1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static void accept_page(struct page *page, unsigned int order); 290 static bool cond_accept_memory(struct zone *zone, unsigned int order); 291 static inline bool has_unaccepted_memory(void); 292 static bool __free_unaccepted(struct page *page); 293 294 int page_group_by_mobility_disabled __read_mostly; 295 296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 297 /* 298 * During boot we initialize deferred pages on-demand, as needed, but once 299 * page_alloc_init_late() has finished, the deferred pages are all initialized, 300 * and we can permanently disable that path. 301 */ 302 DEFINE_STATIC_KEY_TRUE(deferred_pages); 303 304 static inline bool deferred_pages_enabled(void) 305 { 306 return static_branch_unlikely(&deferred_pages); 307 } 308 309 /* 310 * deferred_grow_zone() is __init, but it is called from 311 * get_page_from_freelist() during early boot until deferred_pages permanently 312 * disables this call. This is why we have refdata wrapper to avoid warning, 313 * and to ensure that the function body gets unloaded. 314 */ 315 static bool __ref 316 _deferred_grow_zone(struct zone *zone, unsigned int order) 317 { 318 return deferred_grow_zone(zone, order); 319 } 320 #else 321 static inline bool deferred_pages_enabled(void) 322 { 323 return false; 324 } 325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 326 327 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 328 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 329 unsigned long pfn) 330 { 331 #ifdef CONFIG_SPARSEMEM 332 return section_to_usemap(__pfn_to_section(pfn)); 333 #else 334 return page_zone(page)->pageblock_flags; 335 #endif /* CONFIG_SPARSEMEM */ 336 } 337 338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 339 { 340 #ifdef CONFIG_SPARSEMEM 341 pfn &= (PAGES_PER_SECTION-1); 342 #else 343 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 344 #endif /* CONFIG_SPARSEMEM */ 345 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 346 } 347 348 /** 349 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 350 * @page: The page within the block of interest 351 * @pfn: The target page frame number 352 * @mask: mask of bits that the caller is interested in 353 * 354 * Return: pageblock_bits flags 355 */ 356 unsigned long get_pfnblock_flags_mask(const struct page *page, 357 unsigned long pfn, unsigned long mask) 358 { 359 unsigned long *bitmap; 360 unsigned long bitidx, word_bitidx; 361 unsigned long word; 362 363 bitmap = get_pageblock_bitmap(page, pfn); 364 bitidx = pfn_to_bitidx(page, pfn); 365 word_bitidx = bitidx / BITS_PER_LONG; 366 bitidx &= (BITS_PER_LONG-1); 367 /* 368 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 369 * a consistent read of the memory array, so that results, even though 370 * racy, are not corrupted. 371 */ 372 word = READ_ONCE(bitmap[word_bitidx]); 373 return (word >> bitidx) & mask; 374 } 375 376 static __always_inline int get_pfnblock_migratetype(const struct page *page, 377 unsigned long pfn) 378 { 379 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 380 } 381 382 /** 383 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 384 * @page: The page within the block of interest 385 * @flags: The flags to set 386 * @pfn: The target page frame number 387 * @mask: mask of bits that the caller is interested in 388 */ 389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 390 unsigned long pfn, 391 unsigned long mask) 392 { 393 unsigned long *bitmap; 394 unsigned long bitidx, word_bitidx; 395 unsigned long word; 396 397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 398 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 399 400 bitmap = get_pageblock_bitmap(page, pfn); 401 bitidx = pfn_to_bitidx(page, pfn); 402 word_bitidx = bitidx / BITS_PER_LONG; 403 bitidx &= (BITS_PER_LONG-1); 404 405 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 406 407 mask <<= bitidx; 408 flags <<= bitidx; 409 410 word = READ_ONCE(bitmap[word_bitidx]); 411 do { 412 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 413 } 414 415 void set_pageblock_migratetype(struct page *page, int migratetype) 416 { 417 if (unlikely(page_group_by_mobility_disabled && 418 migratetype < MIGRATE_PCPTYPES)) 419 migratetype = MIGRATE_UNMOVABLE; 420 421 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 422 page_to_pfn(page), MIGRATETYPE_MASK); 423 } 424 425 #ifdef CONFIG_DEBUG_VM 426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 427 { 428 int ret; 429 unsigned seq; 430 unsigned long pfn = page_to_pfn(page); 431 unsigned long sp, start_pfn; 432 433 do { 434 seq = zone_span_seqbegin(zone); 435 start_pfn = zone->zone_start_pfn; 436 sp = zone->spanned_pages; 437 ret = !zone_spans_pfn(zone, pfn); 438 } while (zone_span_seqretry(zone, seq)); 439 440 if (ret) 441 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 442 pfn, zone_to_nid(zone), zone->name, 443 start_pfn, start_pfn + sp); 444 445 return ret; 446 } 447 448 /* 449 * Temporary debugging check for pages not lying within a given zone. 450 */ 451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 452 { 453 if (page_outside_zone_boundaries(zone, page)) 454 return true; 455 if (zone != page_zone(page)) 456 return true; 457 458 return false; 459 } 460 #else 461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 462 { 463 return false; 464 } 465 #endif 466 467 static void bad_page(struct page *page, const char *reason) 468 { 469 static unsigned long resume; 470 static unsigned long nr_shown; 471 static unsigned long nr_unshown; 472 473 /* 474 * Allow a burst of 60 reports, then keep quiet for that minute; 475 * or allow a steady drip of one report per second. 476 */ 477 if (nr_shown == 60) { 478 if (time_before(jiffies, resume)) { 479 nr_unshown++; 480 goto out; 481 } 482 if (nr_unshown) { 483 pr_alert( 484 "BUG: Bad page state: %lu messages suppressed\n", 485 nr_unshown); 486 nr_unshown = 0; 487 } 488 nr_shown = 0; 489 } 490 if (nr_shown++ == 0) 491 resume = jiffies + 60 * HZ; 492 493 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 494 current->comm, page_to_pfn(page)); 495 dump_page(page, reason); 496 497 print_modules(); 498 dump_stack(); 499 out: 500 /* Leave bad fields for debug, except PageBuddy could make trouble */ 501 if (PageBuddy(page)) 502 __ClearPageBuddy(page); 503 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 504 } 505 506 static inline unsigned int order_to_pindex(int migratetype, int order) 507 { 508 bool __maybe_unused movable; 509 510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 511 if (order > PAGE_ALLOC_COSTLY_ORDER) { 512 VM_BUG_ON(order != HPAGE_PMD_ORDER); 513 514 movable = migratetype == MIGRATE_MOVABLE; 515 516 return NR_LOWORDER_PCP_LISTS + movable; 517 } 518 #else 519 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 520 #endif 521 522 return (MIGRATE_PCPTYPES * order) + migratetype; 523 } 524 525 static inline int pindex_to_order(unsigned int pindex) 526 { 527 int order = pindex / MIGRATE_PCPTYPES; 528 529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 530 if (pindex >= NR_LOWORDER_PCP_LISTS) 531 order = HPAGE_PMD_ORDER; 532 #else 533 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 534 #endif 535 536 return order; 537 } 538 539 static inline bool pcp_allowed_order(unsigned int order) 540 { 541 if (order <= PAGE_ALLOC_COSTLY_ORDER) 542 return true; 543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 544 if (order == HPAGE_PMD_ORDER) 545 return true; 546 #endif 547 return false; 548 } 549 550 /* 551 * Higher-order pages are called "compound pages". They are structured thusly: 552 * 553 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 554 * 555 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 556 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 557 * 558 * The first tail page's ->compound_order holds the order of allocation. 559 * This usage means that zero-order pages may not be compound. 560 */ 561 562 void prep_compound_page(struct page *page, unsigned int order) 563 { 564 int i; 565 int nr_pages = 1 << order; 566 567 __SetPageHead(page); 568 for (i = 1; i < nr_pages; i++) 569 prep_compound_tail(page, i); 570 571 prep_compound_head(page, order); 572 } 573 574 static inline void set_buddy_order(struct page *page, unsigned int order) 575 { 576 set_page_private(page, order); 577 __SetPageBuddy(page); 578 } 579 580 #ifdef CONFIG_COMPACTION 581 static inline struct capture_control *task_capc(struct zone *zone) 582 { 583 struct capture_control *capc = current->capture_control; 584 585 return unlikely(capc) && 586 !(current->flags & PF_KTHREAD) && 587 !capc->page && 588 capc->cc->zone == zone ? capc : NULL; 589 } 590 591 static inline bool 592 compaction_capture(struct capture_control *capc, struct page *page, 593 int order, int migratetype) 594 { 595 if (!capc || order != capc->cc->order) 596 return false; 597 598 /* Do not accidentally pollute CMA or isolated regions*/ 599 if (is_migrate_cma(migratetype) || 600 is_migrate_isolate(migratetype)) 601 return false; 602 603 /* 604 * Do not let lower order allocations pollute a movable pageblock 605 * unless compaction is also requesting movable pages. 606 * This might let an unmovable request use a reclaimable pageblock 607 * and vice-versa but no more than normal fallback logic which can 608 * have trouble finding a high-order free page. 609 */ 610 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 611 capc->cc->migratetype != MIGRATE_MOVABLE) 612 return false; 613 614 capc->page = page; 615 return true; 616 } 617 618 #else 619 static inline struct capture_control *task_capc(struct zone *zone) 620 { 621 return NULL; 622 } 623 624 static inline bool 625 compaction_capture(struct capture_control *capc, struct page *page, 626 int order, int migratetype) 627 { 628 return false; 629 } 630 #endif /* CONFIG_COMPACTION */ 631 632 static inline void account_freepages(struct zone *zone, int nr_pages, 633 int migratetype) 634 { 635 if (is_migrate_isolate(migratetype)) 636 return; 637 638 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 639 640 if (is_migrate_cma(migratetype)) 641 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 642 } 643 644 /* Used for pages not on another list */ 645 static inline void __add_to_free_list(struct page *page, struct zone *zone, 646 unsigned int order, int migratetype, 647 bool tail) 648 { 649 struct free_area *area = &zone->free_area[order]; 650 651 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 652 "page type is %lu, passed migratetype is %d (nr=%d)\n", 653 get_pageblock_migratetype(page), migratetype, 1 << order); 654 655 if (tail) 656 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 657 else 658 list_add(&page->buddy_list, &area->free_list[migratetype]); 659 area->nr_free++; 660 } 661 662 /* 663 * Used for pages which are on another list. Move the pages to the tail 664 * of the list - so the moved pages won't immediately be considered for 665 * allocation again (e.g., optimization for memory onlining). 666 */ 667 static inline void move_to_free_list(struct page *page, struct zone *zone, 668 unsigned int order, int old_mt, int new_mt) 669 { 670 struct free_area *area = &zone->free_area[order]; 671 672 /* Free page moving can fail, so it happens before the type update */ 673 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 674 "page type is %lu, passed migratetype is %d (nr=%d)\n", 675 get_pageblock_migratetype(page), old_mt, 1 << order); 676 677 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 678 679 account_freepages(zone, -(1 << order), old_mt); 680 account_freepages(zone, 1 << order, new_mt); 681 } 682 683 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 684 unsigned int order, int migratetype) 685 { 686 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 687 "page type is %lu, passed migratetype is %d (nr=%d)\n", 688 get_pageblock_migratetype(page), migratetype, 1 << order); 689 690 /* clear reported state and update reported page count */ 691 if (page_reported(page)) 692 __ClearPageReported(page); 693 694 list_del(&page->buddy_list); 695 __ClearPageBuddy(page); 696 set_page_private(page, 0); 697 zone->free_area[order].nr_free--; 698 } 699 700 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 701 unsigned int order, int migratetype) 702 { 703 __del_page_from_free_list(page, zone, order, migratetype); 704 account_freepages(zone, -(1 << order), migratetype); 705 } 706 707 static inline struct page *get_page_from_free_area(struct free_area *area, 708 int migratetype) 709 { 710 return list_first_entry_or_null(&area->free_list[migratetype], 711 struct page, buddy_list); 712 } 713 714 /* 715 * If this is less than the 2nd largest possible page, check if the buddy 716 * of the next-higher order is free. If it is, it's possible 717 * that pages are being freed that will coalesce soon. In case, 718 * that is happening, add the free page to the tail of the list 719 * so it's less likely to be used soon and more likely to be merged 720 * as a 2-level higher order page 721 */ 722 static inline bool 723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 724 struct page *page, unsigned int order) 725 { 726 unsigned long higher_page_pfn; 727 struct page *higher_page; 728 729 if (order >= MAX_PAGE_ORDER - 1) 730 return false; 731 732 higher_page_pfn = buddy_pfn & pfn; 733 higher_page = page + (higher_page_pfn - pfn); 734 735 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 736 NULL) != NULL; 737 } 738 739 /* 740 * Freeing function for a buddy system allocator. 741 * 742 * The concept of a buddy system is to maintain direct-mapped table 743 * (containing bit values) for memory blocks of various "orders". 744 * The bottom level table contains the map for the smallest allocatable 745 * units of memory (here, pages), and each level above it describes 746 * pairs of units from the levels below, hence, "buddies". 747 * At a high level, all that happens here is marking the table entry 748 * at the bottom level available, and propagating the changes upward 749 * as necessary, plus some accounting needed to play nicely with other 750 * parts of the VM system. 751 * At each level, we keep a list of pages, which are heads of continuous 752 * free pages of length of (1 << order) and marked with PageBuddy. 753 * Page's order is recorded in page_private(page) field. 754 * So when we are allocating or freeing one, we can derive the state of the 755 * other. That is, if we allocate a small block, and both were 756 * free, the remainder of the region must be split into blocks. 757 * If a block is freed, and its buddy is also free, then this 758 * triggers coalescing into a block of larger size. 759 * 760 * -- nyc 761 */ 762 763 static inline void __free_one_page(struct page *page, 764 unsigned long pfn, 765 struct zone *zone, unsigned int order, 766 int migratetype, fpi_t fpi_flags) 767 { 768 struct capture_control *capc = task_capc(zone); 769 unsigned long buddy_pfn = 0; 770 unsigned long combined_pfn; 771 struct page *buddy; 772 bool to_tail; 773 774 VM_BUG_ON(!zone_is_initialized(zone)); 775 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 776 777 VM_BUG_ON(migratetype == -1); 778 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 779 VM_BUG_ON_PAGE(bad_range(zone, page), page); 780 781 account_freepages(zone, 1 << order, migratetype); 782 783 while (order < MAX_PAGE_ORDER) { 784 int buddy_mt = migratetype; 785 786 if (compaction_capture(capc, page, order, migratetype)) { 787 account_freepages(zone, -(1 << order), migratetype); 788 return; 789 } 790 791 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 792 if (!buddy) 793 goto done_merging; 794 795 if (unlikely(order >= pageblock_order)) { 796 /* 797 * We want to prevent merge between freepages on pageblock 798 * without fallbacks and normal pageblock. Without this, 799 * pageblock isolation could cause incorrect freepage or CMA 800 * accounting or HIGHATOMIC accounting. 801 */ 802 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 803 804 if (migratetype != buddy_mt && 805 (!migratetype_is_mergeable(migratetype) || 806 !migratetype_is_mergeable(buddy_mt))) 807 goto done_merging; 808 } 809 810 /* 811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 812 * merge with it and move up one order. 813 */ 814 if (page_is_guard(buddy)) 815 clear_page_guard(zone, buddy, order); 816 else 817 __del_page_from_free_list(buddy, zone, order, buddy_mt); 818 819 if (unlikely(buddy_mt != migratetype)) { 820 /* 821 * Match buddy type. This ensures that an 822 * expand() down the line puts the sub-blocks 823 * on the right freelists. 824 */ 825 set_pageblock_migratetype(buddy, migratetype); 826 } 827 828 combined_pfn = buddy_pfn & pfn; 829 page = page + (combined_pfn - pfn); 830 pfn = combined_pfn; 831 order++; 832 } 833 834 done_merging: 835 set_buddy_order(page, order); 836 837 if (fpi_flags & FPI_TO_TAIL) 838 to_tail = true; 839 else if (is_shuffle_order(order)) 840 to_tail = shuffle_pick_tail(); 841 else 842 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 843 844 __add_to_free_list(page, zone, order, migratetype, to_tail); 845 846 /* Notify page reporting subsystem of freed page */ 847 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 848 page_reporting_notify_free(order); 849 } 850 851 /* 852 * A bad page could be due to a number of fields. Instead of multiple branches, 853 * try and check multiple fields with one check. The caller must do a detailed 854 * check if necessary. 855 */ 856 static inline bool page_expected_state(struct page *page, 857 unsigned long check_flags) 858 { 859 if (unlikely(atomic_read(&page->_mapcount) != -1)) 860 return false; 861 862 if (unlikely((unsigned long)page->mapping | 863 page_ref_count(page) | 864 #ifdef CONFIG_MEMCG 865 page->memcg_data | 866 #endif 867 #ifdef CONFIG_PAGE_POOL 868 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 869 #endif 870 (page->flags & check_flags))) 871 return false; 872 873 return true; 874 } 875 876 static const char *page_bad_reason(struct page *page, unsigned long flags) 877 { 878 const char *bad_reason = NULL; 879 880 if (unlikely(atomic_read(&page->_mapcount) != -1)) 881 bad_reason = "nonzero mapcount"; 882 if (unlikely(page->mapping != NULL)) 883 bad_reason = "non-NULL mapping"; 884 if (unlikely(page_ref_count(page) != 0)) 885 bad_reason = "nonzero _refcount"; 886 if (unlikely(page->flags & flags)) { 887 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 888 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 889 else 890 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 891 } 892 #ifdef CONFIG_MEMCG 893 if (unlikely(page->memcg_data)) 894 bad_reason = "page still charged to cgroup"; 895 #endif 896 #ifdef CONFIG_PAGE_POOL 897 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 898 bad_reason = "page_pool leak"; 899 #endif 900 return bad_reason; 901 } 902 903 static void free_page_is_bad_report(struct page *page) 904 { 905 bad_page(page, 906 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 907 } 908 909 static inline bool free_page_is_bad(struct page *page) 910 { 911 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 912 return false; 913 914 /* Something has gone sideways, find it */ 915 free_page_is_bad_report(page); 916 return true; 917 } 918 919 static inline bool is_check_pages_enabled(void) 920 { 921 return static_branch_unlikely(&check_pages_enabled); 922 } 923 924 static int free_tail_page_prepare(struct page *head_page, struct page *page) 925 { 926 struct folio *folio = (struct folio *)head_page; 927 int ret = 1; 928 929 /* 930 * We rely page->lru.next never has bit 0 set, unless the page 931 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 932 */ 933 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 934 935 if (!is_check_pages_enabled()) { 936 ret = 0; 937 goto out; 938 } 939 switch (page - head_page) { 940 case 1: 941 /* the first tail page: these may be in place of ->mapping */ 942 if (unlikely(folio_entire_mapcount(folio))) { 943 bad_page(page, "nonzero entire_mapcount"); 944 goto out; 945 } 946 if (unlikely(folio_large_mapcount(folio))) { 947 bad_page(page, "nonzero large_mapcount"); 948 goto out; 949 } 950 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 951 bad_page(page, "nonzero nr_pages_mapped"); 952 goto out; 953 } 954 if (unlikely(atomic_read(&folio->_pincount))) { 955 bad_page(page, "nonzero pincount"); 956 goto out; 957 } 958 break; 959 case 2: 960 /* the second tail page: deferred_list overlaps ->mapping */ 961 if (unlikely(!list_empty(&folio->_deferred_list))) { 962 bad_page(page, "on deferred list"); 963 goto out; 964 } 965 break; 966 default: 967 if (page->mapping != TAIL_MAPPING) { 968 bad_page(page, "corrupted mapping in tail page"); 969 goto out; 970 } 971 break; 972 } 973 if (unlikely(!PageTail(page))) { 974 bad_page(page, "PageTail not set"); 975 goto out; 976 } 977 if (unlikely(compound_head(page) != head_page)) { 978 bad_page(page, "compound_head not consistent"); 979 goto out; 980 } 981 ret = 0; 982 out: 983 page->mapping = NULL; 984 clear_compound_head(page); 985 return ret; 986 } 987 988 /* 989 * Skip KASAN memory poisoning when either: 990 * 991 * 1. For generic KASAN: deferred memory initialization has not yet completed. 992 * Tag-based KASAN modes skip pages freed via deferred memory initialization 993 * using page tags instead (see below). 994 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 995 * that error detection is disabled for accesses via the page address. 996 * 997 * Pages will have match-all tags in the following circumstances: 998 * 999 * 1. Pages are being initialized for the first time, including during deferred 1000 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1001 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1002 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1003 * 3. The allocation was excluded from being checked due to sampling, 1004 * see the call to kasan_unpoison_pages. 1005 * 1006 * Poisoning pages during deferred memory init will greatly lengthen the 1007 * process and cause problem in large memory systems as the deferred pages 1008 * initialization is done with interrupt disabled. 1009 * 1010 * Assuming that there will be no reference to those newly initialized 1011 * pages before they are ever allocated, this should have no effect on 1012 * KASAN memory tracking as the poison will be properly inserted at page 1013 * allocation time. The only corner case is when pages are allocated by 1014 * on-demand allocation and then freed again before the deferred pages 1015 * initialization is done, but this is not likely to happen. 1016 */ 1017 static inline bool should_skip_kasan_poison(struct page *page) 1018 { 1019 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1020 return deferred_pages_enabled(); 1021 1022 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1023 } 1024 1025 static void kernel_init_pages(struct page *page, int numpages) 1026 { 1027 int i; 1028 1029 /* s390's use of memset() could override KASAN redzones. */ 1030 kasan_disable_current(); 1031 for (i = 0; i < numpages; i++) 1032 clear_highpage_kasan_tagged(page + i); 1033 kasan_enable_current(); 1034 } 1035 1036 __always_inline bool free_pages_prepare(struct page *page, 1037 unsigned int order) 1038 { 1039 int bad = 0; 1040 bool skip_kasan_poison = should_skip_kasan_poison(page); 1041 bool init = want_init_on_free(); 1042 bool compound = PageCompound(page); 1043 1044 VM_BUG_ON_PAGE(PageTail(page), page); 1045 1046 trace_mm_page_free(page, order); 1047 kmsan_free_page(page, order); 1048 1049 if (memcg_kmem_online() && PageMemcgKmem(page)) 1050 __memcg_kmem_uncharge_page(page, order); 1051 1052 if (unlikely(PageHWPoison(page)) && !order) { 1053 /* Do not let hwpoison pages hit pcplists/buddy */ 1054 reset_page_owner(page, order); 1055 page_table_check_free(page, order); 1056 pgalloc_tag_sub(page, 1 << order); 1057 return false; 1058 } 1059 1060 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1061 1062 /* 1063 * Check tail pages before head page information is cleared to 1064 * avoid checking PageCompound for order-0 pages. 1065 */ 1066 if (unlikely(order)) { 1067 int i; 1068 1069 if (compound) 1070 page[1].flags &= ~PAGE_FLAGS_SECOND; 1071 for (i = 1; i < (1 << order); i++) { 1072 if (compound) 1073 bad += free_tail_page_prepare(page, page + i); 1074 if (is_check_pages_enabled()) { 1075 if (free_page_is_bad(page + i)) { 1076 bad++; 1077 continue; 1078 } 1079 } 1080 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1081 } 1082 } 1083 if (PageMappingFlags(page)) 1084 page->mapping = NULL; 1085 if (is_check_pages_enabled()) { 1086 if (free_page_is_bad(page)) 1087 bad++; 1088 if (bad) 1089 return false; 1090 } 1091 1092 page_cpupid_reset_last(page); 1093 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1094 reset_page_owner(page, order); 1095 page_table_check_free(page, order); 1096 pgalloc_tag_sub(page, 1 << order); 1097 1098 if (!PageHighMem(page)) { 1099 debug_check_no_locks_freed(page_address(page), 1100 PAGE_SIZE << order); 1101 debug_check_no_obj_freed(page_address(page), 1102 PAGE_SIZE << order); 1103 } 1104 1105 kernel_poison_pages(page, 1 << order); 1106 1107 /* 1108 * As memory initialization might be integrated into KASAN, 1109 * KASAN poisoning and memory initialization code must be 1110 * kept together to avoid discrepancies in behavior. 1111 * 1112 * With hardware tag-based KASAN, memory tags must be set before the 1113 * page becomes unavailable via debug_pagealloc or arch_free_page. 1114 */ 1115 if (!skip_kasan_poison) { 1116 kasan_poison_pages(page, order, init); 1117 1118 /* Memory is already initialized if KASAN did it internally. */ 1119 if (kasan_has_integrated_init()) 1120 init = false; 1121 } 1122 if (init) 1123 kernel_init_pages(page, 1 << order); 1124 1125 /* 1126 * arch_free_page() can make the page's contents inaccessible. s390 1127 * does this. So nothing which can access the page's contents should 1128 * happen after this. 1129 */ 1130 arch_free_page(page, order); 1131 1132 debug_pagealloc_unmap_pages(page, 1 << order); 1133 1134 return true; 1135 } 1136 1137 /* 1138 * Frees a number of pages from the PCP lists 1139 * Assumes all pages on list are in same zone. 1140 * count is the number of pages to free. 1141 */ 1142 static void free_pcppages_bulk(struct zone *zone, int count, 1143 struct per_cpu_pages *pcp, 1144 int pindex) 1145 { 1146 unsigned long flags; 1147 unsigned int order; 1148 struct page *page; 1149 1150 /* 1151 * Ensure proper count is passed which otherwise would stuck in the 1152 * below while (list_empty(list)) loop. 1153 */ 1154 count = min(pcp->count, count); 1155 1156 /* Ensure requested pindex is drained first. */ 1157 pindex = pindex - 1; 1158 1159 spin_lock_irqsave(&zone->lock, flags); 1160 1161 while (count > 0) { 1162 struct list_head *list; 1163 int nr_pages; 1164 1165 /* Remove pages from lists in a round-robin fashion. */ 1166 do { 1167 if (++pindex > NR_PCP_LISTS - 1) 1168 pindex = 0; 1169 list = &pcp->lists[pindex]; 1170 } while (list_empty(list)); 1171 1172 order = pindex_to_order(pindex); 1173 nr_pages = 1 << order; 1174 do { 1175 unsigned long pfn; 1176 int mt; 1177 1178 page = list_last_entry(list, struct page, pcp_list); 1179 pfn = page_to_pfn(page); 1180 mt = get_pfnblock_migratetype(page, pfn); 1181 1182 /* must delete to avoid corrupting pcp list */ 1183 list_del(&page->pcp_list); 1184 count -= nr_pages; 1185 pcp->count -= nr_pages; 1186 1187 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1188 trace_mm_page_pcpu_drain(page, order, mt); 1189 } while (count > 0 && !list_empty(list)); 1190 } 1191 1192 spin_unlock_irqrestore(&zone->lock, flags); 1193 } 1194 1195 static void free_one_page(struct zone *zone, struct page *page, 1196 unsigned long pfn, unsigned int order, 1197 fpi_t fpi_flags) 1198 { 1199 unsigned long flags; 1200 int migratetype; 1201 1202 spin_lock_irqsave(&zone->lock, flags); 1203 migratetype = get_pfnblock_migratetype(page, pfn); 1204 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1205 spin_unlock_irqrestore(&zone->lock, flags); 1206 } 1207 1208 static void __free_pages_ok(struct page *page, unsigned int order, 1209 fpi_t fpi_flags) 1210 { 1211 unsigned long pfn = page_to_pfn(page); 1212 struct zone *zone = page_zone(page); 1213 1214 if (!free_pages_prepare(page, order)) 1215 return; 1216 1217 free_one_page(zone, page, pfn, order, fpi_flags); 1218 1219 __count_vm_events(PGFREE, 1 << order); 1220 } 1221 1222 void __meminit __free_pages_core(struct page *page, unsigned int order, 1223 enum meminit_context context) 1224 { 1225 unsigned int nr_pages = 1 << order; 1226 struct page *p = page; 1227 unsigned int loop; 1228 1229 /* 1230 * When initializing the memmap, __init_single_page() sets the refcount 1231 * of all pages to 1 ("allocated"/"not free"). We have to set the 1232 * refcount of all involved pages to 0. 1233 * 1234 * Note that hotplugged memory pages are initialized to PageOffline(). 1235 * Pages freed from memblock might be marked as reserved. 1236 */ 1237 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1238 unlikely(context == MEMINIT_HOTPLUG)) { 1239 for (loop = 0; loop < nr_pages; loop++, p++) { 1240 VM_WARN_ON_ONCE(PageReserved(p)); 1241 __ClearPageOffline(p); 1242 set_page_count(p, 0); 1243 } 1244 1245 /* 1246 * Freeing the page with debug_pagealloc enabled will try to 1247 * unmap it; some archs don't like double-unmappings, so 1248 * map it first. 1249 */ 1250 debug_pagealloc_map_pages(page, nr_pages); 1251 adjust_managed_page_count(page, nr_pages); 1252 } else { 1253 for (loop = 0; loop < nr_pages; loop++, p++) { 1254 __ClearPageReserved(p); 1255 set_page_count(p, 0); 1256 } 1257 1258 /* memblock adjusts totalram_pages() manually. */ 1259 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1260 } 1261 1262 if (page_contains_unaccepted(page, order)) { 1263 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1264 return; 1265 1266 accept_page(page, order); 1267 } 1268 1269 /* 1270 * Bypass PCP and place fresh pages right to the tail, primarily 1271 * relevant for memory onlining. 1272 */ 1273 __free_pages_ok(page, order, FPI_TO_TAIL); 1274 } 1275 1276 /* 1277 * Check that the whole (or subset of) a pageblock given by the interval of 1278 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1279 * with the migration of free compaction scanner. 1280 * 1281 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1282 * 1283 * It's possible on some configurations to have a setup like node0 node1 node0 1284 * i.e. it's possible that all pages within a zones range of pages do not 1285 * belong to a single zone. We assume that a border between node0 and node1 1286 * can occur within a single pageblock, but not a node0 node1 node0 1287 * interleaving within a single pageblock. It is therefore sufficient to check 1288 * the first and last page of a pageblock and avoid checking each individual 1289 * page in a pageblock. 1290 * 1291 * Note: the function may return non-NULL struct page even for a page block 1292 * which contains a memory hole (i.e. there is no physical memory for a subset 1293 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1294 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1295 * even though the start pfn is online and valid. This should be safe most of 1296 * the time because struct pages are still initialized via init_unavailable_range() 1297 * and pfn walkers shouldn't touch any physical memory range for which they do 1298 * not recognize any specific metadata in struct pages. 1299 */ 1300 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1301 unsigned long end_pfn, struct zone *zone) 1302 { 1303 struct page *start_page; 1304 struct page *end_page; 1305 1306 /* end_pfn is one past the range we are checking */ 1307 end_pfn--; 1308 1309 if (!pfn_valid(end_pfn)) 1310 return NULL; 1311 1312 start_page = pfn_to_online_page(start_pfn); 1313 if (!start_page) 1314 return NULL; 1315 1316 if (page_zone(start_page) != zone) 1317 return NULL; 1318 1319 end_page = pfn_to_page(end_pfn); 1320 1321 /* This gives a shorter code than deriving page_zone(end_page) */ 1322 if (page_zone_id(start_page) != page_zone_id(end_page)) 1323 return NULL; 1324 1325 return start_page; 1326 } 1327 1328 /* 1329 * The order of subdivision here is critical for the IO subsystem. 1330 * Please do not alter this order without good reasons and regression 1331 * testing. Specifically, as large blocks of memory are subdivided, 1332 * the order in which smaller blocks are delivered depends on the order 1333 * they're subdivided in this function. This is the primary factor 1334 * influencing the order in which pages are delivered to the IO 1335 * subsystem according to empirical testing, and this is also justified 1336 * by considering the behavior of a buddy system containing a single 1337 * large block of memory acted on by a series of small allocations. 1338 * This behavior is a critical factor in sglist merging's success. 1339 * 1340 * -- nyc 1341 */ 1342 static inline void expand(struct zone *zone, struct page *page, 1343 int low, int high, int migratetype) 1344 { 1345 unsigned long size = 1 << high; 1346 unsigned long nr_added = 0; 1347 1348 while (high > low) { 1349 high--; 1350 size >>= 1; 1351 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1352 1353 /* 1354 * Mark as guard pages (or page), that will allow to 1355 * merge back to allocator when buddy will be freed. 1356 * Corresponding page table entries will not be touched, 1357 * pages will stay not present in virtual address space 1358 */ 1359 if (set_page_guard(zone, &page[size], high)) 1360 continue; 1361 1362 __add_to_free_list(&page[size], zone, high, migratetype, false); 1363 set_buddy_order(&page[size], high); 1364 nr_added += size; 1365 } 1366 account_freepages(zone, nr_added, migratetype); 1367 } 1368 1369 static void check_new_page_bad(struct page *page) 1370 { 1371 if (unlikely(page->flags & __PG_HWPOISON)) { 1372 /* Don't complain about hwpoisoned pages */ 1373 if (PageBuddy(page)) 1374 __ClearPageBuddy(page); 1375 return; 1376 } 1377 1378 bad_page(page, 1379 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1380 } 1381 1382 /* 1383 * This page is about to be returned from the page allocator 1384 */ 1385 static bool check_new_page(struct page *page) 1386 { 1387 if (likely(page_expected_state(page, 1388 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1389 return false; 1390 1391 check_new_page_bad(page); 1392 return true; 1393 } 1394 1395 static inline bool check_new_pages(struct page *page, unsigned int order) 1396 { 1397 if (is_check_pages_enabled()) { 1398 for (int i = 0; i < (1 << order); i++) { 1399 struct page *p = page + i; 1400 1401 if (check_new_page(p)) 1402 return true; 1403 } 1404 } 1405 1406 return false; 1407 } 1408 1409 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1410 { 1411 /* Don't skip if a software KASAN mode is enabled. */ 1412 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1413 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1414 return false; 1415 1416 /* Skip, if hardware tag-based KASAN is not enabled. */ 1417 if (!kasan_hw_tags_enabled()) 1418 return true; 1419 1420 /* 1421 * With hardware tag-based KASAN enabled, skip if this has been 1422 * requested via __GFP_SKIP_KASAN. 1423 */ 1424 return flags & __GFP_SKIP_KASAN; 1425 } 1426 1427 static inline bool should_skip_init(gfp_t flags) 1428 { 1429 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1430 if (!kasan_hw_tags_enabled()) 1431 return false; 1432 1433 /* For hardware tag-based KASAN, skip if requested. */ 1434 return (flags & __GFP_SKIP_ZERO); 1435 } 1436 1437 inline void post_alloc_hook(struct page *page, unsigned int order, 1438 gfp_t gfp_flags) 1439 { 1440 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1441 !should_skip_init(gfp_flags); 1442 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1443 int i; 1444 1445 set_page_private(page, 0); 1446 set_page_refcounted(page); 1447 1448 arch_alloc_page(page, order); 1449 debug_pagealloc_map_pages(page, 1 << order); 1450 1451 /* 1452 * Page unpoisoning must happen before memory initialization. 1453 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1454 * allocations and the page unpoisoning code will complain. 1455 */ 1456 kernel_unpoison_pages(page, 1 << order); 1457 1458 /* 1459 * As memory initialization might be integrated into KASAN, 1460 * KASAN unpoisoning and memory initializion code must be 1461 * kept together to avoid discrepancies in behavior. 1462 */ 1463 1464 /* 1465 * If memory tags should be zeroed 1466 * (which happens only when memory should be initialized as well). 1467 */ 1468 if (zero_tags) { 1469 /* Initialize both memory and memory tags. */ 1470 for (i = 0; i != 1 << order; ++i) 1471 tag_clear_highpage(page + i); 1472 1473 /* Take note that memory was initialized by the loop above. */ 1474 init = false; 1475 } 1476 if (!should_skip_kasan_unpoison(gfp_flags) && 1477 kasan_unpoison_pages(page, order, init)) { 1478 /* Take note that memory was initialized by KASAN. */ 1479 if (kasan_has_integrated_init()) 1480 init = false; 1481 } else { 1482 /* 1483 * If memory tags have not been set by KASAN, reset the page 1484 * tags to ensure page_address() dereferencing does not fault. 1485 */ 1486 for (i = 0; i != 1 << order; ++i) 1487 page_kasan_tag_reset(page + i); 1488 } 1489 /* If memory is still not initialized, initialize it now. */ 1490 if (init) 1491 kernel_init_pages(page, 1 << order); 1492 1493 set_page_owner(page, order, gfp_flags); 1494 page_table_check_alloc(page, order); 1495 pgalloc_tag_add(page, current, 1 << order); 1496 } 1497 1498 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1499 unsigned int alloc_flags) 1500 { 1501 post_alloc_hook(page, order, gfp_flags); 1502 1503 if (order && (gfp_flags & __GFP_COMP)) 1504 prep_compound_page(page, order); 1505 1506 /* 1507 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1508 * allocate the page. The expectation is that the caller is taking 1509 * steps that will free more memory. The caller should avoid the page 1510 * being used for !PFMEMALLOC purposes. 1511 */ 1512 if (alloc_flags & ALLOC_NO_WATERMARKS) 1513 set_page_pfmemalloc(page); 1514 else 1515 clear_page_pfmemalloc(page); 1516 } 1517 1518 /* 1519 * Go through the free lists for the given migratetype and remove 1520 * the smallest available page from the freelists 1521 */ 1522 static __always_inline 1523 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1524 int migratetype) 1525 { 1526 unsigned int current_order; 1527 struct free_area *area; 1528 struct page *page; 1529 1530 /* Find a page of the appropriate size in the preferred list */ 1531 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1532 area = &(zone->free_area[current_order]); 1533 page = get_page_from_free_area(area, migratetype); 1534 if (!page) 1535 continue; 1536 del_page_from_free_list(page, zone, current_order, migratetype); 1537 expand(zone, page, order, current_order, migratetype); 1538 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1539 pcp_allowed_order(order) && 1540 migratetype < MIGRATE_PCPTYPES); 1541 return page; 1542 } 1543 1544 return NULL; 1545 } 1546 1547 1548 /* 1549 * This array describes the order lists are fallen back to when 1550 * the free lists for the desirable migrate type are depleted 1551 * 1552 * The other migratetypes do not have fallbacks. 1553 */ 1554 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1555 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1556 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1557 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1558 }; 1559 1560 #ifdef CONFIG_CMA 1561 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1562 unsigned int order) 1563 { 1564 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1565 } 1566 #else 1567 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1568 unsigned int order) { return NULL; } 1569 #endif 1570 1571 /* 1572 * Change the type of a block and move all its free pages to that 1573 * type's freelist. 1574 */ 1575 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1576 int old_mt, int new_mt) 1577 { 1578 struct page *page; 1579 unsigned long pfn, end_pfn; 1580 unsigned int order; 1581 int pages_moved = 0; 1582 1583 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1584 end_pfn = pageblock_end_pfn(start_pfn); 1585 1586 for (pfn = start_pfn; pfn < end_pfn;) { 1587 page = pfn_to_page(pfn); 1588 if (!PageBuddy(page)) { 1589 pfn++; 1590 continue; 1591 } 1592 1593 /* Make sure we are not inadvertently changing nodes */ 1594 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1595 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1596 1597 order = buddy_order(page); 1598 1599 move_to_free_list(page, zone, order, old_mt, new_mt); 1600 1601 pfn += 1 << order; 1602 pages_moved += 1 << order; 1603 } 1604 1605 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1606 1607 return pages_moved; 1608 } 1609 1610 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1611 unsigned long *start_pfn, 1612 int *num_free, int *num_movable) 1613 { 1614 unsigned long pfn, start, end; 1615 1616 pfn = page_to_pfn(page); 1617 start = pageblock_start_pfn(pfn); 1618 end = pageblock_end_pfn(pfn); 1619 1620 /* 1621 * The caller only has the lock for @zone, don't touch ranges 1622 * that straddle into other zones. While we could move part of 1623 * the range that's inside the zone, this call is usually 1624 * accompanied by other operations such as migratetype updates 1625 * which also should be locked. 1626 */ 1627 if (!zone_spans_pfn(zone, start)) 1628 return false; 1629 if (!zone_spans_pfn(zone, end - 1)) 1630 return false; 1631 1632 *start_pfn = start; 1633 1634 if (num_free) { 1635 *num_free = 0; 1636 *num_movable = 0; 1637 for (pfn = start; pfn < end;) { 1638 page = pfn_to_page(pfn); 1639 if (PageBuddy(page)) { 1640 int nr = 1 << buddy_order(page); 1641 1642 *num_free += nr; 1643 pfn += nr; 1644 continue; 1645 } 1646 /* 1647 * We assume that pages that could be isolated for 1648 * migration are movable. But we don't actually try 1649 * isolating, as that would be expensive. 1650 */ 1651 if (PageLRU(page) || __PageMovable(page)) 1652 (*num_movable)++; 1653 pfn++; 1654 } 1655 } 1656 1657 return true; 1658 } 1659 1660 static int move_freepages_block(struct zone *zone, struct page *page, 1661 int old_mt, int new_mt) 1662 { 1663 unsigned long start_pfn; 1664 1665 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1666 return -1; 1667 1668 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1669 } 1670 1671 #ifdef CONFIG_MEMORY_ISOLATION 1672 /* Look for a buddy that straddles start_pfn */ 1673 static unsigned long find_large_buddy(unsigned long start_pfn) 1674 { 1675 int order = 0; 1676 struct page *page; 1677 unsigned long pfn = start_pfn; 1678 1679 while (!PageBuddy(page = pfn_to_page(pfn))) { 1680 /* Nothing found */ 1681 if (++order > MAX_PAGE_ORDER) 1682 return start_pfn; 1683 pfn &= ~0UL << order; 1684 } 1685 1686 /* 1687 * Found a preceding buddy, but does it straddle? 1688 */ 1689 if (pfn + (1 << buddy_order(page)) > start_pfn) 1690 return pfn; 1691 1692 /* Nothing found */ 1693 return start_pfn; 1694 } 1695 1696 /* Split a multi-block free page into its individual pageblocks */ 1697 static void split_large_buddy(struct zone *zone, struct page *page, 1698 unsigned long pfn, int order) 1699 { 1700 unsigned long end_pfn = pfn + (1 << order); 1701 1702 VM_WARN_ON_ONCE(order <= pageblock_order); 1703 VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1)); 1704 1705 /* Caller removed page from freelist, buddy info cleared! */ 1706 VM_WARN_ON_ONCE(PageBuddy(page)); 1707 1708 while (pfn != end_pfn) { 1709 int mt = get_pfnblock_migratetype(page, pfn); 1710 1711 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE); 1712 pfn += pageblock_nr_pages; 1713 page = pfn_to_page(pfn); 1714 } 1715 } 1716 1717 /** 1718 * move_freepages_block_isolate - move free pages in block for page isolation 1719 * @zone: the zone 1720 * @page: the pageblock page 1721 * @migratetype: migratetype to set on the pageblock 1722 * 1723 * This is similar to move_freepages_block(), but handles the special 1724 * case encountered in page isolation, where the block of interest 1725 * might be part of a larger buddy spanning multiple pageblocks. 1726 * 1727 * Unlike the regular page allocator path, which moves pages while 1728 * stealing buddies off the freelist, page isolation is interested in 1729 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1730 * 1731 * This function handles that. Straddling buddies are split into 1732 * individual pageblocks. Only the block of interest is moved. 1733 * 1734 * Returns %true if pages could be moved, %false otherwise. 1735 */ 1736 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1737 int migratetype) 1738 { 1739 unsigned long start_pfn, pfn; 1740 1741 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1742 return false; 1743 1744 /* No splits needed if buddies can't span multiple blocks */ 1745 if (pageblock_order == MAX_PAGE_ORDER) 1746 goto move; 1747 1748 /* We're a tail block in a larger buddy */ 1749 pfn = find_large_buddy(start_pfn); 1750 if (pfn != start_pfn) { 1751 struct page *buddy = pfn_to_page(pfn); 1752 int order = buddy_order(buddy); 1753 1754 del_page_from_free_list(buddy, zone, order, 1755 get_pfnblock_migratetype(buddy, pfn)); 1756 set_pageblock_migratetype(page, migratetype); 1757 split_large_buddy(zone, buddy, pfn, order); 1758 return true; 1759 } 1760 1761 /* We're the starting block of a larger buddy */ 1762 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1763 int order = buddy_order(page); 1764 1765 del_page_from_free_list(page, zone, order, 1766 get_pfnblock_migratetype(page, pfn)); 1767 set_pageblock_migratetype(page, migratetype); 1768 split_large_buddy(zone, page, pfn, order); 1769 return true; 1770 } 1771 move: 1772 __move_freepages_block(zone, start_pfn, 1773 get_pfnblock_migratetype(page, start_pfn), 1774 migratetype); 1775 return true; 1776 } 1777 #endif /* CONFIG_MEMORY_ISOLATION */ 1778 1779 static void change_pageblock_range(struct page *pageblock_page, 1780 int start_order, int migratetype) 1781 { 1782 int nr_pageblocks = 1 << (start_order - pageblock_order); 1783 1784 while (nr_pageblocks--) { 1785 set_pageblock_migratetype(pageblock_page, migratetype); 1786 pageblock_page += pageblock_nr_pages; 1787 } 1788 } 1789 1790 /* 1791 * When we are falling back to another migratetype during allocation, try to 1792 * steal extra free pages from the same pageblocks to satisfy further 1793 * allocations, instead of polluting multiple pageblocks. 1794 * 1795 * If we are stealing a relatively large buddy page, it is likely there will 1796 * be more free pages in the pageblock, so try to steal them all. For 1797 * reclaimable and unmovable allocations, we steal regardless of page size, 1798 * as fragmentation caused by those allocations polluting movable pageblocks 1799 * is worse than movable allocations stealing from unmovable and reclaimable 1800 * pageblocks. 1801 */ 1802 static bool can_steal_fallback(unsigned int order, int start_mt) 1803 { 1804 /* 1805 * Leaving this order check is intended, although there is 1806 * relaxed order check in next check. The reason is that 1807 * we can actually steal whole pageblock if this condition met, 1808 * but, below check doesn't guarantee it and that is just heuristic 1809 * so could be changed anytime. 1810 */ 1811 if (order >= pageblock_order) 1812 return true; 1813 1814 if (order >= pageblock_order / 2 || 1815 start_mt == MIGRATE_RECLAIMABLE || 1816 start_mt == MIGRATE_UNMOVABLE || 1817 page_group_by_mobility_disabled) 1818 return true; 1819 1820 return false; 1821 } 1822 1823 static inline bool boost_watermark(struct zone *zone) 1824 { 1825 unsigned long max_boost; 1826 1827 if (!watermark_boost_factor) 1828 return false; 1829 /* 1830 * Don't bother in zones that are unlikely to produce results. 1831 * On small machines, including kdump capture kernels running 1832 * in a small area, boosting the watermark can cause an out of 1833 * memory situation immediately. 1834 */ 1835 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1836 return false; 1837 1838 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1839 watermark_boost_factor, 10000); 1840 1841 /* 1842 * high watermark may be uninitialised if fragmentation occurs 1843 * very early in boot so do not boost. We do not fall 1844 * through and boost by pageblock_nr_pages as failing 1845 * allocations that early means that reclaim is not going 1846 * to help and it may even be impossible to reclaim the 1847 * boosted watermark resulting in a hang. 1848 */ 1849 if (!max_boost) 1850 return false; 1851 1852 max_boost = max(pageblock_nr_pages, max_boost); 1853 1854 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1855 max_boost); 1856 1857 return true; 1858 } 1859 1860 /* 1861 * This function implements actual steal behaviour. If order is large enough, we 1862 * can claim the whole pageblock for the requested migratetype. If not, we check 1863 * the pageblock for constituent pages; if at least half of the pages are free 1864 * or compatible, we can still claim the whole block, so pages freed in the 1865 * future will be put on the correct free list. Otherwise, we isolate exactly 1866 * the order we need from the fallback block and leave its migratetype alone. 1867 */ 1868 static struct page * 1869 steal_suitable_fallback(struct zone *zone, struct page *page, 1870 int current_order, int order, int start_type, 1871 unsigned int alloc_flags, bool whole_block) 1872 { 1873 int free_pages, movable_pages, alike_pages; 1874 unsigned long start_pfn; 1875 int block_type; 1876 1877 block_type = get_pageblock_migratetype(page); 1878 1879 /* 1880 * This can happen due to races and we want to prevent broken 1881 * highatomic accounting. 1882 */ 1883 if (is_migrate_highatomic(block_type)) 1884 goto single_page; 1885 1886 /* Take ownership for orders >= pageblock_order */ 1887 if (current_order >= pageblock_order) { 1888 del_page_from_free_list(page, zone, current_order, block_type); 1889 change_pageblock_range(page, current_order, start_type); 1890 expand(zone, page, order, current_order, start_type); 1891 return page; 1892 } 1893 1894 /* 1895 * Boost watermarks to increase reclaim pressure to reduce the 1896 * likelihood of future fallbacks. Wake kswapd now as the node 1897 * may be balanced overall and kswapd will not wake naturally. 1898 */ 1899 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1900 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1901 1902 /* We are not allowed to try stealing from the whole block */ 1903 if (!whole_block) 1904 goto single_page; 1905 1906 /* moving whole block can fail due to zone boundary conditions */ 1907 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1908 &movable_pages)) 1909 goto single_page; 1910 1911 /* 1912 * Determine how many pages are compatible with our allocation. 1913 * For movable allocation, it's the number of movable pages which 1914 * we just obtained. For other types it's a bit more tricky. 1915 */ 1916 if (start_type == MIGRATE_MOVABLE) { 1917 alike_pages = movable_pages; 1918 } else { 1919 /* 1920 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1921 * to MOVABLE pageblock, consider all non-movable pages as 1922 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1923 * vice versa, be conservative since we can't distinguish the 1924 * exact migratetype of non-movable pages. 1925 */ 1926 if (block_type == MIGRATE_MOVABLE) 1927 alike_pages = pageblock_nr_pages 1928 - (free_pages + movable_pages); 1929 else 1930 alike_pages = 0; 1931 } 1932 /* 1933 * If a sufficient number of pages in the block are either free or of 1934 * compatible migratability as our allocation, claim the whole block. 1935 */ 1936 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1937 page_group_by_mobility_disabled) { 1938 __move_freepages_block(zone, start_pfn, block_type, start_type); 1939 return __rmqueue_smallest(zone, order, start_type); 1940 } 1941 1942 single_page: 1943 del_page_from_free_list(page, zone, current_order, block_type); 1944 expand(zone, page, order, current_order, block_type); 1945 return page; 1946 } 1947 1948 /* 1949 * Check whether there is a suitable fallback freepage with requested order. 1950 * If only_stealable is true, this function returns fallback_mt only if 1951 * we can steal other freepages all together. This would help to reduce 1952 * fragmentation due to mixed migratetype pages in one pageblock. 1953 */ 1954 int find_suitable_fallback(struct free_area *area, unsigned int order, 1955 int migratetype, bool only_stealable, bool *can_steal) 1956 { 1957 int i; 1958 int fallback_mt; 1959 1960 if (area->nr_free == 0) 1961 return -1; 1962 1963 *can_steal = false; 1964 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1965 fallback_mt = fallbacks[migratetype][i]; 1966 if (free_area_empty(area, fallback_mt)) 1967 continue; 1968 1969 if (can_steal_fallback(order, migratetype)) 1970 *can_steal = true; 1971 1972 if (!only_stealable) 1973 return fallback_mt; 1974 1975 if (*can_steal) 1976 return fallback_mt; 1977 } 1978 1979 return -1; 1980 } 1981 1982 /* 1983 * Reserve the pageblock(s) surrounding an allocation request for 1984 * exclusive use of high-order atomic allocations if there are no 1985 * empty page blocks that contain a page with a suitable order 1986 */ 1987 static void reserve_highatomic_pageblock(struct page *page, int order, 1988 struct zone *zone) 1989 { 1990 int mt; 1991 unsigned long max_managed, flags; 1992 1993 /* 1994 * The number reserved as: minimum is 1 pageblock, maximum is 1995 * roughly 1% of a zone. But if 1% of a zone falls below a 1996 * pageblock size, then don't reserve any pageblocks. 1997 * Check is race-prone but harmless. 1998 */ 1999 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 2000 return; 2001 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 2002 if (zone->nr_reserved_highatomic >= max_managed) 2003 return; 2004 2005 spin_lock_irqsave(&zone->lock, flags); 2006 2007 /* Recheck the nr_reserved_highatomic limit under the lock */ 2008 if (zone->nr_reserved_highatomic >= max_managed) 2009 goto out_unlock; 2010 2011 /* Yoink! */ 2012 mt = get_pageblock_migratetype(page); 2013 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2014 if (!migratetype_is_mergeable(mt)) 2015 goto out_unlock; 2016 2017 if (order < pageblock_order) { 2018 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 2019 goto out_unlock; 2020 zone->nr_reserved_highatomic += pageblock_nr_pages; 2021 } else { 2022 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 2023 zone->nr_reserved_highatomic += 1 << order; 2024 } 2025 2026 out_unlock: 2027 spin_unlock_irqrestore(&zone->lock, flags); 2028 } 2029 2030 /* 2031 * Used when an allocation is about to fail under memory pressure. This 2032 * potentially hurts the reliability of high-order allocations when under 2033 * intense memory pressure but failed atomic allocations should be easier 2034 * to recover from than an OOM. 2035 * 2036 * If @force is true, try to unreserve pageblocks even though highatomic 2037 * pageblock is exhausted. 2038 */ 2039 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2040 bool force) 2041 { 2042 struct zonelist *zonelist = ac->zonelist; 2043 unsigned long flags; 2044 struct zoneref *z; 2045 struct zone *zone; 2046 struct page *page; 2047 int order; 2048 int ret; 2049 2050 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2051 ac->nodemask) { 2052 /* 2053 * Preserve at least one pageblock unless memory pressure 2054 * is really high. 2055 */ 2056 if (!force && zone->nr_reserved_highatomic <= 2057 pageblock_nr_pages) 2058 continue; 2059 2060 spin_lock_irqsave(&zone->lock, flags); 2061 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2062 struct free_area *area = &(zone->free_area[order]); 2063 int mt; 2064 2065 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2066 if (!page) 2067 continue; 2068 2069 mt = get_pageblock_migratetype(page); 2070 /* 2071 * In page freeing path, migratetype change is racy so 2072 * we can counter several free pages in a pageblock 2073 * in this loop although we changed the pageblock type 2074 * from highatomic to ac->migratetype. So we should 2075 * adjust the count once. 2076 */ 2077 if (is_migrate_highatomic(mt)) { 2078 unsigned long size; 2079 /* 2080 * It should never happen but changes to 2081 * locking could inadvertently allow a per-cpu 2082 * drain to add pages to MIGRATE_HIGHATOMIC 2083 * while unreserving so be safe and watch for 2084 * underflows. 2085 */ 2086 size = max(pageblock_nr_pages, 1UL << order); 2087 size = min(size, zone->nr_reserved_highatomic); 2088 zone->nr_reserved_highatomic -= size; 2089 } 2090 2091 /* 2092 * Convert to ac->migratetype and avoid the normal 2093 * pageblock stealing heuristics. Minimally, the caller 2094 * is doing the work and needs the pages. More 2095 * importantly, if the block was always converted to 2096 * MIGRATE_UNMOVABLE or another type then the number 2097 * of pageblocks that cannot be completely freed 2098 * may increase. 2099 */ 2100 if (order < pageblock_order) 2101 ret = move_freepages_block(zone, page, mt, 2102 ac->migratetype); 2103 else { 2104 move_to_free_list(page, zone, order, mt, 2105 ac->migratetype); 2106 change_pageblock_range(page, order, 2107 ac->migratetype); 2108 ret = 1; 2109 } 2110 /* 2111 * Reserving the block(s) already succeeded, 2112 * so this should not fail on zone boundaries. 2113 */ 2114 WARN_ON_ONCE(ret == -1); 2115 if (ret > 0) { 2116 spin_unlock_irqrestore(&zone->lock, flags); 2117 return ret; 2118 } 2119 } 2120 spin_unlock_irqrestore(&zone->lock, flags); 2121 } 2122 2123 return false; 2124 } 2125 2126 /* 2127 * Try finding a free buddy page on the fallback list and put it on the free 2128 * list of requested migratetype, possibly along with other pages from the same 2129 * block, depending on fragmentation avoidance heuristics. Returns true if 2130 * fallback was found so that __rmqueue_smallest() can grab it. 2131 * 2132 * The use of signed ints for order and current_order is a deliberate 2133 * deviation from the rest of this file, to make the for loop 2134 * condition simpler. 2135 */ 2136 static __always_inline struct page * 2137 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2138 unsigned int alloc_flags) 2139 { 2140 struct free_area *area; 2141 int current_order; 2142 int min_order = order; 2143 struct page *page; 2144 int fallback_mt; 2145 bool can_steal; 2146 2147 /* 2148 * Do not steal pages from freelists belonging to other pageblocks 2149 * i.e. orders < pageblock_order. If there are no local zones free, 2150 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2151 */ 2152 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2153 min_order = pageblock_order; 2154 2155 /* 2156 * Find the largest available free page in the other list. This roughly 2157 * approximates finding the pageblock with the most free pages, which 2158 * would be too costly to do exactly. 2159 */ 2160 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2161 --current_order) { 2162 area = &(zone->free_area[current_order]); 2163 fallback_mt = find_suitable_fallback(area, current_order, 2164 start_migratetype, false, &can_steal); 2165 if (fallback_mt == -1) 2166 continue; 2167 2168 /* 2169 * We cannot steal all free pages from the pageblock and the 2170 * requested migratetype is movable. In that case it's better to 2171 * steal and split the smallest available page instead of the 2172 * largest available page, because even if the next movable 2173 * allocation falls back into a different pageblock than this 2174 * one, it won't cause permanent fragmentation. 2175 */ 2176 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2177 && current_order > order) 2178 goto find_smallest; 2179 2180 goto do_steal; 2181 } 2182 2183 return NULL; 2184 2185 find_smallest: 2186 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2187 area = &(zone->free_area[current_order]); 2188 fallback_mt = find_suitable_fallback(area, current_order, 2189 start_migratetype, false, &can_steal); 2190 if (fallback_mt != -1) 2191 break; 2192 } 2193 2194 /* 2195 * This should not happen - we already found a suitable fallback 2196 * when looking for the largest page. 2197 */ 2198 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2199 2200 do_steal: 2201 page = get_page_from_free_area(area, fallback_mt); 2202 2203 /* take off list, maybe claim block, expand remainder */ 2204 page = steal_suitable_fallback(zone, page, current_order, order, 2205 start_migratetype, alloc_flags, can_steal); 2206 2207 trace_mm_page_alloc_extfrag(page, order, current_order, 2208 start_migratetype, fallback_mt); 2209 2210 return page; 2211 } 2212 2213 /* 2214 * Do the hard work of removing an element from the buddy allocator. 2215 * Call me with the zone->lock already held. 2216 */ 2217 static __always_inline struct page * 2218 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2219 unsigned int alloc_flags) 2220 { 2221 struct page *page; 2222 2223 if (IS_ENABLED(CONFIG_CMA)) { 2224 /* 2225 * Balance movable allocations between regular and CMA areas by 2226 * allocating from CMA when over half of the zone's free memory 2227 * is in the CMA area. 2228 */ 2229 if (alloc_flags & ALLOC_CMA && 2230 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2231 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2232 page = __rmqueue_cma_fallback(zone, order); 2233 if (page) 2234 return page; 2235 } 2236 } 2237 2238 page = __rmqueue_smallest(zone, order, migratetype); 2239 if (unlikely(!page)) { 2240 if (alloc_flags & ALLOC_CMA) 2241 page = __rmqueue_cma_fallback(zone, order); 2242 2243 if (!page) 2244 page = __rmqueue_fallback(zone, order, migratetype, 2245 alloc_flags); 2246 } 2247 return page; 2248 } 2249 2250 /* 2251 * Obtain a specified number of elements from the buddy allocator, all under 2252 * a single hold of the lock, for efficiency. Add them to the supplied list. 2253 * Returns the number of new pages which were placed at *list. 2254 */ 2255 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2256 unsigned long count, struct list_head *list, 2257 int migratetype, unsigned int alloc_flags) 2258 { 2259 unsigned long flags; 2260 int i; 2261 2262 spin_lock_irqsave(&zone->lock, flags); 2263 for (i = 0; i < count; ++i) { 2264 struct page *page = __rmqueue(zone, order, migratetype, 2265 alloc_flags); 2266 if (unlikely(page == NULL)) 2267 break; 2268 2269 /* 2270 * Split buddy pages returned by expand() are received here in 2271 * physical page order. The page is added to the tail of 2272 * caller's list. From the callers perspective, the linked list 2273 * is ordered by page number under some conditions. This is 2274 * useful for IO devices that can forward direction from the 2275 * head, thus also in the physical page order. This is useful 2276 * for IO devices that can merge IO requests if the physical 2277 * pages are ordered properly. 2278 */ 2279 list_add_tail(&page->pcp_list, list); 2280 } 2281 spin_unlock_irqrestore(&zone->lock, flags); 2282 2283 return i; 2284 } 2285 2286 /* 2287 * Called from the vmstat counter updater to decay the PCP high. 2288 * Return whether there are addition works to do. 2289 */ 2290 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2291 { 2292 int high_min, to_drain, batch; 2293 int todo = 0; 2294 2295 high_min = READ_ONCE(pcp->high_min); 2296 batch = READ_ONCE(pcp->batch); 2297 /* 2298 * Decrease pcp->high periodically to try to free possible 2299 * idle PCP pages. And, avoid to free too many pages to 2300 * control latency. This caps pcp->high decrement too. 2301 */ 2302 if (pcp->high > high_min) { 2303 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2304 pcp->high - (pcp->high >> 3), high_min); 2305 if (pcp->high > high_min) 2306 todo++; 2307 } 2308 2309 to_drain = pcp->count - pcp->high; 2310 if (to_drain > 0) { 2311 spin_lock(&pcp->lock); 2312 free_pcppages_bulk(zone, to_drain, pcp, 0); 2313 spin_unlock(&pcp->lock); 2314 todo++; 2315 } 2316 2317 return todo; 2318 } 2319 2320 #ifdef CONFIG_NUMA 2321 /* 2322 * Called from the vmstat counter updater to drain pagesets of this 2323 * currently executing processor on remote nodes after they have 2324 * expired. 2325 */ 2326 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2327 { 2328 int to_drain, batch; 2329 2330 batch = READ_ONCE(pcp->batch); 2331 to_drain = min(pcp->count, batch); 2332 if (to_drain > 0) { 2333 spin_lock(&pcp->lock); 2334 free_pcppages_bulk(zone, to_drain, pcp, 0); 2335 spin_unlock(&pcp->lock); 2336 } 2337 } 2338 #endif 2339 2340 /* 2341 * Drain pcplists of the indicated processor and zone. 2342 */ 2343 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2344 { 2345 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2346 int count; 2347 2348 do { 2349 spin_lock(&pcp->lock); 2350 count = pcp->count; 2351 if (count) { 2352 int to_drain = min(count, 2353 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2354 2355 free_pcppages_bulk(zone, to_drain, pcp, 0); 2356 count -= to_drain; 2357 } 2358 spin_unlock(&pcp->lock); 2359 } while (count); 2360 } 2361 2362 /* 2363 * Drain pcplists of all zones on the indicated processor. 2364 */ 2365 static void drain_pages(unsigned int cpu) 2366 { 2367 struct zone *zone; 2368 2369 for_each_populated_zone(zone) { 2370 drain_pages_zone(cpu, zone); 2371 } 2372 } 2373 2374 /* 2375 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2376 */ 2377 void drain_local_pages(struct zone *zone) 2378 { 2379 int cpu = smp_processor_id(); 2380 2381 if (zone) 2382 drain_pages_zone(cpu, zone); 2383 else 2384 drain_pages(cpu); 2385 } 2386 2387 /* 2388 * The implementation of drain_all_pages(), exposing an extra parameter to 2389 * drain on all cpus. 2390 * 2391 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2392 * not empty. The check for non-emptiness can however race with a free to 2393 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2394 * that need the guarantee that every CPU has drained can disable the 2395 * optimizing racy check. 2396 */ 2397 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2398 { 2399 int cpu; 2400 2401 /* 2402 * Allocate in the BSS so we won't require allocation in 2403 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2404 */ 2405 static cpumask_t cpus_with_pcps; 2406 2407 /* 2408 * Do not drain if one is already in progress unless it's specific to 2409 * a zone. Such callers are primarily CMA and memory hotplug and need 2410 * the drain to be complete when the call returns. 2411 */ 2412 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2413 if (!zone) 2414 return; 2415 mutex_lock(&pcpu_drain_mutex); 2416 } 2417 2418 /* 2419 * We don't care about racing with CPU hotplug event 2420 * as offline notification will cause the notified 2421 * cpu to drain that CPU pcps and on_each_cpu_mask 2422 * disables preemption as part of its processing 2423 */ 2424 for_each_online_cpu(cpu) { 2425 struct per_cpu_pages *pcp; 2426 struct zone *z; 2427 bool has_pcps = false; 2428 2429 if (force_all_cpus) { 2430 /* 2431 * The pcp.count check is racy, some callers need a 2432 * guarantee that no cpu is missed. 2433 */ 2434 has_pcps = true; 2435 } else if (zone) { 2436 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2437 if (pcp->count) 2438 has_pcps = true; 2439 } else { 2440 for_each_populated_zone(z) { 2441 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2442 if (pcp->count) { 2443 has_pcps = true; 2444 break; 2445 } 2446 } 2447 } 2448 2449 if (has_pcps) 2450 cpumask_set_cpu(cpu, &cpus_with_pcps); 2451 else 2452 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2453 } 2454 2455 for_each_cpu(cpu, &cpus_with_pcps) { 2456 if (zone) 2457 drain_pages_zone(cpu, zone); 2458 else 2459 drain_pages(cpu); 2460 } 2461 2462 mutex_unlock(&pcpu_drain_mutex); 2463 } 2464 2465 /* 2466 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2467 * 2468 * When zone parameter is non-NULL, spill just the single zone's pages. 2469 */ 2470 void drain_all_pages(struct zone *zone) 2471 { 2472 __drain_all_pages(zone, false); 2473 } 2474 2475 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2476 { 2477 int min_nr_free, max_nr_free; 2478 2479 /* Free as much as possible if batch freeing high-order pages. */ 2480 if (unlikely(free_high)) 2481 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2482 2483 /* Check for PCP disabled or boot pageset */ 2484 if (unlikely(high < batch)) 2485 return 1; 2486 2487 /* Leave at least pcp->batch pages on the list */ 2488 min_nr_free = batch; 2489 max_nr_free = high - batch; 2490 2491 /* 2492 * Increase the batch number to the number of the consecutive 2493 * freed pages to reduce zone lock contention. 2494 */ 2495 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2496 2497 return batch; 2498 } 2499 2500 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2501 int batch, bool free_high) 2502 { 2503 int high, high_min, high_max; 2504 2505 high_min = READ_ONCE(pcp->high_min); 2506 high_max = READ_ONCE(pcp->high_max); 2507 high = pcp->high = clamp(pcp->high, high_min, high_max); 2508 2509 if (unlikely(!high)) 2510 return 0; 2511 2512 if (unlikely(free_high)) { 2513 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2514 high_min); 2515 return 0; 2516 } 2517 2518 /* 2519 * If reclaim is active, limit the number of pages that can be 2520 * stored on pcp lists 2521 */ 2522 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2523 int free_count = max_t(int, pcp->free_count, batch); 2524 2525 pcp->high = max(high - free_count, high_min); 2526 return min(batch << 2, pcp->high); 2527 } 2528 2529 if (high_min == high_max) 2530 return high; 2531 2532 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2533 int free_count = max_t(int, pcp->free_count, batch); 2534 2535 pcp->high = max(high - free_count, high_min); 2536 high = max(pcp->count, high_min); 2537 } else if (pcp->count >= high) { 2538 int need_high = pcp->free_count + batch; 2539 2540 /* pcp->high should be large enough to hold batch freed pages */ 2541 if (pcp->high < need_high) 2542 pcp->high = clamp(need_high, high_min, high_max); 2543 } 2544 2545 return high; 2546 } 2547 2548 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2549 struct page *page, int migratetype, 2550 unsigned int order) 2551 { 2552 int high, batch; 2553 int pindex; 2554 bool free_high = false; 2555 2556 /* 2557 * On freeing, reduce the number of pages that are batch allocated. 2558 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2559 * allocations. 2560 */ 2561 pcp->alloc_factor >>= 1; 2562 __count_vm_events(PGFREE, 1 << order); 2563 pindex = order_to_pindex(migratetype, order); 2564 list_add(&page->pcp_list, &pcp->lists[pindex]); 2565 pcp->count += 1 << order; 2566 2567 batch = READ_ONCE(pcp->batch); 2568 /* 2569 * As high-order pages other than THP's stored on PCP can contribute 2570 * to fragmentation, limit the number stored when PCP is heavily 2571 * freeing without allocation. The remainder after bulk freeing 2572 * stops will be drained from vmstat refresh context. 2573 */ 2574 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2575 free_high = (pcp->free_count >= batch && 2576 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2577 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2578 pcp->count >= READ_ONCE(batch))); 2579 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2580 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2581 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2582 } 2583 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2584 pcp->free_count += (1 << order); 2585 high = nr_pcp_high(pcp, zone, batch, free_high); 2586 if (pcp->count >= high) { 2587 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2588 pcp, pindex); 2589 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2590 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2591 ZONE_MOVABLE, 0)) 2592 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2593 } 2594 } 2595 2596 /* 2597 * Free a pcp page 2598 */ 2599 void free_unref_page(struct page *page, unsigned int order) 2600 { 2601 unsigned long __maybe_unused UP_flags; 2602 struct per_cpu_pages *pcp; 2603 struct zone *zone; 2604 unsigned long pfn = page_to_pfn(page); 2605 int migratetype; 2606 2607 if (!pcp_allowed_order(order)) { 2608 __free_pages_ok(page, order, FPI_NONE); 2609 return; 2610 } 2611 2612 if (!free_pages_prepare(page, order)) 2613 return; 2614 2615 /* 2616 * We only track unmovable, reclaimable and movable on pcp lists. 2617 * Place ISOLATE pages on the isolated list because they are being 2618 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2619 * get those areas back if necessary. Otherwise, we may have to free 2620 * excessively into the page allocator 2621 */ 2622 migratetype = get_pfnblock_migratetype(page, pfn); 2623 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2624 if (unlikely(is_migrate_isolate(migratetype))) { 2625 free_one_page(page_zone(page), page, pfn, order, FPI_NONE); 2626 return; 2627 } 2628 migratetype = MIGRATE_MOVABLE; 2629 } 2630 2631 zone = page_zone(page); 2632 pcp_trylock_prepare(UP_flags); 2633 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2634 if (pcp) { 2635 free_unref_page_commit(zone, pcp, page, migratetype, order); 2636 pcp_spin_unlock(pcp); 2637 } else { 2638 free_one_page(zone, page, pfn, order, FPI_NONE); 2639 } 2640 pcp_trylock_finish(UP_flags); 2641 } 2642 2643 /* 2644 * Free a batch of folios 2645 */ 2646 void free_unref_folios(struct folio_batch *folios) 2647 { 2648 unsigned long __maybe_unused UP_flags; 2649 struct per_cpu_pages *pcp = NULL; 2650 struct zone *locked_zone = NULL; 2651 int i, j; 2652 2653 /* Prepare folios for freeing */ 2654 for (i = 0, j = 0; i < folios->nr; i++) { 2655 struct folio *folio = folios->folios[i]; 2656 unsigned long pfn = folio_pfn(folio); 2657 unsigned int order = folio_order(folio); 2658 2659 folio_undo_large_rmappable(folio); 2660 if (!free_pages_prepare(&folio->page, order)) 2661 continue; 2662 /* 2663 * Free orders not handled on the PCP directly to the 2664 * allocator. 2665 */ 2666 if (!pcp_allowed_order(order)) { 2667 free_one_page(folio_zone(folio), &folio->page, 2668 pfn, order, FPI_NONE); 2669 continue; 2670 } 2671 folio->private = (void *)(unsigned long)order; 2672 if (j != i) 2673 folios->folios[j] = folio; 2674 j++; 2675 } 2676 folios->nr = j; 2677 2678 for (i = 0; i < folios->nr; i++) { 2679 struct folio *folio = folios->folios[i]; 2680 struct zone *zone = folio_zone(folio); 2681 unsigned long pfn = folio_pfn(folio); 2682 unsigned int order = (unsigned long)folio->private; 2683 int migratetype; 2684 2685 folio->private = NULL; 2686 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2687 2688 /* Different zone requires a different pcp lock */ 2689 if (zone != locked_zone || 2690 is_migrate_isolate(migratetype)) { 2691 if (pcp) { 2692 pcp_spin_unlock(pcp); 2693 pcp_trylock_finish(UP_flags); 2694 locked_zone = NULL; 2695 pcp = NULL; 2696 } 2697 2698 /* 2699 * Free isolated pages directly to the 2700 * allocator, see comment in free_unref_page. 2701 */ 2702 if (is_migrate_isolate(migratetype)) { 2703 free_one_page(zone, &folio->page, pfn, 2704 order, FPI_NONE); 2705 continue; 2706 } 2707 2708 /* 2709 * trylock is necessary as folios may be getting freed 2710 * from IRQ or SoftIRQ context after an IO completion. 2711 */ 2712 pcp_trylock_prepare(UP_flags); 2713 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2714 if (unlikely(!pcp)) { 2715 pcp_trylock_finish(UP_flags); 2716 free_one_page(zone, &folio->page, pfn, 2717 order, FPI_NONE); 2718 continue; 2719 } 2720 locked_zone = zone; 2721 } 2722 2723 /* 2724 * Non-isolated types over MIGRATE_PCPTYPES get added 2725 * to the MIGRATE_MOVABLE pcp list. 2726 */ 2727 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2728 migratetype = MIGRATE_MOVABLE; 2729 2730 trace_mm_page_free_batched(&folio->page); 2731 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2732 order); 2733 } 2734 2735 if (pcp) { 2736 pcp_spin_unlock(pcp); 2737 pcp_trylock_finish(UP_flags); 2738 } 2739 folio_batch_reinit(folios); 2740 } 2741 2742 /* 2743 * split_page takes a non-compound higher-order page, and splits it into 2744 * n (1<<order) sub-pages: page[0..n] 2745 * Each sub-page must be freed individually. 2746 * 2747 * Note: this is probably too low level an operation for use in drivers. 2748 * Please consult with lkml before using this in your driver. 2749 */ 2750 void split_page(struct page *page, unsigned int order) 2751 { 2752 int i; 2753 2754 VM_BUG_ON_PAGE(PageCompound(page), page); 2755 VM_BUG_ON_PAGE(!page_count(page), page); 2756 2757 for (i = 1; i < (1 << order); i++) 2758 set_page_refcounted(page + i); 2759 split_page_owner(page, order, 0); 2760 pgalloc_tag_split(page, 1 << order); 2761 split_page_memcg(page, order, 0); 2762 } 2763 EXPORT_SYMBOL_GPL(split_page); 2764 2765 int __isolate_free_page(struct page *page, unsigned int order) 2766 { 2767 struct zone *zone = page_zone(page); 2768 int mt = get_pageblock_migratetype(page); 2769 2770 if (!is_migrate_isolate(mt)) { 2771 unsigned long watermark; 2772 /* 2773 * Obey watermarks as if the page was being allocated. We can 2774 * emulate a high-order watermark check with a raised order-0 2775 * watermark, because we already know our high-order page 2776 * exists. 2777 */ 2778 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2779 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2780 return 0; 2781 } 2782 2783 del_page_from_free_list(page, zone, order, mt); 2784 2785 /* 2786 * Set the pageblock if the isolated page is at least half of a 2787 * pageblock 2788 */ 2789 if (order >= pageblock_order - 1) { 2790 struct page *endpage = page + (1 << order) - 1; 2791 for (; page < endpage; page += pageblock_nr_pages) { 2792 int mt = get_pageblock_migratetype(page); 2793 /* 2794 * Only change normal pageblocks (i.e., they can merge 2795 * with others) 2796 */ 2797 if (migratetype_is_mergeable(mt)) 2798 move_freepages_block(zone, page, mt, 2799 MIGRATE_MOVABLE); 2800 } 2801 } 2802 2803 return 1UL << order; 2804 } 2805 2806 /** 2807 * __putback_isolated_page - Return a now-isolated page back where we got it 2808 * @page: Page that was isolated 2809 * @order: Order of the isolated page 2810 * @mt: The page's pageblock's migratetype 2811 * 2812 * This function is meant to return a page pulled from the free lists via 2813 * __isolate_free_page back to the free lists they were pulled from. 2814 */ 2815 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2816 { 2817 struct zone *zone = page_zone(page); 2818 2819 /* zone lock should be held when this function is called */ 2820 lockdep_assert_held(&zone->lock); 2821 2822 /* Return isolated page to tail of freelist. */ 2823 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2824 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2825 } 2826 2827 /* 2828 * Update NUMA hit/miss statistics 2829 */ 2830 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2831 long nr_account) 2832 { 2833 #ifdef CONFIG_NUMA 2834 enum numa_stat_item local_stat = NUMA_LOCAL; 2835 2836 /* skip numa counters update if numa stats is disabled */ 2837 if (!static_branch_likely(&vm_numa_stat_key)) 2838 return; 2839 2840 if (zone_to_nid(z) != numa_node_id()) 2841 local_stat = NUMA_OTHER; 2842 2843 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2844 __count_numa_events(z, NUMA_HIT, nr_account); 2845 else { 2846 __count_numa_events(z, NUMA_MISS, nr_account); 2847 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2848 } 2849 __count_numa_events(z, local_stat, nr_account); 2850 #endif 2851 } 2852 2853 static __always_inline 2854 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2855 unsigned int order, unsigned int alloc_flags, 2856 int migratetype) 2857 { 2858 struct page *page; 2859 unsigned long flags; 2860 2861 do { 2862 page = NULL; 2863 spin_lock_irqsave(&zone->lock, flags); 2864 if (alloc_flags & ALLOC_HIGHATOMIC) 2865 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2866 if (!page) { 2867 page = __rmqueue(zone, order, migratetype, alloc_flags); 2868 2869 /* 2870 * If the allocation fails, allow OOM handling access 2871 * to HIGHATOMIC reserves as failing now is worse than 2872 * failing a high-order atomic allocation in the 2873 * future. 2874 */ 2875 if (!page && (alloc_flags & ALLOC_OOM)) 2876 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2877 2878 if (!page) { 2879 spin_unlock_irqrestore(&zone->lock, flags); 2880 return NULL; 2881 } 2882 } 2883 spin_unlock_irqrestore(&zone->lock, flags); 2884 } while (check_new_pages(page, order)); 2885 2886 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2887 zone_statistics(preferred_zone, zone, 1); 2888 2889 return page; 2890 } 2891 2892 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2893 { 2894 int high, base_batch, batch, max_nr_alloc; 2895 int high_max, high_min; 2896 2897 base_batch = READ_ONCE(pcp->batch); 2898 high_min = READ_ONCE(pcp->high_min); 2899 high_max = READ_ONCE(pcp->high_max); 2900 high = pcp->high = clamp(pcp->high, high_min, high_max); 2901 2902 /* Check for PCP disabled or boot pageset */ 2903 if (unlikely(high < base_batch)) 2904 return 1; 2905 2906 if (order) 2907 batch = base_batch; 2908 else 2909 batch = (base_batch << pcp->alloc_factor); 2910 2911 /* 2912 * If we had larger pcp->high, we could avoid to allocate from 2913 * zone. 2914 */ 2915 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2916 high = pcp->high = min(high + batch, high_max); 2917 2918 if (!order) { 2919 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2920 /* 2921 * Double the number of pages allocated each time there is 2922 * subsequent allocation of order-0 pages without any freeing. 2923 */ 2924 if (batch <= max_nr_alloc && 2925 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2926 pcp->alloc_factor++; 2927 batch = min(batch, max_nr_alloc); 2928 } 2929 2930 /* 2931 * Scale batch relative to order if batch implies free pages 2932 * can be stored on the PCP. Batch can be 1 for small zones or 2933 * for boot pagesets which should never store free pages as 2934 * the pages may belong to arbitrary zones. 2935 */ 2936 if (batch > 1) 2937 batch = max(batch >> order, 2); 2938 2939 return batch; 2940 } 2941 2942 /* Remove page from the per-cpu list, caller must protect the list */ 2943 static inline 2944 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2945 int migratetype, 2946 unsigned int alloc_flags, 2947 struct per_cpu_pages *pcp, 2948 struct list_head *list) 2949 { 2950 struct page *page; 2951 2952 do { 2953 if (list_empty(list)) { 2954 int batch = nr_pcp_alloc(pcp, zone, order); 2955 int alloced; 2956 2957 alloced = rmqueue_bulk(zone, order, 2958 batch, list, 2959 migratetype, alloc_flags); 2960 2961 pcp->count += alloced << order; 2962 if (unlikely(list_empty(list))) 2963 return NULL; 2964 } 2965 2966 page = list_first_entry(list, struct page, pcp_list); 2967 list_del(&page->pcp_list); 2968 pcp->count -= 1 << order; 2969 } while (check_new_pages(page, order)); 2970 2971 return page; 2972 } 2973 2974 /* Lock and remove page from the per-cpu list */ 2975 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2976 struct zone *zone, unsigned int order, 2977 int migratetype, unsigned int alloc_flags) 2978 { 2979 struct per_cpu_pages *pcp; 2980 struct list_head *list; 2981 struct page *page; 2982 unsigned long __maybe_unused UP_flags; 2983 2984 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2985 pcp_trylock_prepare(UP_flags); 2986 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2987 if (!pcp) { 2988 pcp_trylock_finish(UP_flags); 2989 return NULL; 2990 } 2991 2992 /* 2993 * On allocation, reduce the number of pages that are batch freed. 2994 * See nr_pcp_free() where free_factor is increased for subsequent 2995 * frees. 2996 */ 2997 pcp->free_count >>= 1; 2998 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2999 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3000 pcp_spin_unlock(pcp); 3001 pcp_trylock_finish(UP_flags); 3002 if (page) { 3003 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3004 zone_statistics(preferred_zone, zone, 1); 3005 } 3006 return page; 3007 } 3008 3009 /* 3010 * Allocate a page from the given zone. 3011 * Use pcplists for THP or "cheap" high-order allocations. 3012 */ 3013 3014 /* 3015 * Do not instrument rmqueue() with KMSAN. This function may call 3016 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3017 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3018 * may call rmqueue() again, which will result in a deadlock. 3019 */ 3020 __no_sanitize_memory 3021 static inline 3022 struct page *rmqueue(struct zone *preferred_zone, 3023 struct zone *zone, unsigned int order, 3024 gfp_t gfp_flags, unsigned int alloc_flags, 3025 int migratetype) 3026 { 3027 struct page *page; 3028 3029 /* 3030 * We most definitely don't want callers attempting to 3031 * allocate greater than order-1 page units with __GFP_NOFAIL. 3032 */ 3033 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3034 3035 if (likely(pcp_allowed_order(order))) { 3036 page = rmqueue_pcplist(preferred_zone, zone, order, 3037 migratetype, alloc_flags); 3038 if (likely(page)) 3039 goto out; 3040 } 3041 3042 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3043 migratetype); 3044 3045 out: 3046 /* Separate test+clear to avoid unnecessary atomics */ 3047 if ((alloc_flags & ALLOC_KSWAPD) && 3048 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3049 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3050 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3051 } 3052 3053 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3054 return page; 3055 } 3056 3057 static inline long __zone_watermark_unusable_free(struct zone *z, 3058 unsigned int order, unsigned int alloc_flags) 3059 { 3060 long unusable_free = (1 << order) - 1; 3061 3062 /* 3063 * If the caller does not have rights to reserves below the min 3064 * watermark then subtract the high-atomic reserves. This will 3065 * over-estimate the size of the atomic reserve but it avoids a search. 3066 */ 3067 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3068 unusable_free += z->nr_reserved_highatomic; 3069 3070 #ifdef CONFIG_CMA 3071 /* If allocation can't use CMA areas don't use free CMA pages */ 3072 if (!(alloc_flags & ALLOC_CMA)) 3073 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3074 #endif 3075 3076 return unusable_free; 3077 } 3078 3079 /* 3080 * Return true if free base pages are above 'mark'. For high-order checks it 3081 * will return true of the order-0 watermark is reached and there is at least 3082 * one free page of a suitable size. Checking now avoids taking the zone lock 3083 * to check in the allocation paths if no pages are free. 3084 */ 3085 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3086 int highest_zoneidx, unsigned int alloc_flags, 3087 long free_pages) 3088 { 3089 long min = mark; 3090 int o; 3091 3092 /* free_pages may go negative - that's OK */ 3093 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3094 3095 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3096 /* 3097 * __GFP_HIGH allows access to 50% of the min reserve as well 3098 * as OOM. 3099 */ 3100 if (alloc_flags & ALLOC_MIN_RESERVE) { 3101 min -= min / 2; 3102 3103 /* 3104 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3105 * access more reserves than just __GFP_HIGH. Other 3106 * non-blocking allocations requests such as GFP_NOWAIT 3107 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3108 * access to the min reserve. 3109 */ 3110 if (alloc_flags & ALLOC_NON_BLOCK) 3111 min -= min / 4; 3112 } 3113 3114 /* 3115 * OOM victims can try even harder than the normal reserve 3116 * users on the grounds that it's definitely going to be in 3117 * the exit path shortly and free memory. Any allocation it 3118 * makes during the free path will be small and short-lived. 3119 */ 3120 if (alloc_flags & ALLOC_OOM) 3121 min -= min / 2; 3122 } 3123 3124 /* 3125 * Check watermarks for an order-0 allocation request. If these 3126 * are not met, then a high-order request also cannot go ahead 3127 * even if a suitable page happened to be free. 3128 */ 3129 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3130 return false; 3131 3132 /* If this is an order-0 request then the watermark is fine */ 3133 if (!order) 3134 return true; 3135 3136 /* For a high-order request, check at least one suitable page is free */ 3137 for (o = order; o < NR_PAGE_ORDERS; o++) { 3138 struct free_area *area = &z->free_area[o]; 3139 int mt; 3140 3141 if (!area->nr_free) 3142 continue; 3143 3144 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3145 if (!free_area_empty(area, mt)) 3146 return true; 3147 } 3148 3149 #ifdef CONFIG_CMA 3150 if ((alloc_flags & ALLOC_CMA) && 3151 !free_area_empty(area, MIGRATE_CMA)) { 3152 return true; 3153 } 3154 #endif 3155 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3156 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3157 return true; 3158 } 3159 } 3160 return false; 3161 } 3162 3163 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3164 int highest_zoneidx, unsigned int alloc_flags) 3165 { 3166 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3167 zone_page_state(z, NR_FREE_PAGES)); 3168 } 3169 3170 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3171 unsigned long mark, int highest_zoneidx, 3172 unsigned int alloc_flags, gfp_t gfp_mask) 3173 { 3174 long free_pages; 3175 3176 free_pages = zone_page_state(z, NR_FREE_PAGES); 3177 3178 /* 3179 * Fast check for order-0 only. If this fails then the reserves 3180 * need to be calculated. 3181 */ 3182 if (!order) { 3183 long usable_free; 3184 long reserved; 3185 3186 usable_free = free_pages; 3187 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3188 3189 /* reserved may over estimate high-atomic reserves. */ 3190 usable_free -= min(usable_free, reserved); 3191 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3192 return true; 3193 } 3194 3195 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3196 free_pages)) 3197 return true; 3198 3199 /* 3200 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3201 * when checking the min watermark. The min watermark is the 3202 * point where boosting is ignored so that kswapd is woken up 3203 * when below the low watermark. 3204 */ 3205 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3206 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3207 mark = z->_watermark[WMARK_MIN]; 3208 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3209 alloc_flags, free_pages); 3210 } 3211 3212 return false; 3213 } 3214 3215 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3216 unsigned long mark, int highest_zoneidx) 3217 { 3218 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3219 3220 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3221 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3222 3223 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3224 free_pages); 3225 } 3226 3227 #ifdef CONFIG_NUMA 3228 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3229 3230 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3231 { 3232 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3233 node_reclaim_distance; 3234 } 3235 #else /* CONFIG_NUMA */ 3236 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3237 { 3238 return true; 3239 } 3240 #endif /* CONFIG_NUMA */ 3241 3242 /* 3243 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3244 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3245 * premature use of a lower zone may cause lowmem pressure problems that 3246 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3247 * probably too small. It only makes sense to spread allocations to avoid 3248 * fragmentation between the Normal and DMA32 zones. 3249 */ 3250 static inline unsigned int 3251 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3252 { 3253 unsigned int alloc_flags; 3254 3255 /* 3256 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3257 * to save a branch. 3258 */ 3259 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3260 3261 #ifdef CONFIG_ZONE_DMA32 3262 if (!zone) 3263 return alloc_flags; 3264 3265 if (zone_idx(zone) != ZONE_NORMAL) 3266 return alloc_flags; 3267 3268 /* 3269 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3270 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3271 * on UMA that if Normal is populated then so is DMA32. 3272 */ 3273 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3274 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3275 return alloc_flags; 3276 3277 alloc_flags |= ALLOC_NOFRAGMENT; 3278 #endif /* CONFIG_ZONE_DMA32 */ 3279 return alloc_flags; 3280 } 3281 3282 /* Must be called after current_gfp_context() which can change gfp_mask */ 3283 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3284 unsigned int alloc_flags) 3285 { 3286 #ifdef CONFIG_CMA 3287 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3288 alloc_flags |= ALLOC_CMA; 3289 #endif 3290 return alloc_flags; 3291 } 3292 3293 /* 3294 * get_page_from_freelist goes through the zonelist trying to allocate 3295 * a page. 3296 */ 3297 static struct page * 3298 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3299 const struct alloc_context *ac) 3300 { 3301 struct zoneref *z; 3302 struct zone *zone; 3303 struct pglist_data *last_pgdat = NULL; 3304 bool last_pgdat_dirty_ok = false; 3305 bool no_fallback; 3306 3307 retry: 3308 /* 3309 * Scan zonelist, looking for a zone with enough free. 3310 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3311 */ 3312 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3313 z = ac->preferred_zoneref; 3314 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3315 ac->nodemask) { 3316 struct page *page; 3317 unsigned long mark; 3318 3319 if (cpusets_enabled() && 3320 (alloc_flags & ALLOC_CPUSET) && 3321 !__cpuset_zone_allowed(zone, gfp_mask)) 3322 continue; 3323 /* 3324 * When allocating a page cache page for writing, we 3325 * want to get it from a node that is within its dirty 3326 * limit, such that no single node holds more than its 3327 * proportional share of globally allowed dirty pages. 3328 * The dirty limits take into account the node's 3329 * lowmem reserves and high watermark so that kswapd 3330 * should be able to balance it without having to 3331 * write pages from its LRU list. 3332 * 3333 * XXX: For now, allow allocations to potentially 3334 * exceed the per-node dirty limit in the slowpath 3335 * (spread_dirty_pages unset) before going into reclaim, 3336 * which is important when on a NUMA setup the allowed 3337 * nodes are together not big enough to reach the 3338 * global limit. The proper fix for these situations 3339 * will require awareness of nodes in the 3340 * dirty-throttling and the flusher threads. 3341 */ 3342 if (ac->spread_dirty_pages) { 3343 if (last_pgdat != zone->zone_pgdat) { 3344 last_pgdat = zone->zone_pgdat; 3345 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3346 } 3347 3348 if (!last_pgdat_dirty_ok) 3349 continue; 3350 } 3351 3352 if (no_fallback && nr_online_nodes > 1 && 3353 zone != ac->preferred_zoneref->zone) { 3354 int local_nid; 3355 3356 /* 3357 * If moving to a remote node, retry but allow 3358 * fragmenting fallbacks. Locality is more important 3359 * than fragmentation avoidance. 3360 */ 3361 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3362 if (zone_to_nid(zone) != local_nid) { 3363 alloc_flags &= ~ALLOC_NOFRAGMENT; 3364 goto retry; 3365 } 3366 } 3367 3368 cond_accept_memory(zone, order); 3369 3370 /* 3371 * Detect whether the number of free pages is below high 3372 * watermark. If so, we will decrease pcp->high and free 3373 * PCP pages in free path to reduce the possibility of 3374 * premature page reclaiming. Detection is done here to 3375 * avoid to do that in hotter free path. 3376 */ 3377 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3378 goto check_alloc_wmark; 3379 3380 mark = high_wmark_pages(zone); 3381 if (zone_watermark_fast(zone, order, mark, 3382 ac->highest_zoneidx, alloc_flags, 3383 gfp_mask)) 3384 goto try_this_zone; 3385 else 3386 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3387 3388 check_alloc_wmark: 3389 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3390 if (!zone_watermark_fast(zone, order, mark, 3391 ac->highest_zoneidx, alloc_flags, 3392 gfp_mask)) { 3393 int ret; 3394 3395 if (cond_accept_memory(zone, order)) 3396 goto try_this_zone; 3397 3398 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3399 /* 3400 * Watermark failed for this zone, but see if we can 3401 * grow this zone if it contains deferred pages. 3402 */ 3403 if (deferred_pages_enabled()) { 3404 if (_deferred_grow_zone(zone, order)) 3405 goto try_this_zone; 3406 } 3407 #endif 3408 /* Checked here to keep the fast path fast */ 3409 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3410 if (alloc_flags & ALLOC_NO_WATERMARKS) 3411 goto try_this_zone; 3412 3413 if (!node_reclaim_enabled() || 3414 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3415 continue; 3416 3417 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3418 switch (ret) { 3419 case NODE_RECLAIM_NOSCAN: 3420 /* did not scan */ 3421 continue; 3422 case NODE_RECLAIM_FULL: 3423 /* scanned but unreclaimable */ 3424 continue; 3425 default: 3426 /* did we reclaim enough */ 3427 if (zone_watermark_ok(zone, order, mark, 3428 ac->highest_zoneidx, alloc_flags)) 3429 goto try_this_zone; 3430 3431 continue; 3432 } 3433 } 3434 3435 try_this_zone: 3436 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3437 gfp_mask, alloc_flags, ac->migratetype); 3438 if (page) { 3439 prep_new_page(page, order, gfp_mask, alloc_flags); 3440 3441 /* 3442 * If this is a high-order atomic allocation then check 3443 * if the pageblock should be reserved for the future 3444 */ 3445 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3446 reserve_highatomic_pageblock(page, order, zone); 3447 3448 return page; 3449 } else { 3450 if (cond_accept_memory(zone, order)) 3451 goto try_this_zone; 3452 3453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3454 /* Try again if zone has deferred pages */ 3455 if (deferred_pages_enabled()) { 3456 if (_deferred_grow_zone(zone, order)) 3457 goto try_this_zone; 3458 } 3459 #endif 3460 } 3461 } 3462 3463 /* 3464 * It's possible on a UMA machine to get through all zones that are 3465 * fragmented. If avoiding fragmentation, reset and try again. 3466 */ 3467 if (no_fallback) { 3468 alloc_flags &= ~ALLOC_NOFRAGMENT; 3469 goto retry; 3470 } 3471 3472 return NULL; 3473 } 3474 3475 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3476 { 3477 unsigned int filter = SHOW_MEM_FILTER_NODES; 3478 3479 /* 3480 * This documents exceptions given to allocations in certain 3481 * contexts that are allowed to allocate outside current's set 3482 * of allowed nodes. 3483 */ 3484 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3485 if (tsk_is_oom_victim(current) || 3486 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3487 filter &= ~SHOW_MEM_FILTER_NODES; 3488 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3489 filter &= ~SHOW_MEM_FILTER_NODES; 3490 3491 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3492 } 3493 3494 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3495 { 3496 struct va_format vaf; 3497 va_list args; 3498 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3499 3500 if ((gfp_mask & __GFP_NOWARN) || 3501 !__ratelimit(&nopage_rs) || 3502 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3503 return; 3504 3505 va_start(args, fmt); 3506 vaf.fmt = fmt; 3507 vaf.va = &args; 3508 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3509 current->comm, &vaf, gfp_mask, &gfp_mask, 3510 nodemask_pr_args(nodemask)); 3511 va_end(args); 3512 3513 cpuset_print_current_mems_allowed(); 3514 pr_cont("\n"); 3515 dump_stack(); 3516 warn_alloc_show_mem(gfp_mask, nodemask); 3517 } 3518 3519 static inline struct page * 3520 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3521 unsigned int alloc_flags, 3522 const struct alloc_context *ac) 3523 { 3524 struct page *page; 3525 3526 page = get_page_from_freelist(gfp_mask, order, 3527 alloc_flags|ALLOC_CPUSET, ac); 3528 /* 3529 * fallback to ignore cpuset restriction if our nodes 3530 * are depleted 3531 */ 3532 if (!page) 3533 page = get_page_from_freelist(gfp_mask, order, 3534 alloc_flags, ac); 3535 3536 return page; 3537 } 3538 3539 static inline struct page * 3540 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3541 const struct alloc_context *ac, unsigned long *did_some_progress) 3542 { 3543 struct oom_control oc = { 3544 .zonelist = ac->zonelist, 3545 .nodemask = ac->nodemask, 3546 .memcg = NULL, 3547 .gfp_mask = gfp_mask, 3548 .order = order, 3549 }; 3550 struct page *page; 3551 3552 *did_some_progress = 0; 3553 3554 /* 3555 * Acquire the oom lock. If that fails, somebody else is 3556 * making progress for us. 3557 */ 3558 if (!mutex_trylock(&oom_lock)) { 3559 *did_some_progress = 1; 3560 schedule_timeout_uninterruptible(1); 3561 return NULL; 3562 } 3563 3564 /* 3565 * Go through the zonelist yet one more time, keep very high watermark 3566 * here, this is only to catch a parallel oom killing, we must fail if 3567 * we're still under heavy pressure. But make sure that this reclaim 3568 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3569 * allocation which will never fail due to oom_lock already held. 3570 */ 3571 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3572 ~__GFP_DIRECT_RECLAIM, order, 3573 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3574 if (page) 3575 goto out; 3576 3577 /* Coredumps can quickly deplete all memory reserves */ 3578 if (current->flags & PF_DUMPCORE) 3579 goto out; 3580 /* The OOM killer will not help higher order allocs */ 3581 if (order > PAGE_ALLOC_COSTLY_ORDER) 3582 goto out; 3583 /* 3584 * We have already exhausted all our reclaim opportunities without any 3585 * success so it is time to admit defeat. We will skip the OOM killer 3586 * because it is very likely that the caller has a more reasonable 3587 * fallback than shooting a random task. 3588 * 3589 * The OOM killer may not free memory on a specific node. 3590 */ 3591 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3592 goto out; 3593 /* The OOM killer does not needlessly kill tasks for lowmem */ 3594 if (ac->highest_zoneidx < ZONE_NORMAL) 3595 goto out; 3596 if (pm_suspended_storage()) 3597 goto out; 3598 /* 3599 * XXX: GFP_NOFS allocations should rather fail than rely on 3600 * other request to make a forward progress. 3601 * We are in an unfortunate situation where out_of_memory cannot 3602 * do much for this context but let's try it to at least get 3603 * access to memory reserved if the current task is killed (see 3604 * out_of_memory). Once filesystems are ready to handle allocation 3605 * failures more gracefully we should just bail out here. 3606 */ 3607 3608 /* Exhausted what can be done so it's blame time */ 3609 if (out_of_memory(&oc) || 3610 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3611 *did_some_progress = 1; 3612 3613 /* 3614 * Help non-failing allocations by giving them access to memory 3615 * reserves 3616 */ 3617 if (gfp_mask & __GFP_NOFAIL) 3618 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3619 ALLOC_NO_WATERMARKS, ac); 3620 } 3621 out: 3622 mutex_unlock(&oom_lock); 3623 return page; 3624 } 3625 3626 /* 3627 * Maximum number of compaction retries with a progress before OOM 3628 * killer is consider as the only way to move forward. 3629 */ 3630 #define MAX_COMPACT_RETRIES 16 3631 3632 #ifdef CONFIG_COMPACTION 3633 /* Try memory compaction for high-order allocations before reclaim */ 3634 static struct page * 3635 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3636 unsigned int alloc_flags, const struct alloc_context *ac, 3637 enum compact_priority prio, enum compact_result *compact_result) 3638 { 3639 struct page *page = NULL; 3640 unsigned long pflags; 3641 unsigned int noreclaim_flag; 3642 3643 if (!order) 3644 return NULL; 3645 3646 psi_memstall_enter(&pflags); 3647 delayacct_compact_start(); 3648 noreclaim_flag = memalloc_noreclaim_save(); 3649 3650 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3651 prio, &page); 3652 3653 memalloc_noreclaim_restore(noreclaim_flag); 3654 psi_memstall_leave(&pflags); 3655 delayacct_compact_end(); 3656 3657 if (*compact_result == COMPACT_SKIPPED) 3658 return NULL; 3659 /* 3660 * At least in one zone compaction wasn't deferred or skipped, so let's 3661 * count a compaction stall 3662 */ 3663 count_vm_event(COMPACTSTALL); 3664 3665 /* Prep a captured page if available */ 3666 if (page) 3667 prep_new_page(page, order, gfp_mask, alloc_flags); 3668 3669 /* Try get a page from the freelist if available */ 3670 if (!page) 3671 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3672 3673 if (page) { 3674 struct zone *zone = page_zone(page); 3675 3676 zone->compact_blockskip_flush = false; 3677 compaction_defer_reset(zone, order, true); 3678 count_vm_event(COMPACTSUCCESS); 3679 return page; 3680 } 3681 3682 /* 3683 * It's bad if compaction run occurs and fails. The most likely reason 3684 * is that pages exist, but not enough to satisfy watermarks. 3685 */ 3686 count_vm_event(COMPACTFAIL); 3687 3688 cond_resched(); 3689 3690 return NULL; 3691 } 3692 3693 static inline bool 3694 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3695 enum compact_result compact_result, 3696 enum compact_priority *compact_priority, 3697 int *compaction_retries) 3698 { 3699 int max_retries = MAX_COMPACT_RETRIES; 3700 int min_priority; 3701 bool ret = false; 3702 int retries = *compaction_retries; 3703 enum compact_priority priority = *compact_priority; 3704 3705 if (!order) 3706 return false; 3707 3708 if (fatal_signal_pending(current)) 3709 return false; 3710 3711 /* 3712 * Compaction was skipped due to a lack of free order-0 3713 * migration targets. Continue if reclaim can help. 3714 */ 3715 if (compact_result == COMPACT_SKIPPED) { 3716 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3717 goto out; 3718 } 3719 3720 /* 3721 * Compaction managed to coalesce some page blocks, but the 3722 * allocation failed presumably due to a race. Retry some. 3723 */ 3724 if (compact_result == COMPACT_SUCCESS) { 3725 /* 3726 * !costly requests are much more important than 3727 * __GFP_RETRY_MAYFAIL costly ones because they are de 3728 * facto nofail and invoke OOM killer to move on while 3729 * costly can fail and users are ready to cope with 3730 * that. 1/4 retries is rather arbitrary but we would 3731 * need much more detailed feedback from compaction to 3732 * make a better decision. 3733 */ 3734 if (order > PAGE_ALLOC_COSTLY_ORDER) 3735 max_retries /= 4; 3736 3737 if (++(*compaction_retries) <= max_retries) { 3738 ret = true; 3739 goto out; 3740 } 3741 } 3742 3743 /* 3744 * Compaction failed. Retry with increasing priority. 3745 */ 3746 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3747 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3748 3749 if (*compact_priority > min_priority) { 3750 (*compact_priority)--; 3751 *compaction_retries = 0; 3752 ret = true; 3753 } 3754 out: 3755 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3756 return ret; 3757 } 3758 #else 3759 static inline struct page * 3760 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3761 unsigned int alloc_flags, const struct alloc_context *ac, 3762 enum compact_priority prio, enum compact_result *compact_result) 3763 { 3764 *compact_result = COMPACT_SKIPPED; 3765 return NULL; 3766 } 3767 3768 static inline bool 3769 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3770 enum compact_result compact_result, 3771 enum compact_priority *compact_priority, 3772 int *compaction_retries) 3773 { 3774 struct zone *zone; 3775 struct zoneref *z; 3776 3777 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3778 return false; 3779 3780 /* 3781 * There are setups with compaction disabled which would prefer to loop 3782 * inside the allocator rather than hit the oom killer prematurely. 3783 * Let's give them a good hope and keep retrying while the order-0 3784 * watermarks are OK. 3785 */ 3786 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3787 ac->highest_zoneidx, ac->nodemask) { 3788 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3789 ac->highest_zoneidx, alloc_flags)) 3790 return true; 3791 } 3792 return false; 3793 } 3794 #endif /* CONFIG_COMPACTION */ 3795 3796 #ifdef CONFIG_LOCKDEP 3797 static struct lockdep_map __fs_reclaim_map = 3798 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3799 3800 static bool __need_reclaim(gfp_t gfp_mask) 3801 { 3802 /* no reclaim without waiting on it */ 3803 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3804 return false; 3805 3806 /* this guy won't enter reclaim */ 3807 if (current->flags & PF_MEMALLOC) 3808 return false; 3809 3810 if (gfp_mask & __GFP_NOLOCKDEP) 3811 return false; 3812 3813 return true; 3814 } 3815 3816 void __fs_reclaim_acquire(unsigned long ip) 3817 { 3818 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3819 } 3820 3821 void __fs_reclaim_release(unsigned long ip) 3822 { 3823 lock_release(&__fs_reclaim_map, ip); 3824 } 3825 3826 void fs_reclaim_acquire(gfp_t gfp_mask) 3827 { 3828 gfp_mask = current_gfp_context(gfp_mask); 3829 3830 if (__need_reclaim(gfp_mask)) { 3831 if (gfp_mask & __GFP_FS) 3832 __fs_reclaim_acquire(_RET_IP_); 3833 3834 #ifdef CONFIG_MMU_NOTIFIER 3835 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3836 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3837 #endif 3838 3839 } 3840 } 3841 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3842 3843 void fs_reclaim_release(gfp_t gfp_mask) 3844 { 3845 gfp_mask = current_gfp_context(gfp_mask); 3846 3847 if (__need_reclaim(gfp_mask)) { 3848 if (gfp_mask & __GFP_FS) 3849 __fs_reclaim_release(_RET_IP_); 3850 } 3851 } 3852 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3853 #endif 3854 3855 /* 3856 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3857 * have been rebuilt so allocation retries. Reader side does not lock and 3858 * retries the allocation if zonelist changes. Writer side is protected by the 3859 * embedded spin_lock. 3860 */ 3861 static DEFINE_SEQLOCK(zonelist_update_seq); 3862 3863 static unsigned int zonelist_iter_begin(void) 3864 { 3865 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3866 return read_seqbegin(&zonelist_update_seq); 3867 3868 return 0; 3869 } 3870 3871 static unsigned int check_retry_zonelist(unsigned int seq) 3872 { 3873 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3874 return read_seqretry(&zonelist_update_seq, seq); 3875 3876 return seq; 3877 } 3878 3879 /* Perform direct synchronous page reclaim */ 3880 static unsigned long 3881 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3882 const struct alloc_context *ac) 3883 { 3884 unsigned int noreclaim_flag; 3885 unsigned long progress; 3886 3887 cond_resched(); 3888 3889 /* We now go into synchronous reclaim */ 3890 cpuset_memory_pressure_bump(); 3891 fs_reclaim_acquire(gfp_mask); 3892 noreclaim_flag = memalloc_noreclaim_save(); 3893 3894 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3895 ac->nodemask); 3896 3897 memalloc_noreclaim_restore(noreclaim_flag); 3898 fs_reclaim_release(gfp_mask); 3899 3900 cond_resched(); 3901 3902 return progress; 3903 } 3904 3905 /* The really slow allocator path where we enter direct reclaim */ 3906 static inline struct page * 3907 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3908 unsigned int alloc_flags, const struct alloc_context *ac, 3909 unsigned long *did_some_progress) 3910 { 3911 struct page *page = NULL; 3912 unsigned long pflags; 3913 bool drained = false; 3914 3915 psi_memstall_enter(&pflags); 3916 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3917 if (unlikely(!(*did_some_progress))) 3918 goto out; 3919 3920 retry: 3921 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3922 3923 /* 3924 * If an allocation failed after direct reclaim, it could be because 3925 * pages are pinned on the per-cpu lists or in high alloc reserves. 3926 * Shrink them and try again 3927 */ 3928 if (!page && !drained) { 3929 unreserve_highatomic_pageblock(ac, false); 3930 drain_all_pages(NULL); 3931 drained = true; 3932 goto retry; 3933 } 3934 out: 3935 psi_memstall_leave(&pflags); 3936 3937 return page; 3938 } 3939 3940 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3941 const struct alloc_context *ac) 3942 { 3943 struct zoneref *z; 3944 struct zone *zone; 3945 pg_data_t *last_pgdat = NULL; 3946 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3947 3948 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3949 ac->nodemask) { 3950 if (!managed_zone(zone)) 3951 continue; 3952 if (last_pgdat != zone->zone_pgdat) { 3953 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3954 last_pgdat = zone->zone_pgdat; 3955 } 3956 } 3957 } 3958 3959 static inline unsigned int 3960 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3961 { 3962 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3963 3964 /* 3965 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3966 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3967 * to save two branches. 3968 */ 3969 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3970 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3971 3972 /* 3973 * The caller may dip into page reserves a bit more if the caller 3974 * cannot run direct reclaim, or if the caller has realtime scheduling 3975 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3976 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3977 */ 3978 alloc_flags |= (__force int) 3979 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3980 3981 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3982 /* 3983 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3984 * if it can't schedule. 3985 */ 3986 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3987 alloc_flags |= ALLOC_NON_BLOCK; 3988 3989 if (order > 0) 3990 alloc_flags |= ALLOC_HIGHATOMIC; 3991 } 3992 3993 /* 3994 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3995 * GFP_ATOMIC) rather than fail, see the comment for 3996 * cpuset_node_allowed(). 3997 */ 3998 if (alloc_flags & ALLOC_MIN_RESERVE) 3999 alloc_flags &= ~ALLOC_CPUSET; 4000 } else if (unlikely(rt_task(current)) && in_task()) 4001 alloc_flags |= ALLOC_MIN_RESERVE; 4002 4003 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4004 4005 return alloc_flags; 4006 } 4007 4008 static bool oom_reserves_allowed(struct task_struct *tsk) 4009 { 4010 if (!tsk_is_oom_victim(tsk)) 4011 return false; 4012 4013 /* 4014 * !MMU doesn't have oom reaper so give access to memory reserves 4015 * only to the thread with TIF_MEMDIE set 4016 */ 4017 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4018 return false; 4019 4020 return true; 4021 } 4022 4023 /* 4024 * Distinguish requests which really need access to full memory 4025 * reserves from oom victims which can live with a portion of it 4026 */ 4027 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4028 { 4029 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4030 return 0; 4031 if (gfp_mask & __GFP_MEMALLOC) 4032 return ALLOC_NO_WATERMARKS; 4033 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4034 return ALLOC_NO_WATERMARKS; 4035 if (!in_interrupt()) { 4036 if (current->flags & PF_MEMALLOC) 4037 return ALLOC_NO_WATERMARKS; 4038 else if (oom_reserves_allowed(current)) 4039 return ALLOC_OOM; 4040 } 4041 4042 return 0; 4043 } 4044 4045 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4046 { 4047 return !!__gfp_pfmemalloc_flags(gfp_mask); 4048 } 4049 4050 /* 4051 * Checks whether it makes sense to retry the reclaim to make a forward progress 4052 * for the given allocation request. 4053 * 4054 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4055 * without success, or when we couldn't even meet the watermark if we 4056 * reclaimed all remaining pages on the LRU lists. 4057 * 4058 * Returns true if a retry is viable or false to enter the oom path. 4059 */ 4060 static inline bool 4061 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4062 struct alloc_context *ac, int alloc_flags, 4063 bool did_some_progress, int *no_progress_loops) 4064 { 4065 struct zone *zone; 4066 struct zoneref *z; 4067 bool ret = false; 4068 4069 /* 4070 * Costly allocations might have made a progress but this doesn't mean 4071 * their order will become available due to high fragmentation so 4072 * always increment the no progress counter for them 4073 */ 4074 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4075 *no_progress_loops = 0; 4076 else 4077 (*no_progress_loops)++; 4078 4079 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4080 goto out; 4081 4082 4083 /* 4084 * Keep reclaiming pages while there is a chance this will lead 4085 * somewhere. If none of the target zones can satisfy our allocation 4086 * request even if all reclaimable pages are considered then we are 4087 * screwed and have to go OOM. 4088 */ 4089 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4090 ac->highest_zoneidx, ac->nodemask) { 4091 unsigned long available; 4092 unsigned long reclaimable; 4093 unsigned long min_wmark = min_wmark_pages(zone); 4094 bool wmark; 4095 4096 available = reclaimable = zone_reclaimable_pages(zone); 4097 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4098 4099 /* 4100 * Would the allocation succeed if we reclaimed all 4101 * reclaimable pages? 4102 */ 4103 wmark = __zone_watermark_ok(zone, order, min_wmark, 4104 ac->highest_zoneidx, alloc_flags, available); 4105 trace_reclaim_retry_zone(z, order, reclaimable, 4106 available, min_wmark, *no_progress_loops, wmark); 4107 if (wmark) { 4108 ret = true; 4109 break; 4110 } 4111 } 4112 4113 /* 4114 * Memory allocation/reclaim might be called from a WQ context and the 4115 * current implementation of the WQ concurrency control doesn't 4116 * recognize that a particular WQ is congested if the worker thread is 4117 * looping without ever sleeping. Therefore we have to do a short sleep 4118 * here rather than calling cond_resched(). 4119 */ 4120 if (current->flags & PF_WQ_WORKER) 4121 schedule_timeout_uninterruptible(1); 4122 else 4123 cond_resched(); 4124 out: 4125 /* Before OOM, exhaust highatomic_reserve */ 4126 if (!ret) 4127 return unreserve_highatomic_pageblock(ac, true); 4128 4129 return ret; 4130 } 4131 4132 static inline bool 4133 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4134 { 4135 /* 4136 * It's possible that cpuset's mems_allowed and the nodemask from 4137 * mempolicy don't intersect. This should be normally dealt with by 4138 * policy_nodemask(), but it's possible to race with cpuset update in 4139 * such a way the check therein was true, and then it became false 4140 * before we got our cpuset_mems_cookie here. 4141 * This assumes that for all allocations, ac->nodemask can come only 4142 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4143 * when it does not intersect with the cpuset restrictions) or the 4144 * caller can deal with a violated nodemask. 4145 */ 4146 if (cpusets_enabled() && ac->nodemask && 4147 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4148 ac->nodemask = NULL; 4149 return true; 4150 } 4151 4152 /* 4153 * When updating a task's mems_allowed or mempolicy nodemask, it is 4154 * possible to race with parallel threads in such a way that our 4155 * allocation can fail while the mask is being updated. If we are about 4156 * to fail, check if the cpuset changed during allocation and if so, 4157 * retry. 4158 */ 4159 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4160 return true; 4161 4162 return false; 4163 } 4164 4165 static inline struct page * 4166 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4167 struct alloc_context *ac) 4168 { 4169 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4170 bool can_compact = gfp_compaction_allowed(gfp_mask); 4171 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4172 struct page *page = NULL; 4173 unsigned int alloc_flags; 4174 unsigned long did_some_progress; 4175 enum compact_priority compact_priority; 4176 enum compact_result compact_result; 4177 int compaction_retries; 4178 int no_progress_loops; 4179 unsigned int cpuset_mems_cookie; 4180 unsigned int zonelist_iter_cookie; 4181 int reserve_flags; 4182 4183 restart: 4184 compaction_retries = 0; 4185 no_progress_loops = 0; 4186 compact_priority = DEF_COMPACT_PRIORITY; 4187 cpuset_mems_cookie = read_mems_allowed_begin(); 4188 zonelist_iter_cookie = zonelist_iter_begin(); 4189 4190 /* 4191 * The fast path uses conservative alloc_flags to succeed only until 4192 * kswapd needs to be woken up, and to avoid the cost of setting up 4193 * alloc_flags precisely. So we do that now. 4194 */ 4195 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4196 4197 /* 4198 * We need to recalculate the starting point for the zonelist iterator 4199 * because we might have used different nodemask in the fast path, or 4200 * there was a cpuset modification and we are retrying - otherwise we 4201 * could end up iterating over non-eligible zones endlessly. 4202 */ 4203 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4204 ac->highest_zoneidx, ac->nodemask); 4205 if (!ac->preferred_zoneref->zone) 4206 goto nopage; 4207 4208 /* 4209 * Check for insane configurations where the cpuset doesn't contain 4210 * any suitable zone to satisfy the request - e.g. non-movable 4211 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4212 */ 4213 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4214 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4215 ac->highest_zoneidx, 4216 &cpuset_current_mems_allowed); 4217 if (!z->zone) 4218 goto nopage; 4219 } 4220 4221 if (alloc_flags & ALLOC_KSWAPD) 4222 wake_all_kswapds(order, gfp_mask, ac); 4223 4224 /* 4225 * The adjusted alloc_flags might result in immediate success, so try 4226 * that first 4227 */ 4228 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4229 if (page) 4230 goto got_pg; 4231 4232 /* 4233 * For costly allocations, try direct compaction first, as it's likely 4234 * that we have enough base pages and don't need to reclaim. For non- 4235 * movable high-order allocations, do that as well, as compaction will 4236 * try prevent permanent fragmentation by migrating from blocks of the 4237 * same migratetype. 4238 * Don't try this for allocations that are allowed to ignore 4239 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4240 */ 4241 if (can_direct_reclaim && can_compact && 4242 (costly_order || 4243 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4244 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4245 page = __alloc_pages_direct_compact(gfp_mask, order, 4246 alloc_flags, ac, 4247 INIT_COMPACT_PRIORITY, 4248 &compact_result); 4249 if (page) 4250 goto got_pg; 4251 4252 /* 4253 * Checks for costly allocations with __GFP_NORETRY, which 4254 * includes some THP page fault allocations 4255 */ 4256 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4257 /* 4258 * If allocating entire pageblock(s) and compaction 4259 * failed because all zones are below low watermarks 4260 * or is prohibited because it recently failed at this 4261 * order, fail immediately unless the allocator has 4262 * requested compaction and reclaim retry. 4263 * 4264 * Reclaim is 4265 * - potentially very expensive because zones are far 4266 * below their low watermarks or this is part of very 4267 * bursty high order allocations, 4268 * - not guaranteed to help because isolate_freepages() 4269 * may not iterate over freed pages as part of its 4270 * linear scan, and 4271 * - unlikely to make entire pageblocks free on its 4272 * own. 4273 */ 4274 if (compact_result == COMPACT_SKIPPED || 4275 compact_result == COMPACT_DEFERRED) 4276 goto nopage; 4277 4278 /* 4279 * Looks like reclaim/compaction is worth trying, but 4280 * sync compaction could be very expensive, so keep 4281 * using async compaction. 4282 */ 4283 compact_priority = INIT_COMPACT_PRIORITY; 4284 } 4285 } 4286 4287 retry: 4288 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4289 if (alloc_flags & ALLOC_KSWAPD) 4290 wake_all_kswapds(order, gfp_mask, ac); 4291 4292 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4293 if (reserve_flags) 4294 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4295 (alloc_flags & ALLOC_KSWAPD); 4296 4297 /* 4298 * Reset the nodemask and zonelist iterators if memory policies can be 4299 * ignored. These allocations are high priority and system rather than 4300 * user oriented. 4301 */ 4302 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4303 ac->nodemask = NULL; 4304 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4305 ac->highest_zoneidx, ac->nodemask); 4306 } 4307 4308 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4309 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4310 if (page) 4311 goto got_pg; 4312 4313 /* Caller is not willing to reclaim, we can't balance anything */ 4314 if (!can_direct_reclaim) 4315 goto nopage; 4316 4317 /* Avoid recursion of direct reclaim */ 4318 if (current->flags & PF_MEMALLOC) 4319 goto nopage; 4320 4321 /* Try direct reclaim and then allocating */ 4322 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4323 &did_some_progress); 4324 if (page) 4325 goto got_pg; 4326 4327 /* Try direct compaction and then allocating */ 4328 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4329 compact_priority, &compact_result); 4330 if (page) 4331 goto got_pg; 4332 4333 /* Do not loop if specifically requested */ 4334 if (gfp_mask & __GFP_NORETRY) 4335 goto nopage; 4336 4337 /* 4338 * Do not retry costly high order allocations unless they are 4339 * __GFP_RETRY_MAYFAIL and we can compact 4340 */ 4341 if (costly_order && (!can_compact || 4342 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4343 goto nopage; 4344 4345 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4346 did_some_progress > 0, &no_progress_loops)) 4347 goto retry; 4348 4349 /* 4350 * It doesn't make any sense to retry for the compaction if the order-0 4351 * reclaim is not able to make any progress because the current 4352 * implementation of the compaction depends on the sufficient amount 4353 * of free memory (see __compaction_suitable) 4354 */ 4355 if (did_some_progress > 0 && can_compact && 4356 should_compact_retry(ac, order, alloc_flags, 4357 compact_result, &compact_priority, 4358 &compaction_retries)) 4359 goto retry; 4360 4361 4362 /* 4363 * Deal with possible cpuset update races or zonelist updates to avoid 4364 * a unnecessary OOM kill. 4365 */ 4366 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4367 check_retry_zonelist(zonelist_iter_cookie)) 4368 goto restart; 4369 4370 /* Reclaim has failed us, start killing things */ 4371 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4372 if (page) 4373 goto got_pg; 4374 4375 /* Avoid allocations with no watermarks from looping endlessly */ 4376 if (tsk_is_oom_victim(current) && 4377 (alloc_flags & ALLOC_OOM || 4378 (gfp_mask & __GFP_NOMEMALLOC))) 4379 goto nopage; 4380 4381 /* Retry as long as the OOM killer is making progress */ 4382 if (did_some_progress) { 4383 no_progress_loops = 0; 4384 goto retry; 4385 } 4386 4387 nopage: 4388 /* 4389 * Deal with possible cpuset update races or zonelist updates to avoid 4390 * a unnecessary OOM kill. 4391 */ 4392 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4393 check_retry_zonelist(zonelist_iter_cookie)) 4394 goto restart; 4395 4396 /* 4397 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4398 * we always retry 4399 */ 4400 if (gfp_mask & __GFP_NOFAIL) { 4401 /* 4402 * All existing users of the __GFP_NOFAIL are blockable, so warn 4403 * of any new users that actually require GFP_NOWAIT 4404 */ 4405 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4406 goto fail; 4407 4408 /* 4409 * PF_MEMALLOC request from this context is rather bizarre 4410 * because we cannot reclaim anything and only can loop waiting 4411 * for somebody to do a work for us 4412 */ 4413 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4414 4415 /* 4416 * non failing costly orders are a hard requirement which we 4417 * are not prepared for much so let's warn about these users 4418 * so that we can identify them and convert them to something 4419 * else. 4420 */ 4421 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4422 4423 /* 4424 * Help non-failing allocations by giving some access to memory 4425 * reserves normally used for high priority non-blocking 4426 * allocations but do not use ALLOC_NO_WATERMARKS because this 4427 * could deplete whole memory reserves which would just make 4428 * the situation worse. 4429 */ 4430 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4431 if (page) 4432 goto got_pg; 4433 4434 cond_resched(); 4435 goto retry; 4436 } 4437 fail: 4438 warn_alloc(gfp_mask, ac->nodemask, 4439 "page allocation failure: order:%u", order); 4440 got_pg: 4441 return page; 4442 } 4443 4444 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4445 int preferred_nid, nodemask_t *nodemask, 4446 struct alloc_context *ac, gfp_t *alloc_gfp, 4447 unsigned int *alloc_flags) 4448 { 4449 ac->highest_zoneidx = gfp_zone(gfp_mask); 4450 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4451 ac->nodemask = nodemask; 4452 ac->migratetype = gfp_migratetype(gfp_mask); 4453 4454 if (cpusets_enabled()) { 4455 *alloc_gfp |= __GFP_HARDWALL; 4456 /* 4457 * When we are in the interrupt context, it is irrelevant 4458 * to the current task context. It means that any node ok. 4459 */ 4460 if (in_task() && !ac->nodemask) 4461 ac->nodemask = &cpuset_current_mems_allowed; 4462 else 4463 *alloc_flags |= ALLOC_CPUSET; 4464 } 4465 4466 might_alloc(gfp_mask); 4467 4468 if (should_fail_alloc_page(gfp_mask, order)) 4469 return false; 4470 4471 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4472 4473 /* Dirty zone balancing only done in the fast path */ 4474 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4475 4476 /* 4477 * The preferred zone is used for statistics but crucially it is 4478 * also used as the starting point for the zonelist iterator. It 4479 * may get reset for allocations that ignore memory policies. 4480 */ 4481 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4482 ac->highest_zoneidx, ac->nodemask); 4483 4484 return true; 4485 } 4486 4487 /* 4488 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4489 * @gfp: GFP flags for the allocation 4490 * @preferred_nid: The preferred NUMA node ID to allocate from 4491 * @nodemask: Set of nodes to allocate from, may be NULL 4492 * @nr_pages: The number of pages desired on the list or array 4493 * @page_list: Optional list to store the allocated pages 4494 * @page_array: Optional array to store the pages 4495 * 4496 * This is a batched version of the page allocator that attempts to 4497 * allocate nr_pages quickly. Pages are added to page_list if page_list 4498 * is not NULL, otherwise it is assumed that the page_array is valid. 4499 * 4500 * For lists, nr_pages is the number of pages that should be allocated. 4501 * 4502 * For arrays, only NULL elements are populated with pages and nr_pages 4503 * is the maximum number of pages that will be stored in the array. 4504 * 4505 * Returns the number of pages on the list or array. 4506 */ 4507 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4508 nodemask_t *nodemask, int nr_pages, 4509 struct list_head *page_list, 4510 struct page **page_array) 4511 { 4512 struct page *page; 4513 unsigned long __maybe_unused UP_flags; 4514 struct zone *zone; 4515 struct zoneref *z; 4516 struct per_cpu_pages *pcp; 4517 struct list_head *pcp_list; 4518 struct alloc_context ac; 4519 gfp_t alloc_gfp; 4520 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4521 int nr_populated = 0, nr_account = 0; 4522 4523 /* 4524 * Skip populated array elements to determine if any pages need 4525 * to be allocated before disabling IRQs. 4526 */ 4527 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4528 nr_populated++; 4529 4530 /* No pages requested? */ 4531 if (unlikely(nr_pages <= 0)) 4532 goto out; 4533 4534 /* Already populated array? */ 4535 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4536 goto out; 4537 4538 /* Bulk allocator does not support memcg accounting. */ 4539 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4540 goto failed; 4541 4542 /* Use the single page allocator for one page. */ 4543 if (nr_pages - nr_populated == 1) 4544 goto failed; 4545 4546 #ifdef CONFIG_PAGE_OWNER 4547 /* 4548 * PAGE_OWNER may recurse into the allocator to allocate space to 4549 * save the stack with pagesets.lock held. Releasing/reacquiring 4550 * removes much of the performance benefit of bulk allocation so 4551 * force the caller to allocate one page at a time as it'll have 4552 * similar performance to added complexity to the bulk allocator. 4553 */ 4554 if (static_branch_unlikely(&page_owner_inited)) 4555 goto failed; 4556 #endif 4557 4558 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4559 gfp &= gfp_allowed_mask; 4560 alloc_gfp = gfp; 4561 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4562 goto out; 4563 gfp = alloc_gfp; 4564 4565 /* Find an allowed local zone that meets the low watermark. */ 4566 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4567 unsigned long mark; 4568 4569 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4570 !__cpuset_zone_allowed(zone, gfp)) { 4571 continue; 4572 } 4573 4574 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4575 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4576 goto failed; 4577 } 4578 4579 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4580 if (zone_watermark_fast(zone, 0, mark, 4581 zonelist_zone_idx(ac.preferred_zoneref), 4582 alloc_flags, gfp)) { 4583 break; 4584 } 4585 } 4586 4587 /* 4588 * If there are no allowed local zones that meets the watermarks then 4589 * try to allocate a single page and reclaim if necessary. 4590 */ 4591 if (unlikely(!zone)) 4592 goto failed; 4593 4594 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4595 pcp_trylock_prepare(UP_flags); 4596 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4597 if (!pcp) 4598 goto failed_irq; 4599 4600 /* Attempt the batch allocation */ 4601 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4602 while (nr_populated < nr_pages) { 4603 4604 /* Skip existing pages */ 4605 if (page_array && page_array[nr_populated]) { 4606 nr_populated++; 4607 continue; 4608 } 4609 4610 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4611 pcp, pcp_list); 4612 if (unlikely(!page)) { 4613 /* Try and allocate at least one page */ 4614 if (!nr_account) { 4615 pcp_spin_unlock(pcp); 4616 goto failed_irq; 4617 } 4618 break; 4619 } 4620 nr_account++; 4621 4622 prep_new_page(page, 0, gfp, 0); 4623 if (page_list) 4624 list_add(&page->lru, page_list); 4625 else 4626 page_array[nr_populated] = page; 4627 nr_populated++; 4628 } 4629 4630 pcp_spin_unlock(pcp); 4631 pcp_trylock_finish(UP_flags); 4632 4633 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4634 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4635 4636 out: 4637 return nr_populated; 4638 4639 failed_irq: 4640 pcp_trylock_finish(UP_flags); 4641 4642 failed: 4643 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4644 if (page) { 4645 if (page_list) 4646 list_add(&page->lru, page_list); 4647 else 4648 page_array[nr_populated] = page; 4649 nr_populated++; 4650 } 4651 4652 goto out; 4653 } 4654 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4655 4656 /* 4657 * This is the 'heart' of the zoned buddy allocator. 4658 */ 4659 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4660 int preferred_nid, nodemask_t *nodemask) 4661 { 4662 struct page *page; 4663 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4664 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4665 struct alloc_context ac = { }; 4666 4667 /* 4668 * There are several places where we assume that the order value is sane 4669 * so bail out early if the request is out of bound. 4670 */ 4671 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4672 return NULL; 4673 4674 gfp &= gfp_allowed_mask; 4675 /* 4676 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4677 * resp. GFP_NOIO which has to be inherited for all allocation requests 4678 * from a particular context which has been marked by 4679 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4680 * movable zones are not used during allocation. 4681 */ 4682 gfp = current_gfp_context(gfp); 4683 alloc_gfp = gfp; 4684 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4685 &alloc_gfp, &alloc_flags)) 4686 return NULL; 4687 4688 /* 4689 * Forbid the first pass from falling back to types that fragment 4690 * memory until all local zones are considered. 4691 */ 4692 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4693 4694 /* First allocation attempt */ 4695 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4696 if (likely(page)) 4697 goto out; 4698 4699 alloc_gfp = gfp; 4700 ac.spread_dirty_pages = false; 4701 4702 /* 4703 * Restore the original nodemask if it was potentially replaced with 4704 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4705 */ 4706 ac.nodemask = nodemask; 4707 4708 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4709 4710 out: 4711 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4712 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4713 __free_pages(page, order); 4714 page = NULL; 4715 } 4716 4717 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4718 kmsan_alloc_page(page, order, alloc_gfp); 4719 4720 return page; 4721 } 4722 EXPORT_SYMBOL(__alloc_pages_noprof); 4723 4724 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4725 nodemask_t *nodemask) 4726 { 4727 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4728 preferred_nid, nodemask); 4729 return page_rmappable_folio(page); 4730 } 4731 EXPORT_SYMBOL(__folio_alloc_noprof); 4732 4733 /* 4734 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4735 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4736 * you need to access high mem. 4737 */ 4738 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4739 { 4740 struct page *page; 4741 4742 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4743 if (!page) 4744 return 0; 4745 return (unsigned long) page_address(page); 4746 } 4747 EXPORT_SYMBOL(get_free_pages_noprof); 4748 4749 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4750 { 4751 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4752 } 4753 EXPORT_SYMBOL(get_zeroed_page_noprof); 4754 4755 /** 4756 * __free_pages - Free pages allocated with alloc_pages(). 4757 * @page: The page pointer returned from alloc_pages(). 4758 * @order: The order of the allocation. 4759 * 4760 * This function can free multi-page allocations that are not compound 4761 * pages. It does not check that the @order passed in matches that of 4762 * the allocation, so it is easy to leak memory. Freeing more memory 4763 * than was allocated will probably emit a warning. 4764 * 4765 * If the last reference to this page is speculative, it will be released 4766 * by put_page() which only frees the first page of a non-compound 4767 * allocation. To prevent the remaining pages from being leaked, we free 4768 * the subsequent pages here. If you want to use the page's reference 4769 * count to decide when to free the allocation, you should allocate a 4770 * compound page, and use put_page() instead of __free_pages(). 4771 * 4772 * Context: May be called in interrupt context or while holding a normal 4773 * spinlock, but not in NMI context or while holding a raw spinlock. 4774 */ 4775 void __free_pages(struct page *page, unsigned int order) 4776 { 4777 /* get PageHead before we drop reference */ 4778 int head = PageHead(page); 4779 struct alloc_tag *tag = pgalloc_tag_get(page); 4780 4781 if (put_page_testzero(page)) 4782 free_unref_page(page, order); 4783 else if (!head) { 4784 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4785 while (order-- > 0) 4786 free_unref_page(page + (1 << order), order); 4787 } 4788 } 4789 EXPORT_SYMBOL(__free_pages); 4790 4791 void free_pages(unsigned long addr, unsigned int order) 4792 { 4793 if (addr != 0) { 4794 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4795 __free_pages(virt_to_page((void *)addr), order); 4796 } 4797 } 4798 4799 EXPORT_SYMBOL(free_pages); 4800 4801 /* 4802 * Page Fragment: 4803 * An arbitrary-length arbitrary-offset area of memory which resides 4804 * within a 0 or higher order page. Multiple fragments within that page 4805 * are individually refcounted, in the page's reference counter. 4806 * 4807 * The page_frag functions below provide a simple allocation framework for 4808 * page fragments. This is used by the network stack and network device 4809 * drivers to provide a backing region of memory for use as either an 4810 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4811 */ 4812 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4813 gfp_t gfp_mask) 4814 { 4815 struct page *page = NULL; 4816 gfp_t gfp = gfp_mask; 4817 4818 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4819 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | 4820 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; 4821 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4822 PAGE_FRAG_CACHE_MAX_ORDER); 4823 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4824 #endif 4825 if (unlikely(!page)) 4826 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4827 4828 nc->va = page ? page_address(page) : NULL; 4829 4830 return page; 4831 } 4832 4833 void page_frag_cache_drain(struct page_frag_cache *nc) 4834 { 4835 if (!nc->va) 4836 return; 4837 4838 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); 4839 nc->va = NULL; 4840 } 4841 EXPORT_SYMBOL(page_frag_cache_drain); 4842 4843 void __page_frag_cache_drain(struct page *page, unsigned int count) 4844 { 4845 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4846 4847 if (page_ref_sub_and_test(page, count)) 4848 free_unref_page(page, compound_order(page)); 4849 } 4850 EXPORT_SYMBOL(__page_frag_cache_drain); 4851 4852 void *__page_frag_alloc_align(struct page_frag_cache *nc, 4853 unsigned int fragsz, gfp_t gfp_mask, 4854 unsigned int align_mask) 4855 { 4856 unsigned int size = PAGE_SIZE; 4857 struct page *page; 4858 int offset; 4859 4860 if (unlikely(!nc->va)) { 4861 refill: 4862 page = __page_frag_cache_refill(nc, gfp_mask); 4863 if (!page) 4864 return NULL; 4865 4866 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4867 /* if size can vary use size else just use PAGE_SIZE */ 4868 size = nc->size; 4869 #endif 4870 /* Even if we own the page, we do not use atomic_set(). 4871 * This would break get_page_unless_zero() users. 4872 */ 4873 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4874 4875 /* reset page count bias and offset to start of new frag */ 4876 nc->pfmemalloc = page_is_pfmemalloc(page); 4877 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4878 nc->offset = size; 4879 } 4880 4881 offset = nc->offset - fragsz; 4882 if (unlikely(offset < 0)) { 4883 page = virt_to_page(nc->va); 4884 4885 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4886 goto refill; 4887 4888 if (unlikely(nc->pfmemalloc)) { 4889 free_unref_page(page, compound_order(page)); 4890 goto refill; 4891 } 4892 4893 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4894 /* if size can vary use size else just use PAGE_SIZE */ 4895 size = nc->size; 4896 #endif 4897 /* OK, page count is 0, we can safely set it */ 4898 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4899 4900 /* reset page count bias and offset to start of new frag */ 4901 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4902 offset = size - fragsz; 4903 if (unlikely(offset < 0)) { 4904 /* 4905 * The caller is trying to allocate a fragment 4906 * with fragsz > PAGE_SIZE but the cache isn't big 4907 * enough to satisfy the request, this may 4908 * happen in low memory conditions. 4909 * We don't release the cache page because 4910 * it could make memory pressure worse 4911 * so we simply return NULL here. 4912 */ 4913 return NULL; 4914 } 4915 } 4916 4917 nc->pagecnt_bias--; 4918 offset &= align_mask; 4919 nc->offset = offset; 4920 4921 return nc->va + offset; 4922 } 4923 EXPORT_SYMBOL(__page_frag_alloc_align); 4924 4925 /* 4926 * Frees a page fragment allocated out of either a compound or order 0 page. 4927 */ 4928 void page_frag_free(void *addr) 4929 { 4930 struct page *page = virt_to_head_page(addr); 4931 4932 if (unlikely(put_page_testzero(page))) 4933 free_unref_page(page, compound_order(page)); 4934 } 4935 EXPORT_SYMBOL(page_frag_free); 4936 4937 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4938 size_t size) 4939 { 4940 if (addr) { 4941 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4942 struct page *page = virt_to_page((void *)addr); 4943 struct page *last = page + nr; 4944 4945 split_page_owner(page, order, 0); 4946 pgalloc_tag_split(page, 1 << order); 4947 split_page_memcg(page, order, 0); 4948 while (page < --last) 4949 set_page_refcounted(last); 4950 4951 last = page + (1UL << order); 4952 for (page += nr; page < last; page++) 4953 __free_pages_ok(page, 0, FPI_TO_TAIL); 4954 } 4955 return (void *)addr; 4956 } 4957 4958 /** 4959 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4960 * @size: the number of bytes to allocate 4961 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4962 * 4963 * This function is similar to alloc_pages(), except that it allocates the 4964 * minimum number of pages to satisfy the request. alloc_pages() can only 4965 * allocate memory in power-of-two pages. 4966 * 4967 * This function is also limited by MAX_PAGE_ORDER. 4968 * 4969 * Memory allocated by this function must be released by free_pages_exact(). 4970 * 4971 * Return: pointer to the allocated area or %NULL in case of error. 4972 */ 4973 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 4974 { 4975 unsigned int order = get_order(size); 4976 unsigned long addr; 4977 4978 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4979 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4980 4981 addr = get_free_pages_noprof(gfp_mask, order); 4982 return make_alloc_exact(addr, order, size); 4983 } 4984 EXPORT_SYMBOL(alloc_pages_exact_noprof); 4985 4986 /** 4987 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4988 * pages on a node. 4989 * @nid: the preferred node ID where memory should be allocated 4990 * @size: the number of bytes to allocate 4991 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4992 * 4993 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4994 * back. 4995 * 4996 * Return: pointer to the allocated area or %NULL in case of error. 4997 */ 4998 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 4999 { 5000 unsigned int order = get_order(size); 5001 struct page *p; 5002 5003 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5004 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5005 5006 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5007 if (!p) 5008 return NULL; 5009 return make_alloc_exact((unsigned long)page_address(p), order, size); 5010 } 5011 5012 /** 5013 * free_pages_exact - release memory allocated via alloc_pages_exact() 5014 * @virt: the value returned by alloc_pages_exact. 5015 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5016 * 5017 * Release the memory allocated by a previous call to alloc_pages_exact. 5018 */ 5019 void free_pages_exact(void *virt, size_t size) 5020 { 5021 unsigned long addr = (unsigned long)virt; 5022 unsigned long end = addr + PAGE_ALIGN(size); 5023 5024 while (addr < end) { 5025 free_page(addr); 5026 addr += PAGE_SIZE; 5027 } 5028 } 5029 EXPORT_SYMBOL(free_pages_exact); 5030 5031 /** 5032 * nr_free_zone_pages - count number of pages beyond high watermark 5033 * @offset: The zone index of the highest zone 5034 * 5035 * nr_free_zone_pages() counts the number of pages which are beyond the 5036 * high watermark within all zones at or below a given zone index. For each 5037 * zone, the number of pages is calculated as: 5038 * 5039 * nr_free_zone_pages = managed_pages - high_pages 5040 * 5041 * Return: number of pages beyond high watermark. 5042 */ 5043 static unsigned long nr_free_zone_pages(int offset) 5044 { 5045 struct zoneref *z; 5046 struct zone *zone; 5047 5048 /* Just pick one node, since fallback list is circular */ 5049 unsigned long sum = 0; 5050 5051 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5052 5053 for_each_zone_zonelist(zone, z, zonelist, offset) { 5054 unsigned long size = zone_managed_pages(zone); 5055 unsigned long high = high_wmark_pages(zone); 5056 if (size > high) 5057 sum += size - high; 5058 } 5059 5060 return sum; 5061 } 5062 5063 /** 5064 * nr_free_buffer_pages - count number of pages beyond high watermark 5065 * 5066 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5067 * watermark within ZONE_DMA and ZONE_NORMAL. 5068 * 5069 * Return: number of pages beyond high watermark within ZONE_DMA and 5070 * ZONE_NORMAL. 5071 */ 5072 unsigned long nr_free_buffer_pages(void) 5073 { 5074 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5075 } 5076 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5077 5078 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5079 { 5080 zoneref->zone = zone; 5081 zoneref->zone_idx = zone_idx(zone); 5082 } 5083 5084 /* 5085 * Builds allocation fallback zone lists. 5086 * 5087 * Add all populated zones of a node to the zonelist. 5088 */ 5089 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5090 { 5091 struct zone *zone; 5092 enum zone_type zone_type = MAX_NR_ZONES; 5093 int nr_zones = 0; 5094 5095 do { 5096 zone_type--; 5097 zone = pgdat->node_zones + zone_type; 5098 if (populated_zone(zone)) { 5099 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5100 check_highest_zone(zone_type); 5101 } 5102 } while (zone_type); 5103 5104 return nr_zones; 5105 } 5106 5107 #ifdef CONFIG_NUMA 5108 5109 static int __parse_numa_zonelist_order(char *s) 5110 { 5111 /* 5112 * We used to support different zonelists modes but they turned 5113 * out to be just not useful. Let's keep the warning in place 5114 * if somebody still use the cmd line parameter so that we do 5115 * not fail it silently 5116 */ 5117 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5118 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5119 return -EINVAL; 5120 } 5121 return 0; 5122 } 5123 5124 static char numa_zonelist_order[] = "Node"; 5125 #define NUMA_ZONELIST_ORDER_LEN 16 5126 /* 5127 * sysctl handler for numa_zonelist_order 5128 */ 5129 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5130 void *buffer, size_t *length, loff_t *ppos) 5131 { 5132 if (write) 5133 return __parse_numa_zonelist_order(buffer); 5134 return proc_dostring(table, write, buffer, length, ppos); 5135 } 5136 5137 static int node_load[MAX_NUMNODES]; 5138 5139 /** 5140 * find_next_best_node - find the next node that should appear in a given node's fallback list 5141 * @node: node whose fallback list we're appending 5142 * @used_node_mask: nodemask_t of already used nodes 5143 * 5144 * We use a number of factors to determine which is the next node that should 5145 * appear on a given node's fallback list. The node should not have appeared 5146 * already in @node's fallback list, and it should be the next closest node 5147 * according to the distance array (which contains arbitrary distance values 5148 * from each node to each node in the system), and should also prefer nodes 5149 * with no CPUs, since presumably they'll have very little allocation pressure 5150 * on them otherwise. 5151 * 5152 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5153 */ 5154 int find_next_best_node(int node, nodemask_t *used_node_mask) 5155 { 5156 int n, val; 5157 int min_val = INT_MAX; 5158 int best_node = NUMA_NO_NODE; 5159 5160 /* 5161 * Use the local node if we haven't already, but for memoryless local 5162 * node, we should skip it and fall back to other nodes. 5163 */ 5164 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5165 node_set(node, *used_node_mask); 5166 return node; 5167 } 5168 5169 for_each_node_state(n, N_MEMORY) { 5170 5171 /* Don't want a node to appear more than once */ 5172 if (node_isset(n, *used_node_mask)) 5173 continue; 5174 5175 /* Use the distance array to find the distance */ 5176 val = node_distance(node, n); 5177 5178 /* Penalize nodes under us ("prefer the next node") */ 5179 val += (n < node); 5180 5181 /* Give preference to headless and unused nodes */ 5182 if (!cpumask_empty(cpumask_of_node(n))) 5183 val += PENALTY_FOR_NODE_WITH_CPUS; 5184 5185 /* Slight preference for less loaded node */ 5186 val *= MAX_NUMNODES; 5187 val += node_load[n]; 5188 5189 if (val < min_val) { 5190 min_val = val; 5191 best_node = n; 5192 } 5193 } 5194 5195 if (best_node >= 0) 5196 node_set(best_node, *used_node_mask); 5197 5198 return best_node; 5199 } 5200 5201 5202 /* 5203 * Build zonelists ordered by node and zones within node. 5204 * This results in maximum locality--normal zone overflows into local 5205 * DMA zone, if any--but risks exhausting DMA zone. 5206 */ 5207 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5208 unsigned nr_nodes) 5209 { 5210 struct zoneref *zonerefs; 5211 int i; 5212 5213 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5214 5215 for (i = 0; i < nr_nodes; i++) { 5216 int nr_zones; 5217 5218 pg_data_t *node = NODE_DATA(node_order[i]); 5219 5220 nr_zones = build_zonerefs_node(node, zonerefs); 5221 zonerefs += nr_zones; 5222 } 5223 zonerefs->zone = NULL; 5224 zonerefs->zone_idx = 0; 5225 } 5226 5227 /* 5228 * Build __GFP_THISNODE zonelists 5229 */ 5230 static void build_thisnode_zonelists(pg_data_t *pgdat) 5231 { 5232 struct zoneref *zonerefs; 5233 int nr_zones; 5234 5235 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5236 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5237 zonerefs += nr_zones; 5238 zonerefs->zone = NULL; 5239 zonerefs->zone_idx = 0; 5240 } 5241 5242 /* 5243 * Build zonelists ordered by zone and nodes within zones. 5244 * This results in conserving DMA zone[s] until all Normal memory is 5245 * exhausted, but results in overflowing to remote node while memory 5246 * may still exist in local DMA zone. 5247 */ 5248 5249 static void build_zonelists(pg_data_t *pgdat) 5250 { 5251 static int node_order[MAX_NUMNODES]; 5252 int node, nr_nodes = 0; 5253 nodemask_t used_mask = NODE_MASK_NONE; 5254 int local_node, prev_node; 5255 5256 /* NUMA-aware ordering of nodes */ 5257 local_node = pgdat->node_id; 5258 prev_node = local_node; 5259 5260 memset(node_order, 0, sizeof(node_order)); 5261 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5262 /* 5263 * We don't want to pressure a particular node. 5264 * So adding penalty to the first node in same 5265 * distance group to make it round-robin. 5266 */ 5267 if (node_distance(local_node, node) != 5268 node_distance(local_node, prev_node)) 5269 node_load[node] += 1; 5270 5271 node_order[nr_nodes++] = node; 5272 prev_node = node; 5273 } 5274 5275 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5276 build_thisnode_zonelists(pgdat); 5277 pr_info("Fallback order for Node %d: ", local_node); 5278 for (node = 0; node < nr_nodes; node++) 5279 pr_cont("%d ", node_order[node]); 5280 pr_cont("\n"); 5281 } 5282 5283 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5284 /* 5285 * Return node id of node used for "local" allocations. 5286 * I.e., first node id of first zone in arg node's generic zonelist. 5287 * Used for initializing percpu 'numa_mem', which is used primarily 5288 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5289 */ 5290 int local_memory_node(int node) 5291 { 5292 struct zoneref *z; 5293 5294 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5295 gfp_zone(GFP_KERNEL), 5296 NULL); 5297 return zone_to_nid(z->zone); 5298 } 5299 #endif 5300 5301 static void setup_min_unmapped_ratio(void); 5302 static void setup_min_slab_ratio(void); 5303 #else /* CONFIG_NUMA */ 5304 5305 static void build_zonelists(pg_data_t *pgdat) 5306 { 5307 struct zoneref *zonerefs; 5308 int nr_zones; 5309 5310 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5311 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5312 zonerefs += nr_zones; 5313 5314 zonerefs->zone = NULL; 5315 zonerefs->zone_idx = 0; 5316 } 5317 5318 #endif /* CONFIG_NUMA */ 5319 5320 /* 5321 * Boot pageset table. One per cpu which is going to be used for all 5322 * zones and all nodes. The parameters will be set in such a way 5323 * that an item put on a list will immediately be handed over to 5324 * the buddy list. This is safe since pageset manipulation is done 5325 * with interrupts disabled. 5326 * 5327 * The boot_pagesets must be kept even after bootup is complete for 5328 * unused processors and/or zones. They do play a role for bootstrapping 5329 * hotplugged processors. 5330 * 5331 * zoneinfo_show() and maybe other functions do 5332 * not check if the processor is online before following the pageset pointer. 5333 * Other parts of the kernel may not check if the zone is available. 5334 */ 5335 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5336 /* These effectively disable the pcplists in the boot pageset completely */ 5337 #define BOOT_PAGESET_HIGH 0 5338 #define BOOT_PAGESET_BATCH 1 5339 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5340 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5341 5342 static void __build_all_zonelists(void *data) 5343 { 5344 int nid; 5345 int __maybe_unused cpu; 5346 pg_data_t *self = data; 5347 unsigned long flags; 5348 5349 /* 5350 * The zonelist_update_seq must be acquired with irqsave because the 5351 * reader can be invoked from IRQ with GFP_ATOMIC. 5352 */ 5353 write_seqlock_irqsave(&zonelist_update_seq, flags); 5354 /* 5355 * Also disable synchronous printk() to prevent any printk() from 5356 * trying to hold port->lock, for 5357 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5358 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5359 */ 5360 printk_deferred_enter(); 5361 5362 #ifdef CONFIG_NUMA 5363 memset(node_load, 0, sizeof(node_load)); 5364 #endif 5365 5366 /* 5367 * This node is hotadded and no memory is yet present. So just 5368 * building zonelists is fine - no need to touch other nodes. 5369 */ 5370 if (self && !node_online(self->node_id)) { 5371 build_zonelists(self); 5372 } else { 5373 /* 5374 * All possible nodes have pgdat preallocated 5375 * in free_area_init 5376 */ 5377 for_each_node(nid) { 5378 pg_data_t *pgdat = NODE_DATA(nid); 5379 5380 build_zonelists(pgdat); 5381 } 5382 5383 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5384 /* 5385 * We now know the "local memory node" for each node-- 5386 * i.e., the node of the first zone in the generic zonelist. 5387 * Set up numa_mem percpu variable for on-line cpus. During 5388 * boot, only the boot cpu should be on-line; we'll init the 5389 * secondary cpus' numa_mem as they come on-line. During 5390 * node/memory hotplug, we'll fixup all on-line cpus. 5391 */ 5392 for_each_online_cpu(cpu) 5393 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5394 #endif 5395 } 5396 5397 printk_deferred_exit(); 5398 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5399 } 5400 5401 static noinline void __init 5402 build_all_zonelists_init(void) 5403 { 5404 int cpu; 5405 5406 __build_all_zonelists(NULL); 5407 5408 /* 5409 * Initialize the boot_pagesets that are going to be used 5410 * for bootstrapping processors. The real pagesets for 5411 * each zone will be allocated later when the per cpu 5412 * allocator is available. 5413 * 5414 * boot_pagesets are used also for bootstrapping offline 5415 * cpus if the system is already booted because the pagesets 5416 * are needed to initialize allocators on a specific cpu too. 5417 * F.e. the percpu allocator needs the page allocator which 5418 * needs the percpu allocator in order to allocate its pagesets 5419 * (a chicken-egg dilemma). 5420 */ 5421 for_each_possible_cpu(cpu) 5422 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5423 5424 mminit_verify_zonelist(); 5425 cpuset_init_current_mems_allowed(); 5426 } 5427 5428 /* 5429 * unless system_state == SYSTEM_BOOTING. 5430 * 5431 * __ref due to call of __init annotated helper build_all_zonelists_init 5432 * [protected by SYSTEM_BOOTING]. 5433 */ 5434 void __ref build_all_zonelists(pg_data_t *pgdat) 5435 { 5436 unsigned long vm_total_pages; 5437 5438 if (system_state == SYSTEM_BOOTING) { 5439 build_all_zonelists_init(); 5440 } else { 5441 __build_all_zonelists(pgdat); 5442 /* cpuset refresh routine should be here */ 5443 } 5444 /* Get the number of free pages beyond high watermark in all zones. */ 5445 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5446 /* 5447 * Disable grouping by mobility if the number of pages in the 5448 * system is too low to allow the mechanism to work. It would be 5449 * more accurate, but expensive to check per-zone. This check is 5450 * made on memory-hotadd so a system can start with mobility 5451 * disabled and enable it later 5452 */ 5453 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5454 page_group_by_mobility_disabled = 1; 5455 else 5456 page_group_by_mobility_disabled = 0; 5457 5458 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5459 nr_online_nodes, 5460 page_group_by_mobility_disabled ? "off" : "on", 5461 vm_total_pages); 5462 #ifdef CONFIG_NUMA 5463 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5464 #endif 5465 } 5466 5467 static int zone_batchsize(struct zone *zone) 5468 { 5469 #ifdef CONFIG_MMU 5470 int batch; 5471 5472 /* 5473 * The number of pages to batch allocate is either ~0.1% 5474 * of the zone or 1MB, whichever is smaller. The batch 5475 * size is striking a balance between allocation latency 5476 * and zone lock contention. 5477 */ 5478 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5479 batch /= 4; /* We effectively *= 4 below */ 5480 if (batch < 1) 5481 batch = 1; 5482 5483 /* 5484 * Clamp the batch to a 2^n - 1 value. Having a power 5485 * of 2 value was found to be more likely to have 5486 * suboptimal cache aliasing properties in some cases. 5487 * 5488 * For example if 2 tasks are alternately allocating 5489 * batches of pages, one task can end up with a lot 5490 * of pages of one half of the possible page colors 5491 * and the other with pages of the other colors. 5492 */ 5493 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5494 5495 return batch; 5496 5497 #else 5498 /* The deferral and batching of frees should be suppressed under NOMMU 5499 * conditions. 5500 * 5501 * The problem is that NOMMU needs to be able to allocate large chunks 5502 * of contiguous memory as there's no hardware page translation to 5503 * assemble apparent contiguous memory from discontiguous pages. 5504 * 5505 * Queueing large contiguous runs of pages for batching, however, 5506 * causes the pages to actually be freed in smaller chunks. As there 5507 * can be a significant delay between the individual batches being 5508 * recycled, this leads to the once large chunks of space being 5509 * fragmented and becoming unavailable for high-order allocations. 5510 */ 5511 return 0; 5512 #endif 5513 } 5514 5515 static int percpu_pagelist_high_fraction; 5516 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5517 int high_fraction) 5518 { 5519 #ifdef CONFIG_MMU 5520 int high; 5521 int nr_split_cpus; 5522 unsigned long total_pages; 5523 5524 if (!high_fraction) { 5525 /* 5526 * By default, the high value of the pcp is based on the zone 5527 * low watermark so that if they are full then background 5528 * reclaim will not be started prematurely. 5529 */ 5530 total_pages = low_wmark_pages(zone); 5531 } else { 5532 /* 5533 * If percpu_pagelist_high_fraction is configured, the high 5534 * value is based on a fraction of the managed pages in the 5535 * zone. 5536 */ 5537 total_pages = zone_managed_pages(zone) / high_fraction; 5538 } 5539 5540 /* 5541 * Split the high value across all online CPUs local to the zone. Note 5542 * that early in boot that CPUs may not be online yet and that during 5543 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5544 * onlined. For memory nodes that have no CPUs, split the high value 5545 * across all online CPUs to mitigate the risk that reclaim is triggered 5546 * prematurely due to pages stored on pcp lists. 5547 */ 5548 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5549 if (!nr_split_cpus) 5550 nr_split_cpus = num_online_cpus(); 5551 high = total_pages / nr_split_cpus; 5552 5553 /* 5554 * Ensure high is at least batch*4. The multiple is based on the 5555 * historical relationship between high and batch. 5556 */ 5557 high = max(high, batch << 2); 5558 5559 return high; 5560 #else 5561 return 0; 5562 #endif 5563 } 5564 5565 /* 5566 * pcp->high and pcp->batch values are related and generally batch is lower 5567 * than high. They are also related to pcp->count such that count is lower 5568 * than high, and as soon as it reaches high, the pcplist is flushed. 5569 * 5570 * However, guaranteeing these relations at all times would require e.g. write 5571 * barriers here but also careful usage of read barriers at the read side, and 5572 * thus be prone to error and bad for performance. Thus the update only prevents 5573 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5574 * should ensure they can cope with those fields changing asynchronously, and 5575 * fully trust only the pcp->count field on the local CPU with interrupts 5576 * disabled. 5577 * 5578 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5579 * outside of boot time (or some other assurance that no concurrent updaters 5580 * exist). 5581 */ 5582 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5583 unsigned long high_max, unsigned long batch) 5584 { 5585 WRITE_ONCE(pcp->batch, batch); 5586 WRITE_ONCE(pcp->high_min, high_min); 5587 WRITE_ONCE(pcp->high_max, high_max); 5588 } 5589 5590 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5591 { 5592 int pindex; 5593 5594 memset(pcp, 0, sizeof(*pcp)); 5595 memset(pzstats, 0, sizeof(*pzstats)); 5596 5597 spin_lock_init(&pcp->lock); 5598 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5599 INIT_LIST_HEAD(&pcp->lists[pindex]); 5600 5601 /* 5602 * Set batch and high values safe for a boot pageset. A true percpu 5603 * pageset's initialization will update them subsequently. Here we don't 5604 * need to be as careful as pageset_update() as nobody can access the 5605 * pageset yet. 5606 */ 5607 pcp->high_min = BOOT_PAGESET_HIGH; 5608 pcp->high_max = BOOT_PAGESET_HIGH; 5609 pcp->batch = BOOT_PAGESET_BATCH; 5610 pcp->free_count = 0; 5611 } 5612 5613 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5614 unsigned long high_max, unsigned long batch) 5615 { 5616 struct per_cpu_pages *pcp; 5617 int cpu; 5618 5619 for_each_possible_cpu(cpu) { 5620 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5621 pageset_update(pcp, high_min, high_max, batch); 5622 } 5623 } 5624 5625 /* 5626 * Calculate and set new high and batch values for all per-cpu pagesets of a 5627 * zone based on the zone's size. 5628 */ 5629 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5630 { 5631 int new_high_min, new_high_max, new_batch; 5632 5633 new_batch = max(1, zone_batchsize(zone)); 5634 if (percpu_pagelist_high_fraction) { 5635 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5636 percpu_pagelist_high_fraction); 5637 /* 5638 * PCP high is tuned manually, disable auto-tuning via 5639 * setting high_min and high_max to the manual value. 5640 */ 5641 new_high_max = new_high_min; 5642 } else { 5643 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5644 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5645 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5646 } 5647 5648 if (zone->pageset_high_min == new_high_min && 5649 zone->pageset_high_max == new_high_max && 5650 zone->pageset_batch == new_batch) 5651 return; 5652 5653 zone->pageset_high_min = new_high_min; 5654 zone->pageset_high_max = new_high_max; 5655 zone->pageset_batch = new_batch; 5656 5657 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5658 new_batch); 5659 } 5660 5661 void __meminit setup_zone_pageset(struct zone *zone) 5662 { 5663 int cpu; 5664 5665 /* Size may be 0 on !SMP && !NUMA */ 5666 if (sizeof(struct per_cpu_zonestat) > 0) 5667 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5668 5669 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5670 for_each_possible_cpu(cpu) { 5671 struct per_cpu_pages *pcp; 5672 struct per_cpu_zonestat *pzstats; 5673 5674 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5675 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5676 per_cpu_pages_init(pcp, pzstats); 5677 } 5678 5679 zone_set_pageset_high_and_batch(zone, 0); 5680 } 5681 5682 /* 5683 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5684 * page high values need to be recalculated. 5685 */ 5686 static void zone_pcp_update(struct zone *zone, int cpu_online) 5687 { 5688 mutex_lock(&pcp_batch_high_lock); 5689 zone_set_pageset_high_and_batch(zone, cpu_online); 5690 mutex_unlock(&pcp_batch_high_lock); 5691 } 5692 5693 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5694 { 5695 struct per_cpu_pages *pcp; 5696 struct cpu_cacheinfo *cci; 5697 5698 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5699 cci = get_cpu_cacheinfo(cpu); 5700 /* 5701 * If data cache slice of CPU is large enough, "pcp->batch" 5702 * pages can be preserved in PCP before draining PCP for 5703 * consecutive high-order pages freeing without allocation. 5704 * This can reduce zone lock contention without hurting 5705 * cache-hot pages sharing. 5706 */ 5707 spin_lock(&pcp->lock); 5708 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5709 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5710 else 5711 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5712 spin_unlock(&pcp->lock); 5713 } 5714 5715 void setup_pcp_cacheinfo(unsigned int cpu) 5716 { 5717 struct zone *zone; 5718 5719 for_each_populated_zone(zone) 5720 zone_pcp_update_cacheinfo(zone, cpu); 5721 } 5722 5723 /* 5724 * Allocate per cpu pagesets and initialize them. 5725 * Before this call only boot pagesets were available. 5726 */ 5727 void __init setup_per_cpu_pageset(void) 5728 { 5729 struct pglist_data *pgdat; 5730 struct zone *zone; 5731 int __maybe_unused cpu; 5732 5733 for_each_populated_zone(zone) 5734 setup_zone_pageset(zone); 5735 5736 #ifdef CONFIG_NUMA 5737 /* 5738 * Unpopulated zones continue using the boot pagesets. 5739 * The numa stats for these pagesets need to be reset. 5740 * Otherwise, they will end up skewing the stats of 5741 * the nodes these zones are associated with. 5742 */ 5743 for_each_possible_cpu(cpu) { 5744 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5745 memset(pzstats->vm_numa_event, 0, 5746 sizeof(pzstats->vm_numa_event)); 5747 } 5748 #endif 5749 5750 for_each_online_pgdat(pgdat) 5751 pgdat->per_cpu_nodestats = 5752 alloc_percpu(struct per_cpu_nodestat); 5753 } 5754 5755 __meminit void zone_pcp_init(struct zone *zone) 5756 { 5757 /* 5758 * per cpu subsystem is not up at this point. The following code 5759 * relies on the ability of the linker to provide the 5760 * offset of a (static) per cpu variable into the per cpu area. 5761 */ 5762 zone->per_cpu_pageset = &boot_pageset; 5763 zone->per_cpu_zonestats = &boot_zonestats; 5764 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5765 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5766 zone->pageset_batch = BOOT_PAGESET_BATCH; 5767 5768 if (populated_zone(zone)) 5769 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5770 zone->present_pages, zone_batchsize(zone)); 5771 } 5772 5773 void adjust_managed_page_count(struct page *page, long count) 5774 { 5775 atomic_long_add(count, &page_zone(page)->managed_pages); 5776 totalram_pages_add(count); 5777 } 5778 EXPORT_SYMBOL(adjust_managed_page_count); 5779 5780 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5781 { 5782 void *pos; 5783 unsigned long pages = 0; 5784 5785 start = (void *)PAGE_ALIGN((unsigned long)start); 5786 end = (void *)((unsigned long)end & PAGE_MASK); 5787 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5788 struct page *page = virt_to_page(pos); 5789 void *direct_map_addr; 5790 5791 /* 5792 * 'direct_map_addr' might be different from 'pos' 5793 * because some architectures' virt_to_page() 5794 * work with aliases. Getting the direct map 5795 * address ensures that we get a _writeable_ 5796 * alias for the memset(). 5797 */ 5798 direct_map_addr = page_address(page); 5799 /* 5800 * Perform a kasan-unchecked memset() since this memory 5801 * has not been initialized. 5802 */ 5803 direct_map_addr = kasan_reset_tag(direct_map_addr); 5804 if ((unsigned int)poison <= 0xFF) 5805 memset(direct_map_addr, poison, PAGE_SIZE); 5806 5807 free_reserved_page(page); 5808 } 5809 5810 if (pages && s) 5811 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5812 5813 return pages; 5814 } 5815 5816 void free_reserved_page(struct page *page) 5817 { 5818 clear_page_tag_ref(page); 5819 ClearPageReserved(page); 5820 init_page_count(page); 5821 __free_page(page); 5822 adjust_managed_page_count(page, 1); 5823 } 5824 EXPORT_SYMBOL(free_reserved_page); 5825 5826 static int page_alloc_cpu_dead(unsigned int cpu) 5827 { 5828 struct zone *zone; 5829 5830 lru_add_drain_cpu(cpu); 5831 mlock_drain_remote(cpu); 5832 drain_pages(cpu); 5833 5834 /* 5835 * Spill the event counters of the dead processor 5836 * into the current processors event counters. 5837 * This artificially elevates the count of the current 5838 * processor. 5839 */ 5840 vm_events_fold_cpu(cpu); 5841 5842 /* 5843 * Zero the differential counters of the dead processor 5844 * so that the vm statistics are consistent. 5845 * 5846 * This is only okay since the processor is dead and cannot 5847 * race with what we are doing. 5848 */ 5849 cpu_vm_stats_fold(cpu); 5850 5851 for_each_populated_zone(zone) 5852 zone_pcp_update(zone, 0); 5853 5854 return 0; 5855 } 5856 5857 static int page_alloc_cpu_online(unsigned int cpu) 5858 { 5859 struct zone *zone; 5860 5861 for_each_populated_zone(zone) 5862 zone_pcp_update(zone, 1); 5863 return 0; 5864 } 5865 5866 void __init page_alloc_init_cpuhp(void) 5867 { 5868 int ret; 5869 5870 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5871 "mm/page_alloc:pcp", 5872 page_alloc_cpu_online, 5873 page_alloc_cpu_dead); 5874 WARN_ON(ret < 0); 5875 } 5876 5877 /* 5878 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5879 * or min_free_kbytes changes. 5880 */ 5881 static void calculate_totalreserve_pages(void) 5882 { 5883 struct pglist_data *pgdat; 5884 unsigned long reserve_pages = 0; 5885 enum zone_type i, j; 5886 5887 for_each_online_pgdat(pgdat) { 5888 5889 pgdat->totalreserve_pages = 0; 5890 5891 for (i = 0; i < MAX_NR_ZONES; i++) { 5892 struct zone *zone = pgdat->node_zones + i; 5893 long max = 0; 5894 unsigned long managed_pages = zone_managed_pages(zone); 5895 5896 /* Find valid and maximum lowmem_reserve in the zone */ 5897 for (j = i; j < MAX_NR_ZONES; j++) { 5898 if (zone->lowmem_reserve[j] > max) 5899 max = zone->lowmem_reserve[j]; 5900 } 5901 5902 /* we treat the high watermark as reserved pages. */ 5903 max += high_wmark_pages(zone); 5904 5905 if (max > managed_pages) 5906 max = managed_pages; 5907 5908 pgdat->totalreserve_pages += max; 5909 5910 reserve_pages += max; 5911 } 5912 } 5913 totalreserve_pages = reserve_pages; 5914 } 5915 5916 /* 5917 * setup_per_zone_lowmem_reserve - called whenever 5918 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5919 * has a correct pages reserved value, so an adequate number of 5920 * pages are left in the zone after a successful __alloc_pages(). 5921 */ 5922 static void setup_per_zone_lowmem_reserve(void) 5923 { 5924 struct pglist_data *pgdat; 5925 enum zone_type i, j; 5926 5927 for_each_online_pgdat(pgdat) { 5928 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5929 struct zone *zone = &pgdat->node_zones[i]; 5930 int ratio = sysctl_lowmem_reserve_ratio[i]; 5931 bool clear = !ratio || !zone_managed_pages(zone); 5932 unsigned long managed_pages = 0; 5933 5934 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5935 struct zone *upper_zone = &pgdat->node_zones[j]; 5936 bool empty = !zone_managed_pages(upper_zone); 5937 5938 managed_pages += zone_managed_pages(upper_zone); 5939 5940 if (clear || empty) 5941 zone->lowmem_reserve[j] = 0; 5942 else 5943 zone->lowmem_reserve[j] = managed_pages / ratio; 5944 } 5945 } 5946 } 5947 5948 /* update totalreserve_pages */ 5949 calculate_totalreserve_pages(); 5950 } 5951 5952 static void __setup_per_zone_wmarks(void) 5953 { 5954 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5955 unsigned long lowmem_pages = 0; 5956 struct zone *zone; 5957 unsigned long flags; 5958 5959 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5960 for_each_zone(zone) { 5961 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5962 lowmem_pages += zone_managed_pages(zone); 5963 } 5964 5965 for_each_zone(zone) { 5966 u64 tmp; 5967 5968 spin_lock_irqsave(&zone->lock, flags); 5969 tmp = (u64)pages_min * zone_managed_pages(zone); 5970 tmp = div64_ul(tmp, lowmem_pages); 5971 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5972 /* 5973 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5974 * need highmem and movable zones pages, so cap pages_min 5975 * to a small value here. 5976 * 5977 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5978 * deltas control async page reclaim, and so should 5979 * not be capped for highmem and movable zones. 5980 */ 5981 unsigned long min_pages; 5982 5983 min_pages = zone_managed_pages(zone) / 1024; 5984 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5985 zone->_watermark[WMARK_MIN] = min_pages; 5986 } else { 5987 /* 5988 * If it's a lowmem zone, reserve a number of pages 5989 * proportionate to the zone's size. 5990 */ 5991 zone->_watermark[WMARK_MIN] = tmp; 5992 } 5993 5994 /* 5995 * Set the kswapd watermarks distance according to the 5996 * scale factor in proportion to available memory, but 5997 * ensure a minimum size on small systems. 5998 */ 5999 tmp = max_t(u64, tmp >> 2, 6000 mult_frac(zone_managed_pages(zone), 6001 watermark_scale_factor, 10000)); 6002 6003 zone->watermark_boost = 0; 6004 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6005 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6006 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6007 6008 spin_unlock_irqrestore(&zone->lock, flags); 6009 } 6010 6011 /* update totalreserve_pages */ 6012 calculate_totalreserve_pages(); 6013 } 6014 6015 /** 6016 * setup_per_zone_wmarks - called when min_free_kbytes changes 6017 * or when memory is hot-{added|removed} 6018 * 6019 * Ensures that the watermark[min,low,high] values for each zone are set 6020 * correctly with respect to min_free_kbytes. 6021 */ 6022 void setup_per_zone_wmarks(void) 6023 { 6024 struct zone *zone; 6025 static DEFINE_SPINLOCK(lock); 6026 6027 spin_lock(&lock); 6028 __setup_per_zone_wmarks(); 6029 spin_unlock(&lock); 6030 6031 /* 6032 * The watermark size have changed so update the pcpu batch 6033 * and high limits or the limits may be inappropriate. 6034 */ 6035 for_each_zone(zone) 6036 zone_pcp_update(zone, 0); 6037 } 6038 6039 /* 6040 * Initialise min_free_kbytes. 6041 * 6042 * For small machines we want it small (128k min). For large machines 6043 * we want it large (256MB max). But it is not linear, because network 6044 * bandwidth does not increase linearly with machine size. We use 6045 * 6046 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6047 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6048 * 6049 * which yields 6050 * 6051 * 16MB: 512k 6052 * 32MB: 724k 6053 * 64MB: 1024k 6054 * 128MB: 1448k 6055 * 256MB: 2048k 6056 * 512MB: 2896k 6057 * 1024MB: 4096k 6058 * 2048MB: 5792k 6059 * 4096MB: 8192k 6060 * 8192MB: 11584k 6061 * 16384MB: 16384k 6062 */ 6063 void calculate_min_free_kbytes(void) 6064 { 6065 unsigned long lowmem_kbytes; 6066 int new_min_free_kbytes; 6067 6068 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6069 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6070 6071 if (new_min_free_kbytes > user_min_free_kbytes) 6072 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6073 else 6074 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6075 new_min_free_kbytes, user_min_free_kbytes); 6076 6077 } 6078 6079 int __meminit init_per_zone_wmark_min(void) 6080 { 6081 calculate_min_free_kbytes(); 6082 setup_per_zone_wmarks(); 6083 refresh_zone_stat_thresholds(); 6084 setup_per_zone_lowmem_reserve(); 6085 6086 #ifdef CONFIG_NUMA 6087 setup_min_unmapped_ratio(); 6088 setup_min_slab_ratio(); 6089 #endif 6090 6091 khugepaged_min_free_kbytes_update(); 6092 6093 return 0; 6094 } 6095 postcore_initcall(init_per_zone_wmark_min) 6096 6097 /* 6098 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6099 * that we can call two helper functions whenever min_free_kbytes 6100 * changes. 6101 */ 6102 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6103 void *buffer, size_t *length, loff_t *ppos) 6104 { 6105 int rc; 6106 6107 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6108 if (rc) 6109 return rc; 6110 6111 if (write) { 6112 user_min_free_kbytes = min_free_kbytes; 6113 setup_per_zone_wmarks(); 6114 } 6115 return 0; 6116 } 6117 6118 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6119 void *buffer, size_t *length, loff_t *ppos) 6120 { 6121 int rc; 6122 6123 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6124 if (rc) 6125 return rc; 6126 6127 if (write) 6128 setup_per_zone_wmarks(); 6129 6130 return 0; 6131 } 6132 6133 #ifdef CONFIG_NUMA 6134 static void setup_min_unmapped_ratio(void) 6135 { 6136 pg_data_t *pgdat; 6137 struct zone *zone; 6138 6139 for_each_online_pgdat(pgdat) 6140 pgdat->min_unmapped_pages = 0; 6141 6142 for_each_zone(zone) 6143 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6144 sysctl_min_unmapped_ratio) / 100; 6145 } 6146 6147 6148 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6149 void *buffer, size_t *length, loff_t *ppos) 6150 { 6151 int rc; 6152 6153 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6154 if (rc) 6155 return rc; 6156 6157 setup_min_unmapped_ratio(); 6158 6159 return 0; 6160 } 6161 6162 static void setup_min_slab_ratio(void) 6163 { 6164 pg_data_t *pgdat; 6165 struct zone *zone; 6166 6167 for_each_online_pgdat(pgdat) 6168 pgdat->min_slab_pages = 0; 6169 6170 for_each_zone(zone) 6171 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6172 sysctl_min_slab_ratio) / 100; 6173 } 6174 6175 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6176 void *buffer, size_t *length, loff_t *ppos) 6177 { 6178 int rc; 6179 6180 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6181 if (rc) 6182 return rc; 6183 6184 setup_min_slab_ratio(); 6185 6186 return 0; 6187 } 6188 #endif 6189 6190 /* 6191 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6192 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6193 * whenever sysctl_lowmem_reserve_ratio changes. 6194 * 6195 * The reserve ratio obviously has absolutely no relation with the 6196 * minimum watermarks. The lowmem reserve ratio can only make sense 6197 * if in function of the boot time zone sizes. 6198 */ 6199 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6200 int write, void *buffer, size_t *length, loff_t *ppos) 6201 { 6202 int i; 6203 6204 proc_dointvec_minmax(table, write, buffer, length, ppos); 6205 6206 for (i = 0; i < MAX_NR_ZONES; i++) { 6207 if (sysctl_lowmem_reserve_ratio[i] < 1) 6208 sysctl_lowmem_reserve_ratio[i] = 0; 6209 } 6210 6211 setup_per_zone_lowmem_reserve(); 6212 return 0; 6213 } 6214 6215 /* 6216 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6217 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6218 * pagelist can have before it gets flushed back to buddy allocator. 6219 */ 6220 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6221 int write, void *buffer, size_t *length, loff_t *ppos) 6222 { 6223 struct zone *zone; 6224 int old_percpu_pagelist_high_fraction; 6225 int ret; 6226 6227 mutex_lock(&pcp_batch_high_lock); 6228 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6229 6230 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6231 if (!write || ret < 0) 6232 goto out; 6233 6234 /* Sanity checking to avoid pcp imbalance */ 6235 if (percpu_pagelist_high_fraction && 6236 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6237 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6238 ret = -EINVAL; 6239 goto out; 6240 } 6241 6242 /* No change? */ 6243 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6244 goto out; 6245 6246 for_each_populated_zone(zone) 6247 zone_set_pageset_high_and_batch(zone, 0); 6248 out: 6249 mutex_unlock(&pcp_batch_high_lock); 6250 return ret; 6251 } 6252 6253 static struct ctl_table page_alloc_sysctl_table[] = { 6254 { 6255 .procname = "min_free_kbytes", 6256 .data = &min_free_kbytes, 6257 .maxlen = sizeof(min_free_kbytes), 6258 .mode = 0644, 6259 .proc_handler = min_free_kbytes_sysctl_handler, 6260 .extra1 = SYSCTL_ZERO, 6261 }, 6262 { 6263 .procname = "watermark_boost_factor", 6264 .data = &watermark_boost_factor, 6265 .maxlen = sizeof(watermark_boost_factor), 6266 .mode = 0644, 6267 .proc_handler = proc_dointvec_minmax, 6268 .extra1 = SYSCTL_ZERO, 6269 }, 6270 { 6271 .procname = "watermark_scale_factor", 6272 .data = &watermark_scale_factor, 6273 .maxlen = sizeof(watermark_scale_factor), 6274 .mode = 0644, 6275 .proc_handler = watermark_scale_factor_sysctl_handler, 6276 .extra1 = SYSCTL_ONE, 6277 .extra2 = SYSCTL_THREE_THOUSAND, 6278 }, 6279 { 6280 .procname = "percpu_pagelist_high_fraction", 6281 .data = &percpu_pagelist_high_fraction, 6282 .maxlen = sizeof(percpu_pagelist_high_fraction), 6283 .mode = 0644, 6284 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6285 .extra1 = SYSCTL_ZERO, 6286 }, 6287 { 6288 .procname = "lowmem_reserve_ratio", 6289 .data = &sysctl_lowmem_reserve_ratio, 6290 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6291 .mode = 0644, 6292 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6293 }, 6294 #ifdef CONFIG_NUMA 6295 { 6296 .procname = "numa_zonelist_order", 6297 .data = &numa_zonelist_order, 6298 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6299 .mode = 0644, 6300 .proc_handler = numa_zonelist_order_handler, 6301 }, 6302 { 6303 .procname = "min_unmapped_ratio", 6304 .data = &sysctl_min_unmapped_ratio, 6305 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6306 .mode = 0644, 6307 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6308 .extra1 = SYSCTL_ZERO, 6309 .extra2 = SYSCTL_ONE_HUNDRED, 6310 }, 6311 { 6312 .procname = "min_slab_ratio", 6313 .data = &sysctl_min_slab_ratio, 6314 .maxlen = sizeof(sysctl_min_slab_ratio), 6315 .mode = 0644, 6316 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6317 .extra1 = SYSCTL_ZERO, 6318 .extra2 = SYSCTL_ONE_HUNDRED, 6319 }, 6320 #endif 6321 }; 6322 6323 void __init page_alloc_sysctl_init(void) 6324 { 6325 register_sysctl_init("vm", page_alloc_sysctl_table); 6326 } 6327 6328 #ifdef CONFIG_CONTIG_ALLOC 6329 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6330 static void alloc_contig_dump_pages(struct list_head *page_list) 6331 { 6332 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6333 6334 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6335 struct page *page; 6336 6337 dump_stack(); 6338 list_for_each_entry(page, page_list, lru) 6339 dump_page(page, "migration failure"); 6340 } 6341 } 6342 6343 /* 6344 * [start, end) must belong to a single zone. 6345 * @migratetype: using migratetype to filter the type of migration in 6346 * trace_mm_alloc_contig_migrate_range_info. 6347 */ 6348 int __alloc_contig_migrate_range(struct compact_control *cc, 6349 unsigned long start, unsigned long end, 6350 int migratetype) 6351 { 6352 /* This function is based on compact_zone() from compaction.c. */ 6353 unsigned int nr_reclaimed; 6354 unsigned long pfn = start; 6355 unsigned int tries = 0; 6356 int ret = 0; 6357 struct migration_target_control mtc = { 6358 .nid = zone_to_nid(cc->zone), 6359 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6360 .reason = MR_CONTIG_RANGE, 6361 }; 6362 struct page *page; 6363 unsigned long total_mapped = 0; 6364 unsigned long total_migrated = 0; 6365 unsigned long total_reclaimed = 0; 6366 6367 lru_cache_disable(); 6368 6369 while (pfn < end || !list_empty(&cc->migratepages)) { 6370 if (fatal_signal_pending(current)) { 6371 ret = -EINTR; 6372 break; 6373 } 6374 6375 if (list_empty(&cc->migratepages)) { 6376 cc->nr_migratepages = 0; 6377 ret = isolate_migratepages_range(cc, pfn, end); 6378 if (ret && ret != -EAGAIN) 6379 break; 6380 pfn = cc->migrate_pfn; 6381 tries = 0; 6382 } else if (++tries == 5) { 6383 ret = -EBUSY; 6384 break; 6385 } 6386 6387 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6388 &cc->migratepages); 6389 cc->nr_migratepages -= nr_reclaimed; 6390 6391 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6392 total_reclaimed += nr_reclaimed; 6393 list_for_each_entry(page, &cc->migratepages, lru) { 6394 struct folio *folio = page_folio(page); 6395 6396 total_mapped += folio_mapped(folio) * 6397 folio_nr_pages(folio); 6398 } 6399 } 6400 6401 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6402 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6403 6404 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6405 total_migrated += cc->nr_migratepages; 6406 6407 /* 6408 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6409 * to retry again over this error, so do the same here. 6410 */ 6411 if (ret == -ENOMEM) 6412 break; 6413 } 6414 6415 lru_cache_enable(); 6416 if (ret < 0) { 6417 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6418 alloc_contig_dump_pages(&cc->migratepages); 6419 putback_movable_pages(&cc->migratepages); 6420 } 6421 6422 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6423 total_migrated, 6424 total_reclaimed, 6425 total_mapped); 6426 return (ret < 0) ? ret : 0; 6427 } 6428 6429 /** 6430 * alloc_contig_range() -- tries to allocate given range of pages 6431 * @start: start PFN to allocate 6432 * @end: one-past-the-last PFN to allocate 6433 * @migratetype: migratetype of the underlying pageblocks (either 6434 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6435 * in range must have the same migratetype and it must 6436 * be either of the two. 6437 * @gfp_mask: GFP mask to use during compaction 6438 * 6439 * The PFN range does not have to be pageblock aligned. The PFN range must 6440 * belong to a single zone. 6441 * 6442 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6443 * pageblocks in the range. Once isolated, the pageblocks should not 6444 * be modified by others. 6445 * 6446 * Return: zero on success or negative error code. On success all 6447 * pages which PFN is in [start, end) are allocated for the caller and 6448 * need to be freed with free_contig_range(). 6449 */ 6450 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6451 unsigned migratetype, gfp_t gfp_mask) 6452 { 6453 unsigned long outer_start, outer_end; 6454 int ret = 0; 6455 6456 struct compact_control cc = { 6457 .nr_migratepages = 0, 6458 .order = -1, 6459 .zone = page_zone(pfn_to_page(start)), 6460 .mode = MIGRATE_SYNC, 6461 .ignore_skip_hint = true, 6462 .no_set_skip_hint = true, 6463 .gfp_mask = current_gfp_context(gfp_mask), 6464 .alloc_contig = true, 6465 }; 6466 INIT_LIST_HEAD(&cc.migratepages); 6467 6468 /* 6469 * What we do here is we mark all pageblocks in range as 6470 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6471 * have different sizes, and due to the way page allocator 6472 * work, start_isolate_page_range() has special handlings for this. 6473 * 6474 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6475 * migrate the pages from an unaligned range (ie. pages that 6476 * we are interested in). This will put all the pages in 6477 * range back to page allocator as MIGRATE_ISOLATE. 6478 * 6479 * When this is done, we take the pages in range from page 6480 * allocator removing them from the buddy system. This way 6481 * page allocator will never consider using them. 6482 * 6483 * This lets us mark the pageblocks back as 6484 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6485 * aligned range but not in the unaligned, original range are 6486 * put back to page allocator so that buddy can use them. 6487 */ 6488 6489 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6490 if (ret) 6491 goto done; 6492 6493 drain_all_pages(cc.zone); 6494 6495 /* 6496 * In case of -EBUSY, we'd like to know which page causes problem. 6497 * So, just fall through. test_pages_isolated() has a tracepoint 6498 * which will report the busy page. 6499 * 6500 * It is possible that busy pages could become available before 6501 * the call to test_pages_isolated, and the range will actually be 6502 * allocated. So, if we fall through be sure to clear ret so that 6503 * -EBUSY is not accidentally used or returned to caller. 6504 */ 6505 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6506 if (ret && ret != -EBUSY) 6507 goto done; 6508 ret = 0; 6509 6510 /* 6511 * Pages from [start, end) are within a pageblock_nr_pages 6512 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6513 * more, all pages in [start, end) are free in page allocator. 6514 * What we are going to do is to allocate all pages from 6515 * [start, end) (that is remove them from page allocator). 6516 * 6517 * The only problem is that pages at the beginning and at the 6518 * end of interesting range may be not aligned with pages that 6519 * page allocator holds, ie. they can be part of higher order 6520 * pages. Because of this, we reserve the bigger range and 6521 * once this is done free the pages we are not interested in. 6522 * 6523 * We don't have to hold zone->lock here because the pages are 6524 * isolated thus they won't get removed from buddy. 6525 */ 6526 outer_start = find_large_buddy(start); 6527 6528 /* Make sure the range is really isolated. */ 6529 if (test_pages_isolated(outer_start, end, 0)) { 6530 ret = -EBUSY; 6531 goto done; 6532 } 6533 6534 /* Grab isolated pages from freelists. */ 6535 outer_end = isolate_freepages_range(&cc, outer_start, end); 6536 if (!outer_end) { 6537 ret = -EBUSY; 6538 goto done; 6539 } 6540 6541 /* Free head and tail (if any) */ 6542 if (start != outer_start) 6543 free_contig_range(outer_start, start - outer_start); 6544 if (end != outer_end) 6545 free_contig_range(end, outer_end - end); 6546 6547 done: 6548 undo_isolate_page_range(start, end, migratetype); 6549 return ret; 6550 } 6551 EXPORT_SYMBOL(alloc_contig_range_noprof); 6552 6553 static int __alloc_contig_pages(unsigned long start_pfn, 6554 unsigned long nr_pages, gfp_t gfp_mask) 6555 { 6556 unsigned long end_pfn = start_pfn + nr_pages; 6557 6558 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6559 gfp_mask); 6560 } 6561 6562 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6563 unsigned long nr_pages) 6564 { 6565 unsigned long i, end_pfn = start_pfn + nr_pages; 6566 struct page *page; 6567 6568 for (i = start_pfn; i < end_pfn; i++) { 6569 page = pfn_to_online_page(i); 6570 if (!page) 6571 return false; 6572 6573 if (page_zone(page) != z) 6574 return false; 6575 6576 if (PageReserved(page)) 6577 return false; 6578 6579 if (PageHuge(page)) 6580 return false; 6581 } 6582 return true; 6583 } 6584 6585 static bool zone_spans_last_pfn(const struct zone *zone, 6586 unsigned long start_pfn, unsigned long nr_pages) 6587 { 6588 unsigned long last_pfn = start_pfn + nr_pages - 1; 6589 6590 return zone_spans_pfn(zone, last_pfn); 6591 } 6592 6593 /** 6594 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6595 * @nr_pages: Number of contiguous pages to allocate 6596 * @gfp_mask: GFP mask to limit search and used during compaction 6597 * @nid: Target node 6598 * @nodemask: Mask for other possible nodes 6599 * 6600 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6601 * on an applicable zonelist to find a contiguous pfn range which can then be 6602 * tried for allocation with alloc_contig_range(). This routine is intended 6603 * for allocation requests which can not be fulfilled with the buddy allocator. 6604 * 6605 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6606 * power of two, then allocated range is also guaranteed to be aligned to same 6607 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6608 * 6609 * Allocated pages can be freed with free_contig_range() or by manually calling 6610 * __free_page() on each allocated page. 6611 * 6612 * Return: pointer to contiguous pages on success, or NULL if not successful. 6613 */ 6614 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6615 int nid, nodemask_t *nodemask) 6616 { 6617 unsigned long ret, pfn, flags; 6618 struct zonelist *zonelist; 6619 struct zone *zone; 6620 struct zoneref *z; 6621 6622 zonelist = node_zonelist(nid, gfp_mask); 6623 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6624 gfp_zone(gfp_mask), nodemask) { 6625 spin_lock_irqsave(&zone->lock, flags); 6626 6627 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6628 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6629 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6630 /* 6631 * We release the zone lock here because 6632 * alloc_contig_range() will also lock the zone 6633 * at some point. If there's an allocation 6634 * spinning on this lock, it may win the race 6635 * and cause alloc_contig_range() to fail... 6636 */ 6637 spin_unlock_irqrestore(&zone->lock, flags); 6638 ret = __alloc_contig_pages(pfn, nr_pages, 6639 gfp_mask); 6640 if (!ret) 6641 return pfn_to_page(pfn); 6642 spin_lock_irqsave(&zone->lock, flags); 6643 } 6644 pfn += nr_pages; 6645 } 6646 spin_unlock_irqrestore(&zone->lock, flags); 6647 } 6648 return NULL; 6649 } 6650 #endif /* CONFIG_CONTIG_ALLOC */ 6651 6652 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6653 { 6654 unsigned long count = 0; 6655 6656 for (; nr_pages--; pfn++) { 6657 struct page *page = pfn_to_page(pfn); 6658 6659 count += page_count(page) != 1; 6660 __free_page(page); 6661 } 6662 WARN(count != 0, "%lu pages are still in use!\n", count); 6663 } 6664 EXPORT_SYMBOL(free_contig_range); 6665 6666 /* 6667 * Effectively disable pcplists for the zone by setting the high limit to 0 6668 * and draining all cpus. A concurrent page freeing on another CPU that's about 6669 * to put the page on pcplist will either finish before the drain and the page 6670 * will be drained, or observe the new high limit and skip the pcplist. 6671 * 6672 * Must be paired with a call to zone_pcp_enable(). 6673 */ 6674 void zone_pcp_disable(struct zone *zone) 6675 { 6676 mutex_lock(&pcp_batch_high_lock); 6677 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6678 __drain_all_pages(zone, true); 6679 } 6680 6681 void zone_pcp_enable(struct zone *zone) 6682 { 6683 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6684 zone->pageset_high_max, zone->pageset_batch); 6685 mutex_unlock(&pcp_batch_high_lock); 6686 } 6687 6688 void zone_pcp_reset(struct zone *zone) 6689 { 6690 int cpu; 6691 struct per_cpu_zonestat *pzstats; 6692 6693 if (zone->per_cpu_pageset != &boot_pageset) { 6694 for_each_online_cpu(cpu) { 6695 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6696 drain_zonestat(zone, pzstats); 6697 } 6698 free_percpu(zone->per_cpu_pageset); 6699 zone->per_cpu_pageset = &boot_pageset; 6700 if (zone->per_cpu_zonestats != &boot_zonestats) { 6701 free_percpu(zone->per_cpu_zonestats); 6702 zone->per_cpu_zonestats = &boot_zonestats; 6703 } 6704 } 6705 } 6706 6707 #ifdef CONFIG_MEMORY_HOTREMOVE 6708 /* 6709 * All pages in the range must be in a single zone, must not contain holes, 6710 * must span full sections, and must be isolated before calling this function. 6711 * 6712 * Returns the number of managed (non-PageOffline()) pages in the range: the 6713 * number of pages for which memory offlining code must adjust managed page 6714 * counters using adjust_managed_page_count(). 6715 */ 6716 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6717 unsigned long end_pfn) 6718 { 6719 unsigned long already_offline = 0, flags; 6720 unsigned long pfn = start_pfn; 6721 struct page *page; 6722 struct zone *zone; 6723 unsigned int order; 6724 6725 offline_mem_sections(pfn, end_pfn); 6726 zone = page_zone(pfn_to_page(pfn)); 6727 spin_lock_irqsave(&zone->lock, flags); 6728 while (pfn < end_pfn) { 6729 page = pfn_to_page(pfn); 6730 /* 6731 * The HWPoisoned page may be not in buddy system, and 6732 * page_count() is not 0. 6733 */ 6734 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6735 pfn++; 6736 continue; 6737 } 6738 /* 6739 * At this point all remaining PageOffline() pages have a 6740 * reference count of 0 and can simply be skipped. 6741 */ 6742 if (PageOffline(page)) { 6743 BUG_ON(page_count(page)); 6744 BUG_ON(PageBuddy(page)); 6745 already_offline++; 6746 pfn++; 6747 continue; 6748 } 6749 6750 BUG_ON(page_count(page)); 6751 BUG_ON(!PageBuddy(page)); 6752 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6753 order = buddy_order(page); 6754 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6755 pfn += (1 << order); 6756 } 6757 spin_unlock_irqrestore(&zone->lock, flags); 6758 6759 return end_pfn - start_pfn - already_offline; 6760 } 6761 #endif 6762 6763 /* 6764 * This function returns a stable result only if called under zone lock. 6765 */ 6766 bool is_free_buddy_page(const struct page *page) 6767 { 6768 unsigned long pfn = page_to_pfn(page); 6769 unsigned int order; 6770 6771 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6772 const struct page *head = page - (pfn & ((1 << order) - 1)); 6773 6774 if (PageBuddy(head) && 6775 buddy_order_unsafe(head) >= order) 6776 break; 6777 } 6778 6779 return order <= MAX_PAGE_ORDER; 6780 } 6781 EXPORT_SYMBOL(is_free_buddy_page); 6782 6783 #ifdef CONFIG_MEMORY_FAILURE 6784 static inline void add_to_free_list(struct page *page, struct zone *zone, 6785 unsigned int order, int migratetype, 6786 bool tail) 6787 { 6788 __add_to_free_list(page, zone, order, migratetype, tail); 6789 account_freepages(zone, 1 << order, migratetype); 6790 } 6791 6792 /* 6793 * Break down a higher-order page in sub-pages, and keep our target out of 6794 * buddy allocator. 6795 */ 6796 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6797 struct page *target, int low, int high, 6798 int migratetype) 6799 { 6800 unsigned long size = 1 << high; 6801 struct page *current_buddy; 6802 6803 while (high > low) { 6804 high--; 6805 size >>= 1; 6806 6807 if (target >= &page[size]) { 6808 current_buddy = page; 6809 page = page + size; 6810 } else { 6811 current_buddy = page + size; 6812 } 6813 6814 if (set_page_guard(zone, current_buddy, high)) 6815 continue; 6816 6817 add_to_free_list(current_buddy, zone, high, migratetype, false); 6818 set_buddy_order(current_buddy, high); 6819 } 6820 } 6821 6822 /* 6823 * Take a page that will be marked as poisoned off the buddy allocator. 6824 */ 6825 bool take_page_off_buddy(struct page *page) 6826 { 6827 struct zone *zone = page_zone(page); 6828 unsigned long pfn = page_to_pfn(page); 6829 unsigned long flags; 6830 unsigned int order; 6831 bool ret = false; 6832 6833 spin_lock_irqsave(&zone->lock, flags); 6834 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6835 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6836 int page_order = buddy_order(page_head); 6837 6838 if (PageBuddy(page_head) && page_order >= order) { 6839 unsigned long pfn_head = page_to_pfn(page_head); 6840 int migratetype = get_pfnblock_migratetype(page_head, 6841 pfn_head); 6842 6843 del_page_from_free_list(page_head, zone, page_order, 6844 migratetype); 6845 break_down_buddy_pages(zone, page_head, page, 0, 6846 page_order, migratetype); 6847 SetPageHWPoisonTakenOff(page); 6848 ret = true; 6849 break; 6850 } 6851 if (page_count(page_head) > 0) 6852 break; 6853 } 6854 spin_unlock_irqrestore(&zone->lock, flags); 6855 return ret; 6856 } 6857 6858 /* 6859 * Cancel takeoff done by take_page_off_buddy(). 6860 */ 6861 bool put_page_back_buddy(struct page *page) 6862 { 6863 struct zone *zone = page_zone(page); 6864 unsigned long flags; 6865 bool ret = false; 6866 6867 spin_lock_irqsave(&zone->lock, flags); 6868 if (put_page_testzero(page)) { 6869 unsigned long pfn = page_to_pfn(page); 6870 int migratetype = get_pfnblock_migratetype(page, pfn); 6871 6872 ClearPageHWPoisonTakenOff(page); 6873 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6874 if (TestClearPageHWPoison(page)) { 6875 ret = true; 6876 } 6877 } 6878 spin_unlock_irqrestore(&zone->lock, flags); 6879 6880 return ret; 6881 } 6882 #endif 6883 6884 #ifdef CONFIG_ZONE_DMA 6885 bool has_managed_dma(void) 6886 { 6887 struct pglist_data *pgdat; 6888 6889 for_each_online_pgdat(pgdat) { 6890 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6891 6892 if (managed_zone(zone)) 6893 return true; 6894 } 6895 return false; 6896 } 6897 #endif /* CONFIG_ZONE_DMA */ 6898 6899 #ifdef CONFIG_UNACCEPTED_MEMORY 6900 6901 /* Counts number of zones with unaccepted pages. */ 6902 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6903 6904 static bool lazy_accept = true; 6905 6906 static int __init accept_memory_parse(char *p) 6907 { 6908 if (!strcmp(p, "lazy")) { 6909 lazy_accept = true; 6910 return 0; 6911 } else if (!strcmp(p, "eager")) { 6912 lazy_accept = false; 6913 return 0; 6914 } else { 6915 return -EINVAL; 6916 } 6917 } 6918 early_param("accept_memory", accept_memory_parse); 6919 6920 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6921 { 6922 phys_addr_t start = page_to_phys(page); 6923 phys_addr_t end = start + (PAGE_SIZE << order); 6924 6925 return range_contains_unaccepted_memory(start, end); 6926 } 6927 6928 static void accept_page(struct page *page, unsigned int order) 6929 { 6930 phys_addr_t start = page_to_phys(page); 6931 6932 accept_memory(start, start + (PAGE_SIZE << order)); 6933 } 6934 6935 static bool try_to_accept_memory_one(struct zone *zone) 6936 { 6937 unsigned long flags; 6938 struct page *page; 6939 bool last; 6940 6941 spin_lock_irqsave(&zone->lock, flags); 6942 page = list_first_entry_or_null(&zone->unaccepted_pages, 6943 struct page, lru); 6944 if (!page) { 6945 spin_unlock_irqrestore(&zone->lock, flags); 6946 return false; 6947 } 6948 6949 list_del(&page->lru); 6950 last = list_empty(&zone->unaccepted_pages); 6951 6952 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6953 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6954 spin_unlock_irqrestore(&zone->lock, flags); 6955 6956 accept_page(page, MAX_PAGE_ORDER); 6957 6958 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6959 6960 if (last) 6961 static_branch_dec(&zones_with_unaccepted_pages); 6962 6963 return true; 6964 } 6965 6966 static bool cond_accept_memory(struct zone *zone, unsigned int order) 6967 { 6968 long to_accept; 6969 bool ret = false; 6970 6971 if (!has_unaccepted_memory()) 6972 return false; 6973 6974 if (list_empty(&zone->unaccepted_pages)) 6975 return false; 6976 6977 /* How much to accept to get to high watermark? */ 6978 to_accept = high_wmark_pages(zone) - 6979 (zone_page_state(zone, NR_FREE_PAGES) - 6980 __zone_watermark_unusable_free(zone, order, 0) - 6981 zone_page_state(zone, NR_UNACCEPTED)); 6982 6983 while (to_accept > 0) { 6984 if (!try_to_accept_memory_one(zone)) 6985 break; 6986 ret = true; 6987 to_accept -= MAX_ORDER_NR_PAGES; 6988 } 6989 6990 return ret; 6991 } 6992 6993 static inline bool has_unaccepted_memory(void) 6994 { 6995 return static_branch_unlikely(&zones_with_unaccepted_pages); 6996 } 6997 6998 static bool __free_unaccepted(struct page *page) 6999 { 7000 struct zone *zone = page_zone(page); 7001 unsigned long flags; 7002 bool first = false; 7003 7004 if (!lazy_accept) 7005 return false; 7006 7007 spin_lock_irqsave(&zone->lock, flags); 7008 first = list_empty(&zone->unaccepted_pages); 7009 list_add_tail(&page->lru, &zone->unaccepted_pages); 7010 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7011 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7012 spin_unlock_irqrestore(&zone->lock, flags); 7013 7014 if (first) 7015 static_branch_inc(&zones_with_unaccepted_pages); 7016 7017 return true; 7018 } 7019 7020 #else 7021 7022 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7023 { 7024 return false; 7025 } 7026 7027 static void accept_page(struct page *page, unsigned int order) 7028 { 7029 } 7030 7031 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7032 { 7033 return false; 7034 } 7035 7036 static inline bool has_unaccepted_memory(void) 7037 { 7038 return false; 7039 } 7040 7041 static bool __free_unaccepted(struct page *page) 7042 { 7043 BUILD_BUG(); 7044 return false; 7045 } 7046 7047 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7048