1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/bootmem.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/suspend.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/slab.h> 30 #include <linux/oom.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 #include <linux/stop_machine.h> 41 #include <linux/sort.h> 42 #include <linux/pfn.h> 43 #include <linux/backing-dev.h> 44 #include <linux/fault-inject.h> 45 #include <linux/page-isolation.h> 46 47 #include <asm/tlbflush.h> 48 #include <asm/div64.h> 49 #include "internal.h" 50 51 /* 52 * Array of node states. 53 */ 54 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 55 [N_POSSIBLE] = NODE_MASK_ALL, 56 [N_ONLINE] = { { [0] = 1UL } }, 57 #ifndef CONFIG_NUMA 58 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 59 #ifdef CONFIG_HIGHMEM 60 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 61 #endif 62 [N_CPU] = { { [0] = 1UL } }, 63 #endif /* NUMA */ 64 }; 65 EXPORT_SYMBOL(node_states); 66 67 unsigned long totalram_pages __read_mostly; 68 unsigned long totalreserve_pages __read_mostly; 69 long nr_swap_pages; 70 int percpu_pagelist_fraction; 71 72 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 73 int pageblock_order __read_mostly; 74 #endif 75 76 static void __free_pages_ok(struct page *page, unsigned int order); 77 78 /* 79 * results with 256, 32 in the lowmem_reserve sysctl: 80 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 81 * 1G machine -> (16M dma, 784M normal, 224M high) 82 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 83 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 84 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 85 * 86 * TBD: should special case ZONE_DMA32 machines here - in those we normally 87 * don't need any ZONE_NORMAL reservation 88 */ 89 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 90 #ifdef CONFIG_ZONE_DMA 91 256, 92 #endif 93 #ifdef CONFIG_ZONE_DMA32 94 256, 95 #endif 96 #ifdef CONFIG_HIGHMEM 97 32, 98 #endif 99 32, 100 }; 101 102 EXPORT_SYMBOL(totalram_pages); 103 104 static char * const zone_names[MAX_NR_ZONES] = { 105 #ifdef CONFIG_ZONE_DMA 106 "DMA", 107 #endif 108 #ifdef CONFIG_ZONE_DMA32 109 "DMA32", 110 #endif 111 "Normal", 112 #ifdef CONFIG_HIGHMEM 113 "HighMem", 114 #endif 115 "Movable", 116 }; 117 118 int min_free_kbytes = 1024; 119 120 unsigned long __meminitdata nr_kernel_pages; 121 unsigned long __meminitdata nr_all_pages; 122 static unsigned long __meminitdata dma_reserve; 123 124 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 125 /* 126 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 127 * ranges of memory (RAM) that may be registered with add_active_range(). 128 * Ranges passed to add_active_range() will be merged if possible 129 * so the number of times add_active_range() can be called is 130 * related to the number of nodes and the number of holes 131 */ 132 #ifdef CONFIG_MAX_ACTIVE_REGIONS 133 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 134 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 135 #else 136 #if MAX_NUMNODES >= 32 137 /* If there can be many nodes, allow up to 50 holes per node */ 138 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 139 #else 140 /* By default, allow up to 256 distinct regions */ 141 #define MAX_ACTIVE_REGIONS 256 142 #endif 143 #endif 144 145 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 146 static int __meminitdata nr_nodemap_entries; 147 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 148 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 150 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 151 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 153 unsigned long __initdata required_kernelcore; 154 static unsigned long __initdata required_movablecore; 155 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 156 157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 158 int movable_zone; 159 EXPORT_SYMBOL(movable_zone); 160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 161 162 #if MAX_NUMNODES > 1 163 int nr_node_ids __read_mostly = MAX_NUMNODES; 164 EXPORT_SYMBOL(nr_node_ids); 165 #endif 166 167 int page_group_by_mobility_disabled __read_mostly; 168 169 static void set_pageblock_migratetype(struct page *page, int migratetype) 170 { 171 set_pageblock_flags_group(page, (unsigned long)migratetype, 172 PB_migrate, PB_migrate_end); 173 } 174 175 #ifdef CONFIG_DEBUG_VM 176 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 177 { 178 int ret = 0; 179 unsigned seq; 180 unsigned long pfn = page_to_pfn(page); 181 182 do { 183 seq = zone_span_seqbegin(zone); 184 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 185 ret = 1; 186 else if (pfn < zone->zone_start_pfn) 187 ret = 1; 188 } while (zone_span_seqretry(zone, seq)); 189 190 return ret; 191 } 192 193 static int page_is_consistent(struct zone *zone, struct page *page) 194 { 195 if (!pfn_valid_within(page_to_pfn(page))) 196 return 0; 197 if (zone != page_zone(page)) 198 return 0; 199 200 return 1; 201 } 202 /* 203 * Temporary debugging check for pages not lying within a given zone. 204 */ 205 static int bad_range(struct zone *zone, struct page *page) 206 { 207 if (page_outside_zone_boundaries(zone, page)) 208 return 1; 209 if (!page_is_consistent(zone, page)) 210 return 1; 211 212 return 0; 213 } 214 #else 215 static inline int bad_range(struct zone *zone, struct page *page) 216 { 217 return 0; 218 } 219 #endif 220 221 static void bad_page(struct page *page) 222 { 223 printk(KERN_EMERG "Bad page state in process '%s'\n" 224 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 225 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 226 KERN_EMERG "Backtrace:\n", 227 current->comm, page, (int)(2*sizeof(unsigned long)), 228 (unsigned long)page->flags, page->mapping, 229 page_mapcount(page), page_count(page)); 230 dump_stack(); 231 page->flags &= ~(1 << PG_lru | 232 1 << PG_private | 233 1 << PG_locked | 234 1 << PG_active | 235 1 << PG_dirty | 236 1 << PG_reclaim | 237 1 << PG_slab | 238 1 << PG_swapcache | 239 1 << PG_writeback | 240 1 << PG_buddy ); 241 set_page_count(page, 0); 242 reset_page_mapcount(page); 243 page->mapping = NULL; 244 add_taint(TAINT_BAD_PAGE); 245 } 246 247 /* 248 * Higher-order pages are called "compound pages". They are structured thusly: 249 * 250 * The first PAGE_SIZE page is called the "head page". 251 * 252 * The remaining PAGE_SIZE pages are called "tail pages". 253 * 254 * All pages have PG_compound set. All pages have their ->private pointing at 255 * the head page (even the head page has this). 256 * 257 * The first tail page's ->lru.next holds the address of the compound page's 258 * put_page() function. Its ->lru.prev holds the order of allocation. 259 * This usage means that zero-order pages may not be compound. 260 */ 261 262 static void free_compound_page(struct page *page) 263 { 264 __free_pages_ok(page, compound_order(page)); 265 } 266 267 static void prep_compound_page(struct page *page, unsigned long order) 268 { 269 int i; 270 int nr_pages = 1 << order; 271 272 set_compound_page_dtor(page, free_compound_page); 273 set_compound_order(page, order); 274 __SetPageHead(page); 275 for (i = 1; i < nr_pages; i++) { 276 struct page *p = page + i; 277 278 __SetPageTail(p); 279 p->first_page = page; 280 } 281 } 282 283 static void destroy_compound_page(struct page *page, unsigned long order) 284 { 285 int i; 286 int nr_pages = 1 << order; 287 288 if (unlikely(compound_order(page) != order)) 289 bad_page(page); 290 291 if (unlikely(!PageHead(page))) 292 bad_page(page); 293 __ClearPageHead(page); 294 for (i = 1; i < nr_pages; i++) { 295 struct page *p = page + i; 296 297 if (unlikely(!PageTail(p) | 298 (p->first_page != page))) 299 bad_page(page); 300 __ClearPageTail(p); 301 } 302 } 303 304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 305 { 306 int i; 307 308 /* 309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 310 * and __GFP_HIGHMEM from hard or soft interrupt context. 311 */ 312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 313 for (i = 0; i < (1 << order); i++) 314 clear_highpage(page + i); 315 } 316 317 static inline void set_page_order(struct page *page, int order) 318 { 319 set_page_private(page, order); 320 __SetPageBuddy(page); 321 } 322 323 static inline void rmv_page_order(struct page *page) 324 { 325 __ClearPageBuddy(page); 326 set_page_private(page, 0); 327 } 328 329 /* 330 * Locate the struct page for both the matching buddy in our 331 * pair (buddy1) and the combined O(n+1) page they form (page). 332 * 333 * 1) Any buddy B1 will have an order O twin B2 which satisfies 334 * the following equation: 335 * B2 = B1 ^ (1 << O) 336 * For example, if the starting buddy (buddy2) is #8 its order 337 * 1 buddy is #10: 338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 339 * 340 * 2) Any buddy B will have an order O+1 parent P which 341 * satisfies the following equation: 342 * P = B & ~(1 << O) 343 * 344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 345 */ 346 static inline struct page * 347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 348 { 349 unsigned long buddy_idx = page_idx ^ (1 << order); 350 351 return page + (buddy_idx - page_idx); 352 } 353 354 static inline unsigned long 355 __find_combined_index(unsigned long page_idx, unsigned int order) 356 { 357 return (page_idx & ~(1 << order)); 358 } 359 360 /* 361 * This function checks whether a page is free && is the buddy 362 * we can do coalesce a page and its buddy if 363 * (a) the buddy is not in a hole && 364 * (b) the buddy is in the buddy system && 365 * (c) a page and its buddy have the same order && 366 * (d) a page and its buddy are in the same zone. 367 * 368 * For recording whether a page is in the buddy system, we use PG_buddy. 369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 370 * 371 * For recording page's order, we use page_private(page). 372 */ 373 static inline int page_is_buddy(struct page *page, struct page *buddy, 374 int order) 375 { 376 if (!pfn_valid_within(page_to_pfn(buddy))) 377 return 0; 378 379 if (page_zone_id(page) != page_zone_id(buddy)) 380 return 0; 381 382 if (PageBuddy(buddy) && page_order(buddy) == order) { 383 BUG_ON(page_count(buddy) != 0); 384 return 1; 385 } 386 return 0; 387 } 388 389 /* 390 * Freeing function for a buddy system allocator. 391 * 392 * The concept of a buddy system is to maintain direct-mapped table 393 * (containing bit values) for memory blocks of various "orders". 394 * The bottom level table contains the map for the smallest allocatable 395 * units of memory (here, pages), and each level above it describes 396 * pairs of units from the levels below, hence, "buddies". 397 * At a high level, all that happens here is marking the table entry 398 * at the bottom level available, and propagating the changes upward 399 * as necessary, plus some accounting needed to play nicely with other 400 * parts of the VM system. 401 * At each level, we keep a list of pages, which are heads of continuous 402 * free pages of length of (1 << order) and marked with PG_buddy. Page's 403 * order is recorded in page_private(page) field. 404 * So when we are allocating or freeing one, we can derive the state of the 405 * other. That is, if we allocate a small block, and both were 406 * free, the remainder of the region must be split into blocks. 407 * If a block is freed, and its buddy is also free, then this 408 * triggers coalescing into a block of larger size. 409 * 410 * -- wli 411 */ 412 413 static inline void __free_one_page(struct page *page, 414 struct zone *zone, unsigned int order) 415 { 416 unsigned long page_idx; 417 int order_size = 1 << order; 418 int migratetype = get_pageblock_migratetype(page); 419 420 if (unlikely(PageCompound(page))) 421 destroy_compound_page(page, order); 422 423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 424 425 VM_BUG_ON(page_idx & (order_size - 1)); 426 VM_BUG_ON(bad_range(zone, page)); 427 428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 429 while (order < MAX_ORDER-1) { 430 unsigned long combined_idx; 431 struct page *buddy; 432 433 buddy = __page_find_buddy(page, page_idx, order); 434 if (!page_is_buddy(page, buddy, order)) 435 break; /* Move the buddy up one level. */ 436 437 list_del(&buddy->lru); 438 zone->free_area[order].nr_free--; 439 rmv_page_order(buddy); 440 combined_idx = __find_combined_index(page_idx, order); 441 page = page + (combined_idx - page_idx); 442 page_idx = combined_idx; 443 order++; 444 } 445 set_page_order(page, order); 446 list_add(&page->lru, 447 &zone->free_area[order].free_list[migratetype]); 448 zone->free_area[order].nr_free++; 449 } 450 451 static inline int free_pages_check(struct page *page) 452 { 453 if (unlikely(page_mapcount(page) | 454 (page->mapping != NULL) | 455 (page_count(page) != 0) | 456 (page->flags & ( 457 1 << PG_lru | 458 1 << PG_private | 459 1 << PG_locked | 460 1 << PG_active | 461 1 << PG_slab | 462 1 << PG_swapcache | 463 1 << PG_writeback | 464 1 << PG_reserved | 465 1 << PG_buddy )))) 466 bad_page(page); 467 if (PageDirty(page)) 468 __ClearPageDirty(page); 469 /* 470 * For now, we report if PG_reserved was found set, but do not 471 * clear it, and do not free the page. But we shall soon need 472 * to do more, for when the ZERO_PAGE count wraps negative. 473 */ 474 return PageReserved(page); 475 } 476 477 /* 478 * Frees a list of pages. 479 * Assumes all pages on list are in same zone, and of same order. 480 * count is the number of pages to free. 481 * 482 * If the zone was previously in an "all pages pinned" state then look to 483 * see if this freeing clears that state. 484 * 485 * And clear the zone's pages_scanned counter, to hold off the "all pages are 486 * pinned" detection logic. 487 */ 488 static void free_pages_bulk(struct zone *zone, int count, 489 struct list_head *list, int order) 490 { 491 spin_lock(&zone->lock); 492 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 493 zone->pages_scanned = 0; 494 while (count--) { 495 struct page *page; 496 497 VM_BUG_ON(list_empty(list)); 498 page = list_entry(list->prev, struct page, lru); 499 /* have to delete it as __free_one_page list manipulates */ 500 list_del(&page->lru); 501 __free_one_page(page, zone, order); 502 } 503 spin_unlock(&zone->lock); 504 } 505 506 static void free_one_page(struct zone *zone, struct page *page, int order) 507 { 508 spin_lock(&zone->lock); 509 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 510 zone->pages_scanned = 0; 511 __free_one_page(page, zone, order); 512 spin_unlock(&zone->lock); 513 } 514 515 static void __free_pages_ok(struct page *page, unsigned int order) 516 { 517 unsigned long flags; 518 int i; 519 int reserved = 0; 520 521 for (i = 0 ; i < (1 << order) ; ++i) 522 reserved += free_pages_check(page + i); 523 if (reserved) 524 return; 525 526 if (!PageHighMem(page)) 527 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 528 arch_free_page(page, order); 529 kernel_map_pages(page, 1 << order, 0); 530 531 local_irq_save(flags); 532 __count_vm_events(PGFREE, 1 << order); 533 free_one_page(page_zone(page), page, order); 534 local_irq_restore(flags); 535 } 536 537 /* 538 * permit the bootmem allocator to evade page validation on high-order frees 539 */ 540 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 541 { 542 if (order == 0) { 543 __ClearPageReserved(page); 544 set_page_count(page, 0); 545 set_page_refcounted(page); 546 __free_page(page); 547 } else { 548 int loop; 549 550 prefetchw(page); 551 for (loop = 0; loop < BITS_PER_LONG; loop++) { 552 struct page *p = &page[loop]; 553 554 if (loop + 1 < BITS_PER_LONG) 555 prefetchw(p + 1); 556 __ClearPageReserved(p); 557 set_page_count(p, 0); 558 } 559 560 set_page_refcounted(page); 561 __free_pages(page, order); 562 } 563 } 564 565 566 /* 567 * The order of subdivision here is critical for the IO subsystem. 568 * Please do not alter this order without good reasons and regression 569 * testing. Specifically, as large blocks of memory are subdivided, 570 * the order in which smaller blocks are delivered depends on the order 571 * they're subdivided in this function. This is the primary factor 572 * influencing the order in which pages are delivered to the IO 573 * subsystem according to empirical testing, and this is also justified 574 * by considering the behavior of a buddy system containing a single 575 * large block of memory acted on by a series of small allocations. 576 * This behavior is a critical factor in sglist merging's success. 577 * 578 * -- wli 579 */ 580 static inline void expand(struct zone *zone, struct page *page, 581 int low, int high, struct free_area *area, 582 int migratetype) 583 { 584 unsigned long size = 1 << high; 585 586 while (high > low) { 587 area--; 588 high--; 589 size >>= 1; 590 VM_BUG_ON(bad_range(zone, &page[size])); 591 list_add(&page[size].lru, &area->free_list[migratetype]); 592 area->nr_free++; 593 set_page_order(&page[size], high); 594 } 595 } 596 597 /* 598 * This page is about to be returned from the page allocator 599 */ 600 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 601 { 602 if (unlikely(page_mapcount(page) | 603 (page->mapping != NULL) | 604 (page_count(page) != 0) | 605 (page->flags & ( 606 1 << PG_lru | 607 1 << PG_private | 608 1 << PG_locked | 609 1 << PG_active | 610 1 << PG_dirty | 611 1 << PG_slab | 612 1 << PG_swapcache | 613 1 << PG_writeback | 614 1 << PG_reserved | 615 1 << PG_buddy )))) 616 bad_page(page); 617 618 /* 619 * For now, we report if PG_reserved was found set, but do not 620 * clear it, and do not allocate the page: as a safety net. 621 */ 622 if (PageReserved(page)) 623 return 1; 624 625 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead | 626 1 << PG_referenced | 1 << PG_arch_1 | 627 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk); 628 set_page_private(page, 0); 629 set_page_refcounted(page); 630 631 arch_alloc_page(page, order); 632 kernel_map_pages(page, 1 << order, 1); 633 634 if (gfp_flags & __GFP_ZERO) 635 prep_zero_page(page, order, gfp_flags); 636 637 if (order && (gfp_flags & __GFP_COMP)) 638 prep_compound_page(page, order); 639 640 return 0; 641 } 642 643 /* 644 * Go through the free lists for the given migratetype and remove 645 * the smallest available page from the freelists 646 */ 647 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 648 int migratetype) 649 { 650 unsigned int current_order; 651 struct free_area * area; 652 struct page *page; 653 654 /* Find a page of the appropriate size in the preferred list */ 655 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 656 area = &(zone->free_area[current_order]); 657 if (list_empty(&area->free_list[migratetype])) 658 continue; 659 660 page = list_entry(area->free_list[migratetype].next, 661 struct page, lru); 662 list_del(&page->lru); 663 rmv_page_order(page); 664 area->nr_free--; 665 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 666 expand(zone, page, order, current_order, area, migratetype); 667 return page; 668 } 669 670 return NULL; 671 } 672 673 674 /* 675 * This array describes the order lists are fallen back to when 676 * the free lists for the desirable migrate type are depleted 677 */ 678 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 679 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 680 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 681 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 682 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 683 }; 684 685 /* 686 * Move the free pages in a range to the free lists of the requested type. 687 * Note that start_page and end_pages are not aligned on a pageblock 688 * boundary. If alignment is required, use move_freepages_block() 689 */ 690 int move_freepages(struct zone *zone, 691 struct page *start_page, struct page *end_page, 692 int migratetype) 693 { 694 struct page *page; 695 unsigned long order; 696 int pages_moved = 0; 697 698 #ifndef CONFIG_HOLES_IN_ZONE 699 /* 700 * page_zone is not safe to call in this context when 701 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 702 * anyway as we check zone boundaries in move_freepages_block(). 703 * Remove at a later date when no bug reports exist related to 704 * grouping pages by mobility 705 */ 706 BUG_ON(page_zone(start_page) != page_zone(end_page)); 707 #endif 708 709 for (page = start_page; page <= end_page;) { 710 if (!pfn_valid_within(page_to_pfn(page))) { 711 page++; 712 continue; 713 } 714 715 if (!PageBuddy(page)) { 716 page++; 717 continue; 718 } 719 720 order = page_order(page); 721 list_del(&page->lru); 722 list_add(&page->lru, 723 &zone->free_area[order].free_list[migratetype]); 724 page += 1 << order; 725 pages_moved += 1 << order; 726 } 727 728 return pages_moved; 729 } 730 731 int move_freepages_block(struct zone *zone, struct page *page, int migratetype) 732 { 733 unsigned long start_pfn, end_pfn; 734 struct page *start_page, *end_page; 735 736 start_pfn = page_to_pfn(page); 737 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 738 start_page = pfn_to_page(start_pfn); 739 end_page = start_page + pageblock_nr_pages - 1; 740 end_pfn = start_pfn + pageblock_nr_pages - 1; 741 742 /* Do not cross zone boundaries */ 743 if (start_pfn < zone->zone_start_pfn) 744 start_page = page; 745 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 746 return 0; 747 748 return move_freepages(zone, start_page, end_page, migratetype); 749 } 750 751 /* Remove an element from the buddy allocator from the fallback list */ 752 static struct page *__rmqueue_fallback(struct zone *zone, int order, 753 int start_migratetype) 754 { 755 struct free_area * area; 756 int current_order; 757 struct page *page; 758 int migratetype, i; 759 760 /* Find the largest possible block of pages in the other list */ 761 for (current_order = MAX_ORDER-1; current_order >= order; 762 --current_order) { 763 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 764 migratetype = fallbacks[start_migratetype][i]; 765 766 /* MIGRATE_RESERVE handled later if necessary */ 767 if (migratetype == MIGRATE_RESERVE) 768 continue; 769 770 area = &(zone->free_area[current_order]); 771 if (list_empty(&area->free_list[migratetype])) 772 continue; 773 774 page = list_entry(area->free_list[migratetype].next, 775 struct page, lru); 776 area->nr_free--; 777 778 /* 779 * If breaking a large block of pages, move all free 780 * pages to the preferred allocation list. If falling 781 * back for a reclaimable kernel allocation, be more 782 * agressive about taking ownership of free pages 783 */ 784 if (unlikely(current_order >= (pageblock_order >> 1)) || 785 start_migratetype == MIGRATE_RECLAIMABLE) { 786 unsigned long pages; 787 pages = move_freepages_block(zone, page, 788 start_migratetype); 789 790 /* Claim the whole block if over half of it is free */ 791 if (pages >= (1 << (pageblock_order-1))) 792 set_pageblock_migratetype(page, 793 start_migratetype); 794 795 migratetype = start_migratetype; 796 } 797 798 /* Remove the page from the freelists */ 799 list_del(&page->lru); 800 rmv_page_order(page); 801 __mod_zone_page_state(zone, NR_FREE_PAGES, 802 -(1UL << order)); 803 804 if (current_order == pageblock_order) 805 set_pageblock_migratetype(page, 806 start_migratetype); 807 808 expand(zone, page, order, current_order, area, migratetype); 809 return page; 810 } 811 } 812 813 /* Use MIGRATE_RESERVE rather than fail an allocation */ 814 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 815 } 816 817 /* 818 * Do the hard work of removing an element from the buddy allocator. 819 * Call me with the zone->lock already held. 820 */ 821 static struct page *__rmqueue(struct zone *zone, unsigned int order, 822 int migratetype) 823 { 824 struct page *page; 825 826 page = __rmqueue_smallest(zone, order, migratetype); 827 828 if (unlikely(!page)) 829 page = __rmqueue_fallback(zone, order, migratetype); 830 831 return page; 832 } 833 834 /* 835 * Obtain a specified number of elements from the buddy allocator, all under 836 * a single hold of the lock, for efficiency. Add them to the supplied list. 837 * Returns the number of new pages which were placed at *list. 838 */ 839 static int rmqueue_bulk(struct zone *zone, unsigned int order, 840 unsigned long count, struct list_head *list, 841 int migratetype) 842 { 843 int i; 844 845 spin_lock(&zone->lock); 846 for (i = 0; i < count; ++i) { 847 struct page *page = __rmqueue(zone, order, migratetype); 848 if (unlikely(page == NULL)) 849 break; 850 851 /* 852 * Split buddy pages returned by expand() are received here 853 * in physical page order. The page is added to the callers and 854 * list and the list head then moves forward. From the callers 855 * perspective, the linked list is ordered by page number in 856 * some conditions. This is useful for IO devices that can 857 * merge IO requests if the physical pages are ordered 858 * properly. 859 */ 860 list_add(&page->lru, list); 861 set_page_private(page, migratetype); 862 list = &page->lru; 863 } 864 spin_unlock(&zone->lock); 865 return i; 866 } 867 868 #ifdef CONFIG_NUMA 869 /* 870 * Called from the vmstat counter updater to drain pagesets of this 871 * currently executing processor on remote nodes after they have 872 * expired. 873 * 874 * Note that this function must be called with the thread pinned to 875 * a single processor. 876 */ 877 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 878 { 879 unsigned long flags; 880 int to_drain; 881 882 local_irq_save(flags); 883 if (pcp->count >= pcp->batch) 884 to_drain = pcp->batch; 885 else 886 to_drain = pcp->count; 887 free_pages_bulk(zone, to_drain, &pcp->list, 0); 888 pcp->count -= to_drain; 889 local_irq_restore(flags); 890 } 891 #endif 892 893 static void __drain_pages(unsigned int cpu) 894 { 895 unsigned long flags; 896 struct zone *zone; 897 int i; 898 899 for_each_zone(zone) { 900 struct per_cpu_pageset *pset; 901 902 if (!populated_zone(zone)) 903 continue; 904 905 pset = zone_pcp(zone, cpu); 906 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 907 struct per_cpu_pages *pcp; 908 909 pcp = &pset->pcp[i]; 910 local_irq_save(flags); 911 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 912 pcp->count = 0; 913 local_irq_restore(flags); 914 } 915 } 916 } 917 918 #ifdef CONFIG_HIBERNATION 919 920 void mark_free_pages(struct zone *zone) 921 { 922 unsigned long pfn, max_zone_pfn; 923 unsigned long flags; 924 int order, t; 925 struct list_head *curr; 926 927 if (!zone->spanned_pages) 928 return; 929 930 spin_lock_irqsave(&zone->lock, flags); 931 932 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 933 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 934 if (pfn_valid(pfn)) { 935 struct page *page = pfn_to_page(pfn); 936 937 if (!swsusp_page_is_forbidden(page)) 938 swsusp_unset_page_free(page); 939 } 940 941 for_each_migratetype_order(order, t) { 942 list_for_each(curr, &zone->free_area[order].free_list[t]) { 943 unsigned long i; 944 945 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 946 for (i = 0; i < (1UL << order); i++) 947 swsusp_set_page_free(pfn_to_page(pfn + i)); 948 } 949 } 950 spin_unlock_irqrestore(&zone->lock, flags); 951 } 952 #endif /* CONFIG_PM */ 953 954 /* 955 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 956 */ 957 void drain_local_pages(void) 958 { 959 unsigned long flags; 960 961 local_irq_save(flags); 962 __drain_pages(smp_processor_id()); 963 local_irq_restore(flags); 964 } 965 966 void smp_drain_local_pages(void *arg) 967 { 968 drain_local_pages(); 969 } 970 971 /* 972 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 973 */ 974 void drain_all_local_pages(void) 975 { 976 unsigned long flags; 977 978 local_irq_save(flags); 979 __drain_pages(smp_processor_id()); 980 local_irq_restore(flags); 981 982 smp_call_function(smp_drain_local_pages, NULL, 0, 1); 983 } 984 985 /* 986 * Free a 0-order page 987 */ 988 static void fastcall free_hot_cold_page(struct page *page, int cold) 989 { 990 struct zone *zone = page_zone(page); 991 struct per_cpu_pages *pcp; 992 unsigned long flags; 993 994 if (PageAnon(page)) 995 page->mapping = NULL; 996 if (free_pages_check(page)) 997 return; 998 999 if (!PageHighMem(page)) 1000 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1001 arch_free_page(page, 0); 1002 kernel_map_pages(page, 1, 0); 1003 1004 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 1005 local_irq_save(flags); 1006 __count_vm_event(PGFREE); 1007 list_add(&page->lru, &pcp->list); 1008 set_page_private(page, get_pageblock_migratetype(page)); 1009 pcp->count++; 1010 if (pcp->count >= pcp->high) { 1011 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1012 pcp->count -= pcp->batch; 1013 } 1014 local_irq_restore(flags); 1015 put_cpu(); 1016 } 1017 1018 void fastcall free_hot_page(struct page *page) 1019 { 1020 free_hot_cold_page(page, 0); 1021 } 1022 1023 void fastcall free_cold_page(struct page *page) 1024 { 1025 free_hot_cold_page(page, 1); 1026 } 1027 1028 /* 1029 * split_page takes a non-compound higher-order page, and splits it into 1030 * n (1<<order) sub-pages: page[0..n] 1031 * Each sub-page must be freed individually. 1032 * 1033 * Note: this is probably too low level an operation for use in drivers. 1034 * Please consult with lkml before using this in your driver. 1035 */ 1036 void split_page(struct page *page, unsigned int order) 1037 { 1038 int i; 1039 1040 VM_BUG_ON(PageCompound(page)); 1041 VM_BUG_ON(!page_count(page)); 1042 for (i = 1; i < (1 << order); i++) 1043 set_page_refcounted(page + i); 1044 } 1045 1046 /* 1047 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1048 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1049 * or two. 1050 */ 1051 static struct page *buffered_rmqueue(struct zonelist *zonelist, 1052 struct zone *zone, int order, gfp_t gfp_flags) 1053 { 1054 unsigned long flags; 1055 struct page *page; 1056 int cold = !!(gfp_flags & __GFP_COLD); 1057 int cpu; 1058 int migratetype = allocflags_to_migratetype(gfp_flags); 1059 1060 again: 1061 cpu = get_cpu(); 1062 if (likely(order == 0)) { 1063 struct per_cpu_pages *pcp; 1064 1065 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 1066 local_irq_save(flags); 1067 if (!pcp->count) { 1068 pcp->count = rmqueue_bulk(zone, 0, 1069 pcp->batch, &pcp->list, migratetype); 1070 if (unlikely(!pcp->count)) 1071 goto failed; 1072 } 1073 1074 /* Find a page of the appropriate migrate type */ 1075 list_for_each_entry(page, &pcp->list, lru) 1076 if (page_private(page) == migratetype) 1077 break; 1078 1079 /* Allocate more to the pcp list if necessary */ 1080 if (unlikely(&page->lru == &pcp->list)) { 1081 pcp->count += rmqueue_bulk(zone, 0, 1082 pcp->batch, &pcp->list, migratetype); 1083 page = list_entry(pcp->list.next, struct page, lru); 1084 } 1085 1086 list_del(&page->lru); 1087 pcp->count--; 1088 } else { 1089 spin_lock_irqsave(&zone->lock, flags); 1090 page = __rmqueue(zone, order, migratetype); 1091 spin_unlock(&zone->lock); 1092 if (!page) 1093 goto failed; 1094 } 1095 1096 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1097 zone_statistics(zonelist, zone); 1098 local_irq_restore(flags); 1099 put_cpu(); 1100 1101 VM_BUG_ON(bad_range(zone, page)); 1102 if (prep_new_page(page, order, gfp_flags)) 1103 goto again; 1104 return page; 1105 1106 failed: 1107 local_irq_restore(flags); 1108 put_cpu(); 1109 return NULL; 1110 } 1111 1112 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1113 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1114 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1115 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1116 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1117 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1118 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1119 1120 #ifdef CONFIG_FAIL_PAGE_ALLOC 1121 1122 static struct fail_page_alloc_attr { 1123 struct fault_attr attr; 1124 1125 u32 ignore_gfp_highmem; 1126 u32 ignore_gfp_wait; 1127 u32 min_order; 1128 1129 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1130 1131 struct dentry *ignore_gfp_highmem_file; 1132 struct dentry *ignore_gfp_wait_file; 1133 struct dentry *min_order_file; 1134 1135 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1136 1137 } fail_page_alloc = { 1138 .attr = FAULT_ATTR_INITIALIZER, 1139 .ignore_gfp_wait = 1, 1140 .ignore_gfp_highmem = 1, 1141 .min_order = 1, 1142 }; 1143 1144 static int __init setup_fail_page_alloc(char *str) 1145 { 1146 return setup_fault_attr(&fail_page_alloc.attr, str); 1147 } 1148 __setup("fail_page_alloc=", setup_fail_page_alloc); 1149 1150 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1151 { 1152 if (order < fail_page_alloc.min_order) 1153 return 0; 1154 if (gfp_mask & __GFP_NOFAIL) 1155 return 0; 1156 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1157 return 0; 1158 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1159 return 0; 1160 1161 return should_fail(&fail_page_alloc.attr, 1 << order); 1162 } 1163 1164 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1165 1166 static int __init fail_page_alloc_debugfs(void) 1167 { 1168 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1169 struct dentry *dir; 1170 int err; 1171 1172 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1173 "fail_page_alloc"); 1174 if (err) 1175 return err; 1176 dir = fail_page_alloc.attr.dentries.dir; 1177 1178 fail_page_alloc.ignore_gfp_wait_file = 1179 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1180 &fail_page_alloc.ignore_gfp_wait); 1181 1182 fail_page_alloc.ignore_gfp_highmem_file = 1183 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1184 &fail_page_alloc.ignore_gfp_highmem); 1185 fail_page_alloc.min_order_file = 1186 debugfs_create_u32("min-order", mode, dir, 1187 &fail_page_alloc.min_order); 1188 1189 if (!fail_page_alloc.ignore_gfp_wait_file || 1190 !fail_page_alloc.ignore_gfp_highmem_file || 1191 !fail_page_alloc.min_order_file) { 1192 err = -ENOMEM; 1193 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1194 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1195 debugfs_remove(fail_page_alloc.min_order_file); 1196 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1197 } 1198 1199 return err; 1200 } 1201 1202 late_initcall(fail_page_alloc_debugfs); 1203 1204 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1205 1206 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1207 1208 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1209 { 1210 return 0; 1211 } 1212 1213 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1214 1215 /* 1216 * Return 1 if free pages are above 'mark'. This takes into account the order 1217 * of the allocation. 1218 */ 1219 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1220 int classzone_idx, int alloc_flags) 1221 { 1222 /* free_pages my go negative - that's OK */ 1223 long min = mark; 1224 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1225 int o; 1226 1227 if (alloc_flags & ALLOC_HIGH) 1228 min -= min / 2; 1229 if (alloc_flags & ALLOC_HARDER) 1230 min -= min / 4; 1231 1232 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1233 return 0; 1234 for (o = 0; o < order; o++) { 1235 /* At the next order, this order's pages become unavailable */ 1236 free_pages -= z->free_area[o].nr_free << o; 1237 1238 /* Require fewer higher order pages to be free */ 1239 min >>= 1; 1240 1241 if (free_pages <= min) 1242 return 0; 1243 } 1244 return 1; 1245 } 1246 1247 #ifdef CONFIG_NUMA 1248 /* 1249 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1250 * skip over zones that are not allowed by the cpuset, or that have 1251 * been recently (in last second) found to be nearly full. See further 1252 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1253 * that have to skip over a lot of full or unallowed zones. 1254 * 1255 * If the zonelist cache is present in the passed in zonelist, then 1256 * returns a pointer to the allowed node mask (either the current 1257 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1258 * 1259 * If the zonelist cache is not available for this zonelist, does 1260 * nothing and returns NULL. 1261 * 1262 * If the fullzones BITMAP in the zonelist cache is stale (more than 1263 * a second since last zap'd) then we zap it out (clear its bits.) 1264 * 1265 * We hold off even calling zlc_setup, until after we've checked the 1266 * first zone in the zonelist, on the theory that most allocations will 1267 * be satisfied from that first zone, so best to examine that zone as 1268 * quickly as we can. 1269 */ 1270 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1271 { 1272 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1273 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1274 1275 zlc = zonelist->zlcache_ptr; 1276 if (!zlc) 1277 return NULL; 1278 1279 if (jiffies - zlc->last_full_zap > 1 * HZ) { 1280 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1281 zlc->last_full_zap = jiffies; 1282 } 1283 1284 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1285 &cpuset_current_mems_allowed : 1286 &node_states[N_HIGH_MEMORY]; 1287 return allowednodes; 1288 } 1289 1290 /* 1291 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1292 * if it is worth looking at further for free memory: 1293 * 1) Check that the zone isn't thought to be full (doesn't have its 1294 * bit set in the zonelist_cache fullzones BITMAP). 1295 * 2) Check that the zones node (obtained from the zonelist_cache 1296 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1297 * Return true (non-zero) if zone is worth looking at further, or 1298 * else return false (zero) if it is not. 1299 * 1300 * This check -ignores- the distinction between various watermarks, 1301 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1302 * found to be full for any variation of these watermarks, it will 1303 * be considered full for up to one second by all requests, unless 1304 * we are so low on memory on all allowed nodes that we are forced 1305 * into the second scan of the zonelist. 1306 * 1307 * In the second scan we ignore this zonelist cache and exactly 1308 * apply the watermarks to all zones, even it is slower to do so. 1309 * We are low on memory in the second scan, and should leave no stone 1310 * unturned looking for a free page. 1311 */ 1312 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1313 nodemask_t *allowednodes) 1314 { 1315 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1316 int i; /* index of *z in zonelist zones */ 1317 int n; /* node that zone *z is on */ 1318 1319 zlc = zonelist->zlcache_ptr; 1320 if (!zlc) 1321 return 1; 1322 1323 i = z - zonelist->zones; 1324 n = zlc->z_to_n[i]; 1325 1326 /* This zone is worth trying if it is allowed but not full */ 1327 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1328 } 1329 1330 /* 1331 * Given 'z' scanning a zonelist, set the corresponding bit in 1332 * zlc->fullzones, so that subsequent attempts to allocate a page 1333 * from that zone don't waste time re-examining it. 1334 */ 1335 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1336 { 1337 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1338 int i; /* index of *z in zonelist zones */ 1339 1340 zlc = zonelist->zlcache_ptr; 1341 if (!zlc) 1342 return; 1343 1344 i = z - zonelist->zones; 1345 1346 set_bit(i, zlc->fullzones); 1347 } 1348 1349 #else /* CONFIG_NUMA */ 1350 1351 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1352 { 1353 return NULL; 1354 } 1355 1356 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1357 nodemask_t *allowednodes) 1358 { 1359 return 1; 1360 } 1361 1362 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1363 { 1364 } 1365 #endif /* CONFIG_NUMA */ 1366 1367 /* 1368 * get_page_from_freelist goes through the zonelist trying to allocate 1369 * a page. 1370 */ 1371 static struct page * 1372 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 1373 struct zonelist *zonelist, int alloc_flags) 1374 { 1375 struct zone **z; 1376 struct page *page = NULL; 1377 int classzone_idx = zone_idx(zonelist->zones[0]); 1378 struct zone *zone; 1379 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1380 int zlc_active = 0; /* set if using zonelist_cache */ 1381 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1382 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */ 1383 1384 zonelist_scan: 1385 /* 1386 * Scan zonelist, looking for a zone with enough free. 1387 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1388 */ 1389 z = zonelist->zones; 1390 1391 do { 1392 /* 1393 * In NUMA, this could be a policy zonelist which contains 1394 * zones that may not be allowed by the current gfp_mask. 1395 * Check the zone is allowed by the current flags 1396 */ 1397 if (unlikely(alloc_should_filter_zonelist(zonelist))) { 1398 if (highest_zoneidx == -1) 1399 highest_zoneidx = gfp_zone(gfp_mask); 1400 if (zone_idx(*z) > highest_zoneidx) 1401 continue; 1402 } 1403 1404 if (NUMA_BUILD && zlc_active && 1405 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1406 continue; 1407 zone = *z; 1408 if ((alloc_flags & ALLOC_CPUSET) && 1409 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1410 goto try_next_zone; 1411 1412 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1413 unsigned long mark; 1414 if (alloc_flags & ALLOC_WMARK_MIN) 1415 mark = zone->pages_min; 1416 else if (alloc_flags & ALLOC_WMARK_LOW) 1417 mark = zone->pages_low; 1418 else 1419 mark = zone->pages_high; 1420 if (!zone_watermark_ok(zone, order, mark, 1421 classzone_idx, alloc_flags)) { 1422 if (!zone_reclaim_mode || 1423 !zone_reclaim(zone, gfp_mask, order)) 1424 goto this_zone_full; 1425 } 1426 } 1427 1428 page = buffered_rmqueue(zonelist, zone, order, gfp_mask); 1429 if (page) 1430 break; 1431 this_zone_full: 1432 if (NUMA_BUILD) 1433 zlc_mark_zone_full(zonelist, z); 1434 try_next_zone: 1435 if (NUMA_BUILD && !did_zlc_setup) { 1436 /* we do zlc_setup after the first zone is tried */ 1437 allowednodes = zlc_setup(zonelist, alloc_flags); 1438 zlc_active = 1; 1439 did_zlc_setup = 1; 1440 } 1441 } while (*(++z) != NULL); 1442 1443 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1444 /* Disable zlc cache for second zonelist scan */ 1445 zlc_active = 0; 1446 goto zonelist_scan; 1447 } 1448 return page; 1449 } 1450 1451 /* 1452 * This is the 'heart' of the zoned buddy allocator. 1453 */ 1454 struct page * fastcall 1455 __alloc_pages(gfp_t gfp_mask, unsigned int order, 1456 struct zonelist *zonelist) 1457 { 1458 const gfp_t wait = gfp_mask & __GFP_WAIT; 1459 struct zone **z; 1460 struct page *page; 1461 struct reclaim_state reclaim_state; 1462 struct task_struct *p = current; 1463 int do_retry; 1464 int alloc_flags; 1465 int did_some_progress; 1466 1467 might_sleep_if(wait); 1468 1469 if (should_fail_alloc_page(gfp_mask, order)) 1470 return NULL; 1471 1472 restart: 1473 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 1474 1475 if (unlikely(*z == NULL)) { 1476 /* 1477 * Happens if we have an empty zonelist as a result of 1478 * GFP_THISNODE being used on a memoryless node 1479 */ 1480 return NULL; 1481 } 1482 1483 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1484 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1485 if (page) 1486 goto got_pg; 1487 1488 /* 1489 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1490 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1491 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1492 * using a larger set of nodes after it has established that the 1493 * allowed per node queues are empty and that nodes are 1494 * over allocated. 1495 */ 1496 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1497 goto nopage; 1498 1499 for (z = zonelist->zones; *z; z++) 1500 wakeup_kswapd(*z, order); 1501 1502 /* 1503 * OK, we're below the kswapd watermark and have kicked background 1504 * reclaim. Now things get more complex, so set up alloc_flags according 1505 * to how we want to proceed. 1506 * 1507 * The caller may dip into page reserves a bit more if the caller 1508 * cannot run direct reclaim, or if the caller has realtime scheduling 1509 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1510 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1511 */ 1512 alloc_flags = ALLOC_WMARK_MIN; 1513 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1514 alloc_flags |= ALLOC_HARDER; 1515 if (gfp_mask & __GFP_HIGH) 1516 alloc_flags |= ALLOC_HIGH; 1517 if (wait) 1518 alloc_flags |= ALLOC_CPUSET; 1519 1520 /* 1521 * Go through the zonelist again. Let __GFP_HIGH and allocations 1522 * coming from realtime tasks go deeper into reserves. 1523 * 1524 * This is the last chance, in general, before the goto nopage. 1525 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1526 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1527 */ 1528 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 1529 if (page) 1530 goto got_pg; 1531 1532 /* This allocation should allow future memory freeing. */ 1533 1534 rebalance: 1535 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1536 && !in_interrupt()) { 1537 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1538 nofail_alloc: 1539 /* go through the zonelist yet again, ignoring mins */ 1540 page = get_page_from_freelist(gfp_mask, order, 1541 zonelist, ALLOC_NO_WATERMARKS); 1542 if (page) 1543 goto got_pg; 1544 if (gfp_mask & __GFP_NOFAIL) { 1545 congestion_wait(WRITE, HZ/50); 1546 goto nofail_alloc; 1547 } 1548 } 1549 goto nopage; 1550 } 1551 1552 /* Atomic allocations - we can't balance anything */ 1553 if (!wait) 1554 goto nopage; 1555 1556 cond_resched(); 1557 1558 /* We now go into synchronous reclaim */ 1559 cpuset_memory_pressure_bump(); 1560 p->flags |= PF_MEMALLOC; 1561 reclaim_state.reclaimed_slab = 0; 1562 p->reclaim_state = &reclaim_state; 1563 1564 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask); 1565 1566 p->reclaim_state = NULL; 1567 p->flags &= ~PF_MEMALLOC; 1568 1569 cond_resched(); 1570 1571 if (order != 0) 1572 drain_all_local_pages(); 1573 1574 if (likely(did_some_progress)) { 1575 page = get_page_from_freelist(gfp_mask, order, 1576 zonelist, alloc_flags); 1577 if (page) 1578 goto got_pg; 1579 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1580 if (!try_set_zone_oom(zonelist)) { 1581 schedule_timeout_uninterruptible(1); 1582 goto restart; 1583 } 1584 1585 /* 1586 * Go through the zonelist yet one more time, keep 1587 * very high watermark here, this is only to catch 1588 * a parallel oom killing, we must fail if we're still 1589 * under heavy pressure. 1590 */ 1591 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1592 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1593 if (page) { 1594 clear_zonelist_oom(zonelist); 1595 goto got_pg; 1596 } 1597 1598 /* The OOM killer will not help higher order allocs so fail */ 1599 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1600 clear_zonelist_oom(zonelist); 1601 goto nopage; 1602 } 1603 1604 out_of_memory(zonelist, gfp_mask, order); 1605 clear_zonelist_oom(zonelist); 1606 goto restart; 1607 } 1608 1609 /* 1610 * Don't let big-order allocations loop unless the caller explicitly 1611 * requests that. Wait for some write requests to complete then retry. 1612 * 1613 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1614 * <= 3, but that may not be true in other implementations. 1615 */ 1616 do_retry = 0; 1617 if (!(gfp_mask & __GFP_NORETRY)) { 1618 if ((order <= PAGE_ALLOC_COSTLY_ORDER) || 1619 (gfp_mask & __GFP_REPEAT)) 1620 do_retry = 1; 1621 if (gfp_mask & __GFP_NOFAIL) 1622 do_retry = 1; 1623 } 1624 if (do_retry) { 1625 congestion_wait(WRITE, HZ/50); 1626 goto rebalance; 1627 } 1628 1629 nopage: 1630 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1631 printk(KERN_WARNING "%s: page allocation failure." 1632 " order:%d, mode:0x%x\n", 1633 p->comm, order, gfp_mask); 1634 dump_stack(); 1635 show_mem(); 1636 } 1637 got_pg: 1638 return page; 1639 } 1640 1641 EXPORT_SYMBOL(__alloc_pages); 1642 1643 /* 1644 * Common helper functions. 1645 */ 1646 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1647 { 1648 struct page * page; 1649 page = alloc_pages(gfp_mask, order); 1650 if (!page) 1651 return 0; 1652 return (unsigned long) page_address(page); 1653 } 1654 1655 EXPORT_SYMBOL(__get_free_pages); 1656 1657 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1658 { 1659 struct page * page; 1660 1661 /* 1662 * get_zeroed_page() returns a 32-bit address, which cannot represent 1663 * a highmem page 1664 */ 1665 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1666 1667 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1668 if (page) 1669 return (unsigned long) page_address(page); 1670 return 0; 1671 } 1672 1673 EXPORT_SYMBOL(get_zeroed_page); 1674 1675 void __pagevec_free(struct pagevec *pvec) 1676 { 1677 int i = pagevec_count(pvec); 1678 1679 while (--i >= 0) 1680 free_hot_cold_page(pvec->pages[i], pvec->cold); 1681 } 1682 1683 fastcall void __free_pages(struct page *page, unsigned int order) 1684 { 1685 if (put_page_testzero(page)) { 1686 if (order == 0) 1687 free_hot_page(page); 1688 else 1689 __free_pages_ok(page, order); 1690 } 1691 } 1692 1693 EXPORT_SYMBOL(__free_pages); 1694 1695 fastcall void free_pages(unsigned long addr, unsigned int order) 1696 { 1697 if (addr != 0) { 1698 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1699 __free_pages(virt_to_page((void *)addr), order); 1700 } 1701 } 1702 1703 EXPORT_SYMBOL(free_pages); 1704 1705 static unsigned int nr_free_zone_pages(int offset) 1706 { 1707 /* Just pick one node, since fallback list is circular */ 1708 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1709 unsigned int sum = 0; 1710 1711 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1712 struct zone **zonep = zonelist->zones; 1713 struct zone *zone; 1714 1715 for (zone = *zonep++; zone; zone = *zonep++) { 1716 unsigned long size = zone->present_pages; 1717 unsigned long high = zone->pages_high; 1718 if (size > high) 1719 sum += size - high; 1720 } 1721 1722 return sum; 1723 } 1724 1725 /* 1726 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1727 */ 1728 unsigned int nr_free_buffer_pages(void) 1729 { 1730 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1731 } 1732 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1733 1734 /* 1735 * Amount of free RAM allocatable within all zones 1736 */ 1737 unsigned int nr_free_pagecache_pages(void) 1738 { 1739 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1740 } 1741 1742 static inline void show_node(struct zone *zone) 1743 { 1744 if (NUMA_BUILD) 1745 printk("Node %d ", zone_to_nid(zone)); 1746 } 1747 1748 void si_meminfo(struct sysinfo *val) 1749 { 1750 val->totalram = totalram_pages; 1751 val->sharedram = 0; 1752 val->freeram = global_page_state(NR_FREE_PAGES); 1753 val->bufferram = nr_blockdev_pages(); 1754 val->totalhigh = totalhigh_pages; 1755 val->freehigh = nr_free_highpages(); 1756 val->mem_unit = PAGE_SIZE; 1757 } 1758 1759 EXPORT_SYMBOL(si_meminfo); 1760 1761 #ifdef CONFIG_NUMA 1762 void si_meminfo_node(struct sysinfo *val, int nid) 1763 { 1764 pg_data_t *pgdat = NODE_DATA(nid); 1765 1766 val->totalram = pgdat->node_present_pages; 1767 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1768 #ifdef CONFIG_HIGHMEM 1769 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1770 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1771 NR_FREE_PAGES); 1772 #else 1773 val->totalhigh = 0; 1774 val->freehigh = 0; 1775 #endif 1776 val->mem_unit = PAGE_SIZE; 1777 } 1778 #endif 1779 1780 #define K(x) ((x) << (PAGE_SHIFT-10)) 1781 1782 /* 1783 * Show free area list (used inside shift_scroll-lock stuff) 1784 * We also calculate the percentage fragmentation. We do this by counting the 1785 * memory on each free list with the exception of the first item on the list. 1786 */ 1787 void show_free_areas(void) 1788 { 1789 int cpu; 1790 struct zone *zone; 1791 1792 for_each_zone(zone) { 1793 if (!populated_zone(zone)) 1794 continue; 1795 1796 show_node(zone); 1797 printk("%s per-cpu:\n", zone->name); 1798 1799 for_each_online_cpu(cpu) { 1800 struct per_cpu_pageset *pageset; 1801 1802 pageset = zone_pcp(zone, cpu); 1803 1804 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d " 1805 "Cold: hi:%5d, btch:%4d usd:%4d\n", 1806 cpu, pageset->pcp[0].high, 1807 pageset->pcp[0].batch, pageset->pcp[0].count, 1808 pageset->pcp[1].high, pageset->pcp[1].batch, 1809 pageset->pcp[1].count); 1810 } 1811 } 1812 1813 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n" 1814 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1815 global_page_state(NR_ACTIVE), 1816 global_page_state(NR_INACTIVE), 1817 global_page_state(NR_FILE_DIRTY), 1818 global_page_state(NR_WRITEBACK), 1819 global_page_state(NR_UNSTABLE_NFS), 1820 global_page_state(NR_FREE_PAGES), 1821 global_page_state(NR_SLAB_RECLAIMABLE) + 1822 global_page_state(NR_SLAB_UNRECLAIMABLE), 1823 global_page_state(NR_FILE_MAPPED), 1824 global_page_state(NR_PAGETABLE), 1825 global_page_state(NR_BOUNCE)); 1826 1827 for_each_zone(zone) { 1828 int i; 1829 1830 if (!populated_zone(zone)) 1831 continue; 1832 1833 show_node(zone); 1834 printk("%s" 1835 " free:%lukB" 1836 " min:%lukB" 1837 " low:%lukB" 1838 " high:%lukB" 1839 " active:%lukB" 1840 " inactive:%lukB" 1841 " present:%lukB" 1842 " pages_scanned:%lu" 1843 " all_unreclaimable? %s" 1844 "\n", 1845 zone->name, 1846 K(zone_page_state(zone, NR_FREE_PAGES)), 1847 K(zone->pages_min), 1848 K(zone->pages_low), 1849 K(zone->pages_high), 1850 K(zone_page_state(zone, NR_ACTIVE)), 1851 K(zone_page_state(zone, NR_INACTIVE)), 1852 K(zone->present_pages), 1853 zone->pages_scanned, 1854 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1855 ); 1856 printk("lowmem_reserve[]:"); 1857 for (i = 0; i < MAX_NR_ZONES; i++) 1858 printk(" %lu", zone->lowmem_reserve[i]); 1859 printk("\n"); 1860 } 1861 1862 for_each_zone(zone) { 1863 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1864 1865 if (!populated_zone(zone)) 1866 continue; 1867 1868 show_node(zone); 1869 printk("%s: ", zone->name); 1870 1871 spin_lock_irqsave(&zone->lock, flags); 1872 for (order = 0; order < MAX_ORDER; order++) { 1873 nr[order] = zone->free_area[order].nr_free; 1874 total += nr[order] << order; 1875 } 1876 spin_unlock_irqrestore(&zone->lock, flags); 1877 for (order = 0; order < MAX_ORDER; order++) 1878 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1879 printk("= %lukB\n", K(total)); 1880 } 1881 1882 show_swap_cache_info(); 1883 } 1884 1885 /* 1886 * Builds allocation fallback zone lists. 1887 * 1888 * Add all populated zones of a node to the zonelist. 1889 */ 1890 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1891 int nr_zones, enum zone_type zone_type) 1892 { 1893 struct zone *zone; 1894 1895 BUG_ON(zone_type >= MAX_NR_ZONES); 1896 zone_type++; 1897 1898 do { 1899 zone_type--; 1900 zone = pgdat->node_zones + zone_type; 1901 if (populated_zone(zone)) { 1902 zonelist->zones[nr_zones++] = zone; 1903 check_highest_zone(zone_type); 1904 } 1905 1906 } while (zone_type); 1907 return nr_zones; 1908 } 1909 1910 1911 /* 1912 * zonelist_order: 1913 * 0 = automatic detection of better ordering. 1914 * 1 = order by ([node] distance, -zonetype) 1915 * 2 = order by (-zonetype, [node] distance) 1916 * 1917 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 1918 * the same zonelist. So only NUMA can configure this param. 1919 */ 1920 #define ZONELIST_ORDER_DEFAULT 0 1921 #define ZONELIST_ORDER_NODE 1 1922 #define ZONELIST_ORDER_ZONE 2 1923 1924 /* zonelist order in the kernel. 1925 * set_zonelist_order() will set this to NODE or ZONE. 1926 */ 1927 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 1928 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 1929 1930 1931 #ifdef CONFIG_NUMA 1932 /* The value user specified ....changed by config */ 1933 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1934 /* string for sysctl */ 1935 #define NUMA_ZONELIST_ORDER_LEN 16 1936 char numa_zonelist_order[16] = "default"; 1937 1938 /* 1939 * interface for configure zonelist ordering. 1940 * command line option "numa_zonelist_order" 1941 * = "[dD]efault - default, automatic configuration. 1942 * = "[nN]ode - order by node locality, then by zone within node 1943 * = "[zZ]one - order by zone, then by locality within zone 1944 */ 1945 1946 static int __parse_numa_zonelist_order(char *s) 1947 { 1948 if (*s == 'd' || *s == 'D') { 1949 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1950 } else if (*s == 'n' || *s == 'N') { 1951 user_zonelist_order = ZONELIST_ORDER_NODE; 1952 } else if (*s == 'z' || *s == 'Z') { 1953 user_zonelist_order = ZONELIST_ORDER_ZONE; 1954 } else { 1955 printk(KERN_WARNING 1956 "Ignoring invalid numa_zonelist_order value: " 1957 "%s\n", s); 1958 return -EINVAL; 1959 } 1960 return 0; 1961 } 1962 1963 static __init int setup_numa_zonelist_order(char *s) 1964 { 1965 if (s) 1966 return __parse_numa_zonelist_order(s); 1967 return 0; 1968 } 1969 early_param("numa_zonelist_order", setup_numa_zonelist_order); 1970 1971 /* 1972 * sysctl handler for numa_zonelist_order 1973 */ 1974 int numa_zonelist_order_handler(ctl_table *table, int write, 1975 struct file *file, void __user *buffer, size_t *length, 1976 loff_t *ppos) 1977 { 1978 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 1979 int ret; 1980 1981 if (write) 1982 strncpy(saved_string, (char*)table->data, 1983 NUMA_ZONELIST_ORDER_LEN); 1984 ret = proc_dostring(table, write, file, buffer, length, ppos); 1985 if (ret) 1986 return ret; 1987 if (write) { 1988 int oldval = user_zonelist_order; 1989 if (__parse_numa_zonelist_order((char*)table->data)) { 1990 /* 1991 * bogus value. restore saved string 1992 */ 1993 strncpy((char*)table->data, saved_string, 1994 NUMA_ZONELIST_ORDER_LEN); 1995 user_zonelist_order = oldval; 1996 } else if (oldval != user_zonelist_order) 1997 build_all_zonelists(); 1998 } 1999 return 0; 2000 } 2001 2002 2003 #define MAX_NODE_LOAD (num_online_nodes()) 2004 static int node_load[MAX_NUMNODES]; 2005 2006 /** 2007 * find_next_best_node - find the next node that should appear in a given node's fallback list 2008 * @node: node whose fallback list we're appending 2009 * @used_node_mask: nodemask_t of already used nodes 2010 * 2011 * We use a number of factors to determine which is the next node that should 2012 * appear on a given node's fallback list. The node should not have appeared 2013 * already in @node's fallback list, and it should be the next closest node 2014 * according to the distance array (which contains arbitrary distance values 2015 * from each node to each node in the system), and should also prefer nodes 2016 * with no CPUs, since presumably they'll have very little allocation pressure 2017 * on them otherwise. 2018 * It returns -1 if no node is found. 2019 */ 2020 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2021 { 2022 int n, val; 2023 int min_val = INT_MAX; 2024 int best_node = -1; 2025 2026 /* Use the local node if we haven't already */ 2027 if (!node_isset(node, *used_node_mask)) { 2028 node_set(node, *used_node_mask); 2029 return node; 2030 } 2031 2032 for_each_node_state(n, N_HIGH_MEMORY) { 2033 cpumask_t tmp; 2034 2035 /* Don't want a node to appear more than once */ 2036 if (node_isset(n, *used_node_mask)) 2037 continue; 2038 2039 /* Use the distance array to find the distance */ 2040 val = node_distance(node, n); 2041 2042 /* Penalize nodes under us ("prefer the next node") */ 2043 val += (n < node); 2044 2045 /* Give preference to headless and unused nodes */ 2046 tmp = node_to_cpumask(n); 2047 if (!cpus_empty(tmp)) 2048 val += PENALTY_FOR_NODE_WITH_CPUS; 2049 2050 /* Slight preference for less loaded node */ 2051 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2052 val += node_load[n]; 2053 2054 if (val < min_val) { 2055 min_val = val; 2056 best_node = n; 2057 } 2058 } 2059 2060 if (best_node >= 0) 2061 node_set(best_node, *used_node_mask); 2062 2063 return best_node; 2064 } 2065 2066 2067 /* 2068 * Build zonelists ordered by node and zones within node. 2069 * This results in maximum locality--normal zone overflows into local 2070 * DMA zone, if any--but risks exhausting DMA zone. 2071 */ 2072 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2073 { 2074 enum zone_type i; 2075 int j; 2076 struct zonelist *zonelist; 2077 2078 for (i = 0; i < MAX_NR_ZONES; i++) { 2079 zonelist = pgdat->node_zonelists + i; 2080 for (j = 0; zonelist->zones[j] != NULL; j++) 2081 ; 2082 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 2083 zonelist->zones[j] = NULL; 2084 } 2085 } 2086 2087 /* 2088 * Build gfp_thisnode zonelists 2089 */ 2090 static void build_thisnode_zonelists(pg_data_t *pgdat) 2091 { 2092 enum zone_type i; 2093 int j; 2094 struct zonelist *zonelist; 2095 2096 for (i = 0; i < MAX_NR_ZONES; i++) { 2097 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i; 2098 j = build_zonelists_node(pgdat, zonelist, 0, i); 2099 zonelist->zones[j] = NULL; 2100 } 2101 } 2102 2103 /* 2104 * Build zonelists ordered by zone and nodes within zones. 2105 * This results in conserving DMA zone[s] until all Normal memory is 2106 * exhausted, but results in overflowing to remote node while memory 2107 * may still exist in local DMA zone. 2108 */ 2109 static int node_order[MAX_NUMNODES]; 2110 2111 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2112 { 2113 enum zone_type i; 2114 int pos, j, node; 2115 int zone_type; /* needs to be signed */ 2116 struct zone *z; 2117 struct zonelist *zonelist; 2118 2119 for (i = 0; i < MAX_NR_ZONES; i++) { 2120 zonelist = pgdat->node_zonelists + i; 2121 pos = 0; 2122 for (zone_type = i; zone_type >= 0; zone_type--) { 2123 for (j = 0; j < nr_nodes; j++) { 2124 node = node_order[j]; 2125 z = &NODE_DATA(node)->node_zones[zone_type]; 2126 if (populated_zone(z)) { 2127 zonelist->zones[pos++] = z; 2128 check_highest_zone(zone_type); 2129 } 2130 } 2131 } 2132 zonelist->zones[pos] = NULL; 2133 } 2134 } 2135 2136 static int default_zonelist_order(void) 2137 { 2138 int nid, zone_type; 2139 unsigned long low_kmem_size,total_size; 2140 struct zone *z; 2141 int average_size; 2142 /* 2143 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2144 * If they are really small and used heavily, the system can fall 2145 * into OOM very easily. 2146 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2147 */ 2148 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2149 low_kmem_size = 0; 2150 total_size = 0; 2151 for_each_online_node(nid) { 2152 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2153 z = &NODE_DATA(nid)->node_zones[zone_type]; 2154 if (populated_zone(z)) { 2155 if (zone_type < ZONE_NORMAL) 2156 low_kmem_size += z->present_pages; 2157 total_size += z->present_pages; 2158 } 2159 } 2160 } 2161 if (!low_kmem_size || /* there are no DMA area. */ 2162 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2163 return ZONELIST_ORDER_NODE; 2164 /* 2165 * look into each node's config. 2166 * If there is a node whose DMA/DMA32 memory is very big area on 2167 * local memory, NODE_ORDER may be suitable. 2168 */ 2169 average_size = total_size / 2170 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2171 for_each_online_node(nid) { 2172 low_kmem_size = 0; 2173 total_size = 0; 2174 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2175 z = &NODE_DATA(nid)->node_zones[zone_type]; 2176 if (populated_zone(z)) { 2177 if (zone_type < ZONE_NORMAL) 2178 low_kmem_size += z->present_pages; 2179 total_size += z->present_pages; 2180 } 2181 } 2182 if (low_kmem_size && 2183 total_size > average_size && /* ignore small node */ 2184 low_kmem_size > total_size * 70/100) 2185 return ZONELIST_ORDER_NODE; 2186 } 2187 return ZONELIST_ORDER_ZONE; 2188 } 2189 2190 static void set_zonelist_order(void) 2191 { 2192 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2193 current_zonelist_order = default_zonelist_order(); 2194 else 2195 current_zonelist_order = user_zonelist_order; 2196 } 2197 2198 static void build_zonelists(pg_data_t *pgdat) 2199 { 2200 int j, node, load; 2201 enum zone_type i; 2202 nodemask_t used_mask; 2203 int local_node, prev_node; 2204 struct zonelist *zonelist; 2205 int order = current_zonelist_order; 2206 2207 /* initialize zonelists */ 2208 for (i = 0; i < MAX_ZONELISTS; i++) { 2209 zonelist = pgdat->node_zonelists + i; 2210 zonelist->zones[0] = NULL; 2211 } 2212 2213 /* NUMA-aware ordering of nodes */ 2214 local_node = pgdat->node_id; 2215 load = num_online_nodes(); 2216 prev_node = local_node; 2217 nodes_clear(used_mask); 2218 2219 memset(node_load, 0, sizeof(node_load)); 2220 memset(node_order, 0, sizeof(node_order)); 2221 j = 0; 2222 2223 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2224 int distance = node_distance(local_node, node); 2225 2226 /* 2227 * If another node is sufficiently far away then it is better 2228 * to reclaim pages in a zone before going off node. 2229 */ 2230 if (distance > RECLAIM_DISTANCE) 2231 zone_reclaim_mode = 1; 2232 2233 /* 2234 * We don't want to pressure a particular node. 2235 * So adding penalty to the first node in same 2236 * distance group to make it round-robin. 2237 */ 2238 if (distance != node_distance(local_node, prev_node)) 2239 node_load[node] = load; 2240 2241 prev_node = node; 2242 load--; 2243 if (order == ZONELIST_ORDER_NODE) 2244 build_zonelists_in_node_order(pgdat, node); 2245 else 2246 node_order[j++] = node; /* remember order */ 2247 } 2248 2249 if (order == ZONELIST_ORDER_ZONE) { 2250 /* calculate node order -- i.e., DMA last! */ 2251 build_zonelists_in_zone_order(pgdat, j); 2252 } 2253 2254 build_thisnode_zonelists(pgdat); 2255 } 2256 2257 /* Construct the zonelist performance cache - see further mmzone.h */ 2258 static void build_zonelist_cache(pg_data_t *pgdat) 2259 { 2260 int i; 2261 2262 for (i = 0; i < MAX_NR_ZONES; i++) { 2263 struct zonelist *zonelist; 2264 struct zonelist_cache *zlc; 2265 struct zone **z; 2266 2267 zonelist = pgdat->node_zonelists + i; 2268 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2269 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2270 for (z = zonelist->zones; *z; z++) 2271 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z); 2272 } 2273 } 2274 2275 2276 #else /* CONFIG_NUMA */ 2277 2278 static void set_zonelist_order(void) 2279 { 2280 current_zonelist_order = ZONELIST_ORDER_ZONE; 2281 } 2282 2283 static void build_zonelists(pg_data_t *pgdat) 2284 { 2285 int node, local_node; 2286 enum zone_type i,j; 2287 2288 local_node = pgdat->node_id; 2289 for (i = 0; i < MAX_NR_ZONES; i++) { 2290 struct zonelist *zonelist; 2291 2292 zonelist = pgdat->node_zonelists + i; 2293 2294 j = build_zonelists_node(pgdat, zonelist, 0, i); 2295 /* 2296 * Now we build the zonelist so that it contains the zones 2297 * of all the other nodes. 2298 * We don't want to pressure a particular node, so when 2299 * building the zones for node N, we make sure that the 2300 * zones coming right after the local ones are those from 2301 * node N+1 (modulo N) 2302 */ 2303 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2304 if (!node_online(node)) 2305 continue; 2306 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 2307 } 2308 for (node = 0; node < local_node; node++) { 2309 if (!node_online(node)) 2310 continue; 2311 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 2312 } 2313 2314 zonelist->zones[j] = NULL; 2315 } 2316 } 2317 2318 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2319 static void build_zonelist_cache(pg_data_t *pgdat) 2320 { 2321 int i; 2322 2323 for (i = 0; i < MAX_NR_ZONES; i++) 2324 pgdat->node_zonelists[i].zlcache_ptr = NULL; 2325 } 2326 2327 #endif /* CONFIG_NUMA */ 2328 2329 /* return values int ....just for stop_machine_run() */ 2330 static int __build_all_zonelists(void *dummy) 2331 { 2332 int nid; 2333 2334 for_each_online_node(nid) { 2335 pg_data_t *pgdat = NODE_DATA(nid); 2336 2337 build_zonelists(pgdat); 2338 build_zonelist_cache(pgdat); 2339 } 2340 return 0; 2341 } 2342 2343 void build_all_zonelists(void) 2344 { 2345 set_zonelist_order(); 2346 2347 if (system_state == SYSTEM_BOOTING) { 2348 __build_all_zonelists(NULL); 2349 cpuset_init_current_mems_allowed(); 2350 } else { 2351 /* we have to stop all cpus to guarantee there is no user 2352 of zonelist */ 2353 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 2354 /* cpuset refresh routine should be here */ 2355 } 2356 vm_total_pages = nr_free_pagecache_pages(); 2357 /* 2358 * Disable grouping by mobility if the number of pages in the 2359 * system is too low to allow the mechanism to work. It would be 2360 * more accurate, but expensive to check per-zone. This check is 2361 * made on memory-hotadd so a system can start with mobility 2362 * disabled and enable it later 2363 */ 2364 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2365 page_group_by_mobility_disabled = 1; 2366 else 2367 page_group_by_mobility_disabled = 0; 2368 2369 printk("Built %i zonelists in %s order, mobility grouping %s. " 2370 "Total pages: %ld\n", 2371 num_online_nodes(), 2372 zonelist_order_name[current_zonelist_order], 2373 page_group_by_mobility_disabled ? "off" : "on", 2374 vm_total_pages); 2375 #ifdef CONFIG_NUMA 2376 printk("Policy zone: %s\n", zone_names[policy_zone]); 2377 #endif 2378 } 2379 2380 /* 2381 * Helper functions to size the waitqueue hash table. 2382 * Essentially these want to choose hash table sizes sufficiently 2383 * large so that collisions trying to wait on pages are rare. 2384 * But in fact, the number of active page waitqueues on typical 2385 * systems is ridiculously low, less than 200. So this is even 2386 * conservative, even though it seems large. 2387 * 2388 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2389 * waitqueues, i.e. the size of the waitq table given the number of pages. 2390 */ 2391 #define PAGES_PER_WAITQUEUE 256 2392 2393 #ifndef CONFIG_MEMORY_HOTPLUG 2394 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2395 { 2396 unsigned long size = 1; 2397 2398 pages /= PAGES_PER_WAITQUEUE; 2399 2400 while (size < pages) 2401 size <<= 1; 2402 2403 /* 2404 * Once we have dozens or even hundreds of threads sleeping 2405 * on IO we've got bigger problems than wait queue collision. 2406 * Limit the size of the wait table to a reasonable size. 2407 */ 2408 size = min(size, 4096UL); 2409 2410 return max(size, 4UL); 2411 } 2412 #else 2413 /* 2414 * A zone's size might be changed by hot-add, so it is not possible to determine 2415 * a suitable size for its wait_table. So we use the maximum size now. 2416 * 2417 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2418 * 2419 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2420 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2421 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2422 * 2423 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2424 * or more by the traditional way. (See above). It equals: 2425 * 2426 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2427 * ia64(16K page size) : = ( 8G + 4M)byte. 2428 * powerpc (64K page size) : = (32G +16M)byte. 2429 */ 2430 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2431 { 2432 return 4096UL; 2433 } 2434 #endif 2435 2436 /* 2437 * This is an integer logarithm so that shifts can be used later 2438 * to extract the more random high bits from the multiplicative 2439 * hash function before the remainder is taken. 2440 */ 2441 static inline unsigned long wait_table_bits(unsigned long size) 2442 { 2443 return ffz(~size); 2444 } 2445 2446 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2447 2448 /* 2449 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2450 * of blocks reserved is based on zone->pages_min. The memory within the 2451 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2452 * higher will lead to a bigger reserve which will get freed as contiguous 2453 * blocks as reclaim kicks in 2454 */ 2455 static void setup_zone_migrate_reserve(struct zone *zone) 2456 { 2457 unsigned long start_pfn, pfn, end_pfn; 2458 struct page *page; 2459 unsigned long reserve, block_migratetype; 2460 2461 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2462 start_pfn = zone->zone_start_pfn; 2463 end_pfn = start_pfn + zone->spanned_pages; 2464 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2465 pageblock_order; 2466 2467 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2468 if (!pfn_valid(pfn)) 2469 continue; 2470 page = pfn_to_page(pfn); 2471 2472 /* Blocks with reserved pages will never free, skip them. */ 2473 if (PageReserved(page)) 2474 continue; 2475 2476 block_migratetype = get_pageblock_migratetype(page); 2477 2478 /* If this block is reserved, account for it */ 2479 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2480 reserve--; 2481 continue; 2482 } 2483 2484 /* Suitable for reserving if this block is movable */ 2485 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2486 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2487 move_freepages_block(zone, page, MIGRATE_RESERVE); 2488 reserve--; 2489 continue; 2490 } 2491 2492 /* 2493 * If the reserve is met and this is a previous reserved block, 2494 * take it back 2495 */ 2496 if (block_migratetype == MIGRATE_RESERVE) { 2497 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2498 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2499 } 2500 } 2501 } 2502 2503 /* 2504 * Initially all pages are reserved - free ones are freed 2505 * up by free_all_bootmem() once the early boot process is 2506 * done. Non-atomic initialization, single-pass. 2507 */ 2508 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2509 unsigned long start_pfn, enum memmap_context context) 2510 { 2511 struct page *page; 2512 unsigned long end_pfn = start_pfn + size; 2513 unsigned long pfn; 2514 2515 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2516 /* 2517 * There can be holes in boot-time mem_map[]s 2518 * handed to this function. They do not 2519 * exist on hotplugged memory. 2520 */ 2521 if (context == MEMMAP_EARLY) { 2522 if (!early_pfn_valid(pfn)) 2523 continue; 2524 if (!early_pfn_in_nid(pfn, nid)) 2525 continue; 2526 } 2527 page = pfn_to_page(pfn); 2528 set_page_links(page, zone, nid, pfn); 2529 init_page_count(page); 2530 reset_page_mapcount(page); 2531 SetPageReserved(page); 2532 2533 /* 2534 * Mark the block movable so that blocks are reserved for 2535 * movable at startup. This will force kernel allocations 2536 * to reserve their blocks rather than leaking throughout 2537 * the address space during boot when many long-lived 2538 * kernel allocations are made. Later some blocks near 2539 * the start are marked MIGRATE_RESERVE by 2540 * setup_zone_migrate_reserve() 2541 */ 2542 if ((pfn & (pageblock_nr_pages-1))) 2543 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2544 2545 INIT_LIST_HEAD(&page->lru); 2546 #ifdef WANT_PAGE_VIRTUAL 2547 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2548 if (!is_highmem_idx(zone)) 2549 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2550 #endif 2551 } 2552 } 2553 2554 static void __meminit zone_init_free_lists(struct pglist_data *pgdat, 2555 struct zone *zone, unsigned long size) 2556 { 2557 int order, t; 2558 for_each_migratetype_order(order, t) { 2559 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2560 zone->free_area[order].nr_free = 0; 2561 } 2562 } 2563 2564 #ifndef __HAVE_ARCH_MEMMAP_INIT 2565 #define memmap_init(size, nid, zone, start_pfn) \ 2566 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2567 #endif 2568 2569 static int zone_batchsize(struct zone *zone) 2570 { 2571 int batch; 2572 2573 /* 2574 * The per-cpu-pages pools are set to around 1000th of the 2575 * size of the zone. But no more than 1/2 of a meg. 2576 * 2577 * OK, so we don't know how big the cache is. So guess. 2578 */ 2579 batch = zone->present_pages / 1024; 2580 if (batch * PAGE_SIZE > 512 * 1024) 2581 batch = (512 * 1024) / PAGE_SIZE; 2582 batch /= 4; /* We effectively *= 4 below */ 2583 if (batch < 1) 2584 batch = 1; 2585 2586 /* 2587 * Clamp the batch to a 2^n - 1 value. Having a power 2588 * of 2 value was found to be more likely to have 2589 * suboptimal cache aliasing properties in some cases. 2590 * 2591 * For example if 2 tasks are alternately allocating 2592 * batches of pages, one task can end up with a lot 2593 * of pages of one half of the possible page colors 2594 * and the other with pages of the other colors. 2595 */ 2596 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2597 2598 return batch; 2599 } 2600 2601 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2602 { 2603 struct per_cpu_pages *pcp; 2604 2605 memset(p, 0, sizeof(*p)); 2606 2607 pcp = &p->pcp[0]; /* hot */ 2608 pcp->count = 0; 2609 pcp->high = 6 * batch; 2610 pcp->batch = max(1UL, 1 * batch); 2611 INIT_LIST_HEAD(&pcp->list); 2612 2613 pcp = &p->pcp[1]; /* cold*/ 2614 pcp->count = 0; 2615 pcp->high = 2 * batch; 2616 pcp->batch = max(1UL, batch/2); 2617 INIT_LIST_HEAD(&pcp->list); 2618 } 2619 2620 /* 2621 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2622 * to the value high for the pageset p. 2623 */ 2624 2625 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2626 unsigned long high) 2627 { 2628 struct per_cpu_pages *pcp; 2629 2630 pcp = &p->pcp[0]; /* hot list */ 2631 pcp->high = high; 2632 pcp->batch = max(1UL, high/4); 2633 if ((high/4) > (PAGE_SHIFT * 8)) 2634 pcp->batch = PAGE_SHIFT * 8; 2635 } 2636 2637 2638 #ifdef CONFIG_NUMA 2639 /* 2640 * Boot pageset table. One per cpu which is going to be used for all 2641 * zones and all nodes. The parameters will be set in such a way 2642 * that an item put on a list will immediately be handed over to 2643 * the buddy list. This is safe since pageset manipulation is done 2644 * with interrupts disabled. 2645 * 2646 * Some NUMA counter updates may also be caught by the boot pagesets. 2647 * 2648 * The boot_pagesets must be kept even after bootup is complete for 2649 * unused processors and/or zones. They do play a role for bootstrapping 2650 * hotplugged processors. 2651 * 2652 * zoneinfo_show() and maybe other functions do 2653 * not check if the processor is online before following the pageset pointer. 2654 * Other parts of the kernel may not check if the zone is available. 2655 */ 2656 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2657 2658 /* 2659 * Dynamically allocate memory for the 2660 * per cpu pageset array in struct zone. 2661 */ 2662 static int __cpuinit process_zones(int cpu) 2663 { 2664 struct zone *zone, *dzone; 2665 int node = cpu_to_node(cpu); 2666 2667 node_set_state(node, N_CPU); /* this node has a cpu */ 2668 2669 for_each_zone(zone) { 2670 2671 if (!populated_zone(zone)) 2672 continue; 2673 2674 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2675 GFP_KERNEL, node); 2676 if (!zone_pcp(zone, cpu)) 2677 goto bad; 2678 2679 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2680 2681 if (percpu_pagelist_fraction) 2682 setup_pagelist_highmark(zone_pcp(zone, cpu), 2683 (zone->present_pages / percpu_pagelist_fraction)); 2684 } 2685 2686 return 0; 2687 bad: 2688 for_each_zone(dzone) { 2689 if (!populated_zone(dzone)) 2690 continue; 2691 if (dzone == zone) 2692 break; 2693 kfree(zone_pcp(dzone, cpu)); 2694 zone_pcp(dzone, cpu) = NULL; 2695 } 2696 return -ENOMEM; 2697 } 2698 2699 static inline void free_zone_pagesets(int cpu) 2700 { 2701 struct zone *zone; 2702 2703 for_each_zone(zone) { 2704 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2705 2706 /* Free per_cpu_pageset if it is slab allocated */ 2707 if (pset != &boot_pageset[cpu]) 2708 kfree(pset); 2709 zone_pcp(zone, cpu) = NULL; 2710 } 2711 } 2712 2713 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2714 unsigned long action, 2715 void *hcpu) 2716 { 2717 int cpu = (long)hcpu; 2718 int ret = NOTIFY_OK; 2719 2720 switch (action) { 2721 case CPU_UP_PREPARE: 2722 case CPU_UP_PREPARE_FROZEN: 2723 if (process_zones(cpu)) 2724 ret = NOTIFY_BAD; 2725 break; 2726 case CPU_UP_CANCELED: 2727 case CPU_UP_CANCELED_FROZEN: 2728 case CPU_DEAD: 2729 case CPU_DEAD_FROZEN: 2730 free_zone_pagesets(cpu); 2731 break; 2732 default: 2733 break; 2734 } 2735 return ret; 2736 } 2737 2738 static struct notifier_block __cpuinitdata pageset_notifier = 2739 { &pageset_cpuup_callback, NULL, 0 }; 2740 2741 void __init setup_per_cpu_pageset(void) 2742 { 2743 int err; 2744 2745 /* Initialize per_cpu_pageset for cpu 0. 2746 * A cpuup callback will do this for every cpu 2747 * as it comes online 2748 */ 2749 err = process_zones(smp_processor_id()); 2750 BUG_ON(err); 2751 register_cpu_notifier(&pageset_notifier); 2752 } 2753 2754 #endif 2755 2756 static noinline __init_refok 2757 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2758 { 2759 int i; 2760 struct pglist_data *pgdat = zone->zone_pgdat; 2761 size_t alloc_size; 2762 2763 /* 2764 * The per-page waitqueue mechanism uses hashed waitqueues 2765 * per zone. 2766 */ 2767 zone->wait_table_hash_nr_entries = 2768 wait_table_hash_nr_entries(zone_size_pages); 2769 zone->wait_table_bits = 2770 wait_table_bits(zone->wait_table_hash_nr_entries); 2771 alloc_size = zone->wait_table_hash_nr_entries 2772 * sizeof(wait_queue_head_t); 2773 2774 if (system_state == SYSTEM_BOOTING) { 2775 zone->wait_table = (wait_queue_head_t *) 2776 alloc_bootmem_node(pgdat, alloc_size); 2777 } else { 2778 /* 2779 * This case means that a zone whose size was 0 gets new memory 2780 * via memory hot-add. 2781 * But it may be the case that a new node was hot-added. In 2782 * this case vmalloc() will not be able to use this new node's 2783 * memory - this wait_table must be initialized to use this new 2784 * node itself as well. 2785 * To use this new node's memory, further consideration will be 2786 * necessary. 2787 */ 2788 zone->wait_table = vmalloc(alloc_size); 2789 } 2790 if (!zone->wait_table) 2791 return -ENOMEM; 2792 2793 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2794 init_waitqueue_head(zone->wait_table + i); 2795 2796 return 0; 2797 } 2798 2799 static __meminit void zone_pcp_init(struct zone *zone) 2800 { 2801 int cpu; 2802 unsigned long batch = zone_batchsize(zone); 2803 2804 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2805 #ifdef CONFIG_NUMA 2806 /* Early boot. Slab allocator not functional yet */ 2807 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2808 setup_pageset(&boot_pageset[cpu],0); 2809 #else 2810 setup_pageset(zone_pcp(zone,cpu), batch); 2811 #endif 2812 } 2813 if (zone->present_pages) 2814 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2815 zone->name, zone->present_pages, batch); 2816 } 2817 2818 __meminit int init_currently_empty_zone(struct zone *zone, 2819 unsigned long zone_start_pfn, 2820 unsigned long size, 2821 enum memmap_context context) 2822 { 2823 struct pglist_data *pgdat = zone->zone_pgdat; 2824 int ret; 2825 ret = zone_wait_table_init(zone, size); 2826 if (ret) 2827 return ret; 2828 pgdat->nr_zones = zone_idx(zone) + 1; 2829 2830 zone->zone_start_pfn = zone_start_pfn; 2831 2832 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2833 2834 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2835 2836 return 0; 2837 } 2838 2839 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2840 /* 2841 * Basic iterator support. Return the first range of PFNs for a node 2842 * Note: nid == MAX_NUMNODES returns first region regardless of node 2843 */ 2844 static int __meminit first_active_region_index_in_nid(int nid) 2845 { 2846 int i; 2847 2848 for (i = 0; i < nr_nodemap_entries; i++) 2849 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2850 return i; 2851 2852 return -1; 2853 } 2854 2855 /* 2856 * Basic iterator support. Return the next active range of PFNs for a node 2857 * Note: nid == MAX_NUMNODES returns next region regardless of node 2858 */ 2859 static int __meminit next_active_region_index_in_nid(int index, int nid) 2860 { 2861 for (index = index + 1; index < nr_nodemap_entries; index++) 2862 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2863 return index; 2864 2865 return -1; 2866 } 2867 2868 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2869 /* 2870 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2871 * Architectures may implement their own version but if add_active_range() 2872 * was used and there are no special requirements, this is a convenient 2873 * alternative 2874 */ 2875 int __meminit early_pfn_to_nid(unsigned long pfn) 2876 { 2877 int i; 2878 2879 for (i = 0; i < nr_nodemap_entries; i++) { 2880 unsigned long start_pfn = early_node_map[i].start_pfn; 2881 unsigned long end_pfn = early_node_map[i].end_pfn; 2882 2883 if (start_pfn <= pfn && pfn < end_pfn) 2884 return early_node_map[i].nid; 2885 } 2886 2887 return 0; 2888 } 2889 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2890 2891 /* Basic iterator support to walk early_node_map[] */ 2892 #define for_each_active_range_index_in_nid(i, nid) \ 2893 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2894 i = next_active_region_index_in_nid(i, nid)) 2895 2896 /** 2897 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2898 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2899 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2900 * 2901 * If an architecture guarantees that all ranges registered with 2902 * add_active_ranges() contain no holes and may be freed, this 2903 * this function may be used instead of calling free_bootmem() manually. 2904 */ 2905 void __init free_bootmem_with_active_regions(int nid, 2906 unsigned long max_low_pfn) 2907 { 2908 int i; 2909 2910 for_each_active_range_index_in_nid(i, nid) { 2911 unsigned long size_pages = 0; 2912 unsigned long end_pfn = early_node_map[i].end_pfn; 2913 2914 if (early_node_map[i].start_pfn >= max_low_pfn) 2915 continue; 2916 2917 if (end_pfn > max_low_pfn) 2918 end_pfn = max_low_pfn; 2919 2920 size_pages = end_pfn - early_node_map[i].start_pfn; 2921 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2922 PFN_PHYS(early_node_map[i].start_pfn), 2923 size_pages << PAGE_SHIFT); 2924 } 2925 } 2926 2927 /** 2928 * sparse_memory_present_with_active_regions - Call memory_present for each active range 2929 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 2930 * 2931 * If an architecture guarantees that all ranges registered with 2932 * add_active_ranges() contain no holes and may be freed, this 2933 * function may be used instead of calling memory_present() manually. 2934 */ 2935 void __init sparse_memory_present_with_active_regions(int nid) 2936 { 2937 int i; 2938 2939 for_each_active_range_index_in_nid(i, nid) 2940 memory_present(early_node_map[i].nid, 2941 early_node_map[i].start_pfn, 2942 early_node_map[i].end_pfn); 2943 } 2944 2945 /** 2946 * push_node_boundaries - Push node boundaries to at least the requested boundary 2947 * @nid: The nid of the node to push the boundary for 2948 * @start_pfn: The start pfn of the node 2949 * @end_pfn: The end pfn of the node 2950 * 2951 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 2952 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 2953 * be hotplugged even though no physical memory exists. This function allows 2954 * an arch to push out the node boundaries so mem_map is allocated that can 2955 * be used later. 2956 */ 2957 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2958 void __init push_node_boundaries(unsigned int nid, 2959 unsigned long start_pfn, unsigned long end_pfn) 2960 { 2961 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", 2962 nid, start_pfn, end_pfn); 2963 2964 /* Initialise the boundary for this node if necessary */ 2965 if (node_boundary_end_pfn[nid] == 0) 2966 node_boundary_start_pfn[nid] = -1UL; 2967 2968 /* Update the boundaries */ 2969 if (node_boundary_start_pfn[nid] > start_pfn) 2970 node_boundary_start_pfn[nid] = start_pfn; 2971 if (node_boundary_end_pfn[nid] < end_pfn) 2972 node_boundary_end_pfn[nid] = end_pfn; 2973 } 2974 2975 /* If necessary, push the node boundary out for reserve hotadd */ 2976 static void __meminit account_node_boundary(unsigned int nid, 2977 unsigned long *start_pfn, unsigned long *end_pfn) 2978 { 2979 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", 2980 nid, *start_pfn, *end_pfn); 2981 2982 /* Return if boundary information has not been provided */ 2983 if (node_boundary_end_pfn[nid] == 0) 2984 return; 2985 2986 /* Check the boundaries and update if necessary */ 2987 if (node_boundary_start_pfn[nid] < *start_pfn) 2988 *start_pfn = node_boundary_start_pfn[nid]; 2989 if (node_boundary_end_pfn[nid] > *end_pfn) 2990 *end_pfn = node_boundary_end_pfn[nid]; 2991 } 2992 #else 2993 void __init push_node_boundaries(unsigned int nid, 2994 unsigned long start_pfn, unsigned long end_pfn) {} 2995 2996 static void __meminit account_node_boundary(unsigned int nid, 2997 unsigned long *start_pfn, unsigned long *end_pfn) {} 2998 #endif 2999 3000 3001 /** 3002 * get_pfn_range_for_nid - Return the start and end page frames for a node 3003 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3004 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3005 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3006 * 3007 * It returns the start and end page frame of a node based on information 3008 * provided by an arch calling add_active_range(). If called for a node 3009 * with no available memory, a warning is printed and the start and end 3010 * PFNs will be 0. 3011 */ 3012 void __meminit get_pfn_range_for_nid(unsigned int nid, 3013 unsigned long *start_pfn, unsigned long *end_pfn) 3014 { 3015 int i; 3016 *start_pfn = -1UL; 3017 *end_pfn = 0; 3018 3019 for_each_active_range_index_in_nid(i, nid) { 3020 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3021 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3022 } 3023 3024 if (*start_pfn == -1UL) 3025 *start_pfn = 0; 3026 3027 /* Push the node boundaries out if requested */ 3028 account_node_boundary(nid, start_pfn, end_pfn); 3029 } 3030 3031 /* 3032 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3033 * assumption is made that zones within a node are ordered in monotonic 3034 * increasing memory addresses so that the "highest" populated zone is used 3035 */ 3036 void __init find_usable_zone_for_movable(void) 3037 { 3038 int zone_index; 3039 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3040 if (zone_index == ZONE_MOVABLE) 3041 continue; 3042 3043 if (arch_zone_highest_possible_pfn[zone_index] > 3044 arch_zone_lowest_possible_pfn[zone_index]) 3045 break; 3046 } 3047 3048 VM_BUG_ON(zone_index == -1); 3049 movable_zone = zone_index; 3050 } 3051 3052 /* 3053 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3054 * because it is sized independant of architecture. Unlike the other zones, 3055 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3056 * in each node depending on the size of each node and how evenly kernelcore 3057 * is distributed. This helper function adjusts the zone ranges 3058 * provided by the architecture for a given node by using the end of the 3059 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3060 * zones within a node are in order of monotonic increases memory addresses 3061 */ 3062 void __meminit adjust_zone_range_for_zone_movable(int nid, 3063 unsigned long zone_type, 3064 unsigned long node_start_pfn, 3065 unsigned long node_end_pfn, 3066 unsigned long *zone_start_pfn, 3067 unsigned long *zone_end_pfn) 3068 { 3069 /* Only adjust if ZONE_MOVABLE is on this node */ 3070 if (zone_movable_pfn[nid]) { 3071 /* Size ZONE_MOVABLE */ 3072 if (zone_type == ZONE_MOVABLE) { 3073 *zone_start_pfn = zone_movable_pfn[nid]; 3074 *zone_end_pfn = min(node_end_pfn, 3075 arch_zone_highest_possible_pfn[movable_zone]); 3076 3077 /* Adjust for ZONE_MOVABLE starting within this range */ 3078 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3079 *zone_end_pfn > zone_movable_pfn[nid]) { 3080 *zone_end_pfn = zone_movable_pfn[nid]; 3081 3082 /* Check if this whole range is within ZONE_MOVABLE */ 3083 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3084 *zone_start_pfn = *zone_end_pfn; 3085 } 3086 } 3087 3088 /* 3089 * Return the number of pages a zone spans in a node, including holes 3090 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3091 */ 3092 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3093 unsigned long zone_type, 3094 unsigned long *ignored) 3095 { 3096 unsigned long node_start_pfn, node_end_pfn; 3097 unsigned long zone_start_pfn, zone_end_pfn; 3098 3099 /* Get the start and end of the node and zone */ 3100 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3101 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3102 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3103 adjust_zone_range_for_zone_movable(nid, zone_type, 3104 node_start_pfn, node_end_pfn, 3105 &zone_start_pfn, &zone_end_pfn); 3106 3107 /* Check that this node has pages within the zone's required range */ 3108 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3109 return 0; 3110 3111 /* Move the zone boundaries inside the node if necessary */ 3112 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3113 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3114 3115 /* Return the spanned pages */ 3116 return zone_end_pfn - zone_start_pfn; 3117 } 3118 3119 /* 3120 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3121 * then all holes in the requested range will be accounted for. 3122 */ 3123 unsigned long __meminit __absent_pages_in_range(int nid, 3124 unsigned long range_start_pfn, 3125 unsigned long range_end_pfn) 3126 { 3127 int i = 0; 3128 unsigned long prev_end_pfn = 0, hole_pages = 0; 3129 unsigned long start_pfn; 3130 3131 /* Find the end_pfn of the first active range of pfns in the node */ 3132 i = first_active_region_index_in_nid(nid); 3133 if (i == -1) 3134 return 0; 3135 3136 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3137 3138 /* Account for ranges before physical memory on this node */ 3139 if (early_node_map[i].start_pfn > range_start_pfn) 3140 hole_pages = prev_end_pfn - range_start_pfn; 3141 3142 /* Find all holes for the zone within the node */ 3143 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3144 3145 /* No need to continue if prev_end_pfn is outside the zone */ 3146 if (prev_end_pfn >= range_end_pfn) 3147 break; 3148 3149 /* Make sure the end of the zone is not within the hole */ 3150 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3151 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3152 3153 /* Update the hole size cound and move on */ 3154 if (start_pfn > range_start_pfn) { 3155 BUG_ON(prev_end_pfn > start_pfn); 3156 hole_pages += start_pfn - prev_end_pfn; 3157 } 3158 prev_end_pfn = early_node_map[i].end_pfn; 3159 } 3160 3161 /* Account for ranges past physical memory on this node */ 3162 if (range_end_pfn > prev_end_pfn) 3163 hole_pages += range_end_pfn - 3164 max(range_start_pfn, prev_end_pfn); 3165 3166 return hole_pages; 3167 } 3168 3169 /** 3170 * absent_pages_in_range - Return number of page frames in holes within a range 3171 * @start_pfn: The start PFN to start searching for holes 3172 * @end_pfn: The end PFN to stop searching for holes 3173 * 3174 * It returns the number of pages frames in memory holes within a range. 3175 */ 3176 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3177 unsigned long end_pfn) 3178 { 3179 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3180 } 3181 3182 /* Return the number of page frames in holes in a zone on a node */ 3183 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3184 unsigned long zone_type, 3185 unsigned long *ignored) 3186 { 3187 unsigned long node_start_pfn, node_end_pfn; 3188 unsigned long zone_start_pfn, zone_end_pfn; 3189 3190 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3191 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3192 node_start_pfn); 3193 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3194 node_end_pfn); 3195 3196 adjust_zone_range_for_zone_movable(nid, zone_type, 3197 node_start_pfn, node_end_pfn, 3198 &zone_start_pfn, &zone_end_pfn); 3199 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3200 } 3201 3202 #else 3203 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3204 unsigned long zone_type, 3205 unsigned long *zones_size) 3206 { 3207 return zones_size[zone_type]; 3208 } 3209 3210 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3211 unsigned long zone_type, 3212 unsigned long *zholes_size) 3213 { 3214 if (!zholes_size) 3215 return 0; 3216 3217 return zholes_size[zone_type]; 3218 } 3219 3220 #endif 3221 3222 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3223 unsigned long *zones_size, unsigned long *zholes_size) 3224 { 3225 unsigned long realtotalpages, totalpages = 0; 3226 enum zone_type i; 3227 3228 for (i = 0; i < MAX_NR_ZONES; i++) 3229 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3230 zones_size); 3231 pgdat->node_spanned_pages = totalpages; 3232 3233 realtotalpages = totalpages; 3234 for (i = 0; i < MAX_NR_ZONES; i++) 3235 realtotalpages -= 3236 zone_absent_pages_in_node(pgdat->node_id, i, 3237 zholes_size); 3238 pgdat->node_present_pages = realtotalpages; 3239 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3240 realtotalpages); 3241 } 3242 3243 #ifndef CONFIG_SPARSEMEM 3244 /* 3245 * Calculate the size of the zone->blockflags rounded to an unsigned long 3246 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3247 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3248 * round what is now in bits to nearest long in bits, then return it in 3249 * bytes. 3250 */ 3251 static unsigned long __init usemap_size(unsigned long zonesize) 3252 { 3253 unsigned long usemapsize; 3254 3255 usemapsize = roundup(zonesize, pageblock_nr_pages); 3256 usemapsize = usemapsize >> pageblock_order; 3257 usemapsize *= NR_PAGEBLOCK_BITS; 3258 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3259 3260 return usemapsize / 8; 3261 } 3262 3263 static void __init setup_usemap(struct pglist_data *pgdat, 3264 struct zone *zone, unsigned long zonesize) 3265 { 3266 unsigned long usemapsize = usemap_size(zonesize); 3267 zone->pageblock_flags = NULL; 3268 if (usemapsize) { 3269 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3270 memset(zone->pageblock_flags, 0, usemapsize); 3271 } 3272 } 3273 #else 3274 static void inline setup_usemap(struct pglist_data *pgdat, 3275 struct zone *zone, unsigned long zonesize) {} 3276 #endif /* CONFIG_SPARSEMEM */ 3277 3278 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3279 3280 /* Return a sensible default order for the pageblock size. */ 3281 static inline int pageblock_default_order(void) 3282 { 3283 if (HPAGE_SHIFT > PAGE_SHIFT) 3284 return HUGETLB_PAGE_ORDER; 3285 3286 return MAX_ORDER-1; 3287 } 3288 3289 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3290 static inline void __init set_pageblock_order(unsigned int order) 3291 { 3292 /* Check that pageblock_nr_pages has not already been setup */ 3293 if (pageblock_order) 3294 return; 3295 3296 /* 3297 * Assume the largest contiguous order of interest is a huge page. 3298 * This value may be variable depending on boot parameters on IA64 3299 */ 3300 pageblock_order = order; 3301 } 3302 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3303 3304 /* 3305 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3306 * and pageblock_default_order() are unused as pageblock_order is set 3307 * at compile-time. See include/linux/pageblock-flags.h for the values of 3308 * pageblock_order based on the kernel config 3309 */ 3310 static inline int pageblock_default_order(unsigned int order) 3311 { 3312 return MAX_ORDER-1; 3313 } 3314 #define set_pageblock_order(x) do {} while (0) 3315 3316 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3317 3318 /* 3319 * Set up the zone data structures: 3320 * - mark all pages reserved 3321 * - mark all memory queues empty 3322 * - clear the memory bitmaps 3323 */ 3324 static void __meminit free_area_init_core(struct pglist_data *pgdat, 3325 unsigned long *zones_size, unsigned long *zholes_size) 3326 { 3327 enum zone_type j; 3328 int nid = pgdat->node_id; 3329 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3330 int ret; 3331 3332 pgdat_resize_init(pgdat); 3333 pgdat->nr_zones = 0; 3334 init_waitqueue_head(&pgdat->kswapd_wait); 3335 pgdat->kswapd_max_order = 0; 3336 3337 for (j = 0; j < MAX_NR_ZONES; j++) { 3338 struct zone *zone = pgdat->node_zones + j; 3339 unsigned long size, realsize, memmap_pages; 3340 3341 size = zone_spanned_pages_in_node(nid, j, zones_size); 3342 realsize = size - zone_absent_pages_in_node(nid, j, 3343 zholes_size); 3344 3345 /* 3346 * Adjust realsize so that it accounts for how much memory 3347 * is used by this zone for memmap. This affects the watermark 3348 * and per-cpu initialisations 3349 */ 3350 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; 3351 if (realsize >= memmap_pages) { 3352 realsize -= memmap_pages; 3353 printk(KERN_DEBUG 3354 " %s zone: %lu pages used for memmap\n", 3355 zone_names[j], memmap_pages); 3356 } else 3357 printk(KERN_WARNING 3358 " %s zone: %lu pages exceeds realsize %lu\n", 3359 zone_names[j], memmap_pages, realsize); 3360 3361 /* Account for reserved pages */ 3362 if (j == 0 && realsize > dma_reserve) { 3363 realsize -= dma_reserve; 3364 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3365 zone_names[0], dma_reserve); 3366 } 3367 3368 if (!is_highmem_idx(j)) 3369 nr_kernel_pages += realsize; 3370 nr_all_pages += realsize; 3371 3372 zone->spanned_pages = size; 3373 zone->present_pages = realsize; 3374 #ifdef CONFIG_NUMA 3375 zone->node = nid; 3376 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3377 / 100; 3378 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3379 #endif 3380 zone->name = zone_names[j]; 3381 spin_lock_init(&zone->lock); 3382 spin_lock_init(&zone->lru_lock); 3383 zone_seqlock_init(zone); 3384 zone->zone_pgdat = pgdat; 3385 3386 zone->prev_priority = DEF_PRIORITY; 3387 3388 zone_pcp_init(zone); 3389 INIT_LIST_HEAD(&zone->active_list); 3390 INIT_LIST_HEAD(&zone->inactive_list); 3391 zone->nr_scan_active = 0; 3392 zone->nr_scan_inactive = 0; 3393 zap_zone_vm_stats(zone); 3394 zone->flags = 0; 3395 if (!size) 3396 continue; 3397 3398 set_pageblock_order(pageblock_default_order()); 3399 setup_usemap(pgdat, zone, size); 3400 ret = init_currently_empty_zone(zone, zone_start_pfn, 3401 size, MEMMAP_EARLY); 3402 BUG_ON(ret); 3403 zone_start_pfn += size; 3404 } 3405 } 3406 3407 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3408 { 3409 /* Skip empty nodes */ 3410 if (!pgdat->node_spanned_pages) 3411 return; 3412 3413 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3414 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3415 if (!pgdat->node_mem_map) { 3416 unsigned long size, start, end; 3417 struct page *map; 3418 3419 /* 3420 * The zone's endpoints aren't required to be MAX_ORDER 3421 * aligned but the node_mem_map endpoints must be in order 3422 * for the buddy allocator to function correctly. 3423 */ 3424 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3425 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3426 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3427 size = (end - start) * sizeof(struct page); 3428 map = alloc_remap(pgdat->node_id, size); 3429 if (!map) 3430 map = alloc_bootmem_node(pgdat, size); 3431 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3432 } 3433 #ifndef CONFIG_NEED_MULTIPLE_NODES 3434 /* 3435 * With no DISCONTIG, the global mem_map is just set as node 0's 3436 */ 3437 if (pgdat == NODE_DATA(0)) { 3438 mem_map = NODE_DATA(0)->node_mem_map; 3439 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3440 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3441 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3442 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3443 } 3444 #endif 3445 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3446 } 3447 3448 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 3449 unsigned long *zones_size, unsigned long node_start_pfn, 3450 unsigned long *zholes_size) 3451 { 3452 pgdat->node_id = nid; 3453 pgdat->node_start_pfn = node_start_pfn; 3454 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3455 3456 alloc_node_mem_map(pgdat); 3457 3458 free_area_init_core(pgdat, zones_size, zholes_size); 3459 } 3460 3461 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3462 3463 #if MAX_NUMNODES > 1 3464 /* 3465 * Figure out the number of possible node ids. 3466 */ 3467 static void __init setup_nr_node_ids(void) 3468 { 3469 unsigned int node; 3470 unsigned int highest = 0; 3471 3472 for_each_node_mask(node, node_possible_map) 3473 highest = node; 3474 nr_node_ids = highest + 1; 3475 } 3476 #else 3477 static inline void setup_nr_node_ids(void) 3478 { 3479 } 3480 #endif 3481 3482 /** 3483 * add_active_range - Register a range of PFNs backed by physical memory 3484 * @nid: The node ID the range resides on 3485 * @start_pfn: The start PFN of the available physical memory 3486 * @end_pfn: The end PFN of the available physical memory 3487 * 3488 * These ranges are stored in an early_node_map[] and later used by 3489 * free_area_init_nodes() to calculate zone sizes and holes. If the 3490 * range spans a memory hole, it is up to the architecture to ensure 3491 * the memory is not freed by the bootmem allocator. If possible 3492 * the range being registered will be merged with existing ranges. 3493 */ 3494 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3495 unsigned long end_pfn) 3496 { 3497 int i; 3498 3499 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " 3500 "%d entries of %d used\n", 3501 nid, start_pfn, end_pfn, 3502 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3503 3504 /* Merge with existing active regions if possible */ 3505 for (i = 0; i < nr_nodemap_entries; i++) { 3506 if (early_node_map[i].nid != nid) 3507 continue; 3508 3509 /* Skip if an existing region covers this new one */ 3510 if (start_pfn >= early_node_map[i].start_pfn && 3511 end_pfn <= early_node_map[i].end_pfn) 3512 return; 3513 3514 /* Merge forward if suitable */ 3515 if (start_pfn <= early_node_map[i].end_pfn && 3516 end_pfn > early_node_map[i].end_pfn) { 3517 early_node_map[i].end_pfn = end_pfn; 3518 return; 3519 } 3520 3521 /* Merge backward if suitable */ 3522 if (start_pfn < early_node_map[i].end_pfn && 3523 end_pfn >= early_node_map[i].start_pfn) { 3524 early_node_map[i].start_pfn = start_pfn; 3525 return; 3526 } 3527 } 3528 3529 /* Check that early_node_map is large enough */ 3530 if (i >= MAX_ACTIVE_REGIONS) { 3531 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3532 MAX_ACTIVE_REGIONS); 3533 return; 3534 } 3535 3536 early_node_map[i].nid = nid; 3537 early_node_map[i].start_pfn = start_pfn; 3538 early_node_map[i].end_pfn = end_pfn; 3539 nr_nodemap_entries = i + 1; 3540 } 3541 3542 /** 3543 * shrink_active_range - Shrink an existing registered range of PFNs 3544 * @nid: The node id the range is on that should be shrunk 3545 * @old_end_pfn: The old end PFN of the range 3546 * @new_end_pfn: The new PFN of the range 3547 * 3548 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3549 * The map is kept at the end physical page range that has already been 3550 * registered with add_active_range(). This function allows an arch to shrink 3551 * an existing registered range. 3552 */ 3553 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 3554 unsigned long new_end_pfn) 3555 { 3556 int i; 3557 3558 /* Find the old active region end and shrink */ 3559 for_each_active_range_index_in_nid(i, nid) 3560 if (early_node_map[i].end_pfn == old_end_pfn) { 3561 early_node_map[i].end_pfn = new_end_pfn; 3562 break; 3563 } 3564 } 3565 3566 /** 3567 * remove_all_active_ranges - Remove all currently registered regions 3568 * 3569 * During discovery, it may be found that a table like SRAT is invalid 3570 * and an alternative discovery method must be used. This function removes 3571 * all currently registered regions. 3572 */ 3573 void __init remove_all_active_ranges(void) 3574 { 3575 memset(early_node_map, 0, sizeof(early_node_map)); 3576 nr_nodemap_entries = 0; 3577 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3578 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3579 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3580 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3581 } 3582 3583 /* Compare two active node_active_regions */ 3584 static int __init cmp_node_active_region(const void *a, const void *b) 3585 { 3586 struct node_active_region *arange = (struct node_active_region *)a; 3587 struct node_active_region *brange = (struct node_active_region *)b; 3588 3589 /* Done this way to avoid overflows */ 3590 if (arange->start_pfn > brange->start_pfn) 3591 return 1; 3592 if (arange->start_pfn < brange->start_pfn) 3593 return -1; 3594 3595 return 0; 3596 } 3597 3598 /* sort the node_map by start_pfn */ 3599 static void __init sort_node_map(void) 3600 { 3601 sort(early_node_map, (size_t)nr_nodemap_entries, 3602 sizeof(struct node_active_region), 3603 cmp_node_active_region, NULL); 3604 } 3605 3606 /* Find the lowest pfn for a node */ 3607 unsigned long __init find_min_pfn_for_node(unsigned long nid) 3608 { 3609 int i; 3610 unsigned long min_pfn = ULONG_MAX; 3611 3612 /* Assuming a sorted map, the first range found has the starting pfn */ 3613 for_each_active_range_index_in_nid(i, nid) 3614 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3615 3616 if (min_pfn == ULONG_MAX) { 3617 printk(KERN_WARNING 3618 "Could not find start_pfn for node %lu\n", nid); 3619 return 0; 3620 } 3621 3622 return min_pfn; 3623 } 3624 3625 /** 3626 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3627 * 3628 * It returns the minimum PFN based on information provided via 3629 * add_active_range(). 3630 */ 3631 unsigned long __init find_min_pfn_with_active_regions(void) 3632 { 3633 return find_min_pfn_for_node(MAX_NUMNODES); 3634 } 3635 3636 /** 3637 * find_max_pfn_with_active_regions - Find the maximum PFN registered 3638 * 3639 * It returns the maximum PFN based on information provided via 3640 * add_active_range(). 3641 */ 3642 unsigned long __init find_max_pfn_with_active_regions(void) 3643 { 3644 int i; 3645 unsigned long max_pfn = 0; 3646 3647 for (i = 0; i < nr_nodemap_entries; i++) 3648 max_pfn = max(max_pfn, early_node_map[i].end_pfn); 3649 3650 return max_pfn; 3651 } 3652 3653 /* 3654 * early_calculate_totalpages() 3655 * Sum pages in active regions for movable zone. 3656 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3657 */ 3658 static unsigned long __init early_calculate_totalpages(void) 3659 { 3660 int i; 3661 unsigned long totalpages = 0; 3662 3663 for (i = 0; i < nr_nodemap_entries; i++) { 3664 unsigned long pages = early_node_map[i].end_pfn - 3665 early_node_map[i].start_pfn; 3666 totalpages += pages; 3667 if (pages) 3668 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3669 } 3670 return totalpages; 3671 } 3672 3673 /* 3674 * Find the PFN the Movable zone begins in each node. Kernel memory 3675 * is spread evenly between nodes as long as the nodes have enough 3676 * memory. When they don't, some nodes will have more kernelcore than 3677 * others 3678 */ 3679 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3680 { 3681 int i, nid; 3682 unsigned long usable_startpfn; 3683 unsigned long kernelcore_node, kernelcore_remaining; 3684 unsigned long totalpages = early_calculate_totalpages(); 3685 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3686 3687 /* 3688 * If movablecore was specified, calculate what size of 3689 * kernelcore that corresponds so that memory usable for 3690 * any allocation type is evenly spread. If both kernelcore 3691 * and movablecore are specified, then the value of kernelcore 3692 * will be used for required_kernelcore if it's greater than 3693 * what movablecore would have allowed. 3694 */ 3695 if (required_movablecore) { 3696 unsigned long corepages; 3697 3698 /* 3699 * Round-up so that ZONE_MOVABLE is at least as large as what 3700 * was requested by the user 3701 */ 3702 required_movablecore = 3703 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3704 corepages = totalpages - required_movablecore; 3705 3706 required_kernelcore = max(required_kernelcore, corepages); 3707 } 3708 3709 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3710 if (!required_kernelcore) 3711 return; 3712 3713 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3714 find_usable_zone_for_movable(); 3715 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3716 3717 restart: 3718 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3719 kernelcore_node = required_kernelcore / usable_nodes; 3720 for_each_node_state(nid, N_HIGH_MEMORY) { 3721 /* 3722 * Recalculate kernelcore_node if the division per node 3723 * now exceeds what is necessary to satisfy the requested 3724 * amount of memory for the kernel 3725 */ 3726 if (required_kernelcore < kernelcore_node) 3727 kernelcore_node = required_kernelcore / usable_nodes; 3728 3729 /* 3730 * As the map is walked, we track how much memory is usable 3731 * by the kernel using kernelcore_remaining. When it is 3732 * 0, the rest of the node is usable by ZONE_MOVABLE 3733 */ 3734 kernelcore_remaining = kernelcore_node; 3735 3736 /* Go through each range of PFNs within this node */ 3737 for_each_active_range_index_in_nid(i, nid) { 3738 unsigned long start_pfn, end_pfn; 3739 unsigned long size_pages; 3740 3741 start_pfn = max(early_node_map[i].start_pfn, 3742 zone_movable_pfn[nid]); 3743 end_pfn = early_node_map[i].end_pfn; 3744 if (start_pfn >= end_pfn) 3745 continue; 3746 3747 /* Account for what is only usable for kernelcore */ 3748 if (start_pfn < usable_startpfn) { 3749 unsigned long kernel_pages; 3750 kernel_pages = min(end_pfn, usable_startpfn) 3751 - start_pfn; 3752 3753 kernelcore_remaining -= min(kernel_pages, 3754 kernelcore_remaining); 3755 required_kernelcore -= min(kernel_pages, 3756 required_kernelcore); 3757 3758 /* Continue if range is now fully accounted */ 3759 if (end_pfn <= usable_startpfn) { 3760 3761 /* 3762 * Push zone_movable_pfn to the end so 3763 * that if we have to rebalance 3764 * kernelcore across nodes, we will 3765 * not double account here 3766 */ 3767 zone_movable_pfn[nid] = end_pfn; 3768 continue; 3769 } 3770 start_pfn = usable_startpfn; 3771 } 3772 3773 /* 3774 * The usable PFN range for ZONE_MOVABLE is from 3775 * start_pfn->end_pfn. Calculate size_pages as the 3776 * number of pages used as kernelcore 3777 */ 3778 size_pages = end_pfn - start_pfn; 3779 if (size_pages > kernelcore_remaining) 3780 size_pages = kernelcore_remaining; 3781 zone_movable_pfn[nid] = start_pfn + size_pages; 3782 3783 /* 3784 * Some kernelcore has been met, update counts and 3785 * break if the kernelcore for this node has been 3786 * satisified 3787 */ 3788 required_kernelcore -= min(required_kernelcore, 3789 size_pages); 3790 kernelcore_remaining -= size_pages; 3791 if (!kernelcore_remaining) 3792 break; 3793 } 3794 } 3795 3796 /* 3797 * If there is still required_kernelcore, we do another pass with one 3798 * less node in the count. This will push zone_movable_pfn[nid] further 3799 * along on the nodes that still have memory until kernelcore is 3800 * satisified 3801 */ 3802 usable_nodes--; 3803 if (usable_nodes && required_kernelcore > usable_nodes) 3804 goto restart; 3805 3806 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3807 for (nid = 0; nid < MAX_NUMNODES; nid++) 3808 zone_movable_pfn[nid] = 3809 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3810 } 3811 3812 /* Any regular memory on that node ? */ 3813 static void check_for_regular_memory(pg_data_t *pgdat) 3814 { 3815 #ifdef CONFIG_HIGHMEM 3816 enum zone_type zone_type; 3817 3818 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 3819 struct zone *zone = &pgdat->node_zones[zone_type]; 3820 if (zone->present_pages) 3821 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 3822 } 3823 #endif 3824 } 3825 3826 /** 3827 * free_area_init_nodes - Initialise all pg_data_t and zone data 3828 * @max_zone_pfn: an array of max PFNs for each zone 3829 * 3830 * This will call free_area_init_node() for each active node in the system. 3831 * Using the page ranges provided by add_active_range(), the size of each 3832 * zone in each node and their holes is calculated. If the maximum PFN 3833 * between two adjacent zones match, it is assumed that the zone is empty. 3834 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 3835 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 3836 * starts where the previous one ended. For example, ZONE_DMA32 starts 3837 * at arch_max_dma_pfn. 3838 */ 3839 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 3840 { 3841 unsigned long nid; 3842 enum zone_type i; 3843 3844 /* Sort early_node_map as initialisation assumes it is sorted */ 3845 sort_node_map(); 3846 3847 /* Record where the zone boundaries are */ 3848 memset(arch_zone_lowest_possible_pfn, 0, 3849 sizeof(arch_zone_lowest_possible_pfn)); 3850 memset(arch_zone_highest_possible_pfn, 0, 3851 sizeof(arch_zone_highest_possible_pfn)); 3852 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 3853 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 3854 for (i = 1; i < MAX_NR_ZONES; i++) { 3855 if (i == ZONE_MOVABLE) 3856 continue; 3857 arch_zone_lowest_possible_pfn[i] = 3858 arch_zone_highest_possible_pfn[i-1]; 3859 arch_zone_highest_possible_pfn[i] = 3860 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 3861 } 3862 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 3863 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 3864 3865 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 3866 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 3867 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 3868 3869 /* Print out the zone ranges */ 3870 printk("Zone PFN ranges:\n"); 3871 for (i = 0; i < MAX_NR_ZONES; i++) { 3872 if (i == ZONE_MOVABLE) 3873 continue; 3874 printk(" %-8s %8lu -> %8lu\n", 3875 zone_names[i], 3876 arch_zone_lowest_possible_pfn[i], 3877 arch_zone_highest_possible_pfn[i]); 3878 } 3879 3880 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 3881 printk("Movable zone start PFN for each node\n"); 3882 for (i = 0; i < MAX_NUMNODES; i++) { 3883 if (zone_movable_pfn[i]) 3884 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 3885 } 3886 3887 /* Print out the early_node_map[] */ 3888 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 3889 for (i = 0; i < nr_nodemap_entries; i++) 3890 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, 3891 early_node_map[i].start_pfn, 3892 early_node_map[i].end_pfn); 3893 3894 /* Initialise every node */ 3895 setup_nr_node_ids(); 3896 for_each_online_node(nid) { 3897 pg_data_t *pgdat = NODE_DATA(nid); 3898 free_area_init_node(nid, pgdat, NULL, 3899 find_min_pfn_for_node(nid), NULL); 3900 3901 /* Any memory on that node */ 3902 if (pgdat->node_present_pages) 3903 node_set_state(nid, N_HIGH_MEMORY); 3904 check_for_regular_memory(pgdat); 3905 } 3906 } 3907 3908 static int __init cmdline_parse_core(char *p, unsigned long *core) 3909 { 3910 unsigned long long coremem; 3911 if (!p) 3912 return -EINVAL; 3913 3914 coremem = memparse(p, &p); 3915 *core = coremem >> PAGE_SHIFT; 3916 3917 /* Paranoid check that UL is enough for the coremem value */ 3918 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 3919 3920 return 0; 3921 } 3922 3923 /* 3924 * kernelcore=size sets the amount of memory for use for allocations that 3925 * cannot be reclaimed or migrated. 3926 */ 3927 static int __init cmdline_parse_kernelcore(char *p) 3928 { 3929 return cmdline_parse_core(p, &required_kernelcore); 3930 } 3931 3932 /* 3933 * movablecore=size sets the amount of memory for use for allocations that 3934 * can be reclaimed or migrated. 3935 */ 3936 static int __init cmdline_parse_movablecore(char *p) 3937 { 3938 return cmdline_parse_core(p, &required_movablecore); 3939 } 3940 3941 early_param("kernelcore", cmdline_parse_kernelcore); 3942 early_param("movablecore", cmdline_parse_movablecore); 3943 3944 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3945 3946 /** 3947 * set_dma_reserve - set the specified number of pages reserved in the first zone 3948 * @new_dma_reserve: The number of pages to mark reserved 3949 * 3950 * The per-cpu batchsize and zone watermarks are determined by present_pages. 3951 * In the DMA zone, a significant percentage may be consumed by kernel image 3952 * and other unfreeable allocations which can skew the watermarks badly. This 3953 * function may optionally be used to account for unfreeable pages in the 3954 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 3955 * smaller per-cpu batchsize. 3956 */ 3957 void __init set_dma_reserve(unsigned long new_dma_reserve) 3958 { 3959 dma_reserve = new_dma_reserve; 3960 } 3961 3962 #ifndef CONFIG_NEED_MULTIPLE_NODES 3963 static bootmem_data_t contig_bootmem_data; 3964 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 3965 3966 EXPORT_SYMBOL(contig_page_data); 3967 #endif 3968 3969 void __init free_area_init(unsigned long *zones_size) 3970 { 3971 free_area_init_node(0, NODE_DATA(0), zones_size, 3972 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 3973 } 3974 3975 static int page_alloc_cpu_notify(struct notifier_block *self, 3976 unsigned long action, void *hcpu) 3977 { 3978 int cpu = (unsigned long)hcpu; 3979 3980 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 3981 local_irq_disable(); 3982 __drain_pages(cpu); 3983 vm_events_fold_cpu(cpu); 3984 local_irq_enable(); 3985 refresh_cpu_vm_stats(cpu); 3986 } 3987 return NOTIFY_OK; 3988 } 3989 3990 void __init page_alloc_init(void) 3991 { 3992 hotcpu_notifier(page_alloc_cpu_notify, 0); 3993 } 3994 3995 /* 3996 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 3997 * or min_free_kbytes changes. 3998 */ 3999 static void calculate_totalreserve_pages(void) 4000 { 4001 struct pglist_data *pgdat; 4002 unsigned long reserve_pages = 0; 4003 enum zone_type i, j; 4004 4005 for_each_online_pgdat(pgdat) { 4006 for (i = 0; i < MAX_NR_ZONES; i++) { 4007 struct zone *zone = pgdat->node_zones + i; 4008 unsigned long max = 0; 4009 4010 /* Find valid and maximum lowmem_reserve in the zone */ 4011 for (j = i; j < MAX_NR_ZONES; j++) { 4012 if (zone->lowmem_reserve[j] > max) 4013 max = zone->lowmem_reserve[j]; 4014 } 4015 4016 /* we treat pages_high as reserved pages. */ 4017 max += zone->pages_high; 4018 4019 if (max > zone->present_pages) 4020 max = zone->present_pages; 4021 reserve_pages += max; 4022 } 4023 } 4024 totalreserve_pages = reserve_pages; 4025 } 4026 4027 /* 4028 * setup_per_zone_lowmem_reserve - called whenever 4029 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4030 * has a correct pages reserved value, so an adequate number of 4031 * pages are left in the zone after a successful __alloc_pages(). 4032 */ 4033 static void setup_per_zone_lowmem_reserve(void) 4034 { 4035 struct pglist_data *pgdat; 4036 enum zone_type j, idx; 4037 4038 for_each_online_pgdat(pgdat) { 4039 for (j = 0; j < MAX_NR_ZONES; j++) { 4040 struct zone *zone = pgdat->node_zones + j; 4041 unsigned long present_pages = zone->present_pages; 4042 4043 zone->lowmem_reserve[j] = 0; 4044 4045 idx = j; 4046 while (idx) { 4047 struct zone *lower_zone; 4048 4049 idx--; 4050 4051 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4052 sysctl_lowmem_reserve_ratio[idx] = 1; 4053 4054 lower_zone = pgdat->node_zones + idx; 4055 lower_zone->lowmem_reserve[j] = present_pages / 4056 sysctl_lowmem_reserve_ratio[idx]; 4057 present_pages += lower_zone->present_pages; 4058 } 4059 } 4060 } 4061 4062 /* update totalreserve_pages */ 4063 calculate_totalreserve_pages(); 4064 } 4065 4066 /** 4067 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4068 * 4069 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4070 * with respect to min_free_kbytes. 4071 */ 4072 void setup_per_zone_pages_min(void) 4073 { 4074 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4075 unsigned long lowmem_pages = 0; 4076 struct zone *zone; 4077 unsigned long flags; 4078 4079 /* Calculate total number of !ZONE_HIGHMEM pages */ 4080 for_each_zone(zone) { 4081 if (!is_highmem(zone)) 4082 lowmem_pages += zone->present_pages; 4083 } 4084 4085 for_each_zone(zone) { 4086 u64 tmp; 4087 4088 spin_lock_irqsave(&zone->lru_lock, flags); 4089 tmp = (u64)pages_min * zone->present_pages; 4090 do_div(tmp, lowmem_pages); 4091 if (is_highmem(zone)) { 4092 /* 4093 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4094 * need highmem pages, so cap pages_min to a small 4095 * value here. 4096 * 4097 * The (pages_high-pages_low) and (pages_low-pages_min) 4098 * deltas controls asynch page reclaim, and so should 4099 * not be capped for highmem. 4100 */ 4101 int min_pages; 4102 4103 min_pages = zone->present_pages / 1024; 4104 if (min_pages < SWAP_CLUSTER_MAX) 4105 min_pages = SWAP_CLUSTER_MAX; 4106 if (min_pages > 128) 4107 min_pages = 128; 4108 zone->pages_min = min_pages; 4109 } else { 4110 /* 4111 * If it's a lowmem zone, reserve a number of pages 4112 * proportionate to the zone's size. 4113 */ 4114 zone->pages_min = tmp; 4115 } 4116 4117 zone->pages_low = zone->pages_min + (tmp >> 2); 4118 zone->pages_high = zone->pages_min + (tmp >> 1); 4119 setup_zone_migrate_reserve(zone); 4120 spin_unlock_irqrestore(&zone->lru_lock, flags); 4121 } 4122 4123 /* update totalreserve_pages */ 4124 calculate_totalreserve_pages(); 4125 } 4126 4127 /* 4128 * Initialise min_free_kbytes. 4129 * 4130 * For small machines we want it small (128k min). For large machines 4131 * we want it large (64MB max). But it is not linear, because network 4132 * bandwidth does not increase linearly with machine size. We use 4133 * 4134 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4135 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4136 * 4137 * which yields 4138 * 4139 * 16MB: 512k 4140 * 32MB: 724k 4141 * 64MB: 1024k 4142 * 128MB: 1448k 4143 * 256MB: 2048k 4144 * 512MB: 2896k 4145 * 1024MB: 4096k 4146 * 2048MB: 5792k 4147 * 4096MB: 8192k 4148 * 8192MB: 11584k 4149 * 16384MB: 16384k 4150 */ 4151 static int __init init_per_zone_pages_min(void) 4152 { 4153 unsigned long lowmem_kbytes; 4154 4155 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4156 4157 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4158 if (min_free_kbytes < 128) 4159 min_free_kbytes = 128; 4160 if (min_free_kbytes > 65536) 4161 min_free_kbytes = 65536; 4162 setup_per_zone_pages_min(); 4163 setup_per_zone_lowmem_reserve(); 4164 return 0; 4165 } 4166 module_init(init_per_zone_pages_min) 4167 4168 /* 4169 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4170 * that we can call two helper functions whenever min_free_kbytes 4171 * changes. 4172 */ 4173 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4174 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4175 { 4176 proc_dointvec(table, write, file, buffer, length, ppos); 4177 if (write) 4178 setup_per_zone_pages_min(); 4179 return 0; 4180 } 4181 4182 #ifdef CONFIG_NUMA 4183 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4184 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4185 { 4186 struct zone *zone; 4187 int rc; 4188 4189 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4190 if (rc) 4191 return rc; 4192 4193 for_each_zone(zone) 4194 zone->min_unmapped_pages = (zone->present_pages * 4195 sysctl_min_unmapped_ratio) / 100; 4196 return 0; 4197 } 4198 4199 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4200 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4201 { 4202 struct zone *zone; 4203 int rc; 4204 4205 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4206 if (rc) 4207 return rc; 4208 4209 for_each_zone(zone) 4210 zone->min_slab_pages = (zone->present_pages * 4211 sysctl_min_slab_ratio) / 100; 4212 return 0; 4213 } 4214 #endif 4215 4216 /* 4217 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4218 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4219 * whenever sysctl_lowmem_reserve_ratio changes. 4220 * 4221 * The reserve ratio obviously has absolutely no relation with the 4222 * pages_min watermarks. The lowmem reserve ratio can only make sense 4223 * if in function of the boot time zone sizes. 4224 */ 4225 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4226 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4227 { 4228 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4229 setup_per_zone_lowmem_reserve(); 4230 return 0; 4231 } 4232 4233 /* 4234 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4235 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4236 * can have before it gets flushed back to buddy allocator. 4237 */ 4238 4239 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4240 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4241 { 4242 struct zone *zone; 4243 unsigned int cpu; 4244 int ret; 4245 4246 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4247 if (!write || (ret == -EINVAL)) 4248 return ret; 4249 for_each_zone(zone) { 4250 for_each_online_cpu(cpu) { 4251 unsigned long high; 4252 high = zone->present_pages / percpu_pagelist_fraction; 4253 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4254 } 4255 } 4256 return 0; 4257 } 4258 4259 int hashdist = HASHDIST_DEFAULT; 4260 4261 #ifdef CONFIG_NUMA 4262 static int __init set_hashdist(char *str) 4263 { 4264 if (!str) 4265 return 0; 4266 hashdist = simple_strtoul(str, &str, 0); 4267 return 1; 4268 } 4269 __setup("hashdist=", set_hashdist); 4270 #endif 4271 4272 /* 4273 * allocate a large system hash table from bootmem 4274 * - it is assumed that the hash table must contain an exact power-of-2 4275 * quantity of entries 4276 * - limit is the number of hash buckets, not the total allocation size 4277 */ 4278 void *__init alloc_large_system_hash(const char *tablename, 4279 unsigned long bucketsize, 4280 unsigned long numentries, 4281 int scale, 4282 int flags, 4283 unsigned int *_hash_shift, 4284 unsigned int *_hash_mask, 4285 unsigned long limit) 4286 { 4287 unsigned long long max = limit; 4288 unsigned long log2qty, size; 4289 void *table = NULL; 4290 4291 /* allow the kernel cmdline to have a say */ 4292 if (!numentries) { 4293 /* round applicable memory size up to nearest megabyte */ 4294 numentries = nr_kernel_pages; 4295 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4296 numentries >>= 20 - PAGE_SHIFT; 4297 numentries <<= 20 - PAGE_SHIFT; 4298 4299 /* limit to 1 bucket per 2^scale bytes of low memory */ 4300 if (scale > PAGE_SHIFT) 4301 numentries >>= (scale - PAGE_SHIFT); 4302 else 4303 numentries <<= (PAGE_SHIFT - scale); 4304 4305 /* Make sure we've got at least a 0-order allocation.. */ 4306 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4307 numentries = PAGE_SIZE / bucketsize; 4308 } 4309 numentries = roundup_pow_of_two(numentries); 4310 4311 /* limit allocation size to 1/16 total memory by default */ 4312 if (max == 0) { 4313 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4314 do_div(max, bucketsize); 4315 } 4316 4317 if (numentries > max) 4318 numentries = max; 4319 4320 log2qty = ilog2(numentries); 4321 4322 do { 4323 size = bucketsize << log2qty; 4324 if (flags & HASH_EARLY) 4325 table = alloc_bootmem(size); 4326 else if (hashdist) 4327 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4328 else { 4329 unsigned long order; 4330 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 4331 ; 4332 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4333 /* 4334 * If bucketsize is not a power-of-two, we may free 4335 * some pages at the end of hash table. 4336 */ 4337 if (table) { 4338 unsigned long alloc_end = (unsigned long)table + 4339 (PAGE_SIZE << order); 4340 unsigned long used = (unsigned long)table + 4341 PAGE_ALIGN(size); 4342 split_page(virt_to_page(table), order); 4343 while (used < alloc_end) { 4344 free_page(used); 4345 used += PAGE_SIZE; 4346 } 4347 } 4348 } 4349 } while (!table && size > PAGE_SIZE && --log2qty); 4350 4351 if (!table) 4352 panic("Failed to allocate %s hash table\n", tablename); 4353 4354 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4355 tablename, 4356 (1U << log2qty), 4357 ilog2(size) - PAGE_SHIFT, 4358 size); 4359 4360 if (_hash_shift) 4361 *_hash_shift = log2qty; 4362 if (_hash_mask) 4363 *_hash_mask = (1 << log2qty) - 1; 4364 4365 return table; 4366 } 4367 4368 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 4369 struct page *pfn_to_page(unsigned long pfn) 4370 { 4371 return __pfn_to_page(pfn); 4372 } 4373 unsigned long page_to_pfn(struct page *page) 4374 { 4375 return __page_to_pfn(page); 4376 } 4377 EXPORT_SYMBOL(pfn_to_page); 4378 EXPORT_SYMBOL(page_to_pfn); 4379 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 4380 4381 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4382 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4383 unsigned long pfn) 4384 { 4385 #ifdef CONFIG_SPARSEMEM 4386 return __pfn_to_section(pfn)->pageblock_flags; 4387 #else 4388 return zone->pageblock_flags; 4389 #endif /* CONFIG_SPARSEMEM */ 4390 } 4391 4392 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4393 { 4394 #ifdef CONFIG_SPARSEMEM 4395 pfn &= (PAGES_PER_SECTION-1); 4396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4397 #else 4398 pfn = pfn - zone->zone_start_pfn; 4399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4400 #endif /* CONFIG_SPARSEMEM */ 4401 } 4402 4403 /** 4404 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4405 * @page: The page within the block of interest 4406 * @start_bitidx: The first bit of interest to retrieve 4407 * @end_bitidx: The last bit of interest 4408 * returns pageblock_bits flags 4409 */ 4410 unsigned long get_pageblock_flags_group(struct page *page, 4411 int start_bitidx, int end_bitidx) 4412 { 4413 struct zone *zone; 4414 unsigned long *bitmap; 4415 unsigned long pfn, bitidx; 4416 unsigned long flags = 0; 4417 unsigned long value = 1; 4418 4419 zone = page_zone(page); 4420 pfn = page_to_pfn(page); 4421 bitmap = get_pageblock_bitmap(zone, pfn); 4422 bitidx = pfn_to_bitidx(zone, pfn); 4423 4424 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4425 if (test_bit(bitidx + start_bitidx, bitmap)) 4426 flags |= value; 4427 4428 return flags; 4429 } 4430 4431 /** 4432 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4433 * @page: The page within the block of interest 4434 * @start_bitidx: The first bit of interest 4435 * @end_bitidx: The last bit of interest 4436 * @flags: The flags to set 4437 */ 4438 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4439 int start_bitidx, int end_bitidx) 4440 { 4441 struct zone *zone; 4442 unsigned long *bitmap; 4443 unsigned long pfn, bitidx; 4444 unsigned long value = 1; 4445 4446 zone = page_zone(page); 4447 pfn = page_to_pfn(page); 4448 bitmap = get_pageblock_bitmap(zone, pfn); 4449 bitidx = pfn_to_bitidx(zone, pfn); 4450 4451 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4452 if (flags & value) 4453 __set_bit(bitidx + start_bitidx, bitmap); 4454 else 4455 __clear_bit(bitidx + start_bitidx, bitmap); 4456 } 4457 4458 /* 4459 * This is designed as sub function...plz see page_isolation.c also. 4460 * set/clear page block's type to be ISOLATE. 4461 * page allocater never alloc memory from ISOLATE block. 4462 */ 4463 4464 int set_migratetype_isolate(struct page *page) 4465 { 4466 struct zone *zone; 4467 unsigned long flags; 4468 int ret = -EBUSY; 4469 4470 zone = page_zone(page); 4471 spin_lock_irqsave(&zone->lock, flags); 4472 /* 4473 * In future, more migrate types will be able to be isolation target. 4474 */ 4475 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4476 goto out; 4477 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4478 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4479 ret = 0; 4480 out: 4481 spin_unlock_irqrestore(&zone->lock, flags); 4482 if (!ret) 4483 drain_all_local_pages(); 4484 return ret; 4485 } 4486 4487 void unset_migratetype_isolate(struct page *page) 4488 { 4489 struct zone *zone; 4490 unsigned long flags; 4491 zone = page_zone(page); 4492 spin_lock_irqsave(&zone->lock, flags); 4493 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4494 goto out; 4495 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4496 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4497 out: 4498 spin_unlock_irqrestore(&zone->lock, flags); 4499 } 4500 4501 #ifdef CONFIG_MEMORY_HOTREMOVE 4502 /* 4503 * All pages in the range must be isolated before calling this. 4504 */ 4505 void 4506 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4507 { 4508 struct page *page; 4509 struct zone *zone; 4510 int order, i; 4511 unsigned long pfn; 4512 unsigned long flags; 4513 /* find the first valid pfn */ 4514 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4515 if (pfn_valid(pfn)) 4516 break; 4517 if (pfn == end_pfn) 4518 return; 4519 zone = page_zone(pfn_to_page(pfn)); 4520 spin_lock_irqsave(&zone->lock, flags); 4521 pfn = start_pfn; 4522 while (pfn < end_pfn) { 4523 if (!pfn_valid(pfn)) { 4524 pfn++; 4525 continue; 4526 } 4527 page = pfn_to_page(pfn); 4528 BUG_ON(page_count(page)); 4529 BUG_ON(!PageBuddy(page)); 4530 order = page_order(page); 4531 #ifdef CONFIG_DEBUG_VM 4532 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4533 pfn, 1 << order, end_pfn); 4534 #endif 4535 list_del(&page->lru); 4536 rmv_page_order(page); 4537 zone->free_area[order].nr_free--; 4538 __mod_zone_page_state(zone, NR_FREE_PAGES, 4539 - (1UL << order)); 4540 for (i = 0; i < (1 << order); i++) 4541 SetPageReserved((page+i)); 4542 pfn += (1 << order); 4543 } 4544 spin_unlock_irqrestore(&zone->lock, flags); 4545 } 4546 #endif 4547