1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static void accept_page(struct page *page, unsigned int order); 290 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 291 static inline bool has_unaccepted_memory(void); 292 static bool __free_unaccepted(struct page *page); 293 294 int page_group_by_mobility_disabled __read_mostly; 295 296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 297 /* 298 * During boot we initialize deferred pages on-demand, as needed, but once 299 * page_alloc_init_late() has finished, the deferred pages are all initialized, 300 * and we can permanently disable that path. 301 */ 302 DEFINE_STATIC_KEY_TRUE(deferred_pages); 303 304 static inline bool deferred_pages_enabled(void) 305 { 306 return static_branch_unlikely(&deferred_pages); 307 } 308 309 /* 310 * deferred_grow_zone() is __init, but it is called from 311 * get_page_from_freelist() during early boot until deferred_pages permanently 312 * disables this call. This is why we have refdata wrapper to avoid warning, 313 * and to ensure that the function body gets unloaded. 314 */ 315 static bool __ref 316 _deferred_grow_zone(struct zone *zone, unsigned int order) 317 { 318 return deferred_grow_zone(zone, order); 319 } 320 #else 321 static inline bool deferred_pages_enabled(void) 322 { 323 return false; 324 } 325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 326 327 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 328 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 329 unsigned long pfn) 330 { 331 #ifdef CONFIG_SPARSEMEM 332 return section_to_usemap(__pfn_to_section(pfn)); 333 #else 334 return page_zone(page)->pageblock_flags; 335 #endif /* CONFIG_SPARSEMEM */ 336 } 337 338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 339 { 340 #ifdef CONFIG_SPARSEMEM 341 pfn &= (PAGES_PER_SECTION-1); 342 #else 343 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 344 #endif /* CONFIG_SPARSEMEM */ 345 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 346 } 347 348 /** 349 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 350 * @page: The page within the block of interest 351 * @pfn: The target page frame number 352 * @mask: mask of bits that the caller is interested in 353 * 354 * Return: pageblock_bits flags 355 */ 356 unsigned long get_pfnblock_flags_mask(const struct page *page, 357 unsigned long pfn, unsigned long mask) 358 { 359 unsigned long *bitmap; 360 unsigned long bitidx, word_bitidx; 361 unsigned long word; 362 363 bitmap = get_pageblock_bitmap(page, pfn); 364 bitidx = pfn_to_bitidx(page, pfn); 365 word_bitidx = bitidx / BITS_PER_LONG; 366 bitidx &= (BITS_PER_LONG-1); 367 /* 368 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 369 * a consistent read of the memory array, so that results, even though 370 * racy, are not corrupted. 371 */ 372 word = READ_ONCE(bitmap[word_bitidx]); 373 return (word >> bitidx) & mask; 374 } 375 376 static __always_inline int get_pfnblock_migratetype(const struct page *page, 377 unsigned long pfn) 378 { 379 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 380 } 381 382 /** 383 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 384 * @page: The page within the block of interest 385 * @flags: The flags to set 386 * @pfn: The target page frame number 387 * @mask: mask of bits that the caller is interested in 388 */ 389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 390 unsigned long pfn, 391 unsigned long mask) 392 { 393 unsigned long *bitmap; 394 unsigned long bitidx, word_bitidx; 395 unsigned long word; 396 397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 398 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 399 400 bitmap = get_pageblock_bitmap(page, pfn); 401 bitidx = pfn_to_bitidx(page, pfn); 402 word_bitidx = bitidx / BITS_PER_LONG; 403 bitidx &= (BITS_PER_LONG-1); 404 405 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 406 407 mask <<= bitidx; 408 flags <<= bitidx; 409 410 word = READ_ONCE(bitmap[word_bitidx]); 411 do { 412 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 413 } 414 415 void set_pageblock_migratetype(struct page *page, int migratetype) 416 { 417 if (unlikely(page_group_by_mobility_disabled && 418 migratetype < MIGRATE_PCPTYPES)) 419 migratetype = MIGRATE_UNMOVABLE; 420 421 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 422 page_to_pfn(page), MIGRATETYPE_MASK); 423 } 424 425 #ifdef CONFIG_DEBUG_VM 426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 427 { 428 int ret; 429 unsigned seq; 430 unsigned long pfn = page_to_pfn(page); 431 unsigned long sp, start_pfn; 432 433 do { 434 seq = zone_span_seqbegin(zone); 435 start_pfn = zone->zone_start_pfn; 436 sp = zone->spanned_pages; 437 ret = !zone_spans_pfn(zone, pfn); 438 } while (zone_span_seqretry(zone, seq)); 439 440 if (ret) 441 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 442 pfn, zone_to_nid(zone), zone->name, 443 start_pfn, start_pfn + sp); 444 445 return ret; 446 } 447 448 /* 449 * Temporary debugging check for pages not lying within a given zone. 450 */ 451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 452 { 453 if (page_outside_zone_boundaries(zone, page)) 454 return true; 455 if (zone != page_zone(page)) 456 return true; 457 458 return false; 459 } 460 #else 461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 462 { 463 return false; 464 } 465 #endif 466 467 static void bad_page(struct page *page, const char *reason) 468 { 469 static unsigned long resume; 470 static unsigned long nr_shown; 471 static unsigned long nr_unshown; 472 473 /* 474 * Allow a burst of 60 reports, then keep quiet for that minute; 475 * or allow a steady drip of one report per second. 476 */ 477 if (nr_shown == 60) { 478 if (time_before(jiffies, resume)) { 479 nr_unshown++; 480 goto out; 481 } 482 if (nr_unshown) { 483 pr_alert( 484 "BUG: Bad page state: %lu messages suppressed\n", 485 nr_unshown); 486 nr_unshown = 0; 487 } 488 nr_shown = 0; 489 } 490 if (nr_shown++ == 0) 491 resume = jiffies + 60 * HZ; 492 493 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 494 current->comm, page_to_pfn(page)); 495 dump_page(page, reason); 496 497 print_modules(); 498 dump_stack(); 499 out: 500 /* Leave bad fields for debug, except PageBuddy could make trouble */ 501 page_mapcount_reset(page); /* remove PageBuddy */ 502 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 503 } 504 505 static inline unsigned int order_to_pindex(int migratetype, int order) 506 { 507 bool __maybe_unused movable; 508 509 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 510 if (order > PAGE_ALLOC_COSTLY_ORDER) { 511 VM_BUG_ON(order != HPAGE_PMD_ORDER); 512 513 movable = migratetype == MIGRATE_MOVABLE; 514 515 return NR_LOWORDER_PCP_LISTS + movable; 516 } 517 #else 518 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 519 #endif 520 521 return (MIGRATE_PCPTYPES * order) + migratetype; 522 } 523 524 static inline int pindex_to_order(unsigned int pindex) 525 { 526 int order = pindex / MIGRATE_PCPTYPES; 527 528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 529 if (pindex >= NR_LOWORDER_PCP_LISTS) 530 order = HPAGE_PMD_ORDER; 531 #else 532 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 533 #endif 534 535 return order; 536 } 537 538 static inline bool pcp_allowed_order(unsigned int order) 539 { 540 if (order <= PAGE_ALLOC_COSTLY_ORDER) 541 return true; 542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 543 if (order == HPAGE_PMD_ORDER) 544 return true; 545 #endif 546 return false; 547 } 548 549 /* 550 * Higher-order pages are called "compound pages". They are structured thusly: 551 * 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 553 * 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 556 * 557 * The first tail page's ->compound_order holds the order of allocation. 558 * This usage means that zero-order pages may not be compound. 559 */ 560 561 void prep_compound_page(struct page *page, unsigned int order) 562 { 563 int i; 564 int nr_pages = 1 << order; 565 566 __SetPageHead(page); 567 for (i = 1; i < nr_pages; i++) 568 prep_compound_tail(page, i); 569 570 prep_compound_head(page, order); 571 } 572 573 static inline void set_buddy_order(struct page *page, unsigned int order) 574 { 575 set_page_private(page, order); 576 __SetPageBuddy(page); 577 } 578 579 #ifdef CONFIG_COMPACTION 580 static inline struct capture_control *task_capc(struct zone *zone) 581 { 582 struct capture_control *capc = current->capture_control; 583 584 return unlikely(capc) && 585 !(current->flags & PF_KTHREAD) && 586 !capc->page && 587 capc->cc->zone == zone ? capc : NULL; 588 } 589 590 static inline bool 591 compaction_capture(struct capture_control *capc, struct page *page, 592 int order, int migratetype) 593 { 594 if (!capc || order != capc->cc->order) 595 return false; 596 597 /* Do not accidentally pollute CMA or isolated regions*/ 598 if (is_migrate_cma(migratetype) || 599 is_migrate_isolate(migratetype)) 600 return false; 601 602 /* 603 * Do not let lower order allocations pollute a movable pageblock 604 * unless compaction is also requesting movable pages. 605 * This might let an unmovable request use a reclaimable pageblock 606 * and vice-versa but no more than normal fallback logic which can 607 * have trouble finding a high-order free page. 608 */ 609 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 610 capc->cc->migratetype != MIGRATE_MOVABLE) 611 return false; 612 613 capc->page = page; 614 return true; 615 } 616 617 #else 618 static inline struct capture_control *task_capc(struct zone *zone) 619 { 620 return NULL; 621 } 622 623 static inline bool 624 compaction_capture(struct capture_control *capc, struct page *page, 625 int order, int migratetype) 626 { 627 return false; 628 } 629 #endif /* CONFIG_COMPACTION */ 630 631 static inline void account_freepages(struct zone *zone, int nr_pages, 632 int migratetype) 633 { 634 if (is_migrate_isolate(migratetype)) 635 return; 636 637 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 638 639 if (is_migrate_cma(migratetype)) 640 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 641 } 642 643 /* Used for pages not on another list */ 644 static inline void __add_to_free_list(struct page *page, struct zone *zone, 645 unsigned int order, int migratetype, 646 bool tail) 647 { 648 struct free_area *area = &zone->free_area[order]; 649 650 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 651 "page type is %lu, passed migratetype is %d (nr=%d)\n", 652 get_pageblock_migratetype(page), migratetype, 1 << order); 653 654 if (tail) 655 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 656 else 657 list_add(&page->buddy_list, &area->free_list[migratetype]); 658 area->nr_free++; 659 } 660 661 /* 662 * Used for pages which are on another list. Move the pages to the tail 663 * of the list - so the moved pages won't immediately be considered for 664 * allocation again (e.g., optimization for memory onlining). 665 */ 666 static inline void move_to_free_list(struct page *page, struct zone *zone, 667 unsigned int order, int old_mt, int new_mt) 668 { 669 struct free_area *area = &zone->free_area[order]; 670 671 /* Free page moving can fail, so it happens before the type update */ 672 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 673 "page type is %lu, passed migratetype is %d (nr=%d)\n", 674 get_pageblock_migratetype(page), old_mt, 1 << order); 675 676 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 677 678 account_freepages(zone, -(1 << order), old_mt); 679 account_freepages(zone, 1 << order, new_mt); 680 } 681 682 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 683 unsigned int order, int migratetype) 684 { 685 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 686 "page type is %lu, passed migratetype is %d (nr=%d)\n", 687 get_pageblock_migratetype(page), migratetype, 1 << order); 688 689 /* clear reported state and update reported page count */ 690 if (page_reported(page)) 691 __ClearPageReported(page); 692 693 list_del(&page->buddy_list); 694 __ClearPageBuddy(page); 695 set_page_private(page, 0); 696 zone->free_area[order].nr_free--; 697 } 698 699 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 700 unsigned int order, int migratetype) 701 { 702 __del_page_from_free_list(page, zone, order, migratetype); 703 account_freepages(zone, -(1 << order), migratetype); 704 } 705 706 static inline struct page *get_page_from_free_area(struct free_area *area, 707 int migratetype) 708 { 709 return list_first_entry_or_null(&area->free_list[migratetype], 710 struct page, buddy_list); 711 } 712 713 /* 714 * If this is not the largest possible page, check if the buddy 715 * of the next-highest order is free. If it is, it's possible 716 * that pages are being freed that will coalesce soon. In case, 717 * that is happening, add the free page to the tail of the list 718 * so it's less likely to be used soon and more likely to be merged 719 * as a higher order page 720 */ 721 static inline bool 722 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 723 struct page *page, unsigned int order) 724 { 725 unsigned long higher_page_pfn; 726 struct page *higher_page; 727 728 if (order >= MAX_PAGE_ORDER - 1) 729 return false; 730 731 higher_page_pfn = buddy_pfn & pfn; 732 higher_page = page + (higher_page_pfn - pfn); 733 734 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 735 NULL) != NULL; 736 } 737 738 /* 739 * Freeing function for a buddy system allocator. 740 * 741 * The concept of a buddy system is to maintain direct-mapped table 742 * (containing bit values) for memory blocks of various "orders". 743 * The bottom level table contains the map for the smallest allocatable 744 * units of memory (here, pages), and each level above it describes 745 * pairs of units from the levels below, hence, "buddies". 746 * At a high level, all that happens here is marking the table entry 747 * at the bottom level available, and propagating the changes upward 748 * as necessary, plus some accounting needed to play nicely with other 749 * parts of the VM system. 750 * At each level, we keep a list of pages, which are heads of continuous 751 * free pages of length of (1 << order) and marked with PageBuddy. 752 * Page's order is recorded in page_private(page) field. 753 * So when we are allocating or freeing one, we can derive the state of the 754 * other. That is, if we allocate a small block, and both were 755 * free, the remainder of the region must be split into blocks. 756 * If a block is freed, and its buddy is also free, then this 757 * triggers coalescing into a block of larger size. 758 * 759 * -- nyc 760 */ 761 762 static inline void __free_one_page(struct page *page, 763 unsigned long pfn, 764 struct zone *zone, unsigned int order, 765 int migratetype, fpi_t fpi_flags) 766 { 767 struct capture_control *capc = task_capc(zone); 768 unsigned long buddy_pfn = 0; 769 unsigned long combined_pfn; 770 struct page *buddy; 771 bool to_tail; 772 773 VM_BUG_ON(!zone_is_initialized(zone)); 774 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 775 776 VM_BUG_ON(migratetype == -1); 777 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 778 VM_BUG_ON_PAGE(bad_range(zone, page), page); 779 780 account_freepages(zone, 1 << order, migratetype); 781 782 while (order < MAX_PAGE_ORDER) { 783 int buddy_mt = migratetype; 784 785 if (compaction_capture(capc, page, order, migratetype)) { 786 account_freepages(zone, -(1 << order), migratetype); 787 return; 788 } 789 790 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 791 if (!buddy) 792 goto done_merging; 793 794 if (unlikely(order >= pageblock_order)) { 795 /* 796 * We want to prevent merge between freepages on pageblock 797 * without fallbacks and normal pageblock. Without this, 798 * pageblock isolation could cause incorrect freepage or CMA 799 * accounting or HIGHATOMIC accounting. 800 */ 801 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 802 803 if (migratetype != buddy_mt && 804 (!migratetype_is_mergeable(migratetype) || 805 !migratetype_is_mergeable(buddy_mt))) 806 goto done_merging; 807 } 808 809 /* 810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 811 * merge with it and move up one order. 812 */ 813 if (page_is_guard(buddy)) 814 clear_page_guard(zone, buddy, order); 815 else 816 __del_page_from_free_list(buddy, zone, order, buddy_mt); 817 818 if (unlikely(buddy_mt != migratetype)) { 819 /* 820 * Match buddy type. This ensures that an 821 * expand() down the line puts the sub-blocks 822 * on the right freelists. 823 */ 824 set_pageblock_migratetype(buddy, migratetype); 825 } 826 827 combined_pfn = buddy_pfn & pfn; 828 page = page + (combined_pfn - pfn); 829 pfn = combined_pfn; 830 order++; 831 } 832 833 done_merging: 834 set_buddy_order(page, order); 835 836 if (fpi_flags & FPI_TO_TAIL) 837 to_tail = true; 838 else if (is_shuffle_order(order)) 839 to_tail = shuffle_pick_tail(); 840 else 841 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 842 843 __add_to_free_list(page, zone, order, migratetype, to_tail); 844 845 /* Notify page reporting subsystem of freed page */ 846 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 847 page_reporting_notify_free(order); 848 } 849 850 /* 851 * A bad page could be due to a number of fields. Instead of multiple branches, 852 * try and check multiple fields with one check. The caller must do a detailed 853 * check if necessary. 854 */ 855 static inline bool page_expected_state(struct page *page, 856 unsigned long check_flags) 857 { 858 if (unlikely(atomic_read(&page->_mapcount) != -1)) 859 return false; 860 861 if (unlikely((unsigned long)page->mapping | 862 page_ref_count(page) | 863 #ifdef CONFIG_MEMCG 864 page->memcg_data | 865 #endif 866 #ifdef CONFIG_PAGE_POOL 867 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 868 #endif 869 (page->flags & check_flags))) 870 return false; 871 872 return true; 873 } 874 875 static const char *page_bad_reason(struct page *page, unsigned long flags) 876 { 877 const char *bad_reason = NULL; 878 879 if (unlikely(atomic_read(&page->_mapcount) != -1)) 880 bad_reason = "nonzero mapcount"; 881 if (unlikely(page->mapping != NULL)) 882 bad_reason = "non-NULL mapping"; 883 if (unlikely(page_ref_count(page) != 0)) 884 bad_reason = "nonzero _refcount"; 885 if (unlikely(page->flags & flags)) { 886 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 887 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 888 else 889 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 890 } 891 #ifdef CONFIG_MEMCG 892 if (unlikely(page->memcg_data)) 893 bad_reason = "page still charged to cgroup"; 894 #endif 895 #ifdef CONFIG_PAGE_POOL 896 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 897 bad_reason = "page_pool leak"; 898 #endif 899 return bad_reason; 900 } 901 902 static void free_page_is_bad_report(struct page *page) 903 { 904 bad_page(page, 905 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 906 } 907 908 static inline bool free_page_is_bad(struct page *page) 909 { 910 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 911 return false; 912 913 /* Something has gone sideways, find it */ 914 free_page_is_bad_report(page); 915 return true; 916 } 917 918 static inline bool is_check_pages_enabled(void) 919 { 920 return static_branch_unlikely(&check_pages_enabled); 921 } 922 923 static int free_tail_page_prepare(struct page *head_page, struct page *page) 924 { 925 struct folio *folio = (struct folio *)head_page; 926 int ret = 1; 927 928 /* 929 * We rely page->lru.next never has bit 0 set, unless the page 930 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 931 */ 932 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 933 934 if (!is_check_pages_enabled()) { 935 ret = 0; 936 goto out; 937 } 938 switch (page - head_page) { 939 case 1: 940 /* the first tail page: these may be in place of ->mapping */ 941 if (unlikely(folio_entire_mapcount(folio))) { 942 bad_page(page, "nonzero entire_mapcount"); 943 goto out; 944 } 945 if (unlikely(folio_large_mapcount(folio))) { 946 bad_page(page, "nonzero large_mapcount"); 947 goto out; 948 } 949 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 950 bad_page(page, "nonzero nr_pages_mapped"); 951 goto out; 952 } 953 if (unlikely(atomic_read(&folio->_pincount))) { 954 bad_page(page, "nonzero pincount"); 955 goto out; 956 } 957 break; 958 case 2: 959 /* the second tail page: deferred_list overlaps ->mapping */ 960 if (unlikely(!list_empty(&folio->_deferred_list))) { 961 bad_page(page, "on deferred list"); 962 goto out; 963 } 964 break; 965 default: 966 if (page->mapping != TAIL_MAPPING) { 967 bad_page(page, "corrupted mapping in tail page"); 968 goto out; 969 } 970 break; 971 } 972 if (unlikely(!PageTail(page))) { 973 bad_page(page, "PageTail not set"); 974 goto out; 975 } 976 if (unlikely(compound_head(page) != head_page)) { 977 bad_page(page, "compound_head not consistent"); 978 goto out; 979 } 980 ret = 0; 981 out: 982 page->mapping = NULL; 983 clear_compound_head(page); 984 return ret; 985 } 986 987 /* 988 * Skip KASAN memory poisoning when either: 989 * 990 * 1. For generic KASAN: deferred memory initialization has not yet completed. 991 * Tag-based KASAN modes skip pages freed via deferred memory initialization 992 * using page tags instead (see below). 993 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 994 * that error detection is disabled for accesses via the page address. 995 * 996 * Pages will have match-all tags in the following circumstances: 997 * 998 * 1. Pages are being initialized for the first time, including during deferred 999 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1000 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1001 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1002 * 3. The allocation was excluded from being checked due to sampling, 1003 * see the call to kasan_unpoison_pages. 1004 * 1005 * Poisoning pages during deferred memory init will greatly lengthen the 1006 * process and cause problem in large memory systems as the deferred pages 1007 * initialization is done with interrupt disabled. 1008 * 1009 * Assuming that there will be no reference to those newly initialized 1010 * pages before they are ever allocated, this should have no effect on 1011 * KASAN memory tracking as the poison will be properly inserted at page 1012 * allocation time. The only corner case is when pages are allocated by 1013 * on-demand allocation and then freed again before the deferred pages 1014 * initialization is done, but this is not likely to happen. 1015 */ 1016 static inline bool should_skip_kasan_poison(struct page *page) 1017 { 1018 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1019 return deferred_pages_enabled(); 1020 1021 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1022 } 1023 1024 static void kernel_init_pages(struct page *page, int numpages) 1025 { 1026 int i; 1027 1028 /* s390's use of memset() could override KASAN redzones. */ 1029 kasan_disable_current(); 1030 for (i = 0; i < numpages; i++) 1031 clear_highpage_kasan_tagged(page + i); 1032 kasan_enable_current(); 1033 } 1034 1035 __always_inline bool free_pages_prepare(struct page *page, 1036 unsigned int order) 1037 { 1038 int bad = 0; 1039 bool skip_kasan_poison = should_skip_kasan_poison(page); 1040 bool init = want_init_on_free(); 1041 bool compound = PageCompound(page); 1042 1043 VM_BUG_ON_PAGE(PageTail(page), page); 1044 1045 trace_mm_page_free(page, order); 1046 kmsan_free_page(page, order); 1047 1048 if (memcg_kmem_online() && PageMemcgKmem(page)) 1049 __memcg_kmem_uncharge_page(page, order); 1050 1051 if (unlikely(PageHWPoison(page)) && !order) { 1052 /* Do not let hwpoison pages hit pcplists/buddy */ 1053 reset_page_owner(page, order); 1054 page_table_check_free(page, order); 1055 pgalloc_tag_sub(page, 1 << order); 1056 return false; 1057 } 1058 1059 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1060 1061 /* 1062 * Check tail pages before head page information is cleared to 1063 * avoid checking PageCompound for order-0 pages. 1064 */ 1065 if (unlikely(order)) { 1066 int i; 1067 1068 if (compound) 1069 page[1].flags &= ~PAGE_FLAGS_SECOND; 1070 for (i = 1; i < (1 << order); i++) { 1071 if (compound) 1072 bad += free_tail_page_prepare(page, page + i); 1073 if (is_check_pages_enabled()) { 1074 if (free_page_is_bad(page + i)) { 1075 bad++; 1076 continue; 1077 } 1078 } 1079 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1080 } 1081 } 1082 if (PageMappingFlags(page)) 1083 page->mapping = NULL; 1084 if (is_check_pages_enabled()) { 1085 if (free_page_is_bad(page)) 1086 bad++; 1087 if (bad) 1088 return false; 1089 } 1090 1091 page_cpupid_reset_last(page); 1092 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1093 reset_page_owner(page, order); 1094 page_table_check_free(page, order); 1095 pgalloc_tag_sub(page, 1 << order); 1096 1097 if (!PageHighMem(page)) { 1098 debug_check_no_locks_freed(page_address(page), 1099 PAGE_SIZE << order); 1100 debug_check_no_obj_freed(page_address(page), 1101 PAGE_SIZE << order); 1102 } 1103 1104 kernel_poison_pages(page, 1 << order); 1105 1106 /* 1107 * As memory initialization might be integrated into KASAN, 1108 * KASAN poisoning and memory initialization code must be 1109 * kept together to avoid discrepancies in behavior. 1110 * 1111 * With hardware tag-based KASAN, memory tags must be set before the 1112 * page becomes unavailable via debug_pagealloc or arch_free_page. 1113 */ 1114 if (!skip_kasan_poison) { 1115 kasan_poison_pages(page, order, init); 1116 1117 /* Memory is already initialized if KASAN did it internally. */ 1118 if (kasan_has_integrated_init()) 1119 init = false; 1120 } 1121 if (init) 1122 kernel_init_pages(page, 1 << order); 1123 1124 /* 1125 * arch_free_page() can make the page's contents inaccessible. s390 1126 * does this. So nothing which can access the page's contents should 1127 * happen after this. 1128 */ 1129 arch_free_page(page, order); 1130 1131 debug_pagealloc_unmap_pages(page, 1 << order); 1132 1133 return true; 1134 } 1135 1136 /* 1137 * Frees a number of pages from the PCP lists 1138 * Assumes all pages on list are in same zone. 1139 * count is the number of pages to free. 1140 */ 1141 static void free_pcppages_bulk(struct zone *zone, int count, 1142 struct per_cpu_pages *pcp, 1143 int pindex) 1144 { 1145 unsigned long flags; 1146 unsigned int order; 1147 struct page *page; 1148 1149 /* 1150 * Ensure proper count is passed which otherwise would stuck in the 1151 * below while (list_empty(list)) loop. 1152 */ 1153 count = min(pcp->count, count); 1154 1155 /* Ensure requested pindex is drained first. */ 1156 pindex = pindex - 1; 1157 1158 spin_lock_irqsave(&zone->lock, flags); 1159 1160 while (count > 0) { 1161 struct list_head *list; 1162 int nr_pages; 1163 1164 /* Remove pages from lists in a round-robin fashion. */ 1165 do { 1166 if (++pindex > NR_PCP_LISTS - 1) 1167 pindex = 0; 1168 list = &pcp->lists[pindex]; 1169 } while (list_empty(list)); 1170 1171 order = pindex_to_order(pindex); 1172 nr_pages = 1 << order; 1173 do { 1174 unsigned long pfn; 1175 int mt; 1176 1177 page = list_last_entry(list, struct page, pcp_list); 1178 pfn = page_to_pfn(page); 1179 mt = get_pfnblock_migratetype(page, pfn); 1180 1181 /* must delete to avoid corrupting pcp list */ 1182 list_del(&page->pcp_list); 1183 count -= nr_pages; 1184 pcp->count -= nr_pages; 1185 1186 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1187 trace_mm_page_pcpu_drain(page, order, mt); 1188 } while (count > 0 && !list_empty(list)); 1189 } 1190 1191 spin_unlock_irqrestore(&zone->lock, flags); 1192 } 1193 1194 static void free_one_page(struct zone *zone, struct page *page, 1195 unsigned long pfn, unsigned int order, 1196 fpi_t fpi_flags) 1197 { 1198 unsigned long flags; 1199 int migratetype; 1200 1201 spin_lock_irqsave(&zone->lock, flags); 1202 migratetype = get_pfnblock_migratetype(page, pfn); 1203 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1204 spin_unlock_irqrestore(&zone->lock, flags); 1205 } 1206 1207 static void __free_pages_ok(struct page *page, unsigned int order, 1208 fpi_t fpi_flags) 1209 { 1210 unsigned long pfn = page_to_pfn(page); 1211 struct zone *zone = page_zone(page); 1212 1213 if (!free_pages_prepare(page, order)) 1214 return; 1215 1216 free_one_page(zone, page, pfn, order, fpi_flags); 1217 1218 __count_vm_events(PGFREE, 1 << order); 1219 } 1220 1221 void __free_pages_core(struct page *page, unsigned int order) 1222 { 1223 unsigned int nr_pages = 1 << order; 1224 struct page *p = page; 1225 unsigned int loop; 1226 1227 /* 1228 * When initializing the memmap, __init_single_page() sets the refcount 1229 * of all pages to 1 ("allocated"/"not free"). We have to set the 1230 * refcount of all involved pages to 0. 1231 */ 1232 prefetchw(p); 1233 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1234 prefetchw(p + 1); 1235 __ClearPageReserved(p); 1236 set_page_count(p, 0); 1237 } 1238 __ClearPageReserved(p); 1239 set_page_count(p, 0); 1240 1241 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1242 1243 if (page_contains_unaccepted(page, order)) { 1244 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1245 return; 1246 1247 accept_page(page, order); 1248 } 1249 1250 /* 1251 * Bypass PCP and place fresh pages right to the tail, primarily 1252 * relevant for memory onlining. 1253 */ 1254 __free_pages_ok(page, order, FPI_TO_TAIL); 1255 } 1256 1257 /* 1258 * Check that the whole (or subset of) a pageblock given by the interval of 1259 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1260 * with the migration of free compaction scanner. 1261 * 1262 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1263 * 1264 * It's possible on some configurations to have a setup like node0 node1 node0 1265 * i.e. it's possible that all pages within a zones range of pages do not 1266 * belong to a single zone. We assume that a border between node0 and node1 1267 * can occur within a single pageblock, but not a node0 node1 node0 1268 * interleaving within a single pageblock. It is therefore sufficient to check 1269 * the first and last page of a pageblock and avoid checking each individual 1270 * page in a pageblock. 1271 * 1272 * Note: the function may return non-NULL struct page even for a page block 1273 * which contains a memory hole (i.e. there is no physical memory for a subset 1274 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1275 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1276 * even though the start pfn is online and valid. This should be safe most of 1277 * the time because struct pages are still initialized via init_unavailable_range() 1278 * and pfn walkers shouldn't touch any physical memory range for which they do 1279 * not recognize any specific metadata in struct pages. 1280 */ 1281 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1282 unsigned long end_pfn, struct zone *zone) 1283 { 1284 struct page *start_page; 1285 struct page *end_page; 1286 1287 /* end_pfn is one past the range we are checking */ 1288 end_pfn--; 1289 1290 if (!pfn_valid(end_pfn)) 1291 return NULL; 1292 1293 start_page = pfn_to_online_page(start_pfn); 1294 if (!start_page) 1295 return NULL; 1296 1297 if (page_zone(start_page) != zone) 1298 return NULL; 1299 1300 end_page = pfn_to_page(end_pfn); 1301 1302 /* This gives a shorter code than deriving page_zone(end_page) */ 1303 if (page_zone_id(start_page) != page_zone_id(end_page)) 1304 return NULL; 1305 1306 return start_page; 1307 } 1308 1309 /* 1310 * The order of subdivision here is critical for the IO subsystem. 1311 * Please do not alter this order without good reasons and regression 1312 * testing. Specifically, as large blocks of memory are subdivided, 1313 * the order in which smaller blocks are delivered depends on the order 1314 * they're subdivided in this function. This is the primary factor 1315 * influencing the order in which pages are delivered to the IO 1316 * subsystem according to empirical testing, and this is also justified 1317 * by considering the behavior of a buddy system containing a single 1318 * large block of memory acted on by a series of small allocations. 1319 * This behavior is a critical factor in sglist merging's success. 1320 * 1321 * -- nyc 1322 */ 1323 static inline void expand(struct zone *zone, struct page *page, 1324 int low, int high, int migratetype) 1325 { 1326 unsigned long size = 1 << high; 1327 unsigned long nr_added = 0; 1328 1329 while (high > low) { 1330 high--; 1331 size >>= 1; 1332 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1333 1334 /* 1335 * Mark as guard pages (or page), that will allow to 1336 * merge back to allocator when buddy will be freed. 1337 * Corresponding page table entries will not be touched, 1338 * pages will stay not present in virtual address space 1339 */ 1340 if (set_page_guard(zone, &page[size], high)) 1341 continue; 1342 1343 __add_to_free_list(&page[size], zone, high, migratetype, false); 1344 set_buddy_order(&page[size], high); 1345 nr_added += size; 1346 } 1347 account_freepages(zone, nr_added, migratetype); 1348 } 1349 1350 static void check_new_page_bad(struct page *page) 1351 { 1352 if (unlikely(page->flags & __PG_HWPOISON)) { 1353 /* Don't complain about hwpoisoned pages */ 1354 page_mapcount_reset(page); /* remove PageBuddy */ 1355 return; 1356 } 1357 1358 bad_page(page, 1359 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1360 } 1361 1362 /* 1363 * This page is about to be returned from the page allocator 1364 */ 1365 static bool check_new_page(struct page *page) 1366 { 1367 if (likely(page_expected_state(page, 1368 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1369 return false; 1370 1371 check_new_page_bad(page); 1372 return true; 1373 } 1374 1375 static inline bool check_new_pages(struct page *page, unsigned int order) 1376 { 1377 if (is_check_pages_enabled()) { 1378 for (int i = 0; i < (1 << order); i++) { 1379 struct page *p = page + i; 1380 1381 if (check_new_page(p)) 1382 return true; 1383 } 1384 } 1385 1386 return false; 1387 } 1388 1389 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1390 { 1391 /* Don't skip if a software KASAN mode is enabled. */ 1392 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1393 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1394 return false; 1395 1396 /* Skip, if hardware tag-based KASAN is not enabled. */ 1397 if (!kasan_hw_tags_enabled()) 1398 return true; 1399 1400 /* 1401 * With hardware tag-based KASAN enabled, skip if this has been 1402 * requested via __GFP_SKIP_KASAN. 1403 */ 1404 return flags & __GFP_SKIP_KASAN; 1405 } 1406 1407 static inline bool should_skip_init(gfp_t flags) 1408 { 1409 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1410 if (!kasan_hw_tags_enabled()) 1411 return false; 1412 1413 /* For hardware tag-based KASAN, skip if requested. */ 1414 return (flags & __GFP_SKIP_ZERO); 1415 } 1416 1417 inline void post_alloc_hook(struct page *page, unsigned int order, 1418 gfp_t gfp_flags) 1419 { 1420 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1421 !should_skip_init(gfp_flags); 1422 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1423 int i; 1424 1425 set_page_private(page, 0); 1426 set_page_refcounted(page); 1427 1428 arch_alloc_page(page, order); 1429 debug_pagealloc_map_pages(page, 1 << order); 1430 1431 /* 1432 * Page unpoisoning must happen before memory initialization. 1433 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1434 * allocations and the page unpoisoning code will complain. 1435 */ 1436 kernel_unpoison_pages(page, 1 << order); 1437 1438 /* 1439 * As memory initialization might be integrated into KASAN, 1440 * KASAN unpoisoning and memory initializion code must be 1441 * kept together to avoid discrepancies in behavior. 1442 */ 1443 1444 /* 1445 * If memory tags should be zeroed 1446 * (which happens only when memory should be initialized as well). 1447 */ 1448 if (zero_tags) { 1449 /* Initialize both memory and memory tags. */ 1450 for (i = 0; i != 1 << order; ++i) 1451 tag_clear_highpage(page + i); 1452 1453 /* Take note that memory was initialized by the loop above. */ 1454 init = false; 1455 } 1456 if (!should_skip_kasan_unpoison(gfp_flags) && 1457 kasan_unpoison_pages(page, order, init)) { 1458 /* Take note that memory was initialized by KASAN. */ 1459 if (kasan_has_integrated_init()) 1460 init = false; 1461 } else { 1462 /* 1463 * If memory tags have not been set by KASAN, reset the page 1464 * tags to ensure page_address() dereferencing does not fault. 1465 */ 1466 for (i = 0; i != 1 << order; ++i) 1467 page_kasan_tag_reset(page + i); 1468 } 1469 /* If memory is still not initialized, initialize it now. */ 1470 if (init) 1471 kernel_init_pages(page, 1 << order); 1472 1473 set_page_owner(page, order, gfp_flags); 1474 page_table_check_alloc(page, order); 1475 pgalloc_tag_add(page, current, 1 << order); 1476 } 1477 1478 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1479 unsigned int alloc_flags) 1480 { 1481 post_alloc_hook(page, order, gfp_flags); 1482 1483 if (order && (gfp_flags & __GFP_COMP)) 1484 prep_compound_page(page, order); 1485 1486 /* 1487 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1488 * allocate the page. The expectation is that the caller is taking 1489 * steps that will free more memory. The caller should avoid the page 1490 * being used for !PFMEMALLOC purposes. 1491 */ 1492 if (alloc_flags & ALLOC_NO_WATERMARKS) 1493 set_page_pfmemalloc(page); 1494 else 1495 clear_page_pfmemalloc(page); 1496 } 1497 1498 /* 1499 * Go through the free lists for the given migratetype and remove 1500 * the smallest available page from the freelists 1501 */ 1502 static __always_inline 1503 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1504 int migratetype) 1505 { 1506 unsigned int current_order; 1507 struct free_area *area; 1508 struct page *page; 1509 1510 /* Find a page of the appropriate size in the preferred list */ 1511 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1512 area = &(zone->free_area[current_order]); 1513 page = get_page_from_free_area(area, migratetype); 1514 if (!page) 1515 continue; 1516 del_page_from_free_list(page, zone, current_order, migratetype); 1517 expand(zone, page, order, current_order, migratetype); 1518 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1519 pcp_allowed_order(order) && 1520 migratetype < MIGRATE_PCPTYPES); 1521 return page; 1522 } 1523 1524 return NULL; 1525 } 1526 1527 1528 /* 1529 * This array describes the order lists are fallen back to when 1530 * the free lists for the desirable migrate type are depleted 1531 * 1532 * The other migratetypes do not have fallbacks. 1533 */ 1534 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1535 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1536 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1537 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1538 }; 1539 1540 #ifdef CONFIG_CMA 1541 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1542 unsigned int order) 1543 { 1544 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1545 } 1546 #else 1547 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1548 unsigned int order) { return NULL; } 1549 #endif 1550 1551 /* 1552 * Change the type of a block and move all its free pages to that 1553 * type's freelist. 1554 */ 1555 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1556 int old_mt, int new_mt) 1557 { 1558 struct page *page; 1559 unsigned long pfn, end_pfn; 1560 unsigned int order; 1561 int pages_moved = 0; 1562 1563 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1564 end_pfn = pageblock_end_pfn(start_pfn); 1565 1566 for (pfn = start_pfn; pfn < end_pfn;) { 1567 page = pfn_to_page(pfn); 1568 if (!PageBuddy(page)) { 1569 pfn++; 1570 continue; 1571 } 1572 1573 /* Make sure we are not inadvertently changing nodes */ 1574 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1575 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1576 1577 order = buddy_order(page); 1578 1579 move_to_free_list(page, zone, order, old_mt, new_mt); 1580 1581 pfn += 1 << order; 1582 pages_moved += 1 << order; 1583 } 1584 1585 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1586 1587 return pages_moved; 1588 } 1589 1590 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1591 unsigned long *start_pfn, 1592 int *num_free, int *num_movable) 1593 { 1594 unsigned long pfn, start, end; 1595 1596 pfn = page_to_pfn(page); 1597 start = pageblock_start_pfn(pfn); 1598 end = pageblock_end_pfn(pfn); 1599 1600 /* 1601 * The caller only has the lock for @zone, don't touch ranges 1602 * that straddle into other zones. While we could move part of 1603 * the range that's inside the zone, this call is usually 1604 * accompanied by other operations such as migratetype updates 1605 * which also should be locked. 1606 */ 1607 if (!zone_spans_pfn(zone, start)) 1608 return false; 1609 if (!zone_spans_pfn(zone, end - 1)) 1610 return false; 1611 1612 *start_pfn = start; 1613 1614 if (num_free) { 1615 *num_free = 0; 1616 *num_movable = 0; 1617 for (pfn = start; pfn < end;) { 1618 page = pfn_to_page(pfn); 1619 if (PageBuddy(page)) { 1620 int nr = 1 << buddy_order(page); 1621 1622 *num_free += nr; 1623 pfn += nr; 1624 continue; 1625 } 1626 /* 1627 * We assume that pages that could be isolated for 1628 * migration are movable. But we don't actually try 1629 * isolating, as that would be expensive. 1630 */ 1631 if (PageLRU(page) || __PageMovable(page)) 1632 (*num_movable)++; 1633 pfn++; 1634 } 1635 } 1636 1637 return true; 1638 } 1639 1640 static int move_freepages_block(struct zone *zone, struct page *page, 1641 int old_mt, int new_mt) 1642 { 1643 unsigned long start_pfn; 1644 1645 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1646 return -1; 1647 1648 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1649 } 1650 1651 #ifdef CONFIG_MEMORY_ISOLATION 1652 /* Look for a buddy that straddles start_pfn */ 1653 static unsigned long find_large_buddy(unsigned long start_pfn) 1654 { 1655 int order = 0; 1656 struct page *page; 1657 unsigned long pfn = start_pfn; 1658 1659 while (!PageBuddy(page = pfn_to_page(pfn))) { 1660 /* Nothing found */ 1661 if (++order > MAX_PAGE_ORDER) 1662 return start_pfn; 1663 pfn &= ~0UL << order; 1664 } 1665 1666 /* 1667 * Found a preceding buddy, but does it straddle? 1668 */ 1669 if (pfn + (1 << buddy_order(page)) > start_pfn) 1670 return pfn; 1671 1672 /* Nothing found */ 1673 return start_pfn; 1674 } 1675 1676 /* Split a multi-block free page into its individual pageblocks */ 1677 static void split_large_buddy(struct zone *zone, struct page *page, 1678 unsigned long pfn, int order) 1679 { 1680 unsigned long end_pfn = pfn + (1 << order); 1681 1682 VM_WARN_ON_ONCE(order <= pageblock_order); 1683 VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1)); 1684 1685 /* Caller removed page from freelist, buddy info cleared! */ 1686 VM_WARN_ON_ONCE(PageBuddy(page)); 1687 1688 while (pfn != end_pfn) { 1689 int mt = get_pfnblock_migratetype(page, pfn); 1690 1691 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE); 1692 pfn += pageblock_nr_pages; 1693 page = pfn_to_page(pfn); 1694 } 1695 } 1696 1697 /** 1698 * move_freepages_block_isolate - move free pages in block for page isolation 1699 * @zone: the zone 1700 * @page: the pageblock page 1701 * @migratetype: migratetype to set on the pageblock 1702 * 1703 * This is similar to move_freepages_block(), but handles the special 1704 * case encountered in page isolation, where the block of interest 1705 * might be part of a larger buddy spanning multiple pageblocks. 1706 * 1707 * Unlike the regular page allocator path, which moves pages while 1708 * stealing buddies off the freelist, page isolation is interested in 1709 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1710 * 1711 * This function handles that. Straddling buddies are split into 1712 * individual pageblocks. Only the block of interest is moved. 1713 * 1714 * Returns %true if pages could be moved, %false otherwise. 1715 */ 1716 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1717 int migratetype) 1718 { 1719 unsigned long start_pfn, pfn; 1720 1721 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1722 return false; 1723 1724 /* No splits needed if buddies can't span multiple blocks */ 1725 if (pageblock_order == MAX_PAGE_ORDER) 1726 goto move; 1727 1728 /* We're a tail block in a larger buddy */ 1729 pfn = find_large_buddy(start_pfn); 1730 if (pfn != start_pfn) { 1731 struct page *buddy = pfn_to_page(pfn); 1732 int order = buddy_order(buddy); 1733 1734 del_page_from_free_list(buddy, zone, order, 1735 get_pfnblock_migratetype(buddy, pfn)); 1736 set_pageblock_migratetype(page, migratetype); 1737 split_large_buddy(zone, buddy, pfn, order); 1738 return true; 1739 } 1740 1741 /* We're the starting block of a larger buddy */ 1742 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1743 int order = buddy_order(page); 1744 1745 del_page_from_free_list(page, zone, order, 1746 get_pfnblock_migratetype(page, pfn)); 1747 set_pageblock_migratetype(page, migratetype); 1748 split_large_buddy(zone, page, pfn, order); 1749 return true; 1750 } 1751 move: 1752 __move_freepages_block(zone, start_pfn, 1753 get_pfnblock_migratetype(page, start_pfn), 1754 migratetype); 1755 return true; 1756 } 1757 #endif /* CONFIG_MEMORY_ISOLATION */ 1758 1759 static void change_pageblock_range(struct page *pageblock_page, 1760 int start_order, int migratetype) 1761 { 1762 int nr_pageblocks = 1 << (start_order - pageblock_order); 1763 1764 while (nr_pageblocks--) { 1765 set_pageblock_migratetype(pageblock_page, migratetype); 1766 pageblock_page += pageblock_nr_pages; 1767 } 1768 } 1769 1770 /* 1771 * When we are falling back to another migratetype during allocation, try to 1772 * steal extra free pages from the same pageblocks to satisfy further 1773 * allocations, instead of polluting multiple pageblocks. 1774 * 1775 * If we are stealing a relatively large buddy page, it is likely there will 1776 * be more free pages in the pageblock, so try to steal them all. For 1777 * reclaimable and unmovable allocations, we steal regardless of page size, 1778 * as fragmentation caused by those allocations polluting movable pageblocks 1779 * is worse than movable allocations stealing from unmovable and reclaimable 1780 * pageblocks. 1781 */ 1782 static bool can_steal_fallback(unsigned int order, int start_mt) 1783 { 1784 /* 1785 * Leaving this order check is intended, although there is 1786 * relaxed order check in next check. The reason is that 1787 * we can actually steal whole pageblock if this condition met, 1788 * but, below check doesn't guarantee it and that is just heuristic 1789 * so could be changed anytime. 1790 */ 1791 if (order >= pageblock_order) 1792 return true; 1793 1794 if (order >= pageblock_order / 2 || 1795 start_mt == MIGRATE_RECLAIMABLE || 1796 start_mt == MIGRATE_UNMOVABLE || 1797 page_group_by_mobility_disabled) 1798 return true; 1799 1800 return false; 1801 } 1802 1803 static inline bool boost_watermark(struct zone *zone) 1804 { 1805 unsigned long max_boost; 1806 1807 if (!watermark_boost_factor) 1808 return false; 1809 /* 1810 * Don't bother in zones that are unlikely to produce results. 1811 * On small machines, including kdump capture kernels running 1812 * in a small area, boosting the watermark can cause an out of 1813 * memory situation immediately. 1814 */ 1815 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1816 return false; 1817 1818 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1819 watermark_boost_factor, 10000); 1820 1821 /* 1822 * high watermark may be uninitialised if fragmentation occurs 1823 * very early in boot so do not boost. We do not fall 1824 * through and boost by pageblock_nr_pages as failing 1825 * allocations that early means that reclaim is not going 1826 * to help and it may even be impossible to reclaim the 1827 * boosted watermark resulting in a hang. 1828 */ 1829 if (!max_boost) 1830 return false; 1831 1832 max_boost = max(pageblock_nr_pages, max_boost); 1833 1834 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1835 max_boost); 1836 1837 return true; 1838 } 1839 1840 /* 1841 * This function implements actual steal behaviour. If order is large enough, we 1842 * can claim the whole pageblock for the requested migratetype. If not, we check 1843 * the pageblock for constituent pages; if at least half of the pages are free 1844 * or compatible, we can still claim the whole block, so pages freed in the 1845 * future will be put on the correct free list. Otherwise, we isolate exactly 1846 * the order we need from the fallback block and leave its migratetype alone. 1847 */ 1848 static struct page * 1849 steal_suitable_fallback(struct zone *zone, struct page *page, 1850 int current_order, int order, int start_type, 1851 unsigned int alloc_flags, bool whole_block) 1852 { 1853 int free_pages, movable_pages, alike_pages; 1854 unsigned long start_pfn; 1855 int block_type; 1856 1857 block_type = get_pageblock_migratetype(page); 1858 1859 /* 1860 * This can happen due to races and we want to prevent broken 1861 * highatomic accounting. 1862 */ 1863 if (is_migrate_highatomic(block_type)) 1864 goto single_page; 1865 1866 /* Take ownership for orders >= pageblock_order */ 1867 if (current_order >= pageblock_order) { 1868 del_page_from_free_list(page, zone, current_order, block_type); 1869 change_pageblock_range(page, current_order, start_type); 1870 expand(zone, page, order, current_order, start_type); 1871 return page; 1872 } 1873 1874 /* 1875 * Boost watermarks to increase reclaim pressure to reduce the 1876 * likelihood of future fallbacks. Wake kswapd now as the node 1877 * may be balanced overall and kswapd will not wake naturally. 1878 */ 1879 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1880 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1881 1882 /* We are not allowed to try stealing from the whole block */ 1883 if (!whole_block) 1884 goto single_page; 1885 1886 /* moving whole block can fail due to zone boundary conditions */ 1887 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1888 &movable_pages)) 1889 goto single_page; 1890 1891 /* 1892 * Determine how many pages are compatible with our allocation. 1893 * For movable allocation, it's the number of movable pages which 1894 * we just obtained. For other types it's a bit more tricky. 1895 */ 1896 if (start_type == MIGRATE_MOVABLE) { 1897 alike_pages = movable_pages; 1898 } else { 1899 /* 1900 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1901 * to MOVABLE pageblock, consider all non-movable pages as 1902 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1903 * vice versa, be conservative since we can't distinguish the 1904 * exact migratetype of non-movable pages. 1905 */ 1906 if (block_type == MIGRATE_MOVABLE) 1907 alike_pages = pageblock_nr_pages 1908 - (free_pages + movable_pages); 1909 else 1910 alike_pages = 0; 1911 } 1912 /* 1913 * If a sufficient number of pages in the block are either free or of 1914 * compatible migratability as our allocation, claim the whole block. 1915 */ 1916 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1917 page_group_by_mobility_disabled) { 1918 __move_freepages_block(zone, start_pfn, block_type, start_type); 1919 return __rmqueue_smallest(zone, order, start_type); 1920 } 1921 1922 single_page: 1923 del_page_from_free_list(page, zone, current_order, block_type); 1924 expand(zone, page, order, current_order, block_type); 1925 return page; 1926 } 1927 1928 /* 1929 * Check whether there is a suitable fallback freepage with requested order. 1930 * If only_stealable is true, this function returns fallback_mt only if 1931 * we can steal other freepages all together. This would help to reduce 1932 * fragmentation due to mixed migratetype pages in one pageblock. 1933 */ 1934 int find_suitable_fallback(struct free_area *area, unsigned int order, 1935 int migratetype, bool only_stealable, bool *can_steal) 1936 { 1937 int i; 1938 int fallback_mt; 1939 1940 if (area->nr_free == 0) 1941 return -1; 1942 1943 *can_steal = false; 1944 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1945 fallback_mt = fallbacks[migratetype][i]; 1946 if (free_area_empty(area, fallback_mt)) 1947 continue; 1948 1949 if (can_steal_fallback(order, migratetype)) 1950 *can_steal = true; 1951 1952 if (!only_stealable) 1953 return fallback_mt; 1954 1955 if (*can_steal) 1956 return fallback_mt; 1957 } 1958 1959 return -1; 1960 } 1961 1962 /* 1963 * Reserve the pageblock(s) surrounding an allocation request for 1964 * exclusive use of high-order atomic allocations if there are no 1965 * empty page blocks that contain a page with a suitable order 1966 */ 1967 static void reserve_highatomic_pageblock(struct page *page, int order, 1968 struct zone *zone) 1969 { 1970 int mt; 1971 unsigned long max_managed, flags; 1972 1973 /* 1974 * The number reserved as: minimum is 1 pageblock, maximum is 1975 * roughly 1% of a zone. But if 1% of a zone falls below a 1976 * pageblock size, then don't reserve any pageblocks. 1977 * Check is race-prone but harmless. 1978 */ 1979 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 1980 return; 1981 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 1982 if (zone->nr_reserved_highatomic >= max_managed) 1983 return; 1984 1985 spin_lock_irqsave(&zone->lock, flags); 1986 1987 /* Recheck the nr_reserved_highatomic limit under the lock */ 1988 if (zone->nr_reserved_highatomic >= max_managed) 1989 goto out_unlock; 1990 1991 /* Yoink! */ 1992 mt = get_pageblock_migratetype(page); 1993 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1994 if (!migratetype_is_mergeable(mt)) 1995 goto out_unlock; 1996 1997 if (order < pageblock_order) { 1998 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 1999 goto out_unlock; 2000 zone->nr_reserved_highatomic += pageblock_nr_pages; 2001 } else { 2002 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 2003 zone->nr_reserved_highatomic += 1 << order; 2004 } 2005 2006 out_unlock: 2007 spin_unlock_irqrestore(&zone->lock, flags); 2008 } 2009 2010 /* 2011 * Used when an allocation is about to fail under memory pressure. This 2012 * potentially hurts the reliability of high-order allocations when under 2013 * intense memory pressure but failed atomic allocations should be easier 2014 * to recover from than an OOM. 2015 * 2016 * If @force is true, try to unreserve pageblocks even though highatomic 2017 * pageblock is exhausted. 2018 */ 2019 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2020 bool force) 2021 { 2022 struct zonelist *zonelist = ac->zonelist; 2023 unsigned long flags; 2024 struct zoneref *z; 2025 struct zone *zone; 2026 struct page *page; 2027 int order; 2028 int ret; 2029 2030 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2031 ac->nodemask) { 2032 /* 2033 * Preserve at least one pageblock unless memory pressure 2034 * is really high. 2035 */ 2036 if (!force && zone->nr_reserved_highatomic <= 2037 pageblock_nr_pages) 2038 continue; 2039 2040 spin_lock_irqsave(&zone->lock, flags); 2041 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2042 struct free_area *area = &(zone->free_area[order]); 2043 int mt; 2044 2045 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2046 if (!page) 2047 continue; 2048 2049 mt = get_pageblock_migratetype(page); 2050 /* 2051 * In page freeing path, migratetype change is racy so 2052 * we can counter several free pages in a pageblock 2053 * in this loop although we changed the pageblock type 2054 * from highatomic to ac->migratetype. So we should 2055 * adjust the count once. 2056 */ 2057 if (is_migrate_highatomic(mt)) { 2058 unsigned long size; 2059 /* 2060 * It should never happen but changes to 2061 * locking could inadvertently allow a per-cpu 2062 * drain to add pages to MIGRATE_HIGHATOMIC 2063 * while unreserving so be safe and watch for 2064 * underflows. 2065 */ 2066 size = max(pageblock_nr_pages, 1UL << order); 2067 size = min(size, zone->nr_reserved_highatomic); 2068 zone->nr_reserved_highatomic -= size; 2069 } 2070 2071 /* 2072 * Convert to ac->migratetype and avoid the normal 2073 * pageblock stealing heuristics. Minimally, the caller 2074 * is doing the work and needs the pages. More 2075 * importantly, if the block was always converted to 2076 * MIGRATE_UNMOVABLE or another type then the number 2077 * of pageblocks that cannot be completely freed 2078 * may increase. 2079 */ 2080 if (order < pageblock_order) 2081 ret = move_freepages_block(zone, page, mt, 2082 ac->migratetype); 2083 else { 2084 move_to_free_list(page, zone, order, mt, 2085 ac->migratetype); 2086 change_pageblock_range(page, order, 2087 ac->migratetype); 2088 ret = 1; 2089 } 2090 /* 2091 * Reserving the block(s) already succeeded, 2092 * so this should not fail on zone boundaries. 2093 */ 2094 WARN_ON_ONCE(ret == -1); 2095 if (ret > 0) { 2096 spin_unlock_irqrestore(&zone->lock, flags); 2097 return ret; 2098 } 2099 } 2100 spin_unlock_irqrestore(&zone->lock, flags); 2101 } 2102 2103 return false; 2104 } 2105 2106 /* 2107 * Try finding a free buddy page on the fallback list and put it on the free 2108 * list of requested migratetype, possibly along with other pages from the same 2109 * block, depending on fragmentation avoidance heuristics. Returns true if 2110 * fallback was found so that __rmqueue_smallest() can grab it. 2111 * 2112 * The use of signed ints for order and current_order is a deliberate 2113 * deviation from the rest of this file, to make the for loop 2114 * condition simpler. 2115 */ 2116 static __always_inline struct page * 2117 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2118 unsigned int alloc_flags) 2119 { 2120 struct free_area *area; 2121 int current_order; 2122 int min_order = order; 2123 struct page *page; 2124 int fallback_mt; 2125 bool can_steal; 2126 2127 /* 2128 * Do not steal pages from freelists belonging to other pageblocks 2129 * i.e. orders < pageblock_order. If there are no local zones free, 2130 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2131 */ 2132 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2133 min_order = pageblock_order; 2134 2135 /* 2136 * Find the largest available free page in the other list. This roughly 2137 * approximates finding the pageblock with the most free pages, which 2138 * would be too costly to do exactly. 2139 */ 2140 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2141 --current_order) { 2142 area = &(zone->free_area[current_order]); 2143 fallback_mt = find_suitable_fallback(area, current_order, 2144 start_migratetype, false, &can_steal); 2145 if (fallback_mt == -1) 2146 continue; 2147 2148 /* 2149 * We cannot steal all free pages from the pageblock and the 2150 * requested migratetype is movable. In that case it's better to 2151 * steal and split the smallest available page instead of the 2152 * largest available page, because even if the next movable 2153 * allocation falls back into a different pageblock than this 2154 * one, it won't cause permanent fragmentation. 2155 */ 2156 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2157 && current_order > order) 2158 goto find_smallest; 2159 2160 goto do_steal; 2161 } 2162 2163 return NULL; 2164 2165 find_smallest: 2166 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2167 area = &(zone->free_area[current_order]); 2168 fallback_mt = find_suitable_fallback(area, current_order, 2169 start_migratetype, false, &can_steal); 2170 if (fallback_mt != -1) 2171 break; 2172 } 2173 2174 /* 2175 * This should not happen - we already found a suitable fallback 2176 * when looking for the largest page. 2177 */ 2178 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2179 2180 do_steal: 2181 page = get_page_from_free_area(area, fallback_mt); 2182 2183 /* take off list, maybe claim block, expand remainder */ 2184 page = steal_suitable_fallback(zone, page, current_order, order, 2185 start_migratetype, alloc_flags, can_steal); 2186 2187 trace_mm_page_alloc_extfrag(page, order, current_order, 2188 start_migratetype, fallback_mt); 2189 2190 return page; 2191 } 2192 2193 /* 2194 * Do the hard work of removing an element from the buddy allocator. 2195 * Call me with the zone->lock already held. 2196 */ 2197 static __always_inline struct page * 2198 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2199 unsigned int alloc_flags) 2200 { 2201 struct page *page; 2202 2203 if (IS_ENABLED(CONFIG_CMA)) { 2204 /* 2205 * Balance movable allocations between regular and CMA areas by 2206 * allocating from CMA when over half of the zone's free memory 2207 * is in the CMA area. 2208 */ 2209 if (alloc_flags & ALLOC_CMA && 2210 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2211 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2212 page = __rmqueue_cma_fallback(zone, order); 2213 if (page) 2214 return page; 2215 } 2216 } 2217 2218 page = __rmqueue_smallest(zone, order, migratetype); 2219 if (unlikely(!page)) { 2220 if (alloc_flags & ALLOC_CMA) 2221 page = __rmqueue_cma_fallback(zone, order); 2222 2223 if (!page) 2224 page = __rmqueue_fallback(zone, order, migratetype, 2225 alloc_flags); 2226 } 2227 return page; 2228 } 2229 2230 /* 2231 * Obtain a specified number of elements from the buddy allocator, all under 2232 * a single hold of the lock, for efficiency. Add them to the supplied list. 2233 * Returns the number of new pages which were placed at *list. 2234 */ 2235 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2236 unsigned long count, struct list_head *list, 2237 int migratetype, unsigned int alloc_flags) 2238 { 2239 unsigned long flags; 2240 int i; 2241 2242 spin_lock_irqsave(&zone->lock, flags); 2243 for (i = 0; i < count; ++i) { 2244 struct page *page = __rmqueue(zone, order, migratetype, 2245 alloc_flags); 2246 if (unlikely(page == NULL)) 2247 break; 2248 2249 /* 2250 * Split buddy pages returned by expand() are received here in 2251 * physical page order. The page is added to the tail of 2252 * caller's list. From the callers perspective, the linked list 2253 * is ordered by page number under some conditions. This is 2254 * useful for IO devices that can forward direction from the 2255 * head, thus also in the physical page order. This is useful 2256 * for IO devices that can merge IO requests if the physical 2257 * pages are ordered properly. 2258 */ 2259 list_add_tail(&page->pcp_list, list); 2260 } 2261 spin_unlock_irqrestore(&zone->lock, flags); 2262 2263 return i; 2264 } 2265 2266 /* 2267 * Called from the vmstat counter updater to decay the PCP high. 2268 * Return whether there are addition works to do. 2269 */ 2270 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2271 { 2272 int high_min, to_drain, batch; 2273 int todo = 0; 2274 2275 high_min = READ_ONCE(pcp->high_min); 2276 batch = READ_ONCE(pcp->batch); 2277 /* 2278 * Decrease pcp->high periodically to try to free possible 2279 * idle PCP pages. And, avoid to free too many pages to 2280 * control latency. This caps pcp->high decrement too. 2281 */ 2282 if (pcp->high > high_min) { 2283 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2284 pcp->high - (pcp->high >> 3), high_min); 2285 if (pcp->high > high_min) 2286 todo++; 2287 } 2288 2289 to_drain = pcp->count - pcp->high; 2290 if (to_drain > 0) { 2291 spin_lock(&pcp->lock); 2292 free_pcppages_bulk(zone, to_drain, pcp, 0); 2293 spin_unlock(&pcp->lock); 2294 todo++; 2295 } 2296 2297 return todo; 2298 } 2299 2300 #ifdef CONFIG_NUMA 2301 /* 2302 * Called from the vmstat counter updater to drain pagesets of this 2303 * currently executing processor on remote nodes after they have 2304 * expired. 2305 */ 2306 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2307 { 2308 int to_drain, batch; 2309 2310 batch = READ_ONCE(pcp->batch); 2311 to_drain = min(pcp->count, batch); 2312 if (to_drain > 0) { 2313 spin_lock(&pcp->lock); 2314 free_pcppages_bulk(zone, to_drain, pcp, 0); 2315 spin_unlock(&pcp->lock); 2316 } 2317 } 2318 #endif 2319 2320 /* 2321 * Drain pcplists of the indicated processor and zone. 2322 */ 2323 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2324 { 2325 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2326 int count = READ_ONCE(pcp->count); 2327 2328 while (count) { 2329 int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2330 count -= to_drain; 2331 2332 spin_lock(&pcp->lock); 2333 free_pcppages_bulk(zone, to_drain, pcp, 0); 2334 spin_unlock(&pcp->lock); 2335 } 2336 } 2337 2338 /* 2339 * Drain pcplists of all zones on the indicated processor. 2340 */ 2341 static void drain_pages(unsigned int cpu) 2342 { 2343 struct zone *zone; 2344 2345 for_each_populated_zone(zone) { 2346 drain_pages_zone(cpu, zone); 2347 } 2348 } 2349 2350 /* 2351 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2352 */ 2353 void drain_local_pages(struct zone *zone) 2354 { 2355 int cpu = smp_processor_id(); 2356 2357 if (zone) 2358 drain_pages_zone(cpu, zone); 2359 else 2360 drain_pages(cpu); 2361 } 2362 2363 /* 2364 * The implementation of drain_all_pages(), exposing an extra parameter to 2365 * drain on all cpus. 2366 * 2367 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2368 * not empty. The check for non-emptiness can however race with a free to 2369 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2370 * that need the guarantee that every CPU has drained can disable the 2371 * optimizing racy check. 2372 */ 2373 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2374 { 2375 int cpu; 2376 2377 /* 2378 * Allocate in the BSS so we won't require allocation in 2379 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2380 */ 2381 static cpumask_t cpus_with_pcps; 2382 2383 /* 2384 * Do not drain if one is already in progress unless it's specific to 2385 * a zone. Such callers are primarily CMA and memory hotplug and need 2386 * the drain to be complete when the call returns. 2387 */ 2388 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2389 if (!zone) 2390 return; 2391 mutex_lock(&pcpu_drain_mutex); 2392 } 2393 2394 /* 2395 * We don't care about racing with CPU hotplug event 2396 * as offline notification will cause the notified 2397 * cpu to drain that CPU pcps and on_each_cpu_mask 2398 * disables preemption as part of its processing 2399 */ 2400 for_each_online_cpu(cpu) { 2401 struct per_cpu_pages *pcp; 2402 struct zone *z; 2403 bool has_pcps = false; 2404 2405 if (force_all_cpus) { 2406 /* 2407 * The pcp.count check is racy, some callers need a 2408 * guarantee that no cpu is missed. 2409 */ 2410 has_pcps = true; 2411 } else if (zone) { 2412 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2413 if (pcp->count) 2414 has_pcps = true; 2415 } else { 2416 for_each_populated_zone(z) { 2417 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2418 if (pcp->count) { 2419 has_pcps = true; 2420 break; 2421 } 2422 } 2423 } 2424 2425 if (has_pcps) 2426 cpumask_set_cpu(cpu, &cpus_with_pcps); 2427 else 2428 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2429 } 2430 2431 for_each_cpu(cpu, &cpus_with_pcps) { 2432 if (zone) 2433 drain_pages_zone(cpu, zone); 2434 else 2435 drain_pages(cpu); 2436 } 2437 2438 mutex_unlock(&pcpu_drain_mutex); 2439 } 2440 2441 /* 2442 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2443 * 2444 * When zone parameter is non-NULL, spill just the single zone's pages. 2445 */ 2446 void drain_all_pages(struct zone *zone) 2447 { 2448 __drain_all_pages(zone, false); 2449 } 2450 2451 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2452 { 2453 int min_nr_free, max_nr_free; 2454 2455 /* Free as much as possible if batch freeing high-order pages. */ 2456 if (unlikely(free_high)) 2457 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2458 2459 /* Check for PCP disabled or boot pageset */ 2460 if (unlikely(high < batch)) 2461 return 1; 2462 2463 /* Leave at least pcp->batch pages on the list */ 2464 min_nr_free = batch; 2465 max_nr_free = high - batch; 2466 2467 /* 2468 * Increase the batch number to the number of the consecutive 2469 * freed pages to reduce zone lock contention. 2470 */ 2471 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2472 2473 return batch; 2474 } 2475 2476 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2477 int batch, bool free_high) 2478 { 2479 int high, high_min, high_max; 2480 2481 high_min = READ_ONCE(pcp->high_min); 2482 high_max = READ_ONCE(pcp->high_max); 2483 high = pcp->high = clamp(pcp->high, high_min, high_max); 2484 2485 if (unlikely(!high)) 2486 return 0; 2487 2488 if (unlikely(free_high)) { 2489 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2490 high_min); 2491 return 0; 2492 } 2493 2494 /* 2495 * If reclaim is active, limit the number of pages that can be 2496 * stored on pcp lists 2497 */ 2498 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2499 int free_count = max_t(int, pcp->free_count, batch); 2500 2501 pcp->high = max(high - free_count, high_min); 2502 return min(batch << 2, pcp->high); 2503 } 2504 2505 if (high_min == high_max) 2506 return high; 2507 2508 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2509 int free_count = max_t(int, pcp->free_count, batch); 2510 2511 pcp->high = max(high - free_count, high_min); 2512 high = max(pcp->count, high_min); 2513 } else if (pcp->count >= high) { 2514 int need_high = pcp->free_count + batch; 2515 2516 /* pcp->high should be large enough to hold batch freed pages */ 2517 if (pcp->high < need_high) 2518 pcp->high = clamp(need_high, high_min, high_max); 2519 } 2520 2521 return high; 2522 } 2523 2524 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2525 struct page *page, int migratetype, 2526 unsigned int order) 2527 { 2528 int high, batch; 2529 int pindex; 2530 bool free_high = false; 2531 2532 /* 2533 * On freeing, reduce the number of pages that are batch allocated. 2534 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2535 * allocations. 2536 */ 2537 pcp->alloc_factor >>= 1; 2538 __count_vm_events(PGFREE, 1 << order); 2539 pindex = order_to_pindex(migratetype, order); 2540 list_add(&page->pcp_list, &pcp->lists[pindex]); 2541 pcp->count += 1 << order; 2542 2543 batch = READ_ONCE(pcp->batch); 2544 /* 2545 * As high-order pages other than THP's stored on PCP can contribute 2546 * to fragmentation, limit the number stored when PCP is heavily 2547 * freeing without allocation. The remainder after bulk freeing 2548 * stops will be drained from vmstat refresh context. 2549 */ 2550 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2551 free_high = (pcp->free_count >= batch && 2552 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2553 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2554 pcp->count >= READ_ONCE(batch))); 2555 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2556 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2557 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2558 } 2559 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2560 pcp->free_count += (1 << order); 2561 high = nr_pcp_high(pcp, zone, batch, free_high); 2562 if (pcp->count >= high) { 2563 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2564 pcp, pindex); 2565 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2566 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2567 ZONE_MOVABLE, 0)) 2568 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2569 } 2570 } 2571 2572 /* 2573 * Free a pcp page 2574 */ 2575 void free_unref_page(struct page *page, unsigned int order) 2576 { 2577 unsigned long __maybe_unused UP_flags; 2578 struct per_cpu_pages *pcp; 2579 struct zone *zone; 2580 unsigned long pfn = page_to_pfn(page); 2581 int migratetype; 2582 2583 if (!pcp_allowed_order(order)) { 2584 __free_pages_ok(page, order, FPI_NONE); 2585 return; 2586 } 2587 2588 if (!free_pages_prepare(page, order)) 2589 return; 2590 2591 /* 2592 * We only track unmovable, reclaimable and movable on pcp lists. 2593 * Place ISOLATE pages on the isolated list because they are being 2594 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2595 * get those areas back if necessary. Otherwise, we may have to free 2596 * excessively into the page allocator 2597 */ 2598 migratetype = get_pfnblock_migratetype(page, pfn); 2599 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2600 if (unlikely(is_migrate_isolate(migratetype))) { 2601 free_one_page(page_zone(page), page, pfn, order, FPI_NONE); 2602 return; 2603 } 2604 migratetype = MIGRATE_MOVABLE; 2605 } 2606 2607 zone = page_zone(page); 2608 pcp_trylock_prepare(UP_flags); 2609 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2610 if (pcp) { 2611 free_unref_page_commit(zone, pcp, page, migratetype, order); 2612 pcp_spin_unlock(pcp); 2613 } else { 2614 free_one_page(zone, page, pfn, order, FPI_NONE); 2615 } 2616 pcp_trylock_finish(UP_flags); 2617 } 2618 2619 /* 2620 * Free a batch of folios 2621 */ 2622 void free_unref_folios(struct folio_batch *folios) 2623 { 2624 unsigned long __maybe_unused UP_flags; 2625 struct per_cpu_pages *pcp = NULL; 2626 struct zone *locked_zone = NULL; 2627 int i, j; 2628 2629 /* Prepare folios for freeing */ 2630 for (i = 0, j = 0; i < folios->nr; i++) { 2631 struct folio *folio = folios->folios[i]; 2632 unsigned long pfn = folio_pfn(folio); 2633 unsigned int order = folio_order(folio); 2634 2635 if (order > 0 && folio_test_large_rmappable(folio)) 2636 folio_undo_large_rmappable(folio); 2637 if (!free_pages_prepare(&folio->page, order)) 2638 continue; 2639 /* 2640 * Free orders not handled on the PCP directly to the 2641 * allocator. 2642 */ 2643 if (!pcp_allowed_order(order)) { 2644 free_one_page(folio_zone(folio), &folio->page, 2645 pfn, order, FPI_NONE); 2646 continue; 2647 } 2648 folio->private = (void *)(unsigned long)order; 2649 if (j != i) 2650 folios->folios[j] = folio; 2651 j++; 2652 } 2653 folios->nr = j; 2654 2655 for (i = 0; i < folios->nr; i++) { 2656 struct folio *folio = folios->folios[i]; 2657 struct zone *zone = folio_zone(folio); 2658 unsigned long pfn = folio_pfn(folio); 2659 unsigned int order = (unsigned long)folio->private; 2660 int migratetype; 2661 2662 folio->private = NULL; 2663 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2664 2665 /* Different zone requires a different pcp lock */ 2666 if (zone != locked_zone || 2667 is_migrate_isolate(migratetype)) { 2668 if (pcp) { 2669 pcp_spin_unlock(pcp); 2670 pcp_trylock_finish(UP_flags); 2671 locked_zone = NULL; 2672 pcp = NULL; 2673 } 2674 2675 /* 2676 * Free isolated pages directly to the 2677 * allocator, see comment in free_unref_page. 2678 */ 2679 if (is_migrate_isolate(migratetype)) { 2680 free_one_page(zone, &folio->page, pfn, 2681 order, FPI_NONE); 2682 continue; 2683 } 2684 2685 /* 2686 * trylock is necessary as folios may be getting freed 2687 * from IRQ or SoftIRQ context after an IO completion. 2688 */ 2689 pcp_trylock_prepare(UP_flags); 2690 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2691 if (unlikely(!pcp)) { 2692 pcp_trylock_finish(UP_flags); 2693 free_one_page(zone, &folio->page, pfn, 2694 order, FPI_NONE); 2695 continue; 2696 } 2697 locked_zone = zone; 2698 } 2699 2700 /* 2701 * Non-isolated types over MIGRATE_PCPTYPES get added 2702 * to the MIGRATE_MOVABLE pcp list. 2703 */ 2704 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2705 migratetype = MIGRATE_MOVABLE; 2706 2707 trace_mm_page_free_batched(&folio->page); 2708 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2709 order); 2710 } 2711 2712 if (pcp) { 2713 pcp_spin_unlock(pcp); 2714 pcp_trylock_finish(UP_flags); 2715 } 2716 folio_batch_reinit(folios); 2717 } 2718 2719 /* 2720 * split_page takes a non-compound higher-order page, and splits it into 2721 * n (1<<order) sub-pages: page[0..n] 2722 * Each sub-page must be freed individually. 2723 * 2724 * Note: this is probably too low level an operation for use in drivers. 2725 * Please consult with lkml before using this in your driver. 2726 */ 2727 void split_page(struct page *page, unsigned int order) 2728 { 2729 int i; 2730 2731 VM_BUG_ON_PAGE(PageCompound(page), page); 2732 VM_BUG_ON_PAGE(!page_count(page), page); 2733 2734 for (i = 1; i < (1 << order); i++) 2735 set_page_refcounted(page + i); 2736 split_page_owner(page, order, 0); 2737 pgalloc_tag_split(page, 1 << order); 2738 split_page_memcg(page, order, 0); 2739 } 2740 EXPORT_SYMBOL_GPL(split_page); 2741 2742 int __isolate_free_page(struct page *page, unsigned int order) 2743 { 2744 struct zone *zone = page_zone(page); 2745 int mt = get_pageblock_migratetype(page); 2746 2747 if (!is_migrate_isolate(mt)) { 2748 unsigned long watermark; 2749 /* 2750 * Obey watermarks as if the page was being allocated. We can 2751 * emulate a high-order watermark check with a raised order-0 2752 * watermark, because we already know our high-order page 2753 * exists. 2754 */ 2755 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2756 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2757 return 0; 2758 } 2759 2760 del_page_from_free_list(page, zone, order, mt); 2761 2762 /* 2763 * Set the pageblock if the isolated page is at least half of a 2764 * pageblock 2765 */ 2766 if (order >= pageblock_order - 1) { 2767 struct page *endpage = page + (1 << order) - 1; 2768 for (; page < endpage; page += pageblock_nr_pages) { 2769 int mt = get_pageblock_migratetype(page); 2770 /* 2771 * Only change normal pageblocks (i.e., they can merge 2772 * with others) 2773 */ 2774 if (migratetype_is_mergeable(mt)) 2775 move_freepages_block(zone, page, mt, 2776 MIGRATE_MOVABLE); 2777 } 2778 } 2779 2780 return 1UL << order; 2781 } 2782 2783 /** 2784 * __putback_isolated_page - Return a now-isolated page back where we got it 2785 * @page: Page that was isolated 2786 * @order: Order of the isolated page 2787 * @mt: The page's pageblock's migratetype 2788 * 2789 * This function is meant to return a page pulled from the free lists via 2790 * __isolate_free_page back to the free lists they were pulled from. 2791 */ 2792 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2793 { 2794 struct zone *zone = page_zone(page); 2795 2796 /* zone lock should be held when this function is called */ 2797 lockdep_assert_held(&zone->lock); 2798 2799 /* Return isolated page to tail of freelist. */ 2800 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2801 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2802 } 2803 2804 /* 2805 * Update NUMA hit/miss statistics 2806 */ 2807 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2808 long nr_account) 2809 { 2810 #ifdef CONFIG_NUMA 2811 enum numa_stat_item local_stat = NUMA_LOCAL; 2812 2813 /* skip numa counters update if numa stats is disabled */ 2814 if (!static_branch_likely(&vm_numa_stat_key)) 2815 return; 2816 2817 if (zone_to_nid(z) != numa_node_id()) 2818 local_stat = NUMA_OTHER; 2819 2820 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2821 __count_numa_events(z, NUMA_HIT, nr_account); 2822 else { 2823 __count_numa_events(z, NUMA_MISS, nr_account); 2824 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2825 } 2826 __count_numa_events(z, local_stat, nr_account); 2827 #endif 2828 } 2829 2830 static __always_inline 2831 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2832 unsigned int order, unsigned int alloc_flags, 2833 int migratetype) 2834 { 2835 struct page *page; 2836 unsigned long flags; 2837 2838 do { 2839 page = NULL; 2840 spin_lock_irqsave(&zone->lock, flags); 2841 if (alloc_flags & ALLOC_HIGHATOMIC) 2842 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2843 if (!page) { 2844 page = __rmqueue(zone, order, migratetype, alloc_flags); 2845 2846 /* 2847 * If the allocation fails, allow OOM handling access 2848 * to HIGHATOMIC reserves as failing now is worse than 2849 * failing a high-order atomic allocation in the 2850 * future. 2851 */ 2852 if (!page && (alloc_flags & ALLOC_OOM)) 2853 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2854 2855 if (!page) { 2856 spin_unlock_irqrestore(&zone->lock, flags); 2857 return NULL; 2858 } 2859 } 2860 spin_unlock_irqrestore(&zone->lock, flags); 2861 } while (check_new_pages(page, order)); 2862 2863 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2864 zone_statistics(preferred_zone, zone, 1); 2865 2866 return page; 2867 } 2868 2869 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2870 { 2871 int high, base_batch, batch, max_nr_alloc; 2872 int high_max, high_min; 2873 2874 base_batch = READ_ONCE(pcp->batch); 2875 high_min = READ_ONCE(pcp->high_min); 2876 high_max = READ_ONCE(pcp->high_max); 2877 high = pcp->high = clamp(pcp->high, high_min, high_max); 2878 2879 /* Check for PCP disabled or boot pageset */ 2880 if (unlikely(high < base_batch)) 2881 return 1; 2882 2883 if (order) 2884 batch = base_batch; 2885 else 2886 batch = (base_batch << pcp->alloc_factor); 2887 2888 /* 2889 * If we had larger pcp->high, we could avoid to allocate from 2890 * zone. 2891 */ 2892 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2893 high = pcp->high = min(high + batch, high_max); 2894 2895 if (!order) { 2896 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2897 /* 2898 * Double the number of pages allocated each time there is 2899 * subsequent allocation of order-0 pages without any freeing. 2900 */ 2901 if (batch <= max_nr_alloc && 2902 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2903 pcp->alloc_factor++; 2904 batch = min(batch, max_nr_alloc); 2905 } 2906 2907 /* 2908 * Scale batch relative to order if batch implies free pages 2909 * can be stored on the PCP. Batch can be 1 for small zones or 2910 * for boot pagesets which should never store free pages as 2911 * the pages may belong to arbitrary zones. 2912 */ 2913 if (batch > 1) 2914 batch = max(batch >> order, 2); 2915 2916 return batch; 2917 } 2918 2919 /* Remove page from the per-cpu list, caller must protect the list */ 2920 static inline 2921 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2922 int migratetype, 2923 unsigned int alloc_flags, 2924 struct per_cpu_pages *pcp, 2925 struct list_head *list) 2926 { 2927 struct page *page; 2928 2929 do { 2930 if (list_empty(list)) { 2931 int batch = nr_pcp_alloc(pcp, zone, order); 2932 int alloced; 2933 2934 alloced = rmqueue_bulk(zone, order, 2935 batch, list, 2936 migratetype, alloc_flags); 2937 2938 pcp->count += alloced << order; 2939 if (unlikely(list_empty(list))) 2940 return NULL; 2941 } 2942 2943 page = list_first_entry(list, struct page, pcp_list); 2944 list_del(&page->pcp_list); 2945 pcp->count -= 1 << order; 2946 } while (check_new_pages(page, order)); 2947 2948 return page; 2949 } 2950 2951 /* Lock and remove page from the per-cpu list */ 2952 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2953 struct zone *zone, unsigned int order, 2954 int migratetype, unsigned int alloc_flags) 2955 { 2956 struct per_cpu_pages *pcp; 2957 struct list_head *list; 2958 struct page *page; 2959 unsigned long __maybe_unused UP_flags; 2960 2961 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2962 pcp_trylock_prepare(UP_flags); 2963 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2964 if (!pcp) { 2965 pcp_trylock_finish(UP_flags); 2966 return NULL; 2967 } 2968 2969 /* 2970 * On allocation, reduce the number of pages that are batch freed. 2971 * See nr_pcp_free() where free_factor is increased for subsequent 2972 * frees. 2973 */ 2974 pcp->free_count >>= 1; 2975 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2976 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2977 pcp_spin_unlock(pcp); 2978 pcp_trylock_finish(UP_flags); 2979 if (page) { 2980 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2981 zone_statistics(preferred_zone, zone, 1); 2982 } 2983 return page; 2984 } 2985 2986 /* 2987 * Allocate a page from the given zone. 2988 * Use pcplists for THP or "cheap" high-order allocations. 2989 */ 2990 2991 /* 2992 * Do not instrument rmqueue() with KMSAN. This function may call 2993 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2994 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2995 * may call rmqueue() again, which will result in a deadlock. 2996 */ 2997 __no_sanitize_memory 2998 static inline 2999 struct page *rmqueue(struct zone *preferred_zone, 3000 struct zone *zone, unsigned int order, 3001 gfp_t gfp_flags, unsigned int alloc_flags, 3002 int migratetype) 3003 { 3004 struct page *page; 3005 3006 /* 3007 * We most definitely don't want callers attempting to 3008 * allocate greater than order-1 page units with __GFP_NOFAIL. 3009 */ 3010 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3011 3012 if (likely(pcp_allowed_order(order))) { 3013 page = rmqueue_pcplist(preferred_zone, zone, order, 3014 migratetype, alloc_flags); 3015 if (likely(page)) 3016 goto out; 3017 } 3018 3019 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3020 migratetype); 3021 3022 out: 3023 /* Separate test+clear to avoid unnecessary atomics */ 3024 if ((alloc_flags & ALLOC_KSWAPD) && 3025 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3026 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3027 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3028 } 3029 3030 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3031 return page; 3032 } 3033 3034 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3035 { 3036 return __should_fail_alloc_page(gfp_mask, order); 3037 } 3038 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3039 3040 static inline long __zone_watermark_unusable_free(struct zone *z, 3041 unsigned int order, unsigned int alloc_flags) 3042 { 3043 long unusable_free = (1 << order) - 1; 3044 3045 /* 3046 * If the caller does not have rights to reserves below the min 3047 * watermark then subtract the high-atomic reserves. This will 3048 * over-estimate the size of the atomic reserve but it avoids a search. 3049 */ 3050 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3051 unusable_free += z->nr_reserved_highatomic; 3052 3053 #ifdef CONFIG_CMA 3054 /* If allocation can't use CMA areas don't use free CMA pages */ 3055 if (!(alloc_flags & ALLOC_CMA)) 3056 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3057 #endif 3058 #ifdef CONFIG_UNACCEPTED_MEMORY 3059 unusable_free += zone_page_state(z, NR_UNACCEPTED); 3060 #endif 3061 3062 return unusable_free; 3063 } 3064 3065 /* 3066 * Return true if free base pages are above 'mark'. For high-order checks it 3067 * will return true of the order-0 watermark is reached and there is at least 3068 * one free page of a suitable size. Checking now avoids taking the zone lock 3069 * to check in the allocation paths if no pages are free. 3070 */ 3071 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3072 int highest_zoneidx, unsigned int alloc_flags, 3073 long free_pages) 3074 { 3075 long min = mark; 3076 int o; 3077 3078 /* free_pages may go negative - that's OK */ 3079 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3080 3081 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3082 /* 3083 * __GFP_HIGH allows access to 50% of the min reserve as well 3084 * as OOM. 3085 */ 3086 if (alloc_flags & ALLOC_MIN_RESERVE) { 3087 min -= min / 2; 3088 3089 /* 3090 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3091 * access more reserves than just __GFP_HIGH. Other 3092 * non-blocking allocations requests such as GFP_NOWAIT 3093 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3094 * access to the min reserve. 3095 */ 3096 if (alloc_flags & ALLOC_NON_BLOCK) 3097 min -= min / 4; 3098 } 3099 3100 /* 3101 * OOM victims can try even harder than the normal reserve 3102 * users on the grounds that it's definitely going to be in 3103 * the exit path shortly and free memory. Any allocation it 3104 * makes during the free path will be small and short-lived. 3105 */ 3106 if (alloc_flags & ALLOC_OOM) 3107 min -= min / 2; 3108 } 3109 3110 /* 3111 * Check watermarks for an order-0 allocation request. If these 3112 * are not met, then a high-order request also cannot go ahead 3113 * even if a suitable page happened to be free. 3114 */ 3115 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3116 return false; 3117 3118 /* If this is an order-0 request then the watermark is fine */ 3119 if (!order) 3120 return true; 3121 3122 /* For a high-order request, check at least one suitable page is free */ 3123 for (o = order; o < NR_PAGE_ORDERS; o++) { 3124 struct free_area *area = &z->free_area[o]; 3125 int mt; 3126 3127 if (!area->nr_free) 3128 continue; 3129 3130 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3131 if (!free_area_empty(area, mt)) 3132 return true; 3133 } 3134 3135 #ifdef CONFIG_CMA 3136 if ((alloc_flags & ALLOC_CMA) && 3137 !free_area_empty(area, MIGRATE_CMA)) { 3138 return true; 3139 } 3140 #endif 3141 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3142 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3143 return true; 3144 } 3145 } 3146 return false; 3147 } 3148 3149 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3150 int highest_zoneidx, unsigned int alloc_flags) 3151 { 3152 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3153 zone_page_state(z, NR_FREE_PAGES)); 3154 } 3155 3156 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3157 unsigned long mark, int highest_zoneidx, 3158 unsigned int alloc_flags, gfp_t gfp_mask) 3159 { 3160 long free_pages; 3161 3162 free_pages = zone_page_state(z, NR_FREE_PAGES); 3163 3164 /* 3165 * Fast check for order-0 only. If this fails then the reserves 3166 * need to be calculated. 3167 */ 3168 if (!order) { 3169 long usable_free; 3170 long reserved; 3171 3172 usable_free = free_pages; 3173 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3174 3175 /* reserved may over estimate high-atomic reserves. */ 3176 usable_free -= min(usable_free, reserved); 3177 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3178 return true; 3179 } 3180 3181 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3182 free_pages)) 3183 return true; 3184 3185 /* 3186 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3187 * when checking the min watermark. The min watermark is the 3188 * point where boosting is ignored so that kswapd is woken up 3189 * when below the low watermark. 3190 */ 3191 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3192 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3193 mark = z->_watermark[WMARK_MIN]; 3194 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3195 alloc_flags, free_pages); 3196 } 3197 3198 return false; 3199 } 3200 3201 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3202 unsigned long mark, int highest_zoneidx) 3203 { 3204 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3205 3206 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3207 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3208 3209 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3210 free_pages); 3211 } 3212 3213 #ifdef CONFIG_NUMA 3214 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3215 3216 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3217 { 3218 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3219 node_reclaim_distance; 3220 } 3221 #else /* CONFIG_NUMA */ 3222 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3223 { 3224 return true; 3225 } 3226 #endif /* CONFIG_NUMA */ 3227 3228 /* 3229 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3230 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3231 * premature use of a lower zone may cause lowmem pressure problems that 3232 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3233 * probably too small. It only makes sense to spread allocations to avoid 3234 * fragmentation between the Normal and DMA32 zones. 3235 */ 3236 static inline unsigned int 3237 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3238 { 3239 unsigned int alloc_flags; 3240 3241 /* 3242 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3243 * to save a branch. 3244 */ 3245 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3246 3247 #ifdef CONFIG_ZONE_DMA32 3248 if (!zone) 3249 return alloc_flags; 3250 3251 if (zone_idx(zone) != ZONE_NORMAL) 3252 return alloc_flags; 3253 3254 /* 3255 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3256 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3257 * on UMA that if Normal is populated then so is DMA32. 3258 */ 3259 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3260 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3261 return alloc_flags; 3262 3263 alloc_flags |= ALLOC_NOFRAGMENT; 3264 #endif /* CONFIG_ZONE_DMA32 */ 3265 return alloc_flags; 3266 } 3267 3268 /* Must be called after current_gfp_context() which can change gfp_mask */ 3269 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3270 unsigned int alloc_flags) 3271 { 3272 #ifdef CONFIG_CMA 3273 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3274 alloc_flags |= ALLOC_CMA; 3275 #endif 3276 return alloc_flags; 3277 } 3278 3279 /* 3280 * get_page_from_freelist goes through the zonelist trying to allocate 3281 * a page. 3282 */ 3283 static struct page * 3284 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3285 const struct alloc_context *ac) 3286 { 3287 struct zoneref *z; 3288 struct zone *zone; 3289 struct pglist_data *last_pgdat = NULL; 3290 bool last_pgdat_dirty_ok = false; 3291 bool no_fallback; 3292 3293 retry: 3294 /* 3295 * Scan zonelist, looking for a zone with enough free. 3296 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3297 */ 3298 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3299 z = ac->preferred_zoneref; 3300 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3301 ac->nodemask) { 3302 struct page *page; 3303 unsigned long mark; 3304 3305 if (cpusets_enabled() && 3306 (alloc_flags & ALLOC_CPUSET) && 3307 !__cpuset_zone_allowed(zone, gfp_mask)) 3308 continue; 3309 /* 3310 * When allocating a page cache page for writing, we 3311 * want to get it from a node that is within its dirty 3312 * limit, such that no single node holds more than its 3313 * proportional share of globally allowed dirty pages. 3314 * The dirty limits take into account the node's 3315 * lowmem reserves and high watermark so that kswapd 3316 * should be able to balance it without having to 3317 * write pages from its LRU list. 3318 * 3319 * XXX: For now, allow allocations to potentially 3320 * exceed the per-node dirty limit in the slowpath 3321 * (spread_dirty_pages unset) before going into reclaim, 3322 * which is important when on a NUMA setup the allowed 3323 * nodes are together not big enough to reach the 3324 * global limit. The proper fix for these situations 3325 * will require awareness of nodes in the 3326 * dirty-throttling and the flusher threads. 3327 */ 3328 if (ac->spread_dirty_pages) { 3329 if (last_pgdat != zone->zone_pgdat) { 3330 last_pgdat = zone->zone_pgdat; 3331 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3332 } 3333 3334 if (!last_pgdat_dirty_ok) 3335 continue; 3336 } 3337 3338 if (no_fallback && nr_online_nodes > 1 && 3339 zone != ac->preferred_zoneref->zone) { 3340 int local_nid; 3341 3342 /* 3343 * If moving to a remote node, retry but allow 3344 * fragmenting fallbacks. Locality is more important 3345 * than fragmentation avoidance. 3346 */ 3347 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3348 if (zone_to_nid(zone) != local_nid) { 3349 alloc_flags &= ~ALLOC_NOFRAGMENT; 3350 goto retry; 3351 } 3352 } 3353 3354 /* 3355 * Detect whether the number of free pages is below high 3356 * watermark. If so, we will decrease pcp->high and free 3357 * PCP pages in free path to reduce the possibility of 3358 * premature page reclaiming. Detection is done here to 3359 * avoid to do that in hotter free path. 3360 */ 3361 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3362 goto check_alloc_wmark; 3363 3364 mark = high_wmark_pages(zone); 3365 if (zone_watermark_fast(zone, order, mark, 3366 ac->highest_zoneidx, alloc_flags, 3367 gfp_mask)) 3368 goto try_this_zone; 3369 else 3370 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3371 3372 check_alloc_wmark: 3373 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3374 if (!zone_watermark_fast(zone, order, mark, 3375 ac->highest_zoneidx, alloc_flags, 3376 gfp_mask)) { 3377 int ret; 3378 3379 if (has_unaccepted_memory()) { 3380 if (try_to_accept_memory(zone, order)) 3381 goto try_this_zone; 3382 } 3383 3384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3385 /* 3386 * Watermark failed for this zone, but see if we can 3387 * grow this zone if it contains deferred pages. 3388 */ 3389 if (deferred_pages_enabled()) { 3390 if (_deferred_grow_zone(zone, order)) 3391 goto try_this_zone; 3392 } 3393 #endif 3394 /* Checked here to keep the fast path fast */ 3395 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3396 if (alloc_flags & ALLOC_NO_WATERMARKS) 3397 goto try_this_zone; 3398 3399 if (!node_reclaim_enabled() || 3400 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3401 continue; 3402 3403 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3404 switch (ret) { 3405 case NODE_RECLAIM_NOSCAN: 3406 /* did not scan */ 3407 continue; 3408 case NODE_RECLAIM_FULL: 3409 /* scanned but unreclaimable */ 3410 continue; 3411 default: 3412 /* did we reclaim enough */ 3413 if (zone_watermark_ok(zone, order, mark, 3414 ac->highest_zoneidx, alloc_flags)) 3415 goto try_this_zone; 3416 3417 continue; 3418 } 3419 } 3420 3421 try_this_zone: 3422 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3423 gfp_mask, alloc_flags, ac->migratetype); 3424 if (page) { 3425 prep_new_page(page, order, gfp_mask, alloc_flags); 3426 3427 /* 3428 * If this is a high-order atomic allocation then check 3429 * if the pageblock should be reserved for the future 3430 */ 3431 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3432 reserve_highatomic_pageblock(page, order, zone); 3433 3434 return page; 3435 } else { 3436 if (has_unaccepted_memory()) { 3437 if (try_to_accept_memory(zone, order)) 3438 goto try_this_zone; 3439 } 3440 3441 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3442 /* Try again if zone has deferred pages */ 3443 if (deferred_pages_enabled()) { 3444 if (_deferred_grow_zone(zone, order)) 3445 goto try_this_zone; 3446 } 3447 #endif 3448 } 3449 } 3450 3451 /* 3452 * It's possible on a UMA machine to get through all zones that are 3453 * fragmented. If avoiding fragmentation, reset and try again. 3454 */ 3455 if (no_fallback) { 3456 alloc_flags &= ~ALLOC_NOFRAGMENT; 3457 goto retry; 3458 } 3459 3460 return NULL; 3461 } 3462 3463 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3464 { 3465 unsigned int filter = SHOW_MEM_FILTER_NODES; 3466 3467 /* 3468 * This documents exceptions given to allocations in certain 3469 * contexts that are allowed to allocate outside current's set 3470 * of allowed nodes. 3471 */ 3472 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3473 if (tsk_is_oom_victim(current) || 3474 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3475 filter &= ~SHOW_MEM_FILTER_NODES; 3476 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3477 filter &= ~SHOW_MEM_FILTER_NODES; 3478 3479 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3480 } 3481 3482 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3483 { 3484 struct va_format vaf; 3485 va_list args; 3486 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3487 3488 if ((gfp_mask & __GFP_NOWARN) || 3489 !__ratelimit(&nopage_rs) || 3490 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3491 return; 3492 3493 va_start(args, fmt); 3494 vaf.fmt = fmt; 3495 vaf.va = &args; 3496 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3497 current->comm, &vaf, gfp_mask, &gfp_mask, 3498 nodemask_pr_args(nodemask)); 3499 va_end(args); 3500 3501 cpuset_print_current_mems_allowed(); 3502 pr_cont("\n"); 3503 dump_stack(); 3504 warn_alloc_show_mem(gfp_mask, nodemask); 3505 } 3506 3507 static inline struct page * 3508 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3509 unsigned int alloc_flags, 3510 const struct alloc_context *ac) 3511 { 3512 struct page *page; 3513 3514 page = get_page_from_freelist(gfp_mask, order, 3515 alloc_flags|ALLOC_CPUSET, ac); 3516 /* 3517 * fallback to ignore cpuset restriction if our nodes 3518 * are depleted 3519 */ 3520 if (!page) 3521 page = get_page_from_freelist(gfp_mask, order, 3522 alloc_flags, ac); 3523 3524 return page; 3525 } 3526 3527 static inline struct page * 3528 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3529 const struct alloc_context *ac, unsigned long *did_some_progress) 3530 { 3531 struct oom_control oc = { 3532 .zonelist = ac->zonelist, 3533 .nodemask = ac->nodemask, 3534 .memcg = NULL, 3535 .gfp_mask = gfp_mask, 3536 .order = order, 3537 }; 3538 struct page *page; 3539 3540 *did_some_progress = 0; 3541 3542 /* 3543 * Acquire the oom lock. If that fails, somebody else is 3544 * making progress for us. 3545 */ 3546 if (!mutex_trylock(&oom_lock)) { 3547 *did_some_progress = 1; 3548 schedule_timeout_uninterruptible(1); 3549 return NULL; 3550 } 3551 3552 /* 3553 * Go through the zonelist yet one more time, keep very high watermark 3554 * here, this is only to catch a parallel oom killing, we must fail if 3555 * we're still under heavy pressure. But make sure that this reclaim 3556 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3557 * allocation which will never fail due to oom_lock already held. 3558 */ 3559 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3560 ~__GFP_DIRECT_RECLAIM, order, 3561 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3562 if (page) 3563 goto out; 3564 3565 /* Coredumps can quickly deplete all memory reserves */ 3566 if (current->flags & PF_DUMPCORE) 3567 goto out; 3568 /* The OOM killer will not help higher order allocs */ 3569 if (order > PAGE_ALLOC_COSTLY_ORDER) 3570 goto out; 3571 /* 3572 * We have already exhausted all our reclaim opportunities without any 3573 * success so it is time to admit defeat. We will skip the OOM killer 3574 * because it is very likely that the caller has a more reasonable 3575 * fallback than shooting a random task. 3576 * 3577 * The OOM killer may not free memory on a specific node. 3578 */ 3579 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3580 goto out; 3581 /* The OOM killer does not needlessly kill tasks for lowmem */ 3582 if (ac->highest_zoneidx < ZONE_NORMAL) 3583 goto out; 3584 if (pm_suspended_storage()) 3585 goto out; 3586 /* 3587 * XXX: GFP_NOFS allocations should rather fail than rely on 3588 * other request to make a forward progress. 3589 * We are in an unfortunate situation where out_of_memory cannot 3590 * do much for this context but let's try it to at least get 3591 * access to memory reserved if the current task is killed (see 3592 * out_of_memory). Once filesystems are ready to handle allocation 3593 * failures more gracefully we should just bail out here. 3594 */ 3595 3596 /* Exhausted what can be done so it's blame time */ 3597 if (out_of_memory(&oc) || 3598 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3599 *did_some_progress = 1; 3600 3601 /* 3602 * Help non-failing allocations by giving them access to memory 3603 * reserves 3604 */ 3605 if (gfp_mask & __GFP_NOFAIL) 3606 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3607 ALLOC_NO_WATERMARKS, ac); 3608 } 3609 out: 3610 mutex_unlock(&oom_lock); 3611 return page; 3612 } 3613 3614 /* 3615 * Maximum number of compaction retries with a progress before OOM 3616 * killer is consider as the only way to move forward. 3617 */ 3618 #define MAX_COMPACT_RETRIES 16 3619 3620 #ifdef CONFIG_COMPACTION 3621 /* Try memory compaction for high-order allocations before reclaim */ 3622 static struct page * 3623 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3624 unsigned int alloc_flags, const struct alloc_context *ac, 3625 enum compact_priority prio, enum compact_result *compact_result) 3626 { 3627 struct page *page = NULL; 3628 unsigned long pflags; 3629 unsigned int noreclaim_flag; 3630 3631 if (!order) 3632 return NULL; 3633 3634 psi_memstall_enter(&pflags); 3635 delayacct_compact_start(); 3636 noreclaim_flag = memalloc_noreclaim_save(); 3637 3638 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3639 prio, &page); 3640 3641 memalloc_noreclaim_restore(noreclaim_flag); 3642 psi_memstall_leave(&pflags); 3643 delayacct_compact_end(); 3644 3645 if (*compact_result == COMPACT_SKIPPED) 3646 return NULL; 3647 /* 3648 * At least in one zone compaction wasn't deferred or skipped, so let's 3649 * count a compaction stall 3650 */ 3651 count_vm_event(COMPACTSTALL); 3652 3653 /* Prep a captured page if available */ 3654 if (page) 3655 prep_new_page(page, order, gfp_mask, alloc_flags); 3656 3657 /* Try get a page from the freelist if available */ 3658 if (!page) 3659 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3660 3661 if (page) { 3662 struct zone *zone = page_zone(page); 3663 3664 zone->compact_blockskip_flush = false; 3665 compaction_defer_reset(zone, order, true); 3666 count_vm_event(COMPACTSUCCESS); 3667 return page; 3668 } 3669 3670 /* 3671 * It's bad if compaction run occurs and fails. The most likely reason 3672 * is that pages exist, but not enough to satisfy watermarks. 3673 */ 3674 count_vm_event(COMPACTFAIL); 3675 3676 cond_resched(); 3677 3678 return NULL; 3679 } 3680 3681 static inline bool 3682 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3683 enum compact_result compact_result, 3684 enum compact_priority *compact_priority, 3685 int *compaction_retries) 3686 { 3687 int max_retries = MAX_COMPACT_RETRIES; 3688 int min_priority; 3689 bool ret = false; 3690 int retries = *compaction_retries; 3691 enum compact_priority priority = *compact_priority; 3692 3693 if (!order) 3694 return false; 3695 3696 if (fatal_signal_pending(current)) 3697 return false; 3698 3699 /* 3700 * Compaction was skipped due to a lack of free order-0 3701 * migration targets. Continue if reclaim can help. 3702 */ 3703 if (compact_result == COMPACT_SKIPPED) { 3704 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3705 goto out; 3706 } 3707 3708 /* 3709 * Compaction managed to coalesce some page blocks, but the 3710 * allocation failed presumably due to a race. Retry some. 3711 */ 3712 if (compact_result == COMPACT_SUCCESS) { 3713 /* 3714 * !costly requests are much more important than 3715 * __GFP_RETRY_MAYFAIL costly ones because they are de 3716 * facto nofail and invoke OOM killer to move on while 3717 * costly can fail and users are ready to cope with 3718 * that. 1/4 retries is rather arbitrary but we would 3719 * need much more detailed feedback from compaction to 3720 * make a better decision. 3721 */ 3722 if (order > PAGE_ALLOC_COSTLY_ORDER) 3723 max_retries /= 4; 3724 3725 if (++(*compaction_retries) <= max_retries) { 3726 ret = true; 3727 goto out; 3728 } 3729 } 3730 3731 /* 3732 * Compaction failed. Retry with increasing priority. 3733 */ 3734 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3735 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3736 3737 if (*compact_priority > min_priority) { 3738 (*compact_priority)--; 3739 *compaction_retries = 0; 3740 ret = true; 3741 } 3742 out: 3743 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3744 return ret; 3745 } 3746 #else 3747 static inline struct page * 3748 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3749 unsigned int alloc_flags, const struct alloc_context *ac, 3750 enum compact_priority prio, enum compact_result *compact_result) 3751 { 3752 *compact_result = COMPACT_SKIPPED; 3753 return NULL; 3754 } 3755 3756 static inline bool 3757 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3758 enum compact_result compact_result, 3759 enum compact_priority *compact_priority, 3760 int *compaction_retries) 3761 { 3762 struct zone *zone; 3763 struct zoneref *z; 3764 3765 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3766 return false; 3767 3768 /* 3769 * There are setups with compaction disabled which would prefer to loop 3770 * inside the allocator rather than hit the oom killer prematurely. 3771 * Let's give them a good hope and keep retrying while the order-0 3772 * watermarks are OK. 3773 */ 3774 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3775 ac->highest_zoneidx, ac->nodemask) { 3776 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3777 ac->highest_zoneidx, alloc_flags)) 3778 return true; 3779 } 3780 return false; 3781 } 3782 #endif /* CONFIG_COMPACTION */ 3783 3784 #ifdef CONFIG_LOCKDEP 3785 static struct lockdep_map __fs_reclaim_map = 3786 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3787 3788 static bool __need_reclaim(gfp_t gfp_mask) 3789 { 3790 /* no reclaim without waiting on it */ 3791 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3792 return false; 3793 3794 /* this guy won't enter reclaim */ 3795 if (current->flags & PF_MEMALLOC) 3796 return false; 3797 3798 if (gfp_mask & __GFP_NOLOCKDEP) 3799 return false; 3800 3801 return true; 3802 } 3803 3804 void __fs_reclaim_acquire(unsigned long ip) 3805 { 3806 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3807 } 3808 3809 void __fs_reclaim_release(unsigned long ip) 3810 { 3811 lock_release(&__fs_reclaim_map, ip); 3812 } 3813 3814 void fs_reclaim_acquire(gfp_t gfp_mask) 3815 { 3816 gfp_mask = current_gfp_context(gfp_mask); 3817 3818 if (__need_reclaim(gfp_mask)) { 3819 if (gfp_mask & __GFP_FS) 3820 __fs_reclaim_acquire(_RET_IP_); 3821 3822 #ifdef CONFIG_MMU_NOTIFIER 3823 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3824 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3825 #endif 3826 3827 } 3828 } 3829 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3830 3831 void fs_reclaim_release(gfp_t gfp_mask) 3832 { 3833 gfp_mask = current_gfp_context(gfp_mask); 3834 3835 if (__need_reclaim(gfp_mask)) { 3836 if (gfp_mask & __GFP_FS) 3837 __fs_reclaim_release(_RET_IP_); 3838 } 3839 } 3840 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3841 #endif 3842 3843 /* 3844 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3845 * have been rebuilt so allocation retries. Reader side does not lock and 3846 * retries the allocation if zonelist changes. Writer side is protected by the 3847 * embedded spin_lock. 3848 */ 3849 static DEFINE_SEQLOCK(zonelist_update_seq); 3850 3851 static unsigned int zonelist_iter_begin(void) 3852 { 3853 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3854 return read_seqbegin(&zonelist_update_seq); 3855 3856 return 0; 3857 } 3858 3859 static unsigned int check_retry_zonelist(unsigned int seq) 3860 { 3861 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3862 return read_seqretry(&zonelist_update_seq, seq); 3863 3864 return seq; 3865 } 3866 3867 /* Perform direct synchronous page reclaim */ 3868 static unsigned long 3869 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3870 const struct alloc_context *ac) 3871 { 3872 unsigned int noreclaim_flag; 3873 unsigned long progress; 3874 3875 cond_resched(); 3876 3877 /* We now go into synchronous reclaim */ 3878 cpuset_memory_pressure_bump(); 3879 fs_reclaim_acquire(gfp_mask); 3880 noreclaim_flag = memalloc_noreclaim_save(); 3881 3882 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3883 ac->nodemask); 3884 3885 memalloc_noreclaim_restore(noreclaim_flag); 3886 fs_reclaim_release(gfp_mask); 3887 3888 cond_resched(); 3889 3890 return progress; 3891 } 3892 3893 /* The really slow allocator path where we enter direct reclaim */ 3894 static inline struct page * 3895 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3896 unsigned int alloc_flags, const struct alloc_context *ac, 3897 unsigned long *did_some_progress) 3898 { 3899 struct page *page = NULL; 3900 unsigned long pflags; 3901 bool drained = false; 3902 3903 psi_memstall_enter(&pflags); 3904 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3905 if (unlikely(!(*did_some_progress))) 3906 goto out; 3907 3908 retry: 3909 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3910 3911 /* 3912 * If an allocation failed after direct reclaim, it could be because 3913 * pages are pinned on the per-cpu lists or in high alloc reserves. 3914 * Shrink them and try again 3915 */ 3916 if (!page && !drained) { 3917 unreserve_highatomic_pageblock(ac, false); 3918 drain_all_pages(NULL); 3919 drained = true; 3920 goto retry; 3921 } 3922 out: 3923 psi_memstall_leave(&pflags); 3924 3925 return page; 3926 } 3927 3928 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3929 const struct alloc_context *ac) 3930 { 3931 struct zoneref *z; 3932 struct zone *zone; 3933 pg_data_t *last_pgdat = NULL; 3934 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3935 3936 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3937 ac->nodemask) { 3938 if (!managed_zone(zone)) 3939 continue; 3940 if (last_pgdat != zone->zone_pgdat) { 3941 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3942 last_pgdat = zone->zone_pgdat; 3943 } 3944 } 3945 } 3946 3947 static inline unsigned int 3948 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3949 { 3950 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3951 3952 /* 3953 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3954 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3955 * to save two branches. 3956 */ 3957 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3958 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3959 3960 /* 3961 * The caller may dip into page reserves a bit more if the caller 3962 * cannot run direct reclaim, or if the caller has realtime scheduling 3963 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3964 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3965 */ 3966 alloc_flags |= (__force int) 3967 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3968 3969 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3970 /* 3971 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3972 * if it can't schedule. 3973 */ 3974 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3975 alloc_flags |= ALLOC_NON_BLOCK; 3976 3977 if (order > 0) 3978 alloc_flags |= ALLOC_HIGHATOMIC; 3979 } 3980 3981 /* 3982 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3983 * GFP_ATOMIC) rather than fail, see the comment for 3984 * cpuset_node_allowed(). 3985 */ 3986 if (alloc_flags & ALLOC_MIN_RESERVE) 3987 alloc_flags &= ~ALLOC_CPUSET; 3988 } else if (unlikely(rt_task(current)) && in_task()) 3989 alloc_flags |= ALLOC_MIN_RESERVE; 3990 3991 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3992 3993 return alloc_flags; 3994 } 3995 3996 static bool oom_reserves_allowed(struct task_struct *tsk) 3997 { 3998 if (!tsk_is_oom_victim(tsk)) 3999 return false; 4000 4001 /* 4002 * !MMU doesn't have oom reaper so give access to memory reserves 4003 * only to the thread with TIF_MEMDIE set 4004 */ 4005 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4006 return false; 4007 4008 return true; 4009 } 4010 4011 /* 4012 * Distinguish requests which really need access to full memory 4013 * reserves from oom victims which can live with a portion of it 4014 */ 4015 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4016 { 4017 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4018 return 0; 4019 if (gfp_mask & __GFP_MEMALLOC) 4020 return ALLOC_NO_WATERMARKS; 4021 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4022 return ALLOC_NO_WATERMARKS; 4023 if (!in_interrupt()) { 4024 if (current->flags & PF_MEMALLOC) 4025 return ALLOC_NO_WATERMARKS; 4026 else if (oom_reserves_allowed(current)) 4027 return ALLOC_OOM; 4028 } 4029 4030 return 0; 4031 } 4032 4033 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4034 { 4035 return !!__gfp_pfmemalloc_flags(gfp_mask); 4036 } 4037 4038 /* 4039 * Checks whether it makes sense to retry the reclaim to make a forward progress 4040 * for the given allocation request. 4041 * 4042 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4043 * without success, or when we couldn't even meet the watermark if we 4044 * reclaimed all remaining pages on the LRU lists. 4045 * 4046 * Returns true if a retry is viable or false to enter the oom path. 4047 */ 4048 static inline bool 4049 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4050 struct alloc_context *ac, int alloc_flags, 4051 bool did_some_progress, int *no_progress_loops) 4052 { 4053 struct zone *zone; 4054 struct zoneref *z; 4055 bool ret = false; 4056 4057 /* 4058 * Costly allocations might have made a progress but this doesn't mean 4059 * their order will become available due to high fragmentation so 4060 * always increment the no progress counter for them 4061 */ 4062 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4063 *no_progress_loops = 0; 4064 else 4065 (*no_progress_loops)++; 4066 4067 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4068 goto out; 4069 4070 4071 /* 4072 * Keep reclaiming pages while there is a chance this will lead 4073 * somewhere. If none of the target zones can satisfy our allocation 4074 * request even if all reclaimable pages are considered then we are 4075 * screwed and have to go OOM. 4076 */ 4077 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4078 ac->highest_zoneidx, ac->nodemask) { 4079 unsigned long available; 4080 unsigned long reclaimable; 4081 unsigned long min_wmark = min_wmark_pages(zone); 4082 bool wmark; 4083 4084 available = reclaimable = zone_reclaimable_pages(zone); 4085 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4086 4087 /* 4088 * Would the allocation succeed if we reclaimed all 4089 * reclaimable pages? 4090 */ 4091 wmark = __zone_watermark_ok(zone, order, min_wmark, 4092 ac->highest_zoneidx, alloc_flags, available); 4093 trace_reclaim_retry_zone(z, order, reclaimable, 4094 available, min_wmark, *no_progress_loops, wmark); 4095 if (wmark) { 4096 ret = true; 4097 break; 4098 } 4099 } 4100 4101 /* 4102 * Memory allocation/reclaim might be called from a WQ context and the 4103 * current implementation of the WQ concurrency control doesn't 4104 * recognize that a particular WQ is congested if the worker thread is 4105 * looping without ever sleeping. Therefore we have to do a short sleep 4106 * here rather than calling cond_resched(). 4107 */ 4108 if (current->flags & PF_WQ_WORKER) 4109 schedule_timeout_uninterruptible(1); 4110 else 4111 cond_resched(); 4112 out: 4113 /* Before OOM, exhaust highatomic_reserve */ 4114 if (!ret) 4115 return unreserve_highatomic_pageblock(ac, true); 4116 4117 return ret; 4118 } 4119 4120 static inline bool 4121 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4122 { 4123 /* 4124 * It's possible that cpuset's mems_allowed and the nodemask from 4125 * mempolicy don't intersect. This should be normally dealt with by 4126 * policy_nodemask(), but it's possible to race with cpuset update in 4127 * such a way the check therein was true, and then it became false 4128 * before we got our cpuset_mems_cookie here. 4129 * This assumes that for all allocations, ac->nodemask can come only 4130 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4131 * when it does not intersect with the cpuset restrictions) or the 4132 * caller can deal with a violated nodemask. 4133 */ 4134 if (cpusets_enabled() && ac->nodemask && 4135 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4136 ac->nodemask = NULL; 4137 return true; 4138 } 4139 4140 /* 4141 * When updating a task's mems_allowed or mempolicy nodemask, it is 4142 * possible to race with parallel threads in such a way that our 4143 * allocation can fail while the mask is being updated. If we are about 4144 * to fail, check if the cpuset changed during allocation and if so, 4145 * retry. 4146 */ 4147 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4148 return true; 4149 4150 return false; 4151 } 4152 4153 static inline struct page * 4154 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4155 struct alloc_context *ac) 4156 { 4157 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4158 bool can_compact = gfp_compaction_allowed(gfp_mask); 4159 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4160 struct page *page = NULL; 4161 unsigned int alloc_flags; 4162 unsigned long did_some_progress; 4163 enum compact_priority compact_priority; 4164 enum compact_result compact_result; 4165 int compaction_retries; 4166 int no_progress_loops; 4167 unsigned int cpuset_mems_cookie; 4168 unsigned int zonelist_iter_cookie; 4169 int reserve_flags; 4170 4171 restart: 4172 compaction_retries = 0; 4173 no_progress_loops = 0; 4174 compact_priority = DEF_COMPACT_PRIORITY; 4175 cpuset_mems_cookie = read_mems_allowed_begin(); 4176 zonelist_iter_cookie = zonelist_iter_begin(); 4177 4178 /* 4179 * The fast path uses conservative alloc_flags to succeed only until 4180 * kswapd needs to be woken up, and to avoid the cost of setting up 4181 * alloc_flags precisely. So we do that now. 4182 */ 4183 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4184 4185 /* 4186 * We need to recalculate the starting point for the zonelist iterator 4187 * because we might have used different nodemask in the fast path, or 4188 * there was a cpuset modification and we are retrying - otherwise we 4189 * could end up iterating over non-eligible zones endlessly. 4190 */ 4191 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4192 ac->highest_zoneidx, ac->nodemask); 4193 if (!ac->preferred_zoneref->zone) 4194 goto nopage; 4195 4196 /* 4197 * Check for insane configurations where the cpuset doesn't contain 4198 * any suitable zone to satisfy the request - e.g. non-movable 4199 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4200 */ 4201 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4202 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4203 ac->highest_zoneidx, 4204 &cpuset_current_mems_allowed); 4205 if (!z->zone) 4206 goto nopage; 4207 } 4208 4209 if (alloc_flags & ALLOC_KSWAPD) 4210 wake_all_kswapds(order, gfp_mask, ac); 4211 4212 /* 4213 * The adjusted alloc_flags might result in immediate success, so try 4214 * that first 4215 */ 4216 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4217 if (page) 4218 goto got_pg; 4219 4220 /* 4221 * For costly allocations, try direct compaction first, as it's likely 4222 * that we have enough base pages and don't need to reclaim. For non- 4223 * movable high-order allocations, do that as well, as compaction will 4224 * try prevent permanent fragmentation by migrating from blocks of the 4225 * same migratetype. 4226 * Don't try this for allocations that are allowed to ignore 4227 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4228 */ 4229 if (can_direct_reclaim && can_compact && 4230 (costly_order || 4231 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4232 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4233 page = __alloc_pages_direct_compact(gfp_mask, order, 4234 alloc_flags, ac, 4235 INIT_COMPACT_PRIORITY, 4236 &compact_result); 4237 if (page) 4238 goto got_pg; 4239 4240 /* 4241 * Checks for costly allocations with __GFP_NORETRY, which 4242 * includes some THP page fault allocations 4243 */ 4244 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4245 /* 4246 * If allocating entire pageblock(s) and compaction 4247 * failed because all zones are below low watermarks 4248 * or is prohibited because it recently failed at this 4249 * order, fail immediately unless the allocator has 4250 * requested compaction and reclaim retry. 4251 * 4252 * Reclaim is 4253 * - potentially very expensive because zones are far 4254 * below their low watermarks or this is part of very 4255 * bursty high order allocations, 4256 * - not guaranteed to help because isolate_freepages() 4257 * may not iterate over freed pages as part of its 4258 * linear scan, and 4259 * - unlikely to make entire pageblocks free on its 4260 * own. 4261 */ 4262 if (compact_result == COMPACT_SKIPPED || 4263 compact_result == COMPACT_DEFERRED) 4264 goto nopage; 4265 4266 /* 4267 * Looks like reclaim/compaction is worth trying, but 4268 * sync compaction could be very expensive, so keep 4269 * using async compaction. 4270 */ 4271 compact_priority = INIT_COMPACT_PRIORITY; 4272 } 4273 } 4274 4275 retry: 4276 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4277 if (alloc_flags & ALLOC_KSWAPD) 4278 wake_all_kswapds(order, gfp_mask, ac); 4279 4280 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4281 if (reserve_flags) 4282 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4283 (alloc_flags & ALLOC_KSWAPD); 4284 4285 /* 4286 * Reset the nodemask and zonelist iterators if memory policies can be 4287 * ignored. These allocations are high priority and system rather than 4288 * user oriented. 4289 */ 4290 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4291 ac->nodemask = NULL; 4292 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4293 ac->highest_zoneidx, ac->nodemask); 4294 } 4295 4296 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4297 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4298 if (page) 4299 goto got_pg; 4300 4301 /* Caller is not willing to reclaim, we can't balance anything */ 4302 if (!can_direct_reclaim) 4303 goto nopage; 4304 4305 /* Avoid recursion of direct reclaim */ 4306 if (current->flags & PF_MEMALLOC) 4307 goto nopage; 4308 4309 /* Try direct reclaim and then allocating */ 4310 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4311 &did_some_progress); 4312 if (page) 4313 goto got_pg; 4314 4315 /* Try direct compaction and then allocating */ 4316 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4317 compact_priority, &compact_result); 4318 if (page) 4319 goto got_pg; 4320 4321 /* Do not loop if specifically requested */ 4322 if (gfp_mask & __GFP_NORETRY) 4323 goto nopage; 4324 4325 /* 4326 * Do not retry costly high order allocations unless they are 4327 * __GFP_RETRY_MAYFAIL and we can compact 4328 */ 4329 if (costly_order && (!can_compact || 4330 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4331 goto nopage; 4332 4333 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4334 did_some_progress > 0, &no_progress_loops)) 4335 goto retry; 4336 4337 /* 4338 * It doesn't make any sense to retry for the compaction if the order-0 4339 * reclaim is not able to make any progress because the current 4340 * implementation of the compaction depends on the sufficient amount 4341 * of free memory (see __compaction_suitable) 4342 */ 4343 if (did_some_progress > 0 && can_compact && 4344 should_compact_retry(ac, order, alloc_flags, 4345 compact_result, &compact_priority, 4346 &compaction_retries)) 4347 goto retry; 4348 4349 4350 /* 4351 * Deal with possible cpuset update races or zonelist updates to avoid 4352 * a unnecessary OOM kill. 4353 */ 4354 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4355 check_retry_zonelist(zonelist_iter_cookie)) 4356 goto restart; 4357 4358 /* Reclaim has failed us, start killing things */ 4359 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4360 if (page) 4361 goto got_pg; 4362 4363 /* Avoid allocations with no watermarks from looping endlessly */ 4364 if (tsk_is_oom_victim(current) && 4365 (alloc_flags & ALLOC_OOM || 4366 (gfp_mask & __GFP_NOMEMALLOC))) 4367 goto nopage; 4368 4369 /* Retry as long as the OOM killer is making progress */ 4370 if (did_some_progress) { 4371 no_progress_loops = 0; 4372 goto retry; 4373 } 4374 4375 nopage: 4376 /* 4377 * Deal with possible cpuset update races or zonelist updates to avoid 4378 * a unnecessary OOM kill. 4379 */ 4380 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4381 check_retry_zonelist(zonelist_iter_cookie)) 4382 goto restart; 4383 4384 /* 4385 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4386 * we always retry 4387 */ 4388 if (gfp_mask & __GFP_NOFAIL) { 4389 /* 4390 * All existing users of the __GFP_NOFAIL are blockable, so warn 4391 * of any new users that actually require GFP_NOWAIT 4392 */ 4393 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4394 goto fail; 4395 4396 /* 4397 * PF_MEMALLOC request from this context is rather bizarre 4398 * because we cannot reclaim anything and only can loop waiting 4399 * for somebody to do a work for us 4400 */ 4401 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4402 4403 /* 4404 * non failing costly orders are a hard requirement which we 4405 * are not prepared for much so let's warn about these users 4406 * so that we can identify them and convert them to something 4407 * else. 4408 */ 4409 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4410 4411 /* 4412 * Help non-failing allocations by giving some access to memory 4413 * reserves normally used for high priority non-blocking 4414 * allocations but do not use ALLOC_NO_WATERMARKS because this 4415 * could deplete whole memory reserves which would just make 4416 * the situation worse. 4417 */ 4418 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4419 if (page) 4420 goto got_pg; 4421 4422 cond_resched(); 4423 goto retry; 4424 } 4425 fail: 4426 warn_alloc(gfp_mask, ac->nodemask, 4427 "page allocation failure: order:%u", order); 4428 got_pg: 4429 return page; 4430 } 4431 4432 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4433 int preferred_nid, nodemask_t *nodemask, 4434 struct alloc_context *ac, gfp_t *alloc_gfp, 4435 unsigned int *alloc_flags) 4436 { 4437 ac->highest_zoneidx = gfp_zone(gfp_mask); 4438 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4439 ac->nodemask = nodemask; 4440 ac->migratetype = gfp_migratetype(gfp_mask); 4441 4442 if (cpusets_enabled()) { 4443 *alloc_gfp |= __GFP_HARDWALL; 4444 /* 4445 * When we are in the interrupt context, it is irrelevant 4446 * to the current task context. It means that any node ok. 4447 */ 4448 if (in_task() && !ac->nodemask) 4449 ac->nodemask = &cpuset_current_mems_allowed; 4450 else 4451 *alloc_flags |= ALLOC_CPUSET; 4452 } 4453 4454 might_alloc(gfp_mask); 4455 4456 if (should_fail_alloc_page(gfp_mask, order)) 4457 return false; 4458 4459 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4460 4461 /* Dirty zone balancing only done in the fast path */ 4462 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4463 4464 /* 4465 * The preferred zone is used for statistics but crucially it is 4466 * also used as the starting point for the zonelist iterator. It 4467 * may get reset for allocations that ignore memory policies. 4468 */ 4469 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4470 ac->highest_zoneidx, ac->nodemask); 4471 4472 return true; 4473 } 4474 4475 /* 4476 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4477 * @gfp: GFP flags for the allocation 4478 * @preferred_nid: The preferred NUMA node ID to allocate from 4479 * @nodemask: Set of nodes to allocate from, may be NULL 4480 * @nr_pages: The number of pages desired on the list or array 4481 * @page_list: Optional list to store the allocated pages 4482 * @page_array: Optional array to store the pages 4483 * 4484 * This is a batched version of the page allocator that attempts to 4485 * allocate nr_pages quickly. Pages are added to page_list if page_list 4486 * is not NULL, otherwise it is assumed that the page_array is valid. 4487 * 4488 * For lists, nr_pages is the number of pages that should be allocated. 4489 * 4490 * For arrays, only NULL elements are populated with pages and nr_pages 4491 * is the maximum number of pages that will be stored in the array. 4492 * 4493 * Returns the number of pages on the list or array. 4494 */ 4495 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4496 nodemask_t *nodemask, int nr_pages, 4497 struct list_head *page_list, 4498 struct page **page_array) 4499 { 4500 struct page *page; 4501 unsigned long __maybe_unused UP_flags; 4502 struct zone *zone; 4503 struct zoneref *z; 4504 struct per_cpu_pages *pcp; 4505 struct list_head *pcp_list; 4506 struct alloc_context ac; 4507 gfp_t alloc_gfp; 4508 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4509 int nr_populated = 0, nr_account = 0; 4510 4511 /* 4512 * Skip populated array elements to determine if any pages need 4513 * to be allocated before disabling IRQs. 4514 */ 4515 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4516 nr_populated++; 4517 4518 /* No pages requested? */ 4519 if (unlikely(nr_pages <= 0)) 4520 goto out; 4521 4522 /* Already populated array? */ 4523 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4524 goto out; 4525 4526 /* Bulk allocator does not support memcg accounting. */ 4527 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4528 goto failed; 4529 4530 /* Use the single page allocator for one page. */ 4531 if (nr_pages - nr_populated == 1) 4532 goto failed; 4533 4534 #ifdef CONFIG_PAGE_OWNER 4535 /* 4536 * PAGE_OWNER may recurse into the allocator to allocate space to 4537 * save the stack with pagesets.lock held. Releasing/reacquiring 4538 * removes much of the performance benefit of bulk allocation so 4539 * force the caller to allocate one page at a time as it'll have 4540 * similar performance to added complexity to the bulk allocator. 4541 */ 4542 if (static_branch_unlikely(&page_owner_inited)) 4543 goto failed; 4544 #endif 4545 4546 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4547 gfp &= gfp_allowed_mask; 4548 alloc_gfp = gfp; 4549 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4550 goto out; 4551 gfp = alloc_gfp; 4552 4553 /* Find an allowed local zone that meets the low watermark. */ 4554 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4555 unsigned long mark; 4556 4557 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4558 !__cpuset_zone_allowed(zone, gfp)) { 4559 continue; 4560 } 4561 4562 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4563 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4564 goto failed; 4565 } 4566 4567 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4568 if (zone_watermark_fast(zone, 0, mark, 4569 zonelist_zone_idx(ac.preferred_zoneref), 4570 alloc_flags, gfp)) { 4571 break; 4572 } 4573 } 4574 4575 /* 4576 * If there are no allowed local zones that meets the watermarks then 4577 * try to allocate a single page and reclaim if necessary. 4578 */ 4579 if (unlikely(!zone)) 4580 goto failed; 4581 4582 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4583 pcp_trylock_prepare(UP_flags); 4584 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4585 if (!pcp) 4586 goto failed_irq; 4587 4588 /* Attempt the batch allocation */ 4589 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4590 while (nr_populated < nr_pages) { 4591 4592 /* Skip existing pages */ 4593 if (page_array && page_array[nr_populated]) { 4594 nr_populated++; 4595 continue; 4596 } 4597 4598 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4599 pcp, pcp_list); 4600 if (unlikely(!page)) { 4601 /* Try and allocate at least one page */ 4602 if (!nr_account) { 4603 pcp_spin_unlock(pcp); 4604 goto failed_irq; 4605 } 4606 break; 4607 } 4608 nr_account++; 4609 4610 prep_new_page(page, 0, gfp, 0); 4611 if (page_list) 4612 list_add(&page->lru, page_list); 4613 else 4614 page_array[nr_populated] = page; 4615 nr_populated++; 4616 } 4617 4618 pcp_spin_unlock(pcp); 4619 pcp_trylock_finish(UP_flags); 4620 4621 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4622 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4623 4624 out: 4625 return nr_populated; 4626 4627 failed_irq: 4628 pcp_trylock_finish(UP_flags); 4629 4630 failed: 4631 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4632 if (page) { 4633 if (page_list) 4634 list_add(&page->lru, page_list); 4635 else 4636 page_array[nr_populated] = page; 4637 nr_populated++; 4638 } 4639 4640 goto out; 4641 } 4642 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4643 4644 /* 4645 * This is the 'heart' of the zoned buddy allocator. 4646 */ 4647 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4648 int preferred_nid, nodemask_t *nodemask) 4649 { 4650 struct page *page; 4651 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4652 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4653 struct alloc_context ac = { }; 4654 4655 /* 4656 * There are several places where we assume that the order value is sane 4657 * so bail out early if the request is out of bound. 4658 */ 4659 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4660 return NULL; 4661 4662 gfp &= gfp_allowed_mask; 4663 /* 4664 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4665 * resp. GFP_NOIO which has to be inherited for all allocation requests 4666 * from a particular context which has been marked by 4667 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4668 * movable zones are not used during allocation. 4669 */ 4670 gfp = current_gfp_context(gfp); 4671 alloc_gfp = gfp; 4672 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4673 &alloc_gfp, &alloc_flags)) 4674 return NULL; 4675 4676 /* 4677 * Forbid the first pass from falling back to types that fragment 4678 * memory until all local zones are considered. 4679 */ 4680 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4681 4682 /* First allocation attempt */ 4683 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4684 if (likely(page)) 4685 goto out; 4686 4687 alloc_gfp = gfp; 4688 ac.spread_dirty_pages = false; 4689 4690 /* 4691 * Restore the original nodemask if it was potentially replaced with 4692 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4693 */ 4694 ac.nodemask = nodemask; 4695 4696 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4697 4698 out: 4699 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4700 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4701 __free_pages(page, order); 4702 page = NULL; 4703 } 4704 4705 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4706 kmsan_alloc_page(page, order, alloc_gfp); 4707 4708 return page; 4709 } 4710 EXPORT_SYMBOL(__alloc_pages_noprof); 4711 4712 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4713 nodemask_t *nodemask) 4714 { 4715 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4716 preferred_nid, nodemask); 4717 return page_rmappable_folio(page); 4718 } 4719 EXPORT_SYMBOL(__folio_alloc_noprof); 4720 4721 /* 4722 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4723 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4724 * you need to access high mem. 4725 */ 4726 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4727 { 4728 struct page *page; 4729 4730 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4731 if (!page) 4732 return 0; 4733 return (unsigned long) page_address(page); 4734 } 4735 EXPORT_SYMBOL(get_free_pages_noprof); 4736 4737 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4738 { 4739 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4740 } 4741 EXPORT_SYMBOL(get_zeroed_page_noprof); 4742 4743 /** 4744 * __free_pages - Free pages allocated with alloc_pages(). 4745 * @page: The page pointer returned from alloc_pages(). 4746 * @order: The order of the allocation. 4747 * 4748 * This function can free multi-page allocations that are not compound 4749 * pages. It does not check that the @order passed in matches that of 4750 * the allocation, so it is easy to leak memory. Freeing more memory 4751 * than was allocated will probably emit a warning. 4752 * 4753 * If the last reference to this page is speculative, it will be released 4754 * by put_page() which only frees the first page of a non-compound 4755 * allocation. To prevent the remaining pages from being leaked, we free 4756 * the subsequent pages here. If you want to use the page's reference 4757 * count to decide when to free the allocation, you should allocate a 4758 * compound page, and use put_page() instead of __free_pages(). 4759 * 4760 * Context: May be called in interrupt context or while holding a normal 4761 * spinlock, but not in NMI context or while holding a raw spinlock. 4762 */ 4763 void __free_pages(struct page *page, unsigned int order) 4764 { 4765 /* get PageHead before we drop reference */ 4766 int head = PageHead(page); 4767 struct alloc_tag *tag = pgalloc_tag_get(page); 4768 4769 if (put_page_testzero(page)) 4770 free_unref_page(page, order); 4771 else if (!head) { 4772 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4773 while (order-- > 0) 4774 free_unref_page(page + (1 << order), order); 4775 } 4776 } 4777 EXPORT_SYMBOL(__free_pages); 4778 4779 void free_pages(unsigned long addr, unsigned int order) 4780 { 4781 if (addr != 0) { 4782 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4783 __free_pages(virt_to_page((void *)addr), order); 4784 } 4785 } 4786 4787 EXPORT_SYMBOL(free_pages); 4788 4789 /* 4790 * Page Fragment: 4791 * An arbitrary-length arbitrary-offset area of memory which resides 4792 * within a 0 or higher order page. Multiple fragments within that page 4793 * are individually refcounted, in the page's reference counter. 4794 * 4795 * The page_frag functions below provide a simple allocation framework for 4796 * page fragments. This is used by the network stack and network device 4797 * drivers to provide a backing region of memory for use as either an 4798 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4799 */ 4800 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4801 gfp_t gfp_mask) 4802 { 4803 struct page *page = NULL; 4804 gfp_t gfp = gfp_mask; 4805 4806 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4807 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | 4808 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; 4809 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4810 PAGE_FRAG_CACHE_MAX_ORDER); 4811 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4812 #endif 4813 if (unlikely(!page)) 4814 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4815 4816 nc->va = page ? page_address(page) : NULL; 4817 4818 return page; 4819 } 4820 4821 void page_frag_cache_drain(struct page_frag_cache *nc) 4822 { 4823 if (!nc->va) 4824 return; 4825 4826 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); 4827 nc->va = NULL; 4828 } 4829 EXPORT_SYMBOL(page_frag_cache_drain); 4830 4831 void __page_frag_cache_drain(struct page *page, unsigned int count) 4832 { 4833 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4834 4835 if (page_ref_sub_and_test(page, count)) 4836 free_unref_page(page, compound_order(page)); 4837 } 4838 EXPORT_SYMBOL(__page_frag_cache_drain); 4839 4840 void *__page_frag_alloc_align(struct page_frag_cache *nc, 4841 unsigned int fragsz, gfp_t gfp_mask, 4842 unsigned int align_mask) 4843 { 4844 unsigned int size = PAGE_SIZE; 4845 struct page *page; 4846 int offset; 4847 4848 if (unlikely(!nc->va)) { 4849 refill: 4850 page = __page_frag_cache_refill(nc, gfp_mask); 4851 if (!page) 4852 return NULL; 4853 4854 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4855 /* if size can vary use size else just use PAGE_SIZE */ 4856 size = nc->size; 4857 #endif 4858 /* Even if we own the page, we do not use atomic_set(). 4859 * This would break get_page_unless_zero() users. 4860 */ 4861 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4862 4863 /* reset page count bias and offset to start of new frag */ 4864 nc->pfmemalloc = page_is_pfmemalloc(page); 4865 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4866 nc->offset = size; 4867 } 4868 4869 offset = nc->offset - fragsz; 4870 if (unlikely(offset < 0)) { 4871 page = virt_to_page(nc->va); 4872 4873 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4874 goto refill; 4875 4876 if (unlikely(nc->pfmemalloc)) { 4877 free_unref_page(page, compound_order(page)); 4878 goto refill; 4879 } 4880 4881 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4882 /* if size can vary use size else just use PAGE_SIZE */ 4883 size = nc->size; 4884 #endif 4885 /* OK, page count is 0, we can safely set it */ 4886 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4887 4888 /* reset page count bias and offset to start of new frag */ 4889 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4890 offset = size - fragsz; 4891 if (unlikely(offset < 0)) { 4892 /* 4893 * The caller is trying to allocate a fragment 4894 * with fragsz > PAGE_SIZE but the cache isn't big 4895 * enough to satisfy the request, this may 4896 * happen in low memory conditions. 4897 * We don't release the cache page because 4898 * it could make memory pressure worse 4899 * so we simply return NULL here. 4900 */ 4901 return NULL; 4902 } 4903 } 4904 4905 nc->pagecnt_bias--; 4906 offset &= align_mask; 4907 nc->offset = offset; 4908 4909 return nc->va + offset; 4910 } 4911 EXPORT_SYMBOL(__page_frag_alloc_align); 4912 4913 /* 4914 * Frees a page fragment allocated out of either a compound or order 0 page. 4915 */ 4916 void page_frag_free(void *addr) 4917 { 4918 struct page *page = virt_to_head_page(addr); 4919 4920 if (unlikely(put_page_testzero(page))) 4921 free_unref_page(page, compound_order(page)); 4922 } 4923 EXPORT_SYMBOL(page_frag_free); 4924 4925 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4926 size_t size) 4927 { 4928 if (addr) { 4929 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4930 struct page *page = virt_to_page((void *)addr); 4931 struct page *last = page + nr; 4932 4933 split_page_owner(page, order, 0); 4934 pgalloc_tag_split(page, 1 << order); 4935 split_page_memcg(page, order, 0); 4936 while (page < --last) 4937 set_page_refcounted(last); 4938 4939 last = page + (1UL << order); 4940 for (page += nr; page < last; page++) 4941 __free_pages_ok(page, 0, FPI_TO_TAIL); 4942 } 4943 return (void *)addr; 4944 } 4945 4946 /** 4947 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4948 * @size: the number of bytes to allocate 4949 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4950 * 4951 * This function is similar to alloc_pages(), except that it allocates the 4952 * minimum number of pages to satisfy the request. alloc_pages() can only 4953 * allocate memory in power-of-two pages. 4954 * 4955 * This function is also limited by MAX_PAGE_ORDER. 4956 * 4957 * Memory allocated by this function must be released by free_pages_exact(). 4958 * 4959 * Return: pointer to the allocated area or %NULL in case of error. 4960 */ 4961 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 4962 { 4963 unsigned int order = get_order(size); 4964 unsigned long addr; 4965 4966 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4967 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4968 4969 addr = get_free_pages_noprof(gfp_mask, order); 4970 return make_alloc_exact(addr, order, size); 4971 } 4972 EXPORT_SYMBOL(alloc_pages_exact_noprof); 4973 4974 /** 4975 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4976 * pages on a node. 4977 * @nid: the preferred node ID where memory should be allocated 4978 * @size: the number of bytes to allocate 4979 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4980 * 4981 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4982 * back. 4983 * 4984 * Return: pointer to the allocated area or %NULL in case of error. 4985 */ 4986 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 4987 { 4988 unsigned int order = get_order(size); 4989 struct page *p; 4990 4991 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4992 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4993 4994 p = alloc_pages_node_noprof(nid, gfp_mask, order); 4995 if (!p) 4996 return NULL; 4997 return make_alloc_exact((unsigned long)page_address(p), order, size); 4998 } 4999 5000 /** 5001 * free_pages_exact - release memory allocated via alloc_pages_exact() 5002 * @virt: the value returned by alloc_pages_exact. 5003 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5004 * 5005 * Release the memory allocated by a previous call to alloc_pages_exact. 5006 */ 5007 void free_pages_exact(void *virt, size_t size) 5008 { 5009 unsigned long addr = (unsigned long)virt; 5010 unsigned long end = addr + PAGE_ALIGN(size); 5011 5012 while (addr < end) { 5013 free_page(addr); 5014 addr += PAGE_SIZE; 5015 } 5016 } 5017 EXPORT_SYMBOL(free_pages_exact); 5018 5019 /** 5020 * nr_free_zone_pages - count number of pages beyond high watermark 5021 * @offset: The zone index of the highest zone 5022 * 5023 * nr_free_zone_pages() counts the number of pages which are beyond the 5024 * high watermark within all zones at or below a given zone index. For each 5025 * zone, the number of pages is calculated as: 5026 * 5027 * nr_free_zone_pages = managed_pages - high_pages 5028 * 5029 * Return: number of pages beyond high watermark. 5030 */ 5031 static unsigned long nr_free_zone_pages(int offset) 5032 { 5033 struct zoneref *z; 5034 struct zone *zone; 5035 5036 /* Just pick one node, since fallback list is circular */ 5037 unsigned long sum = 0; 5038 5039 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5040 5041 for_each_zone_zonelist(zone, z, zonelist, offset) { 5042 unsigned long size = zone_managed_pages(zone); 5043 unsigned long high = high_wmark_pages(zone); 5044 if (size > high) 5045 sum += size - high; 5046 } 5047 5048 return sum; 5049 } 5050 5051 /** 5052 * nr_free_buffer_pages - count number of pages beyond high watermark 5053 * 5054 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5055 * watermark within ZONE_DMA and ZONE_NORMAL. 5056 * 5057 * Return: number of pages beyond high watermark within ZONE_DMA and 5058 * ZONE_NORMAL. 5059 */ 5060 unsigned long nr_free_buffer_pages(void) 5061 { 5062 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5063 } 5064 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5065 5066 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5067 { 5068 zoneref->zone = zone; 5069 zoneref->zone_idx = zone_idx(zone); 5070 } 5071 5072 /* 5073 * Builds allocation fallback zone lists. 5074 * 5075 * Add all populated zones of a node to the zonelist. 5076 */ 5077 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5078 { 5079 struct zone *zone; 5080 enum zone_type zone_type = MAX_NR_ZONES; 5081 int nr_zones = 0; 5082 5083 do { 5084 zone_type--; 5085 zone = pgdat->node_zones + zone_type; 5086 if (populated_zone(zone)) { 5087 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5088 check_highest_zone(zone_type); 5089 } 5090 } while (zone_type); 5091 5092 return nr_zones; 5093 } 5094 5095 #ifdef CONFIG_NUMA 5096 5097 static int __parse_numa_zonelist_order(char *s) 5098 { 5099 /* 5100 * We used to support different zonelists modes but they turned 5101 * out to be just not useful. Let's keep the warning in place 5102 * if somebody still use the cmd line parameter so that we do 5103 * not fail it silently 5104 */ 5105 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5106 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5107 return -EINVAL; 5108 } 5109 return 0; 5110 } 5111 5112 static char numa_zonelist_order[] = "Node"; 5113 #define NUMA_ZONELIST_ORDER_LEN 16 5114 /* 5115 * sysctl handler for numa_zonelist_order 5116 */ 5117 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 5118 void *buffer, size_t *length, loff_t *ppos) 5119 { 5120 if (write) 5121 return __parse_numa_zonelist_order(buffer); 5122 return proc_dostring(table, write, buffer, length, ppos); 5123 } 5124 5125 static int node_load[MAX_NUMNODES]; 5126 5127 /** 5128 * find_next_best_node - find the next node that should appear in a given node's fallback list 5129 * @node: node whose fallback list we're appending 5130 * @used_node_mask: nodemask_t of already used nodes 5131 * 5132 * We use a number of factors to determine which is the next node that should 5133 * appear on a given node's fallback list. The node should not have appeared 5134 * already in @node's fallback list, and it should be the next closest node 5135 * according to the distance array (which contains arbitrary distance values 5136 * from each node to each node in the system), and should also prefer nodes 5137 * with no CPUs, since presumably they'll have very little allocation pressure 5138 * on them otherwise. 5139 * 5140 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5141 */ 5142 int find_next_best_node(int node, nodemask_t *used_node_mask) 5143 { 5144 int n, val; 5145 int min_val = INT_MAX; 5146 int best_node = NUMA_NO_NODE; 5147 5148 /* 5149 * Use the local node if we haven't already, but for memoryless local 5150 * node, we should skip it and fall back to other nodes. 5151 */ 5152 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5153 node_set(node, *used_node_mask); 5154 return node; 5155 } 5156 5157 for_each_node_state(n, N_MEMORY) { 5158 5159 /* Don't want a node to appear more than once */ 5160 if (node_isset(n, *used_node_mask)) 5161 continue; 5162 5163 /* Use the distance array to find the distance */ 5164 val = node_distance(node, n); 5165 5166 /* Penalize nodes under us ("prefer the next node") */ 5167 val += (n < node); 5168 5169 /* Give preference to headless and unused nodes */ 5170 if (!cpumask_empty(cpumask_of_node(n))) 5171 val += PENALTY_FOR_NODE_WITH_CPUS; 5172 5173 /* Slight preference for less loaded node */ 5174 val *= MAX_NUMNODES; 5175 val += node_load[n]; 5176 5177 if (val < min_val) { 5178 min_val = val; 5179 best_node = n; 5180 } 5181 } 5182 5183 if (best_node >= 0) 5184 node_set(best_node, *used_node_mask); 5185 5186 return best_node; 5187 } 5188 5189 5190 /* 5191 * Build zonelists ordered by node and zones within node. 5192 * This results in maximum locality--normal zone overflows into local 5193 * DMA zone, if any--but risks exhausting DMA zone. 5194 */ 5195 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5196 unsigned nr_nodes) 5197 { 5198 struct zoneref *zonerefs; 5199 int i; 5200 5201 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5202 5203 for (i = 0; i < nr_nodes; i++) { 5204 int nr_zones; 5205 5206 pg_data_t *node = NODE_DATA(node_order[i]); 5207 5208 nr_zones = build_zonerefs_node(node, zonerefs); 5209 zonerefs += nr_zones; 5210 } 5211 zonerefs->zone = NULL; 5212 zonerefs->zone_idx = 0; 5213 } 5214 5215 /* 5216 * Build gfp_thisnode zonelists 5217 */ 5218 static void build_thisnode_zonelists(pg_data_t *pgdat) 5219 { 5220 struct zoneref *zonerefs; 5221 int nr_zones; 5222 5223 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5224 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5225 zonerefs += nr_zones; 5226 zonerefs->zone = NULL; 5227 zonerefs->zone_idx = 0; 5228 } 5229 5230 /* 5231 * Build zonelists ordered by zone and nodes within zones. 5232 * This results in conserving DMA zone[s] until all Normal memory is 5233 * exhausted, but results in overflowing to remote node while memory 5234 * may still exist in local DMA zone. 5235 */ 5236 5237 static void build_zonelists(pg_data_t *pgdat) 5238 { 5239 static int node_order[MAX_NUMNODES]; 5240 int node, nr_nodes = 0; 5241 nodemask_t used_mask = NODE_MASK_NONE; 5242 int local_node, prev_node; 5243 5244 /* NUMA-aware ordering of nodes */ 5245 local_node = pgdat->node_id; 5246 prev_node = local_node; 5247 5248 memset(node_order, 0, sizeof(node_order)); 5249 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5250 /* 5251 * We don't want to pressure a particular node. 5252 * So adding penalty to the first node in same 5253 * distance group to make it round-robin. 5254 */ 5255 if (node_distance(local_node, node) != 5256 node_distance(local_node, prev_node)) 5257 node_load[node] += 1; 5258 5259 node_order[nr_nodes++] = node; 5260 prev_node = node; 5261 } 5262 5263 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5264 build_thisnode_zonelists(pgdat); 5265 pr_info("Fallback order for Node %d: ", local_node); 5266 for (node = 0; node < nr_nodes; node++) 5267 pr_cont("%d ", node_order[node]); 5268 pr_cont("\n"); 5269 } 5270 5271 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5272 /* 5273 * Return node id of node used for "local" allocations. 5274 * I.e., first node id of first zone in arg node's generic zonelist. 5275 * Used for initializing percpu 'numa_mem', which is used primarily 5276 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5277 */ 5278 int local_memory_node(int node) 5279 { 5280 struct zoneref *z; 5281 5282 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5283 gfp_zone(GFP_KERNEL), 5284 NULL); 5285 return zone_to_nid(z->zone); 5286 } 5287 #endif 5288 5289 static void setup_min_unmapped_ratio(void); 5290 static void setup_min_slab_ratio(void); 5291 #else /* CONFIG_NUMA */ 5292 5293 static void build_zonelists(pg_data_t *pgdat) 5294 { 5295 struct zoneref *zonerefs; 5296 int nr_zones; 5297 5298 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5299 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5300 zonerefs += nr_zones; 5301 5302 zonerefs->zone = NULL; 5303 zonerefs->zone_idx = 0; 5304 } 5305 5306 #endif /* CONFIG_NUMA */ 5307 5308 /* 5309 * Boot pageset table. One per cpu which is going to be used for all 5310 * zones and all nodes. The parameters will be set in such a way 5311 * that an item put on a list will immediately be handed over to 5312 * the buddy list. This is safe since pageset manipulation is done 5313 * with interrupts disabled. 5314 * 5315 * The boot_pagesets must be kept even after bootup is complete for 5316 * unused processors and/or zones. They do play a role for bootstrapping 5317 * hotplugged processors. 5318 * 5319 * zoneinfo_show() and maybe other functions do 5320 * not check if the processor is online before following the pageset pointer. 5321 * Other parts of the kernel may not check if the zone is available. 5322 */ 5323 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5324 /* These effectively disable the pcplists in the boot pageset completely */ 5325 #define BOOT_PAGESET_HIGH 0 5326 #define BOOT_PAGESET_BATCH 1 5327 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5328 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5329 5330 static void __build_all_zonelists(void *data) 5331 { 5332 int nid; 5333 int __maybe_unused cpu; 5334 pg_data_t *self = data; 5335 unsigned long flags; 5336 5337 /* 5338 * The zonelist_update_seq must be acquired with irqsave because the 5339 * reader can be invoked from IRQ with GFP_ATOMIC. 5340 */ 5341 write_seqlock_irqsave(&zonelist_update_seq, flags); 5342 /* 5343 * Also disable synchronous printk() to prevent any printk() from 5344 * trying to hold port->lock, for 5345 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5346 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5347 */ 5348 printk_deferred_enter(); 5349 5350 #ifdef CONFIG_NUMA 5351 memset(node_load, 0, sizeof(node_load)); 5352 #endif 5353 5354 /* 5355 * This node is hotadded and no memory is yet present. So just 5356 * building zonelists is fine - no need to touch other nodes. 5357 */ 5358 if (self && !node_online(self->node_id)) { 5359 build_zonelists(self); 5360 } else { 5361 /* 5362 * All possible nodes have pgdat preallocated 5363 * in free_area_init 5364 */ 5365 for_each_node(nid) { 5366 pg_data_t *pgdat = NODE_DATA(nid); 5367 5368 build_zonelists(pgdat); 5369 } 5370 5371 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5372 /* 5373 * We now know the "local memory node" for each node-- 5374 * i.e., the node of the first zone in the generic zonelist. 5375 * Set up numa_mem percpu variable for on-line cpus. During 5376 * boot, only the boot cpu should be on-line; we'll init the 5377 * secondary cpus' numa_mem as they come on-line. During 5378 * node/memory hotplug, we'll fixup all on-line cpus. 5379 */ 5380 for_each_online_cpu(cpu) 5381 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5382 #endif 5383 } 5384 5385 printk_deferred_exit(); 5386 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5387 } 5388 5389 static noinline void __init 5390 build_all_zonelists_init(void) 5391 { 5392 int cpu; 5393 5394 __build_all_zonelists(NULL); 5395 5396 /* 5397 * Initialize the boot_pagesets that are going to be used 5398 * for bootstrapping processors. The real pagesets for 5399 * each zone will be allocated later when the per cpu 5400 * allocator is available. 5401 * 5402 * boot_pagesets are used also for bootstrapping offline 5403 * cpus if the system is already booted because the pagesets 5404 * are needed to initialize allocators on a specific cpu too. 5405 * F.e. the percpu allocator needs the page allocator which 5406 * needs the percpu allocator in order to allocate its pagesets 5407 * (a chicken-egg dilemma). 5408 */ 5409 for_each_possible_cpu(cpu) 5410 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5411 5412 mminit_verify_zonelist(); 5413 cpuset_init_current_mems_allowed(); 5414 } 5415 5416 /* 5417 * unless system_state == SYSTEM_BOOTING. 5418 * 5419 * __ref due to call of __init annotated helper build_all_zonelists_init 5420 * [protected by SYSTEM_BOOTING]. 5421 */ 5422 void __ref build_all_zonelists(pg_data_t *pgdat) 5423 { 5424 unsigned long vm_total_pages; 5425 5426 if (system_state == SYSTEM_BOOTING) { 5427 build_all_zonelists_init(); 5428 } else { 5429 __build_all_zonelists(pgdat); 5430 /* cpuset refresh routine should be here */ 5431 } 5432 /* Get the number of free pages beyond high watermark in all zones. */ 5433 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5434 /* 5435 * Disable grouping by mobility if the number of pages in the 5436 * system is too low to allow the mechanism to work. It would be 5437 * more accurate, but expensive to check per-zone. This check is 5438 * made on memory-hotadd so a system can start with mobility 5439 * disabled and enable it later 5440 */ 5441 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5442 page_group_by_mobility_disabled = 1; 5443 else 5444 page_group_by_mobility_disabled = 0; 5445 5446 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5447 nr_online_nodes, 5448 page_group_by_mobility_disabled ? "off" : "on", 5449 vm_total_pages); 5450 #ifdef CONFIG_NUMA 5451 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5452 #endif 5453 } 5454 5455 static int zone_batchsize(struct zone *zone) 5456 { 5457 #ifdef CONFIG_MMU 5458 int batch; 5459 5460 /* 5461 * The number of pages to batch allocate is either ~0.1% 5462 * of the zone or 1MB, whichever is smaller. The batch 5463 * size is striking a balance between allocation latency 5464 * and zone lock contention. 5465 */ 5466 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5467 batch /= 4; /* We effectively *= 4 below */ 5468 if (batch < 1) 5469 batch = 1; 5470 5471 /* 5472 * Clamp the batch to a 2^n - 1 value. Having a power 5473 * of 2 value was found to be more likely to have 5474 * suboptimal cache aliasing properties in some cases. 5475 * 5476 * For example if 2 tasks are alternately allocating 5477 * batches of pages, one task can end up with a lot 5478 * of pages of one half of the possible page colors 5479 * and the other with pages of the other colors. 5480 */ 5481 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5482 5483 return batch; 5484 5485 #else 5486 /* The deferral and batching of frees should be suppressed under NOMMU 5487 * conditions. 5488 * 5489 * The problem is that NOMMU needs to be able to allocate large chunks 5490 * of contiguous memory as there's no hardware page translation to 5491 * assemble apparent contiguous memory from discontiguous pages. 5492 * 5493 * Queueing large contiguous runs of pages for batching, however, 5494 * causes the pages to actually be freed in smaller chunks. As there 5495 * can be a significant delay between the individual batches being 5496 * recycled, this leads to the once large chunks of space being 5497 * fragmented and becoming unavailable for high-order allocations. 5498 */ 5499 return 0; 5500 #endif 5501 } 5502 5503 static int percpu_pagelist_high_fraction; 5504 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5505 int high_fraction) 5506 { 5507 #ifdef CONFIG_MMU 5508 int high; 5509 int nr_split_cpus; 5510 unsigned long total_pages; 5511 5512 if (!high_fraction) { 5513 /* 5514 * By default, the high value of the pcp is based on the zone 5515 * low watermark so that if they are full then background 5516 * reclaim will not be started prematurely. 5517 */ 5518 total_pages = low_wmark_pages(zone); 5519 } else { 5520 /* 5521 * If percpu_pagelist_high_fraction is configured, the high 5522 * value is based on a fraction of the managed pages in the 5523 * zone. 5524 */ 5525 total_pages = zone_managed_pages(zone) / high_fraction; 5526 } 5527 5528 /* 5529 * Split the high value across all online CPUs local to the zone. Note 5530 * that early in boot that CPUs may not be online yet and that during 5531 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5532 * onlined. For memory nodes that have no CPUs, split the high value 5533 * across all online CPUs to mitigate the risk that reclaim is triggered 5534 * prematurely due to pages stored on pcp lists. 5535 */ 5536 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5537 if (!nr_split_cpus) 5538 nr_split_cpus = num_online_cpus(); 5539 high = total_pages / nr_split_cpus; 5540 5541 /* 5542 * Ensure high is at least batch*4. The multiple is based on the 5543 * historical relationship between high and batch. 5544 */ 5545 high = max(high, batch << 2); 5546 5547 return high; 5548 #else 5549 return 0; 5550 #endif 5551 } 5552 5553 /* 5554 * pcp->high and pcp->batch values are related and generally batch is lower 5555 * than high. They are also related to pcp->count such that count is lower 5556 * than high, and as soon as it reaches high, the pcplist is flushed. 5557 * 5558 * However, guaranteeing these relations at all times would require e.g. write 5559 * barriers here but also careful usage of read barriers at the read side, and 5560 * thus be prone to error and bad for performance. Thus the update only prevents 5561 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5562 * should ensure they can cope with those fields changing asynchronously, and 5563 * fully trust only the pcp->count field on the local CPU with interrupts 5564 * disabled. 5565 * 5566 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5567 * outside of boot time (or some other assurance that no concurrent updaters 5568 * exist). 5569 */ 5570 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5571 unsigned long high_max, unsigned long batch) 5572 { 5573 WRITE_ONCE(pcp->batch, batch); 5574 WRITE_ONCE(pcp->high_min, high_min); 5575 WRITE_ONCE(pcp->high_max, high_max); 5576 } 5577 5578 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5579 { 5580 int pindex; 5581 5582 memset(pcp, 0, sizeof(*pcp)); 5583 memset(pzstats, 0, sizeof(*pzstats)); 5584 5585 spin_lock_init(&pcp->lock); 5586 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5587 INIT_LIST_HEAD(&pcp->lists[pindex]); 5588 5589 /* 5590 * Set batch and high values safe for a boot pageset. A true percpu 5591 * pageset's initialization will update them subsequently. Here we don't 5592 * need to be as careful as pageset_update() as nobody can access the 5593 * pageset yet. 5594 */ 5595 pcp->high_min = BOOT_PAGESET_HIGH; 5596 pcp->high_max = BOOT_PAGESET_HIGH; 5597 pcp->batch = BOOT_PAGESET_BATCH; 5598 pcp->free_count = 0; 5599 } 5600 5601 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5602 unsigned long high_max, unsigned long batch) 5603 { 5604 struct per_cpu_pages *pcp; 5605 int cpu; 5606 5607 for_each_possible_cpu(cpu) { 5608 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5609 pageset_update(pcp, high_min, high_max, batch); 5610 } 5611 } 5612 5613 /* 5614 * Calculate and set new high and batch values for all per-cpu pagesets of a 5615 * zone based on the zone's size. 5616 */ 5617 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5618 { 5619 int new_high_min, new_high_max, new_batch; 5620 5621 new_batch = max(1, zone_batchsize(zone)); 5622 if (percpu_pagelist_high_fraction) { 5623 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5624 percpu_pagelist_high_fraction); 5625 /* 5626 * PCP high is tuned manually, disable auto-tuning via 5627 * setting high_min and high_max to the manual value. 5628 */ 5629 new_high_max = new_high_min; 5630 } else { 5631 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5632 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5633 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5634 } 5635 5636 if (zone->pageset_high_min == new_high_min && 5637 zone->pageset_high_max == new_high_max && 5638 zone->pageset_batch == new_batch) 5639 return; 5640 5641 zone->pageset_high_min = new_high_min; 5642 zone->pageset_high_max = new_high_max; 5643 zone->pageset_batch = new_batch; 5644 5645 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5646 new_batch); 5647 } 5648 5649 void __meminit setup_zone_pageset(struct zone *zone) 5650 { 5651 int cpu; 5652 5653 /* Size may be 0 on !SMP && !NUMA */ 5654 if (sizeof(struct per_cpu_zonestat) > 0) 5655 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5656 5657 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5658 for_each_possible_cpu(cpu) { 5659 struct per_cpu_pages *pcp; 5660 struct per_cpu_zonestat *pzstats; 5661 5662 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5663 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5664 per_cpu_pages_init(pcp, pzstats); 5665 } 5666 5667 zone_set_pageset_high_and_batch(zone, 0); 5668 } 5669 5670 /* 5671 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5672 * page high values need to be recalculated. 5673 */ 5674 static void zone_pcp_update(struct zone *zone, int cpu_online) 5675 { 5676 mutex_lock(&pcp_batch_high_lock); 5677 zone_set_pageset_high_and_batch(zone, cpu_online); 5678 mutex_unlock(&pcp_batch_high_lock); 5679 } 5680 5681 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5682 { 5683 struct per_cpu_pages *pcp; 5684 struct cpu_cacheinfo *cci; 5685 5686 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5687 cci = get_cpu_cacheinfo(cpu); 5688 /* 5689 * If data cache slice of CPU is large enough, "pcp->batch" 5690 * pages can be preserved in PCP before draining PCP for 5691 * consecutive high-order pages freeing without allocation. 5692 * This can reduce zone lock contention without hurting 5693 * cache-hot pages sharing. 5694 */ 5695 spin_lock(&pcp->lock); 5696 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5697 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5698 else 5699 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5700 spin_unlock(&pcp->lock); 5701 } 5702 5703 void setup_pcp_cacheinfo(unsigned int cpu) 5704 { 5705 struct zone *zone; 5706 5707 for_each_populated_zone(zone) 5708 zone_pcp_update_cacheinfo(zone, cpu); 5709 } 5710 5711 /* 5712 * Allocate per cpu pagesets and initialize them. 5713 * Before this call only boot pagesets were available. 5714 */ 5715 void __init setup_per_cpu_pageset(void) 5716 { 5717 struct pglist_data *pgdat; 5718 struct zone *zone; 5719 int __maybe_unused cpu; 5720 5721 for_each_populated_zone(zone) 5722 setup_zone_pageset(zone); 5723 5724 #ifdef CONFIG_NUMA 5725 /* 5726 * Unpopulated zones continue using the boot pagesets. 5727 * The numa stats for these pagesets need to be reset. 5728 * Otherwise, they will end up skewing the stats of 5729 * the nodes these zones are associated with. 5730 */ 5731 for_each_possible_cpu(cpu) { 5732 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5733 memset(pzstats->vm_numa_event, 0, 5734 sizeof(pzstats->vm_numa_event)); 5735 } 5736 #endif 5737 5738 for_each_online_pgdat(pgdat) 5739 pgdat->per_cpu_nodestats = 5740 alloc_percpu(struct per_cpu_nodestat); 5741 } 5742 5743 __meminit void zone_pcp_init(struct zone *zone) 5744 { 5745 /* 5746 * per cpu subsystem is not up at this point. The following code 5747 * relies on the ability of the linker to provide the 5748 * offset of a (static) per cpu variable into the per cpu area. 5749 */ 5750 zone->per_cpu_pageset = &boot_pageset; 5751 zone->per_cpu_zonestats = &boot_zonestats; 5752 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5753 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5754 zone->pageset_batch = BOOT_PAGESET_BATCH; 5755 5756 if (populated_zone(zone)) 5757 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5758 zone->present_pages, zone_batchsize(zone)); 5759 } 5760 5761 void adjust_managed_page_count(struct page *page, long count) 5762 { 5763 atomic_long_add(count, &page_zone(page)->managed_pages); 5764 totalram_pages_add(count); 5765 #ifdef CONFIG_HIGHMEM 5766 if (PageHighMem(page)) 5767 totalhigh_pages_add(count); 5768 #endif 5769 } 5770 EXPORT_SYMBOL(adjust_managed_page_count); 5771 5772 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5773 { 5774 void *pos; 5775 unsigned long pages = 0; 5776 5777 start = (void *)PAGE_ALIGN((unsigned long)start); 5778 end = (void *)((unsigned long)end & PAGE_MASK); 5779 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5780 struct page *page = virt_to_page(pos); 5781 void *direct_map_addr; 5782 5783 /* 5784 * 'direct_map_addr' might be different from 'pos' 5785 * because some architectures' virt_to_page() 5786 * work with aliases. Getting the direct map 5787 * address ensures that we get a _writeable_ 5788 * alias for the memset(). 5789 */ 5790 direct_map_addr = page_address(page); 5791 /* 5792 * Perform a kasan-unchecked memset() since this memory 5793 * has not been initialized. 5794 */ 5795 direct_map_addr = kasan_reset_tag(direct_map_addr); 5796 if ((unsigned int)poison <= 0xFF) 5797 memset(direct_map_addr, poison, PAGE_SIZE); 5798 5799 free_reserved_page(page); 5800 } 5801 5802 if (pages && s) 5803 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5804 5805 return pages; 5806 } 5807 5808 static int page_alloc_cpu_dead(unsigned int cpu) 5809 { 5810 struct zone *zone; 5811 5812 lru_add_drain_cpu(cpu); 5813 mlock_drain_remote(cpu); 5814 drain_pages(cpu); 5815 5816 /* 5817 * Spill the event counters of the dead processor 5818 * into the current processors event counters. 5819 * This artificially elevates the count of the current 5820 * processor. 5821 */ 5822 vm_events_fold_cpu(cpu); 5823 5824 /* 5825 * Zero the differential counters of the dead processor 5826 * so that the vm statistics are consistent. 5827 * 5828 * This is only okay since the processor is dead and cannot 5829 * race with what we are doing. 5830 */ 5831 cpu_vm_stats_fold(cpu); 5832 5833 for_each_populated_zone(zone) 5834 zone_pcp_update(zone, 0); 5835 5836 return 0; 5837 } 5838 5839 static int page_alloc_cpu_online(unsigned int cpu) 5840 { 5841 struct zone *zone; 5842 5843 for_each_populated_zone(zone) 5844 zone_pcp_update(zone, 1); 5845 return 0; 5846 } 5847 5848 void __init page_alloc_init_cpuhp(void) 5849 { 5850 int ret; 5851 5852 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5853 "mm/page_alloc:pcp", 5854 page_alloc_cpu_online, 5855 page_alloc_cpu_dead); 5856 WARN_ON(ret < 0); 5857 } 5858 5859 /* 5860 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5861 * or min_free_kbytes changes. 5862 */ 5863 static void calculate_totalreserve_pages(void) 5864 { 5865 struct pglist_data *pgdat; 5866 unsigned long reserve_pages = 0; 5867 enum zone_type i, j; 5868 5869 for_each_online_pgdat(pgdat) { 5870 5871 pgdat->totalreserve_pages = 0; 5872 5873 for (i = 0; i < MAX_NR_ZONES; i++) { 5874 struct zone *zone = pgdat->node_zones + i; 5875 long max = 0; 5876 unsigned long managed_pages = zone_managed_pages(zone); 5877 5878 /* Find valid and maximum lowmem_reserve in the zone */ 5879 for (j = i; j < MAX_NR_ZONES; j++) { 5880 if (zone->lowmem_reserve[j] > max) 5881 max = zone->lowmem_reserve[j]; 5882 } 5883 5884 /* we treat the high watermark as reserved pages. */ 5885 max += high_wmark_pages(zone); 5886 5887 if (max > managed_pages) 5888 max = managed_pages; 5889 5890 pgdat->totalreserve_pages += max; 5891 5892 reserve_pages += max; 5893 } 5894 } 5895 totalreserve_pages = reserve_pages; 5896 } 5897 5898 /* 5899 * setup_per_zone_lowmem_reserve - called whenever 5900 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5901 * has a correct pages reserved value, so an adequate number of 5902 * pages are left in the zone after a successful __alloc_pages(). 5903 */ 5904 static void setup_per_zone_lowmem_reserve(void) 5905 { 5906 struct pglist_data *pgdat; 5907 enum zone_type i, j; 5908 5909 for_each_online_pgdat(pgdat) { 5910 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5911 struct zone *zone = &pgdat->node_zones[i]; 5912 int ratio = sysctl_lowmem_reserve_ratio[i]; 5913 bool clear = !ratio || !zone_managed_pages(zone); 5914 unsigned long managed_pages = 0; 5915 5916 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5917 struct zone *upper_zone = &pgdat->node_zones[j]; 5918 bool empty = !zone_managed_pages(upper_zone); 5919 5920 managed_pages += zone_managed_pages(upper_zone); 5921 5922 if (clear || empty) 5923 zone->lowmem_reserve[j] = 0; 5924 else 5925 zone->lowmem_reserve[j] = managed_pages / ratio; 5926 } 5927 } 5928 } 5929 5930 /* update totalreserve_pages */ 5931 calculate_totalreserve_pages(); 5932 } 5933 5934 static void __setup_per_zone_wmarks(void) 5935 { 5936 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5937 unsigned long lowmem_pages = 0; 5938 struct zone *zone; 5939 unsigned long flags; 5940 5941 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5942 for_each_zone(zone) { 5943 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5944 lowmem_pages += zone_managed_pages(zone); 5945 } 5946 5947 for_each_zone(zone) { 5948 u64 tmp; 5949 5950 spin_lock_irqsave(&zone->lock, flags); 5951 tmp = (u64)pages_min * zone_managed_pages(zone); 5952 tmp = div64_ul(tmp, lowmem_pages); 5953 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5954 /* 5955 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5956 * need highmem and movable zones pages, so cap pages_min 5957 * to a small value here. 5958 * 5959 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5960 * deltas control async page reclaim, and so should 5961 * not be capped for highmem and movable zones. 5962 */ 5963 unsigned long min_pages; 5964 5965 min_pages = zone_managed_pages(zone) / 1024; 5966 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5967 zone->_watermark[WMARK_MIN] = min_pages; 5968 } else { 5969 /* 5970 * If it's a lowmem zone, reserve a number of pages 5971 * proportionate to the zone's size. 5972 */ 5973 zone->_watermark[WMARK_MIN] = tmp; 5974 } 5975 5976 /* 5977 * Set the kswapd watermarks distance according to the 5978 * scale factor in proportion to available memory, but 5979 * ensure a minimum size on small systems. 5980 */ 5981 tmp = max_t(u64, tmp >> 2, 5982 mult_frac(zone_managed_pages(zone), 5983 watermark_scale_factor, 10000)); 5984 5985 zone->watermark_boost = 0; 5986 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5987 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5988 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5989 5990 spin_unlock_irqrestore(&zone->lock, flags); 5991 } 5992 5993 /* update totalreserve_pages */ 5994 calculate_totalreserve_pages(); 5995 } 5996 5997 /** 5998 * setup_per_zone_wmarks - called when min_free_kbytes changes 5999 * or when memory is hot-{added|removed} 6000 * 6001 * Ensures that the watermark[min,low,high] values for each zone are set 6002 * correctly with respect to min_free_kbytes. 6003 */ 6004 void setup_per_zone_wmarks(void) 6005 { 6006 struct zone *zone; 6007 static DEFINE_SPINLOCK(lock); 6008 6009 spin_lock(&lock); 6010 __setup_per_zone_wmarks(); 6011 spin_unlock(&lock); 6012 6013 /* 6014 * The watermark size have changed so update the pcpu batch 6015 * and high limits or the limits may be inappropriate. 6016 */ 6017 for_each_zone(zone) 6018 zone_pcp_update(zone, 0); 6019 } 6020 6021 /* 6022 * Initialise min_free_kbytes. 6023 * 6024 * For small machines we want it small (128k min). For large machines 6025 * we want it large (256MB max). But it is not linear, because network 6026 * bandwidth does not increase linearly with machine size. We use 6027 * 6028 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6029 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6030 * 6031 * which yields 6032 * 6033 * 16MB: 512k 6034 * 32MB: 724k 6035 * 64MB: 1024k 6036 * 128MB: 1448k 6037 * 256MB: 2048k 6038 * 512MB: 2896k 6039 * 1024MB: 4096k 6040 * 2048MB: 5792k 6041 * 4096MB: 8192k 6042 * 8192MB: 11584k 6043 * 16384MB: 16384k 6044 */ 6045 void calculate_min_free_kbytes(void) 6046 { 6047 unsigned long lowmem_kbytes; 6048 int new_min_free_kbytes; 6049 6050 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6051 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6052 6053 if (new_min_free_kbytes > user_min_free_kbytes) 6054 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6055 else 6056 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6057 new_min_free_kbytes, user_min_free_kbytes); 6058 6059 } 6060 6061 int __meminit init_per_zone_wmark_min(void) 6062 { 6063 calculate_min_free_kbytes(); 6064 setup_per_zone_wmarks(); 6065 refresh_zone_stat_thresholds(); 6066 setup_per_zone_lowmem_reserve(); 6067 6068 #ifdef CONFIG_NUMA 6069 setup_min_unmapped_ratio(); 6070 setup_min_slab_ratio(); 6071 #endif 6072 6073 khugepaged_min_free_kbytes_update(); 6074 6075 return 0; 6076 } 6077 postcore_initcall(init_per_zone_wmark_min) 6078 6079 /* 6080 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6081 * that we can call two helper functions whenever min_free_kbytes 6082 * changes. 6083 */ 6084 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6085 void *buffer, size_t *length, loff_t *ppos) 6086 { 6087 int rc; 6088 6089 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6090 if (rc) 6091 return rc; 6092 6093 if (write) { 6094 user_min_free_kbytes = min_free_kbytes; 6095 setup_per_zone_wmarks(); 6096 } 6097 return 0; 6098 } 6099 6100 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6101 void *buffer, size_t *length, loff_t *ppos) 6102 { 6103 int rc; 6104 6105 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6106 if (rc) 6107 return rc; 6108 6109 if (write) 6110 setup_per_zone_wmarks(); 6111 6112 return 0; 6113 } 6114 6115 #ifdef CONFIG_NUMA 6116 static void setup_min_unmapped_ratio(void) 6117 { 6118 pg_data_t *pgdat; 6119 struct zone *zone; 6120 6121 for_each_online_pgdat(pgdat) 6122 pgdat->min_unmapped_pages = 0; 6123 6124 for_each_zone(zone) 6125 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6126 sysctl_min_unmapped_ratio) / 100; 6127 } 6128 6129 6130 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6131 void *buffer, size_t *length, loff_t *ppos) 6132 { 6133 int rc; 6134 6135 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6136 if (rc) 6137 return rc; 6138 6139 setup_min_unmapped_ratio(); 6140 6141 return 0; 6142 } 6143 6144 static void setup_min_slab_ratio(void) 6145 { 6146 pg_data_t *pgdat; 6147 struct zone *zone; 6148 6149 for_each_online_pgdat(pgdat) 6150 pgdat->min_slab_pages = 0; 6151 6152 for_each_zone(zone) 6153 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6154 sysctl_min_slab_ratio) / 100; 6155 } 6156 6157 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6158 void *buffer, size_t *length, loff_t *ppos) 6159 { 6160 int rc; 6161 6162 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6163 if (rc) 6164 return rc; 6165 6166 setup_min_slab_ratio(); 6167 6168 return 0; 6169 } 6170 #endif 6171 6172 /* 6173 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6174 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6175 * whenever sysctl_lowmem_reserve_ratio changes. 6176 * 6177 * The reserve ratio obviously has absolutely no relation with the 6178 * minimum watermarks. The lowmem reserve ratio can only make sense 6179 * if in function of the boot time zone sizes. 6180 */ 6181 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 6182 int write, void *buffer, size_t *length, loff_t *ppos) 6183 { 6184 int i; 6185 6186 proc_dointvec_minmax(table, write, buffer, length, ppos); 6187 6188 for (i = 0; i < MAX_NR_ZONES; i++) { 6189 if (sysctl_lowmem_reserve_ratio[i] < 1) 6190 sysctl_lowmem_reserve_ratio[i] = 0; 6191 } 6192 6193 setup_per_zone_lowmem_reserve(); 6194 return 0; 6195 } 6196 6197 /* 6198 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6199 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6200 * pagelist can have before it gets flushed back to buddy allocator. 6201 */ 6202 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6203 int write, void *buffer, size_t *length, loff_t *ppos) 6204 { 6205 struct zone *zone; 6206 int old_percpu_pagelist_high_fraction; 6207 int ret; 6208 6209 mutex_lock(&pcp_batch_high_lock); 6210 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6211 6212 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6213 if (!write || ret < 0) 6214 goto out; 6215 6216 /* Sanity checking to avoid pcp imbalance */ 6217 if (percpu_pagelist_high_fraction && 6218 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6219 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6220 ret = -EINVAL; 6221 goto out; 6222 } 6223 6224 /* No change? */ 6225 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6226 goto out; 6227 6228 for_each_populated_zone(zone) 6229 zone_set_pageset_high_and_batch(zone, 0); 6230 out: 6231 mutex_unlock(&pcp_batch_high_lock); 6232 return ret; 6233 } 6234 6235 static struct ctl_table page_alloc_sysctl_table[] = { 6236 { 6237 .procname = "min_free_kbytes", 6238 .data = &min_free_kbytes, 6239 .maxlen = sizeof(min_free_kbytes), 6240 .mode = 0644, 6241 .proc_handler = min_free_kbytes_sysctl_handler, 6242 .extra1 = SYSCTL_ZERO, 6243 }, 6244 { 6245 .procname = "watermark_boost_factor", 6246 .data = &watermark_boost_factor, 6247 .maxlen = sizeof(watermark_boost_factor), 6248 .mode = 0644, 6249 .proc_handler = proc_dointvec_minmax, 6250 .extra1 = SYSCTL_ZERO, 6251 }, 6252 { 6253 .procname = "watermark_scale_factor", 6254 .data = &watermark_scale_factor, 6255 .maxlen = sizeof(watermark_scale_factor), 6256 .mode = 0644, 6257 .proc_handler = watermark_scale_factor_sysctl_handler, 6258 .extra1 = SYSCTL_ONE, 6259 .extra2 = SYSCTL_THREE_THOUSAND, 6260 }, 6261 { 6262 .procname = "percpu_pagelist_high_fraction", 6263 .data = &percpu_pagelist_high_fraction, 6264 .maxlen = sizeof(percpu_pagelist_high_fraction), 6265 .mode = 0644, 6266 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6267 .extra1 = SYSCTL_ZERO, 6268 }, 6269 { 6270 .procname = "lowmem_reserve_ratio", 6271 .data = &sysctl_lowmem_reserve_ratio, 6272 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6273 .mode = 0644, 6274 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6275 }, 6276 #ifdef CONFIG_NUMA 6277 { 6278 .procname = "numa_zonelist_order", 6279 .data = &numa_zonelist_order, 6280 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6281 .mode = 0644, 6282 .proc_handler = numa_zonelist_order_handler, 6283 }, 6284 { 6285 .procname = "min_unmapped_ratio", 6286 .data = &sysctl_min_unmapped_ratio, 6287 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6288 .mode = 0644, 6289 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6290 .extra1 = SYSCTL_ZERO, 6291 .extra2 = SYSCTL_ONE_HUNDRED, 6292 }, 6293 { 6294 .procname = "min_slab_ratio", 6295 .data = &sysctl_min_slab_ratio, 6296 .maxlen = sizeof(sysctl_min_slab_ratio), 6297 .mode = 0644, 6298 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6299 .extra1 = SYSCTL_ZERO, 6300 .extra2 = SYSCTL_ONE_HUNDRED, 6301 }, 6302 #endif 6303 }; 6304 6305 void __init page_alloc_sysctl_init(void) 6306 { 6307 register_sysctl_init("vm", page_alloc_sysctl_table); 6308 } 6309 6310 #ifdef CONFIG_CONTIG_ALLOC 6311 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6312 static void alloc_contig_dump_pages(struct list_head *page_list) 6313 { 6314 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6315 6316 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6317 struct page *page; 6318 6319 dump_stack(); 6320 list_for_each_entry(page, page_list, lru) 6321 dump_page(page, "migration failure"); 6322 } 6323 } 6324 6325 /* 6326 * [start, end) must belong to a single zone. 6327 * @migratetype: using migratetype to filter the type of migration in 6328 * trace_mm_alloc_contig_migrate_range_info. 6329 */ 6330 int __alloc_contig_migrate_range(struct compact_control *cc, 6331 unsigned long start, unsigned long end, 6332 int migratetype) 6333 { 6334 /* This function is based on compact_zone() from compaction.c. */ 6335 unsigned int nr_reclaimed; 6336 unsigned long pfn = start; 6337 unsigned int tries = 0; 6338 int ret = 0; 6339 struct migration_target_control mtc = { 6340 .nid = zone_to_nid(cc->zone), 6341 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6342 .reason = MR_CONTIG_RANGE, 6343 }; 6344 struct page *page; 6345 unsigned long total_mapped = 0; 6346 unsigned long total_migrated = 0; 6347 unsigned long total_reclaimed = 0; 6348 6349 lru_cache_disable(); 6350 6351 while (pfn < end || !list_empty(&cc->migratepages)) { 6352 if (fatal_signal_pending(current)) { 6353 ret = -EINTR; 6354 break; 6355 } 6356 6357 if (list_empty(&cc->migratepages)) { 6358 cc->nr_migratepages = 0; 6359 ret = isolate_migratepages_range(cc, pfn, end); 6360 if (ret && ret != -EAGAIN) 6361 break; 6362 pfn = cc->migrate_pfn; 6363 tries = 0; 6364 } else if (++tries == 5) { 6365 ret = -EBUSY; 6366 break; 6367 } 6368 6369 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6370 &cc->migratepages); 6371 cc->nr_migratepages -= nr_reclaimed; 6372 6373 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6374 total_reclaimed += nr_reclaimed; 6375 list_for_each_entry(page, &cc->migratepages, lru) { 6376 struct folio *folio = page_folio(page); 6377 6378 total_mapped += folio_mapped(folio) * 6379 folio_nr_pages(folio); 6380 } 6381 } 6382 6383 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6384 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6385 6386 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6387 total_migrated += cc->nr_migratepages; 6388 6389 /* 6390 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6391 * to retry again over this error, so do the same here. 6392 */ 6393 if (ret == -ENOMEM) 6394 break; 6395 } 6396 6397 lru_cache_enable(); 6398 if (ret < 0) { 6399 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6400 alloc_contig_dump_pages(&cc->migratepages); 6401 putback_movable_pages(&cc->migratepages); 6402 } 6403 6404 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6405 total_migrated, 6406 total_reclaimed, 6407 total_mapped); 6408 return (ret < 0) ? ret : 0; 6409 } 6410 6411 /** 6412 * alloc_contig_range() -- tries to allocate given range of pages 6413 * @start: start PFN to allocate 6414 * @end: one-past-the-last PFN to allocate 6415 * @migratetype: migratetype of the underlying pageblocks (either 6416 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6417 * in range must have the same migratetype and it must 6418 * be either of the two. 6419 * @gfp_mask: GFP mask to use during compaction 6420 * 6421 * The PFN range does not have to be pageblock aligned. The PFN range must 6422 * belong to a single zone. 6423 * 6424 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6425 * pageblocks in the range. Once isolated, the pageblocks should not 6426 * be modified by others. 6427 * 6428 * Return: zero on success or negative error code. On success all 6429 * pages which PFN is in [start, end) are allocated for the caller and 6430 * need to be freed with free_contig_range(). 6431 */ 6432 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6433 unsigned migratetype, gfp_t gfp_mask) 6434 { 6435 unsigned long outer_start, outer_end; 6436 int ret = 0; 6437 6438 struct compact_control cc = { 6439 .nr_migratepages = 0, 6440 .order = -1, 6441 .zone = page_zone(pfn_to_page(start)), 6442 .mode = MIGRATE_SYNC, 6443 .ignore_skip_hint = true, 6444 .no_set_skip_hint = true, 6445 .gfp_mask = current_gfp_context(gfp_mask), 6446 .alloc_contig = true, 6447 }; 6448 INIT_LIST_HEAD(&cc.migratepages); 6449 6450 /* 6451 * What we do here is we mark all pageblocks in range as 6452 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6453 * have different sizes, and due to the way page allocator 6454 * work, start_isolate_page_range() has special handlings for this. 6455 * 6456 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6457 * migrate the pages from an unaligned range (ie. pages that 6458 * we are interested in). This will put all the pages in 6459 * range back to page allocator as MIGRATE_ISOLATE. 6460 * 6461 * When this is done, we take the pages in range from page 6462 * allocator removing them from the buddy system. This way 6463 * page allocator will never consider using them. 6464 * 6465 * This lets us mark the pageblocks back as 6466 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6467 * aligned range but not in the unaligned, original range are 6468 * put back to page allocator so that buddy can use them. 6469 */ 6470 6471 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6472 if (ret) 6473 goto done; 6474 6475 drain_all_pages(cc.zone); 6476 6477 /* 6478 * In case of -EBUSY, we'd like to know which page causes problem. 6479 * So, just fall through. test_pages_isolated() has a tracepoint 6480 * which will report the busy page. 6481 * 6482 * It is possible that busy pages could become available before 6483 * the call to test_pages_isolated, and the range will actually be 6484 * allocated. So, if we fall through be sure to clear ret so that 6485 * -EBUSY is not accidentally used or returned to caller. 6486 */ 6487 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6488 if (ret && ret != -EBUSY) 6489 goto done; 6490 ret = 0; 6491 6492 /* 6493 * Pages from [start, end) are within a pageblock_nr_pages 6494 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6495 * more, all pages in [start, end) are free in page allocator. 6496 * What we are going to do is to allocate all pages from 6497 * [start, end) (that is remove them from page allocator). 6498 * 6499 * The only problem is that pages at the beginning and at the 6500 * end of interesting range may be not aligned with pages that 6501 * page allocator holds, ie. they can be part of higher order 6502 * pages. Because of this, we reserve the bigger range and 6503 * once this is done free the pages we are not interested in. 6504 * 6505 * We don't have to hold zone->lock here because the pages are 6506 * isolated thus they won't get removed from buddy. 6507 */ 6508 outer_start = find_large_buddy(start); 6509 6510 /* Make sure the range is really isolated. */ 6511 if (test_pages_isolated(outer_start, end, 0)) { 6512 ret = -EBUSY; 6513 goto done; 6514 } 6515 6516 /* Grab isolated pages from freelists. */ 6517 outer_end = isolate_freepages_range(&cc, outer_start, end); 6518 if (!outer_end) { 6519 ret = -EBUSY; 6520 goto done; 6521 } 6522 6523 /* Free head and tail (if any) */ 6524 if (start != outer_start) 6525 free_contig_range(outer_start, start - outer_start); 6526 if (end != outer_end) 6527 free_contig_range(end, outer_end - end); 6528 6529 done: 6530 undo_isolate_page_range(start, end, migratetype); 6531 return ret; 6532 } 6533 EXPORT_SYMBOL(alloc_contig_range_noprof); 6534 6535 static int __alloc_contig_pages(unsigned long start_pfn, 6536 unsigned long nr_pages, gfp_t gfp_mask) 6537 { 6538 unsigned long end_pfn = start_pfn + nr_pages; 6539 6540 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6541 gfp_mask); 6542 } 6543 6544 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6545 unsigned long nr_pages) 6546 { 6547 unsigned long i, end_pfn = start_pfn + nr_pages; 6548 struct page *page; 6549 6550 for (i = start_pfn; i < end_pfn; i++) { 6551 page = pfn_to_online_page(i); 6552 if (!page) 6553 return false; 6554 6555 if (page_zone(page) != z) 6556 return false; 6557 6558 if (PageReserved(page)) 6559 return false; 6560 6561 if (PageHuge(page)) 6562 return false; 6563 } 6564 return true; 6565 } 6566 6567 static bool zone_spans_last_pfn(const struct zone *zone, 6568 unsigned long start_pfn, unsigned long nr_pages) 6569 { 6570 unsigned long last_pfn = start_pfn + nr_pages - 1; 6571 6572 return zone_spans_pfn(zone, last_pfn); 6573 } 6574 6575 /** 6576 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6577 * @nr_pages: Number of contiguous pages to allocate 6578 * @gfp_mask: GFP mask to limit search and used during compaction 6579 * @nid: Target node 6580 * @nodemask: Mask for other possible nodes 6581 * 6582 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6583 * on an applicable zonelist to find a contiguous pfn range which can then be 6584 * tried for allocation with alloc_contig_range(). This routine is intended 6585 * for allocation requests which can not be fulfilled with the buddy allocator. 6586 * 6587 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6588 * power of two, then allocated range is also guaranteed to be aligned to same 6589 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6590 * 6591 * Allocated pages can be freed with free_contig_range() or by manually calling 6592 * __free_page() on each allocated page. 6593 * 6594 * Return: pointer to contiguous pages on success, or NULL if not successful. 6595 */ 6596 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6597 int nid, nodemask_t *nodemask) 6598 { 6599 unsigned long ret, pfn, flags; 6600 struct zonelist *zonelist; 6601 struct zone *zone; 6602 struct zoneref *z; 6603 6604 zonelist = node_zonelist(nid, gfp_mask); 6605 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6606 gfp_zone(gfp_mask), nodemask) { 6607 spin_lock_irqsave(&zone->lock, flags); 6608 6609 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6610 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6611 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6612 /* 6613 * We release the zone lock here because 6614 * alloc_contig_range() will also lock the zone 6615 * at some point. If there's an allocation 6616 * spinning on this lock, it may win the race 6617 * and cause alloc_contig_range() to fail... 6618 */ 6619 spin_unlock_irqrestore(&zone->lock, flags); 6620 ret = __alloc_contig_pages(pfn, nr_pages, 6621 gfp_mask); 6622 if (!ret) 6623 return pfn_to_page(pfn); 6624 spin_lock_irqsave(&zone->lock, flags); 6625 } 6626 pfn += nr_pages; 6627 } 6628 spin_unlock_irqrestore(&zone->lock, flags); 6629 } 6630 return NULL; 6631 } 6632 #endif /* CONFIG_CONTIG_ALLOC */ 6633 6634 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6635 { 6636 unsigned long count = 0; 6637 6638 for (; nr_pages--; pfn++) { 6639 struct page *page = pfn_to_page(pfn); 6640 6641 count += page_count(page) != 1; 6642 __free_page(page); 6643 } 6644 WARN(count != 0, "%lu pages are still in use!\n", count); 6645 } 6646 EXPORT_SYMBOL(free_contig_range); 6647 6648 /* 6649 * Effectively disable pcplists for the zone by setting the high limit to 0 6650 * and draining all cpus. A concurrent page freeing on another CPU that's about 6651 * to put the page on pcplist will either finish before the drain and the page 6652 * will be drained, or observe the new high limit and skip the pcplist. 6653 * 6654 * Must be paired with a call to zone_pcp_enable(). 6655 */ 6656 void zone_pcp_disable(struct zone *zone) 6657 { 6658 mutex_lock(&pcp_batch_high_lock); 6659 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6660 __drain_all_pages(zone, true); 6661 } 6662 6663 void zone_pcp_enable(struct zone *zone) 6664 { 6665 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6666 zone->pageset_high_max, zone->pageset_batch); 6667 mutex_unlock(&pcp_batch_high_lock); 6668 } 6669 6670 void zone_pcp_reset(struct zone *zone) 6671 { 6672 int cpu; 6673 struct per_cpu_zonestat *pzstats; 6674 6675 if (zone->per_cpu_pageset != &boot_pageset) { 6676 for_each_online_cpu(cpu) { 6677 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6678 drain_zonestat(zone, pzstats); 6679 } 6680 free_percpu(zone->per_cpu_pageset); 6681 zone->per_cpu_pageset = &boot_pageset; 6682 if (zone->per_cpu_zonestats != &boot_zonestats) { 6683 free_percpu(zone->per_cpu_zonestats); 6684 zone->per_cpu_zonestats = &boot_zonestats; 6685 } 6686 } 6687 } 6688 6689 #ifdef CONFIG_MEMORY_HOTREMOVE 6690 /* 6691 * All pages in the range must be in a single zone, must not contain holes, 6692 * must span full sections, and must be isolated before calling this function. 6693 */ 6694 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6695 { 6696 unsigned long pfn = start_pfn; 6697 struct page *page; 6698 struct zone *zone; 6699 unsigned int order; 6700 unsigned long flags; 6701 6702 offline_mem_sections(pfn, end_pfn); 6703 zone = page_zone(pfn_to_page(pfn)); 6704 spin_lock_irqsave(&zone->lock, flags); 6705 while (pfn < end_pfn) { 6706 page = pfn_to_page(pfn); 6707 /* 6708 * The HWPoisoned page may be not in buddy system, and 6709 * page_count() is not 0. 6710 */ 6711 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6712 pfn++; 6713 continue; 6714 } 6715 /* 6716 * At this point all remaining PageOffline() pages have a 6717 * reference count of 0 and can simply be skipped. 6718 */ 6719 if (PageOffline(page)) { 6720 BUG_ON(page_count(page)); 6721 BUG_ON(PageBuddy(page)); 6722 pfn++; 6723 continue; 6724 } 6725 6726 BUG_ON(page_count(page)); 6727 BUG_ON(!PageBuddy(page)); 6728 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6729 order = buddy_order(page); 6730 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6731 pfn += (1 << order); 6732 } 6733 spin_unlock_irqrestore(&zone->lock, flags); 6734 } 6735 #endif 6736 6737 /* 6738 * This function returns a stable result only if called under zone lock. 6739 */ 6740 bool is_free_buddy_page(const struct page *page) 6741 { 6742 unsigned long pfn = page_to_pfn(page); 6743 unsigned int order; 6744 6745 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6746 const struct page *head = page - (pfn & ((1 << order) - 1)); 6747 6748 if (PageBuddy(head) && 6749 buddy_order_unsafe(head) >= order) 6750 break; 6751 } 6752 6753 return order <= MAX_PAGE_ORDER; 6754 } 6755 EXPORT_SYMBOL(is_free_buddy_page); 6756 6757 #ifdef CONFIG_MEMORY_FAILURE 6758 static inline void add_to_free_list(struct page *page, struct zone *zone, 6759 unsigned int order, int migratetype, 6760 bool tail) 6761 { 6762 __add_to_free_list(page, zone, order, migratetype, tail); 6763 account_freepages(zone, 1 << order, migratetype); 6764 } 6765 6766 /* 6767 * Break down a higher-order page in sub-pages, and keep our target out of 6768 * buddy allocator. 6769 */ 6770 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6771 struct page *target, int low, int high, 6772 int migratetype) 6773 { 6774 unsigned long size = 1 << high; 6775 struct page *current_buddy; 6776 6777 while (high > low) { 6778 high--; 6779 size >>= 1; 6780 6781 if (target >= &page[size]) { 6782 current_buddy = page; 6783 page = page + size; 6784 } else { 6785 current_buddy = page + size; 6786 } 6787 6788 if (set_page_guard(zone, current_buddy, high)) 6789 continue; 6790 6791 add_to_free_list(current_buddy, zone, high, migratetype, false); 6792 set_buddy_order(current_buddy, high); 6793 } 6794 } 6795 6796 /* 6797 * Take a page that will be marked as poisoned off the buddy allocator. 6798 */ 6799 bool take_page_off_buddy(struct page *page) 6800 { 6801 struct zone *zone = page_zone(page); 6802 unsigned long pfn = page_to_pfn(page); 6803 unsigned long flags; 6804 unsigned int order; 6805 bool ret = false; 6806 6807 spin_lock_irqsave(&zone->lock, flags); 6808 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6809 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6810 int page_order = buddy_order(page_head); 6811 6812 if (PageBuddy(page_head) && page_order >= order) { 6813 unsigned long pfn_head = page_to_pfn(page_head); 6814 int migratetype = get_pfnblock_migratetype(page_head, 6815 pfn_head); 6816 6817 del_page_from_free_list(page_head, zone, page_order, 6818 migratetype); 6819 break_down_buddy_pages(zone, page_head, page, 0, 6820 page_order, migratetype); 6821 SetPageHWPoisonTakenOff(page); 6822 ret = true; 6823 break; 6824 } 6825 if (page_count(page_head) > 0) 6826 break; 6827 } 6828 spin_unlock_irqrestore(&zone->lock, flags); 6829 return ret; 6830 } 6831 6832 /* 6833 * Cancel takeoff done by take_page_off_buddy(). 6834 */ 6835 bool put_page_back_buddy(struct page *page) 6836 { 6837 struct zone *zone = page_zone(page); 6838 unsigned long flags; 6839 bool ret = false; 6840 6841 spin_lock_irqsave(&zone->lock, flags); 6842 if (put_page_testzero(page)) { 6843 unsigned long pfn = page_to_pfn(page); 6844 int migratetype = get_pfnblock_migratetype(page, pfn); 6845 6846 ClearPageHWPoisonTakenOff(page); 6847 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6848 if (TestClearPageHWPoison(page)) { 6849 ret = true; 6850 } 6851 } 6852 spin_unlock_irqrestore(&zone->lock, flags); 6853 6854 return ret; 6855 } 6856 #endif 6857 6858 #ifdef CONFIG_ZONE_DMA 6859 bool has_managed_dma(void) 6860 { 6861 struct pglist_data *pgdat; 6862 6863 for_each_online_pgdat(pgdat) { 6864 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6865 6866 if (managed_zone(zone)) 6867 return true; 6868 } 6869 return false; 6870 } 6871 #endif /* CONFIG_ZONE_DMA */ 6872 6873 #ifdef CONFIG_UNACCEPTED_MEMORY 6874 6875 /* Counts number of zones with unaccepted pages. */ 6876 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6877 6878 static bool lazy_accept = true; 6879 6880 static int __init accept_memory_parse(char *p) 6881 { 6882 if (!strcmp(p, "lazy")) { 6883 lazy_accept = true; 6884 return 0; 6885 } else if (!strcmp(p, "eager")) { 6886 lazy_accept = false; 6887 return 0; 6888 } else { 6889 return -EINVAL; 6890 } 6891 } 6892 early_param("accept_memory", accept_memory_parse); 6893 6894 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6895 { 6896 phys_addr_t start = page_to_phys(page); 6897 phys_addr_t end = start + (PAGE_SIZE << order); 6898 6899 return range_contains_unaccepted_memory(start, end); 6900 } 6901 6902 static void accept_page(struct page *page, unsigned int order) 6903 { 6904 phys_addr_t start = page_to_phys(page); 6905 6906 accept_memory(start, start + (PAGE_SIZE << order)); 6907 } 6908 6909 static bool try_to_accept_memory_one(struct zone *zone) 6910 { 6911 unsigned long flags; 6912 struct page *page; 6913 bool last; 6914 6915 if (list_empty(&zone->unaccepted_pages)) 6916 return false; 6917 6918 spin_lock_irqsave(&zone->lock, flags); 6919 page = list_first_entry_or_null(&zone->unaccepted_pages, 6920 struct page, lru); 6921 if (!page) { 6922 spin_unlock_irqrestore(&zone->lock, flags); 6923 return false; 6924 } 6925 6926 list_del(&page->lru); 6927 last = list_empty(&zone->unaccepted_pages); 6928 6929 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6930 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6931 spin_unlock_irqrestore(&zone->lock, flags); 6932 6933 accept_page(page, MAX_PAGE_ORDER); 6934 6935 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6936 6937 if (last) 6938 static_branch_dec(&zones_with_unaccepted_pages); 6939 6940 return true; 6941 } 6942 6943 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6944 { 6945 long to_accept; 6946 int ret = false; 6947 6948 /* How much to accept to get to high watermark? */ 6949 to_accept = high_wmark_pages(zone) - 6950 (zone_page_state(zone, NR_FREE_PAGES) - 6951 __zone_watermark_unusable_free(zone, order, 0)); 6952 6953 /* Accept at least one page */ 6954 do { 6955 if (!try_to_accept_memory_one(zone)) 6956 break; 6957 ret = true; 6958 to_accept -= MAX_ORDER_NR_PAGES; 6959 } while (to_accept > 0); 6960 6961 return ret; 6962 } 6963 6964 static inline bool has_unaccepted_memory(void) 6965 { 6966 return static_branch_unlikely(&zones_with_unaccepted_pages); 6967 } 6968 6969 static bool __free_unaccepted(struct page *page) 6970 { 6971 struct zone *zone = page_zone(page); 6972 unsigned long flags; 6973 bool first = false; 6974 6975 if (!lazy_accept) 6976 return false; 6977 6978 spin_lock_irqsave(&zone->lock, flags); 6979 first = list_empty(&zone->unaccepted_pages); 6980 list_add_tail(&page->lru, &zone->unaccepted_pages); 6981 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6982 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6983 spin_unlock_irqrestore(&zone->lock, flags); 6984 6985 if (first) 6986 static_branch_inc(&zones_with_unaccepted_pages); 6987 6988 return true; 6989 } 6990 6991 #else 6992 6993 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6994 { 6995 return false; 6996 } 6997 6998 static void accept_page(struct page *page, unsigned int order) 6999 { 7000 } 7001 7002 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 7003 { 7004 return false; 7005 } 7006 7007 static inline bool has_unaccepted_memory(void) 7008 { 7009 return false; 7010 } 7011 7012 static bool __free_unaccepted(struct page *page) 7013 { 7014 BUILD_BUG(); 7015 return false; 7016 } 7017 7018 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7019