xref: /linux/mm/page_alloc.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
37 
38 #include <asm/tlbflush.h>
39 #include "internal.h"
40 
41 /*
42  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43  * initializer cleaner
44  */
45 nodemask_t node_online_map = { { [0] = 1UL } };
46 EXPORT_SYMBOL(node_online_map);
47 nodemask_t node_possible_map = NODE_MASK_ALL;
48 EXPORT_SYMBOL(node_possible_map);
49 struct pglist_data *pgdat_list;
50 unsigned long totalram_pages;
51 unsigned long totalhigh_pages;
52 long nr_swap_pages;
53 
54 /*
55  * results with 256, 32 in the lowmem_reserve sysctl:
56  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57  *	1G machine -> (16M dma, 784M normal, 224M high)
58  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61  */
62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63 
64 EXPORT_SYMBOL(totalram_pages);
65 EXPORT_SYMBOL(nr_swap_pages);
66 
67 /*
68  * Used by page_zone() to look up the address of the struct zone whose
69  * id is encoded in the upper bits of page->flags
70  */
71 struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
72 EXPORT_SYMBOL(zone_table);
73 
74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75 int min_free_kbytes = 1024;
76 
77 unsigned long __initdata nr_kernel_pages;
78 unsigned long __initdata nr_all_pages;
79 
80 /*
81  * Temporary debugging check for pages not lying within a given zone.
82  */
83 static int bad_range(struct zone *zone, struct page *page)
84 {
85 	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 		return 1;
87 	if (page_to_pfn(page) < zone->zone_start_pfn)
88 		return 1;
89 #ifdef CONFIG_HOLES_IN_ZONE
90 	if (!pfn_valid(page_to_pfn(page)))
91 		return 1;
92 #endif
93 	if (zone != page_zone(page))
94 		return 1;
95 	return 0;
96 }
97 
98 static void bad_page(const char *function, struct page *page)
99 {
100 	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 		function, current->comm, page);
102 	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 		page->mapping, page_mapcount(page), page_count(page));
105 	printk(KERN_EMERG "Backtrace:\n");
106 	dump_stack();
107 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 	page->flags &= ~(1 << PG_private	|
109 			1 << PG_locked	|
110 			1 << PG_lru	|
111 			1 << PG_active	|
112 			1 << PG_dirty	|
113 			1 << PG_swapcache |
114 			1 << PG_writeback);
115 	set_page_count(page, 0);
116 	reset_page_mapcount(page);
117 	page->mapping = NULL;
118 	tainted |= TAINT_BAD_PAGE;
119 }
120 
121 #ifndef CONFIG_HUGETLB_PAGE
122 #define prep_compound_page(page, order) do { } while (0)
123 #define destroy_compound_page(page, order) do { } while (0)
124 #else
125 /*
126  * Higher-order pages are called "compound pages".  They are structured thusly:
127  *
128  * The first PAGE_SIZE page is called the "head page".
129  *
130  * The remaining PAGE_SIZE pages are called "tail pages".
131  *
132  * All pages have PG_compound set.  All pages have their ->private pointing at
133  * the head page (even the head page has this).
134  *
135  * The first tail page's ->mapping, if non-zero, holds the address of the
136  * compound page's put_page() function.
137  *
138  * The order of the allocation is stored in the first tail page's ->index
139  * This is only for debug at present.  This usage means that zero-order pages
140  * may not be compound.
141  */
142 static void prep_compound_page(struct page *page, unsigned long order)
143 {
144 	int i;
145 	int nr_pages = 1 << order;
146 
147 	page[1].mapping = NULL;
148 	page[1].index = order;
149 	for (i = 0; i < nr_pages; i++) {
150 		struct page *p = page + i;
151 
152 		SetPageCompound(p);
153 		p->private = (unsigned long)page;
154 	}
155 }
156 
157 static void destroy_compound_page(struct page *page, unsigned long order)
158 {
159 	int i;
160 	int nr_pages = 1 << order;
161 
162 	if (!PageCompound(page))
163 		return;
164 
165 	if (page[1].index != order)
166 		bad_page(__FUNCTION__, page);
167 
168 	for (i = 0; i < nr_pages; i++) {
169 		struct page *p = page + i;
170 
171 		if (!PageCompound(p))
172 			bad_page(__FUNCTION__, page);
173 		if (p->private != (unsigned long)page)
174 			bad_page(__FUNCTION__, page);
175 		ClearPageCompound(p);
176 	}
177 }
178 #endif		/* CONFIG_HUGETLB_PAGE */
179 
180 /*
181  * function for dealing with page's order in buddy system.
182  * zone->lock is already acquired when we use these.
183  * So, we don't need atomic page->flags operations here.
184  */
185 static inline unsigned long page_order(struct page *page) {
186 	return page->private;
187 }
188 
189 static inline void set_page_order(struct page *page, int order) {
190 	page->private = order;
191 	__SetPagePrivate(page);
192 }
193 
194 static inline void rmv_page_order(struct page *page)
195 {
196 	__ClearPagePrivate(page);
197 	page->private = 0;
198 }
199 
200 /*
201  * Locate the struct page for both the matching buddy in our
202  * pair (buddy1) and the combined O(n+1) page they form (page).
203  *
204  * 1) Any buddy B1 will have an order O twin B2 which satisfies
205  * the following equation:
206  *     B2 = B1 ^ (1 << O)
207  * For example, if the starting buddy (buddy2) is #8 its order
208  * 1 buddy is #10:
209  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
210  *
211  * 2) Any buddy B will have an order O+1 parent P which
212  * satisfies the following equation:
213  *     P = B & ~(1 << O)
214  *
215  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
216  */
217 static inline struct page *
218 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
219 {
220 	unsigned long buddy_idx = page_idx ^ (1 << order);
221 
222 	return page + (buddy_idx - page_idx);
223 }
224 
225 static inline unsigned long
226 __find_combined_index(unsigned long page_idx, unsigned int order)
227 {
228 	return (page_idx & ~(1 << order));
229 }
230 
231 /*
232  * This function checks whether a page is free && is the buddy
233  * we can do coalesce a page and its buddy if
234  * (a) the buddy is free &&
235  * (b) the buddy is on the buddy system &&
236  * (c) a page and its buddy have the same order.
237  * for recording page's order, we use page->private and PG_private.
238  *
239  */
240 static inline int page_is_buddy(struct page *page, int order)
241 {
242        if (PagePrivate(page)           &&
243            (page_order(page) == order) &&
244            !PageReserved(page)         &&
245             page_count(page) == 0)
246                return 1;
247        return 0;
248 }
249 
250 /*
251  * Freeing function for a buddy system allocator.
252  *
253  * The concept of a buddy system is to maintain direct-mapped table
254  * (containing bit values) for memory blocks of various "orders".
255  * The bottom level table contains the map for the smallest allocatable
256  * units of memory (here, pages), and each level above it describes
257  * pairs of units from the levels below, hence, "buddies".
258  * At a high level, all that happens here is marking the table entry
259  * at the bottom level available, and propagating the changes upward
260  * as necessary, plus some accounting needed to play nicely with other
261  * parts of the VM system.
262  * At each level, we keep a list of pages, which are heads of continuous
263  * free pages of length of (1 << order) and marked with PG_Private.Page's
264  * order is recorded in page->private field.
265  * So when we are allocating or freeing one, we can derive the state of the
266  * other.  That is, if we allocate a small block, and both were
267  * free, the remainder of the region must be split into blocks.
268  * If a block is freed, and its buddy is also free, then this
269  * triggers coalescing into a block of larger size.
270  *
271  * -- wli
272  */
273 
274 static inline void __free_pages_bulk (struct page *page,
275 		struct zone *zone, unsigned int order)
276 {
277 	unsigned long page_idx;
278 	int order_size = 1 << order;
279 
280 	if (unlikely(order))
281 		destroy_compound_page(page, order);
282 
283 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
284 
285 	BUG_ON(page_idx & (order_size - 1));
286 	BUG_ON(bad_range(zone, page));
287 
288 	zone->free_pages += order_size;
289 	while (order < MAX_ORDER-1) {
290 		unsigned long combined_idx;
291 		struct free_area *area;
292 		struct page *buddy;
293 
294 		combined_idx = __find_combined_index(page_idx, order);
295 		buddy = __page_find_buddy(page, page_idx, order);
296 
297 		if (bad_range(zone, buddy))
298 			break;
299 		if (!page_is_buddy(buddy, order))
300 			break;		/* Move the buddy up one level. */
301 		list_del(&buddy->lru);
302 		area = zone->free_area + order;
303 		area->nr_free--;
304 		rmv_page_order(buddy);
305 		page = page + (combined_idx - page_idx);
306 		page_idx = combined_idx;
307 		order++;
308 	}
309 	set_page_order(page, order);
310 	list_add(&page->lru, &zone->free_area[order].free_list);
311 	zone->free_area[order].nr_free++;
312 }
313 
314 static inline void free_pages_check(const char *function, struct page *page)
315 {
316 	if (	page_mapcount(page) ||
317 		page->mapping != NULL ||
318 		page_count(page) != 0 ||
319 		(page->flags & (
320 			1 << PG_lru	|
321 			1 << PG_private |
322 			1 << PG_locked	|
323 			1 << PG_active	|
324 			1 << PG_reclaim	|
325 			1 << PG_slab	|
326 			1 << PG_swapcache |
327 			1 << PG_writeback )))
328 		bad_page(function, page);
329 	if (PageDirty(page))
330 		ClearPageDirty(page);
331 }
332 
333 /*
334  * Frees a list of pages.
335  * Assumes all pages on list are in same zone, and of same order.
336  * count is the number of pages to free, or 0 for all on the list.
337  *
338  * If the zone was previously in an "all pages pinned" state then look to
339  * see if this freeing clears that state.
340  *
341  * And clear the zone's pages_scanned counter, to hold off the "all pages are
342  * pinned" detection logic.
343  */
344 static int
345 free_pages_bulk(struct zone *zone, int count,
346 		struct list_head *list, unsigned int order)
347 {
348 	unsigned long flags;
349 	struct page *page = NULL;
350 	int ret = 0;
351 
352 	spin_lock_irqsave(&zone->lock, flags);
353 	zone->all_unreclaimable = 0;
354 	zone->pages_scanned = 0;
355 	while (!list_empty(list) && count--) {
356 		page = list_entry(list->prev, struct page, lru);
357 		/* have to delete it as __free_pages_bulk list manipulates */
358 		list_del(&page->lru);
359 		__free_pages_bulk(page, zone, order);
360 		ret++;
361 	}
362 	spin_unlock_irqrestore(&zone->lock, flags);
363 	return ret;
364 }
365 
366 void __free_pages_ok(struct page *page, unsigned int order)
367 {
368 	LIST_HEAD(list);
369 	int i;
370 
371 	arch_free_page(page, order);
372 
373 	mod_page_state(pgfree, 1 << order);
374 
375 #ifndef CONFIG_MMU
376 	if (order > 0)
377 		for (i = 1 ; i < (1 << order) ; ++i)
378 			__put_page(page + i);
379 #endif
380 
381 	for (i = 0 ; i < (1 << order) ; ++i)
382 		free_pages_check(__FUNCTION__, page + i);
383 	list_add(&page->lru, &list);
384 	kernel_map_pages(page, 1<<order, 0);
385 	free_pages_bulk(page_zone(page), 1, &list, order);
386 }
387 
388 
389 /*
390  * The order of subdivision here is critical for the IO subsystem.
391  * Please do not alter this order without good reasons and regression
392  * testing. Specifically, as large blocks of memory are subdivided,
393  * the order in which smaller blocks are delivered depends on the order
394  * they're subdivided in this function. This is the primary factor
395  * influencing the order in which pages are delivered to the IO
396  * subsystem according to empirical testing, and this is also justified
397  * by considering the behavior of a buddy system containing a single
398  * large block of memory acted on by a series of small allocations.
399  * This behavior is a critical factor in sglist merging's success.
400  *
401  * -- wli
402  */
403 static inline struct page *
404 expand(struct zone *zone, struct page *page,
405  	int low, int high, struct free_area *area)
406 {
407 	unsigned long size = 1 << high;
408 
409 	while (high > low) {
410 		area--;
411 		high--;
412 		size >>= 1;
413 		BUG_ON(bad_range(zone, &page[size]));
414 		list_add(&page[size].lru, &area->free_list);
415 		area->nr_free++;
416 		set_page_order(&page[size], high);
417 	}
418 	return page;
419 }
420 
421 void set_page_refs(struct page *page, int order)
422 {
423 #ifdef CONFIG_MMU
424 	set_page_count(page, 1);
425 #else
426 	int i;
427 
428 	/*
429 	 * We need to reference all the pages for this order, otherwise if
430 	 * anyone accesses one of the pages with (get/put) it will be freed.
431 	 * - eg: access_process_vm()
432 	 */
433 	for (i = 0; i < (1 << order); i++)
434 		set_page_count(page + i, 1);
435 #endif /* CONFIG_MMU */
436 }
437 
438 /*
439  * This page is about to be returned from the page allocator
440  */
441 static void prep_new_page(struct page *page, int order)
442 {
443 	if (page->mapping || page_mapcount(page) ||
444 	    (page->flags & (
445 			1 << PG_private	|
446 			1 << PG_locked	|
447 			1 << PG_lru	|
448 			1 << PG_active	|
449 			1 << PG_dirty	|
450 			1 << PG_reclaim	|
451 			1 << PG_swapcache |
452 			1 << PG_writeback )))
453 		bad_page(__FUNCTION__, page);
454 
455 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
456 			1 << PG_referenced | 1 << PG_arch_1 |
457 			1 << PG_checked | 1 << PG_mappedtodisk);
458 	page->private = 0;
459 	set_page_refs(page, order);
460 	kernel_map_pages(page, 1 << order, 1);
461 }
462 
463 /*
464  * Do the hard work of removing an element from the buddy allocator.
465  * Call me with the zone->lock already held.
466  */
467 static struct page *__rmqueue(struct zone *zone, unsigned int order)
468 {
469 	struct free_area * area;
470 	unsigned int current_order;
471 	struct page *page;
472 
473 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
474 		area = zone->free_area + current_order;
475 		if (list_empty(&area->free_list))
476 			continue;
477 
478 		page = list_entry(area->free_list.next, struct page, lru);
479 		list_del(&page->lru);
480 		rmv_page_order(page);
481 		area->nr_free--;
482 		zone->free_pages -= 1UL << order;
483 		return expand(zone, page, order, current_order, area);
484 	}
485 
486 	return NULL;
487 }
488 
489 /*
490  * Obtain a specified number of elements from the buddy allocator, all under
491  * a single hold of the lock, for efficiency.  Add them to the supplied list.
492  * Returns the number of new pages which were placed at *list.
493  */
494 static int rmqueue_bulk(struct zone *zone, unsigned int order,
495 			unsigned long count, struct list_head *list)
496 {
497 	unsigned long flags;
498 	int i;
499 	int allocated = 0;
500 	struct page *page;
501 
502 	spin_lock_irqsave(&zone->lock, flags);
503 	for (i = 0; i < count; ++i) {
504 		page = __rmqueue(zone, order);
505 		if (page == NULL)
506 			break;
507 		allocated++;
508 		list_add_tail(&page->lru, list);
509 	}
510 	spin_unlock_irqrestore(&zone->lock, flags);
511 	return allocated;
512 }
513 
514 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
515 static void __drain_pages(unsigned int cpu)
516 {
517 	struct zone *zone;
518 	int i;
519 
520 	for_each_zone(zone) {
521 		struct per_cpu_pageset *pset;
522 
523 		pset = &zone->pageset[cpu];
524 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
525 			struct per_cpu_pages *pcp;
526 
527 			pcp = &pset->pcp[i];
528 			pcp->count -= free_pages_bulk(zone, pcp->count,
529 						&pcp->list, 0);
530 		}
531 	}
532 }
533 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
534 
535 #ifdef CONFIG_PM
536 
537 void mark_free_pages(struct zone *zone)
538 {
539 	unsigned long zone_pfn, flags;
540 	int order;
541 	struct list_head *curr;
542 
543 	if (!zone->spanned_pages)
544 		return;
545 
546 	spin_lock_irqsave(&zone->lock, flags);
547 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
548 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
549 
550 	for (order = MAX_ORDER - 1; order >= 0; --order)
551 		list_for_each(curr, &zone->free_area[order].free_list) {
552 			unsigned long start_pfn, i;
553 
554 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
555 
556 			for (i=0; i < (1<<order); i++)
557 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
558 	}
559 	spin_unlock_irqrestore(&zone->lock, flags);
560 }
561 
562 /*
563  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
564  */
565 void drain_local_pages(void)
566 {
567 	unsigned long flags;
568 
569 	local_irq_save(flags);
570 	__drain_pages(smp_processor_id());
571 	local_irq_restore(flags);
572 }
573 #endif /* CONFIG_PM */
574 
575 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
576 {
577 #ifdef CONFIG_NUMA
578 	unsigned long flags;
579 	int cpu;
580 	pg_data_t *pg = z->zone_pgdat;
581 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
582 	struct per_cpu_pageset *p;
583 
584 	local_irq_save(flags);
585 	cpu = smp_processor_id();
586 	p = &z->pageset[cpu];
587 	if (pg == orig) {
588 		z->pageset[cpu].numa_hit++;
589 	} else {
590 		p->numa_miss++;
591 		zonelist->zones[0]->pageset[cpu].numa_foreign++;
592 	}
593 	if (pg == NODE_DATA(numa_node_id()))
594 		p->local_node++;
595 	else
596 		p->other_node++;
597 	local_irq_restore(flags);
598 #endif
599 }
600 
601 /*
602  * Free a 0-order page
603  */
604 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
605 static void fastcall free_hot_cold_page(struct page *page, int cold)
606 {
607 	struct zone *zone = page_zone(page);
608 	struct per_cpu_pages *pcp;
609 	unsigned long flags;
610 
611 	arch_free_page(page, 0);
612 
613 	kernel_map_pages(page, 1, 0);
614 	inc_page_state(pgfree);
615 	if (PageAnon(page))
616 		page->mapping = NULL;
617 	free_pages_check(__FUNCTION__, page);
618 	pcp = &zone->pageset[get_cpu()].pcp[cold];
619 	local_irq_save(flags);
620 	if (pcp->count >= pcp->high)
621 		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
622 	list_add(&page->lru, &pcp->list);
623 	pcp->count++;
624 	local_irq_restore(flags);
625 	put_cpu();
626 }
627 
628 void fastcall free_hot_page(struct page *page)
629 {
630 	free_hot_cold_page(page, 0);
631 }
632 
633 void fastcall free_cold_page(struct page *page)
634 {
635 	free_hot_cold_page(page, 1);
636 }
637 
638 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
639 {
640 	int i;
641 
642 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
643 	for(i = 0; i < (1 << order); i++)
644 		clear_highpage(page + i);
645 }
646 
647 /*
648  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
649  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
650  * or two.
651  */
652 static struct page *
653 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
654 {
655 	unsigned long flags;
656 	struct page *page = NULL;
657 	int cold = !!(gfp_flags & __GFP_COLD);
658 
659 	if (order == 0) {
660 		struct per_cpu_pages *pcp;
661 
662 		pcp = &zone->pageset[get_cpu()].pcp[cold];
663 		local_irq_save(flags);
664 		if (pcp->count <= pcp->low)
665 			pcp->count += rmqueue_bulk(zone, 0,
666 						pcp->batch, &pcp->list);
667 		if (pcp->count) {
668 			page = list_entry(pcp->list.next, struct page, lru);
669 			list_del(&page->lru);
670 			pcp->count--;
671 		}
672 		local_irq_restore(flags);
673 		put_cpu();
674 	}
675 
676 	if (page == NULL) {
677 		spin_lock_irqsave(&zone->lock, flags);
678 		page = __rmqueue(zone, order);
679 		spin_unlock_irqrestore(&zone->lock, flags);
680 	}
681 
682 	if (page != NULL) {
683 		BUG_ON(bad_range(zone, page));
684 		mod_page_state_zone(zone, pgalloc, 1 << order);
685 		prep_new_page(page, order);
686 
687 		if (gfp_flags & __GFP_ZERO)
688 			prep_zero_page(page, order, gfp_flags);
689 
690 		if (order && (gfp_flags & __GFP_COMP))
691 			prep_compound_page(page, order);
692 	}
693 	return page;
694 }
695 
696 /*
697  * Return 1 if free pages are above 'mark'. This takes into account the order
698  * of the allocation.
699  */
700 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
701 		      int classzone_idx, int can_try_harder, int gfp_high)
702 {
703 	/* free_pages my go negative - that's OK */
704 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
705 	int o;
706 
707 	if (gfp_high)
708 		min -= min / 2;
709 	if (can_try_harder)
710 		min -= min / 4;
711 
712 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
713 		return 0;
714 	for (o = 0; o < order; o++) {
715 		/* At the next order, this order's pages become unavailable */
716 		free_pages -= z->free_area[o].nr_free << o;
717 
718 		/* Require fewer higher order pages to be free */
719 		min >>= 1;
720 
721 		if (free_pages <= min)
722 			return 0;
723 	}
724 	return 1;
725 }
726 
727 /*
728  * This is the 'heart' of the zoned buddy allocator.
729  */
730 struct page * fastcall
731 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
732 		struct zonelist *zonelist)
733 {
734 	const int wait = gfp_mask & __GFP_WAIT;
735 	struct zone **zones, *z;
736 	struct page *page;
737 	struct reclaim_state reclaim_state;
738 	struct task_struct *p = current;
739 	int i;
740 	int classzone_idx;
741 	int do_retry;
742 	int can_try_harder;
743 	int did_some_progress;
744 
745 	might_sleep_if(wait);
746 
747 	/*
748 	 * The caller may dip into page reserves a bit more if the caller
749 	 * cannot run direct reclaim, or is the caller has realtime scheduling
750 	 * policy
751 	 */
752 	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
753 
754 	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
755 
756 	if (unlikely(zones[0] == NULL)) {
757 		/* Should this ever happen?? */
758 		return NULL;
759 	}
760 
761 	classzone_idx = zone_idx(zones[0]);
762 
763  restart:
764 	/* Go through the zonelist once, looking for a zone with enough free */
765 	for (i = 0; (z = zones[i]) != NULL; i++) {
766 
767 		if (!zone_watermark_ok(z, order, z->pages_low,
768 				       classzone_idx, 0, 0))
769 			continue;
770 
771 		if (!cpuset_zone_allowed(z))
772 			continue;
773 
774 		page = buffered_rmqueue(z, order, gfp_mask);
775 		if (page)
776 			goto got_pg;
777 	}
778 
779 	for (i = 0; (z = zones[i]) != NULL; i++)
780 		wakeup_kswapd(z, order);
781 
782 	/*
783 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
784 	 * coming from realtime tasks to go deeper into reserves
785 	 *
786 	 * This is the last chance, in general, before the goto nopage.
787 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
788 	 */
789 	for (i = 0; (z = zones[i]) != NULL; i++) {
790 		if (!zone_watermark_ok(z, order, z->pages_min,
791 				       classzone_idx, can_try_harder,
792 				       gfp_mask & __GFP_HIGH))
793 			continue;
794 
795 		if (wait && !cpuset_zone_allowed(z))
796 			continue;
797 
798 		page = buffered_rmqueue(z, order, gfp_mask);
799 		if (page)
800 			goto got_pg;
801 	}
802 
803 	/* This allocation should allow future memory freeing. */
804 
805 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
806 			&& !in_interrupt()) {
807 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
808 			/* go through the zonelist yet again, ignoring mins */
809 			for (i = 0; (z = zones[i]) != NULL; i++) {
810 				if (!cpuset_zone_allowed(z))
811 					continue;
812 				page = buffered_rmqueue(z, order, gfp_mask);
813 				if (page)
814 					goto got_pg;
815 			}
816 		}
817 		goto nopage;
818 	}
819 
820 	/* Atomic allocations - we can't balance anything */
821 	if (!wait)
822 		goto nopage;
823 
824 rebalance:
825 	cond_resched();
826 
827 	/* We now go into synchronous reclaim */
828 	p->flags |= PF_MEMALLOC;
829 	reclaim_state.reclaimed_slab = 0;
830 	p->reclaim_state = &reclaim_state;
831 
832 	did_some_progress = try_to_free_pages(zones, gfp_mask, order);
833 
834 	p->reclaim_state = NULL;
835 	p->flags &= ~PF_MEMALLOC;
836 
837 	cond_resched();
838 
839 	if (likely(did_some_progress)) {
840 		/*
841 		 * Go through the zonelist yet one more time, keep
842 		 * very high watermark here, this is only to catch
843 		 * a parallel oom killing, we must fail if we're still
844 		 * under heavy pressure.
845 		 */
846 		for (i = 0; (z = zones[i]) != NULL; i++) {
847 			if (!zone_watermark_ok(z, order, z->pages_min,
848 					       classzone_idx, can_try_harder,
849 					       gfp_mask & __GFP_HIGH))
850 				continue;
851 
852 			if (!cpuset_zone_allowed(z))
853 				continue;
854 
855 			page = buffered_rmqueue(z, order, gfp_mask);
856 			if (page)
857 				goto got_pg;
858 		}
859 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
860 		/*
861 		 * Go through the zonelist yet one more time, keep
862 		 * very high watermark here, this is only to catch
863 		 * a parallel oom killing, we must fail if we're still
864 		 * under heavy pressure.
865 		 */
866 		for (i = 0; (z = zones[i]) != NULL; i++) {
867 			if (!zone_watermark_ok(z, order, z->pages_high,
868 					       classzone_idx, 0, 0))
869 				continue;
870 
871 			if (!cpuset_zone_allowed(z))
872 				continue;
873 
874 			page = buffered_rmqueue(z, order, gfp_mask);
875 			if (page)
876 				goto got_pg;
877 		}
878 
879 		out_of_memory(gfp_mask);
880 		goto restart;
881 	}
882 
883 	/*
884 	 * Don't let big-order allocations loop unless the caller explicitly
885 	 * requests that.  Wait for some write requests to complete then retry.
886 	 *
887 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
888 	 * <= 3, but that may not be true in other implementations.
889 	 */
890 	do_retry = 0;
891 	if (!(gfp_mask & __GFP_NORETRY)) {
892 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
893 			do_retry = 1;
894 		if (gfp_mask & __GFP_NOFAIL)
895 			do_retry = 1;
896 	}
897 	if (do_retry) {
898 		blk_congestion_wait(WRITE, HZ/50);
899 		goto rebalance;
900 	}
901 
902 nopage:
903 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
904 		printk(KERN_WARNING "%s: page allocation failure."
905 			" order:%d, mode:0x%x\n",
906 			p->comm, order, gfp_mask);
907 		dump_stack();
908 	}
909 	return NULL;
910 got_pg:
911 	zone_statistics(zonelist, z);
912 	return page;
913 }
914 
915 EXPORT_SYMBOL(__alloc_pages);
916 
917 /*
918  * Common helper functions.
919  */
920 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
921 {
922 	struct page * page;
923 	page = alloc_pages(gfp_mask, order);
924 	if (!page)
925 		return 0;
926 	return (unsigned long) page_address(page);
927 }
928 
929 EXPORT_SYMBOL(__get_free_pages);
930 
931 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
932 {
933 	struct page * page;
934 
935 	/*
936 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
937 	 * a highmem page
938 	 */
939 	BUG_ON(gfp_mask & __GFP_HIGHMEM);
940 
941 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
942 	if (page)
943 		return (unsigned long) page_address(page);
944 	return 0;
945 }
946 
947 EXPORT_SYMBOL(get_zeroed_page);
948 
949 void __pagevec_free(struct pagevec *pvec)
950 {
951 	int i = pagevec_count(pvec);
952 
953 	while (--i >= 0)
954 		free_hot_cold_page(pvec->pages[i], pvec->cold);
955 }
956 
957 fastcall void __free_pages(struct page *page, unsigned int order)
958 {
959 	if (!PageReserved(page) && put_page_testzero(page)) {
960 		if (order == 0)
961 			free_hot_page(page);
962 		else
963 			__free_pages_ok(page, order);
964 	}
965 }
966 
967 EXPORT_SYMBOL(__free_pages);
968 
969 fastcall void free_pages(unsigned long addr, unsigned int order)
970 {
971 	if (addr != 0) {
972 		BUG_ON(!virt_addr_valid((void *)addr));
973 		__free_pages(virt_to_page((void *)addr), order);
974 	}
975 }
976 
977 EXPORT_SYMBOL(free_pages);
978 
979 /*
980  * Total amount of free (allocatable) RAM:
981  */
982 unsigned int nr_free_pages(void)
983 {
984 	unsigned int sum = 0;
985 	struct zone *zone;
986 
987 	for_each_zone(zone)
988 		sum += zone->free_pages;
989 
990 	return sum;
991 }
992 
993 EXPORT_SYMBOL(nr_free_pages);
994 
995 #ifdef CONFIG_NUMA
996 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
997 {
998 	unsigned int i, sum = 0;
999 
1000 	for (i = 0; i < MAX_NR_ZONES; i++)
1001 		sum += pgdat->node_zones[i].free_pages;
1002 
1003 	return sum;
1004 }
1005 #endif
1006 
1007 static unsigned int nr_free_zone_pages(int offset)
1008 {
1009 	pg_data_t *pgdat;
1010 	unsigned int sum = 0;
1011 
1012 	for_each_pgdat(pgdat) {
1013 		struct zonelist *zonelist = pgdat->node_zonelists + offset;
1014 		struct zone **zonep = zonelist->zones;
1015 		struct zone *zone;
1016 
1017 		for (zone = *zonep++; zone; zone = *zonep++) {
1018 			unsigned long size = zone->present_pages;
1019 			unsigned long high = zone->pages_high;
1020 			if (size > high)
1021 				sum += size - high;
1022 		}
1023 	}
1024 
1025 	return sum;
1026 }
1027 
1028 /*
1029  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1030  */
1031 unsigned int nr_free_buffer_pages(void)
1032 {
1033 	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1034 }
1035 
1036 /*
1037  * Amount of free RAM allocatable within all zones
1038  */
1039 unsigned int nr_free_pagecache_pages(void)
1040 {
1041 	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1042 }
1043 
1044 #ifdef CONFIG_HIGHMEM
1045 unsigned int nr_free_highpages (void)
1046 {
1047 	pg_data_t *pgdat;
1048 	unsigned int pages = 0;
1049 
1050 	for_each_pgdat(pgdat)
1051 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1052 
1053 	return pages;
1054 }
1055 #endif
1056 
1057 #ifdef CONFIG_NUMA
1058 static void show_node(struct zone *zone)
1059 {
1060 	printk("Node %d ", zone->zone_pgdat->node_id);
1061 }
1062 #else
1063 #define show_node(zone)	do { } while (0)
1064 #endif
1065 
1066 /*
1067  * Accumulate the page_state information across all CPUs.
1068  * The result is unavoidably approximate - it can change
1069  * during and after execution of this function.
1070  */
1071 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1072 
1073 atomic_t nr_pagecache = ATOMIC_INIT(0);
1074 EXPORT_SYMBOL(nr_pagecache);
1075 #ifdef CONFIG_SMP
1076 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1077 #endif
1078 
1079 void __get_page_state(struct page_state *ret, int nr)
1080 {
1081 	int cpu = 0;
1082 
1083 	memset(ret, 0, sizeof(*ret));
1084 
1085 	cpu = first_cpu(cpu_online_map);
1086 	while (cpu < NR_CPUS) {
1087 		unsigned long *in, *out, off;
1088 
1089 		in = (unsigned long *)&per_cpu(page_states, cpu);
1090 
1091 		cpu = next_cpu(cpu, cpu_online_map);
1092 
1093 		if (cpu < NR_CPUS)
1094 			prefetch(&per_cpu(page_states, cpu));
1095 
1096 		out = (unsigned long *)ret;
1097 		for (off = 0; off < nr; off++)
1098 			*out++ += *in++;
1099 	}
1100 }
1101 
1102 void get_page_state(struct page_state *ret)
1103 {
1104 	int nr;
1105 
1106 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1107 	nr /= sizeof(unsigned long);
1108 
1109 	__get_page_state(ret, nr + 1);
1110 }
1111 
1112 void get_full_page_state(struct page_state *ret)
1113 {
1114 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1115 }
1116 
1117 unsigned long __read_page_state(unsigned offset)
1118 {
1119 	unsigned long ret = 0;
1120 	int cpu;
1121 
1122 	for_each_online_cpu(cpu) {
1123 		unsigned long in;
1124 
1125 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1126 		ret += *((unsigned long *)in);
1127 	}
1128 	return ret;
1129 }
1130 
1131 void __mod_page_state(unsigned offset, unsigned long delta)
1132 {
1133 	unsigned long flags;
1134 	void* ptr;
1135 
1136 	local_irq_save(flags);
1137 	ptr = &__get_cpu_var(page_states);
1138 	*(unsigned long*)(ptr + offset) += delta;
1139 	local_irq_restore(flags);
1140 }
1141 
1142 EXPORT_SYMBOL(__mod_page_state);
1143 
1144 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1145 			unsigned long *free, struct pglist_data *pgdat)
1146 {
1147 	struct zone *zones = pgdat->node_zones;
1148 	int i;
1149 
1150 	*active = 0;
1151 	*inactive = 0;
1152 	*free = 0;
1153 	for (i = 0; i < MAX_NR_ZONES; i++) {
1154 		*active += zones[i].nr_active;
1155 		*inactive += zones[i].nr_inactive;
1156 		*free += zones[i].free_pages;
1157 	}
1158 }
1159 
1160 void get_zone_counts(unsigned long *active,
1161 		unsigned long *inactive, unsigned long *free)
1162 {
1163 	struct pglist_data *pgdat;
1164 
1165 	*active = 0;
1166 	*inactive = 0;
1167 	*free = 0;
1168 	for_each_pgdat(pgdat) {
1169 		unsigned long l, m, n;
1170 		__get_zone_counts(&l, &m, &n, pgdat);
1171 		*active += l;
1172 		*inactive += m;
1173 		*free += n;
1174 	}
1175 }
1176 
1177 void si_meminfo(struct sysinfo *val)
1178 {
1179 	val->totalram = totalram_pages;
1180 	val->sharedram = 0;
1181 	val->freeram = nr_free_pages();
1182 	val->bufferram = nr_blockdev_pages();
1183 #ifdef CONFIG_HIGHMEM
1184 	val->totalhigh = totalhigh_pages;
1185 	val->freehigh = nr_free_highpages();
1186 #else
1187 	val->totalhigh = 0;
1188 	val->freehigh = 0;
1189 #endif
1190 	val->mem_unit = PAGE_SIZE;
1191 }
1192 
1193 EXPORT_SYMBOL(si_meminfo);
1194 
1195 #ifdef CONFIG_NUMA
1196 void si_meminfo_node(struct sysinfo *val, int nid)
1197 {
1198 	pg_data_t *pgdat = NODE_DATA(nid);
1199 
1200 	val->totalram = pgdat->node_present_pages;
1201 	val->freeram = nr_free_pages_pgdat(pgdat);
1202 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1203 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1204 	val->mem_unit = PAGE_SIZE;
1205 }
1206 #endif
1207 
1208 #define K(x) ((x) << (PAGE_SHIFT-10))
1209 
1210 /*
1211  * Show free area list (used inside shift_scroll-lock stuff)
1212  * We also calculate the percentage fragmentation. We do this by counting the
1213  * memory on each free list with the exception of the first item on the list.
1214  */
1215 void show_free_areas(void)
1216 {
1217 	struct page_state ps;
1218 	int cpu, temperature;
1219 	unsigned long active;
1220 	unsigned long inactive;
1221 	unsigned long free;
1222 	struct zone *zone;
1223 
1224 	for_each_zone(zone) {
1225 		show_node(zone);
1226 		printk("%s per-cpu:", zone->name);
1227 
1228 		if (!zone->present_pages) {
1229 			printk(" empty\n");
1230 			continue;
1231 		} else
1232 			printk("\n");
1233 
1234 		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1235 			struct per_cpu_pageset *pageset;
1236 
1237 			if (!cpu_possible(cpu))
1238 				continue;
1239 
1240 			pageset = zone->pageset + cpu;
1241 
1242 			for (temperature = 0; temperature < 2; temperature++)
1243 				printk("cpu %d %s: low %d, high %d, batch %d\n",
1244 					cpu,
1245 					temperature ? "cold" : "hot",
1246 					pageset->pcp[temperature].low,
1247 					pageset->pcp[temperature].high,
1248 					pageset->pcp[temperature].batch);
1249 		}
1250 	}
1251 
1252 	get_page_state(&ps);
1253 	get_zone_counts(&active, &inactive, &free);
1254 
1255 	printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1256 		K(nr_free_pages()),
1257 		K(nr_free_highpages()));
1258 
1259 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1260 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1261 		active,
1262 		inactive,
1263 		ps.nr_dirty,
1264 		ps.nr_writeback,
1265 		ps.nr_unstable,
1266 		nr_free_pages(),
1267 		ps.nr_slab,
1268 		ps.nr_mapped,
1269 		ps.nr_page_table_pages);
1270 
1271 	for_each_zone(zone) {
1272 		int i;
1273 
1274 		show_node(zone);
1275 		printk("%s"
1276 			" free:%lukB"
1277 			" min:%lukB"
1278 			" low:%lukB"
1279 			" high:%lukB"
1280 			" active:%lukB"
1281 			" inactive:%lukB"
1282 			" present:%lukB"
1283 			" pages_scanned:%lu"
1284 			" all_unreclaimable? %s"
1285 			"\n",
1286 			zone->name,
1287 			K(zone->free_pages),
1288 			K(zone->pages_min),
1289 			K(zone->pages_low),
1290 			K(zone->pages_high),
1291 			K(zone->nr_active),
1292 			K(zone->nr_inactive),
1293 			K(zone->present_pages),
1294 			zone->pages_scanned,
1295 			(zone->all_unreclaimable ? "yes" : "no")
1296 			);
1297 		printk("lowmem_reserve[]:");
1298 		for (i = 0; i < MAX_NR_ZONES; i++)
1299 			printk(" %lu", zone->lowmem_reserve[i]);
1300 		printk("\n");
1301 	}
1302 
1303 	for_each_zone(zone) {
1304  		unsigned long nr, flags, order, total = 0;
1305 
1306 		show_node(zone);
1307 		printk("%s: ", zone->name);
1308 		if (!zone->present_pages) {
1309 			printk("empty\n");
1310 			continue;
1311 		}
1312 
1313 		spin_lock_irqsave(&zone->lock, flags);
1314 		for (order = 0; order < MAX_ORDER; order++) {
1315 			nr = zone->free_area[order].nr_free;
1316 			total += nr << order;
1317 			printk("%lu*%lukB ", nr, K(1UL) << order);
1318 		}
1319 		spin_unlock_irqrestore(&zone->lock, flags);
1320 		printk("= %lukB\n", K(total));
1321 	}
1322 
1323 	show_swap_cache_info();
1324 }
1325 
1326 /*
1327  * Builds allocation fallback zone lists.
1328  */
1329 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1330 {
1331 	switch (k) {
1332 		struct zone *zone;
1333 	default:
1334 		BUG();
1335 	case ZONE_HIGHMEM:
1336 		zone = pgdat->node_zones + ZONE_HIGHMEM;
1337 		if (zone->present_pages) {
1338 #ifndef CONFIG_HIGHMEM
1339 			BUG();
1340 #endif
1341 			zonelist->zones[j++] = zone;
1342 		}
1343 	case ZONE_NORMAL:
1344 		zone = pgdat->node_zones + ZONE_NORMAL;
1345 		if (zone->present_pages)
1346 			zonelist->zones[j++] = zone;
1347 	case ZONE_DMA:
1348 		zone = pgdat->node_zones + ZONE_DMA;
1349 		if (zone->present_pages)
1350 			zonelist->zones[j++] = zone;
1351 	}
1352 
1353 	return j;
1354 }
1355 
1356 #ifdef CONFIG_NUMA
1357 #define MAX_NODE_LOAD (num_online_nodes())
1358 static int __initdata node_load[MAX_NUMNODES];
1359 /**
1360  * find_next_best_node - find the next node that should appear in a given node's fallback list
1361  * @node: node whose fallback list we're appending
1362  * @used_node_mask: nodemask_t of already used nodes
1363  *
1364  * We use a number of factors to determine which is the next node that should
1365  * appear on a given node's fallback list.  The node should not have appeared
1366  * already in @node's fallback list, and it should be the next closest node
1367  * according to the distance array (which contains arbitrary distance values
1368  * from each node to each node in the system), and should also prefer nodes
1369  * with no CPUs, since presumably they'll have very little allocation pressure
1370  * on them otherwise.
1371  * It returns -1 if no node is found.
1372  */
1373 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1374 {
1375 	int i, n, val;
1376 	int min_val = INT_MAX;
1377 	int best_node = -1;
1378 
1379 	for_each_online_node(i) {
1380 		cpumask_t tmp;
1381 
1382 		/* Start from local node */
1383 		n = (node+i) % num_online_nodes();
1384 
1385 		/* Don't want a node to appear more than once */
1386 		if (node_isset(n, *used_node_mask))
1387 			continue;
1388 
1389 		/* Use the local node if we haven't already */
1390 		if (!node_isset(node, *used_node_mask)) {
1391 			best_node = node;
1392 			break;
1393 		}
1394 
1395 		/* Use the distance array to find the distance */
1396 		val = node_distance(node, n);
1397 
1398 		/* Give preference to headless and unused nodes */
1399 		tmp = node_to_cpumask(n);
1400 		if (!cpus_empty(tmp))
1401 			val += PENALTY_FOR_NODE_WITH_CPUS;
1402 
1403 		/* Slight preference for less loaded node */
1404 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1405 		val += node_load[n];
1406 
1407 		if (val < min_val) {
1408 			min_val = val;
1409 			best_node = n;
1410 		}
1411 	}
1412 
1413 	if (best_node >= 0)
1414 		node_set(best_node, *used_node_mask);
1415 
1416 	return best_node;
1417 }
1418 
1419 static void __init build_zonelists(pg_data_t *pgdat)
1420 {
1421 	int i, j, k, node, local_node;
1422 	int prev_node, load;
1423 	struct zonelist *zonelist;
1424 	nodemask_t used_mask;
1425 
1426 	/* initialize zonelists */
1427 	for (i = 0; i < GFP_ZONETYPES; i++) {
1428 		zonelist = pgdat->node_zonelists + i;
1429 		zonelist->zones[0] = NULL;
1430 	}
1431 
1432 	/* NUMA-aware ordering of nodes */
1433 	local_node = pgdat->node_id;
1434 	load = num_online_nodes();
1435 	prev_node = local_node;
1436 	nodes_clear(used_mask);
1437 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1438 		/*
1439 		 * We don't want to pressure a particular node.
1440 		 * So adding penalty to the first node in same
1441 		 * distance group to make it round-robin.
1442 		 */
1443 		if (node_distance(local_node, node) !=
1444 				node_distance(local_node, prev_node))
1445 			node_load[node] += load;
1446 		prev_node = node;
1447 		load--;
1448 		for (i = 0; i < GFP_ZONETYPES; i++) {
1449 			zonelist = pgdat->node_zonelists + i;
1450 			for (j = 0; zonelist->zones[j] != NULL; j++);
1451 
1452 			k = ZONE_NORMAL;
1453 			if (i & __GFP_HIGHMEM)
1454 				k = ZONE_HIGHMEM;
1455 			if (i & __GFP_DMA)
1456 				k = ZONE_DMA;
1457 
1458 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1459 			zonelist->zones[j] = NULL;
1460 		}
1461 	}
1462 }
1463 
1464 #else	/* CONFIG_NUMA */
1465 
1466 static void __init build_zonelists(pg_data_t *pgdat)
1467 {
1468 	int i, j, k, node, local_node;
1469 
1470 	local_node = pgdat->node_id;
1471 	for (i = 0; i < GFP_ZONETYPES; i++) {
1472 		struct zonelist *zonelist;
1473 
1474 		zonelist = pgdat->node_zonelists + i;
1475 
1476 		j = 0;
1477 		k = ZONE_NORMAL;
1478 		if (i & __GFP_HIGHMEM)
1479 			k = ZONE_HIGHMEM;
1480 		if (i & __GFP_DMA)
1481 			k = ZONE_DMA;
1482 
1483  		j = build_zonelists_node(pgdat, zonelist, j, k);
1484  		/*
1485  		 * Now we build the zonelist so that it contains the zones
1486  		 * of all the other nodes.
1487  		 * We don't want to pressure a particular node, so when
1488  		 * building the zones for node N, we make sure that the
1489  		 * zones coming right after the local ones are those from
1490  		 * node N+1 (modulo N)
1491  		 */
1492 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1493 			if (!node_online(node))
1494 				continue;
1495 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1496 		}
1497 		for (node = 0; node < local_node; node++) {
1498 			if (!node_online(node))
1499 				continue;
1500 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1501 		}
1502 
1503 		zonelist->zones[j] = NULL;
1504 	}
1505 }
1506 
1507 #endif	/* CONFIG_NUMA */
1508 
1509 void __init build_all_zonelists(void)
1510 {
1511 	int i;
1512 
1513 	for_each_online_node(i)
1514 		build_zonelists(NODE_DATA(i));
1515 	printk("Built %i zonelists\n", num_online_nodes());
1516 	cpuset_init_current_mems_allowed();
1517 }
1518 
1519 /*
1520  * Helper functions to size the waitqueue hash table.
1521  * Essentially these want to choose hash table sizes sufficiently
1522  * large so that collisions trying to wait on pages are rare.
1523  * But in fact, the number of active page waitqueues on typical
1524  * systems is ridiculously low, less than 200. So this is even
1525  * conservative, even though it seems large.
1526  *
1527  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1528  * waitqueues, i.e. the size of the waitq table given the number of pages.
1529  */
1530 #define PAGES_PER_WAITQUEUE	256
1531 
1532 static inline unsigned long wait_table_size(unsigned long pages)
1533 {
1534 	unsigned long size = 1;
1535 
1536 	pages /= PAGES_PER_WAITQUEUE;
1537 
1538 	while (size < pages)
1539 		size <<= 1;
1540 
1541 	/*
1542 	 * Once we have dozens or even hundreds of threads sleeping
1543 	 * on IO we've got bigger problems than wait queue collision.
1544 	 * Limit the size of the wait table to a reasonable size.
1545 	 */
1546 	size = min(size, 4096UL);
1547 
1548 	return max(size, 4UL);
1549 }
1550 
1551 /*
1552  * This is an integer logarithm so that shifts can be used later
1553  * to extract the more random high bits from the multiplicative
1554  * hash function before the remainder is taken.
1555  */
1556 static inline unsigned long wait_table_bits(unsigned long size)
1557 {
1558 	return ffz(~size);
1559 }
1560 
1561 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1562 
1563 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1564 		unsigned long *zones_size, unsigned long *zholes_size)
1565 {
1566 	unsigned long realtotalpages, totalpages = 0;
1567 	int i;
1568 
1569 	for (i = 0; i < MAX_NR_ZONES; i++)
1570 		totalpages += zones_size[i];
1571 	pgdat->node_spanned_pages = totalpages;
1572 
1573 	realtotalpages = totalpages;
1574 	if (zholes_size)
1575 		for (i = 0; i < MAX_NR_ZONES; i++)
1576 			realtotalpages -= zholes_size[i];
1577 	pgdat->node_present_pages = realtotalpages;
1578 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1579 }
1580 
1581 
1582 /*
1583  * Initially all pages are reserved - free ones are freed
1584  * up by free_all_bootmem() once the early boot process is
1585  * done. Non-atomic initialization, single-pass.
1586  */
1587 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1588 		unsigned long start_pfn)
1589 {
1590 	struct page *start = pfn_to_page(start_pfn);
1591 	struct page *page;
1592 
1593 	for (page = start; page < (start + size); page++) {
1594 		set_page_zone(page, NODEZONE(nid, zone));
1595 		set_page_count(page, 0);
1596 		reset_page_mapcount(page);
1597 		SetPageReserved(page);
1598 		INIT_LIST_HEAD(&page->lru);
1599 #ifdef WANT_PAGE_VIRTUAL
1600 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1601 		if (!is_highmem_idx(zone))
1602 			set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1603 #endif
1604 		start_pfn++;
1605 	}
1606 }
1607 
1608 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1609 				unsigned long size)
1610 {
1611 	int order;
1612 	for (order = 0; order < MAX_ORDER ; order++) {
1613 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1614 		zone->free_area[order].nr_free = 0;
1615 	}
1616 }
1617 
1618 #ifndef __HAVE_ARCH_MEMMAP_INIT
1619 #define memmap_init(size, nid, zone, start_pfn) \
1620 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1621 #endif
1622 
1623 /*
1624  * Set up the zone data structures:
1625  *   - mark all pages reserved
1626  *   - mark all memory queues empty
1627  *   - clear the memory bitmaps
1628  */
1629 static void __init free_area_init_core(struct pglist_data *pgdat,
1630 		unsigned long *zones_size, unsigned long *zholes_size)
1631 {
1632 	unsigned long i, j;
1633 	const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1634 	int cpu, nid = pgdat->node_id;
1635 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1636 
1637 	pgdat->nr_zones = 0;
1638 	init_waitqueue_head(&pgdat->kswapd_wait);
1639 	pgdat->kswapd_max_order = 0;
1640 
1641 	for (j = 0; j < MAX_NR_ZONES; j++) {
1642 		struct zone *zone = pgdat->node_zones + j;
1643 		unsigned long size, realsize;
1644 		unsigned long batch;
1645 
1646 		zone_table[NODEZONE(nid, j)] = zone;
1647 		realsize = size = zones_size[j];
1648 		if (zholes_size)
1649 			realsize -= zholes_size[j];
1650 
1651 		if (j == ZONE_DMA || j == ZONE_NORMAL)
1652 			nr_kernel_pages += realsize;
1653 		nr_all_pages += realsize;
1654 
1655 		zone->spanned_pages = size;
1656 		zone->present_pages = realsize;
1657 		zone->name = zone_names[j];
1658 		spin_lock_init(&zone->lock);
1659 		spin_lock_init(&zone->lru_lock);
1660 		zone->zone_pgdat = pgdat;
1661 		zone->free_pages = 0;
1662 
1663 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1664 
1665 		/*
1666 		 * The per-cpu-pages pools are set to around 1000th of the
1667 		 * size of the zone.  But no more than 1/4 of a meg - there's
1668 		 * no point in going beyond the size of L2 cache.
1669 		 *
1670 		 * OK, so we don't know how big the cache is.  So guess.
1671 		 */
1672 		batch = zone->present_pages / 1024;
1673 		if (batch * PAGE_SIZE > 256 * 1024)
1674 			batch = (256 * 1024) / PAGE_SIZE;
1675 		batch /= 4;		/* We effectively *= 4 below */
1676 		if (batch < 1)
1677 			batch = 1;
1678 
1679 		/*
1680 		 * Clamp the batch to a 2^n - 1 value. Having a power
1681 		 * of 2 value was found to be more likely to have
1682 		 * suboptimal cache aliasing properties in some cases.
1683 		 *
1684 		 * For example if 2 tasks are alternately allocating
1685 		 * batches of pages, one task can end up with a lot
1686 		 * of pages of one half of the possible page colors
1687 		 * and the other with pages of the other colors.
1688 		 */
1689 		batch = (1 << fls(batch + batch/2)) - 1;
1690 
1691 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1692 			struct per_cpu_pages *pcp;
1693 
1694 			pcp = &zone->pageset[cpu].pcp[0];	/* hot */
1695 			pcp->count = 0;
1696 			pcp->low = 2 * batch;
1697 			pcp->high = 6 * batch;
1698 			pcp->batch = 1 * batch;
1699 			INIT_LIST_HEAD(&pcp->list);
1700 
1701 			pcp = &zone->pageset[cpu].pcp[1];	/* cold */
1702 			pcp->count = 0;
1703 			pcp->low = 0;
1704 			pcp->high = 2 * batch;
1705 			pcp->batch = 1 * batch;
1706 			INIT_LIST_HEAD(&pcp->list);
1707 		}
1708 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1709 				zone_names[j], realsize, batch);
1710 		INIT_LIST_HEAD(&zone->active_list);
1711 		INIT_LIST_HEAD(&zone->inactive_list);
1712 		zone->nr_scan_active = 0;
1713 		zone->nr_scan_inactive = 0;
1714 		zone->nr_active = 0;
1715 		zone->nr_inactive = 0;
1716 		if (!size)
1717 			continue;
1718 
1719 		/*
1720 		 * The per-page waitqueue mechanism uses hashed waitqueues
1721 		 * per zone.
1722 		 */
1723 		zone->wait_table_size = wait_table_size(size);
1724 		zone->wait_table_bits =
1725 			wait_table_bits(zone->wait_table_size);
1726 		zone->wait_table = (wait_queue_head_t *)
1727 			alloc_bootmem_node(pgdat, zone->wait_table_size
1728 						* sizeof(wait_queue_head_t));
1729 
1730 		for(i = 0; i < zone->wait_table_size; ++i)
1731 			init_waitqueue_head(zone->wait_table + i);
1732 
1733 		pgdat->nr_zones = j+1;
1734 
1735 		zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1736 		zone->zone_start_pfn = zone_start_pfn;
1737 
1738 		if ((zone_start_pfn) & (zone_required_alignment-1))
1739 			printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1740 
1741 		memmap_init(size, nid, j, zone_start_pfn);
1742 
1743 		zone_start_pfn += size;
1744 
1745 		zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1746 	}
1747 }
1748 
1749 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1750 {
1751 	unsigned long size;
1752 
1753 	/* Skip empty nodes */
1754 	if (!pgdat->node_spanned_pages)
1755 		return;
1756 
1757 	/* ia64 gets its own node_mem_map, before this, without bootmem */
1758 	if (!pgdat->node_mem_map) {
1759 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1760 		pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1761 	}
1762 #ifndef CONFIG_DISCONTIGMEM
1763 	/*
1764 	 * With no DISCONTIG, the global mem_map is just set as node 0's
1765 	 */
1766 	if (pgdat == NODE_DATA(0))
1767 		mem_map = NODE_DATA(0)->node_mem_map;
1768 #endif
1769 }
1770 
1771 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1772 		unsigned long *zones_size, unsigned long node_start_pfn,
1773 		unsigned long *zholes_size)
1774 {
1775 	pgdat->node_id = nid;
1776 	pgdat->node_start_pfn = node_start_pfn;
1777 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1778 
1779 	alloc_node_mem_map(pgdat);
1780 
1781 	free_area_init_core(pgdat, zones_size, zholes_size);
1782 }
1783 
1784 #ifndef CONFIG_DISCONTIGMEM
1785 static bootmem_data_t contig_bootmem_data;
1786 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1787 
1788 EXPORT_SYMBOL(contig_page_data);
1789 
1790 void __init free_area_init(unsigned long *zones_size)
1791 {
1792 	free_area_init_node(0, &contig_page_data, zones_size,
1793 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1794 }
1795 #endif
1796 
1797 #ifdef CONFIG_PROC_FS
1798 
1799 #include <linux/seq_file.h>
1800 
1801 static void *frag_start(struct seq_file *m, loff_t *pos)
1802 {
1803 	pg_data_t *pgdat;
1804 	loff_t node = *pos;
1805 
1806 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1807 		--node;
1808 
1809 	return pgdat;
1810 }
1811 
1812 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1813 {
1814 	pg_data_t *pgdat = (pg_data_t *)arg;
1815 
1816 	(*pos)++;
1817 	return pgdat->pgdat_next;
1818 }
1819 
1820 static void frag_stop(struct seq_file *m, void *arg)
1821 {
1822 }
1823 
1824 /*
1825  * This walks the free areas for each zone.
1826  */
1827 static int frag_show(struct seq_file *m, void *arg)
1828 {
1829 	pg_data_t *pgdat = (pg_data_t *)arg;
1830 	struct zone *zone;
1831 	struct zone *node_zones = pgdat->node_zones;
1832 	unsigned long flags;
1833 	int order;
1834 
1835 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1836 		if (!zone->present_pages)
1837 			continue;
1838 
1839 		spin_lock_irqsave(&zone->lock, flags);
1840 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1841 		for (order = 0; order < MAX_ORDER; ++order)
1842 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1843 		spin_unlock_irqrestore(&zone->lock, flags);
1844 		seq_putc(m, '\n');
1845 	}
1846 	return 0;
1847 }
1848 
1849 struct seq_operations fragmentation_op = {
1850 	.start	= frag_start,
1851 	.next	= frag_next,
1852 	.stop	= frag_stop,
1853 	.show	= frag_show,
1854 };
1855 
1856 static char *vmstat_text[] = {
1857 	"nr_dirty",
1858 	"nr_writeback",
1859 	"nr_unstable",
1860 	"nr_page_table_pages",
1861 	"nr_mapped",
1862 	"nr_slab",
1863 
1864 	"pgpgin",
1865 	"pgpgout",
1866 	"pswpin",
1867 	"pswpout",
1868 	"pgalloc_high",
1869 
1870 	"pgalloc_normal",
1871 	"pgalloc_dma",
1872 	"pgfree",
1873 	"pgactivate",
1874 	"pgdeactivate",
1875 
1876 	"pgfault",
1877 	"pgmajfault",
1878 	"pgrefill_high",
1879 	"pgrefill_normal",
1880 	"pgrefill_dma",
1881 
1882 	"pgsteal_high",
1883 	"pgsteal_normal",
1884 	"pgsteal_dma",
1885 	"pgscan_kswapd_high",
1886 	"pgscan_kswapd_normal",
1887 
1888 	"pgscan_kswapd_dma",
1889 	"pgscan_direct_high",
1890 	"pgscan_direct_normal",
1891 	"pgscan_direct_dma",
1892 	"pginodesteal",
1893 
1894 	"slabs_scanned",
1895 	"kswapd_steal",
1896 	"kswapd_inodesteal",
1897 	"pageoutrun",
1898 	"allocstall",
1899 
1900 	"pgrotated",
1901 	"nr_bounce",
1902 };
1903 
1904 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1905 {
1906 	struct page_state *ps;
1907 
1908 	if (*pos >= ARRAY_SIZE(vmstat_text))
1909 		return NULL;
1910 
1911 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
1912 	m->private = ps;
1913 	if (!ps)
1914 		return ERR_PTR(-ENOMEM);
1915 	get_full_page_state(ps);
1916 	ps->pgpgin /= 2;		/* sectors -> kbytes */
1917 	ps->pgpgout /= 2;
1918 	return (unsigned long *)ps + *pos;
1919 }
1920 
1921 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1922 {
1923 	(*pos)++;
1924 	if (*pos >= ARRAY_SIZE(vmstat_text))
1925 		return NULL;
1926 	return (unsigned long *)m->private + *pos;
1927 }
1928 
1929 static int vmstat_show(struct seq_file *m, void *arg)
1930 {
1931 	unsigned long *l = arg;
1932 	unsigned long off = l - (unsigned long *)m->private;
1933 
1934 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1935 	return 0;
1936 }
1937 
1938 static void vmstat_stop(struct seq_file *m, void *arg)
1939 {
1940 	kfree(m->private);
1941 	m->private = NULL;
1942 }
1943 
1944 struct seq_operations vmstat_op = {
1945 	.start	= vmstat_start,
1946 	.next	= vmstat_next,
1947 	.stop	= vmstat_stop,
1948 	.show	= vmstat_show,
1949 };
1950 
1951 #endif /* CONFIG_PROC_FS */
1952 
1953 #ifdef CONFIG_HOTPLUG_CPU
1954 static int page_alloc_cpu_notify(struct notifier_block *self,
1955 				 unsigned long action, void *hcpu)
1956 {
1957 	int cpu = (unsigned long)hcpu;
1958 	long *count;
1959 	unsigned long *src, *dest;
1960 
1961 	if (action == CPU_DEAD) {
1962 		int i;
1963 
1964 		/* Drain local pagecache count. */
1965 		count = &per_cpu(nr_pagecache_local, cpu);
1966 		atomic_add(*count, &nr_pagecache);
1967 		*count = 0;
1968 		local_irq_disable();
1969 		__drain_pages(cpu);
1970 
1971 		/* Add dead cpu's page_states to our own. */
1972 		dest = (unsigned long *)&__get_cpu_var(page_states);
1973 		src = (unsigned long *)&per_cpu(page_states, cpu);
1974 
1975 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
1976 				i++) {
1977 			dest[i] += src[i];
1978 			src[i] = 0;
1979 		}
1980 
1981 		local_irq_enable();
1982 	}
1983 	return NOTIFY_OK;
1984 }
1985 #endif /* CONFIG_HOTPLUG_CPU */
1986 
1987 void __init page_alloc_init(void)
1988 {
1989 	hotcpu_notifier(page_alloc_cpu_notify, 0);
1990 }
1991 
1992 /*
1993  * setup_per_zone_lowmem_reserve - called whenever
1994  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
1995  *	has a correct pages reserved value, so an adequate number of
1996  *	pages are left in the zone after a successful __alloc_pages().
1997  */
1998 static void setup_per_zone_lowmem_reserve(void)
1999 {
2000 	struct pglist_data *pgdat;
2001 	int j, idx;
2002 
2003 	for_each_pgdat(pgdat) {
2004 		for (j = 0; j < MAX_NR_ZONES; j++) {
2005 			struct zone *zone = pgdat->node_zones + j;
2006 			unsigned long present_pages = zone->present_pages;
2007 
2008 			zone->lowmem_reserve[j] = 0;
2009 
2010 			for (idx = j-1; idx >= 0; idx--) {
2011 				struct zone *lower_zone;
2012 
2013 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2014 					sysctl_lowmem_reserve_ratio[idx] = 1;
2015 
2016 				lower_zone = pgdat->node_zones + idx;
2017 				lower_zone->lowmem_reserve[j] = present_pages /
2018 					sysctl_lowmem_reserve_ratio[idx];
2019 				present_pages += lower_zone->present_pages;
2020 			}
2021 		}
2022 	}
2023 }
2024 
2025 /*
2026  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2027  *	that the pages_{min,low,high} values for each zone are set correctly
2028  *	with respect to min_free_kbytes.
2029  */
2030 static void setup_per_zone_pages_min(void)
2031 {
2032 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2033 	unsigned long lowmem_pages = 0;
2034 	struct zone *zone;
2035 	unsigned long flags;
2036 
2037 	/* Calculate total number of !ZONE_HIGHMEM pages */
2038 	for_each_zone(zone) {
2039 		if (!is_highmem(zone))
2040 			lowmem_pages += zone->present_pages;
2041 	}
2042 
2043 	for_each_zone(zone) {
2044 		spin_lock_irqsave(&zone->lru_lock, flags);
2045 		if (is_highmem(zone)) {
2046 			/*
2047 			 * Often, highmem doesn't need to reserve any pages.
2048 			 * But the pages_min/low/high values are also used for
2049 			 * batching up page reclaim activity so we need a
2050 			 * decent value here.
2051 			 */
2052 			int min_pages;
2053 
2054 			min_pages = zone->present_pages / 1024;
2055 			if (min_pages < SWAP_CLUSTER_MAX)
2056 				min_pages = SWAP_CLUSTER_MAX;
2057 			if (min_pages > 128)
2058 				min_pages = 128;
2059 			zone->pages_min = min_pages;
2060 		} else {
2061 			/* if it's a lowmem zone, reserve a number of pages
2062 			 * proportionate to the zone's size.
2063 			 */
2064 			zone->pages_min = (pages_min * zone->present_pages) /
2065 			                   lowmem_pages;
2066 		}
2067 
2068 		/*
2069 		 * When interpreting these watermarks, just keep in mind that:
2070 		 * zone->pages_min == (zone->pages_min * 4) / 4;
2071 		 */
2072 		zone->pages_low   = (zone->pages_min * 5) / 4;
2073 		zone->pages_high  = (zone->pages_min * 6) / 4;
2074 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2075 	}
2076 }
2077 
2078 /*
2079  * Initialise min_free_kbytes.
2080  *
2081  * For small machines we want it small (128k min).  For large machines
2082  * we want it large (64MB max).  But it is not linear, because network
2083  * bandwidth does not increase linearly with machine size.  We use
2084  *
2085  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2086  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2087  *
2088  * which yields
2089  *
2090  * 16MB:	512k
2091  * 32MB:	724k
2092  * 64MB:	1024k
2093  * 128MB:	1448k
2094  * 256MB:	2048k
2095  * 512MB:	2896k
2096  * 1024MB:	4096k
2097  * 2048MB:	5792k
2098  * 4096MB:	8192k
2099  * 8192MB:	11584k
2100  * 16384MB:	16384k
2101  */
2102 static int __init init_per_zone_pages_min(void)
2103 {
2104 	unsigned long lowmem_kbytes;
2105 
2106 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2107 
2108 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2109 	if (min_free_kbytes < 128)
2110 		min_free_kbytes = 128;
2111 	if (min_free_kbytes > 65536)
2112 		min_free_kbytes = 65536;
2113 	setup_per_zone_pages_min();
2114 	setup_per_zone_lowmem_reserve();
2115 	return 0;
2116 }
2117 module_init(init_per_zone_pages_min)
2118 
2119 /*
2120  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2121  *	that we can call two helper functions whenever min_free_kbytes
2122  *	changes.
2123  */
2124 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2125 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2126 {
2127 	proc_dointvec(table, write, file, buffer, length, ppos);
2128 	setup_per_zone_pages_min();
2129 	return 0;
2130 }
2131 
2132 /*
2133  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2134  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2135  *	whenever sysctl_lowmem_reserve_ratio changes.
2136  *
2137  * The reserve ratio obviously has absolutely no relation with the
2138  * pages_min watermarks. The lowmem reserve ratio can only make sense
2139  * if in function of the boot time zone sizes.
2140  */
2141 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2142 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2143 {
2144 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2145 	setup_per_zone_lowmem_reserve();
2146 	return 0;
2147 }
2148 
2149 __initdata int hashdist = HASHDIST_DEFAULT;
2150 
2151 #ifdef CONFIG_NUMA
2152 static int __init set_hashdist(char *str)
2153 {
2154 	if (!str)
2155 		return 0;
2156 	hashdist = simple_strtoul(str, &str, 0);
2157 	return 1;
2158 }
2159 __setup("hashdist=", set_hashdist);
2160 #endif
2161 
2162 /*
2163  * allocate a large system hash table from bootmem
2164  * - it is assumed that the hash table must contain an exact power-of-2
2165  *   quantity of entries
2166  * - limit is the number of hash buckets, not the total allocation size
2167  */
2168 void *__init alloc_large_system_hash(const char *tablename,
2169 				     unsigned long bucketsize,
2170 				     unsigned long numentries,
2171 				     int scale,
2172 				     int flags,
2173 				     unsigned int *_hash_shift,
2174 				     unsigned int *_hash_mask,
2175 				     unsigned long limit)
2176 {
2177 	unsigned long long max = limit;
2178 	unsigned long log2qty, size;
2179 	void *table = NULL;
2180 
2181 	/* allow the kernel cmdline to have a say */
2182 	if (!numentries) {
2183 		/* round applicable memory size up to nearest megabyte */
2184 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2185 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2186 		numentries >>= 20 - PAGE_SHIFT;
2187 		numentries <<= 20 - PAGE_SHIFT;
2188 
2189 		/* limit to 1 bucket per 2^scale bytes of low memory */
2190 		if (scale > PAGE_SHIFT)
2191 			numentries >>= (scale - PAGE_SHIFT);
2192 		else
2193 			numentries <<= (PAGE_SHIFT - scale);
2194 	}
2195 	/* rounded up to nearest power of 2 in size */
2196 	numentries = 1UL << (long_log2(numentries) + 1);
2197 
2198 	/* limit allocation size to 1/16 total memory by default */
2199 	if (max == 0) {
2200 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2201 		do_div(max, bucketsize);
2202 	}
2203 
2204 	if (numentries > max)
2205 		numentries = max;
2206 
2207 	log2qty = long_log2(numentries);
2208 
2209 	do {
2210 		size = bucketsize << log2qty;
2211 		if (flags & HASH_EARLY)
2212 			table = alloc_bootmem(size);
2213 		else if (hashdist)
2214 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2215 		else {
2216 			unsigned long order;
2217 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2218 				;
2219 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2220 		}
2221 	} while (!table && size > PAGE_SIZE && --log2qty);
2222 
2223 	if (!table)
2224 		panic("Failed to allocate %s hash table\n", tablename);
2225 
2226 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2227 	       tablename,
2228 	       (1U << log2qty),
2229 	       long_log2(size) - PAGE_SHIFT,
2230 	       size);
2231 
2232 	if (_hash_shift)
2233 		*_hash_shift = log2qty;
2234 	if (_hash_mask)
2235 		*_hash_mask = (1 << log2qty) - 1;
2236 
2237 	return table;
2238 }
2239