1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/interrupt.h> 21 #include <linux/jiffies.h> 22 #include <linux/compiler.h> 23 #include <linux/kernel.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/ratelimit.h> 29 #include <linux/oom.h> 30 #include <linux/topology.h> 31 #include <linux/sysctl.h> 32 #include <linux/cpu.h> 33 #include <linux/cpuset.h> 34 #include <linux/pagevec.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmstat.h> 38 #include <linux/fault-inject.h> 39 #include <linux/compaction.h> 40 #include <trace/events/kmem.h> 41 #include <trace/events/oom.h> 42 #include <linux/prefetch.h> 43 #include <linux/mm_inline.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/migrate.h> 46 #include <linux/sched/mm.h> 47 #include <linux/page_owner.h> 48 #include <linux/page_table_check.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/lockdep.h> 52 #include <linux/psi.h> 53 #include <linux/khugepaged.h> 54 #include <linux/delayacct.h> 55 #include <linux/cacheinfo.h> 56 #include <linux/pgalloc_tag.h> 57 #include <asm/div64.h> 58 #include "internal.h" 59 #include "shuffle.h" 60 #include "page_reporting.h" 61 62 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 63 typedef int __bitwise fpi_t; 64 65 /* No special request */ 66 #define FPI_NONE ((__force fpi_t)0) 67 68 /* 69 * Skip free page reporting notification for the (possibly merged) page. 70 * This does not hinder free page reporting from grabbing the page, 71 * reporting it and marking it "reported" - it only skips notifying 72 * the free page reporting infrastructure about a newly freed page. For 73 * example, used when temporarily pulling a page from a freelist and 74 * putting it back unmodified. 75 */ 76 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 77 78 /* 79 * Place the (possibly merged) page to the tail of the freelist. Will ignore 80 * page shuffling (relevant code - e.g., memory onlining - is expected to 81 * shuffle the whole zone). 82 * 83 * Note: No code should rely on this flag for correctness - it's purely 84 * to allow for optimizations when handing back either fresh pages 85 * (memory onlining) or untouched pages (page isolation, free page 86 * reporting). 87 */ 88 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 89 90 /* Free the page without taking locks. Rely on trylock only. */ 91 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 92 93 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 94 static DEFINE_MUTEX(pcp_batch_high_lock); 95 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 96 97 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 98 /* 99 * On SMP, spin_trylock is sufficient protection. 100 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 101 * Pass flags to a no-op inline function to typecheck and silence the unused 102 * variable warning. 103 */ 104 static inline void __pcp_trylock_noop(unsigned long *flags) { } 105 #define pcp_trylock_prepare(flags) __pcp_trylock_noop(&(flags)) 106 #define pcp_trylock_finish(flags) __pcp_trylock_noop(&(flags)) 107 #else 108 109 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 110 #define pcp_trylock_prepare(flags) local_irq_save(flags) 111 #define pcp_trylock_finish(flags) local_irq_restore(flags) 112 #endif 113 114 /* 115 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 116 * a migration causing the wrong PCP to be locked and remote memory being 117 * potentially allocated, pin the task to the CPU for the lookup+lock. 118 * preempt_disable is used on !RT because it is faster than migrate_disable. 119 * migrate_disable is used on RT because otherwise RT spinlock usage is 120 * interfered with and a high priority task cannot preempt the allocator. 121 */ 122 #ifndef CONFIG_PREEMPT_RT 123 #define pcpu_task_pin() preempt_disable() 124 #define pcpu_task_unpin() preempt_enable() 125 #else 126 #define pcpu_task_pin() migrate_disable() 127 #define pcpu_task_unpin() migrate_enable() 128 #endif 129 130 /* 131 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 132 * Return value should be used with equivalent unlock helper. 133 */ 134 #define pcpu_spin_trylock(type, member, ptr) \ 135 ({ \ 136 type *_ret; \ 137 pcpu_task_pin(); \ 138 _ret = this_cpu_ptr(ptr); \ 139 if (!spin_trylock(&_ret->member)) { \ 140 pcpu_task_unpin(); \ 141 _ret = NULL; \ 142 } \ 143 _ret; \ 144 }) 145 146 #define pcpu_spin_unlock(member, ptr) \ 147 ({ \ 148 spin_unlock(&ptr->member); \ 149 pcpu_task_unpin(); \ 150 }) 151 152 /* struct per_cpu_pages specific helpers. */ 153 #define pcp_spin_trylock(ptr, UP_flags) \ 154 ({ \ 155 struct per_cpu_pages *__ret; \ 156 pcp_trylock_prepare(UP_flags); \ 157 __ret = pcpu_spin_trylock(struct per_cpu_pages, lock, ptr); \ 158 if (!__ret) \ 159 pcp_trylock_finish(UP_flags); \ 160 __ret; \ 161 }) 162 163 #define pcp_spin_unlock(ptr, UP_flags) \ 164 ({ \ 165 pcpu_spin_unlock(lock, ptr); \ 166 pcp_trylock_finish(UP_flags); \ 167 }) 168 169 /* 170 * With the UP spinlock implementation, when we spin_lock(&pcp->lock) (for i.e. 171 * a potentially remote cpu drain) and get interrupted by an operation that 172 * attempts pcp_spin_trylock(), we can't rely on the trylock failure due to UP 173 * spinlock assumptions making the trylock a no-op. So we have to turn that 174 * spin_lock() to a spin_lock_irqsave(). This works because on UP there are no 175 * remote cpu's so we can only be locking the only existing local one. 176 */ 177 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 178 static inline void __flags_noop(unsigned long *flags) { } 179 #define pcp_spin_lock_maybe_irqsave(ptr, flags) \ 180 ({ \ 181 __flags_noop(&(flags)); \ 182 spin_lock(&(ptr)->lock); \ 183 }) 184 #define pcp_spin_unlock_maybe_irqrestore(ptr, flags) \ 185 ({ \ 186 spin_unlock(&(ptr)->lock); \ 187 __flags_noop(&(flags)); \ 188 }) 189 #else 190 #define pcp_spin_lock_maybe_irqsave(ptr, flags) \ 191 spin_lock_irqsave(&(ptr)->lock, flags) 192 #define pcp_spin_unlock_maybe_irqrestore(ptr, flags) \ 193 spin_unlock_irqrestore(&(ptr)->lock, flags) 194 #endif 195 196 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 197 DEFINE_PER_CPU(int, numa_node); 198 EXPORT_PER_CPU_SYMBOL(numa_node); 199 #endif 200 201 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 202 203 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 204 /* 205 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 206 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 207 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 208 * defined in <linux/topology.h>. 209 */ 210 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 211 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 212 #endif 213 214 static DEFINE_MUTEX(pcpu_drain_mutex); 215 216 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 217 volatile unsigned long latent_entropy __latent_entropy; 218 EXPORT_SYMBOL(latent_entropy); 219 #endif 220 221 /* 222 * Array of node states. 223 */ 224 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 225 [N_POSSIBLE] = NODE_MASK_ALL, 226 [N_ONLINE] = { { [0] = 1UL } }, 227 #ifndef CONFIG_NUMA 228 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 229 #ifdef CONFIG_HIGHMEM 230 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 231 #endif 232 [N_MEMORY] = { { [0] = 1UL } }, 233 [N_CPU] = { { [0] = 1UL } }, 234 #endif /* NUMA */ 235 }; 236 EXPORT_SYMBOL(node_states); 237 238 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 239 240 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 241 unsigned int pageblock_order __read_mostly; 242 #endif 243 244 static void __free_pages_ok(struct page *page, unsigned int order, 245 fpi_t fpi_flags); 246 247 /* 248 * results with 256, 32 in the lowmem_reserve sysctl: 249 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 250 * 1G machine -> (16M dma, 784M normal, 224M high) 251 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 252 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 253 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 254 * 255 * TBD: should special case ZONE_DMA32 machines here - in those we normally 256 * don't need any ZONE_NORMAL reservation 257 */ 258 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 259 #ifdef CONFIG_ZONE_DMA 260 [ZONE_DMA] = 256, 261 #endif 262 #ifdef CONFIG_ZONE_DMA32 263 [ZONE_DMA32] = 256, 264 #endif 265 [ZONE_NORMAL] = 32, 266 #ifdef CONFIG_HIGHMEM 267 [ZONE_HIGHMEM] = 0, 268 #endif 269 [ZONE_MOVABLE] = 0, 270 }; 271 272 char * const zone_names[MAX_NR_ZONES] = { 273 #ifdef CONFIG_ZONE_DMA 274 "DMA", 275 #endif 276 #ifdef CONFIG_ZONE_DMA32 277 "DMA32", 278 #endif 279 "Normal", 280 #ifdef CONFIG_HIGHMEM 281 "HighMem", 282 #endif 283 "Movable", 284 #ifdef CONFIG_ZONE_DEVICE 285 "Device", 286 #endif 287 }; 288 289 const char * const migratetype_names[MIGRATE_TYPES] = { 290 "Unmovable", 291 "Movable", 292 "Reclaimable", 293 "HighAtomic", 294 #ifdef CONFIG_CMA 295 "CMA", 296 #endif 297 #ifdef CONFIG_MEMORY_ISOLATION 298 "Isolate", 299 #endif 300 }; 301 302 int min_free_kbytes = 1024; 303 int user_min_free_kbytes = -1; 304 static int watermark_boost_factor __read_mostly = 15000; 305 static int watermark_scale_factor = 10; 306 int defrag_mode; 307 308 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 309 int movable_zone; 310 EXPORT_SYMBOL(movable_zone); 311 312 #if MAX_NUMNODES > 1 313 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 314 unsigned int nr_online_nodes __read_mostly = 1; 315 EXPORT_SYMBOL(nr_node_ids); 316 EXPORT_SYMBOL(nr_online_nodes); 317 #endif 318 319 static bool page_contains_unaccepted(struct page *page, unsigned int order); 320 static bool cond_accept_memory(struct zone *zone, unsigned int order, 321 int alloc_flags); 322 static bool __free_unaccepted(struct page *page); 323 324 int page_group_by_mobility_disabled __read_mostly; 325 326 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 327 /* 328 * During boot we initialize deferred pages on-demand, as needed, but once 329 * page_alloc_init_late() has finished, the deferred pages are all initialized, 330 * and we can permanently disable that path. 331 */ 332 DEFINE_STATIC_KEY_TRUE(deferred_pages); 333 334 static inline bool deferred_pages_enabled(void) 335 { 336 return static_branch_unlikely(&deferred_pages); 337 } 338 339 /* 340 * deferred_grow_zone() is __init, but it is called from 341 * get_page_from_freelist() during early boot until deferred_pages permanently 342 * disables this call. This is why we have refdata wrapper to avoid warning, 343 * and to ensure that the function body gets unloaded. 344 */ 345 static bool __ref 346 _deferred_grow_zone(struct zone *zone, unsigned int order) 347 { 348 return deferred_grow_zone(zone, order); 349 } 350 #else 351 static inline bool deferred_pages_enabled(void) 352 { 353 return false; 354 } 355 356 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 357 { 358 return false; 359 } 360 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 361 362 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 363 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 364 unsigned long pfn) 365 { 366 #ifdef CONFIG_SPARSEMEM 367 return section_to_usemap(__pfn_to_section(pfn)); 368 #else 369 return page_zone(page)->pageblock_flags; 370 #endif /* CONFIG_SPARSEMEM */ 371 } 372 373 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 374 { 375 #ifdef CONFIG_SPARSEMEM 376 pfn &= (PAGES_PER_SECTION-1); 377 #else 378 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 379 #endif /* CONFIG_SPARSEMEM */ 380 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 381 } 382 383 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit) 384 { 385 return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS; 386 } 387 388 static __always_inline void 389 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn, 390 unsigned long **bitmap_word, unsigned long *bitidx) 391 { 392 unsigned long *bitmap; 393 unsigned long word_bitidx; 394 395 #ifdef CONFIG_MEMORY_ISOLATION 396 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8); 397 #else 398 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 399 #endif 400 BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK); 401 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 402 403 bitmap = get_pageblock_bitmap(page, pfn); 404 *bitidx = pfn_to_bitidx(page, pfn); 405 word_bitidx = *bitidx / BITS_PER_LONG; 406 *bitidx &= (BITS_PER_LONG - 1); 407 *bitmap_word = &bitmap[word_bitidx]; 408 } 409 410 411 /** 412 * __get_pfnblock_flags_mask - Return the requested group of flags for 413 * a pageblock_nr_pages block of pages 414 * @page: The page within the block of interest 415 * @pfn: The target page frame number 416 * @mask: mask of bits that the caller is interested in 417 * 418 * Return: pageblock_bits flags 419 */ 420 static unsigned long __get_pfnblock_flags_mask(const struct page *page, 421 unsigned long pfn, 422 unsigned long mask) 423 { 424 unsigned long *bitmap_word; 425 unsigned long bitidx; 426 unsigned long word; 427 428 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 429 /* 430 * This races, without locks, with set_pfnblock_migratetype(). Ensure 431 * a consistent read of the memory array, so that results, even though 432 * racy, are not corrupted. 433 */ 434 word = READ_ONCE(*bitmap_word); 435 return (word >> bitidx) & mask; 436 } 437 438 /** 439 * get_pfnblock_bit - Check if a standalone bit of a pageblock is set 440 * @page: The page within the block of interest 441 * @pfn: The target page frame number 442 * @pb_bit: pageblock bit to check 443 * 444 * Return: true if the bit is set, otherwise false 445 */ 446 bool get_pfnblock_bit(const struct page *page, unsigned long pfn, 447 enum pageblock_bits pb_bit) 448 { 449 unsigned long *bitmap_word; 450 unsigned long bitidx; 451 452 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 453 return false; 454 455 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 456 457 return test_bit(bitidx + pb_bit, bitmap_word); 458 } 459 460 /** 461 * get_pfnblock_migratetype - Return the migratetype of a pageblock 462 * @page: The page within the block of interest 463 * @pfn: The target page frame number 464 * 465 * Return: The migratetype of the pageblock 466 * 467 * Use get_pfnblock_migratetype() if caller already has both @page and @pfn 468 * to save a call to page_to_pfn(). 469 */ 470 __always_inline enum migratetype 471 get_pfnblock_migratetype(const struct page *page, unsigned long pfn) 472 { 473 unsigned long mask = MIGRATETYPE_AND_ISO_MASK; 474 unsigned long flags; 475 476 flags = __get_pfnblock_flags_mask(page, pfn, mask); 477 478 #ifdef CONFIG_MEMORY_ISOLATION 479 if (flags & BIT(PB_migrate_isolate)) 480 return MIGRATE_ISOLATE; 481 #endif 482 return flags & MIGRATETYPE_MASK; 483 } 484 485 /** 486 * __set_pfnblock_flags_mask - Set the requested group of flags for 487 * a pageblock_nr_pages block of pages 488 * @page: The page within the block of interest 489 * @pfn: The target page frame number 490 * @flags: The flags to set 491 * @mask: mask of bits that the caller is interested in 492 */ 493 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn, 494 unsigned long flags, unsigned long mask) 495 { 496 unsigned long *bitmap_word; 497 unsigned long bitidx; 498 unsigned long word; 499 500 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 501 502 mask <<= bitidx; 503 flags <<= bitidx; 504 505 word = READ_ONCE(*bitmap_word); 506 do { 507 } while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags)); 508 } 509 510 /** 511 * set_pfnblock_bit - Set a standalone bit of a pageblock 512 * @page: The page within the block of interest 513 * @pfn: The target page frame number 514 * @pb_bit: pageblock bit to set 515 */ 516 void set_pfnblock_bit(const struct page *page, unsigned long pfn, 517 enum pageblock_bits pb_bit) 518 { 519 unsigned long *bitmap_word; 520 unsigned long bitidx; 521 522 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 523 return; 524 525 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 526 527 set_bit(bitidx + pb_bit, bitmap_word); 528 } 529 530 /** 531 * clear_pfnblock_bit - Clear a standalone bit of a pageblock 532 * @page: The page within the block of interest 533 * @pfn: The target page frame number 534 * @pb_bit: pageblock bit to clear 535 */ 536 void clear_pfnblock_bit(const struct page *page, unsigned long pfn, 537 enum pageblock_bits pb_bit) 538 { 539 unsigned long *bitmap_word; 540 unsigned long bitidx; 541 542 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 543 return; 544 545 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 546 547 clear_bit(bitidx + pb_bit, bitmap_word); 548 } 549 550 /** 551 * set_pageblock_migratetype - Set the migratetype of a pageblock 552 * @page: The page within the block of interest 553 * @migratetype: migratetype to set 554 */ 555 static void set_pageblock_migratetype(struct page *page, 556 enum migratetype migratetype) 557 { 558 if (unlikely(page_group_by_mobility_disabled && 559 migratetype < MIGRATE_PCPTYPES)) 560 migratetype = MIGRATE_UNMOVABLE; 561 562 #ifdef CONFIG_MEMORY_ISOLATION 563 if (migratetype == MIGRATE_ISOLATE) { 564 VM_WARN_ONCE(1, 565 "Use set_pageblock_isolate() for pageblock isolation"); 566 return; 567 } 568 VM_WARN_ONCE(get_pageblock_isolate(page), 569 "Use clear_pageblock_isolate() to unisolate pageblock"); 570 /* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */ 571 #endif 572 __set_pfnblock_flags_mask(page, page_to_pfn(page), 573 (unsigned long)migratetype, 574 MIGRATETYPE_AND_ISO_MASK); 575 } 576 577 void __meminit init_pageblock_migratetype(struct page *page, 578 enum migratetype migratetype, 579 bool isolate) 580 { 581 unsigned long flags; 582 583 if (unlikely(page_group_by_mobility_disabled && 584 migratetype < MIGRATE_PCPTYPES)) 585 migratetype = MIGRATE_UNMOVABLE; 586 587 flags = migratetype; 588 589 #ifdef CONFIG_MEMORY_ISOLATION 590 if (migratetype == MIGRATE_ISOLATE) { 591 VM_WARN_ONCE( 592 1, 593 "Set isolate=true to isolate pageblock with a migratetype"); 594 return; 595 } 596 if (isolate) 597 flags |= BIT(PB_migrate_isolate); 598 #endif 599 __set_pfnblock_flags_mask(page, page_to_pfn(page), flags, 600 MIGRATETYPE_AND_ISO_MASK); 601 } 602 603 #ifdef CONFIG_DEBUG_VM 604 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 605 { 606 int ret; 607 unsigned seq; 608 unsigned long pfn = page_to_pfn(page); 609 unsigned long sp, start_pfn; 610 611 do { 612 seq = zone_span_seqbegin(zone); 613 start_pfn = zone->zone_start_pfn; 614 sp = zone->spanned_pages; 615 ret = !zone_spans_pfn(zone, pfn); 616 } while (zone_span_seqretry(zone, seq)); 617 618 if (ret) 619 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 620 pfn, zone_to_nid(zone), zone->name, 621 start_pfn, start_pfn + sp); 622 623 return ret; 624 } 625 626 /* 627 * Temporary debugging check for pages not lying within a given zone. 628 */ 629 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 630 { 631 if (page_outside_zone_boundaries(zone, page)) 632 return true; 633 if (zone != page_zone(page)) 634 return true; 635 636 return false; 637 } 638 #else 639 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 640 { 641 return false; 642 } 643 #endif 644 645 static void bad_page(struct page *page, const char *reason) 646 { 647 static unsigned long resume; 648 static unsigned long nr_shown; 649 static unsigned long nr_unshown; 650 651 /* 652 * Allow a burst of 60 reports, then keep quiet for that minute; 653 * or allow a steady drip of one report per second. 654 */ 655 if (nr_shown == 60) { 656 if (time_before(jiffies, resume)) { 657 nr_unshown++; 658 goto out; 659 } 660 if (nr_unshown) { 661 pr_alert( 662 "BUG: Bad page state: %lu messages suppressed\n", 663 nr_unshown); 664 nr_unshown = 0; 665 } 666 nr_shown = 0; 667 } 668 if (nr_shown++ == 0) 669 resume = jiffies + 60 * HZ; 670 671 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 672 current->comm, page_to_pfn(page)); 673 dump_page(page, reason); 674 675 print_modules(); 676 dump_stack(); 677 out: 678 /* Leave bad fields for debug, except PageBuddy could make trouble */ 679 if (PageBuddy(page)) 680 __ClearPageBuddy(page); 681 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 682 } 683 684 static inline unsigned int order_to_pindex(int migratetype, int order) 685 { 686 687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 688 bool movable; 689 if (order > PAGE_ALLOC_COSTLY_ORDER) { 690 VM_BUG_ON(order != HPAGE_PMD_ORDER); 691 692 movable = migratetype == MIGRATE_MOVABLE; 693 694 return NR_LOWORDER_PCP_LISTS + movable; 695 } 696 #else 697 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 698 #endif 699 700 return (MIGRATE_PCPTYPES * order) + migratetype; 701 } 702 703 static inline int pindex_to_order(unsigned int pindex) 704 { 705 int order = pindex / MIGRATE_PCPTYPES; 706 707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 708 if (pindex >= NR_LOWORDER_PCP_LISTS) 709 order = HPAGE_PMD_ORDER; 710 #else 711 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 712 #endif 713 714 return order; 715 } 716 717 static inline bool pcp_allowed_order(unsigned int order) 718 { 719 if (order <= PAGE_ALLOC_COSTLY_ORDER) 720 return true; 721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 722 if (order == HPAGE_PMD_ORDER) 723 return true; 724 #endif 725 return false; 726 } 727 728 /* 729 * Higher-order pages are called "compound pages". They are structured thusly: 730 * 731 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 732 * 733 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 734 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 735 * 736 * The first tail page's ->compound_order holds the order of allocation. 737 * This usage means that zero-order pages may not be compound. 738 */ 739 740 void prep_compound_page(struct page *page, unsigned int order) 741 { 742 int i; 743 int nr_pages = 1 << order; 744 745 __SetPageHead(page); 746 for (i = 1; i < nr_pages; i++) 747 prep_compound_tail(page, i); 748 749 prep_compound_head(page, order); 750 } 751 752 static inline void set_buddy_order(struct page *page, unsigned int order) 753 { 754 set_page_private(page, order); 755 __SetPageBuddy(page); 756 } 757 758 #ifdef CONFIG_COMPACTION 759 static inline struct capture_control *task_capc(struct zone *zone) 760 { 761 struct capture_control *capc = current->capture_control; 762 763 return unlikely(capc) && 764 !(current->flags & PF_KTHREAD) && 765 !capc->page && 766 capc->cc->zone == zone ? capc : NULL; 767 } 768 769 static inline bool 770 compaction_capture(struct capture_control *capc, struct page *page, 771 int order, int migratetype) 772 { 773 if (!capc || order != capc->cc->order) 774 return false; 775 776 /* Do not accidentally pollute CMA or isolated regions*/ 777 if (is_migrate_cma(migratetype) || 778 is_migrate_isolate(migratetype)) 779 return false; 780 781 /* 782 * Do not let lower order allocations pollute a movable pageblock 783 * unless compaction is also requesting movable pages. 784 * This might let an unmovable request use a reclaimable pageblock 785 * and vice-versa but no more than normal fallback logic which can 786 * have trouble finding a high-order free page. 787 */ 788 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 789 capc->cc->migratetype != MIGRATE_MOVABLE) 790 return false; 791 792 if (migratetype != capc->cc->migratetype) 793 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 794 capc->cc->migratetype, migratetype); 795 796 capc->page = page; 797 return true; 798 } 799 800 #else 801 static inline struct capture_control *task_capc(struct zone *zone) 802 { 803 return NULL; 804 } 805 806 static inline bool 807 compaction_capture(struct capture_control *capc, struct page *page, 808 int order, int migratetype) 809 { 810 return false; 811 } 812 #endif /* CONFIG_COMPACTION */ 813 814 static inline void account_freepages(struct zone *zone, int nr_pages, 815 int migratetype) 816 { 817 lockdep_assert_held(&zone->lock); 818 819 if (is_migrate_isolate(migratetype)) 820 return; 821 822 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 823 824 if (is_migrate_cma(migratetype)) 825 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 826 else if (migratetype == MIGRATE_HIGHATOMIC) 827 WRITE_ONCE(zone->nr_free_highatomic, 828 zone->nr_free_highatomic + nr_pages); 829 } 830 831 /* Used for pages not on another list */ 832 static inline void __add_to_free_list(struct page *page, struct zone *zone, 833 unsigned int order, int migratetype, 834 bool tail) 835 { 836 struct free_area *area = &zone->free_area[order]; 837 int nr_pages = 1 << order; 838 839 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 840 "page type is %d, passed migratetype is %d (nr=%d)\n", 841 get_pageblock_migratetype(page), migratetype, nr_pages); 842 843 if (tail) 844 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 845 else 846 list_add(&page->buddy_list, &area->free_list[migratetype]); 847 area->nr_free++; 848 849 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 850 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 851 } 852 853 /* 854 * Used for pages which are on another list. Move the pages to the tail 855 * of the list - so the moved pages won't immediately be considered for 856 * allocation again (e.g., optimization for memory onlining). 857 */ 858 static inline void move_to_free_list(struct page *page, struct zone *zone, 859 unsigned int order, int old_mt, int new_mt) 860 { 861 struct free_area *area = &zone->free_area[order]; 862 int nr_pages = 1 << order; 863 864 /* Free page moving can fail, so it happens before the type update */ 865 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 866 "page type is %d, passed migratetype is %d (nr=%d)\n", 867 get_pageblock_migratetype(page), old_mt, nr_pages); 868 869 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 870 871 account_freepages(zone, -nr_pages, old_mt); 872 account_freepages(zone, nr_pages, new_mt); 873 874 if (order >= pageblock_order && 875 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 876 if (!is_migrate_isolate(old_mt)) 877 nr_pages = -nr_pages; 878 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 879 } 880 } 881 882 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 883 unsigned int order, int migratetype) 884 { 885 int nr_pages = 1 << order; 886 887 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 888 "page type is %d, passed migratetype is %d (nr=%d)\n", 889 get_pageblock_migratetype(page), migratetype, nr_pages); 890 891 /* clear reported state and update reported page count */ 892 if (page_reported(page)) 893 __ClearPageReported(page); 894 895 list_del(&page->buddy_list); 896 __ClearPageBuddy(page); 897 set_page_private(page, 0); 898 zone->free_area[order].nr_free--; 899 900 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 901 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 902 } 903 904 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 905 unsigned int order, int migratetype) 906 { 907 __del_page_from_free_list(page, zone, order, migratetype); 908 account_freepages(zone, -(1 << order), migratetype); 909 } 910 911 static inline struct page *get_page_from_free_area(struct free_area *area, 912 int migratetype) 913 { 914 return list_first_entry_or_null(&area->free_list[migratetype], 915 struct page, buddy_list); 916 } 917 918 /* 919 * If this is less than the 2nd largest possible page, check if the buddy 920 * of the next-higher order is free. If it is, it's possible 921 * that pages are being freed that will coalesce soon. In case, 922 * that is happening, add the free page to the tail of the list 923 * so it's less likely to be used soon and more likely to be merged 924 * as a 2-level higher order page 925 */ 926 static inline bool 927 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 928 struct page *page, unsigned int order) 929 { 930 unsigned long higher_page_pfn; 931 struct page *higher_page; 932 933 if (order >= MAX_PAGE_ORDER - 1) 934 return false; 935 936 higher_page_pfn = buddy_pfn & pfn; 937 higher_page = page + (higher_page_pfn - pfn); 938 939 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 940 NULL) != NULL; 941 } 942 943 static void change_pageblock_range(struct page *pageblock_page, 944 int start_order, int migratetype) 945 { 946 int nr_pageblocks = 1 << (start_order - pageblock_order); 947 948 while (nr_pageblocks--) { 949 set_pageblock_migratetype(pageblock_page, migratetype); 950 pageblock_page += pageblock_nr_pages; 951 } 952 } 953 954 /* 955 * Freeing function for a buddy system allocator. 956 * 957 * The concept of a buddy system is to maintain direct-mapped table 958 * (containing bit values) for memory blocks of various "orders". 959 * The bottom level table contains the map for the smallest allocatable 960 * units of memory (here, pages), and each level above it describes 961 * pairs of units from the levels below, hence, "buddies". 962 * At a high level, all that happens here is marking the table entry 963 * at the bottom level available, and propagating the changes upward 964 * as necessary, plus some accounting needed to play nicely with other 965 * parts of the VM system. 966 * At each level, we keep a list of pages, which are heads of continuous 967 * free pages of length of (1 << order) and marked with PageBuddy. 968 * Page's order is recorded in page_private(page) field. 969 * So when we are allocating or freeing one, we can derive the state of the 970 * other. That is, if we allocate a small block, and both were 971 * free, the remainder of the region must be split into blocks. 972 * If a block is freed, and its buddy is also free, then this 973 * triggers coalescing into a block of larger size. 974 * 975 * -- nyc 976 */ 977 978 static inline void __free_one_page(struct page *page, 979 unsigned long pfn, 980 struct zone *zone, unsigned int order, 981 int migratetype, fpi_t fpi_flags) 982 { 983 struct capture_control *capc = task_capc(zone); 984 unsigned long buddy_pfn = 0; 985 unsigned long combined_pfn; 986 struct page *buddy; 987 bool to_tail; 988 989 VM_BUG_ON(!zone_is_initialized(zone)); 990 VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page); 991 992 VM_BUG_ON(migratetype == -1); 993 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 994 VM_BUG_ON_PAGE(bad_range(zone, page), page); 995 996 account_freepages(zone, 1 << order, migratetype); 997 998 while (order < MAX_PAGE_ORDER) { 999 int buddy_mt = migratetype; 1000 1001 if (compaction_capture(capc, page, order, migratetype)) { 1002 account_freepages(zone, -(1 << order), migratetype); 1003 return; 1004 } 1005 1006 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1007 if (!buddy) 1008 goto done_merging; 1009 1010 if (unlikely(order >= pageblock_order)) { 1011 /* 1012 * We want to prevent merge between freepages on pageblock 1013 * without fallbacks and normal pageblock. Without this, 1014 * pageblock isolation could cause incorrect freepage or CMA 1015 * accounting or HIGHATOMIC accounting. 1016 */ 1017 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 1018 1019 if (migratetype != buddy_mt && 1020 (!migratetype_is_mergeable(migratetype) || 1021 !migratetype_is_mergeable(buddy_mt))) 1022 goto done_merging; 1023 } 1024 1025 /* 1026 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1027 * merge with it and move up one order. 1028 */ 1029 if (page_is_guard(buddy)) 1030 clear_page_guard(zone, buddy, order); 1031 else 1032 __del_page_from_free_list(buddy, zone, order, buddy_mt); 1033 1034 if (unlikely(buddy_mt != migratetype)) { 1035 /* 1036 * Match buddy type. This ensures that an 1037 * expand() down the line puts the sub-blocks 1038 * on the right freelists. 1039 */ 1040 change_pageblock_range(buddy, order, migratetype); 1041 } 1042 1043 combined_pfn = buddy_pfn & pfn; 1044 page = page + (combined_pfn - pfn); 1045 pfn = combined_pfn; 1046 order++; 1047 } 1048 1049 done_merging: 1050 set_buddy_order(page, order); 1051 1052 if (fpi_flags & FPI_TO_TAIL) 1053 to_tail = true; 1054 else if (is_shuffle_order(order)) 1055 to_tail = shuffle_pick_tail(); 1056 else 1057 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1058 1059 __add_to_free_list(page, zone, order, migratetype, to_tail); 1060 1061 /* Notify page reporting subsystem of freed page */ 1062 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1063 page_reporting_notify_free(order); 1064 } 1065 1066 /* 1067 * A bad page could be due to a number of fields. Instead of multiple branches, 1068 * try and check multiple fields with one check. The caller must do a detailed 1069 * check if necessary. 1070 */ 1071 static inline bool page_expected_state(struct page *page, 1072 unsigned long check_flags) 1073 { 1074 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1075 return false; 1076 1077 if (unlikely((unsigned long)page->mapping | 1078 page_ref_count(page) | 1079 #ifdef CONFIG_MEMCG 1080 page->memcg_data | 1081 #endif 1082 page_pool_page_is_pp(page) | 1083 (page->flags.f & check_flags))) 1084 return false; 1085 1086 return true; 1087 } 1088 1089 static const char *page_bad_reason(struct page *page, unsigned long flags) 1090 { 1091 const char *bad_reason = NULL; 1092 1093 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1094 bad_reason = "nonzero mapcount"; 1095 if (unlikely(page->mapping != NULL)) 1096 bad_reason = "non-NULL mapping"; 1097 if (unlikely(page_ref_count(page) != 0)) 1098 bad_reason = "nonzero _refcount"; 1099 if (unlikely(page->flags.f & flags)) { 1100 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1101 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1102 else 1103 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1104 } 1105 #ifdef CONFIG_MEMCG 1106 if (unlikely(page->memcg_data)) 1107 bad_reason = "page still charged to cgroup"; 1108 #endif 1109 if (unlikely(page_pool_page_is_pp(page))) 1110 bad_reason = "page_pool leak"; 1111 return bad_reason; 1112 } 1113 1114 static inline bool free_page_is_bad(struct page *page) 1115 { 1116 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1117 return false; 1118 1119 /* Something has gone sideways, find it */ 1120 bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1121 return true; 1122 } 1123 1124 static inline bool is_check_pages_enabled(void) 1125 { 1126 return static_branch_unlikely(&check_pages_enabled); 1127 } 1128 1129 static int free_tail_page_prepare(struct page *head_page, struct page *page) 1130 { 1131 struct folio *folio = (struct folio *)head_page; 1132 int ret = 1; 1133 1134 /* 1135 * We rely page->lru.next never has bit 0 set, unless the page 1136 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1137 */ 1138 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1139 1140 if (!is_check_pages_enabled()) { 1141 ret = 0; 1142 goto out; 1143 } 1144 switch (page - head_page) { 1145 case 1: 1146 /* the first tail page: these may be in place of ->mapping */ 1147 if (unlikely(folio_large_mapcount(folio))) { 1148 bad_page(page, "nonzero large_mapcount"); 1149 goto out; 1150 } 1151 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 1152 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1153 bad_page(page, "nonzero nr_pages_mapped"); 1154 goto out; 1155 } 1156 if (IS_ENABLED(CONFIG_MM_ID)) { 1157 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 1158 bad_page(page, "nonzero mm mapcount 0"); 1159 goto out; 1160 } 1161 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 1162 bad_page(page, "nonzero mm mapcount 1"); 1163 goto out; 1164 } 1165 } 1166 if (IS_ENABLED(CONFIG_64BIT)) { 1167 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1168 bad_page(page, "nonzero entire_mapcount"); 1169 goto out; 1170 } 1171 if (unlikely(atomic_read(&folio->_pincount))) { 1172 bad_page(page, "nonzero pincount"); 1173 goto out; 1174 } 1175 } 1176 break; 1177 case 2: 1178 /* the second tail page: deferred_list overlaps ->mapping */ 1179 if (unlikely(!list_empty(&folio->_deferred_list))) { 1180 bad_page(page, "on deferred list"); 1181 goto out; 1182 } 1183 if (!IS_ENABLED(CONFIG_64BIT)) { 1184 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1185 bad_page(page, "nonzero entire_mapcount"); 1186 goto out; 1187 } 1188 if (unlikely(atomic_read(&folio->_pincount))) { 1189 bad_page(page, "nonzero pincount"); 1190 goto out; 1191 } 1192 } 1193 break; 1194 case 3: 1195 /* the third tail page: hugetlb specifics overlap ->mappings */ 1196 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1197 break; 1198 fallthrough; 1199 default: 1200 if (page->mapping != TAIL_MAPPING) { 1201 bad_page(page, "corrupted mapping in tail page"); 1202 goto out; 1203 } 1204 break; 1205 } 1206 if (unlikely(!PageTail(page))) { 1207 bad_page(page, "PageTail not set"); 1208 goto out; 1209 } 1210 if (unlikely(compound_head(page) != head_page)) { 1211 bad_page(page, "compound_head not consistent"); 1212 goto out; 1213 } 1214 ret = 0; 1215 out: 1216 page->mapping = NULL; 1217 clear_compound_head(page); 1218 return ret; 1219 } 1220 1221 /* 1222 * Skip KASAN memory poisoning when either: 1223 * 1224 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1225 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1226 * using page tags instead (see below). 1227 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1228 * that error detection is disabled for accesses via the page address. 1229 * 1230 * Pages will have match-all tags in the following circumstances: 1231 * 1232 * 1. Pages are being initialized for the first time, including during deferred 1233 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1234 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1235 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1236 * 3. The allocation was excluded from being checked due to sampling, 1237 * see the call to kasan_unpoison_pages. 1238 * 1239 * Poisoning pages during deferred memory init will greatly lengthen the 1240 * process and cause problem in large memory systems as the deferred pages 1241 * initialization is done with interrupt disabled. 1242 * 1243 * Assuming that there will be no reference to those newly initialized 1244 * pages before they are ever allocated, this should have no effect on 1245 * KASAN memory tracking as the poison will be properly inserted at page 1246 * allocation time. The only corner case is when pages are allocated by 1247 * on-demand allocation and then freed again before the deferred pages 1248 * initialization is done, but this is not likely to happen. 1249 */ 1250 static inline bool should_skip_kasan_poison(struct page *page) 1251 { 1252 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1253 return deferred_pages_enabled(); 1254 1255 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1256 } 1257 1258 static void kernel_init_pages(struct page *page, int numpages) 1259 { 1260 int i; 1261 1262 /* s390's use of memset() could override KASAN redzones. */ 1263 kasan_disable_current(); 1264 for (i = 0; i < numpages; i++) 1265 clear_highpage_kasan_tagged(page + i); 1266 kasan_enable_current(); 1267 } 1268 1269 #ifdef CONFIG_MEM_ALLOC_PROFILING 1270 1271 /* Should be called only if mem_alloc_profiling_enabled() */ 1272 void __clear_page_tag_ref(struct page *page) 1273 { 1274 union pgtag_ref_handle handle; 1275 union codetag_ref ref; 1276 1277 if (get_page_tag_ref(page, &ref, &handle)) { 1278 set_codetag_empty(&ref); 1279 update_page_tag_ref(handle, &ref); 1280 put_page_tag_ref(handle); 1281 } 1282 } 1283 1284 /* Should be called only if mem_alloc_profiling_enabled() */ 1285 static noinline 1286 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1287 unsigned int nr) 1288 { 1289 union pgtag_ref_handle handle; 1290 union codetag_ref ref; 1291 1292 if (get_page_tag_ref(page, &ref, &handle)) { 1293 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1294 update_page_tag_ref(handle, &ref); 1295 put_page_tag_ref(handle); 1296 } 1297 } 1298 1299 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1300 unsigned int nr) 1301 { 1302 if (mem_alloc_profiling_enabled()) 1303 __pgalloc_tag_add(page, task, nr); 1304 } 1305 1306 /* Should be called only if mem_alloc_profiling_enabled() */ 1307 static noinline 1308 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1309 { 1310 union pgtag_ref_handle handle; 1311 union codetag_ref ref; 1312 1313 if (get_page_tag_ref(page, &ref, &handle)) { 1314 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1315 update_page_tag_ref(handle, &ref); 1316 put_page_tag_ref(handle); 1317 } 1318 } 1319 1320 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1321 { 1322 if (mem_alloc_profiling_enabled()) 1323 __pgalloc_tag_sub(page, nr); 1324 } 1325 1326 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */ 1327 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) 1328 { 1329 if (tag) 1330 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1331 } 1332 1333 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1334 1335 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1336 unsigned int nr) {} 1337 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1338 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} 1339 1340 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1341 1342 __always_inline bool free_pages_prepare(struct page *page, 1343 unsigned int order) 1344 { 1345 int bad = 0; 1346 bool skip_kasan_poison = should_skip_kasan_poison(page); 1347 bool init = want_init_on_free(); 1348 bool compound = PageCompound(page); 1349 struct folio *folio = page_folio(page); 1350 1351 VM_BUG_ON_PAGE(PageTail(page), page); 1352 1353 trace_mm_page_free(page, order); 1354 kmsan_free_page(page, order); 1355 1356 if (memcg_kmem_online() && PageMemcgKmem(page)) 1357 __memcg_kmem_uncharge_page(page, order); 1358 1359 /* 1360 * In rare cases, when truncation or holepunching raced with 1361 * munlock after VM_LOCKED was cleared, Mlocked may still be 1362 * found set here. This does not indicate a problem, unless 1363 * "unevictable_pgs_cleared" appears worryingly large. 1364 */ 1365 if (unlikely(folio_test_mlocked(folio))) { 1366 long nr_pages = folio_nr_pages(folio); 1367 1368 __folio_clear_mlocked(folio); 1369 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1370 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1371 } 1372 1373 if (unlikely(PageHWPoison(page)) && !order) { 1374 /* Do not let hwpoison pages hit pcplists/buddy */ 1375 reset_page_owner(page, order); 1376 page_table_check_free(page, order); 1377 pgalloc_tag_sub(page, 1 << order); 1378 1379 /* 1380 * The page is isolated and accounted for. 1381 * Mark the codetag as empty to avoid accounting error 1382 * when the page is freed by unpoison_memory(). 1383 */ 1384 clear_page_tag_ref(page); 1385 return false; 1386 } 1387 1388 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1389 1390 /* 1391 * Check tail pages before head page information is cleared to 1392 * avoid checking PageCompound for order-0 pages. 1393 */ 1394 if (unlikely(order)) { 1395 int i; 1396 1397 if (compound) { 1398 page[1].flags.f &= ~PAGE_FLAGS_SECOND; 1399 #ifdef NR_PAGES_IN_LARGE_FOLIO 1400 folio->_nr_pages = 0; 1401 #endif 1402 } 1403 for (i = 1; i < (1 << order); i++) { 1404 if (compound) 1405 bad += free_tail_page_prepare(page, page + i); 1406 if (is_check_pages_enabled()) { 1407 if (free_page_is_bad(page + i)) { 1408 bad++; 1409 continue; 1410 } 1411 } 1412 (page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1413 } 1414 } 1415 if (folio_test_anon(folio)) { 1416 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1417 folio->mapping = NULL; 1418 } 1419 if (unlikely(page_has_type(page))) 1420 /* Reset the page_type (which overlays _mapcount) */ 1421 page->page_type = UINT_MAX; 1422 1423 if (is_check_pages_enabled()) { 1424 if (free_page_is_bad(page)) 1425 bad++; 1426 if (bad) 1427 return false; 1428 } 1429 1430 page_cpupid_reset_last(page); 1431 page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1432 reset_page_owner(page, order); 1433 page_table_check_free(page, order); 1434 pgalloc_tag_sub(page, 1 << order); 1435 1436 if (!PageHighMem(page)) { 1437 debug_check_no_locks_freed(page_address(page), 1438 PAGE_SIZE << order); 1439 debug_check_no_obj_freed(page_address(page), 1440 PAGE_SIZE << order); 1441 } 1442 1443 kernel_poison_pages(page, 1 << order); 1444 1445 /* 1446 * As memory initialization might be integrated into KASAN, 1447 * KASAN poisoning and memory initialization code must be 1448 * kept together to avoid discrepancies in behavior. 1449 * 1450 * With hardware tag-based KASAN, memory tags must be set before the 1451 * page becomes unavailable via debug_pagealloc or arch_free_page. 1452 */ 1453 if (!skip_kasan_poison) { 1454 kasan_poison_pages(page, order, init); 1455 1456 /* Memory is already initialized if KASAN did it internally. */ 1457 if (kasan_has_integrated_init()) 1458 init = false; 1459 } 1460 if (init) 1461 kernel_init_pages(page, 1 << order); 1462 1463 /* 1464 * arch_free_page() can make the page's contents inaccessible. s390 1465 * does this. So nothing which can access the page's contents should 1466 * happen after this. 1467 */ 1468 arch_free_page(page, order); 1469 1470 debug_pagealloc_unmap_pages(page, 1 << order); 1471 1472 return true; 1473 } 1474 1475 /* 1476 * Frees a number of pages from the PCP lists 1477 * Assumes all pages on list are in same zone. 1478 * count is the number of pages to free. 1479 */ 1480 static void free_pcppages_bulk(struct zone *zone, int count, 1481 struct per_cpu_pages *pcp, 1482 int pindex) 1483 { 1484 unsigned long flags; 1485 unsigned int order; 1486 struct page *page; 1487 1488 /* 1489 * Ensure proper count is passed which otherwise would stuck in the 1490 * below while (list_empty(list)) loop. 1491 */ 1492 count = min(pcp->count, count); 1493 1494 /* Ensure requested pindex is drained first. */ 1495 pindex = pindex - 1; 1496 1497 spin_lock_irqsave(&zone->lock, flags); 1498 1499 while (count > 0) { 1500 struct list_head *list; 1501 int nr_pages; 1502 1503 /* Remove pages from lists in a round-robin fashion. */ 1504 do { 1505 if (++pindex > NR_PCP_LISTS - 1) 1506 pindex = 0; 1507 list = &pcp->lists[pindex]; 1508 } while (list_empty(list)); 1509 1510 order = pindex_to_order(pindex); 1511 nr_pages = 1 << order; 1512 do { 1513 unsigned long pfn; 1514 int mt; 1515 1516 page = list_last_entry(list, struct page, pcp_list); 1517 pfn = page_to_pfn(page); 1518 mt = get_pfnblock_migratetype(page, pfn); 1519 1520 /* must delete to avoid corrupting pcp list */ 1521 list_del(&page->pcp_list); 1522 count -= nr_pages; 1523 pcp->count -= nr_pages; 1524 1525 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1526 trace_mm_page_pcpu_drain(page, order, mt); 1527 } while (count > 0 && !list_empty(list)); 1528 } 1529 1530 spin_unlock_irqrestore(&zone->lock, flags); 1531 } 1532 1533 /* Split a multi-block free page into its individual pageblocks. */ 1534 static void split_large_buddy(struct zone *zone, struct page *page, 1535 unsigned long pfn, int order, fpi_t fpi) 1536 { 1537 unsigned long end = pfn + (1 << order); 1538 1539 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1540 /* Caller removed page from freelist, buddy info cleared! */ 1541 VM_WARN_ON_ONCE(PageBuddy(page)); 1542 1543 if (order > pageblock_order) 1544 order = pageblock_order; 1545 1546 do { 1547 int mt = get_pfnblock_migratetype(page, pfn); 1548 1549 __free_one_page(page, pfn, zone, order, mt, fpi); 1550 pfn += 1 << order; 1551 if (pfn == end) 1552 break; 1553 page = pfn_to_page(pfn); 1554 } while (1); 1555 } 1556 1557 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1558 unsigned int order) 1559 { 1560 /* Remember the order */ 1561 page->private = order; 1562 /* Add the page to the free list */ 1563 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1564 } 1565 1566 static void free_one_page(struct zone *zone, struct page *page, 1567 unsigned long pfn, unsigned int order, 1568 fpi_t fpi_flags) 1569 { 1570 struct llist_head *llhead; 1571 unsigned long flags; 1572 1573 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1574 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1575 add_page_to_zone_llist(zone, page, order); 1576 return; 1577 } 1578 } else { 1579 spin_lock_irqsave(&zone->lock, flags); 1580 } 1581 1582 /* The lock succeeded. Process deferred pages. */ 1583 llhead = &zone->trylock_free_pages; 1584 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1585 struct llist_node *llnode; 1586 struct page *p, *tmp; 1587 1588 llnode = llist_del_all(llhead); 1589 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1590 unsigned int p_order = p->private; 1591 1592 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1593 __count_vm_events(PGFREE, 1 << p_order); 1594 } 1595 } 1596 split_large_buddy(zone, page, pfn, order, fpi_flags); 1597 spin_unlock_irqrestore(&zone->lock, flags); 1598 1599 __count_vm_events(PGFREE, 1 << order); 1600 } 1601 1602 static void __free_pages_ok(struct page *page, unsigned int order, 1603 fpi_t fpi_flags) 1604 { 1605 unsigned long pfn = page_to_pfn(page); 1606 struct zone *zone = page_zone(page); 1607 1608 if (free_pages_prepare(page, order)) 1609 free_one_page(zone, page, pfn, order, fpi_flags); 1610 } 1611 1612 void __meminit __free_pages_core(struct page *page, unsigned int order, 1613 enum meminit_context context) 1614 { 1615 unsigned int nr_pages = 1 << order; 1616 struct page *p = page; 1617 unsigned int loop; 1618 1619 /* 1620 * When initializing the memmap, __init_single_page() sets the refcount 1621 * of all pages to 1 ("allocated"/"not free"). We have to set the 1622 * refcount of all involved pages to 0. 1623 * 1624 * Note that hotplugged memory pages are initialized to PageOffline(). 1625 * Pages freed from memblock might be marked as reserved. 1626 */ 1627 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1628 unlikely(context == MEMINIT_HOTPLUG)) { 1629 for (loop = 0; loop < nr_pages; loop++, p++) { 1630 VM_WARN_ON_ONCE(PageReserved(p)); 1631 __ClearPageOffline(p); 1632 set_page_count(p, 0); 1633 } 1634 1635 adjust_managed_page_count(page, nr_pages); 1636 } else { 1637 for (loop = 0; loop < nr_pages; loop++, p++) { 1638 __ClearPageReserved(p); 1639 set_page_count(p, 0); 1640 } 1641 1642 /* memblock adjusts totalram_pages() manually. */ 1643 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1644 } 1645 1646 if (page_contains_unaccepted(page, order)) { 1647 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1648 return; 1649 1650 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1651 } 1652 1653 /* 1654 * Bypass PCP and place fresh pages right to the tail, primarily 1655 * relevant for memory onlining. 1656 */ 1657 __free_pages_ok(page, order, FPI_TO_TAIL); 1658 } 1659 1660 /* 1661 * Check that the whole (or subset of) a pageblock given by the interval of 1662 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1663 * with the migration of free compaction scanner. 1664 * 1665 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1666 * 1667 * It's possible on some configurations to have a setup like node0 node1 node0 1668 * i.e. it's possible that all pages within a zones range of pages do not 1669 * belong to a single zone. We assume that a border between node0 and node1 1670 * can occur within a single pageblock, but not a node0 node1 node0 1671 * interleaving within a single pageblock. It is therefore sufficient to check 1672 * the first and last page of a pageblock and avoid checking each individual 1673 * page in a pageblock. 1674 * 1675 * Note: the function may return non-NULL struct page even for a page block 1676 * which contains a memory hole (i.e. there is no physical memory for a subset 1677 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1678 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1679 * even though the start pfn is online and valid. This should be safe most of 1680 * the time because struct pages are still initialized via init_unavailable_range() 1681 * and pfn walkers shouldn't touch any physical memory range for which they do 1682 * not recognize any specific metadata in struct pages. 1683 */ 1684 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1685 unsigned long end_pfn, struct zone *zone) 1686 { 1687 struct page *start_page; 1688 struct page *end_page; 1689 1690 /* end_pfn is one past the range we are checking */ 1691 end_pfn--; 1692 1693 if (!pfn_valid(end_pfn)) 1694 return NULL; 1695 1696 start_page = pfn_to_online_page(start_pfn); 1697 if (!start_page) 1698 return NULL; 1699 1700 if (page_zone(start_page) != zone) 1701 return NULL; 1702 1703 end_page = pfn_to_page(end_pfn); 1704 1705 /* This gives a shorter code than deriving page_zone(end_page) */ 1706 if (page_zone_id(start_page) != page_zone_id(end_page)) 1707 return NULL; 1708 1709 return start_page; 1710 } 1711 1712 /* 1713 * The order of subdivision here is critical for the IO subsystem. 1714 * Please do not alter this order without good reasons and regression 1715 * testing. Specifically, as large blocks of memory are subdivided, 1716 * the order in which smaller blocks are delivered depends on the order 1717 * they're subdivided in this function. This is the primary factor 1718 * influencing the order in which pages are delivered to the IO 1719 * subsystem according to empirical testing, and this is also justified 1720 * by considering the behavior of a buddy system containing a single 1721 * large block of memory acted on by a series of small allocations. 1722 * This behavior is a critical factor in sglist merging's success. 1723 * 1724 * -- nyc 1725 */ 1726 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1727 int high, int migratetype) 1728 { 1729 unsigned int size = 1 << high; 1730 unsigned int nr_added = 0; 1731 1732 while (high > low) { 1733 high--; 1734 size >>= 1; 1735 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1736 1737 /* 1738 * Mark as guard pages (or page), that will allow to 1739 * merge back to allocator when buddy will be freed. 1740 * Corresponding page table entries will not be touched, 1741 * pages will stay not present in virtual address space 1742 */ 1743 if (set_page_guard(zone, &page[size], high)) 1744 continue; 1745 1746 __add_to_free_list(&page[size], zone, high, migratetype, false); 1747 set_buddy_order(&page[size], high); 1748 nr_added += size; 1749 } 1750 1751 return nr_added; 1752 } 1753 1754 static __always_inline void page_del_and_expand(struct zone *zone, 1755 struct page *page, int low, 1756 int high, int migratetype) 1757 { 1758 int nr_pages = 1 << high; 1759 1760 __del_page_from_free_list(page, zone, high, migratetype); 1761 nr_pages -= expand(zone, page, low, high, migratetype); 1762 account_freepages(zone, -nr_pages, migratetype); 1763 } 1764 1765 static void check_new_page_bad(struct page *page) 1766 { 1767 if (unlikely(PageHWPoison(page))) { 1768 /* Don't complain about hwpoisoned pages */ 1769 if (PageBuddy(page)) 1770 __ClearPageBuddy(page); 1771 return; 1772 } 1773 1774 bad_page(page, 1775 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1776 } 1777 1778 /* 1779 * This page is about to be returned from the page allocator 1780 */ 1781 static bool check_new_page(struct page *page) 1782 { 1783 if (likely(page_expected_state(page, 1784 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1785 return false; 1786 1787 check_new_page_bad(page); 1788 return true; 1789 } 1790 1791 static inline bool check_new_pages(struct page *page, unsigned int order) 1792 { 1793 if (is_check_pages_enabled()) { 1794 for (int i = 0; i < (1 << order); i++) { 1795 struct page *p = page + i; 1796 1797 if (check_new_page(p)) 1798 return true; 1799 } 1800 } 1801 1802 return false; 1803 } 1804 1805 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1806 { 1807 /* Don't skip if a software KASAN mode is enabled. */ 1808 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1809 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1810 return false; 1811 1812 /* Skip, if hardware tag-based KASAN is not enabled. */ 1813 if (!kasan_hw_tags_enabled()) 1814 return true; 1815 1816 /* 1817 * With hardware tag-based KASAN enabled, skip if this has been 1818 * requested via __GFP_SKIP_KASAN. 1819 */ 1820 return flags & __GFP_SKIP_KASAN; 1821 } 1822 1823 static inline bool should_skip_init(gfp_t flags) 1824 { 1825 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1826 if (!kasan_hw_tags_enabled()) 1827 return false; 1828 1829 /* For hardware tag-based KASAN, skip if requested. */ 1830 return (flags & __GFP_SKIP_ZERO); 1831 } 1832 1833 inline void post_alloc_hook(struct page *page, unsigned int order, 1834 gfp_t gfp_flags) 1835 { 1836 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1837 !should_skip_init(gfp_flags); 1838 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1839 int i; 1840 1841 set_page_private(page, 0); 1842 1843 arch_alloc_page(page, order); 1844 debug_pagealloc_map_pages(page, 1 << order); 1845 1846 /* 1847 * Page unpoisoning must happen before memory initialization. 1848 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1849 * allocations and the page unpoisoning code will complain. 1850 */ 1851 kernel_unpoison_pages(page, 1 << order); 1852 1853 /* 1854 * As memory initialization might be integrated into KASAN, 1855 * KASAN unpoisoning and memory initialization code must be 1856 * kept together to avoid discrepancies in behavior. 1857 */ 1858 1859 /* 1860 * If memory tags should be zeroed 1861 * (which happens only when memory should be initialized as well). 1862 */ 1863 if (zero_tags) 1864 init = !tag_clear_highpages(page, 1 << order); 1865 1866 if (!should_skip_kasan_unpoison(gfp_flags) && 1867 kasan_unpoison_pages(page, order, init)) { 1868 /* Take note that memory was initialized by KASAN. */ 1869 if (kasan_has_integrated_init()) 1870 init = false; 1871 } else { 1872 /* 1873 * If memory tags have not been set by KASAN, reset the page 1874 * tags to ensure page_address() dereferencing does not fault. 1875 */ 1876 for (i = 0; i != 1 << order; ++i) 1877 page_kasan_tag_reset(page + i); 1878 } 1879 /* If memory is still not initialized, initialize it now. */ 1880 if (init) 1881 kernel_init_pages(page, 1 << order); 1882 1883 set_page_owner(page, order, gfp_flags); 1884 page_table_check_alloc(page, order); 1885 pgalloc_tag_add(page, current, 1 << order); 1886 } 1887 1888 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1889 unsigned int alloc_flags) 1890 { 1891 post_alloc_hook(page, order, gfp_flags); 1892 1893 if (order && (gfp_flags & __GFP_COMP)) 1894 prep_compound_page(page, order); 1895 1896 /* 1897 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1898 * allocate the page. The expectation is that the caller is taking 1899 * steps that will free more memory. The caller should avoid the page 1900 * being used for !PFMEMALLOC purposes. 1901 */ 1902 if (alloc_flags & ALLOC_NO_WATERMARKS) 1903 set_page_pfmemalloc(page); 1904 else 1905 clear_page_pfmemalloc(page); 1906 } 1907 1908 /* 1909 * Go through the free lists for the given migratetype and remove 1910 * the smallest available page from the freelists 1911 */ 1912 static __always_inline 1913 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1914 int migratetype) 1915 { 1916 unsigned int current_order; 1917 struct free_area *area; 1918 struct page *page; 1919 1920 /* Find a page of the appropriate size in the preferred list */ 1921 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1922 area = &(zone->free_area[current_order]); 1923 page = get_page_from_free_area(area, migratetype); 1924 if (!page) 1925 continue; 1926 1927 page_del_and_expand(zone, page, order, current_order, 1928 migratetype); 1929 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1930 pcp_allowed_order(order) && 1931 migratetype < MIGRATE_PCPTYPES); 1932 return page; 1933 } 1934 1935 return NULL; 1936 } 1937 1938 1939 /* 1940 * This array describes the order lists are fallen back to when 1941 * the free lists for the desirable migrate type are depleted 1942 * 1943 * The other migratetypes do not have fallbacks. 1944 */ 1945 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1946 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1947 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1948 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1949 }; 1950 1951 #ifdef CONFIG_CMA 1952 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1953 unsigned int order) 1954 { 1955 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1956 } 1957 #else 1958 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1959 unsigned int order) { return NULL; } 1960 #endif 1961 1962 /* 1963 * Move all free pages of a block to new type's freelist. Caller needs to 1964 * change the block type. 1965 */ 1966 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1967 int old_mt, int new_mt) 1968 { 1969 struct page *page; 1970 unsigned long pfn, end_pfn; 1971 unsigned int order; 1972 int pages_moved = 0; 1973 1974 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1975 end_pfn = pageblock_end_pfn(start_pfn); 1976 1977 for (pfn = start_pfn; pfn < end_pfn;) { 1978 page = pfn_to_page(pfn); 1979 if (!PageBuddy(page)) { 1980 pfn++; 1981 continue; 1982 } 1983 1984 /* Make sure we are not inadvertently changing nodes */ 1985 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1986 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1987 1988 order = buddy_order(page); 1989 1990 move_to_free_list(page, zone, order, old_mt, new_mt); 1991 1992 pfn += 1 << order; 1993 pages_moved += 1 << order; 1994 } 1995 1996 return pages_moved; 1997 } 1998 1999 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 2000 unsigned long *start_pfn, 2001 int *num_free, int *num_movable) 2002 { 2003 unsigned long pfn, start, end; 2004 2005 pfn = page_to_pfn(page); 2006 start = pageblock_start_pfn(pfn); 2007 end = pageblock_end_pfn(pfn); 2008 2009 /* 2010 * The caller only has the lock for @zone, don't touch ranges 2011 * that straddle into other zones. While we could move part of 2012 * the range that's inside the zone, this call is usually 2013 * accompanied by other operations such as migratetype updates 2014 * which also should be locked. 2015 */ 2016 if (!zone_spans_pfn(zone, start)) 2017 return false; 2018 if (!zone_spans_pfn(zone, end - 1)) 2019 return false; 2020 2021 *start_pfn = start; 2022 2023 if (num_free) { 2024 *num_free = 0; 2025 *num_movable = 0; 2026 for (pfn = start; pfn < end;) { 2027 page = pfn_to_page(pfn); 2028 if (PageBuddy(page)) { 2029 int nr = 1 << buddy_order(page); 2030 2031 *num_free += nr; 2032 pfn += nr; 2033 continue; 2034 } 2035 /* 2036 * We assume that pages that could be isolated for 2037 * migration are movable. But we don't actually try 2038 * isolating, as that would be expensive. 2039 */ 2040 if (PageLRU(page) || page_has_movable_ops(page)) 2041 (*num_movable)++; 2042 pfn++; 2043 } 2044 } 2045 2046 return true; 2047 } 2048 2049 static int move_freepages_block(struct zone *zone, struct page *page, 2050 int old_mt, int new_mt) 2051 { 2052 unsigned long start_pfn; 2053 int res; 2054 2055 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2056 return -1; 2057 2058 res = __move_freepages_block(zone, start_pfn, old_mt, new_mt); 2059 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 2060 2061 return res; 2062 2063 } 2064 2065 #ifdef CONFIG_MEMORY_ISOLATION 2066 /* Look for a buddy that straddles start_pfn */ 2067 static unsigned long find_large_buddy(unsigned long start_pfn) 2068 { 2069 /* 2070 * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing 2071 * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking 2072 * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy, 2073 * the starting order does not matter. 2074 */ 2075 int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER; 2076 struct page *page; 2077 unsigned long pfn = start_pfn; 2078 2079 while (!PageBuddy(page = pfn_to_page(pfn))) { 2080 /* Nothing found */ 2081 if (++order > MAX_PAGE_ORDER) 2082 return start_pfn; 2083 pfn &= ~0UL << order; 2084 } 2085 2086 /* 2087 * Found a preceding buddy, but does it straddle? 2088 */ 2089 if (pfn + (1 << buddy_order(page)) > start_pfn) 2090 return pfn; 2091 2092 /* Nothing found */ 2093 return start_pfn; 2094 } 2095 2096 static inline void toggle_pageblock_isolate(struct page *page, bool isolate) 2097 { 2098 if (isolate) 2099 set_pageblock_isolate(page); 2100 else 2101 clear_pageblock_isolate(page); 2102 } 2103 2104 /** 2105 * __move_freepages_block_isolate - move free pages in block for page isolation 2106 * @zone: the zone 2107 * @page: the pageblock page 2108 * @isolate: to isolate the given pageblock or unisolate it 2109 * 2110 * This is similar to move_freepages_block(), but handles the special 2111 * case encountered in page isolation, where the block of interest 2112 * might be part of a larger buddy spanning multiple pageblocks. 2113 * 2114 * Unlike the regular page allocator path, which moves pages while 2115 * stealing buddies off the freelist, page isolation is interested in 2116 * arbitrary pfn ranges that may have overlapping buddies on both ends. 2117 * 2118 * This function handles that. Straddling buddies are split into 2119 * individual pageblocks. Only the block of interest is moved. 2120 * 2121 * Returns %true if pages could be moved, %false otherwise. 2122 */ 2123 static bool __move_freepages_block_isolate(struct zone *zone, 2124 struct page *page, bool isolate) 2125 { 2126 unsigned long start_pfn, buddy_pfn; 2127 int from_mt; 2128 int to_mt; 2129 struct page *buddy; 2130 2131 if (isolate == get_pageblock_isolate(page)) { 2132 VM_WARN_ONCE(1, "%s a pageblock that is already in that state", 2133 isolate ? "Isolate" : "Unisolate"); 2134 return false; 2135 } 2136 2137 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2138 return false; 2139 2140 /* No splits needed if buddies can't span multiple blocks */ 2141 if (pageblock_order == MAX_PAGE_ORDER) 2142 goto move; 2143 2144 buddy_pfn = find_large_buddy(start_pfn); 2145 buddy = pfn_to_page(buddy_pfn); 2146 /* We're a part of a larger buddy */ 2147 if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) { 2148 int order = buddy_order(buddy); 2149 2150 del_page_from_free_list(buddy, zone, order, 2151 get_pfnblock_migratetype(buddy, buddy_pfn)); 2152 toggle_pageblock_isolate(page, isolate); 2153 split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE); 2154 return true; 2155 } 2156 2157 move: 2158 /* Use MIGRATETYPE_MASK to get non-isolate migratetype */ 2159 if (isolate) { 2160 from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2161 MIGRATETYPE_MASK); 2162 to_mt = MIGRATE_ISOLATE; 2163 } else { 2164 from_mt = MIGRATE_ISOLATE; 2165 to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2166 MIGRATETYPE_MASK); 2167 } 2168 2169 __move_freepages_block(zone, start_pfn, from_mt, to_mt); 2170 toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate); 2171 2172 return true; 2173 } 2174 2175 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page) 2176 { 2177 return __move_freepages_block_isolate(zone, page, true); 2178 } 2179 2180 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page) 2181 { 2182 return __move_freepages_block_isolate(zone, page, false); 2183 } 2184 2185 #endif /* CONFIG_MEMORY_ISOLATION */ 2186 2187 static inline bool boost_watermark(struct zone *zone) 2188 { 2189 unsigned long max_boost; 2190 2191 if (!watermark_boost_factor) 2192 return false; 2193 /* 2194 * Don't bother in zones that are unlikely to produce results. 2195 * On small machines, including kdump capture kernels running 2196 * in a small area, boosting the watermark can cause an out of 2197 * memory situation immediately. 2198 */ 2199 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2200 return false; 2201 2202 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2203 watermark_boost_factor, 10000); 2204 2205 /* 2206 * high watermark may be uninitialised if fragmentation occurs 2207 * very early in boot so do not boost. We do not fall 2208 * through and boost by pageblock_nr_pages as failing 2209 * allocations that early means that reclaim is not going 2210 * to help and it may even be impossible to reclaim the 2211 * boosted watermark resulting in a hang. 2212 */ 2213 if (!max_boost) 2214 return false; 2215 2216 max_boost = max(pageblock_nr_pages, max_boost); 2217 2218 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2219 max_boost); 2220 2221 return true; 2222 } 2223 2224 /* 2225 * When we are falling back to another migratetype during allocation, should we 2226 * try to claim an entire block to satisfy further allocations, instead of 2227 * polluting multiple pageblocks? 2228 */ 2229 static bool should_try_claim_block(unsigned int order, int start_mt) 2230 { 2231 /* 2232 * Leaving this order check is intended, although there is 2233 * relaxed order check in next check. The reason is that 2234 * we can actually claim the whole pageblock if this condition met, 2235 * but, below check doesn't guarantee it and that is just heuristic 2236 * so could be changed anytime. 2237 */ 2238 if (order >= pageblock_order) 2239 return true; 2240 2241 /* 2242 * Above a certain threshold, always try to claim, as it's likely there 2243 * will be more free pages in the pageblock. 2244 */ 2245 if (order >= pageblock_order / 2) 2246 return true; 2247 2248 /* 2249 * Unmovable/reclaimable allocations would cause permanent 2250 * fragmentations if they fell back to allocating from a movable block 2251 * (polluting it), so we try to claim the whole block regardless of the 2252 * allocation size. Later movable allocations can always steal from this 2253 * block, which is less problematic. 2254 */ 2255 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2256 return true; 2257 2258 if (page_group_by_mobility_disabled) 2259 return true; 2260 2261 /* 2262 * Movable pages won't cause permanent fragmentation, so when you alloc 2263 * small pages, we just need to temporarily steal unmovable or 2264 * reclaimable pages that are closest to the request size. After a 2265 * while, memory compaction may occur to form large contiguous pages, 2266 * and the next movable allocation may not need to steal. 2267 */ 2268 return false; 2269 } 2270 2271 /* 2272 * Check whether there is a suitable fallback freepage with requested order. 2273 * If claimable is true, this function returns fallback_mt only if 2274 * we would do this whole-block claiming. This would help to reduce 2275 * fragmentation due to mixed migratetype pages in one pageblock. 2276 */ 2277 int find_suitable_fallback(struct free_area *area, unsigned int order, 2278 int migratetype, bool claimable) 2279 { 2280 int i; 2281 2282 if (claimable && !should_try_claim_block(order, migratetype)) 2283 return -2; 2284 2285 if (area->nr_free == 0) 2286 return -1; 2287 2288 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2289 int fallback_mt = fallbacks[migratetype][i]; 2290 2291 if (!free_area_empty(area, fallback_mt)) 2292 return fallback_mt; 2293 } 2294 2295 return -1; 2296 } 2297 2298 /* 2299 * This function implements actual block claiming behaviour. If order is large 2300 * enough, we can claim the whole pageblock for the requested migratetype. If 2301 * not, we check the pageblock for constituent pages; if at least half of the 2302 * pages are free or compatible, we can still claim the whole block, so pages 2303 * freed in the future will be put on the correct free list. 2304 */ 2305 static struct page * 2306 try_to_claim_block(struct zone *zone, struct page *page, 2307 int current_order, int order, int start_type, 2308 int block_type, unsigned int alloc_flags) 2309 { 2310 int free_pages, movable_pages, alike_pages; 2311 unsigned long start_pfn; 2312 2313 /* Take ownership for orders >= pageblock_order */ 2314 if (current_order >= pageblock_order) { 2315 unsigned int nr_added; 2316 2317 del_page_from_free_list(page, zone, current_order, block_type); 2318 change_pageblock_range(page, current_order, start_type); 2319 nr_added = expand(zone, page, order, current_order, start_type); 2320 account_freepages(zone, nr_added, start_type); 2321 return page; 2322 } 2323 2324 /* 2325 * Boost watermarks to increase reclaim pressure to reduce the 2326 * likelihood of future fallbacks. Wake kswapd now as the node 2327 * may be balanced overall and kswapd will not wake naturally. 2328 */ 2329 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2330 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2331 2332 /* moving whole block can fail due to zone boundary conditions */ 2333 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2334 &movable_pages)) 2335 return NULL; 2336 2337 /* 2338 * Determine how many pages are compatible with our allocation. 2339 * For movable allocation, it's the number of movable pages which 2340 * we just obtained. For other types it's a bit more tricky. 2341 */ 2342 if (start_type == MIGRATE_MOVABLE) { 2343 alike_pages = movable_pages; 2344 } else { 2345 /* 2346 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2347 * to MOVABLE pageblock, consider all non-movable pages as 2348 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2349 * vice versa, be conservative since we can't distinguish the 2350 * exact migratetype of non-movable pages. 2351 */ 2352 if (block_type == MIGRATE_MOVABLE) 2353 alike_pages = pageblock_nr_pages 2354 - (free_pages + movable_pages); 2355 else 2356 alike_pages = 0; 2357 } 2358 /* 2359 * If a sufficient number of pages in the block are either free or of 2360 * compatible migratability as our allocation, claim the whole block. 2361 */ 2362 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2363 page_group_by_mobility_disabled) { 2364 __move_freepages_block(zone, start_pfn, block_type, start_type); 2365 set_pageblock_migratetype(pfn_to_page(start_pfn), start_type); 2366 return __rmqueue_smallest(zone, order, start_type); 2367 } 2368 2369 return NULL; 2370 } 2371 2372 /* 2373 * Try to allocate from some fallback migratetype by claiming the entire block, 2374 * i.e. converting it to the allocation's start migratetype. 2375 * 2376 * The use of signed ints for order and current_order is a deliberate 2377 * deviation from the rest of this file, to make the for loop 2378 * condition simpler. 2379 */ 2380 static __always_inline struct page * 2381 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2382 unsigned int alloc_flags) 2383 { 2384 struct free_area *area; 2385 int current_order; 2386 int min_order = order; 2387 struct page *page; 2388 int fallback_mt; 2389 2390 /* 2391 * Do not steal pages from freelists belonging to other pageblocks 2392 * i.e. orders < pageblock_order. If there are no local zones free, 2393 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2394 */ 2395 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2396 min_order = pageblock_order; 2397 2398 /* 2399 * Find the largest available free page in the other list. This roughly 2400 * approximates finding the pageblock with the most free pages, which 2401 * would be too costly to do exactly. 2402 */ 2403 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2404 --current_order) { 2405 area = &(zone->free_area[current_order]); 2406 fallback_mt = find_suitable_fallback(area, current_order, 2407 start_migratetype, true); 2408 2409 /* No block in that order */ 2410 if (fallback_mt == -1) 2411 continue; 2412 2413 /* Advanced into orders too low to claim, abort */ 2414 if (fallback_mt == -2) 2415 break; 2416 2417 page = get_page_from_free_area(area, fallback_mt); 2418 page = try_to_claim_block(zone, page, current_order, order, 2419 start_migratetype, fallback_mt, 2420 alloc_flags); 2421 if (page) { 2422 trace_mm_page_alloc_extfrag(page, order, current_order, 2423 start_migratetype, fallback_mt); 2424 return page; 2425 } 2426 } 2427 2428 return NULL; 2429 } 2430 2431 /* 2432 * Try to steal a single page from some fallback migratetype. Leave the rest of 2433 * the block as its current migratetype, potentially causing fragmentation. 2434 */ 2435 static __always_inline struct page * 2436 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2437 { 2438 struct free_area *area; 2439 int current_order; 2440 struct page *page; 2441 int fallback_mt; 2442 2443 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2444 area = &(zone->free_area[current_order]); 2445 fallback_mt = find_suitable_fallback(area, current_order, 2446 start_migratetype, false); 2447 if (fallback_mt == -1) 2448 continue; 2449 2450 page = get_page_from_free_area(area, fallback_mt); 2451 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2452 trace_mm_page_alloc_extfrag(page, order, current_order, 2453 start_migratetype, fallback_mt); 2454 return page; 2455 } 2456 2457 return NULL; 2458 } 2459 2460 enum rmqueue_mode { 2461 RMQUEUE_NORMAL, 2462 RMQUEUE_CMA, 2463 RMQUEUE_CLAIM, 2464 RMQUEUE_STEAL, 2465 }; 2466 2467 /* 2468 * Do the hard work of removing an element from the buddy allocator. 2469 * Call me with the zone->lock already held. 2470 */ 2471 static __always_inline struct page * 2472 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2473 unsigned int alloc_flags, enum rmqueue_mode *mode) 2474 { 2475 struct page *page; 2476 2477 if (IS_ENABLED(CONFIG_CMA)) { 2478 /* 2479 * Balance movable allocations between regular and CMA areas by 2480 * allocating from CMA when over half of the zone's free memory 2481 * is in the CMA area. 2482 */ 2483 if (alloc_flags & ALLOC_CMA && 2484 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2485 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2486 page = __rmqueue_cma_fallback(zone, order); 2487 if (page) 2488 return page; 2489 } 2490 } 2491 2492 /* 2493 * First try the freelists of the requested migratetype, then try 2494 * fallbacks modes with increasing levels of fragmentation risk. 2495 * 2496 * The fallback logic is expensive and rmqueue_bulk() calls in 2497 * a loop with the zone->lock held, meaning the freelists are 2498 * not subject to any outside changes. Remember in *mode where 2499 * we found pay dirt, to save us the search on the next call. 2500 */ 2501 switch (*mode) { 2502 case RMQUEUE_NORMAL: 2503 page = __rmqueue_smallest(zone, order, migratetype); 2504 if (page) 2505 return page; 2506 fallthrough; 2507 case RMQUEUE_CMA: 2508 if (alloc_flags & ALLOC_CMA) { 2509 page = __rmqueue_cma_fallback(zone, order); 2510 if (page) { 2511 *mode = RMQUEUE_CMA; 2512 return page; 2513 } 2514 } 2515 fallthrough; 2516 case RMQUEUE_CLAIM: 2517 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2518 if (page) { 2519 /* Replenished preferred freelist, back to normal mode. */ 2520 *mode = RMQUEUE_NORMAL; 2521 return page; 2522 } 2523 fallthrough; 2524 case RMQUEUE_STEAL: 2525 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2526 page = __rmqueue_steal(zone, order, migratetype); 2527 if (page) { 2528 *mode = RMQUEUE_STEAL; 2529 return page; 2530 } 2531 } 2532 } 2533 return NULL; 2534 } 2535 2536 /* 2537 * Obtain a specified number of elements from the buddy allocator, all under 2538 * a single hold of the lock, for efficiency. Add them to the supplied list. 2539 * Returns the number of new pages which were placed at *list. 2540 */ 2541 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2542 unsigned long count, struct list_head *list, 2543 int migratetype, unsigned int alloc_flags) 2544 { 2545 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2546 unsigned long flags; 2547 int i; 2548 2549 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2550 if (!spin_trylock_irqsave(&zone->lock, flags)) 2551 return 0; 2552 } else { 2553 spin_lock_irqsave(&zone->lock, flags); 2554 } 2555 for (i = 0; i < count; ++i) { 2556 struct page *page = __rmqueue(zone, order, migratetype, 2557 alloc_flags, &rmqm); 2558 if (unlikely(page == NULL)) 2559 break; 2560 2561 /* 2562 * Split buddy pages returned by expand() are received here in 2563 * physical page order. The page is added to the tail of 2564 * caller's list. From the callers perspective, the linked list 2565 * is ordered by page number under some conditions. This is 2566 * useful for IO devices that can forward direction from the 2567 * head, thus also in the physical page order. This is useful 2568 * for IO devices that can merge IO requests if the physical 2569 * pages are ordered properly. 2570 */ 2571 list_add_tail(&page->pcp_list, list); 2572 } 2573 spin_unlock_irqrestore(&zone->lock, flags); 2574 2575 return i; 2576 } 2577 2578 /* 2579 * Called from the vmstat counter updater to decay the PCP high. 2580 * Return whether there are addition works to do. 2581 */ 2582 bool decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2583 { 2584 int high_min, to_drain, to_drain_batched, batch; 2585 unsigned long UP_flags; 2586 bool todo = false; 2587 2588 high_min = READ_ONCE(pcp->high_min); 2589 batch = READ_ONCE(pcp->batch); 2590 /* 2591 * Decrease pcp->high periodically to try to free possible 2592 * idle PCP pages. And, avoid to free too many pages to 2593 * control latency. This caps pcp->high decrement too. 2594 */ 2595 if (pcp->high > high_min) { 2596 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2597 pcp->high - (pcp->high >> 3), high_min); 2598 if (pcp->high > high_min) 2599 todo = true; 2600 } 2601 2602 to_drain = pcp->count - pcp->high; 2603 while (to_drain > 0) { 2604 to_drain_batched = min(to_drain, batch); 2605 pcp_spin_lock_maybe_irqsave(pcp, UP_flags); 2606 free_pcppages_bulk(zone, to_drain_batched, pcp, 0); 2607 pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags); 2608 todo = true; 2609 2610 to_drain -= to_drain_batched; 2611 } 2612 2613 return todo; 2614 } 2615 2616 #ifdef CONFIG_NUMA 2617 /* 2618 * Called from the vmstat counter updater to drain pagesets of this 2619 * currently executing processor on remote nodes after they have 2620 * expired. 2621 */ 2622 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2623 { 2624 unsigned long UP_flags; 2625 int to_drain, batch; 2626 2627 batch = READ_ONCE(pcp->batch); 2628 to_drain = min(pcp->count, batch); 2629 if (to_drain > 0) { 2630 pcp_spin_lock_maybe_irqsave(pcp, UP_flags); 2631 free_pcppages_bulk(zone, to_drain, pcp, 0); 2632 pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags); 2633 } 2634 } 2635 #endif 2636 2637 /* 2638 * Drain pcplists of the indicated processor and zone. 2639 */ 2640 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2641 { 2642 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2643 unsigned long UP_flags; 2644 int count; 2645 2646 do { 2647 pcp_spin_lock_maybe_irqsave(pcp, UP_flags); 2648 count = pcp->count; 2649 if (count) { 2650 int to_drain = min(count, 2651 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2652 2653 free_pcppages_bulk(zone, to_drain, pcp, 0); 2654 count -= to_drain; 2655 } 2656 pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags); 2657 } while (count); 2658 } 2659 2660 /* 2661 * Drain pcplists of all zones on the indicated processor. 2662 */ 2663 static void drain_pages(unsigned int cpu) 2664 { 2665 struct zone *zone; 2666 2667 for_each_populated_zone(zone) { 2668 drain_pages_zone(cpu, zone); 2669 } 2670 } 2671 2672 /* 2673 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2674 */ 2675 void drain_local_pages(struct zone *zone) 2676 { 2677 int cpu = smp_processor_id(); 2678 2679 if (zone) 2680 drain_pages_zone(cpu, zone); 2681 else 2682 drain_pages(cpu); 2683 } 2684 2685 /* 2686 * The implementation of drain_all_pages(), exposing an extra parameter to 2687 * drain on all cpus. 2688 * 2689 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2690 * not empty. The check for non-emptiness can however race with a free to 2691 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2692 * that need the guarantee that every CPU has drained can disable the 2693 * optimizing racy check. 2694 */ 2695 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2696 { 2697 int cpu; 2698 2699 /* 2700 * Allocate in the BSS so we won't require allocation in 2701 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2702 */ 2703 static cpumask_t cpus_with_pcps; 2704 2705 /* 2706 * Do not drain if one is already in progress unless it's specific to 2707 * a zone. Such callers are primarily CMA and memory hotplug and need 2708 * the drain to be complete when the call returns. 2709 */ 2710 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2711 if (!zone) 2712 return; 2713 mutex_lock(&pcpu_drain_mutex); 2714 } 2715 2716 /* 2717 * We don't care about racing with CPU hotplug event 2718 * as offline notification will cause the notified 2719 * cpu to drain that CPU pcps and on_each_cpu_mask 2720 * disables preemption as part of its processing 2721 */ 2722 for_each_online_cpu(cpu) { 2723 struct per_cpu_pages *pcp; 2724 struct zone *z; 2725 bool has_pcps = false; 2726 2727 if (force_all_cpus) { 2728 /* 2729 * The pcp.count check is racy, some callers need a 2730 * guarantee that no cpu is missed. 2731 */ 2732 has_pcps = true; 2733 } else if (zone) { 2734 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2735 if (pcp->count) 2736 has_pcps = true; 2737 } else { 2738 for_each_populated_zone(z) { 2739 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2740 if (pcp->count) { 2741 has_pcps = true; 2742 break; 2743 } 2744 } 2745 } 2746 2747 if (has_pcps) 2748 cpumask_set_cpu(cpu, &cpus_with_pcps); 2749 else 2750 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2751 } 2752 2753 for_each_cpu(cpu, &cpus_with_pcps) { 2754 if (zone) 2755 drain_pages_zone(cpu, zone); 2756 else 2757 drain_pages(cpu); 2758 } 2759 2760 mutex_unlock(&pcpu_drain_mutex); 2761 } 2762 2763 /* 2764 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2765 * 2766 * When zone parameter is non-NULL, spill just the single zone's pages. 2767 */ 2768 void drain_all_pages(struct zone *zone) 2769 { 2770 __drain_all_pages(zone, false); 2771 } 2772 2773 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2774 { 2775 int min_nr_free, max_nr_free; 2776 2777 /* Free as much as possible if batch freeing high-order pages. */ 2778 if (unlikely(free_high)) 2779 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2780 2781 /* Check for PCP disabled or boot pageset */ 2782 if (unlikely(high < batch)) 2783 return 1; 2784 2785 /* Leave at least pcp->batch pages on the list */ 2786 min_nr_free = batch; 2787 max_nr_free = high - batch; 2788 2789 /* 2790 * Increase the batch number to the number of the consecutive 2791 * freed pages to reduce zone lock contention. 2792 */ 2793 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2794 2795 return batch; 2796 } 2797 2798 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2799 int batch, bool free_high) 2800 { 2801 int high, high_min, high_max; 2802 2803 high_min = READ_ONCE(pcp->high_min); 2804 high_max = READ_ONCE(pcp->high_max); 2805 high = pcp->high = clamp(pcp->high, high_min, high_max); 2806 2807 if (unlikely(!high)) 2808 return 0; 2809 2810 if (unlikely(free_high)) { 2811 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2812 high_min); 2813 return 0; 2814 } 2815 2816 /* 2817 * If reclaim is active, limit the number of pages that can be 2818 * stored on pcp lists 2819 */ 2820 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2821 int free_count = max_t(int, pcp->free_count, batch); 2822 2823 pcp->high = max(high - free_count, high_min); 2824 return min(batch << 2, pcp->high); 2825 } 2826 2827 if (high_min == high_max) 2828 return high; 2829 2830 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2831 int free_count = max_t(int, pcp->free_count, batch); 2832 2833 pcp->high = max(high - free_count, high_min); 2834 high = max(pcp->count, high_min); 2835 } else if (pcp->count >= high) { 2836 int need_high = pcp->free_count + batch; 2837 2838 /* pcp->high should be large enough to hold batch freed pages */ 2839 if (pcp->high < need_high) 2840 pcp->high = clamp(need_high, high_min, high_max); 2841 } 2842 2843 return high; 2844 } 2845 2846 /* 2847 * Tune pcp alloc factor and adjust count & free_count. Free pages to bring the 2848 * pcp's watermarks below high. 2849 * 2850 * May return a freed pcp, if during page freeing the pcp spinlock cannot be 2851 * reacquired. Return true if pcp is locked, false otherwise. 2852 */ 2853 static bool free_frozen_page_commit(struct zone *zone, 2854 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2855 unsigned int order, fpi_t fpi_flags, unsigned long *UP_flags) 2856 { 2857 int high, batch; 2858 int to_free, to_free_batched; 2859 int pindex; 2860 int cpu = smp_processor_id(); 2861 int ret = true; 2862 bool free_high = false; 2863 2864 /* 2865 * On freeing, reduce the number of pages that are batch allocated. 2866 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2867 * allocations. 2868 */ 2869 pcp->alloc_factor >>= 1; 2870 __count_vm_events(PGFREE, 1 << order); 2871 pindex = order_to_pindex(migratetype, order); 2872 list_add(&page->pcp_list, &pcp->lists[pindex]); 2873 pcp->count += 1 << order; 2874 2875 batch = READ_ONCE(pcp->batch); 2876 /* 2877 * As high-order pages other than THP's stored on PCP can contribute 2878 * to fragmentation, limit the number stored when PCP is heavily 2879 * freeing without allocation. The remainder after bulk freeing 2880 * stops will be drained from vmstat refresh context. 2881 */ 2882 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2883 free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && 2884 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2885 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2886 pcp->count >= batch)); 2887 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2888 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2889 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2890 } 2891 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2892 pcp->free_count += (1 << order); 2893 2894 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2895 /* 2896 * Do not attempt to take a zone lock. Let pcp->count get 2897 * over high mark temporarily. 2898 */ 2899 return true; 2900 } 2901 2902 high = nr_pcp_high(pcp, zone, batch, free_high); 2903 if (pcp->count < high) 2904 return true; 2905 2906 to_free = nr_pcp_free(pcp, batch, high, free_high); 2907 while (to_free > 0 && pcp->count > 0) { 2908 to_free_batched = min(to_free, batch); 2909 free_pcppages_bulk(zone, to_free_batched, pcp, pindex); 2910 to_free -= to_free_batched; 2911 2912 if (to_free == 0 || pcp->count == 0) 2913 break; 2914 2915 pcp_spin_unlock(pcp, *UP_flags); 2916 2917 pcp = pcp_spin_trylock(zone->per_cpu_pageset, *UP_flags); 2918 if (!pcp) { 2919 ret = false; 2920 break; 2921 } 2922 2923 /* 2924 * Check if this thread has been migrated to a different CPU. 2925 * If that is the case, give up and indicate that the pcp is 2926 * returned in an unlocked state. 2927 */ 2928 if (smp_processor_id() != cpu) { 2929 pcp_spin_unlock(pcp, *UP_flags); 2930 ret = false; 2931 break; 2932 } 2933 } 2934 2935 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2936 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2937 ZONE_MOVABLE, 0)) { 2938 struct pglist_data *pgdat = zone->zone_pgdat; 2939 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2940 2941 /* 2942 * Assume that memory pressure on this node is gone and may be 2943 * in a reclaimable state. If a memory fallback node exists, 2944 * direct reclaim may not have been triggered, causing a 2945 * 'hopeless node' to stay in that state for a while. Let 2946 * kswapd work again by resetting kswapd_failures. 2947 */ 2948 if (kswapd_test_hopeless(pgdat) && 2949 next_memory_node(pgdat->node_id) < MAX_NUMNODES) 2950 kswapd_clear_hopeless(pgdat, KSWAPD_CLEAR_HOPELESS_PCP); 2951 } 2952 return ret; 2953 } 2954 2955 /* 2956 * Free a pcp page 2957 */ 2958 static void __free_frozen_pages(struct page *page, unsigned int order, 2959 fpi_t fpi_flags) 2960 { 2961 unsigned long UP_flags; 2962 struct per_cpu_pages *pcp; 2963 struct zone *zone; 2964 unsigned long pfn = page_to_pfn(page); 2965 int migratetype; 2966 2967 if (!pcp_allowed_order(order)) { 2968 __free_pages_ok(page, order, fpi_flags); 2969 return; 2970 } 2971 2972 if (!free_pages_prepare(page, order)) 2973 return; 2974 2975 /* 2976 * We only track unmovable, reclaimable and movable on pcp lists. 2977 * Place ISOLATE pages on the isolated list because they are being 2978 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2979 * get those areas back if necessary. Otherwise, we may have to free 2980 * excessively into the page allocator 2981 */ 2982 zone = page_zone(page); 2983 migratetype = get_pfnblock_migratetype(page, pfn); 2984 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2985 if (unlikely(is_migrate_isolate(migratetype))) { 2986 free_one_page(zone, page, pfn, order, fpi_flags); 2987 return; 2988 } 2989 migratetype = MIGRATE_MOVABLE; 2990 } 2991 2992 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2993 && (in_nmi() || in_hardirq()))) { 2994 add_page_to_zone_llist(zone, page, order); 2995 return; 2996 } 2997 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 2998 if (pcp) { 2999 if (!free_frozen_page_commit(zone, pcp, page, migratetype, 3000 order, fpi_flags, &UP_flags)) 3001 return; 3002 pcp_spin_unlock(pcp, UP_flags); 3003 } else { 3004 free_one_page(zone, page, pfn, order, fpi_flags); 3005 } 3006 } 3007 3008 void free_frozen_pages(struct page *page, unsigned int order) 3009 { 3010 __free_frozen_pages(page, order, FPI_NONE); 3011 } 3012 3013 /* 3014 * Free a batch of folios 3015 */ 3016 void free_unref_folios(struct folio_batch *folios) 3017 { 3018 unsigned long UP_flags; 3019 struct per_cpu_pages *pcp = NULL; 3020 struct zone *locked_zone = NULL; 3021 int i, j; 3022 3023 /* Prepare folios for freeing */ 3024 for (i = 0, j = 0; i < folios->nr; i++) { 3025 struct folio *folio = folios->folios[i]; 3026 unsigned long pfn = folio_pfn(folio); 3027 unsigned int order = folio_order(folio); 3028 3029 if (!free_pages_prepare(&folio->page, order)) 3030 continue; 3031 /* 3032 * Free orders not handled on the PCP directly to the 3033 * allocator. 3034 */ 3035 if (!pcp_allowed_order(order)) { 3036 free_one_page(folio_zone(folio), &folio->page, 3037 pfn, order, FPI_NONE); 3038 continue; 3039 } 3040 folio->private = (void *)(unsigned long)order; 3041 if (j != i) 3042 folios->folios[j] = folio; 3043 j++; 3044 } 3045 folios->nr = j; 3046 3047 for (i = 0; i < folios->nr; i++) { 3048 struct folio *folio = folios->folios[i]; 3049 struct zone *zone = folio_zone(folio); 3050 unsigned long pfn = folio_pfn(folio); 3051 unsigned int order = (unsigned long)folio->private; 3052 int migratetype; 3053 3054 folio->private = NULL; 3055 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 3056 3057 /* Different zone requires a different pcp lock */ 3058 if (zone != locked_zone || 3059 is_migrate_isolate(migratetype)) { 3060 if (pcp) { 3061 pcp_spin_unlock(pcp, UP_flags); 3062 locked_zone = NULL; 3063 pcp = NULL; 3064 } 3065 3066 /* 3067 * Free isolated pages directly to the 3068 * allocator, see comment in free_frozen_pages. 3069 */ 3070 if (is_migrate_isolate(migratetype)) { 3071 free_one_page(zone, &folio->page, pfn, 3072 order, FPI_NONE); 3073 continue; 3074 } 3075 3076 /* 3077 * trylock is necessary as folios may be getting freed 3078 * from IRQ or SoftIRQ context after an IO completion. 3079 */ 3080 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 3081 if (unlikely(!pcp)) { 3082 free_one_page(zone, &folio->page, pfn, 3083 order, FPI_NONE); 3084 continue; 3085 } 3086 locked_zone = zone; 3087 } 3088 3089 /* 3090 * Non-isolated types over MIGRATE_PCPTYPES get added 3091 * to the MIGRATE_MOVABLE pcp list. 3092 */ 3093 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3094 migratetype = MIGRATE_MOVABLE; 3095 3096 trace_mm_page_free_batched(&folio->page); 3097 if (!free_frozen_page_commit(zone, pcp, &folio->page, 3098 migratetype, order, FPI_NONE, &UP_flags)) { 3099 pcp = NULL; 3100 locked_zone = NULL; 3101 } 3102 } 3103 3104 if (pcp) 3105 pcp_spin_unlock(pcp, UP_flags); 3106 folio_batch_reinit(folios); 3107 } 3108 3109 static void __split_page(struct page *page, unsigned int order) 3110 { 3111 VM_WARN_ON_PAGE(PageCompound(page), page); 3112 3113 split_page_owner(page, order, 0); 3114 pgalloc_tag_split(page_folio(page), order, 0); 3115 split_page_memcg(page, order); 3116 } 3117 3118 /* 3119 * split_page takes a non-compound higher-order page, and splits it into 3120 * n (1<<order) sub-pages: page[0..n] 3121 * Each sub-page must be freed individually. 3122 * 3123 * Note: this is probably too low level an operation for use in drivers. 3124 * Please consult with lkml before using this in your driver. 3125 */ 3126 void split_page(struct page *page, unsigned int order) 3127 { 3128 int i; 3129 3130 VM_WARN_ON_PAGE(!page_count(page), page); 3131 3132 for (i = 1; i < (1 << order); i++) 3133 set_page_refcounted(page + i); 3134 3135 __split_page(page, order); 3136 } 3137 EXPORT_SYMBOL_GPL(split_page); 3138 3139 int __isolate_free_page(struct page *page, unsigned int order) 3140 { 3141 struct zone *zone = page_zone(page); 3142 int mt = get_pageblock_migratetype(page); 3143 3144 if (!is_migrate_isolate(mt)) { 3145 unsigned long watermark; 3146 /* 3147 * Obey watermarks as if the page was being allocated. We can 3148 * emulate a high-order watermark check with a raised order-0 3149 * watermark, because we already know our high-order page 3150 * exists. 3151 */ 3152 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3153 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3154 return 0; 3155 } 3156 3157 del_page_from_free_list(page, zone, order, mt); 3158 3159 /* 3160 * Set the pageblock if the isolated page is at least half of a 3161 * pageblock 3162 */ 3163 if (order >= pageblock_order - 1) { 3164 struct page *endpage = page + (1 << order) - 1; 3165 for (; page < endpage; page += pageblock_nr_pages) { 3166 int mt = get_pageblock_migratetype(page); 3167 /* 3168 * Only change normal pageblocks (i.e., they can merge 3169 * with others) 3170 */ 3171 if (migratetype_is_mergeable(mt)) 3172 move_freepages_block(zone, page, mt, 3173 MIGRATE_MOVABLE); 3174 } 3175 } 3176 3177 return 1UL << order; 3178 } 3179 3180 /** 3181 * __putback_isolated_page - Return a now-isolated page back where we got it 3182 * @page: Page that was isolated 3183 * @order: Order of the isolated page 3184 * @mt: The page's pageblock's migratetype 3185 * 3186 * This function is meant to return a page pulled from the free lists via 3187 * __isolate_free_page back to the free lists they were pulled from. 3188 */ 3189 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3190 { 3191 struct zone *zone = page_zone(page); 3192 3193 /* zone lock should be held when this function is called */ 3194 lockdep_assert_held(&zone->lock); 3195 3196 /* Return isolated page to tail of freelist. */ 3197 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3198 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3199 } 3200 3201 /* 3202 * Update NUMA hit/miss statistics 3203 */ 3204 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3205 long nr_account) 3206 { 3207 #ifdef CONFIG_NUMA 3208 enum numa_stat_item local_stat = NUMA_LOCAL; 3209 3210 /* skip numa counters update if numa stats is disabled */ 3211 if (!static_branch_likely(&vm_numa_stat_key)) 3212 return; 3213 3214 if (zone_to_nid(z) != numa_node_id()) 3215 local_stat = NUMA_OTHER; 3216 3217 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3218 __count_numa_events(z, NUMA_HIT, nr_account); 3219 else { 3220 __count_numa_events(z, NUMA_MISS, nr_account); 3221 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3222 } 3223 __count_numa_events(z, local_stat, nr_account); 3224 #endif 3225 } 3226 3227 static __always_inline 3228 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3229 unsigned int order, unsigned int alloc_flags, 3230 int migratetype) 3231 { 3232 struct page *page; 3233 unsigned long flags; 3234 3235 do { 3236 page = NULL; 3237 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 3238 if (!spin_trylock_irqsave(&zone->lock, flags)) 3239 return NULL; 3240 } else { 3241 spin_lock_irqsave(&zone->lock, flags); 3242 } 3243 if (alloc_flags & ALLOC_HIGHATOMIC) 3244 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3245 if (!page) { 3246 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 3247 3248 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 3249 3250 /* 3251 * If the allocation fails, allow OOM handling and 3252 * order-0 (atomic) allocs access to HIGHATOMIC 3253 * reserves as failing now is worse than failing a 3254 * high-order atomic allocation in the future. 3255 */ 3256 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3257 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3258 3259 if (!page) { 3260 spin_unlock_irqrestore(&zone->lock, flags); 3261 return NULL; 3262 } 3263 } 3264 spin_unlock_irqrestore(&zone->lock, flags); 3265 } while (check_new_pages(page, order)); 3266 3267 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3268 zone_statistics(preferred_zone, zone, 1); 3269 3270 return page; 3271 } 3272 3273 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3274 { 3275 int high, base_batch, batch, max_nr_alloc; 3276 int high_max, high_min; 3277 3278 base_batch = READ_ONCE(pcp->batch); 3279 high_min = READ_ONCE(pcp->high_min); 3280 high_max = READ_ONCE(pcp->high_max); 3281 high = pcp->high = clamp(pcp->high, high_min, high_max); 3282 3283 /* Check for PCP disabled or boot pageset */ 3284 if (unlikely(high < base_batch)) 3285 return 1; 3286 3287 if (order) 3288 batch = base_batch; 3289 else 3290 batch = (base_batch << pcp->alloc_factor); 3291 3292 /* 3293 * If we had larger pcp->high, we could avoid to allocate from 3294 * zone. 3295 */ 3296 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3297 high = pcp->high = min(high + batch, high_max); 3298 3299 if (!order) { 3300 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3301 /* 3302 * Double the number of pages allocated each time there is 3303 * subsequent allocation of order-0 pages without any freeing. 3304 */ 3305 if (batch <= max_nr_alloc && 3306 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3307 pcp->alloc_factor++; 3308 batch = min(batch, max_nr_alloc); 3309 } 3310 3311 /* 3312 * Scale batch relative to order if batch implies free pages 3313 * can be stored on the PCP. Batch can be 1 for small zones or 3314 * for boot pagesets which should never store free pages as 3315 * the pages may belong to arbitrary zones. 3316 */ 3317 if (batch > 1) 3318 batch = max(batch >> order, 2); 3319 3320 return batch; 3321 } 3322 3323 /* Remove page from the per-cpu list, caller must protect the list */ 3324 static inline 3325 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3326 int migratetype, 3327 unsigned int alloc_flags, 3328 struct per_cpu_pages *pcp, 3329 struct list_head *list) 3330 { 3331 struct page *page; 3332 3333 do { 3334 if (list_empty(list)) { 3335 int batch = nr_pcp_alloc(pcp, zone, order); 3336 int alloced; 3337 3338 alloced = rmqueue_bulk(zone, order, 3339 batch, list, 3340 migratetype, alloc_flags); 3341 3342 pcp->count += alloced << order; 3343 if (unlikely(list_empty(list))) 3344 return NULL; 3345 } 3346 3347 page = list_first_entry(list, struct page, pcp_list); 3348 list_del(&page->pcp_list); 3349 pcp->count -= 1 << order; 3350 } while (check_new_pages(page, order)); 3351 3352 return page; 3353 } 3354 3355 /* Lock and remove page from the per-cpu list */ 3356 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3357 struct zone *zone, unsigned int order, 3358 int migratetype, unsigned int alloc_flags) 3359 { 3360 struct per_cpu_pages *pcp; 3361 struct list_head *list; 3362 struct page *page; 3363 unsigned long UP_flags; 3364 3365 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3366 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 3367 if (!pcp) 3368 return NULL; 3369 3370 /* 3371 * On allocation, reduce the number of pages that are batch freed. 3372 * See nr_pcp_free() where free_factor is increased for subsequent 3373 * frees. 3374 */ 3375 pcp->free_count >>= 1; 3376 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3377 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3378 pcp_spin_unlock(pcp, UP_flags); 3379 if (page) { 3380 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3381 zone_statistics(preferred_zone, zone, 1); 3382 } 3383 return page; 3384 } 3385 3386 /* 3387 * Allocate a page from the given zone. 3388 * Use pcplists for THP or "cheap" high-order allocations. 3389 */ 3390 3391 /* 3392 * Do not instrument rmqueue() with KMSAN. This function may call 3393 * __msan_poison_alloca() through a call to set_pfnblock_migratetype(). 3394 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3395 * may call rmqueue() again, which will result in a deadlock. 3396 */ 3397 __no_sanitize_memory 3398 static inline 3399 struct page *rmqueue(struct zone *preferred_zone, 3400 struct zone *zone, unsigned int order, 3401 gfp_t gfp_flags, unsigned int alloc_flags, 3402 int migratetype) 3403 { 3404 struct page *page; 3405 3406 if (likely(pcp_allowed_order(order))) { 3407 page = rmqueue_pcplist(preferred_zone, zone, order, 3408 migratetype, alloc_flags); 3409 if (likely(page)) 3410 goto out; 3411 } 3412 3413 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3414 migratetype); 3415 3416 out: 3417 /* Separate test+clear to avoid unnecessary atomics */ 3418 if ((alloc_flags & ALLOC_KSWAPD) && 3419 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3420 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3421 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3422 } 3423 3424 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3425 return page; 3426 } 3427 3428 /* 3429 * Reserve the pageblock(s) surrounding an allocation request for 3430 * exclusive use of high-order atomic allocations if there are no 3431 * empty page blocks that contain a page with a suitable order 3432 */ 3433 static void reserve_highatomic_pageblock(struct page *page, int order, 3434 struct zone *zone) 3435 { 3436 int mt; 3437 unsigned long max_managed, flags; 3438 3439 /* 3440 * The number reserved as: minimum is 1 pageblock, maximum is 3441 * roughly 1% of a zone. But if 1% of a zone falls below a 3442 * pageblock size, then don't reserve any pageblocks. 3443 * Check is race-prone but harmless. 3444 */ 3445 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3446 return; 3447 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3448 if (zone->nr_reserved_highatomic >= max_managed) 3449 return; 3450 3451 spin_lock_irqsave(&zone->lock, flags); 3452 3453 /* Recheck the nr_reserved_highatomic limit under the lock */ 3454 if (zone->nr_reserved_highatomic >= max_managed) 3455 goto out_unlock; 3456 3457 /* Yoink! */ 3458 mt = get_pageblock_migratetype(page); 3459 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3460 if (!migratetype_is_mergeable(mt)) 3461 goto out_unlock; 3462 3463 if (order < pageblock_order) { 3464 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3465 goto out_unlock; 3466 zone->nr_reserved_highatomic += pageblock_nr_pages; 3467 } else { 3468 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3469 zone->nr_reserved_highatomic += 1 << order; 3470 } 3471 3472 out_unlock: 3473 spin_unlock_irqrestore(&zone->lock, flags); 3474 } 3475 3476 /* 3477 * Used when an allocation is about to fail under memory pressure. This 3478 * potentially hurts the reliability of high-order allocations when under 3479 * intense memory pressure but failed atomic allocations should be easier 3480 * to recover from than an OOM. 3481 * 3482 * If @force is true, try to unreserve pageblocks even though highatomic 3483 * pageblock is exhausted. 3484 */ 3485 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3486 bool force) 3487 { 3488 struct zonelist *zonelist = ac->zonelist; 3489 unsigned long flags; 3490 struct zoneref *z; 3491 struct zone *zone; 3492 struct page *page; 3493 int order; 3494 int ret; 3495 3496 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3497 ac->nodemask) { 3498 /* 3499 * Preserve at least one pageblock unless memory pressure 3500 * is really high. 3501 */ 3502 if (!force && zone->nr_reserved_highatomic <= 3503 pageblock_nr_pages) 3504 continue; 3505 3506 spin_lock_irqsave(&zone->lock, flags); 3507 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3508 struct free_area *area = &(zone->free_area[order]); 3509 unsigned long size; 3510 3511 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3512 if (!page) 3513 continue; 3514 3515 size = max(pageblock_nr_pages, 1UL << order); 3516 /* 3517 * It should never happen but changes to 3518 * locking could inadvertently allow a per-cpu 3519 * drain to add pages to MIGRATE_HIGHATOMIC 3520 * while unreserving so be safe and watch for 3521 * underflows. 3522 */ 3523 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3524 size = zone->nr_reserved_highatomic; 3525 zone->nr_reserved_highatomic -= size; 3526 3527 /* 3528 * Convert to ac->migratetype and avoid the normal 3529 * pageblock stealing heuristics. Minimally, the caller 3530 * is doing the work and needs the pages. More 3531 * importantly, if the block was always converted to 3532 * MIGRATE_UNMOVABLE or another type then the number 3533 * of pageblocks that cannot be completely freed 3534 * may increase. 3535 */ 3536 if (order < pageblock_order) 3537 ret = move_freepages_block(zone, page, 3538 MIGRATE_HIGHATOMIC, 3539 ac->migratetype); 3540 else { 3541 move_to_free_list(page, zone, order, 3542 MIGRATE_HIGHATOMIC, 3543 ac->migratetype); 3544 change_pageblock_range(page, order, 3545 ac->migratetype); 3546 ret = 1; 3547 } 3548 /* 3549 * Reserving the block(s) already succeeded, 3550 * so this should not fail on zone boundaries. 3551 */ 3552 WARN_ON_ONCE(ret == -1); 3553 if (ret > 0) { 3554 spin_unlock_irqrestore(&zone->lock, flags); 3555 return ret; 3556 } 3557 } 3558 spin_unlock_irqrestore(&zone->lock, flags); 3559 } 3560 3561 return false; 3562 } 3563 3564 static inline long __zone_watermark_unusable_free(struct zone *z, 3565 unsigned int order, unsigned int alloc_flags) 3566 { 3567 long unusable_free = (1 << order) - 1; 3568 3569 /* 3570 * If the caller does not have rights to reserves below the min 3571 * watermark then subtract the free pages reserved for highatomic. 3572 */ 3573 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3574 unusable_free += READ_ONCE(z->nr_free_highatomic); 3575 3576 #ifdef CONFIG_CMA 3577 /* If allocation can't use CMA areas don't use free CMA pages */ 3578 if (!(alloc_flags & ALLOC_CMA)) 3579 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3580 #endif 3581 3582 return unusable_free; 3583 } 3584 3585 /* 3586 * Return true if free base pages are above 'mark'. For high-order checks it 3587 * will return true of the order-0 watermark is reached and there is at least 3588 * one free page of a suitable size. Checking now avoids taking the zone lock 3589 * to check in the allocation paths if no pages are free. 3590 */ 3591 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3592 int highest_zoneidx, unsigned int alloc_flags, 3593 long free_pages) 3594 { 3595 long min = mark; 3596 int o; 3597 3598 /* free_pages may go negative - that's OK */ 3599 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3600 3601 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3602 /* 3603 * __GFP_HIGH allows access to 50% of the min reserve as well 3604 * as OOM. 3605 */ 3606 if (alloc_flags & ALLOC_MIN_RESERVE) { 3607 min -= min / 2; 3608 3609 /* 3610 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3611 * access more reserves than just __GFP_HIGH. Other 3612 * non-blocking allocations requests such as GFP_NOWAIT 3613 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3614 * access to the min reserve. 3615 */ 3616 if (alloc_flags & ALLOC_NON_BLOCK) 3617 min -= min / 4; 3618 } 3619 3620 /* 3621 * OOM victims can try even harder than the normal reserve 3622 * users on the grounds that it's definitely going to be in 3623 * the exit path shortly and free memory. Any allocation it 3624 * makes during the free path will be small and short-lived. 3625 */ 3626 if (alloc_flags & ALLOC_OOM) 3627 min -= min / 2; 3628 } 3629 3630 /* 3631 * Check watermarks for an order-0 allocation request. If these 3632 * are not met, then a high-order request also cannot go ahead 3633 * even if a suitable page happened to be free. 3634 */ 3635 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3636 return false; 3637 3638 /* If this is an order-0 request then the watermark is fine */ 3639 if (!order) 3640 return true; 3641 3642 /* For a high-order request, check at least one suitable page is free */ 3643 for (o = order; o < NR_PAGE_ORDERS; o++) { 3644 struct free_area *area = &z->free_area[o]; 3645 int mt; 3646 3647 if (!area->nr_free) 3648 continue; 3649 3650 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3651 if (!free_area_empty(area, mt)) 3652 return true; 3653 } 3654 3655 #ifdef CONFIG_CMA 3656 if ((alloc_flags & ALLOC_CMA) && 3657 !free_area_empty(area, MIGRATE_CMA)) { 3658 return true; 3659 } 3660 #endif 3661 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3662 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3663 return true; 3664 } 3665 } 3666 return false; 3667 } 3668 3669 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3670 int highest_zoneidx, unsigned int alloc_flags) 3671 { 3672 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3673 zone_page_state(z, NR_FREE_PAGES)); 3674 } 3675 3676 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3677 unsigned long mark, int highest_zoneidx, 3678 unsigned int alloc_flags, gfp_t gfp_mask) 3679 { 3680 long free_pages; 3681 3682 free_pages = zone_page_state(z, NR_FREE_PAGES); 3683 3684 /* 3685 * Fast check for order-0 only. If this fails then the reserves 3686 * need to be calculated. 3687 */ 3688 if (!order) { 3689 long usable_free; 3690 long reserved; 3691 3692 usable_free = free_pages; 3693 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3694 3695 /* reserved may over estimate high-atomic reserves. */ 3696 usable_free -= min(usable_free, reserved); 3697 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3698 return true; 3699 } 3700 3701 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3702 free_pages)) 3703 return true; 3704 3705 /* 3706 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3707 * when checking the min watermark. The min watermark is the 3708 * point where boosting is ignored so that kswapd is woken up 3709 * when below the low watermark. 3710 */ 3711 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3712 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3713 mark = z->_watermark[WMARK_MIN]; 3714 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3715 alloc_flags, free_pages); 3716 } 3717 3718 return false; 3719 } 3720 3721 #ifdef CONFIG_NUMA 3722 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3723 3724 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3725 { 3726 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3727 node_reclaim_distance; 3728 } 3729 #else /* CONFIG_NUMA */ 3730 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3731 { 3732 return true; 3733 } 3734 #endif /* CONFIG_NUMA */ 3735 3736 /* 3737 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3738 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3739 * premature use of a lower zone may cause lowmem pressure problems that 3740 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3741 * probably too small. It only makes sense to spread allocations to avoid 3742 * fragmentation between the Normal and DMA32 zones. 3743 */ 3744 static inline unsigned int 3745 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3746 { 3747 unsigned int alloc_flags; 3748 3749 /* 3750 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3751 * to save a branch. 3752 */ 3753 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3754 3755 if (defrag_mode) { 3756 alloc_flags |= ALLOC_NOFRAGMENT; 3757 return alloc_flags; 3758 } 3759 3760 #ifdef CONFIG_ZONE_DMA32 3761 if (!zone) 3762 return alloc_flags; 3763 3764 if (zone_idx(zone) != ZONE_NORMAL) 3765 return alloc_flags; 3766 3767 /* 3768 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3769 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3770 * on UMA that if Normal is populated then so is DMA32. 3771 */ 3772 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3773 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3774 return alloc_flags; 3775 3776 alloc_flags |= ALLOC_NOFRAGMENT; 3777 #endif /* CONFIG_ZONE_DMA32 */ 3778 return alloc_flags; 3779 } 3780 3781 /* Must be called after current_gfp_context() which can change gfp_mask */ 3782 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3783 unsigned int alloc_flags) 3784 { 3785 #ifdef CONFIG_CMA 3786 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3787 alloc_flags |= ALLOC_CMA; 3788 #endif 3789 return alloc_flags; 3790 } 3791 3792 /* 3793 * get_page_from_freelist goes through the zonelist trying to allocate 3794 * a page. 3795 */ 3796 static struct page * 3797 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3798 const struct alloc_context *ac) 3799 { 3800 struct zoneref *z; 3801 struct zone *zone; 3802 struct pglist_data *last_pgdat = NULL; 3803 bool last_pgdat_dirty_ok = false; 3804 bool no_fallback; 3805 bool skip_kswapd_nodes = nr_online_nodes > 1; 3806 bool skipped_kswapd_nodes = false; 3807 3808 retry: 3809 /* 3810 * Scan zonelist, looking for a zone with enough free. 3811 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. 3812 */ 3813 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3814 z = ac->preferred_zoneref; 3815 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3816 ac->nodemask) { 3817 struct page *page; 3818 unsigned long mark; 3819 3820 if (cpusets_enabled() && 3821 (alloc_flags & ALLOC_CPUSET) && 3822 !__cpuset_zone_allowed(zone, gfp_mask)) 3823 continue; 3824 /* 3825 * When allocating a page cache page for writing, we 3826 * want to get it from a node that is within its dirty 3827 * limit, such that no single node holds more than its 3828 * proportional share of globally allowed dirty pages. 3829 * The dirty limits take into account the node's 3830 * lowmem reserves and high watermark so that kswapd 3831 * should be able to balance it without having to 3832 * write pages from its LRU list. 3833 * 3834 * XXX: For now, allow allocations to potentially 3835 * exceed the per-node dirty limit in the slowpath 3836 * (spread_dirty_pages unset) before going into reclaim, 3837 * which is important when on a NUMA setup the allowed 3838 * nodes are together not big enough to reach the 3839 * global limit. The proper fix for these situations 3840 * will require awareness of nodes in the 3841 * dirty-throttling and the flusher threads. 3842 */ 3843 if (ac->spread_dirty_pages) { 3844 if (last_pgdat != zone->zone_pgdat) { 3845 last_pgdat = zone->zone_pgdat; 3846 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3847 } 3848 3849 if (!last_pgdat_dirty_ok) 3850 continue; 3851 } 3852 3853 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3854 zone != zonelist_zone(ac->preferred_zoneref)) { 3855 int local_nid; 3856 3857 /* 3858 * If moving to a remote node, retry but allow 3859 * fragmenting fallbacks. Locality is more important 3860 * than fragmentation avoidance. 3861 */ 3862 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3863 if (zone_to_nid(zone) != local_nid) { 3864 alloc_flags &= ~ALLOC_NOFRAGMENT; 3865 goto retry; 3866 } 3867 } 3868 3869 /* 3870 * If kswapd is already active on a node, keep looking 3871 * for other nodes that might be idle. This can happen 3872 * if another process has NUMA bindings and is causing 3873 * kswapd wakeups on only some nodes. Avoid accidental 3874 * "node_reclaim_mode"-like behavior in this case. 3875 */ 3876 if (skip_kswapd_nodes && 3877 !waitqueue_active(&zone->zone_pgdat->kswapd_wait)) { 3878 skipped_kswapd_nodes = true; 3879 continue; 3880 } 3881 3882 cond_accept_memory(zone, order, alloc_flags); 3883 3884 /* 3885 * Detect whether the number of free pages is below high 3886 * watermark. If so, we will decrease pcp->high and free 3887 * PCP pages in free path to reduce the possibility of 3888 * premature page reclaiming. Detection is done here to 3889 * avoid to do that in hotter free path. 3890 */ 3891 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3892 goto check_alloc_wmark; 3893 3894 mark = high_wmark_pages(zone); 3895 if (zone_watermark_fast(zone, order, mark, 3896 ac->highest_zoneidx, alloc_flags, 3897 gfp_mask)) 3898 goto try_this_zone; 3899 else 3900 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3901 3902 check_alloc_wmark: 3903 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3904 if (!zone_watermark_fast(zone, order, mark, 3905 ac->highest_zoneidx, alloc_flags, 3906 gfp_mask)) { 3907 int ret; 3908 3909 if (cond_accept_memory(zone, order, alloc_flags)) 3910 goto try_this_zone; 3911 3912 /* 3913 * Watermark failed for this zone, but see if we can 3914 * grow this zone if it contains deferred pages. 3915 */ 3916 if (deferred_pages_enabled()) { 3917 if (_deferred_grow_zone(zone, order)) 3918 goto try_this_zone; 3919 } 3920 /* Checked here to keep the fast path fast */ 3921 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3922 if (alloc_flags & ALLOC_NO_WATERMARKS) 3923 goto try_this_zone; 3924 3925 if (!node_reclaim_enabled() || 3926 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3927 continue; 3928 3929 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3930 switch (ret) { 3931 case NODE_RECLAIM_NOSCAN: 3932 /* did not scan */ 3933 continue; 3934 case NODE_RECLAIM_FULL: 3935 /* scanned but unreclaimable */ 3936 continue; 3937 default: 3938 /* did we reclaim enough */ 3939 if (zone_watermark_ok(zone, order, mark, 3940 ac->highest_zoneidx, alloc_flags)) 3941 goto try_this_zone; 3942 3943 continue; 3944 } 3945 } 3946 3947 try_this_zone: 3948 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3949 gfp_mask, alloc_flags, ac->migratetype); 3950 if (page) { 3951 prep_new_page(page, order, gfp_mask, alloc_flags); 3952 3953 /* 3954 * If this is a high-order atomic allocation then check 3955 * if the pageblock should be reserved for the future 3956 */ 3957 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3958 reserve_highatomic_pageblock(page, order, zone); 3959 3960 return page; 3961 } else { 3962 if (cond_accept_memory(zone, order, alloc_flags)) 3963 goto try_this_zone; 3964 3965 /* Try again if zone has deferred pages */ 3966 if (deferred_pages_enabled()) { 3967 if (_deferred_grow_zone(zone, order)) 3968 goto try_this_zone; 3969 } 3970 } 3971 } 3972 3973 /* 3974 * If we skipped over nodes with active kswapds and found no 3975 * idle nodes, retry and place anywhere the watermarks permit. 3976 */ 3977 if (skip_kswapd_nodes && skipped_kswapd_nodes) { 3978 skip_kswapd_nodes = false; 3979 goto retry; 3980 } 3981 3982 /* 3983 * It's possible on a UMA machine to get through all zones that are 3984 * fragmented. If avoiding fragmentation, reset and try again. 3985 */ 3986 if (no_fallback && !defrag_mode) { 3987 alloc_flags &= ~ALLOC_NOFRAGMENT; 3988 goto retry; 3989 } 3990 3991 return NULL; 3992 } 3993 3994 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3995 { 3996 unsigned int filter = SHOW_MEM_FILTER_NODES; 3997 3998 /* 3999 * This documents exceptions given to allocations in certain 4000 * contexts that are allowed to allocate outside current's set 4001 * of allowed nodes. 4002 */ 4003 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4004 if (tsk_is_oom_victim(current) || 4005 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4006 filter &= ~SHOW_MEM_FILTER_NODES; 4007 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4008 filter &= ~SHOW_MEM_FILTER_NODES; 4009 4010 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4011 mem_cgroup_show_protected_memory(NULL); 4012 } 4013 4014 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4015 { 4016 struct va_format vaf; 4017 va_list args; 4018 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4019 4020 if ((gfp_mask & __GFP_NOWARN) || 4021 !__ratelimit(&nopage_rs) || 4022 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4023 return; 4024 4025 va_start(args, fmt); 4026 vaf.fmt = fmt; 4027 vaf.va = &args; 4028 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4029 current->comm, &vaf, gfp_mask, &gfp_mask, 4030 nodemask_pr_args(nodemask)); 4031 va_end(args); 4032 4033 cpuset_print_current_mems_allowed(); 4034 pr_cont("\n"); 4035 dump_stack(); 4036 warn_alloc_show_mem(gfp_mask, nodemask); 4037 } 4038 4039 static inline struct page * 4040 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4041 unsigned int alloc_flags, 4042 const struct alloc_context *ac) 4043 { 4044 struct page *page; 4045 4046 page = get_page_from_freelist(gfp_mask, order, 4047 alloc_flags|ALLOC_CPUSET, ac); 4048 /* 4049 * fallback to ignore cpuset restriction if our nodes 4050 * are depleted 4051 */ 4052 if (!page) 4053 page = get_page_from_freelist(gfp_mask, order, 4054 alloc_flags, ac); 4055 return page; 4056 } 4057 4058 static inline struct page * 4059 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4060 const struct alloc_context *ac, unsigned long *did_some_progress) 4061 { 4062 struct oom_control oc = { 4063 .zonelist = ac->zonelist, 4064 .nodemask = ac->nodemask, 4065 .memcg = NULL, 4066 .gfp_mask = gfp_mask, 4067 .order = order, 4068 }; 4069 struct page *page; 4070 4071 *did_some_progress = 0; 4072 4073 /* 4074 * Acquire the oom lock. If that fails, somebody else is 4075 * making progress for us. 4076 */ 4077 if (!mutex_trylock(&oom_lock)) { 4078 *did_some_progress = 1; 4079 schedule_timeout_uninterruptible(1); 4080 return NULL; 4081 } 4082 4083 /* 4084 * Go through the zonelist yet one more time, keep very high watermark 4085 * here, this is only to catch a parallel oom killing, we must fail if 4086 * we're still under heavy pressure. But make sure that this reclaim 4087 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4088 * allocation which will never fail due to oom_lock already held. 4089 */ 4090 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4091 ~__GFP_DIRECT_RECLAIM, order, 4092 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4093 if (page) 4094 goto out; 4095 4096 /* Coredumps can quickly deplete all memory reserves */ 4097 if (current->flags & PF_DUMPCORE) 4098 goto out; 4099 /* The OOM killer will not help higher order allocs */ 4100 if (order > PAGE_ALLOC_COSTLY_ORDER) 4101 goto out; 4102 /* 4103 * We have already exhausted all our reclaim opportunities without any 4104 * success so it is time to admit defeat. We will skip the OOM killer 4105 * because it is very likely that the caller has a more reasonable 4106 * fallback than shooting a random task. 4107 * 4108 * The OOM killer may not free memory on a specific node. 4109 */ 4110 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4111 goto out; 4112 /* The OOM killer does not needlessly kill tasks for lowmem */ 4113 if (ac->highest_zoneidx < ZONE_NORMAL) 4114 goto out; 4115 if (pm_suspended_storage()) 4116 goto out; 4117 /* 4118 * XXX: GFP_NOFS allocations should rather fail than rely on 4119 * other request to make a forward progress. 4120 * We are in an unfortunate situation where out_of_memory cannot 4121 * do much for this context but let's try it to at least get 4122 * access to memory reserved if the current task is killed (see 4123 * out_of_memory). Once filesystems are ready to handle allocation 4124 * failures more gracefully we should just bail out here. 4125 */ 4126 4127 /* Exhausted what can be done so it's blame time */ 4128 if (out_of_memory(&oc) || 4129 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4130 *did_some_progress = 1; 4131 4132 /* 4133 * Help non-failing allocations by giving them access to memory 4134 * reserves 4135 */ 4136 if (gfp_mask & __GFP_NOFAIL) 4137 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4138 ALLOC_NO_WATERMARKS, ac); 4139 } 4140 out: 4141 mutex_unlock(&oom_lock); 4142 return page; 4143 } 4144 4145 /* 4146 * Maximum number of compaction retries with a progress before OOM 4147 * killer is consider as the only way to move forward. 4148 */ 4149 #define MAX_COMPACT_RETRIES 16 4150 4151 #ifdef CONFIG_COMPACTION 4152 /* Try memory compaction for high-order allocations before reclaim */ 4153 static struct page * 4154 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4155 unsigned int alloc_flags, const struct alloc_context *ac, 4156 enum compact_priority prio, enum compact_result *compact_result) 4157 { 4158 struct page *page = NULL; 4159 unsigned long pflags; 4160 unsigned int noreclaim_flag; 4161 4162 if (!order) 4163 return NULL; 4164 4165 psi_memstall_enter(&pflags); 4166 delayacct_compact_start(); 4167 noreclaim_flag = memalloc_noreclaim_save(); 4168 4169 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4170 prio, &page); 4171 4172 memalloc_noreclaim_restore(noreclaim_flag); 4173 psi_memstall_leave(&pflags); 4174 delayacct_compact_end(); 4175 4176 if (*compact_result == COMPACT_SKIPPED) 4177 return NULL; 4178 /* 4179 * At least in one zone compaction wasn't deferred or skipped, so let's 4180 * count a compaction stall 4181 */ 4182 count_vm_event(COMPACTSTALL); 4183 4184 /* Prep a captured page if available */ 4185 if (page) 4186 prep_new_page(page, order, gfp_mask, alloc_flags); 4187 4188 /* Try get a page from the freelist if available */ 4189 if (!page) 4190 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4191 4192 if (page) { 4193 struct zone *zone = page_zone(page); 4194 4195 zone->compact_blockskip_flush = false; 4196 compaction_defer_reset(zone, order, true); 4197 count_vm_event(COMPACTSUCCESS); 4198 return page; 4199 } 4200 4201 /* 4202 * It's bad if compaction run occurs and fails. The most likely reason 4203 * is that pages exist, but not enough to satisfy watermarks. 4204 */ 4205 count_vm_event(COMPACTFAIL); 4206 4207 cond_resched(); 4208 4209 return NULL; 4210 } 4211 4212 static inline bool 4213 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4214 enum compact_result compact_result, 4215 enum compact_priority *compact_priority, 4216 int *compaction_retries) 4217 { 4218 int max_retries = MAX_COMPACT_RETRIES; 4219 int min_priority; 4220 bool ret = false; 4221 int retries = *compaction_retries; 4222 enum compact_priority priority = *compact_priority; 4223 4224 if (!order) 4225 return false; 4226 4227 if (fatal_signal_pending(current)) 4228 return false; 4229 4230 /* 4231 * Compaction was skipped due to a lack of free order-0 4232 * migration targets. Continue if reclaim can help. 4233 */ 4234 if (compact_result == COMPACT_SKIPPED) { 4235 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4236 goto out; 4237 } 4238 4239 /* 4240 * Compaction managed to coalesce some page blocks, but the 4241 * allocation failed presumably due to a race. Retry some. 4242 */ 4243 if (compact_result == COMPACT_SUCCESS) { 4244 /* 4245 * !costly requests are much more important than 4246 * __GFP_RETRY_MAYFAIL costly ones because they are de 4247 * facto nofail and invoke OOM killer to move on while 4248 * costly can fail and users are ready to cope with 4249 * that. 1/4 retries is rather arbitrary but we would 4250 * need much more detailed feedback from compaction to 4251 * make a better decision. 4252 */ 4253 if (order > PAGE_ALLOC_COSTLY_ORDER) 4254 max_retries /= 4; 4255 4256 if (++(*compaction_retries) <= max_retries) { 4257 ret = true; 4258 goto out; 4259 } 4260 } 4261 4262 /* 4263 * Compaction failed. Retry with increasing priority. 4264 */ 4265 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4266 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4267 4268 if (*compact_priority > min_priority) { 4269 (*compact_priority)--; 4270 *compaction_retries = 0; 4271 ret = true; 4272 } 4273 out: 4274 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4275 return ret; 4276 } 4277 #else 4278 static inline struct page * 4279 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4280 unsigned int alloc_flags, const struct alloc_context *ac, 4281 enum compact_priority prio, enum compact_result *compact_result) 4282 { 4283 *compact_result = COMPACT_SKIPPED; 4284 return NULL; 4285 } 4286 4287 static inline bool 4288 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4289 enum compact_result compact_result, 4290 enum compact_priority *compact_priority, 4291 int *compaction_retries) 4292 { 4293 struct zone *zone; 4294 struct zoneref *z; 4295 4296 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4297 return false; 4298 4299 /* 4300 * There are setups with compaction disabled which would prefer to loop 4301 * inside the allocator rather than hit the oom killer prematurely. 4302 * Let's give them a good hope and keep retrying while the order-0 4303 * watermarks are OK. 4304 */ 4305 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4306 ac->highest_zoneidx, ac->nodemask) { 4307 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4308 ac->highest_zoneidx, alloc_flags)) 4309 return true; 4310 } 4311 return false; 4312 } 4313 #endif /* CONFIG_COMPACTION */ 4314 4315 #ifdef CONFIG_LOCKDEP 4316 static struct lockdep_map __fs_reclaim_map = 4317 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4318 4319 static bool __need_reclaim(gfp_t gfp_mask) 4320 { 4321 /* no reclaim without waiting on it */ 4322 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4323 return false; 4324 4325 /* this guy won't enter reclaim */ 4326 if (current->flags & PF_MEMALLOC) 4327 return false; 4328 4329 if (gfp_mask & __GFP_NOLOCKDEP) 4330 return false; 4331 4332 return true; 4333 } 4334 4335 void __fs_reclaim_acquire(unsigned long ip) 4336 { 4337 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4338 } 4339 4340 void __fs_reclaim_release(unsigned long ip) 4341 { 4342 lock_release(&__fs_reclaim_map, ip); 4343 } 4344 4345 void fs_reclaim_acquire(gfp_t gfp_mask) 4346 { 4347 gfp_mask = current_gfp_context(gfp_mask); 4348 4349 if (__need_reclaim(gfp_mask)) { 4350 if (gfp_mask & __GFP_FS) 4351 __fs_reclaim_acquire(_RET_IP_); 4352 4353 #ifdef CONFIG_MMU_NOTIFIER 4354 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4355 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4356 #endif 4357 4358 } 4359 } 4360 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4361 4362 void fs_reclaim_release(gfp_t gfp_mask) 4363 { 4364 gfp_mask = current_gfp_context(gfp_mask); 4365 4366 if (__need_reclaim(gfp_mask)) { 4367 if (gfp_mask & __GFP_FS) 4368 __fs_reclaim_release(_RET_IP_); 4369 } 4370 } 4371 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4372 #endif 4373 4374 /* 4375 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4376 * have been rebuilt so allocation retries. Reader side does not lock and 4377 * retries the allocation if zonelist changes. Writer side is protected by the 4378 * embedded spin_lock. 4379 */ 4380 static DEFINE_SEQLOCK(zonelist_update_seq); 4381 4382 static unsigned int zonelist_iter_begin(void) 4383 { 4384 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4385 return read_seqbegin(&zonelist_update_seq); 4386 4387 return 0; 4388 } 4389 4390 static unsigned int check_retry_zonelist(unsigned int seq) 4391 { 4392 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4393 return read_seqretry(&zonelist_update_seq, seq); 4394 4395 return seq; 4396 } 4397 4398 /* Perform direct synchronous page reclaim */ 4399 static unsigned long 4400 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4401 const struct alloc_context *ac) 4402 { 4403 unsigned int noreclaim_flag; 4404 unsigned long progress; 4405 4406 cond_resched(); 4407 4408 /* We now go into synchronous reclaim */ 4409 cpuset_memory_pressure_bump(); 4410 fs_reclaim_acquire(gfp_mask); 4411 noreclaim_flag = memalloc_noreclaim_save(); 4412 4413 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4414 ac->nodemask); 4415 4416 memalloc_noreclaim_restore(noreclaim_flag); 4417 fs_reclaim_release(gfp_mask); 4418 4419 cond_resched(); 4420 4421 return progress; 4422 } 4423 4424 /* The really slow allocator path where we enter direct reclaim */ 4425 static inline struct page * 4426 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4427 unsigned int alloc_flags, const struct alloc_context *ac, 4428 unsigned long *did_some_progress) 4429 { 4430 struct page *page = NULL; 4431 unsigned long pflags; 4432 bool drained = false; 4433 4434 psi_memstall_enter(&pflags); 4435 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4436 if (unlikely(!(*did_some_progress))) 4437 goto out; 4438 4439 retry: 4440 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4441 4442 /* 4443 * If an allocation failed after direct reclaim, it could be because 4444 * pages are pinned on the per-cpu lists or in high alloc reserves. 4445 * Shrink them and try again 4446 */ 4447 if (!page && !drained) { 4448 unreserve_highatomic_pageblock(ac, false); 4449 drain_all_pages(NULL); 4450 drained = true; 4451 goto retry; 4452 } 4453 out: 4454 psi_memstall_leave(&pflags); 4455 4456 return page; 4457 } 4458 4459 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4460 const struct alloc_context *ac) 4461 { 4462 struct zoneref *z; 4463 struct zone *zone; 4464 pg_data_t *last_pgdat = NULL; 4465 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4466 unsigned int reclaim_order; 4467 4468 if (defrag_mode) 4469 reclaim_order = max(order, pageblock_order); 4470 else 4471 reclaim_order = order; 4472 4473 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4474 ac->nodemask) { 4475 if (!managed_zone(zone)) 4476 continue; 4477 if (last_pgdat == zone->zone_pgdat) 4478 continue; 4479 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4480 last_pgdat = zone->zone_pgdat; 4481 } 4482 } 4483 4484 static inline unsigned int 4485 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4486 { 4487 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4488 4489 /* 4490 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4491 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4492 * to save two branches. 4493 */ 4494 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4495 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4496 4497 /* 4498 * The caller may dip into page reserves a bit more if the caller 4499 * cannot run direct reclaim, or if the caller has realtime scheduling 4500 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4501 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4502 */ 4503 alloc_flags |= (__force int) 4504 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4505 4506 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4507 /* 4508 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4509 * if it can't schedule. 4510 */ 4511 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4512 alloc_flags |= ALLOC_NON_BLOCK; 4513 4514 if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE)) 4515 alloc_flags |= ALLOC_HIGHATOMIC; 4516 } 4517 4518 /* 4519 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4520 * GFP_ATOMIC) rather than fail, see the comment for 4521 * cpuset_current_node_allowed(). 4522 */ 4523 if (alloc_flags & ALLOC_MIN_RESERVE) 4524 alloc_flags &= ~ALLOC_CPUSET; 4525 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4526 alloc_flags |= ALLOC_MIN_RESERVE; 4527 4528 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4529 4530 if (defrag_mode) 4531 alloc_flags |= ALLOC_NOFRAGMENT; 4532 4533 return alloc_flags; 4534 } 4535 4536 static bool oom_reserves_allowed(struct task_struct *tsk) 4537 { 4538 if (!tsk_is_oom_victim(tsk)) 4539 return false; 4540 4541 /* 4542 * !MMU doesn't have oom reaper so give access to memory reserves 4543 * only to the thread with TIF_MEMDIE set 4544 */ 4545 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4546 return false; 4547 4548 return true; 4549 } 4550 4551 /* 4552 * Distinguish requests which really need access to full memory 4553 * reserves from oom victims which can live with a portion of it 4554 */ 4555 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4556 { 4557 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4558 return 0; 4559 if (gfp_mask & __GFP_MEMALLOC) 4560 return ALLOC_NO_WATERMARKS; 4561 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4562 return ALLOC_NO_WATERMARKS; 4563 if (!in_interrupt()) { 4564 if (current->flags & PF_MEMALLOC) 4565 return ALLOC_NO_WATERMARKS; 4566 else if (oom_reserves_allowed(current)) 4567 return ALLOC_OOM; 4568 } 4569 4570 return 0; 4571 } 4572 4573 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4574 { 4575 return !!__gfp_pfmemalloc_flags(gfp_mask); 4576 } 4577 4578 /* 4579 * Checks whether it makes sense to retry the reclaim to make a forward progress 4580 * for the given allocation request. 4581 * 4582 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4583 * without success, or when we couldn't even meet the watermark if we 4584 * reclaimed all remaining pages on the LRU lists. 4585 * 4586 * Returns true if a retry is viable or false to enter the oom path. 4587 */ 4588 static inline bool 4589 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4590 struct alloc_context *ac, int alloc_flags, 4591 bool did_some_progress, int *no_progress_loops) 4592 { 4593 struct zone *zone; 4594 struct zoneref *z; 4595 bool ret = false; 4596 4597 /* 4598 * Costly allocations might have made a progress but this doesn't mean 4599 * their order will become available due to high fragmentation so 4600 * always increment the no progress counter for them 4601 */ 4602 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4603 *no_progress_loops = 0; 4604 else 4605 (*no_progress_loops)++; 4606 4607 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4608 goto out; 4609 4610 4611 /* 4612 * Keep reclaiming pages while there is a chance this will lead 4613 * somewhere. If none of the target zones can satisfy our allocation 4614 * request even if all reclaimable pages are considered then we are 4615 * screwed and have to go OOM. 4616 */ 4617 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4618 ac->highest_zoneidx, ac->nodemask) { 4619 unsigned long available; 4620 unsigned long reclaimable; 4621 unsigned long min_wmark = min_wmark_pages(zone); 4622 bool wmark; 4623 4624 if (cpusets_enabled() && 4625 (alloc_flags & ALLOC_CPUSET) && 4626 !__cpuset_zone_allowed(zone, gfp_mask)) 4627 continue; 4628 4629 available = reclaimable = zone_reclaimable_pages(zone); 4630 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4631 4632 /* 4633 * Would the allocation succeed if we reclaimed all 4634 * reclaimable pages? 4635 */ 4636 wmark = __zone_watermark_ok(zone, order, min_wmark, 4637 ac->highest_zoneidx, alloc_flags, available); 4638 trace_reclaim_retry_zone(z, order, reclaimable, 4639 available, min_wmark, *no_progress_loops, wmark); 4640 if (wmark) { 4641 ret = true; 4642 break; 4643 } 4644 } 4645 4646 /* 4647 * Memory allocation/reclaim might be called from a WQ context and the 4648 * current implementation of the WQ concurrency control doesn't 4649 * recognize that a particular WQ is congested if the worker thread is 4650 * looping without ever sleeping. Therefore we have to do a short sleep 4651 * here rather than calling cond_resched(). 4652 */ 4653 if (current->flags & PF_WQ_WORKER) 4654 schedule_timeout_uninterruptible(1); 4655 else 4656 cond_resched(); 4657 out: 4658 /* Before OOM, exhaust highatomic_reserve */ 4659 if (!ret) 4660 return unreserve_highatomic_pageblock(ac, true); 4661 4662 return ret; 4663 } 4664 4665 static inline bool 4666 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4667 { 4668 /* 4669 * It's possible that cpuset's mems_allowed and the nodemask from 4670 * mempolicy don't intersect. This should be normally dealt with by 4671 * policy_nodemask(), but it's possible to race with cpuset update in 4672 * such a way the check therein was true, and then it became false 4673 * before we got our cpuset_mems_cookie here. 4674 * This assumes that for all allocations, ac->nodemask can come only 4675 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4676 * when it does not intersect with the cpuset restrictions) or the 4677 * caller can deal with a violated nodemask. 4678 */ 4679 if (cpusets_enabled() && ac->nodemask && 4680 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4681 ac->nodemask = NULL; 4682 return true; 4683 } 4684 4685 /* 4686 * When updating a task's mems_allowed or mempolicy nodemask, it is 4687 * possible to race with parallel threads in such a way that our 4688 * allocation can fail while the mask is being updated. If we are about 4689 * to fail, check if the cpuset changed during allocation and if so, 4690 * retry. 4691 */ 4692 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4693 return true; 4694 4695 return false; 4696 } 4697 4698 static inline struct page * 4699 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4700 struct alloc_context *ac) 4701 { 4702 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4703 bool can_compact = can_direct_reclaim && gfp_compaction_allowed(gfp_mask); 4704 bool nofail = gfp_mask & __GFP_NOFAIL; 4705 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4706 struct page *page = NULL; 4707 unsigned int alloc_flags; 4708 unsigned long did_some_progress; 4709 enum compact_priority compact_priority; 4710 enum compact_result compact_result; 4711 int compaction_retries; 4712 int no_progress_loops; 4713 unsigned int cpuset_mems_cookie; 4714 unsigned int zonelist_iter_cookie; 4715 int reserve_flags; 4716 bool compact_first = false; 4717 bool can_retry_reserves = true; 4718 4719 if (unlikely(nofail)) { 4720 /* 4721 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4722 * otherwise, we may result in lockup. 4723 */ 4724 WARN_ON_ONCE(!can_direct_reclaim); 4725 /* 4726 * PF_MEMALLOC request from this context is rather bizarre 4727 * because we cannot reclaim anything and only can loop waiting 4728 * for somebody to do a work for us. 4729 */ 4730 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4731 } 4732 4733 restart: 4734 compaction_retries = 0; 4735 no_progress_loops = 0; 4736 compact_result = COMPACT_SKIPPED; 4737 compact_priority = DEF_COMPACT_PRIORITY; 4738 cpuset_mems_cookie = read_mems_allowed_begin(); 4739 zonelist_iter_cookie = zonelist_iter_begin(); 4740 4741 /* 4742 * For costly allocations, try direct compaction first, as it's likely 4743 * that we have enough base pages and don't need to reclaim. For non- 4744 * movable high-order allocations, do that as well, as compaction will 4745 * try prevent permanent fragmentation by migrating from blocks of the 4746 * same migratetype. 4747 */ 4748 if (can_compact && (costly_order || (order > 0 && 4749 ac->migratetype != MIGRATE_MOVABLE))) { 4750 compact_first = true; 4751 compact_priority = INIT_COMPACT_PRIORITY; 4752 } 4753 4754 /* 4755 * The fast path uses conservative alloc_flags to succeed only until 4756 * kswapd needs to be woken up, and to avoid the cost of setting up 4757 * alloc_flags precisely. So we do that now. 4758 */ 4759 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4760 4761 /* 4762 * We need to recalculate the starting point for the zonelist iterator 4763 * because we might have used different nodemask in the fast path, or 4764 * there was a cpuset modification and we are retrying - otherwise we 4765 * could end up iterating over non-eligible zones endlessly. 4766 */ 4767 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4768 ac->highest_zoneidx, ac->nodemask); 4769 if (!zonelist_zone(ac->preferred_zoneref)) 4770 goto nopage; 4771 4772 /* 4773 * Check for insane configurations where the cpuset doesn't contain 4774 * any suitable zone to satisfy the request - e.g. non-movable 4775 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4776 */ 4777 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4778 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4779 ac->highest_zoneidx, 4780 &cpuset_current_mems_allowed); 4781 if (!zonelist_zone(z)) 4782 goto nopage; 4783 } 4784 4785 retry: 4786 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4787 if (alloc_flags & ALLOC_KSWAPD) 4788 wake_all_kswapds(order, gfp_mask, ac); 4789 4790 /* 4791 * The adjusted alloc_flags might result in immediate success, so try 4792 * that first 4793 */ 4794 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4795 if (page) 4796 goto got_pg; 4797 4798 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4799 if (reserve_flags) 4800 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4801 (alloc_flags & ALLOC_KSWAPD); 4802 4803 /* 4804 * Reset the nodemask and zonelist iterators if memory policies can be 4805 * ignored. These allocations are high priority and system rather than 4806 * user oriented. 4807 */ 4808 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4809 ac->nodemask = NULL; 4810 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4811 ac->highest_zoneidx, ac->nodemask); 4812 4813 /* 4814 * The first time we adjust anything due to being allowed to 4815 * ignore memory policies or watermarks, retry immediately. This 4816 * allows us to keep the first allocation attempt optimistic so 4817 * it can succeed in a zone that is still above watermarks. 4818 */ 4819 if (can_retry_reserves) { 4820 can_retry_reserves = false; 4821 goto retry; 4822 } 4823 } 4824 4825 /* Caller is not willing to reclaim, we can't balance anything */ 4826 if (!can_direct_reclaim) 4827 goto nopage; 4828 4829 /* Avoid recursion of direct reclaim */ 4830 if (current->flags & PF_MEMALLOC) 4831 goto nopage; 4832 4833 /* Try direct reclaim and then allocating */ 4834 if (!compact_first) { 4835 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, 4836 ac, &did_some_progress); 4837 if (page) 4838 goto got_pg; 4839 } 4840 4841 /* Try direct compaction and then allocating */ 4842 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4843 compact_priority, &compact_result); 4844 if (page) 4845 goto got_pg; 4846 4847 if (compact_first) { 4848 /* 4849 * THP page faults may attempt local node only first, but are 4850 * then allowed to only compact, not reclaim, see 4851 * alloc_pages_mpol(). 4852 * 4853 * Compaction has failed above and we don't want such THP 4854 * allocations to put reclaim pressure on a single node in a 4855 * situation where other nodes might have plenty of available 4856 * memory. 4857 */ 4858 if (gfp_has_flags(gfp_mask, __GFP_NORETRY | __GFP_THISNODE)) 4859 goto nopage; 4860 4861 /* 4862 * For the initial compaction attempt we have lowered its 4863 * priority. Restore it for further retries, if those are 4864 * allowed. With __GFP_NORETRY there will be a single round of 4865 * reclaim and compaction with the lowered priority. 4866 */ 4867 if (!(gfp_mask & __GFP_NORETRY)) 4868 compact_priority = DEF_COMPACT_PRIORITY; 4869 4870 compact_first = false; 4871 goto retry; 4872 } 4873 4874 /* Do not loop if specifically requested */ 4875 if (gfp_mask & __GFP_NORETRY) 4876 goto nopage; 4877 4878 /* 4879 * Do not retry costly high order allocations unless they are 4880 * __GFP_RETRY_MAYFAIL and we can compact 4881 */ 4882 if (costly_order && (!can_compact || 4883 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4884 goto nopage; 4885 4886 /* 4887 * Deal with possible cpuset update races or zonelist updates to avoid 4888 * infinite retries. No "goto retry;" can be placed above this check 4889 * unless it can execute just once. 4890 */ 4891 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4892 check_retry_zonelist(zonelist_iter_cookie)) 4893 goto restart; 4894 4895 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4896 did_some_progress > 0, &no_progress_loops)) 4897 goto retry; 4898 4899 /* 4900 * It doesn't make any sense to retry for the compaction if the order-0 4901 * reclaim is not able to make any progress because the current 4902 * implementation of the compaction depends on the sufficient amount 4903 * of free memory (see __compaction_suitable) 4904 */ 4905 if (did_some_progress > 0 && can_compact && 4906 should_compact_retry(ac, order, alloc_flags, 4907 compact_result, &compact_priority, 4908 &compaction_retries)) 4909 goto retry; 4910 4911 /* Reclaim/compaction failed to prevent the fallback */ 4912 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4913 alloc_flags &= ~ALLOC_NOFRAGMENT; 4914 goto retry; 4915 } 4916 4917 /* 4918 * Deal with possible cpuset update races or zonelist updates to avoid 4919 * a unnecessary OOM kill. 4920 */ 4921 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4922 check_retry_zonelist(zonelist_iter_cookie)) 4923 goto restart; 4924 4925 /* Reclaim has failed us, start killing things */ 4926 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4927 if (page) 4928 goto got_pg; 4929 4930 /* Avoid allocations with no watermarks from looping endlessly */ 4931 if (tsk_is_oom_victim(current) && 4932 (alloc_flags & ALLOC_OOM || 4933 (gfp_mask & __GFP_NOMEMALLOC))) 4934 goto nopage; 4935 4936 /* Retry as long as the OOM killer is making progress */ 4937 if (did_some_progress) { 4938 no_progress_loops = 0; 4939 goto retry; 4940 } 4941 4942 nopage: 4943 /* 4944 * Deal with possible cpuset update races or zonelist updates to avoid 4945 * a unnecessary OOM kill. 4946 */ 4947 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4948 check_retry_zonelist(zonelist_iter_cookie)) 4949 goto restart; 4950 4951 /* 4952 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4953 * we always retry 4954 */ 4955 if (unlikely(nofail)) { 4956 /* 4957 * Lacking direct_reclaim we can't do anything to reclaim memory, 4958 * we disregard these unreasonable nofail requests and still 4959 * return NULL 4960 */ 4961 if (!can_direct_reclaim) 4962 goto fail; 4963 4964 /* 4965 * Help non-failing allocations by giving some access to memory 4966 * reserves normally used for high priority non-blocking 4967 * allocations but do not use ALLOC_NO_WATERMARKS because this 4968 * could deplete whole memory reserves which would just make 4969 * the situation worse. 4970 */ 4971 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4972 if (page) 4973 goto got_pg; 4974 4975 cond_resched(); 4976 goto retry; 4977 } 4978 fail: 4979 warn_alloc(gfp_mask, ac->nodemask, 4980 "page allocation failure: order:%u", order); 4981 got_pg: 4982 return page; 4983 } 4984 4985 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4986 int preferred_nid, nodemask_t *nodemask, 4987 struct alloc_context *ac, gfp_t *alloc_gfp, 4988 unsigned int *alloc_flags) 4989 { 4990 ac->highest_zoneidx = gfp_zone(gfp_mask); 4991 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4992 ac->nodemask = nodemask; 4993 ac->migratetype = gfp_migratetype(gfp_mask); 4994 4995 if (cpusets_enabled()) { 4996 *alloc_gfp |= __GFP_HARDWALL; 4997 /* 4998 * When we are in the interrupt context, it is irrelevant 4999 * to the current task context. It means that any node ok. 5000 */ 5001 if (in_task() && !ac->nodemask) 5002 ac->nodemask = &cpuset_current_mems_allowed; 5003 else 5004 *alloc_flags |= ALLOC_CPUSET; 5005 } 5006 5007 might_alloc(gfp_mask); 5008 5009 /* 5010 * Don't invoke should_fail logic, since it may call 5011 * get_random_u32() and printk() which need to spin_lock. 5012 */ 5013 if (!(*alloc_flags & ALLOC_TRYLOCK) && 5014 should_fail_alloc_page(gfp_mask, order)) 5015 return false; 5016 5017 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5018 5019 /* Dirty zone balancing only done in the fast path */ 5020 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5021 5022 /* 5023 * The preferred zone is used for statistics but crucially it is 5024 * also used as the starting point for the zonelist iterator. It 5025 * may get reset for allocations that ignore memory policies. 5026 */ 5027 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5028 ac->highest_zoneidx, ac->nodemask); 5029 5030 return true; 5031 } 5032 5033 /* 5034 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 5035 * @gfp: GFP flags for the allocation 5036 * @preferred_nid: The preferred NUMA node ID to allocate from 5037 * @nodemask: Set of nodes to allocate from, may be NULL 5038 * @nr_pages: The number of pages desired in the array 5039 * @page_array: Array to store the pages 5040 * 5041 * This is a batched version of the page allocator that attempts to allocate 5042 * @nr_pages quickly. Pages are added to @page_array. 5043 * 5044 * Note that only the elements in @page_array that were cleared to %NULL on 5045 * entry are populated with newly allocated pages. @nr_pages is the maximum 5046 * number of pages that will be stored in the array. 5047 * 5048 * Returns the number of pages in @page_array, including ones already 5049 * allocated on entry. This can be less than the number requested in @nr_pages, 5050 * but all empty slots are filled from the beginning. I.e., if all slots in 5051 * @page_array were set to %NULL on entry, the slots from 0 to the return value 5052 * - 1 will be filled. 5053 */ 5054 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 5055 nodemask_t *nodemask, int nr_pages, 5056 struct page **page_array) 5057 { 5058 struct page *page; 5059 unsigned long UP_flags; 5060 struct zone *zone; 5061 struct zoneref *z; 5062 struct per_cpu_pages *pcp; 5063 struct list_head *pcp_list; 5064 struct alloc_context ac; 5065 gfp_t alloc_gfp; 5066 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5067 int nr_populated = 0, nr_account = 0; 5068 5069 /* 5070 * Skip populated array elements to determine if any pages need 5071 * to be allocated before disabling IRQs. 5072 */ 5073 while (nr_populated < nr_pages && page_array[nr_populated]) 5074 nr_populated++; 5075 5076 /* No pages requested? */ 5077 if (unlikely(nr_pages <= 0)) 5078 goto out; 5079 5080 /* Already populated array? */ 5081 if (unlikely(nr_pages - nr_populated == 0)) 5082 goto out; 5083 5084 /* Bulk allocator does not support memcg accounting. */ 5085 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 5086 goto failed; 5087 5088 /* Use the single page allocator for one page. */ 5089 if (nr_pages - nr_populated == 1) 5090 goto failed; 5091 5092 #ifdef CONFIG_PAGE_OWNER 5093 /* 5094 * PAGE_OWNER may recurse into the allocator to allocate space to 5095 * save the stack with pagesets.lock held. Releasing/reacquiring 5096 * removes much of the performance benefit of bulk allocation so 5097 * force the caller to allocate one page at a time as it'll have 5098 * similar performance to added complexity to the bulk allocator. 5099 */ 5100 if (static_branch_unlikely(&page_owner_inited)) 5101 goto failed; 5102 #endif 5103 5104 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5105 gfp &= gfp_allowed_mask; 5106 alloc_gfp = gfp; 5107 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5108 goto out; 5109 gfp = alloc_gfp; 5110 5111 /* Find an allowed local zone that meets the low watermark. */ 5112 z = ac.preferred_zoneref; 5113 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 5114 unsigned long mark; 5115 5116 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5117 !__cpuset_zone_allowed(zone, gfp)) { 5118 continue; 5119 } 5120 5121 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 5122 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 5123 goto failed; 5124 } 5125 5126 cond_accept_memory(zone, 0, alloc_flags); 5127 retry_this_zone: 5128 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5129 if (zone_watermark_fast(zone, 0, mark, 5130 zonelist_zone_idx(ac.preferred_zoneref), 5131 alloc_flags, gfp)) { 5132 break; 5133 } 5134 5135 if (cond_accept_memory(zone, 0, alloc_flags)) 5136 goto retry_this_zone; 5137 5138 /* Try again if zone has deferred pages */ 5139 if (deferred_pages_enabled()) { 5140 if (_deferred_grow_zone(zone, 0)) 5141 goto retry_this_zone; 5142 } 5143 } 5144 5145 /* 5146 * If there are no allowed local zones that meets the watermarks then 5147 * try to allocate a single page and reclaim if necessary. 5148 */ 5149 if (unlikely(!zone)) 5150 goto failed; 5151 5152 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5153 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 5154 if (!pcp) 5155 goto failed; 5156 5157 /* Attempt the batch allocation */ 5158 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5159 while (nr_populated < nr_pages) { 5160 5161 /* Skip existing pages */ 5162 if (page_array[nr_populated]) { 5163 nr_populated++; 5164 continue; 5165 } 5166 5167 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5168 pcp, pcp_list); 5169 if (unlikely(!page)) { 5170 /* Try and allocate at least one page */ 5171 if (!nr_account) { 5172 pcp_spin_unlock(pcp, UP_flags); 5173 goto failed; 5174 } 5175 break; 5176 } 5177 nr_account++; 5178 5179 prep_new_page(page, 0, gfp, 0); 5180 set_page_refcounted(page); 5181 page_array[nr_populated++] = page; 5182 } 5183 5184 pcp_spin_unlock(pcp, UP_flags); 5185 5186 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5187 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 5188 5189 out: 5190 return nr_populated; 5191 5192 failed: 5193 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 5194 if (page) 5195 page_array[nr_populated++] = page; 5196 goto out; 5197 } 5198 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 5199 5200 /* 5201 * This is the 'heart' of the zoned buddy allocator. 5202 */ 5203 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 5204 int preferred_nid, nodemask_t *nodemask) 5205 { 5206 struct page *page; 5207 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5208 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5209 struct alloc_context ac = { }; 5210 5211 /* 5212 * There are several places where we assume that the order value is sane 5213 * so bail out early if the request is out of bound. 5214 */ 5215 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 5216 return NULL; 5217 5218 gfp &= gfp_allowed_mask; 5219 /* 5220 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5221 * resp. GFP_NOIO which has to be inherited for all allocation requests 5222 * from a particular context which has been marked by 5223 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5224 * movable zones are not used during allocation. 5225 */ 5226 gfp = current_gfp_context(gfp); 5227 alloc_gfp = gfp; 5228 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5229 &alloc_gfp, &alloc_flags)) 5230 return NULL; 5231 5232 /* 5233 * Forbid the first pass from falling back to types that fragment 5234 * memory until all local zones are considered. 5235 */ 5236 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 5237 5238 /* First allocation attempt */ 5239 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5240 if (likely(page)) 5241 goto out; 5242 5243 alloc_gfp = gfp; 5244 ac.spread_dirty_pages = false; 5245 5246 /* 5247 * Restore the original nodemask if it was potentially replaced with 5248 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5249 */ 5250 ac.nodemask = nodemask; 5251 5252 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5253 5254 out: 5255 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 5256 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5257 free_frozen_pages(page, order); 5258 page = NULL; 5259 } 5260 5261 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5262 kmsan_alloc_page(page, order, alloc_gfp); 5263 5264 return page; 5265 } 5266 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 5267 5268 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5269 int preferred_nid, nodemask_t *nodemask) 5270 { 5271 struct page *page; 5272 5273 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5274 if (page) 5275 set_page_refcounted(page); 5276 return page; 5277 } 5278 EXPORT_SYMBOL(__alloc_pages_noprof); 5279 5280 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5281 nodemask_t *nodemask) 5282 { 5283 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5284 preferred_nid, nodemask); 5285 return page_rmappable_folio(page); 5286 } 5287 EXPORT_SYMBOL(__folio_alloc_noprof); 5288 5289 /* 5290 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5291 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5292 * you need to access high mem. 5293 */ 5294 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5295 { 5296 struct page *page; 5297 5298 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5299 if (!page) 5300 return 0; 5301 return (unsigned long) page_address(page); 5302 } 5303 EXPORT_SYMBOL(get_free_pages_noprof); 5304 5305 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5306 { 5307 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5308 } 5309 EXPORT_SYMBOL(get_zeroed_page_noprof); 5310 5311 static void ___free_pages(struct page *page, unsigned int order, 5312 fpi_t fpi_flags) 5313 { 5314 /* get PageHead before we drop reference */ 5315 int head = PageHead(page); 5316 /* get alloc tag in case the page is released by others */ 5317 struct alloc_tag *tag = pgalloc_tag_get(page); 5318 5319 if (put_page_testzero(page)) 5320 __free_frozen_pages(page, order, fpi_flags); 5321 else if (!head) { 5322 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 5323 while (order-- > 0) { 5324 /* 5325 * The "tail" pages of this non-compound high-order 5326 * page will have no code tags, so to avoid warnings 5327 * mark them as empty. 5328 */ 5329 clear_page_tag_ref(page + (1 << order)); 5330 __free_frozen_pages(page + (1 << order), order, 5331 fpi_flags); 5332 } 5333 } 5334 } 5335 5336 /** 5337 * __free_pages - Free pages allocated with alloc_pages(). 5338 * @page: The page pointer returned from alloc_pages(). 5339 * @order: The order of the allocation. 5340 * 5341 * This function can free multi-page allocations that are not compound 5342 * pages. It does not check that the @order passed in matches that of 5343 * the allocation, so it is easy to leak memory. Freeing more memory 5344 * than was allocated will probably emit a warning. 5345 * 5346 * If the last reference to this page is speculative, it will be released 5347 * by put_page() which only frees the first page of a non-compound 5348 * allocation. To prevent the remaining pages from being leaked, we free 5349 * the subsequent pages here. If you want to use the page's reference 5350 * count to decide when to free the allocation, you should allocate a 5351 * compound page, and use put_page() instead of __free_pages(). 5352 * 5353 * Context: May be called in interrupt context or while holding a normal 5354 * spinlock, but not in NMI context or while holding a raw spinlock. 5355 */ 5356 void __free_pages(struct page *page, unsigned int order) 5357 { 5358 ___free_pages(page, order, FPI_NONE); 5359 } 5360 EXPORT_SYMBOL(__free_pages); 5361 5362 /* 5363 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5364 * page type (not only those that came from alloc_pages_nolock) 5365 */ 5366 void free_pages_nolock(struct page *page, unsigned int order) 5367 { 5368 ___free_pages(page, order, FPI_TRYLOCK); 5369 } 5370 5371 /** 5372 * free_pages - Free pages allocated with __get_free_pages(). 5373 * @addr: The virtual address tied to a page returned from __get_free_pages(). 5374 * @order: The order of the allocation. 5375 * 5376 * This function behaves the same as __free_pages(). Use this function 5377 * to free pages when you only have a valid virtual address. If you have 5378 * the page, call __free_pages() instead. 5379 */ 5380 void free_pages(unsigned long addr, unsigned int order) 5381 { 5382 if (addr != 0) { 5383 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5384 __free_pages(virt_to_page((void *)addr), order); 5385 } 5386 } 5387 5388 EXPORT_SYMBOL(free_pages); 5389 5390 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5391 size_t size) 5392 { 5393 if (addr) { 5394 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5395 struct page *page = virt_to_page((void *)addr); 5396 struct page *last = page + nr; 5397 5398 __split_page(page, order); 5399 while (page < --last) 5400 set_page_refcounted(last); 5401 5402 last = page + (1UL << order); 5403 for (page += nr; page < last; page++) 5404 __free_pages_ok(page, 0, FPI_TO_TAIL); 5405 } 5406 return (void *)addr; 5407 } 5408 5409 /** 5410 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5411 * @size: the number of bytes to allocate 5412 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5413 * 5414 * This function is similar to alloc_pages(), except that it allocates the 5415 * minimum number of pages to satisfy the request. alloc_pages() can only 5416 * allocate memory in power-of-two pages. 5417 * 5418 * This function is also limited by MAX_PAGE_ORDER. 5419 * 5420 * Memory allocated by this function must be released by free_pages_exact(). 5421 * 5422 * Return: pointer to the allocated area or %NULL in case of error. 5423 */ 5424 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5425 { 5426 unsigned int order = get_order(size); 5427 unsigned long addr; 5428 5429 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5430 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5431 5432 addr = get_free_pages_noprof(gfp_mask, order); 5433 return make_alloc_exact(addr, order, size); 5434 } 5435 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5436 5437 /** 5438 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5439 * pages on a node. 5440 * @nid: the preferred node ID where memory should be allocated 5441 * @size: the number of bytes to allocate 5442 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5443 * 5444 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5445 * back. 5446 * 5447 * Return: pointer to the allocated area or %NULL in case of error. 5448 */ 5449 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5450 { 5451 unsigned int order = get_order(size); 5452 struct page *p; 5453 5454 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5455 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5456 5457 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5458 if (!p) 5459 return NULL; 5460 return make_alloc_exact((unsigned long)page_address(p), order, size); 5461 } 5462 5463 /** 5464 * free_pages_exact - release memory allocated via alloc_pages_exact() 5465 * @virt: the value returned by alloc_pages_exact. 5466 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5467 * 5468 * Release the memory allocated by a previous call to alloc_pages_exact. 5469 */ 5470 void free_pages_exact(void *virt, size_t size) 5471 { 5472 unsigned long addr = (unsigned long)virt; 5473 unsigned long end = addr + PAGE_ALIGN(size); 5474 5475 while (addr < end) { 5476 free_page(addr); 5477 addr += PAGE_SIZE; 5478 } 5479 } 5480 EXPORT_SYMBOL(free_pages_exact); 5481 5482 /** 5483 * nr_free_zone_pages - count number of pages beyond high watermark 5484 * @offset: The zone index of the highest zone 5485 * 5486 * nr_free_zone_pages() counts the number of pages which are beyond the 5487 * high watermark within all zones at or below a given zone index. For each 5488 * zone, the number of pages is calculated as: 5489 * 5490 * nr_free_zone_pages = managed_pages - high_pages 5491 * 5492 * Return: number of pages beyond high watermark. 5493 */ 5494 static unsigned long nr_free_zone_pages(int offset) 5495 { 5496 struct zoneref *z; 5497 struct zone *zone; 5498 5499 /* Just pick one node, since fallback list is circular */ 5500 unsigned long sum = 0; 5501 5502 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5503 5504 for_each_zone_zonelist(zone, z, zonelist, offset) { 5505 unsigned long size = zone_managed_pages(zone); 5506 unsigned long high = high_wmark_pages(zone); 5507 if (size > high) 5508 sum += size - high; 5509 } 5510 5511 return sum; 5512 } 5513 5514 /** 5515 * nr_free_buffer_pages - count number of pages beyond high watermark 5516 * 5517 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5518 * watermark within ZONE_DMA and ZONE_NORMAL. 5519 * 5520 * Return: number of pages beyond high watermark within ZONE_DMA and 5521 * ZONE_NORMAL. 5522 */ 5523 unsigned long nr_free_buffer_pages(void) 5524 { 5525 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5526 } 5527 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5528 5529 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5530 { 5531 zoneref->zone = zone; 5532 zoneref->zone_idx = zone_idx(zone); 5533 } 5534 5535 /* 5536 * Builds allocation fallback zone lists. 5537 * 5538 * Add all populated zones of a node to the zonelist. 5539 */ 5540 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5541 { 5542 struct zone *zone; 5543 enum zone_type zone_type = MAX_NR_ZONES; 5544 int nr_zones = 0; 5545 5546 do { 5547 zone_type--; 5548 zone = pgdat->node_zones + zone_type; 5549 if (populated_zone(zone)) { 5550 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5551 check_highest_zone(zone_type); 5552 } 5553 } while (zone_type); 5554 5555 return nr_zones; 5556 } 5557 5558 #ifdef CONFIG_NUMA 5559 5560 static int __parse_numa_zonelist_order(char *s) 5561 { 5562 /* 5563 * We used to support different zonelists modes but they turned 5564 * out to be just not useful. Let's keep the warning in place 5565 * if somebody still use the cmd line parameter so that we do 5566 * not fail it silently 5567 */ 5568 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5569 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5570 return -EINVAL; 5571 } 5572 return 0; 5573 } 5574 5575 static char numa_zonelist_order[] = "Node"; 5576 #define NUMA_ZONELIST_ORDER_LEN 16 5577 /* 5578 * sysctl handler for numa_zonelist_order 5579 */ 5580 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5581 void *buffer, size_t *length, loff_t *ppos) 5582 { 5583 if (write) 5584 return __parse_numa_zonelist_order(buffer); 5585 return proc_dostring(table, write, buffer, length, ppos); 5586 } 5587 5588 static int node_load[MAX_NUMNODES]; 5589 5590 /** 5591 * find_next_best_node - find the next node that should appear in a given node's fallback list 5592 * @node: node whose fallback list we're appending 5593 * @used_node_mask: nodemask_t of already used nodes 5594 * 5595 * We use a number of factors to determine which is the next node that should 5596 * appear on a given node's fallback list. The node should not have appeared 5597 * already in @node's fallback list, and it should be the next closest node 5598 * according to the distance array (which contains arbitrary distance values 5599 * from each node to each node in the system), and should also prefer nodes 5600 * with no CPUs, since presumably they'll have very little allocation pressure 5601 * on them otherwise. 5602 * 5603 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5604 */ 5605 int find_next_best_node(int node, nodemask_t *used_node_mask) 5606 { 5607 int n, val; 5608 int min_val = INT_MAX; 5609 int best_node = NUMA_NO_NODE; 5610 5611 /* 5612 * Use the local node if we haven't already, but for memoryless local 5613 * node, we should skip it and fall back to other nodes. 5614 */ 5615 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5616 node_set(node, *used_node_mask); 5617 return node; 5618 } 5619 5620 for_each_node_state(n, N_MEMORY) { 5621 5622 /* Don't want a node to appear more than once */ 5623 if (node_isset(n, *used_node_mask)) 5624 continue; 5625 5626 /* Use the distance array to find the distance */ 5627 val = node_distance(node, n); 5628 5629 /* Penalize nodes under us ("prefer the next node") */ 5630 val += (n < node); 5631 5632 /* Give preference to headless and unused nodes */ 5633 if (!cpumask_empty(cpumask_of_node(n))) 5634 val += PENALTY_FOR_NODE_WITH_CPUS; 5635 5636 /* Slight preference for less loaded node */ 5637 val *= MAX_NUMNODES; 5638 val += node_load[n]; 5639 5640 if (val < min_val) { 5641 min_val = val; 5642 best_node = n; 5643 } 5644 } 5645 5646 if (best_node >= 0) 5647 node_set(best_node, *used_node_mask); 5648 5649 return best_node; 5650 } 5651 5652 5653 /* 5654 * Build zonelists ordered by node and zones within node. 5655 * This results in maximum locality--normal zone overflows into local 5656 * DMA zone, if any--but risks exhausting DMA zone. 5657 */ 5658 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5659 unsigned nr_nodes) 5660 { 5661 struct zoneref *zonerefs; 5662 int i; 5663 5664 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5665 5666 for (i = 0; i < nr_nodes; i++) { 5667 int nr_zones; 5668 5669 pg_data_t *node = NODE_DATA(node_order[i]); 5670 5671 nr_zones = build_zonerefs_node(node, zonerefs); 5672 zonerefs += nr_zones; 5673 } 5674 zonerefs->zone = NULL; 5675 zonerefs->zone_idx = 0; 5676 } 5677 5678 /* 5679 * Build __GFP_THISNODE zonelists 5680 */ 5681 static void build_thisnode_zonelists(pg_data_t *pgdat) 5682 { 5683 struct zoneref *zonerefs; 5684 int nr_zones; 5685 5686 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5687 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5688 zonerefs += nr_zones; 5689 zonerefs->zone = NULL; 5690 zonerefs->zone_idx = 0; 5691 } 5692 5693 static void build_zonelists(pg_data_t *pgdat) 5694 { 5695 static int node_order[MAX_NUMNODES]; 5696 int node, nr_nodes = 0; 5697 nodemask_t used_mask = NODE_MASK_NONE; 5698 int local_node, prev_node; 5699 5700 /* NUMA-aware ordering of nodes */ 5701 local_node = pgdat->node_id; 5702 prev_node = local_node; 5703 5704 memset(node_order, 0, sizeof(node_order)); 5705 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5706 /* 5707 * We don't want to pressure a particular node. 5708 * So adding penalty to the first node in same 5709 * distance group to make it round-robin. 5710 */ 5711 if (node_distance(local_node, node) != 5712 node_distance(local_node, prev_node)) 5713 node_load[node] += 1; 5714 5715 node_order[nr_nodes++] = node; 5716 prev_node = node; 5717 } 5718 5719 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5720 build_thisnode_zonelists(pgdat); 5721 pr_info("Fallback order for Node %d: ", local_node); 5722 for (node = 0; node < nr_nodes; node++) 5723 pr_cont("%d ", node_order[node]); 5724 pr_cont("\n"); 5725 } 5726 5727 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5728 /* 5729 * Return node id of node used for "local" allocations. 5730 * I.e., first node id of first zone in arg node's generic zonelist. 5731 * Used for initializing percpu 'numa_mem', which is used primarily 5732 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5733 */ 5734 int local_memory_node(int node) 5735 { 5736 struct zoneref *z; 5737 5738 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5739 gfp_zone(GFP_KERNEL), 5740 NULL); 5741 return zonelist_node_idx(z); 5742 } 5743 #endif 5744 5745 static void setup_min_unmapped_ratio(void); 5746 static void setup_min_slab_ratio(void); 5747 #else /* CONFIG_NUMA */ 5748 5749 static void build_zonelists(pg_data_t *pgdat) 5750 { 5751 struct zoneref *zonerefs; 5752 int nr_zones; 5753 5754 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5755 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5756 zonerefs += nr_zones; 5757 5758 zonerefs->zone = NULL; 5759 zonerefs->zone_idx = 0; 5760 } 5761 5762 #endif /* CONFIG_NUMA */ 5763 5764 /* 5765 * Boot pageset table. One per cpu which is going to be used for all 5766 * zones and all nodes. The parameters will be set in such a way 5767 * that an item put on a list will immediately be handed over to 5768 * the buddy list. This is safe since pageset manipulation is done 5769 * with interrupts disabled. 5770 * 5771 * The boot_pagesets must be kept even after bootup is complete for 5772 * unused processors and/or zones. They do play a role for bootstrapping 5773 * hotplugged processors. 5774 * 5775 * zoneinfo_show() and maybe other functions do 5776 * not check if the processor is online before following the pageset pointer. 5777 * Other parts of the kernel may not check if the zone is available. 5778 */ 5779 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5780 /* These effectively disable the pcplists in the boot pageset completely */ 5781 #define BOOT_PAGESET_HIGH 0 5782 #define BOOT_PAGESET_BATCH 1 5783 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5784 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5785 5786 static void __build_all_zonelists(void *data) 5787 { 5788 int nid; 5789 int __maybe_unused cpu; 5790 pg_data_t *self = data; 5791 unsigned long flags; 5792 5793 /* 5794 * The zonelist_update_seq must be acquired with irqsave because the 5795 * reader can be invoked from IRQ with GFP_ATOMIC. 5796 */ 5797 write_seqlock_irqsave(&zonelist_update_seq, flags); 5798 /* 5799 * Also disable synchronous printk() to prevent any printk() from 5800 * trying to hold port->lock, for 5801 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5802 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5803 */ 5804 printk_deferred_enter(); 5805 5806 #ifdef CONFIG_NUMA 5807 memset(node_load, 0, sizeof(node_load)); 5808 #endif 5809 5810 /* 5811 * This node is hotadded and no memory is yet present. So just 5812 * building zonelists is fine - no need to touch other nodes. 5813 */ 5814 if (self && !node_online(self->node_id)) { 5815 build_zonelists(self); 5816 } else { 5817 /* 5818 * All possible nodes have pgdat preallocated 5819 * in free_area_init 5820 */ 5821 for_each_node(nid) { 5822 pg_data_t *pgdat = NODE_DATA(nid); 5823 5824 build_zonelists(pgdat); 5825 } 5826 5827 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5828 /* 5829 * We now know the "local memory node" for each node-- 5830 * i.e., the node of the first zone in the generic zonelist. 5831 * Set up numa_mem percpu variable for on-line cpus. During 5832 * boot, only the boot cpu should be on-line; we'll init the 5833 * secondary cpus' numa_mem as they come on-line. During 5834 * node/memory hotplug, we'll fixup all on-line cpus. 5835 */ 5836 for_each_online_cpu(cpu) 5837 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5838 #endif 5839 } 5840 5841 printk_deferred_exit(); 5842 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5843 } 5844 5845 static noinline void __init 5846 build_all_zonelists_init(void) 5847 { 5848 int cpu; 5849 5850 __build_all_zonelists(NULL); 5851 5852 /* 5853 * Initialize the boot_pagesets that are going to be used 5854 * for bootstrapping processors. The real pagesets for 5855 * each zone will be allocated later when the per cpu 5856 * allocator is available. 5857 * 5858 * boot_pagesets are used also for bootstrapping offline 5859 * cpus if the system is already booted because the pagesets 5860 * are needed to initialize allocators on a specific cpu too. 5861 * F.e. the percpu allocator needs the page allocator which 5862 * needs the percpu allocator in order to allocate its pagesets 5863 * (a chicken-egg dilemma). 5864 */ 5865 for_each_possible_cpu(cpu) 5866 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5867 5868 mminit_verify_zonelist(); 5869 cpuset_init_current_mems_allowed(); 5870 } 5871 5872 /* 5873 * unless system_state == SYSTEM_BOOTING. 5874 * 5875 * __ref due to call of __init annotated helper build_all_zonelists_init 5876 * [protected by SYSTEM_BOOTING]. 5877 */ 5878 void __ref build_all_zonelists(pg_data_t *pgdat) 5879 { 5880 unsigned long vm_total_pages; 5881 5882 if (system_state == SYSTEM_BOOTING) { 5883 build_all_zonelists_init(); 5884 } else { 5885 __build_all_zonelists(pgdat); 5886 /* cpuset refresh routine should be here */ 5887 } 5888 /* Get the number of free pages beyond high watermark in all zones. */ 5889 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5890 /* 5891 * Disable grouping by mobility if the number of pages in the 5892 * system is too low to allow the mechanism to work. It would be 5893 * more accurate, but expensive to check per-zone. This check is 5894 * made on memory-hotadd so a system can start with mobility 5895 * disabled and enable it later 5896 */ 5897 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5898 page_group_by_mobility_disabled = 1; 5899 else 5900 page_group_by_mobility_disabled = 0; 5901 5902 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5903 nr_online_nodes, 5904 str_off_on(page_group_by_mobility_disabled), 5905 vm_total_pages); 5906 #ifdef CONFIG_NUMA 5907 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5908 #endif 5909 } 5910 5911 static int zone_batchsize(struct zone *zone) 5912 { 5913 #ifdef CONFIG_MMU 5914 int batch; 5915 5916 /* 5917 * The number of pages to batch allocate is either ~0.025% 5918 * of the zone or 256KB, whichever is smaller. The batch 5919 * size is striking a balance between allocation latency 5920 * and zone lock contention. 5921 */ 5922 batch = min(zone_managed_pages(zone) >> 12, SZ_256K / PAGE_SIZE); 5923 if (batch <= 1) 5924 return 1; 5925 5926 /* 5927 * Clamp the batch to a 2^n - 1 value. Having a power 5928 * of 2 value was found to be more likely to have 5929 * suboptimal cache aliasing properties in some cases. 5930 * 5931 * For example if 2 tasks are alternately allocating 5932 * batches of pages, one task can end up with a lot 5933 * of pages of one half of the possible page colors 5934 * and the other with pages of the other colors. 5935 */ 5936 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5937 5938 return batch; 5939 5940 #else 5941 /* The deferral and batching of frees should be suppressed under NOMMU 5942 * conditions. 5943 * 5944 * The problem is that NOMMU needs to be able to allocate large chunks 5945 * of contiguous memory as there's no hardware page translation to 5946 * assemble apparent contiguous memory from discontiguous pages. 5947 * 5948 * Queueing large contiguous runs of pages for batching, however, 5949 * causes the pages to actually be freed in smaller chunks. As there 5950 * can be a significant delay between the individual batches being 5951 * recycled, this leads to the once large chunks of space being 5952 * fragmented and becoming unavailable for high-order allocations. 5953 */ 5954 return 1; 5955 #endif 5956 } 5957 5958 static int percpu_pagelist_high_fraction; 5959 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5960 int high_fraction) 5961 { 5962 #ifdef CONFIG_MMU 5963 int high; 5964 int nr_split_cpus; 5965 unsigned long total_pages; 5966 5967 if (!high_fraction) { 5968 /* 5969 * By default, the high value of the pcp is based on the zone 5970 * low watermark so that if they are full then background 5971 * reclaim will not be started prematurely. 5972 */ 5973 total_pages = low_wmark_pages(zone); 5974 } else { 5975 /* 5976 * If percpu_pagelist_high_fraction is configured, the high 5977 * value is based on a fraction of the managed pages in the 5978 * zone. 5979 */ 5980 total_pages = zone_managed_pages(zone) / high_fraction; 5981 } 5982 5983 /* 5984 * Split the high value across all online CPUs local to the zone. Note 5985 * that early in boot that CPUs may not be online yet and that during 5986 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5987 * onlined. For memory nodes that have no CPUs, split the high value 5988 * across all online CPUs to mitigate the risk that reclaim is triggered 5989 * prematurely due to pages stored on pcp lists. 5990 */ 5991 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5992 if (!nr_split_cpus) 5993 nr_split_cpus = num_online_cpus(); 5994 high = total_pages / nr_split_cpus; 5995 5996 /* 5997 * Ensure high is at least batch*4. The multiple is based on the 5998 * historical relationship between high and batch. 5999 */ 6000 high = max(high, batch << 2); 6001 6002 return high; 6003 #else 6004 return 0; 6005 #endif 6006 } 6007 6008 /* 6009 * pcp->high and pcp->batch values are related and generally batch is lower 6010 * than high. They are also related to pcp->count such that count is lower 6011 * than high, and as soon as it reaches high, the pcplist is flushed. 6012 * 6013 * However, guaranteeing these relations at all times would require e.g. write 6014 * barriers here but also careful usage of read barriers at the read side, and 6015 * thus be prone to error and bad for performance. Thus the update only prevents 6016 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 6017 * should ensure they can cope with those fields changing asynchronously, and 6018 * fully trust only the pcp->count field on the local CPU with interrupts 6019 * disabled. 6020 * 6021 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6022 * outside of boot time (or some other assurance that no concurrent updaters 6023 * exist). 6024 */ 6025 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 6026 unsigned long high_max, unsigned long batch) 6027 { 6028 WRITE_ONCE(pcp->batch, batch); 6029 WRITE_ONCE(pcp->high_min, high_min); 6030 WRITE_ONCE(pcp->high_max, high_max); 6031 } 6032 6033 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6034 { 6035 int pindex; 6036 6037 memset(pcp, 0, sizeof(*pcp)); 6038 memset(pzstats, 0, sizeof(*pzstats)); 6039 6040 spin_lock_init(&pcp->lock); 6041 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6042 INIT_LIST_HEAD(&pcp->lists[pindex]); 6043 6044 /* 6045 * Set batch and high values safe for a boot pageset. A true percpu 6046 * pageset's initialization will update them subsequently. Here we don't 6047 * need to be as careful as pageset_update() as nobody can access the 6048 * pageset yet. 6049 */ 6050 pcp->high_min = BOOT_PAGESET_HIGH; 6051 pcp->high_max = BOOT_PAGESET_HIGH; 6052 pcp->batch = BOOT_PAGESET_BATCH; 6053 } 6054 6055 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 6056 unsigned long high_max, unsigned long batch) 6057 { 6058 struct per_cpu_pages *pcp; 6059 int cpu; 6060 6061 for_each_possible_cpu(cpu) { 6062 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6063 pageset_update(pcp, high_min, high_max, batch); 6064 } 6065 } 6066 6067 /* 6068 * Calculate and set new high and batch values for all per-cpu pagesets of a 6069 * zone based on the zone's size. 6070 */ 6071 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6072 { 6073 int new_high_min, new_high_max, new_batch; 6074 6075 new_batch = zone_batchsize(zone); 6076 if (percpu_pagelist_high_fraction) { 6077 new_high_min = zone_highsize(zone, new_batch, cpu_online, 6078 percpu_pagelist_high_fraction); 6079 /* 6080 * PCP high is tuned manually, disable auto-tuning via 6081 * setting high_min and high_max to the manual value. 6082 */ 6083 new_high_max = new_high_min; 6084 } else { 6085 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 6086 new_high_max = zone_highsize(zone, new_batch, cpu_online, 6087 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 6088 } 6089 6090 if (zone->pageset_high_min == new_high_min && 6091 zone->pageset_high_max == new_high_max && 6092 zone->pageset_batch == new_batch) 6093 return; 6094 6095 zone->pageset_high_min = new_high_min; 6096 zone->pageset_high_max = new_high_max; 6097 zone->pageset_batch = new_batch; 6098 6099 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 6100 new_batch); 6101 } 6102 6103 void __meminit setup_zone_pageset(struct zone *zone) 6104 { 6105 int cpu; 6106 6107 /* Size may be 0 on !SMP && !NUMA */ 6108 if (sizeof(struct per_cpu_zonestat) > 0) 6109 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6110 6111 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6112 for_each_possible_cpu(cpu) { 6113 struct per_cpu_pages *pcp; 6114 struct per_cpu_zonestat *pzstats; 6115 6116 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6117 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6118 per_cpu_pages_init(pcp, pzstats); 6119 } 6120 6121 zone_set_pageset_high_and_batch(zone, 0); 6122 } 6123 6124 /* 6125 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6126 * page high values need to be recalculated. 6127 */ 6128 static void zone_pcp_update(struct zone *zone, int cpu_online) 6129 { 6130 mutex_lock(&pcp_batch_high_lock); 6131 zone_set_pageset_high_and_batch(zone, cpu_online); 6132 mutex_unlock(&pcp_batch_high_lock); 6133 } 6134 6135 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 6136 { 6137 struct per_cpu_pages *pcp; 6138 struct cpu_cacheinfo *cci; 6139 unsigned long UP_flags; 6140 6141 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6142 cci = get_cpu_cacheinfo(cpu); 6143 /* 6144 * If data cache slice of CPU is large enough, "pcp->batch" 6145 * pages can be preserved in PCP before draining PCP for 6146 * consecutive high-order pages freeing without allocation. 6147 * This can reduce zone lock contention without hurting 6148 * cache-hot pages sharing. 6149 */ 6150 pcp_spin_lock_maybe_irqsave(pcp, UP_flags); 6151 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 6152 pcp->flags |= PCPF_FREE_HIGH_BATCH; 6153 else 6154 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 6155 pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags); 6156 } 6157 6158 void setup_pcp_cacheinfo(unsigned int cpu) 6159 { 6160 struct zone *zone; 6161 6162 for_each_populated_zone(zone) 6163 zone_pcp_update_cacheinfo(zone, cpu); 6164 } 6165 6166 /* 6167 * Allocate per cpu pagesets and initialize them. 6168 * Before this call only boot pagesets were available. 6169 */ 6170 void __init setup_per_cpu_pageset(void) 6171 { 6172 struct pglist_data *pgdat; 6173 struct zone *zone; 6174 int __maybe_unused cpu; 6175 6176 for_each_populated_zone(zone) 6177 setup_zone_pageset(zone); 6178 6179 #ifdef CONFIG_NUMA 6180 /* 6181 * Unpopulated zones continue using the boot pagesets. 6182 * The numa stats for these pagesets need to be reset. 6183 * Otherwise, they will end up skewing the stats of 6184 * the nodes these zones are associated with. 6185 */ 6186 for_each_possible_cpu(cpu) { 6187 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6188 memset(pzstats->vm_numa_event, 0, 6189 sizeof(pzstats->vm_numa_event)); 6190 } 6191 #endif 6192 6193 for_each_online_pgdat(pgdat) 6194 pgdat->per_cpu_nodestats = 6195 alloc_percpu(struct per_cpu_nodestat); 6196 } 6197 6198 __meminit void zone_pcp_init(struct zone *zone) 6199 { 6200 /* 6201 * per cpu subsystem is not up at this point. The following code 6202 * relies on the ability of the linker to provide the 6203 * offset of a (static) per cpu variable into the per cpu area. 6204 */ 6205 zone->per_cpu_pageset = &boot_pageset; 6206 zone->per_cpu_zonestats = &boot_zonestats; 6207 zone->pageset_high_min = BOOT_PAGESET_HIGH; 6208 zone->pageset_high_max = BOOT_PAGESET_HIGH; 6209 zone->pageset_batch = BOOT_PAGESET_BATCH; 6210 6211 if (populated_zone(zone)) 6212 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6213 zone->present_pages, zone_batchsize(zone)); 6214 } 6215 6216 static void setup_per_zone_lowmem_reserve(void); 6217 6218 void adjust_managed_page_count(struct page *page, long count) 6219 { 6220 atomic_long_add(count, &page_zone(page)->managed_pages); 6221 totalram_pages_add(count); 6222 setup_per_zone_lowmem_reserve(); 6223 } 6224 EXPORT_SYMBOL(adjust_managed_page_count); 6225 6226 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 6227 { 6228 void *pos; 6229 unsigned long pages = 0; 6230 6231 start = (void *)PAGE_ALIGN((unsigned long)start); 6232 end = (void *)((unsigned long)end & PAGE_MASK); 6233 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6234 struct page *page = virt_to_page(pos); 6235 void *direct_map_addr; 6236 6237 /* 6238 * 'direct_map_addr' might be different from 'pos' 6239 * because some architectures' virt_to_page() 6240 * work with aliases. Getting the direct map 6241 * address ensures that we get a _writeable_ 6242 * alias for the memset(). 6243 */ 6244 direct_map_addr = page_address(page); 6245 /* 6246 * Perform a kasan-unchecked memset() since this memory 6247 * has not been initialized. 6248 */ 6249 direct_map_addr = kasan_reset_tag(direct_map_addr); 6250 if ((unsigned int)poison <= 0xFF) 6251 memset(direct_map_addr, poison, PAGE_SIZE); 6252 6253 free_reserved_page(page); 6254 } 6255 6256 if (pages && s) 6257 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 6258 6259 return pages; 6260 } 6261 6262 void free_reserved_page(struct page *page) 6263 { 6264 clear_page_tag_ref(page); 6265 ClearPageReserved(page); 6266 init_page_count(page); 6267 __free_page(page); 6268 adjust_managed_page_count(page, 1); 6269 } 6270 EXPORT_SYMBOL(free_reserved_page); 6271 6272 static int page_alloc_cpu_dead(unsigned int cpu) 6273 { 6274 struct zone *zone; 6275 6276 lru_add_drain_cpu(cpu); 6277 mlock_drain_remote(cpu); 6278 drain_pages(cpu); 6279 6280 /* 6281 * Spill the event counters of the dead processor 6282 * into the current processors event counters. 6283 * This artificially elevates the count of the current 6284 * processor. 6285 */ 6286 vm_events_fold_cpu(cpu); 6287 6288 /* 6289 * Zero the differential counters of the dead processor 6290 * so that the vm statistics are consistent. 6291 * 6292 * This is only okay since the processor is dead and cannot 6293 * race with what we are doing. 6294 */ 6295 cpu_vm_stats_fold(cpu); 6296 6297 for_each_populated_zone(zone) 6298 zone_pcp_update(zone, 0); 6299 6300 return 0; 6301 } 6302 6303 static int page_alloc_cpu_online(unsigned int cpu) 6304 { 6305 struct zone *zone; 6306 6307 for_each_populated_zone(zone) 6308 zone_pcp_update(zone, 1); 6309 return 0; 6310 } 6311 6312 void __init page_alloc_init_cpuhp(void) 6313 { 6314 int ret; 6315 6316 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6317 "mm/page_alloc:pcp", 6318 page_alloc_cpu_online, 6319 page_alloc_cpu_dead); 6320 WARN_ON(ret < 0); 6321 } 6322 6323 /* 6324 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6325 * or min_free_kbytes changes. 6326 */ 6327 static void calculate_totalreserve_pages(void) 6328 { 6329 struct pglist_data *pgdat; 6330 unsigned long reserve_pages = 0; 6331 enum zone_type i, j; 6332 6333 for_each_online_pgdat(pgdat) { 6334 6335 pgdat->totalreserve_pages = 0; 6336 6337 for (i = 0; i < MAX_NR_ZONES; i++) { 6338 struct zone *zone = pgdat->node_zones + i; 6339 long max = 0; 6340 unsigned long managed_pages = zone_managed_pages(zone); 6341 6342 /* 6343 * lowmem_reserve[j] is monotonically non-decreasing 6344 * in j for a given zone (see 6345 * setup_per_zone_lowmem_reserve()). The maximum 6346 * valid reserve lives at the highest index with a 6347 * non-zero value, so scan backwards and stop at the 6348 * first hit. 6349 */ 6350 for (j = MAX_NR_ZONES - 1; j > i; j--) { 6351 if (!zone->lowmem_reserve[j]) 6352 continue; 6353 6354 max = zone->lowmem_reserve[j]; 6355 break; 6356 } 6357 /* we treat the high watermark as reserved pages. */ 6358 max += high_wmark_pages(zone); 6359 6360 max = min_t(unsigned long, max, managed_pages); 6361 6362 pgdat->totalreserve_pages += max; 6363 6364 reserve_pages += max; 6365 } 6366 } 6367 totalreserve_pages = reserve_pages; 6368 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6369 } 6370 6371 /* 6372 * setup_per_zone_lowmem_reserve - called whenever 6373 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6374 * has a correct pages reserved value, so an adequate number of 6375 * pages are left in the zone after a successful __alloc_pages(). 6376 */ 6377 static void setup_per_zone_lowmem_reserve(void) 6378 { 6379 struct pglist_data *pgdat; 6380 enum zone_type i, j; 6381 /* 6382 * For a given zone node_zones[i], lowmem_reserve[j] (j > i) 6383 * represents how many pages in zone i must effectively be kept 6384 * in reserve when deciding whether an allocation class that is 6385 * allowed to allocate from zones up to j may fall back into 6386 * zone i. 6387 * 6388 * As j increases, the allocation class can use a strictly larger 6389 * set of fallback zones and therefore must not be allowed to 6390 * deplete low zones more aggressively than a less flexible one. 6391 * As a result, lowmem_reserve[j] is required to be monotonically 6392 * non-decreasing in j for each zone i. Callers such as 6393 * calculate_totalreserve_pages() rely on this monotonicity when 6394 * selecting the maximum reserve entry. 6395 */ 6396 for_each_online_pgdat(pgdat) { 6397 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6398 struct zone *zone = &pgdat->node_zones[i]; 6399 int ratio = sysctl_lowmem_reserve_ratio[i]; 6400 bool clear = !ratio || !zone_managed_pages(zone); 6401 unsigned long managed_pages = 0; 6402 6403 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6404 struct zone *upper_zone = &pgdat->node_zones[j]; 6405 6406 managed_pages += zone_managed_pages(upper_zone); 6407 6408 if (clear) 6409 zone->lowmem_reserve[j] = 0; 6410 else 6411 zone->lowmem_reserve[j] = managed_pages / ratio; 6412 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6413 zone->lowmem_reserve[j]); 6414 } 6415 } 6416 } 6417 6418 /* update totalreserve_pages */ 6419 calculate_totalreserve_pages(); 6420 } 6421 6422 static void __setup_per_zone_wmarks(void) 6423 { 6424 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6425 unsigned long lowmem_pages = 0; 6426 struct zone *zone; 6427 unsigned long flags; 6428 6429 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6430 for_each_zone(zone) { 6431 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6432 lowmem_pages += zone_managed_pages(zone); 6433 } 6434 6435 for_each_zone(zone) { 6436 u64 tmp; 6437 6438 spin_lock_irqsave(&zone->lock, flags); 6439 tmp = (u64)pages_min * zone_managed_pages(zone); 6440 tmp = div64_ul(tmp, lowmem_pages); 6441 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6442 /* 6443 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6444 * need highmem and movable zones pages, so cap pages_min 6445 * to a small value here. 6446 * 6447 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6448 * deltas control async page reclaim, and so should 6449 * not be capped for highmem and movable zones. 6450 */ 6451 unsigned long min_pages; 6452 6453 min_pages = zone_managed_pages(zone) / 1024; 6454 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6455 zone->_watermark[WMARK_MIN] = min_pages; 6456 } else { 6457 /* 6458 * If it's a lowmem zone, reserve a number of pages 6459 * proportionate to the zone's size. 6460 */ 6461 zone->_watermark[WMARK_MIN] = tmp; 6462 } 6463 6464 /* 6465 * Set the kswapd watermarks distance according to the 6466 * scale factor in proportion to available memory, but 6467 * ensure a minimum size on small systems. 6468 */ 6469 tmp = max_t(u64, tmp >> 2, 6470 mult_frac(zone_managed_pages(zone), 6471 watermark_scale_factor, 10000)); 6472 6473 zone->watermark_boost = 0; 6474 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6475 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6476 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6477 trace_mm_setup_per_zone_wmarks(zone); 6478 6479 spin_unlock_irqrestore(&zone->lock, flags); 6480 } 6481 6482 /* update totalreserve_pages */ 6483 calculate_totalreserve_pages(); 6484 } 6485 6486 /** 6487 * setup_per_zone_wmarks - called when min_free_kbytes changes 6488 * or when memory is hot-{added|removed} 6489 * 6490 * Ensures that the watermark[min,low,high] values for each zone are set 6491 * correctly with respect to min_free_kbytes. 6492 */ 6493 void setup_per_zone_wmarks(void) 6494 { 6495 struct zone *zone; 6496 static DEFINE_SPINLOCK(lock); 6497 6498 spin_lock(&lock); 6499 __setup_per_zone_wmarks(); 6500 spin_unlock(&lock); 6501 6502 /* 6503 * The watermark size have changed so update the pcpu batch 6504 * and high limits or the limits may be inappropriate. 6505 */ 6506 for_each_zone(zone) 6507 zone_pcp_update(zone, 0); 6508 } 6509 6510 /* 6511 * Initialise min_free_kbytes. 6512 * 6513 * For small machines we want it small (128k min). For large machines 6514 * we want it large (256MB max). But it is not linear, because network 6515 * bandwidth does not increase linearly with machine size. We use 6516 * 6517 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6518 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6519 * 6520 * which yields 6521 * 6522 * 16MB: 512k 6523 * 32MB: 724k 6524 * 64MB: 1024k 6525 * 128MB: 1448k 6526 * 256MB: 2048k 6527 * 512MB: 2896k 6528 * 1024MB: 4096k 6529 * 2048MB: 5792k 6530 * 4096MB: 8192k 6531 * 8192MB: 11584k 6532 * 16384MB: 16384k 6533 */ 6534 void calculate_min_free_kbytes(void) 6535 { 6536 unsigned long lowmem_kbytes; 6537 int new_min_free_kbytes; 6538 6539 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6540 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6541 6542 if (new_min_free_kbytes > user_min_free_kbytes) 6543 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6544 else 6545 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6546 new_min_free_kbytes, user_min_free_kbytes); 6547 6548 } 6549 6550 int __meminit init_per_zone_wmark_min(void) 6551 { 6552 calculate_min_free_kbytes(); 6553 setup_per_zone_wmarks(); 6554 refresh_zone_stat_thresholds(); 6555 setup_per_zone_lowmem_reserve(); 6556 6557 #ifdef CONFIG_NUMA 6558 setup_min_unmapped_ratio(); 6559 setup_min_slab_ratio(); 6560 #endif 6561 6562 khugepaged_min_free_kbytes_update(); 6563 6564 return 0; 6565 } 6566 postcore_initcall(init_per_zone_wmark_min) 6567 6568 /* 6569 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6570 * that we can call two helper functions whenever min_free_kbytes 6571 * changes. 6572 */ 6573 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6574 void *buffer, size_t *length, loff_t *ppos) 6575 { 6576 int rc; 6577 6578 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6579 if (rc) 6580 return rc; 6581 6582 if (write) { 6583 user_min_free_kbytes = min_free_kbytes; 6584 setup_per_zone_wmarks(); 6585 } 6586 return 0; 6587 } 6588 6589 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6590 void *buffer, size_t *length, loff_t *ppos) 6591 { 6592 int rc; 6593 6594 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6595 if (rc) 6596 return rc; 6597 6598 if (write) 6599 setup_per_zone_wmarks(); 6600 6601 return 0; 6602 } 6603 6604 #ifdef CONFIG_NUMA 6605 static void setup_min_unmapped_ratio(void) 6606 { 6607 pg_data_t *pgdat; 6608 struct zone *zone; 6609 6610 for_each_online_pgdat(pgdat) 6611 pgdat->min_unmapped_pages = 0; 6612 6613 for_each_zone(zone) 6614 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6615 sysctl_min_unmapped_ratio) / 100; 6616 } 6617 6618 6619 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6620 void *buffer, size_t *length, loff_t *ppos) 6621 { 6622 int rc; 6623 6624 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6625 if (rc) 6626 return rc; 6627 6628 setup_min_unmapped_ratio(); 6629 6630 return 0; 6631 } 6632 6633 static void setup_min_slab_ratio(void) 6634 { 6635 pg_data_t *pgdat; 6636 struct zone *zone; 6637 6638 for_each_online_pgdat(pgdat) 6639 pgdat->min_slab_pages = 0; 6640 6641 for_each_zone(zone) 6642 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6643 sysctl_min_slab_ratio) / 100; 6644 } 6645 6646 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6647 void *buffer, size_t *length, loff_t *ppos) 6648 { 6649 int rc; 6650 6651 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6652 if (rc) 6653 return rc; 6654 6655 setup_min_slab_ratio(); 6656 6657 return 0; 6658 } 6659 #endif 6660 6661 /* 6662 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6663 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6664 * whenever sysctl_lowmem_reserve_ratio changes. 6665 * 6666 * The reserve ratio obviously has absolutely no relation with the 6667 * minimum watermarks. The lowmem reserve ratio can only make sense 6668 * if in function of the boot time zone sizes. 6669 */ 6670 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6671 int write, void *buffer, size_t *length, loff_t *ppos) 6672 { 6673 int i; 6674 6675 proc_dointvec_minmax(table, write, buffer, length, ppos); 6676 6677 for (i = 0; i < MAX_NR_ZONES; i++) { 6678 if (sysctl_lowmem_reserve_ratio[i] < 1) 6679 sysctl_lowmem_reserve_ratio[i] = 0; 6680 } 6681 6682 setup_per_zone_lowmem_reserve(); 6683 return 0; 6684 } 6685 6686 /* 6687 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6688 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6689 * pagelist can have before it gets flushed back to buddy allocator. 6690 */ 6691 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6692 int write, void *buffer, size_t *length, loff_t *ppos) 6693 { 6694 struct zone *zone; 6695 int old_percpu_pagelist_high_fraction; 6696 int ret; 6697 6698 /* 6699 * Avoid using pcp_batch_high_lock for reads as the value is read 6700 * atomically and a race with offlining is harmless. 6701 */ 6702 6703 if (!write) 6704 return proc_dointvec_minmax(table, write, buffer, length, ppos); 6705 6706 mutex_lock(&pcp_batch_high_lock); 6707 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6708 6709 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6710 if (ret < 0) 6711 goto out; 6712 6713 /* Sanity checking to avoid pcp imbalance */ 6714 if (percpu_pagelist_high_fraction && 6715 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6716 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6717 ret = -EINVAL; 6718 goto out; 6719 } 6720 6721 /* No change? */ 6722 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6723 goto out; 6724 6725 for_each_populated_zone(zone) 6726 zone_set_pageset_high_and_batch(zone, 0); 6727 out: 6728 mutex_unlock(&pcp_batch_high_lock); 6729 return ret; 6730 } 6731 6732 static const struct ctl_table page_alloc_sysctl_table[] = { 6733 { 6734 .procname = "min_free_kbytes", 6735 .data = &min_free_kbytes, 6736 .maxlen = sizeof(min_free_kbytes), 6737 .mode = 0644, 6738 .proc_handler = min_free_kbytes_sysctl_handler, 6739 .extra1 = SYSCTL_ZERO, 6740 }, 6741 { 6742 .procname = "watermark_boost_factor", 6743 .data = &watermark_boost_factor, 6744 .maxlen = sizeof(watermark_boost_factor), 6745 .mode = 0644, 6746 .proc_handler = proc_dointvec_minmax, 6747 .extra1 = SYSCTL_ZERO, 6748 }, 6749 { 6750 .procname = "watermark_scale_factor", 6751 .data = &watermark_scale_factor, 6752 .maxlen = sizeof(watermark_scale_factor), 6753 .mode = 0644, 6754 .proc_handler = watermark_scale_factor_sysctl_handler, 6755 .extra1 = SYSCTL_ONE, 6756 .extra2 = SYSCTL_THREE_THOUSAND, 6757 }, 6758 { 6759 .procname = "defrag_mode", 6760 .data = &defrag_mode, 6761 .maxlen = sizeof(defrag_mode), 6762 .mode = 0644, 6763 .proc_handler = proc_dointvec_minmax, 6764 .extra1 = SYSCTL_ZERO, 6765 .extra2 = SYSCTL_ONE, 6766 }, 6767 { 6768 .procname = "percpu_pagelist_high_fraction", 6769 .data = &percpu_pagelist_high_fraction, 6770 .maxlen = sizeof(percpu_pagelist_high_fraction), 6771 .mode = 0644, 6772 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6773 .extra1 = SYSCTL_ZERO, 6774 }, 6775 { 6776 .procname = "lowmem_reserve_ratio", 6777 .data = &sysctl_lowmem_reserve_ratio, 6778 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6779 .mode = 0644, 6780 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6781 }, 6782 #ifdef CONFIG_NUMA 6783 { 6784 .procname = "numa_zonelist_order", 6785 .data = &numa_zonelist_order, 6786 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6787 .mode = 0644, 6788 .proc_handler = numa_zonelist_order_handler, 6789 }, 6790 { 6791 .procname = "min_unmapped_ratio", 6792 .data = &sysctl_min_unmapped_ratio, 6793 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6794 .mode = 0644, 6795 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6796 .extra1 = SYSCTL_ZERO, 6797 .extra2 = SYSCTL_ONE_HUNDRED, 6798 }, 6799 { 6800 .procname = "min_slab_ratio", 6801 .data = &sysctl_min_slab_ratio, 6802 .maxlen = sizeof(sysctl_min_slab_ratio), 6803 .mode = 0644, 6804 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6805 .extra1 = SYSCTL_ZERO, 6806 .extra2 = SYSCTL_ONE_HUNDRED, 6807 }, 6808 #endif 6809 }; 6810 6811 void __init page_alloc_sysctl_init(void) 6812 { 6813 register_sysctl_init("vm", page_alloc_sysctl_table); 6814 } 6815 6816 #ifdef CONFIG_CONTIG_ALLOC 6817 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6818 static void alloc_contig_dump_pages(struct list_head *page_list) 6819 { 6820 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6821 6822 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6823 struct page *page; 6824 6825 dump_stack(); 6826 list_for_each_entry(page, page_list, lru) 6827 dump_page(page, "migration failure"); 6828 } 6829 } 6830 6831 /* [start, end) must belong to a single zone. */ 6832 static int __alloc_contig_migrate_range(struct compact_control *cc, 6833 unsigned long start, unsigned long end) 6834 { 6835 /* This function is based on compact_zone() from compaction.c. */ 6836 unsigned int nr_reclaimed; 6837 unsigned long pfn = start; 6838 unsigned int tries = 0; 6839 int ret = 0; 6840 struct migration_target_control mtc = { 6841 .nid = zone_to_nid(cc->zone), 6842 .gfp_mask = cc->gfp_mask, 6843 .reason = MR_CONTIG_RANGE, 6844 }; 6845 6846 lru_cache_disable(); 6847 6848 while (pfn < end || !list_empty(&cc->migratepages)) { 6849 if (fatal_signal_pending(current)) { 6850 ret = -EINTR; 6851 break; 6852 } 6853 6854 if (list_empty(&cc->migratepages)) { 6855 cc->nr_migratepages = 0; 6856 ret = isolate_migratepages_range(cc, pfn, end); 6857 if (ret && ret != -EAGAIN) 6858 break; 6859 pfn = cc->migrate_pfn; 6860 tries = 0; 6861 } else if (++tries == 5) { 6862 ret = -EBUSY; 6863 break; 6864 } 6865 6866 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6867 &cc->migratepages); 6868 cc->nr_migratepages -= nr_reclaimed; 6869 6870 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6871 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6872 6873 /* 6874 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6875 * to retry again over this error, so do the same here. 6876 */ 6877 if (ret == -ENOMEM) 6878 break; 6879 } 6880 6881 lru_cache_enable(); 6882 if (ret < 0) { 6883 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6884 alloc_contig_dump_pages(&cc->migratepages); 6885 putback_movable_pages(&cc->migratepages); 6886 } 6887 6888 return (ret < 0) ? ret : 0; 6889 } 6890 6891 static void split_free_frozen_pages(struct list_head *list, gfp_t gfp_mask) 6892 { 6893 int order; 6894 6895 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6896 struct page *page, *next; 6897 int nr_pages = 1 << order; 6898 6899 list_for_each_entry_safe(page, next, &list[order], lru) { 6900 int i; 6901 6902 post_alloc_hook(page, order, gfp_mask); 6903 if (!order) 6904 continue; 6905 6906 __split_page(page, order); 6907 6908 /* Add all subpages to the order-0 head, in sequence. */ 6909 list_del(&page->lru); 6910 for (i = 0; i < nr_pages; i++) 6911 list_add_tail(&page[i].lru, &list[0]); 6912 } 6913 } 6914 } 6915 6916 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6917 { 6918 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6919 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6920 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6921 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6922 6923 /* 6924 * We are given the range to allocate; node, mobility and placement 6925 * hints are irrelevant at this point. We'll simply ignore them. 6926 */ 6927 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6928 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6929 6930 /* 6931 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6932 * selected action flags. 6933 */ 6934 if (gfp_mask & ~(reclaim_mask | action_mask)) 6935 return -EINVAL; 6936 6937 /* 6938 * Flags to control page compaction/migration/reclaim, to free up our 6939 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6940 * for them. 6941 * 6942 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6943 * to not degrade callers. 6944 */ 6945 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6946 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6947 return 0; 6948 } 6949 6950 static void __free_contig_frozen_range(unsigned long pfn, unsigned long nr_pages) 6951 { 6952 for (; nr_pages--; pfn++) 6953 free_frozen_pages(pfn_to_page(pfn), 0); 6954 } 6955 6956 /** 6957 * alloc_contig_frozen_range() -- tries to allocate given range of frozen pages 6958 * @start: start PFN to allocate 6959 * @end: one-past-the-last PFN to allocate 6960 * @alloc_flags: allocation information 6961 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6962 * action and reclaim modifiers are supported. Reclaim modifiers 6963 * control allocation behavior during compaction/migration/reclaim. 6964 * 6965 * The PFN range does not have to be pageblock aligned. The PFN range must 6966 * belong to a single zone. 6967 * 6968 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6969 * pageblocks in the range. Once isolated, the pageblocks should not 6970 * be modified by others. 6971 * 6972 * All frozen pages which PFN is in [start, end) are allocated for the 6973 * caller, and they could be freed with free_contig_frozen_range(), 6974 * free_frozen_pages() also could be used to free compound frozen pages 6975 * directly. 6976 * 6977 * Return: zero on success or negative error code. 6978 */ 6979 int alloc_contig_frozen_range_noprof(unsigned long start, unsigned long end, 6980 acr_flags_t alloc_flags, gfp_t gfp_mask) 6981 { 6982 const unsigned int order = ilog2(end - start); 6983 unsigned long outer_start, outer_end; 6984 int ret = 0; 6985 6986 struct compact_control cc = { 6987 .nr_migratepages = 0, 6988 .order = -1, 6989 .zone = page_zone(pfn_to_page(start)), 6990 .mode = MIGRATE_SYNC, 6991 .ignore_skip_hint = true, 6992 .no_set_skip_hint = true, 6993 .alloc_contig = true, 6994 }; 6995 INIT_LIST_HEAD(&cc.migratepages); 6996 enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ? 6997 PB_ISOLATE_MODE_CMA_ALLOC : 6998 PB_ISOLATE_MODE_OTHER; 6999 7000 /* 7001 * In contrast to the buddy, we allow for orders here that exceed 7002 * MAX_PAGE_ORDER, so we must manually make sure that we are not 7003 * exceeding the maximum folio order. 7004 */ 7005 if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER)) 7006 return -EINVAL; 7007 7008 gfp_mask = current_gfp_context(gfp_mask); 7009 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 7010 return -EINVAL; 7011 7012 /* 7013 * What we do here is we mark all pageblocks in range as 7014 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7015 * have different sizes, and due to the way page allocator 7016 * work, start_isolate_page_range() has special handlings for this. 7017 * 7018 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7019 * migrate the pages from an unaligned range (ie. pages that 7020 * we are interested in). This will put all the pages in 7021 * range back to page allocator as MIGRATE_ISOLATE. 7022 * 7023 * When this is done, we take the pages in range from page 7024 * allocator removing them from the buddy system. This way 7025 * page allocator will never consider using them. 7026 * 7027 * This lets us mark the pageblocks back as 7028 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7029 * aligned range but not in the unaligned, original range are 7030 * put back to page allocator so that buddy can use them. 7031 */ 7032 7033 ret = start_isolate_page_range(start, end, mode); 7034 if (ret) 7035 goto done; 7036 7037 drain_all_pages(cc.zone); 7038 7039 /* 7040 * In case of -EBUSY, we'd like to know which page causes problem. 7041 * So, just fall through. test_pages_isolated() has a tracepoint 7042 * which will report the busy page. 7043 * 7044 * It is possible that busy pages could become available before 7045 * the call to test_pages_isolated, and the range will actually be 7046 * allocated. So, if we fall through be sure to clear ret so that 7047 * -EBUSY is not accidentally used or returned to caller. 7048 */ 7049 ret = __alloc_contig_migrate_range(&cc, start, end); 7050 if (ret && ret != -EBUSY) 7051 goto done; 7052 7053 /* 7054 * When in-use hugetlb pages are migrated, they may simply be released 7055 * back into the free hugepage pool instead of being returned to the 7056 * buddy system. After the migration of in-use huge pages is completed, 7057 * we will invoke replace_free_hugepage_folios() to ensure that these 7058 * hugepages are properly released to the buddy system. 7059 */ 7060 ret = replace_free_hugepage_folios(start, end); 7061 if (ret) 7062 goto done; 7063 7064 /* 7065 * Pages from [start, end) are within a pageblock_nr_pages 7066 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7067 * more, all pages in [start, end) are free in page allocator. 7068 * What we are going to do is to allocate all pages from 7069 * [start, end) (that is remove them from page allocator). 7070 * 7071 * The only problem is that pages at the beginning and at the 7072 * end of interesting range may be not aligned with pages that 7073 * page allocator holds, ie. they can be part of higher order 7074 * pages. Because of this, we reserve the bigger range and 7075 * once this is done free the pages we are not interested in. 7076 * 7077 * We don't have to hold zone->lock here because the pages are 7078 * isolated thus they won't get removed from buddy. 7079 */ 7080 outer_start = find_large_buddy(start); 7081 7082 /* Make sure the range is really isolated. */ 7083 if (test_pages_isolated(outer_start, end, mode)) { 7084 ret = -EBUSY; 7085 goto done; 7086 } 7087 7088 /* Grab isolated pages from freelists. */ 7089 outer_end = isolate_freepages_range(&cc, outer_start, end); 7090 if (!outer_end) { 7091 ret = -EBUSY; 7092 goto done; 7093 } 7094 7095 if (!(gfp_mask & __GFP_COMP)) { 7096 split_free_frozen_pages(cc.freepages, gfp_mask); 7097 7098 /* Free head and tail (if any) */ 7099 if (start != outer_start) 7100 __free_contig_frozen_range(outer_start, start - outer_start); 7101 if (end != outer_end) 7102 __free_contig_frozen_range(end, outer_end - end); 7103 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 7104 struct page *head = pfn_to_page(start); 7105 7106 check_new_pages(head, order); 7107 prep_new_page(head, order, gfp_mask, 0); 7108 } else { 7109 ret = -EINVAL; 7110 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 7111 start, end, outer_start, outer_end); 7112 } 7113 done: 7114 undo_isolate_page_range(start, end); 7115 return ret; 7116 } 7117 EXPORT_SYMBOL(alloc_contig_frozen_range_noprof); 7118 7119 /** 7120 * alloc_contig_range() -- tries to allocate given range of pages 7121 * @start: start PFN to allocate 7122 * @end: one-past-the-last PFN to allocate 7123 * @alloc_flags: allocation information 7124 * @gfp_mask: GFP mask. 7125 * 7126 * This routine is a wrapper around alloc_contig_frozen_range(), it can't 7127 * be used to allocate compound pages, the refcount of each allocated page 7128 * will be set to one. 7129 * 7130 * All pages which PFN is in [start, end) are allocated for the caller, 7131 * and should be freed with free_contig_range() or by manually calling 7132 * __free_page() on each allocated page. 7133 * 7134 * Return: zero on success or negative error code. 7135 */ 7136 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 7137 acr_flags_t alloc_flags, gfp_t gfp_mask) 7138 { 7139 int ret; 7140 7141 if (WARN_ON(gfp_mask & __GFP_COMP)) 7142 return -EINVAL; 7143 7144 ret = alloc_contig_frozen_range_noprof(start, end, alloc_flags, gfp_mask); 7145 if (!ret) 7146 set_pages_refcounted(pfn_to_page(start), end - start); 7147 7148 return ret; 7149 } 7150 EXPORT_SYMBOL(alloc_contig_range_noprof); 7151 7152 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 7153 unsigned long nr_pages, bool skip_hugetlb, 7154 bool *skipped_hugetlb) 7155 { 7156 unsigned long end_pfn = start_pfn + nr_pages; 7157 struct page *page; 7158 7159 while (start_pfn < end_pfn) { 7160 unsigned long step = 1; 7161 7162 page = pfn_to_online_page(start_pfn); 7163 if (!page) 7164 return false; 7165 7166 if (page_zone(page) != z) 7167 return false; 7168 7169 if (page_is_unmovable(z, page, PB_ISOLATE_MODE_OTHER, &step)) 7170 return false; 7171 7172 /* 7173 * Only consider ranges containing hugepages if those pages are 7174 * smaller than the requested contiguous region. e.g.: 7175 * Move 2MB pages to free up a 1GB range. 7176 * Don't move 1GB pages to free up a 2MB range. 7177 * 7178 * This makes contiguous allocation more reliable if multiple 7179 * hugepage sizes are used without causing needless movement. 7180 */ 7181 if (PageHuge(page)) { 7182 unsigned int order; 7183 7184 if (skip_hugetlb) { 7185 *skipped_hugetlb = true; 7186 return false; 7187 } 7188 7189 page = compound_head(page); 7190 order = compound_order(page); 7191 if ((order >= MAX_FOLIO_ORDER) || 7192 (nr_pages <= (1 << order))) 7193 return false; 7194 } 7195 7196 start_pfn += step; 7197 } 7198 return true; 7199 } 7200 7201 static bool zone_spans_last_pfn(const struct zone *zone, 7202 unsigned long start_pfn, unsigned long nr_pages) 7203 { 7204 unsigned long last_pfn = start_pfn + nr_pages - 1; 7205 7206 return zone_spans_pfn(zone, last_pfn); 7207 } 7208 7209 /** 7210 * alloc_contig_frozen_pages() -- tries to find and allocate contiguous range of frozen pages 7211 * @nr_pages: Number of contiguous pages to allocate 7212 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 7213 * action and reclaim modifiers are supported. Reclaim modifiers 7214 * control allocation behavior during compaction/migration/reclaim. 7215 * @nid: Target node 7216 * @nodemask: Mask for other possible nodes 7217 * 7218 * This routine is a wrapper around alloc_contig_frozen_range(). It scans over 7219 * zones on an applicable zonelist to find a contiguous pfn range which can then 7220 * be tried for allocation with alloc_contig_frozen_range(). This routine is 7221 * intended for allocation requests which can not be fulfilled with the buddy 7222 * allocator. 7223 * 7224 * The allocated memory is always aligned to a page boundary. If nr_pages is a 7225 * power of two, then allocated range is also guaranteed to be aligned to same 7226 * nr_pages (e.g. 1GB request would be aligned to 1GB). 7227 * 7228 * Allocated frozen pages need be freed with free_contig_frozen_range(), 7229 * or by manually calling free_frozen_pages() on each allocated frozen 7230 * non-compound page, for compound frozen pages could be freed with 7231 * free_frozen_pages() directly. 7232 * 7233 * Return: pointer to contiguous frozen pages on success, or NULL if not successful. 7234 */ 7235 struct page *alloc_contig_frozen_pages_noprof(unsigned long nr_pages, 7236 gfp_t gfp_mask, int nid, nodemask_t *nodemask) 7237 { 7238 unsigned long ret, pfn, flags; 7239 struct zonelist *zonelist; 7240 struct zone *zone; 7241 struct zoneref *z; 7242 bool skip_hugetlb = true; 7243 bool skipped_hugetlb = false; 7244 7245 retry: 7246 zonelist = node_zonelist(nid, gfp_mask); 7247 for_each_zone_zonelist_nodemask(zone, z, zonelist, 7248 gfp_zone(gfp_mask), nodemask) { 7249 spin_lock_irqsave(&zone->lock, flags); 7250 7251 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 7252 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 7253 if (pfn_range_valid_contig(zone, pfn, nr_pages, 7254 skip_hugetlb, 7255 &skipped_hugetlb)) { 7256 /* 7257 * We release the zone lock here because 7258 * alloc_contig_frozen_range() will also lock 7259 * the zone at some point. If there's an 7260 * allocation spinning on this lock, it may 7261 * win the race and cause allocation to fail. 7262 */ 7263 spin_unlock_irqrestore(&zone->lock, flags); 7264 ret = alloc_contig_frozen_range_noprof(pfn, 7265 pfn + nr_pages, 7266 ACR_FLAGS_NONE, 7267 gfp_mask); 7268 if (!ret) 7269 return pfn_to_page(pfn); 7270 spin_lock_irqsave(&zone->lock, flags); 7271 } 7272 pfn += nr_pages; 7273 } 7274 spin_unlock_irqrestore(&zone->lock, flags); 7275 } 7276 /* 7277 * If we failed, retry the search, but treat regions with HugeTLB pages 7278 * as valid targets. This retains fast-allocations on first pass 7279 * without trying to migrate HugeTLB pages (which may fail). On the 7280 * second pass, we will try moving HugeTLB pages when those pages are 7281 * smaller than the requested contiguous region size. 7282 */ 7283 if (skip_hugetlb && skipped_hugetlb) { 7284 skip_hugetlb = false; 7285 goto retry; 7286 } 7287 return NULL; 7288 } 7289 EXPORT_SYMBOL(alloc_contig_frozen_pages_noprof); 7290 7291 /** 7292 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 7293 * @nr_pages: Number of contiguous pages to allocate 7294 * @gfp_mask: GFP mask. 7295 * @nid: Target node 7296 * @nodemask: Mask for other possible nodes 7297 * 7298 * This routine is a wrapper around alloc_contig_frozen_pages(), it can't 7299 * be used to allocate compound pages, the refcount of each allocated page 7300 * will be set to one. 7301 * 7302 * Allocated pages can be freed with free_contig_range() or by manually 7303 * calling __free_page() on each allocated page. 7304 * 7305 * Return: pointer to contiguous pages on success, or NULL if not successful. 7306 */ 7307 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 7308 int nid, nodemask_t *nodemask) 7309 { 7310 struct page *page; 7311 7312 if (WARN_ON(gfp_mask & __GFP_COMP)) 7313 return NULL; 7314 7315 page = alloc_contig_frozen_pages_noprof(nr_pages, gfp_mask, nid, 7316 nodemask); 7317 if (page) 7318 set_pages_refcounted(page, nr_pages); 7319 7320 return page; 7321 } 7322 EXPORT_SYMBOL(alloc_contig_pages_noprof); 7323 7324 /** 7325 * free_contig_frozen_range() -- free the contiguous range of frozen pages 7326 * @pfn: start PFN to free 7327 * @nr_pages: Number of contiguous frozen pages to free 7328 * 7329 * This can be used to free the allocated compound/non-compound frozen pages. 7330 */ 7331 void free_contig_frozen_range(unsigned long pfn, unsigned long nr_pages) 7332 { 7333 struct page *first_page = pfn_to_page(pfn); 7334 const unsigned int order = ilog2(nr_pages); 7335 7336 if (WARN_ON_ONCE(first_page != compound_head(first_page))) 7337 return; 7338 7339 if (PageHead(first_page)) { 7340 WARN_ON_ONCE(order != compound_order(first_page)); 7341 free_frozen_pages(first_page, order); 7342 return; 7343 } 7344 7345 __free_contig_frozen_range(pfn, nr_pages); 7346 } 7347 EXPORT_SYMBOL(free_contig_frozen_range); 7348 7349 /** 7350 * free_contig_range() -- free the contiguous range of pages 7351 * @pfn: start PFN to free 7352 * @nr_pages: Number of contiguous pages to free 7353 * 7354 * This can be only used to free the allocated non-compound pages. 7355 */ 7356 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 7357 { 7358 if (WARN_ON_ONCE(PageHead(pfn_to_page(pfn)))) 7359 return; 7360 7361 for (; nr_pages--; pfn++) 7362 __free_page(pfn_to_page(pfn)); 7363 } 7364 EXPORT_SYMBOL(free_contig_range); 7365 #endif /* CONFIG_CONTIG_ALLOC */ 7366 7367 /* 7368 * Effectively disable pcplists for the zone by setting the high limit to 0 7369 * and draining all cpus. A concurrent page freeing on another CPU that's about 7370 * to put the page on pcplist will either finish before the drain and the page 7371 * will be drained, or observe the new high limit and skip the pcplist. 7372 * 7373 * Must be paired with a call to zone_pcp_enable(). 7374 */ 7375 void zone_pcp_disable(struct zone *zone) 7376 { 7377 mutex_lock(&pcp_batch_high_lock); 7378 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 7379 __drain_all_pages(zone, true); 7380 } 7381 7382 void zone_pcp_enable(struct zone *zone) 7383 { 7384 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 7385 zone->pageset_high_max, zone->pageset_batch); 7386 mutex_unlock(&pcp_batch_high_lock); 7387 } 7388 7389 void zone_pcp_reset(struct zone *zone) 7390 { 7391 int cpu; 7392 struct per_cpu_zonestat *pzstats; 7393 7394 if (zone->per_cpu_pageset != &boot_pageset) { 7395 for_each_online_cpu(cpu) { 7396 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7397 drain_zonestat(zone, pzstats); 7398 } 7399 free_percpu(zone->per_cpu_pageset); 7400 zone->per_cpu_pageset = &boot_pageset; 7401 if (zone->per_cpu_zonestats != &boot_zonestats) { 7402 free_percpu(zone->per_cpu_zonestats); 7403 zone->per_cpu_zonestats = &boot_zonestats; 7404 } 7405 } 7406 } 7407 7408 #ifdef CONFIG_MEMORY_HOTREMOVE 7409 /* 7410 * All pages in the range must be in a single zone, must not contain holes, 7411 * must span full sections, and must be isolated before calling this function. 7412 * 7413 * Returns the number of managed (non-PageOffline()) pages in the range: the 7414 * number of pages for which memory offlining code must adjust managed page 7415 * counters using adjust_managed_page_count(). 7416 */ 7417 unsigned long __offline_isolated_pages(unsigned long start_pfn, 7418 unsigned long end_pfn) 7419 { 7420 unsigned long already_offline = 0, flags; 7421 unsigned long pfn = start_pfn; 7422 struct page *page; 7423 struct zone *zone; 7424 unsigned int order; 7425 7426 offline_mem_sections(pfn, end_pfn); 7427 zone = page_zone(pfn_to_page(pfn)); 7428 spin_lock_irqsave(&zone->lock, flags); 7429 while (pfn < end_pfn) { 7430 page = pfn_to_page(pfn); 7431 /* 7432 * The HWPoisoned page may be not in buddy system, and 7433 * page_count() is not 0. 7434 */ 7435 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7436 pfn++; 7437 continue; 7438 } 7439 /* 7440 * At this point all remaining PageOffline() pages have a 7441 * reference count of 0 and can simply be skipped. 7442 */ 7443 if (PageOffline(page)) { 7444 BUG_ON(page_count(page)); 7445 BUG_ON(PageBuddy(page)); 7446 already_offline++; 7447 pfn++; 7448 continue; 7449 } 7450 7451 BUG_ON(page_count(page)); 7452 BUG_ON(!PageBuddy(page)); 7453 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7454 order = buddy_order(page); 7455 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7456 pfn += (1 << order); 7457 } 7458 spin_unlock_irqrestore(&zone->lock, flags); 7459 7460 return end_pfn - start_pfn - already_offline; 7461 } 7462 #endif 7463 7464 /* 7465 * This function returns a stable result only if called under zone lock. 7466 */ 7467 bool is_free_buddy_page(const struct page *page) 7468 { 7469 unsigned long pfn = page_to_pfn(page); 7470 unsigned int order; 7471 7472 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7473 const struct page *head = page - (pfn & ((1 << order) - 1)); 7474 7475 if (PageBuddy(head) && 7476 buddy_order_unsafe(head) >= order) 7477 break; 7478 } 7479 7480 return order <= MAX_PAGE_ORDER; 7481 } 7482 EXPORT_SYMBOL(is_free_buddy_page); 7483 7484 #ifdef CONFIG_MEMORY_FAILURE 7485 static inline void add_to_free_list(struct page *page, struct zone *zone, 7486 unsigned int order, int migratetype, 7487 bool tail) 7488 { 7489 __add_to_free_list(page, zone, order, migratetype, tail); 7490 account_freepages(zone, 1 << order, migratetype); 7491 } 7492 7493 /* 7494 * Break down a higher-order page in sub-pages, and keep our target out of 7495 * buddy allocator. 7496 */ 7497 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7498 struct page *target, int low, int high, 7499 int migratetype) 7500 { 7501 unsigned long size = 1 << high; 7502 struct page *current_buddy; 7503 7504 while (high > low) { 7505 high--; 7506 size >>= 1; 7507 7508 if (target >= &page[size]) { 7509 current_buddy = page; 7510 page = page + size; 7511 } else { 7512 current_buddy = page + size; 7513 } 7514 7515 if (set_page_guard(zone, current_buddy, high)) 7516 continue; 7517 7518 add_to_free_list(current_buddy, zone, high, migratetype, false); 7519 set_buddy_order(current_buddy, high); 7520 } 7521 } 7522 7523 /* 7524 * Take a page that will be marked as poisoned off the buddy allocator. 7525 */ 7526 bool take_page_off_buddy(struct page *page) 7527 { 7528 struct zone *zone = page_zone(page); 7529 unsigned long pfn = page_to_pfn(page); 7530 unsigned long flags; 7531 unsigned int order; 7532 bool ret = false; 7533 7534 spin_lock_irqsave(&zone->lock, flags); 7535 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7536 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7537 int page_order = buddy_order(page_head); 7538 7539 if (PageBuddy(page_head) && page_order >= order) { 7540 unsigned long pfn_head = page_to_pfn(page_head); 7541 int migratetype = get_pfnblock_migratetype(page_head, 7542 pfn_head); 7543 7544 del_page_from_free_list(page_head, zone, page_order, 7545 migratetype); 7546 break_down_buddy_pages(zone, page_head, page, 0, 7547 page_order, migratetype); 7548 SetPageHWPoisonTakenOff(page); 7549 ret = true; 7550 break; 7551 } 7552 if (page_count(page_head) > 0) 7553 break; 7554 } 7555 spin_unlock_irqrestore(&zone->lock, flags); 7556 return ret; 7557 } 7558 7559 /* 7560 * Cancel takeoff done by take_page_off_buddy(). 7561 */ 7562 bool put_page_back_buddy(struct page *page) 7563 { 7564 struct zone *zone = page_zone(page); 7565 unsigned long flags; 7566 bool ret = false; 7567 7568 spin_lock_irqsave(&zone->lock, flags); 7569 if (put_page_testzero(page)) { 7570 unsigned long pfn = page_to_pfn(page); 7571 int migratetype = get_pfnblock_migratetype(page, pfn); 7572 7573 ClearPageHWPoisonTakenOff(page); 7574 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7575 if (TestClearPageHWPoison(page)) { 7576 ret = true; 7577 } 7578 } 7579 spin_unlock_irqrestore(&zone->lock, flags); 7580 7581 return ret; 7582 } 7583 #endif 7584 7585 bool has_managed_zone(enum zone_type zone) 7586 { 7587 struct pglist_data *pgdat; 7588 7589 for_each_online_pgdat(pgdat) { 7590 if (managed_zone(&pgdat->node_zones[zone])) 7591 return true; 7592 } 7593 return false; 7594 } 7595 7596 #ifdef CONFIG_UNACCEPTED_MEMORY 7597 7598 static bool lazy_accept = true; 7599 7600 static int __init accept_memory_parse(char *p) 7601 { 7602 if (!strcmp(p, "lazy")) { 7603 lazy_accept = true; 7604 return 0; 7605 } else if (!strcmp(p, "eager")) { 7606 lazy_accept = false; 7607 return 0; 7608 } else { 7609 return -EINVAL; 7610 } 7611 } 7612 early_param("accept_memory", accept_memory_parse); 7613 7614 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7615 { 7616 phys_addr_t start = page_to_phys(page); 7617 7618 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7619 } 7620 7621 static void __accept_page(struct zone *zone, unsigned long *flags, 7622 struct page *page) 7623 { 7624 list_del(&page->lru); 7625 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7626 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7627 __ClearPageUnaccepted(page); 7628 spin_unlock_irqrestore(&zone->lock, *flags); 7629 7630 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7631 7632 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7633 } 7634 7635 void accept_page(struct page *page) 7636 { 7637 struct zone *zone = page_zone(page); 7638 unsigned long flags; 7639 7640 spin_lock_irqsave(&zone->lock, flags); 7641 if (!PageUnaccepted(page)) { 7642 spin_unlock_irqrestore(&zone->lock, flags); 7643 return; 7644 } 7645 7646 /* Unlocks zone->lock */ 7647 __accept_page(zone, &flags, page); 7648 } 7649 7650 static bool try_to_accept_memory_one(struct zone *zone) 7651 { 7652 unsigned long flags; 7653 struct page *page; 7654 7655 spin_lock_irqsave(&zone->lock, flags); 7656 page = list_first_entry_or_null(&zone->unaccepted_pages, 7657 struct page, lru); 7658 if (!page) { 7659 spin_unlock_irqrestore(&zone->lock, flags); 7660 return false; 7661 } 7662 7663 /* Unlocks zone->lock */ 7664 __accept_page(zone, &flags, page); 7665 7666 return true; 7667 } 7668 7669 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7670 int alloc_flags) 7671 { 7672 long to_accept, wmark; 7673 bool ret = false; 7674 7675 if (list_empty(&zone->unaccepted_pages)) 7676 return false; 7677 7678 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7679 if (alloc_flags & ALLOC_TRYLOCK) 7680 return false; 7681 7682 wmark = promo_wmark_pages(zone); 7683 7684 /* 7685 * Watermarks have not been initialized yet. 7686 * 7687 * Accepting one MAX_ORDER page to ensure progress. 7688 */ 7689 if (!wmark) 7690 return try_to_accept_memory_one(zone); 7691 7692 /* How much to accept to get to promo watermark? */ 7693 to_accept = wmark - 7694 (zone_page_state(zone, NR_FREE_PAGES) - 7695 __zone_watermark_unusable_free(zone, order, 0) - 7696 zone_page_state(zone, NR_UNACCEPTED)); 7697 7698 while (to_accept > 0) { 7699 if (!try_to_accept_memory_one(zone)) 7700 break; 7701 ret = true; 7702 to_accept -= MAX_ORDER_NR_PAGES; 7703 } 7704 7705 return ret; 7706 } 7707 7708 static bool __free_unaccepted(struct page *page) 7709 { 7710 struct zone *zone = page_zone(page); 7711 unsigned long flags; 7712 7713 if (!lazy_accept) 7714 return false; 7715 7716 spin_lock_irqsave(&zone->lock, flags); 7717 list_add_tail(&page->lru, &zone->unaccepted_pages); 7718 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7719 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7720 __SetPageUnaccepted(page); 7721 spin_unlock_irqrestore(&zone->lock, flags); 7722 7723 return true; 7724 } 7725 7726 #else 7727 7728 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7729 { 7730 return false; 7731 } 7732 7733 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7734 int alloc_flags) 7735 { 7736 return false; 7737 } 7738 7739 static bool __free_unaccepted(struct page *page) 7740 { 7741 BUILD_BUG(); 7742 return false; 7743 } 7744 7745 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7746 7747 struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7748 { 7749 /* 7750 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7751 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7752 * is not safe in arbitrary context. 7753 * 7754 * These two are the conditions for gfpflags_allow_spinning() being true. 7755 * 7756 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason 7757 * to warn. Also warn would trigger printk() which is unsafe from 7758 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7759 * since the running context is unknown. 7760 * 7761 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7762 * is safe in any context. Also zeroing the page is mandatory for 7763 * BPF use cases. 7764 * 7765 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7766 * specify it here to highlight that alloc_pages_nolock() 7767 * doesn't want to deplete reserves. 7768 */ 7769 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | __GFP_COMP 7770 | gfp_flags; 7771 unsigned int alloc_flags = ALLOC_TRYLOCK; 7772 struct alloc_context ac = { }; 7773 struct page *page; 7774 7775 VM_WARN_ON_ONCE(gfp_flags & ~__GFP_ACCOUNT); 7776 /* 7777 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7778 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7779 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7780 * mark the task as the owner of another rt_spin_lock which will 7781 * confuse PI logic, so return immediately if called from hard IRQ or 7782 * NMI. 7783 * 7784 * Note, irqs_disabled() case is ok. This function can be called 7785 * from raw_spin_lock_irqsave region. 7786 */ 7787 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7788 return NULL; 7789 if (!pcp_allowed_order(order)) 7790 return NULL; 7791 7792 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7793 if (deferred_pages_enabled()) 7794 return NULL; 7795 7796 if (nid == NUMA_NO_NODE) 7797 nid = numa_node_id(); 7798 7799 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7800 &alloc_gfp, &alloc_flags); 7801 7802 /* 7803 * Best effort allocation from percpu free list. 7804 * If it's empty attempt to spin_trylock zone->lock. 7805 */ 7806 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7807 7808 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7809 7810 if (memcg_kmem_online() && page && (gfp_flags & __GFP_ACCOUNT) && 7811 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7812 __free_frozen_pages(page, order, FPI_TRYLOCK); 7813 page = NULL; 7814 } 7815 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7816 kmsan_alloc_page(page, order, alloc_gfp); 7817 return page; 7818 } 7819 /** 7820 * alloc_pages_nolock - opportunistic reentrant allocation from any context 7821 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT allowed. 7822 * @nid: node to allocate from 7823 * @order: allocation order size 7824 * 7825 * Allocates pages of a given order from the given node. This is safe to 7826 * call from any context (from atomic, NMI, and also reentrant 7827 * allocator -> tracepoint -> alloc_pages_nolock_noprof). 7828 * Allocation is best effort and to be expected to fail easily so nobody should 7829 * rely on the success. Failures are not reported via warn_alloc(). 7830 * See always fail conditions below. 7831 * 7832 * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. 7833 * It means ENOMEM. There is no reason to call it again and expect !NULL. 7834 */ 7835 struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7836 { 7837 struct page *page; 7838 7839 page = alloc_frozen_pages_nolock_noprof(gfp_flags, nid, order); 7840 if (page) 7841 set_page_refcounted(page); 7842 return page; 7843 } 7844 EXPORT_SYMBOL_GPL(alloc_pages_nolock_noprof); 7845