xref: /linux/mm/page_alloc.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
44 #include "internal.h"
45 
46 /*
47  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48  * initializer cleaner
49  */
50 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
51 EXPORT_SYMBOL(node_online_map);
52 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
53 EXPORT_SYMBOL(node_possible_map);
54 unsigned long totalram_pages __read_mostly;
55 unsigned long totalhigh_pages __read_mostly;
56 unsigned long totalreserve_pages __read_mostly;
57 long nr_swap_pages;
58 int percpu_pagelist_fraction;
59 
60 static void __free_pages_ok(struct page *page, unsigned int order);
61 
62 /*
63  * results with 256, 32 in the lowmem_reserve sysctl:
64  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
65  *	1G machine -> (16M dma, 784M normal, 224M high)
66  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
67  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
68  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69  *
70  * TBD: should special case ZONE_DMA32 machines here - in those we normally
71  * don't need any ZONE_NORMAL reservation
72  */
73 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
74 
75 EXPORT_SYMBOL(totalram_pages);
76 
77 /*
78  * Used by page_zone() to look up the address of the struct zone whose
79  * id is encoded in the upper bits of page->flags
80  */
81 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
82 EXPORT_SYMBOL(zone_table);
83 
84 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
85 int min_free_kbytes = 1024;
86 
87 unsigned long __meminitdata nr_kernel_pages;
88 unsigned long __meminitdata nr_all_pages;
89 
90 #ifdef CONFIG_DEBUG_VM
91 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
92 {
93 	int ret = 0;
94 	unsigned seq;
95 	unsigned long pfn = page_to_pfn(page);
96 
97 	do {
98 		seq = zone_span_seqbegin(zone);
99 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
100 			ret = 1;
101 		else if (pfn < zone->zone_start_pfn)
102 			ret = 1;
103 	} while (zone_span_seqretry(zone, seq));
104 
105 	return ret;
106 }
107 
108 static int page_is_consistent(struct zone *zone, struct page *page)
109 {
110 #ifdef CONFIG_HOLES_IN_ZONE
111 	if (!pfn_valid(page_to_pfn(page)))
112 		return 0;
113 #endif
114 	if (zone != page_zone(page))
115 		return 0;
116 
117 	return 1;
118 }
119 /*
120  * Temporary debugging check for pages not lying within a given zone.
121  */
122 static int bad_range(struct zone *zone, struct page *page)
123 {
124 	if (page_outside_zone_boundaries(zone, page))
125 		return 1;
126 	if (!page_is_consistent(zone, page))
127 		return 1;
128 
129 	return 0;
130 }
131 
132 #else
133 static inline int bad_range(struct zone *zone, struct page *page)
134 {
135 	return 0;
136 }
137 #endif
138 
139 static void bad_page(struct page *page)
140 {
141 	printk(KERN_EMERG "Bad page state in process '%s'\n"
142 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
143 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
144 		KERN_EMERG "Backtrace:\n",
145 		current->comm, page, (int)(2*sizeof(unsigned long)),
146 		(unsigned long)page->flags, page->mapping,
147 		page_mapcount(page), page_count(page));
148 	dump_stack();
149 	page->flags &= ~(1 << PG_lru	|
150 			1 << PG_private |
151 			1 << PG_locked	|
152 			1 << PG_active	|
153 			1 << PG_dirty	|
154 			1 << PG_reclaim |
155 			1 << PG_slab    |
156 			1 << PG_swapcache |
157 			1 << PG_writeback |
158 			1 << PG_buddy );
159 	set_page_count(page, 0);
160 	reset_page_mapcount(page);
161 	page->mapping = NULL;
162 	add_taint(TAINT_BAD_PAGE);
163 }
164 
165 /*
166  * Higher-order pages are called "compound pages".  They are structured thusly:
167  *
168  * The first PAGE_SIZE page is called the "head page".
169  *
170  * The remaining PAGE_SIZE pages are called "tail pages".
171  *
172  * All pages have PG_compound set.  All pages have their ->private pointing at
173  * the head page (even the head page has this).
174  *
175  * The first tail page's ->lru.next holds the address of the compound page's
176  * put_page() function.  Its ->lru.prev holds the order of allocation.
177  * This usage means that zero-order pages may not be compound.
178  */
179 
180 static void free_compound_page(struct page *page)
181 {
182 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
183 }
184 
185 static void prep_compound_page(struct page *page, unsigned long order)
186 {
187 	int i;
188 	int nr_pages = 1 << order;
189 
190 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
191 	page[1].lru.prev = (void *)order;
192 	for (i = 0; i < nr_pages; i++) {
193 		struct page *p = page + i;
194 
195 		__SetPageCompound(p);
196 		set_page_private(p, (unsigned long)page);
197 	}
198 }
199 
200 static void destroy_compound_page(struct page *page, unsigned long order)
201 {
202 	int i;
203 	int nr_pages = 1 << order;
204 
205 	if (unlikely((unsigned long)page[1].lru.prev != order))
206 		bad_page(page);
207 
208 	for (i = 0; i < nr_pages; i++) {
209 		struct page *p = page + i;
210 
211 		if (unlikely(!PageCompound(p) |
212 				(page_private(p) != (unsigned long)page)))
213 			bad_page(page);
214 		__ClearPageCompound(p);
215 	}
216 }
217 
218 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
219 {
220 	int i;
221 
222 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
223 	/*
224 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
225 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
226 	 */
227 	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
228 	for (i = 0; i < (1 << order); i++)
229 		clear_highpage(page + i);
230 }
231 
232 /*
233  * function for dealing with page's order in buddy system.
234  * zone->lock is already acquired when we use these.
235  * So, we don't need atomic page->flags operations here.
236  */
237 static inline unsigned long page_order(struct page *page)
238 {
239 	return page_private(page);
240 }
241 
242 static inline void set_page_order(struct page *page, int order)
243 {
244 	set_page_private(page, order);
245 	__SetPageBuddy(page);
246 }
247 
248 static inline void rmv_page_order(struct page *page)
249 {
250 	__ClearPageBuddy(page);
251 	set_page_private(page, 0);
252 }
253 
254 /*
255  * Locate the struct page for both the matching buddy in our
256  * pair (buddy1) and the combined O(n+1) page they form (page).
257  *
258  * 1) Any buddy B1 will have an order O twin B2 which satisfies
259  * the following equation:
260  *     B2 = B1 ^ (1 << O)
261  * For example, if the starting buddy (buddy2) is #8 its order
262  * 1 buddy is #10:
263  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
264  *
265  * 2) Any buddy B will have an order O+1 parent P which
266  * satisfies the following equation:
267  *     P = B & ~(1 << O)
268  *
269  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
270  */
271 static inline struct page *
272 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
273 {
274 	unsigned long buddy_idx = page_idx ^ (1 << order);
275 
276 	return page + (buddy_idx - page_idx);
277 }
278 
279 static inline unsigned long
280 __find_combined_index(unsigned long page_idx, unsigned int order)
281 {
282 	return (page_idx & ~(1 << order));
283 }
284 
285 /*
286  * This function checks whether a page is free && is the buddy
287  * we can do coalesce a page and its buddy if
288  * (a) the buddy is not in a hole &&
289  * (b) the buddy is in the buddy system &&
290  * (c) a page and its buddy have the same order &&
291  * (d) a page and its buddy are in the same zone.
292  *
293  * For recording whether a page is in the buddy system, we use PG_buddy.
294  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
295  *
296  * For recording page's order, we use page_private(page).
297  */
298 static inline int page_is_buddy(struct page *page, struct page *buddy,
299 								int order)
300 {
301 #ifdef CONFIG_HOLES_IN_ZONE
302 	if (!pfn_valid(page_to_pfn(buddy)))
303 		return 0;
304 #endif
305 
306 	if (page_zone_id(page) != page_zone_id(buddy))
307 		return 0;
308 
309 	if (PageBuddy(buddy) && page_order(buddy) == order) {
310 		BUG_ON(page_count(buddy) != 0);
311 		return 1;
312 	}
313 	return 0;
314 }
315 
316 /*
317  * Freeing function for a buddy system allocator.
318  *
319  * The concept of a buddy system is to maintain direct-mapped table
320  * (containing bit values) for memory blocks of various "orders".
321  * The bottom level table contains the map for the smallest allocatable
322  * units of memory (here, pages), and each level above it describes
323  * pairs of units from the levels below, hence, "buddies".
324  * At a high level, all that happens here is marking the table entry
325  * at the bottom level available, and propagating the changes upward
326  * as necessary, plus some accounting needed to play nicely with other
327  * parts of the VM system.
328  * At each level, we keep a list of pages, which are heads of continuous
329  * free pages of length of (1 << order) and marked with PG_buddy. Page's
330  * order is recorded in page_private(page) field.
331  * So when we are allocating or freeing one, we can derive the state of the
332  * other.  That is, if we allocate a small block, and both were
333  * free, the remainder of the region must be split into blocks.
334  * If a block is freed, and its buddy is also free, then this
335  * triggers coalescing into a block of larger size.
336  *
337  * -- wli
338  */
339 
340 static inline void __free_one_page(struct page *page,
341 		struct zone *zone, unsigned int order)
342 {
343 	unsigned long page_idx;
344 	int order_size = 1 << order;
345 
346 	if (unlikely(PageCompound(page)))
347 		destroy_compound_page(page, order);
348 
349 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
350 
351 	BUG_ON(page_idx & (order_size - 1));
352 	BUG_ON(bad_range(zone, page));
353 
354 	zone->free_pages += order_size;
355 	while (order < MAX_ORDER-1) {
356 		unsigned long combined_idx;
357 		struct free_area *area;
358 		struct page *buddy;
359 
360 		buddy = __page_find_buddy(page, page_idx, order);
361 		if (!page_is_buddy(page, buddy, order))
362 			break;		/* Move the buddy up one level. */
363 
364 		list_del(&buddy->lru);
365 		area = zone->free_area + order;
366 		area->nr_free--;
367 		rmv_page_order(buddy);
368 		combined_idx = __find_combined_index(page_idx, order);
369 		page = page + (combined_idx - page_idx);
370 		page_idx = combined_idx;
371 		order++;
372 	}
373 	set_page_order(page, order);
374 	list_add(&page->lru, &zone->free_area[order].free_list);
375 	zone->free_area[order].nr_free++;
376 }
377 
378 static inline int free_pages_check(struct page *page)
379 {
380 	if (unlikely(page_mapcount(page) |
381 		(page->mapping != NULL)  |
382 		(page_count(page) != 0)  |
383 		(page->flags & (
384 			1 << PG_lru	|
385 			1 << PG_private |
386 			1 << PG_locked	|
387 			1 << PG_active	|
388 			1 << PG_reclaim	|
389 			1 << PG_slab	|
390 			1 << PG_swapcache |
391 			1 << PG_writeback |
392 			1 << PG_reserved |
393 			1 << PG_buddy ))))
394 		bad_page(page);
395 	if (PageDirty(page))
396 		__ClearPageDirty(page);
397 	/*
398 	 * For now, we report if PG_reserved was found set, but do not
399 	 * clear it, and do not free the page.  But we shall soon need
400 	 * to do more, for when the ZERO_PAGE count wraps negative.
401 	 */
402 	return PageReserved(page);
403 }
404 
405 /*
406  * Frees a list of pages.
407  * Assumes all pages on list are in same zone, and of same order.
408  * count is the number of pages to free.
409  *
410  * If the zone was previously in an "all pages pinned" state then look to
411  * see if this freeing clears that state.
412  *
413  * And clear the zone's pages_scanned counter, to hold off the "all pages are
414  * pinned" detection logic.
415  */
416 static void free_pages_bulk(struct zone *zone, int count,
417 					struct list_head *list, int order)
418 {
419 	spin_lock(&zone->lock);
420 	zone->all_unreclaimable = 0;
421 	zone->pages_scanned = 0;
422 	while (count--) {
423 		struct page *page;
424 
425 		BUG_ON(list_empty(list));
426 		page = list_entry(list->prev, struct page, lru);
427 		/* have to delete it as __free_one_page list manipulates */
428 		list_del(&page->lru);
429 		__free_one_page(page, zone, order);
430 	}
431 	spin_unlock(&zone->lock);
432 }
433 
434 static void free_one_page(struct zone *zone, struct page *page, int order)
435 {
436 	LIST_HEAD(list);
437 	list_add(&page->lru, &list);
438 	free_pages_bulk(zone, 1, &list, order);
439 }
440 
441 static void __free_pages_ok(struct page *page, unsigned int order)
442 {
443 	unsigned long flags;
444 	int i;
445 	int reserved = 0;
446 
447 	arch_free_page(page, order);
448 	if (!PageHighMem(page))
449 		debug_check_no_locks_freed(page_address(page),
450 					   PAGE_SIZE<<order);
451 
452 	for (i = 0 ; i < (1 << order) ; ++i)
453 		reserved += free_pages_check(page + i);
454 	if (reserved)
455 		return;
456 
457 	kernel_map_pages(page, 1 << order, 0);
458 	local_irq_save(flags);
459 	__count_vm_events(PGFREE, 1 << order);
460 	free_one_page(page_zone(page), page, order);
461 	local_irq_restore(flags);
462 }
463 
464 /*
465  * permit the bootmem allocator to evade page validation on high-order frees
466  */
467 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
468 {
469 	if (order == 0) {
470 		__ClearPageReserved(page);
471 		set_page_count(page, 0);
472 		set_page_refcounted(page);
473 		__free_page(page);
474 	} else {
475 		int loop;
476 
477 		prefetchw(page);
478 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
479 			struct page *p = &page[loop];
480 
481 			if (loop + 1 < BITS_PER_LONG)
482 				prefetchw(p + 1);
483 			__ClearPageReserved(p);
484 			set_page_count(p, 0);
485 		}
486 
487 		set_page_refcounted(page);
488 		__free_pages(page, order);
489 	}
490 }
491 
492 
493 /*
494  * The order of subdivision here is critical for the IO subsystem.
495  * Please do not alter this order without good reasons and regression
496  * testing. Specifically, as large blocks of memory are subdivided,
497  * the order in which smaller blocks are delivered depends on the order
498  * they're subdivided in this function. This is the primary factor
499  * influencing the order in which pages are delivered to the IO
500  * subsystem according to empirical testing, and this is also justified
501  * by considering the behavior of a buddy system containing a single
502  * large block of memory acted on by a series of small allocations.
503  * This behavior is a critical factor in sglist merging's success.
504  *
505  * -- wli
506  */
507 static inline void expand(struct zone *zone, struct page *page,
508  	int low, int high, struct free_area *area)
509 {
510 	unsigned long size = 1 << high;
511 
512 	while (high > low) {
513 		area--;
514 		high--;
515 		size >>= 1;
516 		BUG_ON(bad_range(zone, &page[size]));
517 		list_add(&page[size].lru, &area->free_list);
518 		area->nr_free++;
519 		set_page_order(&page[size], high);
520 	}
521 }
522 
523 /*
524  * This page is about to be returned from the page allocator
525  */
526 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
527 {
528 	if (unlikely(page_mapcount(page) |
529 		(page->mapping != NULL)  |
530 		(page_count(page) != 0)  |
531 		(page->flags & (
532 			1 << PG_lru	|
533 			1 << PG_private	|
534 			1 << PG_locked	|
535 			1 << PG_active	|
536 			1 << PG_dirty	|
537 			1 << PG_reclaim	|
538 			1 << PG_slab    |
539 			1 << PG_swapcache |
540 			1 << PG_writeback |
541 			1 << PG_reserved |
542 			1 << PG_buddy ))))
543 		bad_page(page);
544 
545 	/*
546 	 * For now, we report if PG_reserved was found set, but do not
547 	 * clear it, and do not allocate the page: as a safety net.
548 	 */
549 	if (PageReserved(page))
550 		return 1;
551 
552 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
553 			1 << PG_referenced | 1 << PG_arch_1 |
554 			1 << PG_checked | 1 << PG_mappedtodisk);
555 	set_page_private(page, 0);
556 	set_page_refcounted(page);
557 	kernel_map_pages(page, 1 << order, 1);
558 
559 	if (gfp_flags & __GFP_ZERO)
560 		prep_zero_page(page, order, gfp_flags);
561 
562 	if (order && (gfp_flags & __GFP_COMP))
563 		prep_compound_page(page, order);
564 
565 	return 0;
566 }
567 
568 /*
569  * Do the hard work of removing an element from the buddy allocator.
570  * Call me with the zone->lock already held.
571  */
572 static struct page *__rmqueue(struct zone *zone, unsigned int order)
573 {
574 	struct free_area * area;
575 	unsigned int current_order;
576 	struct page *page;
577 
578 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
579 		area = zone->free_area + current_order;
580 		if (list_empty(&area->free_list))
581 			continue;
582 
583 		page = list_entry(area->free_list.next, struct page, lru);
584 		list_del(&page->lru);
585 		rmv_page_order(page);
586 		area->nr_free--;
587 		zone->free_pages -= 1UL << order;
588 		expand(zone, page, order, current_order, area);
589 		return page;
590 	}
591 
592 	return NULL;
593 }
594 
595 /*
596  * Obtain a specified number of elements from the buddy allocator, all under
597  * a single hold of the lock, for efficiency.  Add them to the supplied list.
598  * Returns the number of new pages which were placed at *list.
599  */
600 static int rmqueue_bulk(struct zone *zone, unsigned int order,
601 			unsigned long count, struct list_head *list)
602 {
603 	int i;
604 
605 	spin_lock(&zone->lock);
606 	for (i = 0; i < count; ++i) {
607 		struct page *page = __rmqueue(zone, order);
608 		if (unlikely(page == NULL))
609 			break;
610 		list_add_tail(&page->lru, list);
611 	}
612 	spin_unlock(&zone->lock);
613 	return i;
614 }
615 
616 #ifdef CONFIG_NUMA
617 /*
618  * Called from the slab reaper to drain pagesets on a particular node that
619  * belong to the currently executing processor.
620  * Note that this function must be called with the thread pinned to
621  * a single processor.
622  */
623 void drain_node_pages(int nodeid)
624 {
625 	int i, z;
626 	unsigned long flags;
627 
628 	for (z = 0; z < MAX_NR_ZONES; z++) {
629 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
630 		struct per_cpu_pageset *pset;
631 
632 		pset = zone_pcp(zone, smp_processor_id());
633 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
634 			struct per_cpu_pages *pcp;
635 
636 			pcp = &pset->pcp[i];
637 			if (pcp->count) {
638 				local_irq_save(flags);
639 				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
640 				pcp->count = 0;
641 				local_irq_restore(flags);
642 			}
643 		}
644 	}
645 }
646 #endif
647 
648 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
649 static void __drain_pages(unsigned int cpu)
650 {
651 	unsigned long flags;
652 	struct zone *zone;
653 	int i;
654 
655 	for_each_zone(zone) {
656 		struct per_cpu_pageset *pset;
657 
658 		pset = zone_pcp(zone, cpu);
659 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
660 			struct per_cpu_pages *pcp;
661 
662 			pcp = &pset->pcp[i];
663 			local_irq_save(flags);
664 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
665 			pcp->count = 0;
666 			local_irq_restore(flags);
667 		}
668 	}
669 }
670 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
671 
672 #ifdef CONFIG_PM
673 
674 void mark_free_pages(struct zone *zone)
675 {
676 	unsigned long zone_pfn, flags;
677 	int order;
678 	struct list_head *curr;
679 
680 	if (!zone->spanned_pages)
681 		return;
682 
683 	spin_lock_irqsave(&zone->lock, flags);
684 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
685 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
686 
687 	for (order = MAX_ORDER - 1; order >= 0; --order)
688 		list_for_each(curr, &zone->free_area[order].free_list) {
689 			unsigned long start_pfn, i;
690 
691 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
692 
693 			for (i=0; i < (1<<order); i++)
694 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
695 	}
696 	spin_unlock_irqrestore(&zone->lock, flags);
697 }
698 
699 /*
700  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
701  */
702 void drain_local_pages(void)
703 {
704 	unsigned long flags;
705 
706 	local_irq_save(flags);
707 	__drain_pages(smp_processor_id());
708 	local_irq_restore(flags);
709 }
710 #endif /* CONFIG_PM */
711 
712 /*
713  * Free a 0-order page
714  */
715 static void fastcall free_hot_cold_page(struct page *page, int cold)
716 {
717 	struct zone *zone = page_zone(page);
718 	struct per_cpu_pages *pcp;
719 	unsigned long flags;
720 
721 	arch_free_page(page, 0);
722 
723 	if (PageAnon(page))
724 		page->mapping = NULL;
725 	if (free_pages_check(page))
726 		return;
727 
728 	kernel_map_pages(page, 1, 0);
729 
730 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
731 	local_irq_save(flags);
732 	__count_vm_event(PGFREE);
733 	list_add(&page->lru, &pcp->list);
734 	pcp->count++;
735 	if (pcp->count >= pcp->high) {
736 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
737 		pcp->count -= pcp->batch;
738 	}
739 	local_irq_restore(flags);
740 	put_cpu();
741 }
742 
743 void fastcall free_hot_page(struct page *page)
744 {
745 	free_hot_cold_page(page, 0);
746 }
747 
748 void fastcall free_cold_page(struct page *page)
749 {
750 	free_hot_cold_page(page, 1);
751 }
752 
753 /*
754  * split_page takes a non-compound higher-order page, and splits it into
755  * n (1<<order) sub-pages: page[0..n]
756  * Each sub-page must be freed individually.
757  *
758  * Note: this is probably too low level an operation for use in drivers.
759  * Please consult with lkml before using this in your driver.
760  */
761 void split_page(struct page *page, unsigned int order)
762 {
763 	int i;
764 
765 	BUG_ON(PageCompound(page));
766 	BUG_ON(!page_count(page));
767 	for (i = 1; i < (1 << order); i++)
768 		set_page_refcounted(page + i);
769 }
770 
771 /*
772  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
773  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
774  * or two.
775  */
776 static struct page *buffered_rmqueue(struct zonelist *zonelist,
777 			struct zone *zone, int order, gfp_t gfp_flags)
778 {
779 	unsigned long flags;
780 	struct page *page;
781 	int cold = !!(gfp_flags & __GFP_COLD);
782 	int cpu;
783 
784 again:
785 	cpu  = get_cpu();
786 	if (likely(order == 0)) {
787 		struct per_cpu_pages *pcp;
788 
789 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
790 		local_irq_save(flags);
791 		if (!pcp->count) {
792 			pcp->count += rmqueue_bulk(zone, 0,
793 						pcp->batch, &pcp->list);
794 			if (unlikely(!pcp->count))
795 				goto failed;
796 		}
797 		page = list_entry(pcp->list.next, struct page, lru);
798 		list_del(&page->lru);
799 		pcp->count--;
800 	} else {
801 		spin_lock_irqsave(&zone->lock, flags);
802 		page = __rmqueue(zone, order);
803 		spin_unlock(&zone->lock);
804 		if (!page)
805 			goto failed;
806 	}
807 
808 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
809 	zone_statistics(zonelist, zone);
810 	local_irq_restore(flags);
811 	put_cpu();
812 
813 	BUG_ON(bad_range(zone, page));
814 	if (prep_new_page(page, order, gfp_flags))
815 		goto again;
816 	return page;
817 
818 failed:
819 	local_irq_restore(flags);
820 	put_cpu();
821 	return NULL;
822 }
823 
824 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
825 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
826 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
827 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
828 #define ALLOC_HARDER		0x10 /* try to alloc harder */
829 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
830 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
831 
832 /*
833  * Return 1 if free pages are above 'mark'. This takes into account the order
834  * of the allocation.
835  */
836 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
837 		      int classzone_idx, int alloc_flags)
838 {
839 	/* free_pages my go negative - that's OK */
840 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
841 	int o;
842 
843 	if (alloc_flags & ALLOC_HIGH)
844 		min -= min / 2;
845 	if (alloc_flags & ALLOC_HARDER)
846 		min -= min / 4;
847 
848 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
849 		return 0;
850 	for (o = 0; o < order; o++) {
851 		/* At the next order, this order's pages become unavailable */
852 		free_pages -= z->free_area[o].nr_free << o;
853 
854 		/* Require fewer higher order pages to be free */
855 		min >>= 1;
856 
857 		if (free_pages <= min)
858 			return 0;
859 	}
860 	return 1;
861 }
862 
863 /*
864  * get_page_from_freeliest goes through the zonelist trying to allocate
865  * a page.
866  */
867 static struct page *
868 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
869 		struct zonelist *zonelist, int alloc_flags)
870 {
871 	struct zone **z = zonelist->zones;
872 	struct page *page = NULL;
873 	int classzone_idx = zone_idx(*z);
874 
875 	/*
876 	 * Go through the zonelist once, looking for a zone with enough free.
877 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
878 	 */
879 	do {
880 		if ((alloc_flags & ALLOC_CPUSET) &&
881 				!cpuset_zone_allowed(*z, gfp_mask))
882 			continue;
883 
884 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
885 			unsigned long mark;
886 			if (alloc_flags & ALLOC_WMARK_MIN)
887 				mark = (*z)->pages_min;
888 			else if (alloc_flags & ALLOC_WMARK_LOW)
889 				mark = (*z)->pages_low;
890 			else
891 				mark = (*z)->pages_high;
892 			if (!zone_watermark_ok(*z, order, mark,
893 				    classzone_idx, alloc_flags))
894 				if (!zone_reclaim_mode ||
895 				    !zone_reclaim(*z, gfp_mask, order))
896 					continue;
897 		}
898 
899 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
900 		if (page) {
901 			break;
902 		}
903 	} while (*(++z) != NULL);
904 	return page;
905 }
906 
907 /*
908  * This is the 'heart' of the zoned buddy allocator.
909  */
910 struct page * fastcall
911 __alloc_pages(gfp_t gfp_mask, unsigned int order,
912 		struct zonelist *zonelist)
913 {
914 	const gfp_t wait = gfp_mask & __GFP_WAIT;
915 	struct zone **z;
916 	struct page *page;
917 	struct reclaim_state reclaim_state;
918 	struct task_struct *p = current;
919 	int do_retry;
920 	int alloc_flags;
921 	int did_some_progress;
922 
923 	might_sleep_if(wait);
924 
925 restart:
926 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
927 
928 	if (unlikely(*z == NULL)) {
929 		/* Should this ever happen?? */
930 		return NULL;
931 	}
932 
933 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
934 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
935 	if (page)
936 		goto got_pg;
937 
938 	do {
939 		wakeup_kswapd(*z, order);
940 	} while (*(++z));
941 
942 	/*
943 	 * OK, we're below the kswapd watermark and have kicked background
944 	 * reclaim. Now things get more complex, so set up alloc_flags according
945 	 * to how we want to proceed.
946 	 *
947 	 * The caller may dip into page reserves a bit more if the caller
948 	 * cannot run direct reclaim, or if the caller has realtime scheduling
949 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
950 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
951 	 */
952 	alloc_flags = ALLOC_WMARK_MIN;
953 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
954 		alloc_flags |= ALLOC_HARDER;
955 	if (gfp_mask & __GFP_HIGH)
956 		alloc_flags |= ALLOC_HIGH;
957 	if (wait)
958 		alloc_flags |= ALLOC_CPUSET;
959 
960 	/*
961 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
962 	 * coming from realtime tasks go deeper into reserves.
963 	 *
964 	 * This is the last chance, in general, before the goto nopage.
965 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
966 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
967 	 */
968 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
969 	if (page)
970 		goto got_pg;
971 
972 	/* This allocation should allow future memory freeing. */
973 
974 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
975 			&& !in_interrupt()) {
976 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
977 nofail_alloc:
978 			/* go through the zonelist yet again, ignoring mins */
979 			page = get_page_from_freelist(gfp_mask, order,
980 				zonelist, ALLOC_NO_WATERMARKS);
981 			if (page)
982 				goto got_pg;
983 			if (gfp_mask & __GFP_NOFAIL) {
984 				blk_congestion_wait(WRITE, HZ/50);
985 				goto nofail_alloc;
986 			}
987 		}
988 		goto nopage;
989 	}
990 
991 	/* Atomic allocations - we can't balance anything */
992 	if (!wait)
993 		goto nopage;
994 
995 rebalance:
996 	cond_resched();
997 
998 	/* We now go into synchronous reclaim */
999 	cpuset_memory_pressure_bump();
1000 	p->flags |= PF_MEMALLOC;
1001 	reclaim_state.reclaimed_slab = 0;
1002 	p->reclaim_state = &reclaim_state;
1003 
1004 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1005 
1006 	p->reclaim_state = NULL;
1007 	p->flags &= ~PF_MEMALLOC;
1008 
1009 	cond_resched();
1010 
1011 	if (likely(did_some_progress)) {
1012 		page = get_page_from_freelist(gfp_mask, order,
1013 						zonelist, alloc_flags);
1014 		if (page)
1015 			goto got_pg;
1016 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1017 		/*
1018 		 * Go through the zonelist yet one more time, keep
1019 		 * very high watermark here, this is only to catch
1020 		 * a parallel oom killing, we must fail if we're still
1021 		 * under heavy pressure.
1022 		 */
1023 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1024 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1025 		if (page)
1026 			goto got_pg;
1027 
1028 		out_of_memory(zonelist, gfp_mask, order);
1029 		goto restart;
1030 	}
1031 
1032 	/*
1033 	 * Don't let big-order allocations loop unless the caller explicitly
1034 	 * requests that.  Wait for some write requests to complete then retry.
1035 	 *
1036 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1037 	 * <= 3, but that may not be true in other implementations.
1038 	 */
1039 	do_retry = 0;
1040 	if (!(gfp_mask & __GFP_NORETRY)) {
1041 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1042 			do_retry = 1;
1043 		if (gfp_mask & __GFP_NOFAIL)
1044 			do_retry = 1;
1045 	}
1046 	if (do_retry) {
1047 		blk_congestion_wait(WRITE, HZ/50);
1048 		goto rebalance;
1049 	}
1050 
1051 nopage:
1052 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1053 		printk(KERN_WARNING "%s: page allocation failure."
1054 			" order:%d, mode:0x%x\n",
1055 			p->comm, order, gfp_mask);
1056 		dump_stack();
1057 		show_mem();
1058 	}
1059 got_pg:
1060 	return page;
1061 }
1062 
1063 EXPORT_SYMBOL(__alloc_pages);
1064 
1065 /*
1066  * Common helper functions.
1067  */
1068 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1069 {
1070 	struct page * page;
1071 	page = alloc_pages(gfp_mask, order);
1072 	if (!page)
1073 		return 0;
1074 	return (unsigned long) page_address(page);
1075 }
1076 
1077 EXPORT_SYMBOL(__get_free_pages);
1078 
1079 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1080 {
1081 	struct page * page;
1082 
1083 	/*
1084 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1085 	 * a highmem page
1086 	 */
1087 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1088 
1089 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1090 	if (page)
1091 		return (unsigned long) page_address(page);
1092 	return 0;
1093 }
1094 
1095 EXPORT_SYMBOL(get_zeroed_page);
1096 
1097 void __pagevec_free(struct pagevec *pvec)
1098 {
1099 	int i = pagevec_count(pvec);
1100 
1101 	while (--i >= 0)
1102 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1103 }
1104 
1105 fastcall void __free_pages(struct page *page, unsigned int order)
1106 {
1107 	if (put_page_testzero(page)) {
1108 		if (order == 0)
1109 			free_hot_page(page);
1110 		else
1111 			__free_pages_ok(page, order);
1112 	}
1113 }
1114 
1115 EXPORT_SYMBOL(__free_pages);
1116 
1117 fastcall void free_pages(unsigned long addr, unsigned int order)
1118 {
1119 	if (addr != 0) {
1120 		BUG_ON(!virt_addr_valid((void *)addr));
1121 		__free_pages(virt_to_page((void *)addr), order);
1122 	}
1123 }
1124 
1125 EXPORT_SYMBOL(free_pages);
1126 
1127 /*
1128  * Total amount of free (allocatable) RAM:
1129  */
1130 unsigned int nr_free_pages(void)
1131 {
1132 	unsigned int sum = 0;
1133 	struct zone *zone;
1134 
1135 	for_each_zone(zone)
1136 		sum += zone->free_pages;
1137 
1138 	return sum;
1139 }
1140 
1141 EXPORT_SYMBOL(nr_free_pages);
1142 
1143 #ifdef CONFIG_NUMA
1144 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1145 {
1146 	unsigned int i, sum = 0;
1147 
1148 	for (i = 0; i < MAX_NR_ZONES; i++)
1149 		sum += pgdat->node_zones[i].free_pages;
1150 
1151 	return sum;
1152 }
1153 #endif
1154 
1155 static unsigned int nr_free_zone_pages(int offset)
1156 {
1157 	/* Just pick one node, since fallback list is circular */
1158 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1159 	unsigned int sum = 0;
1160 
1161 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1162 	struct zone **zonep = zonelist->zones;
1163 	struct zone *zone;
1164 
1165 	for (zone = *zonep++; zone; zone = *zonep++) {
1166 		unsigned long size = zone->present_pages;
1167 		unsigned long high = zone->pages_high;
1168 		if (size > high)
1169 			sum += size - high;
1170 	}
1171 
1172 	return sum;
1173 }
1174 
1175 /*
1176  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1177  */
1178 unsigned int nr_free_buffer_pages(void)
1179 {
1180 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1181 }
1182 
1183 /*
1184  * Amount of free RAM allocatable within all zones
1185  */
1186 unsigned int nr_free_pagecache_pages(void)
1187 {
1188 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1189 }
1190 
1191 #ifdef CONFIG_HIGHMEM
1192 unsigned int nr_free_highpages (void)
1193 {
1194 	pg_data_t *pgdat;
1195 	unsigned int pages = 0;
1196 
1197 	for_each_online_pgdat(pgdat)
1198 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1199 
1200 	return pages;
1201 }
1202 #endif
1203 
1204 #ifdef CONFIG_NUMA
1205 static void show_node(struct zone *zone)
1206 {
1207 	printk("Node %d ", zone->zone_pgdat->node_id);
1208 }
1209 #else
1210 #define show_node(zone)	do { } while (0)
1211 #endif
1212 
1213 void si_meminfo(struct sysinfo *val)
1214 {
1215 	val->totalram = totalram_pages;
1216 	val->sharedram = 0;
1217 	val->freeram = nr_free_pages();
1218 	val->bufferram = nr_blockdev_pages();
1219 #ifdef CONFIG_HIGHMEM
1220 	val->totalhigh = totalhigh_pages;
1221 	val->freehigh = nr_free_highpages();
1222 #else
1223 	val->totalhigh = 0;
1224 	val->freehigh = 0;
1225 #endif
1226 	val->mem_unit = PAGE_SIZE;
1227 }
1228 
1229 EXPORT_SYMBOL(si_meminfo);
1230 
1231 #ifdef CONFIG_NUMA
1232 void si_meminfo_node(struct sysinfo *val, int nid)
1233 {
1234 	pg_data_t *pgdat = NODE_DATA(nid);
1235 
1236 	val->totalram = pgdat->node_present_pages;
1237 	val->freeram = nr_free_pages_pgdat(pgdat);
1238 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1239 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1240 	val->mem_unit = PAGE_SIZE;
1241 }
1242 #endif
1243 
1244 #define K(x) ((x) << (PAGE_SHIFT-10))
1245 
1246 /*
1247  * Show free area list (used inside shift_scroll-lock stuff)
1248  * We also calculate the percentage fragmentation. We do this by counting the
1249  * memory on each free list with the exception of the first item on the list.
1250  */
1251 void show_free_areas(void)
1252 {
1253 	int cpu, temperature;
1254 	unsigned long active;
1255 	unsigned long inactive;
1256 	unsigned long free;
1257 	struct zone *zone;
1258 
1259 	for_each_zone(zone) {
1260 		show_node(zone);
1261 		printk("%s per-cpu:", zone->name);
1262 
1263 		if (!populated_zone(zone)) {
1264 			printk(" empty\n");
1265 			continue;
1266 		} else
1267 			printk("\n");
1268 
1269 		for_each_online_cpu(cpu) {
1270 			struct per_cpu_pageset *pageset;
1271 
1272 			pageset = zone_pcp(zone, cpu);
1273 
1274 			for (temperature = 0; temperature < 2; temperature++)
1275 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1276 					cpu,
1277 					temperature ? "cold" : "hot",
1278 					pageset->pcp[temperature].high,
1279 					pageset->pcp[temperature].batch,
1280 					pageset->pcp[temperature].count);
1281 		}
1282 	}
1283 
1284 	get_zone_counts(&active, &inactive, &free);
1285 
1286 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1287 		K(nr_free_pages()),
1288 		K(nr_free_highpages()));
1289 
1290 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1291 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1292 		active,
1293 		inactive,
1294 		global_page_state(NR_FILE_DIRTY),
1295 		global_page_state(NR_WRITEBACK),
1296 		global_page_state(NR_UNSTABLE_NFS),
1297 		nr_free_pages(),
1298 		global_page_state(NR_SLAB),
1299 		global_page_state(NR_FILE_MAPPED),
1300 		global_page_state(NR_PAGETABLE));
1301 
1302 	for_each_zone(zone) {
1303 		int i;
1304 
1305 		show_node(zone);
1306 		printk("%s"
1307 			" free:%lukB"
1308 			" min:%lukB"
1309 			" low:%lukB"
1310 			" high:%lukB"
1311 			" active:%lukB"
1312 			" inactive:%lukB"
1313 			" present:%lukB"
1314 			" pages_scanned:%lu"
1315 			" all_unreclaimable? %s"
1316 			"\n",
1317 			zone->name,
1318 			K(zone->free_pages),
1319 			K(zone->pages_min),
1320 			K(zone->pages_low),
1321 			K(zone->pages_high),
1322 			K(zone->nr_active),
1323 			K(zone->nr_inactive),
1324 			K(zone->present_pages),
1325 			zone->pages_scanned,
1326 			(zone->all_unreclaimable ? "yes" : "no")
1327 			);
1328 		printk("lowmem_reserve[]:");
1329 		for (i = 0; i < MAX_NR_ZONES; i++)
1330 			printk(" %lu", zone->lowmem_reserve[i]);
1331 		printk("\n");
1332 	}
1333 
1334 	for_each_zone(zone) {
1335  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1336 
1337 		show_node(zone);
1338 		printk("%s: ", zone->name);
1339 		if (!populated_zone(zone)) {
1340 			printk("empty\n");
1341 			continue;
1342 		}
1343 
1344 		spin_lock_irqsave(&zone->lock, flags);
1345 		for (order = 0; order < MAX_ORDER; order++) {
1346 			nr[order] = zone->free_area[order].nr_free;
1347 			total += nr[order] << order;
1348 		}
1349 		spin_unlock_irqrestore(&zone->lock, flags);
1350 		for (order = 0; order < MAX_ORDER; order++)
1351 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1352 		printk("= %lukB\n", K(total));
1353 	}
1354 
1355 	show_swap_cache_info();
1356 }
1357 
1358 /*
1359  * Builds allocation fallback zone lists.
1360  *
1361  * Add all populated zones of a node to the zonelist.
1362  */
1363 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1364 			struct zonelist *zonelist, int nr_zones, int zone_type)
1365 {
1366 	struct zone *zone;
1367 
1368 	BUG_ON(zone_type > ZONE_HIGHMEM);
1369 
1370 	do {
1371 		zone = pgdat->node_zones + zone_type;
1372 		if (populated_zone(zone)) {
1373 #ifndef CONFIG_HIGHMEM
1374 			BUG_ON(zone_type > ZONE_NORMAL);
1375 #endif
1376 			zonelist->zones[nr_zones++] = zone;
1377 			check_highest_zone(zone_type);
1378 		}
1379 		zone_type--;
1380 
1381 	} while (zone_type >= 0);
1382 	return nr_zones;
1383 }
1384 
1385 static inline int highest_zone(int zone_bits)
1386 {
1387 	int res = ZONE_NORMAL;
1388 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1389 		res = ZONE_HIGHMEM;
1390 	if (zone_bits & (__force int)__GFP_DMA32)
1391 		res = ZONE_DMA32;
1392 	if (zone_bits & (__force int)__GFP_DMA)
1393 		res = ZONE_DMA;
1394 	return res;
1395 }
1396 
1397 #ifdef CONFIG_NUMA
1398 #define MAX_NODE_LOAD (num_online_nodes())
1399 static int __meminitdata node_load[MAX_NUMNODES];
1400 /**
1401  * find_next_best_node - find the next node that should appear in a given node's fallback list
1402  * @node: node whose fallback list we're appending
1403  * @used_node_mask: nodemask_t of already used nodes
1404  *
1405  * We use a number of factors to determine which is the next node that should
1406  * appear on a given node's fallback list.  The node should not have appeared
1407  * already in @node's fallback list, and it should be the next closest node
1408  * according to the distance array (which contains arbitrary distance values
1409  * from each node to each node in the system), and should also prefer nodes
1410  * with no CPUs, since presumably they'll have very little allocation pressure
1411  * on them otherwise.
1412  * It returns -1 if no node is found.
1413  */
1414 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1415 {
1416 	int n, val;
1417 	int min_val = INT_MAX;
1418 	int best_node = -1;
1419 
1420 	/* Use the local node if we haven't already */
1421 	if (!node_isset(node, *used_node_mask)) {
1422 		node_set(node, *used_node_mask);
1423 		return node;
1424 	}
1425 
1426 	for_each_online_node(n) {
1427 		cpumask_t tmp;
1428 
1429 		/* Don't want a node to appear more than once */
1430 		if (node_isset(n, *used_node_mask))
1431 			continue;
1432 
1433 		/* Use the distance array to find the distance */
1434 		val = node_distance(node, n);
1435 
1436 		/* Penalize nodes under us ("prefer the next node") */
1437 		val += (n < node);
1438 
1439 		/* Give preference to headless and unused nodes */
1440 		tmp = node_to_cpumask(n);
1441 		if (!cpus_empty(tmp))
1442 			val += PENALTY_FOR_NODE_WITH_CPUS;
1443 
1444 		/* Slight preference for less loaded node */
1445 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1446 		val += node_load[n];
1447 
1448 		if (val < min_val) {
1449 			min_val = val;
1450 			best_node = n;
1451 		}
1452 	}
1453 
1454 	if (best_node >= 0)
1455 		node_set(best_node, *used_node_mask);
1456 
1457 	return best_node;
1458 }
1459 
1460 static void __meminit build_zonelists(pg_data_t *pgdat)
1461 {
1462 	int i, j, k, node, local_node;
1463 	int prev_node, load;
1464 	struct zonelist *zonelist;
1465 	nodemask_t used_mask;
1466 
1467 	/* initialize zonelists */
1468 	for (i = 0; i < GFP_ZONETYPES; i++) {
1469 		zonelist = pgdat->node_zonelists + i;
1470 		zonelist->zones[0] = NULL;
1471 	}
1472 
1473 	/* NUMA-aware ordering of nodes */
1474 	local_node = pgdat->node_id;
1475 	load = num_online_nodes();
1476 	prev_node = local_node;
1477 	nodes_clear(used_mask);
1478 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1479 		int distance = node_distance(local_node, node);
1480 
1481 		/*
1482 		 * If another node is sufficiently far away then it is better
1483 		 * to reclaim pages in a zone before going off node.
1484 		 */
1485 		if (distance > RECLAIM_DISTANCE)
1486 			zone_reclaim_mode = 1;
1487 
1488 		/*
1489 		 * We don't want to pressure a particular node.
1490 		 * So adding penalty to the first node in same
1491 		 * distance group to make it round-robin.
1492 		 */
1493 
1494 		if (distance != node_distance(local_node, prev_node))
1495 			node_load[node] += load;
1496 		prev_node = node;
1497 		load--;
1498 		for (i = 0; i < GFP_ZONETYPES; i++) {
1499 			zonelist = pgdat->node_zonelists + i;
1500 			for (j = 0; zonelist->zones[j] != NULL; j++);
1501 
1502 			k = highest_zone(i);
1503 
1504 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1505 			zonelist->zones[j] = NULL;
1506 		}
1507 	}
1508 }
1509 
1510 #else	/* CONFIG_NUMA */
1511 
1512 static void __meminit build_zonelists(pg_data_t *pgdat)
1513 {
1514 	int i, j, k, node, local_node;
1515 
1516 	local_node = pgdat->node_id;
1517 	for (i = 0; i < GFP_ZONETYPES; i++) {
1518 		struct zonelist *zonelist;
1519 
1520 		zonelist = pgdat->node_zonelists + i;
1521 
1522 		j = 0;
1523 		k = highest_zone(i);
1524  		j = build_zonelists_node(pgdat, zonelist, j, k);
1525  		/*
1526  		 * Now we build the zonelist so that it contains the zones
1527  		 * of all the other nodes.
1528  		 * We don't want to pressure a particular node, so when
1529  		 * building the zones for node N, we make sure that the
1530  		 * zones coming right after the local ones are those from
1531  		 * node N+1 (modulo N)
1532  		 */
1533 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1534 			if (!node_online(node))
1535 				continue;
1536 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1537 		}
1538 		for (node = 0; node < local_node; node++) {
1539 			if (!node_online(node))
1540 				continue;
1541 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1542 		}
1543 
1544 		zonelist->zones[j] = NULL;
1545 	}
1546 }
1547 
1548 #endif	/* CONFIG_NUMA */
1549 
1550 /* return values int ....just for stop_machine_run() */
1551 static int __meminit __build_all_zonelists(void *dummy)
1552 {
1553 	int nid;
1554 	for_each_online_node(nid)
1555 		build_zonelists(NODE_DATA(nid));
1556 	return 0;
1557 }
1558 
1559 void __meminit build_all_zonelists(void)
1560 {
1561 	if (system_state == SYSTEM_BOOTING) {
1562 		__build_all_zonelists(0);
1563 		cpuset_init_current_mems_allowed();
1564 	} else {
1565 		/* we have to stop all cpus to guaranntee there is no user
1566 		   of zonelist */
1567 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1568 		/* cpuset refresh routine should be here */
1569 	}
1570 	vm_total_pages = nr_free_pagecache_pages();
1571 	printk("Built %i zonelists.  Total pages: %ld\n",
1572 			num_online_nodes(), vm_total_pages);
1573 }
1574 
1575 /*
1576  * Helper functions to size the waitqueue hash table.
1577  * Essentially these want to choose hash table sizes sufficiently
1578  * large so that collisions trying to wait on pages are rare.
1579  * But in fact, the number of active page waitqueues on typical
1580  * systems is ridiculously low, less than 200. So this is even
1581  * conservative, even though it seems large.
1582  *
1583  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1584  * waitqueues, i.e. the size of the waitq table given the number of pages.
1585  */
1586 #define PAGES_PER_WAITQUEUE	256
1587 
1588 #ifndef CONFIG_MEMORY_HOTPLUG
1589 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1590 {
1591 	unsigned long size = 1;
1592 
1593 	pages /= PAGES_PER_WAITQUEUE;
1594 
1595 	while (size < pages)
1596 		size <<= 1;
1597 
1598 	/*
1599 	 * Once we have dozens or even hundreds of threads sleeping
1600 	 * on IO we've got bigger problems than wait queue collision.
1601 	 * Limit the size of the wait table to a reasonable size.
1602 	 */
1603 	size = min(size, 4096UL);
1604 
1605 	return max(size, 4UL);
1606 }
1607 #else
1608 /*
1609  * A zone's size might be changed by hot-add, so it is not possible to determine
1610  * a suitable size for its wait_table.  So we use the maximum size now.
1611  *
1612  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1613  *
1614  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1615  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1616  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1617  *
1618  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1619  * or more by the traditional way. (See above).  It equals:
1620  *
1621  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1622  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1623  *    powerpc (64K page size)             : =  (32G +16M)byte.
1624  */
1625 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1626 {
1627 	return 4096UL;
1628 }
1629 #endif
1630 
1631 /*
1632  * This is an integer logarithm so that shifts can be used later
1633  * to extract the more random high bits from the multiplicative
1634  * hash function before the remainder is taken.
1635  */
1636 static inline unsigned long wait_table_bits(unsigned long size)
1637 {
1638 	return ffz(~size);
1639 }
1640 
1641 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1642 
1643 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1644 		unsigned long *zones_size, unsigned long *zholes_size)
1645 {
1646 	unsigned long realtotalpages, totalpages = 0;
1647 	int i;
1648 
1649 	for (i = 0; i < MAX_NR_ZONES; i++)
1650 		totalpages += zones_size[i];
1651 	pgdat->node_spanned_pages = totalpages;
1652 
1653 	realtotalpages = totalpages;
1654 	if (zholes_size)
1655 		for (i = 0; i < MAX_NR_ZONES; i++)
1656 			realtotalpages -= zholes_size[i];
1657 	pgdat->node_present_pages = realtotalpages;
1658 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1659 }
1660 
1661 
1662 /*
1663  * Initially all pages are reserved - free ones are freed
1664  * up by free_all_bootmem() once the early boot process is
1665  * done. Non-atomic initialization, single-pass.
1666  */
1667 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1668 		unsigned long start_pfn)
1669 {
1670 	struct page *page;
1671 	unsigned long end_pfn = start_pfn + size;
1672 	unsigned long pfn;
1673 
1674 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1675 		if (!early_pfn_valid(pfn))
1676 			continue;
1677 		page = pfn_to_page(pfn);
1678 		set_page_links(page, zone, nid, pfn);
1679 		init_page_count(page);
1680 		reset_page_mapcount(page);
1681 		SetPageReserved(page);
1682 		INIT_LIST_HEAD(&page->lru);
1683 #ifdef WANT_PAGE_VIRTUAL
1684 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1685 		if (!is_highmem_idx(zone))
1686 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1687 #endif
1688 	}
1689 }
1690 
1691 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1692 				unsigned long size)
1693 {
1694 	int order;
1695 	for (order = 0; order < MAX_ORDER ; order++) {
1696 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1697 		zone->free_area[order].nr_free = 0;
1698 	}
1699 }
1700 
1701 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1702 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1703 		unsigned long size)
1704 {
1705 	unsigned long snum = pfn_to_section_nr(pfn);
1706 	unsigned long end = pfn_to_section_nr(pfn + size);
1707 
1708 	if (FLAGS_HAS_NODE)
1709 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1710 	else
1711 		for (; snum <= end; snum++)
1712 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1713 }
1714 
1715 #ifndef __HAVE_ARCH_MEMMAP_INIT
1716 #define memmap_init(size, nid, zone, start_pfn) \
1717 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1718 #endif
1719 
1720 static int __cpuinit zone_batchsize(struct zone *zone)
1721 {
1722 	int batch;
1723 
1724 	/*
1725 	 * The per-cpu-pages pools are set to around 1000th of the
1726 	 * size of the zone.  But no more than 1/2 of a meg.
1727 	 *
1728 	 * OK, so we don't know how big the cache is.  So guess.
1729 	 */
1730 	batch = zone->present_pages / 1024;
1731 	if (batch * PAGE_SIZE > 512 * 1024)
1732 		batch = (512 * 1024) / PAGE_SIZE;
1733 	batch /= 4;		/* We effectively *= 4 below */
1734 	if (batch < 1)
1735 		batch = 1;
1736 
1737 	/*
1738 	 * Clamp the batch to a 2^n - 1 value. Having a power
1739 	 * of 2 value was found to be more likely to have
1740 	 * suboptimal cache aliasing properties in some cases.
1741 	 *
1742 	 * For example if 2 tasks are alternately allocating
1743 	 * batches of pages, one task can end up with a lot
1744 	 * of pages of one half of the possible page colors
1745 	 * and the other with pages of the other colors.
1746 	 */
1747 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1748 
1749 	return batch;
1750 }
1751 
1752 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1753 {
1754 	struct per_cpu_pages *pcp;
1755 
1756 	memset(p, 0, sizeof(*p));
1757 
1758 	pcp = &p->pcp[0];		/* hot */
1759 	pcp->count = 0;
1760 	pcp->high = 6 * batch;
1761 	pcp->batch = max(1UL, 1 * batch);
1762 	INIT_LIST_HEAD(&pcp->list);
1763 
1764 	pcp = &p->pcp[1];		/* cold*/
1765 	pcp->count = 0;
1766 	pcp->high = 2 * batch;
1767 	pcp->batch = max(1UL, batch/2);
1768 	INIT_LIST_HEAD(&pcp->list);
1769 }
1770 
1771 /*
1772  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1773  * to the value high for the pageset p.
1774  */
1775 
1776 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1777 				unsigned long high)
1778 {
1779 	struct per_cpu_pages *pcp;
1780 
1781 	pcp = &p->pcp[0]; /* hot list */
1782 	pcp->high = high;
1783 	pcp->batch = max(1UL, high/4);
1784 	if ((high/4) > (PAGE_SHIFT * 8))
1785 		pcp->batch = PAGE_SHIFT * 8;
1786 }
1787 
1788 
1789 #ifdef CONFIG_NUMA
1790 /*
1791  * Boot pageset table. One per cpu which is going to be used for all
1792  * zones and all nodes. The parameters will be set in such a way
1793  * that an item put on a list will immediately be handed over to
1794  * the buddy list. This is safe since pageset manipulation is done
1795  * with interrupts disabled.
1796  *
1797  * Some NUMA counter updates may also be caught by the boot pagesets.
1798  *
1799  * The boot_pagesets must be kept even after bootup is complete for
1800  * unused processors and/or zones. They do play a role for bootstrapping
1801  * hotplugged processors.
1802  *
1803  * zoneinfo_show() and maybe other functions do
1804  * not check if the processor is online before following the pageset pointer.
1805  * Other parts of the kernel may not check if the zone is available.
1806  */
1807 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1808 
1809 /*
1810  * Dynamically allocate memory for the
1811  * per cpu pageset array in struct zone.
1812  */
1813 static int __cpuinit process_zones(int cpu)
1814 {
1815 	struct zone *zone, *dzone;
1816 
1817 	for_each_zone(zone) {
1818 
1819 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1820 					 GFP_KERNEL, cpu_to_node(cpu));
1821 		if (!zone_pcp(zone, cpu))
1822 			goto bad;
1823 
1824 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1825 
1826 		if (percpu_pagelist_fraction)
1827 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1828 			 	(zone->present_pages / percpu_pagelist_fraction));
1829 	}
1830 
1831 	return 0;
1832 bad:
1833 	for_each_zone(dzone) {
1834 		if (dzone == zone)
1835 			break;
1836 		kfree(zone_pcp(dzone, cpu));
1837 		zone_pcp(dzone, cpu) = NULL;
1838 	}
1839 	return -ENOMEM;
1840 }
1841 
1842 static inline void free_zone_pagesets(int cpu)
1843 {
1844 	struct zone *zone;
1845 
1846 	for_each_zone(zone) {
1847 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1848 
1849 		zone_pcp(zone, cpu) = NULL;
1850 		kfree(pset);
1851 	}
1852 }
1853 
1854 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1855 		unsigned long action,
1856 		void *hcpu)
1857 {
1858 	int cpu = (long)hcpu;
1859 	int ret = NOTIFY_OK;
1860 
1861 	switch (action) {
1862 		case CPU_UP_PREPARE:
1863 			if (process_zones(cpu))
1864 				ret = NOTIFY_BAD;
1865 			break;
1866 		case CPU_UP_CANCELED:
1867 		case CPU_DEAD:
1868 			free_zone_pagesets(cpu);
1869 			break;
1870 		default:
1871 			break;
1872 	}
1873 	return ret;
1874 }
1875 
1876 static struct notifier_block __cpuinitdata pageset_notifier =
1877 	{ &pageset_cpuup_callback, NULL, 0 };
1878 
1879 void __init setup_per_cpu_pageset(void)
1880 {
1881 	int err;
1882 
1883 	/* Initialize per_cpu_pageset for cpu 0.
1884 	 * A cpuup callback will do this for every cpu
1885 	 * as it comes online
1886 	 */
1887 	err = process_zones(smp_processor_id());
1888 	BUG_ON(err);
1889 	register_cpu_notifier(&pageset_notifier);
1890 }
1891 
1892 #endif
1893 
1894 static __meminit
1895 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1896 {
1897 	int i;
1898 	struct pglist_data *pgdat = zone->zone_pgdat;
1899 	size_t alloc_size;
1900 
1901 	/*
1902 	 * The per-page waitqueue mechanism uses hashed waitqueues
1903 	 * per zone.
1904 	 */
1905 	zone->wait_table_hash_nr_entries =
1906 		 wait_table_hash_nr_entries(zone_size_pages);
1907 	zone->wait_table_bits =
1908 		wait_table_bits(zone->wait_table_hash_nr_entries);
1909 	alloc_size = zone->wait_table_hash_nr_entries
1910 					* sizeof(wait_queue_head_t);
1911 
1912  	if (system_state == SYSTEM_BOOTING) {
1913 		zone->wait_table = (wait_queue_head_t *)
1914 			alloc_bootmem_node(pgdat, alloc_size);
1915 	} else {
1916 		/*
1917 		 * This case means that a zone whose size was 0 gets new memory
1918 		 * via memory hot-add.
1919 		 * But it may be the case that a new node was hot-added.  In
1920 		 * this case vmalloc() will not be able to use this new node's
1921 		 * memory - this wait_table must be initialized to use this new
1922 		 * node itself as well.
1923 		 * To use this new node's memory, further consideration will be
1924 		 * necessary.
1925 		 */
1926 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1927 	}
1928 	if (!zone->wait_table)
1929 		return -ENOMEM;
1930 
1931 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1932 		init_waitqueue_head(zone->wait_table + i);
1933 
1934 	return 0;
1935 }
1936 
1937 static __meminit void zone_pcp_init(struct zone *zone)
1938 {
1939 	int cpu;
1940 	unsigned long batch = zone_batchsize(zone);
1941 
1942 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1943 #ifdef CONFIG_NUMA
1944 		/* Early boot. Slab allocator not functional yet */
1945 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1946 		setup_pageset(&boot_pageset[cpu],0);
1947 #else
1948 		setup_pageset(zone_pcp(zone,cpu), batch);
1949 #endif
1950 	}
1951 	if (zone->present_pages)
1952 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1953 			zone->name, zone->present_pages, batch);
1954 }
1955 
1956 __meminit int init_currently_empty_zone(struct zone *zone,
1957 					unsigned long zone_start_pfn,
1958 					unsigned long size)
1959 {
1960 	struct pglist_data *pgdat = zone->zone_pgdat;
1961 	int ret;
1962 	ret = zone_wait_table_init(zone, size);
1963 	if (ret)
1964 		return ret;
1965 	pgdat->nr_zones = zone_idx(zone) + 1;
1966 
1967 	zone->zone_start_pfn = zone_start_pfn;
1968 
1969 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1970 
1971 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1972 
1973 	return 0;
1974 }
1975 
1976 /*
1977  * Set up the zone data structures:
1978  *   - mark all pages reserved
1979  *   - mark all memory queues empty
1980  *   - clear the memory bitmaps
1981  */
1982 static void __meminit free_area_init_core(struct pglist_data *pgdat,
1983 		unsigned long *zones_size, unsigned long *zholes_size)
1984 {
1985 	unsigned long j;
1986 	int nid = pgdat->node_id;
1987 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1988 	int ret;
1989 
1990 	pgdat_resize_init(pgdat);
1991 	pgdat->nr_zones = 0;
1992 	init_waitqueue_head(&pgdat->kswapd_wait);
1993 	pgdat->kswapd_max_order = 0;
1994 
1995 	for (j = 0; j < MAX_NR_ZONES; j++) {
1996 		struct zone *zone = pgdat->node_zones + j;
1997 		unsigned long size, realsize;
1998 
1999 		realsize = size = zones_size[j];
2000 		if (zholes_size)
2001 			realsize -= zholes_size[j];
2002 
2003 		if (j < ZONE_HIGHMEM)
2004 			nr_kernel_pages += realsize;
2005 		nr_all_pages += realsize;
2006 
2007 		zone->spanned_pages = size;
2008 		zone->present_pages = realsize;
2009 		zone->name = zone_names[j];
2010 		spin_lock_init(&zone->lock);
2011 		spin_lock_init(&zone->lru_lock);
2012 		zone_seqlock_init(zone);
2013 		zone->zone_pgdat = pgdat;
2014 		zone->free_pages = 0;
2015 
2016 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2017 
2018 		zone_pcp_init(zone);
2019 		INIT_LIST_HEAD(&zone->active_list);
2020 		INIT_LIST_HEAD(&zone->inactive_list);
2021 		zone->nr_scan_active = 0;
2022 		zone->nr_scan_inactive = 0;
2023 		zone->nr_active = 0;
2024 		zone->nr_inactive = 0;
2025 		zap_zone_vm_stats(zone);
2026 		atomic_set(&zone->reclaim_in_progress, 0);
2027 		if (!size)
2028 			continue;
2029 
2030 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2031 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2032 		BUG_ON(ret);
2033 		zone_start_pfn += size;
2034 	}
2035 }
2036 
2037 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2038 {
2039 	/* Skip empty nodes */
2040 	if (!pgdat->node_spanned_pages)
2041 		return;
2042 
2043 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2044 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2045 	if (!pgdat->node_mem_map) {
2046 		unsigned long size, start, end;
2047 		struct page *map;
2048 
2049 		/*
2050 		 * The zone's endpoints aren't required to be MAX_ORDER
2051 		 * aligned but the node_mem_map endpoints must be in order
2052 		 * for the buddy allocator to function correctly.
2053 		 */
2054 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2055 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2056 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2057 		size =  (end - start) * sizeof(struct page);
2058 		map = alloc_remap(pgdat->node_id, size);
2059 		if (!map)
2060 			map = alloc_bootmem_node(pgdat, size);
2061 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2062 	}
2063 #ifdef CONFIG_FLATMEM
2064 	/*
2065 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2066 	 */
2067 	if (pgdat == NODE_DATA(0))
2068 		mem_map = NODE_DATA(0)->node_mem_map;
2069 #endif
2070 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2071 }
2072 
2073 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2074 		unsigned long *zones_size, unsigned long node_start_pfn,
2075 		unsigned long *zholes_size)
2076 {
2077 	pgdat->node_id = nid;
2078 	pgdat->node_start_pfn = node_start_pfn;
2079 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2080 
2081 	alloc_node_mem_map(pgdat);
2082 
2083 	free_area_init_core(pgdat, zones_size, zholes_size);
2084 }
2085 
2086 #ifndef CONFIG_NEED_MULTIPLE_NODES
2087 static bootmem_data_t contig_bootmem_data;
2088 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2089 
2090 EXPORT_SYMBOL(contig_page_data);
2091 #endif
2092 
2093 void __init free_area_init(unsigned long *zones_size)
2094 {
2095 	free_area_init_node(0, NODE_DATA(0), zones_size,
2096 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2097 }
2098 
2099 #ifdef CONFIG_HOTPLUG_CPU
2100 static int page_alloc_cpu_notify(struct notifier_block *self,
2101 				 unsigned long action, void *hcpu)
2102 {
2103 	int cpu = (unsigned long)hcpu;
2104 
2105 	if (action == CPU_DEAD) {
2106 		local_irq_disable();
2107 		__drain_pages(cpu);
2108 		vm_events_fold_cpu(cpu);
2109 		local_irq_enable();
2110 		refresh_cpu_vm_stats(cpu);
2111 	}
2112 	return NOTIFY_OK;
2113 }
2114 #endif /* CONFIG_HOTPLUG_CPU */
2115 
2116 void __init page_alloc_init(void)
2117 {
2118 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2119 }
2120 
2121 /*
2122  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2123  *	or min_free_kbytes changes.
2124  */
2125 static void calculate_totalreserve_pages(void)
2126 {
2127 	struct pglist_data *pgdat;
2128 	unsigned long reserve_pages = 0;
2129 	int i, j;
2130 
2131 	for_each_online_pgdat(pgdat) {
2132 		for (i = 0; i < MAX_NR_ZONES; i++) {
2133 			struct zone *zone = pgdat->node_zones + i;
2134 			unsigned long max = 0;
2135 
2136 			/* Find valid and maximum lowmem_reserve in the zone */
2137 			for (j = i; j < MAX_NR_ZONES; j++) {
2138 				if (zone->lowmem_reserve[j] > max)
2139 					max = zone->lowmem_reserve[j];
2140 			}
2141 
2142 			/* we treat pages_high as reserved pages. */
2143 			max += zone->pages_high;
2144 
2145 			if (max > zone->present_pages)
2146 				max = zone->present_pages;
2147 			reserve_pages += max;
2148 		}
2149 	}
2150 	totalreserve_pages = reserve_pages;
2151 }
2152 
2153 /*
2154  * setup_per_zone_lowmem_reserve - called whenever
2155  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2156  *	has a correct pages reserved value, so an adequate number of
2157  *	pages are left in the zone after a successful __alloc_pages().
2158  */
2159 static void setup_per_zone_lowmem_reserve(void)
2160 {
2161 	struct pglist_data *pgdat;
2162 	int j, idx;
2163 
2164 	for_each_online_pgdat(pgdat) {
2165 		for (j = 0; j < MAX_NR_ZONES; j++) {
2166 			struct zone *zone = pgdat->node_zones + j;
2167 			unsigned long present_pages = zone->present_pages;
2168 
2169 			zone->lowmem_reserve[j] = 0;
2170 
2171 			for (idx = j-1; idx >= 0; idx--) {
2172 				struct zone *lower_zone;
2173 
2174 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2175 					sysctl_lowmem_reserve_ratio[idx] = 1;
2176 
2177 				lower_zone = pgdat->node_zones + idx;
2178 				lower_zone->lowmem_reserve[j] = present_pages /
2179 					sysctl_lowmem_reserve_ratio[idx];
2180 				present_pages += lower_zone->present_pages;
2181 			}
2182 		}
2183 	}
2184 
2185 	/* update totalreserve_pages */
2186 	calculate_totalreserve_pages();
2187 }
2188 
2189 /*
2190  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2191  *	that the pages_{min,low,high} values for each zone are set correctly
2192  *	with respect to min_free_kbytes.
2193  */
2194 void setup_per_zone_pages_min(void)
2195 {
2196 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2197 	unsigned long lowmem_pages = 0;
2198 	struct zone *zone;
2199 	unsigned long flags;
2200 
2201 	/* Calculate total number of !ZONE_HIGHMEM pages */
2202 	for_each_zone(zone) {
2203 		if (!is_highmem(zone))
2204 			lowmem_pages += zone->present_pages;
2205 	}
2206 
2207 	for_each_zone(zone) {
2208 		u64 tmp;
2209 
2210 		spin_lock_irqsave(&zone->lru_lock, flags);
2211 		tmp = (u64)pages_min * zone->present_pages;
2212 		do_div(tmp, lowmem_pages);
2213 		if (is_highmem(zone)) {
2214 			/*
2215 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2216 			 * need highmem pages, so cap pages_min to a small
2217 			 * value here.
2218 			 *
2219 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2220 			 * deltas controls asynch page reclaim, and so should
2221 			 * not be capped for highmem.
2222 			 */
2223 			int min_pages;
2224 
2225 			min_pages = zone->present_pages / 1024;
2226 			if (min_pages < SWAP_CLUSTER_MAX)
2227 				min_pages = SWAP_CLUSTER_MAX;
2228 			if (min_pages > 128)
2229 				min_pages = 128;
2230 			zone->pages_min = min_pages;
2231 		} else {
2232 			/*
2233 			 * If it's a lowmem zone, reserve a number of pages
2234 			 * proportionate to the zone's size.
2235 			 */
2236 			zone->pages_min = tmp;
2237 		}
2238 
2239 		zone->pages_low   = zone->pages_min + (tmp >> 2);
2240 		zone->pages_high  = zone->pages_min + (tmp >> 1);
2241 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2242 	}
2243 
2244 	/* update totalreserve_pages */
2245 	calculate_totalreserve_pages();
2246 }
2247 
2248 /*
2249  * Initialise min_free_kbytes.
2250  *
2251  * For small machines we want it small (128k min).  For large machines
2252  * we want it large (64MB max).  But it is not linear, because network
2253  * bandwidth does not increase linearly with machine size.  We use
2254  *
2255  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2256  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2257  *
2258  * which yields
2259  *
2260  * 16MB:	512k
2261  * 32MB:	724k
2262  * 64MB:	1024k
2263  * 128MB:	1448k
2264  * 256MB:	2048k
2265  * 512MB:	2896k
2266  * 1024MB:	4096k
2267  * 2048MB:	5792k
2268  * 4096MB:	8192k
2269  * 8192MB:	11584k
2270  * 16384MB:	16384k
2271  */
2272 static int __init init_per_zone_pages_min(void)
2273 {
2274 	unsigned long lowmem_kbytes;
2275 
2276 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2277 
2278 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2279 	if (min_free_kbytes < 128)
2280 		min_free_kbytes = 128;
2281 	if (min_free_kbytes > 65536)
2282 		min_free_kbytes = 65536;
2283 	setup_per_zone_pages_min();
2284 	setup_per_zone_lowmem_reserve();
2285 	return 0;
2286 }
2287 module_init(init_per_zone_pages_min)
2288 
2289 /*
2290  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2291  *	that we can call two helper functions whenever min_free_kbytes
2292  *	changes.
2293  */
2294 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2295 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2296 {
2297 	proc_dointvec(table, write, file, buffer, length, ppos);
2298 	setup_per_zone_pages_min();
2299 	return 0;
2300 }
2301 
2302 /*
2303  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2304  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2305  *	whenever sysctl_lowmem_reserve_ratio changes.
2306  *
2307  * The reserve ratio obviously has absolutely no relation with the
2308  * pages_min watermarks. The lowmem reserve ratio can only make sense
2309  * if in function of the boot time zone sizes.
2310  */
2311 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2312 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2313 {
2314 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2315 	setup_per_zone_lowmem_reserve();
2316 	return 0;
2317 }
2318 
2319 /*
2320  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2321  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2322  * can have before it gets flushed back to buddy allocator.
2323  */
2324 
2325 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2326 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2327 {
2328 	struct zone *zone;
2329 	unsigned int cpu;
2330 	int ret;
2331 
2332 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2333 	if (!write || (ret == -EINVAL))
2334 		return ret;
2335 	for_each_zone(zone) {
2336 		for_each_online_cpu(cpu) {
2337 			unsigned long  high;
2338 			high = zone->present_pages / percpu_pagelist_fraction;
2339 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2340 		}
2341 	}
2342 	return 0;
2343 }
2344 
2345 __initdata int hashdist = HASHDIST_DEFAULT;
2346 
2347 #ifdef CONFIG_NUMA
2348 static int __init set_hashdist(char *str)
2349 {
2350 	if (!str)
2351 		return 0;
2352 	hashdist = simple_strtoul(str, &str, 0);
2353 	return 1;
2354 }
2355 __setup("hashdist=", set_hashdist);
2356 #endif
2357 
2358 /*
2359  * allocate a large system hash table from bootmem
2360  * - it is assumed that the hash table must contain an exact power-of-2
2361  *   quantity of entries
2362  * - limit is the number of hash buckets, not the total allocation size
2363  */
2364 void *__init alloc_large_system_hash(const char *tablename,
2365 				     unsigned long bucketsize,
2366 				     unsigned long numentries,
2367 				     int scale,
2368 				     int flags,
2369 				     unsigned int *_hash_shift,
2370 				     unsigned int *_hash_mask,
2371 				     unsigned long limit)
2372 {
2373 	unsigned long long max = limit;
2374 	unsigned long log2qty, size;
2375 	void *table = NULL;
2376 
2377 	/* allow the kernel cmdline to have a say */
2378 	if (!numentries) {
2379 		/* round applicable memory size up to nearest megabyte */
2380 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2381 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2382 		numentries >>= 20 - PAGE_SHIFT;
2383 		numentries <<= 20 - PAGE_SHIFT;
2384 
2385 		/* limit to 1 bucket per 2^scale bytes of low memory */
2386 		if (scale > PAGE_SHIFT)
2387 			numentries >>= (scale - PAGE_SHIFT);
2388 		else
2389 			numentries <<= (PAGE_SHIFT - scale);
2390 	}
2391 	numentries = roundup_pow_of_two(numentries);
2392 
2393 	/* limit allocation size to 1/16 total memory by default */
2394 	if (max == 0) {
2395 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2396 		do_div(max, bucketsize);
2397 	}
2398 
2399 	if (numentries > max)
2400 		numentries = max;
2401 
2402 	log2qty = long_log2(numentries);
2403 
2404 	do {
2405 		size = bucketsize << log2qty;
2406 		if (flags & HASH_EARLY)
2407 			table = alloc_bootmem(size);
2408 		else if (hashdist)
2409 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2410 		else {
2411 			unsigned long order;
2412 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2413 				;
2414 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2415 		}
2416 	} while (!table && size > PAGE_SIZE && --log2qty);
2417 
2418 	if (!table)
2419 		panic("Failed to allocate %s hash table\n", tablename);
2420 
2421 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2422 	       tablename,
2423 	       (1U << log2qty),
2424 	       long_log2(size) - PAGE_SHIFT,
2425 	       size);
2426 
2427 	if (_hash_shift)
2428 		*_hash_shift = log2qty;
2429 	if (_hash_mask)
2430 		*_hash_mask = (1 << log2qty) - 1;
2431 
2432 	return table;
2433 }
2434 
2435 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2436 struct page *pfn_to_page(unsigned long pfn)
2437 {
2438 	return __pfn_to_page(pfn);
2439 }
2440 unsigned long page_to_pfn(struct page *page)
2441 {
2442 	return __page_to_pfn(page);
2443 }
2444 EXPORT_SYMBOL(pfn_to_page);
2445 EXPORT_SYMBOL(page_to_pfn);
2446 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2447