1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order, 294 int alloc_flags); 295 static bool __free_unaccepted(struct page *page); 296 297 int page_group_by_mobility_disabled __read_mostly; 298 299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 300 /* 301 * During boot we initialize deferred pages on-demand, as needed, but once 302 * page_alloc_init_late() has finished, the deferred pages are all initialized, 303 * and we can permanently disable that path. 304 */ 305 DEFINE_STATIC_KEY_TRUE(deferred_pages); 306 307 static inline bool deferred_pages_enabled(void) 308 { 309 return static_branch_unlikely(&deferred_pages); 310 } 311 312 /* 313 * deferred_grow_zone() is __init, but it is called from 314 * get_page_from_freelist() during early boot until deferred_pages permanently 315 * disables this call. This is why we have refdata wrapper to avoid warning, 316 * and to ensure that the function body gets unloaded. 317 */ 318 static bool __ref 319 _deferred_grow_zone(struct zone *zone, unsigned int order) 320 { 321 return deferred_grow_zone(zone, order); 322 } 323 #else 324 static inline bool deferred_pages_enabled(void) 325 { 326 return false; 327 } 328 329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 330 { 331 return false; 332 } 333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 334 335 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 336 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 337 unsigned long pfn) 338 { 339 #ifdef CONFIG_SPARSEMEM 340 return section_to_usemap(__pfn_to_section(pfn)); 341 #else 342 return page_zone(page)->pageblock_flags; 343 #endif /* CONFIG_SPARSEMEM */ 344 } 345 346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 347 { 348 #ifdef CONFIG_SPARSEMEM 349 pfn &= (PAGES_PER_SECTION-1); 350 #else 351 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 352 #endif /* CONFIG_SPARSEMEM */ 353 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 354 } 355 356 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit) 357 { 358 return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS; 359 } 360 361 static __always_inline void 362 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn, 363 unsigned long **bitmap_word, unsigned long *bitidx) 364 { 365 unsigned long *bitmap; 366 unsigned long word_bitidx; 367 368 #ifdef CONFIG_MEMORY_ISOLATION 369 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8); 370 #else 371 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 372 #endif 373 BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK); 374 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 375 376 bitmap = get_pageblock_bitmap(page, pfn); 377 *bitidx = pfn_to_bitidx(page, pfn); 378 word_bitidx = *bitidx / BITS_PER_LONG; 379 *bitidx &= (BITS_PER_LONG - 1); 380 *bitmap_word = &bitmap[word_bitidx]; 381 } 382 383 384 /** 385 * __get_pfnblock_flags_mask - Return the requested group of flags for 386 * a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @pfn: The target page frame number 389 * @mask: mask of bits that the caller is interested in 390 * 391 * Return: pageblock_bits flags 392 */ 393 static unsigned long __get_pfnblock_flags_mask(const struct page *page, 394 unsigned long pfn, 395 unsigned long mask) 396 { 397 unsigned long *bitmap_word; 398 unsigned long bitidx; 399 unsigned long word; 400 401 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 402 /* 403 * This races, without locks, with set_pfnblock_migratetype(). Ensure 404 * a consistent read of the memory array, so that results, even though 405 * racy, are not corrupted. 406 */ 407 word = READ_ONCE(*bitmap_word); 408 return (word >> bitidx) & mask; 409 } 410 411 /** 412 * get_pfnblock_bit - Check if a standalone bit of a pageblock is set 413 * @page: The page within the block of interest 414 * @pfn: The target page frame number 415 * @pb_bit: pageblock bit to check 416 * 417 * Return: true if the bit is set, otherwise false 418 */ 419 bool get_pfnblock_bit(const struct page *page, unsigned long pfn, 420 enum pageblock_bits pb_bit) 421 { 422 unsigned long *bitmap_word; 423 unsigned long bitidx; 424 425 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 426 return false; 427 428 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 429 430 return test_bit(bitidx + pb_bit, bitmap_word); 431 } 432 433 /** 434 * get_pfnblock_migratetype - Return the migratetype of a pageblock 435 * @page: The page within the block of interest 436 * @pfn: The target page frame number 437 * 438 * Return: The migratetype of the pageblock 439 * 440 * Use get_pfnblock_migratetype() if caller already has both @page and @pfn 441 * to save a call to page_to_pfn(). 442 */ 443 __always_inline enum migratetype 444 get_pfnblock_migratetype(const struct page *page, unsigned long pfn) 445 { 446 unsigned long mask = MIGRATETYPE_AND_ISO_MASK; 447 unsigned long flags; 448 449 flags = __get_pfnblock_flags_mask(page, pfn, mask); 450 451 #ifdef CONFIG_MEMORY_ISOLATION 452 if (flags & BIT(PB_migrate_isolate)) 453 return MIGRATE_ISOLATE; 454 #endif 455 return flags & MIGRATETYPE_MASK; 456 } 457 458 /** 459 * __set_pfnblock_flags_mask - Set the requested group of flags for 460 * a pageblock_nr_pages block of pages 461 * @page: The page within the block of interest 462 * @pfn: The target page frame number 463 * @flags: The flags to set 464 * @mask: mask of bits that the caller is interested in 465 */ 466 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn, 467 unsigned long flags, unsigned long mask) 468 { 469 unsigned long *bitmap_word; 470 unsigned long bitidx; 471 unsigned long word; 472 473 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 474 475 mask <<= bitidx; 476 flags <<= bitidx; 477 478 word = READ_ONCE(*bitmap_word); 479 do { 480 } while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags)); 481 } 482 483 /** 484 * set_pfnblock_bit - Set a standalone bit of a pageblock 485 * @page: The page within the block of interest 486 * @pfn: The target page frame number 487 * @pb_bit: pageblock bit to set 488 */ 489 void set_pfnblock_bit(const struct page *page, unsigned long pfn, 490 enum pageblock_bits pb_bit) 491 { 492 unsigned long *bitmap_word; 493 unsigned long bitidx; 494 495 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 496 return; 497 498 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 499 500 set_bit(bitidx + pb_bit, bitmap_word); 501 } 502 503 /** 504 * clear_pfnblock_bit - Clear a standalone bit of a pageblock 505 * @page: The page within the block of interest 506 * @pfn: The target page frame number 507 * @pb_bit: pageblock bit to clear 508 */ 509 void clear_pfnblock_bit(const struct page *page, unsigned long pfn, 510 enum pageblock_bits pb_bit) 511 { 512 unsigned long *bitmap_word; 513 unsigned long bitidx; 514 515 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 516 return; 517 518 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 519 520 clear_bit(bitidx + pb_bit, bitmap_word); 521 } 522 523 /** 524 * set_pageblock_migratetype - Set the migratetype of a pageblock 525 * @page: The page within the block of interest 526 * @migratetype: migratetype to set 527 */ 528 static void set_pageblock_migratetype(struct page *page, 529 enum migratetype migratetype) 530 { 531 if (unlikely(page_group_by_mobility_disabled && 532 migratetype < MIGRATE_PCPTYPES)) 533 migratetype = MIGRATE_UNMOVABLE; 534 535 #ifdef CONFIG_MEMORY_ISOLATION 536 if (migratetype == MIGRATE_ISOLATE) { 537 VM_WARN_ONCE(1, 538 "Use set_pageblock_isolate() for pageblock isolation"); 539 return; 540 } 541 VM_WARN_ONCE(get_pageblock_isolate(page), 542 "Use clear_pageblock_isolate() to unisolate pageblock"); 543 /* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */ 544 #endif 545 __set_pfnblock_flags_mask(page, page_to_pfn(page), 546 (unsigned long)migratetype, 547 MIGRATETYPE_AND_ISO_MASK); 548 } 549 550 void __meminit init_pageblock_migratetype(struct page *page, 551 enum migratetype migratetype, 552 bool isolate) 553 { 554 unsigned long flags; 555 556 if (unlikely(page_group_by_mobility_disabled && 557 migratetype < MIGRATE_PCPTYPES)) 558 migratetype = MIGRATE_UNMOVABLE; 559 560 flags = migratetype; 561 562 #ifdef CONFIG_MEMORY_ISOLATION 563 if (migratetype == MIGRATE_ISOLATE) { 564 VM_WARN_ONCE( 565 1, 566 "Set isolate=true to isolate pageblock with a migratetype"); 567 return; 568 } 569 if (isolate) 570 flags |= BIT(PB_migrate_isolate); 571 #endif 572 __set_pfnblock_flags_mask(page, page_to_pfn(page), flags, 573 MIGRATETYPE_AND_ISO_MASK); 574 } 575 576 #ifdef CONFIG_DEBUG_VM 577 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 578 { 579 int ret; 580 unsigned seq; 581 unsigned long pfn = page_to_pfn(page); 582 unsigned long sp, start_pfn; 583 584 do { 585 seq = zone_span_seqbegin(zone); 586 start_pfn = zone->zone_start_pfn; 587 sp = zone->spanned_pages; 588 ret = !zone_spans_pfn(zone, pfn); 589 } while (zone_span_seqretry(zone, seq)); 590 591 if (ret) 592 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 593 pfn, zone_to_nid(zone), zone->name, 594 start_pfn, start_pfn + sp); 595 596 return ret; 597 } 598 599 /* 600 * Temporary debugging check for pages not lying within a given zone. 601 */ 602 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 603 { 604 if (page_outside_zone_boundaries(zone, page)) 605 return true; 606 if (zone != page_zone(page)) 607 return true; 608 609 return false; 610 } 611 #else 612 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 613 { 614 return false; 615 } 616 #endif 617 618 static void bad_page(struct page *page, const char *reason) 619 { 620 static unsigned long resume; 621 static unsigned long nr_shown; 622 static unsigned long nr_unshown; 623 624 /* 625 * Allow a burst of 60 reports, then keep quiet for that minute; 626 * or allow a steady drip of one report per second. 627 */ 628 if (nr_shown == 60) { 629 if (time_before(jiffies, resume)) { 630 nr_unshown++; 631 goto out; 632 } 633 if (nr_unshown) { 634 pr_alert( 635 "BUG: Bad page state: %lu messages suppressed\n", 636 nr_unshown); 637 nr_unshown = 0; 638 } 639 nr_shown = 0; 640 } 641 if (nr_shown++ == 0) 642 resume = jiffies + 60 * HZ; 643 644 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 645 current->comm, page_to_pfn(page)); 646 dump_page(page, reason); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 if (PageBuddy(page)) 653 __ClearPageBuddy(page); 654 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 655 } 656 657 static inline unsigned int order_to_pindex(int migratetype, int order) 658 { 659 660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 661 bool movable; 662 if (order > PAGE_ALLOC_COSTLY_ORDER) { 663 VM_BUG_ON(order != HPAGE_PMD_ORDER); 664 665 movable = migratetype == MIGRATE_MOVABLE; 666 667 return NR_LOWORDER_PCP_LISTS + movable; 668 } 669 #else 670 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 671 #endif 672 673 return (MIGRATE_PCPTYPES * order) + migratetype; 674 } 675 676 static inline int pindex_to_order(unsigned int pindex) 677 { 678 int order = pindex / MIGRATE_PCPTYPES; 679 680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 681 if (pindex >= NR_LOWORDER_PCP_LISTS) 682 order = HPAGE_PMD_ORDER; 683 #else 684 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 685 #endif 686 687 return order; 688 } 689 690 static inline bool pcp_allowed_order(unsigned int order) 691 { 692 if (order <= PAGE_ALLOC_COSTLY_ORDER) 693 return true; 694 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 695 if (order == HPAGE_PMD_ORDER) 696 return true; 697 #endif 698 return false; 699 } 700 701 /* 702 * Higher-order pages are called "compound pages". They are structured thusly: 703 * 704 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 705 * 706 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 707 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 708 * 709 * The first tail page's ->compound_order holds the order of allocation. 710 * This usage means that zero-order pages may not be compound. 711 */ 712 713 void prep_compound_page(struct page *page, unsigned int order) 714 { 715 int i; 716 int nr_pages = 1 << order; 717 718 __SetPageHead(page); 719 for (i = 1; i < nr_pages; i++) 720 prep_compound_tail(page, i); 721 722 prep_compound_head(page, order); 723 } 724 725 static inline void set_buddy_order(struct page *page, unsigned int order) 726 { 727 set_page_private(page, order); 728 __SetPageBuddy(page); 729 } 730 731 #ifdef CONFIG_COMPACTION 732 static inline struct capture_control *task_capc(struct zone *zone) 733 { 734 struct capture_control *capc = current->capture_control; 735 736 return unlikely(capc) && 737 !(current->flags & PF_KTHREAD) && 738 !capc->page && 739 capc->cc->zone == zone ? capc : NULL; 740 } 741 742 static inline bool 743 compaction_capture(struct capture_control *capc, struct page *page, 744 int order, int migratetype) 745 { 746 if (!capc || order != capc->cc->order) 747 return false; 748 749 /* Do not accidentally pollute CMA or isolated regions*/ 750 if (is_migrate_cma(migratetype) || 751 is_migrate_isolate(migratetype)) 752 return false; 753 754 /* 755 * Do not let lower order allocations pollute a movable pageblock 756 * unless compaction is also requesting movable pages. 757 * This might let an unmovable request use a reclaimable pageblock 758 * and vice-versa but no more than normal fallback logic which can 759 * have trouble finding a high-order free page. 760 */ 761 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 762 capc->cc->migratetype != MIGRATE_MOVABLE) 763 return false; 764 765 if (migratetype != capc->cc->migratetype) 766 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 767 capc->cc->migratetype, migratetype); 768 769 capc->page = page; 770 return true; 771 } 772 773 #else 774 static inline struct capture_control *task_capc(struct zone *zone) 775 { 776 return NULL; 777 } 778 779 static inline bool 780 compaction_capture(struct capture_control *capc, struct page *page, 781 int order, int migratetype) 782 { 783 return false; 784 } 785 #endif /* CONFIG_COMPACTION */ 786 787 static inline void account_freepages(struct zone *zone, int nr_pages, 788 int migratetype) 789 { 790 lockdep_assert_held(&zone->lock); 791 792 if (is_migrate_isolate(migratetype)) 793 return; 794 795 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 796 797 if (is_migrate_cma(migratetype)) 798 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 799 else if (migratetype == MIGRATE_HIGHATOMIC) 800 WRITE_ONCE(zone->nr_free_highatomic, 801 zone->nr_free_highatomic + nr_pages); 802 } 803 804 /* Used for pages not on another list */ 805 static inline void __add_to_free_list(struct page *page, struct zone *zone, 806 unsigned int order, int migratetype, 807 bool tail) 808 { 809 struct free_area *area = &zone->free_area[order]; 810 int nr_pages = 1 << order; 811 812 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 813 "page type is %d, passed migratetype is %d (nr=%d)\n", 814 get_pageblock_migratetype(page), migratetype, nr_pages); 815 816 if (tail) 817 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 818 else 819 list_add(&page->buddy_list, &area->free_list[migratetype]); 820 area->nr_free++; 821 822 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 823 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 824 } 825 826 /* 827 * Used for pages which are on another list. Move the pages to the tail 828 * of the list - so the moved pages won't immediately be considered for 829 * allocation again (e.g., optimization for memory onlining). 830 */ 831 static inline void move_to_free_list(struct page *page, struct zone *zone, 832 unsigned int order, int old_mt, int new_mt) 833 { 834 struct free_area *area = &zone->free_area[order]; 835 int nr_pages = 1 << order; 836 837 /* Free page moving can fail, so it happens before the type update */ 838 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 839 "page type is %d, passed migratetype is %d (nr=%d)\n", 840 get_pageblock_migratetype(page), old_mt, nr_pages); 841 842 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 843 844 account_freepages(zone, -nr_pages, old_mt); 845 account_freepages(zone, nr_pages, new_mt); 846 847 if (order >= pageblock_order && 848 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 849 if (!is_migrate_isolate(old_mt)) 850 nr_pages = -nr_pages; 851 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 852 } 853 } 854 855 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 856 unsigned int order, int migratetype) 857 { 858 int nr_pages = 1 << order; 859 860 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 861 "page type is %d, passed migratetype is %d (nr=%d)\n", 862 get_pageblock_migratetype(page), migratetype, nr_pages); 863 864 /* clear reported state and update reported page count */ 865 if (page_reported(page)) 866 __ClearPageReported(page); 867 868 list_del(&page->buddy_list); 869 __ClearPageBuddy(page); 870 set_page_private(page, 0); 871 zone->free_area[order].nr_free--; 872 873 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 874 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 875 } 876 877 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 878 unsigned int order, int migratetype) 879 { 880 __del_page_from_free_list(page, zone, order, migratetype); 881 account_freepages(zone, -(1 << order), migratetype); 882 } 883 884 static inline struct page *get_page_from_free_area(struct free_area *area, 885 int migratetype) 886 { 887 return list_first_entry_or_null(&area->free_list[migratetype], 888 struct page, buddy_list); 889 } 890 891 /* 892 * If this is less than the 2nd largest possible page, check if the buddy 893 * of the next-higher order is free. If it is, it's possible 894 * that pages are being freed that will coalesce soon. In case, 895 * that is happening, add the free page to the tail of the list 896 * so it's less likely to be used soon and more likely to be merged 897 * as a 2-level higher order page 898 */ 899 static inline bool 900 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 901 struct page *page, unsigned int order) 902 { 903 unsigned long higher_page_pfn; 904 struct page *higher_page; 905 906 if (order >= MAX_PAGE_ORDER - 1) 907 return false; 908 909 higher_page_pfn = buddy_pfn & pfn; 910 higher_page = page + (higher_page_pfn - pfn); 911 912 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 913 NULL) != NULL; 914 } 915 916 /* 917 * Freeing function for a buddy system allocator. 918 * 919 * The concept of a buddy system is to maintain direct-mapped table 920 * (containing bit values) for memory blocks of various "orders". 921 * The bottom level table contains the map for the smallest allocatable 922 * units of memory (here, pages), and each level above it describes 923 * pairs of units from the levels below, hence, "buddies". 924 * At a high level, all that happens here is marking the table entry 925 * at the bottom level available, and propagating the changes upward 926 * as necessary, plus some accounting needed to play nicely with other 927 * parts of the VM system. 928 * At each level, we keep a list of pages, which are heads of continuous 929 * free pages of length of (1 << order) and marked with PageBuddy. 930 * Page's order is recorded in page_private(page) field. 931 * So when we are allocating or freeing one, we can derive the state of the 932 * other. That is, if we allocate a small block, and both were 933 * free, the remainder of the region must be split into blocks. 934 * If a block is freed, and its buddy is also free, then this 935 * triggers coalescing into a block of larger size. 936 * 937 * -- nyc 938 */ 939 940 static inline void __free_one_page(struct page *page, 941 unsigned long pfn, 942 struct zone *zone, unsigned int order, 943 int migratetype, fpi_t fpi_flags) 944 { 945 struct capture_control *capc = task_capc(zone); 946 unsigned long buddy_pfn = 0; 947 unsigned long combined_pfn; 948 struct page *buddy; 949 bool to_tail; 950 951 VM_BUG_ON(!zone_is_initialized(zone)); 952 VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page); 953 954 VM_BUG_ON(migratetype == -1); 955 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 956 VM_BUG_ON_PAGE(bad_range(zone, page), page); 957 958 account_freepages(zone, 1 << order, migratetype); 959 960 while (order < MAX_PAGE_ORDER) { 961 int buddy_mt = migratetype; 962 963 if (compaction_capture(capc, page, order, migratetype)) { 964 account_freepages(zone, -(1 << order), migratetype); 965 return; 966 } 967 968 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 969 if (!buddy) 970 goto done_merging; 971 972 if (unlikely(order >= pageblock_order)) { 973 /* 974 * We want to prevent merge between freepages on pageblock 975 * without fallbacks and normal pageblock. Without this, 976 * pageblock isolation could cause incorrect freepage or CMA 977 * accounting or HIGHATOMIC accounting. 978 */ 979 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 980 981 if (migratetype != buddy_mt && 982 (!migratetype_is_mergeable(migratetype) || 983 !migratetype_is_mergeable(buddy_mt))) 984 goto done_merging; 985 } 986 987 /* 988 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 989 * merge with it and move up one order. 990 */ 991 if (page_is_guard(buddy)) 992 clear_page_guard(zone, buddy, order); 993 else 994 __del_page_from_free_list(buddy, zone, order, buddy_mt); 995 996 if (unlikely(buddy_mt != migratetype)) { 997 /* 998 * Match buddy type. This ensures that an 999 * expand() down the line puts the sub-blocks 1000 * on the right freelists. 1001 */ 1002 set_pageblock_migratetype(buddy, migratetype); 1003 } 1004 1005 combined_pfn = buddy_pfn & pfn; 1006 page = page + (combined_pfn - pfn); 1007 pfn = combined_pfn; 1008 order++; 1009 } 1010 1011 done_merging: 1012 set_buddy_order(page, order); 1013 1014 if (fpi_flags & FPI_TO_TAIL) 1015 to_tail = true; 1016 else if (is_shuffle_order(order)) 1017 to_tail = shuffle_pick_tail(); 1018 else 1019 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1020 1021 __add_to_free_list(page, zone, order, migratetype, to_tail); 1022 1023 /* Notify page reporting subsystem of freed page */ 1024 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1025 page_reporting_notify_free(order); 1026 } 1027 1028 /* 1029 * A bad page could be due to a number of fields. Instead of multiple branches, 1030 * try and check multiple fields with one check. The caller must do a detailed 1031 * check if necessary. 1032 */ 1033 static inline bool page_expected_state(struct page *page, 1034 unsigned long check_flags) 1035 { 1036 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1037 return false; 1038 1039 if (unlikely((unsigned long)page->mapping | 1040 page_ref_count(page) | 1041 #ifdef CONFIG_MEMCG 1042 page->memcg_data | 1043 #endif 1044 page_pool_page_is_pp(page) | 1045 (page->flags.f & check_flags))) 1046 return false; 1047 1048 return true; 1049 } 1050 1051 static const char *page_bad_reason(struct page *page, unsigned long flags) 1052 { 1053 const char *bad_reason = NULL; 1054 1055 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1056 bad_reason = "nonzero mapcount"; 1057 if (unlikely(page->mapping != NULL)) 1058 bad_reason = "non-NULL mapping"; 1059 if (unlikely(page_ref_count(page) != 0)) 1060 bad_reason = "nonzero _refcount"; 1061 if (unlikely(page->flags.f & flags)) { 1062 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1063 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1064 else 1065 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1066 } 1067 #ifdef CONFIG_MEMCG 1068 if (unlikely(page->memcg_data)) 1069 bad_reason = "page still charged to cgroup"; 1070 #endif 1071 if (unlikely(page_pool_page_is_pp(page))) 1072 bad_reason = "page_pool leak"; 1073 return bad_reason; 1074 } 1075 1076 static inline bool free_page_is_bad(struct page *page) 1077 { 1078 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1079 return false; 1080 1081 /* Something has gone sideways, find it */ 1082 bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1083 return true; 1084 } 1085 1086 static inline bool is_check_pages_enabled(void) 1087 { 1088 return static_branch_unlikely(&check_pages_enabled); 1089 } 1090 1091 static int free_tail_page_prepare(struct page *head_page, struct page *page) 1092 { 1093 struct folio *folio = (struct folio *)head_page; 1094 int ret = 1; 1095 1096 /* 1097 * We rely page->lru.next never has bit 0 set, unless the page 1098 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1099 */ 1100 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1101 1102 if (!is_check_pages_enabled()) { 1103 ret = 0; 1104 goto out; 1105 } 1106 switch (page - head_page) { 1107 case 1: 1108 /* the first tail page: these may be in place of ->mapping */ 1109 if (unlikely(folio_large_mapcount(folio))) { 1110 bad_page(page, "nonzero large_mapcount"); 1111 goto out; 1112 } 1113 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 1114 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1115 bad_page(page, "nonzero nr_pages_mapped"); 1116 goto out; 1117 } 1118 if (IS_ENABLED(CONFIG_MM_ID)) { 1119 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 1120 bad_page(page, "nonzero mm mapcount 0"); 1121 goto out; 1122 } 1123 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 1124 bad_page(page, "nonzero mm mapcount 1"); 1125 goto out; 1126 } 1127 } 1128 if (IS_ENABLED(CONFIG_64BIT)) { 1129 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1130 bad_page(page, "nonzero entire_mapcount"); 1131 goto out; 1132 } 1133 if (unlikely(atomic_read(&folio->_pincount))) { 1134 bad_page(page, "nonzero pincount"); 1135 goto out; 1136 } 1137 } 1138 break; 1139 case 2: 1140 /* the second tail page: deferred_list overlaps ->mapping */ 1141 if (unlikely(!list_empty(&folio->_deferred_list))) { 1142 bad_page(page, "on deferred list"); 1143 goto out; 1144 } 1145 if (!IS_ENABLED(CONFIG_64BIT)) { 1146 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1147 bad_page(page, "nonzero entire_mapcount"); 1148 goto out; 1149 } 1150 if (unlikely(atomic_read(&folio->_pincount))) { 1151 bad_page(page, "nonzero pincount"); 1152 goto out; 1153 } 1154 } 1155 break; 1156 case 3: 1157 /* the third tail page: hugetlb specifics overlap ->mappings */ 1158 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1159 break; 1160 fallthrough; 1161 default: 1162 if (page->mapping != TAIL_MAPPING) { 1163 bad_page(page, "corrupted mapping in tail page"); 1164 goto out; 1165 } 1166 break; 1167 } 1168 if (unlikely(!PageTail(page))) { 1169 bad_page(page, "PageTail not set"); 1170 goto out; 1171 } 1172 if (unlikely(compound_head(page) != head_page)) { 1173 bad_page(page, "compound_head not consistent"); 1174 goto out; 1175 } 1176 ret = 0; 1177 out: 1178 page->mapping = NULL; 1179 clear_compound_head(page); 1180 return ret; 1181 } 1182 1183 /* 1184 * Skip KASAN memory poisoning when either: 1185 * 1186 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1187 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1188 * using page tags instead (see below). 1189 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1190 * that error detection is disabled for accesses via the page address. 1191 * 1192 * Pages will have match-all tags in the following circumstances: 1193 * 1194 * 1. Pages are being initialized for the first time, including during deferred 1195 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1196 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1197 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1198 * 3. The allocation was excluded from being checked due to sampling, 1199 * see the call to kasan_unpoison_pages. 1200 * 1201 * Poisoning pages during deferred memory init will greatly lengthen the 1202 * process and cause problem in large memory systems as the deferred pages 1203 * initialization is done with interrupt disabled. 1204 * 1205 * Assuming that there will be no reference to those newly initialized 1206 * pages before they are ever allocated, this should have no effect on 1207 * KASAN memory tracking as the poison will be properly inserted at page 1208 * allocation time. The only corner case is when pages are allocated by 1209 * on-demand allocation and then freed again before the deferred pages 1210 * initialization is done, but this is not likely to happen. 1211 */ 1212 static inline bool should_skip_kasan_poison(struct page *page) 1213 { 1214 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1215 return deferred_pages_enabled(); 1216 1217 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1218 } 1219 1220 static void kernel_init_pages(struct page *page, int numpages) 1221 { 1222 int i; 1223 1224 /* s390's use of memset() could override KASAN redzones. */ 1225 kasan_disable_current(); 1226 for (i = 0; i < numpages; i++) 1227 clear_highpage_kasan_tagged(page + i); 1228 kasan_enable_current(); 1229 } 1230 1231 #ifdef CONFIG_MEM_ALLOC_PROFILING 1232 1233 /* Should be called only if mem_alloc_profiling_enabled() */ 1234 void __clear_page_tag_ref(struct page *page) 1235 { 1236 union pgtag_ref_handle handle; 1237 union codetag_ref ref; 1238 1239 if (get_page_tag_ref(page, &ref, &handle)) { 1240 set_codetag_empty(&ref); 1241 update_page_tag_ref(handle, &ref); 1242 put_page_tag_ref(handle); 1243 } 1244 } 1245 1246 /* Should be called only if mem_alloc_profiling_enabled() */ 1247 static noinline 1248 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1249 unsigned int nr) 1250 { 1251 union pgtag_ref_handle handle; 1252 union codetag_ref ref; 1253 1254 if (get_page_tag_ref(page, &ref, &handle)) { 1255 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1256 update_page_tag_ref(handle, &ref); 1257 put_page_tag_ref(handle); 1258 } 1259 } 1260 1261 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1262 unsigned int nr) 1263 { 1264 if (mem_alloc_profiling_enabled()) 1265 __pgalloc_tag_add(page, task, nr); 1266 } 1267 1268 /* Should be called only if mem_alloc_profiling_enabled() */ 1269 static noinline 1270 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1271 { 1272 union pgtag_ref_handle handle; 1273 union codetag_ref ref; 1274 1275 if (get_page_tag_ref(page, &ref, &handle)) { 1276 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1277 update_page_tag_ref(handle, &ref); 1278 put_page_tag_ref(handle); 1279 } 1280 } 1281 1282 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1283 { 1284 if (mem_alloc_profiling_enabled()) 1285 __pgalloc_tag_sub(page, nr); 1286 } 1287 1288 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */ 1289 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) 1290 { 1291 if (tag) 1292 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1293 } 1294 1295 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1296 1297 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1298 unsigned int nr) {} 1299 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1300 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} 1301 1302 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1303 1304 __always_inline bool free_pages_prepare(struct page *page, 1305 unsigned int order) 1306 { 1307 int bad = 0; 1308 bool skip_kasan_poison = should_skip_kasan_poison(page); 1309 bool init = want_init_on_free(); 1310 bool compound = PageCompound(page); 1311 struct folio *folio = page_folio(page); 1312 1313 VM_BUG_ON_PAGE(PageTail(page), page); 1314 1315 trace_mm_page_free(page, order); 1316 kmsan_free_page(page, order); 1317 1318 if (memcg_kmem_online() && PageMemcgKmem(page)) 1319 __memcg_kmem_uncharge_page(page, order); 1320 1321 /* 1322 * In rare cases, when truncation or holepunching raced with 1323 * munlock after VM_LOCKED was cleared, Mlocked may still be 1324 * found set here. This does not indicate a problem, unless 1325 * "unevictable_pgs_cleared" appears worryingly large. 1326 */ 1327 if (unlikely(folio_test_mlocked(folio))) { 1328 long nr_pages = folio_nr_pages(folio); 1329 1330 __folio_clear_mlocked(folio); 1331 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1332 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1333 } 1334 1335 if (unlikely(PageHWPoison(page)) && !order) { 1336 /* Do not let hwpoison pages hit pcplists/buddy */ 1337 reset_page_owner(page, order); 1338 page_table_check_free(page, order); 1339 pgalloc_tag_sub(page, 1 << order); 1340 1341 /* 1342 * The page is isolated and accounted for. 1343 * Mark the codetag as empty to avoid accounting error 1344 * when the page is freed by unpoison_memory(). 1345 */ 1346 clear_page_tag_ref(page); 1347 return false; 1348 } 1349 1350 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1351 1352 /* 1353 * Check tail pages before head page information is cleared to 1354 * avoid checking PageCompound for order-0 pages. 1355 */ 1356 if (unlikely(order)) { 1357 int i; 1358 1359 if (compound) { 1360 page[1].flags.f &= ~PAGE_FLAGS_SECOND; 1361 #ifdef NR_PAGES_IN_LARGE_FOLIO 1362 folio->_nr_pages = 0; 1363 #endif 1364 } 1365 for (i = 1; i < (1 << order); i++) { 1366 if (compound) 1367 bad += free_tail_page_prepare(page, page + i); 1368 if (is_check_pages_enabled()) { 1369 if (free_page_is_bad(page + i)) { 1370 bad++; 1371 continue; 1372 } 1373 } 1374 (page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1375 } 1376 } 1377 if (folio_test_anon(folio)) { 1378 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1379 folio->mapping = NULL; 1380 } 1381 if (unlikely(page_has_type(page))) 1382 /* Reset the page_type (which overlays _mapcount) */ 1383 page->page_type = UINT_MAX; 1384 1385 if (is_check_pages_enabled()) { 1386 if (free_page_is_bad(page)) 1387 bad++; 1388 if (bad) 1389 return false; 1390 } 1391 1392 page_cpupid_reset_last(page); 1393 page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1394 reset_page_owner(page, order); 1395 page_table_check_free(page, order); 1396 pgalloc_tag_sub(page, 1 << order); 1397 1398 if (!PageHighMem(page)) { 1399 debug_check_no_locks_freed(page_address(page), 1400 PAGE_SIZE << order); 1401 debug_check_no_obj_freed(page_address(page), 1402 PAGE_SIZE << order); 1403 } 1404 1405 kernel_poison_pages(page, 1 << order); 1406 1407 /* 1408 * As memory initialization might be integrated into KASAN, 1409 * KASAN poisoning and memory initialization code must be 1410 * kept together to avoid discrepancies in behavior. 1411 * 1412 * With hardware tag-based KASAN, memory tags must be set before the 1413 * page becomes unavailable via debug_pagealloc or arch_free_page. 1414 */ 1415 if (!skip_kasan_poison) { 1416 kasan_poison_pages(page, order, init); 1417 1418 /* Memory is already initialized if KASAN did it internally. */ 1419 if (kasan_has_integrated_init()) 1420 init = false; 1421 } 1422 if (init) 1423 kernel_init_pages(page, 1 << order); 1424 1425 /* 1426 * arch_free_page() can make the page's contents inaccessible. s390 1427 * does this. So nothing which can access the page's contents should 1428 * happen after this. 1429 */ 1430 arch_free_page(page, order); 1431 1432 debug_pagealloc_unmap_pages(page, 1 << order); 1433 1434 return true; 1435 } 1436 1437 /* 1438 * Frees a number of pages from the PCP lists 1439 * Assumes all pages on list are in same zone. 1440 * count is the number of pages to free. 1441 */ 1442 static void free_pcppages_bulk(struct zone *zone, int count, 1443 struct per_cpu_pages *pcp, 1444 int pindex) 1445 { 1446 unsigned long flags; 1447 unsigned int order; 1448 struct page *page; 1449 1450 /* 1451 * Ensure proper count is passed which otherwise would stuck in the 1452 * below while (list_empty(list)) loop. 1453 */ 1454 count = min(pcp->count, count); 1455 1456 /* Ensure requested pindex is drained first. */ 1457 pindex = pindex - 1; 1458 1459 spin_lock_irqsave(&zone->lock, flags); 1460 1461 while (count > 0) { 1462 struct list_head *list; 1463 int nr_pages; 1464 1465 /* Remove pages from lists in a round-robin fashion. */ 1466 do { 1467 if (++pindex > NR_PCP_LISTS - 1) 1468 pindex = 0; 1469 list = &pcp->lists[pindex]; 1470 } while (list_empty(list)); 1471 1472 order = pindex_to_order(pindex); 1473 nr_pages = 1 << order; 1474 do { 1475 unsigned long pfn; 1476 int mt; 1477 1478 page = list_last_entry(list, struct page, pcp_list); 1479 pfn = page_to_pfn(page); 1480 mt = get_pfnblock_migratetype(page, pfn); 1481 1482 /* must delete to avoid corrupting pcp list */ 1483 list_del(&page->pcp_list); 1484 count -= nr_pages; 1485 pcp->count -= nr_pages; 1486 1487 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1488 trace_mm_page_pcpu_drain(page, order, mt); 1489 } while (count > 0 && !list_empty(list)); 1490 } 1491 1492 spin_unlock_irqrestore(&zone->lock, flags); 1493 } 1494 1495 /* Split a multi-block free page into its individual pageblocks. */ 1496 static void split_large_buddy(struct zone *zone, struct page *page, 1497 unsigned long pfn, int order, fpi_t fpi) 1498 { 1499 unsigned long end = pfn + (1 << order); 1500 1501 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1502 /* Caller removed page from freelist, buddy info cleared! */ 1503 VM_WARN_ON_ONCE(PageBuddy(page)); 1504 1505 if (order > pageblock_order) 1506 order = pageblock_order; 1507 1508 do { 1509 int mt = get_pfnblock_migratetype(page, pfn); 1510 1511 __free_one_page(page, pfn, zone, order, mt, fpi); 1512 pfn += 1 << order; 1513 if (pfn == end) 1514 break; 1515 page = pfn_to_page(pfn); 1516 } while (1); 1517 } 1518 1519 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1520 unsigned int order) 1521 { 1522 /* Remember the order */ 1523 page->private = order; 1524 /* Add the page to the free list */ 1525 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1526 } 1527 1528 static void free_one_page(struct zone *zone, struct page *page, 1529 unsigned long pfn, unsigned int order, 1530 fpi_t fpi_flags) 1531 { 1532 struct llist_head *llhead; 1533 unsigned long flags; 1534 1535 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1536 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1537 add_page_to_zone_llist(zone, page, order); 1538 return; 1539 } 1540 } else { 1541 spin_lock_irqsave(&zone->lock, flags); 1542 } 1543 1544 /* The lock succeeded. Process deferred pages. */ 1545 llhead = &zone->trylock_free_pages; 1546 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1547 struct llist_node *llnode; 1548 struct page *p, *tmp; 1549 1550 llnode = llist_del_all(llhead); 1551 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1552 unsigned int p_order = p->private; 1553 1554 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1555 __count_vm_events(PGFREE, 1 << p_order); 1556 } 1557 } 1558 split_large_buddy(zone, page, pfn, order, fpi_flags); 1559 spin_unlock_irqrestore(&zone->lock, flags); 1560 1561 __count_vm_events(PGFREE, 1 << order); 1562 } 1563 1564 static void __free_pages_ok(struct page *page, unsigned int order, 1565 fpi_t fpi_flags) 1566 { 1567 unsigned long pfn = page_to_pfn(page); 1568 struct zone *zone = page_zone(page); 1569 1570 if (free_pages_prepare(page, order)) 1571 free_one_page(zone, page, pfn, order, fpi_flags); 1572 } 1573 1574 void __meminit __free_pages_core(struct page *page, unsigned int order, 1575 enum meminit_context context) 1576 { 1577 unsigned int nr_pages = 1 << order; 1578 struct page *p = page; 1579 unsigned int loop; 1580 1581 /* 1582 * When initializing the memmap, __init_single_page() sets the refcount 1583 * of all pages to 1 ("allocated"/"not free"). We have to set the 1584 * refcount of all involved pages to 0. 1585 * 1586 * Note that hotplugged memory pages are initialized to PageOffline(). 1587 * Pages freed from memblock might be marked as reserved. 1588 */ 1589 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1590 unlikely(context == MEMINIT_HOTPLUG)) { 1591 for (loop = 0; loop < nr_pages; loop++, p++) { 1592 VM_WARN_ON_ONCE(PageReserved(p)); 1593 __ClearPageOffline(p); 1594 set_page_count(p, 0); 1595 } 1596 1597 adjust_managed_page_count(page, nr_pages); 1598 } else { 1599 for (loop = 0; loop < nr_pages; loop++, p++) { 1600 __ClearPageReserved(p); 1601 set_page_count(p, 0); 1602 } 1603 1604 /* memblock adjusts totalram_pages() manually. */ 1605 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1606 } 1607 1608 if (page_contains_unaccepted(page, order)) { 1609 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1610 return; 1611 1612 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1613 } 1614 1615 /* 1616 * Bypass PCP and place fresh pages right to the tail, primarily 1617 * relevant for memory onlining. 1618 */ 1619 __free_pages_ok(page, order, FPI_TO_TAIL); 1620 } 1621 1622 /* 1623 * Check that the whole (or subset of) a pageblock given by the interval of 1624 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1625 * with the migration of free compaction scanner. 1626 * 1627 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1628 * 1629 * It's possible on some configurations to have a setup like node0 node1 node0 1630 * i.e. it's possible that all pages within a zones range of pages do not 1631 * belong to a single zone. We assume that a border between node0 and node1 1632 * can occur within a single pageblock, but not a node0 node1 node0 1633 * interleaving within a single pageblock. It is therefore sufficient to check 1634 * the first and last page of a pageblock and avoid checking each individual 1635 * page in a pageblock. 1636 * 1637 * Note: the function may return non-NULL struct page even for a page block 1638 * which contains a memory hole (i.e. there is no physical memory for a subset 1639 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1640 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1641 * even though the start pfn is online and valid. This should be safe most of 1642 * the time because struct pages are still initialized via init_unavailable_range() 1643 * and pfn walkers shouldn't touch any physical memory range for which they do 1644 * not recognize any specific metadata in struct pages. 1645 */ 1646 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1647 unsigned long end_pfn, struct zone *zone) 1648 { 1649 struct page *start_page; 1650 struct page *end_page; 1651 1652 /* end_pfn is one past the range we are checking */ 1653 end_pfn--; 1654 1655 if (!pfn_valid(end_pfn)) 1656 return NULL; 1657 1658 start_page = pfn_to_online_page(start_pfn); 1659 if (!start_page) 1660 return NULL; 1661 1662 if (page_zone(start_page) != zone) 1663 return NULL; 1664 1665 end_page = pfn_to_page(end_pfn); 1666 1667 /* This gives a shorter code than deriving page_zone(end_page) */ 1668 if (page_zone_id(start_page) != page_zone_id(end_page)) 1669 return NULL; 1670 1671 return start_page; 1672 } 1673 1674 /* 1675 * The order of subdivision here is critical for the IO subsystem. 1676 * Please do not alter this order without good reasons and regression 1677 * testing. Specifically, as large blocks of memory are subdivided, 1678 * the order in which smaller blocks are delivered depends on the order 1679 * they're subdivided in this function. This is the primary factor 1680 * influencing the order in which pages are delivered to the IO 1681 * subsystem according to empirical testing, and this is also justified 1682 * by considering the behavior of a buddy system containing a single 1683 * large block of memory acted on by a series of small allocations. 1684 * This behavior is a critical factor in sglist merging's success. 1685 * 1686 * -- nyc 1687 */ 1688 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1689 int high, int migratetype) 1690 { 1691 unsigned int size = 1 << high; 1692 unsigned int nr_added = 0; 1693 1694 while (high > low) { 1695 high--; 1696 size >>= 1; 1697 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1698 1699 /* 1700 * Mark as guard pages (or page), that will allow to 1701 * merge back to allocator when buddy will be freed. 1702 * Corresponding page table entries will not be touched, 1703 * pages will stay not present in virtual address space 1704 */ 1705 if (set_page_guard(zone, &page[size], high)) 1706 continue; 1707 1708 __add_to_free_list(&page[size], zone, high, migratetype, false); 1709 set_buddy_order(&page[size], high); 1710 nr_added += size; 1711 } 1712 1713 return nr_added; 1714 } 1715 1716 static __always_inline void page_del_and_expand(struct zone *zone, 1717 struct page *page, int low, 1718 int high, int migratetype) 1719 { 1720 int nr_pages = 1 << high; 1721 1722 __del_page_from_free_list(page, zone, high, migratetype); 1723 nr_pages -= expand(zone, page, low, high, migratetype); 1724 account_freepages(zone, -nr_pages, migratetype); 1725 } 1726 1727 static void check_new_page_bad(struct page *page) 1728 { 1729 if (unlikely(PageHWPoison(page))) { 1730 /* Don't complain about hwpoisoned pages */ 1731 if (PageBuddy(page)) 1732 __ClearPageBuddy(page); 1733 return; 1734 } 1735 1736 bad_page(page, 1737 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1738 } 1739 1740 /* 1741 * This page is about to be returned from the page allocator 1742 */ 1743 static bool check_new_page(struct page *page) 1744 { 1745 if (likely(page_expected_state(page, 1746 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1747 return false; 1748 1749 check_new_page_bad(page); 1750 return true; 1751 } 1752 1753 static inline bool check_new_pages(struct page *page, unsigned int order) 1754 { 1755 if (is_check_pages_enabled()) { 1756 for (int i = 0; i < (1 << order); i++) { 1757 struct page *p = page + i; 1758 1759 if (check_new_page(p)) 1760 return true; 1761 } 1762 } 1763 1764 return false; 1765 } 1766 1767 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1768 { 1769 /* Don't skip if a software KASAN mode is enabled. */ 1770 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1771 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1772 return false; 1773 1774 /* Skip, if hardware tag-based KASAN is not enabled. */ 1775 if (!kasan_hw_tags_enabled()) 1776 return true; 1777 1778 /* 1779 * With hardware tag-based KASAN enabled, skip if this has been 1780 * requested via __GFP_SKIP_KASAN. 1781 */ 1782 return flags & __GFP_SKIP_KASAN; 1783 } 1784 1785 static inline bool should_skip_init(gfp_t flags) 1786 { 1787 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1788 if (!kasan_hw_tags_enabled()) 1789 return false; 1790 1791 /* For hardware tag-based KASAN, skip if requested. */ 1792 return (flags & __GFP_SKIP_ZERO); 1793 } 1794 1795 inline void post_alloc_hook(struct page *page, unsigned int order, 1796 gfp_t gfp_flags) 1797 { 1798 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1799 !should_skip_init(gfp_flags); 1800 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1801 int i; 1802 1803 set_page_private(page, 0); 1804 1805 arch_alloc_page(page, order); 1806 debug_pagealloc_map_pages(page, 1 << order); 1807 1808 /* 1809 * Page unpoisoning must happen before memory initialization. 1810 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1811 * allocations and the page unpoisoning code will complain. 1812 */ 1813 kernel_unpoison_pages(page, 1 << order); 1814 1815 /* 1816 * As memory initialization might be integrated into KASAN, 1817 * KASAN unpoisoning and memory initializion code must be 1818 * kept together to avoid discrepancies in behavior. 1819 */ 1820 1821 /* 1822 * If memory tags should be zeroed 1823 * (which happens only when memory should be initialized as well). 1824 */ 1825 if (zero_tags) { 1826 /* Initialize both memory and memory tags. */ 1827 for (i = 0; i != 1 << order; ++i) 1828 tag_clear_highpage(page + i); 1829 1830 /* Take note that memory was initialized by the loop above. */ 1831 init = false; 1832 } 1833 if (!should_skip_kasan_unpoison(gfp_flags) && 1834 kasan_unpoison_pages(page, order, init)) { 1835 /* Take note that memory was initialized by KASAN. */ 1836 if (kasan_has_integrated_init()) 1837 init = false; 1838 } else { 1839 /* 1840 * If memory tags have not been set by KASAN, reset the page 1841 * tags to ensure page_address() dereferencing does not fault. 1842 */ 1843 for (i = 0; i != 1 << order; ++i) 1844 page_kasan_tag_reset(page + i); 1845 } 1846 /* If memory is still not initialized, initialize it now. */ 1847 if (init) 1848 kernel_init_pages(page, 1 << order); 1849 1850 set_page_owner(page, order, gfp_flags); 1851 page_table_check_alloc(page, order); 1852 pgalloc_tag_add(page, current, 1 << order); 1853 } 1854 1855 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1856 unsigned int alloc_flags) 1857 { 1858 post_alloc_hook(page, order, gfp_flags); 1859 1860 if (order && (gfp_flags & __GFP_COMP)) 1861 prep_compound_page(page, order); 1862 1863 /* 1864 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1865 * allocate the page. The expectation is that the caller is taking 1866 * steps that will free more memory. The caller should avoid the page 1867 * being used for !PFMEMALLOC purposes. 1868 */ 1869 if (alloc_flags & ALLOC_NO_WATERMARKS) 1870 set_page_pfmemalloc(page); 1871 else 1872 clear_page_pfmemalloc(page); 1873 } 1874 1875 /* 1876 * Go through the free lists for the given migratetype and remove 1877 * the smallest available page from the freelists 1878 */ 1879 static __always_inline 1880 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1881 int migratetype) 1882 { 1883 unsigned int current_order; 1884 struct free_area *area; 1885 struct page *page; 1886 1887 /* Find a page of the appropriate size in the preferred list */ 1888 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1889 area = &(zone->free_area[current_order]); 1890 page = get_page_from_free_area(area, migratetype); 1891 if (!page) 1892 continue; 1893 1894 page_del_and_expand(zone, page, order, current_order, 1895 migratetype); 1896 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1897 pcp_allowed_order(order) && 1898 migratetype < MIGRATE_PCPTYPES); 1899 return page; 1900 } 1901 1902 return NULL; 1903 } 1904 1905 1906 /* 1907 * This array describes the order lists are fallen back to when 1908 * the free lists for the desirable migrate type are depleted 1909 * 1910 * The other migratetypes do not have fallbacks. 1911 */ 1912 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1913 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1914 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1915 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1916 }; 1917 1918 #ifdef CONFIG_CMA 1919 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1920 unsigned int order) 1921 { 1922 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1923 } 1924 #else 1925 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1926 unsigned int order) { return NULL; } 1927 #endif 1928 1929 /* 1930 * Move all free pages of a block to new type's freelist. Caller needs to 1931 * change the block type. 1932 */ 1933 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1934 int old_mt, int new_mt) 1935 { 1936 struct page *page; 1937 unsigned long pfn, end_pfn; 1938 unsigned int order; 1939 int pages_moved = 0; 1940 1941 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1942 end_pfn = pageblock_end_pfn(start_pfn); 1943 1944 for (pfn = start_pfn; pfn < end_pfn;) { 1945 page = pfn_to_page(pfn); 1946 if (!PageBuddy(page)) { 1947 pfn++; 1948 continue; 1949 } 1950 1951 /* Make sure we are not inadvertently changing nodes */ 1952 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1953 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1954 1955 order = buddy_order(page); 1956 1957 move_to_free_list(page, zone, order, old_mt, new_mt); 1958 1959 pfn += 1 << order; 1960 pages_moved += 1 << order; 1961 } 1962 1963 return pages_moved; 1964 } 1965 1966 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1967 unsigned long *start_pfn, 1968 int *num_free, int *num_movable) 1969 { 1970 unsigned long pfn, start, end; 1971 1972 pfn = page_to_pfn(page); 1973 start = pageblock_start_pfn(pfn); 1974 end = pageblock_end_pfn(pfn); 1975 1976 /* 1977 * The caller only has the lock for @zone, don't touch ranges 1978 * that straddle into other zones. While we could move part of 1979 * the range that's inside the zone, this call is usually 1980 * accompanied by other operations such as migratetype updates 1981 * which also should be locked. 1982 */ 1983 if (!zone_spans_pfn(zone, start)) 1984 return false; 1985 if (!zone_spans_pfn(zone, end - 1)) 1986 return false; 1987 1988 *start_pfn = start; 1989 1990 if (num_free) { 1991 *num_free = 0; 1992 *num_movable = 0; 1993 for (pfn = start; pfn < end;) { 1994 page = pfn_to_page(pfn); 1995 if (PageBuddy(page)) { 1996 int nr = 1 << buddy_order(page); 1997 1998 *num_free += nr; 1999 pfn += nr; 2000 continue; 2001 } 2002 /* 2003 * We assume that pages that could be isolated for 2004 * migration are movable. But we don't actually try 2005 * isolating, as that would be expensive. 2006 */ 2007 if (PageLRU(page) || page_has_movable_ops(page)) 2008 (*num_movable)++; 2009 pfn++; 2010 } 2011 } 2012 2013 return true; 2014 } 2015 2016 static int move_freepages_block(struct zone *zone, struct page *page, 2017 int old_mt, int new_mt) 2018 { 2019 unsigned long start_pfn; 2020 int res; 2021 2022 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2023 return -1; 2024 2025 res = __move_freepages_block(zone, start_pfn, old_mt, new_mt); 2026 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 2027 2028 return res; 2029 2030 } 2031 2032 #ifdef CONFIG_MEMORY_ISOLATION 2033 /* Look for a buddy that straddles start_pfn */ 2034 static unsigned long find_large_buddy(unsigned long start_pfn) 2035 { 2036 /* 2037 * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing 2038 * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking 2039 * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy, 2040 * the starting order does not matter. 2041 */ 2042 int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER; 2043 struct page *page; 2044 unsigned long pfn = start_pfn; 2045 2046 while (!PageBuddy(page = pfn_to_page(pfn))) { 2047 /* Nothing found */ 2048 if (++order > MAX_PAGE_ORDER) 2049 return start_pfn; 2050 pfn &= ~0UL << order; 2051 } 2052 2053 /* 2054 * Found a preceding buddy, but does it straddle? 2055 */ 2056 if (pfn + (1 << buddy_order(page)) > start_pfn) 2057 return pfn; 2058 2059 /* Nothing found */ 2060 return start_pfn; 2061 } 2062 2063 static inline void toggle_pageblock_isolate(struct page *page, bool isolate) 2064 { 2065 if (isolate) 2066 set_pageblock_isolate(page); 2067 else 2068 clear_pageblock_isolate(page); 2069 } 2070 2071 /** 2072 * __move_freepages_block_isolate - move free pages in block for page isolation 2073 * @zone: the zone 2074 * @page: the pageblock page 2075 * @isolate: to isolate the given pageblock or unisolate it 2076 * 2077 * This is similar to move_freepages_block(), but handles the special 2078 * case encountered in page isolation, where the block of interest 2079 * might be part of a larger buddy spanning multiple pageblocks. 2080 * 2081 * Unlike the regular page allocator path, which moves pages while 2082 * stealing buddies off the freelist, page isolation is interested in 2083 * arbitrary pfn ranges that may have overlapping buddies on both ends. 2084 * 2085 * This function handles that. Straddling buddies are split into 2086 * individual pageblocks. Only the block of interest is moved. 2087 * 2088 * Returns %true if pages could be moved, %false otherwise. 2089 */ 2090 static bool __move_freepages_block_isolate(struct zone *zone, 2091 struct page *page, bool isolate) 2092 { 2093 unsigned long start_pfn, buddy_pfn; 2094 int from_mt; 2095 int to_mt; 2096 struct page *buddy; 2097 2098 if (isolate == get_pageblock_isolate(page)) { 2099 VM_WARN_ONCE(1, "%s a pageblock that is already in that state", 2100 isolate ? "Isolate" : "Unisolate"); 2101 return false; 2102 } 2103 2104 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2105 return false; 2106 2107 /* No splits needed if buddies can't span multiple blocks */ 2108 if (pageblock_order == MAX_PAGE_ORDER) 2109 goto move; 2110 2111 buddy_pfn = find_large_buddy(start_pfn); 2112 buddy = pfn_to_page(buddy_pfn); 2113 /* We're a part of a larger buddy */ 2114 if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) { 2115 int order = buddy_order(buddy); 2116 2117 del_page_from_free_list(buddy, zone, order, 2118 get_pfnblock_migratetype(buddy, buddy_pfn)); 2119 toggle_pageblock_isolate(page, isolate); 2120 split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE); 2121 return true; 2122 } 2123 2124 move: 2125 /* Use MIGRATETYPE_MASK to get non-isolate migratetype */ 2126 if (isolate) { 2127 from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2128 MIGRATETYPE_MASK); 2129 to_mt = MIGRATE_ISOLATE; 2130 } else { 2131 from_mt = MIGRATE_ISOLATE; 2132 to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2133 MIGRATETYPE_MASK); 2134 } 2135 2136 __move_freepages_block(zone, start_pfn, from_mt, to_mt); 2137 toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate); 2138 2139 return true; 2140 } 2141 2142 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page) 2143 { 2144 return __move_freepages_block_isolate(zone, page, true); 2145 } 2146 2147 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page) 2148 { 2149 return __move_freepages_block_isolate(zone, page, false); 2150 } 2151 2152 #endif /* CONFIG_MEMORY_ISOLATION */ 2153 2154 static void change_pageblock_range(struct page *pageblock_page, 2155 int start_order, int migratetype) 2156 { 2157 int nr_pageblocks = 1 << (start_order - pageblock_order); 2158 2159 while (nr_pageblocks--) { 2160 set_pageblock_migratetype(pageblock_page, migratetype); 2161 pageblock_page += pageblock_nr_pages; 2162 } 2163 } 2164 2165 static inline bool boost_watermark(struct zone *zone) 2166 { 2167 unsigned long max_boost; 2168 2169 if (!watermark_boost_factor) 2170 return false; 2171 /* 2172 * Don't bother in zones that are unlikely to produce results. 2173 * On small machines, including kdump capture kernels running 2174 * in a small area, boosting the watermark can cause an out of 2175 * memory situation immediately. 2176 */ 2177 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2178 return false; 2179 2180 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2181 watermark_boost_factor, 10000); 2182 2183 /* 2184 * high watermark may be uninitialised if fragmentation occurs 2185 * very early in boot so do not boost. We do not fall 2186 * through and boost by pageblock_nr_pages as failing 2187 * allocations that early means that reclaim is not going 2188 * to help and it may even be impossible to reclaim the 2189 * boosted watermark resulting in a hang. 2190 */ 2191 if (!max_boost) 2192 return false; 2193 2194 max_boost = max(pageblock_nr_pages, max_boost); 2195 2196 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2197 max_boost); 2198 2199 return true; 2200 } 2201 2202 /* 2203 * When we are falling back to another migratetype during allocation, should we 2204 * try to claim an entire block to satisfy further allocations, instead of 2205 * polluting multiple pageblocks? 2206 */ 2207 static bool should_try_claim_block(unsigned int order, int start_mt) 2208 { 2209 /* 2210 * Leaving this order check is intended, although there is 2211 * relaxed order check in next check. The reason is that 2212 * we can actually claim the whole pageblock if this condition met, 2213 * but, below check doesn't guarantee it and that is just heuristic 2214 * so could be changed anytime. 2215 */ 2216 if (order >= pageblock_order) 2217 return true; 2218 2219 /* 2220 * Above a certain threshold, always try to claim, as it's likely there 2221 * will be more free pages in the pageblock. 2222 */ 2223 if (order >= pageblock_order / 2) 2224 return true; 2225 2226 /* 2227 * Unmovable/reclaimable allocations would cause permanent 2228 * fragmentations if they fell back to allocating from a movable block 2229 * (polluting it), so we try to claim the whole block regardless of the 2230 * allocation size. Later movable allocations can always steal from this 2231 * block, which is less problematic. 2232 */ 2233 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2234 return true; 2235 2236 if (page_group_by_mobility_disabled) 2237 return true; 2238 2239 /* 2240 * Movable pages won't cause permanent fragmentation, so when you alloc 2241 * small pages, we just need to temporarily steal unmovable or 2242 * reclaimable pages that are closest to the request size. After a 2243 * while, memory compaction may occur to form large contiguous pages, 2244 * and the next movable allocation may not need to steal. 2245 */ 2246 return false; 2247 } 2248 2249 /* 2250 * Check whether there is a suitable fallback freepage with requested order. 2251 * If claimable is true, this function returns fallback_mt only if 2252 * we would do this whole-block claiming. This would help to reduce 2253 * fragmentation due to mixed migratetype pages in one pageblock. 2254 */ 2255 int find_suitable_fallback(struct free_area *area, unsigned int order, 2256 int migratetype, bool claimable) 2257 { 2258 int i; 2259 2260 if (claimable && !should_try_claim_block(order, migratetype)) 2261 return -2; 2262 2263 if (area->nr_free == 0) 2264 return -1; 2265 2266 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2267 int fallback_mt = fallbacks[migratetype][i]; 2268 2269 if (!free_area_empty(area, fallback_mt)) 2270 return fallback_mt; 2271 } 2272 2273 return -1; 2274 } 2275 2276 /* 2277 * This function implements actual block claiming behaviour. If order is large 2278 * enough, we can claim the whole pageblock for the requested migratetype. If 2279 * not, we check the pageblock for constituent pages; if at least half of the 2280 * pages are free or compatible, we can still claim the whole block, so pages 2281 * freed in the future will be put on the correct free list. 2282 */ 2283 static struct page * 2284 try_to_claim_block(struct zone *zone, struct page *page, 2285 int current_order, int order, int start_type, 2286 int block_type, unsigned int alloc_flags) 2287 { 2288 int free_pages, movable_pages, alike_pages; 2289 unsigned long start_pfn; 2290 2291 /* Take ownership for orders >= pageblock_order */ 2292 if (current_order >= pageblock_order) { 2293 unsigned int nr_added; 2294 2295 del_page_from_free_list(page, zone, current_order, block_type); 2296 change_pageblock_range(page, current_order, start_type); 2297 nr_added = expand(zone, page, order, current_order, start_type); 2298 account_freepages(zone, nr_added, start_type); 2299 return page; 2300 } 2301 2302 /* 2303 * Boost watermarks to increase reclaim pressure to reduce the 2304 * likelihood of future fallbacks. Wake kswapd now as the node 2305 * may be balanced overall and kswapd will not wake naturally. 2306 */ 2307 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2308 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2309 2310 /* moving whole block can fail due to zone boundary conditions */ 2311 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2312 &movable_pages)) 2313 return NULL; 2314 2315 /* 2316 * Determine how many pages are compatible with our allocation. 2317 * For movable allocation, it's the number of movable pages which 2318 * we just obtained. For other types it's a bit more tricky. 2319 */ 2320 if (start_type == MIGRATE_MOVABLE) { 2321 alike_pages = movable_pages; 2322 } else { 2323 /* 2324 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2325 * to MOVABLE pageblock, consider all non-movable pages as 2326 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2327 * vice versa, be conservative since we can't distinguish the 2328 * exact migratetype of non-movable pages. 2329 */ 2330 if (block_type == MIGRATE_MOVABLE) 2331 alike_pages = pageblock_nr_pages 2332 - (free_pages + movable_pages); 2333 else 2334 alike_pages = 0; 2335 } 2336 /* 2337 * If a sufficient number of pages in the block are either free or of 2338 * compatible migratability as our allocation, claim the whole block. 2339 */ 2340 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2341 page_group_by_mobility_disabled) { 2342 __move_freepages_block(zone, start_pfn, block_type, start_type); 2343 set_pageblock_migratetype(pfn_to_page(start_pfn), start_type); 2344 return __rmqueue_smallest(zone, order, start_type); 2345 } 2346 2347 return NULL; 2348 } 2349 2350 /* 2351 * Try to allocate from some fallback migratetype by claiming the entire block, 2352 * i.e. converting it to the allocation's start migratetype. 2353 * 2354 * The use of signed ints for order and current_order is a deliberate 2355 * deviation from the rest of this file, to make the for loop 2356 * condition simpler. 2357 */ 2358 static __always_inline struct page * 2359 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2360 unsigned int alloc_flags) 2361 { 2362 struct free_area *area; 2363 int current_order; 2364 int min_order = order; 2365 struct page *page; 2366 int fallback_mt; 2367 2368 /* 2369 * Do not steal pages from freelists belonging to other pageblocks 2370 * i.e. orders < pageblock_order. If there are no local zones free, 2371 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2372 */ 2373 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2374 min_order = pageblock_order; 2375 2376 /* 2377 * Find the largest available free page in the other list. This roughly 2378 * approximates finding the pageblock with the most free pages, which 2379 * would be too costly to do exactly. 2380 */ 2381 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2382 --current_order) { 2383 area = &(zone->free_area[current_order]); 2384 fallback_mt = find_suitable_fallback(area, current_order, 2385 start_migratetype, true); 2386 2387 /* No block in that order */ 2388 if (fallback_mt == -1) 2389 continue; 2390 2391 /* Advanced into orders too low to claim, abort */ 2392 if (fallback_mt == -2) 2393 break; 2394 2395 page = get_page_from_free_area(area, fallback_mt); 2396 page = try_to_claim_block(zone, page, current_order, order, 2397 start_migratetype, fallback_mt, 2398 alloc_flags); 2399 if (page) { 2400 trace_mm_page_alloc_extfrag(page, order, current_order, 2401 start_migratetype, fallback_mt); 2402 return page; 2403 } 2404 } 2405 2406 return NULL; 2407 } 2408 2409 /* 2410 * Try to steal a single page from some fallback migratetype. Leave the rest of 2411 * the block as its current migratetype, potentially causing fragmentation. 2412 */ 2413 static __always_inline struct page * 2414 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2415 { 2416 struct free_area *area; 2417 int current_order; 2418 struct page *page; 2419 int fallback_mt; 2420 2421 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2422 area = &(zone->free_area[current_order]); 2423 fallback_mt = find_suitable_fallback(area, current_order, 2424 start_migratetype, false); 2425 if (fallback_mt == -1) 2426 continue; 2427 2428 page = get_page_from_free_area(area, fallback_mt); 2429 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2430 trace_mm_page_alloc_extfrag(page, order, current_order, 2431 start_migratetype, fallback_mt); 2432 return page; 2433 } 2434 2435 return NULL; 2436 } 2437 2438 enum rmqueue_mode { 2439 RMQUEUE_NORMAL, 2440 RMQUEUE_CMA, 2441 RMQUEUE_CLAIM, 2442 RMQUEUE_STEAL, 2443 }; 2444 2445 /* 2446 * Do the hard work of removing an element from the buddy allocator. 2447 * Call me with the zone->lock already held. 2448 */ 2449 static __always_inline struct page * 2450 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2451 unsigned int alloc_flags, enum rmqueue_mode *mode) 2452 { 2453 struct page *page; 2454 2455 if (IS_ENABLED(CONFIG_CMA)) { 2456 /* 2457 * Balance movable allocations between regular and CMA areas by 2458 * allocating from CMA when over half of the zone's free memory 2459 * is in the CMA area. 2460 */ 2461 if (alloc_flags & ALLOC_CMA && 2462 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2463 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2464 page = __rmqueue_cma_fallback(zone, order); 2465 if (page) 2466 return page; 2467 } 2468 } 2469 2470 /* 2471 * First try the freelists of the requested migratetype, then try 2472 * fallbacks modes with increasing levels of fragmentation risk. 2473 * 2474 * The fallback logic is expensive and rmqueue_bulk() calls in 2475 * a loop with the zone->lock held, meaning the freelists are 2476 * not subject to any outside changes. Remember in *mode where 2477 * we found pay dirt, to save us the search on the next call. 2478 */ 2479 switch (*mode) { 2480 case RMQUEUE_NORMAL: 2481 page = __rmqueue_smallest(zone, order, migratetype); 2482 if (page) 2483 return page; 2484 fallthrough; 2485 case RMQUEUE_CMA: 2486 if (alloc_flags & ALLOC_CMA) { 2487 page = __rmqueue_cma_fallback(zone, order); 2488 if (page) { 2489 *mode = RMQUEUE_CMA; 2490 return page; 2491 } 2492 } 2493 fallthrough; 2494 case RMQUEUE_CLAIM: 2495 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2496 if (page) { 2497 /* Replenished preferred freelist, back to normal mode. */ 2498 *mode = RMQUEUE_NORMAL; 2499 return page; 2500 } 2501 fallthrough; 2502 case RMQUEUE_STEAL: 2503 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2504 page = __rmqueue_steal(zone, order, migratetype); 2505 if (page) { 2506 *mode = RMQUEUE_STEAL; 2507 return page; 2508 } 2509 } 2510 } 2511 return NULL; 2512 } 2513 2514 /* 2515 * Obtain a specified number of elements from the buddy allocator, all under 2516 * a single hold of the lock, for efficiency. Add them to the supplied list. 2517 * Returns the number of new pages which were placed at *list. 2518 */ 2519 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2520 unsigned long count, struct list_head *list, 2521 int migratetype, unsigned int alloc_flags) 2522 { 2523 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2524 unsigned long flags; 2525 int i; 2526 2527 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2528 if (!spin_trylock_irqsave(&zone->lock, flags)) 2529 return 0; 2530 } else { 2531 spin_lock_irqsave(&zone->lock, flags); 2532 } 2533 for (i = 0; i < count; ++i) { 2534 struct page *page = __rmqueue(zone, order, migratetype, 2535 alloc_flags, &rmqm); 2536 if (unlikely(page == NULL)) 2537 break; 2538 2539 /* 2540 * Split buddy pages returned by expand() are received here in 2541 * physical page order. The page is added to the tail of 2542 * caller's list. From the callers perspective, the linked list 2543 * is ordered by page number under some conditions. This is 2544 * useful for IO devices that can forward direction from the 2545 * head, thus also in the physical page order. This is useful 2546 * for IO devices that can merge IO requests if the physical 2547 * pages are ordered properly. 2548 */ 2549 list_add_tail(&page->pcp_list, list); 2550 } 2551 spin_unlock_irqrestore(&zone->lock, flags); 2552 2553 return i; 2554 } 2555 2556 /* 2557 * Called from the vmstat counter updater to decay the PCP high. 2558 * Return whether there are addition works to do. 2559 */ 2560 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2561 { 2562 int high_min, to_drain, batch; 2563 int todo = 0; 2564 2565 high_min = READ_ONCE(pcp->high_min); 2566 batch = READ_ONCE(pcp->batch); 2567 /* 2568 * Decrease pcp->high periodically to try to free possible 2569 * idle PCP pages. And, avoid to free too many pages to 2570 * control latency. This caps pcp->high decrement too. 2571 */ 2572 if (pcp->high > high_min) { 2573 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2574 pcp->high - (pcp->high >> 3), high_min); 2575 if (pcp->high > high_min) 2576 todo++; 2577 } 2578 2579 to_drain = pcp->count - pcp->high; 2580 if (to_drain > 0) { 2581 spin_lock(&pcp->lock); 2582 free_pcppages_bulk(zone, to_drain, pcp, 0); 2583 spin_unlock(&pcp->lock); 2584 todo++; 2585 } 2586 2587 return todo; 2588 } 2589 2590 #ifdef CONFIG_NUMA 2591 /* 2592 * Called from the vmstat counter updater to drain pagesets of this 2593 * currently executing processor on remote nodes after they have 2594 * expired. 2595 */ 2596 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2597 { 2598 int to_drain, batch; 2599 2600 batch = READ_ONCE(pcp->batch); 2601 to_drain = min(pcp->count, batch); 2602 if (to_drain > 0) { 2603 spin_lock(&pcp->lock); 2604 free_pcppages_bulk(zone, to_drain, pcp, 0); 2605 spin_unlock(&pcp->lock); 2606 } 2607 } 2608 #endif 2609 2610 /* 2611 * Drain pcplists of the indicated processor and zone. 2612 */ 2613 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2614 { 2615 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2616 int count; 2617 2618 do { 2619 spin_lock(&pcp->lock); 2620 count = pcp->count; 2621 if (count) { 2622 int to_drain = min(count, 2623 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2624 2625 free_pcppages_bulk(zone, to_drain, pcp, 0); 2626 count -= to_drain; 2627 } 2628 spin_unlock(&pcp->lock); 2629 } while (count); 2630 } 2631 2632 /* 2633 * Drain pcplists of all zones on the indicated processor. 2634 */ 2635 static void drain_pages(unsigned int cpu) 2636 { 2637 struct zone *zone; 2638 2639 for_each_populated_zone(zone) { 2640 drain_pages_zone(cpu, zone); 2641 } 2642 } 2643 2644 /* 2645 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2646 */ 2647 void drain_local_pages(struct zone *zone) 2648 { 2649 int cpu = smp_processor_id(); 2650 2651 if (zone) 2652 drain_pages_zone(cpu, zone); 2653 else 2654 drain_pages(cpu); 2655 } 2656 2657 /* 2658 * The implementation of drain_all_pages(), exposing an extra parameter to 2659 * drain on all cpus. 2660 * 2661 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2662 * not empty. The check for non-emptiness can however race with a free to 2663 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2664 * that need the guarantee that every CPU has drained can disable the 2665 * optimizing racy check. 2666 */ 2667 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2668 { 2669 int cpu; 2670 2671 /* 2672 * Allocate in the BSS so we won't require allocation in 2673 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2674 */ 2675 static cpumask_t cpus_with_pcps; 2676 2677 /* 2678 * Do not drain if one is already in progress unless it's specific to 2679 * a zone. Such callers are primarily CMA and memory hotplug and need 2680 * the drain to be complete when the call returns. 2681 */ 2682 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2683 if (!zone) 2684 return; 2685 mutex_lock(&pcpu_drain_mutex); 2686 } 2687 2688 /* 2689 * We don't care about racing with CPU hotplug event 2690 * as offline notification will cause the notified 2691 * cpu to drain that CPU pcps and on_each_cpu_mask 2692 * disables preemption as part of its processing 2693 */ 2694 for_each_online_cpu(cpu) { 2695 struct per_cpu_pages *pcp; 2696 struct zone *z; 2697 bool has_pcps = false; 2698 2699 if (force_all_cpus) { 2700 /* 2701 * The pcp.count check is racy, some callers need a 2702 * guarantee that no cpu is missed. 2703 */ 2704 has_pcps = true; 2705 } else if (zone) { 2706 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2707 if (pcp->count) 2708 has_pcps = true; 2709 } else { 2710 for_each_populated_zone(z) { 2711 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2712 if (pcp->count) { 2713 has_pcps = true; 2714 break; 2715 } 2716 } 2717 } 2718 2719 if (has_pcps) 2720 cpumask_set_cpu(cpu, &cpus_with_pcps); 2721 else 2722 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2723 } 2724 2725 for_each_cpu(cpu, &cpus_with_pcps) { 2726 if (zone) 2727 drain_pages_zone(cpu, zone); 2728 else 2729 drain_pages(cpu); 2730 } 2731 2732 mutex_unlock(&pcpu_drain_mutex); 2733 } 2734 2735 /* 2736 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2737 * 2738 * When zone parameter is non-NULL, spill just the single zone's pages. 2739 */ 2740 void drain_all_pages(struct zone *zone) 2741 { 2742 __drain_all_pages(zone, false); 2743 } 2744 2745 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2746 { 2747 int min_nr_free, max_nr_free; 2748 2749 /* Free as much as possible if batch freeing high-order pages. */ 2750 if (unlikely(free_high)) 2751 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2752 2753 /* Check for PCP disabled or boot pageset */ 2754 if (unlikely(high < batch)) 2755 return 1; 2756 2757 /* Leave at least pcp->batch pages on the list */ 2758 min_nr_free = batch; 2759 max_nr_free = high - batch; 2760 2761 /* 2762 * Increase the batch number to the number of the consecutive 2763 * freed pages to reduce zone lock contention. 2764 */ 2765 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2766 2767 return batch; 2768 } 2769 2770 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2771 int batch, bool free_high) 2772 { 2773 int high, high_min, high_max; 2774 2775 high_min = READ_ONCE(pcp->high_min); 2776 high_max = READ_ONCE(pcp->high_max); 2777 high = pcp->high = clamp(pcp->high, high_min, high_max); 2778 2779 if (unlikely(!high)) 2780 return 0; 2781 2782 if (unlikely(free_high)) { 2783 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2784 high_min); 2785 return 0; 2786 } 2787 2788 /* 2789 * If reclaim is active, limit the number of pages that can be 2790 * stored on pcp lists 2791 */ 2792 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2793 int free_count = max_t(int, pcp->free_count, batch); 2794 2795 pcp->high = max(high - free_count, high_min); 2796 return min(batch << 2, pcp->high); 2797 } 2798 2799 if (high_min == high_max) 2800 return high; 2801 2802 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2803 int free_count = max_t(int, pcp->free_count, batch); 2804 2805 pcp->high = max(high - free_count, high_min); 2806 high = max(pcp->count, high_min); 2807 } else if (pcp->count >= high) { 2808 int need_high = pcp->free_count + batch; 2809 2810 /* pcp->high should be large enough to hold batch freed pages */ 2811 if (pcp->high < need_high) 2812 pcp->high = clamp(need_high, high_min, high_max); 2813 } 2814 2815 return high; 2816 } 2817 2818 static void free_frozen_page_commit(struct zone *zone, 2819 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2820 unsigned int order, fpi_t fpi_flags) 2821 { 2822 int high, batch; 2823 int pindex; 2824 bool free_high = false; 2825 2826 /* 2827 * On freeing, reduce the number of pages that are batch allocated. 2828 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2829 * allocations. 2830 */ 2831 pcp->alloc_factor >>= 1; 2832 __count_vm_events(PGFREE, 1 << order); 2833 pindex = order_to_pindex(migratetype, order); 2834 list_add(&page->pcp_list, &pcp->lists[pindex]); 2835 pcp->count += 1 << order; 2836 2837 batch = READ_ONCE(pcp->batch); 2838 /* 2839 * As high-order pages other than THP's stored on PCP can contribute 2840 * to fragmentation, limit the number stored when PCP is heavily 2841 * freeing without allocation. The remainder after bulk freeing 2842 * stops will be drained from vmstat refresh context. 2843 */ 2844 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2845 free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && 2846 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2847 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2848 pcp->count >= batch)); 2849 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2850 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2851 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2852 } 2853 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2854 pcp->free_count += (1 << order); 2855 2856 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2857 /* 2858 * Do not attempt to take a zone lock. Let pcp->count get 2859 * over high mark temporarily. 2860 */ 2861 return; 2862 } 2863 2864 high = nr_pcp_high(pcp, zone, batch, free_high); 2865 if (pcp->count < high) 2866 return; 2867 2868 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2869 pcp, pindex); 2870 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2871 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2872 ZONE_MOVABLE, 0)) { 2873 struct pglist_data *pgdat = zone->zone_pgdat; 2874 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2875 2876 /* 2877 * Assume that memory pressure on this node is gone and may be 2878 * in a reclaimable state. If a memory fallback node exists, 2879 * direct reclaim may not have been triggered, causing a 2880 * 'hopeless node' to stay in that state for a while. Let 2881 * kswapd work again by resetting kswapd_failures. 2882 */ 2883 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES && 2884 next_memory_node(pgdat->node_id) < MAX_NUMNODES) 2885 atomic_set(&pgdat->kswapd_failures, 0); 2886 } 2887 } 2888 2889 /* 2890 * Free a pcp page 2891 */ 2892 static void __free_frozen_pages(struct page *page, unsigned int order, 2893 fpi_t fpi_flags) 2894 { 2895 unsigned long __maybe_unused UP_flags; 2896 struct per_cpu_pages *pcp; 2897 struct zone *zone; 2898 unsigned long pfn = page_to_pfn(page); 2899 int migratetype; 2900 2901 if (!pcp_allowed_order(order)) { 2902 __free_pages_ok(page, order, fpi_flags); 2903 return; 2904 } 2905 2906 if (!free_pages_prepare(page, order)) 2907 return; 2908 2909 /* 2910 * We only track unmovable, reclaimable and movable on pcp lists. 2911 * Place ISOLATE pages on the isolated list because they are being 2912 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2913 * get those areas back if necessary. Otherwise, we may have to free 2914 * excessively into the page allocator 2915 */ 2916 zone = page_zone(page); 2917 migratetype = get_pfnblock_migratetype(page, pfn); 2918 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2919 if (unlikely(is_migrate_isolate(migratetype))) { 2920 free_one_page(zone, page, pfn, order, fpi_flags); 2921 return; 2922 } 2923 migratetype = MIGRATE_MOVABLE; 2924 } 2925 2926 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2927 && (in_nmi() || in_hardirq()))) { 2928 add_page_to_zone_llist(zone, page, order); 2929 return; 2930 } 2931 pcp_trylock_prepare(UP_flags); 2932 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2933 if (pcp) { 2934 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2935 pcp_spin_unlock(pcp); 2936 } else { 2937 free_one_page(zone, page, pfn, order, fpi_flags); 2938 } 2939 pcp_trylock_finish(UP_flags); 2940 } 2941 2942 void free_frozen_pages(struct page *page, unsigned int order) 2943 { 2944 __free_frozen_pages(page, order, FPI_NONE); 2945 } 2946 2947 /* 2948 * Free a batch of folios 2949 */ 2950 void free_unref_folios(struct folio_batch *folios) 2951 { 2952 unsigned long __maybe_unused UP_flags; 2953 struct per_cpu_pages *pcp = NULL; 2954 struct zone *locked_zone = NULL; 2955 int i, j; 2956 2957 /* Prepare folios for freeing */ 2958 for (i = 0, j = 0; i < folios->nr; i++) { 2959 struct folio *folio = folios->folios[i]; 2960 unsigned long pfn = folio_pfn(folio); 2961 unsigned int order = folio_order(folio); 2962 2963 if (!free_pages_prepare(&folio->page, order)) 2964 continue; 2965 /* 2966 * Free orders not handled on the PCP directly to the 2967 * allocator. 2968 */ 2969 if (!pcp_allowed_order(order)) { 2970 free_one_page(folio_zone(folio), &folio->page, 2971 pfn, order, FPI_NONE); 2972 continue; 2973 } 2974 folio->private = (void *)(unsigned long)order; 2975 if (j != i) 2976 folios->folios[j] = folio; 2977 j++; 2978 } 2979 folios->nr = j; 2980 2981 for (i = 0; i < folios->nr; i++) { 2982 struct folio *folio = folios->folios[i]; 2983 struct zone *zone = folio_zone(folio); 2984 unsigned long pfn = folio_pfn(folio); 2985 unsigned int order = (unsigned long)folio->private; 2986 int migratetype; 2987 2988 folio->private = NULL; 2989 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2990 2991 /* Different zone requires a different pcp lock */ 2992 if (zone != locked_zone || 2993 is_migrate_isolate(migratetype)) { 2994 if (pcp) { 2995 pcp_spin_unlock(pcp); 2996 pcp_trylock_finish(UP_flags); 2997 locked_zone = NULL; 2998 pcp = NULL; 2999 } 3000 3001 /* 3002 * Free isolated pages directly to the 3003 * allocator, see comment in free_frozen_pages. 3004 */ 3005 if (is_migrate_isolate(migratetype)) { 3006 free_one_page(zone, &folio->page, pfn, 3007 order, FPI_NONE); 3008 continue; 3009 } 3010 3011 /* 3012 * trylock is necessary as folios may be getting freed 3013 * from IRQ or SoftIRQ context after an IO completion. 3014 */ 3015 pcp_trylock_prepare(UP_flags); 3016 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3017 if (unlikely(!pcp)) { 3018 pcp_trylock_finish(UP_flags); 3019 free_one_page(zone, &folio->page, pfn, 3020 order, FPI_NONE); 3021 continue; 3022 } 3023 locked_zone = zone; 3024 } 3025 3026 /* 3027 * Non-isolated types over MIGRATE_PCPTYPES get added 3028 * to the MIGRATE_MOVABLE pcp list. 3029 */ 3030 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3031 migratetype = MIGRATE_MOVABLE; 3032 3033 trace_mm_page_free_batched(&folio->page); 3034 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 3035 order, FPI_NONE); 3036 } 3037 3038 if (pcp) { 3039 pcp_spin_unlock(pcp); 3040 pcp_trylock_finish(UP_flags); 3041 } 3042 folio_batch_reinit(folios); 3043 } 3044 3045 /* 3046 * split_page takes a non-compound higher-order page, and splits it into 3047 * n (1<<order) sub-pages: page[0..n] 3048 * Each sub-page must be freed individually. 3049 * 3050 * Note: this is probably too low level an operation for use in drivers. 3051 * Please consult with lkml before using this in your driver. 3052 */ 3053 void split_page(struct page *page, unsigned int order) 3054 { 3055 int i; 3056 3057 VM_BUG_ON_PAGE(PageCompound(page), page); 3058 VM_BUG_ON_PAGE(!page_count(page), page); 3059 3060 for (i = 1; i < (1 << order); i++) 3061 set_page_refcounted(page + i); 3062 split_page_owner(page, order, 0); 3063 pgalloc_tag_split(page_folio(page), order, 0); 3064 split_page_memcg(page, order); 3065 } 3066 EXPORT_SYMBOL_GPL(split_page); 3067 3068 int __isolate_free_page(struct page *page, unsigned int order) 3069 { 3070 struct zone *zone = page_zone(page); 3071 int mt = get_pageblock_migratetype(page); 3072 3073 if (!is_migrate_isolate(mt)) { 3074 unsigned long watermark; 3075 /* 3076 * Obey watermarks as if the page was being allocated. We can 3077 * emulate a high-order watermark check with a raised order-0 3078 * watermark, because we already know our high-order page 3079 * exists. 3080 */ 3081 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3082 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3083 return 0; 3084 } 3085 3086 del_page_from_free_list(page, zone, order, mt); 3087 3088 /* 3089 * Set the pageblock if the isolated page is at least half of a 3090 * pageblock 3091 */ 3092 if (order >= pageblock_order - 1) { 3093 struct page *endpage = page + (1 << order) - 1; 3094 for (; page < endpage; page += pageblock_nr_pages) { 3095 int mt = get_pageblock_migratetype(page); 3096 /* 3097 * Only change normal pageblocks (i.e., they can merge 3098 * with others) 3099 */ 3100 if (migratetype_is_mergeable(mt)) 3101 move_freepages_block(zone, page, mt, 3102 MIGRATE_MOVABLE); 3103 } 3104 } 3105 3106 return 1UL << order; 3107 } 3108 3109 /** 3110 * __putback_isolated_page - Return a now-isolated page back where we got it 3111 * @page: Page that was isolated 3112 * @order: Order of the isolated page 3113 * @mt: The page's pageblock's migratetype 3114 * 3115 * This function is meant to return a page pulled from the free lists via 3116 * __isolate_free_page back to the free lists they were pulled from. 3117 */ 3118 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3119 { 3120 struct zone *zone = page_zone(page); 3121 3122 /* zone lock should be held when this function is called */ 3123 lockdep_assert_held(&zone->lock); 3124 3125 /* Return isolated page to tail of freelist. */ 3126 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3127 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3128 } 3129 3130 /* 3131 * Update NUMA hit/miss statistics 3132 */ 3133 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3134 long nr_account) 3135 { 3136 #ifdef CONFIG_NUMA 3137 enum numa_stat_item local_stat = NUMA_LOCAL; 3138 3139 /* skip numa counters update if numa stats is disabled */ 3140 if (!static_branch_likely(&vm_numa_stat_key)) 3141 return; 3142 3143 if (zone_to_nid(z) != numa_node_id()) 3144 local_stat = NUMA_OTHER; 3145 3146 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3147 __count_numa_events(z, NUMA_HIT, nr_account); 3148 else { 3149 __count_numa_events(z, NUMA_MISS, nr_account); 3150 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3151 } 3152 __count_numa_events(z, local_stat, nr_account); 3153 #endif 3154 } 3155 3156 static __always_inline 3157 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3158 unsigned int order, unsigned int alloc_flags, 3159 int migratetype) 3160 { 3161 struct page *page; 3162 unsigned long flags; 3163 3164 do { 3165 page = NULL; 3166 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 3167 if (!spin_trylock_irqsave(&zone->lock, flags)) 3168 return NULL; 3169 } else { 3170 spin_lock_irqsave(&zone->lock, flags); 3171 } 3172 if (alloc_flags & ALLOC_HIGHATOMIC) 3173 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3174 if (!page) { 3175 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 3176 3177 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 3178 3179 /* 3180 * If the allocation fails, allow OOM handling and 3181 * order-0 (atomic) allocs access to HIGHATOMIC 3182 * reserves as failing now is worse than failing a 3183 * high-order atomic allocation in the future. 3184 */ 3185 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3186 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3187 3188 if (!page) { 3189 spin_unlock_irqrestore(&zone->lock, flags); 3190 return NULL; 3191 } 3192 } 3193 spin_unlock_irqrestore(&zone->lock, flags); 3194 } while (check_new_pages(page, order)); 3195 3196 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3197 zone_statistics(preferred_zone, zone, 1); 3198 3199 return page; 3200 } 3201 3202 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3203 { 3204 int high, base_batch, batch, max_nr_alloc; 3205 int high_max, high_min; 3206 3207 base_batch = READ_ONCE(pcp->batch); 3208 high_min = READ_ONCE(pcp->high_min); 3209 high_max = READ_ONCE(pcp->high_max); 3210 high = pcp->high = clamp(pcp->high, high_min, high_max); 3211 3212 /* Check for PCP disabled or boot pageset */ 3213 if (unlikely(high < base_batch)) 3214 return 1; 3215 3216 if (order) 3217 batch = base_batch; 3218 else 3219 batch = (base_batch << pcp->alloc_factor); 3220 3221 /* 3222 * If we had larger pcp->high, we could avoid to allocate from 3223 * zone. 3224 */ 3225 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3226 high = pcp->high = min(high + batch, high_max); 3227 3228 if (!order) { 3229 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3230 /* 3231 * Double the number of pages allocated each time there is 3232 * subsequent allocation of order-0 pages without any freeing. 3233 */ 3234 if (batch <= max_nr_alloc && 3235 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3236 pcp->alloc_factor++; 3237 batch = min(batch, max_nr_alloc); 3238 } 3239 3240 /* 3241 * Scale batch relative to order if batch implies free pages 3242 * can be stored on the PCP. Batch can be 1 for small zones or 3243 * for boot pagesets which should never store free pages as 3244 * the pages may belong to arbitrary zones. 3245 */ 3246 if (batch > 1) 3247 batch = max(batch >> order, 2); 3248 3249 return batch; 3250 } 3251 3252 /* Remove page from the per-cpu list, caller must protect the list */ 3253 static inline 3254 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3255 int migratetype, 3256 unsigned int alloc_flags, 3257 struct per_cpu_pages *pcp, 3258 struct list_head *list) 3259 { 3260 struct page *page; 3261 3262 do { 3263 if (list_empty(list)) { 3264 int batch = nr_pcp_alloc(pcp, zone, order); 3265 int alloced; 3266 3267 alloced = rmqueue_bulk(zone, order, 3268 batch, list, 3269 migratetype, alloc_flags); 3270 3271 pcp->count += alloced << order; 3272 if (unlikely(list_empty(list))) 3273 return NULL; 3274 } 3275 3276 page = list_first_entry(list, struct page, pcp_list); 3277 list_del(&page->pcp_list); 3278 pcp->count -= 1 << order; 3279 } while (check_new_pages(page, order)); 3280 3281 return page; 3282 } 3283 3284 /* Lock and remove page from the per-cpu list */ 3285 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3286 struct zone *zone, unsigned int order, 3287 int migratetype, unsigned int alloc_flags) 3288 { 3289 struct per_cpu_pages *pcp; 3290 struct list_head *list; 3291 struct page *page; 3292 unsigned long __maybe_unused UP_flags; 3293 3294 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3295 pcp_trylock_prepare(UP_flags); 3296 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3297 if (!pcp) { 3298 pcp_trylock_finish(UP_flags); 3299 return NULL; 3300 } 3301 3302 /* 3303 * On allocation, reduce the number of pages that are batch freed. 3304 * See nr_pcp_free() where free_factor is increased for subsequent 3305 * frees. 3306 */ 3307 pcp->free_count >>= 1; 3308 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3309 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3310 pcp_spin_unlock(pcp); 3311 pcp_trylock_finish(UP_flags); 3312 if (page) { 3313 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3314 zone_statistics(preferred_zone, zone, 1); 3315 } 3316 return page; 3317 } 3318 3319 /* 3320 * Allocate a page from the given zone. 3321 * Use pcplists for THP or "cheap" high-order allocations. 3322 */ 3323 3324 /* 3325 * Do not instrument rmqueue() with KMSAN. This function may call 3326 * __msan_poison_alloca() through a call to set_pfnblock_migratetype(). 3327 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3328 * may call rmqueue() again, which will result in a deadlock. 3329 */ 3330 __no_sanitize_memory 3331 static inline 3332 struct page *rmqueue(struct zone *preferred_zone, 3333 struct zone *zone, unsigned int order, 3334 gfp_t gfp_flags, unsigned int alloc_flags, 3335 int migratetype) 3336 { 3337 struct page *page; 3338 3339 if (likely(pcp_allowed_order(order))) { 3340 page = rmqueue_pcplist(preferred_zone, zone, order, 3341 migratetype, alloc_flags); 3342 if (likely(page)) 3343 goto out; 3344 } 3345 3346 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3347 migratetype); 3348 3349 out: 3350 /* Separate test+clear to avoid unnecessary atomics */ 3351 if ((alloc_flags & ALLOC_KSWAPD) && 3352 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3353 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3354 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3355 } 3356 3357 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3358 return page; 3359 } 3360 3361 /* 3362 * Reserve the pageblock(s) surrounding an allocation request for 3363 * exclusive use of high-order atomic allocations if there are no 3364 * empty page blocks that contain a page with a suitable order 3365 */ 3366 static void reserve_highatomic_pageblock(struct page *page, int order, 3367 struct zone *zone) 3368 { 3369 int mt; 3370 unsigned long max_managed, flags; 3371 3372 /* 3373 * The number reserved as: minimum is 1 pageblock, maximum is 3374 * roughly 1% of a zone. But if 1% of a zone falls below a 3375 * pageblock size, then don't reserve any pageblocks. 3376 * Check is race-prone but harmless. 3377 */ 3378 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3379 return; 3380 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3381 if (zone->nr_reserved_highatomic >= max_managed) 3382 return; 3383 3384 spin_lock_irqsave(&zone->lock, flags); 3385 3386 /* Recheck the nr_reserved_highatomic limit under the lock */ 3387 if (zone->nr_reserved_highatomic >= max_managed) 3388 goto out_unlock; 3389 3390 /* Yoink! */ 3391 mt = get_pageblock_migratetype(page); 3392 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3393 if (!migratetype_is_mergeable(mt)) 3394 goto out_unlock; 3395 3396 if (order < pageblock_order) { 3397 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3398 goto out_unlock; 3399 zone->nr_reserved_highatomic += pageblock_nr_pages; 3400 } else { 3401 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3402 zone->nr_reserved_highatomic += 1 << order; 3403 } 3404 3405 out_unlock: 3406 spin_unlock_irqrestore(&zone->lock, flags); 3407 } 3408 3409 /* 3410 * Used when an allocation is about to fail under memory pressure. This 3411 * potentially hurts the reliability of high-order allocations when under 3412 * intense memory pressure but failed atomic allocations should be easier 3413 * to recover from than an OOM. 3414 * 3415 * If @force is true, try to unreserve pageblocks even though highatomic 3416 * pageblock is exhausted. 3417 */ 3418 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3419 bool force) 3420 { 3421 struct zonelist *zonelist = ac->zonelist; 3422 unsigned long flags; 3423 struct zoneref *z; 3424 struct zone *zone; 3425 struct page *page; 3426 int order; 3427 int ret; 3428 3429 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3430 ac->nodemask) { 3431 /* 3432 * Preserve at least one pageblock unless memory pressure 3433 * is really high. 3434 */ 3435 if (!force && zone->nr_reserved_highatomic <= 3436 pageblock_nr_pages) 3437 continue; 3438 3439 spin_lock_irqsave(&zone->lock, flags); 3440 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3441 struct free_area *area = &(zone->free_area[order]); 3442 unsigned long size; 3443 3444 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3445 if (!page) 3446 continue; 3447 3448 size = max(pageblock_nr_pages, 1UL << order); 3449 /* 3450 * It should never happen but changes to 3451 * locking could inadvertently allow a per-cpu 3452 * drain to add pages to MIGRATE_HIGHATOMIC 3453 * while unreserving so be safe and watch for 3454 * underflows. 3455 */ 3456 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3457 size = zone->nr_reserved_highatomic; 3458 zone->nr_reserved_highatomic -= size; 3459 3460 /* 3461 * Convert to ac->migratetype and avoid the normal 3462 * pageblock stealing heuristics. Minimally, the caller 3463 * is doing the work and needs the pages. More 3464 * importantly, if the block was always converted to 3465 * MIGRATE_UNMOVABLE or another type then the number 3466 * of pageblocks that cannot be completely freed 3467 * may increase. 3468 */ 3469 if (order < pageblock_order) 3470 ret = move_freepages_block(zone, page, 3471 MIGRATE_HIGHATOMIC, 3472 ac->migratetype); 3473 else { 3474 move_to_free_list(page, zone, order, 3475 MIGRATE_HIGHATOMIC, 3476 ac->migratetype); 3477 change_pageblock_range(page, order, 3478 ac->migratetype); 3479 ret = 1; 3480 } 3481 /* 3482 * Reserving the block(s) already succeeded, 3483 * so this should not fail on zone boundaries. 3484 */ 3485 WARN_ON_ONCE(ret == -1); 3486 if (ret > 0) { 3487 spin_unlock_irqrestore(&zone->lock, flags); 3488 return ret; 3489 } 3490 } 3491 spin_unlock_irqrestore(&zone->lock, flags); 3492 } 3493 3494 return false; 3495 } 3496 3497 static inline long __zone_watermark_unusable_free(struct zone *z, 3498 unsigned int order, unsigned int alloc_flags) 3499 { 3500 long unusable_free = (1 << order) - 1; 3501 3502 /* 3503 * If the caller does not have rights to reserves below the min 3504 * watermark then subtract the free pages reserved for highatomic. 3505 */ 3506 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3507 unusable_free += READ_ONCE(z->nr_free_highatomic); 3508 3509 #ifdef CONFIG_CMA 3510 /* If allocation can't use CMA areas don't use free CMA pages */ 3511 if (!(alloc_flags & ALLOC_CMA)) 3512 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3513 #endif 3514 3515 return unusable_free; 3516 } 3517 3518 /* 3519 * Return true if free base pages are above 'mark'. For high-order checks it 3520 * will return true of the order-0 watermark is reached and there is at least 3521 * one free page of a suitable size. Checking now avoids taking the zone lock 3522 * to check in the allocation paths if no pages are free. 3523 */ 3524 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3525 int highest_zoneidx, unsigned int alloc_flags, 3526 long free_pages) 3527 { 3528 long min = mark; 3529 int o; 3530 3531 /* free_pages may go negative - that's OK */ 3532 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3533 3534 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3535 /* 3536 * __GFP_HIGH allows access to 50% of the min reserve as well 3537 * as OOM. 3538 */ 3539 if (alloc_flags & ALLOC_MIN_RESERVE) { 3540 min -= min / 2; 3541 3542 /* 3543 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3544 * access more reserves than just __GFP_HIGH. Other 3545 * non-blocking allocations requests such as GFP_NOWAIT 3546 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3547 * access to the min reserve. 3548 */ 3549 if (alloc_flags & ALLOC_NON_BLOCK) 3550 min -= min / 4; 3551 } 3552 3553 /* 3554 * OOM victims can try even harder than the normal reserve 3555 * users on the grounds that it's definitely going to be in 3556 * the exit path shortly and free memory. Any allocation it 3557 * makes during the free path will be small and short-lived. 3558 */ 3559 if (alloc_flags & ALLOC_OOM) 3560 min -= min / 2; 3561 } 3562 3563 /* 3564 * Check watermarks for an order-0 allocation request. If these 3565 * are not met, then a high-order request also cannot go ahead 3566 * even if a suitable page happened to be free. 3567 */ 3568 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3569 return false; 3570 3571 /* If this is an order-0 request then the watermark is fine */ 3572 if (!order) 3573 return true; 3574 3575 /* For a high-order request, check at least one suitable page is free */ 3576 for (o = order; o < NR_PAGE_ORDERS; o++) { 3577 struct free_area *area = &z->free_area[o]; 3578 int mt; 3579 3580 if (!area->nr_free) 3581 continue; 3582 3583 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3584 if (!free_area_empty(area, mt)) 3585 return true; 3586 } 3587 3588 #ifdef CONFIG_CMA 3589 if ((alloc_flags & ALLOC_CMA) && 3590 !free_area_empty(area, MIGRATE_CMA)) { 3591 return true; 3592 } 3593 #endif 3594 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3595 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3596 return true; 3597 } 3598 } 3599 return false; 3600 } 3601 3602 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3603 int highest_zoneidx, unsigned int alloc_flags) 3604 { 3605 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3606 zone_page_state(z, NR_FREE_PAGES)); 3607 } 3608 3609 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3610 unsigned long mark, int highest_zoneidx, 3611 unsigned int alloc_flags, gfp_t gfp_mask) 3612 { 3613 long free_pages; 3614 3615 free_pages = zone_page_state(z, NR_FREE_PAGES); 3616 3617 /* 3618 * Fast check for order-0 only. If this fails then the reserves 3619 * need to be calculated. 3620 */ 3621 if (!order) { 3622 long usable_free; 3623 long reserved; 3624 3625 usable_free = free_pages; 3626 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3627 3628 /* reserved may over estimate high-atomic reserves. */ 3629 usable_free -= min(usable_free, reserved); 3630 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3631 return true; 3632 } 3633 3634 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3635 free_pages)) 3636 return true; 3637 3638 /* 3639 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3640 * when checking the min watermark. The min watermark is the 3641 * point where boosting is ignored so that kswapd is woken up 3642 * when below the low watermark. 3643 */ 3644 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3645 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3646 mark = z->_watermark[WMARK_MIN]; 3647 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3648 alloc_flags, free_pages); 3649 } 3650 3651 return false; 3652 } 3653 3654 #ifdef CONFIG_NUMA 3655 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3656 3657 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3658 { 3659 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3660 node_reclaim_distance; 3661 } 3662 #else /* CONFIG_NUMA */ 3663 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3664 { 3665 return true; 3666 } 3667 #endif /* CONFIG_NUMA */ 3668 3669 /* 3670 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3671 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3672 * premature use of a lower zone may cause lowmem pressure problems that 3673 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3674 * probably too small. It only makes sense to spread allocations to avoid 3675 * fragmentation between the Normal and DMA32 zones. 3676 */ 3677 static inline unsigned int 3678 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3679 { 3680 unsigned int alloc_flags; 3681 3682 /* 3683 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3684 * to save a branch. 3685 */ 3686 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3687 3688 if (defrag_mode) { 3689 alloc_flags |= ALLOC_NOFRAGMENT; 3690 return alloc_flags; 3691 } 3692 3693 #ifdef CONFIG_ZONE_DMA32 3694 if (!zone) 3695 return alloc_flags; 3696 3697 if (zone_idx(zone) != ZONE_NORMAL) 3698 return alloc_flags; 3699 3700 /* 3701 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3702 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3703 * on UMA that if Normal is populated then so is DMA32. 3704 */ 3705 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3706 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3707 return alloc_flags; 3708 3709 alloc_flags |= ALLOC_NOFRAGMENT; 3710 #endif /* CONFIG_ZONE_DMA32 */ 3711 return alloc_flags; 3712 } 3713 3714 /* Must be called after current_gfp_context() which can change gfp_mask */ 3715 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3716 unsigned int alloc_flags) 3717 { 3718 #ifdef CONFIG_CMA 3719 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3720 alloc_flags |= ALLOC_CMA; 3721 #endif 3722 return alloc_flags; 3723 } 3724 3725 /* 3726 * get_page_from_freelist goes through the zonelist trying to allocate 3727 * a page. 3728 */ 3729 static struct page * 3730 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3731 const struct alloc_context *ac) 3732 { 3733 struct zoneref *z; 3734 struct zone *zone; 3735 struct pglist_data *last_pgdat = NULL; 3736 bool last_pgdat_dirty_ok = false; 3737 bool no_fallback; 3738 bool skip_kswapd_nodes = nr_online_nodes > 1; 3739 bool skipped_kswapd_nodes = false; 3740 3741 retry: 3742 /* 3743 * Scan zonelist, looking for a zone with enough free. 3744 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. 3745 */ 3746 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3747 z = ac->preferred_zoneref; 3748 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3749 ac->nodemask) { 3750 struct page *page; 3751 unsigned long mark; 3752 3753 if (cpusets_enabled() && 3754 (alloc_flags & ALLOC_CPUSET) && 3755 !__cpuset_zone_allowed(zone, gfp_mask)) 3756 continue; 3757 /* 3758 * When allocating a page cache page for writing, we 3759 * want to get it from a node that is within its dirty 3760 * limit, such that no single node holds more than its 3761 * proportional share of globally allowed dirty pages. 3762 * The dirty limits take into account the node's 3763 * lowmem reserves and high watermark so that kswapd 3764 * should be able to balance it without having to 3765 * write pages from its LRU list. 3766 * 3767 * XXX: For now, allow allocations to potentially 3768 * exceed the per-node dirty limit in the slowpath 3769 * (spread_dirty_pages unset) before going into reclaim, 3770 * which is important when on a NUMA setup the allowed 3771 * nodes are together not big enough to reach the 3772 * global limit. The proper fix for these situations 3773 * will require awareness of nodes in the 3774 * dirty-throttling and the flusher threads. 3775 */ 3776 if (ac->spread_dirty_pages) { 3777 if (last_pgdat != zone->zone_pgdat) { 3778 last_pgdat = zone->zone_pgdat; 3779 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3780 } 3781 3782 if (!last_pgdat_dirty_ok) 3783 continue; 3784 } 3785 3786 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3787 zone != zonelist_zone(ac->preferred_zoneref)) { 3788 int local_nid; 3789 3790 /* 3791 * If moving to a remote node, retry but allow 3792 * fragmenting fallbacks. Locality is more important 3793 * than fragmentation avoidance. 3794 */ 3795 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3796 if (zone_to_nid(zone) != local_nid) { 3797 alloc_flags &= ~ALLOC_NOFRAGMENT; 3798 goto retry; 3799 } 3800 } 3801 3802 /* 3803 * If kswapd is already active on a node, keep looking 3804 * for other nodes that might be idle. This can happen 3805 * if another process has NUMA bindings and is causing 3806 * kswapd wakeups on only some nodes. Avoid accidental 3807 * "node_reclaim_mode"-like behavior in this case. 3808 */ 3809 if (skip_kswapd_nodes && 3810 !waitqueue_active(&zone->zone_pgdat->kswapd_wait)) { 3811 skipped_kswapd_nodes = true; 3812 continue; 3813 } 3814 3815 cond_accept_memory(zone, order, alloc_flags); 3816 3817 /* 3818 * Detect whether the number of free pages is below high 3819 * watermark. If so, we will decrease pcp->high and free 3820 * PCP pages in free path to reduce the possibility of 3821 * premature page reclaiming. Detection is done here to 3822 * avoid to do that in hotter free path. 3823 */ 3824 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3825 goto check_alloc_wmark; 3826 3827 mark = high_wmark_pages(zone); 3828 if (zone_watermark_fast(zone, order, mark, 3829 ac->highest_zoneidx, alloc_flags, 3830 gfp_mask)) 3831 goto try_this_zone; 3832 else 3833 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3834 3835 check_alloc_wmark: 3836 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3837 if (!zone_watermark_fast(zone, order, mark, 3838 ac->highest_zoneidx, alloc_flags, 3839 gfp_mask)) { 3840 int ret; 3841 3842 if (cond_accept_memory(zone, order, alloc_flags)) 3843 goto try_this_zone; 3844 3845 /* 3846 * Watermark failed for this zone, but see if we can 3847 * grow this zone if it contains deferred pages. 3848 */ 3849 if (deferred_pages_enabled()) { 3850 if (_deferred_grow_zone(zone, order)) 3851 goto try_this_zone; 3852 } 3853 /* Checked here to keep the fast path fast */ 3854 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3855 if (alloc_flags & ALLOC_NO_WATERMARKS) 3856 goto try_this_zone; 3857 3858 if (!node_reclaim_enabled() || 3859 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3860 continue; 3861 3862 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3863 switch (ret) { 3864 case NODE_RECLAIM_NOSCAN: 3865 /* did not scan */ 3866 continue; 3867 case NODE_RECLAIM_FULL: 3868 /* scanned but unreclaimable */ 3869 continue; 3870 default: 3871 /* did we reclaim enough */ 3872 if (zone_watermark_ok(zone, order, mark, 3873 ac->highest_zoneidx, alloc_flags)) 3874 goto try_this_zone; 3875 3876 continue; 3877 } 3878 } 3879 3880 try_this_zone: 3881 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3882 gfp_mask, alloc_flags, ac->migratetype); 3883 if (page) { 3884 prep_new_page(page, order, gfp_mask, alloc_flags); 3885 3886 /* 3887 * If this is a high-order atomic allocation then check 3888 * if the pageblock should be reserved for the future 3889 */ 3890 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3891 reserve_highatomic_pageblock(page, order, zone); 3892 3893 return page; 3894 } else { 3895 if (cond_accept_memory(zone, order, alloc_flags)) 3896 goto try_this_zone; 3897 3898 /* Try again if zone has deferred pages */ 3899 if (deferred_pages_enabled()) { 3900 if (_deferred_grow_zone(zone, order)) 3901 goto try_this_zone; 3902 } 3903 } 3904 } 3905 3906 /* 3907 * If we skipped over nodes with active kswapds and found no 3908 * idle nodes, retry and place anywhere the watermarks permit. 3909 */ 3910 if (skip_kswapd_nodes && skipped_kswapd_nodes) { 3911 skip_kswapd_nodes = false; 3912 goto retry; 3913 } 3914 3915 /* 3916 * It's possible on a UMA machine to get through all zones that are 3917 * fragmented. If avoiding fragmentation, reset and try again. 3918 */ 3919 if (no_fallback && !defrag_mode) { 3920 alloc_flags &= ~ALLOC_NOFRAGMENT; 3921 goto retry; 3922 } 3923 3924 return NULL; 3925 } 3926 3927 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3928 { 3929 unsigned int filter = SHOW_MEM_FILTER_NODES; 3930 3931 /* 3932 * This documents exceptions given to allocations in certain 3933 * contexts that are allowed to allocate outside current's set 3934 * of allowed nodes. 3935 */ 3936 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3937 if (tsk_is_oom_victim(current) || 3938 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3939 filter &= ~SHOW_MEM_FILTER_NODES; 3940 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3941 filter &= ~SHOW_MEM_FILTER_NODES; 3942 3943 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3944 } 3945 3946 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3947 { 3948 struct va_format vaf; 3949 va_list args; 3950 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3951 3952 if ((gfp_mask & __GFP_NOWARN) || 3953 !__ratelimit(&nopage_rs) || 3954 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3955 return; 3956 3957 va_start(args, fmt); 3958 vaf.fmt = fmt; 3959 vaf.va = &args; 3960 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3961 current->comm, &vaf, gfp_mask, &gfp_mask, 3962 nodemask_pr_args(nodemask)); 3963 va_end(args); 3964 3965 cpuset_print_current_mems_allowed(); 3966 pr_cont("\n"); 3967 dump_stack(); 3968 warn_alloc_show_mem(gfp_mask, nodemask); 3969 } 3970 3971 static inline struct page * 3972 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3973 unsigned int alloc_flags, 3974 const struct alloc_context *ac) 3975 { 3976 struct page *page; 3977 3978 page = get_page_from_freelist(gfp_mask, order, 3979 alloc_flags|ALLOC_CPUSET, ac); 3980 /* 3981 * fallback to ignore cpuset restriction if our nodes 3982 * are depleted 3983 */ 3984 if (!page) 3985 page = get_page_from_freelist(gfp_mask, order, 3986 alloc_flags, ac); 3987 return page; 3988 } 3989 3990 static inline struct page * 3991 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3992 const struct alloc_context *ac, unsigned long *did_some_progress) 3993 { 3994 struct oom_control oc = { 3995 .zonelist = ac->zonelist, 3996 .nodemask = ac->nodemask, 3997 .memcg = NULL, 3998 .gfp_mask = gfp_mask, 3999 .order = order, 4000 }; 4001 struct page *page; 4002 4003 *did_some_progress = 0; 4004 4005 /* 4006 * Acquire the oom lock. If that fails, somebody else is 4007 * making progress for us. 4008 */ 4009 if (!mutex_trylock(&oom_lock)) { 4010 *did_some_progress = 1; 4011 schedule_timeout_uninterruptible(1); 4012 return NULL; 4013 } 4014 4015 /* 4016 * Go through the zonelist yet one more time, keep very high watermark 4017 * here, this is only to catch a parallel oom killing, we must fail if 4018 * we're still under heavy pressure. But make sure that this reclaim 4019 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4020 * allocation which will never fail due to oom_lock already held. 4021 */ 4022 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4023 ~__GFP_DIRECT_RECLAIM, order, 4024 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4025 if (page) 4026 goto out; 4027 4028 /* Coredumps can quickly deplete all memory reserves */ 4029 if (current->flags & PF_DUMPCORE) 4030 goto out; 4031 /* The OOM killer will not help higher order allocs */ 4032 if (order > PAGE_ALLOC_COSTLY_ORDER) 4033 goto out; 4034 /* 4035 * We have already exhausted all our reclaim opportunities without any 4036 * success so it is time to admit defeat. We will skip the OOM killer 4037 * because it is very likely that the caller has a more reasonable 4038 * fallback than shooting a random task. 4039 * 4040 * The OOM killer may not free memory on a specific node. 4041 */ 4042 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4043 goto out; 4044 /* The OOM killer does not needlessly kill tasks for lowmem */ 4045 if (ac->highest_zoneidx < ZONE_NORMAL) 4046 goto out; 4047 if (pm_suspended_storage()) 4048 goto out; 4049 /* 4050 * XXX: GFP_NOFS allocations should rather fail than rely on 4051 * other request to make a forward progress. 4052 * We are in an unfortunate situation where out_of_memory cannot 4053 * do much for this context but let's try it to at least get 4054 * access to memory reserved if the current task is killed (see 4055 * out_of_memory). Once filesystems are ready to handle allocation 4056 * failures more gracefully we should just bail out here. 4057 */ 4058 4059 /* Exhausted what can be done so it's blame time */ 4060 if (out_of_memory(&oc) || 4061 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4062 *did_some_progress = 1; 4063 4064 /* 4065 * Help non-failing allocations by giving them access to memory 4066 * reserves 4067 */ 4068 if (gfp_mask & __GFP_NOFAIL) 4069 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4070 ALLOC_NO_WATERMARKS, ac); 4071 } 4072 out: 4073 mutex_unlock(&oom_lock); 4074 return page; 4075 } 4076 4077 /* 4078 * Maximum number of compaction retries with a progress before OOM 4079 * killer is consider as the only way to move forward. 4080 */ 4081 #define MAX_COMPACT_RETRIES 16 4082 4083 #ifdef CONFIG_COMPACTION 4084 /* Try memory compaction for high-order allocations before reclaim */ 4085 static struct page * 4086 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4087 unsigned int alloc_flags, const struct alloc_context *ac, 4088 enum compact_priority prio, enum compact_result *compact_result) 4089 { 4090 struct page *page = NULL; 4091 unsigned long pflags; 4092 unsigned int noreclaim_flag; 4093 4094 if (!order) 4095 return NULL; 4096 4097 psi_memstall_enter(&pflags); 4098 delayacct_compact_start(); 4099 noreclaim_flag = memalloc_noreclaim_save(); 4100 4101 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4102 prio, &page); 4103 4104 memalloc_noreclaim_restore(noreclaim_flag); 4105 psi_memstall_leave(&pflags); 4106 delayacct_compact_end(); 4107 4108 if (*compact_result == COMPACT_SKIPPED) 4109 return NULL; 4110 /* 4111 * At least in one zone compaction wasn't deferred or skipped, so let's 4112 * count a compaction stall 4113 */ 4114 count_vm_event(COMPACTSTALL); 4115 4116 /* Prep a captured page if available */ 4117 if (page) 4118 prep_new_page(page, order, gfp_mask, alloc_flags); 4119 4120 /* Try get a page from the freelist if available */ 4121 if (!page) 4122 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4123 4124 if (page) { 4125 struct zone *zone = page_zone(page); 4126 4127 zone->compact_blockskip_flush = false; 4128 compaction_defer_reset(zone, order, true); 4129 count_vm_event(COMPACTSUCCESS); 4130 return page; 4131 } 4132 4133 /* 4134 * It's bad if compaction run occurs and fails. The most likely reason 4135 * is that pages exist, but not enough to satisfy watermarks. 4136 */ 4137 count_vm_event(COMPACTFAIL); 4138 4139 cond_resched(); 4140 4141 return NULL; 4142 } 4143 4144 static inline bool 4145 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4146 enum compact_result compact_result, 4147 enum compact_priority *compact_priority, 4148 int *compaction_retries) 4149 { 4150 int max_retries = MAX_COMPACT_RETRIES; 4151 int min_priority; 4152 bool ret = false; 4153 int retries = *compaction_retries; 4154 enum compact_priority priority = *compact_priority; 4155 4156 if (!order) 4157 return false; 4158 4159 if (fatal_signal_pending(current)) 4160 return false; 4161 4162 /* 4163 * Compaction was skipped due to a lack of free order-0 4164 * migration targets. Continue if reclaim can help. 4165 */ 4166 if (compact_result == COMPACT_SKIPPED) { 4167 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4168 goto out; 4169 } 4170 4171 /* 4172 * Compaction managed to coalesce some page blocks, but the 4173 * allocation failed presumably due to a race. Retry some. 4174 */ 4175 if (compact_result == COMPACT_SUCCESS) { 4176 /* 4177 * !costly requests are much more important than 4178 * __GFP_RETRY_MAYFAIL costly ones because they are de 4179 * facto nofail and invoke OOM killer to move on while 4180 * costly can fail and users are ready to cope with 4181 * that. 1/4 retries is rather arbitrary but we would 4182 * need much more detailed feedback from compaction to 4183 * make a better decision. 4184 */ 4185 if (order > PAGE_ALLOC_COSTLY_ORDER) 4186 max_retries /= 4; 4187 4188 if (++(*compaction_retries) <= max_retries) { 4189 ret = true; 4190 goto out; 4191 } 4192 } 4193 4194 /* 4195 * Compaction failed. Retry with increasing priority. 4196 */ 4197 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4198 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4199 4200 if (*compact_priority > min_priority) { 4201 (*compact_priority)--; 4202 *compaction_retries = 0; 4203 ret = true; 4204 } 4205 out: 4206 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4207 return ret; 4208 } 4209 #else 4210 static inline struct page * 4211 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4212 unsigned int alloc_flags, const struct alloc_context *ac, 4213 enum compact_priority prio, enum compact_result *compact_result) 4214 { 4215 *compact_result = COMPACT_SKIPPED; 4216 return NULL; 4217 } 4218 4219 static inline bool 4220 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4221 enum compact_result compact_result, 4222 enum compact_priority *compact_priority, 4223 int *compaction_retries) 4224 { 4225 struct zone *zone; 4226 struct zoneref *z; 4227 4228 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4229 return false; 4230 4231 /* 4232 * There are setups with compaction disabled which would prefer to loop 4233 * inside the allocator rather than hit the oom killer prematurely. 4234 * Let's give them a good hope and keep retrying while the order-0 4235 * watermarks are OK. 4236 */ 4237 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4238 ac->highest_zoneidx, ac->nodemask) { 4239 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4240 ac->highest_zoneidx, alloc_flags)) 4241 return true; 4242 } 4243 return false; 4244 } 4245 #endif /* CONFIG_COMPACTION */ 4246 4247 #ifdef CONFIG_LOCKDEP 4248 static struct lockdep_map __fs_reclaim_map = 4249 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4250 4251 static bool __need_reclaim(gfp_t gfp_mask) 4252 { 4253 /* no reclaim without waiting on it */ 4254 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4255 return false; 4256 4257 /* this guy won't enter reclaim */ 4258 if (current->flags & PF_MEMALLOC) 4259 return false; 4260 4261 if (gfp_mask & __GFP_NOLOCKDEP) 4262 return false; 4263 4264 return true; 4265 } 4266 4267 void __fs_reclaim_acquire(unsigned long ip) 4268 { 4269 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4270 } 4271 4272 void __fs_reclaim_release(unsigned long ip) 4273 { 4274 lock_release(&__fs_reclaim_map, ip); 4275 } 4276 4277 void fs_reclaim_acquire(gfp_t gfp_mask) 4278 { 4279 gfp_mask = current_gfp_context(gfp_mask); 4280 4281 if (__need_reclaim(gfp_mask)) { 4282 if (gfp_mask & __GFP_FS) 4283 __fs_reclaim_acquire(_RET_IP_); 4284 4285 #ifdef CONFIG_MMU_NOTIFIER 4286 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4287 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4288 #endif 4289 4290 } 4291 } 4292 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4293 4294 void fs_reclaim_release(gfp_t gfp_mask) 4295 { 4296 gfp_mask = current_gfp_context(gfp_mask); 4297 4298 if (__need_reclaim(gfp_mask)) { 4299 if (gfp_mask & __GFP_FS) 4300 __fs_reclaim_release(_RET_IP_); 4301 } 4302 } 4303 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4304 #endif 4305 4306 /* 4307 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4308 * have been rebuilt so allocation retries. Reader side does not lock and 4309 * retries the allocation if zonelist changes. Writer side is protected by the 4310 * embedded spin_lock. 4311 */ 4312 static DEFINE_SEQLOCK(zonelist_update_seq); 4313 4314 static unsigned int zonelist_iter_begin(void) 4315 { 4316 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4317 return read_seqbegin(&zonelist_update_seq); 4318 4319 return 0; 4320 } 4321 4322 static unsigned int check_retry_zonelist(unsigned int seq) 4323 { 4324 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4325 return read_seqretry(&zonelist_update_seq, seq); 4326 4327 return seq; 4328 } 4329 4330 /* Perform direct synchronous page reclaim */ 4331 static unsigned long 4332 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4333 const struct alloc_context *ac) 4334 { 4335 unsigned int noreclaim_flag; 4336 unsigned long progress; 4337 4338 cond_resched(); 4339 4340 /* We now go into synchronous reclaim */ 4341 cpuset_memory_pressure_bump(); 4342 fs_reclaim_acquire(gfp_mask); 4343 noreclaim_flag = memalloc_noreclaim_save(); 4344 4345 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4346 ac->nodemask); 4347 4348 memalloc_noreclaim_restore(noreclaim_flag); 4349 fs_reclaim_release(gfp_mask); 4350 4351 cond_resched(); 4352 4353 return progress; 4354 } 4355 4356 /* The really slow allocator path where we enter direct reclaim */ 4357 static inline struct page * 4358 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4359 unsigned int alloc_flags, const struct alloc_context *ac, 4360 unsigned long *did_some_progress) 4361 { 4362 struct page *page = NULL; 4363 unsigned long pflags; 4364 bool drained = false; 4365 4366 psi_memstall_enter(&pflags); 4367 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4368 if (unlikely(!(*did_some_progress))) 4369 goto out; 4370 4371 retry: 4372 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4373 4374 /* 4375 * If an allocation failed after direct reclaim, it could be because 4376 * pages are pinned on the per-cpu lists or in high alloc reserves. 4377 * Shrink them and try again 4378 */ 4379 if (!page && !drained) { 4380 unreserve_highatomic_pageblock(ac, false); 4381 drain_all_pages(NULL); 4382 drained = true; 4383 goto retry; 4384 } 4385 out: 4386 psi_memstall_leave(&pflags); 4387 4388 return page; 4389 } 4390 4391 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4392 const struct alloc_context *ac) 4393 { 4394 struct zoneref *z; 4395 struct zone *zone; 4396 pg_data_t *last_pgdat = NULL; 4397 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4398 unsigned int reclaim_order; 4399 4400 if (defrag_mode) 4401 reclaim_order = max(order, pageblock_order); 4402 else 4403 reclaim_order = order; 4404 4405 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4406 ac->nodemask) { 4407 if (!managed_zone(zone)) 4408 continue; 4409 if (last_pgdat == zone->zone_pgdat) 4410 continue; 4411 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4412 last_pgdat = zone->zone_pgdat; 4413 } 4414 } 4415 4416 static inline unsigned int 4417 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4418 { 4419 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4420 4421 /* 4422 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4423 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4424 * to save two branches. 4425 */ 4426 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4427 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4428 4429 /* 4430 * The caller may dip into page reserves a bit more if the caller 4431 * cannot run direct reclaim, or if the caller has realtime scheduling 4432 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4433 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4434 */ 4435 alloc_flags |= (__force int) 4436 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4437 4438 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4439 /* 4440 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4441 * if it can't schedule. 4442 */ 4443 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4444 alloc_flags |= ALLOC_NON_BLOCK; 4445 4446 if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE)) 4447 alloc_flags |= ALLOC_HIGHATOMIC; 4448 } 4449 4450 /* 4451 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4452 * GFP_ATOMIC) rather than fail, see the comment for 4453 * cpuset_current_node_allowed(). 4454 */ 4455 if (alloc_flags & ALLOC_MIN_RESERVE) 4456 alloc_flags &= ~ALLOC_CPUSET; 4457 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4458 alloc_flags |= ALLOC_MIN_RESERVE; 4459 4460 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4461 4462 if (defrag_mode) 4463 alloc_flags |= ALLOC_NOFRAGMENT; 4464 4465 return alloc_flags; 4466 } 4467 4468 static bool oom_reserves_allowed(struct task_struct *tsk) 4469 { 4470 if (!tsk_is_oom_victim(tsk)) 4471 return false; 4472 4473 /* 4474 * !MMU doesn't have oom reaper so give access to memory reserves 4475 * only to the thread with TIF_MEMDIE set 4476 */ 4477 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4478 return false; 4479 4480 return true; 4481 } 4482 4483 /* 4484 * Distinguish requests which really need access to full memory 4485 * reserves from oom victims which can live with a portion of it 4486 */ 4487 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4488 { 4489 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4490 return 0; 4491 if (gfp_mask & __GFP_MEMALLOC) 4492 return ALLOC_NO_WATERMARKS; 4493 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4494 return ALLOC_NO_WATERMARKS; 4495 if (!in_interrupt()) { 4496 if (current->flags & PF_MEMALLOC) 4497 return ALLOC_NO_WATERMARKS; 4498 else if (oom_reserves_allowed(current)) 4499 return ALLOC_OOM; 4500 } 4501 4502 return 0; 4503 } 4504 4505 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4506 { 4507 return !!__gfp_pfmemalloc_flags(gfp_mask); 4508 } 4509 4510 /* 4511 * Checks whether it makes sense to retry the reclaim to make a forward progress 4512 * for the given allocation request. 4513 * 4514 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4515 * without success, or when we couldn't even meet the watermark if we 4516 * reclaimed all remaining pages on the LRU lists. 4517 * 4518 * Returns true if a retry is viable or false to enter the oom path. 4519 */ 4520 static inline bool 4521 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4522 struct alloc_context *ac, int alloc_flags, 4523 bool did_some_progress, int *no_progress_loops) 4524 { 4525 struct zone *zone; 4526 struct zoneref *z; 4527 bool ret = false; 4528 4529 /* 4530 * Costly allocations might have made a progress but this doesn't mean 4531 * their order will become available due to high fragmentation so 4532 * always increment the no progress counter for them 4533 */ 4534 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4535 *no_progress_loops = 0; 4536 else 4537 (*no_progress_loops)++; 4538 4539 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4540 goto out; 4541 4542 4543 /* 4544 * Keep reclaiming pages while there is a chance this will lead 4545 * somewhere. If none of the target zones can satisfy our allocation 4546 * request even if all reclaimable pages are considered then we are 4547 * screwed and have to go OOM. 4548 */ 4549 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4550 ac->highest_zoneidx, ac->nodemask) { 4551 unsigned long available; 4552 unsigned long reclaimable; 4553 unsigned long min_wmark = min_wmark_pages(zone); 4554 bool wmark; 4555 4556 if (cpusets_enabled() && 4557 (alloc_flags & ALLOC_CPUSET) && 4558 !__cpuset_zone_allowed(zone, gfp_mask)) 4559 continue; 4560 4561 available = reclaimable = zone_reclaimable_pages(zone); 4562 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4563 4564 /* 4565 * Would the allocation succeed if we reclaimed all 4566 * reclaimable pages? 4567 */ 4568 wmark = __zone_watermark_ok(zone, order, min_wmark, 4569 ac->highest_zoneidx, alloc_flags, available); 4570 trace_reclaim_retry_zone(z, order, reclaimable, 4571 available, min_wmark, *no_progress_loops, wmark); 4572 if (wmark) { 4573 ret = true; 4574 break; 4575 } 4576 } 4577 4578 /* 4579 * Memory allocation/reclaim might be called from a WQ context and the 4580 * current implementation of the WQ concurrency control doesn't 4581 * recognize that a particular WQ is congested if the worker thread is 4582 * looping without ever sleeping. Therefore we have to do a short sleep 4583 * here rather than calling cond_resched(). 4584 */ 4585 if (current->flags & PF_WQ_WORKER) 4586 schedule_timeout_uninterruptible(1); 4587 else 4588 cond_resched(); 4589 out: 4590 /* Before OOM, exhaust highatomic_reserve */ 4591 if (!ret) 4592 return unreserve_highatomic_pageblock(ac, true); 4593 4594 return ret; 4595 } 4596 4597 static inline bool 4598 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4599 { 4600 /* 4601 * It's possible that cpuset's mems_allowed and the nodemask from 4602 * mempolicy don't intersect. This should be normally dealt with by 4603 * policy_nodemask(), but it's possible to race with cpuset update in 4604 * such a way the check therein was true, and then it became false 4605 * before we got our cpuset_mems_cookie here. 4606 * This assumes that for all allocations, ac->nodemask can come only 4607 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4608 * when it does not intersect with the cpuset restrictions) or the 4609 * caller can deal with a violated nodemask. 4610 */ 4611 if (cpusets_enabled() && ac->nodemask && 4612 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4613 ac->nodemask = NULL; 4614 return true; 4615 } 4616 4617 /* 4618 * When updating a task's mems_allowed or mempolicy nodemask, it is 4619 * possible to race with parallel threads in such a way that our 4620 * allocation can fail while the mask is being updated. If we are about 4621 * to fail, check if the cpuset changed during allocation and if so, 4622 * retry. 4623 */ 4624 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4625 return true; 4626 4627 return false; 4628 } 4629 4630 static inline struct page * 4631 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4632 struct alloc_context *ac) 4633 { 4634 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4635 bool can_compact = gfp_compaction_allowed(gfp_mask); 4636 bool nofail = gfp_mask & __GFP_NOFAIL; 4637 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4638 struct page *page = NULL; 4639 unsigned int alloc_flags; 4640 unsigned long did_some_progress; 4641 enum compact_priority compact_priority; 4642 enum compact_result compact_result; 4643 int compaction_retries; 4644 int no_progress_loops; 4645 unsigned int cpuset_mems_cookie; 4646 unsigned int zonelist_iter_cookie; 4647 int reserve_flags; 4648 4649 if (unlikely(nofail)) { 4650 /* 4651 * We most definitely don't want callers attempting to 4652 * allocate greater than order-1 page units with __GFP_NOFAIL. 4653 */ 4654 WARN_ON_ONCE(order > 1); 4655 /* 4656 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4657 * otherwise, we may result in lockup. 4658 */ 4659 WARN_ON_ONCE(!can_direct_reclaim); 4660 /* 4661 * PF_MEMALLOC request from this context is rather bizarre 4662 * because we cannot reclaim anything and only can loop waiting 4663 * for somebody to do a work for us. 4664 */ 4665 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4666 } 4667 4668 restart: 4669 compaction_retries = 0; 4670 no_progress_loops = 0; 4671 compact_result = COMPACT_SKIPPED; 4672 compact_priority = DEF_COMPACT_PRIORITY; 4673 cpuset_mems_cookie = read_mems_allowed_begin(); 4674 zonelist_iter_cookie = zonelist_iter_begin(); 4675 4676 /* 4677 * The fast path uses conservative alloc_flags to succeed only until 4678 * kswapd needs to be woken up, and to avoid the cost of setting up 4679 * alloc_flags precisely. So we do that now. 4680 */ 4681 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4682 4683 /* 4684 * We need to recalculate the starting point for the zonelist iterator 4685 * because we might have used different nodemask in the fast path, or 4686 * there was a cpuset modification and we are retrying - otherwise we 4687 * could end up iterating over non-eligible zones endlessly. 4688 */ 4689 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4690 ac->highest_zoneidx, ac->nodemask); 4691 if (!zonelist_zone(ac->preferred_zoneref)) 4692 goto nopage; 4693 4694 /* 4695 * Check for insane configurations where the cpuset doesn't contain 4696 * any suitable zone to satisfy the request - e.g. non-movable 4697 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4698 */ 4699 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4700 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4701 ac->highest_zoneidx, 4702 &cpuset_current_mems_allowed); 4703 if (!zonelist_zone(z)) 4704 goto nopage; 4705 } 4706 4707 if (alloc_flags & ALLOC_KSWAPD) 4708 wake_all_kswapds(order, gfp_mask, ac); 4709 4710 /* 4711 * The adjusted alloc_flags might result in immediate success, so try 4712 * that first 4713 */ 4714 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4715 if (page) 4716 goto got_pg; 4717 4718 /* 4719 * For costly allocations, try direct compaction first, as it's likely 4720 * that we have enough base pages and don't need to reclaim. For non- 4721 * movable high-order allocations, do that as well, as compaction will 4722 * try prevent permanent fragmentation by migrating from blocks of the 4723 * same migratetype. 4724 * Don't try this for allocations that are allowed to ignore 4725 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4726 */ 4727 if (can_direct_reclaim && can_compact && 4728 (costly_order || 4729 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4730 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4731 page = __alloc_pages_direct_compact(gfp_mask, order, 4732 alloc_flags, ac, 4733 INIT_COMPACT_PRIORITY, 4734 &compact_result); 4735 if (page) 4736 goto got_pg; 4737 4738 /* 4739 * Checks for costly allocations with __GFP_NORETRY, which 4740 * includes some THP page fault allocations 4741 */ 4742 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4743 /* 4744 * If allocating entire pageblock(s) and compaction 4745 * failed because all zones are below low watermarks 4746 * or is prohibited because it recently failed at this 4747 * order, fail immediately unless the allocator has 4748 * requested compaction and reclaim retry. 4749 * 4750 * Reclaim is 4751 * - potentially very expensive because zones are far 4752 * below their low watermarks or this is part of very 4753 * bursty high order allocations, 4754 * - not guaranteed to help because isolate_freepages() 4755 * may not iterate over freed pages as part of its 4756 * linear scan, and 4757 * - unlikely to make entire pageblocks free on its 4758 * own. 4759 */ 4760 if (compact_result == COMPACT_SKIPPED || 4761 compact_result == COMPACT_DEFERRED) 4762 goto nopage; 4763 4764 /* 4765 * Looks like reclaim/compaction is worth trying, but 4766 * sync compaction could be very expensive, so keep 4767 * using async compaction. 4768 */ 4769 compact_priority = INIT_COMPACT_PRIORITY; 4770 } 4771 } 4772 4773 retry: 4774 /* 4775 * Deal with possible cpuset update races or zonelist updates to avoid 4776 * infinite retries. 4777 */ 4778 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4779 check_retry_zonelist(zonelist_iter_cookie)) 4780 goto restart; 4781 4782 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4783 if (alloc_flags & ALLOC_KSWAPD) 4784 wake_all_kswapds(order, gfp_mask, ac); 4785 4786 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4787 if (reserve_flags) 4788 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4789 (alloc_flags & ALLOC_KSWAPD); 4790 4791 /* 4792 * Reset the nodemask and zonelist iterators if memory policies can be 4793 * ignored. These allocations are high priority and system rather than 4794 * user oriented. 4795 */ 4796 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4797 ac->nodemask = NULL; 4798 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4799 ac->highest_zoneidx, ac->nodemask); 4800 } 4801 4802 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4803 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4804 if (page) 4805 goto got_pg; 4806 4807 /* Caller is not willing to reclaim, we can't balance anything */ 4808 if (!can_direct_reclaim) 4809 goto nopage; 4810 4811 /* Avoid recursion of direct reclaim */ 4812 if (current->flags & PF_MEMALLOC) 4813 goto nopage; 4814 4815 /* Try direct reclaim and then allocating */ 4816 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4817 &did_some_progress); 4818 if (page) 4819 goto got_pg; 4820 4821 /* Try direct compaction and then allocating */ 4822 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4823 compact_priority, &compact_result); 4824 if (page) 4825 goto got_pg; 4826 4827 /* Do not loop if specifically requested */ 4828 if (gfp_mask & __GFP_NORETRY) 4829 goto nopage; 4830 4831 /* 4832 * Do not retry costly high order allocations unless they are 4833 * __GFP_RETRY_MAYFAIL and we can compact 4834 */ 4835 if (costly_order && (!can_compact || 4836 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4837 goto nopage; 4838 4839 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4840 did_some_progress > 0, &no_progress_loops)) 4841 goto retry; 4842 4843 /* 4844 * It doesn't make any sense to retry for the compaction if the order-0 4845 * reclaim is not able to make any progress because the current 4846 * implementation of the compaction depends on the sufficient amount 4847 * of free memory (see __compaction_suitable) 4848 */ 4849 if (did_some_progress > 0 && can_compact && 4850 should_compact_retry(ac, order, alloc_flags, 4851 compact_result, &compact_priority, 4852 &compaction_retries)) 4853 goto retry; 4854 4855 /* Reclaim/compaction failed to prevent the fallback */ 4856 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4857 alloc_flags &= ~ALLOC_NOFRAGMENT; 4858 goto retry; 4859 } 4860 4861 /* 4862 * Deal with possible cpuset update races or zonelist updates to avoid 4863 * a unnecessary OOM kill. 4864 */ 4865 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4866 check_retry_zonelist(zonelist_iter_cookie)) 4867 goto restart; 4868 4869 /* Reclaim has failed us, start killing things */ 4870 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4871 if (page) 4872 goto got_pg; 4873 4874 /* Avoid allocations with no watermarks from looping endlessly */ 4875 if (tsk_is_oom_victim(current) && 4876 (alloc_flags & ALLOC_OOM || 4877 (gfp_mask & __GFP_NOMEMALLOC))) 4878 goto nopage; 4879 4880 /* Retry as long as the OOM killer is making progress */ 4881 if (did_some_progress) { 4882 no_progress_loops = 0; 4883 goto retry; 4884 } 4885 4886 nopage: 4887 /* 4888 * Deal with possible cpuset update races or zonelist updates to avoid 4889 * a unnecessary OOM kill. 4890 */ 4891 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4892 check_retry_zonelist(zonelist_iter_cookie)) 4893 goto restart; 4894 4895 /* 4896 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4897 * we always retry 4898 */ 4899 if (unlikely(nofail)) { 4900 /* 4901 * Lacking direct_reclaim we can't do anything to reclaim memory, 4902 * we disregard these unreasonable nofail requests and still 4903 * return NULL 4904 */ 4905 if (!can_direct_reclaim) 4906 goto fail; 4907 4908 /* 4909 * Help non-failing allocations by giving some access to memory 4910 * reserves normally used for high priority non-blocking 4911 * allocations but do not use ALLOC_NO_WATERMARKS because this 4912 * could deplete whole memory reserves which would just make 4913 * the situation worse. 4914 */ 4915 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4916 if (page) 4917 goto got_pg; 4918 4919 cond_resched(); 4920 goto retry; 4921 } 4922 fail: 4923 warn_alloc(gfp_mask, ac->nodemask, 4924 "page allocation failure: order:%u", order); 4925 got_pg: 4926 return page; 4927 } 4928 4929 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4930 int preferred_nid, nodemask_t *nodemask, 4931 struct alloc_context *ac, gfp_t *alloc_gfp, 4932 unsigned int *alloc_flags) 4933 { 4934 ac->highest_zoneidx = gfp_zone(gfp_mask); 4935 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4936 ac->nodemask = nodemask; 4937 ac->migratetype = gfp_migratetype(gfp_mask); 4938 4939 if (cpusets_enabled()) { 4940 *alloc_gfp |= __GFP_HARDWALL; 4941 /* 4942 * When we are in the interrupt context, it is irrelevant 4943 * to the current task context. It means that any node ok. 4944 */ 4945 if (in_task() && !ac->nodemask) 4946 ac->nodemask = &cpuset_current_mems_allowed; 4947 else 4948 *alloc_flags |= ALLOC_CPUSET; 4949 } 4950 4951 might_alloc(gfp_mask); 4952 4953 /* 4954 * Don't invoke should_fail logic, since it may call 4955 * get_random_u32() and printk() which need to spin_lock. 4956 */ 4957 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4958 should_fail_alloc_page(gfp_mask, order)) 4959 return false; 4960 4961 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4962 4963 /* Dirty zone balancing only done in the fast path */ 4964 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4965 4966 /* 4967 * The preferred zone is used for statistics but crucially it is 4968 * also used as the starting point for the zonelist iterator. It 4969 * may get reset for allocations that ignore memory policies. 4970 */ 4971 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4972 ac->highest_zoneidx, ac->nodemask); 4973 4974 return true; 4975 } 4976 4977 /* 4978 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4979 * @gfp: GFP flags for the allocation 4980 * @preferred_nid: The preferred NUMA node ID to allocate from 4981 * @nodemask: Set of nodes to allocate from, may be NULL 4982 * @nr_pages: The number of pages desired in the array 4983 * @page_array: Array to store the pages 4984 * 4985 * This is a batched version of the page allocator that attempts to 4986 * allocate nr_pages quickly. Pages are added to the page_array. 4987 * 4988 * Note that only NULL elements are populated with pages and nr_pages 4989 * is the maximum number of pages that will be stored in the array. 4990 * 4991 * Returns the number of pages in the array. 4992 */ 4993 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4994 nodemask_t *nodemask, int nr_pages, 4995 struct page **page_array) 4996 { 4997 struct page *page; 4998 unsigned long __maybe_unused UP_flags; 4999 struct zone *zone; 5000 struct zoneref *z; 5001 struct per_cpu_pages *pcp; 5002 struct list_head *pcp_list; 5003 struct alloc_context ac; 5004 gfp_t alloc_gfp; 5005 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5006 int nr_populated = 0, nr_account = 0; 5007 5008 /* 5009 * Skip populated array elements to determine if any pages need 5010 * to be allocated before disabling IRQs. 5011 */ 5012 while (nr_populated < nr_pages && page_array[nr_populated]) 5013 nr_populated++; 5014 5015 /* No pages requested? */ 5016 if (unlikely(nr_pages <= 0)) 5017 goto out; 5018 5019 /* Already populated array? */ 5020 if (unlikely(nr_pages - nr_populated == 0)) 5021 goto out; 5022 5023 /* Bulk allocator does not support memcg accounting. */ 5024 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 5025 goto failed; 5026 5027 /* Use the single page allocator for one page. */ 5028 if (nr_pages - nr_populated == 1) 5029 goto failed; 5030 5031 #ifdef CONFIG_PAGE_OWNER 5032 /* 5033 * PAGE_OWNER may recurse into the allocator to allocate space to 5034 * save the stack with pagesets.lock held. Releasing/reacquiring 5035 * removes much of the performance benefit of bulk allocation so 5036 * force the caller to allocate one page at a time as it'll have 5037 * similar performance to added complexity to the bulk allocator. 5038 */ 5039 if (static_branch_unlikely(&page_owner_inited)) 5040 goto failed; 5041 #endif 5042 5043 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5044 gfp &= gfp_allowed_mask; 5045 alloc_gfp = gfp; 5046 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5047 goto out; 5048 gfp = alloc_gfp; 5049 5050 /* Find an allowed local zone that meets the low watermark. */ 5051 z = ac.preferred_zoneref; 5052 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 5053 unsigned long mark; 5054 5055 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5056 !__cpuset_zone_allowed(zone, gfp)) { 5057 continue; 5058 } 5059 5060 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 5061 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 5062 goto failed; 5063 } 5064 5065 cond_accept_memory(zone, 0, alloc_flags); 5066 retry_this_zone: 5067 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5068 if (zone_watermark_fast(zone, 0, mark, 5069 zonelist_zone_idx(ac.preferred_zoneref), 5070 alloc_flags, gfp)) { 5071 break; 5072 } 5073 5074 if (cond_accept_memory(zone, 0, alloc_flags)) 5075 goto retry_this_zone; 5076 5077 /* Try again if zone has deferred pages */ 5078 if (deferred_pages_enabled()) { 5079 if (_deferred_grow_zone(zone, 0)) 5080 goto retry_this_zone; 5081 } 5082 } 5083 5084 /* 5085 * If there are no allowed local zones that meets the watermarks then 5086 * try to allocate a single page and reclaim if necessary. 5087 */ 5088 if (unlikely(!zone)) 5089 goto failed; 5090 5091 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5092 pcp_trylock_prepare(UP_flags); 5093 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 5094 if (!pcp) 5095 goto failed_irq; 5096 5097 /* Attempt the batch allocation */ 5098 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5099 while (nr_populated < nr_pages) { 5100 5101 /* Skip existing pages */ 5102 if (page_array[nr_populated]) { 5103 nr_populated++; 5104 continue; 5105 } 5106 5107 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5108 pcp, pcp_list); 5109 if (unlikely(!page)) { 5110 /* Try and allocate at least one page */ 5111 if (!nr_account) { 5112 pcp_spin_unlock(pcp); 5113 goto failed_irq; 5114 } 5115 break; 5116 } 5117 nr_account++; 5118 5119 prep_new_page(page, 0, gfp, 0); 5120 set_page_refcounted(page); 5121 page_array[nr_populated++] = page; 5122 } 5123 5124 pcp_spin_unlock(pcp); 5125 pcp_trylock_finish(UP_flags); 5126 5127 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5128 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 5129 5130 out: 5131 return nr_populated; 5132 5133 failed_irq: 5134 pcp_trylock_finish(UP_flags); 5135 5136 failed: 5137 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 5138 if (page) 5139 page_array[nr_populated++] = page; 5140 goto out; 5141 } 5142 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 5143 5144 /* 5145 * This is the 'heart' of the zoned buddy allocator. 5146 */ 5147 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 5148 int preferred_nid, nodemask_t *nodemask) 5149 { 5150 struct page *page; 5151 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5152 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5153 struct alloc_context ac = { }; 5154 5155 /* 5156 * There are several places where we assume that the order value is sane 5157 * so bail out early if the request is out of bound. 5158 */ 5159 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 5160 return NULL; 5161 5162 gfp &= gfp_allowed_mask; 5163 /* 5164 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5165 * resp. GFP_NOIO which has to be inherited for all allocation requests 5166 * from a particular context which has been marked by 5167 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5168 * movable zones are not used during allocation. 5169 */ 5170 gfp = current_gfp_context(gfp); 5171 alloc_gfp = gfp; 5172 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5173 &alloc_gfp, &alloc_flags)) 5174 return NULL; 5175 5176 /* 5177 * Forbid the first pass from falling back to types that fragment 5178 * memory until all local zones are considered. 5179 */ 5180 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 5181 5182 /* First allocation attempt */ 5183 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5184 if (likely(page)) 5185 goto out; 5186 5187 alloc_gfp = gfp; 5188 ac.spread_dirty_pages = false; 5189 5190 /* 5191 * Restore the original nodemask if it was potentially replaced with 5192 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5193 */ 5194 ac.nodemask = nodemask; 5195 5196 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5197 5198 out: 5199 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 5200 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5201 free_frozen_pages(page, order); 5202 page = NULL; 5203 } 5204 5205 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5206 kmsan_alloc_page(page, order, alloc_gfp); 5207 5208 return page; 5209 } 5210 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 5211 5212 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5213 int preferred_nid, nodemask_t *nodemask) 5214 { 5215 struct page *page; 5216 5217 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5218 if (page) 5219 set_page_refcounted(page); 5220 return page; 5221 } 5222 EXPORT_SYMBOL(__alloc_pages_noprof); 5223 5224 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5225 nodemask_t *nodemask) 5226 { 5227 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5228 preferred_nid, nodemask); 5229 return page_rmappable_folio(page); 5230 } 5231 EXPORT_SYMBOL(__folio_alloc_noprof); 5232 5233 /* 5234 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5235 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5236 * you need to access high mem. 5237 */ 5238 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5239 { 5240 struct page *page; 5241 5242 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5243 if (!page) 5244 return 0; 5245 return (unsigned long) page_address(page); 5246 } 5247 EXPORT_SYMBOL(get_free_pages_noprof); 5248 5249 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5250 { 5251 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5252 } 5253 EXPORT_SYMBOL(get_zeroed_page_noprof); 5254 5255 static void ___free_pages(struct page *page, unsigned int order, 5256 fpi_t fpi_flags) 5257 { 5258 /* get PageHead before we drop reference */ 5259 int head = PageHead(page); 5260 /* get alloc tag in case the page is released by others */ 5261 struct alloc_tag *tag = pgalloc_tag_get(page); 5262 5263 if (put_page_testzero(page)) 5264 __free_frozen_pages(page, order, fpi_flags); 5265 else if (!head) { 5266 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 5267 while (order-- > 0) { 5268 /* 5269 * The "tail" pages of this non-compound high-order 5270 * page will have no code tags, so to avoid warnings 5271 * mark them as empty. 5272 */ 5273 clear_page_tag_ref(page + (1 << order)); 5274 __free_frozen_pages(page + (1 << order), order, 5275 fpi_flags); 5276 } 5277 } 5278 } 5279 5280 /** 5281 * __free_pages - Free pages allocated with alloc_pages(). 5282 * @page: The page pointer returned from alloc_pages(). 5283 * @order: The order of the allocation. 5284 * 5285 * This function can free multi-page allocations that are not compound 5286 * pages. It does not check that the @order passed in matches that of 5287 * the allocation, so it is easy to leak memory. Freeing more memory 5288 * than was allocated will probably emit a warning. 5289 * 5290 * If the last reference to this page is speculative, it will be released 5291 * by put_page() which only frees the first page of a non-compound 5292 * allocation. To prevent the remaining pages from being leaked, we free 5293 * the subsequent pages here. If you want to use the page's reference 5294 * count to decide when to free the allocation, you should allocate a 5295 * compound page, and use put_page() instead of __free_pages(). 5296 * 5297 * Context: May be called in interrupt context or while holding a normal 5298 * spinlock, but not in NMI context or while holding a raw spinlock. 5299 */ 5300 void __free_pages(struct page *page, unsigned int order) 5301 { 5302 ___free_pages(page, order, FPI_NONE); 5303 } 5304 EXPORT_SYMBOL(__free_pages); 5305 5306 /* 5307 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5308 * page type (not only those that came from alloc_pages_nolock) 5309 */ 5310 void free_pages_nolock(struct page *page, unsigned int order) 5311 { 5312 ___free_pages(page, order, FPI_TRYLOCK); 5313 } 5314 5315 /** 5316 * free_pages - Free pages allocated with __get_free_pages(). 5317 * @addr: The virtual address tied to a page returned from __get_free_pages(). 5318 * @order: The order of the allocation. 5319 * 5320 * This function behaves the same as __free_pages(). Use this function 5321 * to free pages when you only have a valid virtual address. If you have 5322 * the page, call __free_pages() instead. 5323 */ 5324 void free_pages(unsigned long addr, unsigned int order) 5325 { 5326 if (addr != 0) { 5327 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5328 __free_pages(virt_to_page((void *)addr), order); 5329 } 5330 } 5331 5332 EXPORT_SYMBOL(free_pages); 5333 5334 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5335 size_t size) 5336 { 5337 if (addr) { 5338 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5339 struct page *page = virt_to_page((void *)addr); 5340 struct page *last = page + nr; 5341 5342 split_page_owner(page, order, 0); 5343 pgalloc_tag_split(page_folio(page), order, 0); 5344 split_page_memcg(page, order); 5345 while (page < --last) 5346 set_page_refcounted(last); 5347 5348 last = page + (1UL << order); 5349 for (page += nr; page < last; page++) 5350 __free_pages_ok(page, 0, FPI_TO_TAIL); 5351 } 5352 return (void *)addr; 5353 } 5354 5355 /** 5356 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5357 * @size: the number of bytes to allocate 5358 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5359 * 5360 * This function is similar to alloc_pages(), except that it allocates the 5361 * minimum number of pages to satisfy the request. alloc_pages() can only 5362 * allocate memory in power-of-two pages. 5363 * 5364 * This function is also limited by MAX_PAGE_ORDER. 5365 * 5366 * Memory allocated by this function must be released by free_pages_exact(). 5367 * 5368 * Return: pointer to the allocated area or %NULL in case of error. 5369 */ 5370 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5371 { 5372 unsigned int order = get_order(size); 5373 unsigned long addr; 5374 5375 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5376 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5377 5378 addr = get_free_pages_noprof(gfp_mask, order); 5379 return make_alloc_exact(addr, order, size); 5380 } 5381 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5382 5383 /** 5384 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5385 * pages on a node. 5386 * @nid: the preferred node ID where memory should be allocated 5387 * @size: the number of bytes to allocate 5388 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5389 * 5390 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5391 * back. 5392 * 5393 * Return: pointer to the allocated area or %NULL in case of error. 5394 */ 5395 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5396 { 5397 unsigned int order = get_order(size); 5398 struct page *p; 5399 5400 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5401 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5402 5403 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5404 if (!p) 5405 return NULL; 5406 return make_alloc_exact((unsigned long)page_address(p), order, size); 5407 } 5408 5409 /** 5410 * free_pages_exact - release memory allocated via alloc_pages_exact() 5411 * @virt: the value returned by alloc_pages_exact. 5412 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5413 * 5414 * Release the memory allocated by a previous call to alloc_pages_exact. 5415 */ 5416 void free_pages_exact(void *virt, size_t size) 5417 { 5418 unsigned long addr = (unsigned long)virt; 5419 unsigned long end = addr + PAGE_ALIGN(size); 5420 5421 while (addr < end) { 5422 free_page(addr); 5423 addr += PAGE_SIZE; 5424 } 5425 } 5426 EXPORT_SYMBOL(free_pages_exact); 5427 5428 /** 5429 * nr_free_zone_pages - count number of pages beyond high watermark 5430 * @offset: The zone index of the highest zone 5431 * 5432 * nr_free_zone_pages() counts the number of pages which are beyond the 5433 * high watermark within all zones at or below a given zone index. For each 5434 * zone, the number of pages is calculated as: 5435 * 5436 * nr_free_zone_pages = managed_pages - high_pages 5437 * 5438 * Return: number of pages beyond high watermark. 5439 */ 5440 static unsigned long nr_free_zone_pages(int offset) 5441 { 5442 struct zoneref *z; 5443 struct zone *zone; 5444 5445 /* Just pick one node, since fallback list is circular */ 5446 unsigned long sum = 0; 5447 5448 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5449 5450 for_each_zone_zonelist(zone, z, zonelist, offset) { 5451 unsigned long size = zone_managed_pages(zone); 5452 unsigned long high = high_wmark_pages(zone); 5453 if (size > high) 5454 sum += size - high; 5455 } 5456 5457 return sum; 5458 } 5459 5460 /** 5461 * nr_free_buffer_pages - count number of pages beyond high watermark 5462 * 5463 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5464 * watermark within ZONE_DMA and ZONE_NORMAL. 5465 * 5466 * Return: number of pages beyond high watermark within ZONE_DMA and 5467 * ZONE_NORMAL. 5468 */ 5469 unsigned long nr_free_buffer_pages(void) 5470 { 5471 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5472 } 5473 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5474 5475 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5476 { 5477 zoneref->zone = zone; 5478 zoneref->zone_idx = zone_idx(zone); 5479 } 5480 5481 /* 5482 * Builds allocation fallback zone lists. 5483 * 5484 * Add all populated zones of a node to the zonelist. 5485 */ 5486 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5487 { 5488 struct zone *zone; 5489 enum zone_type zone_type = MAX_NR_ZONES; 5490 int nr_zones = 0; 5491 5492 do { 5493 zone_type--; 5494 zone = pgdat->node_zones + zone_type; 5495 if (populated_zone(zone)) { 5496 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5497 check_highest_zone(zone_type); 5498 } 5499 } while (zone_type); 5500 5501 return nr_zones; 5502 } 5503 5504 #ifdef CONFIG_NUMA 5505 5506 static int __parse_numa_zonelist_order(char *s) 5507 { 5508 /* 5509 * We used to support different zonelists modes but they turned 5510 * out to be just not useful. Let's keep the warning in place 5511 * if somebody still use the cmd line parameter so that we do 5512 * not fail it silently 5513 */ 5514 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5515 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5516 return -EINVAL; 5517 } 5518 return 0; 5519 } 5520 5521 static char numa_zonelist_order[] = "Node"; 5522 #define NUMA_ZONELIST_ORDER_LEN 16 5523 /* 5524 * sysctl handler for numa_zonelist_order 5525 */ 5526 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5527 void *buffer, size_t *length, loff_t *ppos) 5528 { 5529 if (write) 5530 return __parse_numa_zonelist_order(buffer); 5531 return proc_dostring(table, write, buffer, length, ppos); 5532 } 5533 5534 static int node_load[MAX_NUMNODES]; 5535 5536 /** 5537 * find_next_best_node - find the next node that should appear in a given node's fallback list 5538 * @node: node whose fallback list we're appending 5539 * @used_node_mask: nodemask_t of already used nodes 5540 * 5541 * We use a number of factors to determine which is the next node that should 5542 * appear on a given node's fallback list. The node should not have appeared 5543 * already in @node's fallback list, and it should be the next closest node 5544 * according to the distance array (which contains arbitrary distance values 5545 * from each node to each node in the system), and should also prefer nodes 5546 * with no CPUs, since presumably they'll have very little allocation pressure 5547 * on them otherwise. 5548 * 5549 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5550 */ 5551 int find_next_best_node(int node, nodemask_t *used_node_mask) 5552 { 5553 int n, val; 5554 int min_val = INT_MAX; 5555 int best_node = NUMA_NO_NODE; 5556 5557 /* 5558 * Use the local node if we haven't already, but for memoryless local 5559 * node, we should skip it and fall back to other nodes. 5560 */ 5561 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5562 node_set(node, *used_node_mask); 5563 return node; 5564 } 5565 5566 for_each_node_state(n, N_MEMORY) { 5567 5568 /* Don't want a node to appear more than once */ 5569 if (node_isset(n, *used_node_mask)) 5570 continue; 5571 5572 /* Use the distance array to find the distance */ 5573 val = node_distance(node, n); 5574 5575 /* Penalize nodes under us ("prefer the next node") */ 5576 val += (n < node); 5577 5578 /* Give preference to headless and unused nodes */ 5579 if (!cpumask_empty(cpumask_of_node(n))) 5580 val += PENALTY_FOR_NODE_WITH_CPUS; 5581 5582 /* Slight preference for less loaded node */ 5583 val *= MAX_NUMNODES; 5584 val += node_load[n]; 5585 5586 if (val < min_val) { 5587 min_val = val; 5588 best_node = n; 5589 } 5590 } 5591 5592 if (best_node >= 0) 5593 node_set(best_node, *used_node_mask); 5594 5595 return best_node; 5596 } 5597 5598 5599 /* 5600 * Build zonelists ordered by node and zones within node. 5601 * This results in maximum locality--normal zone overflows into local 5602 * DMA zone, if any--but risks exhausting DMA zone. 5603 */ 5604 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5605 unsigned nr_nodes) 5606 { 5607 struct zoneref *zonerefs; 5608 int i; 5609 5610 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5611 5612 for (i = 0; i < nr_nodes; i++) { 5613 int nr_zones; 5614 5615 pg_data_t *node = NODE_DATA(node_order[i]); 5616 5617 nr_zones = build_zonerefs_node(node, zonerefs); 5618 zonerefs += nr_zones; 5619 } 5620 zonerefs->zone = NULL; 5621 zonerefs->zone_idx = 0; 5622 } 5623 5624 /* 5625 * Build __GFP_THISNODE zonelists 5626 */ 5627 static void build_thisnode_zonelists(pg_data_t *pgdat) 5628 { 5629 struct zoneref *zonerefs; 5630 int nr_zones; 5631 5632 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5633 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5634 zonerefs += nr_zones; 5635 zonerefs->zone = NULL; 5636 zonerefs->zone_idx = 0; 5637 } 5638 5639 static void build_zonelists(pg_data_t *pgdat) 5640 { 5641 static int node_order[MAX_NUMNODES]; 5642 int node, nr_nodes = 0; 5643 nodemask_t used_mask = NODE_MASK_NONE; 5644 int local_node, prev_node; 5645 5646 /* NUMA-aware ordering of nodes */ 5647 local_node = pgdat->node_id; 5648 prev_node = local_node; 5649 5650 memset(node_order, 0, sizeof(node_order)); 5651 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5652 /* 5653 * We don't want to pressure a particular node. 5654 * So adding penalty to the first node in same 5655 * distance group to make it round-robin. 5656 */ 5657 if (node_distance(local_node, node) != 5658 node_distance(local_node, prev_node)) 5659 node_load[node] += 1; 5660 5661 node_order[nr_nodes++] = node; 5662 prev_node = node; 5663 } 5664 5665 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5666 build_thisnode_zonelists(pgdat); 5667 pr_info("Fallback order for Node %d: ", local_node); 5668 for (node = 0; node < nr_nodes; node++) 5669 pr_cont("%d ", node_order[node]); 5670 pr_cont("\n"); 5671 } 5672 5673 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5674 /* 5675 * Return node id of node used for "local" allocations. 5676 * I.e., first node id of first zone in arg node's generic zonelist. 5677 * Used for initializing percpu 'numa_mem', which is used primarily 5678 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5679 */ 5680 int local_memory_node(int node) 5681 { 5682 struct zoneref *z; 5683 5684 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5685 gfp_zone(GFP_KERNEL), 5686 NULL); 5687 return zonelist_node_idx(z); 5688 } 5689 #endif 5690 5691 static void setup_min_unmapped_ratio(void); 5692 static void setup_min_slab_ratio(void); 5693 #else /* CONFIG_NUMA */ 5694 5695 static void build_zonelists(pg_data_t *pgdat) 5696 { 5697 struct zoneref *zonerefs; 5698 int nr_zones; 5699 5700 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5701 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5702 zonerefs += nr_zones; 5703 5704 zonerefs->zone = NULL; 5705 zonerefs->zone_idx = 0; 5706 } 5707 5708 #endif /* CONFIG_NUMA */ 5709 5710 /* 5711 * Boot pageset table. One per cpu which is going to be used for all 5712 * zones and all nodes. The parameters will be set in such a way 5713 * that an item put on a list will immediately be handed over to 5714 * the buddy list. This is safe since pageset manipulation is done 5715 * with interrupts disabled. 5716 * 5717 * The boot_pagesets must be kept even after bootup is complete for 5718 * unused processors and/or zones. They do play a role for bootstrapping 5719 * hotplugged processors. 5720 * 5721 * zoneinfo_show() and maybe other functions do 5722 * not check if the processor is online before following the pageset pointer. 5723 * Other parts of the kernel may not check if the zone is available. 5724 */ 5725 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5726 /* These effectively disable the pcplists in the boot pageset completely */ 5727 #define BOOT_PAGESET_HIGH 0 5728 #define BOOT_PAGESET_BATCH 1 5729 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5730 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5731 5732 static void __build_all_zonelists(void *data) 5733 { 5734 int nid; 5735 int __maybe_unused cpu; 5736 pg_data_t *self = data; 5737 unsigned long flags; 5738 5739 /* 5740 * The zonelist_update_seq must be acquired with irqsave because the 5741 * reader can be invoked from IRQ with GFP_ATOMIC. 5742 */ 5743 write_seqlock_irqsave(&zonelist_update_seq, flags); 5744 /* 5745 * Also disable synchronous printk() to prevent any printk() from 5746 * trying to hold port->lock, for 5747 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5748 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5749 */ 5750 printk_deferred_enter(); 5751 5752 #ifdef CONFIG_NUMA 5753 memset(node_load, 0, sizeof(node_load)); 5754 #endif 5755 5756 /* 5757 * This node is hotadded and no memory is yet present. So just 5758 * building zonelists is fine - no need to touch other nodes. 5759 */ 5760 if (self && !node_online(self->node_id)) { 5761 build_zonelists(self); 5762 } else { 5763 /* 5764 * All possible nodes have pgdat preallocated 5765 * in free_area_init 5766 */ 5767 for_each_node(nid) { 5768 pg_data_t *pgdat = NODE_DATA(nid); 5769 5770 build_zonelists(pgdat); 5771 } 5772 5773 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5774 /* 5775 * We now know the "local memory node" for each node-- 5776 * i.e., the node of the first zone in the generic zonelist. 5777 * Set up numa_mem percpu variable for on-line cpus. During 5778 * boot, only the boot cpu should be on-line; we'll init the 5779 * secondary cpus' numa_mem as they come on-line. During 5780 * node/memory hotplug, we'll fixup all on-line cpus. 5781 */ 5782 for_each_online_cpu(cpu) 5783 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5784 #endif 5785 } 5786 5787 printk_deferred_exit(); 5788 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5789 } 5790 5791 static noinline void __init 5792 build_all_zonelists_init(void) 5793 { 5794 int cpu; 5795 5796 __build_all_zonelists(NULL); 5797 5798 /* 5799 * Initialize the boot_pagesets that are going to be used 5800 * for bootstrapping processors. The real pagesets for 5801 * each zone will be allocated later when the per cpu 5802 * allocator is available. 5803 * 5804 * boot_pagesets are used also for bootstrapping offline 5805 * cpus if the system is already booted because the pagesets 5806 * are needed to initialize allocators on a specific cpu too. 5807 * F.e. the percpu allocator needs the page allocator which 5808 * needs the percpu allocator in order to allocate its pagesets 5809 * (a chicken-egg dilemma). 5810 */ 5811 for_each_possible_cpu(cpu) 5812 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5813 5814 mminit_verify_zonelist(); 5815 cpuset_init_current_mems_allowed(); 5816 } 5817 5818 /* 5819 * unless system_state == SYSTEM_BOOTING. 5820 * 5821 * __ref due to call of __init annotated helper build_all_zonelists_init 5822 * [protected by SYSTEM_BOOTING]. 5823 */ 5824 void __ref build_all_zonelists(pg_data_t *pgdat) 5825 { 5826 unsigned long vm_total_pages; 5827 5828 if (system_state == SYSTEM_BOOTING) { 5829 build_all_zonelists_init(); 5830 } else { 5831 __build_all_zonelists(pgdat); 5832 /* cpuset refresh routine should be here */ 5833 } 5834 /* Get the number of free pages beyond high watermark in all zones. */ 5835 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5836 /* 5837 * Disable grouping by mobility if the number of pages in the 5838 * system is too low to allow the mechanism to work. It would be 5839 * more accurate, but expensive to check per-zone. This check is 5840 * made on memory-hotadd so a system can start with mobility 5841 * disabled and enable it later 5842 */ 5843 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5844 page_group_by_mobility_disabled = 1; 5845 else 5846 page_group_by_mobility_disabled = 0; 5847 5848 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5849 nr_online_nodes, 5850 str_off_on(page_group_by_mobility_disabled), 5851 vm_total_pages); 5852 #ifdef CONFIG_NUMA 5853 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5854 #endif 5855 } 5856 5857 static int zone_batchsize(struct zone *zone) 5858 { 5859 #ifdef CONFIG_MMU 5860 int batch; 5861 5862 /* 5863 * The number of pages to batch allocate is either ~0.1% 5864 * of the zone or 1MB, whichever is smaller. The batch 5865 * size is striking a balance between allocation latency 5866 * and zone lock contention. 5867 */ 5868 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5869 batch /= 4; /* We effectively *= 4 below */ 5870 if (batch < 1) 5871 batch = 1; 5872 5873 /* 5874 * Clamp the batch to a 2^n - 1 value. Having a power 5875 * of 2 value was found to be more likely to have 5876 * suboptimal cache aliasing properties in some cases. 5877 * 5878 * For example if 2 tasks are alternately allocating 5879 * batches of pages, one task can end up with a lot 5880 * of pages of one half of the possible page colors 5881 * and the other with pages of the other colors. 5882 */ 5883 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5884 5885 return batch; 5886 5887 #else 5888 /* The deferral and batching of frees should be suppressed under NOMMU 5889 * conditions. 5890 * 5891 * The problem is that NOMMU needs to be able to allocate large chunks 5892 * of contiguous memory as there's no hardware page translation to 5893 * assemble apparent contiguous memory from discontiguous pages. 5894 * 5895 * Queueing large contiguous runs of pages for batching, however, 5896 * causes the pages to actually be freed in smaller chunks. As there 5897 * can be a significant delay between the individual batches being 5898 * recycled, this leads to the once large chunks of space being 5899 * fragmented and becoming unavailable for high-order allocations. 5900 */ 5901 return 0; 5902 #endif 5903 } 5904 5905 static int percpu_pagelist_high_fraction; 5906 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5907 int high_fraction) 5908 { 5909 #ifdef CONFIG_MMU 5910 int high; 5911 int nr_split_cpus; 5912 unsigned long total_pages; 5913 5914 if (!high_fraction) { 5915 /* 5916 * By default, the high value of the pcp is based on the zone 5917 * low watermark so that if they are full then background 5918 * reclaim will not be started prematurely. 5919 */ 5920 total_pages = low_wmark_pages(zone); 5921 } else { 5922 /* 5923 * If percpu_pagelist_high_fraction is configured, the high 5924 * value is based on a fraction of the managed pages in the 5925 * zone. 5926 */ 5927 total_pages = zone_managed_pages(zone) / high_fraction; 5928 } 5929 5930 /* 5931 * Split the high value across all online CPUs local to the zone. Note 5932 * that early in boot that CPUs may not be online yet and that during 5933 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5934 * onlined. For memory nodes that have no CPUs, split the high value 5935 * across all online CPUs to mitigate the risk that reclaim is triggered 5936 * prematurely due to pages stored on pcp lists. 5937 */ 5938 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5939 if (!nr_split_cpus) 5940 nr_split_cpus = num_online_cpus(); 5941 high = total_pages / nr_split_cpus; 5942 5943 /* 5944 * Ensure high is at least batch*4. The multiple is based on the 5945 * historical relationship between high and batch. 5946 */ 5947 high = max(high, batch << 2); 5948 5949 return high; 5950 #else 5951 return 0; 5952 #endif 5953 } 5954 5955 /* 5956 * pcp->high and pcp->batch values are related and generally batch is lower 5957 * than high. They are also related to pcp->count such that count is lower 5958 * than high, and as soon as it reaches high, the pcplist is flushed. 5959 * 5960 * However, guaranteeing these relations at all times would require e.g. write 5961 * barriers here but also careful usage of read barriers at the read side, and 5962 * thus be prone to error and bad for performance. Thus the update only prevents 5963 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5964 * should ensure they can cope with those fields changing asynchronously, and 5965 * fully trust only the pcp->count field on the local CPU with interrupts 5966 * disabled. 5967 * 5968 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5969 * outside of boot time (or some other assurance that no concurrent updaters 5970 * exist). 5971 */ 5972 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5973 unsigned long high_max, unsigned long batch) 5974 { 5975 WRITE_ONCE(pcp->batch, batch); 5976 WRITE_ONCE(pcp->high_min, high_min); 5977 WRITE_ONCE(pcp->high_max, high_max); 5978 } 5979 5980 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5981 { 5982 int pindex; 5983 5984 memset(pcp, 0, sizeof(*pcp)); 5985 memset(pzstats, 0, sizeof(*pzstats)); 5986 5987 spin_lock_init(&pcp->lock); 5988 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5989 INIT_LIST_HEAD(&pcp->lists[pindex]); 5990 5991 /* 5992 * Set batch and high values safe for a boot pageset. A true percpu 5993 * pageset's initialization will update them subsequently. Here we don't 5994 * need to be as careful as pageset_update() as nobody can access the 5995 * pageset yet. 5996 */ 5997 pcp->high_min = BOOT_PAGESET_HIGH; 5998 pcp->high_max = BOOT_PAGESET_HIGH; 5999 pcp->batch = BOOT_PAGESET_BATCH; 6000 } 6001 6002 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 6003 unsigned long high_max, unsigned long batch) 6004 { 6005 struct per_cpu_pages *pcp; 6006 int cpu; 6007 6008 for_each_possible_cpu(cpu) { 6009 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6010 pageset_update(pcp, high_min, high_max, batch); 6011 } 6012 } 6013 6014 /* 6015 * Calculate and set new high and batch values for all per-cpu pagesets of a 6016 * zone based on the zone's size. 6017 */ 6018 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6019 { 6020 int new_high_min, new_high_max, new_batch; 6021 6022 new_batch = max(1, zone_batchsize(zone)); 6023 if (percpu_pagelist_high_fraction) { 6024 new_high_min = zone_highsize(zone, new_batch, cpu_online, 6025 percpu_pagelist_high_fraction); 6026 /* 6027 * PCP high is tuned manually, disable auto-tuning via 6028 * setting high_min and high_max to the manual value. 6029 */ 6030 new_high_max = new_high_min; 6031 } else { 6032 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 6033 new_high_max = zone_highsize(zone, new_batch, cpu_online, 6034 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 6035 } 6036 6037 if (zone->pageset_high_min == new_high_min && 6038 zone->pageset_high_max == new_high_max && 6039 zone->pageset_batch == new_batch) 6040 return; 6041 6042 zone->pageset_high_min = new_high_min; 6043 zone->pageset_high_max = new_high_max; 6044 zone->pageset_batch = new_batch; 6045 6046 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 6047 new_batch); 6048 } 6049 6050 void __meminit setup_zone_pageset(struct zone *zone) 6051 { 6052 int cpu; 6053 6054 /* Size may be 0 on !SMP && !NUMA */ 6055 if (sizeof(struct per_cpu_zonestat) > 0) 6056 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6057 6058 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6059 for_each_possible_cpu(cpu) { 6060 struct per_cpu_pages *pcp; 6061 struct per_cpu_zonestat *pzstats; 6062 6063 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6064 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6065 per_cpu_pages_init(pcp, pzstats); 6066 } 6067 6068 zone_set_pageset_high_and_batch(zone, 0); 6069 } 6070 6071 /* 6072 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6073 * page high values need to be recalculated. 6074 */ 6075 static void zone_pcp_update(struct zone *zone, int cpu_online) 6076 { 6077 mutex_lock(&pcp_batch_high_lock); 6078 zone_set_pageset_high_and_batch(zone, cpu_online); 6079 mutex_unlock(&pcp_batch_high_lock); 6080 } 6081 6082 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 6083 { 6084 struct per_cpu_pages *pcp; 6085 struct cpu_cacheinfo *cci; 6086 6087 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6088 cci = get_cpu_cacheinfo(cpu); 6089 /* 6090 * If data cache slice of CPU is large enough, "pcp->batch" 6091 * pages can be preserved in PCP before draining PCP for 6092 * consecutive high-order pages freeing without allocation. 6093 * This can reduce zone lock contention without hurting 6094 * cache-hot pages sharing. 6095 */ 6096 spin_lock(&pcp->lock); 6097 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 6098 pcp->flags |= PCPF_FREE_HIGH_BATCH; 6099 else 6100 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 6101 spin_unlock(&pcp->lock); 6102 } 6103 6104 void setup_pcp_cacheinfo(unsigned int cpu) 6105 { 6106 struct zone *zone; 6107 6108 for_each_populated_zone(zone) 6109 zone_pcp_update_cacheinfo(zone, cpu); 6110 } 6111 6112 /* 6113 * Allocate per cpu pagesets and initialize them. 6114 * Before this call only boot pagesets were available. 6115 */ 6116 void __init setup_per_cpu_pageset(void) 6117 { 6118 struct pglist_data *pgdat; 6119 struct zone *zone; 6120 int __maybe_unused cpu; 6121 6122 for_each_populated_zone(zone) 6123 setup_zone_pageset(zone); 6124 6125 #ifdef CONFIG_NUMA 6126 /* 6127 * Unpopulated zones continue using the boot pagesets. 6128 * The numa stats for these pagesets need to be reset. 6129 * Otherwise, they will end up skewing the stats of 6130 * the nodes these zones are associated with. 6131 */ 6132 for_each_possible_cpu(cpu) { 6133 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6134 memset(pzstats->vm_numa_event, 0, 6135 sizeof(pzstats->vm_numa_event)); 6136 } 6137 #endif 6138 6139 for_each_online_pgdat(pgdat) 6140 pgdat->per_cpu_nodestats = 6141 alloc_percpu(struct per_cpu_nodestat); 6142 } 6143 6144 __meminit void zone_pcp_init(struct zone *zone) 6145 { 6146 /* 6147 * per cpu subsystem is not up at this point. The following code 6148 * relies on the ability of the linker to provide the 6149 * offset of a (static) per cpu variable into the per cpu area. 6150 */ 6151 zone->per_cpu_pageset = &boot_pageset; 6152 zone->per_cpu_zonestats = &boot_zonestats; 6153 zone->pageset_high_min = BOOT_PAGESET_HIGH; 6154 zone->pageset_high_max = BOOT_PAGESET_HIGH; 6155 zone->pageset_batch = BOOT_PAGESET_BATCH; 6156 6157 if (populated_zone(zone)) 6158 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6159 zone->present_pages, zone_batchsize(zone)); 6160 } 6161 6162 static void setup_per_zone_lowmem_reserve(void); 6163 6164 void adjust_managed_page_count(struct page *page, long count) 6165 { 6166 atomic_long_add(count, &page_zone(page)->managed_pages); 6167 totalram_pages_add(count); 6168 setup_per_zone_lowmem_reserve(); 6169 } 6170 EXPORT_SYMBOL(adjust_managed_page_count); 6171 6172 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 6173 { 6174 void *pos; 6175 unsigned long pages = 0; 6176 6177 start = (void *)PAGE_ALIGN((unsigned long)start); 6178 end = (void *)((unsigned long)end & PAGE_MASK); 6179 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6180 struct page *page = virt_to_page(pos); 6181 void *direct_map_addr; 6182 6183 /* 6184 * 'direct_map_addr' might be different from 'pos' 6185 * because some architectures' virt_to_page() 6186 * work with aliases. Getting the direct map 6187 * address ensures that we get a _writeable_ 6188 * alias for the memset(). 6189 */ 6190 direct_map_addr = page_address(page); 6191 /* 6192 * Perform a kasan-unchecked memset() since this memory 6193 * has not been initialized. 6194 */ 6195 direct_map_addr = kasan_reset_tag(direct_map_addr); 6196 if ((unsigned int)poison <= 0xFF) 6197 memset(direct_map_addr, poison, PAGE_SIZE); 6198 6199 free_reserved_page(page); 6200 } 6201 6202 if (pages && s) 6203 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 6204 6205 return pages; 6206 } 6207 6208 void free_reserved_page(struct page *page) 6209 { 6210 clear_page_tag_ref(page); 6211 ClearPageReserved(page); 6212 init_page_count(page); 6213 __free_page(page); 6214 adjust_managed_page_count(page, 1); 6215 } 6216 EXPORT_SYMBOL(free_reserved_page); 6217 6218 static int page_alloc_cpu_dead(unsigned int cpu) 6219 { 6220 struct zone *zone; 6221 6222 lru_add_drain_cpu(cpu); 6223 mlock_drain_remote(cpu); 6224 drain_pages(cpu); 6225 6226 /* 6227 * Spill the event counters of the dead processor 6228 * into the current processors event counters. 6229 * This artificially elevates the count of the current 6230 * processor. 6231 */ 6232 vm_events_fold_cpu(cpu); 6233 6234 /* 6235 * Zero the differential counters of the dead processor 6236 * so that the vm statistics are consistent. 6237 * 6238 * This is only okay since the processor is dead and cannot 6239 * race with what we are doing. 6240 */ 6241 cpu_vm_stats_fold(cpu); 6242 6243 for_each_populated_zone(zone) 6244 zone_pcp_update(zone, 0); 6245 6246 return 0; 6247 } 6248 6249 static int page_alloc_cpu_online(unsigned int cpu) 6250 { 6251 struct zone *zone; 6252 6253 for_each_populated_zone(zone) 6254 zone_pcp_update(zone, 1); 6255 return 0; 6256 } 6257 6258 void __init page_alloc_init_cpuhp(void) 6259 { 6260 int ret; 6261 6262 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6263 "mm/page_alloc:pcp", 6264 page_alloc_cpu_online, 6265 page_alloc_cpu_dead); 6266 WARN_ON(ret < 0); 6267 } 6268 6269 /* 6270 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6271 * or min_free_kbytes changes. 6272 */ 6273 static void calculate_totalreserve_pages(void) 6274 { 6275 struct pglist_data *pgdat; 6276 unsigned long reserve_pages = 0; 6277 enum zone_type i, j; 6278 6279 for_each_online_pgdat(pgdat) { 6280 6281 pgdat->totalreserve_pages = 0; 6282 6283 for (i = 0; i < MAX_NR_ZONES; i++) { 6284 struct zone *zone = pgdat->node_zones + i; 6285 long max = 0; 6286 unsigned long managed_pages = zone_managed_pages(zone); 6287 6288 /* Find valid and maximum lowmem_reserve in the zone */ 6289 for (j = i; j < MAX_NR_ZONES; j++) 6290 max = max(max, zone->lowmem_reserve[j]); 6291 6292 /* we treat the high watermark as reserved pages. */ 6293 max += high_wmark_pages(zone); 6294 6295 max = min_t(unsigned long, max, managed_pages); 6296 6297 pgdat->totalreserve_pages += max; 6298 6299 reserve_pages += max; 6300 } 6301 } 6302 totalreserve_pages = reserve_pages; 6303 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6304 } 6305 6306 /* 6307 * setup_per_zone_lowmem_reserve - called whenever 6308 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6309 * has a correct pages reserved value, so an adequate number of 6310 * pages are left in the zone after a successful __alloc_pages(). 6311 */ 6312 static void setup_per_zone_lowmem_reserve(void) 6313 { 6314 struct pglist_data *pgdat; 6315 enum zone_type i, j; 6316 6317 for_each_online_pgdat(pgdat) { 6318 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6319 struct zone *zone = &pgdat->node_zones[i]; 6320 int ratio = sysctl_lowmem_reserve_ratio[i]; 6321 bool clear = !ratio || !zone_managed_pages(zone); 6322 unsigned long managed_pages = 0; 6323 6324 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6325 struct zone *upper_zone = &pgdat->node_zones[j]; 6326 6327 managed_pages += zone_managed_pages(upper_zone); 6328 6329 if (clear) 6330 zone->lowmem_reserve[j] = 0; 6331 else 6332 zone->lowmem_reserve[j] = managed_pages / ratio; 6333 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6334 zone->lowmem_reserve[j]); 6335 } 6336 } 6337 } 6338 6339 /* update totalreserve_pages */ 6340 calculate_totalreserve_pages(); 6341 } 6342 6343 static void __setup_per_zone_wmarks(void) 6344 { 6345 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6346 unsigned long lowmem_pages = 0; 6347 struct zone *zone; 6348 unsigned long flags; 6349 6350 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6351 for_each_zone(zone) { 6352 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6353 lowmem_pages += zone_managed_pages(zone); 6354 } 6355 6356 for_each_zone(zone) { 6357 u64 tmp; 6358 6359 spin_lock_irqsave(&zone->lock, flags); 6360 tmp = (u64)pages_min * zone_managed_pages(zone); 6361 tmp = div64_ul(tmp, lowmem_pages); 6362 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6363 /* 6364 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6365 * need highmem and movable zones pages, so cap pages_min 6366 * to a small value here. 6367 * 6368 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6369 * deltas control async page reclaim, and so should 6370 * not be capped for highmem and movable zones. 6371 */ 6372 unsigned long min_pages; 6373 6374 min_pages = zone_managed_pages(zone) / 1024; 6375 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6376 zone->_watermark[WMARK_MIN] = min_pages; 6377 } else { 6378 /* 6379 * If it's a lowmem zone, reserve a number of pages 6380 * proportionate to the zone's size. 6381 */ 6382 zone->_watermark[WMARK_MIN] = tmp; 6383 } 6384 6385 /* 6386 * Set the kswapd watermarks distance according to the 6387 * scale factor in proportion to available memory, but 6388 * ensure a minimum size on small systems. 6389 */ 6390 tmp = max_t(u64, tmp >> 2, 6391 mult_frac(zone_managed_pages(zone), 6392 watermark_scale_factor, 10000)); 6393 6394 zone->watermark_boost = 0; 6395 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6396 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6397 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6398 trace_mm_setup_per_zone_wmarks(zone); 6399 6400 spin_unlock_irqrestore(&zone->lock, flags); 6401 } 6402 6403 /* update totalreserve_pages */ 6404 calculate_totalreserve_pages(); 6405 } 6406 6407 /** 6408 * setup_per_zone_wmarks - called when min_free_kbytes changes 6409 * or when memory is hot-{added|removed} 6410 * 6411 * Ensures that the watermark[min,low,high] values for each zone are set 6412 * correctly with respect to min_free_kbytes. 6413 */ 6414 void setup_per_zone_wmarks(void) 6415 { 6416 struct zone *zone; 6417 static DEFINE_SPINLOCK(lock); 6418 6419 spin_lock(&lock); 6420 __setup_per_zone_wmarks(); 6421 spin_unlock(&lock); 6422 6423 /* 6424 * The watermark size have changed so update the pcpu batch 6425 * and high limits or the limits may be inappropriate. 6426 */ 6427 for_each_zone(zone) 6428 zone_pcp_update(zone, 0); 6429 } 6430 6431 /* 6432 * Initialise min_free_kbytes. 6433 * 6434 * For small machines we want it small (128k min). For large machines 6435 * we want it large (256MB max). But it is not linear, because network 6436 * bandwidth does not increase linearly with machine size. We use 6437 * 6438 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6439 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6440 * 6441 * which yields 6442 * 6443 * 16MB: 512k 6444 * 32MB: 724k 6445 * 64MB: 1024k 6446 * 128MB: 1448k 6447 * 256MB: 2048k 6448 * 512MB: 2896k 6449 * 1024MB: 4096k 6450 * 2048MB: 5792k 6451 * 4096MB: 8192k 6452 * 8192MB: 11584k 6453 * 16384MB: 16384k 6454 */ 6455 void calculate_min_free_kbytes(void) 6456 { 6457 unsigned long lowmem_kbytes; 6458 int new_min_free_kbytes; 6459 6460 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6461 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6462 6463 if (new_min_free_kbytes > user_min_free_kbytes) 6464 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6465 else 6466 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6467 new_min_free_kbytes, user_min_free_kbytes); 6468 6469 } 6470 6471 int __meminit init_per_zone_wmark_min(void) 6472 { 6473 calculate_min_free_kbytes(); 6474 setup_per_zone_wmarks(); 6475 refresh_zone_stat_thresholds(); 6476 setup_per_zone_lowmem_reserve(); 6477 6478 #ifdef CONFIG_NUMA 6479 setup_min_unmapped_ratio(); 6480 setup_min_slab_ratio(); 6481 #endif 6482 6483 khugepaged_min_free_kbytes_update(); 6484 6485 return 0; 6486 } 6487 postcore_initcall(init_per_zone_wmark_min) 6488 6489 /* 6490 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6491 * that we can call two helper functions whenever min_free_kbytes 6492 * changes. 6493 */ 6494 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6495 void *buffer, size_t *length, loff_t *ppos) 6496 { 6497 int rc; 6498 6499 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6500 if (rc) 6501 return rc; 6502 6503 if (write) { 6504 user_min_free_kbytes = min_free_kbytes; 6505 setup_per_zone_wmarks(); 6506 } 6507 return 0; 6508 } 6509 6510 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6511 void *buffer, size_t *length, loff_t *ppos) 6512 { 6513 int rc; 6514 6515 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6516 if (rc) 6517 return rc; 6518 6519 if (write) 6520 setup_per_zone_wmarks(); 6521 6522 return 0; 6523 } 6524 6525 #ifdef CONFIG_NUMA 6526 static void setup_min_unmapped_ratio(void) 6527 { 6528 pg_data_t *pgdat; 6529 struct zone *zone; 6530 6531 for_each_online_pgdat(pgdat) 6532 pgdat->min_unmapped_pages = 0; 6533 6534 for_each_zone(zone) 6535 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6536 sysctl_min_unmapped_ratio) / 100; 6537 } 6538 6539 6540 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6541 void *buffer, size_t *length, loff_t *ppos) 6542 { 6543 int rc; 6544 6545 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6546 if (rc) 6547 return rc; 6548 6549 setup_min_unmapped_ratio(); 6550 6551 return 0; 6552 } 6553 6554 static void setup_min_slab_ratio(void) 6555 { 6556 pg_data_t *pgdat; 6557 struct zone *zone; 6558 6559 for_each_online_pgdat(pgdat) 6560 pgdat->min_slab_pages = 0; 6561 6562 for_each_zone(zone) 6563 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6564 sysctl_min_slab_ratio) / 100; 6565 } 6566 6567 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6568 void *buffer, size_t *length, loff_t *ppos) 6569 { 6570 int rc; 6571 6572 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6573 if (rc) 6574 return rc; 6575 6576 setup_min_slab_ratio(); 6577 6578 return 0; 6579 } 6580 #endif 6581 6582 /* 6583 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6584 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6585 * whenever sysctl_lowmem_reserve_ratio changes. 6586 * 6587 * The reserve ratio obviously has absolutely no relation with the 6588 * minimum watermarks. The lowmem reserve ratio can only make sense 6589 * if in function of the boot time zone sizes. 6590 */ 6591 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6592 int write, void *buffer, size_t *length, loff_t *ppos) 6593 { 6594 int i; 6595 6596 proc_dointvec_minmax(table, write, buffer, length, ppos); 6597 6598 for (i = 0; i < MAX_NR_ZONES; i++) { 6599 if (sysctl_lowmem_reserve_ratio[i] < 1) 6600 sysctl_lowmem_reserve_ratio[i] = 0; 6601 } 6602 6603 setup_per_zone_lowmem_reserve(); 6604 return 0; 6605 } 6606 6607 /* 6608 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6609 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6610 * pagelist can have before it gets flushed back to buddy allocator. 6611 */ 6612 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6613 int write, void *buffer, size_t *length, loff_t *ppos) 6614 { 6615 struct zone *zone; 6616 int old_percpu_pagelist_high_fraction; 6617 int ret; 6618 6619 mutex_lock(&pcp_batch_high_lock); 6620 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6621 6622 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6623 if (!write || ret < 0) 6624 goto out; 6625 6626 /* Sanity checking to avoid pcp imbalance */ 6627 if (percpu_pagelist_high_fraction && 6628 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6629 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6630 ret = -EINVAL; 6631 goto out; 6632 } 6633 6634 /* No change? */ 6635 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6636 goto out; 6637 6638 for_each_populated_zone(zone) 6639 zone_set_pageset_high_and_batch(zone, 0); 6640 out: 6641 mutex_unlock(&pcp_batch_high_lock); 6642 return ret; 6643 } 6644 6645 static const struct ctl_table page_alloc_sysctl_table[] = { 6646 { 6647 .procname = "min_free_kbytes", 6648 .data = &min_free_kbytes, 6649 .maxlen = sizeof(min_free_kbytes), 6650 .mode = 0644, 6651 .proc_handler = min_free_kbytes_sysctl_handler, 6652 .extra1 = SYSCTL_ZERO, 6653 }, 6654 { 6655 .procname = "watermark_boost_factor", 6656 .data = &watermark_boost_factor, 6657 .maxlen = sizeof(watermark_boost_factor), 6658 .mode = 0644, 6659 .proc_handler = proc_dointvec_minmax, 6660 .extra1 = SYSCTL_ZERO, 6661 }, 6662 { 6663 .procname = "watermark_scale_factor", 6664 .data = &watermark_scale_factor, 6665 .maxlen = sizeof(watermark_scale_factor), 6666 .mode = 0644, 6667 .proc_handler = watermark_scale_factor_sysctl_handler, 6668 .extra1 = SYSCTL_ONE, 6669 .extra2 = SYSCTL_THREE_THOUSAND, 6670 }, 6671 { 6672 .procname = "defrag_mode", 6673 .data = &defrag_mode, 6674 .maxlen = sizeof(defrag_mode), 6675 .mode = 0644, 6676 .proc_handler = proc_dointvec_minmax, 6677 .extra1 = SYSCTL_ZERO, 6678 .extra2 = SYSCTL_ONE, 6679 }, 6680 { 6681 .procname = "percpu_pagelist_high_fraction", 6682 .data = &percpu_pagelist_high_fraction, 6683 .maxlen = sizeof(percpu_pagelist_high_fraction), 6684 .mode = 0644, 6685 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6686 .extra1 = SYSCTL_ZERO, 6687 }, 6688 { 6689 .procname = "lowmem_reserve_ratio", 6690 .data = &sysctl_lowmem_reserve_ratio, 6691 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6692 .mode = 0644, 6693 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6694 }, 6695 #ifdef CONFIG_NUMA 6696 { 6697 .procname = "numa_zonelist_order", 6698 .data = &numa_zonelist_order, 6699 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6700 .mode = 0644, 6701 .proc_handler = numa_zonelist_order_handler, 6702 }, 6703 { 6704 .procname = "min_unmapped_ratio", 6705 .data = &sysctl_min_unmapped_ratio, 6706 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6707 .mode = 0644, 6708 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6709 .extra1 = SYSCTL_ZERO, 6710 .extra2 = SYSCTL_ONE_HUNDRED, 6711 }, 6712 { 6713 .procname = "min_slab_ratio", 6714 .data = &sysctl_min_slab_ratio, 6715 .maxlen = sizeof(sysctl_min_slab_ratio), 6716 .mode = 0644, 6717 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6718 .extra1 = SYSCTL_ZERO, 6719 .extra2 = SYSCTL_ONE_HUNDRED, 6720 }, 6721 #endif 6722 }; 6723 6724 void __init page_alloc_sysctl_init(void) 6725 { 6726 register_sysctl_init("vm", page_alloc_sysctl_table); 6727 } 6728 6729 #ifdef CONFIG_CONTIG_ALLOC 6730 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6731 static void alloc_contig_dump_pages(struct list_head *page_list) 6732 { 6733 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6734 6735 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6736 struct page *page; 6737 6738 dump_stack(); 6739 list_for_each_entry(page, page_list, lru) 6740 dump_page(page, "migration failure"); 6741 } 6742 } 6743 6744 /* [start, end) must belong to a single zone. */ 6745 static int __alloc_contig_migrate_range(struct compact_control *cc, 6746 unsigned long start, unsigned long end) 6747 { 6748 /* This function is based on compact_zone() from compaction.c. */ 6749 unsigned int nr_reclaimed; 6750 unsigned long pfn = start; 6751 unsigned int tries = 0; 6752 int ret = 0; 6753 struct migration_target_control mtc = { 6754 .nid = zone_to_nid(cc->zone), 6755 .gfp_mask = cc->gfp_mask, 6756 .reason = MR_CONTIG_RANGE, 6757 }; 6758 6759 lru_cache_disable(); 6760 6761 while (pfn < end || !list_empty(&cc->migratepages)) { 6762 if (fatal_signal_pending(current)) { 6763 ret = -EINTR; 6764 break; 6765 } 6766 6767 if (list_empty(&cc->migratepages)) { 6768 cc->nr_migratepages = 0; 6769 ret = isolate_migratepages_range(cc, pfn, end); 6770 if (ret && ret != -EAGAIN) 6771 break; 6772 pfn = cc->migrate_pfn; 6773 tries = 0; 6774 } else if (++tries == 5) { 6775 ret = -EBUSY; 6776 break; 6777 } 6778 6779 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6780 &cc->migratepages); 6781 cc->nr_migratepages -= nr_reclaimed; 6782 6783 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6784 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6785 6786 /* 6787 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6788 * to retry again over this error, so do the same here. 6789 */ 6790 if (ret == -ENOMEM) 6791 break; 6792 } 6793 6794 lru_cache_enable(); 6795 if (ret < 0) { 6796 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6797 alloc_contig_dump_pages(&cc->migratepages); 6798 putback_movable_pages(&cc->migratepages); 6799 } 6800 6801 return (ret < 0) ? ret : 0; 6802 } 6803 6804 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6805 { 6806 int order; 6807 6808 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6809 struct page *page, *next; 6810 int nr_pages = 1 << order; 6811 6812 list_for_each_entry_safe(page, next, &list[order], lru) { 6813 int i; 6814 6815 post_alloc_hook(page, order, gfp_mask); 6816 set_page_refcounted(page); 6817 if (!order) 6818 continue; 6819 6820 split_page(page, order); 6821 6822 /* Add all subpages to the order-0 head, in sequence. */ 6823 list_del(&page->lru); 6824 for (i = 0; i < nr_pages; i++) 6825 list_add_tail(&page[i].lru, &list[0]); 6826 } 6827 } 6828 } 6829 6830 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6831 { 6832 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6833 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6834 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6835 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6836 6837 /* 6838 * We are given the range to allocate; node, mobility and placement 6839 * hints are irrelevant at this point. We'll simply ignore them. 6840 */ 6841 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6842 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6843 6844 /* 6845 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6846 * selected action flags. 6847 */ 6848 if (gfp_mask & ~(reclaim_mask | action_mask)) 6849 return -EINVAL; 6850 6851 /* 6852 * Flags to control page compaction/migration/reclaim, to free up our 6853 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6854 * for them. 6855 * 6856 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6857 * to not degrade callers. 6858 */ 6859 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6860 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6861 return 0; 6862 } 6863 6864 /** 6865 * alloc_contig_range() -- tries to allocate given range of pages 6866 * @start: start PFN to allocate 6867 * @end: one-past-the-last PFN to allocate 6868 * @alloc_flags: allocation information 6869 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6870 * action and reclaim modifiers are supported. Reclaim modifiers 6871 * control allocation behavior during compaction/migration/reclaim. 6872 * 6873 * The PFN range does not have to be pageblock aligned. The PFN range must 6874 * belong to a single zone. 6875 * 6876 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6877 * pageblocks in the range. Once isolated, the pageblocks should not 6878 * be modified by others. 6879 * 6880 * Return: zero on success or negative error code. On success all 6881 * pages which PFN is in [start, end) are allocated for the caller and 6882 * need to be freed with free_contig_range(). 6883 */ 6884 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6885 acr_flags_t alloc_flags, gfp_t gfp_mask) 6886 { 6887 const unsigned int order = ilog2(end - start); 6888 unsigned long outer_start, outer_end; 6889 int ret = 0; 6890 6891 struct compact_control cc = { 6892 .nr_migratepages = 0, 6893 .order = -1, 6894 .zone = page_zone(pfn_to_page(start)), 6895 .mode = MIGRATE_SYNC, 6896 .ignore_skip_hint = true, 6897 .no_set_skip_hint = true, 6898 .alloc_contig = true, 6899 }; 6900 INIT_LIST_HEAD(&cc.migratepages); 6901 enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ? 6902 PB_ISOLATE_MODE_CMA_ALLOC : 6903 PB_ISOLATE_MODE_OTHER; 6904 6905 /* 6906 * In contrast to the buddy, we allow for orders here that exceed 6907 * MAX_PAGE_ORDER, so we must manually make sure that we are not 6908 * exceeding the maximum folio order. 6909 */ 6910 if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER)) 6911 return -EINVAL; 6912 6913 gfp_mask = current_gfp_context(gfp_mask); 6914 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6915 return -EINVAL; 6916 6917 /* 6918 * What we do here is we mark all pageblocks in range as 6919 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6920 * have different sizes, and due to the way page allocator 6921 * work, start_isolate_page_range() has special handlings for this. 6922 * 6923 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6924 * migrate the pages from an unaligned range (ie. pages that 6925 * we are interested in). This will put all the pages in 6926 * range back to page allocator as MIGRATE_ISOLATE. 6927 * 6928 * When this is done, we take the pages in range from page 6929 * allocator removing them from the buddy system. This way 6930 * page allocator will never consider using them. 6931 * 6932 * This lets us mark the pageblocks back as 6933 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6934 * aligned range but not in the unaligned, original range are 6935 * put back to page allocator so that buddy can use them. 6936 */ 6937 6938 ret = start_isolate_page_range(start, end, mode); 6939 if (ret) 6940 goto done; 6941 6942 drain_all_pages(cc.zone); 6943 6944 /* 6945 * In case of -EBUSY, we'd like to know which page causes problem. 6946 * So, just fall through. test_pages_isolated() has a tracepoint 6947 * which will report the busy page. 6948 * 6949 * It is possible that busy pages could become available before 6950 * the call to test_pages_isolated, and the range will actually be 6951 * allocated. So, if we fall through be sure to clear ret so that 6952 * -EBUSY is not accidentally used or returned to caller. 6953 */ 6954 ret = __alloc_contig_migrate_range(&cc, start, end); 6955 if (ret && ret != -EBUSY) 6956 goto done; 6957 6958 /* 6959 * When in-use hugetlb pages are migrated, they may simply be released 6960 * back into the free hugepage pool instead of being returned to the 6961 * buddy system. After the migration of in-use huge pages is completed, 6962 * we will invoke replace_free_hugepage_folios() to ensure that these 6963 * hugepages are properly released to the buddy system. 6964 */ 6965 ret = replace_free_hugepage_folios(start, end); 6966 if (ret) 6967 goto done; 6968 6969 /* 6970 * Pages from [start, end) are within a pageblock_nr_pages 6971 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6972 * more, all pages in [start, end) are free in page allocator. 6973 * What we are going to do is to allocate all pages from 6974 * [start, end) (that is remove them from page allocator). 6975 * 6976 * The only problem is that pages at the beginning and at the 6977 * end of interesting range may be not aligned with pages that 6978 * page allocator holds, ie. they can be part of higher order 6979 * pages. Because of this, we reserve the bigger range and 6980 * once this is done free the pages we are not interested in. 6981 * 6982 * We don't have to hold zone->lock here because the pages are 6983 * isolated thus they won't get removed from buddy. 6984 */ 6985 outer_start = find_large_buddy(start); 6986 6987 /* Make sure the range is really isolated. */ 6988 if (test_pages_isolated(outer_start, end, mode)) { 6989 ret = -EBUSY; 6990 goto done; 6991 } 6992 6993 /* Grab isolated pages from freelists. */ 6994 outer_end = isolate_freepages_range(&cc, outer_start, end); 6995 if (!outer_end) { 6996 ret = -EBUSY; 6997 goto done; 6998 } 6999 7000 if (!(gfp_mask & __GFP_COMP)) { 7001 split_free_pages(cc.freepages, gfp_mask); 7002 7003 /* Free head and tail (if any) */ 7004 if (start != outer_start) 7005 free_contig_range(outer_start, start - outer_start); 7006 if (end != outer_end) 7007 free_contig_range(end, outer_end - end); 7008 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 7009 struct page *head = pfn_to_page(start); 7010 7011 check_new_pages(head, order); 7012 prep_new_page(head, order, gfp_mask, 0); 7013 set_page_refcounted(head); 7014 } else { 7015 ret = -EINVAL; 7016 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 7017 start, end, outer_start, outer_end); 7018 } 7019 done: 7020 undo_isolate_page_range(start, end); 7021 return ret; 7022 } 7023 EXPORT_SYMBOL(alloc_contig_range_noprof); 7024 7025 static int __alloc_contig_pages(unsigned long start_pfn, 7026 unsigned long nr_pages, gfp_t gfp_mask) 7027 { 7028 unsigned long end_pfn = start_pfn + nr_pages; 7029 7030 return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE, 7031 gfp_mask); 7032 } 7033 7034 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 7035 unsigned long nr_pages) 7036 { 7037 unsigned long i, end_pfn = start_pfn + nr_pages; 7038 struct page *page; 7039 7040 for (i = start_pfn; i < end_pfn; i++) { 7041 page = pfn_to_online_page(i); 7042 if (!page) 7043 return false; 7044 7045 if (page_zone(page) != z) 7046 return false; 7047 7048 if (PageReserved(page)) 7049 return false; 7050 7051 if (PageHuge(page)) 7052 return false; 7053 } 7054 return true; 7055 } 7056 7057 static bool zone_spans_last_pfn(const struct zone *zone, 7058 unsigned long start_pfn, unsigned long nr_pages) 7059 { 7060 unsigned long last_pfn = start_pfn + nr_pages - 1; 7061 7062 return zone_spans_pfn(zone, last_pfn); 7063 } 7064 7065 /** 7066 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 7067 * @nr_pages: Number of contiguous pages to allocate 7068 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 7069 * action and reclaim modifiers are supported. Reclaim modifiers 7070 * control allocation behavior during compaction/migration/reclaim. 7071 * @nid: Target node 7072 * @nodemask: Mask for other possible nodes 7073 * 7074 * This routine is a wrapper around alloc_contig_range(). It scans over zones 7075 * on an applicable zonelist to find a contiguous pfn range which can then be 7076 * tried for allocation with alloc_contig_range(). This routine is intended 7077 * for allocation requests which can not be fulfilled with the buddy allocator. 7078 * 7079 * The allocated memory is always aligned to a page boundary. If nr_pages is a 7080 * power of two, then allocated range is also guaranteed to be aligned to same 7081 * nr_pages (e.g. 1GB request would be aligned to 1GB). 7082 * 7083 * Allocated pages can be freed with free_contig_range() or by manually calling 7084 * __free_page() on each allocated page. 7085 * 7086 * Return: pointer to contiguous pages on success, or NULL if not successful. 7087 */ 7088 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 7089 int nid, nodemask_t *nodemask) 7090 { 7091 unsigned long ret, pfn, flags; 7092 struct zonelist *zonelist; 7093 struct zone *zone; 7094 struct zoneref *z; 7095 7096 zonelist = node_zonelist(nid, gfp_mask); 7097 for_each_zone_zonelist_nodemask(zone, z, zonelist, 7098 gfp_zone(gfp_mask), nodemask) { 7099 spin_lock_irqsave(&zone->lock, flags); 7100 7101 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 7102 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 7103 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 7104 /* 7105 * We release the zone lock here because 7106 * alloc_contig_range() will also lock the zone 7107 * at some point. If there's an allocation 7108 * spinning on this lock, it may win the race 7109 * and cause alloc_contig_range() to fail... 7110 */ 7111 spin_unlock_irqrestore(&zone->lock, flags); 7112 ret = __alloc_contig_pages(pfn, nr_pages, 7113 gfp_mask); 7114 if (!ret) 7115 return pfn_to_page(pfn); 7116 spin_lock_irqsave(&zone->lock, flags); 7117 } 7118 pfn += nr_pages; 7119 } 7120 spin_unlock_irqrestore(&zone->lock, flags); 7121 } 7122 return NULL; 7123 } 7124 #endif /* CONFIG_CONTIG_ALLOC */ 7125 7126 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 7127 { 7128 unsigned long count = 0; 7129 struct folio *folio = pfn_folio(pfn); 7130 7131 if (folio_test_large(folio)) { 7132 int expected = folio_nr_pages(folio); 7133 7134 if (nr_pages == expected) 7135 folio_put(folio); 7136 else 7137 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 7138 pfn, nr_pages, expected); 7139 return; 7140 } 7141 7142 for (; nr_pages--; pfn++) { 7143 struct page *page = pfn_to_page(pfn); 7144 7145 count += page_count(page) != 1; 7146 __free_page(page); 7147 } 7148 WARN(count != 0, "%lu pages are still in use!\n", count); 7149 } 7150 EXPORT_SYMBOL(free_contig_range); 7151 7152 /* 7153 * Effectively disable pcplists for the zone by setting the high limit to 0 7154 * and draining all cpus. A concurrent page freeing on another CPU that's about 7155 * to put the page on pcplist will either finish before the drain and the page 7156 * will be drained, or observe the new high limit and skip the pcplist. 7157 * 7158 * Must be paired with a call to zone_pcp_enable(). 7159 */ 7160 void zone_pcp_disable(struct zone *zone) 7161 { 7162 mutex_lock(&pcp_batch_high_lock); 7163 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 7164 __drain_all_pages(zone, true); 7165 } 7166 7167 void zone_pcp_enable(struct zone *zone) 7168 { 7169 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 7170 zone->pageset_high_max, zone->pageset_batch); 7171 mutex_unlock(&pcp_batch_high_lock); 7172 } 7173 7174 void zone_pcp_reset(struct zone *zone) 7175 { 7176 int cpu; 7177 struct per_cpu_zonestat *pzstats; 7178 7179 if (zone->per_cpu_pageset != &boot_pageset) { 7180 for_each_online_cpu(cpu) { 7181 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7182 drain_zonestat(zone, pzstats); 7183 } 7184 free_percpu(zone->per_cpu_pageset); 7185 zone->per_cpu_pageset = &boot_pageset; 7186 if (zone->per_cpu_zonestats != &boot_zonestats) { 7187 free_percpu(zone->per_cpu_zonestats); 7188 zone->per_cpu_zonestats = &boot_zonestats; 7189 } 7190 } 7191 } 7192 7193 #ifdef CONFIG_MEMORY_HOTREMOVE 7194 /* 7195 * All pages in the range must be in a single zone, must not contain holes, 7196 * must span full sections, and must be isolated before calling this function. 7197 * 7198 * Returns the number of managed (non-PageOffline()) pages in the range: the 7199 * number of pages for which memory offlining code must adjust managed page 7200 * counters using adjust_managed_page_count(). 7201 */ 7202 unsigned long __offline_isolated_pages(unsigned long start_pfn, 7203 unsigned long end_pfn) 7204 { 7205 unsigned long already_offline = 0, flags; 7206 unsigned long pfn = start_pfn; 7207 struct page *page; 7208 struct zone *zone; 7209 unsigned int order; 7210 7211 offline_mem_sections(pfn, end_pfn); 7212 zone = page_zone(pfn_to_page(pfn)); 7213 spin_lock_irqsave(&zone->lock, flags); 7214 while (pfn < end_pfn) { 7215 page = pfn_to_page(pfn); 7216 /* 7217 * The HWPoisoned page may be not in buddy system, and 7218 * page_count() is not 0. 7219 */ 7220 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7221 pfn++; 7222 continue; 7223 } 7224 /* 7225 * At this point all remaining PageOffline() pages have a 7226 * reference count of 0 and can simply be skipped. 7227 */ 7228 if (PageOffline(page)) { 7229 BUG_ON(page_count(page)); 7230 BUG_ON(PageBuddy(page)); 7231 already_offline++; 7232 pfn++; 7233 continue; 7234 } 7235 7236 BUG_ON(page_count(page)); 7237 BUG_ON(!PageBuddy(page)); 7238 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7239 order = buddy_order(page); 7240 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7241 pfn += (1 << order); 7242 } 7243 spin_unlock_irqrestore(&zone->lock, flags); 7244 7245 return end_pfn - start_pfn - already_offline; 7246 } 7247 #endif 7248 7249 /* 7250 * This function returns a stable result only if called under zone lock. 7251 */ 7252 bool is_free_buddy_page(const struct page *page) 7253 { 7254 unsigned long pfn = page_to_pfn(page); 7255 unsigned int order; 7256 7257 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7258 const struct page *head = page - (pfn & ((1 << order) - 1)); 7259 7260 if (PageBuddy(head) && 7261 buddy_order_unsafe(head) >= order) 7262 break; 7263 } 7264 7265 return order <= MAX_PAGE_ORDER; 7266 } 7267 EXPORT_SYMBOL(is_free_buddy_page); 7268 7269 #ifdef CONFIG_MEMORY_FAILURE 7270 static inline void add_to_free_list(struct page *page, struct zone *zone, 7271 unsigned int order, int migratetype, 7272 bool tail) 7273 { 7274 __add_to_free_list(page, zone, order, migratetype, tail); 7275 account_freepages(zone, 1 << order, migratetype); 7276 } 7277 7278 /* 7279 * Break down a higher-order page in sub-pages, and keep our target out of 7280 * buddy allocator. 7281 */ 7282 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7283 struct page *target, int low, int high, 7284 int migratetype) 7285 { 7286 unsigned long size = 1 << high; 7287 struct page *current_buddy; 7288 7289 while (high > low) { 7290 high--; 7291 size >>= 1; 7292 7293 if (target >= &page[size]) { 7294 current_buddy = page; 7295 page = page + size; 7296 } else { 7297 current_buddy = page + size; 7298 } 7299 7300 if (set_page_guard(zone, current_buddy, high)) 7301 continue; 7302 7303 add_to_free_list(current_buddy, zone, high, migratetype, false); 7304 set_buddy_order(current_buddy, high); 7305 } 7306 } 7307 7308 /* 7309 * Take a page that will be marked as poisoned off the buddy allocator. 7310 */ 7311 bool take_page_off_buddy(struct page *page) 7312 { 7313 struct zone *zone = page_zone(page); 7314 unsigned long pfn = page_to_pfn(page); 7315 unsigned long flags; 7316 unsigned int order; 7317 bool ret = false; 7318 7319 spin_lock_irqsave(&zone->lock, flags); 7320 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7321 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7322 int page_order = buddy_order(page_head); 7323 7324 if (PageBuddy(page_head) && page_order >= order) { 7325 unsigned long pfn_head = page_to_pfn(page_head); 7326 int migratetype = get_pfnblock_migratetype(page_head, 7327 pfn_head); 7328 7329 del_page_from_free_list(page_head, zone, page_order, 7330 migratetype); 7331 break_down_buddy_pages(zone, page_head, page, 0, 7332 page_order, migratetype); 7333 SetPageHWPoisonTakenOff(page); 7334 ret = true; 7335 break; 7336 } 7337 if (page_count(page_head) > 0) 7338 break; 7339 } 7340 spin_unlock_irqrestore(&zone->lock, flags); 7341 return ret; 7342 } 7343 7344 /* 7345 * Cancel takeoff done by take_page_off_buddy(). 7346 */ 7347 bool put_page_back_buddy(struct page *page) 7348 { 7349 struct zone *zone = page_zone(page); 7350 unsigned long flags; 7351 bool ret = false; 7352 7353 spin_lock_irqsave(&zone->lock, flags); 7354 if (put_page_testzero(page)) { 7355 unsigned long pfn = page_to_pfn(page); 7356 int migratetype = get_pfnblock_migratetype(page, pfn); 7357 7358 ClearPageHWPoisonTakenOff(page); 7359 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7360 if (TestClearPageHWPoison(page)) { 7361 ret = true; 7362 } 7363 } 7364 spin_unlock_irqrestore(&zone->lock, flags); 7365 7366 return ret; 7367 } 7368 #endif 7369 7370 #ifdef CONFIG_ZONE_DMA 7371 bool has_managed_dma(void) 7372 { 7373 struct pglist_data *pgdat; 7374 7375 for_each_online_pgdat(pgdat) { 7376 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7377 7378 if (managed_zone(zone)) 7379 return true; 7380 } 7381 return false; 7382 } 7383 #endif /* CONFIG_ZONE_DMA */ 7384 7385 #ifdef CONFIG_UNACCEPTED_MEMORY 7386 7387 static bool lazy_accept = true; 7388 7389 static int __init accept_memory_parse(char *p) 7390 { 7391 if (!strcmp(p, "lazy")) { 7392 lazy_accept = true; 7393 return 0; 7394 } else if (!strcmp(p, "eager")) { 7395 lazy_accept = false; 7396 return 0; 7397 } else { 7398 return -EINVAL; 7399 } 7400 } 7401 early_param("accept_memory", accept_memory_parse); 7402 7403 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7404 { 7405 phys_addr_t start = page_to_phys(page); 7406 7407 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7408 } 7409 7410 static void __accept_page(struct zone *zone, unsigned long *flags, 7411 struct page *page) 7412 { 7413 list_del(&page->lru); 7414 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7415 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7416 __ClearPageUnaccepted(page); 7417 spin_unlock_irqrestore(&zone->lock, *flags); 7418 7419 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7420 7421 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7422 } 7423 7424 void accept_page(struct page *page) 7425 { 7426 struct zone *zone = page_zone(page); 7427 unsigned long flags; 7428 7429 spin_lock_irqsave(&zone->lock, flags); 7430 if (!PageUnaccepted(page)) { 7431 spin_unlock_irqrestore(&zone->lock, flags); 7432 return; 7433 } 7434 7435 /* Unlocks zone->lock */ 7436 __accept_page(zone, &flags, page); 7437 } 7438 7439 static bool try_to_accept_memory_one(struct zone *zone) 7440 { 7441 unsigned long flags; 7442 struct page *page; 7443 7444 spin_lock_irqsave(&zone->lock, flags); 7445 page = list_first_entry_or_null(&zone->unaccepted_pages, 7446 struct page, lru); 7447 if (!page) { 7448 spin_unlock_irqrestore(&zone->lock, flags); 7449 return false; 7450 } 7451 7452 /* Unlocks zone->lock */ 7453 __accept_page(zone, &flags, page); 7454 7455 return true; 7456 } 7457 7458 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7459 int alloc_flags) 7460 { 7461 long to_accept, wmark; 7462 bool ret = false; 7463 7464 if (list_empty(&zone->unaccepted_pages)) 7465 return false; 7466 7467 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7468 if (alloc_flags & ALLOC_TRYLOCK) 7469 return false; 7470 7471 wmark = promo_wmark_pages(zone); 7472 7473 /* 7474 * Watermarks have not been initialized yet. 7475 * 7476 * Accepting one MAX_ORDER page to ensure progress. 7477 */ 7478 if (!wmark) 7479 return try_to_accept_memory_one(zone); 7480 7481 /* How much to accept to get to promo watermark? */ 7482 to_accept = wmark - 7483 (zone_page_state(zone, NR_FREE_PAGES) - 7484 __zone_watermark_unusable_free(zone, order, 0) - 7485 zone_page_state(zone, NR_UNACCEPTED)); 7486 7487 while (to_accept > 0) { 7488 if (!try_to_accept_memory_one(zone)) 7489 break; 7490 ret = true; 7491 to_accept -= MAX_ORDER_NR_PAGES; 7492 } 7493 7494 return ret; 7495 } 7496 7497 static bool __free_unaccepted(struct page *page) 7498 { 7499 struct zone *zone = page_zone(page); 7500 unsigned long flags; 7501 7502 if (!lazy_accept) 7503 return false; 7504 7505 spin_lock_irqsave(&zone->lock, flags); 7506 list_add_tail(&page->lru, &zone->unaccepted_pages); 7507 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7508 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7509 __SetPageUnaccepted(page); 7510 spin_unlock_irqrestore(&zone->lock, flags); 7511 7512 return true; 7513 } 7514 7515 #else 7516 7517 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7518 { 7519 return false; 7520 } 7521 7522 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7523 int alloc_flags) 7524 { 7525 return false; 7526 } 7527 7528 static bool __free_unaccepted(struct page *page) 7529 { 7530 BUILD_BUG(); 7531 return false; 7532 } 7533 7534 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7535 7536 struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7537 { 7538 /* 7539 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7540 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7541 * is not safe in arbitrary context. 7542 * 7543 * These two are the conditions for gfpflags_allow_spinning() being true. 7544 * 7545 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason 7546 * to warn. Also warn would trigger printk() which is unsafe from 7547 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7548 * since the running context is unknown. 7549 * 7550 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7551 * is safe in any context. Also zeroing the page is mandatory for 7552 * BPF use cases. 7553 * 7554 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7555 * specify it here to highlight that alloc_pages_nolock() 7556 * doesn't want to deplete reserves. 7557 */ 7558 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | __GFP_COMP 7559 | gfp_flags; 7560 unsigned int alloc_flags = ALLOC_TRYLOCK; 7561 struct alloc_context ac = { }; 7562 struct page *page; 7563 7564 VM_WARN_ON_ONCE(gfp_flags & ~__GFP_ACCOUNT); 7565 /* 7566 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7567 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7568 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7569 * mark the task as the owner of another rt_spin_lock which will 7570 * confuse PI logic, so return immediately if called form hard IRQ or 7571 * NMI. 7572 * 7573 * Note, irqs_disabled() case is ok. This function can be called 7574 * from raw_spin_lock_irqsave region. 7575 */ 7576 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7577 return NULL; 7578 if (!pcp_allowed_order(order)) 7579 return NULL; 7580 7581 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7582 if (deferred_pages_enabled()) 7583 return NULL; 7584 7585 if (nid == NUMA_NO_NODE) 7586 nid = numa_node_id(); 7587 7588 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7589 &alloc_gfp, &alloc_flags); 7590 7591 /* 7592 * Best effort allocation from percpu free list. 7593 * If it's empty attempt to spin_trylock zone->lock. 7594 */ 7595 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7596 7597 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7598 7599 if (memcg_kmem_online() && page && (gfp_flags & __GFP_ACCOUNT) && 7600 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7601 __free_frozen_pages(page, order, FPI_TRYLOCK); 7602 page = NULL; 7603 } 7604 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7605 kmsan_alloc_page(page, order, alloc_gfp); 7606 return page; 7607 } 7608 /** 7609 * alloc_pages_nolock - opportunistic reentrant allocation from any context 7610 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT allowed. 7611 * @nid: node to allocate from 7612 * @order: allocation order size 7613 * 7614 * Allocates pages of a given order from the given node. This is safe to 7615 * call from any context (from atomic, NMI, and also reentrant 7616 * allocator -> tracepoint -> alloc_pages_nolock_noprof). 7617 * Allocation is best effort and to be expected to fail easily so nobody should 7618 * rely on the success. Failures are not reported via warn_alloc(). 7619 * See always fail conditions below. 7620 * 7621 * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. 7622 * It means ENOMEM. There is no reason to call it again and expect !NULL. 7623 */ 7624 struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7625 { 7626 struct page *page; 7627 7628 page = alloc_frozen_pages_nolock_noprof(gfp_flags, nid, order); 7629 if (page) 7630 set_page_refcounted(page); 7631 return page; 7632 } 7633 EXPORT_SYMBOL_GPL(alloc_pages_nolock_noprof); 7634