pages(page, order)); 3099 3100 return page; 3101 } 3102 3103 /* Lock and remove page from the per-cpu list */ 3104 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3105 struct zone *zone, unsigned int order, 3106 int migratetype, unsigned int alloc_flags) 3107 { 3108 struct per_cpu_pages *pcp; 3109 struct list_head *list; 3110 struct page *page; 3111 unsigned long __maybe_unused UP_flags; 3112 3113 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3114 pcp_trylock_prepare(UP_flags); 3115 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3116 if (!pcp) { 3117 pcp_trylock_finish(UP_flags); 3118 return NULL; 3119 } 3120 3121 /* 3122 * On allocation, reduce the number of pages that are batch freed. 3123 * See nr_pcp_free() where free_factor is increased for subsequent 3124 * frees. 3125 */ 3126 pcp->free_count >>= 1; 3127 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3128 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3129 pcp_spin_unlock(pcp); 3130 pcp_trylock_finish(UP_flags); 3131 if (page) { 3132 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3133 zone_statistics(preferred_zone, zone, 1); 3134 } 3135 return page; 3136 } 3137 3138 /* 3139 * Allocate a page from the given zone. 3140 * Use pcplists for THP or "cheap" high-order allocations. 3141 */ 3142 3143 /* 3144 * Do not instrument rmqueue() with KMSAN. This function may call 3145 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3146 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3147 * may call rmqueue() again, which will result in a deadlock. 3148 */ 3149 __no_sanitize_memory 3150 static inline 3151 struct page *rmqueue(struct zone *preferred_zone, 3152 struct zone *zone, unsigned int order, 3153 gfp_t gfp_flags, unsigned int alloc_flags, 3154 int migratetype) 3155 { 3156 struct page *page; 3157 3158 if (likely(pcp_allowed_order(order))) { 3159 page = rmqueue_pcplist(preferred_zone, zone, order, 3160 migratetype, alloc_flags); 3161 if (likely(page)) 3162 goto out; 3163 } 3164 3165 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3166 migratetype); 3167 3168 out: 3169 /* Separate test+clear to avoid unnecessary atomics */ 3170 if ((alloc_flags & ALLOC_KSWAPD) && 3171 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3172 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3173 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3174 } 3175 3176 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3177 return page; 3178 } 3179 3180 /* 3181 * Reserve the pageblock(s) surrounding an allocation request for 3182 * exclusive use of high-order atomic allocations if there are no 3183 * empty page blocks that contain a page with a suitable order 3184 */ 3185 static void reserve_highatomic_pageblock(struct page *page, int order, 3186 struct zone *zone) 3187 { 3188 int mt; 3189 unsigned long max_managed, flags; 3190 3191 /* 3192 * The number reserved as: minimum is 1 pageblock, maximum is 3193 * roughly 1% of a zone. But if 1% of a zone falls below a 3194 * pageblock size, then don't reserve any pageblocks. 3195 * Check is race-prone but harmless. 3196 */ 3197 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3198 return; 3199 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3200 if (zone->nr_reserved_highatomic >= max_managed) 3201 return; 3202 3203 spin_lock_irqsave(&zone->lock, flags); 3204 3205 /* Recheck the nr_reserved_highatomic limit under the lock */ 3206 if (zone->nr_reserved_highatomic >= max_managed) 3207 goto out_unlock; 3208 3209 /* Yoink! */ 3210 mt = get_pageblock_migratetype(page); 3211 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3212 if (!migratetype_is_mergeable(mt)) 3213 goto out_unlock; 3214 3215 if (order < pageblock_order) { 3216 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3217 goto out_unlock; 3218 zone->nr_reserved_highatomic += pageblock_nr_pages; 3219 } else { 3220 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3221 zone->nr_reserved_highatomic += 1 << order; 3222 } 3223 3224 out_unlock: 3225 spin_unlock_irqrestore(&zone->lock, flags); 3226 } 3227 3228 /* 3229 * Used when an allocation is about to fail under memory pressure. This 3230 * potentially hurts the reliability of high-order allocations when under 3231 * intense memory pressure but failed atomic allocations should be easier 3232 * to recover from than an OOM. 3233 * 3234 * If @force is true, try to unreserve pageblocks even though highatomic 3235 * pageblock is exhausted. 3236 */ 3237 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3238 bool force) 3239 { 3240 struct zonelist *zonelist = ac->zonelist; 3241 unsigned long flags; 3242 struct zoneref *z; 3243 struct zone *zone; 3244 struct page *page; 3245 int order; 3246 int ret; 3247 3248 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3249 ac->nodemask) { 3250 /* 3251 * Preserve at least one pageblock unless memory pressure 3252 * is really high. 3253 */ 3254 if (!force && zone->nr_reserved_highatomic <= 3255 pageblock_nr_pages) 3256 continue; 3257 3258 spin_lock_irqsave(&zone->lock, flags); 3259 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3260 struct free_area *area = &(zone->free_area[order]); 3261 unsigned long size; 3262 3263 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3264 if (!page) 3265 continue; 3266 3267 size = max(pageblock_nr_pages, 1UL << order); 3268 /* 3269 * It should never happen but changes to 3270 * locking could inadvertently allow a per-cpu 3271 * drain to add pages to MIGRATE_HIGHATOMIC 3272 * while unreserving so be safe and watch for 3273 * underflows. 3274 */ 3275 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3276 size = zone->nr_reserved_highatomic; 3277 zone->nr_reserved_highatomic -= size; 3278 3279 /* 3280 * Convert to ac->migratetype and avoid the normal 3281 * pageblock stealing heuristics. Minimally, the caller 3282 * is doing the work and needs the pages. More 3283 * importantly, if the block was always converted to 3284 * MIGRATE_UNMOVABLE or another type then the number 3285 * of pageblocks that cannot be completely freed 3286 * may increase. 3287 */ 3288 if (order < pageblock_order) 3289 ret = move_freepages_block(zone, page, 3290 MIGRATE_HIGHATOMIC, 3291 ac->migratetype); 3292 else { 3293 move_to_free_list(page, zone, order, 3294 MIGRATE_HIGHATOMIC, 3295 ac->migratetype); 3296 change_pageblock_range(page, order, 3297 ac->migratetype); 3298 ret = 1; 3299 } 3300 /* 3301 * Reserving the block(s) already succeeded, 3302 * so this should not fail on zone boundaries. 3303 */ 3304 WARN_ON_ONCE(ret == -1); 3305 if (ret > 0) { 3306 spin_unlock_irqrestore(&zone->lock, flags); 3307 return ret; 3308 } 3309 } 3310 spin_unlock_irqrestore(&zone->lock, flags); 3311 } 3312 3313 return false; 3314 } 3315 3316 static inline long __zone_watermark_unusable_free(struct zone *z, 3317 unsigned int order, unsigned int alloc_flags) 3318 { 3319 long unusable_free = (1 << order) - 1; 3320 3321 /* 3322 * If the caller does not have rights to reserves below the min 3323 * watermark then subtract the free pages reserved for highatomic. 3324 */ 3325 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3326 unusable_free += READ_ONCE(z->nr_free_highatomic); 3327 3328 #ifdef CONFIG_CMA 3329 /* If allocation can't use CMA areas don't use free CMA pages */ 3330 if (!(alloc_flags & ALLOC_CMA)) 3331 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3332 #endif 3333 3334 return unusable_free; 3335 } 3336 3337 /* 3338 * Return true if free base pages are above 'mark'. For high-order checks it 3339 * will return true of the order-0 watermark is reached and there is at least 3340 * one free page of a suitable size. Checking now avoids taking the zone lock 3341 * to check in the allocation paths if no pages are free. 3342 */ 3343 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3344 int highest_zoneidx, unsigned int alloc_flags, 3345 long free_pages) 3346 { 3347 long min = mark; 3348 int o; 3349 3350 /* free_pages may go negative - that's OK */ 3351 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3352 3353 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3354 /* 3355 * __GFP_HIGH allows access to 50% of the min reserve as well 3356 * as OOM. 3357 */ 3358 if (alloc_flags & ALLOC_MIN_RESERVE) { 3359 min -= min / 2; 3360 3361 /* 3362 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3363 * access more reserves than just __GFP_HIGH. Other 3364 * non-blocking allocations requests such as GFP_NOWAIT 3365 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3366 * access to the min reserve. 3367 */ 3368 if (alloc_flags & ALLOC_NON_BLOCK) 3369 min -= min / 4; 3370 } 3371 3372 /* 3373 * OOM victims can try even harder than the normal reserve 3374 * users on the grounds that it's definitely going to be in 3375 * the exit path shortly and free memory. Any allocation it 3376 * makes during the free path will be small and short-lived. 3377 */ 3378 if (alloc_flags & ALLOC_OOM) 3379 min -= min / 2; 3380 } 3381 3382 /* 3383 * Check watermarks for an order-0 allocation request. If these 3384 * are not met, then a high-order request also cannot go ahead 3385 * even if a suitable page happened to be free. 3386 */ 3387 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3388 return false; 3389 3390 /* If this is an order-0 request then the watermark is fine */ 3391 if (!order) 3392 return true; 3393 3394 /* For a high-order request, check at least one suitable page is free */ 3395 for (o = order; o < NR_PAGE_ORDERS; o++) { 3396 struct free_area *area = &z->free_area[o]; 3397 int mt; 3398 3399 if (!area->nr_free) 3400 continue; 3401 3402 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3403 if (!free_area_empty(area, mt)) 3404 return true; 3405 } 3406 3407 #ifdef CONFIG_CMA 3408 if ((alloc_flags & ALLOC_CMA) && 3409 !free_area_empty(area, MIGRATE_CMA)) { 3410 return true; 3411 } 3412 #endif 3413 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3414 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3415 return true; 3416 } 3417 } 3418 return false; 3419 } 3420 3421 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3422 int highest_zoneidx, unsigned int alloc_flags) 3423 { 3424 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3425 zone_page_state(z, NR_FREE_PAGES)); 3426 } 3427 3428 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3429 unsigned long mark, int highest_zoneidx, 3430 unsigned int alloc_flags, gfp_t gfp_mask) 3431 { 3432 long free_pages; 3433 3434 free_pages = zone_page_state(z, NR_FREE_PAGES); 3435 3436 /* 3437 * Fast check for order-0 only. If this fails then the reserves 3438 * need to be calculated. 3439 */ 3440 if (!order) { 3441 long usable_free; 3442 long reserved; 3443 3444 usable_free = free_pages; 3445 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3446 3447 /* reserved may over estimate high-atomic reserves. */ 3448 usable_free -= min(usable_free, reserved); 3449 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3450 return true; 3451 } 3452 3453 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3454 free_pages)) 3455 return true; 3456 3457 /* 3458 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3459 * when checking the min watermark. The min watermark is the 3460 * point where boosting is ignored so that kswapd is woken up 3461 * when below the low watermark. 3462 */ 3463 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3464 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3465 mark = z->_watermark[WMARK_MIN]; 3466 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3467 alloc_flags, free_pages); 3468 } 3469 3470 return false; 3471 } 3472 3473 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3474 unsigned long mark, int highest_zoneidx) 3475 { 3476 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3477 3478 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3479 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3480 3481 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3482 free_pages); 3483 } 3484 3485 #ifdef CONFIG_NUMA 3486 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3487 3488 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3489 { 3490 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3491 node_reclaim_distance; 3492 } 3493 #else /* CONFIG_NUMA */ 3494 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3495 { 3496 return true; 3497 } 3498 #endif /* CONFIG_NUMA */ 3499 3500 /* 3501 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3502 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3503 * premature use of a lower zone may cause lowmem pressure problems that 3504 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3505 * probably too small. It only makes sense to spread allocations to avoid 3506 * fragmentation between the Normal and DMA32 zones. 3507 */ 3508 static inline unsigned int 3509 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3510 { 3511 unsigned int alloc_flags; 3512 3513 /* 3514 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3515 * to save a branch. 3516 */ 3517 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3518 3519 if (defrag_mode) { 3520 alloc_flags |= ALLOC_NOFRAGMENT; 3521 return alloc_flags; 3522 } 3523 3524 #ifdef CONFIG_ZONE_DMA32 3525 if (!zone) 3526 return alloc_flags; 3527 3528 if (zone_idx(zone) != ZONE_NORMAL) 3529 return alloc_flags; 3530 3531 /* 3532 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3533 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3534 * on UMA that if Normal is populated then so is DMA32. 3535 */ 3536 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3537 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3538 return alloc_flags; 3539 3540 alloc_flags |= ALLOC_NOFRAGMENT; 3541 #endif /* CONFIG_ZONE_DMA32 */ 3542 return alloc_flags; 3543 } 3544 3545 /* Must be called after current_gfp_context() which can change gfp_mask */ 3546 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3547 unsigned int alloc_flags) 3548 { 3549 #ifdef CONFIG_CMA 3550 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3551 alloc_flags |= ALLOC_CMA; 3552 #endif 3553 return alloc_flags; 3554 } 3555 3556 /* 3557 * get_page_from_freelist goes through the zonelist trying to allocate 3558 * a page. 3559 */ 3560 static struct page * 3561 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3562 const struct alloc_context *ac) 3563 { 3564 struct zoneref *z; 3565 struct zone *zone; 3566 struct pglist_data *last_pgdat = NULL; 3567 bool last_pgdat_dirty_ok = false; 3568 bool no_fallback; 3569 3570 retry: 3571 /* 3572 * Scan zonelist, looking for a zone with enough free. 3573 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3574 */ 3575 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3576 z = ac->preferred_zoneref; 3577 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3578 ac->nodemask) { 3579 struct page *page; 3580 unsigned long mark; 3581 3582 if (cpusets_enabled() && 3583 (alloc_flags & ALLOC_CPUSET) && 3584 !__cpuset_zone_allowed(zone, gfp_mask)) 3585 continue; 3586 /* 3587 * When allocating a page cache page for writing, we 3588 * want to get it from a node that is within its dirty 3589 * limit, such that no single node holds more than its 3590 * proportional share of globally allowed dirty pages. 3591 * The dirty limits take into account the node's 3592 * lowmem reserves and high watermark so that kswapd 3593 * should be able to balance it without having to 3594 * write pages from its LRU list. 3595 * 3596 * XXX: For now, allow allocations to potentially 3597 * exceed the per-node dirty limit in the slowpath 3598 * (spread_dirty_pages unset) before going into reclaim, 3599 * which is important when on a NUMA setup the allowed 3600 * nodes are together not big enough to reach the 3601 * global limit. The proper fix for these situations 3602 * will require awareness of nodes in the 3603 * dirty-throttling and the flusher threads. 3604 */ 3605 if (ac->spread_dirty_pages) { 3606 if (last_pgdat != zone->zone_pgdat) { 3607 last_pgdat = zone->zone_pgdat; 3608 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3609 } 3610 3611 if (!last_pgdat_dirty_ok) 3612 continue; 3613 } 3614 3615 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3616 zone != zonelist_zone(ac->preferred_zoneref)) { 3617 int local_nid; 3618 3619 /* 3620 * If moving to a remote node, retry but allow 3621 * fragmenting fallbacks. Locality is more important 3622 * than fragmentation avoidance. 3623 */ 3624 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3625 if (zone_to_nid(zone) != local_nid) { 3626 alloc_flags &= ~ALLOC_NOFRAGMENT; 3627 goto retry; 3628 } 3629 } 3630 3631 cond_accept_memory(zone, order); 3632 3633 /* 3634 * Detect whether the number of free pages is below high 3635 * watermark. If so, we will decrease pcp->high and free 3636 * PCP pages in free path to reduce the possibility of 3637 * premature page reclaiming. Detection is done here to 3638 * avoid to do that in hotter free path. 3639 */ 3640 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3641 goto check_alloc_wmark; 3642 3643 mark = high_wmark_pages(zone); 3644 if (zone_watermark_fast(zone, order, mark, 3645 ac->highest_zoneidx, alloc_flags, 3646 gfp_mask)) 3647 goto try_this_zone; 3648 else 3649 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3650 3651 check_alloc_wmark: 3652 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3653 if (!zone_watermark_fast(zone, order, mark, 3654 ac->highest_zoneidx, alloc_flags, 3655 gfp_mask)) { 3656 int ret; 3657 3658 if (cond_accept_memory(zone, order)) 3659 goto try_this_zone; 3660 3661 /* 3662 * Watermark failed for this zone, but see if we can 3663 * grow this zone if it contains deferred pages. 3664 */ 3665 if (deferred_pages_enabled()) { 3666 if (_deferred_grow_zone(zone, order)) 3667 goto try_this_zone; 3668 } 3669 /* Checked here to keep the fast path fast */ 3670 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3671 if (alloc_flags & ALLOC_NO_WATERMARKS) 3672 goto try_this_zone; 3673 3674 if (!node_reclaim_enabled() || 3675 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3676 continue; 3677 3678 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3679 switch (ret) { 3680 case NODE_RECLAIM_NOSCAN: 3681 /* did not scan */ 3682 continue; 3683 case NODE_RECLAIM_FULL: 3684 /* scanned but unreclaimable */ 3685 continue; 3686 default: 3687 /* did we reclaim enough */ 3688 if (zone_watermark_ok(zone, order, mark, 3689 ac->highest_zoneidx, alloc_flags)) 3690 goto try_this_zone; 3691 3692 continue; 3693 } 3694 } 3695 3696 try_this_zone: 3697 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3698 gfp_mask, alloc_flags, ac->migratetype); 3699 if (page) { 3700 prep_new_page(page, order, gfp_mask, alloc_flags); 3701 3702 /* 3703 * If this is a high-order atomic allocation then check 3704 * if the pageblock should be reserved for the future 3705 */ 3706 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3707 reserve_highatomic_pageblock(page, order, zone); 3708 3709 return page; 3710 } else { 3711 if (cond_accept_memory(zone, order)) 3712 goto try_this_zone; 3713 3714 /* Try again if zone has deferred pages */ 3715 if (deferred_pages_enabled()) { 3716 if (_deferred_grow_zone(zone, order)) 3717 goto try_this_zone; 3718 } 3719 } 3720 } 3721 3722 /* 3723 * It's possible on a UMA machine to get through all zones that are 3724 * fragmented. If avoiding fragmentation, reset and try again. 3725 */ 3726 if (no_fallback && !defrag_mode) { 3727 alloc_flags &= ~ALLOC_NOFRAGMENT; 3728 goto retry; 3729 } 3730 3731 return NULL; 3732 } 3733 3734 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3735 { 3736 unsigned int filter = SHOW_MEM_FILTER_NODES; 3737 3738 /* 3739 * This documents exceptions given to allocations in certain 3740 * contexts that are allowed to allocate outside current's set 3741 * of allowed nodes. 3742 */ 3743 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3744 if (tsk_is_oom_victim(current) || 3745 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3746 filter &= ~SHOW_MEM_FILTER_NODES; 3747 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3748 filter &= ~SHOW_MEM_FILTER_NODES; 3749 3750 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3751 } 3752 3753 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3754 { 3755 struct va_format vaf; 3756 va_list args; 3757 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3758 3759 if ((gfp_mask & __GFP_NOWARN) || 3760 !__ratelimit(&nopage_rs) || 3761 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3762 return; 3763 3764 va_start(args, fmt); 3765 vaf.fmt = fmt; 3766 vaf.va = &args; 3767 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3768 current->comm, &vaf, gfp_mask, &gfp_mask, 3769 nodemask_pr_args(nodemask)); 3770 va_end(args); 3771 3772 cpuset_print_current_mems_allowed(); 3773 pr_cont("\n"); 3774 dump_stack(); 3775 warn_alloc_show_mem(gfp_mask, nodemask); 3776 } 3777 3778 static inline struct page * 3779 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3780 unsigned int alloc_flags, 3781 const struct alloc_context *ac) 3782 { 3783 struct page *page; 3784 3785 page = get_page_from_freelist(gfp_mask, order, 3786 alloc_flags|ALLOC_CPUSET, ac); 3787 /* 3788 * fallback to ignore cpuset restriction if our nodes 3789 * are depleted 3790 */ 3791 if (!page) 3792 page = get_page_from_freelist(gfp_mask, order, 3793 alloc_flags, ac); 3794 return page; 3795 } 3796 3797 static inline struct page * 3798 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3799 const struct alloc_context *ac, unsigned long *did_some_progress) 3800 { 3801 struct oom_control oc = { 3802 .zonelist = ac->zonelist, 3803 .nodemask = ac->nodemask, 3804 .memcg = NULL, 3805 .gfp_mask = gfp_mask, 3806 .order = order, 3807 }; 3808 struct page *page; 3809 3810 *did_some_progress = 0; 3811 3812 /* 3813 * Acquire the oom lock. If that fails, somebody else is 3814 * making progress for us. 3815 */ 3816 if (!mutex_trylock(&oom_lock)) { 3817 *did_some_progress = 1; 3818 schedule_timeout_uninterruptible(1); 3819 return NULL; 3820 } 3821 3822 /* 3823 * Go through the zonelist yet one more time, keep very high watermark 3824 * here, this is only to catch a parallel oom killing, we must fail if 3825 * we're still under heavy pressure. But make sure that this reclaim 3826 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3827 * allocation which will never fail due to oom_lock already held. 3828 */ 3829 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3830 ~__GFP_DIRECT_RECLAIM, order, 3831 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3832 if (page) 3833 goto out; 3834 3835 /* Coredumps can quickly deplete all memory reserves */ 3836 if (current->flags & PF_DUMPCORE) 3837 goto out; 3838 /* The OOM killer will not help higher order allocs */ 3839 if (order > PAGE_ALLOC_COSTLY_ORDER) 3840 goto out; 3841 /* 3842 * We have already exhausted all our reclaim opportunities without any 3843 * success so it is time to admit defeat. We will skip the OOM killer 3844 * because it is very likely that the caller has a more reasonable 3845 * fallback than shooting a random task. 3846 * 3847 * The OOM killer may not free memory on a specific node. 3848 */ 3849 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3850 goto out; 3851 /* The OOM killer does not needlessly kill tasks for lowmem */ 3852 if (ac->highest_zoneidx < ZONE_NORMAL) 3853 goto out; 3854 if (pm_suspended_storage()) 3855 goto out; 3856 /* 3857 * XXX: GFP_NOFS allocations should rather fail than rely on 3858 * other request to make a forward progress. 3859 * We are in an unfortunate situation where out_of_memory cannot 3860 * do much for this context but let's try it to at least get 3861 * access to memory reserved if the current task is killed (see 3862 * out_of_memory). Once filesystems are ready to handle allocation 3863 * failures more gracefully we should just bail out here. 3864 */ 3865 3866 /* Exhausted what can be done so it's blame time */ 3867 if (out_of_memory(&oc) || 3868 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3869 *did_some_progress = 1; 3870 3871 /* 3872 * Help non-failing allocations by giving them access to memory 3873 * reserves 3874 */ 3875 if (gfp_mask & __GFP_NOFAIL) 3876 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3877 ALLOC_NO_WATERMARKS, ac); 3878 } 3879 out: 3880 mutex_unlock(&oom_lock); 3881 return page; 3882 } 3883 3884 /* 3885 * Maximum number of compaction retries with a progress before OOM 3886 * killer is consider as the only way to move forward. 3887 */ 3888 #define MAX_COMPACT_RETRIES 16 3889 3890 #ifdef CONFIG_COMPACTION 3891 /* Try memory compaction for high-order allocations before reclaim */ 3892 static struct page * 3893 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3894 unsigned int alloc_flags, const struct alloc_context *ac, 3895 enum compact_priority prio, enum compact_result *compact_result) 3896 { 3897 struct page *page = NULL; 3898 unsigned long pflags; 3899 unsigned int noreclaim_flag; 3900 3901 if (!order) 3902 return NULL; 3903 3904 psi_memstall_enter(&pflags); 3905 delayacct_compact_start(); 3906 noreclaim_flag = memalloc_noreclaim_save(); 3907 3908 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3909 prio, &page); 3910 3911 memalloc_noreclaim_restore(noreclaim_flag); 3912 psi_memstall_leave(&pflags); 3913 delayacct_compact_end(); 3914 3915 if (*compact_result == COMPACT_SKIPPED) 3916 return NULL; 3917 /* 3918 * At least in one zone compaction wasn't deferred or skipped, so let's 3919 * count a compaction stall 3920 */ 3921 count_vm_event(COMPACTSTALL); 3922 3923 /* Prep a captured page if available */ 3924 if (page) 3925 prep_new_page(page, order, gfp_mask, alloc_flags); 3926 3927 /* Try get a page from the freelist if available */ 3928 if (!page) 3929 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3930 3931 if (page) { 3932 struct zone *zone = page_zone(page); 3933 3934 zone->compact_blockskip_flush = false; 3935 compaction_defer_reset(zone, order, true); 3936 count_vm_event(COMPACTSUCCESS); 3937 return page; 3938 } 3939 3940 /* 3941 * It's bad if compaction run occurs and fails. The most likely reason 3942 * is that pages exist, but not enough to satisfy watermarks. 3943 */ 3944 count_vm_event(COMPACTFAIL); 3945 3946 cond_resched(); 3947 3948 return NULL; 3949 } 3950 3951 static inline bool 3952 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3953 enum compact_result compact_result, 3954 enum compact_priority *compact_priority, 3955 int *compaction_retries) 3956 { 3957 int max_retries = MAX_COMPACT_RETRIES; 3958 int min_priority; 3959 bool ret = false; 3960 int retries = *compaction_retries; 3961 enum compact_priority priority = *compact_priority; 3962 3963 if (!order) 3964 return false; 3965 3966 if (fatal_signal_pending(current)) 3967 return false; 3968 3969 /* 3970 * Compaction was skipped due to a lack of free order-0 3971 * migration targets. Continue if reclaim can help. 3972 */ 3973 if (compact_result == COMPACT_SKIPPED) { 3974 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3975 goto out; 3976 } 3977 3978 /* 3979 * Compaction managed to coalesce some page blocks, but the 3980 * allocation failed presumably due to a race. Retry some. 3981 */ 3982 if (compact_result == COMPACT_SUCCESS) { 3983 /* 3984 * !costly requests are much more important than 3985 * __GFP_RETRY_MAYFAIL costly ones because they are de 3986 * facto nofail and invoke OOM killer to move on while 3987 * costly can fail and users are ready to cope with 3988 * that. 1/4 retries is rather arbitrary but we would 3989 * need much more detailed feedback from compaction to 3990 * make a better decision. 3991 */ 3992 if (order > PAGE_ALLOC_COSTLY_ORDER) 3993 max_retries /= 4; 3994 3995 if (++(*compaction_retries) <= max_retries) { 3996 ret = true; 3997 goto out; 3998 } 3999 } 4000 4001 /* 4002 * Compaction failed. Retry with increasing priority. 4003 */ 4004 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4005 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4006 4007 if (*compact_priority > min_priority) { 4008 (*compact_priority)--; 4009 *compaction_retries = 0; 4010 ret = true; 4011 } 4012 out: 4013 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4014 return ret; 4015 } 4016 #else 4017 static inline struct page * 4018 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4019 unsigned int alloc_flags, const struct alloc_context *ac, 4020 enum compact_priority prio, enum compact_result *compact_result) 4021 { 4022 *compact_result = COMPACT_SKIPPED; 4023 return NULL; 4024 } 4025 4026 static inline bool 4027 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4028 enum compact_result compact_result, 4029 enum compact_priority *compact_priority, 4030 int *compaction_retries) 4031 { 4032 struct zone *zone; 4033 struct zoneref *z; 4034 4035 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4036 return false; 4037 4038 /* 4039 * There are setups with compaction disabled which would prefer to loop 4040 * inside the allocator rather than hit the oom killer prematurely. 4041 * Let's give them a good hope and keep retrying while the order-0 4042 * watermarks are OK. 4043 */ 4044 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4045 ac->highest_zoneidx, ac->nodemask) { 4046 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4047 ac->highest_zoneidx, alloc_flags)) 4048 return true; 4049 } 4050 return false; 4051 } 4052 #endif /* CONFIG_COMPACTION */ 4053 4054 #ifdef CONFIG_LOCKDEP 4055 static struct lockdep_map __fs_reclaim_map = 4056 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4057 4058 static bool __need_reclaim(gfp_t gfp_mask) 4059 { 4060 /* no reclaim without waiting on it */ 4061 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4062 return false; 4063 4064 /* this guy won't enter reclaim */ 4065 if (current->flags & PF_MEMALLOC) 4066 return false; 4067 4068 if (gfp_mask & __GFP_NOLOCKDEP) 4069 return false; 4070 4071 return true; 4072 } 4073 4074 void __fs_reclaim_acquire(unsigned long ip) 4075 { 4076 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4077 } 4078 4079 void __fs_reclaim_release(unsigned long ip) 4080 { 4081 lock_release(&__fs_reclaim_map, ip); 4082 } 4083 4084 void fs_reclaim_acquire(gfp_t gfp_mask) 4085 { 4086 gfp_mask = current_gfp_context(gfp_mask); 4087 4088 if (__need_reclaim(gfp_mask)) { 4089 if (gfp_mask & __GFP_FS) 4090 __fs_reclaim_acquire(_RET_IP_); 4091 4092 #ifdef CONFIG_MMU_NOTIFIER 4093 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4094 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4095 #endif 4096 4097 } 4098 } 4099 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4100 4101 void fs_reclaim_release(gfp_t gfp_mask) 4102 { 4103 gfp_mask = current_gfp_context(gfp_mask); 4104 4105 if (__need_reclaim(gfp_mask)) { 4106 if (gfp_mask & __GFP_FS) 4107 __fs_reclaim_release(_RET_IP_); 4108 } 4109 } 4110 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4111 #endif 4112 4113 /* 4114 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4115 * have been rebuilt so allocation retries. Reader side does not lock and 4116 * retries the allocation if zonelist changes. Writer side is protected by the 4117 * embedded spin_lock. 4118 */ 4119 static DEFINE_SEQLOCK(zonelist_update_seq); 4120 4121 static unsigned int zonelist_iter_begin(void) 4122 { 4123 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4124 return read_seqbegin(&zonelist_update_seq); 4125 4126 return 0; 4127 } 4128 4129 static unsigned int check_retry_zonelist(unsigned int seq) 4130 { 4131 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4132 return read_seqretry(&zonelist_update_seq, seq); 4133 4134 return seq; 4135 } 4136 4137 /* Perform direct synchronous page reclaim */ 4138 static unsigned long 4139 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4140 const struct alloc_context *ac) 4141 { 4142 unsigned int noreclaim_flag; 4143 unsigned long progress; 4144 4145 cond_resched(); 4146 4147 /* We now go into synchronous reclaim */ 4148 cpuset_memory_pressure_bump(); 4149 fs_reclaim_acquire(gfp_mask); 4150 noreclaim_flag = memalloc_noreclaim_save(); 4151 4152 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4153 ac->nodemask); 4154 4155 memalloc_noreclaim_restore(noreclaim_flag); 4156 fs_reclaim_release(gfp_mask); 4157 4158 cond_resched(); 4159 4160 return progress; 4161 } 4162 4163 /* The really slow allocator path where we enter direct reclaim */ 4164 static inline struct page * 4165 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4166 unsigned int alloc_flags, const struct alloc_context *ac, 4167 unsigned long *did_some_progress) 4168 { 4169 struct page *page = NULL; 4170 unsigned long pflags; 4171 bool drained = false; 4172 4173 psi_memstall_enter(&pflags); 4174 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4175 if (unlikely(!(*did_some_progress))) 4176 goto out; 4177 4178 retry: 4179 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4180 4181 /* 4182 * If an allocation failed after direct reclaim, it could be because 4183 * pages are pinned on the per-cpu lists or in high alloc reserves. 4184 * Shrink them and try again 4185 */ 4186 if (!page && !drained) { 4187 unreserve_highatomic_pageblock(ac, false); 4188 drain_all_pages(NULL); 4189 drained = true; 4190 goto retry; 4191 } 4192 out: 4193 psi_memstall_leave(&pflags); 4194 4195 return page; 4196 } 4197 4198 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4199 const struct alloc_context *ac) 4200 { 4201 struct zoneref *z; 4202 struct zone *zone; 4203 pg_data_t *last_pgdat = NULL; 4204 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4205 unsigned int reclaim_order; 4206 4207 if (defrag_mode) 4208 reclaim_order = max(order, pageblock_order); 4209 else 4210 reclaim_order = order; 4211 4212 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4213 ac->nodemask) { 4214 if (!managed_zone(zone)) 4215 continue; 4216 if (last_pgdat == zone->zone_pgdat) 4217 continue; 4218 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4219 last_pgdat = zone->zone_pgdat; 4220 } 4221 } 4222 4223 static inline unsigned int 4224 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4225 { 4226 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4227 4228 /* 4229 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4230 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4231 * to save two branches. 4232 */ 4233 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4234 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4235 4236 /* 4237 * The caller may dip into page reserves a bit more if the caller 4238 * cannot run direct reclaim, or if the caller has realtime scheduling 4239 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4240 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4241 */ 4242 alloc_flags |= (__force int) 4243 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4244 4245 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4246 /* 4247 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4248 * if it can't schedule. 4249 */ 4250 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4251 alloc_flags |= ALLOC_NON_BLOCK; 4252 4253 if (order > 0) 4254 alloc_flags |= ALLOC_HIGHATOMIC; 4255 } 4256 4257 /* 4258 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4259 * GFP_ATOMIC) rather than fail, see the comment for 4260 * cpuset_node_allowed(). 4261 */ 4262 if (alloc_flags & ALLOC_MIN_RESERVE) 4263 alloc_flags &= ~ALLOC_CPUSET; 4264 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4265 alloc_flags |= ALLOC_MIN_RESERVE; 4266 4267 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4268 4269 if (defrag_mode) 4270 alloc_flags |= ALLOC_NOFRAGMENT; 4271 4272 return alloc_flags; 4273 } 4274 4275 static bool oom_reserves_allowed(struct task_struct *tsk) 4276 { 4277 if (!tsk_is_oom_victim(tsk)) 4278 return false; 4279 4280 /* 4281 * !MMU doesn't have oom reaper so give access to memory reserves 4282 * only to the thread with TIF_MEMDIE set 4283 */ 4284 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4285 return false; 4286 4287 return true; 4288 } 4289 4290 /* 4291 * Distinguish requests which really need access to full memory 4292 * reserves from oom victims which can live with a portion of it 4293 */ 4294 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4295 { 4296 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4297 return 0; 4298 if (gfp_mask & __GFP_MEMALLOC) 4299 return ALLOC_NO_WATERMARKS; 4300 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4301 return ALLOC_NO_WATERMARKS; 4302 if (!in_interrupt()) { 4303 if (current->flags & PF_MEMALLOC) 4304 return ALLOC_NO_WATERMARKS; 4305 else if (oom_reserves_allowed(current)) 4306 return ALLOC_OOM; 4307 } 4308 4309 return 0; 4310 } 4311 4312 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4313 { 4314 return !!__gfp_pfmemalloc_flags(gfp_mask); 4315 } 4316 4317 /* 4318 * Checks whether it makes sense to retry the reclaim to make a forward progress 4319 * for the given allocation request. 4320 * 4321 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4322 * without success, or when we couldn't even meet the watermark if we 4323 * reclaimed all remaining pages on the LRU lists. 4324 * 4325 * Returns true if a retry is viable or false to enter the oom path. 4326 */ 4327 static inline bool 4328 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4329 struct alloc_context *ac, int alloc_flags, 4330 bool did_some_progress, int *no_progress_loops) 4331 { 4332 struct zone *zone; 4333 struct zoneref *z; 4334 bool ret = false; 4335 4336 /* 4337 * Costly allocations might have made a progress but this doesn't mean 4338 * their order will become available due to high fragmentation so 4339 * always increment the no progress counter for them 4340 */ 4341 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4342 *no_progress_loops = 0; 4343 else 4344 (*no_progress_loops)++; 4345 4346 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4347 goto out; 4348 4349 4350 /* 4351 * Keep reclaiming pages while there is a chance this will lead 4352 * somewhere. If none of the target zones can satisfy our allocation 4353 * request even if all reclaimable pages are considered then we are 4354 * screwed and have to go OOM. 4355 */ 4356 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4357 ac->highest_zoneidx, ac->nodemask) { 4358 unsigned long available; 4359 unsigned long reclaimable; 4360 unsigned long min_wmark = min_wmark_pages(zone); 4361 bool wmark; 4362 4363 if (cpusets_enabled() && 4364 (alloc_flags & ALLOC_CPUSET) && 4365 !__cpuset_zone_allowed(zone, gfp_mask)) 4366 continue; 4367 4368 available = reclaimable = zone_reclaimable_pages(zone); 4369 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4370 4371 /* 4372 * Would the allocation succeed if we reclaimed all 4373 * reclaimable pages? 4374 */ 4375 wmark = __zone_watermark_ok(zone, order, min_wmark, 4376 ac->highest_zoneidx, alloc_flags, available); 4377 trace_reclaim_retry_zone(z, order, reclaimable, 4378 available, min_wmark, *no_progress_loops, wmark); 4379 if (wmark) { 4380 ret = true; 4381 break; 4382 } 4383 } 4384 4385 /* 4386 * Memory allocation/reclaim might be called from a WQ context and the 4387 * current implementation of the WQ concurrency control doesn't 4388 * recognize that a particular WQ is congested if the worker thread is 4389 * looping without ever sleeping. Therefore we have to do a short sleep 4390 * here rather than calling cond_resched(). 4391 */ 4392 if (current->flags & PF_WQ_WORKER) 4393 schedule_timeout_uninterruptible(1); 4394 else 4395 cond_resched(); 4396 out: 4397 /* Before OOM, exhaust highatomic_reserve */ 4398 if (!ret) 4399 return unreserve_highatomic_pageblock(ac, true); 4400 4401 return ret; 4402 } 4403 4404 static inline bool 4405 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4406 { 4407 /* 4408 * It's possible that cpuset's mems_allowed and the nodemask from 4409 * mempolicy don't intersect. This should be normally dealt with by 4410 * policy_nodemask(), but it's possible to race with cpuset update in 4411 * such a way the check therein was true, and then it became false 4412 * before we got our cpuset_mems_cookie here. 4413 * This assumes that for all allocations, ac->nodemask can come only 4414 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4415 * when it does not intersect with the cpuset restrictions) or the 4416 * caller can deal with a violated nodemask. 4417 */ 4418 if (cpusets_enabled() && ac->nodemask && 4419 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4420 ac->nodemask = NULL; 4421 return true; 4422 } 4423 4424 /* 4425 * When updating a task's mems_allowed or mempolicy nodemask, it is 4426 * possible to race with parallel threads in such a way that our 4427 * allocation can fail while the mask is being updated. If we are about 4428 * to fail, check if the cpuset changed during allocation and if so, 4429 * retry. 4430 */ 4431 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4432 return true; 4433 4434 return false; 4435 } 4436 4437 static inline struct page * 4438 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4439 struct alloc_context *ac) 4440 { 4441 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4442 bool can_compact = gfp_compaction_allowed(gfp_mask); 4443 bool nofail = gfp_mask & __GFP_NOFAIL; 4444 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4445 struct page *page = NULL; 4446 unsigned int alloc_flags; 4447 unsigned long did_some_progress; 4448 enum compact_priority compact_priority; 4449 enum compact_result compact_result; 4450 int compaction_retries; 4451 int no_progress_loops; 4452 unsigned int cpuset_mems_cookie; 4453 unsigned int zonelist_iter_cookie; 4454 int reserve_flags; 4455 4456 if (unlikely(nofail)) { 4457 /* 4458 * We most definitely don't want callers attempting to 4459 * allocate greater than order-1 page units with __GFP_NOFAIL. 4460 */ 4461 WARN_ON_ONCE(order > 1); 4462 /* 4463 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4464 * otherwise, we may result in lockup. 4465 */ 4466 WARN_ON_ONCE(!can_direct_reclaim); 4467 /* 4468 * PF_MEMALLOC request from this context is rather bizarre 4469 * because we cannot reclaim anything and only can loop waiting 4470 * for somebody to do a work for us. 4471 */ 4472 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4473 } 4474 4475 restart: 4476 compaction_retries = 0; 4477 no_progress_loops = 0; 4478 compact_result = COMPACT_SKIPPED; 4479 compact_priority = DEF_COMPACT_PRIORITY; 4480 cpuset_mems_cookie = read_mems_allowed_begin(); 4481 zonelist_iter_cookie = zonelist_iter_begin(); 4482 4483 /* 4484 * The fast path uses conservative alloc_flags to succeed only until 4485 * kswapd needs to be woken up, and to avoid the cost of setting up 4486 * alloc_flags precisely. So we do that now. 4487 */ 4488 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4489 4490 /* 4491 * We need to recalculate the starting point for the zonelist iterator 4492 * because we might have used different nodemask in the fast path, or 4493 * there was a cpuset modification and we are retrying - otherwise we 4494 * could end up iterating over non-eligible zones endlessly. 4495 */ 4496 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4497 ac->highest_zoneidx, ac->nodemask); 4498 if (!zonelist_zone(ac->preferred_zoneref)) 4499 goto nopage; 4500 4501 /* 4502 * Check for insane configurations where the cpuset doesn't contain 4503 * any suitable zone to satisfy the request - e.g. non-movable 4504 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4505 */ 4506 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4507 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4508 ac->highest_zoneidx, 4509 &cpuset_current_mems_allowed); 4510 if (!zonelist_zone(z)) 4511 goto nopage; 4512 } 4513 4514 if (alloc_flags & ALLOC_KSWAPD) 4515 wake_all_kswapds(order, gfp_mask, ac); 4516 4517 /* 4518 * The adjusted alloc_flags might result in immediate success, so try 4519 * that first 4520 */ 4521 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4522 if (page) 4523 goto got_pg; 4524 4525 /* 4526 * For costly allocations, try direct compaction first, as it's likely 4527 * that we have enough base pages and don't need to reclaim. For non- 4528 * movable high-order allocations, do that as well, as compaction will 4529 * try prevent permanent fragmentation by migrating from blocks of the 4530 * same migratetype. 4531 * Don't try this for allocations that are allowed to ignore 4532 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4533 */ 4534 if (can_direct_reclaim && can_compact && 4535 (costly_order || 4536 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4537 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4538 page = __alloc_pages_direct_compact(gfp_mask, order, 4539 alloc_flags, ac, 4540 INIT_COMPACT_PRIORITY, 4541 &compact_result); 4542 if (page) 4543 goto got_pg; 4544 4545 /* 4546 * Checks for costly allocations with __GFP_NORETRY, which 4547 * includes some THP page fault allocations 4548 */ 4549 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4550 /* 4551 * If allocating entire pageblock(s) and compaction 4552 * failed because all zones are below low watermarks 4553 * or is prohibited because it recently failed at this 4554 * order, fail immediately unless the allocator has 4555 * requested compaction and reclaim retry. 4556 * 4557 * Reclaim is 4558 * - potentially very expensive because zones are far 4559 * below their low watermarks or this is part of very 4560 * bursty high order allocations, 4561 * - not guaranteed to help because isolate_freepages() 4562 * may not iterate over freed pages as part of its 4563 * linear scan, and 4564 * - unlikely to make entire pageblocks free on its 4565 * own. 4566 */ 4567 if (compact_result == COMPACT_SKIPPED || 4568 compact_result == COMPACT_DEFERRED) 4569 goto nopage; 4570 4571 /* 4572 * Looks like reclaim/compaction is worth trying, but 4573 * sync compaction could be very expensive, so keep 4574 * using async compaction. 4575 */ 4576 compact_priority = INIT_COMPACT_PRIORITY; 4577 } 4578 } 4579 4580 retry: 4581 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4582 if (alloc_flags & ALLOC_KSWAPD) 4583 wake_all_kswapds(order, gfp_mask, ac); 4584 4585 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4586 if (reserve_flags) 4587 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4588 (alloc_flags & ALLOC_KSWAPD); 4589 4590 /* 4591 * Reset the nodemask and zonelist iterators if memory policies can be 4592 * ignored. These allocations are high priority and system rather than 4593 * user oriented. 4594 */ 4595 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4596 ac->nodemask = NULL; 4597 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4598 ac->highest_zoneidx, ac->nodemask); 4599 } 4600 4601 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4602 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4603 if (page) 4604 goto got_pg; 4605 4606 /* Caller is not willing to reclaim, we can't balance anything */ 4607 if (!can_direct_reclaim) 4608 goto nopage; 4609 4610 /* Avoid recursion of direct reclaim */ 4611 if (current->flags & PF_MEMALLOC) 4612 goto nopage; 4613 4614 /* Try direct reclaim and then allocating */ 4615 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4616 &did_some_progress); 4617 if (page) 4618 goto got_pg; 4619 4620 /* Try direct compaction and then allocating */ 4621 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4622 compact_priority, &compact_result); 4623 if (page) 4624 goto got_pg; 4625 4626 /* Do not loop if specifically requested */ 4627 if (gfp_mask & __GFP_NORETRY) 4628 goto nopage; 4629 4630 /* 4631 * Do not retry costly high order allocations unless they are 4632 * __GFP_RETRY_MAYFAIL and we can compact 4633 */ 4634 if (costly_order && (!can_compact || 4635 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4636 goto nopage; 4637 4638 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4639 did_some_progress > 0, &no_progress_loops)) 4640 goto retry; 4641 4642 /* 4643 * It doesn't make any sense to retry for the compaction if the order-0 4644 * reclaim is not able to make any progress because the current 4645 * implementation of the compaction depends on the sufficient amount 4646 * of free memory (see __compaction_suitable) 4647 */ 4648 if (did_some_progress > 0 && can_compact && 4649 should_compact_retry(ac, order, alloc_flags, 4650 compact_result, &compact_priority, 4651 &compaction_retries)) 4652 goto retry; 4653 4654 /* Reclaim/compaction failed to prevent the fallback */ 4655 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4656 alloc_flags &= ~ALLOC_NOFRAGMENT; 4657 goto retry; 4658 } 4659 4660 /* 4661 * Deal with possible cpuset update races or zonelist updates to avoid 4662 * a unnecessary OOM kill. 4663 */ 4664 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4665 check_retry_zonelist(zonelist_iter_cookie)) 4666 goto restart; 4667 4668 /* Reclaim has failed us, start killing things */ 4669 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4670 if (page) 4671 goto got_pg; 4672 4673 /* Avoid allocations with no watermarks from looping endlessly */ 4674 if (tsk_is_oom_victim(current) && 4675 (alloc_flags & ALLOC_OOM || 4676 (gfp_mask & __GFP_NOMEMALLOC))) 4677 goto nopage; 4678 4679 /* Retry as long as the OOM killer is making progress */ 4680 if (did_some_progress) { 4681 no_progress_loops = 0; 4682 goto retry; 4683 } 4684 4685 nopage: 4686 /* 4687 * Deal with possible cpuset update races or zonelist updates to avoid 4688 * a unnecessary OOM kill. 4689 */ 4690 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4691 check_retry_zonelist(zonelist_iter_cookie)) 4692 goto restart; 4693 4694 /* 4695 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4696 * we always retry 4697 */ 4698 if (unlikely(nofail)) { 4699 /* 4700 * Lacking direct_reclaim we can't do anything to reclaim memory, 4701 * we disregard these unreasonable nofail requests and still 4702 * return NULL 4703 */ 4704 if (!can_direct_reclaim) 4705 goto fail; 4706 4707 /* 4708 * Help non-failing allocations by giving some access to memory 4709 * reserves normally used for high priority non-blocking 4710 * allocations but do not use ALLOC_NO_WATERMARKS because this 4711 * could deplete whole memory reserves which would just make 4712 * the situation worse. 4713 */ 4714 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4715 if (page) 4716 goto got_pg; 4717 4718 cond_resched(); 4719 goto retry; 4720 } 4721 fail: 4722 warn_alloc(gfp_mask, ac->nodemask, 4723 "page allocation failure: order:%u", order); 4724 got_pg: 4725 return page; 4726 } 4727 4728 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4729 int preferred_nid, nodemask_t *nodemask, 4730 struct alloc_context *ac, gfp_t *alloc_gfp, 4731 unsigned int *alloc_flags) 4732 { 4733 ac->highest_zoneidx = gfp_zone(gfp_mask); 4734 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4735 ac->nodemask = nodemask; 4736 ac->migratetype = gfp_migratetype(gfp_mask); 4737 4738 if (cpusets_enabled()) { 4739 *alloc_gfp |= __GFP_HARDWALL; 4740 /* 4741 * When we are in the interrupt context, it is irrelevant 4742 * to the current task context. It means that any node ok. 4743 */ 4744 if (in_task() && !ac->nodemask) 4745 ac->nodemask = &cpuset_current_mems_allowed; 4746 else 4747 *alloc_flags |= ALLOC_CPUSET; 4748 } 4749 4750 might_alloc(gfp_mask); 4751 4752 /* 4753 * Don't invoke should_fail logic, since it may call 4754 * get_random_u32() and printk() which need to spin_lock. 4755 */ 4756 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4757 should_fail_alloc_page(gfp_mask, order)) 4758 return false; 4759 4760 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4761 4762 /* Dirty zone balancing only done in the fast path */ 4763 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4764 4765 /* 4766 * The preferred zone is used for statistics but crucially it is 4767 * also used as the starting point for the zonelist iterator. It 4768 * may get reset for allocations that ignore memory policies. 4769 */ 4770 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4771 ac->highest_zoneidx, ac->nodemask); 4772 4773 return true; 4774 } 4775 4776 /* 4777 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4778 * @gfp: GFP flags for the allocation 4779 * @preferred_nid: The preferred NUMA node ID to allocate from 4780 * @nodemask: Set of nodes to allocate from, may be NULL 4781 * @nr_pages: The number of pages desired in the array 4782 * @page_array: Array to store the pages 4783 * 4784 * This is a batched version of the page allocator that attempts to 4785 * allocate nr_pages quickly. Pages are added to the page_array. 4786 * 4787 * Note that only NULL elements are populated with pages and nr_pages 4788 * is the maximum number of pages that will be stored in the array. 4789 * 4790 * Returns the number of pages in the array. 4791 */ 4792 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4793 nodemask_t *nodemask, int nr_pages, 4794 struct page **page_array) 4795 { 4796 struct page *page; 4797 unsigned long __maybe_unused UP_flags; 4798 struct zone *zone; 4799 struct zoneref *z; 4800 struct per_cpu_pages *pcp; 4801 struct list_head *pcp_list; 4802 struct alloc_context ac; 4803 gfp_t alloc_gfp; 4804 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4805 int nr_populated = 0, nr_account = 0; 4806 4807 /* 4808 * Skip populated array elements to determine if any pages need 4809 * to be allocated before disabling IRQs. 4810 */ 4811 while (nr_populated < nr_pages && page_array[nr_populated]) 4812 nr_populated++; 4813 4814 /* No pages requested? */ 4815 if (unlikely(nr_pages <= 0)) 4816 goto out; 4817 4818 /* Already populated array? */ 4819 if (unlikely(nr_pages - nr_populated == 0)) 4820 goto out; 4821 4822 /* Bulk allocator does not support memcg accounting. */ 4823 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4824 goto failed; 4825 4826 /* Use the single page allocator for one page. */ 4827 if (nr_pages - nr_populated == 1) 4828 goto failed; 4829 4830 #ifdef CONFIG_PAGE_OWNER 4831 /* 4832 * PAGE_OWNER may recurse into the allocator to allocate space to 4833 * save the stack with pagesets.lock held. Releasing/reacquiring 4834 * removes much of the performance benefit of bulk allocation so 4835 * force the caller to allocate one page at a time as it'll have 4836 * similar performance to added complexity to the bulk allocator. 4837 */ 4838 if (static_branch_unlikely(&page_owner_inited)) 4839 goto failed; 4840 #endif 4841 4842 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4843 gfp &= gfp_allowed_mask; 4844 alloc_gfp = gfp; 4845 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4846 goto out; 4847 gfp = alloc_gfp; 4848 4849 /* Find an allowed local zone that meets the low watermark. */ 4850 z = ac.preferred_zoneref; 4851 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4852 unsigned long mark; 4853 4854 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4855 !__cpuset_zone_allowed(zone, gfp)) { 4856 continue; 4857 } 4858 4859 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4860 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4861 goto failed; 4862 } 4863 4864 cond_accept_memory(zone, 0); 4865 retry_this_zone: 4866 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4867 if (zone_watermark_fast(zone, 0, mark, 4868 zonelist_zone_idx(ac.preferred_zoneref), 4869 alloc_flags, gfp)) { 4870 break; 4871 } 4872 4873 if (cond_accept_memory(zone, 0)) 4874 goto retry_this_zone; 4875 4876 /* Try again if zone has deferred pages */ 4877 if (deferred_pages_enabled()) { 4878 if (_deferred_grow_zone(zone, 0)) 4879 goto retry_this_zone; 4880 } 4881 } 4882 4883 /* 4884 * If there are no allowed local zones that meets the watermarks then 4885 * try to allocate a single page and reclaim if necessary. 4886 */ 4887 if (unlikely(!zone)) 4888 goto failed; 4889 4890 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4891 pcp_trylock_prepare(UP_flags); 4892 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4893 if (!pcp) 4894 goto failed_irq; 4895 4896 /* Attempt the batch allocation */ 4897 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4898 while (nr_populated < nr_pages) { 4899 4900 /* Skip existing pages */ 4901 if (page_array[nr_populated]) { 4902 nr_populated++; 4903 continue; 4904 } 4905 4906 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4907 pcp, pcp_list); 4908 if (unlikely(!page)) { 4909 /* Try and allocate at least one page */ 4910 if (!nr_account) { 4911 pcp_spin_unlock(pcp); 4912 goto failed_irq; 4913 } 4914 break; 4915 } 4916 nr_account++; 4917 4918 prep_new_page(page, 0, gfp, 0); 4919 set_page_refcounted(page); 4920 page_array[nr_populated++] = page; 4921 } 4922 4923 pcp_spin_unlock(pcp); 4924 pcp_trylock_finish(UP_flags); 4925 4926 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4927 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4928 4929 out: 4930 return nr_populated; 4931 4932 failed_irq: 4933 pcp_trylock_finish(UP_flags); 4934 4935 failed: 4936 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4937 if (page) 4938 page_array[nr_populated++] = page; 4939 goto out; 4940 } 4941 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4942 4943 /* 4944 * This is the 'heart' of the zoned buddy allocator. 4945 */ 4946 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 4947 int preferred_nid, nodemask_t *nodemask) 4948 { 4949 struct page *page; 4950 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4951 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4952 struct alloc_context ac = { }; 4953 4954 /* 4955 * There are several places where we assume that the order value is sane 4956 * so bail out early if the request is out of bound. 4957 */ 4958 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4959 return NULL; 4960 4961 gfp &= gfp_allowed_mask; 4962 /* 4963 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4964 * resp. GFP_NOIO which has to be inherited for all allocation requests 4965 * from a particular context which has been marked by 4966 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4967 * movable zones are not used during allocation. 4968 */ 4969 gfp = current_gfp_context(gfp); 4970 alloc_gfp = gfp; 4971 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4972 &alloc_gfp, &alloc_flags)) 4973 return NULL; 4974 4975 /* 4976 * Forbid the first pass from falling back to types that fragment 4977 * memory until all local zones are considered. 4978 */ 4979 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4980 4981 /* First allocation attempt */ 4982 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4983 if (likely(page)) 4984 goto out; 4985 4986 alloc_gfp = gfp; 4987 ac.spread_dirty_pages = false; 4988 4989 /* 4990 * Restore the original nodemask if it was potentially replaced with 4991 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4992 */ 4993 ac.nodemask = nodemask; 4994 4995 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4996 4997 out: 4998 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4999 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5000 free_frozen_pages(page, order); 5001 page = NULL; 5002 } 5003 5004 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5005 kmsan_alloc_page(page, order, alloc_gfp); 5006 5007 return page; 5008 } 5009 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 5010 5011 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5012 int preferred_nid, nodemask_t *nodemask) 5013 { 5014 struct page *page; 5015 5016 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5017 if (page) 5018 set_page_refcounted(page); 5019 return page; 5020 } 5021 EXPORT_SYMBOL(__alloc_pages_noprof); 5022 5023 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5024 nodemask_t *nodemask) 5025 { 5026 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5027 preferred_nid, nodemask); 5028 return page_rmappable_folio(page); 5029 } 5030 EXPORT_SYMBOL(__folio_alloc_noprof); 5031 5032 /* 5033 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5034 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5035 * you need to access high mem. 5036 */ 5037 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5038 { 5039 struct page *page; 5040 5041 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5042 if (!page) 5043 return 0; 5044 return (unsigned long) page_address(page); 5045 } 5046 EXPORT_SYMBOL(get_free_pages_noprof); 5047 5048 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5049 { 5050 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5051 } 5052 EXPORT_SYMBOL(get_zeroed_page_noprof); 5053 5054 /** 5055 * ___free_pages - Free pages allocated with alloc_pages(). 5056 * @page: The page pointer returned from alloc_pages(). 5057 * @order: The order of the allocation. 5058 * @fpi_flags: Free Page Internal flags. 5059 * 5060 * This function can free multi-page allocations that are not compound 5061 * pages. It does not check that the @order passed in matches that of 5062 * the allocation, so it is easy to leak memory. Freeing more memory 5063 * than was allocated will probably emit a warning. 5064 * 5065 * If the last reference to this page is speculative, it will be released 5066 * by put_page() which only frees the first page of a non-compound 5067 * allocation. To prevent the remaining pages from being leaked, we free 5068 * the subsequent pages here. If you want to use the page's reference 5069 * count to decide when to free the allocation, you should allocate a 5070 * compound page, and use put_page() instead of __free_pages(). 5071 * 5072 * Context: May be called in interrupt context or while holding a normal 5073 * spinlock, but not in NMI context or while holding a raw spinlock. 5074 */ 5075 static void ___free_pages(struct page *page, unsigned int order, 5076 fpi_t fpi_flags) 5077 { 5078 /* get PageHead before we drop reference */ 5079 int head = PageHead(page); 5080 5081 if (put_page_testzero(page)) 5082 __free_frozen_pages(page, order, fpi_flags); 5083 else if (!head) { 5084 pgalloc_tag_sub_pages(page, (1 << order) - 1); 5085 while (order-- > 0) 5086 __free_frozen_pages(page + (1 << order), order, 5087 fpi_flags); 5088 } 5089 } 5090 void __free_pages(struct page *page, unsigned int order) 5091 { 5092 ___free_pages(page, order, FPI_NONE); 5093 } 5094 EXPORT_SYMBOL(__free_pages); 5095 5096 /* 5097 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5098 * page type (not only those that came from try_alloc_pages) 5099 */ 5100 void free_pages_nolock(struct page *page, unsigned int order) 5101 { 5102 ___free_pages(page, order, FPI_TRYLOCK); 5103 } 5104 5105 void free_pages(unsigned long addr, unsigned int order) 5106 { 5107 if (addr != 0) { 5108 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5109 __free_pages(virt_to_page((void *)addr), order); 5110 } 5111 } 5112 5113 EXPORT_SYMBOL(free_pages); 5114 5115 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5116 size_t size) 5117 { 5118 if (addr) { 5119 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5120 struct page *page = virt_to_page((void *)addr); 5121 struct page *last = page + nr; 5122 5123 split_page_owner(page, order, 0); 5124 pgalloc_tag_split(page_folio(page), order, 0); 5125 split_page_memcg(page, order); 5126 while (page < --last) 5127 set_page_refcounted(last); 5128 5129 last = page + (1UL << order); 5130 for (page += nr; page < last; page++) 5131 __free_pages_ok(page, 0, FPI_TO_TAIL); 5132 } 5133 return (void *)addr; 5134 } 5135 5136 /** 5137 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5138 * @size: the number of bytes to allocate 5139 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5140 * 5141 * This function is similar to alloc_pages(), except that it allocates the 5142 * minimum number of pages to satisfy the request. alloc_pages() can only 5143 * allocate memory in power-of-two pages. 5144 * 5145 * This function is also limited by MAX_PAGE_ORDER. 5146 * 5147 * Memory allocated by this function must be released by free_pages_exact(). 5148 * 5149 * Return: pointer to the allocated area or %NULL in case of error. 5150 */ 5151 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5152 { 5153 unsigned int order = get_order(size); 5154 unsigned long addr; 5155 5156 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5157 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5158 5159 addr = get_free_pages_noprof(gfp_mask, order); 5160 return make_alloc_exact(addr, order, size); 5161 } 5162 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5163 5164 /** 5165 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5166 * pages on a node. 5167 * @nid: the preferred node ID where memory should be allocated 5168 * @size: the number of bytes to allocate 5169 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5170 * 5171 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5172 * back. 5173 * 5174 * Return: pointer to the allocated area or %NULL in case of error. 5175 */ 5176 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5177 { 5178 unsigned int order = get_order(size); 5179 struct page *p; 5180 5181 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5182 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5183 5184 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5185 if (!p) 5186 return NULL; 5187 return make_alloc_exact((unsigned long)page_address(p), order, size); 5188 } 5189 5190 /** 5191 * free_pages_exact - release memory allocated via alloc_pages_exact() 5192 * @virt: the value returned by alloc_pages_exact. 5193 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5194 * 5195 * Release the memory allocated by a previous call to alloc_pages_exact. 5196 */ 5197 void free_pages_exact(void *virt, size_t size) 5198 { 5199 unsigned long addr = (unsigned long)virt; 5200 unsigned long end = addr + PAGE_ALIGN(size); 5201 5202 while (addr < end) { 5203 free_page(addr); 5204 addr += PAGE_SIZE; 5205 } 5206 } 5207 EXPORT_SYMBOL(free_pages_exact); 5208 5209 /** 5210 * nr_free_zone_pages - count number of pages beyond high watermark 5211 * @offset: The zone index of the highest zone 5212 * 5213 * nr_free_zone_pages() counts the number of pages which are beyond the 5214 * high watermark within all zones at or below a given zone index. For each 5215 * zone, the number of pages is calculated as: 5216 * 5217 * nr_free_zone_pages = managed_pages - high_pages 5218 * 5219 * Return: number of pages beyond high watermark. 5220 */ 5221 static unsigned long nr_free_zone_pages(int offset) 5222 { 5223 struct zoneref *z; 5224 struct zone *zone; 5225 5226 /* Just pick one node, since fallback list is circular */ 5227 unsigned long sum = 0; 5228 5229 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5230 5231 for_each_zone_zonelist(zone, z, zonelist, offset) { 5232 unsigned long size = zone_managed_pages(zone); 5233 unsigned long high = high_wmark_pages(zone); 5234 if (size > high) 5235 sum += size - high; 5236 } 5237 5238 return sum; 5239 } 5240 5241 /** 5242 * nr_free_buffer_pages - count number of pages beyond high watermark 5243 * 5244 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5245 * watermark within ZONE_DMA and ZONE_NORMAL. 5246 * 5247 * Return: number of pages beyond high watermark within ZONE_DMA and 5248 * ZONE_NORMAL. 5249 */ 5250 unsigned long nr_free_buffer_pages(void) 5251 { 5252 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5253 } 5254 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5255 5256 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5257 { 5258 zoneref->zone = zone; 5259 zoneref->zone_idx = zone_idx(zone); 5260 } 5261 5262 /* 5263 * Builds allocation fallback zone lists. 5264 * 5265 * Add all populated zones of a node to the zonelist. 5266 */ 5267 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5268 { 5269 struct zone *zone; 5270 enum zone_type zone_type = MAX_NR_ZONES; 5271 int nr_zones = 0; 5272 5273 do { 5274 zone_type--; 5275 zone = pgdat->node_zones + zone_type; 5276 if (populated_zone(zone)) { 5277 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5278 check_highest_zone(zone_type); 5279 } 5280 } while (zone_type); 5281 5282 return nr_zones; 5283 } 5284 5285 #ifdef CONFIG_NUMA 5286 5287 static int __parse_numa_zonelist_order(char *s) 5288 { 5289 /* 5290 * We used to support different zonelists modes but they turned 5291 * out to be just not useful. Let's keep the warning in place 5292 * if somebody still use the cmd line parameter so that we do 5293 * not fail it silently 5294 */ 5295 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5296 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5297 return -EINVAL; 5298 } 5299 return 0; 5300 } 5301 5302 static char numa_zonelist_order[] = "Node"; 5303 #define NUMA_ZONELIST_ORDER_LEN 16 5304 /* 5305 * sysctl handler for numa_zonelist_order 5306 */ 5307 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5308 void *buffer, size_t *length, loff_t *ppos) 5309 { 5310 if (write) 5311 return __parse_numa_zonelist_order(buffer); 5312 return proc_dostring(table, write, buffer, length, ppos); 5313 } 5314 5315 static int node_load[MAX_NUMNODES]; 5316 5317 /** 5318 * find_next_best_node - find the next node that should appear in a given node's fallback list 5319 * @node: node whose fallback list we're appending 5320 * @used_node_mask: nodemask_t of already used nodes 5321 * 5322 * We use a number of factors to determine which is the next node that should 5323 * appear on a given node's fallback list. The node should not have appeared 5324 * already in @node's fallback list, and it should be the next closest node 5325 * according to the distance array (which contains arbitrary distance values 5326 * from each node to each node in the system), and should also prefer nodes 5327 * with no CPUs, since presumably they'll have very little allocation pressure 5328 * on them otherwise. 5329 * 5330 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5331 */ 5332 int find_next_best_node(int node, nodemask_t *used_node_mask) 5333 { 5334 int n, val; 5335 int min_val = INT_MAX; 5336 int best_node = NUMA_NO_NODE; 5337 5338 /* 5339 * Use the local node if we haven't already, but for memoryless local 5340 * node, we should skip it and fall back to other nodes. 5341 */ 5342 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5343 node_set(node, *used_node_mask); 5344 return node; 5345 } 5346 5347 for_each_node_state(n, N_MEMORY) { 5348 5349 /* Don't want a node to appear more than once */ 5350 if (node_isset(n, *used_node_mask)) 5351 continue; 5352 5353 /* Use the distance array to find the distance */ 5354 val = node_distance(node, n); 5355 5356 /* Penalize nodes under us ("prefer the next node") */ 5357 val += (n < node); 5358 5359 /* Give preference to headless and unused nodes */ 5360 if (!cpumask_empty(cpumask_of_node(n))) 5361 val += PENALTY_FOR_NODE_WITH_CPUS; 5362 5363 /* Slight preference for less loaded node */ 5364 val *= MAX_NUMNODES; 5365 val += node_load[n]; 5366 5367 if (val < min_val) { 5368 min_val = val; 5369 best_node = n; 5370 } 5371 } 5372 5373 if (best_node >= 0) 5374 node_set(best_node, *used_node_mask); 5375 5376 return best_node; 5377 } 5378 5379 5380 /* 5381 * Build zonelists ordered by node and zones within node. 5382 * This results in maximum locality--normal zone overflows into local 5383 * DMA zone, if any--but risks exhausting DMA zone. 5384 */ 5385 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5386 unsigned nr_nodes) 5387 { 5388 struct zoneref *zonerefs; 5389 int i; 5390 5391 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5392 5393 for (i = 0; i < nr_nodes; i++) { 5394 int nr_zones; 5395 5396 pg_data_t *node = NODE_DATA(node_order[i]); 5397 5398 nr_zones = build_zonerefs_node(node, zonerefs); 5399 zonerefs += nr_zones; 5400 } 5401 zonerefs->zone = NULL; 5402 zonerefs->zone_idx = 0; 5403 } 5404 5405 /* 5406 * Build __GFP_THISNODE zonelists 5407 */ 5408 static void build_thisnode_zonelists(pg_data_t *pgdat) 5409 { 5410 struct zoneref *zonerefs; 5411 int nr_zones; 5412 5413 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5414 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5415 zonerefs += nr_zones; 5416 zonerefs->zone = NULL; 5417 zonerefs->zone_idx = 0; 5418 } 5419 5420 static void build_zonelists(pg_data_t *pgdat) 5421 { 5422 static int node_order[MAX_NUMNODES]; 5423 int node, nr_nodes = 0; 5424 nodemask_t used_mask = NODE_MASK_NONE; 5425 int local_node, prev_node; 5426 5427 /* NUMA-aware ordering of nodes */ 5428 local_node = pgdat->node_id; 5429 prev_node = local_node; 5430 5431 memset(node_order, 0, sizeof(node_order)); 5432 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5433 /* 5434 * We don't want to pressure a particular node. 5435 * So adding penalty to the first node in same 5436 * distance group to make it round-robin. 5437 */ 5438 if (node_distance(local_node, node) != 5439 node_distance(local_node, prev_node)) 5440 node_load[node] += 1; 5441 5442 node_order[nr_nodes++] = node; 5443 prev_node = node; 5444 } 5445 5446 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5447 build_thisnode_zonelists(pgdat); 5448 pr_info("Fallback order for Node %d: ", local_node); 5449 for (node = 0; node < nr_nodes; node++) 5450 pr_cont("%d ", node_order[node]); 5451 pr_cont("\n"); 5452 } 5453 5454 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5455 /* 5456 * Return node id of node used for "local" allocations. 5457 * I.e., first node id of first zone in arg node's generic zonelist. 5458 * Used for initializing percpu 'numa_mem', which is used primarily 5459 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5460 */ 5461 int local_memory_node(int node) 5462 { 5463 struct zoneref *z; 5464 5465 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5466 gfp_zone(GFP_KERNEL), 5467 NULL); 5468 return zonelist_node_idx(z); 5469 } 5470 #endif 5471 5472 static void setup_min_unmapped_ratio(void); 5473 static void setup_min_slab_ratio(void); 5474 #else /* CONFIG_NUMA */ 5475 5476 static void build_zonelists(pg_data_t *pgdat) 5477 { 5478 struct zoneref *zonerefs; 5479 int nr_zones; 5480 5481 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5482 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5483 zonerefs += nr_zones; 5484 5485 zonerefs->zone = NULL; 5486 zonerefs->zone_idx = 0; 5487 } 5488 5489 #endif /* CONFIG_NUMA */ 5490 5491 /* 5492 * Boot pageset table. One per cpu which is going to be used for all 5493 * zones and all nodes. The parameters will be set in such a way 5494 * that an item put on a list will immediately be handed over to 5495 * the buddy list. This is safe since pageset manipulation is done 5496 * with interrupts disabled. 5497 * 5498 * The boot_pagesets must be kept even after bootup is complete for 5499 * unused processors and/or zones. They do play a role for bootstrapping 5500 * hotplugged processors. 5501 * 5502 * zoneinfo_show() and maybe other functions do 5503 * not check if the processor is online before following the pageset pointer. 5504 * Other parts of the kernel may not check if the zone is available. 5505 */ 5506 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5507 /* These effectively disable the pcplists in the boot pageset completely */ 5508 #define BOOT_PAGESET_HIGH 0 5509 #define BOOT_PAGESET_BATCH 1 5510 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5511 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5512 5513 static void __build_all_zonelists(void *data) 5514 { 5515 int nid; 5516 int __maybe_unused cpu; 5517 pg_data_t *self = data; 5518 unsigned long flags; 5519 5520 /* 5521 * The zonelist_update_seq must be acquired with irqsave because the 5522 * reader can be invoked from IRQ with GFP_ATOMIC. 5523 */ 5524 write_seqlock_irqsave(&zonelist_update_seq, flags); 5525 /* 5526 * Also disable synchronous printk() to prevent any printk() from 5527 * trying to hold port->lock, for 5528 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5529 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5530 */ 5531 printk_deferred_enter(); 5532 5533 #ifdef CONFIG_NUMA 5534 memset(node_load, 0, sizeof(node_load)); 5535 #endif 5536 5537 /* 5538 * This node is hotadded and no memory is yet present. So just 5539 * building zonelists is fine - no need to touch other nodes. 5540 */ 5541 if (self && !node_online(self->node_id)) { 5542 build_zonelists(self); 5543 } else { 5544 /* 5545 * All possible nodes have pgdat preallocated 5546 * in free_area_init 5547 */ 5548 for_each_node(nid) { 5549 pg_data_t *pgdat = NODE_DATA(nid); 5550 5551 build_zonelists(pgdat); 5552 } 5553 5554 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5555 /* 5556 * We now know the "local memory node" for each node-- 5557 * i.e., the node of the first zone in the generic zonelist. 5558 * Set up numa_mem percpu variable for on-line cpus. During 5559 * boot, only the boot cpu should be on-line; we'll init the 5560 * secondary cpus' numa_mem as they come on-line. During 5561 * node/memory hotplug, we'll fixup all on-line cpus. 5562 */ 5563 for_each_online_cpu(cpu) 5564 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5565 #endif 5566 } 5567 5568 printk_deferred_exit(); 5569 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5570 } 5571 5572 static noinline void __init 5573 build_all_zonelists_init(void) 5574 { 5575 int cpu; 5576 5577 __build_all_zonelists(NULL); 5578 5579 /* 5580 * Initialize the boot_pagesets that are going to be used 5581 * for bootstrapping processors. The real pagesets for 5582 * each zone will be allocated later when the per cpu 5583 * allocator is available. 5584 * 5585 * boot_pagesets are used also for bootstrapping offline 5586 * cpus if the system is already booted because the pagesets 5587 * are needed to initialize allocators on a specific cpu too. 5588 * F.e. the percpu allocator needs the page allocator which 5589 * needs the percpu allocator in order to allocate its pagesets 5590 * (a chicken-egg dilemma). 5591 */ 5592 for_each_possible_cpu(cpu) 5593 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5594 5595 mminit_verify_zonelist(); 5596 cpuset_init_current_mems_allowed(); 5597 } 5598 5599 /* 5600 * unless system_state == SYSTEM_BOOTING. 5601 * 5602 * __ref due to call of __init annotated helper build_all_zonelists_init 5603 * [protected by SYSTEM_BOOTING]. 5604 */ 5605 void __ref build_all_zonelists(pg_data_t *pgdat) 5606 { 5607 unsigned long vm_total_pages; 5608 5609 if (system_state == SYSTEM_BOOTING) { 5610 build_all_zonelists_init(); 5611 } else { 5612 __build_all_zonelists(pgdat); 5613 /* cpuset refresh routine should be here */ 5614 } 5615 /* Get the number of free pages beyond high watermark in all zones. */ 5616 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5617 /* 5618 * Disable grouping by mobility if the number of pages in the 5619 * system is too low to allow the mechanism to work. It would be 5620 * more accurate, but expensive to check per-zone. This check is 5621 * made on memory-hotadd so a system can start with mobility 5622 * disabled and enable it later 5623 */ 5624 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5625 page_group_by_mobility_disabled = 1; 5626 else 5627 page_group_by_mobility_disabled = 0; 5628 5629 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5630 nr_online_nodes, 5631 str_off_on(page_group_by_mobility_disabled), 5632 vm_total_pages); 5633 #ifdef CONFIG_NUMA 5634 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5635 #endif 5636 } 5637 5638 static int zone_batchsize(struct zone *zone) 5639 { 5640 #ifdef CONFIG_MMU 5641 int batch; 5642 5643 /* 5644 * The number of pages to batch allocate is either ~0.1% 5645 * of the zone or 1MB, whichever is smaller. The batch 5646 * size is striking a balance between allocation latency 5647 * and zone lock contention. 5648 */ 5649 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5650 batch /= 4; /* We effectively *= 4 below */ 5651 if (batch < 1) 5652 batch = 1; 5653 5654 /* 5655 * Clamp the batch to a 2^n - 1 value. Having a power 5656 * of 2 value was found to be more likely to have 5657 * suboptimal cache aliasing properties in some cases. 5658 * 5659 * For example if 2 tasks are alternately allocating 5660 * batches of pages, one task can end up with a lot 5661 * of pages of one half of the possible page colors 5662 * and the other with pages of the other colors. 5663 */ 5664 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5665 5666 return batch; 5667 5668 #else 5669 /* The deferral and batching of frees should be suppressed under NOMMU 5670 * conditions. 5671 * 5672 * The problem is that NOMMU needs to be able to allocate large chunks 5673 * of contiguous memory as there's no hardware page translation to 5674 * assemble apparent contiguous memory from discontiguous pages. 5675 * 5676 * Queueing large contiguous runs of pages for batching, however, 5677 * causes the pages to actually be freed in smaller chunks. As there 5678 * can be a significant delay between the individual batches being 5679 * recycled, this leads to the once large chunks of space being 5680 * fragmented and becoming unavailable for high-order allocations. 5681 */ 5682 return 0; 5683 #endif 5684 } 5685 5686 static int percpu_pagelist_high_fraction; 5687 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5688 int high_fraction) 5689 { 5690 #ifdef CONFIG_MMU 5691 int high; 5692 int nr_split_cpus; 5693 unsigned long total_pages; 5694 5695 if (!high_fraction) { 5696 /* 5697 * By default, the high value of the pcp is based on the zone 5698 * low watermark so that if they are full then background 5699 * reclaim will not be started prematurely. 5700 */ 5701 total_pages = low_wmark_pages(zone); 5702 } else { 5703 /* 5704 * If percpu_pagelist_high_fraction is configured, the high 5705 * value is based on a fraction of the managed pages in the 5706 * zone. 5707 */ 5708 total_pages = zone_managed_pages(zone) / high_fraction; 5709 } 5710 5711 /* 5712 * Split the high value across all online CPUs local to the zone. Note 5713 * that early in boot that CPUs may not be online yet and that during 5714 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5715 * onlined. For memory nodes that have no CPUs, split the high value 5716 * across all online CPUs to mitigate the risk that reclaim is triggered 5717 * prematurely due to pages stored on pcp lists. 5718 */ 5719 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5720 if (!nr_split_cpus) 5721 nr_split_cpus = num_online_cpus(); 5722 high = total_pages / nr_split_cpus; 5723 5724 /* 5725 * Ensure high is at least batch*4. The multiple is based on the 5726 * historical relationship between high and batch. 5727 */ 5728 high = max(high, batch << 2); 5729 5730 return high; 5731 #else 5732 return 0; 5733 #endif 5734 } 5735 5736 /* 5737 * pcp->high and pcp->batch values are related and generally batch is lower 5738 * than high. They are also related to pcp->count such that count is lower 5739 * than high, and as soon as it reaches high, the pcplist is flushed. 5740 * 5741 * However, guaranteeing these relations at all times would require e.g. write 5742 * barriers here but also careful usage of read barriers at the read side, and 5743 * thus be prone to error and bad for performance. Thus the update only prevents 5744 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5745 * should ensure they can cope with those fields changing asynchronously, and 5746 * fully trust only the pcp->count field on the local CPU with interrupts 5747 * disabled. 5748 * 5749 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5750 * outside of boot time (or some other assurance that no concurrent updaters 5751 * exist). 5752 */ 5753 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5754 unsigned long high_max, unsigned long batch) 5755 { 5756 WRITE_ONCE(pcp->batch, batch); 5757 WRITE_ONCE(pcp->high_min, high_min); 5758 WRITE_ONCE(pcp->high_max, high_max); 5759 } 5760 5761 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5762 { 5763 int pindex; 5764 5765 memset(pcp, 0, sizeof(*pcp)); 5766 memset(pzstats, 0, sizeof(*pzstats)); 5767 5768 spin_lock_init(&pcp->lock); 5769 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5770 INIT_LIST_HEAD(&pcp->lists[pindex]); 5771 5772 /* 5773 * Set batch and high values safe for a boot pageset. A true percpu 5774 * pageset's initialization will update them subsequently. Here we don't 5775 * need to be as careful as pageset_update() as nobody can access the 5776 * pageset yet. 5777 */ 5778 pcp->high_min = BOOT_PAGESET_HIGH; 5779 pcp->high_max = BOOT_PAGESET_HIGH; 5780 pcp->batch = BOOT_PAGESET_BATCH; 5781 pcp->free_count = 0; 5782 } 5783 5784 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5785 unsigned long high_max, unsigned long batch) 5786 { 5787 struct per_cpu_pages *pcp; 5788 int cpu; 5789 5790 for_each_possible_cpu(cpu) { 5791 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5792 pageset_update(pcp, high_min, high_max, batch); 5793 } 5794 } 5795 5796 /* 5797 * Calculate and set new high and batch values for all per-cpu pagesets of a 5798 * zone based on the zone's size. 5799 */ 5800 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5801 { 5802 int new_high_min, new_high_max, new_batch; 5803 5804 new_batch = max(1, zone_batchsize(zone)); 5805 if (percpu_pagelist_high_fraction) { 5806 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5807 percpu_pagelist_high_fraction); 5808 /* 5809 * PCP high is tuned manually, disable auto-tuning via 5810 * setting high_min and high_max to the manual value. 5811 */ 5812 new_high_max = new_high_min; 5813 } else { 5814 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5815 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5816 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5817 } 5818 5819 if (zone->pageset_high_min == new_high_min && 5820 zone->pageset_high_max == new_high_max && 5821 zone->pageset_batch == new_batch) 5822 return; 5823 5824 zone->pageset_high_min = new_high_min; 5825 zone->pageset_high_max = new_high_max; 5826 zone->pageset_batch = new_batch; 5827 5828 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5829 new_batch); 5830 } 5831 5832 void __meminit setup_zone_pageset(struct zone *zone) 5833 { 5834 int cpu; 5835 5836 /* Size may be 0 on !SMP && !NUMA */ 5837 if (sizeof(struct per_cpu_zonestat) > 0) 5838 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5839 5840 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5841 for_each_possible_cpu(cpu) { 5842 struct per_cpu_pages *pcp; 5843 struct per_cpu_zonestat *pzstats; 5844 5845 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5846 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5847 per_cpu_pages_init(pcp, pzstats); 5848 } 5849 5850 zone_set_pageset_high_and_batch(zone, 0); 5851 } 5852 5853 /* 5854 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5855 * page high values need to be recalculated. 5856 */ 5857 static void zone_pcp_update(struct zone *zone, int cpu_online) 5858 { 5859 mutex_lock(&pcp_batch_high_lock); 5860 zone_set_pageset_high_and_batch(zone, cpu_online); 5861 mutex_unlock(&pcp_batch_high_lock); 5862 } 5863 5864 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5865 { 5866 struct per_cpu_pages *pcp; 5867 struct cpu_cacheinfo *cci; 5868 5869 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5870 cci = get_cpu_cacheinfo(cpu); 5871 /* 5872 * If data cache slice of CPU is large enough, "pcp->batch" 5873 * pages can be preserved in PCP before draining PCP for 5874 * consecutive high-order pages freeing without allocation. 5875 * This can reduce zone lock contention without hurting 5876 * cache-hot pages sharing. 5877 */ 5878 spin_lock(&pcp->lock); 5879 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5880 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5881 else 5882 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5883 spin_unlock(&pcp->lock); 5884 } 5885 5886 void setup_pcp_cacheinfo(unsigned int cpu) 5887 { 5888 struct zone *zone; 5889 5890 for_each_populated_zone(zone) 5891 zone_pcp_update_cacheinfo(zone, cpu); 5892 } 5893 5894 /* 5895 * Allocate per cpu pagesets and initialize them. 5896 * Before this call only boot pagesets were available. 5897 */ 5898 void __init setup_per_cpu_pageset(void) 5899 { 5900 struct pglist_data *pgdat; 5901 struct zone *zone; 5902 int __maybe_unused cpu; 5903 5904 for_each_populated_zone(zone) 5905 setup_zone_pageset(zone); 5906 5907 #ifdef CONFIG_NUMA 5908 /* 5909 * Unpopulated zones continue using the boot pagesets. 5910 * The numa stats for these pagesets need to be reset. 5911 * Otherwise, they will end up skewing the stats of 5912 * the nodes these zones are associated with. 5913 */ 5914 for_each_possible_cpu(cpu) { 5915 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5916 memset(pzstats->vm_numa_event, 0, 5917 sizeof(pzstats->vm_numa_event)); 5918 } 5919 #endif 5920 5921 for_each_online_pgdat(pgdat) 5922 pgdat->per_cpu_nodestats = 5923 alloc_percpu(struct per_cpu_nodestat); 5924 } 5925 5926 __meminit void zone_pcp_init(struct zone *zone) 5927 { 5928 /* 5929 * per cpu subsystem is not up at this point. The following code 5930 * relies on the ability of the linker to provide the 5931 * offset of a (static) per cpu variable into the per cpu area. 5932 */ 5933 zone->per_cpu_pageset = &boot_pageset; 5934 zone->per_cpu_zonestats = &boot_zonestats; 5935 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5936 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5937 zone->pageset_batch = BOOT_PAGESET_BATCH; 5938 5939 if (populated_zone(zone)) 5940 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5941 zone->present_pages, zone_batchsize(zone)); 5942 } 5943 5944 static void setup_per_zone_lowmem_reserve(void); 5945 5946 void adjust_managed_page_count(struct page *page, long count) 5947 { 5948 atomic_long_add(count, &page_zone(page)->managed_pages); 5949 totalram_pages_add(count); 5950 setup_per_zone_lowmem_reserve(); 5951 } 5952 EXPORT_SYMBOL(adjust_managed_page_count); 5953 5954 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5955 { 5956 void *pos; 5957 unsigned long pages = 0; 5958 5959 start = (void *)PAGE_ALIGN((unsigned long)start); 5960 end = (void *)((unsigned long)end & PAGE_MASK); 5961 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5962 struct page *page = virt_to_page(pos); 5963 void *direct_map_addr; 5964 5965 /* 5966 * 'direct_map_addr' might be different from 'pos' 5967 * because some architectures' virt_to_page() 5968 * work with aliases. Getting the direct map 5969 * address ensures that we get a _writeable_ 5970 * alias for the memset(). 5971 */ 5972 direct_map_addr = page_address(page); 5973 /* 5974 * Perform a kasan-unchecked memset() since this memory 5975 * has not been initialized. 5976 */ 5977 direct_map_addr = kasan_reset_tag(direct_map_addr); 5978 if ((unsigned int)poison <= 0xFF) 5979 memset(direct_map_addr, poison, PAGE_SIZE); 5980 5981 free_reserved_page(page); 5982 } 5983 5984 if (pages && s) 5985 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5986 5987 return pages; 5988 } 5989 5990 void free_reserved_page(struct page *page) 5991 { 5992 clear_page_tag_ref(page); 5993 ClearPageReserved(page); 5994 init_page_count(page); 5995 __free_page(page); 5996 adjust_managed_page_count(page, 1); 5997 } 5998 EXPORT_SYMBOL(free_reserved_page); 5999 6000 static int page_alloc_cpu_dead(unsigned int cpu) 6001 { 6002 struct zone *zone; 6003 6004 lru_add_drain_cpu(cpu); 6005 mlock_drain_remote(cpu); 6006 drain_pages(cpu); 6007 6008 /* 6009 * Spill the event counters of the dead processor 6010 * into the current processors event counters. 6011 * This artificially elevates the count of the current 6012 * processor. 6013 */ 6014 vm_events_fold_cpu(cpu); 6015 6016 /* 6017 * Zero the differential counters of the dead processor 6018 * so that the vm statistics are consistent. 6019 * 6020 * This is only okay since the processor is dead and cannot 6021 * race with what we are doing. 6022 */ 6023 cpu_vm_stats_fold(cpu); 6024 6025 for_each_populated_zone(zone) 6026 zone_pcp_update(zone, 0); 6027 6028 return 0; 6029 } 6030 6031 static int page_alloc_cpu_online(unsigned int cpu) 6032 { 6033 struct zone *zone; 6034 6035 for_each_populated_zone(zone) 6036 zone_pcp_update(zone, 1); 6037 return 0; 6038 } 6039 6040 void __init page_alloc_init_cpuhp(void) 6041 { 6042 int ret; 6043 6044 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6045 "mm/page_alloc:pcp", 6046 page_alloc_cpu_online, 6047 page_alloc_cpu_dead); 6048 WARN_ON(ret < 0); 6049 } 6050 6051 /* 6052 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6053 * or min_free_kbytes changes. 6054 */ 6055 static void calculate_totalreserve_pages(void) 6056 { 6057 struct pglist_data *pgdat; 6058 unsigned long reserve_pages = 0; 6059 enum zone_type i, j; 6060 6061 for_each_online_pgdat(pgdat) { 6062 6063 pgdat->totalreserve_pages = 0; 6064 6065 for (i = 0; i < MAX_NR_ZONES; i++) { 6066 struct zone *zone = pgdat->node_zones + i; 6067 long max = 0; 6068 unsigned long managed_pages = zone_managed_pages(zone); 6069 6070 /* Find valid and maximum lowmem_reserve in the zone */ 6071 for (j = i; j < MAX_NR_ZONES; j++) { 6072 if (zone->lowmem_reserve[j] > max) 6073 max = zone->lowmem_reserve[j]; 6074 } 6075 6076 /* we treat the high watermark as reserved pages. */ 6077 max += high_wmark_pages(zone); 6078 6079 if (max > managed_pages) 6080 max = managed_pages; 6081 6082 pgdat->totalreserve_pages += max; 6083 6084 reserve_pages += max; 6085 } 6086 } 6087 totalreserve_pages = reserve_pages; 6088 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6089 } 6090 6091 /* 6092 * setup_per_zone_lowmem_reserve - called whenever 6093 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6094 * has a correct pages reserved value, so an adequate number of 6095 * pages are left in the zone after a successful __alloc_pages(). 6096 */ 6097 static void setup_per_zone_lowmem_reserve(void) 6098 { 6099 struct pglist_data *pgdat; 6100 enum zone_type i, j; 6101 6102 for_each_online_pgdat(pgdat) { 6103 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6104 struct zone *zone = &pgdat->node_zones[i]; 6105 int ratio = sysctl_lowmem_reserve_ratio[i]; 6106 bool clear = !ratio || !zone_managed_pages(zone); 6107 unsigned long managed_pages = 0; 6108 6109 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6110 struct zone *upper_zone = &pgdat->node_zones[j]; 6111 6112 managed_pages += zone_managed_pages(upper_zone); 6113 6114 if (clear) 6115 zone->lowmem_reserve[j] = 0; 6116 else 6117 zone->lowmem_reserve[j] = managed_pages / ratio; 6118 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6119 zone->lowmem_reserve[j]); 6120 } 6121 } 6122 } 6123 6124 /* update totalreserve_pages */ 6125 calculate_totalreserve_pages(); 6126 } 6127 6128 static void __setup_per_zone_wmarks(void) 6129 { 6130 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6131 unsigned long lowmem_pages = 0; 6132 struct zone *zone; 6133 unsigned long flags; 6134 6135 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6136 for_each_zone(zone) { 6137 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6138 lowmem_pages += zone_managed_pages(zone); 6139 } 6140 6141 for_each_zone(zone) { 6142 u64 tmp; 6143 6144 spin_lock_irqsave(&zone->lock, flags); 6145 tmp = (u64)pages_min * zone_managed_pages(zone); 6146 tmp = div64_ul(tmp, lowmem_pages); 6147 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6148 /* 6149 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6150 * need highmem and movable zones pages, so cap pages_min 6151 * to a small value here. 6152 * 6153 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6154 * deltas control async page reclaim, and so should 6155 * not be capped for highmem and movable zones. 6156 */ 6157 unsigned long min_pages; 6158 6159 min_pages = zone_managed_pages(zone) / 1024; 6160 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6161 zone->_watermark[WMARK_MIN] = min_pages; 6162 } else { 6163 /* 6164 * If it's a lowmem zone, reserve a number of pages 6165 * proportionate to the zone's size. 6166 */ 6167 zone->_watermark[WMARK_MIN] = tmp; 6168 } 6169 6170 /* 6171 * Set the kswapd watermarks distance according to the 6172 * scale factor in proportion to available memory, but 6173 * ensure a minimum size on small systems. 6174 */ 6175 tmp = max_t(u64, tmp >> 2, 6176 mult_frac(zone_managed_pages(zone), 6177 watermark_scale_factor, 10000)); 6178 6179 zone->watermark_boost = 0; 6180 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6181 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6182 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6183 trace_mm_setup_per_zone_wmarks(zone); 6184 6185 spin_unlock_irqrestore(&zone->lock, flags); 6186 } 6187 6188 /* update totalreserve_pages */ 6189 calculate_totalreserve_pages(); 6190 } 6191 6192 /** 6193 * setup_per_zone_wmarks - called when min_free_kbytes changes 6194 * or when memory is hot-{added|removed} 6195 * 6196 * Ensures that the watermark[min,low,high] values for each zone are set 6197 * correctly with respect to min_free_kbytes. 6198 */ 6199 void setup_per_zone_wmarks(void) 6200 { 6201 struct zone *zone; 6202 static DEFINE_SPINLOCK(lock); 6203 6204 spin_lock(&lock); 6205 __setup_per_zone_wmarks(); 6206 spin_unlock(&lock); 6207 6208 /* 6209 * The watermark size have changed so update the pcpu batch 6210 * and high limits or the limits may be inappropriate. 6211 */ 6212 for_each_zone(zone) 6213 zone_pcp_update(zone, 0); 6214 } 6215 6216 /* 6217 * Initialise min_free_kbytes. 6218 * 6219 * For small machines we want it small (128k min). For large machines 6220 * we want it large (256MB max). But it is not linear, because network 6221 * bandwidth does not increase linearly with machine size. We use 6222 * 6223 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6224 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6225 * 6226 * which yields 6227 * 6228 * 16MB: 512k 6229 * 32MB: 724k 6230 * 64MB: 1024k 6231 * 128MB: 1448k 6232 * 256MB: 2048k 6233 * 512MB: 2896k 6234 * 1024MB: 4096k 6235 * 2048MB: 5792k 6236 * 4096MB: 8192k 6237 * 8192MB: 11584k 6238 * 16384MB: 16384k 6239 */ 6240 void calculate_min_free_kbytes(void) 6241 { 6242 unsigned long lowmem_kbytes; 6243 int new_min_free_kbytes; 6244 6245 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6246 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6247 6248 if (new_min_free_kbytes > user_min_free_kbytes) 6249 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6250 else 6251 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6252 new_min_free_kbytes, user_min_free_kbytes); 6253 6254 } 6255 6256 int __meminit init_per_zone_wmark_min(void) 6257 { 6258 calculate_min_free_kbytes(); 6259 setup_per_zone_wmarks(); 6260 refresh_zone_stat_thresholds(); 6261 setup_per_zone_lowmem_reserve(); 6262 6263 #ifdef CONFIG_NUMA 6264 setup_min_unmapped_ratio(); 6265 setup_min_slab_ratio(); 6266 #endif 6267 6268 khugepaged_min_free_kbytes_update(); 6269 6270 return 0; 6271 } 6272 postcore_initcall(init_per_zone_wmark_min) 6273 6274 /* 6275 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6276 * that we can call two helper functions whenever min_free_kbytes 6277 * changes. 6278 */ 6279 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6280 void *buffer, size_t *length, loff_t *ppos) 6281 { 6282 int rc; 6283 6284 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6285 if (rc) 6286 return rc; 6287 6288 if (write) { 6289 user_min_free_kbytes = min_free_kbytes; 6290 setup_per_zone_wmarks(); 6291 } 6292 return 0; 6293 } 6294 6295 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6296 void *buffer, size_t *length, loff_t *ppos) 6297 { 6298 int rc; 6299 6300 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6301 if (rc) 6302 return rc; 6303 6304 if (write) 6305 setup_per_zone_wmarks(); 6306 6307 return 0; 6308 } 6309 6310 #ifdef CONFIG_NUMA 6311 static void setup_min_unmapped_ratio(void) 6312 { 6313 pg_data_t *pgdat; 6314 struct zone *zone; 6315 6316 for_each_online_pgdat(pgdat) 6317 pgdat->min_unmapped_pages = 0; 6318 6319 for_each_zone(zone) 6320 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6321 sysctl_min_unmapped_ratio) / 100; 6322 } 6323 6324 6325 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6326 void *buffer, size_t *length, loff_t *ppos) 6327 { 6328 int rc; 6329 6330 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6331 if (rc) 6332 return rc; 6333 6334 setup_min_unmapped_ratio(); 6335 6336 return 0; 6337 } 6338 6339 static void setup_min_slab_ratio(void) 6340 { 6341 pg_data_t *pgdat; 6342 struct zone *zone; 6343 6344 for_each_online_pgdat(pgdat) 6345 pgdat->min_slab_pages = 0; 6346 6347 for_each_zone(zone) 6348 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6349 sysctl_min_slab_ratio) / 100; 6350 } 6351 6352 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6353 void *buffer, size_t *length, loff_t *ppos) 6354 { 6355 int rc; 6356 6357 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6358 if (rc) 6359 return rc; 6360 6361 setup_min_slab_ratio(); 6362 6363 return 0; 6364 } 6365 #endif 6366 6367 /* 6368 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6369 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6370 * whenever sysctl_lowmem_reserve_ratio changes. 6371 * 6372 * The reserve ratio obviously has absolutely no relation with the 6373 * minimum watermarks. The lowmem reserve ratio can only make sense 6374 * if in function of the boot time zone sizes. 6375 */ 6376 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6377 int write, void *buffer, size_t *length, loff_t *ppos) 6378 { 6379 int i; 6380 6381 proc_dointvec_minmax(table, write, buffer, length, ppos); 6382 6383 for (i = 0; i < MAX_NR_ZONES; i++) { 6384 if (sysctl_lowmem_reserve_ratio[i] < 1) 6385 sysctl_lowmem_reserve_ratio[i] = 0; 6386 } 6387 6388 setup_per_zone_lowmem_reserve(); 6389 return 0; 6390 } 6391 6392 /* 6393 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6394 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6395 * pagelist can have before it gets flushed back to buddy allocator. 6396 */ 6397 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6398 int write, void *buffer, size_t *length, loff_t *ppos) 6399 { 6400 struct zone *zone; 6401 int old_percpu_pagelist_high_fraction; 6402 int ret; 6403 6404 mutex_lock(&pcp_batch_high_lock); 6405 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6406 6407 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6408 if (!write || ret < 0) 6409 goto out; 6410 6411 /* Sanity checking to avoid pcp imbalance */ 6412 if (percpu_pagelist_high_fraction && 6413 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6414 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6415 ret = -EINVAL; 6416 goto out; 6417 } 6418 6419 /* No change? */ 6420 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6421 goto out; 6422 6423 for_each_populated_zone(zone) 6424 zone_set_pageset_high_and_batch(zone, 0); 6425 out: 6426 mutex_unlock(&pcp_batch_high_lock); 6427 return ret; 6428 } 6429 6430 static const struct ctl_table page_alloc_sysctl_table[] = { 6431 { 6432 .procname = "min_free_kbytes", 6433 .data = &min_free_kbytes, 6434 .maxlen = sizeof(min_free_kbytes), 6435 .mode = 0644, 6436 .proc_handler = min_free_kbytes_sysctl_handler, 6437 .extra1 = SYSCTL_ZERO, 6438 }, 6439 { 6440 .procname = "watermark_boost_factor", 6441 .data = &watermark_boost_factor, 6442 .maxlen = sizeof(watermark_boost_factor), 6443 .mode = 0644, 6444 .proc_handler = proc_dointvec_minmax, 6445 .extra1 = SYSCTL_ZERO, 6446 }, 6447 { 6448 .procname = "watermark_scale_factor", 6449 .data = &watermark_scale_factor, 6450 .maxlen = sizeof(watermark_scale_factor), 6451 .mode = 0644, 6452 .proc_handler = watermark_scale_factor_sysctl_handler, 6453 .extra1 = SYSCTL_ONE, 6454 .extra2 = SYSCTL_THREE_THOUSAND, 6455 }, 6456 { 6457 .procname = "defrag_mode", 6458 .data = &defrag_mode, 6459 .maxlen = sizeof(defrag_mode), 6460 .mode = 0644, 6461 .proc_handler = proc_dointvec_minmax, 6462 .extra1 = SYSCTL_ZERO, 6463 .extra2 = SYSCTL_ONE, 6464 }, 6465 { 6466 .procname = "percpu_pagelist_high_fraction", 6467 .data = &percpu_pagelist_high_fraction, 6468 .maxlen = sizeof(percpu_pagelist_high_fraction), 6469 .mode = 0644, 6470 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6471 .extra1 = SYSCTL_ZERO, 6472 }, 6473 { 6474 .procname = "lowmem_reserve_ratio", 6475 .data = &sysctl_lowmem_reserve_ratio, 6476 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6477 .mode = 0644, 6478 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6479 }, 6480 #ifdef CONFIG_NUMA 6481 { 6482 .procname = "numa_zonelist_order", 6483 .data = &numa_zonelist_order, 6484 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6485 .mode = 0644, 6486 .proc_handler = numa_zonelist_order_handler, 6487 }, 6488 { 6489 .procname = "min_unmapped_ratio", 6490 .data = &sysctl_min_unmapped_ratio, 6491 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6492 .mode = 0644, 6493 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6494 .extra1 = SYSCTL_ZERO, 6495 .extra2 = SYSCTL_ONE_HUNDRED, 6496 }, 6497 { 6498 .procname = "min_slab_ratio", 6499 .data = &sysctl_min_slab_ratio, 6500 .maxlen = sizeof(sysctl_min_slab_ratio), 6501 .mode = 0644, 6502 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6503 .extra1 = SYSCTL_ZERO, 6504 .extra2 = SYSCTL_ONE_HUNDRED, 6505 }, 6506 #endif 6507 }; 6508 6509 void __init page_alloc_sysctl_init(void) 6510 { 6511 register_sysctl_init("vm", page_alloc_sysctl_table); 6512 } 6513 6514 #ifdef CONFIG_CONTIG_ALLOC 6515 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6516 static void alloc_contig_dump_pages(struct list_head *page_list) 6517 { 6518 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6519 6520 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6521 struct page *page; 6522 6523 dump_stack(); 6524 list_for_each_entry(page, page_list, lru) 6525 dump_page(page, "migration failure"); 6526 } 6527 } 6528 6529 /* 6530 * [start, end) must belong to a single zone. 6531 * @migratetype: using migratetype to filter the type of migration in 6532 * trace_mm_alloc_contig_migrate_range_info. 6533 */ 6534 static int __alloc_contig_migrate_range(struct compact_control *cc, 6535 unsigned long start, unsigned long end, int migratetype) 6536 { 6537 /* This function is based on compact_zone() from compaction.c. */ 6538 unsigned int nr_reclaimed; 6539 unsigned long pfn = start; 6540 unsigned int tries = 0; 6541 int ret = 0; 6542 struct migration_target_control mtc = { 6543 .nid = zone_to_nid(cc->zone), 6544 .gfp_mask = cc->gfp_mask, 6545 .reason = MR_CONTIG_RANGE, 6546 }; 6547 struct page *page; 6548 unsigned long total_mapped = 0; 6549 unsigned long total_migrated = 0; 6550 unsigned long total_reclaimed = 0; 6551 6552 lru_cache_disable(); 6553 6554 while (pfn < end || !list_empty(&cc->migratepages)) { 6555 if (fatal_signal_pending(current)) { 6556 ret = -EINTR; 6557 break; 6558 } 6559 6560 if (list_empty(&cc->migratepages)) { 6561 cc->nr_migratepages = 0; 6562 ret = isolate_migratepages_range(cc, pfn, end); 6563 if (ret && ret != -EAGAIN) 6564 break; 6565 pfn = cc->migrate_pfn; 6566 tries = 0; 6567 } else if (++tries == 5) { 6568 ret = -EBUSY; 6569 break; 6570 } 6571 6572 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6573 &cc->migratepages); 6574 cc->nr_migratepages -= nr_reclaimed; 6575 6576 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6577 total_reclaimed += nr_reclaimed; 6578 list_for_each_entry(page, &cc->migratepages, lru) { 6579 struct folio *folio = page_folio(page); 6580 6581 total_mapped += folio_mapped(folio) * 6582 folio_nr_pages(folio); 6583 } 6584 } 6585 6586 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6587 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6588 6589 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6590 total_migrated += cc->nr_migratepages; 6591 6592 /* 6593 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6594 * to retry again over this error, so do the same here. 6595 */ 6596 if (ret == -ENOMEM) 6597 break; 6598 } 6599 6600 lru_cache_enable(); 6601 if (ret < 0) { 6602 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6603 alloc_contig_dump_pages(&cc->migratepages); 6604 putback_movable_pages(&cc->migratepages); 6605 } 6606 6607 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6608 total_migrated, 6609 total_reclaimed, 6610 total_mapped); 6611 return (ret < 0) ? ret : 0; 6612 } 6613 6614 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6615 { 6616 int order; 6617 6618 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6619 struct page *page, *next; 6620 int nr_pages = 1 << order; 6621 6622 list_for_each_entry_safe(page, next, &list[order], lru) { 6623 int i; 6624 6625 post_alloc_hook(page, order, gfp_mask); 6626 set_page_refcounted(page); 6627 if (!order) 6628 continue; 6629 6630 split_page(page, order); 6631 6632 /* Add all subpages to the order-0 head, in sequence. */ 6633 list_del(&page->lru); 6634 for (i = 0; i < nr_pages; i++) 6635 list_add_tail(&page[i].lru, &list[0]); 6636 } 6637 } 6638 } 6639 6640 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6641 { 6642 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6643 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6644 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6645 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6646 6647 /* 6648 * We are given the range to allocate; node, mobility and placement 6649 * hints are irrelevant at this point. We'll simply ignore them. 6650 */ 6651 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6652 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6653 6654 /* 6655 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6656 * selected action flags. 6657 */ 6658 if (gfp_mask & ~(reclaim_mask | action_mask)) 6659 return -EINVAL; 6660 6661 /* 6662 * Flags to control page compaction/migration/reclaim, to free up our 6663 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6664 * for them. 6665 * 6666 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6667 * to not degrade callers. 6668 */ 6669 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6670 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6671 return 0; 6672 } 6673 6674 /** 6675 * alloc_contig_range() -- tries to allocate given range of pages 6676 * @start: start PFN to allocate 6677 * @end: one-past-the-last PFN to allocate 6678 * @migratetype: migratetype of the underlying pageblocks (either 6679 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6680 * in range must have the same migratetype and it must 6681 * be either of the two. 6682 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6683 * action and reclaim modifiers are supported. Reclaim modifiers 6684 * control allocation behavior during compaction/migration/reclaim. 6685 * 6686 * The PFN range does not have to be pageblock aligned. The PFN range must 6687 * belong to a single zone. 6688 * 6689 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6690 * pageblocks in the range. Once isolated, the pageblocks should not 6691 * be modified by others. 6692 * 6693 * Return: zero on success or negative error code. On success all 6694 * pages which PFN is in [start, end) are allocated for the caller and 6695 * need to be freed with free_contig_range(). 6696 */ 6697 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6698 unsigned migratetype, gfp_t gfp_mask) 6699 { 6700 unsigned long outer_start, outer_end; 6701 int ret = 0; 6702 6703 struct compact_control cc = { 6704 .nr_migratepages = 0, 6705 .order = -1, 6706 .zone = page_zone(pfn_to_page(start)), 6707 .mode = MIGRATE_SYNC, 6708 .ignore_skip_hint = true, 6709 .no_set_skip_hint = true, 6710 .alloc_contig = true, 6711 }; 6712 INIT_LIST_HEAD(&cc.migratepages); 6713 6714 gfp_mask = current_gfp_context(gfp_mask); 6715 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6716 return -EINVAL; 6717 6718 /* 6719 * What we do here is we mark all pageblocks in range as 6720 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6721 * have different sizes, and due to the way page allocator 6722 * work, start_isolate_page_range() has special handlings for this. 6723 * 6724 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6725 * migrate the pages from an unaligned range (ie. pages that 6726 * we are interested in). This will put all the pages in 6727 * range back to page allocator as MIGRATE_ISOLATE. 6728 * 6729 * When this is done, we take the pages in range from page 6730 * allocator removing them from the buddy system. This way 6731 * page allocator will never consider using them. 6732 * 6733 * This lets us mark the pageblocks back as 6734 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6735 * aligned range but not in the unaligned, original range are 6736 * put back to page allocator so that buddy can use them. 6737 */ 6738 6739 ret = start_isolate_page_range(start, end, migratetype, 0); 6740 if (ret) 6741 goto done; 6742 6743 drain_all_pages(cc.zone); 6744 6745 /* 6746 * In case of -EBUSY, we'd like to know which page causes problem. 6747 * So, just fall through. test_pages_isolated() has a tracepoint 6748 * which will report the busy page. 6749 * 6750 * It is possible that busy pages could become available before 6751 * the call to test_pages_isolated, and the range will actually be 6752 * allocated. So, if we fall through be sure to clear ret so that 6753 * -EBUSY is not accidentally used or returned to caller. 6754 */ 6755 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6756 if (ret && ret != -EBUSY) 6757 goto done; 6758 6759 /* 6760 * When in-use hugetlb pages are migrated, they may simply be released 6761 * back into the free hugepage pool instead of being returned to the 6762 * buddy system. After the migration of in-use huge pages is completed, 6763 * we will invoke replace_free_hugepage_folios() to ensure that these 6764 * hugepages are properly released to the buddy system. 6765 */ 6766 ret = replace_free_hugepage_folios(start, end); 6767 if (ret) 6768 goto done; 6769 6770 /* 6771 * Pages from [start, end) are within a pageblock_nr_pages 6772 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6773 * more, all pages in [start, end) are free in page allocator. 6774 * What we are going to do is to allocate all pages from 6775 * [start, end) (that is remove them from page allocator). 6776 * 6777 * The only problem is that pages at the beginning and at the 6778 * end of interesting range may be not aligned with pages that 6779 * page allocator holds, ie. they can be part of higher order 6780 * pages. Because of this, we reserve the bigger range and 6781 * once this is done free the pages we are not interested in. 6782 * 6783 * We don't have to hold zone->lock here because the pages are 6784 * isolated thus they won't get removed from buddy. 6785 */ 6786 outer_start = find_large_buddy(start); 6787 6788 /* Make sure the range is really isolated. */ 6789 if (test_pages_isolated(outer_start, end, 0)) { 6790 ret = -EBUSY; 6791 goto done; 6792 } 6793 6794 /* Grab isolated pages from freelists. */ 6795 outer_end = isolate_freepages_range(&cc, outer_start, end); 6796 if (!outer_end) { 6797 ret = -EBUSY; 6798 goto done; 6799 } 6800 6801 if (!(gfp_mask & __GFP_COMP)) { 6802 split_free_pages(cc.freepages, gfp_mask); 6803 6804 /* Free head and tail (if any) */ 6805 if (start != outer_start) 6806 free_contig_range(outer_start, start - outer_start); 6807 if (end != outer_end) 6808 free_contig_range(end, outer_end - end); 6809 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6810 struct page *head = pfn_to_page(start); 6811 int order = ilog2(end - start); 6812 6813 check_new_pages(head, order); 6814 prep_new_page(head, order, gfp_mask, 0); 6815 set_page_refcounted(head); 6816 } else { 6817 ret = -EINVAL; 6818 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6819 start, end, outer_start, outer_end); 6820 } 6821 done: 6822 undo_isolate_page_range(start, end, migratetype); 6823 return ret; 6824 } 6825 EXPORT_SYMBOL(alloc_contig_range_noprof); 6826 6827 static int __alloc_contig_pages(unsigned long start_pfn, 6828 unsigned long nr_pages, gfp_t gfp_mask) 6829 { 6830 unsigned long end_pfn = start_pfn + nr_pages; 6831 6832 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6833 gfp_mask); 6834 } 6835 6836 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6837 unsigned long nr_pages) 6838 { 6839 unsigned long i, end_pfn = start_pfn + nr_pages; 6840 struct page *page; 6841 6842 for (i = start_pfn; i < end_pfn; i++) { 6843 page = pfn_to_online_page(i); 6844 if (!page) 6845 return false; 6846 6847 if (page_zone(page) != z) 6848 return false; 6849 6850 if (PageReserved(page)) 6851 return false; 6852 6853 if (PageHuge(page)) 6854 return false; 6855 } 6856 return true; 6857 } 6858 6859 static bool zone_spans_last_pfn(const struct zone *zone, 6860 unsigned long start_pfn, unsigned long nr_pages) 6861 { 6862 unsigned long last_pfn = start_pfn + nr_pages - 1; 6863 6864 return zone_spans_pfn(zone, last_pfn); 6865 } 6866 6867 /** 6868 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6869 * @nr_pages: Number of contiguous pages to allocate 6870 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 6871 * action and reclaim modifiers are supported. Reclaim modifiers 6872 * control allocation behavior during compaction/migration/reclaim. 6873 * @nid: Target node 6874 * @nodemask: Mask for other possible nodes 6875 * 6876 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6877 * on an applicable zonelist to find a contiguous pfn range which can then be 6878 * tried for allocation with alloc_contig_range(). This routine is intended 6879 * for allocation requests which can not be fulfilled with the buddy allocator. 6880 * 6881 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6882 * power of two, then allocated range is also guaranteed to be aligned to same 6883 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6884 * 6885 * Allocated pages can be freed with free_contig_range() or by manually calling 6886 * __free_page() on each allocated page. 6887 * 6888 * Return: pointer to contiguous pages on success, or NULL if not successful. 6889 */ 6890 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6891 int nid, nodemask_t *nodemask) 6892 { 6893 unsigned long ret, pfn, flags; 6894 struct zonelist *zonelist; 6895 struct zone *zone; 6896 struct zoneref *z; 6897 6898 zonelist = node_zonelist(nid, gfp_mask); 6899 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6900 gfp_zone(gfp_mask), nodemask) { 6901 spin_lock_irqsave(&zone->lock, flags); 6902 6903 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6904 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6905 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6906 /* 6907 * We release the zone lock here because 6908 * alloc_contig_range() will also lock the zone 6909 * at some point. If there's an allocation 6910 * spinning on this lock, it may win the race 6911 * and cause alloc_contig_range() to fail... 6912 */ 6913 spin_unlock_irqrestore(&zone->lock, flags); 6914 ret = __alloc_contig_pages(pfn, nr_pages, 6915 gfp_mask); 6916 if (!ret) 6917 return pfn_to_page(pfn); 6918 spin_lock_irqsave(&zone->lock, flags); 6919 } 6920 pfn += nr_pages; 6921 } 6922 spin_unlock_irqrestore(&zone->lock, flags); 6923 } 6924 return NULL; 6925 } 6926 #endif /* CONFIG_CONTIG_ALLOC */ 6927 6928 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6929 { 6930 unsigned long count = 0; 6931 struct folio *folio = pfn_folio(pfn); 6932 6933 if (folio_test_large(folio)) { 6934 int expected = folio_nr_pages(folio); 6935 6936 if (nr_pages == expected) 6937 folio_put(folio); 6938 else 6939 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6940 pfn, nr_pages, expected); 6941 return; 6942 } 6943 6944 for (; nr_pages--; pfn++) { 6945 struct page *page = pfn_to_page(pfn); 6946 6947 count += page_count(page) != 1; 6948 __free_page(page); 6949 } 6950 WARN(count != 0, "%lu pages are still in use!\n", count); 6951 } 6952 EXPORT_SYMBOL(free_contig_range); 6953 6954 /* 6955 * Effectively disable pcplists for the zone by setting the high limit to 0 6956 * and draining all cpus. A concurrent page freeing on another CPU that's about 6957 * to put the page on pcplist will either finish before the drain and the page 6958 * will be drained, or observe the new high limit and skip the pcplist. 6959 * 6960 * Must be paired with a call to zone_pcp_enable(). 6961 */ 6962 void zone_pcp_disable(struct zone *zone) 6963 { 6964 mutex_lock(&pcp_batch_high_lock); 6965 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6966 __drain_all_pages(zone, true); 6967 } 6968 6969 void zone_pcp_enable(struct zone *zone) 6970 { 6971 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6972 zone->pageset_high_max, zone->pageset_batch); 6973 mutex_unlock(&pcp_batch_high_lock); 6974 } 6975 6976 void zone_pcp_reset(struct zone *zone) 6977 { 6978 int cpu; 6979 struct per_cpu_zonestat *pzstats; 6980 6981 if (zone->per_cpu_pageset != &boot_pageset) { 6982 for_each_online_cpu(cpu) { 6983 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6984 drain_zonestat(zone, pzstats); 6985 } 6986 free_percpu(zone->per_cpu_pageset); 6987 zone->per_cpu_pageset = &boot_pageset; 6988 if (zone->per_cpu_zonestats != &boot_zonestats) { 6989 free_percpu(zone->per_cpu_zonestats); 6990 zone->per_cpu_zonestats = &boot_zonestats; 6991 } 6992 } 6993 } 6994 6995 #ifdef CONFIG_MEMORY_HOTREMOVE 6996 /* 6997 * All pages in the range must be in a single zone, must not contain holes, 6998 * must span full sections, and must be isolated before calling this function. 6999 * 7000 * Returns the number of managed (non-PageOffline()) pages in the range: the 7001 * number of pages for which memory offlining code must adjust managed page 7002 * counters using adjust_managed_page_count(). 7003 */ 7004 unsigned long __offline_isolated_pages(unsigned long start_pfn, 7005 unsigned long end_pfn) 7006 { 7007 unsigned long already_offline = 0, flags; 7008 unsigned long pfn = start_pfn; 7009 struct page *page; 7010 struct zone *zone; 7011 unsigned int order; 7012 7013 offline_mem_sections(pfn, end_pfn); 7014 zone = page_zone(pfn_to_page(pfn)); 7015 spin_lock_irqsave(&zone->lock, flags); 7016 while (pfn < end_pfn) { 7017 page = pfn_to_page(pfn); 7018 /* 7019 * The HWPoisoned page may be not in buddy system, and 7020 * page_count() is not 0. 7021 */ 7022 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7023 pfn++; 7024 continue; 7025 } 7026 /* 7027 * At this point all remaining PageOffline() pages have a 7028 * reference count of 0 and can simply be skipped. 7029 */ 7030 if (PageOffline(page)) { 7031 BUG_ON(page_count(page)); 7032 BUG_ON(PageBuddy(page)); 7033 already_offline++; 7034 pfn++; 7035 continue; 7036 } 7037 7038 BUG_ON(page_count(page)); 7039 BUG_ON(!PageBuddy(page)); 7040 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7041 order = buddy_order(page); 7042 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7043 pfn += (1 << order); 7044 } 7045 spin_unlock_irqrestore(&zone->lock, flags); 7046 7047 return end_pfn - start_pfn - already_offline; 7048 } 7049 #endif 7050 7051 /* 7052 * This function returns a stable result only if called under zone lock. 7053 */ 7054 bool is_free_buddy_page(const struct page *page) 7055 { 7056 unsigned long pfn = page_to_pfn(page); 7057 unsigned int order; 7058 7059 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7060 const struct page *head = page - (pfn & ((1 << order) - 1)); 7061 7062 if (PageBuddy(head) && 7063 buddy_order_unsafe(head) >= order) 7064 break; 7065 } 7066 7067 return order <= MAX_PAGE_ORDER; 7068 } 7069 EXPORT_SYMBOL(is_free_buddy_page); 7070 7071 #ifdef CONFIG_MEMORY_FAILURE 7072 static inline void add_to_free_list(struct page *page, struct zone *zone, 7073 unsigned int order, int migratetype, 7074 bool tail) 7075 { 7076 __add_to_free_list(page, zone, order, migratetype, tail); 7077 account_freepages(zone, 1 << order, migratetype); 7078 } 7079 7080 /* 7081 * Break down a higher-order page in sub-pages, and keep our target out of 7082 * buddy allocator. 7083 */ 7084 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7085 struct page *target, int low, int high, 7086 int migratetype) 7087 { 7088 unsigned long size = 1 << high; 7089 struct page *current_buddy; 7090 7091 while (high > low) { 7092 high--; 7093 size >>= 1; 7094 7095 if (target >= &page[size]) { 7096 current_buddy = page; 7097 page = page + size; 7098 } else { 7099 current_buddy = page + size; 7100 } 7101 7102 if (set_page_guard(zone, current_buddy, high)) 7103 continue; 7104 7105 add_to_free_list(current_buddy, zone, high, migratetype, false); 7106 set_buddy_order(current_buddy, high); 7107 } 7108 } 7109 7110 /* 7111 * Take a page that will be marked as poisoned off the buddy allocator. 7112 */ 7113 bool take_page_off_buddy(struct page *page) 7114 { 7115 struct zone *zone = page_zone(page); 7116 unsigned long pfn = page_to_pfn(page); 7117 unsigned long flags; 7118 unsigned int order; 7119 bool ret = false; 7120 7121 spin_lock_irqsave(&zone->lock, flags); 7122 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7123 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7124 int page_order = buddy_order(page_head); 7125 7126 if (PageBuddy(page_head) && page_order >= order) { 7127 unsigned long pfn_head = page_to_pfn(page_head); 7128 int migratetype = get_pfnblock_migratetype(page_head, 7129 pfn_head); 7130 7131 del_page_from_free_list(page_head, zone, page_order, 7132 migratetype); 7133 break_down_buddy_pages(zone, page_head, page, 0, 7134 page_order, migratetype); 7135 SetPageHWPoisonTakenOff(page); 7136 ret = true; 7137 break; 7138 } 7139 if (page_count(page_head) > 0) 7140 break; 7141 } 7142 spin_unlock_irqrestore(&zone->lock, flags); 7143 return ret; 7144 } 7145 7146 /* 7147 * Cancel takeoff done by take_page_off_buddy(). 7148 */ 7149 bool put_page_back_buddy(struct page *page) 7150 { 7151 struct zone *zone = page_zone(page); 7152 unsigned long flags; 7153 bool ret = false; 7154 7155 spin_lock_irqsave(&zone->lock, flags); 7156 if (put_page_testzero(page)) { 7157 unsigned long pfn = page_to_pfn(page); 7158 int migratetype = get_pfnblock_migratetype(page, pfn); 7159 7160 ClearPageHWPoisonTakenOff(page); 7161 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7162 if (TestClearPageHWPoison(page)) { 7163 ret = true; 7164 } 7165 } 7166 spin_unlock_irqrestore(&zone->lock, flags); 7167 7168 return ret; 7169 } 7170 #endif 7171 7172 #ifdef CONFIG_ZONE_DMA 7173 bool has_managed_dma(void) 7174 { 7175 struct pglist_data *pgdat; 7176 7177 for_each_online_pgdat(pgdat) { 7178 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7179 7180 if (managed_zone(zone)) 7181 return true; 7182 } 7183 return false; 7184 } 7185 #endif /* CONFIG_ZONE_DMA */ 7186 7187 #ifdef CONFIG_UNACCEPTED_MEMORY 7188 7189 /* Counts number of zones with unaccepted pages. */ 7190 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 7191 7192 static bool lazy_accept = true; 7193 7194 static int __init accept_memory_parse(char *p) 7195 { 7196 if (!strcmp(p, "lazy")) { 7197 lazy_accept = true; 7198 return 0; 7199 } else if (!strcmp(p, "eager")) { 7200 lazy_accept = false; 7201 return 0; 7202 } else { 7203 return -EINVAL; 7204 } 7205 } 7206 early_param("accept_memory", accept_memory_parse); 7207 7208 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7209 { 7210 phys_addr_t start = page_to_phys(page); 7211 7212 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7213 } 7214 7215 static void __accept_page(struct zone *zone, unsigned long *flags, 7216 struct page *page) 7217 { 7218 bool last; 7219 7220 list_del(&page->lru); 7221 last = list_empty(&zone->unaccepted_pages); 7222 7223 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7224 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7225 __ClearPageUnaccepted(page); 7226 spin_unlock_irqrestore(&zone->lock, *flags); 7227 7228 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7229 7230 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7231 7232 if (last) 7233 static_branch_dec(&zones_with_unaccepted_pages); 7234 } 7235 7236 void accept_page(struct page *page) 7237 { 7238 struct zone *zone = page_zone(page); 7239 unsigned long flags; 7240 7241 spin_lock_irqsave(&zone->lock, flags); 7242 if (!PageUnaccepted(page)) { 7243 spin_unlock_irqrestore(&zone->lock, flags); 7244 return; 7245 } 7246 7247 /* Unlocks zone->lock */ 7248 __accept_page(zone, &flags, page); 7249 } 7250 7251 static bool try_to_accept_memory_one(struct zone *zone) 7252 { 7253 unsigned long flags; 7254 struct page *page; 7255 7256 spin_lock_irqsave(&zone->lock, flags); 7257 page = list_first_entry_or_null(&zone->unaccepted_pages, 7258 struct page, lru); 7259 if (!page) { 7260 spin_unlock_irqrestore(&zone->lock, flags); 7261 return false; 7262 } 7263 7264 /* Unlocks zone->lock */ 7265 __accept_page(zone, &flags, page); 7266 7267 return true; 7268 } 7269 7270 static inline bool has_unaccepted_memory(void) 7271 { 7272 return static_branch_unlikely(&zones_with_unaccepted_pages); 7273 } 7274 7275 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7276 { 7277 long to_accept, wmark; 7278 bool ret = false; 7279 7280 if (!has_unaccepted_memory()) 7281 return false; 7282 7283 if (list_empty(&zone->unaccepted_pages)) 7284 return false; 7285 7286 wmark = promo_wmark_pages(zone); 7287 7288 /* 7289 * Watermarks have not been initialized yet. 7290 * 7291 * Accepting one MAX_ORDER page to ensure progress. 7292 */ 7293 if (!wmark) 7294 return try_to_accept_memory_one(zone); 7295 7296 /* How much to accept to get to promo watermark? */ 7297 to_accept = wmark - 7298 (zone_page_state(zone, NR_FREE_PAGES) - 7299 __zone_watermark_unusable_free(zone, order, 0) - 7300 zone_page_state(zone, NR_UNACCEPTED)); 7301 7302 while (to_accept > 0) { 7303 if (!try_to_accept_memory_one(zone)) 7304 break; 7305 ret = true; 7306 to_accept -= MAX_ORDER_NR_PAGES; 7307 } 7308 7309 return ret; 7310 } 7311 7312 static bool __free_unaccepted(struct page *page) 7313 { 7314 struct zone *zone = page_zone(page); 7315 unsigned long flags; 7316 bool first = false; 7317 7318 if (!lazy_accept) 7319 return false; 7320 7321 spin_lock_irqsave(&zone->lock, flags); 7322 first = list_empty(&zone->unaccepted_pages); 7323 list_add_tail(&page->lru, &zone->unaccepted_pages); 7324 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7325 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7326 __SetPageUnaccepted(page); 7327 spin_unlock_irqrestore(&zone->lock, flags); 7328 7329 if (first) 7330 static_branch_inc(&zones_with_unaccepted_pages); 7331 7332 return true; 7333 } 7334 7335 #else 7336 7337 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7338 { 7339 return false; 7340 } 7341 7342 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7343 { 7344 return false; 7345 } 7346 7347 static bool __free_unaccepted(struct page *page) 7348 { 7349 BUILD_BUG(); 7350 return false; 7351 } 7352 7353 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7354 7355 /** 7356 * try_alloc_pages - opportunistic reentrant allocation from any context 7357 * @nid: node to allocate from 7358 * @order: allocation order size 7359 * 7360 * Allocates pages of a given order from the given node. This is safe to 7361 * call from any context (from atomic, NMI, and also reentrant 7362 * allocator -> tracepoint -> try_alloc_pages_noprof). 7363 * Allocation is best effort and to be expected to fail easily so nobody should 7364 * rely on the success. Failures are not reported via warn_alloc(). 7365 * See always fail conditions below. 7366 * 7367 * Return: allocated page or NULL on failure. 7368 */ 7369 struct page *try_alloc_pages_noprof(int nid, unsigned int order) 7370 { 7371 /* 7372 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7373 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7374 * is not safe in arbitrary context. 7375 * 7376 * These two are the conditions for gfpflags_allow_spinning() being true. 7377 * 7378 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason 7379 * to warn. Also warn would trigger printk() which is unsafe from 7380 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7381 * since the running context is unknown. 7382 * 7383 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7384 * is safe in any context. Also zeroing the page is mandatory for 7385 * BPF use cases. 7386 * 7387 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7388 * specify it here to highlight that try_alloc_pages() 7389 * doesn't want to deplete reserves. 7390 */ 7391 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC 7392 | __GFP_ACCOUNT; 7393 unsigned int alloc_flags = ALLOC_TRYLOCK; 7394 struct alloc_context ac = { }; 7395 struct page *page; 7396 7397 /* 7398 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7399 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7400 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7401 * mark the task as the owner of another rt_spin_lock which will 7402 * confuse PI logic, so return immediately if called form hard IRQ or 7403 * NMI. 7404 * 7405 * Note, irqs_disabled() case is ok. This function can be called 7406 * from raw_spin_lock_irqsave region. 7407 */ 7408 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7409 return NULL; 7410 if (!pcp_allowed_order(order)) 7411 return NULL; 7412 7413 #ifdef CONFIG_UNACCEPTED_MEMORY 7414 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7415 if (has_unaccepted_memory()) 7416 return NULL; 7417 #endif 7418 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7419 if (deferred_pages_enabled()) 7420 return NULL; 7421 7422 if (nid == NUMA_NO_NODE) 7423 nid = numa_node_id(); 7424 7425 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7426 &alloc_gfp, &alloc_flags); 7427 7428 /* 7429 * Best effort allocation from percpu free list. 7430 * If it's empty attempt to spin_trylock zone->lock. 7431 */ 7432 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7433 7434 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7435 7436 if (page) 7437 set_page_refcounted(page); 7438 7439 if (memcg_kmem_online() && page && 7440 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7441 free_pages_nolock(page, order); 7442 page = NULL; 7443 } 7444 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7445 kmsan_alloc_page(page, order, alloc_gfp); 7446 return page; 7447 } 7448