xref: /linux/mm/page_alloc.c (revision 7d11965ddb9b9b1e0a5d13c58345ada1ccbc663b)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67 
68 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
69 DEFINE_PER_CPU(int, numa_node);
70 EXPORT_PER_CPU_SYMBOL(numa_node);
71 #endif
72 
73 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
74 /*
75  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
76  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
77  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
78  * defined in <linux/topology.h>.
79  */
80 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
81 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
82 #endif
83 
84 /*
85  * Array of node states.
86  */
87 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
88 	[N_POSSIBLE] = NODE_MASK_ALL,
89 	[N_ONLINE] = { { [0] = 1UL } },
90 #ifndef CONFIG_NUMA
91 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
92 #ifdef CONFIG_HIGHMEM
93 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
94 #endif
95 #ifdef CONFIG_MOVABLE_NODE
96 	[N_MEMORY] = { { [0] = 1UL } },
97 #endif
98 	[N_CPU] = { { [0] = 1UL } },
99 #endif	/* NUMA */
100 };
101 EXPORT_SYMBOL(node_states);
102 
103 unsigned long totalram_pages __read_mostly;
104 unsigned long totalreserve_pages __read_mostly;
105 /*
106  * When calculating the number of globally allowed dirty pages, there
107  * is a certain number of per-zone reserves that should not be
108  * considered dirtyable memory.  This is the sum of those reserves
109  * over all existing zones that contribute dirtyable memory.
110  */
111 unsigned long dirty_balance_reserve __read_mostly;
112 
113 int percpu_pagelist_fraction;
114 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
115 
116 #ifdef CONFIG_PM_SLEEP
117 /*
118  * The following functions are used by the suspend/hibernate code to temporarily
119  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
120  * while devices are suspended.  To avoid races with the suspend/hibernate code,
121  * they should always be called with pm_mutex held (gfp_allowed_mask also should
122  * only be modified with pm_mutex held, unless the suspend/hibernate code is
123  * guaranteed not to run in parallel with that modification).
124  */
125 
126 static gfp_t saved_gfp_mask;
127 
128 void pm_restore_gfp_mask(void)
129 {
130 	WARN_ON(!mutex_is_locked(&pm_mutex));
131 	if (saved_gfp_mask) {
132 		gfp_allowed_mask = saved_gfp_mask;
133 		saved_gfp_mask = 0;
134 	}
135 }
136 
137 void pm_restrict_gfp_mask(void)
138 {
139 	WARN_ON(!mutex_is_locked(&pm_mutex));
140 	WARN_ON(saved_gfp_mask);
141 	saved_gfp_mask = gfp_allowed_mask;
142 	gfp_allowed_mask &= ~GFP_IOFS;
143 }
144 
145 bool pm_suspended_storage(void)
146 {
147 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
148 		return false;
149 	return true;
150 }
151 #endif /* CONFIG_PM_SLEEP */
152 
153 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
154 int pageblock_order __read_mostly;
155 #endif
156 
157 static void __free_pages_ok(struct page *page, unsigned int order);
158 
159 /*
160  * results with 256, 32 in the lowmem_reserve sysctl:
161  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
162  *	1G machine -> (16M dma, 784M normal, 224M high)
163  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
164  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
165  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
166  *
167  * TBD: should special case ZONE_DMA32 machines here - in those we normally
168  * don't need any ZONE_NORMAL reservation
169  */
170 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
171 #ifdef CONFIG_ZONE_DMA
172 	 256,
173 #endif
174 #ifdef CONFIG_ZONE_DMA32
175 	 256,
176 #endif
177 #ifdef CONFIG_HIGHMEM
178 	 32,
179 #endif
180 	 32,
181 };
182 
183 EXPORT_SYMBOL(totalram_pages);
184 
185 static char * const zone_names[MAX_NR_ZONES] = {
186 #ifdef CONFIG_ZONE_DMA
187 	 "DMA",
188 #endif
189 #ifdef CONFIG_ZONE_DMA32
190 	 "DMA32",
191 #endif
192 	 "Normal",
193 #ifdef CONFIG_HIGHMEM
194 	 "HighMem",
195 #endif
196 	 "Movable",
197 };
198 
199 int min_free_kbytes = 1024;
200 
201 static unsigned long __meminitdata nr_kernel_pages;
202 static unsigned long __meminitdata nr_all_pages;
203 static unsigned long __meminitdata dma_reserve;
204 
205 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
206 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __initdata required_kernelcore;
209 static unsigned long __initdata required_movablecore;
210 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
211 
212 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
213 int movable_zone;
214 EXPORT_SYMBOL(movable_zone);
215 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
216 
217 #if MAX_NUMNODES > 1
218 int nr_node_ids __read_mostly = MAX_NUMNODES;
219 int nr_online_nodes __read_mostly = 1;
220 EXPORT_SYMBOL(nr_node_ids);
221 EXPORT_SYMBOL(nr_online_nodes);
222 #endif
223 
224 int page_group_by_mobility_disabled __read_mostly;
225 
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228 
229 	if (unlikely(page_group_by_mobility_disabled))
230 		migratetype = MIGRATE_UNMOVABLE;
231 
232 	set_pageblock_flags_group(page, (unsigned long)migratetype,
233 					PB_migrate, PB_migrate_end);
234 }
235 
236 bool oom_killer_disabled __read_mostly;
237 
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 	int ret = 0;
242 	unsigned seq;
243 	unsigned long pfn = page_to_pfn(page);
244 	unsigned long sp, start_pfn;
245 
246 	do {
247 		seq = zone_span_seqbegin(zone);
248 		start_pfn = zone->zone_start_pfn;
249 		sp = zone->spanned_pages;
250 		if (!zone_spans_pfn(zone, pfn))
251 			ret = 1;
252 	} while (zone_span_seqretry(zone, seq));
253 
254 	if (ret)
255 		pr_err("page %lu outside zone [ %lu - %lu ]\n",
256 			pfn, start_pfn, start_pfn + sp);
257 
258 	return ret;
259 }
260 
261 static int page_is_consistent(struct zone *zone, struct page *page)
262 {
263 	if (!pfn_valid_within(page_to_pfn(page)))
264 		return 0;
265 	if (zone != page_zone(page))
266 		return 0;
267 
268 	return 1;
269 }
270 /*
271  * Temporary debugging check for pages not lying within a given zone.
272  */
273 static int bad_range(struct zone *zone, struct page *page)
274 {
275 	if (page_outside_zone_boundaries(zone, page))
276 		return 1;
277 	if (!page_is_consistent(zone, page))
278 		return 1;
279 
280 	return 0;
281 }
282 #else
283 static inline int bad_range(struct zone *zone, struct page *page)
284 {
285 	return 0;
286 }
287 #endif
288 
289 static void bad_page(struct page *page)
290 {
291 	static unsigned long resume;
292 	static unsigned long nr_shown;
293 	static unsigned long nr_unshown;
294 
295 	/* Don't complain about poisoned pages */
296 	if (PageHWPoison(page)) {
297 		page_mapcount_reset(page); /* remove PageBuddy */
298 		return;
299 	}
300 
301 	/*
302 	 * Allow a burst of 60 reports, then keep quiet for that minute;
303 	 * or allow a steady drip of one report per second.
304 	 */
305 	if (nr_shown == 60) {
306 		if (time_before(jiffies, resume)) {
307 			nr_unshown++;
308 			goto out;
309 		}
310 		if (nr_unshown) {
311 			printk(KERN_ALERT
312 			      "BUG: Bad page state: %lu messages suppressed\n",
313 				nr_unshown);
314 			nr_unshown = 0;
315 		}
316 		nr_shown = 0;
317 	}
318 	if (nr_shown++ == 0)
319 		resume = jiffies + 60 * HZ;
320 
321 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
322 		current->comm, page_to_pfn(page));
323 	dump_page(page);
324 
325 	print_modules();
326 	dump_stack();
327 out:
328 	/* Leave bad fields for debug, except PageBuddy could make trouble */
329 	page_mapcount_reset(page); /* remove PageBuddy */
330 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
331 }
332 
333 /*
334  * Higher-order pages are called "compound pages".  They are structured thusly:
335  *
336  * The first PAGE_SIZE page is called the "head page".
337  *
338  * The remaining PAGE_SIZE pages are called "tail pages".
339  *
340  * All pages have PG_compound set.  All tail pages have their ->first_page
341  * pointing at the head page.
342  *
343  * The first tail page's ->lru.next holds the address of the compound page's
344  * put_page() function.  Its ->lru.prev holds the order of allocation.
345  * This usage means that zero-order pages may not be compound.
346  */
347 
348 static void free_compound_page(struct page *page)
349 {
350 	__free_pages_ok(page, compound_order(page));
351 }
352 
353 void prep_compound_page(struct page *page, unsigned long order)
354 {
355 	int i;
356 	int nr_pages = 1 << order;
357 
358 	set_compound_page_dtor(page, free_compound_page);
359 	set_compound_order(page, order);
360 	__SetPageHead(page);
361 	for (i = 1; i < nr_pages; i++) {
362 		struct page *p = page + i;
363 		__SetPageTail(p);
364 		set_page_count(p, 0);
365 		p->first_page = page;
366 	}
367 }
368 
369 /* update __split_huge_page_refcount if you change this function */
370 static int destroy_compound_page(struct page *page, unsigned long order)
371 {
372 	int i;
373 	int nr_pages = 1 << order;
374 	int bad = 0;
375 
376 	if (unlikely(compound_order(page) != order)) {
377 		bad_page(page);
378 		bad++;
379 	}
380 
381 	__ClearPageHead(page);
382 
383 	for (i = 1; i < nr_pages; i++) {
384 		struct page *p = page + i;
385 
386 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
387 			bad_page(page);
388 			bad++;
389 		}
390 		__ClearPageTail(p);
391 	}
392 
393 	return bad;
394 }
395 
396 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
397 {
398 	int i;
399 
400 	/*
401 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
402 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
403 	 */
404 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
405 	for (i = 0; i < (1 << order); i++)
406 		clear_highpage(page + i);
407 }
408 
409 #ifdef CONFIG_DEBUG_PAGEALLOC
410 unsigned int _debug_guardpage_minorder;
411 
412 static int __init debug_guardpage_minorder_setup(char *buf)
413 {
414 	unsigned long res;
415 
416 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
417 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
418 		return 0;
419 	}
420 	_debug_guardpage_minorder = res;
421 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
422 	return 0;
423 }
424 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
425 
426 static inline void set_page_guard_flag(struct page *page)
427 {
428 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
429 }
430 
431 static inline void clear_page_guard_flag(struct page *page)
432 {
433 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
434 }
435 #else
436 static inline void set_page_guard_flag(struct page *page) { }
437 static inline void clear_page_guard_flag(struct page *page) { }
438 #endif
439 
440 static inline void set_page_order(struct page *page, int order)
441 {
442 	set_page_private(page, order);
443 	__SetPageBuddy(page);
444 }
445 
446 static inline void rmv_page_order(struct page *page)
447 {
448 	__ClearPageBuddy(page);
449 	set_page_private(page, 0);
450 }
451 
452 /*
453  * Locate the struct page for both the matching buddy in our
454  * pair (buddy1) and the combined O(n+1) page they form (page).
455  *
456  * 1) Any buddy B1 will have an order O twin B2 which satisfies
457  * the following equation:
458  *     B2 = B1 ^ (1 << O)
459  * For example, if the starting buddy (buddy2) is #8 its order
460  * 1 buddy is #10:
461  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
462  *
463  * 2) Any buddy B will have an order O+1 parent P which
464  * satisfies the following equation:
465  *     P = B & ~(1 << O)
466  *
467  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
468  */
469 static inline unsigned long
470 __find_buddy_index(unsigned long page_idx, unsigned int order)
471 {
472 	return page_idx ^ (1 << order);
473 }
474 
475 /*
476  * This function checks whether a page is free && is the buddy
477  * we can do coalesce a page and its buddy if
478  * (a) the buddy is not in a hole &&
479  * (b) the buddy is in the buddy system &&
480  * (c) a page and its buddy have the same order &&
481  * (d) a page and its buddy are in the same zone.
482  *
483  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
484  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
485  *
486  * For recording page's order, we use page_private(page).
487  */
488 static inline int page_is_buddy(struct page *page, struct page *buddy,
489 								int order)
490 {
491 	if (!pfn_valid_within(page_to_pfn(buddy)))
492 		return 0;
493 
494 	if (page_zone_id(page) != page_zone_id(buddy))
495 		return 0;
496 
497 	if (page_is_guard(buddy) && page_order(buddy) == order) {
498 		VM_BUG_ON(page_count(buddy) != 0);
499 		return 1;
500 	}
501 
502 	if (PageBuddy(buddy) && page_order(buddy) == order) {
503 		VM_BUG_ON(page_count(buddy) != 0);
504 		return 1;
505 	}
506 	return 0;
507 }
508 
509 /*
510  * Freeing function for a buddy system allocator.
511  *
512  * The concept of a buddy system is to maintain direct-mapped table
513  * (containing bit values) for memory blocks of various "orders".
514  * The bottom level table contains the map for the smallest allocatable
515  * units of memory (here, pages), and each level above it describes
516  * pairs of units from the levels below, hence, "buddies".
517  * At a high level, all that happens here is marking the table entry
518  * at the bottom level available, and propagating the changes upward
519  * as necessary, plus some accounting needed to play nicely with other
520  * parts of the VM system.
521  * At each level, we keep a list of pages, which are heads of continuous
522  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
523  * order is recorded in page_private(page) field.
524  * So when we are allocating or freeing one, we can derive the state of the
525  * other.  That is, if we allocate a small block, and both were
526  * free, the remainder of the region must be split into blocks.
527  * If a block is freed, and its buddy is also free, then this
528  * triggers coalescing into a block of larger size.
529  *
530  * -- nyc
531  */
532 
533 static inline void __free_one_page(struct page *page,
534 		struct zone *zone, unsigned int order,
535 		int migratetype)
536 {
537 	unsigned long page_idx;
538 	unsigned long combined_idx;
539 	unsigned long uninitialized_var(buddy_idx);
540 	struct page *buddy;
541 
542 	VM_BUG_ON(!zone_is_initialized(zone));
543 
544 	if (unlikely(PageCompound(page)))
545 		if (unlikely(destroy_compound_page(page, order)))
546 			return;
547 
548 	VM_BUG_ON(migratetype == -1);
549 
550 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
551 
552 	VM_BUG_ON(page_idx & ((1 << order) - 1));
553 	VM_BUG_ON(bad_range(zone, page));
554 
555 	while (order < MAX_ORDER-1) {
556 		buddy_idx = __find_buddy_index(page_idx, order);
557 		buddy = page + (buddy_idx - page_idx);
558 		if (!page_is_buddy(page, buddy, order))
559 			break;
560 		/*
561 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
562 		 * merge with it and move up one order.
563 		 */
564 		if (page_is_guard(buddy)) {
565 			clear_page_guard_flag(buddy);
566 			set_page_private(page, 0);
567 			__mod_zone_freepage_state(zone, 1 << order,
568 						  migratetype);
569 		} else {
570 			list_del(&buddy->lru);
571 			zone->free_area[order].nr_free--;
572 			rmv_page_order(buddy);
573 		}
574 		combined_idx = buddy_idx & page_idx;
575 		page = page + (combined_idx - page_idx);
576 		page_idx = combined_idx;
577 		order++;
578 	}
579 	set_page_order(page, order);
580 
581 	/*
582 	 * If this is not the largest possible page, check if the buddy
583 	 * of the next-highest order is free. If it is, it's possible
584 	 * that pages are being freed that will coalesce soon. In case,
585 	 * that is happening, add the free page to the tail of the list
586 	 * so it's less likely to be used soon and more likely to be merged
587 	 * as a higher order page
588 	 */
589 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
590 		struct page *higher_page, *higher_buddy;
591 		combined_idx = buddy_idx & page_idx;
592 		higher_page = page + (combined_idx - page_idx);
593 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
594 		higher_buddy = higher_page + (buddy_idx - combined_idx);
595 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
596 			list_add_tail(&page->lru,
597 				&zone->free_area[order].free_list[migratetype]);
598 			goto out;
599 		}
600 	}
601 
602 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
603 out:
604 	zone->free_area[order].nr_free++;
605 }
606 
607 static inline int free_pages_check(struct page *page)
608 {
609 	if (unlikely(page_mapcount(page) |
610 		(page->mapping != NULL)  |
611 		(atomic_read(&page->_count) != 0) |
612 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 		(mem_cgroup_bad_page_check(page)))) {
614 		bad_page(page);
615 		return 1;
616 	}
617 	page_nid_reset_last(page);
618 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
619 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
620 	return 0;
621 }
622 
623 /*
624  * Frees a number of pages from the PCP lists
625  * Assumes all pages on list are in same zone, and of same order.
626  * count is the number of pages to free.
627  *
628  * If the zone was previously in an "all pages pinned" state then look to
629  * see if this freeing clears that state.
630  *
631  * And clear the zone's pages_scanned counter, to hold off the "all pages are
632  * pinned" detection logic.
633  */
634 static void free_pcppages_bulk(struct zone *zone, int count,
635 					struct per_cpu_pages *pcp)
636 {
637 	int migratetype = 0;
638 	int batch_free = 0;
639 	int to_free = count;
640 
641 	spin_lock(&zone->lock);
642 	zone->all_unreclaimable = 0;
643 	zone->pages_scanned = 0;
644 
645 	while (to_free) {
646 		struct page *page;
647 		struct list_head *list;
648 
649 		/*
650 		 * Remove pages from lists in a round-robin fashion. A
651 		 * batch_free count is maintained that is incremented when an
652 		 * empty list is encountered.  This is so more pages are freed
653 		 * off fuller lists instead of spinning excessively around empty
654 		 * lists
655 		 */
656 		do {
657 			batch_free++;
658 			if (++migratetype == MIGRATE_PCPTYPES)
659 				migratetype = 0;
660 			list = &pcp->lists[migratetype];
661 		} while (list_empty(list));
662 
663 		/* This is the only non-empty list. Free them all. */
664 		if (batch_free == MIGRATE_PCPTYPES)
665 			batch_free = to_free;
666 
667 		do {
668 			int mt;	/* migratetype of the to-be-freed page */
669 
670 			page = list_entry(list->prev, struct page, lru);
671 			/* must delete as __free_one_page list manipulates */
672 			list_del(&page->lru);
673 			mt = get_freepage_migratetype(page);
674 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 			__free_one_page(page, zone, 0, mt);
676 			trace_mm_page_pcpu_drain(page, 0, mt);
677 			if (likely(!is_migrate_isolate_page(page))) {
678 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
679 				if (is_migrate_cma(mt))
680 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
681 			}
682 		} while (--to_free && --batch_free && !list_empty(list));
683 	}
684 	spin_unlock(&zone->lock);
685 }
686 
687 static void free_one_page(struct zone *zone, struct page *page, int order,
688 				int migratetype)
689 {
690 	spin_lock(&zone->lock);
691 	zone->all_unreclaimable = 0;
692 	zone->pages_scanned = 0;
693 
694 	__free_one_page(page, zone, order, migratetype);
695 	if (unlikely(!is_migrate_isolate(migratetype)))
696 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
697 	spin_unlock(&zone->lock);
698 }
699 
700 static bool free_pages_prepare(struct page *page, unsigned int order)
701 {
702 	int i;
703 	int bad = 0;
704 
705 	trace_mm_page_free(page, order);
706 	kmemcheck_free_shadow(page, order);
707 
708 	if (PageAnon(page))
709 		page->mapping = NULL;
710 	for (i = 0; i < (1 << order); i++)
711 		bad += free_pages_check(page + i);
712 	if (bad)
713 		return false;
714 
715 	if (!PageHighMem(page)) {
716 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
717 		debug_check_no_obj_freed(page_address(page),
718 					   PAGE_SIZE << order);
719 	}
720 	arch_free_page(page, order);
721 	kernel_map_pages(page, 1 << order, 0);
722 
723 	return true;
724 }
725 
726 static void __free_pages_ok(struct page *page, unsigned int order)
727 {
728 	unsigned long flags;
729 	int migratetype;
730 
731 	if (!free_pages_prepare(page, order))
732 		return;
733 
734 	local_irq_save(flags);
735 	__count_vm_events(PGFREE, 1 << order);
736 	migratetype = get_pageblock_migratetype(page);
737 	set_freepage_migratetype(page, migratetype);
738 	free_one_page(page_zone(page), page, order, migratetype);
739 	local_irq_restore(flags);
740 }
741 
742 /*
743  * Read access to zone->managed_pages is safe because it's unsigned long,
744  * but we still need to serialize writers. Currently all callers of
745  * __free_pages_bootmem() except put_page_bootmem() should only be used
746  * at boot time. So for shorter boot time, we shift the burden to
747  * put_page_bootmem() to serialize writers.
748  */
749 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
750 {
751 	unsigned int nr_pages = 1 << order;
752 	unsigned int loop;
753 
754 	prefetchw(page);
755 	for (loop = 0; loop < nr_pages; loop++) {
756 		struct page *p = &page[loop];
757 
758 		if (loop + 1 < nr_pages)
759 			prefetchw(p + 1);
760 		__ClearPageReserved(p);
761 		set_page_count(p, 0);
762 	}
763 
764 	page_zone(page)->managed_pages += 1 << order;
765 	set_page_refcounted(page);
766 	__free_pages(page, order);
767 }
768 
769 #ifdef CONFIG_CMA
770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
771 void __init init_cma_reserved_pageblock(struct page *page)
772 {
773 	unsigned i = pageblock_nr_pages;
774 	struct page *p = page;
775 
776 	do {
777 		__ClearPageReserved(p);
778 		set_page_count(p, 0);
779 	} while (++p, --i);
780 
781 	set_page_refcounted(page);
782 	set_pageblock_migratetype(page, MIGRATE_CMA);
783 	__free_pages(page, pageblock_order);
784 	totalram_pages += pageblock_nr_pages;
785 #ifdef CONFIG_HIGHMEM
786 	if (PageHighMem(page))
787 		totalhigh_pages += pageblock_nr_pages;
788 #endif
789 }
790 #endif
791 
792 /*
793  * The order of subdivision here is critical for the IO subsystem.
794  * Please do not alter this order without good reasons and regression
795  * testing. Specifically, as large blocks of memory are subdivided,
796  * the order in which smaller blocks are delivered depends on the order
797  * they're subdivided in this function. This is the primary factor
798  * influencing the order in which pages are delivered to the IO
799  * subsystem according to empirical testing, and this is also justified
800  * by considering the behavior of a buddy system containing a single
801  * large block of memory acted on by a series of small allocations.
802  * This behavior is a critical factor in sglist merging's success.
803  *
804  * -- nyc
805  */
806 static inline void expand(struct zone *zone, struct page *page,
807 	int low, int high, struct free_area *area,
808 	int migratetype)
809 {
810 	unsigned long size = 1 << high;
811 
812 	while (high > low) {
813 		area--;
814 		high--;
815 		size >>= 1;
816 		VM_BUG_ON(bad_range(zone, &page[size]));
817 
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 		if (high < debug_guardpage_minorder()) {
820 			/*
821 			 * Mark as guard pages (or page), that will allow to
822 			 * merge back to allocator when buddy will be freed.
823 			 * Corresponding page table entries will not be touched,
824 			 * pages will stay not present in virtual address space
825 			 */
826 			INIT_LIST_HEAD(&page[size].lru);
827 			set_page_guard_flag(&page[size]);
828 			set_page_private(&page[size], high);
829 			/* Guard pages are not available for any usage */
830 			__mod_zone_freepage_state(zone, -(1 << high),
831 						  migratetype);
832 			continue;
833 		}
834 #endif
835 		list_add(&page[size].lru, &area->free_list[migratetype]);
836 		area->nr_free++;
837 		set_page_order(&page[size], high);
838 	}
839 }
840 
841 /*
842  * This page is about to be returned from the page allocator
843  */
844 static inline int check_new_page(struct page *page)
845 {
846 	if (unlikely(page_mapcount(page) |
847 		(page->mapping != NULL)  |
848 		(atomic_read(&page->_count) != 0)  |
849 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 		(mem_cgroup_bad_page_check(page)))) {
851 		bad_page(page);
852 		return 1;
853 	}
854 	return 0;
855 }
856 
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 	int i;
860 
861 	for (i = 0; i < (1 << order); i++) {
862 		struct page *p = page + i;
863 		if (unlikely(check_new_page(p)))
864 			return 1;
865 	}
866 
867 	set_page_private(page, 0);
868 	set_page_refcounted(page);
869 
870 	arch_alloc_page(page, order);
871 	kernel_map_pages(page, 1 << order, 1);
872 
873 	if (gfp_flags & __GFP_ZERO)
874 		prep_zero_page(page, order, gfp_flags);
875 
876 	if (order && (gfp_flags & __GFP_COMP))
877 		prep_compound_page(page, order);
878 
879 	return 0;
880 }
881 
882 /*
883  * Go through the free lists for the given migratetype and remove
884  * the smallest available page from the freelists
885  */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 						int migratetype)
889 {
890 	unsigned int current_order;
891 	struct free_area * area;
892 	struct page *page;
893 
894 	/* Find a page of the appropriate size in the preferred list */
895 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 		area = &(zone->free_area[current_order]);
897 		if (list_empty(&area->free_list[migratetype]))
898 			continue;
899 
900 		page = list_entry(area->free_list[migratetype].next,
901 							struct page, lru);
902 		list_del(&page->lru);
903 		rmv_page_order(page);
904 		area->nr_free--;
905 		expand(zone, page, order, current_order, area, migratetype);
906 		return page;
907 	}
908 
909 	return NULL;
910 }
911 
912 
913 /*
914  * This array describes the order lists are fallen back to when
915  * the free lists for the desirable migrate type are depleted
916  */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
919 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
925 #endif
926 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931 
932 /*
933  * Move the free pages in a range to the free lists of the requested type.
934  * Note that start_page and end_pages are not aligned on a pageblock
935  * boundary. If alignment is required, use move_freepages_block()
936  */
937 int move_freepages(struct zone *zone,
938 			  struct page *start_page, struct page *end_page,
939 			  int migratetype)
940 {
941 	struct page *page;
942 	unsigned long order;
943 	int pages_moved = 0;
944 
945 #ifndef CONFIG_HOLES_IN_ZONE
946 	/*
947 	 * page_zone is not safe to call in this context when
948 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 	 * anyway as we check zone boundaries in move_freepages_block().
950 	 * Remove at a later date when no bug reports exist related to
951 	 * grouping pages by mobility
952 	 */
953 	BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955 
956 	for (page = start_page; page <= end_page;) {
957 		/* Make sure we are not inadvertently changing nodes */
958 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959 
960 		if (!pfn_valid_within(page_to_pfn(page))) {
961 			page++;
962 			continue;
963 		}
964 
965 		if (!PageBuddy(page)) {
966 			page++;
967 			continue;
968 		}
969 
970 		order = page_order(page);
971 		list_move(&page->lru,
972 			  &zone->free_area[order].free_list[migratetype]);
973 		set_freepage_migratetype(page, migratetype);
974 		page += 1 << order;
975 		pages_moved += 1 << order;
976 	}
977 
978 	return pages_moved;
979 }
980 
981 int move_freepages_block(struct zone *zone, struct page *page,
982 				int migratetype)
983 {
984 	unsigned long start_pfn, end_pfn;
985 	struct page *start_page, *end_page;
986 
987 	start_pfn = page_to_pfn(page);
988 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 	start_page = pfn_to_page(start_pfn);
990 	end_page = start_page + pageblock_nr_pages - 1;
991 	end_pfn = start_pfn + pageblock_nr_pages - 1;
992 
993 	/* Do not cross zone boundaries */
994 	if (!zone_spans_pfn(zone, start_pfn))
995 		start_page = page;
996 	if (!zone_spans_pfn(zone, end_pfn))
997 		return 0;
998 
999 	return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001 
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 					int start_order, int migratetype)
1004 {
1005 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1006 
1007 	while (nr_pageblocks--) {
1008 		set_pageblock_migratetype(pageblock_page, migratetype);
1009 		pageblock_page += pageblock_nr_pages;
1010 	}
1011 }
1012 
1013 /* Remove an element from the buddy allocator from the fallback list */
1014 static inline struct page *
1015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1016 {
1017 	struct free_area * area;
1018 	int current_order;
1019 	struct page *page;
1020 	int migratetype, i;
1021 
1022 	/* Find the largest possible block of pages in the other list */
1023 	for (current_order = MAX_ORDER-1; current_order >= order;
1024 						--current_order) {
1025 		for (i = 0;; i++) {
1026 			migratetype = fallbacks[start_migratetype][i];
1027 
1028 			/* MIGRATE_RESERVE handled later if necessary */
1029 			if (migratetype == MIGRATE_RESERVE)
1030 				break;
1031 
1032 			area = &(zone->free_area[current_order]);
1033 			if (list_empty(&area->free_list[migratetype]))
1034 				continue;
1035 
1036 			page = list_entry(area->free_list[migratetype].next,
1037 					struct page, lru);
1038 			area->nr_free--;
1039 
1040 			/*
1041 			 * If breaking a large block of pages, move all free
1042 			 * pages to the preferred allocation list. If falling
1043 			 * back for a reclaimable kernel allocation, be more
1044 			 * aggressive about taking ownership of free pages
1045 			 *
1046 			 * On the other hand, never change migration
1047 			 * type of MIGRATE_CMA pageblocks nor move CMA
1048 			 * pages on different free lists. We don't
1049 			 * want unmovable pages to be allocated from
1050 			 * MIGRATE_CMA areas.
1051 			 */
1052 			if (!is_migrate_cma(migratetype) &&
1053 			    (unlikely(current_order >= pageblock_order / 2) ||
1054 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1055 			     page_group_by_mobility_disabled)) {
1056 				int pages;
1057 				pages = move_freepages_block(zone, page,
1058 								start_migratetype);
1059 
1060 				/* Claim the whole block if over half of it is free */
1061 				if (pages >= (1 << (pageblock_order-1)) ||
1062 						page_group_by_mobility_disabled)
1063 					set_pageblock_migratetype(page,
1064 								start_migratetype);
1065 
1066 				migratetype = start_migratetype;
1067 			}
1068 
1069 			/* Remove the page from the freelists */
1070 			list_del(&page->lru);
1071 			rmv_page_order(page);
1072 
1073 			/* Take ownership for orders >= pageblock_order */
1074 			if (current_order >= pageblock_order &&
1075 			    !is_migrate_cma(migratetype))
1076 				change_pageblock_range(page, current_order,
1077 							start_migratetype);
1078 
1079 			expand(zone, page, order, current_order, area,
1080 			       is_migrate_cma(migratetype)
1081 			     ? migratetype : start_migratetype);
1082 
1083 			trace_mm_page_alloc_extfrag(page, order, current_order,
1084 				start_migratetype, migratetype);
1085 
1086 			return page;
1087 		}
1088 	}
1089 
1090 	return NULL;
1091 }
1092 
1093 /*
1094  * Do the hard work of removing an element from the buddy allocator.
1095  * Call me with the zone->lock already held.
1096  */
1097 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1098 						int migratetype)
1099 {
1100 	struct page *page;
1101 
1102 retry_reserve:
1103 	page = __rmqueue_smallest(zone, order, migratetype);
1104 
1105 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1106 		page = __rmqueue_fallback(zone, order, migratetype);
1107 
1108 		/*
1109 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1110 		 * is used because __rmqueue_smallest is an inline function
1111 		 * and we want just one call site
1112 		 */
1113 		if (!page) {
1114 			migratetype = MIGRATE_RESERVE;
1115 			goto retry_reserve;
1116 		}
1117 	}
1118 
1119 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1120 	return page;
1121 }
1122 
1123 /*
1124  * Obtain a specified number of elements from the buddy allocator, all under
1125  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1126  * Returns the number of new pages which were placed at *list.
1127  */
1128 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1129 			unsigned long count, struct list_head *list,
1130 			int migratetype, int cold)
1131 {
1132 	int mt = migratetype, i;
1133 
1134 	spin_lock(&zone->lock);
1135 	for (i = 0; i < count; ++i) {
1136 		struct page *page = __rmqueue(zone, order, migratetype);
1137 		if (unlikely(page == NULL))
1138 			break;
1139 
1140 		/*
1141 		 * Split buddy pages returned by expand() are received here
1142 		 * in physical page order. The page is added to the callers and
1143 		 * list and the list head then moves forward. From the callers
1144 		 * perspective, the linked list is ordered by page number in
1145 		 * some conditions. This is useful for IO devices that can
1146 		 * merge IO requests if the physical pages are ordered
1147 		 * properly.
1148 		 */
1149 		if (likely(cold == 0))
1150 			list_add(&page->lru, list);
1151 		else
1152 			list_add_tail(&page->lru, list);
1153 		if (IS_ENABLED(CONFIG_CMA)) {
1154 			mt = get_pageblock_migratetype(page);
1155 			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1156 				mt = migratetype;
1157 		}
1158 		set_freepage_migratetype(page, mt);
1159 		list = &page->lru;
1160 		if (is_migrate_cma(mt))
1161 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1162 					      -(1 << order));
1163 	}
1164 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1165 	spin_unlock(&zone->lock);
1166 	return i;
1167 }
1168 
1169 #ifdef CONFIG_NUMA
1170 /*
1171  * Called from the vmstat counter updater to drain pagesets of this
1172  * currently executing processor on remote nodes after they have
1173  * expired.
1174  *
1175  * Note that this function must be called with the thread pinned to
1176  * a single processor.
1177  */
1178 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1179 {
1180 	unsigned long flags;
1181 	int to_drain;
1182 
1183 	local_irq_save(flags);
1184 	if (pcp->count >= pcp->batch)
1185 		to_drain = pcp->batch;
1186 	else
1187 		to_drain = pcp->count;
1188 	if (to_drain > 0) {
1189 		free_pcppages_bulk(zone, to_drain, pcp);
1190 		pcp->count -= to_drain;
1191 	}
1192 	local_irq_restore(flags);
1193 }
1194 #endif
1195 
1196 /*
1197  * Drain pages of the indicated processor.
1198  *
1199  * The processor must either be the current processor and the
1200  * thread pinned to the current processor or a processor that
1201  * is not online.
1202  */
1203 static void drain_pages(unsigned int cpu)
1204 {
1205 	unsigned long flags;
1206 	struct zone *zone;
1207 
1208 	for_each_populated_zone(zone) {
1209 		struct per_cpu_pageset *pset;
1210 		struct per_cpu_pages *pcp;
1211 
1212 		local_irq_save(flags);
1213 		pset = per_cpu_ptr(zone->pageset, cpu);
1214 
1215 		pcp = &pset->pcp;
1216 		if (pcp->count) {
1217 			free_pcppages_bulk(zone, pcp->count, pcp);
1218 			pcp->count = 0;
1219 		}
1220 		local_irq_restore(flags);
1221 	}
1222 }
1223 
1224 /*
1225  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1226  */
1227 void drain_local_pages(void *arg)
1228 {
1229 	drain_pages(smp_processor_id());
1230 }
1231 
1232 /*
1233  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1234  *
1235  * Note that this code is protected against sending an IPI to an offline
1236  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1237  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1238  * nothing keeps CPUs from showing up after we populated the cpumask and
1239  * before the call to on_each_cpu_mask().
1240  */
1241 void drain_all_pages(void)
1242 {
1243 	int cpu;
1244 	struct per_cpu_pageset *pcp;
1245 	struct zone *zone;
1246 
1247 	/*
1248 	 * Allocate in the BSS so we wont require allocation in
1249 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1250 	 */
1251 	static cpumask_t cpus_with_pcps;
1252 
1253 	/*
1254 	 * We don't care about racing with CPU hotplug event
1255 	 * as offline notification will cause the notified
1256 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1257 	 * disables preemption as part of its processing
1258 	 */
1259 	for_each_online_cpu(cpu) {
1260 		bool has_pcps = false;
1261 		for_each_populated_zone(zone) {
1262 			pcp = per_cpu_ptr(zone->pageset, cpu);
1263 			if (pcp->pcp.count) {
1264 				has_pcps = true;
1265 				break;
1266 			}
1267 		}
1268 		if (has_pcps)
1269 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1270 		else
1271 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1272 	}
1273 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1274 }
1275 
1276 #ifdef CONFIG_HIBERNATION
1277 
1278 void mark_free_pages(struct zone *zone)
1279 {
1280 	unsigned long pfn, max_zone_pfn;
1281 	unsigned long flags;
1282 	int order, t;
1283 	struct list_head *curr;
1284 
1285 	if (!zone->spanned_pages)
1286 		return;
1287 
1288 	spin_lock_irqsave(&zone->lock, flags);
1289 
1290 	max_zone_pfn = zone_end_pfn(zone);
1291 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1292 		if (pfn_valid(pfn)) {
1293 			struct page *page = pfn_to_page(pfn);
1294 
1295 			if (!swsusp_page_is_forbidden(page))
1296 				swsusp_unset_page_free(page);
1297 		}
1298 
1299 	for_each_migratetype_order(order, t) {
1300 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1301 			unsigned long i;
1302 
1303 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1304 			for (i = 0; i < (1UL << order); i++)
1305 				swsusp_set_page_free(pfn_to_page(pfn + i));
1306 		}
1307 	}
1308 	spin_unlock_irqrestore(&zone->lock, flags);
1309 }
1310 #endif /* CONFIG_PM */
1311 
1312 /*
1313  * Free a 0-order page
1314  * cold == 1 ? free a cold page : free a hot page
1315  */
1316 void free_hot_cold_page(struct page *page, int cold)
1317 {
1318 	struct zone *zone = page_zone(page);
1319 	struct per_cpu_pages *pcp;
1320 	unsigned long flags;
1321 	int migratetype;
1322 
1323 	if (!free_pages_prepare(page, 0))
1324 		return;
1325 
1326 	migratetype = get_pageblock_migratetype(page);
1327 	set_freepage_migratetype(page, migratetype);
1328 	local_irq_save(flags);
1329 	__count_vm_event(PGFREE);
1330 
1331 	/*
1332 	 * We only track unmovable, reclaimable and movable on pcp lists.
1333 	 * Free ISOLATE pages back to the allocator because they are being
1334 	 * offlined but treat RESERVE as movable pages so we can get those
1335 	 * areas back if necessary. Otherwise, we may have to free
1336 	 * excessively into the page allocator
1337 	 */
1338 	if (migratetype >= MIGRATE_PCPTYPES) {
1339 		if (unlikely(is_migrate_isolate(migratetype))) {
1340 			free_one_page(zone, page, 0, migratetype);
1341 			goto out;
1342 		}
1343 		migratetype = MIGRATE_MOVABLE;
1344 	}
1345 
1346 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1347 	if (cold)
1348 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1349 	else
1350 		list_add(&page->lru, &pcp->lists[migratetype]);
1351 	pcp->count++;
1352 	if (pcp->count >= pcp->high) {
1353 		free_pcppages_bulk(zone, pcp->batch, pcp);
1354 		pcp->count -= pcp->batch;
1355 	}
1356 
1357 out:
1358 	local_irq_restore(flags);
1359 }
1360 
1361 /*
1362  * Free a list of 0-order pages
1363  */
1364 void free_hot_cold_page_list(struct list_head *list, int cold)
1365 {
1366 	struct page *page, *next;
1367 
1368 	list_for_each_entry_safe(page, next, list, lru) {
1369 		trace_mm_page_free_batched(page, cold);
1370 		free_hot_cold_page(page, cold);
1371 	}
1372 }
1373 
1374 /*
1375  * split_page takes a non-compound higher-order page, and splits it into
1376  * n (1<<order) sub-pages: page[0..n]
1377  * Each sub-page must be freed individually.
1378  *
1379  * Note: this is probably too low level an operation for use in drivers.
1380  * Please consult with lkml before using this in your driver.
1381  */
1382 void split_page(struct page *page, unsigned int order)
1383 {
1384 	int i;
1385 
1386 	VM_BUG_ON(PageCompound(page));
1387 	VM_BUG_ON(!page_count(page));
1388 
1389 #ifdef CONFIG_KMEMCHECK
1390 	/*
1391 	 * Split shadow pages too, because free(page[0]) would
1392 	 * otherwise free the whole shadow.
1393 	 */
1394 	if (kmemcheck_page_is_tracked(page))
1395 		split_page(virt_to_page(page[0].shadow), order);
1396 #endif
1397 
1398 	for (i = 1; i < (1 << order); i++)
1399 		set_page_refcounted(page + i);
1400 }
1401 EXPORT_SYMBOL_GPL(split_page);
1402 
1403 static int __isolate_free_page(struct page *page, unsigned int order)
1404 {
1405 	unsigned long watermark;
1406 	struct zone *zone;
1407 	int mt;
1408 
1409 	BUG_ON(!PageBuddy(page));
1410 
1411 	zone = page_zone(page);
1412 	mt = get_pageblock_migratetype(page);
1413 
1414 	if (!is_migrate_isolate(mt)) {
1415 		/* Obey watermarks as if the page was being allocated */
1416 		watermark = low_wmark_pages(zone) + (1 << order);
1417 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1418 			return 0;
1419 
1420 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1421 	}
1422 
1423 	/* Remove page from free list */
1424 	list_del(&page->lru);
1425 	zone->free_area[order].nr_free--;
1426 	rmv_page_order(page);
1427 
1428 	/* Set the pageblock if the isolated page is at least a pageblock */
1429 	if (order >= pageblock_order - 1) {
1430 		struct page *endpage = page + (1 << order) - 1;
1431 		for (; page < endpage; page += pageblock_nr_pages) {
1432 			int mt = get_pageblock_migratetype(page);
1433 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1434 				set_pageblock_migratetype(page,
1435 							  MIGRATE_MOVABLE);
1436 		}
1437 	}
1438 
1439 	return 1UL << order;
1440 }
1441 
1442 /*
1443  * Similar to split_page except the page is already free. As this is only
1444  * being used for migration, the migratetype of the block also changes.
1445  * As this is called with interrupts disabled, the caller is responsible
1446  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447  * are enabled.
1448  *
1449  * Note: this is probably too low level an operation for use in drivers.
1450  * Please consult with lkml before using this in your driver.
1451  */
1452 int split_free_page(struct page *page)
1453 {
1454 	unsigned int order;
1455 	int nr_pages;
1456 
1457 	order = page_order(page);
1458 
1459 	nr_pages = __isolate_free_page(page, order);
1460 	if (!nr_pages)
1461 		return 0;
1462 
1463 	/* Split into individual pages */
1464 	set_page_refcounted(page);
1465 	split_page(page, order);
1466 	return nr_pages;
1467 }
1468 
1469 /*
1470  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1471  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1472  * or two.
1473  */
1474 static inline
1475 struct page *buffered_rmqueue(struct zone *preferred_zone,
1476 			struct zone *zone, int order, gfp_t gfp_flags,
1477 			int migratetype)
1478 {
1479 	unsigned long flags;
1480 	struct page *page;
1481 	int cold = !!(gfp_flags & __GFP_COLD);
1482 
1483 again:
1484 	if (likely(order == 0)) {
1485 		struct per_cpu_pages *pcp;
1486 		struct list_head *list;
1487 
1488 		local_irq_save(flags);
1489 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1490 		list = &pcp->lists[migratetype];
1491 		if (list_empty(list)) {
1492 			pcp->count += rmqueue_bulk(zone, 0,
1493 					pcp->batch, list,
1494 					migratetype, cold);
1495 			if (unlikely(list_empty(list)))
1496 				goto failed;
1497 		}
1498 
1499 		if (cold)
1500 			page = list_entry(list->prev, struct page, lru);
1501 		else
1502 			page = list_entry(list->next, struct page, lru);
1503 
1504 		list_del(&page->lru);
1505 		pcp->count--;
1506 	} else {
1507 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1508 			/*
1509 			 * __GFP_NOFAIL is not to be used in new code.
1510 			 *
1511 			 * All __GFP_NOFAIL callers should be fixed so that they
1512 			 * properly detect and handle allocation failures.
1513 			 *
1514 			 * We most definitely don't want callers attempting to
1515 			 * allocate greater than order-1 page units with
1516 			 * __GFP_NOFAIL.
1517 			 */
1518 			WARN_ON_ONCE(order > 1);
1519 		}
1520 		spin_lock_irqsave(&zone->lock, flags);
1521 		page = __rmqueue(zone, order, migratetype);
1522 		spin_unlock(&zone->lock);
1523 		if (!page)
1524 			goto failed;
1525 		__mod_zone_freepage_state(zone, -(1 << order),
1526 					  get_pageblock_migratetype(page));
1527 	}
1528 
1529 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1530 	zone_statistics(preferred_zone, zone, gfp_flags);
1531 	local_irq_restore(flags);
1532 
1533 	VM_BUG_ON(bad_range(zone, page));
1534 	if (prep_new_page(page, order, gfp_flags))
1535 		goto again;
1536 	return page;
1537 
1538 failed:
1539 	local_irq_restore(flags);
1540 	return NULL;
1541 }
1542 
1543 #ifdef CONFIG_FAIL_PAGE_ALLOC
1544 
1545 static struct {
1546 	struct fault_attr attr;
1547 
1548 	u32 ignore_gfp_highmem;
1549 	u32 ignore_gfp_wait;
1550 	u32 min_order;
1551 } fail_page_alloc = {
1552 	.attr = FAULT_ATTR_INITIALIZER,
1553 	.ignore_gfp_wait = 1,
1554 	.ignore_gfp_highmem = 1,
1555 	.min_order = 1,
1556 };
1557 
1558 static int __init setup_fail_page_alloc(char *str)
1559 {
1560 	return setup_fault_attr(&fail_page_alloc.attr, str);
1561 }
1562 __setup("fail_page_alloc=", setup_fail_page_alloc);
1563 
1564 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1565 {
1566 	if (order < fail_page_alloc.min_order)
1567 		return false;
1568 	if (gfp_mask & __GFP_NOFAIL)
1569 		return false;
1570 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1571 		return false;
1572 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1573 		return false;
1574 
1575 	return should_fail(&fail_page_alloc.attr, 1 << order);
1576 }
1577 
1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1579 
1580 static int __init fail_page_alloc_debugfs(void)
1581 {
1582 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1583 	struct dentry *dir;
1584 
1585 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1586 					&fail_page_alloc.attr);
1587 	if (IS_ERR(dir))
1588 		return PTR_ERR(dir);
1589 
1590 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1591 				&fail_page_alloc.ignore_gfp_wait))
1592 		goto fail;
1593 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1594 				&fail_page_alloc.ignore_gfp_highmem))
1595 		goto fail;
1596 	if (!debugfs_create_u32("min-order", mode, dir,
1597 				&fail_page_alloc.min_order))
1598 		goto fail;
1599 
1600 	return 0;
1601 fail:
1602 	debugfs_remove_recursive(dir);
1603 
1604 	return -ENOMEM;
1605 }
1606 
1607 late_initcall(fail_page_alloc_debugfs);
1608 
1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1610 
1611 #else /* CONFIG_FAIL_PAGE_ALLOC */
1612 
1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1614 {
1615 	return false;
1616 }
1617 
1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1619 
1620 /*
1621  * Return true if free pages are above 'mark'. This takes into account the order
1622  * of the allocation.
1623  */
1624 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1625 		      int classzone_idx, int alloc_flags, long free_pages)
1626 {
1627 	/* free_pages my go negative - that's OK */
1628 	long min = mark;
1629 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1630 	int o;
1631 	long free_cma = 0;
1632 
1633 	free_pages -= (1 << order) - 1;
1634 	if (alloc_flags & ALLOC_HIGH)
1635 		min -= min / 2;
1636 	if (alloc_flags & ALLOC_HARDER)
1637 		min -= min / 4;
1638 #ifdef CONFIG_CMA
1639 	/* If allocation can't use CMA areas don't use free CMA pages */
1640 	if (!(alloc_flags & ALLOC_CMA))
1641 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1642 #endif
1643 
1644 	if (free_pages - free_cma <= min + lowmem_reserve)
1645 		return false;
1646 	for (o = 0; o < order; o++) {
1647 		/* At the next order, this order's pages become unavailable */
1648 		free_pages -= z->free_area[o].nr_free << o;
1649 
1650 		/* Require fewer higher order pages to be free */
1651 		min >>= 1;
1652 
1653 		if (free_pages <= min)
1654 			return false;
1655 	}
1656 	return true;
1657 }
1658 
1659 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1660 		      int classzone_idx, int alloc_flags)
1661 {
1662 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1663 					zone_page_state(z, NR_FREE_PAGES));
1664 }
1665 
1666 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1667 		      int classzone_idx, int alloc_flags)
1668 {
1669 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1670 
1671 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1672 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1673 
1674 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1675 								free_pages);
1676 }
1677 
1678 #ifdef CONFIG_NUMA
1679 /*
1680  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1681  * skip over zones that are not allowed by the cpuset, or that have
1682  * been recently (in last second) found to be nearly full.  See further
1683  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1684  * that have to skip over a lot of full or unallowed zones.
1685  *
1686  * If the zonelist cache is present in the passed in zonelist, then
1687  * returns a pointer to the allowed node mask (either the current
1688  * tasks mems_allowed, or node_states[N_MEMORY].)
1689  *
1690  * If the zonelist cache is not available for this zonelist, does
1691  * nothing and returns NULL.
1692  *
1693  * If the fullzones BITMAP in the zonelist cache is stale (more than
1694  * a second since last zap'd) then we zap it out (clear its bits.)
1695  *
1696  * We hold off even calling zlc_setup, until after we've checked the
1697  * first zone in the zonelist, on the theory that most allocations will
1698  * be satisfied from that first zone, so best to examine that zone as
1699  * quickly as we can.
1700  */
1701 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1702 {
1703 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1704 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1705 
1706 	zlc = zonelist->zlcache_ptr;
1707 	if (!zlc)
1708 		return NULL;
1709 
1710 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1711 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1712 		zlc->last_full_zap = jiffies;
1713 	}
1714 
1715 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1716 					&cpuset_current_mems_allowed :
1717 					&node_states[N_MEMORY];
1718 	return allowednodes;
1719 }
1720 
1721 /*
1722  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1723  * if it is worth looking at further for free memory:
1724  *  1) Check that the zone isn't thought to be full (doesn't have its
1725  *     bit set in the zonelist_cache fullzones BITMAP).
1726  *  2) Check that the zones node (obtained from the zonelist_cache
1727  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1728  * Return true (non-zero) if zone is worth looking at further, or
1729  * else return false (zero) if it is not.
1730  *
1731  * This check -ignores- the distinction between various watermarks,
1732  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1733  * found to be full for any variation of these watermarks, it will
1734  * be considered full for up to one second by all requests, unless
1735  * we are so low on memory on all allowed nodes that we are forced
1736  * into the second scan of the zonelist.
1737  *
1738  * In the second scan we ignore this zonelist cache and exactly
1739  * apply the watermarks to all zones, even it is slower to do so.
1740  * We are low on memory in the second scan, and should leave no stone
1741  * unturned looking for a free page.
1742  */
1743 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1744 						nodemask_t *allowednodes)
1745 {
1746 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1747 	int i;				/* index of *z in zonelist zones */
1748 	int n;				/* node that zone *z is on */
1749 
1750 	zlc = zonelist->zlcache_ptr;
1751 	if (!zlc)
1752 		return 1;
1753 
1754 	i = z - zonelist->_zonerefs;
1755 	n = zlc->z_to_n[i];
1756 
1757 	/* This zone is worth trying if it is allowed but not full */
1758 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1759 }
1760 
1761 /*
1762  * Given 'z' scanning a zonelist, set the corresponding bit in
1763  * zlc->fullzones, so that subsequent attempts to allocate a page
1764  * from that zone don't waste time re-examining it.
1765  */
1766 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1767 {
1768 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1769 	int i;				/* index of *z in zonelist zones */
1770 
1771 	zlc = zonelist->zlcache_ptr;
1772 	if (!zlc)
1773 		return;
1774 
1775 	i = z - zonelist->_zonerefs;
1776 
1777 	set_bit(i, zlc->fullzones);
1778 }
1779 
1780 /*
1781  * clear all zones full, called after direct reclaim makes progress so that
1782  * a zone that was recently full is not skipped over for up to a second
1783  */
1784 static void zlc_clear_zones_full(struct zonelist *zonelist)
1785 {
1786 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1787 
1788 	zlc = zonelist->zlcache_ptr;
1789 	if (!zlc)
1790 		return;
1791 
1792 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1793 }
1794 
1795 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1796 {
1797 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1798 }
1799 
1800 static void __paginginit init_zone_allows_reclaim(int nid)
1801 {
1802 	int i;
1803 
1804 	for_each_online_node(i)
1805 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1806 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1807 		else
1808 			zone_reclaim_mode = 1;
1809 }
1810 
1811 #else	/* CONFIG_NUMA */
1812 
1813 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1814 {
1815 	return NULL;
1816 }
1817 
1818 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1819 				nodemask_t *allowednodes)
1820 {
1821 	return 1;
1822 }
1823 
1824 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1825 {
1826 }
1827 
1828 static void zlc_clear_zones_full(struct zonelist *zonelist)
1829 {
1830 }
1831 
1832 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1833 {
1834 	return true;
1835 }
1836 
1837 static inline void init_zone_allows_reclaim(int nid)
1838 {
1839 }
1840 #endif	/* CONFIG_NUMA */
1841 
1842 /*
1843  * get_page_from_freelist goes through the zonelist trying to allocate
1844  * a page.
1845  */
1846 static struct page *
1847 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1848 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1849 		struct zone *preferred_zone, int migratetype)
1850 {
1851 	struct zoneref *z;
1852 	struct page *page = NULL;
1853 	int classzone_idx;
1854 	struct zone *zone;
1855 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1856 	int zlc_active = 0;		/* set if using zonelist_cache */
1857 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1858 
1859 	classzone_idx = zone_idx(preferred_zone);
1860 zonelist_scan:
1861 	/*
1862 	 * Scan zonelist, looking for a zone with enough free.
1863 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1864 	 */
1865 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1866 						high_zoneidx, nodemask) {
1867 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1868 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1869 				continue;
1870 		if ((alloc_flags & ALLOC_CPUSET) &&
1871 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1872 				continue;
1873 		/*
1874 		 * When allocating a page cache page for writing, we
1875 		 * want to get it from a zone that is within its dirty
1876 		 * limit, such that no single zone holds more than its
1877 		 * proportional share of globally allowed dirty pages.
1878 		 * The dirty limits take into account the zone's
1879 		 * lowmem reserves and high watermark so that kswapd
1880 		 * should be able to balance it without having to
1881 		 * write pages from its LRU list.
1882 		 *
1883 		 * This may look like it could increase pressure on
1884 		 * lower zones by failing allocations in higher zones
1885 		 * before they are full.  But the pages that do spill
1886 		 * over are limited as the lower zones are protected
1887 		 * by this very same mechanism.  It should not become
1888 		 * a practical burden to them.
1889 		 *
1890 		 * XXX: For now, allow allocations to potentially
1891 		 * exceed the per-zone dirty limit in the slowpath
1892 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1893 		 * which is important when on a NUMA setup the allowed
1894 		 * zones are together not big enough to reach the
1895 		 * global limit.  The proper fix for these situations
1896 		 * will require awareness of zones in the
1897 		 * dirty-throttling and the flusher threads.
1898 		 */
1899 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1900 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1901 			goto this_zone_full;
1902 
1903 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1904 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1905 			unsigned long mark;
1906 			int ret;
1907 
1908 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1909 			if (zone_watermark_ok(zone, order, mark,
1910 				    classzone_idx, alloc_flags))
1911 				goto try_this_zone;
1912 
1913 			if (IS_ENABLED(CONFIG_NUMA) &&
1914 					!did_zlc_setup && nr_online_nodes > 1) {
1915 				/*
1916 				 * we do zlc_setup if there are multiple nodes
1917 				 * and before considering the first zone allowed
1918 				 * by the cpuset.
1919 				 */
1920 				allowednodes = zlc_setup(zonelist, alloc_flags);
1921 				zlc_active = 1;
1922 				did_zlc_setup = 1;
1923 			}
1924 
1925 			if (zone_reclaim_mode == 0 ||
1926 			    !zone_allows_reclaim(preferred_zone, zone))
1927 				goto this_zone_full;
1928 
1929 			/*
1930 			 * As we may have just activated ZLC, check if the first
1931 			 * eligible zone has failed zone_reclaim recently.
1932 			 */
1933 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1934 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1935 				continue;
1936 
1937 			ret = zone_reclaim(zone, gfp_mask, order);
1938 			switch (ret) {
1939 			case ZONE_RECLAIM_NOSCAN:
1940 				/* did not scan */
1941 				continue;
1942 			case ZONE_RECLAIM_FULL:
1943 				/* scanned but unreclaimable */
1944 				continue;
1945 			default:
1946 				/* did we reclaim enough */
1947 				if (zone_watermark_ok(zone, order, mark,
1948 						classzone_idx, alloc_flags))
1949 					goto try_this_zone;
1950 
1951 				/*
1952 				 * Failed to reclaim enough to meet watermark.
1953 				 * Only mark the zone full if checking the min
1954 				 * watermark or if we failed to reclaim just
1955 				 * 1<<order pages or else the page allocator
1956 				 * fastpath will prematurely mark zones full
1957 				 * when the watermark is between the low and
1958 				 * min watermarks.
1959 				 */
1960 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1961 				    ret == ZONE_RECLAIM_SOME)
1962 					goto this_zone_full;
1963 
1964 				continue;
1965 			}
1966 		}
1967 
1968 try_this_zone:
1969 		page = buffered_rmqueue(preferred_zone, zone, order,
1970 						gfp_mask, migratetype);
1971 		if (page)
1972 			break;
1973 this_zone_full:
1974 		if (IS_ENABLED(CONFIG_NUMA))
1975 			zlc_mark_zone_full(zonelist, z);
1976 	}
1977 
1978 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1979 		/* Disable zlc cache for second zonelist scan */
1980 		zlc_active = 0;
1981 		goto zonelist_scan;
1982 	}
1983 
1984 	if (page)
1985 		/*
1986 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1987 		 * necessary to allocate the page. The expectation is
1988 		 * that the caller is taking steps that will free more
1989 		 * memory. The caller should avoid the page being used
1990 		 * for !PFMEMALLOC purposes.
1991 		 */
1992 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1993 
1994 	return page;
1995 }
1996 
1997 /*
1998  * Large machines with many possible nodes should not always dump per-node
1999  * meminfo in irq context.
2000  */
2001 static inline bool should_suppress_show_mem(void)
2002 {
2003 	bool ret = false;
2004 
2005 #if NODES_SHIFT > 8
2006 	ret = in_interrupt();
2007 #endif
2008 	return ret;
2009 }
2010 
2011 static DEFINE_RATELIMIT_STATE(nopage_rs,
2012 		DEFAULT_RATELIMIT_INTERVAL,
2013 		DEFAULT_RATELIMIT_BURST);
2014 
2015 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2016 {
2017 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2018 
2019 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2020 	    debug_guardpage_minorder() > 0)
2021 		return;
2022 
2023 	/*
2024 	 * Walking all memory to count page types is very expensive and should
2025 	 * be inhibited in non-blockable contexts.
2026 	 */
2027 	if (!(gfp_mask & __GFP_WAIT))
2028 		filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2029 
2030 	/*
2031 	 * This documents exceptions given to allocations in certain
2032 	 * contexts that are allowed to allocate outside current's set
2033 	 * of allowed nodes.
2034 	 */
2035 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2036 		if (test_thread_flag(TIF_MEMDIE) ||
2037 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2038 			filter &= ~SHOW_MEM_FILTER_NODES;
2039 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2040 		filter &= ~SHOW_MEM_FILTER_NODES;
2041 
2042 	if (fmt) {
2043 		struct va_format vaf;
2044 		va_list args;
2045 
2046 		va_start(args, fmt);
2047 
2048 		vaf.fmt = fmt;
2049 		vaf.va = &args;
2050 
2051 		pr_warn("%pV", &vaf);
2052 
2053 		va_end(args);
2054 	}
2055 
2056 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2057 		current->comm, order, gfp_mask);
2058 
2059 	dump_stack();
2060 	if (!should_suppress_show_mem())
2061 		show_mem(filter);
2062 }
2063 
2064 static inline int
2065 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2066 				unsigned long did_some_progress,
2067 				unsigned long pages_reclaimed)
2068 {
2069 	/* Do not loop if specifically requested */
2070 	if (gfp_mask & __GFP_NORETRY)
2071 		return 0;
2072 
2073 	/* Always retry if specifically requested */
2074 	if (gfp_mask & __GFP_NOFAIL)
2075 		return 1;
2076 
2077 	/*
2078 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2079 	 * making forward progress without invoking OOM. Suspend also disables
2080 	 * storage devices so kswapd will not help. Bail if we are suspending.
2081 	 */
2082 	if (!did_some_progress && pm_suspended_storage())
2083 		return 0;
2084 
2085 	/*
2086 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2087 	 * means __GFP_NOFAIL, but that may not be true in other
2088 	 * implementations.
2089 	 */
2090 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2091 		return 1;
2092 
2093 	/*
2094 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2095 	 * specified, then we retry until we no longer reclaim any pages
2096 	 * (above), or we've reclaimed an order of pages at least as
2097 	 * large as the allocation's order. In both cases, if the
2098 	 * allocation still fails, we stop retrying.
2099 	 */
2100 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2101 		return 1;
2102 
2103 	return 0;
2104 }
2105 
2106 static inline struct page *
2107 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2108 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2109 	nodemask_t *nodemask, struct zone *preferred_zone,
2110 	int migratetype)
2111 {
2112 	struct page *page;
2113 
2114 	/* Acquire the OOM killer lock for the zones in zonelist */
2115 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2116 		schedule_timeout_uninterruptible(1);
2117 		return NULL;
2118 	}
2119 
2120 	/*
2121 	 * Go through the zonelist yet one more time, keep very high watermark
2122 	 * here, this is only to catch a parallel oom killing, we must fail if
2123 	 * we're still under heavy pressure.
2124 	 */
2125 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2126 		order, zonelist, high_zoneidx,
2127 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2128 		preferred_zone, migratetype);
2129 	if (page)
2130 		goto out;
2131 
2132 	if (!(gfp_mask & __GFP_NOFAIL)) {
2133 		/* The OOM killer will not help higher order allocs */
2134 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2135 			goto out;
2136 		/* The OOM killer does not needlessly kill tasks for lowmem */
2137 		if (high_zoneidx < ZONE_NORMAL)
2138 			goto out;
2139 		/*
2140 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2141 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2142 		 * The caller should handle page allocation failure by itself if
2143 		 * it specifies __GFP_THISNODE.
2144 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2145 		 */
2146 		if (gfp_mask & __GFP_THISNODE)
2147 			goto out;
2148 	}
2149 	/* Exhausted what can be done so it's blamo time */
2150 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2151 
2152 out:
2153 	clear_zonelist_oom(zonelist, gfp_mask);
2154 	return page;
2155 }
2156 
2157 #ifdef CONFIG_COMPACTION
2158 /* Try memory compaction for high-order allocations before reclaim */
2159 static struct page *
2160 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2161 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2162 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2163 	int migratetype, bool sync_migration,
2164 	bool *contended_compaction, bool *deferred_compaction,
2165 	unsigned long *did_some_progress)
2166 {
2167 	if (!order)
2168 		return NULL;
2169 
2170 	if (compaction_deferred(preferred_zone, order)) {
2171 		*deferred_compaction = true;
2172 		return NULL;
2173 	}
2174 
2175 	current->flags |= PF_MEMALLOC;
2176 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2177 						nodemask, sync_migration,
2178 						contended_compaction);
2179 	current->flags &= ~PF_MEMALLOC;
2180 
2181 	if (*did_some_progress != COMPACT_SKIPPED) {
2182 		struct page *page;
2183 
2184 		/* Page migration frees to the PCP lists but we want merging */
2185 		drain_pages(get_cpu());
2186 		put_cpu();
2187 
2188 		page = get_page_from_freelist(gfp_mask, nodemask,
2189 				order, zonelist, high_zoneidx,
2190 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2191 				preferred_zone, migratetype);
2192 		if (page) {
2193 			preferred_zone->compact_blockskip_flush = false;
2194 			preferred_zone->compact_considered = 0;
2195 			preferred_zone->compact_defer_shift = 0;
2196 			if (order >= preferred_zone->compact_order_failed)
2197 				preferred_zone->compact_order_failed = order + 1;
2198 			count_vm_event(COMPACTSUCCESS);
2199 			return page;
2200 		}
2201 
2202 		/*
2203 		 * It's bad if compaction run occurs and fails.
2204 		 * The most likely reason is that pages exist,
2205 		 * but not enough to satisfy watermarks.
2206 		 */
2207 		count_vm_event(COMPACTFAIL);
2208 
2209 		/*
2210 		 * As async compaction considers a subset of pageblocks, only
2211 		 * defer if the failure was a sync compaction failure.
2212 		 */
2213 		if (sync_migration)
2214 			defer_compaction(preferred_zone, order);
2215 
2216 		cond_resched();
2217 	}
2218 
2219 	return NULL;
2220 }
2221 #else
2222 static inline struct page *
2223 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2224 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2225 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2226 	int migratetype, bool sync_migration,
2227 	bool *contended_compaction, bool *deferred_compaction,
2228 	unsigned long *did_some_progress)
2229 {
2230 	return NULL;
2231 }
2232 #endif /* CONFIG_COMPACTION */
2233 
2234 /* Perform direct synchronous page reclaim */
2235 static int
2236 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2237 		  nodemask_t *nodemask)
2238 {
2239 	struct reclaim_state reclaim_state;
2240 	int progress;
2241 
2242 	cond_resched();
2243 
2244 	/* We now go into synchronous reclaim */
2245 	cpuset_memory_pressure_bump();
2246 	current->flags |= PF_MEMALLOC;
2247 	lockdep_set_current_reclaim_state(gfp_mask);
2248 	reclaim_state.reclaimed_slab = 0;
2249 	current->reclaim_state = &reclaim_state;
2250 
2251 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2252 
2253 	current->reclaim_state = NULL;
2254 	lockdep_clear_current_reclaim_state();
2255 	current->flags &= ~PF_MEMALLOC;
2256 
2257 	cond_resched();
2258 
2259 	return progress;
2260 }
2261 
2262 /* The really slow allocator path where we enter direct reclaim */
2263 static inline struct page *
2264 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2265 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2266 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2267 	int migratetype, unsigned long *did_some_progress)
2268 {
2269 	struct page *page = NULL;
2270 	bool drained = false;
2271 
2272 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2273 					       nodemask);
2274 	if (unlikely(!(*did_some_progress)))
2275 		return NULL;
2276 
2277 	/* After successful reclaim, reconsider all zones for allocation */
2278 	if (IS_ENABLED(CONFIG_NUMA))
2279 		zlc_clear_zones_full(zonelist);
2280 
2281 retry:
2282 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2283 					zonelist, high_zoneidx,
2284 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2285 					preferred_zone, migratetype);
2286 
2287 	/*
2288 	 * If an allocation failed after direct reclaim, it could be because
2289 	 * pages are pinned on the per-cpu lists. Drain them and try again
2290 	 */
2291 	if (!page && !drained) {
2292 		drain_all_pages();
2293 		drained = true;
2294 		goto retry;
2295 	}
2296 
2297 	return page;
2298 }
2299 
2300 /*
2301  * This is called in the allocator slow-path if the allocation request is of
2302  * sufficient urgency to ignore watermarks and take other desperate measures
2303  */
2304 static inline struct page *
2305 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2306 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2307 	nodemask_t *nodemask, struct zone *preferred_zone,
2308 	int migratetype)
2309 {
2310 	struct page *page;
2311 
2312 	do {
2313 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2314 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2315 			preferred_zone, migratetype);
2316 
2317 		if (!page && gfp_mask & __GFP_NOFAIL)
2318 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2319 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2320 
2321 	return page;
2322 }
2323 
2324 static inline
2325 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2326 						enum zone_type high_zoneidx,
2327 						enum zone_type classzone_idx)
2328 {
2329 	struct zoneref *z;
2330 	struct zone *zone;
2331 
2332 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2333 		wakeup_kswapd(zone, order, classzone_idx);
2334 }
2335 
2336 static inline int
2337 gfp_to_alloc_flags(gfp_t gfp_mask)
2338 {
2339 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2340 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2341 
2342 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2343 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2344 
2345 	/*
2346 	 * The caller may dip into page reserves a bit more if the caller
2347 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2348 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2349 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2350 	 */
2351 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2352 
2353 	if (!wait) {
2354 		/*
2355 		 * Not worth trying to allocate harder for
2356 		 * __GFP_NOMEMALLOC even if it can't schedule.
2357 		 */
2358 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2359 			alloc_flags |= ALLOC_HARDER;
2360 		/*
2361 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2362 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2363 		 */
2364 		alloc_flags &= ~ALLOC_CPUSET;
2365 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2366 		alloc_flags |= ALLOC_HARDER;
2367 
2368 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2369 		if (gfp_mask & __GFP_MEMALLOC)
2370 			alloc_flags |= ALLOC_NO_WATERMARKS;
2371 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2372 			alloc_flags |= ALLOC_NO_WATERMARKS;
2373 		else if (!in_interrupt() &&
2374 				((current->flags & PF_MEMALLOC) ||
2375 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2376 			alloc_flags |= ALLOC_NO_WATERMARKS;
2377 	}
2378 #ifdef CONFIG_CMA
2379 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2380 		alloc_flags |= ALLOC_CMA;
2381 #endif
2382 	return alloc_flags;
2383 }
2384 
2385 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2386 {
2387 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2388 }
2389 
2390 static inline struct page *
2391 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2392 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2393 	nodemask_t *nodemask, struct zone *preferred_zone,
2394 	int migratetype)
2395 {
2396 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2397 	struct page *page = NULL;
2398 	int alloc_flags;
2399 	unsigned long pages_reclaimed = 0;
2400 	unsigned long did_some_progress;
2401 	bool sync_migration = false;
2402 	bool deferred_compaction = false;
2403 	bool contended_compaction = false;
2404 
2405 	/*
2406 	 * In the slowpath, we sanity check order to avoid ever trying to
2407 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2408 	 * be using allocators in order of preference for an area that is
2409 	 * too large.
2410 	 */
2411 	if (order >= MAX_ORDER) {
2412 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2413 		return NULL;
2414 	}
2415 
2416 	/*
2417 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2418 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2419 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2420 	 * using a larger set of nodes after it has established that the
2421 	 * allowed per node queues are empty and that nodes are
2422 	 * over allocated.
2423 	 */
2424 	if (IS_ENABLED(CONFIG_NUMA) &&
2425 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2426 		goto nopage;
2427 
2428 restart:
2429 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2430 		wake_all_kswapd(order, zonelist, high_zoneidx,
2431 						zone_idx(preferred_zone));
2432 
2433 	/*
2434 	 * OK, we're below the kswapd watermark and have kicked background
2435 	 * reclaim. Now things get more complex, so set up alloc_flags according
2436 	 * to how we want to proceed.
2437 	 */
2438 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2439 
2440 	/*
2441 	 * Find the true preferred zone if the allocation is unconstrained by
2442 	 * cpusets.
2443 	 */
2444 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2445 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2446 					&preferred_zone);
2447 
2448 rebalance:
2449 	/* This is the last chance, in general, before the goto nopage. */
2450 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2451 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2452 			preferred_zone, migratetype);
2453 	if (page)
2454 		goto got_pg;
2455 
2456 	/* Allocate without watermarks if the context allows */
2457 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2458 		/*
2459 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2460 		 * the allocation is high priority and these type of
2461 		 * allocations are system rather than user orientated
2462 		 */
2463 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2464 
2465 		page = __alloc_pages_high_priority(gfp_mask, order,
2466 				zonelist, high_zoneidx, nodemask,
2467 				preferred_zone, migratetype);
2468 		if (page) {
2469 			goto got_pg;
2470 		}
2471 	}
2472 
2473 	/* Atomic allocations - we can't balance anything */
2474 	if (!wait)
2475 		goto nopage;
2476 
2477 	/* Avoid recursion of direct reclaim */
2478 	if (current->flags & PF_MEMALLOC)
2479 		goto nopage;
2480 
2481 	/* Avoid allocations with no watermarks from looping endlessly */
2482 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2483 		goto nopage;
2484 
2485 	/*
2486 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2487 	 * attempts after direct reclaim are synchronous
2488 	 */
2489 	page = __alloc_pages_direct_compact(gfp_mask, order,
2490 					zonelist, high_zoneidx,
2491 					nodemask,
2492 					alloc_flags, preferred_zone,
2493 					migratetype, sync_migration,
2494 					&contended_compaction,
2495 					&deferred_compaction,
2496 					&did_some_progress);
2497 	if (page)
2498 		goto got_pg;
2499 	sync_migration = true;
2500 
2501 	/*
2502 	 * If compaction is deferred for high-order allocations, it is because
2503 	 * sync compaction recently failed. In this is the case and the caller
2504 	 * requested a movable allocation that does not heavily disrupt the
2505 	 * system then fail the allocation instead of entering direct reclaim.
2506 	 */
2507 	if ((deferred_compaction || contended_compaction) &&
2508 						(gfp_mask & __GFP_NO_KSWAPD))
2509 		goto nopage;
2510 
2511 	/* Try direct reclaim and then allocating */
2512 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2513 					zonelist, high_zoneidx,
2514 					nodemask,
2515 					alloc_flags, preferred_zone,
2516 					migratetype, &did_some_progress);
2517 	if (page)
2518 		goto got_pg;
2519 
2520 	/*
2521 	 * If we failed to make any progress reclaiming, then we are
2522 	 * running out of options and have to consider going OOM
2523 	 */
2524 	if (!did_some_progress) {
2525 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2526 			if (oom_killer_disabled)
2527 				goto nopage;
2528 			/* Coredumps can quickly deplete all memory reserves */
2529 			if ((current->flags & PF_DUMPCORE) &&
2530 			    !(gfp_mask & __GFP_NOFAIL))
2531 				goto nopage;
2532 			page = __alloc_pages_may_oom(gfp_mask, order,
2533 					zonelist, high_zoneidx,
2534 					nodemask, preferred_zone,
2535 					migratetype);
2536 			if (page)
2537 				goto got_pg;
2538 
2539 			if (!(gfp_mask & __GFP_NOFAIL)) {
2540 				/*
2541 				 * The oom killer is not called for high-order
2542 				 * allocations that may fail, so if no progress
2543 				 * is being made, there are no other options and
2544 				 * retrying is unlikely to help.
2545 				 */
2546 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2547 					goto nopage;
2548 				/*
2549 				 * The oom killer is not called for lowmem
2550 				 * allocations to prevent needlessly killing
2551 				 * innocent tasks.
2552 				 */
2553 				if (high_zoneidx < ZONE_NORMAL)
2554 					goto nopage;
2555 			}
2556 
2557 			goto restart;
2558 		}
2559 	}
2560 
2561 	/* Check if we should retry the allocation */
2562 	pages_reclaimed += did_some_progress;
2563 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2564 						pages_reclaimed)) {
2565 		/* Wait for some write requests to complete then retry */
2566 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2567 		goto rebalance;
2568 	} else {
2569 		/*
2570 		 * High-order allocations do not necessarily loop after
2571 		 * direct reclaim and reclaim/compaction depends on compaction
2572 		 * being called after reclaim so call directly if necessary
2573 		 */
2574 		page = __alloc_pages_direct_compact(gfp_mask, order,
2575 					zonelist, high_zoneidx,
2576 					nodemask,
2577 					alloc_flags, preferred_zone,
2578 					migratetype, sync_migration,
2579 					&contended_compaction,
2580 					&deferred_compaction,
2581 					&did_some_progress);
2582 		if (page)
2583 			goto got_pg;
2584 	}
2585 
2586 nopage:
2587 	warn_alloc_failed(gfp_mask, order, NULL);
2588 	return page;
2589 got_pg:
2590 	if (kmemcheck_enabled)
2591 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2592 
2593 	return page;
2594 }
2595 
2596 /*
2597  * This is the 'heart' of the zoned buddy allocator.
2598  */
2599 struct page *
2600 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2601 			struct zonelist *zonelist, nodemask_t *nodemask)
2602 {
2603 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2604 	struct zone *preferred_zone;
2605 	struct page *page = NULL;
2606 	int migratetype = allocflags_to_migratetype(gfp_mask);
2607 	unsigned int cpuset_mems_cookie;
2608 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2609 	struct mem_cgroup *memcg = NULL;
2610 
2611 	gfp_mask &= gfp_allowed_mask;
2612 
2613 	lockdep_trace_alloc(gfp_mask);
2614 
2615 	might_sleep_if(gfp_mask & __GFP_WAIT);
2616 
2617 	if (should_fail_alloc_page(gfp_mask, order))
2618 		return NULL;
2619 
2620 	/*
2621 	 * Check the zones suitable for the gfp_mask contain at least one
2622 	 * valid zone. It's possible to have an empty zonelist as a result
2623 	 * of GFP_THISNODE and a memoryless node
2624 	 */
2625 	if (unlikely(!zonelist->_zonerefs->zone))
2626 		return NULL;
2627 
2628 	/*
2629 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2630 	 * verified in the (always inline) callee
2631 	 */
2632 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2633 		return NULL;
2634 
2635 retry_cpuset:
2636 	cpuset_mems_cookie = get_mems_allowed();
2637 
2638 	/* The preferred zone is used for statistics later */
2639 	first_zones_zonelist(zonelist, high_zoneidx,
2640 				nodemask ? : &cpuset_current_mems_allowed,
2641 				&preferred_zone);
2642 	if (!preferred_zone)
2643 		goto out;
2644 
2645 #ifdef CONFIG_CMA
2646 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2647 		alloc_flags |= ALLOC_CMA;
2648 #endif
2649 	/* First allocation attempt */
2650 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2651 			zonelist, high_zoneidx, alloc_flags,
2652 			preferred_zone, migratetype);
2653 	if (unlikely(!page)) {
2654 		/*
2655 		 * Runtime PM, block IO and its error handling path
2656 		 * can deadlock because I/O on the device might not
2657 		 * complete.
2658 		 */
2659 		gfp_mask = memalloc_noio_flags(gfp_mask);
2660 		page = __alloc_pages_slowpath(gfp_mask, order,
2661 				zonelist, high_zoneidx, nodemask,
2662 				preferred_zone, migratetype);
2663 	}
2664 
2665 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2666 
2667 out:
2668 	/*
2669 	 * When updating a task's mems_allowed, it is possible to race with
2670 	 * parallel threads in such a way that an allocation can fail while
2671 	 * the mask is being updated. If a page allocation is about to fail,
2672 	 * check if the cpuset changed during allocation and if so, retry.
2673 	 */
2674 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2675 		goto retry_cpuset;
2676 
2677 	memcg_kmem_commit_charge(page, memcg, order);
2678 
2679 	return page;
2680 }
2681 EXPORT_SYMBOL(__alloc_pages_nodemask);
2682 
2683 /*
2684  * Common helper functions.
2685  */
2686 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2687 {
2688 	struct page *page;
2689 
2690 	/*
2691 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2692 	 * a highmem page
2693 	 */
2694 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2695 
2696 	page = alloc_pages(gfp_mask, order);
2697 	if (!page)
2698 		return 0;
2699 	return (unsigned long) page_address(page);
2700 }
2701 EXPORT_SYMBOL(__get_free_pages);
2702 
2703 unsigned long get_zeroed_page(gfp_t gfp_mask)
2704 {
2705 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2706 }
2707 EXPORT_SYMBOL(get_zeroed_page);
2708 
2709 void __free_pages(struct page *page, unsigned int order)
2710 {
2711 	if (put_page_testzero(page)) {
2712 		if (order == 0)
2713 			free_hot_cold_page(page, 0);
2714 		else
2715 			__free_pages_ok(page, order);
2716 	}
2717 }
2718 
2719 EXPORT_SYMBOL(__free_pages);
2720 
2721 void free_pages(unsigned long addr, unsigned int order)
2722 {
2723 	if (addr != 0) {
2724 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2725 		__free_pages(virt_to_page((void *)addr), order);
2726 	}
2727 }
2728 
2729 EXPORT_SYMBOL(free_pages);
2730 
2731 /*
2732  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2733  * pages allocated with __GFP_KMEMCG.
2734  *
2735  * Those pages are accounted to a particular memcg, embedded in the
2736  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2737  * for that information only to find out that it is NULL for users who have no
2738  * interest in that whatsoever, we provide these functions.
2739  *
2740  * The caller knows better which flags it relies on.
2741  */
2742 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2743 {
2744 	memcg_kmem_uncharge_pages(page, order);
2745 	__free_pages(page, order);
2746 }
2747 
2748 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2749 {
2750 	if (addr != 0) {
2751 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2752 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2753 	}
2754 }
2755 
2756 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2757 {
2758 	if (addr) {
2759 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2760 		unsigned long used = addr + PAGE_ALIGN(size);
2761 
2762 		split_page(virt_to_page((void *)addr), order);
2763 		while (used < alloc_end) {
2764 			free_page(used);
2765 			used += PAGE_SIZE;
2766 		}
2767 	}
2768 	return (void *)addr;
2769 }
2770 
2771 /**
2772  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2773  * @size: the number of bytes to allocate
2774  * @gfp_mask: GFP flags for the allocation
2775  *
2776  * This function is similar to alloc_pages(), except that it allocates the
2777  * minimum number of pages to satisfy the request.  alloc_pages() can only
2778  * allocate memory in power-of-two pages.
2779  *
2780  * This function is also limited by MAX_ORDER.
2781  *
2782  * Memory allocated by this function must be released by free_pages_exact().
2783  */
2784 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2785 {
2786 	unsigned int order = get_order(size);
2787 	unsigned long addr;
2788 
2789 	addr = __get_free_pages(gfp_mask, order);
2790 	return make_alloc_exact(addr, order, size);
2791 }
2792 EXPORT_SYMBOL(alloc_pages_exact);
2793 
2794 /**
2795  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2796  *			   pages on a node.
2797  * @nid: the preferred node ID where memory should be allocated
2798  * @size: the number of bytes to allocate
2799  * @gfp_mask: GFP flags for the allocation
2800  *
2801  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2802  * back.
2803  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2804  * but is not exact.
2805  */
2806 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2807 {
2808 	unsigned order = get_order(size);
2809 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2810 	if (!p)
2811 		return NULL;
2812 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2813 }
2814 EXPORT_SYMBOL(alloc_pages_exact_nid);
2815 
2816 /**
2817  * free_pages_exact - release memory allocated via alloc_pages_exact()
2818  * @virt: the value returned by alloc_pages_exact.
2819  * @size: size of allocation, same value as passed to alloc_pages_exact().
2820  *
2821  * Release the memory allocated by a previous call to alloc_pages_exact.
2822  */
2823 void free_pages_exact(void *virt, size_t size)
2824 {
2825 	unsigned long addr = (unsigned long)virt;
2826 	unsigned long end = addr + PAGE_ALIGN(size);
2827 
2828 	while (addr < end) {
2829 		free_page(addr);
2830 		addr += PAGE_SIZE;
2831 	}
2832 }
2833 EXPORT_SYMBOL(free_pages_exact);
2834 
2835 /**
2836  * nr_free_zone_pages - count number of pages beyond high watermark
2837  * @offset: The zone index of the highest zone
2838  *
2839  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2840  * high watermark within all zones at or below a given zone index.  For each
2841  * zone, the number of pages is calculated as:
2842  *     present_pages - high_pages
2843  */
2844 static unsigned long nr_free_zone_pages(int offset)
2845 {
2846 	struct zoneref *z;
2847 	struct zone *zone;
2848 
2849 	/* Just pick one node, since fallback list is circular */
2850 	unsigned long sum = 0;
2851 
2852 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2853 
2854 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2855 		unsigned long size = zone->managed_pages;
2856 		unsigned long high = high_wmark_pages(zone);
2857 		if (size > high)
2858 			sum += size - high;
2859 	}
2860 
2861 	return sum;
2862 }
2863 
2864 /**
2865  * nr_free_buffer_pages - count number of pages beyond high watermark
2866  *
2867  * nr_free_buffer_pages() counts the number of pages which are beyond the high
2868  * watermark within ZONE_DMA and ZONE_NORMAL.
2869  */
2870 unsigned long nr_free_buffer_pages(void)
2871 {
2872 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2873 }
2874 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2875 
2876 /**
2877  * nr_free_pagecache_pages - count number of pages beyond high watermark
2878  *
2879  * nr_free_pagecache_pages() counts the number of pages which are beyond the
2880  * high watermark within all zones.
2881  */
2882 unsigned long nr_free_pagecache_pages(void)
2883 {
2884 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2885 }
2886 
2887 static inline void show_node(struct zone *zone)
2888 {
2889 	if (IS_ENABLED(CONFIG_NUMA))
2890 		printk("Node %d ", zone_to_nid(zone));
2891 }
2892 
2893 void si_meminfo(struct sysinfo *val)
2894 {
2895 	val->totalram = totalram_pages;
2896 	val->sharedram = 0;
2897 	val->freeram = global_page_state(NR_FREE_PAGES);
2898 	val->bufferram = nr_blockdev_pages();
2899 	val->totalhigh = totalhigh_pages;
2900 	val->freehigh = nr_free_highpages();
2901 	val->mem_unit = PAGE_SIZE;
2902 }
2903 
2904 EXPORT_SYMBOL(si_meminfo);
2905 
2906 #ifdef CONFIG_NUMA
2907 void si_meminfo_node(struct sysinfo *val, int nid)
2908 {
2909 	pg_data_t *pgdat = NODE_DATA(nid);
2910 
2911 	val->totalram = pgdat->node_present_pages;
2912 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2913 #ifdef CONFIG_HIGHMEM
2914 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2915 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2916 			NR_FREE_PAGES);
2917 #else
2918 	val->totalhigh = 0;
2919 	val->freehigh = 0;
2920 #endif
2921 	val->mem_unit = PAGE_SIZE;
2922 }
2923 #endif
2924 
2925 /*
2926  * Determine whether the node should be displayed or not, depending on whether
2927  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2928  */
2929 bool skip_free_areas_node(unsigned int flags, int nid)
2930 {
2931 	bool ret = false;
2932 	unsigned int cpuset_mems_cookie;
2933 
2934 	if (!(flags & SHOW_MEM_FILTER_NODES))
2935 		goto out;
2936 
2937 	do {
2938 		cpuset_mems_cookie = get_mems_allowed();
2939 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2940 	} while (!put_mems_allowed(cpuset_mems_cookie));
2941 out:
2942 	return ret;
2943 }
2944 
2945 #define K(x) ((x) << (PAGE_SHIFT-10))
2946 
2947 static void show_migration_types(unsigned char type)
2948 {
2949 	static const char types[MIGRATE_TYPES] = {
2950 		[MIGRATE_UNMOVABLE]	= 'U',
2951 		[MIGRATE_RECLAIMABLE]	= 'E',
2952 		[MIGRATE_MOVABLE]	= 'M',
2953 		[MIGRATE_RESERVE]	= 'R',
2954 #ifdef CONFIG_CMA
2955 		[MIGRATE_CMA]		= 'C',
2956 #endif
2957 #ifdef CONFIG_MEMORY_ISOLATION
2958 		[MIGRATE_ISOLATE]	= 'I',
2959 #endif
2960 	};
2961 	char tmp[MIGRATE_TYPES + 1];
2962 	char *p = tmp;
2963 	int i;
2964 
2965 	for (i = 0; i < MIGRATE_TYPES; i++) {
2966 		if (type & (1 << i))
2967 			*p++ = types[i];
2968 	}
2969 
2970 	*p = '\0';
2971 	printk("(%s) ", tmp);
2972 }
2973 
2974 /*
2975  * Show free area list (used inside shift_scroll-lock stuff)
2976  * We also calculate the percentage fragmentation. We do this by counting the
2977  * memory on each free list with the exception of the first item on the list.
2978  * Suppresses nodes that are not allowed by current's cpuset if
2979  * SHOW_MEM_FILTER_NODES is passed.
2980  */
2981 void show_free_areas(unsigned int filter)
2982 {
2983 	int cpu;
2984 	struct zone *zone;
2985 
2986 	for_each_populated_zone(zone) {
2987 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2988 			continue;
2989 		show_node(zone);
2990 		printk("%s per-cpu:\n", zone->name);
2991 
2992 		for_each_online_cpu(cpu) {
2993 			struct per_cpu_pageset *pageset;
2994 
2995 			pageset = per_cpu_ptr(zone->pageset, cpu);
2996 
2997 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2998 			       cpu, pageset->pcp.high,
2999 			       pageset->pcp.batch, pageset->pcp.count);
3000 		}
3001 	}
3002 
3003 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3004 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3005 		" unevictable:%lu"
3006 		" dirty:%lu writeback:%lu unstable:%lu\n"
3007 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3008 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3009 		" free_cma:%lu\n",
3010 		global_page_state(NR_ACTIVE_ANON),
3011 		global_page_state(NR_INACTIVE_ANON),
3012 		global_page_state(NR_ISOLATED_ANON),
3013 		global_page_state(NR_ACTIVE_FILE),
3014 		global_page_state(NR_INACTIVE_FILE),
3015 		global_page_state(NR_ISOLATED_FILE),
3016 		global_page_state(NR_UNEVICTABLE),
3017 		global_page_state(NR_FILE_DIRTY),
3018 		global_page_state(NR_WRITEBACK),
3019 		global_page_state(NR_UNSTABLE_NFS),
3020 		global_page_state(NR_FREE_PAGES),
3021 		global_page_state(NR_SLAB_RECLAIMABLE),
3022 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3023 		global_page_state(NR_FILE_MAPPED),
3024 		global_page_state(NR_SHMEM),
3025 		global_page_state(NR_PAGETABLE),
3026 		global_page_state(NR_BOUNCE),
3027 		global_page_state(NR_FREE_CMA_PAGES));
3028 
3029 	for_each_populated_zone(zone) {
3030 		int i;
3031 
3032 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3033 			continue;
3034 		show_node(zone);
3035 		printk("%s"
3036 			" free:%lukB"
3037 			" min:%lukB"
3038 			" low:%lukB"
3039 			" high:%lukB"
3040 			" active_anon:%lukB"
3041 			" inactive_anon:%lukB"
3042 			" active_file:%lukB"
3043 			" inactive_file:%lukB"
3044 			" unevictable:%lukB"
3045 			" isolated(anon):%lukB"
3046 			" isolated(file):%lukB"
3047 			" present:%lukB"
3048 			" managed:%lukB"
3049 			" mlocked:%lukB"
3050 			" dirty:%lukB"
3051 			" writeback:%lukB"
3052 			" mapped:%lukB"
3053 			" shmem:%lukB"
3054 			" slab_reclaimable:%lukB"
3055 			" slab_unreclaimable:%lukB"
3056 			" kernel_stack:%lukB"
3057 			" pagetables:%lukB"
3058 			" unstable:%lukB"
3059 			" bounce:%lukB"
3060 			" free_cma:%lukB"
3061 			" writeback_tmp:%lukB"
3062 			" pages_scanned:%lu"
3063 			" all_unreclaimable? %s"
3064 			"\n",
3065 			zone->name,
3066 			K(zone_page_state(zone, NR_FREE_PAGES)),
3067 			K(min_wmark_pages(zone)),
3068 			K(low_wmark_pages(zone)),
3069 			K(high_wmark_pages(zone)),
3070 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3071 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3072 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3073 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3074 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3075 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3076 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3077 			K(zone->present_pages),
3078 			K(zone->managed_pages),
3079 			K(zone_page_state(zone, NR_MLOCK)),
3080 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3081 			K(zone_page_state(zone, NR_WRITEBACK)),
3082 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3083 			K(zone_page_state(zone, NR_SHMEM)),
3084 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3085 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3086 			zone_page_state(zone, NR_KERNEL_STACK) *
3087 				THREAD_SIZE / 1024,
3088 			K(zone_page_state(zone, NR_PAGETABLE)),
3089 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3090 			K(zone_page_state(zone, NR_BOUNCE)),
3091 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3092 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3093 			zone->pages_scanned,
3094 			(zone->all_unreclaimable ? "yes" : "no")
3095 			);
3096 		printk("lowmem_reserve[]:");
3097 		for (i = 0; i < MAX_NR_ZONES; i++)
3098 			printk(" %lu", zone->lowmem_reserve[i]);
3099 		printk("\n");
3100 	}
3101 
3102 	for_each_populated_zone(zone) {
3103  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3104 		unsigned char types[MAX_ORDER];
3105 
3106 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3107 			continue;
3108 		show_node(zone);
3109 		printk("%s: ", zone->name);
3110 
3111 		spin_lock_irqsave(&zone->lock, flags);
3112 		for (order = 0; order < MAX_ORDER; order++) {
3113 			struct free_area *area = &zone->free_area[order];
3114 			int type;
3115 
3116 			nr[order] = area->nr_free;
3117 			total += nr[order] << order;
3118 
3119 			types[order] = 0;
3120 			for (type = 0; type < MIGRATE_TYPES; type++) {
3121 				if (!list_empty(&area->free_list[type]))
3122 					types[order] |= 1 << type;
3123 			}
3124 		}
3125 		spin_unlock_irqrestore(&zone->lock, flags);
3126 		for (order = 0; order < MAX_ORDER; order++) {
3127 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3128 			if (nr[order])
3129 				show_migration_types(types[order]);
3130 		}
3131 		printk("= %lukB\n", K(total));
3132 	}
3133 
3134 	hugetlb_show_meminfo();
3135 
3136 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3137 
3138 	show_swap_cache_info();
3139 }
3140 
3141 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3142 {
3143 	zoneref->zone = zone;
3144 	zoneref->zone_idx = zone_idx(zone);
3145 }
3146 
3147 /*
3148  * Builds allocation fallback zone lists.
3149  *
3150  * Add all populated zones of a node to the zonelist.
3151  */
3152 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3153 				int nr_zones, enum zone_type zone_type)
3154 {
3155 	struct zone *zone;
3156 
3157 	BUG_ON(zone_type >= MAX_NR_ZONES);
3158 	zone_type++;
3159 
3160 	do {
3161 		zone_type--;
3162 		zone = pgdat->node_zones + zone_type;
3163 		if (populated_zone(zone)) {
3164 			zoneref_set_zone(zone,
3165 				&zonelist->_zonerefs[nr_zones++]);
3166 			check_highest_zone(zone_type);
3167 		}
3168 
3169 	} while (zone_type);
3170 	return nr_zones;
3171 }
3172 
3173 
3174 /*
3175  *  zonelist_order:
3176  *  0 = automatic detection of better ordering.
3177  *  1 = order by ([node] distance, -zonetype)
3178  *  2 = order by (-zonetype, [node] distance)
3179  *
3180  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3181  *  the same zonelist. So only NUMA can configure this param.
3182  */
3183 #define ZONELIST_ORDER_DEFAULT  0
3184 #define ZONELIST_ORDER_NODE     1
3185 #define ZONELIST_ORDER_ZONE     2
3186 
3187 /* zonelist order in the kernel.
3188  * set_zonelist_order() will set this to NODE or ZONE.
3189  */
3190 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3191 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3192 
3193 
3194 #ifdef CONFIG_NUMA
3195 /* The value user specified ....changed by config */
3196 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3197 /* string for sysctl */
3198 #define NUMA_ZONELIST_ORDER_LEN	16
3199 char numa_zonelist_order[16] = "default";
3200 
3201 /*
3202  * interface for configure zonelist ordering.
3203  * command line option "numa_zonelist_order"
3204  *	= "[dD]efault	- default, automatic configuration.
3205  *	= "[nN]ode 	- order by node locality, then by zone within node
3206  *	= "[zZ]one      - order by zone, then by locality within zone
3207  */
3208 
3209 static int __parse_numa_zonelist_order(char *s)
3210 {
3211 	if (*s == 'd' || *s == 'D') {
3212 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3213 	} else if (*s == 'n' || *s == 'N') {
3214 		user_zonelist_order = ZONELIST_ORDER_NODE;
3215 	} else if (*s == 'z' || *s == 'Z') {
3216 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3217 	} else {
3218 		printk(KERN_WARNING
3219 			"Ignoring invalid numa_zonelist_order value:  "
3220 			"%s\n", s);
3221 		return -EINVAL;
3222 	}
3223 	return 0;
3224 }
3225 
3226 static __init int setup_numa_zonelist_order(char *s)
3227 {
3228 	int ret;
3229 
3230 	if (!s)
3231 		return 0;
3232 
3233 	ret = __parse_numa_zonelist_order(s);
3234 	if (ret == 0)
3235 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3236 
3237 	return ret;
3238 }
3239 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3240 
3241 /*
3242  * sysctl handler for numa_zonelist_order
3243  */
3244 int numa_zonelist_order_handler(ctl_table *table, int write,
3245 		void __user *buffer, size_t *length,
3246 		loff_t *ppos)
3247 {
3248 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3249 	int ret;
3250 	static DEFINE_MUTEX(zl_order_mutex);
3251 
3252 	mutex_lock(&zl_order_mutex);
3253 	if (write)
3254 		strcpy(saved_string, (char*)table->data);
3255 	ret = proc_dostring(table, write, buffer, length, ppos);
3256 	if (ret)
3257 		goto out;
3258 	if (write) {
3259 		int oldval = user_zonelist_order;
3260 		if (__parse_numa_zonelist_order((char*)table->data)) {
3261 			/*
3262 			 * bogus value.  restore saved string
3263 			 */
3264 			strncpy((char*)table->data, saved_string,
3265 				NUMA_ZONELIST_ORDER_LEN);
3266 			user_zonelist_order = oldval;
3267 		} else if (oldval != user_zonelist_order) {
3268 			mutex_lock(&zonelists_mutex);
3269 			build_all_zonelists(NULL, NULL);
3270 			mutex_unlock(&zonelists_mutex);
3271 		}
3272 	}
3273 out:
3274 	mutex_unlock(&zl_order_mutex);
3275 	return ret;
3276 }
3277 
3278 
3279 #define MAX_NODE_LOAD (nr_online_nodes)
3280 static int node_load[MAX_NUMNODES];
3281 
3282 /**
3283  * find_next_best_node - find the next node that should appear in a given node's fallback list
3284  * @node: node whose fallback list we're appending
3285  * @used_node_mask: nodemask_t of already used nodes
3286  *
3287  * We use a number of factors to determine which is the next node that should
3288  * appear on a given node's fallback list.  The node should not have appeared
3289  * already in @node's fallback list, and it should be the next closest node
3290  * according to the distance array (which contains arbitrary distance values
3291  * from each node to each node in the system), and should also prefer nodes
3292  * with no CPUs, since presumably they'll have very little allocation pressure
3293  * on them otherwise.
3294  * It returns -1 if no node is found.
3295  */
3296 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3297 {
3298 	int n, val;
3299 	int min_val = INT_MAX;
3300 	int best_node = NUMA_NO_NODE;
3301 	const struct cpumask *tmp = cpumask_of_node(0);
3302 
3303 	/* Use the local node if we haven't already */
3304 	if (!node_isset(node, *used_node_mask)) {
3305 		node_set(node, *used_node_mask);
3306 		return node;
3307 	}
3308 
3309 	for_each_node_state(n, N_MEMORY) {
3310 
3311 		/* Don't want a node to appear more than once */
3312 		if (node_isset(n, *used_node_mask))
3313 			continue;
3314 
3315 		/* Use the distance array to find the distance */
3316 		val = node_distance(node, n);
3317 
3318 		/* Penalize nodes under us ("prefer the next node") */
3319 		val += (n < node);
3320 
3321 		/* Give preference to headless and unused nodes */
3322 		tmp = cpumask_of_node(n);
3323 		if (!cpumask_empty(tmp))
3324 			val += PENALTY_FOR_NODE_WITH_CPUS;
3325 
3326 		/* Slight preference for less loaded node */
3327 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3328 		val += node_load[n];
3329 
3330 		if (val < min_val) {
3331 			min_val = val;
3332 			best_node = n;
3333 		}
3334 	}
3335 
3336 	if (best_node >= 0)
3337 		node_set(best_node, *used_node_mask);
3338 
3339 	return best_node;
3340 }
3341 
3342 
3343 /*
3344  * Build zonelists ordered by node and zones within node.
3345  * This results in maximum locality--normal zone overflows into local
3346  * DMA zone, if any--but risks exhausting DMA zone.
3347  */
3348 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3349 {
3350 	int j;
3351 	struct zonelist *zonelist;
3352 
3353 	zonelist = &pgdat->node_zonelists[0];
3354 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3355 		;
3356 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3357 							MAX_NR_ZONES - 1);
3358 	zonelist->_zonerefs[j].zone = NULL;
3359 	zonelist->_zonerefs[j].zone_idx = 0;
3360 }
3361 
3362 /*
3363  * Build gfp_thisnode zonelists
3364  */
3365 static void build_thisnode_zonelists(pg_data_t *pgdat)
3366 {
3367 	int j;
3368 	struct zonelist *zonelist;
3369 
3370 	zonelist = &pgdat->node_zonelists[1];
3371 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3372 	zonelist->_zonerefs[j].zone = NULL;
3373 	zonelist->_zonerefs[j].zone_idx = 0;
3374 }
3375 
3376 /*
3377  * Build zonelists ordered by zone and nodes within zones.
3378  * This results in conserving DMA zone[s] until all Normal memory is
3379  * exhausted, but results in overflowing to remote node while memory
3380  * may still exist in local DMA zone.
3381  */
3382 static int node_order[MAX_NUMNODES];
3383 
3384 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3385 {
3386 	int pos, j, node;
3387 	int zone_type;		/* needs to be signed */
3388 	struct zone *z;
3389 	struct zonelist *zonelist;
3390 
3391 	zonelist = &pgdat->node_zonelists[0];
3392 	pos = 0;
3393 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3394 		for (j = 0; j < nr_nodes; j++) {
3395 			node = node_order[j];
3396 			z = &NODE_DATA(node)->node_zones[zone_type];
3397 			if (populated_zone(z)) {
3398 				zoneref_set_zone(z,
3399 					&zonelist->_zonerefs[pos++]);
3400 				check_highest_zone(zone_type);
3401 			}
3402 		}
3403 	}
3404 	zonelist->_zonerefs[pos].zone = NULL;
3405 	zonelist->_zonerefs[pos].zone_idx = 0;
3406 }
3407 
3408 static int default_zonelist_order(void)
3409 {
3410 	int nid, zone_type;
3411 	unsigned long low_kmem_size,total_size;
3412 	struct zone *z;
3413 	int average_size;
3414 	/*
3415          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3416 	 * If they are really small and used heavily, the system can fall
3417 	 * into OOM very easily.
3418 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3419 	 */
3420 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3421 	low_kmem_size = 0;
3422 	total_size = 0;
3423 	for_each_online_node(nid) {
3424 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3425 			z = &NODE_DATA(nid)->node_zones[zone_type];
3426 			if (populated_zone(z)) {
3427 				if (zone_type < ZONE_NORMAL)
3428 					low_kmem_size += z->present_pages;
3429 				total_size += z->present_pages;
3430 			} else if (zone_type == ZONE_NORMAL) {
3431 				/*
3432 				 * If any node has only lowmem, then node order
3433 				 * is preferred to allow kernel allocations
3434 				 * locally; otherwise, they can easily infringe
3435 				 * on other nodes when there is an abundance of
3436 				 * lowmem available to allocate from.
3437 				 */
3438 				return ZONELIST_ORDER_NODE;
3439 			}
3440 		}
3441 	}
3442 	if (!low_kmem_size ||  /* there are no DMA area. */
3443 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3444 		return ZONELIST_ORDER_NODE;
3445 	/*
3446 	 * look into each node's config.
3447   	 * If there is a node whose DMA/DMA32 memory is very big area on
3448  	 * local memory, NODE_ORDER may be suitable.
3449          */
3450 	average_size = total_size /
3451 				(nodes_weight(node_states[N_MEMORY]) + 1);
3452 	for_each_online_node(nid) {
3453 		low_kmem_size = 0;
3454 		total_size = 0;
3455 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3456 			z = &NODE_DATA(nid)->node_zones[zone_type];
3457 			if (populated_zone(z)) {
3458 				if (zone_type < ZONE_NORMAL)
3459 					low_kmem_size += z->present_pages;
3460 				total_size += z->present_pages;
3461 			}
3462 		}
3463 		if (low_kmem_size &&
3464 		    total_size > average_size && /* ignore small node */
3465 		    low_kmem_size > total_size * 70/100)
3466 			return ZONELIST_ORDER_NODE;
3467 	}
3468 	return ZONELIST_ORDER_ZONE;
3469 }
3470 
3471 static void set_zonelist_order(void)
3472 {
3473 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3474 		current_zonelist_order = default_zonelist_order();
3475 	else
3476 		current_zonelist_order = user_zonelist_order;
3477 }
3478 
3479 static void build_zonelists(pg_data_t *pgdat)
3480 {
3481 	int j, node, load;
3482 	enum zone_type i;
3483 	nodemask_t used_mask;
3484 	int local_node, prev_node;
3485 	struct zonelist *zonelist;
3486 	int order = current_zonelist_order;
3487 
3488 	/* initialize zonelists */
3489 	for (i = 0; i < MAX_ZONELISTS; i++) {
3490 		zonelist = pgdat->node_zonelists + i;
3491 		zonelist->_zonerefs[0].zone = NULL;
3492 		zonelist->_zonerefs[0].zone_idx = 0;
3493 	}
3494 
3495 	/* NUMA-aware ordering of nodes */
3496 	local_node = pgdat->node_id;
3497 	load = nr_online_nodes;
3498 	prev_node = local_node;
3499 	nodes_clear(used_mask);
3500 
3501 	memset(node_order, 0, sizeof(node_order));
3502 	j = 0;
3503 
3504 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3505 		/*
3506 		 * We don't want to pressure a particular node.
3507 		 * So adding penalty to the first node in same
3508 		 * distance group to make it round-robin.
3509 		 */
3510 		if (node_distance(local_node, node) !=
3511 		    node_distance(local_node, prev_node))
3512 			node_load[node] = load;
3513 
3514 		prev_node = node;
3515 		load--;
3516 		if (order == ZONELIST_ORDER_NODE)
3517 			build_zonelists_in_node_order(pgdat, node);
3518 		else
3519 			node_order[j++] = node;	/* remember order */
3520 	}
3521 
3522 	if (order == ZONELIST_ORDER_ZONE) {
3523 		/* calculate node order -- i.e., DMA last! */
3524 		build_zonelists_in_zone_order(pgdat, j);
3525 	}
3526 
3527 	build_thisnode_zonelists(pgdat);
3528 }
3529 
3530 /* Construct the zonelist performance cache - see further mmzone.h */
3531 static void build_zonelist_cache(pg_data_t *pgdat)
3532 {
3533 	struct zonelist *zonelist;
3534 	struct zonelist_cache *zlc;
3535 	struct zoneref *z;
3536 
3537 	zonelist = &pgdat->node_zonelists[0];
3538 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3539 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3540 	for (z = zonelist->_zonerefs; z->zone; z++)
3541 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3542 }
3543 
3544 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3545 /*
3546  * Return node id of node used for "local" allocations.
3547  * I.e., first node id of first zone in arg node's generic zonelist.
3548  * Used for initializing percpu 'numa_mem', which is used primarily
3549  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3550  */
3551 int local_memory_node(int node)
3552 {
3553 	struct zone *zone;
3554 
3555 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3556 				   gfp_zone(GFP_KERNEL),
3557 				   NULL,
3558 				   &zone);
3559 	return zone->node;
3560 }
3561 #endif
3562 
3563 #else	/* CONFIG_NUMA */
3564 
3565 static void set_zonelist_order(void)
3566 {
3567 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3568 }
3569 
3570 static void build_zonelists(pg_data_t *pgdat)
3571 {
3572 	int node, local_node;
3573 	enum zone_type j;
3574 	struct zonelist *zonelist;
3575 
3576 	local_node = pgdat->node_id;
3577 
3578 	zonelist = &pgdat->node_zonelists[0];
3579 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3580 
3581 	/*
3582 	 * Now we build the zonelist so that it contains the zones
3583 	 * of all the other nodes.
3584 	 * We don't want to pressure a particular node, so when
3585 	 * building the zones for node N, we make sure that the
3586 	 * zones coming right after the local ones are those from
3587 	 * node N+1 (modulo N)
3588 	 */
3589 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3590 		if (!node_online(node))
3591 			continue;
3592 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3593 							MAX_NR_ZONES - 1);
3594 	}
3595 	for (node = 0; node < local_node; node++) {
3596 		if (!node_online(node))
3597 			continue;
3598 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3599 							MAX_NR_ZONES - 1);
3600 	}
3601 
3602 	zonelist->_zonerefs[j].zone = NULL;
3603 	zonelist->_zonerefs[j].zone_idx = 0;
3604 }
3605 
3606 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3607 static void build_zonelist_cache(pg_data_t *pgdat)
3608 {
3609 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3610 }
3611 
3612 #endif	/* CONFIG_NUMA */
3613 
3614 /*
3615  * Boot pageset table. One per cpu which is going to be used for all
3616  * zones and all nodes. The parameters will be set in such a way
3617  * that an item put on a list will immediately be handed over to
3618  * the buddy list. This is safe since pageset manipulation is done
3619  * with interrupts disabled.
3620  *
3621  * The boot_pagesets must be kept even after bootup is complete for
3622  * unused processors and/or zones. They do play a role for bootstrapping
3623  * hotplugged processors.
3624  *
3625  * zoneinfo_show() and maybe other functions do
3626  * not check if the processor is online before following the pageset pointer.
3627  * Other parts of the kernel may not check if the zone is available.
3628  */
3629 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3630 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3631 static void setup_zone_pageset(struct zone *zone);
3632 
3633 /*
3634  * Global mutex to protect against size modification of zonelists
3635  * as well as to serialize pageset setup for the new populated zone.
3636  */
3637 DEFINE_MUTEX(zonelists_mutex);
3638 
3639 /* return values int ....just for stop_machine() */
3640 static int __build_all_zonelists(void *data)
3641 {
3642 	int nid;
3643 	int cpu;
3644 	pg_data_t *self = data;
3645 
3646 #ifdef CONFIG_NUMA
3647 	memset(node_load, 0, sizeof(node_load));
3648 #endif
3649 
3650 	if (self && !node_online(self->node_id)) {
3651 		build_zonelists(self);
3652 		build_zonelist_cache(self);
3653 	}
3654 
3655 	for_each_online_node(nid) {
3656 		pg_data_t *pgdat = NODE_DATA(nid);
3657 
3658 		build_zonelists(pgdat);
3659 		build_zonelist_cache(pgdat);
3660 	}
3661 
3662 	/*
3663 	 * Initialize the boot_pagesets that are going to be used
3664 	 * for bootstrapping processors. The real pagesets for
3665 	 * each zone will be allocated later when the per cpu
3666 	 * allocator is available.
3667 	 *
3668 	 * boot_pagesets are used also for bootstrapping offline
3669 	 * cpus if the system is already booted because the pagesets
3670 	 * are needed to initialize allocators on a specific cpu too.
3671 	 * F.e. the percpu allocator needs the page allocator which
3672 	 * needs the percpu allocator in order to allocate its pagesets
3673 	 * (a chicken-egg dilemma).
3674 	 */
3675 	for_each_possible_cpu(cpu) {
3676 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3677 
3678 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3679 		/*
3680 		 * We now know the "local memory node" for each node--
3681 		 * i.e., the node of the first zone in the generic zonelist.
3682 		 * Set up numa_mem percpu variable for on-line cpus.  During
3683 		 * boot, only the boot cpu should be on-line;  we'll init the
3684 		 * secondary cpus' numa_mem as they come on-line.  During
3685 		 * node/memory hotplug, we'll fixup all on-line cpus.
3686 		 */
3687 		if (cpu_online(cpu))
3688 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3689 #endif
3690 	}
3691 
3692 	return 0;
3693 }
3694 
3695 /*
3696  * Called with zonelists_mutex held always
3697  * unless system_state == SYSTEM_BOOTING.
3698  */
3699 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3700 {
3701 	set_zonelist_order();
3702 
3703 	if (system_state == SYSTEM_BOOTING) {
3704 		__build_all_zonelists(NULL);
3705 		mminit_verify_zonelist();
3706 		cpuset_init_current_mems_allowed();
3707 	} else {
3708 		/* we have to stop all cpus to guarantee there is no user
3709 		   of zonelist */
3710 #ifdef CONFIG_MEMORY_HOTPLUG
3711 		if (zone)
3712 			setup_zone_pageset(zone);
3713 #endif
3714 		stop_machine(__build_all_zonelists, pgdat, NULL);
3715 		/* cpuset refresh routine should be here */
3716 	}
3717 	vm_total_pages = nr_free_pagecache_pages();
3718 	/*
3719 	 * Disable grouping by mobility if the number of pages in the
3720 	 * system is too low to allow the mechanism to work. It would be
3721 	 * more accurate, but expensive to check per-zone. This check is
3722 	 * made on memory-hotadd so a system can start with mobility
3723 	 * disabled and enable it later
3724 	 */
3725 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3726 		page_group_by_mobility_disabled = 1;
3727 	else
3728 		page_group_by_mobility_disabled = 0;
3729 
3730 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3731 		"Total pages: %ld\n",
3732 			nr_online_nodes,
3733 			zonelist_order_name[current_zonelist_order],
3734 			page_group_by_mobility_disabled ? "off" : "on",
3735 			vm_total_pages);
3736 #ifdef CONFIG_NUMA
3737 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3738 #endif
3739 }
3740 
3741 /*
3742  * Helper functions to size the waitqueue hash table.
3743  * Essentially these want to choose hash table sizes sufficiently
3744  * large so that collisions trying to wait on pages are rare.
3745  * But in fact, the number of active page waitqueues on typical
3746  * systems is ridiculously low, less than 200. So this is even
3747  * conservative, even though it seems large.
3748  *
3749  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3750  * waitqueues, i.e. the size of the waitq table given the number of pages.
3751  */
3752 #define PAGES_PER_WAITQUEUE	256
3753 
3754 #ifndef CONFIG_MEMORY_HOTPLUG
3755 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3756 {
3757 	unsigned long size = 1;
3758 
3759 	pages /= PAGES_PER_WAITQUEUE;
3760 
3761 	while (size < pages)
3762 		size <<= 1;
3763 
3764 	/*
3765 	 * Once we have dozens or even hundreds of threads sleeping
3766 	 * on IO we've got bigger problems than wait queue collision.
3767 	 * Limit the size of the wait table to a reasonable size.
3768 	 */
3769 	size = min(size, 4096UL);
3770 
3771 	return max(size, 4UL);
3772 }
3773 #else
3774 /*
3775  * A zone's size might be changed by hot-add, so it is not possible to determine
3776  * a suitable size for its wait_table.  So we use the maximum size now.
3777  *
3778  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3779  *
3780  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3781  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3782  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3783  *
3784  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3785  * or more by the traditional way. (See above).  It equals:
3786  *
3787  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3788  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3789  *    powerpc (64K page size)             : =  (32G +16M)byte.
3790  */
3791 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3792 {
3793 	return 4096UL;
3794 }
3795 #endif
3796 
3797 /*
3798  * This is an integer logarithm so that shifts can be used later
3799  * to extract the more random high bits from the multiplicative
3800  * hash function before the remainder is taken.
3801  */
3802 static inline unsigned long wait_table_bits(unsigned long size)
3803 {
3804 	return ffz(~size);
3805 }
3806 
3807 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3808 
3809 /*
3810  * Check if a pageblock contains reserved pages
3811  */
3812 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3813 {
3814 	unsigned long pfn;
3815 
3816 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3817 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3818 			return 1;
3819 	}
3820 	return 0;
3821 }
3822 
3823 /*
3824  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3825  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3826  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3827  * higher will lead to a bigger reserve which will get freed as contiguous
3828  * blocks as reclaim kicks in
3829  */
3830 static void setup_zone_migrate_reserve(struct zone *zone)
3831 {
3832 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3833 	struct page *page;
3834 	unsigned long block_migratetype;
3835 	int reserve;
3836 
3837 	/*
3838 	 * Get the start pfn, end pfn and the number of blocks to reserve
3839 	 * We have to be careful to be aligned to pageblock_nr_pages to
3840 	 * make sure that we always check pfn_valid for the first page in
3841 	 * the block.
3842 	 */
3843 	start_pfn = zone->zone_start_pfn;
3844 	end_pfn = zone_end_pfn(zone);
3845 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3846 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3847 							pageblock_order;
3848 
3849 	/*
3850 	 * Reserve blocks are generally in place to help high-order atomic
3851 	 * allocations that are short-lived. A min_free_kbytes value that
3852 	 * would result in more than 2 reserve blocks for atomic allocations
3853 	 * is assumed to be in place to help anti-fragmentation for the
3854 	 * future allocation of hugepages at runtime.
3855 	 */
3856 	reserve = min(2, reserve);
3857 
3858 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3859 		if (!pfn_valid(pfn))
3860 			continue;
3861 		page = pfn_to_page(pfn);
3862 
3863 		/* Watch out for overlapping nodes */
3864 		if (page_to_nid(page) != zone_to_nid(zone))
3865 			continue;
3866 
3867 		block_migratetype = get_pageblock_migratetype(page);
3868 
3869 		/* Only test what is necessary when the reserves are not met */
3870 		if (reserve > 0) {
3871 			/*
3872 			 * Blocks with reserved pages will never free, skip
3873 			 * them.
3874 			 */
3875 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3876 			if (pageblock_is_reserved(pfn, block_end_pfn))
3877 				continue;
3878 
3879 			/* If this block is reserved, account for it */
3880 			if (block_migratetype == MIGRATE_RESERVE) {
3881 				reserve--;
3882 				continue;
3883 			}
3884 
3885 			/* Suitable for reserving if this block is movable */
3886 			if (block_migratetype == MIGRATE_MOVABLE) {
3887 				set_pageblock_migratetype(page,
3888 							MIGRATE_RESERVE);
3889 				move_freepages_block(zone, page,
3890 							MIGRATE_RESERVE);
3891 				reserve--;
3892 				continue;
3893 			}
3894 		}
3895 
3896 		/*
3897 		 * If the reserve is met and this is a previous reserved block,
3898 		 * take it back
3899 		 */
3900 		if (block_migratetype == MIGRATE_RESERVE) {
3901 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3902 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3903 		}
3904 	}
3905 }
3906 
3907 /*
3908  * Initially all pages are reserved - free ones are freed
3909  * up by free_all_bootmem() once the early boot process is
3910  * done. Non-atomic initialization, single-pass.
3911  */
3912 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3913 		unsigned long start_pfn, enum memmap_context context)
3914 {
3915 	struct page *page;
3916 	unsigned long end_pfn = start_pfn + size;
3917 	unsigned long pfn;
3918 	struct zone *z;
3919 
3920 	if (highest_memmap_pfn < end_pfn - 1)
3921 		highest_memmap_pfn = end_pfn - 1;
3922 
3923 	z = &NODE_DATA(nid)->node_zones[zone];
3924 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3925 		/*
3926 		 * There can be holes in boot-time mem_map[]s
3927 		 * handed to this function.  They do not
3928 		 * exist on hotplugged memory.
3929 		 */
3930 		if (context == MEMMAP_EARLY) {
3931 			if (!early_pfn_valid(pfn))
3932 				continue;
3933 			if (!early_pfn_in_nid(pfn, nid))
3934 				continue;
3935 		}
3936 		page = pfn_to_page(pfn);
3937 		set_page_links(page, zone, nid, pfn);
3938 		mminit_verify_page_links(page, zone, nid, pfn);
3939 		init_page_count(page);
3940 		page_mapcount_reset(page);
3941 		page_nid_reset_last(page);
3942 		SetPageReserved(page);
3943 		/*
3944 		 * Mark the block movable so that blocks are reserved for
3945 		 * movable at startup. This will force kernel allocations
3946 		 * to reserve their blocks rather than leaking throughout
3947 		 * the address space during boot when many long-lived
3948 		 * kernel allocations are made. Later some blocks near
3949 		 * the start are marked MIGRATE_RESERVE by
3950 		 * setup_zone_migrate_reserve()
3951 		 *
3952 		 * bitmap is created for zone's valid pfn range. but memmap
3953 		 * can be created for invalid pages (for alignment)
3954 		 * check here not to call set_pageblock_migratetype() against
3955 		 * pfn out of zone.
3956 		 */
3957 		if ((z->zone_start_pfn <= pfn)
3958 		    && (pfn < zone_end_pfn(z))
3959 		    && !(pfn & (pageblock_nr_pages - 1)))
3960 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3961 
3962 		INIT_LIST_HEAD(&page->lru);
3963 #ifdef WANT_PAGE_VIRTUAL
3964 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3965 		if (!is_highmem_idx(zone))
3966 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3967 #endif
3968 	}
3969 }
3970 
3971 static void __meminit zone_init_free_lists(struct zone *zone)
3972 {
3973 	int order, t;
3974 	for_each_migratetype_order(order, t) {
3975 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3976 		zone->free_area[order].nr_free = 0;
3977 	}
3978 }
3979 
3980 #ifndef __HAVE_ARCH_MEMMAP_INIT
3981 #define memmap_init(size, nid, zone, start_pfn) \
3982 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3983 #endif
3984 
3985 static int __meminit zone_batchsize(struct zone *zone)
3986 {
3987 #ifdef CONFIG_MMU
3988 	int batch;
3989 
3990 	/*
3991 	 * The per-cpu-pages pools are set to around 1000th of the
3992 	 * size of the zone.  But no more than 1/2 of a meg.
3993 	 *
3994 	 * OK, so we don't know how big the cache is.  So guess.
3995 	 */
3996 	batch = zone->managed_pages / 1024;
3997 	if (batch * PAGE_SIZE > 512 * 1024)
3998 		batch = (512 * 1024) / PAGE_SIZE;
3999 	batch /= 4;		/* We effectively *= 4 below */
4000 	if (batch < 1)
4001 		batch = 1;
4002 
4003 	/*
4004 	 * Clamp the batch to a 2^n - 1 value. Having a power
4005 	 * of 2 value was found to be more likely to have
4006 	 * suboptimal cache aliasing properties in some cases.
4007 	 *
4008 	 * For example if 2 tasks are alternately allocating
4009 	 * batches of pages, one task can end up with a lot
4010 	 * of pages of one half of the possible page colors
4011 	 * and the other with pages of the other colors.
4012 	 */
4013 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4014 
4015 	return batch;
4016 
4017 #else
4018 	/* The deferral and batching of frees should be suppressed under NOMMU
4019 	 * conditions.
4020 	 *
4021 	 * The problem is that NOMMU needs to be able to allocate large chunks
4022 	 * of contiguous memory as there's no hardware page translation to
4023 	 * assemble apparent contiguous memory from discontiguous pages.
4024 	 *
4025 	 * Queueing large contiguous runs of pages for batching, however,
4026 	 * causes the pages to actually be freed in smaller chunks.  As there
4027 	 * can be a significant delay between the individual batches being
4028 	 * recycled, this leads to the once large chunks of space being
4029 	 * fragmented and becoming unavailable for high-order allocations.
4030 	 */
4031 	return 0;
4032 #endif
4033 }
4034 
4035 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4036 {
4037 	struct per_cpu_pages *pcp;
4038 	int migratetype;
4039 
4040 	memset(p, 0, sizeof(*p));
4041 
4042 	pcp = &p->pcp;
4043 	pcp->count = 0;
4044 	pcp->high = 6 * batch;
4045 	pcp->batch = max(1UL, 1 * batch);
4046 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4047 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4048 }
4049 
4050 /*
4051  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4052  * to the value high for the pageset p.
4053  */
4054 
4055 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4056 				unsigned long high)
4057 {
4058 	struct per_cpu_pages *pcp;
4059 
4060 	pcp = &p->pcp;
4061 	pcp->high = high;
4062 	pcp->batch = max(1UL, high/4);
4063 	if ((high/4) > (PAGE_SHIFT * 8))
4064 		pcp->batch = PAGE_SHIFT * 8;
4065 }
4066 
4067 static void __meminit setup_zone_pageset(struct zone *zone)
4068 {
4069 	int cpu;
4070 
4071 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4072 
4073 	for_each_possible_cpu(cpu) {
4074 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4075 
4076 		setup_pageset(pcp, zone_batchsize(zone));
4077 
4078 		if (percpu_pagelist_fraction)
4079 			setup_pagelist_highmark(pcp,
4080 				(zone->managed_pages /
4081 					percpu_pagelist_fraction));
4082 	}
4083 }
4084 
4085 /*
4086  * Allocate per cpu pagesets and initialize them.
4087  * Before this call only boot pagesets were available.
4088  */
4089 void __init setup_per_cpu_pageset(void)
4090 {
4091 	struct zone *zone;
4092 
4093 	for_each_populated_zone(zone)
4094 		setup_zone_pageset(zone);
4095 }
4096 
4097 static noinline __init_refok
4098 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4099 {
4100 	int i;
4101 	struct pglist_data *pgdat = zone->zone_pgdat;
4102 	size_t alloc_size;
4103 
4104 	/*
4105 	 * The per-page waitqueue mechanism uses hashed waitqueues
4106 	 * per zone.
4107 	 */
4108 	zone->wait_table_hash_nr_entries =
4109 		 wait_table_hash_nr_entries(zone_size_pages);
4110 	zone->wait_table_bits =
4111 		wait_table_bits(zone->wait_table_hash_nr_entries);
4112 	alloc_size = zone->wait_table_hash_nr_entries
4113 					* sizeof(wait_queue_head_t);
4114 
4115 	if (!slab_is_available()) {
4116 		zone->wait_table = (wait_queue_head_t *)
4117 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4118 	} else {
4119 		/*
4120 		 * This case means that a zone whose size was 0 gets new memory
4121 		 * via memory hot-add.
4122 		 * But it may be the case that a new node was hot-added.  In
4123 		 * this case vmalloc() will not be able to use this new node's
4124 		 * memory - this wait_table must be initialized to use this new
4125 		 * node itself as well.
4126 		 * To use this new node's memory, further consideration will be
4127 		 * necessary.
4128 		 */
4129 		zone->wait_table = vmalloc(alloc_size);
4130 	}
4131 	if (!zone->wait_table)
4132 		return -ENOMEM;
4133 
4134 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4135 		init_waitqueue_head(zone->wait_table + i);
4136 
4137 	return 0;
4138 }
4139 
4140 static __meminit void zone_pcp_init(struct zone *zone)
4141 {
4142 	/*
4143 	 * per cpu subsystem is not up at this point. The following code
4144 	 * relies on the ability of the linker to provide the
4145 	 * offset of a (static) per cpu variable into the per cpu area.
4146 	 */
4147 	zone->pageset = &boot_pageset;
4148 
4149 	if (zone->present_pages)
4150 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4151 			zone->name, zone->present_pages,
4152 					 zone_batchsize(zone));
4153 }
4154 
4155 int __meminit init_currently_empty_zone(struct zone *zone,
4156 					unsigned long zone_start_pfn,
4157 					unsigned long size,
4158 					enum memmap_context context)
4159 {
4160 	struct pglist_data *pgdat = zone->zone_pgdat;
4161 	int ret;
4162 	ret = zone_wait_table_init(zone, size);
4163 	if (ret)
4164 		return ret;
4165 	pgdat->nr_zones = zone_idx(zone) + 1;
4166 
4167 	zone->zone_start_pfn = zone_start_pfn;
4168 
4169 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4170 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4171 			pgdat->node_id,
4172 			(unsigned long)zone_idx(zone),
4173 			zone_start_pfn, (zone_start_pfn + size));
4174 
4175 	zone_init_free_lists(zone);
4176 
4177 	return 0;
4178 }
4179 
4180 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4181 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4182 /*
4183  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4184  * Architectures may implement their own version but if add_active_range()
4185  * was used and there are no special requirements, this is a convenient
4186  * alternative
4187  */
4188 int __meminit __early_pfn_to_nid(unsigned long pfn)
4189 {
4190 	unsigned long start_pfn, end_pfn;
4191 	int i, nid;
4192 	/*
4193 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4194 	 * when the kernel is running single-threaded.
4195 	 */
4196 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4197 	static int __meminitdata last_nid;
4198 
4199 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4200 		return last_nid;
4201 
4202 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4203 		if (start_pfn <= pfn && pfn < end_pfn) {
4204 			last_start_pfn = start_pfn;
4205 			last_end_pfn = end_pfn;
4206 			last_nid = nid;
4207 			return nid;
4208 		}
4209 	/* This is a memory hole */
4210 	return -1;
4211 }
4212 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4213 
4214 int __meminit early_pfn_to_nid(unsigned long pfn)
4215 {
4216 	int nid;
4217 
4218 	nid = __early_pfn_to_nid(pfn);
4219 	if (nid >= 0)
4220 		return nid;
4221 	/* just returns 0 */
4222 	return 0;
4223 }
4224 
4225 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4226 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4227 {
4228 	int nid;
4229 
4230 	nid = __early_pfn_to_nid(pfn);
4231 	if (nid >= 0 && nid != node)
4232 		return false;
4233 	return true;
4234 }
4235 #endif
4236 
4237 /**
4238  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4239  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4240  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4241  *
4242  * If an architecture guarantees that all ranges registered with
4243  * add_active_ranges() contain no holes and may be freed, this
4244  * this function may be used instead of calling free_bootmem() manually.
4245  */
4246 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4247 {
4248 	unsigned long start_pfn, end_pfn;
4249 	int i, this_nid;
4250 
4251 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4252 		start_pfn = min(start_pfn, max_low_pfn);
4253 		end_pfn = min(end_pfn, max_low_pfn);
4254 
4255 		if (start_pfn < end_pfn)
4256 			free_bootmem_node(NODE_DATA(this_nid),
4257 					  PFN_PHYS(start_pfn),
4258 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4259 	}
4260 }
4261 
4262 /**
4263  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4264  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4265  *
4266  * If an architecture guarantees that all ranges registered with
4267  * add_active_ranges() contain no holes and may be freed, this
4268  * function may be used instead of calling memory_present() manually.
4269  */
4270 void __init sparse_memory_present_with_active_regions(int nid)
4271 {
4272 	unsigned long start_pfn, end_pfn;
4273 	int i, this_nid;
4274 
4275 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4276 		memory_present(this_nid, start_pfn, end_pfn);
4277 }
4278 
4279 /**
4280  * get_pfn_range_for_nid - Return the start and end page frames for a node
4281  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4282  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4283  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4284  *
4285  * It returns the start and end page frame of a node based on information
4286  * provided by an arch calling add_active_range(). If called for a node
4287  * with no available memory, a warning is printed and the start and end
4288  * PFNs will be 0.
4289  */
4290 void __meminit get_pfn_range_for_nid(unsigned int nid,
4291 			unsigned long *start_pfn, unsigned long *end_pfn)
4292 {
4293 	unsigned long this_start_pfn, this_end_pfn;
4294 	int i;
4295 
4296 	*start_pfn = -1UL;
4297 	*end_pfn = 0;
4298 
4299 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4300 		*start_pfn = min(*start_pfn, this_start_pfn);
4301 		*end_pfn = max(*end_pfn, this_end_pfn);
4302 	}
4303 
4304 	if (*start_pfn == -1UL)
4305 		*start_pfn = 0;
4306 }
4307 
4308 /*
4309  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4310  * assumption is made that zones within a node are ordered in monotonic
4311  * increasing memory addresses so that the "highest" populated zone is used
4312  */
4313 static void __init find_usable_zone_for_movable(void)
4314 {
4315 	int zone_index;
4316 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4317 		if (zone_index == ZONE_MOVABLE)
4318 			continue;
4319 
4320 		if (arch_zone_highest_possible_pfn[zone_index] >
4321 				arch_zone_lowest_possible_pfn[zone_index])
4322 			break;
4323 	}
4324 
4325 	VM_BUG_ON(zone_index == -1);
4326 	movable_zone = zone_index;
4327 }
4328 
4329 /*
4330  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4331  * because it is sized independent of architecture. Unlike the other zones,
4332  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4333  * in each node depending on the size of each node and how evenly kernelcore
4334  * is distributed. This helper function adjusts the zone ranges
4335  * provided by the architecture for a given node by using the end of the
4336  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4337  * zones within a node are in order of monotonic increases memory addresses
4338  */
4339 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4340 					unsigned long zone_type,
4341 					unsigned long node_start_pfn,
4342 					unsigned long node_end_pfn,
4343 					unsigned long *zone_start_pfn,
4344 					unsigned long *zone_end_pfn)
4345 {
4346 	/* Only adjust if ZONE_MOVABLE is on this node */
4347 	if (zone_movable_pfn[nid]) {
4348 		/* Size ZONE_MOVABLE */
4349 		if (zone_type == ZONE_MOVABLE) {
4350 			*zone_start_pfn = zone_movable_pfn[nid];
4351 			*zone_end_pfn = min(node_end_pfn,
4352 				arch_zone_highest_possible_pfn[movable_zone]);
4353 
4354 		/* Adjust for ZONE_MOVABLE starting within this range */
4355 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4356 				*zone_end_pfn > zone_movable_pfn[nid]) {
4357 			*zone_end_pfn = zone_movable_pfn[nid];
4358 
4359 		/* Check if this whole range is within ZONE_MOVABLE */
4360 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4361 			*zone_start_pfn = *zone_end_pfn;
4362 	}
4363 }
4364 
4365 /*
4366  * Return the number of pages a zone spans in a node, including holes
4367  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4368  */
4369 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4370 					unsigned long zone_type,
4371 					unsigned long *ignored)
4372 {
4373 	unsigned long node_start_pfn, node_end_pfn;
4374 	unsigned long zone_start_pfn, zone_end_pfn;
4375 
4376 	/* Get the start and end of the node and zone */
4377 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4378 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4379 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4380 	adjust_zone_range_for_zone_movable(nid, zone_type,
4381 				node_start_pfn, node_end_pfn,
4382 				&zone_start_pfn, &zone_end_pfn);
4383 
4384 	/* Check that this node has pages within the zone's required range */
4385 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4386 		return 0;
4387 
4388 	/* Move the zone boundaries inside the node if necessary */
4389 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4390 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4391 
4392 	/* Return the spanned pages */
4393 	return zone_end_pfn - zone_start_pfn;
4394 }
4395 
4396 /*
4397  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4398  * then all holes in the requested range will be accounted for.
4399  */
4400 unsigned long __meminit __absent_pages_in_range(int nid,
4401 				unsigned long range_start_pfn,
4402 				unsigned long range_end_pfn)
4403 {
4404 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4405 	unsigned long start_pfn, end_pfn;
4406 	int i;
4407 
4408 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4409 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4410 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4411 		nr_absent -= end_pfn - start_pfn;
4412 	}
4413 	return nr_absent;
4414 }
4415 
4416 /**
4417  * absent_pages_in_range - Return number of page frames in holes within a range
4418  * @start_pfn: The start PFN to start searching for holes
4419  * @end_pfn: The end PFN to stop searching for holes
4420  *
4421  * It returns the number of pages frames in memory holes within a range.
4422  */
4423 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4424 							unsigned long end_pfn)
4425 {
4426 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4427 }
4428 
4429 /* Return the number of page frames in holes in a zone on a node */
4430 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4431 					unsigned long zone_type,
4432 					unsigned long *ignored)
4433 {
4434 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4435 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4436 	unsigned long node_start_pfn, node_end_pfn;
4437 	unsigned long zone_start_pfn, zone_end_pfn;
4438 
4439 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4440 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4441 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4442 
4443 	adjust_zone_range_for_zone_movable(nid, zone_type,
4444 			node_start_pfn, node_end_pfn,
4445 			&zone_start_pfn, &zone_end_pfn);
4446 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4447 }
4448 
4449 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4450 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4451 					unsigned long zone_type,
4452 					unsigned long *zones_size)
4453 {
4454 	return zones_size[zone_type];
4455 }
4456 
4457 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4458 						unsigned long zone_type,
4459 						unsigned long *zholes_size)
4460 {
4461 	if (!zholes_size)
4462 		return 0;
4463 
4464 	return zholes_size[zone_type];
4465 }
4466 
4467 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4468 
4469 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4470 		unsigned long *zones_size, unsigned long *zholes_size)
4471 {
4472 	unsigned long realtotalpages, totalpages = 0;
4473 	enum zone_type i;
4474 
4475 	for (i = 0; i < MAX_NR_ZONES; i++)
4476 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4477 								zones_size);
4478 	pgdat->node_spanned_pages = totalpages;
4479 
4480 	realtotalpages = totalpages;
4481 	for (i = 0; i < MAX_NR_ZONES; i++)
4482 		realtotalpages -=
4483 			zone_absent_pages_in_node(pgdat->node_id, i,
4484 								zholes_size);
4485 	pgdat->node_present_pages = realtotalpages;
4486 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4487 							realtotalpages);
4488 }
4489 
4490 #ifndef CONFIG_SPARSEMEM
4491 /*
4492  * Calculate the size of the zone->blockflags rounded to an unsigned long
4493  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4494  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4495  * round what is now in bits to nearest long in bits, then return it in
4496  * bytes.
4497  */
4498 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4499 {
4500 	unsigned long usemapsize;
4501 
4502 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4503 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4504 	usemapsize = usemapsize >> pageblock_order;
4505 	usemapsize *= NR_PAGEBLOCK_BITS;
4506 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4507 
4508 	return usemapsize / 8;
4509 }
4510 
4511 static void __init setup_usemap(struct pglist_data *pgdat,
4512 				struct zone *zone,
4513 				unsigned long zone_start_pfn,
4514 				unsigned long zonesize)
4515 {
4516 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4517 	zone->pageblock_flags = NULL;
4518 	if (usemapsize)
4519 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4520 								   usemapsize);
4521 }
4522 #else
4523 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4524 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4525 #endif /* CONFIG_SPARSEMEM */
4526 
4527 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4528 
4529 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4530 void __init set_pageblock_order(void)
4531 {
4532 	unsigned int order;
4533 
4534 	/* Check that pageblock_nr_pages has not already been setup */
4535 	if (pageblock_order)
4536 		return;
4537 
4538 	if (HPAGE_SHIFT > PAGE_SHIFT)
4539 		order = HUGETLB_PAGE_ORDER;
4540 	else
4541 		order = MAX_ORDER - 1;
4542 
4543 	/*
4544 	 * Assume the largest contiguous order of interest is a huge page.
4545 	 * This value may be variable depending on boot parameters on IA64 and
4546 	 * powerpc.
4547 	 */
4548 	pageblock_order = order;
4549 }
4550 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4551 
4552 /*
4553  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4554  * is unused as pageblock_order is set at compile-time. See
4555  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4556  * the kernel config
4557  */
4558 void __init set_pageblock_order(void)
4559 {
4560 }
4561 
4562 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4563 
4564 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4565 						   unsigned long present_pages)
4566 {
4567 	unsigned long pages = spanned_pages;
4568 
4569 	/*
4570 	 * Provide a more accurate estimation if there are holes within
4571 	 * the zone and SPARSEMEM is in use. If there are holes within the
4572 	 * zone, each populated memory region may cost us one or two extra
4573 	 * memmap pages due to alignment because memmap pages for each
4574 	 * populated regions may not naturally algined on page boundary.
4575 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4576 	 */
4577 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4578 	    IS_ENABLED(CONFIG_SPARSEMEM))
4579 		pages = present_pages;
4580 
4581 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4582 }
4583 
4584 /*
4585  * Set up the zone data structures:
4586  *   - mark all pages reserved
4587  *   - mark all memory queues empty
4588  *   - clear the memory bitmaps
4589  *
4590  * NOTE: pgdat should get zeroed by caller.
4591  */
4592 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4593 		unsigned long *zones_size, unsigned long *zholes_size)
4594 {
4595 	enum zone_type j;
4596 	int nid = pgdat->node_id;
4597 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4598 	int ret;
4599 
4600 	pgdat_resize_init(pgdat);
4601 #ifdef CONFIG_NUMA_BALANCING
4602 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4603 	pgdat->numabalancing_migrate_nr_pages = 0;
4604 	pgdat->numabalancing_migrate_next_window = jiffies;
4605 #endif
4606 	init_waitqueue_head(&pgdat->kswapd_wait);
4607 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4608 	pgdat_page_cgroup_init(pgdat);
4609 
4610 	for (j = 0; j < MAX_NR_ZONES; j++) {
4611 		struct zone *zone = pgdat->node_zones + j;
4612 		unsigned long size, realsize, freesize, memmap_pages;
4613 
4614 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4615 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4616 								zholes_size);
4617 
4618 		/*
4619 		 * Adjust freesize so that it accounts for how much memory
4620 		 * is used by this zone for memmap. This affects the watermark
4621 		 * and per-cpu initialisations
4622 		 */
4623 		memmap_pages = calc_memmap_size(size, realsize);
4624 		if (freesize >= memmap_pages) {
4625 			freesize -= memmap_pages;
4626 			if (memmap_pages)
4627 				printk(KERN_DEBUG
4628 				       "  %s zone: %lu pages used for memmap\n",
4629 				       zone_names[j], memmap_pages);
4630 		} else
4631 			printk(KERN_WARNING
4632 				"  %s zone: %lu pages exceeds freesize %lu\n",
4633 				zone_names[j], memmap_pages, freesize);
4634 
4635 		/* Account for reserved pages */
4636 		if (j == 0 && freesize > dma_reserve) {
4637 			freesize -= dma_reserve;
4638 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4639 					zone_names[0], dma_reserve);
4640 		}
4641 
4642 		if (!is_highmem_idx(j))
4643 			nr_kernel_pages += freesize;
4644 		/* Charge for highmem memmap if there are enough kernel pages */
4645 		else if (nr_kernel_pages > memmap_pages * 2)
4646 			nr_kernel_pages -= memmap_pages;
4647 		nr_all_pages += freesize;
4648 
4649 		zone->spanned_pages = size;
4650 		zone->present_pages = realsize;
4651 		/*
4652 		 * Set an approximate value for lowmem here, it will be adjusted
4653 		 * when the bootmem allocator frees pages into the buddy system.
4654 		 * And all highmem pages will be managed by the buddy system.
4655 		 */
4656 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4657 #ifdef CONFIG_NUMA
4658 		zone->node = nid;
4659 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4660 						/ 100;
4661 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4662 #endif
4663 		zone->name = zone_names[j];
4664 		spin_lock_init(&zone->lock);
4665 		spin_lock_init(&zone->lru_lock);
4666 		zone_seqlock_init(zone);
4667 		zone->zone_pgdat = pgdat;
4668 
4669 		zone_pcp_init(zone);
4670 		lruvec_init(&zone->lruvec);
4671 		if (!size)
4672 			continue;
4673 
4674 		set_pageblock_order();
4675 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4676 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4677 						size, MEMMAP_EARLY);
4678 		BUG_ON(ret);
4679 		memmap_init(size, nid, j, zone_start_pfn);
4680 		zone_start_pfn += size;
4681 	}
4682 }
4683 
4684 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4685 {
4686 	/* Skip empty nodes */
4687 	if (!pgdat->node_spanned_pages)
4688 		return;
4689 
4690 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4691 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4692 	if (!pgdat->node_mem_map) {
4693 		unsigned long size, start, end;
4694 		struct page *map;
4695 
4696 		/*
4697 		 * The zone's endpoints aren't required to be MAX_ORDER
4698 		 * aligned but the node_mem_map endpoints must be in order
4699 		 * for the buddy allocator to function correctly.
4700 		 */
4701 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4702 		end = pgdat_end_pfn(pgdat);
4703 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4704 		size =  (end - start) * sizeof(struct page);
4705 		map = alloc_remap(pgdat->node_id, size);
4706 		if (!map)
4707 			map = alloc_bootmem_node_nopanic(pgdat, size);
4708 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4709 	}
4710 #ifndef CONFIG_NEED_MULTIPLE_NODES
4711 	/*
4712 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4713 	 */
4714 	if (pgdat == NODE_DATA(0)) {
4715 		mem_map = NODE_DATA(0)->node_mem_map;
4716 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4717 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4718 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4719 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4720 	}
4721 #endif
4722 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4723 }
4724 
4725 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4726 		unsigned long node_start_pfn, unsigned long *zholes_size)
4727 {
4728 	pg_data_t *pgdat = NODE_DATA(nid);
4729 
4730 	/* pg_data_t should be reset to zero when it's allocated */
4731 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4732 
4733 	pgdat->node_id = nid;
4734 	pgdat->node_start_pfn = node_start_pfn;
4735 	init_zone_allows_reclaim(nid);
4736 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4737 
4738 	alloc_node_mem_map(pgdat);
4739 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4740 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4741 		nid, (unsigned long)pgdat,
4742 		(unsigned long)pgdat->node_mem_map);
4743 #endif
4744 
4745 	free_area_init_core(pgdat, zones_size, zholes_size);
4746 }
4747 
4748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4749 
4750 #if MAX_NUMNODES > 1
4751 /*
4752  * Figure out the number of possible node ids.
4753  */
4754 void __init setup_nr_node_ids(void)
4755 {
4756 	unsigned int node;
4757 	unsigned int highest = 0;
4758 
4759 	for_each_node_mask(node, node_possible_map)
4760 		highest = node;
4761 	nr_node_ids = highest + 1;
4762 }
4763 #endif
4764 
4765 /**
4766  * node_map_pfn_alignment - determine the maximum internode alignment
4767  *
4768  * This function should be called after node map is populated and sorted.
4769  * It calculates the maximum power of two alignment which can distinguish
4770  * all the nodes.
4771  *
4772  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4773  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4774  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4775  * shifted, 1GiB is enough and this function will indicate so.
4776  *
4777  * This is used to test whether pfn -> nid mapping of the chosen memory
4778  * model has fine enough granularity to avoid incorrect mapping for the
4779  * populated node map.
4780  *
4781  * Returns the determined alignment in pfn's.  0 if there is no alignment
4782  * requirement (single node).
4783  */
4784 unsigned long __init node_map_pfn_alignment(void)
4785 {
4786 	unsigned long accl_mask = 0, last_end = 0;
4787 	unsigned long start, end, mask;
4788 	int last_nid = -1;
4789 	int i, nid;
4790 
4791 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4792 		if (!start || last_nid < 0 || last_nid == nid) {
4793 			last_nid = nid;
4794 			last_end = end;
4795 			continue;
4796 		}
4797 
4798 		/*
4799 		 * Start with a mask granular enough to pin-point to the
4800 		 * start pfn and tick off bits one-by-one until it becomes
4801 		 * too coarse to separate the current node from the last.
4802 		 */
4803 		mask = ~((1 << __ffs(start)) - 1);
4804 		while (mask && last_end <= (start & (mask << 1)))
4805 			mask <<= 1;
4806 
4807 		/* accumulate all internode masks */
4808 		accl_mask |= mask;
4809 	}
4810 
4811 	/* convert mask to number of pages */
4812 	return ~accl_mask + 1;
4813 }
4814 
4815 /* Find the lowest pfn for a node */
4816 static unsigned long __init find_min_pfn_for_node(int nid)
4817 {
4818 	unsigned long min_pfn = ULONG_MAX;
4819 	unsigned long start_pfn;
4820 	int i;
4821 
4822 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4823 		min_pfn = min(min_pfn, start_pfn);
4824 
4825 	if (min_pfn == ULONG_MAX) {
4826 		printk(KERN_WARNING
4827 			"Could not find start_pfn for node %d\n", nid);
4828 		return 0;
4829 	}
4830 
4831 	return min_pfn;
4832 }
4833 
4834 /**
4835  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4836  *
4837  * It returns the minimum PFN based on information provided via
4838  * add_active_range().
4839  */
4840 unsigned long __init find_min_pfn_with_active_regions(void)
4841 {
4842 	return find_min_pfn_for_node(MAX_NUMNODES);
4843 }
4844 
4845 /*
4846  * early_calculate_totalpages()
4847  * Sum pages in active regions for movable zone.
4848  * Populate N_MEMORY for calculating usable_nodes.
4849  */
4850 static unsigned long __init early_calculate_totalpages(void)
4851 {
4852 	unsigned long totalpages = 0;
4853 	unsigned long start_pfn, end_pfn;
4854 	int i, nid;
4855 
4856 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4857 		unsigned long pages = end_pfn - start_pfn;
4858 
4859 		totalpages += pages;
4860 		if (pages)
4861 			node_set_state(nid, N_MEMORY);
4862 	}
4863   	return totalpages;
4864 }
4865 
4866 /*
4867  * Find the PFN the Movable zone begins in each node. Kernel memory
4868  * is spread evenly between nodes as long as the nodes have enough
4869  * memory. When they don't, some nodes will have more kernelcore than
4870  * others
4871  */
4872 static void __init find_zone_movable_pfns_for_nodes(void)
4873 {
4874 	int i, nid;
4875 	unsigned long usable_startpfn;
4876 	unsigned long kernelcore_node, kernelcore_remaining;
4877 	/* save the state before borrow the nodemask */
4878 	nodemask_t saved_node_state = node_states[N_MEMORY];
4879 	unsigned long totalpages = early_calculate_totalpages();
4880 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4881 
4882 	/*
4883 	 * If movablecore was specified, calculate what size of
4884 	 * kernelcore that corresponds so that memory usable for
4885 	 * any allocation type is evenly spread. If both kernelcore
4886 	 * and movablecore are specified, then the value of kernelcore
4887 	 * will be used for required_kernelcore if it's greater than
4888 	 * what movablecore would have allowed.
4889 	 */
4890 	if (required_movablecore) {
4891 		unsigned long corepages;
4892 
4893 		/*
4894 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4895 		 * was requested by the user
4896 		 */
4897 		required_movablecore =
4898 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4899 		corepages = totalpages - required_movablecore;
4900 
4901 		required_kernelcore = max(required_kernelcore, corepages);
4902 	}
4903 
4904 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4905 	if (!required_kernelcore)
4906 		goto out;
4907 
4908 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4909 	find_usable_zone_for_movable();
4910 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4911 
4912 restart:
4913 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4914 	kernelcore_node = required_kernelcore / usable_nodes;
4915 	for_each_node_state(nid, N_MEMORY) {
4916 		unsigned long start_pfn, end_pfn;
4917 
4918 		/*
4919 		 * Recalculate kernelcore_node if the division per node
4920 		 * now exceeds what is necessary to satisfy the requested
4921 		 * amount of memory for the kernel
4922 		 */
4923 		if (required_kernelcore < kernelcore_node)
4924 			kernelcore_node = required_kernelcore / usable_nodes;
4925 
4926 		/*
4927 		 * As the map is walked, we track how much memory is usable
4928 		 * by the kernel using kernelcore_remaining. When it is
4929 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4930 		 */
4931 		kernelcore_remaining = kernelcore_node;
4932 
4933 		/* Go through each range of PFNs within this node */
4934 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4935 			unsigned long size_pages;
4936 
4937 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4938 			if (start_pfn >= end_pfn)
4939 				continue;
4940 
4941 			/* Account for what is only usable for kernelcore */
4942 			if (start_pfn < usable_startpfn) {
4943 				unsigned long kernel_pages;
4944 				kernel_pages = min(end_pfn, usable_startpfn)
4945 								- start_pfn;
4946 
4947 				kernelcore_remaining -= min(kernel_pages,
4948 							kernelcore_remaining);
4949 				required_kernelcore -= min(kernel_pages,
4950 							required_kernelcore);
4951 
4952 				/* Continue if range is now fully accounted */
4953 				if (end_pfn <= usable_startpfn) {
4954 
4955 					/*
4956 					 * Push zone_movable_pfn to the end so
4957 					 * that if we have to rebalance
4958 					 * kernelcore across nodes, we will
4959 					 * not double account here
4960 					 */
4961 					zone_movable_pfn[nid] = end_pfn;
4962 					continue;
4963 				}
4964 				start_pfn = usable_startpfn;
4965 			}
4966 
4967 			/*
4968 			 * The usable PFN range for ZONE_MOVABLE is from
4969 			 * start_pfn->end_pfn. Calculate size_pages as the
4970 			 * number of pages used as kernelcore
4971 			 */
4972 			size_pages = end_pfn - start_pfn;
4973 			if (size_pages > kernelcore_remaining)
4974 				size_pages = kernelcore_remaining;
4975 			zone_movable_pfn[nid] = start_pfn + size_pages;
4976 
4977 			/*
4978 			 * Some kernelcore has been met, update counts and
4979 			 * break if the kernelcore for this node has been
4980 			 * satisified
4981 			 */
4982 			required_kernelcore -= min(required_kernelcore,
4983 								size_pages);
4984 			kernelcore_remaining -= size_pages;
4985 			if (!kernelcore_remaining)
4986 				break;
4987 		}
4988 	}
4989 
4990 	/*
4991 	 * If there is still required_kernelcore, we do another pass with one
4992 	 * less node in the count. This will push zone_movable_pfn[nid] further
4993 	 * along on the nodes that still have memory until kernelcore is
4994 	 * satisified
4995 	 */
4996 	usable_nodes--;
4997 	if (usable_nodes && required_kernelcore > usable_nodes)
4998 		goto restart;
4999 
5000 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5001 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5002 		zone_movable_pfn[nid] =
5003 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5004 
5005 out:
5006 	/* restore the node_state */
5007 	node_states[N_MEMORY] = saved_node_state;
5008 }
5009 
5010 /* Any regular or high memory on that node ? */
5011 static void check_for_memory(pg_data_t *pgdat, int nid)
5012 {
5013 	enum zone_type zone_type;
5014 
5015 	if (N_MEMORY == N_NORMAL_MEMORY)
5016 		return;
5017 
5018 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5019 		struct zone *zone = &pgdat->node_zones[zone_type];
5020 		if (zone->present_pages) {
5021 			node_set_state(nid, N_HIGH_MEMORY);
5022 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5023 			    zone_type <= ZONE_NORMAL)
5024 				node_set_state(nid, N_NORMAL_MEMORY);
5025 			break;
5026 		}
5027 	}
5028 }
5029 
5030 /**
5031  * free_area_init_nodes - Initialise all pg_data_t and zone data
5032  * @max_zone_pfn: an array of max PFNs for each zone
5033  *
5034  * This will call free_area_init_node() for each active node in the system.
5035  * Using the page ranges provided by add_active_range(), the size of each
5036  * zone in each node and their holes is calculated. If the maximum PFN
5037  * between two adjacent zones match, it is assumed that the zone is empty.
5038  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5039  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5040  * starts where the previous one ended. For example, ZONE_DMA32 starts
5041  * at arch_max_dma_pfn.
5042  */
5043 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5044 {
5045 	unsigned long start_pfn, end_pfn;
5046 	int i, nid;
5047 
5048 	/* Record where the zone boundaries are */
5049 	memset(arch_zone_lowest_possible_pfn, 0,
5050 				sizeof(arch_zone_lowest_possible_pfn));
5051 	memset(arch_zone_highest_possible_pfn, 0,
5052 				sizeof(arch_zone_highest_possible_pfn));
5053 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5054 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5055 	for (i = 1; i < MAX_NR_ZONES; i++) {
5056 		if (i == ZONE_MOVABLE)
5057 			continue;
5058 		arch_zone_lowest_possible_pfn[i] =
5059 			arch_zone_highest_possible_pfn[i-1];
5060 		arch_zone_highest_possible_pfn[i] =
5061 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5062 	}
5063 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5064 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5065 
5066 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5067 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5068 	find_zone_movable_pfns_for_nodes();
5069 
5070 	/* Print out the zone ranges */
5071 	printk("Zone ranges:\n");
5072 	for (i = 0; i < MAX_NR_ZONES; i++) {
5073 		if (i == ZONE_MOVABLE)
5074 			continue;
5075 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5076 		if (arch_zone_lowest_possible_pfn[i] ==
5077 				arch_zone_highest_possible_pfn[i])
5078 			printk(KERN_CONT "empty\n");
5079 		else
5080 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5081 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5082 				(arch_zone_highest_possible_pfn[i]
5083 					<< PAGE_SHIFT) - 1);
5084 	}
5085 
5086 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5087 	printk("Movable zone start for each node\n");
5088 	for (i = 0; i < MAX_NUMNODES; i++) {
5089 		if (zone_movable_pfn[i])
5090 			printk("  Node %d: %#010lx\n", i,
5091 			       zone_movable_pfn[i] << PAGE_SHIFT);
5092 	}
5093 
5094 	/* Print out the early node map */
5095 	printk("Early memory node ranges\n");
5096 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5097 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5098 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5099 
5100 	/* Initialise every node */
5101 	mminit_verify_pageflags_layout();
5102 	setup_nr_node_ids();
5103 	for_each_online_node(nid) {
5104 		pg_data_t *pgdat = NODE_DATA(nid);
5105 		free_area_init_node(nid, NULL,
5106 				find_min_pfn_for_node(nid), NULL);
5107 
5108 		/* Any memory on that node */
5109 		if (pgdat->node_present_pages)
5110 			node_set_state(nid, N_MEMORY);
5111 		check_for_memory(pgdat, nid);
5112 	}
5113 }
5114 
5115 static int __init cmdline_parse_core(char *p, unsigned long *core)
5116 {
5117 	unsigned long long coremem;
5118 	if (!p)
5119 		return -EINVAL;
5120 
5121 	coremem = memparse(p, &p);
5122 	*core = coremem >> PAGE_SHIFT;
5123 
5124 	/* Paranoid check that UL is enough for the coremem value */
5125 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5126 
5127 	return 0;
5128 }
5129 
5130 /*
5131  * kernelcore=size sets the amount of memory for use for allocations that
5132  * cannot be reclaimed or migrated.
5133  */
5134 static int __init cmdline_parse_kernelcore(char *p)
5135 {
5136 	return cmdline_parse_core(p, &required_kernelcore);
5137 }
5138 
5139 /*
5140  * movablecore=size sets the amount of memory for use for allocations that
5141  * can be reclaimed or migrated.
5142  */
5143 static int __init cmdline_parse_movablecore(char *p)
5144 {
5145 	return cmdline_parse_core(p, &required_movablecore);
5146 }
5147 
5148 early_param("kernelcore", cmdline_parse_kernelcore);
5149 early_param("movablecore", cmdline_parse_movablecore);
5150 
5151 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5152 
5153 unsigned long free_reserved_area(unsigned long start, unsigned long end,
5154 				 int poison, char *s)
5155 {
5156 	unsigned long pages, pos;
5157 
5158 	pos = start = PAGE_ALIGN(start);
5159 	end &= PAGE_MASK;
5160 	for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
5161 		if (poison)
5162 			memset((void *)pos, poison, PAGE_SIZE);
5163 		free_reserved_page(virt_to_page((void *)pos));
5164 	}
5165 
5166 	if (pages && s)
5167 		pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
5168 			s, pages << (PAGE_SHIFT - 10), start, end);
5169 
5170 	return pages;
5171 }
5172 
5173 #ifdef	CONFIG_HIGHMEM
5174 void free_highmem_page(struct page *page)
5175 {
5176 	__free_reserved_page(page);
5177 	totalram_pages++;
5178 	totalhigh_pages++;
5179 }
5180 #endif
5181 
5182 /**
5183  * set_dma_reserve - set the specified number of pages reserved in the first zone
5184  * @new_dma_reserve: The number of pages to mark reserved
5185  *
5186  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5187  * In the DMA zone, a significant percentage may be consumed by kernel image
5188  * and other unfreeable allocations which can skew the watermarks badly. This
5189  * function may optionally be used to account for unfreeable pages in the
5190  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5191  * smaller per-cpu batchsize.
5192  */
5193 void __init set_dma_reserve(unsigned long new_dma_reserve)
5194 {
5195 	dma_reserve = new_dma_reserve;
5196 }
5197 
5198 void __init free_area_init(unsigned long *zones_size)
5199 {
5200 	free_area_init_node(0, zones_size,
5201 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5202 }
5203 
5204 static int page_alloc_cpu_notify(struct notifier_block *self,
5205 				 unsigned long action, void *hcpu)
5206 {
5207 	int cpu = (unsigned long)hcpu;
5208 
5209 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5210 		lru_add_drain_cpu(cpu);
5211 		drain_pages(cpu);
5212 
5213 		/*
5214 		 * Spill the event counters of the dead processor
5215 		 * into the current processors event counters.
5216 		 * This artificially elevates the count of the current
5217 		 * processor.
5218 		 */
5219 		vm_events_fold_cpu(cpu);
5220 
5221 		/*
5222 		 * Zero the differential counters of the dead processor
5223 		 * so that the vm statistics are consistent.
5224 		 *
5225 		 * This is only okay since the processor is dead and cannot
5226 		 * race with what we are doing.
5227 		 */
5228 		refresh_cpu_vm_stats(cpu);
5229 	}
5230 	return NOTIFY_OK;
5231 }
5232 
5233 void __init page_alloc_init(void)
5234 {
5235 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5236 }
5237 
5238 /*
5239  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5240  *	or min_free_kbytes changes.
5241  */
5242 static void calculate_totalreserve_pages(void)
5243 {
5244 	struct pglist_data *pgdat;
5245 	unsigned long reserve_pages = 0;
5246 	enum zone_type i, j;
5247 
5248 	for_each_online_pgdat(pgdat) {
5249 		for (i = 0; i < MAX_NR_ZONES; i++) {
5250 			struct zone *zone = pgdat->node_zones + i;
5251 			unsigned long max = 0;
5252 
5253 			/* Find valid and maximum lowmem_reserve in the zone */
5254 			for (j = i; j < MAX_NR_ZONES; j++) {
5255 				if (zone->lowmem_reserve[j] > max)
5256 					max = zone->lowmem_reserve[j];
5257 			}
5258 
5259 			/* we treat the high watermark as reserved pages. */
5260 			max += high_wmark_pages(zone);
5261 
5262 			if (max > zone->managed_pages)
5263 				max = zone->managed_pages;
5264 			reserve_pages += max;
5265 			/*
5266 			 * Lowmem reserves are not available to
5267 			 * GFP_HIGHUSER page cache allocations and
5268 			 * kswapd tries to balance zones to their high
5269 			 * watermark.  As a result, neither should be
5270 			 * regarded as dirtyable memory, to prevent a
5271 			 * situation where reclaim has to clean pages
5272 			 * in order to balance the zones.
5273 			 */
5274 			zone->dirty_balance_reserve = max;
5275 		}
5276 	}
5277 	dirty_balance_reserve = reserve_pages;
5278 	totalreserve_pages = reserve_pages;
5279 }
5280 
5281 /*
5282  * setup_per_zone_lowmem_reserve - called whenever
5283  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5284  *	has a correct pages reserved value, so an adequate number of
5285  *	pages are left in the zone after a successful __alloc_pages().
5286  */
5287 static void setup_per_zone_lowmem_reserve(void)
5288 {
5289 	struct pglist_data *pgdat;
5290 	enum zone_type j, idx;
5291 
5292 	for_each_online_pgdat(pgdat) {
5293 		for (j = 0; j < MAX_NR_ZONES; j++) {
5294 			struct zone *zone = pgdat->node_zones + j;
5295 			unsigned long managed_pages = zone->managed_pages;
5296 
5297 			zone->lowmem_reserve[j] = 0;
5298 
5299 			idx = j;
5300 			while (idx) {
5301 				struct zone *lower_zone;
5302 
5303 				idx--;
5304 
5305 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5306 					sysctl_lowmem_reserve_ratio[idx] = 1;
5307 
5308 				lower_zone = pgdat->node_zones + idx;
5309 				lower_zone->lowmem_reserve[j] = managed_pages /
5310 					sysctl_lowmem_reserve_ratio[idx];
5311 				managed_pages += lower_zone->managed_pages;
5312 			}
5313 		}
5314 	}
5315 
5316 	/* update totalreserve_pages */
5317 	calculate_totalreserve_pages();
5318 }
5319 
5320 static void __setup_per_zone_wmarks(void)
5321 {
5322 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5323 	unsigned long lowmem_pages = 0;
5324 	struct zone *zone;
5325 	unsigned long flags;
5326 
5327 	/* Calculate total number of !ZONE_HIGHMEM pages */
5328 	for_each_zone(zone) {
5329 		if (!is_highmem(zone))
5330 			lowmem_pages += zone->managed_pages;
5331 	}
5332 
5333 	for_each_zone(zone) {
5334 		u64 tmp;
5335 
5336 		spin_lock_irqsave(&zone->lock, flags);
5337 		tmp = (u64)pages_min * zone->managed_pages;
5338 		do_div(tmp, lowmem_pages);
5339 		if (is_highmem(zone)) {
5340 			/*
5341 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5342 			 * need highmem pages, so cap pages_min to a small
5343 			 * value here.
5344 			 *
5345 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5346 			 * deltas controls asynch page reclaim, and so should
5347 			 * not be capped for highmem.
5348 			 */
5349 			unsigned long min_pages;
5350 
5351 			min_pages = zone->managed_pages / 1024;
5352 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5353 			zone->watermark[WMARK_MIN] = min_pages;
5354 		} else {
5355 			/*
5356 			 * If it's a lowmem zone, reserve a number of pages
5357 			 * proportionate to the zone's size.
5358 			 */
5359 			zone->watermark[WMARK_MIN] = tmp;
5360 		}
5361 
5362 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5363 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5364 
5365 		setup_zone_migrate_reserve(zone);
5366 		spin_unlock_irqrestore(&zone->lock, flags);
5367 	}
5368 
5369 	/* update totalreserve_pages */
5370 	calculate_totalreserve_pages();
5371 }
5372 
5373 /**
5374  * setup_per_zone_wmarks - called when min_free_kbytes changes
5375  * or when memory is hot-{added|removed}
5376  *
5377  * Ensures that the watermark[min,low,high] values for each zone are set
5378  * correctly with respect to min_free_kbytes.
5379  */
5380 void setup_per_zone_wmarks(void)
5381 {
5382 	mutex_lock(&zonelists_mutex);
5383 	__setup_per_zone_wmarks();
5384 	mutex_unlock(&zonelists_mutex);
5385 }
5386 
5387 /*
5388  * The inactive anon list should be small enough that the VM never has to
5389  * do too much work, but large enough that each inactive page has a chance
5390  * to be referenced again before it is swapped out.
5391  *
5392  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5393  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5394  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5395  * the anonymous pages are kept on the inactive list.
5396  *
5397  * total     target    max
5398  * memory    ratio     inactive anon
5399  * -------------------------------------
5400  *   10MB       1         5MB
5401  *  100MB       1        50MB
5402  *    1GB       3       250MB
5403  *   10GB      10       0.9GB
5404  *  100GB      31         3GB
5405  *    1TB     101        10GB
5406  *   10TB     320        32GB
5407  */
5408 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5409 {
5410 	unsigned int gb, ratio;
5411 
5412 	/* Zone size in gigabytes */
5413 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5414 	if (gb)
5415 		ratio = int_sqrt(10 * gb);
5416 	else
5417 		ratio = 1;
5418 
5419 	zone->inactive_ratio = ratio;
5420 }
5421 
5422 static void __meminit setup_per_zone_inactive_ratio(void)
5423 {
5424 	struct zone *zone;
5425 
5426 	for_each_zone(zone)
5427 		calculate_zone_inactive_ratio(zone);
5428 }
5429 
5430 /*
5431  * Initialise min_free_kbytes.
5432  *
5433  * For small machines we want it small (128k min).  For large machines
5434  * we want it large (64MB max).  But it is not linear, because network
5435  * bandwidth does not increase linearly with machine size.  We use
5436  *
5437  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5438  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5439  *
5440  * which yields
5441  *
5442  * 16MB:	512k
5443  * 32MB:	724k
5444  * 64MB:	1024k
5445  * 128MB:	1448k
5446  * 256MB:	2048k
5447  * 512MB:	2896k
5448  * 1024MB:	4096k
5449  * 2048MB:	5792k
5450  * 4096MB:	8192k
5451  * 8192MB:	11584k
5452  * 16384MB:	16384k
5453  */
5454 int __meminit init_per_zone_wmark_min(void)
5455 {
5456 	unsigned long lowmem_kbytes;
5457 
5458 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5459 
5460 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5461 	if (min_free_kbytes < 128)
5462 		min_free_kbytes = 128;
5463 	if (min_free_kbytes > 65536)
5464 		min_free_kbytes = 65536;
5465 	setup_per_zone_wmarks();
5466 	refresh_zone_stat_thresholds();
5467 	setup_per_zone_lowmem_reserve();
5468 	setup_per_zone_inactive_ratio();
5469 	return 0;
5470 }
5471 module_init(init_per_zone_wmark_min)
5472 
5473 /*
5474  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5475  *	that we can call two helper functions whenever min_free_kbytes
5476  *	changes.
5477  */
5478 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5479 	void __user *buffer, size_t *length, loff_t *ppos)
5480 {
5481 	proc_dointvec(table, write, buffer, length, ppos);
5482 	if (write)
5483 		setup_per_zone_wmarks();
5484 	return 0;
5485 }
5486 
5487 #ifdef CONFIG_NUMA
5488 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5489 	void __user *buffer, size_t *length, loff_t *ppos)
5490 {
5491 	struct zone *zone;
5492 	int rc;
5493 
5494 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5495 	if (rc)
5496 		return rc;
5497 
5498 	for_each_zone(zone)
5499 		zone->min_unmapped_pages = (zone->managed_pages *
5500 				sysctl_min_unmapped_ratio) / 100;
5501 	return 0;
5502 }
5503 
5504 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5505 	void __user *buffer, size_t *length, loff_t *ppos)
5506 {
5507 	struct zone *zone;
5508 	int rc;
5509 
5510 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5511 	if (rc)
5512 		return rc;
5513 
5514 	for_each_zone(zone)
5515 		zone->min_slab_pages = (zone->managed_pages *
5516 				sysctl_min_slab_ratio) / 100;
5517 	return 0;
5518 }
5519 #endif
5520 
5521 /*
5522  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5523  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5524  *	whenever sysctl_lowmem_reserve_ratio changes.
5525  *
5526  * The reserve ratio obviously has absolutely no relation with the
5527  * minimum watermarks. The lowmem reserve ratio can only make sense
5528  * if in function of the boot time zone sizes.
5529  */
5530 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5531 	void __user *buffer, size_t *length, loff_t *ppos)
5532 {
5533 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5534 	setup_per_zone_lowmem_reserve();
5535 	return 0;
5536 }
5537 
5538 /*
5539  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5540  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5541  * can have before it gets flushed back to buddy allocator.
5542  */
5543 
5544 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5545 	void __user *buffer, size_t *length, loff_t *ppos)
5546 {
5547 	struct zone *zone;
5548 	unsigned int cpu;
5549 	int ret;
5550 
5551 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5552 	if (!write || (ret < 0))
5553 		return ret;
5554 	for_each_populated_zone(zone) {
5555 		for_each_possible_cpu(cpu) {
5556 			unsigned long  high;
5557 			high = zone->managed_pages / percpu_pagelist_fraction;
5558 			setup_pagelist_highmark(
5559 				per_cpu_ptr(zone->pageset, cpu), high);
5560 		}
5561 	}
5562 	return 0;
5563 }
5564 
5565 int hashdist = HASHDIST_DEFAULT;
5566 
5567 #ifdef CONFIG_NUMA
5568 static int __init set_hashdist(char *str)
5569 {
5570 	if (!str)
5571 		return 0;
5572 	hashdist = simple_strtoul(str, &str, 0);
5573 	return 1;
5574 }
5575 __setup("hashdist=", set_hashdist);
5576 #endif
5577 
5578 /*
5579  * allocate a large system hash table from bootmem
5580  * - it is assumed that the hash table must contain an exact power-of-2
5581  *   quantity of entries
5582  * - limit is the number of hash buckets, not the total allocation size
5583  */
5584 void *__init alloc_large_system_hash(const char *tablename,
5585 				     unsigned long bucketsize,
5586 				     unsigned long numentries,
5587 				     int scale,
5588 				     int flags,
5589 				     unsigned int *_hash_shift,
5590 				     unsigned int *_hash_mask,
5591 				     unsigned long low_limit,
5592 				     unsigned long high_limit)
5593 {
5594 	unsigned long long max = high_limit;
5595 	unsigned long log2qty, size;
5596 	void *table = NULL;
5597 
5598 	/* allow the kernel cmdline to have a say */
5599 	if (!numentries) {
5600 		/* round applicable memory size up to nearest megabyte */
5601 		numentries = nr_kernel_pages;
5602 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5603 		numentries >>= 20 - PAGE_SHIFT;
5604 		numentries <<= 20 - PAGE_SHIFT;
5605 
5606 		/* limit to 1 bucket per 2^scale bytes of low memory */
5607 		if (scale > PAGE_SHIFT)
5608 			numentries >>= (scale - PAGE_SHIFT);
5609 		else
5610 			numentries <<= (PAGE_SHIFT - scale);
5611 
5612 		/* Make sure we've got at least a 0-order allocation.. */
5613 		if (unlikely(flags & HASH_SMALL)) {
5614 			/* Makes no sense without HASH_EARLY */
5615 			WARN_ON(!(flags & HASH_EARLY));
5616 			if (!(numentries >> *_hash_shift)) {
5617 				numentries = 1UL << *_hash_shift;
5618 				BUG_ON(!numentries);
5619 			}
5620 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5621 			numentries = PAGE_SIZE / bucketsize;
5622 	}
5623 	numentries = roundup_pow_of_two(numentries);
5624 
5625 	/* limit allocation size to 1/16 total memory by default */
5626 	if (max == 0) {
5627 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5628 		do_div(max, bucketsize);
5629 	}
5630 	max = min(max, 0x80000000ULL);
5631 
5632 	if (numentries < low_limit)
5633 		numentries = low_limit;
5634 	if (numentries > max)
5635 		numentries = max;
5636 
5637 	log2qty = ilog2(numentries);
5638 
5639 	do {
5640 		size = bucketsize << log2qty;
5641 		if (flags & HASH_EARLY)
5642 			table = alloc_bootmem_nopanic(size);
5643 		else if (hashdist)
5644 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5645 		else {
5646 			/*
5647 			 * If bucketsize is not a power-of-two, we may free
5648 			 * some pages at the end of hash table which
5649 			 * alloc_pages_exact() automatically does
5650 			 */
5651 			if (get_order(size) < MAX_ORDER) {
5652 				table = alloc_pages_exact(size, GFP_ATOMIC);
5653 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5654 			}
5655 		}
5656 	} while (!table && size > PAGE_SIZE && --log2qty);
5657 
5658 	if (!table)
5659 		panic("Failed to allocate %s hash table\n", tablename);
5660 
5661 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5662 	       tablename,
5663 	       (1UL << log2qty),
5664 	       ilog2(size) - PAGE_SHIFT,
5665 	       size);
5666 
5667 	if (_hash_shift)
5668 		*_hash_shift = log2qty;
5669 	if (_hash_mask)
5670 		*_hash_mask = (1 << log2qty) - 1;
5671 
5672 	return table;
5673 }
5674 
5675 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5676 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5677 							unsigned long pfn)
5678 {
5679 #ifdef CONFIG_SPARSEMEM
5680 	return __pfn_to_section(pfn)->pageblock_flags;
5681 #else
5682 	return zone->pageblock_flags;
5683 #endif /* CONFIG_SPARSEMEM */
5684 }
5685 
5686 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5687 {
5688 #ifdef CONFIG_SPARSEMEM
5689 	pfn &= (PAGES_PER_SECTION-1);
5690 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5691 #else
5692 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5693 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5694 #endif /* CONFIG_SPARSEMEM */
5695 }
5696 
5697 /**
5698  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5699  * @page: The page within the block of interest
5700  * @start_bitidx: The first bit of interest to retrieve
5701  * @end_bitidx: The last bit of interest
5702  * returns pageblock_bits flags
5703  */
5704 unsigned long get_pageblock_flags_group(struct page *page,
5705 					int start_bitidx, int end_bitidx)
5706 {
5707 	struct zone *zone;
5708 	unsigned long *bitmap;
5709 	unsigned long pfn, bitidx;
5710 	unsigned long flags = 0;
5711 	unsigned long value = 1;
5712 
5713 	zone = page_zone(page);
5714 	pfn = page_to_pfn(page);
5715 	bitmap = get_pageblock_bitmap(zone, pfn);
5716 	bitidx = pfn_to_bitidx(zone, pfn);
5717 
5718 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5719 		if (test_bit(bitidx + start_bitidx, bitmap))
5720 			flags |= value;
5721 
5722 	return flags;
5723 }
5724 
5725 /**
5726  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5727  * @page: The page within the block of interest
5728  * @start_bitidx: The first bit of interest
5729  * @end_bitidx: The last bit of interest
5730  * @flags: The flags to set
5731  */
5732 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5733 					int start_bitidx, int end_bitidx)
5734 {
5735 	struct zone *zone;
5736 	unsigned long *bitmap;
5737 	unsigned long pfn, bitidx;
5738 	unsigned long value = 1;
5739 
5740 	zone = page_zone(page);
5741 	pfn = page_to_pfn(page);
5742 	bitmap = get_pageblock_bitmap(zone, pfn);
5743 	bitidx = pfn_to_bitidx(zone, pfn);
5744 	VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5745 
5746 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5747 		if (flags & value)
5748 			__set_bit(bitidx + start_bitidx, bitmap);
5749 		else
5750 			__clear_bit(bitidx + start_bitidx, bitmap);
5751 }
5752 
5753 /*
5754  * This function checks whether pageblock includes unmovable pages or not.
5755  * If @count is not zero, it is okay to include less @count unmovable pages
5756  *
5757  * PageLRU check wihtout isolation or lru_lock could race so that
5758  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5759  * expect this function should be exact.
5760  */
5761 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5762 			 bool skip_hwpoisoned_pages)
5763 {
5764 	unsigned long pfn, iter, found;
5765 	int mt;
5766 
5767 	/*
5768 	 * For avoiding noise data, lru_add_drain_all() should be called
5769 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5770 	 */
5771 	if (zone_idx(zone) == ZONE_MOVABLE)
5772 		return false;
5773 	mt = get_pageblock_migratetype(page);
5774 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5775 		return false;
5776 
5777 	pfn = page_to_pfn(page);
5778 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5779 		unsigned long check = pfn + iter;
5780 
5781 		if (!pfn_valid_within(check))
5782 			continue;
5783 
5784 		page = pfn_to_page(check);
5785 		/*
5786 		 * We can't use page_count without pin a page
5787 		 * because another CPU can free compound page.
5788 		 * This check already skips compound tails of THP
5789 		 * because their page->_count is zero at all time.
5790 		 */
5791 		if (!atomic_read(&page->_count)) {
5792 			if (PageBuddy(page))
5793 				iter += (1 << page_order(page)) - 1;
5794 			continue;
5795 		}
5796 
5797 		/*
5798 		 * The HWPoisoned page may be not in buddy system, and
5799 		 * page_count() is not 0.
5800 		 */
5801 		if (skip_hwpoisoned_pages && PageHWPoison(page))
5802 			continue;
5803 
5804 		if (!PageLRU(page))
5805 			found++;
5806 		/*
5807 		 * If there are RECLAIMABLE pages, we need to check it.
5808 		 * But now, memory offline itself doesn't call shrink_slab()
5809 		 * and it still to be fixed.
5810 		 */
5811 		/*
5812 		 * If the page is not RAM, page_count()should be 0.
5813 		 * we don't need more check. This is an _used_ not-movable page.
5814 		 *
5815 		 * The problematic thing here is PG_reserved pages. PG_reserved
5816 		 * is set to both of a memory hole page and a _used_ kernel
5817 		 * page at boot.
5818 		 */
5819 		if (found > count)
5820 			return true;
5821 	}
5822 	return false;
5823 }
5824 
5825 bool is_pageblock_removable_nolock(struct page *page)
5826 {
5827 	struct zone *zone;
5828 	unsigned long pfn;
5829 
5830 	/*
5831 	 * We have to be careful here because we are iterating over memory
5832 	 * sections which are not zone aware so we might end up outside of
5833 	 * the zone but still within the section.
5834 	 * We have to take care about the node as well. If the node is offline
5835 	 * its NODE_DATA will be NULL - see page_zone.
5836 	 */
5837 	if (!node_online(page_to_nid(page)))
5838 		return false;
5839 
5840 	zone = page_zone(page);
5841 	pfn = page_to_pfn(page);
5842 	if (!zone_spans_pfn(zone, pfn))
5843 		return false;
5844 
5845 	return !has_unmovable_pages(zone, page, 0, true);
5846 }
5847 
5848 #ifdef CONFIG_CMA
5849 
5850 static unsigned long pfn_max_align_down(unsigned long pfn)
5851 {
5852 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5853 			     pageblock_nr_pages) - 1);
5854 }
5855 
5856 static unsigned long pfn_max_align_up(unsigned long pfn)
5857 {
5858 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5859 				pageblock_nr_pages));
5860 }
5861 
5862 /* [start, end) must belong to a single zone. */
5863 static int __alloc_contig_migrate_range(struct compact_control *cc,
5864 					unsigned long start, unsigned long end)
5865 {
5866 	/* This function is based on compact_zone() from compaction.c. */
5867 	unsigned long nr_reclaimed;
5868 	unsigned long pfn = start;
5869 	unsigned int tries = 0;
5870 	int ret = 0;
5871 
5872 	migrate_prep();
5873 
5874 	while (pfn < end || !list_empty(&cc->migratepages)) {
5875 		if (fatal_signal_pending(current)) {
5876 			ret = -EINTR;
5877 			break;
5878 		}
5879 
5880 		if (list_empty(&cc->migratepages)) {
5881 			cc->nr_migratepages = 0;
5882 			pfn = isolate_migratepages_range(cc->zone, cc,
5883 							 pfn, end, true);
5884 			if (!pfn) {
5885 				ret = -EINTR;
5886 				break;
5887 			}
5888 			tries = 0;
5889 		} else if (++tries == 5) {
5890 			ret = ret < 0 ? ret : -EBUSY;
5891 			break;
5892 		}
5893 
5894 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5895 							&cc->migratepages);
5896 		cc->nr_migratepages -= nr_reclaimed;
5897 
5898 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5899 				    0, MIGRATE_SYNC, MR_CMA);
5900 	}
5901 	if (ret < 0) {
5902 		putback_movable_pages(&cc->migratepages);
5903 		return ret;
5904 	}
5905 	return 0;
5906 }
5907 
5908 /**
5909  * alloc_contig_range() -- tries to allocate given range of pages
5910  * @start:	start PFN to allocate
5911  * @end:	one-past-the-last PFN to allocate
5912  * @migratetype:	migratetype of the underlaying pageblocks (either
5913  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5914  *			in range must have the same migratetype and it must
5915  *			be either of the two.
5916  *
5917  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5918  * aligned, however it's the caller's responsibility to guarantee that
5919  * we are the only thread that changes migrate type of pageblocks the
5920  * pages fall in.
5921  *
5922  * The PFN range must belong to a single zone.
5923  *
5924  * Returns zero on success or negative error code.  On success all
5925  * pages which PFN is in [start, end) are allocated for the caller and
5926  * need to be freed with free_contig_range().
5927  */
5928 int alloc_contig_range(unsigned long start, unsigned long end,
5929 		       unsigned migratetype)
5930 {
5931 	unsigned long outer_start, outer_end;
5932 	int ret = 0, order;
5933 
5934 	struct compact_control cc = {
5935 		.nr_migratepages = 0,
5936 		.order = -1,
5937 		.zone = page_zone(pfn_to_page(start)),
5938 		.sync = true,
5939 		.ignore_skip_hint = true,
5940 	};
5941 	INIT_LIST_HEAD(&cc.migratepages);
5942 
5943 	/*
5944 	 * What we do here is we mark all pageblocks in range as
5945 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5946 	 * have different sizes, and due to the way page allocator
5947 	 * work, we align the range to biggest of the two pages so
5948 	 * that page allocator won't try to merge buddies from
5949 	 * different pageblocks and change MIGRATE_ISOLATE to some
5950 	 * other migration type.
5951 	 *
5952 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5953 	 * migrate the pages from an unaligned range (ie. pages that
5954 	 * we are interested in).  This will put all the pages in
5955 	 * range back to page allocator as MIGRATE_ISOLATE.
5956 	 *
5957 	 * When this is done, we take the pages in range from page
5958 	 * allocator removing them from the buddy system.  This way
5959 	 * page allocator will never consider using them.
5960 	 *
5961 	 * This lets us mark the pageblocks back as
5962 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5963 	 * aligned range but not in the unaligned, original range are
5964 	 * put back to page allocator so that buddy can use them.
5965 	 */
5966 
5967 	ret = start_isolate_page_range(pfn_max_align_down(start),
5968 				       pfn_max_align_up(end), migratetype,
5969 				       false);
5970 	if (ret)
5971 		return ret;
5972 
5973 	ret = __alloc_contig_migrate_range(&cc, start, end);
5974 	if (ret)
5975 		goto done;
5976 
5977 	/*
5978 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5979 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5980 	 * more, all pages in [start, end) are free in page allocator.
5981 	 * What we are going to do is to allocate all pages from
5982 	 * [start, end) (that is remove them from page allocator).
5983 	 *
5984 	 * The only problem is that pages at the beginning and at the
5985 	 * end of interesting range may be not aligned with pages that
5986 	 * page allocator holds, ie. they can be part of higher order
5987 	 * pages.  Because of this, we reserve the bigger range and
5988 	 * once this is done free the pages we are not interested in.
5989 	 *
5990 	 * We don't have to hold zone->lock here because the pages are
5991 	 * isolated thus they won't get removed from buddy.
5992 	 */
5993 
5994 	lru_add_drain_all();
5995 	drain_all_pages();
5996 
5997 	order = 0;
5998 	outer_start = start;
5999 	while (!PageBuddy(pfn_to_page(outer_start))) {
6000 		if (++order >= MAX_ORDER) {
6001 			ret = -EBUSY;
6002 			goto done;
6003 		}
6004 		outer_start &= ~0UL << order;
6005 	}
6006 
6007 	/* Make sure the range is really isolated. */
6008 	if (test_pages_isolated(outer_start, end, false)) {
6009 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6010 		       outer_start, end);
6011 		ret = -EBUSY;
6012 		goto done;
6013 	}
6014 
6015 
6016 	/* Grab isolated pages from freelists. */
6017 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6018 	if (!outer_end) {
6019 		ret = -EBUSY;
6020 		goto done;
6021 	}
6022 
6023 	/* Free head and tail (if any) */
6024 	if (start != outer_start)
6025 		free_contig_range(outer_start, start - outer_start);
6026 	if (end != outer_end)
6027 		free_contig_range(end, outer_end - end);
6028 
6029 done:
6030 	undo_isolate_page_range(pfn_max_align_down(start),
6031 				pfn_max_align_up(end), migratetype);
6032 	return ret;
6033 }
6034 
6035 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6036 {
6037 	unsigned int count = 0;
6038 
6039 	for (; nr_pages--; pfn++) {
6040 		struct page *page = pfn_to_page(pfn);
6041 
6042 		count += page_count(page) != 1;
6043 		__free_page(page);
6044 	}
6045 	WARN(count != 0, "%d pages are still in use!\n", count);
6046 }
6047 #endif
6048 
6049 #ifdef CONFIG_MEMORY_HOTPLUG
6050 static int __meminit __zone_pcp_update(void *data)
6051 {
6052 	struct zone *zone = data;
6053 	int cpu;
6054 	unsigned long batch = zone_batchsize(zone), flags;
6055 
6056 	for_each_possible_cpu(cpu) {
6057 		struct per_cpu_pageset *pset;
6058 		struct per_cpu_pages *pcp;
6059 
6060 		pset = per_cpu_ptr(zone->pageset, cpu);
6061 		pcp = &pset->pcp;
6062 
6063 		local_irq_save(flags);
6064 		if (pcp->count > 0)
6065 			free_pcppages_bulk(zone, pcp->count, pcp);
6066 		drain_zonestat(zone, pset);
6067 		setup_pageset(pset, batch);
6068 		local_irq_restore(flags);
6069 	}
6070 	return 0;
6071 }
6072 
6073 void __meminit zone_pcp_update(struct zone *zone)
6074 {
6075 	stop_machine(__zone_pcp_update, zone, NULL);
6076 }
6077 #endif
6078 
6079 void zone_pcp_reset(struct zone *zone)
6080 {
6081 	unsigned long flags;
6082 	int cpu;
6083 	struct per_cpu_pageset *pset;
6084 
6085 	/* avoid races with drain_pages()  */
6086 	local_irq_save(flags);
6087 	if (zone->pageset != &boot_pageset) {
6088 		for_each_online_cpu(cpu) {
6089 			pset = per_cpu_ptr(zone->pageset, cpu);
6090 			drain_zonestat(zone, pset);
6091 		}
6092 		free_percpu(zone->pageset);
6093 		zone->pageset = &boot_pageset;
6094 	}
6095 	local_irq_restore(flags);
6096 }
6097 
6098 #ifdef CONFIG_MEMORY_HOTREMOVE
6099 /*
6100  * All pages in the range must be isolated before calling this.
6101  */
6102 void
6103 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6104 {
6105 	struct page *page;
6106 	struct zone *zone;
6107 	int order, i;
6108 	unsigned long pfn;
6109 	unsigned long flags;
6110 	/* find the first valid pfn */
6111 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6112 		if (pfn_valid(pfn))
6113 			break;
6114 	if (pfn == end_pfn)
6115 		return;
6116 	zone = page_zone(pfn_to_page(pfn));
6117 	spin_lock_irqsave(&zone->lock, flags);
6118 	pfn = start_pfn;
6119 	while (pfn < end_pfn) {
6120 		if (!pfn_valid(pfn)) {
6121 			pfn++;
6122 			continue;
6123 		}
6124 		page = pfn_to_page(pfn);
6125 		/*
6126 		 * The HWPoisoned page may be not in buddy system, and
6127 		 * page_count() is not 0.
6128 		 */
6129 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6130 			pfn++;
6131 			SetPageReserved(page);
6132 			continue;
6133 		}
6134 
6135 		BUG_ON(page_count(page));
6136 		BUG_ON(!PageBuddy(page));
6137 		order = page_order(page);
6138 #ifdef CONFIG_DEBUG_VM
6139 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6140 		       pfn, 1 << order, end_pfn);
6141 #endif
6142 		list_del(&page->lru);
6143 		rmv_page_order(page);
6144 		zone->free_area[order].nr_free--;
6145 		for (i = 0; i < (1 << order); i++)
6146 			SetPageReserved((page+i));
6147 		pfn += (1 << order);
6148 	}
6149 	spin_unlock_irqrestore(&zone->lock, flags);
6150 }
6151 #endif
6152 
6153 #ifdef CONFIG_MEMORY_FAILURE
6154 bool is_free_buddy_page(struct page *page)
6155 {
6156 	struct zone *zone = page_zone(page);
6157 	unsigned long pfn = page_to_pfn(page);
6158 	unsigned long flags;
6159 	int order;
6160 
6161 	spin_lock_irqsave(&zone->lock, flags);
6162 	for (order = 0; order < MAX_ORDER; order++) {
6163 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6164 
6165 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6166 			break;
6167 	}
6168 	spin_unlock_irqrestore(&zone->lock, flags);
6169 
6170 	return order < MAX_ORDER;
6171 }
6172 #endif
6173 
6174 static const struct trace_print_flags pageflag_names[] = {
6175 	{1UL << PG_locked,		"locked"	},
6176 	{1UL << PG_error,		"error"		},
6177 	{1UL << PG_referenced,		"referenced"	},
6178 	{1UL << PG_uptodate,		"uptodate"	},
6179 	{1UL << PG_dirty,		"dirty"		},
6180 	{1UL << PG_lru,			"lru"		},
6181 	{1UL << PG_active,		"active"	},
6182 	{1UL << PG_slab,		"slab"		},
6183 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6184 	{1UL << PG_arch_1,		"arch_1"	},
6185 	{1UL << PG_reserved,		"reserved"	},
6186 	{1UL << PG_private,		"private"	},
6187 	{1UL << PG_private_2,		"private_2"	},
6188 	{1UL << PG_writeback,		"writeback"	},
6189 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6190 	{1UL << PG_head,		"head"		},
6191 	{1UL << PG_tail,		"tail"		},
6192 #else
6193 	{1UL << PG_compound,		"compound"	},
6194 #endif
6195 	{1UL << PG_swapcache,		"swapcache"	},
6196 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6197 	{1UL << PG_reclaim,		"reclaim"	},
6198 	{1UL << PG_swapbacked,		"swapbacked"	},
6199 	{1UL << PG_unevictable,		"unevictable"	},
6200 #ifdef CONFIG_MMU
6201 	{1UL << PG_mlocked,		"mlocked"	},
6202 #endif
6203 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6204 	{1UL << PG_uncached,		"uncached"	},
6205 #endif
6206 #ifdef CONFIG_MEMORY_FAILURE
6207 	{1UL << PG_hwpoison,		"hwpoison"	},
6208 #endif
6209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6210 	{1UL << PG_compound_lock,	"compound_lock"	},
6211 #endif
6212 };
6213 
6214 static void dump_page_flags(unsigned long flags)
6215 {
6216 	const char *delim = "";
6217 	unsigned long mask;
6218 	int i;
6219 
6220 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6221 
6222 	printk(KERN_ALERT "page flags: %#lx(", flags);
6223 
6224 	/* remove zone id */
6225 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6226 
6227 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6228 
6229 		mask = pageflag_names[i].mask;
6230 		if ((flags & mask) != mask)
6231 			continue;
6232 
6233 		flags &= ~mask;
6234 		printk("%s%s", delim, pageflag_names[i].name);
6235 		delim = "|";
6236 	}
6237 
6238 	/* check for left over flags */
6239 	if (flags)
6240 		printk("%s%#lx", delim, flags);
6241 
6242 	printk(")\n");
6243 }
6244 
6245 void dump_page(struct page *page)
6246 {
6247 	printk(KERN_ALERT
6248 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6249 		page, atomic_read(&page->_count), page_mapcount(page),
6250 		page->mapping, page->index);
6251 	dump_page_flags(page->flags);
6252 	mem_cgroup_print_bad_page(page);
6253 }
6254