1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 #include <trace/events/kmem.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 #include "internal.h" 56 57 /* 58 * Array of node states. 59 */ 60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 61 [N_POSSIBLE] = NODE_MASK_ALL, 62 [N_ONLINE] = { { [0] = 1UL } }, 63 #ifndef CONFIG_NUMA 64 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 65 #ifdef CONFIG_HIGHMEM 66 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 67 #endif 68 [N_CPU] = { { [0] = 1UL } }, 69 #endif /* NUMA */ 70 }; 71 EXPORT_SYMBOL(node_states); 72 73 unsigned long totalram_pages __read_mostly; 74 unsigned long totalreserve_pages __read_mostly; 75 int percpu_pagelist_fraction; 76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 77 78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 79 int pageblock_order __read_mostly; 80 #endif 81 82 static void __free_pages_ok(struct page *page, unsigned int order); 83 84 /* 85 * results with 256, 32 in the lowmem_reserve sysctl: 86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 87 * 1G machine -> (16M dma, 784M normal, 224M high) 88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 91 * 92 * TBD: should special case ZONE_DMA32 machines here - in those we normally 93 * don't need any ZONE_NORMAL reservation 94 */ 95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 96 #ifdef CONFIG_ZONE_DMA 97 256, 98 #endif 99 #ifdef CONFIG_ZONE_DMA32 100 256, 101 #endif 102 #ifdef CONFIG_HIGHMEM 103 32, 104 #endif 105 32, 106 }; 107 108 EXPORT_SYMBOL(totalram_pages); 109 110 static char * const zone_names[MAX_NR_ZONES] = { 111 #ifdef CONFIG_ZONE_DMA 112 "DMA", 113 #endif 114 #ifdef CONFIG_ZONE_DMA32 115 "DMA32", 116 #endif 117 "Normal", 118 #ifdef CONFIG_HIGHMEM 119 "HighMem", 120 #endif 121 "Movable", 122 }; 123 124 int min_free_kbytes = 1024; 125 126 static unsigned long __meminitdata nr_kernel_pages; 127 static unsigned long __meminitdata nr_all_pages; 128 static unsigned long __meminitdata dma_reserve; 129 130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 131 /* 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 133 * ranges of memory (RAM) that may be registered with add_active_range(). 134 * Ranges passed to add_active_range() will be merged if possible 135 * so the number of times add_active_range() can be called is 136 * related to the number of nodes and the number of holes 137 */ 138 #ifdef CONFIG_MAX_ACTIVE_REGIONS 139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 141 #else 142 #if MAX_NUMNODES >= 32 143 /* If there can be many nodes, allow up to 50 holes per node */ 144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 145 #else 146 /* By default, allow up to 256 distinct regions */ 147 #define MAX_ACTIVE_REGIONS 256 148 #endif 149 #endif 150 151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 152 static int __meminitdata nr_nodemap_entries; 153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 155 static unsigned long __initdata required_kernelcore; 156 static unsigned long __initdata required_movablecore; 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 158 159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 160 int movable_zone; 161 EXPORT_SYMBOL(movable_zone); 162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 163 164 #if MAX_NUMNODES > 1 165 int nr_node_ids __read_mostly = MAX_NUMNODES; 166 int nr_online_nodes __read_mostly = 1; 167 EXPORT_SYMBOL(nr_node_ids); 168 EXPORT_SYMBOL(nr_online_nodes); 169 #endif 170 171 int page_group_by_mobility_disabled __read_mostly; 172 173 static void set_pageblock_migratetype(struct page *page, int migratetype) 174 { 175 176 if (unlikely(page_group_by_mobility_disabled)) 177 migratetype = MIGRATE_UNMOVABLE; 178 179 set_pageblock_flags_group(page, (unsigned long)migratetype, 180 PB_migrate, PB_migrate_end); 181 } 182 183 bool oom_killer_disabled __read_mostly; 184 185 #ifdef CONFIG_DEBUG_VM 186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 187 { 188 int ret = 0; 189 unsigned seq; 190 unsigned long pfn = page_to_pfn(page); 191 192 do { 193 seq = zone_span_seqbegin(zone); 194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 195 ret = 1; 196 else if (pfn < zone->zone_start_pfn) 197 ret = 1; 198 } while (zone_span_seqretry(zone, seq)); 199 200 return ret; 201 } 202 203 static int page_is_consistent(struct zone *zone, struct page *page) 204 { 205 if (!pfn_valid_within(page_to_pfn(page))) 206 return 0; 207 if (zone != page_zone(page)) 208 return 0; 209 210 return 1; 211 } 212 /* 213 * Temporary debugging check for pages not lying within a given zone. 214 */ 215 static int bad_range(struct zone *zone, struct page *page) 216 { 217 if (page_outside_zone_boundaries(zone, page)) 218 return 1; 219 if (!page_is_consistent(zone, page)) 220 return 1; 221 222 return 0; 223 } 224 #else 225 static inline int bad_range(struct zone *zone, struct page *page) 226 { 227 return 0; 228 } 229 #endif 230 231 static void bad_page(struct page *page) 232 { 233 static unsigned long resume; 234 static unsigned long nr_shown; 235 static unsigned long nr_unshown; 236 237 /* Don't complain about poisoned pages */ 238 if (PageHWPoison(page)) { 239 __ClearPageBuddy(page); 240 return; 241 } 242 243 /* 244 * Allow a burst of 60 reports, then keep quiet for that minute; 245 * or allow a steady drip of one report per second. 246 */ 247 if (nr_shown == 60) { 248 if (time_before(jiffies, resume)) { 249 nr_unshown++; 250 goto out; 251 } 252 if (nr_unshown) { 253 printk(KERN_ALERT 254 "BUG: Bad page state: %lu messages suppressed\n", 255 nr_unshown); 256 nr_unshown = 0; 257 } 258 nr_shown = 0; 259 } 260 if (nr_shown++ == 0) 261 resume = jiffies + 60 * HZ; 262 263 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 264 current->comm, page_to_pfn(page)); 265 printk(KERN_ALERT 266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 267 page, (void *)page->flags, page_count(page), 268 page_mapcount(page), page->mapping, page->index); 269 270 dump_stack(); 271 out: 272 /* Leave bad fields for debug, except PageBuddy could make trouble */ 273 __ClearPageBuddy(page); 274 add_taint(TAINT_BAD_PAGE); 275 } 276 277 /* 278 * Higher-order pages are called "compound pages". They are structured thusly: 279 * 280 * The first PAGE_SIZE page is called the "head page". 281 * 282 * The remaining PAGE_SIZE pages are called "tail pages". 283 * 284 * All pages have PG_compound set. All pages have their ->private pointing at 285 * the head page (even the head page has this). 286 * 287 * The first tail page's ->lru.next holds the address of the compound page's 288 * put_page() function. Its ->lru.prev holds the order of allocation. 289 * This usage means that zero-order pages may not be compound. 290 */ 291 292 static void free_compound_page(struct page *page) 293 { 294 __free_pages_ok(page, compound_order(page)); 295 } 296 297 void prep_compound_page(struct page *page, unsigned long order) 298 { 299 int i; 300 int nr_pages = 1 << order; 301 302 set_compound_page_dtor(page, free_compound_page); 303 set_compound_order(page, order); 304 __SetPageHead(page); 305 for (i = 1; i < nr_pages; i++) { 306 struct page *p = page + i; 307 308 __SetPageTail(p); 309 p->first_page = page; 310 } 311 } 312 313 static int destroy_compound_page(struct page *page, unsigned long order) 314 { 315 int i; 316 int nr_pages = 1 << order; 317 int bad = 0; 318 319 if (unlikely(compound_order(page) != order) || 320 unlikely(!PageHead(page))) { 321 bad_page(page); 322 bad++; 323 } 324 325 __ClearPageHead(page); 326 327 for (i = 1; i < nr_pages; i++) { 328 struct page *p = page + i; 329 330 if (unlikely(!PageTail(p) || (p->first_page != page))) { 331 bad_page(page); 332 bad++; 333 } 334 __ClearPageTail(p); 335 } 336 337 return bad; 338 } 339 340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 341 { 342 int i; 343 344 /* 345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 346 * and __GFP_HIGHMEM from hard or soft interrupt context. 347 */ 348 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 349 for (i = 0; i < (1 << order); i++) 350 clear_highpage(page + i); 351 } 352 353 static inline void set_page_order(struct page *page, int order) 354 { 355 set_page_private(page, order); 356 __SetPageBuddy(page); 357 } 358 359 static inline void rmv_page_order(struct page *page) 360 { 361 __ClearPageBuddy(page); 362 set_page_private(page, 0); 363 } 364 365 /* 366 * Locate the struct page for both the matching buddy in our 367 * pair (buddy1) and the combined O(n+1) page they form (page). 368 * 369 * 1) Any buddy B1 will have an order O twin B2 which satisfies 370 * the following equation: 371 * B2 = B1 ^ (1 << O) 372 * For example, if the starting buddy (buddy2) is #8 its order 373 * 1 buddy is #10: 374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 375 * 376 * 2) Any buddy B will have an order O+1 parent P which 377 * satisfies the following equation: 378 * P = B & ~(1 << O) 379 * 380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 381 */ 382 static inline struct page * 383 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 384 { 385 unsigned long buddy_idx = page_idx ^ (1 << order); 386 387 return page + (buddy_idx - page_idx); 388 } 389 390 static inline unsigned long 391 __find_combined_index(unsigned long page_idx, unsigned int order) 392 { 393 return (page_idx & ~(1 << order)); 394 } 395 396 /* 397 * This function checks whether a page is free && is the buddy 398 * we can do coalesce a page and its buddy if 399 * (a) the buddy is not in a hole && 400 * (b) the buddy is in the buddy system && 401 * (c) a page and its buddy have the same order && 402 * (d) a page and its buddy are in the same zone. 403 * 404 * For recording whether a page is in the buddy system, we use PG_buddy. 405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 406 * 407 * For recording page's order, we use page_private(page). 408 */ 409 static inline int page_is_buddy(struct page *page, struct page *buddy, 410 int order) 411 { 412 if (!pfn_valid_within(page_to_pfn(buddy))) 413 return 0; 414 415 if (page_zone_id(page) != page_zone_id(buddy)) 416 return 0; 417 418 if (PageBuddy(buddy) && page_order(buddy) == order) { 419 VM_BUG_ON(page_count(buddy) != 0); 420 return 1; 421 } 422 return 0; 423 } 424 425 /* 426 * Freeing function for a buddy system allocator. 427 * 428 * The concept of a buddy system is to maintain direct-mapped table 429 * (containing bit values) for memory blocks of various "orders". 430 * The bottom level table contains the map for the smallest allocatable 431 * units of memory (here, pages), and each level above it describes 432 * pairs of units from the levels below, hence, "buddies". 433 * At a high level, all that happens here is marking the table entry 434 * at the bottom level available, and propagating the changes upward 435 * as necessary, plus some accounting needed to play nicely with other 436 * parts of the VM system. 437 * At each level, we keep a list of pages, which are heads of continuous 438 * free pages of length of (1 << order) and marked with PG_buddy. Page's 439 * order is recorded in page_private(page) field. 440 * So when we are allocating or freeing one, we can derive the state of the 441 * other. That is, if we allocate a small block, and both were 442 * free, the remainder of the region must be split into blocks. 443 * If a block is freed, and its buddy is also free, then this 444 * triggers coalescing into a block of larger size. 445 * 446 * -- wli 447 */ 448 449 static inline void __free_one_page(struct page *page, 450 struct zone *zone, unsigned int order, 451 int migratetype) 452 { 453 unsigned long page_idx; 454 455 if (unlikely(PageCompound(page))) 456 if (unlikely(destroy_compound_page(page, order))) 457 return; 458 459 VM_BUG_ON(migratetype == -1); 460 461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 462 463 VM_BUG_ON(page_idx & ((1 << order) - 1)); 464 VM_BUG_ON(bad_range(zone, page)); 465 466 while (order < MAX_ORDER-1) { 467 unsigned long combined_idx; 468 struct page *buddy; 469 470 buddy = __page_find_buddy(page, page_idx, order); 471 if (!page_is_buddy(page, buddy, order)) 472 break; 473 474 /* Our buddy is free, merge with it and move up one order. */ 475 list_del(&buddy->lru); 476 zone->free_area[order].nr_free--; 477 rmv_page_order(buddy); 478 combined_idx = __find_combined_index(page_idx, order); 479 page = page + (combined_idx - page_idx); 480 page_idx = combined_idx; 481 order++; 482 } 483 set_page_order(page, order); 484 list_add(&page->lru, 485 &zone->free_area[order].free_list[migratetype]); 486 zone->free_area[order].nr_free++; 487 } 488 489 /* 490 * free_page_mlock() -- clean up attempts to free and mlocked() page. 491 * Page should not be on lru, so no need to fix that up. 492 * free_pages_check() will verify... 493 */ 494 static inline void free_page_mlock(struct page *page) 495 { 496 __dec_zone_page_state(page, NR_MLOCK); 497 __count_vm_event(UNEVICTABLE_MLOCKFREED); 498 } 499 500 static inline int free_pages_check(struct page *page) 501 { 502 if (unlikely(page_mapcount(page) | 503 (page->mapping != NULL) | 504 (atomic_read(&page->_count) != 0) | 505 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 506 bad_page(page); 507 return 1; 508 } 509 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 510 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 511 return 0; 512 } 513 514 /* 515 * Frees a number of pages from the PCP lists 516 * Assumes all pages on list are in same zone, and of same order. 517 * count is the number of pages to free. 518 * 519 * If the zone was previously in an "all pages pinned" state then look to 520 * see if this freeing clears that state. 521 * 522 * And clear the zone's pages_scanned counter, to hold off the "all pages are 523 * pinned" detection logic. 524 */ 525 static void free_pcppages_bulk(struct zone *zone, int count, 526 struct per_cpu_pages *pcp) 527 { 528 int migratetype = 0; 529 int batch_free = 0; 530 531 spin_lock(&zone->lock); 532 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 533 zone->pages_scanned = 0; 534 535 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 536 while (count) { 537 struct page *page; 538 struct list_head *list; 539 540 /* 541 * Remove pages from lists in a round-robin fashion. A 542 * batch_free count is maintained that is incremented when an 543 * empty list is encountered. This is so more pages are freed 544 * off fuller lists instead of spinning excessively around empty 545 * lists 546 */ 547 do { 548 batch_free++; 549 if (++migratetype == MIGRATE_PCPTYPES) 550 migratetype = 0; 551 list = &pcp->lists[migratetype]; 552 } while (list_empty(list)); 553 554 do { 555 page = list_entry(list->prev, struct page, lru); 556 /* must delete as __free_one_page list manipulates */ 557 list_del(&page->lru); 558 __free_one_page(page, zone, 0, migratetype); 559 trace_mm_page_pcpu_drain(page, 0, migratetype); 560 } while (--count && --batch_free && !list_empty(list)); 561 } 562 spin_unlock(&zone->lock); 563 } 564 565 static void free_one_page(struct zone *zone, struct page *page, int order, 566 int migratetype) 567 { 568 spin_lock(&zone->lock); 569 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 570 zone->pages_scanned = 0; 571 572 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 573 __free_one_page(page, zone, order, migratetype); 574 spin_unlock(&zone->lock); 575 } 576 577 static void __free_pages_ok(struct page *page, unsigned int order) 578 { 579 unsigned long flags; 580 int i; 581 int bad = 0; 582 int wasMlocked = __TestClearPageMlocked(page); 583 584 kmemcheck_free_shadow(page, order); 585 586 for (i = 0 ; i < (1 << order) ; ++i) 587 bad += free_pages_check(page + i); 588 if (bad) 589 return; 590 591 if (!PageHighMem(page)) { 592 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 593 debug_check_no_obj_freed(page_address(page), 594 PAGE_SIZE << order); 595 } 596 arch_free_page(page, order); 597 kernel_map_pages(page, 1 << order, 0); 598 599 local_irq_save(flags); 600 if (unlikely(wasMlocked)) 601 free_page_mlock(page); 602 __count_vm_events(PGFREE, 1 << order); 603 free_one_page(page_zone(page), page, order, 604 get_pageblock_migratetype(page)); 605 local_irq_restore(flags); 606 } 607 608 /* 609 * permit the bootmem allocator to evade page validation on high-order frees 610 */ 611 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 612 { 613 if (order == 0) { 614 __ClearPageReserved(page); 615 set_page_count(page, 0); 616 set_page_refcounted(page); 617 __free_page(page); 618 } else { 619 int loop; 620 621 prefetchw(page); 622 for (loop = 0; loop < BITS_PER_LONG; loop++) { 623 struct page *p = &page[loop]; 624 625 if (loop + 1 < BITS_PER_LONG) 626 prefetchw(p + 1); 627 __ClearPageReserved(p); 628 set_page_count(p, 0); 629 } 630 631 set_page_refcounted(page); 632 __free_pages(page, order); 633 } 634 } 635 636 637 /* 638 * The order of subdivision here is critical for the IO subsystem. 639 * Please do not alter this order without good reasons and regression 640 * testing. Specifically, as large blocks of memory are subdivided, 641 * the order in which smaller blocks are delivered depends on the order 642 * they're subdivided in this function. This is the primary factor 643 * influencing the order in which pages are delivered to the IO 644 * subsystem according to empirical testing, and this is also justified 645 * by considering the behavior of a buddy system containing a single 646 * large block of memory acted on by a series of small allocations. 647 * This behavior is a critical factor in sglist merging's success. 648 * 649 * -- wli 650 */ 651 static inline void expand(struct zone *zone, struct page *page, 652 int low, int high, struct free_area *area, 653 int migratetype) 654 { 655 unsigned long size = 1 << high; 656 657 while (high > low) { 658 area--; 659 high--; 660 size >>= 1; 661 VM_BUG_ON(bad_range(zone, &page[size])); 662 list_add(&page[size].lru, &area->free_list[migratetype]); 663 area->nr_free++; 664 set_page_order(&page[size], high); 665 } 666 } 667 668 /* 669 * This page is about to be returned from the page allocator 670 */ 671 static inline int check_new_page(struct page *page) 672 { 673 if (unlikely(page_mapcount(page) | 674 (page->mapping != NULL) | 675 (atomic_read(&page->_count) != 0) | 676 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 677 bad_page(page); 678 return 1; 679 } 680 return 0; 681 } 682 683 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 684 { 685 int i; 686 687 for (i = 0; i < (1 << order); i++) { 688 struct page *p = page + i; 689 if (unlikely(check_new_page(p))) 690 return 1; 691 } 692 693 set_page_private(page, 0); 694 set_page_refcounted(page); 695 696 arch_alloc_page(page, order); 697 kernel_map_pages(page, 1 << order, 1); 698 699 if (gfp_flags & __GFP_ZERO) 700 prep_zero_page(page, order, gfp_flags); 701 702 if (order && (gfp_flags & __GFP_COMP)) 703 prep_compound_page(page, order); 704 705 return 0; 706 } 707 708 /* 709 * Go through the free lists for the given migratetype and remove 710 * the smallest available page from the freelists 711 */ 712 static inline 713 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 714 int migratetype) 715 { 716 unsigned int current_order; 717 struct free_area * area; 718 struct page *page; 719 720 /* Find a page of the appropriate size in the preferred list */ 721 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 722 area = &(zone->free_area[current_order]); 723 if (list_empty(&area->free_list[migratetype])) 724 continue; 725 726 page = list_entry(area->free_list[migratetype].next, 727 struct page, lru); 728 list_del(&page->lru); 729 rmv_page_order(page); 730 area->nr_free--; 731 expand(zone, page, order, current_order, area, migratetype); 732 return page; 733 } 734 735 return NULL; 736 } 737 738 739 /* 740 * This array describes the order lists are fallen back to when 741 * the free lists for the desirable migrate type are depleted 742 */ 743 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 744 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 745 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 746 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 747 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 748 }; 749 750 /* 751 * Move the free pages in a range to the free lists of the requested type. 752 * Note that start_page and end_pages are not aligned on a pageblock 753 * boundary. If alignment is required, use move_freepages_block() 754 */ 755 static int move_freepages(struct zone *zone, 756 struct page *start_page, struct page *end_page, 757 int migratetype) 758 { 759 struct page *page; 760 unsigned long order; 761 int pages_moved = 0; 762 763 #ifndef CONFIG_HOLES_IN_ZONE 764 /* 765 * page_zone is not safe to call in this context when 766 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 767 * anyway as we check zone boundaries in move_freepages_block(). 768 * Remove at a later date when no bug reports exist related to 769 * grouping pages by mobility 770 */ 771 BUG_ON(page_zone(start_page) != page_zone(end_page)); 772 #endif 773 774 for (page = start_page; page <= end_page;) { 775 /* Make sure we are not inadvertently changing nodes */ 776 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 777 778 if (!pfn_valid_within(page_to_pfn(page))) { 779 page++; 780 continue; 781 } 782 783 if (!PageBuddy(page)) { 784 page++; 785 continue; 786 } 787 788 order = page_order(page); 789 list_del(&page->lru); 790 list_add(&page->lru, 791 &zone->free_area[order].free_list[migratetype]); 792 page += 1 << order; 793 pages_moved += 1 << order; 794 } 795 796 return pages_moved; 797 } 798 799 static int move_freepages_block(struct zone *zone, struct page *page, 800 int migratetype) 801 { 802 unsigned long start_pfn, end_pfn; 803 struct page *start_page, *end_page; 804 805 start_pfn = page_to_pfn(page); 806 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 807 start_page = pfn_to_page(start_pfn); 808 end_page = start_page + pageblock_nr_pages - 1; 809 end_pfn = start_pfn + pageblock_nr_pages - 1; 810 811 /* Do not cross zone boundaries */ 812 if (start_pfn < zone->zone_start_pfn) 813 start_page = page; 814 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 815 return 0; 816 817 return move_freepages(zone, start_page, end_page, migratetype); 818 } 819 820 static void change_pageblock_range(struct page *pageblock_page, 821 int start_order, int migratetype) 822 { 823 int nr_pageblocks = 1 << (start_order - pageblock_order); 824 825 while (nr_pageblocks--) { 826 set_pageblock_migratetype(pageblock_page, migratetype); 827 pageblock_page += pageblock_nr_pages; 828 } 829 } 830 831 /* Remove an element from the buddy allocator from the fallback list */ 832 static inline struct page * 833 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 834 { 835 struct free_area * area; 836 int current_order; 837 struct page *page; 838 int migratetype, i; 839 840 /* Find the largest possible block of pages in the other list */ 841 for (current_order = MAX_ORDER-1; current_order >= order; 842 --current_order) { 843 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 844 migratetype = fallbacks[start_migratetype][i]; 845 846 /* MIGRATE_RESERVE handled later if necessary */ 847 if (migratetype == MIGRATE_RESERVE) 848 continue; 849 850 area = &(zone->free_area[current_order]); 851 if (list_empty(&area->free_list[migratetype])) 852 continue; 853 854 page = list_entry(area->free_list[migratetype].next, 855 struct page, lru); 856 area->nr_free--; 857 858 /* 859 * If breaking a large block of pages, move all free 860 * pages to the preferred allocation list. If falling 861 * back for a reclaimable kernel allocation, be more 862 * agressive about taking ownership of free pages 863 */ 864 if (unlikely(current_order >= (pageblock_order >> 1)) || 865 start_migratetype == MIGRATE_RECLAIMABLE || 866 page_group_by_mobility_disabled) { 867 unsigned long pages; 868 pages = move_freepages_block(zone, page, 869 start_migratetype); 870 871 /* Claim the whole block if over half of it is free */ 872 if (pages >= (1 << (pageblock_order-1)) || 873 page_group_by_mobility_disabled) 874 set_pageblock_migratetype(page, 875 start_migratetype); 876 877 migratetype = start_migratetype; 878 } 879 880 /* Remove the page from the freelists */ 881 list_del(&page->lru); 882 rmv_page_order(page); 883 884 /* Take ownership for orders >= pageblock_order */ 885 if (current_order >= pageblock_order) 886 change_pageblock_range(page, current_order, 887 start_migratetype); 888 889 expand(zone, page, order, current_order, area, migratetype); 890 891 trace_mm_page_alloc_extfrag(page, order, current_order, 892 start_migratetype, migratetype); 893 894 return page; 895 } 896 } 897 898 return NULL; 899 } 900 901 /* 902 * Do the hard work of removing an element from the buddy allocator. 903 * Call me with the zone->lock already held. 904 */ 905 static struct page *__rmqueue(struct zone *zone, unsigned int order, 906 int migratetype) 907 { 908 struct page *page; 909 910 retry_reserve: 911 page = __rmqueue_smallest(zone, order, migratetype); 912 913 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 914 page = __rmqueue_fallback(zone, order, migratetype); 915 916 /* 917 * Use MIGRATE_RESERVE rather than fail an allocation. goto 918 * is used because __rmqueue_smallest is an inline function 919 * and we want just one call site 920 */ 921 if (!page) { 922 migratetype = MIGRATE_RESERVE; 923 goto retry_reserve; 924 } 925 } 926 927 trace_mm_page_alloc_zone_locked(page, order, migratetype); 928 return page; 929 } 930 931 /* 932 * Obtain a specified number of elements from the buddy allocator, all under 933 * a single hold of the lock, for efficiency. Add them to the supplied list. 934 * Returns the number of new pages which were placed at *list. 935 */ 936 static int rmqueue_bulk(struct zone *zone, unsigned int order, 937 unsigned long count, struct list_head *list, 938 int migratetype, int cold) 939 { 940 int i; 941 942 spin_lock(&zone->lock); 943 for (i = 0; i < count; ++i) { 944 struct page *page = __rmqueue(zone, order, migratetype); 945 if (unlikely(page == NULL)) 946 break; 947 948 /* 949 * Split buddy pages returned by expand() are received here 950 * in physical page order. The page is added to the callers and 951 * list and the list head then moves forward. From the callers 952 * perspective, the linked list is ordered by page number in 953 * some conditions. This is useful for IO devices that can 954 * merge IO requests if the physical pages are ordered 955 * properly. 956 */ 957 if (likely(cold == 0)) 958 list_add(&page->lru, list); 959 else 960 list_add_tail(&page->lru, list); 961 set_page_private(page, migratetype); 962 list = &page->lru; 963 } 964 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 965 spin_unlock(&zone->lock); 966 return i; 967 } 968 969 #ifdef CONFIG_NUMA 970 /* 971 * Called from the vmstat counter updater to drain pagesets of this 972 * currently executing processor on remote nodes after they have 973 * expired. 974 * 975 * Note that this function must be called with the thread pinned to 976 * a single processor. 977 */ 978 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 979 { 980 unsigned long flags; 981 int to_drain; 982 983 local_irq_save(flags); 984 if (pcp->count >= pcp->batch) 985 to_drain = pcp->batch; 986 else 987 to_drain = pcp->count; 988 free_pcppages_bulk(zone, to_drain, pcp); 989 pcp->count -= to_drain; 990 local_irq_restore(flags); 991 } 992 #endif 993 994 /* 995 * Drain pages of the indicated processor. 996 * 997 * The processor must either be the current processor and the 998 * thread pinned to the current processor or a processor that 999 * is not online. 1000 */ 1001 static void drain_pages(unsigned int cpu) 1002 { 1003 unsigned long flags; 1004 struct zone *zone; 1005 1006 for_each_populated_zone(zone) { 1007 struct per_cpu_pageset *pset; 1008 struct per_cpu_pages *pcp; 1009 1010 pset = zone_pcp(zone, cpu); 1011 1012 pcp = &pset->pcp; 1013 local_irq_save(flags); 1014 free_pcppages_bulk(zone, pcp->count, pcp); 1015 pcp->count = 0; 1016 local_irq_restore(flags); 1017 } 1018 } 1019 1020 /* 1021 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1022 */ 1023 void drain_local_pages(void *arg) 1024 { 1025 drain_pages(smp_processor_id()); 1026 } 1027 1028 /* 1029 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1030 */ 1031 void drain_all_pages(void) 1032 { 1033 on_each_cpu(drain_local_pages, NULL, 1); 1034 } 1035 1036 #ifdef CONFIG_HIBERNATION 1037 1038 void mark_free_pages(struct zone *zone) 1039 { 1040 unsigned long pfn, max_zone_pfn; 1041 unsigned long flags; 1042 int order, t; 1043 struct list_head *curr; 1044 1045 if (!zone->spanned_pages) 1046 return; 1047 1048 spin_lock_irqsave(&zone->lock, flags); 1049 1050 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1051 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1052 if (pfn_valid(pfn)) { 1053 struct page *page = pfn_to_page(pfn); 1054 1055 if (!swsusp_page_is_forbidden(page)) 1056 swsusp_unset_page_free(page); 1057 } 1058 1059 for_each_migratetype_order(order, t) { 1060 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1061 unsigned long i; 1062 1063 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1064 for (i = 0; i < (1UL << order); i++) 1065 swsusp_set_page_free(pfn_to_page(pfn + i)); 1066 } 1067 } 1068 spin_unlock_irqrestore(&zone->lock, flags); 1069 } 1070 #endif /* CONFIG_PM */ 1071 1072 /* 1073 * Free a 0-order page 1074 */ 1075 static void free_hot_cold_page(struct page *page, int cold) 1076 { 1077 struct zone *zone = page_zone(page); 1078 struct per_cpu_pages *pcp; 1079 unsigned long flags; 1080 int migratetype; 1081 int wasMlocked = __TestClearPageMlocked(page); 1082 1083 kmemcheck_free_shadow(page, 0); 1084 1085 if (PageAnon(page)) 1086 page->mapping = NULL; 1087 if (free_pages_check(page)) 1088 return; 1089 1090 if (!PageHighMem(page)) { 1091 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1092 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1093 } 1094 arch_free_page(page, 0); 1095 kernel_map_pages(page, 1, 0); 1096 1097 pcp = &zone_pcp(zone, get_cpu())->pcp; 1098 migratetype = get_pageblock_migratetype(page); 1099 set_page_private(page, migratetype); 1100 local_irq_save(flags); 1101 if (unlikely(wasMlocked)) 1102 free_page_mlock(page); 1103 __count_vm_event(PGFREE); 1104 1105 /* 1106 * We only track unmovable, reclaimable and movable on pcp lists. 1107 * Free ISOLATE pages back to the allocator because they are being 1108 * offlined but treat RESERVE as movable pages so we can get those 1109 * areas back if necessary. Otherwise, we may have to free 1110 * excessively into the page allocator 1111 */ 1112 if (migratetype >= MIGRATE_PCPTYPES) { 1113 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1114 free_one_page(zone, page, 0, migratetype); 1115 goto out; 1116 } 1117 migratetype = MIGRATE_MOVABLE; 1118 } 1119 1120 if (cold) 1121 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1122 else 1123 list_add(&page->lru, &pcp->lists[migratetype]); 1124 pcp->count++; 1125 if (pcp->count >= pcp->high) { 1126 free_pcppages_bulk(zone, pcp->batch, pcp); 1127 pcp->count -= pcp->batch; 1128 } 1129 1130 out: 1131 local_irq_restore(flags); 1132 put_cpu(); 1133 } 1134 1135 void free_hot_page(struct page *page) 1136 { 1137 trace_mm_page_free_direct(page, 0); 1138 free_hot_cold_page(page, 0); 1139 } 1140 1141 /* 1142 * split_page takes a non-compound higher-order page, and splits it into 1143 * n (1<<order) sub-pages: page[0..n] 1144 * Each sub-page must be freed individually. 1145 * 1146 * Note: this is probably too low level an operation for use in drivers. 1147 * Please consult with lkml before using this in your driver. 1148 */ 1149 void split_page(struct page *page, unsigned int order) 1150 { 1151 int i; 1152 1153 VM_BUG_ON(PageCompound(page)); 1154 VM_BUG_ON(!page_count(page)); 1155 1156 #ifdef CONFIG_KMEMCHECK 1157 /* 1158 * Split shadow pages too, because free(page[0]) would 1159 * otherwise free the whole shadow. 1160 */ 1161 if (kmemcheck_page_is_tracked(page)) 1162 split_page(virt_to_page(page[0].shadow), order); 1163 #endif 1164 1165 for (i = 1; i < (1 << order); i++) 1166 set_page_refcounted(page + i); 1167 } 1168 1169 /* 1170 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1171 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1172 * or two. 1173 */ 1174 static inline 1175 struct page *buffered_rmqueue(struct zone *preferred_zone, 1176 struct zone *zone, int order, gfp_t gfp_flags, 1177 int migratetype) 1178 { 1179 unsigned long flags; 1180 struct page *page; 1181 int cold = !!(gfp_flags & __GFP_COLD); 1182 int cpu; 1183 1184 again: 1185 cpu = get_cpu(); 1186 if (likely(order == 0)) { 1187 struct per_cpu_pages *pcp; 1188 struct list_head *list; 1189 1190 pcp = &zone_pcp(zone, cpu)->pcp; 1191 list = &pcp->lists[migratetype]; 1192 local_irq_save(flags); 1193 if (list_empty(list)) { 1194 pcp->count += rmqueue_bulk(zone, 0, 1195 pcp->batch, list, 1196 migratetype, cold); 1197 if (unlikely(list_empty(list))) 1198 goto failed; 1199 } 1200 1201 if (cold) 1202 page = list_entry(list->prev, struct page, lru); 1203 else 1204 page = list_entry(list->next, struct page, lru); 1205 1206 list_del(&page->lru); 1207 pcp->count--; 1208 } else { 1209 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1210 /* 1211 * __GFP_NOFAIL is not to be used in new code. 1212 * 1213 * All __GFP_NOFAIL callers should be fixed so that they 1214 * properly detect and handle allocation failures. 1215 * 1216 * We most definitely don't want callers attempting to 1217 * allocate greater than order-1 page units with 1218 * __GFP_NOFAIL. 1219 */ 1220 WARN_ON_ONCE(order > 1); 1221 } 1222 spin_lock_irqsave(&zone->lock, flags); 1223 page = __rmqueue(zone, order, migratetype); 1224 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1225 spin_unlock(&zone->lock); 1226 if (!page) 1227 goto failed; 1228 } 1229 1230 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1231 zone_statistics(preferred_zone, zone); 1232 local_irq_restore(flags); 1233 put_cpu(); 1234 1235 VM_BUG_ON(bad_range(zone, page)); 1236 if (prep_new_page(page, order, gfp_flags)) 1237 goto again; 1238 return page; 1239 1240 failed: 1241 local_irq_restore(flags); 1242 put_cpu(); 1243 return NULL; 1244 } 1245 1246 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1247 #define ALLOC_WMARK_MIN WMARK_MIN 1248 #define ALLOC_WMARK_LOW WMARK_LOW 1249 #define ALLOC_WMARK_HIGH WMARK_HIGH 1250 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1251 1252 /* Mask to get the watermark bits */ 1253 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1254 1255 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1256 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1257 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1258 1259 #ifdef CONFIG_FAIL_PAGE_ALLOC 1260 1261 static struct fail_page_alloc_attr { 1262 struct fault_attr attr; 1263 1264 u32 ignore_gfp_highmem; 1265 u32 ignore_gfp_wait; 1266 u32 min_order; 1267 1268 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1269 1270 struct dentry *ignore_gfp_highmem_file; 1271 struct dentry *ignore_gfp_wait_file; 1272 struct dentry *min_order_file; 1273 1274 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1275 1276 } fail_page_alloc = { 1277 .attr = FAULT_ATTR_INITIALIZER, 1278 .ignore_gfp_wait = 1, 1279 .ignore_gfp_highmem = 1, 1280 .min_order = 1, 1281 }; 1282 1283 static int __init setup_fail_page_alloc(char *str) 1284 { 1285 return setup_fault_attr(&fail_page_alloc.attr, str); 1286 } 1287 __setup("fail_page_alloc=", setup_fail_page_alloc); 1288 1289 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1290 { 1291 if (order < fail_page_alloc.min_order) 1292 return 0; 1293 if (gfp_mask & __GFP_NOFAIL) 1294 return 0; 1295 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1296 return 0; 1297 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1298 return 0; 1299 1300 return should_fail(&fail_page_alloc.attr, 1 << order); 1301 } 1302 1303 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1304 1305 static int __init fail_page_alloc_debugfs(void) 1306 { 1307 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1308 struct dentry *dir; 1309 int err; 1310 1311 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1312 "fail_page_alloc"); 1313 if (err) 1314 return err; 1315 dir = fail_page_alloc.attr.dentries.dir; 1316 1317 fail_page_alloc.ignore_gfp_wait_file = 1318 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1319 &fail_page_alloc.ignore_gfp_wait); 1320 1321 fail_page_alloc.ignore_gfp_highmem_file = 1322 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1323 &fail_page_alloc.ignore_gfp_highmem); 1324 fail_page_alloc.min_order_file = 1325 debugfs_create_u32("min-order", mode, dir, 1326 &fail_page_alloc.min_order); 1327 1328 if (!fail_page_alloc.ignore_gfp_wait_file || 1329 !fail_page_alloc.ignore_gfp_highmem_file || 1330 !fail_page_alloc.min_order_file) { 1331 err = -ENOMEM; 1332 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1333 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1334 debugfs_remove(fail_page_alloc.min_order_file); 1335 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1336 } 1337 1338 return err; 1339 } 1340 1341 late_initcall(fail_page_alloc_debugfs); 1342 1343 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1344 1345 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1346 1347 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1348 { 1349 return 0; 1350 } 1351 1352 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1353 1354 /* 1355 * Return 1 if free pages are above 'mark'. This takes into account the order 1356 * of the allocation. 1357 */ 1358 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1359 int classzone_idx, int alloc_flags) 1360 { 1361 /* free_pages my go negative - that's OK */ 1362 long min = mark; 1363 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1364 int o; 1365 1366 if (alloc_flags & ALLOC_HIGH) 1367 min -= min / 2; 1368 if (alloc_flags & ALLOC_HARDER) 1369 min -= min / 4; 1370 1371 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1372 return 0; 1373 for (o = 0; o < order; o++) { 1374 /* At the next order, this order's pages become unavailable */ 1375 free_pages -= z->free_area[o].nr_free << o; 1376 1377 /* Require fewer higher order pages to be free */ 1378 min >>= 1; 1379 1380 if (free_pages <= min) 1381 return 0; 1382 } 1383 return 1; 1384 } 1385 1386 #ifdef CONFIG_NUMA 1387 /* 1388 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1389 * skip over zones that are not allowed by the cpuset, or that have 1390 * been recently (in last second) found to be nearly full. See further 1391 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1392 * that have to skip over a lot of full or unallowed zones. 1393 * 1394 * If the zonelist cache is present in the passed in zonelist, then 1395 * returns a pointer to the allowed node mask (either the current 1396 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1397 * 1398 * If the zonelist cache is not available for this zonelist, does 1399 * nothing and returns NULL. 1400 * 1401 * If the fullzones BITMAP in the zonelist cache is stale (more than 1402 * a second since last zap'd) then we zap it out (clear its bits.) 1403 * 1404 * We hold off even calling zlc_setup, until after we've checked the 1405 * first zone in the zonelist, on the theory that most allocations will 1406 * be satisfied from that first zone, so best to examine that zone as 1407 * quickly as we can. 1408 */ 1409 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1410 { 1411 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1412 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1413 1414 zlc = zonelist->zlcache_ptr; 1415 if (!zlc) 1416 return NULL; 1417 1418 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1419 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1420 zlc->last_full_zap = jiffies; 1421 } 1422 1423 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1424 &cpuset_current_mems_allowed : 1425 &node_states[N_HIGH_MEMORY]; 1426 return allowednodes; 1427 } 1428 1429 /* 1430 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1431 * if it is worth looking at further for free memory: 1432 * 1) Check that the zone isn't thought to be full (doesn't have its 1433 * bit set in the zonelist_cache fullzones BITMAP). 1434 * 2) Check that the zones node (obtained from the zonelist_cache 1435 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1436 * Return true (non-zero) if zone is worth looking at further, or 1437 * else return false (zero) if it is not. 1438 * 1439 * This check -ignores- the distinction between various watermarks, 1440 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1441 * found to be full for any variation of these watermarks, it will 1442 * be considered full for up to one second by all requests, unless 1443 * we are so low on memory on all allowed nodes that we are forced 1444 * into the second scan of the zonelist. 1445 * 1446 * In the second scan we ignore this zonelist cache and exactly 1447 * apply the watermarks to all zones, even it is slower to do so. 1448 * We are low on memory in the second scan, and should leave no stone 1449 * unturned looking for a free page. 1450 */ 1451 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1452 nodemask_t *allowednodes) 1453 { 1454 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1455 int i; /* index of *z in zonelist zones */ 1456 int n; /* node that zone *z is on */ 1457 1458 zlc = zonelist->zlcache_ptr; 1459 if (!zlc) 1460 return 1; 1461 1462 i = z - zonelist->_zonerefs; 1463 n = zlc->z_to_n[i]; 1464 1465 /* This zone is worth trying if it is allowed but not full */ 1466 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1467 } 1468 1469 /* 1470 * Given 'z' scanning a zonelist, set the corresponding bit in 1471 * zlc->fullzones, so that subsequent attempts to allocate a page 1472 * from that zone don't waste time re-examining it. 1473 */ 1474 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1475 { 1476 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1477 int i; /* index of *z in zonelist zones */ 1478 1479 zlc = zonelist->zlcache_ptr; 1480 if (!zlc) 1481 return; 1482 1483 i = z - zonelist->_zonerefs; 1484 1485 set_bit(i, zlc->fullzones); 1486 } 1487 1488 #else /* CONFIG_NUMA */ 1489 1490 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1491 { 1492 return NULL; 1493 } 1494 1495 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1496 nodemask_t *allowednodes) 1497 { 1498 return 1; 1499 } 1500 1501 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1502 { 1503 } 1504 #endif /* CONFIG_NUMA */ 1505 1506 /* 1507 * get_page_from_freelist goes through the zonelist trying to allocate 1508 * a page. 1509 */ 1510 static struct page * 1511 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1512 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1513 struct zone *preferred_zone, int migratetype) 1514 { 1515 struct zoneref *z; 1516 struct page *page = NULL; 1517 int classzone_idx; 1518 struct zone *zone; 1519 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1520 int zlc_active = 0; /* set if using zonelist_cache */ 1521 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1522 1523 classzone_idx = zone_idx(preferred_zone); 1524 zonelist_scan: 1525 /* 1526 * Scan zonelist, looking for a zone with enough free. 1527 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1528 */ 1529 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1530 high_zoneidx, nodemask) { 1531 if (NUMA_BUILD && zlc_active && 1532 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1533 continue; 1534 if ((alloc_flags & ALLOC_CPUSET) && 1535 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1536 goto try_next_zone; 1537 1538 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1539 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1540 unsigned long mark; 1541 int ret; 1542 1543 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1544 if (zone_watermark_ok(zone, order, mark, 1545 classzone_idx, alloc_flags)) 1546 goto try_this_zone; 1547 1548 if (zone_reclaim_mode == 0) 1549 goto this_zone_full; 1550 1551 ret = zone_reclaim(zone, gfp_mask, order); 1552 switch (ret) { 1553 case ZONE_RECLAIM_NOSCAN: 1554 /* did not scan */ 1555 goto try_next_zone; 1556 case ZONE_RECLAIM_FULL: 1557 /* scanned but unreclaimable */ 1558 goto this_zone_full; 1559 default: 1560 /* did we reclaim enough */ 1561 if (!zone_watermark_ok(zone, order, mark, 1562 classzone_idx, alloc_flags)) 1563 goto this_zone_full; 1564 } 1565 } 1566 1567 try_this_zone: 1568 page = buffered_rmqueue(preferred_zone, zone, order, 1569 gfp_mask, migratetype); 1570 if (page) 1571 break; 1572 this_zone_full: 1573 if (NUMA_BUILD) 1574 zlc_mark_zone_full(zonelist, z); 1575 try_next_zone: 1576 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1577 /* 1578 * we do zlc_setup after the first zone is tried but only 1579 * if there are multiple nodes make it worthwhile 1580 */ 1581 allowednodes = zlc_setup(zonelist, alloc_flags); 1582 zlc_active = 1; 1583 did_zlc_setup = 1; 1584 } 1585 } 1586 1587 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1588 /* Disable zlc cache for second zonelist scan */ 1589 zlc_active = 0; 1590 goto zonelist_scan; 1591 } 1592 return page; 1593 } 1594 1595 static inline int 1596 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1597 unsigned long pages_reclaimed) 1598 { 1599 /* Do not loop if specifically requested */ 1600 if (gfp_mask & __GFP_NORETRY) 1601 return 0; 1602 1603 /* 1604 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1605 * means __GFP_NOFAIL, but that may not be true in other 1606 * implementations. 1607 */ 1608 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1609 return 1; 1610 1611 /* 1612 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1613 * specified, then we retry until we no longer reclaim any pages 1614 * (above), or we've reclaimed an order of pages at least as 1615 * large as the allocation's order. In both cases, if the 1616 * allocation still fails, we stop retrying. 1617 */ 1618 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1619 return 1; 1620 1621 /* 1622 * Don't let big-order allocations loop unless the caller 1623 * explicitly requests that. 1624 */ 1625 if (gfp_mask & __GFP_NOFAIL) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 static inline struct page * 1632 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1633 struct zonelist *zonelist, enum zone_type high_zoneidx, 1634 nodemask_t *nodemask, struct zone *preferred_zone, 1635 int migratetype) 1636 { 1637 struct page *page; 1638 1639 /* Acquire the OOM killer lock for the zones in zonelist */ 1640 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1641 schedule_timeout_uninterruptible(1); 1642 return NULL; 1643 } 1644 1645 /* 1646 * Go through the zonelist yet one more time, keep very high watermark 1647 * here, this is only to catch a parallel oom killing, we must fail if 1648 * we're still under heavy pressure. 1649 */ 1650 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1651 order, zonelist, high_zoneidx, 1652 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1653 preferred_zone, migratetype); 1654 if (page) 1655 goto out; 1656 1657 if (!(gfp_mask & __GFP_NOFAIL)) { 1658 /* The OOM killer will not help higher order allocs */ 1659 if (order > PAGE_ALLOC_COSTLY_ORDER) 1660 goto out; 1661 /* 1662 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1663 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1664 * The caller should handle page allocation failure by itself if 1665 * it specifies __GFP_THISNODE. 1666 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1667 */ 1668 if (gfp_mask & __GFP_THISNODE) 1669 goto out; 1670 } 1671 /* Exhausted what can be done so it's blamo time */ 1672 out_of_memory(zonelist, gfp_mask, order, nodemask); 1673 1674 out: 1675 clear_zonelist_oom(zonelist, gfp_mask); 1676 return page; 1677 } 1678 1679 /* The really slow allocator path where we enter direct reclaim */ 1680 static inline struct page * 1681 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1682 struct zonelist *zonelist, enum zone_type high_zoneidx, 1683 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1684 int migratetype, unsigned long *did_some_progress) 1685 { 1686 struct page *page = NULL; 1687 struct reclaim_state reclaim_state; 1688 struct task_struct *p = current; 1689 1690 cond_resched(); 1691 1692 /* We now go into synchronous reclaim */ 1693 cpuset_memory_pressure_bump(); 1694 p->flags |= PF_MEMALLOC; 1695 lockdep_set_current_reclaim_state(gfp_mask); 1696 reclaim_state.reclaimed_slab = 0; 1697 p->reclaim_state = &reclaim_state; 1698 1699 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1700 1701 p->reclaim_state = NULL; 1702 lockdep_clear_current_reclaim_state(); 1703 p->flags &= ~PF_MEMALLOC; 1704 1705 cond_resched(); 1706 1707 if (order != 0) 1708 drain_all_pages(); 1709 1710 if (likely(*did_some_progress)) 1711 page = get_page_from_freelist(gfp_mask, nodemask, order, 1712 zonelist, high_zoneidx, 1713 alloc_flags, preferred_zone, 1714 migratetype); 1715 return page; 1716 } 1717 1718 /* 1719 * This is called in the allocator slow-path if the allocation request is of 1720 * sufficient urgency to ignore watermarks and take other desperate measures 1721 */ 1722 static inline struct page * 1723 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1724 struct zonelist *zonelist, enum zone_type high_zoneidx, 1725 nodemask_t *nodemask, struct zone *preferred_zone, 1726 int migratetype) 1727 { 1728 struct page *page; 1729 1730 do { 1731 page = get_page_from_freelist(gfp_mask, nodemask, order, 1732 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1733 preferred_zone, migratetype); 1734 1735 if (!page && gfp_mask & __GFP_NOFAIL) 1736 congestion_wait(BLK_RW_ASYNC, HZ/50); 1737 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1738 1739 return page; 1740 } 1741 1742 static inline 1743 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1744 enum zone_type high_zoneidx) 1745 { 1746 struct zoneref *z; 1747 struct zone *zone; 1748 1749 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1750 wakeup_kswapd(zone, order); 1751 } 1752 1753 static inline int 1754 gfp_to_alloc_flags(gfp_t gfp_mask) 1755 { 1756 struct task_struct *p = current; 1757 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1758 const gfp_t wait = gfp_mask & __GFP_WAIT; 1759 1760 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1761 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1762 1763 /* 1764 * The caller may dip into page reserves a bit more if the caller 1765 * cannot run direct reclaim, or if the caller has realtime scheduling 1766 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1767 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1768 */ 1769 alloc_flags |= (gfp_mask & __GFP_HIGH); 1770 1771 if (!wait) { 1772 alloc_flags |= ALLOC_HARDER; 1773 /* 1774 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1775 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1776 */ 1777 alloc_flags &= ~ALLOC_CPUSET; 1778 } else if (unlikely(rt_task(p)) && !in_interrupt()) 1779 alloc_flags |= ALLOC_HARDER; 1780 1781 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1782 if (!in_interrupt() && 1783 ((p->flags & PF_MEMALLOC) || 1784 unlikely(test_thread_flag(TIF_MEMDIE)))) 1785 alloc_flags |= ALLOC_NO_WATERMARKS; 1786 } 1787 1788 return alloc_flags; 1789 } 1790 1791 static inline struct page * 1792 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1793 struct zonelist *zonelist, enum zone_type high_zoneidx, 1794 nodemask_t *nodemask, struct zone *preferred_zone, 1795 int migratetype) 1796 { 1797 const gfp_t wait = gfp_mask & __GFP_WAIT; 1798 struct page *page = NULL; 1799 int alloc_flags; 1800 unsigned long pages_reclaimed = 0; 1801 unsigned long did_some_progress; 1802 struct task_struct *p = current; 1803 1804 /* 1805 * In the slowpath, we sanity check order to avoid ever trying to 1806 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1807 * be using allocators in order of preference for an area that is 1808 * too large. 1809 */ 1810 if (order >= MAX_ORDER) { 1811 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1812 return NULL; 1813 } 1814 1815 /* 1816 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1817 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1818 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1819 * using a larger set of nodes after it has established that the 1820 * allowed per node queues are empty and that nodes are 1821 * over allocated. 1822 */ 1823 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1824 goto nopage; 1825 1826 restart: 1827 wake_all_kswapd(order, zonelist, high_zoneidx); 1828 1829 /* 1830 * OK, we're below the kswapd watermark and have kicked background 1831 * reclaim. Now things get more complex, so set up alloc_flags according 1832 * to how we want to proceed. 1833 */ 1834 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1835 1836 /* This is the last chance, in general, before the goto nopage. */ 1837 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1838 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1839 preferred_zone, migratetype); 1840 if (page) 1841 goto got_pg; 1842 1843 rebalance: 1844 /* Allocate without watermarks if the context allows */ 1845 if (alloc_flags & ALLOC_NO_WATERMARKS) { 1846 page = __alloc_pages_high_priority(gfp_mask, order, 1847 zonelist, high_zoneidx, nodemask, 1848 preferred_zone, migratetype); 1849 if (page) 1850 goto got_pg; 1851 } 1852 1853 /* Atomic allocations - we can't balance anything */ 1854 if (!wait) 1855 goto nopage; 1856 1857 /* Avoid recursion of direct reclaim */ 1858 if (p->flags & PF_MEMALLOC) 1859 goto nopage; 1860 1861 /* Avoid allocations with no watermarks from looping endlessly */ 1862 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 1863 goto nopage; 1864 1865 /* Try direct reclaim and then allocating */ 1866 page = __alloc_pages_direct_reclaim(gfp_mask, order, 1867 zonelist, high_zoneidx, 1868 nodemask, 1869 alloc_flags, preferred_zone, 1870 migratetype, &did_some_progress); 1871 if (page) 1872 goto got_pg; 1873 1874 /* 1875 * If we failed to make any progress reclaiming, then we are 1876 * running out of options and have to consider going OOM 1877 */ 1878 if (!did_some_progress) { 1879 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1880 if (oom_killer_disabled) 1881 goto nopage; 1882 page = __alloc_pages_may_oom(gfp_mask, order, 1883 zonelist, high_zoneidx, 1884 nodemask, preferred_zone, 1885 migratetype); 1886 if (page) 1887 goto got_pg; 1888 1889 /* 1890 * The OOM killer does not trigger for high-order 1891 * ~__GFP_NOFAIL allocations so if no progress is being 1892 * made, there are no other options and retrying is 1893 * unlikely to help. 1894 */ 1895 if (order > PAGE_ALLOC_COSTLY_ORDER && 1896 !(gfp_mask & __GFP_NOFAIL)) 1897 goto nopage; 1898 1899 goto restart; 1900 } 1901 } 1902 1903 /* Check if we should retry the allocation */ 1904 pages_reclaimed += did_some_progress; 1905 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 1906 /* Wait for some write requests to complete then retry */ 1907 congestion_wait(BLK_RW_ASYNC, HZ/50); 1908 goto rebalance; 1909 } 1910 1911 nopage: 1912 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1913 printk(KERN_WARNING "%s: page allocation failure." 1914 " order:%d, mode:0x%x\n", 1915 p->comm, order, gfp_mask); 1916 dump_stack(); 1917 show_mem(); 1918 } 1919 return page; 1920 got_pg: 1921 if (kmemcheck_enabled) 1922 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 1923 return page; 1924 1925 } 1926 1927 /* 1928 * This is the 'heart' of the zoned buddy allocator. 1929 */ 1930 struct page * 1931 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 1932 struct zonelist *zonelist, nodemask_t *nodemask) 1933 { 1934 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1935 struct zone *preferred_zone; 1936 struct page *page; 1937 int migratetype = allocflags_to_migratetype(gfp_mask); 1938 1939 gfp_mask &= gfp_allowed_mask; 1940 1941 lockdep_trace_alloc(gfp_mask); 1942 1943 might_sleep_if(gfp_mask & __GFP_WAIT); 1944 1945 if (should_fail_alloc_page(gfp_mask, order)) 1946 return NULL; 1947 1948 /* 1949 * Check the zones suitable for the gfp_mask contain at least one 1950 * valid zone. It's possible to have an empty zonelist as a result 1951 * of GFP_THISNODE and a memoryless node 1952 */ 1953 if (unlikely(!zonelist->_zonerefs->zone)) 1954 return NULL; 1955 1956 /* The preferred zone is used for statistics later */ 1957 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 1958 if (!preferred_zone) 1959 return NULL; 1960 1961 /* First allocation attempt */ 1962 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1963 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 1964 preferred_zone, migratetype); 1965 if (unlikely(!page)) 1966 page = __alloc_pages_slowpath(gfp_mask, order, 1967 zonelist, high_zoneidx, nodemask, 1968 preferred_zone, migratetype); 1969 1970 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 1971 return page; 1972 } 1973 EXPORT_SYMBOL(__alloc_pages_nodemask); 1974 1975 /* 1976 * Common helper functions. 1977 */ 1978 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1979 { 1980 struct page *page; 1981 1982 /* 1983 * __get_free_pages() returns a 32-bit address, which cannot represent 1984 * a highmem page 1985 */ 1986 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1987 1988 page = alloc_pages(gfp_mask, order); 1989 if (!page) 1990 return 0; 1991 return (unsigned long) page_address(page); 1992 } 1993 EXPORT_SYMBOL(__get_free_pages); 1994 1995 unsigned long get_zeroed_page(gfp_t gfp_mask) 1996 { 1997 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 1998 } 1999 EXPORT_SYMBOL(get_zeroed_page); 2000 2001 void __pagevec_free(struct pagevec *pvec) 2002 { 2003 int i = pagevec_count(pvec); 2004 2005 while (--i >= 0) { 2006 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2007 free_hot_cold_page(pvec->pages[i], pvec->cold); 2008 } 2009 } 2010 2011 void __free_pages(struct page *page, unsigned int order) 2012 { 2013 if (put_page_testzero(page)) { 2014 trace_mm_page_free_direct(page, order); 2015 if (order == 0) 2016 free_hot_page(page); 2017 else 2018 __free_pages_ok(page, order); 2019 } 2020 } 2021 2022 EXPORT_SYMBOL(__free_pages); 2023 2024 void free_pages(unsigned long addr, unsigned int order) 2025 { 2026 if (addr != 0) { 2027 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2028 __free_pages(virt_to_page((void *)addr), order); 2029 } 2030 } 2031 2032 EXPORT_SYMBOL(free_pages); 2033 2034 /** 2035 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2036 * @size: the number of bytes to allocate 2037 * @gfp_mask: GFP flags for the allocation 2038 * 2039 * This function is similar to alloc_pages(), except that it allocates the 2040 * minimum number of pages to satisfy the request. alloc_pages() can only 2041 * allocate memory in power-of-two pages. 2042 * 2043 * This function is also limited by MAX_ORDER. 2044 * 2045 * Memory allocated by this function must be released by free_pages_exact(). 2046 */ 2047 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2048 { 2049 unsigned int order = get_order(size); 2050 unsigned long addr; 2051 2052 addr = __get_free_pages(gfp_mask, order); 2053 if (addr) { 2054 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2055 unsigned long used = addr + PAGE_ALIGN(size); 2056 2057 split_page(virt_to_page((void *)addr), order); 2058 while (used < alloc_end) { 2059 free_page(used); 2060 used += PAGE_SIZE; 2061 } 2062 } 2063 2064 return (void *)addr; 2065 } 2066 EXPORT_SYMBOL(alloc_pages_exact); 2067 2068 /** 2069 * free_pages_exact - release memory allocated via alloc_pages_exact() 2070 * @virt: the value returned by alloc_pages_exact. 2071 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2072 * 2073 * Release the memory allocated by a previous call to alloc_pages_exact. 2074 */ 2075 void free_pages_exact(void *virt, size_t size) 2076 { 2077 unsigned long addr = (unsigned long)virt; 2078 unsigned long end = addr + PAGE_ALIGN(size); 2079 2080 while (addr < end) { 2081 free_page(addr); 2082 addr += PAGE_SIZE; 2083 } 2084 } 2085 EXPORT_SYMBOL(free_pages_exact); 2086 2087 static unsigned int nr_free_zone_pages(int offset) 2088 { 2089 struct zoneref *z; 2090 struct zone *zone; 2091 2092 /* Just pick one node, since fallback list is circular */ 2093 unsigned int sum = 0; 2094 2095 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2096 2097 for_each_zone_zonelist(zone, z, zonelist, offset) { 2098 unsigned long size = zone->present_pages; 2099 unsigned long high = high_wmark_pages(zone); 2100 if (size > high) 2101 sum += size - high; 2102 } 2103 2104 return sum; 2105 } 2106 2107 /* 2108 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2109 */ 2110 unsigned int nr_free_buffer_pages(void) 2111 { 2112 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2113 } 2114 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2115 2116 /* 2117 * Amount of free RAM allocatable within all zones 2118 */ 2119 unsigned int nr_free_pagecache_pages(void) 2120 { 2121 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2122 } 2123 2124 static inline void show_node(struct zone *zone) 2125 { 2126 if (NUMA_BUILD) 2127 printk("Node %d ", zone_to_nid(zone)); 2128 } 2129 2130 void si_meminfo(struct sysinfo *val) 2131 { 2132 val->totalram = totalram_pages; 2133 val->sharedram = 0; 2134 val->freeram = global_page_state(NR_FREE_PAGES); 2135 val->bufferram = nr_blockdev_pages(); 2136 val->totalhigh = totalhigh_pages; 2137 val->freehigh = nr_free_highpages(); 2138 val->mem_unit = PAGE_SIZE; 2139 } 2140 2141 EXPORT_SYMBOL(si_meminfo); 2142 2143 #ifdef CONFIG_NUMA 2144 void si_meminfo_node(struct sysinfo *val, int nid) 2145 { 2146 pg_data_t *pgdat = NODE_DATA(nid); 2147 2148 val->totalram = pgdat->node_present_pages; 2149 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2150 #ifdef CONFIG_HIGHMEM 2151 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2152 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2153 NR_FREE_PAGES); 2154 #else 2155 val->totalhigh = 0; 2156 val->freehigh = 0; 2157 #endif 2158 val->mem_unit = PAGE_SIZE; 2159 } 2160 #endif 2161 2162 #define K(x) ((x) << (PAGE_SHIFT-10)) 2163 2164 /* 2165 * Show free area list (used inside shift_scroll-lock stuff) 2166 * We also calculate the percentage fragmentation. We do this by counting the 2167 * memory on each free list with the exception of the first item on the list. 2168 */ 2169 void show_free_areas(void) 2170 { 2171 int cpu; 2172 struct zone *zone; 2173 2174 for_each_populated_zone(zone) { 2175 show_node(zone); 2176 printk("%s per-cpu:\n", zone->name); 2177 2178 for_each_online_cpu(cpu) { 2179 struct per_cpu_pageset *pageset; 2180 2181 pageset = zone_pcp(zone, cpu); 2182 2183 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2184 cpu, pageset->pcp.high, 2185 pageset->pcp.batch, pageset->pcp.count); 2186 } 2187 } 2188 2189 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2190 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2191 " unevictable:%lu" 2192 " dirty:%lu writeback:%lu unstable:%lu\n" 2193 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2194 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2195 global_page_state(NR_ACTIVE_ANON), 2196 global_page_state(NR_INACTIVE_ANON), 2197 global_page_state(NR_ISOLATED_ANON), 2198 global_page_state(NR_ACTIVE_FILE), 2199 global_page_state(NR_INACTIVE_FILE), 2200 global_page_state(NR_ISOLATED_FILE), 2201 global_page_state(NR_UNEVICTABLE), 2202 global_page_state(NR_FILE_DIRTY), 2203 global_page_state(NR_WRITEBACK), 2204 global_page_state(NR_UNSTABLE_NFS), 2205 global_page_state(NR_FREE_PAGES), 2206 global_page_state(NR_SLAB_RECLAIMABLE), 2207 global_page_state(NR_SLAB_UNRECLAIMABLE), 2208 global_page_state(NR_FILE_MAPPED), 2209 global_page_state(NR_SHMEM), 2210 global_page_state(NR_PAGETABLE), 2211 global_page_state(NR_BOUNCE)); 2212 2213 for_each_populated_zone(zone) { 2214 int i; 2215 2216 show_node(zone); 2217 printk("%s" 2218 " free:%lukB" 2219 " min:%lukB" 2220 " low:%lukB" 2221 " high:%lukB" 2222 " active_anon:%lukB" 2223 " inactive_anon:%lukB" 2224 " active_file:%lukB" 2225 " inactive_file:%lukB" 2226 " unevictable:%lukB" 2227 " isolated(anon):%lukB" 2228 " isolated(file):%lukB" 2229 " present:%lukB" 2230 " mlocked:%lukB" 2231 " dirty:%lukB" 2232 " writeback:%lukB" 2233 " mapped:%lukB" 2234 " shmem:%lukB" 2235 " slab_reclaimable:%lukB" 2236 " slab_unreclaimable:%lukB" 2237 " kernel_stack:%lukB" 2238 " pagetables:%lukB" 2239 " unstable:%lukB" 2240 " bounce:%lukB" 2241 " writeback_tmp:%lukB" 2242 " pages_scanned:%lu" 2243 " all_unreclaimable? %s" 2244 "\n", 2245 zone->name, 2246 K(zone_page_state(zone, NR_FREE_PAGES)), 2247 K(min_wmark_pages(zone)), 2248 K(low_wmark_pages(zone)), 2249 K(high_wmark_pages(zone)), 2250 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2251 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2252 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2253 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2254 K(zone_page_state(zone, NR_UNEVICTABLE)), 2255 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2256 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2257 K(zone->present_pages), 2258 K(zone_page_state(zone, NR_MLOCK)), 2259 K(zone_page_state(zone, NR_FILE_DIRTY)), 2260 K(zone_page_state(zone, NR_WRITEBACK)), 2261 K(zone_page_state(zone, NR_FILE_MAPPED)), 2262 K(zone_page_state(zone, NR_SHMEM)), 2263 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2264 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2265 zone_page_state(zone, NR_KERNEL_STACK) * 2266 THREAD_SIZE / 1024, 2267 K(zone_page_state(zone, NR_PAGETABLE)), 2268 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2269 K(zone_page_state(zone, NR_BOUNCE)), 2270 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2271 zone->pages_scanned, 2272 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 2273 ); 2274 printk("lowmem_reserve[]:"); 2275 for (i = 0; i < MAX_NR_ZONES; i++) 2276 printk(" %lu", zone->lowmem_reserve[i]); 2277 printk("\n"); 2278 } 2279 2280 for_each_populated_zone(zone) { 2281 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2282 2283 show_node(zone); 2284 printk("%s: ", zone->name); 2285 2286 spin_lock_irqsave(&zone->lock, flags); 2287 for (order = 0; order < MAX_ORDER; order++) { 2288 nr[order] = zone->free_area[order].nr_free; 2289 total += nr[order] << order; 2290 } 2291 spin_unlock_irqrestore(&zone->lock, flags); 2292 for (order = 0; order < MAX_ORDER; order++) 2293 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2294 printk("= %lukB\n", K(total)); 2295 } 2296 2297 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2298 2299 show_swap_cache_info(); 2300 } 2301 2302 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2303 { 2304 zoneref->zone = zone; 2305 zoneref->zone_idx = zone_idx(zone); 2306 } 2307 2308 /* 2309 * Builds allocation fallback zone lists. 2310 * 2311 * Add all populated zones of a node to the zonelist. 2312 */ 2313 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2314 int nr_zones, enum zone_type zone_type) 2315 { 2316 struct zone *zone; 2317 2318 BUG_ON(zone_type >= MAX_NR_ZONES); 2319 zone_type++; 2320 2321 do { 2322 zone_type--; 2323 zone = pgdat->node_zones + zone_type; 2324 if (populated_zone(zone)) { 2325 zoneref_set_zone(zone, 2326 &zonelist->_zonerefs[nr_zones++]); 2327 check_highest_zone(zone_type); 2328 } 2329 2330 } while (zone_type); 2331 return nr_zones; 2332 } 2333 2334 2335 /* 2336 * zonelist_order: 2337 * 0 = automatic detection of better ordering. 2338 * 1 = order by ([node] distance, -zonetype) 2339 * 2 = order by (-zonetype, [node] distance) 2340 * 2341 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2342 * the same zonelist. So only NUMA can configure this param. 2343 */ 2344 #define ZONELIST_ORDER_DEFAULT 0 2345 #define ZONELIST_ORDER_NODE 1 2346 #define ZONELIST_ORDER_ZONE 2 2347 2348 /* zonelist order in the kernel. 2349 * set_zonelist_order() will set this to NODE or ZONE. 2350 */ 2351 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2352 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2353 2354 2355 #ifdef CONFIG_NUMA 2356 /* The value user specified ....changed by config */ 2357 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2358 /* string for sysctl */ 2359 #define NUMA_ZONELIST_ORDER_LEN 16 2360 char numa_zonelist_order[16] = "default"; 2361 2362 /* 2363 * interface for configure zonelist ordering. 2364 * command line option "numa_zonelist_order" 2365 * = "[dD]efault - default, automatic configuration. 2366 * = "[nN]ode - order by node locality, then by zone within node 2367 * = "[zZ]one - order by zone, then by locality within zone 2368 */ 2369 2370 static int __parse_numa_zonelist_order(char *s) 2371 { 2372 if (*s == 'd' || *s == 'D') { 2373 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2374 } else if (*s == 'n' || *s == 'N') { 2375 user_zonelist_order = ZONELIST_ORDER_NODE; 2376 } else if (*s == 'z' || *s == 'Z') { 2377 user_zonelist_order = ZONELIST_ORDER_ZONE; 2378 } else { 2379 printk(KERN_WARNING 2380 "Ignoring invalid numa_zonelist_order value: " 2381 "%s\n", s); 2382 return -EINVAL; 2383 } 2384 return 0; 2385 } 2386 2387 static __init int setup_numa_zonelist_order(char *s) 2388 { 2389 if (s) 2390 return __parse_numa_zonelist_order(s); 2391 return 0; 2392 } 2393 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2394 2395 /* 2396 * sysctl handler for numa_zonelist_order 2397 */ 2398 int numa_zonelist_order_handler(ctl_table *table, int write, 2399 void __user *buffer, size_t *length, 2400 loff_t *ppos) 2401 { 2402 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2403 int ret; 2404 2405 if (write) 2406 strncpy(saved_string, (char*)table->data, 2407 NUMA_ZONELIST_ORDER_LEN); 2408 ret = proc_dostring(table, write, buffer, length, ppos); 2409 if (ret) 2410 return ret; 2411 if (write) { 2412 int oldval = user_zonelist_order; 2413 if (__parse_numa_zonelist_order((char*)table->data)) { 2414 /* 2415 * bogus value. restore saved string 2416 */ 2417 strncpy((char*)table->data, saved_string, 2418 NUMA_ZONELIST_ORDER_LEN); 2419 user_zonelist_order = oldval; 2420 } else if (oldval != user_zonelist_order) 2421 build_all_zonelists(); 2422 } 2423 return 0; 2424 } 2425 2426 2427 #define MAX_NODE_LOAD (nr_online_nodes) 2428 static int node_load[MAX_NUMNODES]; 2429 2430 /** 2431 * find_next_best_node - find the next node that should appear in a given node's fallback list 2432 * @node: node whose fallback list we're appending 2433 * @used_node_mask: nodemask_t of already used nodes 2434 * 2435 * We use a number of factors to determine which is the next node that should 2436 * appear on a given node's fallback list. The node should not have appeared 2437 * already in @node's fallback list, and it should be the next closest node 2438 * according to the distance array (which contains arbitrary distance values 2439 * from each node to each node in the system), and should also prefer nodes 2440 * with no CPUs, since presumably they'll have very little allocation pressure 2441 * on them otherwise. 2442 * It returns -1 if no node is found. 2443 */ 2444 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2445 { 2446 int n, val; 2447 int min_val = INT_MAX; 2448 int best_node = -1; 2449 const struct cpumask *tmp = cpumask_of_node(0); 2450 2451 /* Use the local node if we haven't already */ 2452 if (!node_isset(node, *used_node_mask)) { 2453 node_set(node, *used_node_mask); 2454 return node; 2455 } 2456 2457 for_each_node_state(n, N_HIGH_MEMORY) { 2458 2459 /* Don't want a node to appear more than once */ 2460 if (node_isset(n, *used_node_mask)) 2461 continue; 2462 2463 /* Use the distance array to find the distance */ 2464 val = node_distance(node, n); 2465 2466 /* Penalize nodes under us ("prefer the next node") */ 2467 val += (n < node); 2468 2469 /* Give preference to headless and unused nodes */ 2470 tmp = cpumask_of_node(n); 2471 if (!cpumask_empty(tmp)) 2472 val += PENALTY_FOR_NODE_WITH_CPUS; 2473 2474 /* Slight preference for less loaded node */ 2475 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2476 val += node_load[n]; 2477 2478 if (val < min_val) { 2479 min_val = val; 2480 best_node = n; 2481 } 2482 } 2483 2484 if (best_node >= 0) 2485 node_set(best_node, *used_node_mask); 2486 2487 return best_node; 2488 } 2489 2490 2491 /* 2492 * Build zonelists ordered by node and zones within node. 2493 * This results in maximum locality--normal zone overflows into local 2494 * DMA zone, if any--but risks exhausting DMA zone. 2495 */ 2496 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2497 { 2498 int j; 2499 struct zonelist *zonelist; 2500 2501 zonelist = &pgdat->node_zonelists[0]; 2502 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2503 ; 2504 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2505 MAX_NR_ZONES - 1); 2506 zonelist->_zonerefs[j].zone = NULL; 2507 zonelist->_zonerefs[j].zone_idx = 0; 2508 } 2509 2510 /* 2511 * Build gfp_thisnode zonelists 2512 */ 2513 static void build_thisnode_zonelists(pg_data_t *pgdat) 2514 { 2515 int j; 2516 struct zonelist *zonelist; 2517 2518 zonelist = &pgdat->node_zonelists[1]; 2519 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2520 zonelist->_zonerefs[j].zone = NULL; 2521 zonelist->_zonerefs[j].zone_idx = 0; 2522 } 2523 2524 /* 2525 * Build zonelists ordered by zone and nodes within zones. 2526 * This results in conserving DMA zone[s] until all Normal memory is 2527 * exhausted, but results in overflowing to remote node while memory 2528 * may still exist in local DMA zone. 2529 */ 2530 static int node_order[MAX_NUMNODES]; 2531 2532 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2533 { 2534 int pos, j, node; 2535 int zone_type; /* needs to be signed */ 2536 struct zone *z; 2537 struct zonelist *zonelist; 2538 2539 zonelist = &pgdat->node_zonelists[0]; 2540 pos = 0; 2541 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2542 for (j = 0; j < nr_nodes; j++) { 2543 node = node_order[j]; 2544 z = &NODE_DATA(node)->node_zones[zone_type]; 2545 if (populated_zone(z)) { 2546 zoneref_set_zone(z, 2547 &zonelist->_zonerefs[pos++]); 2548 check_highest_zone(zone_type); 2549 } 2550 } 2551 } 2552 zonelist->_zonerefs[pos].zone = NULL; 2553 zonelist->_zonerefs[pos].zone_idx = 0; 2554 } 2555 2556 static int default_zonelist_order(void) 2557 { 2558 int nid, zone_type; 2559 unsigned long low_kmem_size,total_size; 2560 struct zone *z; 2561 int average_size; 2562 /* 2563 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2564 * If they are really small and used heavily, the system can fall 2565 * into OOM very easily. 2566 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2567 */ 2568 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2569 low_kmem_size = 0; 2570 total_size = 0; 2571 for_each_online_node(nid) { 2572 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2573 z = &NODE_DATA(nid)->node_zones[zone_type]; 2574 if (populated_zone(z)) { 2575 if (zone_type < ZONE_NORMAL) 2576 low_kmem_size += z->present_pages; 2577 total_size += z->present_pages; 2578 } 2579 } 2580 } 2581 if (!low_kmem_size || /* there are no DMA area. */ 2582 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2583 return ZONELIST_ORDER_NODE; 2584 /* 2585 * look into each node's config. 2586 * If there is a node whose DMA/DMA32 memory is very big area on 2587 * local memory, NODE_ORDER may be suitable. 2588 */ 2589 average_size = total_size / 2590 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2591 for_each_online_node(nid) { 2592 low_kmem_size = 0; 2593 total_size = 0; 2594 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2595 z = &NODE_DATA(nid)->node_zones[zone_type]; 2596 if (populated_zone(z)) { 2597 if (zone_type < ZONE_NORMAL) 2598 low_kmem_size += z->present_pages; 2599 total_size += z->present_pages; 2600 } 2601 } 2602 if (low_kmem_size && 2603 total_size > average_size && /* ignore small node */ 2604 low_kmem_size > total_size * 70/100) 2605 return ZONELIST_ORDER_NODE; 2606 } 2607 return ZONELIST_ORDER_ZONE; 2608 } 2609 2610 static void set_zonelist_order(void) 2611 { 2612 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2613 current_zonelist_order = default_zonelist_order(); 2614 else 2615 current_zonelist_order = user_zonelist_order; 2616 } 2617 2618 static void build_zonelists(pg_data_t *pgdat) 2619 { 2620 int j, node, load; 2621 enum zone_type i; 2622 nodemask_t used_mask; 2623 int local_node, prev_node; 2624 struct zonelist *zonelist; 2625 int order = current_zonelist_order; 2626 2627 /* initialize zonelists */ 2628 for (i = 0; i < MAX_ZONELISTS; i++) { 2629 zonelist = pgdat->node_zonelists + i; 2630 zonelist->_zonerefs[0].zone = NULL; 2631 zonelist->_zonerefs[0].zone_idx = 0; 2632 } 2633 2634 /* NUMA-aware ordering of nodes */ 2635 local_node = pgdat->node_id; 2636 load = nr_online_nodes; 2637 prev_node = local_node; 2638 nodes_clear(used_mask); 2639 2640 memset(node_order, 0, sizeof(node_order)); 2641 j = 0; 2642 2643 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2644 int distance = node_distance(local_node, node); 2645 2646 /* 2647 * If another node is sufficiently far away then it is better 2648 * to reclaim pages in a zone before going off node. 2649 */ 2650 if (distance > RECLAIM_DISTANCE) 2651 zone_reclaim_mode = 1; 2652 2653 /* 2654 * We don't want to pressure a particular node. 2655 * So adding penalty to the first node in same 2656 * distance group to make it round-robin. 2657 */ 2658 if (distance != node_distance(local_node, prev_node)) 2659 node_load[node] = load; 2660 2661 prev_node = node; 2662 load--; 2663 if (order == ZONELIST_ORDER_NODE) 2664 build_zonelists_in_node_order(pgdat, node); 2665 else 2666 node_order[j++] = node; /* remember order */ 2667 } 2668 2669 if (order == ZONELIST_ORDER_ZONE) { 2670 /* calculate node order -- i.e., DMA last! */ 2671 build_zonelists_in_zone_order(pgdat, j); 2672 } 2673 2674 build_thisnode_zonelists(pgdat); 2675 } 2676 2677 /* Construct the zonelist performance cache - see further mmzone.h */ 2678 static void build_zonelist_cache(pg_data_t *pgdat) 2679 { 2680 struct zonelist *zonelist; 2681 struct zonelist_cache *zlc; 2682 struct zoneref *z; 2683 2684 zonelist = &pgdat->node_zonelists[0]; 2685 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2686 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2687 for (z = zonelist->_zonerefs; z->zone; z++) 2688 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2689 } 2690 2691 2692 #else /* CONFIG_NUMA */ 2693 2694 static void set_zonelist_order(void) 2695 { 2696 current_zonelist_order = ZONELIST_ORDER_ZONE; 2697 } 2698 2699 static void build_zonelists(pg_data_t *pgdat) 2700 { 2701 int node, local_node; 2702 enum zone_type j; 2703 struct zonelist *zonelist; 2704 2705 local_node = pgdat->node_id; 2706 2707 zonelist = &pgdat->node_zonelists[0]; 2708 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2709 2710 /* 2711 * Now we build the zonelist so that it contains the zones 2712 * of all the other nodes. 2713 * We don't want to pressure a particular node, so when 2714 * building the zones for node N, we make sure that the 2715 * zones coming right after the local ones are those from 2716 * node N+1 (modulo N) 2717 */ 2718 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2719 if (!node_online(node)) 2720 continue; 2721 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2722 MAX_NR_ZONES - 1); 2723 } 2724 for (node = 0; node < local_node; node++) { 2725 if (!node_online(node)) 2726 continue; 2727 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2728 MAX_NR_ZONES - 1); 2729 } 2730 2731 zonelist->_zonerefs[j].zone = NULL; 2732 zonelist->_zonerefs[j].zone_idx = 0; 2733 } 2734 2735 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2736 static void build_zonelist_cache(pg_data_t *pgdat) 2737 { 2738 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2739 } 2740 2741 #endif /* CONFIG_NUMA */ 2742 2743 /* return values int ....just for stop_machine() */ 2744 static int __build_all_zonelists(void *dummy) 2745 { 2746 int nid; 2747 2748 #ifdef CONFIG_NUMA 2749 memset(node_load, 0, sizeof(node_load)); 2750 #endif 2751 for_each_online_node(nid) { 2752 pg_data_t *pgdat = NODE_DATA(nid); 2753 2754 build_zonelists(pgdat); 2755 build_zonelist_cache(pgdat); 2756 } 2757 return 0; 2758 } 2759 2760 void build_all_zonelists(void) 2761 { 2762 set_zonelist_order(); 2763 2764 if (system_state == SYSTEM_BOOTING) { 2765 __build_all_zonelists(NULL); 2766 mminit_verify_zonelist(); 2767 cpuset_init_current_mems_allowed(); 2768 } else { 2769 /* we have to stop all cpus to guarantee there is no user 2770 of zonelist */ 2771 stop_machine(__build_all_zonelists, NULL, NULL); 2772 /* cpuset refresh routine should be here */ 2773 } 2774 vm_total_pages = nr_free_pagecache_pages(); 2775 /* 2776 * Disable grouping by mobility if the number of pages in the 2777 * system is too low to allow the mechanism to work. It would be 2778 * more accurate, but expensive to check per-zone. This check is 2779 * made on memory-hotadd so a system can start with mobility 2780 * disabled and enable it later 2781 */ 2782 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2783 page_group_by_mobility_disabled = 1; 2784 else 2785 page_group_by_mobility_disabled = 0; 2786 2787 printk("Built %i zonelists in %s order, mobility grouping %s. " 2788 "Total pages: %ld\n", 2789 nr_online_nodes, 2790 zonelist_order_name[current_zonelist_order], 2791 page_group_by_mobility_disabled ? "off" : "on", 2792 vm_total_pages); 2793 #ifdef CONFIG_NUMA 2794 printk("Policy zone: %s\n", zone_names[policy_zone]); 2795 #endif 2796 } 2797 2798 /* 2799 * Helper functions to size the waitqueue hash table. 2800 * Essentially these want to choose hash table sizes sufficiently 2801 * large so that collisions trying to wait on pages are rare. 2802 * But in fact, the number of active page waitqueues on typical 2803 * systems is ridiculously low, less than 200. So this is even 2804 * conservative, even though it seems large. 2805 * 2806 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2807 * waitqueues, i.e. the size of the waitq table given the number of pages. 2808 */ 2809 #define PAGES_PER_WAITQUEUE 256 2810 2811 #ifndef CONFIG_MEMORY_HOTPLUG 2812 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2813 { 2814 unsigned long size = 1; 2815 2816 pages /= PAGES_PER_WAITQUEUE; 2817 2818 while (size < pages) 2819 size <<= 1; 2820 2821 /* 2822 * Once we have dozens or even hundreds of threads sleeping 2823 * on IO we've got bigger problems than wait queue collision. 2824 * Limit the size of the wait table to a reasonable size. 2825 */ 2826 size = min(size, 4096UL); 2827 2828 return max(size, 4UL); 2829 } 2830 #else 2831 /* 2832 * A zone's size might be changed by hot-add, so it is not possible to determine 2833 * a suitable size for its wait_table. So we use the maximum size now. 2834 * 2835 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2836 * 2837 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2838 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2839 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2840 * 2841 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2842 * or more by the traditional way. (See above). It equals: 2843 * 2844 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2845 * ia64(16K page size) : = ( 8G + 4M)byte. 2846 * powerpc (64K page size) : = (32G +16M)byte. 2847 */ 2848 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2849 { 2850 return 4096UL; 2851 } 2852 #endif 2853 2854 /* 2855 * This is an integer logarithm so that shifts can be used later 2856 * to extract the more random high bits from the multiplicative 2857 * hash function before the remainder is taken. 2858 */ 2859 static inline unsigned long wait_table_bits(unsigned long size) 2860 { 2861 return ffz(~size); 2862 } 2863 2864 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2865 2866 /* 2867 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2868 * of blocks reserved is based on min_wmark_pages(zone). The memory within 2869 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 2870 * higher will lead to a bigger reserve which will get freed as contiguous 2871 * blocks as reclaim kicks in 2872 */ 2873 static void setup_zone_migrate_reserve(struct zone *zone) 2874 { 2875 unsigned long start_pfn, pfn, end_pfn; 2876 struct page *page; 2877 unsigned long block_migratetype; 2878 int reserve; 2879 2880 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2881 start_pfn = zone->zone_start_pfn; 2882 end_pfn = start_pfn + zone->spanned_pages; 2883 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 2884 pageblock_order; 2885 2886 /* 2887 * Reserve blocks are generally in place to help high-order atomic 2888 * allocations that are short-lived. A min_free_kbytes value that 2889 * would result in more than 2 reserve blocks for atomic allocations 2890 * is assumed to be in place to help anti-fragmentation for the 2891 * future allocation of hugepages at runtime. 2892 */ 2893 reserve = min(2, reserve); 2894 2895 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2896 if (!pfn_valid(pfn)) 2897 continue; 2898 page = pfn_to_page(pfn); 2899 2900 /* Watch out for overlapping nodes */ 2901 if (page_to_nid(page) != zone_to_nid(zone)) 2902 continue; 2903 2904 /* Blocks with reserved pages will never free, skip them. */ 2905 if (PageReserved(page)) 2906 continue; 2907 2908 block_migratetype = get_pageblock_migratetype(page); 2909 2910 /* If this block is reserved, account for it */ 2911 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2912 reserve--; 2913 continue; 2914 } 2915 2916 /* Suitable for reserving if this block is movable */ 2917 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2918 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2919 move_freepages_block(zone, page, MIGRATE_RESERVE); 2920 reserve--; 2921 continue; 2922 } 2923 2924 /* 2925 * If the reserve is met and this is a previous reserved block, 2926 * take it back 2927 */ 2928 if (block_migratetype == MIGRATE_RESERVE) { 2929 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2930 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2931 } 2932 } 2933 } 2934 2935 /* 2936 * Initially all pages are reserved - free ones are freed 2937 * up by free_all_bootmem() once the early boot process is 2938 * done. Non-atomic initialization, single-pass. 2939 */ 2940 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2941 unsigned long start_pfn, enum memmap_context context) 2942 { 2943 struct page *page; 2944 unsigned long end_pfn = start_pfn + size; 2945 unsigned long pfn; 2946 struct zone *z; 2947 2948 if (highest_memmap_pfn < end_pfn - 1) 2949 highest_memmap_pfn = end_pfn - 1; 2950 2951 z = &NODE_DATA(nid)->node_zones[zone]; 2952 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2953 /* 2954 * There can be holes in boot-time mem_map[]s 2955 * handed to this function. They do not 2956 * exist on hotplugged memory. 2957 */ 2958 if (context == MEMMAP_EARLY) { 2959 if (!early_pfn_valid(pfn)) 2960 continue; 2961 if (!early_pfn_in_nid(pfn, nid)) 2962 continue; 2963 } 2964 page = pfn_to_page(pfn); 2965 set_page_links(page, zone, nid, pfn); 2966 mminit_verify_page_links(page, zone, nid, pfn); 2967 init_page_count(page); 2968 reset_page_mapcount(page); 2969 SetPageReserved(page); 2970 /* 2971 * Mark the block movable so that blocks are reserved for 2972 * movable at startup. This will force kernel allocations 2973 * to reserve their blocks rather than leaking throughout 2974 * the address space during boot when many long-lived 2975 * kernel allocations are made. Later some blocks near 2976 * the start are marked MIGRATE_RESERVE by 2977 * setup_zone_migrate_reserve() 2978 * 2979 * bitmap is created for zone's valid pfn range. but memmap 2980 * can be created for invalid pages (for alignment) 2981 * check here not to call set_pageblock_migratetype() against 2982 * pfn out of zone. 2983 */ 2984 if ((z->zone_start_pfn <= pfn) 2985 && (pfn < z->zone_start_pfn + z->spanned_pages) 2986 && !(pfn & (pageblock_nr_pages - 1))) 2987 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2988 2989 INIT_LIST_HEAD(&page->lru); 2990 #ifdef WANT_PAGE_VIRTUAL 2991 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2992 if (!is_highmem_idx(zone)) 2993 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2994 #endif 2995 } 2996 } 2997 2998 static void __meminit zone_init_free_lists(struct zone *zone) 2999 { 3000 int order, t; 3001 for_each_migratetype_order(order, t) { 3002 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3003 zone->free_area[order].nr_free = 0; 3004 } 3005 } 3006 3007 #ifndef __HAVE_ARCH_MEMMAP_INIT 3008 #define memmap_init(size, nid, zone, start_pfn) \ 3009 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3010 #endif 3011 3012 static int zone_batchsize(struct zone *zone) 3013 { 3014 #ifdef CONFIG_MMU 3015 int batch; 3016 3017 /* 3018 * The per-cpu-pages pools are set to around 1000th of the 3019 * size of the zone. But no more than 1/2 of a meg. 3020 * 3021 * OK, so we don't know how big the cache is. So guess. 3022 */ 3023 batch = zone->present_pages / 1024; 3024 if (batch * PAGE_SIZE > 512 * 1024) 3025 batch = (512 * 1024) / PAGE_SIZE; 3026 batch /= 4; /* We effectively *= 4 below */ 3027 if (batch < 1) 3028 batch = 1; 3029 3030 /* 3031 * Clamp the batch to a 2^n - 1 value. Having a power 3032 * of 2 value was found to be more likely to have 3033 * suboptimal cache aliasing properties in some cases. 3034 * 3035 * For example if 2 tasks are alternately allocating 3036 * batches of pages, one task can end up with a lot 3037 * of pages of one half of the possible page colors 3038 * and the other with pages of the other colors. 3039 */ 3040 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3041 3042 return batch; 3043 3044 #else 3045 /* The deferral and batching of frees should be suppressed under NOMMU 3046 * conditions. 3047 * 3048 * The problem is that NOMMU needs to be able to allocate large chunks 3049 * of contiguous memory as there's no hardware page translation to 3050 * assemble apparent contiguous memory from discontiguous pages. 3051 * 3052 * Queueing large contiguous runs of pages for batching, however, 3053 * causes the pages to actually be freed in smaller chunks. As there 3054 * can be a significant delay between the individual batches being 3055 * recycled, this leads to the once large chunks of space being 3056 * fragmented and becoming unavailable for high-order allocations. 3057 */ 3058 return 0; 3059 #endif 3060 } 3061 3062 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3063 { 3064 struct per_cpu_pages *pcp; 3065 int migratetype; 3066 3067 memset(p, 0, sizeof(*p)); 3068 3069 pcp = &p->pcp; 3070 pcp->count = 0; 3071 pcp->high = 6 * batch; 3072 pcp->batch = max(1UL, 1 * batch); 3073 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3074 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3075 } 3076 3077 /* 3078 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3079 * to the value high for the pageset p. 3080 */ 3081 3082 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3083 unsigned long high) 3084 { 3085 struct per_cpu_pages *pcp; 3086 3087 pcp = &p->pcp; 3088 pcp->high = high; 3089 pcp->batch = max(1UL, high/4); 3090 if ((high/4) > (PAGE_SHIFT * 8)) 3091 pcp->batch = PAGE_SHIFT * 8; 3092 } 3093 3094 3095 #ifdef CONFIG_NUMA 3096 /* 3097 * Boot pageset table. One per cpu which is going to be used for all 3098 * zones and all nodes. The parameters will be set in such a way 3099 * that an item put on a list will immediately be handed over to 3100 * the buddy list. This is safe since pageset manipulation is done 3101 * with interrupts disabled. 3102 * 3103 * Some NUMA counter updates may also be caught by the boot pagesets. 3104 * 3105 * The boot_pagesets must be kept even after bootup is complete for 3106 * unused processors and/or zones. They do play a role for bootstrapping 3107 * hotplugged processors. 3108 * 3109 * zoneinfo_show() and maybe other functions do 3110 * not check if the processor is online before following the pageset pointer. 3111 * Other parts of the kernel may not check if the zone is available. 3112 */ 3113 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 3114 3115 /* 3116 * Dynamically allocate memory for the 3117 * per cpu pageset array in struct zone. 3118 */ 3119 static int __cpuinit process_zones(int cpu) 3120 { 3121 struct zone *zone, *dzone; 3122 int node = cpu_to_node(cpu); 3123 3124 node_set_state(node, N_CPU); /* this node has a cpu */ 3125 3126 for_each_populated_zone(zone) { 3127 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 3128 GFP_KERNEL, node); 3129 if (!zone_pcp(zone, cpu)) 3130 goto bad; 3131 3132 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 3133 3134 if (percpu_pagelist_fraction) 3135 setup_pagelist_highmark(zone_pcp(zone, cpu), 3136 (zone->present_pages / percpu_pagelist_fraction)); 3137 } 3138 3139 return 0; 3140 bad: 3141 for_each_zone(dzone) { 3142 if (!populated_zone(dzone)) 3143 continue; 3144 if (dzone == zone) 3145 break; 3146 kfree(zone_pcp(dzone, cpu)); 3147 zone_pcp(dzone, cpu) = &boot_pageset[cpu]; 3148 } 3149 return -ENOMEM; 3150 } 3151 3152 static inline void free_zone_pagesets(int cpu) 3153 { 3154 struct zone *zone; 3155 3156 for_each_zone(zone) { 3157 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 3158 3159 /* Free per_cpu_pageset if it is slab allocated */ 3160 if (pset != &boot_pageset[cpu]) 3161 kfree(pset); 3162 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3163 } 3164 } 3165 3166 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 3167 unsigned long action, 3168 void *hcpu) 3169 { 3170 int cpu = (long)hcpu; 3171 int ret = NOTIFY_OK; 3172 3173 switch (action) { 3174 case CPU_UP_PREPARE: 3175 case CPU_UP_PREPARE_FROZEN: 3176 if (process_zones(cpu)) 3177 ret = NOTIFY_BAD; 3178 break; 3179 case CPU_UP_CANCELED: 3180 case CPU_UP_CANCELED_FROZEN: 3181 case CPU_DEAD: 3182 case CPU_DEAD_FROZEN: 3183 free_zone_pagesets(cpu); 3184 break; 3185 default: 3186 break; 3187 } 3188 return ret; 3189 } 3190 3191 static struct notifier_block __cpuinitdata pageset_notifier = 3192 { &pageset_cpuup_callback, NULL, 0 }; 3193 3194 void __init setup_per_cpu_pageset(void) 3195 { 3196 int err; 3197 3198 /* Initialize per_cpu_pageset for cpu 0. 3199 * A cpuup callback will do this for every cpu 3200 * as it comes online 3201 */ 3202 err = process_zones(smp_processor_id()); 3203 BUG_ON(err); 3204 register_cpu_notifier(&pageset_notifier); 3205 } 3206 3207 #endif 3208 3209 static noinline __init_refok 3210 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3211 { 3212 int i; 3213 struct pglist_data *pgdat = zone->zone_pgdat; 3214 size_t alloc_size; 3215 3216 /* 3217 * The per-page waitqueue mechanism uses hashed waitqueues 3218 * per zone. 3219 */ 3220 zone->wait_table_hash_nr_entries = 3221 wait_table_hash_nr_entries(zone_size_pages); 3222 zone->wait_table_bits = 3223 wait_table_bits(zone->wait_table_hash_nr_entries); 3224 alloc_size = zone->wait_table_hash_nr_entries 3225 * sizeof(wait_queue_head_t); 3226 3227 if (!slab_is_available()) { 3228 zone->wait_table = (wait_queue_head_t *) 3229 alloc_bootmem_node(pgdat, alloc_size); 3230 } else { 3231 /* 3232 * This case means that a zone whose size was 0 gets new memory 3233 * via memory hot-add. 3234 * But it may be the case that a new node was hot-added. In 3235 * this case vmalloc() will not be able to use this new node's 3236 * memory - this wait_table must be initialized to use this new 3237 * node itself as well. 3238 * To use this new node's memory, further consideration will be 3239 * necessary. 3240 */ 3241 zone->wait_table = vmalloc(alloc_size); 3242 } 3243 if (!zone->wait_table) 3244 return -ENOMEM; 3245 3246 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3247 init_waitqueue_head(zone->wait_table + i); 3248 3249 return 0; 3250 } 3251 3252 static int __zone_pcp_update(void *data) 3253 { 3254 struct zone *zone = data; 3255 int cpu; 3256 unsigned long batch = zone_batchsize(zone), flags; 3257 3258 for (cpu = 0; cpu < NR_CPUS; cpu++) { 3259 struct per_cpu_pageset *pset; 3260 struct per_cpu_pages *pcp; 3261 3262 pset = zone_pcp(zone, cpu); 3263 pcp = &pset->pcp; 3264 3265 local_irq_save(flags); 3266 free_pcppages_bulk(zone, pcp->count, pcp); 3267 setup_pageset(pset, batch); 3268 local_irq_restore(flags); 3269 } 3270 return 0; 3271 } 3272 3273 void zone_pcp_update(struct zone *zone) 3274 { 3275 stop_machine(__zone_pcp_update, zone, NULL); 3276 } 3277 3278 static __meminit void zone_pcp_init(struct zone *zone) 3279 { 3280 int cpu; 3281 unsigned long batch = zone_batchsize(zone); 3282 3283 for (cpu = 0; cpu < NR_CPUS; cpu++) { 3284 #ifdef CONFIG_NUMA 3285 /* Early boot. Slab allocator not functional yet */ 3286 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3287 setup_pageset(&boot_pageset[cpu],0); 3288 #else 3289 setup_pageset(zone_pcp(zone,cpu), batch); 3290 #endif 3291 } 3292 if (zone->present_pages) 3293 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 3294 zone->name, zone->present_pages, batch); 3295 } 3296 3297 __meminit int init_currently_empty_zone(struct zone *zone, 3298 unsigned long zone_start_pfn, 3299 unsigned long size, 3300 enum memmap_context context) 3301 { 3302 struct pglist_data *pgdat = zone->zone_pgdat; 3303 int ret; 3304 ret = zone_wait_table_init(zone, size); 3305 if (ret) 3306 return ret; 3307 pgdat->nr_zones = zone_idx(zone) + 1; 3308 3309 zone->zone_start_pfn = zone_start_pfn; 3310 3311 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3312 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3313 pgdat->node_id, 3314 (unsigned long)zone_idx(zone), 3315 zone_start_pfn, (zone_start_pfn + size)); 3316 3317 zone_init_free_lists(zone); 3318 3319 return 0; 3320 } 3321 3322 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3323 /* 3324 * Basic iterator support. Return the first range of PFNs for a node 3325 * Note: nid == MAX_NUMNODES returns first region regardless of node 3326 */ 3327 static int __meminit first_active_region_index_in_nid(int nid) 3328 { 3329 int i; 3330 3331 for (i = 0; i < nr_nodemap_entries; i++) 3332 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3333 return i; 3334 3335 return -1; 3336 } 3337 3338 /* 3339 * Basic iterator support. Return the next active range of PFNs for a node 3340 * Note: nid == MAX_NUMNODES returns next region regardless of node 3341 */ 3342 static int __meminit next_active_region_index_in_nid(int index, int nid) 3343 { 3344 for (index = index + 1; index < nr_nodemap_entries; index++) 3345 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3346 return index; 3347 3348 return -1; 3349 } 3350 3351 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3352 /* 3353 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3354 * Architectures may implement their own version but if add_active_range() 3355 * was used and there are no special requirements, this is a convenient 3356 * alternative 3357 */ 3358 int __meminit __early_pfn_to_nid(unsigned long pfn) 3359 { 3360 int i; 3361 3362 for (i = 0; i < nr_nodemap_entries; i++) { 3363 unsigned long start_pfn = early_node_map[i].start_pfn; 3364 unsigned long end_pfn = early_node_map[i].end_pfn; 3365 3366 if (start_pfn <= pfn && pfn < end_pfn) 3367 return early_node_map[i].nid; 3368 } 3369 /* This is a memory hole */ 3370 return -1; 3371 } 3372 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3373 3374 int __meminit early_pfn_to_nid(unsigned long pfn) 3375 { 3376 int nid; 3377 3378 nid = __early_pfn_to_nid(pfn); 3379 if (nid >= 0) 3380 return nid; 3381 /* just returns 0 */ 3382 return 0; 3383 } 3384 3385 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3386 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3387 { 3388 int nid; 3389 3390 nid = __early_pfn_to_nid(pfn); 3391 if (nid >= 0 && nid != node) 3392 return false; 3393 return true; 3394 } 3395 #endif 3396 3397 /* Basic iterator support to walk early_node_map[] */ 3398 #define for_each_active_range_index_in_nid(i, nid) \ 3399 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3400 i = next_active_region_index_in_nid(i, nid)) 3401 3402 /** 3403 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3404 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3405 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3406 * 3407 * If an architecture guarantees that all ranges registered with 3408 * add_active_ranges() contain no holes and may be freed, this 3409 * this function may be used instead of calling free_bootmem() manually. 3410 */ 3411 void __init free_bootmem_with_active_regions(int nid, 3412 unsigned long max_low_pfn) 3413 { 3414 int i; 3415 3416 for_each_active_range_index_in_nid(i, nid) { 3417 unsigned long size_pages = 0; 3418 unsigned long end_pfn = early_node_map[i].end_pfn; 3419 3420 if (early_node_map[i].start_pfn >= max_low_pfn) 3421 continue; 3422 3423 if (end_pfn > max_low_pfn) 3424 end_pfn = max_low_pfn; 3425 3426 size_pages = end_pfn - early_node_map[i].start_pfn; 3427 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3428 PFN_PHYS(early_node_map[i].start_pfn), 3429 size_pages << PAGE_SHIFT); 3430 } 3431 } 3432 3433 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3434 { 3435 int i; 3436 int ret; 3437 3438 for_each_active_range_index_in_nid(i, nid) { 3439 ret = work_fn(early_node_map[i].start_pfn, 3440 early_node_map[i].end_pfn, data); 3441 if (ret) 3442 break; 3443 } 3444 } 3445 /** 3446 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3447 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3448 * 3449 * If an architecture guarantees that all ranges registered with 3450 * add_active_ranges() contain no holes and may be freed, this 3451 * function may be used instead of calling memory_present() manually. 3452 */ 3453 void __init sparse_memory_present_with_active_regions(int nid) 3454 { 3455 int i; 3456 3457 for_each_active_range_index_in_nid(i, nid) 3458 memory_present(early_node_map[i].nid, 3459 early_node_map[i].start_pfn, 3460 early_node_map[i].end_pfn); 3461 } 3462 3463 /** 3464 * get_pfn_range_for_nid - Return the start and end page frames for a node 3465 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3466 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3467 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3468 * 3469 * It returns the start and end page frame of a node based on information 3470 * provided by an arch calling add_active_range(). If called for a node 3471 * with no available memory, a warning is printed and the start and end 3472 * PFNs will be 0. 3473 */ 3474 void __meminit get_pfn_range_for_nid(unsigned int nid, 3475 unsigned long *start_pfn, unsigned long *end_pfn) 3476 { 3477 int i; 3478 *start_pfn = -1UL; 3479 *end_pfn = 0; 3480 3481 for_each_active_range_index_in_nid(i, nid) { 3482 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3483 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3484 } 3485 3486 if (*start_pfn == -1UL) 3487 *start_pfn = 0; 3488 } 3489 3490 /* 3491 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3492 * assumption is made that zones within a node are ordered in monotonic 3493 * increasing memory addresses so that the "highest" populated zone is used 3494 */ 3495 static void __init find_usable_zone_for_movable(void) 3496 { 3497 int zone_index; 3498 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3499 if (zone_index == ZONE_MOVABLE) 3500 continue; 3501 3502 if (arch_zone_highest_possible_pfn[zone_index] > 3503 arch_zone_lowest_possible_pfn[zone_index]) 3504 break; 3505 } 3506 3507 VM_BUG_ON(zone_index == -1); 3508 movable_zone = zone_index; 3509 } 3510 3511 /* 3512 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3513 * because it is sized independant of architecture. Unlike the other zones, 3514 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3515 * in each node depending on the size of each node and how evenly kernelcore 3516 * is distributed. This helper function adjusts the zone ranges 3517 * provided by the architecture for a given node by using the end of the 3518 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3519 * zones within a node are in order of monotonic increases memory addresses 3520 */ 3521 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3522 unsigned long zone_type, 3523 unsigned long node_start_pfn, 3524 unsigned long node_end_pfn, 3525 unsigned long *zone_start_pfn, 3526 unsigned long *zone_end_pfn) 3527 { 3528 /* Only adjust if ZONE_MOVABLE is on this node */ 3529 if (zone_movable_pfn[nid]) { 3530 /* Size ZONE_MOVABLE */ 3531 if (zone_type == ZONE_MOVABLE) { 3532 *zone_start_pfn = zone_movable_pfn[nid]; 3533 *zone_end_pfn = min(node_end_pfn, 3534 arch_zone_highest_possible_pfn[movable_zone]); 3535 3536 /* Adjust for ZONE_MOVABLE starting within this range */ 3537 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3538 *zone_end_pfn > zone_movable_pfn[nid]) { 3539 *zone_end_pfn = zone_movable_pfn[nid]; 3540 3541 /* Check if this whole range is within ZONE_MOVABLE */ 3542 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3543 *zone_start_pfn = *zone_end_pfn; 3544 } 3545 } 3546 3547 /* 3548 * Return the number of pages a zone spans in a node, including holes 3549 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3550 */ 3551 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3552 unsigned long zone_type, 3553 unsigned long *ignored) 3554 { 3555 unsigned long node_start_pfn, node_end_pfn; 3556 unsigned long zone_start_pfn, zone_end_pfn; 3557 3558 /* Get the start and end of the node and zone */ 3559 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3560 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3561 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3562 adjust_zone_range_for_zone_movable(nid, zone_type, 3563 node_start_pfn, node_end_pfn, 3564 &zone_start_pfn, &zone_end_pfn); 3565 3566 /* Check that this node has pages within the zone's required range */ 3567 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3568 return 0; 3569 3570 /* Move the zone boundaries inside the node if necessary */ 3571 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3572 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3573 3574 /* Return the spanned pages */ 3575 return zone_end_pfn - zone_start_pfn; 3576 } 3577 3578 /* 3579 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3580 * then all holes in the requested range will be accounted for. 3581 */ 3582 unsigned long __meminit __absent_pages_in_range(int nid, 3583 unsigned long range_start_pfn, 3584 unsigned long range_end_pfn) 3585 { 3586 int i = 0; 3587 unsigned long prev_end_pfn = 0, hole_pages = 0; 3588 unsigned long start_pfn; 3589 3590 /* Find the end_pfn of the first active range of pfns in the node */ 3591 i = first_active_region_index_in_nid(nid); 3592 if (i == -1) 3593 return 0; 3594 3595 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3596 3597 /* Account for ranges before physical memory on this node */ 3598 if (early_node_map[i].start_pfn > range_start_pfn) 3599 hole_pages = prev_end_pfn - range_start_pfn; 3600 3601 /* Find all holes for the zone within the node */ 3602 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3603 3604 /* No need to continue if prev_end_pfn is outside the zone */ 3605 if (prev_end_pfn >= range_end_pfn) 3606 break; 3607 3608 /* Make sure the end of the zone is not within the hole */ 3609 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3610 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3611 3612 /* Update the hole size cound and move on */ 3613 if (start_pfn > range_start_pfn) { 3614 BUG_ON(prev_end_pfn > start_pfn); 3615 hole_pages += start_pfn - prev_end_pfn; 3616 } 3617 prev_end_pfn = early_node_map[i].end_pfn; 3618 } 3619 3620 /* Account for ranges past physical memory on this node */ 3621 if (range_end_pfn > prev_end_pfn) 3622 hole_pages += range_end_pfn - 3623 max(range_start_pfn, prev_end_pfn); 3624 3625 return hole_pages; 3626 } 3627 3628 /** 3629 * absent_pages_in_range - Return number of page frames in holes within a range 3630 * @start_pfn: The start PFN to start searching for holes 3631 * @end_pfn: The end PFN to stop searching for holes 3632 * 3633 * It returns the number of pages frames in memory holes within a range. 3634 */ 3635 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3636 unsigned long end_pfn) 3637 { 3638 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3639 } 3640 3641 /* Return the number of page frames in holes in a zone on a node */ 3642 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3643 unsigned long zone_type, 3644 unsigned long *ignored) 3645 { 3646 unsigned long node_start_pfn, node_end_pfn; 3647 unsigned long zone_start_pfn, zone_end_pfn; 3648 3649 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3650 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3651 node_start_pfn); 3652 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3653 node_end_pfn); 3654 3655 adjust_zone_range_for_zone_movable(nid, zone_type, 3656 node_start_pfn, node_end_pfn, 3657 &zone_start_pfn, &zone_end_pfn); 3658 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3659 } 3660 3661 #else 3662 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3663 unsigned long zone_type, 3664 unsigned long *zones_size) 3665 { 3666 return zones_size[zone_type]; 3667 } 3668 3669 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3670 unsigned long zone_type, 3671 unsigned long *zholes_size) 3672 { 3673 if (!zholes_size) 3674 return 0; 3675 3676 return zholes_size[zone_type]; 3677 } 3678 3679 #endif 3680 3681 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3682 unsigned long *zones_size, unsigned long *zholes_size) 3683 { 3684 unsigned long realtotalpages, totalpages = 0; 3685 enum zone_type i; 3686 3687 for (i = 0; i < MAX_NR_ZONES; i++) 3688 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3689 zones_size); 3690 pgdat->node_spanned_pages = totalpages; 3691 3692 realtotalpages = totalpages; 3693 for (i = 0; i < MAX_NR_ZONES; i++) 3694 realtotalpages -= 3695 zone_absent_pages_in_node(pgdat->node_id, i, 3696 zholes_size); 3697 pgdat->node_present_pages = realtotalpages; 3698 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3699 realtotalpages); 3700 } 3701 3702 #ifndef CONFIG_SPARSEMEM 3703 /* 3704 * Calculate the size of the zone->blockflags rounded to an unsigned long 3705 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3706 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3707 * round what is now in bits to nearest long in bits, then return it in 3708 * bytes. 3709 */ 3710 static unsigned long __init usemap_size(unsigned long zonesize) 3711 { 3712 unsigned long usemapsize; 3713 3714 usemapsize = roundup(zonesize, pageblock_nr_pages); 3715 usemapsize = usemapsize >> pageblock_order; 3716 usemapsize *= NR_PAGEBLOCK_BITS; 3717 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3718 3719 return usemapsize / 8; 3720 } 3721 3722 static void __init setup_usemap(struct pglist_data *pgdat, 3723 struct zone *zone, unsigned long zonesize) 3724 { 3725 unsigned long usemapsize = usemap_size(zonesize); 3726 zone->pageblock_flags = NULL; 3727 if (usemapsize) 3728 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3729 } 3730 #else 3731 static void inline setup_usemap(struct pglist_data *pgdat, 3732 struct zone *zone, unsigned long zonesize) {} 3733 #endif /* CONFIG_SPARSEMEM */ 3734 3735 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3736 3737 /* Return a sensible default order for the pageblock size. */ 3738 static inline int pageblock_default_order(void) 3739 { 3740 if (HPAGE_SHIFT > PAGE_SHIFT) 3741 return HUGETLB_PAGE_ORDER; 3742 3743 return MAX_ORDER-1; 3744 } 3745 3746 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3747 static inline void __init set_pageblock_order(unsigned int order) 3748 { 3749 /* Check that pageblock_nr_pages has not already been setup */ 3750 if (pageblock_order) 3751 return; 3752 3753 /* 3754 * Assume the largest contiguous order of interest is a huge page. 3755 * This value may be variable depending on boot parameters on IA64 3756 */ 3757 pageblock_order = order; 3758 } 3759 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3760 3761 /* 3762 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3763 * and pageblock_default_order() are unused as pageblock_order is set 3764 * at compile-time. See include/linux/pageblock-flags.h for the values of 3765 * pageblock_order based on the kernel config 3766 */ 3767 static inline int pageblock_default_order(unsigned int order) 3768 { 3769 return MAX_ORDER-1; 3770 } 3771 #define set_pageblock_order(x) do {} while (0) 3772 3773 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3774 3775 /* 3776 * Set up the zone data structures: 3777 * - mark all pages reserved 3778 * - mark all memory queues empty 3779 * - clear the memory bitmaps 3780 */ 3781 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3782 unsigned long *zones_size, unsigned long *zholes_size) 3783 { 3784 enum zone_type j; 3785 int nid = pgdat->node_id; 3786 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3787 int ret; 3788 3789 pgdat_resize_init(pgdat); 3790 pgdat->nr_zones = 0; 3791 init_waitqueue_head(&pgdat->kswapd_wait); 3792 pgdat->kswapd_max_order = 0; 3793 pgdat_page_cgroup_init(pgdat); 3794 3795 for (j = 0; j < MAX_NR_ZONES; j++) { 3796 struct zone *zone = pgdat->node_zones + j; 3797 unsigned long size, realsize, memmap_pages; 3798 enum lru_list l; 3799 3800 size = zone_spanned_pages_in_node(nid, j, zones_size); 3801 realsize = size - zone_absent_pages_in_node(nid, j, 3802 zholes_size); 3803 3804 /* 3805 * Adjust realsize so that it accounts for how much memory 3806 * is used by this zone for memmap. This affects the watermark 3807 * and per-cpu initialisations 3808 */ 3809 memmap_pages = 3810 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3811 if (realsize >= memmap_pages) { 3812 realsize -= memmap_pages; 3813 if (memmap_pages) 3814 printk(KERN_DEBUG 3815 " %s zone: %lu pages used for memmap\n", 3816 zone_names[j], memmap_pages); 3817 } else 3818 printk(KERN_WARNING 3819 " %s zone: %lu pages exceeds realsize %lu\n", 3820 zone_names[j], memmap_pages, realsize); 3821 3822 /* Account for reserved pages */ 3823 if (j == 0 && realsize > dma_reserve) { 3824 realsize -= dma_reserve; 3825 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3826 zone_names[0], dma_reserve); 3827 } 3828 3829 if (!is_highmem_idx(j)) 3830 nr_kernel_pages += realsize; 3831 nr_all_pages += realsize; 3832 3833 zone->spanned_pages = size; 3834 zone->present_pages = realsize; 3835 #ifdef CONFIG_NUMA 3836 zone->node = nid; 3837 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3838 / 100; 3839 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3840 #endif 3841 zone->name = zone_names[j]; 3842 spin_lock_init(&zone->lock); 3843 spin_lock_init(&zone->lru_lock); 3844 zone_seqlock_init(zone); 3845 zone->zone_pgdat = pgdat; 3846 3847 zone->prev_priority = DEF_PRIORITY; 3848 3849 zone_pcp_init(zone); 3850 for_each_lru(l) { 3851 INIT_LIST_HEAD(&zone->lru[l].list); 3852 zone->reclaim_stat.nr_saved_scan[l] = 0; 3853 } 3854 zone->reclaim_stat.recent_rotated[0] = 0; 3855 zone->reclaim_stat.recent_rotated[1] = 0; 3856 zone->reclaim_stat.recent_scanned[0] = 0; 3857 zone->reclaim_stat.recent_scanned[1] = 0; 3858 zap_zone_vm_stats(zone); 3859 zone->flags = 0; 3860 if (!size) 3861 continue; 3862 3863 set_pageblock_order(pageblock_default_order()); 3864 setup_usemap(pgdat, zone, size); 3865 ret = init_currently_empty_zone(zone, zone_start_pfn, 3866 size, MEMMAP_EARLY); 3867 BUG_ON(ret); 3868 memmap_init(size, nid, j, zone_start_pfn); 3869 zone_start_pfn += size; 3870 } 3871 } 3872 3873 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3874 { 3875 /* Skip empty nodes */ 3876 if (!pgdat->node_spanned_pages) 3877 return; 3878 3879 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3880 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3881 if (!pgdat->node_mem_map) { 3882 unsigned long size, start, end; 3883 struct page *map; 3884 3885 /* 3886 * The zone's endpoints aren't required to be MAX_ORDER 3887 * aligned but the node_mem_map endpoints must be in order 3888 * for the buddy allocator to function correctly. 3889 */ 3890 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3891 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3892 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3893 size = (end - start) * sizeof(struct page); 3894 map = alloc_remap(pgdat->node_id, size); 3895 if (!map) 3896 map = alloc_bootmem_node(pgdat, size); 3897 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3898 } 3899 #ifndef CONFIG_NEED_MULTIPLE_NODES 3900 /* 3901 * With no DISCONTIG, the global mem_map is just set as node 0's 3902 */ 3903 if (pgdat == NODE_DATA(0)) { 3904 mem_map = NODE_DATA(0)->node_mem_map; 3905 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3906 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3907 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3908 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3909 } 3910 #endif 3911 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3912 } 3913 3914 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3915 unsigned long node_start_pfn, unsigned long *zholes_size) 3916 { 3917 pg_data_t *pgdat = NODE_DATA(nid); 3918 3919 pgdat->node_id = nid; 3920 pgdat->node_start_pfn = node_start_pfn; 3921 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3922 3923 alloc_node_mem_map(pgdat); 3924 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3925 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3926 nid, (unsigned long)pgdat, 3927 (unsigned long)pgdat->node_mem_map); 3928 #endif 3929 3930 free_area_init_core(pgdat, zones_size, zholes_size); 3931 } 3932 3933 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3934 3935 #if MAX_NUMNODES > 1 3936 /* 3937 * Figure out the number of possible node ids. 3938 */ 3939 static void __init setup_nr_node_ids(void) 3940 { 3941 unsigned int node; 3942 unsigned int highest = 0; 3943 3944 for_each_node_mask(node, node_possible_map) 3945 highest = node; 3946 nr_node_ids = highest + 1; 3947 } 3948 #else 3949 static inline void setup_nr_node_ids(void) 3950 { 3951 } 3952 #endif 3953 3954 /** 3955 * add_active_range - Register a range of PFNs backed by physical memory 3956 * @nid: The node ID the range resides on 3957 * @start_pfn: The start PFN of the available physical memory 3958 * @end_pfn: The end PFN of the available physical memory 3959 * 3960 * These ranges are stored in an early_node_map[] and later used by 3961 * free_area_init_nodes() to calculate zone sizes and holes. If the 3962 * range spans a memory hole, it is up to the architecture to ensure 3963 * the memory is not freed by the bootmem allocator. If possible 3964 * the range being registered will be merged with existing ranges. 3965 */ 3966 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3967 unsigned long end_pfn) 3968 { 3969 int i; 3970 3971 mminit_dprintk(MMINIT_TRACE, "memory_register", 3972 "Entering add_active_range(%d, %#lx, %#lx) " 3973 "%d entries of %d used\n", 3974 nid, start_pfn, end_pfn, 3975 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3976 3977 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3978 3979 /* Merge with existing active regions if possible */ 3980 for (i = 0; i < nr_nodemap_entries; i++) { 3981 if (early_node_map[i].nid != nid) 3982 continue; 3983 3984 /* Skip if an existing region covers this new one */ 3985 if (start_pfn >= early_node_map[i].start_pfn && 3986 end_pfn <= early_node_map[i].end_pfn) 3987 return; 3988 3989 /* Merge forward if suitable */ 3990 if (start_pfn <= early_node_map[i].end_pfn && 3991 end_pfn > early_node_map[i].end_pfn) { 3992 early_node_map[i].end_pfn = end_pfn; 3993 return; 3994 } 3995 3996 /* Merge backward if suitable */ 3997 if (start_pfn < early_node_map[i].end_pfn && 3998 end_pfn >= early_node_map[i].start_pfn) { 3999 early_node_map[i].start_pfn = start_pfn; 4000 return; 4001 } 4002 } 4003 4004 /* Check that early_node_map is large enough */ 4005 if (i >= MAX_ACTIVE_REGIONS) { 4006 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4007 MAX_ACTIVE_REGIONS); 4008 return; 4009 } 4010 4011 early_node_map[i].nid = nid; 4012 early_node_map[i].start_pfn = start_pfn; 4013 early_node_map[i].end_pfn = end_pfn; 4014 nr_nodemap_entries = i + 1; 4015 } 4016 4017 /** 4018 * remove_active_range - Shrink an existing registered range of PFNs 4019 * @nid: The node id the range is on that should be shrunk 4020 * @start_pfn: The new PFN of the range 4021 * @end_pfn: The new PFN of the range 4022 * 4023 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4024 * The map is kept near the end physical page range that has already been 4025 * registered. This function allows an arch to shrink an existing registered 4026 * range. 4027 */ 4028 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4029 unsigned long end_pfn) 4030 { 4031 int i, j; 4032 int removed = 0; 4033 4034 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4035 nid, start_pfn, end_pfn); 4036 4037 /* Find the old active region end and shrink */ 4038 for_each_active_range_index_in_nid(i, nid) { 4039 if (early_node_map[i].start_pfn >= start_pfn && 4040 early_node_map[i].end_pfn <= end_pfn) { 4041 /* clear it */ 4042 early_node_map[i].start_pfn = 0; 4043 early_node_map[i].end_pfn = 0; 4044 removed = 1; 4045 continue; 4046 } 4047 if (early_node_map[i].start_pfn < start_pfn && 4048 early_node_map[i].end_pfn > start_pfn) { 4049 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4050 early_node_map[i].end_pfn = start_pfn; 4051 if (temp_end_pfn > end_pfn) 4052 add_active_range(nid, end_pfn, temp_end_pfn); 4053 continue; 4054 } 4055 if (early_node_map[i].start_pfn >= start_pfn && 4056 early_node_map[i].end_pfn > end_pfn && 4057 early_node_map[i].start_pfn < end_pfn) { 4058 early_node_map[i].start_pfn = end_pfn; 4059 continue; 4060 } 4061 } 4062 4063 if (!removed) 4064 return; 4065 4066 /* remove the blank ones */ 4067 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4068 if (early_node_map[i].nid != nid) 4069 continue; 4070 if (early_node_map[i].end_pfn) 4071 continue; 4072 /* we found it, get rid of it */ 4073 for (j = i; j < nr_nodemap_entries - 1; j++) 4074 memcpy(&early_node_map[j], &early_node_map[j+1], 4075 sizeof(early_node_map[j])); 4076 j = nr_nodemap_entries - 1; 4077 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4078 nr_nodemap_entries--; 4079 } 4080 } 4081 4082 /** 4083 * remove_all_active_ranges - Remove all currently registered regions 4084 * 4085 * During discovery, it may be found that a table like SRAT is invalid 4086 * and an alternative discovery method must be used. This function removes 4087 * all currently registered regions. 4088 */ 4089 void __init remove_all_active_ranges(void) 4090 { 4091 memset(early_node_map, 0, sizeof(early_node_map)); 4092 nr_nodemap_entries = 0; 4093 } 4094 4095 /* Compare two active node_active_regions */ 4096 static int __init cmp_node_active_region(const void *a, const void *b) 4097 { 4098 struct node_active_region *arange = (struct node_active_region *)a; 4099 struct node_active_region *brange = (struct node_active_region *)b; 4100 4101 /* Done this way to avoid overflows */ 4102 if (arange->start_pfn > brange->start_pfn) 4103 return 1; 4104 if (arange->start_pfn < brange->start_pfn) 4105 return -1; 4106 4107 return 0; 4108 } 4109 4110 /* sort the node_map by start_pfn */ 4111 void __init sort_node_map(void) 4112 { 4113 sort(early_node_map, (size_t)nr_nodemap_entries, 4114 sizeof(struct node_active_region), 4115 cmp_node_active_region, NULL); 4116 } 4117 4118 /* Find the lowest pfn for a node */ 4119 static unsigned long __init find_min_pfn_for_node(int nid) 4120 { 4121 int i; 4122 unsigned long min_pfn = ULONG_MAX; 4123 4124 /* Assuming a sorted map, the first range found has the starting pfn */ 4125 for_each_active_range_index_in_nid(i, nid) 4126 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4127 4128 if (min_pfn == ULONG_MAX) { 4129 printk(KERN_WARNING 4130 "Could not find start_pfn for node %d\n", nid); 4131 return 0; 4132 } 4133 4134 return min_pfn; 4135 } 4136 4137 /** 4138 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4139 * 4140 * It returns the minimum PFN based on information provided via 4141 * add_active_range(). 4142 */ 4143 unsigned long __init find_min_pfn_with_active_regions(void) 4144 { 4145 return find_min_pfn_for_node(MAX_NUMNODES); 4146 } 4147 4148 /* 4149 * early_calculate_totalpages() 4150 * Sum pages in active regions for movable zone. 4151 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4152 */ 4153 static unsigned long __init early_calculate_totalpages(void) 4154 { 4155 int i; 4156 unsigned long totalpages = 0; 4157 4158 for (i = 0; i < nr_nodemap_entries; i++) { 4159 unsigned long pages = early_node_map[i].end_pfn - 4160 early_node_map[i].start_pfn; 4161 totalpages += pages; 4162 if (pages) 4163 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4164 } 4165 return totalpages; 4166 } 4167 4168 /* 4169 * Find the PFN the Movable zone begins in each node. Kernel memory 4170 * is spread evenly between nodes as long as the nodes have enough 4171 * memory. When they don't, some nodes will have more kernelcore than 4172 * others 4173 */ 4174 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4175 { 4176 int i, nid; 4177 unsigned long usable_startpfn; 4178 unsigned long kernelcore_node, kernelcore_remaining; 4179 /* save the state before borrow the nodemask */ 4180 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4181 unsigned long totalpages = early_calculate_totalpages(); 4182 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4183 4184 /* 4185 * If movablecore was specified, calculate what size of 4186 * kernelcore that corresponds so that memory usable for 4187 * any allocation type is evenly spread. If both kernelcore 4188 * and movablecore are specified, then the value of kernelcore 4189 * will be used for required_kernelcore if it's greater than 4190 * what movablecore would have allowed. 4191 */ 4192 if (required_movablecore) { 4193 unsigned long corepages; 4194 4195 /* 4196 * Round-up so that ZONE_MOVABLE is at least as large as what 4197 * was requested by the user 4198 */ 4199 required_movablecore = 4200 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4201 corepages = totalpages - required_movablecore; 4202 4203 required_kernelcore = max(required_kernelcore, corepages); 4204 } 4205 4206 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4207 if (!required_kernelcore) 4208 goto out; 4209 4210 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4211 find_usable_zone_for_movable(); 4212 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4213 4214 restart: 4215 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4216 kernelcore_node = required_kernelcore / usable_nodes; 4217 for_each_node_state(nid, N_HIGH_MEMORY) { 4218 /* 4219 * Recalculate kernelcore_node if the division per node 4220 * now exceeds what is necessary to satisfy the requested 4221 * amount of memory for the kernel 4222 */ 4223 if (required_kernelcore < kernelcore_node) 4224 kernelcore_node = required_kernelcore / usable_nodes; 4225 4226 /* 4227 * As the map is walked, we track how much memory is usable 4228 * by the kernel using kernelcore_remaining. When it is 4229 * 0, the rest of the node is usable by ZONE_MOVABLE 4230 */ 4231 kernelcore_remaining = kernelcore_node; 4232 4233 /* Go through each range of PFNs within this node */ 4234 for_each_active_range_index_in_nid(i, nid) { 4235 unsigned long start_pfn, end_pfn; 4236 unsigned long size_pages; 4237 4238 start_pfn = max(early_node_map[i].start_pfn, 4239 zone_movable_pfn[nid]); 4240 end_pfn = early_node_map[i].end_pfn; 4241 if (start_pfn >= end_pfn) 4242 continue; 4243 4244 /* Account for what is only usable for kernelcore */ 4245 if (start_pfn < usable_startpfn) { 4246 unsigned long kernel_pages; 4247 kernel_pages = min(end_pfn, usable_startpfn) 4248 - start_pfn; 4249 4250 kernelcore_remaining -= min(kernel_pages, 4251 kernelcore_remaining); 4252 required_kernelcore -= min(kernel_pages, 4253 required_kernelcore); 4254 4255 /* Continue if range is now fully accounted */ 4256 if (end_pfn <= usable_startpfn) { 4257 4258 /* 4259 * Push zone_movable_pfn to the end so 4260 * that if we have to rebalance 4261 * kernelcore across nodes, we will 4262 * not double account here 4263 */ 4264 zone_movable_pfn[nid] = end_pfn; 4265 continue; 4266 } 4267 start_pfn = usable_startpfn; 4268 } 4269 4270 /* 4271 * The usable PFN range for ZONE_MOVABLE is from 4272 * start_pfn->end_pfn. Calculate size_pages as the 4273 * number of pages used as kernelcore 4274 */ 4275 size_pages = end_pfn - start_pfn; 4276 if (size_pages > kernelcore_remaining) 4277 size_pages = kernelcore_remaining; 4278 zone_movable_pfn[nid] = start_pfn + size_pages; 4279 4280 /* 4281 * Some kernelcore has been met, update counts and 4282 * break if the kernelcore for this node has been 4283 * satisified 4284 */ 4285 required_kernelcore -= min(required_kernelcore, 4286 size_pages); 4287 kernelcore_remaining -= size_pages; 4288 if (!kernelcore_remaining) 4289 break; 4290 } 4291 } 4292 4293 /* 4294 * If there is still required_kernelcore, we do another pass with one 4295 * less node in the count. This will push zone_movable_pfn[nid] further 4296 * along on the nodes that still have memory until kernelcore is 4297 * satisified 4298 */ 4299 usable_nodes--; 4300 if (usable_nodes && required_kernelcore > usable_nodes) 4301 goto restart; 4302 4303 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4304 for (nid = 0; nid < MAX_NUMNODES; nid++) 4305 zone_movable_pfn[nid] = 4306 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4307 4308 out: 4309 /* restore the node_state */ 4310 node_states[N_HIGH_MEMORY] = saved_node_state; 4311 } 4312 4313 /* Any regular memory on that node ? */ 4314 static void check_for_regular_memory(pg_data_t *pgdat) 4315 { 4316 #ifdef CONFIG_HIGHMEM 4317 enum zone_type zone_type; 4318 4319 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4320 struct zone *zone = &pgdat->node_zones[zone_type]; 4321 if (zone->present_pages) 4322 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4323 } 4324 #endif 4325 } 4326 4327 /** 4328 * free_area_init_nodes - Initialise all pg_data_t and zone data 4329 * @max_zone_pfn: an array of max PFNs for each zone 4330 * 4331 * This will call free_area_init_node() for each active node in the system. 4332 * Using the page ranges provided by add_active_range(), the size of each 4333 * zone in each node and their holes is calculated. If the maximum PFN 4334 * between two adjacent zones match, it is assumed that the zone is empty. 4335 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4336 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4337 * starts where the previous one ended. For example, ZONE_DMA32 starts 4338 * at arch_max_dma_pfn. 4339 */ 4340 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4341 { 4342 unsigned long nid; 4343 int i; 4344 4345 /* Sort early_node_map as initialisation assumes it is sorted */ 4346 sort_node_map(); 4347 4348 /* Record where the zone boundaries are */ 4349 memset(arch_zone_lowest_possible_pfn, 0, 4350 sizeof(arch_zone_lowest_possible_pfn)); 4351 memset(arch_zone_highest_possible_pfn, 0, 4352 sizeof(arch_zone_highest_possible_pfn)); 4353 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4354 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4355 for (i = 1; i < MAX_NR_ZONES; i++) { 4356 if (i == ZONE_MOVABLE) 4357 continue; 4358 arch_zone_lowest_possible_pfn[i] = 4359 arch_zone_highest_possible_pfn[i-1]; 4360 arch_zone_highest_possible_pfn[i] = 4361 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4362 } 4363 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4364 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4365 4366 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4367 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4368 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4369 4370 /* Print out the zone ranges */ 4371 printk("Zone PFN ranges:\n"); 4372 for (i = 0; i < MAX_NR_ZONES; i++) { 4373 if (i == ZONE_MOVABLE) 4374 continue; 4375 printk(" %-8s %0#10lx -> %0#10lx\n", 4376 zone_names[i], 4377 arch_zone_lowest_possible_pfn[i], 4378 arch_zone_highest_possible_pfn[i]); 4379 } 4380 4381 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4382 printk("Movable zone start PFN for each node\n"); 4383 for (i = 0; i < MAX_NUMNODES; i++) { 4384 if (zone_movable_pfn[i]) 4385 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4386 } 4387 4388 /* Print out the early_node_map[] */ 4389 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4390 for (i = 0; i < nr_nodemap_entries; i++) 4391 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4392 early_node_map[i].start_pfn, 4393 early_node_map[i].end_pfn); 4394 4395 /* Initialise every node */ 4396 mminit_verify_pageflags_layout(); 4397 setup_nr_node_ids(); 4398 for_each_online_node(nid) { 4399 pg_data_t *pgdat = NODE_DATA(nid); 4400 free_area_init_node(nid, NULL, 4401 find_min_pfn_for_node(nid), NULL); 4402 4403 /* Any memory on that node */ 4404 if (pgdat->node_present_pages) 4405 node_set_state(nid, N_HIGH_MEMORY); 4406 check_for_regular_memory(pgdat); 4407 } 4408 } 4409 4410 static int __init cmdline_parse_core(char *p, unsigned long *core) 4411 { 4412 unsigned long long coremem; 4413 if (!p) 4414 return -EINVAL; 4415 4416 coremem = memparse(p, &p); 4417 *core = coremem >> PAGE_SHIFT; 4418 4419 /* Paranoid check that UL is enough for the coremem value */ 4420 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4421 4422 return 0; 4423 } 4424 4425 /* 4426 * kernelcore=size sets the amount of memory for use for allocations that 4427 * cannot be reclaimed or migrated. 4428 */ 4429 static int __init cmdline_parse_kernelcore(char *p) 4430 { 4431 return cmdline_parse_core(p, &required_kernelcore); 4432 } 4433 4434 /* 4435 * movablecore=size sets the amount of memory for use for allocations that 4436 * can be reclaimed or migrated. 4437 */ 4438 static int __init cmdline_parse_movablecore(char *p) 4439 { 4440 return cmdline_parse_core(p, &required_movablecore); 4441 } 4442 4443 early_param("kernelcore", cmdline_parse_kernelcore); 4444 early_param("movablecore", cmdline_parse_movablecore); 4445 4446 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4447 4448 /** 4449 * set_dma_reserve - set the specified number of pages reserved in the first zone 4450 * @new_dma_reserve: The number of pages to mark reserved 4451 * 4452 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4453 * In the DMA zone, a significant percentage may be consumed by kernel image 4454 * and other unfreeable allocations which can skew the watermarks badly. This 4455 * function may optionally be used to account for unfreeable pages in the 4456 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4457 * smaller per-cpu batchsize. 4458 */ 4459 void __init set_dma_reserve(unsigned long new_dma_reserve) 4460 { 4461 dma_reserve = new_dma_reserve; 4462 } 4463 4464 #ifndef CONFIG_NEED_MULTIPLE_NODES 4465 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4466 EXPORT_SYMBOL(contig_page_data); 4467 #endif 4468 4469 void __init free_area_init(unsigned long *zones_size) 4470 { 4471 free_area_init_node(0, zones_size, 4472 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4473 } 4474 4475 static int page_alloc_cpu_notify(struct notifier_block *self, 4476 unsigned long action, void *hcpu) 4477 { 4478 int cpu = (unsigned long)hcpu; 4479 4480 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4481 drain_pages(cpu); 4482 4483 /* 4484 * Spill the event counters of the dead processor 4485 * into the current processors event counters. 4486 * This artificially elevates the count of the current 4487 * processor. 4488 */ 4489 vm_events_fold_cpu(cpu); 4490 4491 /* 4492 * Zero the differential counters of the dead processor 4493 * so that the vm statistics are consistent. 4494 * 4495 * This is only okay since the processor is dead and cannot 4496 * race with what we are doing. 4497 */ 4498 refresh_cpu_vm_stats(cpu); 4499 } 4500 return NOTIFY_OK; 4501 } 4502 4503 void __init page_alloc_init(void) 4504 { 4505 hotcpu_notifier(page_alloc_cpu_notify, 0); 4506 } 4507 4508 /* 4509 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4510 * or min_free_kbytes changes. 4511 */ 4512 static void calculate_totalreserve_pages(void) 4513 { 4514 struct pglist_data *pgdat; 4515 unsigned long reserve_pages = 0; 4516 enum zone_type i, j; 4517 4518 for_each_online_pgdat(pgdat) { 4519 for (i = 0; i < MAX_NR_ZONES; i++) { 4520 struct zone *zone = pgdat->node_zones + i; 4521 unsigned long max = 0; 4522 4523 /* Find valid and maximum lowmem_reserve in the zone */ 4524 for (j = i; j < MAX_NR_ZONES; j++) { 4525 if (zone->lowmem_reserve[j] > max) 4526 max = zone->lowmem_reserve[j]; 4527 } 4528 4529 /* we treat the high watermark as reserved pages. */ 4530 max += high_wmark_pages(zone); 4531 4532 if (max > zone->present_pages) 4533 max = zone->present_pages; 4534 reserve_pages += max; 4535 } 4536 } 4537 totalreserve_pages = reserve_pages; 4538 } 4539 4540 /* 4541 * setup_per_zone_lowmem_reserve - called whenever 4542 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4543 * has a correct pages reserved value, so an adequate number of 4544 * pages are left in the zone after a successful __alloc_pages(). 4545 */ 4546 static void setup_per_zone_lowmem_reserve(void) 4547 { 4548 struct pglist_data *pgdat; 4549 enum zone_type j, idx; 4550 4551 for_each_online_pgdat(pgdat) { 4552 for (j = 0; j < MAX_NR_ZONES; j++) { 4553 struct zone *zone = pgdat->node_zones + j; 4554 unsigned long present_pages = zone->present_pages; 4555 4556 zone->lowmem_reserve[j] = 0; 4557 4558 idx = j; 4559 while (idx) { 4560 struct zone *lower_zone; 4561 4562 idx--; 4563 4564 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4565 sysctl_lowmem_reserve_ratio[idx] = 1; 4566 4567 lower_zone = pgdat->node_zones + idx; 4568 lower_zone->lowmem_reserve[j] = present_pages / 4569 sysctl_lowmem_reserve_ratio[idx]; 4570 present_pages += lower_zone->present_pages; 4571 } 4572 } 4573 } 4574 4575 /* update totalreserve_pages */ 4576 calculate_totalreserve_pages(); 4577 } 4578 4579 /** 4580 * setup_per_zone_wmarks - called when min_free_kbytes changes 4581 * or when memory is hot-{added|removed} 4582 * 4583 * Ensures that the watermark[min,low,high] values for each zone are set 4584 * correctly with respect to min_free_kbytes. 4585 */ 4586 void setup_per_zone_wmarks(void) 4587 { 4588 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4589 unsigned long lowmem_pages = 0; 4590 struct zone *zone; 4591 unsigned long flags; 4592 4593 /* Calculate total number of !ZONE_HIGHMEM pages */ 4594 for_each_zone(zone) { 4595 if (!is_highmem(zone)) 4596 lowmem_pages += zone->present_pages; 4597 } 4598 4599 for_each_zone(zone) { 4600 u64 tmp; 4601 4602 spin_lock_irqsave(&zone->lock, flags); 4603 tmp = (u64)pages_min * zone->present_pages; 4604 do_div(tmp, lowmem_pages); 4605 if (is_highmem(zone)) { 4606 /* 4607 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4608 * need highmem pages, so cap pages_min to a small 4609 * value here. 4610 * 4611 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4612 * deltas controls asynch page reclaim, and so should 4613 * not be capped for highmem. 4614 */ 4615 int min_pages; 4616 4617 min_pages = zone->present_pages / 1024; 4618 if (min_pages < SWAP_CLUSTER_MAX) 4619 min_pages = SWAP_CLUSTER_MAX; 4620 if (min_pages > 128) 4621 min_pages = 128; 4622 zone->watermark[WMARK_MIN] = min_pages; 4623 } else { 4624 /* 4625 * If it's a lowmem zone, reserve a number of pages 4626 * proportionate to the zone's size. 4627 */ 4628 zone->watermark[WMARK_MIN] = tmp; 4629 } 4630 4631 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4632 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4633 setup_zone_migrate_reserve(zone); 4634 spin_unlock_irqrestore(&zone->lock, flags); 4635 } 4636 4637 /* update totalreserve_pages */ 4638 calculate_totalreserve_pages(); 4639 } 4640 4641 /* 4642 * The inactive anon list should be small enough that the VM never has to 4643 * do too much work, but large enough that each inactive page has a chance 4644 * to be referenced again before it is swapped out. 4645 * 4646 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4647 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4648 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4649 * the anonymous pages are kept on the inactive list. 4650 * 4651 * total target max 4652 * memory ratio inactive anon 4653 * ------------------------------------- 4654 * 10MB 1 5MB 4655 * 100MB 1 50MB 4656 * 1GB 3 250MB 4657 * 10GB 10 0.9GB 4658 * 100GB 31 3GB 4659 * 1TB 101 10GB 4660 * 10TB 320 32GB 4661 */ 4662 void calculate_zone_inactive_ratio(struct zone *zone) 4663 { 4664 unsigned int gb, ratio; 4665 4666 /* Zone size in gigabytes */ 4667 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4668 if (gb) 4669 ratio = int_sqrt(10 * gb); 4670 else 4671 ratio = 1; 4672 4673 zone->inactive_ratio = ratio; 4674 } 4675 4676 static void __init setup_per_zone_inactive_ratio(void) 4677 { 4678 struct zone *zone; 4679 4680 for_each_zone(zone) 4681 calculate_zone_inactive_ratio(zone); 4682 } 4683 4684 /* 4685 * Initialise min_free_kbytes. 4686 * 4687 * For small machines we want it small (128k min). For large machines 4688 * we want it large (64MB max). But it is not linear, because network 4689 * bandwidth does not increase linearly with machine size. We use 4690 * 4691 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4692 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4693 * 4694 * which yields 4695 * 4696 * 16MB: 512k 4697 * 32MB: 724k 4698 * 64MB: 1024k 4699 * 128MB: 1448k 4700 * 256MB: 2048k 4701 * 512MB: 2896k 4702 * 1024MB: 4096k 4703 * 2048MB: 5792k 4704 * 4096MB: 8192k 4705 * 8192MB: 11584k 4706 * 16384MB: 16384k 4707 */ 4708 static int __init init_per_zone_wmark_min(void) 4709 { 4710 unsigned long lowmem_kbytes; 4711 4712 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4713 4714 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4715 if (min_free_kbytes < 128) 4716 min_free_kbytes = 128; 4717 if (min_free_kbytes > 65536) 4718 min_free_kbytes = 65536; 4719 setup_per_zone_wmarks(); 4720 setup_per_zone_lowmem_reserve(); 4721 setup_per_zone_inactive_ratio(); 4722 return 0; 4723 } 4724 module_init(init_per_zone_wmark_min) 4725 4726 /* 4727 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4728 * that we can call two helper functions whenever min_free_kbytes 4729 * changes. 4730 */ 4731 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4732 void __user *buffer, size_t *length, loff_t *ppos) 4733 { 4734 proc_dointvec(table, write, buffer, length, ppos); 4735 if (write) 4736 setup_per_zone_wmarks(); 4737 return 0; 4738 } 4739 4740 #ifdef CONFIG_NUMA 4741 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4742 void __user *buffer, size_t *length, loff_t *ppos) 4743 { 4744 struct zone *zone; 4745 int rc; 4746 4747 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4748 if (rc) 4749 return rc; 4750 4751 for_each_zone(zone) 4752 zone->min_unmapped_pages = (zone->present_pages * 4753 sysctl_min_unmapped_ratio) / 100; 4754 return 0; 4755 } 4756 4757 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4758 void __user *buffer, size_t *length, loff_t *ppos) 4759 { 4760 struct zone *zone; 4761 int rc; 4762 4763 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4764 if (rc) 4765 return rc; 4766 4767 for_each_zone(zone) 4768 zone->min_slab_pages = (zone->present_pages * 4769 sysctl_min_slab_ratio) / 100; 4770 return 0; 4771 } 4772 #endif 4773 4774 /* 4775 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4776 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4777 * whenever sysctl_lowmem_reserve_ratio changes. 4778 * 4779 * The reserve ratio obviously has absolutely no relation with the 4780 * minimum watermarks. The lowmem reserve ratio can only make sense 4781 * if in function of the boot time zone sizes. 4782 */ 4783 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4784 void __user *buffer, size_t *length, loff_t *ppos) 4785 { 4786 proc_dointvec_minmax(table, write, buffer, length, ppos); 4787 setup_per_zone_lowmem_reserve(); 4788 return 0; 4789 } 4790 4791 /* 4792 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4793 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4794 * can have before it gets flushed back to buddy allocator. 4795 */ 4796 4797 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4798 void __user *buffer, size_t *length, loff_t *ppos) 4799 { 4800 struct zone *zone; 4801 unsigned int cpu; 4802 int ret; 4803 4804 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 4805 if (!write || (ret == -EINVAL)) 4806 return ret; 4807 for_each_populated_zone(zone) { 4808 for_each_online_cpu(cpu) { 4809 unsigned long high; 4810 high = zone->present_pages / percpu_pagelist_fraction; 4811 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4812 } 4813 } 4814 return 0; 4815 } 4816 4817 int hashdist = HASHDIST_DEFAULT; 4818 4819 #ifdef CONFIG_NUMA 4820 static int __init set_hashdist(char *str) 4821 { 4822 if (!str) 4823 return 0; 4824 hashdist = simple_strtoul(str, &str, 0); 4825 return 1; 4826 } 4827 __setup("hashdist=", set_hashdist); 4828 #endif 4829 4830 /* 4831 * allocate a large system hash table from bootmem 4832 * - it is assumed that the hash table must contain an exact power-of-2 4833 * quantity of entries 4834 * - limit is the number of hash buckets, not the total allocation size 4835 */ 4836 void *__init alloc_large_system_hash(const char *tablename, 4837 unsigned long bucketsize, 4838 unsigned long numentries, 4839 int scale, 4840 int flags, 4841 unsigned int *_hash_shift, 4842 unsigned int *_hash_mask, 4843 unsigned long limit) 4844 { 4845 unsigned long long max = limit; 4846 unsigned long log2qty, size; 4847 void *table = NULL; 4848 4849 /* allow the kernel cmdline to have a say */ 4850 if (!numentries) { 4851 /* round applicable memory size up to nearest megabyte */ 4852 numentries = nr_kernel_pages; 4853 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4854 numentries >>= 20 - PAGE_SHIFT; 4855 numentries <<= 20 - PAGE_SHIFT; 4856 4857 /* limit to 1 bucket per 2^scale bytes of low memory */ 4858 if (scale > PAGE_SHIFT) 4859 numentries >>= (scale - PAGE_SHIFT); 4860 else 4861 numentries <<= (PAGE_SHIFT - scale); 4862 4863 /* Make sure we've got at least a 0-order allocation.. */ 4864 if (unlikely(flags & HASH_SMALL)) { 4865 /* Makes no sense without HASH_EARLY */ 4866 WARN_ON(!(flags & HASH_EARLY)); 4867 if (!(numentries >> *_hash_shift)) { 4868 numentries = 1UL << *_hash_shift; 4869 BUG_ON(!numentries); 4870 } 4871 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4872 numentries = PAGE_SIZE / bucketsize; 4873 } 4874 numentries = roundup_pow_of_two(numentries); 4875 4876 /* limit allocation size to 1/16 total memory by default */ 4877 if (max == 0) { 4878 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4879 do_div(max, bucketsize); 4880 } 4881 4882 if (numentries > max) 4883 numentries = max; 4884 4885 log2qty = ilog2(numentries); 4886 4887 do { 4888 size = bucketsize << log2qty; 4889 if (flags & HASH_EARLY) 4890 table = alloc_bootmem_nopanic(size); 4891 else if (hashdist) 4892 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4893 else { 4894 /* 4895 * If bucketsize is not a power-of-two, we may free 4896 * some pages at the end of hash table which 4897 * alloc_pages_exact() automatically does 4898 */ 4899 if (get_order(size) < MAX_ORDER) { 4900 table = alloc_pages_exact(size, GFP_ATOMIC); 4901 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 4902 } 4903 } 4904 } while (!table && size > PAGE_SIZE && --log2qty); 4905 4906 if (!table) 4907 panic("Failed to allocate %s hash table\n", tablename); 4908 4909 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4910 tablename, 4911 (1U << log2qty), 4912 ilog2(size) - PAGE_SHIFT, 4913 size); 4914 4915 if (_hash_shift) 4916 *_hash_shift = log2qty; 4917 if (_hash_mask) 4918 *_hash_mask = (1 << log2qty) - 1; 4919 4920 return table; 4921 } 4922 4923 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4924 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4925 unsigned long pfn) 4926 { 4927 #ifdef CONFIG_SPARSEMEM 4928 return __pfn_to_section(pfn)->pageblock_flags; 4929 #else 4930 return zone->pageblock_flags; 4931 #endif /* CONFIG_SPARSEMEM */ 4932 } 4933 4934 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4935 { 4936 #ifdef CONFIG_SPARSEMEM 4937 pfn &= (PAGES_PER_SECTION-1); 4938 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4939 #else 4940 pfn = pfn - zone->zone_start_pfn; 4941 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4942 #endif /* CONFIG_SPARSEMEM */ 4943 } 4944 4945 /** 4946 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4947 * @page: The page within the block of interest 4948 * @start_bitidx: The first bit of interest to retrieve 4949 * @end_bitidx: The last bit of interest 4950 * returns pageblock_bits flags 4951 */ 4952 unsigned long get_pageblock_flags_group(struct page *page, 4953 int start_bitidx, int end_bitidx) 4954 { 4955 struct zone *zone; 4956 unsigned long *bitmap; 4957 unsigned long pfn, bitidx; 4958 unsigned long flags = 0; 4959 unsigned long value = 1; 4960 4961 zone = page_zone(page); 4962 pfn = page_to_pfn(page); 4963 bitmap = get_pageblock_bitmap(zone, pfn); 4964 bitidx = pfn_to_bitidx(zone, pfn); 4965 4966 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4967 if (test_bit(bitidx + start_bitidx, bitmap)) 4968 flags |= value; 4969 4970 return flags; 4971 } 4972 4973 /** 4974 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4975 * @page: The page within the block of interest 4976 * @start_bitidx: The first bit of interest 4977 * @end_bitidx: The last bit of interest 4978 * @flags: The flags to set 4979 */ 4980 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4981 int start_bitidx, int end_bitidx) 4982 { 4983 struct zone *zone; 4984 unsigned long *bitmap; 4985 unsigned long pfn, bitidx; 4986 unsigned long value = 1; 4987 4988 zone = page_zone(page); 4989 pfn = page_to_pfn(page); 4990 bitmap = get_pageblock_bitmap(zone, pfn); 4991 bitidx = pfn_to_bitidx(zone, pfn); 4992 VM_BUG_ON(pfn < zone->zone_start_pfn); 4993 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4994 4995 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4996 if (flags & value) 4997 __set_bit(bitidx + start_bitidx, bitmap); 4998 else 4999 __clear_bit(bitidx + start_bitidx, bitmap); 5000 } 5001 5002 /* 5003 * This is designed as sub function...plz see page_isolation.c also. 5004 * set/clear page block's type to be ISOLATE. 5005 * page allocater never alloc memory from ISOLATE block. 5006 */ 5007 5008 int set_migratetype_isolate(struct page *page) 5009 { 5010 struct zone *zone; 5011 unsigned long flags; 5012 int ret = -EBUSY; 5013 int zone_idx; 5014 5015 zone = page_zone(page); 5016 zone_idx = zone_idx(zone); 5017 spin_lock_irqsave(&zone->lock, flags); 5018 /* 5019 * In future, more migrate types will be able to be isolation target. 5020 */ 5021 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE && 5022 zone_idx != ZONE_MOVABLE) 5023 goto out; 5024 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5025 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5026 ret = 0; 5027 out: 5028 spin_unlock_irqrestore(&zone->lock, flags); 5029 if (!ret) 5030 drain_all_pages(); 5031 return ret; 5032 } 5033 5034 void unset_migratetype_isolate(struct page *page) 5035 { 5036 struct zone *zone; 5037 unsigned long flags; 5038 zone = page_zone(page); 5039 spin_lock_irqsave(&zone->lock, flags); 5040 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5041 goto out; 5042 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5043 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5044 out: 5045 spin_unlock_irqrestore(&zone->lock, flags); 5046 } 5047 5048 #ifdef CONFIG_MEMORY_HOTREMOVE 5049 /* 5050 * All pages in the range must be isolated before calling this. 5051 */ 5052 void 5053 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5054 { 5055 struct page *page; 5056 struct zone *zone; 5057 int order, i; 5058 unsigned long pfn; 5059 unsigned long flags; 5060 /* find the first valid pfn */ 5061 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5062 if (pfn_valid(pfn)) 5063 break; 5064 if (pfn == end_pfn) 5065 return; 5066 zone = page_zone(pfn_to_page(pfn)); 5067 spin_lock_irqsave(&zone->lock, flags); 5068 pfn = start_pfn; 5069 while (pfn < end_pfn) { 5070 if (!pfn_valid(pfn)) { 5071 pfn++; 5072 continue; 5073 } 5074 page = pfn_to_page(pfn); 5075 BUG_ON(page_count(page)); 5076 BUG_ON(!PageBuddy(page)); 5077 order = page_order(page); 5078 #ifdef CONFIG_DEBUG_VM 5079 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5080 pfn, 1 << order, end_pfn); 5081 #endif 5082 list_del(&page->lru); 5083 rmv_page_order(page); 5084 zone->free_area[order].nr_free--; 5085 __mod_zone_page_state(zone, NR_FREE_PAGES, 5086 - (1UL << order)); 5087 for (i = 0; i < (1 << order); i++) 5088 SetPageReserved((page+i)); 5089 pfn += (1 << order); 5090 } 5091 spin_unlock_irqrestore(&zone->lock, flags); 5092 } 5093 #endif 5094 5095 #ifdef CONFIG_MEMORY_FAILURE 5096 bool is_free_buddy_page(struct page *page) 5097 { 5098 struct zone *zone = page_zone(page); 5099 unsigned long pfn = page_to_pfn(page); 5100 unsigned long flags; 5101 int order; 5102 5103 spin_lock_irqsave(&zone->lock, flags); 5104 for (order = 0; order < MAX_ORDER; order++) { 5105 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5106 5107 if (PageBuddy(page_head) && page_order(page_head) >= order) 5108 break; 5109 } 5110 spin_unlock_irqrestore(&zone->lock, flags); 5111 5112 return order < MAX_ORDER; 5113 } 5114 #endif 5115