xref: /linux/mm/page_alloc.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 /*
45  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46  * initializer cleaner
47  */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 unsigned long totalreserve_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57 
58 static void __free_pages_ok(struct page *page, unsigned int order);
59 
60 /*
61  * results with 256, 32 in the lowmem_reserve sysctl:
62  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63  *	1G machine -> (16M dma, 784M normal, 224M high)
64  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67  *
68  * TBD: should special case ZONE_DMA32 machines here - in those we normally
69  * don't need any ZONE_NORMAL reservation
70  */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
72 
73 EXPORT_SYMBOL(totalram_pages);
74 
75 /*
76  * Used by page_zone() to look up the address of the struct zone whose
77  * id is encoded in the upper bits of page->flags
78  */
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
81 
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
84 
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
87 
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
90 {
91 	int ret = 0;
92 	unsigned seq;
93 	unsigned long pfn = page_to_pfn(page);
94 
95 	do {
96 		seq = zone_span_seqbegin(zone);
97 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 			ret = 1;
99 		else if (pfn < zone->zone_start_pfn)
100 			ret = 1;
101 	} while (zone_span_seqretry(zone, seq));
102 
103 	return ret;
104 }
105 
106 static int page_is_consistent(struct zone *zone, struct page *page)
107 {
108 #ifdef CONFIG_HOLES_IN_ZONE
109 	if (!pfn_valid(page_to_pfn(page)))
110 		return 0;
111 #endif
112 	if (zone != page_zone(page))
113 		return 0;
114 
115 	return 1;
116 }
117 /*
118  * Temporary debugging check for pages not lying within a given zone.
119  */
120 static int bad_range(struct zone *zone, struct page *page)
121 {
122 	if (page_outside_zone_boundaries(zone, page))
123 		return 1;
124 	if (!page_is_consistent(zone, page))
125 		return 1;
126 
127 	return 0;
128 }
129 
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
132 {
133 	return 0;
134 }
135 #endif
136 
137 static void bad_page(struct page *page)
138 {
139 	printk(KERN_EMERG "Bad page state in process '%s'\n"
140 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 		KERN_EMERG "Backtrace:\n",
143 		current->comm, page, (int)(2*sizeof(unsigned long)),
144 		(unsigned long)page->flags, page->mapping,
145 		page_mapcount(page), page_count(page));
146 	dump_stack();
147 	page->flags &= ~(1 << PG_lru	|
148 			1 << PG_private |
149 			1 << PG_locked	|
150 			1 << PG_active	|
151 			1 << PG_dirty	|
152 			1 << PG_reclaim |
153 			1 << PG_slab    |
154 			1 << PG_swapcache |
155 			1 << PG_writeback |
156 			1 << PG_buddy );
157 	set_page_count(page, 0);
158 	reset_page_mapcount(page);
159 	page->mapping = NULL;
160 	add_taint(TAINT_BAD_PAGE);
161 }
162 
163 /*
164  * Higher-order pages are called "compound pages".  They are structured thusly:
165  *
166  * The first PAGE_SIZE page is called the "head page".
167  *
168  * The remaining PAGE_SIZE pages are called "tail pages".
169  *
170  * All pages have PG_compound set.  All pages have their ->private pointing at
171  * the head page (even the head page has this).
172  *
173  * The first tail page's ->lru.next holds the address of the compound page's
174  * put_page() function.  Its ->lru.prev holds the order of allocation.
175  * This usage means that zero-order pages may not be compound.
176  */
177 
178 static void free_compound_page(struct page *page)
179 {
180 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
181 }
182 
183 static void prep_compound_page(struct page *page, unsigned long order)
184 {
185 	int i;
186 	int nr_pages = 1 << order;
187 
188 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
189 	page[1].lru.prev = (void *)order;
190 	for (i = 0; i < nr_pages; i++) {
191 		struct page *p = page + i;
192 
193 		__SetPageCompound(p);
194 		set_page_private(p, (unsigned long)page);
195 	}
196 }
197 
198 static void destroy_compound_page(struct page *page, unsigned long order)
199 {
200 	int i;
201 	int nr_pages = 1 << order;
202 
203 	if (unlikely((unsigned long)page[1].lru.prev != order))
204 		bad_page(page);
205 
206 	for (i = 0; i < nr_pages; i++) {
207 		struct page *p = page + i;
208 
209 		if (unlikely(!PageCompound(p) |
210 				(page_private(p) != (unsigned long)page)))
211 			bad_page(page);
212 		__ClearPageCompound(p);
213 	}
214 }
215 
216 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
217 {
218 	int i;
219 
220 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
221 	/*
222 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
223 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
224 	 */
225 	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
226 	for (i = 0; i < (1 << order); i++)
227 		clear_highpage(page + i);
228 }
229 
230 /*
231  * function for dealing with page's order in buddy system.
232  * zone->lock is already acquired when we use these.
233  * So, we don't need atomic page->flags operations here.
234  */
235 static inline unsigned long page_order(struct page *page)
236 {
237 	return page_private(page);
238 }
239 
240 static inline void set_page_order(struct page *page, int order)
241 {
242 	set_page_private(page, order);
243 	__SetPageBuddy(page);
244 }
245 
246 static inline void rmv_page_order(struct page *page)
247 {
248 	__ClearPageBuddy(page);
249 	set_page_private(page, 0);
250 }
251 
252 /*
253  * Locate the struct page for both the matching buddy in our
254  * pair (buddy1) and the combined O(n+1) page they form (page).
255  *
256  * 1) Any buddy B1 will have an order O twin B2 which satisfies
257  * the following equation:
258  *     B2 = B1 ^ (1 << O)
259  * For example, if the starting buddy (buddy2) is #8 its order
260  * 1 buddy is #10:
261  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
262  *
263  * 2) Any buddy B will have an order O+1 parent P which
264  * satisfies the following equation:
265  *     P = B & ~(1 << O)
266  *
267  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
268  */
269 static inline struct page *
270 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
271 {
272 	unsigned long buddy_idx = page_idx ^ (1 << order);
273 
274 	return page + (buddy_idx - page_idx);
275 }
276 
277 static inline unsigned long
278 __find_combined_index(unsigned long page_idx, unsigned int order)
279 {
280 	return (page_idx & ~(1 << order));
281 }
282 
283 /*
284  * This function checks whether a page is free && is the buddy
285  * we can do coalesce a page and its buddy if
286  * (a) the buddy is not in a hole &&
287  * (b) the buddy is in the buddy system &&
288  * (c) a page and its buddy have the same order.
289  *
290  * For recording whether a page is in the buddy system, we use PG_buddy.
291  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
292  *
293  * For recording page's order, we use page_private(page).
294  */
295 static inline int page_is_buddy(struct page *page, int order)
296 {
297 #ifdef CONFIG_HOLES_IN_ZONE
298 	if (!pfn_valid(page_to_pfn(page)))
299 		return 0;
300 #endif
301 
302 	if (PageBuddy(page) && page_order(page) == order) {
303 		BUG_ON(page_count(page) != 0);
304 		return 1;
305 	}
306 	return 0;
307 }
308 
309 /*
310  * Freeing function for a buddy system allocator.
311  *
312  * The concept of a buddy system is to maintain direct-mapped table
313  * (containing bit values) for memory blocks of various "orders".
314  * The bottom level table contains the map for the smallest allocatable
315  * units of memory (here, pages), and each level above it describes
316  * pairs of units from the levels below, hence, "buddies".
317  * At a high level, all that happens here is marking the table entry
318  * at the bottom level available, and propagating the changes upward
319  * as necessary, plus some accounting needed to play nicely with other
320  * parts of the VM system.
321  * At each level, we keep a list of pages, which are heads of continuous
322  * free pages of length of (1 << order) and marked with PG_buddy. Page's
323  * order is recorded in page_private(page) field.
324  * So when we are allocating or freeing one, we can derive the state of the
325  * other.  That is, if we allocate a small block, and both were
326  * free, the remainder of the region must be split into blocks.
327  * If a block is freed, and its buddy is also free, then this
328  * triggers coalescing into a block of larger size.
329  *
330  * -- wli
331  */
332 
333 static inline void __free_one_page(struct page *page,
334 		struct zone *zone, unsigned int order)
335 {
336 	unsigned long page_idx;
337 	int order_size = 1 << order;
338 
339 	if (unlikely(PageCompound(page)))
340 		destroy_compound_page(page, order);
341 
342 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
343 
344 	BUG_ON(page_idx & (order_size - 1));
345 	BUG_ON(bad_range(zone, page));
346 
347 	zone->free_pages += order_size;
348 	while (order < MAX_ORDER-1) {
349 		unsigned long combined_idx;
350 		struct free_area *area;
351 		struct page *buddy;
352 
353 		buddy = __page_find_buddy(page, page_idx, order);
354 		if (!page_is_buddy(buddy, order))
355 			break;		/* Move the buddy up one level. */
356 
357 		list_del(&buddy->lru);
358 		area = zone->free_area + order;
359 		area->nr_free--;
360 		rmv_page_order(buddy);
361 		combined_idx = __find_combined_index(page_idx, order);
362 		page = page + (combined_idx - page_idx);
363 		page_idx = combined_idx;
364 		order++;
365 	}
366 	set_page_order(page, order);
367 	list_add(&page->lru, &zone->free_area[order].free_list);
368 	zone->free_area[order].nr_free++;
369 }
370 
371 static inline int free_pages_check(struct page *page)
372 {
373 	if (unlikely(page_mapcount(page) |
374 		(page->mapping != NULL)  |
375 		(page_count(page) != 0)  |
376 		(page->flags & (
377 			1 << PG_lru	|
378 			1 << PG_private |
379 			1 << PG_locked	|
380 			1 << PG_active	|
381 			1 << PG_reclaim	|
382 			1 << PG_slab	|
383 			1 << PG_swapcache |
384 			1 << PG_writeback |
385 			1 << PG_reserved |
386 			1 << PG_buddy ))))
387 		bad_page(page);
388 	if (PageDirty(page))
389 		__ClearPageDirty(page);
390 	/*
391 	 * For now, we report if PG_reserved was found set, but do not
392 	 * clear it, and do not free the page.  But we shall soon need
393 	 * to do more, for when the ZERO_PAGE count wraps negative.
394 	 */
395 	return PageReserved(page);
396 }
397 
398 /*
399  * Frees a list of pages.
400  * Assumes all pages on list are in same zone, and of same order.
401  * count is the number of pages to free.
402  *
403  * If the zone was previously in an "all pages pinned" state then look to
404  * see if this freeing clears that state.
405  *
406  * And clear the zone's pages_scanned counter, to hold off the "all pages are
407  * pinned" detection logic.
408  */
409 static void free_pages_bulk(struct zone *zone, int count,
410 					struct list_head *list, int order)
411 {
412 	spin_lock(&zone->lock);
413 	zone->all_unreclaimable = 0;
414 	zone->pages_scanned = 0;
415 	while (count--) {
416 		struct page *page;
417 
418 		BUG_ON(list_empty(list));
419 		page = list_entry(list->prev, struct page, lru);
420 		/* have to delete it as __free_one_page list manipulates */
421 		list_del(&page->lru);
422 		__free_one_page(page, zone, order);
423 	}
424 	spin_unlock(&zone->lock);
425 }
426 
427 static void free_one_page(struct zone *zone, struct page *page, int order)
428 {
429 	LIST_HEAD(list);
430 	list_add(&page->lru, &list);
431 	free_pages_bulk(zone, 1, &list, order);
432 }
433 
434 static void __free_pages_ok(struct page *page, unsigned int order)
435 {
436 	unsigned long flags;
437 	int i;
438 	int reserved = 0;
439 
440 	arch_free_page(page, order);
441 	if (!PageHighMem(page))
442 		mutex_debug_check_no_locks_freed(page_address(page),
443 						 PAGE_SIZE<<order);
444 
445 	for (i = 0 ; i < (1 << order) ; ++i)
446 		reserved += free_pages_check(page + i);
447 	if (reserved)
448 		return;
449 
450 	kernel_map_pages(page, 1 << order, 0);
451 	local_irq_save(flags);
452 	__mod_page_state(pgfree, 1 << order);
453 	free_one_page(page_zone(page), page, order);
454 	local_irq_restore(flags);
455 }
456 
457 /*
458  * permit the bootmem allocator to evade page validation on high-order frees
459  */
460 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
461 {
462 	if (order == 0) {
463 		__ClearPageReserved(page);
464 		set_page_count(page, 0);
465 		set_page_refcounted(page);
466 		__free_page(page);
467 	} else {
468 		int loop;
469 
470 		prefetchw(page);
471 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
472 			struct page *p = &page[loop];
473 
474 			if (loop + 1 < BITS_PER_LONG)
475 				prefetchw(p + 1);
476 			__ClearPageReserved(p);
477 			set_page_count(p, 0);
478 		}
479 
480 		set_page_refcounted(page);
481 		__free_pages(page, order);
482 	}
483 }
484 
485 
486 /*
487  * The order of subdivision here is critical for the IO subsystem.
488  * Please do not alter this order without good reasons and regression
489  * testing. Specifically, as large blocks of memory are subdivided,
490  * the order in which smaller blocks are delivered depends on the order
491  * they're subdivided in this function. This is the primary factor
492  * influencing the order in which pages are delivered to the IO
493  * subsystem according to empirical testing, and this is also justified
494  * by considering the behavior of a buddy system containing a single
495  * large block of memory acted on by a series of small allocations.
496  * This behavior is a critical factor in sglist merging's success.
497  *
498  * -- wli
499  */
500 static inline void expand(struct zone *zone, struct page *page,
501  	int low, int high, struct free_area *area)
502 {
503 	unsigned long size = 1 << high;
504 
505 	while (high > low) {
506 		area--;
507 		high--;
508 		size >>= 1;
509 		BUG_ON(bad_range(zone, &page[size]));
510 		list_add(&page[size].lru, &area->free_list);
511 		area->nr_free++;
512 		set_page_order(&page[size], high);
513 	}
514 }
515 
516 /*
517  * This page is about to be returned from the page allocator
518  */
519 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
520 {
521 	if (unlikely(page_mapcount(page) |
522 		(page->mapping != NULL)  |
523 		(page_count(page) != 0)  |
524 		(page->flags & (
525 			1 << PG_lru	|
526 			1 << PG_private	|
527 			1 << PG_locked	|
528 			1 << PG_active	|
529 			1 << PG_dirty	|
530 			1 << PG_reclaim	|
531 			1 << PG_slab    |
532 			1 << PG_swapcache |
533 			1 << PG_writeback |
534 			1 << PG_reserved |
535 			1 << PG_buddy ))))
536 		bad_page(page);
537 
538 	/*
539 	 * For now, we report if PG_reserved was found set, but do not
540 	 * clear it, and do not allocate the page: as a safety net.
541 	 */
542 	if (PageReserved(page))
543 		return 1;
544 
545 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
546 			1 << PG_referenced | 1 << PG_arch_1 |
547 			1 << PG_checked | 1 << PG_mappedtodisk);
548 	set_page_private(page, 0);
549 	set_page_refcounted(page);
550 	kernel_map_pages(page, 1 << order, 1);
551 
552 	if (gfp_flags & __GFP_ZERO)
553 		prep_zero_page(page, order, gfp_flags);
554 
555 	if (order && (gfp_flags & __GFP_COMP))
556 		prep_compound_page(page, order);
557 
558 	return 0;
559 }
560 
561 /*
562  * Do the hard work of removing an element from the buddy allocator.
563  * Call me with the zone->lock already held.
564  */
565 static struct page *__rmqueue(struct zone *zone, unsigned int order)
566 {
567 	struct free_area * area;
568 	unsigned int current_order;
569 	struct page *page;
570 
571 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
572 		area = zone->free_area + current_order;
573 		if (list_empty(&area->free_list))
574 			continue;
575 
576 		page = list_entry(area->free_list.next, struct page, lru);
577 		list_del(&page->lru);
578 		rmv_page_order(page);
579 		area->nr_free--;
580 		zone->free_pages -= 1UL << order;
581 		expand(zone, page, order, current_order, area);
582 		return page;
583 	}
584 
585 	return NULL;
586 }
587 
588 /*
589  * Obtain a specified number of elements from the buddy allocator, all under
590  * a single hold of the lock, for efficiency.  Add them to the supplied list.
591  * Returns the number of new pages which were placed at *list.
592  */
593 static int rmqueue_bulk(struct zone *zone, unsigned int order,
594 			unsigned long count, struct list_head *list)
595 {
596 	int i;
597 
598 	spin_lock(&zone->lock);
599 	for (i = 0; i < count; ++i) {
600 		struct page *page = __rmqueue(zone, order);
601 		if (unlikely(page == NULL))
602 			break;
603 		list_add_tail(&page->lru, list);
604 	}
605 	spin_unlock(&zone->lock);
606 	return i;
607 }
608 
609 #ifdef CONFIG_NUMA
610 /*
611  * Called from the slab reaper to drain pagesets on a particular node that
612  * belong to the currently executing processor.
613  * Note that this function must be called with the thread pinned to
614  * a single processor.
615  */
616 void drain_node_pages(int nodeid)
617 {
618 	int i, z;
619 	unsigned long flags;
620 
621 	for (z = 0; z < MAX_NR_ZONES; z++) {
622 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
623 		struct per_cpu_pageset *pset;
624 
625 		pset = zone_pcp(zone, smp_processor_id());
626 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
627 			struct per_cpu_pages *pcp;
628 
629 			pcp = &pset->pcp[i];
630 			if (pcp->count) {
631 				local_irq_save(flags);
632 				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
633 				pcp->count = 0;
634 				local_irq_restore(flags);
635 			}
636 		}
637 	}
638 }
639 #endif
640 
641 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
642 static void __drain_pages(unsigned int cpu)
643 {
644 	unsigned long flags;
645 	struct zone *zone;
646 	int i;
647 
648 	for_each_zone(zone) {
649 		struct per_cpu_pageset *pset;
650 
651 		pset = zone_pcp(zone, cpu);
652 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
653 			struct per_cpu_pages *pcp;
654 
655 			pcp = &pset->pcp[i];
656 			local_irq_save(flags);
657 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
658 			pcp->count = 0;
659 			local_irq_restore(flags);
660 		}
661 	}
662 }
663 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
664 
665 #ifdef CONFIG_PM
666 
667 void mark_free_pages(struct zone *zone)
668 {
669 	unsigned long zone_pfn, flags;
670 	int order;
671 	struct list_head *curr;
672 
673 	if (!zone->spanned_pages)
674 		return;
675 
676 	spin_lock_irqsave(&zone->lock, flags);
677 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
678 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
679 
680 	for (order = MAX_ORDER - 1; order >= 0; --order)
681 		list_for_each(curr, &zone->free_area[order].free_list) {
682 			unsigned long start_pfn, i;
683 
684 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
685 
686 			for (i=0; i < (1<<order); i++)
687 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
688 	}
689 	spin_unlock_irqrestore(&zone->lock, flags);
690 }
691 
692 /*
693  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
694  */
695 void drain_local_pages(void)
696 {
697 	unsigned long flags;
698 
699 	local_irq_save(flags);
700 	__drain_pages(smp_processor_id());
701 	local_irq_restore(flags);
702 }
703 #endif /* CONFIG_PM */
704 
705 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
706 {
707 #ifdef CONFIG_NUMA
708 	pg_data_t *pg = z->zone_pgdat;
709 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
710 	struct per_cpu_pageset *p;
711 
712 	p = zone_pcp(z, cpu);
713 	if (pg == orig) {
714 		p->numa_hit++;
715 	} else {
716 		p->numa_miss++;
717 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
718 	}
719 	if (pg == NODE_DATA(numa_node_id()))
720 		p->local_node++;
721 	else
722 		p->other_node++;
723 #endif
724 }
725 
726 /*
727  * Free a 0-order page
728  */
729 static void fastcall free_hot_cold_page(struct page *page, int cold)
730 {
731 	struct zone *zone = page_zone(page);
732 	struct per_cpu_pages *pcp;
733 	unsigned long flags;
734 
735 	arch_free_page(page, 0);
736 
737 	if (PageAnon(page))
738 		page->mapping = NULL;
739 	if (free_pages_check(page))
740 		return;
741 
742 	kernel_map_pages(page, 1, 0);
743 
744 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
745 	local_irq_save(flags);
746 	__inc_page_state(pgfree);
747 	list_add(&page->lru, &pcp->list);
748 	pcp->count++;
749 	if (pcp->count >= pcp->high) {
750 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
751 		pcp->count -= pcp->batch;
752 	}
753 	local_irq_restore(flags);
754 	put_cpu();
755 }
756 
757 void fastcall free_hot_page(struct page *page)
758 {
759 	free_hot_cold_page(page, 0);
760 }
761 
762 void fastcall free_cold_page(struct page *page)
763 {
764 	free_hot_cold_page(page, 1);
765 }
766 
767 /*
768  * split_page takes a non-compound higher-order page, and splits it into
769  * n (1<<order) sub-pages: page[0..n]
770  * Each sub-page must be freed individually.
771  *
772  * Note: this is probably too low level an operation for use in drivers.
773  * Please consult with lkml before using this in your driver.
774  */
775 void split_page(struct page *page, unsigned int order)
776 {
777 	int i;
778 
779 	BUG_ON(PageCompound(page));
780 	BUG_ON(!page_count(page));
781 	for (i = 1; i < (1 << order); i++)
782 		set_page_refcounted(page + i);
783 }
784 
785 /*
786  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
787  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
788  * or two.
789  */
790 static struct page *buffered_rmqueue(struct zonelist *zonelist,
791 			struct zone *zone, int order, gfp_t gfp_flags)
792 {
793 	unsigned long flags;
794 	struct page *page;
795 	int cold = !!(gfp_flags & __GFP_COLD);
796 	int cpu;
797 
798 again:
799 	cpu  = get_cpu();
800 	if (likely(order == 0)) {
801 		struct per_cpu_pages *pcp;
802 
803 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
804 		local_irq_save(flags);
805 		if (!pcp->count) {
806 			pcp->count += rmqueue_bulk(zone, 0,
807 						pcp->batch, &pcp->list);
808 			if (unlikely(!pcp->count))
809 				goto failed;
810 		}
811 		page = list_entry(pcp->list.next, struct page, lru);
812 		list_del(&page->lru);
813 		pcp->count--;
814 	} else {
815 		spin_lock_irqsave(&zone->lock, flags);
816 		page = __rmqueue(zone, order);
817 		spin_unlock(&zone->lock);
818 		if (!page)
819 			goto failed;
820 	}
821 
822 	__mod_page_state_zone(zone, pgalloc, 1 << order);
823 	zone_statistics(zonelist, zone, cpu);
824 	local_irq_restore(flags);
825 	put_cpu();
826 
827 	BUG_ON(bad_range(zone, page));
828 	if (prep_new_page(page, order, gfp_flags))
829 		goto again;
830 	return page;
831 
832 failed:
833 	local_irq_restore(flags);
834 	put_cpu();
835 	return NULL;
836 }
837 
838 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
839 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
840 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
841 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
842 #define ALLOC_HARDER		0x10 /* try to alloc harder */
843 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
844 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
845 
846 /*
847  * Return 1 if free pages are above 'mark'. This takes into account the order
848  * of the allocation.
849  */
850 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
851 		      int classzone_idx, int alloc_flags)
852 {
853 	/* free_pages my go negative - that's OK */
854 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
855 	int o;
856 
857 	if (alloc_flags & ALLOC_HIGH)
858 		min -= min / 2;
859 	if (alloc_flags & ALLOC_HARDER)
860 		min -= min / 4;
861 
862 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
863 		return 0;
864 	for (o = 0; o < order; o++) {
865 		/* At the next order, this order's pages become unavailable */
866 		free_pages -= z->free_area[o].nr_free << o;
867 
868 		/* Require fewer higher order pages to be free */
869 		min >>= 1;
870 
871 		if (free_pages <= min)
872 			return 0;
873 	}
874 	return 1;
875 }
876 
877 /*
878  * get_page_from_freeliest goes through the zonelist trying to allocate
879  * a page.
880  */
881 static struct page *
882 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
883 		struct zonelist *zonelist, int alloc_flags)
884 {
885 	struct zone **z = zonelist->zones;
886 	struct page *page = NULL;
887 	int classzone_idx = zone_idx(*z);
888 
889 	/*
890 	 * Go through the zonelist once, looking for a zone with enough free.
891 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
892 	 */
893 	do {
894 		if ((alloc_flags & ALLOC_CPUSET) &&
895 				!cpuset_zone_allowed(*z, gfp_mask))
896 			continue;
897 
898 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
899 			unsigned long mark;
900 			if (alloc_flags & ALLOC_WMARK_MIN)
901 				mark = (*z)->pages_min;
902 			else if (alloc_flags & ALLOC_WMARK_LOW)
903 				mark = (*z)->pages_low;
904 			else
905 				mark = (*z)->pages_high;
906 			if (!zone_watermark_ok(*z, order, mark,
907 				    classzone_idx, alloc_flags))
908 				if (!zone_reclaim_mode ||
909 				    !zone_reclaim(*z, gfp_mask, order))
910 					continue;
911 		}
912 
913 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
914 		if (page) {
915 			break;
916 		}
917 	} while (*(++z) != NULL);
918 	return page;
919 }
920 
921 /*
922  * This is the 'heart' of the zoned buddy allocator.
923  */
924 struct page * fastcall
925 __alloc_pages(gfp_t gfp_mask, unsigned int order,
926 		struct zonelist *zonelist)
927 {
928 	const gfp_t wait = gfp_mask & __GFP_WAIT;
929 	struct zone **z;
930 	struct page *page;
931 	struct reclaim_state reclaim_state;
932 	struct task_struct *p = current;
933 	int do_retry;
934 	int alloc_flags;
935 	int did_some_progress;
936 
937 	might_sleep_if(wait);
938 
939 restart:
940 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
941 
942 	if (unlikely(*z == NULL)) {
943 		/* Should this ever happen?? */
944 		return NULL;
945 	}
946 
947 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
948 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
949 	if (page)
950 		goto got_pg;
951 
952 	do {
953 		if (cpuset_zone_allowed(*z, gfp_mask))
954 			wakeup_kswapd(*z, order);
955 	} while (*(++z));
956 
957 	/*
958 	 * OK, we're below the kswapd watermark and have kicked background
959 	 * reclaim. Now things get more complex, so set up alloc_flags according
960 	 * to how we want to proceed.
961 	 *
962 	 * The caller may dip into page reserves a bit more if the caller
963 	 * cannot run direct reclaim, or if the caller has realtime scheduling
964 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
965 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
966 	 */
967 	alloc_flags = ALLOC_WMARK_MIN;
968 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
969 		alloc_flags |= ALLOC_HARDER;
970 	if (gfp_mask & __GFP_HIGH)
971 		alloc_flags |= ALLOC_HIGH;
972 	alloc_flags |= ALLOC_CPUSET;
973 
974 	/*
975 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
976 	 * coming from realtime tasks go deeper into reserves.
977 	 *
978 	 * This is the last chance, in general, before the goto nopage.
979 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
980 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
981 	 */
982 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
983 	if (page)
984 		goto got_pg;
985 
986 	/* This allocation should allow future memory freeing. */
987 
988 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
989 			&& !in_interrupt()) {
990 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
991 nofail_alloc:
992 			/* go through the zonelist yet again, ignoring mins */
993 			page = get_page_from_freelist(gfp_mask, order,
994 				zonelist, ALLOC_NO_WATERMARKS);
995 			if (page)
996 				goto got_pg;
997 			if (gfp_mask & __GFP_NOFAIL) {
998 				blk_congestion_wait(WRITE, HZ/50);
999 				goto nofail_alloc;
1000 			}
1001 		}
1002 		goto nopage;
1003 	}
1004 
1005 	/* Atomic allocations - we can't balance anything */
1006 	if (!wait)
1007 		goto nopage;
1008 
1009 rebalance:
1010 	cond_resched();
1011 
1012 	/* We now go into synchronous reclaim */
1013 	cpuset_memory_pressure_bump();
1014 	p->flags |= PF_MEMALLOC;
1015 	reclaim_state.reclaimed_slab = 0;
1016 	p->reclaim_state = &reclaim_state;
1017 
1018 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1019 
1020 	p->reclaim_state = NULL;
1021 	p->flags &= ~PF_MEMALLOC;
1022 
1023 	cond_resched();
1024 
1025 	if (likely(did_some_progress)) {
1026 		page = get_page_from_freelist(gfp_mask, order,
1027 						zonelist, alloc_flags);
1028 		if (page)
1029 			goto got_pg;
1030 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1031 		/*
1032 		 * Go through the zonelist yet one more time, keep
1033 		 * very high watermark here, this is only to catch
1034 		 * a parallel oom killing, we must fail if we're still
1035 		 * under heavy pressure.
1036 		 */
1037 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1038 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1039 		if (page)
1040 			goto got_pg;
1041 
1042 		out_of_memory(zonelist, gfp_mask, order);
1043 		goto restart;
1044 	}
1045 
1046 	/*
1047 	 * Don't let big-order allocations loop unless the caller explicitly
1048 	 * requests that.  Wait for some write requests to complete then retry.
1049 	 *
1050 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1051 	 * <= 3, but that may not be true in other implementations.
1052 	 */
1053 	do_retry = 0;
1054 	if (!(gfp_mask & __GFP_NORETRY)) {
1055 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1056 			do_retry = 1;
1057 		if (gfp_mask & __GFP_NOFAIL)
1058 			do_retry = 1;
1059 	}
1060 	if (do_retry) {
1061 		blk_congestion_wait(WRITE, HZ/50);
1062 		goto rebalance;
1063 	}
1064 
1065 nopage:
1066 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1067 		printk(KERN_WARNING "%s: page allocation failure."
1068 			" order:%d, mode:0x%x\n",
1069 			p->comm, order, gfp_mask);
1070 		dump_stack();
1071 		show_mem();
1072 	}
1073 got_pg:
1074 	return page;
1075 }
1076 
1077 EXPORT_SYMBOL(__alloc_pages);
1078 
1079 /*
1080  * Common helper functions.
1081  */
1082 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1083 {
1084 	struct page * page;
1085 	page = alloc_pages(gfp_mask, order);
1086 	if (!page)
1087 		return 0;
1088 	return (unsigned long) page_address(page);
1089 }
1090 
1091 EXPORT_SYMBOL(__get_free_pages);
1092 
1093 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1094 {
1095 	struct page * page;
1096 
1097 	/*
1098 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1099 	 * a highmem page
1100 	 */
1101 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1102 
1103 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1104 	if (page)
1105 		return (unsigned long) page_address(page);
1106 	return 0;
1107 }
1108 
1109 EXPORT_SYMBOL(get_zeroed_page);
1110 
1111 void __pagevec_free(struct pagevec *pvec)
1112 {
1113 	int i = pagevec_count(pvec);
1114 
1115 	while (--i >= 0)
1116 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1117 }
1118 
1119 fastcall void __free_pages(struct page *page, unsigned int order)
1120 {
1121 	if (put_page_testzero(page)) {
1122 		if (order == 0)
1123 			free_hot_page(page);
1124 		else
1125 			__free_pages_ok(page, order);
1126 	}
1127 }
1128 
1129 EXPORT_SYMBOL(__free_pages);
1130 
1131 fastcall void free_pages(unsigned long addr, unsigned int order)
1132 {
1133 	if (addr != 0) {
1134 		BUG_ON(!virt_addr_valid((void *)addr));
1135 		__free_pages(virt_to_page((void *)addr), order);
1136 	}
1137 }
1138 
1139 EXPORT_SYMBOL(free_pages);
1140 
1141 /*
1142  * Total amount of free (allocatable) RAM:
1143  */
1144 unsigned int nr_free_pages(void)
1145 {
1146 	unsigned int sum = 0;
1147 	struct zone *zone;
1148 
1149 	for_each_zone(zone)
1150 		sum += zone->free_pages;
1151 
1152 	return sum;
1153 }
1154 
1155 EXPORT_SYMBOL(nr_free_pages);
1156 
1157 #ifdef CONFIG_NUMA
1158 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1159 {
1160 	unsigned int i, sum = 0;
1161 
1162 	for (i = 0; i < MAX_NR_ZONES; i++)
1163 		sum += pgdat->node_zones[i].free_pages;
1164 
1165 	return sum;
1166 }
1167 #endif
1168 
1169 static unsigned int nr_free_zone_pages(int offset)
1170 {
1171 	/* Just pick one node, since fallback list is circular */
1172 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1173 	unsigned int sum = 0;
1174 
1175 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1176 	struct zone **zonep = zonelist->zones;
1177 	struct zone *zone;
1178 
1179 	for (zone = *zonep++; zone; zone = *zonep++) {
1180 		unsigned long size = zone->present_pages;
1181 		unsigned long high = zone->pages_high;
1182 		if (size > high)
1183 			sum += size - high;
1184 	}
1185 
1186 	return sum;
1187 }
1188 
1189 /*
1190  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1191  */
1192 unsigned int nr_free_buffer_pages(void)
1193 {
1194 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1195 }
1196 
1197 /*
1198  * Amount of free RAM allocatable within all zones
1199  */
1200 unsigned int nr_free_pagecache_pages(void)
1201 {
1202 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1203 }
1204 
1205 #ifdef CONFIG_HIGHMEM
1206 unsigned int nr_free_highpages (void)
1207 {
1208 	pg_data_t *pgdat;
1209 	unsigned int pages = 0;
1210 
1211 	for_each_online_pgdat(pgdat)
1212 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1213 
1214 	return pages;
1215 }
1216 #endif
1217 
1218 #ifdef CONFIG_NUMA
1219 static void show_node(struct zone *zone)
1220 {
1221 	printk("Node %d ", zone->zone_pgdat->node_id);
1222 }
1223 #else
1224 #define show_node(zone)	do { } while (0)
1225 #endif
1226 
1227 /*
1228  * Accumulate the page_state information across all CPUs.
1229  * The result is unavoidably approximate - it can change
1230  * during and after execution of this function.
1231  */
1232 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1233 
1234 atomic_t nr_pagecache = ATOMIC_INIT(0);
1235 EXPORT_SYMBOL(nr_pagecache);
1236 #ifdef CONFIG_SMP
1237 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1238 #endif
1239 
1240 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1241 {
1242 	unsigned cpu;
1243 
1244 	memset(ret, 0, nr * sizeof(unsigned long));
1245 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1246 
1247 	for_each_cpu_mask(cpu, *cpumask) {
1248 		unsigned long *in;
1249 		unsigned long *out;
1250 		unsigned off;
1251 		unsigned next_cpu;
1252 
1253 		in = (unsigned long *)&per_cpu(page_states, cpu);
1254 
1255 		next_cpu = next_cpu(cpu, *cpumask);
1256 		if (likely(next_cpu < NR_CPUS))
1257 			prefetch(&per_cpu(page_states, next_cpu));
1258 
1259 		out = (unsigned long *)ret;
1260 		for (off = 0; off < nr; off++)
1261 			*out++ += *in++;
1262 	}
1263 }
1264 
1265 void get_page_state_node(struct page_state *ret, int node)
1266 {
1267 	int nr;
1268 	cpumask_t mask = node_to_cpumask(node);
1269 
1270 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1271 	nr /= sizeof(unsigned long);
1272 
1273 	__get_page_state(ret, nr+1, &mask);
1274 }
1275 
1276 void get_page_state(struct page_state *ret)
1277 {
1278 	int nr;
1279 	cpumask_t mask = CPU_MASK_ALL;
1280 
1281 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1282 	nr /= sizeof(unsigned long);
1283 
1284 	__get_page_state(ret, nr + 1, &mask);
1285 }
1286 
1287 void get_full_page_state(struct page_state *ret)
1288 {
1289 	cpumask_t mask = CPU_MASK_ALL;
1290 
1291 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1292 }
1293 
1294 unsigned long read_page_state_offset(unsigned long offset)
1295 {
1296 	unsigned long ret = 0;
1297 	int cpu;
1298 
1299 	for_each_online_cpu(cpu) {
1300 		unsigned long in;
1301 
1302 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1303 		ret += *((unsigned long *)in);
1304 	}
1305 	return ret;
1306 }
1307 
1308 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1309 {
1310 	void *ptr;
1311 
1312 	ptr = &__get_cpu_var(page_states);
1313 	*(unsigned long *)(ptr + offset) += delta;
1314 }
1315 EXPORT_SYMBOL(__mod_page_state_offset);
1316 
1317 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1318 {
1319 	unsigned long flags;
1320 	void *ptr;
1321 
1322 	local_irq_save(flags);
1323 	ptr = &__get_cpu_var(page_states);
1324 	*(unsigned long *)(ptr + offset) += delta;
1325 	local_irq_restore(flags);
1326 }
1327 EXPORT_SYMBOL(mod_page_state_offset);
1328 
1329 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1330 			unsigned long *free, struct pglist_data *pgdat)
1331 {
1332 	struct zone *zones = pgdat->node_zones;
1333 	int i;
1334 
1335 	*active = 0;
1336 	*inactive = 0;
1337 	*free = 0;
1338 	for (i = 0; i < MAX_NR_ZONES; i++) {
1339 		*active += zones[i].nr_active;
1340 		*inactive += zones[i].nr_inactive;
1341 		*free += zones[i].free_pages;
1342 	}
1343 }
1344 
1345 void get_zone_counts(unsigned long *active,
1346 		unsigned long *inactive, unsigned long *free)
1347 {
1348 	struct pglist_data *pgdat;
1349 
1350 	*active = 0;
1351 	*inactive = 0;
1352 	*free = 0;
1353 	for_each_online_pgdat(pgdat) {
1354 		unsigned long l, m, n;
1355 		__get_zone_counts(&l, &m, &n, pgdat);
1356 		*active += l;
1357 		*inactive += m;
1358 		*free += n;
1359 	}
1360 }
1361 
1362 void si_meminfo(struct sysinfo *val)
1363 {
1364 	val->totalram = totalram_pages;
1365 	val->sharedram = 0;
1366 	val->freeram = nr_free_pages();
1367 	val->bufferram = nr_blockdev_pages();
1368 #ifdef CONFIG_HIGHMEM
1369 	val->totalhigh = totalhigh_pages;
1370 	val->freehigh = nr_free_highpages();
1371 #else
1372 	val->totalhigh = 0;
1373 	val->freehigh = 0;
1374 #endif
1375 	val->mem_unit = PAGE_SIZE;
1376 }
1377 
1378 EXPORT_SYMBOL(si_meminfo);
1379 
1380 #ifdef CONFIG_NUMA
1381 void si_meminfo_node(struct sysinfo *val, int nid)
1382 {
1383 	pg_data_t *pgdat = NODE_DATA(nid);
1384 
1385 	val->totalram = pgdat->node_present_pages;
1386 	val->freeram = nr_free_pages_pgdat(pgdat);
1387 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1388 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1389 	val->mem_unit = PAGE_SIZE;
1390 }
1391 #endif
1392 
1393 #define K(x) ((x) << (PAGE_SHIFT-10))
1394 
1395 /*
1396  * Show free area list (used inside shift_scroll-lock stuff)
1397  * We also calculate the percentage fragmentation. We do this by counting the
1398  * memory on each free list with the exception of the first item on the list.
1399  */
1400 void show_free_areas(void)
1401 {
1402 	struct page_state ps;
1403 	int cpu, temperature;
1404 	unsigned long active;
1405 	unsigned long inactive;
1406 	unsigned long free;
1407 	struct zone *zone;
1408 
1409 	for_each_zone(zone) {
1410 		show_node(zone);
1411 		printk("%s per-cpu:", zone->name);
1412 
1413 		if (!populated_zone(zone)) {
1414 			printk(" empty\n");
1415 			continue;
1416 		} else
1417 			printk("\n");
1418 
1419 		for_each_online_cpu(cpu) {
1420 			struct per_cpu_pageset *pageset;
1421 
1422 			pageset = zone_pcp(zone, cpu);
1423 
1424 			for (temperature = 0; temperature < 2; temperature++)
1425 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1426 					cpu,
1427 					temperature ? "cold" : "hot",
1428 					pageset->pcp[temperature].high,
1429 					pageset->pcp[temperature].batch,
1430 					pageset->pcp[temperature].count);
1431 		}
1432 	}
1433 
1434 	get_page_state(&ps);
1435 	get_zone_counts(&active, &inactive, &free);
1436 
1437 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1438 		K(nr_free_pages()),
1439 		K(nr_free_highpages()));
1440 
1441 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1442 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1443 		active,
1444 		inactive,
1445 		ps.nr_dirty,
1446 		ps.nr_writeback,
1447 		ps.nr_unstable,
1448 		nr_free_pages(),
1449 		ps.nr_slab,
1450 		ps.nr_mapped,
1451 		ps.nr_page_table_pages);
1452 
1453 	for_each_zone(zone) {
1454 		int i;
1455 
1456 		show_node(zone);
1457 		printk("%s"
1458 			" free:%lukB"
1459 			" min:%lukB"
1460 			" low:%lukB"
1461 			" high:%lukB"
1462 			" active:%lukB"
1463 			" inactive:%lukB"
1464 			" present:%lukB"
1465 			" pages_scanned:%lu"
1466 			" all_unreclaimable? %s"
1467 			"\n",
1468 			zone->name,
1469 			K(zone->free_pages),
1470 			K(zone->pages_min),
1471 			K(zone->pages_low),
1472 			K(zone->pages_high),
1473 			K(zone->nr_active),
1474 			K(zone->nr_inactive),
1475 			K(zone->present_pages),
1476 			zone->pages_scanned,
1477 			(zone->all_unreclaimable ? "yes" : "no")
1478 			);
1479 		printk("lowmem_reserve[]:");
1480 		for (i = 0; i < MAX_NR_ZONES; i++)
1481 			printk(" %lu", zone->lowmem_reserve[i]);
1482 		printk("\n");
1483 	}
1484 
1485 	for_each_zone(zone) {
1486  		unsigned long nr, flags, order, total = 0;
1487 
1488 		show_node(zone);
1489 		printk("%s: ", zone->name);
1490 		if (!populated_zone(zone)) {
1491 			printk("empty\n");
1492 			continue;
1493 		}
1494 
1495 		spin_lock_irqsave(&zone->lock, flags);
1496 		for (order = 0; order < MAX_ORDER; order++) {
1497 			nr = zone->free_area[order].nr_free;
1498 			total += nr << order;
1499 			printk("%lu*%lukB ", nr, K(1UL) << order);
1500 		}
1501 		spin_unlock_irqrestore(&zone->lock, flags);
1502 		printk("= %lukB\n", K(total));
1503 	}
1504 
1505 	show_swap_cache_info();
1506 }
1507 
1508 /*
1509  * Builds allocation fallback zone lists.
1510  *
1511  * Add all populated zones of a node to the zonelist.
1512  */
1513 static int __init build_zonelists_node(pg_data_t *pgdat,
1514 			struct zonelist *zonelist, int nr_zones, int zone_type)
1515 {
1516 	struct zone *zone;
1517 
1518 	BUG_ON(zone_type > ZONE_HIGHMEM);
1519 
1520 	do {
1521 		zone = pgdat->node_zones + zone_type;
1522 		if (populated_zone(zone)) {
1523 #ifndef CONFIG_HIGHMEM
1524 			BUG_ON(zone_type > ZONE_NORMAL);
1525 #endif
1526 			zonelist->zones[nr_zones++] = zone;
1527 			check_highest_zone(zone_type);
1528 		}
1529 		zone_type--;
1530 
1531 	} while (zone_type >= 0);
1532 	return nr_zones;
1533 }
1534 
1535 static inline int highest_zone(int zone_bits)
1536 {
1537 	int res = ZONE_NORMAL;
1538 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1539 		res = ZONE_HIGHMEM;
1540 	if (zone_bits & (__force int)__GFP_DMA32)
1541 		res = ZONE_DMA32;
1542 	if (zone_bits & (__force int)__GFP_DMA)
1543 		res = ZONE_DMA;
1544 	return res;
1545 }
1546 
1547 #ifdef CONFIG_NUMA
1548 #define MAX_NODE_LOAD (num_online_nodes())
1549 static int __initdata node_load[MAX_NUMNODES];
1550 /**
1551  * find_next_best_node - find the next node that should appear in a given node's fallback list
1552  * @node: node whose fallback list we're appending
1553  * @used_node_mask: nodemask_t of already used nodes
1554  *
1555  * We use a number of factors to determine which is the next node that should
1556  * appear on a given node's fallback list.  The node should not have appeared
1557  * already in @node's fallback list, and it should be the next closest node
1558  * according to the distance array (which contains arbitrary distance values
1559  * from each node to each node in the system), and should also prefer nodes
1560  * with no CPUs, since presumably they'll have very little allocation pressure
1561  * on them otherwise.
1562  * It returns -1 if no node is found.
1563  */
1564 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1565 {
1566 	int n, val;
1567 	int min_val = INT_MAX;
1568 	int best_node = -1;
1569 
1570 	/* Use the local node if we haven't already */
1571 	if (!node_isset(node, *used_node_mask)) {
1572 		node_set(node, *used_node_mask);
1573 		return node;
1574 	}
1575 
1576 	for_each_online_node(n) {
1577 		cpumask_t tmp;
1578 
1579 		/* Don't want a node to appear more than once */
1580 		if (node_isset(n, *used_node_mask))
1581 			continue;
1582 
1583 		/* Use the distance array to find the distance */
1584 		val = node_distance(node, n);
1585 
1586 		/* Penalize nodes under us ("prefer the next node") */
1587 		val += (n < node);
1588 
1589 		/* Give preference to headless and unused nodes */
1590 		tmp = node_to_cpumask(n);
1591 		if (!cpus_empty(tmp))
1592 			val += PENALTY_FOR_NODE_WITH_CPUS;
1593 
1594 		/* Slight preference for less loaded node */
1595 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1596 		val += node_load[n];
1597 
1598 		if (val < min_val) {
1599 			min_val = val;
1600 			best_node = n;
1601 		}
1602 	}
1603 
1604 	if (best_node >= 0)
1605 		node_set(best_node, *used_node_mask);
1606 
1607 	return best_node;
1608 }
1609 
1610 static void __init build_zonelists(pg_data_t *pgdat)
1611 {
1612 	int i, j, k, node, local_node;
1613 	int prev_node, load;
1614 	struct zonelist *zonelist;
1615 	nodemask_t used_mask;
1616 
1617 	/* initialize zonelists */
1618 	for (i = 0; i < GFP_ZONETYPES; i++) {
1619 		zonelist = pgdat->node_zonelists + i;
1620 		zonelist->zones[0] = NULL;
1621 	}
1622 
1623 	/* NUMA-aware ordering of nodes */
1624 	local_node = pgdat->node_id;
1625 	load = num_online_nodes();
1626 	prev_node = local_node;
1627 	nodes_clear(used_mask);
1628 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1629 		int distance = node_distance(local_node, node);
1630 
1631 		/*
1632 		 * If another node is sufficiently far away then it is better
1633 		 * to reclaim pages in a zone before going off node.
1634 		 */
1635 		if (distance > RECLAIM_DISTANCE)
1636 			zone_reclaim_mode = 1;
1637 
1638 		/*
1639 		 * We don't want to pressure a particular node.
1640 		 * So adding penalty to the first node in same
1641 		 * distance group to make it round-robin.
1642 		 */
1643 
1644 		if (distance != node_distance(local_node, prev_node))
1645 			node_load[node] += load;
1646 		prev_node = node;
1647 		load--;
1648 		for (i = 0; i < GFP_ZONETYPES; i++) {
1649 			zonelist = pgdat->node_zonelists + i;
1650 			for (j = 0; zonelist->zones[j] != NULL; j++);
1651 
1652 			k = highest_zone(i);
1653 
1654 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1655 			zonelist->zones[j] = NULL;
1656 		}
1657 	}
1658 }
1659 
1660 #else	/* CONFIG_NUMA */
1661 
1662 static void __init build_zonelists(pg_data_t *pgdat)
1663 {
1664 	int i, j, k, node, local_node;
1665 
1666 	local_node = pgdat->node_id;
1667 	for (i = 0; i < GFP_ZONETYPES; i++) {
1668 		struct zonelist *zonelist;
1669 
1670 		zonelist = pgdat->node_zonelists + i;
1671 
1672 		j = 0;
1673 		k = highest_zone(i);
1674  		j = build_zonelists_node(pgdat, zonelist, j, k);
1675  		/*
1676  		 * Now we build the zonelist so that it contains the zones
1677  		 * of all the other nodes.
1678  		 * We don't want to pressure a particular node, so when
1679  		 * building the zones for node N, we make sure that the
1680  		 * zones coming right after the local ones are those from
1681  		 * node N+1 (modulo N)
1682  		 */
1683 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1684 			if (!node_online(node))
1685 				continue;
1686 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1687 		}
1688 		for (node = 0; node < local_node; node++) {
1689 			if (!node_online(node))
1690 				continue;
1691 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1692 		}
1693 
1694 		zonelist->zones[j] = NULL;
1695 	}
1696 }
1697 
1698 #endif	/* CONFIG_NUMA */
1699 
1700 void __init build_all_zonelists(void)
1701 {
1702 	int i;
1703 
1704 	for_each_online_node(i)
1705 		build_zonelists(NODE_DATA(i));
1706 	printk("Built %i zonelists\n", num_online_nodes());
1707 	cpuset_init_current_mems_allowed();
1708 }
1709 
1710 /*
1711  * Helper functions to size the waitqueue hash table.
1712  * Essentially these want to choose hash table sizes sufficiently
1713  * large so that collisions trying to wait on pages are rare.
1714  * But in fact, the number of active page waitqueues on typical
1715  * systems is ridiculously low, less than 200. So this is even
1716  * conservative, even though it seems large.
1717  *
1718  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1719  * waitqueues, i.e. the size of the waitq table given the number of pages.
1720  */
1721 #define PAGES_PER_WAITQUEUE	256
1722 
1723 static inline unsigned long wait_table_size(unsigned long pages)
1724 {
1725 	unsigned long size = 1;
1726 
1727 	pages /= PAGES_PER_WAITQUEUE;
1728 
1729 	while (size < pages)
1730 		size <<= 1;
1731 
1732 	/*
1733 	 * Once we have dozens or even hundreds of threads sleeping
1734 	 * on IO we've got bigger problems than wait queue collision.
1735 	 * Limit the size of the wait table to a reasonable size.
1736 	 */
1737 	size = min(size, 4096UL);
1738 
1739 	return max(size, 4UL);
1740 }
1741 
1742 /*
1743  * This is an integer logarithm so that shifts can be used later
1744  * to extract the more random high bits from the multiplicative
1745  * hash function before the remainder is taken.
1746  */
1747 static inline unsigned long wait_table_bits(unsigned long size)
1748 {
1749 	return ffz(~size);
1750 }
1751 
1752 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1753 
1754 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1755 		unsigned long *zones_size, unsigned long *zholes_size)
1756 {
1757 	unsigned long realtotalpages, totalpages = 0;
1758 	int i;
1759 
1760 	for (i = 0; i < MAX_NR_ZONES; i++)
1761 		totalpages += zones_size[i];
1762 	pgdat->node_spanned_pages = totalpages;
1763 
1764 	realtotalpages = totalpages;
1765 	if (zholes_size)
1766 		for (i = 0; i < MAX_NR_ZONES; i++)
1767 			realtotalpages -= zholes_size[i];
1768 	pgdat->node_present_pages = realtotalpages;
1769 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1770 }
1771 
1772 
1773 /*
1774  * Initially all pages are reserved - free ones are freed
1775  * up by free_all_bootmem() once the early boot process is
1776  * done. Non-atomic initialization, single-pass.
1777  */
1778 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1779 		unsigned long start_pfn)
1780 {
1781 	struct page *page;
1782 	unsigned long end_pfn = start_pfn + size;
1783 	unsigned long pfn;
1784 
1785 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1786 		if (!early_pfn_valid(pfn))
1787 			continue;
1788 		page = pfn_to_page(pfn);
1789 		set_page_links(page, zone, nid, pfn);
1790 		init_page_count(page);
1791 		reset_page_mapcount(page);
1792 		SetPageReserved(page);
1793 		INIT_LIST_HEAD(&page->lru);
1794 #ifdef WANT_PAGE_VIRTUAL
1795 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1796 		if (!is_highmem_idx(zone))
1797 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1798 #endif
1799 	}
1800 }
1801 
1802 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1803 				unsigned long size)
1804 {
1805 	int order;
1806 	for (order = 0; order < MAX_ORDER ; order++) {
1807 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1808 		zone->free_area[order].nr_free = 0;
1809 	}
1810 }
1811 
1812 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1813 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1814 		unsigned long size)
1815 {
1816 	unsigned long snum = pfn_to_section_nr(pfn);
1817 	unsigned long end = pfn_to_section_nr(pfn + size);
1818 
1819 	if (FLAGS_HAS_NODE)
1820 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1821 	else
1822 		for (; snum <= end; snum++)
1823 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1824 }
1825 
1826 #ifndef __HAVE_ARCH_MEMMAP_INIT
1827 #define memmap_init(size, nid, zone, start_pfn) \
1828 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1829 #endif
1830 
1831 static int __cpuinit zone_batchsize(struct zone *zone)
1832 {
1833 	int batch;
1834 
1835 	/*
1836 	 * The per-cpu-pages pools are set to around 1000th of the
1837 	 * size of the zone.  But no more than 1/2 of a meg.
1838 	 *
1839 	 * OK, so we don't know how big the cache is.  So guess.
1840 	 */
1841 	batch = zone->present_pages / 1024;
1842 	if (batch * PAGE_SIZE > 512 * 1024)
1843 		batch = (512 * 1024) / PAGE_SIZE;
1844 	batch /= 4;		/* We effectively *= 4 below */
1845 	if (batch < 1)
1846 		batch = 1;
1847 
1848 	/*
1849 	 * Clamp the batch to a 2^n - 1 value. Having a power
1850 	 * of 2 value was found to be more likely to have
1851 	 * suboptimal cache aliasing properties in some cases.
1852 	 *
1853 	 * For example if 2 tasks are alternately allocating
1854 	 * batches of pages, one task can end up with a lot
1855 	 * of pages of one half of the possible page colors
1856 	 * and the other with pages of the other colors.
1857 	 */
1858 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1859 
1860 	return batch;
1861 }
1862 
1863 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1864 {
1865 	struct per_cpu_pages *pcp;
1866 
1867 	memset(p, 0, sizeof(*p));
1868 
1869 	pcp = &p->pcp[0];		/* hot */
1870 	pcp->count = 0;
1871 	pcp->high = 6 * batch;
1872 	pcp->batch = max(1UL, 1 * batch);
1873 	INIT_LIST_HEAD(&pcp->list);
1874 
1875 	pcp = &p->pcp[1];		/* cold*/
1876 	pcp->count = 0;
1877 	pcp->high = 2 * batch;
1878 	pcp->batch = max(1UL, batch/2);
1879 	INIT_LIST_HEAD(&pcp->list);
1880 }
1881 
1882 /*
1883  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1884  * to the value high for the pageset p.
1885  */
1886 
1887 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1888 				unsigned long high)
1889 {
1890 	struct per_cpu_pages *pcp;
1891 
1892 	pcp = &p->pcp[0]; /* hot list */
1893 	pcp->high = high;
1894 	pcp->batch = max(1UL, high/4);
1895 	if ((high/4) > (PAGE_SHIFT * 8))
1896 		pcp->batch = PAGE_SHIFT * 8;
1897 }
1898 
1899 
1900 #ifdef CONFIG_NUMA
1901 /*
1902  * Boot pageset table. One per cpu which is going to be used for all
1903  * zones and all nodes. The parameters will be set in such a way
1904  * that an item put on a list will immediately be handed over to
1905  * the buddy list. This is safe since pageset manipulation is done
1906  * with interrupts disabled.
1907  *
1908  * Some NUMA counter updates may also be caught by the boot pagesets.
1909  *
1910  * The boot_pagesets must be kept even after bootup is complete for
1911  * unused processors and/or zones. They do play a role for bootstrapping
1912  * hotplugged processors.
1913  *
1914  * zoneinfo_show() and maybe other functions do
1915  * not check if the processor is online before following the pageset pointer.
1916  * Other parts of the kernel may not check if the zone is available.
1917  */
1918 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1919 
1920 /*
1921  * Dynamically allocate memory for the
1922  * per cpu pageset array in struct zone.
1923  */
1924 static int __cpuinit process_zones(int cpu)
1925 {
1926 	struct zone *zone, *dzone;
1927 
1928 	for_each_zone(zone) {
1929 
1930 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1931 					 GFP_KERNEL, cpu_to_node(cpu));
1932 		if (!zone_pcp(zone, cpu))
1933 			goto bad;
1934 
1935 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1936 
1937 		if (percpu_pagelist_fraction)
1938 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1939 			 	(zone->present_pages / percpu_pagelist_fraction));
1940 	}
1941 
1942 	return 0;
1943 bad:
1944 	for_each_zone(dzone) {
1945 		if (dzone == zone)
1946 			break;
1947 		kfree(zone_pcp(dzone, cpu));
1948 		zone_pcp(dzone, cpu) = NULL;
1949 	}
1950 	return -ENOMEM;
1951 }
1952 
1953 static inline void free_zone_pagesets(int cpu)
1954 {
1955 	struct zone *zone;
1956 
1957 	for_each_zone(zone) {
1958 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1959 
1960 		zone_pcp(zone, cpu) = NULL;
1961 		kfree(pset);
1962 	}
1963 }
1964 
1965 static int pageset_cpuup_callback(struct notifier_block *nfb,
1966 		unsigned long action,
1967 		void *hcpu)
1968 {
1969 	int cpu = (long)hcpu;
1970 	int ret = NOTIFY_OK;
1971 
1972 	switch (action) {
1973 		case CPU_UP_PREPARE:
1974 			if (process_zones(cpu))
1975 				ret = NOTIFY_BAD;
1976 			break;
1977 		case CPU_UP_CANCELED:
1978 		case CPU_DEAD:
1979 			free_zone_pagesets(cpu);
1980 			break;
1981 		default:
1982 			break;
1983 	}
1984 	return ret;
1985 }
1986 
1987 static struct notifier_block pageset_notifier =
1988 	{ &pageset_cpuup_callback, NULL, 0 };
1989 
1990 void __init setup_per_cpu_pageset(void)
1991 {
1992 	int err;
1993 
1994 	/* Initialize per_cpu_pageset for cpu 0.
1995 	 * A cpuup callback will do this for every cpu
1996 	 * as it comes online
1997 	 */
1998 	err = process_zones(smp_processor_id());
1999 	BUG_ON(err);
2000 	register_cpu_notifier(&pageset_notifier);
2001 }
2002 
2003 #endif
2004 
2005 static __meminit
2006 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2007 {
2008 	int i;
2009 	struct pglist_data *pgdat = zone->zone_pgdat;
2010 
2011 	/*
2012 	 * The per-page waitqueue mechanism uses hashed waitqueues
2013 	 * per zone.
2014 	 */
2015 	zone->wait_table_size = wait_table_size(zone_size_pages);
2016 	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
2017 	zone->wait_table = (wait_queue_head_t *)
2018 		alloc_bootmem_node(pgdat, zone->wait_table_size
2019 					* sizeof(wait_queue_head_t));
2020 
2021 	for(i = 0; i < zone->wait_table_size; ++i)
2022 		init_waitqueue_head(zone->wait_table + i);
2023 }
2024 
2025 static __meminit void zone_pcp_init(struct zone *zone)
2026 {
2027 	int cpu;
2028 	unsigned long batch = zone_batchsize(zone);
2029 
2030 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2031 #ifdef CONFIG_NUMA
2032 		/* Early boot. Slab allocator not functional yet */
2033 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2034 		setup_pageset(&boot_pageset[cpu],0);
2035 #else
2036 		setup_pageset(zone_pcp(zone,cpu), batch);
2037 #endif
2038 	}
2039 	if (zone->present_pages)
2040 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2041 			zone->name, zone->present_pages, batch);
2042 }
2043 
2044 static __meminit void init_currently_empty_zone(struct zone *zone,
2045 		unsigned long zone_start_pfn, unsigned long size)
2046 {
2047 	struct pglist_data *pgdat = zone->zone_pgdat;
2048 
2049 	zone_wait_table_init(zone, size);
2050 	pgdat->nr_zones = zone_idx(zone) + 1;
2051 
2052 	zone->zone_start_pfn = zone_start_pfn;
2053 
2054 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2055 
2056 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2057 }
2058 
2059 /*
2060  * Set up the zone data structures:
2061  *   - mark all pages reserved
2062  *   - mark all memory queues empty
2063  *   - clear the memory bitmaps
2064  */
2065 static void __init free_area_init_core(struct pglist_data *pgdat,
2066 		unsigned long *zones_size, unsigned long *zholes_size)
2067 {
2068 	unsigned long j;
2069 	int nid = pgdat->node_id;
2070 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2071 
2072 	pgdat_resize_init(pgdat);
2073 	pgdat->nr_zones = 0;
2074 	init_waitqueue_head(&pgdat->kswapd_wait);
2075 	pgdat->kswapd_max_order = 0;
2076 
2077 	for (j = 0; j < MAX_NR_ZONES; j++) {
2078 		struct zone *zone = pgdat->node_zones + j;
2079 		unsigned long size, realsize;
2080 
2081 		realsize = size = zones_size[j];
2082 		if (zholes_size)
2083 			realsize -= zholes_size[j];
2084 
2085 		if (j < ZONE_HIGHMEM)
2086 			nr_kernel_pages += realsize;
2087 		nr_all_pages += realsize;
2088 
2089 		zone->spanned_pages = size;
2090 		zone->present_pages = realsize;
2091 		zone->name = zone_names[j];
2092 		spin_lock_init(&zone->lock);
2093 		spin_lock_init(&zone->lru_lock);
2094 		zone_seqlock_init(zone);
2095 		zone->zone_pgdat = pgdat;
2096 		zone->free_pages = 0;
2097 
2098 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2099 
2100 		zone_pcp_init(zone);
2101 		INIT_LIST_HEAD(&zone->active_list);
2102 		INIT_LIST_HEAD(&zone->inactive_list);
2103 		zone->nr_scan_active = 0;
2104 		zone->nr_scan_inactive = 0;
2105 		zone->nr_active = 0;
2106 		zone->nr_inactive = 0;
2107 		atomic_set(&zone->reclaim_in_progress, 0);
2108 		if (!size)
2109 			continue;
2110 
2111 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2112 		init_currently_empty_zone(zone, zone_start_pfn, size);
2113 		zone_start_pfn += size;
2114 	}
2115 }
2116 
2117 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2118 {
2119 	/* Skip empty nodes */
2120 	if (!pgdat->node_spanned_pages)
2121 		return;
2122 
2123 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2124 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2125 	if (!pgdat->node_mem_map) {
2126 		unsigned long size;
2127 		struct page *map;
2128 
2129 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2130 		map = alloc_remap(pgdat->node_id, size);
2131 		if (!map)
2132 			map = alloc_bootmem_node(pgdat, size);
2133 		pgdat->node_mem_map = map;
2134 	}
2135 #ifdef CONFIG_FLATMEM
2136 	/*
2137 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2138 	 */
2139 	if (pgdat == NODE_DATA(0))
2140 		mem_map = NODE_DATA(0)->node_mem_map;
2141 #endif
2142 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2143 }
2144 
2145 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2146 		unsigned long *zones_size, unsigned long node_start_pfn,
2147 		unsigned long *zholes_size)
2148 {
2149 	pgdat->node_id = nid;
2150 	pgdat->node_start_pfn = node_start_pfn;
2151 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2152 
2153 	alloc_node_mem_map(pgdat);
2154 
2155 	free_area_init_core(pgdat, zones_size, zholes_size);
2156 }
2157 
2158 #ifndef CONFIG_NEED_MULTIPLE_NODES
2159 static bootmem_data_t contig_bootmem_data;
2160 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2161 
2162 EXPORT_SYMBOL(contig_page_data);
2163 #endif
2164 
2165 void __init free_area_init(unsigned long *zones_size)
2166 {
2167 	free_area_init_node(0, NODE_DATA(0), zones_size,
2168 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2169 }
2170 
2171 #ifdef CONFIG_PROC_FS
2172 
2173 #include <linux/seq_file.h>
2174 
2175 static void *frag_start(struct seq_file *m, loff_t *pos)
2176 {
2177 	pg_data_t *pgdat;
2178 	loff_t node = *pos;
2179 	for (pgdat = first_online_pgdat();
2180 	     pgdat && node;
2181 	     pgdat = next_online_pgdat(pgdat))
2182 		--node;
2183 
2184 	return pgdat;
2185 }
2186 
2187 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2188 {
2189 	pg_data_t *pgdat = (pg_data_t *)arg;
2190 
2191 	(*pos)++;
2192 	return next_online_pgdat(pgdat);
2193 }
2194 
2195 static void frag_stop(struct seq_file *m, void *arg)
2196 {
2197 }
2198 
2199 /*
2200  * This walks the free areas for each zone.
2201  */
2202 static int frag_show(struct seq_file *m, void *arg)
2203 {
2204 	pg_data_t *pgdat = (pg_data_t *)arg;
2205 	struct zone *zone;
2206 	struct zone *node_zones = pgdat->node_zones;
2207 	unsigned long flags;
2208 	int order;
2209 
2210 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2211 		if (!populated_zone(zone))
2212 			continue;
2213 
2214 		spin_lock_irqsave(&zone->lock, flags);
2215 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2216 		for (order = 0; order < MAX_ORDER; ++order)
2217 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2218 		spin_unlock_irqrestore(&zone->lock, flags);
2219 		seq_putc(m, '\n');
2220 	}
2221 	return 0;
2222 }
2223 
2224 struct seq_operations fragmentation_op = {
2225 	.start	= frag_start,
2226 	.next	= frag_next,
2227 	.stop	= frag_stop,
2228 	.show	= frag_show,
2229 };
2230 
2231 /*
2232  * Output information about zones in @pgdat.
2233  */
2234 static int zoneinfo_show(struct seq_file *m, void *arg)
2235 {
2236 	pg_data_t *pgdat = arg;
2237 	struct zone *zone;
2238 	struct zone *node_zones = pgdat->node_zones;
2239 	unsigned long flags;
2240 
2241 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2242 		int i;
2243 
2244 		if (!populated_zone(zone))
2245 			continue;
2246 
2247 		spin_lock_irqsave(&zone->lock, flags);
2248 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2249 		seq_printf(m,
2250 			   "\n  pages free     %lu"
2251 			   "\n        min      %lu"
2252 			   "\n        low      %lu"
2253 			   "\n        high     %lu"
2254 			   "\n        active   %lu"
2255 			   "\n        inactive %lu"
2256 			   "\n        scanned  %lu (a: %lu i: %lu)"
2257 			   "\n        spanned  %lu"
2258 			   "\n        present  %lu",
2259 			   zone->free_pages,
2260 			   zone->pages_min,
2261 			   zone->pages_low,
2262 			   zone->pages_high,
2263 			   zone->nr_active,
2264 			   zone->nr_inactive,
2265 			   zone->pages_scanned,
2266 			   zone->nr_scan_active, zone->nr_scan_inactive,
2267 			   zone->spanned_pages,
2268 			   zone->present_pages);
2269 		seq_printf(m,
2270 			   "\n        protection: (%lu",
2271 			   zone->lowmem_reserve[0]);
2272 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2273 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2274 		seq_printf(m,
2275 			   ")"
2276 			   "\n  pagesets");
2277 		for_each_online_cpu(i) {
2278 			struct per_cpu_pageset *pageset;
2279 			int j;
2280 
2281 			pageset = zone_pcp(zone, i);
2282 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2283 				if (pageset->pcp[j].count)
2284 					break;
2285 			}
2286 			if (j == ARRAY_SIZE(pageset->pcp))
2287 				continue;
2288 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2289 				seq_printf(m,
2290 					   "\n    cpu: %i pcp: %i"
2291 					   "\n              count: %i"
2292 					   "\n              high:  %i"
2293 					   "\n              batch: %i",
2294 					   i, j,
2295 					   pageset->pcp[j].count,
2296 					   pageset->pcp[j].high,
2297 					   pageset->pcp[j].batch);
2298 			}
2299 #ifdef CONFIG_NUMA
2300 			seq_printf(m,
2301 				   "\n            numa_hit:       %lu"
2302 				   "\n            numa_miss:      %lu"
2303 				   "\n            numa_foreign:   %lu"
2304 				   "\n            interleave_hit: %lu"
2305 				   "\n            local_node:     %lu"
2306 				   "\n            other_node:     %lu",
2307 				   pageset->numa_hit,
2308 				   pageset->numa_miss,
2309 				   pageset->numa_foreign,
2310 				   pageset->interleave_hit,
2311 				   pageset->local_node,
2312 				   pageset->other_node);
2313 #endif
2314 		}
2315 		seq_printf(m,
2316 			   "\n  all_unreclaimable: %u"
2317 			   "\n  prev_priority:     %i"
2318 			   "\n  temp_priority:     %i"
2319 			   "\n  start_pfn:         %lu",
2320 			   zone->all_unreclaimable,
2321 			   zone->prev_priority,
2322 			   zone->temp_priority,
2323 			   zone->zone_start_pfn);
2324 		spin_unlock_irqrestore(&zone->lock, flags);
2325 		seq_putc(m, '\n');
2326 	}
2327 	return 0;
2328 }
2329 
2330 struct seq_operations zoneinfo_op = {
2331 	.start	= frag_start, /* iterate over all zones. The same as in
2332 			       * fragmentation. */
2333 	.next	= frag_next,
2334 	.stop	= frag_stop,
2335 	.show	= zoneinfo_show,
2336 };
2337 
2338 static char *vmstat_text[] = {
2339 	"nr_dirty",
2340 	"nr_writeback",
2341 	"nr_unstable",
2342 	"nr_page_table_pages",
2343 	"nr_mapped",
2344 	"nr_slab",
2345 
2346 	"pgpgin",
2347 	"pgpgout",
2348 	"pswpin",
2349 	"pswpout",
2350 
2351 	"pgalloc_high",
2352 	"pgalloc_normal",
2353 	"pgalloc_dma32",
2354 	"pgalloc_dma",
2355 
2356 	"pgfree",
2357 	"pgactivate",
2358 	"pgdeactivate",
2359 
2360 	"pgfault",
2361 	"pgmajfault",
2362 
2363 	"pgrefill_high",
2364 	"pgrefill_normal",
2365 	"pgrefill_dma32",
2366 	"pgrefill_dma",
2367 
2368 	"pgsteal_high",
2369 	"pgsteal_normal",
2370 	"pgsteal_dma32",
2371 	"pgsteal_dma",
2372 
2373 	"pgscan_kswapd_high",
2374 	"pgscan_kswapd_normal",
2375 	"pgscan_kswapd_dma32",
2376 	"pgscan_kswapd_dma",
2377 
2378 	"pgscan_direct_high",
2379 	"pgscan_direct_normal",
2380 	"pgscan_direct_dma32",
2381 	"pgscan_direct_dma",
2382 
2383 	"pginodesteal",
2384 	"slabs_scanned",
2385 	"kswapd_steal",
2386 	"kswapd_inodesteal",
2387 	"pageoutrun",
2388 	"allocstall",
2389 
2390 	"pgrotated",
2391 	"nr_bounce",
2392 };
2393 
2394 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2395 {
2396 	struct page_state *ps;
2397 
2398 	if (*pos >= ARRAY_SIZE(vmstat_text))
2399 		return NULL;
2400 
2401 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2402 	m->private = ps;
2403 	if (!ps)
2404 		return ERR_PTR(-ENOMEM);
2405 	get_full_page_state(ps);
2406 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2407 	ps->pgpgout /= 2;
2408 	return (unsigned long *)ps + *pos;
2409 }
2410 
2411 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2412 {
2413 	(*pos)++;
2414 	if (*pos >= ARRAY_SIZE(vmstat_text))
2415 		return NULL;
2416 	return (unsigned long *)m->private + *pos;
2417 }
2418 
2419 static int vmstat_show(struct seq_file *m, void *arg)
2420 {
2421 	unsigned long *l = arg;
2422 	unsigned long off = l - (unsigned long *)m->private;
2423 
2424 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2425 	return 0;
2426 }
2427 
2428 static void vmstat_stop(struct seq_file *m, void *arg)
2429 {
2430 	kfree(m->private);
2431 	m->private = NULL;
2432 }
2433 
2434 struct seq_operations vmstat_op = {
2435 	.start	= vmstat_start,
2436 	.next	= vmstat_next,
2437 	.stop	= vmstat_stop,
2438 	.show	= vmstat_show,
2439 };
2440 
2441 #endif /* CONFIG_PROC_FS */
2442 
2443 #ifdef CONFIG_HOTPLUG_CPU
2444 static int page_alloc_cpu_notify(struct notifier_block *self,
2445 				 unsigned long action, void *hcpu)
2446 {
2447 	int cpu = (unsigned long)hcpu;
2448 	long *count;
2449 	unsigned long *src, *dest;
2450 
2451 	if (action == CPU_DEAD) {
2452 		int i;
2453 
2454 		/* Drain local pagecache count. */
2455 		count = &per_cpu(nr_pagecache_local, cpu);
2456 		atomic_add(*count, &nr_pagecache);
2457 		*count = 0;
2458 		local_irq_disable();
2459 		__drain_pages(cpu);
2460 
2461 		/* Add dead cpu's page_states to our own. */
2462 		dest = (unsigned long *)&__get_cpu_var(page_states);
2463 		src = (unsigned long *)&per_cpu(page_states, cpu);
2464 
2465 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2466 				i++) {
2467 			dest[i] += src[i];
2468 			src[i] = 0;
2469 		}
2470 
2471 		local_irq_enable();
2472 	}
2473 	return NOTIFY_OK;
2474 }
2475 #endif /* CONFIG_HOTPLUG_CPU */
2476 
2477 void __init page_alloc_init(void)
2478 {
2479 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2480 }
2481 
2482 /*
2483  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2484  *	or min_free_kbytes changes.
2485  */
2486 static void calculate_totalreserve_pages(void)
2487 {
2488 	struct pglist_data *pgdat;
2489 	unsigned long reserve_pages = 0;
2490 	int i, j;
2491 
2492 	for_each_online_pgdat(pgdat) {
2493 		for (i = 0; i < MAX_NR_ZONES; i++) {
2494 			struct zone *zone = pgdat->node_zones + i;
2495 			unsigned long max = 0;
2496 
2497 			/* Find valid and maximum lowmem_reserve in the zone */
2498 			for (j = i; j < MAX_NR_ZONES; j++) {
2499 				if (zone->lowmem_reserve[j] > max)
2500 					max = zone->lowmem_reserve[j];
2501 			}
2502 
2503 			/* we treat pages_high as reserved pages. */
2504 			max += zone->pages_high;
2505 
2506 			if (max > zone->present_pages)
2507 				max = zone->present_pages;
2508 			reserve_pages += max;
2509 		}
2510 	}
2511 	totalreserve_pages = reserve_pages;
2512 }
2513 
2514 /*
2515  * setup_per_zone_lowmem_reserve - called whenever
2516  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2517  *	has a correct pages reserved value, so an adequate number of
2518  *	pages are left in the zone after a successful __alloc_pages().
2519  */
2520 static void setup_per_zone_lowmem_reserve(void)
2521 {
2522 	struct pglist_data *pgdat;
2523 	int j, idx;
2524 
2525 	for_each_online_pgdat(pgdat) {
2526 		for (j = 0; j < MAX_NR_ZONES; j++) {
2527 			struct zone *zone = pgdat->node_zones + j;
2528 			unsigned long present_pages = zone->present_pages;
2529 
2530 			zone->lowmem_reserve[j] = 0;
2531 
2532 			for (idx = j-1; idx >= 0; idx--) {
2533 				struct zone *lower_zone;
2534 
2535 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2536 					sysctl_lowmem_reserve_ratio[idx] = 1;
2537 
2538 				lower_zone = pgdat->node_zones + idx;
2539 				lower_zone->lowmem_reserve[j] = present_pages /
2540 					sysctl_lowmem_reserve_ratio[idx];
2541 				present_pages += lower_zone->present_pages;
2542 			}
2543 		}
2544 	}
2545 
2546 	/* update totalreserve_pages */
2547 	calculate_totalreserve_pages();
2548 }
2549 
2550 /*
2551  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2552  *	that the pages_{min,low,high} values for each zone are set correctly
2553  *	with respect to min_free_kbytes.
2554  */
2555 void setup_per_zone_pages_min(void)
2556 {
2557 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2558 	unsigned long lowmem_pages = 0;
2559 	struct zone *zone;
2560 	unsigned long flags;
2561 
2562 	/* Calculate total number of !ZONE_HIGHMEM pages */
2563 	for_each_zone(zone) {
2564 		if (!is_highmem(zone))
2565 			lowmem_pages += zone->present_pages;
2566 	}
2567 
2568 	for_each_zone(zone) {
2569 		unsigned long tmp;
2570 		spin_lock_irqsave(&zone->lru_lock, flags);
2571 		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2572 		if (is_highmem(zone)) {
2573 			/*
2574 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2575 			 * need highmem pages, so cap pages_min to a small
2576 			 * value here.
2577 			 *
2578 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2579 			 * deltas controls asynch page reclaim, and so should
2580 			 * not be capped for highmem.
2581 			 */
2582 			int min_pages;
2583 
2584 			min_pages = zone->present_pages / 1024;
2585 			if (min_pages < SWAP_CLUSTER_MAX)
2586 				min_pages = SWAP_CLUSTER_MAX;
2587 			if (min_pages > 128)
2588 				min_pages = 128;
2589 			zone->pages_min = min_pages;
2590 		} else {
2591 			/*
2592 			 * If it's a lowmem zone, reserve a number of pages
2593 			 * proportionate to the zone's size.
2594 			 */
2595 			zone->pages_min = tmp;
2596 		}
2597 
2598 		zone->pages_low   = zone->pages_min + tmp / 4;
2599 		zone->pages_high  = zone->pages_min + tmp / 2;
2600 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2601 	}
2602 
2603 	/* update totalreserve_pages */
2604 	calculate_totalreserve_pages();
2605 }
2606 
2607 /*
2608  * Initialise min_free_kbytes.
2609  *
2610  * For small machines we want it small (128k min).  For large machines
2611  * we want it large (64MB max).  But it is not linear, because network
2612  * bandwidth does not increase linearly with machine size.  We use
2613  *
2614  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2615  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2616  *
2617  * which yields
2618  *
2619  * 16MB:	512k
2620  * 32MB:	724k
2621  * 64MB:	1024k
2622  * 128MB:	1448k
2623  * 256MB:	2048k
2624  * 512MB:	2896k
2625  * 1024MB:	4096k
2626  * 2048MB:	5792k
2627  * 4096MB:	8192k
2628  * 8192MB:	11584k
2629  * 16384MB:	16384k
2630  */
2631 static int __init init_per_zone_pages_min(void)
2632 {
2633 	unsigned long lowmem_kbytes;
2634 
2635 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2636 
2637 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2638 	if (min_free_kbytes < 128)
2639 		min_free_kbytes = 128;
2640 	if (min_free_kbytes > 65536)
2641 		min_free_kbytes = 65536;
2642 	setup_per_zone_pages_min();
2643 	setup_per_zone_lowmem_reserve();
2644 	return 0;
2645 }
2646 module_init(init_per_zone_pages_min)
2647 
2648 /*
2649  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2650  *	that we can call two helper functions whenever min_free_kbytes
2651  *	changes.
2652  */
2653 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2654 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2655 {
2656 	proc_dointvec(table, write, file, buffer, length, ppos);
2657 	setup_per_zone_pages_min();
2658 	return 0;
2659 }
2660 
2661 /*
2662  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2663  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2664  *	whenever sysctl_lowmem_reserve_ratio changes.
2665  *
2666  * The reserve ratio obviously has absolutely no relation with the
2667  * pages_min watermarks. The lowmem reserve ratio can only make sense
2668  * if in function of the boot time zone sizes.
2669  */
2670 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2671 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2672 {
2673 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2674 	setup_per_zone_lowmem_reserve();
2675 	return 0;
2676 }
2677 
2678 /*
2679  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2680  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2681  * can have before it gets flushed back to buddy allocator.
2682  */
2683 
2684 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2685 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2686 {
2687 	struct zone *zone;
2688 	unsigned int cpu;
2689 	int ret;
2690 
2691 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2692 	if (!write || (ret == -EINVAL))
2693 		return ret;
2694 	for_each_zone(zone) {
2695 		for_each_online_cpu(cpu) {
2696 			unsigned long  high;
2697 			high = zone->present_pages / percpu_pagelist_fraction;
2698 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2699 		}
2700 	}
2701 	return 0;
2702 }
2703 
2704 __initdata int hashdist = HASHDIST_DEFAULT;
2705 
2706 #ifdef CONFIG_NUMA
2707 static int __init set_hashdist(char *str)
2708 {
2709 	if (!str)
2710 		return 0;
2711 	hashdist = simple_strtoul(str, &str, 0);
2712 	return 1;
2713 }
2714 __setup("hashdist=", set_hashdist);
2715 #endif
2716 
2717 /*
2718  * allocate a large system hash table from bootmem
2719  * - it is assumed that the hash table must contain an exact power-of-2
2720  *   quantity of entries
2721  * - limit is the number of hash buckets, not the total allocation size
2722  */
2723 void *__init alloc_large_system_hash(const char *tablename,
2724 				     unsigned long bucketsize,
2725 				     unsigned long numentries,
2726 				     int scale,
2727 				     int flags,
2728 				     unsigned int *_hash_shift,
2729 				     unsigned int *_hash_mask,
2730 				     unsigned long limit)
2731 {
2732 	unsigned long long max = limit;
2733 	unsigned long log2qty, size;
2734 	void *table = NULL;
2735 
2736 	/* allow the kernel cmdline to have a say */
2737 	if (!numentries) {
2738 		/* round applicable memory size up to nearest megabyte */
2739 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2740 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2741 		numentries >>= 20 - PAGE_SHIFT;
2742 		numentries <<= 20 - PAGE_SHIFT;
2743 
2744 		/* limit to 1 bucket per 2^scale bytes of low memory */
2745 		if (scale > PAGE_SHIFT)
2746 			numentries >>= (scale - PAGE_SHIFT);
2747 		else
2748 			numentries <<= (PAGE_SHIFT - scale);
2749 	}
2750 	numentries = roundup_pow_of_two(numentries);
2751 
2752 	/* limit allocation size to 1/16 total memory by default */
2753 	if (max == 0) {
2754 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2755 		do_div(max, bucketsize);
2756 	}
2757 
2758 	if (numentries > max)
2759 		numentries = max;
2760 
2761 	log2qty = long_log2(numentries);
2762 
2763 	do {
2764 		size = bucketsize << log2qty;
2765 		if (flags & HASH_EARLY)
2766 			table = alloc_bootmem(size);
2767 		else if (hashdist)
2768 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2769 		else {
2770 			unsigned long order;
2771 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2772 				;
2773 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2774 		}
2775 	} while (!table && size > PAGE_SIZE && --log2qty);
2776 
2777 	if (!table)
2778 		panic("Failed to allocate %s hash table\n", tablename);
2779 
2780 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2781 	       tablename,
2782 	       (1U << log2qty),
2783 	       long_log2(size) - PAGE_SHIFT,
2784 	       size);
2785 
2786 	if (_hash_shift)
2787 		*_hash_shift = log2qty;
2788 	if (_hash_mask)
2789 		*_hash_mask = (1 << log2qty) - 1;
2790 
2791 	return table;
2792 }
2793 
2794 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2795 /*
2796  * pfn <-> page translation. out-of-line version.
2797  * (see asm-generic/memory_model.h)
2798  */
2799 #if defined(CONFIG_FLATMEM)
2800 struct page *pfn_to_page(unsigned long pfn)
2801 {
2802 	return mem_map + (pfn - ARCH_PFN_OFFSET);
2803 }
2804 unsigned long page_to_pfn(struct page *page)
2805 {
2806 	return (page - mem_map) + ARCH_PFN_OFFSET;
2807 }
2808 #elif defined(CONFIG_DISCONTIGMEM)
2809 struct page *pfn_to_page(unsigned long pfn)
2810 {
2811 	int nid = arch_pfn_to_nid(pfn);
2812 	return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2813 }
2814 unsigned long page_to_pfn(struct page *page)
2815 {
2816 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2817 	return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
2818 }
2819 #elif defined(CONFIG_SPARSEMEM)
2820 struct page *pfn_to_page(unsigned long pfn)
2821 {
2822 	return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2823 }
2824 
2825 unsigned long page_to_pfn(struct page *page)
2826 {
2827 	long section_id = page_to_section(page);
2828 	return page - __section_mem_map_addr(__nr_to_section(section_id));
2829 }
2830 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2831 EXPORT_SYMBOL(pfn_to_page);
2832 EXPORT_SYMBOL(page_to_pfn);
2833 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2834