1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 #include <linux/stop_machine.h> 41 42 #include <asm/tlbflush.h> 43 #include <asm/div64.h> 44 #include "internal.h" 45 46 /* 47 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 48 * initializer cleaner 49 */ 50 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 51 EXPORT_SYMBOL(node_online_map); 52 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 53 EXPORT_SYMBOL(node_possible_map); 54 unsigned long totalram_pages __read_mostly; 55 unsigned long totalhigh_pages __read_mostly; 56 unsigned long totalreserve_pages __read_mostly; 57 long nr_swap_pages; 58 int percpu_pagelist_fraction; 59 60 static void __free_pages_ok(struct page *page, unsigned int order); 61 62 /* 63 * results with 256, 32 in the lowmem_reserve sysctl: 64 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 65 * 1G machine -> (16M dma, 784M normal, 224M high) 66 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 67 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 68 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 69 * 70 * TBD: should special case ZONE_DMA32 machines here - in those we normally 71 * don't need any ZONE_NORMAL reservation 72 */ 73 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 74 75 EXPORT_SYMBOL(totalram_pages); 76 77 /* 78 * Used by page_zone() to look up the address of the struct zone whose 79 * id is encoded in the upper bits of page->flags 80 */ 81 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 82 EXPORT_SYMBOL(zone_table); 83 84 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 85 int min_free_kbytes = 1024; 86 87 unsigned long __meminitdata nr_kernel_pages; 88 unsigned long __meminitdata nr_all_pages; 89 90 #ifdef CONFIG_DEBUG_VM 91 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 92 { 93 int ret = 0; 94 unsigned seq; 95 unsigned long pfn = page_to_pfn(page); 96 97 do { 98 seq = zone_span_seqbegin(zone); 99 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 100 ret = 1; 101 else if (pfn < zone->zone_start_pfn) 102 ret = 1; 103 } while (zone_span_seqretry(zone, seq)); 104 105 return ret; 106 } 107 108 static int page_is_consistent(struct zone *zone, struct page *page) 109 { 110 #ifdef CONFIG_HOLES_IN_ZONE 111 if (!pfn_valid(page_to_pfn(page))) 112 return 0; 113 #endif 114 if (zone != page_zone(page)) 115 return 0; 116 117 return 1; 118 } 119 /* 120 * Temporary debugging check for pages not lying within a given zone. 121 */ 122 static int bad_range(struct zone *zone, struct page *page) 123 { 124 if (page_outside_zone_boundaries(zone, page)) 125 return 1; 126 if (!page_is_consistent(zone, page)) 127 return 1; 128 129 return 0; 130 } 131 132 #else 133 static inline int bad_range(struct zone *zone, struct page *page) 134 { 135 return 0; 136 } 137 #endif 138 139 static void bad_page(struct page *page) 140 { 141 printk(KERN_EMERG "Bad page state in process '%s'\n" 142 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 143 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 144 KERN_EMERG "Backtrace:\n", 145 current->comm, page, (int)(2*sizeof(unsigned long)), 146 (unsigned long)page->flags, page->mapping, 147 page_mapcount(page), page_count(page)); 148 dump_stack(); 149 page->flags &= ~(1 << PG_lru | 150 1 << PG_private | 151 1 << PG_locked | 152 1 << PG_active | 153 1 << PG_dirty | 154 1 << PG_reclaim | 155 1 << PG_slab | 156 1 << PG_swapcache | 157 1 << PG_writeback | 158 1 << PG_buddy ); 159 set_page_count(page, 0); 160 reset_page_mapcount(page); 161 page->mapping = NULL; 162 add_taint(TAINT_BAD_PAGE); 163 } 164 165 /* 166 * Higher-order pages are called "compound pages". They are structured thusly: 167 * 168 * The first PAGE_SIZE page is called the "head page". 169 * 170 * The remaining PAGE_SIZE pages are called "tail pages". 171 * 172 * All pages have PG_compound set. All pages have their ->private pointing at 173 * the head page (even the head page has this). 174 * 175 * The first tail page's ->lru.next holds the address of the compound page's 176 * put_page() function. Its ->lru.prev holds the order of allocation. 177 * This usage means that zero-order pages may not be compound. 178 */ 179 180 static void free_compound_page(struct page *page) 181 { 182 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 183 } 184 185 static void prep_compound_page(struct page *page, unsigned long order) 186 { 187 int i; 188 int nr_pages = 1 << order; 189 190 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 191 page[1].lru.prev = (void *)order; 192 for (i = 0; i < nr_pages; i++) { 193 struct page *p = page + i; 194 195 __SetPageCompound(p); 196 set_page_private(p, (unsigned long)page); 197 } 198 } 199 200 static void destroy_compound_page(struct page *page, unsigned long order) 201 { 202 int i; 203 int nr_pages = 1 << order; 204 205 if (unlikely((unsigned long)page[1].lru.prev != order)) 206 bad_page(page); 207 208 for (i = 0; i < nr_pages; i++) { 209 struct page *p = page + i; 210 211 if (unlikely(!PageCompound(p) | 212 (page_private(p) != (unsigned long)page))) 213 bad_page(page); 214 __ClearPageCompound(p); 215 } 216 } 217 218 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 219 { 220 int i; 221 222 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 223 /* 224 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 225 * and __GFP_HIGHMEM from hard or soft interrupt context. 226 */ 227 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 228 for (i = 0; i < (1 << order); i++) 229 clear_highpage(page + i); 230 } 231 232 /* 233 * function for dealing with page's order in buddy system. 234 * zone->lock is already acquired when we use these. 235 * So, we don't need atomic page->flags operations here. 236 */ 237 static inline unsigned long page_order(struct page *page) 238 { 239 return page_private(page); 240 } 241 242 static inline void set_page_order(struct page *page, int order) 243 { 244 set_page_private(page, order); 245 __SetPageBuddy(page); 246 } 247 248 static inline void rmv_page_order(struct page *page) 249 { 250 __ClearPageBuddy(page); 251 set_page_private(page, 0); 252 } 253 254 /* 255 * Locate the struct page for both the matching buddy in our 256 * pair (buddy1) and the combined O(n+1) page they form (page). 257 * 258 * 1) Any buddy B1 will have an order O twin B2 which satisfies 259 * the following equation: 260 * B2 = B1 ^ (1 << O) 261 * For example, if the starting buddy (buddy2) is #8 its order 262 * 1 buddy is #10: 263 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 264 * 265 * 2) Any buddy B will have an order O+1 parent P which 266 * satisfies the following equation: 267 * P = B & ~(1 << O) 268 * 269 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 270 */ 271 static inline struct page * 272 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 273 { 274 unsigned long buddy_idx = page_idx ^ (1 << order); 275 276 return page + (buddy_idx - page_idx); 277 } 278 279 static inline unsigned long 280 __find_combined_index(unsigned long page_idx, unsigned int order) 281 { 282 return (page_idx & ~(1 << order)); 283 } 284 285 /* 286 * This function checks whether a page is free && is the buddy 287 * we can do coalesce a page and its buddy if 288 * (a) the buddy is not in a hole && 289 * (b) the buddy is in the buddy system && 290 * (c) a page and its buddy have the same order && 291 * (d) a page and its buddy are in the same zone. 292 * 293 * For recording whether a page is in the buddy system, we use PG_buddy. 294 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 295 * 296 * For recording page's order, we use page_private(page). 297 */ 298 static inline int page_is_buddy(struct page *page, struct page *buddy, 299 int order) 300 { 301 #ifdef CONFIG_HOLES_IN_ZONE 302 if (!pfn_valid(page_to_pfn(buddy))) 303 return 0; 304 #endif 305 306 if (page_zone_id(page) != page_zone_id(buddy)) 307 return 0; 308 309 if (PageBuddy(buddy) && page_order(buddy) == order) { 310 BUG_ON(page_count(buddy) != 0); 311 return 1; 312 } 313 return 0; 314 } 315 316 /* 317 * Freeing function for a buddy system allocator. 318 * 319 * The concept of a buddy system is to maintain direct-mapped table 320 * (containing bit values) for memory blocks of various "orders". 321 * The bottom level table contains the map for the smallest allocatable 322 * units of memory (here, pages), and each level above it describes 323 * pairs of units from the levels below, hence, "buddies". 324 * At a high level, all that happens here is marking the table entry 325 * at the bottom level available, and propagating the changes upward 326 * as necessary, plus some accounting needed to play nicely with other 327 * parts of the VM system. 328 * At each level, we keep a list of pages, which are heads of continuous 329 * free pages of length of (1 << order) and marked with PG_buddy. Page's 330 * order is recorded in page_private(page) field. 331 * So when we are allocating or freeing one, we can derive the state of the 332 * other. That is, if we allocate a small block, and both were 333 * free, the remainder of the region must be split into blocks. 334 * If a block is freed, and its buddy is also free, then this 335 * triggers coalescing into a block of larger size. 336 * 337 * -- wli 338 */ 339 340 static inline void __free_one_page(struct page *page, 341 struct zone *zone, unsigned int order) 342 { 343 unsigned long page_idx; 344 int order_size = 1 << order; 345 346 if (unlikely(PageCompound(page))) 347 destroy_compound_page(page, order); 348 349 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 350 351 BUG_ON(page_idx & (order_size - 1)); 352 BUG_ON(bad_range(zone, page)); 353 354 zone->free_pages += order_size; 355 while (order < MAX_ORDER-1) { 356 unsigned long combined_idx; 357 struct free_area *area; 358 struct page *buddy; 359 360 buddy = __page_find_buddy(page, page_idx, order); 361 if (!page_is_buddy(page, buddy, order)) 362 break; /* Move the buddy up one level. */ 363 364 list_del(&buddy->lru); 365 area = zone->free_area + order; 366 area->nr_free--; 367 rmv_page_order(buddy); 368 combined_idx = __find_combined_index(page_idx, order); 369 page = page + (combined_idx - page_idx); 370 page_idx = combined_idx; 371 order++; 372 } 373 set_page_order(page, order); 374 list_add(&page->lru, &zone->free_area[order].free_list); 375 zone->free_area[order].nr_free++; 376 } 377 378 static inline int free_pages_check(struct page *page) 379 { 380 if (unlikely(page_mapcount(page) | 381 (page->mapping != NULL) | 382 (page_count(page) != 0) | 383 (page->flags & ( 384 1 << PG_lru | 385 1 << PG_private | 386 1 << PG_locked | 387 1 << PG_active | 388 1 << PG_reclaim | 389 1 << PG_slab | 390 1 << PG_swapcache | 391 1 << PG_writeback | 392 1 << PG_reserved | 393 1 << PG_buddy )))) 394 bad_page(page); 395 if (PageDirty(page)) 396 __ClearPageDirty(page); 397 /* 398 * For now, we report if PG_reserved was found set, but do not 399 * clear it, and do not free the page. But we shall soon need 400 * to do more, for when the ZERO_PAGE count wraps negative. 401 */ 402 return PageReserved(page); 403 } 404 405 /* 406 * Frees a list of pages. 407 * Assumes all pages on list are in same zone, and of same order. 408 * count is the number of pages to free. 409 * 410 * If the zone was previously in an "all pages pinned" state then look to 411 * see if this freeing clears that state. 412 * 413 * And clear the zone's pages_scanned counter, to hold off the "all pages are 414 * pinned" detection logic. 415 */ 416 static void free_pages_bulk(struct zone *zone, int count, 417 struct list_head *list, int order) 418 { 419 spin_lock(&zone->lock); 420 zone->all_unreclaimable = 0; 421 zone->pages_scanned = 0; 422 while (count--) { 423 struct page *page; 424 425 BUG_ON(list_empty(list)); 426 page = list_entry(list->prev, struct page, lru); 427 /* have to delete it as __free_one_page list manipulates */ 428 list_del(&page->lru); 429 __free_one_page(page, zone, order); 430 } 431 spin_unlock(&zone->lock); 432 } 433 434 static void free_one_page(struct zone *zone, struct page *page, int order) 435 { 436 LIST_HEAD(list); 437 list_add(&page->lru, &list); 438 free_pages_bulk(zone, 1, &list, order); 439 } 440 441 static void __free_pages_ok(struct page *page, unsigned int order) 442 { 443 unsigned long flags; 444 int i; 445 int reserved = 0; 446 447 arch_free_page(page, order); 448 if (!PageHighMem(page)) 449 debug_check_no_locks_freed(page_address(page), 450 PAGE_SIZE<<order); 451 452 for (i = 0 ; i < (1 << order) ; ++i) 453 reserved += free_pages_check(page + i); 454 if (reserved) 455 return; 456 457 kernel_map_pages(page, 1 << order, 0); 458 local_irq_save(flags); 459 __count_vm_events(PGFREE, 1 << order); 460 free_one_page(page_zone(page), page, order); 461 local_irq_restore(flags); 462 } 463 464 /* 465 * permit the bootmem allocator to evade page validation on high-order frees 466 */ 467 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 468 { 469 if (order == 0) { 470 __ClearPageReserved(page); 471 set_page_count(page, 0); 472 set_page_refcounted(page); 473 __free_page(page); 474 } else { 475 int loop; 476 477 prefetchw(page); 478 for (loop = 0; loop < BITS_PER_LONG; loop++) { 479 struct page *p = &page[loop]; 480 481 if (loop + 1 < BITS_PER_LONG) 482 prefetchw(p + 1); 483 __ClearPageReserved(p); 484 set_page_count(p, 0); 485 } 486 487 set_page_refcounted(page); 488 __free_pages(page, order); 489 } 490 } 491 492 493 /* 494 * The order of subdivision here is critical for the IO subsystem. 495 * Please do not alter this order without good reasons and regression 496 * testing. Specifically, as large blocks of memory are subdivided, 497 * the order in which smaller blocks are delivered depends on the order 498 * they're subdivided in this function. This is the primary factor 499 * influencing the order in which pages are delivered to the IO 500 * subsystem according to empirical testing, and this is also justified 501 * by considering the behavior of a buddy system containing a single 502 * large block of memory acted on by a series of small allocations. 503 * This behavior is a critical factor in sglist merging's success. 504 * 505 * -- wli 506 */ 507 static inline void expand(struct zone *zone, struct page *page, 508 int low, int high, struct free_area *area) 509 { 510 unsigned long size = 1 << high; 511 512 while (high > low) { 513 area--; 514 high--; 515 size >>= 1; 516 BUG_ON(bad_range(zone, &page[size])); 517 list_add(&page[size].lru, &area->free_list); 518 area->nr_free++; 519 set_page_order(&page[size], high); 520 } 521 } 522 523 /* 524 * This page is about to be returned from the page allocator 525 */ 526 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 527 { 528 if (unlikely(page_mapcount(page) | 529 (page->mapping != NULL) | 530 (page_count(page) != 0) | 531 (page->flags & ( 532 1 << PG_lru | 533 1 << PG_private | 534 1 << PG_locked | 535 1 << PG_active | 536 1 << PG_dirty | 537 1 << PG_reclaim | 538 1 << PG_slab | 539 1 << PG_swapcache | 540 1 << PG_writeback | 541 1 << PG_reserved | 542 1 << PG_buddy )))) 543 bad_page(page); 544 545 /* 546 * For now, we report if PG_reserved was found set, but do not 547 * clear it, and do not allocate the page: as a safety net. 548 */ 549 if (PageReserved(page)) 550 return 1; 551 552 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 553 1 << PG_referenced | 1 << PG_arch_1 | 554 1 << PG_checked | 1 << PG_mappedtodisk); 555 set_page_private(page, 0); 556 set_page_refcounted(page); 557 kernel_map_pages(page, 1 << order, 1); 558 559 if (gfp_flags & __GFP_ZERO) 560 prep_zero_page(page, order, gfp_flags); 561 562 if (order && (gfp_flags & __GFP_COMP)) 563 prep_compound_page(page, order); 564 565 return 0; 566 } 567 568 /* 569 * Do the hard work of removing an element from the buddy allocator. 570 * Call me with the zone->lock already held. 571 */ 572 static struct page *__rmqueue(struct zone *zone, unsigned int order) 573 { 574 struct free_area * area; 575 unsigned int current_order; 576 struct page *page; 577 578 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 579 area = zone->free_area + current_order; 580 if (list_empty(&area->free_list)) 581 continue; 582 583 page = list_entry(area->free_list.next, struct page, lru); 584 list_del(&page->lru); 585 rmv_page_order(page); 586 area->nr_free--; 587 zone->free_pages -= 1UL << order; 588 expand(zone, page, order, current_order, area); 589 return page; 590 } 591 592 return NULL; 593 } 594 595 /* 596 * Obtain a specified number of elements from the buddy allocator, all under 597 * a single hold of the lock, for efficiency. Add them to the supplied list. 598 * Returns the number of new pages which were placed at *list. 599 */ 600 static int rmqueue_bulk(struct zone *zone, unsigned int order, 601 unsigned long count, struct list_head *list) 602 { 603 int i; 604 605 spin_lock(&zone->lock); 606 for (i = 0; i < count; ++i) { 607 struct page *page = __rmqueue(zone, order); 608 if (unlikely(page == NULL)) 609 break; 610 list_add_tail(&page->lru, list); 611 } 612 spin_unlock(&zone->lock); 613 return i; 614 } 615 616 #ifdef CONFIG_NUMA 617 /* 618 * Called from the slab reaper to drain pagesets on a particular node that 619 * belong to the currently executing processor. 620 * Note that this function must be called with the thread pinned to 621 * a single processor. 622 */ 623 void drain_node_pages(int nodeid) 624 { 625 int i, z; 626 unsigned long flags; 627 628 for (z = 0; z < MAX_NR_ZONES; z++) { 629 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 630 struct per_cpu_pageset *pset; 631 632 pset = zone_pcp(zone, smp_processor_id()); 633 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 634 struct per_cpu_pages *pcp; 635 636 pcp = &pset->pcp[i]; 637 if (pcp->count) { 638 local_irq_save(flags); 639 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 640 pcp->count = 0; 641 local_irq_restore(flags); 642 } 643 } 644 } 645 } 646 #endif 647 648 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 649 static void __drain_pages(unsigned int cpu) 650 { 651 unsigned long flags; 652 struct zone *zone; 653 int i; 654 655 for_each_zone(zone) { 656 struct per_cpu_pageset *pset; 657 658 pset = zone_pcp(zone, cpu); 659 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 660 struct per_cpu_pages *pcp; 661 662 pcp = &pset->pcp[i]; 663 local_irq_save(flags); 664 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 665 pcp->count = 0; 666 local_irq_restore(flags); 667 } 668 } 669 } 670 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 671 672 #ifdef CONFIG_PM 673 674 void mark_free_pages(struct zone *zone) 675 { 676 unsigned long zone_pfn, flags; 677 int order; 678 struct list_head *curr; 679 680 if (!zone->spanned_pages) 681 return; 682 683 spin_lock_irqsave(&zone->lock, flags); 684 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 685 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 686 687 for (order = MAX_ORDER - 1; order >= 0; --order) 688 list_for_each(curr, &zone->free_area[order].free_list) { 689 unsigned long start_pfn, i; 690 691 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 692 693 for (i=0; i < (1<<order); i++) 694 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 695 } 696 spin_unlock_irqrestore(&zone->lock, flags); 697 } 698 699 /* 700 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 701 */ 702 void drain_local_pages(void) 703 { 704 unsigned long flags; 705 706 local_irq_save(flags); 707 __drain_pages(smp_processor_id()); 708 local_irq_restore(flags); 709 } 710 #endif /* CONFIG_PM */ 711 712 /* 713 * Free a 0-order page 714 */ 715 static void fastcall free_hot_cold_page(struct page *page, int cold) 716 { 717 struct zone *zone = page_zone(page); 718 struct per_cpu_pages *pcp; 719 unsigned long flags; 720 721 arch_free_page(page, 0); 722 723 if (PageAnon(page)) 724 page->mapping = NULL; 725 if (free_pages_check(page)) 726 return; 727 728 kernel_map_pages(page, 1, 0); 729 730 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 731 local_irq_save(flags); 732 __count_vm_event(PGFREE); 733 list_add(&page->lru, &pcp->list); 734 pcp->count++; 735 if (pcp->count >= pcp->high) { 736 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 737 pcp->count -= pcp->batch; 738 } 739 local_irq_restore(flags); 740 put_cpu(); 741 } 742 743 void fastcall free_hot_page(struct page *page) 744 { 745 free_hot_cold_page(page, 0); 746 } 747 748 void fastcall free_cold_page(struct page *page) 749 { 750 free_hot_cold_page(page, 1); 751 } 752 753 /* 754 * split_page takes a non-compound higher-order page, and splits it into 755 * n (1<<order) sub-pages: page[0..n] 756 * Each sub-page must be freed individually. 757 * 758 * Note: this is probably too low level an operation for use in drivers. 759 * Please consult with lkml before using this in your driver. 760 */ 761 void split_page(struct page *page, unsigned int order) 762 { 763 int i; 764 765 BUG_ON(PageCompound(page)); 766 BUG_ON(!page_count(page)); 767 for (i = 1; i < (1 << order); i++) 768 set_page_refcounted(page + i); 769 } 770 771 /* 772 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 773 * we cheat by calling it from here, in the order > 0 path. Saves a branch 774 * or two. 775 */ 776 static struct page *buffered_rmqueue(struct zonelist *zonelist, 777 struct zone *zone, int order, gfp_t gfp_flags) 778 { 779 unsigned long flags; 780 struct page *page; 781 int cold = !!(gfp_flags & __GFP_COLD); 782 int cpu; 783 784 again: 785 cpu = get_cpu(); 786 if (likely(order == 0)) { 787 struct per_cpu_pages *pcp; 788 789 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 790 local_irq_save(flags); 791 if (!pcp->count) { 792 pcp->count += rmqueue_bulk(zone, 0, 793 pcp->batch, &pcp->list); 794 if (unlikely(!pcp->count)) 795 goto failed; 796 } 797 page = list_entry(pcp->list.next, struct page, lru); 798 list_del(&page->lru); 799 pcp->count--; 800 } else { 801 spin_lock_irqsave(&zone->lock, flags); 802 page = __rmqueue(zone, order); 803 spin_unlock(&zone->lock); 804 if (!page) 805 goto failed; 806 } 807 808 __count_zone_vm_events(PGALLOC, zone, 1 << order); 809 zone_statistics(zonelist, zone); 810 local_irq_restore(flags); 811 put_cpu(); 812 813 BUG_ON(bad_range(zone, page)); 814 if (prep_new_page(page, order, gfp_flags)) 815 goto again; 816 return page; 817 818 failed: 819 local_irq_restore(flags); 820 put_cpu(); 821 return NULL; 822 } 823 824 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 825 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 826 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 827 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 828 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 829 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 830 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 831 832 /* 833 * Return 1 if free pages are above 'mark'. This takes into account the order 834 * of the allocation. 835 */ 836 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 837 int classzone_idx, int alloc_flags) 838 { 839 /* free_pages my go negative - that's OK */ 840 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 841 int o; 842 843 if (alloc_flags & ALLOC_HIGH) 844 min -= min / 2; 845 if (alloc_flags & ALLOC_HARDER) 846 min -= min / 4; 847 848 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 849 return 0; 850 for (o = 0; o < order; o++) { 851 /* At the next order, this order's pages become unavailable */ 852 free_pages -= z->free_area[o].nr_free << o; 853 854 /* Require fewer higher order pages to be free */ 855 min >>= 1; 856 857 if (free_pages <= min) 858 return 0; 859 } 860 return 1; 861 } 862 863 /* 864 * get_page_from_freeliest goes through the zonelist trying to allocate 865 * a page. 866 */ 867 static struct page * 868 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 869 struct zonelist *zonelist, int alloc_flags) 870 { 871 struct zone **z = zonelist->zones; 872 struct page *page = NULL; 873 int classzone_idx = zone_idx(*z); 874 875 /* 876 * Go through the zonelist once, looking for a zone with enough free. 877 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 878 */ 879 do { 880 if ((alloc_flags & ALLOC_CPUSET) && 881 !cpuset_zone_allowed(*z, gfp_mask)) 882 continue; 883 884 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 885 unsigned long mark; 886 if (alloc_flags & ALLOC_WMARK_MIN) 887 mark = (*z)->pages_min; 888 else if (alloc_flags & ALLOC_WMARK_LOW) 889 mark = (*z)->pages_low; 890 else 891 mark = (*z)->pages_high; 892 if (!zone_watermark_ok(*z, order, mark, 893 classzone_idx, alloc_flags)) 894 if (!zone_reclaim_mode || 895 !zone_reclaim(*z, gfp_mask, order)) 896 continue; 897 } 898 899 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 900 if (page) { 901 break; 902 } 903 } while (*(++z) != NULL); 904 return page; 905 } 906 907 /* 908 * This is the 'heart' of the zoned buddy allocator. 909 */ 910 struct page * fastcall 911 __alloc_pages(gfp_t gfp_mask, unsigned int order, 912 struct zonelist *zonelist) 913 { 914 const gfp_t wait = gfp_mask & __GFP_WAIT; 915 struct zone **z; 916 struct page *page; 917 struct reclaim_state reclaim_state; 918 struct task_struct *p = current; 919 int do_retry; 920 int alloc_flags; 921 int did_some_progress; 922 923 might_sleep_if(wait); 924 925 restart: 926 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 927 928 if (unlikely(*z == NULL)) { 929 /* Should this ever happen?? */ 930 return NULL; 931 } 932 933 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 934 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 935 if (page) 936 goto got_pg; 937 938 do { 939 wakeup_kswapd(*z, order); 940 } while (*(++z)); 941 942 /* 943 * OK, we're below the kswapd watermark and have kicked background 944 * reclaim. Now things get more complex, so set up alloc_flags according 945 * to how we want to proceed. 946 * 947 * The caller may dip into page reserves a bit more if the caller 948 * cannot run direct reclaim, or if the caller has realtime scheduling 949 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 950 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 951 */ 952 alloc_flags = ALLOC_WMARK_MIN; 953 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 954 alloc_flags |= ALLOC_HARDER; 955 if (gfp_mask & __GFP_HIGH) 956 alloc_flags |= ALLOC_HIGH; 957 if (wait) 958 alloc_flags |= ALLOC_CPUSET; 959 960 /* 961 * Go through the zonelist again. Let __GFP_HIGH and allocations 962 * coming from realtime tasks go deeper into reserves. 963 * 964 * This is the last chance, in general, before the goto nopage. 965 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 966 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 967 */ 968 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 969 if (page) 970 goto got_pg; 971 972 /* This allocation should allow future memory freeing. */ 973 974 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 975 && !in_interrupt()) { 976 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 977 nofail_alloc: 978 /* go through the zonelist yet again, ignoring mins */ 979 page = get_page_from_freelist(gfp_mask, order, 980 zonelist, ALLOC_NO_WATERMARKS); 981 if (page) 982 goto got_pg; 983 if (gfp_mask & __GFP_NOFAIL) { 984 blk_congestion_wait(WRITE, HZ/50); 985 goto nofail_alloc; 986 } 987 } 988 goto nopage; 989 } 990 991 /* Atomic allocations - we can't balance anything */ 992 if (!wait) 993 goto nopage; 994 995 rebalance: 996 cond_resched(); 997 998 /* We now go into synchronous reclaim */ 999 cpuset_memory_pressure_bump(); 1000 p->flags |= PF_MEMALLOC; 1001 reclaim_state.reclaimed_slab = 0; 1002 p->reclaim_state = &reclaim_state; 1003 1004 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1005 1006 p->reclaim_state = NULL; 1007 p->flags &= ~PF_MEMALLOC; 1008 1009 cond_resched(); 1010 1011 if (likely(did_some_progress)) { 1012 page = get_page_from_freelist(gfp_mask, order, 1013 zonelist, alloc_flags); 1014 if (page) 1015 goto got_pg; 1016 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1017 /* 1018 * Go through the zonelist yet one more time, keep 1019 * very high watermark here, this is only to catch 1020 * a parallel oom killing, we must fail if we're still 1021 * under heavy pressure. 1022 */ 1023 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1024 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1025 if (page) 1026 goto got_pg; 1027 1028 out_of_memory(zonelist, gfp_mask, order); 1029 goto restart; 1030 } 1031 1032 /* 1033 * Don't let big-order allocations loop unless the caller explicitly 1034 * requests that. Wait for some write requests to complete then retry. 1035 * 1036 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1037 * <= 3, but that may not be true in other implementations. 1038 */ 1039 do_retry = 0; 1040 if (!(gfp_mask & __GFP_NORETRY)) { 1041 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1042 do_retry = 1; 1043 if (gfp_mask & __GFP_NOFAIL) 1044 do_retry = 1; 1045 } 1046 if (do_retry) { 1047 blk_congestion_wait(WRITE, HZ/50); 1048 goto rebalance; 1049 } 1050 1051 nopage: 1052 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1053 printk(KERN_WARNING "%s: page allocation failure." 1054 " order:%d, mode:0x%x\n", 1055 p->comm, order, gfp_mask); 1056 dump_stack(); 1057 show_mem(); 1058 } 1059 got_pg: 1060 return page; 1061 } 1062 1063 EXPORT_SYMBOL(__alloc_pages); 1064 1065 /* 1066 * Common helper functions. 1067 */ 1068 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1069 { 1070 struct page * page; 1071 page = alloc_pages(gfp_mask, order); 1072 if (!page) 1073 return 0; 1074 return (unsigned long) page_address(page); 1075 } 1076 1077 EXPORT_SYMBOL(__get_free_pages); 1078 1079 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1080 { 1081 struct page * page; 1082 1083 /* 1084 * get_zeroed_page() returns a 32-bit address, which cannot represent 1085 * a highmem page 1086 */ 1087 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1088 1089 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1090 if (page) 1091 return (unsigned long) page_address(page); 1092 return 0; 1093 } 1094 1095 EXPORT_SYMBOL(get_zeroed_page); 1096 1097 void __pagevec_free(struct pagevec *pvec) 1098 { 1099 int i = pagevec_count(pvec); 1100 1101 while (--i >= 0) 1102 free_hot_cold_page(pvec->pages[i], pvec->cold); 1103 } 1104 1105 fastcall void __free_pages(struct page *page, unsigned int order) 1106 { 1107 if (put_page_testzero(page)) { 1108 if (order == 0) 1109 free_hot_page(page); 1110 else 1111 __free_pages_ok(page, order); 1112 } 1113 } 1114 1115 EXPORT_SYMBOL(__free_pages); 1116 1117 fastcall void free_pages(unsigned long addr, unsigned int order) 1118 { 1119 if (addr != 0) { 1120 BUG_ON(!virt_addr_valid((void *)addr)); 1121 __free_pages(virt_to_page((void *)addr), order); 1122 } 1123 } 1124 1125 EXPORT_SYMBOL(free_pages); 1126 1127 /* 1128 * Total amount of free (allocatable) RAM: 1129 */ 1130 unsigned int nr_free_pages(void) 1131 { 1132 unsigned int sum = 0; 1133 struct zone *zone; 1134 1135 for_each_zone(zone) 1136 sum += zone->free_pages; 1137 1138 return sum; 1139 } 1140 1141 EXPORT_SYMBOL(nr_free_pages); 1142 1143 #ifdef CONFIG_NUMA 1144 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1145 { 1146 unsigned int i, sum = 0; 1147 1148 for (i = 0; i < MAX_NR_ZONES; i++) 1149 sum += pgdat->node_zones[i].free_pages; 1150 1151 return sum; 1152 } 1153 #endif 1154 1155 static unsigned int nr_free_zone_pages(int offset) 1156 { 1157 /* Just pick one node, since fallback list is circular */ 1158 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1159 unsigned int sum = 0; 1160 1161 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1162 struct zone **zonep = zonelist->zones; 1163 struct zone *zone; 1164 1165 for (zone = *zonep++; zone; zone = *zonep++) { 1166 unsigned long size = zone->present_pages; 1167 unsigned long high = zone->pages_high; 1168 if (size > high) 1169 sum += size - high; 1170 } 1171 1172 return sum; 1173 } 1174 1175 /* 1176 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1177 */ 1178 unsigned int nr_free_buffer_pages(void) 1179 { 1180 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1181 } 1182 1183 /* 1184 * Amount of free RAM allocatable within all zones 1185 */ 1186 unsigned int nr_free_pagecache_pages(void) 1187 { 1188 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1189 } 1190 1191 #ifdef CONFIG_HIGHMEM 1192 unsigned int nr_free_highpages (void) 1193 { 1194 pg_data_t *pgdat; 1195 unsigned int pages = 0; 1196 1197 for_each_online_pgdat(pgdat) 1198 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1199 1200 return pages; 1201 } 1202 #endif 1203 1204 #ifdef CONFIG_NUMA 1205 static void show_node(struct zone *zone) 1206 { 1207 printk("Node %d ", zone->zone_pgdat->node_id); 1208 } 1209 #else 1210 #define show_node(zone) do { } while (0) 1211 #endif 1212 1213 void si_meminfo(struct sysinfo *val) 1214 { 1215 val->totalram = totalram_pages; 1216 val->sharedram = 0; 1217 val->freeram = nr_free_pages(); 1218 val->bufferram = nr_blockdev_pages(); 1219 #ifdef CONFIG_HIGHMEM 1220 val->totalhigh = totalhigh_pages; 1221 val->freehigh = nr_free_highpages(); 1222 #else 1223 val->totalhigh = 0; 1224 val->freehigh = 0; 1225 #endif 1226 val->mem_unit = PAGE_SIZE; 1227 } 1228 1229 EXPORT_SYMBOL(si_meminfo); 1230 1231 #ifdef CONFIG_NUMA 1232 void si_meminfo_node(struct sysinfo *val, int nid) 1233 { 1234 pg_data_t *pgdat = NODE_DATA(nid); 1235 1236 val->totalram = pgdat->node_present_pages; 1237 val->freeram = nr_free_pages_pgdat(pgdat); 1238 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1239 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1240 val->mem_unit = PAGE_SIZE; 1241 } 1242 #endif 1243 1244 #define K(x) ((x) << (PAGE_SHIFT-10)) 1245 1246 /* 1247 * Show free area list (used inside shift_scroll-lock stuff) 1248 * We also calculate the percentage fragmentation. We do this by counting the 1249 * memory on each free list with the exception of the first item on the list. 1250 */ 1251 void show_free_areas(void) 1252 { 1253 int cpu, temperature; 1254 unsigned long active; 1255 unsigned long inactive; 1256 unsigned long free; 1257 struct zone *zone; 1258 1259 for_each_zone(zone) { 1260 show_node(zone); 1261 printk("%s per-cpu:", zone->name); 1262 1263 if (!populated_zone(zone)) { 1264 printk(" empty\n"); 1265 continue; 1266 } else 1267 printk("\n"); 1268 1269 for_each_online_cpu(cpu) { 1270 struct per_cpu_pageset *pageset; 1271 1272 pageset = zone_pcp(zone, cpu); 1273 1274 for (temperature = 0; temperature < 2; temperature++) 1275 printk("cpu %d %s: high %d, batch %d used:%d\n", 1276 cpu, 1277 temperature ? "cold" : "hot", 1278 pageset->pcp[temperature].high, 1279 pageset->pcp[temperature].batch, 1280 pageset->pcp[temperature].count); 1281 } 1282 } 1283 1284 get_zone_counts(&active, &inactive, &free); 1285 1286 printk("Free pages: %11ukB (%ukB HighMem)\n", 1287 K(nr_free_pages()), 1288 K(nr_free_highpages())); 1289 1290 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1291 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1292 active, 1293 inactive, 1294 global_page_state(NR_FILE_DIRTY), 1295 global_page_state(NR_WRITEBACK), 1296 global_page_state(NR_UNSTABLE_NFS), 1297 nr_free_pages(), 1298 global_page_state(NR_SLAB), 1299 global_page_state(NR_FILE_MAPPED), 1300 global_page_state(NR_PAGETABLE)); 1301 1302 for_each_zone(zone) { 1303 int i; 1304 1305 show_node(zone); 1306 printk("%s" 1307 " free:%lukB" 1308 " min:%lukB" 1309 " low:%lukB" 1310 " high:%lukB" 1311 " active:%lukB" 1312 " inactive:%lukB" 1313 " present:%lukB" 1314 " pages_scanned:%lu" 1315 " all_unreclaimable? %s" 1316 "\n", 1317 zone->name, 1318 K(zone->free_pages), 1319 K(zone->pages_min), 1320 K(zone->pages_low), 1321 K(zone->pages_high), 1322 K(zone->nr_active), 1323 K(zone->nr_inactive), 1324 K(zone->present_pages), 1325 zone->pages_scanned, 1326 (zone->all_unreclaimable ? "yes" : "no") 1327 ); 1328 printk("lowmem_reserve[]:"); 1329 for (i = 0; i < MAX_NR_ZONES; i++) 1330 printk(" %lu", zone->lowmem_reserve[i]); 1331 printk("\n"); 1332 } 1333 1334 for_each_zone(zone) { 1335 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1336 1337 show_node(zone); 1338 printk("%s: ", zone->name); 1339 if (!populated_zone(zone)) { 1340 printk("empty\n"); 1341 continue; 1342 } 1343 1344 spin_lock_irqsave(&zone->lock, flags); 1345 for (order = 0; order < MAX_ORDER; order++) { 1346 nr[order] = zone->free_area[order].nr_free; 1347 total += nr[order] << order; 1348 } 1349 spin_unlock_irqrestore(&zone->lock, flags); 1350 for (order = 0; order < MAX_ORDER; order++) 1351 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1352 printk("= %lukB\n", K(total)); 1353 } 1354 1355 show_swap_cache_info(); 1356 } 1357 1358 /* 1359 * Builds allocation fallback zone lists. 1360 * 1361 * Add all populated zones of a node to the zonelist. 1362 */ 1363 static int __meminit build_zonelists_node(pg_data_t *pgdat, 1364 struct zonelist *zonelist, int nr_zones, int zone_type) 1365 { 1366 struct zone *zone; 1367 1368 BUG_ON(zone_type > ZONE_HIGHMEM); 1369 1370 do { 1371 zone = pgdat->node_zones + zone_type; 1372 if (populated_zone(zone)) { 1373 #ifndef CONFIG_HIGHMEM 1374 BUG_ON(zone_type > ZONE_NORMAL); 1375 #endif 1376 zonelist->zones[nr_zones++] = zone; 1377 check_highest_zone(zone_type); 1378 } 1379 zone_type--; 1380 1381 } while (zone_type >= 0); 1382 return nr_zones; 1383 } 1384 1385 static inline int highest_zone(int zone_bits) 1386 { 1387 int res = ZONE_NORMAL; 1388 if (zone_bits & (__force int)__GFP_HIGHMEM) 1389 res = ZONE_HIGHMEM; 1390 if (zone_bits & (__force int)__GFP_DMA32) 1391 res = ZONE_DMA32; 1392 if (zone_bits & (__force int)__GFP_DMA) 1393 res = ZONE_DMA; 1394 return res; 1395 } 1396 1397 #ifdef CONFIG_NUMA 1398 #define MAX_NODE_LOAD (num_online_nodes()) 1399 static int __meminitdata node_load[MAX_NUMNODES]; 1400 /** 1401 * find_next_best_node - find the next node that should appear in a given node's fallback list 1402 * @node: node whose fallback list we're appending 1403 * @used_node_mask: nodemask_t of already used nodes 1404 * 1405 * We use a number of factors to determine which is the next node that should 1406 * appear on a given node's fallback list. The node should not have appeared 1407 * already in @node's fallback list, and it should be the next closest node 1408 * according to the distance array (which contains arbitrary distance values 1409 * from each node to each node in the system), and should also prefer nodes 1410 * with no CPUs, since presumably they'll have very little allocation pressure 1411 * on them otherwise. 1412 * It returns -1 if no node is found. 1413 */ 1414 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) 1415 { 1416 int n, val; 1417 int min_val = INT_MAX; 1418 int best_node = -1; 1419 1420 /* Use the local node if we haven't already */ 1421 if (!node_isset(node, *used_node_mask)) { 1422 node_set(node, *used_node_mask); 1423 return node; 1424 } 1425 1426 for_each_online_node(n) { 1427 cpumask_t tmp; 1428 1429 /* Don't want a node to appear more than once */ 1430 if (node_isset(n, *used_node_mask)) 1431 continue; 1432 1433 /* Use the distance array to find the distance */ 1434 val = node_distance(node, n); 1435 1436 /* Penalize nodes under us ("prefer the next node") */ 1437 val += (n < node); 1438 1439 /* Give preference to headless and unused nodes */ 1440 tmp = node_to_cpumask(n); 1441 if (!cpus_empty(tmp)) 1442 val += PENALTY_FOR_NODE_WITH_CPUS; 1443 1444 /* Slight preference for less loaded node */ 1445 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1446 val += node_load[n]; 1447 1448 if (val < min_val) { 1449 min_val = val; 1450 best_node = n; 1451 } 1452 } 1453 1454 if (best_node >= 0) 1455 node_set(best_node, *used_node_mask); 1456 1457 return best_node; 1458 } 1459 1460 static void __meminit build_zonelists(pg_data_t *pgdat) 1461 { 1462 int i, j, k, node, local_node; 1463 int prev_node, load; 1464 struct zonelist *zonelist; 1465 nodemask_t used_mask; 1466 1467 /* initialize zonelists */ 1468 for (i = 0; i < GFP_ZONETYPES; i++) { 1469 zonelist = pgdat->node_zonelists + i; 1470 zonelist->zones[0] = NULL; 1471 } 1472 1473 /* NUMA-aware ordering of nodes */ 1474 local_node = pgdat->node_id; 1475 load = num_online_nodes(); 1476 prev_node = local_node; 1477 nodes_clear(used_mask); 1478 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1479 int distance = node_distance(local_node, node); 1480 1481 /* 1482 * If another node is sufficiently far away then it is better 1483 * to reclaim pages in a zone before going off node. 1484 */ 1485 if (distance > RECLAIM_DISTANCE) 1486 zone_reclaim_mode = 1; 1487 1488 /* 1489 * We don't want to pressure a particular node. 1490 * So adding penalty to the first node in same 1491 * distance group to make it round-robin. 1492 */ 1493 1494 if (distance != node_distance(local_node, prev_node)) 1495 node_load[node] += load; 1496 prev_node = node; 1497 load--; 1498 for (i = 0; i < GFP_ZONETYPES; i++) { 1499 zonelist = pgdat->node_zonelists + i; 1500 for (j = 0; zonelist->zones[j] != NULL; j++); 1501 1502 k = highest_zone(i); 1503 1504 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1505 zonelist->zones[j] = NULL; 1506 } 1507 } 1508 } 1509 1510 #else /* CONFIG_NUMA */ 1511 1512 static void __meminit build_zonelists(pg_data_t *pgdat) 1513 { 1514 int i, j, k, node, local_node; 1515 1516 local_node = pgdat->node_id; 1517 for (i = 0; i < GFP_ZONETYPES; i++) { 1518 struct zonelist *zonelist; 1519 1520 zonelist = pgdat->node_zonelists + i; 1521 1522 j = 0; 1523 k = highest_zone(i); 1524 j = build_zonelists_node(pgdat, zonelist, j, k); 1525 /* 1526 * Now we build the zonelist so that it contains the zones 1527 * of all the other nodes. 1528 * We don't want to pressure a particular node, so when 1529 * building the zones for node N, we make sure that the 1530 * zones coming right after the local ones are those from 1531 * node N+1 (modulo N) 1532 */ 1533 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1534 if (!node_online(node)) 1535 continue; 1536 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1537 } 1538 for (node = 0; node < local_node; node++) { 1539 if (!node_online(node)) 1540 continue; 1541 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1542 } 1543 1544 zonelist->zones[j] = NULL; 1545 } 1546 } 1547 1548 #endif /* CONFIG_NUMA */ 1549 1550 /* return values int ....just for stop_machine_run() */ 1551 static int __meminit __build_all_zonelists(void *dummy) 1552 { 1553 int nid; 1554 for_each_online_node(nid) 1555 build_zonelists(NODE_DATA(nid)); 1556 return 0; 1557 } 1558 1559 void __meminit build_all_zonelists(void) 1560 { 1561 if (system_state == SYSTEM_BOOTING) { 1562 __build_all_zonelists(0); 1563 cpuset_init_current_mems_allowed(); 1564 } else { 1565 /* we have to stop all cpus to guaranntee there is no user 1566 of zonelist */ 1567 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 1568 /* cpuset refresh routine should be here */ 1569 } 1570 vm_total_pages = nr_free_pagecache_pages(); 1571 printk("Built %i zonelists. Total pages: %ld\n", 1572 num_online_nodes(), vm_total_pages); 1573 } 1574 1575 /* 1576 * Helper functions to size the waitqueue hash table. 1577 * Essentially these want to choose hash table sizes sufficiently 1578 * large so that collisions trying to wait on pages are rare. 1579 * But in fact, the number of active page waitqueues on typical 1580 * systems is ridiculously low, less than 200. So this is even 1581 * conservative, even though it seems large. 1582 * 1583 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1584 * waitqueues, i.e. the size of the waitq table given the number of pages. 1585 */ 1586 #define PAGES_PER_WAITQUEUE 256 1587 1588 #ifndef CONFIG_MEMORY_HOTPLUG 1589 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1590 { 1591 unsigned long size = 1; 1592 1593 pages /= PAGES_PER_WAITQUEUE; 1594 1595 while (size < pages) 1596 size <<= 1; 1597 1598 /* 1599 * Once we have dozens or even hundreds of threads sleeping 1600 * on IO we've got bigger problems than wait queue collision. 1601 * Limit the size of the wait table to a reasonable size. 1602 */ 1603 size = min(size, 4096UL); 1604 1605 return max(size, 4UL); 1606 } 1607 #else 1608 /* 1609 * A zone's size might be changed by hot-add, so it is not possible to determine 1610 * a suitable size for its wait_table. So we use the maximum size now. 1611 * 1612 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 1613 * 1614 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 1615 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 1616 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 1617 * 1618 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 1619 * or more by the traditional way. (See above). It equals: 1620 * 1621 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 1622 * ia64(16K page size) : = ( 8G + 4M)byte. 1623 * powerpc (64K page size) : = (32G +16M)byte. 1624 */ 1625 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1626 { 1627 return 4096UL; 1628 } 1629 #endif 1630 1631 /* 1632 * This is an integer logarithm so that shifts can be used later 1633 * to extract the more random high bits from the multiplicative 1634 * hash function before the remainder is taken. 1635 */ 1636 static inline unsigned long wait_table_bits(unsigned long size) 1637 { 1638 return ffz(~size); 1639 } 1640 1641 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1642 1643 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1644 unsigned long *zones_size, unsigned long *zholes_size) 1645 { 1646 unsigned long realtotalpages, totalpages = 0; 1647 int i; 1648 1649 for (i = 0; i < MAX_NR_ZONES; i++) 1650 totalpages += zones_size[i]; 1651 pgdat->node_spanned_pages = totalpages; 1652 1653 realtotalpages = totalpages; 1654 if (zholes_size) 1655 for (i = 0; i < MAX_NR_ZONES; i++) 1656 realtotalpages -= zholes_size[i]; 1657 pgdat->node_present_pages = realtotalpages; 1658 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1659 } 1660 1661 1662 /* 1663 * Initially all pages are reserved - free ones are freed 1664 * up by free_all_bootmem() once the early boot process is 1665 * done. Non-atomic initialization, single-pass. 1666 */ 1667 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1668 unsigned long start_pfn) 1669 { 1670 struct page *page; 1671 unsigned long end_pfn = start_pfn + size; 1672 unsigned long pfn; 1673 1674 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1675 if (!early_pfn_valid(pfn)) 1676 continue; 1677 page = pfn_to_page(pfn); 1678 set_page_links(page, zone, nid, pfn); 1679 init_page_count(page); 1680 reset_page_mapcount(page); 1681 SetPageReserved(page); 1682 INIT_LIST_HEAD(&page->lru); 1683 #ifdef WANT_PAGE_VIRTUAL 1684 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1685 if (!is_highmem_idx(zone)) 1686 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1687 #endif 1688 } 1689 } 1690 1691 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1692 unsigned long size) 1693 { 1694 int order; 1695 for (order = 0; order < MAX_ORDER ; order++) { 1696 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1697 zone->free_area[order].nr_free = 0; 1698 } 1699 } 1700 1701 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1702 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1703 unsigned long size) 1704 { 1705 unsigned long snum = pfn_to_section_nr(pfn); 1706 unsigned long end = pfn_to_section_nr(pfn + size); 1707 1708 if (FLAGS_HAS_NODE) 1709 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1710 else 1711 for (; snum <= end; snum++) 1712 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1713 } 1714 1715 #ifndef __HAVE_ARCH_MEMMAP_INIT 1716 #define memmap_init(size, nid, zone, start_pfn) \ 1717 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1718 #endif 1719 1720 static int __cpuinit zone_batchsize(struct zone *zone) 1721 { 1722 int batch; 1723 1724 /* 1725 * The per-cpu-pages pools are set to around 1000th of the 1726 * size of the zone. But no more than 1/2 of a meg. 1727 * 1728 * OK, so we don't know how big the cache is. So guess. 1729 */ 1730 batch = zone->present_pages / 1024; 1731 if (batch * PAGE_SIZE > 512 * 1024) 1732 batch = (512 * 1024) / PAGE_SIZE; 1733 batch /= 4; /* We effectively *= 4 below */ 1734 if (batch < 1) 1735 batch = 1; 1736 1737 /* 1738 * Clamp the batch to a 2^n - 1 value. Having a power 1739 * of 2 value was found to be more likely to have 1740 * suboptimal cache aliasing properties in some cases. 1741 * 1742 * For example if 2 tasks are alternately allocating 1743 * batches of pages, one task can end up with a lot 1744 * of pages of one half of the possible page colors 1745 * and the other with pages of the other colors. 1746 */ 1747 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1748 1749 return batch; 1750 } 1751 1752 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1753 { 1754 struct per_cpu_pages *pcp; 1755 1756 memset(p, 0, sizeof(*p)); 1757 1758 pcp = &p->pcp[0]; /* hot */ 1759 pcp->count = 0; 1760 pcp->high = 6 * batch; 1761 pcp->batch = max(1UL, 1 * batch); 1762 INIT_LIST_HEAD(&pcp->list); 1763 1764 pcp = &p->pcp[1]; /* cold*/ 1765 pcp->count = 0; 1766 pcp->high = 2 * batch; 1767 pcp->batch = max(1UL, batch/2); 1768 INIT_LIST_HEAD(&pcp->list); 1769 } 1770 1771 /* 1772 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1773 * to the value high for the pageset p. 1774 */ 1775 1776 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1777 unsigned long high) 1778 { 1779 struct per_cpu_pages *pcp; 1780 1781 pcp = &p->pcp[0]; /* hot list */ 1782 pcp->high = high; 1783 pcp->batch = max(1UL, high/4); 1784 if ((high/4) > (PAGE_SHIFT * 8)) 1785 pcp->batch = PAGE_SHIFT * 8; 1786 } 1787 1788 1789 #ifdef CONFIG_NUMA 1790 /* 1791 * Boot pageset table. One per cpu which is going to be used for all 1792 * zones and all nodes. The parameters will be set in such a way 1793 * that an item put on a list will immediately be handed over to 1794 * the buddy list. This is safe since pageset manipulation is done 1795 * with interrupts disabled. 1796 * 1797 * Some NUMA counter updates may also be caught by the boot pagesets. 1798 * 1799 * The boot_pagesets must be kept even after bootup is complete for 1800 * unused processors and/or zones. They do play a role for bootstrapping 1801 * hotplugged processors. 1802 * 1803 * zoneinfo_show() and maybe other functions do 1804 * not check if the processor is online before following the pageset pointer. 1805 * Other parts of the kernel may not check if the zone is available. 1806 */ 1807 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1808 1809 /* 1810 * Dynamically allocate memory for the 1811 * per cpu pageset array in struct zone. 1812 */ 1813 static int __cpuinit process_zones(int cpu) 1814 { 1815 struct zone *zone, *dzone; 1816 1817 for_each_zone(zone) { 1818 1819 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1820 GFP_KERNEL, cpu_to_node(cpu)); 1821 if (!zone_pcp(zone, cpu)) 1822 goto bad; 1823 1824 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1825 1826 if (percpu_pagelist_fraction) 1827 setup_pagelist_highmark(zone_pcp(zone, cpu), 1828 (zone->present_pages / percpu_pagelist_fraction)); 1829 } 1830 1831 return 0; 1832 bad: 1833 for_each_zone(dzone) { 1834 if (dzone == zone) 1835 break; 1836 kfree(zone_pcp(dzone, cpu)); 1837 zone_pcp(dzone, cpu) = NULL; 1838 } 1839 return -ENOMEM; 1840 } 1841 1842 static inline void free_zone_pagesets(int cpu) 1843 { 1844 struct zone *zone; 1845 1846 for_each_zone(zone) { 1847 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1848 1849 zone_pcp(zone, cpu) = NULL; 1850 kfree(pset); 1851 } 1852 } 1853 1854 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 1855 unsigned long action, 1856 void *hcpu) 1857 { 1858 int cpu = (long)hcpu; 1859 int ret = NOTIFY_OK; 1860 1861 switch (action) { 1862 case CPU_UP_PREPARE: 1863 if (process_zones(cpu)) 1864 ret = NOTIFY_BAD; 1865 break; 1866 case CPU_UP_CANCELED: 1867 case CPU_DEAD: 1868 free_zone_pagesets(cpu); 1869 break; 1870 default: 1871 break; 1872 } 1873 return ret; 1874 } 1875 1876 static struct notifier_block __cpuinitdata pageset_notifier = 1877 { &pageset_cpuup_callback, NULL, 0 }; 1878 1879 void __init setup_per_cpu_pageset(void) 1880 { 1881 int err; 1882 1883 /* Initialize per_cpu_pageset for cpu 0. 1884 * A cpuup callback will do this for every cpu 1885 * as it comes online 1886 */ 1887 err = process_zones(smp_processor_id()); 1888 BUG_ON(err); 1889 register_cpu_notifier(&pageset_notifier); 1890 } 1891 1892 #endif 1893 1894 static __meminit 1895 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 1896 { 1897 int i; 1898 struct pglist_data *pgdat = zone->zone_pgdat; 1899 size_t alloc_size; 1900 1901 /* 1902 * The per-page waitqueue mechanism uses hashed waitqueues 1903 * per zone. 1904 */ 1905 zone->wait_table_hash_nr_entries = 1906 wait_table_hash_nr_entries(zone_size_pages); 1907 zone->wait_table_bits = 1908 wait_table_bits(zone->wait_table_hash_nr_entries); 1909 alloc_size = zone->wait_table_hash_nr_entries 1910 * sizeof(wait_queue_head_t); 1911 1912 if (system_state == SYSTEM_BOOTING) { 1913 zone->wait_table = (wait_queue_head_t *) 1914 alloc_bootmem_node(pgdat, alloc_size); 1915 } else { 1916 /* 1917 * This case means that a zone whose size was 0 gets new memory 1918 * via memory hot-add. 1919 * But it may be the case that a new node was hot-added. In 1920 * this case vmalloc() will not be able to use this new node's 1921 * memory - this wait_table must be initialized to use this new 1922 * node itself as well. 1923 * To use this new node's memory, further consideration will be 1924 * necessary. 1925 */ 1926 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); 1927 } 1928 if (!zone->wait_table) 1929 return -ENOMEM; 1930 1931 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 1932 init_waitqueue_head(zone->wait_table + i); 1933 1934 return 0; 1935 } 1936 1937 static __meminit void zone_pcp_init(struct zone *zone) 1938 { 1939 int cpu; 1940 unsigned long batch = zone_batchsize(zone); 1941 1942 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1943 #ifdef CONFIG_NUMA 1944 /* Early boot. Slab allocator not functional yet */ 1945 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 1946 setup_pageset(&boot_pageset[cpu],0); 1947 #else 1948 setup_pageset(zone_pcp(zone,cpu), batch); 1949 #endif 1950 } 1951 if (zone->present_pages) 1952 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 1953 zone->name, zone->present_pages, batch); 1954 } 1955 1956 __meminit int init_currently_empty_zone(struct zone *zone, 1957 unsigned long zone_start_pfn, 1958 unsigned long size) 1959 { 1960 struct pglist_data *pgdat = zone->zone_pgdat; 1961 int ret; 1962 ret = zone_wait_table_init(zone, size); 1963 if (ret) 1964 return ret; 1965 pgdat->nr_zones = zone_idx(zone) + 1; 1966 1967 zone->zone_start_pfn = zone_start_pfn; 1968 1969 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 1970 1971 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 1972 1973 return 0; 1974 } 1975 1976 /* 1977 * Set up the zone data structures: 1978 * - mark all pages reserved 1979 * - mark all memory queues empty 1980 * - clear the memory bitmaps 1981 */ 1982 static void __meminit free_area_init_core(struct pglist_data *pgdat, 1983 unsigned long *zones_size, unsigned long *zholes_size) 1984 { 1985 unsigned long j; 1986 int nid = pgdat->node_id; 1987 unsigned long zone_start_pfn = pgdat->node_start_pfn; 1988 int ret; 1989 1990 pgdat_resize_init(pgdat); 1991 pgdat->nr_zones = 0; 1992 init_waitqueue_head(&pgdat->kswapd_wait); 1993 pgdat->kswapd_max_order = 0; 1994 1995 for (j = 0; j < MAX_NR_ZONES; j++) { 1996 struct zone *zone = pgdat->node_zones + j; 1997 unsigned long size, realsize; 1998 1999 realsize = size = zones_size[j]; 2000 if (zholes_size) 2001 realsize -= zholes_size[j]; 2002 2003 if (j < ZONE_HIGHMEM) 2004 nr_kernel_pages += realsize; 2005 nr_all_pages += realsize; 2006 2007 zone->spanned_pages = size; 2008 zone->present_pages = realsize; 2009 zone->name = zone_names[j]; 2010 spin_lock_init(&zone->lock); 2011 spin_lock_init(&zone->lru_lock); 2012 zone_seqlock_init(zone); 2013 zone->zone_pgdat = pgdat; 2014 zone->free_pages = 0; 2015 2016 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2017 2018 zone_pcp_init(zone); 2019 INIT_LIST_HEAD(&zone->active_list); 2020 INIT_LIST_HEAD(&zone->inactive_list); 2021 zone->nr_scan_active = 0; 2022 zone->nr_scan_inactive = 0; 2023 zone->nr_active = 0; 2024 zone->nr_inactive = 0; 2025 zap_zone_vm_stats(zone); 2026 atomic_set(&zone->reclaim_in_progress, 0); 2027 if (!size) 2028 continue; 2029 2030 zonetable_add(zone, nid, j, zone_start_pfn, size); 2031 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 2032 BUG_ON(ret); 2033 zone_start_pfn += size; 2034 } 2035 } 2036 2037 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2038 { 2039 /* Skip empty nodes */ 2040 if (!pgdat->node_spanned_pages) 2041 return; 2042 2043 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2044 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2045 if (!pgdat->node_mem_map) { 2046 unsigned long size, start, end; 2047 struct page *map; 2048 2049 /* 2050 * The zone's endpoints aren't required to be MAX_ORDER 2051 * aligned but the node_mem_map endpoints must be in order 2052 * for the buddy allocator to function correctly. 2053 */ 2054 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 2055 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 2056 end = ALIGN(end, MAX_ORDER_NR_PAGES); 2057 size = (end - start) * sizeof(struct page); 2058 map = alloc_remap(pgdat->node_id, size); 2059 if (!map) 2060 map = alloc_bootmem_node(pgdat, size); 2061 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 2062 } 2063 #ifdef CONFIG_FLATMEM 2064 /* 2065 * With no DISCONTIG, the global mem_map is just set as node 0's 2066 */ 2067 if (pgdat == NODE_DATA(0)) 2068 mem_map = NODE_DATA(0)->node_mem_map; 2069 #endif 2070 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2071 } 2072 2073 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 2074 unsigned long *zones_size, unsigned long node_start_pfn, 2075 unsigned long *zholes_size) 2076 { 2077 pgdat->node_id = nid; 2078 pgdat->node_start_pfn = node_start_pfn; 2079 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2080 2081 alloc_node_mem_map(pgdat); 2082 2083 free_area_init_core(pgdat, zones_size, zholes_size); 2084 } 2085 2086 #ifndef CONFIG_NEED_MULTIPLE_NODES 2087 static bootmem_data_t contig_bootmem_data; 2088 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2089 2090 EXPORT_SYMBOL(contig_page_data); 2091 #endif 2092 2093 void __init free_area_init(unsigned long *zones_size) 2094 { 2095 free_area_init_node(0, NODE_DATA(0), zones_size, 2096 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2097 } 2098 2099 #ifdef CONFIG_HOTPLUG_CPU 2100 static int page_alloc_cpu_notify(struct notifier_block *self, 2101 unsigned long action, void *hcpu) 2102 { 2103 int cpu = (unsigned long)hcpu; 2104 2105 if (action == CPU_DEAD) { 2106 local_irq_disable(); 2107 __drain_pages(cpu); 2108 vm_events_fold_cpu(cpu); 2109 local_irq_enable(); 2110 refresh_cpu_vm_stats(cpu); 2111 } 2112 return NOTIFY_OK; 2113 } 2114 #endif /* CONFIG_HOTPLUG_CPU */ 2115 2116 void __init page_alloc_init(void) 2117 { 2118 hotcpu_notifier(page_alloc_cpu_notify, 0); 2119 } 2120 2121 /* 2122 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 2123 * or min_free_kbytes changes. 2124 */ 2125 static void calculate_totalreserve_pages(void) 2126 { 2127 struct pglist_data *pgdat; 2128 unsigned long reserve_pages = 0; 2129 int i, j; 2130 2131 for_each_online_pgdat(pgdat) { 2132 for (i = 0; i < MAX_NR_ZONES; i++) { 2133 struct zone *zone = pgdat->node_zones + i; 2134 unsigned long max = 0; 2135 2136 /* Find valid and maximum lowmem_reserve in the zone */ 2137 for (j = i; j < MAX_NR_ZONES; j++) { 2138 if (zone->lowmem_reserve[j] > max) 2139 max = zone->lowmem_reserve[j]; 2140 } 2141 2142 /* we treat pages_high as reserved pages. */ 2143 max += zone->pages_high; 2144 2145 if (max > zone->present_pages) 2146 max = zone->present_pages; 2147 reserve_pages += max; 2148 } 2149 } 2150 totalreserve_pages = reserve_pages; 2151 } 2152 2153 /* 2154 * setup_per_zone_lowmem_reserve - called whenever 2155 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2156 * has a correct pages reserved value, so an adequate number of 2157 * pages are left in the zone after a successful __alloc_pages(). 2158 */ 2159 static void setup_per_zone_lowmem_reserve(void) 2160 { 2161 struct pglist_data *pgdat; 2162 int j, idx; 2163 2164 for_each_online_pgdat(pgdat) { 2165 for (j = 0; j < MAX_NR_ZONES; j++) { 2166 struct zone *zone = pgdat->node_zones + j; 2167 unsigned long present_pages = zone->present_pages; 2168 2169 zone->lowmem_reserve[j] = 0; 2170 2171 for (idx = j-1; idx >= 0; idx--) { 2172 struct zone *lower_zone; 2173 2174 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2175 sysctl_lowmem_reserve_ratio[idx] = 1; 2176 2177 lower_zone = pgdat->node_zones + idx; 2178 lower_zone->lowmem_reserve[j] = present_pages / 2179 sysctl_lowmem_reserve_ratio[idx]; 2180 present_pages += lower_zone->present_pages; 2181 } 2182 } 2183 } 2184 2185 /* update totalreserve_pages */ 2186 calculate_totalreserve_pages(); 2187 } 2188 2189 /* 2190 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2191 * that the pages_{min,low,high} values for each zone are set correctly 2192 * with respect to min_free_kbytes. 2193 */ 2194 void setup_per_zone_pages_min(void) 2195 { 2196 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2197 unsigned long lowmem_pages = 0; 2198 struct zone *zone; 2199 unsigned long flags; 2200 2201 /* Calculate total number of !ZONE_HIGHMEM pages */ 2202 for_each_zone(zone) { 2203 if (!is_highmem(zone)) 2204 lowmem_pages += zone->present_pages; 2205 } 2206 2207 for_each_zone(zone) { 2208 u64 tmp; 2209 2210 spin_lock_irqsave(&zone->lru_lock, flags); 2211 tmp = (u64)pages_min * zone->present_pages; 2212 do_div(tmp, lowmem_pages); 2213 if (is_highmem(zone)) { 2214 /* 2215 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2216 * need highmem pages, so cap pages_min to a small 2217 * value here. 2218 * 2219 * The (pages_high-pages_low) and (pages_low-pages_min) 2220 * deltas controls asynch page reclaim, and so should 2221 * not be capped for highmem. 2222 */ 2223 int min_pages; 2224 2225 min_pages = zone->present_pages / 1024; 2226 if (min_pages < SWAP_CLUSTER_MAX) 2227 min_pages = SWAP_CLUSTER_MAX; 2228 if (min_pages > 128) 2229 min_pages = 128; 2230 zone->pages_min = min_pages; 2231 } else { 2232 /* 2233 * If it's a lowmem zone, reserve a number of pages 2234 * proportionate to the zone's size. 2235 */ 2236 zone->pages_min = tmp; 2237 } 2238 2239 zone->pages_low = zone->pages_min + (tmp >> 2); 2240 zone->pages_high = zone->pages_min + (tmp >> 1); 2241 spin_unlock_irqrestore(&zone->lru_lock, flags); 2242 } 2243 2244 /* update totalreserve_pages */ 2245 calculate_totalreserve_pages(); 2246 } 2247 2248 /* 2249 * Initialise min_free_kbytes. 2250 * 2251 * For small machines we want it small (128k min). For large machines 2252 * we want it large (64MB max). But it is not linear, because network 2253 * bandwidth does not increase linearly with machine size. We use 2254 * 2255 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2256 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2257 * 2258 * which yields 2259 * 2260 * 16MB: 512k 2261 * 32MB: 724k 2262 * 64MB: 1024k 2263 * 128MB: 1448k 2264 * 256MB: 2048k 2265 * 512MB: 2896k 2266 * 1024MB: 4096k 2267 * 2048MB: 5792k 2268 * 4096MB: 8192k 2269 * 8192MB: 11584k 2270 * 16384MB: 16384k 2271 */ 2272 static int __init init_per_zone_pages_min(void) 2273 { 2274 unsigned long lowmem_kbytes; 2275 2276 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2277 2278 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2279 if (min_free_kbytes < 128) 2280 min_free_kbytes = 128; 2281 if (min_free_kbytes > 65536) 2282 min_free_kbytes = 65536; 2283 setup_per_zone_pages_min(); 2284 setup_per_zone_lowmem_reserve(); 2285 return 0; 2286 } 2287 module_init(init_per_zone_pages_min) 2288 2289 /* 2290 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2291 * that we can call two helper functions whenever min_free_kbytes 2292 * changes. 2293 */ 2294 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2295 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2296 { 2297 proc_dointvec(table, write, file, buffer, length, ppos); 2298 setup_per_zone_pages_min(); 2299 return 0; 2300 } 2301 2302 /* 2303 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2304 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2305 * whenever sysctl_lowmem_reserve_ratio changes. 2306 * 2307 * The reserve ratio obviously has absolutely no relation with the 2308 * pages_min watermarks. The lowmem reserve ratio can only make sense 2309 * if in function of the boot time zone sizes. 2310 */ 2311 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2312 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2313 { 2314 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2315 setup_per_zone_lowmem_reserve(); 2316 return 0; 2317 } 2318 2319 /* 2320 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2321 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2322 * can have before it gets flushed back to buddy allocator. 2323 */ 2324 2325 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2326 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2327 { 2328 struct zone *zone; 2329 unsigned int cpu; 2330 int ret; 2331 2332 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2333 if (!write || (ret == -EINVAL)) 2334 return ret; 2335 for_each_zone(zone) { 2336 for_each_online_cpu(cpu) { 2337 unsigned long high; 2338 high = zone->present_pages / percpu_pagelist_fraction; 2339 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2340 } 2341 } 2342 return 0; 2343 } 2344 2345 __initdata int hashdist = HASHDIST_DEFAULT; 2346 2347 #ifdef CONFIG_NUMA 2348 static int __init set_hashdist(char *str) 2349 { 2350 if (!str) 2351 return 0; 2352 hashdist = simple_strtoul(str, &str, 0); 2353 return 1; 2354 } 2355 __setup("hashdist=", set_hashdist); 2356 #endif 2357 2358 /* 2359 * allocate a large system hash table from bootmem 2360 * - it is assumed that the hash table must contain an exact power-of-2 2361 * quantity of entries 2362 * - limit is the number of hash buckets, not the total allocation size 2363 */ 2364 void *__init alloc_large_system_hash(const char *tablename, 2365 unsigned long bucketsize, 2366 unsigned long numentries, 2367 int scale, 2368 int flags, 2369 unsigned int *_hash_shift, 2370 unsigned int *_hash_mask, 2371 unsigned long limit) 2372 { 2373 unsigned long long max = limit; 2374 unsigned long log2qty, size; 2375 void *table = NULL; 2376 2377 /* allow the kernel cmdline to have a say */ 2378 if (!numentries) { 2379 /* round applicable memory size up to nearest megabyte */ 2380 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2381 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2382 numentries >>= 20 - PAGE_SHIFT; 2383 numentries <<= 20 - PAGE_SHIFT; 2384 2385 /* limit to 1 bucket per 2^scale bytes of low memory */ 2386 if (scale > PAGE_SHIFT) 2387 numentries >>= (scale - PAGE_SHIFT); 2388 else 2389 numentries <<= (PAGE_SHIFT - scale); 2390 } 2391 numentries = roundup_pow_of_two(numentries); 2392 2393 /* limit allocation size to 1/16 total memory by default */ 2394 if (max == 0) { 2395 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2396 do_div(max, bucketsize); 2397 } 2398 2399 if (numentries > max) 2400 numentries = max; 2401 2402 log2qty = long_log2(numentries); 2403 2404 do { 2405 size = bucketsize << log2qty; 2406 if (flags & HASH_EARLY) 2407 table = alloc_bootmem(size); 2408 else if (hashdist) 2409 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2410 else { 2411 unsigned long order; 2412 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2413 ; 2414 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2415 } 2416 } while (!table && size > PAGE_SIZE && --log2qty); 2417 2418 if (!table) 2419 panic("Failed to allocate %s hash table\n", tablename); 2420 2421 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2422 tablename, 2423 (1U << log2qty), 2424 long_log2(size) - PAGE_SHIFT, 2425 size); 2426 2427 if (_hash_shift) 2428 *_hash_shift = log2qty; 2429 if (_hash_mask) 2430 *_hash_mask = (1 << log2qty) - 1; 2431 2432 return table; 2433 } 2434 2435 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 2436 struct page *pfn_to_page(unsigned long pfn) 2437 { 2438 return __pfn_to_page(pfn); 2439 } 2440 unsigned long page_to_pfn(struct page *page) 2441 { 2442 return __page_to_pfn(page); 2443 } 2444 EXPORT_SYMBOL(pfn_to_page); 2445 EXPORT_SYMBOL(page_to_pfn); 2446 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 2447