1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* 116 * Don't poison memory with KASAN (only for the tag-based modes). 117 * During boot, all non-reserved memblock memory is exposed to page_alloc. 118 * Poisoning all that memory lengthens boot time, especially on systems with 119 * large amount of RAM. This flag is used to skip that poisoning. 120 * This is only done for the tag-based KASAN modes, as those are able to 121 * detect memory corruptions with the memory tags assigned by default. 122 * All memory allocated normally after boot gets poisoned as usual. 123 */ 124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 125 126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 127 static DEFINE_MUTEX(pcp_batch_high_lock); 128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 129 130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 131 /* 132 * On SMP, spin_trylock is sufficient protection. 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 134 */ 135 #define pcp_trylock_prepare(flags) do { } while (0) 136 #define pcp_trylock_finish(flag) do { } while (0) 137 #else 138 139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 140 #define pcp_trylock_prepare(flags) local_irq_save(flags) 141 #define pcp_trylock_finish(flags) local_irq_restore(flags) 142 #endif 143 144 /* 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 146 * a migration causing the wrong PCP to be locked and remote memory being 147 * potentially allocated, pin the task to the CPU for the lookup+lock. 148 * preempt_disable is used on !RT because it is faster than migrate_disable. 149 * migrate_disable is used on RT because otherwise RT spinlock usage is 150 * interfered with and a high priority task cannot preempt the allocator. 151 */ 152 #ifndef CONFIG_PREEMPT_RT 153 #define pcpu_task_pin() preempt_disable() 154 #define pcpu_task_unpin() preempt_enable() 155 #else 156 #define pcpu_task_pin() migrate_disable() 157 #define pcpu_task_unpin() migrate_enable() 158 #endif 159 160 /* 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 162 * Return value should be used with equivalent unlock helper. 163 */ 164 #define pcpu_spin_lock(type, member, ptr) \ 165 ({ \ 166 type *_ret; \ 167 pcpu_task_pin(); \ 168 _ret = this_cpu_ptr(ptr); \ 169 spin_lock(&_ret->member); \ 170 _ret; \ 171 }) 172 173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \ 174 ({ \ 175 type *_ret; \ 176 pcpu_task_pin(); \ 177 _ret = this_cpu_ptr(ptr); \ 178 spin_lock_irqsave(&_ret->member, flags); \ 179 _ret; \ 180 }) 181 182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \ 183 ({ \ 184 type *_ret; \ 185 pcpu_task_pin(); \ 186 _ret = this_cpu_ptr(ptr); \ 187 if (!spin_trylock_irqsave(&_ret->member, flags)) { \ 188 pcpu_task_unpin(); \ 189 _ret = NULL; \ 190 } \ 191 _ret; \ 192 }) 193 194 #define pcpu_spin_unlock(member, ptr) \ 195 ({ \ 196 spin_unlock(&ptr->member); \ 197 pcpu_task_unpin(); \ 198 }) 199 200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \ 201 ({ \ 202 spin_unlock_irqrestore(&ptr->member, flags); \ 203 pcpu_task_unpin(); \ 204 }) 205 206 /* struct per_cpu_pages specific helpers. */ 207 #define pcp_spin_lock(ptr) \ 208 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 209 210 #define pcp_spin_lock_irqsave(ptr, flags) \ 211 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags) 212 213 #define pcp_spin_trylock_irqsave(ptr, flags) \ 214 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags) 215 216 #define pcp_spin_unlock(ptr) \ 217 pcpu_spin_unlock(lock, ptr) 218 219 #define pcp_spin_unlock_irqrestore(ptr, flags) \ 220 pcpu_spin_unlock_irqrestore(lock, ptr, flags) 221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 222 DEFINE_PER_CPU(int, numa_node); 223 EXPORT_PER_CPU_SYMBOL(numa_node); 224 #endif 225 226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 227 228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 229 /* 230 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 231 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 232 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 233 * defined in <linux/topology.h>. 234 */ 235 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 236 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 237 #endif 238 239 static DEFINE_MUTEX(pcpu_drain_mutex); 240 241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 242 volatile unsigned long latent_entropy __latent_entropy; 243 EXPORT_SYMBOL(latent_entropy); 244 #endif 245 246 /* 247 * Array of node states. 248 */ 249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 250 [N_POSSIBLE] = NODE_MASK_ALL, 251 [N_ONLINE] = { { [0] = 1UL } }, 252 #ifndef CONFIG_NUMA 253 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 254 #ifdef CONFIG_HIGHMEM 255 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 256 #endif 257 [N_MEMORY] = { { [0] = 1UL } }, 258 [N_CPU] = { { [0] = 1UL } }, 259 #endif /* NUMA */ 260 }; 261 EXPORT_SYMBOL(node_states); 262 263 atomic_long_t _totalram_pages __read_mostly; 264 EXPORT_SYMBOL(_totalram_pages); 265 unsigned long totalreserve_pages __read_mostly; 266 unsigned long totalcma_pages __read_mostly; 267 268 int percpu_pagelist_high_fraction; 269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 271 EXPORT_SYMBOL(init_on_alloc); 272 273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 274 EXPORT_SYMBOL(init_on_free); 275 276 static bool _init_on_alloc_enabled_early __read_mostly 277 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 278 static int __init early_init_on_alloc(char *buf) 279 { 280 281 return kstrtobool(buf, &_init_on_alloc_enabled_early); 282 } 283 early_param("init_on_alloc", early_init_on_alloc); 284 285 static bool _init_on_free_enabled_early __read_mostly 286 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 287 static int __init early_init_on_free(char *buf) 288 { 289 return kstrtobool(buf, &_init_on_free_enabled_early); 290 } 291 early_param("init_on_free", early_init_on_free); 292 293 /* 294 * A cached value of the page's pageblock's migratetype, used when the page is 295 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 296 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 297 * Also the migratetype set in the page does not necessarily match the pcplist 298 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 299 * other index - this ensures that it will be put on the correct CMA freelist. 300 */ 301 static inline int get_pcppage_migratetype(struct page *page) 302 { 303 return page->index; 304 } 305 306 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 307 { 308 page->index = migratetype; 309 } 310 311 #ifdef CONFIG_PM_SLEEP 312 /* 313 * The following functions are used by the suspend/hibernate code to temporarily 314 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 315 * while devices are suspended. To avoid races with the suspend/hibernate code, 316 * they should always be called with system_transition_mutex held 317 * (gfp_allowed_mask also should only be modified with system_transition_mutex 318 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 319 * with that modification). 320 */ 321 322 static gfp_t saved_gfp_mask; 323 324 void pm_restore_gfp_mask(void) 325 { 326 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 327 if (saved_gfp_mask) { 328 gfp_allowed_mask = saved_gfp_mask; 329 saved_gfp_mask = 0; 330 } 331 } 332 333 void pm_restrict_gfp_mask(void) 334 { 335 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 336 WARN_ON(saved_gfp_mask); 337 saved_gfp_mask = gfp_allowed_mask; 338 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 339 } 340 341 bool pm_suspended_storage(void) 342 { 343 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 344 return false; 345 return true; 346 } 347 #endif /* CONFIG_PM_SLEEP */ 348 349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 350 unsigned int pageblock_order __read_mostly; 351 #endif 352 353 static void __free_pages_ok(struct page *page, unsigned int order, 354 fpi_t fpi_flags); 355 356 /* 357 * results with 256, 32 in the lowmem_reserve sysctl: 358 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 359 * 1G machine -> (16M dma, 784M normal, 224M high) 360 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 361 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 362 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 363 * 364 * TBD: should special case ZONE_DMA32 machines here - in those we normally 365 * don't need any ZONE_NORMAL reservation 366 */ 367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 368 #ifdef CONFIG_ZONE_DMA 369 [ZONE_DMA] = 256, 370 #endif 371 #ifdef CONFIG_ZONE_DMA32 372 [ZONE_DMA32] = 256, 373 #endif 374 [ZONE_NORMAL] = 32, 375 #ifdef CONFIG_HIGHMEM 376 [ZONE_HIGHMEM] = 0, 377 #endif 378 [ZONE_MOVABLE] = 0, 379 }; 380 381 static char * const zone_names[MAX_NR_ZONES] = { 382 #ifdef CONFIG_ZONE_DMA 383 "DMA", 384 #endif 385 #ifdef CONFIG_ZONE_DMA32 386 "DMA32", 387 #endif 388 "Normal", 389 #ifdef CONFIG_HIGHMEM 390 "HighMem", 391 #endif 392 "Movable", 393 #ifdef CONFIG_ZONE_DEVICE 394 "Device", 395 #endif 396 }; 397 398 const char * const migratetype_names[MIGRATE_TYPES] = { 399 "Unmovable", 400 "Movable", 401 "Reclaimable", 402 "HighAtomic", 403 #ifdef CONFIG_CMA 404 "CMA", 405 #endif 406 #ifdef CONFIG_MEMORY_ISOLATION 407 "Isolate", 408 #endif 409 }; 410 411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 412 [NULL_COMPOUND_DTOR] = NULL, 413 [COMPOUND_PAGE_DTOR] = free_compound_page, 414 #ifdef CONFIG_HUGETLB_PAGE 415 [HUGETLB_PAGE_DTOR] = free_huge_page, 416 #endif 417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 418 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 419 #endif 420 }; 421 422 int min_free_kbytes = 1024; 423 int user_min_free_kbytes = -1; 424 int watermark_boost_factor __read_mostly = 15000; 425 int watermark_scale_factor = 10; 426 427 static unsigned long nr_kernel_pages __initdata; 428 static unsigned long nr_all_pages __initdata; 429 static unsigned long dma_reserve __initdata; 430 431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 433 static unsigned long required_kernelcore __initdata; 434 static unsigned long required_kernelcore_percent __initdata; 435 static unsigned long required_movablecore __initdata; 436 static unsigned long required_movablecore_percent __initdata; 437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 438 bool mirrored_kernelcore __initdata_memblock; 439 440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 441 int movable_zone; 442 EXPORT_SYMBOL(movable_zone); 443 444 #if MAX_NUMNODES > 1 445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 446 unsigned int nr_online_nodes __read_mostly = 1; 447 EXPORT_SYMBOL(nr_node_ids); 448 EXPORT_SYMBOL(nr_online_nodes); 449 #endif 450 451 int page_group_by_mobility_disabled __read_mostly; 452 453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 454 /* 455 * During boot we initialize deferred pages on-demand, as needed, but once 456 * page_alloc_init_late() has finished, the deferred pages are all initialized, 457 * and we can permanently disable that path. 458 */ 459 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 460 461 static inline bool deferred_pages_enabled(void) 462 { 463 return static_branch_unlikely(&deferred_pages); 464 } 465 466 /* Returns true if the struct page for the pfn is uninitialised */ 467 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 468 { 469 int nid = early_pfn_to_nid(pfn); 470 471 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 472 return true; 473 474 return false; 475 } 476 477 /* 478 * Returns true when the remaining initialisation should be deferred until 479 * later in the boot cycle when it can be parallelised. 480 */ 481 static bool __meminit 482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 483 { 484 static unsigned long prev_end_pfn, nr_initialised; 485 486 if (early_page_ext_enabled()) 487 return false; 488 /* 489 * prev_end_pfn static that contains the end of previous zone 490 * No need to protect because called very early in boot before smp_init. 491 */ 492 if (prev_end_pfn != end_pfn) { 493 prev_end_pfn = end_pfn; 494 nr_initialised = 0; 495 } 496 497 /* Always populate low zones for address-constrained allocations */ 498 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 499 return false; 500 501 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 502 return true; 503 /* 504 * We start only with one section of pages, more pages are added as 505 * needed until the rest of deferred pages are initialized. 506 */ 507 nr_initialised++; 508 if ((nr_initialised > PAGES_PER_SECTION) && 509 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 510 NODE_DATA(nid)->first_deferred_pfn = pfn; 511 return true; 512 } 513 return false; 514 } 515 #else 516 static inline bool deferred_pages_enabled(void) 517 { 518 return false; 519 } 520 521 static inline bool early_page_uninitialised(unsigned long pfn) 522 { 523 return false; 524 } 525 526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 527 { 528 return false; 529 } 530 #endif 531 532 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 533 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 534 unsigned long pfn) 535 { 536 #ifdef CONFIG_SPARSEMEM 537 return section_to_usemap(__pfn_to_section(pfn)); 538 #else 539 return page_zone(page)->pageblock_flags; 540 #endif /* CONFIG_SPARSEMEM */ 541 } 542 543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 544 { 545 #ifdef CONFIG_SPARSEMEM 546 pfn &= (PAGES_PER_SECTION-1); 547 #else 548 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 549 #endif /* CONFIG_SPARSEMEM */ 550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 551 } 552 553 static __always_inline 554 unsigned long __get_pfnblock_flags_mask(const struct page *page, 555 unsigned long pfn, 556 unsigned long mask) 557 { 558 unsigned long *bitmap; 559 unsigned long bitidx, word_bitidx; 560 unsigned long word; 561 562 bitmap = get_pageblock_bitmap(page, pfn); 563 bitidx = pfn_to_bitidx(page, pfn); 564 word_bitidx = bitidx / BITS_PER_LONG; 565 bitidx &= (BITS_PER_LONG-1); 566 /* 567 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 568 * a consistent read of the memory array, so that results, even though 569 * racy, are not corrupted. 570 */ 571 word = READ_ONCE(bitmap[word_bitidx]); 572 return (word >> bitidx) & mask; 573 } 574 575 /** 576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 577 * @page: The page within the block of interest 578 * @pfn: The target page frame number 579 * @mask: mask of bits that the caller is interested in 580 * 581 * Return: pageblock_bits flags 582 */ 583 unsigned long get_pfnblock_flags_mask(const struct page *page, 584 unsigned long pfn, unsigned long mask) 585 { 586 return __get_pfnblock_flags_mask(page, pfn, mask); 587 } 588 589 static __always_inline int get_pfnblock_migratetype(const struct page *page, 590 unsigned long pfn) 591 { 592 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 593 } 594 595 /** 596 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 597 * @page: The page within the block of interest 598 * @flags: The flags to set 599 * @pfn: The target page frame number 600 * @mask: mask of bits that the caller is interested in 601 */ 602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 603 unsigned long pfn, 604 unsigned long mask) 605 { 606 unsigned long *bitmap; 607 unsigned long bitidx, word_bitidx; 608 unsigned long word; 609 610 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 611 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 612 613 bitmap = get_pageblock_bitmap(page, pfn); 614 bitidx = pfn_to_bitidx(page, pfn); 615 word_bitidx = bitidx / BITS_PER_LONG; 616 bitidx &= (BITS_PER_LONG-1); 617 618 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 619 620 mask <<= bitidx; 621 flags <<= bitidx; 622 623 word = READ_ONCE(bitmap[word_bitidx]); 624 do { 625 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 626 } 627 628 void set_pageblock_migratetype(struct page *page, int migratetype) 629 { 630 if (unlikely(page_group_by_mobility_disabled && 631 migratetype < MIGRATE_PCPTYPES)) 632 migratetype = MIGRATE_UNMOVABLE; 633 634 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 635 page_to_pfn(page), MIGRATETYPE_MASK); 636 } 637 638 #ifdef CONFIG_DEBUG_VM 639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 640 { 641 int ret = 0; 642 unsigned seq; 643 unsigned long pfn = page_to_pfn(page); 644 unsigned long sp, start_pfn; 645 646 do { 647 seq = zone_span_seqbegin(zone); 648 start_pfn = zone->zone_start_pfn; 649 sp = zone->spanned_pages; 650 if (!zone_spans_pfn(zone, pfn)) 651 ret = 1; 652 } while (zone_span_seqretry(zone, seq)); 653 654 if (ret) 655 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 656 pfn, zone_to_nid(zone), zone->name, 657 start_pfn, start_pfn + sp); 658 659 return ret; 660 } 661 662 static int page_is_consistent(struct zone *zone, struct page *page) 663 { 664 if (zone != page_zone(page)) 665 return 0; 666 667 return 1; 668 } 669 /* 670 * Temporary debugging check for pages not lying within a given zone. 671 */ 672 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 673 { 674 if (page_outside_zone_boundaries(zone, page)) 675 return 1; 676 if (!page_is_consistent(zone, page)) 677 return 1; 678 679 return 0; 680 } 681 #else 682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 683 { 684 return 0; 685 } 686 #endif 687 688 static void bad_page(struct page *page, const char *reason) 689 { 690 static unsigned long resume; 691 static unsigned long nr_shown; 692 static unsigned long nr_unshown; 693 694 /* 695 * Allow a burst of 60 reports, then keep quiet for that minute; 696 * or allow a steady drip of one report per second. 697 */ 698 if (nr_shown == 60) { 699 if (time_before(jiffies, resume)) { 700 nr_unshown++; 701 goto out; 702 } 703 if (nr_unshown) { 704 pr_alert( 705 "BUG: Bad page state: %lu messages suppressed\n", 706 nr_unshown); 707 nr_unshown = 0; 708 } 709 nr_shown = 0; 710 } 711 if (nr_shown++ == 0) 712 resume = jiffies + 60 * HZ; 713 714 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 715 current->comm, page_to_pfn(page)); 716 dump_page(page, reason); 717 718 print_modules(); 719 dump_stack(); 720 out: 721 /* Leave bad fields for debug, except PageBuddy could make trouble */ 722 page_mapcount_reset(page); /* remove PageBuddy */ 723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 724 } 725 726 static inline unsigned int order_to_pindex(int migratetype, int order) 727 { 728 int base = order; 729 730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 731 if (order > PAGE_ALLOC_COSTLY_ORDER) { 732 VM_BUG_ON(order != pageblock_order); 733 return NR_LOWORDER_PCP_LISTS; 734 } 735 #else 736 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 737 #endif 738 739 return (MIGRATE_PCPTYPES * base) + migratetype; 740 } 741 742 static inline int pindex_to_order(unsigned int pindex) 743 { 744 int order = pindex / MIGRATE_PCPTYPES; 745 746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 747 if (pindex == NR_LOWORDER_PCP_LISTS) 748 order = pageblock_order; 749 #else 750 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 751 #endif 752 753 return order; 754 } 755 756 static inline bool pcp_allowed_order(unsigned int order) 757 { 758 if (order <= PAGE_ALLOC_COSTLY_ORDER) 759 return true; 760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 761 if (order == pageblock_order) 762 return true; 763 #endif 764 return false; 765 } 766 767 static inline void free_the_page(struct page *page, unsigned int order) 768 { 769 if (pcp_allowed_order(order)) /* Via pcp? */ 770 free_unref_page(page, order); 771 else 772 __free_pages_ok(page, order, FPI_NONE); 773 } 774 775 /* 776 * Higher-order pages are called "compound pages". They are structured thusly: 777 * 778 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 779 * 780 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 781 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 782 * 783 * The first tail page's ->compound_dtor holds the offset in array of compound 784 * page destructors. See compound_page_dtors. 785 * 786 * The first tail page's ->compound_order holds the order of allocation. 787 * This usage means that zero-order pages may not be compound. 788 */ 789 790 void free_compound_page(struct page *page) 791 { 792 mem_cgroup_uncharge(page_folio(page)); 793 free_the_page(page, compound_order(page)); 794 } 795 796 static void prep_compound_head(struct page *page, unsigned int order) 797 { 798 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 799 set_compound_order(page, order); 800 atomic_set(compound_mapcount_ptr(page), -1); 801 atomic_set(subpages_mapcount_ptr(page), 0); 802 atomic_set(compound_pincount_ptr(page), 0); 803 } 804 805 static void prep_compound_tail(struct page *head, int tail_idx) 806 { 807 struct page *p = head + tail_idx; 808 809 p->mapping = TAIL_MAPPING; 810 set_compound_head(p, head); 811 set_page_private(p, 0); 812 } 813 814 void prep_compound_page(struct page *page, unsigned int order) 815 { 816 int i; 817 int nr_pages = 1 << order; 818 819 __SetPageHead(page); 820 for (i = 1; i < nr_pages; i++) 821 prep_compound_tail(page, i); 822 823 prep_compound_head(page, order); 824 } 825 826 void destroy_large_folio(struct folio *folio) 827 { 828 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; 829 830 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 831 compound_page_dtors[dtor](&folio->page); 832 } 833 834 #ifdef CONFIG_DEBUG_PAGEALLOC 835 unsigned int _debug_guardpage_minorder; 836 837 bool _debug_pagealloc_enabled_early __read_mostly 838 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 839 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 840 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 841 EXPORT_SYMBOL(_debug_pagealloc_enabled); 842 843 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 844 845 static int __init early_debug_pagealloc(char *buf) 846 { 847 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 848 } 849 early_param("debug_pagealloc", early_debug_pagealloc); 850 851 static int __init debug_guardpage_minorder_setup(char *buf) 852 { 853 unsigned long res; 854 855 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 856 pr_err("Bad debug_guardpage_minorder value\n"); 857 return 0; 858 } 859 _debug_guardpage_minorder = res; 860 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 861 return 0; 862 } 863 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 864 865 static inline bool set_page_guard(struct zone *zone, struct page *page, 866 unsigned int order, int migratetype) 867 { 868 if (!debug_guardpage_enabled()) 869 return false; 870 871 if (order >= debug_guardpage_minorder()) 872 return false; 873 874 __SetPageGuard(page); 875 INIT_LIST_HEAD(&page->buddy_list); 876 set_page_private(page, order); 877 /* Guard pages are not available for any usage */ 878 if (!is_migrate_isolate(migratetype)) 879 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 880 881 return true; 882 } 883 884 static inline void clear_page_guard(struct zone *zone, struct page *page, 885 unsigned int order, int migratetype) 886 { 887 if (!debug_guardpage_enabled()) 888 return; 889 890 __ClearPageGuard(page); 891 892 set_page_private(page, 0); 893 if (!is_migrate_isolate(migratetype)) 894 __mod_zone_freepage_state(zone, (1 << order), migratetype); 895 } 896 #else 897 static inline bool set_page_guard(struct zone *zone, struct page *page, 898 unsigned int order, int migratetype) { return false; } 899 static inline void clear_page_guard(struct zone *zone, struct page *page, 900 unsigned int order, int migratetype) {} 901 #endif 902 903 /* 904 * Enable static keys related to various memory debugging and hardening options. 905 * Some override others, and depend on early params that are evaluated in the 906 * order of appearance. So we need to first gather the full picture of what was 907 * enabled, and then make decisions. 908 */ 909 void __init init_mem_debugging_and_hardening(void) 910 { 911 bool page_poisoning_requested = false; 912 913 #ifdef CONFIG_PAGE_POISONING 914 /* 915 * Page poisoning is debug page alloc for some arches. If 916 * either of those options are enabled, enable poisoning. 917 */ 918 if (page_poisoning_enabled() || 919 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 920 debug_pagealloc_enabled())) { 921 static_branch_enable(&_page_poisoning_enabled); 922 page_poisoning_requested = true; 923 } 924 #endif 925 926 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 927 page_poisoning_requested) { 928 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 929 "will take precedence over init_on_alloc and init_on_free\n"); 930 _init_on_alloc_enabled_early = false; 931 _init_on_free_enabled_early = false; 932 } 933 934 if (_init_on_alloc_enabled_early) 935 static_branch_enable(&init_on_alloc); 936 else 937 static_branch_disable(&init_on_alloc); 938 939 if (_init_on_free_enabled_early) 940 static_branch_enable(&init_on_free); 941 else 942 static_branch_disable(&init_on_free); 943 944 if (IS_ENABLED(CONFIG_KMSAN) && 945 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 946 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 947 948 #ifdef CONFIG_DEBUG_PAGEALLOC 949 if (!debug_pagealloc_enabled()) 950 return; 951 952 static_branch_enable(&_debug_pagealloc_enabled); 953 954 if (!debug_guardpage_minorder()) 955 return; 956 957 static_branch_enable(&_debug_guardpage_enabled); 958 #endif 959 } 960 961 static inline void set_buddy_order(struct page *page, unsigned int order) 962 { 963 set_page_private(page, order); 964 __SetPageBuddy(page); 965 } 966 967 #ifdef CONFIG_COMPACTION 968 static inline struct capture_control *task_capc(struct zone *zone) 969 { 970 struct capture_control *capc = current->capture_control; 971 972 return unlikely(capc) && 973 !(current->flags & PF_KTHREAD) && 974 !capc->page && 975 capc->cc->zone == zone ? capc : NULL; 976 } 977 978 static inline bool 979 compaction_capture(struct capture_control *capc, struct page *page, 980 int order, int migratetype) 981 { 982 if (!capc || order != capc->cc->order) 983 return false; 984 985 /* Do not accidentally pollute CMA or isolated regions*/ 986 if (is_migrate_cma(migratetype) || 987 is_migrate_isolate(migratetype)) 988 return false; 989 990 /* 991 * Do not let lower order allocations pollute a movable pageblock. 992 * This might let an unmovable request use a reclaimable pageblock 993 * and vice-versa but no more than normal fallback logic which can 994 * have trouble finding a high-order free page. 995 */ 996 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 997 return false; 998 999 capc->page = page; 1000 return true; 1001 } 1002 1003 #else 1004 static inline struct capture_control *task_capc(struct zone *zone) 1005 { 1006 return NULL; 1007 } 1008 1009 static inline bool 1010 compaction_capture(struct capture_control *capc, struct page *page, 1011 int order, int migratetype) 1012 { 1013 return false; 1014 } 1015 #endif /* CONFIG_COMPACTION */ 1016 1017 /* Used for pages not on another list */ 1018 static inline void add_to_free_list(struct page *page, struct zone *zone, 1019 unsigned int order, int migratetype) 1020 { 1021 struct free_area *area = &zone->free_area[order]; 1022 1023 list_add(&page->buddy_list, &area->free_list[migratetype]); 1024 area->nr_free++; 1025 } 1026 1027 /* Used for pages not on another list */ 1028 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1029 unsigned int order, int migratetype) 1030 { 1031 struct free_area *area = &zone->free_area[order]; 1032 1033 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1034 area->nr_free++; 1035 } 1036 1037 /* 1038 * Used for pages which are on another list. Move the pages to the tail 1039 * of the list - so the moved pages won't immediately be considered for 1040 * allocation again (e.g., optimization for memory onlining). 1041 */ 1042 static inline void move_to_free_list(struct page *page, struct zone *zone, 1043 unsigned int order, int migratetype) 1044 { 1045 struct free_area *area = &zone->free_area[order]; 1046 1047 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1048 } 1049 1050 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1051 unsigned int order) 1052 { 1053 /* clear reported state and update reported page count */ 1054 if (page_reported(page)) 1055 __ClearPageReported(page); 1056 1057 list_del(&page->buddy_list); 1058 __ClearPageBuddy(page); 1059 set_page_private(page, 0); 1060 zone->free_area[order].nr_free--; 1061 } 1062 1063 /* 1064 * If this is not the largest possible page, check if the buddy 1065 * of the next-highest order is free. If it is, it's possible 1066 * that pages are being freed that will coalesce soon. In case, 1067 * that is happening, add the free page to the tail of the list 1068 * so it's less likely to be used soon and more likely to be merged 1069 * as a higher order page 1070 */ 1071 static inline bool 1072 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1073 struct page *page, unsigned int order) 1074 { 1075 unsigned long higher_page_pfn; 1076 struct page *higher_page; 1077 1078 if (order >= MAX_ORDER - 2) 1079 return false; 1080 1081 higher_page_pfn = buddy_pfn & pfn; 1082 higher_page = page + (higher_page_pfn - pfn); 1083 1084 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1085 NULL) != NULL; 1086 } 1087 1088 /* 1089 * Freeing function for a buddy system allocator. 1090 * 1091 * The concept of a buddy system is to maintain direct-mapped table 1092 * (containing bit values) for memory blocks of various "orders". 1093 * The bottom level table contains the map for the smallest allocatable 1094 * units of memory (here, pages), and each level above it describes 1095 * pairs of units from the levels below, hence, "buddies". 1096 * At a high level, all that happens here is marking the table entry 1097 * at the bottom level available, and propagating the changes upward 1098 * as necessary, plus some accounting needed to play nicely with other 1099 * parts of the VM system. 1100 * At each level, we keep a list of pages, which are heads of continuous 1101 * free pages of length of (1 << order) and marked with PageBuddy. 1102 * Page's order is recorded in page_private(page) field. 1103 * So when we are allocating or freeing one, we can derive the state of the 1104 * other. That is, if we allocate a small block, and both were 1105 * free, the remainder of the region must be split into blocks. 1106 * If a block is freed, and its buddy is also free, then this 1107 * triggers coalescing into a block of larger size. 1108 * 1109 * -- nyc 1110 */ 1111 1112 static inline void __free_one_page(struct page *page, 1113 unsigned long pfn, 1114 struct zone *zone, unsigned int order, 1115 int migratetype, fpi_t fpi_flags) 1116 { 1117 struct capture_control *capc = task_capc(zone); 1118 unsigned long buddy_pfn = 0; 1119 unsigned long combined_pfn; 1120 struct page *buddy; 1121 bool to_tail; 1122 1123 VM_BUG_ON(!zone_is_initialized(zone)); 1124 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1125 1126 VM_BUG_ON(migratetype == -1); 1127 if (likely(!is_migrate_isolate(migratetype))) 1128 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1129 1130 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1131 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1132 1133 while (order < MAX_ORDER - 1) { 1134 if (compaction_capture(capc, page, order, migratetype)) { 1135 __mod_zone_freepage_state(zone, -(1 << order), 1136 migratetype); 1137 return; 1138 } 1139 1140 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1141 if (!buddy) 1142 goto done_merging; 1143 1144 if (unlikely(order >= pageblock_order)) { 1145 /* 1146 * We want to prevent merge between freepages on pageblock 1147 * without fallbacks and normal pageblock. Without this, 1148 * pageblock isolation could cause incorrect freepage or CMA 1149 * accounting or HIGHATOMIC accounting. 1150 */ 1151 int buddy_mt = get_pageblock_migratetype(buddy); 1152 1153 if (migratetype != buddy_mt 1154 && (!migratetype_is_mergeable(migratetype) || 1155 !migratetype_is_mergeable(buddy_mt))) 1156 goto done_merging; 1157 } 1158 1159 /* 1160 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1161 * merge with it and move up one order. 1162 */ 1163 if (page_is_guard(buddy)) 1164 clear_page_guard(zone, buddy, order, migratetype); 1165 else 1166 del_page_from_free_list(buddy, zone, order); 1167 combined_pfn = buddy_pfn & pfn; 1168 page = page + (combined_pfn - pfn); 1169 pfn = combined_pfn; 1170 order++; 1171 } 1172 1173 done_merging: 1174 set_buddy_order(page, order); 1175 1176 if (fpi_flags & FPI_TO_TAIL) 1177 to_tail = true; 1178 else if (is_shuffle_order(order)) 1179 to_tail = shuffle_pick_tail(); 1180 else 1181 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1182 1183 if (to_tail) 1184 add_to_free_list_tail(page, zone, order, migratetype); 1185 else 1186 add_to_free_list(page, zone, order, migratetype); 1187 1188 /* Notify page reporting subsystem of freed page */ 1189 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1190 page_reporting_notify_free(order); 1191 } 1192 1193 /** 1194 * split_free_page() -- split a free page at split_pfn_offset 1195 * @free_page: the original free page 1196 * @order: the order of the page 1197 * @split_pfn_offset: split offset within the page 1198 * 1199 * Return -ENOENT if the free page is changed, otherwise 0 1200 * 1201 * It is used when the free page crosses two pageblocks with different migratetypes 1202 * at split_pfn_offset within the page. The split free page will be put into 1203 * separate migratetype lists afterwards. Otherwise, the function achieves 1204 * nothing. 1205 */ 1206 int split_free_page(struct page *free_page, 1207 unsigned int order, unsigned long split_pfn_offset) 1208 { 1209 struct zone *zone = page_zone(free_page); 1210 unsigned long free_page_pfn = page_to_pfn(free_page); 1211 unsigned long pfn; 1212 unsigned long flags; 1213 int free_page_order; 1214 int mt; 1215 int ret = 0; 1216 1217 if (split_pfn_offset == 0) 1218 return ret; 1219 1220 spin_lock_irqsave(&zone->lock, flags); 1221 1222 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1223 ret = -ENOENT; 1224 goto out; 1225 } 1226 1227 mt = get_pageblock_migratetype(free_page); 1228 if (likely(!is_migrate_isolate(mt))) 1229 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1230 1231 del_page_from_free_list(free_page, zone, order); 1232 for (pfn = free_page_pfn; 1233 pfn < free_page_pfn + (1UL << order);) { 1234 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1235 1236 free_page_order = min_t(unsigned int, 1237 pfn ? __ffs(pfn) : order, 1238 __fls(split_pfn_offset)); 1239 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1240 mt, FPI_NONE); 1241 pfn += 1UL << free_page_order; 1242 split_pfn_offset -= (1UL << free_page_order); 1243 /* we have done the first part, now switch to second part */ 1244 if (split_pfn_offset == 0) 1245 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1246 } 1247 out: 1248 spin_unlock_irqrestore(&zone->lock, flags); 1249 return ret; 1250 } 1251 /* 1252 * A bad page could be due to a number of fields. Instead of multiple branches, 1253 * try and check multiple fields with one check. The caller must do a detailed 1254 * check if necessary. 1255 */ 1256 static inline bool page_expected_state(struct page *page, 1257 unsigned long check_flags) 1258 { 1259 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1260 return false; 1261 1262 if (unlikely((unsigned long)page->mapping | 1263 page_ref_count(page) | 1264 #ifdef CONFIG_MEMCG 1265 page->memcg_data | 1266 #endif 1267 (page->flags & check_flags))) 1268 return false; 1269 1270 return true; 1271 } 1272 1273 static const char *page_bad_reason(struct page *page, unsigned long flags) 1274 { 1275 const char *bad_reason = NULL; 1276 1277 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1278 bad_reason = "nonzero mapcount"; 1279 if (unlikely(page->mapping != NULL)) 1280 bad_reason = "non-NULL mapping"; 1281 if (unlikely(page_ref_count(page) != 0)) 1282 bad_reason = "nonzero _refcount"; 1283 if (unlikely(page->flags & flags)) { 1284 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1285 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1286 else 1287 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1288 } 1289 #ifdef CONFIG_MEMCG 1290 if (unlikely(page->memcg_data)) 1291 bad_reason = "page still charged to cgroup"; 1292 #endif 1293 return bad_reason; 1294 } 1295 1296 static void free_page_is_bad_report(struct page *page) 1297 { 1298 bad_page(page, 1299 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1300 } 1301 1302 static inline bool free_page_is_bad(struct page *page) 1303 { 1304 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1305 return false; 1306 1307 /* Something has gone sideways, find it */ 1308 free_page_is_bad_report(page); 1309 return true; 1310 } 1311 1312 static int free_tail_pages_check(struct page *head_page, struct page *page) 1313 { 1314 int ret = 1; 1315 1316 /* 1317 * We rely page->lru.next never has bit 0 set, unless the page 1318 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1319 */ 1320 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1321 1322 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1323 ret = 0; 1324 goto out; 1325 } 1326 switch (page - head_page) { 1327 case 1: 1328 /* the first tail page: these may be in place of ->mapping */ 1329 if (unlikely(head_compound_mapcount(head_page))) { 1330 bad_page(page, "nonzero compound_mapcount"); 1331 goto out; 1332 } 1333 if (unlikely(atomic_read(subpages_mapcount_ptr(head_page)))) { 1334 bad_page(page, "nonzero subpages_mapcount"); 1335 goto out; 1336 } 1337 if (unlikely(head_compound_pincount(head_page))) { 1338 bad_page(page, "nonzero compound_pincount"); 1339 goto out; 1340 } 1341 break; 1342 case 2: 1343 /* 1344 * the second tail page: ->mapping is 1345 * deferred_list.next -- ignore value. 1346 */ 1347 break; 1348 default: 1349 if (page->mapping != TAIL_MAPPING) { 1350 bad_page(page, "corrupted mapping in tail page"); 1351 goto out; 1352 } 1353 break; 1354 } 1355 if (unlikely(!PageTail(page))) { 1356 bad_page(page, "PageTail not set"); 1357 goto out; 1358 } 1359 if (unlikely(compound_head(page) != head_page)) { 1360 bad_page(page, "compound_head not consistent"); 1361 goto out; 1362 } 1363 ret = 0; 1364 out: 1365 page->mapping = NULL; 1366 clear_compound_head(page); 1367 return ret; 1368 } 1369 1370 /* 1371 * Skip KASAN memory poisoning when either: 1372 * 1373 * 1. Deferred memory initialization has not yet completed, 1374 * see the explanation below. 1375 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1376 * see the comment next to it. 1377 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1378 * see the comment next to it. 1379 * 1380 * Poisoning pages during deferred memory init will greatly lengthen the 1381 * process and cause problem in large memory systems as the deferred pages 1382 * initialization is done with interrupt disabled. 1383 * 1384 * Assuming that there will be no reference to those newly initialized 1385 * pages before they are ever allocated, this should have no effect on 1386 * KASAN memory tracking as the poison will be properly inserted at page 1387 * allocation time. The only corner case is when pages are allocated by 1388 * on-demand allocation and then freed again before the deferred pages 1389 * initialization is done, but this is not likely to happen. 1390 */ 1391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1392 { 1393 return deferred_pages_enabled() || 1394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1395 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1396 PageSkipKASanPoison(page); 1397 } 1398 1399 static void kernel_init_pages(struct page *page, int numpages) 1400 { 1401 int i; 1402 1403 /* s390's use of memset() could override KASAN redzones. */ 1404 kasan_disable_current(); 1405 for (i = 0; i < numpages; i++) 1406 clear_highpage_kasan_tagged(page + i); 1407 kasan_enable_current(); 1408 } 1409 1410 static __always_inline bool free_pages_prepare(struct page *page, 1411 unsigned int order, bool check_free, fpi_t fpi_flags) 1412 { 1413 int bad = 0; 1414 bool init = want_init_on_free(); 1415 1416 VM_BUG_ON_PAGE(PageTail(page), page); 1417 1418 trace_mm_page_free(page, order); 1419 kmsan_free_page(page, order); 1420 1421 if (unlikely(PageHWPoison(page)) && !order) { 1422 /* 1423 * Do not let hwpoison pages hit pcplists/buddy 1424 * Untie memcg state and reset page's owner 1425 */ 1426 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1427 __memcg_kmem_uncharge_page(page, order); 1428 reset_page_owner(page, order); 1429 page_table_check_free(page, order); 1430 return false; 1431 } 1432 1433 /* 1434 * Check tail pages before head page information is cleared to 1435 * avoid checking PageCompound for order-0 pages. 1436 */ 1437 if (unlikely(order)) { 1438 bool compound = PageCompound(page); 1439 int i; 1440 1441 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1442 1443 if (compound) 1444 ClearPageHasHWPoisoned(page); 1445 for (i = 1; i < (1 << order); i++) { 1446 if (compound) 1447 bad += free_tail_pages_check(page, page + i); 1448 if (unlikely(free_page_is_bad(page + i))) { 1449 bad++; 1450 continue; 1451 } 1452 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1453 } 1454 } 1455 if (PageMappingFlags(page)) 1456 page->mapping = NULL; 1457 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1458 __memcg_kmem_uncharge_page(page, order); 1459 if (check_free && free_page_is_bad(page)) 1460 bad++; 1461 if (bad) 1462 return false; 1463 1464 page_cpupid_reset_last(page); 1465 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1466 reset_page_owner(page, order); 1467 page_table_check_free(page, order); 1468 1469 if (!PageHighMem(page)) { 1470 debug_check_no_locks_freed(page_address(page), 1471 PAGE_SIZE << order); 1472 debug_check_no_obj_freed(page_address(page), 1473 PAGE_SIZE << order); 1474 } 1475 1476 kernel_poison_pages(page, 1 << order); 1477 1478 /* 1479 * As memory initialization might be integrated into KASAN, 1480 * KASAN poisoning and memory initialization code must be 1481 * kept together to avoid discrepancies in behavior. 1482 * 1483 * With hardware tag-based KASAN, memory tags must be set before the 1484 * page becomes unavailable via debug_pagealloc or arch_free_page. 1485 */ 1486 if (!should_skip_kasan_poison(page, fpi_flags)) { 1487 kasan_poison_pages(page, order, init); 1488 1489 /* Memory is already initialized if KASAN did it internally. */ 1490 if (kasan_has_integrated_init()) 1491 init = false; 1492 } 1493 if (init) 1494 kernel_init_pages(page, 1 << order); 1495 1496 /* 1497 * arch_free_page() can make the page's contents inaccessible. s390 1498 * does this. So nothing which can access the page's contents should 1499 * happen after this. 1500 */ 1501 arch_free_page(page, order); 1502 1503 debug_pagealloc_unmap_pages(page, 1 << order); 1504 1505 return true; 1506 } 1507 1508 #ifdef CONFIG_DEBUG_VM 1509 /* 1510 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1511 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1512 * moved from pcp lists to free lists. 1513 */ 1514 static bool free_pcp_prepare(struct page *page, unsigned int order) 1515 { 1516 return free_pages_prepare(page, order, true, FPI_NONE); 1517 } 1518 1519 /* return true if this page has an inappropriate state */ 1520 static bool bulkfree_pcp_prepare(struct page *page) 1521 { 1522 if (debug_pagealloc_enabled_static()) 1523 return free_page_is_bad(page); 1524 else 1525 return false; 1526 } 1527 #else 1528 /* 1529 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1530 * moving from pcp lists to free list in order to reduce overhead. With 1531 * debug_pagealloc enabled, they are checked also immediately when being freed 1532 * to the pcp lists. 1533 */ 1534 static bool free_pcp_prepare(struct page *page, unsigned int order) 1535 { 1536 if (debug_pagealloc_enabled_static()) 1537 return free_pages_prepare(page, order, true, FPI_NONE); 1538 else 1539 return free_pages_prepare(page, order, false, FPI_NONE); 1540 } 1541 1542 static bool bulkfree_pcp_prepare(struct page *page) 1543 { 1544 return free_page_is_bad(page); 1545 } 1546 #endif /* CONFIG_DEBUG_VM */ 1547 1548 /* 1549 * Frees a number of pages from the PCP lists 1550 * Assumes all pages on list are in same zone. 1551 * count is the number of pages to free. 1552 */ 1553 static void free_pcppages_bulk(struct zone *zone, int count, 1554 struct per_cpu_pages *pcp, 1555 int pindex) 1556 { 1557 int min_pindex = 0; 1558 int max_pindex = NR_PCP_LISTS - 1; 1559 unsigned int order; 1560 bool isolated_pageblocks; 1561 struct page *page; 1562 1563 /* 1564 * Ensure proper count is passed which otherwise would stuck in the 1565 * below while (list_empty(list)) loop. 1566 */ 1567 count = min(pcp->count, count); 1568 1569 /* Ensure requested pindex is drained first. */ 1570 pindex = pindex - 1; 1571 1572 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 1573 spin_lock(&zone->lock); 1574 isolated_pageblocks = has_isolate_pageblock(zone); 1575 1576 while (count > 0) { 1577 struct list_head *list; 1578 int nr_pages; 1579 1580 /* Remove pages from lists in a round-robin fashion. */ 1581 do { 1582 if (++pindex > max_pindex) 1583 pindex = min_pindex; 1584 list = &pcp->lists[pindex]; 1585 if (!list_empty(list)) 1586 break; 1587 1588 if (pindex == max_pindex) 1589 max_pindex--; 1590 if (pindex == min_pindex) 1591 min_pindex++; 1592 } while (1); 1593 1594 order = pindex_to_order(pindex); 1595 nr_pages = 1 << order; 1596 do { 1597 int mt; 1598 1599 page = list_last_entry(list, struct page, pcp_list); 1600 mt = get_pcppage_migratetype(page); 1601 1602 /* must delete to avoid corrupting pcp list */ 1603 list_del(&page->pcp_list); 1604 count -= nr_pages; 1605 pcp->count -= nr_pages; 1606 1607 if (bulkfree_pcp_prepare(page)) 1608 continue; 1609 1610 /* MIGRATE_ISOLATE page should not go to pcplists */ 1611 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1612 /* Pageblock could have been isolated meanwhile */ 1613 if (unlikely(isolated_pageblocks)) 1614 mt = get_pageblock_migratetype(page); 1615 1616 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1617 trace_mm_page_pcpu_drain(page, order, mt); 1618 } while (count > 0 && !list_empty(list)); 1619 } 1620 1621 spin_unlock(&zone->lock); 1622 } 1623 1624 static void free_one_page(struct zone *zone, 1625 struct page *page, unsigned long pfn, 1626 unsigned int order, 1627 int migratetype, fpi_t fpi_flags) 1628 { 1629 unsigned long flags; 1630 1631 spin_lock_irqsave(&zone->lock, flags); 1632 if (unlikely(has_isolate_pageblock(zone) || 1633 is_migrate_isolate(migratetype))) { 1634 migratetype = get_pfnblock_migratetype(page, pfn); 1635 } 1636 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1637 spin_unlock_irqrestore(&zone->lock, flags); 1638 } 1639 1640 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1641 unsigned long zone, int nid) 1642 { 1643 mm_zero_struct_page(page); 1644 set_page_links(page, zone, nid, pfn); 1645 init_page_count(page); 1646 page_mapcount_reset(page); 1647 page_cpupid_reset_last(page); 1648 page_kasan_tag_reset(page); 1649 1650 INIT_LIST_HEAD(&page->lru); 1651 #ifdef WANT_PAGE_VIRTUAL 1652 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1653 if (!is_highmem_idx(zone)) 1654 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1655 #endif 1656 } 1657 1658 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1659 static void __meminit init_reserved_page(unsigned long pfn) 1660 { 1661 pg_data_t *pgdat; 1662 int nid, zid; 1663 1664 if (!early_page_uninitialised(pfn)) 1665 return; 1666 1667 nid = early_pfn_to_nid(pfn); 1668 pgdat = NODE_DATA(nid); 1669 1670 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1671 struct zone *zone = &pgdat->node_zones[zid]; 1672 1673 if (zone_spans_pfn(zone, pfn)) 1674 break; 1675 } 1676 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1677 } 1678 #else 1679 static inline void init_reserved_page(unsigned long pfn) 1680 { 1681 } 1682 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1683 1684 /* 1685 * Initialised pages do not have PageReserved set. This function is 1686 * called for each range allocated by the bootmem allocator and 1687 * marks the pages PageReserved. The remaining valid pages are later 1688 * sent to the buddy page allocator. 1689 */ 1690 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1691 { 1692 unsigned long start_pfn = PFN_DOWN(start); 1693 unsigned long end_pfn = PFN_UP(end); 1694 1695 for (; start_pfn < end_pfn; start_pfn++) { 1696 if (pfn_valid(start_pfn)) { 1697 struct page *page = pfn_to_page(start_pfn); 1698 1699 init_reserved_page(start_pfn); 1700 1701 /* Avoid false-positive PageTail() */ 1702 INIT_LIST_HEAD(&page->lru); 1703 1704 /* 1705 * no need for atomic set_bit because the struct 1706 * page is not visible yet so nobody should 1707 * access it yet. 1708 */ 1709 __SetPageReserved(page); 1710 } 1711 } 1712 } 1713 1714 static void __free_pages_ok(struct page *page, unsigned int order, 1715 fpi_t fpi_flags) 1716 { 1717 unsigned long flags; 1718 int migratetype; 1719 unsigned long pfn = page_to_pfn(page); 1720 struct zone *zone = page_zone(page); 1721 1722 if (!free_pages_prepare(page, order, true, fpi_flags)) 1723 return; 1724 1725 migratetype = get_pfnblock_migratetype(page, pfn); 1726 1727 spin_lock_irqsave(&zone->lock, flags); 1728 if (unlikely(has_isolate_pageblock(zone) || 1729 is_migrate_isolate(migratetype))) { 1730 migratetype = get_pfnblock_migratetype(page, pfn); 1731 } 1732 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1733 spin_unlock_irqrestore(&zone->lock, flags); 1734 1735 __count_vm_events(PGFREE, 1 << order); 1736 } 1737 1738 void __free_pages_core(struct page *page, unsigned int order) 1739 { 1740 unsigned int nr_pages = 1 << order; 1741 struct page *p = page; 1742 unsigned int loop; 1743 1744 /* 1745 * When initializing the memmap, __init_single_page() sets the refcount 1746 * of all pages to 1 ("allocated"/"not free"). We have to set the 1747 * refcount of all involved pages to 0. 1748 */ 1749 prefetchw(p); 1750 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1751 prefetchw(p + 1); 1752 __ClearPageReserved(p); 1753 set_page_count(p, 0); 1754 } 1755 __ClearPageReserved(p); 1756 set_page_count(p, 0); 1757 1758 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1759 1760 /* 1761 * Bypass PCP and place fresh pages right to the tail, primarily 1762 * relevant for memory onlining. 1763 */ 1764 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1765 } 1766 1767 #ifdef CONFIG_NUMA 1768 1769 /* 1770 * During memory init memblocks map pfns to nids. The search is expensive and 1771 * this caches recent lookups. The implementation of __early_pfn_to_nid 1772 * treats start/end as pfns. 1773 */ 1774 struct mminit_pfnnid_cache { 1775 unsigned long last_start; 1776 unsigned long last_end; 1777 int last_nid; 1778 }; 1779 1780 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1781 1782 /* 1783 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1784 */ 1785 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1786 struct mminit_pfnnid_cache *state) 1787 { 1788 unsigned long start_pfn, end_pfn; 1789 int nid; 1790 1791 if (state->last_start <= pfn && pfn < state->last_end) 1792 return state->last_nid; 1793 1794 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1795 if (nid != NUMA_NO_NODE) { 1796 state->last_start = start_pfn; 1797 state->last_end = end_pfn; 1798 state->last_nid = nid; 1799 } 1800 1801 return nid; 1802 } 1803 1804 int __meminit early_pfn_to_nid(unsigned long pfn) 1805 { 1806 static DEFINE_SPINLOCK(early_pfn_lock); 1807 int nid; 1808 1809 spin_lock(&early_pfn_lock); 1810 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1811 if (nid < 0) 1812 nid = first_online_node; 1813 spin_unlock(&early_pfn_lock); 1814 1815 return nid; 1816 } 1817 #endif /* CONFIG_NUMA */ 1818 1819 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1820 unsigned int order) 1821 { 1822 if (early_page_uninitialised(pfn)) 1823 return; 1824 if (!kmsan_memblock_free_pages(page, order)) { 1825 /* KMSAN will take care of these pages. */ 1826 return; 1827 } 1828 __free_pages_core(page, order); 1829 } 1830 1831 /* 1832 * Check that the whole (or subset of) a pageblock given by the interval of 1833 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1834 * with the migration of free compaction scanner. 1835 * 1836 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1837 * 1838 * It's possible on some configurations to have a setup like node0 node1 node0 1839 * i.e. it's possible that all pages within a zones range of pages do not 1840 * belong to a single zone. We assume that a border between node0 and node1 1841 * can occur within a single pageblock, but not a node0 node1 node0 1842 * interleaving within a single pageblock. It is therefore sufficient to check 1843 * the first and last page of a pageblock and avoid checking each individual 1844 * page in a pageblock. 1845 */ 1846 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1847 unsigned long end_pfn, struct zone *zone) 1848 { 1849 struct page *start_page; 1850 struct page *end_page; 1851 1852 /* end_pfn is one past the range we are checking */ 1853 end_pfn--; 1854 1855 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1856 return NULL; 1857 1858 start_page = pfn_to_online_page(start_pfn); 1859 if (!start_page) 1860 return NULL; 1861 1862 if (page_zone(start_page) != zone) 1863 return NULL; 1864 1865 end_page = pfn_to_page(end_pfn); 1866 1867 /* This gives a shorter code than deriving page_zone(end_page) */ 1868 if (page_zone_id(start_page) != page_zone_id(end_page)) 1869 return NULL; 1870 1871 return start_page; 1872 } 1873 1874 void set_zone_contiguous(struct zone *zone) 1875 { 1876 unsigned long block_start_pfn = zone->zone_start_pfn; 1877 unsigned long block_end_pfn; 1878 1879 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1880 for (; block_start_pfn < zone_end_pfn(zone); 1881 block_start_pfn = block_end_pfn, 1882 block_end_pfn += pageblock_nr_pages) { 1883 1884 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1885 1886 if (!__pageblock_pfn_to_page(block_start_pfn, 1887 block_end_pfn, zone)) 1888 return; 1889 cond_resched(); 1890 } 1891 1892 /* We confirm that there is no hole */ 1893 zone->contiguous = true; 1894 } 1895 1896 void clear_zone_contiguous(struct zone *zone) 1897 { 1898 zone->contiguous = false; 1899 } 1900 1901 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1902 static void __init deferred_free_range(unsigned long pfn, 1903 unsigned long nr_pages) 1904 { 1905 struct page *page; 1906 unsigned long i; 1907 1908 if (!nr_pages) 1909 return; 1910 1911 page = pfn_to_page(pfn); 1912 1913 /* Free a large naturally-aligned chunk if possible */ 1914 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1915 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1916 __free_pages_core(page, pageblock_order); 1917 return; 1918 } 1919 1920 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1921 if (pageblock_aligned(pfn)) 1922 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1923 __free_pages_core(page, 0); 1924 } 1925 } 1926 1927 /* Completion tracking for deferred_init_memmap() threads */ 1928 static atomic_t pgdat_init_n_undone __initdata; 1929 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1930 1931 static inline void __init pgdat_init_report_one_done(void) 1932 { 1933 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1934 complete(&pgdat_init_all_done_comp); 1935 } 1936 1937 /* 1938 * Returns true if page needs to be initialized or freed to buddy allocator. 1939 * 1940 * We check if a current large page is valid by only checking the validity 1941 * of the head pfn. 1942 */ 1943 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1944 { 1945 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1946 return false; 1947 return true; 1948 } 1949 1950 /* 1951 * Free pages to buddy allocator. Try to free aligned pages in 1952 * pageblock_nr_pages sizes. 1953 */ 1954 static void __init deferred_free_pages(unsigned long pfn, 1955 unsigned long end_pfn) 1956 { 1957 unsigned long nr_free = 0; 1958 1959 for (; pfn < end_pfn; pfn++) { 1960 if (!deferred_pfn_valid(pfn)) { 1961 deferred_free_range(pfn - nr_free, nr_free); 1962 nr_free = 0; 1963 } else if (pageblock_aligned(pfn)) { 1964 deferred_free_range(pfn - nr_free, nr_free); 1965 nr_free = 1; 1966 } else { 1967 nr_free++; 1968 } 1969 } 1970 /* Free the last block of pages to allocator */ 1971 deferred_free_range(pfn - nr_free, nr_free); 1972 } 1973 1974 /* 1975 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1976 * by performing it only once every pageblock_nr_pages. 1977 * Return number of pages initialized. 1978 */ 1979 static unsigned long __init deferred_init_pages(struct zone *zone, 1980 unsigned long pfn, 1981 unsigned long end_pfn) 1982 { 1983 int nid = zone_to_nid(zone); 1984 unsigned long nr_pages = 0; 1985 int zid = zone_idx(zone); 1986 struct page *page = NULL; 1987 1988 for (; pfn < end_pfn; pfn++) { 1989 if (!deferred_pfn_valid(pfn)) { 1990 page = NULL; 1991 continue; 1992 } else if (!page || pageblock_aligned(pfn)) { 1993 page = pfn_to_page(pfn); 1994 } else { 1995 page++; 1996 } 1997 __init_single_page(page, pfn, zid, nid); 1998 nr_pages++; 1999 } 2000 return (nr_pages); 2001 } 2002 2003 /* 2004 * This function is meant to pre-load the iterator for the zone init. 2005 * Specifically it walks through the ranges until we are caught up to the 2006 * first_init_pfn value and exits there. If we never encounter the value we 2007 * return false indicating there are no valid ranges left. 2008 */ 2009 static bool __init 2010 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2011 unsigned long *spfn, unsigned long *epfn, 2012 unsigned long first_init_pfn) 2013 { 2014 u64 j; 2015 2016 /* 2017 * Start out by walking through the ranges in this zone that have 2018 * already been initialized. We don't need to do anything with them 2019 * so we just need to flush them out of the system. 2020 */ 2021 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2022 if (*epfn <= first_init_pfn) 2023 continue; 2024 if (*spfn < first_init_pfn) 2025 *spfn = first_init_pfn; 2026 *i = j; 2027 return true; 2028 } 2029 2030 return false; 2031 } 2032 2033 /* 2034 * Initialize and free pages. We do it in two loops: first we initialize 2035 * struct page, then free to buddy allocator, because while we are 2036 * freeing pages we can access pages that are ahead (computing buddy 2037 * page in __free_one_page()). 2038 * 2039 * In order to try and keep some memory in the cache we have the loop 2040 * broken along max page order boundaries. This way we will not cause 2041 * any issues with the buddy page computation. 2042 */ 2043 static unsigned long __init 2044 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2045 unsigned long *end_pfn) 2046 { 2047 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2048 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2049 unsigned long nr_pages = 0; 2050 u64 j = *i; 2051 2052 /* First we loop through and initialize the page values */ 2053 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2054 unsigned long t; 2055 2056 if (mo_pfn <= *start_pfn) 2057 break; 2058 2059 t = min(mo_pfn, *end_pfn); 2060 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2061 2062 if (mo_pfn < *end_pfn) { 2063 *start_pfn = mo_pfn; 2064 break; 2065 } 2066 } 2067 2068 /* Reset values and now loop through freeing pages as needed */ 2069 swap(j, *i); 2070 2071 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2072 unsigned long t; 2073 2074 if (mo_pfn <= spfn) 2075 break; 2076 2077 t = min(mo_pfn, epfn); 2078 deferred_free_pages(spfn, t); 2079 2080 if (mo_pfn <= epfn) 2081 break; 2082 } 2083 2084 return nr_pages; 2085 } 2086 2087 static void __init 2088 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2089 void *arg) 2090 { 2091 unsigned long spfn, epfn; 2092 struct zone *zone = arg; 2093 u64 i; 2094 2095 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2096 2097 /* 2098 * Initialize and free pages in MAX_ORDER sized increments so that we 2099 * can avoid introducing any issues with the buddy allocator. 2100 */ 2101 while (spfn < end_pfn) { 2102 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2103 cond_resched(); 2104 } 2105 } 2106 2107 /* An arch may override for more concurrency. */ 2108 __weak int __init 2109 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2110 { 2111 return 1; 2112 } 2113 2114 /* Initialise remaining memory on a node */ 2115 static int __init deferred_init_memmap(void *data) 2116 { 2117 pg_data_t *pgdat = data; 2118 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2119 unsigned long spfn = 0, epfn = 0; 2120 unsigned long first_init_pfn, flags; 2121 unsigned long start = jiffies; 2122 struct zone *zone; 2123 int zid, max_threads; 2124 u64 i; 2125 2126 /* Bind memory initialisation thread to a local node if possible */ 2127 if (!cpumask_empty(cpumask)) 2128 set_cpus_allowed_ptr(current, cpumask); 2129 2130 pgdat_resize_lock(pgdat, &flags); 2131 first_init_pfn = pgdat->first_deferred_pfn; 2132 if (first_init_pfn == ULONG_MAX) { 2133 pgdat_resize_unlock(pgdat, &flags); 2134 pgdat_init_report_one_done(); 2135 return 0; 2136 } 2137 2138 /* Sanity check boundaries */ 2139 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2140 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2141 pgdat->first_deferred_pfn = ULONG_MAX; 2142 2143 /* 2144 * Once we unlock here, the zone cannot be grown anymore, thus if an 2145 * interrupt thread must allocate this early in boot, zone must be 2146 * pre-grown prior to start of deferred page initialization. 2147 */ 2148 pgdat_resize_unlock(pgdat, &flags); 2149 2150 /* Only the highest zone is deferred so find it */ 2151 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2152 zone = pgdat->node_zones + zid; 2153 if (first_init_pfn < zone_end_pfn(zone)) 2154 break; 2155 } 2156 2157 /* If the zone is empty somebody else may have cleared out the zone */ 2158 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2159 first_init_pfn)) 2160 goto zone_empty; 2161 2162 max_threads = deferred_page_init_max_threads(cpumask); 2163 2164 while (spfn < epfn) { 2165 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2166 struct padata_mt_job job = { 2167 .thread_fn = deferred_init_memmap_chunk, 2168 .fn_arg = zone, 2169 .start = spfn, 2170 .size = epfn_align - spfn, 2171 .align = PAGES_PER_SECTION, 2172 .min_chunk = PAGES_PER_SECTION, 2173 .max_threads = max_threads, 2174 }; 2175 2176 padata_do_multithreaded(&job); 2177 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2178 epfn_align); 2179 } 2180 zone_empty: 2181 /* Sanity check that the next zone really is unpopulated */ 2182 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2183 2184 pr_info("node %d deferred pages initialised in %ums\n", 2185 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2186 2187 pgdat_init_report_one_done(); 2188 return 0; 2189 } 2190 2191 /* 2192 * If this zone has deferred pages, try to grow it by initializing enough 2193 * deferred pages to satisfy the allocation specified by order, rounded up to 2194 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2195 * of SECTION_SIZE bytes by initializing struct pages in increments of 2196 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2197 * 2198 * Return true when zone was grown, otherwise return false. We return true even 2199 * when we grow less than requested, to let the caller decide if there are 2200 * enough pages to satisfy the allocation. 2201 * 2202 * Note: We use noinline because this function is needed only during boot, and 2203 * it is called from a __ref function _deferred_grow_zone. This way we are 2204 * making sure that it is not inlined into permanent text section. 2205 */ 2206 static noinline bool __init 2207 deferred_grow_zone(struct zone *zone, unsigned int order) 2208 { 2209 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2210 pg_data_t *pgdat = zone->zone_pgdat; 2211 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2212 unsigned long spfn, epfn, flags; 2213 unsigned long nr_pages = 0; 2214 u64 i; 2215 2216 /* Only the last zone may have deferred pages */ 2217 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2218 return false; 2219 2220 pgdat_resize_lock(pgdat, &flags); 2221 2222 /* 2223 * If someone grew this zone while we were waiting for spinlock, return 2224 * true, as there might be enough pages already. 2225 */ 2226 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2227 pgdat_resize_unlock(pgdat, &flags); 2228 return true; 2229 } 2230 2231 /* If the zone is empty somebody else may have cleared out the zone */ 2232 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2233 first_deferred_pfn)) { 2234 pgdat->first_deferred_pfn = ULONG_MAX; 2235 pgdat_resize_unlock(pgdat, &flags); 2236 /* Retry only once. */ 2237 return first_deferred_pfn != ULONG_MAX; 2238 } 2239 2240 /* 2241 * Initialize and free pages in MAX_ORDER sized increments so 2242 * that we can avoid introducing any issues with the buddy 2243 * allocator. 2244 */ 2245 while (spfn < epfn) { 2246 /* update our first deferred PFN for this section */ 2247 first_deferred_pfn = spfn; 2248 2249 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2250 touch_nmi_watchdog(); 2251 2252 /* We should only stop along section boundaries */ 2253 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2254 continue; 2255 2256 /* If our quota has been met we can stop here */ 2257 if (nr_pages >= nr_pages_needed) 2258 break; 2259 } 2260 2261 pgdat->first_deferred_pfn = spfn; 2262 pgdat_resize_unlock(pgdat, &flags); 2263 2264 return nr_pages > 0; 2265 } 2266 2267 /* 2268 * deferred_grow_zone() is __init, but it is called from 2269 * get_page_from_freelist() during early boot until deferred_pages permanently 2270 * disables this call. This is why we have refdata wrapper to avoid warning, 2271 * and to ensure that the function body gets unloaded. 2272 */ 2273 static bool __ref 2274 _deferred_grow_zone(struct zone *zone, unsigned int order) 2275 { 2276 return deferred_grow_zone(zone, order); 2277 } 2278 2279 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2280 2281 void __init page_alloc_init_late(void) 2282 { 2283 struct zone *zone; 2284 int nid; 2285 2286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2287 2288 /* There will be num_node_state(N_MEMORY) threads */ 2289 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2290 for_each_node_state(nid, N_MEMORY) { 2291 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2292 } 2293 2294 /* Block until all are initialised */ 2295 wait_for_completion(&pgdat_init_all_done_comp); 2296 2297 /* 2298 * We initialized the rest of the deferred pages. Permanently disable 2299 * on-demand struct page initialization. 2300 */ 2301 static_branch_disable(&deferred_pages); 2302 2303 /* Reinit limits that are based on free pages after the kernel is up */ 2304 files_maxfiles_init(); 2305 #endif 2306 2307 buffer_init(); 2308 2309 /* Discard memblock private memory */ 2310 memblock_discard(); 2311 2312 for_each_node_state(nid, N_MEMORY) 2313 shuffle_free_memory(NODE_DATA(nid)); 2314 2315 for_each_populated_zone(zone) 2316 set_zone_contiguous(zone); 2317 } 2318 2319 #ifdef CONFIG_CMA 2320 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2321 void __init init_cma_reserved_pageblock(struct page *page) 2322 { 2323 unsigned i = pageblock_nr_pages; 2324 struct page *p = page; 2325 2326 do { 2327 __ClearPageReserved(p); 2328 set_page_count(p, 0); 2329 } while (++p, --i); 2330 2331 set_pageblock_migratetype(page, MIGRATE_CMA); 2332 set_page_refcounted(page); 2333 __free_pages(page, pageblock_order); 2334 2335 adjust_managed_page_count(page, pageblock_nr_pages); 2336 page_zone(page)->cma_pages += pageblock_nr_pages; 2337 } 2338 #endif 2339 2340 /* 2341 * The order of subdivision here is critical for the IO subsystem. 2342 * Please do not alter this order without good reasons and regression 2343 * testing. Specifically, as large blocks of memory are subdivided, 2344 * the order in which smaller blocks are delivered depends on the order 2345 * they're subdivided in this function. This is the primary factor 2346 * influencing the order in which pages are delivered to the IO 2347 * subsystem according to empirical testing, and this is also justified 2348 * by considering the behavior of a buddy system containing a single 2349 * large block of memory acted on by a series of small allocations. 2350 * This behavior is a critical factor in sglist merging's success. 2351 * 2352 * -- nyc 2353 */ 2354 static inline void expand(struct zone *zone, struct page *page, 2355 int low, int high, int migratetype) 2356 { 2357 unsigned long size = 1 << high; 2358 2359 while (high > low) { 2360 high--; 2361 size >>= 1; 2362 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2363 2364 /* 2365 * Mark as guard pages (or page), that will allow to 2366 * merge back to allocator when buddy will be freed. 2367 * Corresponding page table entries will not be touched, 2368 * pages will stay not present in virtual address space 2369 */ 2370 if (set_page_guard(zone, &page[size], high, migratetype)) 2371 continue; 2372 2373 add_to_free_list(&page[size], zone, high, migratetype); 2374 set_buddy_order(&page[size], high); 2375 } 2376 } 2377 2378 static void check_new_page_bad(struct page *page) 2379 { 2380 if (unlikely(page->flags & __PG_HWPOISON)) { 2381 /* Don't complain about hwpoisoned pages */ 2382 page_mapcount_reset(page); /* remove PageBuddy */ 2383 return; 2384 } 2385 2386 bad_page(page, 2387 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2388 } 2389 2390 /* 2391 * This page is about to be returned from the page allocator 2392 */ 2393 static inline int check_new_page(struct page *page) 2394 { 2395 if (likely(page_expected_state(page, 2396 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2397 return 0; 2398 2399 check_new_page_bad(page); 2400 return 1; 2401 } 2402 2403 static bool check_new_pages(struct page *page, unsigned int order) 2404 { 2405 int i; 2406 for (i = 0; i < (1 << order); i++) { 2407 struct page *p = page + i; 2408 2409 if (unlikely(check_new_page(p))) 2410 return true; 2411 } 2412 2413 return false; 2414 } 2415 2416 #ifdef CONFIG_DEBUG_VM 2417 /* 2418 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2419 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2420 * also checked when pcp lists are refilled from the free lists. 2421 */ 2422 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2423 { 2424 if (debug_pagealloc_enabled_static()) 2425 return check_new_pages(page, order); 2426 else 2427 return false; 2428 } 2429 2430 static inline bool check_new_pcp(struct page *page, unsigned int order) 2431 { 2432 return check_new_pages(page, order); 2433 } 2434 #else 2435 /* 2436 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2437 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2438 * enabled, they are also checked when being allocated from the pcp lists. 2439 */ 2440 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2441 { 2442 return check_new_pages(page, order); 2443 } 2444 static inline bool check_new_pcp(struct page *page, unsigned int order) 2445 { 2446 if (debug_pagealloc_enabled_static()) 2447 return check_new_pages(page, order); 2448 else 2449 return false; 2450 } 2451 #endif /* CONFIG_DEBUG_VM */ 2452 2453 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2454 { 2455 /* Don't skip if a software KASAN mode is enabled. */ 2456 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2457 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2458 return false; 2459 2460 /* Skip, if hardware tag-based KASAN is not enabled. */ 2461 if (!kasan_hw_tags_enabled()) 2462 return true; 2463 2464 /* 2465 * With hardware tag-based KASAN enabled, skip if this has been 2466 * requested via __GFP_SKIP_KASAN_UNPOISON. 2467 */ 2468 return flags & __GFP_SKIP_KASAN_UNPOISON; 2469 } 2470 2471 static inline bool should_skip_init(gfp_t flags) 2472 { 2473 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2474 if (!kasan_hw_tags_enabled()) 2475 return false; 2476 2477 /* For hardware tag-based KASAN, skip if requested. */ 2478 return (flags & __GFP_SKIP_ZERO); 2479 } 2480 2481 inline void post_alloc_hook(struct page *page, unsigned int order, 2482 gfp_t gfp_flags) 2483 { 2484 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2485 !should_skip_init(gfp_flags); 2486 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2487 int i; 2488 2489 set_page_private(page, 0); 2490 set_page_refcounted(page); 2491 2492 arch_alloc_page(page, order); 2493 debug_pagealloc_map_pages(page, 1 << order); 2494 2495 /* 2496 * Page unpoisoning must happen before memory initialization. 2497 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2498 * allocations and the page unpoisoning code will complain. 2499 */ 2500 kernel_unpoison_pages(page, 1 << order); 2501 2502 /* 2503 * As memory initialization might be integrated into KASAN, 2504 * KASAN unpoisoning and memory initializion code must be 2505 * kept together to avoid discrepancies in behavior. 2506 */ 2507 2508 /* 2509 * If memory tags should be zeroed (which happens only when memory 2510 * should be initialized as well). 2511 */ 2512 if (init_tags) { 2513 /* Initialize both memory and tags. */ 2514 for (i = 0; i != 1 << order; ++i) 2515 tag_clear_highpage(page + i); 2516 2517 /* Note that memory is already initialized by the loop above. */ 2518 init = false; 2519 } 2520 if (!should_skip_kasan_unpoison(gfp_flags)) { 2521 /* Unpoison shadow memory or set memory tags. */ 2522 kasan_unpoison_pages(page, order, init); 2523 2524 /* Note that memory is already initialized by KASAN. */ 2525 if (kasan_has_integrated_init()) 2526 init = false; 2527 } else { 2528 /* Ensure page_address() dereferencing does not fault. */ 2529 for (i = 0; i != 1 << order; ++i) 2530 page_kasan_tag_reset(page + i); 2531 } 2532 /* If memory is still not initialized, do it now. */ 2533 if (init) 2534 kernel_init_pages(page, 1 << order); 2535 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2536 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2537 SetPageSkipKASanPoison(page); 2538 2539 set_page_owner(page, order, gfp_flags); 2540 page_table_check_alloc(page, order); 2541 } 2542 2543 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2544 unsigned int alloc_flags) 2545 { 2546 post_alloc_hook(page, order, gfp_flags); 2547 2548 if (order && (gfp_flags & __GFP_COMP)) 2549 prep_compound_page(page, order); 2550 2551 /* 2552 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2553 * allocate the page. The expectation is that the caller is taking 2554 * steps that will free more memory. The caller should avoid the page 2555 * being used for !PFMEMALLOC purposes. 2556 */ 2557 if (alloc_flags & ALLOC_NO_WATERMARKS) 2558 set_page_pfmemalloc(page); 2559 else 2560 clear_page_pfmemalloc(page); 2561 } 2562 2563 /* 2564 * Go through the free lists for the given migratetype and remove 2565 * the smallest available page from the freelists 2566 */ 2567 static __always_inline 2568 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2569 int migratetype) 2570 { 2571 unsigned int current_order; 2572 struct free_area *area; 2573 struct page *page; 2574 2575 /* Find a page of the appropriate size in the preferred list */ 2576 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2577 area = &(zone->free_area[current_order]); 2578 page = get_page_from_free_area(area, migratetype); 2579 if (!page) 2580 continue; 2581 del_page_from_free_list(page, zone, current_order); 2582 expand(zone, page, order, current_order, migratetype); 2583 set_pcppage_migratetype(page, migratetype); 2584 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2585 pcp_allowed_order(order) && 2586 migratetype < MIGRATE_PCPTYPES); 2587 return page; 2588 } 2589 2590 return NULL; 2591 } 2592 2593 2594 /* 2595 * This array describes the order lists are fallen back to when 2596 * the free lists for the desirable migrate type are depleted 2597 * 2598 * The other migratetypes do not have fallbacks. 2599 */ 2600 static int fallbacks[MIGRATE_TYPES][3] = { 2601 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2602 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2603 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2604 }; 2605 2606 #ifdef CONFIG_CMA 2607 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2608 unsigned int order) 2609 { 2610 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2611 } 2612 #else 2613 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2614 unsigned int order) { return NULL; } 2615 #endif 2616 2617 /* 2618 * Move the free pages in a range to the freelist tail of the requested type. 2619 * Note that start_page and end_pages are not aligned on a pageblock 2620 * boundary. If alignment is required, use move_freepages_block() 2621 */ 2622 static int move_freepages(struct zone *zone, 2623 unsigned long start_pfn, unsigned long end_pfn, 2624 int migratetype, int *num_movable) 2625 { 2626 struct page *page; 2627 unsigned long pfn; 2628 unsigned int order; 2629 int pages_moved = 0; 2630 2631 for (pfn = start_pfn; pfn <= end_pfn;) { 2632 page = pfn_to_page(pfn); 2633 if (!PageBuddy(page)) { 2634 /* 2635 * We assume that pages that could be isolated for 2636 * migration are movable. But we don't actually try 2637 * isolating, as that would be expensive. 2638 */ 2639 if (num_movable && 2640 (PageLRU(page) || __PageMovable(page))) 2641 (*num_movable)++; 2642 pfn++; 2643 continue; 2644 } 2645 2646 /* Make sure we are not inadvertently changing nodes */ 2647 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2648 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2649 2650 order = buddy_order(page); 2651 move_to_free_list(page, zone, order, migratetype); 2652 pfn += 1 << order; 2653 pages_moved += 1 << order; 2654 } 2655 2656 return pages_moved; 2657 } 2658 2659 int move_freepages_block(struct zone *zone, struct page *page, 2660 int migratetype, int *num_movable) 2661 { 2662 unsigned long start_pfn, end_pfn, pfn; 2663 2664 if (num_movable) 2665 *num_movable = 0; 2666 2667 pfn = page_to_pfn(page); 2668 start_pfn = pageblock_start_pfn(pfn); 2669 end_pfn = pageblock_end_pfn(pfn) - 1; 2670 2671 /* Do not cross zone boundaries */ 2672 if (!zone_spans_pfn(zone, start_pfn)) 2673 start_pfn = pfn; 2674 if (!zone_spans_pfn(zone, end_pfn)) 2675 return 0; 2676 2677 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2678 num_movable); 2679 } 2680 2681 static void change_pageblock_range(struct page *pageblock_page, 2682 int start_order, int migratetype) 2683 { 2684 int nr_pageblocks = 1 << (start_order - pageblock_order); 2685 2686 while (nr_pageblocks--) { 2687 set_pageblock_migratetype(pageblock_page, migratetype); 2688 pageblock_page += pageblock_nr_pages; 2689 } 2690 } 2691 2692 /* 2693 * When we are falling back to another migratetype during allocation, try to 2694 * steal extra free pages from the same pageblocks to satisfy further 2695 * allocations, instead of polluting multiple pageblocks. 2696 * 2697 * If we are stealing a relatively large buddy page, it is likely there will 2698 * be more free pages in the pageblock, so try to steal them all. For 2699 * reclaimable and unmovable allocations, we steal regardless of page size, 2700 * as fragmentation caused by those allocations polluting movable pageblocks 2701 * is worse than movable allocations stealing from unmovable and reclaimable 2702 * pageblocks. 2703 */ 2704 static bool can_steal_fallback(unsigned int order, int start_mt) 2705 { 2706 /* 2707 * Leaving this order check is intended, although there is 2708 * relaxed order check in next check. The reason is that 2709 * we can actually steal whole pageblock if this condition met, 2710 * but, below check doesn't guarantee it and that is just heuristic 2711 * so could be changed anytime. 2712 */ 2713 if (order >= pageblock_order) 2714 return true; 2715 2716 if (order >= pageblock_order / 2 || 2717 start_mt == MIGRATE_RECLAIMABLE || 2718 start_mt == MIGRATE_UNMOVABLE || 2719 page_group_by_mobility_disabled) 2720 return true; 2721 2722 return false; 2723 } 2724 2725 static inline bool boost_watermark(struct zone *zone) 2726 { 2727 unsigned long max_boost; 2728 2729 if (!watermark_boost_factor) 2730 return false; 2731 /* 2732 * Don't bother in zones that are unlikely to produce results. 2733 * On small machines, including kdump capture kernels running 2734 * in a small area, boosting the watermark can cause an out of 2735 * memory situation immediately. 2736 */ 2737 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2738 return false; 2739 2740 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2741 watermark_boost_factor, 10000); 2742 2743 /* 2744 * high watermark may be uninitialised if fragmentation occurs 2745 * very early in boot so do not boost. We do not fall 2746 * through and boost by pageblock_nr_pages as failing 2747 * allocations that early means that reclaim is not going 2748 * to help and it may even be impossible to reclaim the 2749 * boosted watermark resulting in a hang. 2750 */ 2751 if (!max_boost) 2752 return false; 2753 2754 max_boost = max(pageblock_nr_pages, max_boost); 2755 2756 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2757 max_boost); 2758 2759 return true; 2760 } 2761 2762 /* 2763 * This function implements actual steal behaviour. If order is large enough, 2764 * we can steal whole pageblock. If not, we first move freepages in this 2765 * pageblock to our migratetype and determine how many already-allocated pages 2766 * are there in the pageblock with a compatible migratetype. If at least half 2767 * of pages are free or compatible, we can change migratetype of the pageblock 2768 * itself, so pages freed in the future will be put on the correct free list. 2769 */ 2770 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2771 unsigned int alloc_flags, int start_type, bool whole_block) 2772 { 2773 unsigned int current_order = buddy_order(page); 2774 int free_pages, movable_pages, alike_pages; 2775 int old_block_type; 2776 2777 old_block_type = get_pageblock_migratetype(page); 2778 2779 /* 2780 * This can happen due to races and we want to prevent broken 2781 * highatomic accounting. 2782 */ 2783 if (is_migrate_highatomic(old_block_type)) 2784 goto single_page; 2785 2786 /* Take ownership for orders >= pageblock_order */ 2787 if (current_order >= pageblock_order) { 2788 change_pageblock_range(page, current_order, start_type); 2789 goto single_page; 2790 } 2791 2792 /* 2793 * Boost watermarks to increase reclaim pressure to reduce the 2794 * likelihood of future fallbacks. Wake kswapd now as the node 2795 * may be balanced overall and kswapd will not wake naturally. 2796 */ 2797 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2798 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2799 2800 /* We are not allowed to try stealing from the whole block */ 2801 if (!whole_block) 2802 goto single_page; 2803 2804 free_pages = move_freepages_block(zone, page, start_type, 2805 &movable_pages); 2806 /* 2807 * Determine how many pages are compatible with our allocation. 2808 * For movable allocation, it's the number of movable pages which 2809 * we just obtained. For other types it's a bit more tricky. 2810 */ 2811 if (start_type == MIGRATE_MOVABLE) { 2812 alike_pages = movable_pages; 2813 } else { 2814 /* 2815 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2816 * to MOVABLE pageblock, consider all non-movable pages as 2817 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2818 * vice versa, be conservative since we can't distinguish the 2819 * exact migratetype of non-movable pages. 2820 */ 2821 if (old_block_type == MIGRATE_MOVABLE) 2822 alike_pages = pageblock_nr_pages 2823 - (free_pages + movable_pages); 2824 else 2825 alike_pages = 0; 2826 } 2827 2828 /* moving whole block can fail due to zone boundary conditions */ 2829 if (!free_pages) 2830 goto single_page; 2831 2832 /* 2833 * If a sufficient number of pages in the block are either free or of 2834 * comparable migratability as our allocation, claim the whole block. 2835 */ 2836 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2837 page_group_by_mobility_disabled) 2838 set_pageblock_migratetype(page, start_type); 2839 2840 return; 2841 2842 single_page: 2843 move_to_free_list(page, zone, current_order, start_type); 2844 } 2845 2846 /* 2847 * Check whether there is a suitable fallback freepage with requested order. 2848 * If only_stealable is true, this function returns fallback_mt only if 2849 * we can steal other freepages all together. This would help to reduce 2850 * fragmentation due to mixed migratetype pages in one pageblock. 2851 */ 2852 int find_suitable_fallback(struct free_area *area, unsigned int order, 2853 int migratetype, bool only_stealable, bool *can_steal) 2854 { 2855 int i; 2856 int fallback_mt; 2857 2858 if (area->nr_free == 0) 2859 return -1; 2860 2861 *can_steal = false; 2862 for (i = 0;; i++) { 2863 fallback_mt = fallbacks[migratetype][i]; 2864 if (fallback_mt == MIGRATE_TYPES) 2865 break; 2866 2867 if (free_area_empty(area, fallback_mt)) 2868 continue; 2869 2870 if (can_steal_fallback(order, migratetype)) 2871 *can_steal = true; 2872 2873 if (!only_stealable) 2874 return fallback_mt; 2875 2876 if (*can_steal) 2877 return fallback_mt; 2878 } 2879 2880 return -1; 2881 } 2882 2883 /* 2884 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2885 * there are no empty page blocks that contain a page with a suitable order 2886 */ 2887 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2888 unsigned int alloc_order) 2889 { 2890 int mt; 2891 unsigned long max_managed, flags; 2892 2893 /* 2894 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2895 * Check is race-prone but harmless. 2896 */ 2897 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2898 if (zone->nr_reserved_highatomic >= max_managed) 2899 return; 2900 2901 spin_lock_irqsave(&zone->lock, flags); 2902 2903 /* Recheck the nr_reserved_highatomic limit under the lock */ 2904 if (zone->nr_reserved_highatomic >= max_managed) 2905 goto out_unlock; 2906 2907 /* Yoink! */ 2908 mt = get_pageblock_migratetype(page); 2909 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2910 if (migratetype_is_mergeable(mt)) { 2911 zone->nr_reserved_highatomic += pageblock_nr_pages; 2912 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2913 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2914 } 2915 2916 out_unlock: 2917 spin_unlock_irqrestore(&zone->lock, flags); 2918 } 2919 2920 /* 2921 * Used when an allocation is about to fail under memory pressure. This 2922 * potentially hurts the reliability of high-order allocations when under 2923 * intense memory pressure but failed atomic allocations should be easier 2924 * to recover from than an OOM. 2925 * 2926 * If @force is true, try to unreserve a pageblock even though highatomic 2927 * pageblock is exhausted. 2928 */ 2929 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2930 bool force) 2931 { 2932 struct zonelist *zonelist = ac->zonelist; 2933 unsigned long flags; 2934 struct zoneref *z; 2935 struct zone *zone; 2936 struct page *page; 2937 int order; 2938 bool ret; 2939 2940 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2941 ac->nodemask) { 2942 /* 2943 * Preserve at least one pageblock unless memory pressure 2944 * is really high. 2945 */ 2946 if (!force && zone->nr_reserved_highatomic <= 2947 pageblock_nr_pages) 2948 continue; 2949 2950 spin_lock_irqsave(&zone->lock, flags); 2951 for (order = 0; order < MAX_ORDER; order++) { 2952 struct free_area *area = &(zone->free_area[order]); 2953 2954 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2955 if (!page) 2956 continue; 2957 2958 /* 2959 * In page freeing path, migratetype change is racy so 2960 * we can counter several free pages in a pageblock 2961 * in this loop although we changed the pageblock type 2962 * from highatomic to ac->migratetype. So we should 2963 * adjust the count once. 2964 */ 2965 if (is_migrate_highatomic_page(page)) { 2966 /* 2967 * It should never happen but changes to 2968 * locking could inadvertently allow a per-cpu 2969 * drain to add pages to MIGRATE_HIGHATOMIC 2970 * while unreserving so be safe and watch for 2971 * underflows. 2972 */ 2973 zone->nr_reserved_highatomic -= min( 2974 pageblock_nr_pages, 2975 zone->nr_reserved_highatomic); 2976 } 2977 2978 /* 2979 * Convert to ac->migratetype and avoid the normal 2980 * pageblock stealing heuristics. Minimally, the caller 2981 * is doing the work and needs the pages. More 2982 * importantly, if the block was always converted to 2983 * MIGRATE_UNMOVABLE or another type then the number 2984 * of pageblocks that cannot be completely freed 2985 * may increase. 2986 */ 2987 set_pageblock_migratetype(page, ac->migratetype); 2988 ret = move_freepages_block(zone, page, ac->migratetype, 2989 NULL); 2990 if (ret) { 2991 spin_unlock_irqrestore(&zone->lock, flags); 2992 return ret; 2993 } 2994 } 2995 spin_unlock_irqrestore(&zone->lock, flags); 2996 } 2997 2998 return false; 2999 } 3000 3001 /* 3002 * Try finding a free buddy page on the fallback list and put it on the free 3003 * list of requested migratetype, possibly along with other pages from the same 3004 * block, depending on fragmentation avoidance heuristics. Returns true if 3005 * fallback was found so that __rmqueue_smallest() can grab it. 3006 * 3007 * The use of signed ints for order and current_order is a deliberate 3008 * deviation from the rest of this file, to make the for loop 3009 * condition simpler. 3010 */ 3011 static __always_inline bool 3012 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 3013 unsigned int alloc_flags) 3014 { 3015 struct free_area *area; 3016 int current_order; 3017 int min_order = order; 3018 struct page *page; 3019 int fallback_mt; 3020 bool can_steal; 3021 3022 /* 3023 * Do not steal pages from freelists belonging to other pageblocks 3024 * i.e. orders < pageblock_order. If there are no local zones free, 3025 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3026 */ 3027 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 3028 min_order = pageblock_order; 3029 3030 /* 3031 * Find the largest available free page in the other list. This roughly 3032 * approximates finding the pageblock with the most free pages, which 3033 * would be too costly to do exactly. 3034 */ 3035 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3036 --current_order) { 3037 area = &(zone->free_area[current_order]); 3038 fallback_mt = find_suitable_fallback(area, current_order, 3039 start_migratetype, false, &can_steal); 3040 if (fallback_mt == -1) 3041 continue; 3042 3043 /* 3044 * We cannot steal all free pages from the pageblock and the 3045 * requested migratetype is movable. In that case it's better to 3046 * steal and split the smallest available page instead of the 3047 * largest available page, because even if the next movable 3048 * allocation falls back into a different pageblock than this 3049 * one, it won't cause permanent fragmentation. 3050 */ 3051 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3052 && current_order > order) 3053 goto find_smallest; 3054 3055 goto do_steal; 3056 } 3057 3058 return false; 3059 3060 find_smallest: 3061 for (current_order = order; current_order < MAX_ORDER; 3062 current_order++) { 3063 area = &(zone->free_area[current_order]); 3064 fallback_mt = find_suitable_fallback(area, current_order, 3065 start_migratetype, false, &can_steal); 3066 if (fallback_mt != -1) 3067 break; 3068 } 3069 3070 /* 3071 * This should not happen - we already found a suitable fallback 3072 * when looking for the largest page. 3073 */ 3074 VM_BUG_ON(current_order == MAX_ORDER); 3075 3076 do_steal: 3077 page = get_page_from_free_area(area, fallback_mt); 3078 3079 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3080 can_steal); 3081 3082 trace_mm_page_alloc_extfrag(page, order, current_order, 3083 start_migratetype, fallback_mt); 3084 3085 return true; 3086 3087 } 3088 3089 /* 3090 * Do the hard work of removing an element from the buddy allocator. 3091 * Call me with the zone->lock already held. 3092 */ 3093 static __always_inline struct page * 3094 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3095 unsigned int alloc_flags) 3096 { 3097 struct page *page; 3098 3099 if (IS_ENABLED(CONFIG_CMA)) { 3100 /* 3101 * Balance movable allocations between regular and CMA areas by 3102 * allocating from CMA when over half of the zone's free memory 3103 * is in the CMA area. 3104 */ 3105 if (alloc_flags & ALLOC_CMA && 3106 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3107 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3108 page = __rmqueue_cma_fallback(zone, order); 3109 if (page) 3110 return page; 3111 } 3112 } 3113 retry: 3114 page = __rmqueue_smallest(zone, order, migratetype); 3115 if (unlikely(!page)) { 3116 if (alloc_flags & ALLOC_CMA) 3117 page = __rmqueue_cma_fallback(zone, order); 3118 3119 if (!page && __rmqueue_fallback(zone, order, migratetype, 3120 alloc_flags)) 3121 goto retry; 3122 } 3123 return page; 3124 } 3125 3126 /* 3127 * Obtain a specified number of elements from the buddy allocator, all under 3128 * a single hold of the lock, for efficiency. Add them to the supplied list. 3129 * Returns the number of new pages which were placed at *list. 3130 */ 3131 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3132 unsigned long count, struct list_head *list, 3133 int migratetype, unsigned int alloc_flags) 3134 { 3135 int i, allocated = 0; 3136 3137 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 3138 spin_lock(&zone->lock); 3139 for (i = 0; i < count; ++i) { 3140 struct page *page = __rmqueue(zone, order, migratetype, 3141 alloc_flags); 3142 if (unlikely(page == NULL)) 3143 break; 3144 3145 if (unlikely(check_pcp_refill(page, order))) 3146 continue; 3147 3148 /* 3149 * Split buddy pages returned by expand() are received here in 3150 * physical page order. The page is added to the tail of 3151 * caller's list. From the callers perspective, the linked list 3152 * is ordered by page number under some conditions. This is 3153 * useful for IO devices that can forward direction from the 3154 * head, thus also in the physical page order. This is useful 3155 * for IO devices that can merge IO requests if the physical 3156 * pages are ordered properly. 3157 */ 3158 list_add_tail(&page->pcp_list, list); 3159 allocated++; 3160 if (is_migrate_cma(get_pcppage_migratetype(page))) 3161 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3162 -(1 << order)); 3163 } 3164 3165 /* 3166 * i pages were removed from the buddy list even if some leak due 3167 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3168 * on i. Do not confuse with 'allocated' which is the number of 3169 * pages added to the pcp list. 3170 */ 3171 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3172 spin_unlock(&zone->lock); 3173 return allocated; 3174 } 3175 3176 #ifdef CONFIG_NUMA 3177 /* 3178 * Called from the vmstat counter updater to drain pagesets of this 3179 * currently executing processor on remote nodes after they have 3180 * expired. 3181 */ 3182 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3183 { 3184 int to_drain, batch; 3185 3186 batch = READ_ONCE(pcp->batch); 3187 to_drain = min(pcp->count, batch); 3188 if (to_drain > 0) { 3189 unsigned long flags; 3190 3191 /* 3192 * free_pcppages_bulk expects IRQs disabled for zone->lock 3193 * so even though pcp->lock is not intended to be IRQ-safe, 3194 * it's needed in this context. 3195 */ 3196 spin_lock_irqsave(&pcp->lock, flags); 3197 free_pcppages_bulk(zone, to_drain, pcp, 0); 3198 spin_unlock_irqrestore(&pcp->lock, flags); 3199 } 3200 } 3201 #endif 3202 3203 /* 3204 * Drain pcplists of the indicated processor and zone. 3205 */ 3206 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3207 { 3208 struct per_cpu_pages *pcp; 3209 3210 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3211 if (pcp->count) { 3212 unsigned long flags; 3213 3214 /* See drain_zone_pages on why this is disabling IRQs */ 3215 spin_lock_irqsave(&pcp->lock, flags); 3216 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3217 spin_unlock_irqrestore(&pcp->lock, flags); 3218 } 3219 } 3220 3221 /* 3222 * Drain pcplists of all zones on the indicated processor. 3223 */ 3224 static void drain_pages(unsigned int cpu) 3225 { 3226 struct zone *zone; 3227 3228 for_each_populated_zone(zone) { 3229 drain_pages_zone(cpu, zone); 3230 } 3231 } 3232 3233 /* 3234 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3235 */ 3236 void drain_local_pages(struct zone *zone) 3237 { 3238 int cpu = smp_processor_id(); 3239 3240 if (zone) 3241 drain_pages_zone(cpu, zone); 3242 else 3243 drain_pages(cpu); 3244 } 3245 3246 /* 3247 * The implementation of drain_all_pages(), exposing an extra parameter to 3248 * drain on all cpus. 3249 * 3250 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3251 * not empty. The check for non-emptiness can however race with a free to 3252 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3253 * that need the guarantee that every CPU has drained can disable the 3254 * optimizing racy check. 3255 */ 3256 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3257 { 3258 int cpu; 3259 3260 /* 3261 * Allocate in the BSS so we won't require allocation in 3262 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3263 */ 3264 static cpumask_t cpus_with_pcps; 3265 3266 /* 3267 * Do not drain if one is already in progress unless it's specific to 3268 * a zone. Such callers are primarily CMA and memory hotplug and need 3269 * the drain to be complete when the call returns. 3270 */ 3271 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3272 if (!zone) 3273 return; 3274 mutex_lock(&pcpu_drain_mutex); 3275 } 3276 3277 /* 3278 * We don't care about racing with CPU hotplug event 3279 * as offline notification will cause the notified 3280 * cpu to drain that CPU pcps and on_each_cpu_mask 3281 * disables preemption as part of its processing 3282 */ 3283 for_each_online_cpu(cpu) { 3284 struct per_cpu_pages *pcp; 3285 struct zone *z; 3286 bool has_pcps = false; 3287 3288 if (force_all_cpus) { 3289 /* 3290 * The pcp.count check is racy, some callers need a 3291 * guarantee that no cpu is missed. 3292 */ 3293 has_pcps = true; 3294 } else if (zone) { 3295 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3296 if (pcp->count) 3297 has_pcps = true; 3298 } else { 3299 for_each_populated_zone(z) { 3300 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3301 if (pcp->count) { 3302 has_pcps = true; 3303 break; 3304 } 3305 } 3306 } 3307 3308 if (has_pcps) 3309 cpumask_set_cpu(cpu, &cpus_with_pcps); 3310 else 3311 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3312 } 3313 3314 for_each_cpu(cpu, &cpus_with_pcps) { 3315 if (zone) 3316 drain_pages_zone(cpu, zone); 3317 else 3318 drain_pages(cpu); 3319 } 3320 3321 mutex_unlock(&pcpu_drain_mutex); 3322 } 3323 3324 /* 3325 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3326 * 3327 * When zone parameter is non-NULL, spill just the single zone's pages. 3328 */ 3329 void drain_all_pages(struct zone *zone) 3330 { 3331 __drain_all_pages(zone, false); 3332 } 3333 3334 #ifdef CONFIG_HIBERNATION 3335 3336 /* 3337 * Touch the watchdog for every WD_PAGE_COUNT pages. 3338 */ 3339 #define WD_PAGE_COUNT (128*1024) 3340 3341 void mark_free_pages(struct zone *zone) 3342 { 3343 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3344 unsigned long flags; 3345 unsigned int order, t; 3346 struct page *page; 3347 3348 if (zone_is_empty(zone)) 3349 return; 3350 3351 spin_lock_irqsave(&zone->lock, flags); 3352 3353 max_zone_pfn = zone_end_pfn(zone); 3354 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3355 if (pfn_valid(pfn)) { 3356 page = pfn_to_page(pfn); 3357 3358 if (!--page_count) { 3359 touch_nmi_watchdog(); 3360 page_count = WD_PAGE_COUNT; 3361 } 3362 3363 if (page_zone(page) != zone) 3364 continue; 3365 3366 if (!swsusp_page_is_forbidden(page)) 3367 swsusp_unset_page_free(page); 3368 } 3369 3370 for_each_migratetype_order(order, t) { 3371 list_for_each_entry(page, 3372 &zone->free_area[order].free_list[t], buddy_list) { 3373 unsigned long i; 3374 3375 pfn = page_to_pfn(page); 3376 for (i = 0; i < (1UL << order); i++) { 3377 if (!--page_count) { 3378 touch_nmi_watchdog(); 3379 page_count = WD_PAGE_COUNT; 3380 } 3381 swsusp_set_page_free(pfn_to_page(pfn + i)); 3382 } 3383 } 3384 } 3385 spin_unlock_irqrestore(&zone->lock, flags); 3386 } 3387 #endif /* CONFIG_PM */ 3388 3389 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3390 unsigned int order) 3391 { 3392 int migratetype; 3393 3394 if (!free_pcp_prepare(page, order)) 3395 return false; 3396 3397 migratetype = get_pfnblock_migratetype(page, pfn); 3398 set_pcppage_migratetype(page, migratetype); 3399 return true; 3400 } 3401 3402 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3403 bool free_high) 3404 { 3405 int min_nr_free, max_nr_free; 3406 3407 /* Free everything if batch freeing high-order pages. */ 3408 if (unlikely(free_high)) 3409 return pcp->count; 3410 3411 /* Check for PCP disabled or boot pageset */ 3412 if (unlikely(high < batch)) 3413 return 1; 3414 3415 /* Leave at least pcp->batch pages on the list */ 3416 min_nr_free = batch; 3417 max_nr_free = high - batch; 3418 3419 /* 3420 * Double the number of pages freed each time there is subsequent 3421 * freeing of pages without any allocation. 3422 */ 3423 batch <<= pcp->free_factor; 3424 if (batch < max_nr_free) 3425 pcp->free_factor++; 3426 batch = clamp(batch, min_nr_free, max_nr_free); 3427 3428 return batch; 3429 } 3430 3431 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3432 bool free_high) 3433 { 3434 int high = READ_ONCE(pcp->high); 3435 3436 if (unlikely(!high || free_high)) 3437 return 0; 3438 3439 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3440 return high; 3441 3442 /* 3443 * If reclaim is active, limit the number of pages that can be 3444 * stored on pcp lists 3445 */ 3446 return min(READ_ONCE(pcp->batch) << 2, high); 3447 } 3448 3449 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3450 struct page *page, int migratetype, 3451 unsigned int order) 3452 { 3453 int high; 3454 int pindex; 3455 bool free_high; 3456 3457 __count_vm_events(PGFREE, 1 << order); 3458 pindex = order_to_pindex(migratetype, order); 3459 list_add(&page->pcp_list, &pcp->lists[pindex]); 3460 pcp->count += 1 << order; 3461 3462 /* 3463 * As high-order pages other than THP's stored on PCP can contribute 3464 * to fragmentation, limit the number stored when PCP is heavily 3465 * freeing without allocation. The remainder after bulk freeing 3466 * stops will be drained from vmstat refresh context. 3467 */ 3468 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3469 3470 high = nr_pcp_high(pcp, zone, free_high); 3471 if (pcp->count >= high) { 3472 int batch = READ_ONCE(pcp->batch); 3473 3474 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3475 } 3476 } 3477 3478 /* 3479 * Free a pcp page 3480 */ 3481 void free_unref_page(struct page *page, unsigned int order) 3482 { 3483 unsigned long flags; 3484 unsigned long __maybe_unused UP_flags; 3485 struct per_cpu_pages *pcp; 3486 struct zone *zone; 3487 unsigned long pfn = page_to_pfn(page); 3488 int migratetype; 3489 3490 if (!free_unref_page_prepare(page, pfn, order)) 3491 return; 3492 3493 /* 3494 * We only track unmovable, reclaimable and movable on pcp lists. 3495 * Place ISOLATE pages on the isolated list because they are being 3496 * offlined but treat HIGHATOMIC as movable pages so we can get those 3497 * areas back if necessary. Otherwise, we may have to free 3498 * excessively into the page allocator 3499 */ 3500 migratetype = get_pcppage_migratetype(page); 3501 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3502 if (unlikely(is_migrate_isolate(migratetype))) { 3503 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3504 return; 3505 } 3506 migratetype = MIGRATE_MOVABLE; 3507 } 3508 3509 zone = page_zone(page); 3510 pcp_trylock_prepare(UP_flags); 3511 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3512 if (pcp) { 3513 free_unref_page_commit(zone, pcp, page, migratetype, order); 3514 pcp_spin_unlock_irqrestore(pcp, flags); 3515 } else { 3516 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3517 } 3518 pcp_trylock_finish(UP_flags); 3519 } 3520 3521 /* 3522 * Free a list of 0-order pages 3523 */ 3524 void free_unref_page_list(struct list_head *list) 3525 { 3526 struct page *page, *next; 3527 struct per_cpu_pages *pcp = NULL; 3528 struct zone *locked_zone = NULL; 3529 unsigned long flags; 3530 int batch_count = 0; 3531 int migratetype; 3532 3533 /* Prepare pages for freeing */ 3534 list_for_each_entry_safe(page, next, list, lru) { 3535 unsigned long pfn = page_to_pfn(page); 3536 if (!free_unref_page_prepare(page, pfn, 0)) { 3537 list_del(&page->lru); 3538 continue; 3539 } 3540 3541 /* 3542 * Free isolated pages directly to the allocator, see 3543 * comment in free_unref_page. 3544 */ 3545 migratetype = get_pcppage_migratetype(page); 3546 if (unlikely(is_migrate_isolate(migratetype))) { 3547 list_del(&page->lru); 3548 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3549 continue; 3550 } 3551 } 3552 3553 list_for_each_entry_safe(page, next, list, lru) { 3554 struct zone *zone = page_zone(page); 3555 3556 /* Different zone, different pcp lock. */ 3557 if (zone != locked_zone) { 3558 if (pcp) 3559 pcp_spin_unlock_irqrestore(pcp, flags); 3560 3561 locked_zone = zone; 3562 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3563 } 3564 3565 /* 3566 * Non-isolated types over MIGRATE_PCPTYPES get added 3567 * to the MIGRATE_MOVABLE pcp list. 3568 */ 3569 migratetype = get_pcppage_migratetype(page); 3570 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3571 migratetype = MIGRATE_MOVABLE; 3572 3573 trace_mm_page_free_batched(page); 3574 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3575 3576 /* 3577 * Guard against excessive IRQ disabled times when we get 3578 * a large list of pages to free. 3579 */ 3580 if (++batch_count == SWAP_CLUSTER_MAX) { 3581 pcp_spin_unlock_irqrestore(pcp, flags); 3582 batch_count = 0; 3583 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3584 } 3585 } 3586 3587 if (pcp) 3588 pcp_spin_unlock_irqrestore(pcp, flags); 3589 } 3590 3591 /* 3592 * split_page takes a non-compound higher-order page, and splits it into 3593 * n (1<<order) sub-pages: page[0..n] 3594 * Each sub-page must be freed individually. 3595 * 3596 * Note: this is probably too low level an operation for use in drivers. 3597 * Please consult with lkml before using this in your driver. 3598 */ 3599 void split_page(struct page *page, unsigned int order) 3600 { 3601 int i; 3602 3603 VM_BUG_ON_PAGE(PageCompound(page), page); 3604 VM_BUG_ON_PAGE(!page_count(page), page); 3605 3606 for (i = 1; i < (1 << order); i++) 3607 set_page_refcounted(page + i); 3608 split_page_owner(page, 1 << order); 3609 split_page_memcg(page, 1 << order); 3610 } 3611 EXPORT_SYMBOL_GPL(split_page); 3612 3613 int __isolate_free_page(struct page *page, unsigned int order) 3614 { 3615 struct zone *zone = page_zone(page); 3616 int mt = get_pageblock_migratetype(page); 3617 3618 if (!is_migrate_isolate(mt)) { 3619 unsigned long watermark; 3620 /* 3621 * Obey watermarks as if the page was being allocated. We can 3622 * emulate a high-order watermark check with a raised order-0 3623 * watermark, because we already know our high-order page 3624 * exists. 3625 */ 3626 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3627 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3628 return 0; 3629 3630 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3631 } 3632 3633 del_page_from_free_list(page, zone, order); 3634 3635 /* 3636 * Set the pageblock if the isolated page is at least half of a 3637 * pageblock 3638 */ 3639 if (order >= pageblock_order - 1) { 3640 struct page *endpage = page + (1 << order) - 1; 3641 for (; page < endpage; page += pageblock_nr_pages) { 3642 int mt = get_pageblock_migratetype(page); 3643 /* 3644 * Only change normal pageblocks (i.e., they can merge 3645 * with others) 3646 */ 3647 if (migratetype_is_mergeable(mt)) 3648 set_pageblock_migratetype(page, 3649 MIGRATE_MOVABLE); 3650 } 3651 } 3652 3653 return 1UL << order; 3654 } 3655 3656 /** 3657 * __putback_isolated_page - Return a now-isolated page back where we got it 3658 * @page: Page that was isolated 3659 * @order: Order of the isolated page 3660 * @mt: The page's pageblock's migratetype 3661 * 3662 * This function is meant to return a page pulled from the free lists via 3663 * __isolate_free_page back to the free lists they were pulled from. 3664 */ 3665 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3666 { 3667 struct zone *zone = page_zone(page); 3668 3669 /* zone lock should be held when this function is called */ 3670 lockdep_assert_held(&zone->lock); 3671 3672 /* Return isolated page to tail of freelist. */ 3673 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3674 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3675 } 3676 3677 /* 3678 * Update NUMA hit/miss statistics 3679 */ 3680 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3681 long nr_account) 3682 { 3683 #ifdef CONFIG_NUMA 3684 enum numa_stat_item local_stat = NUMA_LOCAL; 3685 3686 /* skip numa counters update if numa stats is disabled */ 3687 if (!static_branch_likely(&vm_numa_stat_key)) 3688 return; 3689 3690 if (zone_to_nid(z) != numa_node_id()) 3691 local_stat = NUMA_OTHER; 3692 3693 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3694 __count_numa_events(z, NUMA_HIT, nr_account); 3695 else { 3696 __count_numa_events(z, NUMA_MISS, nr_account); 3697 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3698 } 3699 __count_numa_events(z, local_stat, nr_account); 3700 #endif 3701 } 3702 3703 static __always_inline 3704 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3705 unsigned int order, unsigned int alloc_flags, 3706 int migratetype) 3707 { 3708 struct page *page; 3709 unsigned long flags; 3710 3711 do { 3712 page = NULL; 3713 spin_lock_irqsave(&zone->lock, flags); 3714 /* 3715 * order-0 request can reach here when the pcplist is skipped 3716 * due to non-CMA allocation context. HIGHATOMIC area is 3717 * reserved for high-order atomic allocation, so order-0 3718 * request should skip it. 3719 */ 3720 if (order > 0 && alloc_flags & ALLOC_HARDER) 3721 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3722 if (!page) { 3723 page = __rmqueue(zone, order, migratetype, alloc_flags); 3724 if (!page) { 3725 spin_unlock_irqrestore(&zone->lock, flags); 3726 return NULL; 3727 } 3728 } 3729 __mod_zone_freepage_state(zone, -(1 << order), 3730 get_pcppage_migratetype(page)); 3731 spin_unlock_irqrestore(&zone->lock, flags); 3732 } while (check_new_pages(page, order)); 3733 3734 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3735 zone_statistics(preferred_zone, zone, 1); 3736 3737 return page; 3738 } 3739 3740 /* Remove page from the per-cpu list, caller must protect the list */ 3741 static inline 3742 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3743 int migratetype, 3744 unsigned int alloc_flags, 3745 struct per_cpu_pages *pcp, 3746 struct list_head *list) 3747 { 3748 struct page *page; 3749 3750 do { 3751 if (list_empty(list)) { 3752 int batch = READ_ONCE(pcp->batch); 3753 int alloced; 3754 3755 /* 3756 * Scale batch relative to order if batch implies 3757 * free pages can be stored on the PCP. Batch can 3758 * be 1 for small zones or for boot pagesets which 3759 * should never store free pages as the pages may 3760 * belong to arbitrary zones. 3761 */ 3762 if (batch > 1) 3763 batch = max(batch >> order, 2); 3764 alloced = rmqueue_bulk(zone, order, 3765 batch, list, 3766 migratetype, alloc_flags); 3767 3768 pcp->count += alloced << order; 3769 if (unlikely(list_empty(list))) 3770 return NULL; 3771 } 3772 3773 page = list_first_entry(list, struct page, pcp_list); 3774 list_del(&page->pcp_list); 3775 pcp->count -= 1 << order; 3776 } while (check_new_pcp(page, order)); 3777 3778 return page; 3779 } 3780 3781 /* Lock and remove page from the per-cpu list */ 3782 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3783 struct zone *zone, unsigned int order, 3784 int migratetype, unsigned int alloc_flags) 3785 { 3786 struct per_cpu_pages *pcp; 3787 struct list_head *list; 3788 struct page *page; 3789 unsigned long flags; 3790 unsigned long __maybe_unused UP_flags; 3791 3792 /* 3793 * spin_trylock may fail due to a parallel drain. In the future, the 3794 * trylock will also protect against IRQ reentrancy. 3795 */ 3796 pcp_trylock_prepare(UP_flags); 3797 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3798 if (!pcp) { 3799 pcp_trylock_finish(UP_flags); 3800 return NULL; 3801 } 3802 3803 /* 3804 * On allocation, reduce the number of pages that are batch freed. 3805 * See nr_pcp_free() where free_factor is increased for subsequent 3806 * frees. 3807 */ 3808 pcp->free_factor >>= 1; 3809 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3810 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3811 pcp_spin_unlock_irqrestore(pcp, flags); 3812 pcp_trylock_finish(UP_flags); 3813 if (page) { 3814 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3815 zone_statistics(preferred_zone, zone, 1); 3816 } 3817 return page; 3818 } 3819 3820 /* 3821 * Allocate a page from the given zone. 3822 * Use pcplists for THP or "cheap" high-order allocations. 3823 */ 3824 3825 /* 3826 * Do not instrument rmqueue() with KMSAN. This function may call 3827 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3828 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3829 * may call rmqueue() again, which will result in a deadlock. 3830 */ 3831 __no_sanitize_memory 3832 static inline 3833 struct page *rmqueue(struct zone *preferred_zone, 3834 struct zone *zone, unsigned int order, 3835 gfp_t gfp_flags, unsigned int alloc_flags, 3836 int migratetype) 3837 { 3838 struct page *page; 3839 3840 /* 3841 * We most definitely don't want callers attempting to 3842 * allocate greater than order-1 page units with __GFP_NOFAIL. 3843 */ 3844 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3845 3846 if (likely(pcp_allowed_order(order))) { 3847 /* 3848 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3849 * we need to skip it when CMA area isn't allowed. 3850 */ 3851 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3852 migratetype != MIGRATE_MOVABLE) { 3853 page = rmqueue_pcplist(preferred_zone, zone, order, 3854 migratetype, alloc_flags); 3855 if (likely(page)) 3856 goto out; 3857 } 3858 } 3859 3860 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3861 migratetype); 3862 3863 out: 3864 /* Separate test+clear to avoid unnecessary atomics */ 3865 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3866 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3867 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3868 } 3869 3870 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3871 return page; 3872 } 3873 3874 #ifdef CONFIG_FAIL_PAGE_ALLOC 3875 3876 static struct { 3877 struct fault_attr attr; 3878 3879 bool ignore_gfp_highmem; 3880 bool ignore_gfp_reclaim; 3881 u32 min_order; 3882 } fail_page_alloc = { 3883 .attr = FAULT_ATTR_INITIALIZER, 3884 .ignore_gfp_reclaim = true, 3885 .ignore_gfp_highmem = true, 3886 .min_order = 1, 3887 }; 3888 3889 static int __init setup_fail_page_alloc(char *str) 3890 { 3891 return setup_fault_attr(&fail_page_alloc.attr, str); 3892 } 3893 __setup("fail_page_alloc=", setup_fail_page_alloc); 3894 3895 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3896 { 3897 int flags = 0; 3898 3899 if (order < fail_page_alloc.min_order) 3900 return false; 3901 if (gfp_mask & __GFP_NOFAIL) 3902 return false; 3903 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3904 return false; 3905 if (fail_page_alloc.ignore_gfp_reclaim && 3906 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3907 return false; 3908 3909 /* See comment in __should_failslab() */ 3910 if (gfp_mask & __GFP_NOWARN) 3911 flags |= FAULT_NOWARN; 3912 3913 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags); 3914 } 3915 3916 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3917 3918 static int __init fail_page_alloc_debugfs(void) 3919 { 3920 umode_t mode = S_IFREG | 0600; 3921 struct dentry *dir; 3922 3923 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3924 &fail_page_alloc.attr); 3925 3926 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3927 &fail_page_alloc.ignore_gfp_reclaim); 3928 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3929 &fail_page_alloc.ignore_gfp_highmem); 3930 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3931 3932 return 0; 3933 } 3934 3935 late_initcall(fail_page_alloc_debugfs); 3936 3937 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3938 3939 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3940 3941 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3942 { 3943 return false; 3944 } 3945 3946 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3947 3948 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3949 { 3950 return __should_fail_alloc_page(gfp_mask, order); 3951 } 3952 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3953 3954 static inline long __zone_watermark_unusable_free(struct zone *z, 3955 unsigned int order, unsigned int alloc_flags) 3956 { 3957 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3958 long unusable_free = (1 << order) - 1; 3959 3960 /* 3961 * If the caller does not have rights to ALLOC_HARDER then subtract 3962 * the high-atomic reserves. This will over-estimate the size of the 3963 * atomic reserve but it avoids a search. 3964 */ 3965 if (likely(!alloc_harder)) 3966 unusable_free += z->nr_reserved_highatomic; 3967 3968 #ifdef CONFIG_CMA 3969 /* If allocation can't use CMA areas don't use free CMA pages */ 3970 if (!(alloc_flags & ALLOC_CMA)) 3971 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3972 #endif 3973 3974 return unusable_free; 3975 } 3976 3977 /* 3978 * Return true if free base pages are above 'mark'. For high-order checks it 3979 * will return true of the order-0 watermark is reached and there is at least 3980 * one free page of a suitable size. Checking now avoids taking the zone lock 3981 * to check in the allocation paths if no pages are free. 3982 */ 3983 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3984 int highest_zoneidx, unsigned int alloc_flags, 3985 long free_pages) 3986 { 3987 long min = mark; 3988 int o; 3989 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3990 3991 /* free_pages may go negative - that's OK */ 3992 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3993 3994 if (alloc_flags & ALLOC_HIGH) 3995 min -= min / 2; 3996 3997 if (unlikely(alloc_harder)) { 3998 /* 3999 * OOM victims can try even harder than normal ALLOC_HARDER 4000 * users on the grounds that it's definitely going to be in 4001 * the exit path shortly and free memory. Any allocation it 4002 * makes during the free path will be small and short-lived. 4003 */ 4004 if (alloc_flags & ALLOC_OOM) 4005 min -= min / 2; 4006 else 4007 min -= min / 4; 4008 } 4009 4010 /* 4011 * Check watermarks for an order-0 allocation request. If these 4012 * are not met, then a high-order request also cannot go ahead 4013 * even if a suitable page happened to be free. 4014 */ 4015 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 4016 return false; 4017 4018 /* If this is an order-0 request then the watermark is fine */ 4019 if (!order) 4020 return true; 4021 4022 /* For a high-order request, check at least one suitable page is free */ 4023 for (o = order; o < MAX_ORDER; o++) { 4024 struct free_area *area = &z->free_area[o]; 4025 int mt; 4026 4027 if (!area->nr_free) 4028 continue; 4029 4030 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4031 if (!free_area_empty(area, mt)) 4032 return true; 4033 } 4034 4035 #ifdef CONFIG_CMA 4036 if ((alloc_flags & ALLOC_CMA) && 4037 !free_area_empty(area, MIGRATE_CMA)) { 4038 return true; 4039 } 4040 #endif 4041 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 4042 return true; 4043 } 4044 return false; 4045 } 4046 4047 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4048 int highest_zoneidx, unsigned int alloc_flags) 4049 { 4050 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4051 zone_page_state(z, NR_FREE_PAGES)); 4052 } 4053 4054 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4055 unsigned long mark, int highest_zoneidx, 4056 unsigned int alloc_flags, gfp_t gfp_mask) 4057 { 4058 long free_pages; 4059 4060 free_pages = zone_page_state(z, NR_FREE_PAGES); 4061 4062 /* 4063 * Fast check for order-0 only. If this fails then the reserves 4064 * need to be calculated. 4065 */ 4066 if (!order) { 4067 long usable_free; 4068 long reserved; 4069 4070 usable_free = free_pages; 4071 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4072 4073 /* reserved may over estimate high-atomic reserves. */ 4074 usable_free -= min(usable_free, reserved); 4075 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4076 return true; 4077 } 4078 4079 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4080 free_pages)) 4081 return true; 4082 /* 4083 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 4084 * when checking the min watermark. The min watermark is the 4085 * point where boosting is ignored so that kswapd is woken up 4086 * when below the low watermark. 4087 */ 4088 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 4089 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4090 mark = z->_watermark[WMARK_MIN]; 4091 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4092 alloc_flags, free_pages); 4093 } 4094 4095 return false; 4096 } 4097 4098 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4099 unsigned long mark, int highest_zoneidx) 4100 { 4101 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4102 4103 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4104 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4105 4106 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4107 free_pages); 4108 } 4109 4110 #ifdef CONFIG_NUMA 4111 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4112 4113 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4114 { 4115 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4116 node_reclaim_distance; 4117 } 4118 #else /* CONFIG_NUMA */ 4119 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4120 { 4121 return true; 4122 } 4123 #endif /* CONFIG_NUMA */ 4124 4125 /* 4126 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4127 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4128 * premature use of a lower zone may cause lowmem pressure problems that 4129 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4130 * probably too small. It only makes sense to spread allocations to avoid 4131 * fragmentation between the Normal and DMA32 zones. 4132 */ 4133 static inline unsigned int 4134 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4135 { 4136 unsigned int alloc_flags; 4137 4138 /* 4139 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4140 * to save a branch. 4141 */ 4142 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4143 4144 #ifdef CONFIG_ZONE_DMA32 4145 if (!zone) 4146 return alloc_flags; 4147 4148 if (zone_idx(zone) != ZONE_NORMAL) 4149 return alloc_flags; 4150 4151 /* 4152 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4153 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4154 * on UMA that if Normal is populated then so is DMA32. 4155 */ 4156 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4157 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4158 return alloc_flags; 4159 4160 alloc_flags |= ALLOC_NOFRAGMENT; 4161 #endif /* CONFIG_ZONE_DMA32 */ 4162 return alloc_flags; 4163 } 4164 4165 /* Must be called after current_gfp_context() which can change gfp_mask */ 4166 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4167 unsigned int alloc_flags) 4168 { 4169 #ifdef CONFIG_CMA 4170 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4171 alloc_flags |= ALLOC_CMA; 4172 #endif 4173 return alloc_flags; 4174 } 4175 4176 /* 4177 * get_page_from_freelist goes through the zonelist trying to allocate 4178 * a page. 4179 */ 4180 static struct page * 4181 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4182 const struct alloc_context *ac) 4183 { 4184 struct zoneref *z; 4185 struct zone *zone; 4186 struct pglist_data *last_pgdat = NULL; 4187 bool last_pgdat_dirty_ok = false; 4188 bool no_fallback; 4189 4190 retry: 4191 /* 4192 * Scan zonelist, looking for a zone with enough free. 4193 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4194 */ 4195 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4196 z = ac->preferred_zoneref; 4197 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4198 ac->nodemask) { 4199 struct page *page; 4200 unsigned long mark; 4201 4202 if (cpusets_enabled() && 4203 (alloc_flags & ALLOC_CPUSET) && 4204 !__cpuset_zone_allowed(zone, gfp_mask)) 4205 continue; 4206 /* 4207 * When allocating a page cache page for writing, we 4208 * want to get it from a node that is within its dirty 4209 * limit, such that no single node holds more than its 4210 * proportional share of globally allowed dirty pages. 4211 * The dirty limits take into account the node's 4212 * lowmem reserves and high watermark so that kswapd 4213 * should be able to balance it without having to 4214 * write pages from its LRU list. 4215 * 4216 * XXX: For now, allow allocations to potentially 4217 * exceed the per-node dirty limit in the slowpath 4218 * (spread_dirty_pages unset) before going into reclaim, 4219 * which is important when on a NUMA setup the allowed 4220 * nodes are together not big enough to reach the 4221 * global limit. The proper fix for these situations 4222 * will require awareness of nodes in the 4223 * dirty-throttling and the flusher threads. 4224 */ 4225 if (ac->spread_dirty_pages) { 4226 if (last_pgdat != zone->zone_pgdat) { 4227 last_pgdat = zone->zone_pgdat; 4228 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4229 } 4230 4231 if (!last_pgdat_dirty_ok) 4232 continue; 4233 } 4234 4235 if (no_fallback && nr_online_nodes > 1 && 4236 zone != ac->preferred_zoneref->zone) { 4237 int local_nid; 4238 4239 /* 4240 * If moving to a remote node, retry but allow 4241 * fragmenting fallbacks. Locality is more important 4242 * than fragmentation avoidance. 4243 */ 4244 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4245 if (zone_to_nid(zone) != local_nid) { 4246 alloc_flags &= ~ALLOC_NOFRAGMENT; 4247 goto retry; 4248 } 4249 } 4250 4251 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4252 if (!zone_watermark_fast(zone, order, mark, 4253 ac->highest_zoneidx, alloc_flags, 4254 gfp_mask)) { 4255 int ret; 4256 4257 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4258 /* 4259 * Watermark failed for this zone, but see if we can 4260 * grow this zone if it contains deferred pages. 4261 */ 4262 if (static_branch_unlikely(&deferred_pages)) { 4263 if (_deferred_grow_zone(zone, order)) 4264 goto try_this_zone; 4265 } 4266 #endif 4267 /* Checked here to keep the fast path fast */ 4268 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4269 if (alloc_flags & ALLOC_NO_WATERMARKS) 4270 goto try_this_zone; 4271 4272 if (!node_reclaim_enabled() || 4273 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4274 continue; 4275 4276 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4277 switch (ret) { 4278 case NODE_RECLAIM_NOSCAN: 4279 /* did not scan */ 4280 continue; 4281 case NODE_RECLAIM_FULL: 4282 /* scanned but unreclaimable */ 4283 continue; 4284 default: 4285 /* did we reclaim enough */ 4286 if (zone_watermark_ok(zone, order, mark, 4287 ac->highest_zoneidx, alloc_flags)) 4288 goto try_this_zone; 4289 4290 continue; 4291 } 4292 } 4293 4294 try_this_zone: 4295 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4296 gfp_mask, alloc_flags, ac->migratetype); 4297 if (page) { 4298 prep_new_page(page, order, gfp_mask, alloc_flags); 4299 4300 /* 4301 * If this is a high-order atomic allocation then check 4302 * if the pageblock should be reserved for the future 4303 */ 4304 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4305 reserve_highatomic_pageblock(page, zone, order); 4306 4307 return page; 4308 } else { 4309 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4310 /* Try again if zone has deferred pages */ 4311 if (static_branch_unlikely(&deferred_pages)) { 4312 if (_deferred_grow_zone(zone, order)) 4313 goto try_this_zone; 4314 } 4315 #endif 4316 } 4317 } 4318 4319 /* 4320 * It's possible on a UMA machine to get through all zones that are 4321 * fragmented. If avoiding fragmentation, reset and try again. 4322 */ 4323 if (no_fallback) { 4324 alloc_flags &= ~ALLOC_NOFRAGMENT; 4325 goto retry; 4326 } 4327 4328 return NULL; 4329 } 4330 4331 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4332 { 4333 unsigned int filter = SHOW_MEM_FILTER_NODES; 4334 4335 /* 4336 * This documents exceptions given to allocations in certain 4337 * contexts that are allowed to allocate outside current's set 4338 * of allowed nodes. 4339 */ 4340 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4341 if (tsk_is_oom_victim(current) || 4342 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4343 filter &= ~SHOW_MEM_FILTER_NODES; 4344 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4345 filter &= ~SHOW_MEM_FILTER_NODES; 4346 4347 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4348 } 4349 4350 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4351 { 4352 struct va_format vaf; 4353 va_list args; 4354 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4355 4356 if ((gfp_mask & __GFP_NOWARN) || 4357 !__ratelimit(&nopage_rs) || 4358 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4359 return; 4360 4361 va_start(args, fmt); 4362 vaf.fmt = fmt; 4363 vaf.va = &args; 4364 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4365 current->comm, &vaf, gfp_mask, &gfp_mask, 4366 nodemask_pr_args(nodemask)); 4367 va_end(args); 4368 4369 cpuset_print_current_mems_allowed(); 4370 pr_cont("\n"); 4371 dump_stack(); 4372 warn_alloc_show_mem(gfp_mask, nodemask); 4373 } 4374 4375 static inline struct page * 4376 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4377 unsigned int alloc_flags, 4378 const struct alloc_context *ac) 4379 { 4380 struct page *page; 4381 4382 page = get_page_from_freelist(gfp_mask, order, 4383 alloc_flags|ALLOC_CPUSET, ac); 4384 /* 4385 * fallback to ignore cpuset restriction if our nodes 4386 * are depleted 4387 */ 4388 if (!page) 4389 page = get_page_from_freelist(gfp_mask, order, 4390 alloc_flags, ac); 4391 4392 return page; 4393 } 4394 4395 static inline struct page * 4396 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4397 const struct alloc_context *ac, unsigned long *did_some_progress) 4398 { 4399 struct oom_control oc = { 4400 .zonelist = ac->zonelist, 4401 .nodemask = ac->nodemask, 4402 .memcg = NULL, 4403 .gfp_mask = gfp_mask, 4404 .order = order, 4405 }; 4406 struct page *page; 4407 4408 *did_some_progress = 0; 4409 4410 /* 4411 * Acquire the oom lock. If that fails, somebody else is 4412 * making progress for us. 4413 */ 4414 if (!mutex_trylock(&oom_lock)) { 4415 *did_some_progress = 1; 4416 schedule_timeout_uninterruptible(1); 4417 return NULL; 4418 } 4419 4420 /* 4421 * Go through the zonelist yet one more time, keep very high watermark 4422 * here, this is only to catch a parallel oom killing, we must fail if 4423 * we're still under heavy pressure. But make sure that this reclaim 4424 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4425 * allocation which will never fail due to oom_lock already held. 4426 */ 4427 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4428 ~__GFP_DIRECT_RECLAIM, order, 4429 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4430 if (page) 4431 goto out; 4432 4433 /* Coredumps can quickly deplete all memory reserves */ 4434 if (current->flags & PF_DUMPCORE) 4435 goto out; 4436 /* The OOM killer will not help higher order allocs */ 4437 if (order > PAGE_ALLOC_COSTLY_ORDER) 4438 goto out; 4439 /* 4440 * We have already exhausted all our reclaim opportunities without any 4441 * success so it is time to admit defeat. We will skip the OOM killer 4442 * because it is very likely that the caller has a more reasonable 4443 * fallback than shooting a random task. 4444 * 4445 * The OOM killer may not free memory on a specific node. 4446 */ 4447 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4448 goto out; 4449 /* The OOM killer does not needlessly kill tasks for lowmem */ 4450 if (ac->highest_zoneidx < ZONE_NORMAL) 4451 goto out; 4452 if (pm_suspended_storage()) 4453 goto out; 4454 /* 4455 * XXX: GFP_NOFS allocations should rather fail than rely on 4456 * other request to make a forward progress. 4457 * We are in an unfortunate situation where out_of_memory cannot 4458 * do much for this context but let's try it to at least get 4459 * access to memory reserved if the current task is killed (see 4460 * out_of_memory). Once filesystems are ready to handle allocation 4461 * failures more gracefully we should just bail out here. 4462 */ 4463 4464 /* Exhausted what can be done so it's blame time */ 4465 if (out_of_memory(&oc) || 4466 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4467 *did_some_progress = 1; 4468 4469 /* 4470 * Help non-failing allocations by giving them access to memory 4471 * reserves 4472 */ 4473 if (gfp_mask & __GFP_NOFAIL) 4474 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4475 ALLOC_NO_WATERMARKS, ac); 4476 } 4477 out: 4478 mutex_unlock(&oom_lock); 4479 return page; 4480 } 4481 4482 /* 4483 * Maximum number of compaction retries with a progress before OOM 4484 * killer is consider as the only way to move forward. 4485 */ 4486 #define MAX_COMPACT_RETRIES 16 4487 4488 #ifdef CONFIG_COMPACTION 4489 /* Try memory compaction for high-order allocations before reclaim */ 4490 static struct page * 4491 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4492 unsigned int alloc_flags, const struct alloc_context *ac, 4493 enum compact_priority prio, enum compact_result *compact_result) 4494 { 4495 struct page *page = NULL; 4496 unsigned long pflags; 4497 unsigned int noreclaim_flag; 4498 4499 if (!order) 4500 return NULL; 4501 4502 psi_memstall_enter(&pflags); 4503 delayacct_compact_start(); 4504 noreclaim_flag = memalloc_noreclaim_save(); 4505 4506 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4507 prio, &page); 4508 4509 memalloc_noreclaim_restore(noreclaim_flag); 4510 psi_memstall_leave(&pflags); 4511 delayacct_compact_end(); 4512 4513 if (*compact_result == COMPACT_SKIPPED) 4514 return NULL; 4515 /* 4516 * At least in one zone compaction wasn't deferred or skipped, so let's 4517 * count a compaction stall 4518 */ 4519 count_vm_event(COMPACTSTALL); 4520 4521 /* Prep a captured page if available */ 4522 if (page) 4523 prep_new_page(page, order, gfp_mask, alloc_flags); 4524 4525 /* Try get a page from the freelist if available */ 4526 if (!page) 4527 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4528 4529 if (page) { 4530 struct zone *zone = page_zone(page); 4531 4532 zone->compact_blockskip_flush = false; 4533 compaction_defer_reset(zone, order, true); 4534 count_vm_event(COMPACTSUCCESS); 4535 return page; 4536 } 4537 4538 /* 4539 * It's bad if compaction run occurs and fails. The most likely reason 4540 * is that pages exist, but not enough to satisfy watermarks. 4541 */ 4542 count_vm_event(COMPACTFAIL); 4543 4544 cond_resched(); 4545 4546 return NULL; 4547 } 4548 4549 static inline bool 4550 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4551 enum compact_result compact_result, 4552 enum compact_priority *compact_priority, 4553 int *compaction_retries) 4554 { 4555 int max_retries = MAX_COMPACT_RETRIES; 4556 int min_priority; 4557 bool ret = false; 4558 int retries = *compaction_retries; 4559 enum compact_priority priority = *compact_priority; 4560 4561 if (!order) 4562 return false; 4563 4564 if (fatal_signal_pending(current)) 4565 return false; 4566 4567 if (compaction_made_progress(compact_result)) 4568 (*compaction_retries)++; 4569 4570 /* 4571 * compaction considers all the zone as desperately out of memory 4572 * so it doesn't really make much sense to retry except when the 4573 * failure could be caused by insufficient priority 4574 */ 4575 if (compaction_failed(compact_result)) 4576 goto check_priority; 4577 4578 /* 4579 * compaction was skipped because there are not enough order-0 pages 4580 * to work with, so we retry only if it looks like reclaim can help. 4581 */ 4582 if (compaction_needs_reclaim(compact_result)) { 4583 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4584 goto out; 4585 } 4586 4587 /* 4588 * make sure the compaction wasn't deferred or didn't bail out early 4589 * due to locks contention before we declare that we should give up. 4590 * But the next retry should use a higher priority if allowed, so 4591 * we don't just keep bailing out endlessly. 4592 */ 4593 if (compaction_withdrawn(compact_result)) { 4594 goto check_priority; 4595 } 4596 4597 /* 4598 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4599 * costly ones because they are de facto nofail and invoke OOM 4600 * killer to move on while costly can fail and users are ready 4601 * to cope with that. 1/4 retries is rather arbitrary but we 4602 * would need much more detailed feedback from compaction to 4603 * make a better decision. 4604 */ 4605 if (order > PAGE_ALLOC_COSTLY_ORDER) 4606 max_retries /= 4; 4607 if (*compaction_retries <= max_retries) { 4608 ret = true; 4609 goto out; 4610 } 4611 4612 /* 4613 * Make sure there are attempts at the highest priority if we exhausted 4614 * all retries or failed at the lower priorities. 4615 */ 4616 check_priority: 4617 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4618 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4619 4620 if (*compact_priority > min_priority) { 4621 (*compact_priority)--; 4622 *compaction_retries = 0; 4623 ret = true; 4624 } 4625 out: 4626 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4627 return ret; 4628 } 4629 #else 4630 static inline struct page * 4631 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4632 unsigned int alloc_flags, const struct alloc_context *ac, 4633 enum compact_priority prio, enum compact_result *compact_result) 4634 { 4635 *compact_result = COMPACT_SKIPPED; 4636 return NULL; 4637 } 4638 4639 static inline bool 4640 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4641 enum compact_result compact_result, 4642 enum compact_priority *compact_priority, 4643 int *compaction_retries) 4644 { 4645 struct zone *zone; 4646 struct zoneref *z; 4647 4648 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4649 return false; 4650 4651 /* 4652 * There are setups with compaction disabled which would prefer to loop 4653 * inside the allocator rather than hit the oom killer prematurely. 4654 * Let's give them a good hope and keep retrying while the order-0 4655 * watermarks are OK. 4656 */ 4657 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4658 ac->highest_zoneidx, ac->nodemask) { 4659 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4660 ac->highest_zoneidx, alloc_flags)) 4661 return true; 4662 } 4663 return false; 4664 } 4665 #endif /* CONFIG_COMPACTION */ 4666 4667 #ifdef CONFIG_LOCKDEP 4668 static struct lockdep_map __fs_reclaim_map = 4669 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4670 4671 static bool __need_reclaim(gfp_t gfp_mask) 4672 { 4673 /* no reclaim without waiting on it */ 4674 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4675 return false; 4676 4677 /* this guy won't enter reclaim */ 4678 if (current->flags & PF_MEMALLOC) 4679 return false; 4680 4681 if (gfp_mask & __GFP_NOLOCKDEP) 4682 return false; 4683 4684 return true; 4685 } 4686 4687 void __fs_reclaim_acquire(unsigned long ip) 4688 { 4689 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4690 } 4691 4692 void __fs_reclaim_release(unsigned long ip) 4693 { 4694 lock_release(&__fs_reclaim_map, ip); 4695 } 4696 4697 void fs_reclaim_acquire(gfp_t gfp_mask) 4698 { 4699 gfp_mask = current_gfp_context(gfp_mask); 4700 4701 if (__need_reclaim(gfp_mask)) { 4702 if (gfp_mask & __GFP_FS) 4703 __fs_reclaim_acquire(_RET_IP_); 4704 4705 #ifdef CONFIG_MMU_NOTIFIER 4706 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4707 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4708 #endif 4709 4710 } 4711 } 4712 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4713 4714 void fs_reclaim_release(gfp_t gfp_mask) 4715 { 4716 gfp_mask = current_gfp_context(gfp_mask); 4717 4718 if (__need_reclaim(gfp_mask)) { 4719 if (gfp_mask & __GFP_FS) 4720 __fs_reclaim_release(_RET_IP_); 4721 } 4722 } 4723 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4724 #endif 4725 4726 /* 4727 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4728 * have been rebuilt so allocation retries. Reader side does not lock and 4729 * retries the allocation if zonelist changes. Writer side is protected by the 4730 * embedded spin_lock. 4731 */ 4732 static DEFINE_SEQLOCK(zonelist_update_seq); 4733 4734 static unsigned int zonelist_iter_begin(void) 4735 { 4736 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4737 return read_seqbegin(&zonelist_update_seq); 4738 4739 return 0; 4740 } 4741 4742 static unsigned int check_retry_zonelist(unsigned int seq) 4743 { 4744 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4745 return read_seqretry(&zonelist_update_seq, seq); 4746 4747 return seq; 4748 } 4749 4750 /* Perform direct synchronous page reclaim */ 4751 static unsigned long 4752 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4753 const struct alloc_context *ac) 4754 { 4755 unsigned int noreclaim_flag; 4756 unsigned long progress; 4757 4758 cond_resched(); 4759 4760 /* We now go into synchronous reclaim */ 4761 cpuset_memory_pressure_bump(); 4762 fs_reclaim_acquire(gfp_mask); 4763 noreclaim_flag = memalloc_noreclaim_save(); 4764 4765 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4766 ac->nodemask); 4767 4768 memalloc_noreclaim_restore(noreclaim_flag); 4769 fs_reclaim_release(gfp_mask); 4770 4771 cond_resched(); 4772 4773 return progress; 4774 } 4775 4776 /* The really slow allocator path where we enter direct reclaim */ 4777 static inline struct page * 4778 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4779 unsigned int alloc_flags, const struct alloc_context *ac, 4780 unsigned long *did_some_progress) 4781 { 4782 struct page *page = NULL; 4783 unsigned long pflags; 4784 bool drained = false; 4785 4786 psi_memstall_enter(&pflags); 4787 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4788 if (unlikely(!(*did_some_progress))) 4789 goto out; 4790 4791 retry: 4792 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4793 4794 /* 4795 * If an allocation failed after direct reclaim, it could be because 4796 * pages are pinned on the per-cpu lists or in high alloc reserves. 4797 * Shrink them and try again 4798 */ 4799 if (!page && !drained) { 4800 unreserve_highatomic_pageblock(ac, false); 4801 drain_all_pages(NULL); 4802 drained = true; 4803 goto retry; 4804 } 4805 out: 4806 psi_memstall_leave(&pflags); 4807 4808 return page; 4809 } 4810 4811 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4812 const struct alloc_context *ac) 4813 { 4814 struct zoneref *z; 4815 struct zone *zone; 4816 pg_data_t *last_pgdat = NULL; 4817 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4818 4819 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4820 ac->nodemask) { 4821 if (!managed_zone(zone)) 4822 continue; 4823 if (last_pgdat != zone->zone_pgdat) { 4824 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4825 last_pgdat = zone->zone_pgdat; 4826 } 4827 } 4828 } 4829 4830 static inline unsigned int 4831 gfp_to_alloc_flags(gfp_t gfp_mask) 4832 { 4833 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4834 4835 /* 4836 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4837 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4838 * to save two branches. 4839 */ 4840 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4841 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4842 4843 /* 4844 * The caller may dip into page reserves a bit more if the caller 4845 * cannot run direct reclaim, or if the caller has realtime scheduling 4846 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4847 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4848 */ 4849 alloc_flags |= (__force int) 4850 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4851 4852 if (gfp_mask & __GFP_ATOMIC) { 4853 /* 4854 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4855 * if it can't schedule. 4856 */ 4857 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4858 alloc_flags |= ALLOC_HARDER; 4859 /* 4860 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4861 * comment for __cpuset_node_allowed(). 4862 */ 4863 alloc_flags &= ~ALLOC_CPUSET; 4864 } else if (unlikely(rt_task(current)) && in_task()) 4865 alloc_flags |= ALLOC_HARDER; 4866 4867 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4868 4869 return alloc_flags; 4870 } 4871 4872 static bool oom_reserves_allowed(struct task_struct *tsk) 4873 { 4874 if (!tsk_is_oom_victim(tsk)) 4875 return false; 4876 4877 /* 4878 * !MMU doesn't have oom reaper so give access to memory reserves 4879 * only to the thread with TIF_MEMDIE set 4880 */ 4881 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4882 return false; 4883 4884 return true; 4885 } 4886 4887 /* 4888 * Distinguish requests which really need access to full memory 4889 * reserves from oom victims which can live with a portion of it 4890 */ 4891 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4892 { 4893 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4894 return 0; 4895 if (gfp_mask & __GFP_MEMALLOC) 4896 return ALLOC_NO_WATERMARKS; 4897 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4898 return ALLOC_NO_WATERMARKS; 4899 if (!in_interrupt()) { 4900 if (current->flags & PF_MEMALLOC) 4901 return ALLOC_NO_WATERMARKS; 4902 else if (oom_reserves_allowed(current)) 4903 return ALLOC_OOM; 4904 } 4905 4906 return 0; 4907 } 4908 4909 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4910 { 4911 return !!__gfp_pfmemalloc_flags(gfp_mask); 4912 } 4913 4914 /* 4915 * Checks whether it makes sense to retry the reclaim to make a forward progress 4916 * for the given allocation request. 4917 * 4918 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4919 * without success, or when we couldn't even meet the watermark if we 4920 * reclaimed all remaining pages on the LRU lists. 4921 * 4922 * Returns true if a retry is viable or false to enter the oom path. 4923 */ 4924 static inline bool 4925 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4926 struct alloc_context *ac, int alloc_flags, 4927 bool did_some_progress, int *no_progress_loops) 4928 { 4929 struct zone *zone; 4930 struct zoneref *z; 4931 bool ret = false; 4932 4933 /* 4934 * Costly allocations might have made a progress but this doesn't mean 4935 * their order will become available due to high fragmentation so 4936 * always increment the no progress counter for them 4937 */ 4938 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4939 *no_progress_loops = 0; 4940 else 4941 (*no_progress_loops)++; 4942 4943 /* 4944 * Make sure we converge to OOM if we cannot make any progress 4945 * several times in the row. 4946 */ 4947 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4948 /* Before OOM, exhaust highatomic_reserve */ 4949 return unreserve_highatomic_pageblock(ac, true); 4950 } 4951 4952 /* 4953 * Keep reclaiming pages while there is a chance this will lead 4954 * somewhere. If none of the target zones can satisfy our allocation 4955 * request even if all reclaimable pages are considered then we are 4956 * screwed and have to go OOM. 4957 */ 4958 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4959 ac->highest_zoneidx, ac->nodemask) { 4960 unsigned long available; 4961 unsigned long reclaimable; 4962 unsigned long min_wmark = min_wmark_pages(zone); 4963 bool wmark; 4964 4965 available = reclaimable = zone_reclaimable_pages(zone); 4966 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4967 4968 /* 4969 * Would the allocation succeed if we reclaimed all 4970 * reclaimable pages? 4971 */ 4972 wmark = __zone_watermark_ok(zone, order, min_wmark, 4973 ac->highest_zoneidx, alloc_flags, available); 4974 trace_reclaim_retry_zone(z, order, reclaimable, 4975 available, min_wmark, *no_progress_loops, wmark); 4976 if (wmark) { 4977 ret = true; 4978 break; 4979 } 4980 } 4981 4982 /* 4983 * Memory allocation/reclaim might be called from a WQ context and the 4984 * current implementation of the WQ concurrency control doesn't 4985 * recognize that a particular WQ is congested if the worker thread is 4986 * looping without ever sleeping. Therefore we have to do a short sleep 4987 * here rather than calling cond_resched(). 4988 */ 4989 if (current->flags & PF_WQ_WORKER) 4990 schedule_timeout_uninterruptible(1); 4991 else 4992 cond_resched(); 4993 return ret; 4994 } 4995 4996 static inline bool 4997 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4998 { 4999 /* 5000 * It's possible that cpuset's mems_allowed and the nodemask from 5001 * mempolicy don't intersect. This should be normally dealt with by 5002 * policy_nodemask(), but it's possible to race with cpuset update in 5003 * such a way the check therein was true, and then it became false 5004 * before we got our cpuset_mems_cookie here. 5005 * This assumes that for all allocations, ac->nodemask can come only 5006 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 5007 * when it does not intersect with the cpuset restrictions) or the 5008 * caller can deal with a violated nodemask. 5009 */ 5010 if (cpusets_enabled() && ac->nodemask && 5011 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 5012 ac->nodemask = NULL; 5013 return true; 5014 } 5015 5016 /* 5017 * When updating a task's mems_allowed or mempolicy nodemask, it is 5018 * possible to race with parallel threads in such a way that our 5019 * allocation can fail while the mask is being updated. If we are about 5020 * to fail, check if the cpuset changed during allocation and if so, 5021 * retry. 5022 */ 5023 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5024 return true; 5025 5026 return false; 5027 } 5028 5029 static inline struct page * 5030 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5031 struct alloc_context *ac) 5032 { 5033 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5034 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5035 struct page *page = NULL; 5036 unsigned int alloc_flags; 5037 unsigned long did_some_progress; 5038 enum compact_priority compact_priority; 5039 enum compact_result compact_result; 5040 int compaction_retries; 5041 int no_progress_loops; 5042 unsigned int cpuset_mems_cookie; 5043 unsigned int zonelist_iter_cookie; 5044 int reserve_flags; 5045 5046 /* 5047 * We also sanity check to catch abuse of atomic reserves being used by 5048 * callers that are not in atomic context. 5049 */ 5050 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 5051 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 5052 gfp_mask &= ~__GFP_ATOMIC; 5053 5054 restart: 5055 compaction_retries = 0; 5056 no_progress_loops = 0; 5057 compact_priority = DEF_COMPACT_PRIORITY; 5058 cpuset_mems_cookie = read_mems_allowed_begin(); 5059 zonelist_iter_cookie = zonelist_iter_begin(); 5060 5061 /* 5062 * The fast path uses conservative alloc_flags to succeed only until 5063 * kswapd needs to be woken up, and to avoid the cost of setting up 5064 * alloc_flags precisely. So we do that now. 5065 */ 5066 alloc_flags = gfp_to_alloc_flags(gfp_mask); 5067 5068 /* 5069 * We need to recalculate the starting point for the zonelist iterator 5070 * because we might have used different nodemask in the fast path, or 5071 * there was a cpuset modification and we are retrying - otherwise we 5072 * could end up iterating over non-eligible zones endlessly. 5073 */ 5074 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5075 ac->highest_zoneidx, ac->nodemask); 5076 if (!ac->preferred_zoneref->zone) 5077 goto nopage; 5078 5079 /* 5080 * Check for insane configurations where the cpuset doesn't contain 5081 * any suitable zone to satisfy the request - e.g. non-movable 5082 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5083 */ 5084 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5085 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5086 ac->highest_zoneidx, 5087 &cpuset_current_mems_allowed); 5088 if (!z->zone) 5089 goto nopage; 5090 } 5091 5092 if (alloc_flags & ALLOC_KSWAPD) 5093 wake_all_kswapds(order, gfp_mask, ac); 5094 5095 /* 5096 * The adjusted alloc_flags might result in immediate success, so try 5097 * that first 5098 */ 5099 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5100 if (page) 5101 goto got_pg; 5102 5103 /* 5104 * For costly allocations, try direct compaction first, as it's likely 5105 * that we have enough base pages and don't need to reclaim. For non- 5106 * movable high-order allocations, do that as well, as compaction will 5107 * try prevent permanent fragmentation by migrating from blocks of the 5108 * same migratetype. 5109 * Don't try this for allocations that are allowed to ignore 5110 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5111 */ 5112 if (can_direct_reclaim && 5113 (costly_order || 5114 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5115 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5116 page = __alloc_pages_direct_compact(gfp_mask, order, 5117 alloc_flags, ac, 5118 INIT_COMPACT_PRIORITY, 5119 &compact_result); 5120 if (page) 5121 goto got_pg; 5122 5123 /* 5124 * Checks for costly allocations with __GFP_NORETRY, which 5125 * includes some THP page fault allocations 5126 */ 5127 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5128 /* 5129 * If allocating entire pageblock(s) and compaction 5130 * failed because all zones are below low watermarks 5131 * or is prohibited because it recently failed at this 5132 * order, fail immediately unless the allocator has 5133 * requested compaction and reclaim retry. 5134 * 5135 * Reclaim is 5136 * - potentially very expensive because zones are far 5137 * below their low watermarks or this is part of very 5138 * bursty high order allocations, 5139 * - not guaranteed to help because isolate_freepages() 5140 * may not iterate over freed pages as part of its 5141 * linear scan, and 5142 * - unlikely to make entire pageblocks free on its 5143 * own. 5144 */ 5145 if (compact_result == COMPACT_SKIPPED || 5146 compact_result == COMPACT_DEFERRED) 5147 goto nopage; 5148 5149 /* 5150 * Looks like reclaim/compaction is worth trying, but 5151 * sync compaction could be very expensive, so keep 5152 * using async compaction. 5153 */ 5154 compact_priority = INIT_COMPACT_PRIORITY; 5155 } 5156 } 5157 5158 retry: 5159 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5160 if (alloc_flags & ALLOC_KSWAPD) 5161 wake_all_kswapds(order, gfp_mask, ac); 5162 5163 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5164 if (reserve_flags) 5165 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 5166 (alloc_flags & ALLOC_KSWAPD); 5167 5168 /* 5169 * Reset the nodemask and zonelist iterators if memory policies can be 5170 * ignored. These allocations are high priority and system rather than 5171 * user oriented. 5172 */ 5173 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5174 ac->nodemask = NULL; 5175 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5176 ac->highest_zoneidx, ac->nodemask); 5177 } 5178 5179 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5180 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5181 if (page) 5182 goto got_pg; 5183 5184 /* Caller is not willing to reclaim, we can't balance anything */ 5185 if (!can_direct_reclaim) 5186 goto nopage; 5187 5188 /* Avoid recursion of direct reclaim */ 5189 if (current->flags & PF_MEMALLOC) 5190 goto nopage; 5191 5192 /* Try direct reclaim and then allocating */ 5193 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5194 &did_some_progress); 5195 if (page) 5196 goto got_pg; 5197 5198 /* Try direct compaction and then allocating */ 5199 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5200 compact_priority, &compact_result); 5201 if (page) 5202 goto got_pg; 5203 5204 /* Do not loop if specifically requested */ 5205 if (gfp_mask & __GFP_NORETRY) 5206 goto nopage; 5207 5208 /* 5209 * Do not retry costly high order allocations unless they are 5210 * __GFP_RETRY_MAYFAIL 5211 */ 5212 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5213 goto nopage; 5214 5215 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5216 did_some_progress > 0, &no_progress_loops)) 5217 goto retry; 5218 5219 /* 5220 * It doesn't make any sense to retry for the compaction if the order-0 5221 * reclaim is not able to make any progress because the current 5222 * implementation of the compaction depends on the sufficient amount 5223 * of free memory (see __compaction_suitable) 5224 */ 5225 if (did_some_progress > 0 && 5226 should_compact_retry(ac, order, alloc_flags, 5227 compact_result, &compact_priority, 5228 &compaction_retries)) 5229 goto retry; 5230 5231 5232 /* 5233 * Deal with possible cpuset update races or zonelist updates to avoid 5234 * a unnecessary OOM kill. 5235 */ 5236 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5237 check_retry_zonelist(zonelist_iter_cookie)) 5238 goto restart; 5239 5240 /* Reclaim has failed us, start killing things */ 5241 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5242 if (page) 5243 goto got_pg; 5244 5245 /* Avoid allocations with no watermarks from looping endlessly */ 5246 if (tsk_is_oom_victim(current) && 5247 (alloc_flags & ALLOC_OOM || 5248 (gfp_mask & __GFP_NOMEMALLOC))) 5249 goto nopage; 5250 5251 /* Retry as long as the OOM killer is making progress */ 5252 if (did_some_progress) { 5253 no_progress_loops = 0; 5254 goto retry; 5255 } 5256 5257 nopage: 5258 /* 5259 * Deal with possible cpuset update races or zonelist updates to avoid 5260 * a unnecessary OOM kill. 5261 */ 5262 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5263 check_retry_zonelist(zonelist_iter_cookie)) 5264 goto restart; 5265 5266 /* 5267 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5268 * we always retry 5269 */ 5270 if (gfp_mask & __GFP_NOFAIL) { 5271 /* 5272 * All existing users of the __GFP_NOFAIL are blockable, so warn 5273 * of any new users that actually require GFP_NOWAIT 5274 */ 5275 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5276 goto fail; 5277 5278 /* 5279 * PF_MEMALLOC request from this context is rather bizarre 5280 * because we cannot reclaim anything and only can loop waiting 5281 * for somebody to do a work for us 5282 */ 5283 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5284 5285 /* 5286 * non failing costly orders are a hard requirement which we 5287 * are not prepared for much so let's warn about these users 5288 * so that we can identify them and convert them to something 5289 * else. 5290 */ 5291 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 5292 5293 /* 5294 * Help non-failing allocations by giving them access to memory 5295 * reserves but do not use ALLOC_NO_WATERMARKS because this 5296 * could deplete whole memory reserves which would just make 5297 * the situation worse 5298 */ 5299 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5300 if (page) 5301 goto got_pg; 5302 5303 cond_resched(); 5304 goto retry; 5305 } 5306 fail: 5307 warn_alloc(gfp_mask, ac->nodemask, 5308 "page allocation failure: order:%u", order); 5309 got_pg: 5310 return page; 5311 } 5312 5313 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5314 int preferred_nid, nodemask_t *nodemask, 5315 struct alloc_context *ac, gfp_t *alloc_gfp, 5316 unsigned int *alloc_flags) 5317 { 5318 ac->highest_zoneidx = gfp_zone(gfp_mask); 5319 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5320 ac->nodemask = nodemask; 5321 ac->migratetype = gfp_migratetype(gfp_mask); 5322 5323 if (cpusets_enabled()) { 5324 *alloc_gfp |= __GFP_HARDWALL; 5325 /* 5326 * When we are in the interrupt context, it is irrelevant 5327 * to the current task context. It means that any node ok. 5328 */ 5329 if (in_task() && !ac->nodemask) 5330 ac->nodemask = &cpuset_current_mems_allowed; 5331 else 5332 *alloc_flags |= ALLOC_CPUSET; 5333 } 5334 5335 might_alloc(gfp_mask); 5336 5337 if (should_fail_alloc_page(gfp_mask, order)) 5338 return false; 5339 5340 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5341 5342 /* Dirty zone balancing only done in the fast path */ 5343 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5344 5345 /* 5346 * The preferred zone is used for statistics but crucially it is 5347 * also used as the starting point for the zonelist iterator. It 5348 * may get reset for allocations that ignore memory policies. 5349 */ 5350 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5351 ac->highest_zoneidx, ac->nodemask); 5352 5353 return true; 5354 } 5355 5356 /* 5357 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5358 * @gfp: GFP flags for the allocation 5359 * @preferred_nid: The preferred NUMA node ID to allocate from 5360 * @nodemask: Set of nodes to allocate from, may be NULL 5361 * @nr_pages: The number of pages desired on the list or array 5362 * @page_list: Optional list to store the allocated pages 5363 * @page_array: Optional array to store the pages 5364 * 5365 * This is a batched version of the page allocator that attempts to 5366 * allocate nr_pages quickly. Pages are added to page_list if page_list 5367 * is not NULL, otherwise it is assumed that the page_array is valid. 5368 * 5369 * For lists, nr_pages is the number of pages that should be allocated. 5370 * 5371 * For arrays, only NULL elements are populated with pages and nr_pages 5372 * is the maximum number of pages that will be stored in the array. 5373 * 5374 * Returns the number of pages on the list or array. 5375 */ 5376 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5377 nodemask_t *nodemask, int nr_pages, 5378 struct list_head *page_list, 5379 struct page **page_array) 5380 { 5381 struct page *page; 5382 unsigned long flags; 5383 unsigned long __maybe_unused UP_flags; 5384 struct zone *zone; 5385 struct zoneref *z; 5386 struct per_cpu_pages *pcp; 5387 struct list_head *pcp_list; 5388 struct alloc_context ac; 5389 gfp_t alloc_gfp; 5390 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5391 int nr_populated = 0, nr_account = 0; 5392 5393 /* 5394 * Skip populated array elements to determine if any pages need 5395 * to be allocated before disabling IRQs. 5396 */ 5397 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5398 nr_populated++; 5399 5400 /* No pages requested? */ 5401 if (unlikely(nr_pages <= 0)) 5402 goto out; 5403 5404 /* Already populated array? */ 5405 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5406 goto out; 5407 5408 /* Bulk allocator does not support memcg accounting. */ 5409 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5410 goto failed; 5411 5412 /* Use the single page allocator for one page. */ 5413 if (nr_pages - nr_populated == 1) 5414 goto failed; 5415 5416 #ifdef CONFIG_PAGE_OWNER 5417 /* 5418 * PAGE_OWNER may recurse into the allocator to allocate space to 5419 * save the stack with pagesets.lock held. Releasing/reacquiring 5420 * removes much of the performance benefit of bulk allocation so 5421 * force the caller to allocate one page at a time as it'll have 5422 * similar performance to added complexity to the bulk allocator. 5423 */ 5424 if (static_branch_unlikely(&page_owner_inited)) 5425 goto failed; 5426 #endif 5427 5428 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5429 gfp &= gfp_allowed_mask; 5430 alloc_gfp = gfp; 5431 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5432 goto out; 5433 gfp = alloc_gfp; 5434 5435 /* Find an allowed local zone that meets the low watermark. */ 5436 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5437 unsigned long mark; 5438 5439 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5440 !__cpuset_zone_allowed(zone, gfp)) { 5441 continue; 5442 } 5443 5444 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5445 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5446 goto failed; 5447 } 5448 5449 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5450 if (zone_watermark_fast(zone, 0, mark, 5451 zonelist_zone_idx(ac.preferred_zoneref), 5452 alloc_flags, gfp)) { 5453 break; 5454 } 5455 } 5456 5457 /* 5458 * If there are no allowed local zones that meets the watermarks then 5459 * try to allocate a single page and reclaim if necessary. 5460 */ 5461 if (unlikely(!zone)) 5462 goto failed; 5463 5464 /* Is a parallel drain in progress? */ 5465 pcp_trylock_prepare(UP_flags); 5466 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 5467 if (!pcp) 5468 goto failed_irq; 5469 5470 /* Attempt the batch allocation */ 5471 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5472 while (nr_populated < nr_pages) { 5473 5474 /* Skip existing pages */ 5475 if (page_array && page_array[nr_populated]) { 5476 nr_populated++; 5477 continue; 5478 } 5479 5480 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5481 pcp, pcp_list); 5482 if (unlikely(!page)) { 5483 /* Try and allocate at least one page */ 5484 if (!nr_account) { 5485 pcp_spin_unlock_irqrestore(pcp, flags); 5486 goto failed_irq; 5487 } 5488 break; 5489 } 5490 nr_account++; 5491 5492 prep_new_page(page, 0, gfp, 0); 5493 if (page_list) 5494 list_add(&page->lru, page_list); 5495 else 5496 page_array[nr_populated] = page; 5497 nr_populated++; 5498 } 5499 5500 pcp_spin_unlock_irqrestore(pcp, flags); 5501 pcp_trylock_finish(UP_flags); 5502 5503 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5504 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5505 5506 out: 5507 return nr_populated; 5508 5509 failed_irq: 5510 pcp_trylock_finish(UP_flags); 5511 5512 failed: 5513 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5514 if (page) { 5515 if (page_list) 5516 list_add(&page->lru, page_list); 5517 else 5518 page_array[nr_populated] = page; 5519 nr_populated++; 5520 } 5521 5522 goto out; 5523 } 5524 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5525 5526 /* 5527 * This is the 'heart' of the zoned buddy allocator. 5528 */ 5529 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5530 nodemask_t *nodemask) 5531 { 5532 struct page *page; 5533 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5534 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5535 struct alloc_context ac = { }; 5536 5537 /* 5538 * There are several places where we assume that the order value is sane 5539 * so bail out early if the request is out of bound. 5540 */ 5541 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5542 return NULL; 5543 5544 gfp &= gfp_allowed_mask; 5545 /* 5546 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5547 * resp. GFP_NOIO which has to be inherited for all allocation requests 5548 * from a particular context which has been marked by 5549 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5550 * movable zones are not used during allocation. 5551 */ 5552 gfp = current_gfp_context(gfp); 5553 alloc_gfp = gfp; 5554 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5555 &alloc_gfp, &alloc_flags)) 5556 return NULL; 5557 5558 /* 5559 * Forbid the first pass from falling back to types that fragment 5560 * memory until all local zones are considered. 5561 */ 5562 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5563 5564 /* First allocation attempt */ 5565 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5566 if (likely(page)) 5567 goto out; 5568 5569 alloc_gfp = gfp; 5570 ac.spread_dirty_pages = false; 5571 5572 /* 5573 * Restore the original nodemask if it was potentially replaced with 5574 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5575 */ 5576 ac.nodemask = nodemask; 5577 5578 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5579 5580 out: 5581 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5582 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5583 __free_pages(page, order); 5584 page = NULL; 5585 } 5586 5587 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5588 kmsan_alloc_page(page, order, alloc_gfp); 5589 5590 return page; 5591 } 5592 EXPORT_SYMBOL(__alloc_pages); 5593 5594 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5595 nodemask_t *nodemask) 5596 { 5597 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5598 preferred_nid, nodemask); 5599 5600 if (page && order > 1) 5601 prep_transhuge_page(page); 5602 return (struct folio *)page; 5603 } 5604 EXPORT_SYMBOL(__folio_alloc); 5605 5606 /* 5607 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5608 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5609 * you need to access high mem. 5610 */ 5611 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5612 { 5613 struct page *page; 5614 5615 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5616 if (!page) 5617 return 0; 5618 return (unsigned long) page_address(page); 5619 } 5620 EXPORT_SYMBOL(__get_free_pages); 5621 5622 unsigned long get_zeroed_page(gfp_t gfp_mask) 5623 { 5624 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5625 } 5626 EXPORT_SYMBOL(get_zeroed_page); 5627 5628 /** 5629 * __free_pages - Free pages allocated with alloc_pages(). 5630 * @page: The page pointer returned from alloc_pages(). 5631 * @order: The order of the allocation. 5632 * 5633 * This function can free multi-page allocations that are not compound 5634 * pages. It does not check that the @order passed in matches that of 5635 * the allocation, so it is easy to leak memory. Freeing more memory 5636 * than was allocated will probably emit a warning. 5637 * 5638 * If the last reference to this page is speculative, it will be released 5639 * by put_page() which only frees the first page of a non-compound 5640 * allocation. To prevent the remaining pages from being leaked, we free 5641 * the subsequent pages here. If you want to use the page's reference 5642 * count to decide when to free the allocation, you should allocate a 5643 * compound page, and use put_page() instead of __free_pages(). 5644 * 5645 * Context: May be called in interrupt context or while holding a normal 5646 * spinlock, but not in NMI context or while holding a raw spinlock. 5647 */ 5648 void __free_pages(struct page *page, unsigned int order) 5649 { 5650 if (put_page_testzero(page)) 5651 free_the_page(page, order); 5652 else if (!PageHead(page)) 5653 while (order-- > 0) 5654 free_the_page(page + (1 << order), order); 5655 } 5656 EXPORT_SYMBOL(__free_pages); 5657 5658 void free_pages(unsigned long addr, unsigned int order) 5659 { 5660 if (addr != 0) { 5661 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5662 __free_pages(virt_to_page((void *)addr), order); 5663 } 5664 } 5665 5666 EXPORT_SYMBOL(free_pages); 5667 5668 /* 5669 * Page Fragment: 5670 * An arbitrary-length arbitrary-offset area of memory which resides 5671 * within a 0 or higher order page. Multiple fragments within that page 5672 * are individually refcounted, in the page's reference counter. 5673 * 5674 * The page_frag functions below provide a simple allocation framework for 5675 * page fragments. This is used by the network stack and network device 5676 * drivers to provide a backing region of memory for use as either an 5677 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5678 */ 5679 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5680 gfp_t gfp_mask) 5681 { 5682 struct page *page = NULL; 5683 gfp_t gfp = gfp_mask; 5684 5685 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5686 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5687 __GFP_NOMEMALLOC; 5688 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5689 PAGE_FRAG_CACHE_MAX_ORDER); 5690 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5691 #endif 5692 if (unlikely(!page)) 5693 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5694 5695 nc->va = page ? page_address(page) : NULL; 5696 5697 return page; 5698 } 5699 5700 void __page_frag_cache_drain(struct page *page, unsigned int count) 5701 { 5702 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5703 5704 if (page_ref_sub_and_test(page, count)) 5705 free_the_page(page, compound_order(page)); 5706 } 5707 EXPORT_SYMBOL(__page_frag_cache_drain); 5708 5709 void *page_frag_alloc_align(struct page_frag_cache *nc, 5710 unsigned int fragsz, gfp_t gfp_mask, 5711 unsigned int align_mask) 5712 { 5713 unsigned int size = PAGE_SIZE; 5714 struct page *page; 5715 int offset; 5716 5717 if (unlikely(!nc->va)) { 5718 refill: 5719 page = __page_frag_cache_refill(nc, gfp_mask); 5720 if (!page) 5721 return NULL; 5722 5723 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5724 /* if size can vary use size else just use PAGE_SIZE */ 5725 size = nc->size; 5726 #endif 5727 /* Even if we own the page, we do not use atomic_set(). 5728 * This would break get_page_unless_zero() users. 5729 */ 5730 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5731 5732 /* reset page count bias and offset to start of new frag */ 5733 nc->pfmemalloc = page_is_pfmemalloc(page); 5734 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5735 nc->offset = size; 5736 } 5737 5738 offset = nc->offset - fragsz; 5739 if (unlikely(offset < 0)) { 5740 page = virt_to_page(nc->va); 5741 5742 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5743 goto refill; 5744 5745 if (unlikely(nc->pfmemalloc)) { 5746 free_the_page(page, compound_order(page)); 5747 goto refill; 5748 } 5749 5750 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5751 /* if size can vary use size else just use PAGE_SIZE */ 5752 size = nc->size; 5753 #endif 5754 /* OK, page count is 0, we can safely set it */ 5755 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5756 5757 /* reset page count bias and offset to start of new frag */ 5758 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5759 offset = size - fragsz; 5760 if (unlikely(offset < 0)) { 5761 /* 5762 * The caller is trying to allocate a fragment 5763 * with fragsz > PAGE_SIZE but the cache isn't big 5764 * enough to satisfy the request, this may 5765 * happen in low memory conditions. 5766 * We don't release the cache page because 5767 * it could make memory pressure worse 5768 * so we simply return NULL here. 5769 */ 5770 return NULL; 5771 } 5772 } 5773 5774 nc->pagecnt_bias--; 5775 offset &= align_mask; 5776 nc->offset = offset; 5777 5778 return nc->va + offset; 5779 } 5780 EXPORT_SYMBOL(page_frag_alloc_align); 5781 5782 /* 5783 * Frees a page fragment allocated out of either a compound or order 0 page. 5784 */ 5785 void page_frag_free(void *addr) 5786 { 5787 struct page *page = virt_to_head_page(addr); 5788 5789 if (unlikely(put_page_testzero(page))) 5790 free_the_page(page, compound_order(page)); 5791 } 5792 EXPORT_SYMBOL(page_frag_free); 5793 5794 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5795 size_t size) 5796 { 5797 if (addr) { 5798 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5799 struct page *page = virt_to_page((void *)addr); 5800 struct page *last = page + nr; 5801 5802 split_page_owner(page, 1 << order); 5803 split_page_memcg(page, 1 << order); 5804 while (page < --last) 5805 set_page_refcounted(last); 5806 5807 last = page + (1UL << order); 5808 for (page += nr; page < last; page++) 5809 __free_pages_ok(page, 0, FPI_TO_TAIL); 5810 } 5811 return (void *)addr; 5812 } 5813 5814 /** 5815 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5816 * @size: the number of bytes to allocate 5817 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5818 * 5819 * This function is similar to alloc_pages(), except that it allocates the 5820 * minimum number of pages to satisfy the request. alloc_pages() can only 5821 * allocate memory in power-of-two pages. 5822 * 5823 * This function is also limited by MAX_ORDER. 5824 * 5825 * Memory allocated by this function must be released by free_pages_exact(). 5826 * 5827 * Return: pointer to the allocated area or %NULL in case of error. 5828 */ 5829 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5830 { 5831 unsigned int order = get_order(size); 5832 unsigned long addr; 5833 5834 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5835 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5836 5837 addr = __get_free_pages(gfp_mask, order); 5838 return make_alloc_exact(addr, order, size); 5839 } 5840 EXPORT_SYMBOL(alloc_pages_exact); 5841 5842 /** 5843 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5844 * pages on a node. 5845 * @nid: the preferred node ID where memory should be allocated 5846 * @size: the number of bytes to allocate 5847 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5848 * 5849 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5850 * back. 5851 * 5852 * Return: pointer to the allocated area or %NULL in case of error. 5853 */ 5854 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5855 { 5856 unsigned int order = get_order(size); 5857 struct page *p; 5858 5859 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5860 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5861 5862 p = alloc_pages_node(nid, gfp_mask, order); 5863 if (!p) 5864 return NULL; 5865 return make_alloc_exact((unsigned long)page_address(p), order, size); 5866 } 5867 5868 /** 5869 * free_pages_exact - release memory allocated via alloc_pages_exact() 5870 * @virt: the value returned by alloc_pages_exact. 5871 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5872 * 5873 * Release the memory allocated by a previous call to alloc_pages_exact. 5874 */ 5875 void free_pages_exact(void *virt, size_t size) 5876 { 5877 unsigned long addr = (unsigned long)virt; 5878 unsigned long end = addr + PAGE_ALIGN(size); 5879 5880 while (addr < end) { 5881 free_page(addr); 5882 addr += PAGE_SIZE; 5883 } 5884 } 5885 EXPORT_SYMBOL(free_pages_exact); 5886 5887 /** 5888 * nr_free_zone_pages - count number of pages beyond high watermark 5889 * @offset: The zone index of the highest zone 5890 * 5891 * nr_free_zone_pages() counts the number of pages which are beyond the 5892 * high watermark within all zones at or below a given zone index. For each 5893 * zone, the number of pages is calculated as: 5894 * 5895 * nr_free_zone_pages = managed_pages - high_pages 5896 * 5897 * Return: number of pages beyond high watermark. 5898 */ 5899 static unsigned long nr_free_zone_pages(int offset) 5900 { 5901 struct zoneref *z; 5902 struct zone *zone; 5903 5904 /* Just pick one node, since fallback list is circular */ 5905 unsigned long sum = 0; 5906 5907 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5908 5909 for_each_zone_zonelist(zone, z, zonelist, offset) { 5910 unsigned long size = zone_managed_pages(zone); 5911 unsigned long high = high_wmark_pages(zone); 5912 if (size > high) 5913 sum += size - high; 5914 } 5915 5916 return sum; 5917 } 5918 5919 /** 5920 * nr_free_buffer_pages - count number of pages beyond high watermark 5921 * 5922 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5923 * watermark within ZONE_DMA and ZONE_NORMAL. 5924 * 5925 * Return: number of pages beyond high watermark within ZONE_DMA and 5926 * ZONE_NORMAL. 5927 */ 5928 unsigned long nr_free_buffer_pages(void) 5929 { 5930 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5931 } 5932 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5933 5934 static inline void show_node(struct zone *zone) 5935 { 5936 if (IS_ENABLED(CONFIG_NUMA)) 5937 printk("Node %d ", zone_to_nid(zone)); 5938 } 5939 5940 long si_mem_available(void) 5941 { 5942 long available; 5943 unsigned long pagecache; 5944 unsigned long wmark_low = 0; 5945 unsigned long pages[NR_LRU_LISTS]; 5946 unsigned long reclaimable; 5947 struct zone *zone; 5948 int lru; 5949 5950 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5951 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5952 5953 for_each_zone(zone) 5954 wmark_low += low_wmark_pages(zone); 5955 5956 /* 5957 * Estimate the amount of memory available for userspace allocations, 5958 * without causing swapping or OOM. 5959 */ 5960 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5961 5962 /* 5963 * Not all the page cache can be freed, otherwise the system will 5964 * start swapping or thrashing. Assume at least half of the page 5965 * cache, or the low watermark worth of cache, needs to stay. 5966 */ 5967 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5968 pagecache -= min(pagecache / 2, wmark_low); 5969 available += pagecache; 5970 5971 /* 5972 * Part of the reclaimable slab and other kernel memory consists of 5973 * items that are in use, and cannot be freed. Cap this estimate at the 5974 * low watermark. 5975 */ 5976 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5977 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5978 available += reclaimable - min(reclaimable / 2, wmark_low); 5979 5980 if (available < 0) 5981 available = 0; 5982 return available; 5983 } 5984 EXPORT_SYMBOL_GPL(si_mem_available); 5985 5986 void si_meminfo(struct sysinfo *val) 5987 { 5988 val->totalram = totalram_pages(); 5989 val->sharedram = global_node_page_state(NR_SHMEM); 5990 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5991 val->bufferram = nr_blockdev_pages(); 5992 val->totalhigh = totalhigh_pages(); 5993 val->freehigh = nr_free_highpages(); 5994 val->mem_unit = PAGE_SIZE; 5995 } 5996 5997 EXPORT_SYMBOL(si_meminfo); 5998 5999 #ifdef CONFIG_NUMA 6000 void si_meminfo_node(struct sysinfo *val, int nid) 6001 { 6002 int zone_type; /* needs to be signed */ 6003 unsigned long managed_pages = 0; 6004 unsigned long managed_highpages = 0; 6005 unsigned long free_highpages = 0; 6006 pg_data_t *pgdat = NODE_DATA(nid); 6007 6008 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 6009 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 6010 val->totalram = managed_pages; 6011 val->sharedram = node_page_state(pgdat, NR_SHMEM); 6012 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 6013 #ifdef CONFIG_HIGHMEM 6014 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 6015 struct zone *zone = &pgdat->node_zones[zone_type]; 6016 6017 if (is_highmem(zone)) { 6018 managed_highpages += zone_managed_pages(zone); 6019 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 6020 } 6021 } 6022 val->totalhigh = managed_highpages; 6023 val->freehigh = free_highpages; 6024 #else 6025 val->totalhigh = managed_highpages; 6026 val->freehigh = free_highpages; 6027 #endif 6028 val->mem_unit = PAGE_SIZE; 6029 } 6030 #endif 6031 6032 /* 6033 * Determine whether the node should be displayed or not, depending on whether 6034 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6035 */ 6036 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6037 { 6038 if (!(flags & SHOW_MEM_FILTER_NODES)) 6039 return false; 6040 6041 /* 6042 * no node mask - aka implicit memory numa policy. Do not bother with 6043 * the synchronization - read_mems_allowed_begin - because we do not 6044 * have to be precise here. 6045 */ 6046 if (!nodemask) 6047 nodemask = &cpuset_current_mems_allowed; 6048 6049 return !node_isset(nid, *nodemask); 6050 } 6051 6052 #define K(x) ((x) << (PAGE_SHIFT-10)) 6053 6054 static void show_migration_types(unsigned char type) 6055 { 6056 static const char types[MIGRATE_TYPES] = { 6057 [MIGRATE_UNMOVABLE] = 'U', 6058 [MIGRATE_MOVABLE] = 'M', 6059 [MIGRATE_RECLAIMABLE] = 'E', 6060 [MIGRATE_HIGHATOMIC] = 'H', 6061 #ifdef CONFIG_CMA 6062 [MIGRATE_CMA] = 'C', 6063 #endif 6064 #ifdef CONFIG_MEMORY_ISOLATION 6065 [MIGRATE_ISOLATE] = 'I', 6066 #endif 6067 }; 6068 char tmp[MIGRATE_TYPES + 1]; 6069 char *p = tmp; 6070 int i; 6071 6072 for (i = 0; i < MIGRATE_TYPES; i++) { 6073 if (type & (1 << i)) 6074 *p++ = types[i]; 6075 } 6076 6077 *p = '\0'; 6078 printk(KERN_CONT "(%s) ", tmp); 6079 } 6080 6081 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6082 { 6083 int zone_idx; 6084 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6085 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6086 return true; 6087 return false; 6088 } 6089 6090 /* 6091 * Show free area list (used inside shift_scroll-lock stuff) 6092 * We also calculate the percentage fragmentation. We do this by counting the 6093 * memory on each free list with the exception of the first item on the list. 6094 * 6095 * Bits in @filter: 6096 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6097 * cpuset. 6098 */ 6099 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6100 { 6101 unsigned long free_pcp = 0; 6102 int cpu, nid; 6103 struct zone *zone; 6104 pg_data_t *pgdat; 6105 6106 for_each_populated_zone(zone) { 6107 if (zone_idx(zone) > max_zone_idx) 6108 continue; 6109 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6110 continue; 6111 6112 for_each_online_cpu(cpu) 6113 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6114 } 6115 6116 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6117 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6118 " unevictable:%lu dirty:%lu writeback:%lu\n" 6119 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6120 " mapped:%lu shmem:%lu pagetables:%lu\n" 6121 " sec_pagetables:%lu bounce:%lu\n" 6122 " kernel_misc_reclaimable:%lu\n" 6123 " free:%lu free_pcp:%lu free_cma:%lu\n", 6124 global_node_page_state(NR_ACTIVE_ANON), 6125 global_node_page_state(NR_INACTIVE_ANON), 6126 global_node_page_state(NR_ISOLATED_ANON), 6127 global_node_page_state(NR_ACTIVE_FILE), 6128 global_node_page_state(NR_INACTIVE_FILE), 6129 global_node_page_state(NR_ISOLATED_FILE), 6130 global_node_page_state(NR_UNEVICTABLE), 6131 global_node_page_state(NR_FILE_DIRTY), 6132 global_node_page_state(NR_WRITEBACK), 6133 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6134 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6135 global_node_page_state(NR_FILE_MAPPED), 6136 global_node_page_state(NR_SHMEM), 6137 global_node_page_state(NR_PAGETABLE), 6138 global_node_page_state(NR_SECONDARY_PAGETABLE), 6139 global_zone_page_state(NR_BOUNCE), 6140 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6141 global_zone_page_state(NR_FREE_PAGES), 6142 free_pcp, 6143 global_zone_page_state(NR_FREE_CMA_PAGES)); 6144 6145 for_each_online_pgdat(pgdat) { 6146 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6147 continue; 6148 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6149 continue; 6150 6151 printk("Node %d" 6152 " active_anon:%lukB" 6153 " inactive_anon:%lukB" 6154 " active_file:%lukB" 6155 " inactive_file:%lukB" 6156 " unevictable:%lukB" 6157 " isolated(anon):%lukB" 6158 " isolated(file):%lukB" 6159 " mapped:%lukB" 6160 " dirty:%lukB" 6161 " writeback:%lukB" 6162 " shmem:%lukB" 6163 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6164 " shmem_thp: %lukB" 6165 " shmem_pmdmapped: %lukB" 6166 " anon_thp: %lukB" 6167 #endif 6168 " writeback_tmp:%lukB" 6169 " kernel_stack:%lukB" 6170 #ifdef CONFIG_SHADOW_CALL_STACK 6171 " shadow_call_stack:%lukB" 6172 #endif 6173 " pagetables:%lukB" 6174 " sec_pagetables:%lukB" 6175 " all_unreclaimable? %s" 6176 "\n", 6177 pgdat->node_id, 6178 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6179 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6180 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6181 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6182 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6183 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6184 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6185 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6186 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6187 K(node_page_state(pgdat, NR_WRITEBACK)), 6188 K(node_page_state(pgdat, NR_SHMEM)), 6189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6190 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6191 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6192 K(node_page_state(pgdat, NR_ANON_THPS)), 6193 #endif 6194 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6195 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6196 #ifdef CONFIG_SHADOW_CALL_STACK 6197 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6198 #endif 6199 K(node_page_state(pgdat, NR_PAGETABLE)), 6200 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 6201 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6202 "yes" : "no"); 6203 } 6204 6205 for_each_populated_zone(zone) { 6206 int i; 6207 6208 if (zone_idx(zone) > max_zone_idx) 6209 continue; 6210 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6211 continue; 6212 6213 free_pcp = 0; 6214 for_each_online_cpu(cpu) 6215 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6216 6217 show_node(zone); 6218 printk(KERN_CONT 6219 "%s" 6220 " free:%lukB" 6221 " boost:%lukB" 6222 " min:%lukB" 6223 " low:%lukB" 6224 " high:%lukB" 6225 " reserved_highatomic:%luKB" 6226 " active_anon:%lukB" 6227 " inactive_anon:%lukB" 6228 " active_file:%lukB" 6229 " inactive_file:%lukB" 6230 " unevictable:%lukB" 6231 " writepending:%lukB" 6232 " present:%lukB" 6233 " managed:%lukB" 6234 " mlocked:%lukB" 6235 " bounce:%lukB" 6236 " free_pcp:%lukB" 6237 " local_pcp:%ukB" 6238 " free_cma:%lukB" 6239 "\n", 6240 zone->name, 6241 K(zone_page_state(zone, NR_FREE_PAGES)), 6242 K(zone->watermark_boost), 6243 K(min_wmark_pages(zone)), 6244 K(low_wmark_pages(zone)), 6245 K(high_wmark_pages(zone)), 6246 K(zone->nr_reserved_highatomic), 6247 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6248 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6249 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6250 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6251 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6252 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6253 K(zone->present_pages), 6254 K(zone_managed_pages(zone)), 6255 K(zone_page_state(zone, NR_MLOCK)), 6256 K(zone_page_state(zone, NR_BOUNCE)), 6257 K(free_pcp), 6258 K(this_cpu_read(zone->per_cpu_pageset->count)), 6259 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6260 printk("lowmem_reserve[]:"); 6261 for (i = 0; i < MAX_NR_ZONES; i++) 6262 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6263 printk(KERN_CONT "\n"); 6264 } 6265 6266 for_each_populated_zone(zone) { 6267 unsigned int order; 6268 unsigned long nr[MAX_ORDER], flags, total = 0; 6269 unsigned char types[MAX_ORDER]; 6270 6271 if (zone_idx(zone) > max_zone_idx) 6272 continue; 6273 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6274 continue; 6275 show_node(zone); 6276 printk(KERN_CONT "%s: ", zone->name); 6277 6278 spin_lock_irqsave(&zone->lock, flags); 6279 for (order = 0; order < MAX_ORDER; order++) { 6280 struct free_area *area = &zone->free_area[order]; 6281 int type; 6282 6283 nr[order] = area->nr_free; 6284 total += nr[order] << order; 6285 6286 types[order] = 0; 6287 for (type = 0; type < MIGRATE_TYPES; type++) { 6288 if (!free_area_empty(area, type)) 6289 types[order] |= 1 << type; 6290 } 6291 } 6292 spin_unlock_irqrestore(&zone->lock, flags); 6293 for (order = 0; order < MAX_ORDER; order++) { 6294 printk(KERN_CONT "%lu*%lukB ", 6295 nr[order], K(1UL) << order); 6296 if (nr[order]) 6297 show_migration_types(types[order]); 6298 } 6299 printk(KERN_CONT "= %lukB\n", K(total)); 6300 } 6301 6302 for_each_online_node(nid) { 6303 if (show_mem_node_skip(filter, nid, nodemask)) 6304 continue; 6305 hugetlb_show_meminfo_node(nid); 6306 } 6307 6308 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6309 6310 show_swap_cache_info(); 6311 } 6312 6313 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6314 { 6315 zoneref->zone = zone; 6316 zoneref->zone_idx = zone_idx(zone); 6317 } 6318 6319 /* 6320 * Builds allocation fallback zone lists. 6321 * 6322 * Add all populated zones of a node to the zonelist. 6323 */ 6324 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6325 { 6326 struct zone *zone; 6327 enum zone_type zone_type = MAX_NR_ZONES; 6328 int nr_zones = 0; 6329 6330 do { 6331 zone_type--; 6332 zone = pgdat->node_zones + zone_type; 6333 if (populated_zone(zone)) { 6334 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6335 check_highest_zone(zone_type); 6336 } 6337 } while (zone_type); 6338 6339 return nr_zones; 6340 } 6341 6342 #ifdef CONFIG_NUMA 6343 6344 static int __parse_numa_zonelist_order(char *s) 6345 { 6346 /* 6347 * We used to support different zonelists modes but they turned 6348 * out to be just not useful. Let's keep the warning in place 6349 * if somebody still use the cmd line parameter so that we do 6350 * not fail it silently 6351 */ 6352 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6353 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6354 return -EINVAL; 6355 } 6356 return 0; 6357 } 6358 6359 char numa_zonelist_order[] = "Node"; 6360 6361 /* 6362 * sysctl handler for numa_zonelist_order 6363 */ 6364 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6365 void *buffer, size_t *length, loff_t *ppos) 6366 { 6367 if (write) 6368 return __parse_numa_zonelist_order(buffer); 6369 return proc_dostring(table, write, buffer, length, ppos); 6370 } 6371 6372 6373 static int node_load[MAX_NUMNODES]; 6374 6375 /** 6376 * find_next_best_node - find the next node that should appear in a given node's fallback list 6377 * @node: node whose fallback list we're appending 6378 * @used_node_mask: nodemask_t of already used nodes 6379 * 6380 * We use a number of factors to determine which is the next node that should 6381 * appear on a given node's fallback list. The node should not have appeared 6382 * already in @node's fallback list, and it should be the next closest node 6383 * according to the distance array (which contains arbitrary distance values 6384 * from each node to each node in the system), and should also prefer nodes 6385 * with no CPUs, since presumably they'll have very little allocation pressure 6386 * on them otherwise. 6387 * 6388 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6389 */ 6390 int find_next_best_node(int node, nodemask_t *used_node_mask) 6391 { 6392 int n, val; 6393 int min_val = INT_MAX; 6394 int best_node = NUMA_NO_NODE; 6395 6396 /* Use the local node if we haven't already */ 6397 if (!node_isset(node, *used_node_mask)) { 6398 node_set(node, *used_node_mask); 6399 return node; 6400 } 6401 6402 for_each_node_state(n, N_MEMORY) { 6403 6404 /* Don't want a node to appear more than once */ 6405 if (node_isset(n, *used_node_mask)) 6406 continue; 6407 6408 /* Use the distance array to find the distance */ 6409 val = node_distance(node, n); 6410 6411 /* Penalize nodes under us ("prefer the next node") */ 6412 val += (n < node); 6413 6414 /* Give preference to headless and unused nodes */ 6415 if (!cpumask_empty(cpumask_of_node(n))) 6416 val += PENALTY_FOR_NODE_WITH_CPUS; 6417 6418 /* Slight preference for less loaded node */ 6419 val *= MAX_NUMNODES; 6420 val += node_load[n]; 6421 6422 if (val < min_val) { 6423 min_val = val; 6424 best_node = n; 6425 } 6426 } 6427 6428 if (best_node >= 0) 6429 node_set(best_node, *used_node_mask); 6430 6431 return best_node; 6432 } 6433 6434 6435 /* 6436 * Build zonelists ordered by node and zones within node. 6437 * This results in maximum locality--normal zone overflows into local 6438 * DMA zone, if any--but risks exhausting DMA zone. 6439 */ 6440 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6441 unsigned nr_nodes) 6442 { 6443 struct zoneref *zonerefs; 6444 int i; 6445 6446 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6447 6448 for (i = 0; i < nr_nodes; i++) { 6449 int nr_zones; 6450 6451 pg_data_t *node = NODE_DATA(node_order[i]); 6452 6453 nr_zones = build_zonerefs_node(node, zonerefs); 6454 zonerefs += nr_zones; 6455 } 6456 zonerefs->zone = NULL; 6457 zonerefs->zone_idx = 0; 6458 } 6459 6460 /* 6461 * Build gfp_thisnode zonelists 6462 */ 6463 static void build_thisnode_zonelists(pg_data_t *pgdat) 6464 { 6465 struct zoneref *zonerefs; 6466 int nr_zones; 6467 6468 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6469 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6470 zonerefs += nr_zones; 6471 zonerefs->zone = NULL; 6472 zonerefs->zone_idx = 0; 6473 } 6474 6475 /* 6476 * Build zonelists ordered by zone and nodes within zones. 6477 * This results in conserving DMA zone[s] until all Normal memory is 6478 * exhausted, but results in overflowing to remote node while memory 6479 * may still exist in local DMA zone. 6480 */ 6481 6482 static void build_zonelists(pg_data_t *pgdat) 6483 { 6484 static int node_order[MAX_NUMNODES]; 6485 int node, nr_nodes = 0; 6486 nodemask_t used_mask = NODE_MASK_NONE; 6487 int local_node, prev_node; 6488 6489 /* NUMA-aware ordering of nodes */ 6490 local_node = pgdat->node_id; 6491 prev_node = local_node; 6492 6493 memset(node_order, 0, sizeof(node_order)); 6494 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6495 /* 6496 * We don't want to pressure a particular node. 6497 * So adding penalty to the first node in same 6498 * distance group to make it round-robin. 6499 */ 6500 if (node_distance(local_node, node) != 6501 node_distance(local_node, prev_node)) 6502 node_load[node] += 1; 6503 6504 node_order[nr_nodes++] = node; 6505 prev_node = node; 6506 } 6507 6508 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6509 build_thisnode_zonelists(pgdat); 6510 pr_info("Fallback order for Node %d: ", local_node); 6511 for (node = 0; node < nr_nodes; node++) 6512 pr_cont("%d ", node_order[node]); 6513 pr_cont("\n"); 6514 } 6515 6516 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6517 /* 6518 * Return node id of node used for "local" allocations. 6519 * I.e., first node id of first zone in arg node's generic zonelist. 6520 * Used for initializing percpu 'numa_mem', which is used primarily 6521 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6522 */ 6523 int local_memory_node(int node) 6524 { 6525 struct zoneref *z; 6526 6527 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6528 gfp_zone(GFP_KERNEL), 6529 NULL); 6530 return zone_to_nid(z->zone); 6531 } 6532 #endif 6533 6534 static void setup_min_unmapped_ratio(void); 6535 static void setup_min_slab_ratio(void); 6536 #else /* CONFIG_NUMA */ 6537 6538 static void build_zonelists(pg_data_t *pgdat) 6539 { 6540 int node, local_node; 6541 struct zoneref *zonerefs; 6542 int nr_zones; 6543 6544 local_node = pgdat->node_id; 6545 6546 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6547 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6548 zonerefs += nr_zones; 6549 6550 /* 6551 * Now we build the zonelist so that it contains the zones 6552 * of all the other nodes. 6553 * We don't want to pressure a particular node, so when 6554 * building the zones for node N, we make sure that the 6555 * zones coming right after the local ones are those from 6556 * node N+1 (modulo N) 6557 */ 6558 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6559 if (!node_online(node)) 6560 continue; 6561 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6562 zonerefs += nr_zones; 6563 } 6564 for (node = 0; node < local_node; node++) { 6565 if (!node_online(node)) 6566 continue; 6567 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6568 zonerefs += nr_zones; 6569 } 6570 6571 zonerefs->zone = NULL; 6572 zonerefs->zone_idx = 0; 6573 } 6574 6575 #endif /* CONFIG_NUMA */ 6576 6577 /* 6578 * Boot pageset table. One per cpu which is going to be used for all 6579 * zones and all nodes. The parameters will be set in such a way 6580 * that an item put on a list will immediately be handed over to 6581 * the buddy list. This is safe since pageset manipulation is done 6582 * with interrupts disabled. 6583 * 6584 * The boot_pagesets must be kept even after bootup is complete for 6585 * unused processors and/or zones. They do play a role for bootstrapping 6586 * hotplugged processors. 6587 * 6588 * zoneinfo_show() and maybe other functions do 6589 * not check if the processor is online before following the pageset pointer. 6590 * Other parts of the kernel may not check if the zone is available. 6591 */ 6592 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6593 /* These effectively disable the pcplists in the boot pageset completely */ 6594 #define BOOT_PAGESET_HIGH 0 6595 #define BOOT_PAGESET_BATCH 1 6596 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6597 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6598 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6599 6600 static void __build_all_zonelists(void *data) 6601 { 6602 int nid; 6603 int __maybe_unused cpu; 6604 pg_data_t *self = data; 6605 6606 write_seqlock(&zonelist_update_seq); 6607 6608 #ifdef CONFIG_NUMA 6609 memset(node_load, 0, sizeof(node_load)); 6610 #endif 6611 6612 /* 6613 * This node is hotadded and no memory is yet present. So just 6614 * building zonelists is fine - no need to touch other nodes. 6615 */ 6616 if (self && !node_online(self->node_id)) { 6617 build_zonelists(self); 6618 } else { 6619 /* 6620 * All possible nodes have pgdat preallocated 6621 * in free_area_init 6622 */ 6623 for_each_node(nid) { 6624 pg_data_t *pgdat = NODE_DATA(nid); 6625 6626 build_zonelists(pgdat); 6627 } 6628 6629 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6630 /* 6631 * We now know the "local memory node" for each node-- 6632 * i.e., the node of the first zone in the generic zonelist. 6633 * Set up numa_mem percpu variable for on-line cpus. During 6634 * boot, only the boot cpu should be on-line; we'll init the 6635 * secondary cpus' numa_mem as they come on-line. During 6636 * node/memory hotplug, we'll fixup all on-line cpus. 6637 */ 6638 for_each_online_cpu(cpu) 6639 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6640 #endif 6641 } 6642 6643 write_sequnlock(&zonelist_update_seq); 6644 } 6645 6646 static noinline void __init 6647 build_all_zonelists_init(void) 6648 { 6649 int cpu; 6650 6651 __build_all_zonelists(NULL); 6652 6653 /* 6654 * Initialize the boot_pagesets that are going to be used 6655 * for bootstrapping processors. The real pagesets for 6656 * each zone will be allocated later when the per cpu 6657 * allocator is available. 6658 * 6659 * boot_pagesets are used also for bootstrapping offline 6660 * cpus if the system is already booted because the pagesets 6661 * are needed to initialize allocators on a specific cpu too. 6662 * F.e. the percpu allocator needs the page allocator which 6663 * needs the percpu allocator in order to allocate its pagesets 6664 * (a chicken-egg dilemma). 6665 */ 6666 for_each_possible_cpu(cpu) 6667 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6668 6669 mminit_verify_zonelist(); 6670 cpuset_init_current_mems_allowed(); 6671 } 6672 6673 /* 6674 * unless system_state == SYSTEM_BOOTING. 6675 * 6676 * __ref due to call of __init annotated helper build_all_zonelists_init 6677 * [protected by SYSTEM_BOOTING]. 6678 */ 6679 void __ref build_all_zonelists(pg_data_t *pgdat) 6680 { 6681 unsigned long vm_total_pages; 6682 6683 if (system_state == SYSTEM_BOOTING) { 6684 build_all_zonelists_init(); 6685 } else { 6686 __build_all_zonelists(pgdat); 6687 /* cpuset refresh routine should be here */ 6688 } 6689 /* Get the number of free pages beyond high watermark in all zones. */ 6690 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6691 /* 6692 * Disable grouping by mobility if the number of pages in the 6693 * system is too low to allow the mechanism to work. It would be 6694 * more accurate, but expensive to check per-zone. This check is 6695 * made on memory-hotadd so a system can start with mobility 6696 * disabled and enable it later 6697 */ 6698 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6699 page_group_by_mobility_disabled = 1; 6700 else 6701 page_group_by_mobility_disabled = 0; 6702 6703 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6704 nr_online_nodes, 6705 page_group_by_mobility_disabled ? "off" : "on", 6706 vm_total_pages); 6707 #ifdef CONFIG_NUMA 6708 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6709 #endif 6710 } 6711 6712 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6713 static bool __meminit 6714 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6715 { 6716 static struct memblock_region *r; 6717 6718 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6719 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6720 for_each_mem_region(r) { 6721 if (*pfn < memblock_region_memory_end_pfn(r)) 6722 break; 6723 } 6724 } 6725 if (*pfn >= memblock_region_memory_base_pfn(r) && 6726 memblock_is_mirror(r)) { 6727 *pfn = memblock_region_memory_end_pfn(r); 6728 return true; 6729 } 6730 } 6731 return false; 6732 } 6733 6734 /* 6735 * Initially all pages are reserved - free ones are freed 6736 * up by memblock_free_all() once the early boot process is 6737 * done. Non-atomic initialization, single-pass. 6738 * 6739 * All aligned pageblocks are initialized to the specified migratetype 6740 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6741 * zone stats (e.g., nr_isolate_pageblock) are touched. 6742 */ 6743 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6744 unsigned long start_pfn, unsigned long zone_end_pfn, 6745 enum meminit_context context, 6746 struct vmem_altmap *altmap, int migratetype) 6747 { 6748 unsigned long pfn, end_pfn = start_pfn + size; 6749 struct page *page; 6750 6751 if (highest_memmap_pfn < end_pfn - 1) 6752 highest_memmap_pfn = end_pfn - 1; 6753 6754 #ifdef CONFIG_ZONE_DEVICE 6755 /* 6756 * Honor reservation requested by the driver for this ZONE_DEVICE 6757 * memory. We limit the total number of pages to initialize to just 6758 * those that might contain the memory mapping. We will defer the 6759 * ZONE_DEVICE page initialization until after we have released 6760 * the hotplug lock. 6761 */ 6762 if (zone == ZONE_DEVICE) { 6763 if (!altmap) 6764 return; 6765 6766 if (start_pfn == altmap->base_pfn) 6767 start_pfn += altmap->reserve; 6768 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6769 } 6770 #endif 6771 6772 for (pfn = start_pfn; pfn < end_pfn; ) { 6773 /* 6774 * There can be holes in boot-time mem_map[]s handed to this 6775 * function. They do not exist on hotplugged memory. 6776 */ 6777 if (context == MEMINIT_EARLY) { 6778 if (overlap_memmap_init(zone, &pfn)) 6779 continue; 6780 if (defer_init(nid, pfn, zone_end_pfn)) 6781 break; 6782 } 6783 6784 page = pfn_to_page(pfn); 6785 __init_single_page(page, pfn, zone, nid); 6786 if (context == MEMINIT_HOTPLUG) 6787 __SetPageReserved(page); 6788 6789 /* 6790 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6791 * such that unmovable allocations won't be scattered all 6792 * over the place during system boot. 6793 */ 6794 if (pageblock_aligned(pfn)) { 6795 set_pageblock_migratetype(page, migratetype); 6796 cond_resched(); 6797 } 6798 pfn++; 6799 } 6800 } 6801 6802 #ifdef CONFIG_ZONE_DEVICE 6803 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6804 unsigned long zone_idx, int nid, 6805 struct dev_pagemap *pgmap) 6806 { 6807 6808 __init_single_page(page, pfn, zone_idx, nid); 6809 6810 /* 6811 * Mark page reserved as it will need to wait for onlining 6812 * phase for it to be fully associated with a zone. 6813 * 6814 * We can use the non-atomic __set_bit operation for setting 6815 * the flag as we are still initializing the pages. 6816 */ 6817 __SetPageReserved(page); 6818 6819 /* 6820 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6821 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6822 * ever freed or placed on a driver-private list. 6823 */ 6824 page->pgmap = pgmap; 6825 page->zone_device_data = NULL; 6826 6827 /* 6828 * Mark the block movable so that blocks are reserved for 6829 * movable at startup. This will force kernel allocations 6830 * to reserve their blocks rather than leaking throughout 6831 * the address space during boot when many long-lived 6832 * kernel allocations are made. 6833 * 6834 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6835 * because this is done early in section_activate() 6836 */ 6837 if (pageblock_aligned(pfn)) { 6838 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6839 cond_resched(); 6840 } 6841 6842 /* 6843 * ZONE_DEVICE pages are released directly to the driver page allocator 6844 * which will set the page count to 1 when allocating the page. 6845 */ 6846 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 6847 pgmap->type == MEMORY_DEVICE_COHERENT) 6848 set_page_count(page, 0); 6849 } 6850 6851 /* 6852 * With compound page geometry and when struct pages are stored in ram most 6853 * tail pages are reused. Consequently, the amount of unique struct pages to 6854 * initialize is a lot smaller that the total amount of struct pages being 6855 * mapped. This is a paired / mild layering violation with explicit knowledge 6856 * of how the sparse_vmemmap internals handle compound pages in the lack 6857 * of an altmap. See vmemmap_populate_compound_pages(). 6858 */ 6859 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6860 unsigned long nr_pages) 6861 { 6862 return is_power_of_2(sizeof(struct page)) && 6863 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6864 } 6865 6866 static void __ref memmap_init_compound(struct page *head, 6867 unsigned long head_pfn, 6868 unsigned long zone_idx, int nid, 6869 struct dev_pagemap *pgmap, 6870 unsigned long nr_pages) 6871 { 6872 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6873 unsigned int order = pgmap->vmemmap_shift; 6874 6875 __SetPageHead(head); 6876 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6877 struct page *page = pfn_to_page(pfn); 6878 6879 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6880 prep_compound_tail(head, pfn - head_pfn); 6881 set_page_count(page, 0); 6882 6883 /* 6884 * The first tail page stores important compound page info. 6885 * Call prep_compound_head() after the first tail page has 6886 * been initialized, to not have the data overwritten. 6887 */ 6888 if (pfn == head_pfn + 1) 6889 prep_compound_head(head, order); 6890 } 6891 } 6892 6893 void __ref memmap_init_zone_device(struct zone *zone, 6894 unsigned long start_pfn, 6895 unsigned long nr_pages, 6896 struct dev_pagemap *pgmap) 6897 { 6898 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6899 struct pglist_data *pgdat = zone->zone_pgdat; 6900 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6901 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6902 unsigned long zone_idx = zone_idx(zone); 6903 unsigned long start = jiffies; 6904 int nid = pgdat->node_id; 6905 6906 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 6907 return; 6908 6909 /* 6910 * The call to memmap_init should have already taken care 6911 * of the pages reserved for the memmap, so we can just jump to 6912 * the end of that region and start processing the device pages. 6913 */ 6914 if (altmap) { 6915 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6916 nr_pages = end_pfn - start_pfn; 6917 } 6918 6919 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6920 struct page *page = pfn_to_page(pfn); 6921 6922 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6923 6924 if (pfns_per_compound == 1) 6925 continue; 6926 6927 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6928 compound_nr_pages(altmap, pfns_per_compound)); 6929 } 6930 6931 pr_info("%s initialised %lu pages in %ums\n", __func__, 6932 nr_pages, jiffies_to_msecs(jiffies - start)); 6933 } 6934 6935 #endif 6936 static void __meminit zone_init_free_lists(struct zone *zone) 6937 { 6938 unsigned int order, t; 6939 for_each_migratetype_order(order, t) { 6940 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6941 zone->free_area[order].nr_free = 0; 6942 } 6943 } 6944 6945 /* 6946 * Only struct pages that correspond to ranges defined by memblock.memory 6947 * are zeroed and initialized by going through __init_single_page() during 6948 * memmap_init_zone_range(). 6949 * 6950 * But, there could be struct pages that correspond to holes in 6951 * memblock.memory. This can happen because of the following reasons: 6952 * - physical memory bank size is not necessarily the exact multiple of the 6953 * arbitrary section size 6954 * - early reserved memory may not be listed in memblock.memory 6955 * - memory layouts defined with memmap= kernel parameter may not align 6956 * nicely with memmap sections 6957 * 6958 * Explicitly initialize those struct pages so that: 6959 * - PG_Reserved is set 6960 * - zone and node links point to zone and node that span the page if the 6961 * hole is in the middle of a zone 6962 * - zone and node links point to adjacent zone/node if the hole falls on 6963 * the zone boundary; the pages in such holes will be prepended to the 6964 * zone/node above the hole except for the trailing pages in the last 6965 * section that will be appended to the zone/node below. 6966 */ 6967 static void __init init_unavailable_range(unsigned long spfn, 6968 unsigned long epfn, 6969 int zone, int node) 6970 { 6971 unsigned long pfn; 6972 u64 pgcnt = 0; 6973 6974 for (pfn = spfn; pfn < epfn; pfn++) { 6975 if (!pfn_valid(pageblock_start_pfn(pfn))) { 6976 pfn = pageblock_end_pfn(pfn) - 1; 6977 continue; 6978 } 6979 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6980 __SetPageReserved(pfn_to_page(pfn)); 6981 pgcnt++; 6982 } 6983 6984 if (pgcnt) 6985 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6986 node, zone_names[zone], pgcnt); 6987 } 6988 6989 static void __init memmap_init_zone_range(struct zone *zone, 6990 unsigned long start_pfn, 6991 unsigned long end_pfn, 6992 unsigned long *hole_pfn) 6993 { 6994 unsigned long zone_start_pfn = zone->zone_start_pfn; 6995 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6996 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6997 6998 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6999 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 7000 7001 if (start_pfn >= end_pfn) 7002 return; 7003 7004 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 7005 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 7006 7007 if (*hole_pfn < start_pfn) 7008 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 7009 7010 *hole_pfn = end_pfn; 7011 } 7012 7013 static void __init memmap_init(void) 7014 { 7015 unsigned long start_pfn, end_pfn; 7016 unsigned long hole_pfn = 0; 7017 int i, j, zone_id = 0, nid; 7018 7019 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7020 struct pglist_data *node = NODE_DATA(nid); 7021 7022 for (j = 0; j < MAX_NR_ZONES; j++) { 7023 struct zone *zone = node->node_zones + j; 7024 7025 if (!populated_zone(zone)) 7026 continue; 7027 7028 memmap_init_zone_range(zone, start_pfn, end_pfn, 7029 &hole_pfn); 7030 zone_id = j; 7031 } 7032 } 7033 7034 #ifdef CONFIG_SPARSEMEM 7035 /* 7036 * Initialize the memory map for hole in the range [memory_end, 7037 * section_end]. 7038 * Append the pages in this hole to the highest zone in the last 7039 * node. 7040 * The call to init_unavailable_range() is outside the ifdef to 7041 * silence the compiler warining about zone_id set but not used; 7042 * for FLATMEM it is a nop anyway 7043 */ 7044 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 7045 if (hole_pfn < end_pfn) 7046 #endif 7047 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7048 } 7049 7050 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7051 phys_addr_t min_addr, int nid, bool exact_nid) 7052 { 7053 void *ptr; 7054 7055 if (exact_nid) 7056 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7057 MEMBLOCK_ALLOC_ACCESSIBLE, 7058 nid); 7059 else 7060 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7061 MEMBLOCK_ALLOC_ACCESSIBLE, 7062 nid); 7063 7064 if (ptr && size > 0) 7065 page_init_poison(ptr, size); 7066 7067 return ptr; 7068 } 7069 7070 static int zone_batchsize(struct zone *zone) 7071 { 7072 #ifdef CONFIG_MMU 7073 int batch; 7074 7075 /* 7076 * The number of pages to batch allocate is either ~0.1% 7077 * of the zone or 1MB, whichever is smaller. The batch 7078 * size is striking a balance between allocation latency 7079 * and zone lock contention. 7080 */ 7081 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 7082 batch /= 4; /* We effectively *= 4 below */ 7083 if (batch < 1) 7084 batch = 1; 7085 7086 /* 7087 * Clamp the batch to a 2^n - 1 value. Having a power 7088 * of 2 value was found to be more likely to have 7089 * suboptimal cache aliasing properties in some cases. 7090 * 7091 * For example if 2 tasks are alternately allocating 7092 * batches of pages, one task can end up with a lot 7093 * of pages of one half of the possible page colors 7094 * and the other with pages of the other colors. 7095 */ 7096 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7097 7098 return batch; 7099 7100 #else 7101 /* The deferral and batching of frees should be suppressed under NOMMU 7102 * conditions. 7103 * 7104 * The problem is that NOMMU needs to be able to allocate large chunks 7105 * of contiguous memory as there's no hardware page translation to 7106 * assemble apparent contiguous memory from discontiguous pages. 7107 * 7108 * Queueing large contiguous runs of pages for batching, however, 7109 * causes the pages to actually be freed in smaller chunks. As there 7110 * can be a significant delay between the individual batches being 7111 * recycled, this leads to the once large chunks of space being 7112 * fragmented and becoming unavailable for high-order allocations. 7113 */ 7114 return 0; 7115 #endif 7116 } 7117 7118 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7119 { 7120 #ifdef CONFIG_MMU 7121 int high; 7122 int nr_split_cpus; 7123 unsigned long total_pages; 7124 7125 if (!percpu_pagelist_high_fraction) { 7126 /* 7127 * By default, the high value of the pcp is based on the zone 7128 * low watermark so that if they are full then background 7129 * reclaim will not be started prematurely. 7130 */ 7131 total_pages = low_wmark_pages(zone); 7132 } else { 7133 /* 7134 * If percpu_pagelist_high_fraction is configured, the high 7135 * value is based on a fraction of the managed pages in the 7136 * zone. 7137 */ 7138 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7139 } 7140 7141 /* 7142 * Split the high value across all online CPUs local to the zone. Note 7143 * that early in boot that CPUs may not be online yet and that during 7144 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7145 * onlined. For memory nodes that have no CPUs, split pcp->high across 7146 * all online CPUs to mitigate the risk that reclaim is triggered 7147 * prematurely due to pages stored on pcp lists. 7148 */ 7149 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7150 if (!nr_split_cpus) 7151 nr_split_cpus = num_online_cpus(); 7152 high = total_pages / nr_split_cpus; 7153 7154 /* 7155 * Ensure high is at least batch*4. The multiple is based on the 7156 * historical relationship between high and batch. 7157 */ 7158 high = max(high, batch << 2); 7159 7160 return high; 7161 #else 7162 return 0; 7163 #endif 7164 } 7165 7166 /* 7167 * pcp->high and pcp->batch values are related and generally batch is lower 7168 * than high. They are also related to pcp->count such that count is lower 7169 * than high, and as soon as it reaches high, the pcplist is flushed. 7170 * 7171 * However, guaranteeing these relations at all times would require e.g. write 7172 * barriers here but also careful usage of read barriers at the read side, and 7173 * thus be prone to error and bad for performance. Thus the update only prevents 7174 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7175 * can cope with those fields changing asynchronously, and fully trust only the 7176 * pcp->count field on the local CPU with interrupts disabled. 7177 * 7178 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7179 * outside of boot time (or some other assurance that no concurrent updaters 7180 * exist). 7181 */ 7182 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7183 unsigned long batch) 7184 { 7185 WRITE_ONCE(pcp->batch, batch); 7186 WRITE_ONCE(pcp->high, high); 7187 } 7188 7189 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7190 { 7191 int pindex; 7192 7193 memset(pcp, 0, sizeof(*pcp)); 7194 memset(pzstats, 0, sizeof(*pzstats)); 7195 7196 spin_lock_init(&pcp->lock); 7197 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7198 INIT_LIST_HEAD(&pcp->lists[pindex]); 7199 7200 /* 7201 * Set batch and high values safe for a boot pageset. A true percpu 7202 * pageset's initialization will update them subsequently. Here we don't 7203 * need to be as careful as pageset_update() as nobody can access the 7204 * pageset yet. 7205 */ 7206 pcp->high = BOOT_PAGESET_HIGH; 7207 pcp->batch = BOOT_PAGESET_BATCH; 7208 pcp->free_factor = 0; 7209 } 7210 7211 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7212 unsigned long batch) 7213 { 7214 struct per_cpu_pages *pcp; 7215 int cpu; 7216 7217 for_each_possible_cpu(cpu) { 7218 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7219 pageset_update(pcp, high, batch); 7220 } 7221 } 7222 7223 /* 7224 * Calculate and set new high and batch values for all per-cpu pagesets of a 7225 * zone based on the zone's size. 7226 */ 7227 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7228 { 7229 int new_high, new_batch; 7230 7231 new_batch = max(1, zone_batchsize(zone)); 7232 new_high = zone_highsize(zone, new_batch, cpu_online); 7233 7234 if (zone->pageset_high == new_high && 7235 zone->pageset_batch == new_batch) 7236 return; 7237 7238 zone->pageset_high = new_high; 7239 zone->pageset_batch = new_batch; 7240 7241 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7242 } 7243 7244 void __meminit setup_zone_pageset(struct zone *zone) 7245 { 7246 int cpu; 7247 7248 /* Size may be 0 on !SMP && !NUMA */ 7249 if (sizeof(struct per_cpu_zonestat) > 0) 7250 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7251 7252 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7253 for_each_possible_cpu(cpu) { 7254 struct per_cpu_pages *pcp; 7255 struct per_cpu_zonestat *pzstats; 7256 7257 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7258 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7259 per_cpu_pages_init(pcp, pzstats); 7260 } 7261 7262 zone_set_pageset_high_and_batch(zone, 0); 7263 } 7264 7265 /* 7266 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7267 * page high values need to be recalculated. 7268 */ 7269 static void zone_pcp_update(struct zone *zone, int cpu_online) 7270 { 7271 mutex_lock(&pcp_batch_high_lock); 7272 zone_set_pageset_high_and_batch(zone, cpu_online); 7273 mutex_unlock(&pcp_batch_high_lock); 7274 } 7275 7276 /* 7277 * Allocate per cpu pagesets and initialize them. 7278 * Before this call only boot pagesets were available. 7279 */ 7280 void __init setup_per_cpu_pageset(void) 7281 { 7282 struct pglist_data *pgdat; 7283 struct zone *zone; 7284 int __maybe_unused cpu; 7285 7286 for_each_populated_zone(zone) 7287 setup_zone_pageset(zone); 7288 7289 #ifdef CONFIG_NUMA 7290 /* 7291 * Unpopulated zones continue using the boot pagesets. 7292 * The numa stats for these pagesets need to be reset. 7293 * Otherwise, they will end up skewing the stats of 7294 * the nodes these zones are associated with. 7295 */ 7296 for_each_possible_cpu(cpu) { 7297 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7298 memset(pzstats->vm_numa_event, 0, 7299 sizeof(pzstats->vm_numa_event)); 7300 } 7301 #endif 7302 7303 for_each_online_pgdat(pgdat) 7304 pgdat->per_cpu_nodestats = 7305 alloc_percpu(struct per_cpu_nodestat); 7306 } 7307 7308 static __meminit void zone_pcp_init(struct zone *zone) 7309 { 7310 /* 7311 * per cpu subsystem is not up at this point. The following code 7312 * relies on the ability of the linker to provide the 7313 * offset of a (static) per cpu variable into the per cpu area. 7314 */ 7315 zone->per_cpu_pageset = &boot_pageset; 7316 zone->per_cpu_zonestats = &boot_zonestats; 7317 zone->pageset_high = BOOT_PAGESET_HIGH; 7318 zone->pageset_batch = BOOT_PAGESET_BATCH; 7319 7320 if (populated_zone(zone)) 7321 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7322 zone->present_pages, zone_batchsize(zone)); 7323 } 7324 7325 void __meminit init_currently_empty_zone(struct zone *zone, 7326 unsigned long zone_start_pfn, 7327 unsigned long size) 7328 { 7329 struct pglist_data *pgdat = zone->zone_pgdat; 7330 int zone_idx = zone_idx(zone) + 1; 7331 7332 if (zone_idx > pgdat->nr_zones) 7333 pgdat->nr_zones = zone_idx; 7334 7335 zone->zone_start_pfn = zone_start_pfn; 7336 7337 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7338 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7339 pgdat->node_id, 7340 (unsigned long)zone_idx(zone), 7341 zone_start_pfn, (zone_start_pfn + size)); 7342 7343 zone_init_free_lists(zone); 7344 zone->initialized = 1; 7345 } 7346 7347 /** 7348 * get_pfn_range_for_nid - Return the start and end page frames for a node 7349 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7350 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7351 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7352 * 7353 * It returns the start and end page frame of a node based on information 7354 * provided by memblock_set_node(). If called for a node 7355 * with no available memory, a warning is printed and the start and end 7356 * PFNs will be 0. 7357 */ 7358 void __init get_pfn_range_for_nid(unsigned int nid, 7359 unsigned long *start_pfn, unsigned long *end_pfn) 7360 { 7361 unsigned long this_start_pfn, this_end_pfn; 7362 int i; 7363 7364 *start_pfn = -1UL; 7365 *end_pfn = 0; 7366 7367 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7368 *start_pfn = min(*start_pfn, this_start_pfn); 7369 *end_pfn = max(*end_pfn, this_end_pfn); 7370 } 7371 7372 if (*start_pfn == -1UL) 7373 *start_pfn = 0; 7374 } 7375 7376 /* 7377 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7378 * assumption is made that zones within a node are ordered in monotonic 7379 * increasing memory addresses so that the "highest" populated zone is used 7380 */ 7381 static void __init find_usable_zone_for_movable(void) 7382 { 7383 int zone_index; 7384 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7385 if (zone_index == ZONE_MOVABLE) 7386 continue; 7387 7388 if (arch_zone_highest_possible_pfn[zone_index] > 7389 arch_zone_lowest_possible_pfn[zone_index]) 7390 break; 7391 } 7392 7393 VM_BUG_ON(zone_index == -1); 7394 movable_zone = zone_index; 7395 } 7396 7397 /* 7398 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7399 * because it is sized independent of architecture. Unlike the other zones, 7400 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7401 * in each node depending on the size of each node and how evenly kernelcore 7402 * is distributed. This helper function adjusts the zone ranges 7403 * provided by the architecture for a given node by using the end of the 7404 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7405 * zones within a node are in order of monotonic increases memory addresses 7406 */ 7407 static void __init adjust_zone_range_for_zone_movable(int nid, 7408 unsigned long zone_type, 7409 unsigned long node_start_pfn, 7410 unsigned long node_end_pfn, 7411 unsigned long *zone_start_pfn, 7412 unsigned long *zone_end_pfn) 7413 { 7414 /* Only adjust if ZONE_MOVABLE is on this node */ 7415 if (zone_movable_pfn[nid]) { 7416 /* Size ZONE_MOVABLE */ 7417 if (zone_type == ZONE_MOVABLE) { 7418 *zone_start_pfn = zone_movable_pfn[nid]; 7419 *zone_end_pfn = min(node_end_pfn, 7420 arch_zone_highest_possible_pfn[movable_zone]); 7421 7422 /* Adjust for ZONE_MOVABLE starting within this range */ 7423 } else if (!mirrored_kernelcore && 7424 *zone_start_pfn < zone_movable_pfn[nid] && 7425 *zone_end_pfn > zone_movable_pfn[nid]) { 7426 *zone_end_pfn = zone_movable_pfn[nid]; 7427 7428 /* Check if this whole range is within ZONE_MOVABLE */ 7429 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7430 *zone_start_pfn = *zone_end_pfn; 7431 } 7432 } 7433 7434 /* 7435 * Return the number of pages a zone spans in a node, including holes 7436 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7437 */ 7438 static unsigned long __init zone_spanned_pages_in_node(int nid, 7439 unsigned long zone_type, 7440 unsigned long node_start_pfn, 7441 unsigned long node_end_pfn, 7442 unsigned long *zone_start_pfn, 7443 unsigned long *zone_end_pfn) 7444 { 7445 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7446 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7447 /* When hotadd a new node from cpu_up(), the node should be empty */ 7448 if (!node_start_pfn && !node_end_pfn) 7449 return 0; 7450 7451 /* Get the start and end of the zone */ 7452 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7453 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7454 adjust_zone_range_for_zone_movable(nid, zone_type, 7455 node_start_pfn, node_end_pfn, 7456 zone_start_pfn, zone_end_pfn); 7457 7458 /* Check that this node has pages within the zone's required range */ 7459 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7460 return 0; 7461 7462 /* Move the zone boundaries inside the node if necessary */ 7463 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7464 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7465 7466 /* Return the spanned pages */ 7467 return *zone_end_pfn - *zone_start_pfn; 7468 } 7469 7470 /* 7471 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7472 * then all holes in the requested range will be accounted for. 7473 */ 7474 unsigned long __init __absent_pages_in_range(int nid, 7475 unsigned long range_start_pfn, 7476 unsigned long range_end_pfn) 7477 { 7478 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7479 unsigned long start_pfn, end_pfn; 7480 int i; 7481 7482 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7483 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7484 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7485 nr_absent -= end_pfn - start_pfn; 7486 } 7487 return nr_absent; 7488 } 7489 7490 /** 7491 * absent_pages_in_range - Return number of page frames in holes within a range 7492 * @start_pfn: The start PFN to start searching for holes 7493 * @end_pfn: The end PFN to stop searching for holes 7494 * 7495 * Return: the number of pages frames in memory holes within a range. 7496 */ 7497 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7498 unsigned long end_pfn) 7499 { 7500 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7501 } 7502 7503 /* Return the number of page frames in holes in a zone on a node */ 7504 static unsigned long __init zone_absent_pages_in_node(int nid, 7505 unsigned long zone_type, 7506 unsigned long node_start_pfn, 7507 unsigned long node_end_pfn) 7508 { 7509 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7510 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7511 unsigned long zone_start_pfn, zone_end_pfn; 7512 unsigned long nr_absent; 7513 7514 /* When hotadd a new node from cpu_up(), the node should be empty */ 7515 if (!node_start_pfn && !node_end_pfn) 7516 return 0; 7517 7518 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7519 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7520 7521 adjust_zone_range_for_zone_movable(nid, zone_type, 7522 node_start_pfn, node_end_pfn, 7523 &zone_start_pfn, &zone_end_pfn); 7524 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7525 7526 /* 7527 * ZONE_MOVABLE handling. 7528 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7529 * and vice versa. 7530 */ 7531 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7532 unsigned long start_pfn, end_pfn; 7533 struct memblock_region *r; 7534 7535 for_each_mem_region(r) { 7536 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7537 zone_start_pfn, zone_end_pfn); 7538 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7539 zone_start_pfn, zone_end_pfn); 7540 7541 if (zone_type == ZONE_MOVABLE && 7542 memblock_is_mirror(r)) 7543 nr_absent += end_pfn - start_pfn; 7544 7545 if (zone_type == ZONE_NORMAL && 7546 !memblock_is_mirror(r)) 7547 nr_absent += end_pfn - start_pfn; 7548 } 7549 } 7550 7551 return nr_absent; 7552 } 7553 7554 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7555 unsigned long node_start_pfn, 7556 unsigned long node_end_pfn) 7557 { 7558 unsigned long realtotalpages = 0, totalpages = 0; 7559 enum zone_type i; 7560 7561 for (i = 0; i < MAX_NR_ZONES; i++) { 7562 struct zone *zone = pgdat->node_zones + i; 7563 unsigned long zone_start_pfn, zone_end_pfn; 7564 unsigned long spanned, absent; 7565 unsigned long size, real_size; 7566 7567 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7568 node_start_pfn, 7569 node_end_pfn, 7570 &zone_start_pfn, 7571 &zone_end_pfn); 7572 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7573 node_start_pfn, 7574 node_end_pfn); 7575 7576 size = spanned; 7577 real_size = size - absent; 7578 7579 if (size) 7580 zone->zone_start_pfn = zone_start_pfn; 7581 else 7582 zone->zone_start_pfn = 0; 7583 zone->spanned_pages = size; 7584 zone->present_pages = real_size; 7585 #if defined(CONFIG_MEMORY_HOTPLUG) 7586 zone->present_early_pages = real_size; 7587 #endif 7588 7589 totalpages += size; 7590 realtotalpages += real_size; 7591 } 7592 7593 pgdat->node_spanned_pages = totalpages; 7594 pgdat->node_present_pages = realtotalpages; 7595 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7596 } 7597 7598 #ifndef CONFIG_SPARSEMEM 7599 /* 7600 * Calculate the size of the zone->blockflags rounded to an unsigned long 7601 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7602 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7603 * round what is now in bits to nearest long in bits, then return it in 7604 * bytes. 7605 */ 7606 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7607 { 7608 unsigned long usemapsize; 7609 7610 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7611 usemapsize = roundup(zonesize, pageblock_nr_pages); 7612 usemapsize = usemapsize >> pageblock_order; 7613 usemapsize *= NR_PAGEBLOCK_BITS; 7614 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7615 7616 return usemapsize / 8; 7617 } 7618 7619 static void __ref setup_usemap(struct zone *zone) 7620 { 7621 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7622 zone->spanned_pages); 7623 zone->pageblock_flags = NULL; 7624 if (usemapsize) { 7625 zone->pageblock_flags = 7626 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7627 zone_to_nid(zone)); 7628 if (!zone->pageblock_flags) 7629 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7630 usemapsize, zone->name, zone_to_nid(zone)); 7631 } 7632 } 7633 #else 7634 static inline void setup_usemap(struct zone *zone) {} 7635 #endif /* CONFIG_SPARSEMEM */ 7636 7637 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7638 7639 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7640 void __init set_pageblock_order(void) 7641 { 7642 unsigned int order = MAX_ORDER - 1; 7643 7644 /* Check that pageblock_nr_pages has not already been setup */ 7645 if (pageblock_order) 7646 return; 7647 7648 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7649 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7650 order = HUGETLB_PAGE_ORDER; 7651 7652 /* 7653 * Assume the largest contiguous order of interest is a huge page. 7654 * This value may be variable depending on boot parameters on IA64 and 7655 * powerpc. 7656 */ 7657 pageblock_order = order; 7658 } 7659 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7660 7661 /* 7662 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7663 * is unused as pageblock_order is set at compile-time. See 7664 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7665 * the kernel config 7666 */ 7667 void __init set_pageblock_order(void) 7668 { 7669 } 7670 7671 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7672 7673 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7674 unsigned long present_pages) 7675 { 7676 unsigned long pages = spanned_pages; 7677 7678 /* 7679 * Provide a more accurate estimation if there are holes within 7680 * the zone and SPARSEMEM is in use. If there are holes within the 7681 * zone, each populated memory region may cost us one or two extra 7682 * memmap pages due to alignment because memmap pages for each 7683 * populated regions may not be naturally aligned on page boundary. 7684 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7685 */ 7686 if (spanned_pages > present_pages + (present_pages >> 4) && 7687 IS_ENABLED(CONFIG_SPARSEMEM)) 7688 pages = present_pages; 7689 7690 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7691 } 7692 7693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7694 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7695 { 7696 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7697 7698 spin_lock_init(&ds_queue->split_queue_lock); 7699 INIT_LIST_HEAD(&ds_queue->split_queue); 7700 ds_queue->split_queue_len = 0; 7701 } 7702 #else 7703 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7704 #endif 7705 7706 #ifdef CONFIG_COMPACTION 7707 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7708 { 7709 init_waitqueue_head(&pgdat->kcompactd_wait); 7710 } 7711 #else 7712 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7713 #endif 7714 7715 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7716 { 7717 int i; 7718 7719 pgdat_resize_init(pgdat); 7720 pgdat_kswapd_lock_init(pgdat); 7721 7722 pgdat_init_split_queue(pgdat); 7723 pgdat_init_kcompactd(pgdat); 7724 7725 init_waitqueue_head(&pgdat->kswapd_wait); 7726 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7727 7728 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7729 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7730 7731 pgdat_page_ext_init(pgdat); 7732 lruvec_init(&pgdat->__lruvec); 7733 } 7734 7735 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7736 unsigned long remaining_pages) 7737 { 7738 atomic_long_set(&zone->managed_pages, remaining_pages); 7739 zone_set_nid(zone, nid); 7740 zone->name = zone_names[idx]; 7741 zone->zone_pgdat = NODE_DATA(nid); 7742 spin_lock_init(&zone->lock); 7743 zone_seqlock_init(zone); 7744 zone_pcp_init(zone); 7745 } 7746 7747 /* 7748 * Set up the zone data structures 7749 * - init pgdat internals 7750 * - init all zones belonging to this node 7751 * 7752 * NOTE: this function is only called during memory hotplug 7753 */ 7754 #ifdef CONFIG_MEMORY_HOTPLUG 7755 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7756 { 7757 int nid = pgdat->node_id; 7758 enum zone_type z; 7759 int cpu; 7760 7761 pgdat_init_internals(pgdat); 7762 7763 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7764 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7765 7766 /* 7767 * Reset the nr_zones, order and highest_zoneidx before reuse. 7768 * Note that kswapd will init kswapd_highest_zoneidx properly 7769 * when it starts in the near future. 7770 */ 7771 pgdat->nr_zones = 0; 7772 pgdat->kswapd_order = 0; 7773 pgdat->kswapd_highest_zoneidx = 0; 7774 pgdat->node_start_pfn = 0; 7775 for_each_online_cpu(cpu) { 7776 struct per_cpu_nodestat *p; 7777 7778 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7779 memset(p, 0, sizeof(*p)); 7780 } 7781 7782 for (z = 0; z < MAX_NR_ZONES; z++) 7783 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7784 } 7785 #endif 7786 7787 /* 7788 * Set up the zone data structures: 7789 * - mark all pages reserved 7790 * - mark all memory queues empty 7791 * - clear the memory bitmaps 7792 * 7793 * NOTE: pgdat should get zeroed by caller. 7794 * NOTE: this function is only called during early init. 7795 */ 7796 static void __init free_area_init_core(struct pglist_data *pgdat) 7797 { 7798 enum zone_type j; 7799 int nid = pgdat->node_id; 7800 7801 pgdat_init_internals(pgdat); 7802 pgdat->per_cpu_nodestats = &boot_nodestats; 7803 7804 for (j = 0; j < MAX_NR_ZONES; j++) { 7805 struct zone *zone = pgdat->node_zones + j; 7806 unsigned long size, freesize, memmap_pages; 7807 7808 size = zone->spanned_pages; 7809 freesize = zone->present_pages; 7810 7811 /* 7812 * Adjust freesize so that it accounts for how much memory 7813 * is used by this zone for memmap. This affects the watermark 7814 * and per-cpu initialisations 7815 */ 7816 memmap_pages = calc_memmap_size(size, freesize); 7817 if (!is_highmem_idx(j)) { 7818 if (freesize >= memmap_pages) { 7819 freesize -= memmap_pages; 7820 if (memmap_pages) 7821 pr_debug(" %s zone: %lu pages used for memmap\n", 7822 zone_names[j], memmap_pages); 7823 } else 7824 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7825 zone_names[j], memmap_pages, freesize); 7826 } 7827 7828 /* Account for reserved pages */ 7829 if (j == 0 && freesize > dma_reserve) { 7830 freesize -= dma_reserve; 7831 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7832 } 7833 7834 if (!is_highmem_idx(j)) 7835 nr_kernel_pages += freesize; 7836 /* Charge for highmem memmap if there are enough kernel pages */ 7837 else if (nr_kernel_pages > memmap_pages * 2) 7838 nr_kernel_pages -= memmap_pages; 7839 nr_all_pages += freesize; 7840 7841 /* 7842 * Set an approximate value for lowmem here, it will be adjusted 7843 * when the bootmem allocator frees pages into the buddy system. 7844 * And all highmem pages will be managed by the buddy system. 7845 */ 7846 zone_init_internals(zone, j, nid, freesize); 7847 7848 if (!size) 7849 continue; 7850 7851 set_pageblock_order(); 7852 setup_usemap(zone); 7853 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7854 } 7855 } 7856 7857 #ifdef CONFIG_FLATMEM 7858 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7859 { 7860 unsigned long __maybe_unused start = 0; 7861 unsigned long __maybe_unused offset = 0; 7862 7863 /* Skip empty nodes */ 7864 if (!pgdat->node_spanned_pages) 7865 return; 7866 7867 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7868 offset = pgdat->node_start_pfn - start; 7869 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7870 if (!pgdat->node_mem_map) { 7871 unsigned long size, end; 7872 struct page *map; 7873 7874 /* 7875 * The zone's endpoints aren't required to be MAX_ORDER 7876 * aligned but the node_mem_map endpoints must be in order 7877 * for the buddy allocator to function correctly. 7878 */ 7879 end = pgdat_end_pfn(pgdat); 7880 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7881 size = (end - start) * sizeof(struct page); 7882 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7883 pgdat->node_id, false); 7884 if (!map) 7885 panic("Failed to allocate %ld bytes for node %d memory map\n", 7886 size, pgdat->node_id); 7887 pgdat->node_mem_map = map + offset; 7888 } 7889 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7890 __func__, pgdat->node_id, (unsigned long)pgdat, 7891 (unsigned long)pgdat->node_mem_map); 7892 #ifndef CONFIG_NUMA 7893 /* 7894 * With no DISCONTIG, the global mem_map is just set as node 0's 7895 */ 7896 if (pgdat == NODE_DATA(0)) { 7897 mem_map = NODE_DATA(0)->node_mem_map; 7898 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7899 mem_map -= offset; 7900 } 7901 #endif 7902 } 7903 #else 7904 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7905 #endif /* CONFIG_FLATMEM */ 7906 7907 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7908 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7909 { 7910 pgdat->first_deferred_pfn = ULONG_MAX; 7911 } 7912 #else 7913 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7914 #endif 7915 7916 static void __init free_area_init_node(int nid) 7917 { 7918 pg_data_t *pgdat = NODE_DATA(nid); 7919 unsigned long start_pfn = 0; 7920 unsigned long end_pfn = 0; 7921 7922 /* pg_data_t should be reset to zero when it's allocated */ 7923 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7924 7925 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7926 7927 pgdat->node_id = nid; 7928 pgdat->node_start_pfn = start_pfn; 7929 pgdat->per_cpu_nodestats = NULL; 7930 7931 if (start_pfn != end_pfn) { 7932 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7933 (u64)start_pfn << PAGE_SHIFT, 7934 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7935 } else { 7936 pr_info("Initmem setup node %d as memoryless\n", nid); 7937 } 7938 7939 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7940 7941 alloc_node_mem_map(pgdat); 7942 pgdat_set_deferred_range(pgdat); 7943 7944 free_area_init_core(pgdat); 7945 } 7946 7947 static void __init free_area_init_memoryless_node(int nid) 7948 { 7949 free_area_init_node(nid); 7950 } 7951 7952 #if MAX_NUMNODES > 1 7953 /* 7954 * Figure out the number of possible node ids. 7955 */ 7956 void __init setup_nr_node_ids(void) 7957 { 7958 unsigned int highest; 7959 7960 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7961 nr_node_ids = highest + 1; 7962 } 7963 #endif 7964 7965 /** 7966 * node_map_pfn_alignment - determine the maximum internode alignment 7967 * 7968 * This function should be called after node map is populated and sorted. 7969 * It calculates the maximum power of two alignment which can distinguish 7970 * all the nodes. 7971 * 7972 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7973 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7974 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7975 * shifted, 1GiB is enough and this function will indicate so. 7976 * 7977 * This is used to test whether pfn -> nid mapping of the chosen memory 7978 * model has fine enough granularity to avoid incorrect mapping for the 7979 * populated node map. 7980 * 7981 * Return: the determined alignment in pfn's. 0 if there is no alignment 7982 * requirement (single node). 7983 */ 7984 unsigned long __init node_map_pfn_alignment(void) 7985 { 7986 unsigned long accl_mask = 0, last_end = 0; 7987 unsigned long start, end, mask; 7988 int last_nid = NUMA_NO_NODE; 7989 int i, nid; 7990 7991 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7992 if (!start || last_nid < 0 || last_nid == nid) { 7993 last_nid = nid; 7994 last_end = end; 7995 continue; 7996 } 7997 7998 /* 7999 * Start with a mask granular enough to pin-point to the 8000 * start pfn and tick off bits one-by-one until it becomes 8001 * too coarse to separate the current node from the last. 8002 */ 8003 mask = ~((1 << __ffs(start)) - 1); 8004 while (mask && last_end <= (start & (mask << 1))) 8005 mask <<= 1; 8006 8007 /* accumulate all internode masks */ 8008 accl_mask |= mask; 8009 } 8010 8011 /* convert mask to number of pages */ 8012 return ~accl_mask + 1; 8013 } 8014 8015 /* 8016 * early_calculate_totalpages() 8017 * Sum pages in active regions for movable zone. 8018 * Populate N_MEMORY for calculating usable_nodes. 8019 */ 8020 static unsigned long __init early_calculate_totalpages(void) 8021 { 8022 unsigned long totalpages = 0; 8023 unsigned long start_pfn, end_pfn; 8024 int i, nid; 8025 8026 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8027 unsigned long pages = end_pfn - start_pfn; 8028 8029 totalpages += pages; 8030 if (pages) 8031 node_set_state(nid, N_MEMORY); 8032 } 8033 return totalpages; 8034 } 8035 8036 /* 8037 * Find the PFN the Movable zone begins in each node. Kernel memory 8038 * is spread evenly between nodes as long as the nodes have enough 8039 * memory. When they don't, some nodes will have more kernelcore than 8040 * others 8041 */ 8042 static void __init find_zone_movable_pfns_for_nodes(void) 8043 { 8044 int i, nid; 8045 unsigned long usable_startpfn; 8046 unsigned long kernelcore_node, kernelcore_remaining; 8047 /* save the state before borrow the nodemask */ 8048 nodemask_t saved_node_state = node_states[N_MEMORY]; 8049 unsigned long totalpages = early_calculate_totalpages(); 8050 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8051 struct memblock_region *r; 8052 8053 /* Need to find movable_zone earlier when movable_node is specified. */ 8054 find_usable_zone_for_movable(); 8055 8056 /* 8057 * If movable_node is specified, ignore kernelcore and movablecore 8058 * options. 8059 */ 8060 if (movable_node_is_enabled()) { 8061 for_each_mem_region(r) { 8062 if (!memblock_is_hotpluggable(r)) 8063 continue; 8064 8065 nid = memblock_get_region_node(r); 8066 8067 usable_startpfn = PFN_DOWN(r->base); 8068 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8069 min(usable_startpfn, zone_movable_pfn[nid]) : 8070 usable_startpfn; 8071 } 8072 8073 goto out2; 8074 } 8075 8076 /* 8077 * If kernelcore=mirror is specified, ignore movablecore option 8078 */ 8079 if (mirrored_kernelcore) { 8080 bool mem_below_4gb_not_mirrored = false; 8081 8082 for_each_mem_region(r) { 8083 if (memblock_is_mirror(r)) 8084 continue; 8085 8086 nid = memblock_get_region_node(r); 8087 8088 usable_startpfn = memblock_region_memory_base_pfn(r); 8089 8090 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8091 mem_below_4gb_not_mirrored = true; 8092 continue; 8093 } 8094 8095 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8096 min(usable_startpfn, zone_movable_pfn[nid]) : 8097 usable_startpfn; 8098 } 8099 8100 if (mem_below_4gb_not_mirrored) 8101 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8102 8103 goto out2; 8104 } 8105 8106 /* 8107 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8108 * amount of necessary memory. 8109 */ 8110 if (required_kernelcore_percent) 8111 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8112 10000UL; 8113 if (required_movablecore_percent) 8114 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8115 10000UL; 8116 8117 /* 8118 * If movablecore= was specified, calculate what size of 8119 * kernelcore that corresponds so that memory usable for 8120 * any allocation type is evenly spread. If both kernelcore 8121 * and movablecore are specified, then the value of kernelcore 8122 * will be used for required_kernelcore if it's greater than 8123 * what movablecore would have allowed. 8124 */ 8125 if (required_movablecore) { 8126 unsigned long corepages; 8127 8128 /* 8129 * Round-up so that ZONE_MOVABLE is at least as large as what 8130 * was requested by the user 8131 */ 8132 required_movablecore = 8133 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8134 required_movablecore = min(totalpages, required_movablecore); 8135 corepages = totalpages - required_movablecore; 8136 8137 required_kernelcore = max(required_kernelcore, corepages); 8138 } 8139 8140 /* 8141 * If kernelcore was not specified or kernelcore size is larger 8142 * than totalpages, there is no ZONE_MOVABLE. 8143 */ 8144 if (!required_kernelcore || required_kernelcore >= totalpages) 8145 goto out; 8146 8147 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8148 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8149 8150 restart: 8151 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8152 kernelcore_node = required_kernelcore / usable_nodes; 8153 for_each_node_state(nid, N_MEMORY) { 8154 unsigned long start_pfn, end_pfn; 8155 8156 /* 8157 * Recalculate kernelcore_node if the division per node 8158 * now exceeds what is necessary to satisfy the requested 8159 * amount of memory for the kernel 8160 */ 8161 if (required_kernelcore < kernelcore_node) 8162 kernelcore_node = required_kernelcore / usable_nodes; 8163 8164 /* 8165 * As the map is walked, we track how much memory is usable 8166 * by the kernel using kernelcore_remaining. When it is 8167 * 0, the rest of the node is usable by ZONE_MOVABLE 8168 */ 8169 kernelcore_remaining = kernelcore_node; 8170 8171 /* Go through each range of PFNs within this node */ 8172 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8173 unsigned long size_pages; 8174 8175 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8176 if (start_pfn >= end_pfn) 8177 continue; 8178 8179 /* Account for what is only usable for kernelcore */ 8180 if (start_pfn < usable_startpfn) { 8181 unsigned long kernel_pages; 8182 kernel_pages = min(end_pfn, usable_startpfn) 8183 - start_pfn; 8184 8185 kernelcore_remaining -= min(kernel_pages, 8186 kernelcore_remaining); 8187 required_kernelcore -= min(kernel_pages, 8188 required_kernelcore); 8189 8190 /* Continue if range is now fully accounted */ 8191 if (end_pfn <= usable_startpfn) { 8192 8193 /* 8194 * Push zone_movable_pfn to the end so 8195 * that if we have to rebalance 8196 * kernelcore across nodes, we will 8197 * not double account here 8198 */ 8199 zone_movable_pfn[nid] = end_pfn; 8200 continue; 8201 } 8202 start_pfn = usable_startpfn; 8203 } 8204 8205 /* 8206 * The usable PFN range for ZONE_MOVABLE is from 8207 * start_pfn->end_pfn. Calculate size_pages as the 8208 * number of pages used as kernelcore 8209 */ 8210 size_pages = end_pfn - start_pfn; 8211 if (size_pages > kernelcore_remaining) 8212 size_pages = kernelcore_remaining; 8213 zone_movable_pfn[nid] = start_pfn + size_pages; 8214 8215 /* 8216 * Some kernelcore has been met, update counts and 8217 * break if the kernelcore for this node has been 8218 * satisfied 8219 */ 8220 required_kernelcore -= min(required_kernelcore, 8221 size_pages); 8222 kernelcore_remaining -= size_pages; 8223 if (!kernelcore_remaining) 8224 break; 8225 } 8226 } 8227 8228 /* 8229 * If there is still required_kernelcore, we do another pass with one 8230 * less node in the count. This will push zone_movable_pfn[nid] further 8231 * along on the nodes that still have memory until kernelcore is 8232 * satisfied 8233 */ 8234 usable_nodes--; 8235 if (usable_nodes && required_kernelcore > usable_nodes) 8236 goto restart; 8237 8238 out2: 8239 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8240 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8241 unsigned long start_pfn, end_pfn; 8242 8243 zone_movable_pfn[nid] = 8244 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8245 8246 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8247 if (zone_movable_pfn[nid] >= end_pfn) 8248 zone_movable_pfn[nid] = 0; 8249 } 8250 8251 out: 8252 /* restore the node_state */ 8253 node_states[N_MEMORY] = saved_node_state; 8254 } 8255 8256 /* Any regular or high memory on that node ? */ 8257 static void check_for_memory(pg_data_t *pgdat, int nid) 8258 { 8259 enum zone_type zone_type; 8260 8261 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8262 struct zone *zone = &pgdat->node_zones[zone_type]; 8263 if (populated_zone(zone)) { 8264 if (IS_ENABLED(CONFIG_HIGHMEM)) 8265 node_set_state(nid, N_HIGH_MEMORY); 8266 if (zone_type <= ZONE_NORMAL) 8267 node_set_state(nid, N_NORMAL_MEMORY); 8268 break; 8269 } 8270 } 8271 } 8272 8273 /* 8274 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8275 * such cases we allow max_zone_pfn sorted in the descending order 8276 */ 8277 bool __weak arch_has_descending_max_zone_pfns(void) 8278 { 8279 return false; 8280 } 8281 8282 /** 8283 * free_area_init - Initialise all pg_data_t and zone data 8284 * @max_zone_pfn: an array of max PFNs for each zone 8285 * 8286 * This will call free_area_init_node() for each active node in the system. 8287 * Using the page ranges provided by memblock_set_node(), the size of each 8288 * zone in each node and their holes is calculated. If the maximum PFN 8289 * between two adjacent zones match, it is assumed that the zone is empty. 8290 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8291 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8292 * starts where the previous one ended. For example, ZONE_DMA32 starts 8293 * at arch_max_dma_pfn. 8294 */ 8295 void __init free_area_init(unsigned long *max_zone_pfn) 8296 { 8297 unsigned long start_pfn, end_pfn; 8298 int i, nid, zone; 8299 bool descending; 8300 8301 /* Record where the zone boundaries are */ 8302 memset(arch_zone_lowest_possible_pfn, 0, 8303 sizeof(arch_zone_lowest_possible_pfn)); 8304 memset(arch_zone_highest_possible_pfn, 0, 8305 sizeof(arch_zone_highest_possible_pfn)); 8306 8307 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8308 descending = arch_has_descending_max_zone_pfns(); 8309 8310 for (i = 0; i < MAX_NR_ZONES; i++) { 8311 if (descending) 8312 zone = MAX_NR_ZONES - i - 1; 8313 else 8314 zone = i; 8315 8316 if (zone == ZONE_MOVABLE) 8317 continue; 8318 8319 end_pfn = max(max_zone_pfn[zone], start_pfn); 8320 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8321 arch_zone_highest_possible_pfn[zone] = end_pfn; 8322 8323 start_pfn = end_pfn; 8324 } 8325 8326 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8327 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8328 find_zone_movable_pfns_for_nodes(); 8329 8330 /* Print out the zone ranges */ 8331 pr_info("Zone ranges:\n"); 8332 for (i = 0; i < MAX_NR_ZONES; i++) { 8333 if (i == ZONE_MOVABLE) 8334 continue; 8335 pr_info(" %-8s ", zone_names[i]); 8336 if (arch_zone_lowest_possible_pfn[i] == 8337 arch_zone_highest_possible_pfn[i]) 8338 pr_cont("empty\n"); 8339 else 8340 pr_cont("[mem %#018Lx-%#018Lx]\n", 8341 (u64)arch_zone_lowest_possible_pfn[i] 8342 << PAGE_SHIFT, 8343 ((u64)arch_zone_highest_possible_pfn[i] 8344 << PAGE_SHIFT) - 1); 8345 } 8346 8347 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8348 pr_info("Movable zone start for each node\n"); 8349 for (i = 0; i < MAX_NUMNODES; i++) { 8350 if (zone_movable_pfn[i]) 8351 pr_info(" Node %d: %#018Lx\n", i, 8352 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8353 } 8354 8355 /* 8356 * Print out the early node map, and initialize the 8357 * subsection-map relative to active online memory ranges to 8358 * enable future "sub-section" extensions of the memory map. 8359 */ 8360 pr_info("Early memory node ranges\n"); 8361 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8362 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8363 (u64)start_pfn << PAGE_SHIFT, 8364 ((u64)end_pfn << PAGE_SHIFT) - 1); 8365 subsection_map_init(start_pfn, end_pfn - start_pfn); 8366 } 8367 8368 /* Initialise every node */ 8369 mminit_verify_pageflags_layout(); 8370 setup_nr_node_ids(); 8371 for_each_node(nid) { 8372 pg_data_t *pgdat; 8373 8374 if (!node_online(nid)) { 8375 pr_info("Initializing node %d as memoryless\n", nid); 8376 8377 /* Allocator not initialized yet */ 8378 pgdat = arch_alloc_nodedata(nid); 8379 if (!pgdat) { 8380 pr_err("Cannot allocate %zuB for node %d.\n", 8381 sizeof(*pgdat), nid); 8382 continue; 8383 } 8384 arch_refresh_nodedata(nid, pgdat); 8385 free_area_init_memoryless_node(nid); 8386 8387 /* 8388 * We do not want to confuse userspace by sysfs 8389 * files/directories for node without any memory 8390 * attached to it, so this node is not marked as 8391 * N_MEMORY and not marked online so that no sysfs 8392 * hierarchy will be created via register_one_node for 8393 * it. The pgdat will get fully initialized by 8394 * hotadd_init_pgdat() when memory is hotplugged into 8395 * this node. 8396 */ 8397 continue; 8398 } 8399 8400 pgdat = NODE_DATA(nid); 8401 free_area_init_node(nid); 8402 8403 /* Any memory on that node */ 8404 if (pgdat->node_present_pages) 8405 node_set_state(nid, N_MEMORY); 8406 check_for_memory(pgdat, nid); 8407 } 8408 8409 memmap_init(); 8410 } 8411 8412 static int __init cmdline_parse_core(char *p, unsigned long *core, 8413 unsigned long *percent) 8414 { 8415 unsigned long long coremem; 8416 char *endptr; 8417 8418 if (!p) 8419 return -EINVAL; 8420 8421 /* Value may be a percentage of total memory, otherwise bytes */ 8422 coremem = simple_strtoull(p, &endptr, 0); 8423 if (*endptr == '%') { 8424 /* Paranoid check for percent values greater than 100 */ 8425 WARN_ON(coremem > 100); 8426 8427 *percent = coremem; 8428 } else { 8429 coremem = memparse(p, &p); 8430 /* Paranoid check that UL is enough for the coremem value */ 8431 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8432 8433 *core = coremem >> PAGE_SHIFT; 8434 *percent = 0UL; 8435 } 8436 return 0; 8437 } 8438 8439 /* 8440 * kernelcore=size sets the amount of memory for use for allocations that 8441 * cannot be reclaimed or migrated. 8442 */ 8443 static int __init cmdline_parse_kernelcore(char *p) 8444 { 8445 /* parse kernelcore=mirror */ 8446 if (parse_option_str(p, "mirror")) { 8447 mirrored_kernelcore = true; 8448 return 0; 8449 } 8450 8451 return cmdline_parse_core(p, &required_kernelcore, 8452 &required_kernelcore_percent); 8453 } 8454 8455 /* 8456 * movablecore=size sets the amount of memory for use for allocations that 8457 * can be reclaimed or migrated. 8458 */ 8459 static int __init cmdline_parse_movablecore(char *p) 8460 { 8461 return cmdline_parse_core(p, &required_movablecore, 8462 &required_movablecore_percent); 8463 } 8464 8465 early_param("kernelcore", cmdline_parse_kernelcore); 8466 early_param("movablecore", cmdline_parse_movablecore); 8467 8468 void adjust_managed_page_count(struct page *page, long count) 8469 { 8470 atomic_long_add(count, &page_zone(page)->managed_pages); 8471 totalram_pages_add(count); 8472 #ifdef CONFIG_HIGHMEM 8473 if (PageHighMem(page)) 8474 totalhigh_pages_add(count); 8475 #endif 8476 } 8477 EXPORT_SYMBOL(adjust_managed_page_count); 8478 8479 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8480 { 8481 void *pos; 8482 unsigned long pages = 0; 8483 8484 start = (void *)PAGE_ALIGN((unsigned long)start); 8485 end = (void *)((unsigned long)end & PAGE_MASK); 8486 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8487 struct page *page = virt_to_page(pos); 8488 void *direct_map_addr; 8489 8490 /* 8491 * 'direct_map_addr' might be different from 'pos' 8492 * because some architectures' virt_to_page() 8493 * work with aliases. Getting the direct map 8494 * address ensures that we get a _writeable_ 8495 * alias for the memset(). 8496 */ 8497 direct_map_addr = page_address(page); 8498 /* 8499 * Perform a kasan-unchecked memset() since this memory 8500 * has not been initialized. 8501 */ 8502 direct_map_addr = kasan_reset_tag(direct_map_addr); 8503 if ((unsigned int)poison <= 0xFF) 8504 memset(direct_map_addr, poison, PAGE_SIZE); 8505 8506 free_reserved_page(page); 8507 } 8508 8509 if (pages && s) 8510 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8511 8512 return pages; 8513 } 8514 8515 void __init mem_init_print_info(void) 8516 { 8517 unsigned long physpages, codesize, datasize, rosize, bss_size; 8518 unsigned long init_code_size, init_data_size; 8519 8520 physpages = get_num_physpages(); 8521 codesize = _etext - _stext; 8522 datasize = _edata - _sdata; 8523 rosize = __end_rodata - __start_rodata; 8524 bss_size = __bss_stop - __bss_start; 8525 init_data_size = __init_end - __init_begin; 8526 init_code_size = _einittext - _sinittext; 8527 8528 /* 8529 * Detect special cases and adjust section sizes accordingly: 8530 * 1) .init.* may be embedded into .data sections 8531 * 2) .init.text.* may be out of [__init_begin, __init_end], 8532 * please refer to arch/tile/kernel/vmlinux.lds.S. 8533 * 3) .rodata.* may be embedded into .text or .data sections. 8534 */ 8535 #define adj_init_size(start, end, size, pos, adj) \ 8536 do { \ 8537 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8538 size -= adj; \ 8539 } while (0) 8540 8541 adj_init_size(__init_begin, __init_end, init_data_size, 8542 _sinittext, init_code_size); 8543 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8544 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8545 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8546 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8547 8548 #undef adj_init_size 8549 8550 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8551 #ifdef CONFIG_HIGHMEM 8552 ", %luK highmem" 8553 #endif 8554 ")\n", 8555 K(nr_free_pages()), K(physpages), 8556 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 8557 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 8558 K(physpages - totalram_pages() - totalcma_pages), 8559 K(totalcma_pages) 8560 #ifdef CONFIG_HIGHMEM 8561 , K(totalhigh_pages()) 8562 #endif 8563 ); 8564 } 8565 8566 /** 8567 * set_dma_reserve - set the specified number of pages reserved in the first zone 8568 * @new_dma_reserve: The number of pages to mark reserved 8569 * 8570 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8571 * In the DMA zone, a significant percentage may be consumed by kernel image 8572 * and other unfreeable allocations which can skew the watermarks badly. This 8573 * function may optionally be used to account for unfreeable pages in the 8574 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8575 * smaller per-cpu batchsize. 8576 */ 8577 void __init set_dma_reserve(unsigned long new_dma_reserve) 8578 { 8579 dma_reserve = new_dma_reserve; 8580 } 8581 8582 static int page_alloc_cpu_dead(unsigned int cpu) 8583 { 8584 struct zone *zone; 8585 8586 lru_add_drain_cpu(cpu); 8587 mlock_page_drain_remote(cpu); 8588 drain_pages(cpu); 8589 8590 /* 8591 * Spill the event counters of the dead processor 8592 * into the current processors event counters. 8593 * This artificially elevates the count of the current 8594 * processor. 8595 */ 8596 vm_events_fold_cpu(cpu); 8597 8598 /* 8599 * Zero the differential counters of the dead processor 8600 * so that the vm statistics are consistent. 8601 * 8602 * This is only okay since the processor is dead and cannot 8603 * race with what we are doing. 8604 */ 8605 cpu_vm_stats_fold(cpu); 8606 8607 for_each_populated_zone(zone) 8608 zone_pcp_update(zone, 0); 8609 8610 return 0; 8611 } 8612 8613 static int page_alloc_cpu_online(unsigned int cpu) 8614 { 8615 struct zone *zone; 8616 8617 for_each_populated_zone(zone) 8618 zone_pcp_update(zone, 1); 8619 return 0; 8620 } 8621 8622 #ifdef CONFIG_NUMA 8623 int hashdist = HASHDIST_DEFAULT; 8624 8625 static int __init set_hashdist(char *str) 8626 { 8627 if (!str) 8628 return 0; 8629 hashdist = simple_strtoul(str, &str, 0); 8630 return 1; 8631 } 8632 __setup("hashdist=", set_hashdist); 8633 #endif 8634 8635 void __init page_alloc_init(void) 8636 { 8637 int ret; 8638 8639 #ifdef CONFIG_NUMA 8640 if (num_node_state(N_MEMORY) == 1) 8641 hashdist = 0; 8642 #endif 8643 8644 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8645 "mm/page_alloc:pcp", 8646 page_alloc_cpu_online, 8647 page_alloc_cpu_dead); 8648 WARN_ON(ret < 0); 8649 } 8650 8651 /* 8652 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8653 * or min_free_kbytes changes. 8654 */ 8655 static void calculate_totalreserve_pages(void) 8656 { 8657 struct pglist_data *pgdat; 8658 unsigned long reserve_pages = 0; 8659 enum zone_type i, j; 8660 8661 for_each_online_pgdat(pgdat) { 8662 8663 pgdat->totalreserve_pages = 0; 8664 8665 for (i = 0; i < MAX_NR_ZONES; i++) { 8666 struct zone *zone = pgdat->node_zones + i; 8667 long max = 0; 8668 unsigned long managed_pages = zone_managed_pages(zone); 8669 8670 /* Find valid and maximum lowmem_reserve in the zone */ 8671 for (j = i; j < MAX_NR_ZONES; j++) { 8672 if (zone->lowmem_reserve[j] > max) 8673 max = zone->lowmem_reserve[j]; 8674 } 8675 8676 /* we treat the high watermark as reserved pages. */ 8677 max += high_wmark_pages(zone); 8678 8679 if (max > managed_pages) 8680 max = managed_pages; 8681 8682 pgdat->totalreserve_pages += max; 8683 8684 reserve_pages += max; 8685 } 8686 } 8687 totalreserve_pages = reserve_pages; 8688 } 8689 8690 /* 8691 * setup_per_zone_lowmem_reserve - called whenever 8692 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8693 * has a correct pages reserved value, so an adequate number of 8694 * pages are left in the zone after a successful __alloc_pages(). 8695 */ 8696 static void setup_per_zone_lowmem_reserve(void) 8697 { 8698 struct pglist_data *pgdat; 8699 enum zone_type i, j; 8700 8701 for_each_online_pgdat(pgdat) { 8702 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8703 struct zone *zone = &pgdat->node_zones[i]; 8704 int ratio = sysctl_lowmem_reserve_ratio[i]; 8705 bool clear = !ratio || !zone_managed_pages(zone); 8706 unsigned long managed_pages = 0; 8707 8708 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8709 struct zone *upper_zone = &pgdat->node_zones[j]; 8710 8711 managed_pages += zone_managed_pages(upper_zone); 8712 8713 if (clear) 8714 zone->lowmem_reserve[j] = 0; 8715 else 8716 zone->lowmem_reserve[j] = managed_pages / ratio; 8717 } 8718 } 8719 } 8720 8721 /* update totalreserve_pages */ 8722 calculate_totalreserve_pages(); 8723 } 8724 8725 static void __setup_per_zone_wmarks(void) 8726 { 8727 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8728 unsigned long lowmem_pages = 0; 8729 struct zone *zone; 8730 unsigned long flags; 8731 8732 /* Calculate total number of !ZONE_HIGHMEM pages */ 8733 for_each_zone(zone) { 8734 if (!is_highmem(zone)) 8735 lowmem_pages += zone_managed_pages(zone); 8736 } 8737 8738 for_each_zone(zone) { 8739 u64 tmp; 8740 8741 spin_lock_irqsave(&zone->lock, flags); 8742 tmp = (u64)pages_min * zone_managed_pages(zone); 8743 do_div(tmp, lowmem_pages); 8744 if (is_highmem(zone)) { 8745 /* 8746 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8747 * need highmem pages, so cap pages_min to a small 8748 * value here. 8749 * 8750 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8751 * deltas control async page reclaim, and so should 8752 * not be capped for highmem. 8753 */ 8754 unsigned long min_pages; 8755 8756 min_pages = zone_managed_pages(zone) / 1024; 8757 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8758 zone->_watermark[WMARK_MIN] = min_pages; 8759 } else { 8760 /* 8761 * If it's a lowmem zone, reserve a number of pages 8762 * proportionate to the zone's size. 8763 */ 8764 zone->_watermark[WMARK_MIN] = tmp; 8765 } 8766 8767 /* 8768 * Set the kswapd watermarks distance according to the 8769 * scale factor in proportion to available memory, but 8770 * ensure a minimum size on small systems. 8771 */ 8772 tmp = max_t(u64, tmp >> 2, 8773 mult_frac(zone_managed_pages(zone), 8774 watermark_scale_factor, 10000)); 8775 8776 zone->watermark_boost = 0; 8777 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8778 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8779 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8780 8781 spin_unlock_irqrestore(&zone->lock, flags); 8782 } 8783 8784 /* update totalreserve_pages */ 8785 calculate_totalreserve_pages(); 8786 } 8787 8788 /** 8789 * setup_per_zone_wmarks - called when min_free_kbytes changes 8790 * or when memory is hot-{added|removed} 8791 * 8792 * Ensures that the watermark[min,low,high] values for each zone are set 8793 * correctly with respect to min_free_kbytes. 8794 */ 8795 void setup_per_zone_wmarks(void) 8796 { 8797 struct zone *zone; 8798 static DEFINE_SPINLOCK(lock); 8799 8800 spin_lock(&lock); 8801 __setup_per_zone_wmarks(); 8802 spin_unlock(&lock); 8803 8804 /* 8805 * The watermark size have changed so update the pcpu batch 8806 * and high limits or the limits may be inappropriate. 8807 */ 8808 for_each_zone(zone) 8809 zone_pcp_update(zone, 0); 8810 } 8811 8812 /* 8813 * Initialise min_free_kbytes. 8814 * 8815 * For small machines we want it small (128k min). For large machines 8816 * we want it large (256MB max). But it is not linear, because network 8817 * bandwidth does not increase linearly with machine size. We use 8818 * 8819 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8820 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8821 * 8822 * which yields 8823 * 8824 * 16MB: 512k 8825 * 32MB: 724k 8826 * 64MB: 1024k 8827 * 128MB: 1448k 8828 * 256MB: 2048k 8829 * 512MB: 2896k 8830 * 1024MB: 4096k 8831 * 2048MB: 5792k 8832 * 4096MB: 8192k 8833 * 8192MB: 11584k 8834 * 16384MB: 16384k 8835 */ 8836 void calculate_min_free_kbytes(void) 8837 { 8838 unsigned long lowmem_kbytes; 8839 int new_min_free_kbytes; 8840 8841 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8842 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8843 8844 if (new_min_free_kbytes > user_min_free_kbytes) 8845 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8846 else 8847 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8848 new_min_free_kbytes, user_min_free_kbytes); 8849 8850 } 8851 8852 int __meminit init_per_zone_wmark_min(void) 8853 { 8854 calculate_min_free_kbytes(); 8855 setup_per_zone_wmarks(); 8856 refresh_zone_stat_thresholds(); 8857 setup_per_zone_lowmem_reserve(); 8858 8859 #ifdef CONFIG_NUMA 8860 setup_min_unmapped_ratio(); 8861 setup_min_slab_ratio(); 8862 #endif 8863 8864 khugepaged_min_free_kbytes_update(); 8865 8866 return 0; 8867 } 8868 postcore_initcall(init_per_zone_wmark_min) 8869 8870 /* 8871 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8872 * that we can call two helper functions whenever min_free_kbytes 8873 * changes. 8874 */ 8875 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8876 void *buffer, size_t *length, loff_t *ppos) 8877 { 8878 int rc; 8879 8880 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8881 if (rc) 8882 return rc; 8883 8884 if (write) { 8885 user_min_free_kbytes = min_free_kbytes; 8886 setup_per_zone_wmarks(); 8887 } 8888 return 0; 8889 } 8890 8891 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8892 void *buffer, size_t *length, loff_t *ppos) 8893 { 8894 int rc; 8895 8896 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8897 if (rc) 8898 return rc; 8899 8900 if (write) 8901 setup_per_zone_wmarks(); 8902 8903 return 0; 8904 } 8905 8906 #ifdef CONFIG_NUMA 8907 static void setup_min_unmapped_ratio(void) 8908 { 8909 pg_data_t *pgdat; 8910 struct zone *zone; 8911 8912 for_each_online_pgdat(pgdat) 8913 pgdat->min_unmapped_pages = 0; 8914 8915 for_each_zone(zone) 8916 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8917 sysctl_min_unmapped_ratio) / 100; 8918 } 8919 8920 8921 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8922 void *buffer, size_t *length, loff_t *ppos) 8923 { 8924 int rc; 8925 8926 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8927 if (rc) 8928 return rc; 8929 8930 setup_min_unmapped_ratio(); 8931 8932 return 0; 8933 } 8934 8935 static void setup_min_slab_ratio(void) 8936 { 8937 pg_data_t *pgdat; 8938 struct zone *zone; 8939 8940 for_each_online_pgdat(pgdat) 8941 pgdat->min_slab_pages = 0; 8942 8943 for_each_zone(zone) 8944 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8945 sysctl_min_slab_ratio) / 100; 8946 } 8947 8948 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8949 void *buffer, size_t *length, loff_t *ppos) 8950 { 8951 int rc; 8952 8953 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8954 if (rc) 8955 return rc; 8956 8957 setup_min_slab_ratio(); 8958 8959 return 0; 8960 } 8961 #endif 8962 8963 /* 8964 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8965 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8966 * whenever sysctl_lowmem_reserve_ratio changes. 8967 * 8968 * The reserve ratio obviously has absolutely no relation with the 8969 * minimum watermarks. The lowmem reserve ratio can only make sense 8970 * if in function of the boot time zone sizes. 8971 */ 8972 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8973 void *buffer, size_t *length, loff_t *ppos) 8974 { 8975 int i; 8976 8977 proc_dointvec_minmax(table, write, buffer, length, ppos); 8978 8979 for (i = 0; i < MAX_NR_ZONES; i++) { 8980 if (sysctl_lowmem_reserve_ratio[i] < 1) 8981 sysctl_lowmem_reserve_ratio[i] = 0; 8982 } 8983 8984 setup_per_zone_lowmem_reserve(); 8985 return 0; 8986 } 8987 8988 /* 8989 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8990 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8991 * pagelist can have before it gets flushed back to buddy allocator. 8992 */ 8993 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8994 int write, void *buffer, size_t *length, loff_t *ppos) 8995 { 8996 struct zone *zone; 8997 int old_percpu_pagelist_high_fraction; 8998 int ret; 8999 9000 mutex_lock(&pcp_batch_high_lock); 9001 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 9002 9003 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 9004 if (!write || ret < 0) 9005 goto out; 9006 9007 /* Sanity checking to avoid pcp imbalance */ 9008 if (percpu_pagelist_high_fraction && 9009 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 9010 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 9011 ret = -EINVAL; 9012 goto out; 9013 } 9014 9015 /* No change? */ 9016 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 9017 goto out; 9018 9019 for_each_populated_zone(zone) 9020 zone_set_pageset_high_and_batch(zone, 0); 9021 out: 9022 mutex_unlock(&pcp_batch_high_lock); 9023 return ret; 9024 } 9025 9026 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 9027 /* 9028 * Returns the number of pages that arch has reserved but 9029 * is not known to alloc_large_system_hash(). 9030 */ 9031 static unsigned long __init arch_reserved_kernel_pages(void) 9032 { 9033 return 0; 9034 } 9035 #endif 9036 9037 /* 9038 * Adaptive scale is meant to reduce sizes of hash tables on large memory 9039 * machines. As memory size is increased the scale is also increased but at 9040 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 9041 * quadruples the scale is increased by one, which means the size of hash table 9042 * only doubles, instead of quadrupling as well. 9043 * Because 32-bit systems cannot have large physical memory, where this scaling 9044 * makes sense, it is disabled on such platforms. 9045 */ 9046 #if __BITS_PER_LONG > 32 9047 #define ADAPT_SCALE_BASE (64ul << 30) 9048 #define ADAPT_SCALE_SHIFT 2 9049 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9050 #endif 9051 9052 /* 9053 * allocate a large system hash table from bootmem 9054 * - it is assumed that the hash table must contain an exact power-of-2 9055 * quantity of entries 9056 * - limit is the number of hash buckets, not the total allocation size 9057 */ 9058 void *__init alloc_large_system_hash(const char *tablename, 9059 unsigned long bucketsize, 9060 unsigned long numentries, 9061 int scale, 9062 int flags, 9063 unsigned int *_hash_shift, 9064 unsigned int *_hash_mask, 9065 unsigned long low_limit, 9066 unsigned long high_limit) 9067 { 9068 unsigned long long max = high_limit; 9069 unsigned long log2qty, size; 9070 void *table; 9071 gfp_t gfp_flags; 9072 bool virt; 9073 bool huge; 9074 9075 /* allow the kernel cmdline to have a say */ 9076 if (!numentries) { 9077 /* round applicable memory size up to nearest megabyte */ 9078 numentries = nr_kernel_pages; 9079 numentries -= arch_reserved_kernel_pages(); 9080 9081 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9082 if (PAGE_SIZE < SZ_1M) 9083 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 9084 9085 #if __BITS_PER_LONG > 32 9086 if (!high_limit) { 9087 unsigned long adapt; 9088 9089 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9090 adapt <<= ADAPT_SCALE_SHIFT) 9091 scale++; 9092 } 9093 #endif 9094 9095 /* limit to 1 bucket per 2^scale bytes of low memory */ 9096 if (scale > PAGE_SHIFT) 9097 numentries >>= (scale - PAGE_SHIFT); 9098 else 9099 numentries <<= (PAGE_SHIFT - scale); 9100 9101 /* Make sure we've got at least a 0-order allocation.. */ 9102 if (unlikely(flags & HASH_SMALL)) { 9103 /* Makes no sense without HASH_EARLY */ 9104 WARN_ON(!(flags & HASH_EARLY)); 9105 if (!(numentries >> *_hash_shift)) { 9106 numentries = 1UL << *_hash_shift; 9107 BUG_ON(!numentries); 9108 } 9109 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9110 numentries = PAGE_SIZE / bucketsize; 9111 } 9112 numentries = roundup_pow_of_two(numentries); 9113 9114 /* limit allocation size to 1/16 total memory by default */ 9115 if (max == 0) { 9116 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9117 do_div(max, bucketsize); 9118 } 9119 max = min(max, 0x80000000ULL); 9120 9121 if (numentries < low_limit) 9122 numentries = low_limit; 9123 if (numentries > max) 9124 numentries = max; 9125 9126 log2qty = ilog2(numentries); 9127 9128 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9129 do { 9130 virt = false; 9131 size = bucketsize << log2qty; 9132 if (flags & HASH_EARLY) { 9133 if (flags & HASH_ZERO) 9134 table = memblock_alloc(size, SMP_CACHE_BYTES); 9135 else 9136 table = memblock_alloc_raw(size, 9137 SMP_CACHE_BYTES); 9138 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9139 table = vmalloc_huge(size, gfp_flags); 9140 virt = true; 9141 if (table) 9142 huge = is_vm_area_hugepages(table); 9143 } else { 9144 /* 9145 * If bucketsize is not a power-of-two, we may free 9146 * some pages at the end of hash table which 9147 * alloc_pages_exact() automatically does 9148 */ 9149 table = alloc_pages_exact(size, gfp_flags); 9150 kmemleak_alloc(table, size, 1, gfp_flags); 9151 } 9152 } while (!table && size > PAGE_SIZE && --log2qty); 9153 9154 if (!table) 9155 panic("Failed to allocate %s hash table\n", tablename); 9156 9157 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9158 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9159 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9160 9161 if (_hash_shift) 9162 *_hash_shift = log2qty; 9163 if (_hash_mask) 9164 *_hash_mask = (1 << log2qty) - 1; 9165 9166 return table; 9167 } 9168 9169 #ifdef CONFIG_CONTIG_ALLOC 9170 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9171 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9172 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9173 static void alloc_contig_dump_pages(struct list_head *page_list) 9174 { 9175 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9176 9177 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9178 struct page *page; 9179 9180 dump_stack(); 9181 list_for_each_entry(page, page_list, lru) 9182 dump_page(page, "migration failure"); 9183 } 9184 } 9185 #else 9186 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9187 { 9188 } 9189 #endif 9190 9191 /* [start, end) must belong to a single zone. */ 9192 int __alloc_contig_migrate_range(struct compact_control *cc, 9193 unsigned long start, unsigned long end) 9194 { 9195 /* This function is based on compact_zone() from compaction.c. */ 9196 unsigned int nr_reclaimed; 9197 unsigned long pfn = start; 9198 unsigned int tries = 0; 9199 int ret = 0; 9200 struct migration_target_control mtc = { 9201 .nid = zone_to_nid(cc->zone), 9202 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9203 }; 9204 9205 lru_cache_disable(); 9206 9207 while (pfn < end || !list_empty(&cc->migratepages)) { 9208 if (fatal_signal_pending(current)) { 9209 ret = -EINTR; 9210 break; 9211 } 9212 9213 if (list_empty(&cc->migratepages)) { 9214 cc->nr_migratepages = 0; 9215 ret = isolate_migratepages_range(cc, pfn, end); 9216 if (ret && ret != -EAGAIN) 9217 break; 9218 pfn = cc->migrate_pfn; 9219 tries = 0; 9220 } else if (++tries == 5) { 9221 ret = -EBUSY; 9222 break; 9223 } 9224 9225 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9226 &cc->migratepages); 9227 cc->nr_migratepages -= nr_reclaimed; 9228 9229 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9230 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9231 9232 /* 9233 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9234 * to retry again over this error, so do the same here. 9235 */ 9236 if (ret == -ENOMEM) 9237 break; 9238 } 9239 9240 lru_cache_enable(); 9241 if (ret < 0) { 9242 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9243 alloc_contig_dump_pages(&cc->migratepages); 9244 putback_movable_pages(&cc->migratepages); 9245 return ret; 9246 } 9247 return 0; 9248 } 9249 9250 /** 9251 * alloc_contig_range() -- tries to allocate given range of pages 9252 * @start: start PFN to allocate 9253 * @end: one-past-the-last PFN to allocate 9254 * @migratetype: migratetype of the underlying pageblocks (either 9255 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9256 * in range must have the same migratetype and it must 9257 * be either of the two. 9258 * @gfp_mask: GFP mask to use during compaction 9259 * 9260 * The PFN range does not have to be pageblock aligned. The PFN range must 9261 * belong to a single zone. 9262 * 9263 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9264 * pageblocks in the range. Once isolated, the pageblocks should not 9265 * be modified by others. 9266 * 9267 * Return: zero on success or negative error code. On success all 9268 * pages which PFN is in [start, end) are allocated for the caller and 9269 * need to be freed with free_contig_range(). 9270 */ 9271 int alloc_contig_range(unsigned long start, unsigned long end, 9272 unsigned migratetype, gfp_t gfp_mask) 9273 { 9274 unsigned long outer_start, outer_end; 9275 int order; 9276 int ret = 0; 9277 9278 struct compact_control cc = { 9279 .nr_migratepages = 0, 9280 .order = -1, 9281 .zone = page_zone(pfn_to_page(start)), 9282 .mode = MIGRATE_SYNC, 9283 .ignore_skip_hint = true, 9284 .no_set_skip_hint = true, 9285 .gfp_mask = current_gfp_context(gfp_mask), 9286 .alloc_contig = true, 9287 }; 9288 INIT_LIST_HEAD(&cc.migratepages); 9289 9290 /* 9291 * What we do here is we mark all pageblocks in range as 9292 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9293 * have different sizes, and due to the way page allocator 9294 * work, start_isolate_page_range() has special handlings for this. 9295 * 9296 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9297 * migrate the pages from an unaligned range (ie. pages that 9298 * we are interested in). This will put all the pages in 9299 * range back to page allocator as MIGRATE_ISOLATE. 9300 * 9301 * When this is done, we take the pages in range from page 9302 * allocator removing them from the buddy system. This way 9303 * page allocator will never consider using them. 9304 * 9305 * This lets us mark the pageblocks back as 9306 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9307 * aligned range but not in the unaligned, original range are 9308 * put back to page allocator so that buddy can use them. 9309 */ 9310 9311 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9312 if (ret) 9313 goto done; 9314 9315 drain_all_pages(cc.zone); 9316 9317 /* 9318 * In case of -EBUSY, we'd like to know which page causes problem. 9319 * So, just fall through. test_pages_isolated() has a tracepoint 9320 * which will report the busy page. 9321 * 9322 * It is possible that busy pages could become available before 9323 * the call to test_pages_isolated, and the range will actually be 9324 * allocated. So, if we fall through be sure to clear ret so that 9325 * -EBUSY is not accidentally used or returned to caller. 9326 */ 9327 ret = __alloc_contig_migrate_range(&cc, start, end); 9328 if (ret && ret != -EBUSY) 9329 goto done; 9330 ret = 0; 9331 9332 /* 9333 * Pages from [start, end) are within a pageblock_nr_pages 9334 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9335 * more, all pages in [start, end) are free in page allocator. 9336 * What we are going to do is to allocate all pages from 9337 * [start, end) (that is remove them from page allocator). 9338 * 9339 * The only problem is that pages at the beginning and at the 9340 * end of interesting range may be not aligned with pages that 9341 * page allocator holds, ie. they can be part of higher order 9342 * pages. Because of this, we reserve the bigger range and 9343 * once this is done free the pages we are not interested in. 9344 * 9345 * We don't have to hold zone->lock here because the pages are 9346 * isolated thus they won't get removed from buddy. 9347 */ 9348 9349 order = 0; 9350 outer_start = start; 9351 while (!PageBuddy(pfn_to_page(outer_start))) { 9352 if (++order >= MAX_ORDER) { 9353 outer_start = start; 9354 break; 9355 } 9356 outer_start &= ~0UL << order; 9357 } 9358 9359 if (outer_start != start) { 9360 order = buddy_order(pfn_to_page(outer_start)); 9361 9362 /* 9363 * outer_start page could be small order buddy page and 9364 * it doesn't include start page. Adjust outer_start 9365 * in this case to report failed page properly 9366 * on tracepoint in test_pages_isolated() 9367 */ 9368 if (outer_start + (1UL << order) <= start) 9369 outer_start = start; 9370 } 9371 9372 /* Make sure the range is really isolated. */ 9373 if (test_pages_isolated(outer_start, end, 0)) { 9374 ret = -EBUSY; 9375 goto done; 9376 } 9377 9378 /* Grab isolated pages from freelists. */ 9379 outer_end = isolate_freepages_range(&cc, outer_start, end); 9380 if (!outer_end) { 9381 ret = -EBUSY; 9382 goto done; 9383 } 9384 9385 /* Free head and tail (if any) */ 9386 if (start != outer_start) 9387 free_contig_range(outer_start, start - outer_start); 9388 if (end != outer_end) 9389 free_contig_range(end, outer_end - end); 9390 9391 done: 9392 undo_isolate_page_range(start, end, migratetype); 9393 return ret; 9394 } 9395 EXPORT_SYMBOL(alloc_contig_range); 9396 9397 static int __alloc_contig_pages(unsigned long start_pfn, 9398 unsigned long nr_pages, gfp_t gfp_mask) 9399 { 9400 unsigned long end_pfn = start_pfn + nr_pages; 9401 9402 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9403 gfp_mask); 9404 } 9405 9406 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9407 unsigned long nr_pages) 9408 { 9409 unsigned long i, end_pfn = start_pfn + nr_pages; 9410 struct page *page; 9411 9412 for (i = start_pfn; i < end_pfn; i++) { 9413 page = pfn_to_online_page(i); 9414 if (!page) 9415 return false; 9416 9417 if (page_zone(page) != z) 9418 return false; 9419 9420 if (PageReserved(page)) 9421 return false; 9422 } 9423 return true; 9424 } 9425 9426 static bool zone_spans_last_pfn(const struct zone *zone, 9427 unsigned long start_pfn, unsigned long nr_pages) 9428 { 9429 unsigned long last_pfn = start_pfn + nr_pages - 1; 9430 9431 return zone_spans_pfn(zone, last_pfn); 9432 } 9433 9434 /** 9435 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9436 * @nr_pages: Number of contiguous pages to allocate 9437 * @gfp_mask: GFP mask to limit search and used during compaction 9438 * @nid: Target node 9439 * @nodemask: Mask for other possible nodes 9440 * 9441 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9442 * on an applicable zonelist to find a contiguous pfn range which can then be 9443 * tried for allocation with alloc_contig_range(). This routine is intended 9444 * for allocation requests which can not be fulfilled with the buddy allocator. 9445 * 9446 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9447 * power of two, then allocated range is also guaranteed to be aligned to same 9448 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9449 * 9450 * Allocated pages can be freed with free_contig_range() or by manually calling 9451 * __free_page() on each allocated page. 9452 * 9453 * Return: pointer to contiguous pages on success, or NULL if not successful. 9454 */ 9455 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9456 int nid, nodemask_t *nodemask) 9457 { 9458 unsigned long ret, pfn, flags; 9459 struct zonelist *zonelist; 9460 struct zone *zone; 9461 struct zoneref *z; 9462 9463 zonelist = node_zonelist(nid, gfp_mask); 9464 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9465 gfp_zone(gfp_mask), nodemask) { 9466 spin_lock_irqsave(&zone->lock, flags); 9467 9468 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9469 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9470 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9471 /* 9472 * We release the zone lock here because 9473 * alloc_contig_range() will also lock the zone 9474 * at some point. If there's an allocation 9475 * spinning on this lock, it may win the race 9476 * and cause alloc_contig_range() to fail... 9477 */ 9478 spin_unlock_irqrestore(&zone->lock, flags); 9479 ret = __alloc_contig_pages(pfn, nr_pages, 9480 gfp_mask); 9481 if (!ret) 9482 return pfn_to_page(pfn); 9483 spin_lock_irqsave(&zone->lock, flags); 9484 } 9485 pfn += nr_pages; 9486 } 9487 spin_unlock_irqrestore(&zone->lock, flags); 9488 } 9489 return NULL; 9490 } 9491 #endif /* CONFIG_CONTIG_ALLOC */ 9492 9493 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9494 { 9495 unsigned long count = 0; 9496 9497 for (; nr_pages--; pfn++) { 9498 struct page *page = pfn_to_page(pfn); 9499 9500 count += page_count(page) != 1; 9501 __free_page(page); 9502 } 9503 WARN(count != 0, "%lu pages are still in use!\n", count); 9504 } 9505 EXPORT_SYMBOL(free_contig_range); 9506 9507 /* 9508 * Effectively disable pcplists for the zone by setting the high limit to 0 9509 * and draining all cpus. A concurrent page freeing on another CPU that's about 9510 * to put the page on pcplist will either finish before the drain and the page 9511 * will be drained, or observe the new high limit and skip the pcplist. 9512 * 9513 * Must be paired with a call to zone_pcp_enable(). 9514 */ 9515 void zone_pcp_disable(struct zone *zone) 9516 { 9517 mutex_lock(&pcp_batch_high_lock); 9518 __zone_set_pageset_high_and_batch(zone, 0, 1); 9519 __drain_all_pages(zone, true); 9520 } 9521 9522 void zone_pcp_enable(struct zone *zone) 9523 { 9524 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9525 mutex_unlock(&pcp_batch_high_lock); 9526 } 9527 9528 void zone_pcp_reset(struct zone *zone) 9529 { 9530 int cpu; 9531 struct per_cpu_zonestat *pzstats; 9532 9533 if (zone->per_cpu_pageset != &boot_pageset) { 9534 for_each_online_cpu(cpu) { 9535 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9536 drain_zonestat(zone, pzstats); 9537 } 9538 free_percpu(zone->per_cpu_pageset); 9539 zone->per_cpu_pageset = &boot_pageset; 9540 if (zone->per_cpu_zonestats != &boot_zonestats) { 9541 free_percpu(zone->per_cpu_zonestats); 9542 zone->per_cpu_zonestats = &boot_zonestats; 9543 } 9544 } 9545 } 9546 9547 #ifdef CONFIG_MEMORY_HOTREMOVE 9548 /* 9549 * All pages in the range must be in a single zone, must not contain holes, 9550 * must span full sections, and must be isolated before calling this function. 9551 */ 9552 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9553 { 9554 unsigned long pfn = start_pfn; 9555 struct page *page; 9556 struct zone *zone; 9557 unsigned int order; 9558 unsigned long flags; 9559 9560 offline_mem_sections(pfn, end_pfn); 9561 zone = page_zone(pfn_to_page(pfn)); 9562 spin_lock_irqsave(&zone->lock, flags); 9563 while (pfn < end_pfn) { 9564 page = pfn_to_page(pfn); 9565 /* 9566 * The HWPoisoned page may be not in buddy system, and 9567 * page_count() is not 0. 9568 */ 9569 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9570 pfn++; 9571 continue; 9572 } 9573 /* 9574 * At this point all remaining PageOffline() pages have a 9575 * reference count of 0 and can simply be skipped. 9576 */ 9577 if (PageOffline(page)) { 9578 BUG_ON(page_count(page)); 9579 BUG_ON(PageBuddy(page)); 9580 pfn++; 9581 continue; 9582 } 9583 9584 BUG_ON(page_count(page)); 9585 BUG_ON(!PageBuddy(page)); 9586 order = buddy_order(page); 9587 del_page_from_free_list(page, zone, order); 9588 pfn += (1 << order); 9589 } 9590 spin_unlock_irqrestore(&zone->lock, flags); 9591 } 9592 #endif 9593 9594 /* 9595 * This function returns a stable result only if called under zone lock. 9596 */ 9597 bool is_free_buddy_page(struct page *page) 9598 { 9599 unsigned long pfn = page_to_pfn(page); 9600 unsigned int order; 9601 9602 for (order = 0; order < MAX_ORDER; order++) { 9603 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9604 9605 if (PageBuddy(page_head) && 9606 buddy_order_unsafe(page_head) >= order) 9607 break; 9608 } 9609 9610 return order < MAX_ORDER; 9611 } 9612 EXPORT_SYMBOL(is_free_buddy_page); 9613 9614 #ifdef CONFIG_MEMORY_FAILURE 9615 /* 9616 * Break down a higher-order page in sub-pages, and keep our target out of 9617 * buddy allocator. 9618 */ 9619 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9620 struct page *target, int low, int high, 9621 int migratetype) 9622 { 9623 unsigned long size = 1 << high; 9624 struct page *current_buddy, *next_page; 9625 9626 while (high > low) { 9627 high--; 9628 size >>= 1; 9629 9630 if (target >= &page[size]) { 9631 next_page = page + size; 9632 current_buddy = page; 9633 } else { 9634 next_page = page; 9635 current_buddy = page + size; 9636 } 9637 9638 if (set_page_guard(zone, current_buddy, high, migratetype)) 9639 continue; 9640 9641 if (current_buddy != target) { 9642 add_to_free_list(current_buddy, zone, high, migratetype); 9643 set_buddy_order(current_buddy, high); 9644 page = next_page; 9645 } 9646 } 9647 } 9648 9649 /* 9650 * Take a page that will be marked as poisoned off the buddy allocator. 9651 */ 9652 bool take_page_off_buddy(struct page *page) 9653 { 9654 struct zone *zone = page_zone(page); 9655 unsigned long pfn = page_to_pfn(page); 9656 unsigned long flags; 9657 unsigned int order; 9658 bool ret = false; 9659 9660 spin_lock_irqsave(&zone->lock, flags); 9661 for (order = 0; order < MAX_ORDER; order++) { 9662 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9663 int page_order = buddy_order(page_head); 9664 9665 if (PageBuddy(page_head) && page_order >= order) { 9666 unsigned long pfn_head = page_to_pfn(page_head); 9667 int migratetype = get_pfnblock_migratetype(page_head, 9668 pfn_head); 9669 9670 del_page_from_free_list(page_head, zone, page_order); 9671 break_down_buddy_pages(zone, page_head, page, 0, 9672 page_order, migratetype); 9673 SetPageHWPoisonTakenOff(page); 9674 if (!is_migrate_isolate(migratetype)) 9675 __mod_zone_freepage_state(zone, -1, migratetype); 9676 ret = true; 9677 break; 9678 } 9679 if (page_count(page_head) > 0) 9680 break; 9681 } 9682 spin_unlock_irqrestore(&zone->lock, flags); 9683 return ret; 9684 } 9685 9686 /* 9687 * Cancel takeoff done by take_page_off_buddy(). 9688 */ 9689 bool put_page_back_buddy(struct page *page) 9690 { 9691 struct zone *zone = page_zone(page); 9692 unsigned long pfn = page_to_pfn(page); 9693 unsigned long flags; 9694 int migratetype = get_pfnblock_migratetype(page, pfn); 9695 bool ret = false; 9696 9697 spin_lock_irqsave(&zone->lock, flags); 9698 if (put_page_testzero(page)) { 9699 ClearPageHWPoisonTakenOff(page); 9700 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9701 if (TestClearPageHWPoison(page)) { 9702 ret = true; 9703 } 9704 } 9705 spin_unlock_irqrestore(&zone->lock, flags); 9706 9707 return ret; 9708 } 9709 #endif 9710 9711 #ifdef CONFIG_ZONE_DMA 9712 bool has_managed_dma(void) 9713 { 9714 struct pglist_data *pgdat; 9715 9716 for_each_online_pgdat(pgdat) { 9717 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9718 9719 if (managed_zone(zone)) 9720 return true; 9721 } 9722 return false; 9723 } 9724 #endif /* CONFIG_ZONE_DMA */ 9725