xref: /linux/mm/page_alloc.c (revision 6feb348783767e3f38d7612e6551ee8b580ac4e9)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53 
54 /*
55  * Array of node states.
56  */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 	[N_POSSIBLE] = NODE_MASK_ALL,
59 	[N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 	[N_CPU] = { { [0] = 1UL } },
66 #endif	/* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69 
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74 
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78 
79 static void __free_pages_ok(struct page *page, unsigned int order);
80 
81 /*
82  * results with 256, 32 in the lowmem_reserve sysctl:
83  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84  *	1G machine -> (16M dma, 784M normal, 224M high)
85  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88  *
89  * TBD: should special case ZONE_DMA32 machines here - in those we normally
90  * don't need any ZONE_NORMAL reservation
91  */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 	 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 	 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 	 32,
101 #endif
102 	 32,
103 };
104 
105 EXPORT_SYMBOL(totalram_pages);
106 
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 	 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 	 "DMA32",
113 #endif
114 	 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 	 "HighMem",
117 #endif
118 	 "Movable",
119 };
120 
121 int min_free_kbytes = 1024;
122 
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126 
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128   /*
129    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130    * ranges of memory (RAM) that may be registered with add_active_range().
131    * Ranges passed to add_active_range() will be merged if possible
132    * so the number of times add_active_range() can be called is
133    * related to the number of nodes and the number of holes
134    */
135   #ifdef CONFIG_MAX_ACTIVE_REGIONS
136     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138   #else
139     #if MAX_NUMNODES >= 32
140       /* If there can be many nodes, allow up to 50 holes per node */
141       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142     #else
143       /* By default, allow up to 256 distinct regions */
144       #define MAX_ACTIVE_REGIONS 256
145     #endif
146   #endif
147 
148   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149   static int __meminitdata nr_nodemap_entries;
150   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156   static unsigned long __initdata required_kernelcore;
157   static unsigned long __initdata required_movablecore;
158   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 
160   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161   int movable_zone;
162   EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169 
170 int page_group_by_mobility_disabled __read_mostly;
171 
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 	set_pageblock_flags_group(page, (unsigned long)migratetype,
175 					PB_migrate, PB_migrate_end);
176 }
177 
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 	int ret = 0;
182 	unsigned seq;
183 	unsigned long pfn = page_to_pfn(page);
184 
185 	do {
186 		seq = zone_span_seqbegin(zone);
187 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 			ret = 1;
189 		else if (pfn < zone->zone_start_pfn)
190 			ret = 1;
191 	} while (zone_span_seqretry(zone, seq));
192 
193 	return ret;
194 }
195 
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 	if (!pfn_valid_within(page_to_pfn(page)))
199 		return 0;
200 	if (zone != page_zone(page))
201 		return 0;
202 
203 	return 1;
204 }
205 /*
206  * Temporary debugging check for pages not lying within a given zone.
207  */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 	if (page_outside_zone_boundaries(zone, page))
211 		return 1;
212 	if (!page_is_consistent(zone, page))
213 		return 1;
214 
215 	return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 	return 0;
221 }
222 #endif
223 
224 static void bad_page(struct page *page)
225 {
226 	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
227 		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
228 		current->comm, page, (int)(2*sizeof(unsigned long)),
229 		(unsigned long)page->flags, page->mapping,
230 		page_mapcount(page), page_count(page));
231 
232 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
233 		KERN_EMERG "Backtrace:\n");
234 	dump_stack();
235 	page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
236 	set_page_count(page, 0);
237 	reset_page_mapcount(page);
238 	page->mapping = NULL;
239 	add_taint(TAINT_BAD_PAGE);
240 }
241 
242 /*
243  * Higher-order pages are called "compound pages".  They are structured thusly:
244  *
245  * The first PAGE_SIZE page is called the "head page".
246  *
247  * The remaining PAGE_SIZE pages are called "tail pages".
248  *
249  * All pages have PG_compound set.  All pages have their ->private pointing at
250  * the head page (even the head page has this).
251  *
252  * The first tail page's ->lru.next holds the address of the compound page's
253  * put_page() function.  Its ->lru.prev holds the order of allocation.
254  * This usage means that zero-order pages may not be compound.
255  */
256 
257 static void free_compound_page(struct page *page)
258 {
259 	__free_pages_ok(page, compound_order(page));
260 }
261 
262 void prep_compound_page(struct page *page, unsigned long order)
263 {
264 	int i;
265 	int nr_pages = 1 << order;
266 
267 	set_compound_page_dtor(page, free_compound_page);
268 	set_compound_order(page, order);
269 	__SetPageHead(page);
270 	for (i = 1; i < nr_pages; i++) {
271 		struct page *p = page + i;
272 
273 		__SetPageTail(p);
274 		p->first_page = page;
275 	}
276 }
277 
278 #ifdef CONFIG_HUGETLBFS
279 void prep_compound_gigantic_page(struct page *page, unsigned long order)
280 {
281 	int i;
282 	int nr_pages = 1 << order;
283 	struct page *p = page + 1;
284 
285 	set_compound_page_dtor(page, free_compound_page);
286 	set_compound_order(page, order);
287 	__SetPageHead(page);
288 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
289 		__SetPageTail(p);
290 		p->first_page = page;
291 	}
292 }
293 #endif
294 
295 static void destroy_compound_page(struct page *page, unsigned long order)
296 {
297 	int i;
298 	int nr_pages = 1 << order;
299 
300 	if (unlikely(compound_order(page) != order))
301 		bad_page(page);
302 
303 	if (unlikely(!PageHead(page)))
304 			bad_page(page);
305 	__ClearPageHead(page);
306 	for (i = 1; i < nr_pages; i++) {
307 		struct page *p = page + i;
308 
309 		if (unlikely(!PageTail(p) |
310 				(p->first_page != page)))
311 			bad_page(page);
312 		__ClearPageTail(p);
313 	}
314 }
315 
316 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
317 {
318 	int i;
319 
320 	/*
321 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
322 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
323 	 */
324 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
325 	for (i = 0; i < (1 << order); i++)
326 		clear_highpage(page + i);
327 }
328 
329 static inline void set_page_order(struct page *page, int order)
330 {
331 	set_page_private(page, order);
332 	__SetPageBuddy(page);
333 }
334 
335 static inline void rmv_page_order(struct page *page)
336 {
337 	__ClearPageBuddy(page);
338 	set_page_private(page, 0);
339 }
340 
341 /*
342  * Locate the struct page for both the matching buddy in our
343  * pair (buddy1) and the combined O(n+1) page they form (page).
344  *
345  * 1) Any buddy B1 will have an order O twin B2 which satisfies
346  * the following equation:
347  *     B2 = B1 ^ (1 << O)
348  * For example, if the starting buddy (buddy2) is #8 its order
349  * 1 buddy is #10:
350  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
351  *
352  * 2) Any buddy B will have an order O+1 parent P which
353  * satisfies the following equation:
354  *     P = B & ~(1 << O)
355  *
356  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
357  */
358 static inline struct page *
359 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
360 {
361 	unsigned long buddy_idx = page_idx ^ (1 << order);
362 
363 	return page + (buddy_idx - page_idx);
364 }
365 
366 static inline unsigned long
367 __find_combined_index(unsigned long page_idx, unsigned int order)
368 {
369 	return (page_idx & ~(1 << order));
370 }
371 
372 /*
373  * This function checks whether a page is free && is the buddy
374  * we can do coalesce a page and its buddy if
375  * (a) the buddy is not in a hole &&
376  * (b) the buddy is in the buddy system &&
377  * (c) a page and its buddy have the same order &&
378  * (d) a page and its buddy are in the same zone.
379  *
380  * For recording whether a page is in the buddy system, we use PG_buddy.
381  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
382  *
383  * For recording page's order, we use page_private(page).
384  */
385 static inline int page_is_buddy(struct page *page, struct page *buddy,
386 								int order)
387 {
388 	if (!pfn_valid_within(page_to_pfn(buddy)))
389 		return 0;
390 
391 	if (page_zone_id(page) != page_zone_id(buddy))
392 		return 0;
393 
394 	if (PageBuddy(buddy) && page_order(buddy) == order) {
395 		BUG_ON(page_count(buddy) != 0);
396 		return 1;
397 	}
398 	return 0;
399 }
400 
401 /*
402  * Freeing function for a buddy system allocator.
403  *
404  * The concept of a buddy system is to maintain direct-mapped table
405  * (containing bit values) for memory blocks of various "orders".
406  * The bottom level table contains the map for the smallest allocatable
407  * units of memory (here, pages), and each level above it describes
408  * pairs of units from the levels below, hence, "buddies".
409  * At a high level, all that happens here is marking the table entry
410  * at the bottom level available, and propagating the changes upward
411  * as necessary, plus some accounting needed to play nicely with other
412  * parts of the VM system.
413  * At each level, we keep a list of pages, which are heads of continuous
414  * free pages of length of (1 << order) and marked with PG_buddy. Page's
415  * order is recorded in page_private(page) field.
416  * So when we are allocating or freeing one, we can derive the state of the
417  * other.  That is, if we allocate a small block, and both were
418  * free, the remainder of the region must be split into blocks.
419  * If a block is freed, and its buddy is also free, then this
420  * triggers coalescing into a block of larger size.
421  *
422  * -- wli
423  */
424 
425 static inline void __free_one_page(struct page *page,
426 		struct zone *zone, unsigned int order)
427 {
428 	unsigned long page_idx;
429 	int order_size = 1 << order;
430 	int migratetype = get_pageblock_migratetype(page);
431 
432 	if (unlikely(PageCompound(page)))
433 		destroy_compound_page(page, order);
434 
435 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
436 
437 	VM_BUG_ON(page_idx & (order_size - 1));
438 	VM_BUG_ON(bad_range(zone, page));
439 
440 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
441 	while (order < MAX_ORDER-1) {
442 		unsigned long combined_idx;
443 		struct page *buddy;
444 
445 		buddy = __page_find_buddy(page, page_idx, order);
446 		if (!page_is_buddy(page, buddy, order))
447 			break;
448 
449 		/* Our buddy is free, merge with it and move up one order. */
450 		list_del(&buddy->lru);
451 		zone->free_area[order].nr_free--;
452 		rmv_page_order(buddy);
453 		combined_idx = __find_combined_index(page_idx, order);
454 		page = page + (combined_idx - page_idx);
455 		page_idx = combined_idx;
456 		order++;
457 	}
458 	set_page_order(page, order);
459 	list_add(&page->lru,
460 		&zone->free_area[order].free_list[migratetype]);
461 	zone->free_area[order].nr_free++;
462 }
463 
464 static inline int free_pages_check(struct page *page)
465 {
466 	free_page_mlock(page);
467 	if (unlikely(page_mapcount(page) |
468 		(page->mapping != NULL)  |
469 		(page_count(page) != 0)  |
470 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
471 		bad_page(page);
472 	if (PageDirty(page))
473 		__ClearPageDirty(page);
474 	if (PageSwapBacked(page))
475 		__ClearPageSwapBacked(page);
476 	/*
477 	 * For now, we report if PG_reserved was found set, but do not
478 	 * clear it, and do not free the page.  But we shall soon need
479 	 * to do more, for when the ZERO_PAGE count wraps negative.
480 	 */
481 	return PageReserved(page);
482 }
483 
484 /*
485  * Frees a list of pages.
486  * Assumes all pages on list are in same zone, and of same order.
487  * count is the number of pages to free.
488  *
489  * If the zone was previously in an "all pages pinned" state then look to
490  * see if this freeing clears that state.
491  *
492  * And clear the zone's pages_scanned counter, to hold off the "all pages are
493  * pinned" detection logic.
494  */
495 static void free_pages_bulk(struct zone *zone, int count,
496 					struct list_head *list, int order)
497 {
498 	spin_lock(&zone->lock);
499 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
500 	zone->pages_scanned = 0;
501 	while (count--) {
502 		struct page *page;
503 
504 		VM_BUG_ON(list_empty(list));
505 		page = list_entry(list->prev, struct page, lru);
506 		/* have to delete it as __free_one_page list manipulates */
507 		list_del(&page->lru);
508 		__free_one_page(page, zone, order);
509 	}
510 	spin_unlock(&zone->lock);
511 }
512 
513 static void free_one_page(struct zone *zone, struct page *page, int order)
514 {
515 	spin_lock(&zone->lock);
516 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
517 	zone->pages_scanned = 0;
518 	__free_one_page(page, zone, order);
519 	spin_unlock(&zone->lock);
520 }
521 
522 static void __free_pages_ok(struct page *page, unsigned int order)
523 {
524 	unsigned long flags;
525 	int i;
526 	int reserved = 0;
527 
528 	for (i = 0 ; i < (1 << order) ; ++i)
529 		reserved += free_pages_check(page + i);
530 	if (reserved)
531 		return;
532 
533 	if (!PageHighMem(page)) {
534 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
535 		debug_check_no_obj_freed(page_address(page),
536 					   PAGE_SIZE << order);
537 	}
538 	arch_free_page(page, order);
539 	kernel_map_pages(page, 1 << order, 0);
540 
541 	local_irq_save(flags);
542 	__count_vm_events(PGFREE, 1 << order);
543 	free_one_page(page_zone(page), page, order);
544 	local_irq_restore(flags);
545 }
546 
547 /*
548  * permit the bootmem allocator to evade page validation on high-order frees
549  */
550 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
551 {
552 	if (order == 0) {
553 		__ClearPageReserved(page);
554 		set_page_count(page, 0);
555 		set_page_refcounted(page);
556 		__free_page(page);
557 	} else {
558 		int loop;
559 
560 		prefetchw(page);
561 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
562 			struct page *p = &page[loop];
563 
564 			if (loop + 1 < BITS_PER_LONG)
565 				prefetchw(p + 1);
566 			__ClearPageReserved(p);
567 			set_page_count(p, 0);
568 		}
569 
570 		set_page_refcounted(page);
571 		__free_pages(page, order);
572 	}
573 }
574 
575 
576 /*
577  * The order of subdivision here is critical for the IO subsystem.
578  * Please do not alter this order without good reasons and regression
579  * testing. Specifically, as large blocks of memory are subdivided,
580  * the order in which smaller blocks are delivered depends on the order
581  * they're subdivided in this function. This is the primary factor
582  * influencing the order in which pages are delivered to the IO
583  * subsystem according to empirical testing, and this is also justified
584  * by considering the behavior of a buddy system containing a single
585  * large block of memory acted on by a series of small allocations.
586  * This behavior is a critical factor in sglist merging's success.
587  *
588  * -- wli
589  */
590 static inline void expand(struct zone *zone, struct page *page,
591 	int low, int high, struct free_area *area,
592 	int migratetype)
593 {
594 	unsigned long size = 1 << high;
595 
596 	while (high > low) {
597 		area--;
598 		high--;
599 		size >>= 1;
600 		VM_BUG_ON(bad_range(zone, &page[size]));
601 		list_add(&page[size].lru, &area->free_list[migratetype]);
602 		area->nr_free++;
603 		set_page_order(&page[size], high);
604 	}
605 }
606 
607 /*
608  * This page is about to be returned from the page allocator
609  */
610 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
611 {
612 	if (unlikely(page_mapcount(page) |
613 		(page->mapping != NULL)  |
614 		(page_count(page) != 0)  |
615 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
616 		bad_page(page);
617 
618 	/*
619 	 * For now, we report if PG_reserved was found set, but do not
620 	 * clear it, and do not allocate the page: as a safety net.
621 	 */
622 	if (PageReserved(page))
623 		return 1;
624 
625 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
626 			1 << PG_referenced | 1 << PG_arch_1 |
627 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk
628 #ifdef CONFIG_UNEVICTABLE_LRU
629 			| 1 << PG_mlocked
630 #endif
631 			);
632 	set_page_private(page, 0);
633 	set_page_refcounted(page);
634 
635 	arch_alloc_page(page, order);
636 	kernel_map_pages(page, 1 << order, 1);
637 
638 	if (gfp_flags & __GFP_ZERO)
639 		prep_zero_page(page, order, gfp_flags);
640 
641 	if (order && (gfp_flags & __GFP_COMP))
642 		prep_compound_page(page, order);
643 
644 	return 0;
645 }
646 
647 /*
648  * Go through the free lists for the given migratetype and remove
649  * the smallest available page from the freelists
650  */
651 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
652 						int migratetype)
653 {
654 	unsigned int current_order;
655 	struct free_area * area;
656 	struct page *page;
657 
658 	/* Find a page of the appropriate size in the preferred list */
659 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
660 		area = &(zone->free_area[current_order]);
661 		if (list_empty(&area->free_list[migratetype]))
662 			continue;
663 
664 		page = list_entry(area->free_list[migratetype].next,
665 							struct page, lru);
666 		list_del(&page->lru);
667 		rmv_page_order(page);
668 		area->nr_free--;
669 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
670 		expand(zone, page, order, current_order, area, migratetype);
671 		return page;
672 	}
673 
674 	return NULL;
675 }
676 
677 
678 /*
679  * This array describes the order lists are fallen back to when
680  * the free lists for the desirable migrate type are depleted
681  */
682 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
683 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
684 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
685 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
686 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
687 };
688 
689 /*
690  * Move the free pages in a range to the free lists of the requested type.
691  * Note that start_page and end_pages are not aligned on a pageblock
692  * boundary. If alignment is required, use move_freepages_block()
693  */
694 static int move_freepages(struct zone *zone,
695 			  struct page *start_page, struct page *end_page,
696 			  int migratetype)
697 {
698 	struct page *page;
699 	unsigned long order;
700 	int pages_moved = 0;
701 
702 #ifndef CONFIG_HOLES_IN_ZONE
703 	/*
704 	 * page_zone is not safe to call in this context when
705 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
706 	 * anyway as we check zone boundaries in move_freepages_block().
707 	 * Remove at a later date when no bug reports exist related to
708 	 * grouping pages by mobility
709 	 */
710 	BUG_ON(page_zone(start_page) != page_zone(end_page));
711 #endif
712 
713 	for (page = start_page; page <= end_page;) {
714 		/* Make sure we are not inadvertently changing nodes */
715 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
716 
717 		if (!pfn_valid_within(page_to_pfn(page))) {
718 			page++;
719 			continue;
720 		}
721 
722 		if (!PageBuddy(page)) {
723 			page++;
724 			continue;
725 		}
726 
727 		order = page_order(page);
728 		list_del(&page->lru);
729 		list_add(&page->lru,
730 			&zone->free_area[order].free_list[migratetype]);
731 		page += 1 << order;
732 		pages_moved += 1 << order;
733 	}
734 
735 	return pages_moved;
736 }
737 
738 static int move_freepages_block(struct zone *zone, struct page *page,
739 				int migratetype)
740 {
741 	unsigned long start_pfn, end_pfn;
742 	struct page *start_page, *end_page;
743 
744 	start_pfn = page_to_pfn(page);
745 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
746 	start_page = pfn_to_page(start_pfn);
747 	end_page = start_page + pageblock_nr_pages - 1;
748 	end_pfn = start_pfn + pageblock_nr_pages - 1;
749 
750 	/* Do not cross zone boundaries */
751 	if (start_pfn < zone->zone_start_pfn)
752 		start_page = page;
753 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
754 		return 0;
755 
756 	return move_freepages(zone, start_page, end_page, migratetype);
757 }
758 
759 /* Remove an element from the buddy allocator from the fallback list */
760 static struct page *__rmqueue_fallback(struct zone *zone, int order,
761 						int start_migratetype)
762 {
763 	struct free_area * area;
764 	int current_order;
765 	struct page *page;
766 	int migratetype, i;
767 
768 	/* Find the largest possible block of pages in the other list */
769 	for (current_order = MAX_ORDER-1; current_order >= order;
770 						--current_order) {
771 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
772 			migratetype = fallbacks[start_migratetype][i];
773 
774 			/* MIGRATE_RESERVE handled later if necessary */
775 			if (migratetype == MIGRATE_RESERVE)
776 				continue;
777 
778 			area = &(zone->free_area[current_order]);
779 			if (list_empty(&area->free_list[migratetype]))
780 				continue;
781 
782 			page = list_entry(area->free_list[migratetype].next,
783 					struct page, lru);
784 			area->nr_free--;
785 
786 			/*
787 			 * If breaking a large block of pages, move all free
788 			 * pages to the preferred allocation list. If falling
789 			 * back for a reclaimable kernel allocation, be more
790 			 * agressive about taking ownership of free pages
791 			 */
792 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
793 					start_migratetype == MIGRATE_RECLAIMABLE) {
794 				unsigned long pages;
795 				pages = move_freepages_block(zone, page,
796 								start_migratetype);
797 
798 				/* Claim the whole block if over half of it is free */
799 				if (pages >= (1 << (pageblock_order-1)))
800 					set_pageblock_migratetype(page,
801 								start_migratetype);
802 
803 				migratetype = start_migratetype;
804 			}
805 
806 			/* Remove the page from the freelists */
807 			list_del(&page->lru);
808 			rmv_page_order(page);
809 			__mod_zone_page_state(zone, NR_FREE_PAGES,
810 							-(1UL << order));
811 
812 			if (current_order == pageblock_order)
813 				set_pageblock_migratetype(page,
814 							start_migratetype);
815 
816 			expand(zone, page, order, current_order, area, migratetype);
817 			return page;
818 		}
819 	}
820 
821 	/* Use MIGRATE_RESERVE rather than fail an allocation */
822 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
823 }
824 
825 /*
826  * Do the hard work of removing an element from the buddy allocator.
827  * Call me with the zone->lock already held.
828  */
829 static struct page *__rmqueue(struct zone *zone, unsigned int order,
830 						int migratetype)
831 {
832 	struct page *page;
833 
834 	page = __rmqueue_smallest(zone, order, migratetype);
835 
836 	if (unlikely(!page))
837 		page = __rmqueue_fallback(zone, order, migratetype);
838 
839 	return page;
840 }
841 
842 /*
843  * Obtain a specified number of elements from the buddy allocator, all under
844  * a single hold of the lock, for efficiency.  Add them to the supplied list.
845  * Returns the number of new pages which were placed at *list.
846  */
847 static int rmqueue_bulk(struct zone *zone, unsigned int order,
848 			unsigned long count, struct list_head *list,
849 			int migratetype)
850 {
851 	int i;
852 
853 	spin_lock(&zone->lock);
854 	for (i = 0; i < count; ++i) {
855 		struct page *page = __rmqueue(zone, order, migratetype);
856 		if (unlikely(page == NULL))
857 			break;
858 
859 		/*
860 		 * Split buddy pages returned by expand() are received here
861 		 * in physical page order. The page is added to the callers and
862 		 * list and the list head then moves forward. From the callers
863 		 * perspective, the linked list is ordered by page number in
864 		 * some conditions. This is useful for IO devices that can
865 		 * merge IO requests if the physical pages are ordered
866 		 * properly.
867 		 */
868 		list_add(&page->lru, list);
869 		set_page_private(page, migratetype);
870 		list = &page->lru;
871 	}
872 	spin_unlock(&zone->lock);
873 	return i;
874 }
875 
876 #ifdef CONFIG_NUMA
877 /*
878  * Called from the vmstat counter updater to drain pagesets of this
879  * currently executing processor on remote nodes after they have
880  * expired.
881  *
882  * Note that this function must be called with the thread pinned to
883  * a single processor.
884  */
885 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
886 {
887 	unsigned long flags;
888 	int to_drain;
889 
890 	local_irq_save(flags);
891 	if (pcp->count >= pcp->batch)
892 		to_drain = pcp->batch;
893 	else
894 		to_drain = pcp->count;
895 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
896 	pcp->count -= to_drain;
897 	local_irq_restore(flags);
898 }
899 #endif
900 
901 /*
902  * Drain pages of the indicated processor.
903  *
904  * The processor must either be the current processor and the
905  * thread pinned to the current processor or a processor that
906  * is not online.
907  */
908 static void drain_pages(unsigned int cpu)
909 {
910 	unsigned long flags;
911 	struct zone *zone;
912 
913 	for_each_zone(zone) {
914 		struct per_cpu_pageset *pset;
915 		struct per_cpu_pages *pcp;
916 
917 		if (!populated_zone(zone))
918 			continue;
919 
920 		pset = zone_pcp(zone, cpu);
921 
922 		pcp = &pset->pcp;
923 		local_irq_save(flags);
924 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
925 		pcp->count = 0;
926 		local_irq_restore(flags);
927 	}
928 }
929 
930 /*
931  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
932  */
933 void drain_local_pages(void *arg)
934 {
935 	drain_pages(smp_processor_id());
936 }
937 
938 /*
939  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
940  */
941 void drain_all_pages(void)
942 {
943 	on_each_cpu(drain_local_pages, NULL, 1);
944 }
945 
946 #ifdef CONFIG_HIBERNATION
947 
948 void mark_free_pages(struct zone *zone)
949 {
950 	unsigned long pfn, max_zone_pfn;
951 	unsigned long flags;
952 	int order, t;
953 	struct list_head *curr;
954 
955 	if (!zone->spanned_pages)
956 		return;
957 
958 	spin_lock_irqsave(&zone->lock, flags);
959 
960 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
961 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
962 		if (pfn_valid(pfn)) {
963 			struct page *page = pfn_to_page(pfn);
964 
965 			if (!swsusp_page_is_forbidden(page))
966 				swsusp_unset_page_free(page);
967 		}
968 
969 	for_each_migratetype_order(order, t) {
970 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
971 			unsigned long i;
972 
973 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
974 			for (i = 0; i < (1UL << order); i++)
975 				swsusp_set_page_free(pfn_to_page(pfn + i));
976 		}
977 	}
978 	spin_unlock_irqrestore(&zone->lock, flags);
979 }
980 #endif /* CONFIG_PM */
981 
982 /*
983  * Free a 0-order page
984  */
985 static void free_hot_cold_page(struct page *page, int cold)
986 {
987 	struct zone *zone = page_zone(page);
988 	struct per_cpu_pages *pcp;
989 	unsigned long flags;
990 
991 	if (PageAnon(page))
992 		page->mapping = NULL;
993 	if (free_pages_check(page))
994 		return;
995 
996 	if (!PageHighMem(page)) {
997 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
998 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
999 	}
1000 	arch_free_page(page, 0);
1001 	kernel_map_pages(page, 1, 0);
1002 
1003 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1004 	local_irq_save(flags);
1005 	__count_vm_event(PGFREE);
1006 	if (cold)
1007 		list_add_tail(&page->lru, &pcp->list);
1008 	else
1009 		list_add(&page->lru, &pcp->list);
1010 	set_page_private(page, get_pageblock_migratetype(page));
1011 	pcp->count++;
1012 	if (pcp->count >= pcp->high) {
1013 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1014 		pcp->count -= pcp->batch;
1015 	}
1016 	local_irq_restore(flags);
1017 	put_cpu();
1018 }
1019 
1020 void free_hot_page(struct page *page)
1021 {
1022 	free_hot_cold_page(page, 0);
1023 }
1024 
1025 void free_cold_page(struct page *page)
1026 {
1027 	free_hot_cold_page(page, 1);
1028 }
1029 
1030 /*
1031  * split_page takes a non-compound higher-order page, and splits it into
1032  * n (1<<order) sub-pages: page[0..n]
1033  * Each sub-page must be freed individually.
1034  *
1035  * Note: this is probably too low level an operation for use in drivers.
1036  * Please consult with lkml before using this in your driver.
1037  */
1038 void split_page(struct page *page, unsigned int order)
1039 {
1040 	int i;
1041 
1042 	VM_BUG_ON(PageCompound(page));
1043 	VM_BUG_ON(!page_count(page));
1044 	for (i = 1; i < (1 << order); i++)
1045 		set_page_refcounted(page + i);
1046 }
1047 
1048 /*
1049  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1050  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1051  * or two.
1052  */
1053 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1054 			struct zone *zone, int order, gfp_t gfp_flags)
1055 {
1056 	unsigned long flags;
1057 	struct page *page;
1058 	int cold = !!(gfp_flags & __GFP_COLD);
1059 	int cpu;
1060 	int migratetype = allocflags_to_migratetype(gfp_flags);
1061 
1062 again:
1063 	cpu  = get_cpu();
1064 	if (likely(order == 0)) {
1065 		struct per_cpu_pages *pcp;
1066 
1067 		pcp = &zone_pcp(zone, cpu)->pcp;
1068 		local_irq_save(flags);
1069 		if (!pcp->count) {
1070 			pcp->count = rmqueue_bulk(zone, 0,
1071 					pcp->batch, &pcp->list, migratetype);
1072 			if (unlikely(!pcp->count))
1073 				goto failed;
1074 		}
1075 
1076 		/* Find a page of the appropriate migrate type */
1077 		if (cold) {
1078 			list_for_each_entry_reverse(page, &pcp->list, lru)
1079 				if (page_private(page) == migratetype)
1080 					break;
1081 		} else {
1082 			list_for_each_entry(page, &pcp->list, lru)
1083 				if (page_private(page) == migratetype)
1084 					break;
1085 		}
1086 
1087 		/* Allocate more to the pcp list if necessary */
1088 		if (unlikely(&page->lru == &pcp->list)) {
1089 			pcp->count += rmqueue_bulk(zone, 0,
1090 					pcp->batch, &pcp->list, migratetype);
1091 			page = list_entry(pcp->list.next, struct page, lru);
1092 		}
1093 
1094 		list_del(&page->lru);
1095 		pcp->count--;
1096 	} else {
1097 		spin_lock_irqsave(&zone->lock, flags);
1098 		page = __rmqueue(zone, order, migratetype);
1099 		spin_unlock(&zone->lock);
1100 		if (!page)
1101 			goto failed;
1102 	}
1103 
1104 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1105 	zone_statistics(preferred_zone, zone);
1106 	local_irq_restore(flags);
1107 	put_cpu();
1108 
1109 	VM_BUG_ON(bad_range(zone, page));
1110 	if (prep_new_page(page, order, gfp_flags))
1111 		goto again;
1112 	return page;
1113 
1114 failed:
1115 	local_irq_restore(flags);
1116 	put_cpu();
1117 	return NULL;
1118 }
1119 
1120 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1121 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1122 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1123 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1124 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1125 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1126 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1127 
1128 #ifdef CONFIG_FAIL_PAGE_ALLOC
1129 
1130 static struct fail_page_alloc_attr {
1131 	struct fault_attr attr;
1132 
1133 	u32 ignore_gfp_highmem;
1134 	u32 ignore_gfp_wait;
1135 	u32 min_order;
1136 
1137 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1138 
1139 	struct dentry *ignore_gfp_highmem_file;
1140 	struct dentry *ignore_gfp_wait_file;
1141 	struct dentry *min_order_file;
1142 
1143 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1144 
1145 } fail_page_alloc = {
1146 	.attr = FAULT_ATTR_INITIALIZER,
1147 	.ignore_gfp_wait = 1,
1148 	.ignore_gfp_highmem = 1,
1149 	.min_order = 1,
1150 };
1151 
1152 static int __init setup_fail_page_alloc(char *str)
1153 {
1154 	return setup_fault_attr(&fail_page_alloc.attr, str);
1155 }
1156 __setup("fail_page_alloc=", setup_fail_page_alloc);
1157 
1158 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1159 {
1160 	if (order < fail_page_alloc.min_order)
1161 		return 0;
1162 	if (gfp_mask & __GFP_NOFAIL)
1163 		return 0;
1164 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1165 		return 0;
1166 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1167 		return 0;
1168 
1169 	return should_fail(&fail_page_alloc.attr, 1 << order);
1170 }
1171 
1172 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1173 
1174 static int __init fail_page_alloc_debugfs(void)
1175 {
1176 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1177 	struct dentry *dir;
1178 	int err;
1179 
1180 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1181 				       "fail_page_alloc");
1182 	if (err)
1183 		return err;
1184 	dir = fail_page_alloc.attr.dentries.dir;
1185 
1186 	fail_page_alloc.ignore_gfp_wait_file =
1187 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1188 				      &fail_page_alloc.ignore_gfp_wait);
1189 
1190 	fail_page_alloc.ignore_gfp_highmem_file =
1191 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1192 				      &fail_page_alloc.ignore_gfp_highmem);
1193 	fail_page_alloc.min_order_file =
1194 		debugfs_create_u32("min-order", mode, dir,
1195 				   &fail_page_alloc.min_order);
1196 
1197 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1198             !fail_page_alloc.ignore_gfp_highmem_file ||
1199             !fail_page_alloc.min_order_file) {
1200 		err = -ENOMEM;
1201 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1202 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1203 		debugfs_remove(fail_page_alloc.min_order_file);
1204 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1205 	}
1206 
1207 	return err;
1208 }
1209 
1210 late_initcall(fail_page_alloc_debugfs);
1211 
1212 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1213 
1214 #else /* CONFIG_FAIL_PAGE_ALLOC */
1215 
1216 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1217 {
1218 	return 0;
1219 }
1220 
1221 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1222 
1223 /*
1224  * Return 1 if free pages are above 'mark'. This takes into account the order
1225  * of the allocation.
1226  */
1227 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1228 		      int classzone_idx, int alloc_flags)
1229 {
1230 	/* free_pages my go negative - that's OK */
1231 	long min = mark;
1232 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1233 	int o;
1234 
1235 	if (alloc_flags & ALLOC_HIGH)
1236 		min -= min / 2;
1237 	if (alloc_flags & ALLOC_HARDER)
1238 		min -= min / 4;
1239 
1240 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1241 		return 0;
1242 	for (o = 0; o < order; o++) {
1243 		/* At the next order, this order's pages become unavailable */
1244 		free_pages -= z->free_area[o].nr_free << o;
1245 
1246 		/* Require fewer higher order pages to be free */
1247 		min >>= 1;
1248 
1249 		if (free_pages <= min)
1250 			return 0;
1251 	}
1252 	return 1;
1253 }
1254 
1255 #ifdef CONFIG_NUMA
1256 /*
1257  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1258  * skip over zones that are not allowed by the cpuset, or that have
1259  * been recently (in last second) found to be nearly full.  See further
1260  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1261  * that have to skip over a lot of full or unallowed zones.
1262  *
1263  * If the zonelist cache is present in the passed in zonelist, then
1264  * returns a pointer to the allowed node mask (either the current
1265  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1266  *
1267  * If the zonelist cache is not available for this zonelist, does
1268  * nothing and returns NULL.
1269  *
1270  * If the fullzones BITMAP in the zonelist cache is stale (more than
1271  * a second since last zap'd) then we zap it out (clear its bits.)
1272  *
1273  * We hold off even calling zlc_setup, until after we've checked the
1274  * first zone in the zonelist, on the theory that most allocations will
1275  * be satisfied from that first zone, so best to examine that zone as
1276  * quickly as we can.
1277  */
1278 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1279 {
1280 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1281 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1282 
1283 	zlc = zonelist->zlcache_ptr;
1284 	if (!zlc)
1285 		return NULL;
1286 
1287 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1288 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1289 		zlc->last_full_zap = jiffies;
1290 	}
1291 
1292 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1293 					&cpuset_current_mems_allowed :
1294 					&node_states[N_HIGH_MEMORY];
1295 	return allowednodes;
1296 }
1297 
1298 /*
1299  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1300  * if it is worth looking at further for free memory:
1301  *  1) Check that the zone isn't thought to be full (doesn't have its
1302  *     bit set in the zonelist_cache fullzones BITMAP).
1303  *  2) Check that the zones node (obtained from the zonelist_cache
1304  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1305  * Return true (non-zero) if zone is worth looking at further, or
1306  * else return false (zero) if it is not.
1307  *
1308  * This check -ignores- the distinction between various watermarks,
1309  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1310  * found to be full for any variation of these watermarks, it will
1311  * be considered full for up to one second by all requests, unless
1312  * we are so low on memory on all allowed nodes that we are forced
1313  * into the second scan of the zonelist.
1314  *
1315  * In the second scan we ignore this zonelist cache and exactly
1316  * apply the watermarks to all zones, even it is slower to do so.
1317  * We are low on memory in the second scan, and should leave no stone
1318  * unturned looking for a free page.
1319  */
1320 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1321 						nodemask_t *allowednodes)
1322 {
1323 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1324 	int i;				/* index of *z in zonelist zones */
1325 	int n;				/* node that zone *z is on */
1326 
1327 	zlc = zonelist->zlcache_ptr;
1328 	if (!zlc)
1329 		return 1;
1330 
1331 	i = z - zonelist->_zonerefs;
1332 	n = zlc->z_to_n[i];
1333 
1334 	/* This zone is worth trying if it is allowed but not full */
1335 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1336 }
1337 
1338 /*
1339  * Given 'z' scanning a zonelist, set the corresponding bit in
1340  * zlc->fullzones, so that subsequent attempts to allocate a page
1341  * from that zone don't waste time re-examining it.
1342  */
1343 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1344 {
1345 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1346 	int i;				/* index of *z in zonelist zones */
1347 
1348 	zlc = zonelist->zlcache_ptr;
1349 	if (!zlc)
1350 		return;
1351 
1352 	i = z - zonelist->_zonerefs;
1353 
1354 	set_bit(i, zlc->fullzones);
1355 }
1356 
1357 #else	/* CONFIG_NUMA */
1358 
1359 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1360 {
1361 	return NULL;
1362 }
1363 
1364 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1365 				nodemask_t *allowednodes)
1366 {
1367 	return 1;
1368 }
1369 
1370 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1371 {
1372 }
1373 #endif	/* CONFIG_NUMA */
1374 
1375 /*
1376  * get_page_from_freelist goes through the zonelist trying to allocate
1377  * a page.
1378  */
1379 static struct page *
1380 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1381 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1382 {
1383 	struct zoneref *z;
1384 	struct page *page = NULL;
1385 	int classzone_idx;
1386 	struct zone *zone, *preferred_zone;
1387 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1388 	int zlc_active = 0;		/* set if using zonelist_cache */
1389 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1390 
1391 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1392 							&preferred_zone);
1393 	if (!preferred_zone)
1394 		return NULL;
1395 
1396 	classzone_idx = zone_idx(preferred_zone);
1397 
1398 zonelist_scan:
1399 	/*
1400 	 * Scan zonelist, looking for a zone with enough free.
1401 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1402 	 */
1403 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1404 						high_zoneidx, nodemask) {
1405 		if (NUMA_BUILD && zlc_active &&
1406 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1407 				continue;
1408 		if ((alloc_flags & ALLOC_CPUSET) &&
1409 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1410 				goto try_next_zone;
1411 
1412 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1413 			unsigned long mark;
1414 			if (alloc_flags & ALLOC_WMARK_MIN)
1415 				mark = zone->pages_min;
1416 			else if (alloc_flags & ALLOC_WMARK_LOW)
1417 				mark = zone->pages_low;
1418 			else
1419 				mark = zone->pages_high;
1420 			if (!zone_watermark_ok(zone, order, mark,
1421 				    classzone_idx, alloc_flags)) {
1422 				if (!zone_reclaim_mode ||
1423 				    !zone_reclaim(zone, gfp_mask, order))
1424 					goto this_zone_full;
1425 			}
1426 		}
1427 
1428 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1429 		if (page)
1430 			break;
1431 this_zone_full:
1432 		if (NUMA_BUILD)
1433 			zlc_mark_zone_full(zonelist, z);
1434 try_next_zone:
1435 		if (NUMA_BUILD && !did_zlc_setup) {
1436 			/* we do zlc_setup after the first zone is tried */
1437 			allowednodes = zlc_setup(zonelist, alloc_flags);
1438 			zlc_active = 1;
1439 			did_zlc_setup = 1;
1440 		}
1441 	}
1442 
1443 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1444 		/* Disable zlc cache for second zonelist scan */
1445 		zlc_active = 0;
1446 		goto zonelist_scan;
1447 	}
1448 	return page;
1449 }
1450 
1451 /*
1452  * This is the 'heart' of the zoned buddy allocator.
1453  */
1454 struct page *
1455 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1456 			struct zonelist *zonelist, nodemask_t *nodemask)
1457 {
1458 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1459 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1460 	struct zoneref *z;
1461 	struct zone *zone;
1462 	struct page *page;
1463 	struct reclaim_state reclaim_state;
1464 	struct task_struct *p = current;
1465 	int do_retry;
1466 	int alloc_flags;
1467 	unsigned long did_some_progress;
1468 	unsigned long pages_reclaimed = 0;
1469 
1470 	might_sleep_if(wait);
1471 
1472 	if (should_fail_alloc_page(gfp_mask, order))
1473 		return NULL;
1474 
1475 restart:
1476 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1477 
1478 	if (unlikely(!z->zone)) {
1479 		/*
1480 		 * Happens if we have an empty zonelist as a result of
1481 		 * GFP_THISNODE being used on a memoryless node
1482 		 */
1483 		return NULL;
1484 	}
1485 
1486 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1487 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1488 	if (page)
1489 		goto got_pg;
1490 
1491 	/*
1492 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1493 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1494 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1495 	 * using a larger set of nodes after it has established that the
1496 	 * allowed per node queues are empty and that nodes are
1497 	 * over allocated.
1498 	 */
1499 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1500 		goto nopage;
1501 
1502 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1503 		wakeup_kswapd(zone, order);
1504 
1505 	/*
1506 	 * OK, we're below the kswapd watermark and have kicked background
1507 	 * reclaim. Now things get more complex, so set up alloc_flags according
1508 	 * to how we want to proceed.
1509 	 *
1510 	 * The caller may dip into page reserves a bit more if the caller
1511 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1512 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1513 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1514 	 */
1515 	alloc_flags = ALLOC_WMARK_MIN;
1516 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1517 		alloc_flags |= ALLOC_HARDER;
1518 	if (gfp_mask & __GFP_HIGH)
1519 		alloc_flags |= ALLOC_HIGH;
1520 	if (wait)
1521 		alloc_flags |= ALLOC_CPUSET;
1522 
1523 	/*
1524 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1525 	 * coming from realtime tasks go deeper into reserves.
1526 	 *
1527 	 * This is the last chance, in general, before the goto nopage.
1528 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1529 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1530 	 */
1531 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1532 						high_zoneidx, alloc_flags);
1533 	if (page)
1534 		goto got_pg;
1535 
1536 	/* This allocation should allow future memory freeing. */
1537 
1538 rebalance:
1539 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1540 			&& !in_interrupt()) {
1541 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1542 nofail_alloc:
1543 			/* go through the zonelist yet again, ignoring mins */
1544 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1545 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1546 			if (page)
1547 				goto got_pg;
1548 			if (gfp_mask & __GFP_NOFAIL) {
1549 				congestion_wait(WRITE, HZ/50);
1550 				goto nofail_alloc;
1551 			}
1552 		}
1553 		goto nopage;
1554 	}
1555 
1556 	/* Atomic allocations - we can't balance anything */
1557 	if (!wait)
1558 		goto nopage;
1559 
1560 	cond_resched();
1561 
1562 	/* We now go into synchronous reclaim */
1563 	cpuset_memory_pressure_bump();
1564 	/*
1565 	 * The task's cpuset might have expanded its set of allowable nodes
1566 	 */
1567 	cpuset_update_task_memory_state();
1568 	p->flags |= PF_MEMALLOC;
1569 	reclaim_state.reclaimed_slab = 0;
1570 	p->reclaim_state = &reclaim_state;
1571 
1572 	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1573 
1574 	p->reclaim_state = NULL;
1575 	p->flags &= ~PF_MEMALLOC;
1576 
1577 	cond_resched();
1578 
1579 	if (order != 0)
1580 		drain_all_pages();
1581 
1582 	if (likely(did_some_progress)) {
1583 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1584 					zonelist, high_zoneidx, alloc_flags);
1585 		if (page)
1586 			goto got_pg;
1587 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1588 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1589 			schedule_timeout_uninterruptible(1);
1590 			goto restart;
1591 		}
1592 
1593 		/*
1594 		 * Go through the zonelist yet one more time, keep
1595 		 * very high watermark here, this is only to catch
1596 		 * a parallel oom killing, we must fail if we're still
1597 		 * under heavy pressure.
1598 		 */
1599 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1600 			order, zonelist, high_zoneidx,
1601 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1602 		if (page) {
1603 			clear_zonelist_oom(zonelist, gfp_mask);
1604 			goto got_pg;
1605 		}
1606 
1607 		/* The OOM killer will not help higher order allocs so fail */
1608 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1609 			clear_zonelist_oom(zonelist, gfp_mask);
1610 			goto nopage;
1611 		}
1612 
1613 		out_of_memory(zonelist, gfp_mask, order);
1614 		clear_zonelist_oom(zonelist, gfp_mask);
1615 		goto restart;
1616 	}
1617 
1618 	/*
1619 	 * Don't let big-order allocations loop unless the caller explicitly
1620 	 * requests that.  Wait for some write requests to complete then retry.
1621 	 *
1622 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1623 	 * means __GFP_NOFAIL, but that may not be true in other
1624 	 * implementations.
1625 	 *
1626 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1627 	 * specified, then we retry until we no longer reclaim any pages
1628 	 * (above), or we've reclaimed an order of pages at least as
1629 	 * large as the allocation's order. In both cases, if the
1630 	 * allocation still fails, we stop retrying.
1631 	 */
1632 	pages_reclaimed += did_some_progress;
1633 	do_retry = 0;
1634 	if (!(gfp_mask & __GFP_NORETRY)) {
1635 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1636 			do_retry = 1;
1637 		} else {
1638 			if (gfp_mask & __GFP_REPEAT &&
1639 				pages_reclaimed < (1 << order))
1640 					do_retry = 1;
1641 		}
1642 		if (gfp_mask & __GFP_NOFAIL)
1643 			do_retry = 1;
1644 	}
1645 	if (do_retry) {
1646 		congestion_wait(WRITE, HZ/50);
1647 		goto rebalance;
1648 	}
1649 
1650 nopage:
1651 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1652 		printk(KERN_WARNING "%s: page allocation failure."
1653 			" order:%d, mode:0x%x\n",
1654 			p->comm, order, gfp_mask);
1655 		dump_stack();
1656 		show_mem();
1657 	}
1658 got_pg:
1659 	return page;
1660 }
1661 EXPORT_SYMBOL(__alloc_pages_internal);
1662 
1663 /*
1664  * Common helper functions.
1665  */
1666 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1667 {
1668 	struct page * page;
1669 	page = alloc_pages(gfp_mask, order);
1670 	if (!page)
1671 		return 0;
1672 	return (unsigned long) page_address(page);
1673 }
1674 
1675 EXPORT_SYMBOL(__get_free_pages);
1676 
1677 unsigned long get_zeroed_page(gfp_t gfp_mask)
1678 {
1679 	struct page * page;
1680 
1681 	/*
1682 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1683 	 * a highmem page
1684 	 */
1685 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1686 
1687 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1688 	if (page)
1689 		return (unsigned long) page_address(page);
1690 	return 0;
1691 }
1692 
1693 EXPORT_SYMBOL(get_zeroed_page);
1694 
1695 void __pagevec_free(struct pagevec *pvec)
1696 {
1697 	int i = pagevec_count(pvec);
1698 
1699 	while (--i >= 0)
1700 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1701 }
1702 
1703 void __free_pages(struct page *page, unsigned int order)
1704 {
1705 	if (put_page_testzero(page)) {
1706 		if (order == 0)
1707 			free_hot_page(page);
1708 		else
1709 			__free_pages_ok(page, order);
1710 	}
1711 }
1712 
1713 EXPORT_SYMBOL(__free_pages);
1714 
1715 void free_pages(unsigned long addr, unsigned int order)
1716 {
1717 	if (addr != 0) {
1718 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1719 		__free_pages(virt_to_page((void *)addr), order);
1720 	}
1721 }
1722 
1723 EXPORT_SYMBOL(free_pages);
1724 
1725 /**
1726  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1727  * @size: the number of bytes to allocate
1728  * @gfp_mask: GFP flags for the allocation
1729  *
1730  * This function is similar to alloc_pages(), except that it allocates the
1731  * minimum number of pages to satisfy the request.  alloc_pages() can only
1732  * allocate memory in power-of-two pages.
1733  *
1734  * This function is also limited by MAX_ORDER.
1735  *
1736  * Memory allocated by this function must be released by free_pages_exact().
1737  */
1738 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1739 {
1740 	unsigned int order = get_order(size);
1741 	unsigned long addr;
1742 
1743 	addr = __get_free_pages(gfp_mask, order);
1744 	if (addr) {
1745 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1746 		unsigned long used = addr + PAGE_ALIGN(size);
1747 
1748 		split_page(virt_to_page(addr), order);
1749 		while (used < alloc_end) {
1750 			free_page(used);
1751 			used += PAGE_SIZE;
1752 		}
1753 	}
1754 
1755 	return (void *)addr;
1756 }
1757 EXPORT_SYMBOL(alloc_pages_exact);
1758 
1759 /**
1760  * free_pages_exact - release memory allocated via alloc_pages_exact()
1761  * @virt: the value returned by alloc_pages_exact.
1762  * @size: size of allocation, same value as passed to alloc_pages_exact().
1763  *
1764  * Release the memory allocated by a previous call to alloc_pages_exact.
1765  */
1766 void free_pages_exact(void *virt, size_t size)
1767 {
1768 	unsigned long addr = (unsigned long)virt;
1769 	unsigned long end = addr + PAGE_ALIGN(size);
1770 
1771 	while (addr < end) {
1772 		free_page(addr);
1773 		addr += PAGE_SIZE;
1774 	}
1775 }
1776 EXPORT_SYMBOL(free_pages_exact);
1777 
1778 static unsigned int nr_free_zone_pages(int offset)
1779 {
1780 	struct zoneref *z;
1781 	struct zone *zone;
1782 
1783 	/* Just pick one node, since fallback list is circular */
1784 	unsigned int sum = 0;
1785 
1786 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1787 
1788 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1789 		unsigned long size = zone->present_pages;
1790 		unsigned long high = zone->pages_high;
1791 		if (size > high)
1792 			sum += size - high;
1793 	}
1794 
1795 	return sum;
1796 }
1797 
1798 /*
1799  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1800  */
1801 unsigned int nr_free_buffer_pages(void)
1802 {
1803 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1804 }
1805 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1806 
1807 /*
1808  * Amount of free RAM allocatable within all zones
1809  */
1810 unsigned int nr_free_pagecache_pages(void)
1811 {
1812 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1813 }
1814 
1815 static inline void show_node(struct zone *zone)
1816 {
1817 	if (NUMA_BUILD)
1818 		printk("Node %d ", zone_to_nid(zone));
1819 }
1820 
1821 void si_meminfo(struct sysinfo *val)
1822 {
1823 	val->totalram = totalram_pages;
1824 	val->sharedram = 0;
1825 	val->freeram = global_page_state(NR_FREE_PAGES);
1826 	val->bufferram = nr_blockdev_pages();
1827 	val->totalhigh = totalhigh_pages;
1828 	val->freehigh = nr_free_highpages();
1829 	val->mem_unit = PAGE_SIZE;
1830 }
1831 
1832 EXPORT_SYMBOL(si_meminfo);
1833 
1834 #ifdef CONFIG_NUMA
1835 void si_meminfo_node(struct sysinfo *val, int nid)
1836 {
1837 	pg_data_t *pgdat = NODE_DATA(nid);
1838 
1839 	val->totalram = pgdat->node_present_pages;
1840 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1841 #ifdef CONFIG_HIGHMEM
1842 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1843 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1844 			NR_FREE_PAGES);
1845 #else
1846 	val->totalhigh = 0;
1847 	val->freehigh = 0;
1848 #endif
1849 	val->mem_unit = PAGE_SIZE;
1850 }
1851 #endif
1852 
1853 #define K(x) ((x) << (PAGE_SHIFT-10))
1854 
1855 /*
1856  * Show free area list (used inside shift_scroll-lock stuff)
1857  * We also calculate the percentage fragmentation. We do this by counting the
1858  * memory on each free list with the exception of the first item on the list.
1859  */
1860 void show_free_areas(void)
1861 {
1862 	int cpu;
1863 	struct zone *zone;
1864 
1865 	for_each_zone(zone) {
1866 		if (!populated_zone(zone))
1867 			continue;
1868 
1869 		show_node(zone);
1870 		printk("%s per-cpu:\n", zone->name);
1871 
1872 		for_each_online_cpu(cpu) {
1873 			struct per_cpu_pageset *pageset;
1874 
1875 			pageset = zone_pcp(zone, cpu);
1876 
1877 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1878 			       cpu, pageset->pcp.high,
1879 			       pageset->pcp.batch, pageset->pcp.count);
1880 		}
1881 	}
1882 
1883 	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1884 		" inactive_file:%lu"
1885 //TODO:  check/adjust line lengths
1886 #ifdef CONFIG_UNEVICTABLE_LRU
1887 		" unevictable:%lu"
1888 #endif
1889 		" dirty:%lu writeback:%lu unstable:%lu\n"
1890 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1891 		global_page_state(NR_ACTIVE_ANON),
1892 		global_page_state(NR_ACTIVE_FILE),
1893 		global_page_state(NR_INACTIVE_ANON),
1894 		global_page_state(NR_INACTIVE_FILE),
1895 #ifdef CONFIG_UNEVICTABLE_LRU
1896 		global_page_state(NR_UNEVICTABLE),
1897 #endif
1898 		global_page_state(NR_FILE_DIRTY),
1899 		global_page_state(NR_WRITEBACK),
1900 		global_page_state(NR_UNSTABLE_NFS),
1901 		global_page_state(NR_FREE_PAGES),
1902 		global_page_state(NR_SLAB_RECLAIMABLE) +
1903 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1904 		global_page_state(NR_FILE_MAPPED),
1905 		global_page_state(NR_PAGETABLE),
1906 		global_page_state(NR_BOUNCE));
1907 
1908 	for_each_zone(zone) {
1909 		int i;
1910 
1911 		if (!populated_zone(zone))
1912 			continue;
1913 
1914 		show_node(zone);
1915 		printk("%s"
1916 			" free:%lukB"
1917 			" min:%lukB"
1918 			" low:%lukB"
1919 			" high:%lukB"
1920 			" active_anon:%lukB"
1921 			" inactive_anon:%lukB"
1922 			" active_file:%lukB"
1923 			" inactive_file:%lukB"
1924 #ifdef CONFIG_UNEVICTABLE_LRU
1925 			" unevictable:%lukB"
1926 #endif
1927 			" present:%lukB"
1928 			" pages_scanned:%lu"
1929 			" all_unreclaimable? %s"
1930 			"\n",
1931 			zone->name,
1932 			K(zone_page_state(zone, NR_FREE_PAGES)),
1933 			K(zone->pages_min),
1934 			K(zone->pages_low),
1935 			K(zone->pages_high),
1936 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
1937 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
1938 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
1939 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
1940 #ifdef CONFIG_UNEVICTABLE_LRU
1941 			K(zone_page_state(zone, NR_UNEVICTABLE)),
1942 #endif
1943 			K(zone->present_pages),
1944 			zone->pages_scanned,
1945 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1946 			);
1947 		printk("lowmem_reserve[]:");
1948 		for (i = 0; i < MAX_NR_ZONES; i++)
1949 			printk(" %lu", zone->lowmem_reserve[i]);
1950 		printk("\n");
1951 	}
1952 
1953 	for_each_zone(zone) {
1954  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1955 
1956 		if (!populated_zone(zone))
1957 			continue;
1958 
1959 		show_node(zone);
1960 		printk("%s: ", zone->name);
1961 
1962 		spin_lock_irqsave(&zone->lock, flags);
1963 		for (order = 0; order < MAX_ORDER; order++) {
1964 			nr[order] = zone->free_area[order].nr_free;
1965 			total += nr[order] << order;
1966 		}
1967 		spin_unlock_irqrestore(&zone->lock, flags);
1968 		for (order = 0; order < MAX_ORDER; order++)
1969 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1970 		printk("= %lukB\n", K(total));
1971 	}
1972 
1973 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1974 
1975 	show_swap_cache_info();
1976 }
1977 
1978 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1979 {
1980 	zoneref->zone = zone;
1981 	zoneref->zone_idx = zone_idx(zone);
1982 }
1983 
1984 /*
1985  * Builds allocation fallback zone lists.
1986  *
1987  * Add all populated zones of a node to the zonelist.
1988  */
1989 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1990 				int nr_zones, enum zone_type zone_type)
1991 {
1992 	struct zone *zone;
1993 
1994 	BUG_ON(zone_type >= MAX_NR_ZONES);
1995 	zone_type++;
1996 
1997 	do {
1998 		zone_type--;
1999 		zone = pgdat->node_zones + zone_type;
2000 		if (populated_zone(zone)) {
2001 			zoneref_set_zone(zone,
2002 				&zonelist->_zonerefs[nr_zones++]);
2003 			check_highest_zone(zone_type);
2004 		}
2005 
2006 	} while (zone_type);
2007 	return nr_zones;
2008 }
2009 
2010 
2011 /*
2012  *  zonelist_order:
2013  *  0 = automatic detection of better ordering.
2014  *  1 = order by ([node] distance, -zonetype)
2015  *  2 = order by (-zonetype, [node] distance)
2016  *
2017  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2018  *  the same zonelist. So only NUMA can configure this param.
2019  */
2020 #define ZONELIST_ORDER_DEFAULT  0
2021 #define ZONELIST_ORDER_NODE     1
2022 #define ZONELIST_ORDER_ZONE     2
2023 
2024 /* zonelist order in the kernel.
2025  * set_zonelist_order() will set this to NODE or ZONE.
2026  */
2027 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2028 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2029 
2030 
2031 #ifdef CONFIG_NUMA
2032 /* The value user specified ....changed by config */
2033 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2034 /* string for sysctl */
2035 #define NUMA_ZONELIST_ORDER_LEN	16
2036 char numa_zonelist_order[16] = "default";
2037 
2038 /*
2039  * interface for configure zonelist ordering.
2040  * command line option "numa_zonelist_order"
2041  *	= "[dD]efault	- default, automatic configuration.
2042  *	= "[nN]ode 	- order by node locality, then by zone within node
2043  *	= "[zZ]one      - order by zone, then by locality within zone
2044  */
2045 
2046 static int __parse_numa_zonelist_order(char *s)
2047 {
2048 	if (*s == 'd' || *s == 'D') {
2049 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2050 	} else if (*s == 'n' || *s == 'N') {
2051 		user_zonelist_order = ZONELIST_ORDER_NODE;
2052 	} else if (*s == 'z' || *s == 'Z') {
2053 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2054 	} else {
2055 		printk(KERN_WARNING
2056 			"Ignoring invalid numa_zonelist_order value:  "
2057 			"%s\n", s);
2058 		return -EINVAL;
2059 	}
2060 	return 0;
2061 }
2062 
2063 static __init int setup_numa_zonelist_order(char *s)
2064 {
2065 	if (s)
2066 		return __parse_numa_zonelist_order(s);
2067 	return 0;
2068 }
2069 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2070 
2071 /*
2072  * sysctl handler for numa_zonelist_order
2073  */
2074 int numa_zonelist_order_handler(ctl_table *table, int write,
2075 		struct file *file, void __user *buffer, size_t *length,
2076 		loff_t *ppos)
2077 {
2078 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2079 	int ret;
2080 
2081 	if (write)
2082 		strncpy(saved_string, (char*)table->data,
2083 			NUMA_ZONELIST_ORDER_LEN);
2084 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2085 	if (ret)
2086 		return ret;
2087 	if (write) {
2088 		int oldval = user_zonelist_order;
2089 		if (__parse_numa_zonelist_order((char*)table->data)) {
2090 			/*
2091 			 * bogus value.  restore saved string
2092 			 */
2093 			strncpy((char*)table->data, saved_string,
2094 				NUMA_ZONELIST_ORDER_LEN);
2095 			user_zonelist_order = oldval;
2096 		} else if (oldval != user_zonelist_order)
2097 			build_all_zonelists();
2098 	}
2099 	return 0;
2100 }
2101 
2102 
2103 #define MAX_NODE_LOAD (num_online_nodes())
2104 static int node_load[MAX_NUMNODES];
2105 
2106 /**
2107  * find_next_best_node - find the next node that should appear in a given node's fallback list
2108  * @node: node whose fallback list we're appending
2109  * @used_node_mask: nodemask_t of already used nodes
2110  *
2111  * We use a number of factors to determine which is the next node that should
2112  * appear on a given node's fallback list.  The node should not have appeared
2113  * already in @node's fallback list, and it should be the next closest node
2114  * according to the distance array (which contains arbitrary distance values
2115  * from each node to each node in the system), and should also prefer nodes
2116  * with no CPUs, since presumably they'll have very little allocation pressure
2117  * on them otherwise.
2118  * It returns -1 if no node is found.
2119  */
2120 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2121 {
2122 	int n, val;
2123 	int min_val = INT_MAX;
2124 	int best_node = -1;
2125 	node_to_cpumask_ptr(tmp, 0);
2126 
2127 	/* Use the local node if we haven't already */
2128 	if (!node_isset(node, *used_node_mask)) {
2129 		node_set(node, *used_node_mask);
2130 		return node;
2131 	}
2132 
2133 	for_each_node_state(n, N_HIGH_MEMORY) {
2134 
2135 		/* Don't want a node to appear more than once */
2136 		if (node_isset(n, *used_node_mask))
2137 			continue;
2138 
2139 		/* Use the distance array to find the distance */
2140 		val = node_distance(node, n);
2141 
2142 		/* Penalize nodes under us ("prefer the next node") */
2143 		val += (n < node);
2144 
2145 		/* Give preference to headless and unused nodes */
2146 		node_to_cpumask_ptr_next(tmp, n);
2147 		if (!cpus_empty(*tmp))
2148 			val += PENALTY_FOR_NODE_WITH_CPUS;
2149 
2150 		/* Slight preference for less loaded node */
2151 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2152 		val += node_load[n];
2153 
2154 		if (val < min_val) {
2155 			min_val = val;
2156 			best_node = n;
2157 		}
2158 	}
2159 
2160 	if (best_node >= 0)
2161 		node_set(best_node, *used_node_mask);
2162 
2163 	return best_node;
2164 }
2165 
2166 
2167 /*
2168  * Build zonelists ordered by node and zones within node.
2169  * This results in maximum locality--normal zone overflows into local
2170  * DMA zone, if any--but risks exhausting DMA zone.
2171  */
2172 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2173 {
2174 	int j;
2175 	struct zonelist *zonelist;
2176 
2177 	zonelist = &pgdat->node_zonelists[0];
2178 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2179 		;
2180 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2181 							MAX_NR_ZONES - 1);
2182 	zonelist->_zonerefs[j].zone = NULL;
2183 	zonelist->_zonerefs[j].zone_idx = 0;
2184 }
2185 
2186 /*
2187  * Build gfp_thisnode zonelists
2188  */
2189 static void build_thisnode_zonelists(pg_data_t *pgdat)
2190 {
2191 	int j;
2192 	struct zonelist *zonelist;
2193 
2194 	zonelist = &pgdat->node_zonelists[1];
2195 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2196 	zonelist->_zonerefs[j].zone = NULL;
2197 	zonelist->_zonerefs[j].zone_idx = 0;
2198 }
2199 
2200 /*
2201  * Build zonelists ordered by zone and nodes within zones.
2202  * This results in conserving DMA zone[s] until all Normal memory is
2203  * exhausted, but results in overflowing to remote node while memory
2204  * may still exist in local DMA zone.
2205  */
2206 static int node_order[MAX_NUMNODES];
2207 
2208 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2209 {
2210 	int pos, j, node;
2211 	int zone_type;		/* needs to be signed */
2212 	struct zone *z;
2213 	struct zonelist *zonelist;
2214 
2215 	zonelist = &pgdat->node_zonelists[0];
2216 	pos = 0;
2217 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2218 		for (j = 0; j < nr_nodes; j++) {
2219 			node = node_order[j];
2220 			z = &NODE_DATA(node)->node_zones[zone_type];
2221 			if (populated_zone(z)) {
2222 				zoneref_set_zone(z,
2223 					&zonelist->_zonerefs[pos++]);
2224 				check_highest_zone(zone_type);
2225 			}
2226 		}
2227 	}
2228 	zonelist->_zonerefs[pos].zone = NULL;
2229 	zonelist->_zonerefs[pos].zone_idx = 0;
2230 }
2231 
2232 static int default_zonelist_order(void)
2233 {
2234 	int nid, zone_type;
2235 	unsigned long low_kmem_size,total_size;
2236 	struct zone *z;
2237 	int average_size;
2238 	/*
2239          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2240 	 * If they are really small and used heavily, the system can fall
2241 	 * into OOM very easily.
2242 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2243 	 */
2244 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2245 	low_kmem_size = 0;
2246 	total_size = 0;
2247 	for_each_online_node(nid) {
2248 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2249 			z = &NODE_DATA(nid)->node_zones[zone_type];
2250 			if (populated_zone(z)) {
2251 				if (zone_type < ZONE_NORMAL)
2252 					low_kmem_size += z->present_pages;
2253 				total_size += z->present_pages;
2254 			}
2255 		}
2256 	}
2257 	if (!low_kmem_size ||  /* there are no DMA area. */
2258 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2259 		return ZONELIST_ORDER_NODE;
2260 	/*
2261 	 * look into each node's config.
2262   	 * If there is a node whose DMA/DMA32 memory is very big area on
2263  	 * local memory, NODE_ORDER may be suitable.
2264          */
2265 	average_size = total_size /
2266 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2267 	for_each_online_node(nid) {
2268 		low_kmem_size = 0;
2269 		total_size = 0;
2270 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2271 			z = &NODE_DATA(nid)->node_zones[zone_type];
2272 			if (populated_zone(z)) {
2273 				if (zone_type < ZONE_NORMAL)
2274 					low_kmem_size += z->present_pages;
2275 				total_size += z->present_pages;
2276 			}
2277 		}
2278 		if (low_kmem_size &&
2279 		    total_size > average_size && /* ignore small node */
2280 		    low_kmem_size > total_size * 70/100)
2281 			return ZONELIST_ORDER_NODE;
2282 	}
2283 	return ZONELIST_ORDER_ZONE;
2284 }
2285 
2286 static void set_zonelist_order(void)
2287 {
2288 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2289 		current_zonelist_order = default_zonelist_order();
2290 	else
2291 		current_zonelist_order = user_zonelist_order;
2292 }
2293 
2294 static void build_zonelists(pg_data_t *pgdat)
2295 {
2296 	int j, node, load;
2297 	enum zone_type i;
2298 	nodemask_t used_mask;
2299 	int local_node, prev_node;
2300 	struct zonelist *zonelist;
2301 	int order = current_zonelist_order;
2302 
2303 	/* initialize zonelists */
2304 	for (i = 0; i < MAX_ZONELISTS; i++) {
2305 		zonelist = pgdat->node_zonelists + i;
2306 		zonelist->_zonerefs[0].zone = NULL;
2307 		zonelist->_zonerefs[0].zone_idx = 0;
2308 	}
2309 
2310 	/* NUMA-aware ordering of nodes */
2311 	local_node = pgdat->node_id;
2312 	load = num_online_nodes();
2313 	prev_node = local_node;
2314 	nodes_clear(used_mask);
2315 
2316 	memset(node_load, 0, sizeof(node_load));
2317 	memset(node_order, 0, sizeof(node_order));
2318 	j = 0;
2319 
2320 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2321 		int distance = node_distance(local_node, node);
2322 
2323 		/*
2324 		 * If another node is sufficiently far away then it is better
2325 		 * to reclaim pages in a zone before going off node.
2326 		 */
2327 		if (distance > RECLAIM_DISTANCE)
2328 			zone_reclaim_mode = 1;
2329 
2330 		/*
2331 		 * We don't want to pressure a particular node.
2332 		 * So adding penalty to the first node in same
2333 		 * distance group to make it round-robin.
2334 		 */
2335 		if (distance != node_distance(local_node, prev_node))
2336 			node_load[node] = load;
2337 
2338 		prev_node = node;
2339 		load--;
2340 		if (order == ZONELIST_ORDER_NODE)
2341 			build_zonelists_in_node_order(pgdat, node);
2342 		else
2343 			node_order[j++] = node;	/* remember order */
2344 	}
2345 
2346 	if (order == ZONELIST_ORDER_ZONE) {
2347 		/* calculate node order -- i.e., DMA last! */
2348 		build_zonelists_in_zone_order(pgdat, j);
2349 	}
2350 
2351 	build_thisnode_zonelists(pgdat);
2352 }
2353 
2354 /* Construct the zonelist performance cache - see further mmzone.h */
2355 static void build_zonelist_cache(pg_data_t *pgdat)
2356 {
2357 	struct zonelist *zonelist;
2358 	struct zonelist_cache *zlc;
2359 	struct zoneref *z;
2360 
2361 	zonelist = &pgdat->node_zonelists[0];
2362 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2363 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2364 	for (z = zonelist->_zonerefs; z->zone; z++)
2365 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2366 }
2367 
2368 
2369 #else	/* CONFIG_NUMA */
2370 
2371 static void set_zonelist_order(void)
2372 {
2373 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2374 }
2375 
2376 static void build_zonelists(pg_data_t *pgdat)
2377 {
2378 	int node, local_node;
2379 	enum zone_type j;
2380 	struct zonelist *zonelist;
2381 
2382 	local_node = pgdat->node_id;
2383 
2384 	zonelist = &pgdat->node_zonelists[0];
2385 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2386 
2387 	/*
2388 	 * Now we build the zonelist so that it contains the zones
2389 	 * of all the other nodes.
2390 	 * We don't want to pressure a particular node, so when
2391 	 * building the zones for node N, we make sure that the
2392 	 * zones coming right after the local ones are those from
2393 	 * node N+1 (modulo N)
2394 	 */
2395 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2396 		if (!node_online(node))
2397 			continue;
2398 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2399 							MAX_NR_ZONES - 1);
2400 	}
2401 	for (node = 0; node < local_node; node++) {
2402 		if (!node_online(node))
2403 			continue;
2404 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2405 							MAX_NR_ZONES - 1);
2406 	}
2407 
2408 	zonelist->_zonerefs[j].zone = NULL;
2409 	zonelist->_zonerefs[j].zone_idx = 0;
2410 }
2411 
2412 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2413 static void build_zonelist_cache(pg_data_t *pgdat)
2414 {
2415 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2416 }
2417 
2418 #endif	/* CONFIG_NUMA */
2419 
2420 /* return values int ....just for stop_machine() */
2421 static int __build_all_zonelists(void *dummy)
2422 {
2423 	int nid;
2424 
2425 	for_each_online_node(nid) {
2426 		pg_data_t *pgdat = NODE_DATA(nid);
2427 
2428 		build_zonelists(pgdat);
2429 		build_zonelist_cache(pgdat);
2430 	}
2431 	return 0;
2432 }
2433 
2434 void build_all_zonelists(void)
2435 {
2436 	set_zonelist_order();
2437 
2438 	if (system_state == SYSTEM_BOOTING) {
2439 		__build_all_zonelists(NULL);
2440 		mminit_verify_zonelist();
2441 		cpuset_init_current_mems_allowed();
2442 	} else {
2443 		/* we have to stop all cpus to guarantee there is no user
2444 		   of zonelist */
2445 		stop_machine(__build_all_zonelists, NULL, NULL);
2446 		/* cpuset refresh routine should be here */
2447 	}
2448 	vm_total_pages = nr_free_pagecache_pages();
2449 	/*
2450 	 * Disable grouping by mobility if the number of pages in the
2451 	 * system is too low to allow the mechanism to work. It would be
2452 	 * more accurate, but expensive to check per-zone. This check is
2453 	 * made on memory-hotadd so a system can start with mobility
2454 	 * disabled and enable it later
2455 	 */
2456 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2457 		page_group_by_mobility_disabled = 1;
2458 	else
2459 		page_group_by_mobility_disabled = 0;
2460 
2461 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2462 		"Total pages: %ld\n",
2463 			num_online_nodes(),
2464 			zonelist_order_name[current_zonelist_order],
2465 			page_group_by_mobility_disabled ? "off" : "on",
2466 			vm_total_pages);
2467 #ifdef CONFIG_NUMA
2468 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2469 #endif
2470 }
2471 
2472 /*
2473  * Helper functions to size the waitqueue hash table.
2474  * Essentially these want to choose hash table sizes sufficiently
2475  * large so that collisions trying to wait on pages are rare.
2476  * But in fact, the number of active page waitqueues on typical
2477  * systems is ridiculously low, less than 200. So this is even
2478  * conservative, even though it seems large.
2479  *
2480  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2481  * waitqueues, i.e. the size of the waitq table given the number of pages.
2482  */
2483 #define PAGES_PER_WAITQUEUE	256
2484 
2485 #ifndef CONFIG_MEMORY_HOTPLUG
2486 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2487 {
2488 	unsigned long size = 1;
2489 
2490 	pages /= PAGES_PER_WAITQUEUE;
2491 
2492 	while (size < pages)
2493 		size <<= 1;
2494 
2495 	/*
2496 	 * Once we have dozens or even hundreds of threads sleeping
2497 	 * on IO we've got bigger problems than wait queue collision.
2498 	 * Limit the size of the wait table to a reasonable size.
2499 	 */
2500 	size = min(size, 4096UL);
2501 
2502 	return max(size, 4UL);
2503 }
2504 #else
2505 /*
2506  * A zone's size might be changed by hot-add, so it is not possible to determine
2507  * a suitable size for its wait_table.  So we use the maximum size now.
2508  *
2509  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2510  *
2511  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2512  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2513  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2514  *
2515  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2516  * or more by the traditional way. (See above).  It equals:
2517  *
2518  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2519  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2520  *    powerpc (64K page size)             : =  (32G +16M)byte.
2521  */
2522 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2523 {
2524 	return 4096UL;
2525 }
2526 #endif
2527 
2528 /*
2529  * This is an integer logarithm so that shifts can be used later
2530  * to extract the more random high bits from the multiplicative
2531  * hash function before the remainder is taken.
2532  */
2533 static inline unsigned long wait_table_bits(unsigned long size)
2534 {
2535 	return ffz(~size);
2536 }
2537 
2538 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2539 
2540 /*
2541  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2542  * of blocks reserved is based on zone->pages_min. The memory within the
2543  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2544  * higher will lead to a bigger reserve which will get freed as contiguous
2545  * blocks as reclaim kicks in
2546  */
2547 static void setup_zone_migrate_reserve(struct zone *zone)
2548 {
2549 	unsigned long start_pfn, pfn, end_pfn;
2550 	struct page *page;
2551 	unsigned long reserve, block_migratetype;
2552 
2553 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2554 	start_pfn = zone->zone_start_pfn;
2555 	end_pfn = start_pfn + zone->spanned_pages;
2556 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2557 							pageblock_order;
2558 
2559 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2560 		if (!pfn_valid(pfn))
2561 			continue;
2562 		page = pfn_to_page(pfn);
2563 
2564 		/* Watch out for overlapping nodes */
2565 		if (page_to_nid(page) != zone_to_nid(zone))
2566 			continue;
2567 
2568 		/* Blocks with reserved pages will never free, skip them. */
2569 		if (PageReserved(page))
2570 			continue;
2571 
2572 		block_migratetype = get_pageblock_migratetype(page);
2573 
2574 		/* If this block is reserved, account for it */
2575 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2576 			reserve--;
2577 			continue;
2578 		}
2579 
2580 		/* Suitable for reserving if this block is movable */
2581 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2582 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2583 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2584 			reserve--;
2585 			continue;
2586 		}
2587 
2588 		/*
2589 		 * If the reserve is met and this is a previous reserved block,
2590 		 * take it back
2591 		 */
2592 		if (block_migratetype == MIGRATE_RESERVE) {
2593 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2594 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2595 		}
2596 	}
2597 }
2598 
2599 /*
2600  * Initially all pages are reserved - free ones are freed
2601  * up by free_all_bootmem() once the early boot process is
2602  * done. Non-atomic initialization, single-pass.
2603  */
2604 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2605 		unsigned long start_pfn, enum memmap_context context)
2606 {
2607 	struct page *page;
2608 	unsigned long end_pfn = start_pfn + size;
2609 	unsigned long pfn;
2610 	struct zone *z;
2611 
2612 	z = &NODE_DATA(nid)->node_zones[zone];
2613 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2614 		/*
2615 		 * There can be holes in boot-time mem_map[]s
2616 		 * handed to this function.  They do not
2617 		 * exist on hotplugged memory.
2618 		 */
2619 		if (context == MEMMAP_EARLY) {
2620 			if (!early_pfn_valid(pfn))
2621 				continue;
2622 			if (!early_pfn_in_nid(pfn, nid))
2623 				continue;
2624 		}
2625 		page = pfn_to_page(pfn);
2626 		set_page_links(page, zone, nid, pfn);
2627 		mminit_verify_page_links(page, zone, nid, pfn);
2628 		init_page_count(page);
2629 		reset_page_mapcount(page);
2630 		SetPageReserved(page);
2631 		/*
2632 		 * Mark the block movable so that blocks are reserved for
2633 		 * movable at startup. This will force kernel allocations
2634 		 * to reserve their blocks rather than leaking throughout
2635 		 * the address space during boot when many long-lived
2636 		 * kernel allocations are made. Later some blocks near
2637 		 * the start are marked MIGRATE_RESERVE by
2638 		 * setup_zone_migrate_reserve()
2639 		 *
2640 		 * bitmap is created for zone's valid pfn range. but memmap
2641 		 * can be created for invalid pages (for alignment)
2642 		 * check here not to call set_pageblock_migratetype() against
2643 		 * pfn out of zone.
2644 		 */
2645 		if ((z->zone_start_pfn <= pfn)
2646 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2647 		    && !(pfn & (pageblock_nr_pages - 1)))
2648 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2649 
2650 		INIT_LIST_HEAD(&page->lru);
2651 #ifdef WANT_PAGE_VIRTUAL
2652 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2653 		if (!is_highmem_idx(zone))
2654 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2655 #endif
2656 	}
2657 }
2658 
2659 static void __meminit zone_init_free_lists(struct zone *zone)
2660 {
2661 	int order, t;
2662 	for_each_migratetype_order(order, t) {
2663 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2664 		zone->free_area[order].nr_free = 0;
2665 	}
2666 }
2667 
2668 #ifndef __HAVE_ARCH_MEMMAP_INIT
2669 #define memmap_init(size, nid, zone, start_pfn) \
2670 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2671 #endif
2672 
2673 static int zone_batchsize(struct zone *zone)
2674 {
2675 	int batch;
2676 
2677 	/*
2678 	 * The per-cpu-pages pools are set to around 1000th of the
2679 	 * size of the zone.  But no more than 1/2 of a meg.
2680 	 *
2681 	 * OK, so we don't know how big the cache is.  So guess.
2682 	 */
2683 	batch = zone->present_pages / 1024;
2684 	if (batch * PAGE_SIZE > 512 * 1024)
2685 		batch = (512 * 1024) / PAGE_SIZE;
2686 	batch /= 4;		/* We effectively *= 4 below */
2687 	if (batch < 1)
2688 		batch = 1;
2689 
2690 	/*
2691 	 * Clamp the batch to a 2^n - 1 value. Having a power
2692 	 * of 2 value was found to be more likely to have
2693 	 * suboptimal cache aliasing properties in some cases.
2694 	 *
2695 	 * For example if 2 tasks are alternately allocating
2696 	 * batches of pages, one task can end up with a lot
2697 	 * of pages of one half of the possible page colors
2698 	 * and the other with pages of the other colors.
2699 	 */
2700 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2701 
2702 	return batch;
2703 }
2704 
2705 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2706 {
2707 	struct per_cpu_pages *pcp;
2708 
2709 	memset(p, 0, sizeof(*p));
2710 
2711 	pcp = &p->pcp;
2712 	pcp->count = 0;
2713 	pcp->high = 6 * batch;
2714 	pcp->batch = max(1UL, 1 * batch);
2715 	INIT_LIST_HEAD(&pcp->list);
2716 }
2717 
2718 /*
2719  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2720  * to the value high for the pageset p.
2721  */
2722 
2723 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2724 				unsigned long high)
2725 {
2726 	struct per_cpu_pages *pcp;
2727 
2728 	pcp = &p->pcp;
2729 	pcp->high = high;
2730 	pcp->batch = max(1UL, high/4);
2731 	if ((high/4) > (PAGE_SHIFT * 8))
2732 		pcp->batch = PAGE_SHIFT * 8;
2733 }
2734 
2735 
2736 #ifdef CONFIG_NUMA
2737 /*
2738  * Boot pageset table. One per cpu which is going to be used for all
2739  * zones and all nodes. The parameters will be set in such a way
2740  * that an item put on a list will immediately be handed over to
2741  * the buddy list. This is safe since pageset manipulation is done
2742  * with interrupts disabled.
2743  *
2744  * Some NUMA counter updates may also be caught by the boot pagesets.
2745  *
2746  * The boot_pagesets must be kept even after bootup is complete for
2747  * unused processors and/or zones. They do play a role for bootstrapping
2748  * hotplugged processors.
2749  *
2750  * zoneinfo_show() and maybe other functions do
2751  * not check if the processor is online before following the pageset pointer.
2752  * Other parts of the kernel may not check if the zone is available.
2753  */
2754 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2755 
2756 /*
2757  * Dynamically allocate memory for the
2758  * per cpu pageset array in struct zone.
2759  */
2760 static int __cpuinit process_zones(int cpu)
2761 {
2762 	struct zone *zone, *dzone;
2763 	int node = cpu_to_node(cpu);
2764 
2765 	node_set_state(node, N_CPU);	/* this node has a cpu */
2766 
2767 	for_each_zone(zone) {
2768 
2769 		if (!populated_zone(zone))
2770 			continue;
2771 
2772 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2773 					 GFP_KERNEL, node);
2774 		if (!zone_pcp(zone, cpu))
2775 			goto bad;
2776 
2777 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2778 
2779 		if (percpu_pagelist_fraction)
2780 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2781 			 	(zone->present_pages / percpu_pagelist_fraction));
2782 	}
2783 
2784 	return 0;
2785 bad:
2786 	for_each_zone(dzone) {
2787 		if (!populated_zone(dzone))
2788 			continue;
2789 		if (dzone == zone)
2790 			break;
2791 		kfree(zone_pcp(dzone, cpu));
2792 		zone_pcp(dzone, cpu) = NULL;
2793 	}
2794 	return -ENOMEM;
2795 }
2796 
2797 static inline void free_zone_pagesets(int cpu)
2798 {
2799 	struct zone *zone;
2800 
2801 	for_each_zone(zone) {
2802 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2803 
2804 		/* Free per_cpu_pageset if it is slab allocated */
2805 		if (pset != &boot_pageset[cpu])
2806 			kfree(pset);
2807 		zone_pcp(zone, cpu) = NULL;
2808 	}
2809 }
2810 
2811 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2812 		unsigned long action,
2813 		void *hcpu)
2814 {
2815 	int cpu = (long)hcpu;
2816 	int ret = NOTIFY_OK;
2817 
2818 	switch (action) {
2819 	case CPU_UP_PREPARE:
2820 	case CPU_UP_PREPARE_FROZEN:
2821 		if (process_zones(cpu))
2822 			ret = NOTIFY_BAD;
2823 		break;
2824 	case CPU_UP_CANCELED:
2825 	case CPU_UP_CANCELED_FROZEN:
2826 	case CPU_DEAD:
2827 	case CPU_DEAD_FROZEN:
2828 		free_zone_pagesets(cpu);
2829 		break;
2830 	default:
2831 		break;
2832 	}
2833 	return ret;
2834 }
2835 
2836 static struct notifier_block __cpuinitdata pageset_notifier =
2837 	{ &pageset_cpuup_callback, NULL, 0 };
2838 
2839 void __init setup_per_cpu_pageset(void)
2840 {
2841 	int err;
2842 
2843 	/* Initialize per_cpu_pageset for cpu 0.
2844 	 * A cpuup callback will do this for every cpu
2845 	 * as it comes online
2846 	 */
2847 	err = process_zones(smp_processor_id());
2848 	BUG_ON(err);
2849 	register_cpu_notifier(&pageset_notifier);
2850 }
2851 
2852 #endif
2853 
2854 static noinline __init_refok
2855 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2856 {
2857 	int i;
2858 	struct pglist_data *pgdat = zone->zone_pgdat;
2859 	size_t alloc_size;
2860 
2861 	/*
2862 	 * The per-page waitqueue mechanism uses hashed waitqueues
2863 	 * per zone.
2864 	 */
2865 	zone->wait_table_hash_nr_entries =
2866 		 wait_table_hash_nr_entries(zone_size_pages);
2867 	zone->wait_table_bits =
2868 		wait_table_bits(zone->wait_table_hash_nr_entries);
2869 	alloc_size = zone->wait_table_hash_nr_entries
2870 					* sizeof(wait_queue_head_t);
2871 
2872 	if (!slab_is_available()) {
2873 		zone->wait_table = (wait_queue_head_t *)
2874 			alloc_bootmem_node(pgdat, alloc_size);
2875 	} else {
2876 		/*
2877 		 * This case means that a zone whose size was 0 gets new memory
2878 		 * via memory hot-add.
2879 		 * But it may be the case that a new node was hot-added.  In
2880 		 * this case vmalloc() will not be able to use this new node's
2881 		 * memory - this wait_table must be initialized to use this new
2882 		 * node itself as well.
2883 		 * To use this new node's memory, further consideration will be
2884 		 * necessary.
2885 		 */
2886 		zone->wait_table = vmalloc(alloc_size);
2887 	}
2888 	if (!zone->wait_table)
2889 		return -ENOMEM;
2890 
2891 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2892 		init_waitqueue_head(zone->wait_table + i);
2893 
2894 	return 0;
2895 }
2896 
2897 static __meminit void zone_pcp_init(struct zone *zone)
2898 {
2899 	int cpu;
2900 	unsigned long batch = zone_batchsize(zone);
2901 
2902 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2903 #ifdef CONFIG_NUMA
2904 		/* Early boot. Slab allocator not functional yet */
2905 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2906 		setup_pageset(&boot_pageset[cpu],0);
2907 #else
2908 		setup_pageset(zone_pcp(zone,cpu), batch);
2909 #endif
2910 	}
2911 	if (zone->present_pages)
2912 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2913 			zone->name, zone->present_pages, batch);
2914 }
2915 
2916 __meminit int init_currently_empty_zone(struct zone *zone,
2917 					unsigned long zone_start_pfn,
2918 					unsigned long size,
2919 					enum memmap_context context)
2920 {
2921 	struct pglist_data *pgdat = zone->zone_pgdat;
2922 	int ret;
2923 	ret = zone_wait_table_init(zone, size);
2924 	if (ret)
2925 		return ret;
2926 	pgdat->nr_zones = zone_idx(zone) + 1;
2927 
2928 	zone->zone_start_pfn = zone_start_pfn;
2929 
2930 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2931 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2932 			pgdat->node_id,
2933 			(unsigned long)zone_idx(zone),
2934 			zone_start_pfn, (zone_start_pfn + size));
2935 
2936 	zone_init_free_lists(zone);
2937 
2938 	return 0;
2939 }
2940 
2941 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2942 /*
2943  * Basic iterator support. Return the first range of PFNs for a node
2944  * Note: nid == MAX_NUMNODES returns first region regardless of node
2945  */
2946 static int __meminit first_active_region_index_in_nid(int nid)
2947 {
2948 	int i;
2949 
2950 	for (i = 0; i < nr_nodemap_entries; i++)
2951 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2952 			return i;
2953 
2954 	return -1;
2955 }
2956 
2957 /*
2958  * Basic iterator support. Return the next active range of PFNs for a node
2959  * Note: nid == MAX_NUMNODES returns next region regardless of node
2960  */
2961 static int __meminit next_active_region_index_in_nid(int index, int nid)
2962 {
2963 	for (index = index + 1; index < nr_nodemap_entries; index++)
2964 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2965 			return index;
2966 
2967 	return -1;
2968 }
2969 
2970 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2971 /*
2972  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2973  * Architectures may implement their own version but if add_active_range()
2974  * was used and there are no special requirements, this is a convenient
2975  * alternative
2976  */
2977 int __meminit early_pfn_to_nid(unsigned long pfn)
2978 {
2979 	int i;
2980 
2981 	for (i = 0; i < nr_nodemap_entries; i++) {
2982 		unsigned long start_pfn = early_node_map[i].start_pfn;
2983 		unsigned long end_pfn = early_node_map[i].end_pfn;
2984 
2985 		if (start_pfn <= pfn && pfn < end_pfn)
2986 			return early_node_map[i].nid;
2987 	}
2988 
2989 	return 0;
2990 }
2991 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2992 
2993 /* Basic iterator support to walk early_node_map[] */
2994 #define for_each_active_range_index_in_nid(i, nid) \
2995 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2996 				i = next_active_region_index_in_nid(i, nid))
2997 
2998 /**
2999  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3000  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3001  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3002  *
3003  * If an architecture guarantees that all ranges registered with
3004  * add_active_ranges() contain no holes and may be freed, this
3005  * this function may be used instead of calling free_bootmem() manually.
3006  */
3007 void __init free_bootmem_with_active_regions(int nid,
3008 						unsigned long max_low_pfn)
3009 {
3010 	int i;
3011 
3012 	for_each_active_range_index_in_nid(i, nid) {
3013 		unsigned long size_pages = 0;
3014 		unsigned long end_pfn = early_node_map[i].end_pfn;
3015 
3016 		if (early_node_map[i].start_pfn >= max_low_pfn)
3017 			continue;
3018 
3019 		if (end_pfn > max_low_pfn)
3020 			end_pfn = max_low_pfn;
3021 
3022 		size_pages = end_pfn - early_node_map[i].start_pfn;
3023 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3024 				PFN_PHYS(early_node_map[i].start_pfn),
3025 				size_pages << PAGE_SHIFT);
3026 	}
3027 }
3028 
3029 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3030 {
3031 	int i;
3032 	int ret;
3033 
3034 	for_each_active_range_index_in_nid(i, nid) {
3035 		ret = work_fn(early_node_map[i].start_pfn,
3036 			      early_node_map[i].end_pfn, data);
3037 		if (ret)
3038 			break;
3039 	}
3040 }
3041 /**
3042  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3043  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3044  *
3045  * If an architecture guarantees that all ranges registered with
3046  * add_active_ranges() contain no holes and may be freed, this
3047  * function may be used instead of calling memory_present() manually.
3048  */
3049 void __init sparse_memory_present_with_active_regions(int nid)
3050 {
3051 	int i;
3052 
3053 	for_each_active_range_index_in_nid(i, nid)
3054 		memory_present(early_node_map[i].nid,
3055 				early_node_map[i].start_pfn,
3056 				early_node_map[i].end_pfn);
3057 }
3058 
3059 /**
3060  * push_node_boundaries - Push node boundaries to at least the requested boundary
3061  * @nid: The nid of the node to push the boundary for
3062  * @start_pfn: The start pfn of the node
3063  * @end_pfn: The end pfn of the node
3064  *
3065  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3066  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3067  * be hotplugged even though no physical memory exists. This function allows
3068  * an arch to push out the node boundaries so mem_map is allocated that can
3069  * be used later.
3070  */
3071 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3072 void __init push_node_boundaries(unsigned int nid,
3073 		unsigned long start_pfn, unsigned long end_pfn)
3074 {
3075 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3076 			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3077 			nid, start_pfn, end_pfn);
3078 
3079 	/* Initialise the boundary for this node if necessary */
3080 	if (node_boundary_end_pfn[nid] == 0)
3081 		node_boundary_start_pfn[nid] = -1UL;
3082 
3083 	/* Update the boundaries */
3084 	if (node_boundary_start_pfn[nid] > start_pfn)
3085 		node_boundary_start_pfn[nid] = start_pfn;
3086 	if (node_boundary_end_pfn[nid] < end_pfn)
3087 		node_boundary_end_pfn[nid] = end_pfn;
3088 }
3089 
3090 /* If necessary, push the node boundary out for reserve hotadd */
3091 static void __meminit account_node_boundary(unsigned int nid,
3092 		unsigned long *start_pfn, unsigned long *end_pfn)
3093 {
3094 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3095 			"Entering account_node_boundary(%u, %lu, %lu)\n",
3096 			nid, *start_pfn, *end_pfn);
3097 
3098 	/* Return if boundary information has not been provided */
3099 	if (node_boundary_end_pfn[nid] == 0)
3100 		return;
3101 
3102 	/* Check the boundaries and update if necessary */
3103 	if (node_boundary_start_pfn[nid] < *start_pfn)
3104 		*start_pfn = node_boundary_start_pfn[nid];
3105 	if (node_boundary_end_pfn[nid] > *end_pfn)
3106 		*end_pfn = node_boundary_end_pfn[nid];
3107 }
3108 #else
3109 void __init push_node_boundaries(unsigned int nid,
3110 		unsigned long start_pfn, unsigned long end_pfn) {}
3111 
3112 static void __meminit account_node_boundary(unsigned int nid,
3113 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3114 #endif
3115 
3116 
3117 /**
3118  * get_pfn_range_for_nid - Return the start and end page frames for a node
3119  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3120  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3121  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3122  *
3123  * It returns the start and end page frame of a node based on information
3124  * provided by an arch calling add_active_range(). If called for a node
3125  * with no available memory, a warning is printed and the start and end
3126  * PFNs will be 0.
3127  */
3128 void __meminit get_pfn_range_for_nid(unsigned int nid,
3129 			unsigned long *start_pfn, unsigned long *end_pfn)
3130 {
3131 	int i;
3132 	*start_pfn = -1UL;
3133 	*end_pfn = 0;
3134 
3135 	for_each_active_range_index_in_nid(i, nid) {
3136 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3137 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3138 	}
3139 
3140 	if (*start_pfn == -1UL)
3141 		*start_pfn = 0;
3142 
3143 	/* Push the node boundaries out if requested */
3144 	account_node_boundary(nid, start_pfn, end_pfn);
3145 }
3146 
3147 /*
3148  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3149  * assumption is made that zones within a node are ordered in monotonic
3150  * increasing memory addresses so that the "highest" populated zone is used
3151  */
3152 static void __init find_usable_zone_for_movable(void)
3153 {
3154 	int zone_index;
3155 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3156 		if (zone_index == ZONE_MOVABLE)
3157 			continue;
3158 
3159 		if (arch_zone_highest_possible_pfn[zone_index] >
3160 				arch_zone_lowest_possible_pfn[zone_index])
3161 			break;
3162 	}
3163 
3164 	VM_BUG_ON(zone_index == -1);
3165 	movable_zone = zone_index;
3166 }
3167 
3168 /*
3169  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3170  * because it is sized independant of architecture. Unlike the other zones,
3171  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3172  * in each node depending on the size of each node and how evenly kernelcore
3173  * is distributed. This helper function adjusts the zone ranges
3174  * provided by the architecture for a given node by using the end of the
3175  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3176  * zones within a node are in order of monotonic increases memory addresses
3177  */
3178 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3179 					unsigned long zone_type,
3180 					unsigned long node_start_pfn,
3181 					unsigned long node_end_pfn,
3182 					unsigned long *zone_start_pfn,
3183 					unsigned long *zone_end_pfn)
3184 {
3185 	/* Only adjust if ZONE_MOVABLE is on this node */
3186 	if (zone_movable_pfn[nid]) {
3187 		/* Size ZONE_MOVABLE */
3188 		if (zone_type == ZONE_MOVABLE) {
3189 			*zone_start_pfn = zone_movable_pfn[nid];
3190 			*zone_end_pfn = min(node_end_pfn,
3191 				arch_zone_highest_possible_pfn[movable_zone]);
3192 
3193 		/* Adjust for ZONE_MOVABLE starting within this range */
3194 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3195 				*zone_end_pfn > zone_movable_pfn[nid]) {
3196 			*zone_end_pfn = zone_movable_pfn[nid];
3197 
3198 		/* Check if this whole range is within ZONE_MOVABLE */
3199 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3200 			*zone_start_pfn = *zone_end_pfn;
3201 	}
3202 }
3203 
3204 /*
3205  * Return the number of pages a zone spans in a node, including holes
3206  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3207  */
3208 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3209 					unsigned long zone_type,
3210 					unsigned long *ignored)
3211 {
3212 	unsigned long node_start_pfn, node_end_pfn;
3213 	unsigned long zone_start_pfn, zone_end_pfn;
3214 
3215 	/* Get the start and end of the node and zone */
3216 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3217 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3218 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3219 	adjust_zone_range_for_zone_movable(nid, zone_type,
3220 				node_start_pfn, node_end_pfn,
3221 				&zone_start_pfn, &zone_end_pfn);
3222 
3223 	/* Check that this node has pages within the zone's required range */
3224 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3225 		return 0;
3226 
3227 	/* Move the zone boundaries inside the node if necessary */
3228 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3229 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3230 
3231 	/* Return the spanned pages */
3232 	return zone_end_pfn - zone_start_pfn;
3233 }
3234 
3235 /*
3236  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3237  * then all holes in the requested range will be accounted for.
3238  */
3239 static unsigned long __meminit __absent_pages_in_range(int nid,
3240 				unsigned long range_start_pfn,
3241 				unsigned long range_end_pfn)
3242 {
3243 	int i = 0;
3244 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3245 	unsigned long start_pfn;
3246 
3247 	/* Find the end_pfn of the first active range of pfns in the node */
3248 	i = first_active_region_index_in_nid(nid);
3249 	if (i == -1)
3250 		return 0;
3251 
3252 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3253 
3254 	/* Account for ranges before physical memory on this node */
3255 	if (early_node_map[i].start_pfn > range_start_pfn)
3256 		hole_pages = prev_end_pfn - range_start_pfn;
3257 
3258 	/* Find all holes for the zone within the node */
3259 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3260 
3261 		/* No need to continue if prev_end_pfn is outside the zone */
3262 		if (prev_end_pfn >= range_end_pfn)
3263 			break;
3264 
3265 		/* Make sure the end of the zone is not within the hole */
3266 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3267 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3268 
3269 		/* Update the hole size cound and move on */
3270 		if (start_pfn > range_start_pfn) {
3271 			BUG_ON(prev_end_pfn > start_pfn);
3272 			hole_pages += start_pfn - prev_end_pfn;
3273 		}
3274 		prev_end_pfn = early_node_map[i].end_pfn;
3275 	}
3276 
3277 	/* Account for ranges past physical memory on this node */
3278 	if (range_end_pfn > prev_end_pfn)
3279 		hole_pages += range_end_pfn -
3280 				max(range_start_pfn, prev_end_pfn);
3281 
3282 	return hole_pages;
3283 }
3284 
3285 /**
3286  * absent_pages_in_range - Return number of page frames in holes within a range
3287  * @start_pfn: The start PFN to start searching for holes
3288  * @end_pfn: The end PFN to stop searching for holes
3289  *
3290  * It returns the number of pages frames in memory holes within a range.
3291  */
3292 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3293 							unsigned long end_pfn)
3294 {
3295 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3296 }
3297 
3298 /* Return the number of page frames in holes in a zone on a node */
3299 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3300 					unsigned long zone_type,
3301 					unsigned long *ignored)
3302 {
3303 	unsigned long node_start_pfn, node_end_pfn;
3304 	unsigned long zone_start_pfn, zone_end_pfn;
3305 
3306 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3307 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3308 							node_start_pfn);
3309 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3310 							node_end_pfn);
3311 
3312 	adjust_zone_range_for_zone_movable(nid, zone_type,
3313 			node_start_pfn, node_end_pfn,
3314 			&zone_start_pfn, &zone_end_pfn);
3315 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3316 }
3317 
3318 #else
3319 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3320 					unsigned long zone_type,
3321 					unsigned long *zones_size)
3322 {
3323 	return zones_size[zone_type];
3324 }
3325 
3326 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3327 						unsigned long zone_type,
3328 						unsigned long *zholes_size)
3329 {
3330 	if (!zholes_size)
3331 		return 0;
3332 
3333 	return zholes_size[zone_type];
3334 }
3335 
3336 #endif
3337 
3338 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3339 		unsigned long *zones_size, unsigned long *zholes_size)
3340 {
3341 	unsigned long realtotalpages, totalpages = 0;
3342 	enum zone_type i;
3343 
3344 	for (i = 0; i < MAX_NR_ZONES; i++)
3345 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3346 								zones_size);
3347 	pgdat->node_spanned_pages = totalpages;
3348 
3349 	realtotalpages = totalpages;
3350 	for (i = 0; i < MAX_NR_ZONES; i++)
3351 		realtotalpages -=
3352 			zone_absent_pages_in_node(pgdat->node_id, i,
3353 								zholes_size);
3354 	pgdat->node_present_pages = realtotalpages;
3355 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3356 							realtotalpages);
3357 }
3358 
3359 #ifndef CONFIG_SPARSEMEM
3360 /*
3361  * Calculate the size of the zone->blockflags rounded to an unsigned long
3362  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3363  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3364  * round what is now in bits to nearest long in bits, then return it in
3365  * bytes.
3366  */
3367 static unsigned long __init usemap_size(unsigned long zonesize)
3368 {
3369 	unsigned long usemapsize;
3370 
3371 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3372 	usemapsize = usemapsize >> pageblock_order;
3373 	usemapsize *= NR_PAGEBLOCK_BITS;
3374 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3375 
3376 	return usemapsize / 8;
3377 }
3378 
3379 static void __init setup_usemap(struct pglist_data *pgdat,
3380 				struct zone *zone, unsigned long zonesize)
3381 {
3382 	unsigned long usemapsize = usemap_size(zonesize);
3383 	zone->pageblock_flags = NULL;
3384 	if (usemapsize) {
3385 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3386 		memset(zone->pageblock_flags, 0, usemapsize);
3387 	}
3388 }
3389 #else
3390 static void inline setup_usemap(struct pglist_data *pgdat,
3391 				struct zone *zone, unsigned long zonesize) {}
3392 #endif /* CONFIG_SPARSEMEM */
3393 
3394 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3395 
3396 /* Return a sensible default order for the pageblock size. */
3397 static inline int pageblock_default_order(void)
3398 {
3399 	if (HPAGE_SHIFT > PAGE_SHIFT)
3400 		return HUGETLB_PAGE_ORDER;
3401 
3402 	return MAX_ORDER-1;
3403 }
3404 
3405 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3406 static inline void __init set_pageblock_order(unsigned int order)
3407 {
3408 	/* Check that pageblock_nr_pages has not already been setup */
3409 	if (pageblock_order)
3410 		return;
3411 
3412 	/*
3413 	 * Assume the largest contiguous order of interest is a huge page.
3414 	 * This value may be variable depending on boot parameters on IA64
3415 	 */
3416 	pageblock_order = order;
3417 }
3418 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3419 
3420 /*
3421  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3422  * and pageblock_default_order() are unused as pageblock_order is set
3423  * at compile-time. See include/linux/pageblock-flags.h for the values of
3424  * pageblock_order based on the kernel config
3425  */
3426 static inline int pageblock_default_order(unsigned int order)
3427 {
3428 	return MAX_ORDER-1;
3429 }
3430 #define set_pageblock_order(x)	do {} while (0)
3431 
3432 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3433 
3434 /*
3435  * Set up the zone data structures:
3436  *   - mark all pages reserved
3437  *   - mark all memory queues empty
3438  *   - clear the memory bitmaps
3439  */
3440 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3441 		unsigned long *zones_size, unsigned long *zholes_size)
3442 {
3443 	enum zone_type j;
3444 	int nid = pgdat->node_id;
3445 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3446 	int ret;
3447 
3448 	pgdat_resize_init(pgdat);
3449 	pgdat->nr_zones = 0;
3450 	init_waitqueue_head(&pgdat->kswapd_wait);
3451 	pgdat->kswapd_max_order = 0;
3452 	pgdat_page_cgroup_init(pgdat);
3453 
3454 	for (j = 0; j < MAX_NR_ZONES; j++) {
3455 		struct zone *zone = pgdat->node_zones + j;
3456 		unsigned long size, realsize, memmap_pages;
3457 		enum lru_list l;
3458 
3459 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3460 		realsize = size - zone_absent_pages_in_node(nid, j,
3461 								zholes_size);
3462 
3463 		/*
3464 		 * Adjust realsize so that it accounts for how much memory
3465 		 * is used by this zone for memmap. This affects the watermark
3466 		 * and per-cpu initialisations
3467 		 */
3468 		memmap_pages =
3469 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3470 		if (realsize >= memmap_pages) {
3471 			realsize -= memmap_pages;
3472 			printk(KERN_DEBUG
3473 				"  %s zone: %lu pages used for memmap\n",
3474 				zone_names[j], memmap_pages);
3475 		} else
3476 			printk(KERN_WARNING
3477 				"  %s zone: %lu pages exceeds realsize %lu\n",
3478 				zone_names[j], memmap_pages, realsize);
3479 
3480 		/* Account for reserved pages */
3481 		if (j == 0 && realsize > dma_reserve) {
3482 			realsize -= dma_reserve;
3483 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3484 					zone_names[0], dma_reserve);
3485 		}
3486 
3487 		if (!is_highmem_idx(j))
3488 			nr_kernel_pages += realsize;
3489 		nr_all_pages += realsize;
3490 
3491 		zone->spanned_pages = size;
3492 		zone->present_pages = realsize;
3493 #ifdef CONFIG_NUMA
3494 		zone->node = nid;
3495 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3496 						/ 100;
3497 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3498 #endif
3499 		zone->name = zone_names[j];
3500 		spin_lock_init(&zone->lock);
3501 		spin_lock_init(&zone->lru_lock);
3502 		zone_seqlock_init(zone);
3503 		zone->zone_pgdat = pgdat;
3504 
3505 		zone->prev_priority = DEF_PRIORITY;
3506 
3507 		zone_pcp_init(zone);
3508 		for_each_lru(l) {
3509 			INIT_LIST_HEAD(&zone->lru[l].list);
3510 			zone->lru[l].nr_scan = 0;
3511 		}
3512 		zone->recent_rotated[0] = 0;
3513 		zone->recent_rotated[1] = 0;
3514 		zone->recent_scanned[0] = 0;
3515 		zone->recent_scanned[1] = 0;
3516 		zap_zone_vm_stats(zone);
3517 		zone->flags = 0;
3518 		if (!size)
3519 			continue;
3520 
3521 		set_pageblock_order(pageblock_default_order());
3522 		setup_usemap(pgdat, zone, size);
3523 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3524 						size, MEMMAP_EARLY);
3525 		BUG_ON(ret);
3526 		memmap_init(size, nid, j, zone_start_pfn);
3527 		zone_start_pfn += size;
3528 	}
3529 }
3530 
3531 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3532 {
3533 	/* Skip empty nodes */
3534 	if (!pgdat->node_spanned_pages)
3535 		return;
3536 
3537 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3538 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3539 	if (!pgdat->node_mem_map) {
3540 		unsigned long size, start, end;
3541 		struct page *map;
3542 
3543 		/*
3544 		 * The zone's endpoints aren't required to be MAX_ORDER
3545 		 * aligned but the node_mem_map endpoints must be in order
3546 		 * for the buddy allocator to function correctly.
3547 		 */
3548 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3549 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3550 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3551 		size =  (end - start) * sizeof(struct page);
3552 		map = alloc_remap(pgdat->node_id, size);
3553 		if (!map)
3554 			map = alloc_bootmem_node(pgdat, size);
3555 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3556 	}
3557 #ifndef CONFIG_NEED_MULTIPLE_NODES
3558 	/*
3559 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3560 	 */
3561 	if (pgdat == NODE_DATA(0)) {
3562 		mem_map = NODE_DATA(0)->node_mem_map;
3563 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3564 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3565 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3566 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3567 	}
3568 #endif
3569 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3570 }
3571 
3572 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3573 		unsigned long node_start_pfn, unsigned long *zholes_size)
3574 {
3575 	pg_data_t *pgdat = NODE_DATA(nid);
3576 
3577 	pgdat->node_id = nid;
3578 	pgdat->node_start_pfn = node_start_pfn;
3579 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3580 
3581 	alloc_node_mem_map(pgdat);
3582 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3583 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3584 		nid, (unsigned long)pgdat,
3585 		(unsigned long)pgdat->node_mem_map);
3586 #endif
3587 
3588 	free_area_init_core(pgdat, zones_size, zholes_size);
3589 }
3590 
3591 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3592 
3593 #if MAX_NUMNODES > 1
3594 /*
3595  * Figure out the number of possible node ids.
3596  */
3597 static void __init setup_nr_node_ids(void)
3598 {
3599 	unsigned int node;
3600 	unsigned int highest = 0;
3601 
3602 	for_each_node_mask(node, node_possible_map)
3603 		highest = node;
3604 	nr_node_ids = highest + 1;
3605 }
3606 #else
3607 static inline void setup_nr_node_ids(void)
3608 {
3609 }
3610 #endif
3611 
3612 /**
3613  * add_active_range - Register a range of PFNs backed by physical memory
3614  * @nid: The node ID the range resides on
3615  * @start_pfn: The start PFN of the available physical memory
3616  * @end_pfn: The end PFN of the available physical memory
3617  *
3618  * These ranges are stored in an early_node_map[] and later used by
3619  * free_area_init_nodes() to calculate zone sizes and holes. If the
3620  * range spans a memory hole, it is up to the architecture to ensure
3621  * the memory is not freed by the bootmem allocator. If possible
3622  * the range being registered will be merged with existing ranges.
3623  */
3624 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3625 						unsigned long end_pfn)
3626 {
3627 	int i;
3628 
3629 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3630 			"Entering add_active_range(%d, %#lx, %#lx) "
3631 			"%d entries of %d used\n",
3632 			nid, start_pfn, end_pfn,
3633 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3634 
3635 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3636 
3637 	/* Merge with existing active regions if possible */
3638 	for (i = 0; i < nr_nodemap_entries; i++) {
3639 		if (early_node_map[i].nid != nid)
3640 			continue;
3641 
3642 		/* Skip if an existing region covers this new one */
3643 		if (start_pfn >= early_node_map[i].start_pfn &&
3644 				end_pfn <= early_node_map[i].end_pfn)
3645 			return;
3646 
3647 		/* Merge forward if suitable */
3648 		if (start_pfn <= early_node_map[i].end_pfn &&
3649 				end_pfn > early_node_map[i].end_pfn) {
3650 			early_node_map[i].end_pfn = end_pfn;
3651 			return;
3652 		}
3653 
3654 		/* Merge backward if suitable */
3655 		if (start_pfn < early_node_map[i].end_pfn &&
3656 				end_pfn >= early_node_map[i].start_pfn) {
3657 			early_node_map[i].start_pfn = start_pfn;
3658 			return;
3659 		}
3660 	}
3661 
3662 	/* Check that early_node_map is large enough */
3663 	if (i >= MAX_ACTIVE_REGIONS) {
3664 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3665 							MAX_ACTIVE_REGIONS);
3666 		return;
3667 	}
3668 
3669 	early_node_map[i].nid = nid;
3670 	early_node_map[i].start_pfn = start_pfn;
3671 	early_node_map[i].end_pfn = end_pfn;
3672 	nr_nodemap_entries = i + 1;
3673 }
3674 
3675 /**
3676  * remove_active_range - Shrink an existing registered range of PFNs
3677  * @nid: The node id the range is on that should be shrunk
3678  * @start_pfn: The new PFN of the range
3679  * @end_pfn: The new PFN of the range
3680  *
3681  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3682  * The map is kept near the end physical page range that has already been
3683  * registered. This function allows an arch to shrink an existing registered
3684  * range.
3685  */
3686 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3687 				unsigned long end_pfn)
3688 {
3689 	int i, j;
3690 	int removed = 0;
3691 
3692 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3693 			  nid, start_pfn, end_pfn);
3694 
3695 	/* Find the old active region end and shrink */
3696 	for_each_active_range_index_in_nid(i, nid) {
3697 		if (early_node_map[i].start_pfn >= start_pfn &&
3698 		    early_node_map[i].end_pfn <= end_pfn) {
3699 			/* clear it */
3700 			early_node_map[i].start_pfn = 0;
3701 			early_node_map[i].end_pfn = 0;
3702 			removed = 1;
3703 			continue;
3704 		}
3705 		if (early_node_map[i].start_pfn < start_pfn &&
3706 		    early_node_map[i].end_pfn > start_pfn) {
3707 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3708 			early_node_map[i].end_pfn = start_pfn;
3709 			if (temp_end_pfn > end_pfn)
3710 				add_active_range(nid, end_pfn, temp_end_pfn);
3711 			continue;
3712 		}
3713 		if (early_node_map[i].start_pfn >= start_pfn &&
3714 		    early_node_map[i].end_pfn > end_pfn &&
3715 		    early_node_map[i].start_pfn < end_pfn) {
3716 			early_node_map[i].start_pfn = end_pfn;
3717 			continue;
3718 		}
3719 	}
3720 
3721 	if (!removed)
3722 		return;
3723 
3724 	/* remove the blank ones */
3725 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3726 		if (early_node_map[i].nid != nid)
3727 			continue;
3728 		if (early_node_map[i].end_pfn)
3729 			continue;
3730 		/* we found it, get rid of it */
3731 		for (j = i; j < nr_nodemap_entries - 1; j++)
3732 			memcpy(&early_node_map[j], &early_node_map[j+1],
3733 				sizeof(early_node_map[j]));
3734 		j = nr_nodemap_entries - 1;
3735 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3736 		nr_nodemap_entries--;
3737 	}
3738 }
3739 
3740 /**
3741  * remove_all_active_ranges - Remove all currently registered regions
3742  *
3743  * During discovery, it may be found that a table like SRAT is invalid
3744  * and an alternative discovery method must be used. This function removes
3745  * all currently registered regions.
3746  */
3747 void __init remove_all_active_ranges(void)
3748 {
3749 	memset(early_node_map, 0, sizeof(early_node_map));
3750 	nr_nodemap_entries = 0;
3751 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3752 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3753 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3754 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3755 }
3756 
3757 /* Compare two active node_active_regions */
3758 static int __init cmp_node_active_region(const void *a, const void *b)
3759 {
3760 	struct node_active_region *arange = (struct node_active_region *)a;
3761 	struct node_active_region *brange = (struct node_active_region *)b;
3762 
3763 	/* Done this way to avoid overflows */
3764 	if (arange->start_pfn > brange->start_pfn)
3765 		return 1;
3766 	if (arange->start_pfn < brange->start_pfn)
3767 		return -1;
3768 
3769 	return 0;
3770 }
3771 
3772 /* sort the node_map by start_pfn */
3773 static void __init sort_node_map(void)
3774 {
3775 	sort(early_node_map, (size_t)nr_nodemap_entries,
3776 			sizeof(struct node_active_region),
3777 			cmp_node_active_region, NULL);
3778 }
3779 
3780 /* Find the lowest pfn for a node */
3781 static unsigned long __init find_min_pfn_for_node(int nid)
3782 {
3783 	int i;
3784 	unsigned long min_pfn = ULONG_MAX;
3785 
3786 	/* Assuming a sorted map, the first range found has the starting pfn */
3787 	for_each_active_range_index_in_nid(i, nid)
3788 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3789 
3790 	if (min_pfn == ULONG_MAX) {
3791 		printk(KERN_WARNING
3792 			"Could not find start_pfn for node %d\n", nid);
3793 		return 0;
3794 	}
3795 
3796 	return min_pfn;
3797 }
3798 
3799 /**
3800  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3801  *
3802  * It returns the minimum PFN based on information provided via
3803  * add_active_range().
3804  */
3805 unsigned long __init find_min_pfn_with_active_regions(void)
3806 {
3807 	return find_min_pfn_for_node(MAX_NUMNODES);
3808 }
3809 
3810 /*
3811  * early_calculate_totalpages()
3812  * Sum pages in active regions for movable zone.
3813  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3814  */
3815 static unsigned long __init early_calculate_totalpages(void)
3816 {
3817 	int i;
3818 	unsigned long totalpages = 0;
3819 
3820 	for (i = 0; i < nr_nodemap_entries; i++) {
3821 		unsigned long pages = early_node_map[i].end_pfn -
3822 						early_node_map[i].start_pfn;
3823 		totalpages += pages;
3824 		if (pages)
3825 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3826 	}
3827   	return totalpages;
3828 }
3829 
3830 /*
3831  * Find the PFN the Movable zone begins in each node. Kernel memory
3832  * is spread evenly between nodes as long as the nodes have enough
3833  * memory. When they don't, some nodes will have more kernelcore than
3834  * others
3835  */
3836 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3837 {
3838 	int i, nid;
3839 	unsigned long usable_startpfn;
3840 	unsigned long kernelcore_node, kernelcore_remaining;
3841 	unsigned long totalpages = early_calculate_totalpages();
3842 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3843 
3844 	/*
3845 	 * If movablecore was specified, calculate what size of
3846 	 * kernelcore that corresponds so that memory usable for
3847 	 * any allocation type is evenly spread. If both kernelcore
3848 	 * and movablecore are specified, then the value of kernelcore
3849 	 * will be used for required_kernelcore if it's greater than
3850 	 * what movablecore would have allowed.
3851 	 */
3852 	if (required_movablecore) {
3853 		unsigned long corepages;
3854 
3855 		/*
3856 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3857 		 * was requested by the user
3858 		 */
3859 		required_movablecore =
3860 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3861 		corepages = totalpages - required_movablecore;
3862 
3863 		required_kernelcore = max(required_kernelcore, corepages);
3864 	}
3865 
3866 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3867 	if (!required_kernelcore)
3868 		return;
3869 
3870 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3871 	find_usable_zone_for_movable();
3872 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3873 
3874 restart:
3875 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3876 	kernelcore_node = required_kernelcore / usable_nodes;
3877 	for_each_node_state(nid, N_HIGH_MEMORY) {
3878 		/*
3879 		 * Recalculate kernelcore_node if the division per node
3880 		 * now exceeds what is necessary to satisfy the requested
3881 		 * amount of memory for the kernel
3882 		 */
3883 		if (required_kernelcore < kernelcore_node)
3884 			kernelcore_node = required_kernelcore / usable_nodes;
3885 
3886 		/*
3887 		 * As the map is walked, we track how much memory is usable
3888 		 * by the kernel using kernelcore_remaining. When it is
3889 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3890 		 */
3891 		kernelcore_remaining = kernelcore_node;
3892 
3893 		/* Go through each range of PFNs within this node */
3894 		for_each_active_range_index_in_nid(i, nid) {
3895 			unsigned long start_pfn, end_pfn;
3896 			unsigned long size_pages;
3897 
3898 			start_pfn = max(early_node_map[i].start_pfn,
3899 						zone_movable_pfn[nid]);
3900 			end_pfn = early_node_map[i].end_pfn;
3901 			if (start_pfn >= end_pfn)
3902 				continue;
3903 
3904 			/* Account for what is only usable for kernelcore */
3905 			if (start_pfn < usable_startpfn) {
3906 				unsigned long kernel_pages;
3907 				kernel_pages = min(end_pfn, usable_startpfn)
3908 								- start_pfn;
3909 
3910 				kernelcore_remaining -= min(kernel_pages,
3911 							kernelcore_remaining);
3912 				required_kernelcore -= min(kernel_pages,
3913 							required_kernelcore);
3914 
3915 				/* Continue if range is now fully accounted */
3916 				if (end_pfn <= usable_startpfn) {
3917 
3918 					/*
3919 					 * Push zone_movable_pfn to the end so
3920 					 * that if we have to rebalance
3921 					 * kernelcore across nodes, we will
3922 					 * not double account here
3923 					 */
3924 					zone_movable_pfn[nid] = end_pfn;
3925 					continue;
3926 				}
3927 				start_pfn = usable_startpfn;
3928 			}
3929 
3930 			/*
3931 			 * The usable PFN range for ZONE_MOVABLE is from
3932 			 * start_pfn->end_pfn. Calculate size_pages as the
3933 			 * number of pages used as kernelcore
3934 			 */
3935 			size_pages = end_pfn - start_pfn;
3936 			if (size_pages > kernelcore_remaining)
3937 				size_pages = kernelcore_remaining;
3938 			zone_movable_pfn[nid] = start_pfn + size_pages;
3939 
3940 			/*
3941 			 * Some kernelcore has been met, update counts and
3942 			 * break if the kernelcore for this node has been
3943 			 * satisified
3944 			 */
3945 			required_kernelcore -= min(required_kernelcore,
3946 								size_pages);
3947 			kernelcore_remaining -= size_pages;
3948 			if (!kernelcore_remaining)
3949 				break;
3950 		}
3951 	}
3952 
3953 	/*
3954 	 * If there is still required_kernelcore, we do another pass with one
3955 	 * less node in the count. This will push zone_movable_pfn[nid] further
3956 	 * along on the nodes that still have memory until kernelcore is
3957 	 * satisified
3958 	 */
3959 	usable_nodes--;
3960 	if (usable_nodes && required_kernelcore > usable_nodes)
3961 		goto restart;
3962 
3963 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3964 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3965 		zone_movable_pfn[nid] =
3966 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3967 }
3968 
3969 /* Any regular memory on that node ? */
3970 static void check_for_regular_memory(pg_data_t *pgdat)
3971 {
3972 #ifdef CONFIG_HIGHMEM
3973 	enum zone_type zone_type;
3974 
3975 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3976 		struct zone *zone = &pgdat->node_zones[zone_type];
3977 		if (zone->present_pages)
3978 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3979 	}
3980 #endif
3981 }
3982 
3983 /**
3984  * free_area_init_nodes - Initialise all pg_data_t and zone data
3985  * @max_zone_pfn: an array of max PFNs for each zone
3986  *
3987  * This will call free_area_init_node() for each active node in the system.
3988  * Using the page ranges provided by add_active_range(), the size of each
3989  * zone in each node and their holes is calculated. If the maximum PFN
3990  * between two adjacent zones match, it is assumed that the zone is empty.
3991  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3992  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3993  * starts where the previous one ended. For example, ZONE_DMA32 starts
3994  * at arch_max_dma_pfn.
3995  */
3996 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3997 {
3998 	unsigned long nid;
3999 	int i;
4000 
4001 	/* Sort early_node_map as initialisation assumes it is sorted */
4002 	sort_node_map();
4003 
4004 	/* Record where the zone boundaries are */
4005 	memset(arch_zone_lowest_possible_pfn, 0,
4006 				sizeof(arch_zone_lowest_possible_pfn));
4007 	memset(arch_zone_highest_possible_pfn, 0,
4008 				sizeof(arch_zone_highest_possible_pfn));
4009 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4010 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4011 	for (i = 1; i < MAX_NR_ZONES; i++) {
4012 		if (i == ZONE_MOVABLE)
4013 			continue;
4014 		arch_zone_lowest_possible_pfn[i] =
4015 			arch_zone_highest_possible_pfn[i-1];
4016 		arch_zone_highest_possible_pfn[i] =
4017 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4018 	}
4019 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4020 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4021 
4022 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4023 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4024 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4025 
4026 	/* Print out the zone ranges */
4027 	printk("Zone PFN ranges:\n");
4028 	for (i = 0; i < MAX_NR_ZONES; i++) {
4029 		if (i == ZONE_MOVABLE)
4030 			continue;
4031 		printk("  %-8s %0#10lx -> %0#10lx\n",
4032 				zone_names[i],
4033 				arch_zone_lowest_possible_pfn[i],
4034 				arch_zone_highest_possible_pfn[i]);
4035 	}
4036 
4037 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4038 	printk("Movable zone start PFN for each node\n");
4039 	for (i = 0; i < MAX_NUMNODES; i++) {
4040 		if (zone_movable_pfn[i])
4041 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4042 	}
4043 
4044 	/* Print out the early_node_map[] */
4045 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4046 	for (i = 0; i < nr_nodemap_entries; i++)
4047 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4048 						early_node_map[i].start_pfn,
4049 						early_node_map[i].end_pfn);
4050 
4051 	/* Initialise every node */
4052 	mminit_verify_pageflags_layout();
4053 	setup_nr_node_ids();
4054 	for_each_online_node(nid) {
4055 		pg_data_t *pgdat = NODE_DATA(nid);
4056 		free_area_init_node(nid, NULL,
4057 				find_min_pfn_for_node(nid), NULL);
4058 
4059 		/* Any memory on that node */
4060 		if (pgdat->node_present_pages)
4061 			node_set_state(nid, N_HIGH_MEMORY);
4062 		check_for_regular_memory(pgdat);
4063 	}
4064 }
4065 
4066 static int __init cmdline_parse_core(char *p, unsigned long *core)
4067 {
4068 	unsigned long long coremem;
4069 	if (!p)
4070 		return -EINVAL;
4071 
4072 	coremem = memparse(p, &p);
4073 	*core = coremem >> PAGE_SHIFT;
4074 
4075 	/* Paranoid check that UL is enough for the coremem value */
4076 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4077 
4078 	return 0;
4079 }
4080 
4081 /*
4082  * kernelcore=size sets the amount of memory for use for allocations that
4083  * cannot be reclaimed or migrated.
4084  */
4085 static int __init cmdline_parse_kernelcore(char *p)
4086 {
4087 	return cmdline_parse_core(p, &required_kernelcore);
4088 }
4089 
4090 /*
4091  * movablecore=size sets the amount of memory for use for allocations that
4092  * can be reclaimed or migrated.
4093  */
4094 static int __init cmdline_parse_movablecore(char *p)
4095 {
4096 	return cmdline_parse_core(p, &required_movablecore);
4097 }
4098 
4099 early_param("kernelcore", cmdline_parse_kernelcore);
4100 early_param("movablecore", cmdline_parse_movablecore);
4101 
4102 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4103 
4104 /**
4105  * set_dma_reserve - set the specified number of pages reserved in the first zone
4106  * @new_dma_reserve: The number of pages to mark reserved
4107  *
4108  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4109  * In the DMA zone, a significant percentage may be consumed by kernel image
4110  * and other unfreeable allocations which can skew the watermarks badly. This
4111  * function may optionally be used to account for unfreeable pages in the
4112  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4113  * smaller per-cpu batchsize.
4114  */
4115 void __init set_dma_reserve(unsigned long new_dma_reserve)
4116 {
4117 	dma_reserve = new_dma_reserve;
4118 }
4119 
4120 #ifndef CONFIG_NEED_MULTIPLE_NODES
4121 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4122 EXPORT_SYMBOL(contig_page_data);
4123 #endif
4124 
4125 void __init free_area_init(unsigned long *zones_size)
4126 {
4127 	free_area_init_node(0, zones_size,
4128 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4129 }
4130 
4131 static int page_alloc_cpu_notify(struct notifier_block *self,
4132 				 unsigned long action, void *hcpu)
4133 {
4134 	int cpu = (unsigned long)hcpu;
4135 
4136 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4137 		drain_pages(cpu);
4138 
4139 		/*
4140 		 * Spill the event counters of the dead processor
4141 		 * into the current processors event counters.
4142 		 * This artificially elevates the count of the current
4143 		 * processor.
4144 		 */
4145 		vm_events_fold_cpu(cpu);
4146 
4147 		/*
4148 		 * Zero the differential counters of the dead processor
4149 		 * so that the vm statistics are consistent.
4150 		 *
4151 		 * This is only okay since the processor is dead and cannot
4152 		 * race with what we are doing.
4153 		 */
4154 		refresh_cpu_vm_stats(cpu);
4155 	}
4156 	return NOTIFY_OK;
4157 }
4158 
4159 void __init page_alloc_init(void)
4160 {
4161 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4162 }
4163 
4164 /*
4165  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4166  *	or min_free_kbytes changes.
4167  */
4168 static void calculate_totalreserve_pages(void)
4169 {
4170 	struct pglist_data *pgdat;
4171 	unsigned long reserve_pages = 0;
4172 	enum zone_type i, j;
4173 
4174 	for_each_online_pgdat(pgdat) {
4175 		for (i = 0; i < MAX_NR_ZONES; i++) {
4176 			struct zone *zone = pgdat->node_zones + i;
4177 			unsigned long max = 0;
4178 
4179 			/* Find valid and maximum lowmem_reserve in the zone */
4180 			for (j = i; j < MAX_NR_ZONES; j++) {
4181 				if (zone->lowmem_reserve[j] > max)
4182 					max = zone->lowmem_reserve[j];
4183 			}
4184 
4185 			/* we treat pages_high as reserved pages. */
4186 			max += zone->pages_high;
4187 
4188 			if (max > zone->present_pages)
4189 				max = zone->present_pages;
4190 			reserve_pages += max;
4191 		}
4192 	}
4193 	totalreserve_pages = reserve_pages;
4194 }
4195 
4196 /*
4197  * setup_per_zone_lowmem_reserve - called whenever
4198  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4199  *	has a correct pages reserved value, so an adequate number of
4200  *	pages are left in the zone after a successful __alloc_pages().
4201  */
4202 static void setup_per_zone_lowmem_reserve(void)
4203 {
4204 	struct pglist_data *pgdat;
4205 	enum zone_type j, idx;
4206 
4207 	for_each_online_pgdat(pgdat) {
4208 		for (j = 0; j < MAX_NR_ZONES; j++) {
4209 			struct zone *zone = pgdat->node_zones + j;
4210 			unsigned long present_pages = zone->present_pages;
4211 
4212 			zone->lowmem_reserve[j] = 0;
4213 
4214 			idx = j;
4215 			while (idx) {
4216 				struct zone *lower_zone;
4217 
4218 				idx--;
4219 
4220 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4221 					sysctl_lowmem_reserve_ratio[idx] = 1;
4222 
4223 				lower_zone = pgdat->node_zones + idx;
4224 				lower_zone->lowmem_reserve[j] = present_pages /
4225 					sysctl_lowmem_reserve_ratio[idx];
4226 				present_pages += lower_zone->present_pages;
4227 			}
4228 		}
4229 	}
4230 
4231 	/* update totalreserve_pages */
4232 	calculate_totalreserve_pages();
4233 }
4234 
4235 /**
4236  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4237  *
4238  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4239  * with respect to min_free_kbytes.
4240  */
4241 void setup_per_zone_pages_min(void)
4242 {
4243 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4244 	unsigned long lowmem_pages = 0;
4245 	struct zone *zone;
4246 	unsigned long flags;
4247 
4248 	/* Calculate total number of !ZONE_HIGHMEM pages */
4249 	for_each_zone(zone) {
4250 		if (!is_highmem(zone))
4251 			lowmem_pages += zone->present_pages;
4252 	}
4253 
4254 	for_each_zone(zone) {
4255 		u64 tmp;
4256 
4257 		spin_lock_irqsave(&zone->lock, flags);
4258 		tmp = (u64)pages_min * zone->present_pages;
4259 		do_div(tmp, lowmem_pages);
4260 		if (is_highmem(zone)) {
4261 			/*
4262 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4263 			 * need highmem pages, so cap pages_min to a small
4264 			 * value here.
4265 			 *
4266 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4267 			 * deltas controls asynch page reclaim, and so should
4268 			 * not be capped for highmem.
4269 			 */
4270 			int min_pages;
4271 
4272 			min_pages = zone->present_pages / 1024;
4273 			if (min_pages < SWAP_CLUSTER_MAX)
4274 				min_pages = SWAP_CLUSTER_MAX;
4275 			if (min_pages > 128)
4276 				min_pages = 128;
4277 			zone->pages_min = min_pages;
4278 		} else {
4279 			/*
4280 			 * If it's a lowmem zone, reserve a number of pages
4281 			 * proportionate to the zone's size.
4282 			 */
4283 			zone->pages_min = tmp;
4284 		}
4285 
4286 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4287 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4288 		setup_zone_migrate_reserve(zone);
4289 		spin_unlock_irqrestore(&zone->lock, flags);
4290 	}
4291 
4292 	/* update totalreserve_pages */
4293 	calculate_totalreserve_pages();
4294 }
4295 
4296 /**
4297  * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4298  *
4299  * The inactive anon list should be small enough that the VM never has to
4300  * do too much work, but large enough that each inactive page has a chance
4301  * to be referenced again before it is swapped out.
4302  *
4303  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4304  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4305  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4306  * the anonymous pages are kept on the inactive list.
4307  *
4308  * total     target    max
4309  * memory    ratio     inactive anon
4310  * -------------------------------------
4311  *   10MB       1         5MB
4312  *  100MB       1        50MB
4313  *    1GB       3       250MB
4314  *   10GB      10       0.9GB
4315  *  100GB      31         3GB
4316  *    1TB     101        10GB
4317  *   10TB     320        32GB
4318  */
4319 void setup_per_zone_inactive_ratio(void)
4320 {
4321 	struct zone *zone;
4322 
4323 	for_each_zone(zone) {
4324 		unsigned int gb, ratio;
4325 
4326 		/* Zone size in gigabytes */
4327 		gb = zone->present_pages >> (30 - PAGE_SHIFT);
4328 		ratio = int_sqrt(10 * gb);
4329 		if (!ratio)
4330 			ratio = 1;
4331 
4332 		zone->inactive_ratio = ratio;
4333 	}
4334 }
4335 
4336 /*
4337  * Initialise min_free_kbytes.
4338  *
4339  * For small machines we want it small (128k min).  For large machines
4340  * we want it large (64MB max).  But it is not linear, because network
4341  * bandwidth does not increase linearly with machine size.  We use
4342  *
4343  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4344  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4345  *
4346  * which yields
4347  *
4348  * 16MB:	512k
4349  * 32MB:	724k
4350  * 64MB:	1024k
4351  * 128MB:	1448k
4352  * 256MB:	2048k
4353  * 512MB:	2896k
4354  * 1024MB:	4096k
4355  * 2048MB:	5792k
4356  * 4096MB:	8192k
4357  * 8192MB:	11584k
4358  * 16384MB:	16384k
4359  */
4360 static int __init init_per_zone_pages_min(void)
4361 {
4362 	unsigned long lowmem_kbytes;
4363 
4364 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4365 
4366 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4367 	if (min_free_kbytes < 128)
4368 		min_free_kbytes = 128;
4369 	if (min_free_kbytes > 65536)
4370 		min_free_kbytes = 65536;
4371 	setup_per_zone_pages_min();
4372 	setup_per_zone_lowmem_reserve();
4373 	setup_per_zone_inactive_ratio();
4374 	return 0;
4375 }
4376 module_init(init_per_zone_pages_min)
4377 
4378 /*
4379  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4380  *	that we can call two helper functions whenever min_free_kbytes
4381  *	changes.
4382  */
4383 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4384 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4385 {
4386 	proc_dointvec(table, write, file, buffer, length, ppos);
4387 	if (write)
4388 		setup_per_zone_pages_min();
4389 	return 0;
4390 }
4391 
4392 #ifdef CONFIG_NUMA
4393 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4394 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4395 {
4396 	struct zone *zone;
4397 	int rc;
4398 
4399 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4400 	if (rc)
4401 		return rc;
4402 
4403 	for_each_zone(zone)
4404 		zone->min_unmapped_pages = (zone->present_pages *
4405 				sysctl_min_unmapped_ratio) / 100;
4406 	return 0;
4407 }
4408 
4409 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4410 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4411 {
4412 	struct zone *zone;
4413 	int rc;
4414 
4415 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4416 	if (rc)
4417 		return rc;
4418 
4419 	for_each_zone(zone)
4420 		zone->min_slab_pages = (zone->present_pages *
4421 				sysctl_min_slab_ratio) / 100;
4422 	return 0;
4423 }
4424 #endif
4425 
4426 /*
4427  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4428  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4429  *	whenever sysctl_lowmem_reserve_ratio changes.
4430  *
4431  * The reserve ratio obviously has absolutely no relation with the
4432  * pages_min watermarks. The lowmem reserve ratio can only make sense
4433  * if in function of the boot time zone sizes.
4434  */
4435 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4436 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4437 {
4438 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4439 	setup_per_zone_lowmem_reserve();
4440 	return 0;
4441 }
4442 
4443 /*
4444  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4445  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4446  * can have before it gets flushed back to buddy allocator.
4447  */
4448 
4449 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4450 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4451 {
4452 	struct zone *zone;
4453 	unsigned int cpu;
4454 	int ret;
4455 
4456 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4457 	if (!write || (ret == -EINVAL))
4458 		return ret;
4459 	for_each_zone(zone) {
4460 		for_each_online_cpu(cpu) {
4461 			unsigned long  high;
4462 			high = zone->present_pages / percpu_pagelist_fraction;
4463 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4464 		}
4465 	}
4466 	return 0;
4467 }
4468 
4469 int hashdist = HASHDIST_DEFAULT;
4470 
4471 #ifdef CONFIG_NUMA
4472 static int __init set_hashdist(char *str)
4473 {
4474 	if (!str)
4475 		return 0;
4476 	hashdist = simple_strtoul(str, &str, 0);
4477 	return 1;
4478 }
4479 __setup("hashdist=", set_hashdist);
4480 #endif
4481 
4482 /*
4483  * allocate a large system hash table from bootmem
4484  * - it is assumed that the hash table must contain an exact power-of-2
4485  *   quantity of entries
4486  * - limit is the number of hash buckets, not the total allocation size
4487  */
4488 void *__init alloc_large_system_hash(const char *tablename,
4489 				     unsigned long bucketsize,
4490 				     unsigned long numentries,
4491 				     int scale,
4492 				     int flags,
4493 				     unsigned int *_hash_shift,
4494 				     unsigned int *_hash_mask,
4495 				     unsigned long limit)
4496 {
4497 	unsigned long long max = limit;
4498 	unsigned long log2qty, size;
4499 	void *table = NULL;
4500 
4501 	/* allow the kernel cmdline to have a say */
4502 	if (!numentries) {
4503 		/* round applicable memory size up to nearest megabyte */
4504 		numentries = nr_kernel_pages;
4505 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4506 		numentries >>= 20 - PAGE_SHIFT;
4507 		numentries <<= 20 - PAGE_SHIFT;
4508 
4509 		/* limit to 1 bucket per 2^scale bytes of low memory */
4510 		if (scale > PAGE_SHIFT)
4511 			numentries >>= (scale - PAGE_SHIFT);
4512 		else
4513 			numentries <<= (PAGE_SHIFT - scale);
4514 
4515 		/* Make sure we've got at least a 0-order allocation.. */
4516 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4517 			numentries = PAGE_SIZE / bucketsize;
4518 	}
4519 	numentries = roundup_pow_of_two(numentries);
4520 
4521 	/* limit allocation size to 1/16 total memory by default */
4522 	if (max == 0) {
4523 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4524 		do_div(max, bucketsize);
4525 	}
4526 
4527 	if (numentries > max)
4528 		numentries = max;
4529 
4530 	log2qty = ilog2(numentries);
4531 
4532 	do {
4533 		size = bucketsize << log2qty;
4534 		if (flags & HASH_EARLY)
4535 			table = alloc_bootmem_nopanic(size);
4536 		else if (hashdist)
4537 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4538 		else {
4539 			unsigned long order = get_order(size);
4540 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4541 			/*
4542 			 * If bucketsize is not a power-of-two, we may free
4543 			 * some pages at the end of hash table.
4544 			 */
4545 			if (table) {
4546 				unsigned long alloc_end = (unsigned long)table +
4547 						(PAGE_SIZE << order);
4548 				unsigned long used = (unsigned long)table +
4549 						PAGE_ALIGN(size);
4550 				split_page(virt_to_page(table), order);
4551 				while (used < alloc_end) {
4552 					free_page(used);
4553 					used += PAGE_SIZE;
4554 				}
4555 			}
4556 		}
4557 	} while (!table && size > PAGE_SIZE && --log2qty);
4558 
4559 	if (!table)
4560 		panic("Failed to allocate %s hash table\n", tablename);
4561 
4562 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4563 	       tablename,
4564 	       (1U << log2qty),
4565 	       ilog2(size) - PAGE_SHIFT,
4566 	       size);
4567 
4568 	if (_hash_shift)
4569 		*_hash_shift = log2qty;
4570 	if (_hash_mask)
4571 		*_hash_mask = (1 << log2qty) - 1;
4572 
4573 	return table;
4574 }
4575 
4576 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4577 struct page *pfn_to_page(unsigned long pfn)
4578 {
4579 	return __pfn_to_page(pfn);
4580 }
4581 unsigned long page_to_pfn(struct page *page)
4582 {
4583 	return __page_to_pfn(page);
4584 }
4585 EXPORT_SYMBOL(pfn_to_page);
4586 EXPORT_SYMBOL(page_to_pfn);
4587 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4588 
4589 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4590 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4591 							unsigned long pfn)
4592 {
4593 #ifdef CONFIG_SPARSEMEM
4594 	return __pfn_to_section(pfn)->pageblock_flags;
4595 #else
4596 	return zone->pageblock_flags;
4597 #endif /* CONFIG_SPARSEMEM */
4598 }
4599 
4600 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4601 {
4602 #ifdef CONFIG_SPARSEMEM
4603 	pfn &= (PAGES_PER_SECTION-1);
4604 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4605 #else
4606 	pfn = pfn - zone->zone_start_pfn;
4607 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4608 #endif /* CONFIG_SPARSEMEM */
4609 }
4610 
4611 /**
4612  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4613  * @page: The page within the block of interest
4614  * @start_bitidx: The first bit of interest to retrieve
4615  * @end_bitidx: The last bit of interest
4616  * returns pageblock_bits flags
4617  */
4618 unsigned long get_pageblock_flags_group(struct page *page,
4619 					int start_bitidx, int end_bitidx)
4620 {
4621 	struct zone *zone;
4622 	unsigned long *bitmap;
4623 	unsigned long pfn, bitidx;
4624 	unsigned long flags = 0;
4625 	unsigned long value = 1;
4626 
4627 	zone = page_zone(page);
4628 	pfn = page_to_pfn(page);
4629 	bitmap = get_pageblock_bitmap(zone, pfn);
4630 	bitidx = pfn_to_bitidx(zone, pfn);
4631 
4632 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4633 		if (test_bit(bitidx + start_bitidx, bitmap))
4634 			flags |= value;
4635 
4636 	return flags;
4637 }
4638 
4639 /**
4640  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4641  * @page: The page within the block of interest
4642  * @start_bitidx: The first bit of interest
4643  * @end_bitidx: The last bit of interest
4644  * @flags: The flags to set
4645  */
4646 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4647 					int start_bitidx, int end_bitidx)
4648 {
4649 	struct zone *zone;
4650 	unsigned long *bitmap;
4651 	unsigned long pfn, bitidx;
4652 	unsigned long value = 1;
4653 
4654 	zone = page_zone(page);
4655 	pfn = page_to_pfn(page);
4656 	bitmap = get_pageblock_bitmap(zone, pfn);
4657 	bitidx = pfn_to_bitidx(zone, pfn);
4658 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4659 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4660 
4661 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4662 		if (flags & value)
4663 			__set_bit(bitidx + start_bitidx, bitmap);
4664 		else
4665 			__clear_bit(bitidx + start_bitidx, bitmap);
4666 }
4667 
4668 /*
4669  * This is designed as sub function...plz see page_isolation.c also.
4670  * set/clear page block's type to be ISOLATE.
4671  * page allocater never alloc memory from ISOLATE block.
4672  */
4673 
4674 int set_migratetype_isolate(struct page *page)
4675 {
4676 	struct zone *zone;
4677 	unsigned long flags;
4678 	int ret = -EBUSY;
4679 
4680 	zone = page_zone(page);
4681 	spin_lock_irqsave(&zone->lock, flags);
4682 	/*
4683 	 * In future, more migrate types will be able to be isolation target.
4684 	 */
4685 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4686 		goto out;
4687 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4688 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4689 	ret = 0;
4690 out:
4691 	spin_unlock_irqrestore(&zone->lock, flags);
4692 	if (!ret)
4693 		drain_all_pages();
4694 	return ret;
4695 }
4696 
4697 void unset_migratetype_isolate(struct page *page)
4698 {
4699 	struct zone *zone;
4700 	unsigned long flags;
4701 	zone = page_zone(page);
4702 	spin_lock_irqsave(&zone->lock, flags);
4703 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4704 		goto out;
4705 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4706 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4707 out:
4708 	spin_unlock_irqrestore(&zone->lock, flags);
4709 }
4710 
4711 #ifdef CONFIG_MEMORY_HOTREMOVE
4712 /*
4713  * All pages in the range must be isolated before calling this.
4714  */
4715 void
4716 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4717 {
4718 	struct page *page;
4719 	struct zone *zone;
4720 	int order, i;
4721 	unsigned long pfn;
4722 	unsigned long flags;
4723 	/* find the first valid pfn */
4724 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4725 		if (pfn_valid(pfn))
4726 			break;
4727 	if (pfn == end_pfn)
4728 		return;
4729 	zone = page_zone(pfn_to_page(pfn));
4730 	spin_lock_irqsave(&zone->lock, flags);
4731 	pfn = start_pfn;
4732 	while (pfn < end_pfn) {
4733 		if (!pfn_valid(pfn)) {
4734 			pfn++;
4735 			continue;
4736 		}
4737 		page = pfn_to_page(pfn);
4738 		BUG_ON(page_count(page));
4739 		BUG_ON(!PageBuddy(page));
4740 		order = page_order(page);
4741 #ifdef CONFIG_DEBUG_VM
4742 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4743 		       pfn, 1 << order, end_pfn);
4744 #endif
4745 		list_del(&page->lru);
4746 		rmv_page_order(page);
4747 		zone->free_area[order].nr_free--;
4748 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4749 				      - (1UL << order));
4750 		for (i = 0; i < (1 << order); i++)
4751 			SetPageReserved((page+i));
4752 		pfn += (1 << order);
4753 	}
4754 	spin_unlock_irqrestore(&zone->lock, flags);
4755 }
4756 #endif
4757