xref: /linux/mm/page_alloc.c (revision 6aacab308a5dfd222b2d23662bbae60c11007cfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/interrupt.h>
21 #include <linux/jiffies.h>
22 #include <linux/compiler.h>
23 #include <linux/kernel.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/ratelimit.h>
29 #include <linux/oom.h>
30 #include <linux/topology.h>
31 #include <linux/sysctl.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/pagevec.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <linux/cacheinfo.h>
56 #include <linux/pgalloc_tag.h>
57 #include <asm/div64.h>
58 #include "internal.h"
59 #include "shuffle.h"
60 #include "page_reporting.h"
61 
62 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
63 typedef int __bitwise fpi_t;
64 
65 /* No special request */
66 #define FPI_NONE		((__force fpi_t)0)
67 
68 /*
69  * Skip free page reporting notification for the (possibly merged) page.
70  * This does not hinder free page reporting from grabbing the page,
71  * reporting it and marking it "reported" -  it only skips notifying
72  * the free page reporting infrastructure about a newly freed page. For
73  * example, used when temporarily pulling a page from a freelist and
74  * putting it back unmodified.
75  */
76 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
77 
78 /*
79  * Place the (possibly merged) page to the tail of the freelist. Will ignore
80  * page shuffling (relevant code - e.g., memory onlining - is expected to
81  * shuffle the whole zone).
82  *
83  * Note: No code should rely on this flag for correctness - it's purely
84  *       to allow for optimizations when handing back either fresh pages
85  *       (memory onlining) or untouched pages (page isolation, free page
86  *       reporting).
87  */
88 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
89 
90 /* Free the page without taking locks. Rely on trylock only. */
91 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
92 
93 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
94 static DEFINE_MUTEX(pcp_batch_high_lock);
95 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
96 
97 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
98 /*
99  * On SMP, spin_trylock is sufficient protection.
100  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
101  * Pass flags to a no-op inline function to typecheck and silence the unused
102  * variable warning.
103  */
104 static inline void __pcp_trylock_noop(unsigned long *flags) { }
105 #define pcp_trylock_prepare(flags)	__pcp_trylock_noop(&(flags))
106 #define pcp_trylock_finish(flags)	__pcp_trylock_noop(&(flags))
107 #else
108 
109 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
110 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
111 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
112 #endif
113 
114 /*
115  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
116  * a migration causing the wrong PCP to be locked and remote memory being
117  * potentially allocated, pin the task to the CPU for the lookup+lock.
118  * preempt_disable is used on !RT because it is faster than migrate_disable.
119  * migrate_disable is used on RT because otherwise RT spinlock usage is
120  * interfered with and a high priority task cannot preempt the allocator.
121  */
122 #ifndef CONFIG_PREEMPT_RT
123 #define pcpu_task_pin()		preempt_disable()
124 #define pcpu_task_unpin()	preempt_enable()
125 #else
126 #define pcpu_task_pin()		migrate_disable()
127 #define pcpu_task_unpin()	migrate_enable()
128 #endif
129 
130 /*
131  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
132  * Return value should be used with equivalent unlock helper.
133  */
134 #define pcpu_spin_trylock(type, member, ptr)				\
135 ({									\
136 	type *_ret;							\
137 	pcpu_task_pin();						\
138 	_ret = this_cpu_ptr(ptr);					\
139 	if (!spin_trylock(&_ret->member)) {				\
140 		pcpu_task_unpin();					\
141 		_ret = NULL;						\
142 	}								\
143 	_ret;								\
144 })
145 
146 #define pcpu_spin_unlock(member, ptr)					\
147 ({									\
148 	spin_unlock(&ptr->member);					\
149 	pcpu_task_unpin();						\
150 })
151 
152 /* struct per_cpu_pages specific helpers. */
153 #define pcp_spin_trylock(ptr, UP_flags)					\
154 ({									\
155 	struct per_cpu_pages *__ret;					\
156 	pcp_trylock_prepare(UP_flags);					\
157 	__ret = pcpu_spin_trylock(struct per_cpu_pages, lock, ptr);	\
158 	if (!__ret)							\
159 		pcp_trylock_finish(UP_flags);				\
160 	__ret;								\
161 })
162 
163 #define pcp_spin_unlock(ptr, UP_flags)					\
164 ({									\
165 	pcpu_spin_unlock(lock, ptr);					\
166 	pcp_trylock_finish(UP_flags);					\
167 })
168 
169 /*
170  * With the UP spinlock implementation, when we spin_lock(&pcp->lock) (for i.e.
171  * a potentially remote cpu drain) and get interrupted by an operation that
172  * attempts pcp_spin_trylock(), we can't rely on the trylock failure due to UP
173  * spinlock assumptions making the trylock a no-op. So we have to turn that
174  * spin_lock() to a spin_lock_irqsave(). This works because on UP there are no
175  * remote cpu's so we can only be locking the only existing local one.
176  */
177 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
178 static inline void __flags_noop(unsigned long *flags) { }
179 #define pcp_spin_lock_maybe_irqsave(ptr, flags)		\
180 ({							\
181 	 __flags_noop(&(flags));			\
182 	 spin_lock(&(ptr)->lock);			\
183 })
184 #define pcp_spin_unlock_maybe_irqrestore(ptr, flags)	\
185 ({							\
186 	 spin_unlock(&(ptr)->lock);			\
187 	 __flags_noop(&(flags));			\
188 })
189 #else
190 #define pcp_spin_lock_maybe_irqsave(ptr, flags)		\
191 		spin_lock_irqsave(&(ptr)->lock, flags)
192 #define pcp_spin_unlock_maybe_irqrestore(ptr, flags)	\
193 		spin_unlock_irqrestore(&(ptr)->lock, flags)
194 #endif
195 
196 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
197 DEFINE_PER_CPU(int, numa_node);
198 EXPORT_PER_CPU_SYMBOL(numa_node);
199 #endif
200 
201 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
202 
203 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
204 /*
205  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
206  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
207  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
208  * defined in <linux/topology.h>.
209  */
210 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
211 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
212 #endif
213 
214 static DEFINE_MUTEX(pcpu_drain_mutex);
215 
216 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
217 volatile unsigned long latent_entropy __latent_entropy;
218 EXPORT_SYMBOL(latent_entropy);
219 #endif
220 
221 /*
222  * Array of node states.
223  */
224 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
225 	[N_POSSIBLE] = NODE_MASK_ALL,
226 	[N_ONLINE] = { { [0] = 1UL } },
227 #ifndef CONFIG_NUMA
228 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
229 #ifdef CONFIG_HIGHMEM
230 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
231 #endif
232 	[N_MEMORY] = { { [0] = 1UL } },
233 	[N_CPU] = { { [0] = 1UL } },
234 #endif	/* NUMA */
235 };
236 EXPORT_SYMBOL(node_states);
237 
238 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
239 
240 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
241 unsigned int pageblock_order __read_mostly;
242 #endif
243 
244 static void __free_pages_ok(struct page *page, unsigned int order,
245 			    fpi_t fpi_flags);
246 
247 /*
248  * results with 256, 32 in the lowmem_reserve sysctl:
249  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
250  *	1G machine -> (16M dma, 784M normal, 224M high)
251  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
252  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
253  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
254  *
255  * TBD: should special case ZONE_DMA32 machines here - in those we normally
256  * don't need any ZONE_NORMAL reservation
257  */
258 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
259 #ifdef CONFIG_ZONE_DMA
260 	[ZONE_DMA] = 256,
261 #endif
262 #ifdef CONFIG_ZONE_DMA32
263 	[ZONE_DMA32] = 256,
264 #endif
265 	[ZONE_NORMAL] = 32,
266 #ifdef CONFIG_HIGHMEM
267 	[ZONE_HIGHMEM] = 0,
268 #endif
269 	[ZONE_MOVABLE] = 0,
270 };
271 
272 char * const zone_names[MAX_NR_ZONES] = {
273 #ifdef CONFIG_ZONE_DMA
274 	 "DMA",
275 #endif
276 #ifdef CONFIG_ZONE_DMA32
277 	 "DMA32",
278 #endif
279 	 "Normal",
280 #ifdef CONFIG_HIGHMEM
281 	 "HighMem",
282 #endif
283 	 "Movable",
284 #ifdef CONFIG_ZONE_DEVICE
285 	 "Device",
286 #endif
287 };
288 
289 const char * const migratetype_names[MIGRATE_TYPES] = {
290 	"Unmovable",
291 	"Movable",
292 	"Reclaimable",
293 	"HighAtomic",
294 #ifdef CONFIG_CMA
295 	"CMA",
296 #endif
297 #ifdef CONFIG_MEMORY_ISOLATION
298 	"Isolate",
299 #endif
300 };
301 
302 int min_free_kbytes = 1024;
303 int user_min_free_kbytes = -1;
304 static int watermark_boost_factor __read_mostly = 15000;
305 static int watermark_scale_factor = 10;
306 int defrag_mode;
307 
308 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
309 int movable_zone;
310 EXPORT_SYMBOL(movable_zone);
311 
312 #if MAX_NUMNODES > 1
313 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
314 unsigned int nr_online_nodes __read_mostly = 1;
315 EXPORT_SYMBOL(nr_node_ids);
316 EXPORT_SYMBOL(nr_online_nodes);
317 #endif
318 
319 static bool page_contains_unaccepted(struct page *page, unsigned int order);
320 static bool cond_accept_memory(struct zone *zone, unsigned int order,
321 			       int alloc_flags);
322 static bool __free_unaccepted(struct page *page);
323 
324 int page_group_by_mobility_disabled __read_mostly;
325 
326 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
327 /*
328  * During boot we initialize deferred pages on-demand, as needed, but once
329  * page_alloc_init_late() has finished, the deferred pages are all initialized,
330  * and we can permanently disable that path.
331  */
332 DEFINE_STATIC_KEY_TRUE(deferred_pages);
333 
334 static inline bool deferred_pages_enabled(void)
335 {
336 	return static_branch_unlikely(&deferred_pages);
337 }
338 
339 /*
340  * deferred_grow_zone() is __init, but it is called from
341  * get_page_from_freelist() during early boot until deferred_pages permanently
342  * disables this call. This is why we have refdata wrapper to avoid warning,
343  * and to ensure that the function body gets unloaded.
344  */
345 static bool __ref
346 _deferred_grow_zone(struct zone *zone, unsigned int order)
347 {
348 	return deferred_grow_zone(zone, order);
349 }
350 #else
351 static inline bool deferred_pages_enabled(void)
352 {
353 	return false;
354 }
355 
356 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
357 {
358 	return false;
359 }
360 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
361 
362 /* Return a pointer to the bitmap storing bits affecting a block of pages */
363 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
364 							unsigned long pfn)
365 {
366 #ifdef CONFIG_SPARSEMEM
367 	return section_to_usemap(__pfn_to_section(pfn));
368 #else
369 	return page_zone(page)->pageblock_flags;
370 #endif /* CONFIG_SPARSEMEM */
371 }
372 
373 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
374 {
375 #ifdef CONFIG_SPARSEMEM
376 	pfn &= (PAGES_PER_SECTION-1);
377 #else
378 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
379 #endif /* CONFIG_SPARSEMEM */
380 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
381 }
382 
383 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit)
384 {
385 	return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS;
386 }
387 
388 static __always_inline void
389 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn,
390 			   unsigned long **bitmap_word, unsigned long *bitidx)
391 {
392 	unsigned long *bitmap;
393 	unsigned long word_bitidx;
394 
395 #ifdef CONFIG_MEMORY_ISOLATION
396 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8);
397 #else
398 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
399 #endif
400 	BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK);
401 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
402 
403 	bitmap = get_pageblock_bitmap(page, pfn);
404 	*bitidx = pfn_to_bitidx(page, pfn);
405 	word_bitidx = *bitidx / BITS_PER_LONG;
406 	*bitidx &= (BITS_PER_LONG - 1);
407 	*bitmap_word = &bitmap[word_bitidx];
408 }
409 
410 
411 /**
412  * __get_pfnblock_flags_mask - Return the requested group of flags for
413  * a pageblock_nr_pages block of pages
414  * @page: The page within the block of interest
415  * @pfn: The target page frame number
416  * @mask: mask of bits that the caller is interested in
417  *
418  * Return: pageblock_bits flags
419  */
420 static unsigned long __get_pfnblock_flags_mask(const struct page *page,
421 					       unsigned long pfn,
422 					       unsigned long mask)
423 {
424 	unsigned long *bitmap_word;
425 	unsigned long bitidx;
426 	unsigned long word;
427 
428 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
429 	/*
430 	 * This races, without locks, with set_pfnblock_migratetype(). Ensure
431 	 * a consistent read of the memory array, so that results, even though
432 	 * racy, are not corrupted.
433 	 */
434 	word = READ_ONCE(*bitmap_word);
435 	return (word >> bitidx) & mask;
436 }
437 
438 /**
439  * get_pfnblock_bit - Check if a standalone bit of a pageblock is set
440  * @page: The page within the block of interest
441  * @pfn: The target page frame number
442  * @pb_bit: pageblock bit to check
443  *
444  * Return: true if the bit is set, otherwise false
445  */
446 bool get_pfnblock_bit(const struct page *page, unsigned long pfn,
447 		      enum pageblock_bits pb_bit)
448 {
449 	unsigned long *bitmap_word;
450 	unsigned long bitidx;
451 
452 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
453 		return false;
454 
455 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
456 
457 	return test_bit(bitidx + pb_bit, bitmap_word);
458 }
459 
460 /**
461  * get_pfnblock_migratetype - Return the migratetype of a pageblock
462  * @page: The page within the block of interest
463  * @pfn: The target page frame number
464  *
465  * Return: The migratetype of the pageblock
466  *
467  * Use get_pfnblock_migratetype() if caller already has both @page and @pfn
468  * to save a call to page_to_pfn().
469  */
470 __always_inline enum migratetype
471 get_pfnblock_migratetype(const struct page *page, unsigned long pfn)
472 {
473 	unsigned long mask = MIGRATETYPE_AND_ISO_MASK;
474 	unsigned long flags;
475 
476 	flags = __get_pfnblock_flags_mask(page, pfn, mask);
477 
478 #ifdef CONFIG_MEMORY_ISOLATION
479 	if (flags & BIT(PB_migrate_isolate))
480 		return MIGRATE_ISOLATE;
481 #endif
482 	return flags & MIGRATETYPE_MASK;
483 }
484 
485 /**
486  * __set_pfnblock_flags_mask - Set the requested group of flags for
487  * a pageblock_nr_pages block of pages
488  * @page: The page within the block of interest
489  * @pfn: The target page frame number
490  * @flags: The flags to set
491  * @mask: mask of bits that the caller is interested in
492  */
493 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn,
494 				      unsigned long flags, unsigned long mask)
495 {
496 	unsigned long *bitmap_word;
497 	unsigned long bitidx;
498 	unsigned long word;
499 
500 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
501 
502 	mask <<= bitidx;
503 	flags <<= bitidx;
504 
505 	word = READ_ONCE(*bitmap_word);
506 	do {
507 	} while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags));
508 }
509 
510 /**
511  * set_pfnblock_bit - Set a standalone bit of a pageblock
512  * @page: The page within the block of interest
513  * @pfn: The target page frame number
514  * @pb_bit: pageblock bit to set
515  */
516 void set_pfnblock_bit(const struct page *page, unsigned long pfn,
517 		      enum pageblock_bits pb_bit)
518 {
519 	unsigned long *bitmap_word;
520 	unsigned long bitidx;
521 
522 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
523 		return;
524 
525 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
526 
527 	set_bit(bitidx + pb_bit, bitmap_word);
528 }
529 
530 /**
531  * clear_pfnblock_bit - Clear a standalone bit of a pageblock
532  * @page: The page within the block of interest
533  * @pfn: The target page frame number
534  * @pb_bit: pageblock bit to clear
535  */
536 void clear_pfnblock_bit(const struct page *page, unsigned long pfn,
537 			enum pageblock_bits pb_bit)
538 {
539 	unsigned long *bitmap_word;
540 	unsigned long bitidx;
541 
542 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
543 		return;
544 
545 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
546 
547 	clear_bit(bitidx + pb_bit, bitmap_word);
548 }
549 
550 /**
551  * set_pageblock_migratetype - Set the migratetype of a pageblock
552  * @page: The page within the block of interest
553  * @migratetype: migratetype to set
554  */
555 static void set_pageblock_migratetype(struct page *page,
556 				      enum migratetype migratetype)
557 {
558 	if (unlikely(page_group_by_mobility_disabled &&
559 		     migratetype < MIGRATE_PCPTYPES))
560 		migratetype = MIGRATE_UNMOVABLE;
561 
562 #ifdef CONFIG_MEMORY_ISOLATION
563 	if (migratetype == MIGRATE_ISOLATE) {
564 		VM_WARN_ONCE(1,
565 			"Use set_pageblock_isolate() for pageblock isolation");
566 		return;
567 	}
568 	VM_WARN_ONCE(get_pageblock_isolate(page),
569 		     "Use clear_pageblock_isolate() to unisolate pageblock");
570 	/* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */
571 #endif
572 	__set_pfnblock_flags_mask(page, page_to_pfn(page),
573 				  (unsigned long)migratetype,
574 				  MIGRATETYPE_AND_ISO_MASK);
575 }
576 
577 void __meminit init_pageblock_migratetype(struct page *page,
578 					  enum migratetype migratetype,
579 					  bool isolate)
580 {
581 	unsigned long flags;
582 
583 	if (unlikely(page_group_by_mobility_disabled &&
584 		     migratetype < MIGRATE_PCPTYPES))
585 		migratetype = MIGRATE_UNMOVABLE;
586 
587 	flags = migratetype;
588 
589 #ifdef CONFIG_MEMORY_ISOLATION
590 	if (migratetype == MIGRATE_ISOLATE) {
591 		VM_WARN_ONCE(
592 			1,
593 			"Set isolate=true to isolate pageblock with a migratetype");
594 		return;
595 	}
596 	if (isolate)
597 		flags |= BIT(PB_migrate_isolate);
598 #endif
599 	__set_pfnblock_flags_mask(page, page_to_pfn(page), flags,
600 				  MIGRATETYPE_AND_ISO_MASK);
601 }
602 
603 #ifdef CONFIG_DEBUG_VM
604 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
605 {
606 	int ret;
607 	unsigned seq;
608 	unsigned long pfn = page_to_pfn(page);
609 	unsigned long sp, start_pfn;
610 
611 	do {
612 		seq = zone_span_seqbegin(zone);
613 		start_pfn = zone->zone_start_pfn;
614 		sp = zone->spanned_pages;
615 		ret = !zone_spans_pfn(zone, pfn);
616 	} while (zone_span_seqretry(zone, seq));
617 
618 	if (ret)
619 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
620 			pfn, zone_to_nid(zone), zone->name,
621 			start_pfn, start_pfn + sp);
622 
623 	return ret;
624 }
625 
626 /*
627  * Temporary debugging check for pages not lying within a given zone.
628  */
629 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
630 {
631 	if (page_outside_zone_boundaries(zone, page))
632 		return true;
633 	if (zone != page_zone(page))
634 		return true;
635 
636 	return false;
637 }
638 #else
639 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
640 {
641 	return false;
642 }
643 #endif
644 
645 static void bad_page(struct page *page, const char *reason)
646 {
647 	static unsigned long resume;
648 	static unsigned long nr_shown;
649 	static unsigned long nr_unshown;
650 
651 	/*
652 	 * Allow a burst of 60 reports, then keep quiet for that minute;
653 	 * or allow a steady drip of one report per second.
654 	 */
655 	if (nr_shown == 60) {
656 		if (time_before(jiffies, resume)) {
657 			nr_unshown++;
658 			goto out;
659 		}
660 		if (nr_unshown) {
661 			pr_alert(
662 			      "BUG: Bad page state: %lu messages suppressed\n",
663 				nr_unshown);
664 			nr_unshown = 0;
665 		}
666 		nr_shown = 0;
667 	}
668 	if (nr_shown++ == 0)
669 		resume = jiffies + 60 * HZ;
670 
671 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
672 		current->comm, page_to_pfn(page));
673 	dump_page(page, reason);
674 
675 	print_modules();
676 	dump_stack();
677 out:
678 	/* Leave bad fields for debug, except PageBuddy could make trouble */
679 	if (PageBuddy(page))
680 		__ClearPageBuddy(page);
681 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
682 }
683 
684 static inline unsigned int order_to_pindex(int migratetype, int order)
685 {
686 
687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
688 	bool movable;
689 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
690 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
691 
692 		movable = migratetype == MIGRATE_MOVABLE;
693 
694 		return NR_LOWORDER_PCP_LISTS + movable;
695 	}
696 #else
697 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
698 #endif
699 
700 	return (MIGRATE_PCPTYPES * order) + migratetype;
701 }
702 
703 static inline int pindex_to_order(unsigned int pindex)
704 {
705 	int order = pindex / MIGRATE_PCPTYPES;
706 
707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
708 	if (pindex >= NR_LOWORDER_PCP_LISTS)
709 		order = HPAGE_PMD_ORDER;
710 #else
711 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
712 #endif
713 
714 	return order;
715 }
716 
717 static inline bool pcp_allowed_order(unsigned int order)
718 {
719 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
720 		return true;
721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
722 	if (order == HPAGE_PMD_ORDER)
723 		return true;
724 #endif
725 	return false;
726 }
727 
728 /*
729  * Higher-order pages are called "compound pages".  They are structured thusly:
730  *
731  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
732  *
733  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
734  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
735  *
736  * The first tail page's ->compound_order holds the order of allocation.
737  * This usage means that zero-order pages may not be compound.
738  */
739 
740 void prep_compound_page(struct page *page, unsigned int order)
741 {
742 	int i;
743 	int nr_pages = 1 << order;
744 
745 	__SetPageHead(page);
746 	for (i = 1; i < nr_pages; i++)
747 		prep_compound_tail(page, i);
748 
749 	prep_compound_head(page, order);
750 }
751 
752 static inline void set_buddy_order(struct page *page, unsigned int order)
753 {
754 	set_page_private(page, order);
755 	__SetPageBuddy(page);
756 }
757 
758 #ifdef CONFIG_COMPACTION
759 static inline struct capture_control *task_capc(struct zone *zone)
760 {
761 	struct capture_control *capc = current->capture_control;
762 
763 	return unlikely(capc) &&
764 		!(current->flags & PF_KTHREAD) &&
765 		!capc->page &&
766 		capc->cc->zone == zone ? capc : NULL;
767 }
768 
769 static inline bool
770 compaction_capture(struct capture_control *capc, struct page *page,
771 		   int order, int migratetype)
772 {
773 	if (!capc || order != capc->cc->order)
774 		return false;
775 
776 	/* Do not accidentally pollute CMA or isolated regions*/
777 	if (is_migrate_cma(migratetype) ||
778 	    is_migrate_isolate(migratetype))
779 		return false;
780 
781 	/*
782 	 * Do not let lower order allocations pollute a movable pageblock
783 	 * unless compaction is also requesting movable pages.
784 	 * This might let an unmovable request use a reclaimable pageblock
785 	 * and vice-versa but no more than normal fallback logic which can
786 	 * have trouble finding a high-order free page.
787 	 */
788 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
789 	    capc->cc->migratetype != MIGRATE_MOVABLE)
790 		return false;
791 
792 	if (migratetype != capc->cc->migratetype)
793 		trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
794 					    capc->cc->migratetype, migratetype);
795 
796 	capc->page = page;
797 	return true;
798 }
799 
800 #else
801 static inline struct capture_control *task_capc(struct zone *zone)
802 {
803 	return NULL;
804 }
805 
806 static inline bool
807 compaction_capture(struct capture_control *capc, struct page *page,
808 		   int order, int migratetype)
809 {
810 	return false;
811 }
812 #endif /* CONFIG_COMPACTION */
813 
814 static inline void account_freepages(struct zone *zone, int nr_pages,
815 				     int migratetype)
816 {
817 	lockdep_assert_held(&zone->lock);
818 
819 	if (is_migrate_isolate(migratetype))
820 		return;
821 
822 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
823 
824 	if (is_migrate_cma(migratetype))
825 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
826 	else if (migratetype == MIGRATE_HIGHATOMIC)
827 		WRITE_ONCE(zone->nr_free_highatomic,
828 			   zone->nr_free_highatomic + nr_pages);
829 }
830 
831 /* Used for pages not on another list */
832 static inline void __add_to_free_list(struct page *page, struct zone *zone,
833 				      unsigned int order, int migratetype,
834 				      bool tail)
835 {
836 	struct free_area *area = &zone->free_area[order];
837 	int nr_pages = 1 << order;
838 
839 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
840 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
841 		     get_pageblock_migratetype(page), migratetype, nr_pages);
842 
843 	if (tail)
844 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
845 	else
846 		list_add(&page->buddy_list, &area->free_list[migratetype]);
847 	area->nr_free++;
848 
849 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
850 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
851 }
852 
853 /*
854  * Used for pages which are on another list. Move the pages to the tail
855  * of the list - so the moved pages won't immediately be considered for
856  * allocation again (e.g., optimization for memory onlining).
857  */
858 static inline void move_to_free_list(struct page *page, struct zone *zone,
859 				     unsigned int order, int old_mt, int new_mt)
860 {
861 	struct free_area *area = &zone->free_area[order];
862 	int nr_pages = 1 << order;
863 
864 	/* Free page moving can fail, so it happens before the type update */
865 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
866 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
867 		     get_pageblock_migratetype(page), old_mt, nr_pages);
868 
869 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
870 
871 	account_freepages(zone, -nr_pages, old_mt);
872 	account_freepages(zone, nr_pages, new_mt);
873 
874 	if (order >= pageblock_order &&
875 	    is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
876 		if (!is_migrate_isolate(old_mt))
877 			nr_pages = -nr_pages;
878 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
879 	}
880 }
881 
882 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
883 					     unsigned int order, int migratetype)
884 {
885 	int nr_pages = 1 << order;
886 
887         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
888 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
889 		     get_pageblock_migratetype(page), migratetype, nr_pages);
890 
891 	/* clear reported state and update reported page count */
892 	if (page_reported(page))
893 		__ClearPageReported(page);
894 
895 	list_del(&page->buddy_list);
896 	__ClearPageBuddy(page);
897 	set_page_private(page, 0);
898 	zone->free_area[order].nr_free--;
899 
900 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
901 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
902 }
903 
904 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
905 					   unsigned int order, int migratetype)
906 {
907 	__del_page_from_free_list(page, zone, order, migratetype);
908 	account_freepages(zone, -(1 << order), migratetype);
909 }
910 
911 static inline struct page *get_page_from_free_area(struct free_area *area,
912 					    int migratetype)
913 {
914 	return list_first_entry_or_null(&area->free_list[migratetype],
915 					struct page, buddy_list);
916 }
917 
918 /*
919  * If this is less than the 2nd largest possible page, check if the buddy
920  * of the next-higher order is free. If it is, it's possible
921  * that pages are being freed that will coalesce soon. In case,
922  * that is happening, add the free page to the tail of the list
923  * so it's less likely to be used soon and more likely to be merged
924  * as a 2-level higher order page
925  */
926 static inline bool
927 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
928 		   struct page *page, unsigned int order)
929 {
930 	unsigned long higher_page_pfn;
931 	struct page *higher_page;
932 
933 	if (order >= MAX_PAGE_ORDER - 1)
934 		return false;
935 
936 	higher_page_pfn = buddy_pfn & pfn;
937 	higher_page = page + (higher_page_pfn - pfn);
938 
939 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
940 			NULL) != NULL;
941 }
942 
943 static void change_pageblock_range(struct page *pageblock_page,
944 				   int start_order, int migratetype)
945 {
946 	int nr_pageblocks = 1 << (start_order - pageblock_order);
947 
948 	while (nr_pageblocks--) {
949 		set_pageblock_migratetype(pageblock_page, migratetype);
950 		pageblock_page += pageblock_nr_pages;
951 	}
952 }
953 
954 /*
955  * Freeing function for a buddy system allocator.
956  *
957  * The concept of a buddy system is to maintain direct-mapped table
958  * (containing bit values) for memory blocks of various "orders".
959  * The bottom level table contains the map for the smallest allocatable
960  * units of memory (here, pages), and each level above it describes
961  * pairs of units from the levels below, hence, "buddies".
962  * At a high level, all that happens here is marking the table entry
963  * at the bottom level available, and propagating the changes upward
964  * as necessary, plus some accounting needed to play nicely with other
965  * parts of the VM system.
966  * At each level, we keep a list of pages, which are heads of continuous
967  * free pages of length of (1 << order) and marked with PageBuddy.
968  * Page's order is recorded in page_private(page) field.
969  * So when we are allocating or freeing one, we can derive the state of the
970  * other.  That is, if we allocate a small block, and both were
971  * free, the remainder of the region must be split into blocks.
972  * If a block is freed, and its buddy is also free, then this
973  * triggers coalescing into a block of larger size.
974  *
975  * -- nyc
976  */
977 
978 static inline void __free_one_page(struct page *page,
979 		unsigned long pfn,
980 		struct zone *zone, unsigned int order,
981 		int migratetype, fpi_t fpi_flags)
982 {
983 	struct capture_control *capc = task_capc(zone);
984 	unsigned long buddy_pfn = 0;
985 	unsigned long combined_pfn;
986 	struct page *buddy;
987 	bool to_tail;
988 
989 	VM_BUG_ON(!zone_is_initialized(zone));
990 	VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page);
991 
992 	VM_BUG_ON(migratetype == -1);
993 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
994 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
995 
996 	account_freepages(zone, 1 << order, migratetype);
997 
998 	while (order < MAX_PAGE_ORDER) {
999 		int buddy_mt = migratetype;
1000 
1001 		if (compaction_capture(capc, page, order, migratetype)) {
1002 			account_freepages(zone, -(1 << order), migratetype);
1003 			return;
1004 		}
1005 
1006 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1007 		if (!buddy)
1008 			goto done_merging;
1009 
1010 		if (unlikely(order >= pageblock_order)) {
1011 			/*
1012 			 * We want to prevent merge between freepages on pageblock
1013 			 * without fallbacks and normal pageblock. Without this,
1014 			 * pageblock isolation could cause incorrect freepage or CMA
1015 			 * accounting or HIGHATOMIC accounting.
1016 			 */
1017 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
1018 
1019 			if (migratetype != buddy_mt &&
1020 			    (!migratetype_is_mergeable(migratetype) ||
1021 			     !migratetype_is_mergeable(buddy_mt)))
1022 				goto done_merging;
1023 		}
1024 
1025 		/*
1026 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1027 		 * merge with it and move up one order.
1028 		 */
1029 		if (page_is_guard(buddy))
1030 			clear_page_guard(zone, buddy, order);
1031 		else
1032 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
1033 
1034 		if (unlikely(buddy_mt != migratetype)) {
1035 			/*
1036 			 * Match buddy type. This ensures that an
1037 			 * expand() down the line puts the sub-blocks
1038 			 * on the right freelists.
1039 			 */
1040 			change_pageblock_range(buddy, order, migratetype);
1041 		}
1042 
1043 		combined_pfn = buddy_pfn & pfn;
1044 		page = page + (combined_pfn - pfn);
1045 		pfn = combined_pfn;
1046 		order++;
1047 	}
1048 
1049 done_merging:
1050 	set_buddy_order(page, order);
1051 
1052 	if (fpi_flags & FPI_TO_TAIL)
1053 		to_tail = true;
1054 	else if (is_shuffle_order(order))
1055 		to_tail = shuffle_pick_tail();
1056 	else
1057 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1058 
1059 	__add_to_free_list(page, zone, order, migratetype, to_tail);
1060 
1061 	/* Notify page reporting subsystem of freed page */
1062 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1063 		page_reporting_notify_free(order);
1064 }
1065 
1066 /*
1067  * A bad page could be due to a number of fields. Instead of multiple branches,
1068  * try and check multiple fields with one check. The caller must do a detailed
1069  * check if necessary.
1070  */
1071 static inline bool page_expected_state(struct page *page,
1072 					unsigned long check_flags)
1073 {
1074 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1075 		return false;
1076 
1077 	if (unlikely((unsigned long)page->mapping |
1078 			page_ref_count(page) |
1079 #ifdef CONFIG_MEMCG
1080 			page->memcg_data |
1081 #endif
1082 			page_pool_page_is_pp(page) |
1083 			(page->flags.f & check_flags)))
1084 		return false;
1085 
1086 	return true;
1087 }
1088 
1089 static const char *page_bad_reason(struct page *page, unsigned long flags)
1090 {
1091 	const char *bad_reason = NULL;
1092 
1093 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1094 		bad_reason = "nonzero mapcount";
1095 	if (unlikely(page->mapping != NULL))
1096 		bad_reason = "non-NULL mapping";
1097 	if (unlikely(page_ref_count(page) != 0))
1098 		bad_reason = "nonzero _refcount";
1099 	if (unlikely(page->flags.f & flags)) {
1100 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1101 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1102 		else
1103 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1104 	}
1105 #ifdef CONFIG_MEMCG
1106 	if (unlikely(page->memcg_data))
1107 		bad_reason = "page still charged to cgroup";
1108 #endif
1109 	if (unlikely(page_pool_page_is_pp(page)))
1110 		bad_reason = "page_pool leak";
1111 	return bad_reason;
1112 }
1113 
1114 static inline bool free_page_is_bad(struct page *page)
1115 {
1116 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1117 		return false;
1118 
1119 	/* Something has gone sideways, find it */
1120 	bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1121 	return true;
1122 }
1123 
1124 static inline bool is_check_pages_enabled(void)
1125 {
1126 	return static_branch_unlikely(&check_pages_enabled);
1127 }
1128 
1129 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1130 {
1131 	struct folio *folio = (struct folio *)head_page;
1132 	int ret = 1;
1133 
1134 	/*
1135 	 * We rely page->lru.next never has bit 0 set, unless the page
1136 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1137 	 */
1138 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1139 
1140 	if (!is_check_pages_enabled()) {
1141 		ret = 0;
1142 		goto out;
1143 	}
1144 	switch (page - head_page) {
1145 	case 1:
1146 		/* the first tail page: these may be in place of ->mapping */
1147 		if (unlikely(folio_large_mapcount(folio))) {
1148 			bad_page(page, "nonzero large_mapcount");
1149 			goto out;
1150 		}
1151 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
1152 		    unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1153 			bad_page(page, "nonzero nr_pages_mapped");
1154 			goto out;
1155 		}
1156 		if (IS_ENABLED(CONFIG_MM_ID)) {
1157 			if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
1158 				bad_page(page, "nonzero mm mapcount 0");
1159 				goto out;
1160 			}
1161 			if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
1162 				bad_page(page, "nonzero mm mapcount 1");
1163 				goto out;
1164 			}
1165 		}
1166 		if (IS_ENABLED(CONFIG_64BIT)) {
1167 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1168 				bad_page(page, "nonzero entire_mapcount");
1169 				goto out;
1170 			}
1171 			if (unlikely(atomic_read(&folio->_pincount))) {
1172 				bad_page(page, "nonzero pincount");
1173 				goto out;
1174 			}
1175 		}
1176 		break;
1177 	case 2:
1178 		/* the second tail page: deferred_list overlaps ->mapping */
1179 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1180 			bad_page(page, "on deferred list");
1181 			goto out;
1182 		}
1183 		if (!IS_ENABLED(CONFIG_64BIT)) {
1184 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1185 				bad_page(page, "nonzero entire_mapcount");
1186 				goto out;
1187 			}
1188 			if (unlikely(atomic_read(&folio->_pincount))) {
1189 				bad_page(page, "nonzero pincount");
1190 				goto out;
1191 			}
1192 		}
1193 		break;
1194 	case 3:
1195 		/* the third tail page: hugetlb specifics overlap ->mappings */
1196 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1197 			break;
1198 		fallthrough;
1199 	default:
1200 		if (page->mapping != TAIL_MAPPING) {
1201 			bad_page(page, "corrupted mapping in tail page");
1202 			goto out;
1203 		}
1204 		break;
1205 	}
1206 	if (unlikely(!PageTail(page))) {
1207 		bad_page(page, "PageTail not set");
1208 		goto out;
1209 	}
1210 	if (unlikely(compound_head(page) != head_page)) {
1211 		bad_page(page, "compound_head not consistent");
1212 		goto out;
1213 	}
1214 	ret = 0;
1215 out:
1216 	page->mapping = NULL;
1217 	clear_compound_head(page);
1218 	return ret;
1219 }
1220 
1221 /*
1222  * Skip KASAN memory poisoning when either:
1223  *
1224  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1225  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1226  *    using page tags instead (see below).
1227  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1228  *    that error detection is disabled for accesses via the page address.
1229  *
1230  * Pages will have match-all tags in the following circumstances:
1231  *
1232  * 1. Pages are being initialized for the first time, including during deferred
1233  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1234  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1235  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1236  * 3. The allocation was excluded from being checked due to sampling,
1237  *    see the call to kasan_unpoison_pages.
1238  *
1239  * Poisoning pages during deferred memory init will greatly lengthen the
1240  * process and cause problem in large memory systems as the deferred pages
1241  * initialization is done with interrupt disabled.
1242  *
1243  * Assuming that there will be no reference to those newly initialized
1244  * pages before they are ever allocated, this should have no effect on
1245  * KASAN memory tracking as the poison will be properly inserted at page
1246  * allocation time. The only corner case is when pages are allocated by
1247  * on-demand allocation and then freed again before the deferred pages
1248  * initialization is done, but this is not likely to happen.
1249  */
1250 static inline bool should_skip_kasan_poison(struct page *page)
1251 {
1252 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1253 		return deferred_pages_enabled();
1254 
1255 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1256 }
1257 
1258 static void kernel_init_pages(struct page *page, int numpages)
1259 {
1260 	int i;
1261 
1262 	/* s390's use of memset() could override KASAN redzones. */
1263 	kasan_disable_current();
1264 	for (i = 0; i < numpages; i++)
1265 		clear_highpage_kasan_tagged(page + i);
1266 	kasan_enable_current();
1267 }
1268 
1269 #ifdef CONFIG_MEM_ALLOC_PROFILING
1270 
1271 /* Should be called only if mem_alloc_profiling_enabled() */
1272 void __clear_page_tag_ref(struct page *page)
1273 {
1274 	union pgtag_ref_handle handle;
1275 	union codetag_ref ref;
1276 
1277 	if (get_page_tag_ref(page, &ref, &handle)) {
1278 		set_codetag_empty(&ref);
1279 		update_page_tag_ref(handle, &ref);
1280 		put_page_tag_ref(handle);
1281 	}
1282 }
1283 
1284 /* Should be called only if mem_alloc_profiling_enabled() */
1285 static noinline
1286 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1287 		       unsigned int nr)
1288 {
1289 	union pgtag_ref_handle handle;
1290 	union codetag_ref ref;
1291 
1292 	if (get_page_tag_ref(page, &ref, &handle)) {
1293 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1294 		update_page_tag_ref(handle, &ref);
1295 		put_page_tag_ref(handle);
1296 	}
1297 }
1298 
1299 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1300 				   unsigned int nr)
1301 {
1302 	if (mem_alloc_profiling_enabled())
1303 		__pgalloc_tag_add(page, task, nr);
1304 }
1305 
1306 /* Should be called only if mem_alloc_profiling_enabled() */
1307 static noinline
1308 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1309 {
1310 	union pgtag_ref_handle handle;
1311 	union codetag_ref ref;
1312 
1313 	if (get_page_tag_ref(page, &ref, &handle)) {
1314 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1315 		update_page_tag_ref(handle, &ref);
1316 		put_page_tag_ref(handle);
1317 	}
1318 }
1319 
1320 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1321 {
1322 	if (mem_alloc_profiling_enabled())
1323 		__pgalloc_tag_sub(page, nr);
1324 }
1325 
1326 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */
1327 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
1328 {
1329 	if (tag)
1330 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1331 }
1332 
1333 #else /* CONFIG_MEM_ALLOC_PROFILING */
1334 
1335 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1336 				   unsigned int nr) {}
1337 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
1338 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
1339 
1340 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1341 
1342 __always_inline bool free_pages_prepare(struct page *page,
1343 			unsigned int order)
1344 {
1345 	int bad = 0;
1346 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1347 	bool init = want_init_on_free();
1348 	bool compound = PageCompound(page);
1349 	struct folio *folio = page_folio(page);
1350 
1351 	VM_BUG_ON_PAGE(PageTail(page), page);
1352 
1353 	trace_mm_page_free(page, order);
1354 	kmsan_free_page(page, order);
1355 
1356 	if (memcg_kmem_online() && PageMemcgKmem(page))
1357 		__memcg_kmem_uncharge_page(page, order);
1358 
1359 	/*
1360 	 * In rare cases, when truncation or holepunching raced with
1361 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1362 	 * found set here.  This does not indicate a problem, unless
1363 	 * "unevictable_pgs_cleared" appears worryingly large.
1364 	 */
1365 	if (unlikely(folio_test_mlocked(folio))) {
1366 		long nr_pages = folio_nr_pages(folio);
1367 
1368 		__folio_clear_mlocked(folio);
1369 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1370 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1371 	}
1372 
1373 	if (unlikely(PageHWPoison(page)) && !order) {
1374 		/* Do not let hwpoison pages hit pcplists/buddy */
1375 		reset_page_owner(page, order);
1376 		page_table_check_free(page, order);
1377 		pgalloc_tag_sub(page, 1 << order);
1378 
1379 		/*
1380 		 * The page is isolated and accounted for.
1381 		 * Mark the codetag as empty to avoid accounting error
1382 		 * when the page is freed by unpoison_memory().
1383 		 */
1384 		clear_page_tag_ref(page);
1385 		return false;
1386 	}
1387 
1388 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1389 
1390 	/*
1391 	 * Check tail pages before head page information is cleared to
1392 	 * avoid checking PageCompound for order-0 pages.
1393 	 */
1394 	if (unlikely(order)) {
1395 		int i;
1396 
1397 		if (compound) {
1398 			page[1].flags.f &= ~PAGE_FLAGS_SECOND;
1399 #ifdef NR_PAGES_IN_LARGE_FOLIO
1400 			folio->_nr_pages = 0;
1401 #endif
1402 		}
1403 		for (i = 1; i < (1 << order); i++) {
1404 			if (compound)
1405 				bad += free_tail_page_prepare(page, page + i);
1406 			if (is_check_pages_enabled()) {
1407 				if (free_page_is_bad(page + i)) {
1408 					bad++;
1409 					continue;
1410 				}
1411 			}
1412 			(page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
1413 		}
1414 	}
1415 	if (folio_test_anon(folio)) {
1416 		mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1417 		folio->mapping = NULL;
1418 	}
1419 	if (unlikely(page_has_type(page)))
1420 		/* Reset the page_type (which overlays _mapcount) */
1421 		page->page_type = UINT_MAX;
1422 
1423 	if (is_check_pages_enabled()) {
1424 		if (free_page_is_bad(page))
1425 			bad++;
1426 		if (bad)
1427 			return false;
1428 	}
1429 
1430 	page_cpupid_reset_last(page);
1431 	page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
1432 	reset_page_owner(page, order);
1433 	page_table_check_free(page, order);
1434 	pgalloc_tag_sub(page, 1 << order);
1435 
1436 	if (!PageHighMem(page)) {
1437 		debug_check_no_locks_freed(page_address(page),
1438 					   PAGE_SIZE << order);
1439 		debug_check_no_obj_freed(page_address(page),
1440 					   PAGE_SIZE << order);
1441 	}
1442 
1443 	kernel_poison_pages(page, 1 << order);
1444 
1445 	/*
1446 	 * As memory initialization might be integrated into KASAN,
1447 	 * KASAN poisoning and memory initialization code must be
1448 	 * kept together to avoid discrepancies in behavior.
1449 	 *
1450 	 * With hardware tag-based KASAN, memory tags must be set before the
1451 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1452 	 */
1453 	if (!skip_kasan_poison) {
1454 		kasan_poison_pages(page, order, init);
1455 
1456 		/* Memory is already initialized if KASAN did it internally. */
1457 		if (kasan_has_integrated_init())
1458 			init = false;
1459 	}
1460 	if (init)
1461 		kernel_init_pages(page, 1 << order);
1462 
1463 	/*
1464 	 * arch_free_page() can make the page's contents inaccessible.  s390
1465 	 * does this.  So nothing which can access the page's contents should
1466 	 * happen after this.
1467 	 */
1468 	arch_free_page(page, order);
1469 
1470 	debug_pagealloc_unmap_pages(page, 1 << order);
1471 
1472 	return true;
1473 }
1474 
1475 /*
1476  * Frees a number of pages from the PCP lists
1477  * Assumes all pages on list are in same zone.
1478  * count is the number of pages to free.
1479  */
1480 static void free_pcppages_bulk(struct zone *zone, int count,
1481 					struct per_cpu_pages *pcp,
1482 					int pindex)
1483 {
1484 	unsigned long flags;
1485 	unsigned int order;
1486 	struct page *page;
1487 
1488 	/*
1489 	 * Ensure proper count is passed which otherwise would stuck in the
1490 	 * below while (list_empty(list)) loop.
1491 	 */
1492 	count = min(pcp->count, count);
1493 
1494 	/* Ensure requested pindex is drained first. */
1495 	pindex = pindex - 1;
1496 
1497 	spin_lock_irqsave(&zone->lock, flags);
1498 
1499 	while (count > 0) {
1500 		struct list_head *list;
1501 		int nr_pages;
1502 
1503 		/* Remove pages from lists in a round-robin fashion. */
1504 		do {
1505 			if (++pindex > NR_PCP_LISTS - 1)
1506 				pindex = 0;
1507 			list = &pcp->lists[pindex];
1508 		} while (list_empty(list));
1509 
1510 		order = pindex_to_order(pindex);
1511 		nr_pages = 1 << order;
1512 		do {
1513 			unsigned long pfn;
1514 			int mt;
1515 
1516 			page = list_last_entry(list, struct page, pcp_list);
1517 			pfn = page_to_pfn(page);
1518 			mt = get_pfnblock_migratetype(page, pfn);
1519 
1520 			/* must delete to avoid corrupting pcp list */
1521 			list_del(&page->pcp_list);
1522 			count -= nr_pages;
1523 			pcp->count -= nr_pages;
1524 
1525 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1526 			trace_mm_page_pcpu_drain(page, order, mt);
1527 		} while (count > 0 && !list_empty(list));
1528 	}
1529 
1530 	spin_unlock_irqrestore(&zone->lock, flags);
1531 }
1532 
1533 /* Split a multi-block free page into its individual pageblocks. */
1534 static void split_large_buddy(struct zone *zone, struct page *page,
1535 			      unsigned long pfn, int order, fpi_t fpi)
1536 {
1537 	unsigned long end = pfn + (1 << order);
1538 
1539 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1540 	/* Caller removed page from freelist, buddy info cleared! */
1541 	VM_WARN_ON_ONCE(PageBuddy(page));
1542 
1543 	if (order > pageblock_order)
1544 		order = pageblock_order;
1545 
1546 	do {
1547 		int mt = get_pfnblock_migratetype(page, pfn);
1548 
1549 		__free_one_page(page, pfn, zone, order, mt, fpi);
1550 		pfn += 1 << order;
1551 		if (pfn == end)
1552 			break;
1553 		page = pfn_to_page(pfn);
1554 	} while (1);
1555 }
1556 
1557 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1558 				   unsigned int order)
1559 {
1560 	/* Remember the order */
1561 	page->private = order;
1562 	/* Add the page to the free list */
1563 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1564 }
1565 
1566 static void free_one_page(struct zone *zone, struct page *page,
1567 			  unsigned long pfn, unsigned int order,
1568 			  fpi_t fpi_flags)
1569 {
1570 	struct llist_head *llhead;
1571 	unsigned long flags;
1572 
1573 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1574 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
1575 			add_page_to_zone_llist(zone, page, order);
1576 			return;
1577 		}
1578 	} else {
1579 		spin_lock_irqsave(&zone->lock, flags);
1580 	}
1581 
1582 	/* The lock succeeded. Process deferred pages. */
1583 	llhead = &zone->trylock_free_pages;
1584 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1585 		struct llist_node *llnode;
1586 		struct page *p, *tmp;
1587 
1588 		llnode = llist_del_all(llhead);
1589 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1590 			unsigned int p_order = p->private;
1591 
1592 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1593 			__count_vm_events(PGFREE, 1 << p_order);
1594 		}
1595 	}
1596 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1597 	spin_unlock_irqrestore(&zone->lock, flags);
1598 
1599 	__count_vm_events(PGFREE, 1 << order);
1600 }
1601 
1602 static void __free_pages_ok(struct page *page, unsigned int order,
1603 			    fpi_t fpi_flags)
1604 {
1605 	unsigned long pfn = page_to_pfn(page);
1606 	struct zone *zone = page_zone(page);
1607 
1608 	if (free_pages_prepare(page, order))
1609 		free_one_page(zone, page, pfn, order, fpi_flags);
1610 }
1611 
1612 void __meminit __free_pages_core(struct page *page, unsigned int order,
1613 		enum meminit_context context)
1614 {
1615 	unsigned int nr_pages = 1 << order;
1616 	struct page *p = page;
1617 	unsigned int loop;
1618 
1619 	/*
1620 	 * When initializing the memmap, __init_single_page() sets the refcount
1621 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1622 	 * refcount of all involved pages to 0.
1623 	 *
1624 	 * Note that hotplugged memory pages are initialized to PageOffline().
1625 	 * Pages freed from memblock might be marked as reserved.
1626 	 */
1627 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1628 	    unlikely(context == MEMINIT_HOTPLUG)) {
1629 		for (loop = 0; loop < nr_pages; loop++, p++) {
1630 			VM_WARN_ON_ONCE(PageReserved(p));
1631 			__ClearPageOffline(p);
1632 			set_page_count(p, 0);
1633 		}
1634 
1635 		adjust_managed_page_count(page, nr_pages);
1636 	} else {
1637 		for (loop = 0; loop < nr_pages; loop++, p++) {
1638 			__ClearPageReserved(p);
1639 			set_page_count(p, 0);
1640 		}
1641 
1642 		/* memblock adjusts totalram_pages() manually. */
1643 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1644 	}
1645 
1646 	if (page_contains_unaccepted(page, order)) {
1647 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1648 			return;
1649 
1650 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1651 	}
1652 
1653 	/*
1654 	 * Bypass PCP and place fresh pages right to the tail, primarily
1655 	 * relevant for memory onlining.
1656 	 */
1657 	__free_pages_ok(page, order, FPI_TO_TAIL);
1658 }
1659 
1660 /*
1661  * Check that the whole (or subset of) a pageblock given by the interval of
1662  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1663  * with the migration of free compaction scanner.
1664  *
1665  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1666  *
1667  * It's possible on some configurations to have a setup like node0 node1 node0
1668  * i.e. it's possible that all pages within a zones range of pages do not
1669  * belong to a single zone. We assume that a border between node0 and node1
1670  * can occur within a single pageblock, but not a node0 node1 node0
1671  * interleaving within a single pageblock. It is therefore sufficient to check
1672  * the first and last page of a pageblock and avoid checking each individual
1673  * page in a pageblock.
1674  *
1675  * Note: the function may return non-NULL struct page even for a page block
1676  * which contains a memory hole (i.e. there is no physical memory for a subset
1677  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1678  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1679  * even though the start pfn is online and valid. This should be safe most of
1680  * the time because struct pages are still initialized via init_unavailable_range()
1681  * and pfn walkers shouldn't touch any physical memory range for which they do
1682  * not recognize any specific metadata in struct pages.
1683  */
1684 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1685 				     unsigned long end_pfn, struct zone *zone)
1686 {
1687 	struct page *start_page;
1688 	struct page *end_page;
1689 
1690 	/* end_pfn is one past the range we are checking */
1691 	end_pfn--;
1692 
1693 	if (!pfn_valid(end_pfn))
1694 		return NULL;
1695 
1696 	start_page = pfn_to_online_page(start_pfn);
1697 	if (!start_page)
1698 		return NULL;
1699 
1700 	if (page_zone(start_page) != zone)
1701 		return NULL;
1702 
1703 	end_page = pfn_to_page(end_pfn);
1704 
1705 	/* This gives a shorter code than deriving page_zone(end_page) */
1706 	if (page_zone_id(start_page) != page_zone_id(end_page))
1707 		return NULL;
1708 
1709 	return start_page;
1710 }
1711 
1712 /*
1713  * The order of subdivision here is critical for the IO subsystem.
1714  * Please do not alter this order without good reasons and regression
1715  * testing. Specifically, as large blocks of memory are subdivided,
1716  * the order in which smaller blocks are delivered depends on the order
1717  * they're subdivided in this function. This is the primary factor
1718  * influencing the order in which pages are delivered to the IO
1719  * subsystem according to empirical testing, and this is also justified
1720  * by considering the behavior of a buddy system containing a single
1721  * large block of memory acted on by a series of small allocations.
1722  * This behavior is a critical factor in sglist merging's success.
1723  *
1724  * -- nyc
1725  */
1726 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1727 				  int high, int migratetype)
1728 {
1729 	unsigned int size = 1 << high;
1730 	unsigned int nr_added = 0;
1731 
1732 	while (high > low) {
1733 		high--;
1734 		size >>= 1;
1735 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1736 
1737 		/*
1738 		 * Mark as guard pages (or page), that will allow to
1739 		 * merge back to allocator when buddy will be freed.
1740 		 * Corresponding page table entries will not be touched,
1741 		 * pages will stay not present in virtual address space
1742 		 */
1743 		if (set_page_guard(zone, &page[size], high))
1744 			continue;
1745 
1746 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1747 		set_buddy_order(&page[size], high);
1748 		nr_added += size;
1749 	}
1750 
1751 	return nr_added;
1752 }
1753 
1754 static __always_inline void page_del_and_expand(struct zone *zone,
1755 						struct page *page, int low,
1756 						int high, int migratetype)
1757 {
1758 	int nr_pages = 1 << high;
1759 
1760 	__del_page_from_free_list(page, zone, high, migratetype);
1761 	nr_pages -= expand(zone, page, low, high, migratetype);
1762 	account_freepages(zone, -nr_pages, migratetype);
1763 }
1764 
1765 static void check_new_page_bad(struct page *page)
1766 {
1767 	if (unlikely(PageHWPoison(page))) {
1768 		/* Don't complain about hwpoisoned pages */
1769 		if (PageBuddy(page))
1770 			__ClearPageBuddy(page);
1771 		return;
1772 	}
1773 
1774 	bad_page(page,
1775 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1776 }
1777 
1778 /*
1779  * This page is about to be returned from the page allocator
1780  */
1781 static bool check_new_page(struct page *page)
1782 {
1783 	if (likely(page_expected_state(page,
1784 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1785 		return false;
1786 
1787 	check_new_page_bad(page);
1788 	return true;
1789 }
1790 
1791 static inline bool check_new_pages(struct page *page, unsigned int order)
1792 {
1793 	if (is_check_pages_enabled()) {
1794 		for (int i = 0; i < (1 << order); i++) {
1795 			struct page *p = page + i;
1796 
1797 			if (check_new_page(p))
1798 				return true;
1799 		}
1800 	}
1801 
1802 	return false;
1803 }
1804 
1805 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1806 {
1807 	/* Don't skip if a software KASAN mode is enabled. */
1808 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1809 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1810 		return false;
1811 
1812 	/* Skip, if hardware tag-based KASAN is not enabled. */
1813 	if (!kasan_hw_tags_enabled())
1814 		return true;
1815 
1816 	/*
1817 	 * With hardware tag-based KASAN enabled, skip if this has been
1818 	 * requested via __GFP_SKIP_KASAN.
1819 	 */
1820 	return flags & __GFP_SKIP_KASAN;
1821 }
1822 
1823 static inline bool should_skip_init(gfp_t flags)
1824 {
1825 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1826 	if (!kasan_hw_tags_enabled())
1827 		return false;
1828 
1829 	/* For hardware tag-based KASAN, skip if requested. */
1830 	return (flags & __GFP_SKIP_ZERO);
1831 }
1832 
1833 inline void post_alloc_hook(struct page *page, unsigned int order,
1834 				gfp_t gfp_flags)
1835 {
1836 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1837 			!should_skip_init(gfp_flags);
1838 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1839 	int i;
1840 
1841 	set_page_private(page, 0);
1842 
1843 	arch_alloc_page(page, order);
1844 	debug_pagealloc_map_pages(page, 1 << order);
1845 
1846 	/*
1847 	 * Page unpoisoning must happen before memory initialization.
1848 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1849 	 * allocations and the page unpoisoning code will complain.
1850 	 */
1851 	kernel_unpoison_pages(page, 1 << order);
1852 
1853 	/*
1854 	 * As memory initialization might be integrated into KASAN,
1855 	 * KASAN unpoisoning and memory initialization code must be
1856 	 * kept together to avoid discrepancies in behavior.
1857 	 */
1858 
1859 	/*
1860 	 * If memory tags should be zeroed
1861 	 * (which happens only when memory should be initialized as well).
1862 	 */
1863 	if (zero_tags)
1864 		init = !tag_clear_highpages(page, 1 << order);
1865 
1866 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1867 	    kasan_unpoison_pages(page, order, init)) {
1868 		/* Take note that memory was initialized by KASAN. */
1869 		if (kasan_has_integrated_init())
1870 			init = false;
1871 	} else {
1872 		/*
1873 		 * If memory tags have not been set by KASAN, reset the page
1874 		 * tags to ensure page_address() dereferencing does not fault.
1875 		 */
1876 		for (i = 0; i != 1 << order; ++i)
1877 			page_kasan_tag_reset(page + i);
1878 	}
1879 	/* If memory is still not initialized, initialize it now. */
1880 	if (init)
1881 		kernel_init_pages(page, 1 << order);
1882 
1883 	set_page_owner(page, order, gfp_flags);
1884 	page_table_check_alloc(page, order);
1885 	pgalloc_tag_add(page, current, 1 << order);
1886 }
1887 
1888 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1889 							unsigned int alloc_flags)
1890 {
1891 	post_alloc_hook(page, order, gfp_flags);
1892 
1893 	if (order && (gfp_flags & __GFP_COMP))
1894 		prep_compound_page(page, order);
1895 
1896 	/*
1897 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1898 	 * allocate the page. The expectation is that the caller is taking
1899 	 * steps that will free more memory. The caller should avoid the page
1900 	 * being used for !PFMEMALLOC purposes.
1901 	 */
1902 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1903 		set_page_pfmemalloc(page);
1904 	else
1905 		clear_page_pfmemalloc(page);
1906 }
1907 
1908 /*
1909  * Go through the free lists for the given migratetype and remove
1910  * the smallest available page from the freelists
1911  */
1912 static __always_inline
1913 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1914 						int migratetype)
1915 {
1916 	unsigned int current_order;
1917 	struct free_area *area;
1918 	struct page *page;
1919 
1920 	/* Find a page of the appropriate size in the preferred list */
1921 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1922 		area = &(zone->free_area[current_order]);
1923 		page = get_page_from_free_area(area, migratetype);
1924 		if (!page)
1925 			continue;
1926 
1927 		page_del_and_expand(zone, page, order, current_order,
1928 				    migratetype);
1929 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1930 				pcp_allowed_order(order) &&
1931 				migratetype < MIGRATE_PCPTYPES);
1932 		return page;
1933 	}
1934 
1935 	return NULL;
1936 }
1937 
1938 
1939 /*
1940  * This array describes the order lists are fallen back to when
1941  * the free lists for the desirable migrate type are depleted
1942  *
1943  * The other migratetypes do not have fallbacks.
1944  */
1945 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1946 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1947 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1948 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1949 };
1950 
1951 #ifdef CONFIG_CMA
1952 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1953 					unsigned int order)
1954 {
1955 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1956 }
1957 #else
1958 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1959 					unsigned int order) { return NULL; }
1960 #endif
1961 
1962 /*
1963  * Move all free pages of a block to new type's freelist. Caller needs to
1964  * change the block type.
1965  */
1966 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1967 				  int old_mt, int new_mt)
1968 {
1969 	struct page *page;
1970 	unsigned long pfn, end_pfn;
1971 	unsigned int order;
1972 	int pages_moved = 0;
1973 
1974 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1975 	end_pfn = pageblock_end_pfn(start_pfn);
1976 
1977 	for (pfn = start_pfn; pfn < end_pfn;) {
1978 		page = pfn_to_page(pfn);
1979 		if (!PageBuddy(page)) {
1980 			pfn++;
1981 			continue;
1982 		}
1983 
1984 		/* Make sure we are not inadvertently changing nodes */
1985 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1986 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1987 
1988 		order = buddy_order(page);
1989 
1990 		move_to_free_list(page, zone, order, old_mt, new_mt);
1991 
1992 		pfn += 1 << order;
1993 		pages_moved += 1 << order;
1994 	}
1995 
1996 	return pages_moved;
1997 }
1998 
1999 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
2000 				      unsigned long *start_pfn,
2001 				      int *num_free, int *num_movable)
2002 {
2003 	unsigned long pfn, start, end;
2004 
2005 	pfn = page_to_pfn(page);
2006 	start = pageblock_start_pfn(pfn);
2007 	end = pageblock_end_pfn(pfn);
2008 
2009 	/*
2010 	 * The caller only has the lock for @zone, don't touch ranges
2011 	 * that straddle into other zones. While we could move part of
2012 	 * the range that's inside the zone, this call is usually
2013 	 * accompanied by other operations such as migratetype updates
2014 	 * which also should be locked.
2015 	 */
2016 	if (!zone_spans_pfn(zone, start))
2017 		return false;
2018 	if (!zone_spans_pfn(zone, end - 1))
2019 		return false;
2020 
2021 	*start_pfn = start;
2022 
2023 	if (num_free) {
2024 		*num_free = 0;
2025 		*num_movable = 0;
2026 		for (pfn = start; pfn < end;) {
2027 			page = pfn_to_page(pfn);
2028 			if (PageBuddy(page)) {
2029 				int nr = 1 << buddy_order(page);
2030 
2031 				*num_free += nr;
2032 				pfn += nr;
2033 				continue;
2034 			}
2035 			/*
2036 			 * We assume that pages that could be isolated for
2037 			 * migration are movable. But we don't actually try
2038 			 * isolating, as that would be expensive.
2039 			 */
2040 			if (PageLRU(page) || page_has_movable_ops(page))
2041 				(*num_movable)++;
2042 			pfn++;
2043 		}
2044 	}
2045 
2046 	return true;
2047 }
2048 
2049 static int move_freepages_block(struct zone *zone, struct page *page,
2050 				int old_mt, int new_mt)
2051 {
2052 	unsigned long start_pfn;
2053 	int res;
2054 
2055 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2056 		return -1;
2057 
2058 	res = __move_freepages_block(zone, start_pfn, old_mt, new_mt);
2059 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
2060 
2061 	return res;
2062 
2063 }
2064 
2065 #ifdef CONFIG_MEMORY_ISOLATION
2066 /* Look for a buddy that straddles start_pfn */
2067 static unsigned long find_large_buddy(unsigned long start_pfn)
2068 {
2069 	/*
2070 	 * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing
2071 	 * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking
2072 	 * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy,
2073 	 * the starting order does not matter.
2074 	 */
2075 	int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER;
2076 	struct page *page;
2077 	unsigned long pfn = start_pfn;
2078 
2079 	while (!PageBuddy(page = pfn_to_page(pfn))) {
2080 		/* Nothing found */
2081 		if (++order > MAX_PAGE_ORDER)
2082 			return start_pfn;
2083 		pfn &= ~0UL << order;
2084 	}
2085 
2086 	/*
2087 	 * Found a preceding buddy, but does it straddle?
2088 	 */
2089 	if (pfn + (1 << buddy_order(page)) > start_pfn)
2090 		return pfn;
2091 
2092 	/* Nothing found */
2093 	return start_pfn;
2094 }
2095 
2096 static inline void toggle_pageblock_isolate(struct page *page, bool isolate)
2097 {
2098 	if (isolate)
2099 		set_pageblock_isolate(page);
2100 	else
2101 		clear_pageblock_isolate(page);
2102 }
2103 
2104 /**
2105  * __move_freepages_block_isolate - move free pages in block for page isolation
2106  * @zone: the zone
2107  * @page: the pageblock page
2108  * @isolate: to isolate the given pageblock or unisolate it
2109  *
2110  * This is similar to move_freepages_block(), but handles the special
2111  * case encountered in page isolation, where the block of interest
2112  * might be part of a larger buddy spanning multiple pageblocks.
2113  *
2114  * Unlike the regular page allocator path, which moves pages while
2115  * stealing buddies off the freelist, page isolation is interested in
2116  * arbitrary pfn ranges that may have overlapping buddies on both ends.
2117  *
2118  * This function handles that. Straddling buddies are split into
2119  * individual pageblocks. Only the block of interest is moved.
2120  *
2121  * Returns %true if pages could be moved, %false otherwise.
2122  */
2123 static bool __move_freepages_block_isolate(struct zone *zone,
2124 		struct page *page, bool isolate)
2125 {
2126 	unsigned long start_pfn, buddy_pfn;
2127 	int from_mt;
2128 	int to_mt;
2129 	struct page *buddy;
2130 
2131 	if (isolate == get_pageblock_isolate(page)) {
2132 		VM_WARN_ONCE(1, "%s a pageblock that is already in that state",
2133 			     isolate ? "Isolate" : "Unisolate");
2134 		return false;
2135 	}
2136 
2137 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2138 		return false;
2139 
2140 	/* No splits needed if buddies can't span multiple blocks */
2141 	if (pageblock_order == MAX_PAGE_ORDER)
2142 		goto move;
2143 
2144 	buddy_pfn = find_large_buddy(start_pfn);
2145 	buddy = pfn_to_page(buddy_pfn);
2146 	/* We're a part of a larger buddy */
2147 	if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) {
2148 		int order = buddy_order(buddy);
2149 
2150 		del_page_from_free_list(buddy, zone, order,
2151 					get_pfnblock_migratetype(buddy, buddy_pfn));
2152 		toggle_pageblock_isolate(page, isolate);
2153 		split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE);
2154 		return true;
2155 	}
2156 
2157 move:
2158 	/* Use MIGRATETYPE_MASK to get non-isolate migratetype */
2159 	if (isolate) {
2160 		from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2161 						    MIGRATETYPE_MASK);
2162 		to_mt = MIGRATE_ISOLATE;
2163 	} else {
2164 		from_mt = MIGRATE_ISOLATE;
2165 		to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2166 						  MIGRATETYPE_MASK);
2167 	}
2168 
2169 	__move_freepages_block(zone, start_pfn, from_mt, to_mt);
2170 	toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate);
2171 
2172 	return true;
2173 }
2174 
2175 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page)
2176 {
2177 	return __move_freepages_block_isolate(zone, page, true);
2178 }
2179 
2180 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page)
2181 {
2182 	return __move_freepages_block_isolate(zone, page, false);
2183 }
2184 
2185 #endif /* CONFIG_MEMORY_ISOLATION */
2186 
2187 static inline bool boost_watermark(struct zone *zone)
2188 {
2189 	unsigned long max_boost;
2190 
2191 	if (!watermark_boost_factor)
2192 		return false;
2193 	/*
2194 	 * Don't bother in zones that are unlikely to produce results.
2195 	 * On small machines, including kdump capture kernels running
2196 	 * in a small area, boosting the watermark can cause an out of
2197 	 * memory situation immediately.
2198 	 */
2199 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2200 		return false;
2201 
2202 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2203 			watermark_boost_factor, 10000);
2204 
2205 	/*
2206 	 * high watermark may be uninitialised if fragmentation occurs
2207 	 * very early in boot so do not boost. We do not fall
2208 	 * through and boost by pageblock_nr_pages as failing
2209 	 * allocations that early means that reclaim is not going
2210 	 * to help and it may even be impossible to reclaim the
2211 	 * boosted watermark resulting in a hang.
2212 	 */
2213 	if (!max_boost)
2214 		return false;
2215 
2216 	max_boost = max(pageblock_nr_pages, max_boost);
2217 
2218 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2219 		max_boost);
2220 
2221 	return true;
2222 }
2223 
2224 /*
2225  * When we are falling back to another migratetype during allocation, should we
2226  * try to claim an entire block to satisfy further allocations, instead of
2227  * polluting multiple pageblocks?
2228  */
2229 static bool should_try_claim_block(unsigned int order, int start_mt)
2230 {
2231 	/*
2232 	 * Leaving this order check is intended, although there is
2233 	 * relaxed order check in next check. The reason is that
2234 	 * we can actually claim the whole pageblock if this condition met,
2235 	 * but, below check doesn't guarantee it and that is just heuristic
2236 	 * so could be changed anytime.
2237 	 */
2238 	if (order >= pageblock_order)
2239 		return true;
2240 
2241 	/*
2242 	 * Above a certain threshold, always try to claim, as it's likely there
2243 	 * will be more free pages in the pageblock.
2244 	 */
2245 	if (order >= pageblock_order / 2)
2246 		return true;
2247 
2248 	/*
2249 	 * Unmovable/reclaimable allocations would cause permanent
2250 	 * fragmentations if they fell back to allocating from a movable block
2251 	 * (polluting it), so we try to claim the whole block regardless of the
2252 	 * allocation size. Later movable allocations can always steal from this
2253 	 * block, which is less problematic.
2254 	 */
2255 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2256 		return true;
2257 
2258 	if (page_group_by_mobility_disabled)
2259 		return true;
2260 
2261 	/*
2262 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2263 	 * small pages, we just need to temporarily steal unmovable or
2264 	 * reclaimable pages that are closest to the request size. After a
2265 	 * while, memory compaction may occur to form large contiguous pages,
2266 	 * and the next movable allocation may not need to steal.
2267 	 */
2268 	return false;
2269 }
2270 
2271 /*
2272  * Check whether there is a suitable fallback freepage with requested order.
2273  * If claimable is true, this function returns fallback_mt only if
2274  * we would do this whole-block claiming. This would help to reduce
2275  * fragmentation due to mixed migratetype pages in one pageblock.
2276  */
2277 int find_suitable_fallback(struct free_area *area, unsigned int order,
2278 			   int migratetype, bool claimable)
2279 {
2280 	int i;
2281 
2282 	if (claimable && !should_try_claim_block(order, migratetype))
2283 		return -2;
2284 
2285 	if (area->nr_free == 0)
2286 		return -1;
2287 
2288 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2289 		int fallback_mt = fallbacks[migratetype][i];
2290 
2291 		if (!free_area_empty(area, fallback_mt))
2292 			return fallback_mt;
2293 	}
2294 
2295 	return -1;
2296 }
2297 
2298 /*
2299  * This function implements actual block claiming behaviour. If order is large
2300  * enough, we can claim the whole pageblock for the requested migratetype. If
2301  * not, we check the pageblock for constituent pages; if at least half of the
2302  * pages are free or compatible, we can still claim the whole block, so pages
2303  * freed in the future will be put on the correct free list.
2304  */
2305 static struct page *
2306 try_to_claim_block(struct zone *zone, struct page *page,
2307 		   int current_order, int order, int start_type,
2308 		   int block_type, unsigned int alloc_flags)
2309 {
2310 	int free_pages, movable_pages, alike_pages;
2311 	unsigned long start_pfn;
2312 
2313 	/* Take ownership for orders >= pageblock_order */
2314 	if (current_order >= pageblock_order) {
2315 		unsigned int nr_added;
2316 
2317 		del_page_from_free_list(page, zone, current_order, block_type);
2318 		change_pageblock_range(page, current_order, start_type);
2319 		nr_added = expand(zone, page, order, current_order, start_type);
2320 		account_freepages(zone, nr_added, start_type);
2321 		return page;
2322 	}
2323 
2324 	/*
2325 	 * Boost watermarks to increase reclaim pressure to reduce the
2326 	 * likelihood of future fallbacks. Wake kswapd now as the node
2327 	 * may be balanced overall and kswapd will not wake naturally.
2328 	 */
2329 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2330 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2331 
2332 	/* moving whole block can fail due to zone boundary conditions */
2333 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2334 				       &movable_pages))
2335 		return NULL;
2336 
2337 	/*
2338 	 * Determine how many pages are compatible with our allocation.
2339 	 * For movable allocation, it's the number of movable pages which
2340 	 * we just obtained. For other types it's a bit more tricky.
2341 	 */
2342 	if (start_type == MIGRATE_MOVABLE) {
2343 		alike_pages = movable_pages;
2344 	} else {
2345 		/*
2346 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2347 		 * to MOVABLE pageblock, consider all non-movable pages as
2348 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2349 		 * vice versa, be conservative since we can't distinguish the
2350 		 * exact migratetype of non-movable pages.
2351 		 */
2352 		if (block_type == MIGRATE_MOVABLE)
2353 			alike_pages = pageblock_nr_pages
2354 						- (free_pages + movable_pages);
2355 		else
2356 			alike_pages = 0;
2357 	}
2358 	/*
2359 	 * If a sufficient number of pages in the block are either free or of
2360 	 * compatible migratability as our allocation, claim the whole block.
2361 	 */
2362 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2363 			page_group_by_mobility_disabled) {
2364 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2365 		set_pageblock_migratetype(pfn_to_page(start_pfn), start_type);
2366 		return __rmqueue_smallest(zone, order, start_type);
2367 	}
2368 
2369 	return NULL;
2370 }
2371 
2372 /*
2373  * Try to allocate from some fallback migratetype by claiming the entire block,
2374  * i.e. converting it to the allocation's start migratetype.
2375  *
2376  * The use of signed ints for order and current_order is a deliberate
2377  * deviation from the rest of this file, to make the for loop
2378  * condition simpler.
2379  */
2380 static __always_inline struct page *
2381 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2382 						unsigned int alloc_flags)
2383 {
2384 	struct free_area *area;
2385 	int current_order;
2386 	int min_order = order;
2387 	struct page *page;
2388 	int fallback_mt;
2389 
2390 	/*
2391 	 * Do not steal pages from freelists belonging to other pageblocks
2392 	 * i.e. orders < pageblock_order. If there are no local zones free,
2393 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2394 	 */
2395 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2396 		min_order = pageblock_order;
2397 
2398 	/*
2399 	 * Find the largest available free page in the other list. This roughly
2400 	 * approximates finding the pageblock with the most free pages, which
2401 	 * would be too costly to do exactly.
2402 	 */
2403 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2404 				--current_order) {
2405 		area = &(zone->free_area[current_order]);
2406 		fallback_mt = find_suitable_fallback(area, current_order,
2407 						     start_migratetype, true);
2408 
2409 		/* No block in that order */
2410 		if (fallback_mt == -1)
2411 			continue;
2412 
2413 		/* Advanced into orders too low to claim, abort */
2414 		if (fallback_mt == -2)
2415 			break;
2416 
2417 		page = get_page_from_free_area(area, fallback_mt);
2418 		page = try_to_claim_block(zone, page, current_order, order,
2419 					  start_migratetype, fallback_mt,
2420 					  alloc_flags);
2421 		if (page) {
2422 			trace_mm_page_alloc_extfrag(page, order, current_order,
2423 						    start_migratetype, fallback_mt);
2424 			return page;
2425 		}
2426 	}
2427 
2428 	return NULL;
2429 }
2430 
2431 /*
2432  * Try to steal a single page from some fallback migratetype. Leave the rest of
2433  * the block as its current migratetype, potentially causing fragmentation.
2434  */
2435 static __always_inline struct page *
2436 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2437 {
2438 	struct free_area *area;
2439 	int current_order;
2440 	struct page *page;
2441 	int fallback_mt;
2442 
2443 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2444 		area = &(zone->free_area[current_order]);
2445 		fallback_mt = find_suitable_fallback(area, current_order,
2446 						     start_migratetype, false);
2447 		if (fallback_mt == -1)
2448 			continue;
2449 
2450 		page = get_page_from_free_area(area, fallback_mt);
2451 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2452 		trace_mm_page_alloc_extfrag(page, order, current_order,
2453 					    start_migratetype, fallback_mt);
2454 		return page;
2455 	}
2456 
2457 	return NULL;
2458 }
2459 
2460 enum rmqueue_mode {
2461 	RMQUEUE_NORMAL,
2462 	RMQUEUE_CMA,
2463 	RMQUEUE_CLAIM,
2464 	RMQUEUE_STEAL,
2465 };
2466 
2467 /*
2468  * Do the hard work of removing an element from the buddy allocator.
2469  * Call me with the zone->lock already held.
2470  */
2471 static __always_inline struct page *
2472 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2473 	  unsigned int alloc_flags, enum rmqueue_mode *mode)
2474 {
2475 	struct page *page;
2476 
2477 	if (IS_ENABLED(CONFIG_CMA)) {
2478 		/*
2479 		 * Balance movable allocations between regular and CMA areas by
2480 		 * allocating from CMA when over half of the zone's free memory
2481 		 * is in the CMA area.
2482 		 */
2483 		if (alloc_flags & ALLOC_CMA &&
2484 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2485 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2486 			page = __rmqueue_cma_fallback(zone, order);
2487 			if (page)
2488 				return page;
2489 		}
2490 	}
2491 
2492 	/*
2493 	 * First try the freelists of the requested migratetype, then try
2494 	 * fallbacks modes with increasing levels of fragmentation risk.
2495 	 *
2496 	 * The fallback logic is expensive and rmqueue_bulk() calls in
2497 	 * a loop with the zone->lock held, meaning the freelists are
2498 	 * not subject to any outside changes. Remember in *mode where
2499 	 * we found pay dirt, to save us the search on the next call.
2500 	 */
2501 	switch (*mode) {
2502 	case RMQUEUE_NORMAL:
2503 		page = __rmqueue_smallest(zone, order, migratetype);
2504 		if (page)
2505 			return page;
2506 		fallthrough;
2507 	case RMQUEUE_CMA:
2508 		if (alloc_flags & ALLOC_CMA) {
2509 			page = __rmqueue_cma_fallback(zone, order);
2510 			if (page) {
2511 				*mode = RMQUEUE_CMA;
2512 				return page;
2513 			}
2514 		}
2515 		fallthrough;
2516 	case RMQUEUE_CLAIM:
2517 		page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2518 		if (page) {
2519 			/* Replenished preferred freelist, back to normal mode. */
2520 			*mode = RMQUEUE_NORMAL;
2521 			return page;
2522 		}
2523 		fallthrough;
2524 	case RMQUEUE_STEAL:
2525 		if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2526 			page = __rmqueue_steal(zone, order, migratetype);
2527 			if (page) {
2528 				*mode = RMQUEUE_STEAL;
2529 				return page;
2530 			}
2531 		}
2532 	}
2533 	return NULL;
2534 }
2535 
2536 /*
2537  * Obtain a specified number of elements from the buddy allocator, all under
2538  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2539  * Returns the number of new pages which were placed at *list.
2540  */
2541 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2542 			unsigned long count, struct list_head *list,
2543 			int migratetype, unsigned int alloc_flags)
2544 {
2545 	enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2546 	unsigned long flags;
2547 	int i;
2548 
2549 	if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2550 		if (!spin_trylock_irqsave(&zone->lock, flags))
2551 			return 0;
2552 	} else {
2553 		spin_lock_irqsave(&zone->lock, flags);
2554 	}
2555 	for (i = 0; i < count; ++i) {
2556 		struct page *page = __rmqueue(zone, order, migratetype,
2557 					      alloc_flags, &rmqm);
2558 		if (unlikely(page == NULL))
2559 			break;
2560 
2561 		/*
2562 		 * Split buddy pages returned by expand() are received here in
2563 		 * physical page order. The page is added to the tail of
2564 		 * caller's list. From the callers perspective, the linked list
2565 		 * is ordered by page number under some conditions. This is
2566 		 * useful for IO devices that can forward direction from the
2567 		 * head, thus also in the physical page order. This is useful
2568 		 * for IO devices that can merge IO requests if the physical
2569 		 * pages are ordered properly.
2570 		 */
2571 		list_add_tail(&page->pcp_list, list);
2572 	}
2573 	spin_unlock_irqrestore(&zone->lock, flags);
2574 
2575 	return i;
2576 }
2577 
2578 /*
2579  * Called from the vmstat counter updater to decay the PCP high.
2580  * Return whether there are addition works to do.
2581  */
2582 bool decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2583 {
2584 	int high_min, to_drain, to_drain_batched, batch;
2585 	unsigned long UP_flags;
2586 	bool todo = false;
2587 
2588 	high_min = READ_ONCE(pcp->high_min);
2589 	batch = READ_ONCE(pcp->batch);
2590 	/*
2591 	 * Decrease pcp->high periodically to try to free possible
2592 	 * idle PCP pages.  And, avoid to free too many pages to
2593 	 * control latency.  This caps pcp->high decrement too.
2594 	 */
2595 	if (pcp->high > high_min) {
2596 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2597 				 pcp->high - (pcp->high >> 3), high_min);
2598 		if (pcp->high > high_min)
2599 			todo = true;
2600 	}
2601 
2602 	to_drain = pcp->count - pcp->high;
2603 	while (to_drain > 0) {
2604 		to_drain_batched = min(to_drain, batch);
2605 		pcp_spin_lock_maybe_irqsave(pcp, UP_flags);
2606 		free_pcppages_bulk(zone, to_drain_batched, pcp, 0);
2607 		pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags);
2608 		todo = true;
2609 
2610 		to_drain -= to_drain_batched;
2611 	}
2612 
2613 	return todo;
2614 }
2615 
2616 #ifdef CONFIG_NUMA
2617 /*
2618  * Called from the vmstat counter updater to drain pagesets of this
2619  * currently executing processor on remote nodes after they have
2620  * expired.
2621  */
2622 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2623 {
2624 	unsigned long UP_flags;
2625 	int to_drain, batch;
2626 
2627 	batch = READ_ONCE(pcp->batch);
2628 	to_drain = min(pcp->count, batch);
2629 	if (to_drain > 0) {
2630 		pcp_spin_lock_maybe_irqsave(pcp, UP_flags);
2631 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2632 		pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags);
2633 	}
2634 }
2635 #endif
2636 
2637 /*
2638  * Drain pcplists of the indicated processor and zone.
2639  */
2640 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2641 {
2642 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2643 	unsigned long UP_flags;
2644 	int count;
2645 
2646 	do {
2647 		pcp_spin_lock_maybe_irqsave(pcp, UP_flags);
2648 		count = pcp->count;
2649 		if (count) {
2650 			int to_drain = min(count,
2651 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2652 
2653 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2654 			count -= to_drain;
2655 		}
2656 		pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags);
2657 	} while (count);
2658 }
2659 
2660 /*
2661  * Drain pcplists of all zones on the indicated processor.
2662  */
2663 static void drain_pages(unsigned int cpu)
2664 {
2665 	struct zone *zone;
2666 
2667 	for_each_populated_zone(zone) {
2668 		drain_pages_zone(cpu, zone);
2669 	}
2670 }
2671 
2672 /*
2673  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2674  */
2675 void drain_local_pages(struct zone *zone)
2676 {
2677 	int cpu = smp_processor_id();
2678 
2679 	if (zone)
2680 		drain_pages_zone(cpu, zone);
2681 	else
2682 		drain_pages(cpu);
2683 }
2684 
2685 /*
2686  * The implementation of drain_all_pages(), exposing an extra parameter to
2687  * drain on all cpus.
2688  *
2689  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2690  * not empty. The check for non-emptiness can however race with a free to
2691  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2692  * that need the guarantee that every CPU has drained can disable the
2693  * optimizing racy check.
2694  */
2695 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2696 {
2697 	int cpu;
2698 
2699 	/*
2700 	 * Allocate in the BSS so we won't require allocation in
2701 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2702 	 */
2703 	static cpumask_t cpus_with_pcps;
2704 
2705 	/*
2706 	 * Do not drain if one is already in progress unless it's specific to
2707 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2708 	 * the drain to be complete when the call returns.
2709 	 */
2710 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2711 		if (!zone)
2712 			return;
2713 		mutex_lock(&pcpu_drain_mutex);
2714 	}
2715 
2716 	/*
2717 	 * We don't care about racing with CPU hotplug event
2718 	 * as offline notification will cause the notified
2719 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2720 	 * disables preemption as part of its processing
2721 	 */
2722 	for_each_online_cpu(cpu) {
2723 		struct per_cpu_pages *pcp;
2724 		struct zone *z;
2725 		bool has_pcps = false;
2726 
2727 		if (force_all_cpus) {
2728 			/*
2729 			 * The pcp.count check is racy, some callers need a
2730 			 * guarantee that no cpu is missed.
2731 			 */
2732 			has_pcps = true;
2733 		} else if (zone) {
2734 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2735 			if (pcp->count)
2736 				has_pcps = true;
2737 		} else {
2738 			for_each_populated_zone(z) {
2739 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2740 				if (pcp->count) {
2741 					has_pcps = true;
2742 					break;
2743 				}
2744 			}
2745 		}
2746 
2747 		if (has_pcps)
2748 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2749 		else
2750 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2751 	}
2752 
2753 	for_each_cpu(cpu, &cpus_with_pcps) {
2754 		if (zone)
2755 			drain_pages_zone(cpu, zone);
2756 		else
2757 			drain_pages(cpu);
2758 	}
2759 
2760 	mutex_unlock(&pcpu_drain_mutex);
2761 }
2762 
2763 /*
2764  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2765  *
2766  * When zone parameter is non-NULL, spill just the single zone's pages.
2767  */
2768 void drain_all_pages(struct zone *zone)
2769 {
2770 	__drain_all_pages(zone, false);
2771 }
2772 
2773 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2774 {
2775 	int min_nr_free, max_nr_free;
2776 
2777 	/* Free as much as possible if batch freeing high-order pages. */
2778 	if (unlikely(free_high))
2779 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2780 
2781 	/* Check for PCP disabled or boot pageset */
2782 	if (unlikely(high < batch))
2783 		return 1;
2784 
2785 	/* Leave at least pcp->batch pages on the list */
2786 	min_nr_free = batch;
2787 	max_nr_free = high - batch;
2788 
2789 	/*
2790 	 * Increase the batch number to the number of the consecutive
2791 	 * freed pages to reduce zone lock contention.
2792 	 */
2793 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2794 
2795 	return batch;
2796 }
2797 
2798 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2799 		       int batch, bool free_high)
2800 {
2801 	int high, high_min, high_max;
2802 
2803 	high_min = READ_ONCE(pcp->high_min);
2804 	high_max = READ_ONCE(pcp->high_max);
2805 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2806 
2807 	if (unlikely(!high))
2808 		return 0;
2809 
2810 	if (unlikely(free_high)) {
2811 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2812 				high_min);
2813 		return 0;
2814 	}
2815 
2816 	/*
2817 	 * If reclaim is active, limit the number of pages that can be
2818 	 * stored on pcp lists
2819 	 */
2820 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2821 		int free_count = max_t(int, pcp->free_count, batch);
2822 
2823 		pcp->high = max(high - free_count, high_min);
2824 		return min(batch << 2, pcp->high);
2825 	}
2826 
2827 	if (high_min == high_max)
2828 		return high;
2829 
2830 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2831 		int free_count = max_t(int, pcp->free_count, batch);
2832 
2833 		pcp->high = max(high - free_count, high_min);
2834 		high = max(pcp->count, high_min);
2835 	} else if (pcp->count >= high) {
2836 		int need_high = pcp->free_count + batch;
2837 
2838 		/* pcp->high should be large enough to hold batch freed pages */
2839 		if (pcp->high < need_high)
2840 			pcp->high = clamp(need_high, high_min, high_max);
2841 	}
2842 
2843 	return high;
2844 }
2845 
2846 /*
2847  * Tune pcp alloc factor and adjust count & free_count. Free pages to bring the
2848  * pcp's watermarks below high.
2849  *
2850  * May return a freed pcp, if during page freeing the pcp spinlock cannot be
2851  * reacquired. Return true if pcp is locked, false otherwise.
2852  */
2853 static bool free_frozen_page_commit(struct zone *zone,
2854 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2855 		unsigned int order, fpi_t fpi_flags, unsigned long *UP_flags)
2856 {
2857 	int high, batch;
2858 	int to_free, to_free_batched;
2859 	int pindex;
2860 	int cpu = smp_processor_id();
2861 	int ret = true;
2862 	bool free_high = false;
2863 
2864 	/*
2865 	 * On freeing, reduce the number of pages that are batch allocated.
2866 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2867 	 * allocations.
2868 	 */
2869 	pcp->alloc_factor >>= 1;
2870 	__count_vm_events(PGFREE, 1 << order);
2871 	pindex = order_to_pindex(migratetype, order);
2872 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2873 	pcp->count += 1 << order;
2874 
2875 	batch = READ_ONCE(pcp->batch);
2876 	/*
2877 	 * As high-order pages other than THP's stored on PCP can contribute
2878 	 * to fragmentation, limit the number stored when PCP is heavily
2879 	 * freeing without allocation. The remainder after bulk freeing
2880 	 * stops will be drained from vmstat refresh context.
2881 	 */
2882 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2883 		free_high = (pcp->free_count >= (batch + pcp->high_min / 2) &&
2884 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2885 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2886 			      pcp->count >= batch));
2887 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2888 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2889 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2890 	}
2891 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2892 		pcp->free_count += (1 << order);
2893 
2894 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2895 		/*
2896 		 * Do not attempt to take a zone lock. Let pcp->count get
2897 		 * over high mark temporarily.
2898 		 */
2899 		return true;
2900 	}
2901 
2902 	high = nr_pcp_high(pcp, zone, batch, free_high);
2903 	if (pcp->count < high)
2904 		return true;
2905 
2906 	to_free = nr_pcp_free(pcp, batch, high, free_high);
2907 	while (to_free > 0 && pcp->count > 0) {
2908 		to_free_batched = min(to_free, batch);
2909 		free_pcppages_bulk(zone, to_free_batched, pcp, pindex);
2910 		to_free -= to_free_batched;
2911 
2912 		if (to_free == 0 || pcp->count == 0)
2913 			break;
2914 
2915 		pcp_spin_unlock(pcp, *UP_flags);
2916 
2917 		pcp = pcp_spin_trylock(zone->per_cpu_pageset, *UP_flags);
2918 		if (!pcp) {
2919 			ret = false;
2920 			break;
2921 		}
2922 
2923 		/*
2924 		 * Check if this thread has been migrated to a different CPU.
2925 		 * If that is the case, give up and indicate that the pcp is
2926 		 * returned in an unlocked state.
2927 		 */
2928 		if (smp_processor_id() != cpu) {
2929 			pcp_spin_unlock(pcp, *UP_flags);
2930 			ret = false;
2931 			break;
2932 		}
2933 	}
2934 
2935 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2936 	    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2937 			      ZONE_MOVABLE, 0)) {
2938 		struct pglist_data *pgdat = zone->zone_pgdat;
2939 		clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2940 
2941 		/*
2942 		 * Assume that memory pressure on this node is gone and may be
2943 		 * in a reclaimable state. If a memory fallback node exists,
2944 		 * direct reclaim may not have been triggered, causing a
2945 		 * 'hopeless node' to stay in that state for a while.  Let
2946 		 * kswapd work again by resetting kswapd_failures.
2947 		 */
2948 		if (kswapd_test_hopeless(pgdat) &&
2949 		    next_memory_node(pgdat->node_id) < MAX_NUMNODES)
2950 			kswapd_clear_hopeless(pgdat, KSWAPD_CLEAR_HOPELESS_PCP);
2951 	}
2952 	return ret;
2953 }
2954 
2955 /*
2956  * Free a pcp page
2957  */
2958 static void __free_frozen_pages(struct page *page, unsigned int order,
2959 				fpi_t fpi_flags)
2960 {
2961 	unsigned long UP_flags;
2962 	struct per_cpu_pages *pcp;
2963 	struct zone *zone;
2964 	unsigned long pfn = page_to_pfn(page);
2965 	int migratetype;
2966 
2967 	if (!pcp_allowed_order(order)) {
2968 		__free_pages_ok(page, order, fpi_flags);
2969 		return;
2970 	}
2971 
2972 	if (!free_pages_prepare(page, order))
2973 		return;
2974 
2975 	/*
2976 	 * We only track unmovable, reclaimable and movable on pcp lists.
2977 	 * Place ISOLATE pages on the isolated list because they are being
2978 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2979 	 * get those areas back if necessary. Otherwise, we may have to free
2980 	 * excessively into the page allocator
2981 	 */
2982 	zone = page_zone(page);
2983 	migratetype = get_pfnblock_migratetype(page, pfn);
2984 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2985 		if (unlikely(is_migrate_isolate(migratetype))) {
2986 			free_one_page(zone, page, pfn, order, fpi_flags);
2987 			return;
2988 		}
2989 		migratetype = MIGRATE_MOVABLE;
2990 	}
2991 
2992 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2993 		     && (in_nmi() || in_hardirq()))) {
2994 		add_page_to_zone_llist(zone, page, order);
2995 		return;
2996 	}
2997 	pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
2998 	if (pcp) {
2999 		if (!free_frozen_page_commit(zone, pcp, page, migratetype,
3000 						order, fpi_flags, &UP_flags))
3001 			return;
3002 		pcp_spin_unlock(pcp, UP_flags);
3003 	} else {
3004 		free_one_page(zone, page, pfn, order, fpi_flags);
3005 	}
3006 }
3007 
3008 void free_frozen_pages(struct page *page, unsigned int order)
3009 {
3010 	__free_frozen_pages(page, order, FPI_NONE);
3011 }
3012 
3013 /*
3014  * Free a batch of folios
3015  */
3016 void free_unref_folios(struct folio_batch *folios)
3017 {
3018 	unsigned long UP_flags;
3019 	struct per_cpu_pages *pcp = NULL;
3020 	struct zone *locked_zone = NULL;
3021 	int i, j;
3022 
3023 	/* Prepare folios for freeing */
3024 	for (i = 0, j = 0; i < folios->nr; i++) {
3025 		struct folio *folio = folios->folios[i];
3026 		unsigned long pfn = folio_pfn(folio);
3027 		unsigned int order = folio_order(folio);
3028 
3029 		if (!free_pages_prepare(&folio->page, order))
3030 			continue;
3031 		/*
3032 		 * Free orders not handled on the PCP directly to the
3033 		 * allocator.
3034 		 */
3035 		if (!pcp_allowed_order(order)) {
3036 			free_one_page(folio_zone(folio), &folio->page,
3037 				      pfn, order, FPI_NONE);
3038 			continue;
3039 		}
3040 		folio->private = (void *)(unsigned long)order;
3041 		if (j != i)
3042 			folios->folios[j] = folio;
3043 		j++;
3044 	}
3045 	folios->nr = j;
3046 
3047 	for (i = 0; i < folios->nr; i++) {
3048 		struct folio *folio = folios->folios[i];
3049 		struct zone *zone = folio_zone(folio);
3050 		unsigned long pfn = folio_pfn(folio);
3051 		unsigned int order = (unsigned long)folio->private;
3052 		int migratetype;
3053 
3054 		folio->private = NULL;
3055 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
3056 
3057 		/* Different zone requires a different pcp lock */
3058 		if (zone != locked_zone ||
3059 		    is_migrate_isolate(migratetype)) {
3060 			if (pcp) {
3061 				pcp_spin_unlock(pcp, UP_flags);
3062 				locked_zone = NULL;
3063 				pcp = NULL;
3064 			}
3065 
3066 			/*
3067 			 * Free isolated pages directly to the
3068 			 * allocator, see comment in free_frozen_pages.
3069 			 */
3070 			if (is_migrate_isolate(migratetype)) {
3071 				free_one_page(zone, &folio->page, pfn,
3072 					      order, FPI_NONE);
3073 				continue;
3074 			}
3075 
3076 			/*
3077 			 * trylock is necessary as folios may be getting freed
3078 			 * from IRQ or SoftIRQ context after an IO completion.
3079 			 */
3080 			pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
3081 			if (unlikely(!pcp)) {
3082 				free_one_page(zone, &folio->page, pfn,
3083 					      order, FPI_NONE);
3084 				continue;
3085 			}
3086 			locked_zone = zone;
3087 		}
3088 
3089 		/*
3090 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3091 		 * to the MIGRATE_MOVABLE pcp list.
3092 		 */
3093 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3094 			migratetype = MIGRATE_MOVABLE;
3095 
3096 		trace_mm_page_free_batched(&folio->page);
3097 		if (!free_frozen_page_commit(zone, pcp, &folio->page,
3098 				migratetype, order, FPI_NONE, &UP_flags)) {
3099 			pcp = NULL;
3100 			locked_zone = NULL;
3101 		}
3102 	}
3103 
3104 	if (pcp)
3105 		pcp_spin_unlock(pcp, UP_flags);
3106 	folio_batch_reinit(folios);
3107 }
3108 
3109 static void __split_page(struct page *page, unsigned int order)
3110 {
3111 	VM_WARN_ON_PAGE(PageCompound(page), page);
3112 
3113 	split_page_owner(page, order, 0);
3114 	pgalloc_tag_split(page_folio(page), order, 0);
3115 	split_page_memcg(page, order);
3116 }
3117 
3118 /*
3119  * split_page takes a non-compound higher-order page, and splits it into
3120  * n (1<<order) sub-pages: page[0..n]
3121  * Each sub-page must be freed individually.
3122  *
3123  * Note: this is probably too low level an operation for use in drivers.
3124  * Please consult with lkml before using this in your driver.
3125  */
3126 void split_page(struct page *page, unsigned int order)
3127 {
3128 	int i;
3129 
3130 	VM_WARN_ON_PAGE(!page_count(page), page);
3131 
3132 	for (i = 1; i < (1 << order); i++)
3133 		set_page_refcounted(page + i);
3134 
3135 	__split_page(page, order);
3136 }
3137 EXPORT_SYMBOL_GPL(split_page);
3138 
3139 int __isolate_free_page(struct page *page, unsigned int order)
3140 {
3141 	struct zone *zone = page_zone(page);
3142 	int mt = get_pageblock_migratetype(page);
3143 
3144 	if (!is_migrate_isolate(mt)) {
3145 		unsigned long watermark;
3146 		/*
3147 		 * Obey watermarks as if the page was being allocated. We can
3148 		 * emulate a high-order watermark check with a raised order-0
3149 		 * watermark, because we already know our high-order page
3150 		 * exists.
3151 		 */
3152 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3153 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3154 			return 0;
3155 	}
3156 
3157 	del_page_from_free_list(page, zone, order, mt);
3158 
3159 	/*
3160 	 * Set the pageblock if the isolated page is at least half of a
3161 	 * pageblock
3162 	 */
3163 	if (order >= pageblock_order - 1) {
3164 		struct page *endpage = page + (1 << order) - 1;
3165 		for (; page < endpage; page += pageblock_nr_pages) {
3166 			int mt = get_pageblock_migratetype(page);
3167 			/*
3168 			 * Only change normal pageblocks (i.e., they can merge
3169 			 * with others)
3170 			 */
3171 			if (migratetype_is_mergeable(mt))
3172 				move_freepages_block(zone, page, mt,
3173 						     MIGRATE_MOVABLE);
3174 		}
3175 	}
3176 
3177 	return 1UL << order;
3178 }
3179 
3180 /**
3181  * __putback_isolated_page - Return a now-isolated page back where we got it
3182  * @page: Page that was isolated
3183  * @order: Order of the isolated page
3184  * @mt: The page's pageblock's migratetype
3185  *
3186  * This function is meant to return a page pulled from the free lists via
3187  * __isolate_free_page back to the free lists they were pulled from.
3188  */
3189 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3190 {
3191 	struct zone *zone = page_zone(page);
3192 
3193 	/* zone lock should be held when this function is called */
3194 	lockdep_assert_held(&zone->lock);
3195 
3196 	/* Return isolated page to tail of freelist. */
3197 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3198 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3199 }
3200 
3201 /*
3202  * Update NUMA hit/miss statistics
3203  */
3204 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3205 				   long nr_account)
3206 {
3207 #ifdef CONFIG_NUMA
3208 	enum numa_stat_item local_stat = NUMA_LOCAL;
3209 
3210 	/* skip numa counters update if numa stats is disabled */
3211 	if (!static_branch_likely(&vm_numa_stat_key))
3212 		return;
3213 
3214 	if (zone_to_nid(z) != numa_node_id())
3215 		local_stat = NUMA_OTHER;
3216 
3217 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3218 		__count_numa_events(z, NUMA_HIT, nr_account);
3219 	else {
3220 		__count_numa_events(z, NUMA_MISS, nr_account);
3221 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3222 	}
3223 	__count_numa_events(z, local_stat, nr_account);
3224 #endif
3225 }
3226 
3227 static __always_inline
3228 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3229 			   unsigned int order, unsigned int alloc_flags,
3230 			   int migratetype)
3231 {
3232 	struct page *page;
3233 	unsigned long flags;
3234 
3235 	do {
3236 		page = NULL;
3237 		if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
3238 			if (!spin_trylock_irqsave(&zone->lock, flags))
3239 				return NULL;
3240 		} else {
3241 			spin_lock_irqsave(&zone->lock, flags);
3242 		}
3243 		if (alloc_flags & ALLOC_HIGHATOMIC)
3244 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3245 		if (!page) {
3246 			enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
3247 
3248 			page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
3249 
3250 			/*
3251 			 * If the allocation fails, allow OOM handling and
3252 			 * order-0 (atomic) allocs access to HIGHATOMIC
3253 			 * reserves as failing now is worse than failing a
3254 			 * high-order atomic allocation in the future.
3255 			 */
3256 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
3257 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3258 
3259 			if (!page) {
3260 				spin_unlock_irqrestore(&zone->lock, flags);
3261 				return NULL;
3262 			}
3263 		}
3264 		spin_unlock_irqrestore(&zone->lock, flags);
3265 	} while (check_new_pages(page, order));
3266 
3267 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3268 	zone_statistics(preferred_zone, zone, 1);
3269 
3270 	return page;
3271 }
3272 
3273 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3274 {
3275 	int high, base_batch, batch, max_nr_alloc;
3276 	int high_max, high_min;
3277 
3278 	base_batch = READ_ONCE(pcp->batch);
3279 	high_min = READ_ONCE(pcp->high_min);
3280 	high_max = READ_ONCE(pcp->high_max);
3281 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3282 
3283 	/* Check for PCP disabled or boot pageset */
3284 	if (unlikely(high < base_batch))
3285 		return 1;
3286 
3287 	if (order)
3288 		batch = base_batch;
3289 	else
3290 		batch = (base_batch << pcp->alloc_factor);
3291 
3292 	/*
3293 	 * If we had larger pcp->high, we could avoid to allocate from
3294 	 * zone.
3295 	 */
3296 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3297 		high = pcp->high = min(high + batch, high_max);
3298 
3299 	if (!order) {
3300 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3301 		/*
3302 		 * Double the number of pages allocated each time there is
3303 		 * subsequent allocation of order-0 pages without any freeing.
3304 		 */
3305 		if (batch <= max_nr_alloc &&
3306 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3307 			pcp->alloc_factor++;
3308 		batch = min(batch, max_nr_alloc);
3309 	}
3310 
3311 	/*
3312 	 * Scale batch relative to order if batch implies free pages
3313 	 * can be stored on the PCP. Batch can be 1 for small zones or
3314 	 * for boot pagesets which should never store free pages as
3315 	 * the pages may belong to arbitrary zones.
3316 	 */
3317 	if (batch > 1)
3318 		batch = max(batch >> order, 2);
3319 
3320 	return batch;
3321 }
3322 
3323 /* Remove page from the per-cpu list, caller must protect the list */
3324 static inline
3325 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3326 			int migratetype,
3327 			unsigned int alloc_flags,
3328 			struct per_cpu_pages *pcp,
3329 			struct list_head *list)
3330 {
3331 	struct page *page;
3332 
3333 	do {
3334 		if (list_empty(list)) {
3335 			int batch = nr_pcp_alloc(pcp, zone, order);
3336 			int alloced;
3337 
3338 			alloced = rmqueue_bulk(zone, order,
3339 					batch, list,
3340 					migratetype, alloc_flags);
3341 
3342 			pcp->count += alloced << order;
3343 			if (unlikely(list_empty(list)))
3344 				return NULL;
3345 		}
3346 
3347 		page = list_first_entry(list, struct page, pcp_list);
3348 		list_del(&page->pcp_list);
3349 		pcp->count -= 1 << order;
3350 	} while (check_new_pages(page, order));
3351 
3352 	return page;
3353 }
3354 
3355 /* Lock and remove page from the per-cpu list */
3356 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3357 			struct zone *zone, unsigned int order,
3358 			int migratetype, unsigned int alloc_flags)
3359 {
3360 	struct per_cpu_pages *pcp;
3361 	struct list_head *list;
3362 	struct page *page;
3363 	unsigned long UP_flags;
3364 
3365 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3366 	pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
3367 	if (!pcp)
3368 		return NULL;
3369 
3370 	/*
3371 	 * On allocation, reduce the number of pages that are batch freed.
3372 	 * See nr_pcp_free() where free_factor is increased for subsequent
3373 	 * frees.
3374 	 */
3375 	pcp->free_count >>= 1;
3376 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3377 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3378 	pcp_spin_unlock(pcp, UP_flags);
3379 	if (page) {
3380 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3381 		zone_statistics(preferred_zone, zone, 1);
3382 	}
3383 	return page;
3384 }
3385 
3386 /*
3387  * Allocate a page from the given zone.
3388  * Use pcplists for THP or "cheap" high-order allocations.
3389  */
3390 
3391 /*
3392  * Do not instrument rmqueue() with KMSAN. This function may call
3393  * __msan_poison_alloca() through a call to set_pfnblock_migratetype().
3394  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3395  * may call rmqueue() again, which will result in a deadlock.
3396  */
3397 __no_sanitize_memory
3398 static inline
3399 struct page *rmqueue(struct zone *preferred_zone,
3400 			struct zone *zone, unsigned int order,
3401 			gfp_t gfp_flags, unsigned int alloc_flags,
3402 			int migratetype)
3403 {
3404 	struct page *page;
3405 
3406 	if (likely(pcp_allowed_order(order))) {
3407 		page = rmqueue_pcplist(preferred_zone, zone, order,
3408 				       migratetype, alloc_flags);
3409 		if (likely(page))
3410 			goto out;
3411 	}
3412 
3413 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3414 							migratetype);
3415 
3416 out:
3417 	/* Separate test+clear to avoid unnecessary atomics */
3418 	if ((alloc_flags & ALLOC_KSWAPD) &&
3419 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3420 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3421 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3422 	}
3423 
3424 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3425 	return page;
3426 }
3427 
3428 /*
3429  * Reserve the pageblock(s) surrounding an allocation request for
3430  * exclusive use of high-order atomic allocations if there are no
3431  * empty page blocks that contain a page with a suitable order
3432  */
3433 static void reserve_highatomic_pageblock(struct page *page, int order,
3434 					 struct zone *zone)
3435 {
3436 	int mt;
3437 	unsigned long max_managed, flags;
3438 
3439 	/*
3440 	 * The number reserved as: minimum is 1 pageblock, maximum is
3441 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3442 	 * pageblock size, then don't reserve any pageblocks.
3443 	 * Check is race-prone but harmless.
3444 	 */
3445 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3446 		return;
3447 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3448 	if (zone->nr_reserved_highatomic >= max_managed)
3449 		return;
3450 
3451 	spin_lock_irqsave(&zone->lock, flags);
3452 
3453 	/* Recheck the nr_reserved_highatomic limit under the lock */
3454 	if (zone->nr_reserved_highatomic >= max_managed)
3455 		goto out_unlock;
3456 
3457 	/* Yoink! */
3458 	mt = get_pageblock_migratetype(page);
3459 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3460 	if (!migratetype_is_mergeable(mt))
3461 		goto out_unlock;
3462 
3463 	if (order < pageblock_order) {
3464 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3465 			goto out_unlock;
3466 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3467 	} else {
3468 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3469 		zone->nr_reserved_highatomic += 1 << order;
3470 	}
3471 
3472 out_unlock:
3473 	spin_unlock_irqrestore(&zone->lock, flags);
3474 }
3475 
3476 /*
3477  * Used when an allocation is about to fail under memory pressure. This
3478  * potentially hurts the reliability of high-order allocations when under
3479  * intense memory pressure but failed atomic allocations should be easier
3480  * to recover from than an OOM.
3481  *
3482  * If @force is true, try to unreserve pageblocks even though highatomic
3483  * pageblock is exhausted.
3484  */
3485 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3486 						bool force)
3487 {
3488 	struct zonelist *zonelist = ac->zonelist;
3489 	unsigned long flags;
3490 	struct zoneref *z;
3491 	struct zone *zone;
3492 	struct page *page;
3493 	int order;
3494 	int ret;
3495 
3496 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3497 								ac->nodemask) {
3498 		/*
3499 		 * Preserve at least one pageblock unless memory pressure
3500 		 * is really high.
3501 		 */
3502 		if (!force && zone->nr_reserved_highatomic <=
3503 					pageblock_nr_pages)
3504 			continue;
3505 
3506 		spin_lock_irqsave(&zone->lock, flags);
3507 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3508 			struct free_area *area = &(zone->free_area[order]);
3509 			unsigned long size;
3510 
3511 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3512 			if (!page)
3513 				continue;
3514 
3515 			size = max(pageblock_nr_pages, 1UL << order);
3516 			/*
3517 			 * It should never happen but changes to
3518 			 * locking could inadvertently allow a per-cpu
3519 			 * drain to add pages to MIGRATE_HIGHATOMIC
3520 			 * while unreserving so be safe and watch for
3521 			 * underflows.
3522 			 */
3523 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3524 				size = zone->nr_reserved_highatomic;
3525 			zone->nr_reserved_highatomic -= size;
3526 
3527 			/*
3528 			 * Convert to ac->migratetype and avoid the normal
3529 			 * pageblock stealing heuristics. Minimally, the caller
3530 			 * is doing the work and needs the pages. More
3531 			 * importantly, if the block was always converted to
3532 			 * MIGRATE_UNMOVABLE or another type then the number
3533 			 * of pageblocks that cannot be completely freed
3534 			 * may increase.
3535 			 */
3536 			if (order < pageblock_order)
3537 				ret = move_freepages_block(zone, page,
3538 							   MIGRATE_HIGHATOMIC,
3539 							   ac->migratetype);
3540 			else {
3541 				move_to_free_list(page, zone, order,
3542 						  MIGRATE_HIGHATOMIC,
3543 						  ac->migratetype);
3544 				change_pageblock_range(page, order,
3545 						       ac->migratetype);
3546 				ret = 1;
3547 			}
3548 			/*
3549 			 * Reserving the block(s) already succeeded,
3550 			 * so this should not fail on zone boundaries.
3551 			 */
3552 			WARN_ON_ONCE(ret == -1);
3553 			if (ret > 0) {
3554 				spin_unlock_irqrestore(&zone->lock, flags);
3555 				return ret;
3556 			}
3557 		}
3558 		spin_unlock_irqrestore(&zone->lock, flags);
3559 	}
3560 
3561 	return false;
3562 }
3563 
3564 static inline long __zone_watermark_unusable_free(struct zone *z,
3565 				unsigned int order, unsigned int alloc_flags)
3566 {
3567 	long unusable_free = (1 << order) - 1;
3568 
3569 	/*
3570 	 * If the caller does not have rights to reserves below the min
3571 	 * watermark then subtract the free pages reserved for highatomic.
3572 	 */
3573 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3574 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3575 
3576 #ifdef CONFIG_CMA
3577 	/* If allocation can't use CMA areas don't use free CMA pages */
3578 	if (!(alloc_flags & ALLOC_CMA))
3579 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3580 #endif
3581 
3582 	return unusable_free;
3583 }
3584 
3585 /*
3586  * Return true if free base pages are above 'mark'. For high-order checks it
3587  * will return true of the order-0 watermark is reached and there is at least
3588  * one free page of a suitable size. Checking now avoids taking the zone lock
3589  * to check in the allocation paths if no pages are free.
3590  */
3591 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3592 			 int highest_zoneidx, unsigned int alloc_flags,
3593 			 long free_pages)
3594 {
3595 	long min = mark;
3596 	int o;
3597 
3598 	/* free_pages may go negative - that's OK */
3599 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3600 
3601 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3602 		/*
3603 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3604 		 * as OOM.
3605 		 */
3606 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3607 			min -= min / 2;
3608 
3609 			/*
3610 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3611 			 * access more reserves than just __GFP_HIGH. Other
3612 			 * non-blocking allocations requests such as GFP_NOWAIT
3613 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3614 			 * access to the min reserve.
3615 			 */
3616 			if (alloc_flags & ALLOC_NON_BLOCK)
3617 				min -= min / 4;
3618 		}
3619 
3620 		/*
3621 		 * OOM victims can try even harder than the normal reserve
3622 		 * users on the grounds that it's definitely going to be in
3623 		 * the exit path shortly and free memory. Any allocation it
3624 		 * makes during the free path will be small and short-lived.
3625 		 */
3626 		if (alloc_flags & ALLOC_OOM)
3627 			min -= min / 2;
3628 	}
3629 
3630 	/*
3631 	 * Check watermarks for an order-0 allocation request. If these
3632 	 * are not met, then a high-order request also cannot go ahead
3633 	 * even if a suitable page happened to be free.
3634 	 */
3635 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3636 		return false;
3637 
3638 	/* If this is an order-0 request then the watermark is fine */
3639 	if (!order)
3640 		return true;
3641 
3642 	/* For a high-order request, check at least one suitable page is free */
3643 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3644 		struct free_area *area = &z->free_area[o];
3645 		int mt;
3646 
3647 		if (!area->nr_free)
3648 			continue;
3649 
3650 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3651 			if (!free_area_empty(area, mt))
3652 				return true;
3653 		}
3654 
3655 #ifdef CONFIG_CMA
3656 		if ((alloc_flags & ALLOC_CMA) &&
3657 		    !free_area_empty(area, MIGRATE_CMA)) {
3658 			return true;
3659 		}
3660 #endif
3661 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3662 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3663 			return true;
3664 		}
3665 	}
3666 	return false;
3667 }
3668 
3669 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3670 		      int highest_zoneidx, unsigned int alloc_flags)
3671 {
3672 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3673 					zone_page_state(z, NR_FREE_PAGES));
3674 }
3675 
3676 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3677 				unsigned long mark, int highest_zoneidx,
3678 				unsigned int alloc_flags, gfp_t gfp_mask)
3679 {
3680 	long free_pages;
3681 
3682 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3683 
3684 	/*
3685 	 * Fast check for order-0 only. If this fails then the reserves
3686 	 * need to be calculated.
3687 	 */
3688 	if (!order) {
3689 		long usable_free;
3690 		long reserved;
3691 
3692 		usable_free = free_pages;
3693 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3694 
3695 		/* reserved may over estimate high-atomic reserves. */
3696 		usable_free -= min(usable_free, reserved);
3697 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3698 			return true;
3699 	}
3700 
3701 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3702 					free_pages))
3703 		return true;
3704 
3705 	/*
3706 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3707 	 * when checking the min watermark. The min watermark is the
3708 	 * point where boosting is ignored so that kswapd is woken up
3709 	 * when below the low watermark.
3710 	 */
3711 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3712 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3713 		mark = z->_watermark[WMARK_MIN];
3714 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3715 					alloc_flags, free_pages);
3716 	}
3717 
3718 	return false;
3719 }
3720 
3721 #ifdef CONFIG_NUMA
3722 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3723 
3724 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3725 {
3726 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3727 				node_reclaim_distance;
3728 }
3729 #else	/* CONFIG_NUMA */
3730 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3731 {
3732 	return true;
3733 }
3734 #endif	/* CONFIG_NUMA */
3735 
3736 /*
3737  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3738  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3739  * premature use of a lower zone may cause lowmem pressure problems that
3740  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3741  * probably too small. It only makes sense to spread allocations to avoid
3742  * fragmentation between the Normal and DMA32 zones.
3743  */
3744 static inline unsigned int
3745 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3746 {
3747 	unsigned int alloc_flags;
3748 
3749 	/*
3750 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3751 	 * to save a branch.
3752 	 */
3753 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3754 
3755 	if (defrag_mode) {
3756 		alloc_flags |= ALLOC_NOFRAGMENT;
3757 		return alloc_flags;
3758 	}
3759 
3760 #ifdef CONFIG_ZONE_DMA32
3761 	if (!zone)
3762 		return alloc_flags;
3763 
3764 	if (zone_idx(zone) != ZONE_NORMAL)
3765 		return alloc_flags;
3766 
3767 	/*
3768 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3769 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3770 	 * on UMA that if Normal is populated then so is DMA32.
3771 	 */
3772 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3773 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3774 		return alloc_flags;
3775 
3776 	alloc_flags |= ALLOC_NOFRAGMENT;
3777 #endif /* CONFIG_ZONE_DMA32 */
3778 	return alloc_flags;
3779 }
3780 
3781 /* Must be called after current_gfp_context() which can change gfp_mask */
3782 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3783 						  unsigned int alloc_flags)
3784 {
3785 #ifdef CONFIG_CMA
3786 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3787 		alloc_flags |= ALLOC_CMA;
3788 #endif
3789 	return alloc_flags;
3790 }
3791 
3792 /*
3793  * get_page_from_freelist goes through the zonelist trying to allocate
3794  * a page.
3795  */
3796 static struct page *
3797 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3798 						const struct alloc_context *ac)
3799 {
3800 	struct zoneref *z;
3801 	struct zone *zone;
3802 	struct pglist_data *last_pgdat = NULL;
3803 	bool last_pgdat_dirty_ok = false;
3804 	bool no_fallback;
3805 	bool skip_kswapd_nodes = nr_online_nodes > 1;
3806 	bool skipped_kswapd_nodes = false;
3807 
3808 retry:
3809 	/*
3810 	 * Scan zonelist, looking for a zone with enough free.
3811 	 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c.
3812 	 */
3813 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3814 	z = ac->preferred_zoneref;
3815 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3816 					ac->nodemask) {
3817 		struct page *page;
3818 		unsigned long mark;
3819 
3820 		if (cpusets_enabled() &&
3821 			(alloc_flags & ALLOC_CPUSET) &&
3822 			!__cpuset_zone_allowed(zone, gfp_mask))
3823 				continue;
3824 		/*
3825 		 * When allocating a page cache page for writing, we
3826 		 * want to get it from a node that is within its dirty
3827 		 * limit, such that no single node holds more than its
3828 		 * proportional share of globally allowed dirty pages.
3829 		 * The dirty limits take into account the node's
3830 		 * lowmem reserves and high watermark so that kswapd
3831 		 * should be able to balance it without having to
3832 		 * write pages from its LRU list.
3833 		 *
3834 		 * XXX: For now, allow allocations to potentially
3835 		 * exceed the per-node dirty limit in the slowpath
3836 		 * (spread_dirty_pages unset) before going into reclaim,
3837 		 * which is important when on a NUMA setup the allowed
3838 		 * nodes are together not big enough to reach the
3839 		 * global limit.  The proper fix for these situations
3840 		 * will require awareness of nodes in the
3841 		 * dirty-throttling and the flusher threads.
3842 		 */
3843 		if (ac->spread_dirty_pages) {
3844 			if (last_pgdat != zone->zone_pgdat) {
3845 				last_pgdat = zone->zone_pgdat;
3846 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3847 			}
3848 
3849 			if (!last_pgdat_dirty_ok)
3850 				continue;
3851 		}
3852 
3853 		if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3854 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3855 			int local_nid;
3856 
3857 			/*
3858 			 * If moving to a remote node, retry but allow
3859 			 * fragmenting fallbacks. Locality is more important
3860 			 * than fragmentation avoidance.
3861 			 */
3862 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3863 			if (zone_to_nid(zone) != local_nid) {
3864 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3865 				goto retry;
3866 			}
3867 		}
3868 
3869 		/*
3870 		 * If kswapd is already active on a node, keep looking
3871 		 * for other nodes that might be idle. This can happen
3872 		 * if another process has NUMA bindings and is causing
3873 		 * kswapd wakeups on only some nodes. Avoid accidental
3874 		 * "node_reclaim_mode"-like behavior in this case.
3875 		 */
3876 		if (skip_kswapd_nodes &&
3877 		    !waitqueue_active(&zone->zone_pgdat->kswapd_wait)) {
3878 			skipped_kswapd_nodes = true;
3879 			continue;
3880 		}
3881 
3882 		cond_accept_memory(zone, order, alloc_flags);
3883 
3884 		/*
3885 		 * Detect whether the number of free pages is below high
3886 		 * watermark.  If so, we will decrease pcp->high and free
3887 		 * PCP pages in free path to reduce the possibility of
3888 		 * premature page reclaiming.  Detection is done here to
3889 		 * avoid to do that in hotter free path.
3890 		 */
3891 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3892 			goto check_alloc_wmark;
3893 
3894 		mark = high_wmark_pages(zone);
3895 		if (zone_watermark_fast(zone, order, mark,
3896 					ac->highest_zoneidx, alloc_flags,
3897 					gfp_mask))
3898 			goto try_this_zone;
3899 		else
3900 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3901 
3902 check_alloc_wmark:
3903 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3904 		if (!zone_watermark_fast(zone, order, mark,
3905 				       ac->highest_zoneidx, alloc_flags,
3906 				       gfp_mask)) {
3907 			int ret;
3908 
3909 			if (cond_accept_memory(zone, order, alloc_flags))
3910 				goto try_this_zone;
3911 
3912 			/*
3913 			 * Watermark failed for this zone, but see if we can
3914 			 * grow this zone if it contains deferred pages.
3915 			 */
3916 			if (deferred_pages_enabled()) {
3917 				if (_deferred_grow_zone(zone, order))
3918 					goto try_this_zone;
3919 			}
3920 			/* Checked here to keep the fast path fast */
3921 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3922 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3923 				goto try_this_zone;
3924 
3925 			if (!node_reclaim_enabled() ||
3926 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3927 				continue;
3928 
3929 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3930 			switch (ret) {
3931 			case NODE_RECLAIM_NOSCAN:
3932 				/* did not scan */
3933 				continue;
3934 			case NODE_RECLAIM_FULL:
3935 				/* scanned but unreclaimable */
3936 				continue;
3937 			default:
3938 				/* did we reclaim enough */
3939 				if (zone_watermark_ok(zone, order, mark,
3940 					ac->highest_zoneidx, alloc_flags))
3941 					goto try_this_zone;
3942 
3943 				continue;
3944 			}
3945 		}
3946 
3947 try_this_zone:
3948 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3949 				gfp_mask, alloc_flags, ac->migratetype);
3950 		if (page) {
3951 			prep_new_page(page, order, gfp_mask, alloc_flags);
3952 
3953 			/*
3954 			 * If this is a high-order atomic allocation then check
3955 			 * if the pageblock should be reserved for the future
3956 			 */
3957 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3958 				reserve_highatomic_pageblock(page, order, zone);
3959 
3960 			return page;
3961 		} else {
3962 			if (cond_accept_memory(zone, order, alloc_flags))
3963 				goto try_this_zone;
3964 
3965 			/* Try again if zone has deferred pages */
3966 			if (deferred_pages_enabled()) {
3967 				if (_deferred_grow_zone(zone, order))
3968 					goto try_this_zone;
3969 			}
3970 		}
3971 	}
3972 
3973 	/*
3974 	 * If we skipped over nodes with active kswapds and found no
3975 	 * idle nodes, retry and place anywhere the watermarks permit.
3976 	 */
3977 	if (skip_kswapd_nodes && skipped_kswapd_nodes) {
3978 		skip_kswapd_nodes = false;
3979 		goto retry;
3980 	}
3981 
3982 	/*
3983 	 * It's possible on a UMA machine to get through all zones that are
3984 	 * fragmented. If avoiding fragmentation, reset and try again.
3985 	 */
3986 	if (no_fallback && !defrag_mode) {
3987 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3988 		goto retry;
3989 	}
3990 
3991 	return NULL;
3992 }
3993 
3994 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3995 {
3996 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3997 
3998 	/*
3999 	 * This documents exceptions given to allocations in certain
4000 	 * contexts that are allowed to allocate outside current's set
4001 	 * of allowed nodes.
4002 	 */
4003 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4004 		if (tsk_is_oom_victim(current) ||
4005 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4006 			filter &= ~SHOW_MEM_FILTER_NODES;
4007 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4008 		filter &= ~SHOW_MEM_FILTER_NODES;
4009 
4010 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4011 	mem_cgroup_show_protected_memory(NULL);
4012 }
4013 
4014 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4015 {
4016 	struct va_format vaf;
4017 	va_list args;
4018 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4019 
4020 	if ((gfp_mask & __GFP_NOWARN) ||
4021 	     !__ratelimit(&nopage_rs) ||
4022 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4023 		return;
4024 
4025 	va_start(args, fmt);
4026 	vaf.fmt = fmt;
4027 	vaf.va = &args;
4028 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4029 			current->comm, &vaf, gfp_mask, &gfp_mask,
4030 			nodemask_pr_args(nodemask));
4031 	va_end(args);
4032 
4033 	cpuset_print_current_mems_allowed();
4034 	pr_cont("\n");
4035 	dump_stack();
4036 	warn_alloc_show_mem(gfp_mask, nodemask);
4037 }
4038 
4039 static inline struct page *
4040 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4041 			      unsigned int alloc_flags,
4042 			      const struct alloc_context *ac)
4043 {
4044 	struct page *page;
4045 
4046 	page = get_page_from_freelist(gfp_mask, order,
4047 			alloc_flags|ALLOC_CPUSET, ac);
4048 	/*
4049 	 * fallback to ignore cpuset restriction if our nodes
4050 	 * are depleted
4051 	 */
4052 	if (!page)
4053 		page = get_page_from_freelist(gfp_mask, order,
4054 				alloc_flags, ac);
4055 	return page;
4056 }
4057 
4058 static inline struct page *
4059 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4060 	const struct alloc_context *ac, unsigned long *did_some_progress)
4061 {
4062 	struct oom_control oc = {
4063 		.zonelist = ac->zonelist,
4064 		.nodemask = ac->nodemask,
4065 		.memcg = NULL,
4066 		.gfp_mask = gfp_mask,
4067 		.order = order,
4068 	};
4069 	struct page *page;
4070 
4071 	*did_some_progress = 0;
4072 
4073 	/*
4074 	 * Acquire the oom lock.  If that fails, somebody else is
4075 	 * making progress for us.
4076 	 */
4077 	if (!mutex_trylock(&oom_lock)) {
4078 		*did_some_progress = 1;
4079 		schedule_timeout_uninterruptible(1);
4080 		return NULL;
4081 	}
4082 
4083 	/*
4084 	 * Go through the zonelist yet one more time, keep very high watermark
4085 	 * here, this is only to catch a parallel oom killing, we must fail if
4086 	 * we're still under heavy pressure. But make sure that this reclaim
4087 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4088 	 * allocation which will never fail due to oom_lock already held.
4089 	 */
4090 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4091 				      ~__GFP_DIRECT_RECLAIM, order,
4092 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4093 	if (page)
4094 		goto out;
4095 
4096 	/* Coredumps can quickly deplete all memory reserves */
4097 	if (current->flags & PF_DUMPCORE)
4098 		goto out;
4099 	/* The OOM killer will not help higher order allocs */
4100 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4101 		goto out;
4102 	/*
4103 	 * We have already exhausted all our reclaim opportunities without any
4104 	 * success so it is time to admit defeat. We will skip the OOM killer
4105 	 * because it is very likely that the caller has a more reasonable
4106 	 * fallback than shooting a random task.
4107 	 *
4108 	 * The OOM killer may not free memory on a specific node.
4109 	 */
4110 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4111 		goto out;
4112 	/* The OOM killer does not needlessly kill tasks for lowmem */
4113 	if (ac->highest_zoneidx < ZONE_NORMAL)
4114 		goto out;
4115 	if (pm_suspended_storage())
4116 		goto out;
4117 	/*
4118 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4119 	 * other request to make a forward progress.
4120 	 * We are in an unfortunate situation where out_of_memory cannot
4121 	 * do much for this context but let's try it to at least get
4122 	 * access to memory reserved if the current task is killed (see
4123 	 * out_of_memory). Once filesystems are ready to handle allocation
4124 	 * failures more gracefully we should just bail out here.
4125 	 */
4126 
4127 	/* Exhausted what can be done so it's blame time */
4128 	if (out_of_memory(&oc) ||
4129 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4130 		*did_some_progress = 1;
4131 
4132 		/*
4133 		 * Help non-failing allocations by giving them access to memory
4134 		 * reserves
4135 		 */
4136 		if (gfp_mask & __GFP_NOFAIL)
4137 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4138 					ALLOC_NO_WATERMARKS, ac);
4139 	}
4140 out:
4141 	mutex_unlock(&oom_lock);
4142 	return page;
4143 }
4144 
4145 /*
4146  * Maximum number of compaction retries with a progress before OOM
4147  * killer is consider as the only way to move forward.
4148  */
4149 #define MAX_COMPACT_RETRIES 16
4150 
4151 #ifdef CONFIG_COMPACTION
4152 /* Try memory compaction for high-order allocations before reclaim */
4153 static struct page *
4154 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4155 		unsigned int alloc_flags, const struct alloc_context *ac,
4156 		enum compact_priority prio, enum compact_result *compact_result)
4157 {
4158 	struct page *page = NULL;
4159 	unsigned long pflags;
4160 	unsigned int noreclaim_flag;
4161 
4162 	if (!order)
4163 		return NULL;
4164 
4165 	psi_memstall_enter(&pflags);
4166 	delayacct_compact_start();
4167 	noreclaim_flag = memalloc_noreclaim_save();
4168 
4169 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4170 								prio, &page);
4171 
4172 	memalloc_noreclaim_restore(noreclaim_flag);
4173 	psi_memstall_leave(&pflags);
4174 	delayacct_compact_end();
4175 
4176 	if (*compact_result == COMPACT_SKIPPED)
4177 		return NULL;
4178 	/*
4179 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4180 	 * count a compaction stall
4181 	 */
4182 	count_vm_event(COMPACTSTALL);
4183 
4184 	/* Prep a captured page if available */
4185 	if (page)
4186 		prep_new_page(page, order, gfp_mask, alloc_flags);
4187 
4188 	/* Try get a page from the freelist if available */
4189 	if (!page)
4190 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4191 
4192 	if (page) {
4193 		struct zone *zone = page_zone(page);
4194 
4195 		zone->compact_blockskip_flush = false;
4196 		compaction_defer_reset(zone, order, true);
4197 		count_vm_event(COMPACTSUCCESS);
4198 		return page;
4199 	}
4200 
4201 	/*
4202 	 * It's bad if compaction run occurs and fails. The most likely reason
4203 	 * is that pages exist, but not enough to satisfy watermarks.
4204 	 */
4205 	count_vm_event(COMPACTFAIL);
4206 
4207 	cond_resched();
4208 
4209 	return NULL;
4210 }
4211 
4212 static inline bool
4213 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4214 		     enum compact_result compact_result,
4215 		     enum compact_priority *compact_priority,
4216 		     int *compaction_retries)
4217 {
4218 	int max_retries = MAX_COMPACT_RETRIES;
4219 	int min_priority;
4220 	bool ret = false;
4221 	int retries = *compaction_retries;
4222 	enum compact_priority priority = *compact_priority;
4223 
4224 	if (!order)
4225 		return false;
4226 
4227 	if (fatal_signal_pending(current))
4228 		return false;
4229 
4230 	/*
4231 	 * Compaction was skipped due to a lack of free order-0
4232 	 * migration targets. Continue if reclaim can help.
4233 	 */
4234 	if (compact_result == COMPACT_SKIPPED) {
4235 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4236 		goto out;
4237 	}
4238 
4239 	/*
4240 	 * Compaction managed to coalesce some page blocks, but the
4241 	 * allocation failed presumably due to a race. Retry some.
4242 	 */
4243 	if (compact_result == COMPACT_SUCCESS) {
4244 		/*
4245 		 * !costly requests are much more important than
4246 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
4247 		 * facto nofail and invoke OOM killer to move on while
4248 		 * costly can fail and users are ready to cope with
4249 		 * that. 1/4 retries is rather arbitrary but we would
4250 		 * need much more detailed feedback from compaction to
4251 		 * make a better decision.
4252 		 */
4253 		if (order > PAGE_ALLOC_COSTLY_ORDER)
4254 			max_retries /= 4;
4255 
4256 		if (++(*compaction_retries) <= max_retries) {
4257 			ret = true;
4258 			goto out;
4259 		}
4260 	}
4261 
4262 	/*
4263 	 * Compaction failed. Retry with increasing priority.
4264 	 */
4265 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4266 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4267 
4268 	if (*compact_priority > min_priority) {
4269 		(*compact_priority)--;
4270 		*compaction_retries = 0;
4271 		ret = true;
4272 	}
4273 out:
4274 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4275 	return ret;
4276 }
4277 #else
4278 static inline struct page *
4279 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4280 		unsigned int alloc_flags, const struct alloc_context *ac,
4281 		enum compact_priority prio, enum compact_result *compact_result)
4282 {
4283 	*compact_result = COMPACT_SKIPPED;
4284 	return NULL;
4285 }
4286 
4287 static inline bool
4288 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4289 		     enum compact_result compact_result,
4290 		     enum compact_priority *compact_priority,
4291 		     int *compaction_retries)
4292 {
4293 	struct zone *zone;
4294 	struct zoneref *z;
4295 
4296 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4297 		return false;
4298 
4299 	/*
4300 	 * There are setups with compaction disabled which would prefer to loop
4301 	 * inside the allocator rather than hit the oom killer prematurely.
4302 	 * Let's give them a good hope and keep retrying while the order-0
4303 	 * watermarks are OK.
4304 	 */
4305 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4306 				ac->highest_zoneidx, ac->nodemask) {
4307 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4308 					ac->highest_zoneidx, alloc_flags))
4309 			return true;
4310 	}
4311 	return false;
4312 }
4313 #endif /* CONFIG_COMPACTION */
4314 
4315 #ifdef CONFIG_LOCKDEP
4316 static struct lockdep_map __fs_reclaim_map =
4317 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4318 
4319 static bool __need_reclaim(gfp_t gfp_mask)
4320 {
4321 	/* no reclaim without waiting on it */
4322 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4323 		return false;
4324 
4325 	/* this guy won't enter reclaim */
4326 	if (current->flags & PF_MEMALLOC)
4327 		return false;
4328 
4329 	if (gfp_mask & __GFP_NOLOCKDEP)
4330 		return false;
4331 
4332 	return true;
4333 }
4334 
4335 void __fs_reclaim_acquire(unsigned long ip)
4336 {
4337 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4338 }
4339 
4340 void __fs_reclaim_release(unsigned long ip)
4341 {
4342 	lock_release(&__fs_reclaim_map, ip);
4343 }
4344 
4345 void fs_reclaim_acquire(gfp_t gfp_mask)
4346 {
4347 	gfp_mask = current_gfp_context(gfp_mask);
4348 
4349 	if (__need_reclaim(gfp_mask)) {
4350 		if (gfp_mask & __GFP_FS)
4351 			__fs_reclaim_acquire(_RET_IP_);
4352 
4353 #ifdef CONFIG_MMU_NOTIFIER
4354 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4355 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4356 #endif
4357 
4358 	}
4359 }
4360 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4361 
4362 void fs_reclaim_release(gfp_t gfp_mask)
4363 {
4364 	gfp_mask = current_gfp_context(gfp_mask);
4365 
4366 	if (__need_reclaim(gfp_mask)) {
4367 		if (gfp_mask & __GFP_FS)
4368 			__fs_reclaim_release(_RET_IP_);
4369 	}
4370 }
4371 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4372 #endif
4373 
4374 /*
4375  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4376  * have been rebuilt so allocation retries. Reader side does not lock and
4377  * retries the allocation if zonelist changes. Writer side is protected by the
4378  * embedded spin_lock.
4379  */
4380 static DEFINE_SEQLOCK(zonelist_update_seq);
4381 
4382 static unsigned int zonelist_iter_begin(void)
4383 {
4384 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4385 		return read_seqbegin(&zonelist_update_seq);
4386 
4387 	return 0;
4388 }
4389 
4390 static unsigned int check_retry_zonelist(unsigned int seq)
4391 {
4392 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4393 		return read_seqretry(&zonelist_update_seq, seq);
4394 
4395 	return seq;
4396 }
4397 
4398 /* Perform direct synchronous page reclaim */
4399 static unsigned long
4400 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4401 					const struct alloc_context *ac)
4402 {
4403 	unsigned int noreclaim_flag;
4404 	unsigned long progress;
4405 
4406 	cond_resched();
4407 
4408 	/* We now go into synchronous reclaim */
4409 	cpuset_memory_pressure_bump();
4410 	fs_reclaim_acquire(gfp_mask);
4411 	noreclaim_flag = memalloc_noreclaim_save();
4412 
4413 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4414 								ac->nodemask);
4415 
4416 	memalloc_noreclaim_restore(noreclaim_flag);
4417 	fs_reclaim_release(gfp_mask);
4418 
4419 	cond_resched();
4420 
4421 	return progress;
4422 }
4423 
4424 /* The really slow allocator path where we enter direct reclaim */
4425 static inline struct page *
4426 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4427 		unsigned int alloc_flags, const struct alloc_context *ac,
4428 		unsigned long *did_some_progress)
4429 {
4430 	struct page *page = NULL;
4431 	unsigned long pflags;
4432 	bool drained = false;
4433 
4434 	psi_memstall_enter(&pflags);
4435 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4436 	if (unlikely(!(*did_some_progress)))
4437 		goto out;
4438 
4439 retry:
4440 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4441 
4442 	/*
4443 	 * If an allocation failed after direct reclaim, it could be because
4444 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4445 	 * Shrink them and try again
4446 	 */
4447 	if (!page && !drained) {
4448 		unreserve_highatomic_pageblock(ac, false);
4449 		drain_all_pages(NULL);
4450 		drained = true;
4451 		goto retry;
4452 	}
4453 out:
4454 	psi_memstall_leave(&pflags);
4455 
4456 	return page;
4457 }
4458 
4459 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4460 			     const struct alloc_context *ac)
4461 {
4462 	struct zoneref *z;
4463 	struct zone *zone;
4464 	pg_data_t *last_pgdat = NULL;
4465 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4466 	unsigned int reclaim_order;
4467 
4468 	if (defrag_mode)
4469 		reclaim_order = max(order, pageblock_order);
4470 	else
4471 		reclaim_order = order;
4472 
4473 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4474 					ac->nodemask) {
4475 		if (!managed_zone(zone))
4476 			continue;
4477 		if (last_pgdat == zone->zone_pgdat)
4478 			continue;
4479 		wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4480 		last_pgdat = zone->zone_pgdat;
4481 	}
4482 }
4483 
4484 static inline unsigned int
4485 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4486 {
4487 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4488 
4489 	/*
4490 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4491 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4492 	 * to save two branches.
4493 	 */
4494 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4495 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4496 
4497 	/*
4498 	 * The caller may dip into page reserves a bit more if the caller
4499 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4500 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4501 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4502 	 */
4503 	alloc_flags |= (__force int)
4504 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4505 
4506 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4507 		/*
4508 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4509 		 * if it can't schedule.
4510 		 */
4511 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4512 			alloc_flags |= ALLOC_NON_BLOCK;
4513 
4514 			if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE))
4515 				alloc_flags |= ALLOC_HIGHATOMIC;
4516 		}
4517 
4518 		/*
4519 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4520 		 * GFP_ATOMIC) rather than fail, see the comment for
4521 		 * cpuset_current_node_allowed().
4522 		 */
4523 		if (alloc_flags & ALLOC_MIN_RESERVE)
4524 			alloc_flags &= ~ALLOC_CPUSET;
4525 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4526 		alloc_flags |= ALLOC_MIN_RESERVE;
4527 
4528 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4529 
4530 	if (defrag_mode)
4531 		alloc_flags |= ALLOC_NOFRAGMENT;
4532 
4533 	return alloc_flags;
4534 }
4535 
4536 static bool oom_reserves_allowed(struct task_struct *tsk)
4537 {
4538 	if (!tsk_is_oom_victim(tsk))
4539 		return false;
4540 
4541 	/*
4542 	 * !MMU doesn't have oom reaper so give access to memory reserves
4543 	 * only to the thread with TIF_MEMDIE set
4544 	 */
4545 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4546 		return false;
4547 
4548 	return true;
4549 }
4550 
4551 /*
4552  * Distinguish requests which really need access to full memory
4553  * reserves from oom victims which can live with a portion of it
4554  */
4555 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4556 {
4557 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4558 		return 0;
4559 	if (gfp_mask & __GFP_MEMALLOC)
4560 		return ALLOC_NO_WATERMARKS;
4561 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4562 		return ALLOC_NO_WATERMARKS;
4563 	if (!in_interrupt()) {
4564 		if (current->flags & PF_MEMALLOC)
4565 			return ALLOC_NO_WATERMARKS;
4566 		else if (oom_reserves_allowed(current))
4567 			return ALLOC_OOM;
4568 	}
4569 
4570 	return 0;
4571 }
4572 
4573 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4574 {
4575 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4576 }
4577 
4578 /*
4579  * Checks whether it makes sense to retry the reclaim to make a forward progress
4580  * for the given allocation request.
4581  *
4582  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4583  * without success, or when we couldn't even meet the watermark if we
4584  * reclaimed all remaining pages on the LRU lists.
4585  *
4586  * Returns true if a retry is viable or false to enter the oom path.
4587  */
4588 static inline bool
4589 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4590 		     struct alloc_context *ac, int alloc_flags,
4591 		     bool did_some_progress, int *no_progress_loops)
4592 {
4593 	struct zone *zone;
4594 	struct zoneref *z;
4595 	bool ret = false;
4596 
4597 	/*
4598 	 * Costly allocations might have made a progress but this doesn't mean
4599 	 * their order will become available due to high fragmentation so
4600 	 * always increment the no progress counter for them
4601 	 */
4602 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4603 		*no_progress_loops = 0;
4604 	else
4605 		(*no_progress_loops)++;
4606 
4607 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4608 		goto out;
4609 
4610 
4611 	/*
4612 	 * Keep reclaiming pages while there is a chance this will lead
4613 	 * somewhere.  If none of the target zones can satisfy our allocation
4614 	 * request even if all reclaimable pages are considered then we are
4615 	 * screwed and have to go OOM.
4616 	 */
4617 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4618 				ac->highest_zoneidx, ac->nodemask) {
4619 		unsigned long available;
4620 		unsigned long reclaimable;
4621 		unsigned long min_wmark = min_wmark_pages(zone);
4622 		bool wmark;
4623 
4624 		if (cpusets_enabled() &&
4625 			(alloc_flags & ALLOC_CPUSET) &&
4626 			!__cpuset_zone_allowed(zone, gfp_mask))
4627 				continue;
4628 
4629 		available = reclaimable = zone_reclaimable_pages(zone);
4630 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4631 
4632 		/*
4633 		 * Would the allocation succeed if we reclaimed all
4634 		 * reclaimable pages?
4635 		 */
4636 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4637 				ac->highest_zoneidx, alloc_flags, available);
4638 		trace_reclaim_retry_zone(z, order, reclaimable,
4639 				available, min_wmark, *no_progress_loops, wmark);
4640 		if (wmark) {
4641 			ret = true;
4642 			break;
4643 		}
4644 	}
4645 
4646 	/*
4647 	 * Memory allocation/reclaim might be called from a WQ context and the
4648 	 * current implementation of the WQ concurrency control doesn't
4649 	 * recognize that a particular WQ is congested if the worker thread is
4650 	 * looping without ever sleeping. Therefore we have to do a short sleep
4651 	 * here rather than calling cond_resched().
4652 	 */
4653 	if (current->flags & PF_WQ_WORKER)
4654 		schedule_timeout_uninterruptible(1);
4655 	else
4656 		cond_resched();
4657 out:
4658 	/* Before OOM, exhaust highatomic_reserve */
4659 	if (!ret)
4660 		return unreserve_highatomic_pageblock(ac, true);
4661 
4662 	return ret;
4663 }
4664 
4665 static inline bool
4666 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4667 {
4668 	/*
4669 	 * It's possible that cpuset's mems_allowed and the nodemask from
4670 	 * mempolicy don't intersect. This should be normally dealt with by
4671 	 * policy_nodemask(), but it's possible to race with cpuset update in
4672 	 * such a way the check therein was true, and then it became false
4673 	 * before we got our cpuset_mems_cookie here.
4674 	 * This assumes that for all allocations, ac->nodemask can come only
4675 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4676 	 * when it does not intersect with the cpuset restrictions) or the
4677 	 * caller can deal with a violated nodemask.
4678 	 */
4679 	if (cpusets_enabled() && ac->nodemask &&
4680 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4681 		ac->nodemask = NULL;
4682 		return true;
4683 	}
4684 
4685 	/*
4686 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4687 	 * possible to race with parallel threads in such a way that our
4688 	 * allocation can fail while the mask is being updated. If we are about
4689 	 * to fail, check if the cpuset changed during allocation and if so,
4690 	 * retry.
4691 	 */
4692 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4693 		return true;
4694 
4695 	return false;
4696 }
4697 
4698 static inline struct page *
4699 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4700 						struct alloc_context *ac)
4701 {
4702 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4703 	bool can_compact = can_direct_reclaim && gfp_compaction_allowed(gfp_mask);
4704 	bool nofail = gfp_mask & __GFP_NOFAIL;
4705 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4706 	struct page *page = NULL;
4707 	unsigned int alloc_flags;
4708 	unsigned long did_some_progress;
4709 	enum compact_priority compact_priority;
4710 	enum compact_result compact_result;
4711 	int compaction_retries;
4712 	int no_progress_loops;
4713 	unsigned int cpuset_mems_cookie;
4714 	unsigned int zonelist_iter_cookie;
4715 	int reserve_flags;
4716 	bool compact_first = false;
4717 	bool can_retry_reserves = true;
4718 
4719 	if (unlikely(nofail)) {
4720 		/*
4721 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4722 		 * otherwise, we may result in lockup.
4723 		 */
4724 		WARN_ON_ONCE(!can_direct_reclaim);
4725 		/*
4726 		 * PF_MEMALLOC request from this context is rather bizarre
4727 		 * because we cannot reclaim anything and only can loop waiting
4728 		 * for somebody to do a work for us.
4729 		 */
4730 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4731 	}
4732 
4733 restart:
4734 	compaction_retries = 0;
4735 	no_progress_loops = 0;
4736 	compact_result = COMPACT_SKIPPED;
4737 	compact_priority = DEF_COMPACT_PRIORITY;
4738 	cpuset_mems_cookie = read_mems_allowed_begin();
4739 	zonelist_iter_cookie = zonelist_iter_begin();
4740 
4741 	/*
4742 	 * For costly allocations, try direct compaction first, as it's likely
4743 	 * that we have enough base pages and don't need to reclaim. For non-
4744 	 * movable high-order allocations, do that as well, as compaction will
4745 	 * try prevent permanent fragmentation by migrating from blocks of the
4746 	 * same migratetype.
4747 	 */
4748 	if (can_compact && (costly_order || (order > 0 &&
4749 					ac->migratetype != MIGRATE_MOVABLE))) {
4750 		compact_first = true;
4751 		compact_priority = INIT_COMPACT_PRIORITY;
4752 	}
4753 
4754 	/*
4755 	 * The fast path uses conservative alloc_flags to succeed only until
4756 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4757 	 * alloc_flags precisely. So we do that now.
4758 	 */
4759 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4760 
4761 	/*
4762 	 * We need to recalculate the starting point for the zonelist iterator
4763 	 * because we might have used different nodemask in the fast path, or
4764 	 * there was a cpuset modification and we are retrying - otherwise we
4765 	 * could end up iterating over non-eligible zones endlessly.
4766 	 */
4767 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4768 					ac->highest_zoneidx, ac->nodemask);
4769 	if (!zonelist_zone(ac->preferred_zoneref))
4770 		goto nopage;
4771 
4772 	/*
4773 	 * Check for insane configurations where the cpuset doesn't contain
4774 	 * any suitable zone to satisfy the request - e.g. non-movable
4775 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4776 	 */
4777 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4778 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4779 					ac->highest_zoneidx,
4780 					&cpuset_current_mems_allowed);
4781 		if (!zonelist_zone(z))
4782 			goto nopage;
4783 	}
4784 
4785 retry:
4786 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4787 	if (alloc_flags & ALLOC_KSWAPD)
4788 		wake_all_kswapds(order, gfp_mask, ac);
4789 
4790 	/*
4791 	 * The adjusted alloc_flags might result in immediate success, so try
4792 	 * that first
4793 	 */
4794 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4795 	if (page)
4796 		goto got_pg;
4797 
4798 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4799 	if (reserve_flags)
4800 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4801 					  (alloc_flags & ALLOC_KSWAPD);
4802 
4803 	/*
4804 	 * Reset the nodemask and zonelist iterators if memory policies can be
4805 	 * ignored. These allocations are high priority and system rather than
4806 	 * user oriented.
4807 	 */
4808 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4809 		ac->nodemask = NULL;
4810 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4811 					ac->highest_zoneidx, ac->nodemask);
4812 
4813 		/*
4814 		 * The first time we adjust anything due to being allowed to
4815 		 * ignore memory policies or watermarks, retry immediately. This
4816 		 * allows us to keep the first allocation attempt optimistic so
4817 		 * it can succeed in a zone that is still above watermarks.
4818 		 */
4819 		if (can_retry_reserves) {
4820 			can_retry_reserves = false;
4821 			goto retry;
4822 		}
4823 	}
4824 
4825 	/* Caller is not willing to reclaim, we can't balance anything */
4826 	if (!can_direct_reclaim)
4827 		goto nopage;
4828 
4829 	/* Avoid recursion of direct reclaim */
4830 	if (current->flags & PF_MEMALLOC)
4831 		goto nopage;
4832 
4833 	/* Try direct reclaim and then allocating */
4834 	if (!compact_first) {
4835 		page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags,
4836 							ac, &did_some_progress);
4837 		if (page)
4838 			goto got_pg;
4839 	}
4840 
4841 	/* Try direct compaction and then allocating */
4842 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4843 					compact_priority, &compact_result);
4844 	if (page)
4845 		goto got_pg;
4846 
4847 	if (compact_first) {
4848 		/*
4849 		 * THP page faults may attempt local node only first, but are
4850 		 * then allowed to only compact, not reclaim, see
4851 		 * alloc_pages_mpol().
4852 		 *
4853 		 * Compaction has failed above and we don't want such THP
4854 		 * allocations to put reclaim pressure on a single node in a
4855 		 * situation where other nodes might have plenty of available
4856 		 * memory.
4857 		 */
4858 		if (gfp_has_flags(gfp_mask, __GFP_NORETRY | __GFP_THISNODE))
4859 			goto nopage;
4860 
4861 		/*
4862 		 * For the initial compaction attempt we have lowered its
4863 		 * priority. Restore it for further retries, if those are
4864 		 * allowed. With __GFP_NORETRY there will be a single round of
4865 		 * reclaim and compaction with the lowered priority.
4866 		 */
4867 		if (!(gfp_mask & __GFP_NORETRY))
4868 			compact_priority = DEF_COMPACT_PRIORITY;
4869 
4870 		compact_first = false;
4871 		goto retry;
4872 	}
4873 
4874 	/* Do not loop if specifically requested */
4875 	if (gfp_mask & __GFP_NORETRY)
4876 		goto nopage;
4877 
4878 	/*
4879 	 * Do not retry costly high order allocations unless they are
4880 	 * __GFP_RETRY_MAYFAIL and we can compact
4881 	 */
4882 	if (costly_order && (!can_compact ||
4883 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4884 		goto nopage;
4885 
4886 	/*
4887 	 * Deal with possible cpuset update races or zonelist updates to avoid
4888 	 * infinite retries. No "goto retry;" can be placed above this check
4889 	 * unless it can execute just once.
4890 	 */
4891 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4892 	    check_retry_zonelist(zonelist_iter_cookie))
4893 		goto restart;
4894 
4895 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4896 				 did_some_progress > 0, &no_progress_loops))
4897 		goto retry;
4898 
4899 	/*
4900 	 * It doesn't make any sense to retry for the compaction if the order-0
4901 	 * reclaim is not able to make any progress because the current
4902 	 * implementation of the compaction depends on the sufficient amount
4903 	 * of free memory (see __compaction_suitable)
4904 	 */
4905 	if (did_some_progress > 0 && can_compact &&
4906 			should_compact_retry(ac, order, alloc_flags,
4907 				compact_result, &compact_priority,
4908 				&compaction_retries))
4909 		goto retry;
4910 
4911 	/* Reclaim/compaction failed to prevent the fallback */
4912 	if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4913 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4914 		goto retry;
4915 	}
4916 
4917 	/*
4918 	 * Deal with possible cpuset update races or zonelist updates to avoid
4919 	 * a unnecessary OOM kill.
4920 	 */
4921 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4922 	    check_retry_zonelist(zonelist_iter_cookie))
4923 		goto restart;
4924 
4925 	/* Reclaim has failed us, start killing things */
4926 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4927 	if (page)
4928 		goto got_pg;
4929 
4930 	/* Avoid allocations with no watermarks from looping endlessly */
4931 	if (tsk_is_oom_victim(current) &&
4932 	    (alloc_flags & ALLOC_OOM ||
4933 	     (gfp_mask & __GFP_NOMEMALLOC)))
4934 		goto nopage;
4935 
4936 	/* Retry as long as the OOM killer is making progress */
4937 	if (did_some_progress) {
4938 		no_progress_loops = 0;
4939 		goto retry;
4940 	}
4941 
4942 nopage:
4943 	/*
4944 	 * Deal with possible cpuset update races or zonelist updates to avoid
4945 	 * a unnecessary OOM kill.
4946 	 */
4947 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4948 	    check_retry_zonelist(zonelist_iter_cookie))
4949 		goto restart;
4950 
4951 	/*
4952 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4953 	 * we always retry
4954 	 */
4955 	if (unlikely(nofail)) {
4956 		/*
4957 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4958 		 * we disregard these unreasonable nofail requests and still
4959 		 * return NULL
4960 		 */
4961 		if (!can_direct_reclaim)
4962 			goto fail;
4963 
4964 		/*
4965 		 * Help non-failing allocations by giving some access to memory
4966 		 * reserves normally used for high priority non-blocking
4967 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4968 		 * could deplete whole memory reserves which would just make
4969 		 * the situation worse.
4970 		 */
4971 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4972 		if (page)
4973 			goto got_pg;
4974 
4975 		cond_resched();
4976 		goto retry;
4977 	}
4978 fail:
4979 	warn_alloc(gfp_mask, ac->nodemask,
4980 			"page allocation failure: order:%u", order);
4981 got_pg:
4982 	return page;
4983 }
4984 
4985 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4986 		int preferred_nid, nodemask_t *nodemask,
4987 		struct alloc_context *ac, gfp_t *alloc_gfp,
4988 		unsigned int *alloc_flags)
4989 {
4990 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4991 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4992 	ac->nodemask = nodemask;
4993 	ac->migratetype = gfp_migratetype(gfp_mask);
4994 
4995 	if (cpusets_enabled()) {
4996 		*alloc_gfp |= __GFP_HARDWALL;
4997 		/*
4998 		 * When we are in the interrupt context, it is irrelevant
4999 		 * to the current task context. It means that any node ok.
5000 		 */
5001 		if (in_task() && !ac->nodemask)
5002 			ac->nodemask = &cpuset_current_mems_allowed;
5003 		else
5004 			*alloc_flags |= ALLOC_CPUSET;
5005 	}
5006 
5007 	might_alloc(gfp_mask);
5008 
5009 	/*
5010 	 * Don't invoke should_fail logic, since it may call
5011 	 * get_random_u32() and printk() which need to spin_lock.
5012 	 */
5013 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
5014 	    should_fail_alloc_page(gfp_mask, order))
5015 		return false;
5016 
5017 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5018 
5019 	/* Dirty zone balancing only done in the fast path */
5020 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5021 
5022 	/*
5023 	 * The preferred zone is used for statistics but crucially it is
5024 	 * also used as the starting point for the zonelist iterator. It
5025 	 * may get reset for allocations that ignore memory policies.
5026 	 */
5027 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5028 					ac->highest_zoneidx, ac->nodemask);
5029 
5030 	return true;
5031 }
5032 
5033 /*
5034  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
5035  * @gfp: GFP flags for the allocation
5036  * @preferred_nid: The preferred NUMA node ID to allocate from
5037  * @nodemask: Set of nodes to allocate from, may be NULL
5038  * @nr_pages: The number of pages desired in the array
5039  * @page_array: Array to store the pages
5040  *
5041  * This is a batched version of the page allocator that attempts to allocate
5042  * @nr_pages quickly.  Pages are added to @page_array.
5043  *
5044  * Note that only the elements in @page_array that were cleared to %NULL on
5045  * entry are populated with newly allocated pages. @nr_pages is the maximum
5046  * number of pages that will be stored in the array.
5047  *
5048  * Returns the number of pages in @page_array, including ones already
5049  * allocated on entry.  This can be less than the number requested in @nr_pages,
5050  * but all empty slots are filled from the beginning.  I.e., if all slots in
5051  * @page_array were set to %NULL on entry, the slots from 0 to the return value
5052  * - 1 will be filled.
5053  */
5054 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
5055 			nodemask_t *nodemask, int nr_pages,
5056 			struct page **page_array)
5057 {
5058 	struct page *page;
5059 	unsigned long UP_flags;
5060 	struct zone *zone;
5061 	struct zoneref *z;
5062 	struct per_cpu_pages *pcp;
5063 	struct list_head *pcp_list;
5064 	struct alloc_context ac;
5065 	gfp_t alloc_gfp;
5066 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5067 	int nr_populated = 0, nr_account = 0;
5068 
5069 	/*
5070 	 * Skip populated array elements to determine if any pages need
5071 	 * to be allocated before disabling IRQs.
5072 	 */
5073 	while (nr_populated < nr_pages && page_array[nr_populated])
5074 		nr_populated++;
5075 
5076 	/* No pages requested? */
5077 	if (unlikely(nr_pages <= 0))
5078 		goto out;
5079 
5080 	/* Already populated array? */
5081 	if (unlikely(nr_pages - nr_populated == 0))
5082 		goto out;
5083 
5084 	/* Bulk allocator does not support memcg accounting. */
5085 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5086 		goto failed;
5087 
5088 	/* Use the single page allocator for one page. */
5089 	if (nr_pages - nr_populated == 1)
5090 		goto failed;
5091 
5092 #ifdef CONFIG_PAGE_OWNER
5093 	/*
5094 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5095 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5096 	 * removes much of the performance benefit of bulk allocation so
5097 	 * force the caller to allocate one page at a time as it'll have
5098 	 * similar performance to added complexity to the bulk allocator.
5099 	 */
5100 	if (static_branch_unlikely(&page_owner_inited))
5101 		goto failed;
5102 #endif
5103 
5104 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5105 	gfp &= gfp_allowed_mask;
5106 	alloc_gfp = gfp;
5107 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5108 		goto out;
5109 	gfp = alloc_gfp;
5110 
5111 	/* Find an allowed local zone that meets the low watermark. */
5112 	z = ac.preferred_zoneref;
5113 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
5114 		unsigned long mark;
5115 
5116 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5117 		    !__cpuset_zone_allowed(zone, gfp)) {
5118 			continue;
5119 		}
5120 
5121 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
5122 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
5123 			goto failed;
5124 		}
5125 
5126 		cond_accept_memory(zone, 0, alloc_flags);
5127 retry_this_zone:
5128 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5129 		if (zone_watermark_fast(zone, 0,  mark,
5130 				zonelist_zone_idx(ac.preferred_zoneref),
5131 				alloc_flags, gfp)) {
5132 			break;
5133 		}
5134 
5135 		if (cond_accept_memory(zone, 0, alloc_flags))
5136 			goto retry_this_zone;
5137 
5138 		/* Try again if zone has deferred pages */
5139 		if (deferred_pages_enabled()) {
5140 			if (_deferred_grow_zone(zone, 0))
5141 				goto retry_this_zone;
5142 		}
5143 	}
5144 
5145 	/*
5146 	 * If there are no allowed local zones that meets the watermarks then
5147 	 * try to allocate a single page and reclaim if necessary.
5148 	 */
5149 	if (unlikely(!zone))
5150 		goto failed;
5151 
5152 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5153 	pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
5154 	if (!pcp)
5155 		goto failed;
5156 
5157 	/* Attempt the batch allocation */
5158 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5159 	while (nr_populated < nr_pages) {
5160 
5161 		/* Skip existing pages */
5162 		if (page_array[nr_populated]) {
5163 			nr_populated++;
5164 			continue;
5165 		}
5166 
5167 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5168 								pcp, pcp_list);
5169 		if (unlikely(!page)) {
5170 			/* Try and allocate at least one page */
5171 			if (!nr_account) {
5172 				pcp_spin_unlock(pcp, UP_flags);
5173 				goto failed;
5174 			}
5175 			break;
5176 		}
5177 		nr_account++;
5178 
5179 		prep_new_page(page, 0, gfp, 0);
5180 		set_page_refcounted(page);
5181 		page_array[nr_populated++] = page;
5182 	}
5183 
5184 	pcp_spin_unlock(pcp, UP_flags);
5185 
5186 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5187 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
5188 
5189 out:
5190 	return nr_populated;
5191 
5192 failed:
5193 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
5194 	if (page)
5195 		page_array[nr_populated++] = page;
5196 	goto out;
5197 }
5198 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
5199 
5200 /*
5201  * This is the 'heart' of the zoned buddy allocator.
5202  */
5203 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
5204 		int preferred_nid, nodemask_t *nodemask)
5205 {
5206 	struct page *page;
5207 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5208 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5209 	struct alloc_context ac = { };
5210 
5211 	/*
5212 	 * There are several places where we assume that the order value is sane
5213 	 * so bail out early if the request is out of bound.
5214 	 */
5215 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
5216 		return NULL;
5217 
5218 	gfp &= gfp_allowed_mask;
5219 	/*
5220 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5221 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5222 	 * from a particular context which has been marked by
5223 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5224 	 * movable zones are not used during allocation.
5225 	 */
5226 	gfp = current_gfp_context(gfp);
5227 	alloc_gfp = gfp;
5228 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5229 			&alloc_gfp, &alloc_flags))
5230 		return NULL;
5231 
5232 	/*
5233 	 * Forbid the first pass from falling back to types that fragment
5234 	 * memory until all local zones are considered.
5235 	 */
5236 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
5237 
5238 	/* First allocation attempt */
5239 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5240 	if (likely(page))
5241 		goto out;
5242 
5243 	alloc_gfp = gfp;
5244 	ac.spread_dirty_pages = false;
5245 
5246 	/*
5247 	 * Restore the original nodemask if it was potentially replaced with
5248 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5249 	 */
5250 	ac.nodemask = nodemask;
5251 
5252 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5253 
5254 out:
5255 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5256 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5257 		free_frozen_pages(page, order);
5258 		page = NULL;
5259 	}
5260 
5261 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5262 	kmsan_alloc_page(page, order, alloc_gfp);
5263 
5264 	return page;
5265 }
5266 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
5267 
5268 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
5269 		int preferred_nid, nodemask_t *nodemask)
5270 {
5271 	struct page *page;
5272 
5273 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
5274 	if (page)
5275 		set_page_refcounted(page);
5276 	return page;
5277 }
5278 EXPORT_SYMBOL(__alloc_pages_noprof);
5279 
5280 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5281 		nodemask_t *nodemask)
5282 {
5283 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5284 					preferred_nid, nodemask);
5285 	return page_rmappable_folio(page);
5286 }
5287 EXPORT_SYMBOL(__folio_alloc_noprof);
5288 
5289 /*
5290  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5291  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5292  * you need to access high mem.
5293  */
5294 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5295 {
5296 	struct page *page;
5297 
5298 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5299 	if (!page)
5300 		return 0;
5301 	return (unsigned long) page_address(page);
5302 }
5303 EXPORT_SYMBOL(get_free_pages_noprof);
5304 
5305 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5306 {
5307 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5308 }
5309 EXPORT_SYMBOL(get_zeroed_page_noprof);
5310 
5311 static void ___free_pages(struct page *page, unsigned int order,
5312 			  fpi_t fpi_flags)
5313 {
5314 	/* get PageHead before we drop reference */
5315 	int head = PageHead(page);
5316 	/* get alloc tag in case the page is released by others */
5317 	struct alloc_tag *tag = pgalloc_tag_get(page);
5318 
5319 	if (put_page_testzero(page))
5320 		__free_frozen_pages(page, order, fpi_flags);
5321 	else if (!head) {
5322 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
5323 		while (order-- > 0) {
5324 			/*
5325 			 * The "tail" pages of this non-compound high-order
5326 			 * page will have no code tags, so to avoid warnings
5327 			 * mark them as empty.
5328 			 */
5329 			clear_page_tag_ref(page + (1 << order));
5330 			__free_frozen_pages(page + (1 << order), order,
5331 					    fpi_flags);
5332 		}
5333 	}
5334 }
5335 
5336 /**
5337  * __free_pages - Free pages allocated with alloc_pages().
5338  * @page: The page pointer returned from alloc_pages().
5339  * @order: The order of the allocation.
5340  *
5341  * This function can free multi-page allocations that are not compound
5342  * pages.  It does not check that the @order passed in matches that of
5343  * the allocation, so it is easy to leak memory.  Freeing more memory
5344  * than was allocated will probably emit a warning.
5345  *
5346  * If the last reference to this page is speculative, it will be released
5347  * by put_page() which only frees the first page of a non-compound
5348  * allocation.  To prevent the remaining pages from being leaked, we free
5349  * the subsequent pages here.  If you want to use the page's reference
5350  * count to decide when to free the allocation, you should allocate a
5351  * compound page, and use put_page() instead of __free_pages().
5352  *
5353  * Context: May be called in interrupt context or while holding a normal
5354  * spinlock, but not in NMI context or while holding a raw spinlock.
5355  */
5356 void __free_pages(struct page *page, unsigned int order)
5357 {
5358 	___free_pages(page, order, FPI_NONE);
5359 }
5360 EXPORT_SYMBOL(__free_pages);
5361 
5362 /*
5363  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5364  * page type (not only those that came from alloc_pages_nolock)
5365  */
5366 void free_pages_nolock(struct page *page, unsigned int order)
5367 {
5368 	___free_pages(page, order, FPI_TRYLOCK);
5369 }
5370 
5371 /**
5372  * free_pages - Free pages allocated with __get_free_pages().
5373  * @addr: The virtual address tied to a page returned from __get_free_pages().
5374  * @order: The order of the allocation.
5375  *
5376  * This function behaves the same as __free_pages(). Use this function
5377  * to free pages when you only have a valid virtual address. If you have
5378  * the page, call __free_pages() instead.
5379  */
5380 void free_pages(unsigned long addr, unsigned int order)
5381 {
5382 	if (addr != 0) {
5383 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5384 		__free_pages(virt_to_page((void *)addr), order);
5385 	}
5386 }
5387 
5388 EXPORT_SYMBOL(free_pages);
5389 
5390 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5391 		size_t size)
5392 {
5393 	if (addr) {
5394 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5395 		struct page *page = virt_to_page((void *)addr);
5396 		struct page *last = page + nr;
5397 
5398 		__split_page(page, order);
5399 		while (page < --last)
5400 			set_page_refcounted(last);
5401 
5402 		last = page + (1UL << order);
5403 		for (page += nr; page < last; page++)
5404 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5405 	}
5406 	return (void *)addr;
5407 }
5408 
5409 /**
5410  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5411  * @size: the number of bytes to allocate
5412  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5413  *
5414  * This function is similar to alloc_pages(), except that it allocates the
5415  * minimum number of pages to satisfy the request.  alloc_pages() can only
5416  * allocate memory in power-of-two pages.
5417  *
5418  * This function is also limited by MAX_PAGE_ORDER.
5419  *
5420  * Memory allocated by this function must be released by free_pages_exact().
5421  *
5422  * Return: pointer to the allocated area or %NULL in case of error.
5423  */
5424 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5425 {
5426 	unsigned int order = get_order(size);
5427 	unsigned long addr;
5428 
5429 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5430 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5431 
5432 	addr = get_free_pages_noprof(gfp_mask, order);
5433 	return make_alloc_exact(addr, order, size);
5434 }
5435 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5436 
5437 /**
5438  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5439  *			   pages on a node.
5440  * @nid: the preferred node ID where memory should be allocated
5441  * @size: the number of bytes to allocate
5442  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5443  *
5444  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5445  * back.
5446  *
5447  * Return: pointer to the allocated area or %NULL in case of error.
5448  */
5449 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5450 {
5451 	unsigned int order = get_order(size);
5452 	struct page *p;
5453 
5454 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5455 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5456 
5457 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5458 	if (!p)
5459 		return NULL;
5460 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5461 }
5462 
5463 /**
5464  * free_pages_exact - release memory allocated via alloc_pages_exact()
5465  * @virt: the value returned by alloc_pages_exact.
5466  * @size: size of allocation, same value as passed to alloc_pages_exact().
5467  *
5468  * Release the memory allocated by a previous call to alloc_pages_exact.
5469  */
5470 void free_pages_exact(void *virt, size_t size)
5471 {
5472 	unsigned long addr = (unsigned long)virt;
5473 	unsigned long end = addr + PAGE_ALIGN(size);
5474 
5475 	while (addr < end) {
5476 		free_page(addr);
5477 		addr += PAGE_SIZE;
5478 	}
5479 }
5480 EXPORT_SYMBOL(free_pages_exact);
5481 
5482 /**
5483  * nr_free_zone_pages - count number of pages beyond high watermark
5484  * @offset: The zone index of the highest zone
5485  *
5486  * nr_free_zone_pages() counts the number of pages which are beyond the
5487  * high watermark within all zones at or below a given zone index.  For each
5488  * zone, the number of pages is calculated as:
5489  *
5490  *     nr_free_zone_pages = managed_pages - high_pages
5491  *
5492  * Return: number of pages beyond high watermark.
5493  */
5494 static unsigned long nr_free_zone_pages(int offset)
5495 {
5496 	struct zoneref *z;
5497 	struct zone *zone;
5498 
5499 	/* Just pick one node, since fallback list is circular */
5500 	unsigned long sum = 0;
5501 
5502 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5503 
5504 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5505 		unsigned long size = zone_managed_pages(zone);
5506 		unsigned long high = high_wmark_pages(zone);
5507 		if (size > high)
5508 			sum += size - high;
5509 	}
5510 
5511 	return sum;
5512 }
5513 
5514 /**
5515  * nr_free_buffer_pages - count number of pages beyond high watermark
5516  *
5517  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5518  * watermark within ZONE_DMA and ZONE_NORMAL.
5519  *
5520  * Return: number of pages beyond high watermark within ZONE_DMA and
5521  * ZONE_NORMAL.
5522  */
5523 unsigned long nr_free_buffer_pages(void)
5524 {
5525 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5526 }
5527 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5528 
5529 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5530 {
5531 	zoneref->zone = zone;
5532 	zoneref->zone_idx = zone_idx(zone);
5533 }
5534 
5535 /*
5536  * Builds allocation fallback zone lists.
5537  *
5538  * Add all populated zones of a node to the zonelist.
5539  */
5540 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5541 {
5542 	struct zone *zone;
5543 	enum zone_type zone_type = MAX_NR_ZONES;
5544 	int nr_zones = 0;
5545 
5546 	do {
5547 		zone_type--;
5548 		zone = pgdat->node_zones + zone_type;
5549 		if (populated_zone(zone)) {
5550 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5551 			check_highest_zone(zone_type);
5552 		}
5553 	} while (zone_type);
5554 
5555 	return nr_zones;
5556 }
5557 
5558 #ifdef CONFIG_NUMA
5559 
5560 static int __parse_numa_zonelist_order(char *s)
5561 {
5562 	/*
5563 	 * We used to support different zonelists modes but they turned
5564 	 * out to be just not useful. Let's keep the warning in place
5565 	 * if somebody still use the cmd line parameter so that we do
5566 	 * not fail it silently
5567 	 */
5568 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5569 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5570 		return -EINVAL;
5571 	}
5572 	return 0;
5573 }
5574 
5575 static char numa_zonelist_order[] = "Node";
5576 #define NUMA_ZONELIST_ORDER_LEN	16
5577 /*
5578  * sysctl handler for numa_zonelist_order
5579  */
5580 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5581 		void *buffer, size_t *length, loff_t *ppos)
5582 {
5583 	if (write)
5584 		return __parse_numa_zonelist_order(buffer);
5585 	return proc_dostring(table, write, buffer, length, ppos);
5586 }
5587 
5588 static int node_load[MAX_NUMNODES];
5589 
5590 /**
5591  * find_next_best_node - find the next node that should appear in a given node's fallback list
5592  * @node: node whose fallback list we're appending
5593  * @used_node_mask: nodemask_t of already used nodes
5594  *
5595  * We use a number of factors to determine which is the next node that should
5596  * appear on a given node's fallback list.  The node should not have appeared
5597  * already in @node's fallback list, and it should be the next closest node
5598  * according to the distance array (which contains arbitrary distance values
5599  * from each node to each node in the system), and should also prefer nodes
5600  * with no CPUs, since presumably they'll have very little allocation pressure
5601  * on them otherwise.
5602  *
5603  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5604  */
5605 int find_next_best_node(int node, nodemask_t *used_node_mask)
5606 {
5607 	int n, val;
5608 	int min_val = INT_MAX;
5609 	int best_node = NUMA_NO_NODE;
5610 
5611 	/*
5612 	 * Use the local node if we haven't already, but for memoryless local
5613 	 * node, we should skip it and fall back to other nodes.
5614 	 */
5615 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5616 		node_set(node, *used_node_mask);
5617 		return node;
5618 	}
5619 
5620 	for_each_node_state(n, N_MEMORY) {
5621 
5622 		/* Don't want a node to appear more than once */
5623 		if (node_isset(n, *used_node_mask))
5624 			continue;
5625 
5626 		/* Use the distance array to find the distance */
5627 		val = node_distance(node, n);
5628 
5629 		/* Penalize nodes under us ("prefer the next node") */
5630 		val += (n < node);
5631 
5632 		/* Give preference to headless and unused nodes */
5633 		if (!cpumask_empty(cpumask_of_node(n)))
5634 			val += PENALTY_FOR_NODE_WITH_CPUS;
5635 
5636 		/* Slight preference for less loaded node */
5637 		val *= MAX_NUMNODES;
5638 		val += node_load[n];
5639 
5640 		if (val < min_val) {
5641 			min_val = val;
5642 			best_node = n;
5643 		}
5644 	}
5645 
5646 	if (best_node >= 0)
5647 		node_set(best_node, *used_node_mask);
5648 
5649 	return best_node;
5650 }
5651 
5652 
5653 /*
5654  * Build zonelists ordered by node and zones within node.
5655  * This results in maximum locality--normal zone overflows into local
5656  * DMA zone, if any--but risks exhausting DMA zone.
5657  */
5658 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5659 		unsigned nr_nodes)
5660 {
5661 	struct zoneref *zonerefs;
5662 	int i;
5663 
5664 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5665 
5666 	for (i = 0; i < nr_nodes; i++) {
5667 		int nr_zones;
5668 
5669 		pg_data_t *node = NODE_DATA(node_order[i]);
5670 
5671 		nr_zones = build_zonerefs_node(node, zonerefs);
5672 		zonerefs += nr_zones;
5673 	}
5674 	zonerefs->zone = NULL;
5675 	zonerefs->zone_idx = 0;
5676 }
5677 
5678 /*
5679  * Build __GFP_THISNODE zonelists
5680  */
5681 static void build_thisnode_zonelists(pg_data_t *pgdat)
5682 {
5683 	struct zoneref *zonerefs;
5684 	int nr_zones;
5685 
5686 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5687 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5688 	zonerefs += nr_zones;
5689 	zonerefs->zone = NULL;
5690 	zonerefs->zone_idx = 0;
5691 }
5692 
5693 static void build_zonelists(pg_data_t *pgdat)
5694 {
5695 	static int node_order[MAX_NUMNODES];
5696 	int node, nr_nodes = 0;
5697 	nodemask_t used_mask = NODE_MASK_NONE;
5698 	int local_node, prev_node;
5699 
5700 	/* NUMA-aware ordering of nodes */
5701 	local_node = pgdat->node_id;
5702 	prev_node = local_node;
5703 
5704 	memset(node_order, 0, sizeof(node_order));
5705 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5706 		/*
5707 		 * We don't want to pressure a particular node.
5708 		 * So adding penalty to the first node in same
5709 		 * distance group to make it round-robin.
5710 		 */
5711 		if (node_distance(local_node, node) !=
5712 		    node_distance(local_node, prev_node))
5713 			node_load[node] += 1;
5714 
5715 		node_order[nr_nodes++] = node;
5716 		prev_node = node;
5717 	}
5718 
5719 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5720 	build_thisnode_zonelists(pgdat);
5721 	pr_info("Fallback order for Node %d: ", local_node);
5722 	for (node = 0; node < nr_nodes; node++)
5723 		pr_cont("%d ", node_order[node]);
5724 	pr_cont("\n");
5725 }
5726 
5727 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5728 /*
5729  * Return node id of node used for "local" allocations.
5730  * I.e., first node id of first zone in arg node's generic zonelist.
5731  * Used for initializing percpu 'numa_mem', which is used primarily
5732  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5733  */
5734 int local_memory_node(int node)
5735 {
5736 	struct zoneref *z;
5737 
5738 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5739 				   gfp_zone(GFP_KERNEL),
5740 				   NULL);
5741 	return zonelist_node_idx(z);
5742 }
5743 #endif
5744 
5745 static void setup_min_unmapped_ratio(void);
5746 static void setup_min_slab_ratio(void);
5747 #else	/* CONFIG_NUMA */
5748 
5749 static void build_zonelists(pg_data_t *pgdat)
5750 {
5751 	struct zoneref *zonerefs;
5752 	int nr_zones;
5753 
5754 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5755 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5756 	zonerefs += nr_zones;
5757 
5758 	zonerefs->zone = NULL;
5759 	zonerefs->zone_idx = 0;
5760 }
5761 
5762 #endif	/* CONFIG_NUMA */
5763 
5764 /*
5765  * Boot pageset table. One per cpu which is going to be used for all
5766  * zones and all nodes. The parameters will be set in such a way
5767  * that an item put on a list will immediately be handed over to
5768  * the buddy list. This is safe since pageset manipulation is done
5769  * with interrupts disabled.
5770  *
5771  * The boot_pagesets must be kept even after bootup is complete for
5772  * unused processors and/or zones. They do play a role for bootstrapping
5773  * hotplugged processors.
5774  *
5775  * zoneinfo_show() and maybe other functions do
5776  * not check if the processor is online before following the pageset pointer.
5777  * Other parts of the kernel may not check if the zone is available.
5778  */
5779 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5780 /* These effectively disable the pcplists in the boot pageset completely */
5781 #define BOOT_PAGESET_HIGH	0
5782 #define BOOT_PAGESET_BATCH	1
5783 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5784 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5785 
5786 static void __build_all_zonelists(void *data)
5787 {
5788 	int nid;
5789 	int __maybe_unused cpu;
5790 	pg_data_t *self = data;
5791 	unsigned long flags;
5792 
5793 	/*
5794 	 * The zonelist_update_seq must be acquired with irqsave because the
5795 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5796 	 */
5797 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5798 	/*
5799 	 * Also disable synchronous printk() to prevent any printk() from
5800 	 * trying to hold port->lock, for
5801 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5802 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5803 	 */
5804 	printk_deferred_enter();
5805 
5806 #ifdef CONFIG_NUMA
5807 	memset(node_load, 0, sizeof(node_load));
5808 #endif
5809 
5810 	/*
5811 	 * This node is hotadded and no memory is yet present.   So just
5812 	 * building zonelists is fine - no need to touch other nodes.
5813 	 */
5814 	if (self && !node_online(self->node_id)) {
5815 		build_zonelists(self);
5816 	} else {
5817 		/*
5818 		 * All possible nodes have pgdat preallocated
5819 		 * in free_area_init
5820 		 */
5821 		for_each_node(nid) {
5822 			pg_data_t *pgdat = NODE_DATA(nid);
5823 
5824 			build_zonelists(pgdat);
5825 		}
5826 
5827 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5828 		/*
5829 		 * We now know the "local memory node" for each node--
5830 		 * i.e., the node of the first zone in the generic zonelist.
5831 		 * Set up numa_mem percpu variable for on-line cpus.  During
5832 		 * boot, only the boot cpu should be on-line;  we'll init the
5833 		 * secondary cpus' numa_mem as they come on-line.  During
5834 		 * node/memory hotplug, we'll fixup all on-line cpus.
5835 		 */
5836 		for_each_online_cpu(cpu)
5837 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5838 #endif
5839 	}
5840 
5841 	printk_deferred_exit();
5842 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5843 }
5844 
5845 static noinline void __init
5846 build_all_zonelists_init(void)
5847 {
5848 	int cpu;
5849 
5850 	__build_all_zonelists(NULL);
5851 
5852 	/*
5853 	 * Initialize the boot_pagesets that are going to be used
5854 	 * for bootstrapping processors. The real pagesets for
5855 	 * each zone will be allocated later when the per cpu
5856 	 * allocator is available.
5857 	 *
5858 	 * boot_pagesets are used also for bootstrapping offline
5859 	 * cpus if the system is already booted because the pagesets
5860 	 * are needed to initialize allocators on a specific cpu too.
5861 	 * F.e. the percpu allocator needs the page allocator which
5862 	 * needs the percpu allocator in order to allocate its pagesets
5863 	 * (a chicken-egg dilemma).
5864 	 */
5865 	for_each_possible_cpu(cpu)
5866 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5867 
5868 	mminit_verify_zonelist();
5869 	cpuset_init_current_mems_allowed();
5870 }
5871 
5872 /*
5873  * unless system_state == SYSTEM_BOOTING.
5874  *
5875  * __ref due to call of __init annotated helper build_all_zonelists_init
5876  * [protected by SYSTEM_BOOTING].
5877  */
5878 void __ref build_all_zonelists(pg_data_t *pgdat)
5879 {
5880 	unsigned long vm_total_pages;
5881 
5882 	if (system_state == SYSTEM_BOOTING) {
5883 		build_all_zonelists_init();
5884 	} else {
5885 		__build_all_zonelists(pgdat);
5886 		/* cpuset refresh routine should be here */
5887 	}
5888 	/* Get the number of free pages beyond high watermark in all zones. */
5889 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5890 	/*
5891 	 * Disable grouping by mobility if the number of pages in the
5892 	 * system is too low to allow the mechanism to work. It would be
5893 	 * more accurate, but expensive to check per-zone. This check is
5894 	 * made on memory-hotadd so a system can start with mobility
5895 	 * disabled and enable it later
5896 	 */
5897 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5898 		page_group_by_mobility_disabled = 1;
5899 	else
5900 		page_group_by_mobility_disabled = 0;
5901 
5902 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5903 		nr_online_nodes,
5904 		str_off_on(page_group_by_mobility_disabled),
5905 		vm_total_pages);
5906 #ifdef CONFIG_NUMA
5907 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5908 #endif
5909 }
5910 
5911 static int zone_batchsize(struct zone *zone)
5912 {
5913 #ifdef CONFIG_MMU
5914 	int batch;
5915 
5916 	/*
5917 	 * The number of pages to batch allocate is either ~0.025%
5918 	 * of the zone or 256KB, whichever is smaller. The batch
5919 	 * size is striking a balance between allocation latency
5920 	 * and zone lock contention.
5921 	 */
5922 	batch = min(zone_managed_pages(zone) >> 12, SZ_256K / PAGE_SIZE);
5923 	if (batch <= 1)
5924 		return 1;
5925 
5926 	/*
5927 	 * Clamp the batch to a 2^n - 1 value. Having a power
5928 	 * of 2 value was found to be more likely to have
5929 	 * suboptimal cache aliasing properties in some cases.
5930 	 *
5931 	 * For example if 2 tasks are alternately allocating
5932 	 * batches of pages, one task can end up with a lot
5933 	 * of pages of one half of the possible page colors
5934 	 * and the other with pages of the other colors.
5935 	 */
5936 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5937 
5938 	return batch;
5939 
5940 #else
5941 	/* The deferral and batching of frees should be suppressed under NOMMU
5942 	 * conditions.
5943 	 *
5944 	 * The problem is that NOMMU needs to be able to allocate large chunks
5945 	 * of contiguous memory as there's no hardware page translation to
5946 	 * assemble apparent contiguous memory from discontiguous pages.
5947 	 *
5948 	 * Queueing large contiguous runs of pages for batching, however,
5949 	 * causes the pages to actually be freed in smaller chunks.  As there
5950 	 * can be a significant delay between the individual batches being
5951 	 * recycled, this leads to the once large chunks of space being
5952 	 * fragmented and becoming unavailable for high-order allocations.
5953 	 */
5954 	return 1;
5955 #endif
5956 }
5957 
5958 static int percpu_pagelist_high_fraction;
5959 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5960 			 int high_fraction)
5961 {
5962 #ifdef CONFIG_MMU
5963 	int high;
5964 	int nr_split_cpus;
5965 	unsigned long total_pages;
5966 
5967 	if (!high_fraction) {
5968 		/*
5969 		 * By default, the high value of the pcp is based on the zone
5970 		 * low watermark so that if they are full then background
5971 		 * reclaim will not be started prematurely.
5972 		 */
5973 		total_pages = low_wmark_pages(zone);
5974 	} else {
5975 		/*
5976 		 * If percpu_pagelist_high_fraction is configured, the high
5977 		 * value is based on a fraction of the managed pages in the
5978 		 * zone.
5979 		 */
5980 		total_pages = zone_managed_pages(zone) / high_fraction;
5981 	}
5982 
5983 	/*
5984 	 * Split the high value across all online CPUs local to the zone. Note
5985 	 * that early in boot that CPUs may not be online yet and that during
5986 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5987 	 * onlined. For memory nodes that have no CPUs, split the high value
5988 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5989 	 * prematurely due to pages stored on pcp lists.
5990 	 */
5991 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5992 	if (!nr_split_cpus)
5993 		nr_split_cpus = num_online_cpus();
5994 	high = total_pages / nr_split_cpus;
5995 
5996 	/*
5997 	 * Ensure high is at least batch*4. The multiple is based on the
5998 	 * historical relationship between high and batch.
5999 	 */
6000 	high = max(high, batch << 2);
6001 
6002 	return high;
6003 #else
6004 	return 0;
6005 #endif
6006 }
6007 
6008 /*
6009  * pcp->high and pcp->batch values are related and generally batch is lower
6010  * than high. They are also related to pcp->count such that count is lower
6011  * than high, and as soon as it reaches high, the pcplist is flushed.
6012  *
6013  * However, guaranteeing these relations at all times would require e.g. write
6014  * barriers here but also careful usage of read barriers at the read side, and
6015  * thus be prone to error and bad for performance. Thus the update only prevents
6016  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
6017  * should ensure they can cope with those fields changing asynchronously, and
6018  * fully trust only the pcp->count field on the local CPU with interrupts
6019  * disabled.
6020  *
6021  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6022  * outside of boot time (or some other assurance that no concurrent updaters
6023  * exist).
6024  */
6025 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
6026 			   unsigned long high_max, unsigned long batch)
6027 {
6028 	WRITE_ONCE(pcp->batch, batch);
6029 	WRITE_ONCE(pcp->high_min, high_min);
6030 	WRITE_ONCE(pcp->high_max, high_max);
6031 }
6032 
6033 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6034 {
6035 	int pindex;
6036 
6037 	memset(pcp, 0, sizeof(*pcp));
6038 	memset(pzstats, 0, sizeof(*pzstats));
6039 
6040 	spin_lock_init(&pcp->lock);
6041 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6042 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6043 
6044 	/*
6045 	 * Set batch and high values safe for a boot pageset. A true percpu
6046 	 * pageset's initialization will update them subsequently. Here we don't
6047 	 * need to be as careful as pageset_update() as nobody can access the
6048 	 * pageset yet.
6049 	 */
6050 	pcp->high_min = BOOT_PAGESET_HIGH;
6051 	pcp->high_max = BOOT_PAGESET_HIGH;
6052 	pcp->batch = BOOT_PAGESET_BATCH;
6053 }
6054 
6055 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
6056 					      unsigned long high_max, unsigned long batch)
6057 {
6058 	struct per_cpu_pages *pcp;
6059 	int cpu;
6060 
6061 	for_each_possible_cpu(cpu) {
6062 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6063 		pageset_update(pcp, high_min, high_max, batch);
6064 	}
6065 }
6066 
6067 /*
6068  * Calculate and set new high and batch values for all per-cpu pagesets of a
6069  * zone based on the zone's size.
6070  */
6071 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6072 {
6073 	int new_high_min, new_high_max, new_batch;
6074 
6075 	new_batch = zone_batchsize(zone);
6076 	if (percpu_pagelist_high_fraction) {
6077 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
6078 					     percpu_pagelist_high_fraction);
6079 		/*
6080 		 * PCP high is tuned manually, disable auto-tuning via
6081 		 * setting high_min and high_max to the manual value.
6082 		 */
6083 		new_high_max = new_high_min;
6084 	} else {
6085 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
6086 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
6087 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
6088 	}
6089 
6090 	if (zone->pageset_high_min == new_high_min &&
6091 	    zone->pageset_high_max == new_high_max &&
6092 	    zone->pageset_batch == new_batch)
6093 		return;
6094 
6095 	zone->pageset_high_min = new_high_min;
6096 	zone->pageset_high_max = new_high_max;
6097 	zone->pageset_batch = new_batch;
6098 
6099 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
6100 					  new_batch);
6101 }
6102 
6103 void __meminit setup_zone_pageset(struct zone *zone)
6104 {
6105 	int cpu;
6106 
6107 	/* Size may be 0 on !SMP && !NUMA */
6108 	if (sizeof(struct per_cpu_zonestat) > 0)
6109 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6110 
6111 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6112 	for_each_possible_cpu(cpu) {
6113 		struct per_cpu_pages *pcp;
6114 		struct per_cpu_zonestat *pzstats;
6115 
6116 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6117 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6118 		per_cpu_pages_init(pcp, pzstats);
6119 	}
6120 
6121 	zone_set_pageset_high_and_batch(zone, 0);
6122 }
6123 
6124 /*
6125  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6126  * page high values need to be recalculated.
6127  */
6128 static void zone_pcp_update(struct zone *zone, int cpu_online)
6129 {
6130 	mutex_lock(&pcp_batch_high_lock);
6131 	zone_set_pageset_high_and_batch(zone, cpu_online);
6132 	mutex_unlock(&pcp_batch_high_lock);
6133 }
6134 
6135 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
6136 {
6137 	struct per_cpu_pages *pcp;
6138 	struct cpu_cacheinfo *cci;
6139 	unsigned long UP_flags;
6140 
6141 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6142 	cci = get_cpu_cacheinfo(cpu);
6143 	/*
6144 	 * If data cache slice of CPU is large enough, "pcp->batch"
6145 	 * pages can be preserved in PCP before draining PCP for
6146 	 * consecutive high-order pages freeing without allocation.
6147 	 * This can reduce zone lock contention without hurting
6148 	 * cache-hot pages sharing.
6149 	 */
6150 	pcp_spin_lock_maybe_irqsave(pcp, UP_flags);
6151 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
6152 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
6153 	else
6154 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
6155 	pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags);
6156 }
6157 
6158 void setup_pcp_cacheinfo(unsigned int cpu)
6159 {
6160 	struct zone *zone;
6161 
6162 	for_each_populated_zone(zone)
6163 		zone_pcp_update_cacheinfo(zone, cpu);
6164 }
6165 
6166 /*
6167  * Allocate per cpu pagesets and initialize them.
6168  * Before this call only boot pagesets were available.
6169  */
6170 void __init setup_per_cpu_pageset(void)
6171 {
6172 	struct pglist_data *pgdat;
6173 	struct zone *zone;
6174 	int __maybe_unused cpu;
6175 
6176 	for_each_populated_zone(zone)
6177 		setup_zone_pageset(zone);
6178 
6179 #ifdef CONFIG_NUMA
6180 	/*
6181 	 * Unpopulated zones continue using the boot pagesets.
6182 	 * The numa stats for these pagesets need to be reset.
6183 	 * Otherwise, they will end up skewing the stats of
6184 	 * the nodes these zones are associated with.
6185 	 */
6186 	for_each_possible_cpu(cpu) {
6187 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6188 		memset(pzstats->vm_numa_event, 0,
6189 		       sizeof(pzstats->vm_numa_event));
6190 	}
6191 #endif
6192 
6193 	for_each_online_pgdat(pgdat)
6194 		pgdat->per_cpu_nodestats =
6195 			alloc_percpu(struct per_cpu_nodestat);
6196 }
6197 
6198 __meminit void zone_pcp_init(struct zone *zone)
6199 {
6200 	/*
6201 	 * per cpu subsystem is not up at this point. The following code
6202 	 * relies on the ability of the linker to provide the
6203 	 * offset of a (static) per cpu variable into the per cpu area.
6204 	 */
6205 	zone->per_cpu_pageset = &boot_pageset;
6206 	zone->per_cpu_zonestats = &boot_zonestats;
6207 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
6208 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
6209 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6210 
6211 	if (populated_zone(zone))
6212 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6213 			 zone->present_pages, zone_batchsize(zone));
6214 }
6215 
6216 static void setup_per_zone_lowmem_reserve(void);
6217 
6218 void adjust_managed_page_count(struct page *page, long count)
6219 {
6220 	atomic_long_add(count, &page_zone(page)->managed_pages);
6221 	totalram_pages_add(count);
6222 	setup_per_zone_lowmem_reserve();
6223 }
6224 EXPORT_SYMBOL(adjust_managed_page_count);
6225 
6226 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6227 {
6228 	void *pos;
6229 	unsigned long pages = 0;
6230 
6231 	start = (void *)PAGE_ALIGN((unsigned long)start);
6232 	end = (void *)((unsigned long)end & PAGE_MASK);
6233 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6234 		struct page *page = virt_to_page(pos);
6235 		void *direct_map_addr;
6236 
6237 		/*
6238 		 * 'direct_map_addr' might be different from 'pos'
6239 		 * because some architectures' virt_to_page()
6240 		 * work with aliases.  Getting the direct map
6241 		 * address ensures that we get a _writeable_
6242 		 * alias for the memset().
6243 		 */
6244 		direct_map_addr = page_address(page);
6245 		/*
6246 		 * Perform a kasan-unchecked memset() since this memory
6247 		 * has not been initialized.
6248 		 */
6249 		direct_map_addr = kasan_reset_tag(direct_map_addr);
6250 		if ((unsigned int)poison <= 0xFF)
6251 			memset(direct_map_addr, poison, PAGE_SIZE);
6252 
6253 		free_reserved_page(page);
6254 	}
6255 
6256 	if (pages && s)
6257 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6258 
6259 	return pages;
6260 }
6261 
6262 void free_reserved_page(struct page *page)
6263 {
6264 	clear_page_tag_ref(page);
6265 	ClearPageReserved(page);
6266 	init_page_count(page);
6267 	__free_page(page);
6268 	adjust_managed_page_count(page, 1);
6269 }
6270 EXPORT_SYMBOL(free_reserved_page);
6271 
6272 static int page_alloc_cpu_dead(unsigned int cpu)
6273 {
6274 	struct zone *zone;
6275 
6276 	lru_add_drain_cpu(cpu);
6277 	mlock_drain_remote(cpu);
6278 	drain_pages(cpu);
6279 
6280 	/*
6281 	 * Spill the event counters of the dead processor
6282 	 * into the current processors event counters.
6283 	 * This artificially elevates the count of the current
6284 	 * processor.
6285 	 */
6286 	vm_events_fold_cpu(cpu);
6287 
6288 	/*
6289 	 * Zero the differential counters of the dead processor
6290 	 * so that the vm statistics are consistent.
6291 	 *
6292 	 * This is only okay since the processor is dead and cannot
6293 	 * race with what we are doing.
6294 	 */
6295 	cpu_vm_stats_fold(cpu);
6296 
6297 	for_each_populated_zone(zone)
6298 		zone_pcp_update(zone, 0);
6299 
6300 	return 0;
6301 }
6302 
6303 static int page_alloc_cpu_online(unsigned int cpu)
6304 {
6305 	struct zone *zone;
6306 
6307 	for_each_populated_zone(zone)
6308 		zone_pcp_update(zone, 1);
6309 	return 0;
6310 }
6311 
6312 void __init page_alloc_init_cpuhp(void)
6313 {
6314 	int ret;
6315 
6316 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6317 					"mm/page_alloc:pcp",
6318 					page_alloc_cpu_online,
6319 					page_alloc_cpu_dead);
6320 	WARN_ON(ret < 0);
6321 }
6322 
6323 /*
6324  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6325  *	or min_free_kbytes changes.
6326  */
6327 static void calculate_totalreserve_pages(void)
6328 {
6329 	struct pglist_data *pgdat;
6330 	unsigned long reserve_pages = 0;
6331 	enum zone_type i, j;
6332 
6333 	for_each_online_pgdat(pgdat) {
6334 
6335 		pgdat->totalreserve_pages = 0;
6336 
6337 		for (i = 0; i < MAX_NR_ZONES; i++) {
6338 			struct zone *zone = pgdat->node_zones + i;
6339 			long max = 0;
6340 			unsigned long managed_pages = zone_managed_pages(zone);
6341 
6342 			/*
6343 			 * lowmem_reserve[j] is monotonically non-decreasing
6344 			 * in j for a given zone (see
6345 			 * setup_per_zone_lowmem_reserve()). The maximum
6346 			 * valid reserve lives at the highest index with a
6347 			 * non-zero value, so scan backwards and stop at the
6348 			 * first hit.
6349 			 */
6350 			for (j = MAX_NR_ZONES - 1; j > i; j--) {
6351 				if (!zone->lowmem_reserve[j])
6352 					continue;
6353 
6354 				max = zone->lowmem_reserve[j];
6355 				break;
6356 			}
6357 			/* we treat the high watermark as reserved pages. */
6358 			max += high_wmark_pages(zone);
6359 
6360 			max = min_t(unsigned long, max, managed_pages);
6361 
6362 			pgdat->totalreserve_pages += max;
6363 
6364 			reserve_pages += max;
6365 		}
6366 	}
6367 	totalreserve_pages = reserve_pages;
6368 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6369 }
6370 
6371 /*
6372  * setup_per_zone_lowmem_reserve - called whenever
6373  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6374  *	has a correct pages reserved value, so an adequate number of
6375  *	pages are left in the zone after a successful __alloc_pages().
6376  */
6377 static void setup_per_zone_lowmem_reserve(void)
6378 {
6379 	struct pglist_data *pgdat;
6380 	enum zone_type i, j;
6381 	/*
6382 	 * For a given zone node_zones[i], lowmem_reserve[j] (j > i)
6383 	 * represents how many pages in zone i must effectively be kept
6384 	 * in reserve when deciding whether an allocation class that is
6385 	 * allowed to allocate from zones up to j may fall back into
6386 	 * zone i.
6387 	 *
6388 	 * As j increases, the allocation class can use a strictly larger
6389 	 * set of fallback zones and therefore must not be allowed to
6390 	 * deplete low zones more aggressively than a less flexible one.
6391 	 * As a result, lowmem_reserve[j] is required to be monotonically
6392 	 * non-decreasing in j for each zone i. Callers such as
6393 	 * calculate_totalreserve_pages() rely on this monotonicity when
6394 	 * selecting the maximum reserve entry.
6395 	 */
6396 	for_each_online_pgdat(pgdat) {
6397 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6398 			struct zone *zone = &pgdat->node_zones[i];
6399 			int ratio = sysctl_lowmem_reserve_ratio[i];
6400 			bool clear = !ratio || !zone_managed_pages(zone);
6401 			unsigned long managed_pages = 0;
6402 
6403 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6404 				struct zone *upper_zone = &pgdat->node_zones[j];
6405 
6406 				managed_pages += zone_managed_pages(upper_zone);
6407 
6408 				if (clear)
6409 					zone->lowmem_reserve[j] = 0;
6410 				else
6411 					zone->lowmem_reserve[j] = managed_pages / ratio;
6412 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6413 								       zone->lowmem_reserve[j]);
6414 			}
6415 		}
6416 	}
6417 
6418 	/* update totalreserve_pages */
6419 	calculate_totalreserve_pages();
6420 }
6421 
6422 static void __setup_per_zone_wmarks(void)
6423 {
6424 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6425 	unsigned long lowmem_pages = 0;
6426 	struct zone *zone;
6427 	unsigned long flags;
6428 
6429 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6430 	for_each_zone(zone) {
6431 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6432 			lowmem_pages += zone_managed_pages(zone);
6433 	}
6434 
6435 	for_each_zone(zone) {
6436 		u64 tmp;
6437 
6438 		spin_lock_irqsave(&zone->lock, flags);
6439 		tmp = (u64)pages_min * zone_managed_pages(zone);
6440 		tmp = div64_ul(tmp, lowmem_pages);
6441 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6442 			/*
6443 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6444 			 * need highmem and movable zones pages, so cap pages_min
6445 			 * to a small  value here.
6446 			 *
6447 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6448 			 * deltas control async page reclaim, and so should
6449 			 * not be capped for highmem and movable zones.
6450 			 */
6451 			unsigned long min_pages;
6452 
6453 			min_pages = zone_managed_pages(zone) / 1024;
6454 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6455 			zone->_watermark[WMARK_MIN] = min_pages;
6456 		} else {
6457 			/*
6458 			 * If it's a lowmem zone, reserve a number of pages
6459 			 * proportionate to the zone's size.
6460 			 */
6461 			zone->_watermark[WMARK_MIN] = tmp;
6462 		}
6463 
6464 		/*
6465 		 * Set the kswapd watermarks distance according to the
6466 		 * scale factor in proportion to available memory, but
6467 		 * ensure a minimum size on small systems.
6468 		 */
6469 		tmp = max_t(u64, tmp >> 2,
6470 			    mult_frac(zone_managed_pages(zone),
6471 				      watermark_scale_factor, 10000));
6472 
6473 		zone->watermark_boost = 0;
6474 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6475 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6476 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6477 		trace_mm_setup_per_zone_wmarks(zone);
6478 
6479 		spin_unlock_irqrestore(&zone->lock, flags);
6480 	}
6481 
6482 	/* update totalreserve_pages */
6483 	calculate_totalreserve_pages();
6484 }
6485 
6486 /**
6487  * setup_per_zone_wmarks - called when min_free_kbytes changes
6488  * or when memory is hot-{added|removed}
6489  *
6490  * Ensures that the watermark[min,low,high] values for each zone are set
6491  * correctly with respect to min_free_kbytes.
6492  */
6493 void setup_per_zone_wmarks(void)
6494 {
6495 	struct zone *zone;
6496 	static DEFINE_SPINLOCK(lock);
6497 
6498 	spin_lock(&lock);
6499 	__setup_per_zone_wmarks();
6500 	spin_unlock(&lock);
6501 
6502 	/*
6503 	 * The watermark size have changed so update the pcpu batch
6504 	 * and high limits or the limits may be inappropriate.
6505 	 */
6506 	for_each_zone(zone)
6507 		zone_pcp_update(zone, 0);
6508 }
6509 
6510 /*
6511  * Initialise min_free_kbytes.
6512  *
6513  * For small machines we want it small (128k min).  For large machines
6514  * we want it large (256MB max).  But it is not linear, because network
6515  * bandwidth does not increase linearly with machine size.  We use
6516  *
6517  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6518  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6519  *
6520  * which yields
6521  *
6522  * 16MB:	512k
6523  * 32MB:	724k
6524  * 64MB:	1024k
6525  * 128MB:	1448k
6526  * 256MB:	2048k
6527  * 512MB:	2896k
6528  * 1024MB:	4096k
6529  * 2048MB:	5792k
6530  * 4096MB:	8192k
6531  * 8192MB:	11584k
6532  * 16384MB:	16384k
6533  */
6534 void calculate_min_free_kbytes(void)
6535 {
6536 	unsigned long lowmem_kbytes;
6537 	int new_min_free_kbytes;
6538 
6539 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6540 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6541 
6542 	if (new_min_free_kbytes > user_min_free_kbytes)
6543 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6544 	else
6545 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6546 				new_min_free_kbytes, user_min_free_kbytes);
6547 
6548 }
6549 
6550 int __meminit init_per_zone_wmark_min(void)
6551 {
6552 	calculate_min_free_kbytes();
6553 	setup_per_zone_wmarks();
6554 	refresh_zone_stat_thresholds();
6555 	setup_per_zone_lowmem_reserve();
6556 
6557 #ifdef CONFIG_NUMA
6558 	setup_min_unmapped_ratio();
6559 	setup_min_slab_ratio();
6560 #endif
6561 
6562 	khugepaged_min_free_kbytes_update();
6563 
6564 	return 0;
6565 }
6566 postcore_initcall(init_per_zone_wmark_min)
6567 
6568 /*
6569  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6570  *	that we can call two helper functions whenever min_free_kbytes
6571  *	changes.
6572  */
6573 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6574 		void *buffer, size_t *length, loff_t *ppos)
6575 {
6576 	int rc;
6577 
6578 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6579 	if (rc)
6580 		return rc;
6581 
6582 	if (write) {
6583 		user_min_free_kbytes = min_free_kbytes;
6584 		setup_per_zone_wmarks();
6585 	}
6586 	return 0;
6587 }
6588 
6589 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6590 		void *buffer, size_t *length, loff_t *ppos)
6591 {
6592 	int rc;
6593 
6594 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6595 	if (rc)
6596 		return rc;
6597 
6598 	if (write)
6599 		setup_per_zone_wmarks();
6600 
6601 	return 0;
6602 }
6603 
6604 #ifdef CONFIG_NUMA
6605 static void setup_min_unmapped_ratio(void)
6606 {
6607 	pg_data_t *pgdat;
6608 	struct zone *zone;
6609 
6610 	for_each_online_pgdat(pgdat)
6611 		pgdat->min_unmapped_pages = 0;
6612 
6613 	for_each_zone(zone)
6614 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6615 						         sysctl_min_unmapped_ratio) / 100;
6616 }
6617 
6618 
6619 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6620 		void *buffer, size_t *length, loff_t *ppos)
6621 {
6622 	int rc;
6623 
6624 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6625 	if (rc)
6626 		return rc;
6627 
6628 	setup_min_unmapped_ratio();
6629 
6630 	return 0;
6631 }
6632 
6633 static void setup_min_slab_ratio(void)
6634 {
6635 	pg_data_t *pgdat;
6636 	struct zone *zone;
6637 
6638 	for_each_online_pgdat(pgdat)
6639 		pgdat->min_slab_pages = 0;
6640 
6641 	for_each_zone(zone)
6642 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6643 						     sysctl_min_slab_ratio) / 100;
6644 }
6645 
6646 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6647 		void *buffer, size_t *length, loff_t *ppos)
6648 {
6649 	int rc;
6650 
6651 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6652 	if (rc)
6653 		return rc;
6654 
6655 	setup_min_slab_ratio();
6656 
6657 	return 0;
6658 }
6659 #endif
6660 
6661 /*
6662  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6663  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6664  *	whenever sysctl_lowmem_reserve_ratio changes.
6665  *
6666  * The reserve ratio obviously has absolutely no relation with the
6667  * minimum watermarks. The lowmem reserve ratio can only make sense
6668  * if in function of the boot time zone sizes.
6669  */
6670 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6671 		int write, void *buffer, size_t *length, loff_t *ppos)
6672 {
6673 	int i;
6674 
6675 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6676 
6677 	for (i = 0; i < MAX_NR_ZONES; i++) {
6678 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6679 			sysctl_lowmem_reserve_ratio[i] = 0;
6680 	}
6681 
6682 	setup_per_zone_lowmem_reserve();
6683 	return 0;
6684 }
6685 
6686 /*
6687  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6688  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6689  * pagelist can have before it gets flushed back to buddy allocator.
6690  */
6691 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6692 		int write, void *buffer, size_t *length, loff_t *ppos)
6693 {
6694 	struct zone *zone;
6695 	int old_percpu_pagelist_high_fraction;
6696 	int ret;
6697 
6698 	/*
6699 	 * Avoid using pcp_batch_high_lock for reads as the value is read
6700 	 * atomically and a race with offlining is harmless.
6701 	 */
6702 
6703 	if (!write)
6704 		return proc_dointvec_minmax(table, write, buffer, length, ppos);
6705 
6706 	mutex_lock(&pcp_batch_high_lock);
6707 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6708 
6709 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6710 	if (ret < 0)
6711 		goto out;
6712 
6713 	/* Sanity checking to avoid pcp imbalance */
6714 	if (percpu_pagelist_high_fraction &&
6715 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6716 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6717 		ret = -EINVAL;
6718 		goto out;
6719 	}
6720 
6721 	/* No change? */
6722 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6723 		goto out;
6724 
6725 	for_each_populated_zone(zone)
6726 		zone_set_pageset_high_and_batch(zone, 0);
6727 out:
6728 	mutex_unlock(&pcp_batch_high_lock);
6729 	return ret;
6730 }
6731 
6732 static const struct ctl_table page_alloc_sysctl_table[] = {
6733 	{
6734 		.procname	= "min_free_kbytes",
6735 		.data		= &min_free_kbytes,
6736 		.maxlen		= sizeof(min_free_kbytes),
6737 		.mode		= 0644,
6738 		.proc_handler	= min_free_kbytes_sysctl_handler,
6739 		.extra1		= SYSCTL_ZERO,
6740 	},
6741 	{
6742 		.procname	= "watermark_boost_factor",
6743 		.data		= &watermark_boost_factor,
6744 		.maxlen		= sizeof(watermark_boost_factor),
6745 		.mode		= 0644,
6746 		.proc_handler	= proc_dointvec_minmax,
6747 		.extra1		= SYSCTL_ZERO,
6748 	},
6749 	{
6750 		.procname	= "watermark_scale_factor",
6751 		.data		= &watermark_scale_factor,
6752 		.maxlen		= sizeof(watermark_scale_factor),
6753 		.mode		= 0644,
6754 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6755 		.extra1		= SYSCTL_ONE,
6756 		.extra2		= SYSCTL_THREE_THOUSAND,
6757 	},
6758 	{
6759 		.procname	= "defrag_mode",
6760 		.data		= &defrag_mode,
6761 		.maxlen		= sizeof(defrag_mode),
6762 		.mode		= 0644,
6763 		.proc_handler	= proc_dointvec_minmax,
6764 		.extra1		= SYSCTL_ZERO,
6765 		.extra2		= SYSCTL_ONE,
6766 	},
6767 	{
6768 		.procname	= "percpu_pagelist_high_fraction",
6769 		.data		= &percpu_pagelist_high_fraction,
6770 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6771 		.mode		= 0644,
6772 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6773 		.extra1		= SYSCTL_ZERO,
6774 	},
6775 	{
6776 		.procname	= "lowmem_reserve_ratio",
6777 		.data		= &sysctl_lowmem_reserve_ratio,
6778 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6779 		.mode		= 0644,
6780 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6781 	},
6782 #ifdef CONFIG_NUMA
6783 	{
6784 		.procname	= "numa_zonelist_order",
6785 		.data		= &numa_zonelist_order,
6786 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6787 		.mode		= 0644,
6788 		.proc_handler	= numa_zonelist_order_handler,
6789 	},
6790 	{
6791 		.procname	= "min_unmapped_ratio",
6792 		.data		= &sysctl_min_unmapped_ratio,
6793 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6794 		.mode		= 0644,
6795 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6796 		.extra1		= SYSCTL_ZERO,
6797 		.extra2		= SYSCTL_ONE_HUNDRED,
6798 	},
6799 	{
6800 		.procname	= "min_slab_ratio",
6801 		.data		= &sysctl_min_slab_ratio,
6802 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6803 		.mode		= 0644,
6804 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6805 		.extra1		= SYSCTL_ZERO,
6806 		.extra2		= SYSCTL_ONE_HUNDRED,
6807 	},
6808 #endif
6809 };
6810 
6811 void __init page_alloc_sysctl_init(void)
6812 {
6813 	register_sysctl_init("vm", page_alloc_sysctl_table);
6814 }
6815 
6816 #ifdef CONFIG_CONTIG_ALLOC
6817 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6818 static void alloc_contig_dump_pages(struct list_head *page_list)
6819 {
6820 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6821 
6822 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6823 		struct page *page;
6824 
6825 		dump_stack();
6826 		list_for_each_entry(page, page_list, lru)
6827 			dump_page(page, "migration failure");
6828 	}
6829 }
6830 
6831 /* [start, end) must belong to a single zone. */
6832 static int __alloc_contig_migrate_range(struct compact_control *cc,
6833 					unsigned long start, unsigned long end)
6834 {
6835 	/* This function is based on compact_zone() from compaction.c. */
6836 	unsigned int nr_reclaimed;
6837 	unsigned long pfn = start;
6838 	unsigned int tries = 0;
6839 	int ret = 0;
6840 	struct migration_target_control mtc = {
6841 		.nid = zone_to_nid(cc->zone),
6842 		.gfp_mask = cc->gfp_mask,
6843 		.reason = MR_CONTIG_RANGE,
6844 	};
6845 
6846 	lru_cache_disable();
6847 
6848 	while (pfn < end || !list_empty(&cc->migratepages)) {
6849 		if (fatal_signal_pending(current)) {
6850 			ret = -EINTR;
6851 			break;
6852 		}
6853 
6854 		if (list_empty(&cc->migratepages)) {
6855 			cc->nr_migratepages = 0;
6856 			ret = isolate_migratepages_range(cc, pfn, end);
6857 			if (ret && ret != -EAGAIN)
6858 				break;
6859 			pfn = cc->migrate_pfn;
6860 			tries = 0;
6861 		} else if (++tries == 5) {
6862 			ret = -EBUSY;
6863 			break;
6864 		}
6865 
6866 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6867 							&cc->migratepages);
6868 		cc->nr_migratepages -= nr_reclaimed;
6869 
6870 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6871 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6872 
6873 		/*
6874 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6875 		 * to retry again over this error, so do the same here.
6876 		 */
6877 		if (ret == -ENOMEM)
6878 			break;
6879 	}
6880 
6881 	lru_cache_enable();
6882 	if (ret < 0) {
6883 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6884 			alloc_contig_dump_pages(&cc->migratepages);
6885 		putback_movable_pages(&cc->migratepages);
6886 	}
6887 
6888 	return (ret < 0) ? ret : 0;
6889 }
6890 
6891 static void split_free_frozen_pages(struct list_head *list, gfp_t gfp_mask)
6892 {
6893 	int order;
6894 
6895 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6896 		struct page *page, *next;
6897 		int nr_pages = 1 << order;
6898 
6899 		list_for_each_entry_safe(page, next, &list[order], lru) {
6900 			int i;
6901 
6902 			post_alloc_hook(page, order, gfp_mask);
6903 			if (!order)
6904 				continue;
6905 
6906 			__split_page(page, order);
6907 
6908 			/* Add all subpages to the order-0 head, in sequence. */
6909 			list_del(&page->lru);
6910 			for (i = 0; i < nr_pages; i++)
6911 				list_add_tail(&page[i].lru, &list[0]);
6912 		}
6913 	}
6914 }
6915 
6916 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6917 {
6918 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6919 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6920 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6921 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6922 
6923 	/*
6924 	 * We are given the range to allocate; node, mobility and placement
6925 	 * hints are irrelevant at this point. We'll simply ignore them.
6926 	 */
6927 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6928 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6929 
6930 	/*
6931 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6932 	 * selected action flags.
6933 	 */
6934 	if (gfp_mask & ~(reclaim_mask | action_mask))
6935 		return -EINVAL;
6936 
6937 	/*
6938 	 * Flags to control page compaction/migration/reclaim, to free up our
6939 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6940 	 * for them.
6941 	 *
6942 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6943 	 * to not degrade callers.
6944 	 */
6945 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6946 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6947 	return 0;
6948 }
6949 
6950 static void __free_contig_frozen_range(unsigned long pfn, unsigned long nr_pages)
6951 {
6952 	for (; nr_pages--; pfn++)
6953 		free_frozen_pages(pfn_to_page(pfn), 0);
6954 }
6955 
6956 /**
6957  * alloc_contig_frozen_range() -- tries to allocate given range of frozen pages
6958  * @start:	start PFN to allocate
6959  * @end:	one-past-the-last PFN to allocate
6960  * @alloc_flags:	allocation information
6961  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6962  *		action and reclaim modifiers are supported. Reclaim modifiers
6963  *		control allocation behavior during compaction/migration/reclaim.
6964  *
6965  * The PFN range does not have to be pageblock aligned. The PFN range must
6966  * belong to a single zone.
6967  *
6968  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6969  * pageblocks in the range.  Once isolated, the pageblocks should not
6970  * be modified by others.
6971  *
6972  * All frozen pages which PFN is in [start, end) are allocated for the
6973  * caller, and they could be freed with free_contig_frozen_range(),
6974  * free_frozen_pages() also could be used to free compound frozen pages
6975  * directly.
6976  *
6977  * Return: zero on success or negative error code.
6978  */
6979 int alloc_contig_frozen_range_noprof(unsigned long start, unsigned long end,
6980 		acr_flags_t alloc_flags, gfp_t gfp_mask)
6981 {
6982 	const unsigned int order = ilog2(end - start);
6983 	unsigned long outer_start, outer_end;
6984 	int ret = 0;
6985 
6986 	struct compact_control cc = {
6987 		.nr_migratepages = 0,
6988 		.order = -1,
6989 		.zone = page_zone(pfn_to_page(start)),
6990 		.mode = MIGRATE_SYNC,
6991 		.ignore_skip_hint = true,
6992 		.no_set_skip_hint = true,
6993 		.alloc_contig = true,
6994 	};
6995 	INIT_LIST_HEAD(&cc.migratepages);
6996 	enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ?
6997 					    PB_ISOLATE_MODE_CMA_ALLOC :
6998 					    PB_ISOLATE_MODE_OTHER;
6999 
7000 	/*
7001 	 * In contrast to the buddy, we allow for orders here that exceed
7002 	 * MAX_PAGE_ORDER, so we must manually make sure that we are not
7003 	 * exceeding the maximum folio order.
7004 	 */
7005 	if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER))
7006 		return -EINVAL;
7007 
7008 	gfp_mask = current_gfp_context(gfp_mask);
7009 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
7010 		return -EINVAL;
7011 
7012 	/*
7013 	 * What we do here is we mark all pageblocks in range as
7014 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7015 	 * have different sizes, and due to the way page allocator
7016 	 * work, start_isolate_page_range() has special handlings for this.
7017 	 *
7018 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7019 	 * migrate the pages from an unaligned range (ie. pages that
7020 	 * we are interested in). This will put all the pages in
7021 	 * range back to page allocator as MIGRATE_ISOLATE.
7022 	 *
7023 	 * When this is done, we take the pages in range from page
7024 	 * allocator removing them from the buddy system.  This way
7025 	 * page allocator will never consider using them.
7026 	 *
7027 	 * This lets us mark the pageblocks back as
7028 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7029 	 * aligned range but not in the unaligned, original range are
7030 	 * put back to page allocator so that buddy can use them.
7031 	 */
7032 
7033 	ret = start_isolate_page_range(start, end, mode);
7034 	if (ret)
7035 		goto done;
7036 
7037 	drain_all_pages(cc.zone);
7038 
7039 	/*
7040 	 * In case of -EBUSY, we'd like to know which page causes problem.
7041 	 * So, just fall through. test_pages_isolated() has a tracepoint
7042 	 * which will report the busy page.
7043 	 *
7044 	 * It is possible that busy pages could become available before
7045 	 * the call to test_pages_isolated, and the range will actually be
7046 	 * allocated.  So, if we fall through be sure to clear ret so that
7047 	 * -EBUSY is not accidentally used or returned to caller.
7048 	 */
7049 	ret = __alloc_contig_migrate_range(&cc, start, end);
7050 	if (ret && ret != -EBUSY)
7051 		goto done;
7052 
7053 	/*
7054 	 * When in-use hugetlb pages are migrated, they may simply be released
7055 	 * back into the free hugepage pool instead of being returned to the
7056 	 * buddy system.  After the migration of in-use huge pages is completed,
7057 	 * we will invoke replace_free_hugepage_folios() to ensure that these
7058 	 * hugepages are properly released to the buddy system.
7059 	 */
7060 	ret = replace_free_hugepage_folios(start, end);
7061 	if (ret)
7062 		goto done;
7063 
7064 	/*
7065 	 * Pages from [start, end) are within a pageblock_nr_pages
7066 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7067 	 * more, all pages in [start, end) are free in page allocator.
7068 	 * What we are going to do is to allocate all pages from
7069 	 * [start, end) (that is remove them from page allocator).
7070 	 *
7071 	 * The only problem is that pages at the beginning and at the
7072 	 * end of interesting range may be not aligned with pages that
7073 	 * page allocator holds, ie. they can be part of higher order
7074 	 * pages.  Because of this, we reserve the bigger range and
7075 	 * once this is done free the pages we are not interested in.
7076 	 *
7077 	 * We don't have to hold zone->lock here because the pages are
7078 	 * isolated thus they won't get removed from buddy.
7079 	 */
7080 	outer_start = find_large_buddy(start);
7081 
7082 	/* Make sure the range is really isolated. */
7083 	if (test_pages_isolated(outer_start, end, mode)) {
7084 		ret = -EBUSY;
7085 		goto done;
7086 	}
7087 
7088 	/* Grab isolated pages from freelists. */
7089 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7090 	if (!outer_end) {
7091 		ret = -EBUSY;
7092 		goto done;
7093 	}
7094 
7095 	if (!(gfp_mask & __GFP_COMP)) {
7096 		split_free_frozen_pages(cc.freepages, gfp_mask);
7097 
7098 		/* Free head and tail (if any) */
7099 		if (start != outer_start)
7100 			__free_contig_frozen_range(outer_start, start - outer_start);
7101 		if (end != outer_end)
7102 			__free_contig_frozen_range(end, outer_end - end);
7103 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
7104 		struct page *head = pfn_to_page(start);
7105 
7106 		check_new_pages(head, order);
7107 		prep_new_page(head, order, gfp_mask, 0);
7108 	} else {
7109 		ret = -EINVAL;
7110 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
7111 		     start, end, outer_start, outer_end);
7112 	}
7113 done:
7114 	undo_isolate_page_range(start, end);
7115 	return ret;
7116 }
7117 EXPORT_SYMBOL(alloc_contig_frozen_range_noprof);
7118 
7119 /**
7120  * alloc_contig_range() -- tries to allocate given range of pages
7121  * @start:	start PFN to allocate
7122  * @end:	one-past-the-last PFN to allocate
7123  * @alloc_flags:	allocation information
7124  * @gfp_mask:	GFP mask.
7125  *
7126  * This routine is a wrapper around alloc_contig_frozen_range(), it can't
7127  * be used to allocate compound pages, the refcount of each allocated page
7128  * will be set to one.
7129  *
7130  * All pages which PFN is in [start, end) are allocated for the caller,
7131  * and should be freed with free_contig_range() or by manually calling
7132  * __free_page() on each allocated page.
7133  *
7134  * Return: zero on success or negative error code.
7135  */
7136 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
7137 			      acr_flags_t alloc_flags, gfp_t gfp_mask)
7138 {
7139 	int ret;
7140 
7141 	if (WARN_ON(gfp_mask & __GFP_COMP))
7142 		return -EINVAL;
7143 
7144 	ret = alloc_contig_frozen_range_noprof(start, end, alloc_flags, gfp_mask);
7145 	if (!ret)
7146 		set_pages_refcounted(pfn_to_page(start), end - start);
7147 
7148 	return ret;
7149 }
7150 EXPORT_SYMBOL(alloc_contig_range_noprof);
7151 
7152 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
7153 				   unsigned long nr_pages, bool skip_hugetlb,
7154 				   bool *skipped_hugetlb)
7155 {
7156 	unsigned long end_pfn = start_pfn + nr_pages;
7157 	struct page *page;
7158 
7159 	while (start_pfn < end_pfn) {
7160 		unsigned long step = 1;
7161 
7162 		page = pfn_to_online_page(start_pfn);
7163 		if (!page)
7164 			return false;
7165 
7166 		if (page_zone(page) != z)
7167 			return false;
7168 
7169 		if (page_is_unmovable(z, page, PB_ISOLATE_MODE_OTHER, &step))
7170 			return false;
7171 
7172 		/*
7173 		 * Only consider ranges containing hugepages if those pages are
7174 		 * smaller than the requested contiguous region.  e.g.:
7175 		 *     Move 2MB pages to free up a 1GB range.
7176 		 *     Don't move 1GB pages to free up a 2MB range.
7177 		 *
7178 		 * This makes contiguous allocation more reliable if multiple
7179 		 * hugepage sizes are used without causing needless movement.
7180 		 */
7181 		if (PageHuge(page)) {
7182 			unsigned int order;
7183 
7184 			if (skip_hugetlb) {
7185 				*skipped_hugetlb = true;
7186 				return false;
7187 			}
7188 
7189 			page = compound_head(page);
7190 			order = compound_order(page);
7191 			if ((order >= MAX_FOLIO_ORDER) ||
7192 			    (nr_pages <= (1 << order)))
7193 				return false;
7194 		}
7195 
7196 		start_pfn += step;
7197 	}
7198 	return true;
7199 }
7200 
7201 static bool zone_spans_last_pfn(const struct zone *zone,
7202 				unsigned long start_pfn, unsigned long nr_pages)
7203 {
7204 	unsigned long last_pfn = start_pfn + nr_pages - 1;
7205 
7206 	return zone_spans_pfn(zone, last_pfn);
7207 }
7208 
7209 /**
7210  * alloc_contig_frozen_pages() -- tries to find and allocate contiguous range of frozen pages
7211  * @nr_pages:	Number of contiguous pages to allocate
7212  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
7213  *		action and reclaim modifiers are supported. Reclaim modifiers
7214  *		control allocation behavior during compaction/migration/reclaim.
7215  * @nid:	Target node
7216  * @nodemask:	Mask for other possible nodes
7217  *
7218  * This routine is a wrapper around alloc_contig_frozen_range(). It scans over
7219  * zones on an applicable zonelist to find a contiguous pfn range which can then
7220  * be tried for allocation with alloc_contig_frozen_range(). This routine is
7221  * intended for allocation requests which can not be fulfilled with the buddy
7222  * allocator.
7223  *
7224  * The allocated memory is always aligned to a page boundary. If nr_pages is a
7225  * power of two, then allocated range is also guaranteed to be aligned to same
7226  * nr_pages (e.g. 1GB request would be aligned to 1GB).
7227  *
7228  * Allocated frozen pages need be freed with free_contig_frozen_range(),
7229  * or by manually calling free_frozen_pages() on each allocated frozen
7230  * non-compound page, for compound frozen pages could be freed with
7231  * free_frozen_pages() directly.
7232  *
7233  * Return: pointer to contiguous frozen pages on success, or NULL if not successful.
7234  */
7235 struct page *alloc_contig_frozen_pages_noprof(unsigned long nr_pages,
7236 		gfp_t gfp_mask, int nid, nodemask_t *nodemask)
7237 {
7238 	unsigned long ret, pfn, flags;
7239 	struct zonelist *zonelist;
7240 	struct zone *zone;
7241 	struct zoneref *z;
7242 	bool skip_hugetlb = true;
7243 	bool skipped_hugetlb = false;
7244 
7245 retry:
7246 	zonelist = node_zonelist(nid, gfp_mask);
7247 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
7248 					gfp_zone(gfp_mask), nodemask) {
7249 		spin_lock_irqsave(&zone->lock, flags);
7250 
7251 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
7252 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
7253 			if (pfn_range_valid_contig(zone, pfn, nr_pages,
7254 						   skip_hugetlb,
7255 						   &skipped_hugetlb)) {
7256 				/*
7257 				 * We release the zone lock here because
7258 				 * alloc_contig_frozen_range() will also lock
7259 				 * the zone at some point. If there's an
7260 				 * allocation spinning on this lock, it may
7261 				 * win the race and cause allocation to fail.
7262 				 */
7263 				spin_unlock_irqrestore(&zone->lock, flags);
7264 				ret = alloc_contig_frozen_range_noprof(pfn,
7265 							pfn + nr_pages,
7266 							ACR_FLAGS_NONE,
7267 							gfp_mask);
7268 				if (!ret)
7269 					return pfn_to_page(pfn);
7270 				spin_lock_irqsave(&zone->lock, flags);
7271 			}
7272 			pfn += nr_pages;
7273 		}
7274 		spin_unlock_irqrestore(&zone->lock, flags);
7275 	}
7276 	/*
7277 	 * If we failed, retry the search, but treat regions with HugeTLB pages
7278 	 * as valid targets.  This retains fast-allocations on first pass
7279 	 * without trying to migrate HugeTLB pages (which may fail). On the
7280 	 * second pass, we will try moving HugeTLB pages when those pages are
7281 	 * smaller than the requested contiguous region size.
7282 	 */
7283 	if (skip_hugetlb && skipped_hugetlb) {
7284 		skip_hugetlb = false;
7285 		goto retry;
7286 	}
7287 	return NULL;
7288 }
7289 EXPORT_SYMBOL(alloc_contig_frozen_pages_noprof);
7290 
7291 /**
7292  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
7293  * @nr_pages:	Number of contiguous pages to allocate
7294  * @gfp_mask:	GFP mask.
7295  * @nid:	Target node
7296  * @nodemask:	Mask for other possible nodes
7297  *
7298  * This routine is a wrapper around alloc_contig_frozen_pages(), it can't
7299  * be used to allocate compound pages, the refcount of each allocated page
7300  * will be set to one.
7301  *
7302  * Allocated pages can be freed with free_contig_range() or by manually
7303  * calling __free_page() on each allocated page.
7304  *
7305  * Return: pointer to contiguous pages on success, or NULL if not successful.
7306  */
7307 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
7308 		int nid, nodemask_t *nodemask)
7309 {
7310 	struct page *page;
7311 
7312 	if (WARN_ON(gfp_mask & __GFP_COMP))
7313 		return NULL;
7314 
7315 	page = alloc_contig_frozen_pages_noprof(nr_pages, gfp_mask, nid,
7316 						nodemask);
7317 	if (page)
7318 		set_pages_refcounted(page, nr_pages);
7319 
7320 	return page;
7321 }
7322 EXPORT_SYMBOL(alloc_contig_pages_noprof);
7323 
7324 /**
7325  * free_contig_frozen_range() -- free the contiguous range of frozen pages
7326  * @pfn:	start PFN to free
7327  * @nr_pages:	Number of contiguous frozen pages to free
7328  *
7329  * This can be used to free the allocated compound/non-compound frozen pages.
7330  */
7331 void free_contig_frozen_range(unsigned long pfn, unsigned long nr_pages)
7332 {
7333 	struct page *first_page = pfn_to_page(pfn);
7334 	const unsigned int order = ilog2(nr_pages);
7335 
7336 	if (WARN_ON_ONCE(first_page != compound_head(first_page)))
7337 		return;
7338 
7339 	if (PageHead(first_page)) {
7340 		WARN_ON_ONCE(order != compound_order(first_page));
7341 		free_frozen_pages(first_page, order);
7342 		return;
7343 	}
7344 
7345 	__free_contig_frozen_range(pfn, nr_pages);
7346 }
7347 EXPORT_SYMBOL(free_contig_frozen_range);
7348 
7349 /**
7350  * free_contig_range() -- free the contiguous range of pages
7351  * @pfn:	start PFN to free
7352  * @nr_pages:	Number of contiguous pages to free
7353  *
7354  * This can be only used to free the allocated non-compound pages.
7355  */
7356 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
7357 {
7358 	if (WARN_ON_ONCE(PageHead(pfn_to_page(pfn))))
7359 		return;
7360 
7361 	for (; nr_pages--; pfn++)
7362 		__free_page(pfn_to_page(pfn));
7363 }
7364 EXPORT_SYMBOL(free_contig_range);
7365 #endif /* CONFIG_CONTIG_ALLOC */
7366 
7367 /*
7368  * Effectively disable pcplists for the zone by setting the high limit to 0
7369  * and draining all cpus. A concurrent page freeing on another CPU that's about
7370  * to put the page on pcplist will either finish before the drain and the page
7371  * will be drained, or observe the new high limit and skip the pcplist.
7372  *
7373  * Must be paired with a call to zone_pcp_enable().
7374  */
7375 void zone_pcp_disable(struct zone *zone)
7376 {
7377 	mutex_lock(&pcp_batch_high_lock);
7378 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
7379 	__drain_all_pages(zone, true);
7380 }
7381 
7382 void zone_pcp_enable(struct zone *zone)
7383 {
7384 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
7385 		zone->pageset_high_max, zone->pageset_batch);
7386 	mutex_unlock(&pcp_batch_high_lock);
7387 }
7388 
7389 void zone_pcp_reset(struct zone *zone)
7390 {
7391 	int cpu;
7392 	struct per_cpu_zonestat *pzstats;
7393 
7394 	if (zone->per_cpu_pageset != &boot_pageset) {
7395 		for_each_online_cpu(cpu) {
7396 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7397 			drain_zonestat(zone, pzstats);
7398 		}
7399 		free_percpu(zone->per_cpu_pageset);
7400 		zone->per_cpu_pageset = &boot_pageset;
7401 		if (zone->per_cpu_zonestats != &boot_zonestats) {
7402 			free_percpu(zone->per_cpu_zonestats);
7403 			zone->per_cpu_zonestats = &boot_zonestats;
7404 		}
7405 	}
7406 }
7407 
7408 #ifdef CONFIG_MEMORY_HOTREMOVE
7409 /*
7410  * All pages in the range must be in a single zone, must not contain holes,
7411  * must span full sections, and must be isolated before calling this function.
7412  *
7413  * Returns the number of managed (non-PageOffline()) pages in the range: the
7414  * number of pages for which memory offlining code must adjust managed page
7415  * counters using adjust_managed_page_count().
7416  */
7417 unsigned long __offline_isolated_pages(unsigned long start_pfn,
7418 		unsigned long end_pfn)
7419 {
7420 	unsigned long already_offline = 0, flags;
7421 	unsigned long pfn = start_pfn;
7422 	struct page *page;
7423 	struct zone *zone;
7424 	unsigned int order;
7425 
7426 	offline_mem_sections(pfn, end_pfn);
7427 	zone = page_zone(pfn_to_page(pfn));
7428 	spin_lock_irqsave(&zone->lock, flags);
7429 	while (pfn < end_pfn) {
7430 		page = pfn_to_page(pfn);
7431 		/*
7432 		 * The HWPoisoned page may be not in buddy system, and
7433 		 * page_count() is not 0.
7434 		 */
7435 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7436 			pfn++;
7437 			continue;
7438 		}
7439 		/*
7440 		 * At this point all remaining PageOffline() pages have a
7441 		 * reference count of 0 and can simply be skipped.
7442 		 */
7443 		if (PageOffline(page)) {
7444 			BUG_ON(page_count(page));
7445 			BUG_ON(PageBuddy(page));
7446 			already_offline++;
7447 			pfn++;
7448 			continue;
7449 		}
7450 
7451 		BUG_ON(page_count(page));
7452 		BUG_ON(!PageBuddy(page));
7453 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7454 		order = buddy_order(page);
7455 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7456 		pfn += (1 << order);
7457 	}
7458 	spin_unlock_irqrestore(&zone->lock, flags);
7459 
7460 	return end_pfn - start_pfn - already_offline;
7461 }
7462 #endif
7463 
7464 /*
7465  * This function returns a stable result only if called under zone lock.
7466  */
7467 bool is_free_buddy_page(const struct page *page)
7468 {
7469 	unsigned long pfn = page_to_pfn(page);
7470 	unsigned int order;
7471 
7472 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7473 		const struct page *head = page - (pfn & ((1 << order) - 1));
7474 
7475 		if (PageBuddy(head) &&
7476 		    buddy_order_unsafe(head) >= order)
7477 			break;
7478 	}
7479 
7480 	return order <= MAX_PAGE_ORDER;
7481 }
7482 EXPORT_SYMBOL(is_free_buddy_page);
7483 
7484 #ifdef CONFIG_MEMORY_FAILURE
7485 static inline void add_to_free_list(struct page *page, struct zone *zone,
7486 				    unsigned int order, int migratetype,
7487 				    bool tail)
7488 {
7489 	__add_to_free_list(page, zone, order, migratetype, tail);
7490 	account_freepages(zone, 1 << order, migratetype);
7491 }
7492 
7493 /*
7494  * Break down a higher-order page in sub-pages, and keep our target out of
7495  * buddy allocator.
7496  */
7497 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7498 				   struct page *target, int low, int high,
7499 				   int migratetype)
7500 {
7501 	unsigned long size = 1 << high;
7502 	struct page *current_buddy;
7503 
7504 	while (high > low) {
7505 		high--;
7506 		size >>= 1;
7507 
7508 		if (target >= &page[size]) {
7509 			current_buddy = page;
7510 			page = page + size;
7511 		} else {
7512 			current_buddy = page + size;
7513 		}
7514 
7515 		if (set_page_guard(zone, current_buddy, high))
7516 			continue;
7517 
7518 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7519 		set_buddy_order(current_buddy, high);
7520 	}
7521 }
7522 
7523 /*
7524  * Take a page that will be marked as poisoned off the buddy allocator.
7525  */
7526 bool take_page_off_buddy(struct page *page)
7527 {
7528 	struct zone *zone = page_zone(page);
7529 	unsigned long pfn = page_to_pfn(page);
7530 	unsigned long flags;
7531 	unsigned int order;
7532 	bool ret = false;
7533 
7534 	spin_lock_irqsave(&zone->lock, flags);
7535 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7536 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7537 		int page_order = buddy_order(page_head);
7538 
7539 		if (PageBuddy(page_head) && page_order >= order) {
7540 			unsigned long pfn_head = page_to_pfn(page_head);
7541 			int migratetype = get_pfnblock_migratetype(page_head,
7542 								   pfn_head);
7543 
7544 			del_page_from_free_list(page_head, zone, page_order,
7545 						migratetype);
7546 			break_down_buddy_pages(zone, page_head, page, 0,
7547 						page_order, migratetype);
7548 			SetPageHWPoisonTakenOff(page);
7549 			ret = true;
7550 			break;
7551 		}
7552 		if (page_count(page_head) > 0)
7553 			break;
7554 	}
7555 	spin_unlock_irqrestore(&zone->lock, flags);
7556 	return ret;
7557 }
7558 
7559 /*
7560  * Cancel takeoff done by take_page_off_buddy().
7561  */
7562 bool put_page_back_buddy(struct page *page)
7563 {
7564 	struct zone *zone = page_zone(page);
7565 	unsigned long flags;
7566 	bool ret = false;
7567 
7568 	spin_lock_irqsave(&zone->lock, flags);
7569 	if (put_page_testzero(page)) {
7570 		unsigned long pfn = page_to_pfn(page);
7571 		int migratetype = get_pfnblock_migratetype(page, pfn);
7572 
7573 		ClearPageHWPoisonTakenOff(page);
7574 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7575 		if (TestClearPageHWPoison(page)) {
7576 			ret = true;
7577 		}
7578 	}
7579 	spin_unlock_irqrestore(&zone->lock, flags);
7580 
7581 	return ret;
7582 }
7583 #endif
7584 
7585 bool has_managed_zone(enum zone_type zone)
7586 {
7587 	struct pglist_data *pgdat;
7588 
7589 	for_each_online_pgdat(pgdat) {
7590 		if (managed_zone(&pgdat->node_zones[zone]))
7591 			return true;
7592 	}
7593 	return false;
7594 }
7595 
7596 #ifdef CONFIG_UNACCEPTED_MEMORY
7597 
7598 static bool lazy_accept = true;
7599 
7600 static int __init accept_memory_parse(char *p)
7601 {
7602 	if (!strcmp(p, "lazy")) {
7603 		lazy_accept = true;
7604 		return 0;
7605 	} else if (!strcmp(p, "eager")) {
7606 		lazy_accept = false;
7607 		return 0;
7608 	} else {
7609 		return -EINVAL;
7610 	}
7611 }
7612 early_param("accept_memory", accept_memory_parse);
7613 
7614 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7615 {
7616 	phys_addr_t start = page_to_phys(page);
7617 
7618 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7619 }
7620 
7621 static void __accept_page(struct zone *zone, unsigned long *flags,
7622 			  struct page *page)
7623 {
7624 	list_del(&page->lru);
7625 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7626 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7627 	__ClearPageUnaccepted(page);
7628 	spin_unlock_irqrestore(&zone->lock, *flags);
7629 
7630 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7631 
7632 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7633 }
7634 
7635 void accept_page(struct page *page)
7636 {
7637 	struct zone *zone = page_zone(page);
7638 	unsigned long flags;
7639 
7640 	spin_lock_irqsave(&zone->lock, flags);
7641 	if (!PageUnaccepted(page)) {
7642 		spin_unlock_irqrestore(&zone->lock, flags);
7643 		return;
7644 	}
7645 
7646 	/* Unlocks zone->lock */
7647 	__accept_page(zone, &flags, page);
7648 }
7649 
7650 static bool try_to_accept_memory_one(struct zone *zone)
7651 {
7652 	unsigned long flags;
7653 	struct page *page;
7654 
7655 	spin_lock_irqsave(&zone->lock, flags);
7656 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7657 					struct page, lru);
7658 	if (!page) {
7659 		spin_unlock_irqrestore(&zone->lock, flags);
7660 		return false;
7661 	}
7662 
7663 	/* Unlocks zone->lock */
7664 	__accept_page(zone, &flags, page);
7665 
7666 	return true;
7667 }
7668 
7669 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7670 			       int alloc_flags)
7671 {
7672 	long to_accept, wmark;
7673 	bool ret = false;
7674 
7675 	if (list_empty(&zone->unaccepted_pages))
7676 		return false;
7677 
7678 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7679 	if (alloc_flags & ALLOC_TRYLOCK)
7680 		return false;
7681 
7682 	wmark = promo_wmark_pages(zone);
7683 
7684 	/*
7685 	 * Watermarks have not been initialized yet.
7686 	 *
7687 	 * Accepting one MAX_ORDER page to ensure progress.
7688 	 */
7689 	if (!wmark)
7690 		return try_to_accept_memory_one(zone);
7691 
7692 	/* How much to accept to get to promo watermark? */
7693 	to_accept = wmark -
7694 		    (zone_page_state(zone, NR_FREE_PAGES) -
7695 		    __zone_watermark_unusable_free(zone, order, 0) -
7696 		    zone_page_state(zone, NR_UNACCEPTED));
7697 
7698 	while (to_accept > 0) {
7699 		if (!try_to_accept_memory_one(zone))
7700 			break;
7701 		ret = true;
7702 		to_accept -= MAX_ORDER_NR_PAGES;
7703 	}
7704 
7705 	return ret;
7706 }
7707 
7708 static bool __free_unaccepted(struct page *page)
7709 {
7710 	struct zone *zone = page_zone(page);
7711 	unsigned long flags;
7712 
7713 	if (!lazy_accept)
7714 		return false;
7715 
7716 	spin_lock_irqsave(&zone->lock, flags);
7717 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7718 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7719 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7720 	__SetPageUnaccepted(page);
7721 	spin_unlock_irqrestore(&zone->lock, flags);
7722 
7723 	return true;
7724 }
7725 
7726 #else
7727 
7728 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7729 {
7730 	return false;
7731 }
7732 
7733 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7734 			       int alloc_flags)
7735 {
7736 	return false;
7737 }
7738 
7739 static bool __free_unaccepted(struct page *page)
7740 {
7741 	BUILD_BUG();
7742 	return false;
7743 }
7744 
7745 #endif /* CONFIG_UNACCEPTED_MEMORY */
7746 
7747 struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order)
7748 {
7749 	/*
7750 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7751 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7752 	 * is not safe in arbitrary context.
7753 	 *
7754 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7755 	 *
7756 	 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason
7757 	 * to warn. Also warn would trigger printk() which is unsafe from
7758 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7759 	 * since the running context is unknown.
7760 	 *
7761 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7762 	 * is safe in any context. Also zeroing the page is mandatory for
7763 	 * BPF use cases.
7764 	 *
7765 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7766 	 * specify it here to highlight that alloc_pages_nolock()
7767 	 * doesn't want to deplete reserves.
7768 	 */
7769 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | __GFP_COMP
7770 			| gfp_flags;
7771 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7772 	struct alloc_context ac = { };
7773 	struct page *page;
7774 
7775 	VM_WARN_ON_ONCE(gfp_flags & ~__GFP_ACCOUNT);
7776 	/*
7777 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7778 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7779 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7780 	 * mark the task as the owner of another rt_spin_lock which will
7781 	 * confuse PI logic, so return immediately if called from hard IRQ or
7782 	 * NMI.
7783 	 *
7784 	 * Note, irqs_disabled() case is ok. This function can be called
7785 	 * from raw_spin_lock_irqsave region.
7786 	 */
7787 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7788 		return NULL;
7789 	if (!pcp_allowed_order(order))
7790 		return NULL;
7791 
7792 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7793 	if (deferred_pages_enabled())
7794 		return NULL;
7795 
7796 	if (nid == NUMA_NO_NODE)
7797 		nid = numa_node_id();
7798 
7799 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7800 			    &alloc_gfp, &alloc_flags);
7801 
7802 	/*
7803 	 * Best effort allocation from percpu free list.
7804 	 * If it's empty attempt to spin_trylock zone->lock.
7805 	 */
7806 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7807 
7808 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7809 
7810 	if (memcg_kmem_online() && page && (gfp_flags & __GFP_ACCOUNT) &&
7811 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7812 		__free_frozen_pages(page, order, FPI_TRYLOCK);
7813 		page = NULL;
7814 	}
7815 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7816 	kmsan_alloc_page(page, order, alloc_gfp);
7817 	return page;
7818 }
7819 /**
7820  * alloc_pages_nolock - opportunistic reentrant allocation from any context
7821  * @gfp_flags: GFP flags. Only __GFP_ACCOUNT allowed.
7822  * @nid: node to allocate from
7823  * @order: allocation order size
7824  *
7825  * Allocates pages of a given order from the given node. This is safe to
7826  * call from any context (from atomic, NMI, and also reentrant
7827  * allocator -> tracepoint -> alloc_pages_nolock_noprof).
7828  * Allocation is best effort and to be expected to fail easily so nobody should
7829  * rely on the success. Failures are not reported via warn_alloc().
7830  * See always fail conditions below.
7831  *
7832  * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN.
7833  * It means ENOMEM. There is no reason to call it again and expect !NULL.
7834  */
7835 struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order)
7836 {
7837 	struct page *page;
7838 
7839 	page = alloc_frozen_pages_nolock_noprof(gfp_flags, nid, order);
7840 	if (page)
7841 		set_page_refcounted(page);
7842 	return page;
7843 }
7844 EXPORT_SYMBOL_GPL(alloc_pages_nolock_noprof);
7845