1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 64 #include <asm/tlbflush.h> 65 #include <asm/div64.h> 66 #include "internal.h" 67 68 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 69 DEFINE_PER_CPU(int, numa_node); 70 EXPORT_PER_CPU_SYMBOL(numa_node); 71 #endif 72 73 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 74 /* 75 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 76 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 77 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 78 * defined in <linux/topology.h>. 79 */ 80 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 81 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 82 #endif 83 84 /* 85 * Array of node states. 86 */ 87 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 88 [N_POSSIBLE] = NODE_MASK_ALL, 89 [N_ONLINE] = { { [0] = 1UL } }, 90 #ifndef CONFIG_NUMA 91 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 92 #ifdef CONFIG_HIGHMEM 93 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 94 #endif 95 #ifdef CONFIG_MOVABLE_NODE 96 [N_MEMORY] = { { [0] = 1UL } }, 97 #endif 98 [N_CPU] = { { [0] = 1UL } }, 99 #endif /* NUMA */ 100 }; 101 EXPORT_SYMBOL(node_states); 102 103 unsigned long totalram_pages __read_mostly; 104 unsigned long totalreserve_pages __read_mostly; 105 /* 106 * When calculating the number of globally allowed dirty pages, there 107 * is a certain number of per-zone reserves that should not be 108 * considered dirtyable memory. This is the sum of those reserves 109 * over all existing zones that contribute dirtyable memory. 110 */ 111 unsigned long dirty_balance_reserve __read_mostly; 112 113 int percpu_pagelist_fraction; 114 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 115 116 #ifdef CONFIG_PM_SLEEP 117 /* 118 * The following functions are used by the suspend/hibernate code to temporarily 119 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 120 * while devices are suspended. To avoid races with the suspend/hibernate code, 121 * they should always be called with pm_mutex held (gfp_allowed_mask also should 122 * only be modified with pm_mutex held, unless the suspend/hibernate code is 123 * guaranteed not to run in parallel with that modification). 124 */ 125 126 static gfp_t saved_gfp_mask; 127 128 void pm_restore_gfp_mask(void) 129 { 130 WARN_ON(!mutex_is_locked(&pm_mutex)); 131 if (saved_gfp_mask) { 132 gfp_allowed_mask = saved_gfp_mask; 133 saved_gfp_mask = 0; 134 } 135 } 136 137 void pm_restrict_gfp_mask(void) 138 { 139 WARN_ON(!mutex_is_locked(&pm_mutex)); 140 WARN_ON(saved_gfp_mask); 141 saved_gfp_mask = gfp_allowed_mask; 142 gfp_allowed_mask &= ~GFP_IOFS; 143 } 144 145 bool pm_suspended_storage(void) 146 { 147 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 148 return false; 149 return true; 150 } 151 #endif /* CONFIG_PM_SLEEP */ 152 153 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 154 int pageblock_order __read_mostly; 155 #endif 156 157 static void __free_pages_ok(struct page *page, unsigned int order); 158 159 /* 160 * results with 256, 32 in the lowmem_reserve sysctl: 161 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 162 * 1G machine -> (16M dma, 784M normal, 224M high) 163 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 164 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 165 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 166 * 167 * TBD: should special case ZONE_DMA32 machines here - in those we normally 168 * don't need any ZONE_NORMAL reservation 169 */ 170 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 171 #ifdef CONFIG_ZONE_DMA 172 256, 173 #endif 174 #ifdef CONFIG_ZONE_DMA32 175 256, 176 #endif 177 #ifdef CONFIG_HIGHMEM 178 32, 179 #endif 180 32, 181 }; 182 183 EXPORT_SYMBOL(totalram_pages); 184 185 static char * const zone_names[MAX_NR_ZONES] = { 186 #ifdef CONFIG_ZONE_DMA 187 "DMA", 188 #endif 189 #ifdef CONFIG_ZONE_DMA32 190 "DMA32", 191 #endif 192 "Normal", 193 #ifdef CONFIG_HIGHMEM 194 "HighMem", 195 #endif 196 "Movable", 197 }; 198 199 int min_free_kbytes = 1024; 200 201 static unsigned long __meminitdata nr_kernel_pages; 202 static unsigned long __meminitdata nr_all_pages; 203 static unsigned long __meminitdata dma_reserve; 204 205 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 206 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 207 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 208 static unsigned long __initdata required_kernelcore; 209 static unsigned long __initdata required_movablecore; 210 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 211 212 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 213 int movable_zone; 214 EXPORT_SYMBOL(movable_zone); 215 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 216 217 #if MAX_NUMNODES > 1 218 int nr_node_ids __read_mostly = MAX_NUMNODES; 219 int nr_online_nodes __read_mostly = 1; 220 EXPORT_SYMBOL(nr_node_ids); 221 EXPORT_SYMBOL(nr_online_nodes); 222 #endif 223 224 int page_group_by_mobility_disabled __read_mostly; 225 226 void set_pageblock_migratetype(struct page *page, int migratetype) 227 { 228 229 if (unlikely(page_group_by_mobility_disabled)) 230 migratetype = MIGRATE_UNMOVABLE; 231 232 set_pageblock_flags_group(page, (unsigned long)migratetype, 233 PB_migrate, PB_migrate_end); 234 } 235 236 bool oom_killer_disabled __read_mostly; 237 238 #ifdef CONFIG_DEBUG_VM 239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 240 { 241 int ret = 0; 242 unsigned seq; 243 unsigned long pfn = page_to_pfn(page); 244 unsigned long sp, start_pfn; 245 246 do { 247 seq = zone_span_seqbegin(zone); 248 start_pfn = zone->zone_start_pfn; 249 sp = zone->spanned_pages; 250 if (!zone_spans_pfn(zone, pfn)) 251 ret = 1; 252 } while (zone_span_seqretry(zone, seq)); 253 254 if (ret) 255 pr_err("page %lu outside zone [ %lu - %lu ]\n", 256 pfn, start_pfn, start_pfn + sp); 257 258 return ret; 259 } 260 261 static int page_is_consistent(struct zone *zone, struct page *page) 262 { 263 if (!pfn_valid_within(page_to_pfn(page))) 264 return 0; 265 if (zone != page_zone(page)) 266 return 0; 267 268 return 1; 269 } 270 /* 271 * Temporary debugging check for pages not lying within a given zone. 272 */ 273 static int bad_range(struct zone *zone, struct page *page) 274 { 275 if (page_outside_zone_boundaries(zone, page)) 276 return 1; 277 if (!page_is_consistent(zone, page)) 278 return 1; 279 280 return 0; 281 } 282 #else 283 static inline int bad_range(struct zone *zone, struct page *page) 284 { 285 return 0; 286 } 287 #endif 288 289 static void bad_page(struct page *page) 290 { 291 static unsigned long resume; 292 static unsigned long nr_shown; 293 static unsigned long nr_unshown; 294 295 /* Don't complain about poisoned pages */ 296 if (PageHWPoison(page)) { 297 page_mapcount_reset(page); /* remove PageBuddy */ 298 return; 299 } 300 301 /* 302 * Allow a burst of 60 reports, then keep quiet for that minute; 303 * or allow a steady drip of one report per second. 304 */ 305 if (nr_shown == 60) { 306 if (time_before(jiffies, resume)) { 307 nr_unshown++; 308 goto out; 309 } 310 if (nr_unshown) { 311 printk(KERN_ALERT 312 "BUG: Bad page state: %lu messages suppressed\n", 313 nr_unshown); 314 nr_unshown = 0; 315 } 316 nr_shown = 0; 317 } 318 if (nr_shown++ == 0) 319 resume = jiffies + 60 * HZ; 320 321 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 322 current->comm, page_to_pfn(page)); 323 dump_page(page); 324 325 print_modules(); 326 dump_stack(); 327 out: 328 /* Leave bad fields for debug, except PageBuddy could make trouble */ 329 page_mapcount_reset(page); /* remove PageBuddy */ 330 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 331 } 332 333 /* 334 * Higher-order pages are called "compound pages". They are structured thusly: 335 * 336 * The first PAGE_SIZE page is called the "head page". 337 * 338 * The remaining PAGE_SIZE pages are called "tail pages". 339 * 340 * All pages have PG_compound set. All tail pages have their ->first_page 341 * pointing at the head page. 342 * 343 * The first tail page's ->lru.next holds the address of the compound page's 344 * put_page() function. Its ->lru.prev holds the order of allocation. 345 * This usage means that zero-order pages may not be compound. 346 */ 347 348 static void free_compound_page(struct page *page) 349 { 350 __free_pages_ok(page, compound_order(page)); 351 } 352 353 void prep_compound_page(struct page *page, unsigned long order) 354 { 355 int i; 356 int nr_pages = 1 << order; 357 358 set_compound_page_dtor(page, free_compound_page); 359 set_compound_order(page, order); 360 __SetPageHead(page); 361 for (i = 1; i < nr_pages; i++) { 362 struct page *p = page + i; 363 __SetPageTail(p); 364 set_page_count(p, 0); 365 p->first_page = page; 366 } 367 } 368 369 /* update __split_huge_page_refcount if you change this function */ 370 static int destroy_compound_page(struct page *page, unsigned long order) 371 { 372 int i; 373 int nr_pages = 1 << order; 374 int bad = 0; 375 376 if (unlikely(compound_order(page) != order)) { 377 bad_page(page); 378 bad++; 379 } 380 381 __ClearPageHead(page); 382 383 for (i = 1; i < nr_pages; i++) { 384 struct page *p = page + i; 385 386 if (unlikely(!PageTail(p) || (p->first_page != page))) { 387 bad_page(page); 388 bad++; 389 } 390 __ClearPageTail(p); 391 } 392 393 return bad; 394 } 395 396 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 397 { 398 int i; 399 400 /* 401 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 402 * and __GFP_HIGHMEM from hard or soft interrupt context. 403 */ 404 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 405 for (i = 0; i < (1 << order); i++) 406 clear_highpage(page + i); 407 } 408 409 #ifdef CONFIG_DEBUG_PAGEALLOC 410 unsigned int _debug_guardpage_minorder; 411 412 static int __init debug_guardpage_minorder_setup(char *buf) 413 { 414 unsigned long res; 415 416 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 417 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 418 return 0; 419 } 420 _debug_guardpage_minorder = res; 421 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 422 return 0; 423 } 424 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 425 426 static inline void set_page_guard_flag(struct page *page) 427 { 428 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 429 } 430 431 static inline void clear_page_guard_flag(struct page *page) 432 { 433 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 434 } 435 #else 436 static inline void set_page_guard_flag(struct page *page) { } 437 static inline void clear_page_guard_flag(struct page *page) { } 438 #endif 439 440 static inline void set_page_order(struct page *page, int order) 441 { 442 set_page_private(page, order); 443 __SetPageBuddy(page); 444 } 445 446 static inline void rmv_page_order(struct page *page) 447 { 448 __ClearPageBuddy(page); 449 set_page_private(page, 0); 450 } 451 452 /* 453 * Locate the struct page for both the matching buddy in our 454 * pair (buddy1) and the combined O(n+1) page they form (page). 455 * 456 * 1) Any buddy B1 will have an order O twin B2 which satisfies 457 * the following equation: 458 * B2 = B1 ^ (1 << O) 459 * For example, if the starting buddy (buddy2) is #8 its order 460 * 1 buddy is #10: 461 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 462 * 463 * 2) Any buddy B will have an order O+1 parent P which 464 * satisfies the following equation: 465 * P = B & ~(1 << O) 466 * 467 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 468 */ 469 static inline unsigned long 470 __find_buddy_index(unsigned long page_idx, unsigned int order) 471 { 472 return page_idx ^ (1 << order); 473 } 474 475 /* 476 * This function checks whether a page is free && is the buddy 477 * we can do coalesce a page and its buddy if 478 * (a) the buddy is not in a hole && 479 * (b) the buddy is in the buddy system && 480 * (c) a page and its buddy have the same order && 481 * (d) a page and its buddy are in the same zone. 482 * 483 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 484 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 485 * 486 * For recording page's order, we use page_private(page). 487 */ 488 static inline int page_is_buddy(struct page *page, struct page *buddy, 489 int order) 490 { 491 if (!pfn_valid_within(page_to_pfn(buddy))) 492 return 0; 493 494 if (page_zone_id(page) != page_zone_id(buddy)) 495 return 0; 496 497 if (page_is_guard(buddy) && page_order(buddy) == order) { 498 VM_BUG_ON(page_count(buddy) != 0); 499 return 1; 500 } 501 502 if (PageBuddy(buddy) && page_order(buddy) == order) { 503 VM_BUG_ON(page_count(buddy) != 0); 504 return 1; 505 } 506 return 0; 507 } 508 509 /* 510 * Freeing function for a buddy system allocator. 511 * 512 * The concept of a buddy system is to maintain direct-mapped table 513 * (containing bit values) for memory blocks of various "orders". 514 * The bottom level table contains the map for the smallest allocatable 515 * units of memory (here, pages), and each level above it describes 516 * pairs of units from the levels below, hence, "buddies". 517 * At a high level, all that happens here is marking the table entry 518 * at the bottom level available, and propagating the changes upward 519 * as necessary, plus some accounting needed to play nicely with other 520 * parts of the VM system. 521 * At each level, we keep a list of pages, which are heads of continuous 522 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 523 * order is recorded in page_private(page) field. 524 * So when we are allocating or freeing one, we can derive the state of the 525 * other. That is, if we allocate a small block, and both were 526 * free, the remainder of the region must be split into blocks. 527 * If a block is freed, and its buddy is also free, then this 528 * triggers coalescing into a block of larger size. 529 * 530 * -- nyc 531 */ 532 533 static inline void __free_one_page(struct page *page, 534 struct zone *zone, unsigned int order, 535 int migratetype) 536 { 537 unsigned long page_idx; 538 unsigned long combined_idx; 539 unsigned long uninitialized_var(buddy_idx); 540 struct page *buddy; 541 542 VM_BUG_ON(!zone_is_initialized(zone)); 543 544 if (unlikely(PageCompound(page))) 545 if (unlikely(destroy_compound_page(page, order))) 546 return; 547 548 VM_BUG_ON(migratetype == -1); 549 550 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 551 552 VM_BUG_ON(page_idx & ((1 << order) - 1)); 553 VM_BUG_ON(bad_range(zone, page)); 554 555 while (order < MAX_ORDER-1) { 556 buddy_idx = __find_buddy_index(page_idx, order); 557 buddy = page + (buddy_idx - page_idx); 558 if (!page_is_buddy(page, buddy, order)) 559 break; 560 /* 561 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 562 * merge with it and move up one order. 563 */ 564 if (page_is_guard(buddy)) { 565 clear_page_guard_flag(buddy); 566 set_page_private(page, 0); 567 __mod_zone_freepage_state(zone, 1 << order, 568 migratetype); 569 } else { 570 list_del(&buddy->lru); 571 zone->free_area[order].nr_free--; 572 rmv_page_order(buddy); 573 } 574 combined_idx = buddy_idx & page_idx; 575 page = page + (combined_idx - page_idx); 576 page_idx = combined_idx; 577 order++; 578 } 579 set_page_order(page, order); 580 581 /* 582 * If this is not the largest possible page, check if the buddy 583 * of the next-highest order is free. If it is, it's possible 584 * that pages are being freed that will coalesce soon. In case, 585 * that is happening, add the free page to the tail of the list 586 * so it's less likely to be used soon and more likely to be merged 587 * as a higher order page 588 */ 589 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 590 struct page *higher_page, *higher_buddy; 591 combined_idx = buddy_idx & page_idx; 592 higher_page = page + (combined_idx - page_idx); 593 buddy_idx = __find_buddy_index(combined_idx, order + 1); 594 higher_buddy = higher_page + (buddy_idx - combined_idx); 595 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 596 list_add_tail(&page->lru, 597 &zone->free_area[order].free_list[migratetype]); 598 goto out; 599 } 600 } 601 602 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 603 out: 604 zone->free_area[order].nr_free++; 605 } 606 607 static inline int free_pages_check(struct page *page) 608 { 609 if (unlikely(page_mapcount(page) | 610 (page->mapping != NULL) | 611 (atomic_read(&page->_count) != 0) | 612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 613 (mem_cgroup_bad_page_check(page)))) { 614 bad_page(page); 615 return 1; 616 } 617 page_nid_reset_last(page); 618 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 619 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 620 return 0; 621 } 622 623 /* 624 * Frees a number of pages from the PCP lists 625 * Assumes all pages on list are in same zone, and of same order. 626 * count is the number of pages to free. 627 * 628 * If the zone was previously in an "all pages pinned" state then look to 629 * see if this freeing clears that state. 630 * 631 * And clear the zone's pages_scanned counter, to hold off the "all pages are 632 * pinned" detection logic. 633 */ 634 static void free_pcppages_bulk(struct zone *zone, int count, 635 struct per_cpu_pages *pcp) 636 { 637 int migratetype = 0; 638 int batch_free = 0; 639 int to_free = count; 640 641 spin_lock(&zone->lock); 642 zone->all_unreclaimable = 0; 643 zone->pages_scanned = 0; 644 645 while (to_free) { 646 struct page *page; 647 struct list_head *list; 648 649 /* 650 * Remove pages from lists in a round-robin fashion. A 651 * batch_free count is maintained that is incremented when an 652 * empty list is encountered. This is so more pages are freed 653 * off fuller lists instead of spinning excessively around empty 654 * lists 655 */ 656 do { 657 batch_free++; 658 if (++migratetype == MIGRATE_PCPTYPES) 659 migratetype = 0; 660 list = &pcp->lists[migratetype]; 661 } while (list_empty(list)); 662 663 /* This is the only non-empty list. Free them all. */ 664 if (batch_free == MIGRATE_PCPTYPES) 665 batch_free = to_free; 666 667 do { 668 int mt; /* migratetype of the to-be-freed page */ 669 670 page = list_entry(list->prev, struct page, lru); 671 /* must delete as __free_one_page list manipulates */ 672 list_del(&page->lru); 673 mt = get_freepage_migratetype(page); 674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 675 __free_one_page(page, zone, 0, mt); 676 trace_mm_page_pcpu_drain(page, 0, mt); 677 if (likely(!is_migrate_isolate_page(page))) { 678 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 679 if (is_migrate_cma(mt)) 680 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 681 } 682 } while (--to_free && --batch_free && !list_empty(list)); 683 } 684 spin_unlock(&zone->lock); 685 } 686 687 static void free_one_page(struct zone *zone, struct page *page, int order, 688 int migratetype) 689 { 690 spin_lock(&zone->lock); 691 zone->all_unreclaimable = 0; 692 zone->pages_scanned = 0; 693 694 __free_one_page(page, zone, order, migratetype); 695 if (unlikely(!is_migrate_isolate(migratetype))) 696 __mod_zone_freepage_state(zone, 1 << order, migratetype); 697 spin_unlock(&zone->lock); 698 } 699 700 static bool free_pages_prepare(struct page *page, unsigned int order) 701 { 702 int i; 703 int bad = 0; 704 705 trace_mm_page_free(page, order); 706 kmemcheck_free_shadow(page, order); 707 708 if (PageAnon(page)) 709 page->mapping = NULL; 710 for (i = 0; i < (1 << order); i++) 711 bad += free_pages_check(page + i); 712 if (bad) 713 return false; 714 715 if (!PageHighMem(page)) { 716 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 717 debug_check_no_obj_freed(page_address(page), 718 PAGE_SIZE << order); 719 } 720 arch_free_page(page, order); 721 kernel_map_pages(page, 1 << order, 0); 722 723 return true; 724 } 725 726 static void __free_pages_ok(struct page *page, unsigned int order) 727 { 728 unsigned long flags; 729 int migratetype; 730 731 if (!free_pages_prepare(page, order)) 732 return; 733 734 local_irq_save(flags); 735 __count_vm_events(PGFREE, 1 << order); 736 migratetype = get_pageblock_migratetype(page); 737 set_freepage_migratetype(page, migratetype); 738 free_one_page(page_zone(page), page, order, migratetype); 739 local_irq_restore(flags); 740 } 741 742 /* 743 * Read access to zone->managed_pages is safe because it's unsigned long, 744 * but we still need to serialize writers. Currently all callers of 745 * __free_pages_bootmem() except put_page_bootmem() should only be used 746 * at boot time. So for shorter boot time, we shift the burden to 747 * put_page_bootmem() to serialize writers. 748 */ 749 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 750 { 751 unsigned int nr_pages = 1 << order; 752 unsigned int loop; 753 754 prefetchw(page); 755 for (loop = 0; loop < nr_pages; loop++) { 756 struct page *p = &page[loop]; 757 758 if (loop + 1 < nr_pages) 759 prefetchw(p + 1); 760 __ClearPageReserved(p); 761 set_page_count(p, 0); 762 } 763 764 page_zone(page)->managed_pages += 1 << order; 765 set_page_refcounted(page); 766 __free_pages(page, order); 767 } 768 769 #ifdef CONFIG_CMA 770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 771 void __init init_cma_reserved_pageblock(struct page *page) 772 { 773 unsigned i = pageblock_nr_pages; 774 struct page *p = page; 775 776 do { 777 __ClearPageReserved(p); 778 set_page_count(p, 0); 779 } while (++p, --i); 780 781 set_page_refcounted(page); 782 set_pageblock_migratetype(page, MIGRATE_CMA); 783 __free_pages(page, pageblock_order); 784 totalram_pages += pageblock_nr_pages; 785 #ifdef CONFIG_HIGHMEM 786 if (PageHighMem(page)) 787 totalhigh_pages += pageblock_nr_pages; 788 #endif 789 } 790 #endif 791 792 /* 793 * The order of subdivision here is critical for the IO subsystem. 794 * Please do not alter this order without good reasons and regression 795 * testing. Specifically, as large blocks of memory are subdivided, 796 * the order in which smaller blocks are delivered depends on the order 797 * they're subdivided in this function. This is the primary factor 798 * influencing the order in which pages are delivered to the IO 799 * subsystem according to empirical testing, and this is also justified 800 * by considering the behavior of a buddy system containing a single 801 * large block of memory acted on by a series of small allocations. 802 * This behavior is a critical factor in sglist merging's success. 803 * 804 * -- nyc 805 */ 806 static inline void expand(struct zone *zone, struct page *page, 807 int low, int high, struct free_area *area, 808 int migratetype) 809 { 810 unsigned long size = 1 << high; 811 812 while (high > low) { 813 area--; 814 high--; 815 size >>= 1; 816 VM_BUG_ON(bad_range(zone, &page[size])); 817 818 #ifdef CONFIG_DEBUG_PAGEALLOC 819 if (high < debug_guardpage_minorder()) { 820 /* 821 * Mark as guard pages (or page), that will allow to 822 * merge back to allocator when buddy will be freed. 823 * Corresponding page table entries will not be touched, 824 * pages will stay not present in virtual address space 825 */ 826 INIT_LIST_HEAD(&page[size].lru); 827 set_page_guard_flag(&page[size]); 828 set_page_private(&page[size], high); 829 /* Guard pages are not available for any usage */ 830 __mod_zone_freepage_state(zone, -(1 << high), 831 migratetype); 832 continue; 833 } 834 #endif 835 list_add(&page[size].lru, &area->free_list[migratetype]); 836 area->nr_free++; 837 set_page_order(&page[size], high); 838 } 839 } 840 841 /* 842 * This page is about to be returned from the page allocator 843 */ 844 static inline int check_new_page(struct page *page) 845 { 846 if (unlikely(page_mapcount(page) | 847 (page->mapping != NULL) | 848 (atomic_read(&page->_count) != 0) | 849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 850 (mem_cgroup_bad_page_check(page)))) { 851 bad_page(page); 852 return 1; 853 } 854 return 0; 855 } 856 857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 858 { 859 int i; 860 861 for (i = 0; i < (1 << order); i++) { 862 struct page *p = page + i; 863 if (unlikely(check_new_page(p))) 864 return 1; 865 } 866 867 set_page_private(page, 0); 868 set_page_refcounted(page); 869 870 arch_alloc_page(page, order); 871 kernel_map_pages(page, 1 << order, 1); 872 873 if (gfp_flags & __GFP_ZERO) 874 prep_zero_page(page, order, gfp_flags); 875 876 if (order && (gfp_flags & __GFP_COMP)) 877 prep_compound_page(page, order); 878 879 return 0; 880 } 881 882 /* 883 * Go through the free lists for the given migratetype and remove 884 * the smallest available page from the freelists 885 */ 886 static inline 887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 888 int migratetype) 889 { 890 unsigned int current_order; 891 struct free_area * area; 892 struct page *page; 893 894 /* Find a page of the appropriate size in the preferred list */ 895 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 896 area = &(zone->free_area[current_order]); 897 if (list_empty(&area->free_list[migratetype])) 898 continue; 899 900 page = list_entry(area->free_list[migratetype].next, 901 struct page, lru); 902 list_del(&page->lru); 903 rmv_page_order(page); 904 area->nr_free--; 905 expand(zone, page, order, current_order, area, migratetype); 906 return page; 907 } 908 909 return NULL; 910 } 911 912 913 /* 914 * This array describes the order lists are fallen back to when 915 * the free lists for the desirable migrate type are depleted 916 */ 917 static int fallbacks[MIGRATE_TYPES][4] = { 918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 920 #ifdef CONFIG_CMA 921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 923 #else 924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 925 #endif 926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 927 #ifdef CONFIG_MEMORY_ISOLATION 928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 929 #endif 930 }; 931 932 /* 933 * Move the free pages in a range to the free lists of the requested type. 934 * Note that start_page and end_pages are not aligned on a pageblock 935 * boundary. If alignment is required, use move_freepages_block() 936 */ 937 int move_freepages(struct zone *zone, 938 struct page *start_page, struct page *end_page, 939 int migratetype) 940 { 941 struct page *page; 942 unsigned long order; 943 int pages_moved = 0; 944 945 #ifndef CONFIG_HOLES_IN_ZONE 946 /* 947 * page_zone is not safe to call in this context when 948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 949 * anyway as we check zone boundaries in move_freepages_block(). 950 * Remove at a later date when no bug reports exist related to 951 * grouping pages by mobility 952 */ 953 BUG_ON(page_zone(start_page) != page_zone(end_page)); 954 #endif 955 956 for (page = start_page; page <= end_page;) { 957 /* Make sure we are not inadvertently changing nodes */ 958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 959 960 if (!pfn_valid_within(page_to_pfn(page))) { 961 page++; 962 continue; 963 } 964 965 if (!PageBuddy(page)) { 966 page++; 967 continue; 968 } 969 970 order = page_order(page); 971 list_move(&page->lru, 972 &zone->free_area[order].free_list[migratetype]); 973 set_freepage_migratetype(page, migratetype); 974 page += 1 << order; 975 pages_moved += 1 << order; 976 } 977 978 return pages_moved; 979 } 980 981 int move_freepages_block(struct zone *zone, struct page *page, 982 int migratetype) 983 { 984 unsigned long start_pfn, end_pfn; 985 struct page *start_page, *end_page; 986 987 start_pfn = page_to_pfn(page); 988 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 989 start_page = pfn_to_page(start_pfn); 990 end_page = start_page + pageblock_nr_pages - 1; 991 end_pfn = start_pfn + pageblock_nr_pages - 1; 992 993 /* Do not cross zone boundaries */ 994 if (!zone_spans_pfn(zone, start_pfn)) 995 start_page = page; 996 if (!zone_spans_pfn(zone, end_pfn)) 997 return 0; 998 999 return move_freepages(zone, start_page, end_page, migratetype); 1000 } 1001 1002 static void change_pageblock_range(struct page *pageblock_page, 1003 int start_order, int migratetype) 1004 { 1005 int nr_pageblocks = 1 << (start_order - pageblock_order); 1006 1007 while (nr_pageblocks--) { 1008 set_pageblock_migratetype(pageblock_page, migratetype); 1009 pageblock_page += pageblock_nr_pages; 1010 } 1011 } 1012 1013 /* Remove an element from the buddy allocator from the fallback list */ 1014 static inline struct page * 1015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1016 { 1017 struct free_area * area; 1018 int current_order; 1019 struct page *page; 1020 int migratetype, i; 1021 1022 /* Find the largest possible block of pages in the other list */ 1023 for (current_order = MAX_ORDER-1; current_order >= order; 1024 --current_order) { 1025 for (i = 0;; i++) { 1026 migratetype = fallbacks[start_migratetype][i]; 1027 1028 /* MIGRATE_RESERVE handled later if necessary */ 1029 if (migratetype == MIGRATE_RESERVE) 1030 break; 1031 1032 area = &(zone->free_area[current_order]); 1033 if (list_empty(&area->free_list[migratetype])) 1034 continue; 1035 1036 page = list_entry(area->free_list[migratetype].next, 1037 struct page, lru); 1038 area->nr_free--; 1039 1040 /* 1041 * If breaking a large block of pages, move all free 1042 * pages to the preferred allocation list. If falling 1043 * back for a reclaimable kernel allocation, be more 1044 * aggressive about taking ownership of free pages 1045 * 1046 * On the other hand, never change migration 1047 * type of MIGRATE_CMA pageblocks nor move CMA 1048 * pages on different free lists. We don't 1049 * want unmovable pages to be allocated from 1050 * MIGRATE_CMA areas. 1051 */ 1052 if (!is_migrate_cma(migratetype) && 1053 (unlikely(current_order >= pageblock_order / 2) || 1054 start_migratetype == MIGRATE_RECLAIMABLE || 1055 page_group_by_mobility_disabled)) { 1056 int pages; 1057 pages = move_freepages_block(zone, page, 1058 start_migratetype); 1059 1060 /* Claim the whole block if over half of it is free */ 1061 if (pages >= (1 << (pageblock_order-1)) || 1062 page_group_by_mobility_disabled) 1063 set_pageblock_migratetype(page, 1064 start_migratetype); 1065 1066 migratetype = start_migratetype; 1067 } 1068 1069 /* Remove the page from the freelists */ 1070 list_del(&page->lru); 1071 rmv_page_order(page); 1072 1073 /* Take ownership for orders >= pageblock_order */ 1074 if (current_order >= pageblock_order && 1075 !is_migrate_cma(migratetype)) 1076 change_pageblock_range(page, current_order, 1077 start_migratetype); 1078 1079 expand(zone, page, order, current_order, area, 1080 is_migrate_cma(migratetype) 1081 ? migratetype : start_migratetype); 1082 1083 trace_mm_page_alloc_extfrag(page, order, current_order, 1084 start_migratetype, migratetype); 1085 1086 return page; 1087 } 1088 } 1089 1090 return NULL; 1091 } 1092 1093 /* 1094 * Do the hard work of removing an element from the buddy allocator. 1095 * Call me with the zone->lock already held. 1096 */ 1097 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1098 int migratetype) 1099 { 1100 struct page *page; 1101 1102 retry_reserve: 1103 page = __rmqueue_smallest(zone, order, migratetype); 1104 1105 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1106 page = __rmqueue_fallback(zone, order, migratetype); 1107 1108 /* 1109 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1110 * is used because __rmqueue_smallest is an inline function 1111 * and we want just one call site 1112 */ 1113 if (!page) { 1114 migratetype = MIGRATE_RESERVE; 1115 goto retry_reserve; 1116 } 1117 } 1118 1119 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1120 return page; 1121 } 1122 1123 /* 1124 * Obtain a specified number of elements from the buddy allocator, all under 1125 * a single hold of the lock, for efficiency. Add them to the supplied list. 1126 * Returns the number of new pages which were placed at *list. 1127 */ 1128 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1129 unsigned long count, struct list_head *list, 1130 int migratetype, int cold) 1131 { 1132 int mt = migratetype, i; 1133 1134 spin_lock(&zone->lock); 1135 for (i = 0; i < count; ++i) { 1136 struct page *page = __rmqueue(zone, order, migratetype); 1137 if (unlikely(page == NULL)) 1138 break; 1139 1140 /* 1141 * Split buddy pages returned by expand() are received here 1142 * in physical page order. The page is added to the callers and 1143 * list and the list head then moves forward. From the callers 1144 * perspective, the linked list is ordered by page number in 1145 * some conditions. This is useful for IO devices that can 1146 * merge IO requests if the physical pages are ordered 1147 * properly. 1148 */ 1149 if (likely(cold == 0)) 1150 list_add(&page->lru, list); 1151 else 1152 list_add_tail(&page->lru, list); 1153 if (IS_ENABLED(CONFIG_CMA)) { 1154 mt = get_pageblock_migratetype(page); 1155 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) 1156 mt = migratetype; 1157 } 1158 set_freepage_migratetype(page, mt); 1159 list = &page->lru; 1160 if (is_migrate_cma(mt)) 1161 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1162 -(1 << order)); 1163 } 1164 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1165 spin_unlock(&zone->lock); 1166 return i; 1167 } 1168 1169 #ifdef CONFIG_NUMA 1170 /* 1171 * Called from the vmstat counter updater to drain pagesets of this 1172 * currently executing processor on remote nodes after they have 1173 * expired. 1174 * 1175 * Note that this function must be called with the thread pinned to 1176 * a single processor. 1177 */ 1178 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1179 { 1180 unsigned long flags; 1181 int to_drain; 1182 1183 local_irq_save(flags); 1184 if (pcp->count >= pcp->batch) 1185 to_drain = pcp->batch; 1186 else 1187 to_drain = pcp->count; 1188 if (to_drain > 0) { 1189 free_pcppages_bulk(zone, to_drain, pcp); 1190 pcp->count -= to_drain; 1191 } 1192 local_irq_restore(flags); 1193 } 1194 #endif 1195 1196 /* 1197 * Drain pages of the indicated processor. 1198 * 1199 * The processor must either be the current processor and the 1200 * thread pinned to the current processor or a processor that 1201 * is not online. 1202 */ 1203 static void drain_pages(unsigned int cpu) 1204 { 1205 unsigned long flags; 1206 struct zone *zone; 1207 1208 for_each_populated_zone(zone) { 1209 struct per_cpu_pageset *pset; 1210 struct per_cpu_pages *pcp; 1211 1212 local_irq_save(flags); 1213 pset = per_cpu_ptr(zone->pageset, cpu); 1214 1215 pcp = &pset->pcp; 1216 if (pcp->count) { 1217 free_pcppages_bulk(zone, pcp->count, pcp); 1218 pcp->count = 0; 1219 } 1220 local_irq_restore(flags); 1221 } 1222 } 1223 1224 /* 1225 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1226 */ 1227 void drain_local_pages(void *arg) 1228 { 1229 drain_pages(smp_processor_id()); 1230 } 1231 1232 /* 1233 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1234 * 1235 * Note that this code is protected against sending an IPI to an offline 1236 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1237 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1238 * nothing keeps CPUs from showing up after we populated the cpumask and 1239 * before the call to on_each_cpu_mask(). 1240 */ 1241 void drain_all_pages(void) 1242 { 1243 int cpu; 1244 struct per_cpu_pageset *pcp; 1245 struct zone *zone; 1246 1247 /* 1248 * Allocate in the BSS so we wont require allocation in 1249 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1250 */ 1251 static cpumask_t cpus_with_pcps; 1252 1253 /* 1254 * We don't care about racing with CPU hotplug event 1255 * as offline notification will cause the notified 1256 * cpu to drain that CPU pcps and on_each_cpu_mask 1257 * disables preemption as part of its processing 1258 */ 1259 for_each_online_cpu(cpu) { 1260 bool has_pcps = false; 1261 for_each_populated_zone(zone) { 1262 pcp = per_cpu_ptr(zone->pageset, cpu); 1263 if (pcp->pcp.count) { 1264 has_pcps = true; 1265 break; 1266 } 1267 } 1268 if (has_pcps) 1269 cpumask_set_cpu(cpu, &cpus_with_pcps); 1270 else 1271 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1272 } 1273 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1274 } 1275 1276 #ifdef CONFIG_HIBERNATION 1277 1278 void mark_free_pages(struct zone *zone) 1279 { 1280 unsigned long pfn, max_zone_pfn; 1281 unsigned long flags; 1282 int order, t; 1283 struct list_head *curr; 1284 1285 if (!zone->spanned_pages) 1286 return; 1287 1288 spin_lock_irqsave(&zone->lock, flags); 1289 1290 max_zone_pfn = zone_end_pfn(zone); 1291 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1292 if (pfn_valid(pfn)) { 1293 struct page *page = pfn_to_page(pfn); 1294 1295 if (!swsusp_page_is_forbidden(page)) 1296 swsusp_unset_page_free(page); 1297 } 1298 1299 for_each_migratetype_order(order, t) { 1300 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1301 unsigned long i; 1302 1303 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1304 for (i = 0; i < (1UL << order); i++) 1305 swsusp_set_page_free(pfn_to_page(pfn + i)); 1306 } 1307 } 1308 spin_unlock_irqrestore(&zone->lock, flags); 1309 } 1310 #endif /* CONFIG_PM */ 1311 1312 /* 1313 * Free a 0-order page 1314 * cold == 1 ? free a cold page : free a hot page 1315 */ 1316 void free_hot_cold_page(struct page *page, int cold) 1317 { 1318 struct zone *zone = page_zone(page); 1319 struct per_cpu_pages *pcp; 1320 unsigned long flags; 1321 int migratetype; 1322 1323 if (!free_pages_prepare(page, 0)) 1324 return; 1325 1326 migratetype = get_pageblock_migratetype(page); 1327 set_freepage_migratetype(page, migratetype); 1328 local_irq_save(flags); 1329 __count_vm_event(PGFREE); 1330 1331 /* 1332 * We only track unmovable, reclaimable and movable on pcp lists. 1333 * Free ISOLATE pages back to the allocator because they are being 1334 * offlined but treat RESERVE as movable pages so we can get those 1335 * areas back if necessary. Otherwise, we may have to free 1336 * excessively into the page allocator 1337 */ 1338 if (migratetype >= MIGRATE_PCPTYPES) { 1339 if (unlikely(is_migrate_isolate(migratetype))) { 1340 free_one_page(zone, page, 0, migratetype); 1341 goto out; 1342 } 1343 migratetype = MIGRATE_MOVABLE; 1344 } 1345 1346 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1347 if (cold) 1348 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1349 else 1350 list_add(&page->lru, &pcp->lists[migratetype]); 1351 pcp->count++; 1352 if (pcp->count >= pcp->high) { 1353 free_pcppages_bulk(zone, pcp->batch, pcp); 1354 pcp->count -= pcp->batch; 1355 } 1356 1357 out: 1358 local_irq_restore(flags); 1359 } 1360 1361 /* 1362 * Free a list of 0-order pages 1363 */ 1364 void free_hot_cold_page_list(struct list_head *list, int cold) 1365 { 1366 struct page *page, *next; 1367 1368 list_for_each_entry_safe(page, next, list, lru) { 1369 trace_mm_page_free_batched(page, cold); 1370 free_hot_cold_page(page, cold); 1371 } 1372 } 1373 1374 /* 1375 * split_page takes a non-compound higher-order page, and splits it into 1376 * n (1<<order) sub-pages: page[0..n] 1377 * Each sub-page must be freed individually. 1378 * 1379 * Note: this is probably too low level an operation for use in drivers. 1380 * Please consult with lkml before using this in your driver. 1381 */ 1382 void split_page(struct page *page, unsigned int order) 1383 { 1384 int i; 1385 1386 VM_BUG_ON(PageCompound(page)); 1387 VM_BUG_ON(!page_count(page)); 1388 1389 #ifdef CONFIG_KMEMCHECK 1390 /* 1391 * Split shadow pages too, because free(page[0]) would 1392 * otherwise free the whole shadow. 1393 */ 1394 if (kmemcheck_page_is_tracked(page)) 1395 split_page(virt_to_page(page[0].shadow), order); 1396 #endif 1397 1398 for (i = 1; i < (1 << order); i++) 1399 set_page_refcounted(page + i); 1400 } 1401 EXPORT_SYMBOL_GPL(split_page); 1402 1403 static int __isolate_free_page(struct page *page, unsigned int order) 1404 { 1405 unsigned long watermark; 1406 struct zone *zone; 1407 int mt; 1408 1409 BUG_ON(!PageBuddy(page)); 1410 1411 zone = page_zone(page); 1412 mt = get_pageblock_migratetype(page); 1413 1414 if (!is_migrate_isolate(mt)) { 1415 /* Obey watermarks as if the page was being allocated */ 1416 watermark = low_wmark_pages(zone) + (1 << order); 1417 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1418 return 0; 1419 1420 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1421 } 1422 1423 /* Remove page from free list */ 1424 list_del(&page->lru); 1425 zone->free_area[order].nr_free--; 1426 rmv_page_order(page); 1427 1428 /* Set the pageblock if the isolated page is at least a pageblock */ 1429 if (order >= pageblock_order - 1) { 1430 struct page *endpage = page + (1 << order) - 1; 1431 for (; page < endpage; page += pageblock_nr_pages) { 1432 int mt = get_pageblock_migratetype(page); 1433 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1434 set_pageblock_migratetype(page, 1435 MIGRATE_MOVABLE); 1436 } 1437 } 1438 1439 return 1UL << order; 1440 } 1441 1442 /* 1443 * Similar to split_page except the page is already free. As this is only 1444 * being used for migration, the migratetype of the block also changes. 1445 * As this is called with interrupts disabled, the caller is responsible 1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1447 * are enabled. 1448 * 1449 * Note: this is probably too low level an operation for use in drivers. 1450 * Please consult with lkml before using this in your driver. 1451 */ 1452 int split_free_page(struct page *page) 1453 { 1454 unsigned int order; 1455 int nr_pages; 1456 1457 order = page_order(page); 1458 1459 nr_pages = __isolate_free_page(page, order); 1460 if (!nr_pages) 1461 return 0; 1462 1463 /* Split into individual pages */ 1464 set_page_refcounted(page); 1465 split_page(page, order); 1466 return nr_pages; 1467 } 1468 1469 /* 1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1472 * or two. 1473 */ 1474 static inline 1475 struct page *buffered_rmqueue(struct zone *preferred_zone, 1476 struct zone *zone, int order, gfp_t gfp_flags, 1477 int migratetype) 1478 { 1479 unsigned long flags; 1480 struct page *page; 1481 int cold = !!(gfp_flags & __GFP_COLD); 1482 1483 again: 1484 if (likely(order == 0)) { 1485 struct per_cpu_pages *pcp; 1486 struct list_head *list; 1487 1488 local_irq_save(flags); 1489 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1490 list = &pcp->lists[migratetype]; 1491 if (list_empty(list)) { 1492 pcp->count += rmqueue_bulk(zone, 0, 1493 pcp->batch, list, 1494 migratetype, cold); 1495 if (unlikely(list_empty(list))) 1496 goto failed; 1497 } 1498 1499 if (cold) 1500 page = list_entry(list->prev, struct page, lru); 1501 else 1502 page = list_entry(list->next, struct page, lru); 1503 1504 list_del(&page->lru); 1505 pcp->count--; 1506 } else { 1507 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1508 /* 1509 * __GFP_NOFAIL is not to be used in new code. 1510 * 1511 * All __GFP_NOFAIL callers should be fixed so that they 1512 * properly detect and handle allocation failures. 1513 * 1514 * We most definitely don't want callers attempting to 1515 * allocate greater than order-1 page units with 1516 * __GFP_NOFAIL. 1517 */ 1518 WARN_ON_ONCE(order > 1); 1519 } 1520 spin_lock_irqsave(&zone->lock, flags); 1521 page = __rmqueue(zone, order, migratetype); 1522 spin_unlock(&zone->lock); 1523 if (!page) 1524 goto failed; 1525 __mod_zone_freepage_state(zone, -(1 << order), 1526 get_pageblock_migratetype(page)); 1527 } 1528 1529 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1530 zone_statistics(preferred_zone, zone, gfp_flags); 1531 local_irq_restore(flags); 1532 1533 VM_BUG_ON(bad_range(zone, page)); 1534 if (prep_new_page(page, order, gfp_flags)) 1535 goto again; 1536 return page; 1537 1538 failed: 1539 local_irq_restore(flags); 1540 return NULL; 1541 } 1542 1543 #ifdef CONFIG_FAIL_PAGE_ALLOC 1544 1545 static struct { 1546 struct fault_attr attr; 1547 1548 u32 ignore_gfp_highmem; 1549 u32 ignore_gfp_wait; 1550 u32 min_order; 1551 } fail_page_alloc = { 1552 .attr = FAULT_ATTR_INITIALIZER, 1553 .ignore_gfp_wait = 1, 1554 .ignore_gfp_highmem = 1, 1555 .min_order = 1, 1556 }; 1557 1558 static int __init setup_fail_page_alloc(char *str) 1559 { 1560 return setup_fault_attr(&fail_page_alloc.attr, str); 1561 } 1562 __setup("fail_page_alloc=", setup_fail_page_alloc); 1563 1564 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1565 { 1566 if (order < fail_page_alloc.min_order) 1567 return false; 1568 if (gfp_mask & __GFP_NOFAIL) 1569 return false; 1570 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1571 return false; 1572 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1573 return false; 1574 1575 return should_fail(&fail_page_alloc.attr, 1 << order); 1576 } 1577 1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1579 1580 static int __init fail_page_alloc_debugfs(void) 1581 { 1582 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1583 struct dentry *dir; 1584 1585 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1586 &fail_page_alloc.attr); 1587 if (IS_ERR(dir)) 1588 return PTR_ERR(dir); 1589 1590 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1591 &fail_page_alloc.ignore_gfp_wait)) 1592 goto fail; 1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1594 &fail_page_alloc.ignore_gfp_highmem)) 1595 goto fail; 1596 if (!debugfs_create_u32("min-order", mode, dir, 1597 &fail_page_alloc.min_order)) 1598 goto fail; 1599 1600 return 0; 1601 fail: 1602 debugfs_remove_recursive(dir); 1603 1604 return -ENOMEM; 1605 } 1606 1607 late_initcall(fail_page_alloc_debugfs); 1608 1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1610 1611 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1612 1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1614 { 1615 return false; 1616 } 1617 1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1619 1620 /* 1621 * Return true if free pages are above 'mark'. This takes into account the order 1622 * of the allocation. 1623 */ 1624 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1625 int classzone_idx, int alloc_flags, long free_pages) 1626 { 1627 /* free_pages my go negative - that's OK */ 1628 long min = mark; 1629 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1630 int o; 1631 long free_cma = 0; 1632 1633 free_pages -= (1 << order) - 1; 1634 if (alloc_flags & ALLOC_HIGH) 1635 min -= min / 2; 1636 if (alloc_flags & ALLOC_HARDER) 1637 min -= min / 4; 1638 #ifdef CONFIG_CMA 1639 /* If allocation can't use CMA areas don't use free CMA pages */ 1640 if (!(alloc_flags & ALLOC_CMA)) 1641 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1642 #endif 1643 1644 if (free_pages - free_cma <= min + lowmem_reserve) 1645 return false; 1646 for (o = 0; o < order; o++) { 1647 /* At the next order, this order's pages become unavailable */ 1648 free_pages -= z->free_area[o].nr_free << o; 1649 1650 /* Require fewer higher order pages to be free */ 1651 min >>= 1; 1652 1653 if (free_pages <= min) 1654 return false; 1655 } 1656 return true; 1657 } 1658 1659 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1660 int classzone_idx, int alloc_flags) 1661 { 1662 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1663 zone_page_state(z, NR_FREE_PAGES)); 1664 } 1665 1666 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1667 int classzone_idx, int alloc_flags) 1668 { 1669 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1670 1671 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1672 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1673 1674 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1675 free_pages); 1676 } 1677 1678 #ifdef CONFIG_NUMA 1679 /* 1680 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1681 * skip over zones that are not allowed by the cpuset, or that have 1682 * been recently (in last second) found to be nearly full. See further 1683 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1684 * that have to skip over a lot of full or unallowed zones. 1685 * 1686 * If the zonelist cache is present in the passed in zonelist, then 1687 * returns a pointer to the allowed node mask (either the current 1688 * tasks mems_allowed, or node_states[N_MEMORY].) 1689 * 1690 * If the zonelist cache is not available for this zonelist, does 1691 * nothing and returns NULL. 1692 * 1693 * If the fullzones BITMAP in the zonelist cache is stale (more than 1694 * a second since last zap'd) then we zap it out (clear its bits.) 1695 * 1696 * We hold off even calling zlc_setup, until after we've checked the 1697 * first zone in the zonelist, on the theory that most allocations will 1698 * be satisfied from that first zone, so best to examine that zone as 1699 * quickly as we can. 1700 */ 1701 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1702 { 1703 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1704 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1705 1706 zlc = zonelist->zlcache_ptr; 1707 if (!zlc) 1708 return NULL; 1709 1710 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1711 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1712 zlc->last_full_zap = jiffies; 1713 } 1714 1715 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1716 &cpuset_current_mems_allowed : 1717 &node_states[N_MEMORY]; 1718 return allowednodes; 1719 } 1720 1721 /* 1722 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1723 * if it is worth looking at further for free memory: 1724 * 1) Check that the zone isn't thought to be full (doesn't have its 1725 * bit set in the zonelist_cache fullzones BITMAP). 1726 * 2) Check that the zones node (obtained from the zonelist_cache 1727 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1728 * Return true (non-zero) if zone is worth looking at further, or 1729 * else return false (zero) if it is not. 1730 * 1731 * This check -ignores- the distinction between various watermarks, 1732 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1733 * found to be full for any variation of these watermarks, it will 1734 * be considered full for up to one second by all requests, unless 1735 * we are so low on memory on all allowed nodes that we are forced 1736 * into the second scan of the zonelist. 1737 * 1738 * In the second scan we ignore this zonelist cache and exactly 1739 * apply the watermarks to all zones, even it is slower to do so. 1740 * We are low on memory in the second scan, and should leave no stone 1741 * unturned looking for a free page. 1742 */ 1743 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1744 nodemask_t *allowednodes) 1745 { 1746 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1747 int i; /* index of *z in zonelist zones */ 1748 int n; /* node that zone *z is on */ 1749 1750 zlc = zonelist->zlcache_ptr; 1751 if (!zlc) 1752 return 1; 1753 1754 i = z - zonelist->_zonerefs; 1755 n = zlc->z_to_n[i]; 1756 1757 /* This zone is worth trying if it is allowed but not full */ 1758 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1759 } 1760 1761 /* 1762 * Given 'z' scanning a zonelist, set the corresponding bit in 1763 * zlc->fullzones, so that subsequent attempts to allocate a page 1764 * from that zone don't waste time re-examining it. 1765 */ 1766 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1767 { 1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1769 int i; /* index of *z in zonelist zones */ 1770 1771 zlc = zonelist->zlcache_ptr; 1772 if (!zlc) 1773 return; 1774 1775 i = z - zonelist->_zonerefs; 1776 1777 set_bit(i, zlc->fullzones); 1778 } 1779 1780 /* 1781 * clear all zones full, called after direct reclaim makes progress so that 1782 * a zone that was recently full is not skipped over for up to a second 1783 */ 1784 static void zlc_clear_zones_full(struct zonelist *zonelist) 1785 { 1786 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1787 1788 zlc = zonelist->zlcache_ptr; 1789 if (!zlc) 1790 return; 1791 1792 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1793 } 1794 1795 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1796 { 1797 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1798 } 1799 1800 static void __paginginit init_zone_allows_reclaim(int nid) 1801 { 1802 int i; 1803 1804 for_each_online_node(i) 1805 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1806 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1807 else 1808 zone_reclaim_mode = 1; 1809 } 1810 1811 #else /* CONFIG_NUMA */ 1812 1813 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1814 { 1815 return NULL; 1816 } 1817 1818 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1819 nodemask_t *allowednodes) 1820 { 1821 return 1; 1822 } 1823 1824 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1825 { 1826 } 1827 1828 static void zlc_clear_zones_full(struct zonelist *zonelist) 1829 { 1830 } 1831 1832 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1833 { 1834 return true; 1835 } 1836 1837 static inline void init_zone_allows_reclaim(int nid) 1838 { 1839 } 1840 #endif /* CONFIG_NUMA */ 1841 1842 /* 1843 * get_page_from_freelist goes through the zonelist trying to allocate 1844 * a page. 1845 */ 1846 static struct page * 1847 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1848 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1849 struct zone *preferred_zone, int migratetype) 1850 { 1851 struct zoneref *z; 1852 struct page *page = NULL; 1853 int classzone_idx; 1854 struct zone *zone; 1855 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1856 int zlc_active = 0; /* set if using zonelist_cache */ 1857 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1858 1859 classzone_idx = zone_idx(preferred_zone); 1860 zonelist_scan: 1861 /* 1862 * Scan zonelist, looking for a zone with enough free. 1863 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1864 */ 1865 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1866 high_zoneidx, nodemask) { 1867 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1868 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1869 continue; 1870 if ((alloc_flags & ALLOC_CPUSET) && 1871 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1872 continue; 1873 /* 1874 * When allocating a page cache page for writing, we 1875 * want to get it from a zone that is within its dirty 1876 * limit, such that no single zone holds more than its 1877 * proportional share of globally allowed dirty pages. 1878 * The dirty limits take into account the zone's 1879 * lowmem reserves and high watermark so that kswapd 1880 * should be able to balance it without having to 1881 * write pages from its LRU list. 1882 * 1883 * This may look like it could increase pressure on 1884 * lower zones by failing allocations in higher zones 1885 * before they are full. But the pages that do spill 1886 * over are limited as the lower zones are protected 1887 * by this very same mechanism. It should not become 1888 * a practical burden to them. 1889 * 1890 * XXX: For now, allow allocations to potentially 1891 * exceed the per-zone dirty limit in the slowpath 1892 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1893 * which is important when on a NUMA setup the allowed 1894 * zones are together not big enough to reach the 1895 * global limit. The proper fix for these situations 1896 * will require awareness of zones in the 1897 * dirty-throttling and the flusher threads. 1898 */ 1899 if ((alloc_flags & ALLOC_WMARK_LOW) && 1900 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1901 goto this_zone_full; 1902 1903 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1904 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1905 unsigned long mark; 1906 int ret; 1907 1908 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1909 if (zone_watermark_ok(zone, order, mark, 1910 classzone_idx, alloc_flags)) 1911 goto try_this_zone; 1912 1913 if (IS_ENABLED(CONFIG_NUMA) && 1914 !did_zlc_setup && nr_online_nodes > 1) { 1915 /* 1916 * we do zlc_setup if there are multiple nodes 1917 * and before considering the first zone allowed 1918 * by the cpuset. 1919 */ 1920 allowednodes = zlc_setup(zonelist, alloc_flags); 1921 zlc_active = 1; 1922 did_zlc_setup = 1; 1923 } 1924 1925 if (zone_reclaim_mode == 0 || 1926 !zone_allows_reclaim(preferred_zone, zone)) 1927 goto this_zone_full; 1928 1929 /* 1930 * As we may have just activated ZLC, check if the first 1931 * eligible zone has failed zone_reclaim recently. 1932 */ 1933 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1934 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1935 continue; 1936 1937 ret = zone_reclaim(zone, gfp_mask, order); 1938 switch (ret) { 1939 case ZONE_RECLAIM_NOSCAN: 1940 /* did not scan */ 1941 continue; 1942 case ZONE_RECLAIM_FULL: 1943 /* scanned but unreclaimable */ 1944 continue; 1945 default: 1946 /* did we reclaim enough */ 1947 if (zone_watermark_ok(zone, order, mark, 1948 classzone_idx, alloc_flags)) 1949 goto try_this_zone; 1950 1951 /* 1952 * Failed to reclaim enough to meet watermark. 1953 * Only mark the zone full if checking the min 1954 * watermark or if we failed to reclaim just 1955 * 1<<order pages or else the page allocator 1956 * fastpath will prematurely mark zones full 1957 * when the watermark is between the low and 1958 * min watermarks. 1959 */ 1960 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 1961 ret == ZONE_RECLAIM_SOME) 1962 goto this_zone_full; 1963 1964 continue; 1965 } 1966 } 1967 1968 try_this_zone: 1969 page = buffered_rmqueue(preferred_zone, zone, order, 1970 gfp_mask, migratetype); 1971 if (page) 1972 break; 1973 this_zone_full: 1974 if (IS_ENABLED(CONFIG_NUMA)) 1975 zlc_mark_zone_full(zonelist, z); 1976 } 1977 1978 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1979 /* Disable zlc cache for second zonelist scan */ 1980 zlc_active = 0; 1981 goto zonelist_scan; 1982 } 1983 1984 if (page) 1985 /* 1986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1987 * necessary to allocate the page. The expectation is 1988 * that the caller is taking steps that will free more 1989 * memory. The caller should avoid the page being used 1990 * for !PFMEMALLOC purposes. 1991 */ 1992 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1993 1994 return page; 1995 } 1996 1997 /* 1998 * Large machines with many possible nodes should not always dump per-node 1999 * meminfo in irq context. 2000 */ 2001 static inline bool should_suppress_show_mem(void) 2002 { 2003 bool ret = false; 2004 2005 #if NODES_SHIFT > 8 2006 ret = in_interrupt(); 2007 #endif 2008 return ret; 2009 } 2010 2011 static DEFINE_RATELIMIT_STATE(nopage_rs, 2012 DEFAULT_RATELIMIT_INTERVAL, 2013 DEFAULT_RATELIMIT_BURST); 2014 2015 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2016 { 2017 unsigned int filter = SHOW_MEM_FILTER_NODES; 2018 2019 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2020 debug_guardpage_minorder() > 0) 2021 return; 2022 2023 /* 2024 * Walking all memory to count page types is very expensive and should 2025 * be inhibited in non-blockable contexts. 2026 */ 2027 if (!(gfp_mask & __GFP_WAIT)) 2028 filter |= SHOW_MEM_FILTER_PAGE_COUNT; 2029 2030 /* 2031 * This documents exceptions given to allocations in certain 2032 * contexts that are allowed to allocate outside current's set 2033 * of allowed nodes. 2034 */ 2035 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2036 if (test_thread_flag(TIF_MEMDIE) || 2037 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2038 filter &= ~SHOW_MEM_FILTER_NODES; 2039 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2040 filter &= ~SHOW_MEM_FILTER_NODES; 2041 2042 if (fmt) { 2043 struct va_format vaf; 2044 va_list args; 2045 2046 va_start(args, fmt); 2047 2048 vaf.fmt = fmt; 2049 vaf.va = &args; 2050 2051 pr_warn("%pV", &vaf); 2052 2053 va_end(args); 2054 } 2055 2056 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2057 current->comm, order, gfp_mask); 2058 2059 dump_stack(); 2060 if (!should_suppress_show_mem()) 2061 show_mem(filter); 2062 } 2063 2064 static inline int 2065 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2066 unsigned long did_some_progress, 2067 unsigned long pages_reclaimed) 2068 { 2069 /* Do not loop if specifically requested */ 2070 if (gfp_mask & __GFP_NORETRY) 2071 return 0; 2072 2073 /* Always retry if specifically requested */ 2074 if (gfp_mask & __GFP_NOFAIL) 2075 return 1; 2076 2077 /* 2078 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2079 * making forward progress without invoking OOM. Suspend also disables 2080 * storage devices so kswapd will not help. Bail if we are suspending. 2081 */ 2082 if (!did_some_progress && pm_suspended_storage()) 2083 return 0; 2084 2085 /* 2086 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2087 * means __GFP_NOFAIL, but that may not be true in other 2088 * implementations. 2089 */ 2090 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2091 return 1; 2092 2093 /* 2094 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2095 * specified, then we retry until we no longer reclaim any pages 2096 * (above), or we've reclaimed an order of pages at least as 2097 * large as the allocation's order. In both cases, if the 2098 * allocation still fails, we stop retrying. 2099 */ 2100 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2101 return 1; 2102 2103 return 0; 2104 } 2105 2106 static inline struct page * 2107 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2108 struct zonelist *zonelist, enum zone_type high_zoneidx, 2109 nodemask_t *nodemask, struct zone *preferred_zone, 2110 int migratetype) 2111 { 2112 struct page *page; 2113 2114 /* Acquire the OOM killer lock for the zones in zonelist */ 2115 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2116 schedule_timeout_uninterruptible(1); 2117 return NULL; 2118 } 2119 2120 /* 2121 * Go through the zonelist yet one more time, keep very high watermark 2122 * here, this is only to catch a parallel oom killing, we must fail if 2123 * we're still under heavy pressure. 2124 */ 2125 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2126 order, zonelist, high_zoneidx, 2127 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2128 preferred_zone, migratetype); 2129 if (page) 2130 goto out; 2131 2132 if (!(gfp_mask & __GFP_NOFAIL)) { 2133 /* The OOM killer will not help higher order allocs */ 2134 if (order > PAGE_ALLOC_COSTLY_ORDER) 2135 goto out; 2136 /* The OOM killer does not needlessly kill tasks for lowmem */ 2137 if (high_zoneidx < ZONE_NORMAL) 2138 goto out; 2139 /* 2140 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2141 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2142 * The caller should handle page allocation failure by itself if 2143 * it specifies __GFP_THISNODE. 2144 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2145 */ 2146 if (gfp_mask & __GFP_THISNODE) 2147 goto out; 2148 } 2149 /* Exhausted what can be done so it's blamo time */ 2150 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2151 2152 out: 2153 clear_zonelist_oom(zonelist, gfp_mask); 2154 return page; 2155 } 2156 2157 #ifdef CONFIG_COMPACTION 2158 /* Try memory compaction for high-order allocations before reclaim */ 2159 static struct page * 2160 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2161 struct zonelist *zonelist, enum zone_type high_zoneidx, 2162 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2163 int migratetype, bool sync_migration, 2164 bool *contended_compaction, bool *deferred_compaction, 2165 unsigned long *did_some_progress) 2166 { 2167 if (!order) 2168 return NULL; 2169 2170 if (compaction_deferred(preferred_zone, order)) { 2171 *deferred_compaction = true; 2172 return NULL; 2173 } 2174 2175 current->flags |= PF_MEMALLOC; 2176 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2177 nodemask, sync_migration, 2178 contended_compaction); 2179 current->flags &= ~PF_MEMALLOC; 2180 2181 if (*did_some_progress != COMPACT_SKIPPED) { 2182 struct page *page; 2183 2184 /* Page migration frees to the PCP lists but we want merging */ 2185 drain_pages(get_cpu()); 2186 put_cpu(); 2187 2188 page = get_page_from_freelist(gfp_mask, nodemask, 2189 order, zonelist, high_zoneidx, 2190 alloc_flags & ~ALLOC_NO_WATERMARKS, 2191 preferred_zone, migratetype); 2192 if (page) { 2193 preferred_zone->compact_blockskip_flush = false; 2194 preferred_zone->compact_considered = 0; 2195 preferred_zone->compact_defer_shift = 0; 2196 if (order >= preferred_zone->compact_order_failed) 2197 preferred_zone->compact_order_failed = order + 1; 2198 count_vm_event(COMPACTSUCCESS); 2199 return page; 2200 } 2201 2202 /* 2203 * It's bad if compaction run occurs and fails. 2204 * The most likely reason is that pages exist, 2205 * but not enough to satisfy watermarks. 2206 */ 2207 count_vm_event(COMPACTFAIL); 2208 2209 /* 2210 * As async compaction considers a subset of pageblocks, only 2211 * defer if the failure was a sync compaction failure. 2212 */ 2213 if (sync_migration) 2214 defer_compaction(preferred_zone, order); 2215 2216 cond_resched(); 2217 } 2218 2219 return NULL; 2220 } 2221 #else 2222 static inline struct page * 2223 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2224 struct zonelist *zonelist, enum zone_type high_zoneidx, 2225 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2226 int migratetype, bool sync_migration, 2227 bool *contended_compaction, bool *deferred_compaction, 2228 unsigned long *did_some_progress) 2229 { 2230 return NULL; 2231 } 2232 #endif /* CONFIG_COMPACTION */ 2233 2234 /* Perform direct synchronous page reclaim */ 2235 static int 2236 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2237 nodemask_t *nodemask) 2238 { 2239 struct reclaim_state reclaim_state; 2240 int progress; 2241 2242 cond_resched(); 2243 2244 /* We now go into synchronous reclaim */ 2245 cpuset_memory_pressure_bump(); 2246 current->flags |= PF_MEMALLOC; 2247 lockdep_set_current_reclaim_state(gfp_mask); 2248 reclaim_state.reclaimed_slab = 0; 2249 current->reclaim_state = &reclaim_state; 2250 2251 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2252 2253 current->reclaim_state = NULL; 2254 lockdep_clear_current_reclaim_state(); 2255 current->flags &= ~PF_MEMALLOC; 2256 2257 cond_resched(); 2258 2259 return progress; 2260 } 2261 2262 /* The really slow allocator path where we enter direct reclaim */ 2263 static inline struct page * 2264 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2265 struct zonelist *zonelist, enum zone_type high_zoneidx, 2266 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2267 int migratetype, unsigned long *did_some_progress) 2268 { 2269 struct page *page = NULL; 2270 bool drained = false; 2271 2272 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2273 nodemask); 2274 if (unlikely(!(*did_some_progress))) 2275 return NULL; 2276 2277 /* After successful reclaim, reconsider all zones for allocation */ 2278 if (IS_ENABLED(CONFIG_NUMA)) 2279 zlc_clear_zones_full(zonelist); 2280 2281 retry: 2282 page = get_page_from_freelist(gfp_mask, nodemask, order, 2283 zonelist, high_zoneidx, 2284 alloc_flags & ~ALLOC_NO_WATERMARKS, 2285 preferred_zone, migratetype); 2286 2287 /* 2288 * If an allocation failed after direct reclaim, it could be because 2289 * pages are pinned on the per-cpu lists. Drain them and try again 2290 */ 2291 if (!page && !drained) { 2292 drain_all_pages(); 2293 drained = true; 2294 goto retry; 2295 } 2296 2297 return page; 2298 } 2299 2300 /* 2301 * This is called in the allocator slow-path if the allocation request is of 2302 * sufficient urgency to ignore watermarks and take other desperate measures 2303 */ 2304 static inline struct page * 2305 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2306 struct zonelist *zonelist, enum zone_type high_zoneidx, 2307 nodemask_t *nodemask, struct zone *preferred_zone, 2308 int migratetype) 2309 { 2310 struct page *page; 2311 2312 do { 2313 page = get_page_from_freelist(gfp_mask, nodemask, order, 2314 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2315 preferred_zone, migratetype); 2316 2317 if (!page && gfp_mask & __GFP_NOFAIL) 2318 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2319 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2320 2321 return page; 2322 } 2323 2324 static inline 2325 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2326 enum zone_type high_zoneidx, 2327 enum zone_type classzone_idx) 2328 { 2329 struct zoneref *z; 2330 struct zone *zone; 2331 2332 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2333 wakeup_kswapd(zone, order, classzone_idx); 2334 } 2335 2336 static inline int 2337 gfp_to_alloc_flags(gfp_t gfp_mask) 2338 { 2339 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2340 const gfp_t wait = gfp_mask & __GFP_WAIT; 2341 2342 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2343 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2344 2345 /* 2346 * The caller may dip into page reserves a bit more if the caller 2347 * cannot run direct reclaim, or if the caller has realtime scheduling 2348 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2349 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2350 */ 2351 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2352 2353 if (!wait) { 2354 /* 2355 * Not worth trying to allocate harder for 2356 * __GFP_NOMEMALLOC even if it can't schedule. 2357 */ 2358 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2359 alloc_flags |= ALLOC_HARDER; 2360 /* 2361 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2362 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2363 */ 2364 alloc_flags &= ~ALLOC_CPUSET; 2365 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2366 alloc_flags |= ALLOC_HARDER; 2367 2368 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2369 if (gfp_mask & __GFP_MEMALLOC) 2370 alloc_flags |= ALLOC_NO_WATERMARKS; 2371 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2372 alloc_flags |= ALLOC_NO_WATERMARKS; 2373 else if (!in_interrupt() && 2374 ((current->flags & PF_MEMALLOC) || 2375 unlikely(test_thread_flag(TIF_MEMDIE)))) 2376 alloc_flags |= ALLOC_NO_WATERMARKS; 2377 } 2378 #ifdef CONFIG_CMA 2379 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2380 alloc_flags |= ALLOC_CMA; 2381 #endif 2382 return alloc_flags; 2383 } 2384 2385 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2386 { 2387 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2388 } 2389 2390 static inline struct page * 2391 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2392 struct zonelist *zonelist, enum zone_type high_zoneidx, 2393 nodemask_t *nodemask, struct zone *preferred_zone, 2394 int migratetype) 2395 { 2396 const gfp_t wait = gfp_mask & __GFP_WAIT; 2397 struct page *page = NULL; 2398 int alloc_flags; 2399 unsigned long pages_reclaimed = 0; 2400 unsigned long did_some_progress; 2401 bool sync_migration = false; 2402 bool deferred_compaction = false; 2403 bool contended_compaction = false; 2404 2405 /* 2406 * In the slowpath, we sanity check order to avoid ever trying to 2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2408 * be using allocators in order of preference for an area that is 2409 * too large. 2410 */ 2411 if (order >= MAX_ORDER) { 2412 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2413 return NULL; 2414 } 2415 2416 /* 2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2420 * using a larger set of nodes after it has established that the 2421 * allowed per node queues are empty and that nodes are 2422 * over allocated. 2423 */ 2424 if (IS_ENABLED(CONFIG_NUMA) && 2425 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2426 goto nopage; 2427 2428 restart: 2429 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2430 wake_all_kswapd(order, zonelist, high_zoneidx, 2431 zone_idx(preferred_zone)); 2432 2433 /* 2434 * OK, we're below the kswapd watermark and have kicked background 2435 * reclaim. Now things get more complex, so set up alloc_flags according 2436 * to how we want to proceed. 2437 */ 2438 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2439 2440 /* 2441 * Find the true preferred zone if the allocation is unconstrained by 2442 * cpusets. 2443 */ 2444 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2445 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2446 &preferred_zone); 2447 2448 rebalance: 2449 /* This is the last chance, in general, before the goto nopage. */ 2450 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2451 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2452 preferred_zone, migratetype); 2453 if (page) 2454 goto got_pg; 2455 2456 /* Allocate without watermarks if the context allows */ 2457 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2458 /* 2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2460 * the allocation is high priority and these type of 2461 * allocations are system rather than user orientated 2462 */ 2463 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2464 2465 page = __alloc_pages_high_priority(gfp_mask, order, 2466 zonelist, high_zoneidx, nodemask, 2467 preferred_zone, migratetype); 2468 if (page) { 2469 goto got_pg; 2470 } 2471 } 2472 2473 /* Atomic allocations - we can't balance anything */ 2474 if (!wait) 2475 goto nopage; 2476 2477 /* Avoid recursion of direct reclaim */ 2478 if (current->flags & PF_MEMALLOC) 2479 goto nopage; 2480 2481 /* Avoid allocations with no watermarks from looping endlessly */ 2482 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2483 goto nopage; 2484 2485 /* 2486 * Try direct compaction. The first pass is asynchronous. Subsequent 2487 * attempts after direct reclaim are synchronous 2488 */ 2489 page = __alloc_pages_direct_compact(gfp_mask, order, 2490 zonelist, high_zoneidx, 2491 nodemask, 2492 alloc_flags, preferred_zone, 2493 migratetype, sync_migration, 2494 &contended_compaction, 2495 &deferred_compaction, 2496 &did_some_progress); 2497 if (page) 2498 goto got_pg; 2499 sync_migration = true; 2500 2501 /* 2502 * If compaction is deferred for high-order allocations, it is because 2503 * sync compaction recently failed. In this is the case and the caller 2504 * requested a movable allocation that does not heavily disrupt the 2505 * system then fail the allocation instead of entering direct reclaim. 2506 */ 2507 if ((deferred_compaction || contended_compaction) && 2508 (gfp_mask & __GFP_NO_KSWAPD)) 2509 goto nopage; 2510 2511 /* Try direct reclaim and then allocating */ 2512 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2513 zonelist, high_zoneidx, 2514 nodemask, 2515 alloc_flags, preferred_zone, 2516 migratetype, &did_some_progress); 2517 if (page) 2518 goto got_pg; 2519 2520 /* 2521 * If we failed to make any progress reclaiming, then we are 2522 * running out of options and have to consider going OOM 2523 */ 2524 if (!did_some_progress) { 2525 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2526 if (oom_killer_disabled) 2527 goto nopage; 2528 /* Coredumps can quickly deplete all memory reserves */ 2529 if ((current->flags & PF_DUMPCORE) && 2530 !(gfp_mask & __GFP_NOFAIL)) 2531 goto nopage; 2532 page = __alloc_pages_may_oom(gfp_mask, order, 2533 zonelist, high_zoneidx, 2534 nodemask, preferred_zone, 2535 migratetype); 2536 if (page) 2537 goto got_pg; 2538 2539 if (!(gfp_mask & __GFP_NOFAIL)) { 2540 /* 2541 * The oom killer is not called for high-order 2542 * allocations that may fail, so if no progress 2543 * is being made, there are no other options and 2544 * retrying is unlikely to help. 2545 */ 2546 if (order > PAGE_ALLOC_COSTLY_ORDER) 2547 goto nopage; 2548 /* 2549 * The oom killer is not called for lowmem 2550 * allocations to prevent needlessly killing 2551 * innocent tasks. 2552 */ 2553 if (high_zoneidx < ZONE_NORMAL) 2554 goto nopage; 2555 } 2556 2557 goto restart; 2558 } 2559 } 2560 2561 /* Check if we should retry the allocation */ 2562 pages_reclaimed += did_some_progress; 2563 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2564 pages_reclaimed)) { 2565 /* Wait for some write requests to complete then retry */ 2566 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2567 goto rebalance; 2568 } else { 2569 /* 2570 * High-order allocations do not necessarily loop after 2571 * direct reclaim and reclaim/compaction depends on compaction 2572 * being called after reclaim so call directly if necessary 2573 */ 2574 page = __alloc_pages_direct_compact(gfp_mask, order, 2575 zonelist, high_zoneidx, 2576 nodemask, 2577 alloc_flags, preferred_zone, 2578 migratetype, sync_migration, 2579 &contended_compaction, 2580 &deferred_compaction, 2581 &did_some_progress); 2582 if (page) 2583 goto got_pg; 2584 } 2585 2586 nopage: 2587 warn_alloc_failed(gfp_mask, order, NULL); 2588 return page; 2589 got_pg: 2590 if (kmemcheck_enabled) 2591 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2592 2593 return page; 2594 } 2595 2596 /* 2597 * This is the 'heart' of the zoned buddy allocator. 2598 */ 2599 struct page * 2600 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2601 struct zonelist *zonelist, nodemask_t *nodemask) 2602 { 2603 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2604 struct zone *preferred_zone; 2605 struct page *page = NULL; 2606 int migratetype = allocflags_to_migratetype(gfp_mask); 2607 unsigned int cpuset_mems_cookie; 2608 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2609 struct mem_cgroup *memcg = NULL; 2610 2611 gfp_mask &= gfp_allowed_mask; 2612 2613 lockdep_trace_alloc(gfp_mask); 2614 2615 might_sleep_if(gfp_mask & __GFP_WAIT); 2616 2617 if (should_fail_alloc_page(gfp_mask, order)) 2618 return NULL; 2619 2620 /* 2621 * Check the zones suitable for the gfp_mask contain at least one 2622 * valid zone. It's possible to have an empty zonelist as a result 2623 * of GFP_THISNODE and a memoryless node 2624 */ 2625 if (unlikely(!zonelist->_zonerefs->zone)) 2626 return NULL; 2627 2628 /* 2629 * Will only have any effect when __GFP_KMEMCG is set. This is 2630 * verified in the (always inline) callee 2631 */ 2632 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2633 return NULL; 2634 2635 retry_cpuset: 2636 cpuset_mems_cookie = get_mems_allowed(); 2637 2638 /* The preferred zone is used for statistics later */ 2639 first_zones_zonelist(zonelist, high_zoneidx, 2640 nodemask ? : &cpuset_current_mems_allowed, 2641 &preferred_zone); 2642 if (!preferred_zone) 2643 goto out; 2644 2645 #ifdef CONFIG_CMA 2646 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2647 alloc_flags |= ALLOC_CMA; 2648 #endif 2649 /* First allocation attempt */ 2650 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2651 zonelist, high_zoneidx, alloc_flags, 2652 preferred_zone, migratetype); 2653 if (unlikely(!page)) { 2654 /* 2655 * Runtime PM, block IO and its error handling path 2656 * can deadlock because I/O on the device might not 2657 * complete. 2658 */ 2659 gfp_mask = memalloc_noio_flags(gfp_mask); 2660 page = __alloc_pages_slowpath(gfp_mask, order, 2661 zonelist, high_zoneidx, nodemask, 2662 preferred_zone, migratetype); 2663 } 2664 2665 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2666 2667 out: 2668 /* 2669 * When updating a task's mems_allowed, it is possible to race with 2670 * parallel threads in such a way that an allocation can fail while 2671 * the mask is being updated. If a page allocation is about to fail, 2672 * check if the cpuset changed during allocation and if so, retry. 2673 */ 2674 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2675 goto retry_cpuset; 2676 2677 memcg_kmem_commit_charge(page, memcg, order); 2678 2679 return page; 2680 } 2681 EXPORT_SYMBOL(__alloc_pages_nodemask); 2682 2683 /* 2684 * Common helper functions. 2685 */ 2686 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2687 { 2688 struct page *page; 2689 2690 /* 2691 * __get_free_pages() returns a 32-bit address, which cannot represent 2692 * a highmem page 2693 */ 2694 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2695 2696 page = alloc_pages(gfp_mask, order); 2697 if (!page) 2698 return 0; 2699 return (unsigned long) page_address(page); 2700 } 2701 EXPORT_SYMBOL(__get_free_pages); 2702 2703 unsigned long get_zeroed_page(gfp_t gfp_mask) 2704 { 2705 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2706 } 2707 EXPORT_SYMBOL(get_zeroed_page); 2708 2709 void __free_pages(struct page *page, unsigned int order) 2710 { 2711 if (put_page_testzero(page)) { 2712 if (order == 0) 2713 free_hot_cold_page(page, 0); 2714 else 2715 __free_pages_ok(page, order); 2716 } 2717 } 2718 2719 EXPORT_SYMBOL(__free_pages); 2720 2721 void free_pages(unsigned long addr, unsigned int order) 2722 { 2723 if (addr != 0) { 2724 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2725 __free_pages(virt_to_page((void *)addr), order); 2726 } 2727 } 2728 2729 EXPORT_SYMBOL(free_pages); 2730 2731 /* 2732 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2733 * pages allocated with __GFP_KMEMCG. 2734 * 2735 * Those pages are accounted to a particular memcg, embedded in the 2736 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2737 * for that information only to find out that it is NULL for users who have no 2738 * interest in that whatsoever, we provide these functions. 2739 * 2740 * The caller knows better which flags it relies on. 2741 */ 2742 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2743 { 2744 memcg_kmem_uncharge_pages(page, order); 2745 __free_pages(page, order); 2746 } 2747 2748 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2749 { 2750 if (addr != 0) { 2751 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2752 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2753 } 2754 } 2755 2756 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2757 { 2758 if (addr) { 2759 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2760 unsigned long used = addr + PAGE_ALIGN(size); 2761 2762 split_page(virt_to_page((void *)addr), order); 2763 while (used < alloc_end) { 2764 free_page(used); 2765 used += PAGE_SIZE; 2766 } 2767 } 2768 return (void *)addr; 2769 } 2770 2771 /** 2772 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2773 * @size: the number of bytes to allocate 2774 * @gfp_mask: GFP flags for the allocation 2775 * 2776 * This function is similar to alloc_pages(), except that it allocates the 2777 * minimum number of pages to satisfy the request. alloc_pages() can only 2778 * allocate memory in power-of-two pages. 2779 * 2780 * This function is also limited by MAX_ORDER. 2781 * 2782 * Memory allocated by this function must be released by free_pages_exact(). 2783 */ 2784 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2785 { 2786 unsigned int order = get_order(size); 2787 unsigned long addr; 2788 2789 addr = __get_free_pages(gfp_mask, order); 2790 return make_alloc_exact(addr, order, size); 2791 } 2792 EXPORT_SYMBOL(alloc_pages_exact); 2793 2794 /** 2795 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2796 * pages on a node. 2797 * @nid: the preferred node ID where memory should be allocated 2798 * @size: the number of bytes to allocate 2799 * @gfp_mask: GFP flags for the allocation 2800 * 2801 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2802 * back. 2803 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2804 * but is not exact. 2805 */ 2806 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2807 { 2808 unsigned order = get_order(size); 2809 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2810 if (!p) 2811 return NULL; 2812 return make_alloc_exact((unsigned long)page_address(p), order, size); 2813 } 2814 EXPORT_SYMBOL(alloc_pages_exact_nid); 2815 2816 /** 2817 * free_pages_exact - release memory allocated via alloc_pages_exact() 2818 * @virt: the value returned by alloc_pages_exact. 2819 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2820 * 2821 * Release the memory allocated by a previous call to alloc_pages_exact. 2822 */ 2823 void free_pages_exact(void *virt, size_t size) 2824 { 2825 unsigned long addr = (unsigned long)virt; 2826 unsigned long end = addr + PAGE_ALIGN(size); 2827 2828 while (addr < end) { 2829 free_page(addr); 2830 addr += PAGE_SIZE; 2831 } 2832 } 2833 EXPORT_SYMBOL(free_pages_exact); 2834 2835 /** 2836 * nr_free_zone_pages - count number of pages beyond high watermark 2837 * @offset: The zone index of the highest zone 2838 * 2839 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2840 * high watermark within all zones at or below a given zone index. For each 2841 * zone, the number of pages is calculated as: 2842 * present_pages - high_pages 2843 */ 2844 static unsigned long nr_free_zone_pages(int offset) 2845 { 2846 struct zoneref *z; 2847 struct zone *zone; 2848 2849 /* Just pick one node, since fallback list is circular */ 2850 unsigned long sum = 0; 2851 2852 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2853 2854 for_each_zone_zonelist(zone, z, zonelist, offset) { 2855 unsigned long size = zone->managed_pages; 2856 unsigned long high = high_wmark_pages(zone); 2857 if (size > high) 2858 sum += size - high; 2859 } 2860 2861 return sum; 2862 } 2863 2864 /** 2865 * nr_free_buffer_pages - count number of pages beyond high watermark 2866 * 2867 * nr_free_buffer_pages() counts the number of pages which are beyond the high 2868 * watermark within ZONE_DMA and ZONE_NORMAL. 2869 */ 2870 unsigned long nr_free_buffer_pages(void) 2871 { 2872 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2873 } 2874 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2875 2876 /** 2877 * nr_free_pagecache_pages - count number of pages beyond high watermark 2878 * 2879 * nr_free_pagecache_pages() counts the number of pages which are beyond the 2880 * high watermark within all zones. 2881 */ 2882 unsigned long nr_free_pagecache_pages(void) 2883 { 2884 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2885 } 2886 2887 static inline void show_node(struct zone *zone) 2888 { 2889 if (IS_ENABLED(CONFIG_NUMA)) 2890 printk("Node %d ", zone_to_nid(zone)); 2891 } 2892 2893 void si_meminfo(struct sysinfo *val) 2894 { 2895 val->totalram = totalram_pages; 2896 val->sharedram = 0; 2897 val->freeram = global_page_state(NR_FREE_PAGES); 2898 val->bufferram = nr_blockdev_pages(); 2899 val->totalhigh = totalhigh_pages; 2900 val->freehigh = nr_free_highpages(); 2901 val->mem_unit = PAGE_SIZE; 2902 } 2903 2904 EXPORT_SYMBOL(si_meminfo); 2905 2906 #ifdef CONFIG_NUMA 2907 void si_meminfo_node(struct sysinfo *val, int nid) 2908 { 2909 pg_data_t *pgdat = NODE_DATA(nid); 2910 2911 val->totalram = pgdat->node_present_pages; 2912 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2913 #ifdef CONFIG_HIGHMEM 2914 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 2915 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2916 NR_FREE_PAGES); 2917 #else 2918 val->totalhigh = 0; 2919 val->freehigh = 0; 2920 #endif 2921 val->mem_unit = PAGE_SIZE; 2922 } 2923 #endif 2924 2925 /* 2926 * Determine whether the node should be displayed or not, depending on whether 2927 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2928 */ 2929 bool skip_free_areas_node(unsigned int flags, int nid) 2930 { 2931 bool ret = false; 2932 unsigned int cpuset_mems_cookie; 2933 2934 if (!(flags & SHOW_MEM_FILTER_NODES)) 2935 goto out; 2936 2937 do { 2938 cpuset_mems_cookie = get_mems_allowed(); 2939 ret = !node_isset(nid, cpuset_current_mems_allowed); 2940 } while (!put_mems_allowed(cpuset_mems_cookie)); 2941 out: 2942 return ret; 2943 } 2944 2945 #define K(x) ((x) << (PAGE_SHIFT-10)) 2946 2947 static void show_migration_types(unsigned char type) 2948 { 2949 static const char types[MIGRATE_TYPES] = { 2950 [MIGRATE_UNMOVABLE] = 'U', 2951 [MIGRATE_RECLAIMABLE] = 'E', 2952 [MIGRATE_MOVABLE] = 'M', 2953 [MIGRATE_RESERVE] = 'R', 2954 #ifdef CONFIG_CMA 2955 [MIGRATE_CMA] = 'C', 2956 #endif 2957 #ifdef CONFIG_MEMORY_ISOLATION 2958 [MIGRATE_ISOLATE] = 'I', 2959 #endif 2960 }; 2961 char tmp[MIGRATE_TYPES + 1]; 2962 char *p = tmp; 2963 int i; 2964 2965 for (i = 0; i < MIGRATE_TYPES; i++) { 2966 if (type & (1 << i)) 2967 *p++ = types[i]; 2968 } 2969 2970 *p = '\0'; 2971 printk("(%s) ", tmp); 2972 } 2973 2974 /* 2975 * Show free area list (used inside shift_scroll-lock stuff) 2976 * We also calculate the percentage fragmentation. We do this by counting the 2977 * memory on each free list with the exception of the first item on the list. 2978 * Suppresses nodes that are not allowed by current's cpuset if 2979 * SHOW_MEM_FILTER_NODES is passed. 2980 */ 2981 void show_free_areas(unsigned int filter) 2982 { 2983 int cpu; 2984 struct zone *zone; 2985 2986 for_each_populated_zone(zone) { 2987 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2988 continue; 2989 show_node(zone); 2990 printk("%s per-cpu:\n", zone->name); 2991 2992 for_each_online_cpu(cpu) { 2993 struct per_cpu_pageset *pageset; 2994 2995 pageset = per_cpu_ptr(zone->pageset, cpu); 2996 2997 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2998 cpu, pageset->pcp.high, 2999 pageset->pcp.batch, pageset->pcp.count); 3000 } 3001 } 3002 3003 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3004 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3005 " unevictable:%lu" 3006 " dirty:%lu writeback:%lu unstable:%lu\n" 3007 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3008 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3009 " free_cma:%lu\n", 3010 global_page_state(NR_ACTIVE_ANON), 3011 global_page_state(NR_INACTIVE_ANON), 3012 global_page_state(NR_ISOLATED_ANON), 3013 global_page_state(NR_ACTIVE_FILE), 3014 global_page_state(NR_INACTIVE_FILE), 3015 global_page_state(NR_ISOLATED_FILE), 3016 global_page_state(NR_UNEVICTABLE), 3017 global_page_state(NR_FILE_DIRTY), 3018 global_page_state(NR_WRITEBACK), 3019 global_page_state(NR_UNSTABLE_NFS), 3020 global_page_state(NR_FREE_PAGES), 3021 global_page_state(NR_SLAB_RECLAIMABLE), 3022 global_page_state(NR_SLAB_UNRECLAIMABLE), 3023 global_page_state(NR_FILE_MAPPED), 3024 global_page_state(NR_SHMEM), 3025 global_page_state(NR_PAGETABLE), 3026 global_page_state(NR_BOUNCE), 3027 global_page_state(NR_FREE_CMA_PAGES)); 3028 3029 for_each_populated_zone(zone) { 3030 int i; 3031 3032 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3033 continue; 3034 show_node(zone); 3035 printk("%s" 3036 " free:%lukB" 3037 " min:%lukB" 3038 " low:%lukB" 3039 " high:%lukB" 3040 " active_anon:%lukB" 3041 " inactive_anon:%lukB" 3042 " active_file:%lukB" 3043 " inactive_file:%lukB" 3044 " unevictable:%lukB" 3045 " isolated(anon):%lukB" 3046 " isolated(file):%lukB" 3047 " present:%lukB" 3048 " managed:%lukB" 3049 " mlocked:%lukB" 3050 " dirty:%lukB" 3051 " writeback:%lukB" 3052 " mapped:%lukB" 3053 " shmem:%lukB" 3054 " slab_reclaimable:%lukB" 3055 " slab_unreclaimable:%lukB" 3056 " kernel_stack:%lukB" 3057 " pagetables:%lukB" 3058 " unstable:%lukB" 3059 " bounce:%lukB" 3060 " free_cma:%lukB" 3061 " writeback_tmp:%lukB" 3062 " pages_scanned:%lu" 3063 " all_unreclaimable? %s" 3064 "\n", 3065 zone->name, 3066 K(zone_page_state(zone, NR_FREE_PAGES)), 3067 K(min_wmark_pages(zone)), 3068 K(low_wmark_pages(zone)), 3069 K(high_wmark_pages(zone)), 3070 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3071 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3072 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3073 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3074 K(zone_page_state(zone, NR_UNEVICTABLE)), 3075 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3076 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3077 K(zone->present_pages), 3078 K(zone->managed_pages), 3079 K(zone_page_state(zone, NR_MLOCK)), 3080 K(zone_page_state(zone, NR_FILE_DIRTY)), 3081 K(zone_page_state(zone, NR_WRITEBACK)), 3082 K(zone_page_state(zone, NR_FILE_MAPPED)), 3083 K(zone_page_state(zone, NR_SHMEM)), 3084 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3085 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3086 zone_page_state(zone, NR_KERNEL_STACK) * 3087 THREAD_SIZE / 1024, 3088 K(zone_page_state(zone, NR_PAGETABLE)), 3089 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3090 K(zone_page_state(zone, NR_BOUNCE)), 3091 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3092 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3093 zone->pages_scanned, 3094 (zone->all_unreclaimable ? "yes" : "no") 3095 ); 3096 printk("lowmem_reserve[]:"); 3097 for (i = 0; i < MAX_NR_ZONES; i++) 3098 printk(" %lu", zone->lowmem_reserve[i]); 3099 printk("\n"); 3100 } 3101 3102 for_each_populated_zone(zone) { 3103 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3104 unsigned char types[MAX_ORDER]; 3105 3106 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3107 continue; 3108 show_node(zone); 3109 printk("%s: ", zone->name); 3110 3111 spin_lock_irqsave(&zone->lock, flags); 3112 for (order = 0; order < MAX_ORDER; order++) { 3113 struct free_area *area = &zone->free_area[order]; 3114 int type; 3115 3116 nr[order] = area->nr_free; 3117 total += nr[order] << order; 3118 3119 types[order] = 0; 3120 for (type = 0; type < MIGRATE_TYPES; type++) { 3121 if (!list_empty(&area->free_list[type])) 3122 types[order] |= 1 << type; 3123 } 3124 } 3125 spin_unlock_irqrestore(&zone->lock, flags); 3126 for (order = 0; order < MAX_ORDER; order++) { 3127 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3128 if (nr[order]) 3129 show_migration_types(types[order]); 3130 } 3131 printk("= %lukB\n", K(total)); 3132 } 3133 3134 hugetlb_show_meminfo(); 3135 3136 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3137 3138 show_swap_cache_info(); 3139 } 3140 3141 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3142 { 3143 zoneref->zone = zone; 3144 zoneref->zone_idx = zone_idx(zone); 3145 } 3146 3147 /* 3148 * Builds allocation fallback zone lists. 3149 * 3150 * Add all populated zones of a node to the zonelist. 3151 */ 3152 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3153 int nr_zones, enum zone_type zone_type) 3154 { 3155 struct zone *zone; 3156 3157 BUG_ON(zone_type >= MAX_NR_ZONES); 3158 zone_type++; 3159 3160 do { 3161 zone_type--; 3162 zone = pgdat->node_zones + zone_type; 3163 if (populated_zone(zone)) { 3164 zoneref_set_zone(zone, 3165 &zonelist->_zonerefs[nr_zones++]); 3166 check_highest_zone(zone_type); 3167 } 3168 3169 } while (zone_type); 3170 return nr_zones; 3171 } 3172 3173 3174 /* 3175 * zonelist_order: 3176 * 0 = automatic detection of better ordering. 3177 * 1 = order by ([node] distance, -zonetype) 3178 * 2 = order by (-zonetype, [node] distance) 3179 * 3180 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3181 * the same zonelist. So only NUMA can configure this param. 3182 */ 3183 #define ZONELIST_ORDER_DEFAULT 0 3184 #define ZONELIST_ORDER_NODE 1 3185 #define ZONELIST_ORDER_ZONE 2 3186 3187 /* zonelist order in the kernel. 3188 * set_zonelist_order() will set this to NODE or ZONE. 3189 */ 3190 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3191 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3192 3193 3194 #ifdef CONFIG_NUMA 3195 /* The value user specified ....changed by config */ 3196 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3197 /* string for sysctl */ 3198 #define NUMA_ZONELIST_ORDER_LEN 16 3199 char numa_zonelist_order[16] = "default"; 3200 3201 /* 3202 * interface for configure zonelist ordering. 3203 * command line option "numa_zonelist_order" 3204 * = "[dD]efault - default, automatic configuration. 3205 * = "[nN]ode - order by node locality, then by zone within node 3206 * = "[zZ]one - order by zone, then by locality within zone 3207 */ 3208 3209 static int __parse_numa_zonelist_order(char *s) 3210 { 3211 if (*s == 'd' || *s == 'D') { 3212 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3213 } else if (*s == 'n' || *s == 'N') { 3214 user_zonelist_order = ZONELIST_ORDER_NODE; 3215 } else if (*s == 'z' || *s == 'Z') { 3216 user_zonelist_order = ZONELIST_ORDER_ZONE; 3217 } else { 3218 printk(KERN_WARNING 3219 "Ignoring invalid numa_zonelist_order value: " 3220 "%s\n", s); 3221 return -EINVAL; 3222 } 3223 return 0; 3224 } 3225 3226 static __init int setup_numa_zonelist_order(char *s) 3227 { 3228 int ret; 3229 3230 if (!s) 3231 return 0; 3232 3233 ret = __parse_numa_zonelist_order(s); 3234 if (ret == 0) 3235 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3236 3237 return ret; 3238 } 3239 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3240 3241 /* 3242 * sysctl handler for numa_zonelist_order 3243 */ 3244 int numa_zonelist_order_handler(ctl_table *table, int write, 3245 void __user *buffer, size_t *length, 3246 loff_t *ppos) 3247 { 3248 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3249 int ret; 3250 static DEFINE_MUTEX(zl_order_mutex); 3251 3252 mutex_lock(&zl_order_mutex); 3253 if (write) 3254 strcpy(saved_string, (char*)table->data); 3255 ret = proc_dostring(table, write, buffer, length, ppos); 3256 if (ret) 3257 goto out; 3258 if (write) { 3259 int oldval = user_zonelist_order; 3260 if (__parse_numa_zonelist_order((char*)table->data)) { 3261 /* 3262 * bogus value. restore saved string 3263 */ 3264 strncpy((char*)table->data, saved_string, 3265 NUMA_ZONELIST_ORDER_LEN); 3266 user_zonelist_order = oldval; 3267 } else if (oldval != user_zonelist_order) { 3268 mutex_lock(&zonelists_mutex); 3269 build_all_zonelists(NULL, NULL); 3270 mutex_unlock(&zonelists_mutex); 3271 } 3272 } 3273 out: 3274 mutex_unlock(&zl_order_mutex); 3275 return ret; 3276 } 3277 3278 3279 #define MAX_NODE_LOAD (nr_online_nodes) 3280 static int node_load[MAX_NUMNODES]; 3281 3282 /** 3283 * find_next_best_node - find the next node that should appear in a given node's fallback list 3284 * @node: node whose fallback list we're appending 3285 * @used_node_mask: nodemask_t of already used nodes 3286 * 3287 * We use a number of factors to determine which is the next node that should 3288 * appear on a given node's fallback list. The node should not have appeared 3289 * already in @node's fallback list, and it should be the next closest node 3290 * according to the distance array (which contains arbitrary distance values 3291 * from each node to each node in the system), and should also prefer nodes 3292 * with no CPUs, since presumably they'll have very little allocation pressure 3293 * on them otherwise. 3294 * It returns -1 if no node is found. 3295 */ 3296 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3297 { 3298 int n, val; 3299 int min_val = INT_MAX; 3300 int best_node = NUMA_NO_NODE; 3301 const struct cpumask *tmp = cpumask_of_node(0); 3302 3303 /* Use the local node if we haven't already */ 3304 if (!node_isset(node, *used_node_mask)) { 3305 node_set(node, *used_node_mask); 3306 return node; 3307 } 3308 3309 for_each_node_state(n, N_MEMORY) { 3310 3311 /* Don't want a node to appear more than once */ 3312 if (node_isset(n, *used_node_mask)) 3313 continue; 3314 3315 /* Use the distance array to find the distance */ 3316 val = node_distance(node, n); 3317 3318 /* Penalize nodes under us ("prefer the next node") */ 3319 val += (n < node); 3320 3321 /* Give preference to headless and unused nodes */ 3322 tmp = cpumask_of_node(n); 3323 if (!cpumask_empty(tmp)) 3324 val += PENALTY_FOR_NODE_WITH_CPUS; 3325 3326 /* Slight preference for less loaded node */ 3327 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3328 val += node_load[n]; 3329 3330 if (val < min_val) { 3331 min_val = val; 3332 best_node = n; 3333 } 3334 } 3335 3336 if (best_node >= 0) 3337 node_set(best_node, *used_node_mask); 3338 3339 return best_node; 3340 } 3341 3342 3343 /* 3344 * Build zonelists ordered by node and zones within node. 3345 * This results in maximum locality--normal zone overflows into local 3346 * DMA zone, if any--but risks exhausting DMA zone. 3347 */ 3348 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3349 { 3350 int j; 3351 struct zonelist *zonelist; 3352 3353 zonelist = &pgdat->node_zonelists[0]; 3354 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3355 ; 3356 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3357 MAX_NR_ZONES - 1); 3358 zonelist->_zonerefs[j].zone = NULL; 3359 zonelist->_zonerefs[j].zone_idx = 0; 3360 } 3361 3362 /* 3363 * Build gfp_thisnode zonelists 3364 */ 3365 static void build_thisnode_zonelists(pg_data_t *pgdat) 3366 { 3367 int j; 3368 struct zonelist *zonelist; 3369 3370 zonelist = &pgdat->node_zonelists[1]; 3371 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3372 zonelist->_zonerefs[j].zone = NULL; 3373 zonelist->_zonerefs[j].zone_idx = 0; 3374 } 3375 3376 /* 3377 * Build zonelists ordered by zone and nodes within zones. 3378 * This results in conserving DMA zone[s] until all Normal memory is 3379 * exhausted, but results in overflowing to remote node while memory 3380 * may still exist in local DMA zone. 3381 */ 3382 static int node_order[MAX_NUMNODES]; 3383 3384 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3385 { 3386 int pos, j, node; 3387 int zone_type; /* needs to be signed */ 3388 struct zone *z; 3389 struct zonelist *zonelist; 3390 3391 zonelist = &pgdat->node_zonelists[0]; 3392 pos = 0; 3393 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3394 for (j = 0; j < nr_nodes; j++) { 3395 node = node_order[j]; 3396 z = &NODE_DATA(node)->node_zones[zone_type]; 3397 if (populated_zone(z)) { 3398 zoneref_set_zone(z, 3399 &zonelist->_zonerefs[pos++]); 3400 check_highest_zone(zone_type); 3401 } 3402 } 3403 } 3404 zonelist->_zonerefs[pos].zone = NULL; 3405 zonelist->_zonerefs[pos].zone_idx = 0; 3406 } 3407 3408 static int default_zonelist_order(void) 3409 { 3410 int nid, zone_type; 3411 unsigned long low_kmem_size,total_size; 3412 struct zone *z; 3413 int average_size; 3414 /* 3415 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3416 * If they are really small and used heavily, the system can fall 3417 * into OOM very easily. 3418 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3419 */ 3420 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3421 low_kmem_size = 0; 3422 total_size = 0; 3423 for_each_online_node(nid) { 3424 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3425 z = &NODE_DATA(nid)->node_zones[zone_type]; 3426 if (populated_zone(z)) { 3427 if (zone_type < ZONE_NORMAL) 3428 low_kmem_size += z->present_pages; 3429 total_size += z->present_pages; 3430 } else if (zone_type == ZONE_NORMAL) { 3431 /* 3432 * If any node has only lowmem, then node order 3433 * is preferred to allow kernel allocations 3434 * locally; otherwise, they can easily infringe 3435 * on other nodes when there is an abundance of 3436 * lowmem available to allocate from. 3437 */ 3438 return ZONELIST_ORDER_NODE; 3439 } 3440 } 3441 } 3442 if (!low_kmem_size || /* there are no DMA area. */ 3443 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3444 return ZONELIST_ORDER_NODE; 3445 /* 3446 * look into each node's config. 3447 * If there is a node whose DMA/DMA32 memory is very big area on 3448 * local memory, NODE_ORDER may be suitable. 3449 */ 3450 average_size = total_size / 3451 (nodes_weight(node_states[N_MEMORY]) + 1); 3452 for_each_online_node(nid) { 3453 low_kmem_size = 0; 3454 total_size = 0; 3455 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3456 z = &NODE_DATA(nid)->node_zones[zone_type]; 3457 if (populated_zone(z)) { 3458 if (zone_type < ZONE_NORMAL) 3459 low_kmem_size += z->present_pages; 3460 total_size += z->present_pages; 3461 } 3462 } 3463 if (low_kmem_size && 3464 total_size > average_size && /* ignore small node */ 3465 low_kmem_size > total_size * 70/100) 3466 return ZONELIST_ORDER_NODE; 3467 } 3468 return ZONELIST_ORDER_ZONE; 3469 } 3470 3471 static void set_zonelist_order(void) 3472 { 3473 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3474 current_zonelist_order = default_zonelist_order(); 3475 else 3476 current_zonelist_order = user_zonelist_order; 3477 } 3478 3479 static void build_zonelists(pg_data_t *pgdat) 3480 { 3481 int j, node, load; 3482 enum zone_type i; 3483 nodemask_t used_mask; 3484 int local_node, prev_node; 3485 struct zonelist *zonelist; 3486 int order = current_zonelist_order; 3487 3488 /* initialize zonelists */ 3489 for (i = 0; i < MAX_ZONELISTS; i++) { 3490 zonelist = pgdat->node_zonelists + i; 3491 zonelist->_zonerefs[0].zone = NULL; 3492 zonelist->_zonerefs[0].zone_idx = 0; 3493 } 3494 3495 /* NUMA-aware ordering of nodes */ 3496 local_node = pgdat->node_id; 3497 load = nr_online_nodes; 3498 prev_node = local_node; 3499 nodes_clear(used_mask); 3500 3501 memset(node_order, 0, sizeof(node_order)); 3502 j = 0; 3503 3504 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3505 /* 3506 * We don't want to pressure a particular node. 3507 * So adding penalty to the first node in same 3508 * distance group to make it round-robin. 3509 */ 3510 if (node_distance(local_node, node) != 3511 node_distance(local_node, prev_node)) 3512 node_load[node] = load; 3513 3514 prev_node = node; 3515 load--; 3516 if (order == ZONELIST_ORDER_NODE) 3517 build_zonelists_in_node_order(pgdat, node); 3518 else 3519 node_order[j++] = node; /* remember order */ 3520 } 3521 3522 if (order == ZONELIST_ORDER_ZONE) { 3523 /* calculate node order -- i.e., DMA last! */ 3524 build_zonelists_in_zone_order(pgdat, j); 3525 } 3526 3527 build_thisnode_zonelists(pgdat); 3528 } 3529 3530 /* Construct the zonelist performance cache - see further mmzone.h */ 3531 static void build_zonelist_cache(pg_data_t *pgdat) 3532 { 3533 struct zonelist *zonelist; 3534 struct zonelist_cache *zlc; 3535 struct zoneref *z; 3536 3537 zonelist = &pgdat->node_zonelists[0]; 3538 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3539 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3540 for (z = zonelist->_zonerefs; z->zone; z++) 3541 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3542 } 3543 3544 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3545 /* 3546 * Return node id of node used for "local" allocations. 3547 * I.e., first node id of first zone in arg node's generic zonelist. 3548 * Used for initializing percpu 'numa_mem', which is used primarily 3549 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3550 */ 3551 int local_memory_node(int node) 3552 { 3553 struct zone *zone; 3554 3555 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3556 gfp_zone(GFP_KERNEL), 3557 NULL, 3558 &zone); 3559 return zone->node; 3560 } 3561 #endif 3562 3563 #else /* CONFIG_NUMA */ 3564 3565 static void set_zonelist_order(void) 3566 { 3567 current_zonelist_order = ZONELIST_ORDER_ZONE; 3568 } 3569 3570 static void build_zonelists(pg_data_t *pgdat) 3571 { 3572 int node, local_node; 3573 enum zone_type j; 3574 struct zonelist *zonelist; 3575 3576 local_node = pgdat->node_id; 3577 3578 zonelist = &pgdat->node_zonelists[0]; 3579 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3580 3581 /* 3582 * Now we build the zonelist so that it contains the zones 3583 * of all the other nodes. 3584 * We don't want to pressure a particular node, so when 3585 * building the zones for node N, we make sure that the 3586 * zones coming right after the local ones are those from 3587 * node N+1 (modulo N) 3588 */ 3589 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3590 if (!node_online(node)) 3591 continue; 3592 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3593 MAX_NR_ZONES - 1); 3594 } 3595 for (node = 0; node < local_node; node++) { 3596 if (!node_online(node)) 3597 continue; 3598 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3599 MAX_NR_ZONES - 1); 3600 } 3601 3602 zonelist->_zonerefs[j].zone = NULL; 3603 zonelist->_zonerefs[j].zone_idx = 0; 3604 } 3605 3606 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3607 static void build_zonelist_cache(pg_data_t *pgdat) 3608 { 3609 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3610 } 3611 3612 #endif /* CONFIG_NUMA */ 3613 3614 /* 3615 * Boot pageset table. One per cpu which is going to be used for all 3616 * zones and all nodes. The parameters will be set in such a way 3617 * that an item put on a list will immediately be handed over to 3618 * the buddy list. This is safe since pageset manipulation is done 3619 * with interrupts disabled. 3620 * 3621 * The boot_pagesets must be kept even after bootup is complete for 3622 * unused processors and/or zones. They do play a role for bootstrapping 3623 * hotplugged processors. 3624 * 3625 * zoneinfo_show() and maybe other functions do 3626 * not check if the processor is online before following the pageset pointer. 3627 * Other parts of the kernel may not check if the zone is available. 3628 */ 3629 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3630 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3631 static void setup_zone_pageset(struct zone *zone); 3632 3633 /* 3634 * Global mutex to protect against size modification of zonelists 3635 * as well as to serialize pageset setup for the new populated zone. 3636 */ 3637 DEFINE_MUTEX(zonelists_mutex); 3638 3639 /* return values int ....just for stop_machine() */ 3640 static int __build_all_zonelists(void *data) 3641 { 3642 int nid; 3643 int cpu; 3644 pg_data_t *self = data; 3645 3646 #ifdef CONFIG_NUMA 3647 memset(node_load, 0, sizeof(node_load)); 3648 #endif 3649 3650 if (self && !node_online(self->node_id)) { 3651 build_zonelists(self); 3652 build_zonelist_cache(self); 3653 } 3654 3655 for_each_online_node(nid) { 3656 pg_data_t *pgdat = NODE_DATA(nid); 3657 3658 build_zonelists(pgdat); 3659 build_zonelist_cache(pgdat); 3660 } 3661 3662 /* 3663 * Initialize the boot_pagesets that are going to be used 3664 * for bootstrapping processors. The real pagesets for 3665 * each zone will be allocated later when the per cpu 3666 * allocator is available. 3667 * 3668 * boot_pagesets are used also for bootstrapping offline 3669 * cpus if the system is already booted because the pagesets 3670 * are needed to initialize allocators on a specific cpu too. 3671 * F.e. the percpu allocator needs the page allocator which 3672 * needs the percpu allocator in order to allocate its pagesets 3673 * (a chicken-egg dilemma). 3674 */ 3675 for_each_possible_cpu(cpu) { 3676 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3677 3678 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3679 /* 3680 * We now know the "local memory node" for each node-- 3681 * i.e., the node of the first zone in the generic zonelist. 3682 * Set up numa_mem percpu variable for on-line cpus. During 3683 * boot, only the boot cpu should be on-line; we'll init the 3684 * secondary cpus' numa_mem as they come on-line. During 3685 * node/memory hotplug, we'll fixup all on-line cpus. 3686 */ 3687 if (cpu_online(cpu)) 3688 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3689 #endif 3690 } 3691 3692 return 0; 3693 } 3694 3695 /* 3696 * Called with zonelists_mutex held always 3697 * unless system_state == SYSTEM_BOOTING. 3698 */ 3699 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3700 { 3701 set_zonelist_order(); 3702 3703 if (system_state == SYSTEM_BOOTING) { 3704 __build_all_zonelists(NULL); 3705 mminit_verify_zonelist(); 3706 cpuset_init_current_mems_allowed(); 3707 } else { 3708 /* we have to stop all cpus to guarantee there is no user 3709 of zonelist */ 3710 #ifdef CONFIG_MEMORY_HOTPLUG 3711 if (zone) 3712 setup_zone_pageset(zone); 3713 #endif 3714 stop_machine(__build_all_zonelists, pgdat, NULL); 3715 /* cpuset refresh routine should be here */ 3716 } 3717 vm_total_pages = nr_free_pagecache_pages(); 3718 /* 3719 * Disable grouping by mobility if the number of pages in the 3720 * system is too low to allow the mechanism to work. It would be 3721 * more accurate, but expensive to check per-zone. This check is 3722 * made on memory-hotadd so a system can start with mobility 3723 * disabled and enable it later 3724 */ 3725 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3726 page_group_by_mobility_disabled = 1; 3727 else 3728 page_group_by_mobility_disabled = 0; 3729 3730 printk("Built %i zonelists in %s order, mobility grouping %s. " 3731 "Total pages: %ld\n", 3732 nr_online_nodes, 3733 zonelist_order_name[current_zonelist_order], 3734 page_group_by_mobility_disabled ? "off" : "on", 3735 vm_total_pages); 3736 #ifdef CONFIG_NUMA 3737 printk("Policy zone: %s\n", zone_names[policy_zone]); 3738 #endif 3739 } 3740 3741 /* 3742 * Helper functions to size the waitqueue hash table. 3743 * Essentially these want to choose hash table sizes sufficiently 3744 * large so that collisions trying to wait on pages are rare. 3745 * But in fact, the number of active page waitqueues on typical 3746 * systems is ridiculously low, less than 200. So this is even 3747 * conservative, even though it seems large. 3748 * 3749 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3750 * waitqueues, i.e. the size of the waitq table given the number of pages. 3751 */ 3752 #define PAGES_PER_WAITQUEUE 256 3753 3754 #ifndef CONFIG_MEMORY_HOTPLUG 3755 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3756 { 3757 unsigned long size = 1; 3758 3759 pages /= PAGES_PER_WAITQUEUE; 3760 3761 while (size < pages) 3762 size <<= 1; 3763 3764 /* 3765 * Once we have dozens or even hundreds of threads sleeping 3766 * on IO we've got bigger problems than wait queue collision. 3767 * Limit the size of the wait table to a reasonable size. 3768 */ 3769 size = min(size, 4096UL); 3770 3771 return max(size, 4UL); 3772 } 3773 #else 3774 /* 3775 * A zone's size might be changed by hot-add, so it is not possible to determine 3776 * a suitable size for its wait_table. So we use the maximum size now. 3777 * 3778 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3779 * 3780 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3781 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3782 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3783 * 3784 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3785 * or more by the traditional way. (See above). It equals: 3786 * 3787 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3788 * ia64(16K page size) : = ( 8G + 4M)byte. 3789 * powerpc (64K page size) : = (32G +16M)byte. 3790 */ 3791 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3792 { 3793 return 4096UL; 3794 } 3795 #endif 3796 3797 /* 3798 * This is an integer logarithm so that shifts can be used later 3799 * to extract the more random high bits from the multiplicative 3800 * hash function before the remainder is taken. 3801 */ 3802 static inline unsigned long wait_table_bits(unsigned long size) 3803 { 3804 return ffz(~size); 3805 } 3806 3807 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3808 3809 /* 3810 * Check if a pageblock contains reserved pages 3811 */ 3812 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3813 { 3814 unsigned long pfn; 3815 3816 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3817 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3818 return 1; 3819 } 3820 return 0; 3821 } 3822 3823 /* 3824 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3825 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3826 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3827 * higher will lead to a bigger reserve which will get freed as contiguous 3828 * blocks as reclaim kicks in 3829 */ 3830 static void setup_zone_migrate_reserve(struct zone *zone) 3831 { 3832 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3833 struct page *page; 3834 unsigned long block_migratetype; 3835 int reserve; 3836 3837 /* 3838 * Get the start pfn, end pfn and the number of blocks to reserve 3839 * We have to be careful to be aligned to pageblock_nr_pages to 3840 * make sure that we always check pfn_valid for the first page in 3841 * the block. 3842 */ 3843 start_pfn = zone->zone_start_pfn; 3844 end_pfn = zone_end_pfn(zone); 3845 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3846 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3847 pageblock_order; 3848 3849 /* 3850 * Reserve blocks are generally in place to help high-order atomic 3851 * allocations that are short-lived. A min_free_kbytes value that 3852 * would result in more than 2 reserve blocks for atomic allocations 3853 * is assumed to be in place to help anti-fragmentation for the 3854 * future allocation of hugepages at runtime. 3855 */ 3856 reserve = min(2, reserve); 3857 3858 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3859 if (!pfn_valid(pfn)) 3860 continue; 3861 page = pfn_to_page(pfn); 3862 3863 /* Watch out for overlapping nodes */ 3864 if (page_to_nid(page) != zone_to_nid(zone)) 3865 continue; 3866 3867 block_migratetype = get_pageblock_migratetype(page); 3868 3869 /* Only test what is necessary when the reserves are not met */ 3870 if (reserve > 0) { 3871 /* 3872 * Blocks with reserved pages will never free, skip 3873 * them. 3874 */ 3875 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3876 if (pageblock_is_reserved(pfn, block_end_pfn)) 3877 continue; 3878 3879 /* If this block is reserved, account for it */ 3880 if (block_migratetype == MIGRATE_RESERVE) { 3881 reserve--; 3882 continue; 3883 } 3884 3885 /* Suitable for reserving if this block is movable */ 3886 if (block_migratetype == MIGRATE_MOVABLE) { 3887 set_pageblock_migratetype(page, 3888 MIGRATE_RESERVE); 3889 move_freepages_block(zone, page, 3890 MIGRATE_RESERVE); 3891 reserve--; 3892 continue; 3893 } 3894 } 3895 3896 /* 3897 * If the reserve is met and this is a previous reserved block, 3898 * take it back 3899 */ 3900 if (block_migratetype == MIGRATE_RESERVE) { 3901 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3902 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3903 } 3904 } 3905 } 3906 3907 /* 3908 * Initially all pages are reserved - free ones are freed 3909 * up by free_all_bootmem() once the early boot process is 3910 * done. Non-atomic initialization, single-pass. 3911 */ 3912 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3913 unsigned long start_pfn, enum memmap_context context) 3914 { 3915 struct page *page; 3916 unsigned long end_pfn = start_pfn + size; 3917 unsigned long pfn; 3918 struct zone *z; 3919 3920 if (highest_memmap_pfn < end_pfn - 1) 3921 highest_memmap_pfn = end_pfn - 1; 3922 3923 z = &NODE_DATA(nid)->node_zones[zone]; 3924 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3925 /* 3926 * There can be holes in boot-time mem_map[]s 3927 * handed to this function. They do not 3928 * exist on hotplugged memory. 3929 */ 3930 if (context == MEMMAP_EARLY) { 3931 if (!early_pfn_valid(pfn)) 3932 continue; 3933 if (!early_pfn_in_nid(pfn, nid)) 3934 continue; 3935 } 3936 page = pfn_to_page(pfn); 3937 set_page_links(page, zone, nid, pfn); 3938 mminit_verify_page_links(page, zone, nid, pfn); 3939 init_page_count(page); 3940 page_mapcount_reset(page); 3941 page_nid_reset_last(page); 3942 SetPageReserved(page); 3943 /* 3944 * Mark the block movable so that blocks are reserved for 3945 * movable at startup. This will force kernel allocations 3946 * to reserve their blocks rather than leaking throughout 3947 * the address space during boot when many long-lived 3948 * kernel allocations are made. Later some blocks near 3949 * the start are marked MIGRATE_RESERVE by 3950 * setup_zone_migrate_reserve() 3951 * 3952 * bitmap is created for zone's valid pfn range. but memmap 3953 * can be created for invalid pages (for alignment) 3954 * check here not to call set_pageblock_migratetype() against 3955 * pfn out of zone. 3956 */ 3957 if ((z->zone_start_pfn <= pfn) 3958 && (pfn < zone_end_pfn(z)) 3959 && !(pfn & (pageblock_nr_pages - 1))) 3960 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3961 3962 INIT_LIST_HEAD(&page->lru); 3963 #ifdef WANT_PAGE_VIRTUAL 3964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3965 if (!is_highmem_idx(zone)) 3966 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3967 #endif 3968 } 3969 } 3970 3971 static void __meminit zone_init_free_lists(struct zone *zone) 3972 { 3973 int order, t; 3974 for_each_migratetype_order(order, t) { 3975 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3976 zone->free_area[order].nr_free = 0; 3977 } 3978 } 3979 3980 #ifndef __HAVE_ARCH_MEMMAP_INIT 3981 #define memmap_init(size, nid, zone, start_pfn) \ 3982 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3983 #endif 3984 3985 static int __meminit zone_batchsize(struct zone *zone) 3986 { 3987 #ifdef CONFIG_MMU 3988 int batch; 3989 3990 /* 3991 * The per-cpu-pages pools are set to around 1000th of the 3992 * size of the zone. But no more than 1/2 of a meg. 3993 * 3994 * OK, so we don't know how big the cache is. So guess. 3995 */ 3996 batch = zone->managed_pages / 1024; 3997 if (batch * PAGE_SIZE > 512 * 1024) 3998 batch = (512 * 1024) / PAGE_SIZE; 3999 batch /= 4; /* We effectively *= 4 below */ 4000 if (batch < 1) 4001 batch = 1; 4002 4003 /* 4004 * Clamp the batch to a 2^n - 1 value. Having a power 4005 * of 2 value was found to be more likely to have 4006 * suboptimal cache aliasing properties in some cases. 4007 * 4008 * For example if 2 tasks are alternately allocating 4009 * batches of pages, one task can end up with a lot 4010 * of pages of one half of the possible page colors 4011 * and the other with pages of the other colors. 4012 */ 4013 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4014 4015 return batch; 4016 4017 #else 4018 /* The deferral and batching of frees should be suppressed under NOMMU 4019 * conditions. 4020 * 4021 * The problem is that NOMMU needs to be able to allocate large chunks 4022 * of contiguous memory as there's no hardware page translation to 4023 * assemble apparent contiguous memory from discontiguous pages. 4024 * 4025 * Queueing large contiguous runs of pages for batching, however, 4026 * causes the pages to actually be freed in smaller chunks. As there 4027 * can be a significant delay between the individual batches being 4028 * recycled, this leads to the once large chunks of space being 4029 * fragmented and becoming unavailable for high-order allocations. 4030 */ 4031 return 0; 4032 #endif 4033 } 4034 4035 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4036 { 4037 struct per_cpu_pages *pcp; 4038 int migratetype; 4039 4040 memset(p, 0, sizeof(*p)); 4041 4042 pcp = &p->pcp; 4043 pcp->count = 0; 4044 pcp->high = 6 * batch; 4045 pcp->batch = max(1UL, 1 * batch); 4046 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4047 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4048 } 4049 4050 /* 4051 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 4052 * to the value high for the pageset p. 4053 */ 4054 4055 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 4056 unsigned long high) 4057 { 4058 struct per_cpu_pages *pcp; 4059 4060 pcp = &p->pcp; 4061 pcp->high = high; 4062 pcp->batch = max(1UL, high/4); 4063 if ((high/4) > (PAGE_SHIFT * 8)) 4064 pcp->batch = PAGE_SHIFT * 8; 4065 } 4066 4067 static void __meminit setup_zone_pageset(struct zone *zone) 4068 { 4069 int cpu; 4070 4071 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4072 4073 for_each_possible_cpu(cpu) { 4074 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4075 4076 setup_pageset(pcp, zone_batchsize(zone)); 4077 4078 if (percpu_pagelist_fraction) 4079 setup_pagelist_highmark(pcp, 4080 (zone->managed_pages / 4081 percpu_pagelist_fraction)); 4082 } 4083 } 4084 4085 /* 4086 * Allocate per cpu pagesets and initialize them. 4087 * Before this call only boot pagesets were available. 4088 */ 4089 void __init setup_per_cpu_pageset(void) 4090 { 4091 struct zone *zone; 4092 4093 for_each_populated_zone(zone) 4094 setup_zone_pageset(zone); 4095 } 4096 4097 static noinline __init_refok 4098 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4099 { 4100 int i; 4101 struct pglist_data *pgdat = zone->zone_pgdat; 4102 size_t alloc_size; 4103 4104 /* 4105 * The per-page waitqueue mechanism uses hashed waitqueues 4106 * per zone. 4107 */ 4108 zone->wait_table_hash_nr_entries = 4109 wait_table_hash_nr_entries(zone_size_pages); 4110 zone->wait_table_bits = 4111 wait_table_bits(zone->wait_table_hash_nr_entries); 4112 alloc_size = zone->wait_table_hash_nr_entries 4113 * sizeof(wait_queue_head_t); 4114 4115 if (!slab_is_available()) { 4116 zone->wait_table = (wait_queue_head_t *) 4117 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4118 } else { 4119 /* 4120 * This case means that a zone whose size was 0 gets new memory 4121 * via memory hot-add. 4122 * But it may be the case that a new node was hot-added. In 4123 * this case vmalloc() will not be able to use this new node's 4124 * memory - this wait_table must be initialized to use this new 4125 * node itself as well. 4126 * To use this new node's memory, further consideration will be 4127 * necessary. 4128 */ 4129 zone->wait_table = vmalloc(alloc_size); 4130 } 4131 if (!zone->wait_table) 4132 return -ENOMEM; 4133 4134 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4135 init_waitqueue_head(zone->wait_table + i); 4136 4137 return 0; 4138 } 4139 4140 static __meminit void zone_pcp_init(struct zone *zone) 4141 { 4142 /* 4143 * per cpu subsystem is not up at this point. The following code 4144 * relies on the ability of the linker to provide the 4145 * offset of a (static) per cpu variable into the per cpu area. 4146 */ 4147 zone->pageset = &boot_pageset; 4148 4149 if (zone->present_pages) 4150 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4151 zone->name, zone->present_pages, 4152 zone_batchsize(zone)); 4153 } 4154 4155 int __meminit init_currently_empty_zone(struct zone *zone, 4156 unsigned long zone_start_pfn, 4157 unsigned long size, 4158 enum memmap_context context) 4159 { 4160 struct pglist_data *pgdat = zone->zone_pgdat; 4161 int ret; 4162 ret = zone_wait_table_init(zone, size); 4163 if (ret) 4164 return ret; 4165 pgdat->nr_zones = zone_idx(zone) + 1; 4166 4167 zone->zone_start_pfn = zone_start_pfn; 4168 4169 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4170 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4171 pgdat->node_id, 4172 (unsigned long)zone_idx(zone), 4173 zone_start_pfn, (zone_start_pfn + size)); 4174 4175 zone_init_free_lists(zone); 4176 4177 return 0; 4178 } 4179 4180 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4181 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4182 /* 4183 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4184 * Architectures may implement their own version but if add_active_range() 4185 * was used and there are no special requirements, this is a convenient 4186 * alternative 4187 */ 4188 int __meminit __early_pfn_to_nid(unsigned long pfn) 4189 { 4190 unsigned long start_pfn, end_pfn; 4191 int i, nid; 4192 /* 4193 * NOTE: The following SMP-unsafe globals are only used early in boot 4194 * when the kernel is running single-threaded. 4195 */ 4196 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4197 static int __meminitdata last_nid; 4198 4199 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4200 return last_nid; 4201 4202 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4203 if (start_pfn <= pfn && pfn < end_pfn) { 4204 last_start_pfn = start_pfn; 4205 last_end_pfn = end_pfn; 4206 last_nid = nid; 4207 return nid; 4208 } 4209 /* This is a memory hole */ 4210 return -1; 4211 } 4212 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4213 4214 int __meminit early_pfn_to_nid(unsigned long pfn) 4215 { 4216 int nid; 4217 4218 nid = __early_pfn_to_nid(pfn); 4219 if (nid >= 0) 4220 return nid; 4221 /* just returns 0 */ 4222 return 0; 4223 } 4224 4225 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4226 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4227 { 4228 int nid; 4229 4230 nid = __early_pfn_to_nid(pfn); 4231 if (nid >= 0 && nid != node) 4232 return false; 4233 return true; 4234 } 4235 #endif 4236 4237 /** 4238 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4239 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4240 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4241 * 4242 * If an architecture guarantees that all ranges registered with 4243 * add_active_ranges() contain no holes and may be freed, this 4244 * this function may be used instead of calling free_bootmem() manually. 4245 */ 4246 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4247 { 4248 unsigned long start_pfn, end_pfn; 4249 int i, this_nid; 4250 4251 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4252 start_pfn = min(start_pfn, max_low_pfn); 4253 end_pfn = min(end_pfn, max_low_pfn); 4254 4255 if (start_pfn < end_pfn) 4256 free_bootmem_node(NODE_DATA(this_nid), 4257 PFN_PHYS(start_pfn), 4258 (end_pfn - start_pfn) << PAGE_SHIFT); 4259 } 4260 } 4261 4262 /** 4263 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4264 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4265 * 4266 * If an architecture guarantees that all ranges registered with 4267 * add_active_ranges() contain no holes and may be freed, this 4268 * function may be used instead of calling memory_present() manually. 4269 */ 4270 void __init sparse_memory_present_with_active_regions(int nid) 4271 { 4272 unsigned long start_pfn, end_pfn; 4273 int i, this_nid; 4274 4275 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4276 memory_present(this_nid, start_pfn, end_pfn); 4277 } 4278 4279 /** 4280 * get_pfn_range_for_nid - Return the start and end page frames for a node 4281 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4282 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4283 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4284 * 4285 * It returns the start and end page frame of a node based on information 4286 * provided by an arch calling add_active_range(). If called for a node 4287 * with no available memory, a warning is printed and the start and end 4288 * PFNs will be 0. 4289 */ 4290 void __meminit get_pfn_range_for_nid(unsigned int nid, 4291 unsigned long *start_pfn, unsigned long *end_pfn) 4292 { 4293 unsigned long this_start_pfn, this_end_pfn; 4294 int i; 4295 4296 *start_pfn = -1UL; 4297 *end_pfn = 0; 4298 4299 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4300 *start_pfn = min(*start_pfn, this_start_pfn); 4301 *end_pfn = max(*end_pfn, this_end_pfn); 4302 } 4303 4304 if (*start_pfn == -1UL) 4305 *start_pfn = 0; 4306 } 4307 4308 /* 4309 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4310 * assumption is made that zones within a node are ordered in monotonic 4311 * increasing memory addresses so that the "highest" populated zone is used 4312 */ 4313 static void __init find_usable_zone_for_movable(void) 4314 { 4315 int zone_index; 4316 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4317 if (zone_index == ZONE_MOVABLE) 4318 continue; 4319 4320 if (arch_zone_highest_possible_pfn[zone_index] > 4321 arch_zone_lowest_possible_pfn[zone_index]) 4322 break; 4323 } 4324 4325 VM_BUG_ON(zone_index == -1); 4326 movable_zone = zone_index; 4327 } 4328 4329 /* 4330 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4331 * because it is sized independent of architecture. Unlike the other zones, 4332 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4333 * in each node depending on the size of each node and how evenly kernelcore 4334 * is distributed. This helper function adjusts the zone ranges 4335 * provided by the architecture for a given node by using the end of the 4336 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4337 * zones within a node are in order of monotonic increases memory addresses 4338 */ 4339 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4340 unsigned long zone_type, 4341 unsigned long node_start_pfn, 4342 unsigned long node_end_pfn, 4343 unsigned long *zone_start_pfn, 4344 unsigned long *zone_end_pfn) 4345 { 4346 /* Only adjust if ZONE_MOVABLE is on this node */ 4347 if (zone_movable_pfn[nid]) { 4348 /* Size ZONE_MOVABLE */ 4349 if (zone_type == ZONE_MOVABLE) { 4350 *zone_start_pfn = zone_movable_pfn[nid]; 4351 *zone_end_pfn = min(node_end_pfn, 4352 arch_zone_highest_possible_pfn[movable_zone]); 4353 4354 /* Adjust for ZONE_MOVABLE starting within this range */ 4355 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4356 *zone_end_pfn > zone_movable_pfn[nid]) { 4357 *zone_end_pfn = zone_movable_pfn[nid]; 4358 4359 /* Check if this whole range is within ZONE_MOVABLE */ 4360 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4361 *zone_start_pfn = *zone_end_pfn; 4362 } 4363 } 4364 4365 /* 4366 * Return the number of pages a zone spans in a node, including holes 4367 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4368 */ 4369 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4370 unsigned long zone_type, 4371 unsigned long *ignored) 4372 { 4373 unsigned long node_start_pfn, node_end_pfn; 4374 unsigned long zone_start_pfn, zone_end_pfn; 4375 4376 /* Get the start and end of the node and zone */ 4377 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4378 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4379 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4380 adjust_zone_range_for_zone_movable(nid, zone_type, 4381 node_start_pfn, node_end_pfn, 4382 &zone_start_pfn, &zone_end_pfn); 4383 4384 /* Check that this node has pages within the zone's required range */ 4385 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4386 return 0; 4387 4388 /* Move the zone boundaries inside the node if necessary */ 4389 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4390 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4391 4392 /* Return the spanned pages */ 4393 return zone_end_pfn - zone_start_pfn; 4394 } 4395 4396 /* 4397 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4398 * then all holes in the requested range will be accounted for. 4399 */ 4400 unsigned long __meminit __absent_pages_in_range(int nid, 4401 unsigned long range_start_pfn, 4402 unsigned long range_end_pfn) 4403 { 4404 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4405 unsigned long start_pfn, end_pfn; 4406 int i; 4407 4408 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4409 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4410 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4411 nr_absent -= end_pfn - start_pfn; 4412 } 4413 return nr_absent; 4414 } 4415 4416 /** 4417 * absent_pages_in_range - Return number of page frames in holes within a range 4418 * @start_pfn: The start PFN to start searching for holes 4419 * @end_pfn: The end PFN to stop searching for holes 4420 * 4421 * It returns the number of pages frames in memory holes within a range. 4422 */ 4423 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4424 unsigned long end_pfn) 4425 { 4426 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4427 } 4428 4429 /* Return the number of page frames in holes in a zone on a node */ 4430 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4431 unsigned long zone_type, 4432 unsigned long *ignored) 4433 { 4434 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4435 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4436 unsigned long node_start_pfn, node_end_pfn; 4437 unsigned long zone_start_pfn, zone_end_pfn; 4438 4439 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4440 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4441 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4442 4443 adjust_zone_range_for_zone_movable(nid, zone_type, 4444 node_start_pfn, node_end_pfn, 4445 &zone_start_pfn, &zone_end_pfn); 4446 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4447 } 4448 4449 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4450 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4451 unsigned long zone_type, 4452 unsigned long *zones_size) 4453 { 4454 return zones_size[zone_type]; 4455 } 4456 4457 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4458 unsigned long zone_type, 4459 unsigned long *zholes_size) 4460 { 4461 if (!zholes_size) 4462 return 0; 4463 4464 return zholes_size[zone_type]; 4465 } 4466 4467 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4468 4469 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4470 unsigned long *zones_size, unsigned long *zholes_size) 4471 { 4472 unsigned long realtotalpages, totalpages = 0; 4473 enum zone_type i; 4474 4475 for (i = 0; i < MAX_NR_ZONES; i++) 4476 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4477 zones_size); 4478 pgdat->node_spanned_pages = totalpages; 4479 4480 realtotalpages = totalpages; 4481 for (i = 0; i < MAX_NR_ZONES; i++) 4482 realtotalpages -= 4483 zone_absent_pages_in_node(pgdat->node_id, i, 4484 zholes_size); 4485 pgdat->node_present_pages = realtotalpages; 4486 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4487 realtotalpages); 4488 } 4489 4490 #ifndef CONFIG_SPARSEMEM 4491 /* 4492 * Calculate the size of the zone->blockflags rounded to an unsigned long 4493 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4494 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4495 * round what is now in bits to nearest long in bits, then return it in 4496 * bytes. 4497 */ 4498 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4499 { 4500 unsigned long usemapsize; 4501 4502 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4503 usemapsize = roundup(zonesize, pageblock_nr_pages); 4504 usemapsize = usemapsize >> pageblock_order; 4505 usemapsize *= NR_PAGEBLOCK_BITS; 4506 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4507 4508 return usemapsize / 8; 4509 } 4510 4511 static void __init setup_usemap(struct pglist_data *pgdat, 4512 struct zone *zone, 4513 unsigned long zone_start_pfn, 4514 unsigned long zonesize) 4515 { 4516 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4517 zone->pageblock_flags = NULL; 4518 if (usemapsize) 4519 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4520 usemapsize); 4521 } 4522 #else 4523 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4524 unsigned long zone_start_pfn, unsigned long zonesize) {} 4525 #endif /* CONFIG_SPARSEMEM */ 4526 4527 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4528 4529 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4530 void __init set_pageblock_order(void) 4531 { 4532 unsigned int order; 4533 4534 /* Check that pageblock_nr_pages has not already been setup */ 4535 if (pageblock_order) 4536 return; 4537 4538 if (HPAGE_SHIFT > PAGE_SHIFT) 4539 order = HUGETLB_PAGE_ORDER; 4540 else 4541 order = MAX_ORDER - 1; 4542 4543 /* 4544 * Assume the largest contiguous order of interest is a huge page. 4545 * This value may be variable depending on boot parameters on IA64 and 4546 * powerpc. 4547 */ 4548 pageblock_order = order; 4549 } 4550 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4551 4552 /* 4553 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4554 * is unused as pageblock_order is set at compile-time. See 4555 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4556 * the kernel config 4557 */ 4558 void __init set_pageblock_order(void) 4559 { 4560 } 4561 4562 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4563 4564 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4565 unsigned long present_pages) 4566 { 4567 unsigned long pages = spanned_pages; 4568 4569 /* 4570 * Provide a more accurate estimation if there are holes within 4571 * the zone and SPARSEMEM is in use. If there are holes within the 4572 * zone, each populated memory region may cost us one or two extra 4573 * memmap pages due to alignment because memmap pages for each 4574 * populated regions may not naturally algined on page boundary. 4575 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4576 */ 4577 if (spanned_pages > present_pages + (present_pages >> 4) && 4578 IS_ENABLED(CONFIG_SPARSEMEM)) 4579 pages = present_pages; 4580 4581 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4582 } 4583 4584 /* 4585 * Set up the zone data structures: 4586 * - mark all pages reserved 4587 * - mark all memory queues empty 4588 * - clear the memory bitmaps 4589 * 4590 * NOTE: pgdat should get zeroed by caller. 4591 */ 4592 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4593 unsigned long *zones_size, unsigned long *zholes_size) 4594 { 4595 enum zone_type j; 4596 int nid = pgdat->node_id; 4597 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4598 int ret; 4599 4600 pgdat_resize_init(pgdat); 4601 #ifdef CONFIG_NUMA_BALANCING 4602 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4603 pgdat->numabalancing_migrate_nr_pages = 0; 4604 pgdat->numabalancing_migrate_next_window = jiffies; 4605 #endif 4606 init_waitqueue_head(&pgdat->kswapd_wait); 4607 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4608 pgdat_page_cgroup_init(pgdat); 4609 4610 for (j = 0; j < MAX_NR_ZONES; j++) { 4611 struct zone *zone = pgdat->node_zones + j; 4612 unsigned long size, realsize, freesize, memmap_pages; 4613 4614 size = zone_spanned_pages_in_node(nid, j, zones_size); 4615 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4616 zholes_size); 4617 4618 /* 4619 * Adjust freesize so that it accounts for how much memory 4620 * is used by this zone for memmap. This affects the watermark 4621 * and per-cpu initialisations 4622 */ 4623 memmap_pages = calc_memmap_size(size, realsize); 4624 if (freesize >= memmap_pages) { 4625 freesize -= memmap_pages; 4626 if (memmap_pages) 4627 printk(KERN_DEBUG 4628 " %s zone: %lu pages used for memmap\n", 4629 zone_names[j], memmap_pages); 4630 } else 4631 printk(KERN_WARNING 4632 " %s zone: %lu pages exceeds freesize %lu\n", 4633 zone_names[j], memmap_pages, freesize); 4634 4635 /* Account for reserved pages */ 4636 if (j == 0 && freesize > dma_reserve) { 4637 freesize -= dma_reserve; 4638 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4639 zone_names[0], dma_reserve); 4640 } 4641 4642 if (!is_highmem_idx(j)) 4643 nr_kernel_pages += freesize; 4644 /* Charge for highmem memmap if there are enough kernel pages */ 4645 else if (nr_kernel_pages > memmap_pages * 2) 4646 nr_kernel_pages -= memmap_pages; 4647 nr_all_pages += freesize; 4648 4649 zone->spanned_pages = size; 4650 zone->present_pages = realsize; 4651 /* 4652 * Set an approximate value for lowmem here, it will be adjusted 4653 * when the bootmem allocator frees pages into the buddy system. 4654 * And all highmem pages will be managed by the buddy system. 4655 */ 4656 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4657 #ifdef CONFIG_NUMA 4658 zone->node = nid; 4659 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4660 / 100; 4661 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4662 #endif 4663 zone->name = zone_names[j]; 4664 spin_lock_init(&zone->lock); 4665 spin_lock_init(&zone->lru_lock); 4666 zone_seqlock_init(zone); 4667 zone->zone_pgdat = pgdat; 4668 4669 zone_pcp_init(zone); 4670 lruvec_init(&zone->lruvec); 4671 if (!size) 4672 continue; 4673 4674 set_pageblock_order(); 4675 setup_usemap(pgdat, zone, zone_start_pfn, size); 4676 ret = init_currently_empty_zone(zone, zone_start_pfn, 4677 size, MEMMAP_EARLY); 4678 BUG_ON(ret); 4679 memmap_init(size, nid, j, zone_start_pfn); 4680 zone_start_pfn += size; 4681 } 4682 } 4683 4684 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4685 { 4686 /* Skip empty nodes */ 4687 if (!pgdat->node_spanned_pages) 4688 return; 4689 4690 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4691 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4692 if (!pgdat->node_mem_map) { 4693 unsigned long size, start, end; 4694 struct page *map; 4695 4696 /* 4697 * The zone's endpoints aren't required to be MAX_ORDER 4698 * aligned but the node_mem_map endpoints must be in order 4699 * for the buddy allocator to function correctly. 4700 */ 4701 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4702 end = pgdat_end_pfn(pgdat); 4703 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4704 size = (end - start) * sizeof(struct page); 4705 map = alloc_remap(pgdat->node_id, size); 4706 if (!map) 4707 map = alloc_bootmem_node_nopanic(pgdat, size); 4708 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4709 } 4710 #ifndef CONFIG_NEED_MULTIPLE_NODES 4711 /* 4712 * With no DISCONTIG, the global mem_map is just set as node 0's 4713 */ 4714 if (pgdat == NODE_DATA(0)) { 4715 mem_map = NODE_DATA(0)->node_mem_map; 4716 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4717 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4718 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4719 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4720 } 4721 #endif 4722 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4723 } 4724 4725 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4726 unsigned long node_start_pfn, unsigned long *zholes_size) 4727 { 4728 pg_data_t *pgdat = NODE_DATA(nid); 4729 4730 /* pg_data_t should be reset to zero when it's allocated */ 4731 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4732 4733 pgdat->node_id = nid; 4734 pgdat->node_start_pfn = node_start_pfn; 4735 init_zone_allows_reclaim(nid); 4736 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4737 4738 alloc_node_mem_map(pgdat); 4739 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4740 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4741 nid, (unsigned long)pgdat, 4742 (unsigned long)pgdat->node_mem_map); 4743 #endif 4744 4745 free_area_init_core(pgdat, zones_size, zholes_size); 4746 } 4747 4748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4749 4750 #if MAX_NUMNODES > 1 4751 /* 4752 * Figure out the number of possible node ids. 4753 */ 4754 void __init setup_nr_node_ids(void) 4755 { 4756 unsigned int node; 4757 unsigned int highest = 0; 4758 4759 for_each_node_mask(node, node_possible_map) 4760 highest = node; 4761 nr_node_ids = highest + 1; 4762 } 4763 #endif 4764 4765 /** 4766 * node_map_pfn_alignment - determine the maximum internode alignment 4767 * 4768 * This function should be called after node map is populated and sorted. 4769 * It calculates the maximum power of two alignment which can distinguish 4770 * all the nodes. 4771 * 4772 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4773 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4774 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4775 * shifted, 1GiB is enough and this function will indicate so. 4776 * 4777 * This is used to test whether pfn -> nid mapping of the chosen memory 4778 * model has fine enough granularity to avoid incorrect mapping for the 4779 * populated node map. 4780 * 4781 * Returns the determined alignment in pfn's. 0 if there is no alignment 4782 * requirement (single node). 4783 */ 4784 unsigned long __init node_map_pfn_alignment(void) 4785 { 4786 unsigned long accl_mask = 0, last_end = 0; 4787 unsigned long start, end, mask; 4788 int last_nid = -1; 4789 int i, nid; 4790 4791 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4792 if (!start || last_nid < 0 || last_nid == nid) { 4793 last_nid = nid; 4794 last_end = end; 4795 continue; 4796 } 4797 4798 /* 4799 * Start with a mask granular enough to pin-point to the 4800 * start pfn and tick off bits one-by-one until it becomes 4801 * too coarse to separate the current node from the last. 4802 */ 4803 mask = ~((1 << __ffs(start)) - 1); 4804 while (mask && last_end <= (start & (mask << 1))) 4805 mask <<= 1; 4806 4807 /* accumulate all internode masks */ 4808 accl_mask |= mask; 4809 } 4810 4811 /* convert mask to number of pages */ 4812 return ~accl_mask + 1; 4813 } 4814 4815 /* Find the lowest pfn for a node */ 4816 static unsigned long __init find_min_pfn_for_node(int nid) 4817 { 4818 unsigned long min_pfn = ULONG_MAX; 4819 unsigned long start_pfn; 4820 int i; 4821 4822 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4823 min_pfn = min(min_pfn, start_pfn); 4824 4825 if (min_pfn == ULONG_MAX) { 4826 printk(KERN_WARNING 4827 "Could not find start_pfn for node %d\n", nid); 4828 return 0; 4829 } 4830 4831 return min_pfn; 4832 } 4833 4834 /** 4835 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4836 * 4837 * It returns the minimum PFN based on information provided via 4838 * add_active_range(). 4839 */ 4840 unsigned long __init find_min_pfn_with_active_regions(void) 4841 { 4842 return find_min_pfn_for_node(MAX_NUMNODES); 4843 } 4844 4845 /* 4846 * early_calculate_totalpages() 4847 * Sum pages in active regions for movable zone. 4848 * Populate N_MEMORY for calculating usable_nodes. 4849 */ 4850 static unsigned long __init early_calculate_totalpages(void) 4851 { 4852 unsigned long totalpages = 0; 4853 unsigned long start_pfn, end_pfn; 4854 int i, nid; 4855 4856 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4857 unsigned long pages = end_pfn - start_pfn; 4858 4859 totalpages += pages; 4860 if (pages) 4861 node_set_state(nid, N_MEMORY); 4862 } 4863 return totalpages; 4864 } 4865 4866 /* 4867 * Find the PFN the Movable zone begins in each node. Kernel memory 4868 * is spread evenly between nodes as long as the nodes have enough 4869 * memory. When they don't, some nodes will have more kernelcore than 4870 * others 4871 */ 4872 static void __init find_zone_movable_pfns_for_nodes(void) 4873 { 4874 int i, nid; 4875 unsigned long usable_startpfn; 4876 unsigned long kernelcore_node, kernelcore_remaining; 4877 /* save the state before borrow the nodemask */ 4878 nodemask_t saved_node_state = node_states[N_MEMORY]; 4879 unsigned long totalpages = early_calculate_totalpages(); 4880 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4881 4882 /* 4883 * If movablecore was specified, calculate what size of 4884 * kernelcore that corresponds so that memory usable for 4885 * any allocation type is evenly spread. If both kernelcore 4886 * and movablecore are specified, then the value of kernelcore 4887 * will be used for required_kernelcore if it's greater than 4888 * what movablecore would have allowed. 4889 */ 4890 if (required_movablecore) { 4891 unsigned long corepages; 4892 4893 /* 4894 * Round-up so that ZONE_MOVABLE is at least as large as what 4895 * was requested by the user 4896 */ 4897 required_movablecore = 4898 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4899 corepages = totalpages - required_movablecore; 4900 4901 required_kernelcore = max(required_kernelcore, corepages); 4902 } 4903 4904 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4905 if (!required_kernelcore) 4906 goto out; 4907 4908 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4909 find_usable_zone_for_movable(); 4910 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4911 4912 restart: 4913 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4914 kernelcore_node = required_kernelcore / usable_nodes; 4915 for_each_node_state(nid, N_MEMORY) { 4916 unsigned long start_pfn, end_pfn; 4917 4918 /* 4919 * Recalculate kernelcore_node if the division per node 4920 * now exceeds what is necessary to satisfy the requested 4921 * amount of memory for the kernel 4922 */ 4923 if (required_kernelcore < kernelcore_node) 4924 kernelcore_node = required_kernelcore / usable_nodes; 4925 4926 /* 4927 * As the map is walked, we track how much memory is usable 4928 * by the kernel using kernelcore_remaining. When it is 4929 * 0, the rest of the node is usable by ZONE_MOVABLE 4930 */ 4931 kernelcore_remaining = kernelcore_node; 4932 4933 /* Go through each range of PFNs within this node */ 4934 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4935 unsigned long size_pages; 4936 4937 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4938 if (start_pfn >= end_pfn) 4939 continue; 4940 4941 /* Account for what is only usable for kernelcore */ 4942 if (start_pfn < usable_startpfn) { 4943 unsigned long kernel_pages; 4944 kernel_pages = min(end_pfn, usable_startpfn) 4945 - start_pfn; 4946 4947 kernelcore_remaining -= min(kernel_pages, 4948 kernelcore_remaining); 4949 required_kernelcore -= min(kernel_pages, 4950 required_kernelcore); 4951 4952 /* Continue if range is now fully accounted */ 4953 if (end_pfn <= usable_startpfn) { 4954 4955 /* 4956 * Push zone_movable_pfn to the end so 4957 * that if we have to rebalance 4958 * kernelcore across nodes, we will 4959 * not double account here 4960 */ 4961 zone_movable_pfn[nid] = end_pfn; 4962 continue; 4963 } 4964 start_pfn = usable_startpfn; 4965 } 4966 4967 /* 4968 * The usable PFN range for ZONE_MOVABLE is from 4969 * start_pfn->end_pfn. Calculate size_pages as the 4970 * number of pages used as kernelcore 4971 */ 4972 size_pages = end_pfn - start_pfn; 4973 if (size_pages > kernelcore_remaining) 4974 size_pages = kernelcore_remaining; 4975 zone_movable_pfn[nid] = start_pfn + size_pages; 4976 4977 /* 4978 * Some kernelcore has been met, update counts and 4979 * break if the kernelcore for this node has been 4980 * satisified 4981 */ 4982 required_kernelcore -= min(required_kernelcore, 4983 size_pages); 4984 kernelcore_remaining -= size_pages; 4985 if (!kernelcore_remaining) 4986 break; 4987 } 4988 } 4989 4990 /* 4991 * If there is still required_kernelcore, we do another pass with one 4992 * less node in the count. This will push zone_movable_pfn[nid] further 4993 * along on the nodes that still have memory until kernelcore is 4994 * satisified 4995 */ 4996 usable_nodes--; 4997 if (usable_nodes && required_kernelcore > usable_nodes) 4998 goto restart; 4999 5000 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5001 for (nid = 0; nid < MAX_NUMNODES; nid++) 5002 zone_movable_pfn[nid] = 5003 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5004 5005 out: 5006 /* restore the node_state */ 5007 node_states[N_MEMORY] = saved_node_state; 5008 } 5009 5010 /* Any regular or high memory on that node ? */ 5011 static void check_for_memory(pg_data_t *pgdat, int nid) 5012 { 5013 enum zone_type zone_type; 5014 5015 if (N_MEMORY == N_NORMAL_MEMORY) 5016 return; 5017 5018 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5019 struct zone *zone = &pgdat->node_zones[zone_type]; 5020 if (zone->present_pages) { 5021 node_set_state(nid, N_HIGH_MEMORY); 5022 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5023 zone_type <= ZONE_NORMAL) 5024 node_set_state(nid, N_NORMAL_MEMORY); 5025 break; 5026 } 5027 } 5028 } 5029 5030 /** 5031 * free_area_init_nodes - Initialise all pg_data_t and zone data 5032 * @max_zone_pfn: an array of max PFNs for each zone 5033 * 5034 * This will call free_area_init_node() for each active node in the system. 5035 * Using the page ranges provided by add_active_range(), the size of each 5036 * zone in each node and their holes is calculated. If the maximum PFN 5037 * between two adjacent zones match, it is assumed that the zone is empty. 5038 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5039 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5040 * starts where the previous one ended. For example, ZONE_DMA32 starts 5041 * at arch_max_dma_pfn. 5042 */ 5043 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5044 { 5045 unsigned long start_pfn, end_pfn; 5046 int i, nid; 5047 5048 /* Record where the zone boundaries are */ 5049 memset(arch_zone_lowest_possible_pfn, 0, 5050 sizeof(arch_zone_lowest_possible_pfn)); 5051 memset(arch_zone_highest_possible_pfn, 0, 5052 sizeof(arch_zone_highest_possible_pfn)); 5053 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5054 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5055 for (i = 1; i < MAX_NR_ZONES; i++) { 5056 if (i == ZONE_MOVABLE) 5057 continue; 5058 arch_zone_lowest_possible_pfn[i] = 5059 arch_zone_highest_possible_pfn[i-1]; 5060 arch_zone_highest_possible_pfn[i] = 5061 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5062 } 5063 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5064 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5065 5066 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5067 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5068 find_zone_movable_pfns_for_nodes(); 5069 5070 /* Print out the zone ranges */ 5071 printk("Zone ranges:\n"); 5072 for (i = 0; i < MAX_NR_ZONES; i++) { 5073 if (i == ZONE_MOVABLE) 5074 continue; 5075 printk(KERN_CONT " %-8s ", zone_names[i]); 5076 if (arch_zone_lowest_possible_pfn[i] == 5077 arch_zone_highest_possible_pfn[i]) 5078 printk(KERN_CONT "empty\n"); 5079 else 5080 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5081 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5082 (arch_zone_highest_possible_pfn[i] 5083 << PAGE_SHIFT) - 1); 5084 } 5085 5086 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5087 printk("Movable zone start for each node\n"); 5088 for (i = 0; i < MAX_NUMNODES; i++) { 5089 if (zone_movable_pfn[i]) 5090 printk(" Node %d: %#010lx\n", i, 5091 zone_movable_pfn[i] << PAGE_SHIFT); 5092 } 5093 5094 /* Print out the early node map */ 5095 printk("Early memory node ranges\n"); 5096 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5097 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5098 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5099 5100 /* Initialise every node */ 5101 mminit_verify_pageflags_layout(); 5102 setup_nr_node_ids(); 5103 for_each_online_node(nid) { 5104 pg_data_t *pgdat = NODE_DATA(nid); 5105 free_area_init_node(nid, NULL, 5106 find_min_pfn_for_node(nid), NULL); 5107 5108 /* Any memory on that node */ 5109 if (pgdat->node_present_pages) 5110 node_set_state(nid, N_MEMORY); 5111 check_for_memory(pgdat, nid); 5112 } 5113 } 5114 5115 static int __init cmdline_parse_core(char *p, unsigned long *core) 5116 { 5117 unsigned long long coremem; 5118 if (!p) 5119 return -EINVAL; 5120 5121 coremem = memparse(p, &p); 5122 *core = coremem >> PAGE_SHIFT; 5123 5124 /* Paranoid check that UL is enough for the coremem value */ 5125 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5126 5127 return 0; 5128 } 5129 5130 /* 5131 * kernelcore=size sets the amount of memory for use for allocations that 5132 * cannot be reclaimed or migrated. 5133 */ 5134 static int __init cmdline_parse_kernelcore(char *p) 5135 { 5136 return cmdline_parse_core(p, &required_kernelcore); 5137 } 5138 5139 /* 5140 * movablecore=size sets the amount of memory for use for allocations that 5141 * can be reclaimed or migrated. 5142 */ 5143 static int __init cmdline_parse_movablecore(char *p) 5144 { 5145 return cmdline_parse_core(p, &required_movablecore); 5146 } 5147 5148 early_param("kernelcore", cmdline_parse_kernelcore); 5149 early_param("movablecore", cmdline_parse_movablecore); 5150 5151 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5152 5153 unsigned long free_reserved_area(unsigned long start, unsigned long end, 5154 int poison, char *s) 5155 { 5156 unsigned long pages, pos; 5157 5158 pos = start = PAGE_ALIGN(start); 5159 end &= PAGE_MASK; 5160 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) { 5161 if (poison) 5162 memset((void *)pos, poison, PAGE_SIZE); 5163 free_reserved_page(virt_to_page((void *)pos)); 5164 } 5165 5166 if (pages && s) 5167 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n", 5168 s, pages << (PAGE_SHIFT - 10), start, end); 5169 5170 return pages; 5171 } 5172 5173 #ifdef CONFIG_HIGHMEM 5174 void free_highmem_page(struct page *page) 5175 { 5176 __free_reserved_page(page); 5177 totalram_pages++; 5178 totalhigh_pages++; 5179 } 5180 #endif 5181 5182 /** 5183 * set_dma_reserve - set the specified number of pages reserved in the first zone 5184 * @new_dma_reserve: The number of pages to mark reserved 5185 * 5186 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5187 * In the DMA zone, a significant percentage may be consumed by kernel image 5188 * and other unfreeable allocations which can skew the watermarks badly. This 5189 * function may optionally be used to account for unfreeable pages in the 5190 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5191 * smaller per-cpu batchsize. 5192 */ 5193 void __init set_dma_reserve(unsigned long new_dma_reserve) 5194 { 5195 dma_reserve = new_dma_reserve; 5196 } 5197 5198 void __init free_area_init(unsigned long *zones_size) 5199 { 5200 free_area_init_node(0, zones_size, 5201 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5202 } 5203 5204 static int page_alloc_cpu_notify(struct notifier_block *self, 5205 unsigned long action, void *hcpu) 5206 { 5207 int cpu = (unsigned long)hcpu; 5208 5209 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5210 lru_add_drain_cpu(cpu); 5211 drain_pages(cpu); 5212 5213 /* 5214 * Spill the event counters of the dead processor 5215 * into the current processors event counters. 5216 * This artificially elevates the count of the current 5217 * processor. 5218 */ 5219 vm_events_fold_cpu(cpu); 5220 5221 /* 5222 * Zero the differential counters of the dead processor 5223 * so that the vm statistics are consistent. 5224 * 5225 * This is only okay since the processor is dead and cannot 5226 * race with what we are doing. 5227 */ 5228 refresh_cpu_vm_stats(cpu); 5229 } 5230 return NOTIFY_OK; 5231 } 5232 5233 void __init page_alloc_init(void) 5234 { 5235 hotcpu_notifier(page_alloc_cpu_notify, 0); 5236 } 5237 5238 /* 5239 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5240 * or min_free_kbytes changes. 5241 */ 5242 static void calculate_totalreserve_pages(void) 5243 { 5244 struct pglist_data *pgdat; 5245 unsigned long reserve_pages = 0; 5246 enum zone_type i, j; 5247 5248 for_each_online_pgdat(pgdat) { 5249 for (i = 0; i < MAX_NR_ZONES; i++) { 5250 struct zone *zone = pgdat->node_zones + i; 5251 unsigned long max = 0; 5252 5253 /* Find valid and maximum lowmem_reserve in the zone */ 5254 for (j = i; j < MAX_NR_ZONES; j++) { 5255 if (zone->lowmem_reserve[j] > max) 5256 max = zone->lowmem_reserve[j]; 5257 } 5258 5259 /* we treat the high watermark as reserved pages. */ 5260 max += high_wmark_pages(zone); 5261 5262 if (max > zone->managed_pages) 5263 max = zone->managed_pages; 5264 reserve_pages += max; 5265 /* 5266 * Lowmem reserves are not available to 5267 * GFP_HIGHUSER page cache allocations and 5268 * kswapd tries to balance zones to their high 5269 * watermark. As a result, neither should be 5270 * regarded as dirtyable memory, to prevent a 5271 * situation where reclaim has to clean pages 5272 * in order to balance the zones. 5273 */ 5274 zone->dirty_balance_reserve = max; 5275 } 5276 } 5277 dirty_balance_reserve = reserve_pages; 5278 totalreserve_pages = reserve_pages; 5279 } 5280 5281 /* 5282 * setup_per_zone_lowmem_reserve - called whenever 5283 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5284 * has a correct pages reserved value, so an adequate number of 5285 * pages are left in the zone after a successful __alloc_pages(). 5286 */ 5287 static void setup_per_zone_lowmem_reserve(void) 5288 { 5289 struct pglist_data *pgdat; 5290 enum zone_type j, idx; 5291 5292 for_each_online_pgdat(pgdat) { 5293 for (j = 0; j < MAX_NR_ZONES; j++) { 5294 struct zone *zone = pgdat->node_zones + j; 5295 unsigned long managed_pages = zone->managed_pages; 5296 5297 zone->lowmem_reserve[j] = 0; 5298 5299 idx = j; 5300 while (idx) { 5301 struct zone *lower_zone; 5302 5303 idx--; 5304 5305 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5306 sysctl_lowmem_reserve_ratio[idx] = 1; 5307 5308 lower_zone = pgdat->node_zones + idx; 5309 lower_zone->lowmem_reserve[j] = managed_pages / 5310 sysctl_lowmem_reserve_ratio[idx]; 5311 managed_pages += lower_zone->managed_pages; 5312 } 5313 } 5314 } 5315 5316 /* update totalreserve_pages */ 5317 calculate_totalreserve_pages(); 5318 } 5319 5320 static void __setup_per_zone_wmarks(void) 5321 { 5322 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5323 unsigned long lowmem_pages = 0; 5324 struct zone *zone; 5325 unsigned long flags; 5326 5327 /* Calculate total number of !ZONE_HIGHMEM pages */ 5328 for_each_zone(zone) { 5329 if (!is_highmem(zone)) 5330 lowmem_pages += zone->managed_pages; 5331 } 5332 5333 for_each_zone(zone) { 5334 u64 tmp; 5335 5336 spin_lock_irqsave(&zone->lock, flags); 5337 tmp = (u64)pages_min * zone->managed_pages; 5338 do_div(tmp, lowmem_pages); 5339 if (is_highmem(zone)) { 5340 /* 5341 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5342 * need highmem pages, so cap pages_min to a small 5343 * value here. 5344 * 5345 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5346 * deltas controls asynch page reclaim, and so should 5347 * not be capped for highmem. 5348 */ 5349 unsigned long min_pages; 5350 5351 min_pages = zone->managed_pages / 1024; 5352 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5353 zone->watermark[WMARK_MIN] = min_pages; 5354 } else { 5355 /* 5356 * If it's a lowmem zone, reserve a number of pages 5357 * proportionate to the zone's size. 5358 */ 5359 zone->watermark[WMARK_MIN] = tmp; 5360 } 5361 5362 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5363 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5364 5365 setup_zone_migrate_reserve(zone); 5366 spin_unlock_irqrestore(&zone->lock, flags); 5367 } 5368 5369 /* update totalreserve_pages */ 5370 calculate_totalreserve_pages(); 5371 } 5372 5373 /** 5374 * setup_per_zone_wmarks - called when min_free_kbytes changes 5375 * or when memory is hot-{added|removed} 5376 * 5377 * Ensures that the watermark[min,low,high] values for each zone are set 5378 * correctly with respect to min_free_kbytes. 5379 */ 5380 void setup_per_zone_wmarks(void) 5381 { 5382 mutex_lock(&zonelists_mutex); 5383 __setup_per_zone_wmarks(); 5384 mutex_unlock(&zonelists_mutex); 5385 } 5386 5387 /* 5388 * The inactive anon list should be small enough that the VM never has to 5389 * do too much work, but large enough that each inactive page has a chance 5390 * to be referenced again before it is swapped out. 5391 * 5392 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5393 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5394 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5395 * the anonymous pages are kept on the inactive list. 5396 * 5397 * total target max 5398 * memory ratio inactive anon 5399 * ------------------------------------- 5400 * 10MB 1 5MB 5401 * 100MB 1 50MB 5402 * 1GB 3 250MB 5403 * 10GB 10 0.9GB 5404 * 100GB 31 3GB 5405 * 1TB 101 10GB 5406 * 10TB 320 32GB 5407 */ 5408 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5409 { 5410 unsigned int gb, ratio; 5411 5412 /* Zone size in gigabytes */ 5413 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5414 if (gb) 5415 ratio = int_sqrt(10 * gb); 5416 else 5417 ratio = 1; 5418 5419 zone->inactive_ratio = ratio; 5420 } 5421 5422 static void __meminit setup_per_zone_inactive_ratio(void) 5423 { 5424 struct zone *zone; 5425 5426 for_each_zone(zone) 5427 calculate_zone_inactive_ratio(zone); 5428 } 5429 5430 /* 5431 * Initialise min_free_kbytes. 5432 * 5433 * For small machines we want it small (128k min). For large machines 5434 * we want it large (64MB max). But it is not linear, because network 5435 * bandwidth does not increase linearly with machine size. We use 5436 * 5437 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5438 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5439 * 5440 * which yields 5441 * 5442 * 16MB: 512k 5443 * 32MB: 724k 5444 * 64MB: 1024k 5445 * 128MB: 1448k 5446 * 256MB: 2048k 5447 * 512MB: 2896k 5448 * 1024MB: 4096k 5449 * 2048MB: 5792k 5450 * 4096MB: 8192k 5451 * 8192MB: 11584k 5452 * 16384MB: 16384k 5453 */ 5454 int __meminit init_per_zone_wmark_min(void) 5455 { 5456 unsigned long lowmem_kbytes; 5457 5458 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5459 5460 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5461 if (min_free_kbytes < 128) 5462 min_free_kbytes = 128; 5463 if (min_free_kbytes > 65536) 5464 min_free_kbytes = 65536; 5465 setup_per_zone_wmarks(); 5466 refresh_zone_stat_thresholds(); 5467 setup_per_zone_lowmem_reserve(); 5468 setup_per_zone_inactive_ratio(); 5469 return 0; 5470 } 5471 module_init(init_per_zone_wmark_min) 5472 5473 /* 5474 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5475 * that we can call two helper functions whenever min_free_kbytes 5476 * changes. 5477 */ 5478 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5479 void __user *buffer, size_t *length, loff_t *ppos) 5480 { 5481 proc_dointvec(table, write, buffer, length, ppos); 5482 if (write) 5483 setup_per_zone_wmarks(); 5484 return 0; 5485 } 5486 5487 #ifdef CONFIG_NUMA 5488 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5489 void __user *buffer, size_t *length, loff_t *ppos) 5490 { 5491 struct zone *zone; 5492 int rc; 5493 5494 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5495 if (rc) 5496 return rc; 5497 5498 for_each_zone(zone) 5499 zone->min_unmapped_pages = (zone->managed_pages * 5500 sysctl_min_unmapped_ratio) / 100; 5501 return 0; 5502 } 5503 5504 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5505 void __user *buffer, size_t *length, loff_t *ppos) 5506 { 5507 struct zone *zone; 5508 int rc; 5509 5510 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5511 if (rc) 5512 return rc; 5513 5514 for_each_zone(zone) 5515 zone->min_slab_pages = (zone->managed_pages * 5516 sysctl_min_slab_ratio) / 100; 5517 return 0; 5518 } 5519 #endif 5520 5521 /* 5522 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5523 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5524 * whenever sysctl_lowmem_reserve_ratio changes. 5525 * 5526 * The reserve ratio obviously has absolutely no relation with the 5527 * minimum watermarks. The lowmem reserve ratio can only make sense 5528 * if in function of the boot time zone sizes. 5529 */ 5530 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5531 void __user *buffer, size_t *length, loff_t *ppos) 5532 { 5533 proc_dointvec_minmax(table, write, buffer, length, ppos); 5534 setup_per_zone_lowmem_reserve(); 5535 return 0; 5536 } 5537 5538 /* 5539 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5540 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5541 * can have before it gets flushed back to buddy allocator. 5542 */ 5543 5544 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5545 void __user *buffer, size_t *length, loff_t *ppos) 5546 { 5547 struct zone *zone; 5548 unsigned int cpu; 5549 int ret; 5550 5551 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5552 if (!write || (ret < 0)) 5553 return ret; 5554 for_each_populated_zone(zone) { 5555 for_each_possible_cpu(cpu) { 5556 unsigned long high; 5557 high = zone->managed_pages / percpu_pagelist_fraction; 5558 setup_pagelist_highmark( 5559 per_cpu_ptr(zone->pageset, cpu), high); 5560 } 5561 } 5562 return 0; 5563 } 5564 5565 int hashdist = HASHDIST_DEFAULT; 5566 5567 #ifdef CONFIG_NUMA 5568 static int __init set_hashdist(char *str) 5569 { 5570 if (!str) 5571 return 0; 5572 hashdist = simple_strtoul(str, &str, 0); 5573 return 1; 5574 } 5575 __setup("hashdist=", set_hashdist); 5576 #endif 5577 5578 /* 5579 * allocate a large system hash table from bootmem 5580 * - it is assumed that the hash table must contain an exact power-of-2 5581 * quantity of entries 5582 * - limit is the number of hash buckets, not the total allocation size 5583 */ 5584 void *__init alloc_large_system_hash(const char *tablename, 5585 unsigned long bucketsize, 5586 unsigned long numentries, 5587 int scale, 5588 int flags, 5589 unsigned int *_hash_shift, 5590 unsigned int *_hash_mask, 5591 unsigned long low_limit, 5592 unsigned long high_limit) 5593 { 5594 unsigned long long max = high_limit; 5595 unsigned long log2qty, size; 5596 void *table = NULL; 5597 5598 /* allow the kernel cmdline to have a say */ 5599 if (!numentries) { 5600 /* round applicable memory size up to nearest megabyte */ 5601 numentries = nr_kernel_pages; 5602 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5603 numentries >>= 20 - PAGE_SHIFT; 5604 numentries <<= 20 - PAGE_SHIFT; 5605 5606 /* limit to 1 bucket per 2^scale bytes of low memory */ 5607 if (scale > PAGE_SHIFT) 5608 numentries >>= (scale - PAGE_SHIFT); 5609 else 5610 numentries <<= (PAGE_SHIFT - scale); 5611 5612 /* Make sure we've got at least a 0-order allocation.. */ 5613 if (unlikely(flags & HASH_SMALL)) { 5614 /* Makes no sense without HASH_EARLY */ 5615 WARN_ON(!(flags & HASH_EARLY)); 5616 if (!(numentries >> *_hash_shift)) { 5617 numentries = 1UL << *_hash_shift; 5618 BUG_ON(!numentries); 5619 } 5620 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5621 numentries = PAGE_SIZE / bucketsize; 5622 } 5623 numentries = roundup_pow_of_two(numentries); 5624 5625 /* limit allocation size to 1/16 total memory by default */ 5626 if (max == 0) { 5627 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5628 do_div(max, bucketsize); 5629 } 5630 max = min(max, 0x80000000ULL); 5631 5632 if (numentries < low_limit) 5633 numentries = low_limit; 5634 if (numentries > max) 5635 numentries = max; 5636 5637 log2qty = ilog2(numentries); 5638 5639 do { 5640 size = bucketsize << log2qty; 5641 if (flags & HASH_EARLY) 5642 table = alloc_bootmem_nopanic(size); 5643 else if (hashdist) 5644 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5645 else { 5646 /* 5647 * If bucketsize is not a power-of-two, we may free 5648 * some pages at the end of hash table which 5649 * alloc_pages_exact() automatically does 5650 */ 5651 if (get_order(size) < MAX_ORDER) { 5652 table = alloc_pages_exact(size, GFP_ATOMIC); 5653 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5654 } 5655 } 5656 } while (!table && size > PAGE_SIZE && --log2qty); 5657 5658 if (!table) 5659 panic("Failed to allocate %s hash table\n", tablename); 5660 5661 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5662 tablename, 5663 (1UL << log2qty), 5664 ilog2(size) - PAGE_SHIFT, 5665 size); 5666 5667 if (_hash_shift) 5668 *_hash_shift = log2qty; 5669 if (_hash_mask) 5670 *_hash_mask = (1 << log2qty) - 1; 5671 5672 return table; 5673 } 5674 5675 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5676 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5677 unsigned long pfn) 5678 { 5679 #ifdef CONFIG_SPARSEMEM 5680 return __pfn_to_section(pfn)->pageblock_flags; 5681 #else 5682 return zone->pageblock_flags; 5683 #endif /* CONFIG_SPARSEMEM */ 5684 } 5685 5686 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5687 { 5688 #ifdef CONFIG_SPARSEMEM 5689 pfn &= (PAGES_PER_SECTION-1); 5690 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5691 #else 5692 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5693 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5694 #endif /* CONFIG_SPARSEMEM */ 5695 } 5696 5697 /** 5698 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5699 * @page: The page within the block of interest 5700 * @start_bitidx: The first bit of interest to retrieve 5701 * @end_bitidx: The last bit of interest 5702 * returns pageblock_bits flags 5703 */ 5704 unsigned long get_pageblock_flags_group(struct page *page, 5705 int start_bitidx, int end_bitidx) 5706 { 5707 struct zone *zone; 5708 unsigned long *bitmap; 5709 unsigned long pfn, bitidx; 5710 unsigned long flags = 0; 5711 unsigned long value = 1; 5712 5713 zone = page_zone(page); 5714 pfn = page_to_pfn(page); 5715 bitmap = get_pageblock_bitmap(zone, pfn); 5716 bitidx = pfn_to_bitidx(zone, pfn); 5717 5718 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5719 if (test_bit(bitidx + start_bitidx, bitmap)) 5720 flags |= value; 5721 5722 return flags; 5723 } 5724 5725 /** 5726 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5727 * @page: The page within the block of interest 5728 * @start_bitidx: The first bit of interest 5729 * @end_bitidx: The last bit of interest 5730 * @flags: The flags to set 5731 */ 5732 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5733 int start_bitidx, int end_bitidx) 5734 { 5735 struct zone *zone; 5736 unsigned long *bitmap; 5737 unsigned long pfn, bitidx; 5738 unsigned long value = 1; 5739 5740 zone = page_zone(page); 5741 pfn = page_to_pfn(page); 5742 bitmap = get_pageblock_bitmap(zone, pfn); 5743 bitidx = pfn_to_bitidx(zone, pfn); 5744 VM_BUG_ON(!zone_spans_pfn(zone, pfn)); 5745 5746 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5747 if (flags & value) 5748 __set_bit(bitidx + start_bitidx, bitmap); 5749 else 5750 __clear_bit(bitidx + start_bitidx, bitmap); 5751 } 5752 5753 /* 5754 * This function checks whether pageblock includes unmovable pages or not. 5755 * If @count is not zero, it is okay to include less @count unmovable pages 5756 * 5757 * PageLRU check wihtout isolation or lru_lock could race so that 5758 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5759 * expect this function should be exact. 5760 */ 5761 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5762 bool skip_hwpoisoned_pages) 5763 { 5764 unsigned long pfn, iter, found; 5765 int mt; 5766 5767 /* 5768 * For avoiding noise data, lru_add_drain_all() should be called 5769 * If ZONE_MOVABLE, the zone never contains unmovable pages 5770 */ 5771 if (zone_idx(zone) == ZONE_MOVABLE) 5772 return false; 5773 mt = get_pageblock_migratetype(page); 5774 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5775 return false; 5776 5777 pfn = page_to_pfn(page); 5778 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5779 unsigned long check = pfn + iter; 5780 5781 if (!pfn_valid_within(check)) 5782 continue; 5783 5784 page = pfn_to_page(check); 5785 /* 5786 * We can't use page_count without pin a page 5787 * because another CPU can free compound page. 5788 * This check already skips compound tails of THP 5789 * because their page->_count is zero at all time. 5790 */ 5791 if (!atomic_read(&page->_count)) { 5792 if (PageBuddy(page)) 5793 iter += (1 << page_order(page)) - 1; 5794 continue; 5795 } 5796 5797 /* 5798 * The HWPoisoned page may be not in buddy system, and 5799 * page_count() is not 0. 5800 */ 5801 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5802 continue; 5803 5804 if (!PageLRU(page)) 5805 found++; 5806 /* 5807 * If there are RECLAIMABLE pages, we need to check it. 5808 * But now, memory offline itself doesn't call shrink_slab() 5809 * and it still to be fixed. 5810 */ 5811 /* 5812 * If the page is not RAM, page_count()should be 0. 5813 * we don't need more check. This is an _used_ not-movable page. 5814 * 5815 * The problematic thing here is PG_reserved pages. PG_reserved 5816 * is set to both of a memory hole page and a _used_ kernel 5817 * page at boot. 5818 */ 5819 if (found > count) 5820 return true; 5821 } 5822 return false; 5823 } 5824 5825 bool is_pageblock_removable_nolock(struct page *page) 5826 { 5827 struct zone *zone; 5828 unsigned long pfn; 5829 5830 /* 5831 * We have to be careful here because we are iterating over memory 5832 * sections which are not zone aware so we might end up outside of 5833 * the zone but still within the section. 5834 * We have to take care about the node as well. If the node is offline 5835 * its NODE_DATA will be NULL - see page_zone. 5836 */ 5837 if (!node_online(page_to_nid(page))) 5838 return false; 5839 5840 zone = page_zone(page); 5841 pfn = page_to_pfn(page); 5842 if (!zone_spans_pfn(zone, pfn)) 5843 return false; 5844 5845 return !has_unmovable_pages(zone, page, 0, true); 5846 } 5847 5848 #ifdef CONFIG_CMA 5849 5850 static unsigned long pfn_max_align_down(unsigned long pfn) 5851 { 5852 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5853 pageblock_nr_pages) - 1); 5854 } 5855 5856 static unsigned long pfn_max_align_up(unsigned long pfn) 5857 { 5858 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5859 pageblock_nr_pages)); 5860 } 5861 5862 /* [start, end) must belong to a single zone. */ 5863 static int __alloc_contig_migrate_range(struct compact_control *cc, 5864 unsigned long start, unsigned long end) 5865 { 5866 /* This function is based on compact_zone() from compaction.c. */ 5867 unsigned long nr_reclaimed; 5868 unsigned long pfn = start; 5869 unsigned int tries = 0; 5870 int ret = 0; 5871 5872 migrate_prep(); 5873 5874 while (pfn < end || !list_empty(&cc->migratepages)) { 5875 if (fatal_signal_pending(current)) { 5876 ret = -EINTR; 5877 break; 5878 } 5879 5880 if (list_empty(&cc->migratepages)) { 5881 cc->nr_migratepages = 0; 5882 pfn = isolate_migratepages_range(cc->zone, cc, 5883 pfn, end, true); 5884 if (!pfn) { 5885 ret = -EINTR; 5886 break; 5887 } 5888 tries = 0; 5889 } else if (++tries == 5) { 5890 ret = ret < 0 ? ret : -EBUSY; 5891 break; 5892 } 5893 5894 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5895 &cc->migratepages); 5896 cc->nr_migratepages -= nr_reclaimed; 5897 5898 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 5899 0, MIGRATE_SYNC, MR_CMA); 5900 } 5901 if (ret < 0) { 5902 putback_movable_pages(&cc->migratepages); 5903 return ret; 5904 } 5905 return 0; 5906 } 5907 5908 /** 5909 * alloc_contig_range() -- tries to allocate given range of pages 5910 * @start: start PFN to allocate 5911 * @end: one-past-the-last PFN to allocate 5912 * @migratetype: migratetype of the underlaying pageblocks (either 5913 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5914 * in range must have the same migratetype and it must 5915 * be either of the two. 5916 * 5917 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5918 * aligned, however it's the caller's responsibility to guarantee that 5919 * we are the only thread that changes migrate type of pageblocks the 5920 * pages fall in. 5921 * 5922 * The PFN range must belong to a single zone. 5923 * 5924 * Returns zero on success or negative error code. On success all 5925 * pages which PFN is in [start, end) are allocated for the caller and 5926 * need to be freed with free_contig_range(). 5927 */ 5928 int alloc_contig_range(unsigned long start, unsigned long end, 5929 unsigned migratetype) 5930 { 5931 unsigned long outer_start, outer_end; 5932 int ret = 0, order; 5933 5934 struct compact_control cc = { 5935 .nr_migratepages = 0, 5936 .order = -1, 5937 .zone = page_zone(pfn_to_page(start)), 5938 .sync = true, 5939 .ignore_skip_hint = true, 5940 }; 5941 INIT_LIST_HEAD(&cc.migratepages); 5942 5943 /* 5944 * What we do here is we mark all pageblocks in range as 5945 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5946 * have different sizes, and due to the way page allocator 5947 * work, we align the range to biggest of the two pages so 5948 * that page allocator won't try to merge buddies from 5949 * different pageblocks and change MIGRATE_ISOLATE to some 5950 * other migration type. 5951 * 5952 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5953 * migrate the pages from an unaligned range (ie. pages that 5954 * we are interested in). This will put all the pages in 5955 * range back to page allocator as MIGRATE_ISOLATE. 5956 * 5957 * When this is done, we take the pages in range from page 5958 * allocator removing them from the buddy system. This way 5959 * page allocator will never consider using them. 5960 * 5961 * This lets us mark the pageblocks back as 5962 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5963 * aligned range but not in the unaligned, original range are 5964 * put back to page allocator so that buddy can use them. 5965 */ 5966 5967 ret = start_isolate_page_range(pfn_max_align_down(start), 5968 pfn_max_align_up(end), migratetype, 5969 false); 5970 if (ret) 5971 return ret; 5972 5973 ret = __alloc_contig_migrate_range(&cc, start, end); 5974 if (ret) 5975 goto done; 5976 5977 /* 5978 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5979 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5980 * more, all pages in [start, end) are free in page allocator. 5981 * What we are going to do is to allocate all pages from 5982 * [start, end) (that is remove them from page allocator). 5983 * 5984 * The only problem is that pages at the beginning and at the 5985 * end of interesting range may be not aligned with pages that 5986 * page allocator holds, ie. they can be part of higher order 5987 * pages. Because of this, we reserve the bigger range and 5988 * once this is done free the pages we are not interested in. 5989 * 5990 * We don't have to hold zone->lock here because the pages are 5991 * isolated thus they won't get removed from buddy. 5992 */ 5993 5994 lru_add_drain_all(); 5995 drain_all_pages(); 5996 5997 order = 0; 5998 outer_start = start; 5999 while (!PageBuddy(pfn_to_page(outer_start))) { 6000 if (++order >= MAX_ORDER) { 6001 ret = -EBUSY; 6002 goto done; 6003 } 6004 outer_start &= ~0UL << order; 6005 } 6006 6007 /* Make sure the range is really isolated. */ 6008 if (test_pages_isolated(outer_start, end, false)) { 6009 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6010 outer_start, end); 6011 ret = -EBUSY; 6012 goto done; 6013 } 6014 6015 6016 /* Grab isolated pages from freelists. */ 6017 outer_end = isolate_freepages_range(&cc, outer_start, end); 6018 if (!outer_end) { 6019 ret = -EBUSY; 6020 goto done; 6021 } 6022 6023 /* Free head and tail (if any) */ 6024 if (start != outer_start) 6025 free_contig_range(outer_start, start - outer_start); 6026 if (end != outer_end) 6027 free_contig_range(end, outer_end - end); 6028 6029 done: 6030 undo_isolate_page_range(pfn_max_align_down(start), 6031 pfn_max_align_up(end), migratetype); 6032 return ret; 6033 } 6034 6035 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6036 { 6037 unsigned int count = 0; 6038 6039 for (; nr_pages--; pfn++) { 6040 struct page *page = pfn_to_page(pfn); 6041 6042 count += page_count(page) != 1; 6043 __free_page(page); 6044 } 6045 WARN(count != 0, "%d pages are still in use!\n", count); 6046 } 6047 #endif 6048 6049 #ifdef CONFIG_MEMORY_HOTPLUG 6050 static int __meminit __zone_pcp_update(void *data) 6051 { 6052 struct zone *zone = data; 6053 int cpu; 6054 unsigned long batch = zone_batchsize(zone), flags; 6055 6056 for_each_possible_cpu(cpu) { 6057 struct per_cpu_pageset *pset; 6058 struct per_cpu_pages *pcp; 6059 6060 pset = per_cpu_ptr(zone->pageset, cpu); 6061 pcp = &pset->pcp; 6062 6063 local_irq_save(flags); 6064 if (pcp->count > 0) 6065 free_pcppages_bulk(zone, pcp->count, pcp); 6066 drain_zonestat(zone, pset); 6067 setup_pageset(pset, batch); 6068 local_irq_restore(flags); 6069 } 6070 return 0; 6071 } 6072 6073 void __meminit zone_pcp_update(struct zone *zone) 6074 { 6075 stop_machine(__zone_pcp_update, zone, NULL); 6076 } 6077 #endif 6078 6079 void zone_pcp_reset(struct zone *zone) 6080 { 6081 unsigned long flags; 6082 int cpu; 6083 struct per_cpu_pageset *pset; 6084 6085 /* avoid races with drain_pages() */ 6086 local_irq_save(flags); 6087 if (zone->pageset != &boot_pageset) { 6088 for_each_online_cpu(cpu) { 6089 pset = per_cpu_ptr(zone->pageset, cpu); 6090 drain_zonestat(zone, pset); 6091 } 6092 free_percpu(zone->pageset); 6093 zone->pageset = &boot_pageset; 6094 } 6095 local_irq_restore(flags); 6096 } 6097 6098 #ifdef CONFIG_MEMORY_HOTREMOVE 6099 /* 6100 * All pages in the range must be isolated before calling this. 6101 */ 6102 void 6103 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6104 { 6105 struct page *page; 6106 struct zone *zone; 6107 int order, i; 6108 unsigned long pfn; 6109 unsigned long flags; 6110 /* find the first valid pfn */ 6111 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6112 if (pfn_valid(pfn)) 6113 break; 6114 if (pfn == end_pfn) 6115 return; 6116 zone = page_zone(pfn_to_page(pfn)); 6117 spin_lock_irqsave(&zone->lock, flags); 6118 pfn = start_pfn; 6119 while (pfn < end_pfn) { 6120 if (!pfn_valid(pfn)) { 6121 pfn++; 6122 continue; 6123 } 6124 page = pfn_to_page(pfn); 6125 /* 6126 * The HWPoisoned page may be not in buddy system, and 6127 * page_count() is not 0. 6128 */ 6129 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6130 pfn++; 6131 SetPageReserved(page); 6132 continue; 6133 } 6134 6135 BUG_ON(page_count(page)); 6136 BUG_ON(!PageBuddy(page)); 6137 order = page_order(page); 6138 #ifdef CONFIG_DEBUG_VM 6139 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6140 pfn, 1 << order, end_pfn); 6141 #endif 6142 list_del(&page->lru); 6143 rmv_page_order(page); 6144 zone->free_area[order].nr_free--; 6145 for (i = 0; i < (1 << order); i++) 6146 SetPageReserved((page+i)); 6147 pfn += (1 << order); 6148 } 6149 spin_unlock_irqrestore(&zone->lock, flags); 6150 } 6151 #endif 6152 6153 #ifdef CONFIG_MEMORY_FAILURE 6154 bool is_free_buddy_page(struct page *page) 6155 { 6156 struct zone *zone = page_zone(page); 6157 unsigned long pfn = page_to_pfn(page); 6158 unsigned long flags; 6159 int order; 6160 6161 spin_lock_irqsave(&zone->lock, flags); 6162 for (order = 0; order < MAX_ORDER; order++) { 6163 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6164 6165 if (PageBuddy(page_head) && page_order(page_head) >= order) 6166 break; 6167 } 6168 spin_unlock_irqrestore(&zone->lock, flags); 6169 6170 return order < MAX_ORDER; 6171 } 6172 #endif 6173 6174 static const struct trace_print_flags pageflag_names[] = { 6175 {1UL << PG_locked, "locked" }, 6176 {1UL << PG_error, "error" }, 6177 {1UL << PG_referenced, "referenced" }, 6178 {1UL << PG_uptodate, "uptodate" }, 6179 {1UL << PG_dirty, "dirty" }, 6180 {1UL << PG_lru, "lru" }, 6181 {1UL << PG_active, "active" }, 6182 {1UL << PG_slab, "slab" }, 6183 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6184 {1UL << PG_arch_1, "arch_1" }, 6185 {1UL << PG_reserved, "reserved" }, 6186 {1UL << PG_private, "private" }, 6187 {1UL << PG_private_2, "private_2" }, 6188 {1UL << PG_writeback, "writeback" }, 6189 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6190 {1UL << PG_head, "head" }, 6191 {1UL << PG_tail, "tail" }, 6192 #else 6193 {1UL << PG_compound, "compound" }, 6194 #endif 6195 {1UL << PG_swapcache, "swapcache" }, 6196 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6197 {1UL << PG_reclaim, "reclaim" }, 6198 {1UL << PG_swapbacked, "swapbacked" }, 6199 {1UL << PG_unevictable, "unevictable" }, 6200 #ifdef CONFIG_MMU 6201 {1UL << PG_mlocked, "mlocked" }, 6202 #endif 6203 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6204 {1UL << PG_uncached, "uncached" }, 6205 #endif 6206 #ifdef CONFIG_MEMORY_FAILURE 6207 {1UL << PG_hwpoison, "hwpoison" }, 6208 #endif 6209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6210 {1UL << PG_compound_lock, "compound_lock" }, 6211 #endif 6212 }; 6213 6214 static void dump_page_flags(unsigned long flags) 6215 { 6216 const char *delim = ""; 6217 unsigned long mask; 6218 int i; 6219 6220 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6221 6222 printk(KERN_ALERT "page flags: %#lx(", flags); 6223 6224 /* remove zone id */ 6225 flags &= (1UL << NR_PAGEFLAGS) - 1; 6226 6227 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6228 6229 mask = pageflag_names[i].mask; 6230 if ((flags & mask) != mask) 6231 continue; 6232 6233 flags &= ~mask; 6234 printk("%s%s", delim, pageflag_names[i].name); 6235 delim = "|"; 6236 } 6237 6238 /* check for left over flags */ 6239 if (flags) 6240 printk("%s%#lx", delim, flags); 6241 6242 printk(")\n"); 6243 } 6244 6245 void dump_page(struct page *page) 6246 { 6247 printk(KERN_ALERT 6248 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6249 page, atomic_read(&page->_count), page_mapcount(page), 6250 page->mapping, page->index); 6251 dump_page_flags(page->flags); 6252 mem_cgroup_print_bad_page(page); 6253 } 6254