1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* 111 * Don't poison memory with KASAN (only for the tag-based modes). 112 * During boot, all non-reserved memblock memory is exposed to page_alloc. 113 * Poisoning all that memory lengthens boot time, especially on systems with 114 * large amount of RAM. This flag is used to skip that poisoning. 115 * This is only done for the tag-based KASAN modes, as those are able to 116 * detect memory corruptions with the memory tags assigned by default. 117 * All memory allocated normally after boot gets poisoned as usual. 118 */ 119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 120 121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 122 static DEFINE_MUTEX(pcp_batch_high_lock); 123 #define MIN_PERCPU_PAGELIST_FRACTION (8) 124 125 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 126 DEFINE_PER_CPU(int, numa_node); 127 EXPORT_PER_CPU_SYMBOL(numa_node); 128 #endif 129 130 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 131 132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 133 /* 134 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 135 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 136 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 137 * defined in <linux/topology.h>. 138 */ 139 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 140 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 141 #endif 142 143 /* work_structs for global per-cpu drains */ 144 struct pcpu_drain { 145 struct zone *zone; 146 struct work_struct work; 147 }; 148 static DEFINE_MUTEX(pcpu_drain_mutex); 149 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 150 151 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 152 volatile unsigned long latent_entropy __latent_entropy; 153 EXPORT_SYMBOL(latent_entropy); 154 #endif 155 156 /* 157 * Array of node states. 158 */ 159 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 160 [N_POSSIBLE] = NODE_MASK_ALL, 161 [N_ONLINE] = { { [0] = 1UL } }, 162 #ifndef CONFIG_NUMA 163 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 164 #ifdef CONFIG_HIGHMEM 165 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 166 #endif 167 [N_MEMORY] = { { [0] = 1UL } }, 168 [N_CPU] = { { [0] = 1UL } }, 169 #endif /* NUMA */ 170 }; 171 EXPORT_SYMBOL(node_states); 172 173 atomic_long_t _totalram_pages __read_mostly; 174 EXPORT_SYMBOL(_totalram_pages); 175 unsigned long totalreserve_pages __read_mostly; 176 unsigned long totalcma_pages __read_mostly; 177 178 int percpu_pagelist_fraction; 179 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 180 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 181 EXPORT_SYMBOL(init_on_alloc); 182 183 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 184 EXPORT_SYMBOL(init_on_free); 185 186 static bool _init_on_alloc_enabled_early __read_mostly 187 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 188 static int __init early_init_on_alloc(char *buf) 189 { 190 191 return kstrtobool(buf, &_init_on_alloc_enabled_early); 192 } 193 early_param("init_on_alloc", early_init_on_alloc); 194 195 static bool _init_on_free_enabled_early __read_mostly 196 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 197 static int __init early_init_on_free(char *buf) 198 { 199 return kstrtobool(buf, &_init_on_free_enabled_early); 200 } 201 early_param("init_on_free", early_init_on_free); 202 203 /* 204 * A cached value of the page's pageblock's migratetype, used when the page is 205 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 206 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 207 * Also the migratetype set in the page does not necessarily match the pcplist 208 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 209 * other index - this ensures that it will be put on the correct CMA freelist. 210 */ 211 static inline int get_pcppage_migratetype(struct page *page) 212 { 213 return page->index; 214 } 215 216 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 217 { 218 page->index = migratetype; 219 } 220 221 #ifdef CONFIG_PM_SLEEP 222 /* 223 * The following functions are used by the suspend/hibernate code to temporarily 224 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 225 * while devices are suspended. To avoid races with the suspend/hibernate code, 226 * they should always be called with system_transition_mutex held 227 * (gfp_allowed_mask also should only be modified with system_transition_mutex 228 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 229 * with that modification). 230 */ 231 232 static gfp_t saved_gfp_mask; 233 234 void pm_restore_gfp_mask(void) 235 { 236 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 237 if (saved_gfp_mask) { 238 gfp_allowed_mask = saved_gfp_mask; 239 saved_gfp_mask = 0; 240 } 241 } 242 243 void pm_restrict_gfp_mask(void) 244 { 245 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 246 WARN_ON(saved_gfp_mask); 247 saved_gfp_mask = gfp_allowed_mask; 248 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 249 } 250 251 bool pm_suspended_storage(void) 252 { 253 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 254 return false; 255 return true; 256 } 257 #endif /* CONFIG_PM_SLEEP */ 258 259 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 260 unsigned int pageblock_order __read_mostly; 261 #endif 262 263 static void __free_pages_ok(struct page *page, unsigned int order, 264 fpi_t fpi_flags); 265 266 /* 267 * results with 256, 32 in the lowmem_reserve sysctl: 268 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 269 * 1G machine -> (16M dma, 784M normal, 224M high) 270 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 271 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 272 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 273 * 274 * TBD: should special case ZONE_DMA32 machines here - in those we normally 275 * don't need any ZONE_NORMAL reservation 276 */ 277 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 278 #ifdef CONFIG_ZONE_DMA 279 [ZONE_DMA] = 256, 280 #endif 281 #ifdef CONFIG_ZONE_DMA32 282 [ZONE_DMA32] = 256, 283 #endif 284 [ZONE_NORMAL] = 32, 285 #ifdef CONFIG_HIGHMEM 286 [ZONE_HIGHMEM] = 0, 287 #endif 288 [ZONE_MOVABLE] = 0, 289 }; 290 291 static char * const zone_names[MAX_NR_ZONES] = { 292 #ifdef CONFIG_ZONE_DMA 293 "DMA", 294 #endif 295 #ifdef CONFIG_ZONE_DMA32 296 "DMA32", 297 #endif 298 "Normal", 299 #ifdef CONFIG_HIGHMEM 300 "HighMem", 301 #endif 302 "Movable", 303 #ifdef CONFIG_ZONE_DEVICE 304 "Device", 305 #endif 306 }; 307 308 const char * const migratetype_names[MIGRATE_TYPES] = { 309 "Unmovable", 310 "Movable", 311 "Reclaimable", 312 "HighAtomic", 313 #ifdef CONFIG_CMA 314 "CMA", 315 #endif 316 #ifdef CONFIG_MEMORY_ISOLATION 317 "Isolate", 318 #endif 319 }; 320 321 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 322 [NULL_COMPOUND_DTOR] = NULL, 323 [COMPOUND_PAGE_DTOR] = free_compound_page, 324 #ifdef CONFIG_HUGETLB_PAGE 325 [HUGETLB_PAGE_DTOR] = free_huge_page, 326 #endif 327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 328 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 329 #endif 330 }; 331 332 int min_free_kbytes = 1024; 333 int user_min_free_kbytes = -1; 334 #ifdef CONFIG_DISCONTIGMEM 335 /* 336 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 337 * are not on separate NUMA nodes. Functionally this works but with 338 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 339 * quite small. By default, do not boost watermarks on discontigmem as in 340 * many cases very high-order allocations like THP are likely to be 341 * unsupported and the premature reclaim offsets the advantage of long-term 342 * fragmentation avoidance. 343 */ 344 int watermark_boost_factor __read_mostly; 345 #else 346 int watermark_boost_factor __read_mostly = 15000; 347 #endif 348 int watermark_scale_factor = 10; 349 350 static unsigned long nr_kernel_pages __initdata; 351 static unsigned long nr_all_pages __initdata; 352 static unsigned long dma_reserve __initdata; 353 354 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 355 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 356 static unsigned long required_kernelcore __initdata; 357 static unsigned long required_kernelcore_percent __initdata; 358 static unsigned long required_movablecore __initdata; 359 static unsigned long required_movablecore_percent __initdata; 360 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 361 static bool mirrored_kernelcore __meminitdata; 362 363 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 364 int movable_zone; 365 EXPORT_SYMBOL(movable_zone); 366 367 #if MAX_NUMNODES > 1 368 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 369 unsigned int nr_online_nodes __read_mostly = 1; 370 EXPORT_SYMBOL(nr_node_ids); 371 EXPORT_SYMBOL(nr_online_nodes); 372 #endif 373 374 int page_group_by_mobility_disabled __read_mostly; 375 376 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 377 /* 378 * During boot we initialize deferred pages on-demand, as needed, but once 379 * page_alloc_init_late() has finished, the deferred pages are all initialized, 380 * and we can permanently disable that path. 381 */ 382 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 383 384 /* 385 * Calling kasan_free_pages() only after deferred memory initialization 386 * has completed. Poisoning pages during deferred memory init will greatly 387 * lengthen the process and cause problem in large memory systems as the 388 * deferred pages initialization is done with interrupt disabled. 389 * 390 * Assuming that there will be no reference to those newly initialized 391 * pages before they are ever allocated, this should have no effect on 392 * KASAN memory tracking as the poison will be properly inserted at page 393 * allocation time. The only corner case is when pages are allocated by 394 * on-demand allocation and then freed again before the deferred pages 395 * initialization is done, but this is not likely to happen. 396 */ 397 static inline void kasan_free_nondeferred_pages(struct page *page, int order, 398 bool init, fpi_t fpi_flags) 399 { 400 if (static_branch_unlikely(&deferred_pages)) 401 return; 402 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 403 (fpi_flags & FPI_SKIP_KASAN_POISON)) 404 return; 405 kasan_free_pages(page, order, init); 406 } 407 408 /* Returns true if the struct page for the pfn is uninitialised */ 409 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 410 { 411 int nid = early_pfn_to_nid(pfn); 412 413 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 414 return true; 415 416 return false; 417 } 418 419 /* 420 * Returns true when the remaining initialisation should be deferred until 421 * later in the boot cycle when it can be parallelised. 422 */ 423 static bool __meminit 424 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 425 { 426 static unsigned long prev_end_pfn, nr_initialised; 427 428 /* 429 * prev_end_pfn static that contains the end of previous zone 430 * No need to protect because called very early in boot before smp_init. 431 */ 432 if (prev_end_pfn != end_pfn) { 433 prev_end_pfn = end_pfn; 434 nr_initialised = 0; 435 } 436 437 /* Always populate low zones for address-constrained allocations */ 438 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 439 return false; 440 441 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 442 return true; 443 /* 444 * We start only with one section of pages, more pages are added as 445 * needed until the rest of deferred pages are initialized. 446 */ 447 nr_initialised++; 448 if ((nr_initialised > PAGES_PER_SECTION) && 449 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 450 NODE_DATA(nid)->first_deferred_pfn = pfn; 451 return true; 452 } 453 return false; 454 } 455 #else 456 static inline void kasan_free_nondeferred_pages(struct page *page, int order, 457 bool init, fpi_t fpi_flags) 458 { 459 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 460 (fpi_flags & FPI_SKIP_KASAN_POISON)) 461 return; 462 kasan_free_pages(page, order, init); 463 } 464 465 static inline bool early_page_uninitialised(unsigned long pfn) 466 { 467 return false; 468 } 469 470 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 471 { 472 return false; 473 } 474 #endif 475 476 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 477 static inline unsigned long *get_pageblock_bitmap(struct page *page, 478 unsigned long pfn) 479 { 480 #ifdef CONFIG_SPARSEMEM 481 return section_to_usemap(__pfn_to_section(pfn)); 482 #else 483 return page_zone(page)->pageblock_flags; 484 #endif /* CONFIG_SPARSEMEM */ 485 } 486 487 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 488 { 489 #ifdef CONFIG_SPARSEMEM 490 pfn &= (PAGES_PER_SECTION-1); 491 #else 492 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 493 #endif /* CONFIG_SPARSEMEM */ 494 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 495 } 496 497 static __always_inline 498 unsigned long __get_pfnblock_flags_mask(struct page *page, 499 unsigned long pfn, 500 unsigned long mask) 501 { 502 unsigned long *bitmap; 503 unsigned long bitidx, word_bitidx; 504 unsigned long word; 505 506 bitmap = get_pageblock_bitmap(page, pfn); 507 bitidx = pfn_to_bitidx(page, pfn); 508 word_bitidx = bitidx / BITS_PER_LONG; 509 bitidx &= (BITS_PER_LONG-1); 510 511 word = bitmap[word_bitidx]; 512 return (word >> bitidx) & mask; 513 } 514 515 /** 516 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 517 * @page: The page within the block of interest 518 * @pfn: The target page frame number 519 * @mask: mask of bits that the caller is interested in 520 * 521 * Return: pageblock_bits flags 522 */ 523 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 524 unsigned long mask) 525 { 526 return __get_pfnblock_flags_mask(page, pfn, mask); 527 } 528 529 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 530 { 531 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 532 } 533 534 /** 535 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 536 * @page: The page within the block of interest 537 * @flags: The flags to set 538 * @pfn: The target page frame number 539 * @mask: mask of bits that the caller is interested in 540 */ 541 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 542 unsigned long pfn, 543 unsigned long mask) 544 { 545 unsigned long *bitmap; 546 unsigned long bitidx, word_bitidx; 547 unsigned long old_word, word; 548 549 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 550 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 551 552 bitmap = get_pageblock_bitmap(page, pfn); 553 bitidx = pfn_to_bitidx(page, pfn); 554 word_bitidx = bitidx / BITS_PER_LONG; 555 bitidx &= (BITS_PER_LONG-1); 556 557 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 558 559 mask <<= bitidx; 560 flags <<= bitidx; 561 562 word = READ_ONCE(bitmap[word_bitidx]); 563 for (;;) { 564 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 565 if (word == old_word) 566 break; 567 word = old_word; 568 } 569 } 570 571 void set_pageblock_migratetype(struct page *page, int migratetype) 572 { 573 if (unlikely(page_group_by_mobility_disabled && 574 migratetype < MIGRATE_PCPTYPES)) 575 migratetype = MIGRATE_UNMOVABLE; 576 577 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 578 page_to_pfn(page), MIGRATETYPE_MASK); 579 } 580 581 #ifdef CONFIG_DEBUG_VM 582 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 583 { 584 int ret = 0; 585 unsigned seq; 586 unsigned long pfn = page_to_pfn(page); 587 unsigned long sp, start_pfn; 588 589 do { 590 seq = zone_span_seqbegin(zone); 591 start_pfn = zone->zone_start_pfn; 592 sp = zone->spanned_pages; 593 if (!zone_spans_pfn(zone, pfn)) 594 ret = 1; 595 } while (zone_span_seqretry(zone, seq)); 596 597 if (ret) 598 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 599 pfn, zone_to_nid(zone), zone->name, 600 start_pfn, start_pfn + sp); 601 602 return ret; 603 } 604 605 static int page_is_consistent(struct zone *zone, struct page *page) 606 { 607 if (!pfn_valid_within(page_to_pfn(page))) 608 return 0; 609 if (zone != page_zone(page)) 610 return 0; 611 612 return 1; 613 } 614 /* 615 * Temporary debugging check for pages not lying within a given zone. 616 */ 617 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 618 { 619 if (page_outside_zone_boundaries(zone, page)) 620 return 1; 621 if (!page_is_consistent(zone, page)) 622 return 1; 623 624 return 0; 625 } 626 #else 627 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 628 { 629 return 0; 630 } 631 #endif 632 633 static void bad_page(struct page *page, const char *reason) 634 { 635 static unsigned long resume; 636 static unsigned long nr_shown; 637 static unsigned long nr_unshown; 638 639 /* 640 * Allow a burst of 60 reports, then keep quiet for that minute; 641 * or allow a steady drip of one report per second. 642 */ 643 if (nr_shown == 60) { 644 if (time_before(jiffies, resume)) { 645 nr_unshown++; 646 goto out; 647 } 648 if (nr_unshown) { 649 pr_alert( 650 "BUG: Bad page state: %lu messages suppressed\n", 651 nr_unshown); 652 nr_unshown = 0; 653 } 654 nr_shown = 0; 655 } 656 if (nr_shown++ == 0) 657 resume = jiffies + 60 * HZ; 658 659 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 660 current->comm, page_to_pfn(page)); 661 __dump_page(page, reason); 662 dump_page_owner(page); 663 664 print_modules(); 665 dump_stack(); 666 out: 667 /* Leave bad fields for debug, except PageBuddy could make trouble */ 668 page_mapcount_reset(page); /* remove PageBuddy */ 669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 670 } 671 672 /* 673 * Higher-order pages are called "compound pages". They are structured thusly: 674 * 675 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 676 * 677 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 678 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 679 * 680 * The first tail page's ->compound_dtor holds the offset in array of compound 681 * page destructors. See compound_page_dtors. 682 * 683 * The first tail page's ->compound_order holds the order of allocation. 684 * This usage means that zero-order pages may not be compound. 685 */ 686 687 void free_compound_page(struct page *page) 688 { 689 mem_cgroup_uncharge(page); 690 __free_pages_ok(page, compound_order(page), FPI_NONE); 691 } 692 693 void prep_compound_page(struct page *page, unsigned int order) 694 { 695 int i; 696 int nr_pages = 1 << order; 697 698 __SetPageHead(page); 699 for (i = 1; i < nr_pages; i++) { 700 struct page *p = page + i; 701 set_page_count(p, 0); 702 p->mapping = TAIL_MAPPING; 703 set_compound_head(p, page); 704 } 705 706 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 707 set_compound_order(page, order); 708 atomic_set(compound_mapcount_ptr(page), -1); 709 if (hpage_pincount_available(page)) 710 atomic_set(compound_pincount_ptr(page), 0); 711 } 712 713 #ifdef CONFIG_DEBUG_PAGEALLOC 714 unsigned int _debug_guardpage_minorder; 715 716 bool _debug_pagealloc_enabled_early __read_mostly 717 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 718 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 719 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 720 EXPORT_SYMBOL(_debug_pagealloc_enabled); 721 722 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 723 724 static int __init early_debug_pagealloc(char *buf) 725 { 726 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 727 } 728 early_param("debug_pagealloc", early_debug_pagealloc); 729 730 static int __init debug_guardpage_minorder_setup(char *buf) 731 { 732 unsigned long res; 733 734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 735 pr_err("Bad debug_guardpage_minorder value\n"); 736 return 0; 737 } 738 _debug_guardpage_minorder = res; 739 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 740 return 0; 741 } 742 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 743 744 static inline bool set_page_guard(struct zone *zone, struct page *page, 745 unsigned int order, int migratetype) 746 { 747 if (!debug_guardpage_enabled()) 748 return false; 749 750 if (order >= debug_guardpage_minorder()) 751 return false; 752 753 __SetPageGuard(page); 754 INIT_LIST_HEAD(&page->lru); 755 set_page_private(page, order); 756 /* Guard pages are not available for any usage */ 757 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 758 759 return true; 760 } 761 762 static inline void clear_page_guard(struct zone *zone, struct page *page, 763 unsigned int order, int migratetype) 764 { 765 if (!debug_guardpage_enabled()) 766 return; 767 768 __ClearPageGuard(page); 769 770 set_page_private(page, 0); 771 if (!is_migrate_isolate(migratetype)) 772 __mod_zone_freepage_state(zone, (1 << order), migratetype); 773 } 774 #else 775 static inline bool set_page_guard(struct zone *zone, struct page *page, 776 unsigned int order, int migratetype) { return false; } 777 static inline void clear_page_guard(struct zone *zone, struct page *page, 778 unsigned int order, int migratetype) {} 779 #endif 780 781 /* 782 * Enable static keys related to various memory debugging and hardening options. 783 * Some override others, and depend on early params that are evaluated in the 784 * order of appearance. So we need to first gather the full picture of what was 785 * enabled, and then make decisions. 786 */ 787 void init_mem_debugging_and_hardening(void) 788 { 789 bool page_poisoning_requested = false; 790 791 #ifdef CONFIG_PAGE_POISONING 792 /* 793 * Page poisoning is debug page alloc for some arches. If 794 * either of those options are enabled, enable poisoning. 795 */ 796 if (page_poisoning_enabled() || 797 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 798 debug_pagealloc_enabled())) { 799 static_branch_enable(&_page_poisoning_enabled); 800 page_poisoning_requested = true; 801 } 802 #endif 803 804 if (_init_on_alloc_enabled_early) { 805 if (page_poisoning_requested) 806 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 807 "will take precedence over init_on_alloc\n"); 808 else 809 static_branch_enable(&init_on_alloc); 810 } 811 if (_init_on_free_enabled_early) { 812 if (page_poisoning_requested) 813 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 814 "will take precedence over init_on_free\n"); 815 else 816 static_branch_enable(&init_on_free); 817 } 818 819 #ifdef CONFIG_DEBUG_PAGEALLOC 820 if (!debug_pagealloc_enabled()) 821 return; 822 823 static_branch_enable(&_debug_pagealloc_enabled); 824 825 if (!debug_guardpage_minorder()) 826 return; 827 828 static_branch_enable(&_debug_guardpage_enabled); 829 #endif 830 } 831 832 static inline void set_buddy_order(struct page *page, unsigned int order) 833 { 834 set_page_private(page, order); 835 __SetPageBuddy(page); 836 } 837 838 /* 839 * This function checks whether a page is free && is the buddy 840 * we can coalesce a page and its buddy if 841 * (a) the buddy is not in a hole (check before calling!) && 842 * (b) the buddy is in the buddy system && 843 * (c) a page and its buddy have the same order && 844 * (d) a page and its buddy are in the same zone. 845 * 846 * For recording whether a page is in the buddy system, we set PageBuddy. 847 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 848 * 849 * For recording page's order, we use page_private(page). 850 */ 851 static inline bool page_is_buddy(struct page *page, struct page *buddy, 852 unsigned int order) 853 { 854 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 855 return false; 856 857 if (buddy_order(buddy) != order) 858 return false; 859 860 /* 861 * zone check is done late to avoid uselessly calculating 862 * zone/node ids for pages that could never merge. 863 */ 864 if (page_zone_id(page) != page_zone_id(buddy)) 865 return false; 866 867 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 868 869 return true; 870 } 871 872 #ifdef CONFIG_COMPACTION 873 static inline struct capture_control *task_capc(struct zone *zone) 874 { 875 struct capture_control *capc = current->capture_control; 876 877 return unlikely(capc) && 878 !(current->flags & PF_KTHREAD) && 879 !capc->page && 880 capc->cc->zone == zone ? capc : NULL; 881 } 882 883 static inline bool 884 compaction_capture(struct capture_control *capc, struct page *page, 885 int order, int migratetype) 886 { 887 if (!capc || order != capc->cc->order) 888 return false; 889 890 /* Do not accidentally pollute CMA or isolated regions*/ 891 if (is_migrate_cma(migratetype) || 892 is_migrate_isolate(migratetype)) 893 return false; 894 895 /* 896 * Do not let lower order allocations pollute a movable pageblock. 897 * This might let an unmovable request use a reclaimable pageblock 898 * and vice-versa but no more than normal fallback logic which can 899 * have trouble finding a high-order free page. 900 */ 901 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 902 return false; 903 904 capc->page = page; 905 return true; 906 } 907 908 #else 909 static inline struct capture_control *task_capc(struct zone *zone) 910 { 911 return NULL; 912 } 913 914 static inline bool 915 compaction_capture(struct capture_control *capc, struct page *page, 916 int order, int migratetype) 917 { 918 return false; 919 } 920 #endif /* CONFIG_COMPACTION */ 921 922 /* Used for pages not on another list */ 923 static inline void add_to_free_list(struct page *page, struct zone *zone, 924 unsigned int order, int migratetype) 925 { 926 struct free_area *area = &zone->free_area[order]; 927 928 list_add(&page->lru, &area->free_list[migratetype]); 929 area->nr_free++; 930 } 931 932 /* Used for pages not on another list */ 933 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 934 unsigned int order, int migratetype) 935 { 936 struct free_area *area = &zone->free_area[order]; 937 938 list_add_tail(&page->lru, &area->free_list[migratetype]); 939 area->nr_free++; 940 } 941 942 /* 943 * Used for pages which are on another list. Move the pages to the tail 944 * of the list - so the moved pages won't immediately be considered for 945 * allocation again (e.g., optimization for memory onlining). 946 */ 947 static inline void move_to_free_list(struct page *page, struct zone *zone, 948 unsigned int order, int migratetype) 949 { 950 struct free_area *area = &zone->free_area[order]; 951 952 list_move_tail(&page->lru, &area->free_list[migratetype]); 953 } 954 955 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 956 unsigned int order) 957 { 958 /* clear reported state and update reported page count */ 959 if (page_reported(page)) 960 __ClearPageReported(page); 961 962 list_del(&page->lru); 963 __ClearPageBuddy(page); 964 set_page_private(page, 0); 965 zone->free_area[order].nr_free--; 966 } 967 968 /* 969 * If this is not the largest possible page, check if the buddy 970 * of the next-highest order is free. If it is, it's possible 971 * that pages are being freed that will coalesce soon. In case, 972 * that is happening, add the free page to the tail of the list 973 * so it's less likely to be used soon and more likely to be merged 974 * as a higher order page 975 */ 976 static inline bool 977 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 978 struct page *page, unsigned int order) 979 { 980 struct page *higher_page, *higher_buddy; 981 unsigned long combined_pfn; 982 983 if (order >= MAX_ORDER - 2) 984 return false; 985 986 if (!pfn_valid_within(buddy_pfn)) 987 return false; 988 989 combined_pfn = buddy_pfn & pfn; 990 higher_page = page + (combined_pfn - pfn); 991 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 992 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 993 994 return pfn_valid_within(buddy_pfn) && 995 page_is_buddy(higher_page, higher_buddy, order + 1); 996 } 997 998 /* 999 * Freeing function for a buddy system allocator. 1000 * 1001 * The concept of a buddy system is to maintain direct-mapped table 1002 * (containing bit values) for memory blocks of various "orders". 1003 * The bottom level table contains the map for the smallest allocatable 1004 * units of memory (here, pages), and each level above it describes 1005 * pairs of units from the levels below, hence, "buddies". 1006 * At a high level, all that happens here is marking the table entry 1007 * at the bottom level available, and propagating the changes upward 1008 * as necessary, plus some accounting needed to play nicely with other 1009 * parts of the VM system. 1010 * At each level, we keep a list of pages, which are heads of continuous 1011 * free pages of length of (1 << order) and marked with PageBuddy. 1012 * Page's order is recorded in page_private(page) field. 1013 * So when we are allocating or freeing one, we can derive the state of the 1014 * other. That is, if we allocate a small block, and both were 1015 * free, the remainder of the region must be split into blocks. 1016 * If a block is freed, and its buddy is also free, then this 1017 * triggers coalescing into a block of larger size. 1018 * 1019 * -- nyc 1020 */ 1021 1022 static inline void __free_one_page(struct page *page, 1023 unsigned long pfn, 1024 struct zone *zone, unsigned int order, 1025 int migratetype, fpi_t fpi_flags) 1026 { 1027 struct capture_control *capc = task_capc(zone); 1028 unsigned long buddy_pfn; 1029 unsigned long combined_pfn; 1030 unsigned int max_order; 1031 struct page *buddy; 1032 bool to_tail; 1033 1034 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1035 1036 VM_BUG_ON(!zone_is_initialized(zone)); 1037 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1038 1039 VM_BUG_ON(migratetype == -1); 1040 if (likely(!is_migrate_isolate(migratetype))) 1041 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1042 1043 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1044 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1045 1046 continue_merging: 1047 while (order < max_order) { 1048 if (compaction_capture(capc, page, order, migratetype)) { 1049 __mod_zone_freepage_state(zone, -(1 << order), 1050 migratetype); 1051 return; 1052 } 1053 buddy_pfn = __find_buddy_pfn(pfn, order); 1054 buddy = page + (buddy_pfn - pfn); 1055 1056 if (!pfn_valid_within(buddy_pfn)) 1057 goto done_merging; 1058 if (!page_is_buddy(page, buddy, order)) 1059 goto done_merging; 1060 /* 1061 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1062 * merge with it and move up one order. 1063 */ 1064 if (page_is_guard(buddy)) 1065 clear_page_guard(zone, buddy, order, migratetype); 1066 else 1067 del_page_from_free_list(buddy, zone, order); 1068 combined_pfn = buddy_pfn & pfn; 1069 page = page + (combined_pfn - pfn); 1070 pfn = combined_pfn; 1071 order++; 1072 } 1073 if (order < MAX_ORDER - 1) { 1074 /* If we are here, it means order is >= pageblock_order. 1075 * We want to prevent merge between freepages on isolate 1076 * pageblock and normal pageblock. Without this, pageblock 1077 * isolation could cause incorrect freepage or CMA accounting. 1078 * 1079 * We don't want to hit this code for the more frequent 1080 * low-order merging. 1081 */ 1082 if (unlikely(has_isolate_pageblock(zone))) { 1083 int buddy_mt; 1084 1085 buddy_pfn = __find_buddy_pfn(pfn, order); 1086 buddy = page + (buddy_pfn - pfn); 1087 buddy_mt = get_pageblock_migratetype(buddy); 1088 1089 if (migratetype != buddy_mt 1090 && (is_migrate_isolate(migratetype) || 1091 is_migrate_isolate(buddy_mt))) 1092 goto done_merging; 1093 } 1094 max_order = order + 1; 1095 goto continue_merging; 1096 } 1097 1098 done_merging: 1099 set_buddy_order(page, order); 1100 1101 if (fpi_flags & FPI_TO_TAIL) 1102 to_tail = true; 1103 else if (is_shuffle_order(order)) 1104 to_tail = shuffle_pick_tail(); 1105 else 1106 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1107 1108 if (to_tail) 1109 add_to_free_list_tail(page, zone, order, migratetype); 1110 else 1111 add_to_free_list(page, zone, order, migratetype); 1112 1113 /* Notify page reporting subsystem of freed page */ 1114 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1115 page_reporting_notify_free(order); 1116 } 1117 1118 /* 1119 * A bad page could be due to a number of fields. Instead of multiple branches, 1120 * try and check multiple fields with one check. The caller must do a detailed 1121 * check if necessary. 1122 */ 1123 static inline bool page_expected_state(struct page *page, 1124 unsigned long check_flags) 1125 { 1126 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1127 return false; 1128 1129 if (unlikely((unsigned long)page->mapping | 1130 page_ref_count(page) | 1131 #ifdef CONFIG_MEMCG 1132 page->memcg_data | 1133 #endif 1134 (page->flags & check_flags))) 1135 return false; 1136 1137 return true; 1138 } 1139 1140 static const char *page_bad_reason(struct page *page, unsigned long flags) 1141 { 1142 const char *bad_reason = NULL; 1143 1144 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1145 bad_reason = "nonzero mapcount"; 1146 if (unlikely(page->mapping != NULL)) 1147 bad_reason = "non-NULL mapping"; 1148 if (unlikely(page_ref_count(page) != 0)) 1149 bad_reason = "nonzero _refcount"; 1150 if (unlikely(page->flags & flags)) { 1151 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1152 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1153 else 1154 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1155 } 1156 #ifdef CONFIG_MEMCG 1157 if (unlikely(page->memcg_data)) 1158 bad_reason = "page still charged to cgroup"; 1159 #endif 1160 return bad_reason; 1161 } 1162 1163 static void check_free_page_bad(struct page *page) 1164 { 1165 bad_page(page, 1166 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1167 } 1168 1169 static inline int check_free_page(struct page *page) 1170 { 1171 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1172 return 0; 1173 1174 /* Something has gone sideways, find it */ 1175 check_free_page_bad(page); 1176 return 1; 1177 } 1178 1179 static int free_tail_pages_check(struct page *head_page, struct page *page) 1180 { 1181 int ret = 1; 1182 1183 /* 1184 * We rely page->lru.next never has bit 0 set, unless the page 1185 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1186 */ 1187 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1188 1189 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1190 ret = 0; 1191 goto out; 1192 } 1193 switch (page - head_page) { 1194 case 1: 1195 /* the first tail page: ->mapping may be compound_mapcount() */ 1196 if (unlikely(compound_mapcount(page))) { 1197 bad_page(page, "nonzero compound_mapcount"); 1198 goto out; 1199 } 1200 break; 1201 case 2: 1202 /* 1203 * the second tail page: ->mapping is 1204 * deferred_list.next -- ignore value. 1205 */ 1206 break; 1207 default: 1208 if (page->mapping != TAIL_MAPPING) { 1209 bad_page(page, "corrupted mapping in tail page"); 1210 goto out; 1211 } 1212 break; 1213 } 1214 if (unlikely(!PageTail(page))) { 1215 bad_page(page, "PageTail not set"); 1216 goto out; 1217 } 1218 if (unlikely(compound_head(page) != head_page)) { 1219 bad_page(page, "compound_head not consistent"); 1220 goto out; 1221 } 1222 ret = 0; 1223 out: 1224 page->mapping = NULL; 1225 clear_compound_head(page); 1226 return ret; 1227 } 1228 1229 static void kernel_init_free_pages(struct page *page, int numpages) 1230 { 1231 int i; 1232 1233 /* s390's use of memset() could override KASAN redzones. */ 1234 kasan_disable_current(); 1235 for (i = 0; i < numpages; i++) { 1236 u8 tag = page_kasan_tag(page + i); 1237 page_kasan_tag_reset(page + i); 1238 clear_highpage(page + i); 1239 page_kasan_tag_set(page + i, tag); 1240 } 1241 kasan_enable_current(); 1242 } 1243 1244 static __always_inline bool free_pages_prepare(struct page *page, 1245 unsigned int order, bool check_free, fpi_t fpi_flags) 1246 { 1247 int bad = 0; 1248 bool init; 1249 1250 VM_BUG_ON_PAGE(PageTail(page), page); 1251 1252 trace_mm_page_free(page, order); 1253 1254 if (unlikely(PageHWPoison(page)) && !order) { 1255 /* 1256 * Do not let hwpoison pages hit pcplists/buddy 1257 * Untie memcg state and reset page's owner 1258 */ 1259 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1260 __memcg_kmem_uncharge_page(page, order); 1261 reset_page_owner(page, order); 1262 return false; 1263 } 1264 1265 /* 1266 * Check tail pages before head page information is cleared to 1267 * avoid checking PageCompound for order-0 pages. 1268 */ 1269 if (unlikely(order)) { 1270 bool compound = PageCompound(page); 1271 int i; 1272 1273 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1274 1275 if (compound) 1276 ClearPageDoubleMap(page); 1277 for (i = 1; i < (1 << order); i++) { 1278 if (compound) 1279 bad += free_tail_pages_check(page, page + i); 1280 if (unlikely(check_free_page(page + i))) { 1281 bad++; 1282 continue; 1283 } 1284 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1285 } 1286 } 1287 if (PageMappingFlags(page)) 1288 page->mapping = NULL; 1289 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1290 __memcg_kmem_uncharge_page(page, order); 1291 if (check_free) 1292 bad += check_free_page(page); 1293 if (bad) 1294 return false; 1295 1296 page_cpupid_reset_last(page); 1297 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1298 reset_page_owner(page, order); 1299 1300 if (!PageHighMem(page)) { 1301 debug_check_no_locks_freed(page_address(page), 1302 PAGE_SIZE << order); 1303 debug_check_no_obj_freed(page_address(page), 1304 PAGE_SIZE << order); 1305 } 1306 1307 kernel_poison_pages(page, 1 << order); 1308 1309 /* 1310 * As memory initialization might be integrated into KASAN, 1311 * kasan_free_pages and kernel_init_free_pages must be 1312 * kept together to avoid discrepancies in behavior. 1313 * 1314 * With hardware tag-based KASAN, memory tags must be set before the 1315 * page becomes unavailable via debug_pagealloc or arch_free_page. 1316 */ 1317 init = want_init_on_free(); 1318 if (init && !kasan_has_integrated_init()) 1319 kernel_init_free_pages(page, 1 << order); 1320 kasan_free_nondeferred_pages(page, order, init, fpi_flags); 1321 1322 /* 1323 * arch_free_page() can make the page's contents inaccessible. s390 1324 * does this. So nothing which can access the page's contents should 1325 * happen after this. 1326 */ 1327 arch_free_page(page, order); 1328 1329 debug_pagealloc_unmap_pages(page, 1 << order); 1330 1331 return true; 1332 } 1333 1334 #ifdef CONFIG_DEBUG_VM 1335 /* 1336 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1337 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1338 * moved from pcp lists to free lists. 1339 */ 1340 static bool free_pcp_prepare(struct page *page) 1341 { 1342 return free_pages_prepare(page, 0, true, FPI_NONE); 1343 } 1344 1345 static bool bulkfree_pcp_prepare(struct page *page) 1346 { 1347 if (debug_pagealloc_enabled_static()) 1348 return check_free_page(page); 1349 else 1350 return false; 1351 } 1352 #else 1353 /* 1354 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1355 * moving from pcp lists to free list in order to reduce overhead. With 1356 * debug_pagealloc enabled, they are checked also immediately when being freed 1357 * to the pcp lists. 1358 */ 1359 static bool free_pcp_prepare(struct page *page) 1360 { 1361 if (debug_pagealloc_enabled_static()) 1362 return free_pages_prepare(page, 0, true, FPI_NONE); 1363 else 1364 return free_pages_prepare(page, 0, false, FPI_NONE); 1365 } 1366 1367 static bool bulkfree_pcp_prepare(struct page *page) 1368 { 1369 return check_free_page(page); 1370 } 1371 #endif /* CONFIG_DEBUG_VM */ 1372 1373 static inline void prefetch_buddy(struct page *page) 1374 { 1375 unsigned long pfn = page_to_pfn(page); 1376 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1377 struct page *buddy = page + (buddy_pfn - pfn); 1378 1379 prefetch(buddy); 1380 } 1381 1382 /* 1383 * Frees a number of pages from the PCP lists 1384 * Assumes all pages on list are in same zone, and of same order. 1385 * count is the number of pages to free. 1386 * 1387 * If the zone was previously in an "all pages pinned" state then look to 1388 * see if this freeing clears that state. 1389 * 1390 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1391 * pinned" detection logic. 1392 */ 1393 static void free_pcppages_bulk(struct zone *zone, int count, 1394 struct per_cpu_pages *pcp) 1395 { 1396 int migratetype = 0; 1397 int batch_free = 0; 1398 int prefetch_nr = READ_ONCE(pcp->batch); 1399 bool isolated_pageblocks; 1400 struct page *page, *tmp; 1401 LIST_HEAD(head); 1402 1403 /* 1404 * Ensure proper count is passed which otherwise would stuck in the 1405 * below while (list_empty(list)) loop. 1406 */ 1407 count = min(pcp->count, count); 1408 while (count) { 1409 struct list_head *list; 1410 1411 /* 1412 * Remove pages from lists in a round-robin fashion. A 1413 * batch_free count is maintained that is incremented when an 1414 * empty list is encountered. This is so more pages are freed 1415 * off fuller lists instead of spinning excessively around empty 1416 * lists 1417 */ 1418 do { 1419 batch_free++; 1420 if (++migratetype == MIGRATE_PCPTYPES) 1421 migratetype = 0; 1422 list = &pcp->lists[migratetype]; 1423 } while (list_empty(list)); 1424 1425 /* This is the only non-empty list. Free them all. */ 1426 if (batch_free == MIGRATE_PCPTYPES) 1427 batch_free = count; 1428 1429 do { 1430 page = list_last_entry(list, struct page, lru); 1431 /* must delete to avoid corrupting pcp list */ 1432 list_del(&page->lru); 1433 pcp->count--; 1434 1435 if (bulkfree_pcp_prepare(page)) 1436 continue; 1437 1438 list_add_tail(&page->lru, &head); 1439 1440 /* 1441 * We are going to put the page back to the global 1442 * pool, prefetch its buddy to speed up later access 1443 * under zone->lock. It is believed the overhead of 1444 * an additional test and calculating buddy_pfn here 1445 * can be offset by reduced memory latency later. To 1446 * avoid excessive prefetching due to large count, only 1447 * prefetch buddy for the first pcp->batch nr of pages. 1448 */ 1449 if (prefetch_nr) { 1450 prefetch_buddy(page); 1451 prefetch_nr--; 1452 } 1453 } while (--count && --batch_free && !list_empty(list)); 1454 } 1455 1456 spin_lock(&zone->lock); 1457 isolated_pageblocks = has_isolate_pageblock(zone); 1458 1459 /* 1460 * Use safe version since after __free_one_page(), 1461 * page->lru.next will not point to original list. 1462 */ 1463 list_for_each_entry_safe(page, tmp, &head, lru) { 1464 int mt = get_pcppage_migratetype(page); 1465 /* MIGRATE_ISOLATE page should not go to pcplists */ 1466 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1467 /* Pageblock could have been isolated meanwhile */ 1468 if (unlikely(isolated_pageblocks)) 1469 mt = get_pageblock_migratetype(page); 1470 1471 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1472 trace_mm_page_pcpu_drain(page, 0, mt); 1473 } 1474 spin_unlock(&zone->lock); 1475 } 1476 1477 static void free_one_page(struct zone *zone, 1478 struct page *page, unsigned long pfn, 1479 unsigned int order, 1480 int migratetype, fpi_t fpi_flags) 1481 { 1482 spin_lock(&zone->lock); 1483 if (unlikely(has_isolate_pageblock(zone) || 1484 is_migrate_isolate(migratetype))) { 1485 migratetype = get_pfnblock_migratetype(page, pfn); 1486 } 1487 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1488 spin_unlock(&zone->lock); 1489 } 1490 1491 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1492 unsigned long zone, int nid) 1493 { 1494 mm_zero_struct_page(page); 1495 set_page_links(page, zone, nid, pfn); 1496 init_page_count(page); 1497 page_mapcount_reset(page); 1498 page_cpupid_reset_last(page); 1499 page_kasan_tag_reset(page); 1500 1501 INIT_LIST_HEAD(&page->lru); 1502 #ifdef WANT_PAGE_VIRTUAL 1503 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1504 if (!is_highmem_idx(zone)) 1505 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1506 #endif 1507 } 1508 1509 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1510 static void __meminit init_reserved_page(unsigned long pfn) 1511 { 1512 pg_data_t *pgdat; 1513 int nid, zid; 1514 1515 if (!early_page_uninitialised(pfn)) 1516 return; 1517 1518 nid = early_pfn_to_nid(pfn); 1519 pgdat = NODE_DATA(nid); 1520 1521 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1522 struct zone *zone = &pgdat->node_zones[zid]; 1523 1524 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1525 break; 1526 } 1527 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1528 } 1529 #else 1530 static inline void init_reserved_page(unsigned long pfn) 1531 { 1532 } 1533 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1534 1535 /* 1536 * Initialised pages do not have PageReserved set. This function is 1537 * called for each range allocated by the bootmem allocator and 1538 * marks the pages PageReserved. The remaining valid pages are later 1539 * sent to the buddy page allocator. 1540 */ 1541 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1542 { 1543 unsigned long start_pfn = PFN_DOWN(start); 1544 unsigned long end_pfn = PFN_UP(end); 1545 1546 for (; start_pfn < end_pfn; start_pfn++) { 1547 if (pfn_valid(start_pfn)) { 1548 struct page *page = pfn_to_page(start_pfn); 1549 1550 init_reserved_page(start_pfn); 1551 1552 /* Avoid false-positive PageTail() */ 1553 INIT_LIST_HEAD(&page->lru); 1554 1555 /* 1556 * no need for atomic set_bit because the struct 1557 * page is not visible yet so nobody should 1558 * access it yet. 1559 */ 1560 __SetPageReserved(page); 1561 } 1562 } 1563 } 1564 1565 static void __free_pages_ok(struct page *page, unsigned int order, 1566 fpi_t fpi_flags) 1567 { 1568 unsigned long flags; 1569 int migratetype; 1570 unsigned long pfn = page_to_pfn(page); 1571 1572 if (!free_pages_prepare(page, order, true, fpi_flags)) 1573 return; 1574 1575 migratetype = get_pfnblock_migratetype(page, pfn); 1576 local_irq_save(flags); 1577 __count_vm_events(PGFREE, 1 << order); 1578 free_one_page(page_zone(page), page, pfn, order, migratetype, 1579 fpi_flags); 1580 local_irq_restore(flags); 1581 } 1582 1583 void __free_pages_core(struct page *page, unsigned int order) 1584 { 1585 unsigned int nr_pages = 1 << order; 1586 struct page *p = page; 1587 unsigned int loop; 1588 1589 /* 1590 * When initializing the memmap, __init_single_page() sets the refcount 1591 * of all pages to 1 ("allocated"/"not free"). We have to set the 1592 * refcount of all involved pages to 0. 1593 */ 1594 prefetchw(p); 1595 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1596 prefetchw(p + 1); 1597 __ClearPageReserved(p); 1598 set_page_count(p, 0); 1599 } 1600 __ClearPageReserved(p); 1601 set_page_count(p, 0); 1602 1603 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1604 1605 /* 1606 * Bypass PCP and place fresh pages right to the tail, primarily 1607 * relevant for memory onlining. 1608 */ 1609 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1610 } 1611 1612 #ifdef CONFIG_NEED_MULTIPLE_NODES 1613 1614 /* 1615 * During memory init memblocks map pfns to nids. The search is expensive and 1616 * this caches recent lookups. The implementation of __early_pfn_to_nid 1617 * treats start/end as pfns. 1618 */ 1619 struct mminit_pfnnid_cache { 1620 unsigned long last_start; 1621 unsigned long last_end; 1622 int last_nid; 1623 }; 1624 1625 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1626 1627 /* 1628 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1629 */ 1630 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1631 struct mminit_pfnnid_cache *state) 1632 { 1633 unsigned long start_pfn, end_pfn; 1634 int nid; 1635 1636 if (state->last_start <= pfn && pfn < state->last_end) 1637 return state->last_nid; 1638 1639 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1640 if (nid != NUMA_NO_NODE) { 1641 state->last_start = start_pfn; 1642 state->last_end = end_pfn; 1643 state->last_nid = nid; 1644 } 1645 1646 return nid; 1647 } 1648 1649 int __meminit early_pfn_to_nid(unsigned long pfn) 1650 { 1651 static DEFINE_SPINLOCK(early_pfn_lock); 1652 int nid; 1653 1654 spin_lock(&early_pfn_lock); 1655 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1656 if (nid < 0) 1657 nid = first_online_node; 1658 spin_unlock(&early_pfn_lock); 1659 1660 return nid; 1661 } 1662 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1663 1664 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1665 unsigned int order) 1666 { 1667 if (early_page_uninitialised(pfn)) 1668 return; 1669 __free_pages_core(page, order); 1670 } 1671 1672 /* 1673 * Check that the whole (or subset of) a pageblock given by the interval of 1674 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1675 * with the migration of free compaction scanner. The scanners then need to 1676 * use only pfn_valid_within() check for arches that allow holes within 1677 * pageblocks. 1678 * 1679 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1680 * 1681 * It's possible on some configurations to have a setup like node0 node1 node0 1682 * i.e. it's possible that all pages within a zones range of pages do not 1683 * belong to a single zone. We assume that a border between node0 and node1 1684 * can occur within a single pageblock, but not a node0 node1 node0 1685 * interleaving within a single pageblock. It is therefore sufficient to check 1686 * the first and last page of a pageblock and avoid checking each individual 1687 * page in a pageblock. 1688 */ 1689 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1690 unsigned long end_pfn, struct zone *zone) 1691 { 1692 struct page *start_page; 1693 struct page *end_page; 1694 1695 /* end_pfn is one past the range we are checking */ 1696 end_pfn--; 1697 1698 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1699 return NULL; 1700 1701 start_page = pfn_to_online_page(start_pfn); 1702 if (!start_page) 1703 return NULL; 1704 1705 if (page_zone(start_page) != zone) 1706 return NULL; 1707 1708 end_page = pfn_to_page(end_pfn); 1709 1710 /* This gives a shorter code than deriving page_zone(end_page) */ 1711 if (page_zone_id(start_page) != page_zone_id(end_page)) 1712 return NULL; 1713 1714 return start_page; 1715 } 1716 1717 void set_zone_contiguous(struct zone *zone) 1718 { 1719 unsigned long block_start_pfn = zone->zone_start_pfn; 1720 unsigned long block_end_pfn; 1721 1722 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1723 for (; block_start_pfn < zone_end_pfn(zone); 1724 block_start_pfn = block_end_pfn, 1725 block_end_pfn += pageblock_nr_pages) { 1726 1727 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1728 1729 if (!__pageblock_pfn_to_page(block_start_pfn, 1730 block_end_pfn, zone)) 1731 return; 1732 cond_resched(); 1733 } 1734 1735 /* We confirm that there is no hole */ 1736 zone->contiguous = true; 1737 } 1738 1739 void clear_zone_contiguous(struct zone *zone) 1740 { 1741 zone->contiguous = false; 1742 } 1743 1744 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1745 static void __init deferred_free_range(unsigned long pfn, 1746 unsigned long nr_pages) 1747 { 1748 struct page *page; 1749 unsigned long i; 1750 1751 if (!nr_pages) 1752 return; 1753 1754 page = pfn_to_page(pfn); 1755 1756 /* Free a large naturally-aligned chunk if possible */ 1757 if (nr_pages == pageblock_nr_pages && 1758 (pfn & (pageblock_nr_pages - 1)) == 0) { 1759 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1760 __free_pages_core(page, pageblock_order); 1761 return; 1762 } 1763 1764 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1765 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1766 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1767 __free_pages_core(page, 0); 1768 } 1769 } 1770 1771 /* Completion tracking for deferred_init_memmap() threads */ 1772 static atomic_t pgdat_init_n_undone __initdata; 1773 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1774 1775 static inline void __init pgdat_init_report_one_done(void) 1776 { 1777 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1778 complete(&pgdat_init_all_done_comp); 1779 } 1780 1781 /* 1782 * Returns true if page needs to be initialized or freed to buddy allocator. 1783 * 1784 * First we check if pfn is valid on architectures where it is possible to have 1785 * holes within pageblock_nr_pages. On systems where it is not possible, this 1786 * function is optimized out. 1787 * 1788 * Then, we check if a current large page is valid by only checking the validity 1789 * of the head pfn. 1790 */ 1791 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1792 { 1793 if (!pfn_valid_within(pfn)) 1794 return false; 1795 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1796 return false; 1797 return true; 1798 } 1799 1800 /* 1801 * Free pages to buddy allocator. Try to free aligned pages in 1802 * pageblock_nr_pages sizes. 1803 */ 1804 static void __init deferred_free_pages(unsigned long pfn, 1805 unsigned long end_pfn) 1806 { 1807 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1808 unsigned long nr_free = 0; 1809 1810 for (; pfn < end_pfn; pfn++) { 1811 if (!deferred_pfn_valid(pfn)) { 1812 deferred_free_range(pfn - nr_free, nr_free); 1813 nr_free = 0; 1814 } else if (!(pfn & nr_pgmask)) { 1815 deferred_free_range(pfn - nr_free, nr_free); 1816 nr_free = 1; 1817 } else { 1818 nr_free++; 1819 } 1820 } 1821 /* Free the last block of pages to allocator */ 1822 deferred_free_range(pfn - nr_free, nr_free); 1823 } 1824 1825 /* 1826 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1827 * by performing it only once every pageblock_nr_pages. 1828 * Return number of pages initialized. 1829 */ 1830 static unsigned long __init deferred_init_pages(struct zone *zone, 1831 unsigned long pfn, 1832 unsigned long end_pfn) 1833 { 1834 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1835 int nid = zone_to_nid(zone); 1836 unsigned long nr_pages = 0; 1837 int zid = zone_idx(zone); 1838 struct page *page = NULL; 1839 1840 for (; pfn < end_pfn; pfn++) { 1841 if (!deferred_pfn_valid(pfn)) { 1842 page = NULL; 1843 continue; 1844 } else if (!page || !(pfn & nr_pgmask)) { 1845 page = pfn_to_page(pfn); 1846 } else { 1847 page++; 1848 } 1849 __init_single_page(page, pfn, zid, nid); 1850 nr_pages++; 1851 } 1852 return (nr_pages); 1853 } 1854 1855 /* 1856 * This function is meant to pre-load the iterator for the zone init. 1857 * Specifically it walks through the ranges until we are caught up to the 1858 * first_init_pfn value and exits there. If we never encounter the value we 1859 * return false indicating there are no valid ranges left. 1860 */ 1861 static bool __init 1862 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1863 unsigned long *spfn, unsigned long *epfn, 1864 unsigned long first_init_pfn) 1865 { 1866 u64 j; 1867 1868 /* 1869 * Start out by walking through the ranges in this zone that have 1870 * already been initialized. We don't need to do anything with them 1871 * so we just need to flush them out of the system. 1872 */ 1873 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1874 if (*epfn <= first_init_pfn) 1875 continue; 1876 if (*spfn < first_init_pfn) 1877 *spfn = first_init_pfn; 1878 *i = j; 1879 return true; 1880 } 1881 1882 return false; 1883 } 1884 1885 /* 1886 * Initialize and free pages. We do it in two loops: first we initialize 1887 * struct page, then free to buddy allocator, because while we are 1888 * freeing pages we can access pages that are ahead (computing buddy 1889 * page in __free_one_page()). 1890 * 1891 * In order to try and keep some memory in the cache we have the loop 1892 * broken along max page order boundaries. This way we will not cause 1893 * any issues with the buddy page computation. 1894 */ 1895 static unsigned long __init 1896 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1897 unsigned long *end_pfn) 1898 { 1899 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1900 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1901 unsigned long nr_pages = 0; 1902 u64 j = *i; 1903 1904 /* First we loop through and initialize the page values */ 1905 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1906 unsigned long t; 1907 1908 if (mo_pfn <= *start_pfn) 1909 break; 1910 1911 t = min(mo_pfn, *end_pfn); 1912 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1913 1914 if (mo_pfn < *end_pfn) { 1915 *start_pfn = mo_pfn; 1916 break; 1917 } 1918 } 1919 1920 /* Reset values and now loop through freeing pages as needed */ 1921 swap(j, *i); 1922 1923 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1924 unsigned long t; 1925 1926 if (mo_pfn <= spfn) 1927 break; 1928 1929 t = min(mo_pfn, epfn); 1930 deferred_free_pages(spfn, t); 1931 1932 if (mo_pfn <= epfn) 1933 break; 1934 } 1935 1936 return nr_pages; 1937 } 1938 1939 static void __init 1940 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1941 void *arg) 1942 { 1943 unsigned long spfn, epfn; 1944 struct zone *zone = arg; 1945 u64 i; 1946 1947 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1948 1949 /* 1950 * Initialize and free pages in MAX_ORDER sized increments so that we 1951 * can avoid introducing any issues with the buddy allocator. 1952 */ 1953 while (spfn < end_pfn) { 1954 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1955 cond_resched(); 1956 } 1957 } 1958 1959 /* An arch may override for more concurrency. */ 1960 __weak int __init 1961 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1962 { 1963 return 1; 1964 } 1965 1966 /* Initialise remaining memory on a node */ 1967 static int __init deferred_init_memmap(void *data) 1968 { 1969 pg_data_t *pgdat = data; 1970 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1971 unsigned long spfn = 0, epfn = 0; 1972 unsigned long first_init_pfn, flags; 1973 unsigned long start = jiffies; 1974 struct zone *zone; 1975 int zid, max_threads; 1976 u64 i; 1977 1978 /* Bind memory initialisation thread to a local node if possible */ 1979 if (!cpumask_empty(cpumask)) 1980 set_cpus_allowed_ptr(current, cpumask); 1981 1982 pgdat_resize_lock(pgdat, &flags); 1983 first_init_pfn = pgdat->first_deferred_pfn; 1984 if (first_init_pfn == ULONG_MAX) { 1985 pgdat_resize_unlock(pgdat, &flags); 1986 pgdat_init_report_one_done(); 1987 return 0; 1988 } 1989 1990 /* Sanity check boundaries */ 1991 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1992 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1993 pgdat->first_deferred_pfn = ULONG_MAX; 1994 1995 /* 1996 * Once we unlock here, the zone cannot be grown anymore, thus if an 1997 * interrupt thread must allocate this early in boot, zone must be 1998 * pre-grown prior to start of deferred page initialization. 1999 */ 2000 pgdat_resize_unlock(pgdat, &flags); 2001 2002 /* Only the highest zone is deferred so find it */ 2003 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2004 zone = pgdat->node_zones + zid; 2005 if (first_init_pfn < zone_end_pfn(zone)) 2006 break; 2007 } 2008 2009 /* If the zone is empty somebody else may have cleared out the zone */ 2010 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2011 first_init_pfn)) 2012 goto zone_empty; 2013 2014 max_threads = deferred_page_init_max_threads(cpumask); 2015 2016 while (spfn < epfn) { 2017 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2018 struct padata_mt_job job = { 2019 .thread_fn = deferred_init_memmap_chunk, 2020 .fn_arg = zone, 2021 .start = spfn, 2022 .size = epfn_align - spfn, 2023 .align = PAGES_PER_SECTION, 2024 .min_chunk = PAGES_PER_SECTION, 2025 .max_threads = max_threads, 2026 }; 2027 2028 padata_do_multithreaded(&job); 2029 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2030 epfn_align); 2031 } 2032 zone_empty: 2033 /* Sanity check that the next zone really is unpopulated */ 2034 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2035 2036 pr_info("node %d deferred pages initialised in %ums\n", 2037 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2038 2039 pgdat_init_report_one_done(); 2040 return 0; 2041 } 2042 2043 /* 2044 * If this zone has deferred pages, try to grow it by initializing enough 2045 * deferred pages to satisfy the allocation specified by order, rounded up to 2046 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2047 * of SECTION_SIZE bytes by initializing struct pages in increments of 2048 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2049 * 2050 * Return true when zone was grown, otherwise return false. We return true even 2051 * when we grow less than requested, to let the caller decide if there are 2052 * enough pages to satisfy the allocation. 2053 * 2054 * Note: We use noinline because this function is needed only during boot, and 2055 * it is called from a __ref function _deferred_grow_zone. This way we are 2056 * making sure that it is not inlined into permanent text section. 2057 */ 2058 static noinline bool __init 2059 deferred_grow_zone(struct zone *zone, unsigned int order) 2060 { 2061 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2062 pg_data_t *pgdat = zone->zone_pgdat; 2063 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2064 unsigned long spfn, epfn, flags; 2065 unsigned long nr_pages = 0; 2066 u64 i; 2067 2068 /* Only the last zone may have deferred pages */ 2069 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2070 return false; 2071 2072 pgdat_resize_lock(pgdat, &flags); 2073 2074 /* 2075 * If someone grew this zone while we were waiting for spinlock, return 2076 * true, as there might be enough pages already. 2077 */ 2078 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2079 pgdat_resize_unlock(pgdat, &flags); 2080 return true; 2081 } 2082 2083 /* If the zone is empty somebody else may have cleared out the zone */ 2084 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2085 first_deferred_pfn)) { 2086 pgdat->first_deferred_pfn = ULONG_MAX; 2087 pgdat_resize_unlock(pgdat, &flags); 2088 /* Retry only once. */ 2089 return first_deferred_pfn != ULONG_MAX; 2090 } 2091 2092 /* 2093 * Initialize and free pages in MAX_ORDER sized increments so 2094 * that we can avoid introducing any issues with the buddy 2095 * allocator. 2096 */ 2097 while (spfn < epfn) { 2098 /* update our first deferred PFN for this section */ 2099 first_deferred_pfn = spfn; 2100 2101 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2102 touch_nmi_watchdog(); 2103 2104 /* We should only stop along section boundaries */ 2105 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2106 continue; 2107 2108 /* If our quota has been met we can stop here */ 2109 if (nr_pages >= nr_pages_needed) 2110 break; 2111 } 2112 2113 pgdat->first_deferred_pfn = spfn; 2114 pgdat_resize_unlock(pgdat, &flags); 2115 2116 return nr_pages > 0; 2117 } 2118 2119 /* 2120 * deferred_grow_zone() is __init, but it is called from 2121 * get_page_from_freelist() during early boot until deferred_pages permanently 2122 * disables this call. This is why we have refdata wrapper to avoid warning, 2123 * and to ensure that the function body gets unloaded. 2124 */ 2125 static bool __ref 2126 _deferred_grow_zone(struct zone *zone, unsigned int order) 2127 { 2128 return deferred_grow_zone(zone, order); 2129 } 2130 2131 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2132 2133 void __init page_alloc_init_late(void) 2134 { 2135 struct zone *zone; 2136 int nid; 2137 2138 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2139 2140 /* There will be num_node_state(N_MEMORY) threads */ 2141 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2142 for_each_node_state(nid, N_MEMORY) { 2143 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2144 } 2145 2146 /* Block until all are initialised */ 2147 wait_for_completion(&pgdat_init_all_done_comp); 2148 2149 /* 2150 * The number of managed pages has changed due to the initialisation 2151 * so the pcpu batch and high limits needs to be updated or the limits 2152 * will be artificially small. 2153 */ 2154 for_each_populated_zone(zone) 2155 zone_pcp_update(zone); 2156 2157 /* 2158 * We initialized the rest of the deferred pages. Permanently disable 2159 * on-demand struct page initialization. 2160 */ 2161 static_branch_disable(&deferred_pages); 2162 2163 /* Reinit limits that are based on free pages after the kernel is up */ 2164 files_maxfiles_init(); 2165 #endif 2166 2167 buffer_init(); 2168 2169 /* Discard memblock private memory */ 2170 memblock_discard(); 2171 2172 for_each_node_state(nid, N_MEMORY) 2173 shuffle_free_memory(NODE_DATA(nid)); 2174 2175 for_each_populated_zone(zone) 2176 set_zone_contiguous(zone); 2177 } 2178 2179 #ifdef CONFIG_CMA 2180 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2181 void __init init_cma_reserved_pageblock(struct page *page) 2182 { 2183 unsigned i = pageblock_nr_pages; 2184 struct page *p = page; 2185 2186 do { 2187 __ClearPageReserved(p); 2188 set_page_count(p, 0); 2189 } while (++p, --i); 2190 2191 set_pageblock_migratetype(page, MIGRATE_CMA); 2192 2193 if (pageblock_order >= MAX_ORDER) { 2194 i = pageblock_nr_pages; 2195 p = page; 2196 do { 2197 set_page_refcounted(p); 2198 __free_pages(p, MAX_ORDER - 1); 2199 p += MAX_ORDER_NR_PAGES; 2200 } while (i -= MAX_ORDER_NR_PAGES); 2201 } else { 2202 set_page_refcounted(page); 2203 __free_pages(page, pageblock_order); 2204 } 2205 2206 adjust_managed_page_count(page, pageblock_nr_pages); 2207 page_zone(page)->cma_pages += pageblock_nr_pages; 2208 } 2209 #endif 2210 2211 /* 2212 * The order of subdivision here is critical for the IO subsystem. 2213 * Please do not alter this order without good reasons and regression 2214 * testing. Specifically, as large blocks of memory are subdivided, 2215 * the order in which smaller blocks are delivered depends on the order 2216 * they're subdivided in this function. This is the primary factor 2217 * influencing the order in which pages are delivered to the IO 2218 * subsystem according to empirical testing, and this is also justified 2219 * by considering the behavior of a buddy system containing a single 2220 * large block of memory acted on by a series of small allocations. 2221 * This behavior is a critical factor in sglist merging's success. 2222 * 2223 * -- nyc 2224 */ 2225 static inline void expand(struct zone *zone, struct page *page, 2226 int low, int high, int migratetype) 2227 { 2228 unsigned long size = 1 << high; 2229 2230 while (high > low) { 2231 high--; 2232 size >>= 1; 2233 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2234 2235 /* 2236 * Mark as guard pages (or page), that will allow to 2237 * merge back to allocator when buddy will be freed. 2238 * Corresponding page table entries will not be touched, 2239 * pages will stay not present in virtual address space 2240 */ 2241 if (set_page_guard(zone, &page[size], high, migratetype)) 2242 continue; 2243 2244 add_to_free_list(&page[size], zone, high, migratetype); 2245 set_buddy_order(&page[size], high); 2246 } 2247 } 2248 2249 static void check_new_page_bad(struct page *page) 2250 { 2251 if (unlikely(page->flags & __PG_HWPOISON)) { 2252 /* Don't complain about hwpoisoned pages */ 2253 page_mapcount_reset(page); /* remove PageBuddy */ 2254 return; 2255 } 2256 2257 bad_page(page, 2258 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2259 } 2260 2261 /* 2262 * This page is about to be returned from the page allocator 2263 */ 2264 static inline int check_new_page(struct page *page) 2265 { 2266 if (likely(page_expected_state(page, 2267 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2268 return 0; 2269 2270 check_new_page_bad(page); 2271 return 1; 2272 } 2273 2274 #ifdef CONFIG_DEBUG_VM 2275 /* 2276 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2277 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2278 * also checked when pcp lists are refilled from the free lists. 2279 */ 2280 static inline bool check_pcp_refill(struct page *page) 2281 { 2282 if (debug_pagealloc_enabled_static()) 2283 return check_new_page(page); 2284 else 2285 return false; 2286 } 2287 2288 static inline bool check_new_pcp(struct page *page) 2289 { 2290 return check_new_page(page); 2291 } 2292 #else 2293 /* 2294 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2295 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2296 * enabled, they are also checked when being allocated from the pcp lists. 2297 */ 2298 static inline bool check_pcp_refill(struct page *page) 2299 { 2300 return check_new_page(page); 2301 } 2302 static inline bool check_new_pcp(struct page *page) 2303 { 2304 if (debug_pagealloc_enabled_static()) 2305 return check_new_page(page); 2306 else 2307 return false; 2308 } 2309 #endif /* CONFIG_DEBUG_VM */ 2310 2311 static bool check_new_pages(struct page *page, unsigned int order) 2312 { 2313 int i; 2314 for (i = 0; i < (1 << order); i++) { 2315 struct page *p = page + i; 2316 2317 if (unlikely(check_new_page(p))) 2318 return true; 2319 } 2320 2321 return false; 2322 } 2323 2324 inline void post_alloc_hook(struct page *page, unsigned int order, 2325 gfp_t gfp_flags) 2326 { 2327 bool init; 2328 2329 set_page_private(page, 0); 2330 set_page_refcounted(page); 2331 2332 arch_alloc_page(page, order); 2333 debug_pagealloc_map_pages(page, 1 << order); 2334 2335 /* 2336 * Page unpoisoning must happen before memory initialization. 2337 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2338 * allocations and the page unpoisoning code will complain. 2339 */ 2340 kernel_unpoison_pages(page, 1 << order); 2341 2342 /* 2343 * As memory initialization might be integrated into KASAN, 2344 * kasan_alloc_pages and kernel_init_free_pages must be 2345 * kept together to avoid discrepancies in behavior. 2346 */ 2347 init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2348 kasan_alloc_pages(page, order, init); 2349 if (init && !kasan_has_integrated_init()) 2350 kernel_init_free_pages(page, 1 << order); 2351 2352 set_page_owner(page, order, gfp_flags); 2353 } 2354 2355 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2356 unsigned int alloc_flags) 2357 { 2358 post_alloc_hook(page, order, gfp_flags); 2359 2360 if (order && (gfp_flags & __GFP_COMP)) 2361 prep_compound_page(page, order); 2362 2363 /* 2364 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2365 * allocate the page. The expectation is that the caller is taking 2366 * steps that will free more memory. The caller should avoid the page 2367 * being used for !PFMEMALLOC purposes. 2368 */ 2369 if (alloc_flags & ALLOC_NO_WATERMARKS) 2370 set_page_pfmemalloc(page); 2371 else 2372 clear_page_pfmemalloc(page); 2373 } 2374 2375 /* 2376 * Go through the free lists for the given migratetype and remove 2377 * the smallest available page from the freelists 2378 */ 2379 static __always_inline 2380 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2381 int migratetype) 2382 { 2383 unsigned int current_order; 2384 struct free_area *area; 2385 struct page *page; 2386 2387 /* Find a page of the appropriate size in the preferred list */ 2388 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2389 area = &(zone->free_area[current_order]); 2390 page = get_page_from_free_area(area, migratetype); 2391 if (!page) 2392 continue; 2393 del_page_from_free_list(page, zone, current_order); 2394 expand(zone, page, order, current_order, migratetype); 2395 set_pcppage_migratetype(page, migratetype); 2396 return page; 2397 } 2398 2399 return NULL; 2400 } 2401 2402 2403 /* 2404 * This array describes the order lists are fallen back to when 2405 * the free lists for the desirable migrate type are depleted 2406 */ 2407 static int fallbacks[MIGRATE_TYPES][3] = { 2408 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2409 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2410 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2411 #ifdef CONFIG_CMA 2412 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2413 #endif 2414 #ifdef CONFIG_MEMORY_ISOLATION 2415 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2416 #endif 2417 }; 2418 2419 #ifdef CONFIG_CMA 2420 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2421 unsigned int order) 2422 { 2423 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2424 } 2425 #else 2426 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2427 unsigned int order) { return NULL; } 2428 #endif 2429 2430 /* 2431 * Move the free pages in a range to the freelist tail of the requested type. 2432 * Note that start_page and end_pages are not aligned on a pageblock 2433 * boundary. If alignment is required, use move_freepages_block() 2434 */ 2435 static int move_freepages(struct zone *zone, 2436 unsigned long start_pfn, unsigned long end_pfn, 2437 int migratetype, int *num_movable) 2438 { 2439 struct page *page; 2440 unsigned long pfn; 2441 unsigned int order; 2442 int pages_moved = 0; 2443 2444 for (pfn = start_pfn; pfn <= end_pfn;) { 2445 if (!pfn_valid_within(pfn)) { 2446 pfn++; 2447 continue; 2448 } 2449 2450 page = pfn_to_page(pfn); 2451 if (!PageBuddy(page)) { 2452 /* 2453 * We assume that pages that could be isolated for 2454 * migration are movable. But we don't actually try 2455 * isolating, as that would be expensive. 2456 */ 2457 if (num_movable && 2458 (PageLRU(page) || __PageMovable(page))) 2459 (*num_movable)++; 2460 pfn++; 2461 continue; 2462 } 2463 2464 /* Make sure we are not inadvertently changing nodes */ 2465 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2466 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2467 2468 order = buddy_order(page); 2469 move_to_free_list(page, zone, order, migratetype); 2470 pfn += 1 << order; 2471 pages_moved += 1 << order; 2472 } 2473 2474 return pages_moved; 2475 } 2476 2477 int move_freepages_block(struct zone *zone, struct page *page, 2478 int migratetype, int *num_movable) 2479 { 2480 unsigned long start_pfn, end_pfn, pfn; 2481 2482 if (num_movable) 2483 *num_movable = 0; 2484 2485 pfn = page_to_pfn(page); 2486 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2487 end_pfn = start_pfn + pageblock_nr_pages - 1; 2488 2489 /* Do not cross zone boundaries */ 2490 if (!zone_spans_pfn(zone, start_pfn)) 2491 start_pfn = pfn; 2492 if (!zone_spans_pfn(zone, end_pfn)) 2493 return 0; 2494 2495 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2496 num_movable); 2497 } 2498 2499 static void change_pageblock_range(struct page *pageblock_page, 2500 int start_order, int migratetype) 2501 { 2502 int nr_pageblocks = 1 << (start_order - pageblock_order); 2503 2504 while (nr_pageblocks--) { 2505 set_pageblock_migratetype(pageblock_page, migratetype); 2506 pageblock_page += pageblock_nr_pages; 2507 } 2508 } 2509 2510 /* 2511 * When we are falling back to another migratetype during allocation, try to 2512 * steal extra free pages from the same pageblocks to satisfy further 2513 * allocations, instead of polluting multiple pageblocks. 2514 * 2515 * If we are stealing a relatively large buddy page, it is likely there will 2516 * be more free pages in the pageblock, so try to steal them all. For 2517 * reclaimable and unmovable allocations, we steal regardless of page size, 2518 * as fragmentation caused by those allocations polluting movable pageblocks 2519 * is worse than movable allocations stealing from unmovable and reclaimable 2520 * pageblocks. 2521 */ 2522 static bool can_steal_fallback(unsigned int order, int start_mt) 2523 { 2524 /* 2525 * Leaving this order check is intended, although there is 2526 * relaxed order check in next check. The reason is that 2527 * we can actually steal whole pageblock if this condition met, 2528 * but, below check doesn't guarantee it and that is just heuristic 2529 * so could be changed anytime. 2530 */ 2531 if (order >= pageblock_order) 2532 return true; 2533 2534 if (order >= pageblock_order / 2 || 2535 start_mt == MIGRATE_RECLAIMABLE || 2536 start_mt == MIGRATE_UNMOVABLE || 2537 page_group_by_mobility_disabled) 2538 return true; 2539 2540 return false; 2541 } 2542 2543 static inline bool boost_watermark(struct zone *zone) 2544 { 2545 unsigned long max_boost; 2546 2547 if (!watermark_boost_factor) 2548 return false; 2549 /* 2550 * Don't bother in zones that are unlikely to produce results. 2551 * On small machines, including kdump capture kernels running 2552 * in a small area, boosting the watermark can cause an out of 2553 * memory situation immediately. 2554 */ 2555 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2556 return false; 2557 2558 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2559 watermark_boost_factor, 10000); 2560 2561 /* 2562 * high watermark may be uninitialised if fragmentation occurs 2563 * very early in boot so do not boost. We do not fall 2564 * through and boost by pageblock_nr_pages as failing 2565 * allocations that early means that reclaim is not going 2566 * to help and it may even be impossible to reclaim the 2567 * boosted watermark resulting in a hang. 2568 */ 2569 if (!max_boost) 2570 return false; 2571 2572 max_boost = max(pageblock_nr_pages, max_boost); 2573 2574 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2575 max_boost); 2576 2577 return true; 2578 } 2579 2580 /* 2581 * This function implements actual steal behaviour. If order is large enough, 2582 * we can steal whole pageblock. If not, we first move freepages in this 2583 * pageblock to our migratetype and determine how many already-allocated pages 2584 * are there in the pageblock with a compatible migratetype. If at least half 2585 * of pages are free or compatible, we can change migratetype of the pageblock 2586 * itself, so pages freed in the future will be put on the correct free list. 2587 */ 2588 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2589 unsigned int alloc_flags, int start_type, bool whole_block) 2590 { 2591 unsigned int current_order = buddy_order(page); 2592 int free_pages, movable_pages, alike_pages; 2593 int old_block_type; 2594 2595 old_block_type = get_pageblock_migratetype(page); 2596 2597 /* 2598 * This can happen due to races and we want to prevent broken 2599 * highatomic accounting. 2600 */ 2601 if (is_migrate_highatomic(old_block_type)) 2602 goto single_page; 2603 2604 /* Take ownership for orders >= pageblock_order */ 2605 if (current_order >= pageblock_order) { 2606 change_pageblock_range(page, current_order, start_type); 2607 goto single_page; 2608 } 2609 2610 /* 2611 * Boost watermarks to increase reclaim pressure to reduce the 2612 * likelihood of future fallbacks. Wake kswapd now as the node 2613 * may be balanced overall and kswapd will not wake naturally. 2614 */ 2615 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2616 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2617 2618 /* We are not allowed to try stealing from the whole block */ 2619 if (!whole_block) 2620 goto single_page; 2621 2622 free_pages = move_freepages_block(zone, page, start_type, 2623 &movable_pages); 2624 /* 2625 * Determine how many pages are compatible with our allocation. 2626 * For movable allocation, it's the number of movable pages which 2627 * we just obtained. For other types it's a bit more tricky. 2628 */ 2629 if (start_type == MIGRATE_MOVABLE) { 2630 alike_pages = movable_pages; 2631 } else { 2632 /* 2633 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2634 * to MOVABLE pageblock, consider all non-movable pages as 2635 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2636 * vice versa, be conservative since we can't distinguish the 2637 * exact migratetype of non-movable pages. 2638 */ 2639 if (old_block_type == MIGRATE_MOVABLE) 2640 alike_pages = pageblock_nr_pages 2641 - (free_pages + movable_pages); 2642 else 2643 alike_pages = 0; 2644 } 2645 2646 /* moving whole block can fail due to zone boundary conditions */ 2647 if (!free_pages) 2648 goto single_page; 2649 2650 /* 2651 * If a sufficient number of pages in the block are either free or of 2652 * comparable migratability as our allocation, claim the whole block. 2653 */ 2654 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2655 page_group_by_mobility_disabled) 2656 set_pageblock_migratetype(page, start_type); 2657 2658 return; 2659 2660 single_page: 2661 move_to_free_list(page, zone, current_order, start_type); 2662 } 2663 2664 /* 2665 * Check whether there is a suitable fallback freepage with requested order. 2666 * If only_stealable is true, this function returns fallback_mt only if 2667 * we can steal other freepages all together. This would help to reduce 2668 * fragmentation due to mixed migratetype pages in one pageblock. 2669 */ 2670 int find_suitable_fallback(struct free_area *area, unsigned int order, 2671 int migratetype, bool only_stealable, bool *can_steal) 2672 { 2673 int i; 2674 int fallback_mt; 2675 2676 if (area->nr_free == 0) 2677 return -1; 2678 2679 *can_steal = false; 2680 for (i = 0;; i++) { 2681 fallback_mt = fallbacks[migratetype][i]; 2682 if (fallback_mt == MIGRATE_TYPES) 2683 break; 2684 2685 if (free_area_empty(area, fallback_mt)) 2686 continue; 2687 2688 if (can_steal_fallback(order, migratetype)) 2689 *can_steal = true; 2690 2691 if (!only_stealable) 2692 return fallback_mt; 2693 2694 if (*can_steal) 2695 return fallback_mt; 2696 } 2697 2698 return -1; 2699 } 2700 2701 /* 2702 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2703 * there are no empty page blocks that contain a page with a suitable order 2704 */ 2705 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2706 unsigned int alloc_order) 2707 { 2708 int mt; 2709 unsigned long max_managed, flags; 2710 2711 /* 2712 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2713 * Check is race-prone but harmless. 2714 */ 2715 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2716 if (zone->nr_reserved_highatomic >= max_managed) 2717 return; 2718 2719 spin_lock_irqsave(&zone->lock, flags); 2720 2721 /* Recheck the nr_reserved_highatomic limit under the lock */ 2722 if (zone->nr_reserved_highatomic >= max_managed) 2723 goto out_unlock; 2724 2725 /* Yoink! */ 2726 mt = get_pageblock_migratetype(page); 2727 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2728 && !is_migrate_cma(mt)) { 2729 zone->nr_reserved_highatomic += pageblock_nr_pages; 2730 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2731 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2732 } 2733 2734 out_unlock: 2735 spin_unlock_irqrestore(&zone->lock, flags); 2736 } 2737 2738 /* 2739 * Used when an allocation is about to fail under memory pressure. This 2740 * potentially hurts the reliability of high-order allocations when under 2741 * intense memory pressure but failed atomic allocations should be easier 2742 * to recover from than an OOM. 2743 * 2744 * If @force is true, try to unreserve a pageblock even though highatomic 2745 * pageblock is exhausted. 2746 */ 2747 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2748 bool force) 2749 { 2750 struct zonelist *zonelist = ac->zonelist; 2751 unsigned long flags; 2752 struct zoneref *z; 2753 struct zone *zone; 2754 struct page *page; 2755 int order; 2756 bool ret; 2757 2758 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2759 ac->nodemask) { 2760 /* 2761 * Preserve at least one pageblock unless memory pressure 2762 * is really high. 2763 */ 2764 if (!force && zone->nr_reserved_highatomic <= 2765 pageblock_nr_pages) 2766 continue; 2767 2768 spin_lock_irqsave(&zone->lock, flags); 2769 for (order = 0; order < MAX_ORDER; order++) { 2770 struct free_area *area = &(zone->free_area[order]); 2771 2772 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2773 if (!page) 2774 continue; 2775 2776 /* 2777 * In page freeing path, migratetype change is racy so 2778 * we can counter several free pages in a pageblock 2779 * in this loop although we changed the pageblock type 2780 * from highatomic to ac->migratetype. So we should 2781 * adjust the count once. 2782 */ 2783 if (is_migrate_highatomic_page(page)) { 2784 /* 2785 * It should never happen but changes to 2786 * locking could inadvertently allow a per-cpu 2787 * drain to add pages to MIGRATE_HIGHATOMIC 2788 * while unreserving so be safe and watch for 2789 * underflows. 2790 */ 2791 zone->nr_reserved_highatomic -= min( 2792 pageblock_nr_pages, 2793 zone->nr_reserved_highatomic); 2794 } 2795 2796 /* 2797 * Convert to ac->migratetype and avoid the normal 2798 * pageblock stealing heuristics. Minimally, the caller 2799 * is doing the work and needs the pages. More 2800 * importantly, if the block was always converted to 2801 * MIGRATE_UNMOVABLE or another type then the number 2802 * of pageblocks that cannot be completely freed 2803 * may increase. 2804 */ 2805 set_pageblock_migratetype(page, ac->migratetype); 2806 ret = move_freepages_block(zone, page, ac->migratetype, 2807 NULL); 2808 if (ret) { 2809 spin_unlock_irqrestore(&zone->lock, flags); 2810 return ret; 2811 } 2812 } 2813 spin_unlock_irqrestore(&zone->lock, flags); 2814 } 2815 2816 return false; 2817 } 2818 2819 /* 2820 * Try finding a free buddy page on the fallback list and put it on the free 2821 * list of requested migratetype, possibly along with other pages from the same 2822 * block, depending on fragmentation avoidance heuristics. Returns true if 2823 * fallback was found so that __rmqueue_smallest() can grab it. 2824 * 2825 * The use of signed ints for order and current_order is a deliberate 2826 * deviation from the rest of this file, to make the for loop 2827 * condition simpler. 2828 */ 2829 static __always_inline bool 2830 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2831 unsigned int alloc_flags) 2832 { 2833 struct free_area *area; 2834 int current_order; 2835 int min_order = order; 2836 struct page *page; 2837 int fallback_mt; 2838 bool can_steal; 2839 2840 /* 2841 * Do not steal pages from freelists belonging to other pageblocks 2842 * i.e. orders < pageblock_order. If there are no local zones free, 2843 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2844 */ 2845 if (alloc_flags & ALLOC_NOFRAGMENT) 2846 min_order = pageblock_order; 2847 2848 /* 2849 * Find the largest available free page in the other list. This roughly 2850 * approximates finding the pageblock with the most free pages, which 2851 * would be too costly to do exactly. 2852 */ 2853 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2854 --current_order) { 2855 area = &(zone->free_area[current_order]); 2856 fallback_mt = find_suitable_fallback(area, current_order, 2857 start_migratetype, false, &can_steal); 2858 if (fallback_mt == -1) 2859 continue; 2860 2861 /* 2862 * We cannot steal all free pages from the pageblock and the 2863 * requested migratetype is movable. In that case it's better to 2864 * steal and split the smallest available page instead of the 2865 * largest available page, because even if the next movable 2866 * allocation falls back into a different pageblock than this 2867 * one, it won't cause permanent fragmentation. 2868 */ 2869 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2870 && current_order > order) 2871 goto find_smallest; 2872 2873 goto do_steal; 2874 } 2875 2876 return false; 2877 2878 find_smallest: 2879 for (current_order = order; current_order < MAX_ORDER; 2880 current_order++) { 2881 area = &(zone->free_area[current_order]); 2882 fallback_mt = find_suitable_fallback(area, current_order, 2883 start_migratetype, false, &can_steal); 2884 if (fallback_mt != -1) 2885 break; 2886 } 2887 2888 /* 2889 * This should not happen - we already found a suitable fallback 2890 * when looking for the largest page. 2891 */ 2892 VM_BUG_ON(current_order == MAX_ORDER); 2893 2894 do_steal: 2895 page = get_page_from_free_area(area, fallback_mt); 2896 2897 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2898 can_steal); 2899 2900 trace_mm_page_alloc_extfrag(page, order, current_order, 2901 start_migratetype, fallback_mt); 2902 2903 return true; 2904 2905 } 2906 2907 /* 2908 * Do the hard work of removing an element from the buddy allocator. 2909 * Call me with the zone->lock already held. 2910 */ 2911 static __always_inline struct page * 2912 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2913 unsigned int alloc_flags) 2914 { 2915 struct page *page; 2916 2917 if (IS_ENABLED(CONFIG_CMA)) { 2918 /* 2919 * Balance movable allocations between regular and CMA areas by 2920 * allocating from CMA when over half of the zone's free memory 2921 * is in the CMA area. 2922 */ 2923 if (alloc_flags & ALLOC_CMA && 2924 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2925 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2926 page = __rmqueue_cma_fallback(zone, order); 2927 if (page) 2928 goto out; 2929 } 2930 } 2931 retry: 2932 page = __rmqueue_smallest(zone, order, migratetype); 2933 if (unlikely(!page)) { 2934 if (alloc_flags & ALLOC_CMA) 2935 page = __rmqueue_cma_fallback(zone, order); 2936 2937 if (!page && __rmqueue_fallback(zone, order, migratetype, 2938 alloc_flags)) 2939 goto retry; 2940 } 2941 out: 2942 if (page) 2943 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2944 return page; 2945 } 2946 2947 /* 2948 * Obtain a specified number of elements from the buddy allocator, all under 2949 * a single hold of the lock, for efficiency. Add them to the supplied list. 2950 * Returns the number of new pages which were placed at *list. 2951 */ 2952 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2953 unsigned long count, struct list_head *list, 2954 int migratetype, unsigned int alloc_flags) 2955 { 2956 int i, allocated = 0; 2957 2958 spin_lock(&zone->lock); 2959 for (i = 0; i < count; ++i) { 2960 struct page *page = __rmqueue(zone, order, migratetype, 2961 alloc_flags); 2962 if (unlikely(page == NULL)) 2963 break; 2964 2965 if (unlikely(check_pcp_refill(page))) 2966 continue; 2967 2968 /* 2969 * Split buddy pages returned by expand() are received here in 2970 * physical page order. The page is added to the tail of 2971 * caller's list. From the callers perspective, the linked list 2972 * is ordered by page number under some conditions. This is 2973 * useful for IO devices that can forward direction from the 2974 * head, thus also in the physical page order. This is useful 2975 * for IO devices that can merge IO requests if the physical 2976 * pages are ordered properly. 2977 */ 2978 list_add_tail(&page->lru, list); 2979 allocated++; 2980 if (is_migrate_cma(get_pcppage_migratetype(page))) 2981 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2982 -(1 << order)); 2983 } 2984 2985 /* 2986 * i pages were removed from the buddy list even if some leak due 2987 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2988 * on i. Do not confuse with 'allocated' which is the number of 2989 * pages added to the pcp list. 2990 */ 2991 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2992 spin_unlock(&zone->lock); 2993 return allocated; 2994 } 2995 2996 #ifdef CONFIG_NUMA 2997 /* 2998 * Called from the vmstat counter updater to drain pagesets of this 2999 * currently executing processor on remote nodes after they have 3000 * expired. 3001 * 3002 * Note that this function must be called with the thread pinned to 3003 * a single processor. 3004 */ 3005 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3006 { 3007 unsigned long flags; 3008 int to_drain, batch; 3009 3010 local_irq_save(flags); 3011 batch = READ_ONCE(pcp->batch); 3012 to_drain = min(pcp->count, batch); 3013 if (to_drain > 0) 3014 free_pcppages_bulk(zone, to_drain, pcp); 3015 local_irq_restore(flags); 3016 } 3017 #endif 3018 3019 /* 3020 * Drain pcplists of the indicated processor and zone. 3021 * 3022 * The processor must either be the current processor and the 3023 * thread pinned to the current processor or a processor that 3024 * is not online. 3025 */ 3026 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3027 { 3028 unsigned long flags; 3029 struct per_cpu_pageset *pset; 3030 struct per_cpu_pages *pcp; 3031 3032 local_irq_save(flags); 3033 pset = per_cpu_ptr(zone->pageset, cpu); 3034 3035 pcp = &pset->pcp; 3036 if (pcp->count) 3037 free_pcppages_bulk(zone, pcp->count, pcp); 3038 local_irq_restore(flags); 3039 } 3040 3041 /* 3042 * Drain pcplists of all zones on the indicated processor. 3043 * 3044 * The processor must either be the current processor and the 3045 * thread pinned to the current processor or a processor that 3046 * is not online. 3047 */ 3048 static void drain_pages(unsigned int cpu) 3049 { 3050 struct zone *zone; 3051 3052 for_each_populated_zone(zone) { 3053 drain_pages_zone(cpu, zone); 3054 } 3055 } 3056 3057 /* 3058 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3059 * 3060 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3061 * the single zone's pages. 3062 */ 3063 void drain_local_pages(struct zone *zone) 3064 { 3065 int cpu = smp_processor_id(); 3066 3067 if (zone) 3068 drain_pages_zone(cpu, zone); 3069 else 3070 drain_pages(cpu); 3071 } 3072 3073 static void drain_local_pages_wq(struct work_struct *work) 3074 { 3075 struct pcpu_drain *drain; 3076 3077 drain = container_of(work, struct pcpu_drain, work); 3078 3079 /* 3080 * drain_all_pages doesn't use proper cpu hotplug protection so 3081 * we can race with cpu offline when the WQ can move this from 3082 * a cpu pinned worker to an unbound one. We can operate on a different 3083 * cpu which is alright but we also have to make sure to not move to 3084 * a different one. 3085 */ 3086 preempt_disable(); 3087 drain_local_pages(drain->zone); 3088 preempt_enable(); 3089 } 3090 3091 /* 3092 * The implementation of drain_all_pages(), exposing an extra parameter to 3093 * drain on all cpus. 3094 * 3095 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3096 * not empty. The check for non-emptiness can however race with a free to 3097 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3098 * that need the guarantee that every CPU has drained can disable the 3099 * optimizing racy check. 3100 */ 3101 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3102 { 3103 int cpu; 3104 3105 /* 3106 * Allocate in the BSS so we wont require allocation in 3107 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3108 */ 3109 static cpumask_t cpus_with_pcps; 3110 3111 /* 3112 * Make sure nobody triggers this path before mm_percpu_wq is fully 3113 * initialized. 3114 */ 3115 if (WARN_ON_ONCE(!mm_percpu_wq)) 3116 return; 3117 3118 /* 3119 * Do not drain if one is already in progress unless it's specific to 3120 * a zone. Such callers are primarily CMA and memory hotplug and need 3121 * the drain to be complete when the call returns. 3122 */ 3123 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3124 if (!zone) 3125 return; 3126 mutex_lock(&pcpu_drain_mutex); 3127 } 3128 3129 /* 3130 * We don't care about racing with CPU hotplug event 3131 * as offline notification will cause the notified 3132 * cpu to drain that CPU pcps and on_each_cpu_mask 3133 * disables preemption as part of its processing 3134 */ 3135 for_each_online_cpu(cpu) { 3136 struct per_cpu_pageset *pcp; 3137 struct zone *z; 3138 bool has_pcps = false; 3139 3140 if (force_all_cpus) { 3141 /* 3142 * The pcp.count check is racy, some callers need a 3143 * guarantee that no cpu is missed. 3144 */ 3145 has_pcps = true; 3146 } else if (zone) { 3147 pcp = per_cpu_ptr(zone->pageset, cpu); 3148 if (pcp->pcp.count) 3149 has_pcps = true; 3150 } else { 3151 for_each_populated_zone(z) { 3152 pcp = per_cpu_ptr(z->pageset, cpu); 3153 if (pcp->pcp.count) { 3154 has_pcps = true; 3155 break; 3156 } 3157 } 3158 } 3159 3160 if (has_pcps) 3161 cpumask_set_cpu(cpu, &cpus_with_pcps); 3162 else 3163 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3164 } 3165 3166 for_each_cpu(cpu, &cpus_with_pcps) { 3167 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3168 3169 drain->zone = zone; 3170 INIT_WORK(&drain->work, drain_local_pages_wq); 3171 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3172 } 3173 for_each_cpu(cpu, &cpus_with_pcps) 3174 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3175 3176 mutex_unlock(&pcpu_drain_mutex); 3177 } 3178 3179 /* 3180 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3181 * 3182 * When zone parameter is non-NULL, spill just the single zone's pages. 3183 * 3184 * Note that this can be extremely slow as the draining happens in a workqueue. 3185 */ 3186 void drain_all_pages(struct zone *zone) 3187 { 3188 __drain_all_pages(zone, false); 3189 } 3190 3191 #ifdef CONFIG_HIBERNATION 3192 3193 /* 3194 * Touch the watchdog for every WD_PAGE_COUNT pages. 3195 */ 3196 #define WD_PAGE_COUNT (128*1024) 3197 3198 void mark_free_pages(struct zone *zone) 3199 { 3200 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3201 unsigned long flags; 3202 unsigned int order, t; 3203 struct page *page; 3204 3205 if (zone_is_empty(zone)) 3206 return; 3207 3208 spin_lock_irqsave(&zone->lock, flags); 3209 3210 max_zone_pfn = zone_end_pfn(zone); 3211 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3212 if (pfn_valid(pfn)) { 3213 page = pfn_to_page(pfn); 3214 3215 if (!--page_count) { 3216 touch_nmi_watchdog(); 3217 page_count = WD_PAGE_COUNT; 3218 } 3219 3220 if (page_zone(page) != zone) 3221 continue; 3222 3223 if (!swsusp_page_is_forbidden(page)) 3224 swsusp_unset_page_free(page); 3225 } 3226 3227 for_each_migratetype_order(order, t) { 3228 list_for_each_entry(page, 3229 &zone->free_area[order].free_list[t], lru) { 3230 unsigned long i; 3231 3232 pfn = page_to_pfn(page); 3233 for (i = 0; i < (1UL << order); i++) { 3234 if (!--page_count) { 3235 touch_nmi_watchdog(); 3236 page_count = WD_PAGE_COUNT; 3237 } 3238 swsusp_set_page_free(pfn_to_page(pfn + i)); 3239 } 3240 } 3241 } 3242 spin_unlock_irqrestore(&zone->lock, flags); 3243 } 3244 #endif /* CONFIG_PM */ 3245 3246 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3247 { 3248 int migratetype; 3249 3250 if (!free_pcp_prepare(page)) 3251 return false; 3252 3253 migratetype = get_pfnblock_migratetype(page, pfn); 3254 set_pcppage_migratetype(page, migratetype); 3255 return true; 3256 } 3257 3258 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3259 { 3260 struct zone *zone = page_zone(page); 3261 struct per_cpu_pages *pcp; 3262 int migratetype; 3263 3264 migratetype = get_pcppage_migratetype(page); 3265 __count_vm_event(PGFREE); 3266 3267 /* 3268 * We only track unmovable, reclaimable and movable on pcp lists. 3269 * Free ISOLATE pages back to the allocator because they are being 3270 * offlined but treat HIGHATOMIC as movable pages so we can get those 3271 * areas back if necessary. Otherwise, we may have to free 3272 * excessively into the page allocator 3273 */ 3274 if (migratetype >= MIGRATE_PCPTYPES) { 3275 if (unlikely(is_migrate_isolate(migratetype))) { 3276 free_one_page(zone, page, pfn, 0, migratetype, 3277 FPI_NONE); 3278 return; 3279 } 3280 migratetype = MIGRATE_MOVABLE; 3281 } 3282 3283 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3284 list_add(&page->lru, &pcp->lists[migratetype]); 3285 pcp->count++; 3286 if (pcp->count >= READ_ONCE(pcp->high)) 3287 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp); 3288 } 3289 3290 /* 3291 * Free a 0-order page 3292 */ 3293 void free_unref_page(struct page *page) 3294 { 3295 unsigned long flags; 3296 unsigned long pfn = page_to_pfn(page); 3297 3298 if (!free_unref_page_prepare(page, pfn)) 3299 return; 3300 3301 local_irq_save(flags); 3302 free_unref_page_commit(page, pfn); 3303 local_irq_restore(flags); 3304 } 3305 3306 /* 3307 * Free a list of 0-order pages 3308 */ 3309 void free_unref_page_list(struct list_head *list) 3310 { 3311 struct page *page, *next; 3312 unsigned long flags, pfn; 3313 int batch_count = 0; 3314 3315 /* Prepare pages for freeing */ 3316 list_for_each_entry_safe(page, next, list, lru) { 3317 pfn = page_to_pfn(page); 3318 if (!free_unref_page_prepare(page, pfn)) 3319 list_del(&page->lru); 3320 set_page_private(page, pfn); 3321 } 3322 3323 local_irq_save(flags); 3324 list_for_each_entry_safe(page, next, list, lru) { 3325 unsigned long pfn = page_private(page); 3326 3327 set_page_private(page, 0); 3328 trace_mm_page_free_batched(page); 3329 free_unref_page_commit(page, pfn); 3330 3331 /* 3332 * Guard against excessive IRQ disabled times when we get 3333 * a large list of pages to free. 3334 */ 3335 if (++batch_count == SWAP_CLUSTER_MAX) { 3336 local_irq_restore(flags); 3337 batch_count = 0; 3338 local_irq_save(flags); 3339 } 3340 } 3341 local_irq_restore(flags); 3342 } 3343 3344 /* 3345 * split_page takes a non-compound higher-order page, and splits it into 3346 * n (1<<order) sub-pages: page[0..n] 3347 * Each sub-page must be freed individually. 3348 * 3349 * Note: this is probably too low level an operation for use in drivers. 3350 * Please consult with lkml before using this in your driver. 3351 */ 3352 void split_page(struct page *page, unsigned int order) 3353 { 3354 int i; 3355 3356 VM_BUG_ON_PAGE(PageCompound(page), page); 3357 VM_BUG_ON_PAGE(!page_count(page), page); 3358 3359 for (i = 1; i < (1 << order); i++) 3360 set_page_refcounted(page + i); 3361 split_page_owner(page, 1 << order); 3362 split_page_memcg(page, 1 << order); 3363 } 3364 EXPORT_SYMBOL_GPL(split_page); 3365 3366 int __isolate_free_page(struct page *page, unsigned int order) 3367 { 3368 unsigned long watermark; 3369 struct zone *zone; 3370 int mt; 3371 3372 BUG_ON(!PageBuddy(page)); 3373 3374 zone = page_zone(page); 3375 mt = get_pageblock_migratetype(page); 3376 3377 if (!is_migrate_isolate(mt)) { 3378 /* 3379 * Obey watermarks as if the page was being allocated. We can 3380 * emulate a high-order watermark check with a raised order-0 3381 * watermark, because we already know our high-order page 3382 * exists. 3383 */ 3384 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3385 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3386 return 0; 3387 3388 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3389 } 3390 3391 /* Remove page from free list */ 3392 3393 del_page_from_free_list(page, zone, order); 3394 3395 /* 3396 * Set the pageblock if the isolated page is at least half of a 3397 * pageblock 3398 */ 3399 if (order >= pageblock_order - 1) { 3400 struct page *endpage = page + (1 << order) - 1; 3401 for (; page < endpage; page += pageblock_nr_pages) { 3402 int mt = get_pageblock_migratetype(page); 3403 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3404 && !is_migrate_highatomic(mt)) 3405 set_pageblock_migratetype(page, 3406 MIGRATE_MOVABLE); 3407 } 3408 } 3409 3410 3411 return 1UL << order; 3412 } 3413 3414 /** 3415 * __putback_isolated_page - Return a now-isolated page back where we got it 3416 * @page: Page that was isolated 3417 * @order: Order of the isolated page 3418 * @mt: The page's pageblock's migratetype 3419 * 3420 * This function is meant to return a page pulled from the free lists via 3421 * __isolate_free_page back to the free lists they were pulled from. 3422 */ 3423 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3424 { 3425 struct zone *zone = page_zone(page); 3426 3427 /* zone lock should be held when this function is called */ 3428 lockdep_assert_held(&zone->lock); 3429 3430 /* Return isolated page to tail of freelist. */ 3431 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3432 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3433 } 3434 3435 /* 3436 * Update NUMA hit/miss statistics 3437 * 3438 * Must be called with interrupts disabled. 3439 */ 3440 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3441 { 3442 #ifdef CONFIG_NUMA 3443 enum numa_stat_item local_stat = NUMA_LOCAL; 3444 3445 /* skip numa counters update if numa stats is disabled */ 3446 if (!static_branch_likely(&vm_numa_stat_key)) 3447 return; 3448 3449 if (zone_to_nid(z) != numa_node_id()) 3450 local_stat = NUMA_OTHER; 3451 3452 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3453 __inc_numa_state(z, NUMA_HIT); 3454 else { 3455 __inc_numa_state(z, NUMA_MISS); 3456 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3457 } 3458 __inc_numa_state(z, local_stat); 3459 #endif 3460 } 3461 3462 /* Remove page from the per-cpu list, caller must protect the list */ 3463 static inline 3464 struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3465 unsigned int alloc_flags, 3466 struct per_cpu_pages *pcp, 3467 struct list_head *list) 3468 { 3469 struct page *page; 3470 3471 do { 3472 if (list_empty(list)) { 3473 pcp->count += rmqueue_bulk(zone, 0, 3474 READ_ONCE(pcp->batch), list, 3475 migratetype, alloc_flags); 3476 if (unlikely(list_empty(list))) 3477 return NULL; 3478 } 3479 3480 page = list_first_entry(list, struct page, lru); 3481 list_del(&page->lru); 3482 pcp->count--; 3483 } while (check_new_pcp(page)); 3484 3485 return page; 3486 } 3487 3488 /* Lock and remove page from the per-cpu list */ 3489 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3490 struct zone *zone, gfp_t gfp_flags, 3491 int migratetype, unsigned int alloc_flags) 3492 { 3493 struct per_cpu_pages *pcp; 3494 struct list_head *list; 3495 struct page *page; 3496 unsigned long flags; 3497 3498 local_irq_save(flags); 3499 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3500 list = &pcp->lists[migratetype]; 3501 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3502 if (page) { 3503 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3504 zone_statistics(preferred_zone, zone); 3505 } 3506 local_irq_restore(flags); 3507 return page; 3508 } 3509 3510 /* 3511 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3512 */ 3513 static inline 3514 struct page *rmqueue(struct zone *preferred_zone, 3515 struct zone *zone, unsigned int order, 3516 gfp_t gfp_flags, unsigned int alloc_flags, 3517 int migratetype) 3518 { 3519 unsigned long flags; 3520 struct page *page; 3521 3522 if (likely(order == 0)) { 3523 /* 3524 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3525 * we need to skip it when CMA area isn't allowed. 3526 */ 3527 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3528 migratetype != MIGRATE_MOVABLE) { 3529 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3530 migratetype, alloc_flags); 3531 goto out; 3532 } 3533 } 3534 3535 /* 3536 * We most definitely don't want callers attempting to 3537 * allocate greater than order-1 page units with __GFP_NOFAIL. 3538 */ 3539 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3540 spin_lock_irqsave(&zone->lock, flags); 3541 3542 do { 3543 page = NULL; 3544 /* 3545 * order-0 request can reach here when the pcplist is skipped 3546 * due to non-CMA allocation context. HIGHATOMIC area is 3547 * reserved for high-order atomic allocation, so order-0 3548 * request should skip it. 3549 */ 3550 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3551 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3552 if (page) 3553 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3554 } 3555 if (!page) 3556 page = __rmqueue(zone, order, migratetype, alloc_flags); 3557 } while (page && check_new_pages(page, order)); 3558 spin_unlock(&zone->lock); 3559 if (!page) 3560 goto failed; 3561 __mod_zone_freepage_state(zone, -(1 << order), 3562 get_pcppage_migratetype(page)); 3563 3564 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3565 zone_statistics(preferred_zone, zone); 3566 local_irq_restore(flags); 3567 3568 out: 3569 /* Separate test+clear to avoid unnecessary atomics */ 3570 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3571 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3572 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3573 } 3574 3575 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3576 return page; 3577 3578 failed: 3579 local_irq_restore(flags); 3580 return NULL; 3581 } 3582 3583 #ifdef CONFIG_FAIL_PAGE_ALLOC 3584 3585 static struct { 3586 struct fault_attr attr; 3587 3588 bool ignore_gfp_highmem; 3589 bool ignore_gfp_reclaim; 3590 u32 min_order; 3591 } fail_page_alloc = { 3592 .attr = FAULT_ATTR_INITIALIZER, 3593 .ignore_gfp_reclaim = true, 3594 .ignore_gfp_highmem = true, 3595 .min_order = 1, 3596 }; 3597 3598 static int __init setup_fail_page_alloc(char *str) 3599 { 3600 return setup_fault_attr(&fail_page_alloc.attr, str); 3601 } 3602 __setup("fail_page_alloc=", setup_fail_page_alloc); 3603 3604 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3605 { 3606 if (order < fail_page_alloc.min_order) 3607 return false; 3608 if (gfp_mask & __GFP_NOFAIL) 3609 return false; 3610 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3611 return false; 3612 if (fail_page_alloc.ignore_gfp_reclaim && 3613 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3614 return false; 3615 3616 return should_fail(&fail_page_alloc.attr, 1 << order); 3617 } 3618 3619 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3620 3621 static int __init fail_page_alloc_debugfs(void) 3622 { 3623 umode_t mode = S_IFREG | 0600; 3624 struct dentry *dir; 3625 3626 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3627 &fail_page_alloc.attr); 3628 3629 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3630 &fail_page_alloc.ignore_gfp_reclaim); 3631 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3632 &fail_page_alloc.ignore_gfp_highmem); 3633 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3634 3635 return 0; 3636 } 3637 3638 late_initcall(fail_page_alloc_debugfs); 3639 3640 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3641 3642 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3643 3644 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3645 { 3646 return false; 3647 } 3648 3649 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3650 3651 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3652 { 3653 return __should_fail_alloc_page(gfp_mask, order); 3654 } 3655 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3656 3657 static inline long __zone_watermark_unusable_free(struct zone *z, 3658 unsigned int order, unsigned int alloc_flags) 3659 { 3660 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3661 long unusable_free = (1 << order) - 1; 3662 3663 /* 3664 * If the caller does not have rights to ALLOC_HARDER then subtract 3665 * the high-atomic reserves. This will over-estimate the size of the 3666 * atomic reserve but it avoids a search. 3667 */ 3668 if (likely(!alloc_harder)) 3669 unusable_free += z->nr_reserved_highatomic; 3670 3671 #ifdef CONFIG_CMA 3672 /* If allocation can't use CMA areas don't use free CMA pages */ 3673 if (!(alloc_flags & ALLOC_CMA)) 3674 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3675 #endif 3676 3677 return unusable_free; 3678 } 3679 3680 /* 3681 * Return true if free base pages are above 'mark'. For high-order checks it 3682 * will return true of the order-0 watermark is reached and there is at least 3683 * one free page of a suitable size. Checking now avoids taking the zone lock 3684 * to check in the allocation paths if no pages are free. 3685 */ 3686 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3687 int highest_zoneidx, unsigned int alloc_flags, 3688 long free_pages) 3689 { 3690 long min = mark; 3691 int o; 3692 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3693 3694 /* free_pages may go negative - that's OK */ 3695 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3696 3697 if (alloc_flags & ALLOC_HIGH) 3698 min -= min / 2; 3699 3700 if (unlikely(alloc_harder)) { 3701 /* 3702 * OOM victims can try even harder than normal ALLOC_HARDER 3703 * users on the grounds that it's definitely going to be in 3704 * the exit path shortly and free memory. Any allocation it 3705 * makes during the free path will be small and short-lived. 3706 */ 3707 if (alloc_flags & ALLOC_OOM) 3708 min -= min / 2; 3709 else 3710 min -= min / 4; 3711 } 3712 3713 /* 3714 * Check watermarks for an order-0 allocation request. If these 3715 * are not met, then a high-order request also cannot go ahead 3716 * even if a suitable page happened to be free. 3717 */ 3718 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3719 return false; 3720 3721 /* If this is an order-0 request then the watermark is fine */ 3722 if (!order) 3723 return true; 3724 3725 /* For a high-order request, check at least one suitable page is free */ 3726 for (o = order; o < MAX_ORDER; o++) { 3727 struct free_area *area = &z->free_area[o]; 3728 int mt; 3729 3730 if (!area->nr_free) 3731 continue; 3732 3733 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3734 if (!free_area_empty(area, mt)) 3735 return true; 3736 } 3737 3738 #ifdef CONFIG_CMA 3739 if ((alloc_flags & ALLOC_CMA) && 3740 !free_area_empty(area, MIGRATE_CMA)) { 3741 return true; 3742 } 3743 #endif 3744 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3745 return true; 3746 } 3747 return false; 3748 } 3749 3750 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3751 int highest_zoneidx, unsigned int alloc_flags) 3752 { 3753 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3754 zone_page_state(z, NR_FREE_PAGES)); 3755 } 3756 3757 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3758 unsigned long mark, int highest_zoneidx, 3759 unsigned int alloc_flags, gfp_t gfp_mask) 3760 { 3761 long free_pages; 3762 3763 free_pages = zone_page_state(z, NR_FREE_PAGES); 3764 3765 /* 3766 * Fast check for order-0 only. If this fails then the reserves 3767 * need to be calculated. 3768 */ 3769 if (!order) { 3770 long fast_free; 3771 3772 fast_free = free_pages; 3773 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3774 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3775 return true; 3776 } 3777 3778 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3779 free_pages)) 3780 return true; 3781 /* 3782 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3783 * when checking the min watermark. The min watermark is the 3784 * point where boosting is ignored so that kswapd is woken up 3785 * when below the low watermark. 3786 */ 3787 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3788 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3789 mark = z->_watermark[WMARK_MIN]; 3790 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3791 alloc_flags, free_pages); 3792 } 3793 3794 return false; 3795 } 3796 3797 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3798 unsigned long mark, int highest_zoneidx) 3799 { 3800 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3801 3802 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3803 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3804 3805 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3806 free_pages); 3807 } 3808 3809 #ifdef CONFIG_NUMA 3810 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3811 { 3812 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3813 node_reclaim_distance; 3814 } 3815 #else /* CONFIG_NUMA */ 3816 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3817 { 3818 return true; 3819 } 3820 #endif /* CONFIG_NUMA */ 3821 3822 /* 3823 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3824 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3825 * premature use of a lower zone may cause lowmem pressure problems that 3826 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3827 * probably too small. It only makes sense to spread allocations to avoid 3828 * fragmentation between the Normal and DMA32 zones. 3829 */ 3830 static inline unsigned int 3831 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3832 { 3833 unsigned int alloc_flags; 3834 3835 /* 3836 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3837 * to save a branch. 3838 */ 3839 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3840 3841 #ifdef CONFIG_ZONE_DMA32 3842 if (!zone) 3843 return alloc_flags; 3844 3845 if (zone_idx(zone) != ZONE_NORMAL) 3846 return alloc_flags; 3847 3848 /* 3849 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3850 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3851 * on UMA that if Normal is populated then so is DMA32. 3852 */ 3853 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3854 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3855 return alloc_flags; 3856 3857 alloc_flags |= ALLOC_NOFRAGMENT; 3858 #endif /* CONFIG_ZONE_DMA32 */ 3859 return alloc_flags; 3860 } 3861 3862 /* Must be called after current_gfp_context() which can change gfp_mask */ 3863 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3864 unsigned int alloc_flags) 3865 { 3866 #ifdef CONFIG_CMA 3867 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3868 alloc_flags |= ALLOC_CMA; 3869 #endif 3870 return alloc_flags; 3871 } 3872 3873 /* 3874 * get_page_from_freelist goes through the zonelist trying to allocate 3875 * a page. 3876 */ 3877 static struct page * 3878 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3879 const struct alloc_context *ac) 3880 { 3881 struct zoneref *z; 3882 struct zone *zone; 3883 struct pglist_data *last_pgdat_dirty_limit = NULL; 3884 bool no_fallback; 3885 3886 retry: 3887 /* 3888 * Scan zonelist, looking for a zone with enough free. 3889 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3890 */ 3891 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3892 z = ac->preferred_zoneref; 3893 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3894 ac->nodemask) { 3895 struct page *page; 3896 unsigned long mark; 3897 3898 if (cpusets_enabled() && 3899 (alloc_flags & ALLOC_CPUSET) && 3900 !__cpuset_zone_allowed(zone, gfp_mask)) 3901 continue; 3902 /* 3903 * When allocating a page cache page for writing, we 3904 * want to get it from a node that is within its dirty 3905 * limit, such that no single node holds more than its 3906 * proportional share of globally allowed dirty pages. 3907 * The dirty limits take into account the node's 3908 * lowmem reserves and high watermark so that kswapd 3909 * should be able to balance it without having to 3910 * write pages from its LRU list. 3911 * 3912 * XXX: For now, allow allocations to potentially 3913 * exceed the per-node dirty limit in the slowpath 3914 * (spread_dirty_pages unset) before going into reclaim, 3915 * which is important when on a NUMA setup the allowed 3916 * nodes are together not big enough to reach the 3917 * global limit. The proper fix for these situations 3918 * will require awareness of nodes in the 3919 * dirty-throttling and the flusher threads. 3920 */ 3921 if (ac->spread_dirty_pages) { 3922 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3923 continue; 3924 3925 if (!node_dirty_ok(zone->zone_pgdat)) { 3926 last_pgdat_dirty_limit = zone->zone_pgdat; 3927 continue; 3928 } 3929 } 3930 3931 if (no_fallback && nr_online_nodes > 1 && 3932 zone != ac->preferred_zoneref->zone) { 3933 int local_nid; 3934 3935 /* 3936 * If moving to a remote node, retry but allow 3937 * fragmenting fallbacks. Locality is more important 3938 * than fragmentation avoidance. 3939 */ 3940 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3941 if (zone_to_nid(zone) != local_nid) { 3942 alloc_flags &= ~ALLOC_NOFRAGMENT; 3943 goto retry; 3944 } 3945 } 3946 3947 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3948 if (!zone_watermark_fast(zone, order, mark, 3949 ac->highest_zoneidx, alloc_flags, 3950 gfp_mask)) { 3951 int ret; 3952 3953 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3954 /* 3955 * Watermark failed for this zone, but see if we can 3956 * grow this zone if it contains deferred pages. 3957 */ 3958 if (static_branch_unlikely(&deferred_pages)) { 3959 if (_deferred_grow_zone(zone, order)) 3960 goto try_this_zone; 3961 } 3962 #endif 3963 /* Checked here to keep the fast path fast */ 3964 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3965 if (alloc_flags & ALLOC_NO_WATERMARKS) 3966 goto try_this_zone; 3967 3968 if (!node_reclaim_enabled() || 3969 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3970 continue; 3971 3972 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3973 switch (ret) { 3974 case NODE_RECLAIM_NOSCAN: 3975 /* did not scan */ 3976 continue; 3977 case NODE_RECLAIM_FULL: 3978 /* scanned but unreclaimable */ 3979 continue; 3980 default: 3981 /* did we reclaim enough */ 3982 if (zone_watermark_ok(zone, order, mark, 3983 ac->highest_zoneidx, alloc_flags)) 3984 goto try_this_zone; 3985 3986 continue; 3987 } 3988 } 3989 3990 try_this_zone: 3991 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3992 gfp_mask, alloc_flags, ac->migratetype); 3993 if (page) { 3994 prep_new_page(page, order, gfp_mask, alloc_flags); 3995 3996 /* 3997 * If this is a high-order atomic allocation then check 3998 * if the pageblock should be reserved for the future 3999 */ 4000 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4001 reserve_highatomic_pageblock(page, zone, order); 4002 4003 return page; 4004 } else { 4005 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4006 /* Try again if zone has deferred pages */ 4007 if (static_branch_unlikely(&deferred_pages)) { 4008 if (_deferred_grow_zone(zone, order)) 4009 goto try_this_zone; 4010 } 4011 #endif 4012 } 4013 } 4014 4015 /* 4016 * It's possible on a UMA machine to get through all zones that are 4017 * fragmented. If avoiding fragmentation, reset and try again. 4018 */ 4019 if (no_fallback) { 4020 alloc_flags &= ~ALLOC_NOFRAGMENT; 4021 goto retry; 4022 } 4023 4024 return NULL; 4025 } 4026 4027 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4028 { 4029 unsigned int filter = SHOW_MEM_FILTER_NODES; 4030 4031 /* 4032 * This documents exceptions given to allocations in certain 4033 * contexts that are allowed to allocate outside current's set 4034 * of allowed nodes. 4035 */ 4036 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4037 if (tsk_is_oom_victim(current) || 4038 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4039 filter &= ~SHOW_MEM_FILTER_NODES; 4040 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4041 filter &= ~SHOW_MEM_FILTER_NODES; 4042 4043 show_mem(filter, nodemask); 4044 } 4045 4046 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4047 { 4048 struct va_format vaf; 4049 va_list args; 4050 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4051 4052 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4053 return; 4054 4055 va_start(args, fmt); 4056 vaf.fmt = fmt; 4057 vaf.va = &args; 4058 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4059 current->comm, &vaf, gfp_mask, &gfp_mask, 4060 nodemask_pr_args(nodemask)); 4061 va_end(args); 4062 4063 cpuset_print_current_mems_allowed(); 4064 pr_cont("\n"); 4065 dump_stack(); 4066 warn_alloc_show_mem(gfp_mask, nodemask); 4067 } 4068 4069 static inline struct page * 4070 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4071 unsigned int alloc_flags, 4072 const struct alloc_context *ac) 4073 { 4074 struct page *page; 4075 4076 page = get_page_from_freelist(gfp_mask, order, 4077 alloc_flags|ALLOC_CPUSET, ac); 4078 /* 4079 * fallback to ignore cpuset restriction if our nodes 4080 * are depleted 4081 */ 4082 if (!page) 4083 page = get_page_from_freelist(gfp_mask, order, 4084 alloc_flags, ac); 4085 4086 return page; 4087 } 4088 4089 static inline struct page * 4090 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4091 const struct alloc_context *ac, unsigned long *did_some_progress) 4092 { 4093 struct oom_control oc = { 4094 .zonelist = ac->zonelist, 4095 .nodemask = ac->nodemask, 4096 .memcg = NULL, 4097 .gfp_mask = gfp_mask, 4098 .order = order, 4099 }; 4100 struct page *page; 4101 4102 *did_some_progress = 0; 4103 4104 /* 4105 * Acquire the oom lock. If that fails, somebody else is 4106 * making progress for us. 4107 */ 4108 if (!mutex_trylock(&oom_lock)) { 4109 *did_some_progress = 1; 4110 schedule_timeout_uninterruptible(1); 4111 return NULL; 4112 } 4113 4114 /* 4115 * Go through the zonelist yet one more time, keep very high watermark 4116 * here, this is only to catch a parallel oom killing, we must fail if 4117 * we're still under heavy pressure. But make sure that this reclaim 4118 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4119 * allocation which will never fail due to oom_lock already held. 4120 */ 4121 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4122 ~__GFP_DIRECT_RECLAIM, order, 4123 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4124 if (page) 4125 goto out; 4126 4127 /* Coredumps can quickly deplete all memory reserves */ 4128 if (current->flags & PF_DUMPCORE) 4129 goto out; 4130 /* The OOM killer will not help higher order allocs */ 4131 if (order > PAGE_ALLOC_COSTLY_ORDER) 4132 goto out; 4133 /* 4134 * We have already exhausted all our reclaim opportunities without any 4135 * success so it is time to admit defeat. We will skip the OOM killer 4136 * because it is very likely that the caller has a more reasonable 4137 * fallback than shooting a random task. 4138 * 4139 * The OOM killer may not free memory on a specific node. 4140 */ 4141 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4142 goto out; 4143 /* The OOM killer does not needlessly kill tasks for lowmem */ 4144 if (ac->highest_zoneidx < ZONE_NORMAL) 4145 goto out; 4146 if (pm_suspended_storage()) 4147 goto out; 4148 /* 4149 * XXX: GFP_NOFS allocations should rather fail than rely on 4150 * other request to make a forward progress. 4151 * We are in an unfortunate situation where out_of_memory cannot 4152 * do much for this context but let's try it to at least get 4153 * access to memory reserved if the current task is killed (see 4154 * out_of_memory). Once filesystems are ready to handle allocation 4155 * failures more gracefully we should just bail out here. 4156 */ 4157 4158 /* Exhausted what can be done so it's blame time */ 4159 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4160 *did_some_progress = 1; 4161 4162 /* 4163 * Help non-failing allocations by giving them access to memory 4164 * reserves 4165 */ 4166 if (gfp_mask & __GFP_NOFAIL) 4167 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4168 ALLOC_NO_WATERMARKS, ac); 4169 } 4170 out: 4171 mutex_unlock(&oom_lock); 4172 return page; 4173 } 4174 4175 /* 4176 * Maximum number of compaction retries with a progress before OOM 4177 * killer is consider as the only way to move forward. 4178 */ 4179 #define MAX_COMPACT_RETRIES 16 4180 4181 #ifdef CONFIG_COMPACTION 4182 /* Try memory compaction for high-order allocations before reclaim */ 4183 static struct page * 4184 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4185 unsigned int alloc_flags, const struct alloc_context *ac, 4186 enum compact_priority prio, enum compact_result *compact_result) 4187 { 4188 struct page *page = NULL; 4189 unsigned long pflags; 4190 unsigned int noreclaim_flag; 4191 4192 if (!order) 4193 return NULL; 4194 4195 psi_memstall_enter(&pflags); 4196 noreclaim_flag = memalloc_noreclaim_save(); 4197 4198 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4199 prio, &page); 4200 4201 memalloc_noreclaim_restore(noreclaim_flag); 4202 psi_memstall_leave(&pflags); 4203 4204 if (*compact_result == COMPACT_SKIPPED) 4205 return NULL; 4206 /* 4207 * At least in one zone compaction wasn't deferred or skipped, so let's 4208 * count a compaction stall 4209 */ 4210 count_vm_event(COMPACTSTALL); 4211 4212 /* Prep a captured page if available */ 4213 if (page) 4214 prep_new_page(page, order, gfp_mask, alloc_flags); 4215 4216 /* Try get a page from the freelist if available */ 4217 if (!page) 4218 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4219 4220 if (page) { 4221 struct zone *zone = page_zone(page); 4222 4223 zone->compact_blockskip_flush = false; 4224 compaction_defer_reset(zone, order, true); 4225 count_vm_event(COMPACTSUCCESS); 4226 return page; 4227 } 4228 4229 /* 4230 * It's bad if compaction run occurs and fails. The most likely reason 4231 * is that pages exist, but not enough to satisfy watermarks. 4232 */ 4233 count_vm_event(COMPACTFAIL); 4234 4235 cond_resched(); 4236 4237 return NULL; 4238 } 4239 4240 static inline bool 4241 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4242 enum compact_result compact_result, 4243 enum compact_priority *compact_priority, 4244 int *compaction_retries) 4245 { 4246 int max_retries = MAX_COMPACT_RETRIES; 4247 int min_priority; 4248 bool ret = false; 4249 int retries = *compaction_retries; 4250 enum compact_priority priority = *compact_priority; 4251 4252 if (!order) 4253 return false; 4254 4255 if (compaction_made_progress(compact_result)) 4256 (*compaction_retries)++; 4257 4258 /* 4259 * compaction considers all the zone as desperately out of memory 4260 * so it doesn't really make much sense to retry except when the 4261 * failure could be caused by insufficient priority 4262 */ 4263 if (compaction_failed(compact_result)) 4264 goto check_priority; 4265 4266 /* 4267 * compaction was skipped because there are not enough order-0 pages 4268 * to work with, so we retry only if it looks like reclaim can help. 4269 */ 4270 if (compaction_needs_reclaim(compact_result)) { 4271 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4272 goto out; 4273 } 4274 4275 /* 4276 * make sure the compaction wasn't deferred or didn't bail out early 4277 * due to locks contention before we declare that we should give up. 4278 * But the next retry should use a higher priority if allowed, so 4279 * we don't just keep bailing out endlessly. 4280 */ 4281 if (compaction_withdrawn(compact_result)) { 4282 goto check_priority; 4283 } 4284 4285 /* 4286 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4287 * costly ones because they are de facto nofail and invoke OOM 4288 * killer to move on while costly can fail and users are ready 4289 * to cope with that. 1/4 retries is rather arbitrary but we 4290 * would need much more detailed feedback from compaction to 4291 * make a better decision. 4292 */ 4293 if (order > PAGE_ALLOC_COSTLY_ORDER) 4294 max_retries /= 4; 4295 if (*compaction_retries <= max_retries) { 4296 ret = true; 4297 goto out; 4298 } 4299 4300 /* 4301 * Make sure there are attempts at the highest priority if we exhausted 4302 * all retries or failed at the lower priorities. 4303 */ 4304 check_priority: 4305 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4306 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4307 4308 if (*compact_priority > min_priority) { 4309 (*compact_priority)--; 4310 *compaction_retries = 0; 4311 ret = true; 4312 } 4313 out: 4314 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4315 return ret; 4316 } 4317 #else 4318 static inline struct page * 4319 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4320 unsigned int alloc_flags, const struct alloc_context *ac, 4321 enum compact_priority prio, enum compact_result *compact_result) 4322 { 4323 *compact_result = COMPACT_SKIPPED; 4324 return NULL; 4325 } 4326 4327 static inline bool 4328 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4329 enum compact_result compact_result, 4330 enum compact_priority *compact_priority, 4331 int *compaction_retries) 4332 { 4333 struct zone *zone; 4334 struct zoneref *z; 4335 4336 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4337 return false; 4338 4339 /* 4340 * There are setups with compaction disabled which would prefer to loop 4341 * inside the allocator rather than hit the oom killer prematurely. 4342 * Let's give them a good hope and keep retrying while the order-0 4343 * watermarks are OK. 4344 */ 4345 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4346 ac->highest_zoneidx, ac->nodemask) { 4347 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4348 ac->highest_zoneidx, alloc_flags)) 4349 return true; 4350 } 4351 return false; 4352 } 4353 #endif /* CONFIG_COMPACTION */ 4354 4355 #ifdef CONFIG_LOCKDEP 4356 static struct lockdep_map __fs_reclaim_map = 4357 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4358 4359 static bool __need_reclaim(gfp_t gfp_mask) 4360 { 4361 /* no reclaim without waiting on it */ 4362 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4363 return false; 4364 4365 /* this guy won't enter reclaim */ 4366 if (current->flags & PF_MEMALLOC) 4367 return false; 4368 4369 if (gfp_mask & __GFP_NOLOCKDEP) 4370 return false; 4371 4372 return true; 4373 } 4374 4375 void __fs_reclaim_acquire(void) 4376 { 4377 lock_map_acquire(&__fs_reclaim_map); 4378 } 4379 4380 void __fs_reclaim_release(void) 4381 { 4382 lock_map_release(&__fs_reclaim_map); 4383 } 4384 4385 void fs_reclaim_acquire(gfp_t gfp_mask) 4386 { 4387 gfp_mask = current_gfp_context(gfp_mask); 4388 4389 if (__need_reclaim(gfp_mask)) { 4390 if (gfp_mask & __GFP_FS) 4391 __fs_reclaim_acquire(); 4392 4393 #ifdef CONFIG_MMU_NOTIFIER 4394 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4395 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4396 #endif 4397 4398 } 4399 } 4400 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4401 4402 void fs_reclaim_release(gfp_t gfp_mask) 4403 { 4404 gfp_mask = current_gfp_context(gfp_mask); 4405 4406 if (__need_reclaim(gfp_mask)) { 4407 if (gfp_mask & __GFP_FS) 4408 __fs_reclaim_release(); 4409 } 4410 } 4411 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4412 #endif 4413 4414 /* Perform direct synchronous page reclaim */ 4415 static unsigned long 4416 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4417 const struct alloc_context *ac) 4418 { 4419 unsigned int noreclaim_flag; 4420 unsigned long pflags, progress; 4421 4422 cond_resched(); 4423 4424 /* We now go into synchronous reclaim */ 4425 cpuset_memory_pressure_bump(); 4426 psi_memstall_enter(&pflags); 4427 fs_reclaim_acquire(gfp_mask); 4428 noreclaim_flag = memalloc_noreclaim_save(); 4429 4430 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4431 ac->nodemask); 4432 4433 memalloc_noreclaim_restore(noreclaim_flag); 4434 fs_reclaim_release(gfp_mask); 4435 psi_memstall_leave(&pflags); 4436 4437 cond_resched(); 4438 4439 return progress; 4440 } 4441 4442 /* The really slow allocator path where we enter direct reclaim */ 4443 static inline struct page * 4444 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4445 unsigned int alloc_flags, const struct alloc_context *ac, 4446 unsigned long *did_some_progress) 4447 { 4448 struct page *page = NULL; 4449 bool drained = false; 4450 4451 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4452 if (unlikely(!(*did_some_progress))) 4453 return NULL; 4454 4455 retry: 4456 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4457 4458 /* 4459 * If an allocation failed after direct reclaim, it could be because 4460 * pages are pinned on the per-cpu lists or in high alloc reserves. 4461 * Shrink them and try again 4462 */ 4463 if (!page && !drained) { 4464 unreserve_highatomic_pageblock(ac, false); 4465 drain_all_pages(NULL); 4466 drained = true; 4467 goto retry; 4468 } 4469 4470 return page; 4471 } 4472 4473 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4474 const struct alloc_context *ac) 4475 { 4476 struct zoneref *z; 4477 struct zone *zone; 4478 pg_data_t *last_pgdat = NULL; 4479 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4480 4481 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4482 ac->nodemask) { 4483 if (last_pgdat != zone->zone_pgdat) 4484 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4485 last_pgdat = zone->zone_pgdat; 4486 } 4487 } 4488 4489 static inline unsigned int 4490 gfp_to_alloc_flags(gfp_t gfp_mask) 4491 { 4492 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4493 4494 /* 4495 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4496 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4497 * to save two branches. 4498 */ 4499 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4500 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4501 4502 /* 4503 * The caller may dip into page reserves a bit more if the caller 4504 * cannot run direct reclaim, or if the caller has realtime scheduling 4505 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4506 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4507 */ 4508 alloc_flags |= (__force int) 4509 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4510 4511 if (gfp_mask & __GFP_ATOMIC) { 4512 /* 4513 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4514 * if it can't schedule. 4515 */ 4516 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4517 alloc_flags |= ALLOC_HARDER; 4518 /* 4519 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4520 * comment for __cpuset_node_allowed(). 4521 */ 4522 alloc_flags &= ~ALLOC_CPUSET; 4523 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4524 alloc_flags |= ALLOC_HARDER; 4525 4526 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4527 4528 return alloc_flags; 4529 } 4530 4531 static bool oom_reserves_allowed(struct task_struct *tsk) 4532 { 4533 if (!tsk_is_oom_victim(tsk)) 4534 return false; 4535 4536 /* 4537 * !MMU doesn't have oom reaper so give access to memory reserves 4538 * only to the thread with TIF_MEMDIE set 4539 */ 4540 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4541 return false; 4542 4543 return true; 4544 } 4545 4546 /* 4547 * Distinguish requests which really need access to full memory 4548 * reserves from oom victims which can live with a portion of it 4549 */ 4550 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4551 { 4552 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4553 return 0; 4554 if (gfp_mask & __GFP_MEMALLOC) 4555 return ALLOC_NO_WATERMARKS; 4556 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4557 return ALLOC_NO_WATERMARKS; 4558 if (!in_interrupt()) { 4559 if (current->flags & PF_MEMALLOC) 4560 return ALLOC_NO_WATERMARKS; 4561 else if (oom_reserves_allowed(current)) 4562 return ALLOC_OOM; 4563 } 4564 4565 return 0; 4566 } 4567 4568 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4569 { 4570 return !!__gfp_pfmemalloc_flags(gfp_mask); 4571 } 4572 4573 /* 4574 * Checks whether it makes sense to retry the reclaim to make a forward progress 4575 * for the given allocation request. 4576 * 4577 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4578 * without success, or when we couldn't even meet the watermark if we 4579 * reclaimed all remaining pages on the LRU lists. 4580 * 4581 * Returns true if a retry is viable or false to enter the oom path. 4582 */ 4583 static inline bool 4584 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4585 struct alloc_context *ac, int alloc_flags, 4586 bool did_some_progress, int *no_progress_loops) 4587 { 4588 struct zone *zone; 4589 struct zoneref *z; 4590 bool ret = false; 4591 4592 /* 4593 * Costly allocations might have made a progress but this doesn't mean 4594 * their order will become available due to high fragmentation so 4595 * always increment the no progress counter for them 4596 */ 4597 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4598 *no_progress_loops = 0; 4599 else 4600 (*no_progress_loops)++; 4601 4602 /* 4603 * Make sure we converge to OOM if we cannot make any progress 4604 * several times in the row. 4605 */ 4606 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4607 /* Before OOM, exhaust highatomic_reserve */ 4608 return unreserve_highatomic_pageblock(ac, true); 4609 } 4610 4611 /* 4612 * Keep reclaiming pages while there is a chance this will lead 4613 * somewhere. If none of the target zones can satisfy our allocation 4614 * request even if all reclaimable pages are considered then we are 4615 * screwed and have to go OOM. 4616 */ 4617 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4618 ac->highest_zoneidx, ac->nodemask) { 4619 unsigned long available; 4620 unsigned long reclaimable; 4621 unsigned long min_wmark = min_wmark_pages(zone); 4622 bool wmark; 4623 4624 available = reclaimable = zone_reclaimable_pages(zone); 4625 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4626 4627 /* 4628 * Would the allocation succeed if we reclaimed all 4629 * reclaimable pages? 4630 */ 4631 wmark = __zone_watermark_ok(zone, order, min_wmark, 4632 ac->highest_zoneidx, alloc_flags, available); 4633 trace_reclaim_retry_zone(z, order, reclaimable, 4634 available, min_wmark, *no_progress_loops, wmark); 4635 if (wmark) { 4636 /* 4637 * If we didn't make any progress and have a lot of 4638 * dirty + writeback pages then we should wait for 4639 * an IO to complete to slow down the reclaim and 4640 * prevent from pre mature OOM 4641 */ 4642 if (!did_some_progress) { 4643 unsigned long write_pending; 4644 4645 write_pending = zone_page_state_snapshot(zone, 4646 NR_ZONE_WRITE_PENDING); 4647 4648 if (2 * write_pending > reclaimable) { 4649 congestion_wait(BLK_RW_ASYNC, HZ/10); 4650 return true; 4651 } 4652 } 4653 4654 ret = true; 4655 goto out; 4656 } 4657 } 4658 4659 out: 4660 /* 4661 * Memory allocation/reclaim might be called from a WQ context and the 4662 * current implementation of the WQ concurrency control doesn't 4663 * recognize that a particular WQ is congested if the worker thread is 4664 * looping without ever sleeping. Therefore we have to do a short sleep 4665 * here rather than calling cond_resched(). 4666 */ 4667 if (current->flags & PF_WQ_WORKER) 4668 schedule_timeout_uninterruptible(1); 4669 else 4670 cond_resched(); 4671 return ret; 4672 } 4673 4674 static inline bool 4675 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4676 { 4677 /* 4678 * It's possible that cpuset's mems_allowed and the nodemask from 4679 * mempolicy don't intersect. This should be normally dealt with by 4680 * policy_nodemask(), but it's possible to race with cpuset update in 4681 * such a way the check therein was true, and then it became false 4682 * before we got our cpuset_mems_cookie here. 4683 * This assumes that for all allocations, ac->nodemask can come only 4684 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4685 * when it does not intersect with the cpuset restrictions) or the 4686 * caller can deal with a violated nodemask. 4687 */ 4688 if (cpusets_enabled() && ac->nodemask && 4689 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4690 ac->nodemask = NULL; 4691 return true; 4692 } 4693 4694 /* 4695 * When updating a task's mems_allowed or mempolicy nodemask, it is 4696 * possible to race with parallel threads in such a way that our 4697 * allocation can fail while the mask is being updated. If we are about 4698 * to fail, check if the cpuset changed during allocation and if so, 4699 * retry. 4700 */ 4701 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4702 return true; 4703 4704 return false; 4705 } 4706 4707 static inline struct page * 4708 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4709 struct alloc_context *ac) 4710 { 4711 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4712 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4713 struct page *page = NULL; 4714 unsigned int alloc_flags; 4715 unsigned long did_some_progress; 4716 enum compact_priority compact_priority; 4717 enum compact_result compact_result; 4718 int compaction_retries; 4719 int no_progress_loops; 4720 unsigned int cpuset_mems_cookie; 4721 int reserve_flags; 4722 4723 /* 4724 * We also sanity check to catch abuse of atomic reserves being used by 4725 * callers that are not in atomic context. 4726 */ 4727 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4728 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4729 gfp_mask &= ~__GFP_ATOMIC; 4730 4731 retry_cpuset: 4732 compaction_retries = 0; 4733 no_progress_loops = 0; 4734 compact_priority = DEF_COMPACT_PRIORITY; 4735 cpuset_mems_cookie = read_mems_allowed_begin(); 4736 4737 /* 4738 * The fast path uses conservative alloc_flags to succeed only until 4739 * kswapd needs to be woken up, and to avoid the cost of setting up 4740 * alloc_flags precisely. So we do that now. 4741 */ 4742 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4743 4744 /* 4745 * We need to recalculate the starting point for the zonelist iterator 4746 * because we might have used different nodemask in the fast path, or 4747 * there was a cpuset modification and we are retrying - otherwise we 4748 * could end up iterating over non-eligible zones endlessly. 4749 */ 4750 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4751 ac->highest_zoneidx, ac->nodemask); 4752 if (!ac->preferred_zoneref->zone) 4753 goto nopage; 4754 4755 if (alloc_flags & ALLOC_KSWAPD) 4756 wake_all_kswapds(order, gfp_mask, ac); 4757 4758 /* 4759 * The adjusted alloc_flags might result in immediate success, so try 4760 * that first 4761 */ 4762 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4763 if (page) 4764 goto got_pg; 4765 4766 /* 4767 * For costly allocations, try direct compaction first, as it's likely 4768 * that we have enough base pages and don't need to reclaim. For non- 4769 * movable high-order allocations, do that as well, as compaction will 4770 * try prevent permanent fragmentation by migrating from blocks of the 4771 * same migratetype. 4772 * Don't try this for allocations that are allowed to ignore 4773 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4774 */ 4775 if (can_direct_reclaim && 4776 (costly_order || 4777 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4778 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4779 page = __alloc_pages_direct_compact(gfp_mask, order, 4780 alloc_flags, ac, 4781 INIT_COMPACT_PRIORITY, 4782 &compact_result); 4783 if (page) 4784 goto got_pg; 4785 4786 /* 4787 * Checks for costly allocations with __GFP_NORETRY, which 4788 * includes some THP page fault allocations 4789 */ 4790 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4791 /* 4792 * If allocating entire pageblock(s) and compaction 4793 * failed because all zones are below low watermarks 4794 * or is prohibited because it recently failed at this 4795 * order, fail immediately unless the allocator has 4796 * requested compaction and reclaim retry. 4797 * 4798 * Reclaim is 4799 * - potentially very expensive because zones are far 4800 * below their low watermarks or this is part of very 4801 * bursty high order allocations, 4802 * - not guaranteed to help because isolate_freepages() 4803 * may not iterate over freed pages as part of its 4804 * linear scan, and 4805 * - unlikely to make entire pageblocks free on its 4806 * own. 4807 */ 4808 if (compact_result == COMPACT_SKIPPED || 4809 compact_result == COMPACT_DEFERRED) 4810 goto nopage; 4811 4812 /* 4813 * Looks like reclaim/compaction is worth trying, but 4814 * sync compaction could be very expensive, so keep 4815 * using async compaction. 4816 */ 4817 compact_priority = INIT_COMPACT_PRIORITY; 4818 } 4819 } 4820 4821 retry: 4822 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4823 if (alloc_flags & ALLOC_KSWAPD) 4824 wake_all_kswapds(order, gfp_mask, ac); 4825 4826 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4827 if (reserve_flags) 4828 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 4829 4830 /* 4831 * Reset the nodemask and zonelist iterators if memory policies can be 4832 * ignored. These allocations are high priority and system rather than 4833 * user oriented. 4834 */ 4835 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4836 ac->nodemask = NULL; 4837 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4838 ac->highest_zoneidx, ac->nodemask); 4839 } 4840 4841 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4842 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4843 if (page) 4844 goto got_pg; 4845 4846 /* Caller is not willing to reclaim, we can't balance anything */ 4847 if (!can_direct_reclaim) 4848 goto nopage; 4849 4850 /* Avoid recursion of direct reclaim */ 4851 if (current->flags & PF_MEMALLOC) 4852 goto nopage; 4853 4854 /* Try direct reclaim and then allocating */ 4855 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4856 &did_some_progress); 4857 if (page) 4858 goto got_pg; 4859 4860 /* Try direct compaction and then allocating */ 4861 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4862 compact_priority, &compact_result); 4863 if (page) 4864 goto got_pg; 4865 4866 /* Do not loop if specifically requested */ 4867 if (gfp_mask & __GFP_NORETRY) 4868 goto nopage; 4869 4870 /* 4871 * Do not retry costly high order allocations unless they are 4872 * __GFP_RETRY_MAYFAIL 4873 */ 4874 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4875 goto nopage; 4876 4877 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4878 did_some_progress > 0, &no_progress_loops)) 4879 goto retry; 4880 4881 /* 4882 * It doesn't make any sense to retry for the compaction if the order-0 4883 * reclaim is not able to make any progress because the current 4884 * implementation of the compaction depends on the sufficient amount 4885 * of free memory (see __compaction_suitable) 4886 */ 4887 if (did_some_progress > 0 && 4888 should_compact_retry(ac, order, alloc_flags, 4889 compact_result, &compact_priority, 4890 &compaction_retries)) 4891 goto retry; 4892 4893 4894 /* Deal with possible cpuset update races before we start OOM killing */ 4895 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4896 goto retry_cpuset; 4897 4898 /* Reclaim has failed us, start killing things */ 4899 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4900 if (page) 4901 goto got_pg; 4902 4903 /* Avoid allocations with no watermarks from looping endlessly */ 4904 if (tsk_is_oom_victim(current) && 4905 (alloc_flags & ALLOC_OOM || 4906 (gfp_mask & __GFP_NOMEMALLOC))) 4907 goto nopage; 4908 4909 /* Retry as long as the OOM killer is making progress */ 4910 if (did_some_progress) { 4911 no_progress_loops = 0; 4912 goto retry; 4913 } 4914 4915 nopage: 4916 /* Deal with possible cpuset update races before we fail */ 4917 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4918 goto retry_cpuset; 4919 4920 /* 4921 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4922 * we always retry 4923 */ 4924 if (gfp_mask & __GFP_NOFAIL) { 4925 /* 4926 * All existing users of the __GFP_NOFAIL are blockable, so warn 4927 * of any new users that actually require GFP_NOWAIT 4928 */ 4929 if (WARN_ON_ONCE(!can_direct_reclaim)) 4930 goto fail; 4931 4932 /* 4933 * PF_MEMALLOC request from this context is rather bizarre 4934 * because we cannot reclaim anything and only can loop waiting 4935 * for somebody to do a work for us 4936 */ 4937 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4938 4939 /* 4940 * non failing costly orders are a hard requirement which we 4941 * are not prepared for much so let's warn about these users 4942 * so that we can identify them and convert them to something 4943 * else. 4944 */ 4945 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4946 4947 /* 4948 * Help non-failing allocations by giving them access to memory 4949 * reserves but do not use ALLOC_NO_WATERMARKS because this 4950 * could deplete whole memory reserves which would just make 4951 * the situation worse 4952 */ 4953 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4954 if (page) 4955 goto got_pg; 4956 4957 cond_resched(); 4958 goto retry; 4959 } 4960 fail: 4961 warn_alloc(gfp_mask, ac->nodemask, 4962 "page allocation failure: order:%u", order); 4963 got_pg: 4964 return page; 4965 } 4966 4967 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4968 int preferred_nid, nodemask_t *nodemask, 4969 struct alloc_context *ac, gfp_t *alloc_gfp, 4970 unsigned int *alloc_flags) 4971 { 4972 ac->highest_zoneidx = gfp_zone(gfp_mask); 4973 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4974 ac->nodemask = nodemask; 4975 ac->migratetype = gfp_migratetype(gfp_mask); 4976 4977 if (cpusets_enabled()) { 4978 *alloc_gfp |= __GFP_HARDWALL; 4979 /* 4980 * When we are in the interrupt context, it is irrelevant 4981 * to the current task context. It means that any node ok. 4982 */ 4983 if (!in_interrupt() && !ac->nodemask) 4984 ac->nodemask = &cpuset_current_mems_allowed; 4985 else 4986 *alloc_flags |= ALLOC_CPUSET; 4987 } 4988 4989 fs_reclaim_acquire(gfp_mask); 4990 fs_reclaim_release(gfp_mask); 4991 4992 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4993 4994 if (should_fail_alloc_page(gfp_mask, order)) 4995 return false; 4996 4997 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4998 4999 /* Dirty zone balancing only done in the fast path */ 5000 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5001 5002 /* 5003 * The preferred zone is used for statistics but crucially it is 5004 * also used as the starting point for the zonelist iterator. It 5005 * may get reset for allocations that ignore memory policies. 5006 */ 5007 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5008 ac->highest_zoneidx, ac->nodemask); 5009 5010 return true; 5011 } 5012 5013 /* 5014 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5015 * @gfp: GFP flags for the allocation 5016 * @preferred_nid: The preferred NUMA node ID to allocate from 5017 * @nodemask: Set of nodes to allocate from, may be NULL 5018 * @nr_pages: The number of pages desired on the list or array 5019 * @page_list: Optional list to store the allocated pages 5020 * @page_array: Optional array to store the pages 5021 * 5022 * This is a batched version of the page allocator that attempts to 5023 * allocate nr_pages quickly. Pages are added to page_list if page_list 5024 * is not NULL, otherwise it is assumed that the page_array is valid. 5025 * 5026 * For lists, nr_pages is the number of pages that should be allocated. 5027 * 5028 * For arrays, only NULL elements are populated with pages and nr_pages 5029 * is the maximum number of pages that will be stored in the array. 5030 * 5031 * Returns the number of pages on the list or array. 5032 */ 5033 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5034 nodemask_t *nodemask, int nr_pages, 5035 struct list_head *page_list, 5036 struct page **page_array) 5037 { 5038 struct page *page; 5039 unsigned long flags; 5040 struct zone *zone; 5041 struct zoneref *z; 5042 struct per_cpu_pages *pcp; 5043 struct list_head *pcp_list; 5044 struct alloc_context ac; 5045 gfp_t alloc_gfp; 5046 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5047 int nr_populated = 0; 5048 5049 if (unlikely(nr_pages <= 0)) 5050 return 0; 5051 5052 /* 5053 * Skip populated array elements to determine if any pages need 5054 * to be allocated before disabling IRQs. 5055 */ 5056 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5057 nr_populated++; 5058 5059 /* Already populated array? */ 5060 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5061 return 0; 5062 5063 /* Use the single page allocator for one page. */ 5064 if (nr_pages - nr_populated == 1) 5065 goto failed; 5066 5067 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5068 gfp &= gfp_allowed_mask; 5069 alloc_gfp = gfp; 5070 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5071 return 0; 5072 gfp = alloc_gfp; 5073 5074 /* Find an allowed local zone that meets the low watermark. */ 5075 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5076 unsigned long mark; 5077 5078 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5079 !__cpuset_zone_allowed(zone, gfp)) { 5080 continue; 5081 } 5082 5083 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5084 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5085 goto failed; 5086 } 5087 5088 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5089 if (zone_watermark_fast(zone, 0, mark, 5090 zonelist_zone_idx(ac.preferred_zoneref), 5091 alloc_flags, gfp)) { 5092 break; 5093 } 5094 } 5095 5096 /* 5097 * If there are no allowed local zones that meets the watermarks then 5098 * try to allocate a single page and reclaim if necessary. 5099 */ 5100 if (unlikely(!zone)) 5101 goto failed; 5102 5103 /* Attempt the batch allocation */ 5104 local_irq_save(flags); 5105 pcp = &this_cpu_ptr(zone->pageset)->pcp; 5106 pcp_list = &pcp->lists[ac.migratetype]; 5107 5108 while (nr_populated < nr_pages) { 5109 5110 /* Skip existing pages */ 5111 if (page_array && page_array[nr_populated]) { 5112 nr_populated++; 5113 continue; 5114 } 5115 5116 page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags, 5117 pcp, pcp_list); 5118 if (unlikely(!page)) { 5119 /* Try and get at least one page */ 5120 if (!nr_populated) 5121 goto failed_irq; 5122 break; 5123 } 5124 5125 /* 5126 * Ideally this would be batched but the best way to do 5127 * that cheaply is to first convert zone_statistics to 5128 * be inaccurate per-cpu counter like vm_events to avoid 5129 * a RMW cycle then do the accounting with IRQs enabled. 5130 */ 5131 __count_zid_vm_events(PGALLOC, zone_idx(zone), 1); 5132 zone_statistics(ac.preferred_zoneref->zone, zone); 5133 5134 prep_new_page(page, 0, gfp, 0); 5135 if (page_list) 5136 list_add(&page->lru, page_list); 5137 else 5138 page_array[nr_populated] = page; 5139 nr_populated++; 5140 } 5141 5142 local_irq_restore(flags); 5143 5144 return nr_populated; 5145 5146 failed_irq: 5147 local_irq_restore(flags); 5148 5149 failed: 5150 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5151 if (page) { 5152 if (page_list) 5153 list_add(&page->lru, page_list); 5154 else 5155 page_array[nr_populated] = page; 5156 nr_populated++; 5157 } 5158 5159 return nr_populated; 5160 } 5161 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5162 5163 /* 5164 * This is the 'heart' of the zoned buddy allocator. 5165 */ 5166 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5167 nodemask_t *nodemask) 5168 { 5169 struct page *page; 5170 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5171 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5172 struct alloc_context ac = { }; 5173 5174 /* 5175 * There are several places where we assume that the order value is sane 5176 * so bail out early if the request is out of bound. 5177 */ 5178 if (unlikely(order >= MAX_ORDER)) { 5179 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5180 return NULL; 5181 } 5182 5183 gfp &= gfp_allowed_mask; 5184 /* 5185 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5186 * resp. GFP_NOIO which has to be inherited for all allocation requests 5187 * from a particular context which has been marked by 5188 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5189 * movable zones are not used during allocation. 5190 */ 5191 gfp = current_gfp_context(gfp); 5192 alloc_gfp = gfp; 5193 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5194 &alloc_gfp, &alloc_flags)) 5195 return NULL; 5196 5197 /* 5198 * Forbid the first pass from falling back to types that fragment 5199 * memory until all local zones are considered. 5200 */ 5201 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5202 5203 /* First allocation attempt */ 5204 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5205 if (likely(page)) 5206 goto out; 5207 5208 alloc_gfp = gfp; 5209 ac.spread_dirty_pages = false; 5210 5211 /* 5212 * Restore the original nodemask if it was potentially replaced with 5213 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5214 */ 5215 ac.nodemask = nodemask; 5216 5217 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5218 5219 out: 5220 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5221 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5222 __free_pages(page, order); 5223 page = NULL; 5224 } 5225 5226 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5227 5228 return page; 5229 } 5230 EXPORT_SYMBOL(__alloc_pages); 5231 5232 /* 5233 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5234 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5235 * you need to access high mem. 5236 */ 5237 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5238 { 5239 struct page *page; 5240 5241 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5242 if (!page) 5243 return 0; 5244 return (unsigned long) page_address(page); 5245 } 5246 EXPORT_SYMBOL(__get_free_pages); 5247 5248 unsigned long get_zeroed_page(gfp_t gfp_mask) 5249 { 5250 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5251 } 5252 EXPORT_SYMBOL(get_zeroed_page); 5253 5254 static inline void free_the_page(struct page *page, unsigned int order) 5255 { 5256 if (order == 0) /* Via pcp? */ 5257 free_unref_page(page); 5258 else 5259 __free_pages_ok(page, order, FPI_NONE); 5260 } 5261 5262 /** 5263 * __free_pages - Free pages allocated with alloc_pages(). 5264 * @page: The page pointer returned from alloc_pages(). 5265 * @order: The order of the allocation. 5266 * 5267 * This function can free multi-page allocations that are not compound 5268 * pages. It does not check that the @order passed in matches that of 5269 * the allocation, so it is easy to leak memory. Freeing more memory 5270 * than was allocated will probably emit a warning. 5271 * 5272 * If the last reference to this page is speculative, it will be released 5273 * by put_page() which only frees the first page of a non-compound 5274 * allocation. To prevent the remaining pages from being leaked, we free 5275 * the subsequent pages here. If you want to use the page's reference 5276 * count to decide when to free the allocation, you should allocate a 5277 * compound page, and use put_page() instead of __free_pages(). 5278 * 5279 * Context: May be called in interrupt context or while holding a normal 5280 * spinlock, but not in NMI context or while holding a raw spinlock. 5281 */ 5282 void __free_pages(struct page *page, unsigned int order) 5283 { 5284 if (put_page_testzero(page)) 5285 free_the_page(page, order); 5286 else if (!PageHead(page)) 5287 while (order-- > 0) 5288 free_the_page(page + (1 << order), order); 5289 } 5290 EXPORT_SYMBOL(__free_pages); 5291 5292 void free_pages(unsigned long addr, unsigned int order) 5293 { 5294 if (addr != 0) { 5295 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5296 __free_pages(virt_to_page((void *)addr), order); 5297 } 5298 } 5299 5300 EXPORT_SYMBOL(free_pages); 5301 5302 /* 5303 * Page Fragment: 5304 * An arbitrary-length arbitrary-offset area of memory which resides 5305 * within a 0 or higher order page. Multiple fragments within that page 5306 * are individually refcounted, in the page's reference counter. 5307 * 5308 * The page_frag functions below provide a simple allocation framework for 5309 * page fragments. This is used by the network stack and network device 5310 * drivers to provide a backing region of memory for use as either an 5311 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5312 */ 5313 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5314 gfp_t gfp_mask) 5315 { 5316 struct page *page = NULL; 5317 gfp_t gfp = gfp_mask; 5318 5319 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5320 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5321 __GFP_NOMEMALLOC; 5322 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5323 PAGE_FRAG_CACHE_MAX_ORDER); 5324 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5325 #endif 5326 if (unlikely(!page)) 5327 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5328 5329 nc->va = page ? page_address(page) : NULL; 5330 5331 return page; 5332 } 5333 5334 void __page_frag_cache_drain(struct page *page, unsigned int count) 5335 { 5336 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5337 5338 if (page_ref_sub_and_test(page, count)) 5339 free_the_page(page, compound_order(page)); 5340 } 5341 EXPORT_SYMBOL(__page_frag_cache_drain); 5342 5343 void *page_frag_alloc_align(struct page_frag_cache *nc, 5344 unsigned int fragsz, gfp_t gfp_mask, 5345 unsigned int align_mask) 5346 { 5347 unsigned int size = PAGE_SIZE; 5348 struct page *page; 5349 int offset; 5350 5351 if (unlikely(!nc->va)) { 5352 refill: 5353 page = __page_frag_cache_refill(nc, gfp_mask); 5354 if (!page) 5355 return NULL; 5356 5357 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5358 /* if size can vary use size else just use PAGE_SIZE */ 5359 size = nc->size; 5360 #endif 5361 /* Even if we own the page, we do not use atomic_set(). 5362 * This would break get_page_unless_zero() users. 5363 */ 5364 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5365 5366 /* reset page count bias and offset to start of new frag */ 5367 nc->pfmemalloc = page_is_pfmemalloc(page); 5368 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5369 nc->offset = size; 5370 } 5371 5372 offset = nc->offset - fragsz; 5373 if (unlikely(offset < 0)) { 5374 page = virt_to_page(nc->va); 5375 5376 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5377 goto refill; 5378 5379 if (unlikely(nc->pfmemalloc)) { 5380 free_the_page(page, compound_order(page)); 5381 goto refill; 5382 } 5383 5384 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5385 /* if size can vary use size else just use PAGE_SIZE */ 5386 size = nc->size; 5387 #endif 5388 /* OK, page count is 0, we can safely set it */ 5389 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5390 5391 /* reset page count bias and offset to start of new frag */ 5392 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5393 offset = size - fragsz; 5394 } 5395 5396 nc->pagecnt_bias--; 5397 offset &= align_mask; 5398 nc->offset = offset; 5399 5400 return nc->va + offset; 5401 } 5402 EXPORT_SYMBOL(page_frag_alloc_align); 5403 5404 /* 5405 * Frees a page fragment allocated out of either a compound or order 0 page. 5406 */ 5407 void page_frag_free(void *addr) 5408 { 5409 struct page *page = virt_to_head_page(addr); 5410 5411 if (unlikely(put_page_testzero(page))) 5412 free_the_page(page, compound_order(page)); 5413 } 5414 EXPORT_SYMBOL(page_frag_free); 5415 5416 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5417 size_t size) 5418 { 5419 if (addr) { 5420 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5421 unsigned long used = addr + PAGE_ALIGN(size); 5422 5423 split_page(virt_to_page((void *)addr), order); 5424 while (used < alloc_end) { 5425 free_page(used); 5426 used += PAGE_SIZE; 5427 } 5428 } 5429 return (void *)addr; 5430 } 5431 5432 /** 5433 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5434 * @size: the number of bytes to allocate 5435 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5436 * 5437 * This function is similar to alloc_pages(), except that it allocates the 5438 * minimum number of pages to satisfy the request. alloc_pages() can only 5439 * allocate memory in power-of-two pages. 5440 * 5441 * This function is also limited by MAX_ORDER. 5442 * 5443 * Memory allocated by this function must be released by free_pages_exact(). 5444 * 5445 * Return: pointer to the allocated area or %NULL in case of error. 5446 */ 5447 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5448 { 5449 unsigned int order = get_order(size); 5450 unsigned long addr; 5451 5452 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5453 gfp_mask &= ~__GFP_COMP; 5454 5455 addr = __get_free_pages(gfp_mask, order); 5456 return make_alloc_exact(addr, order, size); 5457 } 5458 EXPORT_SYMBOL(alloc_pages_exact); 5459 5460 /** 5461 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5462 * pages on a node. 5463 * @nid: the preferred node ID where memory should be allocated 5464 * @size: the number of bytes to allocate 5465 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5466 * 5467 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5468 * back. 5469 * 5470 * Return: pointer to the allocated area or %NULL in case of error. 5471 */ 5472 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5473 { 5474 unsigned int order = get_order(size); 5475 struct page *p; 5476 5477 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5478 gfp_mask &= ~__GFP_COMP; 5479 5480 p = alloc_pages_node(nid, gfp_mask, order); 5481 if (!p) 5482 return NULL; 5483 return make_alloc_exact((unsigned long)page_address(p), order, size); 5484 } 5485 5486 /** 5487 * free_pages_exact - release memory allocated via alloc_pages_exact() 5488 * @virt: the value returned by alloc_pages_exact. 5489 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5490 * 5491 * Release the memory allocated by a previous call to alloc_pages_exact. 5492 */ 5493 void free_pages_exact(void *virt, size_t size) 5494 { 5495 unsigned long addr = (unsigned long)virt; 5496 unsigned long end = addr + PAGE_ALIGN(size); 5497 5498 while (addr < end) { 5499 free_page(addr); 5500 addr += PAGE_SIZE; 5501 } 5502 } 5503 EXPORT_SYMBOL(free_pages_exact); 5504 5505 /** 5506 * nr_free_zone_pages - count number of pages beyond high watermark 5507 * @offset: The zone index of the highest zone 5508 * 5509 * nr_free_zone_pages() counts the number of pages which are beyond the 5510 * high watermark within all zones at or below a given zone index. For each 5511 * zone, the number of pages is calculated as: 5512 * 5513 * nr_free_zone_pages = managed_pages - high_pages 5514 * 5515 * Return: number of pages beyond high watermark. 5516 */ 5517 static unsigned long nr_free_zone_pages(int offset) 5518 { 5519 struct zoneref *z; 5520 struct zone *zone; 5521 5522 /* Just pick one node, since fallback list is circular */ 5523 unsigned long sum = 0; 5524 5525 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5526 5527 for_each_zone_zonelist(zone, z, zonelist, offset) { 5528 unsigned long size = zone_managed_pages(zone); 5529 unsigned long high = high_wmark_pages(zone); 5530 if (size > high) 5531 sum += size - high; 5532 } 5533 5534 return sum; 5535 } 5536 5537 /** 5538 * nr_free_buffer_pages - count number of pages beyond high watermark 5539 * 5540 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5541 * watermark within ZONE_DMA and ZONE_NORMAL. 5542 * 5543 * Return: number of pages beyond high watermark within ZONE_DMA and 5544 * ZONE_NORMAL. 5545 */ 5546 unsigned long nr_free_buffer_pages(void) 5547 { 5548 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5549 } 5550 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5551 5552 static inline void show_node(struct zone *zone) 5553 { 5554 if (IS_ENABLED(CONFIG_NUMA)) 5555 printk("Node %d ", zone_to_nid(zone)); 5556 } 5557 5558 long si_mem_available(void) 5559 { 5560 long available; 5561 unsigned long pagecache; 5562 unsigned long wmark_low = 0; 5563 unsigned long pages[NR_LRU_LISTS]; 5564 unsigned long reclaimable; 5565 struct zone *zone; 5566 int lru; 5567 5568 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5569 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5570 5571 for_each_zone(zone) 5572 wmark_low += low_wmark_pages(zone); 5573 5574 /* 5575 * Estimate the amount of memory available for userspace allocations, 5576 * without causing swapping. 5577 */ 5578 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5579 5580 /* 5581 * Not all the page cache can be freed, otherwise the system will 5582 * start swapping. Assume at least half of the page cache, or the 5583 * low watermark worth of cache, needs to stay. 5584 */ 5585 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5586 pagecache -= min(pagecache / 2, wmark_low); 5587 available += pagecache; 5588 5589 /* 5590 * Part of the reclaimable slab and other kernel memory consists of 5591 * items that are in use, and cannot be freed. Cap this estimate at the 5592 * low watermark. 5593 */ 5594 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5595 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5596 available += reclaimable - min(reclaimable / 2, wmark_low); 5597 5598 if (available < 0) 5599 available = 0; 5600 return available; 5601 } 5602 EXPORT_SYMBOL_GPL(si_mem_available); 5603 5604 void si_meminfo(struct sysinfo *val) 5605 { 5606 val->totalram = totalram_pages(); 5607 val->sharedram = global_node_page_state(NR_SHMEM); 5608 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5609 val->bufferram = nr_blockdev_pages(); 5610 val->totalhigh = totalhigh_pages(); 5611 val->freehigh = nr_free_highpages(); 5612 val->mem_unit = PAGE_SIZE; 5613 } 5614 5615 EXPORT_SYMBOL(si_meminfo); 5616 5617 #ifdef CONFIG_NUMA 5618 void si_meminfo_node(struct sysinfo *val, int nid) 5619 { 5620 int zone_type; /* needs to be signed */ 5621 unsigned long managed_pages = 0; 5622 unsigned long managed_highpages = 0; 5623 unsigned long free_highpages = 0; 5624 pg_data_t *pgdat = NODE_DATA(nid); 5625 5626 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5627 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5628 val->totalram = managed_pages; 5629 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5630 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5631 #ifdef CONFIG_HIGHMEM 5632 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5633 struct zone *zone = &pgdat->node_zones[zone_type]; 5634 5635 if (is_highmem(zone)) { 5636 managed_highpages += zone_managed_pages(zone); 5637 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5638 } 5639 } 5640 val->totalhigh = managed_highpages; 5641 val->freehigh = free_highpages; 5642 #else 5643 val->totalhigh = managed_highpages; 5644 val->freehigh = free_highpages; 5645 #endif 5646 val->mem_unit = PAGE_SIZE; 5647 } 5648 #endif 5649 5650 /* 5651 * Determine whether the node should be displayed or not, depending on whether 5652 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5653 */ 5654 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5655 { 5656 if (!(flags & SHOW_MEM_FILTER_NODES)) 5657 return false; 5658 5659 /* 5660 * no node mask - aka implicit memory numa policy. Do not bother with 5661 * the synchronization - read_mems_allowed_begin - because we do not 5662 * have to be precise here. 5663 */ 5664 if (!nodemask) 5665 nodemask = &cpuset_current_mems_allowed; 5666 5667 return !node_isset(nid, *nodemask); 5668 } 5669 5670 #define K(x) ((x) << (PAGE_SHIFT-10)) 5671 5672 static void show_migration_types(unsigned char type) 5673 { 5674 static const char types[MIGRATE_TYPES] = { 5675 [MIGRATE_UNMOVABLE] = 'U', 5676 [MIGRATE_MOVABLE] = 'M', 5677 [MIGRATE_RECLAIMABLE] = 'E', 5678 [MIGRATE_HIGHATOMIC] = 'H', 5679 #ifdef CONFIG_CMA 5680 [MIGRATE_CMA] = 'C', 5681 #endif 5682 #ifdef CONFIG_MEMORY_ISOLATION 5683 [MIGRATE_ISOLATE] = 'I', 5684 #endif 5685 }; 5686 char tmp[MIGRATE_TYPES + 1]; 5687 char *p = tmp; 5688 int i; 5689 5690 for (i = 0; i < MIGRATE_TYPES; i++) { 5691 if (type & (1 << i)) 5692 *p++ = types[i]; 5693 } 5694 5695 *p = '\0'; 5696 printk(KERN_CONT "(%s) ", tmp); 5697 } 5698 5699 /* 5700 * Show free area list (used inside shift_scroll-lock stuff) 5701 * We also calculate the percentage fragmentation. We do this by counting the 5702 * memory on each free list with the exception of the first item on the list. 5703 * 5704 * Bits in @filter: 5705 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5706 * cpuset. 5707 */ 5708 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5709 { 5710 unsigned long free_pcp = 0; 5711 int cpu; 5712 struct zone *zone; 5713 pg_data_t *pgdat; 5714 5715 for_each_populated_zone(zone) { 5716 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5717 continue; 5718 5719 for_each_online_cpu(cpu) 5720 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5721 } 5722 5723 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5724 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5725 " unevictable:%lu dirty:%lu writeback:%lu\n" 5726 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5727 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5728 " free:%lu free_pcp:%lu free_cma:%lu\n", 5729 global_node_page_state(NR_ACTIVE_ANON), 5730 global_node_page_state(NR_INACTIVE_ANON), 5731 global_node_page_state(NR_ISOLATED_ANON), 5732 global_node_page_state(NR_ACTIVE_FILE), 5733 global_node_page_state(NR_INACTIVE_FILE), 5734 global_node_page_state(NR_ISOLATED_FILE), 5735 global_node_page_state(NR_UNEVICTABLE), 5736 global_node_page_state(NR_FILE_DIRTY), 5737 global_node_page_state(NR_WRITEBACK), 5738 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5739 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5740 global_node_page_state(NR_FILE_MAPPED), 5741 global_node_page_state(NR_SHMEM), 5742 global_node_page_state(NR_PAGETABLE), 5743 global_zone_page_state(NR_BOUNCE), 5744 global_zone_page_state(NR_FREE_PAGES), 5745 free_pcp, 5746 global_zone_page_state(NR_FREE_CMA_PAGES)); 5747 5748 for_each_online_pgdat(pgdat) { 5749 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5750 continue; 5751 5752 printk("Node %d" 5753 " active_anon:%lukB" 5754 " inactive_anon:%lukB" 5755 " active_file:%lukB" 5756 " inactive_file:%lukB" 5757 " unevictable:%lukB" 5758 " isolated(anon):%lukB" 5759 " isolated(file):%lukB" 5760 " mapped:%lukB" 5761 " dirty:%lukB" 5762 " writeback:%lukB" 5763 " shmem:%lukB" 5764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5765 " shmem_thp: %lukB" 5766 " shmem_pmdmapped: %lukB" 5767 " anon_thp: %lukB" 5768 #endif 5769 " writeback_tmp:%lukB" 5770 " kernel_stack:%lukB" 5771 #ifdef CONFIG_SHADOW_CALL_STACK 5772 " shadow_call_stack:%lukB" 5773 #endif 5774 " pagetables:%lukB" 5775 " all_unreclaimable? %s" 5776 "\n", 5777 pgdat->node_id, 5778 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5779 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5780 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5781 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5782 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5783 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5784 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5785 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5786 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5787 K(node_page_state(pgdat, NR_WRITEBACK)), 5788 K(node_page_state(pgdat, NR_SHMEM)), 5789 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5790 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5791 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5792 K(node_page_state(pgdat, NR_ANON_THPS)), 5793 #endif 5794 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5795 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5796 #ifdef CONFIG_SHADOW_CALL_STACK 5797 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5798 #endif 5799 K(node_page_state(pgdat, NR_PAGETABLE)), 5800 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5801 "yes" : "no"); 5802 } 5803 5804 for_each_populated_zone(zone) { 5805 int i; 5806 5807 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5808 continue; 5809 5810 free_pcp = 0; 5811 for_each_online_cpu(cpu) 5812 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5813 5814 show_node(zone); 5815 printk(KERN_CONT 5816 "%s" 5817 " free:%lukB" 5818 " min:%lukB" 5819 " low:%lukB" 5820 " high:%lukB" 5821 " reserved_highatomic:%luKB" 5822 " active_anon:%lukB" 5823 " inactive_anon:%lukB" 5824 " active_file:%lukB" 5825 " inactive_file:%lukB" 5826 " unevictable:%lukB" 5827 " writepending:%lukB" 5828 " present:%lukB" 5829 " managed:%lukB" 5830 " mlocked:%lukB" 5831 " bounce:%lukB" 5832 " free_pcp:%lukB" 5833 " local_pcp:%ukB" 5834 " free_cma:%lukB" 5835 "\n", 5836 zone->name, 5837 K(zone_page_state(zone, NR_FREE_PAGES)), 5838 K(min_wmark_pages(zone)), 5839 K(low_wmark_pages(zone)), 5840 K(high_wmark_pages(zone)), 5841 K(zone->nr_reserved_highatomic), 5842 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5843 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5844 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5845 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5846 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5847 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5848 K(zone->present_pages), 5849 K(zone_managed_pages(zone)), 5850 K(zone_page_state(zone, NR_MLOCK)), 5851 K(zone_page_state(zone, NR_BOUNCE)), 5852 K(free_pcp), 5853 K(this_cpu_read(zone->pageset->pcp.count)), 5854 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5855 printk("lowmem_reserve[]:"); 5856 for (i = 0; i < MAX_NR_ZONES; i++) 5857 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5858 printk(KERN_CONT "\n"); 5859 } 5860 5861 for_each_populated_zone(zone) { 5862 unsigned int order; 5863 unsigned long nr[MAX_ORDER], flags, total = 0; 5864 unsigned char types[MAX_ORDER]; 5865 5866 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5867 continue; 5868 show_node(zone); 5869 printk(KERN_CONT "%s: ", zone->name); 5870 5871 spin_lock_irqsave(&zone->lock, flags); 5872 for (order = 0; order < MAX_ORDER; order++) { 5873 struct free_area *area = &zone->free_area[order]; 5874 int type; 5875 5876 nr[order] = area->nr_free; 5877 total += nr[order] << order; 5878 5879 types[order] = 0; 5880 for (type = 0; type < MIGRATE_TYPES; type++) { 5881 if (!free_area_empty(area, type)) 5882 types[order] |= 1 << type; 5883 } 5884 } 5885 spin_unlock_irqrestore(&zone->lock, flags); 5886 for (order = 0; order < MAX_ORDER; order++) { 5887 printk(KERN_CONT "%lu*%lukB ", 5888 nr[order], K(1UL) << order); 5889 if (nr[order]) 5890 show_migration_types(types[order]); 5891 } 5892 printk(KERN_CONT "= %lukB\n", K(total)); 5893 } 5894 5895 hugetlb_show_meminfo(); 5896 5897 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5898 5899 show_swap_cache_info(); 5900 } 5901 5902 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5903 { 5904 zoneref->zone = zone; 5905 zoneref->zone_idx = zone_idx(zone); 5906 } 5907 5908 /* 5909 * Builds allocation fallback zone lists. 5910 * 5911 * Add all populated zones of a node to the zonelist. 5912 */ 5913 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5914 { 5915 struct zone *zone; 5916 enum zone_type zone_type = MAX_NR_ZONES; 5917 int nr_zones = 0; 5918 5919 do { 5920 zone_type--; 5921 zone = pgdat->node_zones + zone_type; 5922 if (managed_zone(zone)) { 5923 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5924 check_highest_zone(zone_type); 5925 } 5926 } while (zone_type); 5927 5928 return nr_zones; 5929 } 5930 5931 #ifdef CONFIG_NUMA 5932 5933 static int __parse_numa_zonelist_order(char *s) 5934 { 5935 /* 5936 * We used to support different zonelists modes but they turned 5937 * out to be just not useful. Let's keep the warning in place 5938 * if somebody still use the cmd line parameter so that we do 5939 * not fail it silently 5940 */ 5941 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5942 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5943 return -EINVAL; 5944 } 5945 return 0; 5946 } 5947 5948 char numa_zonelist_order[] = "Node"; 5949 5950 /* 5951 * sysctl handler for numa_zonelist_order 5952 */ 5953 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5954 void *buffer, size_t *length, loff_t *ppos) 5955 { 5956 if (write) 5957 return __parse_numa_zonelist_order(buffer); 5958 return proc_dostring(table, write, buffer, length, ppos); 5959 } 5960 5961 5962 #define MAX_NODE_LOAD (nr_online_nodes) 5963 static int node_load[MAX_NUMNODES]; 5964 5965 /** 5966 * find_next_best_node - find the next node that should appear in a given node's fallback list 5967 * @node: node whose fallback list we're appending 5968 * @used_node_mask: nodemask_t of already used nodes 5969 * 5970 * We use a number of factors to determine which is the next node that should 5971 * appear on a given node's fallback list. The node should not have appeared 5972 * already in @node's fallback list, and it should be the next closest node 5973 * according to the distance array (which contains arbitrary distance values 5974 * from each node to each node in the system), and should also prefer nodes 5975 * with no CPUs, since presumably they'll have very little allocation pressure 5976 * on them otherwise. 5977 * 5978 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5979 */ 5980 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5981 { 5982 int n, val; 5983 int min_val = INT_MAX; 5984 int best_node = NUMA_NO_NODE; 5985 5986 /* Use the local node if we haven't already */ 5987 if (!node_isset(node, *used_node_mask)) { 5988 node_set(node, *used_node_mask); 5989 return node; 5990 } 5991 5992 for_each_node_state(n, N_MEMORY) { 5993 5994 /* Don't want a node to appear more than once */ 5995 if (node_isset(n, *used_node_mask)) 5996 continue; 5997 5998 /* Use the distance array to find the distance */ 5999 val = node_distance(node, n); 6000 6001 /* Penalize nodes under us ("prefer the next node") */ 6002 val += (n < node); 6003 6004 /* Give preference to headless and unused nodes */ 6005 if (!cpumask_empty(cpumask_of_node(n))) 6006 val += PENALTY_FOR_NODE_WITH_CPUS; 6007 6008 /* Slight preference for less loaded node */ 6009 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6010 val += node_load[n]; 6011 6012 if (val < min_val) { 6013 min_val = val; 6014 best_node = n; 6015 } 6016 } 6017 6018 if (best_node >= 0) 6019 node_set(best_node, *used_node_mask); 6020 6021 return best_node; 6022 } 6023 6024 6025 /* 6026 * Build zonelists ordered by node and zones within node. 6027 * This results in maximum locality--normal zone overflows into local 6028 * DMA zone, if any--but risks exhausting DMA zone. 6029 */ 6030 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6031 unsigned nr_nodes) 6032 { 6033 struct zoneref *zonerefs; 6034 int i; 6035 6036 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6037 6038 for (i = 0; i < nr_nodes; i++) { 6039 int nr_zones; 6040 6041 pg_data_t *node = NODE_DATA(node_order[i]); 6042 6043 nr_zones = build_zonerefs_node(node, zonerefs); 6044 zonerefs += nr_zones; 6045 } 6046 zonerefs->zone = NULL; 6047 zonerefs->zone_idx = 0; 6048 } 6049 6050 /* 6051 * Build gfp_thisnode zonelists 6052 */ 6053 static void build_thisnode_zonelists(pg_data_t *pgdat) 6054 { 6055 struct zoneref *zonerefs; 6056 int nr_zones; 6057 6058 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6059 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6060 zonerefs += nr_zones; 6061 zonerefs->zone = NULL; 6062 zonerefs->zone_idx = 0; 6063 } 6064 6065 /* 6066 * Build zonelists ordered by zone and nodes within zones. 6067 * This results in conserving DMA zone[s] until all Normal memory is 6068 * exhausted, but results in overflowing to remote node while memory 6069 * may still exist in local DMA zone. 6070 */ 6071 6072 static void build_zonelists(pg_data_t *pgdat) 6073 { 6074 static int node_order[MAX_NUMNODES]; 6075 int node, load, nr_nodes = 0; 6076 nodemask_t used_mask = NODE_MASK_NONE; 6077 int local_node, prev_node; 6078 6079 /* NUMA-aware ordering of nodes */ 6080 local_node = pgdat->node_id; 6081 load = nr_online_nodes; 6082 prev_node = local_node; 6083 6084 memset(node_order, 0, sizeof(node_order)); 6085 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6086 /* 6087 * We don't want to pressure a particular node. 6088 * So adding penalty to the first node in same 6089 * distance group to make it round-robin. 6090 */ 6091 if (node_distance(local_node, node) != 6092 node_distance(local_node, prev_node)) 6093 node_load[node] = load; 6094 6095 node_order[nr_nodes++] = node; 6096 prev_node = node; 6097 load--; 6098 } 6099 6100 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6101 build_thisnode_zonelists(pgdat); 6102 } 6103 6104 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6105 /* 6106 * Return node id of node used for "local" allocations. 6107 * I.e., first node id of first zone in arg node's generic zonelist. 6108 * Used for initializing percpu 'numa_mem', which is used primarily 6109 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6110 */ 6111 int local_memory_node(int node) 6112 { 6113 struct zoneref *z; 6114 6115 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6116 gfp_zone(GFP_KERNEL), 6117 NULL); 6118 return zone_to_nid(z->zone); 6119 } 6120 #endif 6121 6122 static void setup_min_unmapped_ratio(void); 6123 static void setup_min_slab_ratio(void); 6124 #else /* CONFIG_NUMA */ 6125 6126 static void build_zonelists(pg_data_t *pgdat) 6127 { 6128 int node, local_node; 6129 struct zoneref *zonerefs; 6130 int nr_zones; 6131 6132 local_node = pgdat->node_id; 6133 6134 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6135 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6136 zonerefs += nr_zones; 6137 6138 /* 6139 * Now we build the zonelist so that it contains the zones 6140 * of all the other nodes. 6141 * We don't want to pressure a particular node, so when 6142 * building the zones for node N, we make sure that the 6143 * zones coming right after the local ones are those from 6144 * node N+1 (modulo N) 6145 */ 6146 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6147 if (!node_online(node)) 6148 continue; 6149 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6150 zonerefs += nr_zones; 6151 } 6152 for (node = 0; node < local_node; node++) { 6153 if (!node_online(node)) 6154 continue; 6155 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6156 zonerefs += nr_zones; 6157 } 6158 6159 zonerefs->zone = NULL; 6160 zonerefs->zone_idx = 0; 6161 } 6162 6163 #endif /* CONFIG_NUMA */ 6164 6165 /* 6166 * Boot pageset table. One per cpu which is going to be used for all 6167 * zones and all nodes. The parameters will be set in such a way 6168 * that an item put on a list will immediately be handed over to 6169 * the buddy list. This is safe since pageset manipulation is done 6170 * with interrupts disabled. 6171 * 6172 * The boot_pagesets must be kept even after bootup is complete for 6173 * unused processors and/or zones. They do play a role for bootstrapping 6174 * hotplugged processors. 6175 * 6176 * zoneinfo_show() and maybe other functions do 6177 * not check if the processor is online before following the pageset pointer. 6178 * Other parts of the kernel may not check if the zone is available. 6179 */ 6180 static void pageset_init(struct per_cpu_pageset *p); 6181 /* These effectively disable the pcplists in the boot pageset completely */ 6182 #define BOOT_PAGESET_HIGH 0 6183 #define BOOT_PAGESET_BATCH 1 6184 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 6185 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6186 6187 static void __build_all_zonelists(void *data) 6188 { 6189 int nid; 6190 int __maybe_unused cpu; 6191 pg_data_t *self = data; 6192 static DEFINE_SPINLOCK(lock); 6193 6194 spin_lock(&lock); 6195 6196 #ifdef CONFIG_NUMA 6197 memset(node_load, 0, sizeof(node_load)); 6198 #endif 6199 6200 /* 6201 * This node is hotadded and no memory is yet present. So just 6202 * building zonelists is fine - no need to touch other nodes. 6203 */ 6204 if (self && !node_online(self->node_id)) { 6205 build_zonelists(self); 6206 } else { 6207 for_each_online_node(nid) { 6208 pg_data_t *pgdat = NODE_DATA(nid); 6209 6210 build_zonelists(pgdat); 6211 } 6212 6213 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6214 /* 6215 * We now know the "local memory node" for each node-- 6216 * i.e., the node of the first zone in the generic zonelist. 6217 * Set up numa_mem percpu variable for on-line cpus. During 6218 * boot, only the boot cpu should be on-line; we'll init the 6219 * secondary cpus' numa_mem as they come on-line. During 6220 * node/memory hotplug, we'll fixup all on-line cpus. 6221 */ 6222 for_each_online_cpu(cpu) 6223 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6224 #endif 6225 } 6226 6227 spin_unlock(&lock); 6228 } 6229 6230 static noinline void __init 6231 build_all_zonelists_init(void) 6232 { 6233 int cpu; 6234 6235 __build_all_zonelists(NULL); 6236 6237 /* 6238 * Initialize the boot_pagesets that are going to be used 6239 * for bootstrapping processors. The real pagesets for 6240 * each zone will be allocated later when the per cpu 6241 * allocator is available. 6242 * 6243 * boot_pagesets are used also for bootstrapping offline 6244 * cpus if the system is already booted because the pagesets 6245 * are needed to initialize allocators on a specific cpu too. 6246 * F.e. the percpu allocator needs the page allocator which 6247 * needs the percpu allocator in order to allocate its pagesets 6248 * (a chicken-egg dilemma). 6249 */ 6250 for_each_possible_cpu(cpu) 6251 pageset_init(&per_cpu(boot_pageset, cpu)); 6252 6253 mminit_verify_zonelist(); 6254 cpuset_init_current_mems_allowed(); 6255 } 6256 6257 /* 6258 * unless system_state == SYSTEM_BOOTING. 6259 * 6260 * __ref due to call of __init annotated helper build_all_zonelists_init 6261 * [protected by SYSTEM_BOOTING]. 6262 */ 6263 void __ref build_all_zonelists(pg_data_t *pgdat) 6264 { 6265 unsigned long vm_total_pages; 6266 6267 if (system_state == SYSTEM_BOOTING) { 6268 build_all_zonelists_init(); 6269 } else { 6270 __build_all_zonelists(pgdat); 6271 /* cpuset refresh routine should be here */ 6272 } 6273 /* Get the number of free pages beyond high watermark in all zones. */ 6274 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6275 /* 6276 * Disable grouping by mobility if the number of pages in the 6277 * system is too low to allow the mechanism to work. It would be 6278 * more accurate, but expensive to check per-zone. This check is 6279 * made on memory-hotadd so a system can start with mobility 6280 * disabled and enable it later 6281 */ 6282 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6283 page_group_by_mobility_disabled = 1; 6284 else 6285 page_group_by_mobility_disabled = 0; 6286 6287 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6288 nr_online_nodes, 6289 page_group_by_mobility_disabled ? "off" : "on", 6290 vm_total_pages); 6291 #ifdef CONFIG_NUMA 6292 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6293 #endif 6294 } 6295 6296 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6297 static bool __meminit 6298 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6299 { 6300 static struct memblock_region *r; 6301 6302 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6303 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6304 for_each_mem_region(r) { 6305 if (*pfn < memblock_region_memory_end_pfn(r)) 6306 break; 6307 } 6308 } 6309 if (*pfn >= memblock_region_memory_base_pfn(r) && 6310 memblock_is_mirror(r)) { 6311 *pfn = memblock_region_memory_end_pfn(r); 6312 return true; 6313 } 6314 } 6315 return false; 6316 } 6317 6318 /* 6319 * Initially all pages are reserved - free ones are freed 6320 * up by memblock_free_all() once the early boot process is 6321 * done. Non-atomic initialization, single-pass. 6322 * 6323 * All aligned pageblocks are initialized to the specified migratetype 6324 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6325 * zone stats (e.g., nr_isolate_pageblock) are touched. 6326 */ 6327 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6328 unsigned long start_pfn, unsigned long zone_end_pfn, 6329 enum meminit_context context, 6330 struct vmem_altmap *altmap, int migratetype) 6331 { 6332 unsigned long pfn, end_pfn = start_pfn + size; 6333 struct page *page; 6334 6335 if (highest_memmap_pfn < end_pfn - 1) 6336 highest_memmap_pfn = end_pfn - 1; 6337 6338 #ifdef CONFIG_ZONE_DEVICE 6339 /* 6340 * Honor reservation requested by the driver for this ZONE_DEVICE 6341 * memory. We limit the total number of pages to initialize to just 6342 * those that might contain the memory mapping. We will defer the 6343 * ZONE_DEVICE page initialization until after we have released 6344 * the hotplug lock. 6345 */ 6346 if (zone == ZONE_DEVICE) { 6347 if (!altmap) 6348 return; 6349 6350 if (start_pfn == altmap->base_pfn) 6351 start_pfn += altmap->reserve; 6352 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6353 } 6354 #endif 6355 6356 for (pfn = start_pfn; pfn < end_pfn; ) { 6357 /* 6358 * There can be holes in boot-time mem_map[]s handed to this 6359 * function. They do not exist on hotplugged memory. 6360 */ 6361 if (context == MEMINIT_EARLY) { 6362 if (overlap_memmap_init(zone, &pfn)) 6363 continue; 6364 if (defer_init(nid, pfn, zone_end_pfn)) 6365 break; 6366 } 6367 6368 page = pfn_to_page(pfn); 6369 __init_single_page(page, pfn, zone, nid); 6370 if (context == MEMINIT_HOTPLUG) 6371 __SetPageReserved(page); 6372 6373 /* 6374 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6375 * such that unmovable allocations won't be scattered all 6376 * over the place during system boot. 6377 */ 6378 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6379 set_pageblock_migratetype(page, migratetype); 6380 cond_resched(); 6381 } 6382 pfn++; 6383 } 6384 } 6385 6386 #ifdef CONFIG_ZONE_DEVICE 6387 void __ref memmap_init_zone_device(struct zone *zone, 6388 unsigned long start_pfn, 6389 unsigned long nr_pages, 6390 struct dev_pagemap *pgmap) 6391 { 6392 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6393 struct pglist_data *pgdat = zone->zone_pgdat; 6394 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6395 unsigned long zone_idx = zone_idx(zone); 6396 unsigned long start = jiffies; 6397 int nid = pgdat->node_id; 6398 6399 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6400 return; 6401 6402 /* 6403 * The call to memmap_init_zone should have already taken care 6404 * of the pages reserved for the memmap, so we can just jump to 6405 * the end of that region and start processing the device pages. 6406 */ 6407 if (altmap) { 6408 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6409 nr_pages = end_pfn - start_pfn; 6410 } 6411 6412 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6413 struct page *page = pfn_to_page(pfn); 6414 6415 __init_single_page(page, pfn, zone_idx, nid); 6416 6417 /* 6418 * Mark page reserved as it will need to wait for onlining 6419 * phase for it to be fully associated with a zone. 6420 * 6421 * We can use the non-atomic __set_bit operation for setting 6422 * the flag as we are still initializing the pages. 6423 */ 6424 __SetPageReserved(page); 6425 6426 /* 6427 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6428 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6429 * ever freed or placed on a driver-private list. 6430 */ 6431 page->pgmap = pgmap; 6432 page->zone_device_data = NULL; 6433 6434 /* 6435 * Mark the block movable so that blocks are reserved for 6436 * movable at startup. This will force kernel allocations 6437 * to reserve their blocks rather than leaking throughout 6438 * the address space during boot when many long-lived 6439 * kernel allocations are made. 6440 * 6441 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6442 * because this is done early in section_activate() 6443 */ 6444 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6445 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6446 cond_resched(); 6447 } 6448 } 6449 6450 pr_info("%s initialised %lu pages in %ums\n", __func__, 6451 nr_pages, jiffies_to_msecs(jiffies - start)); 6452 } 6453 6454 #endif 6455 static void __meminit zone_init_free_lists(struct zone *zone) 6456 { 6457 unsigned int order, t; 6458 for_each_migratetype_order(order, t) { 6459 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6460 zone->free_area[order].nr_free = 0; 6461 } 6462 } 6463 6464 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6465 /* 6466 * Only struct pages that correspond to ranges defined by memblock.memory 6467 * are zeroed and initialized by going through __init_single_page() during 6468 * memmap_init_zone(). 6469 * 6470 * But, there could be struct pages that correspond to holes in 6471 * memblock.memory. This can happen because of the following reasons: 6472 * - physical memory bank size is not necessarily the exact multiple of the 6473 * arbitrary section size 6474 * - early reserved memory may not be listed in memblock.memory 6475 * - memory layouts defined with memmap= kernel parameter may not align 6476 * nicely with memmap sections 6477 * 6478 * Explicitly initialize those struct pages so that: 6479 * - PG_Reserved is set 6480 * - zone and node links point to zone and node that span the page if the 6481 * hole is in the middle of a zone 6482 * - zone and node links point to adjacent zone/node if the hole falls on 6483 * the zone boundary; the pages in such holes will be prepended to the 6484 * zone/node above the hole except for the trailing pages in the last 6485 * section that will be appended to the zone/node below. 6486 */ 6487 static u64 __meminit init_unavailable_range(unsigned long spfn, 6488 unsigned long epfn, 6489 int zone, int node) 6490 { 6491 unsigned long pfn; 6492 u64 pgcnt = 0; 6493 6494 for (pfn = spfn; pfn < epfn; pfn++) { 6495 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6496 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6497 + pageblock_nr_pages - 1; 6498 continue; 6499 } 6500 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6501 __SetPageReserved(pfn_to_page(pfn)); 6502 pgcnt++; 6503 } 6504 6505 return pgcnt; 6506 } 6507 #else 6508 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn, 6509 int zone, int node) 6510 { 6511 return 0; 6512 } 6513 #endif 6514 6515 void __meminit __weak memmap_init_zone(struct zone *zone) 6516 { 6517 unsigned long zone_start_pfn = zone->zone_start_pfn; 6518 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6519 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6520 static unsigned long hole_pfn; 6521 unsigned long start_pfn, end_pfn; 6522 u64 pgcnt = 0; 6523 6524 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6525 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6526 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6527 6528 if (end_pfn > start_pfn) 6529 memmap_init_range(end_pfn - start_pfn, nid, 6530 zone_id, start_pfn, zone_end_pfn, 6531 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6532 6533 if (hole_pfn < start_pfn) 6534 pgcnt += init_unavailable_range(hole_pfn, start_pfn, 6535 zone_id, nid); 6536 hole_pfn = end_pfn; 6537 } 6538 6539 #ifdef CONFIG_SPARSEMEM 6540 /* 6541 * Initialize the hole in the range [zone_end_pfn, section_end]. 6542 * If zone boundary falls in the middle of a section, this hole 6543 * will be re-initialized during the call to this function for the 6544 * higher zone. 6545 */ 6546 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION); 6547 if (hole_pfn < end_pfn) 6548 pgcnt += init_unavailable_range(hole_pfn, end_pfn, 6549 zone_id, nid); 6550 #endif 6551 6552 if (pgcnt) 6553 pr_info(" %s zone: %llu pages in unavailable ranges\n", 6554 zone->name, pgcnt); 6555 } 6556 6557 static int zone_batchsize(struct zone *zone) 6558 { 6559 #ifdef CONFIG_MMU 6560 int batch; 6561 6562 /* 6563 * The per-cpu-pages pools are set to around 1000th of the 6564 * size of the zone. 6565 */ 6566 batch = zone_managed_pages(zone) / 1024; 6567 /* But no more than a meg. */ 6568 if (batch * PAGE_SIZE > 1024 * 1024) 6569 batch = (1024 * 1024) / PAGE_SIZE; 6570 batch /= 4; /* We effectively *= 4 below */ 6571 if (batch < 1) 6572 batch = 1; 6573 6574 /* 6575 * Clamp the batch to a 2^n - 1 value. Having a power 6576 * of 2 value was found to be more likely to have 6577 * suboptimal cache aliasing properties in some cases. 6578 * 6579 * For example if 2 tasks are alternately allocating 6580 * batches of pages, one task can end up with a lot 6581 * of pages of one half of the possible page colors 6582 * and the other with pages of the other colors. 6583 */ 6584 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6585 6586 return batch; 6587 6588 #else 6589 /* The deferral and batching of frees should be suppressed under NOMMU 6590 * conditions. 6591 * 6592 * The problem is that NOMMU needs to be able to allocate large chunks 6593 * of contiguous memory as there's no hardware page translation to 6594 * assemble apparent contiguous memory from discontiguous pages. 6595 * 6596 * Queueing large contiguous runs of pages for batching, however, 6597 * causes the pages to actually be freed in smaller chunks. As there 6598 * can be a significant delay between the individual batches being 6599 * recycled, this leads to the once large chunks of space being 6600 * fragmented and becoming unavailable for high-order allocations. 6601 */ 6602 return 0; 6603 #endif 6604 } 6605 6606 /* 6607 * pcp->high and pcp->batch values are related and generally batch is lower 6608 * than high. They are also related to pcp->count such that count is lower 6609 * than high, and as soon as it reaches high, the pcplist is flushed. 6610 * 6611 * However, guaranteeing these relations at all times would require e.g. write 6612 * barriers here but also careful usage of read barriers at the read side, and 6613 * thus be prone to error and bad for performance. Thus the update only prevents 6614 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6615 * can cope with those fields changing asynchronously, and fully trust only the 6616 * pcp->count field on the local CPU with interrupts disabled. 6617 * 6618 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6619 * outside of boot time (or some other assurance that no concurrent updaters 6620 * exist). 6621 */ 6622 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6623 unsigned long batch) 6624 { 6625 WRITE_ONCE(pcp->batch, batch); 6626 WRITE_ONCE(pcp->high, high); 6627 } 6628 6629 static void pageset_init(struct per_cpu_pageset *p) 6630 { 6631 struct per_cpu_pages *pcp; 6632 int migratetype; 6633 6634 memset(p, 0, sizeof(*p)); 6635 6636 pcp = &p->pcp; 6637 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6638 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6639 6640 /* 6641 * Set batch and high values safe for a boot pageset. A true percpu 6642 * pageset's initialization will update them subsequently. Here we don't 6643 * need to be as careful as pageset_update() as nobody can access the 6644 * pageset yet. 6645 */ 6646 pcp->high = BOOT_PAGESET_HIGH; 6647 pcp->batch = BOOT_PAGESET_BATCH; 6648 } 6649 6650 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6651 unsigned long batch) 6652 { 6653 struct per_cpu_pageset *p; 6654 int cpu; 6655 6656 for_each_possible_cpu(cpu) { 6657 p = per_cpu_ptr(zone->pageset, cpu); 6658 pageset_update(&p->pcp, high, batch); 6659 } 6660 } 6661 6662 /* 6663 * Calculate and set new high and batch values for all per-cpu pagesets of a 6664 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl. 6665 */ 6666 static void zone_set_pageset_high_and_batch(struct zone *zone) 6667 { 6668 unsigned long new_high, new_batch; 6669 6670 if (percpu_pagelist_fraction) { 6671 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction; 6672 new_batch = max(1UL, new_high / 4); 6673 if ((new_high / 4) > (PAGE_SHIFT * 8)) 6674 new_batch = PAGE_SHIFT * 8; 6675 } else { 6676 new_batch = zone_batchsize(zone); 6677 new_high = 6 * new_batch; 6678 new_batch = max(1UL, 1 * new_batch); 6679 } 6680 6681 if (zone->pageset_high == new_high && 6682 zone->pageset_batch == new_batch) 6683 return; 6684 6685 zone->pageset_high = new_high; 6686 zone->pageset_batch = new_batch; 6687 6688 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6689 } 6690 6691 void __meminit setup_zone_pageset(struct zone *zone) 6692 { 6693 struct per_cpu_pageset *p; 6694 int cpu; 6695 6696 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6697 for_each_possible_cpu(cpu) { 6698 p = per_cpu_ptr(zone->pageset, cpu); 6699 pageset_init(p); 6700 } 6701 6702 zone_set_pageset_high_and_batch(zone); 6703 } 6704 6705 /* 6706 * Allocate per cpu pagesets and initialize them. 6707 * Before this call only boot pagesets were available. 6708 */ 6709 void __init setup_per_cpu_pageset(void) 6710 { 6711 struct pglist_data *pgdat; 6712 struct zone *zone; 6713 int __maybe_unused cpu; 6714 6715 for_each_populated_zone(zone) 6716 setup_zone_pageset(zone); 6717 6718 #ifdef CONFIG_NUMA 6719 /* 6720 * Unpopulated zones continue using the boot pagesets. 6721 * The numa stats for these pagesets need to be reset. 6722 * Otherwise, they will end up skewing the stats of 6723 * the nodes these zones are associated with. 6724 */ 6725 for_each_possible_cpu(cpu) { 6726 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6727 memset(pcp->vm_numa_stat_diff, 0, 6728 sizeof(pcp->vm_numa_stat_diff)); 6729 } 6730 #endif 6731 6732 for_each_online_pgdat(pgdat) 6733 pgdat->per_cpu_nodestats = 6734 alloc_percpu(struct per_cpu_nodestat); 6735 } 6736 6737 static __meminit void zone_pcp_init(struct zone *zone) 6738 { 6739 /* 6740 * per cpu subsystem is not up at this point. The following code 6741 * relies on the ability of the linker to provide the 6742 * offset of a (static) per cpu variable into the per cpu area. 6743 */ 6744 zone->pageset = &boot_pageset; 6745 zone->pageset_high = BOOT_PAGESET_HIGH; 6746 zone->pageset_batch = BOOT_PAGESET_BATCH; 6747 6748 if (populated_zone(zone)) 6749 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6750 zone->name, zone->present_pages, 6751 zone_batchsize(zone)); 6752 } 6753 6754 void __meminit init_currently_empty_zone(struct zone *zone, 6755 unsigned long zone_start_pfn, 6756 unsigned long size) 6757 { 6758 struct pglist_data *pgdat = zone->zone_pgdat; 6759 int zone_idx = zone_idx(zone) + 1; 6760 6761 if (zone_idx > pgdat->nr_zones) 6762 pgdat->nr_zones = zone_idx; 6763 6764 zone->zone_start_pfn = zone_start_pfn; 6765 6766 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6767 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6768 pgdat->node_id, 6769 (unsigned long)zone_idx(zone), 6770 zone_start_pfn, (zone_start_pfn + size)); 6771 6772 zone_init_free_lists(zone); 6773 zone->initialized = 1; 6774 } 6775 6776 /** 6777 * get_pfn_range_for_nid - Return the start and end page frames for a node 6778 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6779 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6780 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6781 * 6782 * It returns the start and end page frame of a node based on information 6783 * provided by memblock_set_node(). If called for a node 6784 * with no available memory, a warning is printed and the start and end 6785 * PFNs will be 0. 6786 */ 6787 void __init get_pfn_range_for_nid(unsigned int nid, 6788 unsigned long *start_pfn, unsigned long *end_pfn) 6789 { 6790 unsigned long this_start_pfn, this_end_pfn; 6791 int i; 6792 6793 *start_pfn = -1UL; 6794 *end_pfn = 0; 6795 6796 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6797 *start_pfn = min(*start_pfn, this_start_pfn); 6798 *end_pfn = max(*end_pfn, this_end_pfn); 6799 } 6800 6801 if (*start_pfn == -1UL) 6802 *start_pfn = 0; 6803 } 6804 6805 /* 6806 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6807 * assumption is made that zones within a node are ordered in monotonic 6808 * increasing memory addresses so that the "highest" populated zone is used 6809 */ 6810 static void __init find_usable_zone_for_movable(void) 6811 { 6812 int zone_index; 6813 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6814 if (zone_index == ZONE_MOVABLE) 6815 continue; 6816 6817 if (arch_zone_highest_possible_pfn[zone_index] > 6818 arch_zone_lowest_possible_pfn[zone_index]) 6819 break; 6820 } 6821 6822 VM_BUG_ON(zone_index == -1); 6823 movable_zone = zone_index; 6824 } 6825 6826 /* 6827 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6828 * because it is sized independent of architecture. Unlike the other zones, 6829 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6830 * in each node depending on the size of each node and how evenly kernelcore 6831 * is distributed. This helper function adjusts the zone ranges 6832 * provided by the architecture for a given node by using the end of the 6833 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6834 * zones within a node are in order of monotonic increases memory addresses 6835 */ 6836 static void __init adjust_zone_range_for_zone_movable(int nid, 6837 unsigned long zone_type, 6838 unsigned long node_start_pfn, 6839 unsigned long node_end_pfn, 6840 unsigned long *zone_start_pfn, 6841 unsigned long *zone_end_pfn) 6842 { 6843 /* Only adjust if ZONE_MOVABLE is on this node */ 6844 if (zone_movable_pfn[nid]) { 6845 /* Size ZONE_MOVABLE */ 6846 if (zone_type == ZONE_MOVABLE) { 6847 *zone_start_pfn = zone_movable_pfn[nid]; 6848 *zone_end_pfn = min(node_end_pfn, 6849 arch_zone_highest_possible_pfn[movable_zone]); 6850 6851 /* Adjust for ZONE_MOVABLE starting within this range */ 6852 } else if (!mirrored_kernelcore && 6853 *zone_start_pfn < zone_movable_pfn[nid] && 6854 *zone_end_pfn > zone_movable_pfn[nid]) { 6855 *zone_end_pfn = zone_movable_pfn[nid]; 6856 6857 /* Check if this whole range is within ZONE_MOVABLE */ 6858 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6859 *zone_start_pfn = *zone_end_pfn; 6860 } 6861 } 6862 6863 /* 6864 * Return the number of pages a zone spans in a node, including holes 6865 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6866 */ 6867 static unsigned long __init zone_spanned_pages_in_node(int nid, 6868 unsigned long zone_type, 6869 unsigned long node_start_pfn, 6870 unsigned long node_end_pfn, 6871 unsigned long *zone_start_pfn, 6872 unsigned long *zone_end_pfn) 6873 { 6874 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6875 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6876 /* When hotadd a new node from cpu_up(), the node should be empty */ 6877 if (!node_start_pfn && !node_end_pfn) 6878 return 0; 6879 6880 /* Get the start and end of the zone */ 6881 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6882 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6883 adjust_zone_range_for_zone_movable(nid, zone_type, 6884 node_start_pfn, node_end_pfn, 6885 zone_start_pfn, zone_end_pfn); 6886 6887 /* Check that this node has pages within the zone's required range */ 6888 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6889 return 0; 6890 6891 /* Move the zone boundaries inside the node if necessary */ 6892 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6893 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6894 6895 /* Return the spanned pages */ 6896 return *zone_end_pfn - *zone_start_pfn; 6897 } 6898 6899 /* 6900 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6901 * then all holes in the requested range will be accounted for. 6902 */ 6903 unsigned long __init __absent_pages_in_range(int nid, 6904 unsigned long range_start_pfn, 6905 unsigned long range_end_pfn) 6906 { 6907 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6908 unsigned long start_pfn, end_pfn; 6909 int i; 6910 6911 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6912 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6913 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6914 nr_absent -= end_pfn - start_pfn; 6915 } 6916 return nr_absent; 6917 } 6918 6919 /** 6920 * absent_pages_in_range - Return number of page frames in holes within a range 6921 * @start_pfn: The start PFN to start searching for holes 6922 * @end_pfn: The end PFN to stop searching for holes 6923 * 6924 * Return: the number of pages frames in memory holes within a range. 6925 */ 6926 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6927 unsigned long end_pfn) 6928 { 6929 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6930 } 6931 6932 /* Return the number of page frames in holes in a zone on a node */ 6933 static unsigned long __init zone_absent_pages_in_node(int nid, 6934 unsigned long zone_type, 6935 unsigned long node_start_pfn, 6936 unsigned long node_end_pfn) 6937 { 6938 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6939 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6940 unsigned long zone_start_pfn, zone_end_pfn; 6941 unsigned long nr_absent; 6942 6943 /* When hotadd a new node from cpu_up(), the node should be empty */ 6944 if (!node_start_pfn && !node_end_pfn) 6945 return 0; 6946 6947 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6948 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6949 6950 adjust_zone_range_for_zone_movable(nid, zone_type, 6951 node_start_pfn, node_end_pfn, 6952 &zone_start_pfn, &zone_end_pfn); 6953 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6954 6955 /* 6956 * ZONE_MOVABLE handling. 6957 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6958 * and vice versa. 6959 */ 6960 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6961 unsigned long start_pfn, end_pfn; 6962 struct memblock_region *r; 6963 6964 for_each_mem_region(r) { 6965 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6966 zone_start_pfn, zone_end_pfn); 6967 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6968 zone_start_pfn, zone_end_pfn); 6969 6970 if (zone_type == ZONE_MOVABLE && 6971 memblock_is_mirror(r)) 6972 nr_absent += end_pfn - start_pfn; 6973 6974 if (zone_type == ZONE_NORMAL && 6975 !memblock_is_mirror(r)) 6976 nr_absent += end_pfn - start_pfn; 6977 } 6978 } 6979 6980 return nr_absent; 6981 } 6982 6983 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6984 unsigned long node_start_pfn, 6985 unsigned long node_end_pfn) 6986 { 6987 unsigned long realtotalpages = 0, totalpages = 0; 6988 enum zone_type i; 6989 6990 for (i = 0; i < MAX_NR_ZONES; i++) { 6991 struct zone *zone = pgdat->node_zones + i; 6992 unsigned long zone_start_pfn, zone_end_pfn; 6993 unsigned long spanned, absent; 6994 unsigned long size, real_size; 6995 6996 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6997 node_start_pfn, 6998 node_end_pfn, 6999 &zone_start_pfn, 7000 &zone_end_pfn); 7001 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7002 node_start_pfn, 7003 node_end_pfn); 7004 7005 size = spanned; 7006 real_size = size - absent; 7007 7008 if (size) 7009 zone->zone_start_pfn = zone_start_pfn; 7010 else 7011 zone->zone_start_pfn = 0; 7012 zone->spanned_pages = size; 7013 zone->present_pages = real_size; 7014 7015 totalpages += size; 7016 realtotalpages += real_size; 7017 } 7018 7019 pgdat->node_spanned_pages = totalpages; 7020 pgdat->node_present_pages = realtotalpages; 7021 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 7022 realtotalpages); 7023 } 7024 7025 #ifndef CONFIG_SPARSEMEM 7026 /* 7027 * Calculate the size of the zone->blockflags rounded to an unsigned long 7028 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7029 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7030 * round what is now in bits to nearest long in bits, then return it in 7031 * bytes. 7032 */ 7033 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7034 { 7035 unsigned long usemapsize; 7036 7037 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7038 usemapsize = roundup(zonesize, pageblock_nr_pages); 7039 usemapsize = usemapsize >> pageblock_order; 7040 usemapsize *= NR_PAGEBLOCK_BITS; 7041 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7042 7043 return usemapsize / 8; 7044 } 7045 7046 static void __ref setup_usemap(struct zone *zone) 7047 { 7048 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7049 zone->spanned_pages); 7050 zone->pageblock_flags = NULL; 7051 if (usemapsize) { 7052 zone->pageblock_flags = 7053 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7054 zone_to_nid(zone)); 7055 if (!zone->pageblock_flags) 7056 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7057 usemapsize, zone->name, zone_to_nid(zone)); 7058 } 7059 } 7060 #else 7061 static inline void setup_usemap(struct zone *zone) {} 7062 #endif /* CONFIG_SPARSEMEM */ 7063 7064 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7065 7066 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7067 void __init set_pageblock_order(void) 7068 { 7069 unsigned int order; 7070 7071 /* Check that pageblock_nr_pages has not already been setup */ 7072 if (pageblock_order) 7073 return; 7074 7075 if (HPAGE_SHIFT > PAGE_SHIFT) 7076 order = HUGETLB_PAGE_ORDER; 7077 else 7078 order = MAX_ORDER - 1; 7079 7080 /* 7081 * Assume the largest contiguous order of interest is a huge page. 7082 * This value may be variable depending on boot parameters on IA64 and 7083 * powerpc. 7084 */ 7085 pageblock_order = order; 7086 } 7087 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7088 7089 /* 7090 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7091 * is unused as pageblock_order is set at compile-time. See 7092 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7093 * the kernel config 7094 */ 7095 void __init set_pageblock_order(void) 7096 { 7097 } 7098 7099 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7100 7101 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7102 unsigned long present_pages) 7103 { 7104 unsigned long pages = spanned_pages; 7105 7106 /* 7107 * Provide a more accurate estimation if there are holes within 7108 * the zone and SPARSEMEM is in use. If there are holes within the 7109 * zone, each populated memory region may cost us one or two extra 7110 * memmap pages due to alignment because memmap pages for each 7111 * populated regions may not be naturally aligned on page boundary. 7112 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7113 */ 7114 if (spanned_pages > present_pages + (present_pages >> 4) && 7115 IS_ENABLED(CONFIG_SPARSEMEM)) 7116 pages = present_pages; 7117 7118 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7119 } 7120 7121 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7122 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7123 { 7124 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7125 7126 spin_lock_init(&ds_queue->split_queue_lock); 7127 INIT_LIST_HEAD(&ds_queue->split_queue); 7128 ds_queue->split_queue_len = 0; 7129 } 7130 #else 7131 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7132 #endif 7133 7134 #ifdef CONFIG_COMPACTION 7135 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7136 { 7137 init_waitqueue_head(&pgdat->kcompactd_wait); 7138 } 7139 #else 7140 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7141 #endif 7142 7143 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7144 { 7145 pgdat_resize_init(pgdat); 7146 7147 pgdat_init_split_queue(pgdat); 7148 pgdat_init_kcompactd(pgdat); 7149 7150 init_waitqueue_head(&pgdat->kswapd_wait); 7151 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7152 7153 pgdat_page_ext_init(pgdat); 7154 lruvec_init(&pgdat->__lruvec); 7155 } 7156 7157 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7158 unsigned long remaining_pages) 7159 { 7160 atomic_long_set(&zone->managed_pages, remaining_pages); 7161 zone_set_nid(zone, nid); 7162 zone->name = zone_names[idx]; 7163 zone->zone_pgdat = NODE_DATA(nid); 7164 spin_lock_init(&zone->lock); 7165 zone_seqlock_init(zone); 7166 zone_pcp_init(zone); 7167 } 7168 7169 /* 7170 * Set up the zone data structures 7171 * - init pgdat internals 7172 * - init all zones belonging to this node 7173 * 7174 * NOTE: this function is only called during memory hotplug 7175 */ 7176 #ifdef CONFIG_MEMORY_HOTPLUG 7177 void __ref free_area_init_core_hotplug(int nid) 7178 { 7179 enum zone_type z; 7180 pg_data_t *pgdat = NODE_DATA(nid); 7181 7182 pgdat_init_internals(pgdat); 7183 for (z = 0; z < MAX_NR_ZONES; z++) 7184 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7185 } 7186 #endif 7187 7188 /* 7189 * Set up the zone data structures: 7190 * - mark all pages reserved 7191 * - mark all memory queues empty 7192 * - clear the memory bitmaps 7193 * 7194 * NOTE: pgdat should get zeroed by caller. 7195 * NOTE: this function is only called during early init. 7196 */ 7197 static void __init free_area_init_core(struct pglist_data *pgdat) 7198 { 7199 enum zone_type j; 7200 int nid = pgdat->node_id; 7201 7202 pgdat_init_internals(pgdat); 7203 pgdat->per_cpu_nodestats = &boot_nodestats; 7204 7205 for (j = 0; j < MAX_NR_ZONES; j++) { 7206 struct zone *zone = pgdat->node_zones + j; 7207 unsigned long size, freesize, memmap_pages; 7208 7209 size = zone->spanned_pages; 7210 freesize = zone->present_pages; 7211 7212 /* 7213 * Adjust freesize so that it accounts for how much memory 7214 * is used by this zone for memmap. This affects the watermark 7215 * and per-cpu initialisations 7216 */ 7217 memmap_pages = calc_memmap_size(size, freesize); 7218 if (!is_highmem_idx(j)) { 7219 if (freesize >= memmap_pages) { 7220 freesize -= memmap_pages; 7221 if (memmap_pages) 7222 printk(KERN_DEBUG 7223 " %s zone: %lu pages used for memmap\n", 7224 zone_names[j], memmap_pages); 7225 } else 7226 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 7227 zone_names[j], memmap_pages, freesize); 7228 } 7229 7230 /* Account for reserved pages */ 7231 if (j == 0 && freesize > dma_reserve) { 7232 freesize -= dma_reserve; 7233 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 7234 zone_names[0], dma_reserve); 7235 } 7236 7237 if (!is_highmem_idx(j)) 7238 nr_kernel_pages += freesize; 7239 /* Charge for highmem memmap if there are enough kernel pages */ 7240 else if (nr_kernel_pages > memmap_pages * 2) 7241 nr_kernel_pages -= memmap_pages; 7242 nr_all_pages += freesize; 7243 7244 /* 7245 * Set an approximate value for lowmem here, it will be adjusted 7246 * when the bootmem allocator frees pages into the buddy system. 7247 * And all highmem pages will be managed by the buddy system. 7248 */ 7249 zone_init_internals(zone, j, nid, freesize); 7250 7251 if (!size) 7252 continue; 7253 7254 set_pageblock_order(); 7255 setup_usemap(zone); 7256 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7257 memmap_init_zone(zone); 7258 } 7259 } 7260 7261 #ifdef CONFIG_FLAT_NODE_MEM_MAP 7262 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 7263 { 7264 unsigned long __maybe_unused start = 0; 7265 unsigned long __maybe_unused offset = 0; 7266 7267 /* Skip empty nodes */ 7268 if (!pgdat->node_spanned_pages) 7269 return; 7270 7271 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7272 offset = pgdat->node_start_pfn - start; 7273 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7274 if (!pgdat->node_mem_map) { 7275 unsigned long size, end; 7276 struct page *map; 7277 7278 /* 7279 * The zone's endpoints aren't required to be MAX_ORDER 7280 * aligned but the node_mem_map endpoints must be in order 7281 * for the buddy allocator to function correctly. 7282 */ 7283 end = pgdat_end_pfn(pgdat); 7284 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7285 size = (end - start) * sizeof(struct page); 7286 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7287 pgdat->node_id); 7288 if (!map) 7289 panic("Failed to allocate %ld bytes for node %d memory map\n", 7290 size, pgdat->node_id); 7291 pgdat->node_mem_map = map + offset; 7292 } 7293 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7294 __func__, pgdat->node_id, (unsigned long)pgdat, 7295 (unsigned long)pgdat->node_mem_map); 7296 #ifndef CONFIG_NEED_MULTIPLE_NODES 7297 /* 7298 * With no DISCONTIG, the global mem_map is just set as node 0's 7299 */ 7300 if (pgdat == NODE_DATA(0)) { 7301 mem_map = NODE_DATA(0)->node_mem_map; 7302 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7303 mem_map -= offset; 7304 } 7305 #endif 7306 } 7307 #else 7308 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7309 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 7310 7311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7312 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7313 { 7314 pgdat->first_deferred_pfn = ULONG_MAX; 7315 } 7316 #else 7317 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7318 #endif 7319 7320 static void __init free_area_init_node(int nid) 7321 { 7322 pg_data_t *pgdat = NODE_DATA(nid); 7323 unsigned long start_pfn = 0; 7324 unsigned long end_pfn = 0; 7325 7326 /* pg_data_t should be reset to zero when it's allocated */ 7327 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7328 7329 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7330 7331 pgdat->node_id = nid; 7332 pgdat->node_start_pfn = start_pfn; 7333 pgdat->per_cpu_nodestats = NULL; 7334 7335 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7336 (u64)start_pfn << PAGE_SHIFT, 7337 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7338 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7339 7340 alloc_node_mem_map(pgdat); 7341 pgdat_set_deferred_range(pgdat); 7342 7343 free_area_init_core(pgdat); 7344 } 7345 7346 void __init free_area_init_memoryless_node(int nid) 7347 { 7348 free_area_init_node(nid); 7349 } 7350 7351 #if MAX_NUMNODES > 1 7352 /* 7353 * Figure out the number of possible node ids. 7354 */ 7355 void __init setup_nr_node_ids(void) 7356 { 7357 unsigned int highest; 7358 7359 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7360 nr_node_ids = highest + 1; 7361 } 7362 #endif 7363 7364 /** 7365 * node_map_pfn_alignment - determine the maximum internode alignment 7366 * 7367 * This function should be called after node map is populated and sorted. 7368 * It calculates the maximum power of two alignment which can distinguish 7369 * all the nodes. 7370 * 7371 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7372 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7373 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7374 * shifted, 1GiB is enough and this function will indicate so. 7375 * 7376 * This is used to test whether pfn -> nid mapping of the chosen memory 7377 * model has fine enough granularity to avoid incorrect mapping for the 7378 * populated node map. 7379 * 7380 * Return: the determined alignment in pfn's. 0 if there is no alignment 7381 * requirement (single node). 7382 */ 7383 unsigned long __init node_map_pfn_alignment(void) 7384 { 7385 unsigned long accl_mask = 0, last_end = 0; 7386 unsigned long start, end, mask; 7387 int last_nid = NUMA_NO_NODE; 7388 int i, nid; 7389 7390 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7391 if (!start || last_nid < 0 || last_nid == nid) { 7392 last_nid = nid; 7393 last_end = end; 7394 continue; 7395 } 7396 7397 /* 7398 * Start with a mask granular enough to pin-point to the 7399 * start pfn and tick off bits one-by-one until it becomes 7400 * too coarse to separate the current node from the last. 7401 */ 7402 mask = ~((1 << __ffs(start)) - 1); 7403 while (mask && last_end <= (start & (mask << 1))) 7404 mask <<= 1; 7405 7406 /* accumulate all internode masks */ 7407 accl_mask |= mask; 7408 } 7409 7410 /* convert mask to number of pages */ 7411 return ~accl_mask + 1; 7412 } 7413 7414 /** 7415 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7416 * 7417 * Return: the minimum PFN based on information provided via 7418 * memblock_set_node(). 7419 */ 7420 unsigned long __init find_min_pfn_with_active_regions(void) 7421 { 7422 return PHYS_PFN(memblock_start_of_DRAM()); 7423 } 7424 7425 /* 7426 * early_calculate_totalpages() 7427 * Sum pages in active regions for movable zone. 7428 * Populate N_MEMORY for calculating usable_nodes. 7429 */ 7430 static unsigned long __init early_calculate_totalpages(void) 7431 { 7432 unsigned long totalpages = 0; 7433 unsigned long start_pfn, end_pfn; 7434 int i, nid; 7435 7436 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7437 unsigned long pages = end_pfn - start_pfn; 7438 7439 totalpages += pages; 7440 if (pages) 7441 node_set_state(nid, N_MEMORY); 7442 } 7443 return totalpages; 7444 } 7445 7446 /* 7447 * Find the PFN the Movable zone begins in each node. Kernel memory 7448 * is spread evenly between nodes as long as the nodes have enough 7449 * memory. When they don't, some nodes will have more kernelcore than 7450 * others 7451 */ 7452 static void __init find_zone_movable_pfns_for_nodes(void) 7453 { 7454 int i, nid; 7455 unsigned long usable_startpfn; 7456 unsigned long kernelcore_node, kernelcore_remaining; 7457 /* save the state before borrow the nodemask */ 7458 nodemask_t saved_node_state = node_states[N_MEMORY]; 7459 unsigned long totalpages = early_calculate_totalpages(); 7460 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7461 struct memblock_region *r; 7462 7463 /* Need to find movable_zone earlier when movable_node is specified. */ 7464 find_usable_zone_for_movable(); 7465 7466 /* 7467 * If movable_node is specified, ignore kernelcore and movablecore 7468 * options. 7469 */ 7470 if (movable_node_is_enabled()) { 7471 for_each_mem_region(r) { 7472 if (!memblock_is_hotpluggable(r)) 7473 continue; 7474 7475 nid = memblock_get_region_node(r); 7476 7477 usable_startpfn = PFN_DOWN(r->base); 7478 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7479 min(usable_startpfn, zone_movable_pfn[nid]) : 7480 usable_startpfn; 7481 } 7482 7483 goto out2; 7484 } 7485 7486 /* 7487 * If kernelcore=mirror is specified, ignore movablecore option 7488 */ 7489 if (mirrored_kernelcore) { 7490 bool mem_below_4gb_not_mirrored = false; 7491 7492 for_each_mem_region(r) { 7493 if (memblock_is_mirror(r)) 7494 continue; 7495 7496 nid = memblock_get_region_node(r); 7497 7498 usable_startpfn = memblock_region_memory_base_pfn(r); 7499 7500 if (usable_startpfn < 0x100000) { 7501 mem_below_4gb_not_mirrored = true; 7502 continue; 7503 } 7504 7505 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7506 min(usable_startpfn, zone_movable_pfn[nid]) : 7507 usable_startpfn; 7508 } 7509 7510 if (mem_below_4gb_not_mirrored) 7511 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7512 7513 goto out2; 7514 } 7515 7516 /* 7517 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7518 * amount of necessary memory. 7519 */ 7520 if (required_kernelcore_percent) 7521 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7522 10000UL; 7523 if (required_movablecore_percent) 7524 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7525 10000UL; 7526 7527 /* 7528 * If movablecore= was specified, calculate what size of 7529 * kernelcore that corresponds so that memory usable for 7530 * any allocation type is evenly spread. If both kernelcore 7531 * and movablecore are specified, then the value of kernelcore 7532 * will be used for required_kernelcore if it's greater than 7533 * what movablecore would have allowed. 7534 */ 7535 if (required_movablecore) { 7536 unsigned long corepages; 7537 7538 /* 7539 * Round-up so that ZONE_MOVABLE is at least as large as what 7540 * was requested by the user 7541 */ 7542 required_movablecore = 7543 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7544 required_movablecore = min(totalpages, required_movablecore); 7545 corepages = totalpages - required_movablecore; 7546 7547 required_kernelcore = max(required_kernelcore, corepages); 7548 } 7549 7550 /* 7551 * If kernelcore was not specified or kernelcore size is larger 7552 * than totalpages, there is no ZONE_MOVABLE. 7553 */ 7554 if (!required_kernelcore || required_kernelcore >= totalpages) 7555 goto out; 7556 7557 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7558 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7559 7560 restart: 7561 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7562 kernelcore_node = required_kernelcore / usable_nodes; 7563 for_each_node_state(nid, N_MEMORY) { 7564 unsigned long start_pfn, end_pfn; 7565 7566 /* 7567 * Recalculate kernelcore_node if the division per node 7568 * now exceeds what is necessary to satisfy the requested 7569 * amount of memory for the kernel 7570 */ 7571 if (required_kernelcore < kernelcore_node) 7572 kernelcore_node = required_kernelcore / usable_nodes; 7573 7574 /* 7575 * As the map is walked, we track how much memory is usable 7576 * by the kernel using kernelcore_remaining. When it is 7577 * 0, the rest of the node is usable by ZONE_MOVABLE 7578 */ 7579 kernelcore_remaining = kernelcore_node; 7580 7581 /* Go through each range of PFNs within this node */ 7582 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7583 unsigned long size_pages; 7584 7585 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7586 if (start_pfn >= end_pfn) 7587 continue; 7588 7589 /* Account for what is only usable for kernelcore */ 7590 if (start_pfn < usable_startpfn) { 7591 unsigned long kernel_pages; 7592 kernel_pages = min(end_pfn, usable_startpfn) 7593 - start_pfn; 7594 7595 kernelcore_remaining -= min(kernel_pages, 7596 kernelcore_remaining); 7597 required_kernelcore -= min(kernel_pages, 7598 required_kernelcore); 7599 7600 /* Continue if range is now fully accounted */ 7601 if (end_pfn <= usable_startpfn) { 7602 7603 /* 7604 * Push zone_movable_pfn to the end so 7605 * that if we have to rebalance 7606 * kernelcore across nodes, we will 7607 * not double account here 7608 */ 7609 zone_movable_pfn[nid] = end_pfn; 7610 continue; 7611 } 7612 start_pfn = usable_startpfn; 7613 } 7614 7615 /* 7616 * The usable PFN range for ZONE_MOVABLE is from 7617 * start_pfn->end_pfn. Calculate size_pages as the 7618 * number of pages used as kernelcore 7619 */ 7620 size_pages = end_pfn - start_pfn; 7621 if (size_pages > kernelcore_remaining) 7622 size_pages = kernelcore_remaining; 7623 zone_movable_pfn[nid] = start_pfn + size_pages; 7624 7625 /* 7626 * Some kernelcore has been met, update counts and 7627 * break if the kernelcore for this node has been 7628 * satisfied 7629 */ 7630 required_kernelcore -= min(required_kernelcore, 7631 size_pages); 7632 kernelcore_remaining -= size_pages; 7633 if (!kernelcore_remaining) 7634 break; 7635 } 7636 } 7637 7638 /* 7639 * If there is still required_kernelcore, we do another pass with one 7640 * less node in the count. This will push zone_movable_pfn[nid] further 7641 * along on the nodes that still have memory until kernelcore is 7642 * satisfied 7643 */ 7644 usable_nodes--; 7645 if (usable_nodes && required_kernelcore > usable_nodes) 7646 goto restart; 7647 7648 out2: 7649 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7650 for (nid = 0; nid < MAX_NUMNODES; nid++) 7651 zone_movable_pfn[nid] = 7652 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7653 7654 out: 7655 /* restore the node_state */ 7656 node_states[N_MEMORY] = saved_node_state; 7657 } 7658 7659 /* Any regular or high memory on that node ? */ 7660 static void check_for_memory(pg_data_t *pgdat, int nid) 7661 { 7662 enum zone_type zone_type; 7663 7664 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7665 struct zone *zone = &pgdat->node_zones[zone_type]; 7666 if (populated_zone(zone)) { 7667 if (IS_ENABLED(CONFIG_HIGHMEM)) 7668 node_set_state(nid, N_HIGH_MEMORY); 7669 if (zone_type <= ZONE_NORMAL) 7670 node_set_state(nid, N_NORMAL_MEMORY); 7671 break; 7672 } 7673 } 7674 } 7675 7676 /* 7677 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7678 * such cases we allow max_zone_pfn sorted in the descending order 7679 */ 7680 bool __weak arch_has_descending_max_zone_pfns(void) 7681 { 7682 return false; 7683 } 7684 7685 /** 7686 * free_area_init - Initialise all pg_data_t and zone data 7687 * @max_zone_pfn: an array of max PFNs for each zone 7688 * 7689 * This will call free_area_init_node() for each active node in the system. 7690 * Using the page ranges provided by memblock_set_node(), the size of each 7691 * zone in each node and their holes is calculated. If the maximum PFN 7692 * between two adjacent zones match, it is assumed that the zone is empty. 7693 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7694 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7695 * starts where the previous one ended. For example, ZONE_DMA32 starts 7696 * at arch_max_dma_pfn. 7697 */ 7698 void __init free_area_init(unsigned long *max_zone_pfn) 7699 { 7700 unsigned long start_pfn, end_pfn; 7701 int i, nid, zone; 7702 bool descending; 7703 7704 /* Record where the zone boundaries are */ 7705 memset(arch_zone_lowest_possible_pfn, 0, 7706 sizeof(arch_zone_lowest_possible_pfn)); 7707 memset(arch_zone_highest_possible_pfn, 0, 7708 sizeof(arch_zone_highest_possible_pfn)); 7709 7710 start_pfn = find_min_pfn_with_active_regions(); 7711 descending = arch_has_descending_max_zone_pfns(); 7712 7713 for (i = 0; i < MAX_NR_ZONES; i++) { 7714 if (descending) 7715 zone = MAX_NR_ZONES - i - 1; 7716 else 7717 zone = i; 7718 7719 if (zone == ZONE_MOVABLE) 7720 continue; 7721 7722 end_pfn = max(max_zone_pfn[zone], start_pfn); 7723 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7724 arch_zone_highest_possible_pfn[zone] = end_pfn; 7725 7726 start_pfn = end_pfn; 7727 } 7728 7729 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7730 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7731 find_zone_movable_pfns_for_nodes(); 7732 7733 /* Print out the zone ranges */ 7734 pr_info("Zone ranges:\n"); 7735 for (i = 0; i < MAX_NR_ZONES; i++) { 7736 if (i == ZONE_MOVABLE) 7737 continue; 7738 pr_info(" %-8s ", zone_names[i]); 7739 if (arch_zone_lowest_possible_pfn[i] == 7740 arch_zone_highest_possible_pfn[i]) 7741 pr_cont("empty\n"); 7742 else 7743 pr_cont("[mem %#018Lx-%#018Lx]\n", 7744 (u64)arch_zone_lowest_possible_pfn[i] 7745 << PAGE_SHIFT, 7746 ((u64)arch_zone_highest_possible_pfn[i] 7747 << PAGE_SHIFT) - 1); 7748 } 7749 7750 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7751 pr_info("Movable zone start for each node\n"); 7752 for (i = 0; i < MAX_NUMNODES; i++) { 7753 if (zone_movable_pfn[i]) 7754 pr_info(" Node %d: %#018Lx\n", i, 7755 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7756 } 7757 7758 /* 7759 * Print out the early node map, and initialize the 7760 * subsection-map relative to active online memory ranges to 7761 * enable future "sub-section" extensions of the memory map. 7762 */ 7763 pr_info("Early memory node ranges\n"); 7764 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7765 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7766 (u64)start_pfn << PAGE_SHIFT, 7767 ((u64)end_pfn << PAGE_SHIFT) - 1); 7768 subsection_map_init(start_pfn, end_pfn - start_pfn); 7769 } 7770 7771 /* Initialise every node */ 7772 mminit_verify_pageflags_layout(); 7773 setup_nr_node_ids(); 7774 for_each_online_node(nid) { 7775 pg_data_t *pgdat = NODE_DATA(nid); 7776 free_area_init_node(nid); 7777 7778 /* Any memory on that node */ 7779 if (pgdat->node_present_pages) 7780 node_set_state(nid, N_MEMORY); 7781 check_for_memory(pgdat, nid); 7782 } 7783 } 7784 7785 static int __init cmdline_parse_core(char *p, unsigned long *core, 7786 unsigned long *percent) 7787 { 7788 unsigned long long coremem; 7789 char *endptr; 7790 7791 if (!p) 7792 return -EINVAL; 7793 7794 /* Value may be a percentage of total memory, otherwise bytes */ 7795 coremem = simple_strtoull(p, &endptr, 0); 7796 if (*endptr == '%') { 7797 /* Paranoid check for percent values greater than 100 */ 7798 WARN_ON(coremem > 100); 7799 7800 *percent = coremem; 7801 } else { 7802 coremem = memparse(p, &p); 7803 /* Paranoid check that UL is enough for the coremem value */ 7804 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7805 7806 *core = coremem >> PAGE_SHIFT; 7807 *percent = 0UL; 7808 } 7809 return 0; 7810 } 7811 7812 /* 7813 * kernelcore=size sets the amount of memory for use for allocations that 7814 * cannot be reclaimed or migrated. 7815 */ 7816 static int __init cmdline_parse_kernelcore(char *p) 7817 { 7818 /* parse kernelcore=mirror */ 7819 if (parse_option_str(p, "mirror")) { 7820 mirrored_kernelcore = true; 7821 return 0; 7822 } 7823 7824 return cmdline_parse_core(p, &required_kernelcore, 7825 &required_kernelcore_percent); 7826 } 7827 7828 /* 7829 * movablecore=size sets the amount of memory for use for allocations that 7830 * can be reclaimed or migrated. 7831 */ 7832 static int __init cmdline_parse_movablecore(char *p) 7833 { 7834 return cmdline_parse_core(p, &required_movablecore, 7835 &required_movablecore_percent); 7836 } 7837 7838 early_param("kernelcore", cmdline_parse_kernelcore); 7839 early_param("movablecore", cmdline_parse_movablecore); 7840 7841 void adjust_managed_page_count(struct page *page, long count) 7842 { 7843 atomic_long_add(count, &page_zone(page)->managed_pages); 7844 totalram_pages_add(count); 7845 #ifdef CONFIG_HIGHMEM 7846 if (PageHighMem(page)) 7847 totalhigh_pages_add(count); 7848 #endif 7849 } 7850 EXPORT_SYMBOL(adjust_managed_page_count); 7851 7852 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7853 { 7854 void *pos; 7855 unsigned long pages = 0; 7856 7857 start = (void *)PAGE_ALIGN((unsigned long)start); 7858 end = (void *)((unsigned long)end & PAGE_MASK); 7859 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7860 struct page *page = virt_to_page(pos); 7861 void *direct_map_addr; 7862 7863 /* 7864 * 'direct_map_addr' might be different from 'pos' 7865 * because some architectures' virt_to_page() 7866 * work with aliases. Getting the direct map 7867 * address ensures that we get a _writeable_ 7868 * alias for the memset(). 7869 */ 7870 direct_map_addr = page_address(page); 7871 /* 7872 * Perform a kasan-unchecked memset() since this memory 7873 * has not been initialized. 7874 */ 7875 direct_map_addr = kasan_reset_tag(direct_map_addr); 7876 if ((unsigned int)poison <= 0xFF) 7877 memset(direct_map_addr, poison, PAGE_SIZE); 7878 7879 free_reserved_page(page); 7880 } 7881 7882 if (pages && s) 7883 pr_info("Freeing %s memory: %ldK\n", 7884 s, pages << (PAGE_SHIFT - 10)); 7885 7886 return pages; 7887 } 7888 7889 void __init mem_init_print_info(void) 7890 { 7891 unsigned long physpages, codesize, datasize, rosize, bss_size; 7892 unsigned long init_code_size, init_data_size; 7893 7894 physpages = get_num_physpages(); 7895 codesize = _etext - _stext; 7896 datasize = _edata - _sdata; 7897 rosize = __end_rodata - __start_rodata; 7898 bss_size = __bss_stop - __bss_start; 7899 init_data_size = __init_end - __init_begin; 7900 init_code_size = _einittext - _sinittext; 7901 7902 /* 7903 * Detect special cases and adjust section sizes accordingly: 7904 * 1) .init.* may be embedded into .data sections 7905 * 2) .init.text.* may be out of [__init_begin, __init_end], 7906 * please refer to arch/tile/kernel/vmlinux.lds.S. 7907 * 3) .rodata.* may be embedded into .text or .data sections. 7908 */ 7909 #define adj_init_size(start, end, size, pos, adj) \ 7910 do { \ 7911 if (start <= pos && pos < end && size > adj) \ 7912 size -= adj; \ 7913 } while (0) 7914 7915 adj_init_size(__init_begin, __init_end, init_data_size, 7916 _sinittext, init_code_size); 7917 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7918 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7919 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7920 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7921 7922 #undef adj_init_size 7923 7924 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7925 #ifdef CONFIG_HIGHMEM 7926 ", %luK highmem" 7927 #endif 7928 ")\n", 7929 nr_free_pages() << (PAGE_SHIFT - 10), 7930 physpages << (PAGE_SHIFT - 10), 7931 codesize >> 10, datasize >> 10, rosize >> 10, 7932 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7933 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7934 totalcma_pages << (PAGE_SHIFT - 10) 7935 #ifdef CONFIG_HIGHMEM 7936 , totalhigh_pages() << (PAGE_SHIFT - 10) 7937 #endif 7938 ); 7939 } 7940 7941 /** 7942 * set_dma_reserve - set the specified number of pages reserved in the first zone 7943 * @new_dma_reserve: The number of pages to mark reserved 7944 * 7945 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7946 * In the DMA zone, a significant percentage may be consumed by kernel image 7947 * and other unfreeable allocations which can skew the watermarks badly. This 7948 * function may optionally be used to account for unfreeable pages in the 7949 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7950 * smaller per-cpu batchsize. 7951 */ 7952 void __init set_dma_reserve(unsigned long new_dma_reserve) 7953 { 7954 dma_reserve = new_dma_reserve; 7955 } 7956 7957 static int page_alloc_cpu_dead(unsigned int cpu) 7958 { 7959 7960 lru_add_drain_cpu(cpu); 7961 drain_pages(cpu); 7962 7963 /* 7964 * Spill the event counters of the dead processor 7965 * into the current processors event counters. 7966 * This artificially elevates the count of the current 7967 * processor. 7968 */ 7969 vm_events_fold_cpu(cpu); 7970 7971 /* 7972 * Zero the differential counters of the dead processor 7973 * so that the vm statistics are consistent. 7974 * 7975 * This is only okay since the processor is dead and cannot 7976 * race with what we are doing. 7977 */ 7978 cpu_vm_stats_fold(cpu); 7979 return 0; 7980 } 7981 7982 #ifdef CONFIG_NUMA 7983 int hashdist = HASHDIST_DEFAULT; 7984 7985 static int __init set_hashdist(char *str) 7986 { 7987 if (!str) 7988 return 0; 7989 hashdist = simple_strtoul(str, &str, 0); 7990 return 1; 7991 } 7992 __setup("hashdist=", set_hashdist); 7993 #endif 7994 7995 void __init page_alloc_init(void) 7996 { 7997 int ret; 7998 7999 #ifdef CONFIG_NUMA 8000 if (num_node_state(N_MEMORY) == 1) 8001 hashdist = 0; 8002 #endif 8003 8004 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 8005 "mm/page_alloc:dead", NULL, 8006 page_alloc_cpu_dead); 8007 WARN_ON(ret < 0); 8008 } 8009 8010 /* 8011 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8012 * or min_free_kbytes changes. 8013 */ 8014 static void calculate_totalreserve_pages(void) 8015 { 8016 struct pglist_data *pgdat; 8017 unsigned long reserve_pages = 0; 8018 enum zone_type i, j; 8019 8020 for_each_online_pgdat(pgdat) { 8021 8022 pgdat->totalreserve_pages = 0; 8023 8024 for (i = 0; i < MAX_NR_ZONES; i++) { 8025 struct zone *zone = pgdat->node_zones + i; 8026 long max = 0; 8027 unsigned long managed_pages = zone_managed_pages(zone); 8028 8029 /* Find valid and maximum lowmem_reserve in the zone */ 8030 for (j = i; j < MAX_NR_ZONES; j++) { 8031 if (zone->lowmem_reserve[j] > max) 8032 max = zone->lowmem_reserve[j]; 8033 } 8034 8035 /* we treat the high watermark as reserved pages. */ 8036 max += high_wmark_pages(zone); 8037 8038 if (max > managed_pages) 8039 max = managed_pages; 8040 8041 pgdat->totalreserve_pages += max; 8042 8043 reserve_pages += max; 8044 } 8045 } 8046 totalreserve_pages = reserve_pages; 8047 } 8048 8049 /* 8050 * setup_per_zone_lowmem_reserve - called whenever 8051 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8052 * has a correct pages reserved value, so an adequate number of 8053 * pages are left in the zone after a successful __alloc_pages(). 8054 */ 8055 static void setup_per_zone_lowmem_reserve(void) 8056 { 8057 struct pglist_data *pgdat; 8058 enum zone_type i, j; 8059 8060 for_each_online_pgdat(pgdat) { 8061 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8062 struct zone *zone = &pgdat->node_zones[i]; 8063 int ratio = sysctl_lowmem_reserve_ratio[i]; 8064 bool clear = !ratio || !zone_managed_pages(zone); 8065 unsigned long managed_pages = 0; 8066 8067 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8068 if (clear) { 8069 zone->lowmem_reserve[j] = 0; 8070 } else { 8071 struct zone *upper_zone = &pgdat->node_zones[j]; 8072 8073 managed_pages += zone_managed_pages(upper_zone); 8074 zone->lowmem_reserve[j] = managed_pages / ratio; 8075 } 8076 } 8077 } 8078 } 8079 8080 /* update totalreserve_pages */ 8081 calculate_totalreserve_pages(); 8082 } 8083 8084 static void __setup_per_zone_wmarks(void) 8085 { 8086 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8087 unsigned long lowmem_pages = 0; 8088 struct zone *zone; 8089 unsigned long flags; 8090 8091 /* Calculate total number of !ZONE_HIGHMEM pages */ 8092 for_each_zone(zone) { 8093 if (!is_highmem(zone)) 8094 lowmem_pages += zone_managed_pages(zone); 8095 } 8096 8097 for_each_zone(zone) { 8098 u64 tmp; 8099 8100 spin_lock_irqsave(&zone->lock, flags); 8101 tmp = (u64)pages_min * zone_managed_pages(zone); 8102 do_div(tmp, lowmem_pages); 8103 if (is_highmem(zone)) { 8104 /* 8105 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8106 * need highmem pages, so cap pages_min to a small 8107 * value here. 8108 * 8109 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8110 * deltas control async page reclaim, and so should 8111 * not be capped for highmem. 8112 */ 8113 unsigned long min_pages; 8114 8115 min_pages = zone_managed_pages(zone) / 1024; 8116 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8117 zone->_watermark[WMARK_MIN] = min_pages; 8118 } else { 8119 /* 8120 * If it's a lowmem zone, reserve a number of pages 8121 * proportionate to the zone's size. 8122 */ 8123 zone->_watermark[WMARK_MIN] = tmp; 8124 } 8125 8126 /* 8127 * Set the kswapd watermarks distance according to the 8128 * scale factor in proportion to available memory, but 8129 * ensure a minimum size on small systems. 8130 */ 8131 tmp = max_t(u64, tmp >> 2, 8132 mult_frac(zone_managed_pages(zone), 8133 watermark_scale_factor, 10000)); 8134 8135 zone->watermark_boost = 0; 8136 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8137 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8138 8139 spin_unlock_irqrestore(&zone->lock, flags); 8140 } 8141 8142 /* update totalreserve_pages */ 8143 calculate_totalreserve_pages(); 8144 } 8145 8146 /** 8147 * setup_per_zone_wmarks - called when min_free_kbytes changes 8148 * or when memory is hot-{added|removed} 8149 * 8150 * Ensures that the watermark[min,low,high] values for each zone are set 8151 * correctly with respect to min_free_kbytes. 8152 */ 8153 void setup_per_zone_wmarks(void) 8154 { 8155 static DEFINE_SPINLOCK(lock); 8156 8157 spin_lock(&lock); 8158 __setup_per_zone_wmarks(); 8159 spin_unlock(&lock); 8160 } 8161 8162 /* 8163 * Initialise min_free_kbytes. 8164 * 8165 * For small machines we want it small (128k min). For large machines 8166 * we want it large (256MB max). But it is not linear, because network 8167 * bandwidth does not increase linearly with machine size. We use 8168 * 8169 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8170 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8171 * 8172 * which yields 8173 * 8174 * 16MB: 512k 8175 * 32MB: 724k 8176 * 64MB: 1024k 8177 * 128MB: 1448k 8178 * 256MB: 2048k 8179 * 512MB: 2896k 8180 * 1024MB: 4096k 8181 * 2048MB: 5792k 8182 * 4096MB: 8192k 8183 * 8192MB: 11584k 8184 * 16384MB: 16384k 8185 */ 8186 int __meminit init_per_zone_wmark_min(void) 8187 { 8188 unsigned long lowmem_kbytes; 8189 int new_min_free_kbytes; 8190 8191 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8192 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8193 8194 if (new_min_free_kbytes > user_min_free_kbytes) { 8195 min_free_kbytes = new_min_free_kbytes; 8196 if (min_free_kbytes < 128) 8197 min_free_kbytes = 128; 8198 if (min_free_kbytes > 262144) 8199 min_free_kbytes = 262144; 8200 } else { 8201 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8202 new_min_free_kbytes, user_min_free_kbytes); 8203 } 8204 setup_per_zone_wmarks(); 8205 refresh_zone_stat_thresholds(); 8206 setup_per_zone_lowmem_reserve(); 8207 8208 #ifdef CONFIG_NUMA 8209 setup_min_unmapped_ratio(); 8210 setup_min_slab_ratio(); 8211 #endif 8212 8213 khugepaged_min_free_kbytes_update(); 8214 8215 return 0; 8216 } 8217 postcore_initcall(init_per_zone_wmark_min) 8218 8219 /* 8220 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8221 * that we can call two helper functions whenever min_free_kbytes 8222 * changes. 8223 */ 8224 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8225 void *buffer, size_t *length, loff_t *ppos) 8226 { 8227 int rc; 8228 8229 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8230 if (rc) 8231 return rc; 8232 8233 if (write) { 8234 user_min_free_kbytes = min_free_kbytes; 8235 setup_per_zone_wmarks(); 8236 } 8237 return 0; 8238 } 8239 8240 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8241 void *buffer, size_t *length, loff_t *ppos) 8242 { 8243 int rc; 8244 8245 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8246 if (rc) 8247 return rc; 8248 8249 if (write) 8250 setup_per_zone_wmarks(); 8251 8252 return 0; 8253 } 8254 8255 #ifdef CONFIG_NUMA 8256 static void setup_min_unmapped_ratio(void) 8257 { 8258 pg_data_t *pgdat; 8259 struct zone *zone; 8260 8261 for_each_online_pgdat(pgdat) 8262 pgdat->min_unmapped_pages = 0; 8263 8264 for_each_zone(zone) 8265 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8266 sysctl_min_unmapped_ratio) / 100; 8267 } 8268 8269 8270 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8271 void *buffer, size_t *length, loff_t *ppos) 8272 { 8273 int rc; 8274 8275 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8276 if (rc) 8277 return rc; 8278 8279 setup_min_unmapped_ratio(); 8280 8281 return 0; 8282 } 8283 8284 static void setup_min_slab_ratio(void) 8285 { 8286 pg_data_t *pgdat; 8287 struct zone *zone; 8288 8289 for_each_online_pgdat(pgdat) 8290 pgdat->min_slab_pages = 0; 8291 8292 for_each_zone(zone) 8293 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8294 sysctl_min_slab_ratio) / 100; 8295 } 8296 8297 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8298 void *buffer, size_t *length, loff_t *ppos) 8299 { 8300 int rc; 8301 8302 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8303 if (rc) 8304 return rc; 8305 8306 setup_min_slab_ratio(); 8307 8308 return 0; 8309 } 8310 #endif 8311 8312 /* 8313 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8314 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8315 * whenever sysctl_lowmem_reserve_ratio changes. 8316 * 8317 * The reserve ratio obviously has absolutely no relation with the 8318 * minimum watermarks. The lowmem reserve ratio can only make sense 8319 * if in function of the boot time zone sizes. 8320 */ 8321 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8322 void *buffer, size_t *length, loff_t *ppos) 8323 { 8324 int i; 8325 8326 proc_dointvec_minmax(table, write, buffer, length, ppos); 8327 8328 for (i = 0; i < MAX_NR_ZONES; i++) { 8329 if (sysctl_lowmem_reserve_ratio[i] < 1) 8330 sysctl_lowmem_reserve_ratio[i] = 0; 8331 } 8332 8333 setup_per_zone_lowmem_reserve(); 8334 return 0; 8335 } 8336 8337 /* 8338 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8339 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8340 * pagelist can have before it gets flushed back to buddy allocator. 8341 */ 8342 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8343 void *buffer, size_t *length, loff_t *ppos) 8344 { 8345 struct zone *zone; 8346 int old_percpu_pagelist_fraction; 8347 int ret; 8348 8349 mutex_lock(&pcp_batch_high_lock); 8350 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8351 8352 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8353 if (!write || ret < 0) 8354 goto out; 8355 8356 /* Sanity checking to avoid pcp imbalance */ 8357 if (percpu_pagelist_fraction && 8358 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8359 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8360 ret = -EINVAL; 8361 goto out; 8362 } 8363 8364 /* No change? */ 8365 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8366 goto out; 8367 8368 for_each_populated_zone(zone) 8369 zone_set_pageset_high_and_batch(zone); 8370 out: 8371 mutex_unlock(&pcp_batch_high_lock); 8372 return ret; 8373 } 8374 8375 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8376 /* 8377 * Returns the number of pages that arch has reserved but 8378 * is not known to alloc_large_system_hash(). 8379 */ 8380 static unsigned long __init arch_reserved_kernel_pages(void) 8381 { 8382 return 0; 8383 } 8384 #endif 8385 8386 /* 8387 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8388 * machines. As memory size is increased the scale is also increased but at 8389 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8390 * quadruples the scale is increased by one, which means the size of hash table 8391 * only doubles, instead of quadrupling as well. 8392 * Because 32-bit systems cannot have large physical memory, where this scaling 8393 * makes sense, it is disabled on such platforms. 8394 */ 8395 #if __BITS_PER_LONG > 32 8396 #define ADAPT_SCALE_BASE (64ul << 30) 8397 #define ADAPT_SCALE_SHIFT 2 8398 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8399 #endif 8400 8401 /* 8402 * allocate a large system hash table from bootmem 8403 * - it is assumed that the hash table must contain an exact power-of-2 8404 * quantity of entries 8405 * - limit is the number of hash buckets, not the total allocation size 8406 */ 8407 void *__init alloc_large_system_hash(const char *tablename, 8408 unsigned long bucketsize, 8409 unsigned long numentries, 8410 int scale, 8411 int flags, 8412 unsigned int *_hash_shift, 8413 unsigned int *_hash_mask, 8414 unsigned long low_limit, 8415 unsigned long high_limit) 8416 { 8417 unsigned long long max = high_limit; 8418 unsigned long log2qty, size; 8419 void *table = NULL; 8420 gfp_t gfp_flags; 8421 bool virt; 8422 bool huge; 8423 8424 /* allow the kernel cmdline to have a say */ 8425 if (!numentries) { 8426 /* round applicable memory size up to nearest megabyte */ 8427 numentries = nr_kernel_pages; 8428 numentries -= arch_reserved_kernel_pages(); 8429 8430 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8431 if (PAGE_SHIFT < 20) 8432 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8433 8434 #if __BITS_PER_LONG > 32 8435 if (!high_limit) { 8436 unsigned long adapt; 8437 8438 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8439 adapt <<= ADAPT_SCALE_SHIFT) 8440 scale++; 8441 } 8442 #endif 8443 8444 /* limit to 1 bucket per 2^scale bytes of low memory */ 8445 if (scale > PAGE_SHIFT) 8446 numentries >>= (scale - PAGE_SHIFT); 8447 else 8448 numentries <<= (PAGE_SHIFT - scale); 8449 8450 /* Make sure we've got at least a 0-order allocation.. */ 8451 if (unlikely(flags & HASH_SMALL)) { 8452 /* Makes no sense without HASH_EARLY */ 8453 WARN_ON(!(flags & HASH_EARLY)); 8454 if (!(numentries >> *_hash_shift)) { 8455 numentries = 1UL << *_hash_shift; 8456 BUG_ON(!numentries); 8457 } 8458 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8459 numentries = PAGE_SIZE / bucketsize; 8460 } 8461 numentries = roundup_pow_of_two(numentries); 8462 8463 /* limit allocation size to 1/16 total memory by default */ 8464 if (max == 0) { 8465 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8466 do_div(max, bucketsize); 8467 } 8468 max = min(max, 0x80000000ULL); 8469 8470 if (numentries < low_limit) 8471 numentries = low_limit; 8472 if (numentries > max) 8473 numentries = max; 8474 8475 log2qty = ilog2(numentries); 8476 8477 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8478 do { 8479 virt = false; 8480 size = bucketsize << log2qty; 8481 if (flags & HASH_EARLY) { 8482 if (flags & HASH_ZERO) 8483 table = memblock_alloc(size, SMP_CACHE_BYTES); 8484 else 8485 table = memblock_alloc_raw(size, 8486 SMP_CACHE_BYTES); 8487 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8488 table = __vmalloc(size, gfp_flags); 8489 virt = true; 8490 huge = is_vm_area_hugepages(table); 8491 } else { 8492 /* 8493 * If bucketsize is not a power-of-two, we may free 8494 * some pages at the end of hash table which 8495 * alloc_pages_exact() automatically does 8496 */ 8497 table = alloc_pages_exact(size, gfp_flags); 8498 kmemleak_alloc(table, size, 1, gfp_flags); 8499 } 8500 } while (!table && size > PAGE_SIZE && --log2qty); 8501 8502 if (!table) 8503 panic("Failed to allocate %s hash table\n", tablename); 8504 8505 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8506 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8507 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8508 8509 if (_hash_shift) 8510 *_hash_shift = log2qty; 8511 if (_hash_mask) 8512 *_hash_mask = (1 << log2qty) - 1; 8513 8514 return table; 8515 } 8516 8517 /* 8518 * This function checks whether pageblock includes unmovable pages or not. 8519 * 8520 * PageLRU check without isolation or lru_lock could race so that 8521 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8522 * check without lock_page also may miss some movable non-lru pages at 8523 * race condition. So you can't expect this function should be exact. 8524 * 8525 * Returns a page without holding a reference. If the caller wants to 8526 * dereference that page (e.g., dumping), it has to make sure that it 8527 * cannot get removed (e.g., via memory unplug) concurrently. 8528 * 8529 */ 8530 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8531 int migratetype, int flags) 8532 { 8533 unsigned long iter = 0; 8534 unsigned long pfn = page_to_pfn(page); 8535 unsigned long offset = pfn % pageblock_nr_pages; 8536 8537 if (is_migrate_cma_page(page)) { 8538 /* 8539 * CMA allocations (alloc_contig_range) really need to mark 8540 * isolate CMA pageblocks even when they are not movable in fact 8541 * so consider them movable here. 8542 */ 8543 if (is_migrate_cma(migratetype)) 8544 return NULL; 8545 8546 return page; 8547 } 8548 8549 for (; iter < pageblock_nr_pages - offset; iter++) { 8550 if (!pfn_valid_within(pfn + iter)) 8551 continue; 8552 8553 page = pfn_to_page(pfn + iter); 8554 8555 /* 8556 * Both, bootmem allocations and memory holes are marked 8557 * PG_reserved and are unmovable. We can even have unmovable 8558 * allocations inside ZONE_MOVABLE, for example when 8559 * specifying "movablecore". 8560 */ 8561 if (PageReserved(page)) 8562 return page; 8563 8564 /* 8565 * If the zone is movable and we have ruled out all reserved 8566 * pages then it should be reasonably safe to assume the rest 8567 * is movable. 8568 */ 8569 if (zone_idx(zone) == ZONE_MOVABLE) 8570 continue; 8571 8572 /* 8573 * Hugepages are not in LRU lists, but they're movable. 8574 * THPs are on the LRU, but need to be counted as #small pages. 8575 * We need not scan over tail pages because we don't 8576 * handle each tail page individually in migration. 8577 */ 8578 if (PageHuge(page) || PageTransCompound(page)) { 8579 struct page *head = compound_head(page); 8580 unsigned int skip_pages; 8581 8582 if (PageHuge(page)) { 8583 if (!hugepage_migration_supported(page_hstate(head))) 8584 return page; 8585 } else if (!PageLRU(head) && !__PageMovable(head)) { 8586 return page; 8587 } 8588 8589 skip_pages = compound_nr(head) - (page - head); 8590 iter += skip_pages - 1; 8591 continue; 8592 } 8593 8594 /* 8595 * We can't use page_count without pin a page 8596 * because another CPU can free compound page. 8597 * This check already skips compound tails of THP 8598 * because their page->_refcount is zero at all time. 8599 */ 8600 if (!page_ref_count(page)) { 8601 if (PageBuddy(page)) 8602 iter += (1 << buddy_order(page)) - 1; 8603 continue; 8604 } 8605 8606 /* 8607 * The HWPoisoned page may be not in buddy system, and 8608 * page_count() is not 0. 8609 */ 8610 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8611 continue; 8612 8613 /* 8614 * We treat all PageOffline() pages as movable when offlining 8615 * to give drivers a chance to decrement their reference count 8616 * in MEM_GOING_OFFLINE in order to indicate that these pages 8617 * can be offlined as there are no direct references anymore. 8618 * For actually unmovable PageOffline() where the driver does 8619 * not support this, we will fail later when trying to actually 8620 * move these pages that still have a reference count > 0. 8621 * (false negatives in this function only) 8622 */ 8623 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8624 continue; 8625 8626 if (__PageMovable(page) || PageLRU(page)) 8627 continue; 8628 8629 /* 8630 * If there are RECLAIMABLE pages, we need to check 8631 * it. But now, memory offline itself doesn't call 8632 * shrink_node_slabs() and it still to be fixed. 8633 */ 8634 return page; 8635 } 8636 return NULL; 8637 } 8638 8639 #ifdef CONFIG_CONTIG_ALLOC 8640 static unsigned long pfn_max_align_down(unsigned long pfn) 8641 { 8642 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8643 pageblock_nr_pages) - 1); 8644 } 8645 8646 static unsigned long pfn_max_align_up(unsigned long pfn) 8647 { 8648 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8649 pageblock_nr_pages)); 8650 } 8651 8652 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8653 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8654 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8655 static void alloc_contig_dump_pages(struct list_head *page_list) 8656 { 8657 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8658 8659 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8660 struct page *page; 8661 8662 dump_stack(); 8663 list_for_each_entry(page, page_list, lru) 8664 dump_page(page, "migration failure"); 8665 } 8666 } 8667 #else 8668 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8669 { 8670 } 8671 #endif 8672 8673 /* [start, end) must belong to a single zone. */ 8674 static int __alloc_contig_migrate_range(struct compact_control *cc, 8675 unsigned long start, unsigned long end) 8676 { 8677 /* This function is based on compact_zone() from compaction.c. */ 8678 unsigned int nr_reclaimed; 8679 unsigned long pfn = start; 8680 unsigned int tries = 0; 8681 int ret = 0; 8682 struct migration_target_control mtc = { 8683 .nid = zone_to_nid(cc->zone), 8684 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8685 }; 8686 8687 lru_cache_disable(); 8688 8689 while (pfn < end || !list_empty(&cc->migratepages)) { 8690 if (fatal_signal_pending(current)) { 8691 ret = -EINTR; 8692 break; 8693 } 8694 8695 if (list_empty(&cc->migratepages)) { 8696 cc->nr_migratepages = 0; 8697 ret = isolate_migratepages_range(cc, pfn, end); 8698 if (ret && ret != -EAGAIN) 8699 break; 8700 pfn = cc->migrate_pfn; 8701 tries = 0; 8702 } else if (++tries == 5) { 8703 ret = -EBUSY; 8704 break; 8705 } 8706 8707 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8708 &cc->migratepages); 8709 cc->nr_migratepages -= nr_reclaimed; 8710 8711 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8712 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8713 8714 /* 8715 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 8716 * to retry again over this error, so do the same here. 8717 */ 8718 if (ret == -ENOMEM) 8719 break; 8720 } 8721 8722 lru_cache_enable(); 8723 if (ret < 0) { 8724 alloc_contig_dump_pages(&cc->migratepages); 8725 putback_movable_pages(&cc->migratepages); 8726 return ret; 8727 } 8728 return 0; 8729 } 8730 8731 /** 8732 * alloc_contig_range() -- tries to allocate given range of pages 8733 * @start: start PFN to allocate 8734 * @end: one-past-the-last PFN to allocate 8735 * @migratetype: migratetype of the underlying pageblocks (either 8736 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8737 * in range must have the same migratetype and it must 8738 * be either of the two. 8739 * @gfp_mask: GFP mask to use during compaction 8740 * 8741 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8742 * aligned. The PFN range must belong to a single zone. 8743 * 8744 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8745 * pageblocks in the range. Once isolated, the pageblocks should not 8746 * be modified by others. 8747 * 8748 * Return: zero on success or negative error code. On success all 8749 * pages which PFN is in [start, end) are allocated for the caller and 8750 * need to be freed with free_contig_range(). 8751 */ 8752 int alloc_contig_range(unsigned long start, unsigned long end, 8753 unsigned migratetype, gfp_t gfp_mask) 8754 { 8755 unsigned long outer_start, outer_end; 8756 unsigned int order; 8757 int ret = 0; 8758 8759 struct compact_control cc = { 8760 .nr_migratepages = 0, 8761 .order = -1, 8762 .zone = page_zone(pfn_to_page(start)), 8763 .mode = MIGRATE_SYNC, 8764 .ignore_skip_hint = true, 8765 .no_set_skip_hint = true, 8766 .gfp_mask = current_gfp_context(gfp_mask), 8767 .alloc_contig = true, 8768 }; 8769 INIT_LIST_HEAD(&cc.migratepages); 8770 8771 /* 8772 * What we do here is we mark all pageblocks in range as 8773 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8774 * have different sizes, and due to the way page allocator 8775 * work, we align the range to biggest of the two pages so 8776 * that page allocator won't try to merge buddies from 8777 * different pageblocks and change MIGRATE_ISOLATE to some 8778 * other migration type. 8779 * 8780 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8781 * migrate the pages from an unaligned range (ie. pages that 8782 * we are interested in). This will put all the pages in 8783 * range back to page allocator as MIGRATE_ISOLATE. 8784 * 8785 * When this is done, we take the pages in range from page 8786 * allocator removing them from the buddy system. This way 8787 * page allocator will never consider using them. 8788 * 8789 * This lets us mark the pageblocks back as 8790 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8791 * aligned range but not in the unaligned, original range are 8792 * put back to page allocator so that buddy can use them. 8793 */ 8794 8795 ret = start_isolate_page_range(pfn_max_align_down(start), 8796 pfn_max_align_up(end), migratetype, 0); 8797 if (ret) 8798 return ret; 8799 8800 drain_all_pages(cc.zone); 8801 8802 /* 8803 * In case of -EBUSY, we'd like to know which page causes problem. 8804 * So, just fall through. test_pages_isolated() has a tracepoint 8805 * which will report the busy page. 8806 * 8807 * It is possible that busy pages could become available before 8808 * the call to test_pages_isolated, and the range will actually be 8809 * allocated. So, if we fall through be sure to clear ret so that 8810 * -EBUSY is not accidentally used or returned to caller. 8811 */ 8812 ret = __alloc_contig_migrate_range(&cc, start, end); 8813 if (ret && ret != -EBUSY) 8814 goto done; 8815 ret = 0; 8816 8817 /* 8818 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8819 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8820 * more, all pages in [start, end) are free in page allocator. 8821 * What we are going to do is to allocate all pages from 8822 * [start, end) (that is remove them from page allocator). 8823 * 8824 * The only problem is that pages at the beginning and at the 8825 * end of interesting range may be not aligned with pages that 8826 * page allocator holds, ie. they can be part of higher order 8827 * pages. Because of this, we reserve the bigger range and 8828 * once this is done free the pages we are not interested in. 8829 * 8830 * We don't have to hold zone->lock here because the pages are 8831 * isolated thus they won't get removed from buddy. 8832 */ 8833 8834 order = 0; 8835 outer_start = start; 8836 while (!PageBuddy(pfn_to_page(outer_start))) { 8837 if (++order >= MAX_ORDER) { 8838 outer_start = start; 8839 break; 8840 } 8841 outer_start &= ~0UL << order; 8842 } 8843 8844 if (outer_start != start) { 8845 order = buddy_order(pfn_to_page(outer_start)); 8846 8847 /* 8848 * outer_start page could be small order buddy page and 8849 * it doesn't include start page. Adjust outer_start 8850 * in this case to report failed page properly 8851 * on tracepoint in test_pages_isolated() 8852 */ 8853 if (outer_start + (1UL << order) <= start) 8854 outer_start = start; 8855 } 8856 8857 /* Make sure the range is really isolated. */ 8858 if (test_pages_isolated(outer_start, end, 0)) { 8859 ret = -EBUSY; 8860 goto done; 8861 } 8862 8863 /* Grab isolated pages from freelists. */ 8864 outer_end = isolate_freepages_range(&cc, outer_start, end); 8865 if (!outer_end) { 8866 ret = -EBUSY; 8867 goto done; 8868 } 8869 8870 /* Free head and tail (if any) */ 8871 if (start != outer_start) 8872 free_contig_range(outer_start, start - outer_start); 8873 if (end != outer_end) 8874 free_contig_range(end, outer_end - end); 8875 8876 done: 8877 undo_isolate_page_range(pfn_max_align_down(start), 8878 pfn_max_align_up(end), migratetype); 8879 return ret; 8880 } 8881 EXPORT_SYMBOL(alloc_contig_range); 8882 8883 static int __alloc_contig_pages(unsigned long start_pfn, 8884 unsigned long nr_pages, gfp_t gfp_mask) 8885 { 8886 unsigned long end_pfn = start_pfn + nr_pages; 8887 8888 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8889 gfp_mask); 8890 } 8891 8892 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8893 unsigned long nr_pages) 8894 { 8895 unsigned long i, end_pfn = start_pfn + nr_pages; 8896 struct page *page; 8897 8898 for (i = start_pfn; i < end_pfn; i++) { 8899 page = pfn_to_online_page(i); 8900 if (!page) 8901 return false; 8902 8903 if (page_zone(page) != z) 8904 return false; 8905 8906 if (PageReserved(page)) 8907 return false; 8908 } 8909 return true; 8910 } 8911 8912 static bool zone_spans_last_pfn(const struct zone *zone, 8913 unsigned long start_pfn, unsigned long nr_pages) 8914 { 8915 unsigned long last_pfn = start_pfn + nr_pages - 1; 8916 8917 return zone_spans_pfn(zone, last_pfn); 8918 } 8919 8920 /** 8921 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8922 * @nr_pages: Number of contiguous pages to allocate 8923 * @gfp_mask: GFP mask to limit search and used during compaction 8924 * @nid: Target node 8925 * @nodemask: Mask for other possible nodes 8926 * 8927 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8928 * on an applicable zonelist to find a contiguous pfn range which can then be 8929 * tried for allocation with alloc_contig_range(). This routine is intended 8930 * for allocation requests which can not be fulfilled with the buddy allocator. 8931 * 8932 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8933 * power of two then the alignment is guaranteed to be to the given nr_pages 8934 * (e.g. 1GB request would be aligned to 1GB). 8935 * 8936 * Allocated pages can be freed with free_contig_range() or by manually calling 8937 * __free_page() on each allocated page. 8938 * 8939 * Return: pointer to contiguous pages on success, or NULL if not successful. 8940 */ 8941 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8942 int nid, nodemask_t *nodemask) 8943 { 8944 unsigned long ret, pfn, flags; 8945 struct zonelist *zonelist; 8946 struct zone *zone; 8947 struct zoneref *z; 8948 8949 zonelist = node_zonelist(nid, gfp_mask); 8950 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8951 gfp_zone(gfp_mask), nodemask) { 8952 spin_lock_irqsave(&zone->lock, flags); 8953 8954 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8955 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8956 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8957 /* 8958 * We release the zone lock here because 8959 * alloc_contig_range() will also lock the zone 8960 * at some point. If there's an allocation 8961 * spinning on this lock, it may win the race 8962 * and cause alloc_contig_range() to fail... 8963 */ 8964 spin_unlock_irqrestore(&zone->lock, flags); 8965 ret = __alloc_contig_pages(pfn, nr_pages, 8966 gfp_mask); 8967 if (!ret) 8968 return pfn_to_page(pfn); 8969 spin_lock_irqsave(&zone->lock, flags); 8970 } 8971 pfn += nr_pages; 8972 } 8973 spin_unlock_irqrestore(&zone->lock, flags); 8974 } 8975 return NULL; 8976 } 8977 #endif /* CONFIG_CONTIG_ALLOC */ 8978 8979 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 8980 { 8981 unsigned long count = 0; 8982 8983 for (; nr_pages--; pfn++) { 8984 struct page *page = pfn_to_page(pfn); 8985 8986 count += page_count(page) != 1; 8987 __free_page(page); 8988 } 8989 WARN(count != 0, "%lu pages are still in use!\n", count); 8990 } 8991 EXPORT_SYMBOL(free_contig_range); 8992 8993 /* 8994 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8995 * page high values need to be recalculated. 8996 */ 8997 void __meminit zone_pcp_update(struct zone *zone) 8998 { 8999 mutex_lock(&pcp_batch_high_lock); 9000 zone_set_pageset_high_and_batch(zone); 9001 mutex_unlock(&pcp_batch_high_lock); 9002 } 9003 9004 /* 9005 * Effectively disable pcplists for the zone by setting the high limit to 0 9006 * and draining all cpus. A concurrent page freeing on another CPU that's about 9007 * to put the page on pcplist will either finish before the drain and the page 9008 * will be drained, or observe the new high limit and skip the pcplist. 9009 * 9010 * Must be paired with a call to zone_pcp_enable(). 9011 */ 9012 void zone_pcp_disable(struct zone *zone) 9013 { 9014 mutex_lock(&pcp_batch_high_lock); 9015 __zone_set_pageset_high_and_batch(zone, 0, 1); 9016 __drain_all_pages(zone, true); 9017 } 9018 9019 void zone_pcp_enable(struct zone *zone) 9020 { 9021 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9022 mutex_unlock(&pcp_batch_high_lock); 9023 } 9024 9025 void zone_pcp_reset(struct zone *zone) 9026 { 9027 int cpu; 9028 struct per_cpu_pageset *pset; 9029 9030 if (zone->pageset != &boot_pageset) { 9031 for_each_online_cpu(cpu) { 9032 pset = per_cpu_ptr(zone->pageset, cpu); 9033 drain_zonestat(zone, pset); 9034 } 9035 free_percpu(zone->pageset); 9036 zone->pageset = &boot_pageset; 9037 } 9038 } 9039 9040 #ifdef CONFIG_MEMORY_HOTREMOVE 9041 /* 9042 * All pages in the range must be in a single zone, must not contain holes, 9043 * must span full sections, and must be isolated before calling this function. 9044 */ 9045 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9046 { 9047 unsigned long pfn = start_pfn; 9048 struct page *page; 9049 struct zone *zone; 9050 unsigned int order; 9051 unsigned long flags; 9052 9053 offline_mem_sections(pfn, end_pfn); 9054 zone = page_zone(pfn_to_page(pfn)); 9055 spin_lock_irqsave(&zone->lock, flags); 9056 while (pfn < end_pfn) { 9057 page = pfn_to_page(pfn); 9058 /* 9059 * The HWPoisoned page may be not in buddy system, and 9060 * page_count() is not 0. 9061 */ 9062 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9063 pfn++; 9064 continue; 9065 } 9066 /* 9067 * At this point all remaining PageOffline() pages have a 9068 * reference count of 0 and can simply be skipped. 9069 */ 9070 if (PageOffline(page)) { 9071 BUG_ON(page_count(page)); 9072 BUG_ON(PageBuddy(page)); 9073 pfn++; 9074 continue; 9075 } 9076 9077 BUG_ON(page_count(page)); 9078 BUG_ON(!PageBuddy(page)); 9079 order = buddy_order(page); 9080 del_page_from_free_list(page, zone, order); 9081 pfn += (1 << order); 9082 } 9083 spin_unlock_irqrestore(&zone->lock, flags); 9084 } 9085 #endif 9086 9087 bool is_free_buddy_page(struct page *page) 9088 { 9089 struct zone *zone = page_zone(page); 9090 unsigned long pfn = page_to_pfn(page); 9091 unsigned long flags; 9092 unsigned int order; 9093 9094 spin_lock_irqsave(&zone->lock, flags); 9095 for (order = 0; order < MAX_ORDER; order++) { 9096 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9097 9098 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 9099 break; 9100 } 9101 spin_unlock_irqrestore(&zone->lock, flags); 9102 9103 return order < MAX_ORDER; 9104 } 9105 9106 #ifdef CONFIG_MEMORY_FAILURE 9107 /* 9108 * Break down a higher-order page in sub-pages, and keep our target out of 9109 * buddy allocator. 9110 */ 9111 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9112 struct page *target, int low, int high, 9113 int migratetype) 9114 { 9115 unsigned long size = 1 << high; 9116 struct page *current_buddy, *next_page; 9117 9118 while (high > low) { 9119 high--; 9120 size >>= 1; 9121 9122 if (target >= &page[size]) { 9123 next_page = page + size; 9124 current_buddy = page; 9125 } else { 9126 next_page = page; 9127 current_buddy = page + size; 9128 } 9129 9130 if (set_page_guard(zone, current_buddy, high, migratetype)) 9131 continue; 9132 9133 if (current_buddy != target) { 9134 add_to_free_list(current_buddy, zone, high, migratetype); 9135 set_buddy_order(current_buddy, high); 9136 page = next_page; 9137 } 9138 } 9139 } 9140 9141 /* 9142 * Take a page that will be marked as poisoned off the buddy allocator. 9143 */ 9144 bool take_page_off_buddy(struct page *page) 9145 { 9146 struct zone *zone = page_zone(page); 9147 unsigned long pfn = page_to_pfn(page); 9148 unsigned long flags; 9149 unsigned int order; 9150 bool ret = false; 9151 9152 spin_lock_irqsave(&zone->lock, flags); 9153 for (order = 0; order < MAX_ORDER; order++) { 9154 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9155 int page_order = buddy_order(page_head); 9156 9157 if (PageBuddy(page_head) && page_order >= order) { 9158 unsigned long pfn_head = page_to_pfn(page_head); 9159 int migratetype = get_pfnblock_migratetype(page_head, 9160 pfn_head); 9161 9162 del_page_from_free_list(page_head, zone, page_order); 9163 break_down_buddy_pages(zone, page_head, page, 0, 9164 page_order, migratetype); 9165 if (!is_migrate_isolate(migratetype)) 9166 __mod_zone_freepage_state(zone, -1, migratetype); 9167 ret = true; 9168 break; 9169 } 9170 if (page_count(page_head) > 0) 9171 break; 9172 } 9173 spin_unlock_irqrestore(&zone->lock, flags); 9174 return ret; 9175 } 9176 #endif 9177