xref: /linux/mm/page_alloc.c (revision 7025bec9125b0a02edcaf22c2dce753bf2c95480)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
56 
57 /*
58  * Array of node states.
59  */
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 	[N_POSSIBLE] = NODE_MASK_ALL,
62 	[N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 	[N_CPU] = { { [0] = 1UL } },
69 #endif	/* NUMA */
70 };
71 EXPORT_SYMBOL(node_states);
72 
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77 
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81 
82 static void __free_pages_ok(struct page *page, unsigned int order);
83 
84 /*
85  * results with 256, 32 in the lowmem_reserve sysctl:
86  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87  *	1G machine -> (16M dma, 784M normal, 224M high)
88  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91  *
92  * TBD: should special case ZONE_DMA32 machines here - in those we normally
93  * don't need any ZONE_NORMAL reservation
94  */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 	 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 	 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 	 32,
104 #endif
105 	 32,
106 };
107 
108 EXPORT_SYMBOL(totalram_pages);
109 
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 	 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 	 "DMA32",
116 #endif
117 	 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 	 "HighMem",
120 #endif
121 	 "Movable",
122 };
123 
124 int min_free_kbytes = 1024;
125 
126 static unsigned long __meminitdata nr_kernel_pages;
127 static unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129 
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131   /*
132    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133    * ranges of memory (RAM) that may be registered with add_active_range().
134    * Ranges passed to add_active_range() will be merged if possible
135    * so the number of times add_active_range() can be called is
136    * related to the number of nodes and the number of holes
137    */
138   #ifdef CONFIG_MAX_ACTIVE_REGIONS
139     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141   #else
142     #if MAX_NUMNODES >= 32
143       /* If there can be many nodes, allow up to 50 holes per node */
144       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145     #else
146       /* By default, allow up to 256 distinct regions */
147       #define MAX_ACTIVE_REGIONS 256
148     #endif
149   #endif
150 
151   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152   static int __meminitdata nr_nodemap_entries;
153   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155   static unsigned long __initdata required_kernelcore;
156   static unsigned long __initdata required_movablecore;
157   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158 
159   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160   int movable_zone;
161   EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170 
171 int page_group_by_mobility_disabled __read_mostly;
172 
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175 
176 	if (unlikely(page_group_by_mobility_disabled))
177 		migratetype = MIGRATE_UNMOVABLE;
178 
179 	set_pageblock_flags_group(page, (unsigned long)migratetype,
180 					PB_migrate, PB_migrate_end);
181 }
182 
183 bool oom_killer_disabled __read_mostly;
184 
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 	int ret = 0;
189 	unsigned seq;
190 	unsigned long pfn = page_to_pfn(page);
191 
192 	do {
193 		seq = zone_span_seqbegin(zone);
194 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 			ret = 1;
196 		else if (pfn < zone->zone_start_pfn)
197 			ret = 1;
198 	} while (zone_span_seqretry(zone, seq));
199 
200 	return ret;
201 }
202 
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 	if (!pfn_valid_within(page_to_pfn(page)))
206 		return 0;
207 	if (zone != page_zone(page))
208 		return 0;
209 
210 	return 1;
211 }
212 /*
213  * Temporary debugging check for pages not lying within a given zone.
214  */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 	if (page_outside_zone_boundaries(zone, page))
218 		return 1;
219 	if (!page_is_consistent(zone, page))
220 		return 1;
221 
222 	return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 	return 0;
228 }
229 #endif
230 
231 static void bad_page(struct page *page)
232 {
233 	static unsigned long resume;
234 	static unsigned long nr_shown;
235 	static unsigned long nr_unshown;
236 
237 	/* Don't complain about poisoned pages */
238 	if (PageHWPoison(page)) {
239 		__ClearPageBuddy(page);
240 		return;
241 	}
242 
243 	/*
244 	 * Allow a burst of 60 reports, then keep quiet for that minute;
245 	 * or allow a steady drip of one report per second.
246 	 */
247 	if (nr_shown == 60) {
248 		if (time_before(jiffies, resume)) {
249 			nr_unshown++;
250 			goto out;
251 		}
252 		if (nr_unshown) {
253 			printk(KERN_ALERT
254 			      "BUG: Bad page state: %lu messages suppressed\n",
255 				nr_unshown);
256 			nr_unshown = 0;
257 		}
258 		nr_shown = 0;
259 	}
260 	if (nr_shown++ == 0)
261 		resume = jiffies + 60 * HZ;
262 
263 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
264 		current->comm, page_to_pfn(page));
265 	printk(KERN_ALERT
266 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 		page, (void *)page->flags, page_count(page),
268 		page_mapcount(page), page->mapping, page->index);
269 
270 	dump_stack();
271 out:
272 	/* Leave bad fields for debug, except PageBuddy could make trouble */
273 	__ClearPageBuddy(page);
274 	add_taint(TAINT_BAD_PAGE);
275 }
276 
277 /*
278  * Higher-order pages are called "compound pages".  They are structured thusly:
279  *
280  * The first PAGE_SIZE page is called the "head page".
281  *
282  * The remaining PAGE_SIZE pages are called "tail pages".
283  *
284  * All pages have PG_compound set.  All pages have their ->private pointing at
285  * the head page (even the head page has this).
286  *
287  * The first tail page's ->lru.next holds the address of the compound page's
288  * put_page() function.  Its ->lru.prev holds the order of allocation.
289  * This usage means that zero-order pages may not be compound.
290  */
291 
292 static void free_compound_page(struct page *page)
293 {
294 	__free_pages_ok(page, compound_order(page));
295 }
296 
297 void prep_compound_page(struct page *page, unsigned long order)
298 {
299 	int i;
300 	int nr_pages = 1 << order;
301 
302 	set_compound_page_dtor(page, free_compound_page);
303 	set_compound_order(page, order);
304 	__SetPageHead(page);
305 	for (i = 1; i < nr_pages; i++) {
306 		struct page *p = page + i;
307 
308 		__SetPageTail(p);
309 		p->first_page = page;
310 	}
311 }
312 
313 static int destroy_compound_page(struct page *page, unsigned long order)
314 {
315 	int i;
316 	int nr_pages = 1 << order;
317 	int bad = 0;
318 
319 	if (unlikely(compound_order(page) != order) ||
320 	    unlikely(!PageHead(page))) {
321 		bad_page(page);
322 		bad++;
323 	}
324 
325 	__ClearPageHead(page);
326 
327 	for (i = 1; i < nr_pages; i++) {
328 		struct page *p = page + i;
329 
330 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
331 			bad_page(page);
332 			bad++;
333 		}
334 		__ClearPageTail(p);
335 	}
336 
337 	return bad;
338 }
339 
340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
341 {
342 	int i;
343 
344 	/*
345 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
347 	 */
348 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
349 	for (i = 0; i < (1 << order); i++)
350 		clear_highpage(page + i);
351 }
352 
353 static inline void set_page_order(struct page *page, int order)
354 {
355 	set_page_private(page, order);
356 	__SetPageBuddy(page);
357 }
358 
359 static inline void rmv_page_order(struct page *page)
360 {
361 	__ClearPageBuddy(page);
362 	set_page_private(page, 0);
363 }
364 
365 /*
366  * Locate the struct page for both the matching buddy in our
367  * pair (buddy1) and the combined O(n+1) page they form (page).
368  *
369  * 1) Any buddy B1 will have an order O twin B2 which satisfies
370  * the following equation:
371  *     B2 = B1 ^ (1 << O)
372  * For example, if the starting buddy (buddy2) is #8 its order
373  * 1 buddy is #10:
374  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
375  *
376  * 2) Any buddy B will have an order O+1 parent P which
377  * satisfies the following equation:
378  *     P = B & ~(1 << O)
379  *
380  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
381  */
382 static inline struct page *
383 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
384 {
385 	unsigned long buddy_idx = page_idx ^ (1 << order);
386 
387 	return page + (buddy_idx - page_idx);
388 }
389 
390 static inline unsigned long
391 __find_combined_index(unsigned long page_idx, unsigned int order)
392 {
393 	return (page_idx & ~(1 << order));
394 }
395 
396 /*
397  * This function checks whether a page is free && is the buddy
398  * we can do coalesce a page and its buddy if
399  * (a) the buddy is not in a hole &&
400  * (b) the buddy is in the buddy system &&
401  * (c) a page and its buddy have the same order &&
402  * (d) a page and its buddy are in the same zone.
403  *
404  * For recording whether a page is in the buddy system, we use PG_buddy.
405  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
406  *
407  * For recording page's order, we use page_private(page).
408  */
409 static inline int page_is_buddy(struct page *page, struct page *buddy,
410 								int order)
411 {
412 	if (!pfn_valid_within(page_to_pfn(buddy)))
413 		return 0;
414 
415 	if (page_zone_id(page) != page_zone_id(buddy))
416 		return 0;
417 
418 	if (PageBuddy(buddy) && page_order(buddy) == order) {
419 		VM_BUG_ON(page_count(buddy) != 0);
420 		return 1;
421 	}
422 	return 0;
423 }
424 
425 /*
426  * Freeing function for a buddy system allocator.
427  *
428  * The concept of a buddy system is to maintain direct-mapped table
429  * (containing bit values) for memory blocks of various "orders".
430  * The bottom level table contains the map for the smallest allocatable
431  * units of memory (here, pages), and each level above it describes
432  * pairs of units from the levels below, hence, "buddies".
433  * At a high level, all that happens here is marking the table entry
434  * at the bottom level available, and propagating the changes upward
435  * as necessary, plus some accounting needed to play nicely with other
436  * parts of the VM system.
437  * At each level, we keep a list of pages, which are heads of continuous
438  * free pages of length of (1 << order) and marked with PG_buddy. Page's
439  * order is recorded in page_private(page) field.
440  * So when we are allocating or freeing one, we can derive the state of the
441  * other.  That is, if we allocate a small block, and both were
442  * free, the remainder of the region must be split into blocks.
443  * If a block is freed, and its buddy is also free, then this
444  * triggers coalescing into a block of larger size.
445  *
446  * -- wli
447  */
448 
449 static inline void __free_one_page(struct page *page,
450 		struct zone *zone, unsigned int order,
451 		int migratetype)
452 {
453 	unsigned long page_idx;
454 
455 	if (unlikely(PageCompound(page)))
456 		if (unlikely(destroy_compound_page(page, order)))
457 			return;
458 
459 	VM_BUG_ON(migratetype == -1);
460 
461 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
462 
463 	VM_BUG_ON(page_idx & ((1 << order) - 1));
464 	VM_BUG_ON(bad_range(zone, page));
465 
466 	while (order < MAX_ORDER-1) {
467 		unsigned long combined_idx;
468 		struct page *buddy;
469 
470 		buddy = __page_find_buddy(page, page_idx, order);
471 		if (!page_is_buddy(page, buddy, order))
472 			break;
473 
474 		/* Our buddy is free, merge with it and move up one order. */
475 		list_del(&buddy->lru);
476 		zone->free_area[order].nr_free--;
477 		rmv_page_order(buddy);
478 		combined_idx = __find_combined_index(page_idx, order);
479 		page = page + (combined_idx - page_idx);
480 		page_idx = combined_idx;
481 		order++;
482 	}
483 	set_page_order(page, order);
484 	list_add(&page->lru,
485 		&zone->free_area[order].free_list[migratetype]);
486 	zone->free_area[order].nr_free++;
487 }
488 
489 /*
490  * free_page_mlock() -- clean up attempts to free and mlocked() page.
491  * Page should not be on lru, so no need to fix that up.
492  * free_pages_check() will verify...
493  */
494 static inline void free_page_mlock(struct page *page)
495 {
496 	__dec_zone_page_state(page, NR_MLOCK);
497 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
498 }
499 
500 static inline int free_pages_check(struct page *page)
501 {
502 	if (unlikely(page_mapcount(page) |
503 		(page->mapping != NULL)  |
504 		(atomic_read(&page->_count) != 0) |
505 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
506 		bad_page(page);
507 		return 1;
508 	}
509 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
510 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
511 	return 0;
512 }
513 
514 /*
515  * Frees a number of pages from the PCP lists
516  * Assumes all pages on list are in same zone, and of same order.
517  * count is the number of pages to free.
518  *
519  * If the zone was previously in an "all pages pinned" state then look to
520  * see if this freeing clears that state.
521  *
522  * And clear the zone's pages_scanned counter, to hold off the "all pages are
523  * pinned" detection logic.
524  */
525 static void free_pcppages_bulk(struct zone *zone, int count,
526 					struct per_cpu_pages *pcp)
527 {
528 	int migratetype = 0;
529 	int batch_free = 0;
530 
531 	spin_lock(&zone->lock);
532 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
533 	zone->pages_scanned = 0;
534 
535 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
536 	while (count) {
537 		struct page *page;
538 		struct list_head *list;
539 
540 		/*
541 		 * Remove pages from lists in a round-robin fashion. A
542 		 * batch_free count is maintained that is incremented when an
543 		 * empty list is encountered.  This is so more pages are freed
544 		 * off fuller lists instead of spinning excessively around empty
545 		 * lists
546 		 */
547 		do {
548 			batch_free++;
549 			if (++migratetype == MIGRATE_PCPTYPES)
550 				migratetype = 0;
551 			list = &pcp->lists[migratetype];
552 		} while (list_empty(list));
553 
554 		do {
555 			page = list_entry(list->prev, struct page, lru);
556 			/* must delete as __free_one_page list manipulates */
557 			list_del(&page->lru);
558 			__free_one_page(page, zone, 0, migratetype);
559 			trace_mm_page_pcpu_drain(page, 0, migratetype);
560 		} while (--count && --batch_free && !list_empty(list));
561 	}
562 	spin_unlock(&zone->lock);
563 }
564 
565 static void free_one_page(struct zone *zone, struct page *page, int order,
566 				int migratetype)
567 {
568 	spin_lock(&zone->lock);
569 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
570 	zone->pages_scanned = 0;
571 
572 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
573 	__free_one_page(page, zone, order, migratetype);
574 	spin_unlock(&zone->lock);
575 }
576 
577 static void __free_pages_ok(struct page *page, unsigned int order)
578 {
579 	unsigned long flags;
580 	int i;
581 	int bad = 0;
582 	int wasMlocked = __TestClearPageMlocked(page);
583 
584 	kmemcheck_free_shadow(page, order);
585 
586 	for (i = 0 ; i < (1 << order) ; ++i)
587 		bad += free_pages_check(page + i);
588 	if (bad)
589 		return;
590 
591 	if (!PageHighMem(page)) {
592 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
593 		debug_check_no_obj_freed(page_address(page),
594 					   PAGE_SIZE << order);
595 	}
596 	arch_free_page(page, order);
597 	kernel_map_pages(page, 1 << order, 0);
598 
599 	local_irq_save(flags);
600 	if (unlikely(wasMlocked))
601 		free_page_mlock(page);
602 	__count_vm_events(PGFREE, 1 << order);
603 	free_one_page(page_zone(page), page, order,
604 					get_pageblock_migratetype(page));
605 	local_irq_restore(flags);
606 }
607 
608 /*
609  * permit the bootmem allocator to evade page validation on high-order frees
610  */
611 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
612 {
613 	if (order == 0) {
614 		__ClearPageReserved(page);
615 		set_page_count(page, 0);
616 		set_page_refcounted(page);
617 		__free_page(page);
618 	} else {
619 		int loop;
620 
621 		prefetchw(page);
622 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
623 			struct page *p = &page[loop];
624 
625 			if (loop + 1 < BITS_PER_LONG)
626 				prefetchw(p + 1);
627 			__ClearPageReserved(p);
628 			set_page_count(p, 0);
629 		}
630 
631 		set_page_refcounted(page);
632 		__free_pages(page, order);
633 	}
634 }
635 
636 
637 /*
638  * The order of subdivision here is critical for the IO subsystem.
639  * Please do not alter this order without good reasons and regression
640  * testing. Specifically, as large blocks of memory are subdivided,
641  * the order in which smaller blocks are delivered depends on the order
642  * they're subdivided in this function. This is the primary factor
643  * influencing the order in which pages are delivered to the IO
644  * subsystem according to empirical testing, and this is also justified
645  * by considering the behavior of a buddy system containing a single
646  * large block of memory acted on by a series of small allocations.
647  * This behavior is a critical factor in sglist merging's success.
648  *
649  * -- wli
650  */
651 static inline void expand(struct zone *zone, struct page *page,
652 	int low, int high, struct free_area *area,
653 	int migratetype)
654 {
655 	unsigned long size = 1 << high;
656 
657 	while (high > low) {
658 		area--;
659 		high--;
660 		size >>= 1;
661 		VM_BUG_ON(bad_range(zone, &page[size]));
662 		list_add(&page[size].lru, &area->free_list[migratetype]);
663 		area->nr_free++;
664 		set_page_order(&page[size], high);
665 	}
666 }
667 
668 /*
669  * This page is about to be returned from the page allocator
670  */
671 static inline int check_new_page(struct page *page)
672 {
673 	if (unlikely(page_mapcount(page) |
674 		(page->mapping != NULL)  |
675 		(atomic_read(&page->_count) != 0)  |
676 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
677 		bad_page(page);
678 		return 1;
679 	}
680 	return 0;
681 }
682 
683 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
684 {
685 	int i;
686 
687 	for (i = 0; i < (1 << order); i++) {
688 		struct page *p = page + i;
689 		if (unlikely(check_new_page(p)))
690 			return 1;
691 	}
692 
693 	set_page_private(page, 0);
694 	set_page_refcounted(page);
695 
696 	arch_alloc_page(page, order);
697 	kernel_map_pages(page, 1 << order, 1);
698 
699 	if (gfp_flags & __GFP_ZERO)
700 		prep_zero_page(page, order, gfp_flags);
701 
702 	if (order && (gfp_flags & __GFP_COMP))
703 		prep_compound_page(page, order);
704 
705 	return 0;
706 }
707 
708 /*
709  * Go through the free lists for the given migratetype and remove
710  * the smallest available page from the freelists
711  */
712 static inline
713 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
714 						int migratetype)
715 {
716 	unsigned int current_order;
717 	struct free_area * area;
718 	struct page *page;
719 
720 	/* Find a page of the appropriate size in the preferred list */
721 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
722 		area = &(zone->free_area[current_order]);
723 		if (list_empty(&area->free_list[migratetype]))
724 			continue;
725 
726 		page = list_entry(area->free_list[migratetype].next,
727 							struct page, lru);
728 		list_del(&page->lru);
729 		rmv_page_order(page);
730 		area->nr_free--;
731 		expand(zone, page, order, current_order, area, migratetype);
732 		return page;
733 	}
734 
735 	return NULL;
736 }
737 
738 
739 /*
740  * This array describes the order lists are fallen back to when
741  * the free lists for the desirable migrate type are depleted
742  */
743 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
744 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
745 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
746 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
747 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
748 };
749 
750 /*
751  * Move the free pages in a range to the free lists of the requested type.
752  * Note that start_page and end_pages are not aligned on a pageblock
753  * boundary. If alignment is required, use move_freepages_block()
754  */
755 static int move_freepages(struct zone *zone,
756 			  struct page *start_page, struct page *end_page,
757 			  int migratetype)
758 {
759 	struct page *page;
760 	unsigned long order;
761 	int pages_moved = 0;
762 
763 #ifndef CONFIG_HOLES_IN_ZONE
764 	/*
765 	 * page_zone is not safe to call in this context when
766 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
767 	 * anyway as we check zone boundaries in move_freepages_block().
768 	 * Remove at a later date when no bug reports exist related to
769 	 * grouping pages by mobility
770 	 */
771 	BUG_ON(page_zone(start_page) != page_zone(end_page));
772 #endif
773 
774 	for (page = start_page; page <= end_page;) {
775 		/* Make sure we are not inadvertently changing nodes */
776 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
777 
778 		if (!pfn_valid_within(page_to_pfn(page))) {
779 			page++;
780 			continue;
781 		}
782 
783 		if (!PageBuddy(page)) {
784 			page++;
785 			continue;
786 		}
787 
788 		order = page_order(page);
789 		list_del(&page->lru);
790 		list_add(&page->lru,
791 			&zone->free_area[order].free_list[migratetype]);
792 		page += 1 << order;
793 		pages_moved += 1 << order;
794 	}
795 
796 	return pages_moved;
797 }
798 
799 static int move_freepages_block(struct zone *zone, struct page *page,
800 				int migratetype)
801 {
802 	unsigned long start_pfn, end_pfn;
803 	struct page *start_page, *end_page;
804 
805 	start_pfn = page_to_pfn(page);
806 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
807 	start_page = pfn_to_page(start_pfn);
808 	end_page = start_page + pageblock_nr_pages - 1;
809 	end_pfn = start_pfn + pageblock_nr_pages - 1;
810 
811 	/* Do not cross zone boundaries */
812 	if (start_pfn < zone->zone_start_pfn)
813 		start_page = page;
814 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
815 		return 0;
816 
817 	return move_freepages(zone, start_page, end_page, migratetype);
818 }
819 
820 static void change_pageblock_range(struct page *pageblock_page,
821 					int start_order, int migratetype)
822 {
823 	int nr_pageblocks = 1 << (start_order - pageblock_order);
824 
825 	while (nr_pageblocks--) {
826 		set_pageblock_migratetype(pageblock_page, migratetype);
827 		pageblock_page += pageblock_nr_pages;
828 	}
829 }
830 
831 /* Remove an element from the buddy allocator from the fallback list */
832 static inline struct page *
833 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
834 {
835 	struct free_area * area;
836 	int current_order;
837 	struct page *page;
838 	int migratetype, i;
839 
840 	/* Find the largest possible block of pages in the other list */
841 	for (current_order = MAX_ORDER-1; current_order >= order;
842 						--current_order) {
843 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
844 			migratetype = fallbacks[start_migratetype][i];
845 
846 			/* MIGRATE_RESERVE handled later if necessary */
847 			if (migratetype == MIGRATE_RESERVE)
848 				continue;
849 
850 			area = &(zone->free_area[current_order]);
851 			if (list_empty(&area->free_list[migratetype]))
852 				continue;
853 
854 			page = list_entry(area->free_list[migratetype].next,
855 					struct page, lru);
856 			area->nr_free--;
857 
858 			/*
859 			 * If breaking a large block of pages, move all free
860 			 * pages to the preferred allocation list. If falling
861 			 * back for a reclaimable kernel allocation, be more
862 			 * agressive about taking ownership of free pages
863 			 */
864 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
865 					start_migratetype == MIGRATE_RECLAIMABLE ||
866 					page_group_by_mobility_disabled) {
867 				unsigned long pages;
868 				pages = move_freepages_block(zone, page,
869 								start_migratetype);
870 
871 				/* Claim the whole block if over half of it is free */
872 				if (pages >= (1 << (pageblock_order-1)) ||
873 						page_group_by_mobility_disabled)
874 					set_pageblock_migratetype(page,
875 								start_migratetype);
876 
877 				migratetype = start_migratetype;
878 			}
879 
880 			/* Remove the page from the freelists */
881 			list_del(&page->lru);
882 			rmv_page_order(page);
883 
884 			/* Take ownership for orders >= pageblock_order */
885 			if (current_order >= pageblock_order)
886 				change_pageblock_range(page, current_order,
887 							start_migratetype);
888 
889 			expand(zone, page, order, current_order, area, migratetype);
890 
891 			trace_mm_page_alloc_extfrag(page, order, current_order,
892 				start_migratetype, migratetype);
893 
894 			return page;
895 		}
896 	}
897 
898 	return NULL;
899 }
900 
901 /*
902  * Do the hard work of removing an element from the buddy allocator.
903  * Call me with the zone->lock already held.
904  */
905 static struct page *__rmqueue(struct zone *zone, unsigned int order,
906 						int migratetype)
907 {
908 	struct page *page;
909 
910 retry_reserve:
911 	page = __rmqueue_smallest(zone, order, migratetype);
912 
913 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
914 		page = __rmqueue_fallback(zone, order, migratetype);
915 
916 		/*
917 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
918 		 * is used because __rmqueue_smallest is an inline function
919 		 * and we want just one call site
920 		 */
921 		if (!page) {
922 			migratetype = MIGRATE_RESERVE;
923 			goto retry_reserve;
924 		}
925 	}
926 
927 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
928 	return page;
929 }
930 
931 /*
932  * Obtain a specified number of elements from the buddy allocator, all under
933  * a single hold of the lock, for efficiency.  Add them to the supplied list.
934  * Returns the number of new pages which were placed at *list.
935  */
936 static int rmqueue_bulk(struct zone *zone, unsigned int order,
937 			unsigned long count, struct list_head *list,
938 			int migratetype, int cold)
939 {
940 	int i;
941 
942 	spin_lock(&zone->lock);
943 	for (i = 0; i < count; ++i) {
944 		struct page *page = __rmqueue(zone, order, migratetype);
945 		if (unlikely(page == NULL))
946 			break;
947 
948 		/*
949 		 * Split buddy pages returned by expand() are received here
950 		 * in physical page order. The page is added to the callers and
951 		 * list and the list head then moves forward. From the callers
952 		 * perspective, the linked list is ordered by page number in
953 		 * some conditions. This is useful for IO devices that can
954 		 * merge IO requests if the physical pages are ordered
955 		 * properly.
956 		 */
957 		if (likely(cold == 0))
958 			list_add(&page->lru, list);
959 		else
960 			list_add_tail(&page->lru, list);
961 		set_page_private(page, migratetype);
962 		list = &page->lru;
963 	}
964 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
965 	spin_unlock(&zone->lock);
966 	return i;
967 }
968 
969 #ifdef CONFIG_NUMA
970 /*
971  * Called from the vmstat counter updater to drain pagesets of this
972  * currently executing processor on remote nodes after they have
973  * expired.
974  *
975  * Note that this function must be called with the thread pinned to
976  * a single processor.
977  */
978 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
979 {
980 	unsigned long flags;
981 	int to_drain;
982 
983 	local_irq_save(flags);
984 	if (pcp->count >= pcp->batch)
985 		to_drain = pcp->batch;
986 	else
987 		to_drain = pcp->count;
988 	free_pcppages_bulk(zone, to_drain, pcp);
989 	pcp->count -= to_drain;
990 	local_irq_restore(flags);
991 }
992 #endif
993 
994 /*
995  * Drain pages of the indicated processor.
996  *
997  * The processor must either be the current processor and the
998  * thread pinned to the current processor or a processor that
999  * is not online.
1000  */
1001 static void drain_pages(unsigned int cpu)
1002 {
1003 	unsigned long flags;
1004 	struct zone *zone;
1005 
1006 	for_each_populated_zone(zone) {
1007 		struct per_cpu_pageset *pset;
1008 		struct per_cpu_pages *pcp;
1009 
1010 		pset = zone_pcp(zone, cpu);
1011 
1012 		pcp = &pset->pcp;
1013 		local_irq_save(flags);
1014 		free_pcppages_bulk(zone, pcp->count, pcp);
1015 		pcp->count = 0;
1016 		local_irq_restore(flags);
1017 	}
1018 }
1019 
1020 /*
1021  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1022  */
1023 void drain_local_pages(void *arg)
1024 {
1025 	drain_pages(smp_processor_id());
1026 }
1027 
1028 /*
1029  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1030  */
1031 void drain_all_pages(void)
1032 {
1033 	on_each_cpu(drain_local_pages, NULL, 1);
1034 }
1035 
1036 #ifdef CONFIG_HIBERNATION
1037 
1038 void mark_free_pages(struct zone *zone)
1039 {
1040 	unsigned long pfn, max_zone_pfn;
1041 	unsigned long flags;
1042 	int order, t;
1043 	struct list_head *curr;
1044 
1045 	if (!zone->spanned_pages)
1046 		return;
1047 
1048 	spin_lock_irqsave(&zone->lock, flags);
1049 
1050 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052 		if (pfn_valid(pfn)) {
1053 			struct page *page = pfn_to_page(pfn);
1054 
1055 			if (!swsusp_page_is_forbidden(page))
1056 				swsusp_unset_page_free(page);
1057 		}
1058 
1059 	for_each_migratetype_order(order, t) {
1060 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1061 			unsigned long i;
1062 
1063 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1064 			for (i = 0; i < (1UL << order); i++)
1065 				swsusp_set_page_free(pfn_to_page(pfn + i));
1066 		}
1067 	}
1068 	spin_unlock_irqrestore(&zone->lock, flags);
1069 }
1070 #endif /* CONFIG_PM */
1071 
1072 /*
1073  * Free a 0-order page
1074  */
1075 static void free_hot_cold_page(struct page *page, int cold)
1076 {
1077 	struct zone *zone = page_zone(page);
1078 	struct per_cpu_pages *pcp;
1079 	unsigned long flags;
1080 	int migratetype;
1081 	int wasMlocked = __TestClearPageMlocked(page);
1082 
1083 	kmemcheck_free_shadow(page, 0);
1084 
1085 	if (PageAnon(page))
1086 		page->mapping = NULL;
1087 	if (free_pages_check(page))
1088 		return;
1089 
1090 	if (!PageHighMem(page)) {
1091 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1092 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1093 	}
1094 	arch_free_page(page, 0);
1095 	kernel_map_pages(page, 1, 0);
1096 
1097 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1098 	migratetype = get_pageblock_migratetype(page);
1099 	set_page_private(page, migratetype);
1100 	local_irq_save(flags);
1101 	if (unlikely(wasMlocked))
1102 		free_page_mlock(page);
1103 	__count_vm_event(PGFREE);
1104 
1105 	/*
1106 	 * We only track unmovable, reclaimable and movable on pcp lists.
1107 	 * Free ISOLATE pages back to the allocator because they are being
1108 	 * offlined but treat RESERVE as movable pages so we can get those
1109 	 * areas back if necessary. Otherwise, we may have to free
1110 	 * excessively into the page allocator
1111 	 */
1112 	if (migratetype >= MIGRATE_PCPTYPES) {
1113 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1114 			free_one_page(zone, page, 0, migratetype);
1115 			goto out;
1116 		}
1117 		migratetype = MIGRATE_MOVABLE;
1118 	}
1119 
1120 	if (cold)
1121 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1122 	else
1123 		list_add(&page->lru, &pcp->lists[migratetype]);
1124 	pcp->count++;
1125 	if (pcp->count >= pcp->high) {
1126 		free_pcppages_bulk(zone, pcp->batch, pcp);
1127 		pcp->count -= pcp->batch;
1128 	}
1129 
1130 out:
1131 	local_irq_restore(flags);
1132 	put_cpu();
1133 }
1134 
1135 void free_hot_page(struct page *page)
1136 {
1137 	trace_mm_page_free_direct(page, 0);
1138 	free_hot_cold_page(page, 0);
1139 }
1140 
1141 /*
1142  * split_page takes a non-compound higher-order page, and splits it into
1143  * n (1<<order) sub-pages: page[0..n]
1144  * Each sub-page must be freed individually.
1145  *
1146  * Note: this is probably too low level an operation for use in drivers.
1147  * Please consult with lkml before using this in your driver.
1148  */
1149 void split_page(struct page *page, unsigned int order)
1150 {
1151 	int i;
1152 
1153 	VM_BUG_ON(PageCompound(page));
1154 	VM_BUG_ON(!page_count(page));
1155 
1156 #ifdef CONFIG_KMEMCHECK
1157 	/*
1158 	 * Split shadow pages too, because free(page[0]) would
1159 	 * otherwise free the whole shadow.
1160 	 */
1161 	if (kmemcheck_page_is_tracked(page))
1162 		split_page(virt_to_page(page[0].shadow), order);
1163 #endif
1164 
1165 	for (i = 1; i < (1 << order); i++)
1166 		set_page_refcounted(page + i);
1167 }
1168 
1169 /*
1170  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1171  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1172  * or two.
1173  */
1174 static inline
1175 struct page *buffered_rmqueue(struct zone *preferred_zone,
1176 			struct zone *zone, int order, gfp_t gfp_flags,
1177 			int migratetype)
1178 {
1179 	unsigned long flags;
1180 	struct page *page;
1181 	int cold = !!(gfp_flags & __GFP_COLD);
1182 	int cpu;
1183 
1184 again:
1185 	cpu  = get_cpu();
1186 	if (likely(order == 0)) {
1187 		struct per_cpu_pages *pcp;
1188 		struct list_head *list;
1189 
1190 		pcp = &zone_pcp(zone, cpu)->pcp;
1191 		list = &pcp->lists[migratetype];
1192 		local_irq_save(flags);
1193 		if (list_empty(list)) {
1194 			pcp->count += rmqueue_bulk(zone, 0,
1195 					pcp->batch, list,
1196 					migratetype, cold);
1197 			if (unlikely(list_empty(list)))
1198 				goto failed;
1199 		}
1200 
1201 		if (cold)
1202 			page = list_entry(list->prev, struct page, lru);
1203 		else
1204 			page = list_entry(list->next, struct page, lru);
1205 
1206 		list_del(&page->lru);
1207 		pcp->count--;
1208 	} else {
1209 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1210 			/*
1211 			 * __GFP_NOFAIL is not to be used in new code.
1212 			 *
1213 			 * All __GFP_NOFAIL callers should be fixed so that they
1214 			 * properly detect and handle allocation failures.
1215 			 *
1216 			 * We most definitely don't want callers attempting to
1217 			 * allocate greater than order-1 page units with
1218 			 * __GFP_NOFAIL.
1219 			 */
1220 			WARN_ON_ONCE(order > 1);
1221 		}
1222 		spin_lock_irqsave(&zone->lock, flags);
1223 		page = __rmqueue(zone, order, migratetype);
1224 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1225 		spin_unlock(&zone->lock);
1226 		if (!page)
1227 			goto failed;
1228 	}
1229 
1230 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1231 	zone_statistics(preferred_zone, zone);
1232 	local_irq_restore(flags);
1233 	put_cpu();
1234 
1235 	VM_BUG_ON(bad_range(zone, page));
1236 	if (prep_new_page(page, order, gfp_flags))
1237 		goto again;
1238 	return page;
1239 
1240 failed:
1241 	local_irq_restore(flags);
1242 	put_cpu();
1243 	return NULL;
1244 }
1245 
1246 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1247 #define ALLOC_WMARK_MIN		WMARK_MIN
1248 #define ALLOC_WMARK_LOW		WMARK_LOW
1249 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1250 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1251 
1252 /* Mask to get the watermark bits */
1253 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1254 
1255 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1256 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1257 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1258 
1259 #ifdef CONFIG_FAIL_PAGE_ALLOC
1260 
1261 static struct fail_page_alloc_attr {
1262 	struct fault_attr attr;
1263 
1264 	u32 ignore_gfp_highmem;
1265 	u32 ignore_gfp_wait;
1266 	u32 min_order;
1267 
1268 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1269 
1270 	struct dentry *ignore_gfp_highmem_file;
1271 	struct dentry *ignore_gfp_wait_file;
1272 	struct dentry *min_order_file;
1273 
1274 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1275 
1276 } fail_page_alloc = {
1277 	.attr = FAULT_ATTR_INITIALIZER,
1278 	.ignore_gfp_wait = 1,
1279 	.ignore_gfp_highmem = 1,
1280 	.min_order = 1,
1281 };
1282 
1283 static int __init setup_fail_page_alloc(char *str)
1284 {
1285 	return setup_fault_attr(&fail_page_alloc.attr, str);
1286 }
1287 __setup("fail_page_alloc=", setup_fail_page_alloc);
1288 
1289 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1290 {
1291 	if (order < fail_page_alloc.min_order)
1292 		return 0;
1293 	if (gfp_mask & __GFP_NOFAIL)
1294 		return 0;
1295 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1296 		return 0;
1297 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1298 		return 0;
1299 
1300 	return should_fail(&fail_page_alloc.attr, 1 << order);
1301 }
1302 
1303 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1304 
1305 static int __init fail_page_alloc_debugfs(void)
1306 {
1307 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1308 	struct dentry *dir;
1309 	int err;
1310 
1311 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1312 				       "fail_page_alloc");
1313 	if (err)
1314 		return err;
1315 	dir = fail_page_alloc.attr.dentries.dir;
1316 
1317 	fail_page_alloc.ignore_gfp_wait_file =
1318 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1319 				      &fail_page_alloc.ignore_gfp_wait);
1320 
1321 	fail_page_alloc.ignore_gfp_highmem_file =
1322 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1323 				      &fail_page_alloc.ignore_gfp_highmem);
1324 	fail_page_alloc.min_order_file =
1325 		debugfs_create_u32("min-order", mode, dir,
1326 				   &fail_page_alloc.min_order);
1327 
1328 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1329             !fail_page_alloc.ignore_gfp_highmem_file ||
1330             !fail_page_alloc.min_order_file) {
1331 		err = -ENOMEM;
1332 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1333 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1334 		debugfs_remove(fail_page_alloc.min_order_file);
1335 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1336 	}
1337 
1338 	return err;
1339 }
1340 
1341 late_initcall(fail_page_alloc_debugfs);
1342 
1343 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1344 
1345 #else /* CONFIG_FAIL_PAGE_ALLOC */
1346 
1347 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1348 {
1349 	return 0;
1350 }
1351 
1352 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1353 
1354 /*
1355  * Return 1 if free pages are above 'mark'. This takes into account the order
1356  * of the allocation.
1357  */
1358 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1359 		      int classzone_idx, int alloc_flags)
1360 {
1361 	/* free_pages my go negative - that's OK */
1362 	long min = mark;
1363 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1364 	int o;
1365 
1366 	if (alloc_flags & ALLOC_HIGH)
1367 		min -= min / 2;
1368 	if (alloc_flags & ALLOC_HARDER)
1369 		min -= min / 4;
1370 
1371 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1372 		return 0;
1373 	for (o = 0; o < order; o++) {
1374 		/* At the next order, this order's pages become unavailable */
1375 		free_pages -= z->free_area[o].nr_free << o;
1376 
1377 		/* Require fewer higher order pages to be free */
1378 		min >>= 1;
1379 
1380 		if (free_pages <= min)
1381 			return 0;
1382 	}
1383 	return 1;
1384 }
1385 
1386 #ifdef CONFIG_NUMA
1387 /*
1388  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1389  * skip over zones that are not allowed by the cpuset, or that have
1390  * been recently (in last second) found to be nearly full.  See further
1391  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1392  * that have to skip over a lot of full or unallowed zones.
1393  *
1394  * If the zonelist cache is present in the passed in zonelist, then
1395  * returns a pointer to the allowed node mask (either the current
1396  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1397  *
1398  * If the zonelist cache is not available for this zonelist, does
1399  * nothing and returns NULL.
1400  *
1401  * If the fullzones BITMAP in the zonelist cache is stale (more than
1402  * a second since last zap'd) then we zap it out (clear its bits.)
1403  *
1404  * We hold off even calling zlc_setup, until after we've checked the
1405  * first zone in the zonelist, on the theory that most allocations will
1406  * be satisfied from that first zone, so best to examine that zone as
1407  * quickly as we can.
1408  */
1409 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1410 {
1411 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1412 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1413 
1414 	zlc = zonelist->zlcache_ptr;
1415 	if (!zlc)
1416 		return NULL;
1417 
1418 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1419 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1420 		zlc->last_full_zap = jiffies;
1421 	}
1422 
1423 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1424 					&cpuset_current_mems_allowed :
1425 					&node_states[N_HIGH_MEMORY];
1426 	return allowednodes;
1427 }
1428 
1429 /*
1430  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1431  * if it is worth looking at further for free memory:
1432  *  1) Check that the zone isn't thought to be full (doesn't have its
1433  *     bit set in the zonelist_cache fullzones BITMAP).
1434  *  2) Check that the zones node (obtained from the zonelist_cache
1435  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1436  * Return true (non-zero) if zone is worth looking at further, or
1437  * else return false (zero) if it is not.
1438  *
1439  * This check -ignores- the distinction between various watermarks,
1440  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1441  * found to be full for any variation of these watermarks, it will
1442  * be considered full for up to one second by all requests, unless
1443  * we are so low on memory on all allowed nodes that we are forced
1444  * into the second scan of the zonelist.
1445  *
1446  * In the second scan we ignore this zonelist cache and exactly
1447  * apply the watermarks to all zones, even it is slower to do so.
1448  * We are low on memory in the second scan, and should leave no stone
1449  * unturned looking for a free page.
1450  */
1451 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1452 						nodemask_t *allowednodes)
1453 {
1454 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1455 	int i;				/* index of *z in zonelist zones */
1456 	int n;				/* node that zone *z is on */
1457 
1458 	zlc = zonelist->zlcache_ptr;
1459 	if (!zlc)
1460 		return 1;
1461 
1462 	i = z - zonelist->_zonerefs;
1463 	n = zlc->z_to_n[i];
1464 
1465 	/* This zone is worth trying if it is allowed but not full */
1466 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1467 }
1468 
1469 /*
1470  * Given 'z' scanning a zonelist, set the corresponding bit in
1471  * zlc->fullzones, so that subsequent attempts to allocate a page
1472  * from that zone don't waste time re-examining it.
1473  */
1474 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1475 {
1476 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1477 	int i;				/* index of *z in zonelist zones */
1478 
1479 	zlc = zonelist->zlcache_ptr;
1480 	if (!zlc)
1481 		return;
1482 
1483 	i = z - zonelist->_zonerefs;
1484 
1485 	set_bit(i, zlc->fullzones);
1486 }
1487 
1488 #else	/* CONFIG_NUMA */
1489 
1490 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1491 {
1492 	return NULL;
1493 }
1494 
1495 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1496 				nodemask_t *allowednodes)
1497 {
1498 	return 1;
1499 }
1500 
1501 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1502 {
1503 }
1504 #endif	/* CONFIG_NUMA */
1505 
1506 /*
1507  * get_page_from_freelist goes through the zonelist trying to allocate
1508  * a page.
1509  */
1510 static struct page *
1511 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1512 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1513 		struct zone *preferred_zone, int migratetype)
1514 {
1515 	struct zoneref *z;
1516 	struct page *page = NULL;
1517 	int classzone_idx;
1518 	struct zone *zone;
1519 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1520 	int zlc_active = 0;		/* set if using zonelist_cache */
1521 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1522 
1523 	classzone_idx = zone_idx(preferred_zone);
1524 zonelist_scan:
1525 	/*
1526 	 * Scan zonelist, looking for a zone with enough free.
1527 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1528 	 */
1529 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1530 						high_zoneidx, nodemask) {
1531 		if (NUMA_BUILD && zlc_active &&
1532 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1533 				continue;
1534 		if ((alloc_flags & ALLOC_CPUSET) &&
1535 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1536 				goto try_next_zone;
1537 
1538 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1539 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1540 			unsigned long mark;
1541 			int ret;
1542 
1543 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1544 			if (zone_watermark_ok(zone, order, mark,
1545 				    classzone_idx, alloc_flags))
1546 				goto try_this_zone;
1547 
1548 			if (zone_reclaim_mode == 0)
1549 				goto this_zone_full;
1550 
1551 			ret = zone_reclaim(zone, gfp_mask, order);
1552 			switch (ret) {
1553 			case ZONE_RECLAIM_NOSCAN:
1554 				/* did not scan */
1555 				goto try_next_zone;
1556 			case ZONE_RECLAIM_FULL:
1557 				/* scanned but unreclaimable */
1558 				goto this_zone_full;
1559 			default:
1560 				/* did we reclaim enough */
1561 				if (!zone_watermark_ok(zone, order, mark,
1562 						classzone_idx, alloc_flags))
1563 					goto this_zone_full;
1564 			}
1565 		}
1566 
1567 try_this_zone:
1568 		page = buffered_rmqueue(preferred_zone, zone, order,
1569 						gfp_mask, migratetype);
1570 		if (page)
1571 			break;
1572 this_zone_full:
1573 		if (NUMA_BUILD)
1574 			zlc_mark_zone_full(zonelist, z);
1575 try_next_zone:
1576 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1577 			/*
1578 			 * we do zlc_setup after the first zone is tried but only
1579 			 * if there are multiple nodes make it worthwhile
1580 			 */
1581 			allowednodes = zlc_setup(zonelist, alloc_flags);
1582 			zlc_active = 1;
1583 			did_zlc_setup = 1;
1584 		}
1585 	}
1586 
1587 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1588 		/* Disable zlc cache for second zonelist scan */
1589 		zlc_active = 0;
1590 		goto zonelist_scan;
1591 	}
1592 	return page;
1593 }
1594 
1595 static inline int
1596 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1597 				unsigned long pages_reclaimed)
1598 {
1599 	/* Do not loop if specifically requested */
1600 	if (gfp_mask & __GFP_NORETRY)
1601 		return 0;
1602 
1603 	/*
1604 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1605 	 * means __GFP_NOFAIL, but that may not be true in other
1606 	 * implementations.
1607 	 */
1608 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1609 		return 1;
1610 
1611 	/*
1612 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1613 	 * specified, then we retry until we no longer reclaim any pages
1614 	 * (above), or we've reclaimed an order of pages at least as
1615 	 * large as the allocation's order. In both cases, if the
1616 	 * allocation still fails, we stop retrying.
1617 	 */
1618 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1619 		return 1;
1620 
1621 	/*
1622 	 * Don't let big-order allocations loop unless the caller
1623 	 * explicitly requests that.
1624 	 */
1625 	if (gfp_mask & __GFP_NOFAIL)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 static inline struct page *
1632 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1633 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1634 	nodemask_t *nodemask, struct zone *preferred_zone,
1635 	int migratetype)
1636 {
1637 	struct page *page;
1638 
1639 	/* Acquire the OOM killer lock for the zones in zonelist */
1640 	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1641 		schedule_timeout_uninterruptible(1);
1642 		return NULL;
1643 	}
1644 
1645 	/*
1646 	 * Go through the zonelist yet one more time, keep very high watermark
1647 	 * here, this is only to catch a parallel oom killing, we must fail if
1648 	 * we're still under heavy pressure.
1649 	 */
1650 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1651 		order, zonelist, high_zoneidx,
1652 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1653 		preferred_zone, migratetype);
1654 	if (page)
1655 		goto out;
1656 
1657 	if (!(gfp_mask & __GFP_NOFAIL)) {
1658 		/* The OOM killer will not help higher order allocs */
1659 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1660 			goto out;
1661 		/*
1662 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1663 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1664 		 * The caller should handle page allocation failure by itself if
1665 		 * it specifies __GFP_THISNODE.
1666 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1667 		 */
1668 		if (gfp_mask & __GFP_THISNODE)
1669 			goto out;
1670 	}
1671 	/* Exhausted what can be done so it's blamo time */
1672 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1673 
1674 out:
1675 	clear_zonelist_oom(zonelist, gfp_mask);
1676 	return page;
1677 }
1678 
1679 /* The really slow allocator path where we enter direct reclaim */
1680 static inline struct page *
1681 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1682 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1683 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1684 	int migratetype, unsigned long *did_some_progress)
1685 {
1686 	struct page *page = NULL;
1687 	struct reclaim_state reclaim_state;
1688 	struct task_struct *p = current;
1689 
1690 	cond_resched();
1691 
1692 	/* We now go into synchronous reclaim */
1693 	cpuset_memory_pressure_bump();
1694 	p->flags |= PF_MEMALLOC;
1695 	lockdep_set_current_reclaim_state(gfp_mask);
1696 	reclaim_state.reclaimed_slab = 0;
1697 	p->reclaim_state = &reclaim_state;
1698 
1699 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1700 
1701 	p->reclaim_state = NULL;
1702 	lockdep_clear_current_reclaim_state();
1703 	p->flags &= ~PF_MEMALLOC;
1704 
1705 	cond_resched();
1706 
1707 	if (order != 0)
1708 		drain_all_pages();
1709 
1710 	if (likely(*did_some_progress))
1711 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1712 					zonelist, high_zoneidx,
1713 					alloc_flags, preferred_zone,
1714 					migratetype);
1715 	return page;
1716 }
1717 
1718 /*
1719  * This is called in the allocator slow-path if the allocation request is of
1720  * sufficient urgency to ignore watermarks and take other desperate measures
1721  */
1722 static inline struct page *
1723 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1724 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1725 	nodemask_t *nodemask, struct zone *preferred_zone,
1726 	int migratetype)
1727 {
1728 	struct page *page;
1729 
1730 	do {
1731 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1732 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1733 			preferred_zone, migratetype);
1734 
1735 		if (!page && gfp_mask & __GFP_NOFAIL)
1736 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1737 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1738 
1739 	return page;
1740 }
1741 
1742 static inline
1743 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1744 						enum zone_type high_zoneidx)
1745 {
1746 	struct zoneref *z;
1747 	struct zone *zone;
1748 
1749 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1750 		wakeup_kswapd(zone, order);
1751 }
1752 
1753 static inline int
1754 gfp_to_alloc_flags(gfp_t gfp_mask)
1755 {
1756 	struct task_struct *p = current;
1757 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1758 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1759 
1760 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1761 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1762 
1763 	/*
1764 	 * The caller may dip into page reserves a bit more if the caller
1765 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1766 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1767 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1768 	 */
1769 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1770 
1771 	if (!wait) {
1772 		alloc_flags |= ALLOC_HARDER;
1773 		/*
1774 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1775 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1776 		 */
1777 		alloc_flags &= ~ALLOC_CPUSET;
1778 	} else if (unlikely(rt_task(p)) && !in_interrupt())
1779 		alloc_flags |= ALLOC_HARDER;
1780 
1781 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1782 		if (!in_interrupt() &&
1783 		    ((p->flags & PF_MEMALLOC) ||
1784 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1785 			alloc_flags |= ALLOC_NO_WATERMARKS;
1786 	}
1787 
1788 	return alloc_flags;
1789 }
1790 
1791 static inline struct page *
1792 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1793 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1794 	nodemask_t *nodemask, struct zone *preferred_zone,
1795 	int migratetype)
1796 {
1797 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1798 	struct page *page = NULL;
1799 	int alloc_flags;
1800 	unsigned long pages_reclaimed = 0;
1801 	unsigned long did_some_progress;
1802 	struct task_struct *p = current;
1803 
1804 	/*
1805 	 * In the slowpath, we sanity check order to avoid ever trying to
1806 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1807 	 * be using allocators in order of preference for an area that is
1808 	 * too large.
1809 	 */
1810 	if (order >= MAX_ORDER) {
1811 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1812 		return NULL;
1813 	}
1814 
1815 	/*
1816 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1817 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1818 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1819 	 * using a larger set of nodes after it has established that the
1820 	 * allowed per node queues are empty and that nodes are
1821 	 * over allocated.
1822 	 */
1823 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1824 		goto nopage;
1825 
1826 restart:
1827 	wake_all_kswapd(order, zonelist, high_zoneidx);
1828 
1829 	/*
1830 	 * OK, we're below the kswapd watermark and have kicked background
1831 	 * reclaim. Now things get more complex, so set up alloc_flags according
1832 	 * to how we want to proceed.
1833 	 */
1834 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1835 
1836 	/* This is the last chance, in general, before the goto nopage. */
1837 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1838 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1839 			preferred_zone, migratetype);
1840 	if (page)
1841 		goto got_pg;
1842 
1843 rebalance:
1844 	/* Allocate without watermarks if the context allows */
1845 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1846 		page = __alloc_pages_high_priority(gfp_mask, order,
1847 				zonelist, high_zoneidx, nodemask,
1848 				preferred_zone, migratetype);
1849 		if (page)
1850 			goto got_pg;
1851 	}
1852 
1853 	/* Atomic allocations - we can't balance anything */
1854 	if (!wait)
1855 		goto nopage;
1856 
1857 	/* Avoid recursion of direct reclaim */
1858 	if (p->flags & PF_MEMALLOC)
1859 		goto nopage;
1860 
1861 	/* Avoid allocations with no watermarks from looping endlessly */
1862 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1863 		goto nopage;
1864 
1865 	/* Try direct reclaim and then allocating */
1866 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1867 					zonelist, high_zoneidx,
1868 					nodemask,
1869 					alloc_flags, preferred_zone,
1870 					migratetype, &did_some_progress);
1871 	if (page)
1872 		goto got_pg;
1873 
1874 	/*
1875 	 * If we failed to make any progress reclaiming, then we are
1876 	 * running out of options and have to consider going OOM
1877 	 */
1878 	if (!did_some_progress) {
1879 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1880 			if (oom_killer_disabled)
1881 				goto nopage;
1882 			page = __alloc_pages_may_oom(gfp_mask, order,
1883 					zonelist, high_zoneidx,
1884 					nodemask, preferred_zone,
1885 					migratetype);
1886 			if (page)
1887 				goto got_pg;
1888 
1889 			/*
1890 			 * The OOM killer does not trigger for high-order
1891 			 * ~__GFP_NOFAIL allocations so if no progress is being
1892 			 * made, there are no other options and retrying is
1893 			 * unlikely to help.
1894 			 */
1895 			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1896 						!(gfp_mask & __GFP_NOFAIL))
1897 				goto nopage;
1898 
1899 			goto restart;
1900 		}
1901 	}
1902 
1903 	/* Check if we should retry the allocation */
1904 	pages_reclaimed += did_some_progress;
1905 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1906 		/* Wait for some write requests to complete then retry */
1907 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1908 		goto rebalance;
1909 	}
1910 
1911 nopage:
1912 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1913 		printk(KERN_WARNING "%s: page allocation failure."
1914 			" order:%d, mode:0x%x\n",
1915 			p->comm, order, gfp_mask);
1916 		dump_stack();
1917 		show_mem();
1918 	}
1919 	return page;
1920 got_pg:
1921 	if (kmemcheck_enabled)
1922 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1923 	return page;
1924 
1925 }
1926 
1927 /*
1928  * This is the 'heart' of the zoned buddy allocator.
1929  */
1930 struct page *
1931 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1932 			struct zonelist *zonelist, nodemask_t *nodemask)
1933 {
1934 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1935 	struct zone *preferred_zone;
1936 	struct page *page;
1937 	int migratetype = allocflags_to_migratetype(gfp_mask);
1938 
1939 	gfp_mask &= gfp_allowed_mask;
1940 
1941 	lockdep_trace_alloc(gfp_mask);
1942 
1943 	might_sleep_if(gfp_mask & __GFP_WAIT);
1944 
1945 	if (should_fail_alloc_page(gfp_mask, order))
1946 		return NULL;
1947 
1948 	/*
1949 	 * Check the zones suitable for the gfp_mask contain at least one
1950 	 * valid zone. It's possible to have an empty zonelist as a result
1951 	 * of GFP_THISNODE and a memoryless node
1952 	 */
1953 	if (unlikely(!zonelist->_zonerefs->zone))
1954 		return NULL;
1955 
1956 	/* The preferred zone is used for statistics later */
1957 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1958 	if (!preferred_zone)
1959 		return NULL;
1960 
1961 	/* First allocation attempt */
1962 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1963 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1964 			preferred_zone, migratetype);
1965 	if (unlikely(!page))
1966 		page = __alloc_pages_slowpath(gfp_mask, order,
1967 				zonelist, high_zoneidx, nodemask,
1968 				preferred_zone, migratetype);
1969 
1970 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1971 	return page;
1972 }
1973 EXPORT_SYMBOL(__alloc_pages_nodemask);
1974 
1975 /*
1976  * Common helper functions.
1977  */
1978 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1979 {
1980 	struct page *page;
1981 
1982 	/*
1983 	 * __get_free_pages() returns a 32-bit address, which cannot represent
1984 	 * a highmem page
1985 	 */
1986 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1987 
1988 	page = alloc_pages(gfp_mask, order);
1989 	if (!page)
1990 		return 0;
1991 	return (unsigned long) page_address(page);
1992 }
1993 EXPORT_SYMBOL(__get_free_pages);
1994 
1995 unsigned long get_zeroed_page(gfp_t gfp_mask)
1996 {
1997 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1998 }
1999 EXPORT_SYMBOL(get_zeroed_page);
2000 
2001 void __pagevec_free(struct pagevec *pvec)
2002 {
2003 	int i = pagevec_count(pvec);
2004 
2005 	while (--i >= 0) {
2006 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2007 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2008 	}
2009 }
2010 
2011 void __free_pages(struct page *page, unsigned int order)
2012 {
2013 	if (put_page_testzero(page)) {
2014 		trace_mm_page_free_direct(page, order);
2015 		if (order == 0)
2016 			free_hot_page(page);
2017 		else
2018 			__free_pages_ok(page, order);
2019 	}
2020 }
2021 
2022 EXPORT_SYMBOL(__free_pages);
2023 
2024 void free_pages(unsigned long addr, unsigned int order)
2025 {
2026 	if (addr != 0) {
2027 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2028 		__free_pages(virt_to_page((void *)addr), order);
2029 	}
2030 }
2031 
2032 EXPORT_SYMBOL(free_pages);
2033 
2034 /**
2035  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2036  * @size: the number of bytes to allocate
2037  * @gfp_mask: GFP flags for the allocation
2038  *
2039  * This function is similar to alloc_pages(), except that it allocates the
2040  * minimum number of pages to satisfy the request.  alloc_pages() can only
2041  * allocate memory in power-of-two pages.
2042  *
2043  * This function is also limited by MAX_ORDER.
2044  *
2045  * Memory allocated by this function must be released by free_pages_exact().
2046  */
2047 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2048 {
2049 	unsigned int order = get_order(size);
2050 	unsigned long addr;
2051 
2052 	addr = __get_free_pages(gfp_mask, order);
2053 	if (addr) {
2054 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2055 		unsigned long used = addr + PAGE_ALIGN(size);
2056 
2057 		split_page(virt_to_page((void *)addr), order);
2058 		while (used < alloc_end) {
2059 			free_page(used);
2060 			used += PAGE_SIZE;
2061 		}
2062 	}
2063 
2064 	return (void *)addr;
2065 }
2066 EXPORT_SYMBOL(alloc_pages_exact);
2067 
2068 /**
2069  * free_pages_exact - release memory allocated via alloc_pages_exact()
2070  * @virt: the value returned by alloc_pages_exact.
2071  * @size: size of allocation, same value as passed to alloc_pages_exact().
2072  *
2073  * Release the memory allocated by a previous call to alloc_pages_exact.
2074  */
2075 void free_pages_exact(void *virt, size_t size)
2076 {
2077 	unsigned long addr = (unsigned long)virt;
2078 	unsigned long end = addr + PAGE_ALIGN(size);
2079 
2080 	while (addr < end) {
2081 		free_page(addr);
2082 		addr += PAGE_SIZE;
2083 	}
2084 }
2085 EXPORT_SYMBOL(free_pages_exact);
2086 
2087 static unsigned int nr_free_zone_pages(int offset)
2088 {
2089 	struct zoneref *z;
2090 	struct zone *zone;
2091 
2092 	/* Just pick one node, since fallback list is circular */
2093 	unsigned int sum = 0;
2094 
2095 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2096 
2097 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2098 		unsigned long size = zone->present_pages;
2099 		unsigned long high = high_wmark_pages(zone);
2100 		if (size > high)
2101 			sum += size - high;
2102 	}
2103 
2104 	return sum;
2105 }
2106 
2107 /*
2108  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2109  */
2110 unsigned int nr_free_buffer_pages(void)
2111 {
2112 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2113 }
2114 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2115 
2116 /*
2117  * Amount of free RAM allocatable within all zones
2118  */
2119 unsigned int nr_free_pagecache_pages(void)
2120 {
2121 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2122 }
2123 
2124 static inline void show_node(struct zone *zone)
2125 {
2126 	if (NUMA_BUILD)
2127 		printk("Node %d ", zone_to_nid(zone));
2128 }
2129 
2130 void si_meminfo(struct sysinfo *val)
2131 {
2132 	val->totalram = totalram_pages;
2133 	val->sharedram = 0;
2134 	val->freeram = global_page_state(NR_FREE_PAGES);
2135 	val->bufferram = nr_blockdev_pages();
2136 	val->totalhigh = totalhigh_pages;
2137 	val->freehigh = nr_free_highpages();
2138 	val->mem_unit = PAGE_SIZE;
2139 }
2140 
2141 EXPORT_SYMBOL(si_meminfo);
2142 
2143 #ifdef CONFIG_NUMA
2144 void si_meminfo_node(struct sysinfo *val, int nid)
2145 {
2146 	pg_data_t *pgdat = NODE_DATA(nid);
2147 
2148 	val->totalram = pgdat->node_present_pages;
2149 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2150 #ifdef CONFIG_HIGHMEM
2151 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2152 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2153 			NR_FREE_PAGES);
2154 #else
2155 	val->totalhigh = 0;
2156 	val->freehigh = 0;
2157 #endif
2158 	val->mem_unit = PAGE_SIZE;
2159 }
2160 #endif
2161 
2162 #define K(x) ((x) << (PAGE_SHIFT-10))
2163 
2164 /*
2165  * Show free area list (used inside shift_scroll-lock stuff)
2166  * We also calculate the percentage fragmentation. We do this by counting the
2167  * memory on each free list with the exception of the first item on the list.
2168  */
2169 void show_free_areas(void)
2170 {
2171 	int cpu;
2172 	struct zone *zone;
2173 
2174 	for_each_populated_zone(zone) {
2175 		show_node(zone);
2176 		printk("%s per-cpu:\n", zone->name);
2177 
2178 		for_each_online_cpu(cpu) {
2179 			struct per_cpu_pageset *pageset;
2180 
2181 			pageset = zone_pcp(zone, cpu);
2182 
2183 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2184 			       cpu, pageset->pcp.high,
2185 			       pageset->pcp.batch, pageset->pcp.count);
2186 		}
2187 	}
2188 
2189 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2190 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2191 		" unevictable:%lu"
2192 		" dirty:%lu writeback:%lu unstable:%lu\n"
2193 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2194 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2195 		global_page_state(NR_ACTIVE_ANON),
2196 		global_page_state(NR_INACTIVE_ANON),
2197 		global_page_state(NR_ISOLATED_ANON),
2198 		global_page_state(NR_ACTIVE_FILE),
2199 		global_page_state(NR_INACTIVE_FILE),
2200 		global_page_state(NR_ISOLATED_FILE),
2201 		global_page_state(NR_UNEVICTABLE),
2202 		global_page_state(NR_FILE_DIRTY),
2203 		global_page_state(NR_WRITEBACK),
2204 		global_page_state(NR_UNSTABLE_NFS),
2205 		global_page_state(NR_FREE_PAGES),
2206 		global_page_state(NR_SLAB_RECLAIMABLE),
2207 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2208 		global_page_state(NR_FILE_MAPPED),
2209 		global_page_state(NR_SHMEM),
2210 		global_page_state(NR_PAGETABLE),
2211 		global_page_state(NR_BOUNCE));
2212 
2213 	for_each_populated_zone(zone) {
2214 		int i;
2215 
2216 		show_node(zone);
2217 		printk("%s"
2218 			" free:%lukB"
2219 			" min:%lukB"
2220 			" low:%lukB"
2221 			" high:%lukB"
2222 			" active_anon:%lukB"
2223 			" inactive_anon:%lukB"
2224 			" active_file:%lukB"
2225 			" inactive_file:%lukB"
2226 			" unevictable:%lukB"
2227 			" isolated(anon):%lukB"
2228 			" isolated(file):%lukB"
2229 			" present:%lukB"
2230 			" mlocked:%lukB"
2231 			" dirty:%lukB"
2232 			" writeback:%lukB"
2233 			" mapped:%lukB"
2234 			" shmem:%lukB"
2235 			" slab_reclaimable:%lukB"
2236 			" slab_unreclaimable:%lukB"
2237 			" kernel_stack:%lukB"
2238 			" pagetables:%lukB"
2239 			" unstable:%lukB"
2240 			" bounce:%lukB"
2241 			" writeback_tmp:%lukB"
2242 			" pages_scanned:%lu"
2243 			" all_unreclaimable? %s"
2244 			"\n",
2245 			zone->name,
2246 			K(zone_page_state(zone, NR_FREE_PAGES)),
2247 			K(min_wmark_pages(zone)),
2248 			K(low_wmark_pages(zone)),
2249 			K(high_wmark_pages(zone)),
2250 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2251 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2252 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2253 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2254 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2255 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2256 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2257 			K(zone->present_pages),
2258 			K(zone_page_state(zone, NR_MLOCK)),
2259 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2260 			K(zone_page_state(zone, NR_WRITEBACK)),
2261 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2262 			K(zone_page_state(zone, NR_SHMEM)),
2263 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2264 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2265 			zone_page_state(zone, NR_KERNEL_STACK) *
2266 				THREAD_SIZE / 1024,
2267 			K(zone_page_state(zone, NR_PAGETABLE)),
2268 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2269 			K(zone_page_state(zone, NR_BOUNCE)),
2270 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2271 			zone->pages_scanned,
2272 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2273 			);
2274 		printk("lowmem_reserve[]:");
2275 		for (i = 0; i < MAX_NR_ZONES; i++)
2276 			printk(" %lu", zone->lowmem_reserve[i]);
2277 		printk("\n");
2278 	}
2279 
2280 	for_each_populated_zone(zone) {
2281  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2282 
2283 		show_node(zone);
2284 		printk("%s: ", zone->name);
2285 
2286 		spin_lock_irqsave(&zone->lock, flags);
2287 		for (order = 0; order < MAX_ORDER; order++) {
2288 			nr[order] = zone->free_area[order].nr_free;
2289 			total += nr[order] << order;
2290 		}
2291 		spin_unlock_irqrestore(&zone->lock, flags);
2292 		for (order = 0; order < MAX_ORDER; order++)
2293 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2294 		printk("= %lukB\n", K(total));
2295 	}
2296 
2297 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2298 
2299 	show_swap_cache_info();
2300 }
2301 
2302 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2303 {
2304 	zoneref->zone = zone;
2305 	zoneref->zone_idx = zone_idx(zone);
2306 }
2307 
2308 /*
2309  * Builds allocation fallback zone lists.
2310  *
2311  * Add all populated zones of a node to the zonelist.
2312  */
2313 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2314 				int nr_zones, enum zone_type zone_type)
2315 {
2316 	struct zone *zone;
2317 
2318 	BUG_ON(zone_type >= MAX_NR_ZONES);
2319 	zone_type++;
2320 
2321 	do {
2322 		zone_type--;
2323 		zone = pgdat->node_zones + zone_type;
2324 		if (populated_zone(zone)) {
2325 			zoneref_set_zone(zone,
2326 				&zonelist->_zonerefs[nr_zones++]);
2327 			check_highest_zone(zone_type);
2328 		}
2329 
2330 	} while (zone_type);
2331 	return nr_zones;
2332 }
2333 
2334 
2335 /*
2336  *  zonelist_order:
2337  *  0 = automatic detection of better ordering.
2338  *  1 = order by ([node] distance, -zonetype)
2339  *  2 = order by (-zonetype, [node] distance)
2340  *
2341  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2342  *  the same zonelist. So only NUMA can configure this param.
2343  */
2344 #define ZONELIST_ORDER_DEFAULT  0
2345 #define ZONELIST_ORDER_NODE     1
2346 #define ZONELIST_ORDER_ZONE     2
2347 
2348 /* zonelist order in the kernel.
2349  * set_zonelist_order() will set this to NODE or ZONE.
2350  */
2351 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2352 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2353 
2354 
2355 #ifdef CONFIG_NUMA
2356 /* The value user specified ....changed by config */
2357 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2358 /* string for sysctl */
2359 #define NUMA_ZONELIST_ORDER_LEN	16
2360 char numa_zonelist_order[16] = "default";
2361 
2362 /*
2363  * interface for configure zonelist ordering.
2364  * command line option "numa_zonelist_order"
2365  *	= "[dD]efault	- default, automatic configuration.
2366  *	= "[nN]ode 	- order by node locality, then by zone within node
2367  *	= "[zZ]one      - order by zone, then by locality within zone
2368  */
2369 
2370 static int __parse_numa_zonelist_order(char *s)
2371 {
2372 	if (*s == 'd' || *s == 'D') {
2373 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2374 	} else if (*s == 'n' || *s == 'N') {
2375 		user_zonelist_order = ZONELIST_ORDER_NODE;
2376 	} else if (*s == 'z' || *s == 'Z') {
2377 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2378 	} else {
2379 		printk(KERN_WARNING
2380 			"Ignoring invalid numa_zonelist_order value:  "
2381 			"%s\n", s);
2382 		return -EINVAL;
2383 	}
2384 	return 0;
2385 }
2386 
2387 static __init int setup_numa_zonelist_order(char *s)
2388 {
2389 	if (s)
2390 		return __parse_numa_zonelist_order(s);
2391 	return 0;
2392 }
2393 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2394 
2395 /*
2396  * sysctl handler for numa_zonelist_order
2397  */
2398 int numa_zonelist_order_handler(ctl_table *table, int write,
2399 		void __user *buffer, size_t *length,
2400 		loff_t *ppos)
2401 {
2402 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2403 	int ret;
2404 
2405 	if (write)
2406 		strncpy(saved_string, (char*)table->data,
2407 			NUMA_ZONELIST_ORDER_LEN);
2408 	ret = proc_dostring(table, write, buffer, length, ppos);
2409 	if (ret)
2410 		return ret;
2411 	if (write) {
2412 		int oldval = user_zonelist_order;
2413 		if (__parse_numa_zonelist_order((char*)table->data)) {
2414 			/*
2415 			 * bogus value.  restore saved string
2416 			 */
2417 			strncpy((char*)table->data, saved_string,
2418 				NUMA_ZONELIST_ORDER_LEN);
2419 			user_zonelist_order = oldval;
2420 		} else if (oldval != user_zonelist_order)
2421 			build_all_zonelists();
2422 	}
2423 	return 0;
2424 }
2425 
2426 
2427 #define MAX_NODE_LOAD (nr_online_nodes)
2428 static int node_load[MAX_NUMNODES];
2429 
2430 /**
2431  * find_next_best_node - find the next node that should appear in a given node's fallback list
2432  * @node: node whose fallback list we're appending
2433  * @used_node_mask: nodemask_t of already used nodes
2434  *
2435  * We use a number of factors to determine which is the next node that should
2436  * appear on a given node's fallback list.  The node should not have appeared
2437  * already in @node's fallback list, and it should be the next closest node
2438  * according to the distance array (which contains arbitrary distance values
2439  * from each node to each node in the system), and should also prefer nodes
2440  * with no CPUs, since presumably they'll have very little allocation pressure
2441  * on them otherwise.
2442  * It returns -1 if no node is found.
2443  */
2444 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2445 {
2446 	int n, val;
2447 	int min_val = INT_MAX;
2448 	int best_node = -1;
2449 	const struct cpumask *tmp = cpumask_of_node(0);
2450 
2451 	/* Use the local node if we haven't already */
2452 	if (!node_isset(node, *used_node_mask)) {
2453 		node_set(node, *used_node_mask);
2454 		return node;
2455 	}
2456 
2457 	for_each_node_state(n, N_HIGH_MEMORY) {
2458 
2459 		/* Don't want a node to appear more than once */
2460 		if (node_isset(n, *used_node_mask))
2461 			continue;
2462 
2463 		/* Use the distance array to find the distance */
2464 		val = node_distance(node, n);
2465 
2466 		/* Penalize nodes under us ("prefer the next node") */
2467 		val += (n < node);
2468 
2469 		/* Give preference to headless and unused nodes */
2470 		tmp = cpumask_of_node(n);
2471 		if (!cpumask_empty(tmp))
2472 			val += PENALTY_FOR_NODE_WITH_CPUS;
2473 
2474 		/* Slight preference for less loaded node */
2475 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2476 		val += node_load[n];
2477 
2478 		if (val < min_val) {
2479 			min_val = val;
2480 			best_node = n;
2481 		}
2482 	}
2483 
2484 	if (best_node >= 0)
2485 		node_set(best_node, *used_node_mask);
2486 
2487 	return best_node;
2488 }
2489 
2490 
2491 /*
2492  * Build zonelists ordered by node and zones within node.
2493  * This results in maximum locality--normal zone overflows into local
2494  * DMA zone, if any--but risks exhausting DMA zone.
2495  */
2496 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2497 {
2498 	int j;
2499 	struct zonelist *zonelist;
2500 
2501 	zonelist = &pgdat->node_zonelists[0];
2502 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2503 		;
2504 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2505 							MAX_NR_ZONES - 1);
2506 	zonelist->_zonerefs[j].zone = NULL;
2507 	zonelist->_zonerefs[j].zone_idx = 0;
2508 }
2509 
2510 /*
2511  * Build gfp_thisnode zonelists
2512  */
2513 static void build_thisnode_zonelists(pg_data_t *pgdat)
2514 {
2515 	int j;
2516 	struct zonelist *zonelist;
2517 
2518 	zonelist = &pgdat->node_zonelists[1];
2519 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2520 	zonelist->_zonerefs[j].zone = NULL;
2521 	zonelist->_zonerefs[j].zone_idx = 0;
2522 }
2523 
2524 /*
2525  * Build zonelists ordered by zone and nodes within zones.
2526  * This results in conserving DMA zone[s] until all Normal memory is
2527  * exhausted, but results in overflowing to remote node while memory
2528  * may still exist in local DMA zone.
2529  */
2530 static int node_order[MAX_NUMNODES];
2531 
2532 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2533 {
2534 	int pos, j, node;
2535 	int zone_type;		/* needs to be signed */
2536 	struct zone *z;
2537 	struct zonelist *zonelist;
2538 
2539 	zonelist = &pgdat->node_zonelists[0];
2540 	pos = 0;
2541 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2542 		for (j = 0; j < nr_nodes; j++) {
2543 			node = node_order[j];
2544 			z = &NODE_DATA(node)->node_zones[zone_type];
2545 			if (populated_zone(z)) {
2546 				zoneref_set_zone(z,
2547 					&zonelist->_zonerefs[pos++]);
2548 				check_highest_zone(zone_type);
2549 			}
2550 		}
2551 	}
2552 	zonelist->_zonerefs[pos].zone = NULL;
2553 	zonelist->_zonerefs[pos].zone_idx = 0;
2554 }
2555 
2556 static int default_zonelist_order(void)
2557 {
2558 	int nid, zone_type;
2559 	unsigned long low_kmem_size,total_size;
2560 	struct zone *z;
2561 	int average_size;
2562 	/*
2563          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2564 	 * If they are really small and used heavily, the system can fall
2565 	 * into OOM very easily.
2566 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2567 	 */
2568 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2569 	low_kmem_size = 0;
2570 	total_size = 0;
2571 	for_each_online_node(nid) {
2572 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2573 			z = &NODE_DATA(nid)->node_zones[zone_type];
2574 			if (populated_zone(z)) {
2575 				if (zone_type < ZONE_NORMAL)
2576 					low_kmem_size += z->present_pages;
2577 				total_size += z->present_pages;
2578 			}
2579 		}
2580 	}
2581 	if (!low_kmem_size ||  /* there are no DMA area. */
2582 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2583 		return ZONELIST_ORDER_NODE;
2584 	/*
2585 	 * look into each node's config.
2586   	 * If there is a node whose DMA/DMA32 memory is very big area on
2587  	 * local memory, NODE_ORDER may be suitable.
2588          */
2589 	average_size = total_size /
2590 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2591 	for_each_online_node(nid) {
2592 		low_kmem_size = 0;
2593 		total_size = 0;
2594 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2595 			z = &NODE_DATA(nid)->node_zones[zone_type];
2596 			if (populated_zone(z)) {
2597 				if (zone_type < ZONE_NORMAL)
2598 					low_kmem_size += z->present_pages;
2599 				total_size += z->present_pages;
2600 			}
2601 		}
2602 		if (low_kmem_size &&
2603 		    total_size > average_size && /* ignore small node */
2604 		    low_kmem_size > total_size * 70/100)
2605 			return ZONELIST_ORDER_NODE;
2606 	}
2607 	return ZONELIST_ORDER_ZONE;
2608 }
2609 
2610 static void set_zonelist_order(void)
2611 {
2612 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2613 		current_zonelist_order = default_zonelist_order();
2614 	else
2615 		current_zonelist_order = user_zonelist_order;
2616 }
2617 
2618 static void build_zonelists(pg_data_t *pgdat)
2619 {
2620 	int j, node, load;
2621 	enum zone_type i;
2622 	nodemask_t used_mask;
2623 	int local_node, prev_node;
2624 	struct zonelist *zonelist;
2625 	int order = current_zonelist_order;
2626 
2627 	/* initialize zonelists */
2628 	for (i = 0; i < MAX_ZONELISTS; i++) {
2629 		zonelist = pgdat->node_zonelists + i;
2630 		zonelist->_zonerefs[0].zone = NULL;
2631 		zonelist->_zonerefs[0].zone_idx = 0;
2632 	}
2633 
2634 	/* NUMA-aware ordering of nodes */
2635 	local_node = pgdat->node_id;
2636 	load = nr_online_nodes;
2637 	prev_node = local_node;
2638 	nodes_clear(used_mask);
2639 
2640 	memset(node_order, 0, sizeof(node_order));
2641 	j = 0;
2642 
2643 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2644 		int distance = node_distance(local_node, node);
2645 
2646 		/*
2647 		 * If another node is sufficiently far away then it is better
2648 		 * to reclaim pages in a zone before going off node.
2649 		 */
2650 		if (distance > RECLAIM_DISTANCE)
2651 			zone_reclaim_mode = 1;
2652 
2653 		/*
2654 		 * We don't want to pressure a particular node.
2655 		 * So adding penalty to the first node in same
2656 		 * distance group to make it round-robin.
2657 		 */
2658 		if (distance != node_distance(local_node, prev_node))
2659 			node_load[node] = load;
2660 
2661 		prev_node = node;
2662 		load--;
2663 		if (order == ZONELIST_ORDER_NODE)
2664 			build_zonelists_in_node_order(pgdat, node);
2665 		else
2666 			node_order[j++] = node;	/* remember order */
2667 	}
2668 
2669 	if (order == ZONELIST_ORDER_ZONE) {
2670 		/* calculate node order -- i.e., DMA last! */
2671 		build_zonelists_in_zone_order(pgdat, j);
2672 	}
2673 
2674 	build_thisnode_zonelists(pgdat);
2675 }
2676 
2677 /* Construct the zonelist performance cache - see further mmzone.h */
2678 static void build_zonelist_cache(pg_data_t *pgdat)
2679 {
2680 	struct zonelist *zonelist;
2681 	struct zonelist_cache *zlc;
2682 	struct zoneref *z;
2683 
2684 	zonelist = &pgdat->node_zonelists[0];
2685 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2686 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2687 	for (z = zonelist->_zonerefs; z->zone; z++)
2688 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2689 }
2690 
2691 
2692 #else	/* CONFIG_NUMA */
2693 
2694 static void set_zonelist_order(void)
2695 {
2696 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2697 }
2698 
2699 static void build_zonelists(pg_data_t *pgdat)
2700 {
2701 	int node, local_node;
2702 	enum zone_type j;
2703 	struct zonelist *zonelist;
2704 
2705 	local_node = pgdat->node_id;
2706 
2707 	zonelist = &pgdat->node_zonelists[0];
2708 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2709 
2710 	/*
2711 	 * Now we build the zonelist so that it contains the zones
2712 	 * of all the other nodes.
2713 	 * We don't want to pressure a particular node, so when
2714 	 * building the zones for node N, we make sure that the
2715 	 * zones coming right after the local ones are those from
2716 	 * node N+1 (modulo N)
2717 	 */
2718 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2719 		if (!node_online(node))
2720 			continue;
2721 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2722 							MAX_NR_ZONES - 1);
2723 	}
2724 	for (node = 0; node < local_node; node++) {
2725 		if (!node_online(node))
2726 			continue;
2727 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2728 							MAX_NR_ZONES - 1);
2729 	}
2730 
2731 	zonelist->_zonerefs[j].zone = NULL;
2732 	zonelist->_zonerefs[j].zone_idx = 0;
2733 }
2734 
2735 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2736 static void build_zonelist_cache(pg_data_t *pgdat)
2737 {
2738 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2739 }
2740 
2741 #endif	/* CONFIG_NUMA */
2742 
2743 /* return values int ....just for stop_machine() */
2744 static int __build_all_zonelists(void *dummy)
2745 {
2746 	int nid;
2747 
2748 #ifdef CONFIG_NUMA
2749 	memset(node_load, 0, sizeof(node_load));
2750 #endif
2751 	for_each_online_node(nid) {
2752 		pg_data_t *pgdat = NODE_DATA(nid);
2753 
2754 		build_zonelists(pgdat);
2755 		build_zonelist_cache(pgdat);
2756 	}
2757 	return 0;
2758 }
2759 
2760 void build_all_zonelists(void)
2761 {
2762 	set_zonelist_order();
2763 
2764 	if (system_state == SYSTEM_BOOTING) {
2765 		__build_all_zonelists(NULL);
2766 		mminit_verify_zonelist();
2767 		cpuset_init_current_mems_allowed();
2768 	} else {
2769 		/* we have to stop all cpus to guarantee there is no user
2770 		   of zonelist */
2771 		stop_machine(__build_all_zonelists, NULL, NULL);
2772 		/* cpuset refresh routine should be here */
2773 	}
2774 	vm_total_pages = nr_free_pagecache_pages();
2775 	/*
2776 	 * Disable grouping by mobility if the number of pages in the
2777 	 * system is too low to allow the mechanism to work. It would be
2778 	 * more accurate, but expensive to check per-zone. This check is
2779 	 * made on memory-hotadd so a system can start with mobility
2780 	 * disabled and enable it later
2781 	 */
2782 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2783 		page_group_by_mobility_disabled = 1;
2784 	else
2785 		page_group_by_mobility_disabled = 0;
2786 
2787 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2788 		"Total pages: %ld\n",
2789 			nr_online_nodes,
2790 			zonelist_order_name[current_zonelist_order],
2791 			page_group_by_mobility_disabled ? "off" : "on",
2792 			vm_total_pages);
2793 #ifdef CONFIG_NUMA
2794 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2795 #endif
2796 }
2797 
2798 /*
2799  * Helper functions to size the waitqueue hash table.
2800  * Essentially these want to choose hash table sizes sufficiently
2801  * large so that collisions trying to wait on pages are rare.
2802  * But in fact, the number of active page waitqueues on typical
2803  * systems is ridiculously low, less than 200. So this is even
2804  * conservative, even though it seems large.
2805  *
2806  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2807  * waitqueues, i.e. the size of the waitq table given the number of pages.
2808  */
2809 #define PAGES_PER_WAITQUEUE	256
2810 
2811 #ifndef CONFIG_MEMORY_HOTPLUG
2812 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2813 {
2814 	unsigned long size = 1;
2815 
2816 	pages /= PAGES_PER_WAITQUEUE;
2817 
2818 	while (size < pages)
2819 		size <<= 1;
2820 
2821 	/*
2822 	 * Once we have dozens or even hundreds of threads sleeping
2823 	 * on IO we've got bigger problems than wait queue collision.
2824 	 * Limit the size of the wait table to a reasonable size.
2825 	 */
2826 	size = min(size, 4096UL);
2827 
2828 	return max(size, 4UL);
2829 }
2830 #else
2831 /*
2832  * A zone's size might be changed by hot-add, so it is not possible to determine
2833  * a suitable size for its wait_table.  So we use the maximum size now.
2834  *
2835  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2836  *
2837  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2838  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2839  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2840  *
2841  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2842  * or more by the traditional way. (See above).  It equals:
2843  *
2844  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2845  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2846  *    powerpc (64K page size)             : =  (32G +16M)byte.
2847  */
2848 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2849 {
2850 	return 4096UL;
2851 }
2852 #endif
2853 
2854 /*
2855  * This is an integer logarithm so that shifts can be used later
2856  * to extract the more random high bits from the multiplicative
2857  * hash function before the remainder is taken.
2858  */
2859 static inline unsigned long wait_table_bits(unsigned long size)
2860 {
2861 	return ffz(~size);
2862 }
2863 
2864 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2865 
2866 /*
2867  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2868  * of blocks reserved is based on min_wmark_pages(zone). The memory within
2869  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2870  * higher will lead to a bigger reserve which will get freed as contiguous
2871  * blocks as reclaim kicks in
2872  */
2873 static void setup_zone_migrate_reserve(struct zone *zone)
2874 {
2875 	unsigned long start_pfn, pfn, end_pfn;
2876 	struct page *page;
2877 	unsigned long block_migratetype;
2878 	int reserve;
2879 
2880 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2881 	start_pfn = zone->zone_start_pfn;
2882 	end_pfn = start_pfn + zone->spanned_pages;
2883 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2884 							pageblock_order;
2885 
2886 	/*
2887 	 * Reserve blocks are generally in place to help high-order atomic
2888 	 * allocations that are short-lived. A min_free_kbytes value that
2889 	 * would result in more than 2 reserve blocks for atomic allocations
2890 	 * is assumed to be in place to help anti-fragmentation for the
2891 	 * future allocation of hugepages at runtime.
2892 	 */
2893 	reserve = min(2, reserve);
2894 
2895 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2896 		if (!pfn_valid(pfn))
2897 			continue;
2898 		page = pfn_to_page(pfn);
2899 
2900 		/* Watch out for overlapping nodes */
2901 		if (page_to_nid(page) != zone_to_nid(zone))
2902 			continue;
2903 
2904 		/* Blocks with reserved pages will never free, skip them. */
2905 		if (PageReserved(page))
2906 			continue;
2907 
2908 		block_migratetype = get_pageblock_migratetype(page);
2909 
2910 		/* If this block is reserved, account for it */
2911 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2912 			reserve--;
2913 			continue;
2914 		}
2915 
2916 		/* Suitable for reserving if this block is movable */
2917 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2918 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2919 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2920 			reserve--;
2921 			continue;
2922 		}
2923 
2924 		/*
2925 		 * If the reserve is met and this is a previous reserved block,
2926 		 * take it back
2927 		 */
2928 		if (block_migratetype == MIGRATE_RESERVE) {
2929 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2930 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2931 		}
2932 	}
2933 }
2934 
2935 /*
2936  * Initially all pages are reserved - free ones are freed
2937  * up by free_all_bootmem() once the early boot process is
2938  * done. Non-atomic initialization, single-pass.
2939  */
2940 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2941 		unsigned long start_pfn, enum memmap_context context)
2942 {
2943 	struct page *page;
2944 	unsigned long end_pfn = start_pfn + size;
2945 	unsigned long pfn;
2946 	struct zone *z;
2947 
2948 	if (highest_memmap_pfn < end_pfn - 1)
2949 		highest_memmap_pfn = end_pfn - 1;
2950 
2951 	z = &NODE_DATA(nid)->node_zones[zone];
2952 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2953 		/*
2954 		 * There can be holes in boot-time mem_map[]s
2955 		 * handed to this function.  They do not
2956 		 * exist on hotplugged memory.
2957 		 */
2958 		if (context == MEMMAP_EARLY) {
2959 			if (!early_pfn_valid(pfn))
2960 				continue;
2961 			if (!early_pfn_in_nid(pfn, nid))
2962 				continue;
2963 		}
2964 		page = pfn_to_page(pfn);
2965 		set_page_links(page, zone, nid, pfn);
2966 		mminit_verify_page_links(page, zone, nid, pfn);
2967 		init_page_count(page);
2968 		reset_page_mapcount(page);
2969 		SetPageReserved(page);
2970 		/*
2971 		 * Mark the block movable so that blocks are reserved for
2972 		 * movable at startup. This will force kernel allocations
2973 		 * to reserve their blocks rather than leaking throughout
2974 		 * the address space during boot when many long-lived
2975 		 * kernel allocations are made. Later some blocks near
2976 		 * the start are marked MIGRATE_RESERVE by
2977 		 * setup_zone_migrate_reserve()
2978 		 *
2979 		 * bitmap is created for zone's valid pfn range. but memmap
2980 		 * can be created for invalid pages (for alignment)
2981 		 * check here not to call set_pageblock_migratetype() against
2982 		 * pfn out of zone.
2983 		 */
2984 		if ((z->zone_start_pfn <= pfn)
2985 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2986 		    && !(pfn & (pageblock_nr_pages - 1)))
2987 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2988 
2989 		INIT_LIST_HEAD(&page->lru);
2990 #ifdef WANT_PAGE_VIRTUAL
2991 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2992 		if (!is_highmem_idx(zone))
2993 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2994 #endif
2995 	}
2996 }
2997 
2998 static void __meminit zone_init_free_lists(struct zone *zone)
2999 {
3000 	int order, t;
3001 	for_each_migratetype_order(order, t) {
3002 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3003 		zone->free_area[order].nr_free = 0;
3004 	}
3005 }
3006 
3007 #ifndef __HAVE_ARCH_MEMMAP_INIT
3008 #define memmap_init(size, nid, zone, start_pfn) \
3009 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3010 #endif
3011 
3012 static int zone_batchsize(struct zone *zone)
3013 {
3014 #ifdef CONFIG_MMU
3015 	int batch;
3016 
3017 	/*
3018 	 * The per-cpu-pages pools are set to around 1000th of the
3019 	 * size of the zone.  But no more than 1/2 of a meg.
3020 	 *
3021 	 * OK, so we don't know how big the cache is.  So guess.
3022 	 */
3023 	batch = zone->present_pages / 1024;
3024 	if (batch * PAGE_SIZE > 512 * 1024)
3025 		batch = (512 * 1024) / PAGE_SIZE;
3026 	batch /= 4;		/* We effectively *= 4 below */
3027 	if (batch < 1)
3028 		batch = 1;
3029 
3030 	/*
3031 	 * Clamp the batch to a 2^n - 1 value. Having a power
3032 	 * of 2 value was found to be more likely to have
3033 	 * suboptimal cache aliasing properties in some cases.
3034 	 *
3035 	 * For example if 2 tasks are alternately allocating
3036 	 * batches of pages, one task can end up with a lot
3037 	 * of pages of one half of the possible page colors
3038 	 * and the other with pages of the other colors.
3039 	 */
3040 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3041 
3042 	return batch;
3043 
3044 #else
3045 	/* The deferral and batching of frees should be suppressed under NOMMU
3046 	 * conditions.
3047 	 *
3048 	 * The problem is that NOMMU needs to be able to allocate large chunks
3049 	 * of contiguous memory as there's no hardware page translation to
3050 	 * assemble apparent contiguous memory from discontiguous pages.
3051 	 *
3052 	 * Queueing large contiguous runs of pages for batching, however,
3053 	 * causes the pages to actually be freed in smaller chunks.  As there
3054 	 * can be a significant delay between the individual batches being
3055 	 * recycled, this leads to the once large chunks of space being
3056 	 * fragmented and becoming unavailable for high-order allocations.
3057 	 */
3058 	return 0;
3059 #endif
3060 }
3061 
3062 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3063 {
3064 	struct per_cpu_pages *pcp;
3065 	int migratetype;
3066 
3067 	memset(p, 0, sizeof(*p));
3068 
3069 	pcp = &p->pcp;
3070 	pcp->count = 0;
3071 	pcp->high = 6 * batch;
3072 	pcp->batch = max(1UL, 1 * batch);
3073 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3074 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3075 }
3076 
3077 /*
3078  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3079  * to the value high for the pageset p.
3080  */
3081 
3082 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3083 				unsigned long high)
3084 {
3085 	struct per_cpu_pages *pcp;
3086 
3087 	pcp = &p->pcp;
3088 	pcp->high = high;
3089 	pcp->batch = max(1UL, high/4);
3090 	if ((high/4) > (PAGE_SHIFT * 8))
3091 		pcp->batch = PAGE_SHIFT * 8;
3092 }
3093 
3094 
3095 #ifdef CONFIG_NUMA
3096 /*
3097  * Boot pageset table. One per cpu which is going to be used for all
3098  * zones and all nodes. The parameters will be set in such a way
3099  * that an item put on a list will immediately be handed over to
3100  * the buddy list. This is safe since pageset manipulation is done
3101  * with interrupts disabled.
3102  *
3103  * Some NUMA counter updates may also be caught by the boot pagesets.
3104  *
3105  * The boot_pagesets must be kept even after bootup is complete for
3106  * unused processors and/or zones. They do play a role for bootstrapping
3107  * hotplugged processors.
3108  *
3109  * zoneinfo_show() and maybe other functions do
3110  * not check if the processor is online before following the pageset pointer.
3111  * Other parts of the kernel may not check if the zone is available.
3112  */
3113 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3114 
3115 /*
3116  * Dynamically allocate memory for the
3117  * per cpu pageset array in struct zone.
3118  */
3119 static int __cpuinit process_zones(int cpu)
3120 {
3121 	struct zone *zone, *dzone;
3122 	int node = cpu_to_node(cpu);
3123 
3124 	node_set_state(node, N_CPU);	/* this node has a cpu */
3125 
3126 	for_each_populated_zone(zone) {
3127 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3128 					 GFP_KERNEL, node);
3129 		if (!zone_pcp(zone, cpu))
3130 			goto bad;
3131 
3132 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3133 
3134 		if (percpu_pagelist_fraction)
3135 			setup_pagelist_highmark(zone_pcp(zone, cpu),
3136 			    (zone->present_pages / percpu_pagelist_fraction));
3137 	}
3138 
3139 	return 0;
3140 bad:
3141 	for_each_zone(dzone) {
3142 		if (!populated_zone(dzone))
3143 			continue;
3144 		if (dzone == zone)
3145 			break;
3146 		kfree(zone_pcp(dzone, cpu));
3147 		zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3148 	}
3149 	return -ENOMEM;
3150 }
3151 
3152 static inline void free_zone_pagesets(int cpu)
3153 {
3154 	struct zone *zone;
3155 
3156 	for_each_zone(zone) {
3157 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3158 
3159 		/* Free per_cpu_pageset if it is slab allocated */
3160 		if (pset != &boot_pageset[cpu])
3161 			kfree(pset);
3162 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3163 	}
3164 }
3165 
3166 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3167 		unsigned long action,
3168 		void *hcpu)
3169 {
3170 	int cpu = (long)hcpu;
3171 	int ret = NOTIFY_OK;
3172 
3173 	switch (action) {
3174 	case CPU_UP_PREPARE:
3175 	case CPU_UP_PREPARE_FROZEN:
3176 		if (process_zones(cpu))
3177 			ret = NOTIFY_BAD;
3178 		break;
3179 	case CPU_UP_CANCELED:
3180 	case CPU_UP_CANCELED_FROZEN:
3181 	case CPU_DEAD:
3182 	case CPU_DEAD_FROZEN:
3183 		free_zone_pagesets(cpu);
3184 		break;
3185 	default:
3186 		break;
3187 	}
3188 	return ret;
3189 }
3190 
3191 static struct notifier_block __cpuinitdata pageset_notifier =
3192 	{ &pageset_cpuup_callback, NULL, 0 };
3193 
3194 void __init setup_per_cpu_pageset(void)
3195 {
3196 	int err;
3197 
3198 	/* Initialize per_cpu_pageset for cpu 0.
3199 	 * A cpuup callback will do this for every cpu
3200 	 * as it comes online
3201 	 */
3202 	err = process_zones(smp_processor_id());
3203 	BUG_ON(err);
3204 	register_cpu_notifier(&pageset_notifier);
3205 }
3206 
3207 #endif
3208 
3209 static noinline __init_refok
3210 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3211 {
3212 	int i;
3213 	struct pglist_data *pgdat = zone->zone_pgdat;
3214 	size_t alloc_size;
3215 
3216 	/*
3217 	 * The per-page waitqueue mechanism uses hashed waitqueues
3218 	 * per zone.
3219 	 */
3220 	zone->wait_table_hash_nr_entries =
3221 		 wait_table_hash_nr_entries(zone_size_pages);
3222 	zone->wait_table_bits =
3223 		wait_table_bits(zone->wait_table_hash_nr_entries);
3224 	alloc_size = zone->wait_table_hash_nr_entries
3225 					* sizeof(wait_queue_head_t);
3226 
3227 	if (!slab_is_available()) {
3228 		zone->wait_table = (wait_queue_head_t *)
3229 			alloc_bootmem_node(pgdat, alloc_size);
3230 	} else {
3231 		/*
3232 		 * This case means that a zone whose size was 0 gets new memory
3233 		 * via memory hot-add.
3234 		 * But it may be the case that a new node was hot-added.  In
3235 		 * this case vmalloc() will not be able to use this new node's
3236 		 * memory - this wait_table must be initialized to use this new
3237 		 * node itself as well.
3238 		 * To use this new node's memory, further consideration will be
3239 		 * necessary.
3240 		 */
3241 		zone->wait_table = vmalloc(alloc_size);
3242 	}
3243 	if (!zone->wait_table)
3244 		return -ENOMEM;
3245 
3246 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3247 		init_waitqueue_head(zone->wait_table + i);
3248 
3249 	return 0;
3250 }
3251 
3252 static int __zone_pcp_update(void *data)
3253 {
3254 	struct zone *zone = data;
3255 	int cpu;
3256 	unsigned long batch = zone_batchsize(zone), flags;
3257 
3258 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3259 		struct per_cpu_pageset *pset;
3260 		struct per_cpu_pages *pcp;
3261 
3262 		pset = zone_pcp(zone, cpu);
3263 		pcp = &pset->pcp;
3264 
3265 		local_irq_save(flags);
3266 		free_pcppages_bulk(zone, pcp->count, pcp);
3267 		setup_pageset(pset, batch);
3268 		local_irq_restore(flags);
3269 	}
3270 	return 0;
3271 }
3272 
3273 void zone_pcp_update(struct zone *zone)
3274 {
3275 	stop_machine(__zone_pcp_update, zone, NULL);
3276 }
3277 
3278 static __meminit void zone_pcp_init(struct zone *zone)
3279 {
3280 	int cpu;
3281 	unsigned long batch = zone_batchsize(zone);
3282 
3283 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3284 #ifdef CONFIG_NUMA
3285 		/* Early boot. Slab allocator not functional yet */
3286 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3287 		setup_pageset(&boot_pageset[cpu],0);
3288 #else
3289 		setup_pageset(zone_pcp(zone,cpu), batch);
3290 #endif
3291 	}
3292 	if (zone->present_pages)
3293 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3294 			zone->name, zone->present_pages, batch);
3295 }
3296 
3297 __meminit int init_currently_empty_zone(struct zone *zone,
3298 					unsigned long zone_start_pfn,
3299 					unsigned long size,
3300 					enum memmap_context context)
3301 {
3302 	struct pglist_data *pgdat = zone->zone_pgdat;
3303 	int ret;
3304 	ret = zone_wait_table_init(zone, size);
3305 	if (ret)
3306 		return ret;
3307 	pgdat->nr_zones = zone_idx(zone) + 1;
3308 
3309 	zone->zone_start_pfn = zone_start_pfn;
3310 
3311 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3312 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3313 			pgdat->node_id,
3314 			(unsigned long)zone_idx(zone),
3315 			zone_start_pfn, (zone_start_pfn + size));
3316 
3317 	zone_init_free_lists(zone);
3318 
3319 	return 0;
3320 }
3321 
3322 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3323 /*
3324  * Basic iterator support. Return the first range of PFNs for a node
3325  * Note: nid == MAX_NUMNODES returns first region regardless of node
3326  */
3327 static int __meminit first_active_region_index_in_nid(int nid)
3328 {
3329 	int i;
3330 
3331 	for (i = 0; i < nr_nodemap_entries; i++)
3332 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3333 			return i;
3334 
3335 	return -1;
3336 }
3337 
3338 /*
3339  * Basic iterator support. Return the next active range of PFNs for a node
3340  * Note: nid == MAX_NUMNODES returns next region regardless of node
3341  */
3342 static int __meminit next_active_region_index_in_nid(int index, int nid)
3343 {
3344 	for (index = index + 1; index < nr_nodemap_entries; index++)
3345 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3346 			return index;
3347 
3348 	return -1;
3349 }
3350 
3351 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3352 /*
3353  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3354  * Architectures may implement their own version but if add_active_range()
3355  * was used and there are no special requirements, this is a convenient
3356  * alternative
3357  */
3358 int __meminit __early_pfn_to_nid(unsigned long pfn)
3359 {
3360 	int i;
3361 
3362 	for (i = 0; i < nr_nodemap_entries; i++) {
3363 		unsigned long start_pfn = early_node_map[i].start_pfn;
3364 		unsigned long end_pfn = early_node_map[i].end_pfn;
3365 
3366 		if (start_pfn <= pfn && pfn < end_pfn)
3367 			return early_node_map[i].nid;
3368 	}
3369 	/* This is a memory hole */
3370 	return -1;
3371 }
3372 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3373 
3374 int __meminit early_pfn_to_nid(unsigned long pfn)
3375 {
3376 	int nid;
3377 
3378 	nid = __early_pfn_to_nid(pfn);
3379 	if (nid >= 0)
3380 		return nid;
3381 	/* just returns 0 */
3382 	return 0;
3383 }
3384 
3385 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3386 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3387 {
3388 	int nid;
3389 
3390 	nid = __early_pfn_to_nid(pfn);
3391 	if (nid >= 0 && nid != node)
3392 		return false;
3393 	return true;
3394 }
3395 #endif
3396 
3397 /* Basic iterator support to walk early_node_map[] */
3398 #define for_each_active_range_index_in_nid(i, nid) \
3399 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3400 				i = next_active_region_index_in_nid(i, nid))
3401 
3402 /**
3403  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3404  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3405  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3406  *
3407  * If an architecture guarantees that all ranges registered with
3408  * add_active_ranges() contain no holes and may be freed, this
3409  * this function may be used instead of calling free_bootmem() manually.
3410  */
3411 void __init free_bootmem_with_active_regions(int nid,
3412 						unsigned long max_low_pfn)
3413 {
3414 	int i;
3415 
3416 	for_each_active_range_index_in_nid(i, nid) {
3417 		unsigned long size_pages = 0;
3418 		unsigned long end_pfn = early_node_map[i].end_pfn;
3419 
3420 		if (early_node_map[i].start_pfn >= max_low_pfn)
3421 			continue;
3422 
3423 		if (end_pfn > max_low_pfn)
3424 			end_pfn = max_low_pfn;
3425 
3426 		size_pages = end_pfn - early_node_map[i].start_pfn;
3427 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3428 				PFN_PHYS(early_node_map[i].start_pfn),
3429 				size_pages << PAGE_SHIFT);
3430 	}
3431 }
3432 
3433 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3434 {
3435 	int i;
3436 	int ret;
3437 
3438 	for_each_active_range_index_in_nid(i, nid) {
3439 		ret = work_fn(early_node_map[i].start_pfn,
3440 			      early_node_map[i].end_pfn, data);
3441 		if (ret)
3442 			break;
3443 	}
3444 }
3445 /**
3446  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3447  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3448  *
3449  * If an architecture guarantees that all ranges registered with
3450  * add_active_ranges() contain no holes and may be freed, this
3451  * function may be used instead of calling memory_present() manually.
3452  */
3453 void __init sparse_memory_present_with_active_regions(int nid)
3454 {
3455 	int i;
3456 
3457 	for_each_active_range_index_in_nid(i, nid)
3458 		memory_present(early_node_map[i].nid,
3459 				early_node_map[i].start_pfn,
3460 				early_node_map[i].end_pfn);
3461 }
3462 
3463 /**
3464  * get_pfn_range_for_nid - Return the start and end page frames for a node
3465  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3466  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3467  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3468  *
3469  * It returns the start and end page frame of a node based on information
3470  * provided by an arch calling add_active_range(). If called for a node
3471  * with no available memory, a warning is printed and the start and end
3472  * PFNs will be 0.
3473  */
3474 void __meminit get_pfn_range_for_nid(unsigned int nid,
3475 			unsigned long *start_pfn, unsigned long *end_pfn)
3476 {
3477 	int i;
3478 	*start_pfn = -1UL;
3479 	*end_pfn = 0;
3480 
3481 	for_each_active_range_index_in_nid(i, nid) {
3482 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3483 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3484 	}
3485 
3486 	if (*start_pfn == -1UL)
3487 		*start_pfn = 0;
3488 }
3489 
3490 /*
3491  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3492  * assumption is made that zones within a node are ordered in monotonic
3493  * increasing memory addresses so that the "highest" populated zone is used
3494  */
3495 static void __init find_usable_zone_for_movable(void)
3496 {
3497 	int zone_index;
3498 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3499 		if (zone_index == ZONE_MOVABLE)
3500 			continue;
3501 
3502 		if (arch_zone_highest_possible_pfn[zone_index] >
3503 				arch_zone_lowest_possible_pfn[zone_index])
3504 			break;
3505 	}
3506 
3507 	VM_BUG_ON(zone_index == -1);
3508 	movable_zone = zone_index;
3509 }
3510 
3511 /*
3512  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3513  * because it is sized independant of architecture. Unlike the other zones,
3514  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3515  * in each node depending on the size of each node and how evenly kernelcore
3516  * is distributed. This helper function adjusts the zone ranges
3517  * provided by the architecture for a given node by using the end of the
3518  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3519  * zones within a node are in order of monotonic increases memory addresses
3520  */
3521 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3522 					unsigned long zone_type,
3523 					unsigned long node_start_pfn,
3524 					unsigned long node_end_pfn,
3525 					unsigned long *zone_start_pfn,
3526 					unsigned long *zone_end_pfn)
3527 {
3528 	/* Only adjust if ZONE_MOVABLE is on this node */
3529 	if (zone_movable_pfn[nid]) {
3530 		/* Size ZONE_MOVABLE */
3531 		if (zone_type == ZONE_MOVABLE) {
3532 			*zone_start_pfn = zone_movable_pfn[nid];
3533 			*zone_end_pfn = min(node_end_pfn,
3534 				arch_zone_highest_possible_pfn[movable_zone]);
3535 
3536 		/* Adjust for ZONE_MOVABLE starting within this range */
3537 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3538 				*zone_end_pfn > zone_movable_pfn[nid]) {
3539 			*zone_end_pfn = zone_movable_pfn[nid];
3540 
3541 		/* Check if this whole range is within ZONE_MOVABLE */
3542 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3543 			*zone_start_pfn = *zone_end_pfn;
3544 	}
3545 }
3546 
3547 /*
3548  * Return the number of pages a zone spans in a node, including holes
3549  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3550  */
3551 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3552 					unsigned long zone_type,
3553 					unsigned long *ignored)
3554 {
3555 	unsigned long node_start_pfn, node_end_pfn;
3556 	unsigned long zone_start_pfn, zone_end_pfn;
3557 
3558 	/* Get the start and end of the node and zone */
3559 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3560 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3561 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3562 	adjust_zone_range_for_zone_movable(nid, zone_type,
3563 				node_start_pfn, node_end_pfn,
3564 				&zone_start_pfn, &zone_end_pfn);
3565 
3566 	/* Check that this node has pages within the zone's required range */
3567 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3568 		return 0;
3569 
3570 	/* Move the zone boundaries inside the node if necessary */
3571 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3572 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3573 
3574 	/* Return the spanned pages */
3575 	return zone_end_pfn - zone_start_pfn;
3576 }
3577 
3578 /*
3579  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3580  * then all holes in the requested range will be accounted for.
3581  */
3582 unsigned long __meminit __absent_pages_in_range(int nid,
3583 				unsigned long range_start_pfn,
3584 				unsigned long range_end_pfn)
3585 {
3586 	int i = 0;
3587 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3588 	unsigned long start_pfn;
3589 
3590 	/* Find the end_pfn of the first active range of pfns in the node */
3591 	i = first_active_region_index_in_nid(nid);
3592 	if (i == -1)
3593 		return 0;
3594 
3595 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3596 
3597 	/* Account for ranges before physical memory on this node */
3598 	if (early_node_map[i].start_pfn > range_start_pfn)
3599 		hole_pages = prev_end_pfn - range_start_pfn;
3600 
3601 	/* Find all holes for the zone within the node */
3602 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3603 
3604 		/* No need to continue if prev_end_pfn is outside the zone */
3605 		if (prev_end_pfn >= range_end_pfn)
3606 			break;
3607 
3608 		/* Make sure the end of the zone is not within the hole */
3609 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3610 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3611 
3612 		/* Update the hole size cound and move on */
3613 		if (start_pfn > range_start_pfn) {
3614 			BUG_ON(prev_end_pfn > start_pfn);
3615 			hole_pages += start_pfn - prev_end_pfn;
3616 		}
3617 		prev_end_pfn = early_node_map[i].end_pfn;
3618 	}
3619 
3620 	/* Account for ranges past physical memory on this node */
3621 	if (range_end_pfn > prev_end_pfn)
3622 		hole_pages += range_end_pfn -
3623 				max(range_start_pfn, prev_end_pfn);
3624 
3625 	return hole_pages;
3626 }
3627 
3628 /**
3629  * absent_pages_in_range - Return number of page frames in holes within a range
3630  * @start_pfn: The start PFN to start searching for holes
3631  * @end_pfn: The end PFN to stop searching for holes
3632  *
3633  * It returns the number of pages frames in memory holes within a range.
3634  */
3635 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3636 							unsigned long end_pfn)
3637 {
3638 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3639 }
3640 
3641 /* Return the number of page frames in holes in a zone on a node */
3642 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3643 					unsigned long zone_type,
3644 					unsigned long *ignored)
3645 {
3646 	unsigned long node_start_pfn, node_end_pfn;
3647 	unsigned long zone_start_pfn, zone_end_pfn;
3648 
3649 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3650 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3651 							node_start_pfn);
3652 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3653 							node_end_pfn);
3654 
3655 	adjust_zone_range_for_zone_movable(nid, zone_type,
3656 			node_start_pfn, node_end_pfn,
3657 			&zone_start_pfn, &zone_end_pfn);
3658 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3659 }
3660 
3661 #else
3662 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3663 					unsigned long zone_type,
3664 					unsigned long *zones_size)
3665 {
3666 	return zones_size[zone_type];
3667 }
3668 
3669 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3670 						unsigned long zone_type,
3671 						unsigned long *zholes_size)
3672 {
3673 	if (!zholes_size)
3674 		return 0;
3675 
3676 	return zholes_size[zone_type];
3677 }
3678 
3679 #endif
3680 
3681 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3682 		unsigned long *zones_size, unsigned long *zholes_size)
3683 {
3684 	unsigned long realtotalpages, totalpages = 0;
3685 	enum zone_type i;
3686 
3687 	for (i = 0; i < MAX_NR_ZONES; i++)
3688 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3689 								zones_size);
3690 	pgdat->node_spanned_pages = totalpages;
3691 
3692 	realtotalpages = totalpages;
3693 	for (i = 0; i < MAX_NR_ZONES; i++)
3694 		realtotalpages -=
3695 			zone_absent_pages_in_node(pgdat->node_id, i,
3696 								zholes_size);
3697 	pgdat->node_present_pages = realtotalpages;
3698 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3699 							realtotalpages);
3700 }
3701 
3702 #ifndef CONFIG_SPARSEMEM
3703 /*
3704  * Calculate the size of the zone->blockflags rounded to an unsigned long
3705  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3706  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3707  * round what is now in bits to nearest long in bits, then return it in
3708  * bytes.
3709  */
3710 static unsigned long __init usemap_size(unsigned long zonesize)
3711 {
3712 	unsigned long usemapsize;
3713 
3714 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3715 	usemapsize = usemapsize >> pageblock_order;
3716 	usemapsize *= NR_PAGEBLOCK_BITS;
3717 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3718 
3719 	return usemapsize / 8;
3720 }
3721 
3722 static void __init setup_usemap(struct pglist_data *pgdat,
3723 				struct zone *zone, unsigned long zonesize)
3724 {
3725 	unsigned long usemapsize = usemap_size(zonesize);
3726 	zone->pageblock_flags = NULL;
3727 	if (usemapsize)
3728 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3729 }
3730 #else
3731 static void inline setup_usemap(struct pglist_data *pgdat,
3732 				struct zone *zone, unsigned long zonesize) {}
3733 #endif /* CONFIG_SPARSEMEM */
3734 
3735 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3736 
3737 /* Return a sensible default order for the pageblock size. */
3738 static inline int pageblock_default_order(void)
3739 {
3740 	if (HPAGE_SHIFT > PAGE_SHIFT)
3741 		return HUGETLB_PAGE_ORDER;
3742 
3743 	return MAX_ORDER-1;
3744 }
3745 
3746 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3747 static inline void __init set_pageblock_order(unsigned int order)
3748 {
3749 	/* Check that pageblock_nr_pages has not already been setup */
3750 	if (pageblock_order)
3751 		return;
3752 
3753 	/*
3754 	 * Assume the largest contiguous order of interest is a huge page.
3755 	 * This value may be variable depending on boot parameters on IA64
3756 	 */
3757 	pageblock_order = order;
3758 }
3759 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3760 
3761 /*
3762  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3763  * and pageblock_default_order() are unused as pageblock_order is set
3764  * at compile-time. See include/linux/pageblock-flags.h for the values of
3765  * pageblock_order based on the kernel config
3766  */
3767 static inline int pageblock_default_order(unsigned int order)
3768 {
3769 	return MAX_ORDER-1;
3770 }
3771 #define set_pageblock_order(x)	do {} while (0)
3772 
3773 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3774 
3775 /*
3776  * Set up the zone data structures:
3777  *   - mark all pages reserved
3778  *   - mark all memory queues empty
3779  *   - clear the memory bitmaps
3780  */
3781 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3782 		unsigned long *zones_size, unsigned long *zholes_size)
3783 {
3784 	enum zone_type j;
3785 	int nid = pgdat->node_id;
3786 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3787 	int ret;
3788 
3789 	pgdat_resize_init(pgdat);
3790 	pgdat->nr_zones = 0;
3791 	init_waitqueue_head(&pgdat->kswapd_wait);
3792 	pgdat->kswapd_max_order = 0;
3793 	pgdat_page_cgroup_init(pgdat);
3794 
3795 	for (j = 0; j < MAX_NR_ZONES; j++) {
3796 		struct zone *zone = pgdat->node_zones + j;
3797 		unsigned long size, realsize, memmap_pages;
3798 		enum lru_list l;
3799 
3800 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3801 		realsize = size - zone_absent_pages_in_node(nid, j,
3802 								zholes_size);
3803 
3804 		/*
3805 		 * Adjust realsize so that it accounts for how much memory
3806 		 * is used by this zone for memmap. This affects the watermark
3807 		 * and per-cpu initialisations
3808 		 */
3809 		memmap_pages =
3810 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3811 		if (realsize >= memmap_pages) {
3812 			realsize -= memmap_pages;
3813 			if (memmap_pages)
3814 				printk(KERN_DEBUG
3815 				       "  %s zone: %lu pages used for memmap\n",
3816 				       zone_names[j], memmap_pages);
3817 		} else
3818 			printk(KERN_WARNING
3819 				"  %s zone: %lu pages exceeds realsize %lu\n",
3820 				zone_names[j], memmap_pages, realsize);
3821 
3822 		/* Account for reserved pages */
3823 		if (j == 0 && realsize > dma_reserve) {
3824 			realsize -= dma_reserve;
3825 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3826 					zone_names[0], dma_reserve);
3827 		}
3828 
3829 		if (!is_highmem_idx(j))
3830 			nr_kernel_pages += realsize;
3831 		nr_all_pages += realsize;
3832 
3833 		zone->spanned_pages = size;
3834 		zone->present_pages = realsize;
3835 #ifdef CONFIG_NUMA
3836 		zone->node = nid;
3837 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3838 						/ 100;
3839 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3840 #endif
3841 		zone->name = zone_names[j];
3842 		spin_lock_init(&zone->lock);
3843 		spin_lock_init(&zone->lru_lock);
3844 		zone_seqlock_init(zone);
3845 		zone->zone_pgdat = pgdat;
3846 
3847 		zone->prev_priority = DEF_PRIORITY;
3848 
3849 		zone_pcp_init(zone);
3850 		for_each_lru(l) {
3851 			INIT_LIST_HEAD(&zone->lru[l].list);
3852 			zone->reclaim_stat.nr_saved_scan[l] = 0;
3853 		}
3854 		zone->reclaim_stat.recent_rotated[0] = 0;
3855 		zone->reclaim_stat.recent_rotated[1] = 0;
3856 		zone->reclaim_stat.recent_scanned[0] = 0;
3857 		zone->reclaim_stat.recent_scanned[1] = 0;
3858 		zap_zone_vm_stats(zone);
3859 		zone->flags = 0;
3860 		if (!size)
3861 			continue;
3862 
3863 		set_pageblock_order(pageblock_default_order());
3864 		setup_usemap(pgdat, zone, size);
3865 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3866 						size, MEMMAP_EARLY);
3867 		BUG_ON(ret);
3868 		memmap_init(size, nid, j, zone_start_pfn);
3869 		zone_start_pfn += size;
3870 	}
3871 }
3872 
3873 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3874 {
3875 	/* Skip empty nodes */
3876 	if (!pgdat->node_spanned_pages)
3877 		return;
3878 
3879 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3880 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3881 	if (!pgdat->node_mem_map) {
3882 		unsigned long size, start, end;
3883 		struct page *map;
3884 
3885 		/*
3886 		 * The zone's endpoints aren't required to be MAX_ORDER
3887 		 * aligned but the node_mem_map endpoints must be in order
3888 		 * for the buddy allocator to function correctly.
3889 		 */
3890 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3891 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3892 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3893 		size =  (end - start) * sizeof(struct page);
3894 		map = alloc_remap(pgdat->node_id, size);
3895 		if (!map)
3896 			map = alloc_bootmem_node(pgdat, size);
3897 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3898 	}
3899 #ifndef CONFIG_NEED_MULTIPLE_NODES
3900 	/*
3901 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3902 	 */
3903 	if (pgdat == NODE_DATA(0)) {
3904 		mem_map = NODE_DATA(0)->node_mem_map;
3905 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3906 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3907 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3908 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3909 	}
3910 #endif
3911 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3912 }
3913 
3914 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3915 		unsigned long node_start_pfn, unsigned long *zholes_size)
3916 {
3917 	pg_data_t *pgdat = NODE_DATA(nid);
3918 
3919 	pgdat->node_id = nid;
3920 	pgdat->node_start_pfn = node_start_pfn;
3921 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3922 
3923 	alloc_node_mem_map(pgdat);
3924 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3925 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3926 		nid, (unsigned long)pgdat,
3927 		(unsigned long)pgdat->node_mem_map);
3928 #endif
3929 
3930 	free_area_init_core(pgdat, zones_size, zholes_size);
3931 }
3932 
3933 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3934 
3935 #if MAX_NUMNODES > 1
3936 /*
3937  * Figure out the number of possible node ids.
3938  */
3939 static void __init setup_nr_node_ids(void)
3940 {
3941 	unsigned int node;
3942 	unsigned int highest = 0;
3943 
3944 	for_each_node_mask(node, node_possible_map)
3945 		highest = node;
3946 	nr_node_ids = highest + 1;
3947 }
3948 #else
3949 static inline void setup_nr_node_ids(void)
3950 {
3951 }
3952 #endif
3953 
3954 /**
3955  * add_active_range - Register a range of PFNs backed by physical memory
3956  * @nid: The node ID the range resides on
3957  * @start_pfn: The start PFN of the available physical memory
3958  * @end_pfn: The end PFN of the available physical memory
3959  *
3960  * These ranges are stored in an early_node_map[] and later used by
3961  * free_area_init_nodes() to calculate zone sizes and holes. If the
3962  * range spans a memory hole, it is up to the architecture to ensure
3963  * the memory is not freed by the bootmem allocator. If possible
3964  * the range being registered will be merged with existing ranges.
3965  */
3966 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3967 						unsigned long end_pfn)
3968 {
3969 	int i;
3970 
3971 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3972 			"Entering add_active_range(%d, %#lx, %#lx) "
3973 			"%d entries of %d used\n",
3974 			nid, start_pfn, end_pfn,
3975 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3976 
3977 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3978 
3979 	/* Merge with existing active regions if possible */
3980 	for (i = 0; i < nr_nodemap_entries; i++) {
3981 		if (early_node_map[i].nid != nid)
3982 			continue;
3983 
3984 		/* Skip if an existing region covers this new one */
3985 		if (start_pfn >= early_node_map[i].start_pfn &&
3986 				end_pfn <= early_node_map[i].end_pfn)
3987 			return;
3988 
3989 		/* Merge forward if suitable */
3990 		if (start_pfn <= early_node_map[i].end_pfn &&
3991 				end_pfn > early_node_map[i].end_pfn) {
3992 			early_node_map[i].end_pfn = end_pfn;
3993 			return;
3994 		}
3995 
3996 		/* Merge backward if suitable */
3997 		if (start_pfn < early_node_map[i].end_pfn &&
3998 				end_pfn >= early_node_map[i].start_pfn) {
3999 			early_node_map[i].start_pfn = start_pfn;
4000 			return;
4001 		}
4002 	}
4003 
4004 	/* Check that early_node_map is large enough */
4005 	if (i >= MAX_ACTIVE_REGIONS) {
4006 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4007 							MAX_ACTIVE_REGIONS);
4008 		return;
4009 	}
4010 
4011 	early_node_map[i].nid = nid;
4012 	early_node_map[i].start_pfn = start_pfn;
4013 	early_node_map[i].end_pfn = end_pfn;
4014 	nr_nodemap_entries = i + 1;
4015 }
4016 
4017 /**
4018  * remove_active_range - Shrink an existing registered range of PFNs
4019  * @nid: The node id the range is on that should be shrunk
4020  * @start_pfn: The new PFN of the range
4021  * @end_pfn: The new PFN of the range
4022  *
4023  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4024  * The map is kept near the end physical page range that has already been
4025  * registered. This function allows an arch to shrink an existing registered
4026  * range.
4027  */
4028 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4029 				unsigned long end_pfn)
4030 {
4031 	int i, j;
4032 	int removed = 0;
4033 
4034 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4035 			  nid, start_pfn, end_pfn);
4036 
4037 	/* Find the old active region end and shrink */
4038 	for_each_active_range_index_in_nid(i, nid) {
4039 		if (early_node_map[i].start_pfn >= start_pfn &&
4040 		    early_node_map[i].end_pfn <= end_pfn) {
4041 			/* clear it */
4042 			early_node_map[i].start_pfn = 0;
4043 			early_node_map[i].end_pfn = 0;
4044 			removed = 1;
4045 			continue;
4046 		}
4047 		if (early_node_map[i].start_pfn < start_pfn &&
4048 		    early_node_map[i].end_pfn > start_pfn) {
4049 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4050 			early_node_map[i].end_pfn = start_pfn;
4051 			if (temp_end_pfn > end_pfn)
4052 				add_active_range(nid, end_pfn, temp_end_pfn);
4053 			continue;
4054 		}
4055 		if (early_node_map[i].start_pfn >= start_pfn &&
4056 		    early_node_map[i].end_pfn > end_pfn &&
4057 		    early_node_map[i].start_pfn < end_pfn) {
4058 			early_node_map[i].start_pfn = end_pfn;
4059 			continue;
4060 		}
4061 	}
4062 
4063 	if (!removed)
4064 		return;
4065 
4066 	/* remove the blank ones */
4067 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4068 		if (early_node_map[i].nid != nid)
4069 			continue;
4070 		if (early_node_map[i].end_pfn)
4071 			continue;
4072 		/* we found it, get rid of it */
4073 		for (j = i; j < nr_nodemap_entries - 1; j++)
4074 			memcpy(&early_node_map[j], &early_node_map[j+1],
4075 				sizeof(early_node_map[j]));
4076 		j = nr_nodemap_entries - 1;
4077 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4078 		nr_nodemap_entries--;
4079 	}
4080 }
4081 
4082 /**
4083  * remove_all_active_ranges - Remove all currently registered regions
4084  *
4085  * During discovery, it may be found that a table like SRAT is invalid
4086  * and an alternative discovery method must be used. This function removes
4087  * all currently registered regions.
4088  */
4089 void __init remove_all_active_ranges(void)
4090 {
4091 	memset(early_node_map, 0, sizeof(early_node_map));
4092 	nr_nodemap_entries = 0;
4093 }
4094 
4095 /* Compare two active node_active_regions */
4096 static int __init cmp_node_active_region(const void *a, const void *b)
4097 {
4098 	struct node_active_region *arange = (struct node_active_region *)a;
4099 	struct node_active_region *brange = (struct node_active_region *)b;
4100 
4101 	/* Done this way to avoid overflows */
4102 	if (arange->start_pfn > brange->start_pfn)
4103 		return 1;
4104 	if (arange->start_pfn < brange->start_pfn)
4105 		return -1;
4106 
4107 	return 0;
4108 }
4109 
4110 /* sort the node_map by start_pfn */
4111 void __init sort_node_map(void)
4112 {
4113 	sort(early_node_map, (size_t)nr_nodemap_entries,
4114 			sizeof(struct node_active_region),
4115 			cmp_node_active_region, NULL);
4116 }
4117 
4118 /* Find the lowest pfn for a node */
4119 static unsigned long __init find_min_pfn_for_node(int nid)
4120 {
4121 	int i;
4122 	unsigned long min_pfn = ULONG_MAX;
4123 
4124 	/* Assuming a sorted map, the first range found has the starting pfn */
4125 	for_each_active_range_index_in_nid(i, nid)
4126 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4127 
4128 	if (min_pfn == ULONG_MAX) {
4129 		printk(KERN_WARNING
4130 			"Could not find start_pfn for node %d\n", nid);
4131 		return 0;
4132 	}
4133 
4134 	return min_pfn;
4135 }
4136 
4137 /**
4138  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4139  *
4140  * It returns the minimum PFN based on information provided via
4141  * add_active_range().
4142  */
4143 unsigned long __init find_min_pfn_with_active_regions(void)
4144 {
4145 	return find_min_pfn_for_node(MAX_NUMNODES);
4146 }
4147 
4148 /*
4149  * early_calculate_totalpages()
4150  * Sum pages in active regions for movable zone.
4151  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4152  */
4153 static unsigned long __init early_calculate_totalpages(void)
4154 {
4155 	int i;
4156 	unsigned long totalpages = 0;
4157 
4158 	for (i = 0; i < nr_nodemap_entries; i++) {
4159 		unsigned long pages = early_node_map[i].end_pfn -
4160 						early_node_map[i].start_pfn;
4161 		totalpages += pages;
4162 		if (pages)
4163 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4164 	}
4165   	return totalpages;
4166 }
4167 
4168 /*
4169  * Find the PFN the Movable zone begins in each node. Kernel memory
4170  * is spread evenly between nodes as long as the nodes have enough
4171  * memory. When they don't, some nodes will have more kernelcore than
4172  * others
4173  */
4174 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4175 {
4176 	int i, nid;
4177 	unsigned long usable_startpfn;
4178 	unsigned long kernelcore_node, kernelcore_remaining;
4179 	/* save the state before borrow the nodemask */
4180 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4181 	unsigned long totalpages = early_calculate_totalpages();
4182 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4183 
4184 	/*
4185 	 * If movablecore was specified, calculate what size of
4186 	 * kernelcore that corresponds so that memory usable for
4187 	 * any allocation type is evenly spread. If both kernelcore
4188 	 * and movablecore are specified, then the value of kernelcore
4189 	 * will be used for required_kernelcore if it's greater than
4190 	 * what movablecore would have allowed.
4191 	 */
4192 	if (required_movablecore) {
4193 		unsigned long corepages;
4194 
4195 		/*
4196 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4197 		 * was requested by the user
4198 		 */
4199 		required_movablecore =
4200 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4201 		corepages = totalpages - required_movablecore;
4202 
4203 		required_kernelcore = max(required_kernelcore, corepages);
4204 	}
4205 
4206 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4207 	if (!required_kernelcore)
4208 		goto out;
4209 
4210 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4211 	find_usable_zone_for_movable();
4212 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4213 
4214 restart:
4215 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4216 	kernelcore_node = required_kernelcore / usable_nodes;
4217 	for_each_node_state(nid, N_HIGH_MEMORY) {
4218 		/*
4219 		 * Recalculate kernelcore_node if the division per node
4220 		 * now exceeds what is necessary to satisfy the requested
4221 		 * amount of memory for the kernel
4222 		 */
4223 		if (required_kernelcore < kernelcore_node)
4224 			kernelcore_node = required_kernelcore / usable_nodes;
4225 
4226 		/*
4227 		 * As the map is walked, we track how much memory is usable
4228 		 * by the kernel using kernelcore_remaining. When it is
4229 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4230 		 */
4231 		kernelcore_remaining = kernelcore_node;
4232 
4233 		/* Go through each range of PFNs within this node */
4234 		for_each_active_range_index_in_nid(i, nid) {
4235 			unsigned long start_pfn, end_pfn;
4236 			unsigned long size_pages;
4237 
4238 			start_pfn = max(early_node_map[i].start_pfn,
4239 						zone_movable_pfn[nid]);
4240 			end_pfn = early_node_map[i].end_pfn;
4241 			if (start_pfn >= end_pfn)
4242 				continue;
4243 
4244 			/* Account for what is only usable for kernelcore */
4245 			if (start_pfn < usable_startpfn) {
4246 				unsigned long kernel_pages;
4247 				kernel_pages = min(end_pfn, usable_startpfn)
4248 								- start_pfn;
4249 
4250 				kernelcore_remaining -= min(kernel_pages,
4251 							kernelcore_remaining);
4252 				required_kernelcore -= min(kernel_pages,
4253 							required_kernelcore);
4254 
4255 				/* Continue if range is now fully accounted */
4256 				if (end_pfn <= usable_startpfn) {
4257 
4258 					/*
4259 					 * Push zone_movable_pfn to the end so
4260 					 * that if we have to rebalance
4261 					 * kernelcore across nodes, we will
4262 					 * not double account here
4263 					 */
4264 					zone_movable_pfn[nid] = end_pfn;
4265 					continue;
4266 				}
4267 				start_pfn = usable_startpfn;
4268 			}
4269 
4270 			/*
4271 			 * The usable PFN range for ZONE_MOVABLE is from
4272 			 * start_pfn->end_pfn. Calculate size_pages as the
4273 			 * number of pages used as kernelcore
4274 			 */
4275 			size_pages = end_pfn - start_pfn;
4276 			if (size_pages > kernelcore_remaining)
4277 				size_pages = kernelcore_remaining;
4278 			zone_movable_pfn[nid] = start_pfn + size_pages;
4279 
4280 			/*
4281 			 * Some kernelcore has been met, update counts and
4282 			 * break if the kernelcore for this node has been
4283 			 * satisified
4284 			 */
4285 			required_kernelcore -= min(required_kernelcore,
4286 								size_pages);
4287 			kernelcore_remaining -= size_pages;
4288 			if (!kernelcore_remaining)
4289 				break;
4290 		}
4291 	}
4292 
4293 	/*
4294 	 * If there is still required_kernelcore, we do another pass with one
4295 	 * less node in the count. This will push zone_movable_pfn[nid] further
4296 	 * along on the nodes that still have memory until kernelcore is
4297 	 * satisified
4298 	 */
4299 	usable_nodes--;
4300 	if (usable_nodes && required_kernelcore > usable_nodes)
4301 		goto restart;
4302 
4303 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4304 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4305 		zone_movable_pfn[nid] =
4306 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4307 
4308 out:
4309 	/* restore the node_state */
4310 	node_states[N_HIGH_MEMORY] = saved_node_state;
4311 }
4312 
4313 /* Any regular memory on that node ? */
4314 static void check_for_regular_memory(pg_data_t *pgdat)
4315 {
4316 #ifdef CONFIG_HIGHMEM
4317 	enum zone_type zone_type;
4318 
4319 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4320 		struct zone *zone = &pgdat->node_zones[zone_type];
4321 		if (zone->present_pages)
4322 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4323 	}
4324 #endif
4325 }
4326 
4327 /**
4328  * free_area_init_nodes - Initialise all pg_data_t and zone data
4329  * @max_zone_pfn: an array of max PFNs for each zone
4330  *
4331  * This will call free_area_init_node() for each active node in the system.
4332  * Using the page ranges provided by add_active_range(), the size of each
4333  * zone in each node and their holes is calculated. If the maximum PFN
4334  * between two adjacent zones match, it is assumed that the zone is empty.
4335  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4336  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4337  * starts where the previous one ended. For example, ZONE_DMA32 starts
4338  * at arch_max_dma_pfn.
4339  */
4340 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4341 {
4342 	unsigned long nid;
4343 	int i;
4344 
4345 	/* Sort early_node_map as initialisation assumes it is sorted */
4346 	sort_node_map();
4347 
4348 	/* Record where the zone boundaries are */
4349 	memset(arch_zone_lowest_possible_pfn, 0,
4350 				sizeof(arch_zone_lowest_possible_pfn));
4351 	memset(arch_zone_highest_possible_pfn, 0,
4352 				sizeof(arch_zone_highest_possible_pfn));
4353 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4354 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4355 	for (i = 1; i < MAX_NR_ZONES; i++) {
4356 		if (i == ZONE_MOVABLE)
4357 			continue;
4358 		arch_zone_lowest_possible_pfn[i] =
4359 			arch_zone_highest_possible_pfn[i-1];
4360 		arch_zone_highest_possible_pfn[i] =
4361 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4362 	}
4363 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4364 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4365 
4366 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4367 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4368 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4369 
4370 	/* Print out the zone ranges */
4371 	printk("Zone PFN ranges:\n");
4372 	for (i = 0; i < MAX_NR_ZONES; i++) {
4373 		if (i == ZONE_MOVABLE)
4374 			continue;
4375 		printk("  %-8s %0#10lx -> %0#10lx\n",
4376 				zone_names[i],
4377 				arch_zone_lowest_possible_pfn[i],
4378 				arch_zone_highest_possible_pfn[i]);
4379 	}
4380 
4381 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4382 	printk("Movable zone start PFN for each node\n");
4383 	for (i = 0; i < MAX_NUMNODES; i++) {
4384 		if (zone_movable_pfn[i])
4385 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4386 	}
4387 
4388 	/* Print out the early_node_map[] */
4389 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4390 	for (i = 0; i < nr_nodemap_entries; i++)
4391 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4392 						early_node_map[i].start_pfn,
4393 						early_node_map[i].end_pfn);
4394 
4395 	/* Initialise every node */
4396 	mminit_verify_pageflags_layout();
4397 	setup_nr_node_ids();
4398 	for_each_online_node(nid) {
4399 		pg_data_t *pgdat = NODE_DATA(nid);
4400 		free_area_init_node(nid, NULL,
4401 				find_min_pfn_for_node(nid), NULL);
4402 
4403 		/* Any memory on that node */
4404 		if (pgdat->node_present_pages)
4405 			node_set_state(nid, N_HIGH_MEMORY);
4406 		check_for_regular_memory(pgdat);
4407 	}
4408 }
4409 
4410 static int __init cmdline_parse_core(char *p, unsigned long *core)
4411 {
4412 	unsigned long long coremem;
4413 	if (!p)
4414 		return -EINVAL;
4415 
4416 	coremem = memparse(p, &p);
4417 	*core = coremem >> PAGE_SHIFT;
4418 
4419 	/* Paranoid check that UL is enough for the coremem value */
4420 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4421 
4422 	return 0;
4423 }
4424 
4425 /*
4426  * kernelcore=size sets the amount of memory for use for allocations that
4427  * cannot be reclaimed or migrated.
4428  */
4429 static int __init cmdline_parse_kernelcore(char *p)
4430 {
4431 	return cmdline_parse_core(p, &required_kernelcore);
4432 }
4433 
4434 /*
4435  * movablecore=size sets the amount of memory for use for allocations that
4436  * can be reclaimed or migrated.
4437  */
4438 static int __init cmdline_parse_movablecore(char *p)
4439 {
4440 	return cmdline_parse_core(p, &required_movablecore);
4441 }
4442 
4443 early_param("kernelcore", cmdline_parse_kernelcore);
4444 early_param("movablecore", cmdline_parse_movablecore);
4445 
4446 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4447 
4448 /**
4449  * set_dma_reserve - set the specified number of pages reserved in the first zone
4450  * @new_dma_reserve: The number of pages to mark reserved
4451  *
4452  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4453  * In the DMA zone, a significant percentage may be consumed by kernel image
4454  * and other unfreeable allocations which can skew the watermarks badly. This
4455  * function may optionally be used to account for unfreeable pages in the
4456  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4457  * smaller per-cpu batchsize.
4458  */
4459 void __init set_dma_reserve(unsigned long new_dma_reserve)
4460 {
4461 	dma_reserve = new_dma_reserve;
4462 }
4463 
4464 #ifndef CONFIG_NEED_MULTIPLE_NODES
4465 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4466 EXPORT_SYMBOL(contig_page_data);
4467 #endif
4468 
4469 void __init free_area_init(unsigned long *zones_size)
4470 {
4471 	free_area_init_node(0, zones_size,
4472 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4473 }
4474 
4475 static int page_alloc_cpu_notify(struct notifier_block *self,
4476 				 unsigned long action, void *hcpu)
4477 {
4478 	int cpu = (unsigned long)hcpu;
4479 
4480 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4481 		drain_pages(cpu);
4482 
4483 		/*
4484 		 * Spill the event counters of the dead processor
4485 		 * into the current processors event counters.
4486 		 * This artificially elevates the count of the current
4487 		 * processor.
4488 		 */
4489 		vm_events_fold_cpu(cpu);
4490 
4491 		/*
4492 		 * Zero the differential counters of the dead processor
4493 		 * so that the vm statistics are consistent.
4494 		 *
4495 		 * This is only okay since the processor is dead and cannot
4496 		 * race with what we are doing.
4497 		 */
4498 		refresh_cpu_vm_stats(cpu);
4499 	}
4500 	return NOTIFY_OK;
4501 }
4502 
4503 void __init page_alloc_init(void)
4504 {
4505 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4506 }
4507 
4508 /*
4509  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4510  *	or min_free_kbytes changes.
4511  */
4512 static void calculate_totalreserve_pages(void)
4513 {
4514 	struct pglist_data *pgdat;
4515 	unsigned long reserve_pages = 0;
4516 	enum zone_type i, j;
4517 
4518 	for_each_online_pgdat(pgdat) {
4519 		for (i = 0; i < MAX_NR_ZONES; i++) {
4520 			struct zone *zone = pgdat->node_zones + i;
4521 			unsigned long max = 0;
4522 
4523 			/* Find valid and maximum lowmem_reserve in the zone */
4524 			for (j = i; j < MAX_NR_ZONES; j++) {
4525 				if (zone->lowmem_reserve[j] > max)
4526 					max = zone->lowmem_reserve[j];
4527 			}
4528 
4529 			/* we treat the high watermark as reserved pages. */
4530 			max += high_wmark_pages(zone);
4531 
4532 			if (max > zone->present_pages)
4533 				max = zone->present_pages;
4534 			reserve_pages += max;
4535 		}
4536 	}
4537 	totalreserve_pages = reserve_pages;
4538 }
4539 
4540 /*
4541  * setup_per_zone_lowmem_reserve - called whenever
4542  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4543  *	has a correct pages reserved value, so an adequate number of
4544  *	pages are left in the zone after a successful __alloc_pages().
4545  */
4546 static void setup_per_zone_lowmem_reserve(void)
4547 {
4548 	struct pglist_data *pgdat;
4549 	enum zone_type j, idx;
4550 
4551 	for_each_online_pgdat(pgdat) {
4552 		for (j = 0; j < MAX_NR_ZONES; j++) {
4553 			struct zone *zone = pgdat->node_zones + j;
4554 			unsigned long present_pages = zone->present_pages;
4555 
4556 			zone->lowmem_reserve[j] = 0;
4557 
4558 			idx = j;
4559 			while (idx) {
4560 				struct zone *lower_zone;
4561 
4562 				idx--;
4563 
4564 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4565 					sysctl_lowmem_reserve_ratio[idx] = 1;
4566 
4567 				lower_zone = pgdat->node_zones + idx;
4568 				lower_zone->lowmem_reserve[j] = present_pages /
4569 					sysctl_lowmem_reserve_ratio[idx];
4570 				present_pages += lower_zone->present_pages;
4571 			}
4572 		}
4573 	}
4574 
4575 	/* update totalreserve_pages */
4576 	calculate_totalreserve_pages();
4577 }
4578 
4579 /**
4580  * setup_per_zone_wmarks - called when min_free_kbytes changes
4581  * or when memory is hot-{added|removed}
4582  *
4583  * Ensures that the watermark[min,low,high] values for each zone are set
4584  * correctly with respect to min_free_kbytes.
4585  */
4586 void setup_per_zone_wmarks(void)
4587 {
4588 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4589 	unsigned long lowmem_pages = 0;
4590 	struct zone *zone;
4591 	unsigned long flags;
4592 
4593 	/* Calculate total number of !ZONE_HIGHMEM pages */
4594 	for_each_zone(zone) {
4595 		if (!is_highmem(zone))
4596 			lowmem_pages += zone->present_pages;
4597 	}
4598 
4599 	for_each_zone(zone) {
4600 		u64 tmp;
4601 
4602 		spin_lock_irqsave(&zone->lock, flags);
4603 		tmp = (u64)pages_min * zone->present_pages;
4604 		do_div(tmp, lowmem_pages);
4605 		if (is_highmem(zone)) {
4606 			/*
4607 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4608 			 * need highmem pages, so cap pages_min to a small
4609 			 * value here.
4610 			 *
4611 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4612 			 * deltas controls asynch page reclaim, and so should
4613 			 * not be capped for highmem.
4614 			 */
4615 			int min_pages;
4616 
4617 			min_pages = zone->present_pages / 1024;
4618 			if (min_pages < SWAP_CLUSTER_MAX)
4619 				min_pages = SWAP_CLUSTER_MAX;
4620 			if (min_pages > 128)
4621 				min_pages = 128;
4622 			zone->watermark[WMARK_MIN] = min_pages;
4623 		} else {
4624 			/*
4625 			 * If it's a lowmem zone, reserve a number of pages
4626 			 * proportionate to the zone's size.
4627 			 */
4628 			zone->watermark[WMARK_MIN] = tmp;
4629 		}
4630 
4631 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4632 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4633 		setup_zone_migrate_reserve(zone);
4634 		spin_unlock_irqrestore(&zone->lock, flags);
4635 	}
4636 
4637 	/* update totalreserve_pages */
4638 	calculate_totalreserve_pages();
4639 }
4640 
4641 /*
4642  * The inactive anon list should be small enough that the VM never has to
4643  * do too much work, but large enough that each inactive page has a chance
4644  * to be referenced again before it is swapped out.
4645  *
4646  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4647  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4648  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4649  * the anonymous pages are kept on the inactive list.
4650  *
4651  * total     target    max
4652  * memory    ratio     inactive anon
4653  * -------------------------------------
4654  *   10MB       1         5MB
4655  *  100MB       1        50MB
4656  *    1GB       3       250MB
4657  *   10GB      10       0.9GB
4658  *  100GB      31         3GB
4659  *    1TB     101        10GB
4660  *   10TB     320        32GB
4661  */
4662 void calculate_zone_inactive_ratio(struct zone *zone)
4663 {
4664 	unsigned int gb, ratio;
4665 
4666 	/* Zone size in gigabytes */
4667 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4668 	if (gb)
4669 		ratio = int_sqrt(10 * gb);
4670 	else
4671 		ratio = 1;
4672 
4673 	zone->inactive_ratio = ratio;
4674 }
4675 
4676 static void __init setup_per_zone_inactive_ratio(void)
4677 {
4678 	struct zone *zone;
4679 
4680 	for_each_zone(zone)
4681 		calculate_zone_inactive_ratio(zone);
4682 }
4683 
4684 /*
4685  * Initialise min_free_kbytes.
4686  *
4687  * For small machines we want it small (128k min).  For large machines
4688  * we want it large (64MB max).  But it is not linear, because network
4689  * bandwidth does not increase linearly with machine size.  We use
4690  *
4691  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4692  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4693  *
4694  * which yields
4695  *
4696  * 16MB:	512k
4697  * 32MB:	724k
4698  * 64MB:	1024k
4699  * 128MB:	1448k
4700  * 256MB:	2048k
4701  * 512MB:	2896k
4702  * 1024MB:	4096k
4703  * 2048MB:	5792k
4704  * 4096MB:	8192k
4705  * 8192MB:	11584k
4706  * 16384MB:	16384k
4707  */
4708 static int __init init_per_zone_wmark_min(void)
4709 {
4710 	unsigned long lowmem_kbytes;
4711 
4712 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4713 
4714 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4715 	if (min_free_kbytes < 128)
4716 		min_free_kbytes = 128;
4717 	if (min_free_kbytes > 65536)
4718 		min_free_kbytes = 65536;
4719 	setup_per_zone_wmarks();
4720 	setup_per_zone_lowmem_reserve();
4721 	setup_per_zone_inactive_ratio();
4722 	return 0;
4723 }
4724 module_init(init_per_zone_wmark_min)
4725 
4726 /*
4727  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4728  *	that we can call two helper functions whenever min_free_kbytes
4729  *	changes.
4730  */
4731 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4732 	void __user *buffer, size_t *length, loff_t *ppos)
4733 {
4734 	proc_dointvec(table, write, buffer, length, ppos);
4735 	if (write)
4736 		setup_per_zone_wmarks();
4737 	return 0;
4738 }
4739 
4740 #ifdef CONFIG_NUMA
4741 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4742 	void __user *buffer, size_t *length, loff_t *ppos)
4743 {
4744 	struct zone *zone;
4745 	int rc;
4746 
4747 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4748 	if (rc)
4749 		return rc;
4750 
4751 	for_each_zone(zone)
4752 		zone->min_unmapped_pages = (zone->present_pages *
4753 				sysctl_min_unmapped_ratio) / 100;
4754 	return 0;
4755 }
4756 
4757 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4758 	void __user *buffer, size_t *length, loff_t *ppos)
4759 {
4760 	struct zone *zone;
4761 	int rc;
4762 
4763 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4764 	if (rc)
4765 		return rc;
4766 
4767 	for_each_zone(zone)
4768 		zone->min_slab_pages = (zone->present_pages *
4769 				sysctl_min_slab_ratio) / 100;
4770 	return 0;
4771 }
4772 #endif
4773 
4774 /*
4775  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4776  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4777  *	whenever sysctl_lowmem_reserve_ratio changes.
4778  *
4779  * The reserve ratio obviously has absolutely no relation with the
4780  * minimum watermarks. The lowmem reserve ratio can only make sense
4781  * if in function of the boot time zone sizes.
4782  */
4783 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4784 	void __user *buffer, size_t *length, loff_t *ppos)
4785 {
4786 	proc_dointvec_minmax(table, write, buffer, length, ppos);
4787 	setup_per_zone_lowmem_reserve();
4788 	return 0;
4789 }
4790 
4791 /*
4792  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4793  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4794  * can have before it gets flushed back to buddy allocator.
4795  */
4796 
4797 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4798 	void __user *buffer, size_t *length, loff_t *ppos)
4799 {
4800 	struct zone *zone;
4801 	unsigned int cpu;
4802 	int ret;
4803 
4804 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4805 	if (!write || (ret == -EINVAL))
4806 		return ret;
4807 	for_each_populated_zone(zone) {
4808 		for_each_online_cpu(cpu) {
4809 			unsigned long  high;
4810 			high = zone->present_pages / percpu_pagelist_fraction;
4811 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4812 		}
4813 	}
4814 	return 0;
4815 }
4816 
4817 int hashdist = HASHDIST_DEFAULT;
4818 
4819 #ifdef CONFIG_NUMA
4820 static int __init set_hashdist(char *str)
4821 {
4822 	if (!str)
4823 		return 0;
4824 	hashdist = simple_strtoul(str, &str, 0);
4825 	return 1;
4826 }
4827 __setup("hashdist=", set_hashdist);
4828 #endif
4829 
4830 /*
4831  * allocate a large system hash table from bootmem
4832  * - it is assumed that the hash table must contain an exact power-of-2
4833  *   quantity of entries
4834  * - limit is the number of hash buckets, not the total allocation size
4835  */
4836 void *__init alloc_large_system_hash(const char *tablename,
4837 				     unsigned long bucketsize,
4838 				     unsigned long numentries,
4839 				     int scale,
4840 				     int flags,
4841 				     unsigned int *_hash_shift,
4842 				     unsigned int *_hash_mask,
4843 				     unsigned long limit)
4844 {
4845 	unsigned long long max = limit;
4846 	unsigned long log2qty, size;
4847 	void *table = NULL;
4848 
4849 	/* allow the kernel cmdline to have a say */
4850 	if (!numentries) {
4851 		/* round applicable memory size up to nearest megabyte */
4852 		numentries = nr_kernel_pages;
4853 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4854 		numentries >>= 20 - PAGE_SHIFT;
4855 		numentries <<= 20 - PAGE_SHIFT;
4856 
4857 		/* limit to 1 bucket per 2^scale bytes of low memory */
4858 		if (scale > PAGE_SHIFT)
4859 			numentries >>= (scale - PAGE_SHIFT);
4860 		else
4861 			numentries <<= (PAGE_SHIFT - scale);
4862 
4863 		/* Make sure we've got at least a 0-order allocation.. */
4864 		if (unlikely(flags & HASH_SMALL)) {
4865 			/* Makes no sense without HASH_EARLY */
4866 			WARN_ON(!(flags & HASH_EARLY));
4867 			if (!(numentries >> *_hash_shift)) {
4868 				numentries = 1UL << *_hash_shift;
4869 				BUG_ON(!numentries);
4870 			}
4871 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4872 			numentries = PAGE_SIZE / bucketsize;
4873 	}
4874 	numentries = roundup_pow_of_two(numentries);
4875 
4876 	/* limit allocation size to 1/16 total memory by default */
4877 	if (max == 0) {
4878 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4879 		do_div(max, bucketsize);
4880 	}
4881 
4882 	if (numentries > max)
4883 		numentries = max;
4884 
4885 	log2qty = ilog2(numentries);
4886 
4887 	do {
4888 		size = bucketsize << log2qty;
4889 		if (flags & HASH_EARLY)
4890 			table = alloc_bootmem_nopanic(size);
4891 		else if (hashdist)
4892 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4893 		else {
4894 			/*
4895 			 * If bucketsize is not a power-of-two, we may free
4896 			 * some pages at the end of hash table which
4897 			 * alloc_pages_exact() automatically does
4898 			 */
4899 			if (get_order(size) < MAX_ORDER) {
4900 				table = alloc_pages_exact(size, GFP_ATOMIC);
4901 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4902 			}
4903 		}
4904 	} while (!table && size > PAGE_SIZE && --log2qty);
4905 
4906 	if (!table)
4907 		panic("Failed to allocate %s hash table\n", tablename);
4908 
4909 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4910 	       tablename,
4911 	       (1U << log2qty),
4912 	       ilog2(size) - PAGE_SHIFT,
4913 	       size);
4914 
4915 	if (_hash_shift)
4916 		*_hash_shift = log2qty;
4917 	if (_hash_mask)
4918 		*_hash_mask = (1 << log2qty) - 1;
4919 
4920 	return table;
4921 }
4922 
4923 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4924 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4925 							unsigned long pfn)
4926 {
4927 #ifdef CONFIG_SPARSEMEM
4928 	return __pfn_to_section(pfn)->pageblock_flags;
4929 #else
4930 	return zone->pageblock_flags;
4931 #endif /* CONFIG_SPARSEMEM */
4932 }
4933 
4934 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4935 {
4936 #ifdef CONFIG_SPARSEMEM
4937 	pfn &= (PAGES_PER_SECTION-1);
4938 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4939 #else
4940 	pfn = pfn - zone->zone_start_pfn;
4941 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4942 #endif /* CONFIG_SPARSEMEM */
4943 }
4944 
4945 /**
4946  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4947  * @page: The page within the block of interest
4948  * @start_bitidx: The first bit of interest to retrieve
4949  * @end_bitidx: The last bit of interest
4950  * returns pageblock_bits flags
4951  */
4952 unsigned long get_pageblock_flags_group(struct page *page,
4953 					int start_bitidx, int end_bitidx)
4954 {
4955 	struct zone *zone;
4956 	unsigned long *bitmap;
4957 	unsigned long pfn, bitidx;
4958 	unsigned long flags = 0;
4959 	unsigned long value = 1;
4960 
4961 	zone = page_zone(page);
4962 	pfn = page_to_pfn(page);
4963 	bitmap = get_pageblock_bitmap(zone, pfn);
4964 	bitidx = pfn_to_bitidx(zone, pfn);
4965 
4966 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4967 		if (test_bit(bitidx + start_bitidx, bitmap))
4968 			flags |= value;
4969 
4970 	return flags;
4971 }
4972 
4973 /**
4974  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4975  * @page: The page within the block of interest
4976  * @start_bitidx: The first bit of interest
4977  * @end_bitidx: The last bit of interest
4978  * @flags: The flags to set
4979  */
4980 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4981 					int start_bitidx, int end_bitidx)
4982 {
4983 	struct zone *zone;
4984 	unsigned long *bitmap;
4985 	unsigned long pfn, bitidx;
4986 	unsigned long value = 1;
4987 
4988 	zone = page_zone(page);
4989 	pfn = page_to_pfn(page);
4990 	bitmap = get_pageblock_bitmap(zone, pfn);
4991 	bitidx = pfn_to_bitidx(zone, pfn);
4992 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4993 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4994 
4995 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4996 		if (flags & value)
4997 			__set_bit(bitidx + start_bitidx, bitmap);
4998 		else
4999 			__clear_bit(bitidx + start_bitidx, bitmap);
5000 }
5001 
5002 /*
5003  * This is designed as sub function...plz see page_isolation.c also.
5004  * set/clear page block's type to be ISOLATE.
5005  * page allocater never alloc memory from ISOLATE block.
5006  */
5007 
5008 int set_migratetype_isolate(struct page *page)
5009 {
5010 	struct zone *zone;
5011 	unsigned long flags;
5012 	int ret = -EBUSY;
5013 	int zone_idx;
5014 
5015 	zone = page_zone(page);
5016 	zone_idx = zone_idx(zone);
5017 	spin_lock_irqsave(&zone->lock, flags);
5018 	/*
5019 	 * In future, more migrate types will be able to be isolation target.
5020 	 */
5021 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5022 	    zone_idx != ZONE_MOVABLE)
5023 		goto out;
5024 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5025 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
5026 	ret = 0;
5027 out:
5028 	spin_unlock_irqrestore(&zone->lock, flags);
5029 	if (!ret)
5030 		drain_all_pages();
5031 	return ret;
5032 }
5033 
5034 void unset_migratetype_isolate(struct page *page)
5035 {
5036 	struct zone *zone;
5037 	unsigned long flags;
5038 	zone = page_zone(page);
5039 	spin_lock_irqsave(&zone->lock, flags);
5040 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5041 		goto out;
5042 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5043 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5044 out:
5045 	spin_unlock_irqrestore(&zone->lock, flags);
5046 }
5047 
5048 #ifdef CONFIG_MEMORY_HOTREMOVE
5049 /*
5050  * All pages in the range must be isolated before calling this.
5051  */
5052 void
5053 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5054 {
5055 	struct page *page;
5056 	struct zone *zone;
5057 	int order, i;
5058 	unsigned long pfn;
5059 	unsigned long flags;
5060 	/* find the first valid pfn */
5061 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5062 		if (pfn_valid(pfn))
5063 			break;
5064 	if (pfn == end_pfn)
5065 		return;
5066 	zone = page_zone(pfn_to_page(pfn));
5067 	spin_lock_irqsave(&zone->lock, flags);
5068 	pfn = start_pfn;
5069 	while (pfn < end_pfn) {
5070 		if (!pfn_valid(pfn)) {
5071 			pfn++;
5072 			continue;
5073 		}
5074 		page = pfn_to_page(pfn);
5075 		BUG_ON(page_count(page));
5076 		BUG_ON(!PageBuddy(page));
5077 		order = page_order(page);
5078 #ifdef CONFIG_DEBUG_VM
5079 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5080 		       pfn, 1 << order, end_pfn);
5081 #endif
5082 		list_del(&page->lru);
5083 		rmv_page_order(page);
5084 		zone->free_area[order].nr_free--;
5085 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5086 				      - (1UL << order));
5087 		for (i = 0; i < (1 << order); i++)
5088 			SetPageReserved((page+i));
5089 		pfn += (1 << order);
5090 	}
5091 	spin_unlock_irqrestore(&zone->lock, flags);
5092 }
5093 #endif
5094 
5095 #ifdef CONFIG_MEMORY_FAILURE
5096 bool is_free_buddy_page(struct page *page)
5097 {
5098 	struct zone *zone = page_zone(page);
5099 	unsigned long pfn = page_to_pfn(page);
5100 	unsigned long flags;
5101 	int order;
5102 
5103 	spin_lock_irqsave(&zone->lock, flags);
5104 	for (order = 0; order < MAX_ORDER; order++) {
5105 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5106 
5107 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5108 			break;
5109 	}
5110 	spin_unlock_irqrestore(&zone->lock, flags);
5111 
5112 	return order < MAX_ORDER;
5113 }
5114 #endif
5115