xref: /linux/mm/page_alloc.c (revision 6fa4bf3dce0668a96faca0024e382f4489a9cc9b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static void accept_page(struct page *page, unsigned int order);
290 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
291 static inline bool has_unaccepted_memory(void);
292 static bool __free_unaccepted(struct page *page);
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /*
298  * During boot we initialize deferred pages on-demand, as needed, but once
299  * page_alloc_init_late() has finished, the deferred pages are all initialized,
300  * and we can permanently disable that path.
301  */
302 DEFINE_STATIC_KEY_TRUE(deferred_pages);
303 
304 static inline bool deferred_pages_enabled(void)
305 {
306 	return static_branch_unlikely(&deferred_pages);
307 }
308 
309 /*
310  * deferred_grow_zone() is __init, but it is called from
311  * get_page_from_freelist() during early boot until deferred_pages permanently
312  * disables this call. This is why we have refdata wrapper to avoid warning,
313  * and to ensure that the function body gets unloaded.
314  */
315 static bool __ref
316 _deferred_grow_zone(struct zone *zone, unsigned int order)
317 {
318 	return deferred_grow_zone(zone, order);
319 }
320 #else
321 static inline bool deferred_pages_enabled(void)
322 {
323 	return false;
324 }
325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326 
327 /* Return a pointer to the bitmap storing bits affecting a block of pages */
328 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 							unsigned long pfn)
330 {
331 #ifdef CONFIG_SPARSEMEM
332 	return section_to_usemap(__pfn_to_section(pfn));
333 #else
334 	return page_zone(page)->pageblock_flags;
335 #endif /* CONFIG_SPARSEMEM */
336 }
337 
338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339 {
340 #ifdef CONFIG_SPARSEMEM
341 	pfn &= (PAGES_PER_SECTION-1);
342 #else
343 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344 #endif /* CONFIG_SPARSEMEM */
345 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346 }
347 
348 /**
349  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350  * @page: The page within the block of interest
351  * @pfn: The target page frame number
352  * @mask: mask of bits that the caller is interested in
353  *
354  * Return: pageblock_bits flags
355  */
356 unsigned long get_pfnblock_flags_mask(const struct page *page,
357 					unsigned long pfn, unsigned long mask)
358 {
359 	unsigned long *bitmap;
360 	unsigned long bitidx, word_bitidx;
361 	unsigned long word;
362 
363 	bitmap = get_pageblock_bitmap(page, pfn);
364 	bitidx = pfn_to_bitidx(page, pfn);
365 	word_bitidx = bitidx / BITS_PER_LONG;
366 	bitidx &= (BITS_PER_LONG-1);
367 	/*
368 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 	 * a consistent read of the memory array, so that results, even though
370 	 * racy, are not corrupted.
371 	 */
372 	word = READ_ONCE(bitmap[word_bitidx]);
373 	return (word >> bitidx) & mask;
374 }
375 
376 static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 					unsigned long pfn)
378 {
379 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380 }
381 
382 /**
383  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384  * @page: The page within the block of interest
385  * @flags: The flags to set
386  * @pfn: The target page frame number
387  * @mask: mask of bits that the caller is interested in
388  */
389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 					unsigned long pfn,
391 					unsigned long mask)
392 {
393 	unsigned long *bitmap;
394 	unsigned long bitidx, word_bitidx;
395 	unsigned long word;
396 
397 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399 
400 	bitmap = get_pageblock_bitmap(page, pfn);
401 	bitidx = pfn_to_bitidx(page, pfn);
402 	word_bitidx = bitidx / BITS_PER_LONG;
403 	bitidx &= (BITS_PER_LONG-1);
404 
405 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406 
407 	mask <<= bitidx;
408 	flags <<= bitidx;
409 
410 	word = READ_ONCE(bitmap[word_bitidx]);
411 	do {
412 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413 }
414 
415 void set_pageblock_migratetype(struct page *page, int migratetype)
416 {
417 	if (unlikely(page_group_by_mobility_disabled &&
418 		     migratetype < MIGRATE_PCPTYPES))
419 		migratetype = MIGRATE_UNMOVABLE;
420 
421 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 				page_to_pfn(page), MIGRATETYPE_MASK);
423 }
424 
425 #ifdef CONFIG_DEBUG_VM
426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427 {
428 	int ret;
429 	unsigned seq;
430 	unsigned long pfn = page_to_pfn(page);
431 	unsigned long sp, start_pfn;
432 
433 	do {
434 		seq = zone_span_seqbegin(zone);
435 		start_pfn = zone->zone_start_pfn;
436 		sp = zone->spanned_pages;
437 		ret = !zone_spans_pfn(zone, pfn);
438 	} while (zone_span_seqretry(zone, seq));
439 
440 	if (ret)
441 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 			pfn, zone_to_nid(zone), zone->name,
443 			start_pfn, start_pfn + sp);
444 
445 	return ret;
446 }
447 
448 /*
449  * Temporary debugging check for pages not lying within a given zone.
450  */
451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452 {
453 	if (page_outside_zone_boundaries(zone, page))
454 		return true;
455 	if (zone != page_zone(page))
456 		return true;
457 
458 	return false;
459 }
460 #else
461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462 {
463 	return false;
464 }
465 #endif
466 
467 static void bad_page(struct page *page, const char *reason)
468 {
469 	static unsigned long resume;
470 	static unsigned long nr_shown;
471 	static unsigned long nr_unshown;
472 
473 	/*
474 	 * Allow a burst of 60 reports, then keep quiet for that minute;
475 	 * or allow a steady drip of one report per second.
476 	 */
477 	if (nr_shown == 60) {
478 		if (time_before(jiffies, resume)) {
479 			nr_unshown++;
480 			goto out;
481 		}
482 		if (nr_unshown) {
483 			pr_alert(
484 			      "BUG: Bad page state: %lu messages suppressed\n",
485 				nr_unshown);
486 			nr_unshown = 0;
487 		}
488 		nr_shown = 0;
489 	}
490 	if (nr_shown++ == 0)
491 		resume = jiffies + 60 * HZ;
492 
493 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
494 		current->comm, page_to_pfn(page));
495 	dump_page(page, reason);
496 
497 	print_modules();
498 	dump_stack();
499 out:
500 	/* Leave bad fields for debug, except PageBuddy could make trouble */
501 	page_mapcount_reset(page); /* remove PageBuddy */
502 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
503 }
504 
505 static inline unsigned int order_to_pindex(int migratetype, int order)
506 {
507 	bool __maybe_unused movable;
508 
509 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
510 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
511 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
512 
513 		movable = migratetype == MIGRATE_MOVABLE;
514 
515 		return NR_LOWORDER_PCP_LISTS + movable;
516 	}
517 #else
518 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
519 #endif
520 
521 	return (MIGRATE_PCPTYPES * order) + migratetype;
522 }
523 
524 static inline int pindex_to_order(unsigned int pindex)
525 {
526 	int order = pindex / MIGRATE_PCPTYPES;
527 
528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
529 	if (pindex >= NR_LOWORDER_PCP_LISTS)
530 		order = HPAGE_PMD_ORDER;
531 #else
532 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
533 #endif
534 
535 	return order;
536 }
537 
538 static inline bool pcp_allowed_order(unsigned int order)
539 {
540 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
541 		return true;
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 	if (order == HPAGE_PMD_ORDER)
544 		return true;
545 #endif
546 	return false;
547 }
548 
549 /*
550  * Higher-order pages are called "compound pages".  They are structured thusly:
551  *
552  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
553  *
554  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
556  *
557  * The first tail page's ->compound_order holds the order of allocation.
558  * This usage means that zero-order pages may not be compound.
559  */
560 
561 void prep_compound_page(struct page *page, unsigned int order)
562 {
563 	int i;
564 	int nr_pages = 1 << order;
565 
566 	__SetPageHead(page);
567 	for (i = 1; i < nr_pages; i++)
568 		prep_compound_tail(page, i);
569 
570 	prep_compound_head(page, order);
571 }
572 
573 static inline void set_buddy_order(struct page *page, unsigned int order)
574 {
575 	set_page_private(page, order);
576 	__SetPageBuddy(page);
577 }
578 
579 #ifdef CONFIG_COMPACTION
580 static inline struct capture_control *task_capc(struct zone *zone)
581 {
582 	struct capture_control *capc = current->capture_control;
583 
584 	return unlikely(capc) &&
585 		!(current->flags & PF_KTHREAD) &&
586 		!capc->page &&
587 		capc->cc->zone == zone ? capc : NULL;
588 }
589 
590 static inline bool
591 compaction_capture(struct capture_control *capc, struct page *page,
592 		   int order, int migratetype)
593 {
594 	if (!capc || order != capc->cc->order)
595 		return false;
596 
597 	/* Do not accidentally pollute CMA or isolated regions*/
598 	if (is_migrate_cma(migratetype) ||
599 	    is_migrate_isolate(migratetype))
600 		return false;
601 
602 	/*
603 	 * Do not let lower order allocations pollute a movable pageblock
604 	 * unless compaction is also requesting movable pages.
605 	 * This might let an unmovable request use a reclaimable pageblock
606 	 * and vice-versa but no more than normal fallback logic which can
607 	 * have trouble finding a high-order free page.
608 	 */
609 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
610 	    capc->cc->migratetype != MIGRATE_MOVABLE)
611 		return false;
612 
613 	capc->page = page;
614 	return true;
615 }
616 
617 #else
618 static inline struct capture_control *task_capc(struct zone *zone)
619 {
620 	return NULL;
621 }
622 
623 static inline bool
624 compaction_capture(struct capture_control *capc, struct page *page,
625 		   int order, int migratetype)
626 {
627 	return false;
628 }
629 #endif /* CONFIG_COMPACTION */
630 
631 static inline void account_freepages(struct zone *zone, int nr_pages,
632 				     int migratetype)
633 {
634 	if (is_migrate_isolate(migratetype))
635 		return;
636 
637 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
638 
639 	if (is_migrate_cma(migratetype))
640 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
641 }
642 
643 /* Used for pages not on another list */
644 static inline void __add_to_free_list(struct page *page, struct zone *zone,
645 				      unsigned int order, int migratetype,
646 				      bool tail)
647 {
648 	struct free_area *area = &zone->free_area[order];
649 
650 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
651 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
652 		     get_pageblock_migratetype(page), migratetype, 1 << order);
653 
654 	if (tail)
655 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
656 	else
657 		list_add(&page->buddy_list, &area->free_list[migratetype]);
658 	area->nr_free++;
659 }
660 
661 /*
662  * Used for pages which are on another list. Move the pages to the tail
663  * of the list - so the moved pages won't immediately be considered for
664  * allocation again (e.g., optimization for memory onlining).
665  */
666 static inline void move_to_free_list(struct page *page, struct zone *zone,
667 				     unsigned int order, int old_mt, int new_mt)
668 {
669 	struct free_area *area = &zone->free_area[order];
670 
671 	/* Free page moving can fail, so it happens before the type update */
672 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
673 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
674 		     get_pageblock_migratetype(page), old_mt, 1 << order);
675 
676 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
677 
678 	account_freepages(zone, -(1 << order), old_mt);
679 	account_freepages(zone, 1 << order, new_mt);
680 }
681 
682 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
683 					     unsigned int order, int migratetype)
684 {
685         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
686 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
687 		     get_pageblock_migratetype(page), migratetype, 1 << order);
688 
689 	/* clear reported state and update reported page count */
690 	if (page_reported(page))
691 		__ClearPageReported(page);
692 
693 	list_del(&page->buddy_list);
694 	__ClearPageBuddy(page);
695 	set_page_private(page, 0);
696 	zone->free_area[order].nr_free--;
697 }
698 
699 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
700 					   unsigned int order, int migratetype)
701 {
702 	__del_page_from_free_list(page, zone, order, migratetype);
703 	account_freepages(zone, -(1 << order), migratetype);
704 }
705 
706 static inline struct page *get_page_from_free_area(struct free_area *area,
707 					    int migratetype)
708 {
709 	return list_first_entry_or_null(&area->free_list[migratetype],
710 					struct page, buddy_list);
711 }
712 
713 /*
714  * If this is not the largest possible page, check if the buddy
715  * of the next-highest order is free. If it is, it's possible
716  * that pages are being freed that will coalesce soon. In case,
717  * that is happening, add the free page to the tail of the list
718  * so it's less likely to be used soon and more likely to be merged
719  * as a higher order page
720  */
721 static inline bool
722 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
723 		   struct page *page, unsigned int order)
724 {
725 	unsigned long higher_page_pfn;
726 	struct page *higher_page;
727 
728 	if (order >= MAX_PAGE_ORDER - 1)
729 		return false;
730 
731 	higher_page_pfn = buddy_pfn & pfn;
732 	higher_page = page + (higher_page_pfn - pfn);
733 
734 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
735 			NULL) != NULL;
736 }
737 
738 /*
739  * Freeing function for a buddy system allocator.
740  *
741  * The concept of a buddy system is to maintain direct-mapped table
742  * (containing bit values) for memory blocks of various "orders".
743  * The bottom level table contains the map for the smallest allocatable
744  * units of memory (here, pages), and each level above it describes
745  * pairs of units from the levels below, hence, "buddies".
746  * At a high level, all that happens here is marking the table entry
747  * at the bottom level available, and propagating the changes upward
748  * as necessary, plus some accounting needed to play nicely with other
749  * parts of the VM system.
750  * At each level, we keep a list of pages, which are heads of continuous
751  * free pages of length of (1 << order) and marked with PageBuddy.
752  * Page's order is recorded in page_private(page) field.
753  * So when we are allocating or freeing one, we can derive the state of the
754  * other.  That is, if we allocate a small block, and both were
755  * free, the remainder of the region must be split into blocks.
756  * If a block is freed, and its buddy is also free, then this
757  * triggers coalescing into a block of larger size.
758  *
759  * -- nyc
760  */
761 
762 static inline void __free_one_page(struct page *page,
763 		unsigned long pfn,
764 		struct zone *zone, unsigned int order,
765 		int migratetype, fpi_t fpi_flags)
766 {
767 	struct capture_control *capc = task_capc(zone);
768 	unsigned long buddy_pfn = 0;
769 	unsigned long combined_pfn;
770 	struct page *buddy;
771 	bool to_tail;
772 
773 	VM_BUG_ON(!zone_is_initialized(zone));
774 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
775 
776 	VM_BUG_ON(migratetype == -1);
777 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
778 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
779 
780 	account_freepages(zone, 1 << order, migratetype);
781 
782 	while (order < MAX_PAGE_ORDER) {
783 		int buddy_mt = migratetype;
784 
785 		if (compaction_capture(capc, page, order, migratetype)) {
786 			account_freepages(zone, -(1 << order), migratetype);
787 			return;
788 		}
789 
790 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
791 		if (!buddy)
792 			goto done_merging;
793 
794 		if (unlikely(order >= pageblock_order)) {
795 			/*
796 			 * We want to prevent merge between freepages on pageblock
797 			 * without fallbacks and normal pageblock. Without this,
798 			 * pageblock isolation could cause incorrect freepage or CMA
799 			 * accounting or HIGHATOMIC accounting.
800 			 */
801 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
802 
803 			if (migratetype != buddy_mt &&
804 			    (!migratetype_is_mergeable(migratetype) ||
805 			     !migratetype_is_mergeable(buddy_mt)))
806 				goto done_merging;
807 		}
808 
809 		/*
810 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 		 * merge with it and move up one order.
812 		 */
813 		if (page_is_guard(buddy))
814 			clear_page_guard(zone, buddy, order);
815 		else
816 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
817 
818 		if (unlikely(buddy_mt != migratetype)) {
819 			/*
820 			 * Match buddy type. This ensures that an
821 			 * expand() down the line puts the sub-blocks
822 			 * on the right freelists.
823 			 */
824 			set_pageblock_migratetype(buddy, migratetype);
825 		}
826 
827 		combined_pfn = buddy_pfn & pfn;
828 		page = page + (combined_pfn - pfn);
829 		pfn = combined_pfn;
830 		order++;
831 	}
832 
833 done_merging:
834 	set_buddy_order(page, order);
835 
836 	if (fpi_flags & FPI_TO_TAIL)
837 		to_tail = true;
838 	else if (is_shuffle_order(order))
839 		to_tail = shuffle_pick_tail();
840 	else
841 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
842 
843 	__add_to_free_list(page, zone, order, migratetype, to_tail);
844 
845 	/* Notify page reporting subsystem of freed page */
846 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
847 		page_reporting_notify_free(order);
848 }
849 
850 /*
851  * A bad page could be due to a number of fields. Instead of multiple branches,
852  * try and check multiple fields with one check. The caller must do a detailed
853  * check if necessary.
854  */
855 static inline bool page_expected_state(struct page *page,
856 					unsigned long check_flags)
857 {
858 	if (unlikely(atomic_read(&page->_mapcount) != -1))
859 		return false;
860 
861 	if (unlikely((unsigned long)page->mapping |
862 			page_ref_count(page) |
863 #ifdef CONFIG_MEMCG
864 			page->memcg_data |
865 #endif
866 #ifdef CONFIG_PAGE_POOL
867 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
868 #endif
869 			(page->flags & check_flags)))
870 		return false;
871 
872 	return true;
873 }
874 
875 static const char *page_bad_reason(struct page *page, unsigned long flags)
876 {
877 	const char *bad_reason = NULL;
878 
879 	if (unlikely(atomic_read(&page->_mapcount) != -1))
880 		bad_reason = "nonzero mapcount";
881 	if (unlikely(page->mapping != NULL))
882 		bad_reason = "non-NULL mapping";
883 	if (unlikely(page_ref_count(page) != 0))
884 		bad_reason = "nonzero _refcount";
885 	if (unlikely(page->flags & flags)) {
886 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
887 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
888 		else
889 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
890 	}
891 #ifdef CONFIG_MEMCG
892 	if (unlikely(page->memcg_data))
893 		bad_reason = "page still charged to cgroup";
894 #endif
895 #ifdef CONFIG_PAGE_POOL
896 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
897 		bad_reason = "page_pool leak";
898 #endif
899 	return bad_reason;
900 }
901 
902 static void free_page_is_bad_report(struct page *page)
903 {
904 	bad_page(page,
905 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
906 }
907 
908 static inline bool free_page_is_bad(struct page *page)
909 {
910 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
911 		return false;
912 
913 	/* Something has gone sideways, find it */
914 	free_page_is_bad_report(page);
915 	return true;
916 }
917 
918 static inline bool is_check_pages_enabled(void)
919 {
920 	return static_branch_unlikely(&check_pages_enabled);
921 }
922 
923 static int free_tail_page_prepare(struct page *head_page, struct page *page)
924 {
925 	struct folio *folio = (struct folio *)head_page;
926 	int ret = 1;
927 
928 	/*
929 	 * We rely page->lru.next never has bit 0 set, unless the page
930 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
931 	 */
932 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
933 
934 	if (!is_check_pages_enabled()) {
935 		ret = 0;
936 		goto out;
937 	}
938 	switch (page - head_page) {
939 	case 1:
940 		/* the first tail page: these may be in place of ->mapping */
941 		if (unlikely(folio_entire_mapcount(folio))) {
942 			bad_page(page, "nonzero entire_mapcount");
943 			goto out;
944 		}
945 		if (unlikely(folio_large_mapcount(folio))) {
946 			bad_page(page, "nonzero large_mapcount");
947 			goto out;
948 		}
949 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
950 			bad_page(page, "nonzero nr_pages_mapped");
951 			goto out;
952 		}
953 		if (unlikely(atomic_read(&folio->_pincount))) {
954 			bad_page(page, "nonzero pincount");
955 			goto out;
956 		}
957 		break;
958 	case 2:
959 		/* the second tail page: deferred_list overlaps ->mapping */
960 		if (unlikely(!list_empty(&folio->_deferred_list))) {
961 			bad_page(page, "on deferred list");
962 			goto out;
963 		}
964 		break;
965 	default:
966 		if (page->mapping != TAIL_MAPPING) {
967 			bad_page(page, "corrupted mapping in tail page");
968 			goto out;
969 		}
970 		break;
971 	}
972 	if (unlikely(!PageTail(page))) {
973 		bad_page(page, "PageTail not set");
974 		goto out;
975 	}
976 	if (unlikely(compound_head(page) != head_page)) {
977 		bad_page(page, "compound_head not consistent");
978 		goto out;
979 	}
980 	ret = 0;
981 out:
982 	page->mapping = NULL;
983 	clear_compound_head(page);
984 	return ret;
985 }
986 
987 /*
988  * Skip KASAN memory poisoning when either:
989  *
990  * 1. For generic KASAN: deferred memory initialization has not yet completed.
991  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
992  *    using page tags instead (see below).
993  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
994  *    that error detection is disabled for accesses via the page address.
995  *
996  * Pages will have match-all tags in the following circumstances:
997  *
998  * 1. Pages are being initialized for the first time, including during deferred
999  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1000  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1001  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1002  * 3. The allocation was excluded from being checked due to sampling,
1003  *    see the call to kasan_unpoison_pages.
1004  *
1005  * Poisoning pages during deferred memory init will greatly lengthen the
1006  * process and cause problem in large memory systems as the deferred pages
1007  * initialization is done with interrupt disabled.
1008  *
1009  * Assuming that there will be no reference to those newly initialized
1010  * pages before they are ever allocated, this should have no effect on
1011  * KASAN memory tracking as the poison will be properly inserted at page
1012  * allocation time. The only corner case is when pages are allocated by
1013  * on-demand allocation and then freed again before the deferred pages
1014  * initialization is done, but this is not likely to happen.
1015  */
1016 static inline bool should_skip_kasan_poison(struct page *page)
1017 {
1018 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1019 		return deferred_pages_enabled();
1020 
1021 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1022 }
1023 
1024 static void kernel_init_pages(struct page *page, int numpages)
1025 {
1026 	int i;
1027 
1028 	/* s390's use of memset() could override KASAN redzones. */
1029 	kasan_disable_current();
1030 	for (i = 0; i < numpages; i++)
1031 		clear_highpage_kasan_tagged(page + i);
1032 	kasan_enable_current();
1033 }
1034 
1035 __always_inline bool free_pages_prepare(struct page *page,
1036 			unsigned int order)
1037 {
1038 	int bad = 0;
1039 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1040 	bool init = want_init_on_free();
1041 	bool compound = PageCompound(page);
1042 
1043 	VM_BUG_ON_PAGE(PageTail(page), page);
1044 
1045 	trace_mm_page_free(page, order);
1046 	kmsan_free_page(page, order);
1047 
1048 	if (memcg_kmem_online() && PageMemcgKmem(page))
1049 		__memcg_kmem_uncharge_page(page, order);
1050 
1051 	if (unlikely(PageHWPoison(page)) && !order) {
1052 		/* Do not let hwpoison pages hit pcplists/buddy */
1053 		reset_page_owner(page, order);
1054 		page_table_check_free(page, order);
1055 		pgalloc_tag_sub(page, 1 << order);
1056 		return false;
1057 	}
1058 
1059 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1060 
1061 	/*
1062 	 * Check tail pages before head page information is cleared to
1063 	 * avoid checking PageCompound for order-0 pages.
1064 	 */
1065 	if (unlikely(order)) {
1066 		int i;
1067 
1068 		if (compound)
1069 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1070 		for (i = 1; i < (1 << order); i++) {
1071 			if (compound)
1072 				bad += free_tail_page_prepare(page, page + i);
1073 			if (is_check_pages_enabled()) {
1074 				if (free_page_is_bad(page + i)) {
1075 					bad++;
1076 					continue;
1077 				}
1078 			}
1079 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1080 		}
1081 	}
1082 	if (PageMappingFlags(page))
1083 		page->mapping = NULL;
1084 	if (is_check_pages_enabled()) {
1085 		if (free_page_is_bad(page))
1086 			bad++;
1087 		if (bad)
1088 			return false;
1089 	}
1090 
1091 	page_cpupid_reset_last(page);
1092 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1093 	reset_page_owner(page, order);
1094 	page_table_check_free(page, order);
1095 	pgalloc_tag_sub(page, 1 << order);
1096 
1097 	if (!PageHighMem(page)) {
1098 		debug_check_no_locks_freed(page_address(page),
1099 					   PAGE_SIZE << order);
1100 		debug_check_no_obj_freed(page_address(page),
1101 					   PAGE_SIZE << order);
1102 	}
1103 
1104 	kernel_poison_pages(page, 1 << order);
1105 
1106 	/*
1107 	 * As memory initialization might be integrated into KASAN,
1108 	 * KASAN poisoning and memory initialization code must be
1109 	 * kept together to avoid discrepancies in behavior.
1110 	 *
1111 	 * With hardware tag-based KASAN, memory tags must be set before the
1112 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1113 	 */
1114 	if (!skip_kasan_poison) {
1115 		kasan_poison_pages(page, order, init);
1116 
1117 		/* Memory is already initialized if KASAN did it internally. */
1118 		if (kasan_has_integrated_init())
1119 			init = false;
1120 	}
1121 	if (init)
1122 		kernel_init_pages(page, 1 << order);
1123 
1124 	/*
1125 	 * arch_free_page() can make the page's contents inaccessible.  s390
1126 	 * does this.  So nothing which can access the page's contents should
1127 	 * happen after this.
1128 	 */
1129 	arch_free_page(page, order);
1130 
1131 	debug_pagealloc_unmap_pages(page, 1 << order);
1132 
1133 	return true;
1134 }
1135 
1136 /*
1137  * Frees a number of pages from the PCP lists
1138  * Assumes all pages on list are in same zone.
1139  * count is the number of pages to free.
1140  */
1141 static void free_pcppages_bulk(struct zone *zone, int count,
1142 					struct per_cpu_pages *pcp,
1143 					int pindex)
1144 {
1145 	unsigned long flags;
1146 	unsigned int order;
1147 	struct page *page;
1148 
1149 	/*
1150 	 * Ensure proper count is passed which otherwise would stuck in the
1151 	 * below while (list_empty(list)) loop.
1152 	 */
1153 	count = min(pcp->count, count);
1154 
1155 	/* Ensure requested pindex is drained first. */
1156 	pindex = pindex - 1;
1157 
1158 	spin_lock_irqsave(&zone->lock, flags);
1159 
1160 	while (count > 0) {
1161 		struct list_head *list;
1162 		int nr_pages;
1163 
1164 		/* Remove pages from lists in a round-robin fashion. */
1165 		do {
1166 			if (++pindex > NR_PCP_LISTS - 1)
1167 				pindex = 0;
1168 			list = &pcp->lists[pindex];
1169 		} while (list_empty(list));
1170 
1171 		order = pindex_to_order(pindex);
1172 		nr_pages = 1 << order;
1173 		do {
1174 			unsigned long pfn;
1175 			int mt;
1176 
1177 			page = list_last_entry(list, struct page, pcp_list);
1178 			pfn = page_to_pfn(page);
1179 			mt = get_pfnblock_migratetype(page, pfn);
1180 
1181 			/* must delete to avoid corrupting pcp list */
1182 			list_del(&page->pcp_list);
1183 			count -= nr_pages;
1184 			pcp->count -= nr_pages;
1185 
1186 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1187 			trace_mm_page_pcpu_drain(page, order, mt);
1188 		} while (count > 0 && !list_empty(list));
1189 	}
1190 
1191 	spin_unlock_irqrestore(&zone->lock, flags);
1192 }
1193 
1194 static void free_one_page(struct zone *zone, struct page *page,
1195 			  unsigned long pfn, unsigned int order,
1196 			  fpi_t fpi_flags)
1197 {
1198 	unsigned long flags;
1199 	int migratetype;
1200 
1201 	spin_lock_irqsave(&zone->lock, flags);
1202 	migratetype = get_pfnblock_migratetype(page, pfn);
1203 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1204 	spin_unlock_irqrestore(&zone->lock, flags);
1205 }
1206 
1207 static void __free_pages_ok(struct page *page, unsigned int order,
1208 			    fpi_t fpi_flags)
1209 {
1210 	unsigned long pfn = page_to_pfn(page);
1211 	struct zone *zone = page_zone(page);
1212 
1213 	if (!free_pages_prepare(page, order))
1214 		return;
1215 
1216 	free_one_page(zone, page, pfn, order, fpi_flags);
1217 
1218 	__count_vm_events(PGFREE, 1 << order);
1219 }
1220 
1221 void __free_pages_core(struct page *page, unsigned int order)
1222 {
1223 	unsigned int nr_pages = 1 << order;
1224 	struct page *p = page;
1225 	unsigned int loop;
1226 
1227 	/*
1228 	 * When initializing the memmap, __init_single_page() sets the refcount
1229 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1230 	 * refcount of all involved pages to 0.
1231 	 */
1232 	prefetchw(p);
1233 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1234 		prefetchw(p + 1);
1235 		__ClearPageReserved(p);
1236 		set_page_count(p, 0);
1237 	}
1238 	__ClearPageReserved(p);
1239 	set_page_count(p, 0);
1240 
1241 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1242 
1243 	if (page_contains_unaccepted(page, order)) {
1244 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1245 			return;
1246 
1247 		accept_page(page, order);
1248 	}
1249 
1250 	/*
1251 	 * Bypass PCP and place fresh pages right to the tail, primarily
1252 	 * relevant for memory onlining.
1253 	 */
1254 	__free_pages_ok(page, order, FPI_TO_TAIL);
1255 }
1256 
1257 /*
1258  * Check that the whole (or subset of) a pageblock given by the interval of
1259  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1260  * with the migration of free compaction scanner.
1261  *
1262  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1263  *
1264  * It's possible on some configurations to have a setup like node0 node1 node0
1265  * i.e. it's possible that all pages within a zones range of pages do not
1266  * belong to a single zone. We assume that a border between node0 and node1
1267  * can occur within a single pageblock, but not a node0 node1 node0
1268  * interleaving within a single pageblock. It is therefore sufficient to check
1269  * the first and last page of a pageblock and avoid checking each individual
1270  * page in a pageblock.
1271  *
1272  * Note: the function may return non-NULL struct page even for a page block
1273  * which contains a memory hole (i.e. there is no physical memory for a subset
1274  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1275  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1276  * even though the start pfn is online and valid. This should be safe most of
1277  * the time because struct pages are still initialized via init_unavailable_range()
1278  * and pfn walkers shouldn't touch any physical memory range for which they do
1279  * not recognize any specific metadata in struct pages.
1280  */
1281 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1282 				     unsigned long end_pfn, struct zone *zone)
1283 {
1284 	struct page *start_page;
1285 	struct page *end_page;
1286 
1287 	/* end_pfn is one past the range we are checking */
1288 	end_pfn--;
1289 
1290 	if (!pfn_valid(end_pfn))
1291 		return NULL;
1292 
1293 	start_page = pfn_to_online_page(start_pfn);
1294 	if (!start_page)
1295 		return NULL;
1296 
1297 	if (page_zone(start_page) != zone)
1298 		return NULL;
1299 
1300 	end_page = pfn_to_page(end_pfn);
1301 
1302 	/* This gives a shorter code than deriving page_zone(end_page) */
1303 	if (page_zone_id(start_page) != page_zone_id(end_page))
1304 		return NULL;
1305 
1306 	return start_page;
1307 }
1308 
1309 /*
1310  * The order of subdivision here is critical for the IO subsystem.
1311  * Please do not alter this order without good reasons and regression
1312  * testing. Specifically, as large blocks of memory are subdivided,
1313  * the order in which smaller blocks are delivered depends on the order
1314  * they're subdivided in this function. This is the primary factor
1315  * influencing the order in which pages are delivered to the IO
1316  * subsystem according to empirical testing, and this is also justified
1317  * by considering the behavior of a buddy system containing a single
1318  * large block of memory acted on by a series of small allocations.
1319  * This behavior is a critical factor in sglist merging's success.
1320  *
1321  * -- nyc
1322  */
1323 static inline void expand(struct zone *zone, struct page *page,
1324 	int low, int high, int migratetype)
1325 {
1326 	unsigned long size = 1 << high;
1327 	unsigned long nr_added = 0;
1328 
1329 	while (high > low) {
1330 		high--;
1331 		size >>= 1;
1332 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1333 
1334 		/*
1335 		 * Mark as guard pages (or page), that will allow to
1336 		 * merge back to allocator when buddy will be freed.
1337 		 * Corresponding page table entries will not be touched,
1338 		 * pages will stay not present in virtual address space
1339 		 */
1340 		if (set_page_guard(zone, &page[size], high))
1341 			continue;
1342 
1343 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1344 		set_buddy_order(&page[size], high);
1345 		nr_added += size;
1346 	}
1347 	account_freepages(zone, nr_added, migratetype);
1348 }
1349 
1350 static void check_new_page_bad(struct page *page)
1351 {
1352 	if (unlikely(page->flags & __PG_HWPOISON)) {
1353 		/* Don't complain about hwpoisoned pages */
1354 		page_mapcount_reset(page); /* remove PageBuddy */
1355 		return;
1356 	}
1357 
1358 	bad_page(page,
1359 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1360 }
1361 
1362 /*
1363  * This page is about to be returned from the page allocator
1364  */
1365 static bool check_new_page(struct page *page)
1366 {
1367 	if (likely(page_expected_state(page,
1368 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1369 		return false;
1370 
1371 	check_new_page_bad(page);
1372 	return true;
1373 }
1374 
1375 static inline bool check_new_pages(struct page *page, unsigned int order)
1376 {
1377 	if (is_check_pages_enabled()) {
1378 		for (int i = 0; i < (1 << order); i++) {
1379 			struct page *p = page + i;
1380 
1381 			if (check_new_page(p))
1382 				return true;
1383 		}
1384 	}
1385 
1386 	return false;
1387 }
1388 
1389 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1390 {
1391 	/* Don't skip if a software KASAN mode is enabled. */
1392 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1393 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1394 		return false;
1395 
1396 	/* Skip, if hardware tag-based KASAN is not enabled. */
1397 	if (!kasan_hw_tags_enabled())
1398 		return true;
1399 
1400 	/*
1401 	 * With hardware tag-based KASAN enabled, skip if this has been
1402 	 * requested via __GFP_SKIP_KASAN.
1403 	 */
1404 	return flags & __GFP_SKIP_KASAN;
1405 }
1406 
1407 static inline bool should_skip_init(gfp_t flags)
1408 {
1409 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1410 	if (!kasan_hw_tags_enabled())
1411 		return false;
1412 
1413 	/* For hardware tag-based KASAN, skip if requested. */
1414 	return (flags & __GFP_SKIP_ZERO);
1415 }
1416 
1417 inline void post_alloc_hook(struct page *page, unsigned int order,
1418 				gfp_t gfp_flags)
1419 {
1420 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1421 			!should_skip_init(gfp_flags);
1422 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1423 	int i;
1424 
1425 	set_page_private(page, 0);
1426 	set_page_refcounted(page);
1427 
1428 	arch_alloc_page(page, order);
1429 	debug_pagealloc_map_pages(page, 1 << order);
1430 
1431 	/*
1432 	 * Page unpoisoning must happen before memory initialization.
1433 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1434 	 * allocations and the page unpoisoning code will complain.
1435 	 */
1436 	kernel_unpoison_pages(page, 1 << order);
1437 
1438 	/*
1439 	 * As memory initialization might be integrated into KASAN,
1440 	 * KASAN unpoisoning and memory initializion code must be
1441 	 * kept together to avoid discrepancies in behavior.
1442 	 */
1443 
1444 	/*
1445 	 * If memory tags should be zeroed
1446 	 * (which happens only when memory should be initialized as well).
1447 	 */
1448 	if (zero_tags) {
1449 		/* Initialize both memory and memory tags. */
1450 		for (i = 0; i != 1 << order; ++i)
1451 			tag_clear_highpage(page + i);
1452 
1453 		/* Take note that memory was initialized by the loop above. */
1454 		init = false;
1455 	}
1456 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1457 	    kasan_unpoison_pages(page, order, init)) {
1458 		/* Take note that memory was initialized by KASAN. */
1459 		if (kasan_has_integrated_init())
1460 			init = false;
1461 	} else {
1462 		/*
1463 		 * If memory tags have not been set by KASAN, reset the page
1464 		 * tags to ensure page_address() dereferencing does not fault.
1465 		 */
1466 		for (i = 0; i != 1 << order; ++i)
1467 			page_kasan_tag_reset(page + i);
1468 	}
1469 	/* If memory is still not initialized, initialize it now. */
1470 	if (init)
1471 		kernel_init_pages(page, 1 << order);
1472 
1473 	set_page_owner(page, order, gfp_flags);
1474 	page_table_check_alloc(page, order);
1475 	pgalloc_tag_add(page, current, 1 << order);
1476 }
1477 
1478 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1479 							unsigned int alloc_flags)
1480 {
1481 	post_alloc_hook(page, order, gfp_flags);
1482 
1483 	if (order && (gfp_flags & __GFP_COMP))
1484 		prep_compound_page(page, order);
1485 
1486 	/*
1487 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1488 	 * allocate the page. The expectation is that the caller is taking
1489 	 * steps that will free more memory. The caller should avoid the page
1490 	 * being used for !PFMEMALLOC purposes.
1491 	 */
1492 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1493 		set_page_pfmemalloc(page);
1494 	else
1495 		clear_page_pfmemalloc(page);
1496 }
1497 
1498 /*
1499  * Go through the free lists for the given migratetype and remove
1500  * the smallest available page from the freelists
1501  */
1502 static __always_inline
1503 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1504 						int migratetype)
1505 {
1506 	unsigned int current_order;
1507 	struct free_area *area;
1508 	struct page *page;
1509 
1510 	/* Find a page of the appropriate size in the preferred list */
1511 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1512 		area = &(zone->free_area[current_order]);
1513 		page = get_page_from_free_area(area, migratetype);
1514 		if (!page)
1515 			continue;
1516 		del_page_from_free_list(page, zone, current_order, migratetype);
1517 		expand(zone, page, order, current_order, migratetype);
1518 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1519 				pcp_allowed_order(order) &&
1520 				migratetype < MIGRATE_PCPTYPES);
1521 		return page;
1522 	}
1523 
1524 	return NULL;
1525 }
1526 
1527 
1528 /*
1529  * This array describes the order lists are fallen back to when
1530  * the free lists for the desirable migrate type are depleted
1531  *
1532  * The other migratetypes do not have fallbacks.
1533  */
1534 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1535 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1536 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1537 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1538 };
1539 
1540 #ifdef CONFIG_CMA
1541 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1542 					unsigned int order)
1543 {
1544 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1545 }
1546 #else
1547 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1548 					unsigned int order) { return NULL; }
1549 #endif
1550 
1551 /*
1552  * Change the type of a block and move all its free pages to that
1553  * type's freelist.
1554  */
1555 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1556 				  int old_mt, int new_mt)
1557 {
1558 	struct page *page;
1559 	unsigned long pfn, end_pfn;
1560 	unsigned int order;
1561 	int pages_moved = 0;
1562 
1563 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1564 	end_pfn = pageblock_end_pfn(start_pfn);
1565 
1566 	for (pfn = start_pfn; pfn < end_pfn;) {
1567 		page = pfn_to_page(pfn);
1568 		if (!PageBuddy(page)) {
1569 			pfn++;
1570 			continue;
1571 		}
1572 
1573 		/* Make sure we are not inadvertently changing nodes */
1574 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1575 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1576 
1577 		order = buddy_order(page);
1578 
1579 		move_to_free_list(page, zone, order, old_mt, new_mt);
1580 
1581 		pfn += 1 << order;
1582 		pages_moved += 1 << order;
1583 	}
1584 
1585 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1586 
1587 	return pages_moved;
1588 }
1589 
1590 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1591 				      unsigned long *start_pfn,
1592 				      int *num_free, int *num_movable)
1593 {
1594 	unsigned long pfn, start, end;
1595 
1596 	pfn = page_to_pfn(page);
1597 	start = pageblock_start_pfn(pfn);
1598 	end = pageblock_end_pfn(pfn);
1599 
1600 	/*
1601 	 * The caller only has the lock for @zone, don't touch ranges
1602 	 * that straddle into other zones. While we could move part of
1603 	 * the range that's inside the zone, this call is usually
1604 	 * accompanied by other operations such as migratetype updates
1605 	 * which also should be locked.
1606 	 */
1607 	if (!zone_spans_pfn(zone, start))
1608 		return false;
1609 	if (!zone_spans_pfn(zone, end - 1))
1610 		return false;
1611 
1612 	*start_pfn = start;
1613 
1614 	if (num_free) {
1615 		*num_free = 0;
1616 		*num_movable = 0;
1617 		for (pfn = start; pfn < end;) {
1618 			page = pfn_to_page(pfn);
1619 			if (PageBuddy(page)) {
1620 				int nr = 1 << buddy_order(page);
1621 
1622 				*num_free += nr;
1623 				pfn += nr;
1624 				continue;
1625 			}
1626 			/*
1627 			 * We assume that pages that could be isolated for
1628 			 * migration are movable. But we don't actually try
1629 			 * isolating, as that would be expensive.
1630 			 */
1631 			if (PageLRU(page) || __PageMovable(page))
1632 				(*num_movable)++;
1633 			pfn++;
1634 		}
1635 	}
1636 
1637 	return true;
1638 }
1639 
1640 static int move_freepages_block(struct zone *zone, struct page *page,
1641 				int old_mt, int new_mt)
1642 {
1643 	unsigned long start_pfn;
1644 
1645 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1646 		return -1;
1647 
1648 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1649 }
1650 
1651 #ifdef CONFIG_MEMORY_ISOLATION
1652 /* Look for a buddy that straddles start_pfn */
1653 static unsigned long find_large_buddy(unsigned long start_pfn)
1654 {
1655 	int order = 0;
1656 	struct page *page;
1657 	unsigned long pfn = start_pfn;
1658 
1659 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1660 		/* Nothing found */
1661 		if (++order > MAX_PAGE_ORDER)
1662 			return start_pfn;
1663 		pfn &= ~0UL << order;
1664 	}
1665 
1666 	/*
1667 	 * Found a preceding buddy, but does it straddle?
1668 	 */
1669 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1670 		return pfn;
1671 
1672 	/* Nothing found */
1673 	return start_pfn;
1674 }
1675 
1676 /* Split a multi-block free page into its individual pageblocks */
1677 static void split_large_buddy(struct zone *zone, struct page *page,
1678 			      unsigned long pfn, int order)
1679 {
1680 	unsigned long end_pfn = pfn + (1 << order);
1681 
1682 	VM_WARN_ON_ONCE(order <= pageblock_order);
1683 	VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1684 
1685 	/* Caller removed page from freelist, buddy info cleared! */
1686 	VM_WARN_ON_ONCE(PageBuddy(page));
1687 
1688 	while (pfn != end_pfn) {
1689 		int mt = get_pfnblock_migratetype(page, pfn);
1690 
1691 		__free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1692 		pfn += pageblock_nr_pages;
1693 		page = pfn_to_page(pfn);
1694 	}
1695 }
1696 
1697 /**
1698  * move_freepages_block_isolate - move free pages in block for page isolation
1699  * @zone: the zone
1700  * @page: the pageblock page
1701  * @migratetype: migratetype to set on the pageblock
1702  *
1703  * This is similar to move_freepages_block(), but handles the special
1704  * case encountered in page isolation, where the block of interest
1705  * might be part of a larger buddy spanning multiple pageblocks.
1706  *
1707  * Unlike the regular page allocator path, which moves pages while
1708  * stealing buddies off the freelist, page isolation is interested in
1709  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1710  *
1711  * This function handles that. Straddling buddies are split into
1712  * individual pageblocks. Only the block of interest is moved.
1713  *
1714  * Returns %true if pages could be moved, %false otherwise.
1715  */
1716 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1717 				  int migratetype)
1718 {
1719 	unsigned long start_pfn, pfn;
1720 
1721 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1722 		return false;
1723 
1724 	/* No splits needed if buddies can't span multiple blocks */
1725 	if (pageblock_order == MAX_PAGE_ORDER)
1726 		goto move;
1727 
1728 	/* We're a tail block in a larger buddy */
1729 	pfn = find_large_buddy(start_pfn);
1730 	if (pfn != start_pfn) {
1731 		struct page *buddy = pfn_to_page(pfn);
1732 		int order = buddy_order(buddy);
1733 
1734 		del_page_from_free_list(buddy, zone, order,
1735 					get_pfnblock_migratetype(buddy, pfn));
1736 		set_pageblock_migratetype(page, migratetype);
1737 		split_large_buddy(zone, buddy, pfn, order);
1738 		return true;
1739 	}
1740 
1741 	/* We're the starting block of a larger buddy */
1742 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1743 		int order = buddy_order(page);
1744 
1745 		del_page_from_free_list(page, zone, order,
1746 					get_pfnblock_migratetype(page, pfn));
1747 		set_pageblock_migratetype(page, migratetype);
1748 		split_large_buddy(zone, page, pfn, order);
1749 		return true;
1750 	}
1751 move:
1752 	__move_freepages_block(zone, start_pfn,
1753 			       get_pfnblock_migratetype(page, start_pfn),
1754 			       migratetype);
1755 	return true;
1756 }
1757 #endif /* CONFIG_MEMORY_ISOLATION */
1758 
1759 static void change_pageblock_range(struct page *pageblock_page,
1760 					int start_order, int migratetype)
1761 {
1762 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1763 
1764 	while (nr_pageblocks--) {
1765 		set_pageblock_migratetype(pageblock_page, migratetype);
1766 		pageblock_page += pageblock_nr_pages;
1767 	}
1768 }
1769 
1770 /*
1771  * When we are falling back to another migratetype during allocation, try to
1772  * steal extra free pages from the same pageblocks to satisfy further
1773  * allocations, instead of polluting multiple pageblocks.
1774  *
1775  * If we are stealing a relatively large buddy page, it is likely there will
1776  * be more free pages in the pageblock, so try to steal them all. For
1777  * reclaimable and unmovable allocations, we steal regardless of page size,
1778  * as fragmentation caused by those allocations polluting movable pageblocks
1779  * is worse than movable allocations stealing from unmovable and reclaimable
1780  * pageblocks.
1781  */
1782 static bool can_steal_fallback(unsigned int order, int start_mt)
1783 {
1784 	/*
1785 	 * Leaving this order check is intended, although there is
1786 	 * relaxed order check in next check. The reason is that
1787 	 * we can actually steal whole pageblock if this condition met,
1788 	 * but, below check doesn't guarantee it and that is just heuristic
1789 	 * so could be changed anytime.
1790 	 */
1791 	if (order >= pageblock_order)
1792 		return true;
1793 
1794 	if (order >= pageblock_order / 2 ||
1795 		start_mt == MIGRATE_RECLAIMABLE ||
1796 		start_mt == MIGRATE_UNMOVABLE ||
1797 		page_group_by_mobility_disabled)
1798 		return true;
1799 
1800 	return false;
1801 }
1802 
1803 static inline bool boost_watermark(struct zone *zone)
1804 {
1805 	unsigned long max_boost;
1806 
1807 	if (!watermark_boost_factor)
1808 		return false;
1809 	/*
1810 	 * Don't bother in zones that are unlikely to produce results.
1811 	 * On small machines, including kdump capture kernels running
1812 	 * in a small area, boosting the watermark can cause an out of
1813 	 * memory situation immediately.
1814 	 */
1815 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1816 		return false;
1817 
1818 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1819 			watermark_boost_factor, 10000);
1820 
1821 	/*
1822 	 * high watermark may be uninitialised if fragmentation occurs
1823 	 * very early in boot so do not boost. We do not fall
1824 	 * through and boost by pageblock_nr_pages as failing
1825 	 * allocations that early means that reclaim is not going
1826 	 * to help and it may even be impossible to reclaim the
1827 	 * boosted watermark resulting in a hang.
1828 	 */
1829 	if (!max_boost)
1830 		return false;
1831 
1832 	max_boost = max(pageblock_nr_pages, max_boost);
1833 
1834 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1835 		max_boost);
1836 
1837 	return true;
1838 }
1839 
1840 /*
1841  * This function implements actual steal behaviour. If order is large enough, we
1842  * can claim the whole pageblock for the requested migratetype. If not, we check
1843  * the pageblock for constituent pages; if at least half of the pages are free
1844  * or compatible, we can still claim the whole block, so pages freed in the
1845  * future will be put on the correct free list. Otherwise, we isolate exactly
1846  * the order we need from the fallback block and leave its migratetype alone.
1847  */
1848 static struct page *
1849 steal_suitable_fallback(struct zone *zone, struct page *page,
1850 			int current_order, int order, int start_type,
1851 			unsigned int alloc_flags, bool whole_block)
1852 {
1853 	int free_pages, movable_pages, alike_pages;
1854 	unsigned long start_pfn;
1855 	int block_type;
1856 
1857 	block_type = get_pageblock_migratetype(page);
1858 
1859 	/*
1860 	 * This can happen due to races and we want to prevent broken
1861 	 * highatomic accounting.
1862 	 */
1863 	if (is_migrate_highatomic(block_type))
1864 		goto single_page;
1865 
1866 	/* Take ownership for orders >= pageblock_order */
1867 	if (current_order >= pageblock_order) {
1868 		del_page_from_free_list(page, zone, current_order, block_type);
1869 		change_pageblock_range(page, current_order, start_type);
1870 		expand(zone, page, order, current_order, start_type);
1871 		return page;
1872 	}
1873 
1874 	/*
1875 	 * Boost watermarks to increase reclaim pressure to reduce the
1876 	 * likelihood of future fallbacks. Wake kswapd now as the node
1877 	 * may be balanced overall and kswapd will not wake naturally.
1878 	 */
1879 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1880 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1881 
1882 	/* We are not allowed to try stealing from the whole block */
1883 	if (!whole_block)
1884 		goto single_page;
1885 
1886 	/* moving whole block can fail due to zone boundary conditions */
1887 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1888 				       &movable_pages))
1889 		goto single_page;
1890 
1891 	/*
1892 	 * Determine how many pages are compatible with our allocation.
1893 	 * For movable allocation, it's the number of movable pages which
1894 	 * we just obtained. For other types it's a bit more tricky.
1895 	 */
1896 	if (start_type == MIGRATE_MOVABLE) {
1897 		alike_pages = movable_pages;
1898 	} else {
1899 		/*
1900 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1901 		 * to MOVABLE pageblock, consider all non-movable pages as
1902 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1903 		 * vice versa, be conservative since we can't distinguish the
1904 		 * exact migratetype of non-movable pages.
1905 		 */
1906 		if (block_type == MIGRATE_MOVABLE)
1907 			alike_pages = pageblock_nr_pages
1908 						- (free_pages + movable_pages);
1909 		else
1910 			alike_pages = 0;
1911 	}
1912 	/*
1913 	 * If a sufficient number of pages in the block are either free or of
1914 	 * compatible migratability as our allocation, claim the whole block.
1915 	 */
1916 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1917 			page_group_by_mobility_disabled) {
1918 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1919 		return __rmqueue_smallest(zone, order, start_type);
1920 	}
1921 
1922 single_page:
1923 	del_page_from_free_list(page, zone, current_order, block_type);
1924 	expand(zone, page, order, current_order, block_type);
1925 	return page;
1926 }
1927 
1928 /*
1929  * Check whether there is a suitable fallback freepage with requested order.
1930  * If only_stealable is true, this function returns fallback_mt only if
1931  * we can steal other freepages all together. This would help to reduce
1932  * fragmentation due to mixed migratetype pages in one pageblock.
1933  */
1934 int find_suitable_fallback(struct free_area *area, unsigned int order,
1935 			int migratetype, bool only_stealable, bool *can_steal)
1936 {
1937 	int i;
1938 	int fallback_mt;
1939 
1940 	if (area->nr_free == 0)
1941 		return -1;
1942 
1943 	*can_steal = false;
1944 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1945 		fallback_mt = fallbacks[migratetype][i];
1946 		if (free_area_empty(area, fallback_mt))
1947 			continue;
1948 
1949 		if (can_steal_fallback(order, migratetype))
1950 			*can_steal = true;
1951 
1952 		if (!only_stealable)
1953 			return fallback_mt;
1954 
1955 		if (*can_steal)
1956 			return fallback_mt;
1957 	}
1958 
1959 	return -1;
1960 }
1961 
1962 /*
1963  * Reserve the pageblock(s) surrounding an allocation request for
1964  * exclusive use of high-order atomic allocations if there are no
1965  * empty page blocks that contain a page with a suitable order
1966  */
1967 static void reserve_highatomic_pageblock(struct page *page, int order,
1968 					 struct zone *zone)
1969 {
1970 	int mt;
1971 	unsigned long max_managed, flags;
1972 
1973 	/*
1974 	 * The number reserved as: minimum is 1 pageblock, maximum is
1975 	 * roughly 1% of a zone. But if 1% of a zone falls below a
1976 	 * pageblock size, then don't reserve any pageblocks.
1977 	 * Check is race-prone but harmless.
1978 	 */
1979 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1980 		return;
1981 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1982 	if (zone->nr_reserved_highatomic >= max_managed)
1983 		return;
1984 
1985 	spin_lock_irqsave(&zone->lock, flags);
1986 
1987 	/* Recheck the nr_reserved_highatomic limit under the lock */
1988 	if (zone->nr_reserved_highatomic >= max_managed)
1989 		goto out_unlock;
1990 
1991 	/* Yoink! */
1992 	mt = get_pageblock_migratetype(page);
1993 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1994 	if (!migratetype_is_mergeable(mt))
1995 		goto out_unlock;
1996 
1997 	if (order < pageblock_order) {
1998 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
1999 			goto out_unlock;
2000 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2001 	} else {
2002 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2003 		zone->nr_reserved_highatomic += 1 << order;
2004 	}
2005 
2006 out_unlock:
2007 	spin_unlock_irqrestore(&zone->lock, flags);
2008 }
2009 
2010 /*
2011  * Used when an allocation is about to fail under memory pressure. This
2012  * potentially hurts the reliability of high-order allocations when under
2013  * intense memory pressure but failed atomic allocations should be easier
2014  * to recover from than an OOM.
2015  *
2016  * If @force is true, try to unreserve pageblocks even though highatomic
2017  * pageblock is exhausted.
2018  */
2019 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2020 						bool force)
2021 {
2022 	struct zonelist *zonelist = ac->zonelist;
2023 	unsigned long flags;
2024 	struct zoneref *z;
2025 	struct zone *zone;
2026 	struct page *page;
2027 	int order;
2028 	int ret;
2029 
2030 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2031 								ac->nodemask) {
2032 		/*
2033 		 * Preserve at least one pageblock unless memory pressure
2034 		 * is really high.
2035 		 */
2036 		if (!force && zone->nr_reserved_highatomic <=
2037 					pageblock_nr_pages)
2038 			continue;
2039 
2040 		spin_lock_irqsave(&zone->lock, flags);
2041 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2042 			struct free_area *area = &(zone->free_area[order]);
2043 			int mt;
2044 
2045 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2046 			if (!page)
2047 				continue;
2048 
2049 			mt = get_pageblock_migratetype(page);
2050 			/*
2051 			 * In page freeing path, migratetype change is racy so
2052 			 * we can counter several free pages in a pageblock
2053 			 * in this loop although we changed the pageblock type
2054 			 * from highatomic to ac->migratetype. So we should
2055 			 * adjust the count once.
2056 			 */
2057 			if (is_migrate_highatomic(mt)) {
2058 				unsigned long size;
2059 				/*
2060 				 * It should never happen but changes to
2061 				 * locking could inadvertently allow a per-cpu
2062 				 * drain to add pages to MIGRATE_HIGHATOMIC
2063 				 * while unreserving so be safe and watch for
2064 				 * underflows.
2065 				 */
2066 				size = max(pageblock_nr_pages, 1UL << order);
2067 				size = min(size, zone->nr_reserved_highatomic);
2068 				zone->nr_reserved_highatomic -= size;
2069 			}
2070 
2071 			/*
2072 			 * Convert to ac->migratetype and avoid the normal
2073 			 * pageblock stealing heuristics. Minimally, the caller
2074 			 * is doing the work and needs the pages. More
2075 			 * importantly, if the block was always converted to
2076 			 * MIGRATE_UNMOVABLE or another type then the number
2077 			 * of pageblocks that cannot be completely freed
2078 			 * may increase.
2079 			 */
2080 			if (order < pageblock_order)
2081 				ret = move_freepages_block(zone, page, mt,
2082 							   ac->migratetype);
2083 			else {
2084 				move_to_free_list(page, zone, order, mt,
2085 						  ac->migratetype);
2086 				change_pageblock_range(page, order,
2087 						       ac->migratetype);
2088 				ret = 1;
2089 			}
2090 			/*
2091 			 * Reserving the block(s) already succeeded,
2092 			 * so this should not fail on zone boundaries.
2093 			 */
2094 			WARN_ON_ONCE(ret == -1);
2095 			if (ret > 0) {
2096 				spin_unlock_irqrestore(&zone->lock, flags);
2097 				return ret;
2098 			}
2099 		}
2100 		spin_unlock_irqrestore(&zone->lock, flags);
2101 	}
2102 
2103 	return false;
2104 }
2105 
2106 /*
2107  * Try finding a free buddy page on the fallback list and put it on the free
2108  * list of requested migratetype, possibly along with other pages from the same
2109  * block, depending on fragmentation avoidance heuristics. Returns true if
2110  * fallback was found so that __rmqueue_smallest() can grab it.
2111  *
2112  * The use of signed ints for order and current_order is a deliberate
2113  * deviation from the rest of this file, to make the for loop
2114  * condition simpler.
2115  */
2116 static __always_inline struct page *
2117 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2118 						unsigned int alloc_flags)
2119 {
2120 	struct free_area *area;
2121 	int current_order;
2122 	int min_order = order;
2123 	struct page *page;
2124 	int fallback_mt;
2125 	bool can_steal;
2126 
2127 	/*
2128 	 * Do not steal pages from freelists belonging to other pageblocks
2129 	 * i.e. orders < pageblock_order. If there are no local zones free,
2130 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2131 	 */
2132 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2133 		min_order = pageblock_order;
2134 
2135 	/*
2136 	 * Find the largest available free page in the other list. This roughly
2137 	 * approximates finding the pageblock with the most free pages, which
2138 	 * would be too costly to do exactly.
2139 	 */
2140 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2141 				--current_order) {
2142 		area = &(zone->free_area[current_order]);
2143 		fallback_mt = find_suitable_fallback(area, current_order,
2144 				start_migratetype, false, &can_steal);
2145 		if (fallback_mt == -1)
2146 			continue;
2147 
2148 		/*
2149 		 * We cannot steal all free pages from the pageblock and the
2150 		 * requested migratetype is movable. In that case it's better to
2151 		 * steal and split the smallest available page instead of the
2152 		 * largest available page, because even if the next movable
2153 		 * allocation falls back into a different pageblock than this
2154 		 * one, it won't cause permanent fragmentation.
2155 		 */
2156 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2157 					&& current_order > order)
2158 			goto find_smallest;
2159 
2160 		goto do_steal;
2161 	}
2162 
2163 	return NULL;
2164 
2165 find_smallest:
2166 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2167 		area = &(zone->free_area[current_order]);
2168 		fallback_mt = find_suitable_fallback(area, current_order,
2169 				start_migratetype, false, &can_steal);
2170 		if (fallback_mt != -1)
2171 			break;
2172 	}
2173 
2174 	/*
2175 	 * This should not happen - we already found a suitable fallback
2176 	 * when looking for the largest page.
2177 	 */
2178 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2179 
2180 do_steal:
2181 	page = get_page_from_free_area(area, fallback_mt);
2182 
2183 	/* take off list, maybe claim block, expand remainder */
2184 	page = steal_suitable_fallback(zone, page, current_order, order,
2185 				       start_migratetype, alloc_flags, can_steal);
2186 
2187 	trace_mm_page_alloc_extfrag(page, order, current_order,
2188 		start_migratetype, fallback_mt);
2189 
2190 	return page;
2191 }
2192 
2193 /*
2194  * Do the hard work of removing an element from the buddy allocator.
2195  * Call me with the zone->lock already held.
2196  */
2197 static __always_inline struct page *
2198 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2199 						unsigned int alloc_flags)
2200 {
2201 	struct page *page;
2202 
2203 	if (IS_ENABLED(CONFIG_CMA)) {
2204 		/*
2205 		 * Balance movable allocations between regular and CMA areas by
2206 		 * allocating from CMA when over half of the zone's free memory
2207 		 * is in the CMA area.
2208 		 */
2209 		if (alloc_flags & ALLOC_CMA &&
2210 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2211 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2212 			page = __rmqueue_cma_fallback(zone, order);
2213 			if (page)
2214 				return page;
2215 		}
2216 	}
2217 
2218 	page = __rmqueue_smallest(zone, order, migratetype);
2219 	if (unlikely(!page)) {
2220 		if (alloc_flags & ALLOC_CMA)
2221 			page = __rmqueue_cma_fallback(zone, order);
2222 
2223 		if (!page)
2224 			page = __rmqueue_fallback(zone, order, migratetype,
2225 						  alloc_flags);
2226 	}
2227 	return page;
2228 }
2229 
2230 /*
2231  * Obtain a specified number of elements from the buddy allocator, all under
2232  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2233  * Returns the number of new pages which were placed at *list.
2234  */
2235 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2236 			unsigned long count, struct list_head *list,
2237 			int migratetype, unsigned int alloc_flags)
2238 {
2239 	unsigned long flags;
2240 	int i;
2241 
2242 	spin_lock_irqsave(&zone->lock, flags);
2243 	for (i = 0; i < count; ++i) {
2244 		struct page *page = __rmqueue(zone, order, migratetype,
2245 								alloc_flags);
2246 		if (unlikely(page == NULL))
2247 			break;
2248 
2249 		/*
2250 		 * Split buddy pages returned by expand() are received here in
2251 		 * physical page order. The page is added to the tail of
2252 		 * caller's list. From the callers perspective, the linked list
2253 		 * is ordered by page number under some conditions. This is
2254 		 * useful for IO devices that can forward direction from the
2255 		 * head, thus also in the physical page order. This is useful
2256 		 * for IO devices that can merge IO requests if the physical
2257 		 * pages are ordered properly.
2258 		 */
2259 		list_add_tail(&page->pcp_list, list);
2260 	}
2261 	spin_unlock_irqrestore(&zone->lock, flags);
2262 
2263 	return i;
2264 }
2265 
2266 /*
2267  * Called from the vmstat counter updater to decay the PCP high.
2268  * Return whether there are addition works to do.
2269  */
2270 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2271 {
2272 	int high_min, to_drain, batch;
2273 	int todo = 0;
2274 
2275 	high_min = READ_ONCE(pcp->high_min);
2276 	batch = READ_ONCE(pcp->batch);
2277 	/*
2278 	 * Decrease pcp->high periodically to try to free possible
2279 	 * idle PCP pages.  And, avoid to free too many pages to
2280 	 * control latency.  This caps pcp->high decrement too.
2281 	 */
2282 	if (pcp->high > high_min) {
2283 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2284 				 pcp->high - (pcp->high >> 3), high_min);
2285 		if (pcp->high > high_min)
2286 			todo++;
2287 	}
2288 
2289 	to_drain = pcp->count - pcp->high;
2290 	if (to_drain > 0) {
2291 		spin_lock(&pcp->lock);
2292 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2293 		spin_unlock(&pcp->lock);
2294 		todo++;
2295 	}
2296 
2297 	return todo;
2298 }
2299 
2300 #ifdef CONFIG_NUMA
2301 /*
2302  * Called from the vmstat counter updater to drain pagesets of this
2303  * currently executing processor on remote nodes after they have
2304  * expired.
2305  */
2306 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2307 {
2308 	int to_drain, batch;
2309 
2310 	batch = READ_ONCE(pcp->batch);
2311 	to_drain = min(pcp->count, batch);
2312 	if (to_drain > 0) {
2313 		spin_lock(&pcp->lock);
2314 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2315 		spin_unlock(&pcp->lock);
2316 	}
2317 }
2318 #endif
2319 
2320 /*
2321  * Drain pcplists of the indicated processor and zone.
2322  */
2323 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2324 {
2325 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2326 	int count = READ_ONCE(pcp->count);
2327 
2328 	while (count) {
2329 		int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2330 		count -= to_drain;
2331 
2332 		spin_lock(&pcp->lock);
2333 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2334 		spin_unlock(&pcp->lock);
2335 	}
2336 }
2337 
2338 /*
2339  * Drain pcplists of all zones on the indicated processor.
2340  */
2341 static void drain_pages(unsigned int cpu)
2342 {
2343 	struct zone *zone;
2344 
2345 	for_each_populated_zone(zone) {
2346 		drain_pages_zone(cpu, zone);
2347 	}
2348 }
2349 
2350 /*
2351  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2352  */
2353 void drain_local_pages(struct zone *zone)
2354 {
2355 	int cpu = smp_processor_id();
2356 
2357 	if (zone)
2358 		drain_pages_zone(cpu, zone);
2359 	else
2360 		drain_pages(cpu);
2361 }
2362 
2363 /*
2364  * The implementation of drain_all_pages(), exposing an extra parameter to
2365  * drain on all cpus.
2366  *
2367  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2368  * not empty. The check for non-emptiness can however race with a free to
2369  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2370  * that need the guarantee that every CPU has drained can disable the
2371  * optimizing racy check.
2372  */
2373 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2374 {
2375 	int cpu;
2376 
2377 	/*
2378 	 * Allocate in the BSS so we won't require allocation in
2379 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2380 	 */
2381 	static cpumask_t cpus_with_pcps;
2382 
2383 	/*
2384 	 * Do not drain if one is already in progress unless it's specific to
2385 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2386 	 * the drain to be complete when the call returns.
2387 	 */
2388 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2389 		if (!zone)
2390 			return;
2391 		mutex_lock(&pcpu_drain_mutex);
2392 	}
2393 
2394 	/*
2395 	 * We don't care about racing with CPU hotplug event
2396 	 * as offline notification will cause the notified
2397 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2398 	 * disables preemption as part of its processing
2399 	 */
2400 	for_each_online_cpu(cpu) {
2401 		struct per_cpu_pages *pcp;
2402 		struct zone *z;
2403 		bool has_pcps = false;
2404 
2405 		if (force_all_cpus) {
2406 			/*
2407 			 * The pcp.count check is racy, some callers need a
2408 			 * guarantee that no cpu is missed.
2409 			 */
2410 			has_pcps = true;
2411 		} else if (zone) {
2412 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2413 			if (pcp->count)
2414 				has_pcps = true;
2415 		} else {
2416 			for_each_populated_zone(z) {
2417 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2418 				if (pcp->count) {
2419 					has_pcps = true;
2420 					break;
2421 				}
2422 			}
2423 		}
2424 
2425 		if (has_pcps)
2426 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2427 		else
2428 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2429 	}
2430 
2431 	for_each_cpu(cpu, &cpus_with_pcps) {
2432 		if (zone)
2433 			drain_pages_zone(cpu, zone);
2434 		else
2435 			drain_pages(cpu);
2436 	}
2437 
2438 	mutex_unlock(&pcpu_drain_mutex);
2439 }
2440 
2441 /*
2442  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2443  *
2444  * When zone parameter is non-NULL, spill just the single zone's pages.
2445  */
2446 void drain_all_pages(struct zone *zone)
2447 {
2448 	__drain_all_pages(zone, false);
2449 }
2450 
2451 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2452 {
2453 	int min_nr_free, max_nr_free;
2454 
2455 	/* Free as much as possible if batch freeing high-order pages. */
2456 	if (unlikely(free_high))
2457 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2458 
2459 	/* Check for PCP disabled or boot pageset */
2460 	if (unlikely(high < batch))
2461 		return 1;
2462 
2463 	/* Leave at least pcp->batch pages on the list */
2464 	min_nr_free = batch;
2465 	max_nr_free = high - batch;
2466 
2467 	/*
2468 	 * Increase the batch number to the number of the consecutive
2469 	 * freed pages to reduce zone lock contention.
2470 	 */
2471 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2472 
2473 	return batch;
2474 }
2475 
2476 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2477 		       int batch, bool free_high)
2478 {
2479 	int high, high_min, high_max;
2480 
2481 	high_min = READ_ONCE(pcp->high_min);
2482 	high_max = READ_ONCE(pcp->high_max);
2483 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2484 
2485 	if (unlikely(!high))
2486 		return 0;
2487 
2488 	if (unlikely(free_high)) {
2489 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2490 				high_min);
2491 		return 0;
2492 	}
2493 
2494 	/*
2495 	 * If reclaim is active, limit the number of pages that can be
2496 	 * stored on pcp lists
2497 	 */
2498 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2499 		int free_count = max_t(int, pcp->free_count, batch);
2500 
2501 		pcp->high = max(high - free_count, high_min);
2502 		return min(batch << 2, pcp->high);
2503 	}
2504 
2505 	if (high_min == high_max)
2506 		return high;
2507 
2508 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2509 		int free_count = max_t(int, pcp->free_count, batch);
2510 
2511 		pcp->high = max(high - free_count, high_min);
2512 		high = max(pcp->count, high_min);
2513 	} else if (pcp->count >= high) {
2514 		int need_high = pcp->free_count + batch;
2515 
2516 		/* pcp->high should be large enough to hold batch freed pages */
2517 		if (pcp->high < need_high)
2518 			pcp->high = clamp(need_high, high_min, high_max);
2519 	}
2520 
2521 	return high;
2522 }
2523 
2524 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2525 				   struct page *page, int migratetype,
2526 				   unsigned int order)
2527 {
2528 	int high, batch;
2529 	int pindex;
2530 	bool free_high = false;
2531 
2532 	/*
2533 	 * On freeing, reduce the number of pages that are batch allocated.
2534 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2535 	 * allocations.
2536 	 */
2537 	pcp->alloc_factor >>= 1;
2538 	__count_vm_events(PGFREE, 1 << order);
2539 	pindex = order_to_pindex(migratetype, order);
2540 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2541 	pcp->count += 1 << order;
2542 
2543 	batch = READ_ONCE(pcp->batch);
2544 	/*
2545 	 * As high-order pages other than THP's stored on PCP can contribute
2546 	 * to fragmentation, limit the number stored when PCP is heavily
2547 	 * freeing without allocation. The remainder after bulk freeing
2548 	 * stops will be drained from vmstat refresh context.
2549 	 */
2550 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2551 		free_high = (pcp->free_count >= batch &&
2552 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2553 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2554 			      pcp->count >= READ_ONCE(batch)));
2555 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2556 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2557 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2558 	}
2559 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2560 		pcp->free_count += (1 << order);
2561 	high = nr_pcp_high(pcp, zone, batch, free_high);
2562 	if (pcp->count >= high) {
2563 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2564 				   pcp, pindex);
2565 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2566 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2567 				      ZONE_MOVABLE, 0))
2568 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2569 	}
2570 }
2571 
2572 /*
2573  * Free a pcp page
2574  */
2575 void free_unref_page(struct page *page, unsigned int order)
2576 {
2577 	unsigned long __maybe_unused UP_flags;
2578 	struct per_cpu_pages *pcp;
2579 	struct zone *zone;
2580 	unsigned long pfn = page_to_pfn(page);
2581 	int migratetype;
2582 
2583 	if (!pcp_allowed_order(order)) {
2584 		__free_pages_ok(page, order, FPI_NONE);
2585 		return;
2586 	}
2587 
2588 	if (!free_pages_prepare(page, order))
2589 		return;
2590 
2591 	/*
2592 	 * We only track unmovable, reclaimable and movable on pcp lists.
2593 	 * Place ISOLATE pages on the isolated list because they are being
2594 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2595 	 * get those areas back if necessary. Otherwise, we may have to free
2596 	 * excessively into the page allocator
2597 	 */
2598 	migratetype = get_pfnblock_migratetype(page, pfn);
2599 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2600 		if (unlikely(is_migrate_isolate(migratetype))) {
2601 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2602 			return;
2603 		}
2604 		migratetype = MIGRATE_MOVABLE;
2605 	}
2606 
2607 	zone = page_zone(page);
2608 	pcp_trylock_prepare(UP_flags);
2609 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2610 	if (pcp) {
2611 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2612 		pcp_spin_unlock(pcp);
2613 	} else {
2614 		free_one_page(zone, page, pfn, order, FPI_NONE);
2615 	}
2616 	pcp_trylock_finish(UP_flags);
2617 }
2618 
2619 /*
2620  * Free a batch of folios
2621  */
2622 void free_unref_folios(struct folio_batch *folios)
2623 {
2624 	unsigned long __maybe_unused UP_flags;
2625 	struct per_cpu_pages *pcp = NULL;
2626 	struct zone *locked_zone = NULL;
2627 	int i, j;
2628 
2629 	/* Prepare folios for freeing */
2630 	for (i = 0, j = 0; i < folios->nr; i++) {
2631 		struct folio *folio = folios->folios[i];
2632 		unsigned long pfn = folio_pfn(folio);
2633 		unsigned int order = folio_order(folio);
2634 
2635 		if (order > 0 && folio_test_large_rmappable(folio))
2636 			folio_undo_large_rmappable(folio);
2637 		if (!free_pages_prepare(&folio->page, order))
2638 			continue;
2639 		/*
2640 		 * Free orders not handled on the PCP directly to the
2641 		 * allocator.
2642 		 */
2643 		if (!pcp_allowed_order(order)) {
2644 			free_one_page(folio_zone(folio), &folio->page,
2645 				      pfn, order, FPI_NONE);
2646 			continue;
2647 		}
2648 		folio->private = (void *)(unsigned long)order;
2649 		if (j != i)
2650 			folios->folios[j] = folio;
2651 		j++;
2652 	}
2653 	folios->nr = j;
2654 
2655 	for (i = 0; i < folios->nr; i++) {
2656 		struct folio *folio = folios->folios[i];
2657 		struct zone *zone = folio_zone(folio);
2658 		unsigned long pfn = folio_pfn(folio);
2659 		unsigned int order = (unsigned long)folio->private;
2660 		int migratetype;
2661 
2662 		folio->private = NULL;
2663 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2664 
2665 		/* Different zone requires a different pcp lock */
2666 		if (zone != locked_zone ||
2667 		    is_migrate_isolate(migratetype)) {
2668 			if (pcp) {
2669 				pcp_spin_unlock(pcp);
2670 				pcp_trylock_finish(UP_flags);
2671 				locked_zone = NULL;
2672 				pcp = NULL;
2673 			}
2674 
2675 			/*
2676 			 * Free isolated pages directly to the
2677 			 * allocator, see comment in free_unref_page.
2678 			 */
2679 			if (is_migrate_isolate(migratetype)) {
2680 				free_one_page(zone, &folio->page, pfn,
2681 					      order, FPI_NONE);
2682 				continue;
2683 			}
2684 
2685 			/*
2686 			 * trylock is necessary as folios may be getting freed
2687 			 * from IRQ or SoftIRQ context after an IO completion.
2688 			 */
2689 			pcp_trylock_prepare(UP_flags);
2690 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2691 			if (unlikely(!pcp)) {
2692 				pcp_trylock_finish(UP_flags);
2693 				free_one_page(zone, &folio->page, pfn,
2694 					      order, FPI_NONE);
2695 				continue;
2696 			}
2697 			locked_zone = zone;
2698 		}
2699 
2700 		/*
2701 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2702 		 * to the MIGRATE_MOVABLE pcp list.
2703 		 */
2704 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2705 			migratetype = MIGRATE_MOVABLE;
2706 
2707 		trace_mm_page_free_batched(&folio->page);
2708 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2709 				order);
2710 	}
2711 
2712 	if (pcp) {
2713 		pcp_spin_unlock(pcp);
2714 		pcp_trylock_finish(UP_flags);
2715 	}
2716 	folio_batch_reinit(folios);
2717 }
2718 
2719 /*
2720  * split_page takes a non-compound higher-order page, and splits it into
2721  * n (1<<order) sub-pages: page[0..n]
2722  * Each sub-page must be freed individually.
2723  *
2724  * Note: this is probably too low level an operation for use in drivers.
2725  * Please consult with lkml before using this in your driver.
2726  */
2727 void split_page(struct page *page, unsigned int order)
2728 {
2729 	int i;
2730 
2731 	VM_BUG_ON_PAGE(PageCompound(page), page);
2732 	VM_BUG_ON_PAGE(!page_count(page), page);
2733 
2734 	for (i = 1; i < (1 << order); i++)
2735 		set_page_refcounted(page + i);
2736 	split_page_owner(page, order, 0);
2737 	pgalloc_tag_split(page, 1 << order);
2738 	split_page_memcg(page, order, 0);
2739 }
2740 EXPORT_SYMBOL_GPL(split_page);
2741 
2742 int __isolate_free_page(struct page *page, unsigned int order)
2743 {
2744 	struct zone *zone = page_zone(page);
2745 	int mt = get_pageblock_migratetype(page);
2746 
2747 	if (!is_migrate_isolate(mt)) {
2748 		unsigned long watermark;
2749 		/*
2750 		 * Obey watermarks as if the page was being allocated. We can
2751 		 * emulate a high-order watermark check with a raised order-0
2752 		 * watermark, because we already know our high-order page
2753 		 * exists.
2754 		 */
2755 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2756 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2757 			return 0;
2758 	}
2759 
2760 	del_page_from_free_list(page, zone, order, mt);
2761 
2762 	/*
2763 	 * Set the pageblock if the isolated page is at least half of a
2764 	 * pageblock
2765 	 */
2766 	if (order >= pageblock_order - 1) {
2767 		struct page *endpage = page + (1 << order) - 1;
2768 		for (; page < endpage; page += pageblock_nr_pages) {
2769 			int mt = get_pageblock_migratetype(page);
2770 			/*
2771 			 * Only change normal pageblocks (i.e., they can merge
2772 			 * with others)
2773 			 */
2774 			if (migratetype_is_mergeable(mt))
2775 				move_freepages_block(zone, page, mt,
2776 						     MIGRATE_MOVABLE);
2777 		}
2778 	}
2779 
2780 	return 1UL << order;
2781 }
2782 
2783 /**
2784  * __putback_isolated_page - Return a now-isolated page back where we got it
2785  * @page: Page that was isolated
2786  * @order: Order of the isolated page
2787  * @mt: The page's pageblock's migratetype
2788  *
2789  * This function is meant to return a page pulled from the free lists via
2790  * __isolate_free_page back to the free lists they were pulled from.
2791  */
2792 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2793 {
2794 	struct zone *zone = page_zone(page);
2795 
2796 	/* zone lock should be held when this function is called */
2797 	lockdep_assert_held(&zone->lock);
2798 
2799 	/* Return isolated page to tail of freelist. */
2800 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2801 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2802 }
2803 
2804 /*
2805  * Update NUMA hit/miss statistics
2806  */
2807 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2808 				   long nr_account)
2809 {
2810 #ifdef CONFIG_NUMA
2811 	enum numa_stat_item local_stat = NUMA_LOCAL;
2812 
2813 	/* skip numa counters update if numa stats is disabled */
2814 	if (!static_branch_likely(&vm_numa_stat_key))
2815 		return;
2816 
2817 	if (zone_to_nid(z) != numa_node_id())
2818 		local_stat = NUMA_OTHER;
2819 
2820 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2821 		__count_numa_events(z, NUMA_HIT, nr_account);
2822 	else {
2823 		__count_numa_events(z, NUMA_MISS, nr_account);
2824 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2825 	}
2826 	__count_numa_events(z, local_stat, nr_account);
2827 #endif
2828 }
2829 
2830 static __always_inline
2831 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2832 			   unsigned int order, unsigned int alloc_flags,
2833 			   int migratetype)
2834 {
2835 	struct page *page;
2836 	unsigned long flags;
2837 
2838 	do {
2839 		page = NULL;
2840 		spin_lock_irqsave(&zone->lock, flags);
2841 		if (alloc_flags & ALLOC_HIGHATOMIC)
2842 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2843 		if (!page) {
2844 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2845 
2846 			/*
2847 			 * If the allocation fails, allow OOM handling access
2848 			 * to HIGHATOMIC reserves as failing now is worse than
2849 			 * failing a high-order atomic allocation in the
2850 			 * future.
2851 			 */
2852 			if (!page && (alloc_flags & ALLOC_OOM))
2853 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2854 
2855 			if (!page) {
2856 				spin_unlock_irqrestore(&zone->lock, flags);
2857 				return NULL;
2858 			}
2859 		}
2860 		spin_unlock_irqrestore(&zone->lock, flags);
2861 	} while (check_new_pages(page, order));
2862 
2863 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2864 	zone_statistics(preferred_zone, zone, 1);
2865 
2866 	return page;
2867 }
2868 
2869 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2870 {
2871 	int high, base_batch, batch, max_nr_alloc;
2872 	int high_max, high_min;
2873 
2874 	base_batch = READ_ONCE(pcp->batch);
2875 	high_min = READ_ONCE(pcp->high_min);
2876 	high_max = READ_ONCE(pcp->high_max);
2877 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2878 
2879 	/* Check for PCP disabled or boot pageset */
2880 	if (unlikely(high < base_batch))
2881 		return 1;
2882 
2883 	if (order)
2884 		batch = base_batch;
2885 	else
2886 		batch = (base_batch << pcp->alloc_factor);
2887 
2888 	/*
2889 	 * If we had larger pcp->high, we could avoid to allocate from
2890 	 * zone.
2891 	 */
2892 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2893 		high = pcp->high = min(high + batch, high_max);
2894 
2895 	if (!order) {
2896 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2897 		/*
2898 		 * Double the number of pages allocated each time there is
2899 		 * subsequent allocation of order-0 pages without any freeing.
2900 		 */
2901 		if (batch <= max_nr_alloc &&
2902 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2903 			pcp->alloc_factor++;
2904 		batch = min(batch, max_nr_alloc);
2905 	}
2906 
2907 	/*
2908 	 * Scale batch relative to order if batch implies free pages
2909 	 * can be stored on the PCP. Batch can be 1 for small zones or
2910 	 * for boot pagesets which should never store free pages as
2911 	 * the pages may belong to arbitrary zones.
2912 	 */
2913 	if (batch > 1)
2914 		batch = max(batch >> order, 2);
2915 
2916 	return batch;
2917 }
2918 
2919 /* Remove page from the per-cpu list, caller must protect the list */
2920 static inline
2921 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2922 			int migratetype,
2923 			unsigned int alloc_flags,
2924 			struct per_cpu_pages *pcp,
2925 			struct list_head *list)
2926 {
2927 	struct page *page;
2928 
2929 	do {
2930 		if (list_empty(list)) {
2931 			int batch = nr_pcp_alloc(pcp, zone, order);
2932 			int alloced;
2933 
2934 			alloced = rmqueue_bulk(zone, order,
2935 					batch, list,
2936 					migratetype, alloc_flags);
2937 
2938 			pcp->count += alloced << order;
2939 			if (unlikely(list_empty(list)))
2940 				return NULL;
2941 		}
2942 
2943 		page = list_first_entry(list, struct page, pcp_list);
2944 		list_del(&page->pcp_list);
2945 		pcp->count -= 1 << order;
2946 	} while (check_new_pages(page, order));
2947 
2948 	return page;
2949 }
2950 
2951 /* Lock and remove page from the per-cpu list */
2952 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2953 			struct zone *zone, unsigned int order,
2954 			int migratetype, unsigned int alloc_flags)
2955 {
2956 	struct per_cpu_pages *pcp;
2957 	struct list_head *list;
2958 	struct page *page;
2959 	unsigned long __maybe_unused UP_flags;
2960 
2961 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2962 	pcp_trylock_prepare(UP_flags);
2963 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2964 	if (!pcp) {
2965 		pcp_trylock_finish(UP_flags);
2966 		return NULL;
2967 	}
2968 
2969 	/*
2970 	 * On allocation, reduce the number of pages that are batch freed.
2971 	 * See nr_pcp_free() where free_factor is increased for subsequent
2972 	 * frees.
2973 	 */
2974 	pcp->free_count >>= 1;
2975 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2976 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2977 	pcp_spin_unlock(pcp);
2978 	pcp_trylock_finish(UP_flags);
2979 	if (page) {
2980 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2981 		zone_statistics(preferred_zone, zone, 1);
2982 	}
2983 	return page;
2984 }
2985 
2986 /*
2987  * Allocate a page from the given zone.
2988  * Use pcplists for THP or "cheap" high-order allocations.
2989  */
2990 
2991 /*
2992  * Do not instrument rmqueue() with KMSAN. This function may call
2993  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2994  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2995  * may call rmqueue() again, which will result in a deadlock.
2996  */
2997 __no_sanitize_memory
2998 static inline
2999 struct page *rmqueue(struct zone *preferred_zone,
3000 			struct zone *zone, unsigned int order,
3001 			gfp_t gfp_flags, unsigned int alloc_flags,
3002 			int migratetype)
3003 {
3004 	struct page *page;
3005 
3006 	/*
3007 	 * We most definitely don't want callers attempting to
3008 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3009 	 */
3010 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3011 
3012 	if (likely(pcp_allowed_order(order))) {
3013 		page = rmqueue_pcplist(preferred_zone, zone, order,
3014 				       migratetype, alloc_flags);
3015 		if (likely(page))
3016 			goto out;
3017 	}
3018 
3019 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3020 							migratetype);
3021 
3022 out:
3023 	/* Separate test+clear to avoid unnecessary atomics */
3024 	if ((alloc_flags & ALLOC_KSWAPD) &&
3025 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3026 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3027 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3028 	}
3029 
3030 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3031 	return page;
3032 }
3033 
3034 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3035 {
3036 	return __should_fail_alloc_page(gfp_mask, order);
3037 }
3038 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3039 
3040 static inline long __zone_watermark_unusable_free(struct zone *z,
3041 				unsigned int order, unsigned int alloc_flags)
3042 {
3043 	long unusable_free = (1 << order) - 1;
3044 
3045 	/*
3046 	 * If the caller does not have rights to reserves below the min
3047 	 * watermark then subtract the high-atomic reserves. This will
3048 	 * over-estimate the size of the atomic reserve but it avoids a search.
3049 	 */
3050 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3051 		unusable_free += z->nr_reserved_highatomic;
3052 
3053 #ifdef CONFIG_CMA
3054 	/* If allocation can't use CMA areas don't use free CMA pages */
3055 	if (!(alloc_flags & ALLOC_CMA))
3056 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3057 #endif
3058 #ifdef CONFIG_UNACCEPTED_MEMORY
3059 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
3060 #endif
3061 
3062 	return unusable_free;
3063 }
3064 
3065 /*
3066  * Return true if free base pages are above 'mark'. For high-order checks it
3067  * will return true of the order-0 watermark is reached and there is at least
3068  * one free page of a suitable size. Checking now avoids taking the zone lock
3069  * to check in the allocation paths if no pages are free.
3070  */
3071 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3072 			 int highest_zoneidx, unsigned int alloc_flags,
3073 			 long free_pages)
3074 {
3075 	long min = mark;
3076 	int o;
3077 
3078 	/* free_pages may go negative - that's OK */
3079 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3080 
3081 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3082 		/*
3083 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3084 		 * as OOM.
3085 		 */
3086 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3087 			min -= min / 2;
3088 
3089 			/*
3090 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3091 			 * access more reserves than just __GFP_HIGH. Other
3092 			 * non-blocking allocations requests such as GFP_NOWAIT
3093 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3094 			 * access to the min reserve.
3095 			 */
3096 			if (alloc_flags & ALLOC_NON_BLOCK)
3097 				min -= min / 4;
3098 		}
3099 
3100 		/*
3101 		 * OOM victims can try even harder than the normal reserve
3102 		 * users on the grounds that it's definitely going to be in
3103 		 * the exit path shortly and free memory. Any allocation it
3104 		 * makes during the free path will be small and short-lived.
3105 		 */
3106 		if (alloc_flags & ALLOC_OOM)
3107 			min -= min / 2;
3108 	}
3109 
3110 	/*
3111 	 * Check watermarks for an order-0 allocation request. If these
3112 	 * are not met, then a high-order request also cannot go ahead
3113 	 * even if a suitable page happened to be free.
3114 	 */
3115 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3116 		return false;
3117 
3118 	/* If this is an order-0 request then the watermark is fine */
3119 	if (!order)
3120 		return true;
3121 
3122 	/* For a high-order request, check at least one suitable page is free */
3123 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3124 		struct free_area *area = &z->free_area[o];
3125 		int mt;
3126 
3127 		if (!area->nr_free)
3128 			continue;
3129 
3130 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3131 			if (!free_area_empty(area, mt))
3132 				return true;
3133 		}
3134 
3135 #ifdef CONFIG_CMA
3136 		if ((alloc_flags & ALLOC_CMA) &&
3137 		    !free_area_empty(area, MIGRATE_CMA)) {
3138 			return true;
3139 		}
3140 #endif
3141 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3142 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3143 			return true;
3144 		}
3145 	}
3146 	return false;
3147 }
3148 
3149 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3150 		      int highest_zoneidx, unsigned int alloc_flags)
3151 {
3152 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3153 					zone_page_state(z, NR_FREE_PAGES));
3154 }
3155 
3156 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3157 				unsigned long mark, int highest_zoneidx,
3158 				unsigned int alloc_flags, gfp_t gfp_mask)
3159 {
3160 	long free_pages;
3161 
3162 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3163 
3164 	/*
3165 	 * Fast check for order-0 only. If this fails then the reserves
3166 	 * need to be calculated.
3167 	 */
3168 	if (!order) {
3169 		long usable_free;
3170 		long reserved;
3171 
3172 		usable_free = free_pages;
3173 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3174 
3175 		/* reserved may over estimate high-atomic reserves. */
3176 		usable_free -= min(usable_free, reserved);
3177 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3178 			return true;
3179 	}
3180 
3181 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3182 					free_pages))
3183 		return true;
3184 
3185 	/*
3186 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3187 	 * when checking the min watermark. The min watermark is the
3188 	 * point where boosting is ignored so that kswapd is woken up
3189 	 * when below the low watermark.
3190 	 */
3191 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3192 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3193 		mark = z->_watermark[WMARK_MIN];
3194 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3195 					alloc_flags, free_pages);
3196 	}
3197 
3198 	return false;
3199 }
3200 
3201 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3202 			unsigned long mark, int highest_zoneidx)
3203 {
3204 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3205 
3206 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3207 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3208 
3209 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3210 								free_pages);
3211 }
3212 
3213 #ifdef CONFIG_NUMA
3214 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3215 
3216 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3217 {
3218 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3219 				node_reclaim_distance;
3220 }
3221 #else	/* CONFIG_NUMA */
3222 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3223 {
3224 	return true;
3225 }
3226 #endif	/* CONFIG_NUMA */
3227 
3228 /*
3229  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3230  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3231  * premature use of a lower zone may cause lowmem pressure problems that
3232  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3233  * probably too small. It only makes sense to spread allocations to avoid
3234  * fragmentation between the Normal and DMA32 zones.
3235  */
3236 static inline unsigned int
3237 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3238 {
3239 	unsigned int alloc_flags;
3240 
3241 	/*
3242 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3243 	 * to save a branch.
3244 	 */
3245 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3246 
3247 #ifdef CONFIG_ZONE_DMA32
3248 	if (!zone)
3249 		return alloc_flags;
3250 
3251 	if (zone_idx(zone) != ZONE_NORMAL)
3252 		return alloc_flags;
3253 
3254 	/*
3255 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3256 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3257 	 * on UMA that if Normal is populated then so is DMA32.
3258 	 */
3259 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3260 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3261 		return alloc_flags;
3262 
3263 	alloc_flags |= ALLOC_NOFRAGMENT;
3264 #endif /* CONFIG_ZONE_DMA32 */
3265 	return alloc_flags;
3266 }
3267 
3268 /* Must be called after current_gfp_context() which can change gfp_mask */
3269 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3270 						  unsigned int alloc_flags)
3271 {
3272 #ifdef CONFIG_CMA
3273 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3274 		alloc_flags |= ALLOC_CMA;
3275 #endif
3276 	return alloc_flags;
3277 }
3278 
3279 /*
3280  * get_page_from_freelist goes through the zonelist trying to allocate
3281  * a page.
3282  */
3283 static struct page *
3284 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3285 						const struct alloc_context *ac)
3286 {
3287 	struct zoneref *z;
3288 	struct zone *zone;
3289 	struct pglist_data *last_pgdat = NULL;
3290 	bool last_pgdat_dirty_ok = false;
3291 	bool no_fallback;
3292 
3293 retry:
3294 	/*
3295 	 * Scan zonelist, looking for a zone with enough free.
3296 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3297 	 */
3298 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3299 	z = ac->preferred_zoneref;
3300 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3301 					ac->nodemask) {
3302 		struct page *page;
3303 		unsigned long mark;
3304 
3305 		if (cpusets_enabled() &&
3306 			(alloc_flags & ALLOC_CPUSET) &&
3307 			!__cpuset_zone_allowed(zone, gfp_mask))
3308 				continue;
3309 		/*
3310 		 * When allocating a page cache page for writing, we
3311 		 * want to get it from a node that is within its dirty
3312 		 * limit, such that no single node holds more than its
3313 		 * proportional share of globally allowed dirty pages.
3314 		 * The dirty limits take into account the node's
3315 		 * lowmem reserves and high watermark so that kswapd
3316 		 * should be able to balance it without having to
3317 		 * write pages from its LRU list.
3318 		 *
3319 		 * XXX: For now, allow allocations to potentially
3320 		 * exceed the per-node dirty limit in the slowpath
3321 		 * (spread_dirty_pages unset) before going into reclaim,
3322 		 * which is important when on a NUMA setup the allowed
3323 		 * nodes are together not big enough to reach the
3324 		 * global limit.  The proper fix for these situations
3325 		 * will require awareness of nodes in the
3326 		 * dirty-throttling and the flusher threads.
3327 		 */
3328 		if (ac->spread_dirty_pages) {
3329 			if (last_pgdat != zone->zone_pgdat) {
3330 				last_pgdat = zone->zone_pgdat;
3331 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3332 			}
3333 
3334 			if (!last_pgdat_dirty_ok)
3335 				continue;
3336 		}
3337 
3338 		if (no_fallback && nr_online_nodes > 1 &&
3339 		    zone != ac->preferred_zoneref->zone) {
3340 			int local_nid;
3341 
3342 			/*
3343 			 * If moving to a remote node, retry but allow
3344 			 * fragmenting fallbacks. Locality is more important
3345 			 * than fragmentation avoidance.
3346 			 */
3347 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3348 			if (zone_to_nid(zone) != local_nid) {
3349 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3350 				goto retry;
3351 			}
3352 		}
3353 
3354 		/*
3355 		 * Detect whether the number of free pages is below high
3356 		 * watermark.  If so, we will decrease pcp->high and free
3357 		 * PCP pages in free path to reduce the possibility of
3358 		 * premature page reclaiming.  Detection is done here to
3359 		 * avoid to do that in hotter free path.
3360 		 */
3361 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3362 			goto check_alloc_wmark;
3363 
3364 		mark = high_wmark_pages(zone);
3365 		if (zone_watermark_fast(zone, order, mark,
3366 					ac->highest_zoneidx, alloc_flags,
3367 					gfp_mask))
3368 			goto try_this_zone;
3369 		else
3370 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3371 
3372 check_alloc_wmark:
3373 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3374 		if (!zone_watermark_fast(zone, order, mark,
3375 				       ac->highest_zoneidx, alloc_flags,
3376 				       gfp_mask)) {
3377 			int ret;
3378 
3379 			if (has_unaccepted_memory()) {
3380 				if (try_to_accept_memory(zone, order))
3381 					goto try_this_zone;
3382 			}
3383 
3384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3385 			/*
3386 			 * Watermark failed for this zone, but see if we can
3387 			 * grow this zone if it contains deferred pages.
3388 			 */
3389 			if (deferred_pages_enabled()) {
3390 				if (_deferred_grow_zone(zone, order))
3391 					goto try_this_zone;
3392 			}
3393 #endif
3394 			/* Checked here to keep the fast path fast */
3395 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3396 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3397 				goto try_this_zone;
3398 
3399 			if (!node_reclaim_enabled() ||
3400 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3401 				continue;
3402 
3403 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3404 			switch (ret) {
3405 			case NODE_RECLAIM_NOSCAN:
3406 				/* did not scan */
3407 				continue;
3408 			case NODE_RECLAIM_FULL:
3409 				/* scanned but unreclaimable */
3410 				continue;
3411 			default:
3412 				/* did we reclaim enough */
3413 				if (zone_watermark_ok(zone, order, mark,
3414 					ac->highest_zoneidx, alloc_flags))
3415 					goto try_this_zone;
3416 
3417 				continue;
3418 			}
3419 		}
3420 
3421 try_this_zone:
3422 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3423 				gfp_mask, alloc_flags, ac->migratetype);
3424 		if (page) {
3425 			prep_new_page(page, order, gfp_mask, alloc_flags);
3426 
3427 			/*
3428 			 * If this is a high-order atomic allocation then check
3429 			 * if the pageblock should be reserved for the future
3430 			 */
3431 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3432 				reserve_highatomic_pageblock(page, order, zone);
3433 
3434 			return page;
3435 		} else {
3436 			if (has_unaccepted_memory()) {
3437 				if (try_to_accept_memory(zone, order))
3438 					goto try_this_zone;
3439 			}
3440 
3441 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3442 			/* Try again if zone has deferred pages */
3443 			if (deferred_pages_enabled()) {
3444 				if (_deferred_grow_zone(zone, order))
3445 					goto try_this_zone;
3446 			}
3447 #endif
3448 		}
3449 	}
3450 
3451 	/*
3452 	 * It's possible on a UMA machine to get through all zones that are
3453 	 * fragmented. If avoiding fragmentation, reset and try again.
3454 	 */
3455 	if (no_fallback) {
3456 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3457 		goto retry;
3458 	}
3459 
3460 	return NULL;
3461 }
3462 
3463 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3464 {
3465 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3466 
3467 	/*
3468 	 * This documents exceptions given to allocations in certain
3469 	 * contexts that are allowed to allocate outside current's set
3470 	 * of allowed nodes.
3471 	 */
3472 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3473 		if (tsk_is_oom_victim(current) ||
3474 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3475 			filter &= ~SHOW_MEM_FILTER_NODES;
3476 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3477 		filter &= ~SHOW_MEM_FILTER_NODES;
3478 
3479 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3480 }
3481 
3482 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3483 {
3484 	struct va_format vaf;
3485 	va_list args;
3486 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3487 
3488 	if ((gfp_mask & __GFP_NOWARN) ||
3489 	     !__ratelimit(&nopage_rs) ||
3490 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3491 		return;
3492 
3493 	va_start(args, fmt);
3494 	vaf.fmt = fmt;
3495 	vaf.va = &args;
3496 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3497 			current->comm, &vaf, gfp_mask, &gfp_mask,
3498 			nodemask_pr_args(nodemask));
3499 	va_end(args);
3500 
3501 	cpuset_print_current_mems_allowed();
3502 	pr_cont("\n");
3503 	dump_stack();
3504 	warn_alloc_show_mem(gfp_mask, nodemask);
3505 }
3506 
3507 static inline struct page *
3508 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3509 			      unsigned int alloc_flags,
3510 			      const struct alloc_context *ac)
3511 {
3512 	struct page *page;
3513 
3514 	page = get_page_from_freelist(gfp_mask, order,
3515 			alloc_flags|ALLOC_CPUSET, ac);
3516 	/*
3517 	 * fallback to ignore cpuset restriction if our nodes
3518 	 * are depleted
3519 	 */
3520 	if (!page)
3521 		page = get_page_from_freelist(gfp_mask, order,
3522 				alloc_flags, ac);
3523 
3524 	return page;
3525 }
3526 
3527 static inline struct page *
3528 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3529 	const struct alloc_context *ac, unsigned long *did_some_progress)
3530 {
3531 	struct oom_control oc = {
3532 		.zonelist = ac->zonelist,
3533 		.nodemask = ac->nodemask,
3534 		.memcg = NULL,
3535 		.gfp_mask = gfp_mask,
3536 		.order = order,
3537 	};
3538 	struct page *page;
3539 
3540 	*did_some_progress = 0;
3541 
3542 	/*
3543 	 * Acquire the oom lock.  If that fails, somebody else is
3544 	 * making progress for us.
3545 	 */
3546 	if (!mutex_trylock(&oom_lock)) {
3547 		*did_some_progress = 1;
3548 		schedule_timeout_uninterruptible(1);
3549 		return NULL;
3550 	}
3551 
3552 	/*
3553 	 * Go through the zonelist yet one more time, keep very high watermark
3554 	 * here, this is only to catch a parallel oom killing, we must fail if
3555 	 * we're still under heavy pressure. But make sure that this reclaim
3556 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3557 	 * allocation which will never fail due to oom_lock already held.
3558 	 */
3559 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3560 				      ~__GFP_DIRECT_RECLAIM, order,
3561 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3562 	if (page)
3563 		goto out;
3564 
3565 	/* Coredumps can quickly deplete all memory reserves */
3566 	if (current->flags & PF_DUMPCORE)
3567 		goto out;
3568 	/* The OOM killer will not help higher order allocs */
3569 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3570 		goto out;
3571 	/*
3572 	 * We have already exhausted all our reclaim opportunities without any
3573 	 * success so it is time to admit defeat. We will skip the OOM killer
3574 	 * because it is very likely that the caller has a more reasonable
3575 	 * fallback than shooting a random task.
3576 	 *
3577 	 * The OOM killer may not free memory on a specific node.
3578 	 */
3579 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3580 		goto out;
3581 	/* The OOM killer does not needlessly kill tasks for lowmem */
3582 	if (ac->highest_zoneidx < ZONE_NORMAL)
3583 		goto out;
3584 	if (pm_suspended_storage())
3585 		goto out;
3586 	/*
3587 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3588 	 * other request to make a forward progress.
3589 	 * We are in an unfortunate situation where out_of_memory cannot
3590 	 * do much for this context but let's try it to at least get
3591 	 * access to memory reserved if the current task is killed (see
3592 	 * out_of_memory). Once filesystems are ready to handle allocation
3593 	 * failures more gracefully we should just bail out here.
3594 	 */
3595 
3596 	/* Exhausted what can be done so it's blame time */
3597 	if (out_of_memory(&oc) ||
3598 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3599 		*did_some_progress = 1;
3600 
3601 		/*
3602 		 * Help non-failing allocations by giving them access to memory
3603 		 * reserves
3604 		 */
3605 		if (gfp_mask & __GFP_NOFAIL)
3606 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3607 					ALLOC_NO_WATERMARKS, ac);
3608 	}
3609 out:
3610 	mutex_unlock(&oom_lock);
3611 	return page;
3612 }
3613 
3614 /*
3615  * Maximum number of compaction retries with a progress before OOM
3616  * killer is consider as the only way to move forward.
3617  */
3618 #define MAX_COMPACT_RETRIES 16
3619 
3620 #ifdef CONFIG_COMPACTION
3621 /* Try memory compaction for high-order allocations before reclaim */
3622 static struct page *
3623 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3624 		unsigned int alloc_flags, const struct alloc_context *ac,
3625 		enum compact_priority prio, enum compact_result *compact_result)
3626 {
3627 	struct page *page = NULL;
3628 	unsigned long pflags;
3629 	unsigned int noreclaim_flag;
3630 
3631 	if (!order)
3632 		return NULL;
3633 
3634 	psi_memstall_enter(&pflags);
3635 	delayacct_compact_start();
3636 	noreclaim_flag = memalloc_noreclaim_save();
3637 
3638 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3639 								prio, &page);
3640 
3641 	memalloc_noreclaim_restore(noreclaim_flag);
3642 	psi_memstall_leave(&pflags);
3643 	delayacct_compact_end();
3644 
3645 	if (*compact_result == COMPACT_SKIPPED)
3646 		return NULL;
3647 	/*
3648 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3649 	 * count a compaction stall
3650 	 */
3651 	count_vm_event(COMPACTSTALL);
3652 
3653 	/* Prep a captured page if available */
3654 	if (page)
3655 		prep_new_page(page, order, gfp_mask, alloc_flags);
3656 
3657 	/* Try get a page from the freelist if available */
3658 	if (!page)
3659 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3660 
3661 	if (page) {
3662 		struct zone *zone = page_zone(page);
3663 
3664 		zone->compact_blockskip_flush = false;
3665 		compaction_defer_reset(zone, order, true);
3666 		count_vm_event(COMPACTSUCCESS);
3667 		return page;
3668 	}
3669 
3670 	/*
3671 	 * It's bad if compaction run occurs and fails. The most likely reason
3672 	 * is that pages exist, but not enough to satisfy watermarks.
3673 	 */
3674 	count_vm_event(COMPACTFAIL);
3675 
3676 	cond_resched();
3677 
3678 	return NULL;
3679 }
3680 
3681 static inline bool
3682 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3683 		     enum compact_result compact_result,
3684 		     enum compact_priority *compact_priority,
3685 		     int *compaction_retries)
3686 {
3687 	int max_retries = MAX_COMPACT_RETRIES;
3688 	int min_priority;
3689 	bool ret = false;
3690 	int retries = *compaction_retries;
3691 	enum compact_priority priority = *compact_priority;
3692 
3693 	if (!order)
3694 		return false;
3695 
3696 	if (fatal_signal_pending(current))
3697 		return false;
3698 
3699 	/*
3700 	 * Compaction was skipped due to a lack of free order-0
3701 	 * migration targets. Continue if reclaim can help.
3702 	 */
3703 	if (compact_result == COMPACT_SKIPPED) {
3704 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3705 		goto out;
3706 	}
3707 
3708 	/*
3709 	 * Compaction managed to coalesce some page blocks, but the
3710 	 * allocation failed presumably due to a race. Retry some.
3711 	 */
3712 	if (compact_result == COMPACT_SUCCESS) {
3713 		/*
3714 		 * !costly requests are much more important than
3715 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3716 		 * facto nofail and invoke OOM killer to move on while
3717 		 * costly can fail and users are ready to cope with
3718 		 * that. 1/4 retries is rather arbitrary but we would
3719 		 * need much more detailed feedback from compaction to
3720 		 * make a better decision.
3721 		 */
3722 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3723 			max_retries /= 4;
3724 
3725 		if (++(*compaction_retries) <= max_retries) {
3726 			ret = true;
3727 			goto out;
3728 		}
3729 	}
3730 
3731 	/*
3732 	 * Compaction failed. Retry with increasing priority.
3733 	 */
3734 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3735 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3736 
3737 	if (*compact_priority > min_priority) {
3738 		(*compact_priority)--;
3739 		*compaction_retries = 0;
3740 		ret = true;
3741 	}
3742 out:
3743 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3744 	return ret;
3745 }
3746 #else
3747 static inline struct page *
3748 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3749 		unsigned int alloc_flags, const struct alloc_context *ac,
3750 		enum compact_priority prio, enum compact_result *compact_result)
3751 {
3752 	*compact_result = COMPACT_SKIPPED;
3753 	return NULL;
3754 }
3755 
3756 static inline bool
3757 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3758 		     enum compact_result compact_result,
3759 		     enum compact_priority *compact_priority,
3760 		     int *compaction_retries)
3761 {
3762 	struct zone *zone;
3763 	struct zoneref *z;
3764 
3765 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3766 		return false;
3767 
3768 	/*
3769 	 * There are setups with compaction disabled which would prefer to loop
3770 	 * inside the allocator rather than hit the oom killer prematurely.
3771 	 * Let's give them a good hope and keep retrying while the order-0
3772 	 * watermarks are OK.
3773 	 */
3774 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3775 				ac->highest_zoneidx, ac->nodemask) {
3776 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3777 					ac->highest_zoneidx, alloc_flags))
3778 			return true;
3779 	}
3780 	return false;
3781 }
3782 #endif /* CONFIG_COMPACTION */
3783 
3784 #ifdef CONFIG_LOCKDEP
3785 static struct lockdep_map __fs_reclaim_map =
3786 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3787 
3788 static bool __need_reclaim(gfp_t gfp_mask)
3789 {
3790 	/* no reclaim without waiting on it */
3791 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3792 		return false;
3793 
3794 	/* this guy won't enter reclaim */
3795 	if (current->flags & PF_MEMALLOC)
3796 		return false;
3797 
3798 	if (gfp_mask & __GFP_NOLOCKDEP)
3799 		return false;
3800 
3801 	return true;
3802 }
3803 
3804 void __fs_reclaim_acquire(unsigned long ip)
3805 {
3806 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3807 }
3808 
3809 void __fs_reclaim_release(unsigned long ip)
3810 {
3811 	lock_release(&__fs_reclaim_map, ip);
3812 }
3813 
3814 void fs_reclaim_acquire(gfp_t gfp_mask)
3815 {
3816 	gfp_mask = current_gfp_context(gfp_mask);
3817 
3818 	if (__need_reclaim(gfp_mask)) {
3819 		if (gfp_mask & __GFP_FS)
3820 			__fs_reclaim_acquire(_RET_IP_);
3821 
3822 #ifdef CONFIG_MMU_NOTIFIER
3823 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3824 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3825 #endif
3826 
3827 	}
3828 }
3829 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3830 
3831 void fs_reclaim_release(gfp_t gfp_mask)
3832 {
3833 	gfp_mask = current_gfp_context(gfp_mask);
3834 
3835 	if (__need_reclaim(gfp_mask)) {
3836 		if (gfp_mask & __GFP_FS)
3837 			__fs_reclaim_release(_RET_IP_);
3838 	}
3839 }
3840 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3841 #endif
3842 
3843 /*
3844  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3845  * have been rebuilt so allocation retries. Reader side does not lock and
3846  * retries the allocation if zonelist changes. Writer side is protected by the
3847  * embedded spin_lock.
3848  */
3849 static DEFINE_SEQLOCK(zonelist_update_seq);
3850 
3851 static unsigned int zonelist_iter_begin(void)
3852 {
3853 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3854 		return read_seqbegin(&zonelist_update_seq);
3855 
3856 	return 0;
3857 }
3858 
3859 static unsigned int check_retry_zonelist(unsigned int seq)
3860 {
3861 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3862 		return read_seqretry(&zonelist_update_seq, seq);
3863 
3864 	return seq;
3865 }
3866 
3867 /* Perform direct synchronous page reclaim */
3868 static unsigned long
3869 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3870 					const struct alloc_context *ac)
3871 {
3872 	unsigned int noreclaim_flag;
3873 	unsigned long progress;
3874 
3875 	cond_resched();
3876 
3877 	/* We now go into synchronous reclaim */
3878 	cpuset_memory_pressure_bump();
3879 	fs_reclaim_acquire(gfp_mask);
3880 	noreclaim_flag = memalloc_noreclaim_save();
3881 
3882 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3883 								ac->nodemask);
3884 
3885 	memalloc_noreclaim_restore(noreclaim_flag);
3886 	fs_reclaim_release(gfp_mask);
3887 
3888 	cond_resched();
3889 
3890 	return progress;
3891 }
3892 
3893 /* The really slow allocator path where we enter direct reclaim */
3894 static inline struct page *
3895 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3896 		unsigned int alloc_flags, const struct alloc_context *ac,
3897 		unsigned long *did_some_progress)
3898 {
3899 	struct page *page = NULL;
3900 	unsigned long pflags;
3901 	bool drained = false;
3902 
3903 	psi_memstall_enter(&pflags);
3904 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3905 	if (unlikely(!(*did_some_progress)))
3906 		goto out;
3907 
3908 retry:
3909 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3910 
3911 	/*
3912 	 * If an allocation failed after direct reclaim, it could be because
3913 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3914 	 * Shrink them and try again
3915 	 */
3916 	if (!page && !drained) {
3917 		unreserve_highatomic_pageblock(ac, false);
3918 		drain_all_pages(NULL);
3919 		drained = true;
3920 		goto retry;
3921 	}
3922 out:
3923 	psi_memstall_leave(&pflags);
3924 
3925 	return page;
3926 }
3927 
3928 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3929 			     const struct alloc_context *ac)
3930 {
3931 	struct zoneref *z;
3932 	struct zone *zone;
3933 	pg_data_t *last_pgdat = NULL;
3934 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3935 
3936 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3937 					ac->nodemask) {
3938 		if (!managed_zone(zone))
3939 			continue;
3940 		if (last_pgdat != zone->zone_pgdat) {
3941 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3942 			last_pgdat = zone->zone_pgdat;
3943 		}
3944 	}
3945 }
3946 
3947 static inline unsigned int
3948 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3949 {
3950 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3951 
3952 	/*
3953 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3954 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3955 	 * to save two branches.
3956 	 */
3957 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3958 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3959 
3960 	/*
3961 	 * The caller may dip into page reserves a bit more if the caller
3962 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3963 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3964 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3965 	 */
3966 	alloc_flags |= (__force int)
3967 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3968 
3969 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3970 		/*
3971 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3972 		 * if it can't schedule.
3973 		 */
3974 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3975 			alloc_flags |= ALLOC_NON_BLOCK;
3976 
3977 			if (order > 0)
3978 				alloc_flags |= ALLOC_HIGHATOMIC;
3979 		}
3980 
3981 		/*
3982 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3983 		 * GFP_ATOMIC) rather than fail, see the comment for
3984 		 * cpuset_node_allowed().
3985 		 */
3986 		if (alloc_flags & ALLOC_MIN_RESERVE)
3987 			alloc_flags &= ~ALLOC_CPUSET;
3988 	} else if (unlikely(rt_task(current)) && in_task())
3989 		alloc_flags |= ALLOC_MIN_RESERVE;
3990 
3991 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3992 
3993 	return alloc_flags;
3994 }
3995 
3996 static bool oom_reserves_allowed(struct task_struct *tsk)
3997 {
3998 	if (!tsk_is_oom_victim(tsk))
3999 		return false;
4000 
4001 	/*
4002 	 * !MMU doesn't have oom reaper so give access to memory reserves
4003 	 * only to the thread with TIF_MEMDIE set
4004 	 */
4005 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4006 		return false;
4007 
4008 	return true;
4009 }
4010 
4011 /*
4012  * Distinguish requests which really need access to full memory
4013  * reserves from oom victims which can live with a portion of it
4014  */
4015 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4016 {
4017 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4018 		return 0;
4019 	if (gfp_mask & __GFP_MEMALLOC)
4020 		return ALLOC_NO_WATERMARKS;
4021 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4022 		return ALLOC_NO_WATERMARKS;
4023 	if (!in_interrupt()) {
4024 		if (current->flags & PF_MEMALLOC)
4025 			return ALLOC_NO_WATERMARKS;
4026 		else if (oom_reserves_allowed(current))
4027 			return ALLOC_OOM;
4028 	}
4029 
4030 	return 0;
4031 }
4032 
4033 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4034 {
4035 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4036 }
4037 
4038 /*
4039  * Checks whether it makes sense to retry the reclaim to make a forward progress
4040  * for the given allocation request.
4041  *
4042  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4043  * without success, or when we couldn't even meet the watermark if we
4044  * reclaimed all remaining pages on the LRU lists.
4045  *
4046  * Returns true if a retry is viable or false to enter the oom path.
4047  */
4048 static inline bool
4049 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4050 		     struct alloc_context *ac, int alloc_flags,
4051 		     bool did_some_progress, int *no_progress_loops)
4052 {
4053 	struct zone *zone;
4054 	struct zoneref *z;
4055 	bool ret = false;
4056 
4057 	/*
4058 	 * Costly allocations might have made a progress but this doesn't mean
4059 	 * their order will become available due to high fragmentation so
4060 	 * always increment the no progress counter for them
4061 	 */
4062 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4063 		*no_progress_loops = 0;
4064 	else
4065 		(*no_progress_loops)++;
4066 
4067 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4068 		goto out;
4069 
4070 
4071 	/*
4072 	 * Keep reclaiming pages while there is a chance this will lead
4073 	 * somewhere.  If none of the target zones can satisfy our allocation
4074 	 * request even if all reclaimable pages are considered then we are
4075 	 * screwed and have to go OOM.
4076 	 */
4077 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4078 				ac->highest_zoneidx, ac->nodemask) {
4079 		unsigned long available;
4080 		unsigned long reclaimable;
4081 		unsigned long min_wmark = min_wmark_pages(zone);
4082 		bool wmark;
4083 
4084 		available = reclaimable = zone_reclaimable_pages(zone);
4085 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4086 
4087 		/*
4088 		 * Would the allocation succeed if we reclaimed all
4089 		 * reclaimable pages?
4090 		 */
4091 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4092 				ac->highest_zoneidx, alloc_flags, available);
4093 		trace_reclaim_retry_zone(z, order, reclaimable,
4094 				available, min_wmark, *no_progress_loops, wmark);
4095 		if (wmark) {
4096 			ret = true;
4097 			break;
4098 		}
4099 	}
4100 
4101 	/*
4102 	 * Memory allocation/reclaim might be called from a WQ context and the
4103 	 * current implementation of the WQ concurrency control doesn't
4104 	 * recognize that a particular WQ is congested if the worker thread is
4105 	 * looping without ever sleeping. Therefore we have to do a short sleep
4106 	 * here rather than calling cond_resched().
4107 	 */
4108 	if (current->flags & PF_WQ_WORKER)
4109 		schedule_timeout_uninterruptible(1);
4110 	else
4111 		cond_resched();
4112 out:
4113 	/* Before OOM, exhaust highatomic_reserve */
4114 	if (!ret)
4115 		return unreserve_highatomic_pageblock(ac, true);
4116 
4117 	return ret;
4118 }
4119 
4120 static inline bool
4121 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4122 {
4123 	/*
4124 	 * It's possible that cpuset's mems_allowed and the nodemask from
4125 	 * mempolicy don't intersect. This should be normally dealt with by
4126 	 * policy_nodemask(), but it's possible to race with cpuset update in
4127 	 * such a way the check therein was true, and then it became false
4128 	 * before we got our cpuset_mems_cookie here.
4129 	 * This assumes that for all allocations, ac->nodemask can come only
4130 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4131 	 * when it does not intersect with the cpuset restrictions) or the
4132 	 * caller can deal with a violated nodemask.
4133 	 */
4134 	if (cpusets_enabled() && ac->nodemask &&
4135 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4136 		ac->nodemask = NULL;
4137 		return true;
4138 	}
4139 
4140 	/*
4141 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4142 	 * possible to race with parallel threads in such a way that our
4143 	 * allocation can fail while the mask is being updated. If we are about
4144 	 * to fail, check if the cpuset changed during allocation and if so,
4145 	 * retry.
4146 	 */
4147 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4148 		return true;
4149 
4150 	return false;
4151 }
4152 
4153 static inline struct page *
4154 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4155 						struct alloc_context *ac)
4156 {
4157 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4158 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4159 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4160 	struct page *page = NULL;
4161 	unsigned int alloc_flags;
4162 	unsigned long did_some_progress;
4163 	enum compact_priority compact_priority;
4164 	enum compact_result compact_result;
4165 	int compaction_retries;
4166 	int no_progress_loops;
4167 	unsigned int cpuset_mems_cookie;
4168 	unsigned int zonelist_iter_cookie;
4169 	int reserve_flags;
4170 
4171 restart:
4172 	compaction_retries = 0;
4173 	no_progress_loops = 0;
4174 	compact_priority = DEF_COMPACT_PRIORITY;
4175 	cpuset_mems_cookie = read_mems_allowed_begin();
4176 	zonelist_iter_cookie = zonelist_iter_begin();
4177 
4178 	/*
4179 	 * The fast path uses conservative alloc_flags to succeed only until
4180 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4181 	 * alloc_flags precisely. So we do that now.
4182 	 */
4183 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4184 
4185 	/*
4186 	 * We need to recalculate the starting point for the zonelist iterator
4187 	 * because we might have used different nodemask in the fast path, or
4188 	 * there was a cpuset modification and we are retrying - otherwise we
4189 	 * could end up iterating over non-eligible zones endlessly.
4190 	 */
4191 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4192 					ac->highest_zoneidx, ac->nodemask);
4193 	if (!ac->preferred_zoneref->zone)
4194 		goto nopage;
4195 
4196 	/*
4197 	 * Check for insane configurations where the cpuset doesn't contain
4198 	 * any suitable zone to satisfy the request - e.g. non-movable
4199 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4200 	 */
4201 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4202 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4203 					ac->highest_zoneidx,
4204 					&cpuset_current_mems_allowed);
4205 		if (!z->zone)
4206 			goto nopage;
4207 	}
4208 
4209 	if (alloc_flags & ALLOC_KSWAPD)
4210 		wake_all_kswapds(order, gfp_mask, ac);
4211 
4212 	/*
4213 	 * The adjusted alloc_flags might result in immediate success, so try
4214 	 * that first
4215 	 */
4216 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4217 	if (page)
4218 		goto got_pg;
4219 
4220 	/*
4221 	 * For costly allocations, try direct compaction first, as it's likely
4222 	 * that we have enough base pages and don't need to reclaim. For non-
4223 	 * movable high-order allocations, do that as well, as compaction will
4224 	 * try prevent permanent fragmentation by migrating from blocks of the
4225 	 * same migratetype.
4226 	 * Don't try this for allocations that are allowed to ignore
4227 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4228 	 */
4229 	if (can_direct_reclaim && can_compact &&
4230 			(costly_order ||
4231 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4232 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4233 		page = __alloc_pages_direct_compact(gfp_mask, order,
4234 						alloc_flags, ac,
4235 						INIT_COMPACT_PRIORITY,
4236 						&compact_result);
4237 		if (page)
4238 			goto got_pg;
4239 
4240 		/*
4241 		 * Checks for costly allocations with __GFP_NORETRY, which
4242 		 * includes some THP page fault allocations
4243 		 */
4244 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4245 			/*
4246 			 * If allocating entire pageblock(s) and compaction
4247 			 * failed because all zones are below low watermarks
4248 			 * or is prohibited because it recently failed at this
4249 			 * order, fail immediately unless the allocator has
4250 			 * requested compaction and reclaim retry.
4251 			 *
4252 			 * Reclaim is
4253 			 *  - potentially very expensive because zones are far
4254 			 *    below their low watermarks or this is part of very
4255 			 *    bursty high order allocations,
4256 			 *  - not guaranteed to help because isolate_freepages()
4257 			 *    may not iterate over freed pages as part of its
4258 			 *    linear scan, and
4259 			 *  - unlikely to make entire pageblocks free on its
4260 			 *    own.
4261 			 */
4262 			if (compact_result == COMPACT_SKIPPED ||
4263 			    compact_result == COMPACT_DEFERRED)
4264 				goto nopage;
4265 
4266 			/*
4267 			 * Looks like reclaim/compaction is worth trying, but
4268 			 * sync compaction could be very expensive, so keep
4269 			 * using async compaction.
4270 			 */
4271 			compact_priority = INIT_COMPACT_PRIORITY;
4272 		}
4273 	}
4274 
4275 retry:
4276 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4277 	if (alloc_flags & ALLOC_KSWAPD)
4278 		wake_all_kswapds(order, gfp_mask, ac);
4279 
4280 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4281 	if (reserve_flags)
4282 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4283 					  (alloc_flags & ALLOC_KSWAPD);
4284 
4285 	/*
4286 	 * Reset the nodemask and zonelist iterators if memory policies can be
4287 	 * ignored. These allocations are high priority and system rather than
4288 	 * user oriented.
4289 	 */
4290 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4291 		ac->nodemask = NULL;
4292 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4293 					ac->highest_zoneidx, ac->nodemask);
4294 	}
4295 
4296 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4297 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4298 	if (page)
4299 		goto got_pg;
4300 
4301 	/* Caller is not willing to reclaim, we can't balance anything */
4302 	if (!can_direct_reclaim)
4303 		goto nopage;
4304 
4305 	/* Avoid recursion of direct reclaim */
4306 	if (current->flags & PF_MEMALLOC)
4307 		goto nopage;
4308 
4309 	/* Try direct reclaim and then allocating */
4310 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4311 							&did_some_progress);
4312 	if (page)
4313 		goto got_pg;
4314 
4315 	/* Try direct compaction and then allocating */
4316 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4317 					compact_priority, &compact_result);
4318 	if (page)
4319 		goto got_pg;
4320 
4321 	/* Do not loop if specifically requested */
4322 	if (gfp_mask & __GFP_NORETRY)
4323 		goto nopage;
4324 
4325 	/*
4326 	 * Do not retry costly high order allocations unless they are
4327 	 * __GFP_RETRY_MAYFAIL and we can compact
4328 	 */
4329 	if (costly_order && (!can_compact ||
4330 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4331 		goto nopage;
4332 
4333 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4334 				 did_some_progress > 0, &no_progress_loops))
4335 		goto retry;
4336 
4337 	/*
4338 	 * It doesn't make any sense to retry for the compaction if the order-0
4339 	 * reclaim is not able to make any progress because the current
4340 	 * implementation of the compaction depends on the sufficient amount
4341 	 * of free memory (see __compaction_suitable)
4342 	 */
4343 	if (did_some_progress > 0 && can_compact &&
4344 			should_compact_retry(ac, order, alloc_flags,
4345 				compact_result, &compact_priority,
4346 				&compaction_retries))
4347 		goto retry;
4348 
4349 
4350 	/*
4351 	 * Deal with possible cpuset update races or zonelist updates to avoid
4352 	 * a unnecessary OOM kill.
4353 	 */
4354 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4355 	    check_retry_zonelist(zonelist_iter_cookie))
4356 		goto restart;
4357 
4358 	/* Reclaim has failed us, start killing things */
4359 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4360 	if (page)
4361 		goto got_pg;
4362 
4363 	/* Avoid allocations with no watermarks from looping endlessly */
4364 	if (tsk_is_oom_victim(current) &&
4365 	    (alloc_flags & ALLOC_OOM ||
4366 	     (gfp_mask & __GFP_NOMEMALLOC)))
4367 		goto nopage;
4368 
4369 	/* Retry as long as the OOM killer is making progress */
4370 	if (did_some_progress) {
4371 		no_progress_loops = 0;
4372 		goto retry;
4373 	}
4374 
4375 nopage:
4376 	/*
4377 	 * Deal with possible cpuset update races or zonelist updates to avoid
4378 	 * a unnecessary OOM kill.
4379 	 */
4380 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4381 	    check_retry_zonelist(zonelist_iter_cookie))
4382 		goto restart;
4383 
4384 	/*
4385 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4386 	 * we always retry
4387 	 */
4388 	if (gfp_mask & __GFP_NOFAIL) {
4389 		/*
4390 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4391 		 * of any new users that actually require GFP_NOWAIT
4392 		 */
4393 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4394 			goto fail;
4395 
4396 		/*
4397 		 * PF_MEMALLOC request from this context is rather bizarre
4398 		 * because we cannot reclaim anything and only can loop waiting
4399 		 * for somebody to do a work for us
4400 		 */
4401 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4402 
4403 		/*
4404 		 * non failing costly orders are a hard requirement which we
4405 		 * are not prepared for much so let's warn about these users
4406 		 * so that we can identify them and convert them to something
4407 		 * else.
4408 		 */
4409 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4410 
4411 		/*
4412 		 * Help non-failing allocations by giving some access to memory
4413 		 * reserves normally used for high priority non-blocking
4414 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4415 		 * could deplete whole memory reserves which would just make
4416 		 * the situation worse.
4417 		 */
4418 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4419 		if (page)
4420 			goto got_pg;
4421 
4422 		cond_resched();
4423 		goto retry;
4424 	}
4425 fail:
4426 	warn_alloc(gfp_mask, ac->nodemask,
4427 			"page allocation failure: order:%u", order);
4428 got_pg:
4429 	return page;
4430 }
4431 
4432 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4433 		int preferred_nid, nodemask_t *nodemask,
4434 		struct alloc_context *ac, gfp_t *alloc_gfp,
4435 		unsigned int *alloc_flags)
4436 {
4437 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4438 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4439 	ac->nodemask = nodemask;
4440 	ac->migratetype = gfp_migratetype(gfp_mask);
4441 
4442 	if (cpusets_enabled()) {
4443 		*alloc_gfp |= __GFP_HARDWALL;
4444 		/*
4445 		 * When we are in the interrupt context, it is irrelevant
4446 		 * to the current task context. It means that any node ok.
4447 		 */
4448 		if (in_task() && !ac->nodemask)
4449 			ac->nodemask = &cpuset_current_mems_allowed;
4450 		else
4451 			*alloc_flags |= ALLOC_CPUSET;
4452 	}
4453 
4454 	might_alloc(gfp_mask);
4455 
4456 	if (should_fail_alloc_page(gfp_mask, order))
4457 		return false;
4458 
4459 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4460 
4461 	/* Dirty zone balancing only done in the fast path */
4462 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4463 
4464 	/*
4465 	 * The preferred zone is used for statistics but crucially it is
4466 	 * also used as the starting point for the zonelist iterator. It
4467 	 * may get reset for allocations that ignore memory policies.
4468 	 */
4469 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4470 					ac->highest_zoneidx, ac->nodemask);
4471 
4472 	return true;
4473 }
4474 
4475 /*
4476  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4477  * @gfp: GFP flags for the allocation
4478  * @preferred_nid: The preferred NUMA node ID to allocate from
4479  * @nodemask: Set of nodes to allocate from, may be NULL
4480  * @nr_pages: The number of pages desired on the list or array
4481  * @page_list: Optional list to store the allocated pages
4482  * @page_array: Optional array to store the pages
4483  *
4484  * This is a batched version of the page allocator that attempts to
4485  * allocate nr_pages quickly. Pages are added to page_list if page_list
4486  * is not NULL, otherwise it is assumed that the page_array is valid.
4487  *
4488  * For lists, nr_pages is the number of pages that should be allocated.
4489  *
4490  * For arrays, only NULL elements are populated with pages and nr_pages
4491  * is the maximum number of pages that will be stored in the array.
4492  *
4493  * Returns the number of pages on the list or array.
4494  */
4495 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4496 			nodemask_t *nodemask, int nr_pages,
4497 			struct list_head *page_list,
4498 			struct page **page_array)
4499 {
4500 	struct page *page;
4501 	unsigned long __maybe_unused UP_flags;
4502 	struct zone *zone;
4503 	struct zoneref *z;
4504 	struct per_cpu_pages *pcp;
4505 	struct list_head *pcp_list;
4506 	struct alloc_context ac;
4507 	gfp_t alloc_gfp;
4508 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4509 	int nr_populated = 0, nr_account = 0;
4510 
4511 	/*
4512 	 * Skip populated array elements to determine if any pages need
4513 	 * to be allocated before disabling IRQs.
4514 	 */
4515 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4516 		nr_populated++;
4517 
4518 	/* No pages requested? */
4519 	if (unlikely(nr_pages <= 0))
4520 		goto out;
4521 
4522 	/* Already populated array? */
4523 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4524 		goto out;
4525 
4526 	/* Bulk allocator does not support memcg accounting. */
4527 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4528 		goto failed;
4529 
4530 	/* Use the single page allocator for one page. */
4531 	if (nr_pages - nr_populated == 1)
4532 		goto failed;
4533 
4534 #ifdef CONFIG_PAGE_OWNER
4535 	/*
4536 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4537 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4538 	 * removes much of the performance benefit of bulk allocation so
4539 	 * force the caller to allocate one page at a time as it'll have
4540 	 * similar performance to added complexity to the bulk allocator.
4541 	 */
4542 	if (static_branch_unlikely(&page_owner_inited))
4543 		goto failed;
4544 #endif
4545 
4546 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4547 	gfp &= gfp_allowed_mask;
4548 	alloc_gfp = gfp;
4549 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4550 		goto out;
4551 	gfp = alloc_gfp;
4552 
4553 	/* Find an allowed local zone that meets the low watermark. */
4554 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4555 		unsigned long mark;
4556 
4557 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4558 		    !__cpuset_zone_allowed(zone, gfp)) {
4559 			continue;
4560 		}
4561 
4562 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4563 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4564 			goto failed;
4565 		}
4566 
4567 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4568 		if (zone_watermark_fast(zone, 0,  mark,
4569 				zonelist_zone_idx(ac.preferred_zoneref),
4570 				alloc_flags, gfp)) {
4571 			break;
4572 		}
4573 	}
4574 
4575 	/*
4576 	 * If there are no allowed local zones that meets the watermarks then
4577 	 * try to allocate a single page and reclaim if necessary.
4578 	 */
4579 	if (unlikely(!zone))
4580 		goto failed;
4581 
4582 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4583 	pcp_trylock_prepare(UP_flags);
4584 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4585 	if (!pcp)
4586 		goto failed_irq;
4587 
4588 	/* Attempt the batch allocation */
4589 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4590 	while (nr_populated < nr_pages) {
4591 
4592 		/* Skip existing pages */
4593 		if (page_array && page_array[nr_populated]) {
4594 			nr_populated++;
4595 			continue;
4596 		}
4597 
4598 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4599 								pcp, pcp_list);
4600 		if (unlikely(!page)) {
4601 			/* Try and allocate at least one page */
4602 			if (!nr_account) {
4603 				pcp_spin_unlock(pcp);
4604 				goto failed_irq;
4605 			}
4606 			break;
4607 		}
4608 		nr_account++;
4609 
4610 		prep_new_page(page, 0, gfp, 0);
4611 		if (page_list)
4612 			list_add(&page->lru, page_list);
4613 		else
4614 			page_array[nr_populated] = page;
4615 		nr_populated++;
4616 	}
4617 
4618 	pcp_spin_unlock(pcp);
4619 	pcp_trylock_finish(UP_flags);
4620 
4621 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4622 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4623 
4624 out:
4625 	return nr_populated;
4626 
4627 failed_irq:
4628 	pcp_trylock_finish(UP_flags);
4629 
4630 failed:
4631 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4632 	if (page) {
4633 		if (page_list)
4634 			list_add(&page->lru, page_list);
4635 		else
4636 			page_array[nr_populated] = page;
4637 		nr_populated++;
4638 	}
4639 
4640 	goto out;
4641 }
4642 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4643 
4644 /*
4645  * This is the 'heart' of the zoned buddy allocator.
4646  */
4647 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4648 				      int preferred_nid, nodemask_t *nodemask)
4649 {
4650 	struct page *page;
4651 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4652 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4653 	struct alloc_context ac = { };
4654 
4655 	/*
4656 	 * There are several places where we assume that the order value is sane
4657 	 * so bail out early if the request is out of bound.
4658 	 */
4659 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4660 		return NULL;
4661 
4662 	gfp &= gfp_allowed_mask;
4663 	/*
4664 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4665 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4666 	 * from a particular context which has been marked by
4667 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4668 	 * movable zones are not used during allocation.
4669 	 */
4670 	gfp = current_gfp_context(gfp);
4671 	alloc_gfp = gfp;
4672 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4673 			&alloc_gfp, &alloc_flags))
4674 		return NULL;
4675 
4676 	/*
4677 	 * Forbid the first pass from falling back to types that fragment
4678 	 * memory until all local zones are considered.
4679 	 */
4680 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4681 
4682 	/* First allocation attempt */
4683 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4684 	if (likely(page))
4685 		goto out;
4686 
4687 	alloc_gfp = gfp;
4688 	ac.spread_dirty_pages = false;
4689 
4690 	/*
4691 	 * Restore the original nodemask if it was potentially replaced with
4692 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4693 	 */
4694 	ac.nodemask = nodemask;
4695 
4696 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4697 
4698 out:
4699 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4700 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4701 		__free_pages(page, order);
4702 		page = NULL;
4703 	}
4704 
4705 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4706 	kmsan_alloc_page(page, order, alloc_gfp);
4707 
4708 	return page;
4709 }
4710 EXPORT_SYMBOL(__alloc_pages_noprof);
4711 
4712 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4713 		nodemask_t *nodemask)
4714 {
4715 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4716 					preferred_nid, nodemask);
4717 	return page_rmappable_folio(page);
4718 }
4719 EXPORT_SYMBOL(__folio_alloc_noprof);
4720 
4721 /*
4722  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4723  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4724  * you need to access high mem.
4725  */
4726 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4727 {
4728 	struct page *page;
4729 
4730 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4731 	if (!page)
4732 		return 0;
4733 	return (unsigned long) page_address(page);
4734 }
4735 EXPORT_SYMBOL(get_free_pages_noprof);
4736 
4737 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4738 {
4739 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4740 }
4741 EXPORT_SYMBOL(get_zeroed_page_noprof);
4742 
4743 /**
4744  * __free_pages - Free pages allocated with alloc_pages().
4745  * @page: The page pointer returned from alloc_pages().
4746  * @order: The order of the allocation.
4747  *
4748  * This function can free multi-page allocations that are not compound
4749  * pages.  It does not check that the @order passed in matches that of
4750  * the allocation, so it is easy to leak memory.  Freeing more memory
4751  * than was allocated will probably emit a warning.
4752  *
4753  * If the last reference to this page is speculative, it will be released
4754  * by put_page() which only frees the first page of a non-compound
4755  * allocation.  To prevent the remaining pages from being leaked, we free
4756  * the subsequent pages here.  If you want to use the page's reference
4757  * count to decide when to free the allocation, you should allocate a
4758  * compound page, and use put_page() instead of __free_pages().
4759  *
4760  * Context: May be called in interrupt context or while holding a normal
4761  * spinlock, but not in NMI context or while holding a raw spinlock.
4762  */
4763 void __free_pages(struct page *page, unsigned int order)
4764 {
4765 	/* get PageHead before we drop reference */
4766 	int head = PageHead(page);
4767 	struct alloc_tag *tag = pgalloc_tag_get(page);
4768 
4769 	if (put_page_testzero(page))
4770 		free_unref_page(page, order);
4771 	else if (!head) {
4772 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4773 		while (order-- > 0)
4774 			free_unref_page(page + (1 << order), order);
4775 	}
4776 }
4777 EXPORT_SYMBOL(__free_pages);
4778 
4779 void free_pages(unsigned long addr, unsigned int order)
4780 {
4781 	if (addr != 0) {
4782 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4783 		__free_pages(virt_to_page((void *)addr), order);
4784 	}
4785 }
4786 
4787 EXPORT_SYMBOL(free_pages);
4788 
4789 /*
4790  * Page Fragment:
4791  *  An arbitrary-length arbitrary-offset area of memory which resides
4792  *  within a 0 or higher order page.  Multiple fragments within that page
4793  *  are individually refcounted, in the page's reference counter.
4794  *
4795  * The page_frag functions below provide a simple allocation framework for
4796  * page fragments.  This is used by the network stack and network device
4797  * drivers to provide a backing region of memory for use as either an
4798  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4799  */
4800 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4801 					     gfp_t gfp_mask)
4802 {
4803 	struct page *page = NULL;
4804 	gfp_t gfp = gfp_mask;
4805 
4806 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4807 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4808 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4809 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4810 				PAGE_FRAG_CACHE_MAX_ORDER);
4811 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4812 #endif
4813 	if (unlikely(!page))
4814 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4815 
4816 	nc->va = page ? page_address(page) : NULL;
4817 
4818 	return page;
4819 }
4820 
4821 void page_frag_cache_drain(struct page_frag_cache *nc)
4822 {
4823 	if (!nc->va)
4824 		return;
4825 
4826 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4827 	nc->va = NULL;
4828 }
4829 EXPORT_SYMBOL(page_frag_cache_drain);
4830 
4831 void __page_frag_cache_drain(struct page *page, unsigned int count)
4832 {
4833 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4834 
4835 	if (page_ref_sub_and_test(page, count))
4836 		free_unref_page(page, compound_order(page));
4837 }
4838 EXPORT_SYMBOL(__page_frag_cache_drain);
4839 
4840 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4841 			      unsigned int fragsz, gfp_t gfp_mask,
4842 			      unsigned int align_mask)
4843 {
4844 	unsigned int size = PAGE_SIZE;
4845 	struct page *page;
4846 	int offset;
4847 
4848 	if (unlikely(!nc->va)) {
4849 refill:
4850 		page = __page_frag_cache_refill(nc, gfp_mask);
4851 		if (!page)
4852 			return NULL;
4853 
4854 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4855 		/* if size can vary use size else just use PAGE_SIZE */
4856 		size = nc->size;
4857 #endif
4858 		/* Even if we own the page, we do not use atomic_set().
4859 		 * This would break get_page_unless_zero() users.
4860 		 */
4861 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4862 
4863 		/* reset page count bias and offset to start of new frag */
4864 		nc->pfmemalloc = page_is_pfmemalloc(page);
4865 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4866 		nc->offset = size;
4867 	}
4868 
4869 	offset = nc->offset - fragsz;
4870 	if (unlikely(offset < 0)) {
4871 		page = virt_to_page(nc->va);
4872 
4873 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4874 			goto refill;
4875 
4876 		if (unlikely(nc->pfmemalloc)) {
4877 			free_unref_page(page, compound_order(page));
4878 			goto refill;
4879 		}
4880 
4881 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4882 		/* if size can vary use size else just use PAGE_SIZE */
4883 		size = nc->size;
4884 #endif
4885 		/* OK, page count is 0, we can safely set it */
4886 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4887 
4888 		/* reset page count bias and offset to start of new frag */
4889 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4890 		offset = size - fragsz;
4891 		if (unlikely(offset < 0)) {
4892 			/*
4893 			 * The caller is trying to allocate a fragment
4894 			 * with fragsz > PAGE_SIZE but the cache isn't big
4895 			 * enough to satisfy the request, this may
4896 			 * happen in low memory conditions.
4897 			 * We don't release the cache page because
4898 			 * it could make memory pressure worse
4899 			 * so we simply return NULL here.
4900 			 */
4901 			return NULL;
4902 		}
4903 	}
4904 
4905 	nc->pagecnt_bias--;
4906 	offset &= align_mask;
4907 	nc->offset = offset;
4908 
4909 	return nc->va + offset;
4910 }
4911 EXPORT_SYMBOL(__page_frag_alloc_align);
4912 
4913 /*
4914  * Frees a page fragment allocated out of either a compound or order 0 page.
4915  */
4916 void page_frag_free(void *addr)
4917 {
4918 	struct page *page = virt_to_head_page(addr);
4919 
4920 	if (unlikely(put_page_testzero(page)))
4921 		free_unref_page(page, compound_order(page));
4922 }
4923 EXPORT_SYMBOL(page_frag_free);
4924 
4925 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4926 		size_t size)
4927 {
4928 	if (addr) {
4929 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4930 		struct page *page = virt_to_page((void *)addr);
4931 		struct page *last = page + nr;
4932 
4933 		split_page_owner(page, order, 0);
4934 		pgalloc_tag_split(page, 1 << order);
4935 		split_page_memcg(page, order, 0);
4936 		while (page < --last)
4937 			set_page_refcounted(last);
4938 
4939 		last = page + (1UL << order);
4940 		for (page += nr; page < last; page++)
4941 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4942 	}
4943 	return (void *)addr;
4944 }
4945 
4946 /**
4947  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4948  * @size: the number of bytes to allocate
4949  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4950  *
4951  * This function is similar to alloc_pages(), except that it allocates the
4952  * minimum number of pages to satisfy the request.  alloc_pages() can only
4953  * allocate memory in power-of-two pages.
4954  *
4955  * This function is also limited by MAX_PAGE_ORDER.
4956  *
4957  * Memory allocated by this function must be released by free_pages_exact().
4958  *
4959  * Return: pointer to the allocated area or %NULL in case of error.
4960  */
4961 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4962 {
4963 	unsigned int order = get_order(size);
4964 	unsigned long addr;
4965 
4966 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4967 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4968 
4969 	addr = get_free_pages_noprof(gfp_mask, order);
4970 	return make_alloc_exact(addr, order, size);
4971 }
4972 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4973 
4974 /**
4975  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4976  *			   pages on a node.
4977  * @nid: the preferred node ID where memory should be allocated
4978  * @size: the number of bytes to allocate
4979  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4980  *
4981  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4982  * back.
4983  *
4984  * Return: pointer to the allocated area or %NULL in case of error.
4985  */
4986 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4987 {
4988 	unsigned int order = get_order(size);
4989 	struct page *p;
4990 
4991 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4992 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4993 
4994 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4995 	if (!p)
4996 		return NULL;
4997 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4998 }
4999 
5000 /**
5001  * free_pages_exact - release memory allocated via alloc_pages_exact()
5002  * @virt: the value returned by alloc_pages_exact.
5003  * @size: size of allocation, same value as passed to alloc_pages_exact().
5004  *
5005  * Release the memory allocated by a previous call to alloc_pages_exact.
5006  */
5007 void free_pages_exact(void *virt, size_t size)
5008 {
5009 	unsigned long addr = (unsigned long)virt;
5010 	unsigned long end = addr + PAGE_ALIGN(size);
5011 
5012 	while (addr < end) {
5013 		free_page(addr);
5014 		addr += PAGE_SIZE;
5015 	}
5016 }
5017 EXPORT_SYMBOL(free_pages_exact);
5018 
5019 /**
5020  * nr_free_zone_pages - count number of pages beyond high watermark
5021  * @offset: The zone index of the highest zone
5022  *
5023  * nr_free_zone_pages() counts the number of pages which are beyond the
5024  * high watermark within all zones at or below a given zone index.  For each
5025  * zone, the number of pages is calculated as:
5026  *
5027  *     nr_free_zone_pages = managed_pages - high_pages
5028  *
5029  * Return: number of pages beyond high watermark.
5030  */
5031 static unsigned long nr_free_zone_pages(int offset)
5032 {
5033 	struct zoneref *z;
5034 	struct zone *zone;
5035 
5036 	/* Just pick one node, since fallback list is circular */
5037 	unsigned long sum = 0;
5038 
5039 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5040 
5041 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5042 		unsigned long size = zone_managed_pages(zone);
5043 		unsigned long high = high_wmark_pages(zone);
5044 		if (size > high)
5045 			sum += size - high;
5046 	}
5047 
5048 	return sum;
5049 }
5050 
5051 /**
5052  * nr_free_buffer_pages - count number of pages beyond high watermark
5053  *
5054  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5055  * watermark within ZONE_DMA and ZONE_NORMAL.
5056  *
5057  * Return: number of pages beyond high watermark within ZONE_DMA and
5058  * ZONE_NORMAL.
5059  */
5060 unsigned long nr_free_buffer_pages(void)
5061 {
5062 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5063 }
5064 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5065 
5066 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5067 {
5068 	zoneref->zone = zone;
5069 	zoneref->zone_idx = zone_idx(zone);
5070 }
5071 
5072 /*
5073  * Builds allocation fallback zone lists.
5074  *
5075  * Add all populated zones of a node to the zonelist.
5076  */
5077 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5078 {
5079 	struct zone *zone;
5080 	enum zone_type zone_type = MAX_NR_ZONES;
5081 	int nr_zones = 0;
5082 
5083 	do {
5084 		zone_type--;
5085 		zone = pgdat->node_zones + zone_type;
5086 		if (populated_zone(zone)) {
5087 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5088 			check_highest_zone(zone_type);
5089 		}
5090 	} while (zone_type);
5091 
5092 	return nr_zones;
5093 }
5094 
5095 #ifdef CONFIG_NUMA
5096 
5097 static int __parse_numa_zonelist_order(char *s)
5098 {
5099 	/*
5100 	 * We used to support different zonelists modes but they turned
5101 	 * out to be just not useful. Let's keep the warning in place
5102 	 * if somebody still use the cmd line parameter so that we do
5103 	 * not fail it silently
5104 	 */
5105 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5106 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5107 		return -EINVAL;
5108 	}
5109 	return 0;
5110 }
5111 
5112 static char numa_zonelist_order[] = "Node";
5113 #define NUMA_ZONELIST_ORDER_LEN	16
5114 /*
5115  * sysctl handler for numa_zonelist_order
5116  */
5117 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5118 		void *buffer, size_t *length, loff_t *ppos)
5119 {
5120 	if (write)
5121 		return __parse_numa_zonelist_order(buffer);
5122 	return proc_dostring(table, write, buffer, length, ppos);
5123 }
5124 
5125 static int node_load[MAX_NUMNODES];
5126 
5127 /**
5128  * find_next_best_node - find the next node that should appear in a given node's fallback list
5129  * @node: node whose fallback list we're appending
5130  * @used_node_mask: nodemask_t of already used nodes
5131  *
5132  * We use a number of factors to determine which is the next node that should
5133  * appear on a given node's fallback list.  The node should not have appeared
5134  * already in @node's fallback list, and it should be the next closest node
5135  * according to the distance array (which contains arbitrary distance values
5136  * from each node to each node in the system), and should also prefer nodes
5137  * with no CPUs, since presumably they'll have very little allocation pressure
5138  * on them otherwise.
5139  *
5140  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5141  */
5142 int find_next_best_node(int node, nodemask_t *used_node_mask)
5143 {
5144 	int n, val;
5145 	int min_val = INT_MAX;
5146 	int best_node = NUMA_NO_NODE;
5147 
5148 	/*
5149 	 * Use the local node if we haven't already, but for memoryless local
5150 	 * node, we should skip it and fall back to other nodes.
5151 	 */
5152 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5153 		node_set(node, *used_node_mask);
5154 		return node;
5155 	}
5156 
5157 	for_each_node_state(n, N_MEMORY) {
5158 
5159 		/* Don't want a node to appear more than once */
5160 		if (node_isset(n, *used_node_mask))
5161 			continue;
5162 
5163 		/* Use the distance array to find the distance */
5164 		val = node_distance(node, n);
5165 
5166 		/* Penalize nodes under us ("prefer the next node") */
5167 		val += (n < node);
5168 
5169 		/* Give preference to headless and unused nodes */
5170 		if (!cpumask_empty(cpumask_of_node(n)))
5171 			val += PENALTY_FOR_NODE_WITH_CPUS;
5172 
5173 		/* Slight preference for less loaded node */
5174 		val *= MAX_NUMNODES;
5175 		val += node_load[n];
5176 
5177 		if (val < min_val) {
5178 			min_val = val;
5179 			best_node = n;
5180 		}
5181 	}
5182 
5183 	if (best_node >= 0)
5184 		node_set(best_node, *used_node_mask);
5185 
5186 	return best_node;
5187 }
5188 
5189 
5190 /*
5191  * Build zonelists ordered by node and zones within node.
5192  * This results in maximum locality--normal zone overflows into local
5193  * DMA zone, if any--but risks exhausting DMA zone.
5194  */
5195 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5196 		unsigned nr_nodes)
5197 {
5198 	struct zoneref *zonerefs;
5199 	int i;
5200 
5201 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5202 
5203 	for (i = 0; i < nr_nodes; i++) {
5204 		int nr_zones;
5205 
5206 		pg_data_t *node = NODE_DATA(node_order[i]);
5207 
5208 		nr_zones = build_zonerefs_node(node, zonerefs);
5209 		zonerefs += nr_zones;
5210 	}
5211 	zonerefs->zone = NULL;
5212 	zonerefs->zone_idx = 0;
5213 }
5214 
5215 /*
5216  * Build gfp_thisnode zonelists
5217  */
5218 static void build_thisnode_zonelists(pg_data_t *pgdat)
5219 {
5220 	struct zoneref *zonerefs;
5221 	int nr_zones;
5222 
5223 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5224 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5225 	zonerefs += nr_zones;
5226 	zonerefs->zone = NULL;
5227 	zonerefs->zone_idx = 0;
5228 }
5229 
5230 /*
5231  * Build zonelists ordered by zone and nodes within zones.
5232  * This results in conserving DMA zone[s] until all Normal memory is
5233  * exhausted, but results in overflowing to remote node while memory
5234  * may still exist in local DMA zone.
5235  */
5236 
5237 static void build_zonelists(pg_data_t *pgdat)
5238 {
5239 	static int node_order[MAX_NUMNODES];
5240 	int node, nr_nodes = 0;
5241 	nodemask_t used_mask = NODE_MASK_NONE;
5242 	int local_node, prev_node;
5243 
5244 	/* NUMA-aware ordering of nodes */
5245 	local_node = pgdat->node_id;
5246 	prev_node = local_node;
5247 
5248 	memset(node_order, 0, sizeof(node_order));
5249 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5250 		/*
5251 		 * We don't want to pressure a particular node.
5252 		 * So adding penalty to the first node in same
5253 		 * distance group to make it round-robin.
5254 		 */
5255 		if (node_distance(local_node, node) !=
5256 		    node_distance(local_node, prev_node))
5257 			node_load[node] += 1;
5258 
5259 		node_order[nr_nodes++] = node;
5260 		prev_node = node;
5261 	}
5262 
5263 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5264 	build_thisnode_zonelists(pgdat);
5265 	pr_info("Fallback order for Node %d: ", local_node);
5266 	for (node = 0; node < nr_nodes; node++)
5267 		pr_cont("%d ", node_order[node]);
5268 	pr_cont("\n");
5269 }
5270 
5271 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5272 /*
5273  * Return node id of node used for "local" allocations.
5274  * I.e., first node id of first zone in arg node's generic zonelist.
5275  * Used for initializing percpu 'numa_mem', which is used primarily
5276  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5277  */
5278 int local_memory_node(int node)
5279 {
5280 	struct zoneref *z;
5281 
5282 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5283 				   gfp_zone(GFP_KERNEL),
5284 				   NULL);
5285 	return zone_to_nid(z->zone);
5286 }
5287 #endif
5288 
5289 static void setup_min_unmapped_ratio(void);
5290 static void setup_min_slab_ratio(void);
5291 #else	/* CONFIG_NUMA */
5292 
5293 static void build_zonelists(pg_data_t *pgdat)
5294 {
5295 	struct zoneref *zonerefs;
5296 	int nr_zones;
5297 
5298 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5299 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5300 	zonerefs += nr_zones;
5301 
5302 	zonerefs->zone = NULL;
5303 	zonerefs->zone_idx = 0;
5304 }
5305 
5306 #endif	/* CONFIG_NUMA */
5307 
5308 /*
5309  * Boot pageset table. One per cpu which is going to be used for all
5310  * zones and all nodes. The parameters will be set in such a way
5311  * that an item put on a list will immediately be handed over to
5312  * the buddy list. This is safe since pageset manipulation is done
5313  * with interrupts disabled.
5314  *
5315  * The boot_pagesets must be kept even after bootup is complete for
5316  * unused processors and/or zones. They do play a role for bootstrapping
5317  * hotplugged processors.
5318  *
5319  * zoneinfo_show() and maybe other functions do
5320  * not check if the processor is online before following the pageset pointer.
5321  * Other parts of the kernel may not check if the zone is available.
5322  */
5323 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5324 /* These effectively disable the pcplists in the boot pageset completely */
5325 #define BOOT_PAGESET_HIGH	0
5326 #define BOOT_PAGESET_BATCH	1
5327 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5328 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5329 
5330 static void __build_all_zonelists(void *data)
5331 {
5332 	int nid;
5333 	int __maybe_unused cpu;
5334 	pg_data_t *self = data;
5335 	unsigned long flags;
5336 
5337 	/*
5338 	 * The zonelist_update_seq must be acquired with irqsave because the
5339 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5340 	 */
5341 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5342 	/*
5343 	 * Also disable synchronous printk() to prevent any printk() from
5344 	 * trying to hold port->lock, for
5345 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5346 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5347 	 */
5348 	printk_deferred_enter();
5349 
5350 #ifdef CONFIG_NUMA
5351 	memset(node_load, 0, sizeof(node_load));
5352 #endif
5353 
5354 	/*
5355 	 * This node is hotadded and no memory is yet present.   So just
5356 	 * building zonelists is fine - no need to touch other nodes.
5357 	 */
5358 	if (self && !node_online(self->node_id)) {
5359 		build_zonelists(self);
5360 	} else {
5361 		/*
5362 		 * All possible nodes have pgdat preallocated
5363 		 * in free_area_init
5364 		 */
5365 		for_each_node(nid) {
5366 			pg_data_t *pgdat = NODE_DATA(nid);
5367 
5368 			build_zonelists(pgdat);
5369 		}
5370 
5371 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5372 		/*
5373 		 * We now know the "local memory node" for each node--
5374 		 * i.e., the node of the first zone in the generic zonelist.
5375 		 * Set up numa_mem percpu variable for on-line cpus.  During
5376 		 * boot, only the boot cpu should be on-line;  we'll init the
5377 		 * secondary cpus' numa_mem as they come on-line.  During
5378 		 * node/memory hotplug, we'll fixup all on-line cpus.
5379 		 */
5380 		for_each_online_cpu(cpu)
5381 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5382 #endif
5383 	}
5384 
5385 	printk_deferred_exit();
5386 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5387 }
5388 
5389 static noinline void __init
5390 build_all_zonelists_init(void)
5391 {
5392 	int cpu;
5393 
5394 	__build_all_zonelists(NULL);
5395 
5396 	/*
5397 	 * Initialize the boot_pagesets that are going to be used
5398 	 * for bootstrapping processors. The real pagesets for
5399 	 * each zone will be allocated later when the per cpu
5400 	 * allocator is available.
5401 	 *
5402 	 * boot_pagesets are used also for bootstrapping offline
5403 	 * cpus if the system is already booted because the pagesets
5404 	 * are needed to initialize allocators on a specific cpu too.
5405 	 * F.e. the percpu allocator needs the page allocator which
5406 	 * needs the percpu allocator in order to allocate its pagesets
5407 	 * (a chicken-egg dilemma).
5408 	 */
5409 	for_each_possible_cpu(cpu)
5410 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5411 
5412 	mminit_verify_zonelist();
5413 	cpuset_init_current_mems_allowed();
5414 }
5415 
5416 /*
5417  * unless system_state == SYSTEM_BOOTING.
5418  *
5419  * __ref due to call of __init annotated helper build_all_zonelists_init
5420  * [protected by SYSTEM_BOOTING].
5421  */
5422 void __ref build_all_zonelists(pg_data_t *pgdat)
5423 {
5424 	unsigned long vm_total_pages;
5425 
5426 	if (system_state == SYSTEM_BOOTING) {
5427 		build_all_zonelists_init();
5428 	} else {
5429 		__build_all_zonelists(pgdat);
5430 		/* cpuset refresh routine should be here */
5431 	}
5432 	/* Get the number of free pages beyond high watermark in all zones. */
5433 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5434 	/*
5435 	 * Disable grouping by mobility if the number of pages in the
5436 	 * system is too low to allow the mechanism to work. It would be
5437 	 * more accurate, but expensive to check per-zone. This check is
5438 	 * made on memory-hotadd so a system can start with mobility
5439 	 * disabled and enable it later
5440 	 */
5441 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5442 		page_group_by_mobility_disabled = 1;
5443 	else
5444 		page_group_by_mobility_disabled = 0;
5445 
5446 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5447 		nr_online_nodes,
5448 		page_group_by_mobility_disabled ? "off" : "on",
5449 		vm_total_pages);
5450 #ifdef CONFIG_NUMA
5451 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5452 #endif
5453 }
5454 
5455 static int zone_batchsize(struct zone *zone)
5456 {
5457 #ifdef CONFIG_MMU
5458 	int batch;
5459 
5460 	/*
5461 	 * The number of pages to batch allocate is either ~0.1%
5462 	 * of the zone or 1MB, whichever is smaller. The batch
5463 	 * size is striking a balance between allocation latency
5464 	 * and zone lock contention.
5465 	 */
5466 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5467 	batch /= 4;		/* We effectively *= 4 below */
5468 	if (batch < 1)
5469 		batch = 1;
5470 
5471 	/*
5472 	 * Clamp the batch to a 2^n - 1 value. Having a power
5473 	 * of 2 value was found to be more likely to have
5474 	 * suboptimal cache aliasing properties in some cases.
5475 	 *
5476 	 * For example if 2 tasks are alternately allocating
5477 	 * batches of pages, one task can end up with a lot
5478 	 * of pages of one half of the possible page colors
5479 	 * and the other with pages of the other colors.
5480 	 */
5481 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5482 
5483 	return batch;
5484 
5485 #else
5486 	/* The deferral and batching of frees should be suppressed under NOMMU
5487 	 * conditions.
5488 	 *
5489 	 * The problem is that NOMMU needs to be able to allocate large chunks
5490 	 * of contiguous memory as there's no hardware page translation to
5491 	 * assemble apparent contiguous memory from discontiguous pages.
5492 	 *
5493 	 * Queueing large contiguous runs of pages for batching, however,
5494 	 * causes the pages to actually be freed in smaller chunks.  As there
5495 	 * can be a significant delay between the individual batches being
5496 	 * recycled, this leads to the once large chunks of space being
5497 	 * fragmented and becoming unavailable for high-order allocations.
5498 	 */
5499 	return 0;
5500 #endif
5501 }
5502 
5503 static int percpu_pagelist_high_fraction;
5504 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5505 			 int high_fraction)
5506 {
5507 #ifdef CONFIG_MMU
5508 	int high;
5509 	int nr_split_cpus;
5510 	unsigned long total_pages;
5511 
5512 	if (!high_fraction) {
5513 		/*
5514 		 * By default, the high value of the pcp is based on the zone
5515 		 * low watermark so that if they are full then background
5516 		 * reclaim will not be started prematurely.
5517 		 */
5518 		total_pages = low_wmark_pages(zone);
5519 	} else {
5520 		/*
5521 		 * If percpu_pagelist_high_fraction is configured, the high
5522 		 * value is based on a fraction of the managed pages in the
5523 		 * zone.
5524 		 */
5525 		total_pages = zone_managed_pages(zone) / high_fraction;
5526 	}
5527 
5528 	/*
5529 	 * Split the high value across all online CPUs local to the zone. Note
5530 	 * that early in boot that CPUs may not be online yet and that during
5531 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5532 	 * onlined. For memory nodes that have no CPUs, split the high value
5533 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5534 	 * prematurely due to pages stored on pcp lists.
5535 	 */
5536 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5537 	if (!nr_split_cpus)
5538 		nr_split_cpus = num_online_cpus();
5539 	high = total_pages / nr_split_cpus;
5540 
5541 	/*
5542 	 * Ensure high is at least batch*4. The multiple is based on the
5543 	 * historical relationship between high and batch.
5544 	 */
5545 	high = max(high, batch << 2);
5546 
5547 	return high;
5548 #else
5549 	return 0;
5550 #endif
5551 }
5552 
5553 /*
5554  * pcp->high and pcp->batch values are related and generally batch is lower
5555  * than high. They are also related to pcp->count such that count is lower
5556  * than high, and as soon as it reaches high, the pcplist is flushed.
5557  *
5558  * However, guaranteeing these relations at all times would require e.g. write
5559  * barriers here but also careful usage of read barriers at the read side, and
5560  * thus be prone to error and bad for performance. Thus the update only prevents
5561  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5562  * should ensure they can cope with those fields changing asynchronously, and
5563  * fully trust only the pcp->count field on the local CPU with interrupts
5564  * disabled.
5565  *
5566  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5567  * outside of boot time (or some other assurance that no concurrent updaters
5568  * exist).
5569  */
5570 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5571 			   unsigned long high_max, unsigned long batch)
5572 {
5573 	WRITE_ONCE(pcp->batch, batch);
5574 	WRITE_ONCE(pcp->high_min, high_min);
5575 	WRITE_ONCE(pcp->high_max, high_max);
5576 }
5577 
5578 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5579 {
5580 	int pindex;
5581 
5582 	memset(pcp, 0, sizeof(*pcp));
5583 	memset(pzstats, 0, sizeof(*pzstats));
5584 
5585 	spin_lock_init(&pcp->lock);
5586 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5587 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5588 
5589 	/*
5590 	 * Set batch and high values safe for a boot pageset. A true percpu
5591 	 * pageset's initialization will update them subsequently. Here we don't
5592 	 * need to be as careful as pageset_update() as nobody can access the
5593 	 * pageset yet.
5594 	 */
5595 	pcp->high_min = BOOT_PAGESET_HIGH;
5596 	pcp->high_max = BOOT_PAGESET_HIGH;
5597 	pcp->batch = BOOT_PAGESET_BATCH;
5598 	pcp->free_count = 0;
5599 }
5600 
5601 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5602 					      unsigned long high_max, unsigned long batch)
5603 {
5604 	struct per_cpu_pages *pcp;
5605 	int cpu;
5606 
5607 	for_each_possible_cpu(cpu) {
5608 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5609 		pageset_update(pcp, high_min, high_max, batch);
5610 	}
5611 }
5612 
5613 /*
5614  * Calculate and set new high and batch values for all per-cpu pagesets of a
5615  * zone based on the zone's size.
5616  */
5617 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5618 {
5619 	int new_high_min, new_high_max, new_batch;
5620 
5621 	new_batch = max(1, zone_batchsize(zone));
5622 	if (percpu_pagelist_high_fraction) {
5623 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5624 					     percpu_pagelist_high_fraction);
5625 		/*
5626 		 * PCP high is tuned manually, disable auto-tuning via
5627 		 * setting high_min and high_max to the manual value.
5628 		 */
5629 		new_high_max = new_high_min;
5630 	} else {
5631 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5632 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5633 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5634 	}
5635 
5636 	if (zone->pageset_high_min == new_high_min &&
5637 	    zone->pageset_high_max == new_high_max &&
5638 	    zone->pageset_batch == new_batch)
5639 		return;
5640 
5641 	zone->pageset_high_min = new_high_min;
5642 	zone->pageset_high_max = new_high_max;
5643 	zone->pageset_batch = new_batch;
5644 
5645 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5646 					  new_batch);
5647 }
5648 
5649 void __meminit setup_zone_pageset(struct zone *zone)
5650 {
5651 	int cpu;
5652 
5653 	/* Size may be 0 on !SMP && !NUMA */
5654 	if (sizeof(struct per_cpu_zonestat) > 0)
5655 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5656 
5657 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5658 	for_each_possible_cpu(cpu) {
5659 		struct per_cpu_pages *pcp;
5660 		struct per_cpu_zonestat *pzstats;
5661 
5662 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5663 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5664 		per_cpu_pages_init(pcp, pzstats);
5665 	}
5666 
5667 	zone_set_pageset_high_and_batch(zone, 0);
5668 }
5669 
5670 /*
5671  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5672  * page high values need to be recalculated.
5673  */
5674 static void zone_pcp_update(struct zone *zone, int cpu_online)
5675 {
5676 	mutex_lock(&pcp_batch_high_lock);
5677 	zone_set_pageset_high_and_batch(zone, cpu_online);
5678 	mutex_unlock(&pcp_batch_high_lock);
5679 }
5680 
5681 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5682 {
5683 	struct per_cpu_pages *pcp;
5684 	struct cpu_cacheinfo *cci;
5685 
5686 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5687 	cci = get_cpu_cacheinfo(cpu);
5688 	/*
5689 	 * If data cache slice of CPU is large enough, "pcp->batch"
5690 	 * pages can be preserved in PCP before draining PCP for
5691 	 * consecutive high-order pages freeing without allocation.
5692 	 * This can reduce zone lock contention without hurting
5693 	 * cache-hot pages sharing.
5694 	 */
5695 	spin_lock(&pcp->lock);
5696 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5697 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5698 	else
5699 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5700 	spin_unlock(&pcp->lock);
5701 }
5702 
5703 void setup_pcp_cacheinfo(unsigned int cpu)
5704 {
5705 	struct zone *zone;
5706 
5707 	for_each_populated_zone(zone)
5708 		zone_pcp_update_cacheinfo(zone, cpu);
5709 }
5710 
5711 /*
5712  * Allocate per cpu pagesets and initialize them.
5713  * Before this call only boot pagesets were available.
5714  */
5715 void __init setup_per_cpu_pageset(void)
5716 {
5717 	struct pglist_data *pgdat;
5718 	struct zone *zone;
5719 	int __maybe_unused cpu;
5720 
5721 	for_each_populated_zone(zone)
5722 		setup_zone_pageset(zone);
5723 
5724 #ifdef CONFIG_NUMA
5725 	/*
5726 	 * Unpopulated zones continue using the boot pagesets.
5727 	 * The numa stats for these pagesets need to be reset.
5728 	 * Otherwise, they will end up skewing the stats of
5729 	 * the nodes these zones are associated with.
5730 	 */
5731 	for_each_possible_cpu(cpu) {
5732 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5733 		memset(pzstats->vm_numa_event, 0,
5734 		       sizeof(pzstats->vm_numa_event));
5735 	}
5736 #endif
5737 
5738 	for_each_online_pgdat(pgdat)
5739 		pgdat->per_cpu_nodestats =
5740 			alloc_percpu(struct per_cpu_nodestat);
5741 }
5742 
5743 __meminit void zone_pcp_init(struct zone *zone)
5744 {
5745 	/*
5746 	 * per cpu subsystem is not up at this point. The following code
5747 	 * relies on the ability of the linker to provide the
5748 	 * offset of a (static) per cpu variable into the per cpu area.
5749 	 */
5750 	zone->per_cpu_pageset = &boot_pageset;
5751 	zone->per_cpu_zonestats = &boot_zonestats;
5752 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5753 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5754 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5755 
5756 	if (populated_zone(zone))
5757 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5758 			 zone->present_pages, zone_batchsize(zone));
5759 }
5760 
5761 void adjust_managed_page_count(struct page *page, long count)
5762 {
5763 	atomic_long_add(count, &page_zone(page)->managed_pages);
5764 	totalram_pages_add(count);
5765 #ifdef CONFIG_HIGHMEM
5766 	if (PageHighMem(page))
5767 		totalhigh_pages_add(count);
5768 #endif
5769 }
5770 EXPORT_SYMBOL(adjust_managed_page_count);
5771 
5772 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5773 {
5774 	void *pos;
5775 	unsigned long pages = 0;
5776 
5777 	start = (void *)PAGE_ALIGN((unsigned long)start);
5778 	end = (void *)((unsigned long)end & PAGE_MASK);
5779 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5780 		struct page *page = virt_to_page(pos);
5781 		void *direct_map_addr;
5782 
5783 		/*
5784 		 * 'direct_map_addr' might be different from 'pos'
5785 		 * because some architectures' virt_to_page()
5786 		 * work with aliases.  Getting the direct map
5787 		 * address ensures that we get a _writeable_
5788 		 * alias for the memset().
5789 		 */
5790 		direct_map_addr = page_address(page);
5791 		/*
5792 		 * Perform a kasan-unchecked memset() since this memory
5793 		 * has not been initialized.
5794 		 */
5795 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5796 		if ((unsigned int)poison <= 0xFF)
5797 			memset(direct_map_addr, poison, PAGE_SIZE);
5798 
5799 		free_reserved_page(page);
5800 	}
5801 
5802 	if (pages && s)
5803 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5804 
5805 	return pages;
5806 }
5807 
5808 static int page_alloc_cpu_dead(unsigned int cpu)
5809 {
5810 	struct zone *zone;
5811 
5812 	lru_add_drain_cpu(cpu);
5813 	mlock_drain_remote(cpu);
5814 	drain_pages(cpu);
5815 
5816 	/*
5817 	 * Spill the event counters of the dead processor
5818 	 * into the current processors event counters.
5819 	 * This artificially elevates the count of the current
5820 	 * processor.
5821 	 */
5822 	vm_events_fold_cpu(cpu);
5823 
5824 	/*
5825 	 * Zero the differential counters of the dead processor
5826 	 * so that the vm statistics are consistent.
5827 	 *
5828 	 * This is only okay since the processor is dead and cannot
5829 	 * race with what we are doing.
5830 	 */
5831 	cpu_vm_stats_fold(cpu);
5832 
5833 	for_each_populated_zone(zone)
5834 		zone_pcp_update(zone, 0);
5835 
5836 	return 0;
5837 }
5838 
5839 static int page_alloc_cpu_online(unsigned int cpu)
5840 {
5841 	struct zone *zone;
5842 
5843 	for_each_populated_zone(zone)
5844 		zone_pcp_update(zone, 1);
5845 	return 0;
5846 }
5847 
5848 void __init page_alloc_init_cpuhp(void)
5849 {
5850 	int ret;
5851 
5852 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5853 					"mm/page_alloc:pcp",
5854 					page_alloc_cpu_online,
5855 					page_alloc_cpu_dead);
5856 	WARN_ON(ret < 0);
5857 }
5858 
5859 /*
5860  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5861  *	or min_free_kbytes changes.
5862  */
5863 static void calculate_totalreserve_pages(void)
5864 {
5865 	struct pglist_data *pgdat;
5866 	unsigned long reserve_pages = 0;
5867 	enum zone_type i, j;
5868 
5869 	for_each_online_pgdat(pgdat) {
5870 
5871 		pgdat->totalreserve_pages = 0;
5872 
5873 		for (i = 0; i < MAX_NR_ZONES; i++) {
5874 			struct zone *zone = pgdat->node_zones + i;
5875 			long max = 0;
5876 			unsigned long managed_pages = zone_managed_pages(zone);
5877 
5878 			/* Find valid and maximum lowmem_reserve in the zone */
5879 			for (j = i; j < MAX_NR_ZONES; j++) {
5880 				if (zone->lowmem_reserve[j] > max)
5881 					max = zone->lowmem_reserve[j];
5882 			}
5883 
5884 			/* we treat the high watermark as reserved pages. */
5885 			max += high_wmark_pages(zone);
5886 
5887 			if (max > managed_pages)
5888 				max = managed_pages;
5889 
5890 			pgdat->totalreserve_pages += max;
5891 
5892 			reserve_pages += max;
5893 		}
5894 	}
5895 	totalreserve_pages = reserve_pages;
5896 }
5897 
5898 /*
5899  * setup_per_zone_lowmem_reserve - called whenever
5900  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5901  *	has a correct pages reserved value, so an adequate number of
5902  *	pages are left in the zone after a successful __alloc_pages().
5903  */
5904 static void setup_per_zone_lowmem_reserve(void)
5905 {
5906 	struct pglist_data *pgdat;
5907 	enum zone_type i, j;
5908 
5909 	for_each_online_pgdat(pgdat) {
5910 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5911 			struct zone *zone = &pgdat->node_zones[i];
5912 			int ratio = sysctl_lowmem_reserve_ratio[i];
5913 			bool clear = !ratio || !zone_managed_pages(zone);
5914 			unsigned long managed_pages = 0;
5915 
5916 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5917 				struct zone *upper_zone = &pgdat->node_zones[j];
5918 				bool empty = !zone_managed_pages(upper_zone);
5919 
5920 				managed_pages += zone_managed_pages(upper_zone);
5921 
5922 				if (clear || empty)
5923 					zone->lowmem_reserve[j] = 0;
5924 				else
5925 					zone->lowmem_reserve[j] = managed_pages / ratio;
5926 			}
5927 		}
5928 	}
5929 
5930 	/* update totalreserve_pages */
5931 	calculate_totalreserve_pages();
5932 }
5933 
5934 static void __setup_per_zone_wmarks(void)
5935 {
5936 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5937 	unsigned long lowmem_pages = 0;
5938 	struct zone *zone;
5939 	unsigned long flags;
5940 
5941 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5942 	for_each_zone(zone) {
5943 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5944 			lowmem_pages += zone_managed_pages(zone);
5945 	}
5946 
5947 	for_each_zone(zone) {
5948 		u64 tmp;
5949 
5950 		spin_lock_irqsave(&zone->lock, flags);
5951 		tmp = (u64)pages_min * zone_managed_pages(zone);
5952 		tmp = div64_ul(tmp, lowmem_pages);
5953 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5954 			/*
5955 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5956 			 * need highmem and movable zones pages, so cap pages_min
5957 			 * to a small  value here.
5958 			 *
5959 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5960 			 * deltas control async page reclaim, and so should
5961 			 * not be capped for highmem and movable zones.
5962 			 */
5963 			unsigned long min_pages;
5964 
5965 			min_pages = zone_managed_pages(zone) / 1024;
5966 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5967 			zone->_watermark[WMARK_MIN] = min_pages;
5968 		} else {
5969 			/*
5970 			 * If it's a lowmem zone, reserve a number of pages
5971 			 * proportionate to the zone's size.
5972 			 */
5973 			zone->_watermark[WMARK_MIN] = tmp;
5974 		}
5975 
5976 		/*
5977 		 * Set the kswapd watermarks distance according to the
5978 		 * scale factor in proportion to available memory, but
5979 		 * ensure a minimum size on small systems.
5980 		 */
5981 		tmp = max_t(u64, tmp >> 2,
5982 			    mult_frac(zone_managed_pages(zone),
5983 				      watermark_scale_factor, 10000));
5984 
5985 		zone->watermark_boost = 0;
5986 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5987 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5988 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5989 
5990 		spin_unlock_irqrestore(&zone->lock, flags);
5991 	}
5992 
5993 	/* update totalreserve_pages */
5994 	calculate_totalreserve_pages();
5995 }
5996 
5997 /**
5998  * setup_per_zone_wmarks - called when min_free_kbytes changes
5999  * or when memory is hot-{added|removed}
6000  *
6001  * Ensures that the watermark[min,low,high] values for each zone are set
6002  * correctly with respect to min_free_kbytes.
6003  */
6004 void setup_per_zone_wmarks(void)
6005 {
6006 	struct zone *zone;
6007 	static DEFINE_SPINLOCK(lock);
6008 
6009 	spin_lock(&lock);
6010 	__setup_per_zone_wmarks();
6011 	spin_unlock(&lock);
6012 
6013 	/*
6014 	 * The watermark size have changed so update the pcpu batch
6015 	 * and high limits or the limits may be inappropriate.
6016 	 */
6017 	for_each_zone(zone)
6018 		zone_pcp_update(zone, 0);
6019 }
6020 
6021 /*
6022  * Initialise min_free_kbytes.
6023  *
6024  * For small machines we want it small (128k min).  For large machines
6025  * we want it large (256MB max).  But it is not linear, because network
6026  * bandwidth does not increase linearly with machine size.  We use
6027  *
6028  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6029  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6030  *
6031  * which yields
6032  *
6033  * 16MB:	512k
6034  * 32MB:	724k
6035  * 64MB:	1024k
6036  * 128MB:	1448k
6037  * 256MB:	2048k
6038  * 512MB:	2896k
6039  * 1024MB:	4096k
6040  * 2048MB:	5792k
6041  * 4096MB:	8192k
6042  * 8192MB:	11584k
6043  * 16384MB:	16384k
6044  */
6045 void calculate_min_free_kbytes(void)
6046 {
6047 	unsigned long lowmem_kbytes;
6048 	int new_min_free_kbytes;
6049 
6050 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6051 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6052 
6053 	if (new_min_free_kbytes > user_min_free_kbytes)
6054 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6055 	else
6056 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6057 				new_min_free_kbytes, user_min_free_kbytes);
6058 
6059 }
6060 
6061 int __meminit init_per_zone_wmark_min(void)
6062 {
6063 	calculate_min_free_kbytes();
6064 	setup_per_zone_wmarks();
6065 	refresh_zone_stat_thresholds();
6066 	setup_per_zone_lowmem_reserve();
6067 
6068 #ifdef CONFIG_NUMA
6069 	setup_min_unmapped_ratio();
6070 	setup_min_slab_ratio();
6071 #endif
6072 
6073 	khugepaged_min_free_kbytes_update();
6074 
6075 	return 0;
6076 }
6077 postcore_initcall(init_per_zone_wmark_min)
6078 
6079 /*
6080  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6081  *	that we can call two helper functions whenever min_free_kbytes
6082  *	changes.
6083  */
6084 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6085 		void *buffer, size_t *length, loff_t *ppos)
6086 {
6087 	int rc;
6088 
6089 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6090 	if (rc)
6091 		return rc;
6092 
6093 	if (write) {
6094 		user_min_free_kbytes = min_free_kbytes;
6095 		setup_per_zone_wmarks();
6096 	}
6097 	return 0;
6098 }
6099 
6100 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6101 		void *buffer, size_t *length, loff_t *ppos)
6102 {
6103 	int rc;
6104 
6105 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6106 	if (rc)
6107 		return rc;
6108 
6109 	if (write)
6110 		setup_per_zone_wmarks();
6111 
6112 	return 0;
6113 }
6114 
6115 #ifdef CONFIG_NUMA
6116 static void setup_min_unmapped_ratio(void)
6117 {
6118 	pg_data_t *pgdat;
6119 	struct zone *zone;
6120 
6121 	for_each_online_pgdat(pgdat)
6122 		pgdat->min_unmapped_pages = 0;
6123 
6124 	for_each_zone(zone)
6125 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6126 						         sysctl_min_unmapped_ratio) / 100;
6127 }
6128 
6129 
6130 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6131 		void *buffer, size_t *length, loff_t *ppos)
6132 {
6133 	int rc;
6134 
6135 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6136 	if (rc)
6137 		return rc;
6138 
6139 	setup_min_unmapped_ratio();
6140 
6141 	return 0;
6142 }
6143 
6144 static void setup_min_slab_ratio(void)
6145 {
6146 	pg_data_t *pgdat;
6147 	struct zone *zone;
6148 
6149 	for_each_online_pgdat(pgdat)
6150 		pgdat->min_slab_pages = 0;
6151 
6152 	for_each_zone(zone)
6153 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6154 						     sysctl_min_slab_ratio) / 100;
6155 }
6156 
6157 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6158 		void *buffer, size_t *length, loff_t *ppos)
6159 {
6160 	int rc;
6161 
6162 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6163 	if (rc)
6164 		return rc;
6165 
6166 	setup_min_slab_ratio();
6167 
6168 	return 0;
6169 }
6170 #endif
6171 
6172 /*
6173  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6174  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6175  *	whenever sysctl_lowmem_reserve_ratio changes.
6176  *
6177  * The reserve ratio obviously has absolutely no relation with the
6178  * minimum watermarks. The lowmem reserve ratio can only make sense
6179  * if in function of the boot time zone sizes.
6180  */
6181 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6182 		int write, void *buffer, size_t *length, loff_t *ppos)
6183 {
6184 	int i;
6185 
6186 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6187 
6188 	for (i = 0; i < MAX_NR_ZONES; i++) {
6189 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6190 			sysctl_lowmem_reserve_ratio[i] = 0;
6191 	}
6192 
6193 	setup_per_zone_lowmem_reserve();
6194 	return 0;
6195 }
6196 
6197 /*
6198  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6199  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6200  * pagelist can have before it gets flushed back to buddy allocator.
6201  */
6202 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6203 		int write, void *buffer, size_t *length, loff_t *ppos)
6204 {
6205 	struct zone *zone;
6206 	int old_percpu_pagelist_high_fraction;
6207 	int ret;
6208 
6209 	mutex_lock(&pcp_batch_high_lock);
6210 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6211 
6212 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6213 	if (!write || ret < 0)
6214 		goto out;
6215 
6216 	/* Sanity checking to avoid pcp imbalance */
6217 	if (percpu_pagelist_high_fraction &&
6218 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6219 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6220 		ret = -EINVAL;
6221 		goto out;
6222 	}
6223 
6224 	/* No change? */
6225 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6226 		goto out;
6227 
6228 	for_each_populated_zone(zone)
6229 		zone_set_pageset_high_and_batch(zone, 0);
6230 out:
6231 	mutex_unlock(&pcp_batch_high_lock);
6232 	return ret;
6233 }
6234 
6235 static struct ctl_table page_alloc_sysctl_table[] = {
6236 	{
6237 		.procname	= "min_free_kbytes",
6238 		.data		= &min_free_kbytes,
6239 		.maxlen		= sizeof(min_free_kbytes),
6240 		.mode		= 0644,
6241 		.proc_handler	= min_free_kbytes_sysctl_handler,
6242 		.extra1		= SYSCTL_ZERO,
6243 	},
6244 	{
6245 		.procname	= "watermark_boost_factor",
6246 		.data		= &watermark_boost_factor,
6247 		.maxlen		= sizeof(watermark_boost_factor),
6248 		.mode		= 0644,
6249 		.proc_handler	= proc_dointvec_minmax,
6250 		.extra1		= SYSCTL_ZERO,
6251 	},
6252 	{
6253 		.procname	= "watermark_scale_factor",
6254 		.data		= &watermark_scale_factor,
6255 		.maxlen		= sizeof(watermark_scale_factor),
6256 		.mode		= 0644,
6257 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6258 		.extra1		= SYSCTL_ONE,
6259 		.extra2		= SYSCTL_THREE_THOUSAND,
6260 	},
6261 	{
6262 		.procname	= "percpu_pagelist_high_fraction",
6263 		.data		= &percpu_pagelist_high_fraction,
6264 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6265 		.mode		= 0644,
6266 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6267 		.extra1		= SYSCTL_ZERO,
6268 	},
6269 	{
6270 		.procname	= "lowmem_reserve_ratio",
6271 		.data		= &sysctl_lowmem_reserve_ratio,
6272 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6273 		.mode		= 0644,
6274 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6275 	},
6276 #ifdef CONFIG_NUMA
6277 	{
6278 		.procname	= "numa_zonelist_order",
6279 		.data		= &numa_zonelist_order,
6280 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6281 		.mode		= 0644,
6282 		.proc_handler	= numa_zonelist_order_handler,
6283 	},
6284 	{
6285 		.procname	= "min_unmapped_ratio",
6286 		.data		= &sysctl_min_unmapped_ratio,
6287 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6288 		.mode		= 0644,
6289 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6290 		.extra1		= SYSCTL_ZERO,
6291 		.extra2		= SYSCTL_ONE_HUNDRED,
6292 	},
6293 	{
6294 		.procname	= "min_slab_ratio",
6295 		.data		= &sysctl_min_slab_ratio,
6296 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6297 		.mode		= 0644,
6298 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6299 		.extra1		= SYSCTL_ZERO,
6300 		.extra2		= SYSCTL_ONE_HUNDRED,
6301 	},
6302 #endif
6303 };
6304 
6305 void __init page_alloc_sysctl_init(void)
6306 {
6307 	register_sysctl_init("vm", page_alloc_sysctl_table);
6308 }
6309 
6310 #ifdef CONFIG_CONTIG_ALLOC
6311 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6312 static void alloc_contig_dump_pages(struct list_head *page_list)
6313 {
6314 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6315 
6316 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6317 		struct page *page;
6318 
6319 		dump_stack();
6320 		list_for_each_entry(page, page_list, lru)
6321 			dump_page(page, "migration failure");
6322 	}
6323 }
6324 
6325 /*
6326  * [start, end) must belong to a single zone.
6327  * @migratetype: using migratetype to filter the type of migration in
6328  *		trace_mm_alloc_contig_migrate_range_info.
6329  */
6330 int __alloc_contig_migrate_range(struct compact_control *cc,
6331 					unsigned long start, unsigned long end,
6332 					int migratetype)
6333 {
6334 	/* This function is based on compact_zone() from compaction.c. */
6335 	unsigned int nr_reclaimed;
6336 	unsigned long pfn = start;
6337 	unsigned int tries = 0;
6338 	int ret = 0;
6339 	struct migration_target_control mtc = {
6340 		.nid = zone_to_nid(cc->zone),
6341 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6342 		.reason = MR_CONTIG_RANGE,
6343 	};
6344 	struct page *page;
6345 	unsigned long total_mapped = 0;
6346 	unsigned long total_migrated = 0;
6347 	unsigned long total_reclaimed = 0;
6348 
6349 	lru_cache_disable();
6350 
6351 	while (pfn < end || !list_empty(&cc->migratepages)) {
6352 		if (fatal_signal_pending(current)) {
6353 			ret = -EINTR;
6354 			break;
6355 		}
6356 
6357 		if (list_empty(&cc->migratepages)) {
6358 			cc->nr_migratepages = 0;
6359 			ret = isolate_migratepages_range(cc, pfn, end);
6360 			if (ret && ret != -EAGAIN)
6361 				break;
6362 			pfn = cc->migrate_pfn;
6363 			tries = 0;
6364 		} else if (++tries == 5) {
6365 			ret = -EBUSY;
6366 			break;
6367 		}
6368 
6369 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6370 							&cc->migratepages);
6371 		cc->nr_migratepages -= nr_reclaimed;
6372 
6373 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6374 			total_reclaimed += nr_reclaimed;
6375 			list_for_each_entry(page, &cc->migratepages, lru) {
6376 				struct folio *folio = page_folio(page);
6377 
6378 				total_mapped += folio_mapped(folio) *
6379 						folio_nr_pages(folio);
6380 			}
6381 		}
6382 
6383 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6384 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6385 
6386 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6387 			total_migrated += cc->nr_migratepages;
6388 
6389 		/*
6390 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6391 		 * to retry again over this error, so do the same here.
6392 		 */
6393 		if (ret == -ENOMEM)
6394 			break;
6395 	}
6396 
6397 	lru_cache_enable();
6398 	if (ret < 0) {
6399 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6400 			alloc_contig_dump_pages(&cc->migratepages);
6401 		putback_movable_pages(&cc->migratepages);
6402 	}
6403 
6404 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6405 						 total_migrated,
6406 						 total_reclaimed,
6407 						 total_mapped);
6408 	return (ret < 0) ? ret : 0;
6409 }
6410 
6411 /**
6412  * alloc_contig_range() -- tries to allocate given range of pages
6413  * @start:	start PFN to allocate
6414  * @end:	one-past-the-last PFN to allocate
6415  * @migratetype:	migratetype of the underlying pageblocks (either
6416  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6417  *			in range must have the same migratetype and it must
6418  *			be either of the two.
6419  * @gfp_mask:	GFP mask to use during compaction
6420  *
6421  * The PFN range does not have to be pageblock aligned. The PFN range must
6422  * belong to a single zone.
6423  *
6424  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6425  * pageblocks in the range.  Once isolated, the pageblocks should not
6426  * be modified by others.
6427  *
6428  * Return: zero on success or negative error code.  On success all
6429  * pages which PFN is in [start, end) are allocated for the caller and
6430  * need to be freed with free_contig_range().
6431  */
6432 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6433 		       unsigned migratetype, gfp_t gfp_mask)
6434 {
6435 	unsigned long outer_start, outer_end;
6436 	int ret = 0;
6437 
6438 	struct compact_control cc = {
6439 		.nr_migratepages = 0,
6440 		.order = -1,
6441 		.zone = page_zone(pfn_to_page(start)),
6442 		.mode = MIGRATE_SYNC,
6443 		.ignore_skip_hint = true,
6444 		.no_set_skip_hint = true,
6445 		.gfp_mask = current_gfp_context(gfp_mask),
6446 		.alloc_contig = true,
6447 	};
6448 	INIT_LIST_HEAD(&cc.migratepages);
6449 
6450 	/*
6451 	 * What we do here is we mark all pageblocks in range as
6452 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6453 	 * have different sizes, and due to the way page allocator
6454 	 * work, start_isolate_page_range() has special handlings for this.
6455 	 *
6456 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6457 	 * migrate the pages from an unaligned range (ie. pages that
6458 	 * we are interested in). This will put all the pages in
6459 	 * range back to page allocator as MIGRATE_ISOLATE.
6460 	 *
6461 	 * When this is done, we take the pages in range from page
6462 	 * allocator removing them from the buddy system.  This way
6463 	 * page allocator will never consider using them.
6464 	 *
6465 	 * This lets us mark the pageblocks back as
6466 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6467 	 * aligned range but not in the unaligned, original range are
6468 	 * put back to page allocator so that buddy can use them.
6469 	 */
6470 
6471 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6472 	if (ret)
6473 		goto done;
6474 
6475 	drain_all_pages(cc.zone);
6476 
6477 	/*
6478 	 * In case of -EBUSY, we'd like to know which page causes problem.
6479 	 * So, just fall through. test_pages_isolated() has a tracepoint
6480 	 * which will report the busy page.
6481 	 *
6482 	 * It is possible that busy pages could become available before
6483 	 * the call to test_pages_isolated, and the range will actually be
6484 	 * allocated.  So, if we fall through be sure to clear ret so that
6485 	 * -EBUSY is not accidentally used or returned to caller.
6486 	 */
6487 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6488 	if (ret && ret != -EBUSY)
6489 		goto done;
6490 	ret = 0;
6491 
6492 	/*
6493 	 * Pages from [start, end) are within a pageblock_nr_pages
6494 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6495 	 * more, all pages in [start, end) are free in page allocator.
6496 	 * What we are going to do is to allocate all pages from
6497 	 * [start, end) (that is remove them from page allocator).
6498 	 *
6499 	 * The only problem is that pages at the beginning and at the
6500 	 * end of interesting range may be not aligned with pages that
6501 	 * page allocator holds, ie. they can be part of higher order
6502 	 * pages.  Because of this, we reserve the bigger range and
6503 	 * once this is done free the pages we are not interested in.
6504 	 *
6505 	 * We don't have to hold zone->lock here because the pages are
6506 	 * isolated thus they won't get removed from buddy.
6507 	 */
6508 	outer_start = find_large_buddy(start);
6509 
6510 	/* Make sure the range is really isolated. */
6511 	if (test_pages_isolated(outer_start, end, 0)) {
6512 		ret = -EBUSY;
6513 		goto done;
6514 	}
6515 
6516 	/* Grab isolated pages from freelists. */
6517 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6518 	if (!outer_end) {
6519 		ret = -EBUSY;
6520 		goto done;
6521 	}
6522 
6523 	/* Free head and tail (if any) */
6524 	if (start != outer_start)
6525 		free_contig_range(outer_start, start - outer_start);
6526 	if (end != outer_end)
6527 		free_contig_range(end, outer_end - end);
6528 
6529 done:
6530 	undo_isolate_page_range(start, end, migratetype);
6531 	return ret;
6532 }
6533 EXPORT_SYMBOL(alloc_contig_range_noprof);
6534 
6535 static int __alloc_contig_pages(unsigned long start_pfn,
6536 				unsigned long nr_pages, gfp_t gfp_mask)
6537 {
6538 	unsigned long end_pfn = start_pfn + nr_pages;
6539 
6540 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6541 				   gfp_mask);
6542 }
6543 
6544 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6545 				   unsigned long nr_pages)
6546 {
6547 	unsigned long i, end_pfn = start_pfn + nr_pages;
6548 	struct page *page;
6549 
6550 	for (i = start_pfn; i < end_pfn; i++) {
6551 		page = pfn_to_online_page(i);
6552 		if (!page)
6553 			return false;
6554 
6555 		if (page_zone(page) != z)
6556 			return false;
6557 
6558 		if (PageReserved(page))
6559 			return false;
6560 
6561 		if (PageHuge(page))
6562 			return false;
6563 	}
6564 	return true;
6565 }
6566 
6567 static bool zone_spans_last_pfn(const struct zone *zone,
6568 				unsigned long start_pfn, unsigned long nr_pages)
6569 {
6570 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6571 
6572 	return zone_spans_pfn(zone, last_pfn);
6573 }
6574 
6575 /**
6576  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6577  * @nr_pages:	Number of contiguous pages to allocate
6578  * @gfp_mask:	GFP mask to limit search and used during compaction
6579  * @nid:	Target node
6580  * @nodemask:	Mask for other possible nodes
6581  *
6582  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6583  * on an applicable zonelist to find a contiguous pfn range which can then be
6584  * tried for allocation with alloc_contig_range(). This routine is intended
6585  * for allocation requests which can not be fulfilled with the buddy allocator.
6586  *
6587  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6588  * power of two, then allocated range is also guaranteed to be aligned to same
6589  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6590  *
6591  * Allocated pages can be freed with free_contig_range() or by manually calling
6592  * __free_page() on each allocated page.
6593  *
6594  * Return: pointer to contiguous pages on success, or NULL if not successful.
6595  */
6596 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6597 				 int nid, nodemask_t *nodemask)
6598 {
6599 	unsigned long ret, pfn, flags;
6600 	struct zonelist *zonelist;
6601 	struct zone *zone;
6602 	struct zoneref *z;
6603 
6604 	zonelist = node_zonelist(nid, gfp_mask);
6605 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6606 					gfp_zone(gfp_mask), nodemask) {
6607 		spin_lock_irqsave(&zone->lock, flags);
6608 
6609 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6610 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6611 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6612 				/*
6613 				 * We release the zone lock here because
6614 				 * alloc_contig_range() will also lock the zone
6615 				 * at some point. If there's an allocation
6616 				 * spinning on this lock, it may win the race
6617 				 * and cause alloc_contig_range() to fail...
6618 				 */
6619 				spin_unlock_irqrestore(&zone->lock, flags);
6620 				ret = __alloc_contig_pages(pfn, nr_pages,
6621 							gfp_mask);
6622 				if (!ret)
6623 					return pfn_to_page(pfn);
6624 				spin_lock_irqsave(&zone->lock, flags);
6625 			}
6626 			pfn += nr_pages;
6627 		}
6628 		spin_unlock_irqrestore(&zone->lock, flags);
6629 	}
6630 	return NULL;
6631 }
6632 #endif /* CONFIG_CONTIG_ALLOC */
6633 
6634 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6635 {
6636 	unsigned long count = 0;
6637 
6638 	for (; nr_pages--; pfn++) {
6639 		struct page *page = pfn_to_page(pfn);
6640 
6641 		count += page_count(page) != 1;
6642 		__free_page(page);
6643 	}
6644 	WARN(count != 0, "%lu pages are still in use!\n", count);
6645 }
6646 EXPORT_SYMBOL(free_contig_range);
6647 
6648 /*
6649  * Effectively disable pcplists for the zone by setting the high limit to 0
6650  * and draining all cpus. A concurrent page freeing on another CPU that's about
6651  * to put the page on pcplist will either finish before the drain and the page
6652  * will be drained, or observe the new high limit and skip the pcplist.
6653  *
6654  * Must be paired with a call to zone_pcp_enable().
6655  */
6656 void zone_pcp_disable(struct zone *zone)
6657 {
6658 	mutex_lock(&pcp_batch_high_lock);
6659 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6660 	__drain_all_pages(zone, true);
6661 }
6662 
6663 void zone_pcp_enable(struct zone *zone)
6664 {
6665 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6666 		zone->pageset_high_max, zone->pageset_batch);
6667 	mutex_unlock(&pcp_batch_high_lock);
6668 }
6669 
6670 void zone_pcp_reset(struct zone *zone)
6671 {
6672 	int cpu;
6673 	struct per_cpu_zonestat *pzstats;
6674 
6675 	if (zone->per_cpu_pageset != &boot_pageset) {
6676 		for_each_online_cpu(cpu) {
6677 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6678 			drain_zonestat(zone, pzstats);
6679 		}
6680 		free_percpu(zone->per_cpu_pageset);
6681 		zone->per_cpu_pageset = &boot_pageset;
6682 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6683 			free_percpu(zone->per_cpu_zonestats);
6684 			zone->per_cpu_zonestats = &boot_zonestats;
6685 		}
6686 	}
6687 }
6688 
6689 #ifdef CONFIG_MEMORY_HOTREMOVE
6690 /*
6691  * All pages in the range must be in a single zone, must not contain holes,
6692  * must span full sections, and must be isolated before calling this function.
6693  */
6694 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6695 {
6696 	unsigned long pfn = start_pfn;
6697 	struct page *page;
6698 	struct zone *zone;
6699 	unsigned int order;
6700 	unsigned long flags;
6701 
6702 	offline_mem_sections(pfn, end_pfn);
6703 	zone = page_zone(pfn_to_page(pfn));
6704 	spin_lock_irqsave(&zone->lock, flags);
6705 	while (pfn < end_pfn) {
6706 		page = pfn_to_page(pfn);
6707 		/*
6708 		 * The HWPoisoned page may be not in buddy system, and
6709 		 * page_count() is not 0.
6710 		 */
6711 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6712 			pfn++;
6713 			continue;
6714 		}
6715 		/*
6716 		 * At this point all remaining PageOffline() pages have a
6717 		 * reference count of 0 and can simply be skipped.
6718 		 */
6719 		if (PageOffline(page)) {
6720 			BUG_ON(page_count(page));
6721 			BUG_ON(PageBuddy(page));
6722 			pfn++;
6723 			continue;
6724 		}
6725 
6726 		BUG_ON(page_count(page));
6727 		BUG_ON(!PageBuddy(page));
6728 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6729 		order = buddy_order(page);
6730 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6731 		pfn += (1 << order);
6732 	}
6733 	spin_unlock_irqrestore(&zone->lock, flags);
6734 }
6735 #endif
6736 
6737 /*
6738  * This function returns a stable result only if called under zone lock.
6739  */
6740 bool is_free_buddy_page(const struct page *page)
6741 {
6742 	unsigned long pfn = page_to_pfn(page);
6743 	unsigned int order;
6744 
6745 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6746 		const struct page *head = page - (pfn & ((1 << order) - 1));
6747 
6748 		if (PageBuddy(head) &&
6749 		    buddy_order_unsafe(head) >= order)
6750 			break;
6751 	}
6752 
6753 	return order <= MAX_PAGE_ORDER;
6754 }
6755 EXPORT_SYMBOL(is_free_buddy_page);
6756 
6757 #ifdef CONFIG_MEMORY_FAILURE
6758 static inline void add_to_free_list(struct page *page, struct zone *zone,
6759 				    unsigned int order, int migratetype,
6760 				    bool tail)
6761 {
6762 	__add_to_free_list(page, zone, order, migratetype, tail);
6763 	account_freepages(zone, 1 << order, migratetype);
6764 }
6765 
6766 /*
6767  * Break down a higher-order page in sub-pages, and keep our target out of
6768  * buddy allocator.
6769  */
6770 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6771 				   struct page *target, int low, int high,
6772 				   int migratetype)
6773 {
6774 	unsigned long size = 1 << high;
6775 	struct page *current_buddy;
6776 
6777 	while (high > low) {
6778 		high--;
6779 		size >>= 1;
6780 
6781 		if (target >= &page[size]) {
6782 			current_buddy = page;
6783 			page = page + size;
6784 		} else {
6785 			current_buddy = page + size;
6786 		}
6787 
6788 		if (set_page_guard(zone, current_buddy, high))
6789 			continue;
6790 
6791 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6792 		set_buddy_order(current_buddy, high);
6793 	}
6794 }
6795 
6796 /*
6797  * Take a page that will be marked as poisoned off the buddy allocator.
6798  */
6799 bool take_page_off_buddy(struct page *page)
6800 {
6801 	struct zone *zone = page_zone(page);
6802 	unsigned long pfn = page_to_pfn(page);
6803 	unsigned long flags;
6804 	unsigned int order;
6805 	bool ret = false;
6806 
6807 	spin_lock_irqsave(&zone->lock, flags);
6808 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6809 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6810 		int page_order = buddy_order(page_head);
6811 
6812 		if (PageBuddy(page_head) && page_order >= order) {
6813 			unsigned long pfn_head = page_to_pfn(page_head);
6814 			int migratetype = get_pfnblock_migratetype(page_head,
6815 								   pfn_head);
6816 
6817 			del_page_from_free_list(page_head, zone, page_order,
6818 						migratetype);
6819 			break_down_buddy_pages(zone, page_head, page, 0,
6820 						page_order, migratetype);
6821 			SetPageHWPoisonTakenOff(page);
6822 			ret = true;
6823 			break;
6824 		}
6825 		if (page_count(page_head) > 0)
6826 			break;
6827 	}
6828 	spin_unlock_irqrestore(&zone->lock, flags);
6829 	return ret;
6830 }
6831 
6832 /*
6833  * Cancel takeoff done by take_page_off_buddy().
6834  */
6835 bool put_page_back_buddy(struct page *page)
6836 {
6837 	struct zone *zone = page_zone(page);
6838 	unsigned long flags;
6839 	bool ret = false;
6840 
6841 	spin_lock_irqsave(&zone->lock, flags);
6842 	if (put_page_testzero(page)) {
6843 		unsigned long pfn = page_to_pfn(page);
6844 		int migratetype = get_pfnblock_migratetype(page, pfn);
6845 
6846 		ClearPageHWPoisonTakenOff(page);
6847 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6848 		if (TestClearPageHWPoison(page)) {
6849 			ret = true;
6850 		}
6851 	}
6852 	spin_unlock_irqrestore(&zone->lock, flags);
6853 
6854 	return ret;
6855 }
6856 #endif
6857 
6858 #ifdef CONFIG_ZONE_DMA
6859 bool has_managed_dma(void)
6860 {
6861 	struct pglist_data *pgdat;
6862 
6863 	for_each_online_pgdat(pgdat) {
6864 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6865 
6866 		if (managed_zone(zone))
6867 			return true;
6868 	}
6869 	return false;
6870 }
6871 #endif /* CONFIG_ZONE_DMA */
6872 
6873 #ifdef CONFIG_UNACCEPTED_MEMORY
6874 
6875 /* Counts number of zones with unaccepted pages. */
6876 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6877 
6878 static bool lazy_accept = true;
6879 
6880 static int __init accept_memory_parse(char *p)
6881 {
6882 	if (!strcmp(p, "lazy")) {
6883 		lazy_accept = true;
6884 		return 0;
6885 	} else if (!strcmp(p, "eager")) {
6886 		lazy_accept = false;
6887 		return 0;
6888 	} else {
6889 		return -EINVAL;
6890 	}
6891 }
6892 early_param("accept_memory", accept_memory_parse);
6893 
6894 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6895 {
6896 	phys_addr_t start = page_to_phys(page);
6897 	phys_addr_t end = start + (PAGE_SIZE << order);
6898 
6899 	return range_contains_unaccepted_memory(start, end);
6900 }
6901 
6902 static void accept_page(struct page *page, unsigned int order)
6903 {
6904 	phys_addr_t start = page_to_phys(page);
6905 
6906 	accept_memory(start, start + (PAGE_SIZE << order));
6907 }
6908 
6909 static bool try_to_accept_memory_one(struct zone *zone)
6910 {
6911 	unsigned long flags;
6912 	struct page *page;
6913 	bool last;
6914 
6915 	if (list_empty(&zone->unaccepted_pages))
6916 		return false;
6917 
6918 	spin_lock_irqsave(&zone->lock, flags);
6919 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6920 					struct page, lru);
6921 	if (!page) {
6922 		spin_unlock_irqrestore(&zone->lock, flags);
6923 		return false;
6924 	}
6925 
6926 	list_del(&page->lru);
6927 	last = list_empty(&zone->unaccepted_pages);
6928 
6929 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6930 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6931 	spin_unlock_irqrestore(&zone->lock, flags);
6932 
6933 	accept_page(page, MAX_PAGE_ORDER);
6934 
6935 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6936 
6937 	if (last)
6938 		static_branch_dec(&zones_with_unaccepted_pages);
6939 
6940 	return true;
6941 }
6942 
6943 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6944 {
6945 	long to_accept;
6946 	int ret = false;
6947 
6948 	/* How much to accept to get to high watermark? */
6949 	to_accept = high_wmark_pages(zone) -
6950 		    (zone_page_state(zone, NR_FREE_PAGES) -
6951 		    __zone_watermark_unusable_free(zone, order, 0));
6952 
6953 	/* Accept at least one page */
6954 	do {
6955 		if (!try_to_accept_memory_one(zone))
6956 			break;
6957 		ret = true;
6958 		to_accept -= MAX_ORDER_NR_PAGES;
6959 	} while (to_accept > 0);
6960 
6961 	return ret;
6962 }
6963 
6964 static inline bool has_unaccepted_memory(void)
6965 {
6966 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6967 }
6968 
6969 static bool __free_unaccepted(struct page *page)
6970 {
6971 	struct zone *zone = page_zone(page);
6972 	unsigned long flags;
6973 	bool first = false;
6974 
6975 	if (!lazy_accept)
6976 		return false;
6977 
6978 	spin_lock_irqsave(&zone->lock, flags);
6979 	first = list_empty(&zone->unaccepted_pages);
6980 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6981 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6982 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6983 	spin_unlock_irqrestore(&zone->lock, flags);
6984 
6985 	if (first)
6986 		static_branch_inc(&zones_with_unaccepted_pages);
6987 
6988 	return true;
6989 }
6990 
6991 #else
6992 
6993 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6994 {
6995 	return false;
6996 }
6997 
6998 static void accept_page(struct page *page, unsigned int order)
6999 {
7000 }
7001 
7002 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
7003 {
7004 	return false;
7005 }
7006 
7007 static inline bool has_unaccepted_memory(void)
7008 {
7009 	return false;
7010 }
7011 
7012 static bool __free_unaccepted(struct page *page)
7013 {
7014 	BUILD_BUG();
7015 	return false;
7016 }
7017 
7018 #endif /* CONFIG_UNACCEPTED_MEMORY */
7019