1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 78 static DEFINE_MUTEX(pcp_batch_high_lock); 79 #define MIN_PERCPU_PAGELIST_FRACTION (8) 80 81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 82 DEFINE_PER_CPU(int, numa_node); 83 EXPORT_PER_CPU_SYMBOL(numa_node); 84 #endif 85 86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 87 /* 88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 91 * defined in <linux/topology.h>. 92 */ 93 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 94 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 95 int _node_numa_mem_[MAX_NUMNODES]; 96 #endif 97 98 /* work_structs for global per-cpu drains */ 99 DEFINE_MUTEX(pcpu_drain_mutex); 100 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 101 102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 103 volatile unsigned long latent_entropy __latent_entropy; 104 EXPORT_SYMBOL(latent_entropy); 105 #endif 106 107 /* 108 * Array of node states. 109 */ 110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 111 [N_POSSIBLE] = NODE_MASK_ALL, 112 [N_ONLINE] = { { [0] = 1UL } }, 113 #ifndef CONFIG_NUMA 114 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 115 #ifdef CONFIG_HIGHMEM 116 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 117 #endif 118 [N_MEMORY] = { { [0] = 1UL } }, 119 [N_CPU] = { { [0] = 1UL } }, 120 #endif /* NUMA */ 121 }; 122 EXPORT_SYMBOL(node_states); 123 124 /* Protect totalram_pages and zone->managed_pages */ 125 static DEFINE_SPINLOCK(managed_page_count_lock); 126 127 unsigned long totalram_pages __read_mostly; 128 unsigned long totalreserve_pages __read_mostly; 129 unsigned long totalcma_pages __read_mostly; 130 131 int percpu_pagelist_fraction; 132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 133 134 /* 135 * A cached value of the page's pageblock's migratetype, used when the page is 136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 137 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 138 * Also the migratetype set in the page does not necessarily match the pcplist 139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 140 * other index - this ensures that it will be put on the correct CMA freelist. 141 */ 142 static inline int get_pcppage_migratetype(struct page *page) 143 { 144 return page->index; 145 } 146 147 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 148 { 149 page->index = migratetype; 150 } 151 152 #ifdef CONFIG_PM_SLEEP 153 /* 154 * The following functions are used by the suspend/hibernate code to temporarily 155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 156 * while devices are suspended. To avoid races with the suspend/hibernate code, 157 * they should always be called with pm_mutex held (gfp_allowed_mask also should 158 * only be modified with pm_mutex held, unless the suspend/hibernate code is 159 * guaranteed not to run in parallel with that modification). 160 */ 161 162 static gfp_t saved_gfp_mask; 163 164 void pm_restore_gfp_mask(void) 165 { 166 WARN_ON(!mutex_is_locked(&pm_mutex)); 167 if (saved_gfp_mask) { 168 gfp_allowed_mask = saved_gfp_mask; 169 saved_gfp_mask = 0; 170 } 171 } 172 173 void pm_restrict_gfp_mask(void) 174 { 175 WARN_ON(!mutex_is_locked(&pm_mutex)); 176 WARN_ON(saved_gfp_mask); 177 saved_gfp_mask = gfp_allowed_mask; 178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 179 } 180 181 bool pm_suspended_storage(void) 182 { 183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 184 return false; 185 return true; 186 } 187 #endif /* CONFIG_PM_SLEEP */ 188 189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 190 unsigned int pageblock_order __read_mostly; 191 #endif 192 193 static void __free_pages_ok(struct page *page, unsigned int order); 194 195 /* 196 * results with 256, 32 in the lowmem_reserve sysctl: 197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 198 * 1G machine -> (16M dma, 784M normal, 224M high) 199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 202 * 203 * TBD: should special case ZONE_DMA32 machines here - in those we normally 204 * don't need any ZONE_NORMAL reservation 205 */ 206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 207 #ifdef CONFIG_ZONE_DMA 208 256, 209 #endif 210 #ifdef CONFIG_ZONE_DMA32 211 256, 212 #endif 213 #ifdef CONFIG_HIGHMEM 214 32, 215 #endif 216 32, 217 }; 218 219 EXPORT_SYMBOL(totalram_pages); 220 221 static char * const zone_names[MAX_NR_ZONES] = { 222 #ifdef CONFIG_ZONE_DMA 223 "DMA", 224 #endif 225 #ifdef CONFIG_ZONE_DMA32 226 "DMA32", 227 #endif 228 "Normal", 229 #ifdef CONFIG_HIGHMEM 230 "HighMem", 231 #endif 232 "Movable", 233 #ifdef CONFIG_ZONE_DEVICE 234 "Device", 235 #endif 236 }; 237 238 char * const migratetype_names[MIGRATE_TYPES] = { 239 "Unmovable", 240 "Movable", 241 "Reclaimable", 242 "HighAtomic", 243 #ifdef CONFIG_CMA 244 "CMA", 245 #endif 246 #ifdef CONFIG_MEMORY_ISOLATION 247 "Isolate", 248 #endif 249 }; 250 251 compound_page_dtor * const compound_page_dtors[] = { 252 NULL, 253 free_compound_page, 254 #ifdef CONFIG_HUGETLB_PAGE 255 free_huge_page, 256 #endif 257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 258 free_transhuge_page, 259 #endif 260 }; 261 262 int min_free_kbytes = 1024; 263 int user_min_free_kbytes = -1; 264 int watermark_scale_factor = 10; 265 266 static unsigned long __meminitdata nr_kernel_pages; 267 static unsigned long __meminitdata nr_all_pages; 268 static unsigned long __meminitdata dma_reserve; 269 270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 273 static unsigned long __initdata required_kernelcore; 274 static unsigned long __initdata required_movablecore; 275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 276 static bool mirrored_kernelcore; 277 278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 279 int movable_zone; 280 EXPORT_SYMBOL(movable_zone); 281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 282 283 #if MAX_NUMNODES > 1 284 int nr_node_ids __read_mostly = MAX_NUMNODES; 285 int nr_online_nodes __read_mostly = 1; 286 EXPORT_SYMBOL(nr_node_ids); 287 EXPORT_SYMBOL(nr_online_nodes); 288 #endif 289 290 int page_group_by_mobility_disabled __read_mostly; 291 292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 293 static inline void reset_deferred_meminit(pg_data_t *pgdat) 294 { 295 unsigned long max_initialise; 296 unsigned long reserved_lowmem; 297 298 /* 299 * Initialise at least 2G of a node but also take into account that 300 * two large system hashes that can take up 1GB for 0.25TB/node. 301 */ 302 max_initialise = max(2UL << (30 - PAGE_SHIFT), 303 (pgdat->node_spanned_pages >> 8)); 304 305 /* 306 * Compensate the all the memblock reservations (e.g. crash kernel) 307 * from the initial estimation to make sure we will initialize enough 308 * memory to boot. 309 */ 310 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn, 311 pgdat->node_start_pfn + max_initialise); 312 max_initialise += reserved_lowmem; 313 314 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages); 315 pgdat->first_deferred_pfn = ULONG_MAX; 316 } 317 318 /* Returns true if the struct page for the pfn is uninitialised */ 319 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 320 { 321 int nid = early_pfn_to_nid(pfn); 322 323 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 324 return true; 325 326 return false; 327 } 328 329 /* 330 * Returns false when the remaining initialisation should be deferred until 331 * later in the boot cycle when it can be parallelised. 332 */ 333 static inline bool update_defer_init(pg_data_t *pgdat, 334 unsigned long pfn, unsigned long zone_end, 335 unsigned long *nr_initialised) 336 { 337 /* Always populate low zones for address-contrained allocations */ 338 if (zone_end < pgdat_end_pfn(pgdat)) 339 return true; 340 (*nr_initialised)++; 341 if ((*nr_initialised > pgdat->static_init_size) && 342 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 343 pgdat->first_deferred_pfn = pfn; 344 return false; 345 } 346 347 return true; 348 } 349 #else 350 static inline void reset_deferred_meminit(pg_data_t *pgdat) 351 { 352 } 353 354 static inline bool early_page_uninitialised(unsigned long pfn) 355 { 356 return false; 357 } 358 359 static inline bool update_defer_init(pg_data_t *pgdat, 360 unsigned long pfn, unsigned long zone_end, 361 unsigned long *nr_initialised) 362 { 363 return true; 364 } 365 #endif 366 367 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 368 static inline unsigned long *get_pageblock_bitmap(struct page *page, 369 unsigned long pfn) 370 { 371 #ifdef CONFIG_SPARSEMEM 372 return __pfn_to_section(pfn)->pageblock_flags; 373 #else 374 return page_zone(page)->pageblock_flags; 375 #endif /* CONFIG_SPARSEMEM */ 376 } 377 378 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 379 { 380 #ifdef CONFIG_SPARSEMEM 381 pfn &= (PAGES_PER_SECTION-1); 382 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 383 #else 384 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 386 #endif /* CONFIG_SPARSEMEM */ 387 } 388 389 /** 390 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 391 * @page: The page within the block of interest 392 * @pfn: The target page frame number 393 * @end_bitidx: The last bit of interest to retrieve 394 * @mask: mask of bits that the caller is interested in 395 * 396 * Return: pageblock_bits flags 397 */ 398 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 399 unsigned long pfn, 400 unsigned long end_bitidx, 401 unsigned long mask) 402 { 403 unsigned long *bitmap; 404 unsigned long bitidx, word_bitidx; 405 unsigned long word; 406 407 bitmap = get_pageblock_bitmap(page, pfn); 408 bitidx = pfn_to_bitidx(page, pfn); 409 word_bitidx = bitidx / BITS_PER_LONG; 410 bitidx &= (BITS_PER_LONG-1); 411 412 word = bitmap[word_bitidx]; 413 bitidx += end_bitidx; 414 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 415 } 416 417 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 418 unsigned long end_bitidx, 419 unsigned long mask) 420 { 421 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 422 } 423 424 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 425 { 426 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 427 } 428 429 /** 430 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 431 * @page: The page within the block of interest 432 * @flags: The flags to set 433 * @pfn: The target page frame number 434 * @end_bitidx: The last bit of interest 435 * @mask: mask of bits that the caller is interested in 436 */ 437 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 438 unsigned long pfn, 439 unsigned long end_bitidx, 440 unsigned long mask) 441 { 442 unsigned long *bitmap; 443 unsigned long bitidx, word_bitidx; 444 unsigned long old_word, word; 445 446 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 447 448 bitmap = get_pageblock_bitmap(page, pfn); 449 bitidx = pfn_to_bitidx(page, pfn); 450 word_bitidx = bitidx / BITS_PER_LONG; 451 bitidx &= (BITS_PER_LONG-1); 452 453 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 454 455 bitidx += end_bitidx; 456 mask <<= (BITS_PER_LONG - bitidx - 1); 457 flags <<= (BITS_PER_LONG - bitidx - 1); 458 459 word = READ_ONCE(bitmap[word_bitidx]); 460 for (;;) { 461 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 462 if (word == old_word) 463 break; 464 word = old_word; 465 } 466 } 467 468 void set_pageblock_migratetype(struct page *page, int migratetype) 469 { 470 if (unlikely(page_group_by_mobility_disabled && 471 migratetype < MIGRATE_PCPTYPES)) 472 migratetype = MIGRATE_UNMOVABLE; 473 474 set_pageblock_flags_group(page, (unsigned long)migratetype, 475 PB_migrate, PB_migrate_end); 476 } 477 478 #ifdef CONFIG_DEBUG_VM 479 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 480 { 481 int ret = 0; 482 unsigned seq; 483 unsigned long pfn = page_to_pfn(page); 484 unsigned long sp, start_pfn; 485 486 do { 487 seq = zone_span_seqbegin(zone); 488 start_pfn = zone->zone_start_pfn; 489 sp = zone->spanned_pages; 490 if (!zone_spans_pfn(zone, pfn)) 491 ret = 1; 492 } while (zone_span_seqretry(zone, seq)); 493 494 if (ret) 495 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 496 pfn, zone_to_nid(zone), zone->name, 497 start_pfn, start_pfn + sp); 498 499 return ret; 500 } 501 502 static int page_is_consistent(struct zone *zone, struct page *page) 503 { 504 if (!pfn_valid_within(page_to_pfn(page))) 505 return 0; 506 if (zone != page_zone(page)) 507 return 0; 508 509 return 1; 510 } 511 /* 512 * Temporary debugging check for pages not lying within a given zone. 513 */ 514 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 515 { 516 if (page_outside_zone_boundaries(zone, page)) 517 return 1; 518 if (!page_is_consistent(zone, page)) 519 return 1; 520 521 return 0; 522 } 523 #else 524 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 525 { 526 return 0; 527 } 528 #endif 529 530 static void bad_page(struct page *page, const char *reason, 531 unsigned long bad_flags) 532 { 533 static unsigned long resume; 534 static unsigned long nr_shown; 535 static unsigned long nr_unshown; 536 537 /* 538 * Allow a burst of 60 reports, then keep quiet for that minute; 539 * or allow a steady drip of one report per second. 540 */ 541 if (nr_shown == 60) { 542 if (time_before(jiffies, resume)) { 543 nr_unshown++; 544 goto out; 545 } 546 if (nr_unshown) { 547 pr_alert( 548 "BUG: Bad page state: %lu messages suppressed\n", 549 nr_unshown); 550 nr_unshown = 0; 551 } 552 nr_shown = 0; 553 } 554 if (nr_shown++ == 0) 555 resume = jiffies + 60 * HZ; 556 557 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 558 current->comm, page_to_pfn(page)); 559 __dump_page(page, reason); 560 bad_flags &= page->flags; 561 if (bad_flags) 562 pr_alert("bad because of flags: %#lx(%pGp)\n", 563 bad_flags, &bad_flags); 564 dump_page_owner(page); 565 566 print_modules(); 567 dump_stack(); 568 out: 569 /* Leave bad fields for debug, except PageBuddy could make trouble */ 570 page_mapcount_reset(page); /* remove PageBuddy */ 571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 572 } 573 574 /* 575 * Higher-order pages are called "compound pages". They are structured thusly: 576 * 577 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 578 * 579 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 580 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 581 * 582 * The first tail page's ->compound_dtor holds the offset in array of compound 583 * page destructors. See compound_page_dtors. 584 * 585 * The first tail page's ->compound_order holds the order of allocation. 586 * This usage means that zero-order pages may not be compound. 587 */ 588 589 void free_compound_page(struct page *page) 590 { 591 __free_pages_ok(page, compound_order(page)); 592 } 593 594 void prep_compound_page(struct page *page, unsigned int order) 595 { 596 int i; 597 int nr_pages = 1 << order; 598 599 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 600 set_compound_order(page, order); 601 __SetPageHead(page); 602 for (i = 1; i < nr_pages; i++) { 603 struct page *p = page + i; 604 set_page_count(p, 0); 605 p->mapping = TAIL_MAPPING; 606 set_compound_head(p, page); 607 } 608 atomic_set(compound_mapcount_ptr(page), -1); 609 } 610 611 #ifdef CONFIG_DEBUG_PAGEALLOC 612 unsigned int _debug_guardpage_minorder; 613 bool _debug_pagealloc_enabled __read_mostly 614 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 615 EXPORT_SYMBOL(_debug_pagealloc_enabled); 616 bool _debug_guardpage_enabled __read_mostly; 617 618 static int __init early_debug_pagealloc(char *buf) 619 { 620 if (!buf) 621 return -EINVAL; 622 return kstrtobool(buf, &_debug_pagealloc_enabled); 623 } 624 early_param("debug_pagealloc", early_debug_pagealloc); 625 626 static bool need_debug_guardpage(void) 627 { 628 /* If we don't use debug_pagealloc, we don't need guard page */ 629 if (!debug_pagealloc_enabled()) 630 return false; 631 632 if (!debug_guardpage_minorder()) 633 return false; 634 635 return true; 636 } 637 638 static void init_debug_guardpage(void) 639 { 640 if (!debug_pagealloc_enabled()) 641 return; 642 643 if (!debug_guardpage_minorder()) 644 return; 645 646 _debug_guardpage_enabled = true; 647 } 648 649 struct page_ext_operations debug_guardpage_ops = { 650 .need = need_debug_guardpage, 651 .init = init_debug_guardpage, 652 }; 653 654 static int __init debug_guardpage_minorder_setup(char *buf) 655 { 656 unsigned long res; 657 658 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 659 pr_err("Bad debug_guardpage_minorder value\n"); 660 return 0; 661 } 662 _debug_guardpage_minorder = res; 663 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 664 return 0; 665 } 666 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 667 668 static inline bool set_page_guard(struct zone *zone, struct page *page, 669 unsigned int order, int migratetype) 670 { 671 struct page_ext *page_ext; 672 673 if (!debug_guardpage_enabled()) 674 return false; 675 676 if (order >= debug_guardpage_minorder()) 677 return false; 678 679 page_ext = lookup_page_ext(page); 680 if (unlikely(!page_ext)) 681 return false; 682 683 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 684 685 INIT_LIST_HEAD(&page->lru); 686 set_page_private(page, order); 687 /* Guard pages are not available for any usage */ 688 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 689 690 return true; 691 } 692 693 static inline void clear_page_guard(struct zone *zone, struct page *page, 694 unsigned int order, int migratetype) 695 { 696 struct page_ext *page_ext; 697 698 if (!debug_guardpage_enabled()) 699 return; 700 701 page_ext = lookup_page_ext(page); 702 if (unlikely(!page_ext)) 703 return; 704 705 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 706 707 set_page_private(page, 0); 708 if (!is_migrate_isolate(migratetype)) 709 __mod_zone_freepage_state(zone, (1 << order), migratetype); 710 } 711 #else 712 struct page_ext_operations debug_guardpage_ops; 713 static inline bool set_page_guard(struct zone *zone, struct page *page, 714 unsigned int order, int migratetype) { return false; } 715 static inline void clear_page_guard(struct zone *zone, struct page *page, 716 unsigned int order, int migratetype) {} 717 #endif 718 719 static inline void set_page_order(struct page *page, unsigned int order) 720 { 721 set_page_private(page, order); 722 __SetPageBuddy(page); 723 } 724 725 static inline void rmv_page_order(struct page *page) 726 { 727 __ClearPageBuddy(page); 728 set_page_private(page, 0); 729 } 730 731 /* 732 * This function checks whether a page is free && is the buddy 733 * we can do coalesce a page and its buddy if 734 * (a) the buddy is not in a hole (check before calling!) && 735 * (b) the buddy is in the buddy system && 736 * (c) a page and its buddy have the same order && 737 * (d) a page and its buddy are in the same zone. 738 * 739 * For recording whether a page is in the buddy system, we set ->_mapcount 740 * PAGE_BUDDY_MAPCOUNT_VALUE. 741 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 742 * serialized by zone->lock. 743 * 744 * For recording page's order, we use page_private(page). 745 */ 746 static inline int page_is_buddy(struct page *page, struct page *buddy, 747 unsigned int order) 748 { 749 if (page_is_guard(buddy) && page_order(buddy) == order) { 750 if (page_zone_id(page) != page_zone_id(buddy)) 751 return 0; 752 753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 754 755 return 1; 756 } 757 758 if (PageBuddy(buddy) && page_order(buddy) == order) { 759 /* 760 * zone check is done late to avoid uselessly 761 * calculating zone/node ids for pages that could 762 * never merge. 763 */ 764 if (page_zone_id(page) != page_zone_id(buddy)) 765 return 0; 766 767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 768 769 return 1; 770 } 771 return 0; 772 } 773 774 /* 775 * Freeing function for a buddy system allocator. 776 * 777 * The concept of a buddy system is to maintain direct-mapped table 778 * (containing bit values) for memory blocks of various "orders". 779 * The bottom level table contains the map for the smallest allocatable 780 * units of memory (here, pages), and each level above it describes 781 * pairs of units from the levels below, hence, "buddies". 782 * At a high level, all that happens here is marking the table entry 783 * at the bottom level available, and propagating the changes upward 784 * as necessary, plus some accounting needed to play nicely with other 785 * parts of the VM system. 786 * At each level, we keep a list of pages, which are heads of continuous 787 * free pages of length of (1 << order) and marked with _mapcount 788 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 789 * field. 790 * So when we are allocating or freeing one, we can derive the state of the 791 * other. That is, if we allocate a small block, and both were 792 * free, the remainder of the region must be split into blocks. 793 * If a block is freed, and its buddy is also free, then this 794 * triggers coalescing into a block of larger size. 795 * 796 * -- nyc 797 */ 798 799 static inline void __free_one_page(struct page *page, 800 unsigned long pfn, 801 struct zone *zone, unsigned int order, 802 int migratetype) 803 { 804 unsigned long combined_pfn; 805 unsigned long uninitialized_var(buddy_pfn); 806 struct page *buddy; 807 unsigned int max_order; 808 809 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 810 811 VM_BUG_ON(!zone_is_initialized(zone)); 812 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 813 814 VM_BUG_ON(migratetype == -1); 815 if (likely(!is_migrate_isolate(migratetype))) 816 __mod_zone_freepage_state(zone, 1 << order, migratetype); 817 818 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 819 VM_BUG_ON_PAGE(bad_range(zone, page), page); 820 821 continue_merging: 822 while (order < max_order - 1) { 823 buddy_pfn = __find_buddy_pfn(pfn, order); 824 buddy = page + (buddy_pfn - pfn); 825 826 if (!pfn_valid_within(buddy_pfn)) 827 goto done_merging; 828 if (!page_is_buddy(page, buddy, order)) 829 goto done_merging; 830 /* 831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 832 * merge with it and move up one order. 833 */ 834 if (page_is_guard(buddy)) { 835 clear_page_guard(zone, buddy, order, migratetype); 836 } else { 837 list_del(&buddy->lru); 838 zone->free_area[order].nr_free--; 839 rmv_page_order(buddy); 840 } 841 combined_pfn = buddy_pfn & pfn; 842 page = page + (combined_pfn - pfn); 843 pfn = combined_pfn; 844 order++; 845 } 846 if (max_order < MAX_ORDER) { 847 /* If we are here, it means order is >= pageblock_order. 848 * We want to prevent merge between freepages on isolate 849 * pageblock and normal pageblock. Without this, pageblock 850 * isolation could cause incorrect freepage or CMA accounting. 851 * 852 * We don't want to hit this code for the more frequent 853 * low-order merging. 854 */ 855 if (unlikely(has_isolate_pageblock(zone))) { 856 int buddy_mt; 857 858 buddy_pfn = __find_buddy_pfn(pfn, order); 859 buddy = page + (buddy_pfn - pfn); 860 buddy_mt = get_pageblock_migratetype(buddy); 861 862 if (migratetype != buddy_mt 863 && (is_migrate_isolate(migratetype) || 864 is_migrate_isolate(buddy_mt))) 865 goto done_merging; 866 } 867 max_order++; 868 goto continue_merging; 869 } 870 871 done_merging: 872 set_page_order(page, order); 873 874 /* 875 * If this is not the largest possible page, check if the buddy 876 * of the next-highest order is free. If it is, it's possible 877 * that pages are being freed that will coalesce soon. In case, 878 * that is happening, add the free page to the tail of the list 879 * so it's less likely to be used soon and more likely to be merged 880 * as a higher order page 881 */ 882 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 883 struct page *higher_page, *higher_buddy; 884 combined_pfn = buddy_pfn & pfn; 885 higher_page = page + (combined_pfn - pfn); 886 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 887 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 888 if (pfn_valid_within(buddy_pfn) && 889 page_is_buddy(higher_page, higher_buddy, order + 1)) { 890 list_add_tail(&page->lru, 891 &zone->free_area[order].free_list[migratetype]); 892 goto out; 893 } 894 } 895 896 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 897 out: 898 zone->free_area[order].nr_free++; 899 } 900 901 /* 902 * A bad page could be due to a number of fields. Instead of multiple branches, 903 * try and check multiple fields with one check. The caller must do a detailed 904 * check if necessary. 905 */ 906 static inline bool page_expected_state(struct page *page, 907 unsigned long check_flags) 908 { 909 if (unlikely(atomic_read(&page->_mapcount) != -1)) 910 return false; 911 912 if (unlikely((unsigned long)page->mapping | 913 page_ref_count(page) | 914 #ifdef CONFIG_MEMCG 915 (unsigned long)page->mem_cgroup | 916 #endif 917 (page->flags & check_flags))) 918 return false; 919 920 return true; 921 } 922 923 static void free_pages_check_bad(struct page *page) 924 { 925 const char *bad_reason; 926 unsigned long bad_flags; 927 928 bad_reason = NULL; 929 bad_flags = 0; 930 931 if (unlikely(atomic_read(&page->_mapcount) != -1)) 932 bad_reason = "nonzero mapcount"; 933 if (unlikely(page->mapping != NULL)) 934 bad_reason = "non-NULL mapping"; 935 if (unlikely(page_ref_count(page) != 0)) 936 bad_reason = "nonzero _refcount"; 937 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 939 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 940 } 941 #ifdef CONFIG_MEMCG 942 if (unlikely(page->mem_cgroup)) 943 bad_reason = "page still charged to cgroup"; 944 #endif 945 bad_page(page, bad_reason, bad_flags); 946 } 947 948 static inline int free_pages_check(struct page *page) 949 { 950 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 951 return 0; 952 953 /* Something has gone sideways, find it */ 954 free_pages_check_bad(page); 955 return 1; 956 } 957 958 static int free_tail_pages_check(struct page *head_page, struct page *page) 959 { 960 int ret = 1; 961 962 /* 963 * We rely page->lru.next never has bit 0 set, unless the page 964 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 965 */ 966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 967 968 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 969 ret = 0; 970 goto out; 971 } 972 switch (page - head_page) { 973 case 1: 974 /* the first tail page: ->mapping is compound_mapcount() */ 975 if (unlikely(compound_mapcount(page))) { 976 bad_page(page, "nonzero compound_mapcount", 0); 977 goto out; 978 } 979 break; 980 case 2: 981 /* 982 * the second tail page: ->mapping is 983 * page_deferred_list().next -- ignore value. 984 */ 985 break; 986 default: 987 if (page->mapping != TAIL_MAPPING) { 988 bad_page(page, "corrupted mapping in tail page", 0); 989 goto out; 990 } 991 break; 992 } 993 if (unlikely(!PageTail(page))) { 994 bad_page(page, "PageTail not set", 0); 995 goto out; 996 } 997 if (unlikely(compound_head(page) != head_page)) { 998 bad_page(page, "compound_head not consistent", 0); 999 goto out; 1000 } 1001 ret = 0; 1002 out: 1003 page->mapping = NULL; 1004 clear_compound_head(page); 1005 return ret; 1006 } 1007 1008 static __always_inline bool free_pages_prepare(struct page *page, 1009 unsigned int order, bool check_free) 1010 { 1011 int bad = 0; 1012 1013 VM_BUG_ON_PAGE(PageTail(page), page); 1014 1015 trace_mm_page_free(page, order); 1016 kmemcheck_free_shadow(page, order); 1017 1018 /* 1019 * Check tail pages before head page information is cleared to 1020 * avoid checking PageCompound for order-0 pages. 1021 */ 1022 if (unlikely(order)) { 1023 bool compound = PageCompound(page); 1024 int i; 1025 1026 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1027 1028 if (compound) 1029 ClearPageDoubleMap(page); 1030 for (i = 1; i < (1 << order); i++) { 1031 if (compound) 1032 bad += free_tail_pages_check(page, page + i); 1033 if (unlikely(free_pages_check(page + i))) { 1034 bad++; 1035 continue; 1036 } 1037 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1038 } 1039 } 1040 if (PageMappingFlags(page)) 1041 page->mapping = NULL; 1042 if (memcg_kmem_enabled() && PageKmemcg(page)) 1043 memcg_kmem_uncharge(page, order); 1044 if (check_free) 1045 bad += free_pages_check(page); 1046 if (bad) 1047 return false; 1048 1049 page_cpupid_reset_last(page); 1050 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1051 reset_page_owner(page, order); 1052 1053 if (!PageHighMem(page)) { 1054 debug_check_no_locks_freed(page_address(page), 1055 PAGE_SIZE << order); 1056 debug_check_no_obj_freed(page_address(page), 1057 PAGE_SIZE << order); 1058 } 1059 arch_free_page(page, order); 1060 kernel_poison_pages(page, 1 << order, 0); 1061 kernel_map_pages(page, 1 << order, 0); 1062 kasan_free_pages(page, order); 1063 1064 return true; 1065 } 1066 1067 #ifdef CONFIG_DEBUG_VM 1068 static inline bool free_pcp_prepare(struct page *page) 1069 { 1070 return free_pages_prepare(page, 0, true); 1071 } 1072 1073 static inline bool bulkfree_pcp_prepare(struct page *page) 1074 { 1075 return false; 1076 } 1077 #else 1078 static bool free_pcp_prepare(struct page *page) 1079 { 1080 return free_pages_prepare(page, 0, false); 1081 } 1082 1083 static bool bulkfree_pcp_prepare(struct page *page) 1084 { 1085 return free_pages_check(page); 1086 } 1087 #endif /* CONFIG_DEBUG_VM */ 1088 1089 /* 1090 * Frees a number of pages from the PCP lists 1091 * Assumes all pages on list are in same zone, and of same order. 1092 * count is the number of pages to free. 1093 * 1094 * If the zone was previously in an "all pages pinned" state then look to 1095 * see if this freeing clears that state. 1096 * 1097 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1098 * pinned" detection logic. 1099 */ 1100 static void free_pcppages_bulk(struct zone *zone, int count, 1101 struct per_cpu_pages *pcp) 1102 { 1103 int migratetype = 0; 1104 int batch_free = 0; 1105 bool isolated_pageblocks; 1106 1107 spin_lock(&zone->lock); 1108 isolated_pageblocks = has_isolate_pageblock(zone); 1109 1110 while (count) { 1111 struct page *page; 1112 struct list_head *list; 1113 1114 /* 1115 * Remove pages from lists in a round-robin fashion. A 1116 * batch_free count is maintained that is incremented when an 1117 * empty list is encountered. This is so more pages are freed 1118 * off fuller lists instead of spinning excessively around empty 1119 * lists 1120 */ 1121 do { 1122 batch_free++; 1123 if (++migratetype == MIGRATE_PCPTYPES) 1124 migratetype = 0; 1125 list = &pcp->lists[migratetype]; 1126 } while (list_empty(list)); 1127 1128 /* This is the only non-empty list. Free them all. */ 1129 if (batch_free == MIGRATE_PCPTYPES) 1130 batch_free = count; 1131 1132 do { 1133 int mt; /* migratetype of the to-be-freed page */ 1134 1135 page = list_last_entry(list, struct page, lru); 1136 /* must delete as __free_one_page list manipulates */ 1137 list_del(&page->lru); 1138 1139 mt = get_pcppage_migratetype(page); 1140 /* MIGRATE_ISOLATE page should not go to pcplists */ 1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1142 /* Pageblock could have been isolated meanwhile */ 1143 if (unlikely(isolated_pageblocks)) 1144 mt = get_pageblock_migratetype(page); 1145 1146 if (bulkfree_pcp_prepare(page)) 1147 continue; 1148 1149 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1150 trace_mm_page_pcpu_drain(page, 0, mt); 1151 } while (--count && --batch_free && !list_empty(list)); 1152 } 1153 spin_unlock(&zone->lock); 1154 } 1155 1156 static void free_one_page(struct zone *zone, 1157 struct page *page, unsigned long pfn, 1158 unsigned int order, 1159 int migratetype) 1160 { 1161 spin_lock(&zone->lock); 1162 if (unlikely(has_isolate_pageblock(zone) || 1163 is_migrate_isolate(migratetype))) { 1164 migratetype = get_pfnblock_migratetype(page, pfn); 1165 } 1166 __free_one_page(page, pfn, zone, order, migratetype); 1167 spin_unlock(&zone->lock); 1168 } 1169 1170 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1171 unsigned long zone, int nid) 1172 { 1173 set_page_links(page, zone, nid, pfn); 1174 init_page_count(page); 1175 page_mapcount_reset(page); 1176 page_cpupid_reset_last(page); 1177 1178 INIT_LIST_HEAD(&page->lru); 1179 #ifdef WANT_PAGE_VIRTUAL 1180 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1181 if (!is_highmem_idx(zone)) 1182 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1183 #endif 1184 } 1185 1186 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1187 int nid) 1188 { 1189 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1190 } 1191 1192 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1193 static void init_reserved_page(unsigned long pfn) 1194 { 1195 pg_data_t *pgdat; 1196 int nid, zid; 1197 1198 if (!early_page_uninitialised(pfn)) 1199 return; 1200 1201 nid = early_pfn_to_nid(pfn); 1202 pgdat = NODE_DATA(nid); 1203 1204 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1205 struct zone *zone = &pgdat->node_zones[zid]; 1206 1207 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1208 break; 1209 } 1210 __init_single_pfn(pfn, zid, nid); 1211 } 1212 #else 1213 static inline void init_reserved_page(unsigned long pfn) 1214 { 1215 } 1216 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1217 1218 /* 1219 * Initialised pages do not have PageReserved set. This function is 1220 * called for each range allocated by the bootmem allocator and 1221 * marks the pages PageReserved. The remaining valid pages are later 1222 * sent to the buddy page allocator. 1223 */ 1224 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1225 { 1226 unsigned long start_pfn = PFN_DOWN(start); 1227 unsigned long end_pfn = PFN_UP(end); 1228 1229 for (; start_pfn < end_pfn; start_pfn++) { 1230 if (pfn_valid(start_pfn)) { 1231 struct page *page = pfn_to_page(start_pfn); 1232 1233 init_reserved_page(start_pfn); 1234 1235 /* Avoid false-positive PageTail() */ 1236 INIT_LIST_HEAD(&page->lru); 1237 1238 SetPageReserved(page); 1239 } 1240 } 1241 } 1242 1243 static void __free_pages_ok(struct page *page, unsigned int order) 1244 { 1245 unsigned long flags; 1246 int migratetype; 1247 unsigned long pfn = page_to_pfn(page); 1248 1249 if (!free_pages_prepare(page, order, true)) 1250 return; 1251 1252 migratetype = get_pfnblock_migratetype(page, pfn); 1253 local_irq_save(flags); 1254 __count_vm_events(PGFREE, 1 << order); 1255 free_one_page(page_zone(page), page, pfn, order, migratetype); 1256 local_irq_restore(flags); 1257 } 1258 1259 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1260 { 1261 unsigned int nr_pages = 1 << order; 1262 struct page *p = page; 1263 unsigned int loop; 1264 1265 prefetchw(p); 1266 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1267 prefetchw(p + 1); 1268 __ClearPageReserved(p); 1269 set_page_count(p, 0); 1270 } 1271 __ClearPageReserved(p); 1272 set_page_count(p, 0); 1273 1274 page_zone(page)->managed_pages += nr_pages; 1275 set_page_refcounted(page); 1276 __free_pages(page, order); 1277 } 1278 1279 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1280 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1281 1282 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1283 1284 int __meminit early_pfn_to_nid(unsigned long pfn) 1285 { 1286 static DEFINE_SPINLOCK(early_pfn_lock); 1287 int nid; 1288 1289 spin_lock(&early_pfn_lock); 1290 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1291 if (nid < 0) 1292 nid = first_online_node; 1293 spin_unlock(&early_pfn_lock); 1294 1295 return nid; 1296 } 1297 #endif 1298 1299 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1300 static inline bool __meminit __maybe_unused 1301 meminit_pfn_in_nid(unsigned long pfn, int node, 1302 struct mminit_pfnnid_cache *state) 1303 { 1304 int nid; 1305 1306 nid = __early_pfn_to_nid(pfn, state); 1307 if (nid >= 0 && nid != node) 1308 return false; 1309 return true; 1310 } 1311 1312 /* Only safe to use early in boot when initialisation is single-threaded */ 1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1314 { 1315 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1316 } 1317 1318 #else 1319 1320 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1321 { 1322 return true; 1323 } 1324 static inline bool __meminit __maybe_unused 1325 meminit_pfn_in_nid(unsigned long pfn, int node, 1326 struct mminit_pfnnid_cache *state) 1327 { 1328 return true; 1329 } 1330 #endif 1331 1332 1333 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1334 unsigned int order) 1335 { 1336 if (early_page_uninitialised(pfn)) 1337 return; 1338 return __free_pages_boot_core(page, order); 1339 } 1340 1341 /* 1342 * Check that the whole (or subset of) a pageblock given by the interval of 1343 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1344 * with the migration of free compaction scanner. The scanners then need to 1345 * use only pfn_valid_within() check for arches that allow holes within 1346 * pageblocks. 1347 * 1348 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1349 * 1350 * It's possible on some configurations to have a setup like node0 node1 node0 1351 * i.e. it's possible that all pages within a zones range of pages do not 1352 * belong to a single zone. We assume that a border between node0 and node1 1353 * can occur within a single pageblock, but not a node0 node1 node0 1354 * interleaving within a single pageblock. It is therefore sufficient to check 1355 * the first and last page of a pageblock and avoid checking each individual 1356 * page in a pageblock. 1357 */ 1358 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1359 unsigned long end_pfn, struct zone *zone) 1360 { 1361 struct page *start_page; 1362 struct page *end_page; 1363 1364 /* end_pfn is one past the range we are checking */ 1365 end_pfn--; 1366 1367 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1368 return NULL; 1369 1370 start_page = pfn_to_online_page(start_pfn); 1371 if (!start_page) 1372 return NULL; 1373 1374 if (page_zone(start_page) != zone) 1375 return NULL; 1376 1377 end_page = pfn_to_page(end_pfn); 1378 1379 /* This gives a shorter code than deriving page_zone(end_page) */ 1380 if (page_zone_id(start_page) != page_zone_id(end_page)) 1381 return NULL; 1382 1383 return start_page; 1384 } 1385 1386 void set_zone_contiguous(struct zone *zone) 1387 { 1388 unsigned long block_start_pfn = zone->zone_start_pfn; 1389 unsigned long block_end_pfn; 1390 1391 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1392 for (; block_start_pfn < zone_end_pfn(zone); 1393 block_start_pfn = block_end_pfn, 1394 block_end_pfn += pageblock_nr_pages) { 1395 1396 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1397 1398 if (!__pageblock_pfn_to_page(block_start_pfn, 1399 block_end_pfn, zone)) 1400 return; 1401 } 1402 1403 /* We confirm that there is no hole */ 1404 zone->contiguous = true; 1405 } 1406 1407 void clear_zone_contiguous(struct zone *zone) 1408 { 1409 zone->contiguous = false; 1410 } 1411 1412 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1413 static void __init deferred_free_range(struct page *page, 1414 unsigned long pfn, int nr_pages) 1415 { 1416 int i; 1417 1418 if (!page) 1419 return; 1420 1421 /* Free a large naturally-aligned chunk if possible */ 1422 if (nr_pages == pageblock_nr_pages && 1423 (pfn & (pageblock_nr_pages - 1)) == 0) { 1424 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1425 __free_pages_boot_core(page, pageblock_order); 1426 return; 1427 } 1428 1429 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1430 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1431 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1432 __free_pages_boot_core(page, 0); 1433 } 1434 } 1435 1436 /* Completion tracking for deferred_init_memmap() threads */ 1437 static atomic_t pgdat_init_n_undone __initdata; 1438 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1439 1440 static inline void __init pgdat_init_report_one_done(void) 1441 { 1442 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1443 complete(&pgdat_init_all_done_comp); 1444 } 1445 1446 /* Initialise remaining memory on a node */ 1447 static int __init deferred_init_memmap(void *data) 1448 { 1449 pg_data_t *pgdat = data; 1450 int nid = pgdat->node_id; 1451 struct mminit_pfnnid_cache nid_init_state = { }; 1452 unsigned long start = jiffies; 1453 unsigned long nr_pages = 0; 1454 unsigned long walk_start, walk_end; 1455 int i, zid; 1456 struct zone *zone; 1457 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1458 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1459 1460 if (first_init_pfn == ULONG_MAX) { 1461 pgdat_init_report_one_done(); 1462 return 0; 1463 } 1464 1465 /* Bind memory initialisation thread to a local node if possible */ 1466 if (!cpumask_empty(cpumask)) 1467 set_cpus_allowed_ptr(current, cpumask); 1468 1469 /* Sanity check boundaries */ 1470 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1471 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1472 pgdat->first_deferred_pfn = ULONG_MAX; 1473 1474 /* Only the highest zone is deferred so find it */ 1475 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1476 zone = pgdat->node_zones + zid; 1477 if (first_init_pfn < zone_end_pfn(zone)) 1478 break; 1479 } 1480 1481 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1482 unsigned long pfn, end_pfn; 1483 struct page *page = NULL; 1484 struct page *free_base_page = NULL; 1485 unsigned long free_base_pfn = 0; 1486 int nr_to_free = 0; 1487 1488 end_pfn = min(walk_end, zone_end_pfn(zone)); 1489 pfn = first_init_pfn; 1490 if (pfn < walk_start) 1491 pfn = walk_start; 1492 if (pfn < zone->zone_start_pfn) 1493 pfn = zone->zone_start_pfn; 1494 1495 for (; pfn < end_pfn; pfn++) { 1496 if (!pfn_valid_within(pfn)) 1497 goto free_range; 1498 1499 /* 1500 * Ensure pfn_valid is checked every 1501 * pageblock_nr_pages for memory holes 1502 */ 1503 if ((pfn & (pageblock_nr_pages - 1)) == 0) { 1504 if (!pfn_valid(pfn)) { 1505 page = NULL; 1506 goto free_range; 1507 } 1508 } 1509 1510 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1511 page = NULL; 1512 goto free_range; 1513 } 1514 1515 /* Minimise pfn page lookups and scheduler checks */ 1516 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) { 1517 page++; 1518 } else { 1519 nr_pages += nr_to_free; 1520 deferred_free_range(free_base_page, 1521 free_base_pfn, nr_to_free); 1522 free_base_page = NULL; 1523 free_base_pfn = nr_to_free = 0; 1524 1525 page = pfn_to_page(pfn); 1526 cond_resched(); 1527 } 1528 1529 if (page->flags) { 1530 VM_BUG_ON(page_zone(page) != zone); 1531 goto free_range; 1532 } 1533 1534 __init_single_page(page, pfn, zid, nid); 1535 if (!free_base_page) { 1536 free_base_page = page; 1537 free_base_pfn = pfn; 1538 nr_to_free = 0; 1539 } 1540 nr_to_free++; 1541 1542 /* Where possible, batch up pages for a single free */ 1543 continue; 1544 free_range: 1545 /* Free the current block of pages to allocator */ 1546 nr_pages += nr_to_free; 1547 deferred_free_range(free_base_page, free_base_pfn, 1548 nr_to_free); 1549 free_base_page = NULL; 1550 free_base_pfn = nr_to_free = 0; 1551 } 1552 /* Free the last block of pages to allocator */ 1553 nr_pages += nr_to_free; 1554 deferred_free_range(free_base_page, free_base_pfn, nr_to_free); 1555 1556 first_init_pfn = max(end_pfn, first_init_pfn); 1557 } 1558 1559 /* Sanity check that the next zone really is unpopulated */ 1560 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1561 1562 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1563 jiffies_to_msecs(jiffies - start)); 1564 1565 pgdat_init_report_one_done(); 1566 return 0; 1567 } 1568 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1569 1570 void __init page_alloc_init_late(void) 1571 { 1572 struct zone *zone; 1573 1574 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1575 int nid; 1576 1577 /* There will be num_node_state(N_MEMORY) threads */ 1578 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1579 for_each_node_state(nid, N_MEMORY) { 1580 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1581 } 1582 1583 /* Block until all are initialised */ 1584 wait_for_completion(&pgdat_init_all_done_comp); 1585 1586 /* Reinit limits that are based on free pages after the kernel is up */ 1587 files_maxfiles_init(); 1588 #endif 1589 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1590 /* Discard memblock private memory */ 1591 memblock_discard(); 1592 #endif 1593 1594 for_each_populated_zone(zone) 1595 set_zone_contiguous(zone); 1596 } 1597 1598 #ifdef CONFIG_CMA 1599 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1600 void __init init_cma_reserved_pageblock(struct page *page) 1601 { 1602 unsigned i = pageblock_nr_pages; 1603 struct page *p = page; 1604 1605 do { 1606 __ClearPageReserved(p); 1607 set_page_count(p, 0); 1608 } while (++p, --i); 1609 1610 set_pageblock_migratetype(page, MIGRATE_CMA); 1611 1612 if (pageblock_order >= MAX_ORDER) { 1613 i = pageblock_nr_pages; 1614 p = page; 1615 do { 1616 set_page_refcounted(p); 1617 __free_pages(p, MAX_ORDER - 1); 1618 p += MAX_ORDER_NR_PAGES; 1619 } while (i -= MAX_ORDER_NR_PAGES); 1620 } else { 1621 set_page_refcounted(page); 1622 __free_pages(page, pageblock_order); 1623 } 1624 1625 adjust_managed_page_count(page, pageblock_nr_pages); 1626 } 1627 #endif 1628 1629 /* 1630 * The order of subdivision here is critical for the IO subsystem. 1631 * Please do not alter this order without good reasons and regression 1632 * testing. Specifically, as large blocks of memory are subdivided, 1633 * the order in which smaller blocks are delivered depends on the order 1634 * they're subdivided in this function. This is the primary factor 1635 * influencing the order in which pages are delivered to the IO 1636 * subsystem according to empirical testing, and this is also justified 1637 * by considering the behavior of a buddy system containing a single 1638 * large block of memory acted on by a series of small allocations. 1639 * This behavior is a critical factor in sglist merging's success. 1640 * 1641 * -- nyc 1642 */ 1643 static inline void expand(struct zone *zone, struct page *page, 1644 int low, int high, struct free_area *area, 1645 int migratetype) 1646 { 1647 unsigned long size = 1 << high; 1648 1649 while (high > low) { 1650 area--; 1651 high--; 1652 size >>= 1; 1653 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1654 1655 /* 1656 * Mark as guard pages (or page), that will allow to 1657 * merge back to allocator when buddy will be freed. 1658 * Corresponding page table entries will not be touched, 1659 * pages will stay not present in virtual address space 1660 */ 1661 if (set_page_guard(zone, &page[size], high, migratetype)) 1662 continue; 1663 1664 list_add(&page[size].lru, &area->free_list[migratetype]); 1665 area->nr_free++; 1666 set_page_order(&page[size], high); 1667 } 1668 } 1669 1670 static void check_new_page_bad(struct page *page) 1671 { 1672 const char *bad_reason = NULL; 1673 unsigned long bad_flags = 0; 1674 1675 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1676 bad_reason = "nonzero mapcount"; 1677 if (unlikely(page->mapping != NULL)) 1678 bad_reason = "non-NULL mapping"; 1679 if (unlikely(page_ref_count(page) != 0)) 1680 bad_reason = "nonzero _count"; 1681 if (unlikely(page->flags & __PG_HWPOISON)) { 1682 bad_reason = "HWPoisoned (hardware-corrupted)"; 1683 bad_flags = __PG_HWPOISON; 1684 /* Don't complain about hwpoisoned pages */ 1685 page_mapcount_reset(page); /* remove PageBuddy */ 1686 return; 1687 } 1688 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1689 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1690 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1691 } 1692 #ifdef CONFIG_MEMCG 1693 if (unlikely(page->mem_cgroup)) 1694 bad_reason = "page still charged to cgroup"; 1695 #endif 1696 bad_page(page, bad_reason, bad_flags); 1697 } 1698 1699 /* 1700 * This page is about to be returned from the page allocator 1701 */ 1702 static inline int check_new_page(struct page *page) 1703 { 1704 if (likely(page_expected_state(page, 1705 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1706 return 0; 1707 1708 check_new_page_bad(page); 1709 return 1; 1710 } 1711 1712 static inline bool free_pages_prezeroed(void) 1713 { 1714 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1715 page_poisoning_enabled(); 1716 } 1717 1718 #ifdef CONFIG_DEBUG_VM 1719 static bool check_pcp_refill(struct page *page) 1720 { 1721 return false; 1722 } 1723 1724 static bool check_new_pcp(struct page *page) 1725 { 1726 return check_new_page(page); 1727 } 1728 #else 1729 static bool check_pcp_refill(struct page *page) 1730 { 1731 return check_new_page(page); 1732 } 1733 static bool check_new_pcp(struct page *page) 1734 { 1735 return false; 1736 } 1737 #endif /* CONFIG_DEBUG_VM */ 1738 1739 static bool check_new_pages(struct page *page, unsigned int order) 1740 { 1741 int i; 1742 for (i = 0; i < (1 << order); i++) { 1743 struct page *p = page + i; 1744 1745 if (unlikely(check_new_page(p))) 1746 return true; 1747 } 1748 1749 return false; 1750 } 1751 1752 inline void post_alloc_hook(struct page *page, unsigned int order, 1753 gfp_t gfp_flags) 1754 { 1755 set_page_private(page, 0); 1756 set_page_refcounted(page); 1757 1758 arch_alloc_page(page, order); 1759 kernel_map_pages(page, 1 << order, 1); 1760 kernel_poison_pages(page, 1 << order, 1); 1761 kasan_alloc_pages(page, order); 1762 set_page_owner(page, order, gfp_flags); 1763 } 1764 1765 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1766 unsigned int alloc_flags) 1767 { 1768 int i; 1769 1770 post_alloc_hook(page, order, gfp_flags); 1771 1772 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1773 for (i = 0; i < (1 << order); i++) 1774 clear_highpage(page + i); 1775 1776 if (order && (gfp_flags & __GFP_COMP)) 1777 prep_compound_page(page, order); 1778 1779 /* 1780 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1781 * allocate the page. The expectation is that the caller is taking 1782 * steps that will free more memory. The caller should avoid the page 1783 * being used for !PFMEMALLOC purposes. 1784 */ 1785 if (alloc_flags & ALLOC_NO_WATERMARKS) 1786 set_page_pfmemalloc(page); 1787 else 1788 clear_page_pfmemalloc(page); 1789 } 1790 1791 /* 1792 * Go through the free lists for the given migratetype and remove 1793 * the smallest available page from the freelists 1794 */ 1795 static inline 1796 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1797 int migratetype) 1798 { 1799 unsigned int current_order; 1800 struct free_area *area; 1801 struct page *page; 1802 1803 /* Find a page of the appropriate size in the preferred list */ 1804 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1805 area = &(zone->free_area[current_order]); 1806 page = list_first_entry_or_null(&area->free_list[migratetype], 1807 struct page, lru); 1808 if (!page) 1809 continue; 1810 list_del(&page->lru); 1811 rmv_page_order(page); 1812 area->nr_free--; 1813 expand(zone, page, order, current_order, area, migratetype); 1814 set_pcppage_migratetype(page, migratetype); 1815 return page; 1816 } 1817 1818 return NULL; 1819 } 1820 1821 1822 /* 1823 * This array describes the order lists are fallen back to when 1824 * the free lists for the desirable migrate type are depleted 1825 */ 1826 static int fallbacks[MIGRATE_TYPES][4] = { 1827 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1828 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1829 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1830 #ifdef CONFIG_CMA 1831 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1832 #endif 1833 #ifdef CONFIG_MEMORY_ISOLATION 1834 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1835 #endif 1836 }; 1837 1838 #ifdef CONFIG_CMA 1839 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1840 unsigned int order) 1841 { 1842 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1843 } 1844 #else 1845 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1846 unsigned int order) { return NULL; } 1847 #endif 1848 1849 /* 1850 * Move the free pages in a range to the free lists of the requested type. 1851 * Note that start_page and end_pages are not aligned on a pageblock 1852 * boundary. If alignment is required, use move_freepages_block() 1853 */ 1854 static int move_freepages(struct zone *zone, 1855 struct page *start_page, struct page *end_page, 1856 int migratetype, int *num_movable) 1857 { 1858 struct page *page; 1859 unsigned int order; 1860 int pages_moved = 0; 1861 1862 #ifndef CONFIG_HOLES_IN_ZONE 1863 /* 1864 * page_zone is not safe to call in this context when 1865 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1866 * anyway as we check zone boundaries in move_freepages_block(). 1867 * Remove at a later date when no bug reports exist related to 1868 * grouping pages by mobility 1869 */ 1870 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1871 #endif 1872 1873 if (num_movable) 1874 *num_movable = 0; 1875 1876 for (page = start_page; page <= end_page;) { 1877 if (!pfn_valid_within(page_to_pfn(page))) { 1878 page++; 1879 continue; 1880 } 1881 1882 /* Make sure we are not inadvertently changing nodes */ 1883 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1884 1885 if (!PageBuddy(page)) { 1886 /* 1887 * We assume that pages that could be isolated for 1888 * migration are movable. But we don't actually try 1889 * isolating, as that would be expensive. 1890 */ 1891 if (num_movable && 1892 (PageLRU(page) || __PageMovable(page))) 1893 (*num_movable)++; 1894 1895 page++; 1896 continue; 1897 } 1898 1899 order = page_order(page); 1900 list_move(&page->lru, 1901 &zone->free_area[order].free_list[migratetype]); 1902 page += 1 << order; 1903 pages_moved += 1 << order; 1904 } 1905 1906 return pages_moved; 1907 } 1908 1909 int move_freepages_block(struct zone *zone, struct page *page, 1910 int migratetype, int *num_movable) 1911 { 1912 unsigned long start_pfn, end_pfn; 1913 struct page *start_page, *end_page; 1914 1915 start_pfn = page_to_pfn(page); 1916 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1917 start_page = pfn_to_page(start_pfn); 1918 end_page = start_page + pageblock_nr_pages - 1; 1919 end_pfn = start_pfn + pageblock_nr_pages - 1; 1920 1921 /* Do not cross zone boundaries */ 1922 if (!zone_spans_pfn(zone, start_pfn)) 1923 start_page = page; 1924 if (!zone_spans_pfn(zone, end_pfn)) 1925 return 0; 1926 1927 return move_freepages(zone, start_page, end_page, migratetype, 1928 num_movable); 1929 } 1930 1931 static void change_pageblock_range(struct page *pageblock_page, 1932 int start_order, int migratetype) 1933 { 1934 int nr_pageblocks = 1 << (start_order - pageblock_order); 1935 1936 while (nr_pageblocks--) { 1937 set_pageblock_migratetype(pageblock_page, migratetype); 1938 pageblock_page += pageblock_nr_pages; 1939 } 1940 } 1941 1942 /* 1943 * When we are falling back to another migratetype during allocation, try to 1944 * steal extra free pages from the same pageblocks to satisfy further 1945 * allocations, instead of polluting multiple pageblocks. 1946 * 1947 * If we are stealing a relatively large buddy page, it is likely there will 1948 * be more free pages in the pageblock, so try to steal them all. For 1949 * reclaimable and unmovable allocations, we steal regardless of page size, 1950 * as fragmentation caused by those allocations polluting movable pageblocks 1951 * is worse than movable allocations stealing from unmovable and reclaimable 1952 * pageblocks. 1953 */ 1954 static bool can_steal_fallback(unsigned int order, int start_mt) 1955 { 1956 /* 1957 * Leaving this order check is intended, although there is 1958 * relaxed order check in next check. The reason is that 1959 * we can actually steal whole pageblock if this condition met, 1960 * but, below check doesn't guarantee it and that is just heuristic 1961 * so could be changed anytime. 1962 */ 1963 if (order >= pageblock_order) 1964 return true; 1965 1966 if (order >= pageblock_order / 2 || 1967 start_mt == MIGRATE_RECLAIMABLE || 1968 start_mt == MIGRATE_UNMOVABLE || 1969 page_group_by_mobility_disabled) 1970 return true; 1971 1972 return false; 1973 } 1974 1975 /* 1976 * This function implements actual steal behaviour. If order is large enough, 1977 * we can steal whole pageblock. If not, we first move freepages in this 1978 * pageblock to our migratetype and determine how many already-allocated pages 1979 * are there in the pageblock with a compatible migratetype. If at least half 1980 * of pages are free or compatible, we can change migratetype of the pageblock 1981 * itself, so pages freed in the future will be put on the correct free list. 1982 */ 1983 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1984 int start_type, bool whole_block) 1985 { 1986 unsigned int current_order = page_order(page); 1987 struct free_area *area; 1988 int free_pages, movable_pages, alike_pages; 1989 int old_block_type; 1990 1991 old_block_type = get_pageblock_migratetype(page); 1992 1993 /* 1994 * This can happen due to races and we want to prevent broken 1995 * highatomic accounting. 1996 */ 1997 if (is_migrate_highatomic(old_block_type)) 1998 goto single_page; 1999 2000 /* Take ownership for orders >= pageblock_order */ 2001 if (current_order >= pageblock_order) { 2002 change_pageblock_range(page, current_order, start_type); 2003 goto single_page; 2004 } 2005 2006 /* We are not allowed to try stealing from the whole block */ 2007 if (!whole_block) 2008 goto single_page; 2009 2010 free_pages = move_freepages_block(zone, page, start_type, 2011 &movable_pages); 2012 /* 2013 * Determine how many pages are compatible with our allocation. 2014 * For movable allocation, it's the number of movable pages which 2015 * we just obtained. For other types it's a bit more tricky. 2016 */ 2017 if (start_type == MIGRATE_MOVABLE) { 2018 alike_pages = movable_pages; 2019 } else { 2020 /* 2021 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2022 * to MOVABLE pageblock, consider all non-movable pages as 2023 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2024 * vice versa, be conservative since we can't distinguish the 2025 * exact migratetype of non-movable pages. 2026 */ 2027 if (old_block_type == MIGRATE_MOVABLE) 2028 alike_pages = pageblock_nr_pages 2029 - (free_pages + movable_pages); 2030 else 2031 alike_pages = 0; 2032 } 2033 2034 /* moving whole block can fail due to zone boundary conditions */ 2035 if (!free_pages) 2036 goto single_page; 2037 2038 /* 2039 * If a sufficient number of pages in the block are either free or of 2040 * comparable migratability as our allocation, claim the whole block. 2041 */ 2042 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2043 page_group_by_mobility_disabled) 2044 set_pageblock_migratetype(page, start_type); 2045 2046 return; 2047 2048 single_page: 2049 area = &zone->free_area[current_order]; 2050 list_move(&page->lru, &area->free_list[start_type]); 2051 } 2052 2053 /* 2054 * Check whether there is a suitable fallback freepage with requested order. 2055 * If only_stealable is true, this function returns fallback_mt only if 2056 * we can steal other freepages all together. This would help to reduce 2057 * fragmentation due to mixed migratetype pages in one pageblock. 2058 */ 2059 int find_suitable_fallback(struct free_area *area, unsigned int order, 2060 int migratetype, bool only_stealable, bool *can_steal) 2061 { 2062 int i; 2063 int fallback_mt; 2064 2065 if (area->nr_free == 0) 2066 return -1; 2067 2068 *can_steal = false; 2069 for (i = 0;; i++) { 2070 fallback_mt = fallbacks[migratetype][i]; 2071 if (fallback_mt == MIGRATE_TYPES) 2072 break; 2073 2074 if (list_empty(&area->free_list[fallback_mt])) 2075 continue; 2076 2077 if (can_steal_fallback(order, migratetype)) 2078 *can_steal = true; 2079 2080 if (!only_stealable) 2081 return fallback_mt; 2082 2083 if (*can_steal) 2084 return fallback_mt; 2085 } 2086 2087 return -1; 2088 } 2089 2090 /* 2091 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2092 * there are no empty page blocks that contain a page with a suitable order 2093 */ 2094 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2095 unsigned int alloc_order) 2096 { 2097 int mt; 2098 unsigned long max_managed, flags; 2099 2100 /* 2101 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2102 * Check is race-prone but harmless. 2103 */ 2104 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2105 if (zone->nr_reserved_highatomic >= max_managed) 2106 return; 2107 2108 spin_lock_irqsave(&zone->lock, flags); 2109 2110 /* Recheck the nr_reserved_highatomic limit under the lock */ 2111 if (zone->nr_reserved_highatomic >= max_managed) 2112 goto out_unlock; 2113 2114 /* Yoink! */ 2115 mt = get_pageblock_migratetype(page); 2116 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2117 && !is_migrate_cma(mt)) { 2118 zone->nr_reserved_highatomic += pageblock_nr_pages; 2119 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2120 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2121 } 2122 2123 out_unlock: 2124 spin_unlock_irqrestore(&zone->lock, flags); 2125 } 2126 2127 /* 2128 * Used when an allocation is about to fail under memory pressure. This 2129 * potentially hurts the reliability of high-order allocations when under 2130 * intense memory pressure but failed atomic allocations should be easier 2131 * to recover from than an OOM. 2132 * 2133 * If @force is true, try to unreserve a pageblock even though highatomic 2134 * pageblock is exhausted. 2135 */ 2136 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2137 bool force) 2138 { 2139 struct zonelist *zonelist = ac->zonelist; 2140 unsigned long flags; 2141 struct zoneref *z; 2142 struct zone *zone; 2143 struct page *page; 2144 int order; 2145 bool ret; 2146 2147 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2148 ac->nodemask) { 2149 /* 2150 * Preserve at least one pageblock unless memory pressure 2151 * is really high. 2152 */ 2153 if (!force && zone->nr_reserved_highatomic <= 2154 pageblock_nr_pages) 2155 continue; 2156 2157 spin_lock_irqsave(&zone->lock, flags); 2158 for (order = 0; order < MAX_ORDER; order++) { 2159 struct free_area *area = &(zone->free_area[order]); 2160 2161 page = list_first_entry_or_null( 2162 &area->free_list[MIGRATE_HIGHATOMIC], 2163 struct page, lru); 2164 if (!page) 2165 continue; 2166 2167 /* 2168 * In page freeing path, migratetype change is racy so 2169 * we can counter several free pages in a pageblock 2170 * in this loop althoug we changed the pageblock type 2171 * from highatomic to ac->migratetype. So we should 2172 * adjust the count once. 2173 */ 2174 if (is_migrate_highatomic_page(page)) { 2175 /* 2176 * It should never happen but changes to 2177 * locking could inadvertently allow a per-cpu 2178 * drain to add pages to MIGRATE_HIGHATOMIC 2179 * while unreserving so be safe and watch for 2180 * underflows. 2181 */ 2182 zone->nr_reserved_highatomic -= min( 2183 pageblock_nr_pages, 2184 zone->nr_reserved_highatomic); 2185 } 2186 2187 /* 2188 * Convert to ac->migratetype and avoid the normal 2189 * pageblock stealing heuristics. Minimally, the caller 2190 * is doing the work and needs the pages. More 2191 * importantly, if the block was always converted to 2192 * MIGRATE_UNMOVABLE or another type then the number 2193 * of pageblocks that cannot be completely freed 2194 * may increase. 2195 */ 2196 set_pageblock_migratetype(page, ac->migratetype); 2197 ret = move_freepages_block(zone, page, ac->migratetype, 2198 NULL); 2199 if (ret) { 2200 spin_unlock_irqrestore(&zone->lock, flags); 2201 return ret; 2202 } 2203 } 2204 spin_unlock_irqrestore(&zone->lock, flags); 2205 } 2206 2207 return false; 2208 } 2209 2210 /* 2211 * Try finding a free buddy page on the fallback list and put it on the free 2212 * list of requested migratetype, possibly along with other pages from the same 2213 * block, depending on fragmentation avoidance heuristics. Returns true if 2214 * fallback was found so that __rmqueue_smallest() can grab it. 2215 * 2216 * The use of signed ints for order and current_order is a deliberate 2217 * deviation from the rest of this file, to make the for loop 2218 * condition simpler. 2219 */ 2220 static inline bool 2221 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2222 { 2223 struct free_area *area; 2224 int current_order; 2225 struct page *page; 2226 int fallback_mt; 2227 bool can_steal; 2228 2229 /* 2230 * Find the largest available free page in the other list. This roughly 2231 * approximates finding the pageblock with the most free pages, which 2232 * would be too costly to do exactly. 2233 */ 2234 for (current_order = MAX_ORDER - 1; current_order >= order; 2235 --current_order) { 2236 area = &(zone->free_area[current_order]); 2237 fallback_mt = find_suitable_fallback(area, current_order, 2238 start_migratetype, false, &can_steal); 2239 if (fallback_mt == -1) 2240 continue; 2241 2242 /* 2243 * We cannot steal all free pages from the pageblock and the 2244 * requested migratetype is movable. In that case it's better to 2245 * steal and split the smallest available page instead of the 2246 * largest available page, because even if the next movable 2247 * allocation falls back into a different pageblock than this 2248 * one, it won't cause permanent fragmentation. 2249 */ 2250 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2251 && current_order > order) 2252 goto find_smallest; 2253 2254 goto do_steal; 2255 } 2256 2257 return false; 2258 2259 find_smallest: 2260 for (current_order = order; current_order < MAX_ORDER; 2261 current_order++) { 2262 area = &(zone->free_area[current_order]); 2263 fallback_mt = find_suitable_fallback(area, current_order, 2264 start_migratetype, false, &can_steal); 2265 if (fallback_mt != -1) 2266 break; 2267 } 2268 2269 /* 2270 * This should not happen - we already found a suitable fallback 2271 * when looking for the largest page. 2272 */ 2273 VM_BUG_ON(current_order == MAX_ORDER); 2274 2275 do_steal: 2276 page = list_first_entry(&area->free_list[fallback_mt], 2277 struct page, lru); 2278 2279 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2280 2281 trace_mm_page_alloc_extfrag(page, order, current_order, 2282 start_migratetype, fallback_mt); 2283 2284 return true; 2285 2286 } 2287 2288 /* 2289 * Do the hard work of removing an element from the buddy allocator. 2290 * Call me with the zone->lock already held. 2291 */ 2292 static struct page *__rmqueue(struct zone *zone, unsigned int order, 2293 int migratetype) 2294 { 2295 struct page *page; 2296 2297 retry: 2298 page = __rmqueue_smallest(zone, order, migratetype); 2299 if (unlikely(!page)) { 2300 if (migratetype == MIGRATE_MOVABLE) 2301 page = __rmqueue_cma_fallback(zone, order); 2302 2303 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2304 goto retry; 2305 } 2306 2307 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2308 return page; 2309 } 2310 2311 /* 2312 * Obtain a specified number of elements from the buddy allocator, all under 2313 * a single hold of the lock, for efficiency. Add them to the supplied list. 2314 * Returns the number of new pages which were placed at *list. 2315 */ 2316 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2317 unsigned long count, struct list_head *list, 2318 int migratetype, bool cold) 2319 { 2320 int i, alloced = 0; 2321 2322 spin_lock(&zone->lock); 2323 for (i = 0; i < count; ++i) { 2324 struct page *page = __rmqueue(zone, order, migratetype); 2325 if (unlikely(page == NULL)) 2326 break; 2327 2328 if (unlikely(check_pcp_refill(page))) 2329 continue; 2330 2331 /* 2332 * Split buddy pages returned by expand() are received here 2333 * in physical page order. The page is added to the callers and 2334 * list and the list head then moves forward. From the callers 2335 * perspective, the linked list is ordered by page number in 2336 * some conditions. This is useful for IO devices that can 2337 * merge IO requests if the physical pages are ordered 2338 * properly. 2339 */ 2340 if (likely(!cold)) 2341 list_add(&page->lru, list); 2342 else 2343 list_add_tail(&page->lru, list); 2344 list = &page->lru; 2345 alloced++; 2346 if (is_migrate_cma(get_pcppage_migratetype(page))) 2347 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2348 -(1 << order)); 2349 } 2350 2351 /* 2352 * i pages were removed from the buddy list even if some leak due 2353 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2354 * on i. Do not confuse with 'alloced' which is the number of 2355 * pages added to the pcp list. 2356 */ 2357 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2358 spin_unlock(&zone->lock); 2359 return alloced; 2360 } 2361 2362 #ifdef CONFIG_NUMA 2363 /* 2364 * Called from the vmstat counter updater to drain pagesets of this 2365 * currently executing processor on remote nodes after they have 2366 * expired. 2367 * 2368 * Note that this function must be called with the thread pinned to 2369 * a single processor. 2370 */ 2371 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2372 { 2373 unsigned long flags; 2374 int to_drain, batch; 2375 2376 local_irq_save(flags); 2377 batch = READ_ONCE(pcp->batch); 2378 to_drain = min(pcp->count, batch); 2379 if (to_drain > 0) { 2380 free_pcppages_bulk(zone, to_drain, pcp); 2381 pcp->count -= to_drain; 2382 } 2383 local_irq_restore(flags); 2384 } 2385 #endif 2386 2387 /* 2388 * Drain pcplists of the indicated processor and zone. 2389 * 2390 * The processor must either be the current processor and the 2391 * thread pinned to the current processor or a processor that 2392 * is not online. 2393 */ 2394 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2395 { 2396 unsigned long flags; 2397 struct per_cpu_pageset *pset; 2398 struct per_cpu_pages *pcp; 2399 2400 local_irq_save(flags); 2401 pset = per_cpu_ptr(zone->pageset, cpu); 2402 2403 pcp = &pset->pcp; 2404 if (pcp->count) { 2405 free_pcppages_bulk(zone, pcp->count, pcp); 2406 pcp->count = 0; 2407 } 2408 local_irq_restore(flags); 2409 } 2410 2411 /* 2412 * Drain pcplists of all zones on the indicated processor. 2413 * 2414 * The processor must either be the current processor and the 2415 * thread pinned to the current processor or a processor that 2416 * is not online. 2417 */ 2418 static void drain_pages(unsigned int cpu) 2419 { 2420 struct zone *zone; 2421 2422 for_each_populated_zone(zone) { 2423 drain_pages_zone(cpu, zone); 2424 } 2425 } 2426 2427 /* 2428 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2429 * 2430 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2431 * the single zone's pages. 2432 */ 2433 void drain_local_pages(struct zone *zone) 2434 { 2435 int cpu = smp_processor_id(); 2436 2437 if (zone) 2438 drain_pages_zone(cpu, zone); 2439 else 2440 drain_pages(cpu); 2441 } 2442 2443 static void drain_local_pages_wq(struct work_struct *work) 2444 { 2445 /* 2446 * drain_all_pages doesn't use proper cpu hotplug protection so 2447 * we can race with cpu offline when the WQ can move this from 2448 * a cpu pinned worker to an unbound one. We can operate on a different 2449 * cpu which is allright but we also have to make sure to not move to 2450 * a different one. 2451 */ 2452 preempt_disable(); 2453 drain_local_pages(NULL); 2454 preempt_enable(); 2455 } 2456 2457 /* 2458 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2459 * 2460 * When zone parameter is non-NULL, spill just the single zone's pages. 2461 * 2462 * Note that this can be extremely slow as the draining happens in a workqueue. 2463 */ 2464 void drain_all_pages(struct zone *zone) 2465 { 2466 int cpu; 2467 2468 /* 2469 * Allocate in the BSS so we wont require allocation in 2470 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2471 */ 2472 static cpumask_t cpus_with_pcps; 2473 2474 /* 2475 * Make sure nobody triggers this path before mm_percpu_wq is fully 2476 * initialized. 2477 */ 2478 if (WARN_ON_ONCE(!mm_percpu_wq)) 2479 return; 2480 2481 /* Workqueues cannot recurse */ 2482 if (current->flags & PF_WQ_WORKER) 2483 return; 2484 2485 /* 2486 * Do not drain if one is already in progress unless it's specific to 2487 * a zone. Such callers are primarily CMA and memory hotplug and need 2488 * the drain to be complete when the call returns. 2489 */ 2490 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2491 if (!zone) 2492 return; 2493 mutex_lock(&pcpu_drain_mutex); 2494 } 2495 2496 /* 2497 * We don't care about racing with CPU hotplug event 2498 * as offline notification will cause the notified 2499 * cpu to drain that CPU pcps and on_each_cpu_mask 2500 * disables preemption as part of its processing 2501 */ 2502 for_each_online_cpu(cpu) { 2503 struct per_cpu_pageset *pcp; 2504 struct zone *z; 2505 bool has_pcps = false; 2506 2507 if (zone) { 2508 pcp = per_cpu_ptr(zone->pageset, cpu); 2509 if (pcp->pcp.count) 2510 has_pcps = true; 2511 } else { 2512 for_each_populated_zone(z) { 2513 pcp = per_cpu_ptr(z->pageset, cpu); 2514 if (pcp->pcp.count) { 2515 has_pcps = true; 2516 break; 2517 } 2518 } 2519 } 2520 2521 if (has_pcps) 2522 cpumask_set_cpu(cpu, &cpus_with_pcps); 2523 else 2524 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2525 } 2526 2527 for_each_cpu(cpu, &cpus_with_pcps) { 2528 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2529 INIT_WORK(work, drain_local_pages_wq); 2530 queue_work_on(cpu, mm_percpu_wq, work); 2531 } 2532 for_each_cpu(cpu, &cpus_with_pcps) 2533 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2534 2535 mutex_unlock(&pcpu_drain_mutex); 2536 } 2537 2538 #ifdef CONFIG_HIBERNATION 2539 2540 /* 2541 * Touch the watchdog for every WD_PAGE_COUNT pages. 2542 */ 2543 #define WD_PAGE_COUNT (128*1024) 2544 2545 void mark_free_pages(struct zone *zone) 2546 { 2547 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2548 unsigned long flags; 2549 unsigned int order, t; 2550 struct page *page; 2551 2552 if (zone_is_empty(zone)) 2553 return; 2554 2555 spin_lock_irqsave(&zone->lock, flags); 2556 2557 max_zone_pfn = zone_end_pfn(zone); 2558 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2559 if (pfn_valid(pfn)) { 2560 page = pfn_to_page(pfn); 2561 2562 if (!--page_count) { 2563 touch_nmi_watchdog(); 2564 page_count = WD_PAGE_COUNT; 2565 } 2566 2567 if (page_zone(page) != zone) 2568 continue; 2569 2570 if (!swsusp_page_is_forbidden(page)) 2571 swsusp_unset_page_free(page); 2572 } 2573 2574 for_each_migratetype_order(order, t) { 2575 list_for_each_entry(page, 2576 &zone->free_area[order].free_list[t], lru) { 2577 unsigned long i; 2578 2579 pfn = page_to_pfn(page); 2580 for (i = 0; i < (1UL << order); i++) { 2581 if (!--page_count) { 2582 touch_nmi_watchdog(); 2583 page_count = WD_PAGE_COUNT; 2584 } 2585 swsusp_set_page_free(pfn_to_page(pfn + i)); 2586 } 2587 } 2588 } 2589 spin_unlock_irqrestore(&zone->lock, flags); 2590 } 2591 #endif /* CONFIG_PM */ 2592 2593 /* 2594 * Free a 0-order page 2595 * cold == true ? free a cold page : free a hot page 2596 */ 2597 void free_hot_cold_page(struct page *page, bool cold) 2598 { 2599 struct zone *zone = page_zone(page); 2600 struct per_cpu_pages *pcp; 2601 unsigned long flags; 2602 unsigned long pfn = page_to_pfn(page); 2603 int migratetype; 2604 2605 if (!free_pcp_prepare(page)) 2606 return; 2607 2608 migratetype = get_pfnblock_migratetype(page, pfn); 2609 set_pcppage_migratetype(page, migratetype); 2610 local_irq_save(flags); 2611 __count_vm_event(PGFREE); 2612 2613 /* 2614 * We only track unmovable, reclaimable and movable on pcp lists. 2615 * Free ISOLATE pages back to the allocator because they are being 2616 * offlined but treat HIGHATOMIC as movable pages so we can get those 2617 * areas back if necessary. Otherwise, we may have to free 2618 * excessively into the page allocator 2619 */ 2620 if (migratetype >= MIGRATE_PCPTYPES) { 2621 if (unlikely(is_migrate_isolate(migratetype))) { 2622 free_one_page(zone, page, pfn, 0, migratetype); 2623 goto out; 2624 } 2625 migratetype = MIGRATE_MOVABLE; 2626 } 2627 2628 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2629 if (!cold) 2630 list_add(&page->lru, &pcp->lists[migratetype]); 2631 else 2632 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2633 pcp->count++; 2634 if (pcp->count >= pcp->high) { 2635 unsigned long batch = READ_ONCE(pcp->batch); 2636 free_pcppages_bulk(zone, batch, pcp); 2637 pcp->count -= batch; 2638 } 2639 2640 out: 2641 local_irq_restore(flags); 2642 } 2643 2644 /* 2645 * Free a list of 0-order pages 2646 */ 2647 void free_hot_cold_page_list(struct list_head *list, bool cold) 2648 { 2649 struct page *page, *next; 2650 2651 list_for_each_entry_safe(page, next, list, lru) { 2652 trace_mm_page_free_batched(page, cold); 2653 free_hot_cold_page(page, cold); 2654 } 2655 } 2656 2657 /* 2658 * split_page takes a non-compound higher-order page, and splits it into 2659 * n (1<<order) sub-pages: page[0..n] 2660 * Each sub-page must be freed individually. 2661 * 2662 * Note: this is probably too low level an operation for use in drivers. 2663 * Please consult with lkml before using this in your driver. 2664 */ 2665 void split_page(struct page *page, unsigned int order) 2666 { 2667 int i; 2668 2669 VM_BUG_ON_PAGE(PageCompound(page), page); 2670 VM_BUG_ON_PAGE(!page_count(page), page); 2671 2672 #ifdef CONFIG_KMEMCHECK 2673 /* 2674 * Split shadow pages too, because free(page[0]) would 2675 * otherwise free the whole shadow. 2676 */ 2677 if (kmemcheck_page_is_tracked(page)) 2678 split_page(virt_to_page(page[0].shadow), order); 2679 #endif 2680 2681 for (i = 1; i < (1 << order); i++) 2682 set_page_refcounted(page + i); 2683 split_page_owner(page, order); 2684 } 2685 EXPORT_SYMBOL_GPL(split_page); 2686 2687 int __isolate_free_page(struct page *page, unsigned int order) 2688 { 2689 unsigned long watermark; 2690 struct zone *zone; 2691 int mt; 2692 2693 BUG_ON(!PageBuddy(page)); 2694 2695 zone = page_zone(page); 2696 mt = get_pageblock_migratetype(page); 2697 2698 if (!is_migrate_isolate(mt)) { 2699 /* 2700 * Obey watermarks as if the page was being allocated. We can 2701 * emulate a high-order watermark check with a raised order-0 2702 * watermark, because we already know our high-order page 2703 * exists. 2704 */ 2705 watermark = min_wmark_pages(zone) + (1UL << order); 2706 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2707 return 0; 2708 2709 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2710 } 2711 2712 /* Remove page from free list */ 2713 list_del(&page->lru); 2714 zone->free_area[order].nr_free--; 2715 rmv_page_order(page); 2716 2717 /* 2718 * Set the pageblock if the isolated page is at least half of a 2719 * pageblock 2720 */ 2721 if (order >= pageblock_order - 1) { 2722 struct page *endpage = page + (1 << order) - 1; 2723 for (; page < endpage; page += pageblock_nr_pages) { 2724 int mt = get_pageblock_migratetype(page); 2725 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2726 && !is_migrate_highatomic(mt)) 2727 set_pageblock_migratetype(page, 2728 MIGRATE_MOVABLE); 2729 } 2730 } 2731 2732 2733 return 1UL << order; 2734 } 2735 2736 /* 2737 * Update NUMA hit/miss statistics 2738 * 2739 * Must be called with interrupts disabled. 2740 */ 2741 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2742 { 2743 #ifdef CONFIG_NUMA 2744 enum numa_stat_item local_stat = NUMA_LOCAL; 2745 2746 if (z->node != numa_node_id()) 2747 local_stat = NUMA_OTHER; 2748 2749 if (z->node == preferred_zone->node) 2750 __inc_numa_state(z, NUMA_HIT); 2751 else { 2752 __inc_numa_state(z, NUMA_MISS); 2753 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2754 } 2755 __inc_numa_state(z, local_stat); 2756 #endif 2757 } 2758 2759 /* Remove page from the per-cpu list, caller must protect the list */ 2760 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2761 bool cold, struct per_cpu_pages *pcp, 2762 struct list_head *list) 2763 { 2764 struct page *page; 2765 2766 do { 2767 if (list_empty(list)) { 2768 pcp->count += rmqueue_bulk(zone, 0, 2769 pcp->batch, list, 2770 migratetype, cold); 2771 if (unlikely(list_empty(list))) 2772 return NULL; 2773 } 2774 2775 if (cold) 2776 page = list_last_entry(list, struct page, lru); 2777 else 2778 page = list_first_entry(list, struct page, lru); 2779 2780 list_del(&page->lru); 2781 pcp->count--; 2782 } while (check_new_pcp(page)); 2783 2784 return page; 2785 } 2786 2787 /* Lock and remove page from the per-cpu list */ 2788 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2789 struct zone *zone, unsigned int order, 2790 gfp_t gfp_flags, int migratetype) 2791 { 2792 struct per_cpu_pages *pcp; 2793 struct list_head *list; 2794 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2795 struct page *page; 2796 unsigned long flags; 2797 2798 local_irq_save(flags); 2799 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2800 list = &pcp->lists[migratetype]; 2801 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list); 2802 if (page) { 2803 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2804 zone_statistics(preferred_zone, zone); 2805 } 2806 local_irq_restore(flags); 2807 return page; 2808 } 2809 2810 /* 2811 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2812 */ 2813 static inline 2814 struct page *rmqueue(struct zone *preferred_zone, 2815 struct zone *zone, unsigned int order, 2816 gfp_t gfp_flags, unsigned int alloc_flags, 2817 int migratetype) 2818 { 2819 unsigned long flags; 2820 struct page *page; 2821 2822 if (likely(order == 0)) { 2823 page = rmqueue_pcplist(preferred_zone, zone, order, 2824 gfp_flags, migratetype); 2825 goto out; 2826 } 2827 2828 /* 2829 * We most definitely don't want callers attempting to 2830 * allocate greater than order-1 page units with __GFP_NOFAIL. 2831 */ 2832 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2833 spin_lock_irqsave(&zone->lock, flags); 2834 2835 do { 2836 page = NULL; 2837 if (alloc_flags & ALLOC_HARDER) { 2838 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2839 if (page) 2840 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2841 } 2842 if (!page) 2843 page = __rmqueue(zone, order, migratetype); 2844 } while (page && check_new_pages(page, order)); 2845 spin_unlock(&zone->lock); 2846 if (!page) 2847 goto failed; 2848 __mod_zone_freepage_state(zone, -(1 << order), 2849 get_pcppage_migratetype(page)); 2850 2851 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2852 zone_statistics(preferred_zone, zone); 2853 local_irq_restore(flags); 2854 2855 out: 2856 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2857 return page; 2858 2859 failed: 2860 local_irq_restore(flags); 2861 return NULL; 2862 } 2863 2864 #ifdef CONFIG_FAIL_PAGE_ALLOC 2865 2866 static struct { 2867 struct fault_attr attr; 2868 2869 bool ignore_gfp_highmem; 2870 bool ignore_gfp_reclaim; 2871 u32 min_order; 2872 } fail_page_alloc = { 2873 .attr = FAULT_ATTR_INITIALIZER, 2874 .ignore_gfp_reclaim = true, 2875 .ignore_gfp_highmem = true, 2876 .min_order = 1, 2877 }; 2878 2879 static int __init setup_fail_page_alloc(char *str) 2880 { 2881 return setup_fault_attr(&fail_page_alloc.attr, str); 2882 } 2883 __setup("fail_page_alloc=", setup_fail_page_alloc); 2884 2885 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2886 { 2887 if (order < fail_page_alloc.min_order) 2888 return false; 2889 if (gfp_mask & __GFP_NOFAIL) 2890 return false; 2891 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2892 return false; 2893 if (fail_page_alloc.ignore_gfp_reclaim && 2894 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2895 return false; 2896 2897 return should_fail(&fail_page_alloc.attr, 1 << order); 2898 } 2899 2900 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2901 2902 static int __init fail_page_alloc_debugfs(void) 2903 { 2904 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2905 struct dentry *dir; 2906 2907 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2908 &fail_page_alloc.attr); 2909 if (IS_ERR(dir)) 2910 return PTR_ERR(dir); 2911 2912 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2913 &fail_page_alloc.ignore_gfp_reclaim)) 2914 goto fail; 2915 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2916 &fail_page_alloc.ignore_gfp_highmem)) 2917 goto fail; 2918 if (!debugfs_create_u32("min-order", mode, dir, 2919 &fail_page_alloc.min_order)) 2920 goto fail; 2921 2922 return 0; 2923 fail: 2924 debugfs_remove_recursive(dir); 2925 2926 return -ENOMEM; 2927 } 2928 2929 late_initcall(fail_page_alloc_debugfs); 2930 2931 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2932 2933 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2934 2935 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2936 { 2937 return false; 2938 } 2939 2940 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2941 2942 /* 2943 * Return true if free base pages are above 'mark'. For high-order checks it 2944 * will return true of the order-0 watermark is reached and there is at least 2945 * one free page of a suitable size. Checking now avoids taking the zone lock 2946 * to check in the allocation paths if no pages are free. 2947 */ 2948 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2949 int classzone_idx, unsigned int alloc_flags, 2950 long free_pages) 2951 { 2952 long min = mark; 2953 int o; 2954 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 2955 2956 /* free_pages may go negative - that's OK */ 2957 free_pages -= (1 << order) - 1; 2958 2959 if (alloc_flags & ALLOC_HIGH) 2960 min -= min / 2; 2961 2962 /* 2963 * If the caller does not have rights to ALLOC_HARDER then subtract 2964 * the high-atomic reserves. This will over-estimate the size of the 2965 * atomic reserve but it avoids a search. 2966 */ 2967 if (likely(!alloc_harder)) { 2968 free_pages -= z->nr_reserved_highatomic; 2969 } else { 2970 /* 2971 * OOM victims can try even harder than normal ALLOC_HARDER 2972 * users on the grounds that it's definitely going to be in 2973 * the exit path shortly and free memory. Any allocation it 2974 * makes during the free path will be small and short-lived. 2975 */ 2976 if (alloc_flags & ALLOC_OOM) 2977 min -= min / 2; 2978 else 2979 min -= min / 4; 2980 } 2981 2982 2983 #ifdef CONFIG_CMA 2984 /* If allocation can't use CMA areas don't use free CMA pages */ 2985 if (!(alloc_flags & ALLOC_CMA)) 2986 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2987 #endif 2988 2989 /* 2990 * Check watermarks for an order-0 allocation request. If these 2991 * are not met, then a high-order request also cannot go ahead 2992 * even if a suitable page happened to be free. 2993 */ 2994 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2995 return false; 2996 2997 /* If this is an order-0 request then the watermark is fine */ 2998 if (!order) 2999 return true; 3000 3001 /* For a high-order request, check at least one suitable page is free */ 3002 for (o = order; o < MAX_ORDER; o++) { 3003 struct free_area *area = &z->free_area[o]; 3004 int mt; 3005 3006 if (!area->nr_free) 3007 continue; 3008 3009 if (alloc_harder) 3010 return true; 3011 3012 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3013 if (!list_empty(&area->free_list[mt])) 3014 return true; 3015 } 3016 3017 #ifdef CONFIG_CMA 3018 if ((alloc_flags & ALLOC_CMA) && 3019 !list_empty(&area->free_list[MIGRATE_CMA])) { 3020 return true; 3021 } 3022 #endif 3023 } 3024 return false; 3025 } 3026 3027 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3028 int classzone_idx, unsigned int alloc_flags) 3029 { 3030 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3031 zone_page_state(z, NR_FREE_PAGES)); 3032 } 3033 3034 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3035 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3036 { 3037 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3038 long cma_pages = 0; 3039 3040 #ifdef CONFIG_CMA 3041 /* If allocation can't use CMA areas don't use free CMA pages */ 3042 if (!(alloc_flags & ALLOC_CMA)) 3043 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3044 #endif 3045 3046 /* 3047 * Fast check for order-0 only. If this fails then the reserves 3048 * need to be calculated. There is a corner case where the check 3049 * passes but only the high-order atomic reserve are free. If 3050 * the caller is !atomic then it'll uselessly search the free 3051 * list. That corner case is then slower but it is harmless. 3052 */ 3053 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3054 return true; 3055 3056 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3057 free_pages); 3058 } 3059 3060 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3061 unsigned long mark, int classzone_idx) 3062 { 3063 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3064 3065 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3066 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3067 3068 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3069 free_pages); 3070 } 3071 3072 #ifdef CONFIG_NUMA 3073 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3074 { 3075 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3076 RECLAIM_DISTANCE; 3077 } 3078 #else /* CONFIG_NUMA */ 3079 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3080 { 3081 return true; 3082 } 3083 #endif /* CONFIG_NUMA */ 3084 3085 /* 3086 * get_page_from_freelist goes through the zonelist trying to allocate 3087 * a page. 3088 */ 3089 static struct page * 3090 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3091 const struct alloc_context *ac) 3092 { 3093 struct zoneref *z = ac->preferred_zoneref; 3094 struct zone *zone; 3095 struct pglist_data *last_pgdat_dirty_limit = NULL; 3096 3097 /* 3098 * Scan zonelist, looking for a zone with enough free. 3099 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3100 */ 3101 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3102 ac->nodemask) { 3103 struct page *page; 3104 unsigned long mark; 3105 3106 if (cpusets_enabled() && 3107 (alloc_flags & ALLOC_CPUSET) && 3108 !__cpuset_zone_allowed(zone, gfp_mask)) 3109 continue; 3110 /* 3111 * When allocating a page cache page for writing, we 3112 * want to get it from a node that is within its dirty 3113 * limit, such that no single node holds more than its 3114 * proportional share of globally allowed dirty pages. 3115 * The dirty limits take into account the node's 3116 * lowmem reserves and high watermark so that kswapd 3117 * should be able to balance it without having to 3118 * write pages from its LRU list. 3119 * 3120 * XXX: For now, allow allocations to potentially 3121 * exceed the per-node dirty limit in the slowpath 3122 * (spread_dirty_pages unset) before going into reclaim, 3123 * which is important when on a NUMA setup the allowed 3124 * nodes are together not big enough to reach the 3125 * global limit. The proper fix for these situations 3126 * will require awareness of nodes in the 3127 * dirty-throttling and the flusher threads. 3128 */ 3129 if (ac->spread_dirty_pages) { 3130 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3131 continue; 3132 3133 if (!node_dirty_ok(zone->zone_pgdat)) { 3134 last_pgdat_dirty_limit = zone->zone_pgdat; 3135 continue; 3136 } 3137 } 3138 3139 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3140 if (!zone_watermark_fast(zone, order, mark, 3141 ac_classzone_idx(ac), alloc_flags)) { 3142 int ret; 3143 3144 /* Checked here to keep the fast path fast */ 3145 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3146 if (alloc_flags & ALLOC_NO_WATERMARKS) 3147 goto try_this_zone; 3148 3149 if (node_reclaim_mode == 0 || 3150 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3151 continue; 3152 3153 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3154 switch (ret) { 3155 case NODE_RECLAIM_NOSCAN: 3156 /* did not scan */ 3157 continue; 3158 case NODE_RECLAIM_FULL: 3159 /* scanned but unreclaimable */ 3160 continue; 3161 default: 3162 /* did we reclaim enough */ 3163 if (zone_watermark_ok(zone, order, mark, 3164 ac_classzone_idx(ac), alloc_flags)) 3165 goto try_this_zone; 3166 3167 continue; 3168 } 3169 } 3170 3171 try_this_zone: 3172 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3173 gfp_mask, alloc_flags, ac->migratetype); 3174 if (page) { 3175 prep_new_page(page, order, gfp_mask, alloc_flags); 3176 3177 /* 3178 * If this is a high-order atomic allocation then check 3179 * if the pageblock should be reserved for the future 3180 */ 3181 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3182 reserve_highatomic_pageblock(page, zone, order); 3183 3184 return page; 3185 } 3186 } 3187 3188 return NULL; 3189 } 3190 3191 /* 3192 * Large machines with many possible nodes should not always dump per-node 3193 * meminfo in irq context. 3194 */ 3195 static inline bool should_suppress_show_mem(void) 3196 { 3197 bool ret = false; 3198 3199 #if NODES_SHIFT > 8 3200 ret = in_interrupt(); 3201 #endif 3202 return ret; 3203 } 3204 3205 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3206 { 3207 unsigned int filter = SHOW_MEM_FILTER_NODES; 3208 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3209 3210 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3211 return; 3212 3213 /* 3214 * This documents exceptions given to allocations in certain 3215 * contexts that are allowed to allocate outside current's set 3216 * of allowed nodes. 3217 */ 3218 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3219 if (tsk_is_oom_victim(current) || 3220 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3221 filter &= ~SHOW_MEM_FILTER_NODES; 3222 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3223 filter &= ~SHOW_MEM_FILTER_NODES; 3224 3225 show_mem(filter, nodemask); 3226 } 3227 3228 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3229 { 3230 struct va_format vaf; 3231 va_list args; 3232 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3233 DEFAULT_RATELIMIT_BURST); 3234 3235 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3236 return; 3237 3238 pr_warn("%s: ", current->comm); 3239 3240 va_start(args, fmt); 3241 vaf.fmt = fmt; 3242 vaf.va = &args; 3243 pr_cont("%pV", &vaf); 3244 va_end(args); 3245 3246 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask); 3247 if (nodemask) 3248 pr_cont("%*pbl\n", nodemask_pr_args(nodemask)); 3249 else 3250 pr_cont("(null)\n"); 3251 3252 cpuset_print_current_mems_allowed(); 3253 3254 dump_stack(); 3255 warn_alloc_show_mem(gfp_mask, nodemask); 3256 } 3257 3258 static inline struct page * 3259 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3260 unsigned int alloc_flags, 3261 const struct alloc_context *ac) 3262 { 3263 struct page *page; 3264 3265 page = get_page_from_freelist(gfp_mask, order, 3266 alloc_flags|ALLOC_CPUSET, ac); 3267 /* 3268 * fallback to ignore cpuset restriction if our nodes 3269 * are depleted 3270 */ 3271 if (!page) 3272 page = get_page_from_freelist(gfp_mask, order, 3273 alloc_flags, ac); 3274 3275 return page; 3276 } 3277 3278 static inline struct page * 3279 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3280 const struct alloc_context *ac, unsigned long *did_some_progress) 3281 { 3282 struct oom_control oc = { 3283 .zonelist = ac->zonelist, 3284 .nodemask = ac->nodemask, 3285 .memcg = NULL, 3286 .gfp_mask = gfp_mask, 3287 .order = order, 3288 }; 3289 struct page *page; 3290 3291 *did_some_progress = 0; 3292 3293 /* 3294 * Acquire the oom lock. If that fails, somebody else is 3295 * making progress for us. 3296 */ 3297 if (!mutex_trylock(&oom_lock)) { 3298 *did_some_progress = 1; 3299 schedule_timeout_uninterruptible(1); 3300 return NULL; 3301 } 3302 3303 /* 3304 * Go through the zonelist yet one more time, keep very high watermark 3305 * here, this is only to catch a parallel oom killing, we must fail if 3306 * we're still under heavy pressure. But make sure that this reclaim 3307 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3308 * allocation which will never fail due to oom_lock already held. 3309 */ 3310 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3311 ~__GFP_DIRECT_RECLAIM, order, 3312 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3313 if (page) 3314 goto out; 3315 3316 /* Coredumps can quickly deplete all memory reserves */ 3317 if (current->flags & PF_DUMPCORE) 3318 goto out; 3319 /* The OOM killer will not help higher order allocs */ 3320 if (order > PAGE_ALLOC_COSTLY_ORDER) 3321 goto out; 3322 /* 3323 * We have already exhausted all our reclaim opportunities without any 3324 * success so it is time to admit defeat. We will skip the OOM killer 3325 * because it is very likely that the caller has a more reasonable 3326 * fallback than shooting a random task. 3327 */ 3328 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3329 goto out; 3330 /* The OOM killer does not needlessly kill tasks for lowmem */ 3331 if (ac->high_zoneidx < ZONE_NORMAL) 3332 goto out; 3333 if (pm_suspended_storage()) 3334 goto out; 3335 /* 3336 * XXX: GFP_NOFS allocations should rather fail than rely on 3337 * other request to make a forward progress. 3338 * We are in an unfortunate situation where out_of_memory cannot 3339 * do much for this context but let's try it to at least get 3340 * access to memory reserved if the current task is killed (see 3341 * out_of_memory). Once filesystems are ready to handle allocation 3342 * failures more gracefully we should just bail out here. 3343 */ 3344 3345 /* The OOM killer may not free memory on a specific node */ 3346 if (gfp_mask & __GFP_THISNODE) 3347 goto out; 3348 3349 /* Exhausted what can be done so it's blamo time */ 3350 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3351 *did_some_progress = 1; 3352 3353 /* 3354 * Help non-failing allocations by giving them access to memory 3355 * reserves 3356 */ 3357 if (gfp_mask & __GFP_NOFAIL) 3358 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3359 ALLOC_NO_WATERMARKS, ac); 3360 } 3361 out: 3362 mutex_unlock(&oom_lock); 3363 return page; 3364 } 3365 3366 /* 3367 * Maximum number of compaction retries wit a progress before OOM 3368 * killer is consider as the only way to move forward. 3369 */ 3370 #define MAX_COMPACT_RETRIES 16 3371 3372 #ifdef CONFIG_COMPACTION 3373 /* Try memory compaction for high-order allocations before reclaim */ 3374 static struct page * 3375 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3376 unsigned int alloc_flags, const struct alloc_context *ac, 3377 enum compact_priority prio, enum compact_result *compact_result) 3378 { 3379 struct page *page; 3380 unsigned int noreclaim_flag; 3381 3382 if (!order) 3383 return NULL; 3384 3385 noreclaim_flag = memalloc_noreclaim_save(); 3386 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3387 prio); 3388 memalloc_noreclaim_restore(noreclaim_flag); 3389 3390 if (*compact_result <= COMPACT_INACTIVE) 3391 return NULL; 3392 3393 /* 3394 * At least in one zone compaction wasn't deferred or skipped, so let's 3395 * count a compaction stall 3396 */ 3397 count_vm_event(COMPACTSTALL); 3398 3399 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3400 3401 if (page) { 3402 struct zone *zone = page_zone(page); 3403 3404 zone->compact_blockskip_flush = false; 3405 compaction_defer_reset(zone, order, true); 3406 count_vm_event(COMPACTSUCCESS); 3407 return page; 3408 } 3409 3410 /* 3411 * It's bad if compaction run occurs and fails. The most likely reason 3412 * is that pages exist, but not enough to satisfy watermarks. 3413 */ 3414 count_vm_event(COMPACTFAIL); 3415 3416 cond_resched(); 3417 3418 return NULL; 3419 } 3420 3421 static inline bool 3422 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3423 enum compact_result compact_result, 3424 enum compact_priority *compact_priority, 3425 int *compaction_retries) 3426 { 3427 int max_retries = MAX_COMPACT_RETRIES; 3428 int min_priority; 3429 bool ret = false; 3430 int retries = *compaction_retries; 3431 enum compact_priority priority = *compact_priority; 3432 3433 if (!order) 3434 return false; 3435 3436 if (compaction_made_progress(compact_result)) 3437 (*compaction_retries)++; 3438 3439 /* 3440 * compaction considers all the zone as desperately out of memory 3441 * so it doesn't really make much sense to retry except when the 3442 * failure could be caused by insufficient priority 3443 */ 3444 if (compaction_failed(compact_result)) 3445 goto check_priority; 3446 3447 /* 3448 * make sure the compaction wasn't deferred or didn't bail out early 3449 * due to locks contention before we declare that we should give up. 3450 * But do not retry if the given zonelist is not suitable for 3451 * compaction. 3452 */ 3453 if (compaction_withdrawn(compact_result)) { 3454 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3455 goto out; 3456 } 3457 3458 /* 3459 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3460 * costly ones because they are de facto nofail and invoke OOM 3461 * killer to move on while costly can fail and users are ready 3462 * to cope with that. 1/4 retries is rather arbitrary but we 3463 * would need much more detailed feedback from compaction to 3464 * make a better decision. 3465 */ 3466 if (order > PAGE_ALLOC_COSTLY_ORDER) 3467 max_retries /= 4; 3468 if (*compaction_retries <= max_retries) { 3469 ret = true; 3470 goto out; 3471 } 3472 3473 /* 3474 * Make sure there are attempts at the highest priority if we exhausted 3475 * all retries or failed at the lower priorities. 3476 */ 3477 check_priority: 3478 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3479 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3480 3481 if (*compact_priority > min_priority) { 3482 (*compact_priority)--; 3483 *compaction_retries = 0; 3484 ret = true; 3485 } 3486 out: 3487 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3488 return ret; 3489 } 3490 #else 3491 static inline struct page * 3492 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3493 unsigned int alloc_flags, const struct alloc_context *ac, 3494 enum compact_priority prio, enum compact_result *compact_result) 3495 { 3496 *compact_result = COMPACT_SKIPPED; 3497 return NULL; 3498 } 3499 3500 static inline bool 3501 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3502 enum compact_result compact_result, 3503 enum compact_priority *compact_priority, 3504 int *compaction_retries) 3505 { 3506 struct zone *zone; 3507 struct zoneref *z; 3508 3509 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3510 return false; 3511 3512 /* 3513 * There are setups with compaction disabled which would prefer to loop 3514 * inside the allocator rather than hit the oom killer prematurely. 3515 * Let's give them a good hope and keep retrying while the order-0 3516 * watermarks are OK. 3517 */ 3518 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3519 ac->nodemask) { 3520 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3521 ac_classzone_idx(ac), alloc_flags)) 3522 return true; 3523 } 3524 return false; 3525 } 3526 #endif /* CONFIG_COMPACTION */ 3527 3528 #ifdef CONFIG_LOCKDEP 3529 struct lockdep_map __fs_reclaim_map = 3530 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3531 3532 static bool __need_fs_reclaim(gfp_t gfp_mask) 3533 { 3534 gfp_mask = current_gfp_context(gfp_mask); 3535 3536 /* no reclaim without waiting on it */ 3537 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3538 return false; 3539 3540 /* this guy won't enter reclaim */ 3541 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 3542 return false; 3543 3544 /* We're only interested __GFP_FS allocations for now */ 3545 if (!(gfp_mask & __GFP_FS)) 3546 return false; 3547 3548 if (gfp_mask & __GFP_NOLOCKDEP) 3549 return false; 3550 3551 return true; 3552 } 3553 3554 void fs_reclaim_acquire(gfp_t gfp_mask) 3555 { 3556 if (__need_fs_reclaim(gfp_mask)) 3557 lock_map_acquire(&__fs_reclaim_map); 3558 } 3559 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3560 3561 void fs_reclaim_release(gfp_t gfp_mask) 3562 { 3563 if (__need_fs_reclaim(gfp_mask)) 3564 lock_map_release(&__fs_reclaim_map); 3565 } 3566 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3567 #endif 3568 3569 /* Perform direct synchronous page reclaim */ 3570 static int 3571 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3572 const struct alloc_context *ac) 3573 { 3574 struct reclaim_state reclaim_state; 3575 int progress; 3576 unsigned int noreclaim_flag; 3577 3578 cond_resched(); 3579 3580 /* We now go into synchronous reclaim */ 3581 cpuset_memory_pressure_bump(); 3582 noreclaim_flag = memalloc_noreclaim_save(); 3583 fs_reclaim_acquire(gfp_mask); 3584 reclaim_state.reclaimed_slab = 0; 3585 current->reclaim_state = &reclaim_state; 3586 3587 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3588 ac->nodemask); 3589 3590 current->reclaim_state = NULL; 3591 fs_reclaim_release(gfp_mask); 3592 memalloc_noreclaim_restore(noreclaim_flag); 3593 3594 cond_resched(); 3595 3596 return progress; 3597 } 3598 3599 /* The really slow allocator path where we enter direct reclaim */ 3600 static inline struct page * 3601 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3602 unsigned int alloc_flags, const struct alloc_context *ac, 3603 unsigned long *did_some_progress) 3604 { 3605 struct page *page = NULL; 3606 bool drained = false; 3607 3608 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3609 if (unlikely(!(*did_some_progress))) 3610 return NULL; 3611 3612 retry: 3613 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3614 3615 /* 3616 * If an allocation failed after direct reclaim, it could be because 3617 * pages are pinned on the per-cpu lists or in high alloc reserves. 3618 * Shrink them them and try again 3619 */ 3620 if (!page && !drained) { 3621 unreserve_highatomic_pageblock(ac, false); 3622 drain_all_pages(NULL); 3623 drained = true; 3624 goto retry; 3625 } 3626 3627 return page; 3628 } 3629 3630 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3631 { 3632 struct zoneref *z; 3633 struct zone *zone; 3634 pg_data_t *last_pgdat = NULL; 3635 3636 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3637 ac->high_zoneidx, ac->nodemask) { 3638 if (last_pgdat != zone->zone_pgdat) 3639 wakeup_kswapd(zone, order, ac->high_zoneidx); 3640 last_pgdat = zone->zone_pgdat; 3641 } 3642 } 3643 3644 static inline unsigned int 3645 gfp_to_alloc_flags(gfp_t gfp_mask) 3646 { 3647 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3648 3649 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3650 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3651 3652 /* 3653 * The caller may dip into page reserves a bit more if the caller 3654 * cannot run direct reclaim, or if the caller has realtime scheduling 3655 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3656 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3657 */ 3658 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3659 3660 if (gfp_mask & __GFP_ATOMIC) { 3661 /* 3662 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3663 * if it can't schedule. 3664 */ 3665 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3666 alloc_flags |= ALLOC_HARDER; 3667 /* 3668 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3669 * comment for __cpuset_node_allowed(). 3670 */ 3671 alloc_flags &= ~ALLOC_CPUSET; 3672 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3673 alloc_flags |= ALLOC_HARDER; 3674 3675 #ifdef CONFIG_CMA 3676 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3677 alloc_flags |= ALLOC_CMA; 3678 #endif 3679 return alloc_flags; 3680 } 3681 3682 static bool oom_reserves_allowed(struct task_struct *tsk) 3683 { 3684 if (!tsk_is_oom_victim(tsk)) 3685 return false; 3686 3687 /* 3688 * !MMU doesn't have oom reaper so give access to memory reserves 3689 * only to the thread with TIF_MEMDIE set 3690 */ 3691 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3692 return false; 3693 3694 return true; 3695 } 3696 3697 /* 3698 * Distinguish requests which really need access to full memory 3699 * reserves from oom victims which can live with a portion of it 3700 */ 3701 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3702 { 3703 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3704 return 0; 3705 if (gfp_mask & __GFP_MEMALLOC) 3706 return ALLOC_NO_WATERMARKS; 3707 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3708 return ALLOC_NO_WATERMARKS; 3709 if (!in_interrupt()) { 3710 if (current->flags & PF_MEMALLOC) 3711 return ALLOC_NO_WATERMARKS; 3712 else if (oom_reserves_allowed(current)) 3713 return ALLOC_OOM; 3714 } 3715 3716 return 0; 3717 } 3718 3719 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3720 { 3721 return !!__gfp_pfmemalloc_flags(gfp_mask); 3722 } 3723 3724 /* 3725 * Checks whether it makes sense to retry the reclaim to make a forward progress 3726 * for the given allocation request. 3727 * 3728 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3729 * without success, or when we couldn't even meet the watermark if we 3730 * reclaimed all remaining pages on the LRU lists. 3731 * 3732 * Returns true if a retry is viable or false to enter the oom path. 3733 */ 3734 static inline bool 3735 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3736 struct alloc_context *ac, int alloc_flags, 3737 bool did_some_progress, int *no_progress_loops) 3738 { 3739 struct zone *zone; 3740 struct zoneref *z; 3741 3742 /* 3743 * Costly allocations might have made a progress but this doesn't mean 3744 * their order will become available due to high fragmentation so 3745 * always increment the no progress counter for them 3746 */ 3747 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3748 *no_progress_loops = 0; 3749 else 3750 (*no_progress_loops)++; 3751 3752 /* 3753 * Make sure we converge to OOM if we cannot make any progress 3754 * several times in the row. 3755 */ 3756 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3757 /* Before OOM, exhaust highatomic_reserve */ 3758 return unreserve_highatomic_pageblock(ac, true); 3759 } 3760 3761 /* 3762 * Keep reclaiming pages while there is a chance this will lead 3763 * somewhere. If none of the target zones can satisfy our allocation 3764 * request even if all reclaimable pages are considered then we are 3765 * screwed and have to go OOM. 3766 */ 3767 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3768 ac->nodemask) { 3769 unsigned long available; 3770 unsigned long reclaimable; 3771 unsigned long min_wmark = min_wmark_pages(zone); 3772 bool wmark; 3773 3774 available = reclaimable = zone_reclaimable_pages(zone); 3775 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3776 3777 /* 3778 * Would the allocation succeed if we reclaimed all 3779 * reclaimable pages? 3780 */ 3781 wmark = __zone_watermark_ok(zone, order, min_wmark, 3782 ac_classzone_idx(ac), alloc_flags, available); 3783 trace_reclaim_retry_zone(z, order, reclaimable, 3784 available, min_wmark, *no_progress_loops, wmark); 3785 if (wmark) { 3786 /* 3787 * If we didn't make any progress and have a lot of 3788 * dirty + writeback pages then we should wait for 3789 * an IO to complete to slow down the reclaim and 3790 * prevent from pre mature OOM 3791 */ 3792 if (!did_some_progress) { 3793 unsigned long write_pending; 3794 3795 write_pending = zone_page_state_snapshot(zone, 3796 NR_ZONE_WRITE_PENDING); 3797 3798 if (2 * write_pending > reclaimable) { 3799 congestion_wait(BLK_RW_ASYNC, HZ/10); 3800 return true; 3801 } 3802 } 3803 3804 /* 3805 * Memory allocation/reclaim might be called from a WQ 3806 * context and the current implementation of the WQ 3807 * concurrency control doesn't recognize that 3808 * a particular WQ is congested if the worker thread is 3809 * looping without ever sleeping. Therefore we have to 3810 * do a short sleep here rather than calling 3811 * cond_resched(). 3812 */ 3813 if (current->flags & PF_WQ_WORKER) 3814 schedule_timeout_uninterruptible(1); 3815 else 3816 cond_resched(); 3817 3818 return true; 3819 } 3820 } 3821 3822 return false; 3823 } 3824 3825 static inline bool 3826 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3827 { 3828 /* 3829 * It's possible that cpuset's mems_allowed and the nodemask from 3830 * mempolicy don't intersect. This should be normally dealt with by 3831 * policy_nodemask(), but it's possible to race with cpuset update in 3832 * such a way the check therein was true, and then it became false 3833 * before we got our cpuset_mems_cookie here. 3834 * This assumes that for all allocations, ac->nodemask can come only 3835 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3836 * when it does not intersect with the cpuset restrictions) or the 3837 * caller can deal with a violated nodemask. 3838 */ 3839 if (cpusets_enabled() && ac->nodemask && 3840 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3841 ac->nodemask = NULL; 3842 return true; 3843 } 3844 3845 /* 3846 * When updating a task's mems_allowed or mempolicy nodemask, it is 3847 * possible to race with parallel threads in such a way that our 3848 * allocation can fail while the mask is being updated. If we are about 3849 * to fail, check if the cpuset changed during allocation and if so, 3850 * retry. 3851 */ 3852 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3853 return true; 3854 3855 return false; 3856 } 3857 3858 static inline struct page * 3859 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3860 struct alloc_context *ac) 3861 { 3862 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3863 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3864 struct page *page = NULL; 3865 unsigned int alloc_flags; 3866 unsigned long did_some_progress; 3867 enum compact_priority compact_priority; 3868 enum compact_result compact_result; 3869 int compaction_retries; 3870 int no_progress_loops; 3871 unsigned long alloc_start = jiffies; 3872 unsigned int stall_timeout = 10 * HZ; 3873 unsigned int cpuset_mems_cookie; 3874 int reserve_flags; 3875 3876 /* 3877 * In the slowpath, we sanity check order to avoid ever trying to 3878 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3879 * be using allocators in order of preference for an area that is 3880 * too large. 3881 */ 3882 if (order >= MAX_ORDER) { 3883 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3884 return NULL; 3885 } 3886 3887 /* 3888 * We also sanity check to catch abuse of atomic reserves being used by 3889 * callers that are not in atomic context. 3890 */ 3891 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3892 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3893 gfp_mask &= ~__GFP_ATOMIC; 3894 3895 retry_cpuset: 3896 compaction_retries = 0; 3897 no_progress_loops = 0; 3898 compact_priority = DEF_COMPACT_PRIORITY; 3899 cpuset_mems_cookie = read_mems_allowed_begin(); 3900 3901 /* 3902 * The fast path uses conservative alloc_flags to succeed only until 3903 * kswapd needs to be woken up, and to avoid the cost of setting up 3904 * alloc_flags precisely. So we do that now. 3905 */ 3906 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3907 3908 /* 3909 * We need to recalculate the starting point for the zonelist iterator 3910 * because we might have used different nodemask in the fast path, or 3911 * there was a cpuset modification and we are retrying - otherwise we 3912 * could end up iterating over non-eligible zones endlessly. 3913 */ 3914 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3915 ac->high_zoneidx, ac->nodemask); 3916 if (!ac->preferred_zoneref->zone) 3917 goto nopage; 3918 3919 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3920 wake_all_kswapds(order, ac); 3921 3922 /* 3923 * The adjusted alloc_flags might result in immediate success, so try 3924 * that first 3925 */ 3926 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3927 if (page) 3928 goto got_pg; 3929 3930 /* 3931 * For costly allocations, try direct compaction first, as it's likely 3932 * that we have enough base pages and don't need to reclaim. For non- 3933 * movable high-order allocations, do that as well, as compaction will 3934 * try prevent permanent fragmentation by migrating from blocks of the 3935 * same migratetype. 3936 * Don't try this for allocations that are allowed to ignore 3937 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3938 */ 3939 if (can_direct_reclaim && 3940 (costly_order || 3941 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3942 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3943 page = __alloc_pages_direct_compact(gfp_mask, order, 3944 alloc_flags, ac, 3945 INIT_COMPACT_PRIORITY, 3946 &compact_result); 3947 if (page) 3948 goto got_pg; 3949 3950 /* 3951 * Checks for costly allocations with __GFP_NORETRY, which 3952 * includes THP page fault allocations 3953 */ 3954 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 3955 /* 3956 * If compaction is deferred for high-order allocations, 3957 * it is because sync compaction recently failed. If 3958 * this is the case and the caller requested a THP 3959 * allocation, we do not want to heavily disrupt the 3960 * system, so we fail the allocation instead of entering 3961 * direct reclaim. 3962 */ 3963 if (compact_result == COMPACT_DEFERRED) 3964 goto nopage; 3965 3966 /* 3967 * Looks like reclaim/compaction is worth trying, but 3968 * sync compaction could be very expensive, so keep 3969 * using async compaction. 3970 */ 3971 compact_priority = INIT_COMPACT_PRIORITY; 3972 } 3973 } 3974 3975 retry: 3976 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3977 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3978 wake_all_kswapds(order, ac); 3979 3980 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 3981 if (reserve_flags) 3982 alloc_flags = reserve_flags; 3983 3984 /* 3985 * Reset the zonelist iterators if memory policies can be ignored. 3986 * These allocations are high priority and system rather than user 3987 * orientated. 3988 */ 3989 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 3990 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3991 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3992 ac->high_zoneidx, ac->nodemask); 3993 } 3994 3995 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3996 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3997 if (page) 3998 goto got_pg; 3999 4000 /* Caller is not willing to reclaim, we can't balance anything */ 4001 if (!can_direct_reclaim) 4002 goto nopage; 4003 4004 /* Make sure we know about allocations which stall for too long */ 4005 if (time_after(jiffies, alloc_start + stall_timeout)) { 4006 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask, 4007 "page allocation stalls for %ums, order:%u", 4008 jiffies_to_msecs(jiffies-alloc_start), order); 4009 stall_timeout += 10 * HZ; 4010 } 4011 4012 /* Avoid recursion of direct reclaim */ 4013 if (current->flags & PF_MEMALLOC) 4014 goto nopage; 4015 4016 /* Try direct reclaim and then allocating */ 4017 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4018 &did_some_progress); 4019 if (page) 4020 goto got_pg; 4021 4022 /* Try direct compaction and then allocating */ 4023 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4024 compact_priority, &compact_result); 4025 if (page) 4026 goto got_pg; 4027 4028 /* Do not loop if specifically requested */ 4029 if (gfp_mask & __GFP_NORETRY) 4030 goto nopage; 4031 4032 /* 4033 * Do not retry costly high order allocations unless they are 4034 * __GFP_RETRY_MAYFAIL 4035 */ 4036 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4037 goto nopage; 4038 4039 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4040 did_some_progress > 0, &no_progress_loops)) 4041 goto retry; 4042 4043 /* 4044 * It doesn't make any sense to retry for the compaction if the order-0 4045 * reclaim is not able to make any progress because the current 4046 * implementation of the compaction depends on the sufficient amount 4047 * of free memory (see __compaction_suitable) 4048 */ 4049 if (did_some_progress > 0 && 4050 should_compact_retry(ac, order, alloc_flags, 4051 compact_result, &compact_priority, 4052 &compaction_retries)) 4053 goto retry; 4054 4055 4056 /* Deal with possible cpuset update races before we start OOM killing */ 4057 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4058 goto retry_cpuset; 4059 4060 /* Reclaim has failed us, start killing things */ 4061 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4062 if (page) 4063 goto got_pg; 4064 4065 /* Avoid allocations with no watermarks from looping endlessly */ 4066 if (tsk_is_oom_victim(current) && 4067 (alloc_flags == ALLOC_OOM || 4068 (gfp_mask & __GFP_NOMEMALLOC))) 4069 goto nopage; 4070 4071 /* Retry as long as the OOM killer is making progress */ 4072 if (did_some_progress) { 4073 no_progress_loops = 0; 4074 goto retry; 4075 } 4076 4077 nopage: 4078 /* Deal with possible cpuset update races before we fail */ 4079 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4080 goto retry_cpuset; 4081 4082 /* 4083 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4084 * we always retry 4085 */ 4086 if (gfp_mask & __GFP_NOFAIL) { 4087 /* 4088 * All existing users of the __GFP_NOFAIL are blockable, so warn 4089 * of any new users that actually require GFP_NOWAIT 4090 */ 4091 if (WARN_ON_ONCE(!can_direct_reclaim)) 4092 goto fail; 4093 4094 /* 4095 * PF_MEMALLOC request from this context is rather bizarre 4096 * because we cannot reclaim anything and only can loop waiting 4097 * for somebody to do a work for us 4098 */ 4099 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4100 4101 /* 4102 * non failing costly orders are a hard requirement which we 4103 * are not prepared for much so let's warn about these users 4104 * so that we can identify them and convert them to something 4105 * else. 4106 */ 4107 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4108 4109 /* 4110 * Help non-failing allocations by giving them access to memory 4111 * reserves but do not use ALLOC_NO_WATERMARKS because this 4112 * could deplete whole memory reserves which would just make 4113 * the situation worse 4114 */ 4115 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4116 if (page) 4117 goto got_pg; 4118 4119 cond_resched(); 4120 goto retry; 4121 } 4122 fail: 4123 warn_alloc(gfp_mask, ac->nodemask, 4124 "page allocation failure: order:%u", order); 4125 got_pg: 4126 return page; 4127 } 4128 4129 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4130 int preferred_nid, nodemask_t *nodemask, 4131 struct alloc_context *ac, gfp_t *alloc_mask, 4132 unsigned int *alloc_flags) 4133 { 4134 ac->high_zoneidx = gfp_zone(gfp_mask); 4135 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4136 ac->nodemask = nodemask; 4137 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4138 4139 if (cpusets_enabled()) { 4140 *alloc_mask |= __GFP_HARDWALL; 4141 if (!ac->nodemask) 4142 ac->nodemask = &cpuset_current_mems_allowed; 4143 else 4144 *alloc_flags |= ALLOC_CPUSET; 4145 } 4146 4147 fs_reclaim_acquire(gfp_mask); 4148 fs_reclaim_release(gfp_mask); 4149 4150 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4151 4152 if (should_fail_alloc_page(gfp_mask, order)) 4153 return false; 4154 4155 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4156 *alloc_flags |= ALLOC_CMA; 4157 4158 return true; 4159 } 4160 4161 /* Determine whether to spread dirty pages and what the first usable zone */ 4162 static inline void finalise_ac(gfp_t gfp_mask, 4163 unsigned int order, struct alloc_context *ac) 4164 { 4165 /* Dirty zone balancing only done in the fast path */ 4166 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4167 4168 /* 4169 * The preferred zone is used for statistics but crucially it is 4170 * also used as the starting point for the zonelist iterator. It 4171 * may get reset for allocations that ignore memory policies. 4172 */ 4173 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4174 ac->high_zoneidx, ac->nodemask); 4175 } 4176 4177 /* 4178 * This is the 'heart' of the zoned buddy allocator. 4179 */ 4180 struct page * 4181 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4182 nodemask_t *nodemask) 4183 { 4184 struct page *page; 4185 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4186 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4187 struct alloc_context ac = { }; 4188 4189 gfp_mask &= gfp_allowed_mask; 4190 alloc_mask = gfp_mask; 4191 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4192 return NULL; 4193 4194 finalise_ac(gfp_mask, order, &ac); 4195 4196 /* First allocation attempt */ 4197 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4198 if (likely(page)) 4199 goto out; 4200 4201 /* 4202 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4203 * resp. GFP_NOIO which has to be inherited for all allocation requests 4204 * from a particular context which has been marked by 4205 * memalloc_no{fs,io}_{save,restore}. 4206 */ 4207 alloc_mask = current_gfp_context(gfp_mask); 4208 ac.spread_dirty_pages = false; 4209 4210 /* 4211 * Restore the original nodemask if it was potentially replaced with 4212 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4213 */ 4214 if (unlikely(ac.nodemask != nodemask)) 4215 ac.nodemask = nodemask; 4216 4217 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4218 4219 out: 4220 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4221 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4222 __free_pages(page, order); 4223 page = NULL; 4224 } 4225 4226 if (kmemcheck_enabled && page) 4227 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 4228 4229 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4230 4231 return page; 4232 } 4233 EXPORT_SYMBOL(__alloc_pages_nodemask); 4234 4235 /* 4236 * Common helper functions. 4237 */ 4238 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4239 { 4240 struct page *page; 4241 4242 /* 4243 * __get_free_pages() returns a 32-bit address, which cannot represent 4244 * a highmem page 4245 */ 4246 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4247 4248 page = alloc_pages(gfp_mask, order); 4249 if (!page) 4250 return 0; 4251 return (unsigned long) page_address(page); 4252 } 4253 EXPORT_SYMBOL(__get_free_pages); 4254 4255 unsigned long get_zeroed_page(gfp_t gfp_mask) 4256 { 4257 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4258 } 4259 EXPORT_SYMBOL(get_zeroed_page); 4260 4261 void __free_pages(struct page *page, unsigned int order) 4262 { 4263 if (put_page_testzero(page)) { 4264 if (order == 0) 4265 free_hot_cold_page(page, false); 4266 else 4267 __free_pages_ok(page, order); 4268 } 4269 } 4270 4271 EXPORT_SYMBOL(__free_pages); 4272 4273 void free_pages(unsigned long addr, unsigned int order) 4274 { 4275 if (addr != 0) { 4276 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4277 __free_pages(virt_to_page((void *)addr), order); 4278 } 4279 } 4280 4281 EXPORT_SYMBOL(free_pages); 4282 4283 /* 4284 * Page Fragment: 4285 * An arbitrary-length arbitrary-offset area of memory which resides 4286 * within a 0 or higher order page. Multiple fragments within that page 4287 * are individually refcounted, in the page's reference counter. 4288 * 4289 * The page_frag functions below provide a simple allocation framework for 4290 * page fragments. This is used by the network stack and network device 4291 * drivers to provide a backing region of memory for use as either an 4292 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4293 */ 4294 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4295 gfp_t gfp_mask) 4296 { 4297 struct page *page = NULL; 4298 gfp_t gfp = gfp_mask; 4299 4300 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4301 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4302 __GFP_NOMEMALLOC; 4303 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4304 PAGE_FRAG_CACHE_MAX_ORDER); 4305 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4306 #endif 4307 if (unlikely(!page)) 4308 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4309 4310 nc->va = page ? page_address(page) : NULL; 4311 4312 return page; 4313 } 4314 4315 void __page_frag_cache_drain(struct page *page, unsigned int count) 4316 { 4317 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4318 4319 if (page_ref_sub_and_test(page, count)) { 4320 unsigned int order = compound_order(page); 4321 4322 if (order == 0) 4323 free_hot_cold_page(page, false); 4324 else 4325 __free_pages_ok(page, order); 4326 } 4327 } 4328 EXPORT_SYMBOL(__page_frag_cache_drain); 4329 4330 void *page_frag_alloc(struct page_frag_cache *nc, 4331 unsigned int fragsz, gfp_t gfp_mask) 4332 { 4333 unsigned int size = PAGE_SIZE; 4334 struct page *page; 4335 int offset; 4336 4337 if (unlikely(!nc->va)) { 4338 refill: 4339 page = __page_frag_cache_refill(nc, gfp_mask); 4340 if (!page) 4341 return NULL; 4342 4343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4344 /* if size can vary use size else just use PAGE_SIZE */ 4345 size = nc->size; 4346 #endif 4347 /* Even if we own the page, we do not use atomic_set(). 4348 * This would break get_page_unless_zero() users. 4349 */ 4350 page_ref_add(page, size - 1); 4351 4352 /* reset page count bias and offset to start of new frag */ 4353 nc->pfmemalloc = page_is_pfmemalloc(page); 4354 nc->pagecnt_bias = size; 4355 nc->offset = size; 4356 } 4357 4358 offset = nc->offset - fragsz; 4359 if (unlikely(offset < 0)) { 4360 page = virt_to_page(nc->va); 4361 4362 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4363 goto refill; 4364 4365 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4366 /* if size can vary use size else just use PAGE_SIZE */ 4367 size = nc->size; 4368 #endif 4369 /* OK, page count is 0, we can safely set it */ 4370 set_page_count(page, size); 4371 4372 /* reset page count bias and offset to start of new frag */ 4373 nc->pagecnt_bias = size; 4374 offset = size - fragsz; 4375 } 4376 4377 nc->pagecnt_bias--; 4378 nc->offset = offset; 4379 4380 return nc->va + offset; 4381 } 4382 EXPORT_SYMBOL(page_frag_alloc); 4383 4384 /* 4385 * Frees a page fragment allocated out of either a compound or order 0 page. 4386 */ 4387 void page_frag_free(void *addr) 4388 { 4389 struct page *page = virt_to_head_page(addr); 4390 4391 if (unlikely(put_page_testzero(page))) 4392 __free_pages_ok(page, compound_order(page)); 4393 } 4394 EXPORT_SYMBOL(page_frag_free); 4395 4396 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4397 size_t size) 4398 { 4399 if (addr) { 4400 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4401 unsigned long used = addr + PAGE_ALIGN(size); 4402 4403 split_page(virt_to_page((void *)addr), order); 4404 while (used < alloc_end) { 4405 free_page(used); 4406 used += PAGE_SIZE; 4407 } 4408 } 4409 return (void *)addr; 4410 } 4411 4412 /** 4413 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4414 * @size: the number of bytes to allocate 4415 * @gfp_mask: GFP flags for the allocation 4416 * 4417 * This function is similar to alloc_pages(), except that it allocates the 4418 * minimum number of pages to satisfy the request. alloc_pages() can only 4419 * allocate memory in power-of-two pages. 4420 * 4421 * This function is also limited by MAX_ORDER. 4422 * 4423 * Memory allocated by this function must be released by free_pages_exact(). 4424 */ 4425 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4426 { 4427 unsigned int order = get_order(size); 4428 unsigned long addr; 4429 4430 addr = __get_free_pages(gfp_mask, order); 4431 return make_alloc_exact(addr, order, size); 4432 } 4433 EXPORT_SYMBOL(alloc_pages_exact); 4434 4435 /** 4436 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4437 * pages on a node. 4438 * @nid: the preferred node ID where memory should be allocated 4439 * @size: the number of bytes to allocate 4440 * @gfp_mask: GFP flags for the allocation 4441 * 4442 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4443 * back. 4444 */ 4445 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4446 { 4447 unsigned int order = get_order(size); 4448 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4449 if (!p) 4450 return NULL; 4451 return make_alloc_exact((unsigned long)page_address(p), order, size); 4452 } 4453 4454 /** 4455 * free_pages_exact - release memory allocated via alloc_pages_exact() 4456 * @virt: the value returned by alloc_pages_exact. 4457 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4458 * 4459 * Release the memory allocated by a previous call to alloc_pages_exact. 4460 */ 4461 void free_pages_exact(void *virt, size_t size) 4462 { 4463 unsigned long addr = (unsigned long)virt; 4464 unsigned long end = addr + PAGE_ALIGN(size); 4465 4466 while (addr < end) { 4467 free_page(addr); 4468 addr += PAGE_SIZE; 4469 } 4470 } 4471 EXPORT_SYMBOL(free_pages_exact); 4472 4473 /** 4474 * nr_free_zone_pages - count number of pages beyond high watermark 4475 * @offset: The zone index of the highest zone 4476 * 4477 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4478 * high watermark within all zones at or below a given zone index. For each 4479 * zone, the number of pages is calculated as: 4480 * 4481 * nr_free_zone_pages = managed_pages - high_pages 4482 */ 4483 static unsigned long nr_free_zone_pages(int offset) 4484 { 4485 struct zoneref *z; 4486 struct zone *zone; 4487 4488 /* Just pick one node, since fallback list is circular */ 4489 unsigned long sum = 0; 4490 4491 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4492 4493 for_each_zone_zonelist(zone, z, zonelist, offset) { 4494 unsigned long size = zone->managed_pages; 4495 unsigned long high = high_wmark_pages(zone); 4496 if (size > high) 4497 sum += size - high; 4498 } 4499 4500 return sum; 4501 } 4502 4503 /** 4504 * nr_free_buffer_pages - count number of pages beyond high watermark 4505 * 4506 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4507 * watermark within ZONE_DMA and ZONE_NORMAL. 4508 */ 4509 unsigned long nr_free_buffer_pages(void) 4510 { 4511 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4512 } 4513 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4514 4515 /** 4516 * nr_free_pagecache_pages - count number of pages beyond high watermark 4517 * 4518 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4519 * high watermark within all zones. 4520 */ 4521 unsigned long nr_free_pagecache_pages(void) 4522 { 4523 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4524 } 4525 4526 static inline void show_node(struct zone *zone) 4527 { 4528 if (IS_ENABLED(CONFIG_NUMA)) 4529 printk("Node %d ", zone_to_nid(zone)); 4530 } 4531 4532 long si_mem_available(void) 4533 { 4534 long available; 4535 unsigned long pagecache; 4536 unsigned long wmark_low = 0; 4537 unsigned long pages[NR_LRU_LISTS]; 4538 struct zone *zone; 4539 int lru; 4540 4541 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4542 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4543 4544 for_each_zone(zone) 4545 wmark_low += zone->watermark[WMARK_LOW]; 4546 4547 /* 4548 * Estimate the amount of memory available for userspace allocations, 4549 * without causing swapping. 4550 */ 4551 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4552 4553 /* 4554 * Not all the page cache can be freed, otherwise the system will 4555 * start swapping. Assume at least half of the page cache, or the 4556 * low watermark worth of cache, needs to stay. 4557 */ 4558 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4559 pagecache -= min(pagecache / 2, wmark_low); 4560 available += pagecache; 4561 4562 /* 4563 * Part of the reclaimable slab consists of items that are in use, 4564 * and cannot be freed. Cap this estimate at the low watermark. 4565 */ 4566 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4567 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4568 wmark_low); 4569 4570 if (available < 0) 4571 available = 0; 4572 return available; 4573 } 4574 EXPORT_SYMBOL_GPL(si_mem_available); 4575 4576 void si_meminfo(struct sysinfo *val) 4577 { 4578 val->totalram = totalram_pages; 4579 val->sharedram = global_node_page_state(NR_SHMEM); 4580 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4581 val->bufferram = nr_blockdev_pages(); 4582 val->totalhigh = totalhigh_pages; 4583 val->freehigh = nr_free_highpages(); 4584 val->mem_unit = PAGE_SIZE; 4585 } 4586 4587 EXPORT_SYMBOL(si_meminfo); 4588 4589 #ifdef CONFIG_NUMA 4590 void si_meminfo_node(struct sysinfo *val, int nid) 4591 { 4592 int zone_type; /* needs to be signed */ 4593 unsigned long managed_pages = 0; 4594 unsigned long managed_highpages = 0; 4595 unsigned long free_highpages = 0; 4596 pg_data_t *pgdat = NODE_DATA(nid); 4597 4598 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4599 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4600 val->totalram = managed_pages; 4601 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4602 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4603 #ifdef CONFIG_HIGHMEM 4604 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4605 struct zone *zone = &pgdat->node_zones[zone_type]; 4606 4607 if (is_highmem(zone)) { 4608 managed_highpages += zone->managed_pages; 4609 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4610 } 4611 } 4612 val->totalhigh = managed_highpages; 4613 val->freehigh = free_highpages; 4614 #else 4615 val->totalhigh = managed_highpages; 4616 val->freehigh = free_highpages; 4617 #endif 4618 val->mem_unit = PAGE_SIZE; 4619 } 4620 #endif 4621 4622 /* 4623 * Determine whether the node should be displayed or not, depending on whether 4624 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4625 */ 4626 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4627 { 4628 if (!(flags & SHOW_MEM_FILTER_NODES)) 4629 return false; 4630 4631 /* 4632 * no node mask - aka implicit memory numa policy. Do not bother with 4633 * the synchronization - read_mems_allowed_begin - because we do not 4634 * have to be precise here. 4635 */ 4636 if (!nodemask) 4637 nodemask = &cpuset_current_mems_allowed; 4638 4639 return !node_isset(nid, *nodemask); 4640 } 4641 4642 #define K(x) ((x) << (PAGE_SHIFT-10)) 4643 4644 static void show_migration_types(unsigned char type) 4645 { 4646 static const char types[MIGRATE_TYPES] = { 4647 [MIGRATE_UNMOVABLE] = 'U', 4648 [MIGRATE_MOVABLE] = 'M', 4649 [MIGRATE_RECLAIMABLE] = 'E', 4650 [MIGRATE_HIGHATOMIC] = 'H', 4651 #ifdef CONFIG_CMA 4652 [MIGRATE_CMA] = 'C', 4653 #endif 4654 #ifdef CONFIG_MEMORY_ISOLATION 4655 [MIGRATE_ISOLATE] = 'I', 4656 #endif 4657 }; 4658 char tmp[MIGRATE_TYPES + 1]; 4659 char *p = tmp; 4660 int i; 4661 4662 for (i = 0; i < MIGRATE_TYPES; i++) { 4663 if (type & (1 << i)) 4664 *p++ = types[i]; 4665 } 4666 4667 *p = '\0'; 4668 printk(KERN_CONT "(%s) ", tmp); 4669 } 4670 4671 /* 4672 * Show free area list (used inside shift_scroll-lock stuff) 4673 * We also calculate the percentage fragmentation. We do this by counting the 4674 * memory on each free list with the exception of the first item on the list. 4675 * 4676 * Bits in @filter: 4677 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4678 * cpuset. 4679 */ 4680 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4681 { 4682 unsigned long free_pcp = 0; 4683 int cpu; 4684 struct zone *zone; 4685 pg_data_t *pgdat; 4686 4687 for_each_populated_zone(zone) { 4688 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4689 continue; 4690 4691 for_each_online_cpu(cpu) 4692 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4693 } 4694 4695 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4696 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4697 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4698 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4699 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4700 " free:%lu free_pcp:%lu free_cma:%lu\n", 4701 global_node_page_state(NR_ACTIVE_ANON), 4702 global_node_page_state(NR_INACTIVE_ANON), 4703 global_node_page_state(NR_ISOLATED_ANON), 4704 global_node_page_state(NR_ACTIVE_FILE), 4705 global_node_page_state(NR_INACTIVE_FILE), 4706 global_node_page_state(NR_ISOLATED_FILE), 4707 global_node_page_state(NR_UNEVICTABLE), 4708 global_node_page_state(NR_FILE_DIRTY), 4709 global_node_page_state(NR_WRITEBACK), 4710 global_node_page_state(NR_UNSTABLE_NFS), 4711 global_node_page_state(NR_SLAB_RECLAIMABLE), 4712 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4713 global_node_page_state(NR_FILE_MAPPED), 4714 global_node_page_state(NR_SHMEM), 4715 global_zone_page_state(NR_PAGETABLE), 4716 global_zone_page_state(NR_BOUNCE), 4717 global_zone_page_state(NR_FREE_PAGES), 4718 free_pcp, 4719 global_zone_page_state(NR_FREE_CMA_PAGES)); 4720 4721 for_each_online_pgdat(pgdat) { 4722 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4723 continue; 4724 4725 printk("Node %d" 4726 " active_anon:%lukB" 4727 " inactive_anon:%lukB" 4728 " active_file:%lukB" 4729 " inactive_file:%lukB" 4730 " unevictable:%lukB" 4731 " isolated(anon):%lukB" 4732 " isolated(file):%lukB" 4733 " mapped:%lukB" 4734 " dirty:%lukB" 4735 " writeback:%lukB" 4736 " shmem:%lukB" 4737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4738 " shmem_thp: %lukB" 4739 " shmem_pmdmapped: %lukB" 4740 " anon_thp: %lukB" 4741 #endif 4742 " writeback_tmp:%lukB" 4743 " unstable:%lukB" 4744 " all_unreclaimable? %s" 4745 "\n", 4746 pgdat->node_id, 4747 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4748 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4749 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4750 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4751 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4752 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4753 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4754 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4755 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4756 K(node_page_state(pgdat, NR_WRITEBACK)), 4757 K(node_page_state(pgdat, NR_SHMEM)), 4758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4759 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4760 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4761 * HPAGE_PMD_NR), 4762 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4763 #endif 4764 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4765 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4766 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4767 "yes" : "no"); 4768 } 4769 4770 for_each_populated_zone(zone) { 4771 int i; 4772 4773 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4774 continue; 4775 4776 free_pcp = 0; 4777 for_each_online_cpu(cpu) 4778 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4779 4780 show_node(zone); 4781 printk(KERN_CONT 4782 "%s" 4783 " free:%lukB" 4784 " min:%lukB" 4785 " low:%lukB" 4786 " high:%lukB" 4787 " active_anon:%lukB" 4788 " inactive_anon:%lukB" 4789 " active_file:%lukB" 4790 " inactive_file:%lukB" 4791 " unevictable:%lukB" 4792 " writepending:%lukB" 4793 " present:%lukB" 4794 " managed:%lukB" 4795 " mlocked:%lukB" 4796 " kernel_stack:%lukB" 4797 " pagetables:%lukB" 4798 " bounce:%lukB" 4799 " free_pcp:%lukB" 4800 " local_pcp:%ukB" 4801 " free_cma:%lukB" 4802 "\n", 4803 zone->name, 4804 K(zone_page_state(zone, NR_FREE_PAGES)), 4805 K(min_wmark_pages(zone)), 4806 K(low_wmark_pages(zone)), 4807 K(high_wmark_pages(zone)), 4808 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4809 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4810 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4811 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4812 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4813 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4814 K(zone->present_pages), 4815 K(zone->managed_pages), 4816 K(zone_page_state(zone, NR_MLOCK)), 4817 zone_page_state(zone, NR_KERNEL_STACK_KB), 4818 K(zone_page_state(zone, NR_PAGETABLE)), 4819 K(zone_page_state(zone, NR_BOUNCE)), 4820 K(free_pcp), 4821 K(this_cpu_read(zone->pageset->pcp.count)), 4822 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4823 printk("lowmem_reserve[]:"); 4824 for (i = 0; i < MAX_NR_ZONES; i++) 4825 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4826 printk(KERN_CONT "\n"); 4827 } 4828 4829 for_each_populated_zone(zone) { 4830 unsigned int order; 4831 unsigned long nr[MAX_ORDER], flags, total = 0; 4832 unsigned char types[MAX_ORDER]; 4833 4834 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4835 continue; 4836 show_node(zone); 4837 printk(KERN_CONT "%s: ", zone->name); 4838 4839 spin_lock_irqsave(&zone->lock, flags); 4840 for (order = 0; order < MAX_ORDER; order++) { 4841 struct free_area *area = &zone->free_area[order]; 4842 int type; 4843 4844 nr[order] = area->nr_free; 4845 total += nr[order] << order; 4846 4847 types[order] = 0; 4848 for (type = 0; type < MIGRATE_TYPES; type++) { 4849 if (!list_empty(&area->free_list[type])) 4850 types[order] |= 1 << type; 4851 } 4852 } 4853 spin_unlock_irqrestore(&zone->lock, flags); 4854 for (order = 0; order < MAX_ORDER; order++) { 4855 printk(KERN_CONT "%lu*%lukB ", 4856 nr[order], K(1UL) << order); 4857 if (nr[order]) 4858 show_migration_types(types[order]); 4859 } 4860 printk(KERN_CONT "= %lukB\n", K(total)); 4861 } 4862 4863 hugetlb_show_meminfo(); 4864 4865 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4866 4867 show_swap_cache_info(); 4868 } 4869 4870 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4871 { 4872 zoneref->zone = zone; 4873 zoneref->zone_idx = zone_idx(zone); 4874 } 4875 4876 /* 4877 * Builds allocation fallback zone lists. 4878 * 4879 * Add all populated zones of a node to the zonelist. 4880 */ 4881 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4882 { 4883 struct zone *zone; 4884 enum zone_type zone_type = MAX_NR_ZONES; 4885 int nr_zones = 0; 4886 4887 do { 4888 zone_type--; 4889 zone = pgdat->node_zones + zone_type; 4890 if (managed_zone(zone)) { 4891 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4892 check_highest_zone(zone_type); 4893 } 4894 } while (zone_type); 4895 4896 return nr_zones; 4897 } 4898 4899 #ifdef CONFIG_NUMA 4900 4901 static int __parse_numa_zonelist_order(char *s) 4902 { 4903 /* 4904 * We used to support different zonlists modes but they turned 4905 * out to be just not useful. Let's keep the warning in place 4906 * if somebody still use the cmd line parameter so that we do 4907 * not fail it silently 4908 */ 4909 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4910 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4911 return -EINVAL; 4912 } 4913 return 0; 4914 } 4915 4916 static __init int setup_numa_zonelist_order(char *s) 4917 { 4918 if (!s) 4919 return 0; 4920 4921 return __parse_numa_zonelist_order(s); 4922 } 4923 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4924 4925 char numa_zonelist_order[] = "Node"; 4926 4927 /* 4928 * sysctl handler for numa_zonelist_order 4929 */ 4930 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4931 void __user *buffer, size_t *length, 4932 loff_t *ppos) 4933 { 4934 char *str; 4935 int ret; 4936 4937 if (!write) 4938 return proc_dostring(table, write, buffer, length, ppos); 4939 str = memdup_user_nul(buffer, 16); 4940 if (IS_ERR(str)) 4941 return PTR_ERR(str); 4942 4943 ret = __parse_numa_zonelist_order(str); 4944 kfree(str); 4945 return ret; 4946 } 4947 4948 4949 #define MAX_NODE_LOAD (nr_online_nodes) 4950 static int node_load[MAX_NUMNODES]; 4951 4952 /** 4953 * find_next_best_node - find the next node that should appear in a given node's fallback list 4954 * @node: node whose fallback list we're appending 4955 * @used_node_mask: nodemask_t of already used nodes 4956 * 4957 * We use a number of factors to determine which is the next node that should 4958 * appear on a given node's fallback list. The node should not have appeared 4959 * already in @node's fallback list, and it should be the next closest node 4960 * according to the distance array (which contains arbitrary distance values 4961 * from each node to each node in the system), and should also prefer nodes 4962 * with no CPUs, since presumably they'll have very little allocation pressure 4963 * on them otherwise. 4964 * It returns -1 if no node is found. 4965 */ 4966 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4967 { 4968 int n, val; 4969 int min_val = INT_MAX; 4970 int best_node = NUMA_NO_NODE; 4971 const struct cpumask *tmp = cpumask_of_node(0); 4972 4973 /* Use the local node if we haven't already */ 4974 if (!node_isset(node, *used_node_mask)) { 4975 node_set(node, *used_node_mask); 4976 return node; 4977 } 4978 4979 for_each_node_state(n, N_MEMORY) { 4980 4981 /* Don't want a node to appear more than once */ 4982 if (node_isset(n, *used_node_mask)) 4983 continue; 4984 4985 /* Use the distance array to find the distance */ 4986 val = node_distance(node, n); 4987 4988 /* Penalize nodes under us ("prefer the next node") */ 4989 val += (n < node); 4990 4991 /* Give preference to headless and unused nodes */ 4992 tmp = cpumask_of_node(n); 4993 if (!cpumask_empty(tmp)) 4994 val += PENALTY_FOR_NODE_WITH_CPUS; 4995 4996 /* Slight preference for less loaded node */ 4997 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4998 val += node_load[n]; 4999 5000 if (val < min_val) { 5001 min_val = val; 5002 best_node = n; 5003 } 5004 } 5005 5006 if (best_node >= 0) 5007 node_set(best_node, *used_node_mask); 5008 5009 return best_node; 5010 } 5011 5012 5013 /* 5014 * Build zonelists ordered by node and zones within node. 5015 * This results in maximum locality--normal zone overflows into local 5016 * DMA zone, if any--but risks exhausting DMA zone. 5017 */ 5018 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5019 unsigned nr_nodes) 5020 { 5021 struct zoneref *zonerefs; 5022 int i; 5023 5024 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5025 5026 for (i = 0; i < nr_nodes; i++) { 5027 int nr_zones; 5028 5029 pg_data_t *node = NODE_DATA(node_order[i]); 5030 5031 nr_zones = build_zonerefs_node(node, zonerefs); 5032 zonerefs += nr_zones; 5033 } 5034 zonerefs->zone = NULL; 5035 zonerefs->zone_idx = 0; 5036 } 5037 5038 /* 5039 * Build gfp_thisnode zonelists 5040 */ 5041 static void build_thisnode_zonelists(pg_data_t *pgdat) 5042 { 5043 struct zoneref *zonerefs; 5044 int nr_zones; 5045 5046 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5047 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5048 zonerefs += nr_zones; 5049 zonerefs->zone = NULL; 5050 zonerefs->zone_idx = 0; 5051 } 5052 5053 /* 5054 * Build zonelists ordered by zone and nodes within zones. 5055 * This results in conserving DMA zone[s] until all Normal memory is 5056 * exhausted, but results in overflowing to remote node while memory 5057 * may still exist in local DMA zone. 5058 */ 5059 5060 static void build_zonelists(pg_data_t *pgdat) 5061 { 5062 static int node_order[MAX_NUMNODES]; 5063 int node, load, nr_nodes = 0; 5064 nodemask_t used_mask; 5065 int local_node, prev_node; 5066 5067 /* NUMA-aware ordering of nodes */ 5068 local_node = pgdat->node_id; 5069 load = nr_online_nodes; 5070 prev_node = local_node; 5071 nodes_clear(used_mask); 5072 5073 memset(node_order, 0, sizeof(node_order)); 5074 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5075 /* 5076 * We don't want to pressure a particular node. 5077 * So adding penalty to the first node in same 5078 * distance group to make it round-robin. 5079 */ 5080 if (node_distance(local_node, node) != 5081 node_distance(local_node, prev_node)) 5082 node_load[node] = load; 5083 5084 node_order[nr_nodes++] = node; 5085 prev_node = node; 5086 load--; 5087 } 5088 5089 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5090 build_thisnode_zonelists(pgdat); 5091 } 5092 5093 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5094 /* 5095 * Return node id of node used for "local" allocations. 5096 * I.e., first node id of first zone in arg node's generic zonelist. 5097 * Used for initializing percpu 'numa_mem', which is used primarily 5098 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5099 */ 5100 int local_memory_node(int node) 5101 { 5102 struct zoneref *z; 5103 5104 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5105 gfp_zone(GFP_KERNEL), 5106 NULL); 5107 return z->zone->node; 5108 } 5109 #endif 5110 5111 static void setup_min_unmapped_ratio(void); 5112 static void setup_min_slab_ratio(void); 5113 #else /* CONFIG_NUMA */ 5114 5115 static void build_zonelists(pg_data_t *pgdat) 5116 { 5117 int node, local_node; 5118 struct zoneref *zonerefs; 5119 int nr_zones; 5120 5121 local_node = pgdat->node_id; 5122 5123 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5124 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5125 zonerefs += nr_zones; 5126 5127 /* 5128 * Now we build the zonelist so that it contains the zones 5129 * of all the other nodes. 5130 * We don't want to pressure a particular node, so when 5131 * building the zones for node N, we make sure that the 5132 * zones coming right after the local ones are those from 5133 * node N+1 (modulo N) 5134 */ 5135 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5136 if (!node_online(node)) 5137 continue; 5138 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5139 zonerefs += nr_zones; 5140 } 5141 for (node = 0; node < local_node; node++) { 5142 if (!node_online(node)) 5143 continue; 5144 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5145 zonerefs += nr_zones; 5146 } 5147 5148 zonerefs->zone = NULL; 5149 zonerefs->zone_idx = 0; 5150 } 5151 5152 #endif /* CONFIG_NUMA */ 5153 5154 /* 5155 * Boot pageset table. One per cpu which is going to be used for all 5156 * zones and all nodes. The parameters will be set in such a way 5157 * that an item put on a list will immediately be handed over to 5158 * the buddy list. This is safe since pageset manipulation is done 5159 * with interrupts disabled. 5160 * 5161 * The boot_pagesets must be kept even after bootup is complete for 5162 * unused processors and/or zones. They do play a role for bootstrapping 5163 * hotplugged processors. 5164 * 5165 * zoneinfo_show() and maybe other functions do 5166 * not check if the processor is online before following the pageset pointer. 5167 * Other parts of the kernel may not check if the zone is available. 5168 */ 5169 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5170 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5171 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5172 5173 static void __build_all_zonelists(void *data) 5174 { 5175 int nid; 5176 int __maybe_unused cpu; 5177 pg_data_t *self = data; 5178 static DEFINE_SPINLOCK(lock); 5179 5180 spin_lock(&lock); 5181 5182 #ifdef CONFIG_NUMA 5183 memset(node_load, 0, sizeof(node_load)); 5184 #endif 5185 5186 /* 5187 * This node is hotadded and no memory is yet present. So just 5188 * building zonelists is fine - no need to touch other nodes. 5189 */ 5190 if (self && !node_online(self->node_id)) { 5191 build_zonelists(self); 5192 } else { 5193 for_each_online_node(nid) { 5194 pg_data_t *pgdat = NODE_DATA(nid); 5195 5196 build_zonelists(pgdat); 5197 } 5198 5199 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5200 /* 5201 * We now know the "local memory node" for each node-- 5202 * i.e., the node of the first zone in the generic zonelist. 5203 * Set up numa_mem percpu variable for on-line cpus. During 5204 * boot, only the boot cpu should be on-line; we'll init the 5205 * secondary cpus' numa_mem as they come on-line. During 5206 * node/memory hotplug, we'll fixup all on-line cpus. 5207 */ 5208 for_each_online_cpu(cpu) 5209 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5210 #endif 5211 } 5212 5213 spin_unlock(&lock); 5214 } 5215 5216 static noinline void __init 5217 build_all_zonelists_init(void) 5218 { 5219 int cpu; 5220 5221 __build_all_zonelists(NULL); 5222 5223 /* 5224 * Initialize the boot_pagesets that are going to be used 5225 * for bootstrapping processors. The real pagesets for 5226 * each zone will be allocated later when the per cpu 5227 * allocator is available. 5228 * 5229 * boot_pagesets are used also for bootstrapping offline 5230 * cpus if the system is already booted because the pagesets 5231 * are needed to initialize allocators on a specific cpu too. 5232 * F.e. the percpu allocator needs the page allocator which 5233 * needs the percpu allocator in order to allocate its pagesets 5234 * (a chicken-egg dilemma). 5235 */ 5236 for_each_possible_cpu(cpu) 5237 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5238 5239 mminit_verify_zonelist(); 5240 cpuset_init_current_mems_allowed(); 5241 } 5242 5243 /* 5244 * unless system_state == SYSTEM_BOOTING. 5245 * 5246 * __ref due to call of __init annotated helper build_all_zonelists_init 5247 * [protected by SYSTEM_BOOTING]. 5248 */ 5249 void __ref build_all_zonelists(pg_data_t *pgdat) 5250 { 5251 if (system_state == SYSTEM_BOOTING) { 5252 build_all_zonelists_init(); 5253 } else { 5254 __build_all_zonelists(pgdat); 5255 /* cpuset refresh routine should be here */ 5256 } 5257 vm_total_pages = nr_free_pagecache_pages(); 5258 /* 5259 * Disable grouping by mobility if the number of pages in the 5260 * system is too low to allow the mechanism to work. It would be 5261 * more accurate, but expensive to check per-zone. This check is 5262 * made on memory-hotadd so a system can start with mobility 5263 * disabled and enable it later 5264 */ 5265 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5266 page_group_by_mobility_disabled = 1; 5267 else 5268 page_group_by_mobility_disabled = 0; 5269 5270 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5271 nr_online_nodes, 5272 page_group_by_mobility_disabled ? "off" : "on", 5273 vm_total_pages); 5274 #ifdef CONFIG_NUMA 5275 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5276 #endif 5277 } 5278 5279 /* 5280 * Initially all pages are reserved - free ones are freed 5281 * up by free_all_bootmem() once the early boot process is 5282 * done. Non-atomic initialization, single-pass. 5283 */ 5284 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5285 unsigned long start_pfn, enum memmap_context context) 5286 { 5287 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5288 unsigned long end_pfn = start_pfn + size; 5289 pg_data_t *pgdat = NODE_DATA(nid); 5290 unsigned long pfn; 5291 unsigned long nr_initialised = 0; 5292 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5293 struct memblock_region *r = NULL, *tmp; 5294 #endif 5295 5296 if (highest_memmap_pfn < end_pfn - 1) 5297 highest_memmap_pfn = end_pfn - 1; 5298 5299 /* 5300 * Honor reservation requested by the driver for this ZONE_DEVICE 5301 * memory 5302 */ 5303 if (altmap && start_pfn == altmap->base_pfn) 5304 start_pfn += altmap->reserve; 5305 5306 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5307 /* 5308 * There can be holes in boot-time mem_map[]s handed to this 5309 * function. They do not exist on hotplugged memory. 5310 */ 5311 if (context != MEMMAP_EARLY) 5312 goto not_early; 5313 5314 if (!early_pfn_valid(pfn)) { 5315 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5316 /* 5317 * Skip to the pfn preceding the next valid one (or 5318 * end_pfn), such that we hit a valid pfn (or end_pfn) 5319 * on our next iteration of the loop. 5320 */ 5321 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5322 #endif 5323 continue; 5324 } 5325 if (!early_pfn_in_nid(pfn, nid)) 5326 continue; 5327 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5328 break; 5329 5330 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5331 /* 5332 * Check given memblock attribute by firmware which can affect 5333 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5334 * mirrored, it's an overlapped memmap init. skip it. 5335 */ 5336 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5337 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5338 for_each_memblock(memory, tmp) 5339 if (pfn < memblock_region_memory_end_pfn(tmp)) 5340 break; 5341 r = tmp; 5342 } 5343 if (pfn >= memblock_region_memory_base_pfn(r) && 5344 memblock_is_mirror(r)) { 5345 /* already initialized as NORMAL */ 5346 pfn = memblock_region_memory_end_pfn(r); 5347 continue; 5348 } 5349 } 5350 #endif 5351 5352 not_early: 5353 /* 5354 * Mark the block movable so that blocks are reserved for 5355 * movable at startup. This will force kernel allocations 5356 * to reserve their blocks rather than leaking throughout 5357 * the address space during boot when many long-lived 5358 * kernel allocations are made. 5359 * 5360 * bitmap is created for zone's valid pfn range. but memmap 5361 * can be created for invalid pages (for alignment) 5362 * check here not to call set_pageblock_migratetype() against 5363 * pfn out of zone. 5364 */ 5365 if (!(pfn & (pageblock_nr_pages - 1))) { 5366 struct page *page = pfn_to_page(pfn); 5367 5368 __init_single_page(page, pfn, zone, nid); 5369 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5370 } else { 5371 __init_single_pfn(pfn, zone, nid); 5372 } 5373 } 5374 } 5375 5376 static void __meminit zone_init_free_lists(struct zone *zone) 5377 { 5378 unsigned int order, t; 5379 for_each_migratetype_order(order, t) { 5380 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5381 zone->free_area[order].nr_free = 0; 5382 } 5383 } 5384 5385 #ifndef __HAVE_ARCH_MEMMAP_INIT 5386 #define memmap_init(size, nid, zone, start_pfn) \ 5387 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5388 #endif 5389 5390 static int zone_batchsize(struct zone *zone) 5391 { 5392 #ifdef CONFIG_MMU 5393 int batch; 5394 5395 /* 5396 * The per-cpu-pages pools are set to around 1000th of the 5397 * size of the zone. But no more than 1/2 of a meg. 5398 * 5399 * OK, so we don't know how big the cache is. So guess. 5400 */ 5401 batch = zone->managed_pages / 1024; 5402 if (batch * PAGE_SIZE > 512 * 1024) 5403 batch = (512 * 1024) / PAGE_SIZE; 5404 batch /= 4; /* We effectively *= 4 below */ 5405 if (batch < 1) 5406 batch = 1; 5407 5408 /* 5409 * Clamp the batch to a 2^n - 1 value. Having a power 5410 * of 2 value was found to be more likely to have 5411 * suboptimal cache aliasing properties in some cases. 5412 * 5413 * For example if 2 tasks are alternately allocating 5414 * batches of pages, one task can end up with a lot 5415 * of pages of one half of the possible page colors 5416 * and the other with pages of the other colors. 5417 */ 5418 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5419 5420 return batch; 5421 5422 #else 5423 /* The deferral and batching of frees should be suppressed under NOMMU 5424 * conditions. 5425 * 5426 * The problem is that NOMMU needs to be able to allocate large chunks 5427 * of contiguous memory as there's no hardware page translation to 5428 * assemble apparent contiguous memory from discontiguous pages. 5429 * 5430 * Queueing large contiguous runs of pages for batching, however, 5431 * causes the pages to actually be freed in smaller chunks. As there 5432 * can be a significant delay between the individual batches being 5433 * recycled, this leads to the once large chunks of space being 5434 * fragmented and becoming unavailable for high-order allocations. 5435 */ 5436 return 0; 5437 #endif 5438 } 5439 5440 /* 5441 * pcp->high and pcp->batch values are related and dependent on one another: 5442 * ->batch must never be higher then ->high. 5443 * The following function updates them in a safe manner without read side 5444 * locking. 5445 * 5446 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5447 * those fields changing asynchronously (acording the the above rule). 5448 * 5449 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5450 * outside of boot time (or some other assurance that no concurrent updaters 5451 * exist). 5452 */ 5453 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5454 unsigned long batch) 5455 { 5456 /* start with a fail safe value for batch */ 5457 pcp->batch = 1; 5458 smp_wmb(); 5459 5460 /* Update high, then batch, in order */ 5461 pcp->high = high; 5462 smp_wmb(); 5463 5464 pcp->batch = batch; 5465 } 5466 5467 /* a companion to pageset_set_high() */ 5468 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5469 { 5470 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5471 } 5472 5473 static void pageset_init(struct per_cpu_pageset *p) 5474 { 5475 struct per_cpu_pages *pcp; 5476 int migratetype; 5477 5478 memset(p, 0, sizeof(*p)); 5479 5480 pcp = &p->pcp; 5481 pcp->count = 0; 5482 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5483 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5484 } 5485 5486 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5487 { 5488 pageset_init(p); 5489 pageset_set_batch(p, batch); 5490 } 5491 5492 /* 5493 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5494 * to the value high for the pageset p. 5495 */ 5496 static void pageset_set_high(struct per_cpu_pageset *p, 5497 unsigned long high) 5498 { 5499 unsigned long batch = max(1UL, high / 4); 5500 if ((high / 4) > (PAGE_SHIFT * 8)) 5501 batch = PAGE_SHIFT * 8; 5502 5503 pageset_update(&p->pcp, high, batch); 5504 } 5505 5506 static void pageset_set_high_and_batch(struct zone *zone, 5507 struct per_cpu_pageset *pcp) 5508 { 5509 if (percpu_pagelist_fraction) 5510 pageset_set_high(pcp, 5511 (zone->managed_pages / 5512 percpu_pagelist_fraction)); 5513 else 5514 pageset_set_batch(pcp, zone_batchsize(zone)); 5515 } 5516 5517 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5518 { 5519 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5520 5521 pageset_init(pcp); 5522 pageset_set_high_and_batch(zone, pcp); 5523 } 5524 5525 void __meminit setup_zone_pageset(struct zone *zone) 5526 { 5527 int cpu; 5528 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5529 for_each_possible_cpu(cpu) 5530 zone_pageset_init(zone, cpu); 5531 } 5532 5533 /* 5534 * Allocate per cpu pagesets and initialize them. 5535 * Before this call only boot pagesets were available. 5536 */ 5537 void __init setup_per_cpu_pageset(void) 5538 { 5539 struct pglist_data *pgdat; 5540 struct zone *zone; 5541 5542 for_each_populated_zone(zone) 5543 setup_zone_pageset(zone); 5544 5545 for_each_online_pgdat(pgdat) 5546 pgdat->per_cpu_nodestats = 5547 alloc_percpu(struct per_cpu_nodestat); 5548 } 5549 5550 static __meminit void zone_pcp_init(struct zone *zone) 5551 { 5552 /* 5553 * per cpu subsystem is not up at this point. The following code 5554 * relies on the ability of the linker to provide the 5555 * offset of a (static) per cpu variable into the per cpu area. 5556 */ 5557 zone->pageset = &boot_pageset; 5558 5559 if (populated_zone(zone)) 5560 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5561 zone->name, zone->present_pages, 5562 zone_batchsize(zone)); 5563 } 5564 5565 void __meminit init_currently_empty_zone(struct zone *zone, 5566 unsigned long zone_start_pfn, 5567 unsigned long size) 5568 { 5569 struct pglist_data *pgdat = zone->zone_pgdat; 5570 5571 pgdat->nr_zones = zone_idx(zone) + 1; 5572 5573 zone->zone_start_pfn = zone_start_pfn; 5574 5575 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5576 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5577 pgdat->node_id, 5578 (unsigned long)zone_idx(zone), 5579 zone_start_pfn, (zone_start_pfn + size)); 5580 5581 zone_init_free_lists(zone); 5582 zone->initialized = 1; 5583 } 5584 5585 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5586 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5587 5588 /* 5589 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5590 */ 5591 int __meminit __early_pfn_to_nid(unsigned long pfn, 5592 struct mminit_pfnnid_cache *state) 5593 { 5594 unsigned long start_pfn, end_pfn; 5595 int nid; 5596 5597 if (state->last_start <= pfn && pfn < state->last_end) 5598 return state->last_nid; 5599 5600 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5601 if (nid != -1) { 5602 state->last_start = start_pfn; 5603 state->last_end = end_pfn; 5604 state->last_nid = nid; 5605 } 5606 5607 return nid; 5608 } 5609 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5610 5611 /** 5612 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5613 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5614 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5615 * 5616 * If an architecture guarantees that all ranges registered contain no holes 5617 * and may be freed, this this function may be used instead of calling 5618 * memblock_free_early_nid() manually. 5619 */ 5620 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5621 { 5622 unsigned long start_pfn, end_pfn; 5623 int i, this_nid; 5624 5625 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5626 start_pfn = min(start_pfn, max_low_pfn); 5627 end_pfn = min(end_pfn, max_low_pfn); 5628 5629 if (start_pfn < end_pfn) 5630 memblock_free_early_nid(PFN_PHYS(start_pfn), 5631 (end_pfn - start_pfn) << PAGE_SHIFT, 5632 this_nid); 5633 } 5634 } 5635 5636 /** 5637 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5638 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5639 * 5640 * If an architecture guarantees that all ranges registered contain no holes and may 5641 * be freed, this function may be used instead of calling memory_present() manually. 5642 */ 5643 void __init sparse_memory_present_with_active_regions(int nid) 5644 { 5645 unsigned long start_pfn, end_pfn; 5646 int i, this_nid; 5647 5648 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5649 memory_present(this_nid, start_pfn, end_pfn); 5650 } 5651 5652 /** 5653 * get_pfn_range_for_nid - Return the start and end page frames for a node 5654 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5655 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5656 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5657 * 5658 * It returns the start and end page frame of a node based on information 5659 * provided by memblock_set_node(). If called for a node 5660 * with no available memory, a warning is printed and the start and end 5661 * PFNs will be 0. 5662 */ 5663 void __meminit get_pfn_range_for_nid(unsigned int nid, 5664 unsigned long *start_pfn, unsigned long *end_pfn) 5665 { 5666 unsigned long this_start_pfn, this_end_pfn; 5667 int i; 5668 5669 *start_pfn = -1UL; 5670 *end_pfn = 0; 5671 5672 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5673 *start_pfn = min(*start_pfn, this_start_pfn); 5674 *end_pfn = max(*end_pfn, this_end_pfn); 5675 } 5676 5677 if (*start_pfn == -1UL) 5678 *start_pfn = 0; 5679 } 5680 5681 /* 5682 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5683 * assumption is made that zones within a node are ordered in monotonic 5684 * increasing memory addresses so that the "highest" populated zone is used 5685 */ 5686 static void __init find_usable_zone_for_movable(void) 5687 { 5688 int zone_index; 5689 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5690 if (zone_index == ZONE_MOVABLE) 5691 continue; 5692 5693 if (arch_zone_highest_possible_pfn[zone_index] > 5694 arch_zone_lowest_possible_pfn[zone_index]) 5695 break; 5696 } 5697 5698 VM_BUG_ON(zone_index == -1); 5699 movable_zone = zone_index; 5700 } 5701 5702 /* 5703 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5704 * because it is sized independent of architecture. Unlike the other zones, 5705 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5706 * in each node depending on the size of each node and how evenly kernelcore 5707 * is distributed. This helper function adjusts the zone ranges 5708 * provided by the architecture for a given node by using the end of the 5709 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5710 * zones within a node are in order of monotonic increases memory addresses 5711 */ 5712 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5713 unsigned long zone_type, 5714 unsigned long node_start_pfn, 5715 unsigned long node_end_pfn, 5716 unsigned long *zone_start_pfn, 5717 unsigned long *zone_end_pfn) 5718 { 5719 /* Only adjust if ZONE_MOVABLE is on this node */ 5720 if (zone_movable_pfn[nid]) { 5721 /* Size ZONE_MOVABLE */ 5722 if (zone_type == ZONE_MOVABLE) { 5723 *zone_start_pfn = zone_movable_pfn[nid]; 5724 *zone_end_pfn = min(node_end_pfn, 5725 arch_zone_highest_possible_pfn[movable_zone]); 5726 5727 /* Adjust for ZONE_MOVABLE starting within this range */ 5728 } else if (!mirrored_kernelcore && 5729 *zone_start_pfn < zone_movable_pfn[nid] && 5730 *zone_end_pfn > zone_movable_pfn[nid]) { 5731 *zone_end_pfn = zone_movable_pfn[nid]; 5732 5733 /* Check if this whole range is within ZONE_MOVABLE */ 5734 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5735 *zone_start_pfn = *zone_end_pfn; 5736 } 5737 } 5738 5739 /* 5740 * Return the number of pages a zone spans in a node, including holes 5741 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5742 */ 5743 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5744 unsigned long zone_type, 5745 unsigned long node_start_pfn, 5746 unsigned long node_end_pfn, 5747 unsigned long *zone_start_pfn, 5748 unsigned long *zone_end_pfn, 5749 unsigned long *ignored) 5750 { 5751 /* When hotadd a new node from cpu_up(), the node should be empty */ 5752 if (!node_start_pfn && !node_end_pfn) 5753 return 0; 5754 5755 /* Get the start and end of the zone */ 5756 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5757 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5758 adjust_zone_range_for_zone_movable(nid, zone_type, 5759 node_start_pfn, node_end_pfn, 5760 zone_start_pfn, zone_end_pfn); 5761 5762 /* Check that this node has pages within the zone's required range */ 5763 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5764 return 0; 5765 5766 /* Move the zone boundaries inside the node if necessary */ 5767 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5768 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5769 5770 /* Return the spanned pages */ 5771 return *zone_end_pfn - *zone_start_pfn; 5772 } 5773 5774 /* 5775 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5776 * then all holes in the requested range will be accounted for. 5777 */ 5778 unsigned long __meminit __absent_pages_in_range(int nid, 5779 unsigned long range_start_pfn, 5780 unsigned long range_end_pfn) 5781 { 5782 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5783 unsigned long start_pfn, end_pfn; 5784 int i; 5785 5786 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5787 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5788 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5789 nr_absent -= end_pfn - start_pfn; 5790 } 5791 return nr_absent; 5792 } 5793 5794 /** 5795 * absent_pages_in_range - Return number of page frames in holes within a range 5796 * @start_pfn: The start PFN to start searching for holes 5797 * @end_pfn: The end PFN to stop searching for holes 5798 * 5799 * It returns the number of pages frames in memory holes within a range. 5800 */ 5801 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5802 unsigned long end_pfn) 5803 { 5804 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5805 } 5806 5807 /* Return the number of page frames in holes in a zone on a node */ 5808 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5809 unsigned long zone_type, 5810 unsigned long node_start_pfn, 5811 unsigned long node_end_pfn, 5812 unsigned long *ignored) 5813 { 5814 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5815 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5816 unsigned long zone_start_pfn, zone_end_pfn; 5817 unsigned long nr_absent; 5818 5819 /* When hotadd a new node from cpu_up(), the node should be empty */ 5820 if (!node_start_pfn && !node_end_pfn) 5821 return 0; 5822 5823 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5824 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5825 5826 adjust_zone_range_for_zone_movable(nid, zone_type, 5827 node_start_pfn, node_end_pfn, 5828 &zone_start_pfn, &zone_end_pfn); 5829 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5830 5831 /* 5832 * ZONE_MOVABLE handling. 5833 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5834 * and vice versa. 5835 */ 5836 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5837 unsigned long start_pfn, end_pfn; 5838 struct memblock_region *r; 5839 5840 for_each_memblock(memory, r) { 5841 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5842 zone_start_pfn, zone_end_pfn); 5843 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5844 zone_start_pfn, zone_end_pfn); 5845 5846 if (zone_type == ZONE_MOVABLE && 5847 memblock_is_mirror(r)) 5848 nr_absent += end_pfn - start_pfn; 5849 5850 if (zone_type == ZONE_NORMAL && 5851 !memblock_is_mirror(r)) 5852 nr_absent += end_pfn - start_pfn; 5853 } 5854 } 5855 5856 return nr_absent; 5857 } 5858 5859 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5860 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5861 unsigned long zone_type, 5862 unsigned long node_start_pfn, 5863 unsigned long node_end_pfn, 5864 unsigned long *zone_start_pfn, 5865 unsigned long *zone_end_pfn, 5866 unsigned long *zones_size) 5867 { 5868 unsigned int zone; 5869 5870 *zone_start_pfn = node_start_pfn; 5871 for (zone = 0; zone < zone_type; zone++) 5872 *zone_start_pfn += zones_size[zone]; 5873 5874 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5875 5876 return zones_size[zone_type]; 5877 } 5878 5879 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5880 unsigned long zone_type, 5881 unsigned long node_start_pfn, 5882 unsigned long node_end_pfn, 5883 unsigned long *zholes_size) 5884 { 5885 if (!zholes_size) 5886 return 0; 5887 5888 return zholes_size[zone_type]; 5889 } 5890 5891 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5892 5893 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5894 unsigned long node_start_pfn, 5895 unsigned long node_end_pfn, 5896 unsigned long *zones_size, 5897 unsigned long *zholes_size) 5898 { 5899 unsigned long realtotalpages = 0, totalpages = 0; 5900 enum zone_type i; 5901 5902 for (i = 0; i < MAX_NR_ZONES; i++) { 5903 struct zone *zone = pgdat->node_zones + i; 5904 unsigned long zone_start_pfn, zone_end_pfn; 5905 unsigned long size, real_size; 5906 5907 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5908 node_start_pfn, 5909 node_end_pfn, 5910 &zone_start_pfn, 5911 &zone_end_pfn, 5912 zones_size); 5913 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5914 node_start_pfn, node_end_pfn, 5915 zholes_size); 5916 if (size) 5917 zone->zone_start_pfn = zone_start_pfn; 5918 else 5919 zone->zone_start_pfn = 0; 5920 zone->spanned_pages = size; 5921 zone->present_pages = real_size; 5922 5923 totalpages += size; 5924 realtotalpages += real_size; 5925 } 5926 5927 pgdat->node_spanned_pages = totalpages; 5928 pgdat->node_present_pages = realtotalpages; 5929 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5930 realtotalpages); 5931 } 5932 5933 #ifndef CONFIG_SPARSEMEM 5934 /* 5935 * Calculate the size of the zone->blockflags rounded to an unsigned long 5936 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5937 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5938 * round what is now in bits to nearest long in bits, then return it in 5939 * bytes. 5940 */ 5941 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5942 { 5943 unsigned long usemapsize; 5944 5945 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5946 usemapsize = roundup(zonesize, pageblock_nr_pages); 5947 usemapsize = usemapsize >> pageblock_order; 5948 usemapsize *= NR_PAGEBLOCK_BITS; 5949 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5950 5951 return usemapsize / 8; 5952 } 5953 5954 static void __init setup_usemap(struct pglist_data *pgdat, 5955 struct zone *zone, 5956 unsigned long zone_start_pfn, 5957 unsigned long zonesize) 5958 { 5959 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5960 zone->pageblock_flags = NULL; 5961 if (usemapsize) 5962 zone->pageblock_flags = 5963 memblock_virt_alloc_node_nopanic(usemapsize, 5964 pgdat->node_id); 5965 } 5966 #else 5967 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5968 unsigned long zone_start_pfn, unsigned long zonesize) {} 5969 #endif /* CONFIG_SPARSEMEM */ 5970 5971 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5972 5973 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5974 void __paginginit set_pageblock_order(void) 5975 { 5976 unsigned int order; 5977 5978 /* Check that pageblock_nr_pages has not already been setup */ 5979 if (pageblock_order) 5980 return; 5981 5982 if (HPAGE_SHIFT > PAGE_SHIFT) 5983 order = HUGETLB_PAGE_ORDER; 5984 else 5985 order = MAX_ORDER - 1; 5986 5987 /* 5988 * Assume the largest contiguous order of interest is a huge page. 5989 * This value may be variable depending on boot parameters on IA64 and 5990 * powerpc. 5991 */ 5992 pageblock_order = order; 5993 } 5994 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5995 5996 /* 5997 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5998 * is unused as pageblock_order is set at compile-time. See 5999 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6000 * the kernel config 6001 */ 6002 void __paginginit set_pageblock_order(void) 6003 { 6004 } 6005 6006 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6007 6008 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6009 unsigned long present_pages) 6010 { 6011 unsigned long pages = spanned_pages; 6012 6013 /* 6014 * Provide a more accurate estimation if there are holes within 6015 * the zone and SPARSEMEM is in use. If there are holes within the 6016 * zone, each populated memory region may cost us one or two extra 6017 * memmap pages due to alignment because memmap pages for each 6018 * populated regions may not be naturally aligned on page boundary. 6019 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6020 */ 6021 if (spanned_pages > present_pages + (present_pages >> 4) && 6022 IS_ENABLED(CONFIG_SPARSEMEM)) 6023 pages = present_pages; 6024 6025 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6026 } 6027 6028 /* 6029 * Set up the zone data structures: 6030 * - mark all pages reserved 6031 * - mark all memory queues empty 6032 * - clear the memory bitmaps 6033 * 6034 * NOTE: pgdat should get zeroed by caller. 6035 */ 6036 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6037 { 6038 enum zone_type j; 6039 int nid = pgdat->node_id; 6040 6041 pgdat_resize_init(pgdat); 6042 #ifdef CONFIG_NUMA_BALANCING 6043 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6044 pgdat->numabalancing_migrate_nr_pages = 0; 6045 pgdat->numabalancing_migrate_next_window = jiffies; 6046 #endif 6047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6048 spin_lock_init(&pgdat->split_queue_lock); 6049 INIT_LIST_HEAD(&pgdat->split_queue); 6050 pgdat->split_queue_len = 0; 6051 #endif 6052 init_waitqueue_head(&pgdat->kswapd_wait); 6053 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6054 #ifdef CONFIG_COMPACTION 6055 init_waitqueue_head(&pgdat->kcompactd_wait); 6056 #endif 6057 pgdat_page_ext_init(pgdat); 6058 spin_lock_init(&pgdat->lru_lock); 6059 lruvec_init(node_lruvec(pgdat)); 6060 6061 pgdat->per_cpu_nodestats = &boot_nodestats; 6062 6063 for (j = 0; j < MAX_NR_ZONES; j++) { 6064 struct zone *zone = pgdat->node_zones + j; 6065 unsigned long size, realsize, freesize, memmap_pages; 6066 unsigned long zone_start_pfn = zone->zone_start_pfn; 6067 6068 size = zone->spanned_pages; 6069 realsize = freesize = zone->present_pages; 6070 6071 /* 6072 * Adjust freesize so that it accounts for how much memory 6073 * is used by this zone for memmap. This affects the watermark 6074 * and per-cpu initialisations 6075 */ 6076 memmap_pages = calc_memmap_size(size, realsize); 6077 if (!is_highmem_idx(j)) { 6078 if (freesize >= memmap_pages) { 6079 freesize -= memmap_pages; 6080 if (memmap_pages) 6081 printk(KERN_DEBUG 6082 " %s zone: %lu pages used for memmap\n", 6083 zone_names[j], memmap_pages); 6084 } else 6085 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6086 zone_names[j], memmap_pages, freesize); 6087 } 6088 6089 /* Account for reserved pages */ 6090 if (j == 0 && freesize > dma_reserve) { 6091 freesize -= dma_reserve; 6092 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6093 zone_names[0], dma_reserve); 6094 } 6095 6096 if (!is_highmem_idx(j)) 6097 nr_kernel_pages += freesize; 6098 /* Charge for highmem memmap if there are enough kernel pages */ 6099 else if (nr_kernel_pages > memmap_pages * 2) 6100 nr_kernel_pages -= memmap_pages; 6101 nr_all_pages += freesize; 6102 6103 /* 6104 * Set an approximate value for lowmem here, it will be adjusted 6105 * when the bootmem allocator frees pages into the buddy system. 6106 * And all highmem pages will be managed by the buddy system. 6107 */ 6108 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6109 #ifdef CONFIG_NUMA 6110 zone->node = nid; 6111 #endif 6112 zone->name = zone_names[j]; 6113 zone->zone_pgdat = pgdat; 6114 spin_lock_init(&zone->lock); 6115 zone_seqlock_init(zone); 6116 zone_pcp_init(zone); 6117 6118 if (!size) 6119 continue; 6120 6121 set_pageblock_order(); 6122 setup_usemap(pgdat, zone, zone_start_pfn, size); 6123 init_currently_empty_zone(zone, zone_start_pfn, size); 6124 memmap_init(size, nid, j, zone_start_pfn); 6125 } 6126 } 6127 6128 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6129 { 6130 unsigned long __maybe_unused start = 0; 6131 unsigned long __maybe_unused offset = 0; 6132 6133 /* Skip empty nodes */ 6134 if (!pgdat->node_spanned_pages) 6135 return; 6136 6137 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6138 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6139 offset = pgdat->node_start_pfn - start; 6140 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6141 if (!pgdat->node_mem_map) { 6142 unsigned long size, end; 6143 struct page *map; 6144 6145 /* 6146 * The zone's endpoints aren't required to be MAX_ORDER 6147 * aligned but the node_mem_map endpoints must be in order 6148 * for the buddy allocator to function correctly. 6149 */ 6150 end = pgdat_end_pfn(pgdat); 6151 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6152 size = (end - start) * sizeof(struct page); 6153 map = alloc_remap(pgdat->node_id, size); 6154 if (!map) 6155 map = memblock_virt_alloc_node_nopanic(size, 6156 pgdat->node_id); 6157 pgdat->node_mem_map = map + offset; 6158 } 6159 #ifndef CONFIG_NEED_MULTIPLE_NODES 6160 /* 6161 * With no DISCONTIG, the global mem_map is just set as node 0's 6162 */ 6163 if (pgdat == NODE_DATA(0)) { 6164 mem_map = NODE_DATA(0)->node_mem_map; 6165 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6166 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6167 mem_map -= offset; 6168 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6169 } 6170 #endif 6171 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6172 } 6173 6174 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6175 unsigned long node_start_pfn, unsigned long *zholes_size) 6176 { 6177 pg_data_t *pgdat = NODE_DATA(nid); 6178 unsigned long start_pfn = 0; 6179 unsigned long end_pfn = 0; 6180 6181 /* pg_data_t should be reset to zero when it's allocated */ 6182 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6183 6184 pgdat->node_id = nid; 6185 pgdat->node_start_pfn = node_start_pfn; 6186 pgdat->per_cpu_nodestats = NULL; 6187 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6188 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6189 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6190 (u64)start_pfn << PAGE_SHIFT, 6191 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6192 #else 6193 start_pfn = node_start_pfn; 6194 #endif 6195 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6196 zones_size, zholes_size); 6197 6198 alloc_node_mem_map(pgdat); 6199 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6200 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 6201 nid, (unsigned long)pgdat, 6202 (unsigned long)pgdat->node_mem_map); 6203 #endif 6204 6205 reset_deferred_meminit(pgdat); 6206 free_area_init_core(pgdat); 6207 } 6208 6209 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6210 6211 #if MAX_NUMNODES > 1 6212 /* 6213 * Figure out the number of possible node ids. 6214 */ 6215 void __init setup_nr_node_ids(void) 6216 { 6217 unsigned int highest; 6218 6219 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6220 nr_node_ids = highest + 1; 6221 } 6222 #endif 6223 6224 /** 6225 * node_map_pfn_alignment - determine the maximum internode alignment 6226 * 6227 * This function should be called after node map is populated and sorted. 6228 * It calculates the maximum power of two alignment which can distinguish 6229 * all the nodes. 6230 * 6231 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6232 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6233 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6234 * shifted, 1GiB is enough and this function will indicate so. 6235 * 6236 * This is used to test whether pfn -> nid mapping of the chosen memory 6237 * model has fine enough granularity to avoid incorrect mapping for the 6238 * populated node map. 6239 * 6240 * Returns the determined alignment in pfn's. 0 if there is no alignment 6241 * requirement (single node). 6242 */ 6243 unsigned long __init node_map_pfn_alignment(void) 6244 { 6245 unsigned long accl_mask = 0, last_end = 0; 6246 unsigned long start, end, mask; 6247 int last_nid = -1; 6248 int i, nid; 6249 6250 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6251 if (!start || last_nid < 0 || last_nid == nid) { 6252 last_nid = nid; 6253 last_end = end; 6254 continue; 6255 } 6256 6257 /* 6258 * Start with a mask granular enough to pin-point to the 6259 * start pfn and tick off bits one-by-one until it becomes 6260 * too coarse to separate the current node from the last. 6261 */ 6262 mask = ~((1 << __ffs(start)) - 1); 6263 while (mask && last_end <= (start & (mask << 1))) 6264 mask <<= 1; 6265 6266 /* accumulate all internode masks */ 6267 accl_mask |= mask; 6268 } 6269 6270 /* convert mask to number of pages */ 6271 return ~accl_mask + 1; 6272 } 6273 6274 /* Find the lowest pfn for a node */ 6275 static unsigned long __init find_min_pfn_for_node(int nid) 6276 { 6277 unsigned long min_pfn = ULONG_MAX; 6278 unsigned long start_pfn; 6279 int i; 6280 6281 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6282 min_pfn = min(min_pfn, start_pfn); 6283 6284 if (min_pfn == ULONG_MAX) { 6285 pr_warn("Could not find start_pfn for node %d\n", nid); 6286 return 0; 6287 } 6288 6289 return min_pfn; 6290 } 6291 6292 /** 6293 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6294 * 6295 * It returns the minimum PFN based on information provided via 6296 * memblock_set_node(). 6297 */ 6298 unsigned long __init find_min_pfn_with_active_regions(void) 6299 { 6300 return find_min_pfn_for_node(MAX_NUMNODES); 6301 } 6302 6303 /* 6304 * early_calculate_totalpages() 6305 * Sum pages in active regions for movable zone. 6306 * Populate N_MEMORY for calculating usable_nodes. 6307 */ 6308 static unsigned long __init early_calculate_totalpages(void) 6309 { 6310 unsigned long totalpages = 0; 6311 unsigned long start_pfn, end_pfn; 6312 int i, nid; 6313 6314 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6315 unsigned long pages = end_pfn - start_pfn; 6316 6317 totalpages += pages; 6318 if (pages) 6319 node_set_state(nid, N_MEMORY); 6320 } 6321 return totalpages; 6322 } 6323 6324 /* 6325 * Find the PFN the Movable zone begins in each node. Kernel memory 6326 * is spread evenly between nodes as long as the nodes have enough 6327 * memory. When they don't, some nodes will have more kernelcore than 6328 * others 6329 */ 6330 static void __init find_zone_movable_pfns_for_nodes(void) 6331 { 6332 int i, nid; 6333 unsigned long usable_startpfn; 6334 unsigned long kernelcore_node, kernelcore_remaining; 6335 /* save the state before borrow the nodemask */ 6336 nodemask_t saved_node_state = node_states[N_MEMORY]; 6337 unsigned long totalpages = early_calculate_totalpages(); 6338 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6339 struct memblock_region *r; 6340 6341 /* Need to find movable_zone earlier when movable_node is specified. */ 6342 find_usable_zone_for_movable(); 6343 6344 /* 6345 * If movable_node is specified, ignore kernelcore and movablecore 6346 * options. 6347 */ 6348 if (movable_node_is_enabled()) { 6349 for_each_memblock(memory, r) { 6350 if (!memblock_is_hotpluggable(r)) 6351 continue; 6352 6353 nid = r->nid; 6354 6355 usable_startpfn = PFN_DOWN(r->base); 6356 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6357 min(usable_startpfn, zone_movable_pfn[nid]) : 6358 usable_startpfn; 6359 } 6360 6361 goto out2; 6362 } 6363 6364 /* 6365 * If kernelcore=mirror is specified, ignore movablecore option 6366 */ 6367 if (mirrored_kernelcore) { 6368 bool mem_below_4gb_not_mirrored = false; 6369 6370 for_each_memblock(memory, r) { 6371 if (memblock_is_mirror(r)) 6372 continue; 6373 6374 nid = r->nid; 6375 6376 usable_startpfn = memblock_region_memory_base_pfn(r); 6377 6378 if (usable_startpfn < 0x100000) { 6379 mem_below_4gb_not_mirrored = true; 6380 continue; 6381 } 6382 6383 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6384 min(usable_startpfn, zone_movable_pfn[nid]) : 6385 usable_startpfn; 6386 } 6387 6388 if (mem_below_4gb_not_mirrored) 6389 pr_warn("This configuration results in unmirrored kernel memory."); 6390 6391 goto out2; 6392 } 6393 6394 /* 6395 * If movablecore=nn[KMG] was specified, calculate what size of 6396 * kernelcore that corresponds so that memory usable for 6397 * any allocation type is evenly spread. If both kernelcore 6398 * and movablecore are specified, then the value of kernelcore 6399 * will be used for required_kernelcore if it's greater than 6400 * what movablecore would have allowed. 6401 */ 6402 if (required_movablecore) { 6403 unsigned long corepages; 6404 6405 /* 6406 * Round-up so that ZONE_MOVABLE is at least as large as what 6407 * was requested by the user 6408 */ 6409 required_movablecore = 6410 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6411 required_movablecore = min(totalpages, required_movablecore); 6412 corepages = totalpages - required_movablecore; 6413 6414 required_kernelcore = max(required_kernelcore, corepages); 6415 } 6416 6417 /* 6418 * If kernelcore was not specified or kernelcore size is larger 6419 * than totalpages, there is no ZONE_MOVABLE. 6420 */ 6421 if (!required_kernelcore || required_kernelcore >= totalpages) 6422 goto out; 6423 6424 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6425 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6426 6427 restart: 6428 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6429 kernelcore_node = required_kernelcore / usable_nodes; 6430 for_each_node_state(nid, N_MEMORY) { 6431 unsigned long start_pfn, end_pfn; 6432 6433 /* 6434 * Recalculate kernelcore_node if the division per node 6435 * now exceeds what is necessary to satisfy the requested 6436 * amount of memory for the kernel 6437 */ 6438 if (required_kernelcore < kernelcore_node) 6439 kernelcore_node = required_kernelcore / usable_nodes; 6440 6441 /* 6442 * As the map is walked, we track how much memory is usable 6443 * by the kernel using kernelcore_remaining. When it is 6444 * 0, the rest of the node is usable by ZONE_MOVABLE 6445 */ 6446 kernelcore_remaining = kernelcore_node; 6447 6448 /* Go through each range of PFNs within this node */ 6449 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6450 unsigned long size_pages; 6451 6452 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6453 if (start_pfn >= end_pfn) 6454 continue; 6455 6456 /* Account for what is only usable for kernelcore */ 6457 if (start_pfn < usable_startpfn) { 6458 unsigned long kernel_pages; 6459 kernel_pages = min(end_pfn, usable_startpfn) 6460 - start_pfn; 6461 6462 kernelcore_remaining -= min(kernel_pages, 6463 kernelcore_remaining); 6464 required_kernelcore -= min(kernel_pages, 6465 required_kernelcore); 6466 6467 /* Continue if range is now fully accounted */ 6468 if (end_pfn <= usable_startpfn) { 6469 6470 /* 6471 * Push zone_movable_pfn to the end so 6472 * that if we have to rebalance 6473 * kernelcore across nodes, we will 6474 * not double account here 6475 */ 6476 zone_movable_pfn[nid] = end_pfn; 6477 continue; 6478 } 6479 start_pfn = usable_startpfn; 6480 } 6481 6482 /* 6483 * The usable PFN range for ZONE_MOVABLE is from 6484 * start_pfn->end_pfn. Calculate size_pages as the 6485 * number of pages used as kernelcore 6486 */ 6487 size_pages = end_pfn - start_pfn; 6488 if (size_pages > kernelcore_remaining) 6489 size_pages = kernelcore_remaining; 6490 zone_movable_pfn[nid] = start_pfn + size_pages; 6491 6492 /* 6493 * Some kernelcore has been met, update counts and 6494 * break if the kernelcore for this node has been 6495 * satisfied 6496 */ 6497 required_kernelcore -= min(required_kernelcore, 6498 size_pages); 6499 kernelcore_remaining -= size_pages; 6500 if (!kernelcore_remaining) 6501 break; 6502 } 6503 } 6504 6505 /* 6506 * If there is still required_kernelcore, we do another pass with one 6507 * less node in the count. This will push zone_movable_pfn[nid] further 6508 * along on the nodes that still have memory until kernelcore is 6509 * satisfied 6510 */ 6511 usable_nodes--; 6512 if (usable_nodes && required_kernelcore > usable_nodes) 6513 goto restart; 6514 6515 out2: 6516 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6517 for (nid = 0; nid < MAX_NUMNODES; nid++) 6518 zone_movable_pfn[nid] = 6519 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6520 6521 out: 6522 /* restore the node_state */ 6523 node_states[N_MEMORY] = saved_node_state; 6524 } 6525 6526 /* Any regular or high memory on that node ? */ 6527 static void check_for_memory(pg_data_t *pgdat, int nid) 6528 { 6529 enum zone_type zone_type; 6530 6531 if (N_MEMORY == N_NORMAL_MEMORY) 6532 return; 6533 6534 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6535 struct zone *zone = &pgdat->node_zones[zone_type]; 6536 if (populated_zone(zone)) { 6537 node_set_state(nid, N_HIGH_MEMORY); 6538 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6539 zone_type <= ZONE_NORMAL) 6540 node_set_state(nid, N_NORMAL_MEMORY); 6541 break; 6542 } 6543 } 6544 } 6545 6546 /** 6547 * free_area_init_nodes - Initialise all pg_data_t and zone data 6548 * @max_zone_pfn: an array of max PFNs for each zone 6549 * 6550 * This will call free_area_init_node() for each active node in the system. 6551 * Using the page ranges provided by memblock_set_node(), the size of each 6552 * zone in each node and their holes is calculated. If the maximum PFN 6553 * between two adjacent zones match, it is assumed that the zone is empty. 6554 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6555 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6556 * starts where the previous one ended. For example, ZONE_DMA32 starts 6557 * at arch_max_dma_pfn. 6558 */ 6559 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6560 { 6561 unsigned long start_pfn, end_pfn; 6562 int i, nid; 6563 6564 /* Record where the zone boundaries are */ 6565 memset(arch_zone_lowest_possible_pfn, 0, 6566 sizeof(arch_zone_lowest_possible_pfn)); 6567 memset(arch_zone_highest_possible_pfn, 0, 6568 sizeof(arch_zone_highest_possible_pfn)); 6569 6570 start_pfn = find_min_pfn_with_active_regions(); 6571 6572 for (i = 0; i < MAX_NR_ZONES; i++) { 6573 if (i == ZONE_MOVABLE) 6574 continue; 6575 6576 end_pfn = max(max_zone_pfn[i], start_pfn); 6577 arch_zone_lowest_possible_pfn[i] = start_pfn; 6578 arch_zone_highest_possible_pfn[i] = end_pfn; 6579 6580 start_pfn = end_pfn; 6581 } 6582 6583 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6584 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6585 find_zone_movable_pfns_for_nodes(); 6586 6587 /* Print out the zone ranges */ 6588 pr_info("Zone ranges:\n"); 6589 for (i = 0; i < MAX_NR_ZONES; i++) { 6590 if (i == ZONE_MOVABLE) 6591 continue; 6592 pr_info(" %-8s ", zone_names[i]); 6593 if (arch_zone_lowest_possible_pfn[i] == 6594 arch_zone_highest_possible_pfn[i]) 6595 pr_cont("empty\n"); 6596 else 6597 pr_cont("[mem %#018Lx-%#018Lx]\n", 6598 (u64)arch_zone_lowest_possible_pfn[i] 6599 << PAGE_SHIFT, 6600 ((u64)arch_zone_highest_possible_pfn[i] 6601 << PAGE_SHIFT) - 1); 6602 } 6603 6604 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6605 pr_info("Movable zone start for each node\n"); 6606 for (i = 0; i < MAX_NUMNODES; i++) { 6607 if (zone_movable_pfn[i]) 6608 pr_info(" Node %d: %#018Lx\n", i, 6609 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6610 } 6611 6612 /* Print out the early node map */ 6613 pr_info("Early memory node ranges\n"); 6614 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6615 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6616 (u64)start_pfn << PAGE_SHIFT, 6617 ((u64)end_pfn << PAGE_SHIFT) - 1); 6618 6619 /* Initialise every node */ 6620 mminit_verify_pageflags_layout(); 6621 setup_nr_node_ids(); 6622 for_each_online_node(nid) { 6623 pg_data_t *pgdat = NODE_DATA(nid); 6624 free_area_init_node(nid, NULL, 6625 find_min_pfn_for_node(nid), NULL); 6626 6627 /* Any memory on that node */ 6628 if (pgdat->node_present_pages) 6629 node_set_state(nid, N_MEMORY); 6630 check_for_memory(pgdat, nid); 6631 } 6632 } 6633 6634 static int __init cmdline_parse_core(char *p, unsigned long *core) 6635 { 6636 unsigned long long coremem; 6637 if (!p) 6638 return -EINVAL; 6639 6640 coremem = memparse(p, &p); 6641 *core = coremem >> PAGE_SHIFT; 6642 6643 /* Paranoid check that UL is enough for the coremem value */ 6644 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6645 6646 return 0; 6647 } 6648 6649 /* 6650 * kernelcore=size sets the amount of memory for use for allocations that 6651 * cannot be reclaimed or migrated. 6652 */ 6653 static int __init cmdline_parse_kernelcore(char *p) 6654 { 6655 /* parse kernelcore=mirror */ 6656 if (parse_option_str(p, "mirror")) { 6657 mirrored_kernelcore = true; 6658 return 0; 6659 } 6660 6661 return cmdline_parse_core(p, &required_kernelcore); 6662 } 6663 6664 /* 6665 * movablecore=size sets the amount of memory for use for allocations that 6666 * can be reclaimed or migrated. 6667 */ 6668 static int __init cmdline_parse_movablecore(char *p) 6669 { 6670 return cmdline_parse_core(p, &required_movablecore); 6671 } 6672 6673 early_param("kernelcore", cmdline_parse_kernelcore); 6674 early_param("movablecore", cmdline_parse_movablecore); 6675 6676 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6677 6678 void adjust_managed_page_count(struct page *page, long count) 6679 { 6680 spin_lock(&managed_page_count_lock); 6681 page_zone(page)->managed_pages += count; 6682 totalram_pages += count; 6683 #ifdef CONFIG_HIGHMEM 6684 if (PageHighMem(page)) 6685 totalhigh_pages += count; 6686 #endif 6687 spin_unlock(&managed_page_count_lock); 6688 } 6689 EXPORT_SYMBOL(adjust_managed_page_count); 6690 6691 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6692 { 6693 void *pos; 6694 unsigned long pages = 0; 6695 6696 start = (void *)PAGE_ALIGN((unsigned long)start); 6697 end = (void *)((unsigned long)end & PAGE_MASK); 6698 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6699 if ((unsigned int)poison <= 0xFF) 6700 memset(pos, poison, PAGE_SIZE); 6701 free_reserved_page(virt_to_page(pos)); 6702 } 6703 6704 if (pages && s) 6705 pr_info("Freeing %s memory: %ldK\n", 6706 s, pages << (PAGE_SHIFT - 10)); 6707 6708 return pages; 6709 } 6710 EXPORT_SYMBOL(free_reserved_area); 6711 6712 #ifdef CONFIG_HIGHMEM 6713 void free_highmem_page(struct page *page) 6714 { 6715 __free_reserved_page(page); 6716 totalram_pages++; 6717 page_zone(page)->managed_pages++; 6718 totalhigh_pages++; 6719 } 6720 #endif 6721 6722 6723 void __init mem_init_print_info(const char *str) 6724 { 6725 unsigned long physpages, codesize, datasize, rosize, bss_size; 6726 unsigned long init_code_size, init_data_size; 6727 6728 physpages = get_num_physpages(); 6729 codesize = _etext - _stext; 6730 datasize = _edata - _sdata; 6731 rosize = __end_rodata - __start_rodata; 6732 bss_size = __bss_stop - __bss_start; 6733 init_data_size = __init_end - __init_begin; 6734 init_code_size = _einittext - _sinittext; 6735 6736 /* 6737 * Detect special cases and adjust section sizes accordingly: 6738 * 1) .init.* may be embedded into .data sections 6739 * 2) .init.text.* may be out of [__init_begin, __init_end], 6740 * please refer to arch/tile/kernel/vmlinux.lds.S. 6741 * 3) .rodata.* may be embedded into .text or .data sections. 6742 */ 6743 #define adj_init_size(start, end, size, pos, adj) \ 6744 do { \ 6745 if (start <= pos && pos < end && size > adj) \ 6746 size -= adj; \ 6747 } while (0) 6748 6749 adj_init_size(__init_begin, __init_end, init_data_size, 6750 _sinittext, init_code_size); 6751 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6752 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6753 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6754 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6755 6756 #undef adj_init_size 6757 6758 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6759 #ifdef CONFIG_HIGHMEM 6760 ", %luK highmem" 6761 #endif 6762 "%s%s)\n", 6763 nr_free_pages() << (PAGE_SHIFT - 10), 6764 physpages << (PAGE_SHIFT - 10), 6765 codesize >> 10, datasize >> 10, rosize >> 10, 6766 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6767 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6768 totalcma_pages << (PAGE_SHIFT - 10), 6769 #ifdef CONFIG_HIGHMEM 6770 totalhigh_pages << (PAGE_SHIFT - 10), 6771 #endif 6772 str ? ", " : "", str ? str : ""); 6773 } 6774 6775 /** 6776 * set_dma_reserve - set the specified number of pages reserved in the first zone 6777 * @new_dma_reserve: The number of pages to mark reserved 6778 * 6779 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6780 * In the DMA zone, a significant percentage may be consumed by kernel image 6781 * and other unfreeable allocations which can skew the watermarks badly. This 6782 * function may optionally be used to account for unfreeable pages in the 6783 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6784 * smaller per-cpu batchsize. 6785 */ 6786 void __init set_dma_reserve(unsigned long new_dma_reserve) 6787 { 6788 dma_reserve = new_dma_reserve; 6789 } 6790 6791 void __init free_area_init(unsigned long *zones_size) 6792 { 6793 free_area_init_node(0, zones_size, 6794 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6795 } 6796 6797 static int page_alloc_cpu_dead(unsigned int cpu) 6798 { 6799 6800 lru_add_drain_cpu(cpu); 6801 drain_pages(cpu); 6802 6803 /* 6804 * Spill the event counters of the dead processor 6805 * into the current processors event counters. 6806 * This artificially elevates the count of the current 6807 * processor. 6808 */ 6809 vm_events_fold_cpu(cpu); 6810 6811 /* 6812 * Zero the differential counters of the dead processor 6813 * so that the vm statistics are consistent. 6814 * 6815 * This is only okay since the processor is dead and cannot 6816 * race with what we are doing. 6817 */ 6818 cpu_vm_stats_fold(cpu); 6819 return 0; 6820 } 6821 6822 void __init page_alloc_init(void) 6823 { 6824 int ret; 6825 6826 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6827 "mm/page_alloc:dead", NULL, 6828 page_alloc_cpu_dead); 6829 WARN_ON(ret < 0); 6830 } 6831 6832 /* 6833 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6834 * or min_free_kbytes changes. 6835 */ 6836 static void calculate_totalreserve_pages(void) 6837 { 6838 struct pglist_data *pgdat; 6839 unsigned long reserve_pages = 0; 6840 enum zone_type i, j; 6841 6842 for_each_online_pgdat(pgdat) { 6843 6844 pgdat->totalreserve_pages = 0; 6845 6846 for (i = 0; i < MAX_NR_ZONES; i++) { 6847 struct zone *zone = pgdat->node_zones + i; 6848 long max = 0; 6849 6850 /* Find valid and maximum lowmem_reserve in the zone */ 6851 for (j = i; j < MAX_NR_ZONES; j++) { 6852 if (zone->lowmem_reserve[j] > max) 6853 max = zone->lowmem_reserve[j]; 6854 } 6855 6856 /* we treat the high watermark as reserved pages. */ 6857 max += high_wmark_pages(zone); 6858 6859 if (max > zone->managed_pages) 6860 max = zone->managed_pages; 6861 6862 pgdat->totalreserve_pages += max; 6863 6864 reserve_pages += max; 6865 } 6866 } 6867 totalreserve_pages = reserve_pages; 6868 } 6869 6870 /* 6871 * setup_per_zone_lowmem_reserve - called whenever 6872 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6873 * has a correct pages reserved value, so an adequate number of 6874 * pages are left in the zone after a successful __alloc_pages(). 6875 */ 6876 static void setup_per_zone_lowmem_reserve(void) 6877 { 6878 struct pglist_data *pgdat; 6879 enum zone_type j, idx; 6880 6881 for_each_online_pgdat(pgdat) { 6882 for (j = 0; j < MAX_NR_ZONES; j++) { 6883 struct zone *zone = pgdat->node_zones + j; 6884 unsigned long managed_pages = zone->managed_pages; 6885 6886 zone->lowmem_reserve[j] = 0; 6887 6888 idx = j; 6889 while (idx) { 6890 struct zone *lower_zone; 6891 6892 idx--; 6893 6894 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6895 sysctl_lowmem_reserve_ratio[idx] = 1; 6896 6897 lower_zone = pgdat->node_zones + idx; 6898 lower_zone->lowmem_reserve[j] = managed_pages / 6899 sysctl_lowmem_reserve_ratio[idx]; 6900 managed_pages += lower_zone->managed_pages; 6901 } 6902 } 6903 } 6904 6905 /* update totalreserve_pages */ 6906 calculate_totalreserve_pages(); 6907 } 6908 6909 static void __setup_per_zone_wmarks(void) 6910 { 6911 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6912 unsigned long lowmem_pages = 0; 6913 struct zone *zone; 6914 unsigned long flags; 6915 6916 /* Calculate total number of !ZONE_HIGHMEM pages */ 6917 for_each_zone(zone) { 6918 if (!is_highmem(zone)) 6919 lowmem_pages += zone->managed_pages; 6920 } 6921 6922 for_each_zone(zone) { 6923 u64 tmp; 6924 6925 spin_lock_irqsave(&zone->lock, flags); 6926 tmp = (u64)pages_min * zone->managed_pages; 6927 do_div(tmp, lowmem_pages); 6928 if (is_highmem(zone)) { 6929 /* 6930 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6931 * need highmem pages, so cap pages_min to a small 6932 * value here. 6933 * 6934 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6935 * deltas control asynch page reclaim, and so should 6936 * not be capped for highmem. 6937 */ 6938 unsigned long min_pages; 6939 6940 min_pages = zone->managed_pages / 1024; 6941 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6942 zone->watermark[WMARK_MIN] = min_pages; 6943 } else { 6944 /* 6945 * If it's a lowmem zone, reserve a number of pages 6946 * proportionate to the zone's size. 6947 */ 6948 zone->watermark[WMARK_MIN] = tmp; 6949 } 6950 6951 /* 6952 * Set the kswapd watermarks distance according to the 6953 * scale factor in proportion to available memory, but 6954 * ensure a minimum size on small systems. 6955 */ 6956 tmp = max_t(u64, tmp >> 2, 6957 mult_frac(zone->managed_pages, 6958 watermark_scale_factor, 10000)); 6959 6960 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6961 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6962 6963 spin_unlock_irqrestore(&zone->lock, flags); 6964 } 6965 6966 /* update totalreserve_pages */ 6967 calculate_totalreserve_pages(); 6968 } 6969 6970 /** 6971 * setup_per_zone_wmarks - called when min_free_kbytes changes 6972 * or when memory is hot-{added|removed} 6973 * 6974 * Ensures that the watermark[min,low,high] values for each zone are set 6975 * correctly with respect to min_free_kbytes. 6976 */ 6977 void setup_per_zone_wmarks(void) 6978 { 6979 static DEFINE_SPINLOCK(lock); 6980 6981 spin_lock(&lock); 6982 __setup_per_zone_wmarks(); 6983 spin_unlock(&lock); 6984 } 6985 6986 /* 6987 * Initialise min_free_kbytes. 6988 * 6989 * For small machines we want it small (128k min). For large machines 6990 * we want it large (64MB max). But it is not linear, because network 6991 * bandwidth does not increase linearly with machine size. We use 6992 * 6993 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6994 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6995 * 6996 * which yields 6997 * 6998 * 16MB: 512k 6999 * 32MB: 724k 7000 * 64MB: 1024k 7001 * 128MB: 1448k 7002 * 256MB: 2048k 7003 * 512MB: 2896k 7004 * 1024MB: 4096k 7005 * 2048MB: 5792k 7006 * 4096MB: 8192k 7007 * 8192MB: 11584k 7008 * 16384MB: 16384k 7009 */ 7010 int __meminit init_per_zone_wmark_min(void) 7011 { 7012 unsigned long lowmem_kbytes; 7013 int new_min_free_kbytes; 7014 7015 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7016 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7017 7018 if (new_min_free_kbytes > user_min_free_kbytes) { 7019 min_free_kbytes = new_min_free_kbytes; 7020 if (min_free_kbytes < 128) 7021 min_free_kbytes = 128; 7022 if (min_free_kbytes > 65536) 7023 min_free_kbytes = 65536; 7024 } else { 7025 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7026 new_min_free_kbytes, user_min_free_kbytes); 7027 } 7028 setup_per_zone_wmarks(); 7029 refresh_zone_stat_thresholds(); 7030 setup_per_zone_lowmem_reserve(); 7031 7032 #ifdef CONFIG_NUMA 7033 setup_min_unmapped_ratio(); 7034 setup_min_slab_ratio(); 7035 #endif 7036 7037 return 0; 7038 } 7039 core_initcall(init_per_zone_wmark_min) 7040 7041 /* 7042 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7043 * that we can call two helper functions whenever min_free_kbytes 7044 * changes. 7045 */ 7046 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7047 void __user *buffer, size_t *length, loff_t *ppos) 7048 { 7049 int rc; 7050 7051 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7052 if (rc) 7053 return rc; 7054 7055 if (write) { 7056 user_min_free_kbytes = min_free_kbytes; 7057 setup_per_zone_wmarks(); 7058 } 7059 return 0; 7060 } 7061 7062 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7063 void __user *buffer, size_t *length, loff_t *ppos) 7064 { 7065 int rc; 7066 7067 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7068 if (rc) 7069 return rc; 7070 7071 if (write) 7072 setup_per_zone_wmarks(); 7073 7074 return 0; 7075 } 7076 7077 #ifdef CONFIG_NUMA 7078 static void setup_min_unmapped_ratio(void) 7079 { 7080 pg_data_t *pgdat; 7081 struct zone *zone; 7082 7083 for_each_online_pgdat(pgdat) 7084 pgdat->min_unmapped_pages = 0; 7085 7086 for_each_zone(zone) 7087 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7088 sysctl_min_unmapped_ratio) / 100; 7089 } 7090 7091 7092 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7093 void __user *buffer, size_t *length, loff_t *ppos) 7094 { 7095 int rc; 7096 7097 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7098 if (rc) 7099 return rc; 7100 7101 setup_min_unmapped_ratio(); 7102 7103 return 0; 7104 } 7105 7106 static void setup_min_slab_ratio(void) 7107 { 7108 pg_data_t *pgdat; 7109 struct zone *zone; 7110 7111 for_each_online_pgdat(pgdat) 7112 pgdat->min_slab_pages = 0; 7113 7114 for_each_zone(zone) 7115 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7116 sysctl_min_slab_ratio) / 100; 7117 } 7118 7119 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7120 void __user *buffer, size_t *length, loff_t *ppos) 7121 { 7122 int rc; 7123 7124 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7125 if (rc) 7126 return rc; 7127 7128 setup_min_slab_ratio(); 7129 7130 return 0; 7131 } 7132 #endif 7133 7134 /* 7135 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7136 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7137 * whenever sysctl_lowmem_reserve_ratio changes. 7138 * 7139 * The reserve ratio obviously has absolutely no relation with the 7140 * minimum watermarks. The lowmem reserve ratio can only make sense 7141 * if in function of the boot time zone sizes. 7142 */ 7143 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7144 void __user *buffer, size_t *length, loff_t *ppos) 7145 { 7146 proc_dointvec_minmax(table, write, buffer, length, ppos); 7147 setup_per_zone_lowmem_reserve(); 7148 return 0; 7149 } 7150 7151 /* 7152 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7153 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7154 * pagelist can have before it gets flushed back to buddy allocator. 7155 */ 7156 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7157 void __user *buffer, size_t *length, loff_t *ppos) 7158 { 7159 struct zone *zone; 7160 int old_percpu_pagelist_fraction; 7161 int ret; 7162 7163 mutex_lock(&pcp_batch_high_lock); 7164 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7165 7166 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7167 if (!write || ret < 0) 7168 goto out; 7169 7170 /* Sanity checking to avoid pcp imbalance */ 7171 if (percpu_pagelist_fraction && 7172 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7173 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7174 ret = -EINVAL; 7175 goto out; 7176 } 7177 7178 /* No change? */ 7179 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7180 goto out; 7181 7182 for_each_populated_zone(zone) { 7183 unsigned int cpu; 7184 7185 for_each_possible_cpu(cpu) 7186 pageset_set_high_and_batch(zone, 7187 per_cpu_ptr(zone->pageset, cpu)); 7188 } 7189 out: 7190 mutex_unlock(&pcp_batch_high_lock); 7191 return ret; 7192 } 7193 7194 #ifdef CONFIG_NUMA 7195 int hashdist = HASHDIST_DEFAULT; 7196 7197 static int __init set_hashdist(char *str) 7198 { 7199 if (!str) 7200 return 0; 7201 hashdist = simple_strtoul(str, &str, 0); 7202 return 1; 7203 } 7204 __setup("hashdist=", set_hashdist); 7205 #endif 7206 7207 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7208 /* 7209 * Returns the number of pages that arch has reserved but 7210 * is not known to alloc_large_system_hash(). 7211 */ 7212 static unsigned long __init arch_reserved_kernel_pages(void) 7213 { 7214 return 0; 7215 } 7216 #endif 7217 7218 /* 7219 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7220 * machines. As memory size is increased the scale is also increased but at 7221 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7222 * quadruples the scale is increased by one, which means the size of hash table 7223 * only doubles, instead of quadrupling as well. 7224 * Because 32-bit systems cannot have large physical memory, where this scaling 7225 * makes sense, it is disabled on such platforms. 7226 */ 7227 #if __BITS_PER_LONG > 32 7228 #define ADAPT_SCALE_BASE (64ul << 30) 7229 #define ADAPT_SCALE_SHIFT 2 7230 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7231 #endif 7232 7233 /* 7234 * allocate a large system hash table from bootmem 7235 * - it is assumed that the hash table must contain an exact power-of-2 7236 * quantity of entries 7237 * - limit is the number of hash buckets, not the total allocation size 7238 */ 7239 void *__init alloc_large_system_hash(const char *tablename, 7240 unsigned long bucketsize, 7241 unsigned long numentries, 7242 int scale, 7243 int flags, 7244 unsigned int *_hash_shift, 7245 unsigned int *_hash_mask, 7246 unsigned long low_limit, 7247 unsigned long high_limit) 7248 { 7249 unsigned long long max = high_limit; 7250 unsigned long log2qty, size; 7251 void *table = NULL; 7252 gfp_t gfp_flags; 7253 7254 /* allow the kernel cmdline to have a say */ 7255 if (!numentries) { 7256 /* round applicable memory size up to nearest megabyte */ 7257 numentries = nr_kernel_pages; 7258 numentries -= arch_reserved_kernel_pages(); 7259 7260 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7261 if (PAGE_SHIFT < 20) 7262 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7263 7264 #if __BITS_PER_LONG > 32 7265 if (!high_limit) { 7266 unsigned long adapt; 7267 7268 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7269 adapt <<= ADAPT_SCALE_SHIFT) 7270 scale++; 7271 } 7272 #endif 7273 7274 /* limit to 1 bucket per 2^scale bytes of low memory */ 7275 if (scale > PAGE_SHIFT) 7276 numentries >>= (scale - PAGE_SHIFT); 7277 else 7278 numentries <<= (PAGE_SHIFT - scale); 7279 7280 /* Make sure we've got at least a 0-order allocation.. */ 7281 if (unlikely(flags & HASH_SMALL)) { 7282 /* Makes no sense without HASH_EARLY */ 7283 WARN_ON(!(flags & HASH_EARLY)); 7284 if (!(numentries >> *_hash_shift)) { 7285 numentries = 1UL << *_hash_shift; 7286 BUG_ON(!numentries); 7287 } 7288 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7289 numentries = PAGE_SIZE / bucketsize; 7290 } 7291 numentries = roundup_pow_of_two(numentries); 7292 7293 /* limit allocation size to 1/16 total memory by default */ 7294 if (max == 0) { 7295 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7296 do_div(max, bucketsize); 7297 } 7298 max = min(max, 0x80000000ULL); 7299 7300 if (numentries < low_limit) 7301 numentries = low_limit; 7302 if (numentries > max) 7303 numentries = max; 7304 7305 log2qty = ilog2(numentries); 7306 7307 /* 7308 * memblock allocator returns zeroed memory already, so HASH_ZERO is 7309 * currently not used when HASH_EARLY is specified. 7310 */ 7311 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7312 do { 7313 size = bucketsize << log2qty; 7314 if (flags & HASH_EARLY) 7315 table = memblock_virt_alloc_nopanic(size, 0); 7316 else if (hashdist) 7317 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7318 else { 7319 /* 7320 * If bucketsize is not a power-of-two, we may free 7321 * some pages at the end of hash table which 7322 * alloc_pages_exact() automatically does 7323 */ 7324 if (get_order(size) < MAX_ORDER) { 7325 table = alloc_pages_exact(size, gfp_flags); 7326 kmemleak_alloc(table, size, 1, gfp_flags); 7327 } 7328 } 7329 } while (!table && size > PAGE_SIZE && --log2qty); 7330 7331 if (!table) 7332 panic("Failed to allocate %s hash table\n", tablename); 7333 7334 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7335 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7336 7337 if (_hash_shift) 7338 *_hash_shift = log2qty; 7339 if (_hash_mask) 7340 *_hash_mask = (1 << log2qty) - 1; 7341 7342 return table; 7343 } 7344 7345 /* 7346 * This function checks whether pageblock includes unmovable pages or not. 7347 * If @count is not zero, it is okay to include less @count unmovable pages 7348 * 7349 * PageLRU check without isolation or lru_lock could race so that 7350 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7351 * check without lock_page also may miss some movable non-lru pages at 7352 * race condition. So you can't expect this function should be exact. 7353 */ 7354 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7355 bool skip_hwpoisoned_pages) 7356 { 7357 unsigned long pfn, iter, found; 7358 int mt; 7359 7360 /* 7361 * For avoiding noise data, lru_add_drain_all() should be called 7362 * If ZONE_MOVABLE, the zone never contains unmovable pages 7363 */ 7364 if (zone_idx(zone) == ZONE_MOVABLE) 7365 return false; 7366 mt = get_pageblock_migratetype(page); 7367 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7368 return false; 7369 7370 pfn = page_to_pfn(page); 7371 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7372 unsigned long check = pfn + iter; 7373 7374 if (!pfn_valid_within(check)) 7375 continue; 7376 7377 page = pfn_to_page(check); 7378 7379 /* 7380 * Hugepages are not in LRU lists, but they're movable. 7381 * We need not scan over tail pages bacause we don't 7382 * handle each tail page individually in migration. 7383 */ 7384 if (PageHuge(page)) { 7385 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7386 continue; 7387 } 7388 7389 /* 7390 * We can't use page_count without pin a page 7391 * because another CPU can free compound page. 7392 * This check already skips compound tails of THP 7393 * because their page->_refcount is zero at all time. 7394 */ 7395 if (!page_ref_count(page)) { 7396 if (PageBuddy(page)) 7397 iter += (1 << page_order(page)) - 1; 7398 continue; 7399 } 7400 7401 /* 7402 * The HWPoisoned page may be not in buddy system, and 7403 * page_count() is not 0. 7404 */ 7405 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7406 continue; 7407 7408 if (__PageMovable(page)) 7409 continue; 7410 7411 if (!PageLRU(page)) 7412 found++; 7413 /* 7414 * If there are RECLAIMABLE pages, we need to check 7415 * it. But now, memory offline itself doesn't call 7416 * shrink_node_slabs() and it still to be fixed. 7417 */ 7418 /* 7419 * If the page is not RAM, page_count()should be 0. 7420 * we don't need more check. This is an _used_ not-movable page. 7421 * 7422 * The problematic thing here is PG_reserved pages. PG_reserved 7423 * is set to both of a memory hole page and a _used_ kernel 7424 * page at boot. 7425 */ 7426 if (found > count) 7427 return true; 7428 } 7429 return false; 7430 } 7431 7432 bool is_pageblock_removable_nolock(struct page *page) 7433 { 7434 struct zone *zone; 7435 unsigned long pfn; 7436 7437 /* 7438 * We have to be careful here because we are iterating over memory 7439 * sections which are not zone aware so we might end up outside of 7440 * the zone but still within the section. 7441 * We have to take care about the node as well. If the node is offline 7442 * its NODE_DATA will be NULL - see page_zone. 7443 */ 7444 if (!node_online(page_to_nid(page))) 7445 return false; 7446 7447 zone = page_zone(page); 7448 pfn = page_to_pfn(page); 7449 if (!zone_spans_pfn(zone, pfn)) 7450 return false; 7451 7452 return !has_unmovable_pages(zone, page, 0, true); 7453 } 7454 7455 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7456 7457 static unsigned long pfn_max_align_down(unsigned long pfn) 7458 { 7459 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7460 pageblock_nr_pages) - 1); 7461 } 7462 7463 static unsigned long pfn_max_align_up(unsigned long pfn) 7464 { 7465 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7466 pageblock_nr_pages)); 7467 } 7468 7469 /* [start, end) must belong to a single zone. */ 7470 static int __alloc_contig_migrate_range(struct compact_control *cc, 7471 unsigned long start, unsigned long end) 7472 { 7473 /* This function is based on compact_zone() from compaction.c. */ 7474 unsigned long nr_reclaimed; 7475 unsigned long pfn = start; 7476 unsigned int tries = 0; 7477 int ret = 0; 7478 7479 migrate_prep(); 7480 7481 while (pfn < end || !list_empty(&cc->migratepages)) { 7482 if (fatal_signal_pending(current)) { 7483 ret = -EINTR; 7484 break; 7485 } 7486 7487 if (list_empty(&cc->migratepages)) { 7488 cc->nr_migratepages = 0; 7489 pfn = isolate_migratepages_range(cc, pfn, end); 7490 if (!pfn) { 7491 ret = -EINTR; 7492 break; 7493 } 7494 tries = 0; 7495 } else if (++tries == 5) { 7496 ret = ret < 0 ? ret : -EBUSY; 7497 break; 7498 } 7499 7500 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7501 &cc->migratepages); 7502 cc->nr_migratepages -= nr_reclaimed; 7503 7504 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7505 NULL, 0, cc->mode, MR_CMA); 7506 } 7507 if (ret < 0) { 7508 putback_movable_pages(&cc->migratepages); 7509 return ret; 7510 } 7511 return 0; 7512 } 7513 7514 /** 7515 * alloc_contig_range() -- tries to allocate given range of pages 7516 * @start: start PFN to allocate 7517 * @end: one-past-the-last PFN to allocate 7518 * @migratetype: migratetype of the underlaying pageblocks (either 7519 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7520 * in range must have the same migratetype and it must 7521 * be either of the two. 7522 * @gfp_mask: GFP mask to use during compaction 7523 * 7524 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7525 * aligned, however it's the caller's responsibility to guarantee that 7526 * we are the only thread that changes migrate type of pageblocks the 7527 * pages fall in. 7528 * 7529 * The PFN range must belong to a single zone. 7530 * 7531 * Returns zero on success or negative error code. On success all 7532 * pages which PFN is in [start, end) are allocated for the caller and 7533 * need to be freed with free_contig_range(). 7534 */ 7535 int alloc_contig_range(unsigned long start, unsigned long end, 7536 unsigned migratetype, gfp_t gfp_mask) 7537 { 7538 unsigned long outer_start, outer_end; 7539 unsigned int order; 7540 int ret = 0; 7541 7542 struct compact_control cc = { 7543 .nr_migratepages = 0, 7544 .order = -1, 7545 .zone = page_zone(pfn_to_page(start)), 7546 .mode = MIGRATE_SYNC, 7547 .ignore_skip_hint = true, 7548 .gfp_mask = current_gfp_context(gfp_mask), 7549 }; 7550 INIT_LIST_HEAD(&cc.migratepages); 7551 7552 /* 7553 * What we do here is we mark all pageblocks in range as 7554 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7555 * have different sizes, and due to the way page allocator 7556 * work, we align the range to biggest of the two pages so 7557 * that page allocator won't try to merge buddies from 7558 * different pageblocks and change MIGRATE_ISOLATE to some 7559 * other migration type. 7560 * 7561 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7562 * migrate the pages from an unaligned range (ie. pages that 7563 * we are interested in). This will put all the pages in 7564 * range back to page allocator as MIGRATE_ISOLATE. 7565 * 7566 * When this is done, we take the pages in range from page 7567 * allocator removing them from the buddy system. This way 7568 * page allocator will never consider using them. 7569 * 7570 * This lets us mark the pageblocks back as 7571 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7572 * aligned range but not in the unaligned, original range are 7573 * put back to page allocator so that buddy can use them. 7574 */ 7575 7576 ret = start_isolate_page_range(pfn_max_align_down(start), 7577 pfn_max_align_up(end), migratetype, 7578 false); 7579 if (ret) 7580 return ret; 7581 7582 /* 7583 * In case of -EBUSY, we'd like to know which page causes problem. 7584 * So, just fall through. We will check it in test_pages_isolated(). 7585 */ 7586 ret = __alloc_contig_migrate_range(&cc, start, end); 7587 if (ret && ret != -EBUSY) 7588 goto done; 7589 7590 /* 7591 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7592 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7593 * more, all pages in [start, end) are free in page allocator. 7594 * What we are going to do is to allocate all pages from 7595 * [start, end) (that is remove them from page allocator). 7596 * 7597 * The only problem is that pages at the beginning and at the 7598 * end of interesting range may be not aligned with pages that 7599 * page allocator holds, ie. they can be part of higher order 7600 * pages. Because of this, we reserve the bigger range and 7601 * once this is done free the pages we are not interested in. 7602 * 7603 * We don't have to hold zone->lock here because the pages are 7604 * isolated thus they won't get removed from buddy. 7605 */ 7606 7607 lru_add_drain_all(); 7608 drain_all_pages(cc.zone); 7609 7610 order = 0; 7611 outer_start = start; 7612 while (!PageBuddy(pfn_to_page(outer_start))) { 7613 if (++order >= MAX_ORDER) { 7614 outer_start = start; 7615 break; 7616 } 7617 outer_start &= ~0UL << order; 7618 } 7619 7620 if (outer_start != start) { 7621 order = page_order(pfn_to_page(outer_start)); 7622 7623 /* 7624 * outer_start page could be small order buddy page and 7625 * it doesn't include start page. Adjust outer_start 7626 * in this case to report failed page properly 7627 * on tracepoint in test_pages_isolated() 7628 */ 7629 if (outer_start + (1UL << order) <= start) 7630 outer_start = start; 7631 } 7632 7633 /* Make sure the range is really isolated. */ 7634 if (test_pages_isolated(outer_start, end, false)) { 7635 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7636 __func__, outer_start, end); 7637 ret = -EBUSY; 7638 goto done; 7639 } 7640 7641 /* Grab isolated pages from freelists. */ 7642 outer_end = isolate_freepages_range(&cc, outer_start, end); 7643 if (!outer_end) { 7644 ret = -EBUSY; 7645 goto done; 7646 } 7647 7648 /* Free head and tail (if any) */ 7649 if (start != outer_start) 7650 free_contig_range(outer_start, start - outer_start); 7651 if (end != outer_end) 7652 free_contig_range(end, outer_end - end); 7653 7654 done: 7655 undo_isolate_page_range(pfn_max_align_down(start), 7656 pfn_max_align_up(end), migratetype); 7657 return ret; 7658 } 7659 7660 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7661 { 7662 unsigned int count = 0; 7663 7664 for (; nr_pages--; pfn++) { 7665 struct page *page = pfn_to_page(pfn); 7666 7667 count += page_count(page) != 1; 7668 __free_page(page); 7669 } 7670 WARN(count != 0, "%d pages are still in use!\n", count); 7671 } 7672 #endif 7673 7674 #ifdef CONFIG_MEMORY_HOTPLUG 7675 /* 7676 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7677 * page high values need to be recalulated. 7678 */ 7679 void __meminit zone_pcp_update(struct zone *zone) 7680 { 7681 unsigned cpu; 7682 mutex_lock(&pcp_batch_high_lock); 7683 for_each_possible_cpu(cpu) 7684 pageset_set_high_and_batch(zone, 7685 per_cpu_ptr(zone->pageset, cpu)); 7686 mutex_unlock(&pcp_batch_high_lock); 7687 } 7688 #endif 7689 7690 void zone_pcp_reset(struct zone *zone) 7691 { 7692 unsigned long flags; 7693 int cpu; 7694 struct per_cpu_pageset *pset; 7695 7696 /* avoid races with drain_pages() */ 7697 local_irq_save(flags); 7698 if (zone->pageset != &boot_pageset) { 7699 for_each_online_cpu(cpu) { 7700 pset = per_cpu_ptr(zone->pageset, cpu); 7701 drain_zonestat(zone, pset); 7702 } 7703 free_percpu(zone->pageset); 7704 zone->pageset = &boot_pageset; 7705 } 7706 local_irq_restore(flags); 7707 } 7708 7709 #ifdef CONFIG_MEMORY_HOTREMOVE 7710 /* 7711 * All pages in the range must be in a single zone and isolated 7712 * before calling this. 7713 */ 7714 void 7715 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7716 { 7717 struct page *page; 7718 struct zone *zone; 7719 unsigned int order, i; 7720 unsigned long pfn; 7721 unsigned long flags; 7722 /* find the first valid pfn */ 7723 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7724 if (pfn_valid(pfn)) 7725 break; 7726 if (pfn == end_pfn) 7727 return; 7728 offline_mem_sections(pfn, end_pfn); 7729 zone = page_zone(pfn_to_page(pfn)); 7730 spin_lock_irqsave(&zone->lock, flags); 7731 pfn = start_pfn; 7732 while (pfn < end_pfn) { 7733 if (!pfn_valid(pfn)) { 7734 pfn++; 7735 continue; 7736 } 7737 page = pfn_to_page(pfn); 7738 /* 7739 * The HWPoisoned page may be not in buddy system, and 7740 * page_count() is not 0. 7741 */ 7742 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7743 pfn++; 7744 SetPageReserved(page); 7745 continue; 7746 } 7747 7748 BUG_ON(page_count(page)); 7749 BUG_ON(!PageBuddy(page)); 7750 order = page_order(page); 7751 #ifdef CONFIG_DEBUG_VM 7752 pr_info("remove from free list %lx %d %lx\n", 7753 pfn, 1 << order, end_pfn); 7754 #endif 7755 list_del(&page->lru); 7756 rmv_page_order(page); 7757 zone->free_area[order].nr_free--; 7758 for (i = 0; i < (1 << order); i++) 7759 SetPageReserved((page+i)); 7760 pfn += (1 << order); 7761 } 7762 spin_unlock_irqrestore(&zone->lock, flags); 7763 } 7764 #endif 7765 7766 bool is_free_buddy_page(struct page *page) 7767 { 7768 struct zone *zone = page_zone(page); 7769 unsigned long pfn = page_to_pfn(page); 7770 unsigned long flags; 7771 unsigned int order; 7772 7773 spin_lock_irqsave(&zone->lock, flags); 7774 for (order = 0; order < MAX_ORDER; order++) { 7775 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7776 7777 if (PageBuddy(page_head) && page_order(page_head) >= order) 7778 break; 7779 } 7780 spin_unlock_irqrestore(&zone->lock, flags); 7781 7782 return order < MAX_ORDER; 7783 } 7784