1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/oom.h> 32 #include <linux/notifier.h> 33 #include <linux/topology.h> 34 #include <linux/sysctl.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/memory_hotplug.h> 38 #include <linux/nodemask.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mempolicy.h> 41 #include <linux/stop_machine.h> 42 #include <linux/sort.h> 43 #include <linux/pfn.h> 44 #include <linux/backing-dev.h> 45 #include <linux/fault-inject.h> 46 #include <linux/page-isolation.h> 47 #include <linux/page_cgroup.h> 48 #include <linux/debugobjects.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 #include "internal.h" 53 54 /* 55 * Array of node states. 56 */ 57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 58 [N_POSSIBLE] = NODE_MASK_ALL, 59 [N_ONLINE] = { { [0] = 1UL } }, 60 #ifndef CONFIG_NUMA 61 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 62 #ifdef CONFIG_HIGHMEM 63 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 64 #endif 65 [N_CPU] = { { [0] = 1UL } }, 66 #endif /* NUMA */ 67 }; 68 EXPORT_SYMBOL(node_states); 69 70 unsigned long totalram_pages __read_mostly; 71 unsigned long totalreserve_pages __read_mostly; 72 long nr_swap_pages; 73 int percpu_pagelist_fraction; 74 75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 76 int pageblock_order __read_mostly; 77 #endif 78 79 static void __free_pages_ok(struct page *page, unsigned int order); 80 81 /* 82 * results with 256, 32 in the lowmem_reserve sysctl: 83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 84 * 1G machine -> (16M dma, 784M normal, 224M high) 85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 88 * 89 * TBD: should special case ZONE_DMA32 machines here - in those we normally 90 * don't need any ZONE_NORMAL reservation 91 */ 92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 93 #ifdef CONFIG_ZONE_DMA 94 256, 95 #endif 96 #ifdef CONFIG_ZONE_DMA32 97 256, 98 #endif 99 #ifdef CONFIG_HIGHMEM 100 32, 101 #endif 102 32, 103 }; 104 105 EXPORT_SYMBOL(totalram_pages); 106 107 static char * const zone_names[MAX_NR_ZONES] = { 108 #ifdef CONFIG_ZONE_DMA 109 "DMA", 110 #endif 111 #ifdef CONFIG_ZONE_DMA32 112 "DMA32", 113 #endif 114 "Normal", 115 #ifdef CONFIG_HIGHMEM 116 "HighMem", 117 #endif 118 "Movable", 119 }; 120 121 int min_free_kbytes = 1024; 122 123 unsigned long __meminitdata nr_kernel_pages; 124 unsigned long __meminitdata nr_all_pages; 125 static unsigned long __meminitdata dma_reserve; 126 127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 128 /* 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 130 * ranges of memory (RAM) that may be registered with add_active_range(). 131 * Ranges passed to add_active_range() will be merged if possible 132 * so the number of times add_active_range() can be called is 133 * related to the number of nodes and the number of holes 134 */ 135 #ifdef CONFIG_MAX_ACTIVE_REGIONS 136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 138 #else 139 #if MAX_NUMNODES >= 32 140 /* If there can be many nodes, allow up to 50 holes per node */ 141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 142 #else 143 /* By default, allow up to 256 distinct regions */ 144 #define MAX_ACTIVE_REGIONS 256 145 #endif 146 #endif 147 148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 149 static int __meminitdata nr_nodemap_entries; 150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 156 static unsigned long __initdata required_kernelcore; 157 static unsigned long __initdata required_movablecore; 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 159 160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 161 int movable_zone; 162 EXPORT_SYMBOL(movable_zone); 163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 164 165 #if MAX_NUMNODES > 1 166 int nr_node_ids __read_mostly = MAX_NUMNODES; 167 EXPORT_SYMBOL(nr_node_ids); 168 #endif 169 170 int page_group_by_mobility_disabled __read_mostly; 171 172 static void set_pageblock_migratetype(struct page *page, int migratetype) 173 { 174 set_pageblock_flags_group(page, (unsigned long)migratetype, 175 PB_migrate, PB_migrate_end); 176 } 177 178 #ifdef CONFIG_DEBUG_VM 179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 180 { 181 int ret = 0; 182 unsigned seq; 183 unsigned long pfn = page_to_pfn(page); 184 185 do { 186 seq = zone_span_seqbegin(zone); 187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 188 ret = 1; 189 else if (pfn < zone->zone_start_pfn) 190 ret = 1; 191 } while (zone_span_seqretry(zone, seq)); 192 193 return ret; 194 } 195 196 static int page_is_consistent(struct zone *zone, struct page *page) 197 { 198 if (!pfn_valid_within(page_to_pfn(page))) 199 return 0; 200 if (zone != page_zone(page)) 201 return 0; 202 203 return 1; 204 } 205 /* 206 * Temporary debugging check for pages not lying within a given zone. 207 */ 208 static int bad_range(struct zone *zone, struct page *page) 209 { 210 if (page_outside_zone_boundaries(zone, page)) 211 return 1; 212 if (!page_is_consistent(zone, page)) 213 return 1; 214 215 return 0; 216 } 217 #else 218 static inline int bad_range(struct zone *zone, struct page *page) 219 { 220 return 0; 221 } 222 #endif 223 224 static void bad_page(struct page *page) 225 { 226 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG 227 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 228 current->comm, page, (int)(2*sizeof(unsigned long)), 229 (unsigned long)page->flags, page->mapping, 230 page_mapcount(page), page_count(page)); 231 232 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 233 KERN_EMERG "Backtrace:\n"); 234 dump_stack(); 235 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD; 236 set_page_count(page, 0); 237 reset_page_mapcount(page); 238 page->mapping = NULL; 239 add_taint(TAINT_BAD_PAGE); 240 } 241 242 /* 243 * Higher-order pages are called "compound pages". They are structured thusly: 244 * 245 * The first PAGE_SIZE page is called the "head page". 246 * 247 * The remaining PAGE_SIZE pages are called "tail pages". 248 * 249 * All pages have PG_compound set. All pages have their ->private pointing at 250 * the head page (even the head page has this). 251 * 252 * The first tail page's ->lru.next holds the address of the compound page's 253 * put_page() function. Its ->lru.prev holds the order of allocation. 254 * This usage means that zero-order pages may not be compound. 255 */ 256 257 static void free_compound_page(struct page *page) 258 { 259 __free_pages_ok(page, compound_order(page)); 260 } 261 262 void prep_compound_page(struct page *page, unsigned long order) 263 { 264 int i; 265 int nr_pages = 1 << order; 266 267 set_compound_page_dtor(page, free_compound_page); 268 set_compound_order(page, order); 269 __SetPageHead(page); 270 for (i = 1; i < nr_pages; i++) { 271 struct page *p = page + i; 272 273 __SetPageTail(p); 274 p->first_page = page; 275 } 276 } 277 278 #ifdef CONFIG_HUGETLBFS 279 void prep_compound_gigantic_page(struct page *page, unsigned long order) 280 { 281 int i; 282 int nr_pages = 1 << order; 283 struct page *p = page + 1; 284 285 set_compound_page_dtor(page, free_compound_page); 286 set_compound_order(page, order); 287 __SetPageHead(page); 288 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 289 __SetPageTail(p); 290 p->first_page = page; 291 } 292 } 293 #endif 294 295 static void destroy_compound_page(struct page *page, unsigned long order) 296 { 297 int i; 298 int nr_pages = 1 << order; 299 300 if (unlikely(compound_order(page) != order)) 301 bad_page(page); 302 303 if (unlikely(!PageHead(page))) 304 bad_page(page); 305 __ClearPageHead(page); 306 for (i = 1; i < nr_pages; i++) { 307 struct page *p = page + i; 308 309 if (unlikely(!PageTail(p) | 310 (p->first_page != page))) 311 bad_page(page); 312 __ClearPageTail(p); 313 } 314 } 315 316 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 317 { 318 int i; 319 320 /* 321 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 322 * and __GFP_HIGHMEM from hard or soft interrupt context. 323 */ 324 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 325 for (i = 0; i < (1 << order); i++) 326 clear_highpage(page + i); 327 } 328 329 static inline void set_page_order(struct page *page, int order) 330 { 331 set_page_private(page, order); 332 __SetPageBuddy(page); 333 } 334 335 static inline void rmv_page_order(struct page *page) 336 { 337 __ClearPageBuddy(page); 338 set_page_private(page, 0); 339 } 340 341 /* 342 * Locate the struct page for both the matching buddy in our 343 * pair (buddy1) and the combined O(n+1) page they form (page). 344 * 345 * 1) Any buddy B1 will have an order O twin B2 which satisfies 346 * the following equation: 347 * B2 = B1 ^ (1 << O) 348 * For example, if the starting buddy (buddy2) is #8 its order 349 * 1 buddy is #10: 350 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 351 * 352 * 2) Any buddy B will have an order O+1 parent P which 353 * satisfies the following equation: 354 * P = B & ~(1 << O) 355 * 356 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 357 */ 358 static inline struct page * 359 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 360 { 361 unsigned long buddy_idx = page_idx ^ (1 << order); 362 363 return page + (buddy_idx - page_idx); 364 } 365 366 static inline unsigned long 367 __find_combined_index(unsigned long page_idx, unsigned int order) 368 { 369 return (page_idx & ~(1 << order)); 370 } 371 372 /* 373 * This function checks whether a page is free && is the buddy 374 * we can do coalesce a page and its buddy if 375 * (a) the buddy is not in a hole && 376 * (b) the buddy is in the buddy system && 377 * (c) a page and its buddy have the same order && 378 * (d) a page and its buddy are in the same zone. 379 * 380 * For recording whether a page is in the buddy system, we use PG_buddy. 381 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 382 * 383 * For recording page's order, we use page_private(page). 384 */ 385 static inline int page_is_buddy(struct page *page, struct page *buddy, 386 int order) 387 { 388 if (!pfn_valid_within(page_to_pfn(buddy))) 389 return 0; 390 391 if (page_zone_id(page) != page_zone_id(buddy)) 392 return 0; 393 394 if (PageBuddy(buddy) && page_order(buddy) == order) { 395 BUG_ON(page_count(buddy) != 0); 396 return 1; 397 } 398 return 0; 399 } 400 401 /* 402 * Freeing function for a buddy system allocator. 403 * 404 * The concept of a buddy system is to maintain direct-mapped table 405 * (containing bit values) for memory blocks of various "orders". 406 * The bottom level table contains the map for the smallest allocatable 407 * units of memory (here, pages), and each level above it describes 408 * pairs of units from the levels below, hence, "buddies". 409 * At a high level, all that happens here is marking the table entry 410 * at the bottom level available, and propagating the changes upward 411 * as necessary, plus some accounting needed to play nicely with other 412 * parts of the VM system. 413 * At each level, we keep a list of pages, which are heads of continuous 414 * free pages of length of (1 << order) and marked with PG_buddy. Page's 415 * order is recorded in page_private(page) field. 416 * So when we are allocating or freeing one, we can derive the state of the 417 * other. That is, if we allocate a small block, and both were 418 * free, the remainder of the region must be split into blocks. 419 * If a block is freed, and its buddy is also free, then this 420 * triggers coalescing into a block of larger size. 421 * 422 * -- wli 423 */ 424 425 static inline void __free_one_page(struct page *page, 426 struct zone *zone, unsigned int order) 427 { 428 unsigned long page_idx; 429 int order_size = 1 << order; 430 int migratetype = get_pageblock_migratetype(page); 431 432 if (unlikely(PageCompound(page))) 433 destroy_compound_page(page, order); 434 435 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 436 437 VM_BUG_ON(page_idx & (order_size - 1)); 438 VM_BUG_ON(bad_range(zone, page)); 439 440 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 441 while (order < MAX_ORDER-1) { 442 unsigned long combined_idx; 443 struct page *buddy; 444 445 buddy = __page_find_buddy(page, page_idx, order); 446 if (!page_is_buddy(page, buddy, order)) 447 break; 448 449 /* Our buddy is free, merge with it and move up one order. */ 450 list_del(&buddy->lru); 451 zone->free_area[order].nr_free--; 452 rmv_page_order(buddy); 453 combined_idx = __find_combined_index(page_idx, order); 454 page = page + (combined_idx - page_idx); 455 page_idx = combined_idx; 456 order++; 457 } 458 set_page_order(page, order); 459 list_add(&page->lru, 460 &zone->free_area[order].free_list[migratetype]); 461 zone->free_area[order].nr_free++; 462 } 463 464 static inline int free_pages_check(struct page *page) 465 { 466 free_page_mlock(page); 467 if (unlikely(page_mapcount(page) | 468 (page->mapping != NULL) | 469 (page_count(page) != 0) | 470 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) 471 bad_page(page); 472 if (PageDirty(page)) 473 __ClearPageDirty(page); 474 if (PageSwapBacked(page)) 475 __ClearPageSwapBacked(page); 476 /* 477 * For now, we report if PG_reserved was found set, but do not 478 * clear it, and do not free the page. But we shall soon need 479 * to do more, for when the ZERO_PAGE count wraps negative. 480 */ 481 return PageReserved(page); 482 } 483 484 /* 485 * Frees a list of pages. 486 * Assumes all pages on list are in same zone, and of same order. 487 * count is the number of pages to free. 488 * 489 * If the zone was previously in an "all pages pinned" state then look to 490 * see if this freeing clears that state. 491 * 492 * And clear the zone's pages_scanned counter, to hold off the "all pages are 493 * pinned" detection logic. 494 */ 495 static void free_pages_bulk(struct zone *zone, int count, 496 struct list_head *list, int order) 497 { 498 spin_lock(&zone->lock); 499 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 500 zone->pages_scanned = 0; 501 while (count--) { 502 struct page *page; 503 504 VM_BUG_ON(list_empty(list)); 505 page = list_entry(list->prev, struct page, lru); 506 /* have to delete it as __free_one_page list manipulates */ 507 list_del(&page->lru); 508 __free_one_page(page, zone, order); 509 } 510 spin_unlock(&zone->lock); 511 } 512 513 static void free_one_page(struct zone *zone, struct page *page, int order) 514 { 515 spin_lock(&zone->lock); 516 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 517 zone->pages_scanned = 0; 518 __free_one_page(page, zone, order); 519 spin_unlock(&zone->lock); 520 } 521 522 static void __free_pages_ok(struct page *page, unsigned int order) 523 { 524 unsigned long flags; 525 int i; 526 int reserved = 0; 527 528 for (i = 0 ; i < (1 << order) ; ++i) 529 reserved += free_pages_check(page + i); 530 if (reserved) 531 return; 532 533 if (!PageHighMem(page)) { 534 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 535 debug_check_no_obj_freed(page_address(page), 536 PAGE_SIZE << order); 537 } 538 arch_free_page(page, order); 539 kernel_map_pages(page, 1 << order, 0); 540 541 local_irq_save(flags); 542 __count_vm_events(PGFREE, 1 << order); 543 free_one_page(page_zone(page), page, order); 544 local_irq_restore(flags); 545 } 546 547 /* 548 * permit the bootmem allocator to evade page validation on high-order frees 549 */ 550 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 551 { 552 if (order == 0) { 553 __ClearPageReserved(page); 554 set_page_count(page, 0); 555 set_page_refcounted(page); 556 __free_page(page); 557 } else { 558 int loop; 559 560 prefetchw(page); 561 for (loop = 0; loop < BITS_PER_LONG; loop++) { 562 struct page *p = &page[loop]; 563 564 if (loop + 1 < BITS_PER_LONG) 565 prefetchw(p + 1); 566 __ClearPageReserved(p); 567 set_page_count(p, 0); 568 } 569 570 set_page_refcounted(page); 571 __free_pages(page, order); 572 } 573 } 574 575 576 /* 577 * The order of subdivision here is critical for the IO subsystem. 578 * Please do not alter this order without good reasons and regression 579 * testing. Specifically, as large blocks of memory are subdivided, 580 * the order in which smaller blocks are delivered depends on the order 581 * they're subdivided in this function. This is the primary factor 582 * influencing the order in which pages are delivered to the IO 583 * subsystem according to empirical testing, and this is also justified 584 * by considering the behavior of a buddy system containing a single 585 * large block of memory acted on by a series of small allocations. 586 * This behavior is a critical factor in sglist merging's success. 587 * 588 * -- wli 589 */ 590 static inline void expand(struct zone *zone, struct page *page, 591 int low, int high, struct free_area *area, 592 int migratetype) 593 { 594 unsigned long size = 1 << high; 595 596 while (high > low) { 597 area--; 598 high--; 599 size >>= 1; 600 VM_BUG_ON(bad_range(zone, &page[size])); 601 list_add(&page[size].lru, &area->free_list[migratetype]); 602 area->nr_free++; 603 set_page_order(&page[size], high); 604 } 605 } 606 607 /* 608 * This page is about to be returned from the page allocator 609 */ 610 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 611 { 612 if (unlikely(page_mapcount(page) | 613 (page->mapping != NULL) | 614 (page_count(page) != 0) | 615 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) 616 bad_page(page); 617 618 /* 619 * For now, we report if PG_reserved was found set, but do not 620 * clear it, and do not allocate the page: as a safety net. 621 */ 622 if (PageReserved(page)) 623 return 1; 624 625 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim | 626 1 << PG_referenced | 1 << PG_arch_1 | 627 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk 628 #ifdef CONFIG_UNEVICTABLE_LRU 629 | 1 << PG_mlocked 630 #endif 631 ); 632 set_page_private(page, 0); 633 set_page_refcounted(page); 634 635 arch_alloc_page(page, order); 636 kernel_map_pages(page, 1 << order, 1); 637 638 if (gfp_flags & __GFP_ZERO) 639 prep_zero_page(page, order, gfp_flags); 640 641 if (order && (gfp_flags & __GFP_COMP)) 642 prep_compound_page(page, order); 643 644 return 0; 645 } 646 647 /* 648 * Go through the free lists for the given migratetype and remove 649 * the smallest available page from the freelists 650 */ 651 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 652 int migratetype) 653 { 654 unsigned int current_order; 655 struct free_area * area; 656 struct page *page; 657 658 /* Find a page of the appropriate size in the preferred list */ 659 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 660 area = &(zone->free_area[current_order]); 661 if (list_empty(&area->free_list[migratetype])) 662 continue; 663 664 page = list_entry(area->free_list[migratetype].next, 665 struct page, lru); 666 list_del(&page->lru); 667 rmv_page_order(page); 668 area->nr_free--; 669 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 670 expand(zone, page, order, current_order, area, migratetype); 671 return page; 672 } 673 674 return NULL; 675 } 676 677 678 /* 679 * This array describes the order lists are fallen back to when 680 * the free lists for the desirable migrate type are depleted 681 */ 682 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 683 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 684 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 685 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 686 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 687 }; 688 689 /* 690 * Move the free pages in a range to the free lists of the requested type. 691 * Note that start_page and end_pages are not aligned on a pageblock 692 * boundary. If alignment is required, use move_freepages_block() 693 */ 694 static int move_freepages(struct zone *zone, 695 struct page *start_page, struct page *end_page, 696 int migratetype) 697 { 698 struct page *page; 699 unsigned long order; 700 int pages_moved = 0; 701 702 #ifndef CONFIG_HOLES_IN_ZONE 703 /* 704 * page_zone is not safe to call in this context when 705 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 706 * anyway as we check zone boundaries in move_freepages_block(). 707 * Remove at a later date when no bug reports exist related to 708 * grouping pages by mobility 709 */ 710 BUG_ON(page_zone(start_page) != page_zone(end_page)); 711 #endif 712 713 for (page = start_page; page <= end_page;) { 714 /* Make sure we are not inadvertently changing nodes */ 715 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 716 717 if (!pfn_valid_within(page_to_pfn(page))) { 718 page++; 719 continue; 720 } 721 722 if (!PageBuddy(page)) { 723 page++; 724 continue; 725 } 726 727 order = page_order(page); 728 list_del(&page->lru); 729 list_add(&page->lru, 730 &zone->free_area[order].free_list[migratetype]); 731 page += 1 << order; 732 pages_moved += 1 << order; 733 } 734 735 return pages_moved; 736 } 737 738 static int move_freepages_block(struct zone *zone, struct page *page, 739 int migratetype) 740 { 741 unsigned long start_pfn, end_pfn; 742 struct page *start_page, *end_page; 743 744 start_pfn = page_to_pfn(page); 745 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 746 start_page = pfn_to_page(start_pfn); 747 end_page = start_page + pageblock_nr_pages - 1; 748 end_pfn = start_pfn + pageblock_nr_pages - 1; 749 750 /* Do not cross zone boundaries */ 751 if (start_pfn < zone->zone_start_pfn) 752 start_page = page; 753 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 754 return 0; 755 756 return move_freepages(zone, start_page, end_page, migratetype); 757 } 758 759 /* Remove an element from the buddy allocator from the fallback list */ 760 static struct page *__rmqueue_fallback(struct zone *zone, int order, 761 int start_migratetype) 762 { 763 struct free_area * area; 764 int current_order; 765 struct page *page; 766 int migratetype, i; 767 768 /* Find the largest possible block of pages in the other list */ 769 for (current_order = MAX_ORDER-1; current_order >= order; 770 --current_order) { 771 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 772 migratetype = fallbacks[start_migratetype][i]; 773 774 /* MIGRATE_RESERVE handled later if necessary */ 775 if (migratetype == MIGRATE_RESERVE) 776 continue; 777 778 area = &(zone->free_area[current_order]); 779 if (list_empty(&area->free_list[migratetype])) 780 continue; 781 782 page = list_entry(area->free_list[migratetype].next, 783 struct page, lru); 784 area->nr_free--; 785 786 /* 787 * If breaking a large block of pages, move all free 788 * pages to the preferred allocation list. If falling 789 * back for a reclaimable kernel allocation, be more 790 * agressive about taking ownership of free pages 791 */ 792 if (unlikely(current_order >= (pageblock_order >> 1)) || 793 start_migratetype == MIGRATE_RECLAIMABLE) { 794 unsigned long pages; 795 pages = move_freepages_block(zone, page, 796 start_migratetype); 797 798 /* Claim the whole block if over half of it is free */ 799 if (pages >= (1 << (pageblock_order-1))) 800 set_pageblock_migratetype(page, 801 start_migratetype); 802 803 migratetype = start_migratetype; 804 } 805 806 /* Remove the page from the freelists */ 807 list_del(&page->lru); 808 rmv_page_order(page); 809 __mod_zone_page_state(zone, NR_FREE_PAGES, 810 -(1UL << order)); 811 812 if (current_order == pageblock_order) 813 set_pageblock_migratetype(page, 814 start_migratetype); 815 816 expand(zone, page, order, current_order, area, migratetype); 817 return page; 818 } 819 } 820 821 /* Use MIGRATE_RESERVE rather than fail an allocation */ 822 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 823 } 824 825 /* 826 * Do the hard work of removing an element from the buddy allocator. 827 * Call me with the zone->lock already held. 828 */ 829 static struct page *__rmqueue(struct zone *zone, unsigned int order, 830 int migratetype) 831 { 832 struct page *page; 833 834 page = __rmqueue_smallest(zone, order, migratetype); 835 836 if (unlikely(!page)) 837 page = __rmqueue_fallback(zone, order, migratetype); 838 839 return page; 840 } 841 842 /* 843 * Obtain a specified number of elements from the buddy allocator, all under 844 * a single hold of the lock, for efficiency. Add them to the supplied list. 845 * Returns the number of new pages which were placed at *list. 846 */ 847 static int rmqueue_bulk(struct zone *zone, unsigned int order, 848 unsigned long count, struct list_head *list, 849 int migratetype) 850 { 851 int i; 852 853 spin_lock(&zone->lock); 854 for (i = 0; i < count; ++i) { 855 struct page *page = __rmqueue(zone, order, migratetype); 856 if (unlikely(page == NULL)) 857 break; 858 859 /* 860 * Split buddy pages returned by expand() are received here 861 * in physical page order. The page is added to the callers and 862 * list and the list head then moves forward. From the callers 863 * perspective, the linked list is ordered by page number in 864 * some conditions. This is useful for IO devices that can 865 * merge IO requests if the physical pages are ordered 866 * properly. 867 */ 868 list_add(&page->lru, list); 869 set_page_private(page, migratetype); 870 list = &page->lru; 871 } 872 spin_unlock(&zone->lock); 873 return i; 874 } 875 876 #ifdef CONFIG_NUMA 877 /* 878 * Called from the vmstat counter updater to drain pagesets of this 879 * currently executing processor on remote nodes after they have 880 * expired. 881 * 882 * Note that this function must be called with the thread pinned to 883 * a single processor. 884 */ 885 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 886 { 887 unsigned long flags; 888 int to_drain; 889 890 local_irq_save(flags); 891 if (pcp->count >= pcp->batch) 892 to_drain = pcp->batch; 893 else 894 to_drain = pcp->count; 895 free_pages_bulk(zone, to_drain, &pcp->list, 0); 896 pcp->count -= to_drain; 897 local_irq_restore(flags); 898 } 899 #endif 900 901 /* 902 * Drain pages of the indicated processor. 903 * 904 * The processor must either be the current processor and the 905 * thread pinned to the current processor or a processor that 906 * is not online. 907 */ 908 static void drain_pages(unsigned int cpu) 909 { 910 unsigned long flags; 911 struct zone *zone; 912 913 for_each_zone(zone) { 914 struct per_cpu_pageset *pset; 915 struct per_cpu_pages *pcp; 916 917 if (!populated_zone(zone)) 918 continue; 919 920 pset = zone_pcp(zone, cpu); 921 922 pcp = &pset->pcp; 923 local_irq_save(flags); 924 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 925 pcp->count = 0; 926 local_irq_restore(flags); 927 } 928 } 929 930 /* 931 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 932 */ 933 void drain_local_pages(void *arg) 934 { 935 drain_pages(smp_processor_id()); 936 } 937 938 /* 939 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 940 */ 941 void drain_all_pages(void) 942 { 943 on_each_cpu(drain_local_pages, NULL, 1); 944 } 945 946 #ifdef CONFIG_HIBERNATION 947 948 void mark_free_pages(struct zone *zone) 949 { 950 unsigned long pfn, max_zone_pfn; 951 unsigned long flags; 952 int order, t; 953 struct list_head *curr; 954 955 if (!zone->spanned_pages) 956 return; 957 958 spin_lock_irqsave(&zone->lock, flags); 959 960 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 961 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 962 if (pfn_valid(pfn)) { 963 struct page *page = pfn_to_page(pfn); 964 965 if (!swsusp_page_is_forbidden(page)) 966 swsusp_unset_page_free(page); 967 } 968 969 for_each_migratetype_order(order, t) { 970 list_for_each(curr, &zone->free_area[order].free_list[t]) { 971 unsigned long i; 972 973 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 974 for (i = 0; i < (1UL << order); i++) 975 swsusp_set_page_free(pfn_to_page(pfn + i)); 976 } 977 } 978 spin_unlock_irqrestore(&zone->lock, flags); 979 } 980 #endif /* CONFIG_PM */ 981 982 /* 983 * Free a 0-order page 984 */ 985 static void free_hot_cold_page(struct page *page, int cold) 986 { 987 struct zone *zone = page_zone(page); 988 struct per_cpu_pages *pcp; 989 unsigned long flags; 990 991 if (PageAnon(page)) 992 page->mapping = NULL; 993 if (free_pages_check(page)) 994 return; 995 996 if (!PageHighMem(page)) { 997 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 998 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 999 } 1000 arch_free_page(page, 0); 1001 kernel_map_pages(page, 1, 0); 1002 1003 pcp = &zone_pcp(zone, get_cpu())->pcp; 1004 local_irq_save(flags); 1005 __count_vm_event(PGFREE); 1006 if (cold) 1007 list_add_tail(&page->lru, &pcp->list); 1008 else 1009 list_add(&page->lru, &pcp->list); 1010 set_page_private(page, get_pageblock_migratetype(page)); 1011 pcp->count++; 1012 if (pcp->count >= pcp->high) { 1013 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1014 pcp->count -= pcp->batch; 1015 } 1016 local_irq_restore(flags); 1017 put_cpu(); 1018 } 1019 1020 void free_hot_page(struct page *page) 1021 { 1022 free_hot_cold_page(page, 0); 1023 } 1024 1025 void free_cold_page(struct page *page) 1026 { 1027 free_hot_cold_page(page, 1); 1028 } 1029 1030 /* 1031 * split_page takes a non-compound higher-order page, and splits it into 1032 * n (1<<order) sub-pages: page[0..n] 1033 * Each sub-page must be freed individually. 1034 * 1035 * Note: this is probably too low level an operation for use in drivers. 1036 * Please consult with lkml before using this in your driver. 1037 */ 1038 void split_page(struct page *page, unsigned int order) 1039 { 1040 int i; 1041 1042 VM_BUG_ON(PageCompound(page)); 1043 VM_BUG_ON(!page_count(page)); 1044 for (i = 1; i < (1 << order); i++) 1045 set_page_refcounted(page + i); 1046 } 1047 1048 /* 1049 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1050 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1051 * or two. 1052 */ 1053 static struct page *buffered_rmqueue(struct zone *preferred_zone, 1054 struct zone *zone, int order, gfp_t gfp_flags) 1055 { 1056 unsigned long flags; 1057 struct page *page; 1058 int cold = !!(gfp_flags & __GFP_COLD); 1059 int cpu; 1060 int migratetype = allocflags_to_migratetype(gfp_flags); 1061 1062 again: 1063 cpu = get_cpu(); 1064 if (likely(order == 0)) { 1065 struct per_cpu_pages *pcp; 1066 1067 pcp = &zone_pcp(zone, cpu)->pcp; 1068 local_irq_save(flags); 1069 if (!pcp->count) { 1070 pcp->count = rmqueue_bulk(zone, 0, 1071 pcp->batch, &pcp->list, migratetype); 1072 if (unlikely(!pcp->count)) 1073 goto failed; 1074 } 1075 1076 /* Find a page of the appropriate migrate type */ 1077 if (cold) { 1078 list_for_each_entry_reverse(page, &pcp->list, lru) 1079 if (page_private(page) == migratetype) 1080 break; 1081 } else { 1082 list_for_each_entry(page, &pcp->list, lru) 1083 if (page_private(page) == migratetype) 1084 break; 1085 } 1086 1087 /* Allocate more to the pcp list if necessary */ 1088 if (unlikely(&page->lru == &pcp->list)) { 1089 pcp->count += rmqueue_bulk(zone, 0, 1090 pcp->batch, &pcp->list, migratetype); 1091 page = list_entry(pcp->list.next, struct page, lru); 1092 } 1093 1094 list_del(&page->lru); 1095 pcp->count--; 1096 } else { 1097 spin_lock_irqsave(&zone->lock, flags); 1098 page = __rmqueue(zone, order, migratetype); 1099 spin_unlock(&zone->lock); 1100 if (!page) 1101 goto failed; 1102 } 1103 1104 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1105 zone_statistics(preferred_zone, zone); 1106 local_irq_restore(flags); 1107 put_cpu(); 1108 1109 VM_BUG_ON(bad_range(zone, page)); 1110 if (prep_new_page(page, order, gfp_flags)) 1111 goto again; 1112 return page; 1113 1114 failed: 1115 local_irq_restore(flags); 1116 put_cpu(); 1117 return NULL; 1118 } 1119 1120 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1121 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1122 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1123 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1124 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1125 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1126 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1127 1128 #ifdef CONFIG_FAIL_PAGE_ALLOC 1129 1130 static struct fail_page_alloc_attr { 1131 struct fault_attr attr; 1132 1133 u32 ignore_gfp_highmem; 1134 u32 ignore_gfp_wait; 1135 u32 min_order; 1136 1137 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1138 1139 struct dentry *ignore_gfp_highmem_file; 1140 struct dentry *ignore_gfp_wait_file; 1141 struct dentry *min_order_file; 1142 1143 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1144 1145 } fail_page_alloc = { 1146 .attr = FAULT_ATTR_INITIALIZER, 1147 .ignore_gfp_wait = 1, 1148 .ignore_gfp_highmem = 1, 1149 .min_order = 1, 1150 }; 1151 1152 static int __init setup_fail_page_alloc(char *str) 1153 { 1154 return setup_fault_attr(&fail_page_alloc.attr, str); 1155 } 1156 __setup("fail_page_alloc=", setup_fail_page_alloc); 1157 1158 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1159 { 1160 if (order < fail_page_alloc.min_order) 1161 return 0; 1162 if (gfp_mask & __GFP_NOFAIL) 1163 return 0; 1164 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1165 return 0; 1166 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1167 return 0; 1168 1169 return should_fail(&fail_page_alloc.attr, 1 << order); 1170 } 1171 1172 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1173 1174 static int __init fail_page_alloc_debugfs(void) 1175 { 1176 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1177 struct dentry *dir; 1178 int err; 1179 1180 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1181 "fail_page_alloc"); 1182 if (err) 1183 return err; 1184 dir = fail_page_alloc.attr.dentries.dir; 1185 1186 fail_page_alloc.ignore_gfp_wait_file = 1187 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1188 &fail_page_alloc.ignore_gfp_wait); 1189 1190 fail_page_alloc.ignore_gfp_highmem_file = 1191 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1192 &fail_page_alloc.ignore_gfp_highmem); 1193 fail_page_alloc.min_order_file = 1194 debugfs_create_u32("min-order", mode, dir, 1195 &fail_page_alloc.min_order); 1196 1197 if (!fail_page_alloc.ignore_gfp_wait_file || 1198 !fail_page_alloc.ignore_gfp_highmem_file || 1199 !fail_page_alloc.min_order_file) { 1200 err = -ENOMEM; 1201 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1202 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1203 debugfs_remove(fail_page_alloc.min_order_file); 1204 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1205 } 1206 1207 return err; 1208 } 1209 1210 late_initcall(fail_page_alloc_debugfs); 1211 1212 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1213 1214 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1215 1216 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1217 { 1218 return 0; 1219 } 1220 1221 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1222 1223 /* 1224 * Return 1 if free pages are above 'mark'. This takes into account the order 1225 * of the allocation. 1226 */ 1227 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1228 int classzone_idx, int alloc_flags) 1229 { 1230 /* free_pages my go negative - that's OK */ 1231 long min = mark; 1232 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1233 int o; 1234 1235 if (alloc_flags & ALLOC_HIGH) 1236 min -= min / 2; 1237 if (alloc_flags & ALLOC_HARDER) 1238 min -= min / 4; 1239 1240 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1241 return 0; 1242 for (o = 0; o < order; o++) { 1243 /* At the next order, this order's pages become unavailable */ 1244 free_pages -= z->free_area[o].nr_free << o; 1245 1246 /* Require fewer higher order pages to be free */ 1247 min >>= 1; 1248 1249 if (free_pages <= min) 1250 return 0; 1251 } 1252 return 1; 1253 } 1254 1255 #ifdef CONFIG_NUMA 1256 /* 1257 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1258 * skip over zones that are not allowed by the cpuset, or that have 1259 * been recently (in last second) found to be nearly full. See further 1260 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1261 * that have to skip over a lot of full or unallowed zones. 1262 * 1263 * If the zonelist cache is present in the passed in zonelist, then 1264 * returns a pointer to the allowed node mask (either the current 1265 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1266 * 1267 * If the zonelist cache is not available for this zonelist, does 1268 * nothing and returns NULL. 1269 * 1270 * If the fullzones BITMAP in the zonelist cache is stale (more than 1271 * a second since last zap'd) then we zap it out (clear its bits.) 1272 * 1273 * We hold off even calling zlc_setup, until after we've checked the 1274 * first zone in the zonelist, on the theory that most allocations will 1275 * be satisfied from that first zone, so best to examine that zone as 1276 * quickly as we can. 1277 */ 1278 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1279 { 1280 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1281 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1282 1283 zlc = zonelist->zlcache_ptr; 1284 if (!zlc) 1285 return NULL; 1286 1287 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1288 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1289 zlc->last_full_zap = jiffies; 1290 } 1291 1292 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1293 &cpuset_current_mems_allowed : 1294 &node_states[N_HIGH_MEMORY]; 1295 return allowednodes; 1296 } 1297 1298 /* 1299 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1300 * if it is worth looking at further for free memory: 1301 * 1) Check that the zone isn't thought to be full (doesn't have its 1302 * bit set in the zonelist_cache fullzones BITMAP). 1303 * 2) Check that the zones node (obtained from the zonelist_cache 1304 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1305 * Return true (non-zero) if zone is worth looking at further, or 1306 * else return false (zero) if it is not. 1307 * 1308 * This check -ignores- the distinction between various watermarks, 1309 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1310 * found to be full for any variation of these watermarks, it will 1311 * be considered full for up to one second by all requests, unless 1312 * we are so low on memory on all allowed nodes that we are forced 1313 * into the second scan of the zonelist. 1314 * 1315 * In the second scan we ignore this zonelist cache and exactly 1316 * apply the watermarks to all zones, even it is slower to do so. 1317 * We are low on memory in the second scan, and should leave no stone 1318 * unturned looking for a free page. 1319 */ 1320 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1321 nodemask_t *allowednodes) 1322 { 1323 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1324 int i; /* index of *z in zonelist zones */ 1325 int n; /* node that zone *z is on */ 1326 1327 zlc = zonelist->zlcache_ptr; 1328 if (!zlc) 1329 return 1; 1330 1331 i = z - zonelist->_zonerefs; 1332 n = zlc->z_to_n[i]; 1333 1334 /* This zone is worth trying if it is allowed but not full */ 1335 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1336 } 1337 1338 /* 1339 * Given 'z' scanning a zonelist, set the corresponding bit in 1340 * zlc->fullzones, so that subsequent attempts to allocate a page 1341 * from that zone don't waste time re-examining it. 1342 */ 1343 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1344 { 1345 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1346 int i; /* index of *z in zonelist zones */ 1347 1348 zlc = zonelist->zlcache_ptr; 1349 if (!zlc) 1350 return; 1351 1352 i = z - zonelist->_zonerefs; 1353 1354 set_bit(i, zlc->fullzones); 1355 } 1356 1357 #else /* CONFIG_NUMA */ 1358 1359 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1360 { 1361 return NULL; 1362 } 1363 1364 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1365 nodemask_t *allowednodes) 1366 { 1367 return 1; 1368 } 1369 1370 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1371 { 1372 } 1373 #endif /* CONFIG_NUMA */ 1374 1375 /* 1376 * get_page_from_freelist goes through the zonelist trying to allocate 1377 * a page. 1378 */ 1379 static struct page * 1380 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1381 struct zonelist *zonelist, int high_zoneidx, int alloc_flags) 1382 { 1383 struct zoneref *z; 1384 struct page *page = NULL; 1385 int classzone_idx; 1386 struct zone *zone, *preferred_zone; 1387 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1388 int zlc_active = 0; /* set if using zonelist_cache */ 1389 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1390 1391 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask, 1392 &preferred_zone); 1393 if (!preferred_zone) 1394 return NULL; 1395 1396 classzone_idx = zone_idx(preferred_zone); 1397 1398 zonelist_scan: 1399 /* 1400 * Scan zonelist, looking for a zone with enough free. 1401 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1402 */ 1403 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1404 high_zoneidx, nodemask) { 1405 if (NUMA_BUILD && zlc_active && 1406 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1407 continue; 1408 if ((alloc_flags & ALLOC_CPUSET) && 1409 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1410 goto try_next_zone; 1411 1412 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1413 unsigned long mark; 1414 if (alloc_flags & ALLOC_WMARK_MIN) 1415 mark = zone->pages_min; 1416 else if (alloc_flags & ALLOC_WMARK_LOW) 1417 mark = zone->pages_low; 1418 else 1419 mark = zone->pages_high; 1420 if (!zone_watermark_ok(zone, order, mark, 1421 classzone_idx, alloc_flags)) { 1422 if (!zone_reclaim_mode || 1423 !zone_reclaim(zone, gfp_mask, order)) 1424 goto this_zone_full; 1425 } 1426 } 1427 1428 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask); 1429 if (page) 1430 break; 1431 this_zone_full: 1432 if (NUMA_BUILD) 1433 zlc_mark_zone_full(zonelist, z); 1434 try_next_zone: 1435 if (NUMA_BUILD && !did_zlc_setup) { 1436 /* we do zlc_setup after the first zone is tried */ 1437 allowednodes = zlc_setup(zonelist, alloc_flags); 1438 zlc_active = 1; 1439 did_zlc_setup = 1; 1440 } 1441 } 1442 1443 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1444 /* Disable zlc cache for second zonelist scan */ 1445 zlc_active = 0; 1446 goto zonelist_scan; 1447 } 1448 return page; 1449 } 1450 1451 /* 1452 * This is the 'heart' of the zoned buddy allocator. 1453 */ 1454 struct page * 1455 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, 1456 struct zonelist *zonelist, nodemask_t *nodemask) 1457 { 1458 const gfp_t wait = gfp_mask & __GFP_WAIT; 1459 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1460 struct zoneref *z; 1461 struct zone *zone; 1462 struct page *page; 1463 struct reclaim_state reclaim_state; 1464 struct task_struct *p = current; 1465 int do_retry; 1466 int alloc_flags; 1467 unsigned long did_some_progress; 1468 unsigned long pages_reclaimed = 0; 1469 1470 might_sleep_if(wait); 1471 1472 if (should_fail_alloc_page(gfp_mask, order)) 1473 return NULL; 1474 1475 restart: 1476 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */ 1477 1478 if (unlikely(!z->zone)) { 1479 /* 1480 * Happens if we have an empty zonelist as a result of 1481 * GFP_THISNODE being used on a memoryless node 1482 */ 1483 return NULL; 1484 } 1485 1486 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1487 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1488 if (page) 1489 goto got_pg; 1490 1491 /* 1492 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1493 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1494 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1495 * using a larger set of nodes after it has established that the 1496 * allowed per node queues are empty and that nodes are 1497 * over allocated. 1498 */ 1499 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1500 goto nopage; 1501 1502 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1503 wakeup_kswapd(zone, order); 1504 1505 /* 1506 * OK, we're below the kswapd watermark and have kicked background 1507 * reclaim. Now things get more complex, so set up alloc_flags according 1508 * to how we want to proceed. 1509 * 1510 * The caller may dip into page reserves a bit more if the caller 1511 * cannot run direct reclaim, or if the caller has realtime scheduling 1512 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1513 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1514 */ 1515 alloc_flags = ALLOC_WMARK_MIN; 1516 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1517 alloc_flags |= ALLOC_HARDER; 1518 if (gfp_mask & __GFP_HIGH) 1519 alloc_flags |= ALLOC_HIGH; 1520 if (wait) 1521 alloc_flags |= ALLOC_CPUSET; 1522 1523 /* 1524 * Go through the zonelist again. Let __GFP_HIGH and allocations 1525 * coming from realtime tasks go deeper into reserves. 1526 * 1527 * This is the last chance, in general, before the goto nopage. 1528 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1529 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1530 */ 1531 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1532 high_zoneidx, alloc_flags); 1533 if (page) 1534 goto got_pg; 1535 1536 /* This allocation should allow future memory freeing. */ 1537 1538 rebalance: 1539 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1540 && !in_interrupt()) { 1541 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1542 nofail_alloc: 1543 /* go through the zonelist yet again, ignoring mins */ 1544 page = get_page_from_freelist(gfp_mask, nodemask, order, 1545 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS); 1546 if (page) 1547 goto got_pg; 1548 if (gfp_mask & __GFP_NOFAIL) { 1549 congestion_wait(WRITE, HZ/50); 1550 goto nofail_alloc; 1551 } 1552 } 1553 goto nopage; 1554 } 1555 1556 /* Atomic allocations - we can't balance anything */ 1557 if (!wait) 1558 goto nopage; 1559 1560 cond_resched(); 1561 1562 /* We now go into synchronous reclaim */ 1563 cpuset_memory_pressure_bump(); 1564 /* 1565 * The task's cpuset might have expanded its set of allowable nodes 1566 */ 1567 cpuset_update_task_memory_state(); 1568 p->flags |= PF_MEMALLOC; 1569 reclaim_state.reclaimed_slab = 0; 1570 p->reclaim_state = &reclaim_state; 1571 1572 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask); 1573 1574 p->reclaim_state = NULL; 1575 p->flags &= ~PF_MEMALLOC; 1576 1577 cond_resched(); 1578 1579 if (order != 0) 1580 drain_all_pages(); 1581 1582 if (likely(did_some_progress)) { 1583 page = get_page_from_freelist(gfp_mask, nodemask, order, 1584 zonelist, high_zoneidx, alloc_flags); 1585 if (page) 1586 goto got_pg; 1587 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1588 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1589 schedule_timeout_uninterruptible(1); 1590 goto restart; 1591 } 1592 1593 /* 1594 * Go through the zonelist yet one more time, keep 1595 * very high watermark here, this is only to catch 1596 * a parallel oom killing, we must fail if we're still 1597 * under heavy pressure. 1598 */ 1599 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1600 order, zonelist, high_zoneidx, 1601 ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1602 if (page) { 1603 clear_zonelist_oom(zonelist, gfp_mask); 1604 goto got_pg; 1605 } 1606 1607 /* The OOM killer will not help higher order allocs so fail */ 1608 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1609 clear_zonelist_oom(zonelist, gfp_mask); 1610 goto nopage; 1611 } 1612 1613 out_of_memory(zonelist, gfp_mask, order); 1614 clear_zonelist_oom(zonelist, gfp_mask); 1615 goto restart; 1616 } 1617 1618 /* 1619 * Don't let big-order allocations loop unless the caller explicitly 1620 * requests that. Wait for some write requests to complete then retry. 1621 * 1622 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1623 * means __GFP_NOFAIL, but that may not be true in other 1624 * implementations. 1625 * 1626 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1627 * specified, then we retry until we no longer reclaim any pages 1628 * (above), or we've reclaimed an order of pages at least as 1629 * large as the allocation's order. In both cases, if the 1630 * allocation still fails, we stop retrying. 1631 */ 1632 pages_reclaimed += did_some_progress; 1633 do_retry = 0; 1634 if (!(gfp_mask & __GFP_NORETRY)) { 1635 if (order <= PAGE_ALLOC_COSTLY_ORDER) { 1636 do_retry = 1; 1637 } else { 1638 if (gfp_mask & __GFP_REPEAT && 1639 pages_reclaimed < (1 << order)) 1640 do_retry = 1; 1641 } 1642 if (gfp_mask & __GFP_NOFAIL) 1643 do_retry = 1; 1644 } 1645 if (do_retry) { 1646 congestion_wait(WRITE, HZ/50); 1647 goto rebalance; 1648 } 1649 1650 nopage: 1651 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1652 printk(KERN_WARNING "%s: page allocation failure." 1653 " order:%d, mode:0x%x\n", 1654 p->comm, order, gfp_mask); 1655 dump_stack(); 1656 show_mem(); 1657 } 1658 got_pg: 1659 return page; 1660 } 1661 EXPORT_SYMBOL(__alloc_pages_internal); 1662 1663 /* 1664 * Common helper functions. 1665 */ 1666 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1667 { 1668 struct page * page; 1669 page = alloc_pages(gfp_mask, order); 1670 if (!page) 1671 return 0; 1672 return (unsigned long) page_address(page); 1673 } 1674 1675 EXPORT_SYMBOL(__get_free_pages); 1676 1677 unsigned long get_zeroed_page(gfp_t gfp_mask) 1678 { 1679 struct page * page; 1680 1681 /* 1682 * get_zeroed_page() returns a 32-bit address, which cannot represent 1683 * a highmem page 1684 */ 1685 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1686 1687 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1688 if (page) 1689 return (unsigned long) page_address(page); 1690 return 0; 1691 } 1692 1693 EXPORT_SYMBOL(get_zeroed_page); 1694 1695 void __pagevec_free(struct pagevec *pvec) 1696 { 1697 int i = pagevec_count(pvec); 1698 1699 while (--i >= 0) 1700 free_hot_cold_page(pvec->pages[i], pvec->cold); 1701 } 1702 1703 void __free_pages(struct page *page, unsigned int order) 1704 { 1705 if (put_page_testzero(page)) { 1706 if (order == 0) 1707 free_hot_page(page); 1708 else 1709 __free_pages_ok(page, order); 1710 } 1711 } 1712 1713 EXPORT_SYMBOL(__free_pages); 1714 1715 void free_pages(unsigned long addr, unsigned int order) 1716 { 1717 if (addr != 0) { 1718 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1719 __free_pages(virt_to_page((void *)addr), order); 1720 } 1721 } 1722 1723 EXPORT_SYMBOL(free_pages); 1724 1725 /** 1726 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1727 * @size: the number of bytes to allocate 1728 * @gfp_mask: GFP flags for the allocation 1729 * 1730 * This function is similar to alloc_pages(), except that it allocates the 1731 * minimum number of pages to satisfy the request. alloc_pages() can only 1732 * allocate memory in power-of-two pages. 1733 * 1734 * This function is also limited by MAX_ORDER. 1735 * 1736 * Memory allocated by this function must be released by free_pages_exact(). 1737 */ 1738 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1739 { 1740 unsigned int order = get_order(size); 1741 unsigned long addr; 1742 1743 addr = __get_free_pages(gfp_mask, order); 1744 if (addr) { 1745 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1746 unsigned long used = addr + PAGE_ALIGN(size); 1747 1748 split_page(virt_to_page(addr), order); 1749 while (used < alloc_end) { 1750 free_page(used); 1751 used += PAGE_SIZE; 1752 } 1753 } 1754 1755 return (void *)addr; 1756 } 1757 EXPORT_SYMBOL(alloc_pages_exact); 1758 1759 /** 1760 * free_pages_exact - release memory allocated via alloc_pages_exact() 1761 * @virt: the value returned by alloc_pages_exact. 1762 * @size: size of allocation, same value as passed to alloc_pages_exact(). 1763 * 1764 * Release the memory allocated by a previous call to alloc_pages_exact. 1765 */ 1766 void free_pages_exact(void *virt, size_t size) 1767 { 1768 unsigned long addr = (unsigned long)virt; 1769 unsigned long end = addr + PAGE_ALIGN(size); 1770 1771 while (addr < end) { 1772 free_page(addr); 1773 addr += PAGE_SIZE; 1774 } 1775 } 1776 EXPORT_SYMBOL(free_pages_exact); 1777 1778 static unsigned int nr_free_zone_pages(int offset) 1779 { 1780 struct zoneref *z; 1781 struct zone *zone; 1782 1783 /* Just pick one node, since fallback list is circular */ 1784 unsigned int sum = 0; 1785 1786 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 1787 1788 for_each_zone_zonelist(zone, z, zonelist, offset) { 1789 unsigned long size = zone->present_pages; 1790 unsigned long high = zone->pages_high; 1791 if (size > high) 1792 sum += size - high; 1793 } 1794 1795 return sum; 1796 } 1797 1798 /* 1799 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1800 */ 1801 unsigned int nr_free_buffer_pages(void) 1802 { 1803 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1804 } 1805 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1806 1807 /* 1808 * Amount of free RAM allocatable within all zones 1809 */ 1810 unsigned int nr_free_pagecache_pages(void) 1811 { 1812 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1813 } 1814 1815 static inline void show_node(struct zone *zone) 1816 { 1817 if (NUMA_BUILD) 1818 printk("Node %d ", zone_to_nid(zone)); 1819 } 1820 1821 void si_meminfo(struct sysinfo *val) 1822 { 1823 val->totalram = totalram_pages; 1824 val->sharedram = 0; 1825 val->freeram = global_page_state(NR_FREE_PAGES); 1826 val->bufferram = nr_blockdev_pages(); 1827 val->totalhigh = totalhigh_pages; 1828 val->freehigh = nr_free_highpages(); 1829 val->mem_unit = PAGE_SIZE; 1830 } 1831 1832 EXPORT_SYMBOL(si_meminfo); 1833 1834 #ifdef CONFIG_NUMA 1835 void si_meminfo_node(struct sysinfo *val, int nid) 1836 { 1837 pg_data_t *pgdat = NODE_DATA(nid); 1838 1839 val->totalram = pgdat->node_present_pages; 1840 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1841 #ifdef CONFIG_HIGHMEM 1842 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1843 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1844 NR_FREE_PAGES); 1845 #else 1846 val->totalhigh = 0; 1847 val->freehigh = 0; 1848 #endif 1849 val->mem_unit = PAGE_SIZE; 1850 } 1851 #endif 1852 1853 #define K(x) ((x) << (PAGE_SHIFT-10)) 1854 1855 /* 1856 * Show free area list (used inside shift_scroll-lock stuff) 1857 * We also calculate the percentage fragmentation. We do this by counting the 1858 * memory on each free list with the exception of the first item on the list. 1859 */ 1860 void show_free_areas(void) 1861 { 1862 int cpu; 1863 struct zone *zone; 1864 1865 for_each_zone(zone) { 1866 if (!populated_zone(zone)) 1867 continue; 1868 1869 show_node(zone); 1870 printk("%s per-cpu:\n", zone->name); 1871 1872 for_each_online_cpu(cpu) { 1873 struct per_cpu_pageset *pageset; 1874 1875 pageset = zone_pcp(zone, cpu); 1876 1877 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 1878 cpu, pageset->pcp.high, 1879 pageset->pcp.batch, pageset->pcp.count); 1880 } 1881 } 1882 1883 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" 1884 " inactive_file:%lu" 1885 //TODO: check/adjust line lengths 1886 #ifdef CONFIG_UNEVICTABLE_LRU 1887 " unevictable:%lu" 1888 #endif 1889 " dirty:%lu writeback:%lu unstable:%lu\n" 1890 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1891 global_page_state(NR_ACTIVE_ANON), 1892 global_page_state(NR_ACTIVE_FILE), 1893 global_page_state(NR_INACTIVE_ANON), 1894 global_page_state(NR_INACTIVE_FILE), 1895 #ifdef CONFIG_UNEVICTABLE_LRU 1896 global_page_state(NR_UNEVICTABLE), 1897 #endif 1898 global_page_state(NR_FILE_DIRTY), 1899 global_page_state(NR_WRITEBACK), 1900 global_page_state(NR_UNSTABLE_NFS), 1901 global_page_state(NR_FREE_PAGES), 1902 global_page_state(NR_SLAB_RECLAIMABLE) + 1903 global_page_state(NR_SLAB_UNRECLAIMABLE), 1904 global_page_state(NR_FILE_MAPPED), 1905 global_page_state(NR_PAGETABLE), 1906 global_page_state(NR_BOUNCE)); 1907 1908 for_each_zone(zone) { 1909 int i; 1910 1911 if (!populated_zone(zone)) 1912 continue; 1913 1914 show_node(zone); 1915 printk("%s" 1916 " free:%lukB" 1917 " min:%lukB" 1918 " low:%lukB" 1919 " high:%lukB" 1920 " active_anon:%lukB" 1921 " inactive_anon:%lukB" 1922 " active_file:%lukB" 1923 " inactive_file:%lukB" 1924 #ifdef CONFIG_UNEVICTABLE_LRU 1925 " unevictable:%lukB" 1926 #endif 1927 " present:%lukB" 1928 " pages_scanned:%lu" 1929 " all_unreclaimable? %s" 1930 "\n", 1931 zone->name, 1932 K(zone_page_state(zone, NR_FREE_PAGES)), 1933 K(zone->pages_min), 1934 K(zone->pages_low), 1935 K(zone->pages_high), 1936 K(zone_page_state(zone, NR_ACTIVE_ANON)), 1937 K(zone_page_state(zone, NR_INACTIVE_ANON)), 1938 K(zone_page_state(zone, NR_ACTIVE_FILE)), 1939 K(zone_page_state(zone, NR_INACTIVE_FILE)), 1940 #ifdef CONFIG_UNEVICTABLE_LRU 1941 K(zone_page_state(zone, NR_UNEVICTABLE)), 1942 #endif 1943 K(zone->present_pages), 1944 zone->pages_scanned, 1945 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1946 ); 1947 printk("lowmem_reserve[]:"); 1948 for (i = 0; i < MAX_NR_ZONES; i++) 1949 printk(" %lu", zone->lowmem_reserve[i]); 1950 printk("\n"); 1951 } 1952 1953 for_each_zone(zone) { 1954 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1955 1956 if (!populated_zone(zone)) 1957 continue; 1958 1959 show_node(zone); 1960 printk("%s: ", zone->name); 1961 1962 spin_lock_irqsave(&zone->lock, flags); 1963 for (order = 0; order < MAX_ORDER; order++) { 1964 nr[order] = zone->free_area[order].nr_free; 1965 total += nr[order] << order; 1966 } 1967 spin_unlock_irqrestore(&zone->lock, flags); 1968 for (order = 0; order < MAX_ORDER; order++) 1969 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1970 printk("= %lukB\n", K(total)); 1971 } 1972 1973 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 1974 1975 show_swap_cache_info(); 1976 } 1977 1978 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 1979 { 1980 zoneref->zone = zone; 1981 zoneref->zone_idx = zone_idx(zone); 1982 } 1983 1984 /* 1985 * Builds allocation fallback zone lists. 1986 * 1987 * Add all populated zones of a node to the zonelist. 1988 */ 1989 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1990 int nr_zones, enum zone_type zone_type) 1991 { 1992 struct zone *zone; 1993 1994 BUG_ON(zone_type >= MAX_NR_ZONES); 1995 zone_type++; 1996 1997 do { 1998 zone_type--; 1999 zone = pgdat->node_zones + zone_type; 2000 if (populated_zone(zone)) { 2001 zoneref_set_zone(zone, 2002 &zonelist->_zonerefs[nr_zones++]); 2003 check_highest_zone(zone_type); 2004 } 2005 2006 } while (zone_type); 2007 return nr_zones; 2008 } 2009 2010 2011 /* 2012 * zonelist_order: 2013 * 0 = automatic detection of better ordering. 2014 * 1 = order by ([node] distance, -zonetype) 2015 * 2 = order by (-zonetype, [node] distance) 2016 * 2017 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2018 * the same zonelist. So only NUMA can configure this param. 2019 */ 2020 #define ZONELIST_ORDER_DEFAULT 0 2021 #define ZONELIST_ORDER_NODE 1 2022 #define ZONELIST_ORDER_ZONE 2 2023 2024 /* zonelist order in the kernel. 2025 * set_zonelist_order() will set this to NODE or ZONE. 2026 */ 2027 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2028 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2029 2030 2031 #ifdef CONFIG_NUMA 2032 /* The value user specified ....changed by config */ 2033 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2034 /* string for sysctl */ 2035 #define NUMA_ZONELIST_ORDER_LEN 16 2036 char numa_zonelist_order[16] = "default"; 2037 2038 /* 2039 * interface for configure zonelist ordering. 2040 * command line option "numa_zonelist_order" 2041 * = "[dD]efault - default, automatic configuration. 2042 * = "[nN]ode - order by node locality, then by zone within node 2043 * = "[zZ]one - order by zone, then by locality within zone 2044 */ 2045 2046 static int __parse_numa_zonelist_order(char *s) 2047 { 2048 if (*s == 'd' || *s == 'D') { 2049 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2050 } else if (*s == 'n' || *s == 'N') { 2051 user_zonelist_order = ZONELIST_ORDER_NODE; 2052 } else if (*s == 'z' || *s == 'Z') { 2053 user_zonelist_order = ZONELIST_ORDER_ZONE; 2054 } else { 2055 printk(KERN_WARNING 2056 "Ignoring invalid numa_zonelist_order value: " 2057 "%s\n", s); 2058 return -EINVAL; 2059 } 2060 return 0; 2061 } 2062 2063 static __init int setup_numa_zonelist_order(char *s) 2064 { 2065 if (s) 2066 return __parse_numa_zonelist_order(s); 2067 return 0; 2068 } 2069 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2070 2071 /* 2072 * sysctl handler for numa_zonelist_order 2073 */ 2074 int numa_zonelist_order_handler(ctl_table *table, int write, 2075 struct file *file, void __user *buffer, size_t *length, 2076 loff_t *ppos) 2077 { 2078 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2079 int ret; 2080 2081 if (write) 2082 strncpy(saved_string, (char*)table->data, 2083 NUMA_ZONELIST_ORDER_LEN); 2084 ret = proc_dostring(table, write, file, buffer, length, ppos); 2085 if (ret) 2086 return ret; 2087 if (write) { 2088 int oldval = user_zonelist_order; 2089 if (__parse_numa_zonelist_order((char*)table->data)) { 2090 /* 2091 * bogus value. restore saved string 2092 */ 2093 strncpy((char*)table->data, saved_string, 2094 NUMA_ZONELIST_ORDER_LEN); 2095 user_zonelist_order = oldval; 2096 } else if (oldval != user_zonelist_order) 2097 build_all_zonelists(); 2098 } 2099 return 0; 2100 } 2101 2102 2103 #define MAX_NODE_LOAD (num_online_nodes()) 2104 static int node_load[MAX_NUMNODES]; 2105 2106 /** 2107 * find_next_best_node - find the next node that should appear in a given node's fallback list 2108 * @node: node whose fallback list we're appending 2109 * @used_node_mask: nodemask_t of already used nodes 2110 * 2111 * We use a number of factors to determine which is the next node that should 2112 * appear on a given node's fallback list. The node should not have appeared 2113 * already in @node's fallback list, and it should be the next closest node 2114 * according to the distance array (which contains arbitrary distance values 2115 * from each node to each node in the system), and should also prefer nodes 2116 * with no CPUs, since presumably they'll have very little allocation pressure 2117 * on them otherwise. 2118 * It returns -1 if no node is found. 2119 */ 2120 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2121 { 2122 int n, val; 2123 int min_val = INT_MAX; 2124 int best_node = -1; 2125 node_to_cpumask_ptr(tmp, 0); 2126 2127 /* Use the local node if we haven't already */ 2128 if (!node_isset(node, *used_node_mask)) { 2129 node_set(node, *used_node_mask); 2130 return node; 2131 } 2132 2133 for_each_node_state(n, N_HIGH_MEMORY) { 2134 2135 /* Don't want a node to appear more than once */ 2136 if (node_isset(n, *used_node_mask)) 2137 continue; 2138 2139 /* Use the distance array to find the distance */ 2140 val = node_distance(node, n); 2141 2142 /* Penalize nodes under us ("prefer the next node") */ 2143 val += (n < node); 2144 2145 /* Give preference to headless and unused nodes */ 2146 node_to_cpumask_ptr_next(tmp, n); 2147 if (!cpus_empty(*tmp)) 2148 val += PENALTY_FOR_NODE_WITH_CPUS; 2149 2150 /* Slight preference for less loaded node */ 2151 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2152 val += node_load[n]; 2153 2154 if (val < min_val) { 2155 min_val = val; 2156 best_node = n; 2157 } 2158 } 2159 2160 if (best_node >= 0) 2161 node_set(best_node, *used_node_mask); 2162 2163 return best_node; 2164 } 2165 2166 2167 /* 2168 * Build zonelists ordered by node and zones within node. 2169 * This results in maximum locality--normal zone overflows into local 2170 * DMA zone, if any--but risks exhausting DMA zone. 2171 */ 2172 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2173 { 2174 int j; 2175 struct zonelist *zonelist; 2176 2177 zonelist = &pgdat->node_zonelists[0]; 2178 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2179 ; 2180 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2181 MAX_NR_ZONES - 1); 2182 zonelist->_zonerefs[j].zone = NULL; 2183 zonelist->_zonerefs[j].zone_idx = 0; 2184 } 2185 2186 /* 2187 * Build gfp_thisnode zonelists 2188 */ 2189 static void build_thisnode_zonelists(pg_data_t *pgdat) 2190 { 2191 int j; 2192 struct zonelist *zonelist; 2193 2194 zonelist = &pgdat->node_zonelists[1]; 2195 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2196 zonelist->_zonerefs[j].zone = NULL; 2197 zonelist->_zonerefs[j].zone_idx = 0; 2198 } 2199 2200 /* 2201 * Build zonelists ordered by zone and nodes within zones. 2202 * This results in conserving DMA zone[s] until all Normal memory is 2203 * exhausted, but results in overflowing to remote node while memory 2204 * may still exist in local DMA zone. 2205 */ 2206 static int node_order[MAX_NUMNODES]; 2207 2208 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2209 { 2210 int pos, j, node; 2211 int zone_type; /* needs to be signed */ 2212 struct zone *z; 2213 struct zonelist *zonelist; 2214 2215 zonelist = &pgdat->node_zonelists[0]; 2216 pos = 0; 2217 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2218 for (j = 0; j < nr_nodes; j++) { 2219 node = node_order[j]; 2220 z = &NODE_DATA(node)->node_zones[zone_type]; 2221 if (populated_zone(z)) { 2222 zoneref_set_zone(z, 2223 &zonelist->_zonerefs[pos++]); 2224 check_highest_zone(zone_type); 2225 } 2226 } 2227 } 2228 zonelist->_zonerefs[pos].zone = NULL; 2229 zonelist->_zonerefs[pos].zone_idx = 0; 2230 } 2231 2232 static int default_zonelist_order(void) 2233 { 2234 int nid, zone_type; 2235 unsigned long low_kmem_size,total_size; 2236 struct zone *z; 2237 int average_size; 2238 /* 2239 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2240 * If they are really small and used heavily, the system can fall 2241 * into OOM very easily. 2242 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2243 */ 2244 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2245 low_kmem_size = 0; 2246 total_size = 0; 2247 for_each_online_node(nid) { 2248 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2249 z = &NODE_DATA(nid)->node_zones[zone_type]; 2250 if (populated_zone(z)) { 2251 if (zone_type < ZONE_NORMAL) 2252 low_kmem_size += z->present_pages; 2253 total_size += z->present_pages; 2254 } 2255 } 2256 } 2257 if (!low_kmem_size || /* there are no DMA area. */ 2258 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2259 return ZONELIST_ORDER_NODE; 2260 /* 2261 * look into each node's config. 2262 * If there is a node whose DMA/DMA32 memory is very big area on 2263 * local memory, NODE_ORDER may be suitable. 2264 */ 2265 average_size = total_size / 2266 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2267 for_each_online_node(nid) { 2268 low_kmem_size = 0; 2269 total_size = 0; 2270 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2271 z = &NODE_DATA(nid)->node_zones[zone_type]; 2272 if (populated_zone(z)) { 2273 if (zone_type < ZONE_NORMAL) 2274 low_kmem_size += z->present_pages; 2275 total_size += z->present_pages; 2276 } 2277 } 2278 if (low_kmem_size && 2279 total_size > average_size && /* ignore small node */ 2280 low_kmem_size > total_size * 70/100) 2281 return ZONELIST_ORDER_NODE; 2282 } 2283 return ZONELIST_ORDER_ZONE; 2284 } 2285 2286 static void set_zonelist_order(void) 2287 { 2288 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2289 current_zonelist_order = default_zonelist_order(); 2290 else 2291 current_zonelist_order = user_zonelist_order; 2292 } 2293 2294 static void build_zonelists(pg_data_t *pgdat) 2295 { 2296 int j, node, load; 2297 enum zone_type i; 2298 nodemask_t used_mask; 2299 int local_node, prev_node; 2300 struct zonelist *zonelist; 2301 int order = current_zonelist_order; 2302 2303 /* initialize zonelists */ 2304 for (i = 0; i < MAX_ZONELISTS; i++) { 2305 zonelist = pgdat->node_zonelists + i; 2306 zonelist->_zonerefs[0].zone = NULL; 2307 zonelist->_zonerefs[0].zone_idx = 0; 2308 } 2309 2310 /* NUMA-aware ordering of nodes */ 2311 local_node = pgdat->node_id; 2312 load = num_online_nodes(); 2313 prev_node = local_node; 2314 nodes_clear(used_mask); 2315 2316 memset(node_load, 0, sizeof(node_load)); 2317 memset(node_order, 0, sizeof(node_order)); 2318 j = 0; 2319 2320 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2321 int distance = node_distance(local_node, node); 2322 2323 /* 2324 * If another node is sufficiently far away then it is better 2325 * to reclaim pages in a zone before going off node. 2326 */ 2327 if (distance > RECLAIM_DISTANCE) 2328 zone_reclaim_mode = 1; 2329 2330 /* 2331 * We don't want to pressure a particular node. 2332 * So adding penalty to the first node in same 2333 * distance group to make it round-robin. 2334 */ 2335 if (distance != node_distance(local_node, prev_node)) 2336 node_load[node] = load; 2337 2338 prev_node = node; 2339 load--; 2340 if (order == ZONELIST_ORDER_NODE) 2341 build_zonelists_in_node_order(pgdat, node); 2342 else 2343 node_order[j++] = node; /* remember order */ 2344 } 2345 2346 if (order == ZONELIST_ORDER_ZONE) { 2347 /* calculate node order -- i.e., DMA last! */ 2348 build_zonelists_in_zone_order(pgdat, j); 2349 } 2350 2351 build_thisnode_zonelists(pgdat); 2352 } 2353 2354 /* Construct the zonelist performance cache - see further mmzone.h */ 2355 static void build_zonelist_cache(pg_data_t *pgdat) 2356 { 2357 struct zonelist *zonelist; 2358 struct zonelist_cache *zlc; 2359 struct zoneref *z; 2360 2361 zonelist = &pgdat->node_zonelists[0]; 2362 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2363 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2364 for (z = zonelist->_zonerefs; z->zone; z++) 2365 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2366 } 2367 2368 2369 #else /* CONFIG_NUMA */ 2370 2371 static void set_zonelist_order(void) 2372 { 2373 current_zonelist_order = ZONELIST_ORDER_ZONE; 2374 } 2375 2376 static void build_zonelists(pg_data_t *pgdat) 2377 { 2378 int node, local_node; 2379 enum zone_type j; 2380 struct zonelist *zonelist; 2381 2382 local_node = pgdat->node_id; 2383 2384 zonelist = &pgdat->node_zonelists[0]; 2385 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2386 2387 /* 2388 * Now we build the zonelist so that it contains the zones 2389 * of all the other nodes. 2390 * We don't want to pressure a particular node, so when 2391 * building the zones for node N, we make sure that the 2392 * zones coming right after the local ones are those from 2393 * node N+1 (modulo N) 2394 */ 2395 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2396 if (!node_online(node)) 2397 continue; 2398 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2399 MAX_NR_ZONES - 1); 2400 } 2401 for (node = 0; node < local_node; node++) { 2402 if (!node_online(node)) 2403 continue; 2404 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2405 MAX_NR_ZONES - 1); 2406 } 2407 2408 zonelist->_zonerefs[j].zone = NULL; 2409 zonelist->_zonerefs[j].zone_idx = 0; 2410 } 2411 2412 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2413 static void build_zonelist_cache(pg_data_t *pgdat) 2414 { 2415 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2416 } 2417 2418 #endif /* CONFIG_NUMA */ 2419 2420 /* return values int ....just for stop_machine() */ 2421 static int __build_all_zonelists(void *dummy) 2422 { 2423 int nid; 2424 2425 for_each_online_node(nid) { 2426 pg_data_t *pgdat = NODE_DATA(nid); 2427 2428 build_zonelists(pgdat); 2429 build_zonelist_cache(pgdat); 2430 } 2431 return 0; 2432 } 2433 2434 void build_all_zonelists(void) 2435 { 2436 set_zonelist_order(); 2437 2438 if (system_state == SYSTEM_BOOTING) { 2439 __build_all_zonelists(NULL); 2440 mminit_verify_zonelist(); 2441 cpuset_init_current_mems_allowed(); 2442 } else { 2443 /* we have to stop all cpus to guarantee there is no user 2444 of zonelist */ 2445 stop_machine(__build_all_zonelists, NULL, NULL); 2446 /* cpuset refresh routine should be here */ 2447 } 2448 vm_total_pages = nr_free_pagecache_pages(); 2449 /* 2450 * Disable grouping by mobility if the number of pages in the 2451 * system is too low to allow the mechanism to work. It would be 2452 * more accurate, but expensive to check per-zone. This check is 2453 * made on memory-hotadd so a system can start with mobility 2454 * disabled and enable it later 2455 */ 2456 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2457 page_group_by_mobility_disabled = 1; 2458 else 2459 page_group_by_mobility_disabled = 0; 2460 2461 printk("Built %i zonelists in %s order, mobility grouping %s. " 2462 "Total pages: %ld\n", 2463 num_online_nodes(), 2464 zonelist_order_name[current_zonelist_order], 2465 page_group_by_mobility_disabled ? "off" : "on", 2466 vm_total_pages); 2467 #ifdef CONFIG_NUMA 2468 printk("Policy zone: %s\n", zone_names[policy_zone]); 2469 #endif 2470 } 2471 2472 /* 2473 * Helper functions to size the waitqueue hash table. 2474 * Essentially these want to choose hash table sizes sufficiently 2475 * large so that collisions trying to wait on pages are rare. 2476 * But in fact, the number of active page waitqueues on typical 2477 * systems is ridiculously low, less than 200. So this is even 2478 * conservative, even though it seems large. 2479 * 2480 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2481 * waitqueues, i.e. the size of the waitq table given the number of pages. 2482 */ 2483 #define PAGES_PER_WAITQUEUE 256 2484 2485 #ifndef CONFIG_MEMORY_HOTPLUG 2486 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2487 { 2488 unsigned long size = 1; 2489 2490 pages /= PAGES_PER_WAITQUEUE; 2491 2492 while (size < pages) 2493 size <<= 1; 2494 2495 /* 2496 * Once we have dozens or even hundreds of threads sleeping 2497 * on IO we've got bigger problems than wait queue collision. 2498 * Limit the size of the wait table to a reasonable size. 2499 */ 2500 size = min(size, 4096UL); 2501 2502 return max(size, 4UL); 2503 } 2504 #else 2505 /* 2506 * A zone's size might be changed by hot-add, so it is not possible to determine 2507 * a suitable size for its wait_table. So we use the maximum size now. 2508 * 2509 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2510 * 2511 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2512 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2513 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2514 * 2515 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2516 * or more by the traditional way. (See above). It equals: 2517 * 2518 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2519 * ia64(16K page size) : = ( 8G + 4M)byte. 2520 * powerpc (64K page size) : = (32G +16M)byte. 2521 */ 2522 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2523 { 2524 return 4096UL; 2525 } 2526 #endif 2527 2528 /* 2529 * This is an integer logarithm so that shifts can be used later 2530 * to extract the more random high bits from the multiplicative 2531 * hash function before the remainder is taken. 2532 */ 2533 static inline unsigned long wait_table_bits(unsigned long size) 2534 { 2535 return ffz(~size); 2536 } 2537 2538 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2539 2540 /* 2541 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2542 * of blocks reserved is based on zone->pages_min. The memory within the 2543 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2544 * higher will lead to a bigger reserve which will get freed as contiguous 2545 * blocks as reclaim kicks in 2546 */ 2547 static void setup_zone_migrate_reserve(struct zone *zone) 2548 { 2549 unsigned long start_pfn, pfn, end_pfn; 2550 struct page *page; 2551 unsigned long reserve, block_migratetype; 2552 2553 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2554 start_pfn = zone->zone_start_pfn; 2555 end_pfn = start_pfn + zone->spanned_pages; 2556 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2557 pageblock_order; 2558 2559 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2560 if (!pfn_valid(pfn)) 2561 continue; 2562 page = pfn_to_page(pfn); 2563 2564 /* Watch out for overlapping nodes */ 2565 if (page_to_nid(page) != zone_to_nid(zone)) 2566 continue; 2567 2568 /* Blocks with reserved pages will never free, skip them. */ 2569 if (PageReserved(page)) 2570 continue; 2571 2572 block_migratetype = get_pageblock_migratetype(page); 2573 2574 /* If this block is reserved, account for it */ 2575 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2576 reserve--; 2577 continue; 2578 } 2579 2580 /* Suitable for reserving if this block is movable */ 2581 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2582 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2583 move_freepages_block(zone, page, MIGRATE_RESERVE); 2584 reserve--; 2585 continue; 2586 } 2587 2588 /* 2589 * If the reserve is met and this is a previous reserved block, 2590 * take it back 2591 */ 2592 if (block_migratetype == MIGRATE_RESERVE) { 2593 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2594 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2595 } 2596 } 2597 } 2598 2599 /* 2600 * Initially all pages are reserved - free ones are freed 2601 * up by free_all_bootmem() once the early boot process is 2602 * done. Non-atomic initialization, single-pass. 2603 */ 2604 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2605 unsigned long start_pfn, enum memmap_context context) 2606 { 2607 struct page *page; 2608 unsigned long end_pfn = start_pfn + size; 2609 unsigned long pfn; 2610 struct zone *z; 2611 2612 z = &NODE_DATA(nid)->node_zones[zone]; 2613 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2614 /* 2615 * There can be holes in boot-time mem_map[]s 2616 * handed to this function. They do not 2617 * exist on hotplugged memory. 2618 */ 2619 if (context == MEMMAP_EARLY) { 2620 if (!early_pfn_valid(pfn)) 2621 continue; 2622 if (!early_pfn_in_nid(pfn, nid)) 2623 continue; 2624 } 2625 page = pfn_to_page(pfn); 2626 set_page_links(page, zone, nid, pfn); 2627 mminit_verify_page_links(page, zone, nid, pfn); 2628 init_page_count(page); 2629 reset_page_mapcount(page); 2630 SetPageReserved(page); 2631 /* 2632 * Mark the block movable so that blocks are reserved for 2633 * movable at startup. This will force kernel allocations 2634 * to reserve their blocks rather than leaking throughout 2635 * the address space during boot when many long-lived 2636 * kernel allocations are made. Later some blocks near 2637 * the start are marked MIGRATE_RESERVE by 2638 * setup_zone_migrate_reserve() 2639 * 2640 * bitmap is created for zone's valid pfn range. but memmap 2641 * can be created for invalid pages (for alignment) 2642 * check here not to call set_pageblock_migratetype() against 2643 * pfn out of zone. 2644 */ 2645 if ((z->zone_start_pfn <= pfn) 2646 && (pfn < z->zone_start_pfn + z->spanned_pages) 2647 && !(pfn & (pageblock_nr_pages - 1))) 2648 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2649 2650 INIT_LIST_HEAD(&page->lru); 2651 #ifdef WANT_PAGE_VIRTUAL 2652 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2653 if (!is_highmem_idx(zone)) 2654 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2655 #endif 2656 } 2657 } 2658 2659 static void __meminit zone_init_free_lists(struct zone *zone) 2660 { 2661 int order, t; 2662 for_each_migratetype_order(order, t) { 2663 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2664 zone->free_area[order].nr_free = 0; 2665 } 2666 } 2667 2668 #ifndef __HAVE_ARCH_MEMMAP_INIT 2669 #define memmap_init(size, nid, zone, start_pfn) \ 2670 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2671 #endif 2672 2673 static int zone_batchsize(struct zone *zone) 2674 { 2675 int batch; 2676 2677 /* 2678 * The per-cpu-pages pools are set to around 1000th of the 2679 * size of the zone. But no more than 1/2 of a meg. 2680 * 2681 * OK, so we don't know how big the cache is. So guess. 2682 */ 2683 batch = zone->present_pages / 1024; 2684 if (batch * PAGE_SIZE > 512 * 1024) 2685 batch = (512 * 1024) / PAGE_SIZE; 2686 batch /= 4; /* We effectively *= 4 below */ 2687 if (batch < 1) 2688 batch = 1; 2689 2690 /* 2691 * Clamp the batch to a 2^n - 1 value. Having a power 2692 * of 2 value was found to be more likely to have 2693 * suboptimal cache aliasing properties in some cases. 2694 * 2695 * For example if 2 tasks are alternately allocating 2696 * batches of pages, one task can end up with a lot 2697 * of pages of one half of the possible page colors 2698 * and the other with pages of the other colors. 2699 */ 2700 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2701 2702 return batch; 2703 } 2704 2705 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2706 { 2707 struct per_cpu_pages *pcp; 2708 2709 memset(p, 0, sizeof(*p)); 2710 2711 pcp = &p->pcp; 2712 pcp->count = 0; 2713 pcp->high = 6 * batch; 2714 pcp->batch = max(1UL, 1 * batch); 2715 INIT_LIST_HEAD(&pcp->list); 2716 } 2717 2718 /* 2719 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2720 * to the value high for the pageset p. 2721 */ 2722 2723 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2724 unsigned long high) 2725 { 2726 struct per_cpu_pages *pcp; 2727 2728 pcp = &p->pcp; 2729 pcp->high = high; 2730 pcp->batch = max(1UL, high/4); 2731 if ((high/4) > (PAGE_SHIFT * 8)) 2732 pcp->batch = PAGE_SHIFT * 8; 2733 } 2734 2735 2736 #ifdef CONFIG_NUMA 2737 /* 2738 * Boot pageset table. One per cpu which is going to be used for all 2739 * zones and all nodes. The parameters will be set in such a way 2740 * that an item put on a list will immediately be handed over to 2741 * the buddy list. This is safe since pageset manipulation is done 2742 * with interrupts disabled. 2743 * 2744 * Some NUMA counter updates may also be caught by the boot pagesets. 2745 * 2746 * The boot_pagesets must be kept even after bootup is complete for 2747 * unused processors and/or zones. They do play a role for bootstrapping 2748 * hotplugged processors. 2749 * 2750 * zoneinfo_show() and maybe other functions do 2751 * not check if the processor is online before following the pageset pointer. 2752 * Other parts of the kernel may not check if the zone is available. 2753 */ 2754 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2755 2756 /* 2757 * Dynamically allocate memory for the 2758 * per cpu pageset array in struct zone. 2759 */ 2760 static int __cpuinit process_zones(int cpu) 2761 { 2762 struct zone *zone, *dzone; 2763 int node = cpu_to_node(cpu); 2764 2765 node_set_state(node, N_CPU); /* this node has a cpu */ 2766 2767 for_each_zone(zone) { 2768 2769 if (!populated_zone(zone)) 2770 continue; 2771 2772 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2773 GFP_KERNEL, node); 2774 if (!zone_pcp(zone, cpu)) 2775 goto bad; 2776 2777 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2778 2779 if (percpu_pagelist_fraction) 2780 setup_pagelist_highmark(zone_pcp(zone, cpu), 2781 (zone->present_pages / percpu_pagelist_fraction)); 2782 } 2783 2784 return 0; 2785 bad: 2786 for_each_zone(dzone) { 2787 if (!populated_zone(dzone)) 2788 continue; 2789 if (dzone == zone) 2790 break; 2791 kfree(zone_pcp(dzone, cpu)); 2792 zone_pcp(dzone, cpu) = NULL; 2793 } 2794 return -ENOMEM; 2795 } 2796 2797 static inline void free_zone_pagesets(int cpu) 2798 { 2799 struct zone *zone; 2800 2801 for_each_zone(zone) { 2802 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2803 2804 /* Free per_cpu_pageset if it is slab allocated */ 2805 if (pset != &boot_pageset[cpu]) 2806 kfree(pset); 2807 zone_pcp(zone, cpu) = NULL; 2808 } 2809 } 2810 2811 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2812 unsigned long action, 2813 void *hcpu) 2814 { 2815 int cpu = (long)hcpu; 2816 int ret = NOTIFY_OK; 2817 2818 switch (action) { 2819 case CPU_UP_PREPARE: 2820 case CPU_UP_PREPARE_FROZEN: 2821 if (process_zones(cpu)) 2822 ret = NOTIFY_BAD; 2823 break; 2824 case CPU_UP_CANCELED: 2825 case CPU_UP_CANCELED_FROZEN: 2826 case CPU_DEAD: 2827 case CPU_DEAD_FROZEN: 2828 free_zone_pagesets(cpu); 2829 break; 2830 default: 2831 break; 2832 } 2833 return ret; 2834 } 2835 2836 static struct notifier_block __cpuinitdata pageset_notifier = 2837 { &pageset_cpuup_callback, NULL, 0 }; 2838 2839 void __init setup_per_cpu_pageset(void) 2840 { 2841 int err; 2842 2843 /* Initialize per_cpu_pageset for cpu 0. 2844 * A cpuup callback will do this for every cpu 2845 * as it comes online 2846 */ 2847 err = process_zones(smp_processor_id()); 2848 BUG_ON(err); 2849 register_cpu_notifier(&pageset_notifier); 2850 } 2851 2852 #endif 2853 2854 static noinline __init_refok 2855 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2856 { 2857 int i; 2858 struct pglist_data *pgdat = zone->zone_pgdat; 2859 size_t alloc_size; 2860 2861 /* 2862 * The per-page waitqueue mechanism uses hashed waitqueues 2863 * per zone. 2864 */ 2865 zone->wait_table_hash_nr_entries = 2866 wait_table_hash_nr_entries(zone_size_pages); 2867 zone->wait_table_bits = 2868 wait_table_bits(zone->wait_table_hash_nr_entries); 2869 alloc_size = zone->wait_table_hash_nr_entries 2870 * sizeof(wait_queue_head_t); 2871 2872 if (!slab_is_available()) { 2873 zone->wait_table = (wait_queue_head_t *) 2874 alloc_bootmem_node(pgdat, alloc_size); 2875 } else { 2876 /* 2877 * This case means that a zone whose size was 0 gets new memory 2878 * via memory hot-add. 2879 * But it may be the case that a new node was hot-added. In 2880 * this case vmalloc() will not be able to use this new node's 2881 * memory - this wait_table must be initialized to use this new 2882 * node itself as well. 2883 * To use this new node's memory, further consideration will be 2884 * necessary. 2885 */ 2886 zone->wait_table = vmalloc(alloc_size); 2887 } 2888 if (!zone->wait_table) 2889 return -ENOMEM; 2890 2891 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2892 init_waitqueue_head(zone->wait_table + i); 2893 2894 return 0; 2895 } 2896 2897 static __meminit void zone_pcp_init(struct zone *zone) 2898 { 2899 int cpu; 2900 unsigned long batch = zone_batchsize(zone); 2901 2902 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2903 #ifdef CONFIG_NUMA 2904 /* Early boot. Slab allocator not functional yet */ 2905 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2906 setup_pageset(&boot_pageset[cpu],0); 2907 #else 2908 setup_pageset(zone_pcp(zone,cpu), batch); 2909 #endif 2910 } 2911 if (zone->present_pages) 2912 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2913 zone->name, zone->present_pages, batch); 2914 } 2915 2916 __meminit int init_currently_empty_zone(struct zone *zone, 2917 unsigned long zone_start_pfn, 2918 unsigned long size, 2919 enum memmap_context context) 2920 { 2921 struct pglist_data *pgdat = zone->zone_pgdat; 2922 int ret; 2923 ret = zone_wait_table_init(zone, size); 2924 if (ret) 2925 return ret; 2926 pgdat->nr_zones = zone_idx(zone) + 1; 2927 2928 zone->zone_start_pfn = zone_start_pfn; 2929 2930 mminit_dprintk(MMINIT_TRACE, "memmap_init", 2931 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 2932 pgdat->node_id, 2933 (unsigned long)zone_idx(zone), 2934 zone_start_pfn, (zone_start_pfn + size)); 2935 2936 zone_init_free_lists(zone); 2937 2938 return 0; 2939 } 2940 2941 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2942 /* 2943 * Basic iterator support. Return the first range of PFNs for a node 2944 * Note: nid == MAX_NUMNODES returns first region regardless of node 2945 */ 2946 static int __meminit first_active_region_index_in_nid(int nid) 2947 { 2948 int i; 2949 2950 for (i = 0; i < nr_nodemap_entries; i++) 2951 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2952 return i; 2953 2954 return -1; 2955 } 2956 2957 /* 2958 * Basic iterator support. Return the next active range of PFNs for a node 2959 * Note: nid == MAX_NUMNODES returns next region regardless of node 2960 */ 2961 static int __meminit next_active_region_index_in_nid(int index, int nid) 2962 { 2963 for (index = index + 1; index < nr_nodemap_entries; index++) 2964 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2965 return index; 2966 2967 return -1; 2968 } 2969 2970 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2971 /* 2972 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2973 * Architectures may implement their own version but if add_active_range() 2974 * was used and there are no special requirements, this is a convenient 2975 * alternative 2976 */ 2977 int __meminit early_pfn_to_nid(unsigned long pfn) 2978 { 2979 int i; 2980 2981 for (i = 0; i < nr_nodemap_entries; i++) { 2982 unsigned long start_pfn = early_node_map[i].start_pfn; 2983 unsigned long end_pfn = early_node_map[i].end_pfn; 2984 2985 if (start_pfn <= pfn && pfn < end_pfn) 2986 return early_node_map[i].nid; 2987 } 2988 2989 return 0; 2990 } 2991 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2992 2993 /* Basic iterator support to walk early_node_map[] */ 2994 #define for_each_active_range_index_in_nid(i, nid) \ 2995 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2996 i = next_active_region_index_in_nid(i, nid)) 2997 2998 /** 2999 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3000 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3001 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3002 * 3003 * If an architecture guarantees that all ranges registered with 3004 * add_active_ranges() contain no holes and may be freed, this 3005 * this function may be used instead of calling free_bootmem() manually. 3006 */ 3007 void __init free_bootmem_with_active_regions(int nid, 3008 unsigned long max_low_pfn) 3009 { 3010 int i; 3011 3012 for_each_active_range_index_in_nid(i, nid) { 3013 unsigned long size_pages = 0; 3014 unsigned long end_pfn = early_node_map[i].end_pfn; 3015 3016 if (early_node_map[i].start_pfn >= max_low_pfn) 3017 continue; 3018 3019 if (end_pfn > max_low_pfn) 3020 end_pfn = max_low_pfn; 3021 3022 size_pages = end_pfn - early_node_map[i].start_pfn; 3023 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3024 PFN_PHYS(early_node_map[i].start_pfn), 3025 size_pages << PAGE_SHIFT); 3026 } 3027 } 3028 3029 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3030 { 3031 int i; 3032 int ret; 3033 3034 for_each_active_range_index_in_nid(i, nid) { 3035 ret = work_fn(early_node_map[i].start_pfn, 3036 early_node_map[i].end_pfn, data); 3037 if (ret) 3038 break; 3039 } 3040 } 3041 /** 3042 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3043 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3044 * 3045 * If an architecture guarantees that all ranges registered with 3046 * add_active_ranges() contain no holes and may be freed, this 3047 * function may be used instead of calling memory_present() manually. 3048 */ 3049 void __init sparse_memory_present_with_active_regions(int nid) 3050 { 3051 int i; 3052 3053 for_each_active_range_index_in_nid(i, nid) 3054 memory_present(early_node_map[i].nid, 3055 early_node_map[i].start_pfn, 3056 early_node_map[i].end_pfn); 3057 } 3058 3059 /** 3060 * push_node_boundaries - Push node boundaries to at least the requested boundary 3061 * @nid: The nid of the node to push the boundary for 3062 * @start_pfn: The start pfn of the node 3063 * @end_pfn: The end pfn of the node 3064 * 3065 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 3066 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 3067 * be hotplugged even though no physical memory exists. This function allows 3068 * an arch to push out the node boundaries so mem_map is allocated that can 3069 * be used later. 3070 */ 3071 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3072 void __init push_node_boundaries(unsigned int nid, 3073 unsigned long start_pfn, unsigned long end_pfn) 3074 { 3075 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3076 "Entering push_node_boundaries(%u, %lu, %lu)\n", 3077 nid, start_pfn, end_pfn); 3078 3079 /* Initialise the boundary for this node if necessary */ 3080 if (node_boundary_end_pfn[nid] == 0) 3081 node_boundary_start_pfn[nid] = -1UL; 3082 3083 /* Update the boundaries */ 3084 if (node_boundary_start_pfn[nid] > start_pfn) 3085 node_boundary_start_pfn[nid] = start_pfn; 3086 if (node_boundary_end_pfn[nid] < end_pfn) 3087 node_boundary_end_pfn[nid] = end_pfn; 3088 } 3089 3090 /* If necessary, push the node boundary out for reserve hotadd */ 3091 static void __meminit account_node_boundary(unsigned int nid, 3092 unsigned long *start_pfn, unsigned long *end_pfn) 3093 { 3094 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3095 "Entering account_node_boundary(%u, %lu, %lu)\n", 3096 nid, *start_pfn, *end_pfn); 3097 3098 /* Return if boundary information has not been provided */ 3099 if (node_boundary_end_pfn[nid] == 0) 3100 return; 3101 3102 /* Check the boundaries and update if necessary */ 3103 if (node_boundary_start_pfn[nid] < *start_pfn) 3104 *start_pfn = node_boundary_start_pfn[nid]; 3105 if (node_boundary_end_pfn[nid] > *end_pfn) 3106 *end_pfn = node_boundary_end_pfn[nid]; 3107 } 3108 #else 3109 void __init push_node_boundaries(unsigned int nid, 3110 unsigned long start_pfn, unsigned long end_pfn) {} 3111 3112 static void __meminit account_node_boundary(unsigned int nid, 3113 unsigned long *start_pfn, unsigned long *end_pfn) {} 3114 #endif 3115 3116 3117 /** 3118 * get_pfn_range_for_nid - Return the start and end page frames for a node 3119 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3120 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3121 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3122 * 3123 * It returns the start and end page frame of a node based on information 3124 * provided by an arch calling add_active_range(). If called for a node 3125 * with no available memory, a warning is printed and the start and end 3126 * PFNs will be 0. 3127 */ 3128 void __meminit get_pfn_range_for_nid(unsigned int nid, 3129 unsigned long *start_pfn, unsigned long *end_pfn) 3130 { 3131 int i; 3132 *start_pfn = -1UL; 3133 *end_pfn = 0; 3134 3135 for_each_active_range_index_in_nid(i, nid) { 3136 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3137 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3138 } 3139 3140 if (*start_pfn == -1UL) 3141 *start_pfn = 0; 3142 3143 /* Push the node boundaries out if requested */ 3144 account_node_boundary(nid, start_pfn, end_pfn); 3145 } 3146 3147 /* 3148 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3149 * assumption is made that zones within a node are ordered in monotonic 3150 * increasing memory addresses so that the "highest" populated zone is used 3151 */ 3152 static void __init find_usable_zone_for_movable(void) 3153 { 3154 int zone_index; 3155 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3156 if (zone_index == ZONE_MOVABLE) 3157 continue; 3158 3159 if (arch_zone_highest_possible_pfn[zone_index] > 3160 arch_zone_lowest_possible_pfn[zone_index]) 3161 break; 3162 } 3163 3164 VM_BUG_ON(zone_index == -1); 3165 movable_zone = zone_index; 3166 } 3167 3168 /* 3169 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3170 * because it is sized independant of architecture. Unlike the other zones, 3171 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3172 * in each node depending on the size of each node and how evenly kernelcore 3173 * is distributed. This helper function adjusts the zone ranges 3174 * provided by the architecture for a given node by using the end of the 3175 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3176 * zones within a node are in order of monotonic increases memory addresses 3177 */ 3178 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3179 unsigned long zone_type, 3180 unsigned long node_start_pfn, 3181 unsigned long node_end_pfn, 3182 unsigned long *zone_start_pfn, 3183 unsigned long *zone_end_pfn) 3184 { 3185 /* Only adjust if ZONE_MOVABLE is on this node */ 3186 if (zone_movable_pfn[nid]) { 3187 /* Size ZONE_MOVABLE */ 3188 if (zone_type == ZONE_MOVABLE) { 3189 *zone_start_pfn = zone_movable_pfn[nid]; 3190 *zone_end_pfn = min(node_end_pfn, 3191 arch_zone_highest_possible_pfn[movable_zone]); 3192 3193 /* Adjust for ZONE_MOVABLE starting within this range */ 3194 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3195 *zone_end_pfn > zone_movable_pfn[nid]) { 3196 *zone_end_pfn = zone_movable_pfn[nid]; 3197 3198 /* Check if this whole range is within ZONE_MOVABLE */ 3199 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3200 *zone_start_pfn = *zone_end_pfn; 3201 } 3202 } 3203 3204 /* 3205 * Return the number of pages a zone spans in a node, including holes 3206 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3207 */ 3208 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3209 unsigned long zone_type, 3210 unsigned long *ignored) 3211 { 3212 unsigned long node_start_pfn, node_end_pfn; 3213 unsigned long zone_start_pfn, zone_end_pfn; 3214 3215 /* Get the start and end of the node and zone */ 3216 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3217 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3218 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3219 adjust_zone_range_for_zone_movable(nid, zone_type, 3220 node_start_pfn, node_end_pfn, 3221 &zone_start_pfn, &zone_end_pfn); 3222 3223 /* Check that this node has pages within the zone's required range */ 3224 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3225 return 0; 3226 3227 /* Move the zone boundaries inside the node if necessary */ 3228 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3229 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3230 3231 /* Return the spanned pages */ 3232 return zone_end_pfn - zone_start_pfn; 3233 } 3234 3235 /* 3236 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3237 * then all holes in the requested range will be accounted for. 3238 */ 3239 static unsigned long __meminit __absent_pages_in_range(int nid, 3240 unsigned long range_start_pfn, 3241 unsigned long range_end_pfn) 3242 { 3243 int i = 0; 3244 unsigned long prev_end_pfn = 0, hole_pages = 0; 3245 unsigned long start_pfn; 3246 3247 /* Find the end_pfn of the first active range of pfns in the node */ 3248 i = first_active_region_index_in_nid(nid); 3249 if (i == -1) 3250 return 0; 3251 3252 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3253 3254 /* Account for ranges before physical memory on this node */ 3255 if (early_node_map[i].start_pfn > range_start_pfn) 3256 hole_pages = prev_end_pfn - range_start_pfn; 3257 3258 /* Find all holes for the zone within the node */ 3259 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3260 3261 /* No need to continue if prev_end_pfn is outside the zone */ 3262 if (prev_end_pfn >= range_end_pfn) 3263 break; 3264 3265 /* Make sure the end of the zone is not within the hole */ 3266 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3267 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3268 3269 /* Update the hole size cound and move on */ 3270 if (start_pfn > range_start_pfn) { 3271 BUG_ON(prev_end_pfn > start_pfn); 3272 hole_pages += start_pfn - prev_end_pfn; 3273 } 3274 prev_end_pfn = early_node_map[i].end_pfn; 3275 } 3276 3277 /* Account for ranges past physical memory on this node */ 3278 if (range_end_pfn > prev_end_pfn) 3279 hole_pages += range_end_pfn - 3280 max(range_start_pfn, prev_end_pfn); 3281 3282 return hole_pages; 3283 } 3284 3285 /** 3286 * absent_pages_in_range - Return number of page frames in holes within a range 3287 * @start_pfn: The start PFN to start searching for holes 3288 * @end_pfn: The end PFN to stop searching for holes 3289 * 3290 * It returns the number of pages frames in memory holes within a range. 3291 */ 3292 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3293 unsigned long end_pfn) 3294 { 3295 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3296 } 3297 3298 /* Return the number of page frames in holes in a zone on a node */ 3299 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3300 unsigned long zone_type, 3301 unsigned long *ignored) 3302 { 3303 unsigned long node_start_pfn, node_end_pfn; 3304 unsigned long zone_start_pfn, zone_end_pfn; 3305 3306 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3307 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3308 node_start_pfn); 3309 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3310 node_end_pfn); 3311 3312 adjust_zone_range_for_zone_movable(nid, zone_type, 3313 node_start_pfn, node_end_pfn, 3314 &zone_start_pfn, &zone_end_pfn); 3315 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3316 } 3317 3318 #else 3319 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3320 unsigned long zone_type, 3321 unsigned long *zones_size) 3322 { 3323 return zones_size[zone_type]; 3324 } 3325 3326 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3327 unsigned long zone_type, 3328 unsigned long *zholes_size) 3329 { 3330 if (!zholes_size) 3331 return 0; 3332 3333 return zholes_size[zone_type]; 3334 } 3335 3336 #endif 3337 3338 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3339 unsigned long *zones_size, unsigned long *zholes_size) 3340 { 3341 unsigned long realtotalpages, totalpages = 0; 3342 enum zone_type i; 3343 3344 for (i = 0; i < MAX_NR_ZONES; i++) 3345 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3346 zones_size); 3347 pgdat->node_spanned_pages = totalpages; 3348 3349 realtotalpages = totalpages; 3350 for (i = 0; i < MAX_NR_ZONES; i++) 3351 realtotalpages -= 3352 zone_absent_pages_in_node(pgdat->node_id, i, 3353 zholes_size); 3354 pgdat->node_present_pages = realtotalpages; 3355 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3356 realtotalpages); 3357 } 3358 3359 #ifndef CONFIG_SPARSEMEM 3360 /* 3361 * Calculate the size of the zone->blockflags rounded to an unsigned long 3362 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3363 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3364 * round what is now in bits to nearest long in bits, then return it in 3365 * bytes. 3366 */ 3367 static unsigned long __init usemap_size(unsigned long zonesize) 3368 { 3369 unsigned long usemapsize; 3370 3371 usemapsize = roundup(zonesize, pageblock_nr_pages); 3372 usemapsize = usemapsize >> pageblock_order; 3373 usemapsize *= NR_PAGEBLOCK_BITS; 3374 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3375 3376 return usemapsize / 8; 3377 } 3378 3379 static void __init setup_usemap(struct pglist_data *pgdat, 3380 struct zone *zone, unsigned long zonesize) 3381 { 3382 unsigned long usemapsize = usemap_size(zonesize); 3383 zone->pageblock_flags = NULL; 3384 if (usemapsize) { 3385 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3386 memset(zone->pageblock_flags, 0, usemapsize); 3387 } 3388 } 3389 #else 3390 static void inline setup_usemap(struct pglist_data *pgdat, 3391 struct zone *zone, unsigned long zonesize) {} 3392 #endif /* CONFIG_SPARSEMEM */ 3393 3394 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3395 3396 /* Return a sensible default order for the pageblock size. */ 3397 static inline int pageblock_default_order(void) 3398 { 3399 if (HPAGE_SHIFT > PAGE_SHIFT) 3400 return HUGETLB_PAGE_ORDER; 3401 3402 return MAX_ORDER-1; 3403 } 3404 3405 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3406 static inline void __init set_pageblock_order(unsigned int order) 3407 { 3408 /* Check that pageblock_nr_pages has not already been setup */ 3409 if (pageblock_order) 3410 return; 3411 3412 /* 3413 * Assume the largest contiguous order of interest is a huge page. 3414 * This value may be variable depending on boot parameters on IA64 3415 */ 3416 pageblock_order = order; 3417 } 3418 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3419 3420 /* 3421 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3422 * and pageblock_default_order() are unused as pageblock_order is set 3423 * at compile-time. See include/linux/pageblock-flags.h for the values of 3424 * pageblock_order based on the kernel config 3425 */ 3426 static inline int pageblock_default_order(unsigned int order) 3427 { 3428 return MAX_ORDER-1; 3429 } 3430 #define set_pageblock_order(x) do {} while (0) 3431 3432 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3433 3434 /* 3435 * Set up the zone data structures: 3436 * - mark all pages reserved 3437 * - mark all memory queues empty 3438 * - clear the memory bitmaps 3439 */ 3440 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3441 unsigned long *zones_size, unsigned long *zholes_size) 3442 { 3443 enum zone_type j; 3444 int nid = pgdat->node_id; 3445 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3446 int ret; 3447 3448 pgdat_resize_init(pgdat); 3449 pgdat->nr_zones = 0; 3450 init_waitqueue_head(&pgdat->kswapd_wait); 3451 pgdat->kswapd_max_order = 0; 3452 pgdat_page_cgroup_init(pgdat); 3453 3454 for (j = 0; j < MAX_NR_ZONES; j++) { 3455 struct zone *zone = pgdat->node_zones + j; 3456 unsigned long size, realsize, memmap_pages; 3457 enum lru_list l; 3458 3459 size = zone_spanned_pages_in_node(nid, j, zones_size); 3460 realsize = size - zone_absent_pages_in_node(nid, j, 3461 zholes_size); 3462 3463 /* 3464 * Adjust realsize so that it accounts for how much memory 3465 * is used by this zone for memmap. This affects the watermark 3466 * and per-cpu initialisations 3467 */ 3468 memmap_pages = 3469 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3470 if (realsize >= memmap_pages) { 3471 realsize -= memmap_pages; 3472 printk(KERN_DEBUG 3473 " %s zone: %lu pages used for memmap\n", 3474 zone_names[j], memmap_pages); 3475 } else 3476 printk(KERN_WARNING 3477 " %s zone: %lu pages exceeds realsize %lu\n", 3478 zone_names[j], memmap_pages, realsize); 3479 3480 /* Account for reserved pages */ 3481 if (j == 0 && realsize > dma_reserve) { 3482 realsize -= dma_reserve; 3483 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3484 zone_names[0], dma_reserve); 3485 } 3486 3487 if (!is_highmem_idx(j)) 3488 nr_kernel_pages += realsize; 3489 nr_all_pages += realsize; 3490 3491 zone->spanned_pages = size; 3492 zone->present_pages = realsize; 3493 #ifdef CONFIG_NUMA 3494 zone->node = nid; 3495 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3496 / 100; 3497 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3498 #endif 3499 zone->name = zone_names[j]; 3500 spin_lock_init(&zone->lock); 3501 spin_lock_init(&zone->lru_lock); 3502 zone_seqlock_init(zone); 3503 zone->zone_pgdat = pgdat; 3504 3505 zone->prev_priority = DEF_PRIORITY; 3506 3507 zone_pcp_init(zone); 3508 for_each_lru(l) { 3509 INIT_LIST_HEAD(&zone->lru[l].list); 3510 zone->lru[l].nr_scan = 0; 3511 } 3512 zone->recent_rotated[0] = 0; 3513 zone->recent_rotated[1] = 0; 3514 zone->recent_scanned[0] = 0; 3515 zone->recent_scanned[1] = 0; 3516 zap_zone_vm_stats(zone); 3517 zone->flags = 0; 3518 if (!size) 3519 continue; 3520 3521 set_pageblock_order(pageblock_default_order()); 3522 setup_usemap(pgdat, zone, size); 3523 ret = init_currently_empty_zone(zone, zone_start_pfn, 3524 size, MEMMAP_EARLY); 3525 BUG_ON(ret); 3526 memmap_init(size, nid, j, zone_start_pfn); 3527 zone_start_pfn += size; 3528 } 3529 } 3530 3531 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3532 { 3533 /* Skip empty nodes */ 3534 if (!pgdat->node_spanned_pages) 3535 return; 3536 3537 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3538 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3539 if (!pgdat->node_mem_map) { 3540 unsigned long size, start, end; 3541 struct page *map; 3542 3543 /* 3544 * The zone's endpoints aren't required to be MAX_ORDER 3545 * aligned but the node_mem_map endpoints must be in order 3546 * for the buddy allocator to function correctly. 3547 */ 3548 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3549 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3550 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3551 size = (end - start) * sizeof(struct page); 3552 map = alloc_remap(pgdat->node_id, size); 3553 if (!map) 3554 map = alloc_bootmem_node(pgdat, size); 3555 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3556 } 3557 #ifndef CONFIG_NEED_MULTIPLE_NODES 3558 /* 3559 * With no DISCONTIG, the global mem_map is just set as node 0's 3560 */ 3561 if (pgdat == NODE_DATA(0)) { 3562 mem_map = NODE_DATA(0)->node_mem_map; 3563 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3564 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3565 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3566 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3567 } 3568 #endif 3569 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3570 } 3571 3572 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3573 unsigned long node_start_pfn, unsigned long *zholes_size) 3574 { 3575 pg_data_t *pgdat = NODE_DATA(nid); 3576 3577 pgdat->node_id = nid; 3578 pgdat->node_start_pfn = node_start_pfn; 3579 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3580 3581 alloc_node_mem_map(pgdat); 3582 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3583 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3584 nid, (unsigned long)pgdat, 3585 (unsigned long)pgdat->node_mem_map); 3586 #endif 3587 3588 free_area_init_core(pgdat, zones_size, zholes_size); 3589 } 3590 3591 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3592 3593 #if MAX_NUMNODES > 1 3594 /* 3595 * Figure out the number of possible node ids. 3596 */ 3597 static void __init setup_nr_node_ids(void) 3598 { 3599 unsigned int node; 3600 unsigned int highest = 0; 3601 3602 for_each_node_mask(node, node_possible_map) 3603 highest = node; 3604 nr_node_ids = highest + 1; 3605 } 3606 #else 3607 static inline void setup_nr_node_ids(void) 3608 { 3609 } 3610 #endif 3611 3612 /** 3613 * add_active_range - Register a range of PFNs backed by physical memory 3614 * @nid: The node ID the range resides on 3615 * @start_pfn: The start PFN of the available physical memory 3616 * @end_pfn: The end PFN of the available physical memory 3617 * 3618 * These ranges are stored in an early_node_map[] and later used by 3619 * free_area_init_nodes() to calculate zone sizes and holes. If the 3620 * range spans a memory hole, it is up to the architecture to ensure 3621 * the memory is not freed by the bootmem allocator. If possible 3622 * the range being registered will be merged with existing ranges. 3623 */ 3624 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3625 unsigned long end_pfn) 3626 { 3627 int i; 3628 3629 mminit_dprintk(MMINIT_TRACE, "memory_register", 3630 "Entering add_active_range(%d, %#lx, %#lx) " 3631 "%d entries of %d used\n", 3632 nid, start_pfn, end_pfn, 3633 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3634 3635 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3636 3637 /* Merge with existing active regions if possible */ 3638 for (i = 0; i < nr_nodemap_entries; i++) { 3639 if (early_node_map[i].nid != nid) 3640 continue; 3641 3642 /* Skip if an existing region covers this new one */ 3643 if (start_pfn >= early_node_map[i].start_pfn && 3644 end_pfn <= early_node_map[i].end_pfn) 3645 return; 3646 3647 /* Merge forward if suitable */ 3648 if (start_pfn <= early_node_map[i].end_pfn && 3649 end_pfn > early_node_map[i].end_pfn) { 3650 early_node_map[i].end_pfn = end_pfn; 3651 return; 3652 } 3653 3654 /* Merge backward if suitable */ 3655 if (start_pfn < early_node_map[i].end_pfn && 3656 end_pfn >= early_node_map[i].start_pfn) { 3657 early_node_map[i].start_pfn = start_pfn; 3658 return; 3659 } 3660 } 3661 3662 /* Check that early_node_map is large enough */ 3663 if (i >= MAX_ACTIVE_REGIONS) { 3664 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3665 MAX_ACTIVE_REGIONS); 3666 return; 3667 } 3668 3669 early_node_map[i].nid = nid; 3670 early_node_map[i].start_pfn = start_pfn; 3671 early_node_map[i].end_pfn = end_pfn; 3672 nr_nodemap_entries = i + 1; 3673 } 3674 3675 /** 3676 * remove_active_range - Shrink an existing registered range of PFNs 3677 * @nid: The node id the range is on that should be shrunk 3678 * @start_pfn: The new PFN of the range 3679 * @end_pfn: The new PFN of the range 3680 * 3681 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3682 * The map is kept near the end physical page range that has already been 3683 * registered. This function allows an arch to shrink an existing registered 3684 * range. 3685 */ 3686 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3687 unsigned long end_pfn) 3688 { 3689 int i, j; 3690 int removed = 0; 3691 3692 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3693 nid, start_pfn, end_pfn); 3694 3695 /* Find the old active region end and shrink */ 3696 for_each_active_range_index_in_nid(i, nid) { 3697 if (early_node_map[i].start_pfn >= start_pfn && 3698 early_node_map[i].end_pfn <= end_pfn) { 3699 /* clear it */ 3700 early_node_map[i].start_pfn = 0; 3701 early_node_map[i].end_pfn = 0; 3702 removed = 1; 3703 continue; 3704 } 3705 if (early_node_map[i].start_pfn < start_pfn && 3706 early_node_map[i].end_pfn > start_pfn) { 3707 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3708 early_node_map[i].end_pfn = start_pfn; 3709 if (temp_end_pfn > end_pfn) 3710 add_active_range(nid, end_pfn, temp_end_pfn); 3711 continue; 3712 } 3713 if (early_node_map[i].start_pfn >= start_pfn && 3714 early_node_map[i].end_pfn > end_pfn && 3715 early_node_map[i].start_pfn < end_pfn) { 3716 early_node_map[i].start_pfn = end_pfn; 3717 continue; 3718 } 3719 } 3720 3721 if (!removed) 3722 return; 3723 3724 /* remove the blank ones */ 3725 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3726 if (early_node_map[i].nid != nid) 3727 continue; 3728 if (early_node_map[i].end_pfn) 3729 continue; 3730 /* we found it, get rid of it */ 3731 for (j = i; j < nr_nodemap_entries - 1; j++) 3732 memcpy(&early_node_map[j], &early_node_map[j+1], 3733 sizeof(early_node_map[j])); 3734 j = nr_nodemap_entries - 1; 3735 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3736 nr_nodemap_entries--; 3737 } 3738 } 3739 3740 /** 3741 * remove_all_active_ranges - Remove all currently registered regions 3742 * 3743 * During discovery, it may be found that a table like SRAT is invalid 3744 * and an alternative discovery method must be used. This function removes 3745 * all currently registered regions. 3746 */ 3747 void __init remove_all_active_ranges(void) 3748 { 3749 memset(early_node_map, 0, sizeof(early_node_map)); 3750 nr_nodemap_entries = 0; 3751 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3752 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3753 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3754 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3755 } 3756 3757 /* Compare two active node_active_regions */ 3758 static int __init cmp_node_active_region(const void *a, const void *b) 3759 { 3760 struct node_active_region *arange = (struct node_active_region *)a; 3761 struct node_active_region *brange = (struct node_active_region *)b; 3762 3763 /* Done this way to avoid overflows */ 3764 if (arange->start_pfn > brange->start_pfn) 3765 return 1; 3766 if (arange->start_pfn < brange->start_pfn) 3767 return -1; 3768 3769 return 0; 3770 } 3771 3772 /* sort the node_map by start_pfn */ 3773 static void __init sort_node_map(void) 3774 { 3775 sort(early_node_map, (size_t)nr_nodemap_entries, 3776 sizeof(struct node_active_region), 3777 cmp_node_active_region, NULL); 3778 } 3779 3780 /* Find the lowest pfn for a node */ 3781 static unsigned long __init find_min_pfn_for_node(int nid) 3782 { 3783 int i; 3784 unsigned long min_pfn = ULONG_MAX; 3785 3786 /* Assuming a sorted map, the first range found has the starting pfn */ 3787 for_each_active_range_index_in_nid(i, nid) 3788 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3789 3790 if (min_pfn == ULONG_MAX) { 3791 printk(KERN_WARNING 3792 "Could not find start_pfn for node %d\n", nid); 3793 return 0; 3794 } 3795 3796 return min_pfn; 3797 } 3798 3799 /** 3800 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3801 * 3802 * It returns the minimum PFN based on information provided via 3803 * add_active_range(). 3804 */ 3805 unsigned long __init find_min_pfn_with_active_regions(void) 3806 { 3807 return find_min_pfn_for_node(MAX_NUMNODES); 3808 } 3809 3810 /* 3811 * early_calculate_totalpages() 3812 * Sum pages in active regions for movable zone. 3813 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3814 */ 3815 static unsigned long __init early_calculate_totalpages(void) 3816 { 3817 int i; 3818 unsigned long totalpages = 0; 3819 3820 for (i = 0; i < nr_nodemap_entries; i++) { 3821 unsigned long pages = early_node_map[i].end_pfn - 3822 early_node_map[i].start_pfn; 3823 totalpages += pages; 3824 if (pages) 3825 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3826 } 3827 return totalpages; 3828 } 3829 3830 /* 3831 * Find the PFN the Movable zone begins in each node. Kernel memory 3832 * is spread evenly between nodes as long as the nodes have enough 3833 * memory. When they don't, some nodes will have more kernelcore than 3834 * others 3835 */ 3836 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3837 { 3838 int i, nid; 3839 unsigned long usable_startpfn; 3840 unsigned long kernelcore_node, kernelcore_remaining; 3841 unsigned long totalpages = early_calculate_totalpages(); 3842 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3843 3844 /* 3845 * If movablecore was specified, calculate what size of 3846 * kernelcore that corresponds so that memory usable for 3847 * any allocation type is evenly spread. If both kernelcore 3848 * and movablecore are specified, then the value of kernelcore 3849 * will be used for required_kernelcore if it's greater than 3850 * what movablecore would have allowed. 3851 */ 3852 if (required_movablecore) { 3853 unsigned long corepages; 3854 3855 /* 3856 * Round-up so that ZONE_MOVABLE is at least as large as what 3857 * was requested by the user 3858 */ 3859 required_movablecore = 3860 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3861 corepages = totalpages - required_movablecore; 3862 3863 required_kernelcore = max(required_kernelcore, corepages); 3864 } 3865 3866 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3867 if (!required_kernelcore) 3868 return; 3869 3870 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3871 find_usable_zone_for_movable(); 3872 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3873 3874 restart: 3875 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3876 kernelcore_node = required_kernelcore / usable_nodes; 3877 for_each_node_state(nid, N_HIGH_MEMORY) { 3878 /* 3879 * Recalculate kernelcore_node if the division per node 3880 * now exceeds what is necessary to satisfy the requested 3881 * amount of memory for the kernel 3882 */ 3883 if (required_kernelcore < kernelcore_node) 3884 kernelcore_node = required_kernelcore / usable_nodes; 3885 3886 /* 3887 * As the map is walked, we track how much memory is usable 3888 * by the kernel using kernelcore_remaining. When it is 3889 * 0, the rest of the node is usable by ZONE_MOVABLE 3890 */ 3891 kernelcore_remaining = kernelcore_node; 3892 3893 /* Go through each range of PFNs within this node */ 3894 for_each_active_range_index_in_nid(i, nid) { 3895 unsigned long start_pfn, end_pfn; 3896 unsigned long size_pages; 3897 3898 start_pfn = max(early_node_map[i].start_pfn, 3899 zone_movable_pfn[nid]); 3900 end_pfn = early_node_map[i].end_pfn; 3901 if (start_pfn >= end_pfn) 3902 continue; 3903 3904 /* Account for what is only usable for kernelcore */ 3905 if (start_pfn < usable_startpfn) { 3906 unsigned long kernel_pages; 3907 kernel_pages = min(end_pfn, usable_startpfn) 3908 - start_pfn; 3909 3910 kernelcore_remaining -= min(kernel_pages, 3911 kernelcore_remaining); 3912 required_kernelcore -= min(kernel_pages, 3913 required_kernelcore); 3914 3915 /* Continue if range is now fully accounted */ 3916 if (end_pfn <= usable_startpfn) { 3917 3918 /* 3919 * Push zone_movable_pfn to the end so 3920 * that if we have to rebalance 3921 * kernelcore across nodes, we will 3922 * not double account here 3923 */ 3924 zone_movable_pfn[nid] = end_pfn; 3925 continue; 3926 } 3927 start_pfn = usable_startpfn; 3928 } 3929 3930 /* 3931 * The usable PFN range for ZONE_MOVABLE is from 3932 * start_pfn->end_pfn. Calculate size_pages as the 3933 * number of pages used as kernelcore 3934 */ 3935 size_pages = end_pfn - start_pfn; 3936 if (size_pages > kernelcore_remaining) 3937 size_pages = kernelcore_remaining; 3938 zone_movable_pfn[nid] = start_pfn + size_pages; 3939 3940 /* 3941 * Some kernelcore has been met, update counts and 3942 * break if the kernelcore for this node has been 3943 * satisified 3944 */ 3945 required_kernelcore -= min(required_kernelcore, 3946 size_pages); 3947 kernelcore_remaining -= size_pages; 3948 if (!kernelcore_remaining) 3949 break; 3950 } 3951 } 3952 3953 /* 3954 * If there is still required_kernelcore, we do another pass with one 3955 * less node in the count. This will push zone_movable_pfn[nid] further 3956 * along on the nodes that still have memory until kernelcore is 3957 * satisified 3958 */ 3959 usable_nodes--; 3960 if (usable_nodes && required_kernelcore > usable_nodes) 3961 goto restart; 3962 3963 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3964 for (nid = 0; nid < MAX_NUMNODES; nid++) 3965 zone_movable_pfn[nid] = 3966 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3967 } 3968 3969 /* Any regular memory on that node ? */ 3970 static void check_for_regular_memory(pg_data_t *pgdat) 3971 { 3972 #ifdef CONFIG_HIGHMEM 3973 enum zone_type zone_type; 3974 3975 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 3976 struct zone *zone = &pgdat->node_zones[zone_type]; 3977 if (zone->present_pages) 3978 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 3979 } 3980 #endif 3981 } 3982 3983 /** 3984 * free_area_init_nodes - Initialise all pg_data_t and zone data 3985 * @max_zone_pfn: an array of max PFNs for each zone 3986 * 3987 * This will call free_area_init_node() for each active node in the system. 3988 * Using the page ranges provided by add_active_range(), the size of each 3989 * zone in each node and their holes is calculated. If the maximum PFN 3990 * between two adjacent zones match, it is assumed that the zone is empty. 3991 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 3992 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 3993 * starts where the previous one ended. For example, ZONE_DMA32 starts 3994 * at arch_max_dma_pfn. 3995 */ 3996 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 3997 { 3998 unsigned long nid; 3999 int i; 4000 4001 /* Sort early_node_map as initialisation assumes it is sorted */ 4002 sort_node_map(); 4003 4004 /* Record where the zone boundaries are */ 4005 memset(arch_zone_lowest_possible_pfn, 0, 4006 sizeof(arch_zone_lowest_possible_pfn)); 4007 memset(arch_zone_highest_possible_pfn, 0, 4008 sizeof(arch_zone_highest_possible_pfn)); 4009 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4010 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4011 for (i = 1; i < MAX_NR_ZONES; i++) { 4012 if (i == ZONE_MOVABLE) 4013 continue; 4014 arch_zone_lowest_possible_pfn[i] = 4015 arch_zone_highest_possible_pfn[i-1]; 4016 arch_zone_highest_possible_pfn[i] = 4017 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4018 } 4019 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4020 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4021 4022 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4023 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4024 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4025 4026 /* Print out the zone ranges */ 4027 printk("Zone PFN ranges:\n"); 4028 for (i = 0; i < MAX_NR_ZONES; i++) { 4029 if (i == ZONE_MOVABLE) 4030 continue; 4031 printk(" %-8s %0#10lx -> %0#10lx\n", 4032 zone_names[i], 4033 arch_zone_lowest_possible_pfn[i], 4034 arch_zone_highest_possible_pfn[i]); 4035 } 4036 4037 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4038 printk("Movable zone start PFN for each node\n"); 4039 for (i = 0; i < MAX_NUMNODES; i++) { 4040 if (zone_movable_pfn[i]) 4041 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4042 } 4043 4044 /* Print out the early_node_map[] */ 4045 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4046 for (i = 0; i < nr_nodemap_entries; i++) 4047 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4048 early_node_map[i].start_pfn, 4049 early_node_map[i].end_pfn); 4050 4051 /* Initialise every node */ 4052 mminit_verify_pageflags_layout(); 4053 setup_nr_node_ids(); 4054 for_each_online_node(nid) { 4055 pg_data_t *pgdat = NODE_DATA(nid); 4056 free_area_init_node(nid, NULL, 4057 find_min_pfn_for_node(nid), NULL); 4058 4059 /* Any memory on that node */ 4060 if (pgdat->node_present_pages) 4061 node_set_state(nid, N_HIGH_MEMORY); 4062 check_for_regular_memory(pgdat); 4063 } 4064 } 4065 4066 static int __init cmdline_parse_core(char *p, unsigned long *core) 4067 { 4068 unsigned long long coremem; 4069 if (!p) 4070 return -EINVAL; 4071 4072 coremem = memparse(p, &p); 4073 *core = coremem >> PAGE_SHIFT; 4074 4075 /* Paranoid check that UL is enough for the coremem value */ 4076 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4077 4078 return 0; 4079 } 4080 4081 /* 4082 * kernelcore=size sets the amount of memory for use for allocations that 4083 * cannot be reclaimed or migrated. 4084 */ 4085 static int __init cmdline_parse_kernelcore(char *p) 4086 { 4087 return cmdline_parse_core(p, &required_kernelcore); 4088 } 4089 4090 /* 4091 * movablecore=size sets the amount of memory for use for allocations that 4092 * can be reclaimed or migrated. 4093 */ 4094 static int __init cmdline_parse_movablecore(char *p) 4095 { 4096 return cmdline_parse_core(p, &required_movablecore); 4097 } 4098 4099 early_param("kernelcore", cmdline_parse_kernelcore); 4100 early_param("movablecore", cmdline_parse_movablecore); 4101 4102 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4103 4104 /** 4105 * set_dma_reserve - set the specified number of pages reserved in the first zone 4106 * @new_dma_reserve: The number of pages to mark reserved 4107 * 4108 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4109 * In the DMA zone, a significant percentage may be consumed by kernel image 4110 * and other unfreeable allocations which can skew the watermarks badly. This 4111 * function may optionally be used to account for unfreeable pages in the 4112 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4113 * smaller per-cpu batchsize. 4114 */ 4115 void __init set_dma_reserve(unsigned long new_dma_reserve) 4116 { 4117 dma_reserve = new_dma_reserve; 4118 } 4119 4120 #ifndef CONFIG_NEED_MULTIPLE_NODES 4121 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4122 EXPORT_SYMBOL(contig_page_data); 4123 #endif 4124 4125 void __init free_area_init(unsigned long *zones_size) 4126 { 4127 free_area_init_node(0, zones_size, 4128 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4129 } 4130 4131 static int page_alloc_cpu_notify(struct notifier_block *self, 4132 unsigned long action, void *hcpu) 4133 { 4134 int cpu = (unsigned long)hcpu; 4135 4136 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4137 drain_pages(cpu); 4138 4139 /* 4140 * Spill the event counters of the dead processor 4141 * into the current processors event counters. 4142 * This artificially elevates the count of the current 4143 * processor. 4144 */ 4145 vm_events_fold_cpu(cpu); 4146 4147 /* 4148 * Zero the differential counters of the dead processor 4149 * so that the vm statistics are consistent. 4150 * 4151 * This is only okay since the processor is dead and cannot 4152 * race with what we are doing. 4153 */ 4154 refresh_cpu_vm_stats(cpu); 4155 } 4156 return NOTIFY_OK; 4157 } 4158 4159 void __init page_alloc_init(void) 4160 { 4161 hotcpu_notifier(page_alloc_cpu_notify, 0); 4162 } 4163 4164 /* 4165 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4166 * or min_free_kbytes changes. 4167 */ 4168 static void calculate_totalreserve_pages(void) 4169 { 4170 struct pglist_data *pgdat; 4171 unsigned long reserve_pages = 0; 4172 enum zone_type i, j; 4173 4174 for_each_online_pgdat(pgdat) { 4175 for (i = 0; i < MAX_NR_ZONES; i++) { 4176 struct zone *zone = pgdat->node_zones + i; 4177 unsigned long max = 0; 4178 4179 /* Find valid and maximum lowmem_reserve in the zone */ 4180 for (j = i; j < MAX_NR_ZONES; j++) { 4181 if (zone->lowmem_reserve[j] > max) 4182 max = zone->lowmem_reserve[j]; 4183 } 4184 4185 /* we treat pages_high as reserved pages. */ 4186 max += zone->pages_high; 4187 4188 if (max > zone->present_pages) 4189 max = zone->present_pages; 4190 reserve_pages += max; 4191 } 4192 } 4193 totalreserve_pages = reserve_pages; 4194 } 4195 4196 /* 4197 * setup_per_zone_lowmem_reserve - called whenever 4198 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4199 * has a correct pages reserved value, so an adequate number of 4200 * pages are left in the zone after a successful __alloc_pages(). 4201 */ 4202 static void setup_per_zone_lowmem_reserve(void) 4203 { 4204 struct pglist_data *pgdat; 4205 enum zone_type j, idx; 4206 4207 for_each_online_pgdat(pgdat) { 4208 for (j = 0; j < MAX_NR_ZONES; j++) { 4209 struct zone *zone = pgdat->node_zones + j; 4210 unsigned long present_pages = zone->present_pages; 4211 4212 zone->lowmem_reserve[j] = 0; 4213 4214 idx = j; 4215 while (idx) { 4216 struct zone *lower_zone; 4217 4218 idx--; 4219 4220 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4221 sysctl_lowmem_reserve_ratio[idx] = 1; 4222 4223 lower_zone = pgdat->node_zones + idx; 4224 lower_zone->lowmem_reserve[j] = present_pages / 4225 sysctl_lowmem_reserve_ratio[idx]; 4226 present_pages += lower_zone->present_pages; 4227 } 4228 } 4229 } 4230 4231 /* update totalreserve_pages */ 4232 calculate_totalreserve_pages(); 4233 } 4234 4235 /** 4236 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4237 * 4238 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4239 * with respect to min_free_kbytes. 4240 */ 4241 void setup_per_zone_pages_min(void) 4242 { 4243 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4244 unsigned long lowmem_pages = 0; 4245 struct zone *zone; 4246 unsigned long flags; 4247 4248 /* Calculate total number of !ZONE_HIGHMEM pages */ 4249 for_each_zone(zone) { 4250 if (!is_highmem(zone)) 4251 lowmem_pages += zone->present_pages; 4252 } 4253 4254 for_each_zone(zone) { 4255 u64 tmp; 4256 4257 spin_lock_irqsave(&zone->lock, flags); 4258 tmp = (u64)pages_min * zone->present_pages; 4259 do_div(tmp, lowmem_pages); 4260 if (is_highmem(zone)) { 4261 /* 4262 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4263 * need highmem pages, so cap pages_min to a small 4264 * value here. 4265 * 4266 * The (pages_high-pages_low) and (pages_low-pages_min) 4267 * deltas controls asynch page reclaim, and so should 4268 * not be capped for highmem. 4269 */ 4270 int min_pages; 4271 4272 min_pages = zone->present_pages / 1024; 4273 if (min_pages < SWAP_CLUSTER_MAX) 4274 min_pages = SWAP_CLUSTER_MAX; 4275 if (min_pages > 128) 4276 min_pages = 128; 4277 zone->pages_min = min_pages; 4278 } else { 4279 /* 4280 * If it's a lowmem zone, reserve a number of pages 4281 * proportionate to the zone's size. 4282 */ 4283 zone->pages_min = tmp; 4284 } 4285 4286 zone->pages_low = zone->pages_min + (tmp >> 2); 4287 zone->pages_high = zone->pages_min + (tmp >> 1); 4288 setup_zone_migrate_reserve(zone); 4289 spin_unlock_irqrestore(&zone->lock, flags); 4290 } 4291 4292 /* update totalreserve_pages */ 4293 calculate_totalreserve_pages(); 4294 } 4295 4296 /** 4297 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes. 4298 * 4299 * The inactive anon list should be small enough that the VM never has to 4300 * do too much work, but large enough that each inactive page has a chance 4301 * to be referenced again before it is swapped out. 4302 * 4303 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4304 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4305 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4306 * the anonymous pages are kept on the inactive list. 4307 * 4308 * total target max 4309 * memory ratio inactive anon 4310 * ------------------------------------- 4311 * 10MB 1 5MB 4312 * 100MB 1 50MB 4313 * 1GB 3 250MB 4314 * 10GB 10 0.9GB 4315 * 100GB 31 3GB 4316 * 1TB 101 10GB 4317 * 10TB 320 32GB 4318 */ 4319 void setup_per_zone_inactive_ratio(void) 4320 { 4321 struct zone *zone; 4322 4323 for_each_zone(zone) { 4324 unsigned int gb, ratio; 4325 4326 /* Zone size in gigabytes */ 4327 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4328 ratio = int_sqrt(10 * gb); 4329 if (!ratio) 4330 ratio = 1; 4331 4332 zone->inactive_ratio = ratio; 4333 } 4334 } 4335 4336 /* 4337 * Initialise min_free_kbytes. 4338 * 4339 * For small machines we want it small (128k min). For large machines 4340 * we want it large (64MB max). But it is not linear, because network 4341 * bandwidth does not increase linearly with machine size. We use 4342 * 4343 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4344 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4345 * 4346 * which yields 4347 * 4348 * 16MB: 512k 4349 * 32MB: 724k 4350 * 64MB: 1024k 4351 * 128MB: 1448k 4352 * 256MB: 2048k 4353 * 512MB: 2896k 4354 * 1024MB: 4096k 4355 * 2048MB: 5792k 4356 * 4096MB: 8192k 4357 * 8192MB: 11584k 4358 * 16384MB: 16384k 4359 */ 4360 static int __init init_per_zone_pages_min(void) 4361 { 4362 unsigned long lowmem_kbytes; 4363 4364 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4365 4366 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4367 if (min_free_kbytes < 128) 4368 min_free_kbytes = 128; 4369 if (min_free_kbytes > 65536) 4370 min_free_kbytes = 65536; 4371 setup_per_zone_pages_min(); 4372 setup_per_zone_lowmem_reserve(); 4373 setup_per_zone_inactive_ratio(); 4374 return 0; 4375 } 4376 module_init(init_per_zone_pages_min) 4377 4378 /* 4379 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4380 * that we can call two helper functions whenever min_free_kbytes 4381 * changes. 4382 */ 4383 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4384 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4385 { 4386 proc_dointvec(table, write, file, buffer, length, ppos); 4387 if (write) 4388 setup_per_zone_pages_min(); 4389 return 0; 4390 } 4391 4392 #ifdef CONFIG_NUMA 4393 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4394 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4395 { 4396 struct zone *zone; 4397 int rc; 4398 4399 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4400 if (rc) 4401 return rc; 4402 4403 for_each_zone(zone) 4404 zone->min_unmapped_pages = (zone->present_pages * 4405 sysctl_min_unmapped_ratio) / 100; 4406 return 0; 4407 } 4408 4409 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4410 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4411 { 4412 struct zone *zone; 4413 int rc; 4414 4415 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4416 if (rc) 4417 return rc; 4418 4419 for_each_zone(zone) 4420 zone->min_slab_pages = (zone->present_pages * 4421 sysctl_min_slab_ratio) / 100; 4422 return 0; 4423 } 4424 #endif 4425 4426 /* 4427 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4428 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4429 * whenever sysctl_lowmem_reserve_ratio changes. 4430 * 4431 * The reserve ratio obviously has absolutely no relation with the 4432 * pages_min watermarks. The lowmem reserve ratio can only make sense 4433 * if in function of the boot time zone sizes. 4434 */ 4435 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4436 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4437 { 4438 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4439 setup_per_zone_lowmem_reserve(); 4440 return 0; 4441 } 4442 4443 /* 4444 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4445 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4446 * can have before it gets flushed back to buddy allocator. 4447 */ 4448 4449 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4450 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4451 { 4452 struct zone *zone; 4453 unsigned int cpu; 4454 int ret; 4455 4456 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4457 if (!write || (ret == -EINVAL)) 4458 return ret; 4459 for_each_zone(zone) { 4460 for_each_online_cpu(cpu) { 4461 unsigned long high; 4462 high = zone->present_pages / percpu_pagelist_fraction; 4463 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4464 } 4465 } 4466 return 0; 4467 } 4468 4469 int hashdist = HASHDIST_DEFAULT; 4470 4471 #ifdef CONFIG_NUMA 4472 static int __init set_hashdist(char *str) 4473 { 4474 if (!str) 4475 return 0; 4476 hashdist = simple_strtoul(str, &str, 0); 4477 return 1; 4478 } 4479 __setup("hashdist=", set_hashdist); 4480 #endif 4481 4482 /* 4483 * allocate a large system hash table from bootmem 4484 * - it is assumed that the hash table must contain an exact power-of-2 4485 * quantity of entries 4486 * - limit is the number of hash buckets, not the total allocation size 4487 */ 4488 void *__init alloc_large_system_hash(const char *tablename, 4489 unsigned long bucketsize, 4490 unsigned long numentries, 4491 int scale, 4492 int flags, 4493 unsigned int *_hash_shift, 4494 unsigned int *_hash_mask, 4495 unsigned long limit) 4496 { 4497 unsigned long long max = limit; 4498 unsigned long log2qty, size; 4499 void *table = NULL; 4500 4501 /* allow the kernel cmdline to have a say */ 4502 if (!numentries) { 4503 /* round applicable memory size up to nearest megabyte */ 4504 numentries = nr_kernel_pages; 4505 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4506 numentries >>= 20 - PAGE_SHIFT; 4507 numentries <<= 20 - PAGE_SHIFT; 4508 4509 /* limit to 1 bucket per 2^scale bytes of low memory */ 4510 if (scale > PAGE_SHIFT) 4511 numentries >>= (scale - PAGE_SHIFT); 4512 else 4513 numentries <<= (PAGE_SHIFT - scale); 4514 4515 /* Make sure we've got at least a 0-order allocation.. */ 4516 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4517 numentries = PAGE_SIZE / bucketsize; 4518 } 4519 numentries = roundup_pow_of_two(numentries); 4520 4521 /* limit allocation size to 1/16 total memory by default */ 4522 if (max == 0) { 4523 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4524 do_div(max, bucketsize); 4525 } 4526 4527 if (numentries > max) 4528 numentries = max; 4529 4530 log2qty = ilog2(numentries); 4531 4532 do { 4533 size = bucketsize << log2qty; 4534 if (flags & HASH_EARLY) 4535 table = alloc_bootmem_nopanic(size); 4536 else if (hashdist) 4537 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4538 else { 4539 unsigned long order = get_order(size); 4540 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4541 /* 4542 * If bucketsize is not a power-of-two, we may free 4543 * some pages at the end of hash table. 4544 */ 4545 if (table) { 4546 unsigned long alloc_end = (unsigned long)table + 4547 (PAGE_SIZE << order); 4548 unsigned long used = (unsigned long)table + 4549 PAGE_ALIGN(size); 4550 split_page(virt_to_page(table), order); 4551 while (used < alloc_end) { 4552 free_page(used); 4553 used += PAGE_SIZE; 4554 } 4555 } 4556 } 4557 } while (!table && size > PAGE_SIZE && --log2qty); 4558 4559 if (!table) 4560 panic("Failed to allocate %s hash table\n", tablename); 4561 4562 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4563 tablename, 4564 (1U << log2qty), 4565 ilog2(size) - PAGE_SHIFT, 4566 size); 4567 4568 if (_hash_shift) 4569 *_hash_shift = log2qty; 4570 if (_hash_mask) 4571 *_hash_mask = (1 << log2qty) - 1; 4572 4573 return table; 4574 } 4575 4576 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 4577 struct page *pfn_to_page(unsigned long pfn) 4578 { 4579 return __pfn_to_page(pfn); 4580 } 4581 unsigned long page_to_pfn(struct page *page) 4582 { 4583 return __page_to_pfn(page); 4584 } 4585 EXPORT_SYMBOL(pfn_to_page); 4586 EXPORT_SYMBOL(page_to_pfn); 4587 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 4588 4589 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4590 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4591 unsigned long pfn) 4592 { 4593 #ifdef CONFIG_SPARSEMEM 4594 return __pfn_to_section(pfn)->pageblock_flags; 4595 #else 4596 return zone->pageblock_flags; 4597 #endif /* CONFIG_SPARSEMEM */ 4598 } 4599 4600 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4601 { 4602 #ifdef CONFIG_SPARSEMEM 4603 pfn &= (PAGES_PER_SECTION-1); 4604 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4605 #else 4606 pfn = pfn - zone->zone_start_pfn; 4607 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4608 #endif /* CONFIG_SPARSEMEM */ 4609 } 4610 4611 /** 4612 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4613 * @page: The page within the block of interest 4614 * @start_bitidx: The first bit of interest to retrieve 4615 * @end_bitidx: The last bit of interest 4616 * returns pageblock_bits flags 4617 */ 4618 unsigned long get_pageblock_flags_group(struct page *page, 4619 int start_bitidx, int end_bitidx) 4620 { 4621 struct zone *zone; 4622 unsigned long *bitmap; 4623 unsigned long pfn, bitidx; 4624 unsigned long flags = 0; 4625 unsigned long value = 1; 4626 4627 zone = page_zone(page); 4628 pfn = page_to_pfn(page); 4629 bitmap = get_pageblock_bitmap(zone, pfn); 4630 bitidx = pfn_to_bitidx(zone, pfn); 4631 4632 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4633 if (test_bit(bitidx + start_bitidx, bitmap)) 4634 flags |= value; 4635 4636 return flags; 4637 } 4638 4639 /** 4640 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4641 * @page: The page within the block of interest 4642 * @start_bitidx: The first bit of interest 4643 * @end_bitidx: The last bit of interest 4644 * @flags: The flags to set 4645 */ 4646 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4647 int start_bitidx, int end_bitidx) 4648 { 4649 struct zone *zone; 4650 unsigned long *bitmap; 4651 unsigned long pfn, bitidx; 4652 unsigned long value = 1; 4653 4654 zone = page_zone(page); 4655 pfn = page_to_pfn(page); 4656 bitmap = get_pageblock_bitmap(zone, pfn); 4657 bitidx = pfn_to_bitidx(zone, pfn); 4658 VM_BUG_ON(pfn < zone->zone_start_pfn); 4659 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4660 4661 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4662 if (flags & value) 4663 __set_bit(bitidx + start_bitidx, bitmap); 4664 else 4665 __clear_bit(bitidx + start_bitidx, bitmap); 4666 } 4667 4668 /* 4669 * This is designed as sub function...plz see page_isolation.c also. 4670 * set/clear page block's type to be ISOLATE. 4671 * page allocater never alloc memory from ISOLATE block. 4672 */ 4673 4674 int set_migratetype_isolate(struct page *page) 4675 { 4676 struct zone *zone; 4677 unsigned long flags; 4678 int ret = -EBUSY; 4679 4680 zone = page_zone(page); 4681 spin_lock_irqsave(&zone->lock, flags); 4682 /* 4683 * In future, more migrate types will be able to be isolation target. 4684 */ 4685 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4686 goto out; 4687 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4688 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4689 ret = 0; 4690 out: 4691 spin_unlock_irqrestore(&zone->lock, flags); 4692 if (!ret) 4693 drain_all_pages(); 4694 return ret; 4695 } 4696 4697 void unset_migratetype_isolate(struct page *page) 4698 { 4699 struct zone *zone; 4700 unsigned long flags; 4701 zone = page_zone(page); 4702 spin_lock_irqsave(&zone->lock, flags); 4703 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4704 goto out; 4705 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4706 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4707 out: 4708 spin_unlock_irqrestore(&zone->lock, flags); 4709 } 4710 4711 #ifdef CONFIG_MEMORY_HOTREMOVE 4712 /* 4713 * All pages in the range must be isolated before calling this. 4714 */ 4715 void 4716 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4717 { 4718 struct page *page; 4719 struct zone *zone; 4720 int order, i; 4721 unsigned long pfn; 4722 unsigned long flags; 4723 /* find the first valid pfn */ 4724 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4725 if (pfn_valid(pfn)) 4726 break; 4727 if (pfn == end_pfn) 4728 return; 4729 zone = page_zone(pfn_to_page(pfn)); 4730 spin_lock_irqsave(&zone->lock, flags); 4731 pfn = start_pfn; 4732 while (pfn < end_pfn) { 4733 if (!pfn_valid(pfn)) { 4734 pfn++; 4735 continue; 4736 } 4737 page = pfn_to_page(pfn); 4738 BUG_ON(page_count(page)); 4739 BUG_ON(!PageBuddy(page)); 4740 order = page_order(page); 4741 #ifdef CONFIG_DEBUG_VM 4742 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4743 pfn, 1 << order, end_pfn); 4744 #endif 4745 list_del(&page->lru); 4746 rmv_page_order(page); 4747 zone->free_area[order].nr_free--; 4748 __mod_zone_page_state(zone, NR_FREE_PAGES, 4749 - (1UL << order)); 4750 for (i = 0; i < (1 << order); i++) 4751 SetPageReserved((page+i)); 4752 pfn += (1 << order); 4753 } 4754 spin_unlock_irqrestore(&zone->lock, flags); 4755 } 4756 #endif 4757