1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order); 294 static bool __free_unaccepted(struct page *page); 295 296 int page_group_by_mobility_disabled __read_mostly; 297 298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 299 /* 300 * During boot we initialize deferred pages on-demand, as needed, but once 301 * page_alloc_init_late() has finished, the deferred pages are all initialized, 302 * and we can permanently disable that path. 303 */ 304 DEFINE_STATIC_KEY_TRUE(deferred_pages); 305 306 static inline bool deferred_pages_enabled(void) 307 { 308 return static_branch_unlikely(&deferred_pages); 309 } 310 311 /* 312 * deferred_grow_zone() is __init, but it is called from 313 * get_page_from_freelist() during early boot until deferred_pages permanently 314 * disables this call. This is why we have refdata wrapper to avoid warning, 315 * and to ensure that the function body gets unloaded. 316 */ 317 static bool __ref 318 _deferred_grow_zone(struct zone *zone, unsigned int order) 319 { 320 return deferred_grow_zone(zone, order); 321 } 322 #else 323 static inline bool deferred_pages_enabled(void) 324 { 325 return false; 326 } 327 328 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 329 { 330 return false; 331 } 332 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 333 334 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 335 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 336 unsigned long pfn) 337 { 338 #ifdef CONFIG_SPARSEMEM 339 return section_to_usemap(__pfn_to_section(pfn)); 340 #else 341 return page_zone(page)->pageblock_flags; 342 #endif /* CONFIG_SPARSEMEM */ 343 } 344 345 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 pfn &= (PAGES_PER_SECTION-1); 349 #else 350 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 351 #endif /* CONFIG_SPARSEMEM */ 352 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 353 } 354 355 /** 356 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 357 * @page: The page within the block of interest 358 * @pfn: The target page frame number 359 * @mask: mask of bits that the caller is interested in 360 * 361 * Return: pageblock_bits flags 362 */ 363 unsigned long get_pfnblock_flags_mask(const struct page *page, 364 unsigned long pfn, unsigned long mask) 365 { 366 unsigned long *bitmap; 367 unsigned long bitidx, word_bitidx; 368 unsigned long word; 369 370 bitmap = get_pageblock_bitmap(page, pfn); 371 bitidx = pfn_to_bitidx(page, pfn); 372 word_bitidx = bitidx / BITS_PER_LONG; 373 bitidx &= (BITS_PER_LONG-1); 374 /* 375 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 376 * a consistent read of the memory array, so that results, even though 377 * racy, are not corrupted. 378 */ 379 word = READ_ONCE(bitmap[word_bitidx]); 380 return (word >> bitidx) & mask; 381 } 382 383 static __always_inline int get_pfnblock_migratetype(const struct page *page, 384 unsigned long pfn) 385 { 386 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 387 } 388 389 /** 390 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 391 * @page: The page within the block of interest 392 * @flags: The flags to set 393 * @pfn: The target page frame number 394 * @mask: mask of bits that the caller is interested in 395 */ 396 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 397 unsigned long pfn, 398 unsigned long mask) 399 { 400 unsigned long *bitmap; 401 unsigned long bitidx, word_bitidx; 402 unsigned long word; 403 404 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 405 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 406 407 bitmap = get_pageblock_bitmap(page, pfn); 408 bitidx = pfn_to_bitidx(page, pfn); 409 word_bitidx = bitidx / BITS_PER_LONG; 410 bitidx &= (BITS_PER_LONG-1); 411 412 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 413 414 mask <<= bitidx; 415 flags <<= bitidx; 416 417 word = READ_ONCE(bitmap[word_bitidx]); 418 do { 419 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 420 } 421 422 void set_pageblock_migratetype(struct page *page, int migratetype) 423 { 424 if (unlikely(page_group_by_mobility_disabled && 425 migratetype < MIGRATE_PCPTYPES)) 426 migratetype = MIGRATE_UNMOVABLE; 427 428 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 429 page_to_pfn(page), MIGRATETYPE_MASK); 430 } 431 432 #ifdef CONFIG_DEBUG_VM 433 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 434 { 435 int ret; 436 unsigned seq; 437 unsigned long pfn = page_to_pfn(page); 438 unsigned long sp, start_pfn; 439 440 do { 441 seq = zone_span_seqbegin(zone); 442 start_pfn = zone->zone_start_pfn; 443 sp = zone->spanned_pages; 444 ret = !zone_spans_pfn(zone, pfn); 445 } while (zone_span_seqretry(zone, seq)); 446 447 if (ret) 448 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 449 pfn, zone_to_nid(zone), zone->name, 450 start_pfn, start_pfn + sp); 451 452 return ret; 453 } 454 455 /* 456 * Temporary debugging check for pages not lying within a given zone. 457 */ 458 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 459 { 460 if (page_outside_zone_boundaries(zone, page)) 461 return true; 462 if (zone != page_zone(page)) 463 return true; 464 465 return false; 466 } 467 #else 468 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 469 { 470 return false; 471 } 472 #endif 473 474 static void bad_page(struct page *page, const char *reason) 475 { 476 static unsigned long resume; 477 static unsigned long nr_shown; 478 static unsigned long nr_unshown; 479 480 /* 481 * Allow a burst of 60 reports, then keep quiet for that minute; 482 * or allow a steady drip of one report per second. 483 */ 484 if (nr_shown == 60) { 485 if (time_before(jiffies, resume)) { 486 nr_unshown++; 487 goto out; 488 } 489 if (nr_unshown) { 490 pr_alert( 491 "BUG: Bad page state: %lu messages suppressed\n", 492 nr_unshown); 493 nr_unshown = 0; 494 } 495 nr_shown = 0; 496 } 497 if (nr_shown++ == 0) 498 resume = jiffies + 60 * HZ; 499 500 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 501 current->comm, page_to_pfn(page)); 502 dump_page(page, reason); 503 504 print_modules(); 505 dump_stack(); 506 out: 507 /* Leave bad fields for debug, except PageBuddy could make trouble */ 508 if (PageBuddy(page)) 509 __ClearPageBuddy(page); 510 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 511 } 512 513 static inline unsigned int order_to_pindex(int migratetype, int order) 514 { 515 516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 517 bool movable; 518 if (order > PAGE_ALLOC_COSTLY_ORDER) { 519 VM_BUG_ON(order != HPAGE_PMD_ORDER); 520 521 movable = migratetype == MIGRATE_MOVABLE; 522 523 return NR_LOWORDER_PCP_LISTS + movable; 524 } 525 #else 526 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 527 #endif 528 529 return (MIGRATE_PCPTYPES * order) + migratetype; 530 } 531 532 static inline int pindex_to_order(unsigned int pindex) 533 { 534 int order = pindex / MIGRATE_PCPTYPES; 535 536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 537 if (pindex >= NR_LOWORDER_PCP_LISTS) 538 order = HPAGE_PMD_ORDER; 539 #else 540 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 541 #endif 542 543 return order; 544 } 545 546 static inline bool pcp_allowed_order(unsigned int order) 547 { 548 if (order <= PAGE_ALLOC_COSTLY_ORDER) 549 return true; 550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 if (order == HPAGE_PMD_ORDER) 552 return true; 553 #endif 554 return false; 555 } 556 557 /* 558 * Higher-order pages are called "compound pages". They are structured thusly: 559 * 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 561 * 562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 564 * 565 * The first tail page's ->compound_order holds the order of allocation. 566 * This usage means that zero-order pages may not be compound. 567 */ 568 569 void prep_compound_page(struct page *page, unsigned int order) 570 { 571 int i; 572 int nr_pages = 1 << order; 573 574 __SetPageHead(page); 575 for (i = 1; i < nr_pages; i++) 576 prep_compound_tail(page, i); 577 578 prep_compound_head(page, order); 579 } 580 581 static inline void set_buddy_order(struct page *page, unsigned int order) 582 { 583 set_page_private(page, order); 584 __SetPageBuddy(page); 585 } 586 587 #ifdef CONFIG_COMPACTION 588 static inline struct capture_control *task_capc(struct zone *zone) 589 { 590 struct capture_control *capc = current->capture_control; 591 592 return unlikely(capc) && 593 !(current->flags & PF_KTHREAD) && 594 !capc->page && 595 capc->cc->zone == zone ? capc : NULL; 596 } 597 598 static inline bool 599 compaction_capture(struct capture_control *capc, struct page *page, 600 int order, int migratetype) 601 { 602 if (!capc || order != capc->cc->order) 603 return false; 604 605 /* Do not accidentally pollute CMA or isolated regions*/ 606 if (is_migrate_cma(migratetype) || 607 is_migrate_isolate(migratetype)) 608 return false; 609 610 /* 611 * Do not let lower order allocations pollute a movable pageblock 612 * unless compaction is also requesting movable pages. 613 * This might let an unmovable request use a reclaimable pageblock 614 * and vice-versa but no more than normal fallback logic which can 615 * have trouble finding a high-order free page. 616 */ 617 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 618 capc->cc->migratetype != MIGRATE_MOVABLE) 619 return false; 620 621 if (migratetype != capc->cc->migratetype) 622 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 623 capc->cc->migratetype, migratetype); 624 625 capc->page = page; 626 return true; 627 } 628 629 #else 630 static inline struct capture_control *task_capc(struct zone *zone) 631 { 632 return NULL; 633 } 634 635 static inline bool 636 compaction_capture(struct capture_control *capc, struct page *page, 637 int order, int migratetype) 638 { 639 return false; 640 } 641 #endif /* CONFIG_COMPACTION */ 642 643 static inline void account_freepages(struct zone *zone, int nr_pages, 644 int migratetype) 645 { 646 lockdep_assert_held(&zone->lock); 647 648 if (is_migrate_isolate(migratetype)) 649 return; 650 651 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 652 653 if (is_migrate_cma(migratetype)) 654 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 655 else if (is_migrate_highatomic(migratetype)) 656 WRITE_ONCE(zone->nr_free_highatomic, 657 zone->nr_free_highatomic + nr_pages); 658 } 659 660 /* Used for pages not on another list */ 661 static inline void __add_to_free_list(struct page *page, struct zone *zone, 662 unsigned int order, int migratetype, 663 bool tail) 664 { 665 struct free_area *area = &zone->free_area[order]; 666 int nr_pages = 1 << order; 667 668 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 669 "page type is %lu, passed migratetype is %d (nr=%d)\n", 670 get_pageblock_migratetype(page), migratetype, nr_pages); 671 672 if (tail) 673 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 674 else 675 list_add(&page->buddy_list, &area->free_list[migratetype]); 676 area->nr_free++; 677 678 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 679 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 680 } 681 682 /* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687 static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int old_mt, int new_mt) 689 { 690 struct free_area *area = &zone->free_area[order]; 691 int nr_pages = 1 << order; 692 693 /* Free page moving can fail, so it happens before the type update */ 694 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 695 "page type is %lu, passed migratetype is %d (nr=%d)\n", 696 get_pageblock_migratetype(page), old_mt, nr_pages); 697 698 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 699 700 account_freepages(zone, -nr_pages, old_mt); 701 account_freepages(zone, nr_pages, new_mt); 702 703 if (order >= pageblock_order && 704 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 705 if (!is_migrate_isolate(old_mt)) 706 nr_pages = -nr_pages; 707 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 708 } 709 } 710 711 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 712 unsigned int order, int migratetype) 713 { 714 int nr_pages = 1 << order; 715 716 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 717 "page type is %lu, passed migratetype is %d (nr=%d)\n", 718 get_pageblock_migratetype(page), migratetype, nr_pages); 719 720 /* clear reported state and update reported page count */ 721 if (page_reported(page)) 722 __ClearPageReported(page); 723 724 list_del(&page->buddy_list); 725 __ClearPageBuddy(page); 726 set_page_private(page, 0); 727 zone->free_area[order].nr_free--; 728 729 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 730 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 731 } 732 733 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 734 unsigned int order, int migratetype) 735 { 736 __del_page_from_free_list(page, zone, order, migratetype); 737 account_freepages(zone, -(1 << order), migratetype); 738 } 739 740 static inline struct page *get_page_from_free_area(struct free_area *area, 741 int migratetype) 742 { 743 return list_first_entry_or_null(&area->free_list[migratetype], 744 struct page, buddy_list); 745 } 746 747 /* 748 * If this is less than the 2nd largest possible page, check if the buddy 749 * of the next-higher order is free. If it is, it's possible 750 * that pages are being freed that will coalesce soon. In case, 751 * that is happening, add the free page to the tail of the list 752 * so it's less likely to be used soon and more likely to be merged 753 * as a 2-level higher order page 754 */ 755 static inline bool 756 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 757 struct page *page, unsigned int order) 758 { 759 unsigned long higher_page_pfn; 760 struct page *higher_page; 761 762 if (order >= MAX_PAGE_ORDER - 1) 763 return false; 764 765 higher_page_pfn = buddy_pfn & pfn; 766 higher_page = page + (higher_page_pfn - pfn); 767 768 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 769 NULL) != NULL; 770 } 771 772 /* 773 * Freeing function for a buddy system allocator. 774 * 775 * The concept of a buddy system is to maintain direct-mapped table 776 * (containing bit values) for memory blocks of various "orders". 777 * The bottom level table contains the map for the smallest allocatable 778 * units of memory (here, pages), and each level above it describes 779 * pairs of units from the levels below, hence, "buddies". 780 * At a high level, all that happens here is marking the table entry 781 * at the bottom level available, and propagating the changes upward 782 * as necessary, plus some accounting needed to play nicely with other 783 * parts of the VM system. 784 * At each level, we keep a list of pages, which are heads of continuous 785 * free pages of length of (1 << order) and marked with PageBuddy. 786 * Page's order is recorded in page_private(page) field. 787 * So when we are allocating or freeing one, we can derive the state of the 788 * other. That is, if we allocate a small block, and both were 789 * free, the remainder of the region must be split into blocks. 790 * If a block is freed, and its buddy is also free, then this 791 * triggers coalescing into a block of larger size. 792 * 793 * -- nyc 794 */ 795 796 static inline void __free_one_page(struct page *page, 797 unsigned long pfn, 798 struct zone *zone, unsigned int order, 799 int migratetype, fpi_t fpi_flags) 800 { 801 struct capture_control *capc = task_capc(zone); 802 unsigned long buddy_pfn = 0; 803 unsigned long combined_pfn; 804 struct page *buddy; 805 bool to_tail; 806 807 VM_BUG_ON(!zone_is_initialized(zone)); 808 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 809 810 VM_BUG_ON(migratetype == -1); 811 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 812 VM_BUG_ON_PAGE(bad_range(zone, page), page); 813 814 account_freepages(zone, 1 << order, migratetype); 815 816 while (order < MAX_PAGE_ORDER) { 817 int buddy_mt = migratetype; 818 819 if (compaction_capture(capc, page, order, migratetype)) { 820 account_freepages(zone, -(1 << order), migratetype); 821 return; 822 } 823 824 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 825 if (!buddy) 826 goto done_merging; 827 828 if (unlikely(order >= pageblock_order)) { 829 /* 830 * We want to prevent merge between freepages on pageblock 831 * without fallbacks and normal pageblock. Without this, 832 * pageblock isolation could cause incorrect freepage or CMA 833 * accounting or HIGHATOMIC accounting. 834 */ 835 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 836 837 if (migratetype != buddy_mt && 838 (!migratetype_is_mergeable(migratetype) || 839 !migratetype_is_mergeable(buddy_mt))) 840 goto done_merging; 841 } 842 843 /* 844 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 845 * merge with it and move up one order. 846 */ 847 if (page_is_guard(buddy)) 848 clear_page_guard(zone, buddy, order); 849 else 850 __del_page_from_free_list(buddy, zone, order, buddy_mt); 851 852 if (unlikely(buddy_mt != migratetype)) { 853 /* 854 * Match buddy type. This ensures that an 855 * expand() down the line puts the sub-blocks 856 * on the right freelists. 857 */ 858 set_pageblock_migratetype(buddy, migratetype); 859 } 860 861 combined_pfn = buddy_pfn & pfn; 862 page = page + (combined_pfn - pfn); 863 pfn = combined_pfn; 864 order++; 865 } 866 867 done_merging: 868 set_buddy_order(page, order); 869 870 if (fpi_flags & FPI_TO_TAIL) 871 to_tail = true; 872 else if (is_shuffle_order(order)) 873 to_tail = shuffle_pick_tail(); 874 else 875 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 876 877 __add_to_free_list(page, zone, order, migratetype, to_tail); 878 879 /* Notify page reporting subsystem of freed page */ 880 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 881 page_reporting_notify_free(order); 882 } 883 884 /* 885 * A bad page could be due to a number of fields. Instead of multiple branches, 886 * try and check multiple fields with one check. The caller must do a detailed 887 * check if necessary. 888 */ 889 static inline bool page_expected_state(struct page *page, 890 unsigned long check_flags) 891 { 892 if (unlikely(atomic_read(&page->_mapcount) != -1)) 893 return false; 894 895 if (unlikely((unsigned long)page->mapping | 896 page_ref_count(page) | 897 #ifdef CONFIG_MEMCG 898 page->memcg_data | 899 #endif 900 page_pool_page_is_pp(page) | 901 (page->flags & check_flags))) 902 return false; 903 904 return true; 905 } 906 907 static const char *page_bad_reason(struct page *page, unsigned long flags) 908 { 909 const char *bad_reason = NULL; 910 911 if (unlikely(atomic_read(&page->_mapcount) != -1)) 912 bad_reason = "nonzero mapcount"; 913 if (unlikely(page->mapping != NULL)) 914 bad_reason = "non-NULL mapping"; 915 if (unlikely(page_ref_count(page) != 0)) 916 bad_reason = "nonzero _refcount"; 917 if (unlikely(page->flags & flags)) { 918 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 919 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 920 else 921 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 922 } 923 #ifdef CONFIG_MEMCG 924 if (unlikely(page->memcg_data)) 925 bad_reason = "page still charged to cgroup"; 926 #endif 927 if (unlikely(page_pool_page_is_pp(page))) 928 bad_reason = "page_pool leak"; 929 return bad_reason; 930 } 931 932 static void free_page_is_bad_report(struct page *page) 933 { 934 bad_page(page, 935 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 936 } 937 938 static inline bool free_page_is_bad(struct page *page) 939 { 940 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 941 return false; 942 943 /* Something has gone sideways, find it */ 944 free_page_is_bad_report(page); 945 return true; 946 } 947 948 static inline bool is_check_pages_enabled(void) 949 { 950 return static_branch_unlikely(&check_pages_enabled); 951 } 952 953 static int free_tail_page_prepare(struct page *head_page, struct page *page) 954 { 955 struct folio *folio = (struct folio *)head_page; 956 int ret = 1; 957 958 /* 959 * We rely page->lru.next never has bit 0 set, unless the page 960 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 961 */ 962 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 963 964 if (!is_check_pages_enabled()) { 965 ret = 0; 966 goto out; 967 } 968 switch (page - head_page) { 969 case 1: 970 /* the first tail page: these may be in place of ->mapping */ 971 if (unlikely(folio_large_mapcount(folio))) { 972 bad_page(page, "nonzero large_mapcount"); 973 goto out; 974 } 975 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 976 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 977 bad_page(page, "nonzero nr_pages_mapped"); 978 goto out; 979 } 980 if (IS_ENABLED(CONFIG_MM_ID)) { 981 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 982 bad_page(page, "nonzero mm mapcount 0"); 983 goto out; 984 } 985 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 986 bad_page(page, "nonzero mm mapcount 1"); 987 goto out; 988 } 989 } 990 if (IS_ENABLED(CONFIG_64BIT)) { 991 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 992 bad_page(page, "nonzero entire_mapcount"); 993 goto out; 994 } 995 if (unlikely(atomic_read(&folio->_pincount))) { 996 bad_page(page, "nonzero pincount"); 997 goto out; 998 } 999 } 1000 break; 1001 case 2: 1002 /* the second tail page: deferred_list overlaps ->mapping */ 1003 if (unlikely(!list_empty(&folio->_deferred_list))) { 1004 bad_page(page, "on deferred list"); 1005 goto out; 1006 } 1007 if (!IS_ENABLED(CONFIG_64BIT)) { 1008 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1009 bad_page(page, "nonzero entire_mapcount"); 1010 goto out; 1011 } 1012 if (unlikely(atomic_read(&folio->_pincount))) { 1013 bad_page(page, "nonzero pincount"); 1014 goto out; 1015 } 1016 } 1017 break; 1018 case 3: 1019 /* the third tail page: hugetlb specifics overlap ->mappings */ 1020 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1021 break; 1022 fallthrough; 1023 default: 1024 if (page->mapping != TAIL_MAPPING) { 1025 bad_page(page, "corrupted mapping in tail page"); 1026 goto out; 1027 } 1028 break; 1029 } 1030 if (unlikely(!PageTail(page))) { 1031 bad_page(page, "PageTail not set"); 1032 goto out; 1033 } 1034 if (unlikely(compound_head(page) != head_page)) { 1035 bad_page(page, "compound_head not consistent"); 1036 goto out; 1037 } 1038 ret = 0; 1039 out: 1040 page->mapping = NULL; 1041 clear_compound_head(page); 1042 return ret; 1043 } 1044 1045 /* 1046 * Skip KASAN memory poisoning when either: 1047 * 1048 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1049 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1050 * using page tags instead (see below). 1051 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1052 * that error detection is disabled for accesses via the page address. 1053 * 1054 * Pages will have match-all tags in the following circumstances: 1055 * 1056 * 1. Pages are being initialized for the first time, including during deferred 1057 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1058 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1059 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1060 * 3. The allocation was excluded from being checked due to sampling, 1061 * see the call to kasan_unpoison_pages. 1062 * 1063 * Poisoning pages during deferred memory init will greatly lengthen the 1064 * process and cause problem in large memory systems as the deferred pages 1065 * initialization is done with interrupt disabled. 1066 * 1067 * Assuming that there will be no reference to those newly initialized 1068 * pages before they are ever allocated, this should have no effect on 1069 * KASAN memory tracking as the poison will be properly inserted at page 1070 * allocation time. The only corner case is when pages are allocated by 1071 * on-demand allocation and then freed again before the deferred pages 1072 * initialization is done, but this is not likely to happen. 1073 */ 1074 static inline bool should_skip_kasan_poison(struct page *page) 1075 { 1076 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1077 return deferred_pages_enabled(); 1078 1079 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1080 } 1081 1082 static void kernel_init_pages(struct page *page, int numpages) 1083 { 1084 int i; 1085 1086 /* s390's use of memset() could override KASAN redzones. */ 1087 kasan_disable_current(); 1088 for (i = 0; i < numpages; i++) 1089 clear_highpage_kasan_tagged(page + i); 1090 kasan_enable_current(); 1091 } 1092 1093 #ifdef CONFIG_MEM_ALLOC_PROFILING 1094 1095 /* Should be called only if mem_alloc_profiling_enabled() */ 1096 void __clear_page_tag_ref(struct page *page) 1097 { 1098 union pgtag_ref_handle handle; 1099 union codetag_ref ref; 1100 1101 if (get_page_tag_ref(page, &ref, &handle)) { 1102 set_codetag_empty(&ref); 1103 update_page_tag_ref(handle, &ref); 1104 put_page_tag_ref(handle); 1105 } 1106 } 1107 1108 /* Should be called only if mem_alloc_profiling_enabled() */ 1109 static noinline 1110 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1111 unsigned int nr) 1112 { 1113 union pgtag_ref_handle handle; 1114 union codetag_ref ref; 1115 1116 if (get_page_tag_ref(page, &ref, &handle)) { 1117 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1118 update_page_tag_ref(handle, &ref); 1119 put_page_tag_ref(handle); 1120 } 1121 } 1122 1123 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1124 unsigned int nr) 1125 { 1126 if (mem_alloc_profiling_enabled()) 1127 __pgalloc_tag_add(page, task, nr); 1128 } 1129 1130 /* Should be called only if mem_alloc_profiling_enabled() */ 1131 static noinline 1132 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1133 { 1134 union pgtag_ref_handle handle; 1135 union codetag_ref ref; 1136 1137 if (get_page_tag_ref(page, &ref, &handle)) { 1138 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1139 update_page_tag_ref(handle, &ref); 1140 put_page_tag_ref(handle); 1141 } 1142 } 1143 1144 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1145 { 1146 if (mem_alloc_profiling_enabled()) 1147 __pgalloc_tag_sub(page, nr); 1148 } 1149 1150 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) 1151 { 1152 struct alloc_tag *tag; 1153 1154 if (!mem_alloc_profiling_enabled()) 1155 return; 1156 1157 tag = __pgalloc_tag_get(page); 1158 if (tag) 1159 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1160 } 1161 1162 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1163 1164 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1165 unsigned int nr) {} 1166 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1167 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {} 1168 1169 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1170 1171 __always_inline bool free_pages_prepare(struct page *page, 1172 unsigned int order) 1173 { 1174 int bad = 0; 1175 bool skip_kasan_poison = should_skip_kasan_poison(page); 1176 bool init = want_init_on_free(); 1177 bool compound = PageCompound(page); 1178 struct folio *folio = page_folio(page); 1179 1180 VM_BUG_ON_PAGE(PageTail(page), page); 1181 1182 trace_mm_page_free(page, order); 1183 kmsan_free_page(page, order); 1184 1185 if (memcg_kmem_online() && PageMemcgKmem(page)) 1186 __memcg_kmem_uncharge_page(page, order); 1187 1188 /* 1189 * In rare cases, when truncation or holepunching raced with 1190 * munlock after VM_LOCKED was cleared, Mlocked may still be 1191 * found set here. This does not indicate a problem, unless 1192 * "unevictable_pgs_cleared" appears worryingly large. 1193 */ 1194 if (unlikely(folio_test_mlocked(folio))) { 1195 long nr_pages = folio_nr_pages(folio); 1196 1197 __folio_clear_mlocked(folio); 1198 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1199 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1200 } 1201 1202 if (unlikely(PageHWPoison(page)) && !order) { 1203 /* Do not let hwpoison pages hit pcplists/buddy */ 1204 reset_page_owner(page, order); 1205 page_table_check_free(page, order); 1206 pgalloc_tag_sub(page, 1 << order); 1207 1208 /* 1209 * The page is isolated and accounted for. 1210 * Mark the codetag as empty to avoid accounting error 1211 * when the page is freed by unpoison_memory(). 1212 */ 1213 clear_page_tag_ref(page); 1214 return false; 1215 } 1216 1217 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1218 1219 /* 1220 * Check tail pages before head page information is cleared to 1221 * avoid checking PageCompound for order-0 pages. 1222 */ 1223 if (unlikely(order)) { 1224 int i; 1225 1226 if (compound) { 1227 page[1].flags &= ~PAGE_FLAGS_SECOND; 1228 #ifdef NR_PAGES_IN_LARGE_FOLIO 1229 folio->_nr_pages = 0; 1230 #endif 1231 } 1232 for (i = 1; i < (1 << order); i++) { 1233 if (compound) 1234 bad += free_tail_page_prepare(page, page + i); 1235 if (is_check_pages_enabled()) { 1236 if (free_page_is_bad(page + i)) { 1237 bad++; 1238 continue; 1239 } 1240 } 1241 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1242 } 1243 } 1244 if (PageMappingFlags(page)) { 1245 if (PageAnon(page)) 1246 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1247 page->mapping = NULL; 1248 } 1249 if (is_check_pages_enabled()) { 1250 if (free_page_is_bad(page)) 1251 bad++; 1252 if (bad) 1253 return false; 1254 } 1255 1256 page_cpupid_reset_last(page); 1257 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1258 reset_page_owner(page, order); 1259 page_table_check_free(page, order); 1260 pgalloc_tag_sub(page, 1 << order); 1261 1262 if (!PageHighMem(page)) { 1263 debug_check_no_locks_freed(page_address(page), 1264 PAGE_SIZE << order); 1265 debug_check_no_obj_freed(page_address(page), 1266 PAGE_SIZE << order); 1267 } 1268 1269 kernel_poison_pages(page, 1 << order); 1270 1271 /* 1272 * As memory initialization might be integrated into KASAN, 1273 * KASAN poisoning and memory initialization code must be 1274 * kept together to avoid discrepancies in behavior. 1275 * 1276 * With hardware tag-based KASAN, memory tags must be set before the 1277 * page becomes unavailable via debug_pagealloc or arch_free_page. 1278 */ 1279 if (!skip_kasan_poison) { 1280 kasan_poison_pages(page, order, init); 1281 1282 /* Memory is already initialized if KASAN did it internally. */ 1283 if (kasan_has_integrated_init()) 1284 init = false; 1285 } 1286 if (init) 1287 kernel_init_pages(page, 1 << order); 1288 1289 /* 1290 * arch_free_page() can make the page's contents inaccessible. s390 1291 * does this. So nothing which can access the page's contents should 1292 * happen after this. 1293 */ 1294 arch_free_page(page, order); 1295 1296 debug_pagealloc_unmap_pages(page, 1 << order); 1297 1298 return true; 1299 } 1300 1301 /* 1302 * Frees a number of pages from the PCP lists 1303 * Assumes all pages on list are in same zone. 1304 * count is the number of pages to free. 1305 */ 1306 static void free_pcppages_bulk(struct zone *zone, int count, 1307 struct per_cpu_pages *pcp, 1308 int pindex) 1309 { 1310 unsigned long flags; 1311 unsigned int order; 1312 struct page *page; 1313 1314 /* 1315 * Ensure proper count is passed which otherwise would stuck in the 1316 * below while (list_empty(list)) loop. 1317 */ 1318 count = min(pcp->count, count); 1319 1320 /* Ensure requested pindex is drained first. */ 1321 pindex = pindex - 1; 1322 1323 spin_lock_irqsave(&zone->lock, flags); 1324 1325 while (count > 0) { 1326 struct list_head *list; 1327 int nr_pages; 1328 1329 /* Remove pages from lists in a round-robin fashion. */ 1330 do { 1331 if (++pindex > NR_PCP_LISTS - 1) 1332 pindex = 0; 1333 list = &pcp->lists[pindex]; 1334 } while (list_empty(list)); 1335 1336 order = pindex_to_order(pindex); 1337 nr_pages = 1 << order; 1338 do { 1339 unsigned long pfn; 1340 int mt; 1341 1342 page = list_last_entry(list, struct page, pcp_list); 1343 pfn = page_to_pfn(page); 1344 mt = get_pfnblock_migratetype(page, pfn); 1345 1346 /* must delete to avoid corrupting pcp list */ 1347 list_del(&page->pcp_list); 1348 count -= nr_pages; 1349 pcp->count -= nr_pages; 1350 1351 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1352 trace_mm_page_pcpu_drain(page, order, mt); 1353 } while (count > 0 && !list_empty(list)); 1354 } 1355 1356 spin_unlock_irqrestore(&zone->lock, flags); 1357 } 1358 1359 /* Split a multi-block free page into its individual pageblocks. */ 1360 static void split_large_buddy(struct zone *zone, struct page *page, 1361 unsigned long pfn, int order, fpi_t fpi) 1362 { 1363 unsigned long end = pfn + (1 << order); 1364 1365 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1366 /* Caller removed page from freelist, buddy info cleared! */ 1367 VM_WARN_ON_ONCE(PageBuddy(page)); 1368 1369 if (order > pageblock_order) 1370 order = pageblock_order; 1371 1372 do { 1373 int mt = get_pfnblock_migratetype(page, pfn); 1374 1375 __free_one_page(page, pfn, zone, order, mt, fpi); 1376 pfn += 1 << order; 1377 if (pfn == end) 1378 break; 1379 page = pfn_to_page(pfn); 1380 } while (1); 1381 } 1382 1383 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1384 unsigned int order) 1385 { 1386 /* Remember the order */ 1387 page->order = order; 1388 /* Add the page to the free list */ 1389 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1390 } 1391 1392 static void free_one_page(struct zone *zone, struct page *page, 1393 unsigned long pfn, unsigned int order, 1394 fpi_t fpi_flags) 1395 { 1396 struct llist_head *llhead; 1397 unsigned long flags; 1398 1399 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1400 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1401 add_page_to_zone_llist(zone, page, order); 1402 return; 1403 } 1404 } else { 1405 spin_lock_irqsave(&zone->lock, flags); 1406 } 1407 1408 /* The lock succeeded. Process deferred pages. */ 1409 llhead = &zone->trylock_free_pages; 1410 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1411 struct llist_node *llnode; 1412 struct page *p, *tmp; 1413 1414 llnode = llist_del_all(llhead); 1415 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1416 unsigned int p_order = p->order; 1417 1418 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1419 __count_vm_events(PGFREE, 1 << p_order); 1420 } 1421 } 1422 split_large_buddy(zone, page, pfn, order, fpi_flags); 1423 spin_unlock_irqrestore(&zone->lock, flags); 1424 1425 __count_vm_events(PGFREE, 1 << order); 1426 } 1427 1428 static void __free_pages_ok(struct page *page, unsigned int order, 1429 fpi_t fpi_flags) 1430 { 1431 unsigned long pfn = page_to_pfn(page); 1432 struct zone *zone = page_zone(page); 1433 1434 if (free_pages_prepare(page, order)) 1435 free_one_page(zone, page, pfn, order, fpi_flags); 1436 } 1437 1438 void __meminit __free_pages_core(struct page *page, unsigned int order, 1439 enum meminit_context context) 1440 { 1441 unsigned int nr_pages = 1 << order; 1442 struct page *p = page; 1443 unsigned int loop; 1444 1445 /* 1446 * When initializing the memmap, __init_single_page() sets the refcount 1447 * of all pages to 1 ("allocated"/"not free"). We have to set the 1448 * refcount of all involved pages to 0. 1449 * 1450 * Note that hotplugged memory pages are initialized to PageOffline(). 1451 * Pages freed from memblock might be marked as reserved. 1452 */ 1453 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1454 unlikely(context == MEMINIT_HOTPLUG)) { 1455 for (loop = 0; loop < nr_pages; loop++, p++) { 1456 VM_WARN_ON_ONCE(PageReserved(p)); 1457 __ClearPageOffline(p); 1458 set_page_count(p, 0); 1459 } 1460 1461 adjust_managed_page_count(page, nr_pages); 1462 } else { 1463 for (loop = 0; loop < nr_pages; loop++, p++) { 1464 __ClearPageReserved(p); 1465 set_page_count(p, 0); 1466 } 1467 1468 /* memblock adjusts totalram_pages() manually. */ 1469 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1470 } 1471 1472 if (page_contains_unaccepted(page, order)) { 1473 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1474 return; 1475 1476 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1477 } 1478 1479 /* 1480 * Bypass PCP and place fresh pages right to the tail, primarily 1481 * relevant for memory onlining. 1482 */ 1483 __free_pages_ok(page, order, FPI_TO_TAIL); 1484 } 1485 1486 /* 1487 * Check that the whole (or subset of) a pageblock given by the interval of 1488 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1489 * with the migration of free compaction scanner. 1490 * 1491 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1492 * 1493 * It's possible on some configurations to have a setup like node0 node1 node0 1494 * i.e. it's possible that all pages within a zones range of pages do not 1495 * belong to a single zone. We assume that a border between node0 and node1 1496 * can occur within a single pageblock, but not a node0 node1 node0 1497 * interleaving within a single pageblock. It is therefore sufficient to check 1498 * the first and last page of a pageblock and avoid checking each individual 1499 * page in a pageblock. 1500 * 1501 * Note: the function may return non-NULL struct page even for a page block 1502 * which contains a memory hole (i.e. there is no physical memory for a subset 1503 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1504 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1505 * even though the start pfn is online and valid. This should be safe most of 1506 * the time because struct pages are still initialized via init_unavailable_range() 1507 * and pfn walkers shouldn't touch any physical memory range for which they do 1508 * not recognize any specific metadata in struct pages. 1509 */ 1510 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1511 unsigned long end_pfn, struct zone *zone) 1512 { 1513 struct page *start_page; 1514 struct page *end_page; 1515 1516 /* end_pfn is one past the range we are checking */ 1517 end_pfn--; 1518 1519 if (!pfn_valid(end_pfn)) 1520 return NULL; 1521 1522 start_page = pfn_to_online_page(start_pfn); 1523 if (!start_page) 1524 return NULL; 1525 1526 if (page_zone(start_page) != zone) 1527 return NULL; 1528 1529 end_page = pfn_to_page(end_pfn); 1530 1531 /* This gives a shorter code than deriving page_zone(end_page) */ 1532 if (page_zone_id(start_page) != page_zone_id(end_page)) 1533 return NULL; 1534 1535 return start_page; 1536 } 1537 1538 /* 1539 * The order of subdivision here is critical for the IO subsystem. 1540 * Please do not alter this order without good reasons and regression 1541 * testing. Specifically, as large blocks of memory are subdivided, 1542 * the order in which smaller blocks are delivered depends on the order 1543 * they're subdivided in this function. This is the primary factor 1544 * influencing the order in which pages are delivered to the IO 1545 * subsystem according to empirical testing, and this is also justified 1546 * by considering the behavior of a buddy system containing a single 1547 * large block of memory acted on by a series of small allocations. 1548 * This behavior is a critical factor in sglist merging's success. 1549 * 1550 * -- nyc 1551 */ 1552 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1553 int high, int migratetype) 1554 { 1555 unsigned int size = 1 << high; 1556 unsigned int nr_added = 0; 1557 1558 while (high > low) { 1559 high--; 1560 size >>= 1; 1561 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1562 1563 /* 1564 * Mark as guard pages (or page), that will allow to 1565 * merge back to allocator when buddy will be freed. 1566 * Corresponding page table entries will not be touched, 1567 * pages will stay not present in virtual address space 1568 */ 1569 if (set_page_guard(zone, &page[size], high)) 1570 continue; 1571 1572 __add_to_free_list(&page[size], zone, high, migratetype, false); 1573 set_buddy_order(&page[size], high); 1574 nr_added += size; 1575 } 1576 1577 return nr_added; 1578 } 1579 1580 static __always_inline void page_del_and_expand(struct zone *zone, 1581 struct page *page, int low, 1582 int high, int migratetype) 1583 { 1584 int nr_pages = 1 << high; 1585 1586 __del_page_from_free_list(page, zone, high, migratetype); 1587 nr_pages -= expand(zone, page, low, high, migratetype); 1588 account_freepages(zone, -nr_pages, migratetype); 1589 } 1590 1591 static void check_new_page_bad(struct page *page) 1592 { 1593 if (unlikely(PageHWPoison(page))) { 1594 /* Don't complain about hwpoisoned pages */ 1595 if (PageBuddy(page)) 1596 __ClearPageBuddy(page); 1597 return; 1598 } 1599 1600 bad_page(page, 1601 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1602 } 1603 1604 /* 1605 * This page is about to be returned from the page allocator 1606 */ 1607 static bool check_new_page(struct page *page) 1608 { 1609 if (likely(page_expected_state(page, 1610 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1611 return false; 1612 1613 check_new_page_bad(page); 1614 return true; 1615 } 1616 1617 static inline bool check_new_pages(struct page *page, unsigned int order) 1618 { 1619 if (is_check_pages_enabled()) { 1620 for (int i = 0; i < (1 << order); i++) { 1621 struct page *p = page + i; 1622 1623 if (check_new_page(p)) 1624 return true; 1625 } 1626 } 1627 1628 return false; 1629 } 1630 1631 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1632 { 1633 /* Don't skip if a software KASAN mode is enabled. */ 1634 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1635 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1636 return false; 1637 1638 /* Skip, if hardware tag-based KASAN is not enabled. */ 1639 if (!kasan_hw_tags_enabled()) 1640 return true; 1641 1642 /* 1643 * With hardware tag-based KASAN enabled, skip if this has been 1644 * requested via __GFP_SKIP_KASAN. 1645 */ 1646 return flags & __GFP_SKIP_KASAN; 1647 } 1648 1649 static inline bool should_skip_init(gfp_t flags) 1650 { 1651 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1652 if (!kasan_hw_tags_enabled()) 1653 return false; 1654 1655 /* For hardware tag-based KASAN, skip if requested. */ 1656 return (flags & __GFP_SKIP_ZERO); 1657 } 1658 1659 inline void post_alloc_hook(struct page *page, unsigned int order, 1660 gfp_t gfp_flags) 1661 { 1662 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1663 !should_skip_init(gfp_flags); 1664 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1665 int i; 1666 1667 set_page_private(page, 0); 1668 1669 arch_alloc_page(page, order); 1670 debug_pagealloc_map_pages(page, 1 << order); 1671 1672 /* 1673 * Page unpoisoning must happen before memory initialization. 1674 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1675 * allocations and the page unpoisoning code will complain. 1676 */ 1677 kernel_unpoison_pages(page, 1 << order); 1678 1679 /* 1680 * As memory initialization might be integrated into KASAN, 1681 * KASAN unpoisoning and memory initializion code must be 1682 * kept together to avoid discrepancies in behavior. 1683 */ 1684 1685 /* 1686 * If memory tags should be zeroed 1687 * (which happens only when memory should be initialized as well). 1688 */ 1689 if (zero_tags) { 1690 /* Initialize both memory and memory tags. */ 1691 for (i = 0; i != 1 << order; ++i) 1692 tag_clear_highpage(page + i); 1693 1694 /* Take note that memory was initialized by the loop above. */ 1695 init = false; 1696 } 1697 if (!should_skip_kasan_unpoison(gfp_flags) && 1698 kasan_unpoison_pages(page, order, init)) { 1699 /* Take note that memory was initialized by KASAN. */ 1700 if (kasan_has_integrated_init()) 1701 init = false; 1702 } else { 1703 /* 1704 * If memory tags have not been set by KASAN, reset the page 1705 * tags to ensure page_address() dereferencing does not fault. 1706 */ 1707 for (i = 0; i != 1 << order; ++i) 1708 page_kasan_tag_reset(page + i); 1709 } 1710 /* If memory is still not initialized, initialize it now. */ 1711 if (init) 1712 kernel_init_pages(page, 1 << order); 1713 1714 set_page_owner(page, order, gfp_flags); 1715 page_table_check_alloc(page, order); 1716 pgalloc_tag_add(page, current, 1 << order); 1717 } 1718 1719 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1720 unsigned int alloc_flags) 1721 { 1722 post_alloc_hook(page, order, gfp_flags); 1723 1724 if (order && (gfp_flags & __GFP_COMP)) 1725 prep_compound_page(page, order); 1726 1727 /* 1728 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1729 * allocate the page. The expectation is that the caller is taking 1730 * steps that will free more memory. The caller should avoid the page 1731 * being used for !PFMEMALLOC purposes. 1732 */ 1733 if (alloc_flags & ALLOC_NO_WATERMARKS) 1734 set_page_pfmemalloc(page); 1735 else 1736 clear_page_pfmemalloc(page); 1737 } 1738 1739 /* 1740 * Go through the free lists for the given migratetype and remove 1741 * the smallest available page from the freelists 1742 */ 1743 static __always_inline 1744 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1745 int migratetype) 1746 { 1747 unsigned int current_order; 1748 struct free_area *area; 1749 struct page *page; 1750 1751 /* Find a page of the appropriate size in the preferred list */ 1752 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1753 area = &(zone->free_area[current_order]); 1754 page = get_page_from_free_area(area, migratetype); 1755 if (!page) 1756 continue; 1757 1758 page_del_and_expand(zone, page, order, current_order, 1759 migratetype); 1760 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1761 pcp_allowed_order(order) && 1762 migratetype < MIGRATE_PCPTYPES); 1763 return page; 1764 } 1765 1766 return NULL; 1767 } 1768 1769 1770 /* 1771 * This array describes the order lists are fallen back to when 1772 * the free lists for the desirable migrate type are depleted 1773 * 1774 * The other migratetypes do not have fallbacks. 1775 */ 1776 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1777 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1778 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1779 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1780 }; 1781 1782 #ifdef CONFIG_CMA 1783 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1784 unsigned int order) 1785 { 1786 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1787 } 1788 #else 1789 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1790 unsigned int order) { return NULL; } 1791 #endif 1792 1793 /* 1794 * Change the type of a block and move all its free pages to that 1795 * type's freelist. 1796 */ 1797 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1798 int old_mt, int new_mt) 1799 { 1800 struct page *page; 1801 unsigned long pfn, end_pfn; 1802 unsigned int order; 1803 int pages_moved = 0; 1804 1805 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1806 end_pfn = pageblock_end_pfn(start_pfn); 1807 1808 for (pfn = start_pfn; pfn < end_pfn;) { 1809 page = pfn_to_page(pfn); 1810 if (!PageBuddy(page)) { 1811 pfn++; 1812 continue; 1813 } 1814 1815 /* Make sure we are not inadvertently changing nodes */ 1816 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1817 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1818 1819 order = buddy_order(page); 1820 1821 move_to_free_list(page, zone, order, old_mt, new_mt); 1822 1823 pfn += 1 << order; 1824 pages_moved += 1 << order; 1825 } 1826 1827 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1828 1829 return pages_moved; 1830 } 1831 1832 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1833 unsigned long *start_pfn, 1834 int *num_free, int *num_movable) 1835 { 1836 unsigned long pfn, start, end; 1837 1838 pfn = page_to_pfn(page); 1839 start = pageblock_start_pfn(pfn); 1840 end = pageblock_end_pfn(pfn); 1841 1842 /* 1843 * The caller only has the lock for @zone, don't touch ranges 1844 * that straddle into other zones. While we could move part of 1845 * the range that's inside the zone, this call is usually 1846 * accompanied by other operations such as migratetype updates 1847 * which also should be locked. 1848 */ 1849 if (!zone_spans_pfn(zone, start)) 1850 return false; 1851 if (!zone_spans_pfn(zone, end - 1)) 1852 return false; 1853 1854 *start_pfn = start; 1855 1856 if (num_free) { 1857 *num_free = 0; 1858 *num_movable = 0; 1859 for (pfn = start; pfn < end;) { 1860 page = pfn_to_page(pfn); 1861 if (PageBuddy(page)) { 1862 int nr = 1 << buddy_order(page); 1863 1864 *num_free += nr; 1865 pfn += nr; 1866 continue; 1867 } 1868 /* 1869 * We assume that pages that could be isolated for 1870 * migration are movable. But we don't actually try 1871 * isolating, as that would be expensive. 1872 */ 1873 if (PageLRU(page) || __PageMovable(page)) 1874 (*num_movable)++; 1875 pfn++; 1876 } 1877 } 1878 1879 return true; 1880 } 1881 1882 static int move_freepages_block(struct zone *zone, struct page *page, 1883 int old_mt, int new_mt) 1884 { 1885 unsigned long start_pfn; 1886 1887 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1888 return -1; 1889 1890 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1891 } 1892 1893 #ifdef CONFIG_MEMORY_ISOLATION 1894 /* Look for a buddy that straddles start_pfn */ 1895 static unsigned long find_large_buddy(unsigned long start_pfn) 1896 { 1897 int order = 0; 1898 struct page *page; 1899 unsigned long pfn = start_pfn; 1900 1901 while (!PageBuddy(page = pfn_to_page(pfn))) { 1902 /* Nothing found */ 1903 if (++order > MAX_PAGE_ORDER) 1904 return start_pfn; 1905 pfn &= ~0UL << order; 1906 } 1907 1908 /* 1909 * Found a preceding buddy, but does it straddle? 1910 */ 1911 if (pfn + (1 << buddy_order(page)) > start_pfn) 1912 return pfn; 1913 1914 /* Nothing found */ 1915 return start_pfn; 1916 } 1917 1918 /** 1919 * move_freepages_block_isolate - move free pages in block for page isolation 1920 * @zone: the zone 1921 * @page: the pageblock page 1922 * @migratetype: migratetype to set on the pageblock 1923 * 1924 * This is similar to move_freepages_block(), but handles the special 1925 * case encountered in page isolation, where the block of interest 1926 * might be part of a larger buddy spanning multiple pageblocks. 1927 * 1928 * Unlike the regular page allocator path, which moves pages while 1929 * stealing buddies off the freelist, page isolation is interested in 1930 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1931 * 1932 * This function handles that. Straddling buddies are split into 1933 * individual pageblocks. Only the block of interest is moved. 1934 * 1935 * Returns %true if pages could be moved, %false otherwise. 1936 */ 1937 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1938 int migratetype) 1939 { 1940 unsigned long start_pfn, pfn; 1941 1942 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1943 return false; 1944 1945 /* No splits needed if buddies can't span multiple blocks */ 1946 if (pageblock_order == MAX_PAGE_ORDER) 1947 goto move; 1948 1949 /* We're a tail block in a larger buddy */ 1950 pfn = find_large_buddy(start_pfn); 1951 if (pfn != start_pfn) { 1952 struct page *buddy = pfn_to_page(pfn); 1953 int order = buddy_order(buddy); 1954 1955 del_page_from_free_list(buddy, zone, order, 1956 get_pfnblock_migratetype(buddy, pfn)); 1957 set_pageblock_migratetype(page, migratetype); 1958 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1959 return true; 1960 } 1961 1962 /* We're the starting block of a larger buddy */ 1963 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1964 int order = buddy_order(page); 1965 1966 del_page_from_free_list(page, zone, order, 1967 get_pfnblock_migratetype(page, pfn)); 1968 set_pageblock_migratetype(page, migratetype); 1969 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1970 return true; 1971 } 1972 move: 1973 __move_freepages_block(zone, start_pfn, 1974 get_pfnblock_migratetype(page, start_pfn), 1975 migratetype); 1976 return true; 1977 } 1978 #endif /* CONFIG_MEMORY_ISOLATION */ 1979 1980 static void change_pageblock_range(struct page *pageblock_page, 1981 int start_order, int migratetype) 1982 { 1983 int nr_pageblocks = 1 << (start_order - pageblock_order); 1984 1985 while (nr_pageblocks--) { 1986 set_pageblock_migratetype(pageblock_page, migratetype); 1987 pageblock_page += pageblock_nr_pages; 1988 } 1989 } 1990 1991 static inline bool boost_watermark(struct zone *zone) 1992 { 1993 unsigned long max_boost; 1994 1995 if (!watermark_boost_factor) 1996 return false; 1997 /* 1998 * Don't bother in zones that are unlikely to produce results. 1999 * On small machines, including kdump capture kernels running 2000 * in a small area, boosting the watermark can cause an out of 2001 * memory situation immediately. 2002 */ 2003 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2004 return false; 2005 2006 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2007 watermark_boost_factor, 10000); 2008 2009 /* 2010 * high watermark may be uninitialised if fragmentation occurs 2011 * very early in boot so do not boost. We do not fall 2012 * through and boost by pageblock_nr_pages as failing 2013 * allocations that early means that reclaim is not going 2014 * to help and it may even be impossible to reclaim the 2015 * boosted watermark resulting in a hang. 2016 */ 2017 if (!max_boost) 2018 return false; 2019 2020 max_boost = max(pageblock_nr_pages, max_boost); 2021 2022 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2023 max_boost); 2024 2025 return true; 2026 } 2027 2028 /* 2029 * When we are falling back to another migratetype during allocation, should we 2030 * try to claim an entire block to satisfy further allocations, instead of 2031 * polluting multiple pageblocks? 2032 */ 2033 static bool should_try_claim_block(unsigned int order, int start_mt) 2034 { 2035 /* 2036 * Leaving this order check is intended, although there is 2037 * relaxed order check in next check. The reason is that 2038 * we can actually claim the whole pageblock if this condition met, 2039 * but, below check doesn't guarantee it and that is just heuristic 2040 * so could be changed anytime. 2041 */ 2042 if (order >= pageblock_order) 2043 return true; 2044 2045 /* 2046 * Above a certain threshold, always try to claim, as it's likely there 2047 * will be more free pages in the pageblock. 2048 */ 2049 if (order >= pageblock_order / 2) 2050 return true; 2051 2052 /* 2053 * Unmovable/reclaimable allocations would cause permanent 2054 * fragmentations if they fell back to allocating from a movable block 2055 * (polluting it), so we try to claim the whole block regardless of the 2056 * allocation size. Later movable allocations can always steal from this 2057 * block, which is less problematic. 2058 */ 2059 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2060 return true; 2061 2062 if (page_group_by_mobility_disabled) 2063 return true; 2064 2065 /* 2066 * Movable pages won't cause permanent fragmentation, so when you alloc 2067 * small pages, we just need to temporarily steal unmovable or 2068 * reclaimable pages that are closest to the request size. After a 2069 * while, memory compaction may occur to form large contiguous pages, 2070 * and the next movable allocation may not need to steal. 2071 */ 2072 return false; 2073 } 2074 2075 /* 2076 * Check whether there is a suitable fallback freepage with requested order. 2077 * Sets *claim_block to instruct the caller whether it should convert a whole 2078 * pageblock to the returned migratetype. 2079 * If only_claim is true, this function returns fallback_mt only if 2080 * we would do this whole-block claiming. This would help to reduce 2081 * fragmentation due to mixed migratetype pages in one pageblock. 2082 */ 2083 int find_suitable_fallback(struct free_area *area, unsigned int order, 2084 int migratetype, bool only_claim, bool *claim_block) 2085 { 2086 int i; 2087 int fallback_mt; 2088 2089 if (area->nr_free == 0) 2090 return -1; 2091 2092 *claim_block = false; 2093 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2094 fallback_mt = fallbacks[migratetype][i]; 2095 if (free_area_empty(area, fallback_mt)) 2096 continue; 2097 2098 if (should_try_claim_block(order, migratetype)) 2099 *claim_block = true; 2100 2101 if (*claim_block || !only_claim) 2102 return fallback_mt; 2103 } 2104 2105 return -1; 2106 } 2107 2108 /* 2109 * This function implements actual block claiming behaviour. If order is large 2110 * enough, we can claim the whole pageblock for the requested migratetype. If 2111 * not, we check the pageblock for constituent pages; if at least half of the 2112 * pages are free or compatible, we can still claim the whole block, so pages 2113 * freed in the future will be put on the correct free list. 2114 */ 2115 static struct page * 2116 try_to_claim_block(struct zone *zone, struct page *page, 2117 int current_order, int order, int start_type, 2118 int block_type, unsigned int alloc_flags) 2119 { 2120 int free_pages, movable_pages, alike_pages; 2121 unsigned long start_pfn; 2122 2123 /* Take ownership for orders >= pageblock_order */ 2124 if (current_order >= pageblock_order) { 2125 unsigned int nr_added; 2126 2127 del_page_from_free_list(page, zone, current_order, block_type); 2128 change_pageblock_range(page, current_order, start_type); 2129 nr_added = expand(zone, page, order, current_order, start_type); 2130 account_freepages(zone, nr_added, start_type); 2131 return page; 2132 } 2133 2134 /* 2135 * Boost watermarks to increase reclaim pressure to reduce the 2136 * likelihood of future fallbacks. Wake kswapd now as the node 2137 * may be balanced overall and kswapd will not wake naturally. 2138 */ 2139 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2140 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2141 2142 /* moving whole block can fail due to zone boundary conditions */ 2143 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2144 &movable_pages)) 2145 return NULL; 2146 2147 /* 2148 * Determine how many pages are compatible with our allocation. 2149 * For movable allocation, it's the number of movable pages which 2150 * we just obtained. For other types it's a bit more tricky. 2151 */ 2152 if (start_type == MIGRATE_MOVABLE) { 2153 alike_pages = movable_pages; 2154 } else { 2155 /* 2156 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2157 * to MOVABLE pageblock, consider all non-movable pages as 2158 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2159 * vice versa, be conservative since we can't distinguish the 2160 * exact migratetype of non-movable pages. 2161 */ 2162 if (block_type == MIGRATE_MOVABLE) 2163 alike_pages = pageblock_nr_pages 2164 - (free_pages + movable_pages); 2165 else 2166 alike_pages = 0; 2167 } 2168 /* 2169 * If a sufficient number of pages in the block are either free or of 2170 * compatible migratability as our allocation, claim the whole block. 2171 */ 2172 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2173 page_group_by_mobility_disabled) { 2174 __move_freepages_block(zone, start_pfn, block_type, start_type); 2175 return __rmqueue_smallest(zone, order, start_type); 2176 } 2177 2178 return NULL; 2179 } 2180 2181 /* 2182 * Try to allocate from some fallback migratetype by claiming the entire block, 2183 * i.e. converting it to the allocation's start migratetype. 2184 * 2185 * The use of signed ints for order and current_order is a deliberate 2186 * deviation from the rest of this file, to make the for loop 2187 * condition simpler. 2188 */ 2189 static __always_inline struct page * 2190 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2191 unsigned int alloc_flags) 2192 { 2193 struct free_area *area; 2194 int current_order; 2195 int min_order = order; 2196 struct page *page; 2197 int fallback_mt; 2198 bool claim_block; 2199 2200 /* 2201 * Do not steal pages from freelists belonging to other pageblocks 2202 * i.e. orders < pageblock_order. If there are no local zones free, 2203 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2204 */ 2205 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2206 min_order = pageblock_order; 2207 2208 /* 2209 * Find the largest available free page in the other list. This roughly 2210 * approximates finding the pageblock with the most free pages, which 2211 * would be too costly to do exactly. 2212 */ 2213 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2214 --current_order) { 2215 area = &(zone->free_area[current_order]); 2216 fallback_mt = find_suitable_fallback(area, current_order, 2217 start_migratetype, false, &claim_block); 2218 if (fallback_mt == -1) 2219 continue; 2220 2221 if (!claim_block) 2222 break; 2223 2224 page = get_page_from_free_area(area, fallback_mt); 2225 page = try_to_claim_block(zone, page, current_order, order, 2226 start_migratetype, fallback_mt, 2227 alloc_flags); 2228 if (page) { 2229 trace_mm_page_alloc_extfrag(page, order, current_order, 2230 start_migratetype, fallback_mt); 2231 return page; 2232 } 2233 } 2234 2235 return NULL; 2236 } 2237 2238 /* 2239 * Try to steal a single page from some fallback migratetype. Leave the rest of 2240 * the block as its current migratetype, potentially causing fragmentation. 2241 */ 2242 static __always_inline struct page * 2243 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2244 { 2245 struct free_area *area; 2246 int current_order; 2247 struct page *page; 2248 int fallback_mt; 2249 bool claim_block; 2250 2251 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2252 area = &(zone->free_area[current_order]); 2253 fallback_mt = find_suitable_fallback(area, current_order, 2254 start_migratetype, false, &claim_block); 2255 if (fallback_mt == -1) 2256 continue; 2257 2258 page = get_page_from_free_area(area, fallback_mt); 2259 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2260 trace_mm_page_alloc_extfrag(page, order, current_order, 2261 start_migratetype, fallback_mt); 2262 return page; 2263 } 2264 2265 return NULL; 2266 } 2267 2268 enum rmqueue_mode { 2269 RMQUEUE_NORMAL, 2270 RMQUEUE_CMA, 2271 RMQUEUE_CLAIM, 2272 RMQUEUE_STEAL, 2273 }; 2274 2275 /* 2276 * Do the hard work of removing an element from the buddy allocator. 2277 * Call me with the zone->lock already held. 2278 */ 2279 static __always_inline struct page * 2280 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2281 unsigned int alloc_flags, enum rmqueue_mode *mode) 2282 { 2283 struct page *page; 2284 2285 if (IS_ENABLED(CONFIG_CMA)) { 2286 /* 2287 * Balance movable allocations between regular and CMA areas by 2288 * allocating from CMA when over half of the zone's free memory 2289 * is in the CMA area. 2290 */ 2291 if (alloc_flags & ALLOC_CMA && 2292 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2293 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2294 page = __rmqueue_cma_fallback(zone, order); 2295 if (page) 2296 return page; 2297 } 2298 } 2299 2300 /* 2301 * First try the freelists of the requested migratetype, then try 2302 * fallbacks modes with increasing levels of fragmentation risk. 2303 * 2304 * The fallback logic is expensive and rmqueue_bulk() calls in 2305 * a loop with the zone->lock held, meaning the freelists are 2306 * not subject to any outside changes. Remember in *mode where 2307 * we found pay dirt, to save us the search on the next call. 2308 */ 2309 switch (*mode) { 2310 case RMQUEUE_NORMAL: 2311 page = __rmqueue_smallest(zone, order, migratetype); 2312 if (page) 2313 return page; 2314 fallthrough; 2315 case RMQUEUE_CMA: 2316 if (alloc_flags & ALLOC_CMA) { 2317 page = __rmqueue_cma_fallback(zone, order); 2318 if (page) { 2319 *mode = RMQUEUE_CMA; 2320 return page; 2321 } 2322 } 2323 fallthrough; 2324 case RMQUEUE_CLAIM: 2325 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2326 if (page) { 2327 /* Replenished preferred freelist, back to normal mode. */ 2328 *mode = RMQUEUE_NORMAL; 2329 return page; 2330 } 2331 fallthrough; 2332 case RMQUEUE_STEAL: 2333 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2334 page = __rmqueue_steal(zone, order, migratetype); 2335 if (page) { 2336 *mode = RMQUEUE_STEAL; 2337 return page; 2338 } 2339 } 2340 } 2341 return NULL; 2342 } 2343 2344 /* 2345 * Obtain a specified number of elements from the buddy allocator, all under 2346 * a single hold of the lock, for efficiency. Add them to the supplied list. 2347 * Returns the number of new pages which were placed at *list. 2348 */ 2349 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2350 unsigned long count, struct list_head *list, 2351 int migratetype, unsigned int alloc_flags) 2352 { 2353 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2354 unsigned long flags; 2355 int i; 2356 2357 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2358 if (!spin_trylock_irqsave(&zone->lock, flags)) 2359 return 0; 2360 } else { 2361 spin_lock_irqsave(&zone->lock, flags); 2362 } 2363 for (i = 0; i < count; ++i) { 2364 struct page *page = __rmqueue(zone, order, migratetype, 2365 alloc_flags, &rmqm); 2366 if (unlikely(page == NULL)) 2367 break; 2368 2369 /* 2370 * Split buddy pages returned by expand() are received here in 2371 * physical page order. The page is added to the tail of 2372 * caller's list. From the callers perspective, the linked list 2373 * is ordered by page number under some conditions. This is 2374 * useful for IO devices that can forward direction from the 2375 * head, thus also in the physical page order. This is useful 2376 * for IO devices that can merge IO requests if the physical 2377 * pages are ordered properly. 2378 */ 2379 list_add_tail(&page->pcp_list, list); 2380 } 2381 spin_unlock_irqrestore(&zone->lock, flags); 2382 2383 return i; 2384 } 2385 2386 /* 2387 * Called from the vmstat counter updater to decay the PCP high. 2388 * Return whether there are addition works to do. 2389 */ 2390 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2391 { 2392 int high_min, to_drain, batch; 2393 int todo = 0; 2394 2395 high_min = READ_ONCE(pcp->high_min); 2396 batch = READ_ONCE(pcp->batch); 2397 /* 2398 * Decrease pcp->high periodically to try to free possible 2399 * idle PCP pages. And, avoid to free too many pages to 2400 * control latency. This caps pcp->high decrement too. 2401 */ 2402 if (pcp->high > high_min) { 2403 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2404 pcp->high - (pcp->high >> 3), high_min); 2405 if (pcp->high > high_min) 2406 todo++; 2407 } 2408 2409 to_drain = pcp->count - pcp->high; 2410 if (to_drain > 0) { 2411 spin_lock(&pcp->lock); 2412 free_pcppages_bulk(zone, to_drain, pcp, 0); 2413 spin_unlock(&pcp->lock); 2414 todo++; 2415 } 2416 2417 return todo; 2418 } 2419 2420 #ifdef CONFIG_NUMA 2421 /* 2422 * Called from the vmstat counter updater to drain pagesets of this 2423 * currently executing processor on remote nodes after they have 2424 * expired. 2425 */ 2426 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2427 { 2428 int to_drain, batch; 2429 2430 batch = READ_ONCE(pcp->batch); 2431 to_drain = min(pcp->count, batch); 2432 if (to_drain > 0) { 2433 spin_lock(&pcp->lock); 2434 free_pcppages_bulk(zone, to_drain, pcp, 0); 2435 spin_unlock(&pcp->lock); 2436 } 2437 } 2438 #endif 2439 2440 /* 2441 * Drain pcplists of the indicated processor and zone. 2442 */ 2443 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2444 { 2445 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2446 int count; 2447 2448 do { 2449 spin_lock(&pcp->lock); 2450 count = pcp->count; 2451 if (count) { 2452 int to_drain = min(count, 2453 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2454 2455 free_pcppages_bulk(zone, to_drain, pcp, 0); 2456 count -= to_drain; 2457 } 2458 spin_unlock(&pcp->lock); 2459 } while (count); 2460 } 2461 2462 /* 2463 * Drain pcplists of all zones on the indicated processor. 2464 */ 2465 static void drain_pages(unsigned int cpu) 2466 { 2467 struct zone *zone; 2468 2469 for_each_populated_zone(zone) { 2470 drain_pages_zone(cpu, zone); 2471 } 2472 } 2473 2474 /* 2475 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2476 */ 2477 void drain_local_pages(struct zone *zone) 2478 { 2479 int cpu = smp_processor_id(); 2480 2481 if (zone) 2482 drain_pages_zone(cpu, zone); 2483 else 2484 drain_pages(cpu); 2485 } 2486 2487 /* 2488 * The implementation of drain_all_pages(), exposing an extra parameter to 2489 * drain on all cpus. 2490 * 2491 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2492 * not empty. The check for non-emptiness can however race with a free to 2493 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2494 * that need the guarantee that every CPU has drained can disable the 2495 * optimizing racy check. 2496 */ 2497 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2498 { 2499 int cpu; 2500 2501 /* 2502 * Allocate in the BSS so we won't require allocation in 2503 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2504 */ 2505 static cpumask_t cpus_with_pcps; 2506 2507 /* 2508 * Do not drain if one is already in progress unless it's specific to 2509 * a zone. Such callers are primarily CMA and memory hotplug and need 2510 * the drain to be complete when the call returns. 2511 */ 2512 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2513 if (!zone) 2514 return; 2515 mutex_lock(&pcpu_drain_mutex); 2516 } 2517 2518 /* 2519 * We don't care about racing with CPU hotplug event 2520 * as offline notification will cause the notified 2521 * cpu to drain that CPU pcps and on_each_cpu_mask 2522 * disables preemption as part of its processing 2523 */ 2524 for_each_online_cpu(cpu) { 2525 struct per_cpu_pages *pcp; 2526 struct zone *z; 2527 bool has_pcps = false; 2528 2529 if (force_all_cpus) { 2530 /* 2531 * The pcp.count check is racy, some callers need a 2532 * guarantee that no cpu is missed. 2533 */ 2534 has_pcps = true; 2535 } else if (zone) { 2536 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2537 if (pcp->count) 2538 has_pcps = true; 2539 } else { 2540 for_each_populated_zone(z) { 2541 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2542 if (pcp->count) { 2543 has_pcps = true; 2544 break; 2545 } 2546 } 2547 } 2548 2549 if (has_pcps) 2550 cpumask_set_cpu(cpu, &cpus_with_pcps); 2551 else 2552 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2553 } 2554 2555 for_each_cpu(cpu, &cpus_with_pcps) { 2556 if (zone) 2557 drain_pages_zone(cpu, zone); 2558 else 2559 drain_pages(cpu); 2560 } 2561 2562 mutex_unlock(&pcpu_drain_mutex); 2563 } 2564 2565 /* 2566 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2567 * 2568 * When zone parameter is non-NULL, spill just the single zone's pages. 2569 */ 2570 void drain_all_pages(struct zone *zone) 2571 { 2572 __drain_all_pages(zone, false); 2573 } 2574 2575 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2576 { 2577 int min_nr_free, max_nr_free; 2578 2579 /* Free as much as possible if batch freeing high-order pages. */ 2580 if (unlikely(free_high)) 2581 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2582 2583 /* Check for PCP disabled or boot pageset */ 2584 if (unlikely(high < batch)) 2585 return 1; 2586 2587 /* Leave at least pcp->batch pages on the list */ 2588 min_nr_free = batch; 2589 max_nr_free = high - batch; 2590 2591 /* 2592 * Increase the batch number to the number of the consecutive 2593 * freed pages to reduce zone lock contention. 2594 */ 2595 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2596 2597 return batch; 2598 } 2599 2600 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2601 int batch, bool free_high) 2602 { 2603 int high, high_min, high_max; 2604 2605 high_min = READ_ONCE(pcp->high_min); 2606 high_max = READ_ONCE(pcp->high_max); 2607 high = pcp->high = clamp(pcp->high, high_min, high_max); 2608 2609 if (unlikely(!high)) 2610 return 0; 2611 2612 if (unlikely(free_high)) { 2613 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2614 high_min); 2615 return 0; 2616 } 2617 2618 /* 2619 * If reclaim is active, limit the number of pages that can be 2620 * stored on pcp lists 2621 */ 2622 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2623 int free_count = max_t(int, pcp->free_count, batch); 2624 2625 pcp->high = max(high - free_count, high_min); 2626 return min(batch << 2, pcp->high); 2627 } 2628 2629 if (high_min == high_max) 2630 return high; 2631 2632 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2633 int free_count = max_t(int, pcp->free_count, batch); 2634 2635 pcp->high = max(high - free_count, high_min); 2636 high = max(pcp->count, high_min); 2637 } else if (pcp->count >= high) { 2638 int need_high = pcp->free_count + batch; 2639 2640 /* pcp->high should be large enough to hold batch freed pages */ 2641 if (pcp->high < need_high) 2642 pcp->high = clamp(need_high, high_min, high_max); 2643 } 2644 2645 return high; 2646 } 2647 2648 static void free_frozen_page_commit(struct zone *zone, 2649 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2650 unsigned int order, fpi_t fpi_flags) 2651 { 2652 int high, batch; 2653 int pindex; 2654 bool free_high = false; 2655 2656 /* 2657 * On freeing, reduce the number of pages that are batch allocated. 2658 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2659 * allocations. 2660 */ 2661 pcp->alloc_factor >>= 1; 2662 __count_vm_events(PGFREE, 1 << order); 2663 pindex = order_to_pindex(migratetype, order); 2664 list_add(&page->pcp_list, &pcp->lists[pindex]); 2665 pcp->count += 1 << order; 2666 2667 batch = READ_ONCE(pcp->batch); 2668 /* 2669 * As high-order pages other than THP's stored on PCP can contribute 2670 * to fragmentation, limit the number stored when PCP is heavily 2671 * freeing without allocation. The remainder after bulk freeing 2672 * stops will be drained from vmstat refresh context. 2673 */ 2674 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2675 free_high = (pcp->free_count >= batch && 2676 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2677 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2678 pcp->count >= READ_ONCE(batch))); 2679 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2680 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2681 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2682 } 2683 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2684 pcp->free_count += (1 << order); 2685 2686 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2687 /* 2688 * Do not attempt to take a zone lock. Let pcp->count get 2689 * over high mark temporarily. 2690 */ 2691 return; 2692 } 2693 high = nr_pcp_high(pcp, zone, batch, free_high); 2694 if (pcp->count >= high) { 2695 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2696 pcp, pindex); 2697 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2698 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2699 ZONE_MOVABLE, 0)) 2700 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2701 } 2702 } 2703 2704 /* 2705 * Free a pcp page 2706 */ 2707 static void __free_frozen_pages(struct page *page, unsigned int order, 2708 fpi_t fpi_flags) 2709 { 2710 unsigned long __maybe_unused UP_flags; 2711 struct per_cpu_pages *pcp; 2712 struct zone *zone; 2713 unsigned long pfn = page_to_pfn(page); 2714 int migratetype; 2715 2716 if (!pcp_allowed_order(order)) { 2717 __free_pages_ok(page, order, fpi_flags); 2718 return; 2719 } 2720 2721 if (!free_pages_prepare(page, order)) 2722 return; 2723 2724 /* 2725 * We only track unmovable, reclaimable and movable on pcp lists. 2726 * Place ISOLATE pages on the isolated list because they are being 2727 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2728 * get those areas back if necessary. Otherwise, we may have to free 2729 * excessively into the page allocator 2730 */ 2731 zone = page_zone(page); 2732 migratetype = get_pfnblock_migratetype(page, pfn); 2733 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2734 if (unlikely(is_migrate_isolate(migratetype))) { 2735 free_one_page(zone, page, pfn, order, fpi_flags); 2736 return; 2737 } 2738 migratetype = MIGRATE_MOVABLE; 2739 } 2740 2741 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2742 && (in_nmi() || in_hardirq()))) { 2743 add_page_to_zone_llist(zone, page, order); 2744 return; 2745 } 2746 pcp_trylock_prepare(UP_flags); 2747 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2748 if (pcp) { 2749 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2750 pcp_spin_unlock(pcp); 2751 } else { 2752 free_one_page(zone, page, pfn, order, fpi_flags); 2753 } 2754 pcp_trylock_finish(UP_flags); 2755 } 2756 2757 void free_frozen_pages(struct page *page, unsigned int order) 2758 { 2759 __free_frozen_pages(page, order, FPI_NONE); 2760 } 2761 2762 /* 2763 * Free a batch of folios 2764 */ 2765 void free_unref_folios(struct folio_batch *folios) 2766 { 2767 unsigned long __maybe_unused UP_flags; 2768 struct per_cpu_pages *pcp = NULL; 2769 struct zone *locked_zone = NULL; 2770 int i, j; 2771 2772 /* Prepare folios for freeing */ 2773 for (i = 0, j = 0; i < folios->nr; i++) { 2774 struct folio *folio = folios->folios[i]; 2775 unsigned long pfn = folio_pfn(folio); 2776 unsigned int order = folio_order(folio); 2777 2778 if (!free_pages_prepare(&folio->page, order)) 2779 continue; 2780 /* 2781 * Free orders not handled on the PCP directly to the 2782 * allocator. 2783 */ 2784 if (!pcp_allowed_order(order)) { 2785 free_one_page(folio_zone(folio), &folio->page, 2786 pfn, order, FPI_NONE); 2787 continue; 2788 } 2789 folio->private = (void *)(unsigned long)order; 2790 if (j != i) 2791 folios->folios[j] = folio; 2792 j++; 2793 } 2794 folios->nr = j; 2795 2796 for (i = 0; i < folios->nr; i++) { 2797 struct folio *folio = folios->folios[i]; 2798 struct zone *zone = folio_zone(folio); 2799 unsigned long pfn = folio_pfn(folio); 2800 unsigned int order = (unsigned long)folio->private; 2801 int migratetype; 2802 2803 folio->private = NULL; 2804 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2805 2806 /* Different zone requires a different pcp lock */ 2807 if (zone != locked_zone || 2808 is_migrate_isolate(migratetype)) { 2809 if (pcp) { 2810 pcp_spin_unlock(pcp); 2811 pcp_trylock_finish(UP_flags); 2812 locked_zone = NULL; 2813 pcp = NULL; 2814 } 2815 2816 /* 2817 * Free isolated pages directly to the 2818 * allocator, see comment in free_frozen_pages. 2819 */ 2820 if (is_migrate_isolate(migratetype)) { 2821 free_one_page(zone, &folio->page, pfn, 2822 order, FPI_NONE); 2823 continue; 2824 } 2825 2826 /* 2827 * trylock is necessary as folios may be getting freed 2828 * from IRQ or SoftIRQ context after an IO completion. 2829 */ 2830 pcp_trylock_prepare(UP_flags); 2831 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2832 if (unlikely(!pcp)) { 2833 pcp_trylock_finish(UP_flags); 2834 free_one_page(zone, &folio->page, pfn, 2835 order, FPI_NONE); 2836 continue; 2837 } 2838 locked_zone = zone; 2839 } 2840 2841 /* 2842 * Non-isolated types over MIGRATE_PCPTYPES get added 2843 * to the MIGRATE_MOVABLE pcp list. 2844 */ 2845 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2846 migratetype = MIGRATE_MOVABLE; 2847 2848 trace_mm_page_free_batched(&folio->page); 2849 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 2850 order, FPI_NONE); 2851 } 2852 2853 if (pcp) { 2854 pcp_spin_unlock(pcp); 2855 pcp_trylock_finish(UP_flags); 2856 } 2857 folio_batch_reinit(folios); 2858 } 2859 2860 /* 2861 * split_page takes a non-compound higher-order page, and splits it into 2862 * n (1<<order) sub-pages: page[0..n] 2863 * Each sub-page must be freed individually. 2864 * 2865 * Note: this is probably too low level an operation for use in drivers. 2866 * Please consult with lkml before using this in your driver. 2867 */ 2868 void split_page(struct page *page, unsigned int order) 2869 { 2870 int i; 2871 2872 VM_BUG_ON_PAGE(PageCompound(page), page); 2873 VM_BUG_ON_PAGE(!page_count(page), page); 2874 2875 for (i = 1; i < (1 << order); i++) 2876 set_page_refcounted(page + i); 2877 split_page_owner(page, order, 0); 2878 pgalloc_tag_split(page_folio(page), order, 0); 2879 split_page_memcg(page, order); 2880 } 2881 EXPORT_SYMBOL_GPL(split_page); 2882 2883 int __isolate_free_page(struct page *page, unsigned int order) 2884 { 2885 struct zone *zone = page_zone(page); 2886 int mt = get_pageblock_migratetype(page); 2887 2888 if (!is_migrate_isolate(mt)) { 2889 unsigned long watermark; 2890 /* 2891 * Obey watermarks as if the page was being allocated. We can 2892 * emulate a high-order watermark check with a raised order-0 2893 * watermark, because we already know our high-order page 2894 * exists. 2895 */ 2896 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2897 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2898 return 0; 2899 } 2900 2901 del_page_from_free_list(page, zone, order, mt); 2902 2903 /* 2904 * Set the pageblock if the isolated page is at least half of a 2905 * pageblock 2906 */ 2907 if (order >= pageblock_order - 1) { 2908 struct page *endpage = page + (1 << order) - 1; 2909 for (; page < endpage; page += pageblock_nr_pages) { 2910 int mt = get_pageblock_migratetype(page); 2911 /* 2912 * Only change normal pageblocks (i.e., they can merge 2913 * with others) 2914 */ 2915 if (migratetype_is_mergeable(mt)) 2916 move_freepages_block(zone, page, mt, 2917 MIGRATE_MOVABLE); 2918 } 2919 } 2920 2921 return 1UL << order; 2922 } 2923 2924 /** 2925 * __putback_isolated_page - Return a now-isolated page back where we got it 2926 * @page: Page that was isolated 2927 * @order: Order of the isolated page 2928 * @mt: The page's pageblock's migratetype 2929 * 2930 * This function is meant to return a page pulled from the free lists via 2931 * __isolate_free_page back to the free lists they were pulled from. 2932 */ 2933 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2934 { 2935 struct zone *zone = page_zone(page); 2936 2937 /* zone lock should be held when this function is called */ 2938 lockdep_assert_held(&zone->lock); 2939 2940 /* Return isolated page to tail of freelist. */ 2941 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2942 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2943 } 2944 2945 /* 2946 * Update NUMA hit/miss statistics 2947 */ 2948 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2949 long nr_account) 2950 { 2951 #ifdef CONFIG_NUMA 2952 enum numa_stat_item local_stat = NUMA_LOCAL; 2953 2954 /* skip numa counters update if numa stats is disabled */ 2955 if (!static_branch_likely(&vm_numa_stat_key)) 2956 return; 2957 2958 if (zone_to_nid(z) != numa_node_id()) 2959 local_stat = NUMA_OTHER; 2960 2961 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2962 __count_numa_events(z, NUMA_HIT, nr_account); 2963 else { 2964 __count_numa_events(z, NUMA_MISS, nr_account); 2965 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2966 } 2967 __count_numa_events(z, local_stat, nr_account); 2968 #endif 2969 } 2970 2971 static __always_inline 2972 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2973 unsigned int order, unsigned int alloc_flags, 2974 int migratetype) 2975 { 2976 struct page *page; 2977 unsigned long flags; 2978 2979 do { 2980 page = NULL; 2981 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2982 if (!spin_trylock_irqsave(&zone->lock, flags)) 2983 return NULL; 2984 } else { 2985 spin_lock_irqsave(&zone->lock, flags); 2986 } 2987 if (alloc_flags & ALLOC_HIGHATOMIC) 2988 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2989 if (!page) { 2990 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2991 2992 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 2993 2994 /* 2995 * If the allocation fails, allow OOM handling and 2996 * order-0 (atomic) allocs access to HIGHATOMIC 2997 * reserves as failing now is worse than failing a 2998 * high-order atomic allocation in the future. 2999 */ 3000 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3001 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3002 3003 if (!page) { 3004 spin_unlock_irqrestore(&zone->lock, flags); 3005 return NULL; 3006 } 3007 } 3008 spin_unlock_irqrestore(&zone->lock, flags); 3009 } while (check_new_pages(page, order)); 3010 3011 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3012 zone_statistics(preferred_zone, zone, 1); 3013 3014 return page; 3015 } 3016 3017 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3018 { 3019 int high, base_batch, batch, max_nr_alloc; 3020 int high_max, high_min; 3021 3022 base_batch = READ_ONCE(pcp->batch); 3023 high_min = READ_ONCE(pcp->high_min); 3024 high_max = READ_ONCE(pcp->high_max); 3025 high = pcp->high = clamp(pcp->high, high_min, high_max); 3026 3027 /* Check for PCP disabled or boot pageset */ 3028 if (unlikely(high < base_batch)) 3029 return 1; 3030 3031 if (order) 3032 batch = base_batch; 3033 else 3034 batch = (base_batch << pcp->alloc_factor); 3035 3036 /* 3037 * If we had larger pcp->high, we could avoid to allocate from 3038 * zone. 3039 */ 3040 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3041 high = pcp->high = min(high + batch, high_max); 3042 3043 if (!order) { 3044 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3045 /* 3046 * Double the number of pages allocated each time there is 3047 * subsequent allocation of order-0 pages without any freeing. 3048 */ 3049 if (batch <= max_nr_alloc && 3050 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3051 pcp->alloc_factor++; 3052 batch = min(batch, max_nr_alloc); 3053 } 3054 3055 /* 3056 * Scale batch relative to order if batch implies free pages 3057 * can be stored on the PCP. Batch can be 1 for small zones or 3058 * for boot pagesets which should never store free pages as 3059 * the pages may belong to arbitrary zones. 3060 */ 3061 if (batch > 1) 3062 batch = max(batch >> order, 2); 3063 3064 return batch; 3065 } 3066 3067 /* Remove page from the per-cpu list, caller must protect the list */ 3068 static inline 3069 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3070 int migratetype, 3071 unsigned int alloc_flags, 3072 struct per_cpu_pages *pcp, 3073 struct list_head *list) 3074 { 3075 struct page *page; 3076 3077 do { 3078 if (list_empty(list)) { 3079 int batch = nr_pcp_alloc(pcp, zone, order); 3080 int alloced; 3081 3082 alloced = rmqueue_bulk(zone, order, 3083 batch, list, 3084 migratetype, alloc_flags); 3085 3086 pcp->count += alloced << order; 3087 if (unlikely(list_empty(list))) 3088 return NULL; 3089 } 3090 3091 page = list_first_entry(list, struct page, pcp_list); 3092 list_del(&page->pcp_list); 3093 pcp->count -= 1 << order; 3094 } while (check_new_pages(page, order)); 3095 3096 return page; 3097 } 3098 3099 /* Lock and remove page from the per-cpu list */ 3100 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3101 struct zone *zone, unsigned int order, 3102 int migratetype, unsigned int alloc_flags) 3103 { 3104 struct per_cpu_pages *pcp; 3105 struct list_head *list; 3106 struct page *page; 3107 unsigned long __maybe_unused UP_flags; 3108 3109 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3110 pcp_trylock_prepare(UP_flags); 3111 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3112 if (!pcp) { 3113 pcp_trylock_finish(UP_flags); 3114 return NULL; 3115 } 3116 3117 /* 3118 * On allocation, reduce the number of pages that are batch freed. 3119 * See nr_pcp_free() where free_factor is increased for subsequent 3120 * frees. 3121 */ 3122 pcp->free_count >>= 1; 3123 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3124 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3125 pcp_spin_unlock(pcp); 3126 pcp_trylock_finish(UP_flags); 3127 if (page) { 3128 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3129 zone_statistics(preferred_zone, zone, 1); 3130 } 3131 return page; 3132 } 3133 3134 /* 3135 * Allocate a page from the given zone. 3136 * Use pcplists for THP or "cheap" high-order allocations. 3137 */ 3138 3139 /* 3140 * Do not instrument rmqueue() with KMSAN. This function may call 3141 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3142 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3143 * may call rmqueue() again, which will result in a deadlock. 3144 */ 3145 __no_sanitize_memory 3146 static inline 3147 struct page *rmqueue(struct zone *preferred_zone, 3148 struct zone *zone, unsigned int order, 3149 gfp_t gfp_flags, unsigned int alloc_flags, 3150 int migratetype) 3151 { 3152 struct page *page; 3153 3154 if (likely(pcp_allowed_order(order))) { 3155 page = rmqueue_pcplist(preferred_zone, zone, order, 3156 migratetype, alloc_flags); 3157 if (likely(page)) 3158 goto out; 3159 } 3160 3161 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3162 migratetype); 3163 3164 out: 3165 /* Separate test+clear to avoid unnecessary atomics */ 3166 if ((alloc_flags & ALLOC_KSWAPD) && 3167 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3168 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3169 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3170 } 3171 3172 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3173 return page; 3174 } 3175 3176 /* 3177 * Reserve the pageblock(s) surrounding an allocation request for 3178 * exclusive use of high-order atomic allocations if there are no 3179 * empty page blocks that contain a page with a suitable order 3180 */ 3181 static void reserve_highatomic_pageblock(struct page *page, int order, 3182 struct zone *zone) 3183 { 3184 int mt; 3185 unsigned long max_managed, flags; 3186 3187 /* 3188 * The number reserved as: minimum is 1 pageblock, maximum is 3189 * roughly 1% of a zone. But if 1% of a zone falls below a 3190 * pageblock size, then don't reserve any pageblocks. 3191 * Check is race-prone but harmless. 3192 */ 3193 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3194 return; 3195 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3196 if (zone->nr_reserved_highatomic >= max_managed) 3197 return; 3198 3199 spin_lock_irqsave(&zone->lock, flags); 3200 3201 /* Recheck the nr_reserved_highatomic limit under the lock */ 3202 if (zone->nr_reserved_highatomic >= max_managed) 3203 goto out_unlock; 3204 3205 /* Yoink! */ 3206 mt = get_pageblock_migratetype(page); 3207 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3208 if (!migratetype_is_mergeable(mt)) 3209 goto out_unlock; 3210 3211 if (order < pageblock_order) { 3212 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3213 goto out_unlock; 3214 zone->nr_reserved_highatomic += pageblock_nr_pages; 3215 } else { 3216 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3217 zone->nr_reserved_highatomic += 1 << order; 3218 } 3219 3220 out_unlock: 3221 spin_unlock_irqrestore(&zone->lock, flags); 3222 } 3223 3224 /* 3225 * Used when an allocation is about to fail under memory pressure. This 3226 * potentially hurts the reliability of high-order allocations when under 3227 * intense memory pressure but failed atomic allocations should be easier 3228 * to recover from than an OOM. 3229 * 3230 * If @force is true, try to unreserve pageblocks even though highatomic 3231 * pageblock is exhausted. 3232 */ 3233 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3234 bool force) 3235 { 3236 struct zonelist *zonelist = ac->zonelist; 3237 unsigned long flags; 3238 struct zoneref *z; 3239 struct zone *zone; 3240 struct page *page; 3241 int order; 3242 int ret; 3243 3244 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3245 ac->nodemask) { 3246 /* 3247 * Preserve at least one pageblock unless memory pressure 3248 * is really high. 3249 */ 3250 if (!force && zone->nr_reserved_highatomic <= 3251 pageblock_nr_pages) 3252 continue; 3253 3254 spin_lock_irqsave(&zone->lock, flags); 3255 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3256 struct free_area *area = &(zone->free_area[order]); 3257 unsigned long size; 3258 3259 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3260 if (!page) 3261 continue; 3262 3263 size = max(pageblock_nr_pages, 1UL << order); 3264 /* 3265 * It should never happen but changes to 3266 * locking could inadvertently allow a per-cpu 3267 * drain to add pages to MIGRATE_HIGHATOMIC 3268 * while unreserving so be safe and watch for 3269 * underflows. 3270 */ 3271 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3272 size = zone->nr_reserved_highatomic; 3273 zone->nr_reserved_highatomic -= size; 3274 3275 /* 3276 * Convert to ac->migratetype and avoid the normal 3277 * pageblock stealing heuristics. Minimally, the caller 3278 * is doing the work and needs the pages. More 3279 * importantly, if the block was always converted to 3280 * MIGRATE_UNMOVABLE or another type then the number 3281 * of pageblocks that cannot be completely freed 3282 * may increase. 3283 */ 3284 if (order < pageblock_order) 3285 ret = move_freepages_block(zone, page, 3286 MIGRATE_HIGHATOMIC, 3287 ac->migratetype); 3288 else { 3289 move_to_free_list(page, zone, order, 3290 MIGRATE_HIGHATOMIC, 3291 ac->migratetype); 3292 change_pageblock_range(page, order, 3293 ac->migratetype); 3294 ret = 1; 3295 } 3296 /* 3297 * Reserving the block(s) already succeeded, 3298 * so this should not fail on zone boundaries. 3299 */ 3300 WARN_ON_ONCE(ret == -1); 3301 if (ret > 0) { 3302 spin_unlock_irqrestore(&zone->lock, flags); 3303 return ret; 3304 } 3305 } 3306 spin_unlock_irqrestore(&zone->lock, flags); 3307 } 3308 3309 return false; 3310 } 3311 3312 static inline long __zone_watermark_unusable_free(struct zone *z, 3313 unsigned int order, unsigned int alloc_flags) 3314 { 3315 long unusable_free = (1 << order) - 1; 3316 3317 /* 3318 * If the caller does not have rights to reserves below the min 3319 * watermark then subtract the free pages reserved for highatomic. 3320 */ 3321 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3322 unusable_free += READ_ONCE(z->nr_free_highatomic); 3323 3324 #ifdef CONFIG_CMA 3325 /* If allocation can't use CMA areas don't use free CMA pages */ 3326 if (!(alloc_flags & ALLOC_CMA)) 3327 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3328 #endif 3329 3330 return unusable_free; 3331 } 3332 3333 /* 3334 * Return true if free base pages are above 'mark'. For high-order checks it 3335 * will return true of the order-0 watermark is reached and there is at least 3336 * one free page of a suitable size. Checking now avoids taking the zone lock 3337 * to check in the allocation paths if no pages are free. 3338 */ 3339 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3340 int highest_zoneidx, unsigned int alloc_flags, 3341 long free_pages) 3342 { 3343 long min = mark; 3344 int o; 3345 3346 /* free_pages may go negative - that's OK */ 3347 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3348 3349 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3350 /* 3351 * __GFP_HIGH allows access to 50% of the min reserve as well 3352 * as OOM. 3353 */ 3354 if (alloc_flags & ALLOC_MIN_RESERVE) { 3355 min -= min / 2; 3356 3357 /* 3358 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3359 * access more reserves than just __GFP_HIGH. Other 3360 * non-blocking allocations requests such as GFP_NOWAIT 3361 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3362 * access to the min reserve. 3363 */ 3364 if (alloc_flags & ALLOC_NON_BLOCK) 3365 min -= min / 4; 3366 } 3367 3368 /* 3369 * OOM victims can try even harder than the normal reserve 3370 * users on the grounds that it's definitely going to be in 3371 * the exit path shortly and free memory. Any allocation it 3372 * makes during the free path will be small and short-lived. 3373 */ 3374 if (alloc_flags & ALLOC_OOM) 3375 min -= min / 2; 3376 } 3377 3378 /* 3379 * Check watermarks for an order-0 allocation request. If these 3380 * are not met, then a high-order request also cannot go ahead 3381 * even if a suitable page happened to be free. 3382 */ 3383 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3384 return false; 3385 3386 /* If this is an order-0 request then the watermark is fine */ 3387 if (!order) 3388 return true; 3389 3390 /* For a high-order request, check at least one suitable page is free */ 3391 for (o = order; o < NR_PAGE_ORDERS; o++) { 3392 struct free_area *area = &z->free_area[o]; 3393 int mt; 3394 3395 if (!area->nr_free) 3396 continue; 3397 3398 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3399 if (!free_area_empty(area, mt)) 3400 return true; 3401 } 3402 3403 #ifdef CONFIG_CMA 3404 if ((alloc_flags & ALLOC_CMA) && 3405 !free_area_empty(area, MIGRATE_CMA)) { 3406 return true; 3407 } 3408 #endif 3409 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3410 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3411 return true; 3412 } 3413 } 3414 return false; 3415 } 3416 3417 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3418 int highest_zoneidx, unsigned int alloc_flags) 3419 { 3420 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3421 zone_page_state(z, NR_FREE_PAGES)); 3422 } 3423 3424 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3425 unsigned long mark, int highest_zoneidx, 3426 unsigned int alloc_flags, gfp_t gfp_mask) 3427 { 3428 long free_pages; 3429 3430 free_pages = zone_page_state(z, NR_FREE_PAGES); 3431 3432 /* 3433 * Fast check for order-0 only. If this fails then the reserves 3434 * need to be calculated. 3435 */ 3436 if (!order) { 3437 long usable_free; 3438 long reserved; 3439 3440 usable_free = free_pages; 3441 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3442 3443 /* reserved may over estimate high-atomic reserves. */ 3444 usable_free -= min(usable_free, reserved); 3445 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3446 return true; 3447 } 3448 3449 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3450 free_pages)) 3451 return true; 3452 3453 /* 3454 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3455 * when checking the min watermark. The min watermark is the 3456 * point where boosting is ignored so that kswapd is woken up 3457 * when below the low watermark. 3458 */ 3459 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3460 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3461 mark = z->_watermark[WMARK_MIN]; 3462 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3463 alloc_flags, free_pages); 3464 } 3465 3466 return false; 3467 } 3468 3469 #ifdef CONFIG_NUMA 3470 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3471 3472 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3473 { 3474 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3475 node_reclaim_distance; 3476 } 3477 #else /* CONFIG_NUMA */ 3478 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3479 { 3480 return true; 3481 } 3482 #endif /* CONFIG_NUMA */ 3483 3484 /* 3485 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3486 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3487 * premature use of a lower zone may cause lowmem pressure problems that 3488 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3489 * probably too small. It only makes sense to spread allocations to avoid 3490 * fragmentation between the Normal and DMA32 zones. 3491 */ 3492 static inline unsigned int 3493 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3494 { 3495 unsigned int alloc_flags; 3496 3497 /* 3498 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3499 * to save a branch. 3500 */ 3501 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3502 3503 if (defrag_mode) { 3504 alloc_flags |= ALLOC_NOFRAGMENT; 3505 return alloc_flags; 3506 } 3507 3508 #ifdef CONFIG_ZONE_DMA32 3509 if (!zone) 3510 return alloc_flags; 3511 3512 if (zone_idx(zone) != ZONE_NORMAL) 3513 return alloc_flags; 3514 3515 /* 3516 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3517 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3518 * on UMA that if Normal is populated then so is DMA32. 3519 */ 3520 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3521 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3522 return alloc_flags; 3523 3524 alloc_flags |= ALLOC_NOFRAGMENT; 3525 #endif /* CONFIG_ZONE_DMA32 */ 3526 return alloc_flags; 3527 } 3528 3529 /* Must be called after current_gfp_context() which can change gfp_mask */ 3530 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3531 unsigned int alloc_flags) 3532 { 3533 #ifdef CONFIG_CMA 3534 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3535 alloc_flags |= ALLOC_CMA; 3536 #endif 3537 return alloc_flags; 3538 } 3539 3540 /* 3541 * get_page_from_freelist goes through the zonelist trying to allocate 3542 * a page. 3543 */ 3544 static struct page * 3545 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3546 const struct alloc_context *ac) 3547 { 3548 struct zoneref *z; 3549 struct zone *zone; 3550 struct pglist_data *last_pgdat = NULL; 3551 bool last_pgdat_dirty_ok = false; 3552 bool no_fallback; 3553 3554 retry: 3555 /* 3556 * Scan zonelist, looking for a zone with enough free. 3557 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3558 */ 3559 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3560 z = ac->preferred_zoneref; 3561 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3562 ac->nodemask) { 3563 struct page *page; 3564 unsigned long mark; 3565 3566 if (cpusets_enabled() && 3567 (alloc_flags & ALLOC_CPUSET) && 3568 !__cpuset_zone_allowed(zone, gfp_mask)) 3569 continue; 3570 /* 3571 * When allocating a page cache page for writing, we 3572 * want to get it from a node that is within its dirty 3573 * limit, such that no single node holds more than its 3574 * proportional share of globally allowed dirty pages. 3575 * The dirty limits take into account the node's 3576 * lowmem reserves and high watermark so that kswapd 3577 * should be able to balance it without having to 3578 * write pages from its LRU list. 3579 * 3580 * XXX: For now, allow allocations to potentially 3581 * exceed the per-node dirty limit in the slowpath 3582 * (spread_dirty_pages unset) before going into reclaim, 3583 * which is important when on a NUMA setup the allowed 3584 * nodes are together not big enough to reach the 3585 * global limit. The proper fix for these situations 3586 * will require awareness of nodes in the 3587 * dirty-throttling and the flusher threads. 3588 */ 3589 if (ac->spread_dirty_pages) { 3590 if (last_pgdat != zone->zone_pgdat) { 3591 last_pgdat = zone->zone_pgdat; 3592 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3593 } 3594 3595 if (!last_pgdat_dirty_ok) 3596 continue; 3597 } 3598 3599 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3600 zone != zonelist_zone(ac->preferred_zoneref)) { 3601 int local_nid; 3602 3603 /* 3604 * If moving to a remote node, retry but allow 3605 * fragmenting fallbacks. Locality is more important 3606 * than fragmentation avoidance. 3607 */ 3608 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3609 if (zone_to_nid(zone) != local_nid) { 3610 alloc_flags &= ~ALLOC_NOFRAGMENT; 3611 goto retry; 3612 } 3613 } 3614 3615 cond_accept_memory(zone, order); 3616 3617 /* 3618 * Detect whether the number of free pages is below high 3619 * watermark. If so, we will decrease pcp->high and free 3620 * PCP pages in free path to reduce the possibility of 3621 * premature page reclaiming. Detection is done here to 3622 * avoid to do that in hotter free path. 3623 */ 3624 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3625 goto check_alloc_wmark; 3626 3627 mark = high_wmark_pages(zone); 3628 if (zone_watermark_fast(zone, order, mark, 3629 ac->highest_zoneidx, alloc_flags, 3630 gfp_mask)) 3631 goto try_this_zone; 3632 else 3633 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3634 3635 check_alloc_wmark: 3636 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3637 if (!zone_watermark_fast(zone, order, mark, 3638 ac->highest_zoneidx, alloc_flags, 3639 gfp_mask)) { 3640 int ret; 3641 3642 if (cond_accept_memory(zone, order)) 3643 goto try_this_zone; 3644 3645 /* 3646 * Watermark failed for this zone, but see if we can 3647 * grow this zone if it contains deferred pages. 3648 */ 3649 if (deferred_pages_enabled()) { 3650 if (_deferred_grow_zone(zone, order)) 3651 goto try_this_zone; 3652 } 3653 /* Checked here to keep the fast path fast */ 3654 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3655 if (alloc_flags & ALLOC_NO_WATERMARKS) 3656 goto try_this_zone; 3657 3658 if (!node_reclaim_enabled() || 3659 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3660 continue; 3661 3662 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3663 switch (ret) { 3664 case NODE_RECLAIM_NOSCAN: 3665 /* did not scan */ 3666 continue; 3667 case NODE_RECLAIM_FULL: 3668 /* scanned but unreclaimable */ 3669 continue; 3670 default: 3671 /* did we reclaim enough */ 3672 if (zone_watermark_ok(zone, order, mark, 3673 ac->highest_zoneidx, alloc_flags)) 3674 goto try_this_zone; 3675 3676 continue; 3677 } 3678 } 3679 3680 try_this_zone: 3681 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3682 gfp_mask, alloc_flags, ac->migratetype); 3683 if (page) { 3684 prep_new_page(page, order, gfp_mask, alloc_flags); 3685 3686 /* 3687 * If this is a high-order atomic allocation then check 3688 * if the pageblock should be reserved for the future 3689 */ 3690 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3691 reserve_highatomic_pageblock(page, order, zone); 3692 3693 return page; 3694 } else { 3695 if (cond_accept_memory(zone, order)) 3696 goto try_this_zone; 3697 3698 /* Try again if zone has deferred pages */ 3699 if (deferred_pages_enabled()) { 3700 if (_deferred_grow_zone(zone, order)) 3701 goto try_this_zone; 3702 } 3703 } 3704 } 3705 3706 /* 3707 * It's possible on a UMA machine to get through all zones that are 3708 * fragmented. If avoiding fragmentation, reset and try again. 3709 */ 3710 if (no_fallback && !defrag_mode) { 3711 alloc_flags &= ~ALLOC_NOFRAGMENT; 3712 goto retry; 3713 } 3714 3715 return NULL; 3716 } 3717 3718 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3719 { 3720 unsigned int filter = SHOW_MEM_FILTER_NODES; 3721 3722 /* 3723 * This documents exceptions given to allocations in certain 3724 * contexts that are allowed to allocate outside current's set 3725 * of allowed nodes. 3726 */ 3727 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3728 if (tsk_is_oom_victim(current) || 3729 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3730 filter &= ~SHOW_MEM_FILTER_NODES; 3731 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3732 filter &= ~SHOW_MEM_FILTER_NODES; 3733 3734 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3735 } 3736 3737 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3738 { 3739 struct va_format vaf; 3740 va_list args; 3741 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3742 3743 if ((gfp_mask & __GFP_NOWARN) || 3744 !__ratelimit(&nopage_rs) || 3745 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3746 return; 3747 3748 va_start(args, fmt); 3749 vaf.fmt = fmt; 3750 vaf.va = &args; 3751 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3752 current->comm, &vaf, gfp_mask, &gfp_mask, 3753 nodemask_pr_args(nodemask)); 3754 va_end(args); 3755 3756 cpuset_print_current_mems_allowed(); 3757 pr_cont("\n"); 3758 dump_stack(); 3759 warn_alloc_show_mem(gfp_mask, nodemask); 3760 } 3761 3762 static inline struct page * 3763 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3764 unsigned int alloc_flags, 3765 const struct alloc_context *ac) 3766 { 3767 struct page *page; 3768 3769 page = get_page_from_freelist(gfp_mask, order, 3770 alloc_flags|ALLOC_CPUSET, ac); 3771 /* 3772 * fallback to ignore cpuset restriction if our nodes 3773 * are depleted 3774 */ 3775 if (!page) 3776 page = get_page_from_freelist(gfp_mask, order, 3777 alloc_flags, ac); 3778 return page; 3779 } 3780 3781 static inline struct page * 3782 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3783 const struct alloc_context *ac, unsigned long *did_some_progress) 3784 { 3785 struct oom_control oc = { 3786 .zonelist = ac->zonelist, 3787 .nodemask = ac->nodemask, 3788 .memcg = NULL, 3789 .gfp_mask = gfp_mask, 3790 .order = order, 3791 }; 3792 struct page *page; 3793 3794 *did_some_progress = 0; 3795 3796 /* 3797 * Acquire the oom lock. If that fails, somebody else is 3798 * making progress for us. 3799 */ 3800 if (!mutex_trylock(&oom_lock)) { 3801 *did_some_progress = 1; 3802 schedule_timeout_uninterruptible(1); 3803 return NULL; 3804 } 3805 3806 /* 3807 * Go through the zonelist yet one more time, keep very high watermark 3808 * here, this is only to catch a parallel oom killing, we must fail if 3809 * we're still under heavy pressure. But make sure that this reclaim 3810 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3811 * allocation which will never fail due to oom_lock already held. 3812 */ 3813 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3814 ~__GFP_DIRECT_RECLAIM, order, 3815 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3816 if (page) 3817 goto out; 3818 3819 /* Coredumps can quickly deplete all memory reserves */ 3820 if (current->flags & PF_DUMPCORE) 3821 goto out; 3822 /* The OOM killer will not help higher order allocs */ 3823 if (order > PAGE_ALLOC_COSTLY_ORDER) 3824 goto out; 3825 /* 3826 * We have already exhausted all our reclaim opportunities without any 3827 * success so it is time to admit defeat. We will skip the OOM killer 3828 * because it is very likely that the caller has a more reasonable 3829 * fallback than shooting a random task. 3830 * 3831 * The OOM killer may not free memory on a specific node. 3832 */ 3833 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3834 goto out; 3835 /* The OOM killer does not needlessly kill tasks for lowmem */ 3836 if (ac->highest_zoneidx < ZONE_NORMAL) 3837 goto out; 3838 if (pm_suspended_storage()) 3839 goto out; 3840 /* 3841 * XXX: GFP_NOFS allocations should rather fail than rely on 3842 * other request to make a forward progress. 3843 * We are in an unfortunate situation where out_of_memory cannot 3844 * do much for this context but let's try it to at least get 3845 * access to memory reserved if the current task is killed (see 3846 * out_of_memory). Once filesystems are ready to handle allocation 3847 * failures more gracefully we should just bail out here. 3848 */ 3849 3850 /* Exhausted what can be done so it's blame time */ 3851 if (out_of_memory(&oc) || 3852 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3853 *did_some_progress = 1; 3854 3855 /* 3856 * Help non-failing allocations by giving them access to memory 3857 * reserves 3858 */ 3859 if (gfp_mask & __GFP_NOFAIL) 3860 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3861 ALLOC_NO_WATERMARKS, ac); 3862 } 3863 out: 3864 mutex_unlock(&oom_lock); 3865 return page; 3866 } 3867 3868 /* 3869 * Maximum number of compaction retries with a progress before OOM 3870 * killer is consider as the only way to move forward. 3871 */ 3872 #define MAX_COMPACT_RETRIES 16 3873 3874 #ifdef CONFIG_COMPACTION 3875 /* Try memory compaction for high-order allocations before reclaim */ 3876 static struct page * 3877 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3878 unsigned int alloc_flags, const struct alloc_context *ac, 3879 enum compact_priority prio, enum compact_result *compact_result) 3880 { 3881 struct page *page = NULL; 3882 unsigned long pflags; 3883 unsigned int noreclaim_flag; 3884 3885 if (!order) 3886 return NULL; 3887 3888 psi_memstall_enter(&pflags); 3889 delayacct_compact_start(); 3890 noreclaim_flag = memalloc_noreclaim_save(); 3891 3892 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3893 prio, &page); 3894 3895 memalloc_noreclaim_restore(noreclaim_flag); 3896 psi_memstall_leave(&pflags); 3897 delayacct_compact_end(); 3898 3899 if (*compact_result == COMPACT_SKIPPED) 3900 return NULL; 3901 /* 3902 * At least in one zone compaction wasn't deferred or skipped, so let's 3903 * count a compaction stall 3904 */ 3905 count_vm_event(COMPACTSTALL); 3906 3907 /* Prep a captured page if available */ 3908 if (page) 3909 prep_new_page(page, order, gfp_mask, alloc_flags); 3910 3911 /* Try get a page from the freelist if available */ 3912 if (!page) 3913 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3914 3915 if (page) { 3916 struct zone *zone = page_zone(page); 3917 3918 zone->compact_blockskip_flush = false; 3919 compaction_defer_reset(zone, order, true); 3920 count_vm_event(COMPACTSUCCESS); 3921 return page; 3922 } 3923 3924 /* 3925 * It's bad if compaction run occurs and fails. The most likely reason 3926 * is that pages exist, but not enough to satisfy watermarks. 3927 */ 3928 count_vm_event(COMPACTFAIL); 3929 3930 cond_resched(); 3931 3932 return NULL; 3933 } 3934 3935 static inline bool 3936 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3937 enum compact_result compact_result, 3938 enum compact_priority *compact_priority, 3939 int *compaction_retries) 3940 { 3941 int max_retries = MAX_COMPACT_RETRIES; 3942 int min_priority; 3943 bool ret = false; 3944 int retries = *compaction_retries; 3945 enum compact_priority priority = *compact_priority; 3946 3947 if (!order) 3948 return false; 3949 3950 if (fatal_signal_pending(current)) 3951 return false; 3952 3953 /* 3954 * Compaction was skipped due to a lack of free order-0 3955 * migration targets. Continue if reclaim can help. 3956 */ 3957 if (compact_result == COMPACT_SKIPPED) { 3958 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3959 goto out; 3960 } 3961 3962 /* 3963 * Compaction managed to coalesce some page blocks, but the 3964 * allocation failed presumably due to a race. Retry some. 3965 */ 3966 if (compact_result == COMPACT_SUCCESS) { 3967 /* 3968 * !costly requests are much more important than 3969 * __GFP_RETRY_MAYFAIL costly ones because they are de 3970 * facto nofail and invoke OOM killer to move on while 3971 * costly can fail and users are ready to cope with 3972 * that. 1/4 retries is rather arbitrary but we would 3973 * need much more detailed feedback from compaction to 3974 * make a better decision. 3975 */ 3976 if (order > PAGE_ALLOC_COSTLY_ORDER) 3977 max_retries /= 4; 3978 3979 if (++(*compaction_retries) <= max_retries) { 3980 ret = true; 3981 goto out; 3982 } 3983 } 3984 3985 /* 3986 * Compaction failed. Retry with increasing priority. 3987 */ 3988 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3989 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3990 3991 if (*compact_priority > min_priority) { 3992 (*compact_priority)--; 3993 *compaction_retries = 0; 3994 ret = true; 3995 } 3996 out: 3997 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3998 return ret; 3999 } 4000 #else 4001 static inline struct page * 4002 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4003 unsigned int alloc_flags, const struct alloc_context *ac, 4004 enum compact_priority prio, enum compact_result *compact_result) 4005 { 4006 *compact_result = COMPACT_SKIPPED; 4007 return NULL; 4008 } 4009 4010 static inline bool 4011 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4012 enum compact_result compact_result, 4013 enum compact_priority *compact_priority, 4014 int *compaction_retries) 4015 { 4016 struct zone *zone; 4017 struct zoneref *z; 4018 4019 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4020 return false; 4021 4022 /* 4023 * There are setups with compaction disabled which would prefer to loop 4024 * inside the allocator rather than hit the oom killer prematurely. 4025 * Let's give them a good hope and keep retrying while the order-0 4026 * watermarks are OK. 4027 */ 4028 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4029 ac->highest_zoneidx, ac->nodemask) { 4030 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4031 ac->highest_zoneidx, alloc_flags)) 4032 return true; 4033 } 4034 return false; 4035 } 4036 #endif /* CONFIG_COMPACTION */ 4037 4038 #ifdef CONFIG_LOCKDEP 4039 static struct lockdep_map __fs_reclaim_map = 4040 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4041 4042 static bool __need_reclaim(gfp_t gfp_mask) 4043 { 4044 /* no reclaim without waiting on it */ 4045 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4046 return false; 4047 4048 /* this guy won't enter reclaim */ 4049 if (current->flags & PF_MEMALLOC) 4050 return false; 4051 4052 if (gfp_mask & __GFP_NOLOCKDEP) 4053 return false; 4054 4055 return true; 4056 } 4057 4058 void __fs_reclaim_acquire(unsigned long ip) 4059 { 4060 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4061 } 4062 4063 void __fs_reclaim_release(unsigned long ip) 4064 { 4065 lock_release(&__fs_reclaim_map, ip); 4066 } 4067 4068 void fs_reclaim_acquire(gfp_t gfp_mask) 4069 { 4070 gfp_mask = current_gfp_context(gfp_mask); 4071 4072 if (__need_reclaim(gfp_mask)) { 4073 if (gfp_mask & __GFP_FS) 4074 __fs_reclaim_acquire(_RET_IP_); 4075 4076 #ifdef CONFIG_MMU_NOTIFIER 4077 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4078 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4079 #endif 4080 4081 } 4082 } 4083 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4084 4085 void fs_reclaim_release(gfp_t gfp_mask) 4086 { 4087 gfp_mask = current_gfp_context(gfp_mask); 4088 4089 if (__need_reclaim(gfp_mask)) { 4090 if (gfp_mask & __GFP_FS) 4091 __fs_reclaim_release(_RET_IP_); 4092 } 4093 } 4094 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4095 #endif 4096 4097 /* 4098 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4099 * have been rebuilt so allocation retries. Reader side does not lock and 4100 * retries the allocation if zonelist changes. Writer side is protected by the 4101 * embedded spin_lock. 4102 */ 4103 static DEFINE_SEQLOCK(zonelist_update_seq); 4104 4105 static unsigned int zonelist_iter_begin(void) 4106 { 4107 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4108 return read_seqbegin(&zonelist_update_seq); 4109 4110 return 0; 4111 } 4112 4113 static unsigned int check_retry_zonelist(unsigned int seq) 4114 { 4115 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4116 return read_seqretry(&zonelist_update_seq, seq); 4117 4118 return seq; 4119 } 4120 4121 /* Perform direct synchronous page reclaim */ 4122 static unsigned long 4123 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4124 const struct alloc_context *ac) 4125 { 4126 unsigned int noreclaim_flag; 4127 unsigned long progress; 4128 4129 cond_resched(); 4130 4131 /* We now go into synchronous reclaim */ 4132 cpuset_memory_pressure_bump(); 4133 fs_reclaim_acquire(gfp_mask); 4134 noreclaim_flag = memalloc_noreclaim_save(); 4135 4136 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4137 ac->nodemask); 4138 4139 memalloc_noreclaim_restore(noreclaim_flag); 4140 fs_reclaim_release(gfp_mask); 4141 4142 cond_resched(); 4143 4144 return progress; 4145 } 4146 4147 /* The really slow allocator path where we enter direct reclaim */ 4148 static inline struct page * 4149 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4150 unsigned int alloc_flags, const struct alloc_context *ac, 4151 unsigned long *did_some_progress) 4152 { 4153 struct page *page = NULL; 4154 unsigned long pflags; 4155 bool drained = false; 4156 4157 psi_memstall_enter(&pflags); 4158 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4159 if (unlikely(!(*did_some_progress))) 4160 goto out; 4161 4162 retry: 4163 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4164 4165 /* 4166 * If an allocation failed after direct reclaim, it could be because 4167 * pages are pinned on the per-cpu lists or in high alloc reserves. 4168 * Shrink them and try again 4169 */ 4170 if (!page && !drained) { 4171 unreserve_highatomic_pageblock(ac, false); 4172 drain_all_pages(NULL); 4173 drained = true; 4174 goto retry; 4175 } 4176 out: 4177 psi_memstall_leave(&pflags); 4178 4179 return page; 4180 } 4181 4182 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4183 const struct alloc_context *ac) 4184 { 4185 struct zoneref *z; 4186 struct zone *zone; 4187 pg_data_t *last_pgdat = NULL; 4188 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4189 unsigned int reclaim_order; 4190 4191 if (defrag_mode) 4192 reclaim_order = max(order, pageblock_order); 4193 else 4194 reclaim_order = order; 4195 4196 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4197 ac->nodemask) { 4198 if (!managed_zone(zone)) 4199 continue; 4200 if (last_pgdat == zone->zone_pgdat) 4201 continue; 4202 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4203 last_pgdat = zone->zone_pgdat; 4204 } 4205 } 4206 4207 static inline unsigned int 4208 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4209 { 4210 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4211 4212 /* 4213 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4214 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4215 * to save two branches. 4216 */ 4217 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4218 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4219 4220 /* 4221 * The caller may dip into page reserves a bit more if the caller 4222 * cannot run direct reclaim, or if the caller has realtime scheduling 4223 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4224 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4225 */ 4226 alloc_flags |= (__force int) 4227 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4228 4229 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4230 /* 4231 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4232 * if it can't schedule. 4233 */ 4234 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4235 alloc_flags |= ALLOC_NON_BLOCK; 4236 4237 if (order > 0) 4238 alloc_flags |= ALLOC_HIGHATOMIC; 4239 } 4240 4241 /* 4242 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4243 * GFP_ATOMIC) rather than fail, see the comment for 4244 * cpuset_node_allowed(). 4245 */ 4246 if (alloc_flags & ALLOC_MIN_RESERVE) 4247 alloc_flags &= ~ALLOC_CPUSET; 4248 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4249 alloc_flags |= ALLOC_MIN_RESERVE; 4250 4251 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4252 4253 if (defrag_mode) 4254 alloc_flags |= ALLOC_NOFRAGMENT; 4255 4256 return alloc_flags; 4257 } 4258 4259 static bool oom_reserves_allowed(struct task_struct *tsk) 4260 { 4261 if (!tsk_is_oom_victim(tsk)) 4262 return false; 4263 4264 /* 4265 * !MMU doesn't have oom reaper so give access to memory reserves 4266 * only to the thread with TIF_MEMDIE set 4267 */ 4268 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4269 return false; 4270 4271 return true; 4272 } 4273 4274 /* 4275 * Distinguish requests which really need access to full memory 4276 * reserves from oom victims which can live with a portion of it 4277 */ 4278 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4279 { 4280 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4281 return 0; 4282 if (gfp_mask & __GFP_MEMALLOC) 4283 return ALLOC_NO_WATERMARKS; 4284 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4285 return ALLOC_NO_WATERMARKS; 4286 if (!in_interrupt()) { 4287 if (current->flags & PF_MEMALLOC) 4288 return ALLOC_NO_WATERMARKS; 4289 else if (oom_reserves_allowed(current)) 4290 return ALLOC_OOM; 4291 } 4292 4293 return 0; 4294 } 4295 4296 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4297 { 4298 return !!__gfp_pfmemalloc_flags(gfp_mask); 4299 } 4300 4301 /* 4302 * Checks whether it makes sense to retry the reclaim to make a forward progress 4303 * for the given allocation request. 4304 * 4305 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4306 * without success, or when we couldn't even meet the watermark if we 4307 * reclaimed all remaining pages on the LRU lists. 4308 * 4309 * Returns true if a retry is viable or false to enter the oom path. 4310 */ 4311 static inline bool 4312 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4313 struct alloc_context *ac, int alloc_flags, 4314 bool did_some_progress, int *no_progress_loops) 4315 { 4316 struct zone *zone; 4317 struct zoneref *z; 4318 bool ret = false; 4319 4320 /* 4321 * Costly allocations might have made a progress but this doesn't mean 4322 * their order will become available due to high fragmentation so 4323 * always increment the no progress counter for them 4324 */ 4325 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4326 *no_progress_loops = 0; 4327 else 4328 (*no_progress_loops)++; 4329 4330 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4331 goto out; 4332 4333 4334 /* 4335 * Keep reclaiming pages while there is a chance this will lead 4336 * somewhere. If none of the target zones can satisfy our allocation 4337 * request even if all reclaimable pages are considered then we are 4338 * screwed and have to go OOM. 4339 */ 4340 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4341 ac->highest_zoneidx, ac->nodemask) { 4342 unsigned long available; 4343 unsigned long reclaimable; 4344 unsigned long min_wmark = min_wmark_pages(zone); 4345 bool wmark; 4346 4347 if (cpusets_enabled() && 4348 (alloc_flags & ALLOC_CPUSET) && 4349 !__cpuset_zone_allowed(zone, gfp_mask)) 4350 continue; 4351 4352 available = reclaimable = zone_reclaimable_pages(zone); 4353 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4354 4355 /* 4356 * Would the allocation succeed if we reclaimed all 4357 * reclaimable pages? 4358 */ 4359 wmark = __zone_watermark_ok(zone, order, min_wmark, 4360 ac->highest_zoneidx, alloc_flags, available); 4361 trace_reclaim_retry_zone(z, order, reclaimable, 4362 available, min_wmark, *no_progress_loops, wmark); 4363 if (wmark) { 4364 ret = true; 4365 break; 4366 } 4367 } 4368 4369 /* 4370 * Memory allocation/reclaim might be called from a WQ context and the 4371 * current implementation of the WQ concurrency control doesn't 4372 * recognize that a particular WQ is congested if the worker thread is 4373 * looping without ever sleeping. Therefore we have to do a short sleep 4374 * here rather than calling cond_resched(). 4375 */ 4376 if (current->flags & PF_WQ_WORKER) 4377 schedule_timeout_uninterruptible(1); 4378 else 4379 cond_resched(); 4380 out: 4381 /* Before OOM, exhaust highatomic_reserve */ 4382 if (!ret) 4383 return unreserve_highatomic_pageblock(ac, true); 4384 4385 return ret; 4386 } 4387 4388 static inline bool 4389 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4390 { 4391 /* 4392 * It's possible that cpuset's mems_allowed and the nodemask from 4393 * mempolicy don't intersect. This should be normally dealt with by 4394 * policy_nodemask(), but it's possible to race with cpuset update in 4395 * such a way the check therein was true, and then it became false 4396 * before we got our cpuset_mems_cookie here. 4397 * This assumes that for all allocations, ac->nodemask can come only 4398 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4399 * when it does not intersect with the cpuset restrictions) or the 4400 * caller can deal with a violated nodemask. 4401 */ 4402 if (cpusets_enabled() && ac->nodemask && 4403 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4404 ac->nodemask = NULL; 4405 return true; 4406 } 4407 4408 /* 4409 * When updating a task's mems_allowed or mempolicy nodemask, it is 4410 * possible to race with parallel threads in such a way that our 4411 * allocation can fail while the mask is being updated. If we are about 4412 * to fail, check if the cpuset changed during allocation and if so, 4413 * retry. 4414 */ 4415 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4416 return true; 4417 4418 return false; 4419 } 4420 4421 static inline struct page * 4422 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4423 struct alloc_context *ac) 4424 { 4425 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4426 bool can_compact = gfp_compaction_allowed(gfp_mask); 4427 bool nofail = gfp_mask & __GFP_NOFAIL; 4428 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4429 struct page *page = NULL; 4430 unsigned int alloc_flags; 4431 unsigned long did_some_progress; 4432 enum compact_priority compact_priority; 4433 enum compact_result compact_result; 4434 int compaction_retries; 4435 int no_progress_loops; 4436 unsigned int cpuset_mems_cookie; 4437 unsigned int zonelist_iter_cookie; 4438 int reserve_flags; 4439 4440 if (unlikely(nofail)) { 4441 /* 4442 * We most definitely don't want callers attempting to 4443 * allocate greater than order-1 page units with __GFP_NOFAIL. 4444 */ 4445 WARN_ON_ONCE(order > 1); 4446 /* 4447 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4448 * otherwise, we may result in lockup. 4449 */ 4450 WARN_ON_ONCE(!can_direct_reclaim); 4451 /* 4452 * PF_MEMALLOC request from this context is rather bizarre 4453 * because we cannot reclaim anything and only can loop waiting 4454 * for somebody to do a work for us. 4455 */ 4456 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4457 } 4458 4459 restart: 4460 compaction_retries = 0; 4461 no_progress_loops = 0; 4462 compact_result = COMPACT_SKIPPED; 4463 compact_priority = DEF_COMPACT_PRIORITY; 4464 cpuset_mems_cookie = read_mems_allowed_begin(); 4465 zonelist_iter_cookie = zonelist_iter_begin(); 4466 4467 /* 4468 * The fast path uses conservative alloc_flags to succeed only until 4469 * kswapd needs to be woken up, and to avoid the cost of setting up 4470 * alloc_flags precisely. So we do that now. 4471 */ 4472 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4473 4474 /* 4475 * We need to recalculate the starting point for the zonelist iterator 4476 * because we might have used different nodemask in the fast path, or 4477 * there was a cpuset modification and we are retrying - otherwise we 4478 * could end up iterating over non-eligible zones endlessly. 4479 */ 4480 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4481 ac->highest_zoneidx, ac->nodemask); 4482 if (!zonelist_zone(ac->preferred_zoneref)) 4483 goto nopage; 4484 4485 /* 4486 * Check for insane configurations where the cpuset doesn't contain 4487 * any suitable zone to satisfy the request - e.g. non-movable 4488 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4489 */ 4490 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4491 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4492 ac->highest_zoneidx, 4493 &cpuset_current_mems_allowed); 4494 if (!zonelist_zone(z)) 4495 goto nopage; 4496 } 4497 4498 if (alloc_flags & ALLOC_KSWAPD) 4499 wake_all_kswapds(order, gfp_mask, ac); 4500 4501 /* 4502 * The adjusted alloc_flags might result in immediate success, so try 4503 * that first 4504 */ 4505 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4506 if (page) 4507 goto got_pg; 4508 4509 /* 4510 * For costly allocations, try direct compaction first, as it's likely 4511 * that we have enough base pages and don't need to reclaim. For non- 4512 * movable high-order allocations, do that as well, as compaction will 4513 * try prevent permanent fragmentation by migrating from blocks of the 4514 * same migratetype. 4515 * Don't try this for allocations that are allowed to ignore 4516 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4517 */ 4518 if (can_direct_reclaim && can_compact && 4519 (costly_order || 4520 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4521 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4522 page = __alloc_pages_direct_compact(gfp_mask, order, 4523 alloc_flags, ac, 4524 INIT_COMPACT_PRIORITY, 4525 &compact_result); 4526 if (page) 4527 goto got_pg; 4528 4529 /* 4530 * Checks for costly allocations with __GFP_NORETRY, which 4531 * includes some THP page fault allocations 4532 */ 4533 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4534 /* 4535 * If allocating entire pageblock(s) and compaction 4536 * failed because all zones are below low watermarks 4537 * or is prohibited because it recently failed at this 4538 * order, fail immediately unless the allocator has 4539 * requested compaction and reclaim retry. 4540 * 4541 * Reclaim is 4542 * - potentially very expensive because zones are far 4543 * below their low watermarks or this is part of very 4544 * bursty high order allocations, 4545 * - not guaranteed to help because isolate_freepages() 4546 * may not iterate over freed pages as part of its 4547 * linear scan, and 4548 * - unlikely to make entire pageblocks free on its 4549 * own. 4550 */ 4551 if (compact_result == COMPACT_SKIPPED || 4552 compact_result == COMPACT_DEFERRED) 4553 goto nopage; 4554 4555 /* 4556 * Looks like reclaim/compaction is worth trying, but 4557 * sync compaction could be very expensive, so keep 4558 * using async compaction. 4559 */ 4560 compact_priority = INIT_COMPACT_PRIORITY; 4561 } 4562 } 4563 4564 retry: 4565 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4566 if (alloc_flags & ALLOC_KSWAPD) 4567 wake_all_kswapds(order, gfp_mask, ac); 4568 4569 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4570 if (reserve_flags) 4571 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4572 (alloc_flags & ALLOC_KSWAPD); 4573 4574 /* 4575 * Reset the nodemask and zonelist iterators if memory policies can be 4576 * ignored. These allocations are high priority and system rather than 4577 * user oriented. 4578 */ 4579 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4580 ac->nodemask = NULL; 4581 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4582 ac->highest_zoneidx, ac->nodemask); 4583 } 4584 4585 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4586 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4587 if (page) 4588 goto got_pg; 4589 4590 /* Caller is not willing to reclaim, we can't balance anything */ 4591 if (!can_direct_reclaim) 4592 goto nopage; 4593 4594 /* Avoid recursion of direct reclaim */ 4595 if (current->flags & PF_MEMALLOC) 4596 goto nopage; 4597 4598 /* Try direct reclaim and then allocating */ 4599 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4600 &did_some_progress); 4601 if (page) 4602 goto got_pg; 4603 4604 /* Try direct compaction and then allocating */ 4605 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4606 compact_priority, &compact_result); 4607 if (page) 4608 goto got_pg; 4609 4610 /* Do not loop if specifically requested */ 4611 if (gfp_mask & __GFP_NORETRY) 4612 goto nopage; 4613 4614 /* 4615 * Do not retry costly high order allocations unless they are 4616 * __GFP_RETRY_MAYFAIL and we can compact 4617 */ 4618 if (costly_order && (!can_compact || 4619 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4620 goto nopage; 4621 4622 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4623 did_some_progress > 0, &no_progress_loops)) 4624 goto retry; 4625 4626 /* 4627 * It doesn't make any sense to retry for the compaction if the order-0 4628 * reclaim is not able to make any progress because the current 4629 * implementation of the compaction depends on the sufficient amount 4630 * of free memory (see __compaction_suitable) 4631 */ 4632 if (did_some_progress > 0 && can_compact && 4633 should_compact_retry(ac, order, alloc_flags, 4634 compact_result, &compact_priority, 4635 &compaction_retries)) 4636 goto retry; 4637 4638 /* Reclaim/compaction failed to prevent the fallback */ 4639 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4640 alloc_flags &= ~ALLOC_NOFRAGMENT; 4641 goto retry; 4642 } 4643 4644 /* 4645 * Deal with possible cpuset update races or zonelist updates to avoid 4646 * a unnecessary OOM kill. 4647 */ 4648 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4649 check_retry_zonelist(zonelist_iter_cookie)) 4650 goto restart; 4651 4652 /* Reclaim has failed us, start killing things */ 4653 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4654 if (page) 4655 goto got_pg; 4656 4657 /* Avoid allocations with no watermarks from looping endlessly */ 4658 if (tsk_is_oom_victim(current) && 4659 (alloc_flags & ALLOC_OOM || 4660 (gfp_mask & __GFP_NOMEMALLOC))) 4661 goto nopage; 4662 4663 /* Retry as long as the OOM killer is making progress */ 4664 if (did_some_progress) { 4665 no_progress_loops = 0; 4666 goto retry; 4667 } 4668 4669 nopage: 4670 /* 4671 * Deal with possible cpuset update races or zonelist updates to avoid 4672 * a unnecessary OOM kill. 4673 */ 4674 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4675 check_retry_zonelist(zonelist_iter_cookie)) 4676 goto restart; 4677 4678 /* 4679 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4680 * we always retry 4681 */ 4682 if (unlikely(nofail)) { 4683 /* 4684 * Lacking direct_reclaim we can't do anything to reclaim memory, 4685 * we disregard these unreasonable nofail requests and still 4686 * return NULL 4687 */ 4688 if (!can_direct_reclaim) 4689 goto fail; 4690 4691 /* 4692 * Help non-failing allocations by giving some access to memory 4693 * reserves normally used for high priority non-blocking 4694 * allocations but do not use ALLOC_NO_WATERMARKS because this 4695 * could deplete whole memory reserves which would just make 4696 * the situation worse. 4697 */ 4698 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4699 if (page) 4700 goto got_pg; 4701 4702 cond_resched(); 4703 goto retry; 4704 } 4705 fail: 4706 warn_alloc(gfp_mask, ac->nodemask, 4707 "page allocation failure: order:%u", order); 4708 got_pg: 4709 return page; 4710 } 4711 4712 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4713 int preferred_nid, nodemask_t *nodemask, 4714 struct alloc_context *ac, gfp_t *alloc_gfp, 4715 unsigned int *alloc_flags) 4716 { 4717 ac->highest_zoneidx = gfp_zone(gfp_mask); 4718 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4719 ac->nodemask = nodemask; 4720 ac->migratetype = gfp_migratetype(gfp_mask); 4721 4722 if (cpusets_enabled()) { 4723 *alloc_gfp |= __GFP_HARDWALL; 4724 /* 4725 * When we are in the interrupt context, it is irrelevant 4726 * to the current task context. It means that any node ok. 4727 */ 4728 if (in_task() && !ac->nodemask) 4729 ac->nodemask = &cpuset_current_mems_allowed; 4730 else 4731 *alloc_flags |= ALLOC_CPUSET; 4732 } 4733 4734 might_alloc(gfp_mask); 4735 4736 /* 4737 * Don't invoke should_fail logic, since it may call 4738 * get_random_u32() and printk() which need to spin_lock. 4739 */ 4740 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4741 should_fail_alloc_page(gfp_mask, order)) 4742 return false; 4743 4744 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4745 4746 /* Dirty zone balancing only done in the fast path */ 4747 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4748 4749 /* 4750 * The preferred zone is used for statistics but crucially it is 4751 * also used as the starting point for the zonelist iterator. It 4752 * may get reset for allocations that ignore memory policies. 4753 */ 4754 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4755 ac->highest_zoneidx, ac->nodemask); 4756 4757 return true; 4758 } 4759 4760 /* 4761 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4762 * @gfp: GFP flags for the allocation 4763 * @preferred_nid: The preferred NUMA node ID to allocate from 4764 * @nodemask: Set of nodes to allocate from, may be NULL 4765 * @nr_pages: The number of pages desired in the array 4766 * @page_array: Array to store the pages 4767 * 4768 * This is a batched version of the page allocator that attempts to 4769 * allocate nr_pages quickly. Pages are added to the page_array. 4770 * 4771 * Note that only NULL elements are populated with pages and nr_pages 4772 * is the maximum number of pages that will be stored in the array. 4773 * 4774 * Returns the number of pages in the array. 4775 */ 4776 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4777 nodemask_t *nodemask, int nr_pages, 4778 struct page **page_array) 4779 { 4780 struct page *page; 4781 unsigned long __maybe_unused UP_flags; 4782 struct zone *zone; 4783 struct zoneref *z; 4784 struct per_cpu_pages *pcp; 4785 struct list_head *pcp_list; 4786 struct alloc_context ac; 4787 gfp_t alloc_gfp; 4788 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4789 int nr_populated = 0, nr_account = 0; 4790 4791 /* 4792 * Skip populated array elements to determine if any pages need 4793 * to be allocated before disabling IRQs. 4794 */ 4795 while (nr_populated < nr_pages && page_array[nr_populated]) 4796 nr_populated++; 4797 4798 /* No pages requested? */ 4799 if (unlikely(nr_pages <= 0)) 4800 goto out; 4801 4802 /* Already populated array? */ 4803 if (unlikely(nr_pages - nr_populated == 0)) 4804 goto out; 4805 4806 /* Bulk allocator does not support memcg accounting. */ 4807 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4808 goto failed; 4809 4810 /* Use the single page allocator for one page. */ 4811 if (nr_pages - nr_populated == 1) 4812 goto failed; 4813 4814 #ifdef CONFIG_PAGE_OWNER 4815 /* 4816 * PAGE_OWNER may recurse into the allocator to allocate space to 4817 * save the stack with pagesets.lock held. Releasing/reacquiring 4818 * removes much of the performance benefit of bulk allocation so 4819 * force the caller to allocate one page at a time as it'll have 4820 * similar performance to added complexity to the bulk allocator. 4821 */ 4822 if (static_branch_unlikely(&page_owner_inited)) 4823 goto failed; 4824 #endif 4825 4826 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4827 gfp &= gfp_allowed_mask; 4828 alloc_gfp = gfp; 4829 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4830 goto out; 4831 gfp = alloc_gfp; 4832 4833 /* Find an allowed local zone that meets the low watermark. */ 4834 z = ac.preferred_zoneref; 4835 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4836 unsigned long mark; 4837 4838 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4839 !__cpuset_zone_allowed(zone, gfp)) { 4840 continue; 4841 } 4842 4843 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4844 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4845 goto failed; 4846 } 4847 4848 cond_accept_memory(zone, 0); 4849 retry_this_zone: 4850 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4851 if (zone_watermark_fast(zone, 0, mark, 4852 zonelist_zone_idx(ac.preferred_zoneref), 4853 alloc_flags, gfp)) { 4854 break; 4855 } 4856 4857 if (cond_accept_memory(zone, 0)) 4858 goto retry_this_zone; 4859 4860 /* Try again if zone has deferred pages */ 4861 if (deferred_pages_enabled()) { 4862 if (_deferred_grow_zone(zone, 0)) 4863 goto retry_this_zone; 4864 } 4865 } 4866 4867 /* 4868 * If there are no allowed local zones that meets the watermarks then 4869 * try to allocate a single page and reclaim if necessary. 4870 */ 4871 if (unlikely(!zone)) 4872 goto failed; 4873 4874 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4875 pcp_trylock_prepare(UP_flags); 4876 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4877 if (!pcp) 4878 goto failed_irq; 4879 4880 /* Attempt the batch allocation */ 4881 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4882 while (nr_populated < nr_pages) { 4883 4884 /* Skip existing pages */ 4885 if (page_array[nr_populated]) { 4886 nr_populated++; 4887 continue; 4888 } 4889 4890 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4891 pcp, pcp_list); 4892 if (unlikely(!page)) { 4893 /* Try and allocate at least one page */ 4894 if (!nr_account) { 4895 pcp_spin_unlock(pcp); 4896 goto failed_irq; 4897 } 4898 break; 4899 } 4900 nr_account++; 4901 4902 prep_new_page(page, 0, gfp, 0); 4903 set_page_refcounted(page); 4904 page_array[nr_populated++] = page; 4905 } 4906 4907 pcp_spin_unlock(pcp); 4908 pcp_trylock_finish(UP_flags); 4909 4910 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4911 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4912 4913 out: 4914 return nr_populated; 4915 4916 failed_irq: 4917 pcp_trylock_finish(UP_flags); 4918 4919 failed: 4920 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4921 if (page) 4922 page_array[nr_populated++] = page; 4923 goto out; 4924 } 4925 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4926 4927 /* 4928 * This is the 'heart' of the zoned buddy allocator. 4929 */ 4930 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 4931 int preferred_nid, nodemask_t *nodemask) 4932 { 4933 struct page *page; 4934 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4935 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4936 struct alloc_context ac = { }; 4937 4938 /* 4939 * There are several places where we assume that the order value is sane 4940 * so bail out early if the request is out of bound. 4941 */ 4942 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4943 return NULL; 4944 4945 gfp &= gfp_allowed_mask; 4946 /* 4947 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4948 * resp. GFP_NOIO which has to be inherited for all allocation requests 4949 * from a particular context which has been marked by 4950 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4951 * movable zones are not used during allocation. 4952 */ 4953 gfp = current_gfp_context(gfp); 4954 alloc_gfp = gfp; 4955 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4956 &alloc_gfp, &alloc_flags)) 4957 return NULL; 4958 4959 /* 4960 * Forbid the first pass from falling back to types that fragment 4961 * memory until all local zones are considered. 4962 */ 4963 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4964 4965 /* First allocation attempt */ 4966 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4967 if (likely(page)) 4968 goto out; 4969 4970 alloc_gfp = gfp; 4971 ac.spread_dirty_pages = false; 4972 4973 /* 4974 * Restore the original nodemask if it was potentially replaced with 4975 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4976 */ 4977 ac.nodemask = nodemask; 4978 4979 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4980 4981 out: 4982 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4983 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4984 free_frozen_pages(page, order); 4985 page = NULL; 4986 } 4987 4988 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4989 kmsan_alloc_page(page, order, alloc_gfp); 4990 4991 return page; 4992 } 4993 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 4994 4995 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4996 int preferred_nid, nodemask_t *nodemask) 4997 { 4998 struct page *page; 4999 5000 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5001 if (page) 5002 set_page_refcounted(page); 5003 return page; 5004 } 5005 EXPORT_SYMBOL(__alloc_pages_noprof); 5006 5007 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5008 nodemask_t *nodemask) 5009 { 5010 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5011 preferred_nid, nodemask); 5012 return page_rmappable_folio(page); 5013 } 5014 EXPORT_SYMBOL(__folio_alloc_noprof); 5015 5016 /* 5017 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5018 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5019 * you need to access high mem. 5020 */ 5021 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5022 { 5023 struct page *page; 5024 5025 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5026 if (!page) 5027 return 0; 5028 return (unsigned long) page_address(page); 5029 } 5030 EXPORT_SYMBOL(get_free_pages_noprof); 5031 5032 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5033 { 5034 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5035 } 5036 EXPORT_SYMBOL(get_zeroed_page_noprof); 5037 5038 /** 5039 * ___free_pages - Free pages allocated with alloc_pages(). 5040 * @page: The page pointer returned from alloc_pages(). 5041 * @order: The order of the allocation. 5042 * @fpi_flags: Free Page Internal flags. 5043 * 5044 * This function can free multi-page allocations that are not compound 5045 * pages. It does not check that the @order passed in matches that of 5046 * the allocation, so it is easy to leak memory. Freeing more memory 5047 * than was allocated will probably emit a warning. 5048 * 5049 * If the last reference to this page is speculative, it will be released 5050 * by put_page() which only frees the first page of a non-compound 5051 * allocation. To prevent the remaining pages from being leaked, we free 5052 * the subsequent pages here. If you want to use the page's reference 5053 * count to decide when to free the allocation, you should allocate a 5054 * compound page, and use put_page() instead of __free_pages(). 5055 * 5056 * Context: May be called in interrupt context or while holding a normal 5057 * spinlock, but not in NMI context or while holding a raw spinlock. 5058 */ 5059 static void ___free_pages(struct page *page, unsigned int order, 5060 fpi_t fpi_flags) 5061 { 5062 /* get PageHead before we drop reference */ 5063 int head = PageHead(page); 5064 5065 if (put_page_testzero(page)) 5066 __free_frozen_pages(page, order, fpi_flags); 5067 else if (!head) { 5068 pgalloc_tag_sub_pages(page, (1 << order) - 1); 5069 while (order-- > 0) 5070 __free_frozen_pages(page + (1 << order), order, 5071 fpi_flags); 5072 } 5073 } 5074 void __free_pages(struct page *page, unsigned int order) 5075 { 5076 ___free_pages(page, order, FPI_NONE); 5077 } 5078 EXPORT_SYMBOL(__free_pages); 5079 5080 /* 5081 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5082 * page type (not only those that came from try_alloc_pages) 5083 */ 5084 void free_pages_nolock(struct page *page, unsigned int order) 5085 { 5086 ___free_pages(page, order, FPI_TRYLOCK); 5087 } 5088 5089 void free_pages(unsigned long addr, unsigned int order) 5090 { 5091 if (addr != 0) { 5092 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5093 __free_pages(virt_to_page((void *)addr), order); 5094 } 5095 } 5096 5097 EXPORT_SYMBOL(free_pages); 5098 5099 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5100 size_t size) 5101 { 5102 if (addr) { 5103 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5104 struct page *page = virt_to_page((void *)addr); 5105 struct page *last = page + nr; 5106 5107 split_page_owner(page, order, 0); 5108 pgalloc_tag_split(page_folio(page), order, 0); 5109 split_page_memcg(page, order); 5110 while (page < --last) 5111 set_page_refcounted(last); 5112 5113 last = page + (1UL << order); 5114 for (page += nr; page < last; page++) 5115 __free_pages_ok(page, 0, FPI_TO_TAIL); 5116 } 5117 return (void *)addr; 5118 } 5119 5120 /** 5121 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5122 * @size: the number of bytes to allocate 5123 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5124 * 5125 * This function is similar to alloc_pages(), except that it allocates the 5126 * minimum number of pages to satisfy the request. alloc_pages() can only 5127 * allocate memory in power-of-two pages. 5128 * 5129 * This function is also limited by MAX_PAGE_ORDER. 5130 * 5131 * Memory allocated by this function must be released by free_pages_exact(). 5132 * 5133 * Return: pointer to the allocated area or %NULL in case of error. 5134 */ 5135 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5136 { 5137 unsigned int order = get_order(size); 5138 unsigned long addr; 5139 5140 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5141 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5142 5143 addr = get_free_pages_noprof(gfp_mask, order); 5144 return make_alloc_exact(addr, order, size); 5145 } 5146 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5147 5148 /** 5149 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5150 * pages on a node. 5151 * @nid: the preferred node ID where memory should be allocated 5152 * @size: the number of bytes to allocate 5153 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5154 * 5155 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5156 * back. 5157 * 5158 * Return: pointer to the allocated area or %NULL in case of error. 5159 */ 5160 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5161 { 5162 unsigned int order = get_order(size); 5163 struct page *p; 5164 5165 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5166 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5167 5168 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5169 if (!p) 5170 return NULL; 5171 return make_alloc_exact((unsigned long)page_address(p), order, size); 5172 } 5173 5174 /** 5175 * free_pages_exact - release memory allocated via alloc_pages_exact() 5176 * @virt: the value returned by alloc_pages_exact. 5177 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5178 * 5179 * Release the memory allocated by a previous call to alloc_pages_exact. 5180 */ 5181 void free_pages_exact(void *virt, size_t size) 5182 { 5183 unsigned long addr = (unsigned long)virt; 5184 unsigned long end = addr + PAGE_ALIGN(size); 5185 5186 while (addr < end) { 5187 free_page(addr); 5188 addr += PAGE_SIZE; 5189 } 5190 } 5191 EXPORT_SYMBOL(free_pages_exact); 5192 5193 /** 5194 * nr_free_zone_pages - count number of pages beyond high watermark 5195 * @offset: The zone index of the highest zone 5196 * 5197 * nr_free_zone_pages() counts the number of pages which are beyond the 5198 * high watermark within all zones at or below a given zone index. For each 5199 * zone, the number of pages is calculated as: 5200 * 5201 * nr_free_zone_pages = managed_pages - high_pages 5202 * 5203 * Return: number of pages beyond high watermark. 5204 */ 5205 static unsigned long nr_free_zone_pages(int offset) 5206 { 5207 struct zoneref *z; 5208 struct zone *zone; 5209 5210 /* Just pick one node, since fallback list is circular */ 5211 unsigned long sum = 0; 5212 5213 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5214 5215 for_each_zone_zonelist(zone, z, zonelist, offset) { 5216 unsigned long size = zone_managed_pages(zone); 5217 unsigned long high = high_wmark_pages(zone); 5218 if (size > high) 5219 sum += size - high; 5220 } 5221 5222 return sum; 5223 } 5224 5225 /** 5226 * nr_free_buffer_pages - count number of pages beyond high watermark 5227 * 5228 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5229 * watermark within ZONE_DMA and ZONE_NORMAL. 5230 * 5231 * Return: number of pages beyond high watermark within ZONE_DMA and 5232 * ZONE_NORMAL. 5233 */ 5234 unsigned long nr_free_buffer_pages(void) 5235 { 5236 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5237 } 5238 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5239 5240 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5241 { 5242 zoneref->zone = zone; 5243 zoneref->zone_idx = zone_idx(zone); 5244 } 5245 5246 /* 5247 * Builds allocation fallback zone lists. 5248 * 5249 * Add all populated zones of a node to the zonelist. 5250 */ 5251 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5252 { 5253 struct zone *zone; 5254 enum zone_type zone_type = MAX_NR_ZONES; 5255 int nr_zones = 0; 5256 5257 do { 5258 zone_type--; 5259 zone = pgdat->node_zones + zone_type; 5260 if (populated_zone(zone)) { 5261 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5262 check_highest_zone(zone_type); 5263 } 5264 } while (zone_type); 5265 5266 return nr_zones; 5267 } 5268 5269 #ifdef CONFIG_NUMA 5270 5271 static int __parse_numa_zonelist_order(char *s) 5272 { 5273 /* 5274 * We used to support different zonelists modes but they turned 5275 * out to be just not useful. Let's keep the warning in place 5276 * if somebody still use the cmd line parameter so that we do 5277 * not fail it silently 5278 */ 5279 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5280 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5281 return -EINVAL; 5282 } 5283 return 0; 5284 } 5285 5286 static char numa_zonelist_order[] = "Node"; 5287 #define NUMA_ZONELIST_ORDER_LEN 16 5288 /* 5289 * sysctl handler for numa_zonelist_order 5290 */ 5291 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5292 void *buffer, size_t *length, loff_t *ppos) 5293 { 5294 if (write) 5295 return __parse_numa_zonelist_order(buffer); 5296 return proc_dostring(table, write, buffer, length, ppos); 5297 } 5298 5299 static int node_load[MAX_NUMNODES]; 5300 5301 /** 5302 * find_next_best_node - find the next node that should appear in a given node's fallback list 5303 * @node: node whose fallback list we're appending 5304 * @used_node_mask: nodemask_t of already used nodes 5305 * 5306 * We use a number of factors to determine which is the next node that should 5307 * appear on a given node's fallback list. The node should not have appeared 5308 * already in @node's fallback list, and it should be the next closest node 5309 * according to the distance array (which contains arbitrary distance values 5310 * from each node to each node in the system), and should also prefer nodes 5311 * with no CPUs, since presumably they'll have very little allocation pressure 5312 * on them otherwise. 5313 * 5314 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5315 */ 5316 int find_next_best_node(int node, nodemask_t *used_node_mask) 5317 { 5318 int n, val; 5319 int min_val = INT_MAX; 5320 int best_node = NUMA_NO_NODE; 5321 5322 /* 5323 * Use the local node if we haven't already, but for memoryless local 5324 * node, we should skip it and fall back to other nodes. 5325 */ 5326 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5327 node_set(node, *used_node_mask); 5328 return node; 5329 } 5330 5331 for_each_node_state(n, N_MEMORY) { 5332 5333 /* Don't want a node to appear more than once */ 5334 if (node_isset(n, *used_node_mask)) 5335 continue; 5336 5337 /* Use the distance array to find the distance */ 5338 val = node_distance(node, n); 5339 5340 /* Penalize nodes under us ("prefer the next node") */ 5341 val += (n < node); 5342 5343 /* Give preference to headless and unused nodes */ 5344 if (!cpumask_empty(cpumask_of_node(n))) 5345 val += PENALTY_FOR_NODE_WITH_CPUS; 5346 5347 /* Slight preference for less loaded node */ 5348 val *= MAX_NUMNODES; 5349 val += node_load[n]; 5350 5351 if (val < min_val) { 5352 min_val = val; 5353 best_node = n; 5354 } 5355 } 5356 5357 if (best_node >= 0) 5358 node_set(best_node, *used_node_mask); 5359 5360 return best_node; 5361 } 5362 5363 5364 /* 5365 * Build zonelists ordered by node and zones within node. 5366 * This results in maximum locality--normal zone overflows into local 5367 * DMA zone, if any--but risks exhausting DMA zone. 5368 */ 5369 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5370 unsigned nr_nodes) 5371 { 5372 struct zoneref *zonerefs; 5373 int i; 5374 5375 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5376 5377 for (i = 0; i < nr_nodes; i++) { 5378 int nr_zones; 5379 5380 pg_data_t *node = NODE_DATA(node_order[i]); 5381 5382 nr_zones = build_zonerefs_node(node, zonerefs); 5383 zonerefs += nr_zones; 5384 } 5385 zonerefs->zone = NULL; 5386 zonerefs->zone_idx = 0; 5387 } 5388 5389 /* 5390 * Build __GFP_THISNODE zonelists 5391 */ 5392 static void build_thisnode_zonelists(pg_data_t *pgdat) 5393 { 5394 struct zoneref *zonerefs; 5395 int nr_zones; 5396 5397 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5398 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5399 zonerefs += nr_zones; 5400 zonerefs->zone = NULL; 5401 zonerefs->zone_idx = 0; 5402 } 5403 5404 static void build_zonelists(pg_data_t *pgdat) 5405 { 5406 static int node_order[MAX_NUMNODES]; 5407 int node, nr_nodes = 0; 5408 nodemask_t used_mask = NODE_MASK_NONE; 5409 int local_node, prev_node; 5410 5411 /* NUMA-aware ordering of nodes */ 5412 local_node = pgdat->node_id; 5413 prev_node = local_node; 5414 5415 memset(node_order, 0, sizeof(node_order)); 5416 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5417 /* 5418 * We don't want to pressure a particular node. 5419 * So adding penalty to the first node in same 5420 * distance group to make it round-robin. 5421 */ 5422 if (node_distance(local_node, node) != 5423 node_distance(local_node, prev_node)) 5424 node_load[node] += 1; 5425 5426 node_order[nr_nodes++] = node; 5427 prev_node = node; 5428 } 5429 5430 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5431 build_thisnode_zonelists(pgdat); 5432 pr_info("Fallback order for Node %d: ", local_node); 5433 for (node = 0; node < nr_nodes; node++) 5434 pr_cont("%d ", node_order[node]); 5435 pr_cont("\n"); 5436 } 5437 5438 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5439 /* 5440 * Return node id of node used for "local" allocations. 5441 * I.e., first node id of first zone in arg node's generic zonelist. 5442 * Used for initializing percpu 'numa_mem', which is used primarily 5443 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5444 */ 5445 int local_memory_node(int node) 5446 { 5447 struct zoneref *z; 5448 5449 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5450 gfp_zone(GFP_KERNEL), 5451 NULL); 5452 return zonelist_node_idx(z); 5453 } 5454 #endif 5455 5456 static void setup_min_unmapped_ratio(void); 5457 static void setup_min_slab_ratio(void); 5458 #else /* CONFIG_NUMA */ 5459 5460 static void build_zonelists(pg_data_t *pgdat) 5461 { 5462 struct zoneref *zonerefs; 5463 int nr_zones; 5464 5465 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5466 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5467 zonerefs += nr_zones; 5468 5469 zonerefs->zone = NULL; 5470 zonerefs->zone_idx = 0; 5471 } 5472 5473 #endif /* CONFIG_NUMA */ 5474 5475 /* 5476 * Boot pageset table. One per cpu which is going to be used for all 5477 * zones and all nodes. The parameters will be set in such a way 5478 * that an item put on a list will immediately be handed over to 5479 * the buddy list. This is safe since pageset manipulation is done 5480 * with interrupts disabled. 5481 * 5482 * The boot_pagesets must be kept even after bootup is complete for 5483 * unused processors and/or zones. They do play a role for bootstrapping 5484 * hotplugged processors. 5485 * 5486 * zoneinfo_show() and maybe other functions do 5487 * not check if the processor is online before following the pageset pointer. 5488 * Other parts of the kernel may not check if the zone is available. 5489 */ 5490 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5491 /* These effectively disable the pcplists in the boot pageset completely */ 5492 #define BOOT_PAGESET_HIGH 0 5493 #define BOOT_PAGESET_BATCH 1 5494 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5495 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5496 5497 static void __build_all_zonelists(void *data) 5498 { 5499 int nid; 5500 int __maybe_unused cpu; 5501 pg_data_t *self = data; 5502 unsigned long flags; 5503 5504 /* 5505 * The zonelist_update_seq must be acquired with irqsave because the 5506 * reader can be invoked from IRQ with GFP_ATOMIC. 5507 */ 5508 write_seqlock_irqsave(&zonelist_update_seq, flags); 5509 /* 5510 * Also disable synchronous printk() to prevent any printk() from 5511 * trying to hold port->lock, for 5512 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5513 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5514 */ 5515 printk_deferred_enter(); 5516 5517 #ifdef CONFIG_NUMA 5518 memset(node_load, 0, sizeof(node_load)); 5519 #endif 5520 5521 /* 5522 * This node is hotadded and no memory is yet present. So just 5523 * building zonelists is fine - no need to touch other nodes. 5524 */ 5525 if (self && !node_online(self->node_id)) { 5526 build_zonelists(self); 5527 } else { 5528 /* 5529 * All possible nodes have pgdat preallocated 5530 * in free_area_init 5531 */ 5532 for_each_node(nid) { 5533 pg_data_t *pgdat = NODE_DATA(nid); 5534 5535 build_zonelists(pgdat); 5536 } 5537 5538 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5539 /* 5540 * We now know the "local memory node" for each node-- 5541 * i.e., the node of the first zone in the generic zonelist. 5542 * Set up numa_mem percpu variable for on-line cpus. During 5543 * boot, only the boot cpu should be on-line; we'll init the 5544 * secondary cpus' numa_mem as they come on-line. During 5545 * node/memory hotplug, we'll fixup all on-line cpus. 5546 */ 5547 for_each_online_cpu(cpu) 5548 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5549 #endif 5550 } 5551 5552 printk_deferred_exit(); 5553 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5554 } 5555 5556 static noinline void __init 5557 build_all_zonelists_init(void) 5558 { 5559 int cpu; 5560 5561 __build_all_zonelists(NULL); 5562 5563 /* 5564 * Initialize the boot_pagesets that are going to be used 5565 * for bootstrapping processors. The real pagesets for 5566 * each zone will be allocated later when the per cpu 5567 * allocator is available. 5568 * 5569 * boot_pagesets are used also for bootstrapping offline 5570 * cpus if the system is already booted because the pagesets 5571 * are needed to initialize allocators on a specific cpu too. 5572 * F.e. the percpu allocator needs the page allocator which 5573 * needs the percpu allocator in order to allocate its pagesets 5574 * (a chicken-egg dilemma). 5575 */ 5576 for_each_possible_cpu(cpu) 5577 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5578 5579 mminit_verify_zonelist(); 5580 cpuset_init_current_mems_allowed(); 5581 } 5582 5583 /* 5584 * unless system_state == SYSTEM_BOOTING. 5585 * 5586 * __ref due to call of __init annotated helper build_all_zonelists_init 5587 * [protected by SYSTEM_BOOTING]. 5588 */ 5589 void __ref build_all_zonelists(pg_data_t *pgdat) 5590 { 5591 unsigned long vm_total_pages; 5592 5593 if (system_state == SYSTEM_BOOTING) { 5594 build_all_zonelists_init(); 5595 } else { 5596 __build_all_zonelists(pgdat); 5597 /* cpuset refresh routine should be here */ 5598 } 5599 /* Get the number of free pages beyond high watermark in all zones. */ 5600 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5601 /* 5602 * Disable grouping by mobility if the number of pages in the 5603 * system is too low to allow the mechanism to work. It would be 5604 * more accurate, but expensive to check per-zone. This check is 5605 * made on memory-hotadd so a system can start with mobility 5606 * disabled and enable it later 5607 */ 5608 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5609 page_group_by_mobility_disabled = 1; 5610 else 5611 page_group_by_mobility_disabled = 0; 5612 5613 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5614 nr_online_nodes, 5615 str_off_on(page_group_by_mobility_disabled), 5616 vm_total_pages); 5617 #ifdef CONFIG_NUMA 5618 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5619 #endif 5620 } 5621 5622 static int zone_batchsize(struct zone *zone) 5623 { 5624 #ifdef CONFIG_MMU 5625 int batch; 5626 5627 /* 5628 * The number of pages to batch allocate is either ~0.1% 5629 * of the zone or 1MB, whichever is smaller. The batch 5630 * size is striking a balance between allocation latency 5631 * and zone lock contention. 5632 */ 5633 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5634 batch /= 4; /* We effectively *= 4 below */ 5635 if (batch < 1) 5636 batch = 1; 5637 5638 /* 5639 * Clamp the batch to a 2^n - 1 value. Having a power 5640 * of 2 value was found to be more likely to have 5641 * suboptimal cache aliasing properties in some cases. 5642 * 5643 * For example if 2 tasks are alternately allocating 5644 * batches of pages, one task can end up with a lot 5645 * of pages of one half of the possible page colors 5646 * and the other with pages of the other colors. 5647 */ 5648 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5649 5650 return batch; 5651 5652 #else 5653 /* The deferral and batching of frees should be suppressed under NOMMU 5654 * conditions. 5655 * 5656 * The problem is that NOMMU needs to be able to allocate large chunks 5657 * of contiguous memory as there's no hardware page translation to 5658 * assemble apparent contiguous memory from discontiguous pages. 5659 * 5660 * Queueing large contiguous runs of pages for batching, however, 5661 * causes the pages to actually be freed in smaller chunks. As there 5662 * can be a significant delay between the individual batches being 5663 * recycled, this leads to the once large chunks of space being 5664 * fragmented and becoming unavailable for high-order allocations. 5665 */ 5666 return 0; 5667 #endif 5668 } 5669 5670 static int percpu_pagelist_high_fraction; 5671 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5672 int high_fraction) 5673 { 5674 #ifdef CONFIG_MMU 5675 int high; 5676 int nr_split_cpus; 5677 unsigned long total_pages; 5678 5679 if (!high_fraction) { 5680 /* 5681 * By default, the high value of the pcp is based on the zone 5682 * low watermark so that if they are full then background 5683 * reclaim will not be started prematurely. 5684 */ 5685 total_pages = low_wmark_pages(zone); 5686 } else { 5687 /* 5688 * If percpu_pagelist_high_fraction is configured, the high 5689 * value is based on a fraction of the managed pages in the 5690 * zone. 5691 */ 5692 total_pages = zone_managed_pages(zone) / high_fraction; 5693 } 5694 5695 /* 5696 * Split the high value across all online CPUs local to the zone. Note 5697 * that early in boot that CPUs may not be online yet and that during 5698 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5699 * onlined. For memory nodes that have no CPUs, split the high value 5700 * across all online CPUs to mitigate the risk that reclaim is triggered 5701 * prematurely due to pages stored on pcp lists. 5702 */ 5703 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5704 if (!nr_split_cpus) 5705 nr_split_cpus = num_online_cpus(); 5706 high = total_pages / nr_split_cpus; 5707 5708 /* 5709 * Ensure high is at least batch*4. The multiple is based on the 5710 * historical relationship between high and batch. 5711 */ 5712 high = max(high, batch << 2); 5713 5714 return high; 5715 #else 5716 return 0; 5717 #endif 5718 } 5719 5720 /* 5721 * pcp->high and pcp->batch values are related and generally batch is lower 5722 * than high. They are also related to pcp->count such that count is lower 5723 * than high, and as soon as it reaches high, the pcplist is flushed. 5724 * 5725 * However, guaranteeing these relations at all times would require e.g. write 5726 * barriers here but also careful usage of read barriers at the read side, and 5727 * thus be prone to error and bad for performance. Thus the update only prevents 5728 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5729 * should ensure they can cope with those fields changing asynchronously, and 5730 * fully trust only the pcp->count field on the local CPU with interrupts 5731 * disabled. 5732 * 5733 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5734 * outside of boot time (or some other assurance that no concurrent updaters 5735 * exist). 5736 */ 5737 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5738 unsigned long high_max, unsigned long batch) 5739 { 5740 WRITE_ONCE(pcp->batch, batch); 5741 WRITE_ONCE(pcp->high_min, high_min); 5742 WRITE_ONCE(pcp->high_max, high_max); 5743 } 5744 5745 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5746 { 5747 int pindex; 5748 5749 memset(pcp, 0, sizeof(*pcp)); 5750 memset(pzstats, 0, sizeof(*pzstats)); 5751 5752 spin_lock_init(&pcp->lock); 5753 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5754 INIT_LIST_HEAD(&pcp->lists[pindex]); 5755 5756 /* 5757 * Set batch and high values safe for a boot pageset. A true percpu 5758 * pageset's initialization will update them subsequently. Here we don't 5759 * need to be as careful as pageset_update() as nobody can access the 5760 * pageset yet. 5761 */ 5762 pcp->high_min = BOOT_PAGESET_HIGH; 5763 pcp->high_max = BOOT_PAGESET_HIGH; 5764 pcp->batch = BOOT_PAGESET_BATCH; 5765 pcp->free_count = 0; 5766 } 5767 5768 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5769 unsigned long high_max, unsigned long batch) 5770 { 5771 struct per_cpu_pages *pcp; 5772 int cpu; 5773 5774 for_each_possible_cpu(cpu) { 5775 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5776 pageset_update(pcp, high_min, high_max, batch); 5777 } 5778 } 5779 5780 /* 5781 * Calculate and set new high and batch values for all per-cpu pagesets of a 5782 * zone based on the zone's size. 5783 */ 5784 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5785 { 5786 int new_high_min, new_high_max, new_batch; 5787 5788 new_batch = max(1, zone_batchsize(zone)); 5789 if (percpu_pagelist_high_fraction) { 5790 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5791 percpu_pagelist_high_fraction); 5792 /* 5793 * PCP high is tuned manually, disable auto-tuning via 5794 * setting high_min and high_max to the manual value. 5795 */ 5796 new_high_max = new_high_min; 5797 } else { 5798 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5799 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5800 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5801 } 5802 5803 if (zone->pageset_high_min == new_high_min && 5804 zone->pageset_high_max == new_high_max && 5805 zone->pageset_batch == new_batch) 5806 return; 5807 5808 zone->pageset_high_min = new_high_min; 5809 zone->pageset_high_max = new_high_max; 5810 zone->pageset_batch = new_batch; 5811 5812 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5813 new_batch); 5814 } 5815 5816 void __meminit setup_zone_pageset(struct zone *zone) 5817 { 5818 int cpu; 5819 5820 /* Size may be 0 on !SMP && !NUMA */ 5821 if (sizeof(struct per_cpu_zonestat) > 0) 5822 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5823 5824 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5825 for_each_possible_cpu(cpu) { 5826 struct per_cpu_pages *pcp; 5827 struct per_cpu_zonestat *pzstats; 5828 5829 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5830 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5831 per_cpu_pages_init(pcp, pzstats); 5832 } 5833 5834 zone_set_pageset_high_and_batch(zone, 0); 5835 } 5836 5837 /* 5838 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5839 * page high values need to be recalculated. 5840 */ 5841 static void zone_pcp_update(struct zone *zone, int cpu_online) 5842 { 5843 mutex_lock(&pcp_batch_high_lock); 5844 zone_set_pageset_high_and_batch(zone, cpu_online); 5845 mutex_unlock(&pcp_batch_high_lock); 5846 } 5847 5848 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5849 { 5850 struct per_cpu_pages *pcp; 5851 struct cpu_cacheinfo *cci; 5852 5853 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5854 cci = get_cpu_cacheinfo(cpu); 5855 /* 5856 * If data cache slice of CPU is large enough, "pcp->batch" 5857 * pages can be preserved in PCP before draining PCP for 5858 * consecutive high-order pages freeing without allocation. 5859 * This can reduce zone lock contention without hurting 5860 * cache-hot pages sharing. 5861 */ 5862 spin_lock(&pcp->lock); 5863 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5864 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5865 else 5866 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5867 spin_unlock(&pcp->lock); 5868 } 5869 5870 void setup_pcp_cacheinfo(unsigned int cpu) 5871 { 5872 struct zone *zone; 5873 5874 for_each_populated_zone(zone) 5875 zone_pcp_update_cacheinfo(zone, cpu); 5876 } 5877 5878 /* 5879 * Allocate per cpu pagesets and initialize them. 5880 * Before this call only boot pagesets were available. 5881 */ 5882 void __init setup_per_cpu_pageset(void) 5883 { 5884 struct pglist_data *pgdat; 5885 struct zone *zone; 5886 int __maybe_unused cpu; 5887 5888 for_each_populated_zone(zone) 5889 setup_zone_pageset(zone); 5890 5891 #ifdef CONFIG_NUMA 5892 /* 5893 * Unpopulated zones continue using the boot pagesets. 5894 * The numa stats for these pagesets need to be reset. 5895 * Otherwise, they will end up skewing the stats of 5896 * the nodes these zones are associated with. 5897 */ 5898 for_each_possible_cpu(cpu) { 5899 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5900 memset(pzstats->vm_numa_event, 0, 5901 sizeof(pzstats->vm_numa_event)); 5902 } 5903 #endif 5904 5905 for_each_online_pgdat(pgdat) 5906 pgdat->per_cpu_nodestats = 5907 alloc_percpu(struct per_cpu_nodestat); 5908 } 5909 5910 __meminit void zone_pcp_init(struct zone *zone) 5911 { 5912 /* 5913 * per cpu subsystem is not up at this point. The following code 5914 * relies on the ability of the linker to provide the 5915 * offset of a (static) per cpu variable into the per cpu area. 5916 */ 5917 zone->per_cpu_pageset = &boot_pageset; 5918 zone->per_cpu_zonestats = &boot_zonestats; 5919 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5920 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5921 zone->pageset_batch = BOOT_PAGESET_BATCH; 5922 5923 if (populated_zone(zone)) 5924 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5925 zone->present_pages, zone_batchsize(zone)); 5926 } 5927 5928 static void setup_per_zone_lowmem_reserve(void); 5929 5930 void adjust_managed_page_count(struct page *page, long count) 5931 { 5932 atomic_long_add(count, &page_zone(page)->managed_pages); 5933 totalram_pages_add(count); 5934 setup_per_zone_lowmem_reserve(); 5935 } 5936 EXPORT_SYMBOL(adjust_managed_page_count); 5937 5938 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5939 { 5940 void *pos; 5941 unsigned long pages = 0; 5942 5943 start = (void *)PAGE_ALIGN((unsigned long)start); 5944 end = (void *)((unsigned long)end & PAGE_MASK); 5945 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5946 struct page *page = virt_to_page(pos); 5947 void *direct_map_addr; 5948 5949 /* 5950 * 'direct_map_addr' might be different from 'pos' 5951 * because some architectures' virt_to_page() 5952 * work with aliases. Getting the direct map 5953 * address ensures that we get a _writeable_ 5954 * alias for the memset(). 5955 */ 5956 direct_map_addr = page_address(page); 5957 /* 5958 * Perform a kasan-unchecked memset() since this memory 5959 * has not been initialized. 5960 */ 5961 direct_map_addr = kasan_reset_tag(direct_map_addr); 5962 if ((unsigned int)poison <= 0xFF) 5963 memset(direct_map_addr, poison, PAGE_SIZE); 5964 5965 free_reserved_page(page); 5966 } 5967 5968 if (pages && s) 5969 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5970 5971 return pages; 5972 } 5973 5974 void free_reserved_page(struct page *page) 5975 { 5976 clear_page_tag_ref(page); 5977 ClearPageReserved(page); 5978 init_page_count(page); 5979 __free_page(page); 5980 adjust_managed_page_count(page, 1); 5981 } 5982 EXPORT_SYMBOL(free_reserved_page); 5983 5984 static int page_alloc_cpu_dead(unsigned int cpu) 5985 { 5986 struct zone *zone; 5987 5988 lru_add_drain_cpu(cpu); 5989 mlock_drain_remote(cpu); 5990 drain_pages(cpu); 5991 5992 /* 5993 * Spill the event counters of the dead processor 5994 * into the current processors event counters. 5995 * This artificially elevates the count of the current 5996 * processor. 5997 */ 5998 vm_events_fold_cpu(cpu); 5999 6000 /* 6001 * Zero the differential counters of the dead processor 6002 * so that the vm statistics are consistent. 6003 * 6004 * This is only okay since the processor is dead and cannot 6005 * race with what we are doing. 6006 */ 6007 cpu_vm_stats_fold(cpu); 6008 6009 for_each_populated_zone(zone) 6010 zone_pcp_update(zone, 0); 6011 6012 return 0; 6013 } 6014 6015 static int page_alloc_cpu_online(unsigned int cpu) 6016 { 6017 struct zone *zone; 6018 6019 for_each_populated_zone(zone) 6020 zone_pcp_update(zone, 1); 6021 return 0; 6022 } 6023 6024 void __init page_alloc_init_cpuhp(void) 6025 { 6026 int ret; 6027 6028 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6029 "mm/page_alloc:pcp", 6030 page_alloc_cpu_online, 6031 page_alloc_cpu_dead); 6032 WARN_ON(ret < 0); 6033 } 6034 6035 /* 6036 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6037 * or min_free_kbytes changes. 6038 */ 6039 static void calculate_totalreserve_pages(void) 6040 { 6041 struct pglist_data *pgdat; 6042 unsigned long reserve_pages = 0; 6043 enum zone_type i, j; 6044 6045 for_each_online_pgdat(pgdat) { 6046 6047 pgdat->totalreserve_pages = 0; 6048 6049 for (i = 0; i < MAX_NR_ZONES; i++) { 6050 struct zone *zone = pgdat->node_zones + i; 6051 long max = 0; 6052 unsigned long managed_pages = zone_managed_pages(zone); 6053 6054 /* Find valid and maximum lowmem_reserve in the zone */ 6055 for (j = i; j < MAX_NR_ZONES; j++) { 6056 if (zone->lowmem_reserve[j] > max) 6057 max = zone->lowmem_reserve[j]; 6058 } 6059 6060 /* we treat the high watermark as reserved pages. */ 6061 max += high_wmark_pages(zone); 6062 6063 if (max > managed_pages) 6064 max = managed_pages; 6065 6066 pgdat->totalreserve_pages += max; 6067 6068 reserve_pages += max; 6069 } 6070 } 6071 totalreserve_pages = reserve_pages; 6072 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6073 } 6074 6075 /* 6076 * setup_per_zone_lowmem_reserve - called whenever 6077 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6078 * has a correct pages reserved value, so an adequate number of 6079 * pages are left in the zone after a successful __alloc_pages(). 6080 */ 6081 static void setup_per_zone_lowmem_reserve(void) 6082 { 6083 struct pglist_data *pgdat; 6084 enum zone_type i, j; 6085 6086 for_each_online_pgdat(pgdat) { 6087 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6088 struct zone *zone = &pgdat->node_zones[i]; 6089 int ratio = sysctl_lowmem_reserve_ratio[i]; 6090 bool clear = !ratio || !zone_managed_pages(zone); 6091 unsigned long managed_pages = 0; 6092 6093 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6094 struct zone *upper_zone = &pgdat->node_zones[j]; 6095 6096 managed_pages += zone_managed_pages(upper_zone); 6097 6098 if (clear) 6099 zone->lowmem_reserve[j] = 0; 6100 else 6101 zone->lowmem_reserve[j] = managed_pages / ratio; 6102 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6103 zone->lowmem_reserve[j]); 6104 } 6105 } 6106 } 6107 6108 /* update totalreserve_pages */ 6109 calculate_totalreserve_pages(); 6110 } 6111 6112 static void __setup_per_zone_wmarks(void) 6113 { 6114 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6115 unsigned long lowmem_pages = 0; 6116 struct zone *zone; 6117 unsigned long flags; 6118 6119 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6120 for_each_zone(zone) { 6121 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6122 lowmem_pages += zone_managed_pages(zone); 6123 } 6124 6125 for_each_zone(zone) { 6126 u64 tmp; 6127 6128 spin_lock_irqsave(&zone->lock, flags); 6129 tmp = (u64)pages_min * zone_managed_pages(zone); 6130 tmp = div64_ul(tmp, lowmem_pages); 6131 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6132 /* 6133 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6134 * need highmem and movable zones pages, so cap pages_min 6135 * to a small value here. 6136 * 6137 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6138 * deltas control async page reclaim, and so should 6139 * not be capped for highmem and movable zones. 6140 */ 6141 unsigned long min_pages; 6142 6143 min_pages = zone_managed_pages(zone) / 1024; 6144 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6145 zone->_watermark[WMARK_MIN] = min_pages; 6146 } else { 6147 /* 6148 * If it's a lowmem zone, reserve a number of pages 6149 * proportionate to the zone's size. 6150 */ 6151 zone->_watermark[WMARK_MIN] = tmp; 6152 } 6153 6154 /* 6155 * Set the kswapd watermarks distance according to the 6156 * scale factor in proportion to available memory, but 6157 * ensure a minimum size on small systems. 6158 */ 6159 tmp = max_t(u64, tmp >> 2, 6160 mult_frac(zone_managed_pages(zone), 6161 watermark_scale_factor, 10000)); 6162 6163 zone->watermark_boost = 0; 6164 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6165 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6166 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6167 trace_mm_setup_per_zone_wmarks(zone); 6168 6169 spin_unlock_irqrestore(&zone->lock, flags); 6170 } 6171 6172 /* update totalreserve_pages */ 6173 calculate_totalreserve_pages(); 6174 } 6175 6176 /** 6177 * setup_per_zone_wmarks - called when min_free_kbytes changes 6178 * or when memory is hot-{added|removed} 6179 * 6180 * Ensures that the watermark[min,low,high] values for each zone are set 6181 * correctly with respect to min_free_kbytes. 6182 */ 6183 void setup_per_zone_wmarks(void) 6184 { 6185 struct zone *zone; 6186 static DEFINE_SPINLOCK(lock); 6187 6188 spin_lock(&lock); 6189 __setup_per_zone_wmarks(); 6190 spin_unlock(&lock); 6191 6192 /* 6193 * The watermark size have changed so update the pcpu batch 6194 * and high limits or the limits may be inappropriate. 6195 */ 6196 for_each_zone(zone) 6197 zone_pcp_update(zone, 0); 6198 } 6199 6200 /* 6201 * Initialise min_free_kbytes. 6202 * 6203 * For small machines we want it small (128k min). For large machines 6204 * we want it large (256MB max). But it is not linear, because network 6205 * bandwidth does not increase linearly with machine size. We use 6206 * 6207 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6208 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6209 * 6210 * which yields 6211 * 6212 * 16MB: 512k 6213 * 32MB: 724k 6214 * 64MB: 1024k 6215 * 128MB: 1448k 6216 * 256MB: 2048k 6217 * 512MB: 2896k 6218 * 1024MB: 4096k 6219 * 2048MB: 5792k 6220 * 4096MB: 8192k 6221 * 8192MB: 11584k 6222 * 16384MB: 16384k 6223 */ 6224 void calculate_min_free_kbytes(void) 6225 { 6226 unsigned long lowmem_kbytes; 6227 int new_min_free_kbytes; 6228 6229 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6230 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6231 6232 if (new_min_free_kbytes > user_min_free_kbytes) 6233 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6234 else 6235 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6236 new_min_free_kbytes, user_min_free_kbytes); 6237 6238 } 6239 6240 int __meminit init_per_zone_wmark_min(void) 6241 { 6242 calculate_min_free_kbytes(); 6243 setup_per_zone_wmarks(); 6244 refresh_zone_stat_thresholds(); 6245 setup_per_zone_lowmem_reserve(); 6246 6247 #ifdef CONFIG_NUMA 6248 setup_min_unmapped_ratio(); 6249 setup_min_slab_ratio(); 6250 #endif 6251 6252 khugepaged_min_free_kbytes_update(); 6253 6254 return 0; 6255 } 6256 postcore_initcall(init_per_zone_wmark_min) 6257 6258 /* 6259 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6260 * that we can call two helper functions whenever min_free_kbytes 6261 * changes. 6262 */ 6263 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6264 void *buffer, size_t *length, loff_t *ppos) 6265 { 6266 int rc; 6267 6268 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6269 if (rc) 6270 return rc; 6271 6272 if (write) { 6273 user_min_free_kbytes = min_free_kbytes; 6274 setup_per_zone_wmarks(); 6275 } 6276 return 0; 6277 } 6278 6279 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6280 void *buffer, size_t *length, loff_t *ppos) 6281 { 6282 int rc; 6283 6284 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6285 if (rc) 6286 return rc; 6287 6288 if (write) 6289 setup_per_zone_wmarks(); 6290 6291 return 0; 6292 } 6293 6294 #ifdef CONFIG_NUMA 6295 static void setup_min_unmapped_ratio(void) 6296 { 6297 pg_data_t *pgdat; 6298 struct zone *zone; 6299 6300 for_each_online_pgdat(pgdat) 6301 pgdat->min_unmapped_pages = 0; 6302 6303 for_each_zone(zone) 6304 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6305 sysctl_min_unmapped_ratio) / 100; 6306 } 6307 6308 6309 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6310 void *buffer, size_t *length, loff_t *ppos) 6311 { 6312 int rc; 6313 6314 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6315 if (rc) 6316 return rc; 6317 6318 setup_min_unmapped_ratio(); 6319 6320 return 0; 6321 } 6322 6323 static void setup_min_slab_ratio(void) 6324 { 6325 pg_data_t *pgdat; 6326 struct zone *zone; 6327 6328 for_each_online_pgdat(pgdat) 6329 pgdat->min_slab_pages = 0; 6330 6331 for_each_zone(zone) 6332 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6333 sysctl_min_slab_ratio) / 100; 6334 } 6335 6336 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6337 void *buffer, size_t *length, loff_t *ppos) 6338 { 6339 int rc; 6340 6341 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6342 if (rc) 6343 return rc; 6344 6345 setup_min_slab_ratio(); 6346 6347 return 0; 6348 } 6349 #endif 6350 6351 /* 6352 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6353 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6354 * whenever sysctl_lowmem_reserve_ratio changes. 6355 * 6356 * The reserve ratio obviously has absolutely no relation with the 6357 * minimum watermarks. The lowmem reserve ratio can only make sense 6358 * if in function of the boot time zone sizes. 6359 */ 6360 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6361 int write, void *buffer, size_t *length, loff_t *ppos) 6362 { 6363 int i; 6364 6365 proc_dointvec_minmax(table, write, buffer, length, ppos); 6366 6367 for (i = 0; i < MAX_NR_ZONES; i++) { 6368 if (sysctl_lowmem_reserve_ratio[i] < 1) 6369 sysctl_lowmem_reserve_ratio[i] = 0; 6370 } 6371 6372 setup_per_zone_lowmem_reserve(); 6373 return 0; 6374 } 6375 6376 /* 6377 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6378 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6379 * pagelist can have before it gets flushed back to buddy allocator. 6380 */ 6381 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6382 int write, void *buffer, size_t *length, loff_t *ppos) 6383 { 6384 struct zone *zone; 6385 int old_percpu_pagelist_high_fraction; 6386 int ret; 6387 6388 mutex_lock(&pcp_batch_high_lock); 6389 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6390 6391 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6392 if (!write || ret < 0) 6393 goto out; 6394 6395 /* Sanity checking to avoid pcp imbalance */ 6396 if (percpu_pagelist_high_fraction && 6397 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6398 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6399 ret = -EINVAL; 6400 goto out; 6401 } 6402 6403 /* No change? */ 6404 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6405 goto out; 6406 6407 for_each_populated_zone(zone) 6408 zone_set_pageset_high_and_batch(zone, 0); 6409 out: 6410 mutex_unlock(&pcp_batch_high_lock); 6411 return ret; 6412 } 6413 6414 static const struct ctl_table page_alloc_sysctl_table[] = { 6415 { 6416 .procname = "min_free_kbytes", 6417 .data = &min_free_kbytes, 6418 .maxlen = sizeof(min_free_kbytes), 6419 .mode = 0644, 6420 .proc_handler = min_free_kbytes_sysctl_handler, 6421 .extra1 = SYSCTL_ZERO, 6422 }, 6423 { 6424 .procname = "watermark_boost_factor", 6425 .data = &watermark_boost_factor, 6426 .maxlen = sizeof(watermark_boost_factor), 6427 .mode = 0644, 6428 .proc_handler = proc_dointvec_minmax, 6429 .extra1 = SYSCTL_ZERO, 6430 }, 6431 { 6432 .procname = "watermark_scale_factor", 6433 .data = &watermark_scale_factor, 6434 .maxlen = sizeof(watermark_scale_factor), 6435 .mode = 0644, 6436 .proc_handler = watermark_scale_factor_sysctl_handler, 6437 .extra1 = SYSCTL_ONE, 6438 .extra2 = SYSCTL_THREE_THOUSAND, 6439 }, 6440 { 6441 .procname = "defrag_mode", 6442 .data = &defrag_mode, 6443 .maxlen = sizeof(defrag_mode), 6444 .mode = 0644, 6445 .proc_handler = proc_dointvec_minmax, 6446 .extra1 = SYSCTL_ZERO, 6447 .extra2 = SYSCTL_ONE, 6448 }, 6449 { 6450 .procname = "percpu_pagelist_high_fraction", 6451 .data = &percpu_pagelist_high_fraction, 6452 .maxlen = sizeof(percpu_pagelist_high_fraction), 6453 .mode = 0644, 6454 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6455 .extra1 = SYSCTL_ZERO, 6456 }, 6457 { 6458 .procname = "lowmem_reserve_ratio", 6459 .data = &sysctl_lowmem_reserve_ratio, 6460 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6461 .mode = 0644, 6462 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6463 }, 6464 #ifdef CONFIG_NUMA 6465 { 6466 .procname = "numa_zonelist_order", 6467 .data = &numa_zonelist_order, 6468 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6469 .mode = 0644, 6470 .proc_handler = numa_zonelist_order_handler, 6471 }, 6472 { 6473 .procname = "min_unmapped_ratio", 6474 .data = &sysctl_min_unmapped_ratio, 6475 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6476 .mode = 0644, 6477 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6478 .extra1 = SYSCTL_ZERO, 6479 .extra2 = SYSCTL_ONE_HUNDRED, 6480 }, 6481 { 6482 .procname = "min_slab_ratio", 6483 .data = &sysctl_min_slab_ratio, 6484 .maxlen = sizeof(sysctl_min_slab_ratio), 6485 .mode = 0644, 6486 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6487 .extra1 = SYSCTL_ZERO, 6488 .extra2 = SYSCTL_ONE_HUNDRED, 6489 }, 6490 #endif 6491 }; 6492 6493 void __init page_alloc_sysctl_init(void) 6494 { 6495 register_sysctl_init("vm", page_alloc_sysctl_table); 6496 } 6497 6498 #ifdef CONFIG_CONTIG_ALLOC 6499 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6500 static void alloc_contig_dump_pages(struct list_head *page_list) 6501 { 6502 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6503 6504 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6505 struct page *page; 6506 6507 dump_stack(); 6508 list_for_each_entry(page, page_list, lru) 6509 dump_page(page, "migration failure"); 6510 } 6511 } 6512 6513 /* 6514 * [start, end) must belong to a single zone. 6515 * @migratetype: using migratetype to filter the type of migration in 6516 * trace_mm_alloc_contig_migrate_range_info. 6517 */ 6518 static int __alloc_contig_migrate_range(struct compact_control *cc, 6519 unsigned long start, unsigned long end, int migratetype) 6520 { 6521 /* This function is based on compact_zone() from compaction.c. */ 6522 unsigned int nr_reclaimed; 6523 unsigned long pfn = start; 6524 unsigned int tries = 0; 6525 int ret = 0; 6526 struct migration_target_control mtc = { 6527 .nid = zone_to_nid(cc->zone), 6528 .gfp_mask = cc->gfp_mask, 6529 .reason = MR_CONTIG_RANGE, 6530 }; 6531 struct page *page; 6532 unsigned long total_mapped = 0; 6533 unsigned long total_migrated = 0; 6534 unsigned long total_reclaimed = 0; 6535 6536 lru_cache_disable(); 6537 6538 while (pfn < end || !list_empty(&cc->migratepages)) { 6539 if (fatal_signal_pending(current)) { 6540 ret = -EINTR; 6541 break; 6542 } 6543 6544 if (list_empty(&cc->migratepages)) { 6545 cc->nr_migratepages = 0; 6546 ret = isolate_migratepages_range(cc, pfn, end); 6547 if (ret && ret != -EAGAIN) 6548 break; 6549 pfn = cc->migrate_pfn; 6550 tries = 0; 6551 } else if (++tries == 5) { 6552 ret = -EBUSY; 6553 break; 6554 } 6555 6556 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6557 &cc->migratepages); 6558 cc->nr_migratepages -= nr_reclaimed; 6559 6560 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6561 total_reclaimed += nr_reclaimed; 6562 list_for_each_entry(page, &cc->migratepages, lru) { 6563 struct folio *folio = page_folio(page); 6564 6565 total_mapped += folio_mapped(folio) * 6566 folio_nr_pages(folio); 6567 } 6568 } 6569 6570 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6571 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6572 6573 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6574 total_migrated += cc->nr_migratepages; 6575 6576 /* 6577 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6578 * to retry again over this error, so do the same here. 6579 */ 6580 if (ret == -ENOMEM) 6581 break; 6582 } 6583 6584 lru_cache_enable(); 6585 if (ret < 0) { 6586 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6587 alloc_contig_dump_pages(&cc->migratepages); 6588 putback_movable_pages(&cc->migratepages); 6589 } 6590 6591 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6592 total_migrated, 6593 total_reclaimed, 6594 total_mapped); 6595 return (ret < 0) ? ret : 0; 6596 } 6597 6598 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6599 { 6600 int order; 6601 6602 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6603 struct page *page, *next; 6604 int nr_pages = 1 << order; 6605 6606 list_for_each_entry_safe(page, next, &list[order], lru) { 6607 int i; 6608 6609 post_alloc_hook(page, order, gfp_mask); 6610 set_page_refcounted(page); 6611 if (!order) 6612 continue; 6613 6614 split_page(page, order); 6615 6616 /* Add all subpages to the order-0 head, in sequence. */ 6617 list_del(&page->lru); 6618 for (i = 0; i < nr_pages; i++) 6619 list_add_tail(&page[i].lru, &list[0]); 6620 } 6621 } 6622 } 6623 6624 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6625 { 6626 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6627 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6628 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6629 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6630 6631 /* 6632 * We are given the range to allocate; node, mobility and placement 6633 * hints are irrelevant at this point. We'll simply ignore them. 6634 */ 6635 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6636 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6637 6638 /* 6639 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6640 * selected action flags. 6641 */ 6642 if (gfp_mask & ~(reclaim_mask | action_mask)) 6643 return -EINVAL; 6644 6645 /* 6646 * Flags to control page compaction/migration/reclaim, to free up our 6647 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6648 * for them. 6649 * 6650 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6651 * to not degrade callers. 6652 */ 6653 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6654 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6655 return 0; 6656 } 6657 6658 /** 6659 * alloc_contig_range() -- tries to allocate given range of pages 6660 * @start: start PFN to allocate 6661 * @end: one-past-the-last PFN to allocate 6662 * @migratetype: migratetype of the underlying pageblocks (either 6663 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6664 * in range must have the same migratetype and it must 6665 * be either of the two. 6666 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6667 * action and reclaim modifiers are supported. Reclaim modifiers 6668 * control allocation behavior during compaction/migration/reclaim. 6669 * 6670 * The PFN range does not have to be pageblock aligned. The PFN range must 6671 * belong to a single zone. 6672 * 6673 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6674 * pageblocks in the range. Once isolated, the pageblocks should not 6675 * be modified by others. 6676 * 6677 * Return: zero on success or negative error code. On success all 6678 * pages which PFN is in [start, end) are allocated for the caller and 6679 * need to be freed with free_contig_range(). 6680 */ 6681 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6682 unsigned migratetype, gfp_t gfp_mask) 6683 { 6684 unsigned long outer_start, outer_end; 6685 int ret = 0; 6686 6687 struct compact_control cc = { 6688 .nr_migratepages = 0, 6689 .order = -1, 6690 .zone = page_zone(pfn_to_page(start)), 6691 .mode = MIGRATE_SYNC, 6692 .ignore_skip_hint = true, 6693 .no_set_skip_hint = true, 6694 .alloc_contig = true, 6695 }; 6696 INIT_LIST_HEAD(&cc.migratepages); 6697 6698 gfp_mask = current_gfp_context(gfp_mask); 6699 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6700 return -EINVAL; 6701 6702 /* 6703 * What we do here is we mark all pageblocks in range as 6704 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6705 * have different sizes, and due to the way page allocator 6706 * work, start_isolate_page_range() has special handlings for this. 6707 * 6708 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6709 * migrate the pages from an unaligned range (ie. pages that 6710 * we are interested in). This will put all the pages in 6711 * range back to page allocator as MIGRATE_ISOLATE. 6712 * 6713 * When this is done, we take the pages in range from page 6714 * allocator removing them from the buddy system. This way 6715 * page allocator will never consider using them. 6716 * 6717 * This lets us mark the pageblocks back as 6718 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6719 * aligned range but not in the unaligned, original range are 6720 * put back to page allocator so that buddy can use them. 6721 */ 6722 6723 ret = start_isolate_page_range(start, end, migratetype, 0); 6724 if (ret) 6725 goto done; 6726 6727 drain_all_pages(cc.zone); 6728 6729 /* 6730 * In case of -EBUSY, we'd like to know which page causes problem. 6731 * So, just fall through. test_pages_isolated() has a tracepoint 6732 * which will report the busy page. 6733 * 6734 * It is possible that busy pages could become available before 6735 * the call to test_pages_isolated, and the range will actually be 6736 * allocated. So, if we fall through be sure to clear ret so that 6737 * -EBUSY is not accidentally used or returned to caller. 6738 */ 6739 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6740 if (ret && ret != -EBUSY) 6741 goto done; 6742 6743 /* 6744 * When in-use hugetlb pages are migrated, they may simply be released 6745 * back into the free hugepage pool instead of being returned to the 6746 * buddy system. After the migration of in-use huge pages is completed, 6747 * we will invoke replace_free_hugepage_folios() to ensure that these 6748 * hugepages are properly released to the buddy system. 6749 */ 6750 ret = replace_free_hugepage_folios(start, end); 6751 if (ret) 6752 goto done; 6753 6754 /* 6755 * Pages from [start, end) are within a pageblock_nr_pages 6756 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6757 * more, all pages in [start, end) are free in page allocator. 6758 * What we are going to do is to allocate all pages from 6759 * [start, end) (that is remove them from page allocator). 6760 * 6761 * The only problem is that pages at the beginning and at the 6762 * end of interesting range may be not aligned with pages that 6763 * page allocator holds, ie. they can be part of higher order 6764 * pages. Because of this, we reserve the bigger range and 6765 * once this is done free the pages we are not interested in. 6766 * 6767 * We don't have to hold zone->lock here because the pages are 6768 * isolated thus they won't get removed from buddy. 6769 */ 6770 outer_start = find_large_buddy(start); 6771 6772 /* Make sure the range is really isolated. */ 6773 if (test_pages_isolated(outer_start, end, 0)) { 6774 ret = -EBUSY; 6775 goto done; 6776 } 6777 6778 /* Grab isolated pages from freelists. */ 6779 outer_end = isolate_freepages_range(&cc, outer_start, end); 6780 if (!outer_end) { 6781 ret = -EBUSY; 6782 goto done; 6783 } 6784 6785 if (!(gfp_mask & __GFP_COMP)) { 6786 split_free_pages(cc.freepages, gfp_mask); 6787 6788 /* Free head and tail (if any) */ 6789 if (start != outer_start) 6790 free_contig_range(outer_start, start - outer_start); 6791 if (end != outer_end) 6792 free_contig_range(end, outer_end - end); 6793 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6794 struct page *head = pfn_to_page(start); 6795 int order = ilog2(end - start); 6796 6797 check_new_pages(head, order); 6798 prep_new_page(head, order, gfp_mask, 0); 6799 set_page_refcounted(head); 6800 } else { 6801 ret = -EINVAL; 6802 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6803 start, end, outer_start, outer_end); 6804 } 6805 done: 6806 undo_isolate_page_range(start, end, migratetype); 6807 return ret; 6808 } 6809 EXPORT_SYMBOL(alloc_contig_range_noprof); 6810 6811 static int __alloc_contig_pages(unsigned long start_pfn, 6812 unsigned long nr_pages, gfp_t gfp_mask) 6813 { 6814 unsigned long end_pfn = start_pfn + nr_pages; 6815 6816 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6817 gfp_mask); 6818 } 6819 6820 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6821 unsigned long nr_pages) 6822 { 6823 unsigned long i, end_pfn = start_pfn + nr_pages; 6824 struct page *page; 6825 6826 for (i = start_pfn; i < end_pfn; i++) { 6827 page = pfn_to_online_page(i); 6828 if (!page) 6829 return false; 6830 6831 if (page_zone(page) != z) 6832 return false; 6833 6834 if (PageReserved(page)) 6835 return false; 6836 6837 if (PageHuge(page)) 6838 return false; 6839 } 6840 return true; 6841 } 6842 6843 static bool zone_spans_last_pfn(const struct zone *zone, 6844 unsigned long start_pfn, unsigned long nr_pages) 6845 { 6846 unsigned long last_pfn = start_pfn + nr_pages - 1; 6847 6848 return zone_spans_pfn(zone, last_pfn); 6849 } 6850 6851 /** 6852 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6853 * @nr_pages: Number of contiguous pages to allocate 6854 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 6855 * action and reclaim modifiers are supported. Reclaim modifiers 6856 * control allocation behavior during compaction/migration/reclaim. 6857 * @nid: Target node 6858 * @nodemask: Mask for other possible nodes 6859 * 6860 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6861 * on an applicable zonelist to find a contiguous pfn range which can then be 6862 * tried for allocation with alloc_contig_range(). This routine is intended 6863 * for allocation requests which can not be fulfilled with the buddy allocator. 6864 * 6865 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6866 * power of two, then allocated range is also guaranteed to be aligned to same 6867 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6868 * 6869 * Allocated pages can be freed with free_contig_range() or by manually calling 6870 * __free_page() on each allocated page. 6871 * 6872 * Return: pointer to contiguous pages on success, or NULL if not successful. 6873 */ 6874 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6875 int nid, nodemask_t *nodemask) 6876 { 6877 unsigned long ret, pfn, flags; 6878 struct zonelist *zonelist; 6879 struct zone *zone; 6880 struct zoneref *z; 6881 6882 zonelist = node_zonelist(nid, gfp_mask); 6883 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6884 gfp_zone(gfp_mask), nodemask) { 6885 spin_lock_irqsave(&zone->lock, flags); 6886 6887 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6888 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6889 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6890 /* 6891 * We release the zone lock here because 6892 * alloc_contig_range() will also lock the zone 6893 * at some point. If there's an allocation 6894 * spinning on this lock, it may win the race 6895 * and cause alloc_contig_range() to fail... 6896 */ 6897 spin_unlock_irqrestore(&zone->lock, flags); 6898 ret = __alloc_contig_pages(pfn, nr_pages, 6899 gfp_mask); 6900 if (!ret) 6901 return pfn_to_page(pfn); 6902 spin_lock_irqsave(&zone->lock, flags); 6903 } 6904 pfn += nr_pages; 6905 } 6906 spin_unlock_irqrestore(&zone->lock, flags); 6907 } 6908 return NULL; 6909 } 6910 #endif /* CONFIG_CONTIG_ALLOC */ 6911 6912 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6913 { 6914 unsigned long count = 0; 6915 struct folio *folio = pfn_folio(pfn); 6916 6917 if (folio_test_large(folio)) { 6918 int expected = folio_nr_pages(folio); 6919 6920 if (nr_pages == expected) 6921 folio_put(folio); 6922 else 6923 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6924 pfn, nr_pages, expected); 6925 return; 6926 } 6927 6928 for (; nr_pages--; pfn++) { 6929 struct page *page = pfn_to_page(pfn); 6930 6931 count += page_count(page) != 1; 6932 __free_page(page); 6933 } 6934 WARN(count != 0, "%lu pages are still in use!\n", count); 6935 } 6936 EXPORT_SYMBOL(free_contig_range); 6937 6938 /* 6939 * Effectively disable pcplists for the zone by setting the high limit to 0 6940 * and draining all cpus. A concurrent page freeing on another CPU that's about 6941 * to put the page on pcplist will either finish before the drain and the page 6942 * will be drained, or observe the new high limit and skip the pcplist. 6943 * 6944 * Must be paired with a call to zone_pcp_enable(). 6945 */ 6946 void zone_pcp_disable(struct zone *zone) 6947 { 6948 mutex_lock(&pcp_batch_high_lock); 6949 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6950 __drain_all_pages(zone, true); 6951 } 6952 6953 void zone_pcp_enable(struct zone *zone) 6954 { 6955 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6956 zone->pageset_high_max, zone->pageset_batch); 6957 mutex_unlock(&pcp_batch_high_lock); 6958 } 6959 6960 void zone_pcp_reset(struct zone *zone) 6961 { 6962 int cpu; 6963 struct per_cpu_zonestat *pzstats; 6964 6965 if (zone->per_cpu_pageset != &boot_pageset) { 6966 for_each_online_cpu(cpu) { 6967 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6968 drain_zonestat(zone, pzstats); 6969 } 6970 free_percpu(zone->per_cpu_pageset); 6971 zone->per_cpu_pageset = &boot_pageset; 6972 if (zone->per_cpu_zonestats != &boot_zonestats) { 6973 free_percpu(zone->per_cpu_zonestats); 6974 zone->per_cpu_zonestats = &boot_zonestats; 6975 } 6976 } 6977 } 6978 6979 #ifdef CONFIG_MEMORY_HOTREMOVE 6980 /* 6981 * All pages in the range must be in a single zone, must not contain holes, 6982 * must span full sections, and must be isolated before calling this function. 6983 * 6984 * Returns the number of managed (non-PageOffline()) pages in the range: the 6985 * number of pages for which memory offlining code must adjust managed page 6986 * counters using adjust_managed_page_count(). 6987 */ 6988 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6989 unsigned long end_pfn) 6990 { 6991 unsigned long already_offline = 0, flags; 6992 unsigned long pfn = start_pfn; 6993 struct page *page; 6994 struct zone *zone; 6995 unsigned int order; 6996 6997 offline_mem_sections(pfn, end_pfn); 6998 zone = page_zone(pfn_to_page(pfn)); 6999 spin_lock_irqsave(&zone->lock, flags); 7000 while (pfn < end_pfn) { 7001 page = pfn_to_page(pfn); 7002 /* 7003 * The HWPoisoned page may be not in buddy system, and 7004 * page_count() is not 0. 7005 */ 7006 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7007 pfn++; 7008 continue; 7009 } 7010 /* 7011 * At this point all remaining PageOffline() pages have a 7012 * reference count of 0 and can simply be skipped. 7013 */ 7014 if (PageOffline(page)) { 7015 BUG_ON(page_count(page)); 7016 BUG_ON(PageBuddy(page)); 7017 already_offline++; 7018 pfn++; 7019 continue; 7020 } 7021 7022 BUG_ON(page_count(page)); 7023 BUG_ON(!PageBuddy(page)); 7024 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7025 order = buddy_order(page); 7026 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7027 pfn += (1 << order); 7028 } 7029 spin_unlock_irqrestore(&zone->lock, flags); 7030 7031 return end_pfn - start_pfn - already_offline; 7032 } 7033 #endif 7034 7035 /* 7036 * This function returns a stable result only if called under zone lock. 7037 */ 7038 bool is_free_buddy_page(const struct page *page) 7039 { 7040 unsigned long pfn = page_to_pfn(page); 7041 unsigned int order; 7042 7043 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7044 const struct page *head = page - (pfn & ((1 << order) - 1)); 7045 7046 if (PageBuddy(head) && 7047 buddy_order_unsafe(head) >= order) 7048 break; 7049 } 7050 7051 return order <= MAX_PAGE_ORDER; 7052 } 7053 EXPORT_SYMBOL(is_free_buddy_page); 7054 7055 #ifdef CONFIG_MEMORY_FAILURE 7056 static inline void add_to_free_list(struct page *page, struct zone *zone, 7057 unsigned int order, int migratetype, 7058 bool tail) 7059 { 7060 __add_to_free_list(page, zone, order, migratetype, tail); 7061 account_freepages(zone, 1 << order, migratetype); 7062 } 7063 7064 /* 7065 * Break down a higher-order page in sub-pages, and keep our target out of 7066 * buddy allocator. 7067 */ 7068 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7069 struct page *target, int low, int high, 7070 int migratetype) 7071 { 7072 unsigned long size = 1 << high; 7073 struct page *current_buddy; 7074 7075 while (high > low) { 7076 high--; 7077 size >>= 1; 7078 7079 if (target >= &page[size]) { 7080 current_buddy = page; 7081 page = page + size; 7082 } else { 7083 current_buddy = page + size; 7084 } 7085 7086 if (set_page_guard(zone, current_buddy, high)) 7087 continue; 7088 7089 add_to_free_list(current_buddy, zone, high, migratetype, false); 7090 set_buddy_order(current_buddy, high); 7091 } 7092 } 7093 7094 /* 7095 * Take a page that will be marked as poisoned off the buddy allocator. 7096 */ 7097 bool take_page_off_buddy(struct page *page) 7098 { 7099 struct zone *zone = page_zone(page); 7100 unsigned long pfn = page_to_pfn(page); 7101 unsigned long flags; 7102 unsigned int order; 7103 bool ret = false; 7104 7105 spin_lock_irqsave(&zone->lock, flags); 7106 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7107 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7108 int page_order = buddy_order(page_head); 7109 7110 if (PageBuddy(page_head) && page_order >= order) { 7111 unsigned long pfn_head = page_to_pfn(page_head); 7112 int migratetype = get_pfnblock_migratetype(page_head, 7113 pfn_head); 7114 7115 del_page_from_free_list(page_head, zone, page_order, 7116 migratetype); 7117 break_down_buddy_pages(zone, page_head, page, 0, 7118 page_order, migratetype); 7119 SetPageHWPoisonTakenOff(page); 7120 ret = true; 7121 break; 7122 } 7123 if (page_count(page_head) > 0) 7124 break; 7125 } 7126 spin_unlock_irqrestore(&zone->lock, flags); 7127 return ret; 7128 } 7129 7130 /* 7131 * Cancel takeoff done by take_page_off_buddy(). 7132 */ 7133 bool put_page_back_buddy(struct page *page) 7134 { 7135 struct zone *zone = page_zone(page); 7136 unsigned long flags; 7137 bool ret = false; 7138 7139 spin_lock_irqsave(&zone->lock, flags); 7140 if (put_page_testzero(page)) { 7141 unsigned long pfn = page_to_pfn(page); 7142 int migratetype = get_pfnblock_migratetype(page, pfn); 7143 7144 ClearPageHWPoisonTakenOff(page); 7145 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7146 if (TestClearPageHWPoison(page)) { 7147 ret = true; 7148 } 7149 } 7150 spin_unlock_irqrestore(&zone->lock, flags); 7151 7152 return ret; 7153 } 7154 #endif 7155 7156 #ifdef CONFIG_ZONE_DMA 7157 bool has_managed_dma(void) 7158 { 7159 struct pglist_data *pgdat; 7160 7161 for_each_online_pgdat(pgdat) { 7162 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7163 7164 if (managed_zone(zone)) 7165 return true; 7166 } 7167 return false; 7168 } 7169 #endif /* CONFIG_ZONE_DMA */ 7170 7171 #ifdef CONFIG_UNACCEPTED_MEMORY 7172 7173 /* Counts number of zones with unaccepted pages. */ 7174 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 7175 7176 static bool lazy_accept = true; 7177 7178 void unaccepted_cleanup_work(struct work_struct *work) 7179 { 7180 static_branch_dec(&zones_with_unaccepted_pages); 7181 } 7182 7183 static int __init accept_memory_parse(char *p) 7184 { 7185 if (!strcmp(p, "lazy")) { 7186 lazy_accept = true; 7187 return 0; 7188 } else if (!strcmp(p, "eager")) { 7189 lazy_accept = false; 7190 return 0; 7191 } else { 7192 return -EINVAL; 7193 } 7194 } 7195 early_param("accept_memory", accept_memory_parse); 7196 7197 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7198 { 7199 phys_addr_t start = page_to_phys(page); 7200 7201 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7202 } 7203 7204 static void __accept_page(struct zone *zone, unsigned long *flags, 7205 struct page *page) 7206 { 7207 bool last; 7208 7209 list_del(&page->lru); 7210 last = list_empty(&zone->unaccepted_pages); 7211 7212 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7213 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7214 __ClearPageUnaccepted(page); 7215 spin_unlock_irqrestore(&zone->lock, *flags); 7216 7217 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7218 7219 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7220 7221 if (last) { 7222 /* 7223 * There are two corner cases: 7224 * 7225 * - If allocation occurs during the CPU bring up, 7226 * static_branch_dec() cannot be used directly as 7227 * it causes a deadlock on cpu_hotplug_lock. 7228 * 7229 * Instead, use schedule_work() to prevent deadlock. 7230 * 7231 * - If allocation occurs before workqueues are initialized, 7232 * static_branch_dec() should be called directly. 7233 * 7234 * Workqueues are initialized before CPU bring up, so this 7235 * will not conflict with the first scenario. 7236 */ 7237 if (system_wq) 7238 schedule_work(&zone->unaccepted_cleanup); 7239 else 7240 unaccepted_cleanup_work(&zone->unaccepted_cleanup); 7241 } 7242 } 7243 7244 void accept_page(struct page *page) 7245 { 7246 struct zone *zone = page_zone(page); 7247 unsigned long flags; 7248 7249 spin_lock_irqsave(&zone->lock, flags); 7250 if (!PageUnaccepted(page)) { 7251 spin_unlock_irqrestore(&zone->lock, flags); 7252 return; 7253 } 7254 7255 /* Unlocks zone->lock */ 7256 __accept_page(zone, &flags, page); 7257 } 7258 7259 static bool try_to_accept_memory_one(struct zone *zone) 7260 { 7261 unsigned long flags; 7262 struct page *page; 7263 7264 spin_lock_irqsave(&zone->lock, flags); 7265 page = list_first_entry_or_null(&zone->unaccepted_pages, 7266 struct page, lru); 7267 if (!page) { 7268 spin_unlock_irqrestore(&zone->lock, flags); 7269 return false; 7270 } 7271 7272 /* Unlocks zone->lock */ 7273 __accept_page(zone, &flags, page); 7274 7275 return true; 7276 } 7277 7278 static inline bool has_unaccepted_memory(void) 7279 { 7280 return static_branch_unlikely(&zones_with_unaccepted_pages); 7281 } 7282 7283 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7284 { 7285 long to_accept, wmark; 7286 bool ret = false; 7287 7288 if (!has_unaccepted_memory()) 7289 return false; 7290 7291 if (list_empty(&zone->unaccepted_pages)) 7292 return false; 7293 7294 wmark = promo_wmark_pages(zone); 7295 7296 /* 7297 * Watermarks have not been initialized yet. 7298 * 7299 * Accepting one MAX_ORDER page to ensure progress. 7300 */ 7301 if (!wmark) 7302 return try_to_accept_memory_one(zone); 7303 7304 /* How much to accept to get to promo watermark? */ 7305 to_accept = wmark - 7306 (zone_page_state(zone, NR_FREE_PAGES) - 7307 __zone_watermark_unusable_free(zone, order, 0) - 7308 zone_page_state(zone, NR_UNACCEPTED)); 7309 7310 while (to_accept > 0) { 7311 if (!try_to_accept_memory_one(zone)) 7312 break; 7313 ret = true; 7314 to_accept -= MAX_ORDER_NR_PAGES; 7315 } 7316 7317 return ret; 7318 } 7319 7320 static bool __free_unaccepted(struct page *page) 7321 { 7322 struct zone *zone = page_zone(page); 7323 unsigned long flags; 7324 bool first = false; 7325 7326 if (!lazy_accept) 7327 return false; 7328 7329 spin_lock_irqsave(&zone->lock, flags); 7330 first = list_empty(&zone->unaccepted_pages); 7331 list_add_tail(&page->lru, &zone->unaccepted_pages); 7332 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7333 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7334 __SetPageUnaccepted(page); 7335 spin_unlock_irqrestore(&zone->lock, flags); 7336 7337 if (first) 7338 static_branch_inc(&zones_with_unaccepted_pages); 7339 7340 return true; 7341 } 7342 7343 #else 7344 7345 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7346 { 7347 return false; 7348 } 7349 7350 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7351 { 7352 return false; 7353 } 7354 7355 static bool __free_unaccepted(struct page *page) 7356 { 7357 BUILD_BUG(); 7358 return false; 7359 } 7360 7361 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7362 7363 /** 7364 * try_alloc_pages - opportunistic reentrant allocation from any context 7365 * @nid: node to allocate from 7366 * @order: allocation order size 7367 * 7368 * Allocates pages of a given order from the given node. This is safe to 7369 * call from any context (from atomic, NMI, and also reentrant 7370 * allocator -> tracepoint -> try_alloc_pages_noprof). 7371 * Allocation is best effort and to be expected to fail easily so nobody should 7372 * rely on the success. Failures are not reported via warn_alloc(). 7373 * See always fail conditions below. 7374 * 7375 * Return: allocated page or NULL on failure. 7376 */ 7377 struct page *try_alloc_pages_noprof(int nid, unsigned int order) 7378 { 7379 /* 7380 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7381 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7382 * is not safe in arbitrary context. 7383 * 7384 * These two are the conditions for gfpflags_allow_spinning() being true. 7385 * 7386 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason 7387 * to warn. Also warn would trigger printk() which is unsafe from 7388 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7389 * since the running context is unknown. 7390 * 7391 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7392 * is safe in any context. Also zeroing the page is mandatory for 7393 * BPF use cases. 7394 * 7395 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7396 * specify it here to highlight that try_alloc_pages() 7397 * doesn't want to deplete reserves. 7398 */ 7399 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC 7400 | __GFP_ACCOUNT; 7401 unsigned int alloc_flags = ALLOC_TRYLOCK; 7402 struct alloc_context ac = { }; 7403 struct page *page; 7404 7405 /* 7406 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7407 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7408 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7409 * mark the task as the owner of another rt_spin_lock which will 7410 * confuse PI logic, so return immediately if called form hard IRQ or 7411 * NMI. 7412 * 7413 * Note, irqs_disabled() case is ok. This function can be called 7414 * from raw_spin_lock_irqsave region. 7415 */ 7416 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7417 return NULL; 7418 if (!pcp_allowed_order(order)) 7419 return NULL; 7420 7421 #ifdef CONFIG_UNACCEPTED_MEMORY 7422 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7423 if (has_unaccepted_memory()) 7424 return NULL; 7425 #endif 7426 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7427 if (deferred_pages_enabled()) 7428 return NULL; 7429 7430 if (nid == NUMA_NO_NODE) 7431 nid = numa_node_id(); 7432 7433 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7434 &alloc_gfp, &alloc_flags); 7435 7436 /* 7437 * Best effort allocation from percpu free list. 7438 * If it's empty attempt to spin_trylock zone->lock. 7439 */ 7440 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7441 7442 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7443 7444 if (page) 7445 set_page_refcounted(page); 7446 7447 if (memcg_kmem_online() && page && 7448 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7449 free_pages_nolock(page, order); 7450 page = NULL; 7451 } 7452 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7453 kmsan_alloc_page(page, order, alloc_gfp); 7454 return page; 7455 } 7456