xref: /linux/mm/page_alloc.c (revision 5e0266f0e5f57617472d5aac4013f58a3ef264ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_trylock(type, member, ptr)				\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	if (!spin_trylock(&_ret->member)) {				\
179 		pcpu_task_unpin();					\
180 		_ret = NULL;						\
181 	}								\
182 	_ret;								\
183 })
184 
185 #define pcpu_spin_unlock(member, ptr)					\
186 ({									\
187 	spin_unlock(&ptr->member);					\
188 	pcpu_task_unpin();						\
189 })
190 
191 /* struct per_cpu_pages specific helpers. */
192 #define pcp_spin_lock(ptr)						\
193 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
194 
195 #define pcp_spin_trylock(ptr)						\
196 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
197 
198 #define pcp_spin_unlock(ptr)						\
199 	pcpu_spin_unlock(lock, ptr)
200 
201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202 DEFINE_PER_CPU(int, numa_node);
203 EXPORT_PER_CPU_SYMBOL(numa_node);
204 #endif
205 
206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
207 
208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
209 /*
210  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213  * defined in <linux/topology.h>.
214  */
215 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
216 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
217 #endif
218 
219 static DEFINE_MUTEX(pcpu_drain_mutex);
220 
221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222 volatile unsigned long latent_entropy __latent_entropy;
223 EXPORT_SYMBOL(latent_entropy);
224 #endif
225 
226 /*
227  * Array of node states.
228  */
229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 	[N_POSSIBLE] = NODE_MASK_ALL,
231 	[N_ONLINE] = { { [0] = 1UL } },
232 #ifndef CONFIG_NUMA
233 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
234 #ifdef CONFIG_HIGHMEM
235 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
236 #endif
237 	[N_MEMORY] = { { [0] = 1UL } },
238 	[N_CPU] = { { [0] = 1UL } },
239 #endif	/* NUMA */
240 };
241 EXPORT_SYMBOL(node_states);
242 
243 atomic_long_t _totalram_pages __read_mostly;
244 EXPORT_SYMBOL(_totalram_pages);
245 unsigned long totalreserve_pages __read_mostly;
246 unsigned long totalcma_pages __read_mostly;
247 
248 int percpu_pagelist_high_fraction;
249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251 EXPORT_SYMBOL(init_on_alloc);
252 
253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254 EXPORT_SYMBOL(init_on_free);
255 
256 static bool _init_on_alloc_enabled_early __read_mostly
257 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258 static int __init early_init_on_alloc(char *buf)
259 {
260 
261 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
262 }
263 early_param("init_on_alloc", early_init_on_alloc);
264 
265 static bool _init_on_free_enabled_early __read_mostly
266 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267 static int __init early_init_on_free(char *buf)
268 {
269 	return kstrtobool(buf, &_init_on_free_enabled_early);
270 }
271 early_param("init_on_free", early_init_on_free);
272 
273 /*
274  * A cached value of the page's pageblock's migratetype, used when the page is
275  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277  * Also the migratetype set in the page does not necessarily match the pcplist
278  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279  * other index - this ensures that it will be put on the correct CMA freelist.
280  */
281 static inline int get_pcppage_migratetype(struct page *page)
282 {
283 	return page->index;
284 }
285 
286 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
287 {
288 	page->index = migratetype;
289 }
290 
291 #ifdef CONFIG_PM_SLEEP
292 /*
293  * The following functions are used by the suspend/hibernate code to temporarily
294  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295  * while devices are suspended.  To avoid races with the suspend/hibernate code,
296  * they should always be called with system_transition_mutex held
297  * (gfp_allowed_mask also should only be modified with system_transition_mutex
298  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299  * with that modification).
300  */
301 
302 static gfp_t saved_gfp_mask;
303 
304 void pm_restore_gfp_mask(void)
305 {
306 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 	if (saved_gfp_mask) {
308 		gfp_allowed_mask = saved_gfp_mask;
309 		saved_gfp_mask = 0;
310 	}
311 }
312 
313 void pm_restrict_gfp_mask(void)
314 {
315 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 	WARN_ON(saved_gfp_mask);
317 	saved_gfp_mask = gfp_allowed_mask;
318 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
319 }
320 
321 bool pm_suspended_storage(void)
322 {
323 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
324 		return false;
325 	return true;
326 }
327 #endif /* CONFIG_PM_SLEEP */
328 
329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330 unsigned int pageblock_order __read_mostly;
331 #endif
332 
333 static void __free_pages_ok(struct page *page, unsigned int order,
334 			    fpi_t fpi_flags);
335 
336 /*
337  * results with 256, 32 in the lowmem_reserve sysctl:
338  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339  *	1G machine -> (16M dma, 784M normal, 224M high)
340  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
343  *
344  * TBD: should special case ZONE_DMA32 machines here - in those we normally
345  * don't need any ZONE_NORMAL reservation
346  */
347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348 #ifdef CONFIG_ZONE_DMA
349 	[ZONE_DMA] = 256,
350 #endif
351 #ifdef CONFIG_ZONE_DMA32
352 	[ZONE_DMA32] = 256,
353 #endif
354 	[ZONE_NORMAL] = 32,
355 #ifdef CONFIG_HIGHMEM
356 	[ZONE_HIGHMEM] = 0,
357 #endif
358 	[ZONE_MOVABLE] = 0,
359 };
360 
361 static char * const zone_names[MAX_NR_ZONES] = {
362 #ifdef CONFIG_ZONE_DMA
363 	 "DMA",
364 #endif
365 #ifdef CONFIG_ZONE_DMA32
366 	 "DMA32",
367 #endif
368 	 "Normal",
369 #ifdef CONFIG_HIGHMEM
370 	 "HighMem",
371 #endif
372 	 "Movable",
373 #ifdef CONFIG_ZONE_DEVICE
374 	 "Device",
375 #endif
376 };
377 
378 const char * const migratetype_names[MIGRATE_TYPES] = {
379 	"Unmovable",
380 	"Movable",
381 	"Reclaimable",
382 	"HighAtomic",
383 #ifdef CONFIG_CMA
384 	"CMA",
385 #endif
386 #ifdef CONFIG_MEMORY_ISOLATION
387 	"Isolate",
388 #endif
389 };
390 
391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 	[NULL_COMPOUND_DTOR] = NULL,
393 	[COMPOUND_PAGE_DTOR] = free_compound_page,
394 #ifdef CONFIG_HUGETLB_PAGE
395 	[HUGETLB_PAGE_DTOR] = free_huge_page,
396 #endif
397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
399 #endif
400 };
401 
402 int min_free_kbytes = 1024;
403 int user_min_free_kbytes = -1;
404 int watermark_boost_factor __read_mostly = 15000;
405 int watermark_scale_factor = 10;
406 
407 static unsigned long nr_kernel_pages __initdata;
408 static unsigned long nr_all_pages __initdata;
409 static unsigned long dma_reserve __initdata;
410 
411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413 static unsigned long required_kernelcore __initdata;
414 static unsigned long required_kernelcore_percent __initdata;
415 static unsigned long required_movablecore __initdata;
416 static unsigned long required_movablecore_percent __initdata;
417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418 bool mirrored_kernelcore __initdata_memblock;
419 
420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
421 int movable_zone;
422 EXPORT_SYMBOL(movable_zone);
423 
424 #if MAX_NUMNODES > 1
425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426 unsigned int nr_online_nodes __read_mostly = 1;
427 EXPORT_SYMBOL(nr_node_ids);
428 EXPORT_SYMBOL(nr_online_nodes);
429 #endif
430 
431 int page_group_by_mobility_disabled __read_mostly;
432 
433 bool deferred_struct_pages __meminitdata;
434 
435 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
436 /*
437  * During boot we initialize deferred pages on-demand, as needed, but once
438  * page_alloc_init_late() has finished, the deferred pages are all initialized,
439  * and we can permanently disable that path.
440  */
441 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
442 
443 static inline bool deferred_pages_enabled(void)
444 {
445 	return static_branch_unlikely(&deferred_pages);
446 }
447 
448 /* Returns true if the struct page for the pfn is initialised */
449 static inline bool __meminit early_page_initialised(unsigned long pfn)
450 {
451 	int nid = early_pfn_to_nid(pfn);
452 
453 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
454 		return false;
455 
456 	return true;
457 }
458 
459 /*
460  * Returns true when the remaining initialisation should be deferred until
461  * later in the boot cycle when it can be parallelised.
462  */
463 static bool __meminit
464 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
465 {
466 	static unsigned long prev_end_pfn, nr_initialised;
467 
468 	if (early_page_ext_enabled())
469 		return false;
470 	/*
471 	 * prev_end_pfn static that contains the end of previous zone
472 	 * No need to protect because called very early in boot before smp_init.
473 	 */
474 	if (prev_end_pfn != end_pfn) {
475 		prev_end_pfn = end_pfn;
476 		nr_initialised = 0;
477 	}
478 
479 	/* Always populate low zones for address-constrained allocations */
480 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
481 		return false;
482 
483 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
484 		return true;
485 	/*
486 	 * We start only with one section of pages, more pages are added as
487 	 * needed until the rest of deferred pages are initialized.
488 	 */
489 	nr_initialised++;
490 	if ((nr_initialised > PAGES_PER_SECTION) &&
491 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
492 		NODE_DATA(nid)->first_deferred_pfn = pfn;
493 		return true;
494 	}
495 	return false;
496 }
497 #else
498 static inline bool deferred_pages_enabled(void)
499 {
500 	return false;
501 }
502 
503 static inline bool early_page_initialised(unsigned long pfn)
504 {
505 	return true;
506 }
507 
508 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
509 {
510 	return false;
511 }
512 #endif
513 
514 /* Return a pointer to the bitmap storing bits affecting a block of pages */
515 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
516 							unsigned long pfn)
517 {
518 #ifdef CONFIG_SPARSEMEM
519 	return section_to_usemap(__pfn_to_section(pfn));
520 #else
521 	return page_zone(page)->pageblock_flags;
522 #endif /* CONFIG_SPARSEMEM */
523 }
524 
525 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
526 {
527 #ifdef CONFIG_SPARSEMEM
528 	pfn &= (PAGES_PER_SECTION-1);
529 #else
530 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
531 #endif /* CONFIG_SPARSEMEM */
532 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
533 }
534 
535 static __always_inline
536 unsigned long __get_pfnblock_flags_mask(const struct page *page,
537 					unsigned long pfn,
538 					unsigned long mask)
539 {
540 	unsigned long *bitmap;
541 	unsigned long bitidx, word_bitidx;
542 	unsigned long word;
543 
544 	bitmap = get_pageblock_bitmap(page, pfn);
545 	bitidx = pfn_to_bitidx(page, pfn);
546 	word_bitidx = bitidx / BITS_PER_LONG;
547 	bitidx &= (BITS_PER_LONG-1);
548 	/*
549 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
550 	 * a consistent read of the memory array, so that results, even though
551 	 * racy, are not corrupted.
552 	 */
553 	word = READ_ONCE(bitmap[word_bitidx]);
554 	return (word >> bitidx) & mask;
555 }
556 
557 /**
558  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
559  * @page: The page within the block of interest
560  * @pfn: The target page frame number
561  * @mask: mask of bits that the caller is interested in
562  *
563  * Return: pageblock_bits flags
564  */
565 unsigned long get_pfnblock_flags_mask(const struct page *page,
566 					unsigned long pfn, unsigned long mask)
567 {
568 	return __get_pfnblock_flags_mask(page, pfn, mask);
569 }
570 
571 static __always_inline int get_pfnblock_migratetype(const struct page *page,
572 					unsigned long pfn)
573 {
574 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
575 }
576 
577 /**
578  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
579  * @page: The page within the block of interest
580  * @flags: The flags to set
581  * @pfn: The target page frame number
582  * @mask: mask of bits that the caller is interested in
583  */
584 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
585 					unsigned long pfn,
586 					unsigned long mask)
587 {
588 	unsigned long *bitmap;
589 	unsigned long bitidx, word_bitidx;
590 	unsigned long word;
591 
592 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
593 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
594 
595 	bitmap = get_pageblock_bitmap(page, pfn);
596 	bitidx = pfn_to_bitidx(page, pfn);
597 	word_bitidx = bitidx / BITS_PER_LONG;
598 	bitidx &= (BITS_PER_LONG-1);
599 
600 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
601 
602 	mask <<= bitidx;
603 	flags <<= bitidx;
604 
605 	word = READ_ONCE(bitmap[word_bitidx]);
606 	do {
607 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
608 }
609 
610 void set_pageblock_migratetype(struct page *page, int migratetype)
611 {
612 	if (unlikely(page_group_by_mobility_disabled &&
613 		     migratetype < MIGRATE_PCPTYPES))
614 		migratetype = MIGRATE_UNMOVABLE;
615 
616 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
617 				page_to_pfn(page), MIGRATETYPE_MASK);
618 }
619 
620 #ifdef CONFIG_DEBUG_VM
621 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
622 {
623 	int ret = 0;
624 	unsigned seq;
625 	unsigned long pfn = page_to_pfn(page);
626 	unsigned long sp, start_pfn;
627 
628 	do {
629 		seq = zone_span_seqbegin(zone);
630 		start_pfn = zone->zone_start_pfn;
631 		sp = zone->spanned_pages;
632 		if (!zone_spans_pfn(zone, pfn))
633 			ret = 1;
634 	} while (zone_span_seqretry(zone, seq));
635 
636 	if (ret)
637 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
638 			pfn, zone_to_nid(zone), zone->name,
639 			start_pfn, start_pfn + sp);
640 
641 	return ret;
642 }
643 
644 static int page_is_consistent(struct zone *zone, struct page *page)
645 {
646 	if (zone != page_zone(page))
647 		return 0;
648 
649 	return 1;
650 }
651 /*
652  * Temporary debugging check for pages not lying within a given zone.
653  */
654 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
655 {
656 	if (page_outside_zone_boundaries(zone, page))
657 		return 1;
658 	if (!page_is_consistent(zone, page))
659 		return 1;
660 
661 	return 0;
662 }
663 #else
664 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
665 {
666 	return 0;
667 }
668 #endif
669 
670 static void bad_page(struct page *page, const char *reason)
671 {
672 	static unsigned long resume;
673 	static unsigned long nr_shown;
674 	static unsigned long nr_unshown;
675 
676 	/*
677 	 * Allow a burst of 60 reports, then keep quiet for that minute;
678 	 * or allow a steady drip of one report per second.
679 	 */
680 	if (nr_shown == 60) {
681 		if (time_before(jiffies, resume)) {
682 			nr_unshown++;
683 			goto out;
684 		}
685 		if (nr_unshown) {
686 			pr_alert(
687 			      "BUG: Bad page state: %lu messages suppressed\n",
688 				nr_unshown);
689 			nr_unshown = 0;
690 		}
691 		nr_shown = 0;
692 	}
693 	if (nr_shown++ == 0)
694 		resume = jiffies + 60 * HZ;
695 
696 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
697 		current->comm, page_to_pfn(page));
698 	dump_page(page, reason);
699 
700 	print_modules();
701 	dump_stack();
702 out:
703 	/* Leave bad fields for debug, except PageBuddy could make trouble */
704 	page_mapcount_reset(page); /* remove PageBuddy */
705 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
706 }
707 
708 static inline unsigned int order_to_pindex(int migratetype, int order)
709 {
710 	int base = order;
711 
712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
714 		VM_BUG_ON(order != pageblock_order);
715 		return NR_LOWORDER_PCP_LISTS;
716 	}
717 #else
718 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
719 #endif
720 
721 	return (MIGRATE_PCPTYPES * base) + migratetype;
722 }
723 
724 static inline int pindex_to_order(unsigned int pindex)
725 {
726 	int order = pindex / MIGRATE_PCPTYPES;
727 
728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
729 	if (pindex == NR_LOWORDER_PCP_LISTS)
730 		order = pageblock_order;
731 #else
732 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
733 #endif
734 
735 	return order;
736 }
737 
738 static inline bool pcp_allowed_order(unsigned int order)
739 {
740 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
741 		return true;
742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
743 	if (order == pageblock_order)
744 		return true;
745 #endif
746 	return false;
747 }
748 
749 static inline void free_the_page(struct page *page, unsigned int order)
750 {
751 	if (pcp_allowed_order(order))		/* Via pcp? */
752 		free_unref_page(page, order);
753 	else
754 		__free_pages_ok(page, order, FPI_NONE);
755 }
756 
757 /*
758  * Higher-order pages are called "compound pages".  They are structured thusly:
759  *
760  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
761  *
762  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
763  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
764  *
765  * The first tail page's ->compound_dtor holds the offset in array of compound
766  * page destructors. See compound_page_dtors.
767  *
768  * The first tail page's ->compound_order holds the order of allocation.
769  * This usage means that zero-order pages may not be compound.
770  */
771 
772 void free_compound_page(struct page *page)
773 {
774 	mem_cgroup_uncharge(page_folio(page));
775 	free_the_page(page, compound_order(page));
776 }
777 
778 static void prep_compound_head(struct page *page, unsigned int order)
779 {
780 	struct folio *folio = (struct folio *)page;
781 
782 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
783 	set_compound_order(page, order);
784 	atomic_set(&folio->_entire_mapcount, -1);
785 	atomic_set(&folio->_nr_pages_mapped, 0);
786 	atomic_set(&folio->_pincount, 0);
787 }
788 
789 static void prep_compound_tail(struct page *head, int tail_idx)
790 {
791 	struct page *p = head + tail_idx;
792 
793 	p->mapping = TAIL_MAPPING;
794 	set_compound_head(p, head);
795 	set_page_private(p, 0);
796 }
797 
798 void prep_compound_page(struct page *page, unsigned int order)
799 {
800 	int i;
801 	int nr_pages = 1 << order;
802 
803 	__SetPageHead(page);
804 	for (i = 1; i < nr_pages; i++)
805 		prep_compound_tail(page, i);
806 
807 	prep_compound_head(page, order);
808 }
809 
810 void destroy_large_folio(struct folio *folio)
811 {
812 	enum compound_dtor_id dtor = folio->_folio_dtor;
813 
814 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
815 	compound_page_dtors[dtor](&folio->page);
816 }
817 
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 unsigned int _debug_guardpage_minorder;
820 
821 bool _debug_pagealloc_enabled_early __read_mostly
822 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
823 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
824 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
825 EXPORT_SYMBOL(_debug_pagealloc_enabled);
826 
827 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
828 
829 static int __init early_debug_pagealloc(char *buf)
830 {
831 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
832 }
833 early_param("debug_pagealloc", early_debug_pagealloc);
834 
835 static int __init debug_guardpage_minorder_setup(char *buf)
836 {
837 	unsigned long res;
838 
839 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
840 		pr_err("Bad debug_guardpage_minorder value\n");
841 		return 0;
842 	}
843 	_debug_guardpage_minorder = res;
844 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
845 	return 0;
846 }
847 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
848 
849 static inline bool set_page_guard(struct zone *zone, struct page *page,
850 				unsigned int order, int migratetype)
851 {
852 	if (!debug_guardpage_enabled())
853 		return false;
854 
855 	if (order >= debug_guardpage_minorder())
856 		return false;
857 
858 	__SetPageGuard(page);
859 	INIT_LIST_HEAD(&page->buddy_list);
860 	set_page_private(page, order);
861 	/* Guard pages are not available for any usage */
862 	if (!is_migrate_isolate(migratetype))
863 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
864 
865 	return true;
866 }
867 
868 static inline void clear_page_guard(struct zone *zone, struct page *page,
869 				unsigned int order, int migratetype)
870 {
871 	if (!debug_guardpage_enabled())
872 		return;
873 
874 	__ClearPageGuard(page);
875 
876 	set_page_private(page, 0);
877 	if (!is_migrate_isolate(migratetype))
878 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
879 }
880 #else
881 static inline bool set_page_guard(struct zone *zone, struct page *page,
882 			unsigned int order, int migratetype) { return false; }
883 static inline void clear_page_guard(struct zone *zone, struct page *page,
884 				unsigned int order, int migratetype) {}
885 #endif
886 
887 /*
888  * Enable static keys related to various memory debugging and hardening options.
889  * Some override others, and depend on early params that are evaluated in the
890  * order of appearance. So we need to first gather the full picture of what was
891  * enabled, and then make decisions.
892  */
893 void __init init_mem_debugging_and_hardening(void)
894 {
895 	bool page_poisoning_requested = false;
896 
897 #ifdef CONFIG_PAGE_POISONING
898 	/*
899 	 * Page poisoning is debug page alloc for some arches. If
900 	 * either of those options are enabled, enable poisoning.
901 	 */
902 	if (page_poisoning_enabled() ||
903 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
904 	      debug_pagealloc_enabled())) {
905 		static_branch_enable(&_page_poisoning_enabled);
906 		page_poisoning_requested = true;
907 	}
908 #endif
909 
910 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
911 	    page_poisoning_requested) {
912 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
913 			"will take precedence over init_on_alloc and init_on_free\n");
914 		_init_on_alloc_enabled_early = false;
915 		_init_on_free_enabled_early = false;
916 	}
917 
918 	if (_init_on_alloc_enabled_early)
919 		static_branch_enable(&init_on_alloc);
920 	else
921 		static_branch_disable(&init_on_alloc);
922 
923 	if (_init_on_free_enabled_early)
924 		static_branch_enable(&init_on_free);
925 	else
926 		static_branch_disable(&init_on_free);
927 
928 	if (IS_ENABLED(CONFIG_KMSAN) &&
929 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
930 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
931 
932 #ifdef CONFIG_DEBUG_PAGEALLOC
933 	if (!debug_pagealloc_enabled())
934 		return;
935 
936 	static_branch_enable(&_debug_pagealloc_enabled);
937 
938 	if (!debug_guardpage_minorder())
939 		return;
940 
941 	static_branch_enable(&_debug_guardpage_enabled);
942 #endif
943 }
944 
945 static inline void set_buddy_order(struct page *page, unsigned int order)
946 {
947 	set_page_private(page, order);
948 	__SetPageBuddy(page);
949 }
950 
951 #ifdef CONFIG_COMPACTION
952 static inline struct capture_control *task_capc(struct zone *zone)
953 {
954 	struct capture_control *capc = current->capture_control;
955 
956 	return unlikely(capc) &&
957 		!(current->flags & PF_KTHREAD) &&
958 		!capc->page &&
959 		capc->cc->zone == zone ? capc : NULL;
960 }
961 
962 static inline bool
963 compaction_capture(struct capture_control *capc, struct page *page,
964 		   int order, int migratetype)
965 {
966 	if (!capc || order != capc->cc->order)
967 		return false;
968 
969 	/* Do not accidentally pollute CMA or isolated regions*/
970 	if (is_migrate_cma(migratetype) ||
971 	    is_migrate_isolate(migratetype))
972 		return false;
973 
974 	/*
975 	 * Do not let lower order allocations pollute a movable pageblock.
976 	 * This might let an unmovable request use a reclaimable pageblock
977 	 * and vice-versa but no more than normal fallback logic which can
978 	 * have trouble finding a high-order free page.
979 	 */
980 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
981 		return false;
982 
983 	capc->page = page;
984 	return true;
985 }
986 
987 #else
988 static inline struct capture_control *task_capc(struct zone *zone)
989 {
990 	return NULL;
991 }
992 
993 static inline bool
994 compaction_capture(struct capture_control *capc, struct page *page,
995 		   int order, int migratetype)
996 {
997 	return false;
998 }
999 #endif /* CONFIG_COMPACTION */
1000 
1001 /* Used for pages not on another list */
1002 static inline void add_to_free_list(struct page *page, struct zone *zone,
1003 				    unsigned int order, int migratetype)
1004 {
1005 	struct free_area *area = &zone->free_area[order];
1006 
1007 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1008 	area->nr_free++;
1009 }
1010 
1011 /* Used for pages not on another list */
1012 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1013 					 unsigned int order, int migratetype)
1014 {
1015 	struct free_area *area = &zone->free_area[order];
1016 
1017 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1018 	area->nr_free++;
1019 }
1020 
1021 /*
1022  * Used for pages which are on another list. Move the pages to the tail
1023  * of the list - so the moved pages won't immediately be considered for
1024  * allocation again (e.g., optimization for memory onlining).
1025  */
1026 static inline void move_to_free_list(struct page *page, struct zone *zone,
1027 				     unsigned int order, int migratetype)
1028 {
1029 	struct free_area *area = &zone->free_area[order];
1030 
1031 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1032 }
1033 
1034 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1035 					   unsigned int order)
1036 {
1037 	/* clear reported state and update reported page count */
1038 	if (page_reported(page))
1039 		__ClearPageReported(page);
1040 
1041 	list_del(&page->buddy_list);
1042 	__ClearPageBuddy(page);
1043 	set_page_private(page, 0);
1044 	zone->free_area[order].nr_free--;
1045 }
1046 
1047 /*
1048  * If this is not the largest possible page, check if the buddy
1049  * of the next-highest order is free. If it is, it's possible
1050  * that pages are being freed that will coalesce soon. In case,
1051  * that is happening, add the free page to the tail of the list
1052  * so it's less likely to be used soon and more likely to be merged
1053  * as a higher order page
1054  */
1055 static inline bool
1056 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1057 		   struct page *page, unsigned int order)
1058 {
1059 	unsigned long higher_page_pfn;
1060 	struct page *higher_page;
1061 
1062 	if (order >= MAX_ORDER - 2)
1063 		return false;
1064 
1065 	higher_page_pfn = buddy_pfn & pfn;
1066 	higher_page = page + (higher_page_pfn - pfn);
1067 
1068 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1069 			NULL) != NULL;
1070 }
1071 
1072 /*
1073  * Freeing function for a buddy system allocator.
1074  *
1075  * The concept of a buddy system is to maintain direct-mapped table
1076  * (containing bit values) for memory blocks of various "orders".
1077  * The bottom level table contains the map for the smallest allocatable
1078  * units of memory (here, pages), and each level above it describes
1079  * pairs of units from the levels below, hence, "buddies".
1080  * At a high level, all that happens here is marking the table entry
1081  * at the bottom level available, and propagating the changes upward
1082  * as necessary, plus some accounting needed to play nicely with other
1083  * parts of the VM system.
1084  * At each level, we keep a list of pages, which are heads of continuous
1085  * free pages of length of (1 << order) and marked with PageBuddy.
1086  * Page's order is recorded in page_private(page) field.
1087  * So when we are allocating or freeing one, we can derive the state of the
1088  * other.  That is, if we allocate a small block, and both were
1089  * free, the remainder of the region must be split into blocks.
1090  * If a block is freed, and its buddy is also free, then this
1091  * triggers coalescing into a block of larger size.
1092  *
1093  * -- nyc
1094  */
1095 
1096 static inline void __free_one_page(struct page *page,
1097 		unsigned long pfn,
1098 		struct zone *zone, unsigned int order,
1099 		int migratetype, fpi_t fpi_flags)
1100 {
1101 	struct capture_control *capc = task_capc(zone);
1102 	unsigned long buddy_pfn = 0;
1103 	unsigned long combined_pfn;
1104 	struct page *buddy;
1105 	bool to_tail;
1106 
1107 	VM_BUG_ON(!zone_is_initialized(zone));
1108 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1109 
1110 	VM_BUG_ON(migratetype == -1);
1111 	if (likely(!is_migrate_isolate(migratetype)))
1112 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1113 
1114 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1115 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1116 
1117 	while (order < MAX_ORDER - 1) {
1118 		if (compaction_capture(capc, page, order, migratetype)) {
1119 			__mod_zone_freepage_state(zone, -(1 << order),
1120 								migratetype);
1121 			return;
1122 		}
1123 
1124 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1125 		if (!buddy)
1126 			goto done_merging;
1127 
1128 		if (unlikely(order >= pageblock_order)) {
1129 			/*
1130 			 * We want to prevent merge between freepages on pageblock
1131 			 * without fallbacks and normal pageblock. Without this,
1132 			 * pageblock isolation could cause incorrect freepage or CMA
1133 			 * accounting or HIGHATOMIC accounting.
1134 			 */
1135 			int buddy_mt = get_pageblock_migratetype(buddy);
1136 
1137 			if (migratetype != buddy_mt
1138 					&& (!migratetype_is_mergeable(migratetype) ||
1139 						!migratetype_is_mergeable(buddy_mt)))
1140 				goto done_merging;
1141 		}
1142 
1143 		/*
1144 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1145 		 * merge with it and move up one order.
1146 		 */
1147 		if (page_is_guard(buddy))
1148 			clear_page_guard(zone, buddy, order, migratetype);
1149 		else
1150 			del_page_from_free_list(buddy, zone, order);
1151 		combined_pfn = buddy_pfn & pfn;
1152 		page = page + (combined_pfn - pfn);
1153 		pfn = combined_pfn;
1154 		order++;
1155 	}
1156 
1157 done_merging:
1158 	set_buddy_order(page, order);
1159 
1160 	if (fpi_flags & FPI_TO_TAIL)
1161 		to_tail = true;
1162 	else if (is_shuffle_order(order))
1163 		to_tail = shuffle_pick_tail();
1164 	else
1165 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1166 
1167 	if (to_tail)
1168 		add_to_free_list_tail(page, zone, order, migratetype);
1169 	else
1170 		add_to_free_list(page, zone, order, migratetype);
1171 
1172 	/* Notify page reporting subsystem of freed page */
1173 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1174 		page_reporting_notify_free(order);
1175 }
1176 
1177 /**
1178  * split_free_page() -- split a free page at split_pfn_offset
1179  * @free_page:		the original free page
1180  * @order:		the order of the page
1181  * @split_pfn_offset:	split offset within the page
1182  *
1183  * Return -ENOENT if the free page is changed, otherwise 0
1184  *
1185  * It is used when the free page crosses two pageblocks with different migratetypes
1186  * at split_pfn_offset within the page. The split free page will be put into
1187  * separate migratetype lists afterwards. Otherwise, the function achieves
1188  * nothing.
1189  */
1190 int split_free_page(struct page *free_page,
1191 			unsigned int order, unsigned long split_pfn_offset)
1192 {
1193 	struct zone *zone = page_zone(free_page);
1194 	unsigned long free_page_pfn = page_to_pfn(free_page);
1195 	unsigned long pfn;
1196 	unsigned long flags;
1197 	int free_page_order;
1198 	int mt;
1199 	int ret = 0;
1200 
1201 	if (split_pfn_offset == 0)
1202 		return ret;
1203 
1204 	spin_lock_irqsave(&zone->lock, flags);
1205 
1206 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1207 		ret = -ENOENT;
1208 		goto out;
1209 	}
1210 
1211 	mt = get_pageblock_migratetype(free_page);
1212 	if (likely(!is_migrate_isolate(mt)))
1213 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1214 
1215 	del_page_from_free_list(free_page, zone, order);
1216 	for (pfn = free_page_pfn;
1217 	     pfn < free_page_pfn + (1UL << order);) {
1218 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1219 
1220 		free_page_order = min_t(unsigned int,
1221 					pfn ? __ffs(pfn) : order,
1222 					__fls(split_pfn_offset));
1223 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1224 				mt, FPI_NONE);
1225 		pfn += 1UL << free_page_order;
1226 		split_pfn_offset -= (1UL << free_page_order);
1227 		/* we have done the first part, now switch to second part */
1228 		if (split_pfn_offset == 0)
1229 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1230 	}
1231 out:
1232 	spin_unlock_irqrestore(&zone->lock, flags);
1233 	return ret;
1234 }
1235 /*
1236  * A bad page could be due to a number of fields. Instead of multiple branches,
1237  * try and check multiple fields with one check. The caller must do a detailed
1238  * check if necessary.
1239  */
1240 static inline bool page_expected_state(struct page *page,
1241 					unsigned long check_flags)
1242 {
1243 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1244 		return false;
1245 
1246 	if (unlikely((unsigned long)page->mapping |
1247 			page_ref_count(page) |
1248 #ifdef CONFIG_MEMCG
1249 			page->memcg_data |
1250 #endif
1251 			(page->flags & check_flags)))
1252 		return false;
1253 
1254 	return true;
1255 }
1256 
1257 static const char *page_bad_reason(struct page *page, unsigned long flags)
1258 {
1259 	const char *bad_reason = NULL;
1260 
1261 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1262 		bad_reason = "nonzero mapcount";
1263 	if (unlikely(page->mapping != NULL))
1264 		bad_reason = "non-NULL mapping";
1265 	if (unlikely(page_ref_count(page) != 0))
1266 		bad_reason = "nonzero _refcount";
1267 	if (unlikely(page->flags & flags)) {
1268 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1269 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1270 		else
1271 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1272 	}
1273 #ifdef CONFIG_MEMCG
1274 	if (unlikely(page->memcg_data))
1275 		bad_reason = "page still charged to cgroup";
1276 #endif
1277 	return bad_reason;
1278 }
1279 
1280 static void free_page_is_bad_report(struct page *page)
1281 {
1282 	bad_page(page,
1283 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1284 }
1285 
1286 static inline bool free_page_is_bad(struct page *page)
1287 {
1288 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1289 		return false;
1290 
1291 	/* Something has gone sideways, find it */
1292 	free_page_is_bad_report(page);
1293 	return true;
1294 }
1295 
1296 static int free_tail_pages_check(struct page *head_page, struct page *page)
1297 {
1298 	struct folio *folio = (struct folio *)head_page;
1299 	int ret = 1;
1300 
1301 	/*
1302 	 * We rely page->lru.next never has bit 0 set, unless the page
1303 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1304 	 */
1305 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1306 
1307 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1308 		ret = 0;
1309 		goto out;
1310 	}
1311 	switch (page - head_page) {
1312 	case 1:
1313 		/* the first tail page: these may be in place of ->mapping */
1314 		if (unlikely(folio_entire_mapcount(folio))) {
1315 			bad_page(page, "nonzero entire_mapcount");
1316 			goto out;
1317 		}
1318 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1319 			bad_page(page, "nonzero nr_pages_mapped");
1320 			goto out;
1321 		}
1322 		if (unlikely(atomic_read(&folio->_pincount))) {
1323 			bad_page(page, "nonzero pincount");
1324 			goto out;
1325 		}
1326 		break;
1327 	case 2:
1328 		/*
1329 		 * the second tail page: ->mapping is
1330 		 * deferred_list.next -- ignore value.
1331 		 */
1332 		break;
1333 	default:
1334 		if (page->mapping != TAIL_MAPPING) {
1335 			bad_page(page, "corrupted mapping in tail page");
1336 			goto out;
1337 		}
1338 		break;
1339 	}
1340 	if (unlikely(!PageTail(page))) {
1341 		bad_page(page, "PageTail not set");
1342 		goto out;
1343 	}
1344 	if (unlikely(compound_head(page) != head_page)) {
1345 		bad_page(page, "compound_head not consistent");
1346 		goto out;
1347 	}
1348 	ret = 0;
1349 out:
1350 	page->mapping = NULL;
1351 	clear_compound_head(page);
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Skip KASAN memory poisoning when either:
1357  *
1358  * 1. Deferred memory initialization has not yet completed,
1359  *    see the explanation below.
1360  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1361  *    see the comment next to it.
1362  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1363  *    see the comment next to it.
1364  * 4. The allocation is excluded from being checked due to sampling,
1365  *    see the call to kasan_unpoison_pages.
1366  *
1367  * Poisoning pages during deferred memory init will greatly lengthen the
1368  * process and cause problem in large memory systems as the deferred pages
1369  * initialization is done with interrupt disabled.
1370  *
1371  * Assuming that there will be no reference to those newly initialized
1372  * pages before they are ever allocated, this should have no effect on
1373  * KASAN memory tracking as the poison will be properly inserted at page
1374  * allocation time. The only corner case is when pages are allocated by
1375  * on-demand allocation and then freed again before the deferred pages
1376  * initialization is done, but this is not likely to happen.
1377  */
1378 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1379 {
1380 	return deferred_pages_enabled() ||
1381 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1382 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1383 	       PageSkipKASanPoison(page);
1384 }
1385 
1386 static void kernel_init_pages(struct page *page, int numpages)
1387 {
1388 	int i;
1389 
1390 	/* s390's use of memset() could override KASAN redzones. */
1391 	kasan_disable_current();
1392 	for (i = 0; i < numpages; i++)
1393 		clear_highpage_kasan_tagged(page + i);
1394 	kasan_enable_current();
1395 }
1396 
1397 static __always_inline bool free_pages_prepare(struct page *page,
1398 			unsigned int order, bool check_free, fpi_t fpi_flags)
1399 {
1400 	int bad = 0;
1401 	bool init = want_init_on_free();
1402 
1403 	VM_BUG_ON_PAGE(PageTail(page), page);
1404 
1405 	trace_mm_page_free(page, order);
1406 	kmsan_free_page(page, order);
1407 
1408 	if (unlikely(PageHWPoison(page)) && !order) {
1409 		/*
1410 		 * Do not let hwpoison pages hit pcplists/buddy
1411 		 * Untie memcg state and reset page's owner
1412 		 */
1413 		if (memcg_kmem_online() && PageMemcgKmem(page))
1414 			__memcg_kmem_uncharge_page(page, order);
1415 		reset_page_owner(page, order);
1416 		page_table_check_free(page, order);
1417 		return false;
1418 	}
1419 
1420 	/*
1421 	 * Check tail pages before head page information is cleared to
1422 	 * avoid checking PageCompound for order-0 pages.
1423 	 */
1424 	if (unlikely(order)) {
1425 		bool compound = PageCompound(page);
1426 		int i;
1427 
1428 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1429 
1430 		if (compound)
1431 			ClearPageHasHWPoisoned(page);
1432 		for (i = 1; i < (1 << order); i++) {
1433 			if (compound)
1434 				bad += free_tail_pages_check(page, page + i);
1435 			if (unlikely(free_page_is_bad(page + i))) {
1436 				bad++;
1437 				continue;
1438 			}
1439 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1440 		}
1441 	}
1442 	if (PageMappingFlags(page))
1443 		page->mapping = NULL;
1444 	if (memcg_kmem_online() && PageMemcgKmem(page))
1445 		__memcg_kmem_uncharge_page(page, order);
1446 	if (check_free && free_page_is_bad(page))
1447 		bad++;
1448 	if (bad)
1449 		return false;
1450 
1451 	page_cpupid_reset_last(page);
1452 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1453 	reset_page_owner(page, order);
1454 	page_table_check_free(page, order);
1455 
1456 	if (!PageHighMem(page)) {
1457 		debug_check_no_locks_freed(page_address(page),
1458 					   PAGE_SIZE << order);
1459 		debug_check_no_obj_freed(page_address(page),
1460 					   PAGE_SIZE << order);
1461 	}
1462 
1463 	kernel_poison_pages(page, 1 << order);
1464 
1465 	/*
1466 	 * As memory initialization might be integrated into KASAN,
1467 	 * KASAN poisoning and memory initialization code must be
1468 	 * kept together to avoid discrepancies in behavior.
1469 	 *
1470 	 * With hardware tag-based KASAN, memory tags must be set before the
1471 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1472 	 */
1473 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1474 		kasan_poison_pages(page, order, init);
1475 
1476 		/* Memory is already initialized if KASAN did it internally. */
1477 		if (kasan_has_integrated_init())
1478 			init = false;
1479 	}
1480 	if (init)
1481 		kernel_init_pages(page, 1 << order);
1482 
1483 	/*
1484 	 * arch_free_page() can make the page's contents inaccessible.  s390
1485 	 * does this.  So nothing which can access the page's contents should
1486 	 * happen after this.
1487 	 */
1488 	arch_free_page(page, order);
1489 
1490 	debug_pagealloc_unmap_pages(page, 1 << order);
1491 
1492 	return true;
1493 }
1494 
1495 #ifdef CONFIG_DEBUG_VM
1496 /*
1497  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1498  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1499  * moved from pcp lists to free lists.
1500  */
1501 static bool free_pcp_prepare(struct page *page, unsigned int order)
1502 {
1503 	return free_pages_prepare(page, order, true, FPI_NONE);
1504 }
1505 
1506 /* return true if this page has an inappropriate state */
1507 static bool bulkfree_pcp_prepare(struct page *page)
1508 {
1509 	if (debug_pagealloc_enabled_static())
1510 		return free_page_is_bad(page);
1511 	else
1512 		return false;
1513 }
1514 #else
1515 /*
1516  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1517  * moving from pcp lists to free list in order to reduce overhead. With
1518  * debug_pagealloc enabled, they are checked also immediately when being freed
1519  * to the pcp lists.
1520  */
1521 static bool free_pcp_prepare(struct page *page, unsigned int order)
1522 {
1523 	if (debug_pagealloc_enabled_static())
1524 		return free_pages_prepare(page, order, true, FPI_NONE);
1525 	else
1526 		return free_pages_prepare(page, order, false, FPI_NONE);
1527 }
1528 
1529 static bool bulkfree_pcp_prepare(struct page *page)
1530 {
1531 	return free_page_is_bad(page);
1532 }
1533 #endif /* CONFIG_DEBUG_VM */
1534 
1535 /*
1536  * Frees a number of pages from the PCP lists
1537  * Assumes all pages on list are in same zone.
1538  * count is the number of pages to free.
1539  */
1540 static void free_pcppages_bulk(struct zone *zone, int count,
1541 					struct per_cpu_pages *pcp,
1542 					int pindex)
1543 {
1544 	unsigned long flags;
1545 	int min_pindex = 0;
1546 	int max_pindex = NR_PCP_LISTS - 1;
1547 	unsigned int order;
1548 	bool isolated_pageblocks;
1549 	struct page *page;
1550 
1551 	/*
1552 	 * Ensure proper count is passed which otherwise would stuck in the
1553 	 * below while (list_empty(list)) loop.
1554 	 */
1555 	count = min(pcp->count, count);
1556 
1557 	/* Ensure requested pindex is drained first. */
1558 	pindex = pindex - 1;
1559 
1560 	spin_lock_irqsave(&zone->lock, flags);
1561 	isolated_pageblocks = has_isolate_pageblock(zone);
1562 
1563 	while (count > 0) {
1564 		struct list_head *list;
1565 		int nr_pages;
1566 
1567 		/* Remove pages from lists in a round-robin fashion. */
1568 		do {
1569 			if (++pindex > max_pindex)
1570 				pindex = min_pindex;
1571 			list = &pcp->lists[pindex];
1572 			if (!list_empty(list))
1573 				break;
1574 
1575 			if (pindex == max_pindex)
1576 				max_pindex--;
1577 			if (pindex == min_pindex)
1578 				min_pindex++;
1579 		} while (1);
1580 
1581 		order = pindex_to_order(pindex);
1582 		nr_pages = 1 << order;
1583 		do {
1584 			int mt;
1585 
1586 			page = list_last_entry(list, struct page, pcp_list);
1587 			mt = get_pcppage_migratetype(page);
1588 
1589 			/* must delete to avoid corrupting pcp list */
1590 			list_del(&page->pcp_list);
1591 			count -= nr_pages;
1592 			pcp->count -= nr_pages;
1593 
1594 			if (bulkfree_pcp_prepare(page))
1595 				continue;
1596 
1597 			/* MIGRATE_ISOLATE page should not go to pcplists */
1598 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1599 			/* Pageblock could have been isolated meanwhile */
1600 			if (unlikely(isolated_pageblocks))
1601 				mt = get_pageblock_migratetype(page);
1602 
1603 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1604 			trace_mm_page_pcpu_drain(page, order, mt);
1605 		} while (count > 0 && !list_empty(list));
1606 	}
1607 
1608 	spin_unlock_irqrestore(&zone->lock, flags);
1609 }
1610 
1611 static void free_one_page(struct zone *zone,
1612 				struct page *page, unsigned long pfn,
1613 				unsigned int order,
1614 				int migratetype, fpi_t fpi_flags)
1615 {
1616 	unsigned long flags;
1617 
1618 	spin_lock_irqsave(&zone->lock, flags);
1619 	if (unlikely(has_isolate_pageblock(zone) ||
1620 		is_migrate_isolate(migratetype))) {
1621 		migratetype = get_pfnblock_migratetype(page, pfn);
1622 	}
1623 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1624 	spin_unlock_irqrestore(&zone->lock, flags);
1625 }
1626 
1627 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1628 				unsigned long zone, int nid)
1629 {
1630 	mm_zero_struct_page(page);
1631 	set_page_links(page, zone, nid, pfn);
1632 	init_page_count(page);
1633 	page_mapcount_reset(page);
1634 	page_cpupid_reset_last(page);
1635 	page_kasan_tag_reset(page);
1636 
1637 	INIT_LIST_HEAD(&page->lru);
1638 #ifdef WANT_PAGE_VIRTUAL
1639 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1640 	if (!is_highmem_idx(zone))
1641 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1642 #endif
1643 }
1644 
1645 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1646 static void __meminit init_reserved_page(unsigned long pfn)
1647 {
1648 	pg_data_t *pgdat;
1649 	int nid, zid;
1650 
1651 	if (early_page_initialised(pfn))
1652 		return;
1653 
1654 	nid = early_pfn_to_nid(pfn);
1655 	pgdat = NODE_DATA(nid);
1656 
1657 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1658 		struct zone *zone = &pgdat->node_zones[zid];
1659 
1660 		if (zone_spans_pfn(zone, pfn))
1661 			break;
1662 	}
1663 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1664 }
1665 #else
1666 static inline void init_reserved_page(unsigned long pfn)
1667 {
1668 }
1669 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1670 
1671 /*
1672  * Initialised pages do not have PageReserved set. This function is
1673  * called for each range allocated by the bootmem allocator and
1674  * marks the pages PageReserved. The remaining valid pages are later
1675  * sent to the buddy page allocator.
1676  */
1677 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1678 {
1679 	unsigned long start_pfn = PFN_DOWN(start);
1680 	unsigned long end_pfn = PFN_UP(end);
1681 
1682 	for (; start_pfn < end_pfn; start_pfn++) {
1683 		if (pfn_valid(start_pfn)) {
1684 			struct page *page = pfn_to_page(start_pfn);
1685 
1686 			init_reserved_page(start_pfn);
1687 
1688 			/* Avoid false-positive PageTail() */
1689 			INIT_LIST_HEAD(&page->lru);
1690 
1691 			/*
1692 			 * no need for atomic set_bit because the struct
1693 			 * page is not visible yet so nobody should
1694 			 * access it yet.
1695 			 */
1696 			__SetPageReserved(page);
1697 		}
1698 	}
1699 }
1700 
1701 static void __free_pages_ok(struct page *page, unsigned int order,
1702 			    fpi_t fpi_flags)
1703 {
1704 	unsigned long flags;
1705 	int migratetype;
1706 	unsigned long pfn = page_to_pfn(page);
1707 	struct zone *zone = page_zone(page);
1708 
1709 	if (!free_pages_prepare(page, order, true, fpi_flags))
1710 		return;
1711 
1712 	/*
1713 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1714 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1715 	 * This will reduce the lock holding time.
1716 	 */
1717 	migratetype = get_pfnblock_migratetype(page, pfn);
1718 
1719 	spin_lock_irqsave(&zone->lock, flags);
1720 	if (unlikely(has_isolate_pageblock(zone) ||
1721 		is_migrate_isolate(migratetype))) {
1722 		migratetype = get_pfnblock_migratetype(page, pfn);
1723 	}
1724 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1725 	spin_unlock_irqrestore(&zone->lock, flags);
1726 
1727 	__count_vm_events(PGFREE, 1 << order);
1728 }
1729 
1730 void __free_pages_core(struct page *page, unsigned int order)
1731 {
1732 	unsigned int nr_pages = 1 << order;
1733 	struct page *p = page;
1734 	unsigned int loop;
1735 
1736 	/*
1737 	 * When initializing the memmap, __init_single_page() sets the refcount
1738 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1739 	 * refcount of all involved pages to 0.
1740 	 */
1741 	prefetchw(p);
1742 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1743 		prefetchw(p + 1);
1744 		__ClearPageReserved(p);
1745 		set_page_count(p, 0);
1746 	}
1747 	__ClearPageReserved(p);
1748 	set_page_count(p, 0);
1749 
1750 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1751 
1752 	/*
1753 	 * Bypass PCP and place fresh pages right to the tail, primarily
1754 	 * relevant for memory onlining.
1755 	 */
1756 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1757 }
1758 
1759 #ifdef CONFIG_NUMA
1760 
1761 /*
1762  * During memory init memblocks map pfns to nids. The search is expensive and
1763  * this caches recent lookups. The implementation of __early_pfn_to_nid
1764  * treats start/end as pfns.
1765  */
1766 struct mminit_pfnnid_cache {
1767 	unsigned long last_start;
1768 	unsigned long last_end;
1769 	int last_nid;
1770 };
1771 
1772 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1773 
1774 /*
1775  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1776  */
1777 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1778 					struct mminit_pfnnid_cache *state)
1779 {
1780 	unsigned long start_pfn, end_pfn;
1781 	int nid;
1782 
1783 	if (state->last_start <= pfn && pfn < state->last_end)
1784 		return state->last_nid;
1785 
1786 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1787 	if (nid != NUMA_NO_NODE) {
1788 		state->last_start = start_pfn;
1789 		state->last_end = end_pfn;
1790 		state->last_nid = nid;
1791 	}
1792 
1793 	return nid;
1794 }
1795 
1796 int __meminit early_pfn_to_nid(unsigned long pfn)
1797 {
1798 	static DEFINE_SPINLOCK(early_pfn_lock);
1799 	int nid;
1800 
1801 	spin_lock(&early_pfn_lock);
1802 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1803 	if (nid < 0)
1804 		nid = first_online_node;
1805 	spin_unlock(&early_pfn_lock);
1806 
1807 	return nid;
1808 }
1809 #endif /* CONFIG_NUMA */
1810 
1811 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1812 							unsigned int order)
1813 {
1814 	if (!early_page_initialised(pfn))
1815 		return;
1816 	if (!kmsan_memblock_free_pages(page, order)) {
1817 		/* KMSAN will take care of these pages. */
1818 		return;
1819 	}
1820 	__free_pages_core(page, order);
1821 }
1822 
1823 /*
1824  * Check that the whole (or subset of) a pageblock given by the interval of
1825  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1826  * with the migration of free compaction scanner.
1827  *
1828  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1829  *
1830  * It's possible on some configurations to have a setup like node0 node1 node0
1831  * i.e. it's possible that all pages within a zones range of pages do not
1832  * belong to a single zone. We assume that a border between node0 and node1
1833  * can occur within a single pageblock, but not a node0 node1 node0
1834  * interleaving within a single pageblock. It is therefore sufficient to check
1835  * the first and last page of a pageblock and avoid checking each individual
1836  * page in a pageblock.
1837  */
1838 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1839 				     unsigned long end_pfn, struct zone *zone)
1840 {
1841 	struct page *start_page;
1842 	struct page *end_page;
1843 
1844 	/* end_pfn is one past the range we are checking */
1845 	end_pfn--;
1846 
1847 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1848 		return NULL;
1849 
1850 	start_page = pfn_to_online_page(start_pfn);
1851 	if (!start_page)
1852 		return NULL;
1853 
1854 	if (page_zone(start_page) != zone)
1855 		return NULL;
1856 
1857 	end_page = pfn_to_page(end_pfn);
1858 
1859 	/* This gives a shorter code than deriving page_zone(end_page) */
1860 	if (page_zone_id(start_page) != page_zone_id(end_page))
1861 		return NULL;
1862 
1863 	return start_page;
1864 }
1865 
1866 void set_zone_contiguous(struct zone *zone)
1867 {
1868 	unsigned long block_start_pfn = zone->zone_start_pfn;
1869 	unsigned long block_end_pfn;
1870 
1871 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1872 	for (; block_start_pfn < zone_end_pfn(zone);
1873 			block_start_pfn = block_end_pfn,
1874 			 block_end_pfn += pageblock_nr_pages) {
1875 
1876 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1877 
1878 		if (!__pageblock_pfn_to_page(block_start_pfn,
1879 					     block_end_pfn, zone))
1880 			return;
1881 		cond_resched();
1882 	}
1883 
1884 	/* We confirm that there is no hole */
1885 	zone->contiguous = true;
1886 }
1887 
1888 void clear_zone_contiguous(struct zone *zone)
1889 {
1890 	zone->contiguous = false;
1891 }
1892 
1893 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1894 static void __init deferred_free_range(unsigned long pfn,
1895 				       unsigned long nr_pages)
1896 {
1897 	struct page *page;
1898 	unsigned long i;
1899 
1900 	if (!nr_pages)
1901 		return;
1902 
1903 	page = pfn_to_page(pfn);
1904 
1905 	/* Free a large naturally-aligned chunk if possible */
1906 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1907 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1908 		__free_pages_core(page, pageblock_order);
1909 		return;
1910 	}
1911 
1912 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1913 		if (pageblock_aligned(pfn))
1914 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1915 		__free_pages_core(page, 0);
1916 	}
1917 }
1918 
1919 /* Completion tracking for deferred_init_memmap() threads */
1920 static atomic_t pgdat_init_n_undone __initdata;
1921 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1922 
1923 static inline void __init pgdat_init_report_one_done(void)
1924 {
1925 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1926 		complete(&pgdat_init_all_done_comp);
1927 }
1928 
1929 /*
1930  * Returns true if page needs to be initialized or freed to buddy allocator.
1931  *
1932  * We check if a current large page is valid by only checking the validity
1933  * of the head pfn.
1934  */
1935 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1936 {
1937 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1938 		return false;
1939 	return true;
1940 }
1941 
1942 /*
1943  * Free pages to buddy allocator. Try to free aligned pages in
1944  * pageblock_nr_pages sizes.
1945  */
1946 static void __init deferred_free_pages(unsigned long pfn,
1947 				       unsigned long end_pfn)
1948 {
1949 	unsigned long nr_free = 0;
1950 
1951 	for (; pfn < end_pfn; pfn++) {
1952 		if (!deferred_pfn_valid(pfn)) {
1953 			deferred_free_range(pfn - nr_free, nr_free);
1954 			nr_free = 0;
1955 		} else if (pageblock_aligned(pfn)) {
1956 			deferred_free_range(pfn - nr_free, nr_free);
1957 			nr_free = 1;
1958 		} else {
1959 			nr_free++;
1960 		}
1961 	}
1962 	/* Free the last block of pages to allocator */
1963 	deferred_free_range(pfn - nr_free, nr_free);
1964 }
1965 
1966 /*
1967  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1968  * by performing it only once every pageblock_nr_pages.
1969  * Return number of pages initialized.
1970  */
1971 static unsigned long  __init deferred_init_pages(struct zone *zone,
1972 						 unsigned long pfn,
1973 						 unsigned long end_pfn)
1974 {
1975 	int nid = zone_to_nid(zone);
1976 	unsigned long nr_pages = 0;
1977 	int zid = zone_idx(zone);
1978 	struct page *page = NULL;
1979 
1980 	for (; pfn < end_pfn; pfn++) {
1981 		if (!deferred_pfn_valid(pfn)) {
1982 			page = NULL;
1983 			continue;
1984 		} else if (!page || pageblock_aligned(pfn)) {
1985 			page = pfn_to_page(pfn);
1986 		} else {
1987 			page++;
1988 		}
1989 		__init_single_page(page, pfn, zid, nid);
1990 		nr_pages++;
1991 	}
1992 	return (nr_pages);
1993 }
1994 
1995 /*
1996  * This function is meant to pre-load the iterator for the zone init.
1997  * Specifically it walks through the ranges until we are caught up to the
1998  * first_init_pfn value and exits there. If we never encounter the value we
1999  * return false indicating there are no valid ranges left.
2000  */
2001 static bool __init
2002 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2003 				    unsigned long *spfn, unsigned long *epfn,
2004 				    unsigned long first_init_pfn)
2005 {
2006 	u64 j;
2007 
2008 	/*
2009 	 * Start out by walking through the ranges in this zone that have
2010 	 * already been initialized. We don't need to do anything with them
2011 	 * so we just need to flush them out of the system.
2012 	 */
2013 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2014 		if (*epfn <= first_init_pfn)
2015 			continue;
2016 		if (*spfn < first_init_pfn)
2017 			*spfn = first_init_pfn;
2018 		*i = j;
2019 		return true;
2020 	}
2021 
2022 	return false;
2023 }
2024 
2025 /*
2026  * Initialize and free pages. We do it in two loops: first we initialize
2027  * struct page, then free to buddy allocator, because while we are
2028  * freeing pages we can access pages that are ahead (computing buddy
2029  * page in __free_one_page()).
2030  *
2031  * In order to try and keep some memory in the cache we have the loop
2032  * broken along max page order boundaries. This way we will not cause
2033  * any issues with the buddy page computation.
2034  */
2035 static unsigned long __init
2036 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2037 		       unsigned long *end_pfn)
2038 {
2039 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2040 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2041 	unsigned long nr_pages = 0;
2042 	u64 j = *i;
2043 
2044 	/* First we loop through and initialize the page values */
2045 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2046 		unsigned long t;
2047 
2048 		if (mo_pfn <= *start_pfn)
2049 			break;
2050 
2051 		t = min(mo_pfn, *end_pfn);
2052 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2053 
2054 		if (mo_pfn < *end_pfn) {
2055 			*start_pfn = mo_pfn;
2056 			break;
2057 		}
2058 	}
2059 
2060 	/* Reset values and now loop through freeing pages as needed */
2061 	swap(j, *i);
2062 
2063 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2064 		unsigned long t;
2065 
2066 		if (mo_pfn <= spfn)
2067 			break;
2068 
2069 		t = min(mo_pfn, epfn);
2070 		deferred_free_pages(spfn, t);
2071 
2072 		if (mo_pfn <= epfn)
2073 			break;
2074 	}
2075 
2076 	return nr_pages;
2077 }
2078 
2079 static void __init
2080 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2081 			   void *arg)
2082 {
2083 	unsigned long spfn, epfn;
2084 	struct zone *zone = arg;
2085 	u64 i;
2086 
2087 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2088 
2089 	/*
2090 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2091 	 * can avoid introducing any issues with the buddy allocator.
2092 	 */
2093 	while (spfn < end_pfn) {
2094 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2095 		cond_resched();
2096 	}
2097 }
2098 
2099 /* An arch may override for more concurrency. */
2100 __weak int __init
2101 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2102 {
2103 	return 1;
2104 }
2105 
2106 /* Initialise remaining memory on a node */
2107 static int __init deferred_init_memmap(void *data)
2108 {
2109 	pg_data_t *pgdat = data;
2110 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2111 	unsigned long spfn = 0, epfn = 0;
2112 	unsigned long first_init_pfn, flags;
2113 	unsigned long start = jiffies;
2114 	struct zone *zone;
2115 	int zid, max_threads;
2116 	u64 i;
2117 
2118 	/* Bind memory initialisation thread to a local node if possible */
2119 	if (!cpumask_empty(cpumask))
2120 		set_cpus_allowed_ptr(current, cpumask);
2121 
2122 	pgdat_resize_lock(pgdat, &flags);
2123 	first_init_pfn = pgdat->first_deferred_pfn;
2124 	if (first_init_pfn == ULONG_MAX) {
2125 		pgdat_resize_unlock(pgdat, &flags);
2126 		pgdat_init_report_one_done();
2127 		return 0;
2128 	}
2129 
2130 	/* Sanity check boundaries */
2131 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2132 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2133 	pgdat->first_deferred_pfn = ULONG_MAX;
2134 
2135 	/*
2136 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2137 	 * interrupt thread must allocate this early in boot, zone must be
2138 	 * pre-grown prior to start of deferred page initialization.
2139 	 */
2140 	pgdat_resize_unlock(pgdat, &flags);
2141 
2142 	/* Only the highest zone is deferred so find it */
2143 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2144 		zone = pgdat->node_zones + zid;
2145 		if (first_init_pfn < zone_end_pfn(zone))
2146 			break;
2147 	}
2148 
2149 	/* If the zone is empty somebody else may have cleared out the zone */
2150 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2151 						 first_init_pfn))
2152 		goto zone_empty;
2153 
2154 	max_threads = deferred_page_init_max_threads(cpumask);
2155 
2156 	while (spfn < epfn) {
2157 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2158 		struct padata_mt_job job = {
2159 			.thread_fn   = deferred_init_memmap_chunk,
2160 			.fn_arg      = zone,
2161 			.start       = spfn,
2162 			.size        = epfn_align - spfn,
2163 			.align       = PAGES_PER_SECTION,
2164 			.min_chunk   = PAGES_PER_SECTION,
2165 			.max_threads = max_threads,
2166 		};
2167 
2168 		padata_do_multithreaded(&job);
2169 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2170 						    epfn_align);
2171 	}
2172 zone_empty:
2173 	/* Sanity check that the next zone really is unpopulated */
2174 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2175 
2176 	pr_info("node %d deferred pages initialised in %ums\n",
2177 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2178 
2179 	pgdat_init_report_one_done();
2180 	return 0;
2181 }
2182 
2183 /*
2184  * If this zone has deferred pages, try to grow it by initializing enough
2185  * deferred pages to satisfy the allocation specified by order, rounded up to
2186  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2187  * of SECTION_SIZE bytes by initializing struct pages in increments of
2188  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2189  *
2190  * Return true when zone was grown, otherwise return false. We return true even
2191  * when we grow less than requested, to let the caller decide if there are
2192  * enough pages to satisfy the allocation.
2193  *
2194  * Note: We use noinline because this function is needed only during boot, and
2195  * it is called from a __ref function _deferred_grow_zone. This way we are
2196  * making sure that it is not inlined into permanent text section.
2197  */
2198 static noinline bool __init
2199 deferred_grow_zone(struct zone *zone, unsigned int order)
2200 {
2201 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2202 	pg_data_t *pgdat = zone->zone_pgdat;
2203 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2204 	unsigned long spfn, epfn, flags;
2205 	unsigned long nr_pages = 0;
2206 	u64 i;
2207 
2208 	/* Only the last zone may have deferred pages */
2209 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2210 		return false;
2211 
2212 	pgdat_resize_lock(pgdat, &flags);
2213 
2214 	/*
2215 	 * If someone grew this zone while we were waiting for spinlock, return
2216 	 * true, as there might be enough pages already.
2217 	 */
2218 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2219 		pgdat_resize_unlock(pgdat, &flags);
2220 		return true;
2221 	}
2222 
2223 	/* If the zone is empty somebody else may have cleared out the zone */
2224 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2225 						 first_deferred_pfn)) {
2226 		pgdat->first_deferred_pfn = ULONG_MAX;
2227 		pgdat_resize_unlock(pgdat, &flags);
2228 		/* Retry only once. */
2229 		return first_deferred_pfn != ULONG_MAX;
2230 	}
2231 
2232 	/*
2233 	 * Initialize and free pages in MAX_ORDER sized increments so
2234 	 * that we can avoid introducing any issues with the buddy
2235 	 * allocator.
2236 	 */
2237 	while (spfn < epfn) {
2238 		/* update our first deferred PFN for this section */
2239 		first_deferred_pfn = spfn;
2240 
2241 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2242 		touch_nmi_watchdog();
2243 
2244 		/* We should only stop along section boundaries */
2245 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2246 			continue;
2247 
2248 		/* If our quota has been met we can stop here */
2249 		if (nr_pages >= nr_pages_needed)
2250 			break;
2251 	}
2252 
2253 	pgdat->first_deferred_pfn = spfn;
2254 	pgdat_resize_unlock(pgdat, &flags);
2255 
2256 	return nr_pages > 0;
2257 }
2258 
2259 /*
2260  * deferred_grow_zone() is __init, but it is called from
2261  * get_page_from_freelist() during early boot until deferred_pages permanently
2262  * disables this call. This is why we have refdata wrapper to avoid warning,
2263  * and to ensure that the function body gets unloaded.
2264  */
2265 static bool __ref
2266 _deferred_grow_zone(struct zone *zone, unsigned int order)
2267 {
2268 	return deferred_grow_zone(zone, order);
2269 }
2270 
2271 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2272 
2273 void __init page_alloc_init_late(void)
2274 {
2275 	struct zone *zone;
2276 	int nid;
2277 
2278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2279 
2280 	/* There will be num_node_state(N_MEMORY) threads */
2281 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2282 	for_each_node_state(nid, N_MEMORY) {
2283 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284 	}
2285 
2286 	/* Block until all are initialised */
2287 	wait_for_completion(&pgdat_init_all_done_comp);
2288 
2289 	/*
2290 	 * We initialized the rest of the deferred pages.  Permanently disable
2291 	 * on-demand struct page initialization.
2292 	 */
2293 	static_branch_disable(&deferred_pages);
2294 
2295 	/* Reinit limits that are based on free pages after the kernel is up */
2296 	files_maxfiles_init();
2297 #endif
2298 
2299 	buffer_init();
2300 
2301 	/* Discard memblock private memory */
2302 	memblock_discard();
2303 
2304 	for_each_node_state(nid, N_MEMORY)
2305 		shuffle_free_memory(NODE_DATA(nid));
2306 
2307 	for_each_populated_zone(zone)
2308 		set_zone_contiguous(zone);
2309 }
2310 
2311 #ifdef CONFIG_CMA
2312 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2313 void __init init_cma_reserved_pageblock(struct page *page)
2314 {
2315 	unsigned i = pageblock_nr_pages;
2316 	struct page *p = page;
2317 
2318 	do {
2319 		__ClearPageReserved(p);
2320 		set_page_count(p, 0);
2321 	} while (++p, --i);
2322 
2323 	set_pageblock_migratetype(page, MIGRATE_CMA);
2324 	set_page_refcounted(page);
2325 	__free_pages(page, pageblock_order);
2326 
2327 	adjust_managed_page_count(page, pageblock_nr_pages);
2328 	page_zone(page)->cma_pages += pageblock_nr_pages;
2329 }
2330 #endif
2331 
2332 /*
2333  * The order of subdivision here is critical for the IO subsystem.
2334  * Please do not alter this order without good reasons and regression
2335  * testing. Specifically, as large blocks of memory are subdivided,
2336  * the order in which smaller blocks are delivered depends on the order
2337  * they're subdivided in this function. This is the primary factor
2338  * influencing the order in which pages are delivered to the IO
2339  * subsystem according to empirical testing, and this is also justified
2340  * by considering the behavior of a buddy system containing a single
2341  * large block of memory acted on by a series of small allocations.
2342  * This behavior is a critical factor in sglist merging's success.
2343  *
2344  * -- nyc
2345  */
2346 static inline void expand(struct zone *zone, struct page *page,
2347 	int low, int high, int migratetype)
2348 {
2349 	unsigned long size = 1 << high;
2350 
2351 	while (high > low) {
2352 		high--;
2353 		size >>= 1;
2354 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2355 
2356 		/*
2357 		 * Mark as guard pages (or page), that will allow to
2358 		 * merge back to allocator when buddy will be freed.
2359 		 * Corresponding page table entries will not be touched,
2360 		 * pages will stay not present in virtual address space
2361 		 */
2362 		if (set_page_guard(zone, &page[size], high, migratetype))
2363 			continue;
2364 
2365 		add_to_free_list(&page[size], zone, high, migratetype);
2366 		set_buddy_order(&page[size], high);
2367 	}
2368 }
2369 
2370 static void check_new_page_bad(struct page *page)
2371 {
2372 	if (unlikely(page->flags & __PG_HWPOISON)) {
2373 		/* Don't complain about hwpoisoned pages */
2374 		page_mapcount_reset(page); /* remove PageBuddy */
2375 		return;
2376 	}
2377 
2378 	bad_page(page,
2379 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2380 }
2381 
2382 /*
2383  * This page is about to be returned from the page allocator
2384  */
2385 static inline int check_new_page(struct page *page)
2386 {
2387 	if (likely(page_expected_state(page,
2388 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2389 		return 0;
2390 
2391 	check_new_page_bad(page);
2392 	return 1;
2393 }
2394 
2395 static bool check_new_pages(struct page *page, unsigned int order)
2396 {
2397 	int i;
2398 	for (i = 0; i < (1 << order); i++) {
2399 		struct page *p = page + i;
2400 
2401 		if (unlikely(check_new_page(p)))
2402 			return true;
2403 	}
2404 
2405 	return false;
2406 }
2407 
2408 #ifdef CONFIG_DEBUG_VM
2409 /*
2410  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2411  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2412  * also checked when pcp lists are refilled from the free lists.
2413  */
2414 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2415 {
2416 	if (debug_pagealloc_enabled_static())
2417 		return check_new_pages(page, order);
2418 	else
2419 		return false;
2420 }
2421 
2422 static inline bool check_new_pcp(struct page *page, unsigned int order)
2423 {
2424 	return check_new_pages(page, order);
2425 }
2426 #else
2427 /*
2428  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2429  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2430  * enabled, they are also checked when being allocated from the pcp lists.
2431  */
2432 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2433 {
2434 	return check_new_pages(page, order);
2435 }
2436 static inline bool check_new_pcp(struct page *page, unsigned int order)
2437 {
2438 	if (debug_pagealloc_enabled_static())
2439 		return check_new_pages(page, order);
2440 	else
2441 		return false;
2442 }
2443 #endif /* CONFIG_DEBUG_VM */
2444 
2445 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2446 {
2447 	/* Don't skip if a software KASAN mode is enabled. */
2448 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2449 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2450 		return false;
2451 
2452 	/* Skip, if hardware tag-based KASAN is not enabled. */
2453 	if (!kasan_hw_tags_enabled())
2454 		return true;
2455 
2456 	/*
2457 	 * With hardware tag-based KASAN enabled, skip if this has been
2458 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2459 	 */
2460 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2461 }
2462 
2463 static inline bool should_skip_init(gfp_t flags)
2464 {
2465 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2466 	if (!kasan_hw_tags_enabled())
2467 		return false;
2468 
2469 	/* For hardware tag-based KASAN, skip if requested. */
2470 	return (flags & __GFP_SKIP_ZERO);
2471 }
2472 
2473 inline void post_alloc_hook(struct page *page, unsigned int order,
2474 				gfp_t gfp_flags)
2475 {
2476 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2477 			!should_skip_init(gfp_flags);
2478 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2479 	bool reset_tags = true;
2480 	int i;
2481 
2482 	set_page_private(page, 0);
2483 	set_page_refcounted(page);
2484 
2485 	arch_alloc_page(page, order);
2486 	debug_pagealloc_map_pages(page, 1 << order);
2487 
2488 	/*
2489 	 * Page unpoisoning must happen before memory initialization.
2490 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2491 	 * allocations and the page unpoisoning code will complain.
2492 	 */
2493 	kernel_unpoison_pages(page, 1 << order);
2494 
2495 	/*
2496 	 * As memory initialization might be integrated into KASAN,
2497 	 * KASAN unpoisoning and memory initializion code must be
2498 	 * kept together to avoid discrepancies in behavior.
2499 	 */
2500 
2501 	/*
2502 	 * If memory tags should be zeroed
2503 	 * (which happens only when memory should be initialized as well).
2504 	 */
2505 	if (zero_tags) {
2506 		/* Initialize both memory and memory tags. */
2507 		for (i = 0; i != 1 << order; ++i)
2508 			tag_clear_highpage(page + i);
2509 
2510 		/* Take note that memory was initialized by the loop above. */
2511 		init = false;
2512 	}
2513 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2514 		/* Try unpoisoning (or setting tags) and initializing memory. */
2515 		if (kasan_unpoison_pages(page, order, init)) {
2516 			/* Take note that memory was initialized by KASAN. */
2517 			if (kasan_has_integrated_init())
2518 				init = false;
2519 			/* Take note that memory tags were set by KASAN. */
2520 			reset_tags = false;
2521 		} else {
2522 			/*
2523 			 * KASAN decided to exclude this allocation from being
2524 			 * (un)poisoned due to sampling. Make KASAN skip
2525 			 * poisoning when the allocation is freed.
2526 			 */
2527 			SetPageSkipKASanPoison(page);
2528 		}
2529 	}
2530 	/*
2531 	 * If memory tags have not been set by KASAN, reset the page tags to
2532 	 * ensure page_address() dereferencing does not fault.
2533 	 */
2534 	if (reset_tags) {
2535 		for (i = 0; i != 1 << order; ++i)
2536 			page_kasan_tag_reset(page + i);
2537 	}
2538 	/* If memory is still not initialized, initialize it now. */
2539 	if (init)
2540 		kernel_init_pages(page, 1 << order);
2541 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2542 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2543 		SetPageSkipKASanPoison(page);
2544 
2545 	set_page_owner(page, order, gfp_flags);
2546 	page_table_check_alloc(page, order);
2547 }
2548 
2549 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2550 							unsigned int alloc_flags)
2551 {
2552 	post_alloc_hook(page, order, gfp_flags);
2553 
2554 	if (order && (gfp_flags & __GFP_COMP))
2555 		prep_compound_page(page, order);
2556 
2557 	/*
2558 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2559 	 * allocate the page. The expectation is that the caller is taking
2560 	 * steps that will free more memory. The caller should avoid the page
2561 	 * being used for !PFMEMALLOC purposes.
2562 	 */
2563 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2564 		set_page_pfmemalloc(page);
2565 	else
2566 		clear_page_pfmemalloc(page);
2567 }
2568 
2569 /*
2570  * Go through the free lists for the given migratetype and remove
2571  * the smallest available page from the freelists
2572  */
2573 static __always_inline
2574 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2575 						int migratetype)
2576 {
2577 	unsigned int current_order;
2578 	struct free_area *area;
2579 	struct page *page;
2580 
2581 	/* Find a page of the appropriate size in the preferred list */
2582 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2583 		area = &(zone->free_area[current_order]);
2584 		page = get_page_from_free_area(area, migratetype);
2585 		if (!page)
2586 			continue;
2587 		del_page_from_free_list(page, zone, current_order);
2588 		expand(zone, page, order, current_order, migratetype);
2589 		set_pcppage_migratetype(page, migratetype);
2590 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2591 				pcp_allowed_order(order) &&
2592 				migratetype < MIGRATE_PCPTYPES);
2593 		return page;
2594 	}
2595 
2596 	return NULL;
2597 }
2598 
2599 
2600 /*
2601  * This array describes the order lists are fallen back to when
2602  * the free lists for the desirable migrate type are depleted
2603  *
2604  * The other migratetypes do not have fallbacks.
2605  */
2606 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
2607 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
2608 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
2609 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
2610 };
2611 
2612 #ifdef CONFIG_CMA
2613 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2614 					unsigned int order)
2615 {
2616 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2617 }
2618 #else
2619 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2620 					unsigned int order) { return NULL; }
2621 #endif
2622 
2623 /*
2624  * Move the free pages in a range to the freelist tail of the requested type.
2625  * Note that start_page and end_pages are not aligned on a pageblock
2626  * boundary. If alignment is required, use move_freepages_block()
2627  */
2628 static int move_freepages(struct zone *zone,
2629 			  unsigned long start_pfn, unsigned long end_pfn,
2630 			  int migratetype, int *num_movable)
2631 {
2632 	struct page *page;
2633 	unsigned long pfn;
2634 	unsigned int order;
2635 	int pages_moved = 0;
2636 
2637 	for (pfn = start_pfn; pfn <= end_pfn;) {
2638 		page = pfn_to_page(pfn);
2639 		if (!PageBuddy(page)) {
2640 			/*
2641 			 * We assume that pages that could be isolated for
2642 			 * migration are movable. But we don't actually try
2643 			 * isolating, as that would be expensive.
2644 			 */
2645 			if (num_movable &&
2646 					(PageLRU(page) || __PageMovable(page)))
2647 				(*num_movable)++;
2648 			pfn++;
2649 			continue;
2650 		}
2651 
2652 		/* Make sure we are not inadvertently changing nodes */
2653 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2654 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2655 
2656 		order = buddy_order(page);
2657 		move_to_free_list(page, zone, order, migratetype);
2658 		pfn += 1 << order;
2659 		pages_moved += 1 << order;
2660 	}
2661 
2662 	return pages_moved;
2663 }
2664 
2665 int move_freepages_block(struct zone *zone, struct page *page,
2666 				int migratetype, int *num_movable)
2667 {
2668 	unsigned long start_pfn, end_pfn, pfn;
2669 
2670 	if (num_movable)
2671 		*num_movable = 0;
2672 
2673 	pfn = page_to_pfn(page);
2674 	start_pfn = pageblock_start_pfn(pfn);
2675 	end_pfn = pageblock_end_pfn(pfn) - 1;
2676 
2677 	/* Do not cross zone boundaries */
2678 	if (!zone_spans_pfn(zone, start_pfn))
2679 		start_pfn = pfn;
2680 	if (!zone_spans_pfn(zone, end_pfn))
2681 		return 0;
2682 
2683 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2684 								num_movable);
2685 }
2686 
2687 static void change_pageblock_range(struct page *pageblock_page,
2688 					int start_order, int migratetype)
2689 {
2690 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2691 
2692 	while (nr_pageblocks--) {
2693 		set_pageblock_migratetype(pageblock_page, migratetype);
2694 		pageblock_page += pageblock_nr_pages;
2695 	}
2696 }
2697 
2698 /*
2699  * When we are falling back to another migratetype during allocation, try to
2700  * steal extra free pages from the same pageblocks to satisfy further
2701  * allocations, instead of polluting multiple pageblocks.
2702  *
2703  * If we are stealing a relatively large buddy page, it is likely there will
2704  * be more free pages in the pageblock, so try to steal them all. For
2705  * reclaimable and unmovable allocations, we steal regardless of page size,
2706  * as fragmentation caused by those allocations polluting movable pageblocks
2707  * is worse than movable allocations stealing from unmovable and reclaimable
2708  * pageblocks.
2709  */
2710 static bool can_steal_fallback(unsigned int order, int start_mt)
2711 {
2712 	/*
2713 	 * Leaving this order check is intended, although there is
2714 	 * relaxed order check in next check. The reason is that
2715 	 * we can actually steal whole pageblock if this condition met,
2716 	 * but, below check doesn't guarantee it and that is just heuristic
2717 	 * so could be changed anytime.
2718 	 */
2719 	if (order >= pageblock_order)
2720 		return true;
2721 
2722 	if (order >= pageblock_order / 2 ||
2723 		start_mt == MIGRATE_RECLAIMABLE ||
2724 		start_mt == MIGRATE_UNMOVABLE ||
2725 		page_group_by_mobility_disabled)
2726 		return true;
2727 
2728 	return false;
2729 }
2730 
2731 static inline bool boost_watermark(struct zone *zone)
2732 {
2733 	unsigned long max_boost;
2734 
2735 	if (!watermark_boost_factor)
2736 		return false;
2737 	/*
2738 	 * Don't bother in zones that are unlikely to produce results.
2739 	 * On small machines, including kdump capture kernels running
2740 	 * in a small area, boosting the watermark can cause an out of
2741 	 * memory situation immediately.
2742 	 */
2743 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2744 		return false;
2745 
2746 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2747 			watermark_boost_factor, 10000);
2748 
2749 	/*
2750 	 * high watermark may be uninitialised if fragmentation occurs
2751 	 * very early in boot so do not boost. We do not fall
2752 	 * through and boost by pageblock_nr_pages as failing
2753 	 * allocations that early means that reclaim is not going
2754 	 * to help and it may even be impossible to reclaim the
2755 	 * boosted watermark resulting in a hang.
2756 	 */
2757 	if (!max_boost)
2758 		return false;
2759 
2760 	max_boost = max(pageblock_nr_pages, max_boost);
2761 
2762 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2763 		max_boost);
2764 
2765 	return true;
2766 }
2767 
2768 /*
2769  * This function implements actual steal behaviour. If order is large enough,
2770  * we can steal whole pageblock. If not, we first move freepages in this
2771  * pageblock to our migratetype and determine how many already-allocated pages
2772  * are there in the pageblock with a compatible migratetype. If at least half
2773  * of pages are free or compatible, we can change migratetype of the pageblock
2774  * itself, so pages freed in the future will be put on the correct free list.
2775  */
2776 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2777 		unsigned int alloc_flags, int start_type, bool whole_block)
2778 {
2779 	unsigned int current_order = buddy_order(page);
2780 	int free_pages, movable_pages, alike_pages;
2781 	int old_block_type;
2782 
2783 	old_block_type = get_pageblock_migratetype(page);
2784 
2785 	/*
2786 	 * This can happen due to races and we want to prevent broken
2787 	 * highatomic accounting.
2788 	 */
2789 	if (is_migrate_highatomic(old_block_type))
2790 		goto single_page;
2791 
2792 	/* Take ownership for orders >= pageblock_order */
2793 	if (current_order >= pageblock_order) {
2794 		change_pageblock_range(page, current_order, start_type);
2795 		goto single_page;
2796 	}
2797 
2798 	/*
2799 	 * Boost watermarks to increase reclaim pressure to reduce the
2800 	 * likelihood of future fallbacks. Wake kswapd now as the node
2801 	 * may be balanced overall and kswapd will not wake naturally.
2802 	 */
2803 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2804 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2805 
2806 	/* We are not allowed to try stealing from the whole block */
2807 	if (!whole_block)
2808 		goto single_page;
2809 
2810 	free_pages = move_freepages_block(zone, page, start_type,
2811 						&movable_pages);
2812 	/*
2813 	 * Determine how many pages are compatible with our allocation.
2814 	 * For movable allocation, it's the number of movable pages which
2815 	 * we just obtained. For other types it's a bit more tricky.
2816 	 */
2817 	if (start_type == MIGRATE_MOVABLE) {
2818 		alike_pages = movable_pages;
2819 	} else {
2820 		/*
2821 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2822 		 * to MOVABLE pageblock, consider all non-movable pages as
2823 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2824 		 * vice versa, be conservative since we can't distinguish the
2825 		 * exact migratetype of non-movable pages.
2826 		 */
2827 		if (old_block_type == MIGRATE_MOVABLE)
2828 			alike_pages = pageblock_nr_pages
2829 						- (free_pages + movable_pages);
2830 		else
2831 			alike_pages = 0;
2832 	}
2833 
2834 	/* moving whole block can fail due to zone boundary conditions */
2835 	if (!free_pages)
2836 		goto single_page;
2837 
2838 	/*
2839 	 * If a sufficient number of pages in the block are either free or of
2840 	 * comparable migratability as our allocation, claim the whole block.
2841 	 */
2842 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2843 			page_group_by_mobility_disabled)
2844 		set_pageblock_migratetype(page, start_type);
2845 
2846 	return;
2847 
2848 single_page:
2849 	move_to_free_list(page, zone, current_order, start_type);
2850 }
2851 
2852 /*
2853  * Check whether there is a suitable fallback freepage with requested order.
2854  * If only_stealable is true, this function returns fallback_mt only if
2855  * we can steal other freepages all together. This would help to reduce
2856  * fragmentation due to mixed migratetype pages in one pageblock.
2857  */
2858 int find_suitable_fallback(struct free_area *area, unsigned int order,
2859 			int migratetype, bool only_stealable, bool *can_steal)
2860 {
2861 	int i;
2862 	int fallback_mt;
2863 
2864 	if (area->nr_free == 0)
2865 		return -1;
2866 
2867 	*can_steal = false;
2868 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2869 		fallback_mt = fallbacks[migratetype][i];
2870 		if (free_area_empty(area, fallback_mt))
2871 			continue;
2872 
2873 		if (can_steal_fallback(order, migratetype))
2874 			*can_steal = true;
2875 
2876 		if (!only_stealable)
2877 			return fallback_mt;
2878 
2879 		if (*can_steal)
2880 			return fallback_mt;
2881 	}
2882 
2883 	return -1;
2884 }
2885 
2886 /*
2887  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2888  * there are no empty page blocks that contain a page with a suitable order
2889  */
2890 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2891 				unsigned int alloc_order)
2892 {
2893 	int mt;
2894 	unsigned long max_managed, flags;
2895 
2896 	/*
2897 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2898 	 * Check is race-prone but harmless.
2899 	 */
2900 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2901 	if (zone->nr_reserved_highatomic >= max_managed)
2902 		return;
2903 
2904 	spin_lock_irqsave(&zone->lock, flags);
2905 
2906 	/* Recheck the nr_reserved_highatomic limit under the lock */
2907 	if (zone->nr_reserved_highatomic >= max_managed)
2908 		goto out_unlock;
2909 
2910 	/* Yoink! */
2911 	mt = get_pageblock_migratetype(page);
2912 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2913 	if (migratetype_is_mergeable(mt)) {
2914 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2915 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2916 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2917 	}
2918 
2919 out_unlock:
2920 	spin_unlock_irqrestore(&zone->lock, flags);
2921 }
2922 
2923 /*
2924  * Used when an allocation is about to fail under memory pressure. This
2925  * potentially hurts the reliability of high-order allocations when under
2926  * intense memory pressure but failed atomic allocations should be easier
2927  * to recover from than an OOM.
2928  *
2929  * If @force is true, try to unreserve a pageblock even though highatomic
2930  * pageblock is exhausted.
2931  */
2932 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2933 						bool force)
2934 {
2935 	struct zonelist *zonelist = ac->zonelist;
2936 	unsigned long flags;
2937 	struct zoneref *z;
2938 	struct zone *zone;
2939 	struct page *page;
2940 	int order;
2941 	bool ret;
2942 
2943 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2944 								ac->nodemask) {
2945 		/*
2946 		 * Preserve at least one pageblock unless memory pressure
2947 		 * is really high.
2948 		 */
2949 		if (!force && zone->nr_reserved_highatomic <=
2950 					pageblock_nr_pages)
2951 			continue;
2952 
2953 		spin_lock_irqsave(&zone->lock, flags);
2954 		for (order = 0; order < MAX_ORDER; order++) {
2955 			struct free_area *area = &(zone->free_area[order]);
2956 
2957 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2958 			if (!page)
2959 				continue;
2960 
2961 			/*
2962 			 * In page freeing path, migratetype change is racy so
2963 			 * we can counter several free pages in a pageblock
2964 			 * in this loop although we changed the pageblock type
2965 			 * from highatomic to ac->migratetype. So we should
2966 			 * adjust the count once.
2967 			 */
2968 			if (is_migrate_highatomic_page(page)) {
2969 				/*
2970 				 * It should never happen but changes to
2971 				 * locking could inadvertently allow a per-cpu
2972 				 * drain to add pages to MIGRATE_HIGHATOMIC
2973 				 * while unreserving so be safe and watch for
2974 				 * underflows.
2975 				 */
2976 				zone->nr_reserved_highatomic -= min(
2977 						pageblock_nr_pages,
2978 						zone->nr_reserved_highatomic);
2979 			}
2980 
2981 			/*
2982 			 * Convert to ac->migratetype and avoid the normal
2983 			 * pageblock stealing heuristics. Minimally, the caller
2984 			 * is doing the work and needs the pages. More
2985 			 * importantly, if the block was always converted to
2986 			 * MIGRATE_UNMOVABLE or another type then the number
2987 			 * of pageblocks that cannot be completely freed
2988 			 * may increase.
2989 			 */
2990 			set_pageblock_migratetype(page, ac->migratetype);
2991 			ret = move_freepages_block(zone, page, ac->migratetype,
2992 									NULL);
2993 			if (ret) {
2994 				spin_unlock_irqrestore(&zone->lock, flags);
2995 				return ret;
2996 			}
2997 		}
2998 		spin_unlock_irqrestore(&zone->lock, flags);
2999 	}
3000 
3001 	return false;
3002 }
3003 
3004 /*
3005  * Try finding a free buddy page on the fallback list and put it on the free
3006  * list of requested migratetype, possibly along with other pages from the same
3007  * block, depending on fragmentation avoidance heuristics. Returns true if
3008  * fallback was found so that __rmqueue_smallest() can grab it.
3009  *
3010  * The use of signed ints for order and current_order is a deliberate
3011  * deviation from the rest of this file, to make the for loop
3012  * condition simpler.
3013  */
3014 static __always_inline bool
3015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3016 						unsigned int alloc_flags)
3017 {
3018 	struct free_area *area;
3019 	int current_order;
3020 	int min_order = order;
3021 	struct page *page;
3022 	int fallback_mt;
3023 	bool can_steal;
3024 
3025 	/*
3026 	 * Do not steal pages from freelists belonging to other pageblocks
3027 	 * i.e. orders < pageblock_order. If there are no local zones free,
3028 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3029 	 */
3030 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3031 		min_order = pageblock_order;
3032 
3033 	/*
3034 	 * Find the largest available free page in the other list. This roughly
3035 	 * approximates finding the pageblock with the most free pages, which
3036 	 * would be too costly to do exactly.
3037 	 */
3038 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3039 				--current_order) {
3040 		area = &(zone->free_area[current_order]);
3041 		fallback_mt = find_suitable_fallback(area, current_order,
3042 				start_migratetype, false, &can_steal);
3043 		if (fallback_mt == -1)
3044 			continue;
3045 
3046 		/*
3047 		 * We cannot steal all free pages from the pageblock and the
3048 		 * requested migratetype is movable. In that case it's better to
3049 		 * steal and split the smallest available page instead of the
3050 		 * largest available page, because even if the next movable
3051 		 * allocation falls back into a different pageblock than this
3052 		 * one, it won't cause permanent fragmentation.
3053 		 */
3054 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3055 					&& current_order > order)
3056 			goto find_smallest;
3057 
3058 		goto do_steal;
3059 	}
3060 
3061 	return false;
3062 
3063 find_smallest:
3064 	for (current_order = order; current_order < MAX_ORDER;
3065 							current_order++) {
3066 		area = &(zone->free_area[current_order]);
3067 		fallback_mt = find_suitable_fallback(area, current_order,
3068 				start_migratetype, false, &can_steal);
3069 		if (fallback_mt != -1)
3070 			break;
3071 	}
3072 
3073 	/*
3074 	 * This should not happen - we already found a suitable fallback
3075 	 * when looking for the largest page.
3076 	 */
3077 	VM_BUG_ON(current_order == MAX_ORDER);
3078 
3079 do_steal:
3080 	page = get_page_from_free_area(area, fallback_mt);
3081 
3082 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3083 								can_steal);
3084 
3085 	trace_mm_page_alloc_extfrag(page, order, current_order,
3086 		start_migratetype, fallback_mt);
3087 
3088 	return true;
3089 
3090 }
3091 
3092 /*
3093  * Do the hard work of removing an element from the buddy allocator.
3094  * Call me with the zone->lock already held.
3095  */
3096 static __always_inline struct page *
3097 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3098 						unsigned int alloc_flags)
3099 {
3100 	struct page *page;
3101 
3102 	if (IS_ENABLED(CONFIG_CMA)) {
3103 		/*
3104 		 * Balance movable allocations between regular and CMA areas by
3105 		 * allocating from CMA when over half of the zone's free memory
3106 		 * is in the CMA area.
3107 		 */
3108 		if (alloc_flags & ALLOC_CMA &&
3109 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3110 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3111 			page = __rmqueue_cma_fallback(zone, order);
3112 			if (page)
3113 				return page;
3114 		}
3115 	}
3116 retry:
3117 	page = __rmqueue_smallest(zone, order, migratetype);
3118 	if (unlikely(!page)) {
3119 		if (alloc_flags & ALLOC_CMA)
3120 			page = __rmqueue_cma_fallback(zone, order);
3121 
3122 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3123 								alloc_flags))
3124 			goto retry;
3125 	}
3126 	return page;
3127 }
3128 
3129 /*
3130  * Obtain a specified number of elements from the buddy allocator, all under
3131  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3132  * Returns the number of new pages which were placed at *list.
3133  */
3134 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3135 			unsigned long count, struct list_head *list,
3136 			int migratetype, unsigned int alloc_flags)
3137 {
3138 	unsigned long flags;
3139 	int i, allocated = 0;
3140 
3141 	spin_lock_irqsave(&zone->lock, flags);
3142 	for (i = 0; i < count; ++i) {
3143 		struct page *page = __rmqueue(zone, order, migratetype,
3144 								alloc_flags);
3145 		if (unlikely(page == NULL))
3146 			break;
3147 
3148 		if (unlikely(check_pcp_refill(page, order)))
3149 			continue;
3150 
3151 		/*
3152 		 * Split buddy pages returned by expand() are received here in
3153 		 * physical page order. The page is added to the tail of
3154 		 * caller's list. From the callers perspective, the linked list
3155 		 * is ordered by page number under some conditions. This is
3156 		 * useful for IO devices that can forward direction from the
3157 		 * head, thus also in the physical page order. This is useful
3158 		 * for IO devices that can merge IO requests if the physical
3159 		 * pages are ordered properly.
3160 		 */
3161 		list_add_tail(&page->pcp_list, list);
3162 		allocated++;
3163 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3164 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3165 					      -(1 << order));
3166 	}
3167 
3168 	/*
3169 	 * i pages were removed from the buddy list even if some leak due
3170 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3171 	 * on i. Do not confuse with 'allocated' which is the number of
3172 	 * pages added to the pcp list.
3173 	 */
3174 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3175 	spin_unlock_irqrestore(&zone->lock, flags);
3176 	return allocated;
3177 }
3178 
3179 #ifdef CONFIG_NUMA
3180 /*
3181  * Called from the vmstat counter updater to drain pagesets of this
3182  * currently executing processor on remote nodes after they have
3183  * expired.
3184  */
3185 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3186 {
3187 	int to_drain, batch;
3188 
3189 	batch = READ_ONCE(pcp->batch);
3190 	to_drain = min(pcp->count, batch);
3191 	if (to_drain > 0) {
3192 		spin_lock(&pcp->lock);
3193 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3194 		spin_unlock(&pcp->lock);
3195 	}
3196 }
3197 #endif
3198 
3199 /*
3200  * Drain pcplists of the indicated processor and zone.
3201  */
3202 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3203 {
3204 	struct per_cpu_pages *pcp;
3205 
3206 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3207 	if (pcp->count) {
3208 		spin_lock(&pcp->lock);
3209 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3210 		spin_unlock(&pcp->lock);
3211 	}
3212 }
3213 
3214 /*
3215  * Drain pcplists of all zones on the indicated processor.
3216  */
3217 static void drain_pages(unsigned int cpu)
3218 {
3219 	struct zone *zone;
3220 
3221 	for_each_populated_zone(zone) {
3222 		drain_pages_zone(cpu, zone);
3223 	}
3224 }
3225 
3226 /*
3227  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3228  */
3229 void drain_local_pages(struct zone *zone)
3230 {
3231 	int cpu = smp_processor_id();
3232 
3233 	if (zone)
3234 		drain_pages_zone(cpu, zone);
3235 	else
3236 		drain_pages(cpu);
3237 }
3238 
3239 /*
3240  * The implementation of drain_all_pages(), exposing an extra parameter to
3241  * drain on all cpus.
3242  *
3243  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3244  * not empty. The check for non-emptiness can however race with a free to
3245  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3246  * that need the guarantee that every CPU has drained can disable the
3247  * optimizing racy check.
3248  */
3249 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3250 {
3251 	int cpu;
3252 
3253 	/*
3254 	 * Allocate in the BSS so we won't require allocation in
3255 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3256 	 */
3257 	static cpumask_t cpus_with_pcps;
3258 
3259 	/*
3260 	 * Do not drain if one is already in progress unless it's specific to
3261 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3262 	 * the drain to be complete when the call returns.
3263 	 */
3264 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3265 		if (!zone)
3266 			return;
3267 		mutex_lock(&pcpu_drain_mutex);
3268 	}
3269 
3270 	/*
3271 	 * We don't care about racing with CPU hotplug event
3272 	 * as offline notification will cause the notified
3273 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3274 	 * disables preemption as part of its processing
3275 	 */
3276 	for_each_online_cpu(cpu) {
3277 		struct per_cpu_pages *pcp;
3278 		struct zone *z;
3279 		bool has_pcps = false;
3280 
3281 		if (force_all_cpus) {
3282 			/*
3283 			 * The pcp.count check is racy, some callers need a
3284 			 * guarantee that no cpu is missed.
3285 			 */
3286 			has_pcps = true;
3287 		} else if (zone) {
3288 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3289 			if (pcp->count)
3290 				has_pcps = true;
3291 		} else {
3292 			for_each_populated_zone(z) {
3293 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3294 				if (pcp->count) {
3295 					has_pcps = true;
3296 					break;
3297 				}
3298 			}
3299 		}
3300 
3301 		if (has_pcps)
3302 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3303 		else
3304 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3305 	}
3306 
3307 	for_each_cpu(cpu, &cpus_with_pcps) {
3308 		if (zone)
3309 			drain_pages_zone(cpu, zone);
3310 		else
3311 			drain_pages(cpu);
3312 	}
3313 
3314 	mutex_unlock(&pcpu_drain_mutex);
3315 }
3316 
3317 /*
3318  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3319  *
3320  * When zone parameter is non-NULL, spill just the single zone's pages.
3321  */
3322 void drain_all_pages(struct zone *zone)
3323 {
3324 	__drain_all_pages(zone, false);
3325 }
3326 
3327 #ifdef CONFIG_HIBERNATION
3328 
3329 /*
3330  * Touch the watchdog for every WD_PAGE_COUNT pages.
3331  */
3332 #define WD_PAGE_COUNT	(128*1024)
3333 
3334 void mark_free_pages(struct zone *zone)
3335 {
3336 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3337 	unsigned long flags;
3338 	unsigned int order, t;
3339 	struct page *page;
3340 
3341 	if (zone_is_empty(zone))
3342 		return;
3343 
3344 	spin_lock_irqsave(&zone->lock, flags);
3345 
3346 	max_zone_pfn = zone_end_pfn(zone);
3347 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3348 		if (pfn_valid(pfn)) {
3349 			page = pfn_to_page(pfn);
3350 
3351 			if (!--page_count) {
3352 				touch_nmi_watchdog();
3353 				page_count = WD_PAGE_COUNT;
3354 			}
3355 
3356 			if (page_zone(page) != zone)
3357 				continue;
3358 
3359 			if (!swsusp_page_is_forbidden(page))
3360 				swsusp_unset_page_free(page);
3361 		}
3362 
3363 	for_each_migratetype_order(order, t) {
3364 		list_for_each_entry(page,
3365 				&zone->free_area[order].free_list[t], buddy_list) {
3366 			unsigned long i;
3367 
3368 			pfn = page_to_pfn(page);
3369 			for (i = 0; i < (1UL << order); i++) {
3370 				if (!--page_count) {
3371 					touch_nmi_watchdog();
3372 					page_count = WD_PAGE_COUNT;
3373 				}
3374 				swsusp_set_page_free(pfn_to_page(pfn + i));
3375 			}
3376 		}
3377 	}
3378 	spin_unlock_irqrestore(&zone->lock, flags);
3379 }
3380 #endif /* CONFIG_PM */
3381 
3382 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3383 							unsigned int order)
3384 {
3385 	int migratetype;
3386 
3387 	if (!free_pcp_prepare(page, order))
3388 		return false;
3389 
3390 	migratetype = get_pfnblock_migratetype(page, pfn);
3391 	set_pcppage_migratetype(page, migratetype);
3392 	return true;
3393 }
3394 
3395 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3396 		       bool free_high)
3397 {
3398 	int min_nr_free, max_nr_free;
3399 
3400 	/* Free everything if batch freeing high-order pages. */
3401 	if (unlikely(free_high))
3402 		return pcp->count;
3403 
3404 	/* Check for PCP disabled or boot pageset */
3405 	if (unlikely(high < batch))
3406 		return 1;
3407 
3408 	/* Leave at least pcp->batch pages on the list */
3409 	min_nr_free = batch;
3410 	max_nr_free = high - batch;
3411 
3412 	/*
3413 	 * Double the number of pages freed each time there is subsequent
3414 	 * freeing of pages without any allocation.
3415 	 */
3416 	batch <<= pcp->free_factor;
3417 	if (batch < max_nr_free)
3418 		pcp->free_factor++;
3419 	batch = clamp(batch, min_nr_free, max_nr_free);
3420 
3421 	return batch;
3422 }
3423 
3424 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3425 		       bool free_high)
3426 {
3427 	int high = READ_ONCE(pcp->high);
3428 
3429 	if (unlikely(!high || free_high))
3430 		return 0;
3431 
3432 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3433 		return high;
3434 
3435 	/*
3436 	 * If reclaim is active, limit the number of pages that can be
3437 	 * stored on pcp lists
3438 	 */
3439 	return min(READ_ONCE(pcp->batch) << 2, high);
3440 }
3441 
3442 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3443 				   struct page *page, int migratetype,
3444 				   unsigned int order)
3445 {
3446 	int high;
3447 	int pindex;
3448 	bool free_high;
3449 
3450 	__count_vm_events(PGFREE, 1 << order);
3451 	pindex = order_to_pindex(migratetype, order);
3452 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3453 	pcp->count += 1 << order;
3454 
3455 	/*
3456 	 * As high-order pages other than THP's stored on PCP can contribute
3457 	 * to fragmentation, limit the number stored when PCP is heavily
3458 	 * freeing without allocation. The remainder after bulk freeing
3459 	 * stops will be drained from vmstat refresh context.
3460 	 */
3461 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3462 
3463 	high = nr_pcp_high(pcp, zone, free_high);
3464 	if (pcp->count >= high) {
3465 		int batch = READ_ONCE(pcp->batch);
3466 
3467 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3468 	}
3469 }
3470 
3471 /*
3472  * Free a pcp page
3473  */
3474 void free_unref_page(struct page *page, unsigned int order)
3475 {
3476 	unsigned long __maybe_unused UP_flags;
3477 	struct per_cpu_pages *pcp;
3478 	struct zone *zone;
3479 	unsigned long pfn = page_to_pfn(page);
3480 	int migratetype;
3481 
3482 	if (!free_unref_page_prepare(page, pfn, order))
3483 		return;
3484 
3485 	/*
3486 	 * We only track unmovable, reclaimable and movable on pcp lists.
3487 	 * Place ISOLATE pages on the isolated list because they are being
3488 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3489 	 * areas back if necessary. Otherwise, we may have to free
3490 	 * excessively into the page allocator
3491 	 */
3492 	migratetype = get_pcppage_migratetype(page);
3493 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3494 		if (unlikely(is_migrate_isolate(migratetype))) {
3495 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3496 			return;
3497 		}
3498 		migratetype = MIGRATE_MOVABLE;
3499 	}
3500 
3501 	zone = page_zone(page);
3502 	pcp_trylock_prepare(UP_flags);
3503 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3504 	if (pcp) {
3505 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3506 		pcp_spin_unlock(pcp);
3507 	} else {
3508 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3509 	}
3510 	pcp_trylock_finish(UP_flags);
3511 }
3512 
3513 /*
3514  * Free a list of 0-order pages
3515  */
3516 void free_unref_page_list(struct list_head *list)
3517 {
3518 	unsigned long __maybe_unused UP_flags;
3519 	struct page *page, *next;
3520 	struct per_cpu_pages *pcp = NULL;
3521 	struct zone *locked_zone = NULL;
3522 	int batch_count = 0;
3523 	int migratetype;
3524 
3525 	/* Prepare pages for freeing */
3526 	list_for_each_entry_safe(page, next, list, lru) {
3527 		unsigned long pfn = page_to_pfn(page);
3528 		if (!free_unref_page_prepare(page, pfn, 0)) {
3529 			list_del(&page->lru);
3530 			continue;
3531 		}
3532 
3533 		/*
3534 		 * Free isolated pages directly to the allocator, see
3535 		 * comment in free_unref_page.
3536 		 */
3537 		migratetype = get_pcppage_migratetype(page);
3538 		if (unlikely(is_migrate_isolate(migratetype))) {
3539 			list_del(&page->lru);
3540 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 			continue;
3542 		}
3543 	}
3544 
3545 	list_for_each_entry_safe(page, next, list, lru) {
3546 		struct zone *zone = page_zone(page);
3547 
3548 		list_del(&page->lru);
3549 		migratetype = get_pcppage_migratetype(page);
3550 
3551 		/*
3552 		 * Either different zone requiring a different pcp lock or
3553 		 * excessive lock hold times when freeing a large list of
3554 		 * pages.
3555 		 */
3556 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3557 			if (pcp) {
3558 				pcp_spin_unlock(pcp);
3559 				pcp_trylock_finish(UP_flags);
3560 			}
3561 
3562 			batch_count = 0;
3563 
3564 			/*
3565 			 * trylock is necessary as pages may be getting freed
3566 			 * from IRQ or SoftIRQ context after an IO completion.
3567 			 */
3568 			pcp_trylock_prepare(UP_flags);
3569 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3570 			if (unlikely(!pcp)) {
3571 				pcp_trylock_finish(UP_flags);
3572 				free_one_page(zone, page, page_to_pfn(page),
3573 					      0, migratetype, FPI_NONE);
3574 				locked_zone = NULL;
3575 				continue;
3576 			}
3577 			locked_zone = zone;
3578 		}
3579 
3580 		/*
3581 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3582 		 * to the MIGRATE_MOVABLE pcp list.
3583 		 */
3584 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3585 			migratetype = MIGRATE_MOVABLE;
3586 
3587 		trace_mm_page_free_batched(page);
3588 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3589 		batch_count++;
3590 	}
3591 
3592 	if (pcp) {
3593 		pcp_spin_unlock(pcp);
3594 		pcp_trylock_finish(UP_flags);
3595 	}
3596 }
3597 
3598 /*
3599  * split_page takes a non-compound higher-order page, and splits it into
3600  * n (1<<order) sub-pages: page[0..n]
3601  * Each sub-page must be freed individually.
3602  *
3603  * Note: this is probably too low level an operation for use in drivers.
3604  * Please consult with lkml before using this in your driver.
3605  */
3606 void split_page(struct page *page, unsigned int order)
3607 {
3608 	int i;
3609 
3610 	VM_BUG_ON_PAGE(PageCompound(page), page);
3611 	VM_BUG_ON_PAGE(!page_count(page), page);
3612 
3613 	for (i = 1; i < (1 << order); i++)
3614 		set_page_refcounted(page + i);
3615 	split_page_owner(page, 1 << order);
3616 	split_page_memcg(page, 1 << order);
3617 }
3618 EXPORT_SYMBOL_GPL(split_page);
3619 
3620 int __isolate_free_page(struct page *page, unsigned int order)
3621 {
3622 	struct zone *zone = page_zone(page);
3623 	int mt = get_pageblock_migratetype(page);
3624 
3625 	if (!is_migrate_isolate(mt)) {
3626 		unsigned long watermark;
3627 		/*
3628 		 * Obey watermarks as if the page was being allocated. We can
3629 		 * emulate a high-order watermark check with a raised order-0
3630 		 * watermark, because we already know our high-order page
3631 		 * exists.
3632 		 */
3633 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3634 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3635 			return 0;
3636 
3637 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3638 	}
3639 
3640 	del_page_from_free_list(page, zone, order);
3641 
3642 	/*
3643 	 * Set the pageblock if the isolated page is at least half of a
3644 	 * pageblock
3645 	 */
3646 	if (order >= pageblock_order - 1) {
3647 		struct page *endpage = page + (1 << order) - 1;
3648 		for (; page < endpage; page += pageblock_nr_pages) {
3649 			int mt = get_pageblock_migratetype(page);
3650 			/*
3651 			 * Only change normal pageblocks (i.e., they can merge
3652 			 * with others)
3653 			 */
3654 			if (migratetype_is_mergeable(mt))
3655 				set_pageblock_migratetype(page,
3656 							  MIGRATE_MOVABLE);
3657 		}
3658 	}
3659 
3660 	return 1UL << order;
3661 }
3662 
3663 /**
3664  * __putback_isolated_page - Return a now-isolated page back where we got it
3665  * @page: Page that was isolated
3666  * @order: Order of the isolated page
3667  * @mt: The page's pageblock's migratetype
3668  *
3669  * This function is meant to return a page pulled from the free lists via
3670  * __isolate_free_page back to the free lists they were pulled from.
3671  */
3672 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3673 {
3674 	struct zone *zone = page_zone(page);
3675 
3676 	/* zone lock should be held when this function is called */
3677 	lockdep_assert_held(&zone->lock);
3678 
3679 	/* Return isolated page to tail of freelist. */
3680 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3681 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3682 }
3683 
3684 /*
3685  * Update NUMA hit/miss statistics
3686  */
3687 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3688 				   long nr_account)
3689 {
3690 #ifdef CONFIG_NUMA
3691 	enum numa_stat_item local_stat = NUMA_LOCAL;
3692 
3693 	/* skip numa counters update if numa stats is disabled */
3694 	if (!static_branch_likely(&vm_numa_stat_key))
3695 		return;
3696 
3697 	if (zone_to_nid(z) != numa_node_id())
3698 		local_stat = NUMA_OTHER;
3699 
3700 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3701 		__count_numa_events(z, NUMA_HIT, nr_account);
3702 	else {
3703 		__count_numa_events(z, NUMA_MISS, nr_account);
3704 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3705 	}
3706 	__count_numa_events(z, local_stat, nr_account);
3707 #endif
3708 }
3709 
3710 static __always_inline
3711 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3712 			   unsigned int order, unsigned int alloc_flags,
3713 			   int migratetype)
3714 {
3715 	struct page *page;
3716 	unsigned long flags;
3717 
3718 	do {
3719 		page = NULL;
3720 		spin_lock_irqsave(&zone->lock, flags);
3721 		/*
3722 		 * order-0 request can reach here when the pcplist is skipped
3723 		 * due to non-CMA allocation context. HIGHATOMIC area is
3724 		 * reserved for high-order atomic allocation, so order-0
3725 		 * request should skip it.
3726 		 */
3727 		if (alloc_flags & ALLOC_HIGHATOMIC)
3728 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3729 		if (!page) {
3730 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3731 
3732 			/*
3733 			 * If the allocation fails, allow OOM handling access
3734 			 * to HIGHATOMIC reserves as failing now is worse than
3735 			 * failing a high-order atomic allocation in the
3736 			 * future.
3737 			 */
3738 			if (!page && (alloc_flags & ALLOC_OOM))
3739 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3740 
3741 			if (!page) {
3742 				spin_unlock_irqrestore(&zone->lock, flags);
3743 				return NULL;
3744 			}
3745 		}
3746 		__mod_zone_freepage_state(zone, -(1 << order),
3747 					  get_pcppage_migratetype(page));
3748 		spin_unlock_irqrestore(&zone->lock, flags);
3749 	} while (check_new_pages(page, order));
3750 
3751 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3752 	zone_statistics(preferred_zone, zone, 1);
3753 
3754 	return page;
3755 }
3756 
3757 /* Remove page from the per-cpu list, caller must protect the list */
3758 static inline
3759 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3760 			int migratetype,
3761 			unsigned int alloc_flags,
3762 			struct per_cpu_pages *pcp,
3763 			struct list_head *list)
3764 {
3765 	struct page *page;
3766 
3767 	do {
3768 		if (list_empty(list)) {
3769 			int batch = READ_ONCE(pcp->batch);
3770 			int alloced;
3771 
3772 			/*
3773 			 * Scale batch relative to order if batch implies
3774 			 * free pages can be stored on the PCP. Batch can
3775 			 * be 1 for small zones or for boot pagesets which
3776 			 * should never store free pages as the pages may
3777 			 * belong to arbitrary zones.
3778 			 */
3779 			if (batch > 1)
3780 				batch = max(batch >> order, 2);
3781 			alloced = rmqueue_bulk(zone, order,
3782 					batch, list,
3783 					migratetype, alloc_flags);
3784 
3785 			pcp->count += alloced << order;
3786 			if (unlikely(list_empty(list)))
3787 				return NULL;
3788 		}
3789 
3790 		page = list_first_entry(list, struct page, pcp_list);
3791 		list_del(&page->pcp_list);
3792 		pcp->count -= 1 << order;
3793 	} while (check_new_pcp(page, order));
3794 
3795 	return page;
3796 }
3797 
3798 /* Lock and remove page from the per-cpu list */
3799 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3800 			struct zone *zone, unsigned int order,
3801 			int migratetype, unsigned int alloc_flags)
3802 {
3803 	struct per_cpu_pages *pcp;
3804 	struct list_head *list;
3805 	struct page *page;
3806 	unsigned long __maybe_unused UP_flags;
3807 
3808 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3809 	pcp_trylock_prepare(UP_flags);
3810 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3811 	if (!pcp) {
3812 		pcp_trylock_finish(UP_flags);
3813 		return NULL;
3814 	}
3815 
3816 	/*
3817 	 * On allocation, reduce the number of pages that are batch freed.
3818 	 * See nr_pcp_free() where free_factor is increased for subsequent
3819 	 * frees.
3820 	 */
3821 	pcp->free_factor >>= 1;
3822 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3823 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3824 	pcp_spin_unlock(pcp);
3825 	pcp_trylock_finish(UP_flags);
3826 	if (page) {
3827 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3828 		zone_statistics(preferred_zone, zone, 1);
3829 	}
3830 	return page;
3831 }
3832 
3833 /*
3834  * Allocate a page from the given zone.
3835  * Use pcplists for THP or "cheap" high-order allocations.
3836  */
3837 
3838 /*
3839  * Do not instrument rmqueue() with KMSAN. This function may call
3840  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3841  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3842  * may call rmqueue() again, which will result in a deadlock.
3843  */
3844 __no_sanitize_memory
3845 static inline
3846 struct page *rmqueue(struct zone *preferred_zone,
3847 			struct zone *zone, unsigned int order,
3848 			gfp_t gfp_flags, unsigned int alloc_flags,
3849 			int migratetype)
3850 {
3851 	struct page *page;
3852 
3853 	/*
3854 	 * We most definitely don't want callers attempting to
3855 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3856 	 */
3857 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3858 
3859 	if (likely(pcp_allowed_order(order))) {
3860 		/*
3861 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3862 		 * we need to skip it when CMA area isn't allowed.
3863 		 */
3864 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3865 				migratetype != MIGRATE_MOVABLE) {
3866 			page = rmqueue_pcplist(preferred_zone, zone, order,
3867 					migratetype, alloc_flags);
3868 			if (likely(page))
3869 				goto out;
3870 		}
3871 	}
3872 
3873 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3874 							migratetype);
3875 
3876 out:
3877 	/* Separate test+clear to avoid unnecessary atomics */
3878 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3879 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3880 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3881 	}
3882 
3883 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3884 	return page;
3885 }
3886 
3887 #ifdef CONFIG_FAIL_PAGE_ALLOC
3888 
3889 static struct {
3890 	struct fault_attr attr;
3891 
3892 	bool ignore_gfp_highmem;
3893 	bool ignore_gfp_reclaim;
3894 	u32 min_order;
3895 } fail_page_alloc = {
3896 	.attr = FAULT_ATTR_INITIALIZER,
3897 	.ignore_gfp_reclaim = true,
3898 	.ignore_gfp_highmem = true,
3899 	.min_order = 1,
3900 };
3901 
3902 static int __init setup_fail_page_alloc(char *str)
3903 {
3904 	return setup_fault_attr(&fail_page_alloc.attr, str);
3905 }
3906 __setup("fail_page_alloc=", setup_fail_page_alloc);
3907 
3908 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3909 {
3910 	int flags = 0;
3911 
3912 	if (order < fail_page_alloc.min_order)
3913 		return false;
3914 	if (gfp_mask & __GFP_NOFAIL)
3915 		return false;
3916 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3917 		return false;
3918 	if (fail_page_alloc.ignore_gfp_reclaim &&
3919 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3920 		return false;
3921 
3922 	/* See comment in __should_failslab() */
3923 	if (gfp_mask & __GFP_NOWARN)
3924 		flags |= FAULT_NOWARN;
3925 
3926 	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3927 }
3928 
3929 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3930 
3931 static int __init fail_page_alloc_debugfs(void)
3932 {
3933 	umode_t mode = S_IFREG | 0600;
3934 	struct dentry *dir;
3935 
3936 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3937 					&fail_page_alloc.attr);
3938 
3939 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3940 			    &fail_page_alloc.ignore_gfp_reclaim);
3941 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3942 			    &fail_page_alloc.ignore_gfp_highmem);
3943 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3944 
3945 	return 0;
3946 }
3947 
3948 late_initcall(fail_page_alloc_debugfs);
3949 
3950 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3951 
3952 #else /* CONFIG_FAIL_PAGE_ALLOC */
3953 
3954 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3955 {
3956 	return false;
3957 }
3958 
3959 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3960 
3961 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3962 {
3963 	return __should_fail_alloc_page(gfp_mask, order);
3964 }
3965 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3966 
3967 static inline long __zone_watermark_unusable_free(struct zone *z,
3968 				unsigned int order, unsigned int alloc_flags)
3969 {
3970 	long unusable_free = (1 << order) - 1;
3971 
3972 	/*
3973 	 * If the caller does not have rights to reserves below the min
3974 	 * watermark then subtract the high-atomic reserves. This will
3975 	 * over-estimate the size of the atomic reserve but it avoids a search.
3976 	 */
3977 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3978 		unusable_free += z->nr_reserved_highatomic;
3979 
3980 #ifdef CONFIG_CMA
3981 	/* If allocation can't use CMA areas don't use free CMA pages */
3982 	if (!(alloc_flags & ALLOC_CMA))
3983 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3984 #endif
3985 
3986 	return unusable_free;
3987 }
3988 
3989 /*
3990  * Return true if free base pages are above 'mark'. For high-order checks it
3991  * will return true of the order-0 watermark is reached and there is at least
3992  * one free page of a suitable size. Checking now avoids taking the zone lock
3993  * to check in the allocation paths if no pages are free.
3994  */
3995 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3996 			 int highest_zoneidx, unsigned int alloc_flags,
3997 			 long free_pages)
3998 {
3999 	long min = mark;
4000 	int o;
4001 
4002 	/* free_pages may go negative - that's OK */
4003 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4004 
4005 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
4006 		/*
4007 		 * __GFP_HIGH allows access to 50% of the min reserve as well
4008 		 * as OOM.
4009 		 */
4010 		if (alloc_flags & ALLOC_MIN_RESERVE) {
4011 			min -= min / 2;
4012 
4013 			/*
4014 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
4015 			 * access more reserves than just __GFP_HIGH. Other
4016 			 * non-blocking allocations requests such as GFP_NOWAIT
4017 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
4018 			 * access to the min reserve.
4019 			 */
4020 			if (alloc_flags & ALLOC_NON_BLOCK)
4021 				min -= min / 4;
4022 		}
4023 
4024 		/*
4025 		 * OOM victims can try even harder than the normal reserve
4026 		 * users on the grounds that it's definitely going to be in
4027 		 * the exit path shortly and free memory. Any allocation it
4028 		 * makes during the free path will be small and short-lived.
4029 		 */
4030 		if (alloc_flags & ALLOC_OOM)
4031 			min -= min / 2;
4032 	}
4033 
4034 	/*
4035 	 * Check watermarks for an order-0 allocation request. If these
4036 	 * are not met, then a high-order request also cannot go ahead
4037 	 * even if a suitable page happened to be free.
4038 	 */
4039 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4040 		return false;
4041 
4042 	/* If this is an order-0 request then the watermark is fine */
4043 	if (!order)
4044 		return true;
4045 
4046 	/* For a high-order request, check at least one suitable page is free */
4047 	for (o = order; o < MAX_ORDER; o++) {
4048 		struct free_area *area = &z->free_area[o];
4049 		int mt;
4050 
4051 		if (!area->nr_free)
4052 			continue;
4053 
4054 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4055 			if (!free_area_empty(area, mt))
4056 				return true;
4057 		}
4058 
4059 #ifdef CONFIG_CMA
4060 		if ((alloc_flags & ALLOC_CMA) &&
4061 		    !free_area_empty(area, MIGRATE_CMA)) {
4062 			return true;
4063 		}
4064 #endif
4065 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
4066 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
4067 			return true;
4068 		}
4069 	}
4070 	return false;
4071 }
4072 
4073 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4074 		      int highest_zoneidx, unsigned int alloc_flags)
4075 {
4076 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4077 					zone_page_state(z, NR_FREE_PAGES));
4078 }
4079 
4080 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4081 				unsigned long mark, int highest_zoneidx,
4082 				unsigned int alloc_flags, gfp_t gfp_mask)
4083 {
4084 	long free_pages;
4085 
4086 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4087 
4088 	/*
4089 	 * Fast check for order-0 only. If this fails then the reserves
4090 	 * need to be calculated.
4091 	 */
4092 	if (!order) {
4093 		long usable_free;
4094 		long reserved;
4095 
4096 		usable_free = free_pages;
4097 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4098 
4099 		/* reserved may over estimate high-atomic reserves. */
4100 		usable_free -= min(usable_free, reserved);
4101 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4102 			return true;
4103 	}
4104 
4105 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4106 					free_pages))
4107 		return true;
4108 
4109 	/*
4110 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
4111 	 * when checking the min watermark. The min watermark is the
4112 	 * point where boosting is ignored so that kswapd is woken up
4113 	 * when below the low watermark.
4114 	 */
4115 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
4116 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4117 		mark = z->_watermark[WMARK_MIN];
4118 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4119 					alloc_flags, free_pages);
4120 	}
4121 
4122 	return false;
4123 }
4124 
4125 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4126 			unsigned long mark, int highest_zoneidx)
4127 {
4128 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4129 
4130 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4131 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4132 
4133 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4134 								free_pages);
4135 }
4136 
4137 #ifdef CONFIG_NUMA
4138 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4139 
4140 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4141 {
4142 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4143 				node_reclaim_distance;
4144 }
4145 #else	/* CONFIG_NUMA */
4146 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4147 {
4148 	return true;
4149 }
4150 #endif	/* CONFIG_NUMA */
4151 
4152 /*
4153  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4154  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4155  * premature use of a lower zone may cause lowmem pressure problems that
4156  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4157  * probably too small. It only makes sense to spread allocations to avoid
4158  * fragmentation between the Normal and DMA32 zones.
4159  */
4160 static inline unsigned int
4161 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4162 {
4163 	unsigned int alloc_flags;
4164 
4165 	/*
4166 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4167 	 * to save a branch.
4168 	 */
4169 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4170 
4171 #ifdef CONFIG_ZONE_DMA32
4172 	if (!zone)
4173 		return alloc_flags;
4174 
4175 	if (zone_idx(zone) != ZONE_NORMAL)
4176 		return alloc_flags;
4177 
4178 	/*
4179 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4180 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4181 	 * on UMA that if Normal is populated then so is DMA32.
4182 	 */
4183 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4184 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4185 		return alloc_flags;
4186 
4187 	alloc_flags |= ALLOC_NOFRAGMENT;
4188 #endif /* CONFIG_ZONE_DMA32 */
4189 	return alloc_flags;
4190 }
4191 
4192 /* Must be called after current_gfp_context() which can change gfp_mask */
4193 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4194 						  unsigned int alloc_flags)
4195 {
4196 #ifdef CONFIG_CMA
4197 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4198 		alloc_flags |= ALLOC_CMA;
4199 #endif
4200 	return alloc_flags;
4201 }
4202 
4203 /*
4204  * get_page_from_freelist goes through the zonelist trying to allocate
4205  * a page.
4206  */
4207 static struct page *
4208 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4209 						const struct alloc_context *ac)
4210 {
4211 	struct zoneref *z;
4212 	struct zone *zone;
4213 	struct pglist_data *last_pgdat = NULL;
4214 	bool last_pgdat_dirty_ok = false;
4215 	bool no_fallback;
4216 
4217 retry:
4218 	/*
4219 	 * Scan zonelist, looking for a zone with enough free.
4220 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4221 	 */
4222 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4223 	z = ac->preferred_zoneref;
4224 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4225 					ac->nodemask) {
4226 		struct page *page;
4227 		unsigned long mark;
4228 
4229 		if (cpusets_enabled() &&
4230 			(alloc_flags & ALLOC_CPUSET) &&
4231 			!__cpuset_zone_allowed(zone, gfp_mask))
4232 				continue;
4233 		/*
4234 		 * When allocating a page cache page for writing, we
4235 		 * want to get it from a node that is within its dirty
4236 		 * limit, such that no single node holds more than its
4237 		 * proportional share of globally allowed dirty pages.
4238 		 * The dirty limits take into account the node's
4239 		 * lowmem reserves and high watermark so that kswapd
4240 		 * should be able to balance it without having to
4241 		 * write pages from its LRU list.
4242 		 *
4243 		 * XXX: For now, allow allocations to potentially
4244 		 * exceed the per-node dirty limit in the slowpath
4245 		 * (spread_dirty_pages unset) before going into reclaim,
4246 		 * which is important when on a NUMA setup the allowed
4247 		 * nodes are together not big enough to reach the
4248 		 * global limit.  The proper fix for these situations
4249 		 * will require awareness of nodes in the
4250 		 * dirty-throttling and the flusher threads.
4251 		 */
4252 		if (ac->spread_dirty_pages) {
4253 			if (last_pgdat != zone->zone_pgdat) {
4254 				last_pgdat = zone->zone_pgdat;
4255 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4256 			}
4257 
4258 			if (!last_pgdat_dirty_ok)
4259 				continue;
4260 		}
4261 
4262 		if (no_fallback && nr_online_nodes > 1 &&
4263 		    zone != ac->preferred_zoneref->zone) {
4264 			int local_nid;
4265 
4266 			/*
4267 			 * If moving to a remote node, retry but allow
4268 			 * fragmenting fallbacks. Locality is more important
4269 			 * than fragmentation avoidance.
4270 			 */
4271 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4272 			if (zone_to_nid(zone) != local_nid) {
4273 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4274 				goto retry;
4275 			}
4276 		}
4277 
4278 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4279 		if (!zone_watermark_fast(zone, order, mark,
4280 				       ac->highest_zoneidx, alloc_flags,
4281 				       gfp_mask)) {
4282 			int ret;
4283 
4284 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4285 			/*
4286 			 * Watermark failed for this zone, but see if we can
4287 			 * grow this zone if it contains deferred pages.
4288 			 */
4289 			if (deferred_pages_enabled()) {
4290 				if (_deferred_grow_zone(zone, order))
4291 					goto try_this_zone;
4292 			}
4293 #endif
4294 			/* Checked here to keep the fast path fast */
4295 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4296 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4297 				goto try_this_zone;
4298 
4299 			if (!node_reclaim_enabled() ||
4300 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4301 				continue;
4302 
4303 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4304 			switch (ret) {
4305 			case NODE_RECLAIM_NOSCAN:
4306 				/* did not scan */
4307 				continue;
4308 			case NODE_RECLAIM_FULL:
4309 				/* scanned but unreclaimable */
4310 				continue;
4311 			default:
4312 				/* did we reclaim enough */
4313 				if (zone_watermark_ok(zone, order, mark,
4314 					ac->highest_zoneidx, alloc_flags))
4315 					goto try_this_zone;
4316 
4317 				continue;
4318 			}
4319 		}
4320 
4321 try_this_zone:
4322 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4323 				gfp_mask, alloc_flags, ac->migratetype);
4324 		if (page) {
4325 			prep_new_page(page, order, gfp_mask, alloc_flags);
4326 
4327 			/*
4328 			 * If this is a high-order atomic allocation then check
4329 			 * if the pageblock should be reserved for the future
4330 			 */
4331 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
4332 				reserve_highatomic_pageblock(page, zone, order);
4333 
4334 			return page;
4335 		} else {
4336 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4337 			/* Try again if zone has deferred pages */
4338 			if (deferred_pages_enabled()) {
4339 				if (_deferred_grow_zone(zone, order))
4340 					goto try_this_zone;
4341 			}
4342 #endif
4343 		}
4344 	}
4345 
4346 	/*
4347 	 * It's possible on a UMA machine to get through all zones that are
4348 	 * fragmented. If avoiding fragmentation, reset and try again.
4349 	 */
4350 	if (no_fallback) {
4351 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4352 		goto retry;
4353 	}
4354 
4355 	return NULL;
4356 }
4357 
4358 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4359 {
4360 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4361 
4362 	/*
4363 	 * This documents exceptions given to allocations in certain
4364 	 * contexts that are allowed to allocate outside current's set
4365 	 * of allowed nodes.
4366 	 */
4367 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4368 		if (tsk_is_oom_victim(current) ||
4369 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4370 			filter &= ~SHOW_MEM_FILTER_NODES;
4371 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4372 		filter &= ~SHOW_MEM_FILTER_NODES;
4373 
4374 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4375 }
4376 
4377 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4378 {
4379 	struct va_format vaf;
4380 	va_list args;
4381 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4382 
4383 	if ((gfp_mask & __GFP_NOWARN) ||
4384 	     !__ratelimit(&nopage_rs) ||
4385 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4386 		return;
4387 
4388 	va_start(args, fmt);
4389 	vaf.fmt = fmt;
4390 	vaf.va = &args;
4391 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4392 			current->comm, &vaf, gfp_mask, &gfp_mask,
4393 			nodemask_pr_args(nodemask));
4394 	va_end(args);
4395 
4396 	cpuset_print_current_mems_allowed();
4397 	pr_cont("\n");
4398 	dump_stack();
4399 	warn_alloc_show_mem(gfp_mask, nodemask);
4400 }
4401 
4402 static inline struct page *
4403 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4404 			      unsigned int alloc_flags,
4405 			      const struct alloc_context *ac)
4406 {
4407 	struct page *page;
4408 
4409 	page = get_page_from_freelist(gfp_mask, order,
4410 			alloc_flags|ALLOC_CPUSET, ac);
4411 	/*
4412 	 * fallback to ignore cpuset restriction if our nodes
4413 	 * are depleted
4414 	 */
4415 	if (!page)
4416 		page = get_page_from_freelist(gfp_mask, order,
4417 				alloc_flags, ac);
4418 
4419 	return page;
4420 }
4421 
4422 static inline struct page *
4423 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4424 	const struct alloc_context *ac, unsigned long *did_some_progress)
4425 {
4426 	struct oom_control oc = {
4427 		.zonelist = ac->zonelist,
4428 		.nodemask = ac->nodemask,
4429 		.memcg = NULL,
4430 		.gfp_mask = gfp_mask,
4431 		.order = order,
4432 	};
4433 	struct page *page;
4434 
4435 	*did_some_progress = 0;
4436 
4437 	/*
4438 	 * Acquire the oom lock.  If that fails, somebody else is
4439 	 * making progress for us.
4440 	 */
4441 	if (!mutex_trylock(&oom_lock)) {
4442 		*did_some_progress = 1;
4443 		schedule_timeout_uninterruptible(1);
4444 		return NULL;
4445 	}
4446 
4447 	/*
4448 	 * Go through the zonelist yet one more time, keep very high watermark
4449 	 * here, this is only to catch a parallel oom killing, we must fail if
4450 	 * we're still under heavy pressure. But make sure that this reclaim
4451 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4452 	 * allocation which will never fail due to oom_lock already held.
4453 	 */
4454 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4455 				      ~__GFP_DIRECT_RECLAIM, order,
4456 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4457 	if (page)
4458 		goto out;
4459 
4460 	/* Coredumps can quickly deplete all memory reserves */
4461 	if (current->flags & PF_DUMPCORE)
4462 		goto out;
4463 	/* The OOM killer will not help higher order allocs */
4464 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4465 		goto out;
4466 	/*
4467 	 * We have already exhausted all our reclaim opportunities without any
4468 	 * success so it is time to admit defeat. We will skip the OOM killer
4469 	 * because it is very likely that the caller has a more reasonable
4470 	 * fallback than shooting a random task.
4471 	 *
4472 	 * The OOM killer may not free memory on a specific node.
4473 	 */
4474 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4475 		goto out;
4476 	/* The OOM killer does not needlessly kill tasks for lowmem */
4477 	if (ac->highest_zoneidx < ZONE_NORMAL)
4478 		goto out;
4479 	if (pm_suspended_storage())
4480 		goto out;
4481 	/*
4482 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4483 	 * other request to make a forward progress.
4484 	 * We are in an unfortunate situation where out_of_memory cannot
4485 	 * do much for this context but let's try it to at least get
4486 	 * access to memory reserved if the current task is killed (see
4487 	 * out_of_memory). Once filesystems are ready to handle allocation
4488 	 * failures more gracefully we should just bail out here.
4489 	 */
4490 
4491 	/* Exhausted what can be done so it's blame time */
4492 	if (out_of_memory(&oc) ||
4493 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4494 		*did_some_progress = 1;
4495 
4496 		/*
4497 		 * Help non-failing allocations by giving them access to memory
4498 		 * reserves
4499 		 */
4500 		if (gfp_mask & __GFP_NOFAIL)
4501 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4502 					ALLOC_NO_WATERMARKS, ac);
4503 	}
4504 out:
4505 	mutex_unlock(&oom_lock);
4506 	return page;
4507 }
4508 
4509 /*
4510  * Maximum number of compaction retries with a progress before OOM
4511  * killer is consider as the only way to move forward.
4512  */
4513 #define MAX_COMPACT_RETRIES 16
4514 
4515 #ifdef CONFIG_COMPACTION
4516 /* Try memory compaction for high-order allocations before reclaim */
4517 static struct page *
4518 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4519 		unsigned int alloc_flags, const struct alloc_context *ac,
4520 		enum compact_priority prio, enum compact_result *compact_result)
4521 {
4522 	struct page *page = NULL;
4523 	unsigned long pflags;
4524 	unsigned int noreclaim_flag;
4525 
4526 	if (!order)
4527 		return NULL;
4528 
4529 	psi_memstall_enter(&pflags);
4530 	delayacct_compact_start();
4531 	noreclaim_flag = memalloc_noreclaim_save();
4532 
4533 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4534 								prio, &page);
4535 
4536 	memalloc_noreclaim_restore(noreclaim_flag);
4537 	psi_memstall_leave(&pflags);
4538 	delayacct_compact_end();
4539 
4540 	if (*compact_result == COMPACT_SKIPPED)
4541 		return NULL;
4542 	/*
4543 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4544 	 * count a compaction stall
4545 	 */
4546 	count_vm_event(COMPACTSTALL);
4547 
4548 	/* Prep a captured page if available */
4549 	if (page)
4550 		prep_new_page(page, order, gfp_mask, alloc_flags);
4551 
4552 	/* Try get a page from the freelist if available */
4553 	if (!page)
4554 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4555 
4556 	if (page) {
4557 		struct zone *zone = page_zone(page);
4558 
4559 		zone->compact_blockskip_flush = false;
4560 		compaction_defer_reset(zone, order, true);
4561 		count_vm_event(COMPACTSUCCESS);
4562 		return page;
4563 	}
4564 
4565 	/*
4566 	 * It's bad if compaction run occurs and fails. The most likely reason
4567 	 * is that pages exist, but not enough to satisfy watermarks.
4568 	 */
4569 	count_vm_event(COMPACTFAIL);
4570 
4571 	cond_resched();
4572 
4573 	return NULL;
4574 }
4575 
4576 static inline bool
4577 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4578 		     enum compact_result compact_result,
4579 		     enum compact_priority *compact_priority,
4580 		     int *compaction_retries)
4581 {
4582 	int max_retries = MAX_COMPACT_RETRIES;
4583 	int min_priority;
4584 	bool ret = false;
4585 	int retries = *compaction_retries;
4586 	enum compact_priority priority = *compact_priority;
4587 
4588 	if (!order)
4589 		return false;
4590 
4591 	if (fatal_signal_pending(current))
4592 		return false;
4593 
4594 	if (compaction_made_progress(compact_result))
4595 		(*compaction_retries)++;
4596 
4597 	/*
4598 	 * compaction considers all the zone as desperately out of memory
4599 	 * so it doesn't really make much sense to retry except when the
4600 	 * failure could be caused by insufficient priority
4601 	 */
4602 	if (compaction_failed(compact_result))
4603 		goto check_priority;
4604 
4605 	/*
4606 	 * compaction was skipped because there are not enough order-0 pages
4607 	 * to work with, so we retry only if it looks like reclaim can help.
4608 	 */
4609 	if (compaction_needs_reclaim(compact_result)) {
4610 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4611 		goto out;
4612 	}
4613 
4614 	/*
4615 	 * make sure the compaction wasn't deferred or didn't bail out early
4616 	 * due to locks contention before we declare that we should give up.
4617 	 * But the next retry should use a higher priority if allowed, so
4618 	 * we don't just keep bailing out endlessly.
4619 	 */
4620 	if (compaction_withdrawn(compact_result)) {
4621 		goto check_priority;
4622 	}
4623 
4624 	/*
4625 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4626 	 * costly ones because they are de facto nofail and invoke OOM
4627 	 * killer to move on while costly can fail and users are ready
4628 	 * to cope with that. 1/4 retries is rather arbitrary but we
4629 	 * would need much more detailed feedback from compaction to
4630 	 * make a better decision.
4631 	 */
4632 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4633 		max_retries /= 4;
4634 	if (*compaction_retries <= max_retries) {
4635 		ret = true;
4636 		goto out;
4637 	}
4638 
4639 	/*
4640 	 * Make sure there are attempts at the highest priority if we exhausted
4641 	 * all retries or failed at the lower priorities.
4642 	 */
4643 check_priority:
4644 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4645 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4646 
4647 	if (*compact_priority > min_priority) {
4648 		(*compact_priority)--;
4649 		*compaction_retries = 0;
4650 		ret = true;
4651 	}
4652 out:
4653 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4654 	return ret;
4655 }
4656 #else
4657 static inline struct page *
4658 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4659 		unsigned int alloc_flags, const struct alloc_context *ac,
4660 		enum compact_priority prio, enum compact_result *compact_result)
4661 {
4662 	*compact_result = COMPACT_SKIPPED;
4663 	return NULL;
4664 }
4665 
4666 static inline bool
4667 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4668 		     enum compact_result compact_result,
4669 		     enum compact_priority *compact_priority,
4670 		     int *compaction_retries)
4671 {
4672 	struct zone *zone;
4673 	struct zoneref *z;
4674 
4675 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4676 		return false;
4677 
4678 	/*
4679 	 * There are setups with compaction disabled which would prefer to loop
4680 	 * inside the allocator rather than hit the oom killer prematurely.
4681 	 * Let's give them a good hope and keep retrying while the order-0
4682 	 * watermarks are OK.
4683 	 */
4684 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4685 				ac->highest_zoneidx, ac->nodemask) {
4686 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4687 					ac->highest_zoneidx, alloc_flags))
4688 			return true;
4689 	}
4690 	return false;
4691 }
4692 #endif /* CONFIG_COMPACTION */
4693 
4694 #ifdef CONFIG_LOCKDEP
4695 static struct lockdep_map __fs_reclaim_map =
4696 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4697 
4698 static bool __need_reclaim(gfp_t gfp_mask)
4699 {
4700 	/* no reclaim without waiting on it */
4701 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4702 		return false;
4703 
4704 	/* this guy won't enter reclaim */
4705 	if (current->flags & PF_MEMALLOC)
4706 		return false;
4707 
4708 	if (gfp_mask & __GFP_NOLOCKDEP)
4709 		return false;
4710 
4711 	return true;
4712 }
4713 
4714 void __fs_reclaim_acquire(unsigned long ip)
4715 {
4716 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4717 }
4718 
4719 void __fs_reclaim_release(unsigned long ip)
4720 {
4721 	lock_release(&__fs_reclaim_map, ip);
4722 }
4723 
4724 void fs_reclaim_acquire(gfp_t gfp_mask)
4725 {
4726 	gfp_mask = current_gfp_context(gfp_mask);
4727 
4728 	if (__need_reclaim(gfp_mask)) {
4729 		if (gfp_mask & __GFP_FS)
4730 			__fs_reclaim_acquire(_RET_IP_);
4731 
4732 #ifdef CONFIG_MMU_NOTIFIER
4733 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4734 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4735 #endif
4736 
4737 	}
4738 }
4739 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4740 
4741 void fs_reclaim_release(gfp_t gfp_mask)
4742 {
4743 	gfp_mask = current_gfp_context(gfp_mask);
4744 
4745 	if (__need_reclaim(gfp_mask)) {
4746 		if (gfp_mask & __GFP_FS)
4747 			__fs_reclaim_release(_RET_IP_);
4748 	}
4749 }
4750 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4751 #endif
4752 
4753 /*
4754  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4755  * have been rebuilt so allocation retries. Reader side does not lock and
4756  * retries the allocation if zonelist changes. Writer side is protected by the
4757  * embedded spin_lock.
4758  */
4759 static DEFINE_SEQLOCK(zonelist_update_seq);
4760 
4761 static unsigned int zonelist_iter_begin(void)
4762 {
4763 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4764 		return read_seqbegin(&zonelist_update_seq);
4765 
4766 	return 0;
4767 }
4768 
4769 static unsigned int check_retry_zonelist(unsigned int seq)
4770 {
4771 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4772 		return read_seqretry(&zonelist_update_seq, seq);
4773 
4774 	return seq;
4775 }
4776 
4777 /* Perform direct synchronous page reclaim */
4778 static unsigned long
4779 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4780 					const struct alloc_context *ac)
4781 {
4782 	unsigned int noreclaim_flag;
4783 	unsigned long progress;
4784 
4785 	cond_resched();
4786 
4787 	/* We now go into synchronous reclaim */
4788 	cpuset_memory_pressure_bump();
4789 	fs_reclaim_acquire(gfp_mask);
4790 	noreclaim_flag = memalloc_noreclaim_save();
4791 
4792 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4793 								ac->nodemask);
4794 
4795 	memalloc_noreclaim_restore(noreclaim_flag);
4796 	fs_reclaim_release(gfp_mask);
4797 
4798 	cond_resched();
4799 
4800 	return progress;
4801 }
4802 
4803 /* The really slow allocator path where we enter direct reclaim */
4804 static inline struct page *
4805 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4806 		unsigned int alloc_flags, const struct alloc_context *ac,
4807 		unsigned long *did_some_progress)
4808 {
4809 	struct page *page = NULL;
4810 	unsigned long pflags;
4811 	bool drained = false;
4812 
4813 	psi_memstall_enter(&pflags);
4814 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4815 	if (unlikely(!(*did_some_progress)))
4816 		goto out;
4817 
4818 retry:
4819 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4820 
4821 	/*
4822 	 * If an allocation failed after direct reclaim, it could be because
4823 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4824 	 * Shrink them and try again
4825 	 */
4826 	if (!page && !drained) {
4827 		unreserve_highatomic_pageblock(ac, false);
4828 		drain_all_pages(NULL);
4829 		drained = true;
4830 		goto retry;
4831 	}
4832 out:
4833 	psi_memstall_leave(&pflags);
4834 
4835 	return page;
4836 }
4837 
4838 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4839 			     const struct alloc_context *ac)
4840 {
4841 	struct zoneref *z;
4842 	struct zone *zone;
4843 	pg_data_t *last_pgdat = NULL;
4844 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4845 
4846 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4847 					ac->nodemask) {
4848 		if (!managed_zone(zone))
4849 			continue;
4850 		if (last_pgdat != zone->zone_pgdat) {
4851 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4852 			last_pgdat = zone->zone_pgdat;
4853 		}
4854 	}
4855 }
4856 
4857 static inline unsigned int
4858 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4859 {
4860 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4861 
4862 	/*
4863 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4864 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4865 	 * to save two branches.
4866 	 */
4867 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4868 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4869 
4870 	/*
4871 	 * The caller may dip into page reserves a bit more if the caller
4872 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4873 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4874 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4875 	 */
4876 	alloc_flags |= (__force int)
4877 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4878 
4879 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4880 		/*
4881 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4882 		 * if it can't schedule.
4883 		 */
4884 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4885 			alloc_flags |= ALLOC_NON_BLOCK;
4886 
4887 			if (order > 0)
4888 				alloc_flags |= ALLOC_HIGHATOMIC;
4889 		}
4890 
4891 		/*
4892 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4893 		 * GFP_ATOMIC) rather than fail, see the comment for
4894 		 * __cpuset_node_allowed().
4895 		 */
4896 		if (alloc_flags & ALLOC_MIN_RESERVE)
4897 			alloc_flags &= ~ALLOC_CPUSET;
4898 	} else if (unlikely(rt_task(current)) && in_task())
4899 		alloc_flags |= ALLOC_MIN_RESERVE;
4900 
4901 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4902 
4903 	return alloc_flags;
4904 }
4905 
4906 static bool oom_reserves_allowed(struct task_struct *tsk)
4907 {
4908 	if (!tsk_is_oom_victim(tsk))
4909 		return false;
4910 
4911 	/*
4912 	 * !MMU doesn't have oom reaper so give access to memory reserves
4913 	 * only to the thread with TIF_MEMDIE set
4914 	 */
4915 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4916 		return false;
4917 
4918 	return true;
4919 }
4920 
4921 /*
4922  * Distinguish requests which really need access to full memory
4923  * reserves from oom victims which can live with a portion of it
4924  */
4925 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4926 {
4927 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4928 		return 0;
4929 	if (gfp_mask & __GFP_MEMALLOC)
4930 		return ALLOC_NO_WATERMARKS;
4931 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4932 		return ALLOC_NO_WATERMARKS;
4933 	if (!in_interrupt()) {
4934 		if (current->flags & PF_MEMALLOC)
4935 			return ALLOC_NO_WATERMARKS;
4936 		else if (oom_reserves_allowed(current))
4937 			return ALLOC_OOM;
4938 	}
4939 
4940 	return 0;
4941 }
4942 
4943 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4944 {
4945 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4946 }
4947 
4948 /*
4949  * Checks whether it makes sense to retry the reclaim to make a forward progress
4950  * for the given allocation request.
4951  *
4952  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4953  * without success, or when we couldn't even meet the watermark if we
4954  * reclaimed all remaining pages on the LRU lists.
4955  *
4956  * Returns true if a retry is viable or false to enter the oom path.
4957  */
4958 static inline bool
4959 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4960 		     struct alloc_context *ac, int alloc_flags,
4961 		     bool did_some_progress, int *no_progress_loops)
4962 {
4963 	struct zone *zone;
4964 	struct zoneref *z;
4965 	bool ret = false;
4966 
4967 	/*
4968 	 * Costly allocations might have made a progress but this doesn't mean
4969 	 * their order will become available due to high fragmentation so
4970 	 * always increment the no progress counter for them
4971 	 */
4972 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4973 		*no_progress_loops = 0;
4974 	else
4975 		(*no_progress_loops)++;
4976 
4977 	/*
4978 	 * Make sure we converge to OOM if we cannot make any progress
4979 	 * several times in the row.
4980 	 */
4981 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4982 		/* Before OOM, exhaust highatomic_reserve */
4983 		return unreserve_highatomic_pageblock(ac, true);
4984 	}
4985 
4986 	/*
4987 	 * Keep reclaiming pages while there is a chance this will lead
4988 	 * somewhere.  If none of the target zones can satisfy our allocation
4989 	 * request even if all reclaimable pages are considered then we are
4990 	 * screwed and have to go OOM.
4991 	 */
4992 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4993 				ac->highest_zoneidx, ac->nodemask) {
4994 		unsigned long available;
4995 		unsigned long reclaimable;
4996 		unsigned long min_wmark = min_wmark_pages(zone);
4997 		bool wmark;
4998 
4999 		available = reclaimable = zone_reclaimable_pages(zone);
5000 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
5001 
5002 		/*
5003 		 * Would the allocation succeed if we reclaimed all
5004 		 * reclaimable pages?
5005 		 */
5006 		wmark = __zone_watermark_ok(zone, order, min_wmark,
5007 				ac->highest_zoneidx, alloc_flags, available);
5008 		trace_reclaim_retry_zone(z, order, reclaimable,
5009 				available, min_wmark, *no_progress_loops, wmark);
5010 		if (wmark) {
5011 			ret = true;
5012 			break;
5013 		}
5014 	}
5015 
5016 	/*
5017 	 * Memory allocation/reclaim might be called from a WQ context and the
5018 	 * current implementation of the WQ concurrency control doesn't
5019 	 * recognize that a particular WQ is congested if the worker thread is
5020 	 * looping without ever sleeping. Therefore we have to do a short sleep
5021 	 * here rather than calling cond_resched().
5022 	 */
5023 	if (current->flags & PF_WQ_WORKER)
5024 		schedule_timeout_uninterruptible(1);
5025 	else
5026 		cond_resched();
5027 	return ret;
5028 }
5029 
5030 static inline bool
5031 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5032 {
5033 	/*
5034 	 * It's possible that cpuset's mems_allowed and the nodemask from
5035 	 * mempolicy don't intersect. This should be normally dealt with by
5036 	 * policy_nodemask(), but it's possible to race with cpuset update in
5037 	 * such a way the check therein was true, and then it became false
5038 	 * before we got our cpuset_mems_cookie here.
5039 	 * This assumes that for all allocations, ac->nodemask can come only
5040 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5041 	 * when it does not intersect with the cpuset restrictions) or the
5042 	 * caller can deal with a violated nodemask.
5043 	 */
5044 	if (cpusets_enabled() && ac->nodemask &&
5045 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5046 		ac->nodemask = NULL;
5047 		return true;
5048 	}
5049 
5050 	/*
5051 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5052 	 * possible to race with parallel threads in such a way that our
5053 	 * allocation can fail while the mask is being updated. If we are about
5054 	 * to fail, check if the cpuset changed during allocation and if so,
5055 	 * retry.
5056 	 */
5057 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5058 		return true;
5059 
5060 	return false;
5061 }
5062 
5063 static inline struct page *
5064 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5065 						struct alloc_context *ac)
5066 {
5067 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5068 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5069 	struct page *page = NULL;
5070 	unsigned int alloc_flags;
5071 	unsigned long did_some_progress;
5072 	enum compact_priority compact_priority;
5073 	enum compact_result compact_result;
5074 	int compaction_retries;
5075 	int no_progress_loops;
5076 	unsigned int cpuset_mems_cookie;
5077 	unsigned int zonelist_iter_cookie;
5078 	int reserve_flags;
5079 
5080 restart:
5081 	compaction_retries = 0;
5082 	no_progress_loops = 0;
5083 	compact_priority = DEF_COMPACT_PRIORITY;
5084 	cpuset_mems_cookie = read_mems_allowed_begin();
5085 	zonelist_iter_cookie = zonelist_iter_begin();
5086 
5087 	/*
5088 	 * The fast path uses conservative alloc_flags to succeed only until
5089 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5090 	 * alloc_flags precisely. So we do that now.
5091 	 */
5092 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
5093 
5094 	/*
5095 	 * We need to recalculate the starting point for the zonelist iterator
5096 	 * because we might have used different nodemask in the fast path, or
5097 	 * there was a cpuset modification and we are retrying - otherwise we
5098 	 * could end up iterating over non-eligible zones endlessly.
5099 	 */
5100 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5101 					ac->highest_zoneidx, ac->nodemask);
5102 	if (!ac->preferred_zoneref->zone)
5103 		goto nopage;
5104 
5105 	/*
5106 	 * Check for insane configurations where the cpuset doesn't contain
5107 	 * any suitable zone to satisfy the request - e.g. non-movable
5108 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5109 	 */
5110 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5111 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5112 					ac->highest_zoneidx,
5113 					&cpuset_current_mems_allowed);
5114 		if (!z->zone)
5115 			goto nopage;
5116 	}
5117 
5118 	if (alloc_flags & ALLOC_KSWAPD)
5119 		wake_all_kswapds(order, gfp_mask, ac);
5120 
5121 	/*
5122 	 * The adjusted alloc_flags might result in immediate success, so try
5123 	 * that first
5124 	 */
5125 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5126 	if (page)
5127 		goto got_pg;
5128 
5129 	/*
5130 	 * For costly allocations, try direct compaction first, as it's likely
5131 	 * that we have enough base pages and don't need to reclaim. For non-
5132 	 * movable high-order allocations, do that as well, as compaction will
5133 	 * try prevent permanent fragmentation by migrating from blocks of the
5134 	 * same migratetype.
5135 	 * Don't try this for allocations that are allowed to ignore
5136 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5137 	 */
5138 	if (can_direct_reclaim &&
5139 			(costly_order ||
5140 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5141 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5142 		page = __alloc_pages_direct_compact(gfp_mask, order,
5143 						alloc_flags, ac,
5144 						INIT_COMPACT_PRIORITY,
5145 						&compact_result);
5146 		if (page)
5147 			goto got_pg;
5148 
5149 		/*
5150 		 * Checks for costly allocations with __GFP_NORETRY, which
5151 		 * includes some THP page fault allocations
5152 		 */
5153 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5154 			/*
5155 			 * If allocating entire pageblock(s) and compaction
5156 			 * failed because all zones are below low watermarks
5157 			 * or is prohibited because it recently failed at this
5158 			 * order, fail immediately unless the allocator has
5159 			 * requested compaction and reclaim retry.
5160 			 *
5161 			 * Reclaim is
5162 			 *  - potentially very expensive because zones are far
5163 			 *    below their low watermarks or this is part of very
5164 			 *    bursty high order allocations,
5165 			 *  - not guaranteed to help because isolate_freepages()
5166 			 *    may not iterate over freed pages as part of its
5167 			 *    linear scan, and
5168 			 *  - unlikely to make entire pageblocks free on its
5169 			 *    own.
5170 			 */
5171 			if (compact_result == COMPACT_SKIPPED ||
5172 			    compact_result == COMPACT_DEFERRED)
5173 				goto nopage;
5174 
5175 			/*
5176 			 * Looks like reclaim/compaction is worth trying, but
5177 			 * sync compaction could be very expensive, so keep
5178 			 * using async compaction.
5179 			 */
5180 			compact_priority = INIT_COMPACT_PRIORITY;
5181 		}
5182 	}
5183 
5184 retry:
5185 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5186 	if (alloc_flags & ALLOC_KSWAPD)
5187 		wake_all_kswapds(order, gfp_mask, ac);
5188 
5189 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5190 	if (reserve_flags)
5191 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5192 					  (alloc_flags & ALLOC_KSWAPD);
5193 
5194 	/*
5195 	 * Reset the nodemask and zonelist iterators if memory policies can be
5196 	 * ignored. These allocations are high priority and system rather than
5197 	 * user oriented.
5198 	 */
5199 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5200 		ac->nodemask = NULL;
5201 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5202 					ac->highest_zoneidx, ac->nodemask);
5203 	}
5204 
5205 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5206 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5207 	if (page)
5208 		goto got_pg;
5209 
5210 	/* Caller is not willing to reclaim, we can't balance anything */
5211 	if (!can_direct_reclaim)
5212 		goto nopage;
5213 
5214 	/* Avoid recursion of direct reclaim */
5215 	if (current->flags & PF_MEMALLOC)
5216 		goto nopage;
5217 
5218 	/* Try direct reclaim and then allocating */
5219 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5220 							&did_some_progress);
5221 	if (page)
5222 		goto got_pg;
5223 
5224 	/* Try direct compaction and then allocating */
5225 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5226 					compact_priority, &compact_result);
5227 	if (page)
5228 		goto got_pg;
5229 
5230 	/* Do not loop if specifically requested */
5231 	if (gfp_mask & __GFP_NORETRY)
5232 		goto nopage;
5233 
5234 	/*
5235 	 * Do not retry costly high order allocations unless they are
5236 	 * __GFP_RETRY_MAYFAIL
5237 	 */
5238 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5239 		goto nopage;
5240 
5241 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5242 				 did_some_progress > 0, &no_progress_loops))
5243 		goto retry;
5244 
5245 	/*
5246 	 * It doesn't make any sense to retry for the compaction if the order-0
5247 	 * reclaim is not able to make any progress because the current
5248 	 * implementation of the compaction depends on the sufficient amount
5249 	 * of free memory (see __compaction_suitable)
5250 	 */
5251 	if (did_some_progress > 0 &&
5252 			should_compact_retry(ac, order, alloc_flags,
5253 				compact_result, &compact_priority,
5254 				&compaction_retries))
5255 		goto retry;
5256 
5257 
5258 	/*
5259 	 * Deal with possible cpuset update races or zonelist updates to avoid
5260 	 * a unnecessary OOM kill.
5261 	 */
5262 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5263 	    check_retry_zonelist(zonelist_iter_cookie))
5264 		goto restart;
5265 
5266 	/* Reclaim has failed us, start killing things */
5267 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5268 	if (page)
5269 		goto got_pg;
5270 
5271 	/* Avoid allocations with no watermarks from looping endlessly */
5272 	if (tsk_is_oom_victim(current) &&
5273 	    (alloc_flags & ALLOC_OOM ||
5274 	     (gfp_mask & __GFP_NOMEMALLOC)))
5275 		goto nopage;
5276 
5277 	/* Retry as long as the OOM killer is making progress */
5278 	if (did_some_progress) {
5279 		no_progress_loops = 0;
5280 		goto retry;
5281 	}
5282 
5283 nopage:
5284 	/*
5285 	 * Deal with possible cpuset update races or zonelist updates to avoid
5286 	 * a unnecessary OOM kill.
5287 	 */
5288 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5289 	    check_retry_zonelist(zonelist_iter_cookie))
5290 		goto restart;
5291 
5292 	/*
5293 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5294 	 * we always retry
5295 	 */
5296 	if (gfp_mask & __GFP_NOFAIL) {
5297 		/*
5298 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5299 		 * of any new users that actually require GFP_NOWAIT
5300 		 */
5301 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5302 			goto fail;
5303 
5304 		/*
5305 		 * PF_MEMALLOC request from this context is rather bizarre
5306 		 * because we cannot reclaim anything and only can loop waiting
5307 		 * for somebody to do a work for us
5308 		 */
5309 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5310 
5311 		/*
5312 		 * non failing costly orders are a hard requirement which we
5313 		 * are not prepared for much so let's warn about these users
5314 		 * so that we can identify them and convert them to something
5315 		 * else.
5316 		 */
5317 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5318 
5319 		/*
5320 		 * Help non-failing allocations by giving some access to memory
5321 		 * reserves normally used for high priority non-blocking
5322 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
5323 		 * could deplete whole memory reserves which would just make
5324 		 * the situation worse.
5325 		 */
5326 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
5327 		if (page)
5328 			goto got_pg;
5329 
5330 		cond_resched();
5331 		goto retry;
5332 	}
5333 fail:
5334 	warn_alloc(gfp_mask, ac->nodemask,
5335 			"page allocation failure: order:%u", order);
5336 got_pg:
5337 	return page;
5338 }
5339 
5340 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5341 		int preferred_nid, nodemask_t *nodemask,
5342 		struct alloc_context *ac, gfp_t *alloc_gfp,
5343 		unsigned int *alloc_flags)
5344 {
5345 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5346 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5347 	ac->nodemask = nodemask;
5348 	ac->migratetype = gfp_migratetype(gfp_mask);
5349 
5350 	if (cpusets_enabled()) {
5351 		*alloc_gfp |= __GFP_HARDWALL;
5352 		/*
5353 		 * When we are in the interrupt context, it is irrelevant
5354 		 * to the current task context. It means that any node ok.
5355 		 */
5356 		if (in_task() && !ac->nodemask)
5357 			ac->nodemask = &cpuset_current_mems_allowed;
5358 		else
5359 			*alloc_flags |= ALLOC_CPUSET;
5360 	}
5361 
5362 	might_alloc(gfp_mask);
5363 
5364 	if (should_fail_alloc_page(gfp_mask, order))
5365 		return false;
5366 
5367 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5368 
5369 	/* Dirty zone balancing only done in the fast path */
5370 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5371 
5372 	/*
5373 	 * The preferred zone is used for statistics but crucially it is
5374 	 * also used as the starting point for the zonelist iterator. It
5375 	 * may get reset for allocations that ignore memory policies.
5376 	 */
5377 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5378 					ac->highest_zoneidx, ac->nodemask);
5379 
5380 	return true;
5381 }
5382 
5383 /*
5384  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5385  * @gfp: GFP flags for the allocation
5386  * @preferred_nid: The preferred NUMA node ID to allocate from
5387  * @nodemask: Set of nodes to allocate from, may be NULL
5388  * @nr_pages: The number of pages desired on the list or array
5389  * @page_list: Optional list to store the allocated pages
5390  * @page_array: Optional array to store the pages
5391  *
5392  * This is a batched version of the page allocator that attempts to
5393  * allocate nr_pages quickly. Pages are added to page_list if page_list
5394  * is not NULL, otherwise it is assumed that the page_array is valid.
5395  *
5396  * For lists, nr_pages is the number of pages that should be allocated.
5397  *
5398  * For arrays, only NULL elements are populated with pages and nr_pages
5399  * is the maximum number of pages that will be stored in the array.
5400  *
5401  * Returns the number of pages on the list or array.
5402  */
5403 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5404 			nodemask_t *nodemask, int nr_pages,
5405 			struct list_head *page_list,
5406 			struct page **page_array)
5407 {
5408 	struct page *page;
5409 	unsigned long __maybe_unused UP_flags;
5410 	struct zone *zone;
5411 	struct zoneref *z;
5412 	struct per_cpu_pages *pcp;
5413 	struct list_head *pcp_list;
5414 	struct alloc_context ac;
5415 	gfp_t alloc_gfp;
5416 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5417 	int nr_populated = 0, nr_account = 0;
5418 
5419 	/*
5420 	 * Skip populated array elements to determine if any pages need
5421 	 * to be allocated before disabling IRQs.
5422 	 */
5423 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5424 		nr_populated++;
5425 
5426 	/* No pages requested? */
5427 	if (unlikely(nr_pages <= 0))
5428 		goto out;
5429 
5430 	/* Already populated array? */
5431 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5432 		goto out;
5433 
5434 	/* Bulk allocator does not support memcg accounting. */
5435 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5436 		goto failed;
5437 
5438 	/* Use the single page allocator for one page. */
5439 	if (nr_pages - nr_populated == 1)
5440 		goto failed;
5441 
5442 #ifdef CONFIG_PAGE_OWNER
5443 	/*
5444 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5445 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5446 	 * removes much of the performance benefit of bulk allocation so
5447 	 * force the caller to allocate one page at a time as it'll have
5448 	 * similar performance to added complexity to the bulk allocator.
5449 	 */
5450 	if (static_branch_unlikely(&page_owner_inited))
5451 		goto failed;
5452 #endif
5453 
5454 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5455 	gfp &= gfp_allowed_mask;
5456 	alloc_gfp = gfp;
5457 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5458 		goto out;
5459 	gfp = alloc_gfp;
5460 
5461 	/* Find an allowed local zone that meets the low watermark. */
5462 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5463 		unsigned long mark;
5464 
5465 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5466 		    !__cpuset_zone_allowed(zone, gfp)) {
5467 			continue;
5468 		}
5469 
5470 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5471 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5472 			goto failed;
5473 		}
5474 
5475 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5476 		if (zone_watermark_fast(zone, 0,  mark,
5477 				zonelist_zone_idx(ac.preferred_zoneref),
5478 				alloc_flags, gfp)) {
5479 			break;
5480 		}
5481 	}
5482 
5483 	/*
5484 	 * If there are no allowed local zones that meets the watermarks then
5485 	 * try to allocate a single page and reclaim if necessary.
5486 	 */
5487 	if (unlikely(!zone))
5488 		goto failed;
5489 
5490 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5491 	pcp_trylock_prepare(UP_flags);
5492 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5493 	if (!pcp)
5494 		goto failed_irq;
5495 
5496 	/* Attempt the batch allocation */
5497 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5498 	while (nr_populated < nr_pages) {
5499 
5500 		/* Skip existing pages */
5501 		if (page_array && page_array[nr_populated]) {
5502 			nr_populated++;
5503 			continue;
5504 		}
5505 
5506 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5507 								pcp, pcp_list);
5508 		if (unlikely(!page)) {
5509 			/* Try and allocate at least one page */
5510 			if (!nr_account) {
5511 				pcp_spin_unlock(pcp);
5512 				goto failed_irq;
5513 			}
5514 			break;
5515 		}
5516 		nr_account++;
5517 
5518 		prep_new_page(page, 0, gfp, 0);
5519 		if (page_list)
5520 			list_add(&page->lru, page_list);
5521 		else
5522 			page_array[nr_populated] = page;
5523 		nr_populated++;
5524 	}
5525 
5526 	pcp_spin_unlock(pcp);
5527 	pcp_trylock_finish(UP_flags);
5528 
5529 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5530 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5531 
5532 out:
5533 	return nr_populated;
5534 
5535 failed_irq:
5536 	pcp_trylock_finish(UP_flags);
5537 
5538 failed:
5539 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5540 	if (page) {
5541 		if (page_list)
5542 			list_add(&page->lru, page_list);
5543 		else
5544 			page_array[nr_populated] = page;
5545 		nr_populated++;
5546 	}
5547 
5548 	goto out;
5549 }
5550 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5551 
5552 /*
5553  * This is the 'heart' of the zoned buddy allocator.
5554  */
5555 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5556 							nodemask_t *nodemask)
5557 {
5558 	struct page *page;
5559 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5560 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5561 	struct alloc_context ac = { };
5562 
5563 	/*
5564 	 * There are several places where we assume that the order value is sane
5565 	 * so bail out early if the request is out of bound.
5566 	 */
5567 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5568 		return NULL;
5569 
5570 	gfp &= gfp_allowed_mask;
5571 	/*
5572 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5573 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5574 	 * from a particular context which has been marked by
5575 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5576 	 * movable zones are not used during allocation.
5577 	 */
5578 	gfp = current_gfp_context(gfp);
5579 	alloc_gfp = gfp;
5580 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5581 			&alloc_gfp, &alloc_flags))
5582 		return NULL;
5583 
5584 	/*
5585 	 * Forbid the first pass from falling back to types that fragment
5586 	 * memory until all local zones are considered.
5587 	 */
5588 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5589 
5590 	/* First allocation attempt */
5591 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5592 	if (likely(page))
5593 		goto out;
5594 
5595 	alloc_gfp = gfp;
5596 	ac.spread_dirty_pages = false;
5597 
5598 	/*
5599 	 * Restore the original nodemask if it was potentially replaced with
5600 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5601 	 */
5602 	ac.nodemask = nodemask;
5603 
5604 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5605 
5606 out:
5607 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5608 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5609 		__free_pages(page, order);
5610 		page = NULL;
5611 	}
5612 
5613 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5614 	kmsan_alloc_page(page, order, alloc_gfp);
5615 
5616 	return page;
5617 }
5618 EXPORT_SYMBOL(__alloc_pages);
5619 
5620 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5621 		nodemask_t *nodemask)
5622 {
5623 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5624 			preferred_nid, nodemask);
5625 
5626 	if (page && order > 1)
5627 		prep_transhuge_page(page);
5628 	return (struct folio *)page;
5629 }
5630 EXPORT_SYMBOL(__folio_alloc);
5631 
5632 /*
5633  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5634  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5635  * you need to access high mem.
5636  */
5637 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5638 {
5639 	struct page *page;
5640 
5641 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5642 	if (!page)
5643 		return 0;
5644 	return (unsigned long) page_address(page);
5645 }
5646 EXPORT_SYMBOL(__get_free_pages);
5647 
5648 unsigned long get_zeroed_page(gfp_t gfp_mask)
5649 {
5650 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5651 }
5652 EXPORT_SYMBOL(get_zeroed_page);
5653 
5654 /**
5655  * __free_pages - Free pages allocated with alloc_pages().
5656  * @page: The page pointer returned from alloc_pages().
5657  * @order: The order of the allocation.
5658  *
5659  * This function can free multi-page allocations that are not compound
5660  * pages.  It does not check that the @order passed in matches that of
5661  * the allocation, so it is easy to leak memory.  Freeing more memory
5662  * than was allocated will probably emit a warning.
5663  *
5664  * If the last reference to this page is speculative, it will be released
5665  * by put_page() which only frees the first page of a non-compound
5666  * allocation.  To prevent the remaining pages from being leaked, we free
5667  * the subsequent pages here.  If you want to use the page's reference
5668  * count to decide when to free the allocation, you should allocate a
5669  * compound page, and use put_page() instead of __free_pages().
5670  *
5671  * Context: May be called in interrupt context or while holding a normal
5672  * spinlock, but not in NMI context or while holding a raw spinlock.
5673  */
5674 void __free_pages(struct page *page, unsigned int order)
5675 {
5676 	/* get PageHead before we drop reference */
5677 	int head = PageHead(page);
5678 
5679 	if (put_page_testzero(page))
5680 		free_the_page(page, order);
5681 	else if (!head)
5682 		while (order-- > 0)
5683 			free_the_page(page + (1 << order), order);
5684 }
5685 EXPORT_SYMBOL(__free_pages);
5686 
5687 void free_pages(unsigned long addr, unsigned int order)
5688 {
5689 	if (addr != 0) {
5690 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5691 		__free_pages(virt_to_page((void *)addr), order);
5692 	}
5693 }
5694 
5695 EXPORT_SYMBOL(free_pages);
5696 
5697 /*
5698  * Page Fragment:
5699  *  An arbitrary-length arbitrary-offset area of memory which resides
5700  *  within a 0 or higher order page.  Multiple fragments within that page
5701  *  are individually refcounted, in the page's reference counter.
5702  *
5703  * The page_frag functions below provide a simple allocation framework for
5704  * page fragments.  This is used by the network stack and network device
5705  * drivers to provide a backing region of memory for use as either an
5706  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5707  */
5708 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5709 					     gfp_t gfp_mask)
5710 {
5711 	struct page *page = NULL;
5712 	gfp_t gfp = gfp_mask;
5713 
5714 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5715 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5716 		    __GFP_NOMEMALLOC;
5717 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5718 				PAGE_FRAG_CACHE_MAX_ORDER);
5719 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5720 #endif
5721 	if (unlikely(!page))
5722 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5723 
5724 	nc->va = page ? page_address(page) : NULL;
5725 
5726 	return page;
5727 }
5728 
5729 void __page_frag_cache_drain(struct page *page, unsigned int count)
5730 {
5731 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5732 
5733 	if (page_ref_sub_and_test(page, count))
5734 		free_the_page(page, compound_order(page));
5735 }
5736 EXPORT_SYMBOL(__page_frag_cache_drain);
5737 
5738 void *page_frag_alloc_align(struct page_frag_cache *nc,
5739 		      unsigned int fragsz, gfp_t gfp_mask,
5740 		      unsigned int align_mask)
5741 {
5742 	unsigned int size = PAGE_SIZE;
5743 	struct page *page;
5744 	int offset;
5745 
5746 	if (unlikely(!nc->va)) {
5747 refill:
5748 		page = __page_frag_cache_refill(nc, gfp_mask);
5749 		if (!page)
5750 			return NULL;
5751 
5752 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5753 		/* if size can vary use size else just use PAGE_SIZE */
5754 		size = nc->size;
5755 #endif
5756 		/* Even if we own the page, we do not use atomic_set().
5757 		 * This would break get_page_unless_zero() users.
5758 		 */
5759 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5760 
5761 		/* reset page count bias and offset to start of new frag */
5762 		nc->pfmemalloc = page_is_pfmemalloc(page);
5763 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5764 		nc->offset = size;
5765 	}
5766 
5767 	offset = nc->offset - fragsz;
5768 	if (unlikely(offset < 0)) {
5769 		page = virt_to_page(nc->va);
5770 
5771 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5772 			goto refill;
5773 
5774 		if (unlikely(nc->pfmemalloc)) {
5775 			free_the_page(page, compound_order(page));
5776 			goto refill;
5777 		}
5778 
5779 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5780 		/* if size can vary use size else just use PAGE_SIZE */
5781 		size = nc->size;
5782 #endif
5783 		/* OK, page count is 0, we can safely set it */
5784 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5785 
5786 		/* reset page count bias and offset to start of new frag */
5787 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5788 		offset = size - fragsz;
5789 		if (unlikely(offset < 0)) {
5790 			/*
5791 			 * The caller is trying to allocate a fragment
5792 			 * with fragsz > PAGE_SIZE but the cache isn't big
5793 			 * enough to satisfy the request, this may
5794 			 * happen in low memory conditions.
5795 			 * We don't release the cache page because
5796 			 * it could make memory pressure worse
5797 			 * so we simply return NULL here.
5798 			 */
5799 			return NULL;
5800 		}
5801 	}
5802 
5803 	nc->pagecnt_bias--;
5804 	offset &= align_mask;
5805 	nc->offset = offset;
5806 
5807 	return nc->va + offset;
5808 }
5809 EXPORT_SYMBOL(page_frag_alloc_align);
5810 
5811 /*
5812  * Frees a page fragment allocated out of either a compound or order 0 page.
5813  */
5814 void page_frag_free(void *addr)
5815 {
5816 	struct page *page = virt_to_head_page(addr);
5817 
5818 	if (unlikely(put_page_testzero(page)))
5819 		free_the_page(page, compound_order(page));
5820 }
5821 EXPORT_SYMBOL(page_frag_free);
5822 
5823 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5824 		size_t size)
5825 {
5826 	if (addr) {
5827 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5828 		struct page *page = virt_to_page((void *)addr);
5829 		struct page *last = page + nr;
5830 
5831 		split_page_owner(page, 1 << order);
5832 		split_page_memcg(page, 1 << order);
5833 		while (page < --last)
5834 			set_page_refcounted(last);
5835 
5836 		last = page + (1UL << order);
5837 		for (page += nr; page < last; page++)
5838 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5839 	}
5840 	return (void *)addr;
5841 }
5842 
5843 /**
5844  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5845  * @size: the number of bytes to allocate
5846  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5847  *
5848  * This function is similar to alloc_pages(), except that it allocates the
5849  * minimum number of pages to satisfy the request.  alloc_pages() can only
5850  * allocate memory in power-of-two pages.
5851  *
5852  * This function is also limited by MAX_ORDER.
5853  *
5854  * Memory allocated by this function must be released by free_pages_exact().
5855  *
5856  * Return: pointer to the allocated area or %NULL in case of error.
5857  */
5858 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5859 {
5860 	unsigned int order = get_order(size);
5861 	unsigned long addr;
5862 
5863 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5864 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5865 
5866 	addr = __get_free_pages(gfp_mask, order);
5867 	return make_alloc_exact(addr, order, size);
5868 }
5869 EXPORT_SYMBOL(alloc_pages_exact);
5870 
5871 /**
5872  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5873  *			   pages on a node.
5874  * @nid: the preferred node ID where memory should be allocated
5875  * @size: the number of bytes to allocate
5876  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5877  *
5878  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5879  * back.
5880  *
5881  * Return: pointer to the allocated area or %NULL in case of error.
5882  */
5883 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5884 {
5885 	unsigned int order = get_order(size);
5886 	struct page *p;
5887 
5888 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5889 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5890 
5891 	p = alloc_pages_node(nid, gfp_mask, order);
5892 	if (!p)
5893 		return NULL;
5894 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5895 }
5896 
5897 /**
5898  * free_pages_exact - release memory allocated via alloc_pages_exact()
5899  * @virt: the value returned by alloc_pages_exact.
5900  * @size: size of allocation, same value as passed to alloc_pages_exact().
5901  *
5902  * Release the memory allocated by a previous call to alloc_pages_exact.
5903  */
5904 void free_pages_exact(void *virt, size_t size)
5905 {
5906 	unsigned long addr = (unsigned long)virt;
5907 	unsigned long end = addr + PAGE_ALIGN(size);
5908 
5909 	while (addr < end) {
5910 		free_page(addr);
5911 		addr += PAGE_SIZE;
5912 	}
5913 }
5914 EXPORT_SYMBOL(free_pages_exact);
5915 
5916 /**
5917  * nr_free_zone_pages - count number of pages beyond high watermark
5918  * @offset: The zone index of the highest zone
5919  *
5920  * nr_free_zone_pages() counts the number of pages which are beyond the
5921  * high watermark within all zones at or below a given zone index.  For each
5922  * zone, the number of pages is calculated as:
5923  *
5924  *     nr_free_zone_pages = managed_pages - high_pages
5925  *
5926  * Return: number of pages beyond high watermark.
5927  */
5928 static unsigned long nr_free_zone_pages(int offset)
5929 {
5930 	struct zoneref *z;
5931 	struct zone *zone;
5932 
5933 	/* Just pick one node, since fallback list is circular */
5934 	unsigned long sum = 0;
5935 
5936 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5937 
5938 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5939 		unsigned long size = zone_managed_pages(zone);
5940 		unsigned long high = high_wmark_pages(zone);
5941 		if (size > high)
5942 			sum += size - high;
5943 	}
5944 
5945 	return sum;
5946 }
5947 
5948 /**
5949  * nr_free_buffer_pages - count number of pages beyond high watermark
5950  *
5951  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5952  * watermark within ZONE_DMA and ZONE_NORMAL.
5953  *
5954  * Return: number of pages beyond high watermark within ZONE_DMA and
5955  * ZONE_NORMAL.
5956  */
5957 unsigned long nr_free_buffer_pages(void)
5958 {
5959 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5960 }
5961 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5962 
5963 static inline void show_node(struct zone *zone)
5964 {
5965 	if (IS_ENABLED(CONFIG_NUMA))
5966 		printk("Node %d ", zone_to_nid(zone));
5967 }
5968 
5969 long si_mem_available(void)
5970 {
5971 	long available;
5972 	unsigned long pagecache;
5973 	unsigned long wmark_low = 0;
5974 	unsigned long pages[NR_LRU_LISTS];
5975 	unsigned long reclaimable;
5976 	struct zone *zone;
5977 	int lru;
5978 
5979 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5980 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5981 
5982 	for_each_zone(zone)
5983 		wmark_low += low_wmark_pages(zone);
5984 
5985 	/*
5986 	 * Estimate the amount of memory available for userspace allocations,
5987 	 * without causing swapping or OOM.
5988 	 */
5989 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5990 
5991 	/*
5992 	 * Not all the page cache can be freed, otherwise the system will
5993 	 * start swapping or thrashing. Assume at least half of the page
5994 	 * cache, or the low watermark worth of cache, needs to stay.
5995 	 */
5996 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5997 	pagecache -= min(pagecache / 2, wmark_low);
5998 	available += pagecache;
5999 
6000 	/*
6001 	 * Part of the reclaimable slab and other kernel memory consists of
6002 	 * items that are in use, and cannot be freed. Cap this estimate at the
6003 	 * low watermark.
6004 	 */
6005 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6006 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
6007 	available += reclaimable - min(reclaimable / 2, wmark_low);
6008 
6009 	if (available < 0)
6010 		available = 0;
6011 	return available;
6012 }
6013 EXPORT_SYMBOL_GPL(si_mem_available);
6014 
6015 void si_meminfo(struct sysinfo *val)
6016 {
6017 	val->totalram = totalram_pages();
6018 	val->sharedram = global_node_page_state(NR_SHMEM);
6019 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
6020 	val->bufferram = nr_blockdev_pages();
6021 	val->totalhigh = totalhigh_pages();
6022 	val->freehigh = nr_free_highpages();
6023 	val->mem_unit = PAGE_SIZE;
6024 }
6025 
6026 EXPORT_SYMBOL(si_meminfo);
6027 
6028 #ifdef CONFIG_NUMA
6029 void si_meminfo_node(struct sysinfo *val, int nid)
6030 {
6031 	int zone_type;		/* needs to be signed */
6032 	unsigned long managed_pages = 0;
6033 	unsigned long managed_highpages = 0;
6034 	unsigned long free_highpages = 0;
6035 	pg_data_t *pgdat = NODE_DATA(nid);
6036 
6037 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6038 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6039 	val->totalram = managed_pages;
6040 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
6041 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6042 #ifdef CONFIG_HIGHMEM
6043 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6044 		struct zone *zone = &pgdat->node_zones[zone_type];
6045 
6046 		if (is_highmem(zone)) {
6047 			managed_highpages += zone_managed_pages(zone);
6048 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6049 		}
6050 	}
6051 	val->totalhigh = managed_highpages;
6052 	val->freehigh = free_highpages;
6053 #else
6054 	val->totalhigh = managed_highpages;
6055 	val->freehigh = free_highpages;
6056 #endif
6057 	val->mem_unit = PAGE_SIZE;
6058 }
6059 #endif
6060 
6061 /*
6062  * Determine whether the node should be displayed or not, depending on whether
6063  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6064  */
6065 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6066 {
6067 	if (!(flags & SHOW_MEM_FILTER_NODES))
6068 		return false;
6069 
6070 	/*
6071 	 * no node mask - aka implicit memory numa policy. Do not bother with
6072 	 * the synchronization - read_mems_allowed_begin - because we do not
6073 	 * have to be precise here.
6074 	 */
6075 	if (!nodemask)
6076 		nodemask = &cpuset_current_mems_allowed;
6077 
6078 	return !node_isset(nid, *nodemask);
6079 }
6080 
6081 #define K(x) ((x) << (PAGE_SHIFT-10))
6082 
6083 static void show_migration_types(unsigned char type)
6084 {
6085 	static const char types[MIGRATE_TYPES] = {
6086 		[MIGRATE_UNMOVABLE]	= 'U',
6087 		[MIGRATE_MOVABLE]	= 'M',
6088 		[MIGRATE_RECLAIMABLE]	= 'E',
6089 		[MIGRATE_HIGHATOMIC]	= 'H',
6090 #ifdef CONFIG_CMA
6091 		[MIGRATE_CMA]		= 'C',
6092 #endif
6093 #ifdef CONFIG_MEMORY_ISOLATION
6094 		[MIGRATE_ISOLATE]	= 'I',
6095 #endif
6096 	};
6097 	char tmp[MIGRATE_TYPES + 1];
6098 	char *p = tmp;
6099 	int i;
6100 
6101 	for (i = 0; i < MIGRATE_TYPES; i++) {
6102 		if (type & (1 << i))
6103 			*p++ = types[i];
6104 	}
6105 
6106 	*p = '\0';
6107 	printk(KERN_CONT "(%s) ", tmp);
6108 }
6109 
6110 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6111 {
6112 	int zone_idx;
6113 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6114 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6115 			return true;
6116 	return false;
6117 }
6118 
6119 /*
6120  * Show free area list (used inside shift_scroll-lock stuff)
6121  * We also calculate the percentage fragmentation. We do this by counting the
6122  * memory on each free list with the exception of the first item on the list.
6123  *
6124  * Bits in @filter:
6125  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6126  *   cpuset.
6127  */
6128 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6129 {
6130 	unsigned long free_pcp = 0;
6131 	int cpu, nid;
6132 	struct zone *zone;
6133 	pg_data_t *pgdat;
6134 
6135 	for_each_populated_zone(zone) {
6136 		if (zone_idx(zone) > max_zone_idx)
6137 			continue;
6138 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6139 			continue;
6140 
6141 		for_each_online_cpu(cpu)
6142 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6143 	}
6144 
6145 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6146 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6147 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6148 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6149 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6150 		" sec_pagetables:%lu bounce:%lu\n"
6151 		" kernel_misc_reclaimable:%lu\n"
6152 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6153 		global_node_page_state(NR_ACTIVE_ANON),
6154 		global_node_page_state(NR_INACTIVE_ANON),
6155 		global_node_page_state(NR_ISOLATED_ANON),
6156 		global_node_page_state(NR_ACTIVE_FILE),
6157 		global_node_page_state(NR_INACTIVE_FILE),
6158 		global_node_page_state(NR_ISOLATED_FILE),
6159 		global_node_page_state(NR_UNEVICTABLE),
6160 		global_node_page_state(NR_FILE_DIRTY),
6161 		global_node_page_state(NR_WRITEBACK),
6162 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6163 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6164 		global_node_page_state(NR_FILE_MAPPED),
6165 		global_node_page_state(NR_SHMEM),
6166 		global_node_page_state(NR_PAGETABLE),
6167 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6168 		global_zone_page_state(NR_BOUNCE),
6169 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6170 		global_zone_page_state(NR_FREE_PAGES),
6171 		free_pcp,
6172 		global_zone_page_state(NR_FREE_CMA_PAGES));
6173 
6174 	for_each_online_pgdat(pgdat) {
6175 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6176 			continue;
6177 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6178 			continue;
6179 
6180 		printk("Node %d"
6181 			" active_anon:%lukB"
6182 			" inactive_anon:%lukB"
6183 			" active_file:%lukB"
6184 			" inactive_file:%lukB"
6185 			" unevictable:%lukB"
6186 			" isolated(anon):%lukB"
6187 			" isolated(file):%lukB"
6188 			" mapped:%lukB"
6189 			" dirty:%lukB"
6190 			" writeback:%lukB"
6191 			" shmem:%lukB"
6192 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6193 			" shmem_thp: %lukB"
6194 			" shmem_pmdmapped: %lukB"
6195 			" anon_thp: %lukB"
6196 #endif
6197 			" writeback_tmp:%lukB"
6198 			" kernel_stack:%lukB"
6199 #ifdef CONFIG_SHADOW_CALL_STACK
6200 			" shadow_call_stack:%lukB"
6201 #endif
6202 			" pagetables:%lukB"
6203 			" sec_pagetables:%lukB"
6204 			" all_unreclaimable? %s"
6205 			"\n",
6206 			pgdat->node_id,
6207 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6208 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6209 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6210 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6211 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6212 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6213 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6214 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6215 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6216 			K(node_page_state(pgdat, NR_WRITEBACK)),
6217 			K(node_page_state(pgdat, NR_SHMEM)),
6218 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6219 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6220 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6221 			K(node_page_state(pgdat, NR_ANON_THPS)),
6222 #endif
6223 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6224 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6225 #ifdef CONFIG_SHADOW_CALL_STACK
6226 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6227 #endif
6228 			K(node_page_state(pgdat, NR_PAGETABLE)),
6229 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6230 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6231 				"yes" : "no");
6232 	}
6233 
6234 	for_each_populated_zone(zone) {
6235 		int i;
6236 
6237 		if (zone_idx(zone) > max_zone_idx)
6238 			continue;
6239 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6240 			continue;
6241 
6242 		free_pcp = 0;
6243 		for_each_online_cpu(cpu)
6244 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6245 
6246 		show_node(zone);
6247 		printk(KERN_CONT
6248 			"%s"
6249 			" free:%lukB"
6250 			" boost:%lukB"
6251 			" min:%lukB"
6252 			" low:%lukB"
6253 			" high:%lukB"
6254 			" reserved_highatomic:%luKB"
6255 			" active_anon:%lukB"
6256 			" inactive_anon:%lukB"
6257 			" active_file:%lukB"
6258 			" inactive_file:%lukB"
6259 			" unevictable:%lukB"
6260 			" writepending:%lukB"
6261 			" present:%lukB"
6262 			" managed:%lukB"
6263 			" mlocked:%lukB"
6264 			" bounce:%lukB"
6265 			" free_pcp:%lukB"
6266 			" local_pcp:%ukB"
6267 			" free_cma:%lukB"
6268 			"\n",
6269 			zone->name,
6270 			K(zone_page_state(zone, NR_FREE_PAGES)),
6271 			K(zone->watermark_boost),
6272 			K(min_wmark_pages(zone)),
6273 			K(low_wmark_pages(zone)),
6274 			K(high_wmark_pages(zone)),
6275 			K(zone->nr_reserved_highatomic),
6276 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6277 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6278 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6279 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6280 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6281 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6282 			K(zone->present_pages),
6283 			K(zone_managed_pages(zone)),
6284 			K(zone_page_state(zone, NR_MLOCK)),
6285 			K(zone_page_state(zone, NR_BOUNCE)),
6286 			K(free_pcp),
6287 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6288 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6289 		printk("lowmem_reserve[]:");
6290 		for (i = 0; i < MAX_NR_ZONES; i++)
6291 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6292 		printk(KERN_CONT "\n");
6293 	}
6294 
6295 	for_each_populated_zone(zone) {
6296 		unsigned int order;
6297 		unsigned long nr[MAX_ORDER], flags, total = 0;
6298 		unsigned char types[MAX_ORDER];
6299 
6300 		if (zone_idx(zone) > max_zone_idx)
6301 			continue;
6302 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6303 			continue;
6304 		show_node(zone);
6305 		printk(KERN_CONT "%s: ", zone->name);
6306 
6307 		spin_lock_irqsave(&zone->lock, flags);
6308 		for (order = 0; order < MAX_ORDER; order++) {
6309 			struct free_area *area = &zone->free_area[order];
6310 			int type;
6311 
6312 			nr[order] = area->nr_free;
6313 			total += nr[order] << order;
6314 
6315 			types[order] = 0;
6316 			for (type = 0; type < MIGRATE_TYPES; type++) {
6317 				if (!free_area_empty(area, type))
6318 					types[order] |= 1 << type;
6319 			}
6320 		}
6321 		spin_unlock_irqrestore(&zone->lock, flags);
6322 		for (order = 0; order < MAX_ORDER; order++) {
6323 			printk(KERN_CONT "%lu*%lukB ",
6324 			       nr[order], K(1UL) << order);
6325 			if (nr[order])
6326 				show_migration_types(types[order]);
6327 		}
6328 		printk(KERN_CONT "= %lukB\n", K(total));
6329 	}
6330 
6331 	for_each_online_node(nid) {
6332 		if (show_mem_node_skip(filter, nid, nodemask))
6333 			continue;
6334 		hugetlb_show_meminfo_node(nid);
6335 	}
6336 
6337 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6338 
6339 	show_swap_cache_info();
6340 }
6341 
6342 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6343 {
6344 	zoneref->zone = zone;
6345 	zoneref->zone_idx = zone_idx(zone);
6346 }
6347 
6348 /*
6349  * Builds allocation fallback zone lists.
6350  *
6351  * Add all populated zones of a node to the zonelist.
6352  */
6353 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6354 {
6355 	struct zone *zone;
6356 	enum zone_type zone_type = MAX_NR_ZONES;
6357 	int nr_zones = 0;
6358 
6359 	do {
6360 		zone_type--;
6361 		zone = pgdat->node_zones + zone_type;
6362 		if (populated_zone(zone)) {
6363 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6364 			check_highest_zone(zone_type);
6365 		}
6366 	} while (zone_type);
6367 
6368 	return nr_zones;
6369 }
6370 
6371 #ifdef CONFIG_NUMA
6372 
6373 static int __parse_numa_zonelist_order(char *s)
6374 {
6375 	/*
6376 	 * We used to support different zonelists modes but they turned
6377 	 * out to be just not useful. Let's keep the warning in place
6378 	 * if somebody still use the cmd line parameter so that we do
6379 	 * not fail it silently
6380 	 */
6381 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6382 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6383 		return -EINVAL;
6384 	}
6385 	return 0;
6386 }
6387 
6388 char numa_zonelist_order[] = "Node";
6389 
6390 /*
6391  * sysctl handler for numa_zonelist_order
6392  */
6393 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6394 		void *buffer, size_t *length, loff_t *ppos)
6395 {
6396 	if (write)
6397 		return __parse_numa_zonelist_order(buffer);
6398 	return proc_dostring(table, write, buffer, length, ppos);
6399 }
6400 
6401 
6402 static int node_load[MAX_NUMNODES];
6403 
6404 /**
6405  * find_next_best_node - find the next node that should appear in a given node's fallback list
6406  * @node: node whose fallback list we're appending
6407  * @used_node_mask: nodemask_t of already used nodes
6408  *
6409  * We use a number of factors to determine which is the next node that should
6410  * appear on a given node's fallback list.  The node should not have appeared
6411  * already in @node's fallback list, and it should be the next closest node
6412  * according to the distance array (which contains arbitrary distance values
6413  * from each node to each node in the system), and should also prefer nodes
6414  * with no CPUs, since presumably they'll have very little allocation pressure
6415  * on them otherwise.
6416  *
6417  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6418  */
6419 int find_next_best_node(int node, nodemask_t *used_node_mask)
6420 {
6421 	int n, val;
6422 	int min_val = INT_MAX;
6423 	int best_node = NUMA_NO_NODE;
6424 
6425 	/* Use the local node if we haven't already */
6426 	if (!node_isset(node, *used_node_mask)) {
6427 		node_set(node, *used_node_mask);
6428 		return node;
6429 	}
6430 
6431 	for_each_node_state(n, N_MEMORY) {
6432 
6433 		/* Don't want a node to appear more than once */
6434 		if (node_isset(n, *used_node_mask))
6435 			continue;
6436 
6437 		/* Use the distance array to find the distance */
6438 		val = node_distance(node, n);
6439 
6440 		/* Penalize nodes under us ("prefer the next node") */
6441 		val += (n < node);
6442 
6443 		/* Give preference to headless and unused nodes */
6444 		if (!cpumask_empty(cpumask_of_node(n)))
6445 			val += PENALTY_FOR_NODE_WITH_CPUS;
6446 
6447 		/* Slight preference for less loaded node */
6448 		val *= MAX_NUMNODES;
6449 		val += node_load[n];
6450 
6451 		if (val < min_val) {
6452 			min_val = val;
6453 			best_node = n;
6454 		}
6455 	}
6456 
6457 	if (best_node >= 0)
6458 		node_set(best_node, *used_node_mask);
6459 
6460 	return best_node;
6461 }
6462 
6463 
6464 /*
6465  * Build zonelists ordered by node and zones within node.
6466  * This results in maximum locality--normal zone overflows into local
6467  * DMA zone, if any--but risks exhausting DMA zone.
6468  */
6469 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6470 		unsigned nr_nodes)
6471 {
6472 	struct zoneref *zonerefs;
6473 	int i;
6474 
6475 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6476 
6477 	for (i = 0; i < nr_nodes; i++) {
6478 		int nr_zones;
6479 
6480 		pg_data_t *node = NODE_DATA(node_order[i]);
6481 
6482 		nr_zones = build_zonerefs_node(node, zonerefs);
6483 		zonerefs += nr_zones;
6484 	}
6485 	zonerefs->zone = NULL;
6486 	zonerefs->zone_idx = 0;
6487 }
6488 
6489 /*
6490  * Build gfp_thisnode zonelists
6491  */
6492 static void build_thisnode_zonelists(pg_data_t *pgdat)
6493 {
6494 	struct zoneref *zonerefs;
6495 	int nr_zones;
6496 
6497 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6498 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6499 	zonerefs += nr_zones;
6500 	zonerefs->zone = NULL;
6501 	zonerefs->zone_idx = 0;
6502 }
6503 
6504 /*
6505  * Build zonelists ordered by zone and nodes within zones.
6506  * This results in conserving DMA zone[s] until all Normal memory is
6507  * exhausted, but results in overflowing to remote node while memory
6508  * may still exist in local DMA zone.
6509  */
6510 
6511 static void build_zonelists(pg_data_t *pgdat)
6512 {
6513 	static int node_order[MAX_NUMNODES];
6514 	int node, nr_nodes = 0;
6515 	nodemask_t used_mask = NODE_MASK_NONE;
6516 	int local_node, prev_node;
6517 
6518 	/* NUMA-aware ordering of nodes */
6519 	local_node = pgdat->node_id;
6520 	prev_node = local_node;
6521 
6522 	memset(node_order, 0, sizeof(node_order));
6523 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6524 		/*
6525 		 * We don't want to pressure a particular node.
6526 		 * So adding penalty to the first node in same
6527 		 * distance group to make it round-robin.
6528 		 */
6529 		if (node_distance(local_node, node) !=
6530 		    node_distance(local_node, prev_node))
6531 			node_load[node] += 1;
6532 
6533 		node_order[nr_nodes++] = node;
6534 		prev_node = node;
6535 	}
6536 
6537 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6538 	build_thisnode_zonelists(pgdat);
6539 	pr_info("Fallback order for Node %d: ", local_node);
6540 	for (node = 0; node < nr_nodes; node++)
6541 		pr_cont("%d ", node_order[node]);
6542 	pr_cont("\n");
6543 }
6544 
6545 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6546 /*
6547  * Return node id of node used for "local" allocations.
6548  * I.e., first node id of first zone in arg node's generic zonelist.
6549  * Used for initializing percpu 'numa_mem', which is used primarily
6550  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6551  */
6552 int local_memory_node(int node)
6553 {
6554 	struct zoneref *z;
6555 
6556 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6557 				   gfp_zone(GFP_KERNEL),
6558 				   NULL);
6559 	return zone_to_nid(z->zone);
6560 }
6561 #endif
6562 
6563 static void setup_min_unmapped_ratio(void);
6564 static void setup_min_slab_ratio(void);
6565 #else	/* CONFIG_NUMA */
6566 
6567 static void build_zonelists(pg_data_t *pgdat)
6568 {
6569 	int node, local_node;
6570 	struct zoneref *zonerefs;
6571 	int nr_zones;
6572 
6573 	local_node = pgdat->node_id;
6574 
6575 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6576 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6577 	zonerefs += nr_zones;
6578 
6579 	/*
6580 	 * Now we build the zonelist so that it contains the zones
6581 	 * of all the other nodes.
6582 	 * We don't want to pressure a particular node, so when
6583 	 * building the zones for node N, we make sure that the
6584 	 * zones coming right after the local ones are those from
6585 	 * node N+1 (modulo N)
6586 	 */
6587 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6588 		if (!node_online(node))
6589 			continue;
6590 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6591 		zonerefs += nr_zones;
6592 	}
6593 	for (node = 0; node < local_node; node++) {
6594 		if (!node_online(node))
6595 			continue;
6596 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6597 		zonerefs += nr_zones;
6598 	}
6599 
6600 	zonerefs->zone = NULL;
6601 	zonerefs->zone_idx = 0;
6602 }
6603 
6604 #endif	/* CONFIG_NUMA */
6605 
6606 /*
6607  * Boot pageset table. One per cpu which is going to be used for all
6608  * zones and all nodes. The parameters will be set in such a way
6609  * that an item put on a list will immediately be handed over to
6610  * the buddy list. This is safe since pageset manipulation is done
6611  * with interrupts disabled.
6612  *
6613  * The boot_pagesets must be kept even after bootup is complete for
6614  * unused processors and/or zones. They do play a role for bootstrapping
6615  * hotplugged processors.
6616  *
6617  * zoneinfo_show() and maybe other functions do
6618  * not check if the processor is online before following the pageset pointer.
6619  * Other parts of the kernel may not check if the zone is available.
6620  */
6621 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6622 /* These effectively disable the pcplists in the boot pageset completely */
6623 #define BOOT_PAGESET_HIGH	0
6624 #define BOOT_PAGESET_BATCH	1
6625 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6626 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6627 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6628 
6629 static void __build_all_zonelists(void *data)
6630 {
6631 	int nid;
6632 	int __maybe_unused cpu;
6633 	pg_data_t *self = data;
6634 
6635 	write_seqlock(&zonelist_update_seq);
6636 
6637 #ifdef CONFIG_NUMA
6638 	memset(node_load, 0, sizeof(node_load));
6639 #endif
6640 
6641 	/*
6642 	 * This node is hotadded and no memory is yet present.   So just
6643 	 * building zonelists is fine - no need to touch other nodes.
6644 	 */
6645 	if (self && !node_online(self->node_id)) {
6646 		build_zonelists(self);
6647 	} else {
6648 		/*
6649 		 * All possible nodes have pgdat preallocated
6650 		 * in free_area_init
6651 		 */
6652 		for_each_node(nid) {
6653 			pg_data_t *pgdat = NODE_DATA(nid);
6654 
6655 			build_zonelists(pgdat);
6656 		}
6657 
6658 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6659 		/*
6660 		 * We now know the "local memory node" for each node--
6661 		 * i.e., the node of the first zone in the generic zonelist.
6662 		 * Set up numa_mem percpu variable for on-line cpus.  During
6663 		 * boot, only the boot cpu should be on-line;  we'll init the
6664 		 * secondary cpus' numa_mem as they come on-line.  During
6665 		 * node/memory hotplug, we'll fixup all on-line cpus.
6666 		 */
6667 		for_each_online_cpu(cpu)
6668 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6669 #endif
6670 	}
6671 
6672 	write_sequnlock(&zonelist_update_seq);
6673 }
6674 
6675 static noinline void __init
6676 build_all_zonelists_init(void)
6677 {
6678 	int cpu;
6679 
6680 	__build_all_zonelists(NULL);
6681 
6682 	/*
6683 	 * Initialize the boot_pagesets that are going to be used
6684 	 * for bootstrapping processors. The real pagesets for
6685 	 * each zone will be allocated later when the per cpu
6686 	 * allocator is available.
6687 	 *
6688 	 * boot_pagesets are used also for bootstrapping offline
6689 	 * cpus if the system is already booted because the pagesets
6690 	 * are needed to initialize allocators on a specific cpu too.
6691 	 * F.e. the percpu allocator needs the page allocator which
6692 	 * needs the percpu allocator in order to allocate its pagesets
6693 	 * (a chicken-egg dilemma).
6694 	 */
6695 	for_each_possible_cpu(cpu)
6696 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6697 
6698 	mminit_verify_zonelist();
6699 	cpuset_init_current_mems_allowed();
6700 }
6701 
6702 /*
6703  * unless system_state == SYSTEM_BOOTING.
6704  *
6705  * __ref due to call of __init annotated helper build_all_zonelists_init
6706  * [protected by SYSTEM_BOOTING].
6707  */
6708 void __ref build_all_zonelists(pg_data_t *pgdat)
6709 {
6710 	unsigned long vm_total_pages;
6711 
6712 	if (system_state == SYSTEM_BOOTING) {
6713 		build_all_zonelists_init();
6714 	} else {
6715 		__build_all_zonelists(pgdat);
6716 		/* cpuset refresh routine should be here */
6717 	}
6718 	/* Get the number of free pages beyond high watermark in all zones. */
6719 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6720 	/*
6721 	 * Disable grouping by mobility if the number of pages in the
6722 	 * system is too low to allow the mechanism to work. It would be
6723 	 * more accurate, but expensive to check per-zone. This check is
6724 	 * made on memory-hotadd so a system can start with mobility
6725 	 * disabled and enable it later
6726 	 */
6727 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6728 		page_group_by_mobility_disabled = 1;
6729 	else
6730 		page_group_by_mobility_disabled = 0;
6731 
6732 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6733 		nr_online_nodes,
6734 		page_group_by_mobility_disabled ? "off" : "on",
6735 		vm_total_pages);
6736 #ifdef CONFIG_NUMA
6737 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6738 #endif
6739 }
6740 
6741 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6742 static bool __meminit
6743 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6744 {
6745 	static struct memblock_region *r;
6746 
6747 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6748 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6749 			for_each_mem_region(r) {
6750 				if (*pfn < memblock_region_memory_end_pfn(r))
6751 					break;
6752 			}
6753 		}
6754 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6755 		    memblock_is_mirror(r)) {
6756 			*pfn = memblock_region_memory_end_pfn(r);
6757 			return true;
6758 		}
6759 	}
6760 	return false;
6761 }
6762 
6763 /*
6764  * Initially all pages are reserved - free ones are freed
6765  * up by memblock_free_all() once the early boot process is
6766  * done. Non-atomic initialization, single-pass.
6767  *
6768  * All aligned pageblocks are initialized to the specified migratetype
6769  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6770  * zone stats (e.g., nr_isolate_pageblock) are touched.
6771  */
6772 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6773 		unsigned long start_pfn, unsigned long zone_end_pfn,
6774 		enum meminit_context context,
6775 		struct vmem_altmap *altmap, int migratetype)
6776 {
6777 	unsigned long pfn, end_pfn = start_pfn + size;
6778 	struct page *page;
6779 
6780 	if (highest_memmap_pfn < end_pfn - 1)
6781 		highest_memmap_pfn = end_pfn - 1;
6782 
6783 #ifdef CONFIG_ZONE_DEVICE
6784 	/*
6785 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6786 	 * memory. We limit the total number of pages to initialize to just
6787 	 * those that might contain the memory mapping. We will defer the
6788 	 * ZONE_DEVICE page initialization until after we have released
6789 	 * the hotplug lock.
6790 	 */
6791 	if (zone == ZONE_DEVICE) {
6792 		if (!altmap)
6793 			return;
6794 
6795 		if (start_pfn == altmap->base_pfn)
6796 			start_pfn += altmap->reserve;
6797 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6798 	}
6799 #endif
6800 
6801 	for (pfn = start_pfn; pfn < end_pfn; ) {
6802 		/*
6803 		 * There can be holes in boot-time mem_map[]s handed to this
6804 		 * function.  They do not exist on hotplugged memory.
6805 		 */
6806 		if (context == MEMINIT_EARLY) {
6807 			if (overlap_memmap_init(zone, &pfn))
6808 				continue;
6809 			if (defer_init(nid, pfn, zone_end_pfn)) {
6810 				deferred_struct_pages = true;
6811 				break;
6812 			}
6813 		}
6814 
6815 		page = pfn_to_page(pfn);
6816 		__init_single_page(page, pfn, zone, nid);
6817 		if (context == MEMINIT_HOTPLUG)
6818 			__SetPageReserved(page);
6819 
6820 		/*
6821 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6822 		 * such that unmovable allocations won't be scattered all
6823 		 * over the place during system boot.
6824 		 */
6825 		if (pageblock_aligned(pfn)) {
6826 			set_pageblock_migratetype(page, migratetype);
6827 			cond_resched();
6828 		}
6829 		pfn++;
6830 	}
6831 }
6832 
6833 #ifdef CONFIG_ZONE_DEVICE
6834 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6835 					  unsigned long zone_idx, int nid,
6836 					  struct dev_pagemap *pgmap)
6837 {
6838 
6839 	__init_single_page(page, pfn, zone_idx, nid);
6840 
6841 	/*
6842 	 * Mark page reserved as it will need to wait for onlining
6843 	 * phase for it to be fully associated with a zone.
6844 	 *
6845 	 * We can use the non-atomic __set_bit operation for setting
6846 	 * the flag as we are still initializing the pages.
6847 	 */
6848 	__SetPageReserved(page);
6849 
6850 	/*
6851 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6852 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6853 	 * ever freed or placed on a driver-private list.
6854 	 */
6855 	page->pgmap = pgmap;
6856 	page->zone_device_data = NULL;
6857 
6858 	/*
6859 	 * Mark the block movable so that blocks are reserved for
6860 	 * movable at startup. This will force kernel allocations
6861 	 * to reserve their blocks rather than leaking throughout
6862 	 * the address space during boot when many long-lived
6863 	 * kernel allocations are made.
6864 	 *
6865 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6866 	 * because this is done early in section_activate()
6867 	 */
6868 	if (pageblock_aligned(pfn)) {
6869 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6870 		cond_resched();
6871 	}
6872 
6873 	/*
6874 	 * ZONE_DEVICE pages are released directly to the driver page allocator
6875 	 * which will set the page count to 1 when allocating the page.
6876 	 */
6877 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6878 	    pgmap->type == MEMORY_DEVICE_COHERENT)
6879 		set_page_count(page, 0);
6880 }
6881 
6882 /*
6883  * With compound page geometry and when struct pages are stored in ram most
6884  * tail pages are reused. Consequently, the amount of unique struct pages to
6885  * initialize is a lot smaller that the total amount of struct pages being
6886  * mapped. This is a paired / mild layering violation with explicit knowledge
6887  * of how the sparse_vmemmap internals handle compound pages in the lack
6888  * of an altmap. See vmemmap_populate_compound_pages().
6889  */
6890 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6891 					      unsigned long nr_pages)
6892 {
6893 	return is_power_of_2(sizeof(struct page)) &&
6894 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6895 }
6896 
6897 static void __ref memmap_init_compound(struct page *head,
6898 				       unsigned long head_pfn,
6899 				       unsigned long zone_idx, int nid,
6900 				       struct dev_pagemap *pgmap,
6901 				       unsigned long nr_pages)
6902 {
6903 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6904 	unsigned int order = pgmap->vmemmap_shift;
6905 
6906 	__SetPageHead(head);
6907 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6908 		struct page *page = pfn_to_page(pfn);
6909 
6910 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6911 		prep_compound_tail(head, pfn - head_pfn);
6912 		set_page_count(page, 0);
6913 
6914 		/*
6915 		 * The first tail page stores important compound page info.
6916 		 * Call prep_compound_head() after the first tail page has
6917 		 * been initialized, to not have the data overwritten.
6918 		 */
6919 		if (pfn == head_pfn + 1)
6920 			prep_compound_head(head, order);
6921 	}
6922 }
6923 
6924 void __ref memmap_init_zone_device(struct zone *zone,
6925 				   unsigned long start_pfn,
6926 				   unsigned long nr_pages,
6927 				   struct dev_pagemap *pgmap)
6928 {
6929 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6930 	struct pglist_data *pgdat = zone->zone_pgdat;
6931 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6932 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6933 	unsigned long zone_idx = zone_idx(zone);
6934 	unsigned long start = jiffies;
6935 	int nid = pgdat->node_id;
6936 
6937 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6938 		return;
6939 
6940 	/*
6941 	 * The call to memmap_init should have already taken care
6942 	 * of the pages reserved for the memmap, so we can just jump to
6943 	 * the end of that region and start processing the device pages.
6944 	 */
6945 	if (altmap) {
6946 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6947 		nr_pages = end_pfn - start_pfn;
6948 	}
6949 
6950 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6951 		struct page *page = pfn_to_page(pfn);
6952 
6953 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6954 
6955 		if (pfns_per_compound == 1)
6956 			continue;
6957 
6958 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6959 				     compound_nr_pages(altmap, pfns_per_compound));
6960 	}
6961 
6962 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6963 		nr_pages, jiffies_to_msecs(jiffies - start));
6964 }
6965 
6966 #endif
6967 static void __meminit zone_init_free_lists(struct zone *zone)
6968 {
6969 	unsigned int order, t;
6970 	for_each_migratetype_order(order, t) {
6971 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6972 		zone->free_area[order].nr_free = 0;
6973 	}
6974 }
6975 
6976 /*
6977  * Only struct pages that correspond to ranges defined by memblock.memory
6978  * are zeroed and initialized by going through __init_single_page() during
6979  * memmap_init_zone_range().
6980  *
6981  * But, there could be struct pages that correspond to holes in
6982  * memblock.memory. This can happen because of the following reasons:
6983  * - physical memory bank size is not necessarily the exact multiple of the
6984  *   arbitrary section size
6985  * - early reserved memory may not be listed in memblock.memory
6986  * - memory layouts defined with memmap= kernel parameter may not align
6987  *   nicely with memmap sections
6988  *
6989  * Explicitly initialize those struct pages so that:
6990  * - PG_Reserved is set
6991  * - zone and node links point to zone and node that span the page if the
6992  *   hole is in the middle of a zone
6993  * - zone and node links point to adjacent zone/node if the hole falls on
6994  *   the zone boundary; the pages in such holes will be prepended to the
6995  *   zone/node above the hole except for the trailing pages in the last
6996  *   section that will be appended to the zone/node below.
6997  */
6998 static void __init init_unavailable_range(unsigned long spfn,
6999 					  unsigned long epfn,
7000 					  int zone, int node)
7001 {
7002 	unsigned long pfn;
7003 	u64 pgcnt = 0;
7004 
7005 	for (pfn = spfn; pfn < epfn; pfn++) {
7006 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
7007 			pfn = pageblock_end_pfn(pfn) - 1;
7008 			continue;
7009 		}
7010 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
7011 		__SetPageReserved(pfn_to_page(pfn));
7012 		pgcnt++;
7013 	}
7014 
7015 	if (pgcnt)
7016 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7017 			node, zone_names[zone], pgcnt);
7018 }
7019 
7020 static void __init memmap_init_zone_range(struct zone *zone,
7021 					  unsigned long start_pfn,
7022 					  unsigned long end_pfn,
7023 					  unsigned long *hole_pfn)
7024 {
7025 	unsigned long zone_start_pfn = zone->zone_start_pfn;
7026 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7027 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7028 
7029 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7030 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7031 
7032 	if (start_pfn >= end_pfn)
7033 		return;
7034 
7035 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7036 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7037 
7038 	if (*hole_pfn < start_pfn)
7039 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7040 
7041 	*hole_pfn = end_pfn;
7042 }
7043 
7044 static void __init memmap_init(void)
7045 {
7046 	unsigned long start_pfn, end_pfn;
7047 	unsigned long hole_pfn = 0;
7048 	int i, j, zone_id = 0, nid;
7049 
7050 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7051 		struct pglist_data *node = NODE_DATA(nid);
7052 
7053 		for (j = 0; j < MAX_NR_ZONES; j++) {
7054 			struct zone *zone = node->node_zones + j;
7055 
7056 			if (!populated_zone(zone))
7057 				continue;
7058 
7059 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7060 					       &hole_pfn);
7061 			zone_id = j;
7062 		}
7063 	}
7064 
7065 #ifdef CONFIG_SPARSEMEM
7066 	/*
7067 	 * Initialize the memory map for hole in the range [memory_end,
7068 	 * section_end].
7069 	 * Append the pages in this hole to the highest zone in the last
7070 	 * node.
7071 	 * The call to init_unavailable_range() is outside the ifdef to
7072 	 * silence the compiler warining about zone_id set but not used;
7073 	 * for FLATMEM it is a nop anyway
7074 	 */
7075 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7076 	if (hole_pfn < end_pfn)
7077 #endif
7078 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7079 }
7080 
7081 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7082 			  phys_addr_t min_addr, int nid, bool exact_nid)
7083 {
7084 	void *ptr;
7085 
7086 	if (exact_nid)
7087 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7088 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7089 						   nid);
7090 	else
7091 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7092 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7093 						 nid);
7094 
7095 	if (ptr && size > 0)
7096 		page_init_poison(ptr, size);
7097 
7098 	return ptr;
7099 }
7100 
7101 static int zone_batchsize(struct zone *zone)
7102 {
7103 #ifdef CONFIG_MMU
7104 	int batch;
7105 
7106 	/*
7107 	 * The number of pages to batch allocate is either ~0.1%
7108 	 * of the zone or 1MB, whichever is smaller. The batch
7109 	 * size is striking a balance between allocation latency
7110 	 * and zone lock contention.
7111 	 */
7112 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7113 	batch /= 4;		/* We effectively *= 4 below */
7114 	if (batch < 1)
7115 		batch = 1;
7116 
7117 	/*
7118 	 * Clamp the batch to a 2^n - 1 value. Having a power
7119 	 * of 2 value was found to be more likely to have
7120 	 * suboptimal cache aliasing properties in some cases.
7121 	 *
7122 	 * For example if 2 tasks are alternately allocating
7123 	 * batches of pages, one task can end up with a lot
7124 	 * of pages of one half of the possible page colors
7125 	 * and the other with pages of the other colors.
7126 	 */
7127 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7128 
7129 	return batch;
7130 
7131 #else
7132 	/* The deferral and batching of frees should be suppressed under NOMMU
7133 	 * conditions.
7134 	 *
7135 	 * The problem is that NOMMU needs to be able to allocate large chunks
7136 	 * of contiguous memory as there's no hardware page translation to
7137 	 * assemble apparent contiguous memory from discontiguous pages.
7138 	 *
7139 	 * Queueing large contiguous runs of pages for batching, however,
7140 	 * causes the pages to actually be freed in smaller chunks.  As there
7141 	 * can be a significant delay between the individual batches being
7142 	 * recycled, this leads to the once large chunks of space being
7143 	 * fragmented and becoming unavailable for high-order allocations.
7144 	 */
7145 	return 0;
7146 #endif
7147 }
7148 
7149 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7150 {
7151 #ifdef CONFIG_MMU
7152 	int high;
7153 	int nr_split_cpus;
7154 	unsigned long total_pages;
7155 
7156 	if (!percpu_pagelist_high_fraction) {
7157 		/*
7158 		 * By default, the high value of the pcp is based on the zone
7159 		 * low watermark so that if they are full then background
7160 		 * reclaim will not be started prematurely.
7161 		 */
7162 		total_pages = low_wmark_pages(zone);
7163 	} else {
7164 		/*
7165 		 * If percpu_pagelist_high_fraction is configured, the high
7166 		 * value is based on a fraction of the managed pages in the
7167 		 * zone.
7168 		 */
7169 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7170 	}
7171 
7172 	/*
7173 	 * Split the high value across all online CPUs local to the zone. Note
7174 	 * that early in boot that CPUs may not be online yet and that during
7175 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7176 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7177 	 * all online CPUs to mitigate the risk that reclaim is triggered
7178 	 * prematurely due to pages stored on pcp lists.
7179 	 */
7180 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7181 	if (!nr_split_cpus)
7182 		nr_split_cpus = num_online_cpus();
7183 	high = total_pages / nr_split_cpus;
7184 
7185 	/*
7186 	 * Ensure high is at least batch*4. The multiple is based on the
7187 	 * historical relationship between high and batch.
7188 	 */
7189 	high = max(high, batch << 2);
7190 
7191 	return high;
7192 #else
7193 	return 0;
7194 #endif
7195 }
7196 
7197 /*
7198  * pcp->high and pcp->batch values are related and generally batch is lower
7199  * than high. They are also related to pcp->count such that count is lower
7200  * than high, and as soon as it reaches high, the pcplist is flushed.
7201  *
7202  * However, guaranteeing these relations at all times would require e.g. write
7203  * barriers here but also careful usage of read barriers at the read side, and
7204  * thus be prone to error and bad for performance. Thus the update only prevents
7205  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7206  * can cope with those fields changing asynchronously, and fully trust only the
7207  * pcp->count field on the local CPU with interrupts disabled.
7208  *
7209  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7210  * outside of boot time (or some other assurance that no concurrent updaters
7211  * exist).
7212  */
7213 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7214 		unsigned long batch)
7215 {
7216 	WRITE_ONCE(pcp->batch, batch);
7217 	WRITE_ONCE(pcp->high, high);
7218 }
7219 
7220 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7221 {
7222 	int pindex;
7223 
7224 	memset(pcp, 0, sizeof(*pcp));
7225 	memset(pzstats, 0, sizeof(*pzstats));
7226 
7227 	spin_lock_init(&pcp->lock);
7228 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7229 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7230 
7231 	/*
7232 	 * Set batch and high values safe for a boot pageset. A true percpu
7233 	 * pageset's initialization will update them subsequently. Here we don't
7234 	 * need to be as careful as pageset_update() as nobody can access the
7235 	 * pageset yet.
7236 	 */
7237 	pcp->high = BOOT_PAGESET_HIGH;
7238 	pcp->batch = BOOT_PAGESET_BATCH;
7239 	pcp->free_factor = 0;
7240 }
7241 
7242 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7243 		unsigned long batch)
7244 {
7245 	struct per_cpu_pages *pcp;
7246 	int cpu;
7247 
7248 	for_each_possible_cpu(cpu) {
7249 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7250 		pageset_update(pcp, high, batch);
7251 	}
7252 }
7253 
7254 /*
7255  * Calculate and set new high and batch values for all per-cpu pagesets of a
7256  * zone based on the zone's size.
7257  */
7258 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7259 {
7260 	int new_high, new_batch;
7261 
7262 	new_batch = max(1, zone_batchsize(zone));
7263 	new_high = zone_highsize(zone, new_batch, cpu_online);
7264 
7265 	if (zone->pageset_high == new_high &&
7266 	    zone->pageset_batch == new_batch)
7267 		return;
7268 
7269 	zone->pageset_high = new_high;
7270 	zone->pageset_batch = new_batch;
7271 
7272 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7273 }
7274 
7275 void __meminit setup_zone_pageset(struct zone *zone)
7276 {
7277 	int cpu;
7278 
7279 	/* Size may be 0 on !SMP && !NUMA */
7280 	if (sizeof(struct per_cpu_zonestat) > 0)
7281 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7282 
7283 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7284 	for_each_possible_cpu(cpu) {
7285 		struct per_cpu_pages *pcp;
7286 		struct per_cpu_zonestat *pzstats;
7287 
7288 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7289 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7290 		per_cpu_pages_init(pcp, pzstats);
7291 	}
7292 
7293 	zone_set_pageset_high_and_batch(zone, 0);
7294 }
7295 
7296 /*
7297  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7298  * page high values need to be recalculated.
7299  */
7300 static void zone_pcp_update(struct zone *zone, int cpu_online)
7301 {
7302 	mutex_lock(&pcp_batch_high_lock);
7303 	zone_set_pageset_high_and_batch(zone, cpu_online);
7304 	mutex_unlock(&pcp_batch_high_lock);
7305 }
7306 
7307 /*
7308  * Allocate per cpu pagesets and initialize them.
7309  * Before this call only boot pagesets were available.
7310  */
7311 void __init setup_per_cpu_pageset(void)
7312 {
7313 	struct pglist_data *pgdat;
7314 	struct zone *zone;
7315 	int __maybe_unused cpu;
7316 
7317 	for_each_populated_zone(zone)
7318 		setup_zone_pageset(zone);
7319 
7320 #ifdef CONFIG_NUMA
7321 	/*
7322 	 * Unpopulated zones continue using the boot pagesets.
7323 	 * The numa stats for these pagesets need to be reset.
7324 	 * Otherwise, they will end up skewing the stats of
7325 	 * the nodes these zones are associated with.
7326 	 */
7327 	for_each_possible_cpu(cpu) {
7328 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7329 		memset(pzstats->vm_numa_event, 0,
7330 		       sizeof(pzstats->vm_numa_event));
7331 	}
7332 #endif
7333 
7334 	for_each_online_pgdat(pgdat)
7335 		pgdat->per_cpu_nodestats =
7336 			alloc_percpu(struct per_cpu_nodestat);
7337 }
7338 
7339 static __meminit void zone_pcp_init(struct zone *zone)
7340 {
7341 	/*
7342 	 * per cpu subsystem is not up at this point. The following code
7343 	 * relies on the ability of the linker to provide the
7344 	 * offset of a (static) per cpu variable into the per cpu area.
7345 	 */
7346 	zone->per_cpu_pageset = &boot_pageset;
7347 	zone->per_cpu_zonestats = &boot_zonestats;
7348 	zone->pageset_high = BOOT_PAGESET_HIGH;
7349 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7350 
7351 	if (populated_zone(zone))
7352 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7353 			 zone->present_pages, zone_batchsize(zone));
7354 }
7355 
7356 void __meminit init_currently_empty_zone(struct zone *zone,
7357 					unsigned long zone_start_pfn,
7358 					unsigned long size)
7359 {
7360 	struct pglist_data *pgdat = zone->zone_pgdat;
7361 	int zone_idx = zone_idx(zone) + 1;
7362 
7363 	if (zone_idx > pgdat->nr_zones)
7364 		pgdat->nr_zones = zone_idx;
7365 
7366 	zone->zone_start_pfn = zone_start_pfn;
7367 
7368 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7369 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7370 			pgdat->node_id,
7371 			(unsigned long)zone_idx(zone),
7372 			zone_start_pfn, (zone_start_pfn + size));
7373 
7374 	zone_init_free_lists(zone);
7375 	zone->initialized = 1;
7376 }
7377 
7378 /**
7379  * get_pfn_range_for_nid - Return the start and end page frames for a node
7380  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7381  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7382  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7383  *
7384  * It returns the start and end page frame of a node based on information
7385  * provided by memblock_set_node(). If called for a node
7386  * with no available memory, a warning is printed and the start and end
7387  * PFNs will be 0.
7388  */
7389 void __init get_pfn_range_for_nid(unsigned int nid,
7390 			unsigned long *start_pfn, unsigned long *end_pfn)
7391 {
7392 	unsigned long this_start_pfn, this_end_pfn;
7393 	int i;
7394 
7395 	*start_pfn = -1UL;
7396 	*end_pfn = 0;
7397 
7398 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7399 		*start_pfn = min(*start_pfn, this_start_pfn);
7400 		*end_pfn = max(*end_pfn, this_end_pfn);
7401 	}
7402 
7403 	if (*start_pfn == -1UL)
7404 		*start_pfn = 0;
7405 }
7406 
7407 /*
7408  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7409  * assumption is made that zones within a node are ordered in monotonic
7410  * increasing memory addresses so that the "highest" populated zone is used
7411  */
7412 static void __init find_usable_zone_for_movable(void)
7413 {
7414 	int zone_index;
7415 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7416 		if (zone_index == ZONE_MOVABLE)
7417 			continue;
7418 
7419 		if (arch_zone_highest_possible_pfn[zone_index] >
7420 				arch_zone_lowest_possible_pfn[zone_index])
7421 			break;
7422 	}
7423 
7424 	VM_BUG_ON(zone_index == -1);
7425 	movable_zone = zone_index;
7426 }
7427 
7428 /*
7429  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7430  * because it is sized independent of architecture. Unlike the other zones,
7431  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7432  * in each node depending on the size of each node and how evenly kernelcore
7433  * is distributed. This helper function adjusts the zone ranges
7434  * provided by the architecture for a given node by using the end of the
7435  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7436  * zones within a node are in order of monotonic increases memory addresses
7437  */
7438 static void __init adjust_zone_range_for_zone_movable(int nid,
7439 					unsigned long zone_type,
7440 					unsigned long node_start_pfn,
7441 					unsigned long node_end_pfn,
7442 					unsigned long *zone_start_pfn,
7443 					unsigned long *zone_end_pfn)
7444 {
7445 	/* Only adjust if ZONE_MOVABLE is on this node */
7446 	if (zone_movable_pfn[nid]) {
7447 		/* Size ZONE_MOVABLE */
7448 		if (zone_type == ZONE_MOVABLE) {
7449 			*zone_start_pfn = zone_movable_pfn[nid];
7450 			*zone_end_pfn = min(node_end_pfn,
7451 				arch_zone_highest_possible_pfn[movable_zone]);
7452 
7453 		/* Adjust for ZONE_MOVABLE starting within this range */
7454 		} else if (!mirrored_kernelcore &&
7455 			*zone_start_pfn < zone_movable_pfn[nid] &&
7456 			*zone_end_pfn > zone_movable_pfn[nid]) {
7457 			*zone_end_pfn = zone_movable_pfn[nid];
7458 
7459 		/* Check if this whole range is within ZONE_MOVABLE */
7460 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7461 			*zone_start_pfn = *zone_end_pfn;
7462 	}
7463 }
7464 
7465 /*
7466  * Return the number of pages a zone spans in a node, including holes
7467  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7468  */
7469 static unsigned long __init zone_spanned_pages_in_node(int nid,
7470 					unsigned long zone_type,
7471 					unsigned long node_start_pfn,
7472 					unsigned long node_end_pfn,
7473 					unsigned long *zone_start_pfn,
7474 					unsigned long *zone_end_pfn)
7475 {
7476 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7477 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7478 	/* When hotadd a new node from cpu_up(), the node should be empty */
7479 	if (!node_start_pfn && !node_end_pfn)
7480 		return 0;
7481 
7482 	/* Get the start and end of the zone */
7483 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7484 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7485 	adjust_zone_range_for_zone_movable(nid, zone_type,
7486 				node_start_pfn, node_end_pfn,
7487 				zone_start_pfn, zone_end_pfn);
7488 
7489 	/* Check that this node has pages within the zone's required range */
7490 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7491 		return 0;
7492 
7493 	/* Move the zone boundaries inside the node if necessary */
7494 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7495 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7496 
7497 	/* Return the spanned pages */
7498 	return *zone_end_pfn - *zone_start_pfn;
7499 }
7500 
7501 /*
7502  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7503  * then all holes in the requested range will be accounted for.
7504  */
7505 unsigned long __init __absent_pages_in_range(int nid,
7506 				unsigned long range_start_pfn,
7507 				unsigned long range_end_pfn)
7508 {
7509 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7510 	unsigned long start_pfn, end_pfn;
7511 	int i;
7512 
7513 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7514 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7515 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7516 		nr_absent -= end_pfn - start_pfn;
7517 	}
7518 	return nr_absent;
7519 }
7520 
7521 /**
7522  * absent_pages_in_range - Return number of page frames in holes within a range
7523  * @start_pfn: The start PFN to start searching for holes
7524  * @end_pfn: The end PFN to stop searching for holes
7525  *
7526  * Return: the number of pages frames in memory holes within a range.
7527  */
7528 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7529 							unsigned long end_pfn)
7530 {
7531 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7532 }
7533 
7534 /* Return the number of page frames in holes in a zone on a node */
7535 static unsigned long __init zone_absent_pages_in_node(int nid,
7536 					unsigned long zone_type,
7537 					unsigned long node_start_pfn,
7538 					unsigned long node_end_pfn)
7539 {
7540 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7541 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7542 	unsigned long zone_start_pfn, zone_end_pfn;
7543 	unsigned long nr_absent;
7544 
7545 	/* When hotadd a new node from cpu_up(), the node should be empty */
7546 	if (!node_start_pfn && !node_end_pfn)
7547 		return 0;
7548 
7549 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7550 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7551 
7552 	adjust_zone_range_for_zone_movable(nid, zone_type,
7553 			node_start_pfn, node_end_pfn,
7554 			&zone_start_pfn, &zone_end_pfn);
7555 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7556 
7557 	/*
7558 	 * ZONE_MOVABLE handling.
7559 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7560 	 * and vice versa.
7561 	 */
7562 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7563 		unsigned long start_pfn, end_pfn;
7564 		struct memblock_region *r;
7565 
7566 		for_each_mem_region(r) {
7567 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7568 					  zone_start_pfn, zone_end_pfn);
7569 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7570 					zone_start_pfn, zone_end_pfn);
7571 
7572 			if (zone_type == ZONE_MOVABLE &&
7573 			    memblock_is_mirror(r))
7574 				nr_absent += end_pfn - start_pfn;
7575 
7576 			if (zone_type == ZONE_NORMAL &&
7577 			    !memblock_is_mirror(r))
7578 				nr_absent += end_pfn - start_pfn;
7579 		}
7580 	}
7581 
7582 	return nr_absent;
7583 }
7584 
7585 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7586 						unsigned long node_start_pfn,
7587 						unsigned long node_end_pfn)
7588 {
7589 	unsigned long realtotalpages = 0, totalpages = 0;
7590 	enum zone_type i;
7591 
7592 	for (i = 0; i < MAX_NR_ZONES; i++) {
7593 		struct zone *zone = pgdat->node_zones + i;
7594 		unsigned long zone_start_pfn, zone_end_pfn;
7595 		unsigned long spanned, absent;
7596 		unsigned long size, real_size;
7597 
7598 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7599 						     node_start_pfn,
7600 						     node_end_pfn,
7601 						     &zone_start_pfn,
7602 						     &zone_end_pfn);
7603 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7604 						   node_start_pfn,
7605 						   node_end_pfn);
7606 
7607 		size = spanned;
7608 		real_size = size - absent;
7609 
7610 		if (size)
7611 			zone->zone_start_pfn = zone_start_pfn;
7612 		else
7613 			zone->zone_start_pfn = 0;
7614 		zone->spanned_pages = size;
7615 		zone->present_pages = real_size;
7616 #if defined(CONFIG_MEMORY_HOTPLUG)
7617 		zone->present_early_pages = real_size;
7618 #endif
7619 
7620 		totalpages += size;
7621 		realtotalpages += real_size;
7622 	}
7623 
7624 	pgdat->node_spanned_pages = totalpages;
7625 	pgdat->node_present_pages = realtotalpages;
7626 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7627 }
7628 
7629 #ifndef CONFIG_SPARSEMEM
7630 /*
7631  * Calculate the size of the zone->blockflags rounded to an unsigned long
7632  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7633  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7634  * round what is now in bits to nearest long in bits, then return it in
7635  * bytes.
7636  */
7637 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7638 {
7639 	unsigned long usemapsize;
7640 
7641 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7642 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7643 	usemapsize = usemapsize >> pageblock_order;
7644 	usemapsize *= NR_PAGEBLOCK_BITS;
7645 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7646 
7647 	return usemapsize / 8;
7648 }
7649 
7650 static void __ref setup_usemap(struct zone *zone)
7651 {
7652 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7653 					       zone->spanned_pages);
7654 	zone->pageblock_flags = NULL;
7655 	if (usemapsize) {
7656 		zone->pageblock_flags =
7657 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7658 					    zone_to_nid(zone));
7659 		if (!zone->pageblock_flags)
7660 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7661 			      usemapsize, zone->name, zone_to_nid(zone));
7662 	}
7663 }
7664 #else
7665 static inline void setup_usemap(struct zone *zone) {}
7666 #endif /* CONFIG_SPARSEMEM */
7667 
7668 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7669 
7670 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7671 void __init set_pageblock_order(void)
7672 {
7673 	unsigned int order = MAX_ORDER - 1;
7674 
7675 	/* Check that pageblock_nr_pages has not already been setup */
7676 	if (pageblock_order)
7677 		return;
7678 
7679 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7680 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7681 		order = HUGETLB_PAGE_ORDER;
7682 
7683 	/*
7684 	 * Assume the largest contiguous order of interest is a huge page.
7685 	 * This value may be variable depending on boot parameters on IA64 and
7686 	 * powerpc.
7687 	 */
7688 	pageblock_order = order;
7689 }
7690 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7691 
7692 /*
7693  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7694  * is unused as pageblock_order is set at compile-time. See
7695  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7696  * the kernel config
7697  */
7698 void __init set_pageblock_order(void)
7699 {
7700 }
7701 
7702 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7703 
7704 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7705 						unsigned long present_pages)
7706 {
7707 	unsigned long pages = spanned_pages;
7708 
7709 	/*
7710 	 * Provide a more accurate estimation if there are holes within
7711 	 * the zone and SPARSEMEM is in use. If there are holes within the
7712 	 * zone, each populated memory region may cost us one or two extra
7713 	 * memmap pages due to alignment because memmap pages for each
7714 	 * populated regions may not be naturally aligned on page boundary.
7715 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7716 	 */
7717 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7718 	    IS_ENABLED(CONFIG_SPARSEMEM))
7719 		pages = present_pages;
7720 
7721 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7722 }
7723 
7724 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7725 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7726 {
7727 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7728 
7729 	spin_lock_init(&ds_queue->split_queue_lock);
7730 	INIT_LIST_HEAD(&ds_queue->split_queue);
7731 	ds_queue->split_queue_len = 0;
7732 }
7733 #else
7734 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7735 #endif
7736 
7737 #ifdef CONFIG_COMPACTION
7738 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7739 {
7740 	init_waitqueue_head(&pgdat->kcompactd_wait);
7741 }
7742 #else
7743 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7744 #endif
7745 
7746 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7747 {
7748 	int i;
7749 
7750 	pgdat_resize_init(pgdat);
7751 	pgdat_kswapd_lock_init(pgdat);
7752 
7753 	pgdat_init_split_queue(pgdat);
7754 	pgdat_init_kcompactd(pgdat);
7755 
7756 	init_waitqueue_head(&pgdat->kswapd_wait);
7757 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7758 
7759 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7760 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7761 
7762 	pgdat_page_ext_init(pgdat);
7763 	lruvec_init(&pgdat->__lruvec);
7764 }
7765 
7766 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7767 							unsigned long remaining_pages)
7768 {
7769 	atomic_long_set(&zone->managed_pages, remaining_pages);
7770 	zone_set_nid(zone, nid);
7771 	zone->name = zone_names[idx];
7772 	zone->zone_pgdat = NODE_DATA(nid);
7773 	spin_lock_init(&zone->lock);
7774 	zone_seqlock_init(zone);
7775 	zone_pcp_init(zone);
7776 }
7777 
7778 /*
7779  * Set up the zone data structures
7780  * - init pgdat internals
7781  * - init all zones belonging to this node
7782  *
7783  * NOTE: this function is only called during memory hotplug
7784  */
7785 #ifdef CONFIG_MEMORY_HOTPLUG
7786 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7787 {
7788 	int nid = pgdat->node_id;
7789 	enum zone_type z;
7790 	int cpu;
7791 
7792 	pgdat_init_internals(pgdat);
7793 
7794 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7795 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7796 
7797 	/*
7798 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7799 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7800 	 * when it starts in the near future.
7801 	 */
7802 	pgdat->nr_zones = 0;
7803 	pgdat->kswapd_order = 0;
7804 	pgdat->kswapd_highest_zoneidx = 0;
7805 	pgdat->node_start_pfn = 0;
7806 	for_each_online_cpu(cpu) {
7807 		struct per_cpu_nodestat *p;
7808 
7809 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7810 		memset(p, 0, sizeof(*p));
7811 	}
7812 
7813 	for (z = 0; z < MAX_NR_ZONES; z++)
7814 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7815 }
7816 #endif
7817 
7818 /*
7819  * Set up the zone data structures:
7820  *   - mark all pages reserved
7821  *   - mark all memory queues empty
7822  *   - clear the memory bitmaps
7823  *
7824  * NOTE: pgdat should get zeroed by caller.
7825  * NOTE: this function is only called during early init.
7826  */
7827 static void __init free_area_init_core(struct pglist_data *pgdat)
7828 {
7829 	enum zone_type j;
7830 	int nid = pgdat->node_id;
7831 
7832 	pgdat_init_internals(pgdat);
7833 	pgdat->per_cpu_nodestats = &boot_nodestats;
7834 
7835 	for (j = 0; j < MAX_NR_ZONES; j++) {
7836 		struct zone *zone = pgdat->node_zones + j;
7837 		unsigned long size, freesize, memmap_pages;
7838 
7839 		size = zone->spanned_pages;
7840 		freesize = zone->present_pages;
7841 
7842 		/*
7843 		 * Adjust freesize so that it accounts for how much memory
7844 		 * is used by this zone for memmap. This affects the watermark
7845 		 * and per-cpu initialisations
7846 		 */
7847 		memmap_pages = calc_memmap_size(size, freesize);
7848 		if (!is_highmem_idx(j)) {
7849 			if (freesize >= memmap_pages) {
7850 				freesize -= memmap_pages;
7851 				if (memmap_pages)
7852 					pr_debug("  %s zone: %lu pages used for memmap\n",
7853 						 zone_names[j], memmap_pages);
7854 			} else
7855 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7856 					zone_names[j], memmap_pages, freesize);
7857 		}
7858 
7859 		/* Account for reserved pages */
7860 		if (j == 0 && freesize > dma_reserve) {
7861 			freesize -= dma_reserve;
7862 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7863 		}
7864 
7865 		if (!is_highmem_idx(j))
7866 			nr_kernel_pages += freesize;
7867 		/* Charge for highmem memmap if there are enough kernel pages */
7868 		else if (nr_kernel_pages > memmap_pages * 2)
7869 			nr_kernel_pages -= memmap_pages;
7870 		nr_all_pages += freesize;
7871 
7872 		/*
7873 		 * Set an approximate value for lowmem here, it will be adjusted
7874 		 * when the bootmem allocator frees pages into the buddy system.
7875 		 * And all highmem pages will be managed by the buddy system.
7876 		 */
7877 		zone_init_internals(zone, j, nid, freesize);
7878 
7879 		if (!size)
7880 			continue;
7881 
7882 		set_pageblock_order();
7883 		setup_usemap(zone);
7884 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7885 	}
7886 }
7887 
7888 #ifdef CONFIG_FLATMEM
7889 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7890 {
7891 	unsigned long __maybe_unused start = 0;
7892 	unsigned long __maybe_unused offset = 0;
7893 
7894 	/* Skip empty nodes */
7895 	if (!pgdat->node_spanned_pages)
7896 		return;
7897 
7898 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7899 	offset = pgdat->node_start_pfn - start;
7900 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7901 	if (!pgdat->node_mem_map) {
7902 		unsigned long size, end;
7903 		struct page *map;
7904 
7905 		/*
7906 		 * The zone's endpoints aren't required to be MAX_ORDER
7907 		 * aligned but the node_mem_map endpoints must be in order
7908 		 * for the buddy allocator to function correctly.
7909 		 */
7910 		end = pgdat_end_pfn(pgdat);
7911 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7912 		size =  (end - start) * sizeof(struct page);
7913 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7914 				   pgdat->node_id, false);
7915 		if (!map)
7916 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7917 			      size, pgdat->node_id);
7918 		pgdat->node_mem_map = map + offset;
7919 	}
7920 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7921 				__func__, pgdat->node_id, (unsigned long)pgdat,
7922 				(unsigned long)pgdat->node_mem_map);
7923 #ifndef CONFIG_NUMA
7924 	/*
7925 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7926 	 */
7927 	if (pgdat == NODE_DATA(0)) {
7928 		mem_map = NODE_DATA(0)->node_mem_map;
7929 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7930 			mem_map -= offset;
7931 	}
7932 #endif
7933 }
7934 #else
7935 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7936 #endif /* CONFIG_FLATMEM */
7937 
7938 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7939 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7940 {
7941 	pgdat->first_deferred_pfn = ULONG_MAX;
7942 }
7943 #else
7944 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7945 #endif
7946 
7947 static void __init free_area_init_node(int nid)
7948 {
7949 	pg_data_t *pgdat = NODE_DATA(nid);
7950 	unsigned long start_pfn = 0;
7951 	unsigned long end_pfn = 0;
7952 
7953 	/* pg_data_t should be reset to zero when it's allocated */
7954 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7955 
7956 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7957 
7958 	pgdat->node_id = nid;
7959 	pgdat->node_start_pfn = start_pfn;
7960 	pgdat->per_cpu_nodestats = NULL;
7961 
7962 	if (start_pfn != end_pfn) {
7963 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7964 			(u64)start_pfn << PAGE_SHIFT,
7965 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7966 	} else {
7967 		pr_info("Initmem setup node %d as memoryless\n", nid);
7968 	}
7969 
7970 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7971 
7972 	alloc_node_mem_map(pgdat);
7973 	pgdat_set_deferred_range(pgdat);
7974 
7975 	free_area_init_core(pgdat);
7976 	lru_gen_init_pgdat(pgdat);
7977 }
7978 
7979 static void __init free_area_init_memoryless_node(int nid)
7980 {
7981 	free_area_init_node(nid);
7982 }
7983 
7984 #if MAX_NUMNODES > 1
7985 /*
7986  * Figure out the number of possible node ids.
7987  */
7988 void __init setup_nr_node_ids(void)
7989 {
7990 	unsigned int highest;
7991 
7992 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7993 	nr_node_ids = highest + 1;
7994 }
7995 #endif
7996 
7997 /**
7998  * node_map_pfn_alignment - determine the maximum internode alignment
7999  *
8000  * This function should be called after node map is populated and sorted.
8001  * It calculates the maximum power of two alignment which can distinguish
8002  * all the nodes.
8003  *
8004  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
8005  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
8006  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
8007  * shifted, 1GiB is enough and this function will indicate so.
8008  *
8009  * This is used to test whether pfn -> nid mapping of the chosen memory
8010  * model has fine enough granularity to avoid incorrect mapping for the
8011  * populated node map.
8012  *
8013  * Return: the determined alignment in pfn's.  0 if there is no alignment
8014  * requirement (single node).
8015  */
8016 unsigned long __init node_map_pfn_alignment(void)
8017 {
8018 	unsigned long accl_mask = 0, last_end = 0;
8019 	unsigned long start, end, mask;
8020 	int last_nid = NUMA_NO_NODE;
8021 	int i, nid;
8022 
8023 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
8024 		if (!start || last_nid < 0 || last_nid == nid) {
8025 			last_nid = nid;
8026 			last_end = end;
8027 			continue;
8028 		}
8029 
8030 		/*
8031 		 * Start with a mask granular enough to pin-point to the
8032 		 * start pfn and tick off bits one-by-one until it becomes
8033 		 * too coarse to separate the current node from the last.
8034 		 */
8035 		mask = ~((1 << __ffs(start)) - 1);
8036 		while (mask && last_end <= (start & (mask << 1)))
8037 			mask <<= 1;
8038 
8039 		/* accumulate all internode masks */
8040 		accl_mask |= mask;
8041 	}
8042 
8043 	/* convert mask to number of pages */
8044 	return ~accl_mask + 1;
8045 }
8046 
8047 /*
8048  * early_calculate_totalpages()
8049  * Sum pages in active regions for movable zone.
8050  * Populate N_MEMORY for calculating usable_nodes.
8051  */
8052 static unsigned long __init early_calculate_totalpages(void)
8053 {
8054 	unsigned long totalpages = 0;
8055 	unsigned long start_pfn, end_pfn;
8056 	int i, nid;
8057 
8058 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8059 		unsigned long pages = end_pfn - start_pfn;
8060 
8061 		totalpages += pages;
8062 		if (pages)
8063 			node_set_state(nid, N_MEMORY);
8064 	}
8065 	return totalpages;
8066 }
8067 
8068 /*
8069  * Find the PFN the Movable zone begins in each node. Kernel memory
8070  * is spread evenly between nodes as long as the nodes have enough
8071  * memory. When they don't, some nodes will have more kernelcore than
8072  * others
8073  */
8074 static void __init find_zone_movable_pfns_for_nodes(void)
8075 {
8076 	int i, nid;
8077 	unsigned long usable_startpfn;
8078 	unsigned long kernelcore_node, kernelcore_remaining;
8079 	/* save the state before borrow the nodemask */
8080 	nodemask_t saved_node_state = node_states[N_MEMORY];
8081 	unsigned long totalpages = early_calculate_totalpages();
8082 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8083 	struct memblock_region *r;
8084 
8085 	/* Need to find movable_zone earlier when movable_node is specified. */
8086 	find_usable_zone_for_movable();
8087 
8088 	/*
8089 	 * If movable_node is specified, ignore kernelcore and movablecore
8090 	 * options.
8091 	 */
8092 	if (movable_node_is_enabled()) {
8093 		for_each_mem_region(r) {
8094 			if (!memblock_is_hotpluggable(r))
8095 				continue;
8096 
8097 			nid = memblock_get_region_node(r);
8098 
8099 			usable_startpfn = PFN_DOWN(r->base);
8100 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8101 				min(usable_startpfn, zone_movable_pfn[nid]) :
8102 				usable_startpfn;
8103 		}
8104 
8105 		goto out2;
8106 	}
8107 
8108 	/*
8109 	 * If kernelcore=mirror is specified, ignore movablecore option
8110 	 */
8111 	if (mirrored_kernelcore) {
8112 		bool mem_below_4gb_not_mirrored = false;
8113 
8114 		for_each_mem_region(r) {
8115 			if (memblock_is_mirror(r))
8116 				continue;
8117 
8118 			nid = memblock_get_region_node(r);
8119 
8120 			usable_startpfn = memblock_region_memory_base_pfn(r);
8121 
8122 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8123 				mem_below_4gb_not_mirrored = true;
8124 				continue;
8125 			}
8126 
8127 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8128 				min(usable_startpfn, zone_movable_pfn[nid]) :
8129 				usable_startpfn;
8130 		}
8131 
8132 		if (mem_below_4gb_not_mirrored)
8133 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8134 
8135 		goto out2;
8136 	}
8137 
8138 	/*
8139 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8140 	 * amount of necessary memory.
8141 	 */
8142 	if (required_kernelcore_percent)
8143 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8144 				       10000UL;
8145 	if (required_movablecore_percent)
8146 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8147 					10000UL;
8148 
8149 	/*
8150 	 * If movablecore= was specified, calculate what size of
8151 	 * kernelcore that corresponds so that memory usable for
8152 	 * any allocation type is evenly spread. If both kernelcore
8153 	 * and movablecore are specified, then the value of kernelcore
8154 	 * will be used for required_kernelcore if it's greater than
8155 	 * what movablecore would have allowed.
8156 	 */
8157 	if (required_movablecore) {
8158 		unsigned long corepages;
8159 
8160 		/*
8161 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8162 		 * was requested by the user
8163 		 */
8164 		required_movablecore =
8165 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8166 		required_movablecore = min(totalpages, required_movablecore);
8167 		corepages = totalpages - required_movablecore;
8168 
8169 		required_kernelcore = max(required_kernelcore, corepages);
8170 	}
8171 
8172 	/*
8173 	 * If kernelcore was not specified or kernelcore size is larger
8174 	 * than totalpages, there is no ZONE_MOVABLE.
8175 	 */
8176 	if (!required_kernelcore || required_kernelcore >= totalpages)
8177 		goto out;
8178 
8179 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8180 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8181 
8182 restart:
8183 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8184 	kernelcore_node = required_kernelcore / usable_nodes;
8185 	for_each_node_state(nid, N_MEMORY) {
8186 		unsigned long start_pfn, end_pfn;
8187 
8188 		/*
8189 		 * Recalculate kernelcore_node if the division per node
8190 		 * now exceeds what is necessary to satisfy the requested
8191 		 * amount of memory for the kernel
8192 		 */
8193 		if (required_kernelcore < kernelcore_node)
8194 			kernelcore_node = required_kernelcore / usable_nodes;
8195 
8196 		/*
8197 		 * As the map is walked, we track how much memory is usable
8198 		 * by the kernel using kernelcore_remaining. When it is
8199 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8200 		 */
8201 		kernelcore_remaining = kernelcore_node;
8202 
8203 		/* Go through each range of PFNs within this node */
8204 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8205 			unsigned long size_pages;
8206 
8207 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8208 			if (start_pfn >= end_pfn)
8209 				continue;
8210 
8211 			/* Account for what is only usable for kernelcore */
8212 			if (start_pfn < usable_startpfn) {
8213 				unsigned long kernel_pages;
8214 				kernel_pages = min(end_pfn, usable_startpfn)
8215 								- start_pfn;
8216 
8217 				kernelcore_remaining -= min(kernel_pages,
8218 							kernelcore_remaining);
8219 				required_kernelcore -= min(kernel_pages,
8220 							required_kernelcore);
8221 
8222 				/* Continue if range is now fully accounted */
8223 				if (end_pfn <= usable_startpfn) {
8224 
8225 					/*
8226 					 * Push zone_movable_pfn to the end so
8227 					 * that if we have to rebalance
8228 					 * kernelcore across nodes, we will
8229 					 * not double account here
8230 					 */
8231 					zone_movable_pfn[nid] = end_pfn;
8232 					continue;
8233 				}
8234 				start_pfn = usable_startpfn;
8235 			}
8236 
8237 			/*
8238 			 * The usable PFN range for ZONE_MOVABLE is from
8239 			 * start_pfn->end_pfn. Calculate size_pages as the
8240 			 * number of pages used as kernelcore
8241 			 */
8242 			size_pages = end_pfn - start_pfn;
8243 			if (size_pages > kernelcore_remaining)
8244 				size_pages = kernelcore_remaining;
8245 			zone_movable_pfn[nid] = start_pfn + size_pages;
8246 
8247 			/*
8248 			 * Some kernelcore has been met, update counts and
8249 			 * break if the kernelcore for this node has been
8250 			 * satisfied
8251 			 */
8252 			required_kernelcore -= min(required_kernelcore,
8253 								size_pages);
8254 			kernelcore_remaining -= size_pages;
8255 			if (!kernelcore_remaining)
8256 				break;
8257 		}
8258 	}
8259 
8260 	/*
8261 	 * If there is still required_kernelcore, we do another pass with one
8262 	 * less node in the count. This will push zone_movable_pfn[nid] further
8263 	 * along on the nodes that still have memory until kernelcore is
8264 	 * satisfied
8265 	 */
8266 	usable_nodes--;
8267 	if (usable_nodes && required_kernelcore > usable_nodes)
8268 		goto restart;
8269 
8270 out2:
8271 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8272 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8273 		unsigned long start_pfn, end_pfn;
8274 
8275 		zone_movable_pfn[nid] =
8276 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8277 
8278 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8279 		if (zone_movable_pfn[nid] >= end_pfn)
8280 			zone_movable_pfn[nid] = 0;
8281 	}
8282 
8283 out:
8284 	/* restore the node_state */
8285 	node_states[N_MEMORY] = saved_node_state;
8286 }
8287 
8288 /* Any regular or high memory on that node ? */
8289 static void check_for_memory(pg_data_t *pgdat, int nid)
8290 {
8291 	enum zone_type zone_type;
8292 
8293 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8294 		struct zone *zone = &pgdat->node_zones[zone_type];
8295 		if (populated_zone(zone)) {
8296 			if (IS_ENABLED(CONFIG_HIGHMEM))
8297 				node_set_state(nid, N_HIGH_MEMORY);
8298 			if (zone_type <= ZONE_NORMAL)
8299 				node_set_state(nid, N_NORMAL_MEMORY);
8300 			break;
8301 		}
8302 	}
8303 }
8304 
8305 /*
8306  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8307  * such cases we allow max_zone_pfn sorted in the descending order
8308  */
8309 bool __weak arch_has_descending_max_zone_pfns(void)
8310 {
8311 	return false;
8312 }
8313 
8314 /**
8315  * free_area_init - Initialise all pg_data_t and zone data
8316  * @max_zone_pfn: an array of max PFNs for each zone
8317  *
8318  * This will call free_area_init_node() for each active node in the system.
8319  * Using the page ranges provided by memblock_set_node(), the size of each
8320  * zone in each node and their holes is calculated. If the maximum PFN
8321  * between two adjacent zones match, it is assumed that the zone is empty.
8322  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8323  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8324  * starts where the previous one ended. For example, ZONE_DMA32 starts
8325  * at arch_max_dma_pfn.
8326  */
8327 void __init free_area_init(unsigned long *max_zone_pfn)
8328 {
8329 	unsigned long start_pfn, end_pfn;
8330 	int i, nid, zone;
8331 	bool descending;
8332 
8333 	/* Record where the zone boundaries are */
8334 	memset(arch_zone_lowest_possible_pfn, 0,
8335 				sizeof(arch_zone_lowest_possible_pfn));
8336 	memset(arch_zone_highest_possible_pfn, 0,
8337 				sizeof(arch_zone_highest_possible_pfn));
8338 
8339 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8340 	descending = arch_has_descending_max_zone_pfns();
8341 
8342 	for (i = 0; i < MAX_NR_ZONES; i++) {
8343 		if (descending)
8344 			zone = MAX_NR_ZONES - i - 1;
8345 		else
8346 			zone = i;
8347 
8348 		if (zone == ZONE_MOVABLE)
8349 			continue;
8350 
8351 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8352 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8353 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8354 
8355 		start_pfn = end_pfn;
8356 	}
8357 
8358 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8359 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8360 	find_zone_movable_pfns_for_nodes();
8361 
8362 	/* Print out the zone ranges */
8363 	pr_info("Zone ranges:\n");
8364 	for (i = 0; i < MAX_NR_ZONES; i++) {
8365 		if (i == ZONE_MOVABLE)
8366 			continue;
8367 		pr_info("  %-8s ", zone_names[i]);
8368 		if (arch_zone_lowest_possible_pfn[i] ==
8369 				arch_zone_highest_possible_pfn[i])
8370 			pr_cont("empty\n");
8371 		else
8372 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8373 				(u64)arch_zone_lowest_possible_pfn[i]
8374 					<< PAGE_SHIFT,
8375 				((u64)arch_zone_highest_possible_pfn[i]
8376 					<< PAGE_SHIFT) - 1);
8377 	}
8378 
8379 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8380 	pr_info("Movable zone start for each node\n");
8381 	for (i = 0; i < MAX_NUMNODES; i++) {
8382 		if (zone_movable_pfn[i])
8383 			pr_info("  Node %d: %#018Lx\n", i,
8384 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8385 	}
8386 
8387 	/*
8388 	 * Print out the early node map, and initialize the
8389 	 * subsection-map relative to active online memory ranges to
8390 	 * enable future "sub-section" extensions of the memory map.
8391 	 */
8392 	pr_info("Early memory node ranges\n");
8393 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8394 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8395 			(u64)start_pfn << PAGE_SHIFT,
8396 			((u64)end_pfn << PAGE_SHIFT) - 1);
8397 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8398 	}
8399 
8400 	/* Initialise every node */
8401 	mminit_verify_pageflags_layout();
8402 	setup_nr_node_ids();
8403 	for_each_node(nid) {
8404 		pg_data_t *pgdat;
8405 
8406 		if (!node_online(nid)) {
8407 			pr_info("Initializing node %d as memoryless\n", nid);
8408 
8409 			/* Allocator not initialized yet */
8410 			pgdat = arch_alloc_nodedata(nid);
8411 			if (!pgdat)
8412 				panic("Cannot allocate %zuB for node %d.\n",
8413 				       sizeof(*pgdat), nid);
8414 			arch_refresh_nodedata(nid, pgdat);
8415 			free_area_init_memoryless_node(nid);
8416 
8417 			/*
8418 			 * We do not want to confuse userspace by sysfs
8419 			 * files/directories for node without any memory
8420 			 * attached to it, so this node is not marked as
8421 			 * N_MEMORY and not marked online so that no sysfs
8422 			 * hierarchy will be created via register_one_node for
8423 			 * it. The pgdat will get fully initialized by
8424 			 * hotadd_init_pgdat() when memory is hotplugged into
8425 			 * this node.
8426 			 */
8427 			continue;
8428 		}
8429 
8430 		pgdat = NODE_DATA(nid);
8431 		free_area_init_node(nid);
8432 
8433 		/* Any memory on that node */
8434 		if (pgdat->node_present_pages)
8435 			node_set_state(nid, N_MEMORY);
8436 		check_for_memory(pgdat, nid);
8437 	}
8438 
8439 	memmap_init();
8440 }
8441 
8442 static int __init cmdline_parse_core(char *p, unsigned long *core,
8443 				     unsigned long *percent)
8444 {
8445 	unsigned long long coremem;
8446 	char *endptr;
8447 
8448 	if (!p)
8449 		return -EINVAL;
8450 
8451 	/* Value may be a percentage of total memory, otherwise bytes */
8452 	coremem = simple_strtoull(p, &endptr, 0);
8453 	if (*endptr == '%') {
8454 		/* Paranoid check for percent values greater than 100 */
8455 		WARN_ON(coremem > 100);
8456 
8457 		*percent = coremem;
8458 	} else {
8459 		coremem = memparse(p, &p);
8460 		/* Paranoid check that UL is enough for the coremem value */
8461 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8462 
8463 		*core = coremem >> PAGE_SHIFT;
8464 		*percent = 0UL;
8465 	}
8466 	return 0;
8467 }
8468 
8469 /*
8470  * kernelcore=size sets the amount of memory for use for allocations that
8471  * cannot be reclaimed or migrated.
8472  */
8473 static int __init cmdline_parse_kernelcore(char *p)
8474 {
8475 	/* parse kernelcore=mirror */
8476 	if (parse_option_str(p, "mirror")) {
8477 		mirrored_kernelcore = true;
8478 		return 0;
8479 	}
8480 
8481 	return cmdline_parse_core(p, &required_kernelcore,
8482 				  &required_kernelcore_percent);
8483 }
8484 
8485 /*
8486  * movablecore=size sets the amount of memory for use for allocations that
8487  * can be reclaimed or migrated.
8488  */
8489 static int __init cmdline_parse_movablecore(char *p)
8490 {
8491 	return cmdline_parse_core(p, &required_movablecore,
8492 				  &required_movablecore_percent);
8493 }
8494 
8495 early_param("kernelcore", cmdline_parse_kernelcore);
8496 early_param("movablecore", cmdline_parse_movablecore);
8497 
8498 void adjust_managed_page_count(struct page *page, long count)
8499 {
8500 	atomic_long_add(count, &page_zone(page)->managed_pages);
8501 	totalram_pages_add(count);
8502 #ifdef CONFIG_HIGHMEM
8503 	if (PageHighMem(page))
8504 		totalhigh_pages_add(count);
8505 #endif
8506 }
8507 EXPORT_SYMBOL(adjust_managed_page_count);
8508 
8509 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8510 {
8511 	void *pos;
8512 	unsigned long pages = 0;
8513 
8514 	start = (void *)PAGE_ALIGN((unsigned long)start);
8515 	end = (void *)((unsigned long)end & PAGE_MASK);
8516 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8517 		struct page *page = virt_to_page(pos);
8518 		void *direct_map_addr;
8519 
8520 		/*
8521 		 * 'direct_map_addr' might be different from 'pos'
8522 		 * because some architectures' virt_to_page()
8523 		 * work with aliases.  Getting the direct map
8524 		 * address ensures that we get a _writeable_
8525 		 * alias for the memset().
8526 		 */
8527 		direct_map_addr = page_address(page);
8528 		/*
8529 		 * Perform a kasan-unchecked memset() since this memory
8530 		 * has not been initialized.
8531 		 */
8532 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8533 		if ((unsigned int)poison <= 0xFF)
8534 			memset(direct_map_addr, poison, PAGE_SIZE);
8535 
8536 		free_reserved_page(page);
8537 	}
8538 
8539 	if (pages && s)
8540 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8541 
8542 	return pages;
8543 }
8544 
8545 void __init mem_init_print_info(void)
8546 {
8547 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8548 	unsigned long init_code_size, init_data_size;
8549 
8550 	physpages = get_num_physpages();
8551 	codesize = _etext - _stext;
8552 	datasize = _edata - _sdata;
8553 	rosize = __end_rodata - __start_rodata;
8554 	bss_size = __bss_stop - __bss_start;
8555 	init_data_size = __init_end - __init_begin;
8556 	init_code_size = _einittext - _sinittext;
8557 
8558 	/*
8559 	 * Detect special cases and adjust section sizes accordingly:
8560 	 * 1) .init.* may be embedded into .data sections
8561 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8562 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8563 	 * 3) .rodata.* may be embedded into .text or .data sections.
8564 	 */
8565 #define adj_init_size(start, end, size, pos, adj) \
8566 	do { \
8567 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8568 			size -= adj; \
8569 	} while (0)
8570 
8571 	adj_init_size(__init_begin, __init_end, init_data_size,
8572 		     _sinittext, init_code_size);
8573 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8574 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8575 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8576 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8577 
8578 #undef	adj_init_size
8579 
8580 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8581 #ifdef	CONFIG_HIGHMEM
8582 		", %luK highmem"
8583 #endif
8584 		")\n",
8585 		K(nr_free_pages()), K(physpages),
8586 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8587 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8588 		K(physpages - totalram_pages() - totalcma_pages),
8589 		K(totalcma_pages)
8590 #ifdef	CONFIG_HIGHMEM
8591 		, K(totalhigh_pages())
8592 #endif
8593 		);
8594 }
8595 
8596 /**
8597  * set_dma_reserve - set the specified number of pages reserved in the first zone
8598  * @new_dma_reserve: The number of pages to mark reserved
8599  *
8600  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8601  * In the DMA zone, a significant percentage may be consumed by kernel image
8602  * and other unfreeable allocations which can skew the watermarks badly. This
8603  * function may optionally be used to account for unfreeable pages in the
8604  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8605  * smaller per-cpu batchsize.
8606  */
8607 void __init set_dma_reserve(unsigned long new_dma_reserve)
8608 {
8609 	dma_reserve = new_dma_reserve;
8610 }
8611 
8612 static int page_alloc_cpu_dead(unsigned int cpu)
8613 {
8614 	struct zone *zone;
8615 
8616 	lru_add_drain_cpu(cpu);
8617 	mlock_drain_remote(cpu);
8618 	drain_pages(cpu);
8619 
8620 	/*
8621 	 * Spill the event counters of the dead processor
8622 	 * into the current processors event counters.
8623 	 * This artificially elevates the count of the current
8624 	 * processor.
8625 	 */
8626 	vm_events_fold_cpu(cpu);
8627 
8628 	/*
8629 	 * Zero the differential counters of the dead processor
8630 	 * so that the vm statistics are consistent.
8631 	 *
8632 	 * This is only okay since the processor is dead and cannot
8633 	 * race with what we are doing.
8634 	 */
8635 	cpu_vm_stats_fold(cpu);
8636 
8637 	for_each_populated_zone(zone)
8638 		zone_pcp_update(zone, 0);
8639 
8640 	return 0;
8641 }
8642 
8643 static int page_alloc_cpu_online(unsigned int cpu)
8644 {
8645 	struct zone *zone;
8646 
8647 	for_each_populated_zone(zone)
8648 		zone_pcp_update(zone, 1);
8649 	return 0;
8650 }
8651 
8652 #ifdef CONFIG_NUMA
8653 int hashdist = HASHDIST_DEFAULT;
8654 
8655 static int __init set_hashdist(char *str)
8656 {
8657 	if (!str)
8658 		return 0;
8659 	hashdist = simple_strtoul(str, &str, 0);
8660 	return 1;
8661 }
8662 __setup("hashdist=", set_hashdist);
8663 #endif
8664 
8665 void __init page_alloc_init(void)
8666 {
8667 	int ret;
8668 
8669 #ifdef CONFIG_NUMA
8670 	if (num_node_state(N_MEMORY) == 1)
8671 		hashdist = 0;
8672 #endif
8673 
8674 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8675 					"mm/page_alloc:pcp",
8676 					page_alloc_cpu_online,
8677 					page_alloc_cpu_dead);
8678 	WARN_ON(ret < 0);
8679 }
8680 
8681 /*
8682  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8683  *	or min_free_kbytes changes.
8684  */
8685 static void calculate_totalreserve_pages(void)
8686 {
8687 	struct pglist_data *pgdat;
8688 	unsigned long reserve_pages = 0;
8689 	enum zone_type i, j;
8690 
8691 	for_each_online_pgdat(pgdat) {
8692 
8693 		pgdat->totalreserve_pages = 0;
8694 
8695 		for (i = 0; i < MAX_NR_ZONES; i++) {
8696 			struct zone *zone = pgdat->node_zones + i;
8697 			long max = 0;
8698 			unsigned long managed_pages = zone_managed_pages(zone);
8699 
8700 			/* Find valid and maximum lowmem_reserve in the zone */
8701 			for (j = i; j < MAX_NR_ZONES; j++) {
8702 				if (zone->lowmem_reserve[j] > max)
8703 					max = zone->lowmem_reserve[j];
8704 			}
8705 
8706 			/* we treat the high watermark as reserved pages. */
8707 			max += high_wmark_pages(zone);
8708 
8709 			if (max > managed_pages)
8710 				max = managed_pages;
8711 
8712 			pgdat->totalreserve_pages += max;
8713 
8714 			reserve_pages += max;
8715 		}
8716 	}
8717 	totalreserve_pages = reserve_pages;
8718 }
8719 
8720 /*
8721  * setup_per_zone_lowmem_reserve - called whenever
8722  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8723  *	has a correct pages reserved value, so an adequate number of
8724  *	pages are left in the zone after a successful __alloc_pages().
8725  */
8726 static void setup_per_zone_lowmem_reserve(void)
8727 {
8728 	struct pglist_data *pgdat;
8729 	enum zone_type i, j;
8730 
8731 	for_each_online_pgdat(pgdat) {
8732 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8733 			struct zone *zone = &pgdat->node_zones[i];
8734 			int ratio = sysctl_lowmem_reserve_ratio[i];
8735 			bool clear = !ratio || !zone_managed_pages(zone);
8736 			unsigned long managed_pages = 0;
8737 
8738 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8739 				struct zone *upper_zone = &pgdat->node_zones[j];
8740 
8741 				managed_pages += zone_managed_pages(upper_zone);
8742 
8743 				if (clear)
8744 					zone->lowmem_reserve[j] = 0;
8745 				else
8746 					zone->lowmem_reserve[j] = managed_pages / ratio;
8747 			}
8748 		}
8749 	}
8750 
8751 	/* update totalreserve_pages */
8752 	calculate_totalreserve_pages();
8753 }
8754 
8755 static void __setup_per_zone_wmarks(void)
8756 {
8757 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8758 	unsigned long lowmem_pages = 0;
8759 	struct zone *zone;
8760 	unsigned long flags;
8761 
8762 	/* Calculate total number of !ZONE_HIGHMEM pages */
8763 	for_each_zone(zone) {
8764 		if (!is_highmem(zone))
8765 			lowmem_pages += zone_managed_pages(zone);
8766 	}
8767 
8768 	for_each_zone(zone) {
8769 		u64 tmp;
8770 
8771 		spin_lock_irqsave(&zone->lock, flags);
8772 		tmp = (u64)pages_min * zone_managed_pages(zone);
8773 		do_div(tmp, lowmem_pages);
8774 		if (is_highmem(zone)) {
8775 			/*
8776 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8777 			 * need highmem pages, so cap pages_min to a small
8778 			 * value here.
8779 			 *
8780 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8781 			 * deltas control async page reclaim, and so should
8782 			 * not be capped for highmem.
8783 			 */
8784 			unsigned long min_pages;
8785 
8786 			min_pages = zone_managed_pages(zone) / 1024;
8787 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8788 			zone->_watermark[WMARK_MIN] = min_pages;
8789 		} else {
8790 			/*
8791 			 * If it's a lowmem zone, reserve a number of pages
8792 			 * proportionate to the zone's size.
8793 			 */
8794 			zone->_watermark[WMARK_MIN] = tmp;
8795 		}
8796 
8797 		/*
8798 		 * Set the kswapd watermarks distance according to the
8799 		 * scale factor in proportion to available memory, but
8800 		 * ensure a minimum size on small systems.
8801 		 */
8802 		tmp = max_t(u64, tmp >> 2,
8803 			    mult_frac(zone_managed_pages(zone),
8804 				      watermark_scale_factor, 10000));
8805 
8806 		zone->watermark_boost = 0;
8807 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8808 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8809 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8810 
8811 		spin_unlock_irqrestore(&zone->lock, flags);
8812 	}
8813 
8814 	/* update totalreserve_pages */
8815 	calculate_totalreserve_pages();
8816 }
8817 
8818 /**
8819  * setup_per_zone_wmarks - called when min_free_kbytes changes
8820  * or when memory is hot-{added|removed}
8821  *
8822  * Ensures that the watermark[min,low,high] values for each zone are set
8823  * correctly with respect to min_free_kbytes.
8824  */
8825 void setup_per_zone_wmarks(void)
8826 {
8827 	struct zone *zone;
8828 	static DEFINE_SPINLOCK(lock);
8829 
8830 	spin_lock(&lock);
8831 	__setup_per_zone_wmarks();
8832 	spin_unlock(&lock);
8833 
8834 	/*
8835 	 * The watermark size have changed so update the pcpu batch
8836 	 * and high limits or the limits may be inappropriate.
8837 	 */
8838 	for_each_zone(zone)
8839 		zone_pcp_update(zone, 0);
8840 }
8841 
8842 /*
8843  * Initialise min_free_kbytes.
8844  *
8845  * For small machines we want it small (128k min).  For large machines
8846  * we want it large (256MB max).  But it is not linear, because network
8847  * bandwidth does not increase linearly with machine size.  We use
8848  *
8849  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8850  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8851  *
8852  * which yields
8853  *
8854  * 16MB:	512k
8855  * 32MB:	724k
8856  * 64MB:	1024k
8857  * 128MB:	1448k
8858  * 256MB:	2048k
8859  * 512MB:	2896k
8860  * 1024MB:	4096k
8861  * 2048MB:	5792k
8862  * 4096MB:	8192k
8863  * 8192MB:	11584k
8864  * 16384MB:	16384k
8865  */
8866 void calculate_min_free_kbytes(void)
8867 {
8868 	unsigned long lowmem_kbytes;
8869 	int new_min_free_kbytes;
8870 
8871 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8872 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8873 
8874 	if (new_min_free_kbytes > user_min_free_kbytes)
8875 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8876 	else
8877 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8878 				new_min_free_kbytes, user_min_free_kbytes);
8879 
8880 }
8881 
8882 int __meminit init_per_zone_wmark_min(void)
8883 {
8884 	calculate_min_free_kbytes();
8885 	setup_per_zone_wmarks();
8886 	refresh_zone_stat_thresholds();
8887 	setup_per_zone_lowmem_reserve();
8888 
8889 #ifdef CONFIG_NUMA
8890 	setup_min_unmapped_ratio();
8891 	setup_min_slab_ratio();
8892 #endif
8893 
8894 	khugepaged_min_free_kbytes_update();
8895 
8896 	return 0;
8897 }
8898 postcore_initcall(init_per_zone_wmark_min)
8899 
8900 /*
8901  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8902  *	that we can call two helper functions whenever min_free_kbytes
8903  *	changes.
8904  */
8905 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8906 		void *buffer, size_t *length, loff_t *ppos)
8907 {
8908 	int rc;
8909 
8910 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8911 	if (rc)
8912 		return rc;
8913 
8914 	if (write) {
8915 		user_min_free_kbytes = min_free_kbytes;
8916 		setup_per_zone_wmarks();
8917 	}
8918 	return 0;
8919 }
8920 
8921 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8922 		void *buffer, size_t *length, loff_t *ppos)
8923 {
8924 	int rc;
8925 
8926 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8927 	if (rc)
8928 		return rc;
8929 
8930 	if (write)
8931 		setup_per_zone_wmarks();
8932 
8933 	return 0;
8934 }
8935 
8936 #ifdef CONFIG_NUMA
8937 static void setup_min_unmapped_ratio(void)
8938 {
8939 	pg_data_t *pgdat;
8940 	struct zone *zone;
8941 
8942 	for_each_online_pgdat(pgdat)
8943 		pgdat->min_unmapped_pages = 0;
8944 
8945 	for_each_zone(zone)
8946 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8947 						         sysctl_min_unmapped_ratio) / 100;
8948 }
8949 
8950 
8951 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8952 		void *buffer, size_t *length, loff_t *ppos)
8953 {
8954 	int rc;
8955 
8956 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8957 	if (rc)
8958 		return rc;
8959 
8960 	setup_min_unmapped_ratio();
8961 
8962 	return 0;
8963 }
8964 
8965 static void setup_min_slab_ratio(void)
8966 {
8967 	pg_data_t *pgdat;
8968 	struct zone *zone;
8969 
8970 	for_each_online_pgdat(pgdat)
8971 		pgdat->min_slab_pages = 0;
8972 
8973 	for_each_zone(zone)
8974 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8975 						     sysctl_min_slab_ratio) / 100;
8976 }
8977 
8978 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8979 		void *buffer, size_t *length, loff_t *ppos)
8980 {
8981 	int rc;
8982 
8983 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8984 	if (rc)
8985 		return rc;
8986 
8987 	setup_min_slab_ratio();
8988 
8989 	return 0;
8990 }
8991 #endif
8992 
8993 /*
8994  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8995  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8996  *	whenever sysctl_lowmem_reserve_ratio changes.
8997  *
8998  * The reserve ratio obviously has absolutely no relation with the
8999  * minimum watermarks. The lowmem reserve ratio can only make sense
9000  * if in function of the boot time zone sizes.
9001  */
9002 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
9003 		void *buffer, size_t *length, loff_t *ppos)
9004 {
9005 	int i;
9006 
9007 	proc_dointvec_minmax(table, write, buffer, length, ppos);
9008 
9009 	for (i = 0; i < MAX_NR_ZONES; i++) {
9010 		if (sysctl_lowmem_reserve_ratio[i] < 1)
9011 			sysctl_lowmem_reserve_ratio[i] = 0;
9012 	}
9013 
9014 	setup_per_zone_lowmem_reserve();
9015 	return 0;
9016 }
9017 
9018 /*
9019  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9020  * cpu. It is the fraction of total pages in each zone that a hot per cpu
9021  * pagelist can have before it gets flushed back to buddy allocator.
9022  */
9023 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9024 		int write, void *buffer, size_t *length, loff_t *ppos)
9025 {
9026 	struct zone *zone;
9027 	int old_percpu_pagelist_high_fraction;
9028 	int ret;
9029 
9030 	mutex_lock(&pcp_batch_high_lock);
9031 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
9032 
9033 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
9034 	if (!write || ret < 0)
9035 		goto out;
9036 
9037 	/* Sanity checking to avoid pcp imbalance */
9038 	if (percpu_pagelist_high_fraction &&
9039 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9040 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9041 		ret = -EINVAL;
9042 		goto out;
9043 	}
9044 
9045 	/* No change? */
9046 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9047 		goto out;
9048 
9049 	for_each_populated_zone(zone)
9050 		zone_set_pageset_high_and_batch(zone, 0);
9051 out:
9052 	mutex_unlock(&pcp_batch_high_lock);
9053 	return ret;
9054 }
9055 
9056 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9057 /*
9058  * Returns the number of pages that arch has reserved but
9059  * is not known to alloc_large_system_hash().
9060  */
9061 static unsigned long __init arch_reserved_kernel_pages(void)
9062 {
9063 	return 0;
9064 }
9065 #endif
9066 
9067 /*
9068  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9069  * machines. As memory size is increased the scale is also increased but at
9070  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9071  * quadruples the scale is increased by one, which means the size of hash table
9072  * only doubles, instead of quadrupling as well.
9073  * Because 32-bit systems cannot have large physical memory, where this scaling
9074  * makes sense, it is disabled on such platforms.
9075  */
9076 #if __BITS_PER_LONG > 32
9077 #define ADAPT_SCALE_BASE	(64ul << 30)
9078 #define ADAPT_SCALE_SHIFT	2
9079 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9080 #endif
9081 
9082 /*
9083  * allocate a large system hash table from bootmem
9084  * - it is assumed that the hash table must contain an exact power-of-2
9085  *   quantity of entries
9086  * - limit is the number of hash buckets, not the total allocation size
9087  */
9088 void *__init alloc_large_system_hash(const char *tablename,
9089 				     unsigned long bucketsize,
9090 				     unsigned long numentries,
9091 				     int scale,
9092 				     int flags,
9093 				     unsigned int *_hash_shift,
9094 				     unsigned int *_hash_mask,
9095 				     unsigned long low_limit,
9096 				     unsigned long high_limit)
9097 {
9098 	unsigned long long max = high_limit;
9099 	unsigned long log2qty, size;
9100 	void *table;
9101 	gfp_t gfp_flags;
9102 	bool virt;
9103 	bool huge;
9104 
9105 	/* allow the kernel cmdline to have a say */
9106 	if (!numentries) {
9107 		/* round applicable memory size up to nearest megabyte */
9108 		numentries = nr_kernel_pages;
9109 		numentries -= arch_reserved_kernel_pages();
9110 
9111 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9112 		if (PAGE_SIZE < SZ_1M)
9113 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9114 
9115 #if __BITS_PER_LONG > 32
9116 		if (!high_limit) {
9117 			unsigned long adapt;
9118 
9119 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9120 			     adapt <<= ADAPT_SCALE_SHIFT)
9121 				scale++;
9122 		}
9123 #endif
9124 
9125 		/* limit to 1 bucket per 2^scale bytes of low memory */
9126 		if (scale > PAGE_SHIFT)
9127 			numentries >>= (scale - PAGE_SHIFT);
9128 		else
9129 			numentries <<= (PAGE_SHIFT - scale);
9130 
9131 		/* Make sure we've got at least a 0-order allocation.. */
9132 		if (unlikely(flags & HASH_SMALL)) {
9133 			/* Makes no sense without HASH_EARLY */
9134 			WARN_ON(!(flags & HASH_EARLY));
9135 			if (!(numentries >> *_hash_shift)) {
9136 				numentries = 1UL << *_hash_shift;
9137 				BUG_ON(!numentries);
9138 			}
9139 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9140 			numentries = PAGE_SIZE / bucketsize;
9141 	}
9142 	numentries = roundup_pow_of_two(numentries);
9143 
9144 	/* limit allocation size to 1/16 total memory by default */
9145 	if (max == 0) {
9146 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9147 		do_div(max, bucketsize);
9148 	}
9149 	max = min(max, 0x80000000ULL);
9150 
9151 	if (numentries < low_limit)
9152 		numentries = low_limit;
9153 	if (numentries > max)
9154 		numentries = max;
9155 
9156 	log2qty = ilog2(numentries);
9157 
9158 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9159 	do {
9160 		virt = false;
9161 		size = bucketsize << log2qty;
9162 		if (flags & HASH_EARLY) {
9163 			if (flags & HASH_ZERO)
9164 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9165 			else
9166 				table = memblock_alloc_raw(size,
9167 							   SMP_CACHE_BYTES);
9168 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9169 			table = vmalloc_huge(size, gfp_flags);
9170 			virt = true;
9171 			if (table)
9172 				huge = is_vm_area_hugepages(table);
9173 		} else {
9174 			/*
9175 			 * If bucketsize is not a power-of-two, we may free
9176 			 * some pages at the end of hash table which
9177 			 * alloc_pages_exact() automatically does
9178 			 */
9179 			table = alloc_pages_exact(size, gfp_flags);
9180 			kmemleak_alloc(table, size, 1, gfp_flags);
9181 		}
9182 	} while (!table && size > PAGE_SIZE && --log2qty);
9183 
9184 	if (!table)
9185 		panic("Failed to allocate %s hash table\n", tablename);
9186 
9187 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9188 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9189 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9190 
9191 	if (_hash_shift)
9192 		*_hash_shift = log2qty;
9193 	if (_hash_mask)
9194 		*_hash_mask = (1 << log2qty) - 1;
9195 
9196 	return table;
9197 }
9198 
9199 #ifdef CONFIG_CONTIG_ALLOC
9200 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9201 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9202 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9203 static void alloc_contig_dump_pages(struct list_head *page_list)
9204 {
9205 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9206 
9207 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9208 		struct page *page;
9209 
9210 		dump_stack();
9211 		list_for_each_entry(page, page_list, lru)
9212 			dump_page(page, "migration failure");
9213 	}
9214 }
9215 #else
9216 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9217 {
9218 }
9219 #endif
9220 
9221 /* [start, end) must belong to a single zone. */
9222 int __alloc_contig_migrate_range(struct compact_control *cc,
9223 					unsigned long start, unsigned long end)
9224 {
9225 	/* This function is based on compact_zone() from compaction.c. */
9226 	unsigned int nr_reclaimed;
9227 	unsigned long pfn = start;
9228 	unsigned int tries = 0;
9229 	int ret = 0;
9230 	struct migration_target_control mtc = {
9231 		.nid = zone_to_nid(cc->zone),
9232 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9233 	};
9234 
9235 	lru_cache_disable();
9236 
9237 	while (pfn < end || !list_empty(&cc->migratepages)) {
9238 		if (fatal_signal_pending(current)) {
9239 			ret = -EINTR;
9240 			break;
9241 		}
9242 
9243 		if (list_empty(&cc->migratepages)) {
9244 			cc->nr_migratepages = 0;
9245 			ret = isolate_migratepages_range(cc, pfn, end);
9246 			if (ret && ret != -EAGAIN)
9247 				break;
9248 			pfn = cc->migrate_pfn;
9249 			tries = 0;
9250 		} else if (++tries == 5) {
9251 			ret = -EBUSY;
9252 			break;
9253 		}
9254 
9255 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9256 							&cc->migratepages);
9257 		cc->nr_migratepages -= nr_reclaimed;
9258 
9259 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9260 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9261 
9262 		/*
9263 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9264 		 * to retry again over this error, so do the same here.
9265 		 */
9266 		if (ret == -ENOMEM)
9267 			break;
9268 	}
9269 
9270 	lru_cache_enable();
9271 	if (ret < 0) {
9272 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9273 			alloc_contig_dump_pages(&cc->migratepages);
9274 		putback_movable_pages(&cc->migratepages);
9275 		return ret;
9276 	}
9277 	return 0;
9278 }
9279 
9280 /**
9281  * alloc_contig_range() -- tries to allocate given range of pages
9282  * @start:	start PFN to allocate
9283  * @end:	one-past-the-last PFN to allocate
9284  * @migratetype:	migratetype of the underlying pageblocks (either
9285  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9286  *			in range must have the same migratetype and it must
9287  *			be either of the two.
9288  * @gfp_mask:	GFP mask to use during compaction
9289  *
9290  * The PFN range does not have to be pageblock aligned. The PFN range must
9291  * belong to a single zone.
9292  *
9293  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9294  * pageblocks in the range.  Once isolated, the pageblocks should not
9295  * be modified by others.
9296  *
9297  * Return: zero on success or negative error code.  On success all
9298  * pages which PFN is in [start, end) are allocated for the caller and
9299  * need to be freed with free_contig_range().
9300  */
9301 int alloc_contig_range(unsigned long start, unsigned long end,
9302 		       unsigned migratetype, gfp_t gfp_mask)
9303 {
9304 	unsigned long outer_start, outer_end;
9305 	int order;
9306 	int ret = 0;
9307 
9308 	struct compact_control cc = {
9309 		.nr_migratepages = 0,
9310 		.order = -1,
9311 		.zone = page_zone(pfn_to_page(start)),
9312 		.mode = MIGRATE_SYNC,
9313 		.ignore_skip_hint = true,
9314 		.no_set_skip_hint = true,
9315 		.gfp_mask = current_gfp_context(gfp_mask),
9316 		.alloc_contig = true,
9317 	};
9318 	INIT_LIST_HEAD(&cc.migratepages);
9319 
9320 	/*
9321 	 * What we do here is we mark all pageblocks in range as
9322 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9323 	 * have different sizes, and due to the way page allocator
9324 	 * work, start_isolate_page_range() has special handlings for this.
9325 	 *
9326 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9327 	 * migrate the pages from an unaligned range (ie. pages that
9328 	 * we are interested in). This will put all the pages in
9329 	 * range back to page allocator as MIGRATE_ISOLATE.
9330 	 *
9331 	 * When this is done, we take the pages in range from page
9332 	 * allocator removing them from the buddy system.  This way
9333 	 * page allocator will never consider using them.
9334 	 *
9335 	 * This lets us mark the pageblocks back as
9336 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9337 	 * aligned range but not in the unaligned, original range are
9338 	 * put back to page allocator so that buddy can use them.
9339 	 */
9340 
9341 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9342 	if (ret)
9343 		goto done;
9344 
9345 	drain_all_pages(cc.zone);
9346 
9347 	/*
9348 	 * In case of -EBUSY, we'd like to know which page causes problem.
9349 	 * So, just fall through. test_pages_isolated() has a tracepoint
9350 	 * which will report the busy page.
9351 	 *
9352 	 * It is possible that busy pages could become available before
9353 	 * the call to test_pages_isolated, and the range will actually be
9354 	 * allocated.  So, if we fall through be sure to clear ret so that
9355 	 * -EBUSY is not accidentally used or returned to caller.
9356 	 */
9357 	ret = __alloc_contig_migrate_range(&cc, start, end);
9358 	if (ret && ret != -EBUSY)
9359 		goto done;
9360 	ret = 0;
9361 
9362 	/*
9363 	 * Pages from [start, end) are within a pageblock_nr_pages
9364 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9365 	 * more, all pages in [start, end) are free in page allocator.
9366 	 * What we are going to do is to allocate all pages from
9367 	 * [start, end) (that is remove them from page allocator).
9368 	 *
9369 	 * The only problem is that pages at the beginning and at the
9370 	 * end of interesting range may be not aligned with pages that
9371 	 * page allocator holds, ie. they can be part of higher order
9372 	 * pages.  Because of this, we reserve the bigger range and
9373 	 * once this is done free the pages we are not interested in.
9374 	 *
9375 	 * We don't have to hold zone->lock here because the pages are
9376 	 * isolated thus they won't get removed from buddy.
9377 	 */
9378 
9379 	order = 0;
9380 	outer_start = start;
9381 	while (!PageBuddy(pfn_to_page(outer_start))) {
9382 		if (++order >= MAX_ORDER) {
9383 			outer_start = start;
9384 			break;
9385 		}
9386 		outer_start &= ~0UL << order;
9387 	}
9388 
9389 	if (outer_start != start) {
9390 		order = buddy_order(pfn_to_page(outer_start));
9391 
9392 		/*
9393 		 * outer_start page could be small order buddy page and
9394 		 * it doesn't include start page. Adjust outer_start
9395 		 * in this case to report failed page properly
9396 		 * on tracepoint in test_pages_isolated()
9397 		 */
9398 		if (outer_start + (1UL << order) <= start)
9399 			outer_start = start;
9400 	}
9401 
9402 	/* Make sure the range is really isolated. */
9403 	if (test_pages_isolated(outer_start, end, 0)) {
9404 		ret = -EBUSY;
9405 		goto done;
9406 	}
9407 
9408 	/* Grab isolated pages from freelists. */
9409 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9410 	if (!outer_end) {
9411 		ret = -EBUSY;
9412 		goto done;
9413 	}
9414 
9415 	/* Free head and tail (if any) */
9416 	if (start != outer_start)
9417 		free_contig_range(outer_start, start - outer_start);
9418 	if (end != outer_end)
9419 		free_contig_range(end, outer_end - end);
9420 
9421 done:
9422 	undo_isolate_page_range(start, end, migratetype);
9423 	return ret;
9424 }
9425 EXPORT_SYMBOL(alloc_contig_range);
9426 
9427 static int __alloc_contig_pages(unsigned long start_pfn,
9428 				unsigned long nr_pages, gfp_t gfp_mask)
9429 {
9430 	unsigned long end_pfn = start_pfn + nr_pages;
9431 
9432 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9433 				  gfp_mask);
9434 }
9435 
9436 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9437 				   unsigned long nr_pages)
9438 {
9439 	unsigned long i, end_pfn = start_pfn + nr_pages;
9440 	struct page *page;
9441 
9442 	for (i = start_pfn; i < end_pfn; i++) {
9443 		page = pfn_to_online_page(i);
9444 		if (!page)
9445 			return false;
9446 
9447 		if (page_zone(page) != z)
9448 			return false;
9449 
9450 		if (PageReserved(page))
9451 			return false;
9452 	}
9453 	return true;
9454 }
9455 
9456 static bool zone_spans_last_pfn(const struct zone *zone,
9457 				unsigned long start_pfn, unsigned long nr_pages)
9458 {
9459 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9460 
9461 	return zone_spans_pfn(zone, last_pfn);
9462 }
9463 
9464 /**
9465  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9466  * @nr_pages:	Number of contiguous pages to allocate
9467  * @gfp_mask:	GFP mask to limit search and used during compaction
9468  * @nid:	Target node
9469  * @nodemask:	Mask for other possible nodes
9470  *
9471  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9472  * on an applicable zonelist to find a contiguous pfn range which can then be
9473  * tried for allocation with alloc_contig_range(). This routine is intended
9474  * for allocation requests which can not be fulfilled with the buddy allocator.
9475  *
9476  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9477  * power of two, then allocated range is also guaranteed to be aligned to same
9478  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9479  *
9480  * Allocated pages can be freed with free_contig_range() or by manually calling
9481  * __free_page() on each allocated page.
9482  *
9483  * Return: pointer to contiguous pages on success, or NULL if not successful.
9484  */
9485 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9486 				int nid, nodemask_t *nodemask)
9487 {
9488 	unsigned long ret, pfn, flags;
9489 	struct zonelist *zonelist;
9490 	struct zone *zone;
9491 	struct zoneref *z;
9492 
9493 	zonelist = node_zonelist(nid, gfp_mask);
9494 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9495 					gfp_zone(gfp_mask), nodemask) {
9496 		spin_lock_irqsave(&zone->lock, flags);
9497 
9498 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9499 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9500 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9501 				/*
9502 				 * We release the zone lock here because
9503 				 * alloc_contig_range() will also lock the zone
9504 				 * at some point. If there's an allocation
9505 				 * spinning on this lock, it may win the race
9506 				 * and cause alloc_contig_range() to fail...
9507 				 */
9508 				spin_unlock_irqrestore(&zone->lock, flags);
9509 				ret = __alloc_contig_pages(pfn, nr_pages,
9510 							gfp_mask);
9511 				if (!ret)
9512 					return pfn_to_page(pfn);
9513 				spin_lock_irqsave(&zone->lock, flags);
9514 			}
9515 			pfn += nr_pages;
9516 		}
9517 		spin_unlock_irqrestore(&zone->lock, flags);
9518 	}
9519 	return NULL;
9520 }
9521 #endif /* CONFIG_CONTIG_ALLOC */
9522 
9523 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9524 {
9525 	unsigned long count = 0;
9526 
9527 	for (; nr_pages--; pfn++) {
9528 		struct page *page = pfn_to_page(pfn);
9529 
9530 		count += page_count(page) != 1;
9531 		__free_page(page);
9532 	}
9533 	WARN(count != 0, "%lu pages are still in use!\n", count);
9534 }
9535 EXPORT_SYMBOL(free_contig_range);
9536 
9537 /*
9538  * Effectively disable pcplists for the zone by setting the high limit to 0
9539  * and draining all cpus. A concurrent page freeing on another CPU that's about
9540  * to put the page on pcplist will either finish before the drain and the page
9541  * will be drained, or observe the new high limit and skip the pcplist.
9542  *
9543  * Must be paired with a call to zone_pcp_enable().
9544  */
9545 void zone_pcp_disable(struct zone *zone)
9546 {
9547 	mutex_lock(&pcp_batch_high_lock);
9548 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9549 	__drain_all_pages(zone, true);
9550 }
9551 
9552 void zone_pcp_enable(struct zone *zone)
9553 {
9554 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9555 	mutex_unlock(&pcp_batch_high_lock);
9556 }
9557 
9558 void zone_pcp_reset(struct zone *zone)
9559 {
9560 	int cpu;
9561 	struct per_cpu_zonestat *pzstats;
9562 
9563 	if (zone->per_cpu_pageset != &boot_pageset) {
9564 		for_each_online_cpu(cpu) {
9565 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9566 			drain_zonestat(zone, pzstats);
9567 		}
9568 		free_percpu(zone->per_cpu_pageset);
9569 		zone->per_cpu_pageset = &boot_pageset;
9570 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9571 			free_percpu(zone->per_cpu_zonestats);
9572 			zone->per_cpu_zonestats = &boot_zonestats;
9573 		}
9574 	}
9575 }
9576 
9577 #ifdef CONFIG_MEMORY_HOTREMOVE
9578 /*
9579  * All pages in the range must be in a single zone, must not contain holes,
9580  * must span full sections, and must be isolated before calling this function.
9581  */
9582 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9583 {
9584 	unsigned long pfn = start_pfn;
9585 	struct page *page;
9586 	struct zone *zone;
9587 	unsigned int order;
9588 	unsigned long flags;
9589 
9590 	offline_mem_sections(pfn, end_pfn);
9591 	zone = page_zone(pfn_to_page(pfn));
9592 	spin_lock_irqsave(&zone->lock, flags);
9593 	while (pfn < end_pfn) {
9594 		page = pfn_to_page(pfn);
9595 		/*
9596 		 * The HWPoisoned page may be not in buddy system, and
9597 		 * page_count() is not 0.
9598 		 */
9599 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9600 			pfn++;
9601 			continue;
9602 		}
9603 		/*
9604 		 * At this point all remaining PageOffline() pages have a
9605 		 * reference count of 0 and can simply be skipped.
9606 		 */
9607 		if (PageOffline(page)) {
9608 			BUG_ON(page_count(page));
9609 			BUG_ON(PageBuddy(page));
9610 			pfn++;
9611 			continue;
9612 		}
9613 
9614 		BUG_ON(page_count(page));
9615 		BUG_ON(!PageBuddy(page));
9616 		order = buddy_order(page);
9617 		del_page_from_free_list(page, zone, order);
9618 		pfn += (1 << order);
9619 	}
9620 	spin_unlock_irqrestore(&zone->lock, flags);
9621 }
9622 #endif
9623 
9624 /*
9625  * This function returns a stable result only if called under zone lock.
9626  */
9627 bool is_free_buddy_page(struct page *page)
9628 {
9629 	unsigned long pfn = page_to_pfn(page);
9630 	unsigned int order;
9631 
9632 	for (order = 0; order < MAX_ORDER; order++) {
9633 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9634 
9635 		if (PageBuddy(page_head) &&
9636 		    buddy_order_unsafe(page_head) >= order)
9637 			break;
9638 	}
9639 
9640 	return order < MAX_ORDER;
9641 }
9642 EXPORT_SYMBOL(is_free_buddy_page);
9643 
9644 #ifdef CONFIG_MEMORY_FAILURE
9645 /*
9646  * Break down a higher-order page in sub-pages, and keep our target out of
9647  * buddy allocator.
9648  */
9649 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9650 				   struct page *target, int low, int high,
9651 				   int migratetype)
9652 {
9653 	unsigned long size = 1 << high;
9654 	struct page *current_buddy, *next_page;
9655 
9656 	while (high > low) {
9657 		high--;
9658 		size >>= 1;
9659 
9660 		if (target >= &page[size]) {
9661 			next_page = page + size;
9662 			current_buddy = page;
9663 		} else {
9664 			next_page = page;
9665 			current_buddy = page + size;
9666 		}
9667 
9668 		if (set_page_guard(zone, current_buddy, high, migratetype))
9669 			continue;
9670 
9671 		if (current_buddy != target) {
9672 			add_to_free_list(current_buddy, zone, high, migratetype);
9673 			set_buddy_order(current_buddy, high);
9674 			page = next_page;
9675 		}
9676 	}
9677 }
9678 
9679 /*
9680  * Take a page that will be marked as poisoned off the buddy allocator.
9681  */
9682 bool take_page_off_buddy(struct page *page)
9683 {
9684 	struct zone *zone = page_zone(page);
9685 	unsigned long pfn = page_to_pfn(page);
9686 	unsigned long flags;
9687 	unsigned int order;
9688 	bool ret = false;
9689 
9690 	spin_lock_irqsave(&zone->lock, flags);
9691 	for (order = 0; order < MAX_ORDER; order++) {
9692 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9693 		int page_order = buddy_order(page_head);
9694 
9695 		if (PageBuddy(page_head) && page_order >= order) {
9696 			unsigned long pfn_head = page_to_pfn(page_head);
9697 			int migratetype = get_pfnblock_migratetype(page_head,
9698 								   pfn_head);
9699 
9700 			del_page_from_free_list(page_head, zone, page_order);
9701 			break_down_buddy_pages(zone, page_head, page, 0,
9702 						page_order, migratetype);
9703 			SetPageHWPoisonTakenOff(page);
9704 			if (!is_migrate_isolate(migratetype))
9705 				__mod_zone_freepage_state(zone, -1, migratetype);
9706 			ret = true;
9707 			break;
9708 		}
9709 		if (page_count(page_head) > 0)
9710 			break;
9711 	}
9712 	spin_unlock_irqrestore(&zone->lock, flags);
9713 	return ret;
9714 }
9715 
9716 /*
9717  * Cancel takeoff done by take_page_off_buddy().
9718  */
9719 bool put_page_back_buddy(struct page *page)
9720 {
9721 	struct zone *zone = page_zone(page);
9722 	unsigned long pfn = page_to_pfn(page);
9723 	unsigned long flags;
9724 	int migratetype = get_pfnblock_migratetype(page, pfn);
9725 	bool ret = false;
9726 
9727 	spin_lock_irqsave(&zone->lock, flags);
9728 	if (put_page_testzero(page)) {
9729 		ClearPageHWPoisonTakenOff(page);
9730 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9731 		if (TestClearPageHWPoison(page)) {
9732 			ret = true;
9733 		}
9734 	}
9735 	spin_unlock_irqrestore(&zone->lock, flags);
9736 
9737 	return ret;
9738 }
9739 #endif
9740 
9741 #ifdef CONFIG_ZONE_DMA
9742 bool has_managed_dma(void)
9743 {
9744 	struct pglist_data *pgdat;
9745 
9746 	for_each_online_pgdat(pgdat) {
9747 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9748 
9749 		if (managed_zone(zone))
9750 			return true;
9751 	}
9752 	return false;
9753 }
9754 #endif /* CONFIG_ZONE_DMA */
9755