1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 79 static DEFINE_MUTEX(pcp_batch_high_lock); 80 #define MIN_PERCPU_PAGELIST_FRACTION (8) 81 82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 83 DEFINE_PER_CPU(int, numa_node); 84 EXPORT_PER_CPU_SYMBOL(numa_node); 85 #endif 86 87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 88 89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 90 /* 91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 94 * defined in <linux/topology.h>. 95 */ 96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 97 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 98 int _node_numa_mem_[MAX_NUMNODES]; 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 DEFINE_MUTEX(pcpu_drain_mutex); 107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 139 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 140 #else 141 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 142 #endif 143 EXPORT_SYMBOL(init_on_alloc); 144 145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 146 DEFINE_STATIC_KEY_TRUE(init_on_free); 147 #else 148 DEFINE_STATIC_KEY_FALSE(init_on_free); 149 #endif 150 EXPORT_SYMBOL(init_on_free); 151 152 static int __init early_init_on_alloc(char *buf) 153 { 154 int ret; 155 bool bool_result; 156 157 if (!buf) 158 return -EINVAL; 159 ret = kstrtobool(buf, &bool_result); 160 if (bool_result && page_poisoning_enabled()) 161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 162 if (bool_result) 163 static_branch_enable(&init_on_alloc); 164 else 165 static_branch_disable(&init_on_alloc); 166 return ret; 167 } 168 early_param("init_on_alloc", early_init_on_alloc); 169 170 static int __init early_init_on_free(char *buf) 171 { 172 int ret; 173 bool bool_result; 174 175 if (!buf) 176 return -EINVAL; 177 ret = kstrtobool(buf, &bool_result); 178 if (bool_result && page_poisoning_enabled()) 179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 180 if (bool_result) 181 static_branch_enable(&init_on_free); 182 else 183 static_branch_disable(&init_on_free); 184 return ret; 185 } 186 early_param("init_on_free", early_init_on_free); 187 188 /* 189 * A cached value of the page's pageblock's migratetype, used when the page is 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 192 * Also the migratetype set in the page does not necessarily match the pcplist 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 194 * other index - this ensures that it will be put on the correct CMA freelist. 195 */ 196 static inline int get_pcppage_migratetype(struct page *page) 197 { 198 return page->index; 199 } 200 201 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 202 { 203 page->index = migratetype; 204 } 205 206 #ifdef CONFIG_PM_SLEEP 207 /* 208 * The following functions are used by the suspend/hibernate code to temporarily 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 210 * while devices are suspended. To avoid races with the suspend/hibernate code, 211 * they should always be called with system_transition_mutex held 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 214 * with that modification). 215 */ 216 217 static gfp_t saved_gfp_mask; 218 219 void pm_restore_gfp_mask(void) 220 { 221 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 222 if (saved_gfp_mask) { 223 gfp_allowed_mask = saved_gfp_mask; 224 saved_gfp_mask = 0; 225 } 226 } 227 228 void pm_restrict_gfp_mask(void) 229 { 230 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 231 WARN_ON(saved_gfp_mask); 232 saved_gfp_mask = gfp_allowed_mask; 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 234 } 235 236 bool pm_suspended_storage(void) 237 { 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 239 return false; 240 return true; 241 } 242 #endif /* CONFIG_PM_SLEEP */ 243 244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 245 unsigned int pageblock_order __read_mostly; 246 #endif 247 248 static void __free_pages_ok(struct page *page, unsigned int order); 249 250 /* 251 * results with 256, 32 in the lowmem_reserve sysctl: 252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 253 * 1G machine -> (16M dma, 784M normal, 224M high) 254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 257 * 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally 259 * don't need any ZONE_NORMAL reservation 260 */ 261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 262 #ifdef CONFIG_ZONE_DMA 263 [ZONE_DMA] = 256, 264 #endif 265 #ifdef CONFIG_ZONE_DMA32 266 [ZONE_DMA32] = 256, 267 #endif 268 [ZONE_NORMAL] = 32, 269 #ifdef CONFIG_HIGHMEM 270 [ZONE_HIGHMEM] = 0, 271 #endif 272 [ZONE_MOVABLE] = 0, 273 }; 274 275 static char * const zone_names[MAX_NR_ZONES] = { 276 #ifdef CONFIG_ZONE_DMA 277 "DMA", 278 #endif 279 #ifdef CONFIG_ZONE_DMA32 280 "DMA32", 281 #endif 282 "Normal", 283 #ifdef CONFIG_HIGHMEM 284 "HighMem", 285 #endif 286 "Movable", 287 #ifdef CONFIG_ZONE_DEVICE 288 "Device", 289 #endif 290 }; 291 292 const char * const migratetype_names[MIGRATE_TYPES] = { 293 "Unmovable", 294 "Movable", 295 "Reclaimable", 296 "HighAtomic", 297 #ifdef CONFIG_CMA 298 "CMA", 299 #endif 300 #ifdef CONFIG_MEMORY_ISOLATION 301 "Isolate", 302 #endif 303 }; 304 305 compound_page_dtor * const compound_page_dtors[] = { 306 NULL, 307 free_compound_page, 308 #ifdef CONFIG_HUGETLB_PAGE 309 free_huge_page, 310 #endif 311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 312 free_transhuge_page, 313 #endif 314 }; 315 316 int min_free_kbytes = 1024; 317 int user_min_free_kbytes = -1; 318 #ifdef CONFIG_DISCONTIGMEM 319 /* 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 321 * are not on separate NUMA nodes. Functionally this works but with 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 323 * quite small. By default, do not boost watermarks on discontigmem as in 324 * many cases very high-order allocations like THP are likely to be 325 * unsupported and the premature reclaim offsets the advantage of long-term 326 * fragmentation avoidance. 327 */ 328 int watermark_boost_factor __read_mostly; 329 #else 330 int watermark_boost_factor __read_mostly = 15000; 331 #endif 332 int watermark_scale_factor = 10; 333 334 static unsigned long nr_kernel_pages __initdata; 335 static unsigned long nr_all_pages __initdata; 336 static unsigned long dma_reserve __initdata; 337 338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 352 353 #if MAX_NUMNODES > 1 354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 355 unsigned int nr_online_nodes __read_mostly = 1; 356 EXPORT_SYMBOL(nr_node_ids); 357 EXPORT_SYMBOL(nr_online_nodes); 358 #endif 359 360 int page_group_by_mobility_disabled __read_mostly; 361 362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 363 /* 364 * During boot we initialize deferred pages on-demand, as needed, but once 365 * page_alloc_init_late() has finished, the deferred pages are all initialized, 366 * and we can permanently disable that path. 367 */ 368 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 369 370 /* 371 * Calling kasan_free_pages() only after deferred memory initialization 372 * has completed. Poisoning pages during deferred memory init will greatly 373 * lengthen the process and cause problem in large memory systems as the 374 * deferred pages initialization is done with interrupt disabled. 375 * 376 * Assuming that there will be no reference to those newly initialized 377 * pages before they are ever allocated, this should have no effect on 378 * KASAN memory tracking as the poison will be properly inserted at page 379 * allocation time. The only corner case is when pages are allocated by 380 * on-demand allocation and then freed again before the deferred pages 381 * initialization is done, but this is not likely to happen. 382 */ 383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 384 { 385 if (!static_branch_unlikely(&deferred_pages)) 386 kasan_free_pages(page, order); 387 } 388 389 /* Returns true if the struct page for the pfn is uninitialised */ 390 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 391 { 392 int nid = early_pfn_to_nid(pfn); 393 394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 395 return true; 396 397 return false; 398 } 399 400 /* 401 * Returns true when the remaining initialisation should be deferred until 402 * later in the boot cycle when it can be parallelised. 403 */ 404 static bool __meminit 405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 406 { 407 static unsigned long prev_end_pfn, nr_initialised; 408 409 /* 410 * prev_end_pfn static that contains the end of previous zone 411 * No need to protect because called very early in boot before smp_init. 412 */ 413 if (prev_end_pfn != end_pfn) { 414 prev_end_pfn = end_pfn; 415 nr_initialised = 0; 416 } 417 418 /* Always populate low zones for address-constrained allocations */ 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 420 return false; 421 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 436 437 static inline bool early_page_uninitialised(unsigned long pfn) 438 { 439 return false; 440 } 441 442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 443 { 444 return false; 445 } 446 #endif 447 448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 449 static inline unsigned long *get_pageblock_bitmap(struct page *page, 450 unsigned long pfn) 451 { 452 #ifdef CONFIG_SPARSEMEM 453 return section_to_usemap(__pfn_to_section(pfn)); 454 #else 455 return page_zone(page)->pageblock_flags; 456 #endif /* CONFIG_SPARSEMEM */ 457 } 458 459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 460 { 461 #ifdef CONFIG_SPARSEMEM 462 pfn &= (PAGES_PER_SECTION-1); 463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 464 #else 465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 467 #endif /* CONFIG_SPARSEMEM */ 468 } 469 470 /** 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 472 * @page: The page within the block of interest 473 * @pfn: The target page frame number 474 * @end_bitidx: The last bit of interest to retrieve 475 * @mask: mask of bits that the caller is interested in 476 * 477 * Return: pageblock_bits flags 478 */ 479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 480 unsigned long pfn, 481 unsigned long end_bitidx, 482 unsigned long mask) 483 { 484 unsigned long *bitmap; 485 unsigned long bitidx, word_bitidx; 486 unsigned long word; 487 488 bitmap = get_pageblock_bitmap(page, pfn); 489 bitidx = pfn_to_bitidx(page, pfn); 490 word_bitidx = bitidx / BITS_PER_LONG; 491 bitidx &= (BITS_PER_LONG-1); 492 493 word = bitmap[word_bitidx]; 494 bitidx += end_bitidx; 495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 496 } 497 498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 499 unsigned long end_bitidx, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @end_bitidx: The last bit of interest 516 * @mask: mask of bits that the caller is interested in 517 */ 518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 519 unsigned long pfn, 520 unsigned long end_bitidx, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 bitidx += end_bitidx; 538 mask <<= (BITS_PER_LONG - bitidx - 1); 539 flags <<= (BITS_PER_LONG - bitidx - 1); 540 541 word = READ_ONCE(bitmap[word_bitidx]); 542 for (;;) { 543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 544 if (word == old_word) 545 break; 546 word = old_word; 547 } 548 } 549 550 void set_pageblock_migratetype(struct page *page, int migratetype) 551 { 552 if (unlikely(page_group_by_mobility_disabled && 553 migratetype < MIGRATE_PCPTYPES)) 554 migratetype = MIGRATE_UNMOVABLE; 555 556 set_pageblock_flags_group(page, (unsigned long)migratetype, 557 PB_migrate, PB_migrate_end); 558 } 559 560 #ifdef CONFIG_DEBUG_VM 561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 562 { 563 int ret = 0; 564 unsigned seq; 565 unsigned long pfn = page_to_pfn(page); 566 unsigned long sp, start_pfn; 567 568 do { 569 seq = zone_span_seqbegin(zone); 570 start_pfn = zone->zone_start_pfn; 571 sp = zone->spanned_pages; 572 if (!zone_spans_pfn(zone, pfn)) 573 ret = 1; 574 } while (zone_span_seqretry(zone, seq)); 575 576 if (ret) 577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 578 pfn, zone_to_nid(zone), zone->name, 579 start_pfn, start_pfn + sp); 580 581 return ret; 582 } 583 584 static int page_is_consistent(struct zone *zone, struct page *page) 585 { 586 if (!pfn_valid_within(page_to_pfn(page))) 587 return 0; 588 if (zone != page_zone(page)) 589 return 0; 590 591 return 1; 592 } 593 /* 594 * Temporary debugging check for pages not lying within a given zone. 595 */ 596 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 597 { 598 if (page_outside_zone_boundaries(zone, page)) 599 return 1; 600 if (!page_is_consistent(zone, page)) 601 return 1; 602 603 return 0; 604 } 605 #else 606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 return 0; 609 } 610 #endif 611 612 static void bad_page(struct page *page, const char *reason, 613 unsigned long bad_flags) 614 { 615 static unsigned long resume; 616 static unsigned long nr_shown; 617 static unsigned long nr_unshown; 618 619 /* 620 * Allow a burst of 60 reports, then keep quiet for that minute; 621 * or allow a steady drip of one report per second. 622 */ 623 if (nr_shown == 60) { 624 if (time_before(jiffies, resume)) { 625 nr_unshown++; 626 goto out; 627 } 628 if (nr_unshown) { 629 pr_alert( 630 "BUG: Bad page state: %lu messages suppressed\n", 631 nr_unshown); 632 nr_unshown = 0; 633 } 634 nr_shown = 0; 635 } 636 if (nr_shown++ == 0) 637 resume = jiffies + 60 * HZ; 638 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 640 current->comm, page_to_pfn(page)); 641 __dump_page(page, reason); 642 bad_flags &= page->flags; 643 if (bad_flags) 644 pr_alert("bad because of flags: %#lx(%pGp)\n", 645 bad_flags, &bad_flags); 646 dump_page_owner(page); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 page_mapcount_reset(page); /* remove PageBuddy */ 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 654 } 655 656 /* 657 * Higher-order pages are called "compound pages". They are structured thusly: 658 * 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 660 * 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 663 * 664 * The first tail page's ->compound_dtor holds the offset in array of compound 665 * page destructors. See compound_page_dtors. 666 * 667 * The first tail page's ->compound_order holds the order of allocation. 668 * This usage means that zero-order pages may not be compound. 669 */ 670 671 void free_compound_page(struct page *page) 672 { 673 mem_cgroup_uncharge(page); 674 __free_pages_ok(page, compound_order(page)); 675 } 676 677 void prep_compound_page(struct page *page, unsigned int order) 678 { 679 int i; 680 int nr_pages = 1 << order; 681 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 683 set_compound_order(page, order); 684 __SetPageHead(page); 685 for (i = 1; i < nr_pages; i++) { 686 struct page *p = page + i; 687 set_page_count(p, 0); 688 p->mapping = TAIL_MAPPING; 689 set_compound_head(p, page); 690 } 691 atomic_set(compound_mapcount_ptr(page), -1); 692 } 693 694 #ifdef CONFIG_DEBUG_PAGEALLOC 695 unsigned int _debug_guardpage_minorder; 696 697 bool _debug_pagealloc_enabled_early __read_mostly 698 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 699 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 701 EXPORT_SYMBOL(_debug_pagealloc_enabled); 702 703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 704 705 static int __init early_debug_pagealloc(char *buf) 706 { 707 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 708 } 709 early_param("debug_pagealloc", early_debug_pagealloc); 710 711 void init_debug_pagealloc(void) 712 { 713 if (!debug_pagealloc_enabled()) 714 return; 715 716 static_branch_enable(&_debug_pagealloc_enabled); 717 718 if (!debug_guardpage_minorder()) 719 return; 720 721 static_branch_enable(&_debug_guardpage_enabled); 722 } 723 724 static int __init debug_guardpage_minorder_setup(char *buf) 725 { 726 unsigned long res; 727 728 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 729 pr_err("Bad debug_guardpage_minorder value\n"); 730 return 0; 731 } 732 _debug_guardpage_minorder = res; 733 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 734 return 0; 735 } 736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 737 738 static inline bool set_page_guard(struct zone *zone, struct page *page, 739 unsigned int order, int migratetype) 740 { 741 if (!debug_guardpage_enabled()) 742 return false; 743 744 if (order >= debug_guardpage_minorder()) 745 return false; 746 747 __SetPageGuard(page); 748 INIT_LIST_HEAD(&page->lru); 749 set_page_private(page, order); 750 /* Guard pages are not available for any usage */ 751 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 752 753 return true; 754 } 755 756 static inline void clear_page_guard(struct zone *zone, struct page *page, 757 unsigned int order, int migratetype) 758 { 759 if (!debug_guardpage_enabled()) 760 return; 761 762 __ClearPageGuard(page); 763 764 set_page_private(page, 0); 765 if (!is_migrate_isolate(migratetype)) 766 __mod_zone_freepage_state(zone, (1 << order), migratetype); 767 } 768 #else 769 static inline bool set_page_guard(struct zone *zone, struct page *page, 770 unsigned int order, int migratetype) { return false; } 771 static inline void clear_page_guard(struct zone *zone, struct page *page, 772 unsigned int order, int migratetype) {} 773 #endif 774 775 static inline void set_page_order(struct page *page, unsigned int order) 776 { 777 set_page_private(page, order); 778 __SetPageBuddy(page); 779 } 780 781 /* 782 * This function checks whether a page is free && is the buddy 783 * we can coalesce a page and its buddy if 784 * (a) the buddy is not in a hole (check before calling!) && 785 * (b) the buddy is in the buddy system && 786 * (c) a page and its buddy have the same order && 787 * (d) a page and its buddy are in the same zone. 788 * 789 * For recording whether a page is in the buddy system, we set PageBuddy. 790 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 791 * 792 * For recording page's order, we use page_private(page). 793 */ 794 static inline int page_is_buddy(struct page *page, struct page *buddy, 795 unsigned int order) 796 { 797 if (page_is_guard(buddy) && page_order(buddy) == order) { 798 if (page_zone_id(page) != page_zone_id(buddy)) 799 return 0; 800 801 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 802 803 return 1; 804 } 805 806 if (PageBuddy(buddy) && page_order(buddy) == order) { 807 /* 808 * zone check is done late to avoid uselessly 809 * calculating zone/node ids for pages that could 810 * never merge. 811 */ 812 if (page_zone_id(page) != page_zone_id(buddy)) 813 return 0; 814 815 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 816 817 return 1; 818 } 819 return 0; 820 } 821 822 #ifdef CONFIG_COMPACTION 823 static inline struct capture_control *task_capc(struct zone *zone) 824 { 825 struct capture_control *capc = current->capture_control; 826 827 return capc && 828 !(current->flags & PF_KTHREAD) && 829 !capc->page && 830 capc->cc->zone == zone && 831 capc->cc->direct_compaction ? capc : NULL; 832 } 833 834 static inline bool 835 compaction_capture(struct capture_control *capc, struct page *page, 836 int order, int migratetype) 837 { 838 if (!capc || order != capc->cc->order) 839 return false; 840 841 /* Do not accidentally pollute CMA or isolated regions*/ 842 if (is_migrate_cma(migratetype) || 843 is_migrate_isolate(migratetype)) 844 return false; 845 846 /* 847 * Do not let lower order allocations polluate a movable pageblock. 848 * This might let an unmovable request use a reclaimable pageblock 849 * and vice-versa but no more than normal fallback logic which can 850 * have trouble finding a high-order free page. 851 */ 852 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 853 return false; 854 855 capc->page = page; 856 return true; 857 } 858 859 #else 860 static inline struct capture_control *task_capc(struct zone *zone) 861 { 862 return NULL; 863 } 864 865 static inline bool 866 compaction_capture(struct capture_control *capc, struct page *page, 867 int order, int migratetype) 868 { 869 return false; 870 } 871 #endif /* CONFIG_COMPACTION */ 872 873 /* 874 * Freeing function for a buddy system allocator. 875 * 876 * The concept of a buddy system is to maintain direct-mapped table 877 * (containing bit values) for memory blocks of various "orders". 878 * The bottom level table contains the map for the smallest allocatable 879 * units of memory (here, pages), and each level above it describes 880 * pairs of units from the levels below, hence, "buddies". 881 * At a high level, all that happens here is marking the table entry 882 * at the bottom level available, and propagating the changes upward 883 * as necessary, plus some accounting needed to play nicely with other 884 * parts of the VM system. 885 * At each level, we keep a list of pages, which are heads of continuous 886 * free pages of length of (1 << order) and marked with PageBuddy. 887 * Page's order is recorded in page_private(page) field. 888 * So when we are allocating or freeing one, we can derive the state of the 889 * other. That is, if we allocate a small block, and both were 890 * free, the remainder of the region must be split into blocks. 891 * If a block is freed, and its buddy is also free, then this 892 * triggers coalescing into a block of larger size. 893 * 894 * -- nyc 895 */ 896 897 static inline void __free_one_page(struct page *page, 898 unsigned long pfn, 899 struct zone *zone, unsigned int order, 900 int migratetype) 901 { 902 unsigned long combined_pfn; 903 unsigned long uninitialized_var(buddy_pfn); 904 struct page *buddy; 905 unsigned int max_order; 906 struct capture_control *capc = task_capc(zone); 907 908 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 909 910 VM_BUG_ON(!zone_is_initialized(zone)); 911 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 912 913 VM_BUG_ON(migratetype == -1); 914 if (likely(!is_migrate_isolate(migratetype))) 915 __mod_zone_freepage_state(zone, 1 << order, migratetype); 916 917 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 918 VM_BUG_ON_PAGE(bad_range(zone, page), page); 919 920 continue_merging: 921 while (order < max_order - 1) { 922 if (compaction_capture(capc, page, order, migratetype)) { 923 __mod_zone_freepage_state(zone, -(1 << order), 924 migratetype); 925 return; 926 } 927 buddy_pfn = __find_buddy_pfn(pfn, order); 928 buddy = page + (buddy_pfn - pfn); 929 930 if (!pfn_valid_within(buddy_pfn)) 931 goto done_merging; 932 if (!page_is_buddy(page, buddy, order)) 933 goto done_merging; 934 /* 935 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 936 * merge with it and move up one order. 937 */ 938 if (page_is_guard(buddy)) 939 clear_page_guard(zone, buddy, order, migratetype); 940 else 941 del_page_from_free_area(buddy, &zone->free_area[order]); 942 combined_pfn = buddy_pfn & pfn; 943 page = page + (combined_pfn - pfn); 944 pfn = combined_pfn; 945 order++; 946 } 947 if (max_order < MAX_ORDER) { 948 /* If we are here, it means order is >= pageblock_order. 949 * We want to prevent merge between freepages on isolate 950 * pageblock and normal pageblock. Without this, pageblock 951 * isolation could cause incorrect freepage or CMA accounting. 952 * 953 * We don't want to hit this code for the more frequent 954 * low-order merging. 955 */ 956 if (unlikely(has_isolate_pageblock(zone))) { 957 int buddy_mt; 958 959 buddy_pfn = __find_buddy_pfn(pfn, order); 960 buddy = page + (buddy_pfn - pfn); 961 buddy_mt = get_pageblock_migratetype(buddy); 962 963 if (migratetype != buddy_mt 964 && (is_migrate_isolate(migratetype) || 965 is_migrate_isolate(buddy_mt))) 966 goto done_merging; 967 } 968 max_order++; 969 goto continue_merging; 970 } 971 972 done_merging: 973 set_page_order(page, order); 974 975 /* 976 * If this is not the largest possible page, check if the buddy 977 * of the next-highest order is free. If it is, it's possible 978 * that pages are being freed that will coalesce soon. In case, 979 * that is happening, add the free page to the tail of the list 980 * so it's less likely to be used soon and more likely to be merged 981 * as a higher order page 982 */ 983 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 984 && !is_shuffle_order(order)) { 985 struct page *higher_page, *higher_buddy; 986 combined_pfn = buddy_pfn & pfn; 987 higher_page = page + (combined_pfn - pfn); 988 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 989 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 990 if (pfn_valid_within(buddy_pfn) && 991 page_is_buddy(higher_page, higher_buddy, order + 1)) { 992 add_to_free_area_tail(page, &zone->free_area[order], 993 migratetype); 994 return; 995 } 996 } 997 998 if (is_shuffle_order(order)) 999 add_to_free_area_random(page, &zone->free_area[order], 1000 migratetype); 1001 else 1002 add_to_free_area(page, &zone->free_area[order], migratetype); 1003 1004 } 1005 1006 /* 1007 * A bad page could be due to a number of fields. Instead of multiple branches, 1008 * try and check multiple fields with one check. The caller must do a detailed 1009 * check if necessary. 1010 */ 1011 static inline bool page_expected_state(struct page *page, 1012 unsigned long check_flags) 1013 { 1014 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1015 return false; 1016 1017 if (unlikely((unsigned long)page->mapping | 1018 page_ref_count(page) | 1019 #ifdef CONFIG_MEMCG 1020 (unsigned long)page->mem_cgroup | 1021 #endif 1022 (page->flags & check_flags))) 1023 return false; 1024 1025 return true; 1026 } 1027 1028 static void free_pages_check_bad(struct page *page) 1029 { 1030 const char *bad_reason; 1031 unsigned long bad_flags; 1032 1033 bad_reason = NULL; 1034 bad_flags = 0; 1035 1036 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1037 bad_reason = "nonzero mapcount"; 1038 if (unlikely(page->mapping != NULL)) 1039 bad_reason = "non-NULL mapping"; 1040 if (unlikely(page_ref_count(page) != 0)) 1041 bad_reason = "nonzero _refcount"; 1042 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1043 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1044 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1045 } 1046 #ifdef CONFIG_MEMCG 1047 if (unlikely(page->mem_cgroup)) 1048 bad_reason = "page still charged to cgroup"; 1049 #endif 1050 bad_page(page, bad_reason, bad_flags); 1051 } 1052 1053 static inline int free_pages_check(struct page *page) 1054 { 1055 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1056 return 0; 1057 1058 /* Something has gone sideways, find it */ 1059 free_pages_check_bad(page); 1060 return 1; 1061 } 1062 1063 static int free_tail_pages_check(struct page *head_page, struct page *page) 1064 { 1065 int ret = 1; 1066 1067 /* 1068 * We rely page->lru.next never has bit 0 set, unless the page 1069 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1070 */ 1071 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1072 1073 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1074 ret = 0; 1075 goto out; 1076 } 1077 switch (page - head_page) { 1078 case 1: 1079 /* the first tail page: ->mapping may be compound_mapcount() */ 1080 if (unlikely(compound_mapcount(page))) { 1081 bad_page(page, "nonzero compound_mapcount", 0); 1082 goto out; 1083 } 1084 break; 1085 case 2: 1086 /* 1087 * the second tail page: ->mapping is 1088 * deferred_list.next -- ignore value. 1089 */ 1090 break; 1091 default: 1092 if (page->mapping != TAIL_MAPPING) { 1093 bad_page(page, "corrupted mapping in tail page", 0); 1094 goto out; 1095 } 1096 break; 1097 } 1098 if (unlikely(!PageTail(page))) { 1099 bad_page(page, "PageTail not set", 0); 1100 goto out; 1101 } 1102 if (unlikely(compound_head(page) != head_page)) { 1103 bad_page(page, "compound_head not consistent", 0); 1104 goto out; 1105 } 1106 ret = 0; 1107 out: 1108 page->mapping = NULL; 1109 clear_compound_head(page); 1110 return ret; 1111 } 1112 1113 static void kernel_init_free_pages(struct page *page, int numpages) 1114 { 1115 int i; 1116 1117 for (i = 0; i < numpages; i++) 1118 clear_highpage(page + i); 1119 } 1120 1121 static __always_inline bool free_pages_prepare(struct page *page, 1122 unsigned int order, bool check_free) 1123 { 1124 int bad = 0; 1125 1126 VM_BUG_ON_PAGE(PageTail(page), page); 1127 1128 trace_mm_page_free(page, order); 1129 1130 /* 1131 * Check tail pages before head page information is cleared to 1132 * avoid checking PageCompound for order-0 pages. 1133 */ 1134 if (unlikely(order)) { 1135 bool compound = PageCompound(page); 1136 int i; 1137 1138 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1139 1140 if (compound) 1141 ClearPageDoubleMap(page); 1142 for (i = 1; i < (1 << order); i++) { 1143 if (compound) 1144 bad += free_tail_pages_check(page, page + i); 1145 if (unlikely(free_pages_check(page + i))) { 1146 bad++; 1147 continue; 1148 } 1149 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1150 } 1151 } 1152 if (PageMappingFlags(page)) 1153 page->mapping = NULL; 1154 if (memcg_kmem_enabled() && PageKmemcg(page)) 1155 __memcg_kmem_uncharge(page, order); 1156 if (check_free) 1157 bad += free_pages_check(page); 1158 if (bad) 1159 return false; 1160 1161 page_cpupid_reset_last(page); 1162 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1163 reset_page_owner(page, order); 1164 1165 if (!PageHighMem(page)) { 1166 debug_check_no_locks_freed(page_address(page), 1167 PAGE_SIZE << order); 1168 debug_check_no_obj_freed(page_address(page), 1169 PAGE_SIZE << order); 1170 } 1171 if (want_init_on_free()) 1172 kernel_init_free_pages(page, 1 << order); 1173 1174 kernel_poison_pages(page, 1 << order, 0); 1175 /* 1176 * arch_free_page() can make the page's contents inaccessible. s390 1177 * does this. So nothing which can access the page's contents should 1178 * happen after this. 1179 */ 1180 arch_free_page(page, order); 1181 1182 if (debug_pagealloc_enabled_static()) 1183 kernel_map_pages(page, 1 << order, 0); 1184 1185 kasan_free_nondeferred_pages(page, order); 1186 1187 return true; 1188 } 1189 1190 #ifdef CONFIG_DEBUG_VM 1191 /* 1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1194 * moved from pcp lists to free lists. 1195 */ 1196 static bool free_pcp_prepare(struct page *page) 1197 { 1198 return free_pages_prepare(page, 0, true); 1199 } 1200 1201 static bool bulkfree_pcp_prepare(struct page *page) 1202 { 1203 if (debug_pagealloc_enabled_static()) 1204 return free_pages_check(page); 1205 else 1206 return false; 1207 } 1208 #else 1209 /* 1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1211 * moving from pcp lists to free list in order to reduce overhead. With 1212 * debug_pagealloc enabled, they are checked also immediately when being freed 1213 * to the pcp lists. 1214 */ 1215 static bool free_pcp_prepare(struct page *page) 1216 { 1217 if (debug_pagealloc_enabled_static()) 1218 return free_pages_prepare(page, 0, true); 1219 else 1220 return free_pages_prepare(page, 0, false); 1221 } 1222 1223 static bool bulkfree_pcp_prepare(struct page *page) 1224 { 1225 return free_pages_check(page); 1226 } 1227 #endif /* CONFIG_DEBUG_VM */ 1228 1229 static inline void prefetch_buddy(struct page *page) 1230 { 1231 unsigned long pfn = page_to_pfn(page); 1232 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1233 struct page *buddy = page + (buddy_pfn - pfn); 1234 1235 prefetch(buddy); 1236 } 1237 1238 /* 1239 * Frees a number of pages from the PCP lists 1240 * Assumes all pages on list are in same zone, and of same order. 1241 * count is the number of pages to free. 1242 * 1243 * If the zone was previously in an "all pages pinned" state then look to 1244 * see if this freeing clears that state. 1245 * 1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1247 * pinned" detection logic. 1248 */ 1249 static void free_pcppages_bulk(struct zone *zone, int count, 1250 struct per_cpu_pages *pcp) 1251 { 1252 int migratetype = 0; 1253 int batch_free = 0; 1254 int prefetch_nr = 0; 1255 bool isolated_pageblocks; 1256 struct page *page, *tmp; 1257 LIST_HEAD(head); 1258 1259 while (count) { 1260 struct list_head *list; 1261 1262 /* 1263 * Remove pages from lists in a round-robin fashion. A 1264 * batch_free count is maintained that is incremented when an 1265 * empty list is encountered. This is so more pages are freed 1266 * off fuller lists instead of spinning excessively around empty 1267 * lists 1268 */ 1269 do { 1270 batch_free++; 1271 if (++migratetype == MIGRATE_PCPTYPES) 1272 migratetype = 0; 1273 list = &pcp->lists[migratetype]; 1274 } while (list_empty(list)); 1275 1276 /* This is the only non-empty list. Free them all. */ 1277 if (batch_free == MIGRATE_PCPTYPES) 1278 batch_free = count; 1279 1280 do { 1281 page = list_last_entry(list, struct page, lru); 1282 /* must delete to avoid corrupting pcp list */ 1283 list_del(&page->lru); 1284 pcp->count--; 1285 1286 if (bulkfree_pcp_prepare(page)) 1287 continue; 1288 1289 list_add_tail(&page->lru, &head); 1290 1291 /* 1292 * We are going to put the page back to the global 1293 * pool, prefetch its buddy to speed up later access 1294 * under zone->lock. It is believed the overhead of 1295 * an additional test and calculating buddy_pfn here 1296 * can be offset by reduced memory latency later. To 1297 * avoid excessive prefetching due to large count, only 1298 * prefetch buddy for the first pcp->batch nr of pages. 1299 */ 1300 if (prefetch_nr++ < pcp->batch) 1301 prefetch_buddy(page); 1302 } while (--count && --batch_free && !list_empty(list)); 1303 } 1304 1305 spin_lock(&zone->lock); 1306 isolated_pageblocks = has_isolate_pageblock(zone); 1307 1308 /* 1309 * Use safe version since after __free_one_page(), 1310 * page->lru.next will not point to original list. 1311 */ 1312 list_for_each_entry_safe(page, tmp, &head, lru) { 1313 int mt = get_pcppage_migratetype(page); 1314 /* MIGRATE_ISOLATE page should not go to pcplists */ 1315 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1316 /* Pageblock could have been isolated meanwhile */ 1317 if (unlikely(isolated_pageblocks)) 1318 mt = get_pageblock_migratetype(page); 1319 1320 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1321 trace_mm_page_pcpu_drain(page, 0, mt); 1322 } 1323 spin_unlock(&zone->lock); 1324 } 1325 1326 static void free_one_page(struct zone *zone, 1327 struct page *page, unsigned long pfn, 1328 unsigned int order, 1329 int migratetype) 1330 { 1331 spin_lock(&zone->lock); 1332 if (unlikely(has_isolate_pageblock(zone) || 1333 is_migrate_isolate(migratetype))) { 1334 migratetype = get_pfnblock_migratetype(page, pfn); 1335 } 1336 __free_one_page(page, pfn, zone, order, migratetype); 1337 spin_unlock(&zone->lock); 1338 } 1339 1340 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1341 unsigned long zone, int nid) 1342 { 1343 mm_zero_struct_page(page); 1344 set_page_links(page, zone, nid, pfn); 1345 init_page_count(page); 1346 page_mapcount_reset(page); 1347 page_cpupid_reset_last(page); 1348 page_kasan_tag_reset(page); 1349 1350 INIT_LIST_HEAD(&page->lru); 1351 #ifdef WANT_PAGE_VIRTUAL 1352 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1353 if (!is_highmem_idx(zone)) 1354 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1355 #endif 1356 } 1357 1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1359 static void __meminit init_reserved_page(unsigned long pfn) 1360 { 1361 pg_data_t *pgdat; 1362 int nid, zid; 1363 1364 if (!early_page_uninitialised(pfn)) 1365 return; 1366 1367 nid = early_pfn_to_nid(pfn); 1368 pgdat = NODE_DATA(nid); 1369 1370 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1371 struct zone *zone = &pgdat->node_zones[zid]; 1372 1373 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1374 break; 1375 } 1376 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1377 } 1378 #else 1379 static inline void init_reserved_page(unsigned long pfn) 1380 { 1381 } 1382 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1383 1384 /* 1385 * Initialised pages do not have PageReserved set. This function is 1386 * called for each range allocated by the bootmem allocator and 1387 * marks the pages PageReserved. The remaining valid pages are later 1388 * sent to the buddy page allocator. 1389 */ 1390 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1391 { 1392 unsigned long start_pfn = PFN_DOWN(start); 1393 unsigned long end_pfn = PFN_UP(end); 1394 1395 for (; start_pfn < end_pfn; start_pfn++) { 1396 if (pfn_valid(start_pfn)) { 1397 struct page *page = pfn_to_page(start_pfn); 1398 1399 init_reserved_page(start_pfn); 1400 1401 /* Avoid false-positive PageTail() */ 1402 INIT_LIST_HEAD(&page->lru); 1403 1404 /* 1405 * no need for atomic set_bit because the struct 1406 * page is not visible yet so nobody should 1407 * access it yet. 1408 */ 1409 __SetPageReserved(page); 1410 } 1411 } 1412 } 1413 1414 static void __free_pages_ok(struct page *page, unsigned int order) 1415 { 1416 unsigned long flags; 1417 int migratetype; 1418 unsigned long pfn = page_to_pfn(page); 1419 1420 if (!free_pages_prepare(page, order, true)) 1421 return; 1422 1423 migratetype = get_pfnblock_migratetype(page, pfn); 1424 local_irq_save(flags); 1425 __count_vm_events(PGFREE, 1 << order); 1426 free_one_page(page_zone(page), page, pfn, order, migratetype); 1427 local_irq_restore(flags); 1428 } 1429 1430 void __free_pages_core(struct page *page, unsigned int order) 1431 { 1432 unsigned int nr_pages = 1 << order; 1433 struct page *p = page; 1434 unsigned int loop; 1435 1436 prefetchw(p); 1437 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1438 prefetchw(p + 1); 1439 __ClearPageReserved(p); 1440 set_page_count(p, 0); 1441 } 1442 __ClearPageReserved(p); 1443 set_page_count(p, 0); 1444 1445 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1446 set_page_refcounted(page); 1447 __free_pages(page, order); 1448 } 1449 1450 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1451 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1452 1453 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1454 1455 int __meminit early_pfn_to_nid(unsigned long pfn) 1456 { 1457 static DEFINE_SPINLOCK(early_pfn_lock); 1458 int nid; 1459 1460 spin_lock(&early_pfn_lock); 1461 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1462 if (nid < 0) 1463 nid = first_online_node; 1464 spin_unlock(&early_pfn_lock); 1465 1466 return nid; 1467 } 1468 #endif 1469 1470 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1471 /* Only safe to use early in boot when initialisation is single-threaded */ 1472 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1473 { 1474 int nid; 1475 1476 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1477 if (nid >= 0 && nid != node) 1478 return false; 1479 return true; 1480 } 1481 1482 #else 1483 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1484 { 1485 return true; 1486 } 1487 #endif 1488 1489 1490 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1491 unsigned int order) 1492 { 1493 if (early_page_uninitialised(pfn)) 1494 return; 1495 __free_pages_core(page, order); 1496 } 1497 1498 /* 1499 * Check that the whole (or subset of) a pageblock given by the interval of 1500 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1501 * with the migration of free compaction scanner. The scanners then need to 1502 * use only pfn_valid_within() check for arches that allow holes within 1503 * pageblocks. 1504 * 1505 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1506 * 1507 * It's possible on some configurations to have a setup like node0 node1 node0 1508 * i.e. it's possible that all pages within a zones range of pages do not 1509 * belong to a single zone. We assume that a border between node0 and node1 1510 * can occur within a single pageblock, but not a node0 node1 node0 1511 * interleaving within a single pageblock. It is therefore sufficient to check 1512 * the first and last page of a pageblock and avoid checking each individual 1513 * page in a pageblock. 1514 */ 1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1516 unsigned long end_pfn, struct zone *zone) 1517 { 1518 struct page *start_page; 1519 struct page *end_page; 1520 1521 /* end_pfn is one past the range we are checking */ 1522 end_pfn--; 1523 1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1525 return NULL; 1526 1527 start_page = pfn_to_online_page(start_pfn); 1528 if (!start_page) 1529 return NULL; 1530 1531 if (page_zone(start_page) != zone) 1532 return NULL; 1533 1534 end_page = pfn_to_page(end_pfn); 1535 1536 /* This gives a shorter code than deriving page_zone(end_page) */ 1537 if (page_zone_id(start_page) != page_zone_id(end_page)) 1538 return NULL; 1539 1540 return start_page; 1541 } 1542 1543 void set_zone_contiguous(struct zone *zone) 1544 { 1545 unsigned long block_start_pfn = zone->zone_start_pfn; 1546 unsigned long block_end_pfn; 1547 1548 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1549 for (; block_start_pfn < zone_end_pfn(zone); 1550 block_start_pfn = block_end_pfn, 1551 block_end_pfn += pageblock_nr_pages) { 1552 1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1554 1555 if (!__pageblock_pfn_to_page(block_start_pfn, 1556 block_end_pfn, zone)) 1557 return; 1558 } 1559 1560 /* We confirm that there is no hole */ 1561 zone->contiguous = true; 1562 } 1563 1564 void clear_zone_contiguous(struct zone *zone) 1565 { 1566 zone->contiguous = false; 1567 } 1568 1569 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1570 static void __init deferred_free_range(unsigned long pfn, 1571 unsigned long nr_pages) 1572 { 1573 struct page *page; 1574 unsigned long i; 1575 1576 if (!nr_pages) 1577 return; 1578 1579 page = pfn_to_page(pfn); 1580 1581 /* Free a large naturally-aligned chunk if possible */ 1582 if (nr_pages == pageblock_nr_pages && 1583 (pfn & (pageblock_nr_pages - 1)) == 0) { 1584 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1585 __free_pages_core(page, pageblock_order); 1586 return; 1587 } 1588 1589 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1590 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1592 __free_pages_core(page, 0); 1593 } 1594 } 1595 1596 /* Completion tracking for deferred_init_memmap() threads */ 1597 static atomic_t pgdat_init_n_undone __initdata; 1598 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1599 1600 static inline void __init pgdat_init_report_one_done(void) 1601 { 1602 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1603 complete(&pgdat_init_all_done_comp); 1604 } 1605 1606 /* 1607 * Returns true if page needs to be initialized or freed to buddy allocator. 1608 * 1609 * First we check if pfn is valid on architectures where it is possible to have 1610 * holes within pageblock_nr_pages. On systems where it is not possible, this 1611 * function is optimized out. 1612 * 1613 * Then, we check if a current large page is valid by only checking the validity 1614 * of the head pfn. 1615 */ 1616 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1617 { 1618 if (!pfn_valid_within(pfn)) 1619 return false; 1620 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1621 return false; 1622 return true; 1623 } 1624 1625 /* 1626 * Free pages to buddy allocator. Try to free aligned pages in 1627 * pageblock_nr_pages sizes. 1628 */ 1629 static void __init deferred_free_pages(unsigned long pfn, 1630 unsigned long end_pfn) 1631 { 1632 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1633 unsigned long nr_free = 0; 1634 1635 for (; pfn < end_pfn; pfn++) { 1636 if (!deferred_pfn_valid(pfn)) { 1637 deferred_free_range(pfn - nr_free, nr_free); 1638 nr_free = 0; 1639 } else if (!(pfn & nr_pgmask)) { 1640 deferred_free_range(pfn - nr_free, nr_free); 1641 nr_free = 1; 1642 touch_nmi_watchdog(); 1643 } else { 1644 nr_free++; 1645 } 1646 } 1647 /* Free the last block of pages to allocator */ 1648 deferred_free_range(pfn - nr_free, nr_free); 1649 } 1650 1651 /* 1652 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1653 * by performing it only once every pageblock_nr_pages. 1654 * Return number of pages initialized. 1655 */ 1656 static unsigned long __init deferred_init_pages(struct zone *zone, 1657 unsigned long pfn, 1658 unsigned long end_pfn) 1659 { 1660 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1661 int nid = zone_to_nid(zone); 1662 unsigned long nr_pages = 0; 1663 int zid = zone_idx(zone); 1664 struct page *page = NULL; 1665 1666 for (; pfn < end_pfn; pfn++) { 1667 if (!deferred_pfn_valid(pfn)) { 1668 page = NULL; 1669 continue; 1670 } else if (!page || !(pfn & nr_pgmask)) { 1671 page = pfn_to_page(pfn); 1672 touch_nmi_watchdog(); 1673 } else { 1674 page++; 1675 } 1676 __init_single_page(page, pfn, zid, nid); 1677 nr_pages++; 1678 } 1679 return (nr_pages); 1680 } 1681 1682 /* 1683 * This function is meant to pre-load the iterator for the zone init. 1684 * Specifically it walks through the ranges until we are caught up to the 1685 * first_init_pfn value and exits there. If we never encounter the value we 1686 * return false indicating there are no valid ranges left. 1687 */ 1688 static bool __init 1689 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1690 unsigned long *spfn, unsigned long *epfn, 1691 unsigned long first_init_pfn) 1692 { 1693 u64 j; 1694 1695 /* 1696 * Start out by walking through the ranges in this zone that have 1697 * already been initialized. We don't need to do anything with them 1698 * so we just need to flush them out of the system. 1699 */ 1700 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1701 if (*epfn <= first_init_pfn) 1702 continue; 1703 if (*spfn < first_init_pfn) 1704 *spfn = first_init_pfn; 1705 *i = j; 1706 return true; 1707 } 1708 1709 return false; 1710 } 1711 1712 /* 1713 * Initialize and free pages. We do it in two loops: first we initialize 1714 * struct page, then free to buddy allocator, because while we are 1715 * freeing pages we can access pages that are ahead (computing buddy 1716 * page in __free_one_page()). 1717 * 1718 * In order to try and keep some memory in the cache we have the loop 1719 * broken along max page order boundaries. This way we will not cause 1720 * any issues with the buddy page computation. 1721 */ 1722 static unsigned long __init 1723 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1724 unsigned long *end_pfn) 1725 { 1726 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1727 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1728 unsigned long nr_pages = 0; 1729 u64 j = *i; 1730 1731 /* First we loop through and initialize the page values */ 1732 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1733 unsigned long t; 1734 1735 if (mo_pfn <= *start_pfn) 1736 break; 1737 1738 t = min(mo_pfn, *end_pfn); 1739 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1740 1741 if (mo_pfn < *end_pfn) { 1742 *start_pfn = mo_pfn; 1743 break; 1744 } 1745 } 1746 1747 /* Reset values and now loop through freeing pages as needed */ 1748 swap(j, *i); 1749 1750 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1751 unsigned long t; 1752 1753 if (mo_pfn <= spfn) 1754 break; 1755 1756 t = min(mo_pfn, epfn); 1757 deferred_free_pages(spfn, t); 1758 1759 if (mo_pfn <= epfn) 1760 break; 1761 } 1762 1763 return nr_pages; 1764 } 1765 1766 /* Initialise remaining memory on a node */ 1767 static int __init deferred_init_memmap(void *data) 1768 { 1769 pg_data_t *pgdat = data; 1770 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1771 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1772 unsigned long first_init_pfn, flags; 1773 unsigned long start = jiffies; 1774 struct zone *zone; 1775 int zid; 1776 u64 i; 1777 1778 /* Bind memory initialisation thread to a local node if possible */ 1779 if (!cpumask_empty(cpumask)) 1780 set_cpus_allowed_ptr(current, cpumask); 1781 1782 pgdat_resize_lock(pgdat, &flags); 1783 first_init_pfn = pgdat->first_deferred_pfn; 1784 if (first_init_pfn == ULONG_MAX) { 1785 pgdat_resize_unlock(pgdat, &flags); 1786 pgdat_init_report_one_done(); 1787 return 0; 1788 } 1789 1790 /* Sanity check boundaries */ 1791 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1792 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1793 pgdat->first_deferred_pfn = ULONG_MAX; 1794 1795 /* Only the highest zone is deferred so find it */ 1796 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1797 zone = pgdat->node_zones + zid; 1798 if (first_init_pfn < zone_end_pfn(zone)) 1799 break; 1800 } 1801 1802 /* If the zone is empty somebody else may have cleared out the zone */ 1803 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1804 first_init_pfn)) 1805 goto zone_empty; 1806 1807 /* 1808 * Initialize and free pages in MAX_ORDER sized increments so 1809 * that we can avoid introducing any issues with the buddy 1810 * allocator. 1811 */ 1812 while (spfn < epfn) 1813 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1814 zone_empty: 1815 pgdat_resize_unlock(pgdat, &flags); 1816 1817 /* Sanity check that the next zone really is unpopulated */ 1818 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1819 1820 pr_info("node %d initialised, %lu pages in %ums\n", 1821 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1822 1823 pgdat_init_report_one_done(); 1824 return 0; 1825 } 1826 1827 /* 1828 * If this zone has deferred pages, try to grow it by initializing enough 1829 * deferred pages to satisfy the allocation specified by order, rounded up to 1830 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1831 * of SECTION_SIZE bytes by initializing struct pages in increments of 1832 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1833 * 1834 * Return true when zone was grown, otherwise return false. We return true even 1835 * when we grow less than requested, to let the caller decide if there are 1836 * enough pages to satisfy the allocation. 1837 * 1838 * Note: We use noinline because this function is needed only during boot, and 1839 * it is called from a __ref function _deferred_grow_zone. This way we are 1840 * making sure that it is not inlined into permanent text section. 1841 */ 1842 static noinline bool __init 1843 deferred_grow_zone(struct zone *zone, unsigned int order) 1844 { 1845 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1846 pg_data_t *pgdat = zone->zone_pgdat; 1847 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1848 unsigned long spfn, epfn, flags; 1849 unsigned long nr_pages = 0; 1850 u64 i; 1851 1852 /* Only the last zone may have deferred pages */ 1853 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1854 return false; 1855 1856 pgdat_resize_lock(pgdat, &flags); 1857 1858 /* 1859 * If deferred pages have been initialized while we were waiting for 1860 * the lock, return true, as the zone was grown. The caller will retry 1861 * this zone. We won't return to this function since the caller also 1862 * has this static branch. 1863 */ 1864 if (!static_branch_unlikely(&deferred_pages)) { 1865 pgdat_resize_unlock(pgdat, &flags); 1866 return true; 1867 } 1868 1869 /* 1870 * If someone grew this zone while we were waiting for spinlock, return 1871 * true, as there might be enough pages already. 1872 */ 1873 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1874 pgdat_resize_unlock(pgdat, &flags); 1875 return true; 1876 } 1877 1878 /* If the zone is empty somebody else may have cleared out the zone */ 1879 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1880 first_deferred_pfn)) { 1881 pgdat->first_deferred_pfn = ULONG_MAX; 1882 pgdat_resize_unlock(pgdat, &flags); 1883 /* Retry only once. */ 1884 return first_deferred_pfn != ULONG_MAX; 1885 } 1886 1887 /* 1888 * Initialize and free pages in MAX_ORDER sized increments so 1889 * that we can avoid introducing any issues with the buddy 1890 * allocator. 1891 */ 1892 while (spfn < epfn) { 1893 /* update our first deferred PFN for this section */ 1894 first_deferred_pfn = spfn; 1895 1896 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1897 1898 /* We should only stop along section boundaries */ 1899 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1900 continue; 1901 1902 /* If our quota has been met we can stop here */ 1903 if (nr_pages >= nr_pages_needed) 1904 break; 1905 } 1906 1907 pgdat->first_deferred_pfn = spfn; 1908 pgdat_resize_unlock(pgdat, &flags); 1909 1910 return nr_pages > 0; 1911 } 1912 1913 /* 1914 * deferred_grow_zone() is __init, but it is called from 1915 * get_page_from_freelist() during early boot until deferred_pages permanently 1916 * disables this call. This is why we have refdata wrapper to avoid warning, 1917 * and to ensure that the function body gets unloaded. 1918 */ 1919 static bool __ref 1920 _deferred_grow_zone(struct zone *zone, unsigned int order) 1921 { 1922 return deferred_grow_zone(zone, order); 1923 } 1924 1925 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1926 1927 void __init page_alloc_init_late(void) 1928 { 1929 struct zone *zone; 1930 int nid; 1931 1932 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1933 1934 /* There will be num_node_state(N_MEMORY) threads */ 1935 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1936 for_each_node_state(nid, N_MEMORY) { 1937 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1938 } 1939 1940 /* Block until all are initialised */ 1941 wait_for_completion(&pgdat_init_all_done_comp); 1942 1943 /* 1944 * The number of managed pages has changed due to the initialisation 1945 * so the pcpu batch and high limits needs to be updated or the limits 1946 * will be artificially small. 1947 */ 1948 for_each_populated_zone(zone) 1949 zone_pcp_update(zone); 1950 1951 /* 1952 * We initialized the rest of the deferred pages. Permanently disable 1953 * on-demand struct page initialization. 1954 */ 1955 static_branch_disable(&deferred_pages); 1956 1957 /* Reinit limits that are based on free pages after the kernel is up */ 1958 files_maxfiles_init(); 1959 #endif 1960 1961 /* Discard memblock private memory */ 1962 memblock_discard(); 1963 1964 for_each_node_state(nid, N_MEMORY) 1965 shuffle_free_memory(NODE_DATA(nid)); 1966 1967 for_each_populated_zone(zone) 1968 set_zone_contiguous(zone); 1969 } 1970 1971 #ifdef CONFIG_CMA 1972 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1973 void __init init_cma_reserved_pageblock(struct page *page) 1974 { 1975 unsigned i = pageblock_nr_pages; 1976 struct page *p = page; 1977 1978 do { 1979 __ClearPageReserved(p); 1980 set_page_count(p, 0); 1981 } while (++p, --i); 1982 1983 set_pageblock_migratetype(page, MIGRATE_CMA); 1984 1985 if (pageblock_order >= MAX_ORDER) { 1986 i = pageblock_nr_pages; 1987 p = page; 1988 do { 1989 set_page_refcounted(p); 1990 __free_pages(p, MAX_ORDER - 1); 1991 p += MAX_ORDER_NR_PAGES; 1992 } while (i -= MAX_ORDER_NR_PAGES); 1993 } else { 1994 set_page_refcounted(page); 1995 __free_pages(page, pageblock_order); 1996 } 1997 1998 adjust_managed_page_count(page, pageblock_nr_pages); 1999 } 2000 #endif 2001 2002 /* 2003 * The order of subdivision here is critical for the IO subsystem. 2004 * Please do not alter this order without good reasons and regression 2005 * testing. Specifically, as large blocks of memory are subdivided, 2006 * the order in which smaller blocks are delivered depends on the order 2007 * they're subdivided in this function. This is the primary factor 2008 * influencing the order in which pages are delivered to the IO 2009 * subsystem according to empirical testing, and this is also justified 2010 * by considering the behavior of a buddy system containing a single 2011 * large block of memory acted on by a series of small allocations. 2012 * This behavior is a critical factor in sglist merging's success. 2013 * 2014 * -- nyc 2015 */ 2016 static inline void expand(struct zone *zone, struct page *page, 2017 int low, int high, struct free_area *area, 2018 int migratetype) 2019 { 2020 unsigned long size = 1 << high; 2021 2022 while (high > low) { 2023 area--; 2024 high--; 2025 size >>= 1; 2026 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2027 2028 /* 2029 * Mark as guard pages (or page), that will allow to 2030 * merge back to allocator when buddy will be freed. 2031 * Corresponding page table entries will not be touched, 2032 * pages will stay not present in virtual address space 2033 */ 2034 if (set_page_guard(zone, &page[size], high, migratetype)) 2035 continue; 2036 2037 add_to_free_area(&page[size], area, migratetype); 2038 set_page_order(&page[size], high); 2039 } 2040 } 2041 2042 static void check_new_page_bad(struct page *page) 2043 { 2044 const char *bad_reason = NULL; 2045 unsigned long bad_flags = 0; 2046 2047 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2048 bad_reason = "nonzero mapcount"; 2049 if (unlikely(page->mapping != NULL)) 2050 bad_reason = "non-NULL mapping"; 2051 if (unlikely(page_ref_count(page) != 0)) 2052 bad_reason = "nonzero _refcount"; 2053 if (unlikely(page->flags & __PG_HWPOISON)) { 2054 bad_reason = "HWPoisoned (hardware-corrupted)"; 2055 bad_flags = __PG_HWPOISON; 2056 /* Don't complain about hwpoisoned pages */ 2057 page_mapcount_reset(page); /* remove PageBuddy */ 2058 return; 2059 } 2060 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2061 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2062 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2063 } 2064 #ifdef CONFIG_MEMCG 2065 if (unlikely(page->mem_cgroup)) 2066 bad_reason = "page still charged to cgroup"; 2067 #endif 2068 bad_page(page, bad_reason, bad_flags); 2069 } 2070 2071 /* 2072 * This page is about to be returned from the page allocator 2073 */ 2074 static inline int check_new_page(struct page *page) 2075 { 2076 if (likely(page_expected_state(page, 2077 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2078 return 0; 2079 2080 check_new_page_bad(page); 2081 return 1; 2082 } 2083 2084 static inline bool free_pages_prezeroed(void) 2085 { 2086 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2087 page_poisoning_enabled()) || want_init_on_free(); 2088 } 2089 2090 #ifdef CONFIG_DEBUG_VM 2091 /* 2092 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2093 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2094 * also checked when pcp lists are refilled from the free lists. 2095 */ 2096 static inline bool check_pcp_refill(struct page *page) 2097 { 2098 if (debug_pagealloc_enabled_static()) 2099 return check_new_page(page); 2100 else 2101 return false; 2102 } 2103 2104 static inline bool check_new_pcp(struct page *page) 2105 { 2106 return check_new_page(page); 2107 } 2108 #else 2109 /* 2110 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2111 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2112 * enabled, they are also checked when being allocated from the pcp lists. 2113 */ 2114 static inline bool check_pcp_refill(struct page *page) 2115 { 2116 return check_new_page(page); 2117 } 2118 static inline bool check_new_pcp(struct page *page) 2119 { 2120 if (debug_pagealloc_enabled_static()) 2121 return check_new_page(page); 2122 else 2123 return false; 2124 } 2125 #endif /* CONFIG_DEBUG_VM */ 2126 2127 static bool check_new_pages(struct page *page, unsigned int order) 2128 { 2129 int i; 2130 for (i = 0; i < (1 << order); i++) { 2131 struct page *p = page + i; 2132 2133 if (unlikely(check_new_page(p))) 2134 return true; 2135 } 2136 2137 return false; 2138 } 2139 2140 inline void post_alloc_hook(struct page *page, unsigned int order, 2141 gfp_t gfp_flags) 2142 { 2143 set_page_private(page, 0); 2144 set_page_refcounted(page); 2145 2146 arch_alloc_page(page, order); 2147 if (debug_pagealloc_enabled_static()) 2148 kernel_map_pages(page, 1 << order, 1); 2149 kasan_alloc_pages(page, order); 2150 kernel_poison_pages(page, 1 << order, 1); 2151 set_page_owner(page, order, gfp_flags); 2152 } 2153 2154 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2155 unsigned int alloc_flags) 2156 { 2157 post_alloc_hook(page, order, gfp_flags); 2158 2159 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2160 kernel_init_free_pages(page, 1 << order); 2161 2162 if (order && (gfp_flags & __GFP_COMP)) 2163 prep_compound_page(page, order); 2164 2165 /* 2166 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2167 * allocate the page. The expectation is that the caller is taking 2168 * steps that will free more memory. The caller should avoid the page 2169 * being used for !PFMEMALLOC purposes. 2170 */ 2171 if (alloc_flags & ALLOC_NO_WATERMARKS) 2172 set_page_pfmemalloc(page); 2173 else 2174 clear_page_pfmemalloc(page); 2175 } 2176 2177 /* 2178 * Go through the free lists for the given migratetype and remove 2179 * the smallest available page from the freelists 2180 */ 2181 static __always_inline 2182 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2183 int migratetype) 2184 { 2185 unsigned int current_order; 2186 struct free_area *area; 2187 struct page *page; 2188 2189 /* Find a page of the appropriate size in the preferred list */ 2190 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2191 area = &(zone->free_area[current_order]); 2192 page = get_page_from_free_area(area, migratetype); 2193 if (!page) 2194 continue; 2195 del_page_from_free_area(page, area); 2196 expand(zone, page, order, current_order, area, migratetype); 2197 set_pcppage_migratetype(page, migratetype); 2198 return page; 2199 } 2200 2201 return NULL; 2202 } 2203 2204 2205 /* 2206 * This array describes the order lists are fallen back to when 2207 * the free lists for the desirable migrate type are depleted 2208 */ 2209 static int fallbacks[MIGRATE_TYPES][4] = { 2210 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2211 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2212 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2213 #ifdef CONFIG_CMA 2214 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2215 #endif 2216 #ifdef CONFIG_MEMORY_ISOLATION 2217 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2218 #endif 2219 }; 2220 2221 #ifdef CONFIG_CMA 2222 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2223 unsigned int order) 2224 { 2225 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2226 } 2227 #else 2228 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2229 unsigned int order) { return NULL; } 2230 #endif 2231 2232 /* 2233 * Move the free pages in a range to the free lists of the requested type. 2234 * Note that start_page and end_pages are not aligned on a pageblock 2235 * boundary. If alignment is required, use move_freepages_block() 2236 */ 2237 static int move_freepages(struct zone *zone, 2238 struct page *start_page, struct page *end_page, 2239 int migratetype, int *num_movable) 2240 { 2241 struct page *page; 2242 unsigned int order; 2243 int pages_moved = 0; 2244 2245 for (page = start_page; page <= end_page;) { 2246 if (!pfn_valid_within(page_to_pfn(page))) { 2247 page++; 2248 continue; 2249 } 2250 2251 if (!PageBuddy(page)) { 2252 /* 2253 * We assume that pages that could be isolated for 2254 * migration are movable. But we don't actually try 2255 * isolating, as that would be expensive. 2256 */ 2257 if (num_movable && 2258 (PageLRU(page) || __PageMovable(page))) 2259 (*num_movable)++; 2260 2261 page++; 2262 continue; 2263 } 2264 2265 /* Make sure we are not inadvertently changing nodes */ 2266 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2267 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2268 2269 order = page_order(page); 2270 move_to_free_area(page, &zone->free_area[order], migratetype); 2271 page += 1 << order; 2272 pages_moved += 1 << order; 2273 } 2274 2275 return pages_moved; 2276 } 2277 2278 int move_freepages_block(struct zone *zone, struct page *page, 2279 int migratetype, int *num_movable) 2280 { 2281 unsigned long start_pfn, end_pfn; 2282 struct page *start_page, *end_page; 2283 2284 if (num_movable) 2285 *num_movable = 0; 2286 2287 start_pfn = page_to_pfn(page); 2288 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2289 start_page = pfn_to_page(start_pfn); 2290 end_page = start_page + pageblock_nr_pages - 1; 2291 end_pfn = start_pfn + pageblock_nr_pages - 1; 2292 2293 /* Do not cross zone boundaries */ 2294 if (!zone_spans_pfn(zone, start_pfn)) 2295 start_page = page; 2296 if (!zone_spans_pfn(zone, end_pfn)) 2297 return 0; 2298 2299 return move_freepages(zone, start_page, end_page, migratetype, 2300 num_movable); 2301 } 2302 2303 static void change_pageblock_range(struct page *pageblock_page, 2304 int start_order, int migratetype) 2305 { 2306 int nr_pageblocks = 1 << (start_order - pageblock_order); 2307 2308 while (nr_pageblocks--) { 2309 set_pageblock_migratetype(pageblock_page, migratetype); 2310 pageblock_page += pageblock_nr_pages; 2311 } 2312 } 2313 2314 /* 2315 * When we are falling back to another migratetype during allocation, try to 2316 * steal extra free pages from the same pageblocks to satisfy further 2317 * allocations, instead of polluting multiple pageblocks. 2318 * 2319 * If we are stealing a relatively large buddy page, it is likely there will 2320 * be more free pages in the pageblock, so try to steal them all. For 2321 * reclaimable and unmovable allocations, we steal regardless of page size, 2322 * as fragmentation caused by those allocations polluting movable pageblocks 2323 * is worse than movable allocations stealing from unmovable and reclaimable 2324 * pageblocks. 2325 */ 2326 static bool can_steal_fallback(unsigned int order, int start_mt) 2327 { 2328 /* 2329 * Leaving this order check is intended, although there is 2330 * relaxed order check in next check. The reason is that 2331 * we can actually steal whole pageblock if this condition met, 2332 * but, below check doesn't guarantee it and that is just heuristic 2333 * so could be changed anytime. 2334 */ 2335 if (order >= pageblock_order) 2336 return true; 2337 2338 if (order >= pageblock_order / 2 || 2339 start_mt == MIGRATE_RECLAIMABLE || 2340 start_mt == MIGRATE_UNMOVABLE || 2341 page_group_by_mobility_disabled) 2342 return true; 2343 2344 return false; 2345 } 2346 2347 static inline void boost_watermark(struct zone *zone) 2348 { 2349 unsigned long max_boost; 2350 2351 if (!watermark_boost_factor) 2352 return; 2353 2354 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2355 watermark_boost_factor, 10000); 2356 2357 /* 2358 * high watermark may be uninitialised if fragmentation occurs 2359 * very early in boot so do not boost. We do not fall 2360 * through and boost by pageblock_nr_pages as failing 2361 * allocations that early means that reclaim is not going 2362 * to help and it may even be impossible to reclaim the 2363 * boosted watermark resulting in a hang. 2364 */ 2365 if (!max_boost) 2366 return; 2367 2368 max_boost = max(pageblock_nr_pages, max_boost); 2369 2370 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2371 max_boost); 2372 } 2373 2374 /* 2375 * This function implements actual steal behaviour. If order is large enough, 2376 * we can steal whole pageblock. If not, we first move freepages in this 2377 * pageblock to our migratetype and determine how many already-allocated pages 2378 * are there in the pageblock with a compatible migratetype. If at least half 2379 * of pages are free or compatible, we can change migratetype of the pageblock 2380 * itself, so pages freed in the future will be put on the correct free list. 2381 */ 2382 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2383 unsigned int alloc_flags, int start_type, bool whole_block) 2384 { 2385 unsigned int current_order = page_order(page); 2386 struct free_area *area; 2387 int free_pages, movable_pages, alike_pages; 2388 int old_block_type; 2389 2390 old_block_type = get_pageblock_migratetype(page); 2391 2392 /* 2393 * This can happen due to races and we want to prevent broken 2394 * highatomic accounting. 2395 */ 2396 if (is_migrate_highatomic(old_block_type)) 2397 goto single_page; 2398 2399 /* Take ownership for orders >= pageblock_order */ 2400 if (current_order >= pageblock_order) { 2401 change_pageblock_range(page, current_order, start_type); 2402 goto single_page; 2403 } 2404 2405 /* 2406 * Boost watermarks to increase reclaim pressure to reduce the 2407 * likelihood of future fallbacks. Wake kswapd now as the node 2408 * may be balanced overall and kswapd will not wake naturally. 2409 */ 2410 boost_watermark(zone); 2411 if (alloc_flags & ALLOC_KSWAPD) 2412 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2413 2414 /* We are not allowed to try stealing from the whole block */ 2415 if (!whole_block) 2416 goto single_page; 2417 2418 free_pages = move_freepages_block(zone, page, start_type, 2419 &movable_pages); 2420 /* 2421 * Determine how many pages are compatible with our allocation. 2422 * For movable allocation, it's the number of movable pages which 2423 * we just obtained. For other types it's a bit more tricky. 2424 */ 2425 if (start_type == MIGRATE_MOVABLE) { 2426 alike_pages = movable_pages; 2427 } else { 2428 /* 2429 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2430 * to MOVABLE pageblock, consider all non-movable pages as 2431 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2432 * vice versa, be conservative since we can't distinguish the 2433 * exact migratetype of non-movable pages. 2434 */ 2435 if (old_block_type == MIGRATE_MOVABLE) 2436 alike_pages = pageblock_nr_pages 2437 - (free_pages + movable_pages); 2438 else 2439 alike_pages = 0; 2440 } 2441 2442 /* moving whole block can fail due to zone boundary conditions */ 2443 if (!free_pages) 2444 goto single_page; 2445 2446 /* 2447 * If a sufficient number of pages in the block are either free or of 2448 * comparable migratability as our allocation, claim the whole block. 2449 */ 2450 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2451 page_group_by_mobility_disabled) 2452 set_pageblock_migratetype(page, start_type); 2453 2454 return; 2455 2456 single_page: 2457 area = &zone->free_area[current_order]; 2458 move_to_free_area(page, area, start_type); 2459 } 2460 2461 /* 2462 * Check whether there is a suitable fallback freepage with requested order. 2463 * If only_stealable is true, this function returns fallback_mt only if 2464 * we can steal other freepages all together. This would help to reduce 2465 * fragmentation due to mixed migratetype pages in one pageblock. 2466 */ 2467 int find_suitable_fallback(struct free_area *area, unsigned int order, 2468 int migratetype, bool only_stealable, bool *can_steal) 2469 { 2470 int i; 2471 int fallback_mt; 2472 2473 if (area->nr_free == 0) 2474 return -1; 2475 2476 *can_steal = false; 2477 for (i = 0;; i++) { 2478 fallback_mt = fallbacks[migratetype][i]; 2479 if (fallback_mt == MIGRATE_TYPES) 2480 break; 2481 2482 if (free_area_empty(area, fallback_mt)) 2483 continue; 2484 2485 if (can_steal_fallback(order, migratetype)) 2486 *can_steal = true; 2487 2488 if (!only_stealable) 2489 return fallback_mt; 2490 2491 if (*can_steal) 2492 return fallback_mt; 2493 } 2494 2495 return -1; 2496 } 2497 2498 /* 2499 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2500 * there are no empty page blocks that contain a page with a suitable order 2501 */ 2502 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2503 unsigned int alloc_order) 2504 { 2505 int mt; 2506 unsigned long max_managed, flags; 2507 2508 /* 2509 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2510 * Check is race-prone but harmless. 2511 */ 2512 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2513 if (zone->nr_reserved_highatomic >= max_managed) 2514 return; 2515 2516 spin_lock_irqsave(&zone->lock, flags); 2517 2518 /* Recheck the nr_reserved_highatomic limit under the lock */ 2519 if (zone->nr_reserved_highatomic >= max_managed) 2520 goto out_unlock; 2521 2522 /* Yoink! */ 2523 mt = get_pageblock_migratetype(page); 2524 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2525 && !is_migrate_cma(mt)) { 2526 zone->nr_reserved_highatomic += pageblock_nr_pages; 2527 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2528 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2529 } 2530 2531 out_unlock: 2532 spin_unlock_irqrestore(&zone->lock, flags); 2533 } 2534 2535 /* 2536 * Used when an allocation is about to fail under memory pressure. This 2537 * potentially hurts the reliability of high-order allocations when under 2538 * intense memory pressure but failed atomic allocations should be easier 2539 * to recover from than an OOM. 2540 * 2541 * If @force is true, try to unreserve a pageblock even though highatomic 2542 * pageblock is exhausted. 2543 */ 2544 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2545 bool force) 2546 { 2547 struct zonelist *zonelist = ac->zonelist; 2548 unsigned long flags; 2549 struct zoneref *z; 2550 struct zone *zone; 2551 struct page *page; 2552 int order; 2553 bool ret; 2554 2555 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2556 ac->nodemask) { 2557 /* 2558 * Preserve at least one pageblock unless memory pressure 2559 * is really high. 2560 */ 2561 if (!force && zone->nr_reserved_highatomic <= 2562 pageblock_nr_pages) 2563 continue; 2564 2565 spin_lock_irqsave(&zone->lock, flags); 2566 for (order = 0; order < MAX_ORDER; order++) { 2567 struct free_area *area = &(zone->free_area[order]); 2568 2569 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2570 if (!page) 2571 continue; 2572 2573 /* 2574 * In page freeing path, migratetype change is racy so 2575 * we can counter several free pages in a pageblock 2576 * in this loop althoug we changed the pageblock type 2577 * from highatomic to ac->migratetype. So we should 2578 * adjust the count once. 2579 */ 2580 if (is_migrate_highatomic_page(page)) { 2581 /* 2582 * It should never happen but changes to 2583 * locking could inadvertently allow a per-cpu 2584 * drain to add pages to MIGRATE_HIGHATOMIC 2585 * while unreserving so be safe and watch for 2586 * underflows. 2587 */ 2588 zone->nr_reserved_highatomic -= min( 2589 pageblock_nr_pages, 2590 zone->nr_reserved_highatomic); 2591 } 2592 2593 /* 2594 * Convert to ac->migratetype and avoid the normal 2595 * pageblock stealing heuristics. Minimally, the caller 2596 * is doing the work and needs the pages. More 2597 * importantly, if the block was always converted to 2598 * MIGRATE_UNMOVABLE or another type then the number 2599 * of pageblocks that cannot be completely freed 2600 * may increase. 2601 */ 2602 set_pageblock_migratetype(page, ac->migratetype); 2603 ret = move_freepages_block(zone, page, ac->migratetype, 2604 NULL); 2605 if (ret) { 2606 spin_unlock_irqrestore(&zone->lock, flags); 2607 return ret; 2608 } 2609 } 2610 spin_unlock_irqrestore(&zone->lock, flags); 2611 } 2612 2613 return false; 2614 } 2615 2616 /* 2617 * Try finding a free buddy page on the fallback list and put it on the free 2618 * list of requested migratetype, possibly along with other pages from the same 2619 * block, depending on fragmentation avoidance heuristics. Returns true if 2620 * fallback was found so that __rmqueue_smallest() can grab it. 2621 * 2622 * The use of signed ints for order and current_order is a deliberate 2623 * deviation from the rest of this file, to make the for loop 2624 * condition simpler. 2625 */ 2626 static __always_inline bool 2627 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2628 unsigned int alloc_flags) 2629 { 2630 struct free_area *area; 2631 int current_order; 2632 int min_order = order; 2633 struct page *page; 2634 int fallback_mt; 2635 bool can_steal; 2636 2637 /* 2638 * Do not steal pages from freelists belonging to other pageblocks 2639 * i.e. orders < pageblock_order. If there are no local zones free, 2640 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2641 */ 2642 if (alloc_flags & ALLOC_NOFRAGMENT) 2643 min_order = pageblock_order; 2644 2645 /* 2646 * Find the largest available free page in the other list. This roughly 2647 * approximates finding the pageblock with the most free pages, which 2648 * would be too costly to do exactly. 2649 */ 2650 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2651 --current_order) { 2652 area = &(zone->free_area[current_order]); 2653 fallback_mt = find_suitable_fallback(area, current_order, 2654 start_migratetype, false, &can_steal); 2655 if (fallback_mt == -1) 2656 continue; 2657 2658 /* 2659 * We cannot steal all free pages from the pageblock and the 2660 * requested migratetype is movable. In that case it's better to 2661 * steal and split the smallest available page instead of the 2662 * largest available page, because even if the next movable 2663 * allocation falls back into a different pageblock than this 2664 * one, it won't cause permanent fragmentation. 2665 */ 2666 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2667 && current_order > order) 2668 goto find_smallest; 2669 2670 goto do_steal; 2671 } 2672 2673 return false; 2674 2675 find_smallest: 2676 for (current_order = order; current_order < MAX_ORDER; 2677 current_order++) { 2678 area = &(zone->free_area[current_order]); 2679 fallback_mt = find_suitable_fallback(area, current_order, 2680 start_migratetype, false, &can_steal); 2681 if (fallback_mt != -1) 2682 break; 2683 } 2684 2685 /* 2686 * This should not happen - we already found a suitable fallback 2687 * when looking for the largest page. 2688 */ 2689 VM_BUG_ON(current_order == MAX_ORDER); 2690 2691 do_steal: 2692 page = get_page_from_free_area(area, fallback_mt); 2693 2694 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2695 can_steal); 2696 2697 trace_mm_page_alloc_extfrag(page, order, current_order, 2698 start_migratetype, fallback_mt); 2699 2700 return true; 2701 2702 } 2703 2704 /* 2705 * Do the hard work of removing an element from the buddy allocator. 2706 * Call me with the zone->lock already held. 2707 */ 2708 static __always_inline struct page * 2709 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2710 unsigned int alloc_flags) 2711 { 2712 struct page *page; 2713 2714 retry: 2715 page = __rmqueue_smallest(zone, order, migratetype); 2716 if (unlikely(!page)) { 2717 if (migratetype == MIGRATE_MOVABLE) 2718 page = __rmqueue_cma_fallback(zone, order); 2719 2720 if (!page && __rmqueue_fallback(zone, order, migratetype, 2721 alloc_flags)) 2722 goto retry; 2723 } 2724 2725 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2726 return page; 2727 } 2728 2729 /* 2730 * Obtain a specified number of elements from the buddy allocator, all under 2731 * a single hold of the lock, for efficiency. Add them to the supplied list. 2732 * Returns the number of new pages which were placed at *list. 2733 */ 2734 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2735 unsigned long count, struct list_head *list, 2736 int migratetype, unsigned int alloc_flags) 2737 { 2738 int i, alloced = 0; 2739 2740 spin_lock(&zone->lock); 2741 for (i = 0; i < count; ++i) { 2742 struct page *page = __rmqueue(zone, order, migratetype, 2743 alloc_flags); 2744 if (unlikely(page == NULL)) 2745 break; 2746 2747 if (unlikely(check_pcp_refill(page))) 2748 continue; 2749 2750 /* 2751 * Split buddy pages returned by expand() are received here in 2752 * physical page order. The page is added to the tail of 2753 * caller's list. From the callers perspective, the linked list 2754 * is ordered by page number under some conditions. This is 2755 * useful for IO devices that can forward direction from the 2756 * head, thus also in the physical page order. This is useful 2757 * for IO devices that can merge IO requests if the physical 2758 * pages are ordered properly. 2759 */ 2760 list_add_tail(&page->lru, list); 2761 alloced++; 2762 if (is_migrate_cma(get_pcppage_migratetype(page))) 2763 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2764 -(1 << order)); 2765 } 2766 2767 /* 2768 * i pages were removed from the buddy list even if some leak due 2769 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2770 * on i. Do not confuse with 'alloced' which is the number of 2771 * pages added to the pcp list. 2772 */ 2773 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2774 spin_unlock(&zone->lock); 2775 return alloced; 2776 } 2777 2778 #ifdef CONFIG_NUMA 2779 /* 2780 * Called from the vmstat counter updater to drain pagesets of this 2781 * currently executing processor on remote nodes after they have 2782 * expired. 2783 * 2784 * Note that this function must be called with the thread pinned to 2785 * a single processor. 2786 */ 2787 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2788 { 2789 unsigned long flags; 2790 int to_drain, batch; 2791 2792 local_irq_save(flags); 2793 batch = READ_ONCE(pcp->batch); 2794 to_drain = min(pcp->count, batch); 2795 if (to_drain > 0) 2796 free_pcppages_bulk(zone, to_drain, pcp); 2797 local_irq_restore(flags); 2798 } 2799 #endif 2800 2801 /* 2802 * Drain pcplists of the indicated processor and zone. 2803 * 2804 * The processor must either be the current processor and the 2805 * thread pinned to the current processor or a processor that 2806 * is not online. 2807 */ 2808 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2809 { 2810 unsigned long flags; 2811 struct per_cpu_pageset *pset; 2812 struct per_cpu_pages *pcp; 2813 2814 local_irq_save(flags); 2815 pset = per_cpu_ptr(zone->pageset, cpu); 2816 2817 pcp = &pset->pcp; 2818 if (pcp->count) 2819 free_pcppages_bulk(zone, pcp->count, pcp); 2820 local_irq_restore(flags); 2821 } 2822 2823 /* 2824 * Drain pcplists of all zones on the indicated processor. 2825 * 2826 * The processor must either be the current processor and the 2827 * thread pinned to the current processor or a processor that 2828 * is not online. 2829 */ 2830 static void drain_pages(unsigned int cpu) 2831 { 2832 struct zone *zone; 2833 2834 for_each_populated_zone(zone) { 2835 drain_pages_zone(cpu, zone); 2836 } 2837 } 2838 2839 /* 2840 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2841 * 2842 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2843 * the single zone's pages. 2844 */ 2845 void drain_local_pages(struct zone *zone) 2846 { 2847 int cpu = smp_processor_id(); 2848 2849 if (zone) 2850 drain_pages_zone(cpu, zone); 2851 else 2852 drain_pages(cpu); 2853 } 2854 2855 static void drain_local_pages_wq(struct work_struct *work) 2856 { 2857 struct pcpu_drain *drain; 2858 2859 drain = container_of(work, struct pcpu_drain, work); 2860 2861 /* 2862 * drain_all_pages doesn't use proper cpu hotplug protection so 2863 * we can race with cpu offline when the WQ can move this from 2864 * a cpu pinned worker to an unbound one. We can operate on a different 2865 * cpu which is allright but we also have to make sure to not move to 2866 * a different one. 2867 */ 2868 preempt_disable(); 2869 drain_local_pages(drain->zone); 2870 preempt_enable(); 2871 } 2872 2873 /* 2874 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2875 * 2876 * When zone parameter is non-NULL, spill just the single zone's pages. 2877 * 2878 * Note that this can be extremely slow as the draining happens in a workqueue. 2879 */ 2880 void drain_all_pages(struct zone *zone) 2881 { 2882 int cpu; 2883 2884 /* 2885 * Allocate in the BSS so we wont require allocation in 2886 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2887 */ 2888 static cpumask_t cpus_with_pcps; 2889 2890 /* 2891 * Make sure nobody triggers this path before mm_percpu_wq is fully 2892 * initialized. 2893 */ 2894 if (WARN_ON_ONCE(!mm_percpu_wq)) 2895 return; 2896 2897 /* 2898 * Do not drain if one is already in progress unless it's specific to 2899 * a zone. Such callers are primarily CMA and memory hotplug and need 2900 * the drain to be complete when the call returns. 2901 */ 2902 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2903 if (!zone) 2904 return; 2905 mutex_lock(&pcpu_drain_mutex); 2906 } 2907 2908 /* 2909 * We don't care about racing with CPU hotplug event 2910 * as offline notification will cause the notified 2911 * cpu to drain that CPU pcps and on_each_cpu_mask 2912 * disables preemption as part of its processing 2913 */ 2914 for_each_online_cpu(cpu) { 2915 struct per_cpu_pageset *pcp; 2916 struct zone *z; 2917 bool has_pcps = false; 2918 2919 if (zone) { 2920 pcp = per_cpu_ptr(zone->pageset, cpu); 2921 if (pcp->pcp.count) 2922 has_pcps = true; 2923 } else { 2924 for_each_populated_zone(z) { 2925 pcp = per_cpu_ptr(z->pageset, cpu); 2926 if (pcp->pcp.count) { 2927 has_pcps = true; 2928 break; 2929 } 2930 } 2931 } 2932 2933 if (has_pcps) 2934 cpumask_set_cpu(cpu, &cpus_with_pcps); 2935 else 2936 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2937 } 2938 2939 for_each_cpu(cpu, &cpus_with_pcps) { 2940 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2941 2942 drain->zone = zone; 2943 INIT_WORK(&drain->work, drain_local_pages_wq); 2944 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2945 } 2946 for_each_cpu(cpu, &cpus_with_pcps) 2947 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2948 2949 mutex_unlock(&pcpu_drain_mutex); 2950 } 2951 2952 #ifdef CONFIG_HIBERNATION 2953 2954 /* 2955 * Touch the watchdog for every WD_PAGE_COUNT pages. 2956 */ 2957 #define WD_PAGE_COUNT (128*1024) 2958 2959 void mark_free_pages(struct zone *zone) 2960 { 2961 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2962 unsigned long flags; 2963 unsigned int order, t; 2964 struct page *page; 2965 2966 if (zone_is_empty(zone)) 2967 return; 2968 2969 spin_lock_irqsave(&zone->lock, flags); 2970 2971 max_zone_pfn = zone_end_pfn(zone); 2972 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2973 if (pfn_valid(pfn)) { 2974 page = pfn_to_page(pfn); 2975 2976 if (!--page_count) { 2977 touch_nmi_watchdog(); 2978 page_count = WD_PAGE_COUNT; 2979 } 2980 2981 if (page_zone(page) != zone) 2982 continue; 2983 2984 if (!swsusp_page_is_forbidden(page)) 2985 swsusp_unset_page_free(page); 2986 } 2987 2988 for_each_migratetype_order(order, t) { 2989 list_for_each_entry(page, 2990 &zone->free_area[order].free_list[t], lru) { 2991 unsigned long i; 2992 2993 pfn = page_to_pfn(page); 2994 for (i = 0; i < (1UL << order); i++) { 2995 if (!--page_count) { 2996 touch_nmi_watchdog(); 2997 page_count = WD_PAGE_COUNT; 2998 } 2999 swsusp_set_page_free(pfn_to_page(pfn + i)); 3000 } 3001 } 3002 } 3003 spin_unlock_irqrestore(&zone->lock, flags); 3004 } 3005 #endif /* CONFIG_PM */ 3006 3007 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3008 { 3009 int migratetype; 3010 3011 if (!free_pcp_prepare(page)) 3012 return false; 3013 3014 migratetype = get_pfnblock_migratetype(page, pfn); 3015 set_pcppage_migratetype(page, migratetype); 3016 return true; 3017 } 3018 3019 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3020 { 3021 struct zone *zone = page_zone(page); 3022 struct per_cpu_pages *pcp; 3023 int migratetype; 3024 3025 migratetype = get_pcppage_migratetype(page); 3026 __count_vm_event(PGFREE); 3027 3028 /* 3029 * We only track unmovable, reclaimable and movable on pcp lists. 3030 * Free ISOLATE pages back to the allocator because they are being 3031 * offlined but treat HIGHATOMIC as movable pages so we can get those 3032 * areas back if necessary. Otherwise, we may have to free 3033 * excessively into the page allocator 3034 */ 3035 if (migratetype >= MIGRATE_PCPTYPES) { 3036 if (unlikely(is_migrate_isolate(migratetype))) { 3037 free_one_page(zone, page, pfn, 0, migratetype); 3038 return; 3039 } 3040 migratetype = MIGRATE_MOVABLE; 3041 } 3042 3043 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3044 list_add(&page->lru, &pcp->lists[migratetype]); 3045 pcp->count++; 3046 if (pcp->count >= pcp->high) { 3047 unsigned long batch = READ_ONCE(pcp->batch); 3048 free_pcppages_bulk(zone, batch, pcp); 3049 } 3050 } 3051 3052 /* 3053 * Free a 0-order page 3054 */ 3055 void free_unref_page(struct page *page) 3056 { 3057 unsigned long flags; 3058 unsigned long pfn = page_to_pfn(page); 3059 3060 if (!free_unref_page_prepare(page, pfn)) 3061 return; 3062 3063 local_irq_save(flags); 3064 free_unref_page_commit(page, pfn); 3065 local_irq_restore(flags); 3066 } 3067 3068 /* 3069 * Free a list of 0-order pages 3070 */ 3071 void free_unref_page_list(struct list_head *list) 3072 { 3073 struct page *page, *next; 3074 unsigned long flags, pfn; 3075 int batch_count = 0; 3076 3077 /* Prepare pages for freeing */ 3078 list_for_each_entry_safe(page, next, list, lru) { 3079 pfn = page_to_pfn(page); 3080 if (!free_unref_page_prepare(page, pfn)) 3081 list_del(&page->lru); 3082 set_page_private(page, pfn); 3083 } 3084 3085 local_irq_save(flags); 3086 list_for_each_entry_safe(page, next, list, lru) { 3087 unsigned long pfn = page_private(page); 3088 3089 set_page_private(page, 0); 3090 trace_mm_page_free_batched(page); 3091 free_unref_page_commit(page, pfn); 3092 3093 /* 3094 * Guard against excessive IRQ disabled times when we get 3095 * a large list of pages to free. 3096 */ 3097 if (++batch_count == SWAP_CLUSTER_MAX) { 3098 local_irq_restore(flags); 3099 batch_count = 0; 3100 local_irq_save(flags); 3101 } 3102 } 3103 local_irq_restore(flags); 3104 } 3105 3106 /* 3107 * split_page takes a non-compound higher-order page, and splits it into 3108 * n (1<<order) sub-pages: page[0..n] 3109 * Each sub-page must be freed individually. 3110 * 3111 * Note: this is probably too low level an operation for use in drivers. 3112 * Please consult with lkml before using this in your driver. 3113 */ 3114 void split_page(struct page *page, unsigned int order) 3115 { 3116 int i; 3117 3118 VM_BUG_ON_PAGE(PageCompound(page), page); 3119 VM_BUG_ON_PAGE(!page_count(page), page); 3120 3121 for (i = 1; i < (1 << order); i++) 3122 set_page_refcounted(page + i); 3123 split_page_owner(page, order); 3124 } 3125 EXPORT_SYMBOL_GPL(split_page); 3126 3127 int __isolate_free_page(struct page *page, unsigned int order) 3128 { 3129 struct free_area *area = &page_zone(page)->free_area[order]; 3130 unsigned long watermark; 3131 struct zone *zone; 3132 int mt; 3133 3134 BUG_ON(!PageBuddy(page)); 3135 3136 zone = page_zone(page); 3137 mt = get_pageblock_migratetype(page); 3138 3139 if (!is_migrate_isolate(mt)) { 3140 /* 3141 * Obey watermarks as if the page was being allocated. We can 3142 * emulate a high-order watermark check with a raised order-0 3143 * watermark, because we already know our high-order page 3144 * exists. 3145 */ 3146 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3147 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3148 return 0; 3149 3150 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3151 } 3152 3153 /* Remove page from free list */ 3154 3155 del_page_from_free_area(page, area); 3156 3157 /* 3158 * Set the pageblock if the isolated page is at least half of a 3159 * pageblock 3160 */ 3161 if (order >= pageblock_order - 1) { 3162 struct page *endpage = page + (1 << order) - 1; 3163 for (; page < endpage; page += pageblock_nr_pages) { 3164 int mt = get_pageblock_migratetype(page); 3165 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3166 && !is_migrate_highatomic(mt)) 3167 set_pageblock_migratetype(page, 3168 MIGRATE_MOVABLE); 3169 } 3170 } 3171 3172 3173 return 1UL << order; 3174 } 3175 3176 /* 3177 * Update NUMA hit/miss statistics 3178 * 3179 * Must be called with interrupts disabled. 3180 */ 3181 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3182 { 3183 #ifdef CONFIG_NUMA 3184 enum numa_stat_item local_stat = NUMA_LOCAL; 3185 3186 /* skip numa counters update if numa stats is disabled */ 3187 if (!static_branch_likely(&vm_numa_stat_key)) 3188 return; 3189 3190 if (zone_to_nid(z) != numa_node_id()) 3191 local_stat = NUMA_OTHER; 3192 3193 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3194 __inc_numa_state(z, NUMA_HIT); 3195 else { 3196 __inc_numa_state(z, NUMA_MISS); 3197 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3198 } 3199 __inc_numa_state(z, local_stat); 3200 #endif 3201 } 3202 3203 /* Remove page from the per-cpu list, caller must protect the list */ 3204 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3205 unsigned int alloc_flags, 3206 struct per_cpu_pages *pcp, 3207 struct list_head *list) 3208 { 3209 struct page *page; 3210 3211 do { 3212 if (list_empty(list)) { 3213 pcp->count += rmqueue_bulk(zone, 0, 3214 pcp->batch, list, 3215 migratetype, alloc_flags); 3216 if (unlikely(list_empty(list))) 3217 return NULL; 3218 } 3219 3220 page = list_first_entry(list, struct page, lru); 3221 list_del(&page->lru); 3222 pcp->count--; 3223 } while (check_new_pcp(page)); 3224 3225 return page; 3226 } 3227 3228 /* Lock and remove page from the per-cpu list */ 3229 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3230 struct zone *zone, gfp_t gfp_flags, 3231 int migratetype, unsigned int alloc_flags) 3232 { 3233 struct per_cpu_pages *pcp; 3234 struct list_head *list; 3235 struct page *page; 3236 unsigned long flags; 3237 3238 local_irq_save(flags); 3239 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3240 list = &pcp->lists[migratetype]; 3241 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3242 if (page) { 3243 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3244 zone_statistics(preferred_zone, zone); 3245 } 3246 local_irq_restore(flags); 3247 return page; 3248 } 3249 3250 /* 3251 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3252 */ 3253 static inline 3254 struct page *rmqueue(struct zone *preferred_zone, 3255 struct zone *zone, unsigned int order, 3256 gfp_t gfp_flags, unsigned int alloc_flags, 3257 int migratetype) 3258 { 3259 unsigned long flags; 3260 struct page *page; 3261 3262 if (likely(order == 0)) { 3263 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3264 migratetype, alloc_flags); 3265 goto out; 3266 } 3267 3268 /* 3269 * We most definitely don't want callers attempting to 3270 * allocate greater than order-1 page units with __GFP_NOFAIL. 3271 */ 3272 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3273 spin_lock_irqsave(&zone->lock, flags); 3274 3275 do { 3276 page = NULL; 3277 if (alloc_flags & ALLOC_HARDER) { 3278 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3279 if (page) 3280 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3281 } 3282 if (!page) 3283 page = __rmqueue(zone, order, migratetype, alloc_flags); 3284 } while (page && check_new_pages(page, order)); 3285 spin_unlock(&zone->lock); 3286 if (!page) 3287 goto failed; 3288 __mod_zone_freepage_state(zone, -(1 << order), 3289 get_pcppage_migratetype(page)); 3290 3291 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3292 zone_statistics(preferred_zone, zone); 3293 local_irq_restore(flags); 3294 3295 out: 3296 /* Separate test+clear to avoid unnecessary atomics */ 3297 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3298 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3299 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3300 } 3301 3302 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3303 return page; 3304 3305 failed: 3306 local_irq_restore(flags); 3307 return NULL; 3308 } 3309 3310 #ifdef CONFIG_FAIL_PAGE_ALLOC 3311 3312 static struct { 3313 struct fault_attr attr; 3314 3315 bool ignore_gfp_highmem; 3316 bool ignore_gfp_reclaim; 3317 u32 min_order; 3318 } fail_page_alloc = { 3319 .attr = FAULT_ATTR_INITIALIZER, 3320 .ignore_gfp_reclaim = true, 3321 .ignore_gfp_highmem = true, 3322 .min_order = 1, 3323 }; 3324 3325 static int __init setup_fail_page_alloc(char *str) 3326 { 3327 return setup_fault_attr(&fail_page_alloc.attr, str); 3328 } 3329 __setup("fail_page_alloc=", setup_fail_page_alloc); 3330 3331 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3332 { 3333 if (order < fail_page_alloc.min_order) 3334 return false; 3335 if (gfp_mask & __GFP_NOFAIL) 3336 return false; 3337 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3338 return false; 3339 if (fail_page_alloc.ignore_gfp_reclaim && 3340 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3341 return false; 3342 3343 return should_fail(&fail_page_alloc.attr, 1 << order); 3344 } 3345 3346 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3347 3348 static int __init fail_page_alloc_debugfs(void) 3349 { 3350 umode_t mode = S_IFREG | 0600; 3351 struct dentry *dir; 3352 3353 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3354 &fail_page_alloc.attr); 3355 3356 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3357 &fail_page_alloc.ignore_gfp_reclaim); 3358 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3359 &fail_page_alloc.ignore_gfp_highmem); 3360 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3361 3362 return 0; 3363 } 3364 3365 late_initcall(fail_page_alloc_debugfs); 3366 3367 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3368 3369 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3370 3371 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3372 { 3373 return false; 3374 } 3375 3376 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3377 3378 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3379 { 3380 return __should_fail_alloc_page(gfp_mask, order); 3381 } 3382 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3383 3384 /* 3385 * Return true if free base pages are above 'mark'. For high-order checks it 3386 * will return true of the order-0 watermark is reached and there is at least 3387 * one free page of a suitable size. Checking now avoids taking the zone lock 3388 * to check in the allocation paths if no pages are free. 3389 */ 3390 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3391 int classzone_idx, unsigned int alloc_flags, 3392 long free_pages) 3393 { 3394 long min = mark; 3395 int o; 3396 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3397 3398 /* free_pages may go negative - that's OK */ 3399 free_pages -= (1 << order) - 1; 3400 3401 if (alloc_flags & ALLOC_HIGH) 3402 min -= min / 2; 3403 3404 /* 3405 * If the caller does not have rights to ALLOC_HARDER then subtract 3406 * the high-atomic reserves. This will over-estimate the size of the 3407 * atomic reserve but it avoids a search. 3408 */ 3409 if (likely(!alloc_harder)) { 3410 free_pages -= z->nr_reserved_highatomic; 3411 } else { 3412 /* 3413 * OOM victims can try even harder than normal ALLOC_HARDER 3414 * users on the grounds that it's definitely going to be in 3415 * the exit path shortly and free memory. Any allocation it 3416 * makes during the free path will be small and short-lived. 3417 */ 3418 if (alloc_flags & ALLOC_OOM) 3419 min -= min / 2; 3420 else 3421 min -= min / 4; 3422 } 3423 3424 3425 #ifdef CONFIG_CMA 3426 /* If allocation can't use CMA areas don't use free CMA pages */ 3427 if (!(alloc_flags & ALLOC_CMA)) 3428 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3429 #endif 3430 3431 /* 3432 * Check watermarks for an order-0 allocation request. If these 3433 * are not met, then a high-order request also cannot go ahead 3434 * even if a suitable page happened to be free. 3435 */ 3436 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3437 return false; 3438 3439 /* If this is an order-0 request then the watermark is fine */ 3440 if (!order) 3441 return true; 3442 3443 /* For a high-order request, check at least one suitable page is free */ 3444 for (o = order; o < MAX_ORDER; o++) { 3445 struct free_area *area = &z->free_area[o]; 3446 int mt; 3447 3448 if (!area->nr_free) 3449 continue; 3450 3451 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3452 if (!free_area_empty(area, mt)) 3453 return true; 3454 } 3455 3456 #ifdef CONFIG_CMA 3457 if ((alloc_flags & ALLOC_CMA) && 3458 !free_area_empty(area, MIGRATE_CMA)) { 3459 return true; 3460 } 3461 #endif 3462 if (alloc_harder && 3463 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3464 return true; 3465 } 3466 return false; 3467 } 3468 3469 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3470 int classzone_idx, unsigned int alloc_flags) 3471 { 3472 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3473 zone_page_state(z, NR_FREE_PAGES)); 3474 } 3475 3476 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3477 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3478 { 3479 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3480 long cma_pages = 0; 3481 3482 #ifdef CONFIG_CMA 3483 /* If allocation can't use CMA areas don't use free CMA pages */ 3484 if (!(alloc_flags & ALLOC_CMA)) 3485 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3486 #endif 3487 3488 /* 3489 * Fast check for order-0 only. If this fails then the reserves 3490 * need to be calculated. There is a corner case where the check 3491 * passes but only the high-order atomic reserve are free. If 3492 * the caller is !atomic then it'll uselessly search the free 3493 * list. That corner case is then slower but it is harmless. 3494 */ 3495 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3496 return true; 3497 3498 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3499 free_pages); 3500 } 3501 3502 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3503 unsigned long mark, int classzone_idx) 3504 { 3505 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3506 3507 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3508 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3509 3510 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3511 free_pages); 3512 } 3513 3514 #ifdef CONFIG_NUMA 3515 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3516 { 3517 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3518 node_reclaim_distance; 3519 } 3520 #else /* CONFIG_NUMA */ 3521 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3522 { 3523 return true; 3524 } 3525 #endif /* CONFIG_NUMA */ 3526 3527 /* 3528 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3529 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3530 * premature use of a lower zone may cause lowmem pressure problems that 3531 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3532 * probably too small. It only makes sense to spread allocations to avoid 3533 * fragmentation between the Normal and DMA32 zones. 3534 */ 3535 static inline unsigned int 3536 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3537 { 3538 unsigned int alloc_flags = 0; 3539 3540 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3541 alloc_flags |= ALLOC_KSWAPD; 3542 3543 #ifdef CONFIG_ZONE_DMA32 3544 if (!zone) 3545 return alloc_flags; 3546 3547 if (zone_idx(zone) != ZONE_NORMAL) 3548 return alloc_flags; 3549 3550 /* 3551 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3552 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3553 * on UMA that if Normal is populated then so is DMA32. 3554 */ 3555 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3556 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3557 return alloc_flags; 3558 3559 alloc_flags |= ALLOC_NOFRAGMENT; 3560 #endif /* CONFIG_ZONE_DMA32 */ 3561 return alloc_flags; 3562 } 3563 3564 /* 3565 * get_page_from_freelist goes through the zonelist trying to allocate 3566 * a page. 3567 */ 3568 static struct page * 3569 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3570 const struct alloc_context *ac) 3571 { 3572 struct zoneref *z; 3573 struct zone *zone; 3574 struct pglist_data *last_pgdat_dirty_limit = NULL; 3575 bool no_fallback; 3576 3577 retry: 3578 /* 3579 * Scan zonelist, looking for a zone with enough free. 3580 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3581 */ 3582 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3583 z = ac->preferred_zoneref; 3584 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3585 ac->nodemask) { 3586 struct page *page; 3587 unsigned long mark; 3588 3589 if (cpusets_enabled() && 3590 (alloc_flags & ALLOC_CPUSET) && 3591 !__cpuset_zone_allowed(zone, gfp_mask)) 3592 continue; 3593 /* 3594 * When allocating a page cache page for writing, we 3595 * want to get it from a node that is within its dirty 3596 * limit, such that no single node holds more than its 3597 * proportional share of globally allowed dirty pages. 3598 * The dirty limits take into account the node's 3599 * lowmem reserves and high watermark so that kswapd 3600 * should be able to balance it without having to 3601 * write pages from its LRU list. 3602 * 3603 * XXX: For now, allow allocations to potentially 3604 * exceed the per-node dirty limit in the slowpath 3605 * (spread_dirty_pages unset) before going into reclaim, 3606 * which is important when on a NUMA setup the allowed 3607 * nodes are together not big enough to reach the 3608 * global limit. The proper fix for these situations 3609 * will require awareness of nodes in the 3610 * dirty-throttling and the flusher threads. 3611 */ 3612 if (ac->spread_dirty_pages) { 3613 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3614 continue; 3615 3616 if (!node_dirty_ok(zone->zone_pgdat)) { 3617 last_pgdat_dirty_limit = zone->zone_pgdat; 3618 continue; 3619 } 3620 } 3621 3622 if (no_fallback && nr_online_nodes > 1 && 3623 zone != ac->preferred_zoneref->zone) { 3624 int local_nid; 3625 3626 /* 3627 * If moving to a remote node, retry but allow 3628 * fragmenting fallbacks. Locality is more important 3629 * than fragmentation avoidance. 3630 */ 3631 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3632 if (zone_to_nid(zone) != local_nid) { 3633 alloc_flags &= ~ALLOC_NOFRAGMENT; 3634 goto retry; 3635 } 3636 } 3637 3638 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3639 if (!zone_watermark_fast(zone, order, mark, 3640 ac_classzone_idx(ac), alloc_flags)) { 3641 int ret; 3642 3643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3644 /* 3645 * Watermark failed for this zone, but see if we can 3646 * grow this zone if it contains deferred pages. 3647 */ 3648 if (static_branch_unlikely(&deferred_pages)) { 3649 if (_deferred_grow_zone(zone, order)) 3650 goto try_this_zone; 3651 } 3652 #endif 3653 /* Checked here to keep the fast path fast */ 3654 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3655 if (alloc_flags & ALLOC_NO_WATERMARKS) 3656 goto try_this_zone; 3657 3658 if (node_reclaim_mode == 0 || 3659 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3660 continue; 3661 3662 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3663 switch (ret) { 3664 case NODE_RECLAIM_NOSCAN: 3665 /* did not scan */ 3666 continue; 3667 case NODE_RECLAIM_FULL: 3668 /* scanned but unreclaimable */ 3669 continue; 3670 default: 3671 /* did we reclaim enough */ 3672 if (zone_watermark_ok(zone, order, mark, 3673 ac_classzone_idx(ac), alloc_flags)) 3674 goto try_this_zone; 3675 3676 continue; 3677 } 3678 } 3679 3680 try_this_zone: 3681 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3682 gfp_mask, alloc_flags, ac->migratetype); 3683 if (page) { 3684 prep_new_page(page, order, gfp_mask, alloc_flags); 3685 3686 /* 3687 * If this is a high-order atomic allocation then check 3688 * if the pageblock should be reserved for the future 3689 */ 3690 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3691 reserve_highatomic_pageblock(page, zone, order); 3692 3693 return page; 3694 } else { 3695 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3696 /* Try again if zone has deferred pages */ 3697 if (static_branch_unlikely(&deferred_pages)) { 3698 if (_deferred_grow_zone(zone, order)) 3699 goto try_this_zone; 3700 } 3701 #endif 3702 } 3703 } 3704 3705 /* 3706 * It's possible on a UMA machine to get through all zones that are 3707 * fragmented. If avoiding fragmentation, reset and try again. 3708 */ 3709 if (no_fallback) { 3710 alloc_flags &= ~ALLOC_NOFRAGMENT; 3711 goto retry; 3712 } 3713 3714 return NULL; 3715 } 3716 3717 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3718 { 3719 unsigned int filter = SHOW_MEM_FILTER_NODES; 3720 3721 /* 3722 * This documents exceptions given to allocations in certain 3723 * contexts that are allowed to allocate outside current's set 3724 * of allowed nodes. 3725 */ 3726 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3727 if (tsk_is_oom_victim(current) || 3728 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3729 filter &= ~SHOW_MEM_FILTER_NODES; 3730 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3731 filter &= ~SHOW_MEM_FILTER_NODES; 3732 3733 show_mem(filter, nodemask); 3734 } 3735 3736 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3737 { 3738 struct va_format vaf; 3739 va_list args; 3740 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3741 3742 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3743 return; 3744 3745 va_start(args, fmt); 3746 vaf.fmt = fmt; 3747 vaf.va = &args; 3748 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3749 current->comm, &vaf, gfp_mask, &gfp_mask, 3750 nodemask_pr_args(nodemask)); 3751 va_end(args); 3752 3753 cpuset_print_current_mems_allowed(); 3754 pr_cont("\n"); 3755 dump_stack(); 3756 warn_alloc_show_mem(gfp_mask, nodemask); 3757 } 3758 3759 static inline struct page * 3760 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3761 unsigned int alloc_flags, 3762 const struct alloc_context *ac) 3763 { 3764 struct page *page; 3765 3766 page = get_page_from_freelist(gfp_mask, order, 3767 alloc_flags|ALLOC_CPUSET, ac); 3768 /* 3769 * fallback to ignore cpuset restriction if our nodes 3770 * are depleted 3771 */ 3772 if (!page) 3773 page = get_page_from_freelist(gfp_mask, order, 3774 alloc_flags, ac); 3775 3776 return page; 3777 } 3778 3779 static inline struct page * 3780 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3781 const struct alloc_context *ac, unsigned long *did_some_progress) 3782 { 3783 struct oom_control oc = { 3784 .zonelist = ac->zonelist, 3785 .nodemask = ac->nodemask, 3786 .memcg = NULL, 3787 .gfp_mask = gfp_mask, 3788 .order = order, 3789 }; 3790 struct page *page; 3791 3792 *did_some_progress = 0; 3793 3794 /* 3795 * Acquire the oom lock. If that fails, somebody else is 3796 * making progress for us. 3797 */ 3798 if (!mutex_trylock(&oom_lock)) { 3799 *did_some_progress = 1; 3800 schedule_timeout_uninterruptible(1); 3801 return NULL; 3802 } 3803 3804 /* 3805 * Go through the zonelist yet one more time, keep very high watermark 3806 * here, this is only to catch a parallel oom killing, we must fail if 3807 * we're still under heavy pressure. But make sure that this reclaim 3808 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3809 * allocation which will never fail due to oom_lock already held. 3810 */ 3811 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3812 ~__GFP_DIRECT_RECLAIM, order, 3813 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3814 if (page) 3815 goto out; 3816 3817 /* Coredumps can quickly deplete all memory reserves */ 3818 if (current->flags & PF_DUMPCORE) 3819 goto out; 3820 /* The OOM killer will not help higher order allocs */ 3821 if (order > PAGE_ALLOC_COSTLY_ORDER) 3822 goto out; 3823 /* 3824 * We have already exhausted all our reclaim opportunities without any 3825 * success so it is time to admit defeat. We will skip the OOM killer 3826 * because it is very likely that the caller has a more reasonable 3827 * fallback than shooting a random task. 3828 */ 3829 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3830 goto out; 3831 /* The OOM killer does not needlessly kill tasks for lowmem */ 3832 if (ac->high_zoneidx < ZONE_NORMAL) 3833 goto out; 3834 if (pm_suspended_storage()) 3835 goto out; 3836 /* 3837 * XXX: GFP_NOFS allocations should rather fail than rely on 3838 * other request to make a forward progress. 3839 * We are in an unfortunate situation where out_of_memory cannot 3840 * do much for this context but let's try it to at least get 3841 * access to memory reserved if the current task is killed (see 3842 * out_of_memory). Once filesystems are ready to handle allocation 3843 * failures more gracefully we should just bail out here. 3844 */ 3845 3846 /* The OOM killer may not free memory on a specific node */ 3847 if (gfp_mask & __GFP_THISNODE) 3848 goto out; 3849 3850 /* Exhausted what can be done so it's blame time */ 3851 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3852 *did_some_progress = 1; 3853 3854 /* 3855 * Help non-failing allocations by giving them access to memory 3856 * reserves 3857 */ 3858 if (gfp_mask & __GFP_NOFAIL) 3859 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3860 ALLOC_NO_WATERMARKS, ac); 3861 } 3862 out: 3863 mutex_unlock(&oom_lock); 3864 return page; 3865 } 3866 3867 /* 3868 * Maximum number of compaction retries wit a progress before OOM 3869 * killer is consider as the only way to move forward. 3870 */ 3871 #define MAX_COMPACT_RETRIES 16 3872 3873 #ifdef CONFIG_COMPACTION 3874 /* Try memory compaction for high-order allocations before reclaim */ 3875 static struct page * 3876 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3877 unsigned int alloc_flags, const struct alloc_context *ac, 3878 enum compact_priority prio, enum compact_result *compact_result) 3879 { 3880 struct page *page = NULL; 3881 unsigned long pflags; 3882 unsigned int noreclaim_flag; 3883 3884 if (!order) 3885 return NULL; 3886 3887 psi_memstall_enter(&pflags); 3888 noreclaim_flag = memalloc_noreclaim_save(); 3889 3890 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3891 prio, &page); 3892 3893 memalloc_noreclaim_restore(noreclaim_flag); 3894 psi_memstall_leave(&pflags); 3895 3896 /* 3897 * At least in one zone compaction wasn't deferred or skipped, so let's 3898 * count a compaction stall 3899 */ 3900 count_vm_event(COMPACTSTALL); 3901 3902 /* Prep a captured page if available */ 3903 if (page) 3904 prep_new_page(page, order, gfp_mask, alloc_flags); 3905 3906 /* Try get a page from the freelist if available */ 3907 if (!page) 3908 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3909 3910 if (page) { 3911 struct zone *zone = page_zone(page); 3912 3913 zone->compact_blockskip_flush = false; 3914 compaction_defer_reset(zone, order, true); 3915 count_vm_event(COMPACTSUCCESS); 3916 return page; 3917 } 3918 3919 /* 3920 * It's bad if compaction run occurs and fails. The most likely reason 3921 * is that pages exist, but not enough to satisfy watermarks. 3922 */ 3923 count_vm_event(COMPACTFAIL); 3924 3925 cond_resched(); 3926 3927 return NULL; 3928 } 3929 3930 static inline bool 3931 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3932 enum compact_result compact_result, 3933 enum compact_priority *compact_priority, 3934 int *compaction_retries) 3935 { 3936 int max_retries = MAX_COMPACT_RETRIES; 3937 int min_priority; 3938 bool ret = false; 3939 int retries = *compaction_retries; 3940 enum compact_priority priority = *compact_priority; 3941 3942 if (!order) 3943 return false; 3944 3945 if (compaction_made_progress(compact_result)) 3946 (*compaction_retries)++; 3947 3948 /* 3949 * compaction considers all the zone as desperately out of memory 3950 * so it doesn't really make much sense to retry except when the 3951 * failure could be caused by insufficient priority 3952 */ 3953 if (compaction_failed(compact_result)) 3954 goto check_priority; 3955 3956 /* 3957 * compaction was skipped because there are not enough order-0 pages 3958 * to work with, so we retry only if it looks like reclaim can help. 3959 */ 3960 if (compaction_needs_reclaim(compact_result)) { 3961 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3962 goto out; 3963 } 3964 3965 /* 3966 * make sure the compaction wasn't deferred or didn't bail out early 3967 * due to locks contention before we declare that we should give up. 3968 * But the next retry should use a higher priority if allowed, so 3969 * we don't just keep bailing out endlessly. 3970 */ 3971 if (compaction_withdrawn(compact_result)) { 3972 goto check_priority; 3973 } 3974 3975 /* 3976 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3977 * costly ones because they are de facto nofail and invoke OOM 3978 * killer to move on while costly can fail and users are ready 3979 * to cope with that. 1/4 retries is rather arbitrary but we 3980 * would need much more detailed feedback from compaction to 3981 * make a better decision. 3982 */ 3983 if (order > PAGE_ALLOC_COSTLY_ORDER) 3984 max_retries /= 4; 3985 if (*compaction_retries <= max_retries) { 3986 ret = true; 3987 goto out; 3988 } 3989 3990 /* 3991 * Make sure there are attempts at the highest priority if we exhausted 3992 * all retries or failed at the lower priorities. 3993 */ 3994 check_priority: 3995 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3996 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3997 3998 if (*compact_priority > min_priority) { 3999 (*compact_priority)--; 4000 *compaction_retries = 0; 4001 ret = true; 4002 } 4003 out: 4004 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4005 return ret; 4006 } 4007 #else 4008 static inline struct page * 4009 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4010 unsigned int alloc_flags, const struct alloc_context *ac, 4011 enum compact_priority prio, enum compact_result *compact_result) 4012 { 4013 *compact_result = COMPACT_SKIPPED; 4014 return NULL; 4015 } 4016 4017 static inline bool 4018 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4019 enum compact_result compact_result, 4020 enum compact_priority *compact_priority, 4021 int *compaction_retries) 4022 { 4023 struct zone *zone; 4024 struct zoneref *z; 4025 4026 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4027 return false; 4028 4029 /* 4030 * There are setups with compaction disabled which would prefer to loop 4031 * inside the allocator rather than hit the oom killer prematurely. 4032 * Let's give them a good hope and keep retrying while the order-0 4033 * watermarks are OK. 4034 */ 4035 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4036 ac->nodemask) { 4037 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4038 ac_classzone_idx(ac), alloc_flags)) 4039 return true; 4040 } 4041 return false; 4042 } 4043 #endif /* CONFIG_COMPACTION */ 4044 4045 #ifdef CONFIG_LOCKDEP 4046 static struct lockdep_map __fs_reclaim_map = 4047 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4048 4049 static bool __need_fs_reclaim(gfp_t gfp_mask) 4050 { 4051 gfp_mask = current_gfp_context(gfp_mask); 4052 4053 /* no reclaim without waiting on it */ 4054 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4055 return false; 4056 4057 /* this guy won't enter reclaim */ 4058 if (current->flags & PF_MEMALLOC) 4059 return false; 4060 4061 /* We're only interested __GFP_FS allocations for now */ 4062 if (!(gfp_mask & __GFP_FS)) 4063 return false; 4064 4065 if (gfp_mask & __GFP_NOLOCKDEP) 4066 return false; 4067 4068 return true; 4069 } 4070 4071 void __fs_reclaim_acquire(void) 4072 { 4073 lock_map_acquire(&__fs_reclaim_map); 4074 } 4075 4076 void __fs_reclaim_release(void) 4077 { 4078 lock_map_release(&__fs_reclaim_map); 4079 } 4080 4081 void fs_reclaim_acquire(gfp_t gfp_mask) 4082 { 4083 if (__need_fs_reclaim(gfp_mask)) 4084 __fs_reclaim_acquire(); 4085 } 4086 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4087 4088 void fs_reclaim_release(gfp_t gfp_mask) 4089 { 4090 if (__need_fs_reclaim(gfp_mask)) 4091 __fs_reclaim_release(); 4092 } 4093 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4094 #endif 4095 4096 /* Perform direct synchronous page reclaim */ 4097 static int 4098 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4099 const struct alloc_context *ac) 4100 { 4101 int progress; 4102 unsigned int noreclaim_flag; 4103 unsigned long pflags; 4104 4105 cond_resched(); 4106 4107 /* We now go into synchronous reclaim */ 4108 cpuset_memory_pressure_bump(); 4109 psi_memstall_enter(&pflags); 4110 fs_reclaim_acquire(gfp_mask); 4111 noreclaim_flag = memalloc_noreclaim_save(); 4112 4113 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4114 ac->nodemask); 4115 4116 memalloc_noreclaim_restore(noreclaim_flag); 4117 fs_reclaim_release(gfp_mask); 4118 psi_memstall_leave(&pflags); 4119 4120 cond_resched(); 4121 4122 return progress; 4123 } 4124 4125 /* The really slow allocator path where we enter direct reclaim */ 4126 static inline struct page * 4127 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4128 unsigned int alloc_flags, const struct alloc_context *ac, 4129 unsigned long *did_some_progress) 4130 { 4131 struct page *page = NULL; 4132 bool drained = false; 4133 4134 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4135 if (unlikely(!(*did_some_progress))) 4136 return NULL; 4137 4138 retry: 4139 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4140 4141 /* 4142 * If an allocation failed after direct reclaim, it could be because 4143 * pages are pinned on the per-cpu lists or in high alloc reserves. 4144 * Shrink them them and try again 4145 */ 4146 if (!page && !drained) { 4147 unreserve_highatomic_pageblock(ac, false); 4148 drain_all_pages(NULL); 4149 drained = true; 4150 goto retry; 4151 } 4152 4153 return page; 4154 } 4155 4156 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4157 const struct alloc_context *ac) 4158 { 4159 struct zoneref *z; 4160 struct zone *zone; 4161 pg_data_t *last_pgdat = NULL; 4162 enum zone_type high_zoneidx = ac->high_zoneidx; 4163 4164 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4165 ac->nodemask) { 4166 if (last_pgdat != zone->zone_pgdat) 4167 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4168 last_pgdat = zone->zone_pgdat; 4169 } 4170 } 4171 4172 static inline unsigned int 4173 gfp_to_alloc_flags(gfp_t gfp_mask) 4174 { 4175 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4176 4177 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4178 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4179 4180 /* 4181 * The caller may dip into page reserves a bit more if the caller 4182 * cannot run direct reclaim, or if the caller has realtime scheduling 4183 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4184 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4185 */ 4186 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4187 4188 if (gfp_mask & __GFP_ATOMIC) { 4189 /* 4190 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4191 * if it can't schedule. 4192 */ 4193 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4194 alloc_flags |= ALLOC_HARDER; 4195 /* 4196 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4197 * comment for __cpuset_node_allowed(). 4198 */ 4199 alloc_flags &= ~ALLOC_CPUSET; 4200 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4201 alloc_flags |= ALLOC_HARDER; 4202 4203 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4204 alloc_flags |= ALLOC_KSWAPD; 4205 4206 #ifdef CONFIG_CMA 4207 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4208 alloc_flags |= ALLOC_CMA; 4209 #endif 4210 return alloc_flags; 4211 } 4212 4213 static bool oom_reserves_allowed(struct task_struct *tsk) 4214 { 4215 if (!tsk_is_oom_victim(tsk)) 4216 return false; 4217 4218 /* 4219 * !MMU doesn't have oom reaper so give access to memory reserves 4220 * only to the thread with TIF_MEMDIE set 4221 */ 4222 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4223 return false; 4224 4225 return true; 4226 } 4227 4228 /* 4229 * Distinguish requests which really need access to full memory 4230 * reserves from oom victims which can live with a portion of it 4231 */ 4232 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4233 { 4234 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4235 return 0; 4236 if (gfp_mask & __GFP_MEMALLOC) 4237 return ALLOC_NO_WATERMARKS; 4238 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4239 return ALLOC_NO_WATERMARKS; 4240 if (!in_interrupt()) { 4241 if (current->flags & PF_MEMALLOC) 4242 return ALLOC_NO_WATERMARKS; 4243 else if (oom_reserves_allowed(current)) 4244 return ALLOC_OOM; 4245 } 4246 4247 return 0; 4248 } 4249 4250 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4251 { 4252 return !!__gfp_pfmemalloc_flags(gfp_mask); 4253 } 4254 4255 /* 4256 * Checks whether it makes sense to retry the reclaim to make a forward progress 4257 * for the given allocation request. 4258 * 4259 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4260 * without success, or when we couldn't even meet the watermark if we 4261 * reclaimed all remaining pages on the LRU lists. 4262 * 4263 * Returns true if a retry is viable or false to enter the oom path. 4264 */ 4265 static inline bool 4266 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4267 struct alloc_context *ac, int alloc_flags, 4268 bool did_some_progress, int *no_progress_loops) 4269 { 4270 struct zone *zone; 4271 struct zoneref *z; 4272 bool ret = false; 4273 4274 /* 4275 * Costly allocations might have made a progress but this doesn't mean 4276 * their order will become available due to high fragmentation so 4277 * always increment the no progress counter for them 4278 */ 4279 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4280 *no_progress_loops = 0; 4281 else 4282 (*no_progress_loops)++; 4283 4284 /* 4285 * Make sure we converge to OOM if we cannot make any progress 4286 * several times in the row. 4287 */ 4288 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4289 /* Before OOM, exhaust highatomic_reserve */ 4290 return unreserve_highatomic_pageblock(ac, true); 4291 } 4292 4293 /* 4294 * Keep reclaiming pages while there is a chance this will lead 4295 * somewhere. If none of the target zones can satisfy our allocation 4296 * request even if all reclaimable pages are considered then we are 4297 * screwed and have to go OOM. 4298 */ 4299 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4300 ac->nodemask) { 4301 unsigned long available; 4302 unsigned long reclaimable; 4303 unsigned long min_wmark = min_wmark_pages(zone); 4304 bool wmark; 4305 4306 available = reclaimable = zone_reclaimable_pages(zone); 4307 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4308 4309 /* 4310 * Would the allocation succeed if we reclaimed all 4311 * reclaimable pages? 4312 */ 4313 wmark = __zone_watermark_ok(zone, order, min_wmark, 4314 ac_classzone_idx(ac), alloc_flags, available); 4315 trace_reclaim_retry_zone(z, order, reclaimable, 4316 available, min_wmark, *no_progress_loops, wmark); 4317 if (wmark) { 4318 /* 4319 * If we didn't make any progress and have a lot of 4320 * dirty + writeback pages then we should wait for 4321 * an IO to complete to slow down the reclaim and 4322 * prevent from pre mature OOM 4323 */ 4324 if (!did_some_progress) { 4325 unsigned long write_pending; 4326 4327 write_pending = zone_page_state_snapshot(zone, 4328 NR_ZONE_WRITE_PENDING); 4329 4330 if (2 * write_pending > reclaimable) { 4331 congestion_wait(BLK_RW_ASYNC, HZ/10); 4332 return true; 4333 } 4334 } 4335 4336 ret = true; 4337 goto out; 4338 } 4339 } 4340 4341 out: 4342 /* 4343 * Memory allocation/reclaim might be called from a WQ context and the 4344 * current implementation of the WQ concurrency control doesn't 4345 * recognize that a particular WQ is congested if the worker thread is 4346 * looping without ever sleeping. Therefore we have to do a short sleep 4347 * here rather than calling cond_resched(). 4348 */ 4349 if (current->flags & PF_WQ_WORKER) 4350 schedule_timeout_uninterruptible(1); 4351 else 4352 cond_resched(); 4353 return ret; 4354 } 4355 4356 static inline bool 4357 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4358 { 4359 /* 4360 * It's possible that cpuset's mems_allowed and the nodemask from 4361 * mempolicy don't intersect. This should be normally dealt with by 4362 * policy_nodemask(), but it's possible to race with cpuset update in 4363 * such a way the check therein was true, and then it became false 4364 * before we got our cpuset_mems_cookie here. 4365 * This assumes that for all allocations, ac->nodemask can come only 4366 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4367 * when it does not intersect with the cpuset restrictions) or the 4368 * caller can deal with a violated nodemask. 4369 */ 4370 if (cpusets_enabled() && ac->nodemask && 4371 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4372 ac->nodemask = NULL; 4373 return true; 4374 } 4375 4376 /* 4377 * When updating a task's mems_allowed or mempolicy nodemask, it is 4378 * possible to race with parallel threads in such a way that our 4379 * allocation can fail while the mask is being updated. If we are about 4380 * to fail, check if the cpuset changed during allocation and if so, 4381 * retry. 4382 */ 4383 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4384 return true; 4385 4386 return false; 4387 } 4388 4389 static inline struct page * 4390 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4391 struct alloc_context *ac) 4392 { 4393 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4394 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4395 struct page *page = NULL; 4396 unsigned int alloc_flags; 4397 unsigned long did_some_progress; 4398 enum compact_priority compact_priority; 4399 enum compact_result compact_result; 4400 int compaction_retries; 4401 int no_progress_loops; 4402 unsigned int cpuset_mems_cookie; 4403 int reserve_flags; 4404 4405 /* 4406 * We also sanity check to catch abuse of atomic reserves being used by 4407 * callers that are not in atomic context. 4408 */ 4409 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4410 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4411 gfp_mask &= ~__GFP_ATOMIC; 4412 4413 retry_cpuset: 4414 compaction_retries = 0; 4415 no_progress_loops = 0; 4416 compact_priority = DEF_COMPACT_PRIORITY; 4417 cpuset_mems_cookie = read_mems_allowed_begin(); 4418 4419 /* 4420 * The fast path uses conservative alloc_flags to succeed only until 4421 * kswapd needs to be woken up, and to avoid the cost of setting up 4422 * alloc_flags precisely. So we do that now. 4423 */ 4424 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4425 4426 /* 4427 * We need to recalculate the starting point for the zonelist iterator 4428 * because we might have used different nodemask in the fast path, or 4429 * there was a cpuset modification and we are retrying - otherwise we 4430 * could end up iterating over non-eligible zones endlessly. 4431 */ 4432 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4433 ac->high_zoneidx, ac->nodemask); 4434 if (!ac->preferred_zoneref->zone) 4435 goto nopage; 4436 4437 if (alloc_flags & ALLOC_KSWAPD) 4438 wake_all_kswapds(order, gfp_mask, ac); 4439 4440 /* 4441 * The adjusted alloc_flags might result in immediate success, so try 4442 * that first 4443 */ 4444 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4445 if (page) 4446 goto got_pg; 4447 4448 /* 4449 * For costly allocations, try direct compaction first, as it's likely 4450 * that we have enough base pages and don't need to reclaim. For non- 4451 * movable high-order allocations, do that as well, as compaction will 4452 * try prevent permanent fragmentation by migrating from blocks of the 4453 * same migratetype. 4454 * Don't try this for allocations that are allowed to ignore 4455 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4456 */ 4457 if (can_direct_reclaim && 4458 (costly_order || 4459 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4460 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4461 page = __alloc_pages_direct_compact(gfp_mask, order, 4462 alloc_flags, ac, 4463 INIT_COMPACT_PRIORITY, 4464 &compact_result); 4465 if (page) 4466 goto got_pg; 4467 4468 /* 4469 * Checks for costly allocations with __GFP_NORETRY, which 4470 * includes some THP page fault allocations 4471 */ 4472 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4473 /* 4474 * If allocating entire pageblock(s) and compaction 4475 * failed because all zones are below low watermarks 4476 * or is prohibited because it recently failed at this 4477 * order, fail immediately unless the allocator has 4478 * requested compaction and reclaim retry. 4479 * 4480 * Reclaim is 4481 * - potentially very expensive because zones are far 4482 * below their low watermarks or this is part of very 4483 * bursty high order allocations, 4484 * - not guaranteed to help because isolate_freepages() 4485 * may not iterate over freed pages as part of its 4486 * linear scan, and 4487 * - unlikely to make entire pageblocks free on its 4488 * own. 4489 */ 4490 if (compact_result == COMPACT_SKIPPED || 4491 compact_result == COMPACT_DEFERRED) 4492 goto nopage; 4493 4494 /* 4495 * Looks like reclaim/compaction is worth trying, but 4496 * sync compaction could be very expensive, so keep 4497 * using async compaction. 4498 */ 4499 compact_priority = INIT_COMPACT_PRIORITY; 4500 } 4501 } 4502 4503 retry: 4504 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4505 if (alloc_flags & ALLOC_KSWAPD) 4506 wake_all_kswapds(order, gfp_mask, ac); 4507 4508 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4509 if (reserve_flags) 4510 alloc_flags = reserve_flags; 4511 4512 /* 4513 * Reset the nodemask and zonelist iterators if memory policies can be 4514 * ignored. These allocations are high priority and system rather than 4515 * user oriented. 4516 */ 4517 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4518 ac->nodemask = NULL; 4519 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4520 ac->high_zoneidx, ac->nodemask); 4521 } 4522 4523 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4524 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4525 if (page) 4526 goto got_pg; 4527 4528 /* Caller is not willing to reclaim, we can't balance anything */ 4529 if (!can_direct_reclaim) 4530 goto nopage; 4531 4532 /* Avoid recursion of direct reclaim */ 4533 if (current->flags & PF_MEMALLOC) 4534 goto nopage; 4535 4536 /* Try direct reclaim and then allocating */ 4537 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4538 &did_some_progress); 4539 if (page) 4540 goto got_pg; 4541 4542 /* Try direct compaction and then allocating */ 4543 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4544 compact_priority, &compact_result); 4545 if (page) 4546 goto got_pg; 4547 4548 /* Do not loop if specifically requested */ 4549 if (gfp_mask & __GFP_NORETRY) 4550 goto nopage; 4551 4552 /* 4553 * Do not retry costly high order allocations unless they are 4554 * __GFP_RETRY_MAYFAIL 4555 */ 4556 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4557 goto nopage; 4558 4559 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4560 did_some_progress > 0, &no_progress_loops)) 4561 goto retry; 4562 4563 /* 4564 * It doesn't make any sense to retry for the compaction if the order-0 4565 * reclaim is not able to make any progress because the current 4566 * implementation of the compaction depends on the sufficient amount 4567 * of free memory (see __compaction_suitable) 4568 */ 4569 if (did_some_progress > 0 && 4570 should_compact_retry(ac, order, alloc_flags, 4571 compact_result, &compact_priority, 4572 &compaction_retries)) 4573 goto retry; 4574 4575 4576 /* Deal with possible cpuset update races before we start OOM killing */ 4577 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4578 goto retry_cpuset; 4579 4580 /* Reclaim has failed us, start killing things */ 4581 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4582 if (page) 4583 goto got_pg; 4584 4585 /* Avoid allocations with no watermarks from looping endlessly */ 4586 if (tsk_is_oom_victim(current) && 4587 (alloc_flags == ALLOC_OOM || 4588 (gfp_mask & __GFP_NOMEMALLOC))) 4589 goto nopage; 4590 4591 /* Retry as long as the OOM killer is making progress */ 4592 if (did_some_progress) { 4593 no_progress_loops = 0; 4594 goto retry; 4595 } 4596 4597 nopage: 4598 /* Deal with possible cpuset update races before we fail */ 4599 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4600 goto retry_cpuset; 4601 4602 /* 4603 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4604 * we always retry 4605 */ 4606 if (gfp_mask & __GFP_NOFAIL) { 4607 /* 4608 * All existing users of the __GFP_NOFAIL are blockable, so warn 4609 * of any new users that actually require GFP_NOWAIT 4610 */ 4611 if (WARN_ON_ONCE(!can_direct_reclaim)) 4612 goto fail; 4613 4614 /* 4615 * PF_MEMALLOC request from this context is rather bizarre 4616 * because we cannot reclaim anything and only can loop waiting 4617 * for somebody to do a work for us 4618 */ 4619 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4620 4621 /* 4622 * non failing costly orders are a hard requirement which we 4623 * are not prepared for much so let's warn about these users 4624 * so that we can identify them and convert them to something 4625 * else. 4626 */ 4627 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4628 4629 /* 4630 * Help non-failing allocations by giving them access to memory 4631 * reserves but do not use ALLOC_NO_WATERMARKS because this 4632 * could deplete whole memory reserves which would just make 4633 * the situation worse 4634 */ 4635 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4636 if (page) 4637 goto got_pg; 4638 4639 cond_resched(); 4640 goto retry; 4641 } 4642 fail: 4643 warn_alloc(gfp_mask, ac->nodemask, 4644 "page allocation failure: order:%u", order); 4645 got_pg: 4646 return page; 4647 } 4648 4649 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4650 int preferred_nid, nodemask_t *nodemask, 4651 struct alloc_context *ac, gfp_t *alloc_mask, 4652 unsigned int *alloc_flags) 4653 { 4654 ac->high_zoneidx = gfp_zone(gfp_mask); 4655 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4656 ac->nodemask = nodemask; 4657 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4658 4659 if (cpusets_enabled()) { 4660 *alloc_mask |= __GFP_HARDWALL; 4661 if (!ac->nodemask) 4662 ac->nodemask = &cpuset_current_mems_allowed; 4663 else 4664 *alloc_flags |= ALLOC_CPUSET; 4665 } 4666 4667 fs_reclaim_acquire(gfp_mask); 4668 fs_reclaim_release(gfp_mask); 4669 4670 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4671 4672 if (should_fail_alloc_page(gfp_mask, order)) 4673 return false; 4674 4675 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4676 *alloc_flags |= ALLOC_CMA; 4677 4678 return true; 4679 } 4680 4681 /* Determine whether to spread dirty pages and what the first usable zone */ 4682 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4683 { 4684 /* Dirty zone balancing only done in the fast path */ 4685 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4686 4687 /* 4688 * The preferred zone is used for statistics but crucially it is 4689 * also used as the starting point for the zonelist iterator. It 4690 * may get reset for allocations that ignore memory policies. 4691 */ 4692 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4693 ac->high_zoneidx, ac->nodemask); 4694 } 4695 4696 /* 4697 * This is the 'heart' of the zoned buddy allocator. 4698 */ 4699 struct page * 4700 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4701 nodemask_t *nodemask) 4702 { 4703 struct page *page; 4704 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4705 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4706 struct alloc_context ac = { }; 4707 4708 /* 4709 * There are several places where we assume that the order value is sane 4710 * so bail out early if the request is out of bound. 4711 */ 4712 if (unlikely(order >= MAX_ORDER)) { 4713 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4714 return NULL; 4715 } 4716 4717 gfp_mask &= gfp_allowed_mask; 4718 alloc_mask = gfp_mask; 4719 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4720 return NULL; 4721 4722 finalise_ac(gfp_mask, &ac); 4723 4724 /* 4725 * Forbid the first pass from falling back to types that fragment 4726 * memory until all local zones are considered. 4727 */ 4728 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4729 4730 /* First allocation attempt */ 4731 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4732 if (likely(page)) 4733 goto out; 4734 4735 /* 4736 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4737 * resp. GFP_NOIO which has to be inherited for all allocation requests 4738 * from a particular context which has been marked by 4739 * memalloc_no{fs,io}_{save,restore}. 4740 */ 4741 alloc_mask = current_gfp_context(gfp_mask); 4742 ac.spread_dirty_pages = false; 4743 4744 /* 4745 * Restore the original nodemask if it was potentially replaced with 4746 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4747 */ 4748 if (unlikely(ac.nodemask != nodemask)) 4749 ac.nodemask = nodemask; 4750 4751 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4752 4753 out: 4754 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4755 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4756 __free_pages(page, order); 4757 page = NULL; 4758 } 4759 4760 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4761 4762 return page; 4763 } 4764 EXPORT_SYMBOL(__alloc_pages_nodemask); 4765 4766 /* 4767 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4768 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4769 * you need to access high mem. 4770 */ 4771 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4772 { 4773 struct page *page; 4774 4775 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4776 if (!page) 4777 return 0; 4778 return (unsigned long) page_address(page); 4779 } 4780 EXPORT_SYMBOL(__get_free_pages); 4781 4782 unsigned long get_zeroed_page(gfp_t gfp_mask) 4783 { 4784 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4785 } 4786 EXPORT_SYMBOL(get_zeroed_page); 4787 4788 static inline void free_the_page(struct page *page, unsigned int order) 4789 { 4790 if (order == 0) /* Via pcp? */ 4791 free_unref_page(page); 4792 else 4793 __free_pages_ok(page, order); 4794 } 4795 4796 void __free_pages(struct page *page, unsigned int order) 4797 { 4798 if (put_page_testzero(page)) 4799 free_the_page(page, order); 4800 } 4801 EXPORT_SYMBOL(__free_pages); 4802 4803 void free_pages(unsigned long addr, unsigned int order) 4804 { 4805 if (addr != 0) { 4806 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4807 __free_pages(virt_to_page((void *)addr), order); 4808 } 4809 } 4810 4811 EXPORT_SYMBOL(free_pages); 4812 4813 /* 4814 * Page Fragment: 4815 * An arbitrary-length arbitrary-offset area of memory which resides 4816 * within a 0 or higher order page. Multiple fragments within that page 4817 * are individually refcounted, in the page's reference counter. 4818 * 4819 * The page_frag functions below provide a simple allocation framework for 4820 * page fragments. This is used by the network stack and network device 4821 * drivers to provide a backing region of memory for use as either an 4822 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4823 */ 4824 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4825 gfp_t gfp_mask) 4826 { 4827 struct page *page = NULL; 4828 gfp_t gfp = gfp_mask; 4829 4830 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4831 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4832 __GFP_NOMEMALLOC; 4833 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4834 PAGE_FRAG_CACHE_MAX_ORDER); 4835 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4836 #endif 4837 if (unlikely(!page)) 4838 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4839 4840 nc->va = page ? page_address(page) : NULL; 4841 4842 return page; 4843 } 4844 4845 void __page_frag_cache_drain(struct page *page, unsigned int count) 4846 { 4847 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4848 4849 if (page_ref_sub_and_test(page, count)) 4850 free_the_page(page, compound_order(page)); 4851 } 4852 EXPORT_SYMBOL(__page_frag_cache_drain); 4853 4854 void *page_frag_alloc(struct page_frag_cache *nc, 4855 unsigned int fragsz, gfp_t gfp_mask) 4856 { 4857 unsigned int size = PAGE_SIZE; 4858 struct page *page; 4859 int offset; 4860 4861 if (unlikely(!nc->va)) { 4862 refill: 4863 page = __page_frag_cache_refill(nc, gfp_mask); 4864 if (!page) 4865 return NULL; 4866 4867 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4868 /* if size can vary use size else just use PAGE_SIZE */ 4869 size = nc->size; 4870 #endif 4871 /* Even if we own the page, we do not use atomic_set(). 4872 * This would break get_page_unless_zero() users. 4873 */ 4874 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4875 4876 /* reset page count bias and offset to start of new frag */ 4877 nc->pfmemalloc = page_is_pfmemalloc(page); 4878 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4879 nc->offset = size; 4880 } 4881 4882 offset = nc->offset - fragsz; 4883 if (unlikely(offset < 0)) { 4884 page = virt_to_page(nc->va); 4885 4886 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4887 goto refill; 4888 4889 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4890 /* if size can vary use size else just use PAGE_SIZE */ 4891 size = nc->size; 4892 #endif 4893 /* OK, page count is 0, we can safely set it */ 4894 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4895 4896 /* reset page count bias and offset to start of new frag */ 4897 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4898 offset = size - fragsz; 4899 } 4900 4901 nc->pagecnt_bias--; 4902 nc->offset = offset; 4903 4904 return nc->va + offset; 4905 } 4906 EXPORT_SYMBOL(page_frag_alloc); 4907 4908 /* 4909 * Frees a page fragment allocated out of either a compound or order 0 page. 4910 */ 4911 void page_frag_free(void *addr) 4912 { 4913 struct page *page = virt_to_head_page(addr); 4914 4915 if (unlikely(put_page_testzero(page))) 4916 free_the_page(page, compound_order(page)); 4917 } 4918 EXPORT_SYMBOL(page_frag_free); 4919 4920 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4921 size_t size) 4922 { 4923 if (addr) { 4924 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4925 unsigned long used = addr + PAGE_ALIGN(size); 4926 4927 split_page(virt_to_page((void *)addr), order); 4928 while (used < alloc_end) { 4929 free_page(used); 4930 used += PAGE_SIZE; 4931 } 4932 } 4933 return (void *)addr; 4934 } 4935 4936 /** 4937 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4938 * @size: the number of bytes to allocate 4939 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4940 * 4941 * This function is similar to alloc_pages(), except that it allocates the 4942 * minimum number of pages to satisfy the request. alloc_pages() can only 4943 * allocate memory in power-of-two pages. 4944 * 4945 * This function is also limited by MAX_ORDER. 4946 * 4947 * Memory allocated by this function must be released by free_pages_exact(). 4948 * 4949 * Return: pointer to the allocated area or %NULL in case of error. 4950 */ 4951 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4952 { 4953 unsigned int order = get_order(size); 4954 unsigned long addr; 4955 4956 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4957 gfp_mask &= ~__GFP_COMP; 4958 4959 addr = __get_free_pages(gfp_mask, order); 4960 return make_alloc_exact(addr, order, size); 4961 } 4962 EXPORT_SYMBOL(alloc_pages_exact); 4963 4964 /** 4965 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4966 * pages on a node. 4967 * @nid: the preferred node ID where memory should be allocated 4968 * @size: the number of bytes to allocate 4969 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4970 * 4971 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4972 * back. 4973 * 4974 * Return: pointer to the allocated area or %NULL in case of error. 4975 */ 4976 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4977 { 4978 unsigned int order = get_order(size); 4979 struct page *p; 4980 4981 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4982 gfp_mask &= ~__GFP_COMP; 4983 4984 p = alloc_pages_node(nid, gfp_mask, order); 4985 if (!p) 4986 return NULL; 4987 return make_alloc_exact((unsigned long)page_address(p), order, size); 4988 } 4989 4990 /** 4991 * free_pages_exact - release memory allocated via alloc_pages_exact() 4992 * @virt: the value returned by alloc_pages_exact. 4993 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4994 * 4995 * Release the memory allocated by a previous call to alloc_pages_exact. 4996 */ 4997 void free_pages_exact(void *virt, size_t size) 4998 { 4999 unsigned long addr = (unsigned long)virt; 5000 unsigned long end = addr + PAGE_ALIGN(size); 5001 5002 while (addr < end) { 5003 free_page(addr); 5004 addr += PAGE_SIZE; 5005 } 5006 } 5007 EXPORT_SYMBOL(free_pages_exact); 5008 5009 /** 5010 * nr_free_zone_pages - count number of pages beyond high watermark 5011 * @offset: The zone index of the highest zone 5012 * 5013 * nr_free_zone_pages() counts the number of pages which are beyond the 5014 * high watermark within all zones at or below a given zone index. For each 5015 * zone, the number of pages is calculated as: 5016 * 5017 * nr_free_zone_pages = managed_pages - high_pages 5018 * 5019 * Return: number of pages beyond high watermark. 5020 */ 5021 static unsigned long nr_free_zone_pages(int offset) 5022 { 5023 struct zoneref *z; 5024 struct zone *zone; 5025 5026 /* Just pick one node, since fallback list is circular */ 5027 unsigned long sum = 0; 5028 5029 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5030 5031 for_each_zone_zonelist(zone, z, zonelist, offset) { 5032 unsigned long size = zone_managed_pages(zone); 5033 unsigned long high = high_wmark_pages(zone); 5034 if (size > high) 5035 sum += size - high; 5036 } 5037 5038 return sum; 5039 } 5040 5041 /** 5042 * nr_free_buffer_pages - count number of pages beyond high watermark 5043 * 5044 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5045 * watermark within ZONE_DMA and ZONE_NORMAL. 5046 * 5047 * Return: number of pages beyond high watermark within ZONE_DMA and 5048 * ZONE_NORMAL. 5049 */ 5050 unsigned long nr_free_buffer_pages(void) 5051 { 5052 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5053 } 5054 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5055 5056 /** 5057 * nr_free_pagecache_pages - count number of pages beyond high watermark 5058 * 5059 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5060 * high watermark within all zones. 5061 * 5062 * Return: number of pages beyond high watermark within all zones. 5063 */ 5064 unsigned long nr_free_pagecache_pages(void) 5065 { 5066 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5067 } 5068 5069 static inline void show_node(struct zone *zone) 5070 { 5071 if (IS_ENABLED(CONFIG_NUMA)) 5072 printk("Node %d ", zone_to_nid(zone)); 5073 } 5074 5075 long si_mem_available(void) 5076 { 5077 long available; 5078 unsigned long pagecache; 5079 unsigned long wmark_low = 0; 5080 unsigned long pages[NR_LRU_LISTS]; 5081 unsigned long reclaimable; 5082 struct zone *zone; 5083 int lru; 5084 5085 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5086 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5087 5088 for_each_zone(zone) 5089 wmark_low += low_wmark_pages(zone); 5090 5091 /* 5092 * Estimate the amount of memory available for userspace allocations, 5093 * without causing swapping. 5094 */ 5095 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5096 5097 /* 5098 * Not all the page cache can be freed, otherwise the system will 5099 * start swapping. Assume at least half of the page cache, or the 5100 * low watermark worth of cache, needs to stay. 5101 */ 5102 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5103 pagecache -= min(pagecache / 2, wmark_low); 5104 available += pagecache; 5105 5106 /* 5107 * Part of the reclaimable slab and other kernel memory consists of 5108 * items that are in use, and cannot be freed. Cap this estimate at the 5109 * low watermark. 5110 */ 5111 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5112 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5113 available += reclaimable - min(reclaimable / 2, wmark_low); 5114 5115 if (available < 0) 5116 available = 0; 5117 return available; 5118 } 5119 EXPORT_SYMBOL_GPL(si_mem_available); 5120 5121 void si_meminfo(struct sysinfo *val) 5122 { 5123 val->totalram = totalram_pages(); 5124 val->sharedram = global_node_page_state(NR_SHMEM); 5125 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5126 val->bufferram = nr_blockdev_pages(); 5127 val->totalhigh = totalhigh_pages(); 5128 val->freehigh = nr_free_highpages(); 5129 val->mem_unit = PAGE_SIZE; 5130 } 5131 5132 EXPORT_SYMBOL(si_meminfo); 5133 5134 #ifdef CONFIG_NUMA 5135 void si_meminfo_node(struct sysinfo *val, int nid) 5136 { 5137 int zone_type; /* needs to be signed */ 5138 unsigned long managed_pages = 0; 5139 unsigned long managed_highpages = 0; 5140 unsigned long free_highpages = 0; 5141 pg_data_t *pgdat = NODE_DATA(nid); 5142 5143 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5144 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5145 val->totalram = managed_pages; 5146 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5147 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5148 #ifdef CONFIG_HIGHMEM 5149 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5150 struct zone *zone = &pgdat->node_zones[zone_type]; 5151 5152 if (is_highmem(zone)) { 5153 managed_highpages += zone_managed_pages(zone); 5154 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5155 } 5156 } 5157 val->totalhigh = managed_highpages; 5158 val->freehigh = free_highpages; 5159 #else 5160 val->totalhigh = managed_highpages; 5161 val->freehigh = free_highpages; 5162 #endif 5163 val->mem_unit = PAGE_SIZE; 5164 } 5165 #endif 5166 5167 /* 5168 * Determine whether the node should be displayed or not, depending on whether 5169 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5170 */ 5171 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5172 { 5173 if (!(flags & SHOW_MEM_FILTER_NODES)) 5174 return false; 5175 5176 /* 5177 * no node mask - aka implicit memory numa policy. Do not bother with 5178 * the synchronization - read_mems_allowed_begin - because we do not 5179 * have to be precise here. 5180 */ 5181 if (!nodemask) 5182 nodemask = &cpuset_current_mems_allowed; 5183 5184 return !node_isset(nid, *nodemask); 5185 } 5186 5187 #define K(x) ((x) << (PAGE_SHIFT-10)) 5188 5189 static void show_migration_types(unsigned char type) 5190 { 5191 static const char types[MIGRATE_TYPES] = { 5192 [MIGRATE_UNMOVABLE] = 'U', 5193 [MIGRATE_MOVABLE] = 'M', 5194 [MIGRATE_RECLAIMABLE] = 'E', 5195 [MIGRATE_HIGHATOMIC] = 'H', 5196 #ifdef CONFIG_CMA 5197 [MIGRATE_CMA] = 'C', 5198 #endif 5199 #ifdef CONFIG_MEMORY_ISOLATION 5200 [MIGRATE_ISOLATE] = 'I', 5201 #endif 5202 }; 5203 char tmp[MIGRATE_TYPES + 1]; 5204 char *p = tmp; 5205 int i; 5206 5207 for (i = 0; i < MIGRATE_TYPES; i++) { 5208 if (type & (1 << i)) 5209 *p++ = types[i]; 5210 } 5211 5212 *p = '\0'; 5213 printk(KERN_CONT "(%s) ", tmp); 5214 } 5215 5216 /* 5217 * Show free area list (used inside shift_scroll-lock stuff) 5218 * We also calculate the percentage fragmentation. We do this by counting the 5219 * memory on each free list with the exception of the first item on the list. 5220 * 5221 * Bits in @filter: 5222 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5223 * cpuset. 5224 */ 5225 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5226 { 5227 unsigned long free_pcp = 0; 5228 int cpu; 5229 struct zone *zone; 5230 pg_data_t *pgdat; 5231 5232 for_each_populated_zone(zone) { 5233 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5234 continue; 5235 5236 for_each_online_cpu(cpu) 5237 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5238 } 5239 5240 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5241 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5242 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5243 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5244 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5245 " free:%lu free_pcp:%lu free_cma:%lu\n", 5246 global_node_page_state(NR_ACTIVE_ANON), 5247 global_node_page_state(NR_INACTIVE_ANON), 5248 global_node_page_state(NR_ISOLATED_ANON), 5249 global_node_page_state(NR_ACTIVE_FILE), 5250 global_node_page_state(NR_INACTIVE_FILE), 5251 global_node_page_state(NR_ISOLATED_FILE), 5252 global_node_page_state(NR_UNEVICTABLE), 5253 global_node_page_state(NR_FILE_DIRTY), 5254 global_node_page_state(NR_WRITEBACK), 5255 global_node_page_state(NR_UNSTABLE_NFS), 5256 global_node_page_state(NR_SLAB_RECLAIMABLE), 5257 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5258 global_node_page_state(NR_FILE_MAPPED), 5259 global_node_page_state(NR_SHMEM), 5260 global_zone_page_state(NR_PAGETABLE), 5261 global_zone_page_state(NR_BOUNCE), 5262 global_zone_page_state(NR_FREE_PAGES), 5263 free_pcp, 5264 global_zone_page_state(NR_FREE_CMA_PAGES)); 5265 5266 for_each_online_pgdat(pgdat) { 5267 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5268 continue; 5269 5270 printk("Node %d" 5271 " active_anon:%lukB" 5272 " inactive_anon:%lukB" 5273 " active_file:%lukB" 5274 " inactive_file:%lukB" 5275 " unevictable:%lukB" 5276 " isolated(anon):%lukB" 5277 " isolated(file):%lukB" 5278 " mapped:%lukB" 5279 " dirty:%lukB" 5280 " writeback:%lukB" 5281 " shmem:%lukB" 5282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5283 " shmem_thp: %lukB" 5284 " shmem_pmdmapped: %lukB" 5285 " anon_thp: %lukB" 5286 #endif 5287 " writeback_tmp:%lukB" 5288 " unstable:%lukB" 5289 " all_unreclaimable? %s" 5290 "\n", 5291 pgdat->node_id, 5292 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5293 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5294 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5295 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5296 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5297 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5298 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5299 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5300 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5301 K(node_page_state(pgdat, NR_WRITEBACK)), 5302 K(node_page_state(pgdat, NR_SHMEM)), 5303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5304 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5305 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5306 * HPAGE_PMD_NR), 5307 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5308 #endif 5309 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5310 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5311 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5312 "yes" : "no"); 5313 } 5314 5315 for_each_populated_zone(zone) { 5316 int i; 5317 5318 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5319 continue; 5320 5321 free_pcp = 0; 5322 for_each_online_cpu(cpu) 5323 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5324 5325 show_node(zone); 5326 printk(KERN_CONT 5327 "%s" 5328 " free:%lukB" 5329 " min:%lukB" 5330 " low:%lukB" 5331 " high:%lukB" 5332 " reserved_highatomic:%luKB" 5333 " active_anon:%lukB" 5334 " inactive_anon:%lukB" 5335 " active_file:%lukB" 5336 " inactive_file:%lukB" 5337 " unevictable:%lukB" 5338 " writepending:%lukB" 5339 " present:%lukB" 5340 " managed:%lukB" 5341 " mlocked:%lukB" 5342 " kernel_stack:%lukB" 5343 " pagetables:%lukB" 5344 " bounce:%lukB" 5345 " free_pcp:%lukB" 5346 " local_pcp:%ukB" 5347 " free_cma:%lukB" 5348 "\n", 5349 zone->name, 5350 K(zone_page_state(zone, NR_FREE_PAGES)), 5351 K(min_wmark_pages(zone)), 5352 K(low_wmark_pages(zone)), 5353 K(high_wmark_pages(zone)), 5354 K(zone->nr_reserved_highatomic), 5355 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5356 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5357 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5358 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5359 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5360 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5361 K(zone->present_pages), 5362 K(zone_managed_pages(zone)), 5363 K(zone_page_state(zone, NR_MLOCK)), 5364 zone_page_state(zone, NR_KERNEL_STACK_KB), 5365 K(zone_page_state(zone, NR_PAGETABLE)), 5366 K(zone_page_state(zone, NR_BOUNCE)), 5367 K(free_pcp), 5368 K(this_cpu_read(zone->pageset->pcp.count)), 5369 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5370 printk("lowmem_reserve[]:"); 5371 for (i = 0; i < MAX_NR_ZONES; i++) 5372 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5373 printk(KERN_CONT "\n"); 5374 } 5375 5376 for_each_populated_zone(zone) { 5377 unsigned int order; 5378 unsigned long nr[MAX_ORDER], flags, total = 0; 5379 unsigned char types[MAX_ORDER]; 5380 5381 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5382 continue; 5383 show_node(zone); 5384 printk(KERN_CONT "%s: ", zone->name); 5385 5386 spin_lock_irqsave(&zone->lock, flags); 5387 for (order = 0; order < MAX_ORDER; order++) { 5388 struct free_area *area = &zone->free_area[order]; 5389 int type; 5390 5391 nr[order] = area->nr_free; 5392 total += nr[order] << order; 5393 5394 types[order] = 0; 5395 for (type = 0; type < MIGRATE_TYPES; type++) { 5396 if (!free_area_empty(area, type)) 5397 types[order] |= 1 << type; 5398 } 5399 } 5400 spin_unlock_irqrestore(&zone->lock, flags); 5401 for (order = 0; order < MAX_ORDER; order++) { 5402 printk(KERN_CONT "%lu*%lukB ", 5403 nr[order], K(1UL) << order); 5404 if (nr[order]) 5405 show_migration_types(types[order]); 5406 } 5407 printk(KERN_CONT "= %lukB\n", K(total)); 5408 } 5409 5410 hugetlb_show_meminfo(); 5411 5412 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5413 5414 show_swap_cache_info(); 5415 } 5416 5417 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5418 { 5419 zoneref->zone = zone; 5420 zoneref->zone_idx = zone_idx(zone); 5421 } 5422 5423 /* 5424 * Builds allocation fallback zone lists. 5425 * 5426 * Add all populated zones of a node to the zonelist. 5427 */ 5428 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5429 { 5430 struct zone *zone; 5431 enum zone_type zone_type = MAX_NR_ZONES; 5432 int nr_zones = 0; 5433 5434 do { 5435 zone_type--; 5436 zone = pgdat->node_zones + zone_type; 5437 if (managed_zone(zone)) { 5438 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5439 check_highest_zone(zone_type); 5440 } 5441 } while (zone_type); 5442 5443 return nr_zones; 5444 } 5445 5446 #ifdef CONFIG_NUMA 5447 5448 static int __parse_numa_zonelist_order(char *s) 5449 { 5450 /* 5451 * We used to support different zonlists modes but they turned 5452 * out to be just not useful. Let's keep the warning in place 5453 * if somebody still use the cmd line parameter so that we do 5454 * not fail it silently 5455 */ 5456 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5457 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5458 return -EINVAL; 5459 } 5460 return 0; 5461 } 5462 5463 static __init int setup_numa_zonelist_order(char *s) 5464 { 5465 if (!s) 5466 return 0; 5467 5468 return __parse_numa_zonelist_order(s); 5469 } 5470 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5471 5472 char numa_zonelist_order[] = "Node"; 5473 5474 /* 5475 * sysctl handler for numa_zonelist_order 5476 */ 5477 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5478 void __user *buffer, size_t *length, 5479 loff_t *ppos) 5480 { 5481 char *str; 5482 int ret; 5483 5484 if (!write) 5485 return proc_dostring(table, write, buffer, length, ppos); 5486 str = memdup_user_nul(buffer, 16); 5487 if (IS_ERR(str)) 5488 return PTR_ERR(str); 5489 5490 ret = __parse_numa_zonelist_order(str); 5491 kfree(str); 5492 return ret; 5493 } 5494 5495 5496 #define MAX_NODE_LOAD (nr_online_nodes) 5497 static int node_load[MAX_NUMNODES]; 5498 5499 /** 5500 * find_next_best_node - find the next node that should appear in a given node's fallback list 5501 * @node: node whose fallback list we're appending 5502 * @used_node_mask: nodemask_t of already used nodes 5503 * 5504 * We use a number of factors to determine which is the next node that should 5505 * appear on a given node's fallback list. The node should not have appeared 5506 * already in @node's fallback list, and it should be the next closest node 5507 * according to the distance array (which contains arbitrary distance values 5508 * from each node to each node in the system), and should also prefer nodes 5509 * with no CPUs, since presumably they'll have very little allocation pressure 5510 * on them otherwise. 5511 * 5512 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5513 */ 5514 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5515 { 5516 int n, val; 5517 int min_val = INT_MAX; 5518 int best_node = NUMA_NO_NODE; 5519 const struct cpumask *tmp = cpumask_of_node(0); 5520 5521 /* Use the local node if we haven't already */ 5522 if (!node_isset(node, *used_node_mask)) { 5523 node_set(node, *used_node_mask); 5524 return node; 5525 } 5526 5527 for_each_node_state(n, N_MEMORY) { 5528 5529 /* Don't want a node to appear more than once */ 5530 if (node_isset(n, *used_node_mask)) 5531 continue; 5532 5533 /* Use the distance array to find the distance */ 5534 val = node_distance(node, n); 5535 5536 /* Penalize nodes under us ("prefer the next node") */ 5537 val += (n < node); 5538 5539 /* Give preference to headless and unused nodes */ 5540 tmp = cpumask_of_node(n); 5541 if (!cpumask_empty(tmp)) 5542 val += PENALTY_FOR_NODE_WITH_CPUS; 5543 5544 /* Slight preference for less loaded node */ 5545 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5546 val += node_load[n]; 5547 5548 if (val < min_val) { 5549 min_val = val; 5550 best_node = n; 5551 } 5552 } 5553 5554 if (best_node >= 0) 5555 node_set(best_node, *used_node_mask); 5556 5557 return best_node; 5558 } 5559 5560 5561 /* 5562 * Build zonelists ordered by node and zones within node. 5563 * This results in maximum locality--normal zone overflows into local 5564 * DMA zone, if any--but risks exhausting DMA zone. 5565 */ 5566 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5567 unsigned nr_nodes) 5568 { 5569 struct zoneref *zonerefs; 5570 int i; 5571 5572 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5573 5574 for (i = 0; i < nr_nodes; i++) { 5575 int nr_zones; 5576 5577 pg_data_t *node = NODE_DATA(node_order[i]); 5578 5579 nr_zones = build_zonerefs_node(node, zonerefs); 5580 zonerefs += nr_zones; 5581 } 5582 zonerefs->zone = NULL; 5583 zonerefs->zone_idx = 0; 5584 } 5585 5586 /* 5587 * Build gfp_thisnode zonelists 5588 */ 5589 static void build_thisnode_zonelists(pg_data_t *pgdat) 5590 { 5591 struct zoneref *zonerefs; 5592 int nr_zones; 5593 5594 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5595 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5596 zonerefs += nr_zones; 5597 zonerefs->zone = NULL; 5598 zonerefs->zone_idx = 0; 5599 } 5600 5601 /* 5602 * Build zonelists ordered by zone and nodes within zones. 5603 * This results in conserving DMA zone[s] until all Normal memory is 5604 * exhausted, but results in overflowing to remote node while memory 5605 * may still exist in local DMA zone. 5606 */ 5607 5608 static void build_zonelists(pg_data_t *pgdat) 5609 { 5610 static int node_order[MAX_NUMNODES]; 5611 int node, load, nr_nodes = 0; 5612 nodemask_t used_mask; 5613 int local_node, prev_node; 5614 5615 /* NUMA-aware ordering of nodes */ 5616 local_node = pgdat->node_id; 5617 load = nr_online_nodes; 5618 prev_node = local_node; 5619 nodes_clear(used_mask); 5620 5621 memset(node_order, 0, sizeof(node_order)); 5622 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5623 /* 5624 * We don't want to pressure a particular node. 5625 * So adding penalty to the first node in same 5626 * distance group to make it round-robin. 5627 */ 5628 if (node_distance(local_node, node) != 5629 node_distance(local_node, prev_node)) 5630 node_load[node] = load; 5631 5632 node_order[nr_nodes++] = node; 5633 prev_node = node; 5634 load--; 5635 } 5636 5637 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5638 build_thisnode_zonelists(pgdat); 5639 } 5640 5641 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5642 /* 5643 * Return node id of node used for "local" allocations. 5644 * I.e., first node id of first zone in arg node's generic zonelist. 5645 * Used for initializing percpu 'numa_mem', which is used primarily 5646 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5647 */ 5648 int local_memory_node(int node) 5649 { 5650 struct zoneref *z; 5651 5652 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5653 gfp_zone(GFP_KERNEL), 5654 NULL); 5655 return zone_to_nid(z->zone); 5656 } 5657 #endif 5658 5659 static void setup_min_unmapped_ratio(void); 5660 static void setup_min_slab_ratio(void); 5661 #else /* CONFIG_NUMA */ 5662 5663 static void build_zonelists(pg_data_t *pgdat) 5664 { 5665 int node, local_node; 5666 struct zoneref *zonerefs; 5667 int nr_zones; 5668 5669 local_node = pgdat->node_id; 5670 5671 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5672 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5673 zonerefs += nr_zones; 5674 5675 /* 5676 * Now we build the zonelist so that it contains the zones 5677 * of all the other nodes. 5678 * We don't want to pressure a particular node, so when 5679 * building the zones for node N, we make sure that the 5680 * zones coming right after the local ones are those from 5681 * node N+1 (modulo N) 5682 */ 5683 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5684 if (!node_online(node)) 5685 continue; 5686 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5687 zonerefs += nr_zones; 5688 } 5689 for (node = 0; node < local_node; node++) { 5690 if (!node_online(node)) 5691 continue; 5692 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5693 zonerefs += nr_zones; 5694 } 5695 5696 zonerefs->zone = NULL; 5697 zonerefs->zone_idx = 0; 5698 } 5699 5700 #endif /* CONFIG_NUMA */ 5701 5702 /* 5703 * Boot pageset table. One per cpu which is going to be used for all 5704 * zones and all nodes. The parameters will be set in such a way 5705 * that an item put on a list will immediately be handed over to 5706 * the buddy list. This is safe since pageset manipulation is done 5707 * with interrupts disabled. 5708 * 5709 * The boot_pagesets must be kept even after bootup is complete for 5710 * unused processors and/or zones. They do play a role for bootstrapping 5711 * hotplugged processors. 5712 * 5713 * zoneinfo_show() and maybe other functions do 5714 * not check if the processor is online before following the pageset pointer. 5715 * Other parts of the kernel may not check if the zone is available. 5716 */ 5717 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5718 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5719 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5720 5721 static void __build_all_zonelists(void *data) 5722 { 5723 int nid; 5724 int __maybe_unused cpu; 5725 pg_data_t *self = data; 5726 static DEFINE_SPINLOCK(lock); 5727 5728 spin_lock(&lock); 5729 5730 #ifdef CONFIG_NUMA 5731 memset(node_load, 0, sizeof(node_load)); 5732 #endif 5733 5734 /* 5735 * This node is hotadded and no memory is yet present. So just 5736 * building zonelists is fine - no need to touch other nodes. 5737 */ 5738 if (self && !node_online(self->node_id)) { 5739 build_zonelists(self); 5740 } else { 5741 for_each_online_node(nid) { 5742 pg_data_t *pgdat = NODE_DATA(nid); 5743 5744 build_zonelists(pgdat); 5745 } 5746 5747 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5748 /* 5749 * We now know the "local memory node" for each node-- 5750 * i.e., the node of the first zone in the generic zonelist. 5751 * Set up numa_mem percpu variable for on-line cpus. During 5752 * boot, only the boot cpu should be on-line; we'll init the 5753 * secondary cpus' numa_mem as they come on-line. During 5754 * node/memory hotplug, we'll fixup all on-line cpus. 5755 */ 5756 for_each_online_cpu(cpu) 5757 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5758 #endif 5759 } 5760 5761 spin_unlock(&lock); 5762 } 5763 5764 static noinline void __init 5765 build_all_zonelists_init(void) 5766 { 5767 int cpu; 5768 5769 __build_all_zonelists(NULL); 5770 5771 /* 5772 * Initialize the boot_pagesets that are going to be used 5773 * for bootstrapping processors. The real pagesets for 5774 * each zone will be allocated later when the per cpu 5775 * allocator is available. 5776 * 5777 * boot_pagesets are used also for bootstrapping offline 5778 * cpus if the system is already booted because the pagesets 5779 * are needed to initialize allocators on a specific cpu too. 5780 * F.e. the percpu allocator needs the page allocator which 5781 * needs the percpu allocator in order to allocate its pagesets 5782 * (a chicken-egg dilemma). 5783 */ 5784 for_each_possible_cpu(cpu) 5785 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5786 5787 mminit_verify_zonelist(); 5788 cpuset_init_current_mems_allowed(); 5789 } 5790 5791 /* 5792 * unless system_state == SYSTEM_BOOTING. 5793 * 5794 * __ref due to call of __init annotated helper build_all_zonelists_init 5795 * [protected by SYSTEM_BOOTING]. 5796 */ 5797 void __ref build_all_zonelists(pg_data_t *pgdat) 5798 { 5799 if (system_state == SYSTEM_BOOTING) { 5800 build_all_zonelists_init(); 5801 } else { 5802 __build_all_zonelists(pgdat); 5803 /* cpuset refresh routine should be here */ 5804 } 5805 vm_total_pages = nr_free_pagecache_pages(); 5806 /* 5807 * Disable grouping by mobility if the number of pages in the 5808 * system is too low to allow the mechanism to work. It would be 5809 * more accurate, but expensive to check per-zone. This check is 5810 * made on memory-hotadd so a system can start with mobility 5811 * disabled and enable it later 5812 */ 5813 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5814 page_group_by_mobility_disabled = 1; 5815 else 5816 page_group_by_mobility_disabled = 0; 5817 5818 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5819 nr_online_nodes, 5820 page_group_by_mobility_disabled ? "off" : "on", 5821 vm_total_pages); 5822 #ifdef CONFIG_NUMA 5823 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5824 #endif 5825 } 5826 5827 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5828 static bool __meminit 5829 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5830 { 5831 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5832 static struct memblock_region *r; 5833 5834 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5835 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5836 for_each_memblock(memory, r) { 5837 if (*pfn < memblock_region_memory_end_pfn(r)) 5838 break; 5839 } 5840 } 5841 if (*pfn >= memblock_region_memory_base_pfn(r) && 5842 memblock_is_mirror(r)) { 5843 *pfn = memblock_region_memory_end_pfn(r); 5844 return true; 5845 } 5846 } 5847 #endif 5848 return false; 5849 } 5850 5851 /* 5852 * Initially all pages are reserved - free ones are freed 5853 * up by memblock_free_all() once the early boot process is 5854 * done. Non-atomic initialization, single-pass. 5855 */ 5856 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5857 unsigned long start_pfn, enum memmap_context context, 5858 struct vmem_altmap *altmap) 5859 { 5860 unsigned long pfn, end_pfn = start_pfn + size; 5861 struct page *page; 5862 5863 if (highest_memmap_pfn < end_pfn - 1) 5864 highest_memmap_pfn = end_pfn - 1; 5865 5866 #ifdef CONFIG_ZONE_DEVICE 5867 /* 5868 * Honor reservation requested by the driver for this ZONE_DEVICE 5869 * memory. We limit the total number of pages to initialize to just 5870 * those that might contain the memory mapping. We will defer the 5871 * ZONE_DEVICE page initialization until after we have released 5872 * the hotplug lock. 5873 */ 5874 if (zone == ZONE_DEVICE) { 5875 if (!altmap) 5876 return; 5877 5878 if (start_pfn == altmap->base_pfn) 5879 start_pfn += altmap->reserve; 5880 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5881 } 5882 #endif 5883 5884 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5885 /* 5886 * There can be holes in boot-time mem_map[]s handed to this 5887 * function. They do not exist on hotplugged memory. 5888 */ 5889 if (context == MEMMAP_EARLY) { 5890 if (!early_pfn_valid(pfn)) 5891 continue; 5892 if (!early_pfn_in_nid(pfn, nid)) 5893 continue; 5894 if (overlap_memmap_init(zone, &pfn)) 5895 continue; 5896 if (defer_init(nid, pfn, end_pfn)) 5897 break; 5898 } 5899 5900 page = pfn_to_page(pfn); 5901 __init_single_page(page, pfn, zone, nid); 5902 if (context == MEMMAP_HOTPLUG) 5903 __SetPageReserved(page); 5904 5905 /* 5906 * Mark the block movable so that blocks are reserved for 5907 * movable at startup. This will force kernel allocations 5908 * to reserve their blocks rather than leaking throughout 5909 * the address space during boot when many long-lived 5910 * kernel allocations are made. 5911 * 5912 * bitmap is created for zone's valid pfn range. but memmap 5913 * can be created for invalid pages (for alignment) 5914 * check here not to call set_pageblock_migratetype() against 5915 * pfn out of zone. 5916 */ 5917 if (!(pfn & (pageblock_nr_pages - 1))) { 5918 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5919 cond_resched(); 5920 } 5921 } 5922 } 5923 5924 #ifdef CONFIG_ZONE_DEVICE 5925 void __ref memmap_init_zone_device(struct zone *zone, 5926 unsigned long start_pfn, 5927 unsigned long size, 5928 struct dev_pagemap *pgmap) 5929 { 5930 unsigned long pfn, end_pfn = start_pfn + size; 5931 struct pglist_data *pgdat = zone->zone_pgdat; 5932 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 5933 unsigned long zone_idx = zone_idx(zone); 5934 unsigned long start = jiffies; 5935 int nid = pgdat->node_id; 5936 5937 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 5938 return; 5939 5940 /* 5941 * The call to memmap_init_zone should have already taken care 5942 * of the pages reserved for the memmap, so we can just jump to 5943 * the end of that region and start processing the device pages. 5944 */ 5945 if (altmap) { 5946 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5947 size = end_pfn - start_pfn; 5948 } 5949 5950 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5951 struct page *page = pfn_to_page(pfn); 5952 5953 __init_single_page(page, pfn, zone_idx, nid); 5954 5955 /* 5956 * Mark page reserved as it will need to wait for onlining 5957 * phase for it to be fully associated with a zone. 5958 * 5959 * We can use the non-atomic __set_bit operation for setting 5960 * the flag as we are still initializing the pages. 5961 */ 5962 __SetPageReserved(page); 5963 5964 /* 5965 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 5966 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 5967 * ever freed or placed on a driver-private list. 5968 */ 5969 page->pgmap = pgmap; 5970 page->zone_device_data = NULL; 5971 5972 /* 5973 * Mark the block movable so that blocks are reserved for 5974 * movable at startup. This will force kernel allocations 5975 * to reserve their blocks rather than leaking throughout 5976 * the address space during boot when many long-lived 5977 * kernel allocations are made. 5978 * 5979 * bitmap is created for zone's valid pfn range. but memmap 5980 * can be created for invalid pages (for alignment) 5981 * check here not to call set_pageblock_migratetype() against 5982 * pfn out of zone. 5983 * 5984 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5985 * because this is done early in section_activate() 5986 */ 5987 if (!(pfn & (pageblock_nr_pages - 1))) { 5988 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5989 cond_resched(); 5990 } 5991 } 5992 5993 pr_info("%s initialised %lu pages in %ums\n", __func__, 5994 size, jiffies_to_msecs(jiffies - start)); 5995 } 5996 5997 #endif 5998 static void __meminit zone_init_free_lists(struct zone *zone) 5999 { 6000 unsigned int order, t; 6001 for_each_migratetype_order(order, t) { 6002 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6003 zone->free_area[order].nr_free = 0; 6004 } 6005 } 6006 6007 void __meminit __weak memmap_init(unsigned long size, int nid, 6008 unsigned long zone, unsigned long start_pfn) 6009 { 6010 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6011 } 6012 6013 static int zone_batchsize(struct zone *zone) 6014 { 6015 #ifdef CONFIG_MMU 6016 int batch; 6017 6018 /* 6019 * The per-cpu-pages pools are set to around 1000th of the 6020 * size of the zone. 6021 */ 6022 batch = zone_managed_pages(zone) / 1024; 6023 /* But no more than a meg. */ 6024 if (batch * PAGE_SIZE > 1024 * 1024) 6025 batch = (1024 * 1024) / PAGE_SIZE; 6026 batch /= 4; /* We effectively *= 4 below */ 6027 if (batch < 1) 6028 batch = 1; 6029 6030 /* 6031 * Clamp the batch to a 2^n - 1 value. Having a power 6032 * of 2 value was found to be more likely to have 6033 * suboptimal cache aliasing properties in some cases. 6034 * 6035 * For example if 2 tasks are alternately allocating 6036 * batches of pages, one task can end up with a lot 6037 * of pages of one half of the possible page colors 6038 * and the other with pages of the other colors. 6039 */ 6040 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6041 6042 return batch; 6043 6044 #else 6045 /* The deferral and batching of frees should be suppressed under NOMMU 6046 * conditions. 6047 * 6048 * The problem is that NOMMU needs to be able to allocate large chunks 6049 * of contiguous memory as there's no hardware page translation to 6050 * assemble apparent contiguous memory from discontiguous pages. 6051 * 6052 * Queueing large contiguous runs of pages for batching, however, 6053 * causes the pages to actually be freed in smaller chunks. As there 6054 * can be a significant delay between the individual batches being 6055 * recycled, this leads to the once large chunks of space being 6056 * fragmented and becoming unavailable for high-order allocations. 6057 */ 6058 return 0; 6059 #endif 6060 } 6061 6062 /* 6063 * pcp->high and pcp->batch values are related and dependent on one another: 6064 * ->batch must never be higher then ->high. 6065 * The following function updates them in a safe manner without read side 6066 * locking. 6067 * 6068 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6069 * those fields changing asynchronously (acording the the above rule). 6070 * 6071 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6072 * outside of boot time (or some other assurance that no concurrent updaters 6073 * exist). 6074 */ 6075 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6076 unsigned long batch) 6077 { 6078 /* start with a fail safe value for batch */ 6079 pcp->batch = 1; 6080 smp_wmb(); 6081 6082 /* Update high, then batch, in order */ 6083 pcp->high = high; 6084 smp_wmb(); 6085 6086 pcp->batch = batch; 6087 } 6088 6089 /* a companion to pageset_set_high() */ 6090 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6091 { 6092 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6093 } 6094 6095 static void pageset_init(struct per_cpu_pageset *p) 6096 { 6097 struct per_cpu_pages *pcp; 6098 int migratetype; 6099 6100 memset(p, 0, sizeof(*p)); 6101 6102 pcp = &p->pcp; 6103 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6104 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6105 } 6106 6107 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6108 { 6109 pageset_init(p); 6110 pageset_set_batch(p, batch); 6111 } 6112 6113 /* 6114 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6115 * to the value high for the pageset p. 6116 */ 6117 static void pageset_set_high(struct per_cpu_pageset *p, 6118 unsigned long high) 6119 { 6120 unsigned long batch = max(1UL, high / 4); 6121 if ((high / 4) > (PAGE_SHIFT * 8)) 6122 batch = PAGE_SHIFT * 8; 6123 6124 pageset_update(&p->pcp, high, batch); 6125 } 6126 6127 static void pageset_set_high_and_batch(struct zone *zone, 6128 struct per_cpu_pageset *pcp) 6129 { 6130 if (percpu_pagelist_fraction) 6131 pageset_set_high(pcp, 6132 (zone_managed_pages(zone) / 6133 percpu_pagelist_fraction)); 6134 else 6135 pageset_set_batch(pcp, zone_batchsize(zone)); 6136 } 6137 6138 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6139 { 6140 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6141 6142 pageset_init(pcp); 6143 pageset_set_high_and_batch(zone, pcp); 6144 } 6145 6146 void __meminit setup_zone_pageset(struct zone *zone) 6147 { 6148 int cpu; 6149 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6150 for_each_possible_cpu(cpu) 6151 zone_pageset_init(zone, cpu); 6152 } 6153 6154 /* 6155 * Allocate per cpu pagesets and initialize them. 6156 * Before this call only boot pagesets were available. 6157 */ 6158 void __init setup_per_cpu_pageset(void) 6159 { 6160 struct pglist_data *pgdat; 6161 struct zone *zone; 6162 6163 for_each_populated_zone(zone) 6164 setup_zone_pageset(zone); 6165 6166 for_each_online_pgdat(pgdat) 6167 pgdat->per_cpu_nodestats = 6168 alloc_percpu(struct per_cpu_nodestat); 6169 } 6170 6171 static __meminit void zone_pcp_init(struct zone *zone) 6172 { 6173 /* 6174 * per cpu subsystem is not up at this point. The following code 6175 * relies on the ability of the linker to provide the 6176 * offset of a (static) per cpu variable into the per cpu area. 6177 */ 6178 zone->pageset = &boot_pageset; 6179 6180 if (populated_zone(zone)) 6181 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6182 zone->name, zone->present_pages, 6183 zone_batchsize(zone)); 6184 } 6185 6186 void __meminit init_currently_empty_zone(struct zone *zone, 6187 unsigned long zone_start_pfn, 6188 unsigned long size) 6189 { 6190 struct pglist_data *pgdat = zone->zone_pgdat; 6191 int zone_idx = zone_idx(zone) + 1; 6192 6193 if (zone_idx > pgdat->nr_zones) 6194 pgdat->nr_zones = zone_idx; 6195 6196 zone->zone_start_pfn = zone_start_pfn; 6197 6198 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6199 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6200 pgdat->node_id, 6201 (unsigned long)zone_idx(zone), 6202 zone_start_pfn, (zone_start_pfn + size)); 6203 6204 zone_init_free_lists(zone); 6205 zone->initialized = 1; 6206 } 6207 6208 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6209 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6210 6211 /* 6212 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6213 */ 6214 int __meminit __early_pfn_to_nid(unsigned long pfn, 6215 struct mminit_pfnnid_cache *state) 6216 { 6217 unsigned long start_pfn, end_pfn; 6218 int nid; 6219 6220 if (state->last_start <= pfn && pfn < state->last_end) 6221 return state->last_nid; 6222 6223 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6224 if (nid != NUMA_NO_NODE) { 6225 state->last_start = start_pfn; 6226 state->last_end = end_pfn; 6227 state->last_nid = nid; 6228 } 6229 6230 return nid; 6231 } 6232 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6233 6234 /** 6235 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6236 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6237 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6238 * 6239 * If an architecture guarantees that all ranges registered contain no holes 6240 * and may be freed, this this function may be used instead of calling 6241 * memblock_free_early_nid() manually. 6242 */ 6243 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6244 { 6245 unsigned long start_pfn, end_pfn; 6246 int i, this_nid; 6247 6248 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6249 start_pfn = min(start_pfn, max_low_pfn); 6250 end_pfn = min(end_pfn, max_low_pfn); 6251 6252 if (start_pfn < end_pfn) 6253 memblock_free_early_nid(PFN_PHYS(start_pfn), 6254 (end_pfn - start_pfn) << PAGE_SHIFT, 6255 this_nid); 6256 } 6257 } 6258 6259 /** 6260 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6261 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6262 * 6263 * If an architecture guarantees that all ranges registered contain no holes and may 6264 * be freed, this function may be used instead of calling memory_present() manually. 6265 */ 6266 void __init sparse_memory_present_with_active_regions(int nid) 6267 { 6268 unsigned long start_pfn, end_pfn; 6269 int i, this_nid; 6270 6271 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6272 memory_present(this_nid, start_pfn, end_pfn); 6273 } 6274 6275 /** 6276 * get_pfn_range_for_nid - Return the start and end page frames for a node 6277 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6278 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6279 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6280 * 6281 * It returns the start and end page frame of a node based on information 6282 * provided by memblock_set_node(). If called for a node 6283 * with no available memory, a warning is printed and the start and end 6284 * PFNs will be 0. 6285 */ 6286 void __init get_pfn_range_for_nid(unsigned int nid, 6287 unsigned long *start_pfn, unsigned long *end_pfn) 6288 { 6289 unsigned long this_start_pfn, this_end_pfn; 6290 int i; 6291 6292 *start_pfn = -1UL; 6293 *end_pfn = 0; 6294 6295 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6296 *start_pfn = min(*start_pfn, this_start_pfn); 6297 *end_pfn = max(*end_pfn, this_end_pfn); 6298 } 6299 6300 if (*start_pfn == -1UL) 6301 *start_pfn = 0; 6302 } 6303 6304 /* 6305 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6306 * assumption is made that zones within a node are ordered in monotonic 6307 * increasing memory addresses so that the "highest" populated zone is used 6308 */ 6309 static void __init find_usable_zone_for_movable(void) 6310 { 6311 int zone_index; 6312 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6313 if (zone_index == ZONE_MOVABLE) 6314 continue; 6315 6316 if (arch_zone_highest_possible_pfn[zone_index] > 6317 arch_zone_lowest_possible_pfn[zone_index]) 6318 break; 6319 } 6320 6321 VM_BUG_ON(zone_index == -1); 6322 movable_zone = zone_index; 6323 } 6324 6325 /* 6326 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6327 * because it is sized independent of architecture. Unlike the other zones, 6328 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6329 * in each node depending on the size of each node and how evenly kernelcore 6330 * is distributed. This helper function adjusts the zone ranges 6331 * provided by the architecture for a given node by using the end of the 6332 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6333 * zones within a node are in order of monotonic increases memory addresses 6334 */ 6335 static void __init adjust_zone_range_for_zone_movable(int nid, 6336 unsigned long zone_type, 6337 unsigned long node_start_pfn, 6338 unsigned long node_end_pfn, 6339 unsigned long *zone_start_pfn, 6340 unsigned long *zone_end_pfn) 6341 { 6342 /* Only adjust if ZONE_MOVABLE is on this node */ 6343 if (zone_movable_pfn[nid]) { 6344 /* Size ZONE_MOVABLE */ 6345 if (zone_type == ZONE_MOVABLE) { 6346 *zone_start_pfn = zone_movable_pfn[nid]; 6347 *zone_end_pfn = min(node_end_pfn, 6348 arch_zone_highest_possible_pfn[movable_zone]); 6349 6350 /* Adjust for ZONE_MOVABLE starting within this range */ 6351 } else if (!mirrored_kernelcore && 6352 *zone_start_pfn < zone_movable_pfn[nid] && 6353 *zone_end_pfn > zone_movable_pfn[nid]) { 6354 *zone_end_pfn = zone_movable_pfn[nid]; 6355 6356 /* Check if this whole range is within ZONE_MOVABLE */ 6357 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6358 *zone_start_pfn = *zone_end_pfn; 6359 } 6360 } 6361 6362 /* 6363 * Return the number of pages a zone spans in a node, including holes 6364 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6365 */ 6366 static unsigned long __init zone_spanned_pages_in_node(int nid, 6367 unsigned long zone_type, 6368 unsigned long node_start_pfn, 6369 unsigned long node_end_pfn, 6370 unsigned long *zone_start_pfn, 6371 unsigned long *zone_end_pfn, 6372 unsigned long *ignored) 6373 { 6374 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6375 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6376 /* When hotadd a new node from cpu_up(), the node should be empty */ 6377 if (!node_start_pfn && !node_end_pfn) 6378 return 0; 6379 6380 /* Get the start and end of the zone */ 6381 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6382 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6383 adjust_zone_range_for_zone_movable(nid, zone_type, 6384 node_start_pfn, node_end_pfn, 6385 zone_start_pfn, zone_end_pfn); 6386 6387 /* Check that this node has pages within the zone's required range */ 6388 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6389 return 0; 6390 6391 /* Move the zone boundaries inside the node if necessary */ 6392 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6393 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6394 6395 /* Return the spanned pages */ 6396 return *zone_end_pfn - *zone_start_pfn; 6397 } 6398 6399 /* 6400 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6401 * then all holes in the requested range will be accounted for. 6402 */ 6403 unsigned long __init __absent_pages_in_range(int nid, 6404 unsigned long range_start_pfn, 6405 unsigned long range_end_pfn) 6406 { 6407 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6408 unsigned long start_pfn, end_pfn; 6409 int i; 6410 6411 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6412 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6413 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6414 nr_absent -= end_pfn - start_pfn; 6415 } 6416 return nr_absent; 6417 } 6418 6419 /** 6420 * absent_pages_in_range - Return number of page frames in holes within a range 6421 * @start_pfn: The start PFN to start searching for holes 6422 * @end_pfn: The end PFN to stop searching for holes 6423 * 6424 * Return: the number of pages frames in memory holes within a range. 6425 */ 6426 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6427 unsigned long end_pfn) 6428 { 6429 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6430 } 6431 6432 /* Return the number of page frames in holes in a zone on a node */ 6433 static unsigned long __init zone_absent_pages_in_node(int nid, 6434 unsigned long zone_type, 6435 unsigned long node_start_pfn, 6436 unsigned long node_end_pfn, 6437 unsigned long *ignored) 6438 { 6439 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6440 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6441 unsigned long zone_start_pfn, zone_end_pfn; 6442 unsigned long nr_absent; 6443 6444 /* When hotadd a new node from cpu_up(), the node should be empty */ 6445 if (!node_start_pfn && !node_end_pfn) 6446 return 0; 6447 6448 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6449 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6450 6451 adjust_zone_range_for_zone_movable(nid, zone_type, 6452 node_start_pfn, node_end_pfn, 6453 &zone_start_pfn, &zone_end_pfn); 6454 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6455 6456 /* 6457 * ZONE_MOVABLE handling. 6458 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6459 * and vice versa. 6460 */ 6461 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6462 unsigned long start_pfn, end_pfn; 6463 struct memblock_region *r; 6464 6465 for_each_memblock(memory, r) { 6466 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6467 zone_start_pfn, zone_end_pfn); 6468 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6469 zone_start_pfn, zone_end_pfn); 6470 6471 if (zone_type == ZONE_MOVABLE && 6472 memblock_is_mirror(r)) 6473 nr_absent += end_pfn - start_pfn; 6474 6475 if (zone_type == ZONE_NORMAL && 6476 !memblock_is_mirror(r)) 6477 nr_absent += end_pfn - start_pfn; 6478 } 6479 } 6480 6481 return nr_absent; 6482 } 6483 6484 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6485 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6486 unsigned long zone_type, 6487 unsigned long node_start_pfn, 6488 unsigned long node_end_pfn, 6489 unsigned long *zone_start_pfn, 6490 unsigned long *zone_end_pfn, 6491 unsigned long *zones_size) 6492 { 6493 unsigned int zone; 6494 6495 *zone_start_pfn = node_start_pfn; 6496 for (zone = 0; zone < zone_type; zone++) 6497 *zone_start_pfn += zones_size[zone]; 6498 6499 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6500 6501 return zones_size[zone_type]; 6502 } 6503 6504 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6505 unsigned long zone_type, 6506 unsigned long node_start_pfn, 6507 unsigned long node_end_pfn, 6508 unsigned long *zholes_size) 6509 { 6510 if (!zholes_size) 6511 return 0; 6512 6513 return zholes_size[zone_type]; 6514 } 6515 6516 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6517 6518 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6519 unsigned long node_start_pfn, 6520 unsigned long node_end_pfn, 6521 unsigned long *zones_size, 6522 unsigned long *zholes_size) 6523 { 6524 unsigned long realtotalpages = 0, totalpages = 0; 6525 enum zone_type i; 6526 6527 for (i = 0; i < MAX_NR_ZONES; i++) { 6528 struct zone *zone = pgdat->node_zones + i; 6529 unsigned long zone_start_pfn, zone_end_pfn; 6530 unsigned long size, real_size; 6531 6532 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6533 node_start_pfn, 6534 node_end_pfn, 6535 &zone_start_pfn, 6536 &zone_end_pfn, 6537 zones_size); 6538 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6539 node_start_pfn, node_end_pfn, 6540 zholes_size); 6541 if (size) 6542 zone->zone_start_pfn = zone_start_pfn; 6543 else 6544 zone->zone_start_pfn = 0; 6545 zone->spanned_pages = size; 6546 zone->present_pages = real_size; 6547 6548 totalpages += size; 6549 realtotalpages += real_size; 6550 } 6551 6552 pgdat->node_spanned_pages = totalpages; 6553 pgdat->node_present_pages = realtotalpages; 6554 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6555 realtotalpages); 6556 } 6557 6558 #ifndef CONFIG_SPARSEMEM 6559 /* 6560 * Calculate the size of the zone->blockflags rounded to an unsigned long 6561 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6562 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6563 * round what is now in bits to nearest long in bits, then return it in 6564 * bytes. 6565 */ 6566 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6567 { 6568 unsigned long usemapsize; 6569 6570 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6571 usemapsize = roundup(zonesize, pageblock_nr_pages); 6572 usemapsize = usemapsize >> pageblock_order; 6573 usemapsize *= NR_PAGEBLOCK_BITS; 6574 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6575 6576 return usemapsize / 8; 6577 } 6578 6579 static void __ref setup_usemap(struct pglist_data *pgdat, 6580 struct zone *zone, 6581 unsigned long zone_start_pfn, 6582 unsigned long zonesize) 6583 { 6584 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6585 zone->pageblock_flags = NULL; 6586 if (usemapsize) { 6587 zone->pageblock_flags = 6588 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6589 pgdat->node_id); 6590 if (!zone->pageblock_flags) 6591 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6592 usemapsize, zone->name, pgdat->node_id); 6593 } 6594 } 6595 #else 6596 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6597 unsigned long zone_start_pfn, unsigned long zonesize) {} 6598 #endif /* CONFIG_SPARSEMEM */ 6599 6600 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6601 6602 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6603 void __init set_pageblock_order(void) 6604 { 6605 unsigned int order; 6606 6607 /* Check that pageblock_nr_pages has not already been setup */ 6608 if (pageblock_order) 6609 return; 6610 6611 if (HPAGE_SHIFT > PAGE_SHIFT) 6612 order = HUGETLB_PAGE_ORDER; 6613 else 6614 order = MAX_ORDER - 1; 6615 6616 /* 6617 * Assume the largest contiguous order of interest is a huge page. 6618 * This value may be variable depending on boot parameters on IA64 and 6619 * powerpc. 6620 */ 6621 pageblock_order = order; 6622 } 6623 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6624 6625 /* 6626 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6627 * is unused as pageblock_order is set at compile-time. See 6628 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6629 * the kernel config 6630 */ 6631 void __init set_pageblock_order(void) 6632 { 6633 } 6634 6635 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6636 6637 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6638 unsigned long present_pages) 6639 { 6640 unsigned long pages = spanned_pages; 6641 6642 /* 6643 * Provide a more accurate estimation if there are holes within 6644 * the zone and SPARSEMEM is in use. If there are holes within the 6645 * zone, each populated memory region may cost us one or two extra 6646 * memmap pages due to alignment because memmap pages for each 6647 * populated regions may not be naturally aligned on page boundary. 6648 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6649 */ 6650 if (spanned_pages > present_pages + (present_pages >> 4) && 6651 IS_ENABLED(CONFIG_SPARSEMEM)) 6652 pages = present_pages; 6653 6654 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6655 } 6656 6657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6658 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6659 { 6660 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6661 6662 spin_lock_init(&ds_queue->split_queue_lock); 6663 INIT_LIST_HEAD(&ds_queue->split_queue); 6664 ds_queue->split_queue_len = 0; 6665 } 6666 #else 6667 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6668 #endif 6669 6670 #ifdef CONFIG_COMPACTION 6671 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6672 { 6673 init_waitqueue_head(&pgdat->kcompactd_wait); 6674 } 6675 #else 6676 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6677 #endif 6678 6679 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6680 { 6681 pgdat_resize_init(pgdat); 6682 6683 pgdat_init_split_queue(pgdat); 6684 pgdat_init_kcompactd(pgdat); 6685 6686 init_waitqueue_head(&pgdat->kswapd_wait); 6687 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6688 6689 pgdat_page_ext_init(pgdat); 6690 spin_lock_init(&pgdat->lru_lock); 6691 lruvec_init(&pgdat->__lruvec); 6692 } 6693 6694 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6695 unsigned long remaining_pages) 6696 { 6697 atomic_long_set(&zone->managed_pages, remaining_pages); 6698 zone_set_nid(zone, nid); 6699 zone->name = zone_names[idx]; 6700 zone->zone_pgdat = NODE_DATA(nid); 6701 spin_lock_init(&zone->lock); 6702 zone_seqlock_init(zone); 6703 zone_pcp_init(zone); 6704 } 6705 6706 /* 6707 * Set up the zone data structures 6708 * - init pgdat internals 6709 * - init all zones belonging to this node 6710 * 6711 * NOTE: this function is only called during memory hotplug 6712 */ 6713 #ifdef CONFIG_MEMORY_HOTPLUG 6714 void __ref free_area_init_core_hotplug(int nid) 6715 { 6716 enum zone_type z; 6717 pg_data_t *pgdat = NODE_DATA(nid); 6718 6719 pgdat_init_internals(pgdat); 6720 for (z = 0; z < MAX_NR_ZONES; z++) 6721 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6722 } 6723 #endif 6724 6725 /* 6726 * Set up the zone data structures: 6727 * - mark all pages reserved 6728 * - mark all memory queues empty 6729 * - clear the memory bitmaps 6730 * 6731 * NOTE: pgdat should get zeroed by caller. 6732 * NOTE: this function is only called during early init. 6733 */ 6734 static void __init free_area_init_core(struct pglist_data *pgdat) 6735 { 6736 enum zone_type j; 6737 int nid = pgdat->node_id; 6738 6739 pgdat_init_internals(pgdat); 6740 pgdat->per_cpu_nodestats = &boot_nodestats; 6741 6742 for (j = 0; j < MAX_NR_ZONES; j++) { 6743 struct zone *zone = pgdat->node_zones + j; 6744 unsigned long size, freesize, memmap_pages; 6745 unsigned long zone_start_pfn = zone->zone_start_pfn; 6746 6747 size = zone->spanned_pages; 6748 freesize = zone->present_pages; 6749 6750 /* 6751 * Adjust freesize so that it accounts for how much memory 6752 * is used by this zone for memmap. This affects the watermark 6753 * and per-cpu initialisations 6754 */ 6755 memmap_pages = calc_memmap_size(size, freesize); 6756 if (!is_highmem_idx(j)) { 6757 if (freesize >= memmap_pages) { 6758 freesize -= memmap_pages; 6759 if (memmap_pages) 6760 printk(KERN_DEBUG 6761 " %s zone: %lu pages used for memmap\n", 6762 zone_names[j], memmap_pages); 6763 } else 6764 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6765 zone_names[j], memmap_pages, freesize); 6766 } 6767 6768 /* Account for reserved pages */ 6769 if (j == 0 && freesize > dma_reserve) { 6770 freesize -= dma_reserve; 6771 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6772 zone_names[0], dma_reserve); 6773 } 6774 6775 if (!is_highmem_idx(j)) 6776 nr_kernel_pages += freesize; 6777 /* Charge for highmem memmap if there are enough kernel pages */ 6778 else if (nr_kernel_pages > memmap_pages * 2) 6779 nr_kernel_pages -= memmap_pages; 6780 nr_all_pages += freesize; 6781 6782 /* 6783 * Set an approximate value for lowmem here, it will be adjusted 6784 * when the bootmem allocator frees pages into the buddy system. 6785 * And all highmem pages will be managed by the buddy system. 6786 */ 6787 zone_init_internals(zone, j, nid, freesize); 6788 6789 if (!size) 6790 continue; 6791 6792 set_pageblock_order(); 6793 setup_usemap(pgdat, zone, zone_start_pfn, size); 6794 init_currently_empty_zone(zone, zone_start_pfn, size); 6795 memmap_init(size, nid, j, zone_start_pfn); 6796 } 6797 } 6798 6799 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6800 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6801 { 6802 unsigned long __maybe_unused start = 0; 6803 unsigned long __maybe_unused offset = 0; 6804 6805 /* Skip empty nodes */ 6806 if (!pgdat->node_spanned_pages) 6807 return; 6808 6809 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6810 offset = pgdat->node_start_pfn - start; 6811 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6812 if (!pgdat->node_mem_map) { 6813 unsigned long size, end; 6814 struct page *map; 6815 6816 /* 6817 * The zone's endpoints aren't required to be MAX_ORDER 6818 * aligned but the node_mem_map endpoints must be in order 6819 * for the buddy allocator to function correctly. 6820 */ 6821 end = pgdat_end_pfn(pgdat); 6822 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6823 size = (end - start) * sizeof(struct page); 6824 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6825 pgdat->node_id); 6826 if (!map) 6827 panic("Failed to allocate %ld bytes for node %d memory map\n", 6828 size, pgdat->node_id); 6829 pgdat->node_mem_map = map + offset; 6830 } 6831 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6832 __func__, pgdat->node_id, (unsigned long)pgdat, 6833 (unsigned long)pgdat->node_mem_map); 6834 #ifndef CONFIG_NEED_MULTIPLE_NODES 6835 /* 6836 * With no DISCONTIG, the global mem_map is just set as node 0's 6837 */ 6838 if (pgdat == NODE_DATA(0)) { 6839 mem_map = NODE_DATA(0)->node_mem_map; 6840 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6841 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6842 mem_map -= offset; 6843 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6844 } 6845 #endif 6846 } 6847 #else 6848 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6849 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6850 6851 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6852 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6853 { 6854 pgdat->first_deferred_pfn = ULONG_MAX; 6855 } 6856 #else 6857 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6858 #endif 6859 6860 void __init free_area_init_node(int nid, unsigned long *zones_size, 6861 unsigned long node_start_pfn, 6862 unsigned long *zholes_size) 6863 { 6864 pg_data_t *pgdat = NODE_DATA(nid); 6865 unsigned long start_pfn = 0; 6866 unsigned long end_pfn = 0; 6867 6868 /* pg_data_t should be reset to zero when it's allocated */ 6869 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6870 6871 pgdat->node_id = nid; 6872 pgdat->node_start_pfn = node_start_pfn; 6873 pgdat->per_cpu_nodestats = NULL; 6874 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6875 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6876 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6877 (u64)start_pfn << PAGE_SHIFT, 6878 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6879 #else 6880 start_pfn = node_start_pfn; 6881 #endif 6882 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6883 zones_size, zholes_size); 6884 6885 alloc_node_mem_map(pgdat); 6886 pgdat_set_deferred_range(pgdat); 6887 6888 free_area_init_core(pgdat); 6889 } 6890 6891 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6892 /* 6893 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6894 * pages zeroed 6895 */ 6896 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6897 { 6898 unsigned long pfn; 6899 u64 pgcnt = 0; 6900 6901 for (pfn = spfn; pfn < epfn; pfn++) { 6902 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6903 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6904 + pageblock_nr_pages - 1; 6905 continue; 6906 } 6907 mm_zero_struct_page(pfn_to_page(pfn)); 6908 pgcnt++; 6909 } 6910 6911 return pgcnt; 6912 } 6913 6914 /* 6915 * Only struct pages that are backed by physical memory are zeroed and 6916 * initialized by going through __init_single_page(). But, there are some 6917 * struct pages which are reserved in memblock allocator and their fields 6918 * may be accessed (for example page_to_pfn() on some configuration accesses 6919 * flags). We must explicitly zero those struct pages. 6920 * 6921 * This function also addresses a similar issue where struct pages are left 6922 * uninitialized because the physical address range is not covered by 6923 * memblock.memory or memblock.reserved. That could happen when memblock 6924 * layout is manually configured via memmap=. 6925 */ 6926 void __init zero_resv_unavail(void) 6927 { 6928 phys_addr_t start, end; 6929 u64 i, pgcnt; 6930 phys_addr_t next = 0; 6931 6932 /* 6933 * Loop through unavailable ranges not covered by memblock.memory. 6934 */ 6935 pgcnt = 0; 6936 for_each_mem_range(i, &memblock.memory, NULL, 6937 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6938 if (next < start) 6939 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6940 next = end; 6941 } 6942 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6943 6944 /* 6945 * Struct pages that do not have backing memory. This could be because 6946 * firmware is using some of this memory, or for some other reasons. 6947 */ 6948 if (pgcnt) 6949 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6950 } 6951 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6952 6953 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6954 6955 #if MAX_NUMNODES > 1 6956 /* 6957 * Figure out the number of possible node ids. 6958 */ 6959 void __init setup_nr_node_ids(void) 6960 { 6961 unsigned int highest; 6962 6963 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6964 nr_node_ids = highest + 1; 6965 } 6966 #endif 6967 6968 /** 6969 * node_map_pfn_alignment - determine the maximum internode alignment 6970 * 6971 * This function should be called after node map is populated and sorted. 6972 * It calculates the maximum power of two alignment which can distinguish 6973 * all the nodes. 6974 * 6975 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6976 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6977 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6978 * shifted, 1GiB is enough and this function will indicate so. 6979 * 6980 * This is used to test whether pfn -> nid mapping of the chosen memory 6981 * model has fine enough granularity to avoid incorrect mapping for the 6982 * populated node map. 6983 * 6984 * Return: the determined alignment in pfn's. 0 if there is no alignment 6985 * requirement (single node). 6986 */ 6987 unsigned long __init node_map_pfn_alignment(void) 6988 { 6989 unsigned long accl_mask = 0, last_end = 0; 6990 unsigned long start, end, mask; 6991 int last_nid = NUMA_NO_NODE; 6992 int i, nid; 6993 6994 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6995 if (!start || last_nid < 0 || last_nid == nid) { 6996 last_nid = nid; 6997 last_end = end; 6998 continue; 6999 } 7000 7001 /* 7002 * Start with a mask granular enough to pin-point to the 7003 * start pfn and tick off bits one-by-one until it becomes 7004 * too coarse to separate the current node from the last. 7005 */ 7006 mask = ~((1 << __ffs(start)) - 1); 7007 while (mask && last_end <= (start & (mask << 1))) 7008 mask <<= 1; 7009 7010 /* accumulate all internode masks */ 7011 accl_mask |= mask; 7012 } 7013 7014 /* convert mask to number of pages */ 7015 return ~accl_mask + 1; 7016 } 7017 7018 /* Find the lowest pfn for a node */ 7019 static unsigned long __init find_min_pfn_for_node(int nid) 7020 { 7021 unsigned long min_pfn = ULONG_MAX; 7022 unsigned long start_pfn; 7023 int i; 7024 7025 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7026 min_pfn = min(min_pfn, start_pfn); 7027 7028 if (min_pfn == ULONG_MAX) { 7029 pr_warn("Could not find start_pfn for node %d\n", nid); 7030 return 0; 7031 } 7032 7033 return min_pfn; 7034 } 7035 7036 /** 7037 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7038 * 7039 * Return: the minimum PFN based on information provided via 7040 * memblock_set_node(). 7041 */ 7042 unsigned long __init find_min_pfn_with_active_regions(void) 7043 { 7044 return find_min_pfn_for_node(MAX_NUMNODES); 7045 } 7046 7047 /* 7048 * early_calculate_totalpages() 7049 * Sum pages in active regions for movable zone. 7050 * Populate N_MEMORY for calculating usable_nodes. 7051 */ 7052 static unsigned long __init early_calculate_totalpages(void) 7053 { 7054 unsigned long totalpages = 0; 7055 unsigned long start_pfn, end_pfn; 7056 int i, nid; 7057 7058 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7059 unsigned long pages = end_pfn - start_pfn; 7060 7061 totalpages += pages; 7062 if (pages) 7063 node_set_state(nid, N_MEMORY); 7064 } 7065 return totalpages; 7066 } 7067 7068 /* 7069 * Find the PFN the Movable zone begins in each node. Kernel memory 7070 * is spread evenly between nodes as long as the nodes have enough 7071 * memory. When they don't, some nodes will have more kernelcore than 7072 * others 7073 */ 7074 static void __init find_zone_movable_pfns_for_nodes(void) 7075 { 7076 int i, nid; 7077 unsigned long usable_startpfn; 7078 unsigned long kernelcore_node, kernelcore_remaining; 7079 /* save the state before borrow the nodemask */ 7080 nodemask_t saved_node_state = node_states[N_MEMORY]; 7081 unsigned long totalpages = early_calculate_totalpages(); 7082 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7083 struct memblock_region *r; 7084 7085 /* Need to find movable_zone earlier when movable_node is specified. */ 7086 find_usable_zone_for_movable(); 7087 7088 /* 7089 * If movable_node is specified, ignore kernelcore and movablecore 7090 * options. 7091 */ 7092 if (movable_node_is_enabled()) { 7093 for_each_memblock(memory, r) { 7094 if (!memblock_is_hotpluggable(r)) 7095 continue; 7096 7097 nid = r->nid; 7098 7099 usable_startpfn = PFN_DOWN(r->base); 7100 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7101 min(usable_startpfn, zone_movable_pfn[nid]) : 7102 usable_startpfn; 7103 } 7104 7105 goto out2; 7106 } 7107 7108 /* 7109 * If kernelcore=mirror is specified, ignore movablecore option 7110 */ 7111 if (mirrored_kernelcore) { 7112 bool mem_below_4gb_not_mirrored = false; 7113 7114 for_each_memblock(memory, r) { 7115 if (memblock_is_mirror(r)) 7116 continue; 7117 7118 nid = r->nid; 7119 7120 usable_startpfn = memblock_region_memory_base_pfn(r); 7121 7122 if (usable_startpfn < 0x100000) { 7123 mem_below_4gb_not_mirrored = true; 7124 continue; 7125 } 7126 7127 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7128 min(usable_startpfn, zone_movable_pfn[nid]) : 7129 usable_startpfn; 7130 } 7131 7132 if (mem_below_4gb_not_mirrored) 7133 pr_warn("This configuration results in unmirrored kernel memory."); 7134 7135 goto out2; 7136 } 7137 7138 /* 7139 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7140 * amount of necessary memory. 7141 */ 7142 if (required_kernelcore_percent) 7143 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7144 10000UL; 7145 if (required_movablecore_percent) 7146 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7147 10000UL; 7148 7149 /* 7150 * If movablecore= was specified, calculate what size of 7151 * kernelcore that corresponds so that memory usable for 7152 * any allocation type is evenly spread. If both kernelcore 7153 * and movablecore are specified, then the value of kernelcore 7154 * will be used for required_kernelcore if it's greater than 7155 * what movablecore would have allowed. 7156 */ 7157 if (required_movablecore) { 7158 unsigned long corepages; 7159 7160 /* 7161 * Round-up so that ZONE_MOVABLE is at least as large as what 7162 * was requested by the user 7163 */ 7164 required_movablecore = 7165 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7166 required_movablecore = min(totalpages, required_movablecore); 7167 corepages = totalpages - required_movablecore; 7168 7169 required_kernelcore = max(required_kernelcore, corepages); 7170 } 7171 7172 /* 7173 * If kernelcore was not specified or kernelcore size is larger 7174 * than totalpages, there is no ZONE_MOVABLE. 7175 */ 7176 if (!required_kernelcore || required_kernelcore >= totalpages) 7177 goto out; 7178 7179 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7180 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7181 7182 restart: 7183 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7184 kernelcore_node = required_kernelcore / usable_nodes; 7185 for_each_node_state(nid, N_MEMORY) { 7186 unsigned long start_pfn, end_pfn; 7187 7188 /* 7189 * Recalculate kernelcore_node if the division per node 7190 * now exceeds what is necessary to satisfy the requested 7191 * amount of memory for the kernel 7192 */ 7193 if (required_kernelcore < kernelcore_node) 7194 kernelcore_node = required_kernelcore / usable_nodes; 7195 7196 /* 7197 * As the map is walked, we track how much memory is usable 7198 * by the kernel using kernelcore_remaining. When it is 7199 * 0, the rest of the node is usable by ZONE_MOVABLE 7200 */ 7201 kernelcore_remaining = kernelcore_node; 7202 7203 /* Go through each range of PFNs within this node */ 7204 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7205 unsigned long size_pages; 7206 7207 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7208 if (start_pfn >= end_pfn) 7209 continue; 7210 7211 /* Account for what is only usable for kernelcore */ 7212 if (start_pfn < usable_startpfn) { 7213 unsigned long kernel_pages; 7214 kernel_pages = min(end_pfn, usable_startpfn) 7215 - start_pfn; 7216 7217 kernelcore_remaining -= min(kernel_pages, 7218 kernelcore_remaining); 7219 required_kernelcore -= min(kernel_pages, 7220 required_kernelcore); 7221 7222 /* Continue if range is now fully accounted */ 7223 if (end_pfn <= usable_startpfn) { 7224 7225 /* 7226 * Push zone_movable_pfn to the end so 7227 * that if we have to rebalance 7228 * kernelcore across nodes, we will 7229 * not double account here 7230 */ 7231 zone_movable_pfn[nid] = end_pfn; 7232 continue; 7233 } 7234 start_pfn = usable_startpfn; 7235 } 7236 7237 /* 7238 * The usable PFN range for ZONE_MOVABLE is from 7239 * start_pfn->end_pfn. Calculate size_pages as the 7240 * number of pages used as kernelcore 7241 */ 7242 size_pages = end_pfn - start_pfn; 7243 if (size_pages > kernelcore_remaining) 7244 size_pages = kernelcore_remaining; 7245 zone_movable_pfn[nid] = start_pfn + size_pages; 7246 7247 /* 7248 * Some kernelcore has been met, update counts and 7249 * break if the kernelcore for this node has been 7250 * satisfied 7251 */ 7252 required_kernelcore -= min(required_kernelcore, 7253 size_pages); 7254 kernelcore_remaining -= size_pages; 7255 if (!kernelcore_remaining) 7256 break; 7257 } 7258 } 7259 7260 /* 7261 * If there is still required_kernelcore, we do another pass with one 7262 * less node in the count. This will push zone_movable_pfn[nid] further 7263 * along on the nodes that still have memory until kernelcore is 7264 * satisfied 7265 */ 7266 usable_nodes--; 7267 if (usable_nodes && required_kernelcore > usable_nodes) 7268 goto restart; 7269 7270 out2: 7271 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7272 for (nid = 0; nid < MAX_NUMNODES; nid++) 7273 zone_movable_pfn[nid] = 7274 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7275 7276 out: 7277 /* restore the node_state */ 7278 node_states[N_MEMORY] = saved_node_state; 7279 } 7280 7281 /* Any regular or high memory on that node ? */ 7282 static void check_for_memory(pg_data_t *pgdat, int nid) 7283 { 7284 enum zone_type zone_type; 7285 7286 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7287 struct zone *zone = &pgdat->node_zones[zone_type]; 7288 if (populated_zone(zone)) { 7289 if (IS_ENABLED(CONFIG_HIGHMEM)) 7290 node_set_state(nid, N_HIGH_MEMORY); 7291 if (zone_type <= ZONE_NORMAL) 7292 node_set_state(nid, N_NORMAL_MEMORY); 7293 break; 7294 } 7295 } 7296 } 7297 7298 /** 7299 * free_area_init_nodes - Initialise all pg_data_t and zone data 7300 * @max_zone_pfn: an array of max PFNs for each zone 7301 * 7302 * This will call free_area_init_node() for each active node in the system. 7303 * Using the page ranges provided by memblock_set_node(), the size of each 7304 * zone in each node and their holes is calculated. If the maximum PFN 7305 * between two adjacent zones match, it is assumed that the zone is empty. 7306 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7307 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7308 * starts where the previous one ended. For example, ZONE_DMA32 starts 7309 * at arch_max_dma_pfn. 7310 */ 7311 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7312 { 7313 unsigned long start_pfn, end_pfn; 7314 int i, nid; 7315 7316 /* Record where the zone boundaries are */ 7317 memset(arch_zone_lowest_possible_pfn, 0, 7318 sizeof(arch_zone_lowest_possible_pfn)); 7319 memset(arch_zone_highest_possible_pfn, 0, 7320 sizeof(arch_zone_highest_possible_pfn)); 7321 7322 start_pfn = find_min_pfn_with_active_regions(); 7323 7324 for (i = 0; i < MAX_NR_ZONES; i++) { 7325 if (i == ZONE_MOVABLE) 7326 continue; 7327 7328 end_pfn = max(max_zone_pfn[i], start_pfn); 7329 arch_zone_lowest_possible_pfn[i] = start_pfn; 7330 arch_zone_highest_possible_pfn[i] = end_pfn; 7331 7332 start_pfn = end_pfn; 7333 } 7334 7335 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7336 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7337 find_zone_movable_pfns_for_nodes(); 7338 7339 /* Print out the zone ranges */ 7340 pr_info("Zone ranges:\n"); 7341 for (i = 0; i < MAX_NR_ZONES; i++) { 7342 if (i == ZONE_MOVABLE) 7343 continue; 7344 pr_info(" %-8s ", zone_names[i]); 7345 if (arch_zone_lowest_possible_pfn[i] == 7346 arch_zone_highest_possible_pfn[i]) 7347 pr_cont("empty\n"); 7348 else 7349 pr_cont("[mem %#018Lx-%#018Lx]\n", 7350 (u64)arch_zone_lowest_possible_pfn[i] 7351 << PAGE_SHIFT, 7352 ((u64)arch_zone_highest_possible_pfn[i] 7353 << PAGE_SHIFT) - 1); 7354 } 7355 7356 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7357 pr_info("Movable zone start for each node\n"); 7358 for (i = 0; i < MAX_NUMNODES; i++) { 7359 if (zone_movable_pfn[i]) 7360 pr_info(" Node %d: %#018Lx\n", i, 7361 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7362 } 7363 7364 /* 7365 * Print out the early node map, and initialize the 7366 * subsection-map relative to active online memory ranges to 7367 * enable future "sub-section" extensions of the memory map. 7368 */ 7369 pr_info("Early memory node ranges\n"); 7370 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7371 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7372 (u64)start_pfn << PAGE_SHIFT, 7373 ((u64)end_pfn << PAGE_SHIFT) - 1); 7374 subsection_map_init(start_pfn, end_pfn - start_pfn); 7375 } 7376 7377 /* Initialise every node */ 7378 mminit_verify_pageflags_layout(); 7379 setup_nr_node_ids(); 7380 zero_resv_unavail(); 7381 for_each_online_node(nid) { 7382 pg_data_t *pgdat = NODE_DATA(nid); 7383 free_area_init_node(nid, NULL, 7384 find_min_pfn_for_node(nid), NULL); 7385 7386 /* Any memory on that node */ 7387 if (pgdat->node_present_pages) 7388 node_set_state(nid, N_MEMORY); 7389 check_for_memory(pgdat, nid); 7390 } 7391 } 7392 7393 static int __init cmdline_parse_core(char *p, unsigned long *core, 7394 unsigned long *percent) 7395 { 7396 unsigned long long coremem; 7397 char *endptr; 7398 7399 if (!p) 7400 return -EINVAL; 7401 7402 /* Value may be a percentage of total memory, otherwise bytes */ 7403 coremem = simple_strtoull(p, &endptr, 0); 7404 if (*endptr == '%') { 7405 /* Paranoid check for percent values greater than 100 */ 7406 WARN_ON(coremem > 100); 7407 7408 *percent = coremem; 7409 } else { 7410 coremem = memparse(p, &p); 7411 /* Paranoid check that UL is enough for the coremem value */ 7412 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7413 7414 *core = coremem >> PAGE_SHIFT; 7415 *percent = 0UL; 7416 } 7417 return 0; 7418 } 7419 7420 /* 7421 * kernelcore=size sets the amount of memory for use for allocations that 7422 * cannot be reclaimed or migrated. 7423 */ 7424 static int __init cmdline_parse_kernelcore(char *p) 7425 { 7426 /* parse kernelcore=mirror */ 7427 if (parse_option_str(p, "mirror")) { 7428 mirrored_kernelcore = true; 7429 return 0; 7430 } 7431 7432 return cmdline_parse_core(p, &required_kernelcore, 7433 &required_kernelcore_percent); 7434 } 7435 7436 /* 7437 * movablecore=size sets the amount of memory for use for allocations that 7438 * can be reclaimed or migrated. 7439 */ 7440 static int __init cmdline_parse_movablecore(char *p) 7441 { 7442 return cmdline_parse_core(p, &required_movablecore, 7443 &required_movablecore_percent); 7444 } 7445 7446 early_param("kernelcore", cmdline_parse_kernelcore); 7447 early_param("movablecore", cmdline_parse_movablecore); 7448 7449 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7450 7451 void adjust_managed_page_count(struct page *page, long count) 7452 { 7453 atomic_long_add(count, &page_zone(page)->managed_pages); 7454 totalram_pages_add(count); 7455 #ifdef CONFIG_HIGHMEM 7456 if (PageHighMem(page)) 7457 totalhigh_pages_add(count); 7458 #endif 7459 } 7460 EXPORT_SYMBOL(adjust_managed_page_count); 7461 7462 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7463 { 7464 void *pos; 7465 unsigned long pages = 0; 7466 7467 start = (void *)PAGE_ALIGN((unsigned long)start); 7468 end = (void *)((unsigned long)end & PAGE_MASK); 7469 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7470 struct page *page = virt_to_page(pos); 7471 void *direct_map_addr; 7472 7473 /* 7474 * 'direct_map_addr' might be different from 'pos' 7475 * because some architectures' virt_to_page() 7476 * work with aliases. Getting the direct map 7477 * address ensures that we get a _writeable_ 7478 * alias for the memset(). 7479 */ 7480 direct_map_addr = page_address(page); 7481 if ((unsigned int)poison <= 0xFF) 7482 memset(direct_map_addr, poison, PAGE_SIZE); 7483 7484 free_reserved_page(page); 7485 } 7486 7487 if (pages && s) 7488 pr_info("Freeing %s memory: %ldK\n", 7489 s, pages << (PAGE_SHIFT - 10)); 7490 7491 return pages; 7492 } 7493 7494 #ifdef CONFIG_HIGHMEM 7495 void free_highmem_page(struct page *page) 7496 { 7497 __free_reserved_page(page); 7498 totalram_pages_inc(); 7499 atomic_long_inc(&page_zone(page)->managed_pages); 7500 totalhigh_pages_inc(); 7501 } 7502 #endif 7503 7504 7505 void __init mem_init_print_info(const char *str) 7506 { 7507 unsigned long physpages, codesize, datasize, rosize, bss_size; 7508 unsigned long init_code_size, init_data_size; 7509 7510 physpages = get_num_physpages(); 7511 codesize = _etext - _stext; 7512 datasize = _edata - _sdata; 7513 rosize = __end_rodata - __start_rodata; 7514 bss_size = __bss_stop - __bss_start; 7515 init_data_size = __init_end - __init_begin; 7516 init_code_size = _einittext - _sinittext; 7517 7518 /* 7519 * Detect special cases and adjust section sizes accordingly: 7520 * 1) .init.* may be embedded into .data sections 7521 * 2) .init.text.* may be out of [__init_begin, __init_end], 7522 * please refer to arch/tile/kernel/vmlinux.lds.S. 7523 * 3) .rodata.* may be embedded into .text or .data sections. 7524 */ 7525 #define adj_init_size(start, end, size, pos, adj) \ 7526 do { \ 7527 if (start <= pos && pos < end && size > adj) \ 7528 size -= adj; \ 7529 } while (0) 7530 7531 adj_init_size(__init_begin, __init_end, init_data_size, 7532 _sinittext, init_code_size); 7533 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7534 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7535 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7536 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7537 7538 #undef adj_init_size 7539 7540 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7541 #ifdef CONFIG_HIGHMEM 7542 ", %luK highmem" 7543 #endif 7544 "%s%s)\n", 7545 nr_free_pages() << (PAGE_SHIFT - 10), 7546 physpages << (PAGE_SHIFT - 10), 7547 codesize >> 10, datasize >> 10, rosize >> 10, 7548 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7549 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7550 totalcma_pages << (PAGE_SHIFT - 10), 7551 #ifdef CONFIG_HIGHMEM 7552 totalhigh_pages() << (PAGE_SHIFT - 10), 7553 #endif 7554 str ? ", " : "", str ? str : ""); 7555 } 7556 7557 /** 7558 * set_dma_reserve - set the specified number of pages reserved in the first zone 7559 * @new_dma_reserve: The number of pages to mark reserved 7560 * 7561 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7562 * In the DMA zone, a significant percentage may be consumed by kernel image 7563 * and other unfreeable allocations which can skew the watermarks badly. This 7564 * function may optionally be used to account for unfreeable pages in the 7565 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7566 * smaller per-cpu batchsize. 7567 */ 7568 void __init set_dma_reserve(unsigned long new_dma_reserve) 7569 { 7570 dma_reserve = new_dma_reserve; 7571 } 7572 7573 void __init free_area_init(unsigned long *zones_size) 7574 { 7575 zero_resv_unavail(); 7576 free_area_init_node(0, zones_size, 7577 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7578 } 7579 7580 static int page_alloc_cpu_dead(unsigned int cpu) 7581 { 7582 7583 lru_add_drain_cpu(cpu); 7584 drain_pages(cpu); 7585 7586 /* 7587 * Spill the event counters of the dead processor 7588 * into the current processors event counters. 7589 * This artificially elevates the count of the current 7590 * processor. 7591 */ 7592 vm_events_fold_cpu(cpu); 7593 7594 /* 7595 * Zero the differential counters of the dead processor 7596 * so that the vm statistics are consistent. 7597 * 7598 * This is only okay since the processor is dead and cannot 7599 * race with what we are doing. 7600 */ 7601 cpu_vm_stats_fold(cpu); 7602 return 0; 7603 } 7604 7605 #ifdef CONFIG_NUMA 7606 int hashdist = HASHDIST_DEFAULT; 7607 7608 static int __init set_hashdist(char *str) 7609 { 7610 if (!str) 7611 return 0; 7612 hashdist = simple_strtoul(str, &str, 0); 7613 return 1; 7614 } 7615 __setup("hashdist=", set_hashdist); 7616 #endif 7617 7618 void __init page_alloc_init(void) 7619 { 7620 int ret; 7621 7622 #ifdef CONFIG_NUMA 7623 if (num_node_state(N_MEMORY) == 1) 7624 hashdist = 0; 7625 #endif 7626 7627 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7628 "mm/page_alloc:dead", NULL, 7629 page_alloc_cpu_dead); 7630 WARN_ON(ret < 0); 7631 } 7632 7633 /* 7634 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7635 * or min_free_kbytes changes. 7636 */ 7637 static void calculate_totalreserve_pages(void) 7638 { 7639 struct pglist_data *pgdat; 7640 unsigned long reserve_pages = 0; 7641 enum zone_type i, j; 7642 7643 for_each_online_pgdat(pgdat) { 7644 7645 pgdat->totalreserve_pages = 0; 7646 7647 for (i = 0; i < MAX_NR_ZONES; i++) { 7648 struct zone *zone = pgdat->node_zones + i; 7649 long max = 0; 7650 unsigned long managed_pages = zone_managed_pages(zone); 7651 7652 /* Find valid and maximum lowmem_reserve in the zone */ 7653 for (j = i; j < MAX_NR_ZONES; j++) { 7654 if (zone->lowmem_reserve[j] > max) 7655 max = zone->lowmem_reserve[j]; 7656 } 7657 7658 /* we treat the high watermark as reserved pages. */ 7659 max += high_wmark_pages(zone); 7660 7661 if (max > managed_pages) 7662 max = managed_pages; 7663 7664 pgdat->totalreserve_pages += max; 7665 7666 reserve_pages += max; 7667 } 7668 } 7669 totalreserve_pages = reserve_pages; 7670 } 7671 7672 /* 7673 * setup_per_zone_lowmem_reserve - called whenever 7674 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7675 * has a correct pages reserved value, so an adequate number of 7676 * pages are left in the zone after a successful __alloc_pages(). 7677 */ 7678 static void setup_per_zone_lowmem_reserve(void) 7679 { 7680 struct pglist_data *pgdat; 7681 enum zone_type j, idx; 7682 7683 for_each_online_pgdat(pgdat) { 7684 for (j = 0; j < MAX_NR_ZONES; j++) { 7685 struct zone *zone = pgdat->node_zones + j; 7686 unsigned long managed_pages = zone_managed_pages(zone); 7687 7688 zone->lowmem_reserve[j] = 0; 7689 7690 idx = j; 7691 while (idx) { 7692 struct zone *lower_zone; 7693 7694 idx--; 7695 lower_zone = pgdat->node_zones + idx; 7696 7697 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7698 sysctl_lowmem_reserve_ratio[idx] = 0; 7699 lower_zone->lowmem_reserve[j] = 0; 7700 } else { 7701 lower_zone->lowmem_reserve[j] = 7702 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7703 } 7704 managed_pages += zone_managed_pages(lower_zone); 7705 } 7706 } 7707 } 7708 7709 /* update totalreserve_pages */ 7710 calculate_totalreserve_pages(); 7711 } 7712 7713 static void __setup_per_zone_wmarks(void) 7714 { 7715 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7716 unsigned long lowmem_pages = 0; 7717 struct zone *zone; 7718 unsigned long flags; 7719 7720 /* Calculate total number of !ZONE_HIGHMEM pages */ 7721 for_each_zone(zone) { 7722 if (!is_highmem(zone)) 7723 lowmem_pages += zone_managed_pages(zone); 7724 } 7725 7726 for_each_zone(zone) { 7727 u64 tmp; 7728 7729 spin_lock_irqsave(&zone->lock, flags); 7730 tmp = (u64)pages_min * zone_managed_pages(zone); 7731 do_div(tmp, lowmem_pages); 7732 if (is_highmem(zone)) { 7733 /* 7734 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7735 * need highmem pages, so cap pages_min to a small 7736 * value here. 7737 * 7738 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7739 * deltas control async page reclaim, and so should 7740 * not be capped for highmem. 7741 */ 7742 unsigned long min_pages; 7743 7744 min_pages = zone_managed_pages(zone) / 1024; 7745 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7746 zone->_watermark[WMARK_MIN] = min_pages; 7747 } else { 7748 /* 7749 * If it's a lowmem zone, reserve a number of pages 7750 * proportionate to the zone's size. 7751 */ 7752 zone->_watermark[WMARK_MIN] = tmp; 7753 } 7754 7755 /* 7756 * Set the kswapd watermarks distance according to the 7757 * scale factor in proportion to available memory, but 7758 * ensure a minimum size on small systems. 7759 */ 7760 tmp = max_t(u64, tmp >> 2, 7761 mult_frac(zone_managed_pages(zone), 7762 watermark_scale_factor, 10000)); 7763 7764 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7765 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7766 zone->watermark_boost = 0; 7767 7768 spin_unlock_irqrestore(&zone->lock, flags); 7769 } 7770 7771 /* update totalreserve_pages */ 7772 calculate_totalreserve_pages(); 7773 } 7774 7775 /** 7776 * setup_per_zone_wmarks - called when min_free_kbytes changes 7777 * or when memory is hot-{added|removed} 7778 * 7779 * Ensures that the watermark[min,low,high] values for each zone are set 7780 * correctly with respect to min_free_kbytes. 7781 */ 7782 void setup_per_zone_wmarks(void) 7783 { 7784 static DEFINE_SPINLOCK(lock); 7785 7786 spin_lock(&lock); 7787 __setup_per_zone_wmarks(); 7788 spin_unlock(&lock); 7789 } 7790 7791 /* 7792 * Initialise min_free_kbytes. 7793 * 7794 * For small machines we want it small (128k min). For large machines 7795 * we want it large (64MB max). But it is not linear, because network 7796 * bandwidth does not increase linearly with machine size. We use 7797 * 7798 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7799 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7800 * 7801 * which yields 7802 * 7803 * 16MB: 512k 7804 * 32MB: 724k 7805 * 64MB: 1024k 7806 * 128MB: 1448k 7807 * 256MB: 2048k 7808 * 512MB: 2896k 7809 * 1024MB: 4096k 7810 * 2048MB: 5792k 7811 * 4096MB: 8192k 7812 * 8192MB: 11584k 7813 * 16384MB: 16384k 7814 */ 7815 int __meminit init_per_zone_wmark_min(void) 7816 { 7817 unsigned long lowmem_kbytes; 7818 int new_min_free_kbytes; 7819 7820 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7821 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7822 7823 if (new_min_free_kbytes > user_min_free_kbytes) { 7824 min_free_kbytes = new_min_free_kbytes; 7825 if (min_free_kbytes < 128) 7826 min_free_kbytes = 128; 7827 if (min_free_kbytes > 65536) 7828 min_free_kbytes = 65536; 7829 } else { 7830 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7831 new_min_free_kbytes, user_min_free_kbytes); 7832 } 7833 setup_per_zone_wmarks(); 7834 refresh_zone_stat_thresholds(); 7835 setup_per_zone_lowmem_reserve(); 7836 7837 #ifdef CONFIG_NUMA 7838 setup_min_unmapped_ratio(); 7839 setup_min_slab_ratio(); 7840 #endif 7841 7842 return 0; 7843 } 7844 core_initcall(init_per_zone_wmark_min) 7845 7846 /* 7847 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7848 * that we can call two helper functions whenever min_free_kbytes 7849 * changes. 7850 */ 7851 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7852 void __user *buffer, size_t *length, loff_t *ppos) 7853 { 7854 int rc; 7855 7856 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7857 if (rc) 7858 return rc; 7859 7860 if (write) { 7861 user_min_free_kbytes = min_free_kbytes; 7862 setup_per_zone_wmarks(); 7863 } 7864 return 0; 7865 } 7866 7867 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7868 void __user *buffer, size_t *length, loff_t *ppos) 7869 { 7870 int rc; 7871 7872 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7873 if (rc) 7874 return rc; 7875 7876 return 0; 7877 } 7878 7879 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7880 void __user *buffer, size_t *length, loff_t *ppos) 7881 { 7882 int rc; 7883 7884 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7885 if (rc) 7886 return rc; 7887 7888 if (write) 7889 setup_per_zone_wmarks(); 7890 7891 return 0; 7892 } 7893 7894 #ifdef CONFIG_NUMA 7895 static void setup_min_unmapped_ratio(void) 7896 { 7897 pg_data_t *pgdat; 7898 struct zone *zone; 7899 7900 for_each_online_pgdat(pgdat) 7901 pgdat->min_unmapped_pages = 0; 7902 7903 for_each_zone(zone) 7904 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7905 sysctl_min_unmapped_ratio) / 100; 7906 } 7907 7908 7909 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7910 void __user *buffer, size_t *length, loff_t *ppos) 7911 { 7912 int rc; 7913 7914 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7915 if (rc) 7916 return rc; 7917 7918 setup_min_unmapped_ratio(); 7919 7920 return 0; 7921 } 7922 7923 static void setup_min_slab_ratio(void) 7924 { 7925 pg_data_t *pgdat; 7926 struct zone *zone; 7927 7928 for_each_online_pgdat(pgdat) 7929 pgdat->min_slab_pages = 0; 7930 7931 for_each_zone(zone) 7932 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7933 sysctl_min_slab_ratio) / 100; 7934 } 7935 7936 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7937 void __user *buffer, size_t *length, loff_t *ppos) 7938 { 7939 int rc; 7940 7941 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7942 if (rc) 7943 return rc; 7944 7945 setup_min_slab_ratio(); 7946 7947 return 0; 7948 } 7949 #endif 7950 7951 /* 7952 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7953 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7954 * whenever sysctl_lowmem_reserve_ratio changes. 7955 * 7956 * The reserve ratio obviously has absolutely no relation with the 7957 * minimum watermarks. The lowmem reserve ratio can only make sense 7958 * if in function of the boot time zone sizes. 7959 */ 7960 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7961 void __user *buffer, size_t *length, loff_t *ppos) 7962 { 7963 proc_dointvec_minmax(table, write, buffer, length, ppos); 7964 setup_per_zone_lowmem_reserve(); 7965 return 0; 7966 } 7967 7968 static void __zone_pcp_update(struct zone *zone) 7969 { 7970 unsigned int cpu; 7971 7972 for_each_possible_cpu(cpu) 7973 pageset_set_high_and_batch(zone, 7974 per_cpu_ptr(zone->pageset, cpu)); 7975 } 7976 7977 /* 7978 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7979 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7980 * pagelist can have before it gets flushed back to buddy allocator. 7981 */ 7982 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7983 void __user *buffer, size_t *length, loff_t *ppos) 7984 { 7985 struct zone *zone; 7986 int old_percpu_pagelist_fraction; 7987 int ret; 7988 7989 mutex_lock(&pcp_batch_high_lock); 7990 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7991 7992 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7993 if (!write || ret < 0) 7994 goto out; 7995 7996 /* Sanity checking to avoid pcp imbalance */ 7997 if (percpu_pagelist_fraction && 7998 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7999 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8000 ret = -EINVAL; 8001 goto out; 8002 } 8003 8004 /* No change? */ 8005 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8006 goto out; 8007 8008 for_each_populated_zone(zone) 8009 __zone_pcp_update(zone); 8010 out: 8011 mutex_unlock(&pcp_batch_high_lock); 8012 return ret; 8013 } 8014 8015 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8016 /* 8017 * Returns the number of pages that arch has reserved but 8018 * is not known to alloc_large_system_hash(). 8019 */ 8020 static unsigned long __init arch_reserved_kernel_pages(void) 8021 { 8022 return 0; 8023 } 8024 #endif 8025 8026 /* 8027 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8028 * machines. As memory size is increased the scale is also increased but at 8029 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8030 * quadruples the scale is increased by one, which means the size of hash table 8031 * only doubles, instead of quadrupling as well. 8032 * Because 32-bit systems cannot have large physical memory, where this scaling 8033 * makes sense, it is disabled on such platforms. 8034 */ 8035 #if __BITS_PER_LONG > 32 8036 #define ADAPT_SCALE_BASE (64ul << 30) 8037 #define ADAPT_SCALE_SHIFT 2 8038 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8039 #endif 8040 8041 /* 8042 * allocate a large system hash table from bootmem 8043 * - it is assumed that the hash table must contain an exact power-of-2 8044 * quantity of entries 8045 * - limit is the number of hash buckets, not the total allocation size 8046 */ 8047 void *__init alloc_large_system_hash(const char *tablename, 8048 unsigned long bucketsize, 8049 unsigned long numentries, 8050 int scale, 8051 int flags, 8052 unsigned int *_hash_shift, 8053 unsigned int *_hash_mask, 8054 unsigned long low_limit, 8055 unsigned long high_limit) 8056 { 8057 unsigned long long max = high_limit; 8058 unsigned long log2qty, size; 8059 void *table = NULL; 8060 gfp_t gfp_flags; 8061 bool virt; 8062 8063 /* allow the kernel cmdline to have a say */ 8064 if (!numentries) { 8065 /* round applicable memory size up to nearest megabyte */ 8066 numentries = nr_kernel_pages; 8067 numentries -= arch_reserved_kernel_pages(); 8068 8069 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8070 if (PAGE_SHIFT < 20) 8071 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8072 8073 #if __BITS_PER_LONG > 32 8074 if (!high_limit) { 8075 unsigned long adapt; 8076 8077 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8078 adapt <<= ADAPT_SCALE_SHIFT) 8079 scale++; 8080 } 8081 #endif 8082 8083 /* limit to 1 bucket per 2^scale bytes of low memory */ 8084 if (scale > PAGE_SHIFT) 8085 numentries >>= (scale - PAGE_SHIFT); 8086 else 8087 numentries <<= (PAGE_SHIFT - scale); 8088 8089 /* Make sure we've got at least a 0-order allocation.. */ 8090 if (unlikely(flags & HASH_SMALL)) { 8091 /* Makes no sense without HASH_EARLY */ 8092 WARN_ON(!(flags & HASH_EARLY)); 8093 if (!(numentries >> *_hash_shift)) { 8094 numentries = 1UL << *_hash_shift; 8095 BUG_ON(!numentries); 8096 } 8097 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8098 numentries = PAGE_SIZE / bucketsize; 8099 } 8100 numentries = roundup_pow_of_two(numentries); 8101 8102 /* limit allocation size to 1/16 total memory by default */ 8103 if (max == 0) { 8104 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8105 do_div(max, bucketsize); 8106 } 8107 max = min(max, 0x80000000ULL); 8108 8109 if (numentries < low_limit) 8110 numentries = low_limit; 8111 if (numentries > max) 8112 numentries = max; 8113 8114 log2qty = ilog2(numentries); 8115 8116 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8117 do { 8118 virt = false; 8119 size = bucketsize << log2qty; 8120 if (flags & HASH_EARLY) { 8121 if (flags & HASH_ZERO) 8122 table = memblock_alloc(size, SMP_CACHE_BYTES); 8123 else 8124 table = memblock_alloc_raw(size, 8125 SMP_CACHE_BYTES); 8126 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8127 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8128 virt = true; 8129 } else { 8130 /* 8131 * If bucketsize is not a power-of-two, we may free 8132 * some pages at the end of hash table which 8133 * alloc_pages_exact() automatically does 8134 */ 8135 table = alloc_pages_exact(size, gfp_flags); 8136 kmemleak_alloc(table, size, 1, gfp_flags); 8137 } 8138 } while (!table && size > PAGE_SIZE && --log2qty); 8139 8140 if (!table) 8141 panic("Failed to allocate %s hash table\n", tablename); 8142 8143 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8144 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8145 virt ? "vmalloc" : "linear"); 8146 8147 if (_hash_shift) 8148 *_hash_shift = log2qty; 8149 if (_hash_mask) 8150 *_hash_mask = (1 << log2qty) - 1; 8151 8152 return table; 8153 } 8154 8155 /* 8156 * This function checks whether pageblock includes unmovable pages or not. 8157 * If @count is not zero, it is okay to include less @count unmovable pages 8158 * 8159 * PageLRU check without isolation or lru_lock could race so that 8160 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8161 * check without lock_page also may miss some movable non-lru pages at 8162 * race condition. So you can't expect this function should be exact. 8163 */ 8164 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8165 int migratetype, int flags) 8166 { 8167 unsigned long found; 8168 unsigned long iter = 0; 8169 unsigned long pfn = page_to_pfn(page); 8170 const char *reason = "unmovable page"; 8171 8172 /* 8173 * TODO we could make this much more efficient by not checking every 8174 * page in the range if we know all of them are in MOVABLE_ZONE and 8175 * that the movable zone guarantees that pages are migratable but 8176 * the later is not the case right now unfortunatelly. E.g. movablecore 8177 * can still lead to having bootmem allocations in zone_movable. 8178 */ 8179 8180 if (is_migrate_cma_page(page)) { 8181 /* 8182 * CMA allocations (alloc_contig_range) really need to mark 8183 * isolate CMA pageblocks even when they are not movable in fact 8184 * so consider them movable here. 8185 */ 8186 if (is_migrate_cma(migratetype)) 8187 return false; 8188 8189 reason = "CMA page"; 8190 goto unmovable; 8191 } 8192 8193 for (found = 0; iter < pageblock_nr_pages; iter++) { 8194 unsigned long check = pfn + iter; 8195 8196 if (!pfn_valid_within(check)) 8197 continue; 8198 8199 page = pfn_to_page(check); 8200 8201 if (PageReserved(page)) 8202 goto unmovable; 8203 8204 /* 8205 * If the zone is movable and we have ruled out all reserved 8206 * pages then it should be reasonably safe to assume the rest 8207 * is movable. 8208 */ 8209 if (zone_idx(zone) == ZONE_MOVABLE) 8210 continue; 8211 8212 /* 8213 * Hugepages are not in LRU lists, but they're movable. 8214 * We need not scan over tail pages because we don't 8215 * handle each tail page individually in migration. 8216 */ 8217 if (PageHuge(page)) { 8218 struct page *head = compound_head(page); 8219 unsigned int skip_pages; 8220 8221 if (!hugepage_migration_supported(page_hstate(head))) 8222 goto unmovable; 8223 8224 skip_pages = compound_nr(head) - (page - head); 8225 iter += skip_pages - 1; 8226 continue; 8227 } 8228 8229 /* 8230 * We can't use page_count without pin a page 8231 * because another CPU can free compound page. 8232 * This check already skips compound tails of THP 8233 * because their page->_refcount is zero at all time. 8234 */ 8235 if (!page_ref_count(page)) { 8236 if (PageBuddy(page)) 8237 iter += (1 << page_order(page)) - 1; 8238 continue; 8239 } 8240 8241 /* 8242 * The HWPoisoned page may be not in buddy system, and 8243 * page_count() is not 0. 8244 */ 8245 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8246 continue; 8247 8248 if (__PageMovable(page)) 8249 continue; 8250 8251 if (!PageLRU(page)) 8252 found++; 8253 /* 8254 * If there are RECLAIMABLE pages, we need to check 8255 * it. But now, memory offline itself doesn't call 8256 * shrink_node_slabs() and it still to be fixed. 8257 */ 8258 /* 8259 * If the page is not RAM, page_count()should be 0. 8260 * we don't need more check. This is an _used_ not-movable page. 8261 * 8262 * The problematic thing here is PG_reserved pages. PG_reserved 8263 * is set to both of a memory hole page and a _used_ kernel 8264 * page at boot. 8265 */ 8266 if (found > count) 8267 goto unmovable; 8268 } 8269 return false; 8270 unmovable: 8271 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8272 if (flags & REPORT_FAILURE) 8273 dump_page(pfn_to_page(pfn + iter), reason); 8274 return true; 8275 } 8276 8277 #ifdef CONFIG_CONTIG_ALLOC 8278 static unsigned long pfn_max_align_down(unsigned long pfn) 8279 { 8280 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8281 pageblock_nr_pages) - 1); 8282 } 8283 8284 static unsigned long pfn_max_align_up(unsigned long pfn) 8285 { 8286 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8287 pageblock_nr_pages)); 8288 } 8289 8290 /* [start, end) must belong to a single zone. */ 8291 static int __alloc_contig_migrate_range(struct compact_control *cc, 8292 unsigned long start, unsigned long end) 8293 { 8294 /* This function is based on compact_zone() from compaction.c. */ 8295 unsigned long nr_reclaimed; 8296 unsigned long pfn = start; 8297 unsigned int tries = 0; 8298 int ret = 0; 8299 8300 migrate_prep(); 8301 8302 while (pfn < end || !list_empty(&cc->migratepages)) { 8303 if (fatal_signal_pending(current)) { 8304 ret = -EINTR; 8305 break; 8306 } 8307 8308 if (list_empty(&cc->migratepages)) { 8309 cc->nr_migratepages = 0; 8310 pfn = isolate_migratepages_range(cc, pfn, end); 8311 if (!pfn) { 8312 ret = -EINTR; 8313 break; 8314 } 8315 tries = 0; 8316 } else if (++tries == 5) { 8317 ret = ret < 0 ? ret : -EBUSY; 8318 break; 8319 } 8320 8321 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8322 &cc->migratepages); 8323 cc->nr_migratepages -= nr_reclaimed; 8324 8325 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8326 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8327 } 8328 if (ret < 0) { 8329 putback_movable_pages(&cc->migratepages); 8330 return ret; 8331 } 8332 return 0; 8333 } 8334 8335 /** 8336 * alloc_contig_range() -- tries to allocate given range of pages 8337 * @start: start PFN to allocate 8338 * @end: one-past-the-last PFN to allocate 8339 * @migratetype: migratetype of the underlaying pageblocks (either 8340 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8341 * in range must have the same migratetype and it must 8342 * be either of the two. 8343 * @gfp_mask: GFP mask to use during compaction 8344 * 8345 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8346 * aligned. The PFN range must belong to a single zone. 8347 * 8348 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8349 * pageblocks in the range. Once isolated, the pageblocks should not 8350 * be modified by others. 8351 * 8352 * Return: zero on success or negative error code. On success all 8353 * pages which PFN is in [start, end) are allocated for the caller and 8354 * need to be freed with free_contig_range(). 8355 */ 8356 int alloc_contig_range(unsigned long start, unsigned long end, 8357 unsigned migratetype, gfp_t gfp_mask) 8358 { 8359 unsigned long outer_start, outer_end; 8360 unsigned int order; 8361 int ret = 0; 8362 8363 struct compact_control cc = { 8364 .nr_migratepages = 0, 8365 .order = -1, 8366 .zone = page_zone(pfn_to_page(start)), 8367 .mode = MIGRATE_SYNC, 8368 .ignore_skip_hint = true, 8369 .no_set_skip_hint = true, 8370 .gfp_mask = current_gfp_context(gfp_mask), 8371 }; 8372 INIT_LIST_HEAD(&cc.migratepages); 8373 8374 /* 8375 * What we do here is we mark all pageblocks in range as 8376 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8377 * have different sizes, and due to the way page allocator 8378 * work, we align the range to biggest of the two pages so 8379 * that page allocator won't try to merge buddies from 8380 * different pageblocks and change MIGRATE_ISOLATE to some 8381 * other migration type. 8382 * 8383 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8384 * migrate the pages from an unaligned range (ie. pages that 8385 * we are interested in). This will put all the pages in 8386 * range back to page allocator as MIGRATE_ISOLATE. 8387 * 8388 * When this is done, we take the pages in range from page 8389 * allocator removing them from the buddy system. This way 8390 * page allocator will never consider using them. 8391 * 8392 * This lets us mark the pageblocks back as 8393 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8394 * aligned range but not in the unaligned, original range are 8395 * put back to page allocator so that buddy can use them. 8396 */ 8397 8398 ret = start_isolate_page_range(pfn_max_align_down(start), 8399 pfn_max_align_up(end), migratetype, 0); 8400 if (ret < 0) 8401 return ret; 8402 8403 /* 8404 * In case of -EBUSY, we'd like to know which page causes problem. 8405 * So, just fall through. test_pages_isolated() has a tracepoint 8406 * which will report the busy page. 8407 * 8408 * It is possible that busy pages could become available before 8409 * the call to test_pages_isolated, and the range will actually be 8410 * allocated. So, if we fall through be sure to clear ret so that 8411 * -EBUSY is not accidentally used or returned to caller. 8412 */ 8413 ret = __alloc_contig_migrate_range(&cc, start, end); 8414 if (ret && ret != -EBUSY) 8415 goto done; 8416 ret =0; 8417 8418 /* 8419 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8420 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8421 * more, all pages in [start, end) are free in page allocator. 8422 * What we are going to do is to allocate all pages from 8423 * [start, end) (that is remove them from page allocator). 8424 * 8425 * The only problem is that pages at the beginning and at the 8426 * end of interesting range may be not aligned with pages that 8427 * page allocator holds, ie. they can be part of higher order 8428 * pages. Because of this, we reserve the bigger range and 8429 * once this is done free the pages we are not interested in. 8430 * 8431 * We don't have to hold zone->lock here because the pages are 8432 * isolated thus they won't get removed from buddy. 8433 */ 8434 8435 lru_add_drain_all(); 8436 8437 order = 0; 8438 outer_start = start; 8439 while (!PageBuddy(pfn_to_page(outer_start))) { 8440 if (++order >= MAX_ORDER) { 8441 outer_start = start; 8442 break; 8443 } 8444 outer_start &= ~0UL << order; 8445 } 8446 8447 if (outer_start != start) { 8448 order = page_order(pfn_to_page(outer_start)); 8449 8450 /* 8451 * outer_start page could be small order buddy page and 8452 * it doesn't include start page. Adjust outer_start 8453 * in this case to report failed page properly 8454 * on tracepoint in test_pages_isolated() 8455 */ 8456 if (outer_start + (1UL << order) <= start) 8457 outer_start = start; 8458 } 8459 8460 /* Make sure the range is really isolated. */ 8461 if (test_pages_isolated(outer_start, end, 0)) { 8462 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8463 __func__, outer_start, end); 8464 ret = -EBUSY; 8465 goto done; 8466 } 8467 8468 /* Grab isolated pages from freelists. */ 8469 outer_end = isolate_freepages_range(&cc, outer_start, end); 8470 if (!outer_end) { 8471 ret = -EBUSY; 8472 goto done; 8473 } 8474 8475 /* Free head and tail (if any) */ 8476 if (start != outer_start) 8477 free_contig_range(outer_start, start - outer_start); 8478 if (end != outer_end) 8479 free_contig_range(end, outer_end - end); 8480 8481 done: 8482 undo_isolate_page_range(pfn_max_align_down(start), 8483 pfn_max_align_up(end), migratetype); 8484 return ret; 8485 } 8486 8487 static int __alloc_contig_pages(unsigned long start_pfn, 8488 unsigned long nr_pages, gfp_t gfp_mask) 8489 { 8490 unsigned long end_pfn = start_pfn + nr_pages; 8491 8492 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8493 gfp_mask); 8494 } 8495 8496 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8497 unsigned long nr_pages) 8498 { 8499 unsigned long i, end_pfn = start_pfn + nr_pages; 8500 struct page *page; 8501 8502 for (i = start_pfn; i < end_pfn; i++) { 8503 page = pfn_to_online_page(i); 8504 if (!page) 8505 return false; 8506 8507 if (page_zone(page) != z) 8508 return false; 8509 8510 if (PageReserved(page)) 8511 return false; 8512 8513 if (page_count(page) > 0) 8514 return false; 8515 8516 if (PageHuge(page)) 8517 return false; 8518 } 8519 return true; 8520 } 8521 8522 static bool zone_spans_last_pfn(const struct zone *zone, 8523 unsigned long start_pfn, unsigned long nr_pages) 8524 { 8525 unsigned long last_pfn = start_pfn + nr_pages - 1; 8526 8527 return zone_spans_pfn(zone, last_pfn); 8528 } 8529 8530 /** 8531 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8532 * @nr_pages: Number of contiguous pages to allocate 8533 * @gfp_mask: GFP mask to limit search and used during compaction 8534 * @nid: Target node 8535 * @nodemask: Mask for other possible nodes 8536 * 8537 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8538 * on an applicable zonelist to find a contiguous pfn range which can then be 8539 * tried for allocation with alloc_contig_range(). This routine is intended 8540 * for allocation requests which can not be fulfilled with the buddy allocator. 8541 * 8542 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8543 * power of two then the alignment is guaranteed to be to the given nr_pages 8544 * (e.g. 1GB request would be aligned to 1GB). 8545 * 8546 * Allocated pages can be freed with free_contig_range() or by manually calling 8547 * __free_page() on each allocated page. 8548 * 8549 * Return: pointer to contiguous pages on success, or NULL if not successful. 8550 */ 8551 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8552 int nid, nodemask_t *nodemask) 8553 { 8554 unsigned long ret, pfn, flags; 8555 struct zonelist *zonelist; 8556 struct zone *zone; 8557 struct zoneref *z; 8558 8559 zonelist = node_zonelist(nid, gfp_mask); 8560 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8561 gfp_zone(gfp_mask), nodemask) { 8562 spin_lock_irqsave(&zone->lock, flags); 8563 8564 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8565 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8566 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8567 /* 8568 * We release the zone lock here because 8569 * alloc_contig_range() will also lock the zone 8570 * at some point. If there's an allocation 8571 * spinning on this lock, it may win the race 8572 * and cause alloc_contig_range() to fail... 8573 */ 8574 spin_unlock_irqrestore(&zone->lock, flags); 8575 ret = __alloc_contig_pages(pfn, nr_pages, 8576 gfp_mask); 8577 if (!ret) 8578 return pfn_to_page(pfn); 8579 spin_lock_irqsave(&zone->lock, flags); 8580 } 8581 pfn += nr_pages; 8582 } 8583 spin_unlock_irqrestore(&zone->lock, flags); 8584 } 8585 return NULL; 8586 } 8587 #endif /* CONFIG_CONTIG_ALLOC */ 8588 8589 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8590 { 8591 unsigned int count = 0; 8592 8593 for (; nr_pages--; pfn++) { 8594 struct page *page = pfn_to_page(pfn); 8595 8596 count += page_count(page) != 1; 8597 __free_page(page); 8598 } 8599 WARN(count != 0, "%d pages are still in use!\n", count); 8600 } 8601 8602 /* 8603 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8604 * page high values need to be recalulated. 8605 */ 8606 void __meminit zone_pcp_update(struct zone *zone) 8607 { 8608 mutex_lock(&pcp_batch_high_lock); 8609 __zone_pcp_update(zone); 8610 mutex_unlock(&pcp_batch_high_lock); 8611 } 8612 8613 void zone_pcp_reset(struct zone *zone) 8614 { 8615 unsigned long flags; 8616 int cpu; 8617 struct per_cpu_pageset *pset; 8618 8619 /* avoid races with drain_pages() */ 8620 local_irq_save(flags); 8621 if (zone->pageset != &boot_pageset) { 8622 for_each_online_cpu(cpu) { 8623 pset = per_cpu_ptr(zone->pageset, cpu); 8624 drain_zonestat(zone, pset); 8625 } 8626 free_percpu(zone->pageset); 8627 zone->pageset = &boot_pageset; 8628 } 8629 local_irq_restore(flags); 8630 } 8631 8632 #ifdef CONFIG_MEMORY_HOTREMOVE 8633 /* 8634 * All pages in the range must be in a single zone and isolated 8635 * before calling this. 8636 */ 8637 unsigned long 8638 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8639 { 8640 struct page *page; 8641 struct zone *zone; 8642 unsigned int order; 8643 unsigned long pfn; 8644 unsigned long flags; 8645 unsigned long offlined_pages = 0; 8646 8647 /* find the first valid pfn */ 8648 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8649 if (pfn_valid(pfn)) 8650 break; 8651 if (pfn == end_pfn) 8652 return offlined_pages; 8653 8654 offline_mem_sections(pfn, end_pfn); 8655 zone = page_zone(pfn_to_page(pfn)); 8656 spin_lock_irqsave(&zone->lock, flags); 8657 pfn = start_pfn; 8658 while (pfn < end_pfn) { 8659 if (!pfn_valid(pfn)) { 8660 pfn++; 8661 continue; 8662 } 8663 page = pfn_to_page(pfn); 8664 /* 8665 * The HWPoisoned page may be not in buddy system, and 8666 * page_count() is not 0. 8667 */ 8668 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8669 pfn++; 8670 offlined_pages++; 8671 continue; 8672 } 8673 8674 BUG_ON(page_count(page)); 8675 BUG_ON(!PageBuddy(page)); 8676 order = page_order(page); 8677 offlined_pages += 1 << order; 8678 #ifdef CONFIG_DEBUG_VM 8679 pr_info("remove from free list %lx %d %lx\n", 8680 pfn, 1 << order, end_pfn); 8681 #endif 8682 del_page_from_free_area(page, &zone->free_area[order]); 8683 pfn += (1 << order); 8684 } 8685 spin_unlock_irqrestore(&zone->lock, flags); 8686 8687 return offlined_pages; 8688 } 8689 #endif 8690 8691 bool is_free_buddy_page(struct page *page) 8692 { 8693 struct zone *zone = page_zone(page); 8694 unsigned long pfn = page_to_pfn(page); 8695 unsigned long flags; 8696 unsigned int order; 8697 8698 spin_lock_irqsave(&zone->lock, flags); 8699 for (order = 0; order < MAX_ORDER; order++) { 8700 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8701 8702 if (PageBuddy(page_head) && page_order(page_head) >= order) 8703 break; 8704 } 8705 spin_unlock_irqrestore(&zone->lock, flags); 8706 8707 return order < MAX_ORDER; 8708 } 8709 8710 #ifdef CONFIG_MEMORY_FAILURE 8711 /* 8712 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8713 * test is performed under the zone lock to prevent a race against page 8714 * allocation. 8715 */ 8716 bool set_hwpoison_free_buddy_page(struct page *page) 8717 { 8718 struct zone *zone = page_zone(page); 8719 unsigned long pfn = page_to_pfn(page); 8720 unsigned long flags; 8721 unsigned int order; 8722 bool hwpoisoned = false; 8723 8724 spin_lock_irqsave(&zone->lock, flags); 8725 for (order = 0; order < MAX_ORDER; order++) { 8726 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8727 8728 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8729 if (!TestSetPageHWPoison(page)) 8730 hwpoisoned = true; 8731 break; 8732 } 8733 } 8734 spin_unlock_irqrestore(&zone->lock, flags); 8735 8736 return hwpoisoned; 8737 } 8738 #endif 8739