1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 /* 45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 46 * initializer cleaner 47 */ 48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 49 EXPORT_SYMBOL(node_online_map); 50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 51 EXPORT_SYMBOL(node_possible_map); 52 unsigned long totalram_pages __read_mostly; 53 unsigned long totalhigh_pages __read_mostly; 54 unsigned long totalreserve_pages __read_mostly; 55 long nr_swap_pages; 56 int percpu_pagelist_fraction; 57 58 static void __free_pages_ok(struct page *page, unsigned int order); 59 60 /* 61 * results with 256, 32 in the lowmem_reserve sysctl: 62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 63 * 1G machine -> (16M dma, 784M normal, 224M high) 64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 67 * 68 * TBD: should special case ZONE_DMA32 machines here - in those we normally 69 * don't need any ZONE_NORMAL reservation 70 */ 71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 72 73 EXPORT_SYMBOL(totalram_pages); 74 75 /* 76 * Used by page_zone() to look up the address of the struct zone whose 77 * id is encoded in the upper bits of page->flags 78 */ 79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 80 EXPORT_SYMBOL(zone_table); 81 82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 83 int min_free_kbytes = 1024; 84 85 unsigned long __initdata nr_kernel_pages; 86 unsigned long __initdata nr_all_pages; 87 88 #ifdef CONFIG_DEBUG_VM 89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 90 { 91 int ret = 0; 92 unsigned seq; 93 unsigned long pfn = page_to_pfn(page); 94 95 do { 96 seq = zone_span_seqbegin(zone); 97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 98 ret = 1; 99 else if (pfn < zone->zone_start_pfn) 100 ret = 1; 101 } while (zone_span_seqretry(zone, seq)); 102 103 return ret; 104 } 105 106 static int page_is_consistent(struct zone *zone, struct page *page) 107 { 108 #ifdef CONFIG_HOLES_IN_ZONE 109 if (!pfn_valid(page_to_pfn(page))) 110 return 0; 111 #endif 112 if (zone != page_zone(page)) 113 return 0; 114 115 return 1; 116 } 117 /* 118 * Temporary debugging check for pages not lying within a given zone. 119 */ 120 static int bad_range(struct zone *zone, struct page *page) 121 { 122 if (page_outside_zone_boundaries(zone, page)) 123 return 1; 124 if (!page_is_consistent(zone, page)) 125 return 1; 126 127 return 0; 128 } 129 130 #else 131 static inline int bad_range(struct zone *zone, struct page *page) 132 { 133 return 0; 134 } 135 #endif 136 137 static void bad_page(struct page *page) 138 { 139 printk(KERN_EMERG "Bad page state in process '%s'\n" 140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 142 KERN_EMERG "Backtrace:\n", 143 current->comm, page, (int)(2*sizeof(unsigned long)), 144 (unsigned long)page->flags, page->mapping, 145 page_mapcount(page), page_count(page)); 146 dump_stack(); 147 page->flags &= ~(1 << PG_lru | 148 1 << PG_private | 149 1 << PG_locked | 150 1 << PG_active | 151 1 << PG_dirty | 152 1 << PG_reclaim | 153 1 << PG_slab | 154 1 << PG_swapcache | 155 1 << PG_writeback | 156 1 << PG_buddy ); 157 set_page_count(page, 0); 158 reset_page_mapcount(page); 159 page->mapping = NULL; 160 add_taint(TAINT_BAD_PAGE); 161 } 162 163 /* 164 * Higher-order pages are called "compound pages". They are structured thusly: 165 * 166 * The first PAGE_SIZE page is called the "head page". 167 * 168 * The remaining PAGE_SIZE pages are called "tail pages". 169 * 170 * All pages have PG_compound set. All pages have their ->private pointing at 171 * the head page (even the head page has this). 172 * 173 * The first tail page's ->lru.next holds the address of the compound page's 174 * put_page() function. Its ->lru.prev holds the order of allocation. 175 * This usage means that zero-order pages may not be compound. 176 */ 177 178 static void free_compound_page(struct page *page) 179 { 180 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 181 } 182 183 static void prep_compound_page(struct page *page, unsigned long order) 184 { 185 int i; 186 int nr_pages = 1 << order; 187 188 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 189 page[1].lru.prev = (void *)order; 190 for (i = 0; i < nr_pages; i++) { 191 struct page *p = page + i; 192 193 __SetPageCompound(p); 194 set_page_private(p, (unsigned long)page); 195 } 196 } 197 198 static void destroy_compound_page(struct page *page, unsigned long order) 199 { 200 int i; 201 int nr_pages = 1 << order; 202 203 if (unlikely((unsigned long)page[1].lru.prev != order)) 204 bad_page(page); 205 206 for (i = 0; i < nr_pages; i++) { 207 struct page *p = page + i; 208 209 if (unlikely(!PageCompound(p) | 210 (page_private(p) != (unsigned long)page))) 211 bad_page(page); 212 __ClearPageCompound(p); 213 } 214 } 215 216 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 217 { 218 int i; 219 220 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 221 /* 222 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 223 * and __GFP_HIGHMEM from hard or soft interrupt context. 224 */ 225 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 226 for (i = 0; i < (1 << order); i++) 227 clear_highpage(page + i); 228 } 229 230 /* 231 * function for dealing with page's order in buddy system. 232 * zone->lock is already acquired when we use these. 233 * So, we don't need atomic page->flags operations here. 234 */ 235 static inline unsigned long page_order(struct page *page) 236 { 237 return page_private(page); 238 } 239 240 static inline void set_page_order(struct page *page, int order) 241 { 242 set_page_private(page, order); 243 __SetPageBuddy(page); 244 } 245 246 static inline void rmv_page_order(struct page *page) 247 { 248 __ClearPageBuddy(page); 249 set_page_private(page, 0); 250 } 251 252 /* 253 * Locate the struct page for both the matching buddy in our 254 * pair (buddy1) and the combined O(n+1) page they form (page). 255 * 256 * 1) Any buddy B1 will have an order O twin B2 which satisfies 257 * the following equation: 258 * B2 = B1 ^ (1 << O) 259 * For example, if the starting buddy (buddy2) is #8 its order 260 * 1 buddy is #10: 261 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 262 * 263 * 2) Any buddy B will have an order O+1 parent P which 264 * satisfies the following equation: 265 * P = B & ~(1 << O) 266 * 267 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 268 */ 269 static inline struct page * 270 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 271 { 272 unsigned long buddy_idx = page_idx ^ (1 << order); 273 274 return page + (buddy_idx - page_idx); 275 } 276 277 static inline unsigned long 278 __find_combined_index(unsigned long page_idx, unsigned int order) 279 { 280 return (page_idx & ~(1 << order)); 281 } 282 283 /* 284 * This function checks whether a page is free && is the buddy 285 * we can do coalesce a page and its buddy if 286 * (a) the buddy is not in a hole && 287 * (b) the buddy is in the buddy system && 288 * (c) a page and its buddy have the same order. 289 * 290 * For recording whether a page is in the buddy system, we use PG_buddy. 291 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 292 * 293 * For recording page's order, we use page_private(page). 294 */ 295 static inline int page_is_buddy(struct page *page, int order) 296 { 297 #ifdef CONFIG_HOLES_IN_ZONE 298 if (!pfn_valid(page_to_pfn(page))) 299 return 0; 300 #endif 301 302 if (PageBuddy(page) && page_order(page) == order) { 303 BUG_ON(page_count(page) != 0); 304 return 1; 305 } 306 return 0; 307 } 308 309 /* 310 * Freeing function for a buddy system allocator. 311 * 312 * The concept of a buddy system is to maintain direct-mapped table 313 * (containing bit values) for memory blocks of various "orders". 314 * The bottom level table contains the map for the smallest allocatable 315 * units of memory (here, pages), and each level above it describes 316 * pairs of units from the levels below, hence, "buddies". 317 * At a high level, all that happens here is marking the table entry 318 * at the bottom level available, and propagating the changes upward 319 * as necessary, plus some accounting needed to play nicely with other 320 * parts of the VM system. 321 * At each level, we keep a list of pages, which are heads of continuous 322 * free pages of length of (1 << order) and marked with PG_buddy. Page's 323 * order is recorded in page_private(page) field. 324 * So when we are allocating or freeing one, we can derive the state of the 325 * other. That is, if we allocate a small block, and both were 326 * free, the remainder of the region must be split into blocks. 327 * If a block is freed, and its buddy is also free, then this 328 * triggers coalescing into a block of larger size. 329 * 330 * -- wli 331 */ 332 333 static inline void __free_one_page(struct page *page, 334 struct zone *zone, unsigned int order) 335 { 336 unsigned long page_idx; 337 int order_size = 1 << order; 338 339 if (unlikely(PageCompound(page))) 340 destroy_compound_page(page, order); 341 342 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 343 344 BUG_ON(page_idx & (order_size - 1)); 345 BUG_ON(bad_range(zone, page)); 346 347 zone->free_pages += order_size; 348 while (order < MAX_ORDER-1) { 349 unsigned long combined_idx; 350 struct free_area *area; 351 struct page *buddy; 352 353 buddy = __page_find_buddy(page, page_idx, order); 354 if (!page_is_buddy(buddy, order)) 355 break; /* Move the buddy up one level. */ 356 357 list_del(&buddy->lru); 358 area = zone->free_area + order; 359 area->nr_free--; 360 rmv_page_order(buddy); 361 combined_idx = __find_combined_index(page_idx, order); 362 page = page + (combined_idx - page_idx); 363 page_idx = combined_idx; 364 order++; 365 } 366 set_page_order(page, order); 367 list_add(&page->lru, &zone->free_area[order].free_list); 368 zone->free_area[order].nr_free++; 369 } 370 371 static inline int free_pages_check(struct page *page) 372 { 373 if (unlikely(page_mapcount(page) | 374 (page->mapping != NULL) | 375 (page_count(page) != 0) | 376 (page->flags & ( 377 1 << PG_lru | 378 1 << PG_private | 379 1 << PG_locked | 380 1 << PG_active | 381 1 << PG_reclaim | 382 1 << PG_slab | 383 1 << PG_swapcache | 384 1 << PG_writeback | 385 1 << PG_reserved | 386 1 << PG_buddy )))) 387 bad_page(page); 388 if (PageDirty(page)) 389 __ClearPageDirty(page); 390 /* 391 * For now, we report if PG_reserved was found set, but do not 392 * clear it, and do not free the page. But we shall soon need 393 * to do more, for when the ZERO_PAGE count wraps negative. 394 */ 395 return PageReserved(page); 396 } 397 398 /* 399 * Frees a list of pages. 400 * Assumes all pages on list are in same zone, and of same order. 401 * count is the number of pages to free. 402 * 403 * If the zone was previously in an "all pages pinned" state then look to 404 * see if this freeing clears that state. 405 * 406 * And clear the zone's pages_scanned counter, to hold off the "all pages are 407 * pinned" detection logic. 408 */ 409 static void free_pages_bulk(struct zone *zone, int count, 410 struct list_head *list, int order) 411 { 412 spin_lock(&zone->lock); 413 zone->all_unreclaimable = 0; 414 zone->pages_scanned = 0; 415 while (count--) { 416 struct page *page; 417 418 BUG_ON(list_empty(list)); 419 page = list_entry(list->prev, struct page, lru); 420 /* have to delete it as __free_one_page list manipulates */ 421 list_del(&page->lru); 422 __free_one_page(page, zone, order); 423 } 424 spin_unlock(&zone->lock); 425 } 426 427 static void free_one_page(struct zone *zone, struct page *page, int order) 428 { 429 LIST_HEAD(list); 430 list_add(&page->lru, &list); 431 free_pages_bulk(zone, 1, &list, order); 432 } 433 434 static void __free_pages_ok(struct page *page, unsigned int order) 435 { 436 unsigned long flags; 437 int i; 438 int reserved = 0; 439 440 arch_free_page(page, order); 441 if (!PageHighMem(page)) 442 mutex_debug_check_no_locks_freed(page_address(page), 443 PAGE_SIZE<<order); 444 445 for (i = 0 ; i < (1 << order) ; ++i) 446 reserved += free_pages_check(page + i); 447 if (reserved) 448 return; 449 450 kernel_map_pages(page, 1 << order, 0); 451 local_irq_save(flags); 452 __mod_page_state(pgfree, 1 << order); 453 free_one_page(page_zone(page), page, order); 454 local_irq_restore(flags); 455 } 456 457 /* 458 * permit the bootmem allocator to evade page validation on high-order frees 459 */ 460 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 461 { 462 if (order == 0) { 463 __ClearPageReserved(page); 464 set_page_count(page, 0); 465 set_page_refcounted(page); 466 __free_page(page); 467 } else { 468 int loop; 469 470 prefetchw(page); 471 for (loop = 0; loop < BITS_PER_LONG; loop++) { 472 struct page *p = &page[loop]; 473 474 if (loop + 1 < BITS_PER_LONG) 475 prefetchw(p + 1); 476 __ClearPageReserved(p); 477 set_page_count(p, 0); 478 } 479 480 set_page_refcounted(page); 481 __free_pages(page, order); 482 } 483 } 484 485 486 /* 487 * The order of subdivision here is critical for the IO subsystem. 488 * Please do not alter this order without good reasons and regression 489 * testing. Specifically, as large blocks of memory are subdivided, 490 * the order in which smaller blocks are delivered depends on the order 491 * they're subdivided in this function. This is the primary factor 492 * influencing the order in which pages are delivered to the IO 493 * subsystem according to empirical testing, and this is also justified 494 * by considering the behavior of a buddy system containing a single 495 * large block of memory acted on by a series of small allocations. 496 * This behavior is a critical factor in sglist merging's success. 497 * 498 * -- wli 499 */ 500 static inline void expand(struct zone *zone, struct page *page, 501 int low, int high, struct free_area *area) 502 { 503 unsigned long size = 1 << high; 504 505 while (high > low) { 506 area--; 507 high--; 508 size >>= 1; 509 BUG_ON(bad_range(zone, &page[size])); 510 list_add(&page[size].lru, &area->free_list); 511 area->nr_free++; 512 set_page_order(&page[size], high); 513 } 514 } 515 516 /* 517 * This page is about to be returned from the page allocator 518 */ 519 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 520 { 521 if (unlikely(page_mapcount(page) | 522 (page->mapping != NULL) | 523 (page_count(page) != 0) | 524 (page->flags & ( 525 1 << PG_lru | 526 1 << PG_private | 527 1 << PG_locked | 528 1 << PG_active | 529 1 << PG_dirty | 530 1 << PG_reclaim | 531 1 << PG_slab | 532 1 << PG_swapcache | 533 1 << PG_writeback | 534 1 << PG_reserved | 535 1 << PG_buddy )))) 536 bad_page(page); 537 538 /* 539 * For now, we report if PG_reserved was found set, but do not 540 * clear it, and do not allocate the page: as a safety net. 541 */ 542 if (PageReserved(page)) 543 return 1; 544 545 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 546 1 << PG_referenced | 1 << PG_arch_1 | 547 1 << PG_checked | 1 << PG_mappedtodisk); 548 set_page_private(page, 0); 549 set_page_refcounted(page); 550 kernel_map_pages(page, 1 << order, 1); 551 552 if (gfp_flags & __GFP_ZERO) 553 prep_zero_page(page, order, gfp_flags); 554 555 if (order && (gfp_flags & __GFP_COMP)) 556 prep_compound_page(page, order); 557 558 return 0; 559 } 560 561 /* 562 * Do the hard work of removing an element from the buddy allocator. 563 * Call me with the zone->lock already held. 564 */ 565 static struct page *__rmqueue(struct zone *zone, unsigned int order) 566 { 567 struct free_area * area; 568 unsigned int current_order; 569 struct page *page; 570 571 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 572 area = zone->free_area + current_order; 573 if (list_empty(&area->free_list)) 574 continue; 575 576 page = list_entry(area->free_list.next, struct page, lru); 577 list_del(&page->lru); 578 rmv_page_order(page); 579 area->nr_free--; 580 zone->free_pages -= 1UL << order; 581 expand(zone, page, order, current_order, area); 582 return page; 583 } 584 585 return NULL; 586 } 587 588 /* 589 * Obtain a specified number of elements from the buddy allocator, all under 590 * a single hold of the lock, for efficiency. Add them to the supplied list. 591 * Returns the number of new pages which were placed at *list. 592 */ 593 static int rmqueue_bulk(struct zone *zone, unsigned int order, 594 unsigned long count, struct list_head *list) 595 { 596 int i; 597 598 spin_lock(&zone->lock); 599 for (i = 0; i < count; ++i) { 600 struct page *page = __rmqueue(zone, order); 601 if (unlikely(page == NULL)) 602 break; 603 list_add_tail(&page->lru, list); 604 } 605 spin_unlock(&zone->lock); 606 return i; 607 } 608 609 #ifdef CONFIG_NUMA 610 /* 611 * Called from the slab reaper to drain pagesets on a particular node that 612 * belong to the currently executing processor. 613 * Note that this function must be called with the thread pinned to 614 * a single processor. 615 */ 616 void drain_node_pages(int nodeid) 617 { 618 int i, z; 619 unsigned long flags; 620 621 for (z = 0; z < MAX_NR_ZONES; z++) { 622 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 623 struct per_cpu_pageset *pset; 624 625 pset = zone_pcp(zone, smp_processor_id()); 626 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 627 struct per_cpu_pages *pcp; 628 629 pcp = &pset->pcp[i]; 630 if (pcp->count) { 631 local_irq_save(flags); 632 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 633 pcp->count = 0; 634 local_irq_restore(flags); 635 } 636 } 637 } 638 } 639 #endif 640 641 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 642 static void __drain_pages(unsigned int cpu) 643 { 644 unsigned long flags; 645 struct zone *zone; 646 int i; 647 648 for_each_zone(zone) { 649 struct per_cpu_pageset *pset; 650 651 pset = zone_pcp(zone, cpu); 652 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 653 struct per_cpu_pages *pcp; 654 655 pcp = &pset->pcp[i]; 656 local_irq_save(flags); 657 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 658 pcp->count = 0; 659 local_irq_restore(flags); 660 } 661 } 662 } 663 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 664 665 #ifdef CONFIG_PM 666 667 void mark_free_pages(struct zone *zone) 668 { 669 unsigned long zone_pfn, flags; 670 int order; 671 struct list_head *curr; 672 673 if (!zone->spanned_pages) 674 return; 675 676 spin_lock_irqsave(&zone->lock, flags); 677 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 678 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 679 680 for (order = MAX_ORDER - 1; order >= 0; --order) 681 list_for_each(curr, &zone->free_area[order].free_list) { 682 unsigned long start_pfn, i; 683 684 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 685 686 for (i=0; i < (1<<order); i++) 687 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 688 } 689 spin_unlock_irqrestore(&zone->lock, flags); 690 } 691 692 /* 693 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 694 */ 695 void drain_local_pages(void) 696 { 697 unsigned long flags; 698 699 local_irq_save(flags); 700 __drain_pages(smp_processor_id()); 701 local_irq_restore(flags); 702 } 703 #endif /* CONFIG_PM */ 704 705 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 706 { 707 #ifdef CONFIG_NUMA 708 pg_data_t *pg = z->zone_pgdat; 709 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 710 struct per_cpu_pageset *p; 711 712 p = zone_pcp(z, cpu); 713 if (pg == orig) { 714 p->numa_hit++; 715 } else { 716 p->numa_miss++; 717 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 718 } 719 if (pg == NODE_DATA(numa_node_id())) 720 p->local_node++; 721 else 722 p->other_node++; 723 #endif 724 } 725 726 /* 727 * Free a 0-order page 728 */ 729 static void fastcall free_hot_cold_page(struct page *page, int cold) 730 { 731 struct zone *zone = page_zone(page); 732 struct per_cpu_pages *pcp; 733 unsigned long flags; 734 735 arch_free_page(page, 0); 736 737 if (PageAnon(page)) 738 page->mapping = NULL; 739 if (free_pages_check(page)) 740 return; 741 742 kernel_map_pages(page, 1, 0); 743 744 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 745 local_irq_save(flags); 746 __inc_page_state(pgfree); 747 list_add(&page->lru, &pcp->list); 748 pcp->count++; 749 if (pcp->count >= pcp->high) { 750 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 751 pcp->count -= pcp->batch; 752 } 753 local_irq_restore(flags); 754 put_cpu(); 755 } 756 757 void fastcall free_hot_page(struct page *page) 758 { 759 free_hot_cold_page(page, 0); 760 } 761 762 void fastcall free_cold_page(struct page *page) 763 { 764 free_hot_cold_page(page, 1); 765 } 766 767 /* 768 * split_page takes a non-compound higher-order page, and splits it into 769 * n (1<<order) sub-pages: page[0..n] 770 * Each sub-page must be freed individually. 771 * 772 * Note: this is probably too low level an operation for use in drivers. 773 * Please consult with lkml before using this in your driver. 774 */ 775 void split_page(struct page *page, unsigned int order) 776 { 777 int i; 778 779 BUG_ON(PageCompound(page)); 780 BUG_ON(!page_count(page)); 781 for (i = 1; i < (1 << order); i++) 782 set_page_refcounted(page + i); 783 } 784 785 /* 786 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 787 * we cheat by calling it from here, in the order > 0 path. Saves a branch 788 * or two. 789 */ 790 static struct page *buffered_rmqueue(struct zonelist *zonelist, 791 struct zone *zone, int order, gfp_t gfp_flags) 792 { 793 unsigned long flags; 794 struct page *page; 795 int cold = !!(gfp_flags & __GFP_COLD); 796 int cpu; 797 798 again: 799 cpu = get_cpu(); 800 if (likely(order == 0)) { 801 struct per_cpu_pages *pcp; 802 803 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 804 local_irq_save(flags); 805 if (!pcp->count) { 806 pcp->count += rmqueue_bulk(zone, 0, 807 pcp->batch, &pcp->list); 808 if (unlikely(!pcp->count)) 809 goto failed; 810 } 811 page = list_entry(pcp->list.next, struct page, lru); 812 list_del(&page->lru); 813 pcp->count--; 814 } else { 815 spin_lock_irqsave(&zone->lock, flags); 816 page = __rmqueue(zone, order); 817 spin_unlock(&zone->lock); 818 if (!page) 819 goto failed; 820 } 821 822 __mod_page_state_zone(zone, pgalloc, 1 << order); 823 zone_statistics(zonelist, zone, cpu); 824 local_irq_restore(flags); 825 put_cpu(); 826 827 BUG_ON(bad_range(zone, page)); 828 if (prep_new_page(page, order, gfp_flags)) 829 goto again; 830 return page; 831 832 failed: 833 local_irq_restore(flags); 834 put_cpu(); 835 return NULL; 836 } 837 838 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 839 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 840 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 841 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 842 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 843 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 844 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 845 846 /* 847 * Return 1 if free pages are above 'mark'. This takes into account the order 848 * of the allocation. 849 */ 850 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 851 int classzone_idx, int alloc_flags) 852 { 853 /* free_pages my go negative - that's OK */ 854 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 855 int o; 856 857 if (alloc_flags & ALLOC_HIGH) 858 min -= min / 2; 859 if (alloc_flags & ALLOC_HARDER) 860 min -= min / 4; 861 862 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 863 return 0; 864 for (o = 0; o < order; o++) { 865 /* At the next order, this order's pages become unavailable */ 866 free_pages -= z->free_area[o].nr_free << o; 867 868 /* Require fewer higher order pages to be free */ 869 min >>= 1; 870 871 if (free_pages <= min) 872 return 0; 873 } 874 return 1; 875 } 876 877 /* 878 * get_page_from_freeliest goes through the zonelist trying to allocate 879 * a page. 880 */ 881 static struct page * 882 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 883 struct zonelist *zonelist, int alloc_flags) 884 { 885 struct zone **z = zonelist->zones; 886 struct page *page = NULL; 887 int classzone_idx = zone_idx(*z); 888 889 /* 890 * Go through the zonelist once, looking for a zone with enough free. 891 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 892 */ 893 do { 894 if ((alloc_flags & ALLOC_CPUSET) && 895 !cpuset_zone_allowed(*z, gfp_mask)) 896 continue; 897 898 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 899 unsigned long mark; 900 if (alloc_flags & ALLOC_WMARK_MIN) 901 mark = (*z)->pages_min; 902 else if (alloc_flags & ALLOC_WMARK_LOW) 903 mark = (*z)->pages_low; 904 else 905 mark = (*z)->pages_high; 906 if (!zone_watermark_ok(*z, order, mark, 907 classzone_idx, alloc_flags)) 908 if (!zone_reclaim_mode || 909 !zone_reclaim(*z, gfp_mask, order)) 910 continue; 911 } 912 913 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 914 if (page) { 915 break; 916 } 917 } while (*(++z) != NULL); 918 return page; 919 } 920 921 /* 922 * This is the 'heart' of the zoned buddy allocator. 923 */ 924 struct page * fastcall 925 __alloc_pages(gfp_t gfp_mask, unsigned int order, 926 struct zonelist *zonelist) 927 { 928 const gfp_t wait = gfp_mask & __GFP_WAIT; 929 struct zone **z; 930 struct page *page; 931 struct reclaim_state reclaim_state; 932 struct task_struct *p = current; 933 int do_retry; 934 int alloc_flags; 935 int did_some_progress; 936 937 might_sleep_if(wait); 938 939 restart: 940 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 941 942 if (unlikely(*z == NULL)) { 943 /* Should this ever happen?? */ 944 return NULL; 945 } 946 947 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 948 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 949 if (page) 950 goto got_pg; 951 952 do { 953 if (cpuset_zone_allowed(*z, gfp_mask)) 954 wakeup_kswapd(*z, order); 955 } while (*(++z)); 956 957 /* 958 * OK, we're below the kswapd watermark and have kicked background 959 * reclaim. Now things get more complex, so set up alloc_flags according 960 * to how we want to proceed. 961 * 962 * The caller may dip into page reserves a bit more if the caller 963 * cannot run direct reclaim, or if the caller has realtime scheduling 964 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 965 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 966 */ 967 alloc_flags = ALLOC_WMARK_MIN; 968 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 969 alloc_flags |= ALLOC_HARDER; 970 if (gfp_mask & __GFP_HIGH) 971 alloc_flags |= ALLOC_HIGH; 972 alloc_flags |= ALLOC_CPUSET; 973 974 /* 975 * Go through the zonelist again. Let __GFP_HIGH and allocations 976 * coming from realtime tasks go deeper into reserves. 977 * 978 * This is the last chance, in general, before the goto nopage. 979 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 980 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 981 */ 982 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 983 if (page) 984 goto got_pg; 985 986 /* This allocation should allow future memory freeing. */ 987 988 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 989 && !in_interrupt()) { 990 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 991 nofail_alloc: 992 /* go through the zonelist yet again, ignoring mins */ 993 page = get_page_from_freelist(gfp_mask, order, 994 zonelist, ALLOC_NO_WATERMARKS); 995 if (page) 996 goto got_pg; 997 if (gfp_mask & __GFP_NOFAIL) { 998 blk_congestion_wait(WRITE, HZ/50); 999 goto nofail_alloc; 1000 } 1001 } 1002 goto nopage; 1003 } 1004 1005 /* Atomic allocations - we can't balance anything */ 1006 if (!wait) 1007 goto nopage; 1008 1009 rebalance: 1010 cond_resched(); 1011 1012 /* We now go into synchronous reclaim */ 1013 cpuset_memory_pressure_bump(); 1014 p->flags |= PF_MEMALLOC; 1015 reclaim_state.reclaimed_slab = 0; 1016 p->reclaim_state = &reclaim_state; 1017 1018 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1019 1020 p->reclaim_state = NULL; 1021 p->flags &= ~PF_MEMALLOC; 1022 1023 cond_resched(); 1024 1025 if (likely(did_some_progress)) { 1026 page = get_page_from_freelist(gfp_mask, order, 1027 zonelist, alloc_flags); 1028 if (page) 1029 goto got_pg; 1030 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1031 /* 1032 * Go through the zonelist yet one more time, keep 1033 * very high watermark here, this is only to catch 1034 * a parallel oom killing, we must fail if we're still 1035 * under heavy pressure. 1036 */ 1037 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1038 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1039 if (page) 1040 goto got_pg; 1041 1042 out_of_memory(zonelist, gfp_mask, order); 1043 goto restart; 1044 } 1045 1046 /* 1047 * Don't let big-order allocations loop unless the caller explicitly 1048 * requests that. Wait for some write requests to complete then retry. 1049 * 1050 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1051 * <= 3, but that may not be true in other implementations. 1052 */ 1053 do_retry = 0; 1054 if (!(gfp_mask & __GFP_NORETRY)) { 1055 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1056 do_retry = 1; 1057 if (gfp_mask & __GFP_NOFAIL) 1058 do_retry = 1; 1059 } 1060 if (do_retry) { 1061 blk_congestion_wait(WRITE, HZ/50); 1062 goto rebalance; 1063 } 1064 1065 nopage: 1066 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1067 printk(KERN_WARNING "%s: page allocation failure." 1068 " order:%d, mode:0x%x\n", 1069 p->comm, order, gfp_mask); 1070 dump_stack(); 1071 show_mem(); 1072 } 1073 got_pg: 1074 return page; 1075 } 1076 1077 EXPORT_SYMBOL(__alloc_pages); 1078 1079 /* 1080 * Common helper functions. 1081 */ 1082 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1083 { 1084 struct page * page; 1085 page = alloc_pages(gfp_mask, order); 1086 if (!page) 1087 return 0; 1088 return (unsigned long) page_address(page); 1089 } 1090 1091 EXPORT_SYMBOL(__get_free_pages); 1092 1093 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1094 { 1095 struct page * page; 1096 1097 /* 1098 * get_zeroed_page() returns a 32-bit address, which cannot represent 1099 * a highmem page 1100 */ 1101 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1102 1103 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1104 if (page) 1105 return (unsigned long) page_address(page); 1106 return 0; 1107 } 1108 1109 EXPORT_SYMBOL(get_zeroed_page); 1110 1111 void __pagevec_free(struct pagevec *pvec) 1112 { 1113 int i = pagevec_count(pvec); 1114 1115 while (--i >= 0) 1116 free_hot_cold_page(pvec->pages[i], pvec->cold); 1117 } 1118 1119 fastcall void __free_pages(struct page *page, unsigned int order) 1120 { 1121 if (put_page_testzero(page)) { 1122 if (order == 0) 1123 free_hot_page(page); 1124 else 1125 __free_pages_ok(page, order); 1126 } 1127 } 1128 1129 EXPORT_SYMBOL(__free_pages); 1130 1131 fastcall void free_pages(unsigned long addr, unsigned int order) 1132 { 1133 if (addr != 0) { 1134 BUG_ON(!virt_addr_valid((void *)addr)); 1135 __free_pages(virt_to_page((void *)addr), order); 1136 } 1137 } 1138 1139 EXPORT_SYMBOL(free_pages); 1140 1141 /* 1142 * Total amount of free (allocatable) RAM: 1143 */ 1144 unsigned int nr_free_pages(void) 1145 { 1146 unsigned int sum = 0; 1147 struct zone *zone; 1148 1149 for_each_zone(zone) 1150 sum += zone->free_pages; 1151 1152 return sum; 1153 } 1154 1155 EXPORT_SYMBOL(nr_free_pages); 1156 1157 #ifdef CONFIG_NUMA 1158 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1159 { 1160 unsigned int i, sum = 0; 1161 1162 for (i = 0; i < MAX_NR_ZONES; i++) 1163 sum += pgdat->node_zones[i].free_pages; 1164 1165 return sum; 1166 } 1167 #endif 1168 1169 static unsigned int nr_free_zone_pages(int offset) 1170 { 1171 /* Just pick one node, since fallback list is circular */ 1172 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1173 unsigned int sum = 0; 1174 1175 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1176 struct zone **zonep = zonelist->zones; 1177 struct zone *zone; 1178 1179 for (zone = *zonep++; zone; zone = *zonep++) { 1180 unsigned long size = zone->present_pages; 1181 unsigned long high = zone->pages_high; 1182 if (size > high) 1183 sum += size - high; 1184 } 1185 1186 return sum; 1187 } 1188 1189 /* 1190 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1191 */ 1192 unsigned int nr_free_buffer_pages(void) 1193 { 1194 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1195 } 1196 1197 /* 1198 * Amount of free RAM allocatable within all zones 1199 */ 1200 unsigned int nr_free_pagecache_pages(void) 1201 { 1202 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1203 } 1204 1205 #ifdef CONFIG_HIGHMEM 1206 unsigned int nr_free_highpages (void) 1207 { 1208 pg_data_t *pgdat; 1209 unsigned int pages = 0; 1210 1211 for_each_online_pgdat(pgdat) 1212 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1213 1214 return pages; 1215 } 1216 #endif 1217 1218 #ifdef CONFIG_NUMA 1219 static void show_node(struct zone *zone) 1220 { 1221 printk("Node %d ", zone->zone_pgdat->node_id); 1222 } 1223 #else 1224 #define show_node(zone) do { } while (0) 1225 #endif 1226 1227 /* 1228 * Accumulate the page_state information across all CPUs. 1229 * The result is unavoidably approximate - it can change 1230 * during and after execution of this function. 1231 */ 1232 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1233 1234 atomic_t nr_pagecache = ATOMIC_INIT(0); 1235 EXPORT_SYMBOL(nr_pagecache); 1236 #ifdef CONFIG_SMP 1237 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1238 #endif 1239 1240 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1241 { 1242 unsigned cpu; 1243 1244 memset(ret, 0, nr * sizeof(unsigned long)); 1245 cpus_and(*cpumask, *cpumask, cpu_online_map); 1246 1247 for_each_cpu_mask(cpu, *cpumask) { 1248 unsigned long *in; 1249 unsigned long *out; 1250 unsigned off; 1251 unsigned next_cpu; 1252 1253 in = (unsigned long *)&per_cpu(page_states, cpu); 1254 1255 next_cpu = next_cpu(cpu, *cpumask); 1256 if (likely(next_cpu < NR_CPUS)) 1257 prefetch(&per_cpu(page_states, next_cpu)); 1258 1259 out = (unsigned long *)ret; 1260 for (off = 0; off < nr; off++) 1261 *out++ += *in++; 1262 } 1263 } 1264 1265 void get_page_state_node(struct page_state *ret, int node) 1266 { 1267 int nr; 1268 cpumask_t mask = node_to_cpumask(node); 1269 1270 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1271 nr /= sizeof(unsigned long); 1272 1273 __get_page_state(ret, nr+1, &mask); 1274 } 1275 1276 void get_page_state(struct page_state *ret) 1277 { 1278 int nr; 1279 cpumask_t mask = CPU_MASK_ALL; 1280 1281 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1282 nr /= sizeof(unsigned long); 1283 1284 __get_page_state(ret, nr + 1, &mask); 1285 } 1286 1287 void get_full_page_state(struct page_state *ret) 1288 { 1289 cpumask_t mask = CPU_MASK_ALL; 1290 1291 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1292 } 1293 1294 unsigned long read_page_state_offset(unsigned long offset) 1295 { 1296 unsigned long ret = 0; 1297 int cpu; 1298 1299 for_each_online_cpu(cpu) { 1300 unsigned long in; 1301 1302 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1303 ret += *((unsigned long *)in); 1304 } 1305 return ret; 1306 } 1307 1308 void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1309 { 1310 void *ptr; 1311 1312 ptr = &__get_cpu_var(page_states); 1313 *(unsigned long *)(ptr + offset) += delta; 1314 } 1315 EXPORT_SYMBOL(__mod_page_state_offset); 1316 1317 void mod_page_state_offset(unsigned long offset, unsigned long delta) 1318 { 1319 unsigned long flags; 1320 void *ptr; 1321 1322 local_irq_save(flags); 1323 ptr = &__get_cpu_var(page_states); 1324 *(unsigned long *)(ptr + offset) += delta; 1325 local_irq_restore(flags); 1326 } 1327 EXPORT_SYMBOL(mod_page_state_offset); 1328 1329 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1330 unsigned long *free, struct pglist_data *pgdat) 1331 { 1332 struct zone *zones = pgdat->node_zones; 1333 int i; 1334 1335 *active = 0; 1336 *inactive = 0; 1337 *free = 0; 1338 for (i = 0; i < MAX_NR_ZONES; i++) { 1339 *active += zones[i].nr_active; 1340 *inactive += zones[i].nr_inactive; 1341 *free += zones[i].free_pages; 1342 } 1343 } 1344 1345 void get_zone_counts(unsigned long *active, 1346 unsigned long *inactive, unsigned long *free) 1347 { 1348 struct pglist_data *pgdat; 1349 1350 *active = 0; 1351 *inactive = 0; 1352 *free = 0; 1353 for_each_online_pgdat(pgdat) { 1354 unsigned long l, m, n; 1355 __get_zone_counts(&l, &m, &n, pgdat); 1356 *active += l; 1357 *inactive += m; 1358 *free += n; 1359 } 1360 } 1361 1362 void si_meminfo(struct sysinfo *val) 1363 { 1364 val->totalram = totalram_pages; 1365 val->sharedram = 0; 1366 val->freeram = nr_free_pages(); 1367 val->bufferram = nr_blockdev_pages(); 1368 #ifdef CONFIG_HIGHMEM 1369 val->totalhigh = totalhigh_pages; 1370 val->freehigh = nr_free_highpages(); 1371 #else 1372 val->totalhigh = 0; 1373 val->freehigh = 0; 1374 #endif 1375 val->mem_unit = PAGE_SIZE; 1376 } 1377 1378 EXPORT_SYMBOL(si_meminfo); 1379 1380 #ifdef CONFIG_NUMA 1381 void si_meminfo_node(struct sysinfo *val, int nid) 1382 { 1383 pg_data_t *pgdat = NODE_DATA(nid); 1384 1385 val->totalram = pgdat->node_present_pages; 1386 val->freeram = nr_free_pages_pgdat(pgdat); 1387 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1388 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1389 val->mem_unit = PAGE_SIZE; 1390 } 1391 #endif 1392 1393 #define K(x) ((x) << (PAGE_SHIFT-10)) 1394 1395 /* 1396 * Show free area list (used inside shift_scroll-lock stuff) 1397 * We also calculate the percentage fragmentation. We do this by counting the 1398 * memory on each free list with the exception of the first item on the list. 1399 */ 1400 void show_free_areas(void) 1401 { 1402 struct page_state ps; 1403 int cpu, temperature; 1404 unsigned long active; 1405 unsigned long inactive; 1406 unsigned long free; 1407 struct zone *zone; 1408 1409 for_each_zone(zone) { 1410 show_node(zone); 1411 printk("%s per-cpu:", zone->name); 1412 1413 if (!populated_zone(zone)) { 1414 printk(" empty\n"); 1415 continue; 1416 } else 1417 printk("\n"); 1418 1419 for_each_online_cpu(cpu) { 1420 struct per_cpu_pageset *pageset; 1421 1422 pageset = zone_pcp(zone, cpu); 1423 1424 for (temperature = 0; temperature < 2; temperature++) 1425 printk("cpu %d %s: high %d, batch %d used:%d\n", 1426 cpu, 1427 temperature ? "cold" : "hot", 1428 pageset->pcp[temperature].high, 1429 pageset->pcp[temperature].batch, 1430 pageset->pcp[temperature].count); 1431 } 1432 } 1433 1434 get_page_state(&ps); 1435 get_zone_counts(&active, &inactive, &free); 1436 1437 printk("Free pages: %11ukB (%ukB HighMem)\n", 1438 K(nr_free_pages()), 1439 K(nr_free_highpages())); 1440 1441 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1442 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1443 active, 1444 inactive, 1445 ps.nr_dirty, 1446 ps.nr_writeback, 1447 ps.nr_unstable, 1448 nr_free_pages(), 1449 ps.nr_slab, 1450 ps.nr_mapped, 1451 ps.nr_page_table_pages); 1452 1453 for_each_zone(zone) { 1454 int i; 1455 1456 show_node(zone); 1457 printk("%s" 1458 " free:%lukB" 1459 " min:%lukB" 1460 " low:%lukB" 1461 " high:%lukB" 1462 " active:%lukB" 1463 " inactive:%lukB" 1464 " present:%lukB" 1465 " pages_scanned:%lu" 1466 " all_unreclaimable? %s" 1467 "\n", 1468 zone->name, 1469 K(zone->free_pages), 1470 K(zone->pages_min), 1471 K(zone->pages_low), 1472 K(zone->pages_high), 1473 K(zone->nr_active), 1474 K(zone->nr_inactive), 1475 K(zone->present_pages), 1476 zone->pages_scanned, 1477 (zone->all_unreclaimable ? "yes" : "no") 1478 ); 1479 printk("lowmem_reserve[]:"); 1480 for (i = 0; i < MAX_NR_ZONES; i++) 1481 printk(" %lu", zone->lowmem_reserve[i]); 1482 printk("\n"); 1483 } 1484 1485 for_each_zone(zone) { 1486 unsigned long nr, flags, order, total = 0; 1487 1488 show_node(zone); 1489 printk("%s: ", zone->name); 1490 if (!populated_zone(zone)) { 1491 printk("empty\n"); 1492 continue; 1493 } 1494 1495 spin_lock_irqsave(&zone->lock, flags); 1496 for (order = 0; order < MAX_ORDER; order++) { 1497 nr = zone->free_area[order].nr_free; 1498 total += nr << order; 1499 printk("%lu*%lukB ", nr, K(1UL) << order); 1500 } 1501 spin_unlock_irqrestore(&zone->lock, flags); 1502 printk("= %lukB\n", K(total)); 1503 } 1504 1505 show_swap_cache_info(); 1506 } 1507 1508 /* 1509 * Builds allocation fallback zone lists. 1510 * 1511 * Add all populated zones of a node to the zonelist. 1512 */ 1513 static int __init build_zonelists_node(pg_data_t *pgdat, 1514 struct zonelist *zonelist, int nr_zones, int zone_type) 1515 { 1516 struct zone *zone; 1517 1518 BUG_ON(zone_type > ZONE_HIGHMEM); 1519 1520 do { 1521 zone = pgdat->node_zones + zone_type; 1522 if (populated_zone(zone)) { 1523 #ifndef CONFIG_HIGHMEM 1524 BUG_ON(zone_type > ZONE_NORMAL); 1525 #endif 1526 zonelist->zones[nr_zones++] = zone; 1527 check_highest_zone(zone_type); 1528 } 1529 zone_type--; 1530 1531 } while (zone_type >= 0); 1532 return nr_zones; 1533 } 1534 1535 static inline int highest_zone(int zone_bits) 1536 { 1537 int res = ZONE_NORMAL; 1538 if (zone_bits & (__force int)__GFP_HIGHMEM) 1539 res = ZONE_HIGHMEM; 1540 if (zone_bits & (__force int)__GFP_DMA32) 1541 res = ZONE_DMA32; 1542 if (zone_bits & (__force int)__GFP_DMA) 1543 res = ZONE_DMA; 1544 return res; 1545 } 1546 1547 #ifdef CONFIG_NUMA 1548 #define MAX_NODE_LOAD (num_online_nodes()) 1549 static int __initdata node_load[MAX_NUMNODES]; 1550 /** 1551 * find_next_best_node - find the next node that should appear in a given node's fallback list 1552 * @node: node whose fallback list we're appending 1553 * @used_node_mask: nodemask_t of already used nodes 1554 * 1555 * We use a number of factors to determine which is the next node that should 1556 * appear on a given node's fallback list. The node should not have appeared 1557 * already in @node's fallback list, and it should be the next closest node 1558 * according to the distance array (which contains arbitrary distance values 1559 * from each node to each node in the system), and should also prefer nodes 1560 * with no CPUs, since presumably they'll have very little allocation pressure 1561 * on them otherwise. 1562 * It returns -1 if no node is found. 1563 */ 1564 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1565 { 1566 int n, val; 1567 int min_val = INT_MAX; 1568 int best_node = -1; 1569 1570 /* Use the local node if we haven't already */ 1571 if (!node_isset(node, *used_node_mask)) { 1572 node_set(node, *used_node_mask); 1573 return node; 1574 } 1575 1576 for_each_online_node(n) { 1577 cpumask_t tmp; 1578 1579 /* Don't want a node to appear more than once */ 1580 if (node_isset(n, *used_node_mask)) 1581 continue; 1582 1583 /* Use the distance array to find the distance */ 1584 val = node_distance(node, n); 1585 1586 /* Penalize nodes under us ("prefer the next node") */ 1587 val += (n < node); 1588 1589 /* Give preference to headless and unused nodes */ 1590 tmp = node_to_cpumask(n); 1591 if (!cpus_empty(tmp)) 1592 val += PENALTY_FOR_NODE_WITH_CPUS; 1593 1594 /* Slight preference for less loaded node */ 1595 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1596 val += node_load[n]; 1597 1598 if (val < min_val) { 1599 min_val = val; 1600 best_node = n; 1601 } 1602 } 1603 1604 if (best_node >= 0) 1605 node_set(best_node, *used_node_mask); 1606 1607 return best_node; 1608 } 1609 1610 static void __init build_zonelists(pg_data_t *pgdat) 1611 { 1612 int i, j, k, node, local_node; 1613 int prev_node, load; 1614 struct zonelist *zonelist; 1615 nodemask_t used_mask; 1616 1617 /* initialize zonelists */ 1618 for (i = 0; i < GFP_ZONETYPES; i++) { 1619 zonelist = pgdat->node_zonelists + i; 1620 zonelist->zones[0] = NULL; 1621 } 1622 1623 /* NUMA-aware ordering of nodes */ 1624 local_node = pgdat->node_id; 1625 load = num_online_nodes(); 1626 prev_node = local_node; 1627 nodes_clear(used_mask); 1628 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1629 int distance = node_distance(local_node, node); 1630 1631 /* 1632 * If another node is sufficiently far away then it is better 1633 * to reclaim pages in a zone before going off node. 1634 */ 1635 if (distance > RECLAIM_DISTANCE) 1636 zone_reclaim_mode = 1; 1637 1638 /* 1639 * We don't want to pressure a particular node. 1640 * So adding penalty to the first node in same 1641 * distance group to make it round-robin. 1642 */ 1643 1644 if (distance != node_distance(local_node, prev_node)) 1645 node_load[node] += load; 1646 prev_node = node; 1647 load--; 1648 for (i = 0; i < GFP_ZONETYPES; i++) { 1649 zonelist = pgdat->node_zonelists + i; 1650 for (j = 0; zonelist->zones[j] != NULL; j++); 1651 1652 k = highest_zone(i); 1653 1654 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1655 zonelist->zones[j] = NULL; 1656 } 1657 } 1658 } 1659 1660 #else /* CONFIG_NUMA */ 1661 1662 static void __init build_zonelists(pg_data_t *pgdat) 1663 { 1664 int i, j, k, node, local_node; 1665 1666 local_node = pgdat->node_id; 1667 for (i = 0; i < GFP_ZONETYPES; i++) { 1668 struct zonelist *zonelist; 1669 1670 zonelist = pgdat->node_zonelists + i; 1671 1672 j = 0; 1673 k = highest_zone(i); 1674 j = build_zonelists_node(pgdat, zonelist, j, k); 1675 /* 1676 * Now we build the zonelist so that it contains the zones 1677 * of all the other nodes. 1678 * We don't want to pressure a particular node, so when 1679 * building the zones for node N, we make sure that the 1680 * zones coming right after the local ones are those from 1681 * node N+1 (modulo N) 1682 */ 1683 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1684 if (!node_online(node)) 1685 continue; 1686 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1687 } 1688 for (node = 0; node < local_node; node++) { 1689 if (!node_online(node)) 1690 continue; 1691 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1692 } 1693 1694 zonelist->zones[j] = NULL; 1695 } 1696 } 1697 1698 #endif /* CONFIG_NUMA */ 1699 1700 void __init build_all_zonelists(void) 1701 { 1702 int i; 1703 1704 for_each_online_node(i) 1705 build_zonelists(NODE_DATA(i)); 1706 printk("Built %i zonelists\n", num_online_nodes()); 1707 cpuset_init_current_mems_allowed(); 1708 } 1709 1710 /* 1711 * Helper functions to size the waitqueue hash table. 1712 * Essentially these want to choose hash table sizes sufficiently 1713 * large so that collisions trying to wait on pages are rare. 1714 * But in fact, the number of active page waitqueues on typical 1715 * systems is ridiculously low, less than 200. So this is even 1716 * conservative, even though it seems large. 1717 * 1718 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1719 * waitqueues, i.e. the size of the waitq table given the number of pages. 1720 */ 1721 #define PAGES_PER_WAITQUEUE 256 1722 1723 static inline unsigned long wait_table_size(unsigned long pages) 1724 { 1725 unsigned long size = 1; 1726 1727 pages /= PAGES_PER_WAITQUEUE; 1728 1729 while (size < pages) 1730 size <<= 1; 1731 1732 /* 1733 * Once we have dozens or even hundreds of threads sleeping 1734 * on IO we've got bigger problems than wait queue collision. 1735 * Limit the size of the wait table to a reasonable size. 1736 */ 1737 size = min(size, 4096UL); 1738 1739 return max(size, 4UL); 1740 } 1741 1742 /* 1743 * This is an integer logarithm so that shifts can be used later 1744 * to extract the more random high bits from the multiplicative 1745 * hash function before the remainder is taken. 1746 */ 1747 static inline unsigned long wait_table_bits(unsigned long size) 1748 { 1749 return ffz(~size); 1750 } 1751 1752 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1753 1754 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1755 unsigned long *zones_size, unsigned long *zholes_size) 1756 { 1757 unsigned long realtotalpages, totalpages = 0; 1758 int i; 1759 1760 for (i = 0; i < MAX_NR_ZONES; i++) 1761 totalpages += zones_size[i]; 1762 pgdat->node_spanned_pages = totalpages; 1763 1764 realtotalpages = totalpages; 1765 if (zholes_size) 1766 for (i = 0; i < MAX_NR_ZONES; i++) 1767 realtotalpages -= zholes_size[i]; 1768 pgdat->node_present_pages = realtotalpages; 1769 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1770 } 1771 1772 1773 /* 1774 * Initially all pages are reserved - free ones are freed 1775 * up by free_all_bootmem() once the early boot process is 1776 * done. Non-atomic initialization, single-pass. 1777 */ 1778 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1779 unsigned long start_pfn) 1780 { 1781 struct page *page; 1782 unsigned long end_pfn = start_pfn + size; 1783 unsigned long pfn; 1784 1785 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1786 if (!early_pfn_valid(pfn)) 1787 continue; 1788 page = pfn_to_page(pfn); 1789 set_page_links(page, zone, nid, pfn); 1790 init_page_count(page); 1791 reset_page_mapcount(page); 1792 SetPageReserved(page); 1793 INIT_LIST_HEAD(&page->lru); 1794 #ifdef WANT_PAGE_VIRTUAL 1795 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1796 if (!is_highmem_idx(zone)) 1797 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1798 #endif 1799 } 1800 } 1801 1802 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1803 unsigned long size) 1804 { 1805 int order; 1806 for (order = 0; order < MAX_ORDER ; order++) { 1807 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1808 zone->free_area[order].nr_free = 0; 1809 } 1810 } 1811 1812 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1813 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1814 unsigned long size) 1815 { 1816 unsigned long snum = pfn_to_section_nr(pfn); 1817 unsigned long end = pfn_to_section_nr(pfn + size); 1818 1819 if (FLAGS_HAS_NODE) 1820 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1821 else 1822 for (; snum <= end; snum++) 1823 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1824 } 1825 1826 #ifndef __HAVE_ARCH_MEMMAP_INIT 1827 #define memmap_init(size, nid, zone, start_pfn) \ 1828 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1829 #endif 1830 1831 static int __cpuinit zone_batchsize(struct zone *zone) 1832 { 1833 int batch; 1834 1835 /* 1836 * The per-cpu-pages pools are set to around 1000th of the 1837 * size of the zone. But no more than 1/2 of a meg. 1838 * 1839 * OK, so we don't know how big the cache is. So guess. 1840 */ 1841 batch = zone->present_pages / 1024; 1842 if (batch * PAGE_SIZE > 512 * 1024) 1843 batch = (512 * 1024) / PAGE_SIZE; 1844 batch /= 4; /* We effectively *= 4 below */ 1845 if (batch < 1) 1846 batch = 1; 1847 1848 /* 1849 * Clamp the batch to a 2^n - 1 value. Having a power 1850 * of 2 value was found to be more likely to have 1851 * suboptimal cache aliasing properties in some cases. 1852 * 1853 * For example if 2 tasks are alternately allocating 1854 * batches of pages, one task can end up with a lot 1855 * of pages of one half of the possible page colors 1856 * and the other with pages of the other colors. 1857 */ 1858 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1859 1860 return batch; 1861 } 1862 1863 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1864 { 1865 struct per_cpu_pages *pcp; 1866 1867 memset(p, 0, sizeof(*p)); 1868 1869 pcp = &p->pcp[0]; /* hot */ 1870 pcp->count = 0; 1871 pcp->high = 6 * batch; 1872 pcp->batch = max(1UL, 1 * batch); 1873 INIT_LIST_HEAD(&pcp->list); 1874 1875 pcp = &p->pcp[1]; /* cold*/ 1876 pcp->count = 0; 1877 pcp->high = 2 * batch; 1878 pcp->batch = max(1UL, batch/2); 1879 INIT_LIST_HEAD(&pcp->list); 1880 } 1881 1882 /* 1883 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1884 * to the value high for the pageset p. 1885 */ 1886 1887 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1888 unsigned long high) 1889 { 1890 struct per_cpu_pages *pcp; 1891 1892 pcp = &p->pcp[0]; /* hot list */ 1893 pcp->high = high; 1894 pcp->batch = max(1UL, high/4); 1895 if ((high/4) > (PAGE_SHIFT * 8)) 1896 pcp->batch = PAGE_SHIFT * 8; 1897 } 1898 1899 1900 #ifdef CONFIG_NUMA 1901 /* 1902 * Boot pageset table. One per cpu which is going to be used for all 1903 * zones and all nodes. The parameters will be set in such a way 1904 * that an item put on a list will immediately be handed over to 1905 * the buddy list. This is safe since pageset manipulation is done 1906 * with interrupts disabled. 1907 * 1908 * Some NUMA counter updates may also be caught by the boot pagesets. 1909 * 1910 * The boot_pagesets must be kept even after bootup is complete for 1911 * unused processors and/or zones. They do play a role for bootstrapping 1912 * hotplugged processors. 1913 * 1914 * zoneinfo_show() and maybe other functions do 1915 * not check if the processor is online before following the pageset pointer. 1916 * Other parts of the kernel may not check if the zone is available. 1917 */ 1918 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1919 1920 /* 1921 * Dynamically allocate memory for the 1922 * per cpu pageset array in struct zone. 1923 */ 1924 static int __cpuinit process_zones(int cpu) 1925 { 1926 struct zone *zone, *dzone; 1927 1928 for_each_zone(zone) { 1929 1930 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1931 GFP_KERNEL, cpu_to_node(cpu)); 1932 if (!zone_pcp(zone, cpu)) 1933 goto bad; 1934 1935 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1936 1937 if (percpu_pagelist_fraction) 1938 setup_pagelist_highmark(zone_pcp(zone, cpu), 1939 (zone->present_pages / percpu_pagelist_fraction)); 1940 } 1941 1942 return 0; 1943 bad: 1944 for_each_zone(dzone) { 1945 if (dzone == zone) 1946 break; 1947 kfree(zone_pcp(dzone, cpu)); 1948 zone_pcp(dzone, cpu) = NULL; 1949 } 1950 return -ENOMEM; 1951 } 1952 1953 static inline void free_zone_pagesets(int cpu) 1954 { 1955 struct zone *zone; 1956 1957 for_each_zone(zone) { 1958 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1959 1960 zone_pcp(zone, cpu) = NULL; 1961 kfree(pset); 1962 } 1963 } 1964 1965 static int pageset_cpuup_callback(struct notifier_block *nfb, 1966 unsigned long action, 1967 void *hcpu) 1968 { 1969 int cpu = (long)hcpu; 1970 int ret = NOTIFY_OK; 1971 1972 switch (action) { 1973 case CPU_UP_PREPARE: 1974 if (process_zones(cpu)) 1975 ret = NOTIFY_BAD; 1976 break; 1977 case CPU_UP_CANCELED: 1978 case CPU_DEAD: 1979 free_zone_pagesets(cpu); 1980 break; 1981 default: 1982 break; 1983 } 1984 return ret; 1985 } 1986 1987 static struct notifier_block pageset_notifier = 1988 { &pageset_cpuup_callback, NULL, 0 }; 1989 1990 void __init setup_per_cpu_pageset(void) 1991 { 1992 int err; 1993 1994 /* Initialize per_cpu_pageset for cpu 0. 1995 * A cpuup callback will do this for every cpu 1996 * as it comes online 1997 */ 1998 err = process_zones(smp_processor_id()); 1999 BUG_ON(err); 2000 register_cpu_notifier(&pageset_notifier); 2001 } 2002 2003 #endif 2004 2005 static __meminit 2006 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2007 { 2008 int i; 2009 struct pglist_data *pgdat = zone->zone_pgdat; 2010 2011 /* 2012 * The per-page waitqueue mechanism uses hashed waitqueues 2013 * per zone. 2014 */ 2015 zone->wait_table_size = wait_table_size(zone_size_pages); 2016 zone->wait_table_bits = wait_table_bits(zone->wait_table_size); 2017 zone->wait_table = (wait_queue_head_t *) 2018 alloc_bootmem_node(pgdat, zone->wait_table_size 2019 * sizeof(wait_queue_head_t)); 2020 2021 for(i = 0; i < zone->wait_table_size; ++i) 2022 init_waitqueue_head(zone->wait_table + i); 2023 } 2024 2025 static __meminit void zone_pcp_init(struct zone *zone) 2026 { 2027 int cpu; 2028 unsigned long batch = zone_batchsize(zone); 2029 2030 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2031 #ifdef CONFIG_NUMA 2032 /* Early boot. Slab allocator not functional yet */ 2033 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2034 setup_pageset(&boot_pageset[cpu],0); 2035 #else 2036 setup_pageset(zone_pcp(zone,cpu), batch); 2037 #endif 2038 } 2039 if (zone->present_pages) 2040 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2041 zone->name, zone->present_pages, batch); 2042 } 2043 2044 static __meminit void init_currently_empty_zone(struct zone *zone, 2045 unsigned long zone_start_pfn, unsigned long size) 2046 { 2047 struct pglist_data *pgdat = zone->zone_pgdat; 2048 2049 zone_wait_table_init(zone, size); 2050 pgdat->nr_zones = zone_idx(zone) + 1; 2051 2052 zone->zone_start_pfn = zone_start_pfn; 2053 2054 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2055 2056 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2057 } 2058 2059 /* 2060 * Set up the zone data structures: 2061 * - mark all pages reserved 2062 * - mark all memory queues empty 2063 * - clear the memory bitmaps 2064 */ 2065 static void __init free_area_init_core(struct pglist_data *pgdat, 2066 unsigned long *zones_size, unsigned long *zholes_size) 2067 { 2068 unsigned long j; 2069 int nid = pgdat->node_id; 2070 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2071 2072 pgdat_resize_init(pgdat); 2073 pgdat->nr_zones = 0; 2074 init_waitqueue_head(&pgdat->kswapd_wait); 2075 pgdat->kswapd_max_order = 0; 2076 2077 for (j = 0; j < MAX_NR_ZONES; j++) { 2078 struct zone *zone = pgdat->node_zones + j; 2079 unsigned long size, realsize; 2080 2081 realsize = size = zones_size[j]; 2082 if (zholes_size) 2083 realsize -= zholes_size[j]; 2084 2085 if (j < ZONE_HIGHMEM) 2086 nr_kernel_pages += realsize; 2087 nr_all_pages += realsize; 2088 2089 zone->spanned_pages = size; 2090 zone->present_pages = realsize; 2091 zone->name = zone_names[j]; 2092 spin_lock_init(&zone->lock); 2093 spin_lock_init(&zone->lru_lock); 2094 zone_seqlock_init(zone); 2095 zone->zone_pgdat = pgdat; 2096 zone->free_pages = 0; 2097 2098 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2099 2100 zone_pcp_init(zone); 2101 INIT_LIST_HEAD(&zone->active_list); 2102 INIT_LIST_HEAD(&zone->inactive_list); 2103 zone->nr_scan_active = 0; 2104 zone->nr_scan_inactive = 0; 2105 zone->nr_active = 0; 2106 zone->nr_inactive = 0; 2107 atomic_set(&zone->reclaim_in_progress, 0); 2108 if (!size) 2109 continue; 2110 2111 zonetable_add(zone, nid, j, zone_start_pfn, size); 2112 init_currently_empty_zone(zone, zone_start_pfn, size); 2113 zone_start_pfn += size; 2114 } 2115 } 2116 2117 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2118 { 2119 /* Skip empty nodes */ 2120 if (!pgdat->node_spanned_pages) 2121 return; 2122 2123 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2124 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2125 if (!pgdat->node_mem_map) { 2126 unsigned long size; 2127 struct page *map; 2128 2129 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 2130 map = alloc_remap(pgdat->node_id, size); 2131 if (!map) 2132 map = alloc_bootmem_node(pgdat, size); 2133 pgdat->node_mem_map = map; 2134 } 2135 #ifdef CONFIG_FLATMEM 2136 /* 2137 * With no DISCONTIG, the global mem_map is just set as node 0's 2138 */ 2139 if (pgdat == NODE_DATA(0)) 2140 mem_map = NODE_DATA(0)->node_mem_map; 2141 #endif 2142 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2143 } 2144 2145 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 2146 unsigned long *zones_size, unsigned long node_start_pfn, 2147 unsigned long *zholes_size) 2148 { 2149 pgdat->node_id = nid; 2150 pgdat->node_start_pfn = node_start_pfn; 2151 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2152 2153 alloc_node_mem_map(pgdat); 2154 2155 free_area_init_core(pgdat, zones_size, zholes_size); 2156 } 2157 2158 #ifndef CONFIG_NEED_MULTIPLE_NODES 2159 static bootmem_data_t contig_bootmem_data; 2160 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2161 2162 EXPORT_SYMBOL(contig_page_data); 2163 #endif 2164 2165 void __init free_area_init(unsigned long *zones_size) 2166 { 2167 free_area_init_node(0, NODE_DATA(0), zones_size, 2168 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2169 } 2170 2171 #ifdef CONFIG_PROC_FS 2172 2173 #include <linux/seq_file.h> 2174 2175 static void *frag_start(struct seq_file *m, loff_t *pos) 2176 { 2177 pg_data_t *pgdat; 2178 loff_t node = *pos; 2179 for (pgdat = first_online_pgdat(); 2180 pgdat && node; 2181 pgdat = next_online_pgdat(pgdat)) 2182 --node; 2183 2184 return pgdat; 2185 } 2186 2187 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2188 { 2189 pg_data_t *pgdat = (pg_data_t *)arg; 2190 2191 (*pos)++; 2192 return next_online_pgdat(pgdat); 2193 } 2194 2195 static void frag_stop(struct seq_file *m, void *arg) 2196 { 2197 } 2198 2199 /* 2200 * This walks the free areas for each zone. 2201 */ 2202 static int frag_show(struct seq_file *m, void *arg) 2203 { 2204 pg_data_t *pgdat = (pg_data_t *)arg; 2205 struct zone *zone; 2206 struct zone *node_zones = pgdat->node_zones; 2207 unsigned long flags; 2208 int order; 2209 2210 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2211 if (!populated_zone(zone)) 2212 continue; 2213 2214 spin_lock_irqsave(&zone->lock, flags); 2215 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2216 for (order = 0; order < MAX_ORDER; ++order) 2217 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2218 spin_unlock_irqrestore(&zone->lock, flags); 2219 seq_putc(m, '\n'); 2220 } 2221 return 0; 2222 } 2223 2224 struct seq_operations fragmentation_op = { 2225 .start = frag_start, 2226 .next = frag_next, 2227 .stop = frag_stop, 2228 .show = frag_show, 2229 }; 2230 2231 /* 2232 * Output information about zones in @pgdat. 2233 */ 2234 static int zoneinfo_show(struct seq_file *m, void *arg) 2235 { 2236 pg_data_t *pgdat = arg; 2237 struct zone *zone; 2238 struct zone *node_zones = pgdat->node_zones; 2239 unsigned long flags; 2240 2241 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2242 int i; 2243 2244 if (!populated_zone(zone)) 2245 continue; 2246 2247 spin_lock_irqsave(&zone->lock, flags); 2248 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2249 seq_printf(m, 2250 "\n pages free %lu" 2251 "\n min %lu" 2252 "\n low %lu" 2253 "\n high %lu" 2254 "\n active %lu" 2255 "\n inactive %lu" 2256 "\n scanned %lu (a: %lu i: %lu)" 2257 "\n spanned %lu" 2258 "\n present %lu", 2259 zone->free_pages, 2260 zone->pages_min, 2261 zone->pages_low, 2262 zone->pages_high, 2263 zone->nr_active, 2264 zone->nr_inactive, 2265 zone->pages_scanned, 2266 zone->nr_scan_active, zone->nr_scan_inactive, 2267 zone->spanned_pages, 2268 zone->present_pages); 2269 seq_printf(m, 2270 "\n protection: (%lu", 2271 zone->lowmem_reserve[0]); 2272 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2273 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2274 seq_printf(m, 2275 ")" 2276 "\n pagesets"); 2277 for_each_online_cpu(i) { 2278 struct per_cpu_pageset *pageset; 2279 int j; 2280 2281 pageset = zone_pcp(zone, i); 2282 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2283 if (pageset->pcp[j].count) 2284 break; 2285 } 2286 if (j == ARRAY_SIZE(pageset->pcp)) 2287 continue; 2288 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2289 seq_printf(m, 2290 "\n cpu: %i pcp: %i" 2291 "\n count: %i" 2292 "\n high: %i" 2293 "\n batch: %i", 2294 i, j, 2295 pageset->pcp[j].count, 2296 pageset->pcp[j].high, 2297 pageset->pcp[j].batch); 2298 } 2299 #ifdef CONFIG_NUMA 2300 seq_printf(m, 2301 "\n numa_hit: %lu" 2302 "\n numa_miss: %lu" 2303 "\n numa_foreign: %lu" 2304 "\n interleave_hit: %lu" 2305 "\n local_node: %lu" 2306 "\n other_node: %lu", 2307 pageset->numa_hit, 2308 pageset->numa_miss, 2309 pageset->numa_foreign, 2310 pageset->interleave_hit, 2311 pageset->local_node, 2312 pageset->other_node); 2313 #endif 2314 } 2315 seq_printf(m, 2316 "\n all_unreclaimable: %u" 2317 "\n prev_priority: %i" 2318 "\n temp_priority: %i" 2319 "\n start_pfn: %lu", 2320 zone->all_unreclaimable, 2321 zone->prev_priority, 2322 zone->temp_priority, 2323 zone->zone_start_pfn); 2324 spin_unlock_irqrestore(&zone->lock, flags); 2325 seq_putc(m, '\n'); 2326 } 2327 return 0; 2328 } 2329 2330 struct seq_operations zoneinfo_op = { 2331 .start = frag_start, /* iterate over all zones. The same as in 2332 * fragmentation. */ 2333 .next = frag_next, 2334 .stop = frag_stop, 2335 .show = zoneinfo_show, 2336 }; 2337 2338 static char *vmstat_text[] = { 2339 "nr_dirty", 2340 "nr_writeback", 2341 "nr_unstable", 2342 "nr_page_table_pages", 2343 "nr_mapped", 2344 "nr_slab", 2345 2346 "pgpgin", 2347 "pgpgout", 2348 "pswpin", 2349 "pswpout", 2350 2351 "pgalloc_high", 2352 "pgalloc_normal", 2353 "pgalloc_dma32", 2354 "pgalloc_dma", 2355 2356 "pgfree", 2357 "pgactivate", 2358 "pgdeactivate", 2359 2360 "pgfault", 2361 "pgmajfault", 2362 2363 "pgrefill_high", 2364 "pgrefill_normal", 2365 "pgrefill_dma32", 2366 "pgrefill_dma", 2367 2368 "pgsteal_high", 2369 "pgsteal_normal", 2370 "pgsteal_dma32", 2371 "pgsteal_dma", 2372 2373 "pgscan_kswapd_high", 2374 "pgscan_kswapd_normal", 2375 "pgscan_kswapd_dma32", 2376 "pgscan_kswapd_dma", 2377 2378 "pgscan_direct_high", 2379 "pgscan_direct_normal", 2380 "pgscan_direct_dma32", 2381 "pgscan_direct_dma", 2382 2383 "pginodesteal", 2384 "slabs_scanned", 2385 "kswapd_steal", 2386 "kswapd_inodesteal", 2387 "pageoutrun", 2388 "allocstall", 2389 2390 "pgrotated", 2391 "nr_bounce", 2392 }; 2393 2394 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2395 { 2396 struct page_state *ps; 2397 2398 if (*pos >= ARRAY_SIZE(vmstat_text)) 2399 return NULL; 2400 2401 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2402 m->private = ps; 2403 if (!ps) 2404 return ERR_PTR(-ENOMEM); 2405 get_full_page_state(ps); 2406 ps->pgpgin /= 2; /* sectors -> kbytes */ 2407 ps->pgpgout /= 2; 2408 return (unsigned long *)ps + *pos; 2409 } 2410 2411 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2412 { 2413 (*pos)++; 2414 if (*pos >= ARRAY_SIZE(vmstat_text)) 2415 return NULL; 2416 return (unsigned long *)m->private + *pos; 2417 } 2418 2419 static int vmstat_show(struct seq_file *m, void *arg) 2420 { 2421 unsigned long *l = arg; 2422 unsigned long off = l - (unsigned long *)m->private; 2423 2424 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2425 return 0; 2426 } 2427 2428 static void vmstat_stop(struct seq_file *m, void *arg) 2429 { 2430 kfree(m->private); 2431 m->private = NULL; 2432 } 2433 2434 struct seq_operations vmstat_op = { 2435 .start = vmstat_start, 2436 .next = vmstat_next, 2437 .stop = vmstat_stop, 2438 .show = vmstat_show, 2439 }; 2440 2441 #endif /* CONFIG_PROC_FS */ 2442 2443 #ifdef CONFIG_HOTPLUG_CPU 2444 static int page_alloc_cpu_notify(struct notifier_block *self, 2445 unsigned long action, void *hcpu) 2446 { 2447 int cpu = (unsigned long)hcpu; 2448 long *count; 2449 unsigned long *src, *dest; 2450 2451 if (action == CPU_DEAD) { 2452 int i; 2453 2454 /* Drain local pagecache count. */ 2455 count = &per_cpu(nr_pagecache_local, cpu); 2456 atomic_add(*count, &nr_pagecache); 2457 *count = 0; 2458 local_irq_disable(); 2459 __drain_pages(cpu); 2460 2461 /* Add dead cpu's page_states to our own. */ 2462 dest = (unsigned long *)&__get_cpu_var(page_states); 2463 src = (unsigned long *)&per_cpu(page_states, cpu); 2464 2465 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2466 i++) { 2467 dest[i] += src[i]; 2468 src[i] = 0; 2469 } 2470 2471 local_irq_enable(); 2472 } 2473 return NOTIFY_OK; 2474 } 2475 #endif /* CONFIG_HOTPLUG_CPU */ 2476 2477 void __init page_alloc_init(void) 2478 { 2479 hotcpu_notifier(page_alloc_cpu_notify, 0); 2480 } 2481 2482 /* 2483 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 2484 * or min_free_kbytes changes. 2485 */ 2486 static void calculate_totalreserve_pages(void) 2487 { 2488 struct pglist_data *pgdat; 2489 unsigned long reserve_pages = 0; 2490 int i, j; 2491 2492 for_each_online_pgdat(pgdat) { 2493 for (i = 0; i < MAX_NR_ZONES; i++) { 2494 struct zone *zone = pgdat->node_zones + i; 2495 unsigned long max = 0; 2496 2497 /* Find valid and maximum lowmem_reserve in the zone */ 2498 for (j = i; j < MAX_NR_ZONES; j++) { 2499 if (zone->lowmem_reserve[j] > max) 2500 max = zone->lowmem_reserve[j]; 2501 } 2502 2503 /* we treat pages_high as reserved pages. */ 2504 max += zone->pages_high; 2505 2506 if (max > zone->present_pages) 2507 max = zone->present_pages; 2508 reserve_pages += max; 2509 } 2510 } 2511 totalreserve_pages = reserve_pages; 2512 } 2513 2514 /* 2515 * setup_per_zone_lowmem_reserve - called whenever 2516 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2517 * has a correct pages reserved value, so an adequate number of 2518 * pages are left in the zone after a successful __alloc_pages(). 2519 */ 2520 static void setup_per_zone_lowmem_reserve(void) 2521 { 2522 struct pglist_data *pgdat; 2523 int j, idx; 2524 2525 for_each_online_pgdat(pgdat) { 2526 for (j = 0; j < MAX_NR_ZONES; j++) { 2527 struct zone *zone = pgdat->node_zones + j; 2528 unsigned long present_pages = zone->present_pages; 2529 2530 zone->lowmem_reserve[j] = 0; 2531 2532 for (idx = j-1; idx >= 0; idx--) { 2533 struct zone *lower_zone; 2534 2535 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2536 sysctl_lowmem_reserve_ratio[idx] = 1; 2537 2538 lower_zone = pgdat->node_zones + idx; 2539 lower_zone->lowmem_reserve[j] = present_pages / 2540 sysctl_lowmem_reserve_ratio[idx]; 2541 present_pages += lower_zone->present_pages; 2542 } 2543 } 2544 } 2545 2546 /* update totalreserve_pages */ 2547 calculate_totalreserve_pages(); 2548 } 2549 2550 /* 2551 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2552 * that the pages_{min,low,high} values for each zone are set correctly 2553 * with respect to min_free_kbytes. 2554 */ 2555 void setup_per_zone_pages_min(void) 2556 { 2557 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2558 unsigned long lowmem_pages = 0; 2559 struct zone *zone; 2560 unsigned long flags; 2561 2562 /* Calculate total number of !ZONE_HIGHMEM pages */ 2563 for_each_zone(zone) { 2564 if (!is_highmem(zone)) 2565 lowmem_pages += zone->present_pages; 2566 } 2567 2568 for_each_zone(zone) { 2569 unsigned long tmp; 2570 spin_lock_irqsave(&zone->lru_lock, flags); 2571 tmp = (pages_min * zone->present_pages) / lowmem_pages; 2572 if (is_highmem(zone)) { 2573 /* 2574 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2575 * need highmem pages, so cap pages_min to a small 2576 * value here. 2577 * 2578 * The (pages_high-pages_low) and (pages_low-pages_min) 2579 * deltas controls asynch page reclaim, and so should 2580 * not be capped for highmem. 2581 */ 2582 int min_pages; 2583 2584 min_pages = zone->present_pages / 1024; 2585 if (min_pages < SWAP_CLUSTER_MAX) 2586 min_pages = SWAP_CLUSTER_MAX; 2587 if (min_pages > 128) 2588 min_pages = 128; 2589 zone->pages_min = min_pages; 2590 } else { 2591 /* 2592 * If it's a lowmem zone, reserve a number of pages 2593 * proportionate to the zone's size. 2594 */ 2595 zone->pages_min = tmp; 2596 } 2597 2598 zone->pages_low = zone->pages_min + tmp / 4; 2599 zone->pages_high = zone->pages_min + tmp / 2; 2600 spin_unlock_irqrestore(&zone->lru_lock, flags); 2601 } 2602 2603 /* update totalreserve_pages */ 2604 calculate_totalreserve_pages(); 2605 } 2606 2607 /* 2608 * Initialise min_free_kbytes. 2609 * 2610 * For small machines we want it small (128k min). For large machines 2611 * we want it large (64MB max). But it is not linear, because network 2612 * bandwidth does not increase linearly with machine size. We use 2613 * 2614 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2615 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2616 * 2617 * which yields 2618 * 2619 * 16MB: 512k 2620 * 32MB: 724k 2621 * 64MB: 1024k 2622 * 128MB: 1448k 2623 * 256MB: 2048k 2624 * 512MB: 2896k 2625 * 1024MB: 4096k 2626 * 2048MB: 5792k 2627 * 4096MB: 8192k 2628 * 8192MB: 11584k 2629 * 16384MB: 16384k 2630 */ 2631 static int __init init_per_zone_pages_min(void) 2632 { 2633 unsigned long lowmem_kbytes; 2634 2635 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2636 2637 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2638 if (min_free_kbytes < 128) 2639 min_free_kbytes = 128; 2640 if (min_free_kbytes > 65536) 2641 min_free_kbytes = 65536; 2642 setup_per_zone_pages_min(); 2643 setup_per_zone_lowmem_reserve(); 2644 return 0; 2645 } 2646 module_init(init_per_zone_pages_min) 2647 2648 /* 2649 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2650 * that we can call two helper functions whenever min_free_kbytes 2651 * changes. 2652 */ 2653 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2654 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2655 { 2656 proc_dointvec(table, write, file, buffer, length, ppos); 2657 setup_per_zone_pages_min(); 2658 return 0; 2659 } 2660 2661 /* 2662 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2663 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2664 * whenever sysctl_lowmem_reserve_ratio changes. 2665 * 2666 * The reserve ratio obviously has absolutely no relation with the 2667 * pages_min watermarks. The lowmem reserve ratio can only make sense 2668 * if in function of the boot time zone sizes. 2669 */ 2670 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2671 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2672 { 2673 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2674 setup_per_zone_lowmem_reserve(); 2675 return 0; 2676 } 2677 2678 /* 2679 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2680 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2681 * can have before it gets flushed back to buddy allocator. 2682 */ 2683 2684 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2685 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2686 { 2687 struct zone *zone; 2688 unsigned int cpu; 2689 int ret; 2690 2691 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2692 if (!write || (ret == -EINVAL)) 2693 return ret; 2694 for_each_zone(zone) { 2695 for_each_online_cpu(cpu) { 2696 unsigned long high; 2697 high = zone->present_pages / percpu_pagelist_fraction; 2698 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2699 } 2700 } 2701 return 0; 2702 } 2703 2704 __initdata int hashdist = HASHDIST_DEFAULT; 2705 2706 #ifdef CONFIG_NUMA 2707 static int __init set_hashdist(char *str) 2708 { 2709 if (!str) 2710 return 0; 2711 hashdist = simple_strtoul(str, &str, 0); 2712 return 1; 2713 } 2714 __setup("hashdist=", set_hashdist); 2715 #endif 2716 2717 /* 2718 * allocate a large system hash table from bootmem 2719 * - it is assumed that the hash table must contain an exact power-of-2 2720 * quantity of entries 2721 * - limit is the number of hash buckets, not the total allocation size 2722 */ 2723 void *__init alloc_large_system_hash(const char *tablename, 2724 unsigned long bucketsize, 2725 unsigned long numentries, 2726 int scale, 2727 int flags, 2728 unsigned int *_hash_shift, 2729 unsigned int *_hash_mask, 2730 unsigned long limit) 2731 { 2732 unsigned long long max = limit; 2733 unsigned long log2qty, size; 2734 void *table = NULL; 2735 2736 /* allow the kernel cmdline to have a say */ 2737 if (!numentries) { 2738 /* round applicable memory size up to nearest megabyte */ 2739 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2740 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2741 numentries >>= 20 - PAGE_SHIFT; 2742 numentries <<= 20 - PAGE_SHIFT; 2743 2744 /* limit to 1 bucket per 2^scale bytes of low memory */ 2745 if (scale > PAGE_SHIFT) 2746 numentries >>= (scale - PAGE_SHIFT); 2747 else 2748 numentries <<= (PAGE_SHIFT - scale); 2749 } 2750 numentries = roundup_pow_of_two(numentries); 2751 2752 /* limit allocation size to 1/16 total memory by default */ 2753 if (max == 0) { 2754 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2755 do_div(max, bucketsize); 2756 } 2757 2758 if (numentries > max) 2759 numentries = max; 2760 2761 log2qty = long_log2(numentries); 2762 2763 do { 2764 size = bucketsize << log2qty; 2765 if (flags & HASH_EARLY) 2766 table = alloc_bootmem(size); 2767 else if (hashdist) 2768 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2769 else { 2770 unsigned long order; 2771 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2772 ; 2773 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2774 } 2775 } while (!table && size > PAGE_SIZE && --log2qty); 2776 2777 if (!table) 2778 panic("Failed to allocate %s hash table\n", tablename); 2779 2780 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2781 tablename, 2782 (1U << log2qty), 2783 long_log2(size) - PAGE_SHIFT, 2784 size); 2785 2786 if (_hash_shift) 2787 *_hash_shift = log2qty; 2788 if (_hash_mask) 2789 *_hash_mask = (1 << log2qty) - 1; 2790 2791 return table; 2792 } 2793 2794 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 2795 /* 2796 * pfn <-> page translation. out-of-line version. 2797 * (see asm-generic/memory_model.h) 2798 */ 2799 #if defined(CONFIG_FLATMEM) 2800 struct page *pfn_to_page(unsigned long pfn) 2801 { 2802 return mem_map + (pfn - ARCH_PFN_OFFSET); 2803 } 2804 unsigned long page_to_pfn(struct page *page) 2805 { 2806 return (page - mem_map) + ARCH_PFN_OFFSET; 2807 } 2808 #elif defined(CONFIG_DISCONTIGMEM) 2809 struct page *pfn_to_page(unsigned long pfn) 2810 { 2811 int nid = arch_pfn_to_nid(pfn); 2812 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid); 2813 } 2814 unsigned long page_to_pfn(struct page *page) 2815 { 2816 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 2817 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn; 2818 } 2819 #elif defined(CONFIG_SPARSEMEM) 2820 struct page *pfn_to_page(unsigned long pfn) 2821 { 2822 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn; 2823 } 2824 2825 unsigned long page_to_pfn(struct page *page) 2826 { 2827 long section_id = page_to_section(page); 2828 return page - __section_mem_map_addr(__nr_to_section(section_id)); 2829 } 2830 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */ 2831 EXPORT_SYMBOL(pfn_to_page); 2832 EXPORT_SYMBOL(page_to_pfn); 2833 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 2834